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1. INTRODUCTION AND SUMMARY 
A Fibonacci representation has been defined [1 , 2, 3, 5, 8] as a finite sequence of ones and zeroes (in effect) 

read positionally from right to left, in which a one in position / signifies the presence of the Fibonacci number 
fj, where we take fl = 1, f2 = I The integer thus represented is the sum of the Fibonacci numbers whose pres-
ence is indicated by the ones appearing in the representation. 

Our purpose in this paper is to generalize the notion of Fibonacci representations in such a way as to provide 
for a natural algebraic and geometric setting for their analysis. In this way many known results are unified and 
simplified and new results are obtained. Some of the results extend to Fibonacci representations of higher or-
der, but we do not present these because we have been unable to extend the theory as a whole and because of 
the length of the paper. 

The first step is to extend the Fibonacci numbers through all negative indices using the defining recursion 
fn+2 = fn + fn+i, as n a s D e e n done by Klarner [14]. The second step is to introduce arbitrary integer coeffi-
cients. Thus an extended Fibonacci representation is a finite sequence of integers, together with a point which 
sets off the position of f0. Positions are numbered as is customary for positional notation, and an integer k; in 
position / signifies k,fj. The integer thereby represented is ^\kjfi, the summation extending over those fin-
itely many / for which k; ^ 0. 

Let r denote the golden ratio taken greater than one. Then T2 = 1 + r and 1/r2 = 1 - (1/r). The ring/ of quad-
ratic integers in the quadratic extension field Qfr] of the rationals consists of those elements of the form m + nr 
(or (m/r) + n) in which m and n are ordinary integers. 

Each Fibonacci representation Y ^ k\ft determi nes another integer by taking its left shift; this gives y ^ £;-;/;. 
For each Fibonacci representation Y ^ k;f; we define a quadratic integer in / said to be determined by the rep-
resentation y ^ k;fj] it is 

2>'.^* f + 

This quadratic integer is equal to the sum '^TkjT1, which is a pseudo-polynomial in r. Because of this the usual 
arithmetical algorithms for addition, subtraction and multiplication, when applied to the Fibonacci representa-
tions, yield results which interpret in terms of the ring structure in / . For example, 12.1 represents 2 and 121. 
represents 3 so that 12.1 determines the quadratic integer (21 T) + 3. Similarly, 1.1 determines (1/r) + 1. Since 

(f + 1 ) (H =F + 5' 
we predict that the usual multiplication algorithm when applied to 12.1 and 1.1 will produce a representation 
of 3 whose left shift represents 5, and indeed this is true of the result, which is 13.31. 

A Fibonacci representation is canonical if either all of the non-zero k\ are +1 or else all of the non-zero k; are 
- 1 , and no two non-zero k; are consecutive. A basic theorem in this paper is that each quadratic integer in / is 
determined by exactly one canonical representation. A resolution algorithm is introduced which is shown to re-
duce any Fibonacci representation to the unique canonical representation which determines the same quadratic 
integer. As a result, the canonical Fibonacci representations in the usual arithmetical algorithms plus the resolu-
tion algorithm form a ring isomorphic to the ring / under the correspondence 
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S k'fi "" YlklT'' or the same' S k'f' "" r— * ]C */-/'/ • 
Clearly the subring of representations of zero will be isomorphic to the integers under the left shift 2_\ k/f,; ~* 
^jTkj-ifj, since in the case of zero representations this amounts to J^k,f,^ V^kjT1. The reader is re-

ferred to the text for sample calculations with the resolution algorithm. 
One consequence of the foregoing remarks is that for every pair of integersm and/7 there is exactly one can-

onical Fibonacci representation of/77 whose left shift represents n (canonically). (This appears in [14] for natu-
ral m and n and in [13] for the general case.) This representation can be determined from the resulution algo-
rithm by starting with/7./77 which represents^ + n. This of course provides an infinity of canonical representa-
tions for each integerm, one corresponding to each choice of n. 

By identifying the quadratic integer - + n with the point (mfn) in the plane, which in the present context we 
refer to as the Fibonacci plane, we are able to arrive at simple geometric characterizations of those choices of n 
(for a given m) which will result in the standard Fibonacci representations in the literature, and some new ones 
in addition. Formulas giving n as a function of m for these representations are an immediate consequence of the 
geometry. 

It is shown in Section 2 that the space of integer sequences ixn Y satisfyingxn+2 = xn +xn+i is naturally 
isomorphic to the ring/. Consequently the results on canonical Fibonacci representations interpret for these 
sequences, which we call Fibonacci sequences. Namely, given a Fibonacci sequence with zerof and first terms 
XQ and xj, respectively, let *jT]kjfj be the canonical Fibonacci representation which determines the quadratic 
integer — +xx. Then the sequence ixn I is uniquely expressible as a signed sum of distinct, non-consecutive 
shifts of the sequence ifnl of Fibonacci numbers, and the sum is exactly that which is determined by the 

canonical representation ^\kjfjf wherein position / is associated with the / f left shift of ifn\ . Moreover, 

the canonical representation V k/f,- represents the term XQ and its various left and right shifts represent the 
corresponding terms of the sequence \xn\ . (Again see [14] for special cases and see [8, 13] for generaliza-
tions.) That is, every Fibonacci sequence of integers appears canonically ''in Fibonacci" as a sequence of shifts 
of a fixed, signed block of zeroes and ones. 

Consider for example the Fibonacci sequence having;^ = 5, x-j = 7. By the resolution algorithm 7.5 reduces 
to 10100.1. This means that \xnX is the sum of the fourth and second left shifts and the first right shift of 
ifnl. Moreover, the sequence - , 5, 7, 12, - appears "in Fibonacci" as ••-, 10100.1, 101001., 1010010., - . 

Various other results appear in the paper, such as other canonical Fibonacci representations obtained by geo-
metric means, hyperbolic flows and number theoretic properties of flow constants. 

It is a pleasure to acknowledge the kind assistance of many of our colleagues and acquaintances, particularly 
that of Professors J. Luh and L Carlitz. 

2. THE RINGS X, F, M AND / AND THE FIBONACCI PLANE P 

2.1 Introduction. The analysis of Fibonacci representations presented here rests on a natural ring s t ruc-
ture for the space of integer Fibonacci sequences. The purpose of Section 2 is to introduce the space of integer 
Fibonacci sequences, to show how its natural ring structure arises, and to introduce other isomorphic rings of 
interest in investigating and interpreting Fibonacci representations. 

2.2. The Spaces X and X. Let X denote the collection of integer sequences <xn IQ satisfying the linear, 
second-order recursion 

(2.1) xn+2 = xn+xn+1. 

These Fibonacci sequences form a module over the ringZ of integers under termwise operations. 
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l e t f = {fn\o be the solution of Eq. (2.1) such that f0= Omd f1 = //the terms of fare customarily called 
the Fibonacci numbers. 

Let a ; X-+X be the left shift on X, defined by 

(2-2) ®({*n}o) = \xn+l\o • 

ByEq. (2.1), 

(2.3) a 2 - a - 1 = 0, 
where 1 and 0denote the identity and zero operators on X, respectively, o is an automorphism of the Z-module 
X, and its inverse o~1 is the right shift on A', with the understanding that the zerof/? term oi o~1(ixn Id) ' s t 0 

bex ; - XQ. 

X is a two-dimensional Z-module; one basis for X is if, off) \, in which 

(2.4) x = fx1-x0)f + x0off), x&X. 

Each sequence x = j xn \1Q in X can be extended by Eq. (2.1) in just one way to a double-ended sequence 
x_= \xn J_~ ; the collection of double-ended solutions of Eq. (2.1) is also a Z-module under termwise opera-
tions, and is isomorphic to X under the correspondence a(x)= x. Members of A'shall also be called Fibonacci 
sequences, but referred to as extended when it is necessary to distinguish them from the sequences in X. In par-
ticular, the terms of f= a(f) are called extended Fibonacci numbers. For these numbers it is readily verified that 

(2.5) Ln = f-1)n+1fn, n^Z. 

No confusion will arise from using o ; X -> X to denote the left shift on X as well as the left shift on X, and 
Eq. (2.3) is valid in either case. Since a is an isomorphism, j £ off) J- is a basis forX in which 

(2.6) x = fx1-x0)f+x0offjt x e X. 

The inverse of o on X, o~ , is the right shift on X. 

2.3. Two Theorems. This section consists of the statement and proof of two theorems. The first of these 
shows that a certain class of quotient rings can be characterized as a certain class of modules. Because X belongs 
to the latter class (in this connection Eq. (2.4) is critical) the theorem provides a ring structure forX. The re-
sults apply equally to X. 

The second theorem shows how the members of this class of quotient rings can be realized as matrix rings; 
this results in a representation of X and X as a certain collection of 2 x 2 matrices in the usual operations. This 
theorem appears in MacDuffee [15] for algebras. 

Theorem 2.1. Let R be a commutative ring with unity 1 and \etp(X) be a monic polynomial in /?A/of 
degree n. LetS be the quotient ring of polynomials modulo pfk) and define A ; S^S by 

Af[qf\)]) = l\q()J] 

for each equivalence class fq(X)] in S. If S is considered to be an /?-module in the operations 

[q /00] + [q2Ml = Id 1M + Q2ML r[qMl = frqM] , 

then A e Hom^^S,/ and S is /7-dimensional over R with basis 

{ lil, A([1]), -.., An~ 1f[1l) } = { lil, M, - , [Xn~1] J.. 
Furthermore/?^ = 0 a n d / ? ^ is the polynomial in RfX] of least degree which is monic and which annihilates 
A . 

Conversely, let 5 be an /7-dimensional /?-module over a commutative ring R with unity 1flet A e Horn/? (S,S) 
and suppose there exists s <E S such that is, A fs), ••-, An'1(s) I is a basis forS over R. Then there exists 
pfk) in RM which is monic and of degree n, such thatp/A,/ = 0 and such that S is isomorphic to the quotient 
ring R[\]/(p(\)) considered as an /?-module. One isomorphism is the mapping 0 which sends 
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n-1 

£ r<Ai(s) to 
i=0 

n-1 

E n\' 
i=0 

This isomorphism induces a multiplication on S by 

si* s2 = <t>~1(<t>(si)(l)(S2)), 

and this induced multiplication makes S into a ring with unity s. 0 is then a ring isomorphism under which the 
action of A in S corresponds to multiplication by the element A7 in the quotient ring Rf\J/(p(K)l 

Proof. LetpM^X" - rn.-i\
n~1 - .» - r0. Note that for#/ /X/ , q2(k)^ R[X], we haveqjfA), q2(A) 

e Horn R(S,S), and 
(2.7) qi(A )([q2(K)] ) = [q / (\)q2 (X)] = q2 (A )([q / (X)J ) . 

Now | / / 7 , A r//7;, .» , An~f([1j) } is the same as i / / / , A / , - , l\n~1]\, and the latter is a basis for 
5 over R becausep is monic. Moreover, by Eq. (2.7) 

pfAHW]) = [X'pfX)] = 10] 

so that pi A) vanishes on a basis and therefore is zero. If q(X)^ RfXJ is monic and q(A) = Or then by Eq. (2.7) 

q(A)([1]) = fq(X)J = [0] 

so that q(X) is a multiple oipfXl Since both q(X) andpfX) are monic, q(X) cannot have lesser degree thmp(X) 
has. Thus /?^ is the polynomial in RfXj of least degree which is monic and annihilates A . 

Now suppose S is an/7-dimensionaI /?-module over a commutative ring/? with unity 1, and let A e Hom# (S,S) 

and s e 5 such that is, A (s), —, A77" frj }• is a basis for 5 over /?. Since An(s)^S, there exist unique ele-
ments ro, r1t — , rn-i of R such that 

A7-/ 

An(s) = J2 nA'fs). 
i=0 

•ro 

Define p(X)^R[X] by 

so that 

But then 
p(A)(A'(s)) = A'(p(A)(s)) = 0 

for each natural number i, and hence p(A) vanishes on a basis and is therefore zero. 
Define 0 as in the statement of the theorem; that is 

p(X) = Xn-rn^Xn'1 -

n-1 

p(A)(s) = An(s)-J2 nA'(s] = 0. 
i=0 

r n-1 

li=0 

It is clear that 0 is a module homomorphism, and must indeed be an isomorphism because it sends the basis 
\s, A(s), - , An~1(s) } onto the basis | [1], A / , - , [Xn~1]\. The rest of the theorem now follows readi-
ly from the manner in which the multiplication * is induced on S. 

Theorem 2.2. Let/? beacommutative ring with a unity and letp(X) (E R[X] be monic with degree/?. Let 
She the quotient ring R[\f/(p(X)l Then each congruence class in S contains exactly one polynomial (possibly 
zero) of degree less than n. Given q(X) ^RfXj let 
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n-1 

HO 

n-1 

Xq(X) - Y* rrt 
1=0 
n-1 

X2q(X) = ^ AyV 
i=0 

-\ 

> modulo/7^ 

Xn~1q(X) >"7>J x ' / 

the right-hand sides being uniquely determined by the choice of [q(\)]. Define a mapping 7which sends the 
congruence class fq(X)] in S to the n x n matrix 

ro 

rO 

rO 

n rn-1 

•n~1 

'n-1 

Jn-1) Jn-1) 
rO r1 

Jn-1), 
rn-1 

Then 7 is a ring isomorphism from S onto asubring of the ring of n x n matrices over/? in the usual operations. 
Proof. We have seen in the previous theorem that S is an /?-module with basis j [1], [k], —, [Xn~1] I. 

In this basis, multiplication by [q(X)J in S is a module endomorphism on S which is represented by the fore-
going matrix. The mapping which sends [q(X)J in S to the endomorphism induced by multiplication by [q(\)J 

is a ring isomorphism of S onto a subring of the endomorphism ring of S. Since representation of these endo-
morphisms by matrices in a given basis is also a ring isomorphism, the theorem follows. 

2.4. Application toX. We now apply Theorem 2.1 to X, taking for A the left shift a and fors the sequence 
f of Fibonacci numbers. Equation (2.3) gives p(X) = X - X- 7, so we let F denote the quotient ring 
Z[X]/(X2 - X- 1). If x e X , by Eq. (2.4)x = (x1 - x0)f + x00(f), so we define (p: X-+ F by (p(x)=(x1- x0) 
+ XQX which can be written (j)(x) = x-1 + xgX\f we introduce (for X) the abbreviation x_7 = x-/-xo- For 
y^X, (p(y) = y-i+ yoX so 

x*y = (p~1([x-i+x0X])([y„i +yokl) 
which works out to 

(2.8) ix*y = (x--jy-i + x0y0)t'+ (x-jyQ + XOY'0 + x0y~i)o(f). 

This equation defines the multiplication in X which makes X into a ring with unity f. Moreover, the left shift o 
in X corresponds under 0 to multiplication by [X] in F, which means that the left shift on X can be realized by 
multiplication in X by off); thus 

(2.9) x *off) = (x.-,f + x0o(f)) *o(f) = x0f+ (x-i+x0Mft = xof + x^ff) = o (x). 

If q(X) is equivalent to m+nX modulo X -X- I then Xq(X) is equivalent to/7-/-f/?7 +n)X modulo X -X-l 
It follows from Theorem 2.2 that X is isomorphic to the ring M of 2 x 2 matrices of the form 
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m n , - , m,n EL Z, m + n J ' ' ' 

under the transformation \p : X-> M defined by 

(2.10) yjjfx) = tx-> M . 

It is clear that the remarks of this section apply as well VQX, in view of Eq. (2.6); Eqs. (2.8), (2.9), (2110) are 
valid with identical right-hand sides when x and y are replaced by x andj/ on the left-hand sides. 

2.5. Extension of F to F. By a pseudo-polynomial over Z is meant a finite sum of the form 

E**' 
in which each / e Z and each k( eZ . The collection Z<X> of all pseudo-polynomials overZ in the indetermi-
nant X is a ring in the obvious way, in whichp(X) = X2 - X- 1 generates an ideal (X2 - X- 1). Let F denote 
the quotient ringZ<X>/(X2 -X- 1). 

Since X~l(X2 - X - 1) = X- 1 - X'1 e (X2 - X - 1) in Z<X>, we see that inZ<X> 

(2.11) X-1 = X- 1 mod ft2-X- 1). 

It follows by taking powers on each side of this congruence that every pseudo-polynomial is equivalent modulo 
X2 - X - / i n Z<X> to a polynomial. Since polynomials are equivalent modulo X2 - X - / in Z<X> if and 
only if they are equivalent modulo X2 - X - / inZAV, it is possible to map each equivalence class in F unam-
biguously onto the equivalence class in F containing the same polynomials, and this mapping /3; F-+F is an on-
to ring isomorphism. 

Define a mapping^ : X ^ Fby 

(2.12) £M = lx_x +xQX]. 
<£is a ring isomorphism if the multiplication in X is defined by Eq. (2.8). In fact, ̂  = /3o0o or1 , making the 
extension of F to F the exact counterpart of the extension of X to X in the, sense that the following diagram 
commutes: 

- x • F 
(2.13) a f 0 . ^ ft 

X : *F 

Under the isomorphism ^ , the left shift in X corresponds to multiplication by [X] in F and the right shift in 
^correspondsto multiplication by A " 1 / = A - / / \n£. It follows that the left and right shifts commute with 
the multiplication in X (and in X) in the sense that 
(2.14) on(x *Y) = on(x) *y = x*onlyJ 

for all integers n. Taking / = / , the unity \w X, and/7 = ±1 gives two analogues in A' of Eq. (2.9): 

(2.15) o(x) = x*o(f), 

(2.16) o-Ux) = x *o-l(f). 

It now follows that any endomorphism of the Z-module X which is a pseudo-polynomial in the shift o can be 
achieved by multiplication in A'by that element of X which is the value of the corresponding pseudo-polynomial 
in / . 

2.6. The Ring / and the Fibonacci Plane P. Conjugation and Flows. Let r be the positive root of X2 - X - 1; 
then r = 1/2<1 + yjb) which is the famous golden ratio, taken greater than 1. Let# denote the field of rational 
numbers. The quadratic extension field QfrJ is isomorphic to Q[X]/(X2 - X - 1) in the standard way; each 
equivalence class in Q[X]/(X2 -X- 1) corresponds to the number in Q[r] which is the common value assumed 
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by all members of the equivalence class under the evaluation X-> r. It is well known that the ring / of quadratic 
integers in Q[r] consists precisely of those members of the form m + nr, m,n e Z Thus we define an isomorph-
ism f : F -> / by 
(2.17) WpftJ]) = p(r). 

This same formula, in which pfk) can be an arbitrary pseudo-polynomial in Z<\> serves to define an isomorph-
ism f ; F-+/. Diagram (2.13) then becomes 

X >F^ 
(2.18) 4 

X- *F'\ 
which still commutes. We note that under the identification f o 0 (resp. f o 0) each integral power of a on X 
(resp. A l corresponds to multiplication by that power of r in /, and similarly for pseudo-polynomials in a.The 
identification^ o 0 mapsx £ ^ t o x~x +x0r = (x0/r) + x1 e / . 

The other root of X2 - X - / is —(1/r) = 1 - r, and the automorphism of Q[r] which fixes Q and sends r to 
—(1/r) is of course called conjugation. Denoting the conjugate of^ -̂ <77 by p + qrf 

p + qr = p +q - #7, 
or, alternatively, 

(2.19) 
T v £ + 0 -q-p 

Conjugation is involutory and therefore has a fixed point space and an involuted space. This is best considered 
geometrically, and for this and other purposes we introduce the Fibonacci Plane P. In analogy with complex 
numbers, we associate to each number (p/r) + q in Q[r] the point (p.q) in the Fibonacci plane. Even though 
the points of the rational plane suffice to represent Q[r], we include all real number pairs into the Fibonacci 
plane. Equation (2.19) is then extended to the Fibonacci plane so as to send each point (u,v)^P to (-u, v- u) 
e P. This is a linear transformation over the reals and is involutory. It consists of a non-orthogonal reflection of 
each point Pin the l/-axis (u = 0) along the line K :v= Vsu. This is illustrated in Figure 2.1. 

Fig. 2.1 Coi njugation in P 
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Given (p/r) + q e Q[r], one readily verifies that 

(2,20) 

and 

(2.21) 

( * • 

- (0 

• . ) -

27-

+ gr)-

- ( ? « : 
7 

- fa + qr) 
2r- 7 

These formulas are analogous to those for the real and imaginary parts of a complex number. 
LetxEiX. In view of the remarks immediately following diagram (2.18), we have 

(2.22) rn [Xf +X1) = ^ +xnH 

for every integer n. By takings = f^X, we obtain the well known identity 

(2.23) rn = !*- + * n+1 fn-1 + fnT, n ^ Z. 

The use of Eq. (2.20) in conjunction with Eq. (2.22) enables one to solve for the general term of sequences 
in X in terms of terms number 0 and 1: 

2T-1 
As a special case of Eq. (2.24) we obtain the classical Binet formula; taking* = / gives 

(2.24) n e Z 

(2.25) rn-(~rrn 

s/5 " 27- 1 
We introduce two principal axes Li and L2 into the Fibonacci plane by 

L.x : v = ru, L2 : v = - (1/T)U. 

These two axes are perpendicular and divide the Fibonacci plane into four regions £/, £//, £/// and iiy, as il 
lustrated in Fig. 2.2, in which for later reference also appear the l/-axis and the line K. 

/f\ V 

Fig. 2.2 The Principal Axes with V and K 
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To each point (u,v) in the Fibonacci plane we associate a pair of distances dl and d2 as follows: d; is the ver-
tical distance (that is, distance parallel to the l/-axis) from the line L,- to the point (u,v), measured positively 
upward, / = 1,2. This is illustrated in Fig. 2.3, from which the following equations follow readily: 

(2.26) dx(u,v) = ± + v, 

(2.27) d2(u,v) = u- + v. 

Fig. 2.3 The Distances^ and*/2 

It is clear that each of the regions £;, £//, £/// and L/v has a characteristic pair of signs for dl and d2. 
Each element (p/rj + q e Q[r] has a norm given by 

(2.28) v [P-+ q) = [P-+q) ( f + q ) = q2 - pq ~ P2 • 

We see that this norm is a determinant 
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(2.29) »(f+<) \ a P\ 
\P+Q q\ 

In case 
^+q = K_o^(x)=^+X,, 

"(?**•) = * 1 
x0 + xx * l \ 

which is the determinant of the matrix \p (x) given by Eq. (2.10). 
Equation (2.28) can be extended to the entire Fibonacci plane, giving a quantity 

(2.30) v(u,v) = v2 -uv-u2 

at each point. v(u,v) is an indefinite quadratic form which vanishes precisely on Lx and/.2. For each non-zero 
real number vQ, the graph in the Fibonacci plane of the equation 

(2.31) v(u,v) = v0 

is called a Fibonacci flow, and P0 is the flow constant. The flows are rectangular hyperbolas in the Fibonacci 
plane having Lt and L2 for asymptotes. The flows with positive constants lie in the regions £/ and £/// and the 
flows with negative constants lie in the regions £// and l/\/, 

It is readily verified that each point in the Fibonacci plane lies on the same flow as its conjugate. Figure 2.1 
shows that the line K divides the plane into two halves, each of which is set-wise invariant under conjugation. 
Since the flows with positive constants lie in regions £/ and £// / , it can be seen in Fig. 2.2 that the two branches 
of these flows always lie on opposite sides of K, It follows that on each such flow, every point and its conjugate 
lie on the same branch of the flow. Similarly, the V- ax is divides the Fibonacci plane into two halves such that 
every point of either half is sent to the other half by conjugation. Since the two branches of any flow with neg-
ative constant always lie on opposite sides of the l/-axis, on each of these flows, every point and its conjugate 
lie on opposite branches of the flow. 

Le t xe X By Eq. (2.22), 

r" ( .£+*.) - ? * * » + ' • 
Taking norms on both sides gives 

(2.32) v(xn,xn+1) = (-1)nv(x0,x1). 

It follows that 

(2.33) v(x2n,x2n+l) = v(x0,xi) 

and 

(2.34) v(x2n~vX2n) = v(x-i,x0) = -v(x0,xi) 

for all integersn. Corresponding to each sequencex^X we define a sequence %(x) = i %n tToo \nP by 

(2.35) %n = (x2n,X2n+lL n G Z . 
Then every point of the sequence £ (x) lies on the flow 
(2.36) v(u,v) = v(x0fx<i), 

and the sequence £ (x) is called the embedding of x in the flow (2.36). The sequencer is said to be of type I, I I , 
III or IV according as to whether the point £ o = (xQlxi) is in region £/ , £/ / , £/// or £/ i / . According to Eqs. 
(2.26) and (2.27), this depends only on the signs oi(xo/r)+xi and XQ/T +XI . 

Equations (2.26) and (2.27), in conjunction with Eq. (2.22) give 
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(2.37) d&n) = d1(x2n,x2n+1)= -± i ^ + x A , 

and 

(2-38) d2l%n) = d2(x2n,x2n+1) = r2n [¥+xi) • 
From these equations it is obvious that all points %n of a given embedding lie in the same one of the four re-
gions £/, £//, £/// and £/| / , and thus on the same branch of a flow. It is also clear that %(x)-dx\&%(-x) = ,-%(x) 
lie on opposite branches of the same flow. The strict monotonicity of the right sides of Eqs. (2.37) and (2.38) 
as functions of .A? shows that, for sequences in A' of a given type, all embeddings possess an identical orientation, 
progressing always from one end of its branch to the other as n increases. This naturally orients the flows to 
conform with the orientation of the embeddings, as shown in Fig. 2.4. Notice that the flows are so oriented that 
lim (v/u) = r along the positive sense on every flow. 

For certain purposes the study of Fibonacci sequences of type I is sufficient, because a sequence of any other 
type can be made type I by either negation, shifting, or both. 

Figure 2.4 Orientation of the Fibonacci Flows 
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3. FIBONACCI REPRESENTATIONS 

3.1. Introduction. Sn Section 3 we introduce the general and the canonical Fibonacci representations, to-
gether with a positional notational system for performing arithmetic with the representations. Basic existence 
and uniqueness theorems are presented, and the results are interpreted in the contexts of some of the rings dis-
cussed in Section 2. An algorithm is given for determining canonical representations, and consideration is given 
to the relationship of previous results on Fibonacci representations to those given here. 

3.2. General Fibonacci Representations, Positional Notation and Arithmetic 
Definition 3.1. Given m e Z, a pseudo-polynomial p(X) = Y ^ /r/A' e Z < A > is said to represent m if 

/ J kjfj = m. The sum V ^ kjfj is called a Fibonacci representation of m, corresponding to the pseudo-polyno-
mial pfk). 

Suppose/?/%/eZ< A > re presents m. By Eq. (2.23) we have 

(3.1) p(r) = YskiT' = ~~T" + ^ k h l f h 

This gives the following theorem. 
Theorem 3.1. The pseudo-polynomial pfk) represents m e Z if and only ifp(r) is of the form (m/rl+n, 

n^Z. The integer/7 is represented by XpfK). 

In this way we associate to each Fibonacci representation an element (m/r) + n e / , a point (m/n)^P and an 

ordered pair (m,n), all said to be determined by the representation T^/r//,-.* We note from Eq. (3.1) that 

\ * Ar,-/// is a representation for/7. The representation £^kj-ifj is called the left shift of the representation 

£w -
We introduce a positional notation for Fibonacci representations by listing the coefficients Ay in the conven-

tional manner from left to right, with a point appearing between the positions corresponding to kQ and k. p Be-
cause the kj themselves can contain multiple digits and even minus signs, any coefficient consisting of more than 
a single digit must be enclosed in parentheses. A minus sign preceding the entire listing is understood to apply 
to every term in the listing. Thus, for example, 2(11)0.5 represents 2f2 + 11 fi + SLj = 18. The left shift of 
this is 2(11)05. (where the coefficients are left shifted, not the point) which represents2f3+ 11f2 + 5fg= 15. 
Thus the associated pair determined by this representation is (18, 15). 

Since the usual algorithms for addition and multiplication follow from the interpretation of a positional rep-
resentation as a pseudo-polynomial in a base, and since Theorem 3.1 relates Fibonacci representations to pseudo-
polynomials in r, the standard algorithms, when applied to Fibonacci representations, interpret In terms of the 
operations on the associated quadratic integers in / determined by the given Fibonacci representations. 

For example, what will result from applying the standard multiplication algorithm to 201.1 and K-D.01? 
Formally, we obtain 

2 0 1.1 
1 (-1). 0 1 
2 0 1 1 

(-2) 0 (-1) (-1) 
2 0 1 1 

2 (-2) 1 2 . (-1) 1 1 

* l t is critical in the sequel to distinguish between that which is determined by ^kjfj and that which is repre-
sented'by Ekj f j . 
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On the other hand, the representation 201.1 determines the quadratic integer (3/r) + 5 and the representation 
K-D.01 determines the quadratic integer (0/r)+ 1 = 1. The product of these in / is (3/r) + 5, which is the same 
as the quadratic integer determined by the result of the foregoing calculation. 

Of course, since / is a ring, subtraction of Fibonacci representations is also possible, and again interprets in 
terms of subtraction of the corresponding quadratic integers. 

It is therefore clear that for some purposes Fibonacci representations are best considered as representations 
of quadratic integers in /, rather than ordinary integers in Z The usual attitude towards these representations, as 
reflected in Definition 3.1, does not allow for a full understanding of the arithmetic of the representations. 

In the general class of representations under discussion, no restrictions have been placed on the coefficients 
kj, other than that they be integers. Consequently, no necessity for carrying and/or borrowing arises in perform-
ing the arithmetic. However, in working with canonical representations the necessity does arise, and can be treat-
ed by the exchange of an integer k in any particular position for an integer k in each of the two positions im-
mediately to its right. This is justified by the identities 

kfj = kfh1 + kfj-2 and AT' = kr'~1 + A T ' " 2 . 

Thus, for example, 21.0 = 3.2 = .53, etc., or, going the other direction, 21.0 = 110.0 = 1000.0, and the equali-
ties here apply not only to the represented integers, but to the associated quadratic integers as well. 

Let ^denote the collection of Fibonacci representations of zero. Members of Zdetermine natural integers in 
/, since by Theorem 3.1 the quadratic integers determined by members of Zwi l l be of the form (m/r) + n with 
m = O. Therefore, under the usual arithmetical algorithms, the collection Z of representations of zero forms a 
ring on which the left shift is a homomorphism onto the ring Z of integers. Thus, for example, 100.01 is a rep-
resentation of 0 which determines the quadratic integer (0/r) + 3, and - 1 . is a representation of 0 which de-
termines the quadratic integer (0/r) - 1. The sum and product of these representations will determine (0/r) + 
2 and (0/r) - 3, respectively. 

3.3 Canonical Fibonacci Representations 

Definition 3.2. A Fibonacci representation J ^ / f ; \s positive canonical if (1) kj £ O => kj = 1 and 

(2) kjkj+i = O for all i. A Fibonacci representation is negative canonical if its negative is positive canonical. A 
Fibonacci representation is canonical if it is either positive canonical or negative canonical. 

We agree to write every negative canonical representation (other than all zeroes) with a prefixed minus sign, 
so that every canonical Fibonacci representation consists of a possible minus sign followed by a finite sequence 
of ones and zeroes with a point (which may be omitted if it immediately follows the last significant digit) in 
which no two ones occur consecutively. The representation consisting of all zeroes can be written 0 or .0 and is 
the only canonical representation which is both positive canonical and negative canonical. 

In any canonical Fibonacci representation other than 0, the positions (indices) of the left-most and right-most 
ones appearing in the representation shall be called the upper degree and lower degree of the representation, 
respectively. The upper and lower degree of the representation 0 are defined to be -°° and +<*>, respectively. 

Theorem 3.2. Let ^ k,-f,- be a positive canonical Fibonacci representation with sum n. Suppose the up-
per degree of the representation is negative and let r denote the lower degree. Then the sum n is positive if and 
only if r is odd, in which case r is the unique negative index/such t h a t - / / * / <n < - / / - / . Similarly, n is nega-
tive if and only if r is even, in which case r is the unique negative index/such that-fy_ 7 <n < -fj+j. 

Proof. From Eq. (2.5) we have that // > O if / is odd and f,- < O if./ is even and not zero. Thus if r is odd, 

the representation \ ^ Ayr"/ can sum to at most 
-1 

j=r 
j odd 



302 THE ALGEBRA OF FIBONACCI REPRESENTATIONS [NOV. 

this being the sum of all the positive terms that could appear in the representation, and none of the negative. 
But 

-1 

E fi= -f'-1 

j=r 
j odd 

by Eq. (2.5) and standard identities for the Fibonacci numbers. Still assuming that/-is odd, the smallest even 

index that can appear in 2 ^ k/f,- is r + 3, so that the representation must sum to at least 

fr+ E fi-
j=r+3 
j even 

since this sum includes all of the negative terms that might appear and excludes all of the positive terms that 
might not. But 

-2 
£ fj = -fr+2 + I and fr + (-fr+2 + D = 1-fr+1 > ~fr+1 

j=r+3 
j even 

and so 

(3.2) ~fr+1 < J2k/f> < ~fr-l' r odd' 
By entirely similar reasoning one shows that 

(3.3) -fr.f < ] P kjf; < -fr+h r e v e n • 

In view of inequalities 3.2 and 3.3, we define, for each negative integer/ an interval // by 

// = (-fj+v -fj-iJ for / odd, 
// = (-fj-1. -fj+il for / even. 

Some of these intervals are shown in Fig. 3.1. 

/ 

- 1 
-3 
-5 
-7 
-9 

/odd 

/ /= H+h-fj-i] 

(0,1] 
(1,3] 
(3,8] 
(8,21] 

(21,55] 

/ 

- 2 
-4 
-6 
-8 

-10 

j even I 
lj= (-fH,-fj+1] 

(-2,-11 
(-5,-2] I 

(-13,-51 I 
(-34,-13] 
(-89,-34] \ 

Fig. 3.1 Some of the Intervals /y Determined by the Inequalities of Theorem 3.2 

As is clear from Fig 3.1, the intervals /y are pairwise disjoint and their union contains the set of all non-zero 

integers. Therefore the sum n of T^Ar/^- falls in the interval /y if and only i f / = /*, and the theorem is proved. 

Alternative proof. The conjugate of *sPkiT'is 5 3 (-1)'kjT~'. Using the assumptions of the theorem, 

we see that 
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•IV-E*^ 
is of the form 

k-1 (*T+T) <k_2 ( - | -72yL3(JL+T3}+...+kr(-L-(-V'T-'} , 

where kr= 1. If r is odd, this is at most 

(H*y^)--*(^) 
and is at least 

j-^.y-S)...^.^),^,,-,) 
By performing the obvious summations and simplifications, and by employing a similar argument when r is 
even, we get __ 

^--h +T+h E* / * - Zk>f> < T'r+1~^H' r °dd-
and 

-^z+r+h E*/*- £ ' / * < - - ' - i ^ i 
Inequalities (3.2) and (3.3) now follow from these by using Eqs. (2.23) and (2.20). 
For each non-zero integers, define r(n) to be the unique negative index/such that/7 e /y. 

Theorem 3.3. If A? is a non-zero integer then either n = fr(n) or else r(n - fr(n)) > r(n) +2. 

Proof. Suppose that/? ̂  fr(n), so that///?>/ < -2. For r(n) odd, it follows from the definition of r(n) that 

~fr(n)+1 < n < -fr(n)-1 -

Subtracting fr(n) throughout gives 

~fr(n)+2 < n~ fr(n) < ~fr(n)+1 • 

As can be seen from Fig. 3.1, if k is an odd, negative index, then 

i-h+2. - W = (-fk+2,-U u (~l 0] u (0, - W =\ u lj u (-1,0] u I u /y . 
\j=k+3 i W=*+2 / 
\ jeven / * / odd ' 

From the definition of r, necessarily 

r(n-fr(n)) > r(n)+2. 

Similar reasoning applies in case r(n) is even. 
Theorem 3.4. Every integer n, positive, negative or zero has a unique positive canonical Fibonacci repre-

sentation with negative upper degree. For n = 0 the representation is .0. For n ^ 0 the representation is fj + 
fj + ...-/- fj in which/7 = r(n), 

i-1 

ii = r (""E % 
p=1 
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for 1 <i <s and s is the first positive integer such that 
s 

p=1 

Proof. Certainly .0 represents the number zero canonically, and has negative upper degree —°°. Accord-
ing to Theorem 3.2, any other positive canonical Fibonacci representation with negative upper degree cannot 

represent zero. If n t Q, define, as in the statement of the theorem,/; = r(n) and 

i-1 

H = r\n~Y. fJr 
p=1 

whenever/ > 7 and 

P=i 

According to Theorem 3.3 f / />/ /_/ +2 for each /, and since all// are negative, the process must terminate after 

finitely many steps. The only way for this to happen is for 

s 

"-E % = ° 
P=i 

for somes'. 
This establishes the existence of the representation. If 

Ylk'f> and Ylk''f> 
are two positive canonical representations for/7 both having negative upper degree, Theorem 3.2 states that they 
have equal lower degree. If the // of least index is subtracted from both representations, the results are still pos-
itive canonical, still of negative upper degree and still equal, so Theorem 3.2 applies again. Continued applica-
tion of this argument proves the representations to be identical. 

We note that the assumption of negative upper degree is essential to Theorem 3.4. For example, the sum fn + 

Ln is a positive canonical representation of 0 for every even integer n. 
Define a strip S in the Fibonacci plane to consist of all of those points (u,v) for which 0 <d2 < 1. Based on 

simple geometry, one readily concludes that for a quadratic integer (m/r) + n e /, 

(3.4) (m,n) e S if and only if n = - \\ ^ |1 , 

where [| |] denotes the greatest integer function. 

Theorem 3.5. A quadratic integer (m/r) + n e / is determined by a positive canonical Fibonacci represen-
tation with negative upper degree if and only if (m,n) <ES, i.e., if and only if (m/r) + n <E.[Q, 1). !n this case, the 

positive canonical representation with negative upper degree is unique. 
Proof. Suppose (m/r) + n is so determined. Then there exists a positive canonical Fibonacci representa^ 

tion £\kjfj of negative upper degree such that (m/r) + n = T ^ / V . Clearly 

0 < Yl k''T' < T~1
 +T~3 + T~5 +~' = h so (m*n) e S. 
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Suppose (m,n) e S. By Theorem 3.4 there exists form a positive canonical Fibonacci representation ^ kjf,-

of, if (n 
I 3.4, 

M 
with negative upper degree. By the first half of this proof, if (m/r) + n' is the quadratic integer determined by 
this representation, then (m, n')^S. In view of condition 3.4, 

n = n = 

so that *y\kjfj determines (m/r) + n. 

The uniqueness follows from the uniqueness of the representation of m as asserted in Theorem 3.4. 

Theorem 3.6. For each quadratic integer (m/r) + n e / there is one and only one canonical Fibonacci 

representation V"* kjf; which determines (m/r) + n. Points in regions £/ and £// correspond to positive canoni-

cal representations and points in £/// and L/y correspond to negative canonical representations. 

Proof. Since the negative of any point (m,n) in £/ or £// is in £// / or £ / ^ and vice versa, it is sufficient to 
prove existence and uniqueness of canonical representations determined by 0 and by points in L/ and /.//, show-
ing that the latter are necessarily positive canonical. 

Let J^kjff be a canonical Fibonacci representation other than 0. Theorem 3.5 assures that \ * kjf; cannot 
determine 0 if the representation is positive canonical with negative upper degree. But with the proper choice of 

sign and exponent/?, ^ E ^ ' - P is positive canonical with negative upper degree and determines ± — E ^ / T ' 

£ 0, so that y ^ / r / r V f l . Thus the only canonical Fibonacci representation determining zero is 0. 

Let (m/r) + n be a point in £/ or £/} (in the sense that (m,n) is in £/ or £//) other than zero. Then d2(m,n) > 

. inW. ( - i (H) "• 
Thus for some sufficiently large s, say s = SQ, 

1 I rn , \ ._ c , . 00 / / m.n 1 +n) 6 5 and so — — + n 
jSo \ r J Ts0 \ r 

is determined by a positive canonical Fibonacci representation Y ^ k/f,- with negative upper degree. Thus 

T*0 \ co v T -") = E ^ so that ¥+n = E k'rl+S° 

showing that (m/r) + n is determined by the positive canonical representation y^k;f j+S o . If E ^ and 

y^/r/ f /are positive canonical representations determining (m/r) + n, then for some integer f0/ E ^ " - f o and 

22 k'jfj-t both have negative upper degree and both determine 

/ (m + n 
Ttn \r 

so by Theorem 3.5 are identical. Hence E ^ ' and E ^ ' are also identical. Finally, no point in £/ or£/ / 
other than (0,0) can be determined by a negative canonical representation, since for such a representation 

d2 = E kiji < °-

For each positive real numbers, define s(u) to be the largest integer exponent /such that r1 < u. Given u> 

0, le t / ; =s(u), i'2 = s(u - r'1) and in general 
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j-1 . , M . 
ij = s (u- 5 j rp ) so long as u - V * rp £ 0. 

P=1 p=l 

The sequence//, /2, -"terminates at any/such that 

" ~ E r ' p = ft' 
otherwise it continues indefinitely. 

Definition 3.3. For a given positive real numbers, le t / / , /*2, ••• be the sequence determined above. The 
sum 

P 
is called the r-expansion of u. If £/ is negative, the r-expansion off/ is that of -u, preceded by a minus sign. The 
r-expansion of zero is simply 0. 

Theorem 3. 7. Let*/ be a real number with r-expansion 

p 

Then \ip\ is a (decreasing) sequence in which ip+i <ip - 2 for each p, and the expansion Y ^ rp sums 
p 

to £/. Conversely, let u be a real number such that 

y 
inwhich < ij > is a (decreasing) sequence in which ij+j < / y - 2 for each/ If \ij\ is not ultimately regular 
of the form •••, J, J - 2, J-4, J - 6, ••• then 

£''' 
/ 

is the r-expansion of \u |. If j ij t is ultimately regular of the form —, J, J - 2, J - 4, J - 6, ••• let /^ be the in-
dex such that // = J, i; +1 = J - 2, etc., and /'/ _ i > J + 2. Then 

7o Jo ' ' Jo ' 

io-1 . 

and the right-hand side of this equation is the r-expansion of \u |. 

Proof. The sequence \ip\ is decreasing by construction. If two integersip are consecutive, say ip = n 

and iPo+j = n - 1, then 
Po Po 

s ( u - J ^ r i p ) = n - J and j " " ' < ( / - £ > . 
P=1 P=1 

Adding rPo = rn to both sides gives 
Po-i . 

T"-1 + T" < £ / - ] £ T'P • 
P=1 
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Because rn 1 +rn = rn+ \ this gives 
Po-1 . 

Tn+1 <U~YS
 T'P 

P=1 
contradicting the definition of 

Po~1 

307 

("-E >) n = in. = s 
p=1 

Therefore, no two ip can be consecutive, so that/p^/ <ip- 2 for each/?. Thus for each/], 

/-/ 

P=1 

Either 
/-/ 

u - £ > 
p=1 

for some/, or else the sequence | / / i decreases t o - ~ ; in either case Y"* rp = u. 

p 
Now suppose that 

,(/| = YJ7'* r'j 

J 

in which ij+j < / / - 2 for each/. Then for each/7, 

Z i; in-2 in-4 in-6 

/>A7 

and the latter is a geometric series with sum rn . Thus if the sequence | ijY is not ultimately regular as 
stated in the theorem, for each n, 

Y, rj < rin~1. Therefore £ r'> < r'" + iin~1 = r''n+1 so ^ r ^ ) - / „ . 
j>n j>n j>n 

It now follows by induction that 

is the r-expansion of \u\. 
If 

J 

is ultimately regular as stated in the theorem, because r + r + r + ••• is a geometric sum equal to r 
the sum . „ 

y ^ r1 is equal to ^ J TJ + T , 

J 1=1 

and because // _/ > J + 2, this latter sum must be the r-expansion of \u\, by the part of the theorem already 
proved. 
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Theorem 3.8. The r-expansion of a real numbers is finite if and only if u is a quadratic integer in /. In 
this case the r-expansion of u is identical to the pseudo-polynomial in r determined by the canonical Fibonacci 
representation of Theorem 3.6. (A generalization of this result appears in [8].) 

Proof. On the one hand, Eq. (2.23) assures that any finite r-expansion sums to a quadratic integer in /. On 
the other hand, the pseudo-polynomial in r determined by the Fibonacci representation of Theorem 3.6 satis-
fies the conditions of Theorem 3.7 and must therefore be the r-expansion of u. 

Theorem 3.9. The usual ordering on the real numbers is identical to the lexicographic ordering on their 
r-expansions. 

Corollary. The lexicographic ordering on the canonical Fibonacci representations coincides with the usual 
real ordering on the quadratic integers they determine. 

We omit the proof of Theorem 3.9 because the proof is straightforward and the theorem is of a standard type. 
Canonical Fibonacci representations with negative upper degree are of interest because of their existence and 

uniqueness properties (Theorem 3.4) and because their consideration leads to a general existence and unique-
ness theorem for canonical Fibonacci representations (Theorem 3.6). Further study of the significance of the 
upper and lower degrees of canonical Fibonacci representations leads to additional existence and uniqueness 
theorems, and relates to the Fibonacci representations in the literature. 

Theorem 3.10. Let ^^kjfj be a positive canonical Fibonacci representation other than 0 with associ-

ated quadratic integer (m/r) + n. Then ^\kjfj has lower degree /-if and only if (m/r) + n e J r , where 

jr= l-JL C 
r \ 7r~1 ' „r+1 t 

if r is an odd integer and 

if r is an even integer. 

Proof. Let r be the lower degree of V * kjfj, so that 

f+l 
If r is odd, this expression is strictly greater than 

Tr 7r+2 Tr+4 , r ) - " Jr, 
and is strictly less than 

_ ± +-L + _1_ *... = _ ± + _L_ = _ _JL 
Tr Tr+3 7r+5 7r Tr+2 ^+1 

If r is even, the limits are similarly found to be 

—— and — - . 
T 7 

Therefore, for each integer r define Jr to be 

[ — , - —-~ ) if r is odd, f——-, ; ) if r is even. 
V Tr-1' Tr+1 I \T

r+1
 T

r-1 I 

Some of these intervals are shown in Fig. 3.2. 
As can be seen in Fig. 3.2, the intervals Jr are pairwise disjoint and cover all real numbers except 0 and those 

of the form -rn, n even and rn, n odd. We note that none of these numbers can be the conjugate of a pos-
itive canonical Fibonacci representation different from 0 since their conjugates are negative canonical. 
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r 

- 7 

-5 

-3 

-1 

1 

3 

5 

rodd 

Jr = \T~1'~~ r7^! 

(-T\-T«) 

(-T6,-!4) 

(-T4, -T2) 

(~T\-1) 

(-'-£) 
\ ~ ~T*'~~ T* j 

(-1-1) 
\ T4' T6 ) 

r 

-6 

-4 

-2 

0 

2 

4 

6 

reven 

Jr= [-^1'^TI 

(r*, r1) 

(r\ r5) 

(T,T*) 

(H 
[?'?) 

\ Ts ' T3 j 

I I I ) 
\ T7 ' r5 I 

Fig. 3.2 Some of the I ntervalsJr Determined by Theorem 3.10 

Thus we can see that if the lower degree of the representation is r then (m/r) + n e 7 r . If, on the other 

hand, (m/r) + n ^Jr, the lower degree cannot be other than r because^ n Jr= <p for s fi r. 

The previous theorem has a companion theorem whose proof is omitted for obvious reasons. 
Theorem 3.11. Let Y ^ kjfj be a negative canonical Fibonacci representation other than 0 with associ-

ated quadratic integer (m/r) + n. Then *ST kjfj has lower degree r if and only if (m/r) + n ^J'r, where 

J'r = 
1 T>-ir) ^r/-odd, J'r r+. 

T T 

_7_ 
,r+1 

for reven. 
T T 

Here are two more theorems whose straightforward proofs are omitted. 
Theorem 3.12. Let V * kjfj be a positive canonical Fibonacci representation other than 0 with associ-

ated quadratic integer (m/r) + n. Then V ] kjfj has upper degree p if and only if (m/r) + n<^Kp, where Kp = 

[rp, rp+ ) for each integer/?. 

Theorem 3.13. Let J^kjfj be a negative canonical Fibonacci representation other than 0 with associ-

ated quadratic integer (m/r) + n. Then Y ^ kjfj has upper degree p if and only if (m/r) + n e K'p, where K'p = 

(-rp+ , -rp] for each integer/7. 

According to Theorem 3.6, the canonical Fibonacci representation which determines (m/r) + n is positive 
canonical if and only if (m,n) e £ / u m and is negative canonical if and only if (mfn)^Lm u i/y. In con-
sideration of the case r = 0 in Theorems 3.10 and 3.11, we define subsets 7"; and T2 of the Fibonacci plane as 
follows: 

T-j = i(u,v) e P: - < dj(u,v) < r | n fc/u in), 
and 

T2 = \(u,v) <E P: -r < dj(u,vf < —~• } n &./// u iiV). 

Tj and T2 are shown in Fig. 3.3, and each is seen to be a half-strip with vertical thickness one. Using this fact 
and the fact that neither the boundary of Tj nor that of T2 can contain a point (m,n) with both m and n inte-
gers, one can conclude that for every integer m / 0 there exists a unique integer n such that (m,n)^ Tj u T2. 



310 THE ALGEBRA OF FIBONACCI REPRESENTATION [NOV. 

Fig. 3.3 The Regions T. and T2 

More precisely, if (m/r) + n^l, then 

(3.5) (m,n) e T/ if and only if m > 0 and n = [\(l + mh\], 

and 

(3.6) (m,n) e T2 if and only if m < 0 and /? = - 0 / 7 - WJTO . 

We thus obtain the following theorem. 
Theorem 3.14. Every non-zero integer w has a unique canonical Fibonacci representation with lower 

degree equal to 0. If m > 0 this representation is positive canonical, if m < 0 this representation is negative can-
onical. The integer 0 has exactly two canonical Fibonacci representations with lower degree 0; they are ±fg. 
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As an illustration of Theorem 3.14 we note that if m = - 6 condition 3.6 gives n = - 1 1 . The canonical Fib-
onacci representation which determines (~6/r) - 11 is -100101. (Section 3.4 describes an algorithm by which 
one can determine the canonical representation -100101. from the quadratic integer-(6/r) - 11.) 

The critical point in the proof of Theorem 3.14 is the selection of the set T7 u T2 in such a way that for each 
m there is one and only one/7 for which (m,n)^ T7 u T2 (which, incidentally, failed for m = 0). This depended 
on the fact that the width of the interval 7o was one, so Theorem 3.14 would fail for other choices of/: If r< 0 
the intervals are too wide, so that one could prove existence but not uniqueness, whereas if r > 0 the intervals 
are too narrow, so that one could prove uniqueness but not existence. 

However, anytime a set such as T7 u T2 can be found, having the property that for each integer m there is 
exactly one integer n such that (m,n) is in the set, a new theorem like Theorem 3.14 or Theorem 3.4 results. 
We shall dignify this observation by a definition after which we shall show how the usual Fibonacci representa-
tions in the literature result as special cases. 

Definition 3.4. Let S be a non-empty subset of Z. A subset U of the Fibonacci plane is said to hs se-
lective on S if for each m e S there exists one and only one /?eZ such that (m,n)^ U. For each m eSthe can-
onical Fibonacci representation which determines (m/r) + n, (m,n)^ U, shall be called the U-representation of 
m. 

For example, let 

J = u Jr, f = u fr, U1 = i (u,v) e P: ~ + v e J \ n (i, u m), 
=2 r=2 

and 
U2 = \ (u,v) ^.P: u- + v ^ f | n dm u tiV). 

Theorem 3.15. U-j u U2 is selective on the setZ* of non-zero integers. 

Proof. We note that each of U1 and U2 is a strip on either side of L1 with a sequence of lines removed, 
since U7 consists of those points (u,v) in £ / u £// for which -(1/r2) <di(u,v) < (1/r) but di(u,v)^ (1/rk) 
for k odd positive, d-j (u,v) £ ~(1/rk) for k even positive and d-j(ufv) ? O, and U2 is of similar structure. The 
vertical thickness of each of the strips U1 and U2 is 1. Moreover, none of the missing half-lines can contain 
(m,n) in Z * x Z, as can be seen from the following type of argument. If m and n are integers and d-j (m,n) = 
(1/rk), k odd and positive, then (m/r) + n = (1/rk) so that (m/r) + n = -rk » - (fk/r) - f^+i by Eq. (2.23). 
Thus (m,n) = (-f/<, -fk+1) which is not in £/ u £//. Other cases follow similarly. 

It is therefore clear that U 7 is selective on the positive integers and U2 is selective on the negative integers. 
We leave it to the reader to show that there is no possibility of the union Uf u ^/^ failing to be selective near 
the origin as a result of vertical overlap. 

It is not difficult to show that if (m/r) + n^l, then for m > O 

(3.7) (m,n) e= U7 u U2 if and only if n = [\(1 +m)r\] - 1 

and for/77 < O, 

(3.8) (m,n) e U7 u U2 if and only if n = -[\(1 - m)r\] + I 

Theorem 3.15 has the following corollary. 

Corollary. Every non-zero integer has a unique canonical Fibonacci representation with lower degree 
greater than 1. For 0, no such representation exists. 

Of course these are the well known Zeckendorff representations which have been extensively treated in vari-
ous contexts [1 , 2, 3, 4, 5, 6, 11]. Because their properties are well known we shall not discuss them further at 
this point We note in passing that this corollary follows immediately from Theorem 3.14 by the removal of the 
7*0 term in each of the canonical representations of lower degree zero. 

Other choices of selective sets produce other interesting classes of representations. We describe some of them 
by way of the following theorems whose proofs are omitted in the interest of brevity. 
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Theorem 3.16. Every non-zero integer has a unique canonical Fibonacci representation with positive, 
odd lower degree. For each non-zero integer /T? the quadratic integer determined by this representation is (m/r) 
+ n, where 
(3.9) n = [\mr\] \1 m > 0, 

(3.10) n = -[\-mr\] if m < 0. 

These are the so-called second-canonical representations appearing in [5] . 

Theorem 3.1 7. Every integer/w has a unique positive canonical Fibonacci representation with upper de-
gree 1. For each integer m the quadratic integer determined by this representation is (m/r)+n, where 

n- h (3.11) + 1. 
T 

As examples, we note that for /?? = -7, n = 6 and (-7/r) + 6 is determined by 10.000001; form = O, n = 2 
and (0/T) + 2 is determined by 10.01. 

Theorem 3.17 has an obvious counterpart in terms of negative canonical Fibonacci representations which we 
shall omit. 

Theorem 3.18. Every integers? has a unique positive canonical Fibonacci representation with upper de-
gree either 0 or — 1 . For each integer m the quadratic integer determined by this representation is (m/r) + n, 
where 
(3.12) n = - [ l^f- ' j j • 

Once again the theorem has a counterpart in terms of negative canonical representations. 
The theorems we have listed here give the consequences of some of the most obvious choices of the selective 

sets. It is clear that many other possibilities exist and that the general selective set does not necessarily relate to 
upper and lower representational degrees. 

We conclude this section with an interesting decomposition theorem which is an immediate consequence of 
the foregoing results on canonical Fibonacci representations. The theorem is stated only for the half-plane £ / 
u £//, but has at least one obvious extension to the entire Fibonacci plane. 

Given any lattice point (m,n) e £/ u £//, the quadratic integer (m/r) + n is determined by precisely one posi-

tive canonical Fibonacci representation V** k/f,-. This representation naturally decomposes into the sum of 
terms with nonnegative indices and the sum of terms with negative indices; in positional notation this corres-
ponds to the portion to the left of the point and the portion to the right of the point. 

With only one restriction, any positive canonical Fibonacci representation with nonnegative lower degree can 
be added to any positive canonical Fibonacci representation with negative upper degree to yield a positive can-
onical Fibonacci representation; the exception is of course the case of zero lower degree and - 1 upper degree. 

If we consult Theorems 3.10 and 3.12, we find that the positive canonical Fibonacci representation which de-
termines a lattice point (m,n) e £ / u £// ; 

has nonnegative lower degree if and only if — 1 < di(m,n) < r, 
has lower degree zero if and only if (1/r) < di(m,n) < r , 
has negative upper degree if and only if 0 < d2(m,n) < 1, 

and 
has upper degree = - 1 if and only if (1/r) < d2(m,n) < 1. 

Therefore, let U1 denote the semi-strip 

U-i = | (u,v) e i/ u JC/ / / -7 < di(u,v) < r Y 

let U'i denote the sub-semi-strip 

Ul = | (U,V) <E £/ U £/ / ; (1/r) < di(il,v) < T j , 

let U2 denote the semi-strip 
U2 = | (u,v) G £/ u £// :0 < d2(u,v) < / | , 
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and let U'2 denote the sub-semi-strip 

U'2 = \ (u,v) e £ / u in: (1/T) < d2(u,v) < 1 ) . 

Then we have the following theorem. 

Theorem 3.19. Every integer pair (m,n) e £/ u £// can be decomposed into the sum of an integer pair 
in U1 and an integer pair in U2. This decomposition continues to exist and becomes unique in the presence of 
the restriction that the summands not lie one in (J^md the other in U'2. 

3.4 The Resolution Algorithm 

We have seen that every Fibonacci representation determines a quadratic integer which in turn is determined 
by a unique canonical Fibonacci representation. In this section we present an algorithm for passing from any 
Fibonacci representation to the canonical representation determining the same quadratic integer; we call it the 
resolution algorithm. 

Let W be the class of Fibonacci representations T^A/ / / in which k; > 0 for all i. We begin by defining the al-

gorithm and proving its convergence on W. 

Given a Fibonacci representation /^jk/f/, a pair (kj, k^-j) of consecutive coefficients shall be called a signifi-
cant pair if it is not of the form (1,0) or (0,/?). It is clear that a Fibonacci representation in Wfails to be canoni-
cal if and only if it contains a significant pair. In any non-canonical representation the significant pair (kj, kj. 7 ) 
with largest index / is called the first significant pair. 

On the class W the resolution algorithm consists of the repetition of the following operation 12 on the first 
significant pair: (i) if both members of the pair (kj, k,--i) are positive, replace kj+j by A/* 7 + k, replace Ay by 
A / - A and replace A/_7 by A/_7 - A, where A is any integer satisfying 0 < A < min j A/, A,_71 ; (ii) if one mem-
ber of the pair is zero (it must be A/_7 since the pair is significant) replace A, by A / - / , A,_7 by/and A/_2by 
kj-2 + i where/ is any integer satisfying 0 < / < A,, and then immediately apply (i) to the new first significant 
pair (kj - j, j) obtaining k;+ 7 + A, A / - / - A, / - A and A/_2 +j as the final replacements for A/-/-7, A/, A/_7 and 
A/_2, respectively, where, as required in (i), A is any integer satisfying 0 < A < min \ k; - j, j \. 

As explained in Section 3.2, operations (i) and (ii) will not alter the quadratic integer determined by the rep-
resentation. A convenient choice for A in operation (i) is the largest, i.e., A = min \k,-, A/_7> and a convenient 
choice for/ in operation (ii) is the smallest, i.e.,y = /, which changes Ay*7, A/, A/_7 and A,_2 to A,-* 7 + 1, kj - 2f 

0 and A/_7 + 1, respectively. The reader will discover that these convenient choices are not necessarily the most 
efficient, but we shall not be concerned with that problem at this time. We establish the convergence of this 
algorithm after looking at two brief examples. 

Example 1. Find the canonical Fibonacci representation which determines the quadratic integer (3/T) + 2. As 
a pseudo-polynomial in r this has positional notation 2.3. Applying operations (i) and (ii) as required and using 
the choices for/ and A suggested as convenient, we obtain 

2.3 = 20.1 = 100.2 = 101.001. 

Example 2. Determine the canonical representation of 6 given by Theorem 3.16. Since [|6r|] = 9, we form 
(6/r) +9 and obtain 

9.6 = 63. - 330. = 3000. = 11010. = 100010. 

Consider a Fibonacci representation^ V * k/f,- in W and let WQ be the subset of those representations in W 

which determine the same quadratic integer as does y^A/ / / . Order M/̂  lexicographically on the positional no-
tations of its members (with points aligned) and observe that the operator £2 sends any non-canonical member 
of WQ to another element of WQ which is strictly greater in the lexicographic ordering. 

Now for any integer r the number of representations in WQ having lower degree greater than or equal to r is 

finite. For if K is an integer such that r > Y^ / "?" ' and if N is; an integer such that Nrr > £^ /r/r7,then 
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every representation in WQ must have upper degree less than K and every coefficient less than N making the 
total number of possibilities less than or equal to N(K - r). 

Thus if we begin with a representation 2 J / 7 / ; in WQ and apply the operation 12 repeatedly, after finitely 

many steps we must arrive a first time at a representation £_, kffj which is either canonical or else has the 

property that the application of 12 to ^ kffj necessarily produces a representation with lower degree less than 

that of y j kjfj. A finite sequence of representations in ̂ p roduced by starting with ^ J klfl and repeatedly 

applying 12 until arriving at such a representation / Jkffj shall be called an 12 -cycle. 

Theorem 3.20. Let "ST" kjfj and Y^Arf/y be the first and last representations of an 12-cycle, and let /* 

be the lower degree of Y^Ar///. Then if ^ jAr f /y is not canonical, it either has first significant pair (kf, k*,-j) = 

(n,0) with n > 1 or first significant pair (kf+ /, kf) = (n,0) with n > 1. 

Proof. If £jkffj is not canonical, then the application of 12 must necessarily lessen the lower degree to 

less than r, and the lower degree of ^ kffj must still be greater than or equal to r since, by the definition of 

an 12-cycle, / Akffj must be the first representation encountered for which the application of 12 produces 

lower degrees less than r. Now of operations (i) and (ii), only (ii) can lessen the lower degree, and when (ii) is 
applied to a first significant pair (kle kj-j) it alters only kj+j, kt, k;-i, and k,-2- It follows that the first sig-
nificant pair of £^kff/ must be of the form (n,0) with n > 7, since otherwise (i) would apply instead of (ii), 

and that the position of this first significant pair must either be (k*, kf-i) or (kf+i, kf), since the application 
of (ii) to pairs positioned further to the left cannot alter kf for /<r, and pairs further to the right cannot be 
significant. 

Intuitively, Theorem 3.20 says that the last representation in an 12-cycle is canonical except possibly for hav-
ing an integer greater than 1 in the rightmost non-zero position. 

Theorem 3.21. Let 2^k-,fj and 22s kffj be the first and last representations of an 12-cycle. Then 

/ J kffj is independent of the various possible choices for k and/in alternatives (i) and (ii) for 12. That is, all 

12-cycles beginning with Y"* kjfj terminate with 7^kf f j . 

Proof. Consider two 12-cycles with first representation Y ^ Ar/f,-. Let them have last representations 

/ J kffj and £mmlikf*fj. In accordance with Theorem 3.20, we distinguish six cases: (a) (kf, k*.j) and (kf*, 

k?*i) are both first significant pairs, (b) (kf+j,kf) and (kf+j, kf*) are both first significant pairs, (c) (kf, kf-j) 
and (kf+1, kf*) are both first significant pairs, (d) (kf+1f kf) and (kf*, kf*i) are both first significant pairs, 

(e) precisely one of the two representations Y ^ kffj and Y ^ kf*fj is canonical and finally (f) both of the rep-

resentations /] kffj and YjAr**/;. a r e canonical. 
In case (a) let (k*, kf.j)= (n*, Wand (kf*, kf*i) = (n**, 0) wherein n* and n** are integers greater than 1. 

Then we write 

^kfr1 = ^ kfr1 + n*rr 

i>r+2 

and similarly 

Y,kf*r''= ] T kf*ri + n**rr. 
i>r+2 

S m c e S ^ / a n d S kf*ftare D O t n m ^ 0 , the sums ] T ] kfr1 and Y ^ k**r' are equal. We therefore have 
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E k?*ri- E W = (n*-n**)rr; 
i>r+2 i>r+2 

and taking conjugates on both sides, 

E k**Ti- E kfr'1 = (-1)r(n*-n**h'r 
i>r+2 i>r+2 

Now 

E ^ and E k?*fi 
i>r+2 i>r+2 

are positive canonical Fibonacci representations with lower degree >r+2. Referring to Theorem 3.10, we deduce 
that 

E ktfi and E krfi 
i>r+2 i>r+2 

must both lie in the interval 

if r is odd and in the interval 

if r is even. In either case, 

7 7 
Tr+1'' Tr+2 

I--J- JL) 
\ r+2' r+1 J 

E **v '- E kiT' 
i>r+2 i>r+2 

must lie in the interval f '- _L \ so that 
\ Tr Tr I 

-r~r < (-1)r(n*-n**)r-r < r~r. 

This clearly givesn* = n**, making 

E k/r' - E **v. 
i>r+2 i>r+2 

By the uniqueness of canonical representations, 

E ktfi and E ***>; 
/>/^-2 />/-f2 

must be identical and hence the theorem is proved for case (a). 
Case (b) is clearly equivalent to case (a) by a shift 
In case (c) let (k*, k*-i) = (n*, 0) and (k?+i, k**) = (n**, 0). Then by similar reasoning we get successively 

E k**r''- E k*rl = -n**Tr+1+n*Tr 

i>r+2 i>r+2 

E k**T'- E kf7' = (-1>r(n**T-r-1 +n*T~r), 
i>r+2 i>r+2 
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_ JL < (_1}r n?5ZL±nl < JL »21. + n* < I 
Tr Tr Tr ' T 

Since n** and n* must both be greater than 1, this is impossible, so that case (c) cannot occur. 
Case (d) is clearly equivalent to case (c) by an interchange of symbols. 
The calculations for cases (a) and (c) can be applied as well as when either n*= 1 or 0 or n** = 7 or 0 to show 

that if one of the two representations V ^ kffj and \ \ kf %' 's canonical, so is the other. The uniqueness 

theorem for canonical representations then takes care of case (e) and case (f), as well. 

Corollary. Let ^ ^ / / / and Y ^ / / / be two Fibonacci representations which determine the same quad-

ratic integer and which have the same lower degree. Then any 12-cycle which begins with YV/Z/ tnust end 

with the same representation as does any 12-cycle which begins with y Y / / ; . 

Proof. The proof of Theorem 3.21 uses only the properties that the last representation of the 12-cycle is 
in WQ and has the same lower degree as the first; the actual values of the k; are immaterial. 

Corollary. Let '^\kffj be the last representation of some 12-cycle, and suppose that Y * kffj is not can-

onical. Apply 12 to Y * kffj to obtain a new representation of lesser lower degree. This new representation be-

gins a new 12-cycle whose last representation is independent of the choice of /r and/ in (ii) when reducingthe 

lower degree of ^2^ffj. 

Proof. Any choice fork and/in (ii) will send Y * kffj to a representation of lower degree exactly two smaller 

than that of Y ^ / % - Moreover, since all such representations continue to represent the same quadratic integer, 

the preceding corollary assures that all consequenti2-cycles must terminate in the same representation. 

Theorem 3.22. Let j[\kffj be the last representation of some 12-cycle. Suppose Y * kffj is non-

canonical and let it have first significant pair (n*, 0). Apply 12 to Y * kffj to generate a new 12-cycle with last 

representation Y ^ kf*fj- Let (n**, 0) be the first significant pair in Y\kf*fj if the latter is non-canonical. 

Then/?**< #/7* 

Proof Since / J kffj ends an 12-cycle, the last non-zero pair of consecutive integers in the positional 

notation for y ^ kffj must be 0, n*. Applying (ii) w i th /= 1, k= 1, these two integers and the two following on 

the right become 7, n* - 2, 0, 1. At this point everything to the left of these four positions is canonical in the 
sense that it contains no significant pairs. If the position immediately to the left of these four contains a 1, then 
it, together with the 1 to its right form the new first significant pair and these two ones are replaced on the next 
step by a new 1 in the first position to the left of the pair. If this 1 is adjacent to another on its left, this pair is 
now the first significant pair and is replaced by a new 1 in the first position to its left, and so forth. This process 
continues until the new 1 stands alone, in which case the resultant representation ends in 0, n* - 2, 0, 1 with 
no significant pairs to the left of these four positions. On the other hand, if for the last four significant posi-
tions /, n* - 2, Of 1 no 1 appears immediately to the left of these four positions, (In*- 2) becomes the first 
significant pairso the last four significant positions become, upon the next application of 12 with k= 1, 0, n* -
3, 0, I The new 1 which now appears immediately to the left of these four positions behaves as just described, 
moving to the left each time it pairs with another 1 immediately to its left, the process terminating when the 
new 1 finally stands alone. At this point the representation terminates with 0, n* -3, 0, 7 with no significant 
pairs appearing to the left of these four positions. 

In either case, the next application of 12 calls for operation (ii), for which we once again select/ and k= 1. 
By an exact repetition of the arguments just presented, we see that after finitely many applications of 12 we 
arrive at a representation of the form Q, n* - k2, 0, 2 with no significant pairs to the left of these four posi-
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with km > 2m and no significant pairs to the left of these four positions. When finally n* - km = 0 or / the 
end of the $1 -cycle has been reached, and the representation ends in either Q, 1, 0, m or 0, 0, 0, m. Also/7*-
km < 7 and km > 2m. This gives/77 < 1/2km with km = n* or km = n* - /and the theorem is proved because 
the last representation of the 12-cycle does not depend on our particular choices for / and k in the various 
applications of £2. 

Corollary. For each Fibonacci representation Y ^ k/f,-^ Wthe resolution algorithm converges in finitely 

many steps to the canonical representation determining the same quadratic integer. 
To extend the resolution algorithm to the general case, we show how every other case can be reduced to the 

case of representations in W. 

Let \ * kjfj be a Fibonacci representation with upper degreep and lower degree r. Sf p - r> 2, eliminate kp 

by adding it to each of kp-f and kp-2- This does not alter r but reducesp by at least one and thus reduces/? -
r by at least one. Clearly by repeating this process finitely many times the Fibonacci representation can be re-
duced to one containing at most two non-zero coefficients, and these will be adjacent. If these two numbers are 
both nonnegative, or if at any point prior to arriving at this pair all of the coefficients become nonnegative, one 
should revert to the resolution algorithm as defined for representations in W. If these two numbers are both non-
positive, or if at any point prior to arriving at this pair all of the coefficients become non-positive, one should 
factor a minus sign to the front of the entire representation and then treat as in the case of W, the minus re-
maining in place during the remaining operations. 

Therefore we may assume that we have arrived at a Fibonacci representation containing exactly two non-zero 
coefficients which are adjacent and such that one is positive and the other is negative. Let this pair of coef-
ficients be a, b. If we continue the operation of eliminating the first member of the pair by adding it to each of 
the two positions immediately to its right we obtain successively the pairs 

(a,b), (a+b,a), (2a + b,a + b), (3a +2b, 2a +b), (5a + 3b, 3a + 2b), - . 

The pairs (a,b), (a + b, 2a + b), (3a + 2b, 5a +3b) belong to the embedding %((b - a)J + ao(lj) defined by Eq. 
(2.35). Because of the orientation of the flows as seen in Fig. 2.4, the ratio of the second to the first term in 
each pair must eventually become positive and remain so (approaching r) and therefore we must eventually ar-
rive at a pair in which both members have the same sign. At this point we may proceed as indicated previously. 

Thus the entire resolution algorithm is seen to proceed in the following phases in the general case: 

Phase I: Reduce the representation to a pair. 
Phase I I : Continue reduction until like signs are obtained. 
Phase I I I : Factor our minus signs and apply U, repeatedly. 

It is perhaps worthwhile to present one worked-out example. 

20(-7).046 = 2(-5).046 = (-31.246 = .(-1)16 = .005 = .01301 
= .10201 = .11002 = 1.00002 = 1.0001001 . 

The reader can verify that the first and last representations (and all those in between) determine the quadratic 
integer ( 1 0 / r ) - 5 . 

This algorithm now makes possible an arithmetic for the canonical Fibonacci representations. One performs 
the standard algorithms and interprets them as in Section 3.2 and then resolves the results to make them once 
again canonical. In this way we obtain our final theorem in this section. 

Theorem 3.23. The canonical Fibonacci representations form a ring in the usual arithmetical algorithms, 
followed by resolution. This ring is isomorphic to the ring / of quadratic integers in Q[T] under the mapping 

which sends each canonical representation ^ kjfj to the quadratic integer which it determines, namely 
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The canonical representations of zero form a subring which is isomorphic to the ringZ of ordinary integers 
under the left shift 

Hkifi-Yjki-ifi • 
This ring is actually a linear algebra over Z in the obvious way; hence the title of our paper. 

3.5 Applications in^Y and F. 

As explained in Section 2.6, each sequence£.G/V goes over to the quadratic integer (xQ/r) +xx under the iso-
morphism $_o <£,and moreover, the left shift in ^corresponds to multiplication by r i n /. In positional notation 
(x0/r) + xx is denoted by A^ .X0 which representsxQ, and multiplication by r p r o d u c e s * ^ , which represents 
x1 ; etc. Thus we see that successive terms in x are represented by successive shifts of each Fibonacci representa-
tion forx0 which determines (X0/T) +xt. (For the particular representation xx.xQ this amounts to a restate-
ment of Eq. (2.6).) There is for the quadratic integer (xQ/r) +xx a unique canonical Fibonacci representation in 
the sense of Theorem 3.6. This representation signifies a finite sum of multiples of 1.0 by non-consecutive 
powers of r, which corresponds in X to a finite sum of non-consecutive shifts of J, since f o ̂ > sends/to 1. 
Hence we obtain the following theorem. 

Theorem 3.24. Every Fibonacci sequence x_e X is uniquely expressible as a signed finite sum of non-
consecutive shifts of the sequence/of Fibonacci numbers. The appropriate sum is precisely that indicated by 
the sign and shifts of 1. appearing in the canonical Fibonacci representation which determines the quadratic 
integer^ o 0 W = (x0/r) + xx. Furthermore, the canonical representation^ o(p(x] representsx0 and successive 
left or right shifts of this representation yield representations for the terms of * given by the corresponding 
shifts in X 

An example of this theorem appears in the principal introduction (Section 1). As pointed out in the introduc-
tion, the second statement in this theorem appears in [14] for nonnegative Fibonacci sequences and in [8] and 
[13] for more general sequences. 

Thus each Fibonacci sequence, when appropriately represented "in Fibonacci" consists of consecutive shifts 
of a basic block of ones and zeroes, and two sequences are made up of shifts of the same basic block if and only 
if each sequence is a shift of the other, in which case we say that the two sequences are equivalent. It is clear 
that this equivalence is a true equivalence relation in which each equivalence class determines a signed basic 
block of zeroes and ones, and vice-versa, 

Theorem 3.14 provides a ready-made enumeration of these equivalence classes if we agree to distinguish be-
tween - 0 and 0 for purposes of listing. For every basic block can be so shifted as to have lower degree zero, so 
every Fibonacci sequence \nX_ is equivalent to exactly one which under f o 0 is determined by a canonical rep-
resentation of lower degree zero, and by Theorem 3.14, there is an exact correspondence between the set — 2 , 
- 1 , - 0 , 0, 1, 2, 3, ••• and the canonical representation of lower degree zero. Thus for each m = ±0, ±1,.±2, ••• 
we can refer to the mf equi vale nee class in X 

In Fig. 3.4 we list for several values of m the pair (m,n) with n = [\(m + 1)r\), the canonical Fibonacci repre-
sentation of lower degree zero which determines the pair (m,n) and some of subsequent terms of the embedding 
of the Fibonacci sequence in the flow passing through the point (m,n). Flow constants are also given for later 
reference. 

The reader will perhaps notice that the canonical representations increase in strict lexicographic order in the 
sense that they increase with no omissions within the class of canonical representations of lower degree 0. This 
can be proved easily from Eq. (3.5), the corollary to Theorem 3.9 and Theorem 3.14; however it is also an 
immediate consequence of the known properties of the Zeckendorff representations and their simple connec-
tion with the canonical representations with lower degree zero. 

At this point we can see that the pairs appearing in the right-hand column of Fib. 3.4 are the Wyth off pairs as 
defined in [17] and discussed in [5, 17, 18, 19]. For given any pair (a,b) in this column, let/? - a = k. Then 
(k.a) is determined by an odd shift of the canonical Fibonacci representation appearing in the same row as (a,b), 
so (k,a) is determined by a canonical Fibonacci representation of positive, odd lower degree. By Eq. (3.9) we 
have a= [\kr\], so that/7 = a + k= [\kr + k\] = [\kr2\]. Since the left shifts of the canonical representations of 
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(m,n) 

(0,1) 
(1,3) 
(2,4) 
(3,6) 
(4,8) 
(5,9) 
(6,11) 
(7,12) 
(8,14) 
(9,16) 

(10,17) 
(11,19) 
(12,21) 
(13,22) 

i (14,24) 
(15,25) 

Flow 
Constant 

1 
5 
4 
9 

16 
11 
19 
11 
20 
31 
19 
31 
45 
29 
44 
25 

Canonical 
Representation 

1. 
101. 

1001. 
10001. 
10101. 

100001. 
100101. 
101001. 

1000001. 
1000101. 
1001001. 
1010001. 
1010101. 

10000001. 
10000101. 
10001001. 

Subsequent Points of I 
Embedding in Fibonacci Flow 

(1,2), (3,5), (8 ,13) -
(4,7), (11,18), (29,47), -
(6,10), (16,26), (42,68).- I 
(9,15), (24,39), (63,102)-
(12,20), (32,52), (84,136) •-
(14,23), (37,60), (97,157) -
(17,28), (45,73), (118,191)-
(19,31), (50,81), (131,212) •• 
(22,36), (58,94), (152, 246) -
(25,41), (66,101), (167,268) 
(27,44), (71,115), (186,301) 
(30,49), (79,1281,(207,335) 
(33,54), (87,141), (228,369) 
(35,57), (92,149), (241,390) 
(38,62), (100,162), (262,424) -
(40,65), (105,170), (275,445) -

Fig. 3.4 Some Data on the Equivalence Classes in X 

lower degree zero must represent positive integers, and since ([\kr\], [\kr2\]) is known to be the k Wythoff 
pair for each k, the right column contains only Wythoff pairs. But by the corollary to Theorem 3.15 and the 
fact that all possible basic blocks occur in the table, every positive integer must occur somewhere in the right 
column and therefore all Wythoff pairs must be present. 

It now follows from the discussion in [17] that the first pairs appearing in the right column are the primitive 
Wythoff pairs (defined in [17]). If we throw in the negatives of the primitive Wythoff pairs and the pair (0, 
0) and refer to this larger collection as the primitive Wythoff pairs, we obtain the following generalization of 
the results in [17]. 

Theorem 3.25. Every Fibonacci sequence in X is from some point forward identical to the sequence 
initiated by a primitive Wythoff pair, and for non-equivalent sequences these primitive Wythoff pairs are 
distinct. 

Thus the primitive Wythoff pairs furnish a system of representatives for the equivalence classes in X just as do 
the pairs in the first column of Fig. 3.4. 

Our last theorem in this section is the only application of canonical representations to_f. While it is too ob-
vious at this point to require proof, it is of sufficient interest to be stated formally. 

Theorem 3.26. Every equivalence class in the quotient ring F contains a unique pseudo-polynomial 

5 3 Ar/X' for which either krf 0 implies k\ = 1 or else krfQ implies k, = -1 and for which kjki+1 = 0 for every 

i. Foreach equivalence class this pseudo-polynomial is precisely the one associated with the canonical Fibonacci 
representation which determines the image of the equivalence class under the isomorphism^. 

For example, the equivalence class [2\2 + X"1 - X~3/ i n / goes to 2r2 +r~l - T ~ 3 under j \ By the resolu-
tion algorithm (and a shortcut) 

200.10(-1) = 200.01 = 1001.01 

so that [2\2 + X-1 - X"37 = A 3 + 1 + X-27. 
4. THE FIBONACCI FLOWS 

4.1 Introduction 
In this section we consider properties of the Fibonacci flows such as which integers are flow numbers, how 

many non-equivalent sequences are embedded on a given flow and how the embeddings situate with respect to 
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one another on a flow. Much of this material comes out in a standard way from the analysis of representations 
by quadratic forms, such as can be found in [16]. In these cases we simply provide a statement of the results. 

4.2 The Flow Constants 

Suppose v0 £ 0 is a flow constant for some* eX_so that by Eqs. (2.28) and (2.36) 

(4.1) v0 = x\ -xxxQ -xl 

for the pair (x0, xj of integers. Thus the flow constants vfor sequences in X are precisely those integers which 
are represented by the indefinite quadratic form x\ - xxxQ - x2

0. This form has discriminant 5, and since all 
forms of discriminant 5 are equivalent under unimodular transformations, by the standard reduction of the 
problem of representation to that of equivalence we find that the integers v having primitive representations by 
the form x\ - xxx0 - x2

Q are precisely those for which the quadratic congruence 

(4.2) M 2 = 5 mod 4I^I 
is solvable. Using quadratic reciprocity we obtain the following theorem. 

Theorem 4.1. The positive integers having primitive representations by the indefinite form x\ -x0x1 -
xl are those of the form 

(4.3) v = 5^ -..plk 

in which 0 = 0 or 1 and pu —, /?/. are distinct primes, each of which is congruent either to 1 or 9 modulo 10. 
Those integers which are flow constants for sequences in X_MQ therefore all numbers of the form ±k2v, wherein 
v is given by Eq. (4.3) and k is an arbitrary integer. 

We deliberately allow the case k = 0 in Theorem 4.1 to account for the zero sequence in X. The reader is re-
ferred to Fig. 3.4 for some data on the flow constants. 

4.3 The Em bed dings 

Having established the form of the flow constants it is natural to inquire as to how many and which embed-
dings occur on a given flow. For each given flow constant all of the embeddsngs on that flow can be computed 
by the method of reduction of quadratic forms. In this connection we point out that the automorphs of the 
form x\ - xxxQ - x2

Q are the linear transformations given by matrices of the form 

t* »\ +1 f2n~1 f2n \ ^ I f2n~1 ~f2n-2 \ 
( 4 ' 4 ) ~(f2n f2nJ-±[f2n -f2n-l) 

in which n is an arbitrary integer. The reader will have little difficulty in showing that if (x 0, xj is a representa-
tion for some number v by the form x\ - xxx0 - x\, then the other representations of v generated from (x0, 
xj by these automorphs are precisely the other points of the embedding of fxx - xQ)_l+x0oW, their nega-
tives, their conjugates, and the negatives of their conjugates. 

Thus in any given case one determines the solutions for / io f the congruence 4.2 such that 0 < / i < 2\v\> ar|d 
then determines for each solution, by reducing the corresponding equivalent form, a primitive representation 
(xu x0) which then generates by 4.4 its embedding, the negative of its embedding and the conjugates of these. 
In addition, non-primitive representations will arise if the prime power factorization of \v\ contains exponents 
greater than or equal to 2. For by factoring/?2 from vand determining primitive representations for v/p2, say 
(uQ, uj, we obtain the non-primitive representations (pu0, puj for v. Since the automorphs 4.4 generate only 
primitive representations from primitive representations, the non-primitive representation (puQ, puj and all 
the other representations determined from it by the automorphs 4.4 are necessarily distinct from all of the 
primitive representations. An extension of this argument shows that if the squares of two distinct primes occur 
as factors of \v\ then the corresponding non-primitive representations are distinct. It follows that there is no up-
per limit to the number of non-equivalent embeddings that can lie on the same flow. 

As an example consider the flow constant 121. The solutions of JJ2 = 5 mod 484 with 0 < fi< 282 areju = 
73,169 mod 484. These determine the equivalent forms 12UJ + 73^'xo +11xJ and 12k 2 + 169*^0 +59x2. 
By reducing these two forms we determine the primitive representations (-3, 10) and (-7, 10), respectively. 
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The only square factor of 121 is 121 itself, so the non-primitive representations of 121 will be given by multi-
plying by 11 the primitive representations of 1. The solutions of \x2 = 5 mod 4 with 0 <JJL< 2 areju = lon ly , 
giving the equivalent form x\ + xxx0 - x2

0. This form is already reduced and determines the primitive repre-
sentation (0,1), which gives the non-primitive representation (0, 11) of 121. If we note that the embedding con-
taining (-7, 10} has for its next point (3, 13) which in turn has as its conjugate (-3, 10), we can state that the 
only embeddings on flow 121 are, up to equivalence (i.e., shifts) those of the sequence 1Tf-7o(f),\ts negative, 
its conjugate, the negative of its conjugate and similarly for 1U However 11/is self-conjugate so the total num-
ber of non-equivalent sequences embedded on flow number 121 is 6. 

The next theorem shows that the number of non-equivalent sequences on a given flow can be simply com-
puted from the ordinary prime factorization of the flow constant, without actually determining the embedded 
sequences. Let PQ be an arbitrary non-zero flow constant and let the prime factorization of v0 have the form 

(4.5) *,=±f%Vp?--:&kl7'Z2 •••<!?'' 
in which p1f P2, —, Pk are the prime factors of VQ which are congruent to 1 or 9 modulo 10, and q-j, q2,~, 
qj are the other prime factors of VQ different from 5. Note that by Theorem 4.1 each of the exponents m 1,1112, 
•", rrij is even, say m,- = 2r,, i = 1, 2, —,/. 

Theorem 4.2. Let v0 be a non-zero flow constant which factors as in 4.5. Then the number of non-
equivalent Fibonacci sequences \nX embedded on the flow v(x)= vQ is equal to 

2(1 + n1)(l + n2)-(l+nk). 

Proof. We shall use the following known facts from elementary number theory: (1) Zfr] is a unique fac-
torization domain, (2) if n is a positive integer which is not a square then \fn^ Zfr] if and only if the square-
free part of n is 5 and (3) the units in / = Zfr] are exactly the elements ±rn, n = 0,±1, ±2, •••. 

The first step of the proof is to establish that the natural integers which are prime in / are precisely the natural 
primes which are not 5 and are not congruent to 1 or 9 mod 10. Clearly Theorem 4.1 precludes any other pos-
sibilities for the primes in /. On the other hand, we now show that if p is any natural prime which factors non-
trivially in /, then the factorization of p is necessarily of the form p = ±aa, with a and a prime in /. From this 
it will follow, again by Theorem 4.1, that each natural prime not 5 or congruent to 1 or 9 mod 10 is prime in /. 

Suppose pte a natural pnme which factors in / as/7 = a|3, when neither a nor fi is a unit in/. Then also/7 = a 7? 
so/72 =aaj3ft and thus aa= ±$$= ±p. Hence a and j3have prime norm and therefore are prime in /. Since/ is a 
unique factorization domain, either |3 = ua where u is a unit in / or fi = uawhere u is a unit in /. If j3=£7athen 
we have/7 = a$ = uaa.Since aa is an integer, necessarily u = ±1 giving the desired result: p = ±aa. If ]3= t/athen 
p = ua2 = Ua2 so that a= va for some unit v since / is a unique factorization domain. This givesp = uvaa, and 
since uv is a unit in /, we are back to the previous case. 

The next step of the proof is to show that if a natural prime p is a non-prime in / with prime factorization p = 
faoiin/, thence is an associate of a if and only if p = 5. For if p = 5 we have 5 ( 2 r - 1)2 and 2r — 1 = - ( 2 r - 1), 
On the other hand, if ~a = ua where u is a unit in /, then/7 = iaa = ±ua2 = ±Tia2 and so/72 = uu(aa)2, whence 
uu= 1. Now a unit u is of the form ±rn, so u~\s±(-1)nT~n. Therefore uu~= (~1)n showing that/? is necessarily 
even, say n = 2k. This gives 

u = ±r2k, p = ir2ka2 =Mrka)2. 
Since all members of / are real we have p = (rka)2 whence yjp e /. But/7 is prime, so p = 5. 

Having dispensed with these technicalities we can now complete the proof. Let v(x]= v(xQ, xx) = v0, so that 

«.{*.,) (f77.). 
Let the prime factorization vUxQ/T) + xx in / be 

— +x, = a.a2 •'•Oo, 
SO 

)( _ 
-? + xx = axa2 •••aSr 
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and 
(4.6) VQ = (aicij)(d2&2) - (as&s) 
the latter necessarily being the prime factorization of v0 into natural primes. 

On the other hand, by Eq. (4.5) 

Each q; is prime in / and each p,- factors by Theorem 4.1 as/7/ = j/y,-, each factor being prime in /. We have seen 
that 5 factors a s - ( 2 r - 1 ) ( 2 r - 1 ) = (IT- 1)2. Thus 
//i -,\ ./n i\2nn ni-.ni no-^2 nk—nk 2ri 2r2 2r; 

(4.7) v0 = ±(2T- 1) U l 1
l l 1

l l 2 l 2 -^k^k Qr Q2 '"*J 

is the prime factorization of v0 in /. 
By comparing Eqs. (4.6) and (4.7) we see that, up to units a 7,0,2,—, as must consist of the following: r/ 

occurrences of qj, r2 occurrences of qp., and so on, up to /y occurrences of <//, ̂ occurrences of IT- 1 (we 
note that up to this point there is no choice in the assignment of the a, except order and units) and /7/ occur-
rences of either 77 or 77,1)2 occurrences of either 72 or 72, and so on, up to/7^ occurrences of either% or 
7>. In this last listing - the occurrences of the 7, and 7/ - there are (1 +/?/)(1 +/?£) — (1 +/?*..) possible 
choices of the corresponding a, and distinct choices must yield distinct values for (X0/T) +xt since/ is a unique 
factorization domain and since no 7/ and 7/ can be associates. 

The introduction of units into the above assignments of a 1,0*2, —, &s c a n only produce a multiplication on 
the resulting value of (XQ/T) + xx by a factor of the form ±Tn. Since undergoj£the shifts in ^correspond to 
multiplication by powers of 7 in /, the effect of the introduction of these units on the sequence in X which is 
embedded in the flow v - v0 is to either produce an equivalent sequence or the negative of an equivalent se-
quence. These negatives always occur since, for example, 1 - 7 is a unit with norm - 1 . Thus we must double 
our previous count, thereby obtaining the final result 

2(1+ni)(1 + n2)-(1+nk). 

As an illustration of this theorem, we note that since 121 = 112 and 11 = 1 mod 10, the number of nonr 
equivalent embeddings on the flow v- 121 is 2(1 + 2) = 6, in agreement with our earlier calculations. 

Our next task is to establish a separation theorem for distinct embeddings in the same branch of a flow. To 
this end we define functions CT(t) and ST(t) for each real number f by 

(4.8) CT(t) = TL^L! t 

(4.9) STft) = ^-~T~ . 

The resemblance to the hyperbolic sine and cosine is evident and in fact 

(4.10) CT(t) = cosh (tznr), 

(4.11) ST(t) = sinh (tznr) 

for each real number t. Based on these relations one readily verifies that 

(4.12) u(t) = x0CT(t)+ 2-^-l (2xx -x0)ST(t), 
a 

(4.13) v(t) = xxCr(t)+ %-=-! (2x0 +xJST(t) 

are parametric equations for the branch of the flows passing through the point (x0, xj. For each real t the 
point (u(t), v(t)) can be thought of as representing 

T 

and one finds readily from Eqs. (4.12) and (4.13) that 
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(4.14) UM +v(t)= [*-f +x) rf . 

Of course this relation is not unanticipated and would serve well in the place of Eqs. (4.12) and (4.13), except 
that the representation (u/r) + v is not unique when u and v are irrational. In any case Eq. (4.14) assures that 
the orientation of the flows induced by the parameterization in Eqs. (4.12) and (4.13) agrees with the orienta-
tion induced by the embeddings, and that given two points (uu vj and (u2, v2) on the same branch of a type I 
or type II flow, (u2, \/2) follows (u u \/x)\x\ the orientation of Eqs. (4.12) and (4.13) if and only \Uu2/r) + v2 

is greater than (ux/r) + vl as a real number, while the opposite holds for type III or type IV flows. This obser-
vation provides a proof of our next theorem. 

Theorem 4.3. Every pair of distinct embeddings on a single branch of a Fibonacci flow perfectly separate 
one another in the sense that between every pair of consecutive points of either embedding there occurs exactly 
one point of the other. 

Proof. Assume the flow to be of type I or type II ; an obvious parallel argument applies in the other cases. 
Suppose (mu nj and (m2, n2) are consecutive points of one embedding so that 

m2 I m. \ „ 
-r1 +n2 =[ -±+n, r 2 . 7 l \ 7 

The points (x2n, X2n+?) ° f t n e o t n e r embedding will all follow the relation ; 
x2n ,v _ 1*0 ,v \ v2n 
— + x2n+1 ~ \pf +*1 J T 

for the appropriate values of x0 and xx, and since the sequences are of type I or type II, we have 

T? +*, > a 

2k m 1 

rZk > y + n1 

T2k+2 

If now2/r. is the smallest positive integer such that 

it follows readily that 

(*++*l) r2k-2 <mi+nK ( ^ +X1) r2k <^+n2< ( ^ * , 

and the theorem is proved. 

4.4. A Final Theorem 

Our last theorem does not concern embeddings but nevertheless fits in conveniently at this point of the paper. 
We have earlier been concerned with the various ways in which the natural integers can be represented canon-
ically by the sequence^. We consider now the canonical representations by an arbitrary sequencer E / with 
initial terms xQ and xx which are relatively prime. (The case in which xQ and x , are not relatively prime is a 
simple extension of this case.) We want to know which natural integers have canonical representations by x -

meaning sums of the form Y ^ k\x\ in which all but finitely many of the k,- are zero, no two consecutive k; are 

non-zero, and either all non-zero k; are 1 or else all non-zero k; are - 1 - we want to determine all such canoni-
cal representations when they exist. 

In view of the analysis in 3 it is natural to associate to each canonical representation^j_j k,Xj the quadratic 
integer 

E*/~ /*/• 

From foregoing results we have 



324 THE ALGEBRA OF FIBONACCI REPRESENTATIONS [NOV. 

The factor 

— — - +L,ki-ifi 

we know from Section 3 can be equal to any quadratic integer in / so we see that a natural integer/7? has a can-
onical representation by x if and only if there exists a natural integer /7 such that/7??/7J + n belongs to the prin-
cipal ideal in / generated by (xQ/r) + xx. In this case, the representation (m/r) + n byx agrees with that of 

by_£ Our last theorem shows that such n exist for each m and characterizes all such. 

Theorem 4.4. Let/7? be an arbitrary natural integer. Then the canonical representations of m by x_ have 
the same coefficient sets as the canonical representations of the quadratic integers 

(?*•)(?"•)"' 
by /where n is any natural integer such that 

nxQ z= mx x mod (x\ -xxx0 - x\). 

Moreover the foregoing congruence is solvable for/7 because^0 is prime tox? - x x x Q - x\. For each solution 
11, the resulting canonical representation of m by x has for its left shift a canonical representation for/? byx. 

Proof. In view of the remarks preceding the statement of the theorem, we need only show that the condition 

nxQ = mxx mod (x\ -xxxQ - x\) 

is necessary and sufficient for (m/r) + n to belong to the principal ideal in / generated by (xQ/r) + xx. Now 
given m and n, there exist a arid h in Z such that 

if and only if 

is in /. But 

so 

?*»-(7**.)(*H 

7**0 " -l*itf{T")-

/ I mx 
+ nx, -mxn v(xQ,xx) \ r 

Thus the necessary and sufficient conditions for (m/r) + n to be in the principal ideal generated by (X0/T)+X1 

are that 
mxx-nx0 = 0 mod v(x0, xx), and nxx-mx0-nx0 = 0 mod v(x0, xj. 

The second of these two congruences is a consequence of the first, as follows. Since x0 andxx are relatively 
prime it follows simply thatxQ and v(xQ, xx) and that xx and v(xQ,xx) are relatively prime. Le t * ; 1 denote 
the inverse of xx mod P(X0, XX ), so from the first congruence we have 
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m = x~lnx0 mod v(x0,xj 
whence 

nxx - mx0 -nx0 = nxx -x^nx* - nx0 = nx~l(x\ - xxx0 - x\) = 0 mod v(xQ,x J. 

Thus we have shown that the condition 
mxx -nxQ = Omod v(x0,xx) 

is necessary and sufficient for (mM + n to belong to the ideal generated by (x0/r)+xx, and the theorem follows. 

5. CONCLUSION 

We conclude with a number of comments concerning the foregoing material and possible extensions thereof. 

First of all, the necessity of distinguishing between the integer "represented" by ^ k/f,- and the quadratic in-

teger "determined" by ^ k-j' is unsatisfactory, since in view of all that has been shown it is clearly more 

natural to "represent" the quadratic integer J j kj1 then the ordinary integer Z^k/f,-. The necessity for this 

distinction exists because in the special case that J j ktr' is a natural integer it does not coincide with the nat-

ural integer ^ kjfj. This in turn traces to Eq. (3.1) in which ^ kjf; is the coefficient of - rather than the r-

free part of the expression. All of this can be corrected by defining gn = fn„i for every n and then defining 

Fibonacci representations to have the form ^k/g,- instead of ^kjfj. In this case Eq. (3.1) becomes 

ki?1 = YjkiQi+[ L ki9i+l\ r . 

Furthermore one may take s to be the sequence# in Section 2.4 and many notational asymmetries are eliminat-
ed. For example we find that 0mapsx tox0 + XXT rather than (x0/r) + xx. Also, Theorem 3.23 then states that 
the canonical representations which determine (or now we can say represent) natural integers from a ring iso-
morphic to the integers under the correspondence ^ k;g; -» X* kir>- AH of this is an argument in favor of 
defining the Fibonacci numbers by the sequence g instead of f. We have not done this because we do not wish 
to conflict with the definitions already present in the literature, and moreover, this would have the effect in-
creasing the disparity between the positional notation we use, which includes a position for fot and that cur-
rently in use for Zeckendorff representations, which terminates with the fx term. Additional indication for the 
indexing of the Fibonacci numbers by g instead of by /appears in [19]. 

We mention that the convergence proof of the resolution algorithm is really a second proof of the existence 
of canonical Fibonacci representations corresponding to the quadratic integers in /. We could have formulated 
and proved Theorem 3.26 and then the earlier theorems could be derived therefrom. This has a certain appeal 
because it is more intrinsically algebraic, but it was felt that the information contained in the statements and 
proofs of Theorems 3.2, 3.3 and 3.4 warranted their inclusion. 

A number of likely extensions and applications of the material in this paper suggest themselves. In references 
[7, 8, 9, 10] one finds investigations of other types of representations: Lucas representations, Pellian represen-
tations and so forth. The theorems of Section 2.3 have been stated with deliberate generality in anticipation of 
other applications, and it would be of interest to determine for what general class of representations the alge-
braic approach we have taken could succeed. In addition, there is a possibility that other of the results in the 
foregoing references could be interpreted and possibly extended in the light of these investigations. 

Theorem 3.8 clearly suggests a Fibonacci representation for rational numbers. These representations will So 
general be infinite and divergent, but possibly converge in some generalized sense to the rational numbers they 
represent. 

The resolution algorithm in conjunction with Eqs. (3.7) or (3.9) offers a method of computing first and sec-
ond canonical representations of positive integers in the sense of [5] . However, Eqs. (3.7) and (3.9) involve'the 
irrationality r. It would be of interest to determine an algorithm for generating these representations which 
does not involve irrationalities and also does not involve tables of Fibonacci numbers (as do the extant 
algorithms). 
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Finally, the pleasant properties of the Wythoff pairs in terms of Fibonacci representations as evidenced by 
Fig. 3.4 and pointed out in [18], together with the connection of Fibonacci representations with the ring / 
as explored in this paper suggests that their role in Wythoff's game might be derivable from formal algebraic 
arguments, in the spirit of what has been done by Gleason for the game of nim [12]. 
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SET PARTITIONS 

LCARL1TZ* 
Duke University, Durham, North Carolina 27706 

1. Let Zn denote the set 11, 2,—,/7 J. LetS(n,k) denote the number of partitions of Zn into k non-empty 

subsets Bj, —, Bk. The B^ are called blocks of the partition. Put 

nj = \Bj\ (I = 1,2,-,k), 
so that 
(1.1) n-j + n2 + ~' + rik = n. 

It is convenient to introduce a slightly different notation. Put 

(1.2) n = kvl + k2-2 + - + kn-nf 

where 
kj > 0 (j = 1,2, ~,n) 

and 
(1.3) k1+k2+- + kn = k. 

We call (1.2) a number partition of the integer n; the condition (1.3) indicates that the partition is into k parts, 
not necessarily distinct. For brevity (1.2) is often written in the form 

(1.4) n = 1kl2k2-nkn . 

Corresponding to the partition (1.2) we have 

(1 5) P± L . 
(Wkl(2!)k2-(n!)k" * f ' * 2 / ~ V 

set partitions. Hence 

(1.6) S(n,k) = £ 
W)kl(2l)k2..-(n!)k" k''k2'~knl ' 

where the summation is over all nonnegative k?, k2, —, kn satisfying (1.2) and (1.13). Thus 

sSs*** - x (*)'(«)'-00 
' k2,-=0 

E JL (M\
 kl JL (*ll\ k% 

kj \1! I kj \2! } 
<2,-=0 

n=0 k=0 kl,k2,~=0 

kx,k2 

and we get the well known formula 
oo oo 

(1.7) £ E S(n,k) x4 zk = exp(Z(ex - V). 

n=0 k=0 

^Supported in part by NSF grant GP-17031. 
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k-j I k\ ;n 

It is clear from (1.7) that 

(1.8) E Sln,k)£ = lj (ex-l)k, 
n! k! 

n=0 
which implies 

k 

(1-9) S(n,k)=-lj E (-VH[) 
j=0 

the familiar formula for a Stirling number of the second kind. 
Next put 

n 

(1.10) An(z) = £ S(n,k)zk 

and in particular 
n 

(1.11) / ! „ - An(1) = £ Sfo,W-

The polynomial / l ^ /z j is called a single-variable Bell polynomial. The number An is evidently the total number 
of set partitions of Zn . 

From (1.7) and (1.10) we have 

(1.12) £ An(z)£= exp(z(ex-D). 

Differentiation with respect tox gives 

(1.13) An+1(z) = z E (") Ariz) 

r=0 

while differentiation with respect toz gives 
n-1 

(1.14) A'n(z)= £ ( r ) ^ r W . 
r=0 

Hence 
(1.15) An+1(z) = zAn(z) + zAn(z). 

By (1.10), (1.15) is equivalent to the familiar recurrence 

S(n + 1,k) = S(n, k-1) + kS(n, k). 

If we takez = 7 in (1.13) we get 
n 

(1.16) An+1 = E M Ar (A0= 1). 
r=0 

This recurrence can be proved directly in the following way. Consider a partition of Zn+i into k blocks^/, 82, 
•••, Bfr. Assume that the element n + 1 is in Bk and let Bk contain r additional elements, r > 0. Keeping these r 
elements fixed it is clear that #7, —, Bk-i furnishes a partition of Zn,r into k - 1 blocks. Since the r elements 

in Bk can be chosen in l n ) ways we get 

An+1-i.. [nr)An-r=i: (",) Ar. 
r=0 r=0 
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For a detailed discussion of the numbers An see [5 ] . The polynomial An(z) is discussed in [1] . 
We now define (compare [4, Ch. 4]) 

d-17> Sifak) = E n! 1 

1kl2k2...nkn k1!k2!~'kn! 

where again the summation is over all nonnegative k1t k2, kn satisfying (1.2) and (1.3). This definition should 
be compared with (1.6). It follows from (1.17) that 

i i s *"*'-£>(?) "6 (?) n=0 k=0 kl,k2,-=0 

exp (xz + ^ + X-^ + -. j 

exp 

so that 
("T?;) 

(1.18) E Z S1(n/k)x—zk = (1-xFz 

It follows that 
n=0 k=0 

(1.19) X ) $l(n,k)zk = z(z+1)-(z+n- 1), 

k=0 

and therefore Si(n,k) is a Stirling number of the first kind. 
We may restate (1.17) in the following way. Let 

(1.20) BhB2,~,Bk 

denote a typical partition of Zn into k blocks with nj= \B\j. Then 

(1.21) Sj(n,k) = (n7- 1)!(n2- 1)!-(nk-1)!, 

where the summation is over all partitions (1.20) such that 

n-j + n2 + ~' + rik = n. 
2. We again consider the number partition 

(2.1) n = kv1 +k2*2+- + kn-n (k7 + - + kn = k). 

This may be replaced by 

(2.2) n = n1+n2 + - + nk, 
where 
(2.3) n1 > n2> - > nk. 

If there are no other conditions the partition is said to be unrestricted. We may, on the other hand, assume that 

(2.4) nj > n2 > ••• > nk, 

in which case we speak of partitions into unequal parts. Alternatively we may assume that in (2.2) the parts nj 
are odd. If q(n) denotes the number of partitions into distinct parts and r(n) the number of partitions into odd 
parts, it is well known that [3, Ch. 19] 
(2.5) q(n) = r(n). 

This discussion suggests the following two problems for set partitions. 
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1. Determine the number of set partitions into k blocks of unequal length. 
2. Determine the number of set partitions into k blocks, the number of elements in each block being odd. 
We shall first discuss Problem 2. The results are similar to those of § 1 above. Let U(n,k) denote the number 

of set partitions of Zn into k blocks 
(2.6) BU B2. - , Bk 

with 
(2.7) nj = \Bj\ = 1 (mod 2) (j = 1,2, •», k). 

In addition we define V(n,k) as the number of set partitions of Zn into k blocks (2.6) with 

(2.8) rij = \Bj\ = 0 (mod 2) (j = 1,2, - , k). 

(In the case of number partitions, the number of partitions 

n = n-/ + n2 + -~ + nk< 
where 

n-i > n2 > — > nk, rij = 0 (mod 2), 
is of course equal to the number of unrestricted partitions of n/2.) 

Exactly as in (1.6) we have 

(2.9) U(n,k) = T ^ 7-TT1— > 

where the summation is over ail nonnegative ki, k2, "-such that 
| n = kv1 + k2'3 + k3-5+ -

(2-10> \k-k,+k2+k3+... 
Similarly we have 

(2.11) V(n,k) = £ n / ' 
" (2!)kl(4!)k2-kl!k2h'' 

where now the summation is over all nonnegative kj, k2t -such that 

(2.12) j n = kv2 + k2-4 + k3°6 + ~> 

\ k = k1 + k2 + k3 + -. 

It follows from (2.9) and (2.10) that 

n °° . . k* . o . k2 

so that 

kx,k%,-=0 n=0 k=0 

,3 „5 

(2.13) J] y ; U(n,k) ~zk = exp (z sinh x). 
n! 

n=0 k=0 

The corresponding generating function for V(n,k) is 
oo n 

(2.14) £ Z Vh'U X—,zk= exp (zfcoshx- V). 
n=0 k-^O 

It is evident from the definitions that 

Ufn,k) = 0 (n = k+1 (mod 2)), V(n,k) = 0 (n = 1 (mod 2)1 
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Corresponding to the polynomial An(z) and the number An we define 

n 
UnM = E U(ntk)zk 

k=0 

(2.15) 

Un = Un{1)= E U{n,k) 
k=0 

and 

Vn<z)= E V(n,k)zk 

k=0 

(2.16) 

Vn = Vn(1) = E V(n,k). 
k=0 

Clearly Un is the total number of set partitions satisfying (2.6) and (2.7), while Vn is the total number of set 
partitions satisfying (2.6) and (2.8). 

By (2.13) and (2.15) we have 

(2.17) E Un(z)^ = exp(zsmhx) 

n=0 

and by (2.14) and (2.15) 

(2.18) E Vn(z)*r = exp(z(co$hx- D). 
n! 

n=0 

Differentiating (2.17) with respect to x we get 

E xn 

Un+i(z) — = z coshxex/? (zs\n\\x). 
n! 

n=0 

This implies 

(2.19) Un+1(z) = z E (2
n

r) Un„2r(z). 

Differentiation of (2.17) with respect to z gives 

Z xn 

U'Jz) —- = smhxexp (zslnhx) 77 n! 
n=0 

so that 

(2.20) U'n(z)= E [ 2 r 1 l ) Un-2r-1<z). 

2r<n 

Put F(x,z) = exp (z sinh x). Since 
?\2 

Z~Y F(x,z) = si n h2 x F(x,z), 
oz 

—~F(x,z) = —fz coshx)F(xfz) = (z2 cosh2 x +z sinhx)F(x,z), 
dxz oX 
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it follows that 
-2-2 F(xfz) = z\F(x,z) + z ±F(x,z) + z2 ^ F(xfz). 
dx2 dz dz2 

This implies 
(2.21) Un+2(z) = z2Un(z)+zU'n(z) +z2U'n(z) = z2Un(z) + (zDz)

2Un(z) 
and therefore 
(2.22) Ufa + 2,k) = U(n, k-2) + k2U(n,k). 

This splits into the following pair of recurrences 
, t i U(2n + 2f 2k) = U(2n, 2k-2) + 4k2U(2n, 2k) 
(2.23) < 0 

\ U(2n+1,2k+1) = U(2n- I 2k - 1) +(2k+1)2U(2n - 1,2k+ 1). 
To get explicit formulas for Ufn,k) we return to (2.13). We have 

exp(zs\„hx) = £ tiff*- (e*-e-x)k = £ ^ ^ (-1)k (*) a*"-*1* 
k=0 k=0 j=0 

n=0 k=0 j=0 

which yields 
k 

(2.24) U(n,k) = -±- V (~1)k I k)(k-2j)n. 

Similarly, since cosh x - 1 = 2 sinh2 Vax, 
2Kkf j=0 

exp (z fcoshx - 1)) = exp (2 sinh2 %x) = £ (^j- (ey'x - e-
y*x)2k 

K / k=0 

k 

k=0 ' j=0 

. 2k 

n=0 2k<n j=0 

we get 
2k 

(2.25) l/f/7,iU - —1- £ r-/;y' M M ft-//7 . 
2kk! j=0 \ J I 

Comparing (2.25) with (2.24), we get 

(2.26) V(2n, k) = — ̂ Z . U(2n, 2k). 

Thus the first of (2.23) gives 
(2.27) V(2n +2fk) = (2k - 1)V(2n, k-1) + k2V(2n, k). 

If we put 

(2.28) V(2n,k) = 4 ™ V'(n,k), 

(2.27) becomes 

22n-kk, 

2kk! 
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(2.29) V'(n + I k) = V'(n, k - 1) + k2V'(n, k). 
Returning to (2.18) we have 

Vn+i(z) —- = z sinhx exp (z (zoshx - 1)1 
n! 

n=0 

This implies 

(2.30) V*HM=* E l2r
n
+1) Vn~2r-l(z). 

2r<n V ' 

Differentiation of (2.18) with respect to z gives 

E x11 

V'n (z) — = fcosh x - 1) exp (z cosh x - 1) 
n! 

n=0 

which implies 

(2.31) 
V'nM* S (sr) V»-2r(z)-

0<r<2n 

It is evident from (2.15) and (2.19) that 

(2-32) Un+1 = E (2r) Un-2r-
2r<n 

Similarly from (2.30) and (2.16) we have 

(2-33) Vn+1 = E (2r
n
+1) Vn-2r-u 

2r<n 

Since Vn = 0 unlessn is even, we may replace (2.33) by 

n 

(2-34) V2n+2 = £ (22n
rtl)

V2n~2r. 
r=0 

It is easy to prove (2.32) and (2.34) directly by a combinatorial argument, exactly like the combinatorial proof 
of (1.16). 

The first few values of Un, V2n follow. 

U0 = Ux = U2 = 1, Ud = 2, U,= 5, U5 = 12, U6 = 36, 

K = V2 = I V4 = 4, V6 = 31, V, = 379. 
The following values of U(2n, 2k), V'(n,k), V(2n +1,2k+ 1) are computed by means of (2.23) and (2.29). 

U(2n, 2k) 

[\ k 

1 

2 

3 

4 

1 

1 

4 

16 

64 

2 

1 

20 

336 

3 

1 

56 

4 

1 j 
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U(2n + h 2k + 1) 

W\ 0 

| 1 

L 2 
| 3 

I 4 

0 

— 

1 

1 

10 

91 

820 

2 

1 

35 

966 

3 

1 

j 84 

4 

1 | 

V'(n, k) 

l\ k 

n ̂ ^ 
0 

1 

L 2 
3 
4 

0 1 

1 

5 

21 

85 

2 

1 

14 

147 

3 

1 

30 

4 

1 

For additional properties of U(n,k) see [2 ] . 
3. Put 

A ? - 7 

(3.1) Pn(z) = J2 U(2n-1,2k+1)z(z2-12)(z2-32)-(z2-(2k-1)2). 

k=0 

Then, by the second of*(2.23), 
n-1 

z2Pn M = Z U(2n ~ l 2 k + Vrt2 - l2Hz2 ~ 32) - (z2 - Vk ~ D2)[z2 - (2k + 1)2 - (2k + I)2] 
k=0 

n 

= ] T [U(2n - I 2k- 1) + (2k + 1)2U(2n -1,2k+ 1)]z(z2 - 12)(z2 - 32) ••• (z2 - (2k - 1)2) 

k=0 

so that 

= £ U(2n +1,2k+ 1)z(z2 - I2)(z2 - 32) - (z2 - (2k - 1)2), 

n=0 

z2Pn(z) = Pn+1(z). 
,2n-1 . S\ncePi(z) = z, it follows t h a t P ^ f z ^ z n"~' and (3.1) becomes 

A7--7 

(3.2) z2n'1 = £ U(2n -1,2k+ 1)z(z2 - 12)(z2 -32)- (z2 - (2k -1)2). 

k=o 

Similarly it follows from the first of (2.23) that 

/?-7 
(3.3) z2"-1 = Y. u(2n> 2k)z(z2 ~ 22><z2 ~ *2)'"(z2 ~ (2k ~ 2)2)-

k=0 
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By (2.26), (2.28) and (3.2) we have also 
n-1 

<3-4> z2"'1 = X V'n(n,k)z(z2- i2)(z2-32)-(z2- (2k- 1)2). 
k=0 

Formula (1.17) forSi(n,k) suggests the following definitions. 

^ ^1/2^3 k1!k2!k3!-

where the summation is over all nonnegative k], k2f k3, •••, such that 

i n = kr1 + k2°3 + k3-5+-

\ k = kj + k2 + k3 + - ; 

JL, 2kl4k26k3 kf!k2Ik3f 

where the summation is over all nonnegative k-j, k2f k3/ ••• such that 

I n = kr2 + k2>4 + k3>6+-

\ k = ki + k2 + k3 + - . 

We observe that Ui(n,k) is the number of permutations of Zn with k cycles each of odd length while V'i(n,k) 
is the number of permutations of Zn with k cycles each of even length. 

It follows from (3.5) that 

(3.7) £ Z £/,M/j£V-(£jP 
n=0 k=0 

Similarly, by (3.6), 

(3.8) £ £ V1<„.k)*lzk = (1-x2f*Z 

n! n=0 2k<n 

so that 

(3.9) I / / M J = (^$i(n,k). 
2kn! 

1Az f 1 M „ \
 1/*z 

This is also clear if we compare (3.6) with (1.17). 
It is easily verified that 

''-«*'£(&) " - ' ( & ) 
If we put 

Ul.nh) = E Ui<n,k)zk 

k 

it follows from (3.7) that 

(3.10) Uhn+1(z)-n(n- 1)U1rn-i(z) = ziJtn(z) . 
This is equivalent to 
(3.11) Urfn + lk) = U7(n,k- 1) + n(n- 7)Ujfn- 1,k). 

Wotice that this recurrence is somewhat different in form from the familiar recurrence for Si(n,k). 

By expanding the right member of (3.7) we get 
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(3.12) Uhn(zj = n<j: 2r ( ; r / ) (K; 
r=1 

To verify directly that (3.12) implies (3.10) we take 

*U»M = nl £ r ft:}) | 2<r+ 1, ( * , ) +2r ( * ) \ 

r=1 

- . 'E^(? ) i^ ( ; r / ) - (^ i ) } . 
r=1 

On the other hand 
n+1 n-1 

UKn+1U)-n(n-1)Uhn-,(z} = (n+1)! £ 2r (^,) (?) -(n-1)n! ^ 2r fcz?) (? ) 
r= 1 r=1 

-«•' £ *- ( ? ) { * (;-- /)^ (;--;)[• 
It is evident from (3.5) that 

(3.13) *//f/7,W = 0 (n ^ k+1 fmod 2 ^ . 
This is also clear from either (3.10) or (3.11). 

By means of (3.10) we get 

Uu1(z) = z, Uh2(z) = z2, Uh3(z) = 2z+z3, 

U1A(z) = 8z2 + z4, U1/5(z) = 24z + 20z3 + z5. 
The number 

(3.14) Utn = Uhn(1) = £ U7(nfk) 

k 

evidently denotes the total number of permutations of Zn into cycles of odd length. By (3.12) we have 

(3.15) Uhn=nl£ 2r ( ^ / J ( f ) (n > 1). 
r=1 

Alternatively, by (3.7) and (3.17), 

£ u» xi, - (y^ ) * - <'+*>«-*2r* - «+*> £ (2n) ( I )2"-
n=0 n=0 

which yields 
(3.16) U1r2n = (2n)l P " ) 2~2n = (1.3.5 ~(2n- I))2, 

(3-17) Uh2n+1 = (2n + 1)! (2» ) 2~2n = (2n + 1)U1f2n . 
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4. To obtain an array orthogonal to U(n,k) we consider the expansion 

(4-1) (4^r^-xrz = £ CnMjfj 
n=0 

If we denote the left member of (4.1) by F, we have 

sJT+X 

which gives 

¥ = - ? F, a-
dx m—2 ' 9x" 

F = / Z2_ _ XZ V 
2 I 7 + * * (1+x*)3*l 

(4.2) . f7+x a J ^ | * x | ^ = z 2 f . 
ax2 a* 

Substituting from (4.1) in (4.2) we get 

C„+2(z) +n(n- 1)Cn (z) + nCn (z) = z2Cn (z), 
so that 
(4.3) Cn+2(z) = (z2-n2)Cn(zJ. 

Since £ f l W = 7, C1(z) = z, it follows that 

( C2n(z) = z2(z2-22)(z2-42) •• (z2- (2n - 2)2) 
( 4 -4 ) t C2„+i(z) = z(z2- 12)(z2-32)-(z2-(2n- 1)2). 

Therefore (4.1) becomes 

(4.5) U1 +x2 - xFz = £ — ^ ^ - T f T T ^ - ^ x 

n=0 

z2(z2~22)-(z2(2n-2)2) v2n 
(2n)f 

+ V z(z2- 12)-(z2-(2n- 1)2) 2n+1 
La (2n+V! 

n=0 

If we differentiate both sides of (4.5) with respect to z and then putz = 0, we get 

\*(J77?-X) - - i (-vn 1---3-^fffr^ *2n+1 • 

Thus (4.5) becomes 

(2n + 1)1 
n=0 

(4.6) e*PL i ^JL^M^^A 
\ n=o ; 

V z2(z2-22)-(z2-(2n-2)2) y2n 
la (2n),

 x 

n=0 

+ V z&2 ~ 12)~(z2 ~(2n- V2) 2n+1 
L, (2n + J)/ x 

n=0 

Now replace* by ix andz by -iz and we get 
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(4.7) eXPh £ 12-32~(2n-V2£~}= ^ ^ g / r f ^ 
'' n=0 1 n=0 

+ V z(z2+ 12)(z2 + 32)-(z2 + (2n- I)2) v2n+1 
L. (2n + 1)! X 

n=0 

We now define W(n,k) by means of 
n 

z2(z2 + 22)(z2 + 42).» (z2 + (2n - 2)2) = £ W(2n, 2k)z2k 

k=0 
(4.8) 

z(z2 + 12)(z2 + 32) - (z2 + (2n - J}2) = £ W(2n + 1,2k+ 1)z 
k=0 

It follows at once from (3.2), (3.3) and (4.8) that 

<4-9> E f~ Dn~'W(2n, 2j)U(2j, 2k) - ^ f - 1)hkU(2n, 2j)W(2j, 2k) = « „ , * , 
j=k j=k 

n 

(4.10) Y* (~ Dn"iW(2n + 7, 2j + 1)U(2j +1,2k+ 1) 
j=k 

n 
= E (~ 1>hkU(2n + 1, 2j + 1)W(2j + I 2k-hi) = 5 „ , * . 

j=k 

By means of (4.7) we can exhibit W(n,k) in a form similar to (2.9) and (2.11). Indeed it is evident from (4.7) 
and (4.8) that 

(4-1D E E W(n,k)x~zk = exp\z £ f(n) j ^ 1 , 
n=n k=n x

 n=o " 

ffn) = 12-32-52 -(2n- 1)2. 

It follows from (4.11) that 

(4.12) W<n,k) - J\ ^ mllffffLEmJ^ 
(1!)kl(3!)k2(5!)k3-- kl!k2'«3!-

where the summation is over all nonnegative kj, k2, k3, ••• such that 
(4.13) n = kv1 + k2-3 + k3-5+-, k = k7 + k2 + k3 + - . 

Moreover, in view of the definition of U(n,k), we have the following combinatorial interpretation tfW(n,k)% 
W(n,k) is the number of weighted number partitions (4.13): to each partition we assign the weight 

q]_ (f(D)kl(f(2))k2(f(3))k3~ 

(Wkl(3!)k2(5/)k3- kl!k2lk3! 

n=0 k=0 n=0 

where for brevity we put 

A different interpretation is suggested by (4.8). 
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5. We now return to Problem 1 as stated In the beginning of §2. 
Let T(n,k) denote the number of set partitions of Zn into k blocks 

B1,B2,--Bk 

of unequal length. Then it is evident that we have the generating function 

(5-D E E T{n,k)4 zk = 5 (l+*^) -
" " n n=1 \ n I 

n=0 k n 7 

This is equivalent to 
(5.2) m,k) = Z —r-r—r -

" nj!n2!—n^! 

where the summation is over all n 7, n2f —, % such that 
(5.3) n = n-i + ri2+ ••• + ni<, nj > n2 > — > % > 0. 
In other words, T(n,k) can be thought of as a weighted number partition: to each partition (5.3) we assign the 
weight 

n! 
n-ff n2!' — n^f 

this weight is of course the number of admissible set partitions corresponding to the given number partition. 
We can define a function that includes T(n,k), U(n,k), V(n,k) as special cases. Let 

(5.4) £ = (r1,r2,r3f>") 
be a sequence in which rj is either a nonnegative integer or infinity. Let S(n,k\r) denote the number of set par-
titions of Zn into k blocks Bj, B2, —, B^ with the requirement that, for each/, there are at most ry blocks of 
length/ Thus, for example, we have 

I
S(n,k) r = K o o , oo, ...) 

U(n,k) r = (~ 0,00,0, •) 
V(n,k) ~r= (0, »,Q.-..~) 
T(n,k) ~r= (1, 1, 1, -) 

For an arbitrary sequence (5.4) we have the generating function 

n=0 k J ' x k=0 ' ' ' I 

anJ 

k 

Clearly (5.6) reduces to a known result in each of the cases (5.5). 
We shall now obtain some more explicit results for the enumerant T(n,k). It is convenient to define 

(5-7) Tn(z) = E T(n,k)z 
k 

and 

(5.8) Tn = Tn(1) = E T(n,k). 
k 

Then, by (5.1), 

(5.9) E , j n u ) £ = n ( / - ' A 
n=0 

Put 
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F = F(x,z) = 5 (i+xOf) m 
n=1 \ n! I 

Then it is easily verified that 

(5.10) log F(x,z) = £ Fn(z)^ , 
n! 

n=1 
where 

(5.11) Fn(z) = E (-Vs-1 -^--zs 

rs=n 

Differentiating (5.10) with respect t o * , we get 

Fx(x,z) _ ~ 

s(r!)s 

This implies the recurrence 

(5.12) 

F(x,z) 

Differentiating (5.10) with respect to 
r=0 

z, we get 

Fz(x,z) 

F(x,z) 

n=0 

(") 

n=1 

rn+1K %T 

Fr+l(z)Tn-

F'nlz) 
Xn 

n! 

rk) 

and therefore 
n 

(5.13) r„(z)= £ (n\ F'n(z)Tn.r(z). 
r=1 ^ 

Written at length, (5.13) becomes 

£ kT(n,k)zk - £ (" ) T(n-r,j) £ <-ir1 J±-
._* \ ' ._. ftl)S 

(5.14) i^ KIW,KJZ' = 2^ I "r I nn-r,j) 2^ i-V ' -—z' 
r=1 st=r 

This gives 

s 
(tns 

(5.15) kT(n,k) = E (-IIs'7 (n
t) ^ T(n-st,k-s). 

(KsKn { ' <t!)S 

S<t 
It is obvious that 

(5.16) T(n,1) = 1 (n > 1). 

Using (5.14) we get 

(5.17) T(n,2) = y2(2
n-2)-V2 ( £ ) - Sln,2) - % fn/2 \ . 

If we put 

(5.18) Gk(x) = £ r ^ W ^ 7 
n 

and 

(5.19) / / , W = V * ^ ! , 
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then by (5.14) 

(5-20) kGk(x) = E (-Ds-1Hs(x)Gk-s(x). 

s=1 

Thus for example 
Gj(x) = H7(x) = ex- I 2!G2(x) = H*(x)-H2(x), 3!G3(x) = H^fx)- 3H-,(x)H2(x) + 2H3(x) 
and so on. 

If we takez= / in (5.12) we get the recurrence 

(5.21) Tn+1 = E ([
n

r\FrH(VTn.r. 

r=0 
Unfortunately the numbers 

^ • ^ ^ ' ^ 
rs=n 

are not simple. We note that 

<5-22> E F"f1,£- E -~^ HsM-
n=1 " s=1 

Analogous to (5.2) we may define 

(5.23) 7 - ; M ; = y — — — , 
Z-r n1n2-nk 

where again the summation is over all n /, n2, —, nk such that 

n = n-i +n2 + - + nk, /7; > n2 > — > nk > 0. 

Then T-j(nfk) denotes the number of permutations of Zn with k cycles of unequal length. From (5.23) we ob-
tain the generating function 

(5.24) 
n=0 k 

As above we define 
,—n i. H i 

Ti,n(z> = E Ti(n,k)zk. Ttn = Thn(1) = E Tj(ntk). 
k k 

We can obtain recurrences for Tj(nfk) and Tin similar to those for T(n,k) and Tn. In particular we have 
n 

(5.25) Ttn + 1 = E ( ? ) F1,r+l(DTl,n-r, 
r=0 

where 

f / ^ = E (-Vs"1 ^. 

We remark that 7"7//7 is the total number of permutations of Zn with cycles of unequal length. Note that 

(5.26) E T1n
x-= n [1 + *-

' n-f n=1 \ n 
n=1 

Finally, as in (5.4), let 
(5.27) r = (rhr2,r3,-) 
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be a sequence in which each /y is either a nonnegative integer or infinity. LetS/ (n,k\r) denote the number of 
permutations 7r in Zn with the requirement that, for each i, the number of cycles of length / in n is at most/*/. 
Then 

S7(n,k) r = (00/00,00,...; 

U1(n,k) r = (~,0.~.Q,.~) 
V1(n,k) r= (0, 00, 0, oof ...) 

Trfn.k) r = (1, 1, 1,-). 

For an arbitrary sequence (5.27) we have the generating function 

(,28) £ £ w i ^ - - . n { Ejf (f)k\. 
n=0 k ' J 7 X k=Q ' J 

The following question is of some interest. For what sequences (5.27) will the orthogonality relations 
n 

(5.29) £ (-V^JSi(n,/k}S(/,k\L) 
i=k 

n 

= E (-1)hkS(n,j\£)Si(j,k\LJ = Sn,k 
j=k 

be satisfied? 
Alternatively we may ask for what pairs of sequences/^ will the orthogonality relations 

n n 

(5.30) £ (-Vn-JS7(nJ\L)S(/,k\s) = £ (-1)hkS(n,j\sJS1(i,k\rJ = bPfk 

j=k j=k 

be satisfied? 
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PRIMITIVE PERIODS OF GENERALIZED FIBONACCI SEQUENCES 

CLAUDIA SMITH and VERWER E. HOGGATT, JR. 
San Jose State University, San Jose, California 95192 

1. IWTRODUCTIOW 

In this paper we are concerned with the primitive periodicity of Fibonacci-type sequences; where the Fibonacci 

sequence | Fnl^=o is defined with FQ = 0, F-j = 1, and Fn+2= Fn+<j + Fn; and the generalized Fibonacci se-

quence lHn \%=o has any two relatively prime starting values with the rule, Hn+2 = Hn+f +'Hn. The Lucas 

sequence | Ln\ ^=Q is defined with LQ = 2, Lj = 1, and Ln+2 = Ln+j + Ln; and the generalized Lucas sequence 

\Gn l^=o is defined recursively by Gn = Hn+-j + Hn-j. We will see that in one case, that of modulo 3n, all gen-

eralized Fibonacci sequences have the same primitive periodicity. Then we will observe that the primitive 

periods of j F n \ and <Lnl are the same, moduluspm, where/? is a prime,/? £5. 

Prior to examination of the Fibonacci case mod 3n we will prove the following theorem: 

Theorem. \in\Fm,\\\ en n \Fmnk — 1. We use the fact that 

am = Fma+Fm„1 (3m = Fm$ + Fm^ (a™™)" = a™
k'1 

amnk-2 = ap k_2 + F k„2 1 P™"k~2 = BF k-2+F k„2 

mnK Z mnK Z_7 r K mnK Z mnK Z_j 

By definition, 
n 

F k-1 - E {"\<F k-2>'(F k-2 Jn~'Fj mnK ! £*j \j mn
K z / mnK z-1 J 

1=0 V ' 

Fmnk-1 = 0 + nFmnk„2(Fmn^2_7)
n~1Fl+ ("2 ) (F

mr?k-2>2'^k-2.^2 -
By induction, nk 1\F k.2- Clearly, nk 1 also divides all successive terms as/is increasing. Our proof is 
complete. 

2. THE FIBONACCI CASE MOD 3" 
Theorem 1. The period (not necessarily primitive) of the Fibonacci sequence modulo 3n is 2 -3n~ . 

We will prove that: (A) F23.3n-1 = F0 (mod 3n) and (B) F23t3n.1+1 = F1 (mods'7). 

A. The proof is direct. 
3\F 2> thu$3k\F22.3k~i, using the theorem; \im\Fn, then mk\Fnrr)k-i. 

It follows tha t3 k \F 2 3 , 3 k _ 1 f thus F23o3k_f = 0 (mod 3*). 

Hence Part A is proved. 
B. (1) First, F23t3n_J+1 = (F22.3n-1+1>

2 + (F22.3n-1> 
using the identity 

Fm+n+1 = Fm+fFn+i + FmFn . 

Now, since (F22.3n-i)
2 =0 (mod 3n) From Part A, it follows that 

(2) (F23.3n-l)2™1 (mod S'7) from the identity ^ ^ / ^ . / - f ^ r - z r . 
343 
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(3) Now, substituting into (1) we have F
23.3n-1+i - ^ + ^ ' m °d 3"). Hence Part B is proved. 

Theorem 2. The primitive period of the Fibonacci sequence modulo 3 " is 22-Zn~1. Secondly, 22-3n'1 

is the entry point of S77. Let 3 be the highest power of 3 dividing Fn ; the notation is 3 \Fn. 
(4) We now prove that 3n lF22,3n-i. The proof is by induction. We will have to consider three cases, 

CASE 1. n = 7. 31 \F22.3 7-7 ; 3\\F4 = 3 and, 31+1XF
23.3 1_1 91F8 = 21. 

CASE 2. n = 2 32\\F22.32-I; 9\\F12 = 144 and, 32+1j[F'23.32-i 271F24 = 46368. 

CASE 3. n >2. Assume 3k I IF
22.3k-1>' t h e n w e c l a i m 3k+1 )(F23m3k_1. 

F
23.3n-1 = (F

22.3n-l)(L
22.3n-1> 

using the identity F2n = FnLn. Now, given that 3n ^F22 _1 and since (Fn, Ln) is 1 or 2, then 

3 XF23.3n~1' 
(5) If 3k+1tF22t3k then 3k+1 divides a smaller Fm whose subscript is a multiple of the first Fm that is 

divisible by 3k. It must be of the form, p(2 -3 ~1). Clearly, p $ 1, for that contradicts our assumption that 
3k^F

22.3k-v And/7 £2, for 3k+1J[F23u3k^f. We conclude that p = 3, hence the first Fm divisible by 3k+1 

[%F22.3k- Furthermore, 
F22.3k = F

22.3k-l(5(F
22.3k-l) +3) 

implies 3 + \\F22m3k as it clearly shows 3k+2KF22t3k. Our claim in (4) is true; our proof is complete by 
induction. 

(6) Now that we have found the first Fm divisible by J , we can write the primitive period modulo 3 as a 
multiple of that subscript. The primitive period is of the form s(22-3 ). We have shown that when s = 2 we 
have a period, not necessarily primitive. We must examine s < 2, that is, s = 1. If the primitive period were to 
be 1(22'3k~1), then we would need 

F
22.3k-1 = F0 and F22.3k-1+1 = F1 (mod 3 * ) . 

We claim that the latter is false. 
(7) We assert that F

22,3k-1 £ F7 (mod 3*), but that 
F

22.3k-1+1 =(~F1) (mod 3k). 
This follows by induction. 

(8) Case 1. k= 1. F
22.31-1+1

 = F5 = 2 = -1 <mod 3) . 

Case 2. k = 2. F
22.32-1+1 = F13 = 233 = -1 (mod 3 2 ) . 

Case3./r>2 Assume that F
22.3k-l+i = -1 (mod 3^). 

(9) Recall from Theorem 1, that F
22.3k-1+1 - 1 ( m o d 3k) and that F

22.3k-1 = 0 (mod 3k). 
(10) Observe that 

F22>3k+1 = (F22'3k-1+1)(F23-3k-ni> + (F22-3l<-1>(F23-3l<-'i>' 
using the identity Fm+n+1 = Fm+1Fn+1 + FmFn . 

(11) Now substituting (9) into (10) and using our inductive assumption in (8) we have 
F

22.3k+1
 s (-D(1) + (0)(0) (mo63k+1). 

That is, F22.3k+i = (~Fi) (mod 3***) and our proof is complete. 
(12) We conclude thats < 2, thuss = 2 provides the primitive period and Theorem 2 is proved. 

3. THE GENERAL FIBONACCI CASE MOD 3n 

Theorem 3A. The period (not necessarily primitive) of any generalized Fibonacci sequence modulo 3" is 
23.3n~1. We will prove that: (A) H23,3n_1+1 = H-, (mod 3") and (B) H23.3n+l+2 = #2 (mods'7). 

A. We will have to consider three cases. 
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Case 1. n= I H
23^1-1+1 = H9 = 21H2+ 13H7 = H1 (mod 3 " ) . 

Case 2. n = 2. H23.32-l+1 = H25 = 46368H2 +28657H1 = H7 (mod 3 2 ) . 
Case 3. n > 2. 

(!3) First, H
23.3n-1+1

 = H1F
23-3n-1-l + H2F23.3n-1 

from the identity Hn+1 = H jFn-j + H2Fn • 
(14) But since 

F23.3n-1 = 0 (mods'7), and f ^ . ^ - / , , - F
23.3n-1+1 ~ F

23.3n-1 =1-0=1 

from the recursion rule that fm_y = Fm+1 - Fm ; we substitute (14) into (13) to obtain that 

(15) H
23.3n-1+1

 s H1(1) + H2(9) (mod 2n) 

and Part A is proved. 
B- F i r s t ' H

23.3n-1+2
= H

1
F

23.3n-1 + H
2

F
23.3n-1 + tj 

from the identity Hn+2 = H'lFn + H2Fn+p 

Since F'3 3n_-j = 0 (mod 3") from 1-A, and 
F

23.3n-1+1 - 1 (mod 3") 
from 1-B, Part B follows immediately. 

Theorem 3B. The primitive period of any generalized Fibonacci sequence modulo 3n is 2 • 3 . 

In Theorem 3A we proved that the period is at most-? • 3n~1. It remains to show that the primitive period 
is no smaller. 

Consider the generalized Fibonacci sequence \Hn\f(H1fH2)= I Adding alternate terms we derive another 

generalized sequence | Dn\. We observe: H2 + HQ= kD/ where k is an integer, H3 + H-j = kQ2, and so on. 
We need to examine the possible values for k. We rewrite the equations above: 

2H2-H1 = kD1 H2 + 2H1 = kD2 . 
We solve fo r / / / and H2 : 

H2 = k-(2D1 + D2) = ^(D3 + Dj) H1 = k-(2D2-DT) = \(Q2 + D0). 

If k = 5, then | Hn\ is a generalized Lucas sequence. If 5//r, then k = 1 because (H-j, H2)= 1, and 5 must di-

vide (D3 + D -j) and (D2 + DQ). Thus k = 1 implies that j Dn \ is a generalized Lucas sequence. 

We conclude that modulo 5" is the only prime modulus in which the primitive period of a generalized Fib-
onacci sequence will be smaller than in the Fibonacci case. We note that it will be smaller by a factor of five. 
Hence, our proof of Theorem 3B is complete. 

Example. The period modulo 5^ of the Fibonacci sequence is 4-5/? while the period mod 5" of the Lucas se-
quence is 4-5" " . 

4. THE FIBONACCI AND LUCAS CASES IV!OD/?m 

Lemma 1. A prime p, does not divide \Ln\ if and only if the entry point of p in \Fn\, (FPp), is odd. 
We will examine two cases in the proof. 

Case 1: Given pi y-n\ • 

(16) Assume FPp is even, that is, FPp = F2k, we write p \\F2k • 
(17) p\\F2i< implies pKFk. 

Recall the identity F2i< = F^L^. Therefore,pMk- This contradicts that/7/ j Ln\ . 
(18) Hence our assumption in (16) is not true, so FPp is odd. We conclude that/7/j Lnl implies EPp\$ odd. 
Case 2: Given FPp is odd. 

(19) Assume/?| { Ln\ . Then there exists k such thatp I ILk. 

(20) Recall that the greatest common divisor of (Fn, Ln)\$1 or 2. Hence p/F^ . 
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(21) p\\Lk implies/7IIF2A- from the identity F2k = FkLk. This contradicts that EPf is odd. 
(22) Therefore pK j L n \ . We conclude that EPf is odd implies that pH Ln I and our proof iof Lemma 1 is 

complete. 

Lemma 2. A prime p divides | LrX if and only if EPp is either of the form 2 (odd) or 2m (odd), m > 2. 
This follows immediately from Lemma 1 and the identity E2n. = F2n-1k • L2n_f. . 

Theorem 4. The primitive periods of \Fn\ and \Ln\ are of the same length, modulus p, for/7 a prime, 
P 15. x 

Case 1. The primitive period for | Ln \ is no longer than for < Fn\. 

(23) We have Ln+k - Ln-k = LnLk, k odd. 

(24) Ln+k - Ln.k = 5FnFkf k even. 

Now, let 2k denote the length of the period of \ Fn J. Thus k denotes half the period of \ Fn\. When 

EPp of/? is odd then the period, 2k, \s4(EPp). Thus k = 2(EPp) so k is even. Likewise, when EPp of # 
is of the form 2m (odd) form > 2, then the period, 2k, h2(EPF). Thus k = EPF = 2m (odd) so A-is 
even. 

Note, above that either k = 2EPp or k = EPp, thus Fk = 0, mod p. Hence, Ln+k - Ln-k = 0, mod 

p. It follows that the period of < Ln \ is 2k which is the period of | Fn I. 

Now we consider the special case when EPp is of the form 2 (odd). Then the period, 2k, is EPp, and 

k = Vil (odd) so k is odd. We will use Eq. (23). We recall that F2kFkLk impliesp\Lk since EPp ofp is 
F2k impliesplFk. Heneeyc?l£j<. means tk =• 0, mod p. Therefore Ln+k - Ln~k = 0, mod p. It follows 

i that the period of j Ln | is 2k, again the same as the period of < Fn \. 

Case 2. The primitive period for \Ln\ is no shorter than for \Fn\. 

A. First we will consider the situation in which EPp is odd. Then the period \s4(EPp) and k = 2(EPp). By 

Lemma ],p/\Ln^. 

(25) Assume the primitive period for I Ln^ isshorterthan for iFn >, that is, the primitive period for \Ln\ 

is half the period of \Fn>. Then the period for <Lnl \$2(EPp). We use Eq. (23) since 

(26) EPp is odd. We have Ln+ppF - Ln-EPp = Ln LppF. But pj(\ Ln > thus ptipPp so Eq. (26) is not con-
(27) gruent to zero. Therefore, the period cannot be2(EPp). Ourassumption in (25) is false, so when EPp 

is odd the period of < Ln \ is no shorter than for \Fn\. 

B. Now we consider the situation in which EPp Is of the form 2d, where d is odd. Then the period for 

{F„\\*EPF. 

(28) Assume the primitive period for | LA isshorterthan for JF^^ . We note that L^ = 0 since EPp is F2d 

and the fact that F2d = Ed^-d- Now, assuming the primitive period for | Ln> is smaller means that 
there exists c where c < d such that Ln+C- Ln-C = LnLc. This would meet the requirement since the 
period 2c < 2d. However, Lc = 0 implies that F2C = 0 mod/7 which contradicts that EPp ofp is F2d-

(29) Our assumption in (28) is false, so when EPp is of the form 2d where d is odd, then the period for 

| Ln \ is no shorter than for \Fn\ . 

C. Lastly, we consider the situation in which EPp is of the form 2md, where d is odd and m > 2. Then the 

(30) period for Fn, is 2EPp. Assuming the primitive period for \Ln | is smaller, then it too must be even 

since the period for \Fn\ is even. There exists b where b < EPp such that Ln+b ~ Ln-b
 = 5FnFij. 
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But \\2b is to be the period for \ln J then 5FnFb = 0 mod/?. But Fb^ 0 mod/? since/? <EPF.Our 

(31) assumption in (30) must be false. We conclude that if EPp is of the form 2md, where d is odd, m > 2, 

then the primitive period for \ i n \ is no shorter than for I Fn \. 

Our conclusions in (27), (29), and (31) prove that Case 2 is true. Thus our proof of Theorem 4 is complete. 
Examples of Theorem 4 

Example 1. EPp of p is odd. 

Take/7 = 13. The EP F= 7. We see the length of the primitive period of \Fn\ is 28. 

Period of | Fn } mod 13= 1, 1 ,2 ,3 ,5 ,8 ,0 ,8 ,8 ,3 , 11, 1, 12,0, 12, 12, 11, 10,8,5,0,5,5, 10,2, 12, 1,0. 

Period of j Ln | mod 13= 1,3,4,7, 11,5,3,8, 11,6,4, 10, 1, 11, 12, 10,9,6,2,8, 10,5,2,7 ,9 ,3 , 12,2. 

We see that the primitive period of \Fn\ is exactly the same length as the primitive period of j Ln \ . 

We also observe that Lemma 1 is demonstrated as/?/1 Ln \ . 

Example 2. EPp of/? is of the form 2 (odd). 
Take/?=2& JheEPF = 14 = 2(7). The length of the primitive period of \Fn] is 14. 

Period of { />,} mod 29 = 1, 1,2,3,5,8, 13,21,5,26,2,28, 1,0. 

Period of ]Ln\ mod 29 = 1,3,4,7, 11, 18,0, 18, 18,7,25,3,28,2. 

We see that the primitive period of \Fnl is exactly the same length as of H/7(-

Also note that the EPp = 2EP[_. We see Lemma 2 demonstrated. 

Example 3. EPp of /? is of the form 2m (odd), m > 2. 

Take/? = 47. The EPp = 16 = 24(1). The length of the primitive period of ifn^ is 32. 

Period of \Fn\ mod47 = 1, 1,2,3,5,8, 13,21,34,8,42,3,45, 1,46,0,46,46,45,44,42,39,34,26, 13, 
39,5,44,2,46,1,0. 

Period of \Ln\ mod 47= 1,3,4,7, 11, 18,29,0,29,29,11,40,36,29, 18,0, 18, 18,36,7,43,3,46,2. 

Again we see that the primitive period of j Fn | is exactly the same as for | Ln \ . 

We notice that the EPp = 2EP[_, and we see Lemma 2 demonstrated. 
Comment. In this study we came across an unanswered problem that was discovered by D. D. Wall in 1960. It 

concerns the hypothesis that "Period mod/?2 ^ Period mod/?." He ran a test on a digital computer that verified 
the hypothesis was true for all /? less than 10,000. Until this day no one as yet has proven that the Period mod 
p2 = Period mod/? is impossible. 

We give an example to show that the above hypothesis does not hold for composite numbers. Period mod 122 

= Period mod 12=24. 
Period mod 12 of \Fn\ = 1, 1,2,3,5,8, 1,9, 10,7, 5,0,5,5, 10,3, 1,4,5,9,2, 11, 1,0. 

Period mod 122 of { Fn \ = 1, 1, 2, 3, 5, 8, 13, 21, 55, 89, 0, 89, 89, 34, 123, 13, 136, 5, 141, 2, 143, 1, 0. 

We note that EPF of 12 = EPF of 1 2 \ 
REFERENCE 
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A well known theorem of Sylvester and Schur (see [5]) states that for/7 > 2k, the binomial coefficient ln.) 

always has a prime factor exceeding k. This can be considered as a generalization of the theorem of Chebysnev: 
There is always a prime between m and 2m. Set 

(n
k) = un(k)vn(k) 

with x ' 

un(k) = n pa, vn(k) =11 p 

Pall (l) P a " ln" 
p<k p^k 

In [4] it is proved that vn(k) >un(k) for all but a finite number of cases (which are tabulated there). 
In this note, we continue the investigation of un(k) and vn(k). We first consider vn(k), the product of the 

large prime divisors of [n.\ . 

Theorem. n 

max vn(k) = e 
1<k<n 

Proof. For k < en the result is immediate since in this case ( n. ) itself is less than en . Also, it is clear 
that the maximum of vn(k) is not achieved for k > n/2. Hence, we may assume en < k <n/2. Now, for any 
prime 

with p > k and r > 1, we have p\vn(k). Also, if k1 > n then p2)(vn(k) so that in this case the contribution to 
vn(k) of the primes 

p - ! n ~ k n' 
k \ r ' r 
k:(1+o(U) 

is (by the Prime Number Theorem (PNT))]u$\er . Thus, letting -—-. < k < ij, we obtain 

vn(k) = exp [ ( £ !jr+ [nT-k)^(1 + o(D) = exp [ ( £ £ I ) (l + od))] 

r=l r=1 

j(1+o(W 
< e 

and the theorem is proved. 
It is interesting to note that since 

t-1 

t L*t r 2 
r=1 

348 
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for both t = 2md f ^ J then 

Wmvn(k)1/n = e1/2 

\ n 

for any/re f ^ | ) -

In Table 1, we tabulate the least value k*(n) of k for which vn(k) achieves its maximum value for selected 
values of n < 200. It seems likely that infinitely often k*(n) = % but we are at present far from being able to 
prove this. 

n 

2 
3 
4 
5 
6 
7 
8 
9 

k*(n) 

1 
1 
2 
2 
2 
3 
4 
2 

Table 1 

n 

10 
11 
12 
13 
14 
15 
16 
17 

k*(n) 

2 
3 
6 
4 
4 
5 
6 
7 

n_ 

18 
19 
20 
50 
100 
200 

k*(n) 

8 
9 
10 
22 
42 
100 

Proof. Suppose un(k)= 1 for all k < (2 + e) log/7. Choose a primep < (1 + e) log A7 which does not divide 
n+ 1. Such a prime clearly exists (for large n) by the PNT. Since p\n + 1 then for some k with/? < k <2p, 

Note that 
vn(0) < vn(1) < vn(2) < vn(3). 

It is easy to see that for/7 > 7, the vfl(k) cannot increase monotonically for 0 < k < ~. 

Next, we mention several results concerning un(k). To begin with, note that while u1(k)= 1 for 0 < k <^L-
7 z 

- , this behavior is no longer possible for/7 > 7. In fact, we have the following more precise statement 
Theorem. For some k < (2 + o(D) log/7, we \\dN*un(k) > 1. 

all k < (2 + e) log/7. Choose a p 
for large n) by the PNT. Since p, 

p2\n(n- V-(n- k+ 1), p2\k! 

Thus,p\un(k) and since 
k < 2p < (2 + 2e)\o$n, 

the theorem is proved. 
In the other direction we have the following result. 
Fact. There exist infinitely many n so that for all k < (1/2 + o(D) log nf un(k) = 1. 

Proof. Choose n+1 = /fi.c.m. 11, 2, - , t \]2. By the PNT, n=e{2+o{1)h
f Clearly, if m < t then m l ( 1 

Thus, / \ 
( / n W = 1 for /r < (t+od) J log/? 

as claimed. 
In Table 2 we list the least value n*(k) of A? such that un(i)= 1 for / </' <k 

Table 2 

1 1 
2 2 
3 3 
4 7 
5 23 
6 71 
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Of course, for /r <<? un(k)= 1 is automatic. By a theorem of Mahler [11], it follows that 

un(k) < n1+e 

for k> 3 and large n. It is well known that if pa\ I n. J then pa < n. Consequently, 

un(k) < n"(k), 

where -n(k) denotes the number of primes not exceeding k. It seems likely that the following stronger estimate 
holds: 
C) u„(k) < „"+»(W(l-iMk)r k > 5i 

where 7 denotes Euler's constant. It is easy to prove (*) for certain ranges of k. For example, suppose k is rela-
tively large compared to n, say, k = n/t for a large fixed t Of course, any prime/? e (n - n/t, n) divides vn(k) 
and by the PNT 

n p = e(l
+o(D)n/t 

n(1-1/t)<p<n 

More generally, if rpefn -n/t, n)\N\th r < t then/7 > k and/7 ((/^^/r^ so that again by the PNT 

n p = e = J1+o(l))n/rt 

Thus x 

vn(k> > n n p = exP f r/ + 0w; E - H 

= exp((1 + o(1))(\0Qt + y)) n
f . 

But by Stirling's formula we have 

T l l U S ' ,„» n-\o<zt+n
r+o lnt)-(l+o(7))(\ogt+-,)n

r 

Untk) = £) /Vn(k) <eT f Vl f 

<'+o<1))(1-y)n
T ( 1 + 0 ( m M k ) 

= e ~ n 

which is just (*). 
In contrast to the situation \wvn(k), the maximum value of un(k) clearly occurs for k > j . Specifically, we 

have the following result. 

Theorem. The value k(n) of k for which un(k) assumes its maximum value satisfies 

) 

Proof. Let k= (1 - c)n. For c<7/2, 

k(n) = (1 + o(1» M 7 n. 

Vnfk) = n p = e( 1+o(1 })cn 

n-k<p<n 

Since / v . v 
n\ = n\ = e-(c \ogc+(1-c)\og (1-c))(1+o(1 })n 

then 
Un(k) = ( l ) /Vn(k) = e-<1+o<1)H<*\o9c

e(1-c)1-c)n ^ 

A simple calculation shows that the exponent is maximized by taking c =—-- = 0.2689 • 
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Concluding remarks. We mention here several related problems which were not able to settle or did not have 

time to investigate. One of the authors [8] previously conjectured that I ) isnever squarefreefor/7 >4 (at 
12n\ present this is still open). Of course, more generally, we expect that for all a, ( " ) is always divisible by an 

a t h power of a prime > k if n >n0(a,k). We can show the much weaker result that n = 23 is the largest value of 

n for which all I ^ ) are squarefree for 0 < k < n. This follows from the observation that if p is prime and 

pa\ (n
kJ for any k then p(3\n+ /, where 

P > p"-1 ' 

Thus, 22\ [ ^ ) for any k implies 2% + 1 where 2$ > n - ^ . Also, 32)f (n
k) for any ^implies JT|v? + 1 

where 3y > r^~^ . Together these imply that d = 2l331\n + 1 where d > (n + 1)2/24. Since d cannot exceed 
o 

n + 7 then n+ 1 < 24 is forced, and the desired result follows. 
For given n let f(n) denote the largest integer such that iorsome k, ( "\ is divisible by the f(n) power of 

a prime. We can prove that f(n) -+ °° as n ~* «> (this is not hard) and very likely f(n) > c log /7 but we are very far 
from being able to prove this. Similarly, if F(n) denotes the largest integer so that for all k, 1<k<n, ("\ is 

divisible by the F(n)th power of some prime, then it is quite likely that lim F(n) = °°, but we have not proved 
this. 

Ls\P(x) andp(x) denote the greatest and least prime factors of x, respectively. Probably 

p(f"k)\ > max(n-k,k1+e) 

but this seems very deep (for related results see the papers of Ramachandra and others [11], [12]). 

J. L Selfridge and P. Erdds conjectured and Ecklund [1] proved that p [(n
k)\ <rk f or k > /, withthe 

unique exception of P ( ( o ) ) =5. Selfridge and Erdds [9] proved that 

'(C)) < ci 
and they conjecture 

'((£)) < F for ">k>-
Finally, let d \\nk\\ denote the greatest divisor of ( " ] not exceeding n. Erdds originally conjectured that 

Mn\\ > n - k but this was disproved by Schinzel and Erdds [13]. Perhaps it is true however, that dn > en for 
a suitable constants 

For problems and results of a similar nature the reader may consult [2 ] , [3 ] , [6 ] , [7] or [10]. 
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MIXED NEAREST NEIGHBOR DEGENERACY FOR PARTICLES 
ON A ONE-DIMENSIONAL LATTICE SPACE 

R.B.MC OUISTAW 
University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211 

1. INTRODUCTION 

In a recent article [1] expressions were presented which describe exactly the number of independent ways of 
arranging q indistinguishable particles on a one-dimensional lattice space of N equivalent compartments, in such 
a way as to create 

1. A7n occupied nearest neighbor pairs 
2. /700 vacant nearest neighbor pairs. 
The present paper is concerned with the degeneracy associated with n0l, the number of mixed (one compart-

ment empty, one occupied) nearest neighbor pairs. 
Ising [2] has developed relationships which describe approximately the degeneracy associated with mixed 

nearest neighbor pairs. The purpose of the present paper is to develop an expression which describes exactly 
the degeneracy of arrangements containing a prescribed number of mixed nearest neighbor pairs. 

2. CALCULATION 

To determine A(n01, q, N), the number of independent arrangements arising when q particles are placed on a 
one-dimensional lattice space of N equivalent compartments in such a way as to create nol mixed nearest neigh-
for pairs, we must consider the situations when n0l is odd and when it is even. 

1. n0l odd 
When n0l is odd, one and only one end compartment must be occupied. (See Fig. 1.) If the occupied end 

compartment is on the left-hand side we construct "units" consisting of a particle or of a contiguous group of 

particles and the adjacent vacancy just to the right then we observe that there are permutable "units." 

We initially regard these "units" as identical regardless of the number of particles [> 1) of which they are com-
posed (see cross-hatched "units" in Fig. 1). These "units" can be permuted to form other independent arrange-
ments having the same /701. 

There are N - q vacancies but not all of these vacancies can be permuted to form independent arrangements; 

there are -~— + 1 vacancies which form mixed nearest neighbor pairs. Thus there are N - q - f — ~ — 

1 permutable vacancies and a total of N - q - 1 objects which can be permuted. These can be arranged in 

L _ — - _ - _^J I - ^ - ^ — ^ J l s i __i 

Figure 1. Shown is an arrangement of q = 10 particles on a linear array of N = 19 equivalent compartments 

which creates n01 = 9 mixed nearest neighbor pairs. There are 
/7n i - 1 (cross-hatched) and N - q - 1 

) • 
4 permutable "units" 

2 = 4 permutable vacancies (marked with *'s). Thus 

there are a total of eight objects to be permuted while still keeping the left-hand compartment 
occupied. 

353 
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N - q - \ \ / N - q - 1 \ 

ways. 

The "units" are, of course, not identical; the particles may be arranged to form "units" consisting of various 

numbers of particles subject to the constraint that n0l mixed nearest neighbor pairs must be present. To deter-

mine the number of ways the q particles can be arranged to form the ( - ^ — J "units" we consider # - 1 

lines which symbolize the separation of the q particles. (See Fig. 2.) f - 2 1 r — ) of these lines symbolize the 

separation of the particles by two mixed nearest neighbor pairs and q - 1 - ( - ~ r — ) lines symbolize the 

adjacency of two particles. These q - 1 lines, of which ( - ^ - r — ) are one kind and the remainder another 

kind can be arranged in \n0l - 1 \ ways. 

Thus, if we require that the compartment on the left end of the array is occupied (and the end compartment 
on the right is empty) then there are 

independent arrangement possible. Of course the end compartment on the right could have been occupied (and 
the end compartment on the left empty) so that if nol is odd we obtain 

fN-q-y\l q-1 \ 
(D A(n0l,q,/V) = 2\ n01 - 1 U 0 1 - 1 

o|o|o|o|ojo|o|o|o|o 
Figure 2. Figure 2 considers the particular arrangement shown in Fig. 1. There are q - 1 = 9separations be-

tween 10 particles. Of these separations ( - ~ — ] = 4 are separations which constitute two mixed 

nearest neighbor pairs (two short horizontal lines) and q - 1 - ( -1—— J = 5 represent separa-

tions between occupied nearest neighbor pairs. The q separations may be arranged in f r J = 126 

independent ways. 

2. nox even 

When n0l is even two situations can arise: 
(a) the compartments on each end of the array are empty (see Fig. 3) 
(b) both end compartments are occupied (see Fig. 4). 
For arrangements consistent with situation (a) there are always ( -~ \ "units," each of which consists of a 

particle or a contiguous group of particles together with a facancy (if one is needed) to separate a "unit" from 
other "units," i.e., to create a mixed nearest neighbor pair. As before we initially regard these "units" as identi-

n 

cal regardless of their composition. There are N - q vacancies but not all of them are permutable; -^— of 
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§g§Mxi§»§a-
Figure 3. In this figure N - 19, g = 10. „ 0 I = 8 and both end compartments are empty. There are ("f ) 

"units" (cross-hatched) and N - q - 1 - f-y1 J =4 permutable vacancies (marked withx's) or a 

total of 8 objects which can be permited in ( J ) ways to form independent arrangements. 

SKS» to 

Figure 4. In this figure N = 19,# = 10,/?ol = 8 and both end compartments are occupied. There are f - ^ j 
fn0l - 1' 3 permutable "units" (cross-hatched) and N - q - 1 - = 5 permutable vacancies ! - ) -

(marked withx's) or a total of 8 objects which can be permited in [\\ ways. 

these vacancies are required to form mixed nearest neighbor pairs because one of the "units" (either the one to 
the extreme right or to the extreme left of the array) does not need a vacancy to isolate it. In addition, two va-
cancies, one at each end, are not permutable. Thus there are 

N-q-

permutable vacancies and a total of 

1 N-q- 1 " o i 

N-q-\-"-f + n-f = N-q-\ 

permutable objects. These can be arranged in 

N-q- 1 

"-'-'-"f, T) , 
independent ways. 

The "units" are not identical as we have assumed. There are 

(f-'.j 
ways of arranging the q particles in the ( n-j-) "units." This can be shown by the following reasoning. There 

are q - 1 lines that symbolize the separation of the q particles (see Fig. 5). Of these lines 

represent separations of the particles by two mixed nearest neighbor pairs and 

•-'-(V 
lines symbolize the separation of adjacent particles. These q - 1 lines can thus be arranged in 

f n„, - 2 \ 
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o|o|o|ofo|o|c4o{o|o 
Figure 5. This figure considers the particular arrangement shown in Fig. 3. There are q - 1 = 9 separations be-

tween ^ = 1 0 particles. Of these separations | -^ J - 1 = 3 form two mixed neighbor pairs (short 

double horizontal lines) and 

9 - 1 - ( "f - 1 ) =6 

are occupied nearest neighbor pairs. The 9 separations may be arranged in f g ) independent ways. 
n 

Thus the particles may be arranged within the - ^ = 4 "units"in 21 ways so that there is at least 
one particle per unit. 

ofo|ofo|ofo|o|o{o|o 
Figure 6. This figure considers the particular arrangement shown in Fig. 4. There are q - 1 = 9 separations be-

tween the q = 10 particles. Of these separations ( -~ ) = 4 represent separations by two mixed 

nearest neighbor pairs and 9 - 4 = 5 represent separations of occupied nearest neighbor pairs. These 

9 separations may be arranged in ( ^ ) ways. 

ways. This fs t̂he number of ways the q particles can be arranged to form ( -~) "units" when the compart-
ments on both ends are vacant. 

Thus when both end compartments are empty there are 
(N-q-\\ I q-\ \ 

ways of arranging the q particles to yield exactly n01 nearest neighbor pairs. 

For situation (b) there are ( -^——— 1 permutable "units" composed of a particle or group of contiguous 

particles and a vacancy to separate the "unit" for other "units." (See Fig. 4.) There are/1/ - q - 1 - (—^ J 

permutable vacancies or a total of N - q - 1 objects which can be permuted. These objects can be arranged in 
//V-q-l\ 

nni-2 

\ 2 I 
ways. Within the \-7r\ "units" the particles can be arranged in 

(V) 
ways. This arises because there are q — 1 lines symbolizing the separation of the q particles (see Fig. 6); of these 

lines -y constitute separations of the "units" by two mixed nearest neighbor pairs and # - 1 j are lines 

which separate adjacent particles. These q - 1 lines can thus be arranged 
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r~1 
in 

\ 2 
ways. 

Consequently, when both end compartments are occupied the q particles may be arranged in 
f N - q - \ \ ( q - \ \ 

ways. 
Thus the total number of arrangements possible when nol is even is 

/ / I / - - 7 - 1 \ ( q - \ \ l N - q - \ \ l q - l \ 
(2) AK„*.m-y nf j \ n f _ ^ + { n f _ , j [ ^ J 

Normalization for A(n0im q, N) can be shown to be 

(3) ^A(n„,q,N)= ( J f ) 

where /l/}?01/ q, N) is given alternately by Eq. 1 and 2 and where the sum is over all possible values of n 
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A FORMULA FOR FIBONACCI NUMBERS 
FROM A NEW APPROACH TO GENERALIZED FIBONACCI NUMBERS 
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DEDICATED TO JAMES M. VAUGHN, JR. 

INTRODUCTION 

Ever since the establishment of the Fibonacci Association and its main publication, The Fibonacci Quarterly, 
under the devoted guidance of its founder, the Fibonacci master, Verner E. Hoggatt, Jr., [3] of San Jose State 
University, California, the study of the Fibonacci sequence 

(0.1) Fj = F2= 1; Fn+2 = Fn + Fn+1; (n = 1,2, - J 

has seen a new and rapid development in the last two decades. The impressive list of brilliant mathematicians 
who have contributed is too long to be mentioned here. But the author thinks that the time is ripe for some 
kind of a Dickson-survey of all the splendid results in the Fibonacci Wonderland which has fascinated mathema-
ticians for the last 775 years, since the son of Bonacci wrote his Liber abaci in 1202. 

Together with the study of the original Fibonacci sequence (0.1) went the generalization of these sequences. 
This was a result of pure mathematical curiosity and speculative creativity, without any application to the 
freightening population explosion of rabbits. This generalization could lead into various directions. First-the 
initial values of Fj, F2 in (0.1) could be arbitrarily chosen, and this gave birth to the Lucas numbers, in addition 
to many other step-children. The most reckless, most general generalization, taking us to dimensions beyond 
the imagination or needs of Leonardo da Pisa, would be the following: let 

(j = 1,*,n) 

(0-2) / Fn+V = E biFv+i, (v = 1,2,-) 

Fj = aj 

Fn+V = 

» 
ajf bj e 

n-1 

£ 
i=0 

Z; aj, bj fixed. 

Of course, it is possible to drive this inconsiderateness still further and choose aj, bj from C. But one should 
make a halt somewhere. In a previous paper the author [1,a], and in a joint paper Hasse and the author [1,b] 
have investigated the most simple case of the general generalization of the Fibonacci numbers, viz. 

| Fj = 1, Fj = O (i = 2, - , n), 
(0.3) ] n-i 

i=0 

The author succeeded to calculate Fn+V in a comparatively simple explicit formula. In principle, this is possible 
also for Fn+V from (0.2), by means of Euler's generating functions. The author applied, for the calculation of 
Fn+V from (0.3), the Jacobi-Perron algorithm [1,c], which led him to suggest that the sequence of the original 
Fibonacci numbers should actually be defined by 

(0.4) F.j = 1; F0 = O; Fn+2 = Fn + Fn+1 (n = -1, O, 1, »• A 
While trying to generalize the original Fibonacci number to higher dimensions, one is immediately exposed to 
the danger of losing the royal property of the original Fibonacci numbers, viz., Fm\Fmj<, This damage has not 
yet been repaired for Fibonacci numbers of dimension n > 2, and the author conjectures that this will remain a 
U t o p i a " 358 
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In this context the question arises: what is the natural generalization of the Fibonacci numbers, if any? For 
this purpose, one should look into another direction than (0.2). 

As is known, the generating polynomial for the original Fibonacci numbers is 

( P(x) = x2 - x - 1; P(a) = P(fi) = 0 

from which, by easy calculations, the two well known formulas are derived: 

, '»-sfcf-E("-;- ' ) •• 
(0.6) / a P i=0

 V ' 
„= t,2,:.;(°)Ml 

As is seen from (0.5), a and 0 are units in Q(yf5). Generalizing (0.5), and demanding that the two roots of the 
new polynomial be units, one would suggest that the natural generalization of the generating polynomial would 
be 
(0.7) P(x) = x2 -ax- 7, a e N. 

By a technique which will be developed in the next chapter, one obtains generalized Fibonacci numbers (of 
dimension two) Fan of the form 

( Fa,n - Z in-1-i\n-1-2if (n __ l 2 ^ } 

(0.8) i==0 

\ Fgfn+2 = Fa>r) + aFa,n + 1 • 

For 5= /, (0.8) become the original Fibonacci numbers, as should be. But, alas, we had hoped to arrive at a new 
formuiafor Fn. So the generalization (0.7) does not supply the natural generalization for the original Fibonacci 
numbers, and new horizons must be searched. 

1. THE NEW APPROACH 

In two previous papers [1,d), e)] the author has established a few new combinatorial identities by means of a 
new technique. These identities are of a quite complicated nature, and only a combinatorial master like Leonard 
Carlitz [2] could have succeeded to prove them by elementary tools. The basic ideas of this new technique, to-
gether with a few illustrations, will soon appear in a paper; an abstract [1,f)] of this paper has been published. 
The author doubts not that mathematicians, once they have become familiar with this technique, will come up 
with a treasure of new and interesting combinatorial identities which could probably not be proved with ele-
mentary means. 

A word about its contents. Since the new technique is based on the knowledge of one or more independent 
units in an algebraic number field of any degree n > 2, these units must, of course, be explicitly stated. Now, 
there are many elaborate methods to find the basis (the maximal set of fundamental units) of the multiplicative 
group of units in a numeric, given algebraic number field Q(w), 

I wn +k1w
tl~1 + - + kn-iw + kn = O, 

(1.1) \ 1 

| kj G Z, kj fixed (i = 1, ••'fn). 

The situation is entirely different, if the kj, —, kn from (1.1) are any free parameters. In this case we speak 
about Q(w) = Q(w; ki, —, kn) as a functional algebraic number field. In this case it seems almost impossible to 
state one or more independent units in Q(w; /f;, —„ kn) explicitly (they must not be fundamental). We do dare 
to think that the author, and in a few joint papers the author and Hasse [1,c] were the first pioneers to state 
explicitly units in functional algebraic number fields of any degree n > 2. Of course, if kn = ± 1 in (1.1), then w 
is always a unit. This led to the original generating polynomial (0.5) for the original Fibonacci numbers, and its 
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generalization (0.7), which, as we have seen led to essentially nothing new, but an identity of the numbers 
Fan from (0.8) and a polynomial in 1Ml±^Ja2 +4). For generalized Fibonacci numbers of dimension n > 3, i t 
wi l l be definitely worthwhile investigating the case \kn\ = 1 in (1.1), and the author is sure that, by means of his 
new technique, many new combinatorial- identities can be obtained, and his Ph.D. students are already working 
on this subject. This technique, as exposed in the a/m abstract, proceed as fol lows: let 

P(x) = xn + k1x
n~1 + - + kn.1x + knf kj^Z (i = 1,-,n) 

(1.2) 
PM = 0, R. 

Let Q(w) be the algebraic number field over CL, obtained by adjunction of w to Q. Let further 

j e = a1 + a2w+- + anw
n~~1, 

I a; e Q, (i = 1, - , n) 

where e is explicit ly stated. By means of Euler's generating functions, one calculates first the positive powers of 
e, explicit ly, viz. 

(1.4) 

(1.5) 

Then from 

(1,6) 

am -
hl,m+b2,mW + - + bn,n 

= 7, ••-, n; m = bLm G Q, 

e~m = C1fm+C2,mW+- + Cn,mW" 

cim e Q, (i = I - , n; m = +1, 2, •). 

iwn~1, 

0, 7 , - J 

..n-1 

9i,m 

9l,m+92,mW+- + 9n,mWi 

(i = l,~,n;m = Q, 1,.~) 

n-1 

one obtains, by comparison of coefficients of powers of w, the necessary identities, which usually involve /7's 
order determinant with combinatorial coefficients (or their linear combinations) as entries. Thus, in [1,d)] the 
author obtained the combinatorial identity 

E l m - k - 1 
\2k- 1 +2s 

k=0 

(1.7) 

i=0 

m 

n - 4 - 2i 

i=0 

2s = n - 2m; 

i=0 

4, 5, .» 

2. THE GENERATING POLYNOMIAL 

A polynomial o v e r Z o f the form 

(2.1) Pn(x) = (x-D1)(x-D2l-(x-Dn)-d, n > 2, 

has been investigated by the author [ 1,g)] for the purpose of constructing periodic Jacobi-Perron algorithm, and 
by the author ahd Hasse [1,h)l for the purpose of obtaining n - 1 independent units in afunct ional algebraic 
number field of degree n. In this paper, in order to obtain the natural generalization of two-dimensional Fib-
onacci numbers and a new formula for the original ones, we shall investigate the case/7 = 2 of (2.1). The case 
n = 3 has been investigated by my Ph.D. student Seeder [ 5 ] , for the purpose of obtaining combinatorial identi-
ties. We are now taking the liberty of marking the fol lowing 

Statement. The generating polynomial for the natural generalization of the original Fibonacci numbers to the 
dimension two, has the form 
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FJx) = (x-Djfx-DJ-d; 
( 2 2 ) i DUD2 G Z; d e N. 

Dx > D2; Dx - D2 = 0 (mod of); 

Dx - D2 = 1(2); d t m2; m e Z 

The last two restrictions on f3 M from (2.2) are chosen for convenience sake, as the reader will see later, and 
can, generally, be dropped for the definition of FJx). FwmDx - D2 = 1(2) would follow, since f/|Z7t - D2I 

that d is odd. The restriction d t m2 is convenient in another context; both are not necessary conditions. Since 
Fjx)=x2 - (Dx + D2)x + DXD2 - d, the two roots of F2 Ware 

(2.3) 
Dx +D2 + J(DX -DJ2 +4d = Dx +D2 -J(DX ~D2)2 + 4d 

2 '" ™2 2 
wx , w2 e R; wx > w2 . 

We now prove 
Lemma 1. (Dx - D2)2 +4d is not a perfect square. 

Proof. The lemma holds, as we shall see, even without the restrictions/?! - D2 = 1(2), d t m2. The other 
restrictions of (2.2) must remain valid. We have 

(2.4) Dx- D2 = td, t e Z - | t f } . 

For |f |= /, we have ̂ j - D2)2 = d2, (Dx - D2)2 +4d = d2 + 4df and (d+1)2 < d2 +4d < (d + 2)2. 
For If| > 1, we have (Dx - D2)2 = t2d2, 

t2d2 < t2d2 +4d < t2d2 +2\t\d+ 1 = (\t\d + 1)2, 

(\t\d)2 < (Dx - D2)2 +4d < (\t\d+1)2. 

This proves the Lemma 1 completely. From Lemma 1, we immediately derive 

Theorem 1. The polynomial 

FJx) = (x- Dx)(x- D2)-d; Dx - D7 e Z; d e N; Dx > D2 ; Dx - D2 = 0 (mod of) 

is irreducible over Q (over Z ) . The roots of F2 (x) are real quadratic irrationals. 
Notation 1. The greater of the two roots of FJx) will be denoted by 

, - _. Dx+D2+J(D~^~D2T~4d' 
(2.5) w = wx = — 

For later purposes we shall need the expansion of w as a simple continued periodic fraction. We have from 
(2.2), (2.4), (2.5) 
(2.6) (w- Dx)(w-D2) = d, 
and make the restriction 
(2.7) d f 1. 
Then, as the reader can easily verify, 

i / w-D2 w-D2 Dx-D2 w-Dx _DX-D2 / . 
1 xj x w-Dx (w-Dx)(w-D2) d d d d x2 ' 

_ d _ d(w-D2) ^w_D2 = D i _ D 2 + w _ D i = D i _ D 2 + ± =Di-D2+-L. 
2 w-Dx (w-Dx)(w-D2) 2 l l 2 x3

 2 xx 

We have thus obtained: 

(2.8) „ .[• />. °±Z°l 

If we now drop restriction (2.7), we obtain 
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(2.9) w = [DUDX -DJ ; d = 1. 
If we set 

Dx = I D2 = 0; d = 1, we obtain 

(2.10) } x2-x-1 = 0; w2-w-1 = 0; 

Thus formula (2.9) is valid also for the conditions of (2.10). Formula (2.10) leads, as was mentioned, to the 
original Fibonacci numbers. We return to the original case. As is known, a unit in 

Q(w) = Q(y/(Dl -D2)2 +4d 

6l = Xl*2 = J^~D~J2 

(w-DJ2(w-D2)2 

d2 h 

is given by 

and since, from (2.6) 

we obtain 

(2.11) e r l = e = (—--°-^- is a unit in Q(w). 

tfd=l,w-D2 e QM, so that 

(2.11a) w~D2 is a unit in Q(w), d = J. 

We shall, for the time being, eliminate the case tf = /, but shall return to it later. That 
(w-D2)2 

e = — — , e > 1 
d 

is a unit in Q(w) can also be proved directly; we have 

= w2 -2D2W + Dl = (Dx +DJw- DlD2 +d-2D2w + D2
2 

(2 12) \ d d 

u'Ui ] _-D2(Dl-D2) + (Dl-D2)w + d 

thus e is an integer, since Dx - D2 = 0(d). 
We further have 

N(e) = (N(w-D%))2
 = ((wx -D2)(w2 - D2))2 

d2 d2 

H 2 / (°i - f l J ^ V ^ i -D2)2 +4d <DX -D2)-y/(pi -DJ* +4d \ 2 

a \ -2 • - 2 J 
= d~2 -d2 * I 

We shall operate, in the sequel, only with the unit 
(w-D2)2 

d 

regardless of whether e is fundamental or not, though this question could be easily answered. Since e is in the 
ring R[w], we also do not need to construct a basis for Q(w), and shall operate with integers of the form 

(2.13) j3 = x + yw; x,y e Z . 

A last question remains to be resolved, viz.: are there indeed infinitely many real quadratic fields of the form 
Q(sJ(Dx - D2)

2 +4d)l To prove this, let us presume 
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Dx-D2 = 1(d); d ? m\ m e Z , 
( Z 1 4 ) j Dx~ D2 = td; f G Z; t fixed. 
Then 

(Dx - D2)2 +4d = t2d2 +4d. 
Now, Erdos [4] has proved, that for infinitely many n, 

t2n2 + 4n, (tn = 1(2), n ? m2, t, n, m e Z) 

has no square factor. This proves that there are infinitely many real quadratic fields of the form 

Q(sJ(Dx -DJ2 +4d). 

3. THE POWERSOFT 

In this chapter we shall give formulas for the explicit calculation of en and e"n, (n = 0, 1, ••-). This is the cen-
tral result of this paper from which the new formula for the original Fibonacci numbers will be derived. 

We have from (2.12) 
= -D*(°i -D2> + d + (Dx -D2)w 

6 " d 

and with Dx - D2 = td, 'we obtain 
(3.1) e = -D2t+ 1 + tw. 

From w2 =(D, +D2)w- DXD2 +d, we obtain, with Dx = D2 + td, 

(3.2) w2 = -(D\ +D2dt) + d + (2D2 + dt)w. 

One calculates easily from (3.1), taking into account (3.2) 

(3.3) e2 = - D2 t(dt2 +2) + dt2 + 1 + (dt3 + 2t)w. 

We now denote 
(3.4) en = xn + ynw, n = 0, 1, - . 

With (3.1), (3.3) we have 
\ x0 = 1, y0 =0; xx = -D2t+ 1, yx = t; 

( 3 - 5 ) | x2 = -D2(dt3 +2t) + dt2 + 1; y2 = dt3 +2t. 

From (3.4), (3.1), we further obtain 

e"+i = e".e = (xn+ynw)[(-D2t+ 1) + tw] . 

An easy calculation, taking into account (3.2), yields 

en+1 = xn+1+yn+1w = (-D2t+1)xn + (-D%t - D2dt2 + dt)yn 

+ l(-D2t+1)yn + (2D2t + dt2)yn + txn] w, 
hence 

xn+1 = (-D2t+1)xn + (-D2t-D2dt2 + dt)yn, 

( 3 - 6 ) \ yn+l = txn + (D2t + dt2+1)yn . 

From the second formula of (3.6) we obtain 

Vn+2 = txn+1 + (D2t + dt2+ Dyn+1, 

and substituting here the value of xn+i from (3.6), 

Yn+2 = (-D2t+1)txn + (-DJt2 - D2dt3 + dt2)yn + (D2t + dt2 + Dyn+1-

Substituting here the value of txn from the second formula of (3.6), we obtain 

Vn+2 = (-D2t+1)[yn+1-(D2t + dt2+ 1)yn] + (-D^t2 - D2dt3 + dt2)yn + (D2t + dt2 + Dyn+1, 
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and, after simple calculations 

(3.7) yn+2= (dt2 + 2) yn+1-yn. 

From (3.6) we obtain 
Xn = f lVn+1 - (D2t + dt2 + 1)yn] , 

or, raising the index by one, 

Xn+1 = j lyn+2-(02t + dt2+ 1)yn+i], 

and substituting here the value ofyn+2 from (3.7), 

*n+i = j Hdt2 + 2>Yn+l ~yn- (D2t + dt2 + 1)yn+il 

xn+i = j [(-D2t+ i)yn+i-yn] 

xn+1 = -D2yn+1 + f1(yn+i-Ynl 

Xn = D2yn + t~~ (yn-Yn-l)-

en = [-D2Yn + t~1(Yn-Yn-l)] +YnW, 

(3.8) 
Thus 

(3.9) 

and, to complete the calculation of e we have to calculate/„. This is done by means of the recurrency formula 
(3.7). We obtain, taking into account the values of y0 andy% from (3.5) 

OO OO CO CO 

E Ynun = YQ + Y1U+ E YnUn = tu + E yn+2u
n+2 = tu + E [(dt2 + 2)yn+1 - yn]u

n+2 

n=0 n=2 n=0 n=0 

tu-u2 E Ynu
n + (dt2 + 2)u E yn+7u n+1 

n=0 n=0 

= tu-u2 E ynu
n + (dt2 + 2)u\\ E Ynun \-Y0u

L 

n=0 \\n=0 j 

t"-"2 E ynu
n + (dt2 + 2)u £ ynU". 

n=0 n=0 

We have obtained, 

E ynu
n = tu-u2 E + (dt2 + 2)u E y„un 

n=0 n=0 n=0 

(3.10) E Ynun tu a = dtz + 2. 
n=0 1-au+u* 

From (3.10) we obtain, for u sufficiently small 

E Yn"n = tu Y* (au-u2) 
n=0 k=0 

(3.11) E Ynun = t E ukH(a-u)k. 
n=0 k=0 
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Collecting on the right side of (3.11) powers of un, we obtain, by comparison of coefficients, taking k = n - 1, 

y w - f E . M / ( n~!~'' )an~1-2'\ 
i=0 

and finally 

<3-12> Vn = t £ r - / / ( " - ? - ' " yj(dt2 + 2)n'1-2i. v0= 0; V1 = t; n = 2,3,- . 
i=0 

From (3.8) and (3.12) we now also obtain the value of xn , viz. 

*n = -D2t E M / ( " - / - ' ' )(dt2 + 2)n'1'2i 

i=0 

(3,13) < 

i=o - ^ 

xo = 1; x1 = -D2t+ 1; x2 = -D2(dt3 + 2t) + dt2 + 1; n = 3,4, - . 

We shall now proceed to calculate the negative powers of e and use a Kunstgriff for this purpose. We remember 
that 

w = w-i; w-f +w2 = Di + D2. 
We further have 

-n = T = xn+ynw2 

xn+ynw (xn+ynwi)(xn+yn\N2) 

Now, the whole trick consists of 
N(en) = N(xn+ynw) = (xn+ynw^Hxn+ynw2); 

butN(en) = (N(e))n = 1n = 1, so that 
e~n = xn + ynw2 = xn+yn(D1 + D2-w) 

e~~n = xn+yn(D1 + D2)-ynw. 

But from (3.8), xn = -D2yn + t~1 (yn-Vn-ilso that finally 

(3.14) e'n = D^n + t'Uyn-Yn-l) ~~ VnW Vo = 0; y1 = t; n = 2,3, •••/ / „ from (3.12). 
The reader will easily verify that the norm equation of en yields 

(3.14a) x2 + (D1 + D2)xnVn + (D1D2-d)y2 = I 

4. THE "NEW" FORMULA 

We return to the generating polynomial of the original Fibonacci numbers, P(x) = x2 - x - 1. We have 

(4.1) P(wJ = P(w2) = 0; wx = - : j ^ , w2 = - z ^ - , w2- w- 1 = O; w2 = w+ 1; w = wx 

In Q(w), w is a (fundamental) unit; we shall calculate its non-negative integral powers. 

(4.2) wn = gn + fnw; g0 = 1; 91 = 0; f0 = 0; f1 = I 

Multiplying in (4.2) both sides of w, we obtain 

wn+1 = gnw+fnw
2 = gnw+fn(w+ 1), wn+1 = fn + (gn + fn>w = 9n+i + fn+iw 

9n+1 = fn; fn+1 = fn+9n = fn + fn-1 
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(4.3) wn = fn.1 + fnw 

(4-4) fn+2 = fn + fn+1-

Since w2 = g2 + f2w = 1 + w,m have f2 = 1, so that (4.2), (4.4) and f2 = 7 yield, 
fn+2 = fn + fn+1r fj = f2 = V. n = 1,2,-

which shows that the fn are the.original Fibonacci numbers, 

(4.5) fn = Fn; n = 1,2, • . 
If we set in (2.2) 

Dx = 1; D2 = 0; d = 1; t = 1, 

we obtain, from (2.11), (3.4), (4.2), (4.5) and (3.12) 

en = w2n = xn + ynw = g2n+hnw, F2n = yn> 

•2i 
' - " [ i I ° 

i=0 

(4.6) F2n = £ M / ( n~1i~i) 3"~1 

since dt2 + 2 = 3. 

(4.6) is the new, and surprising, beautiful formula for F2n; F2n+1 «s t n e n obtained from the relation 

F2n+1 = F 2 n + 2 - F 2 n = [ i (-1)>3"-2i( "71 ) ) - £ (-V1 (n-1-i\3n-1-2it 

\i=0 j i=0 ^ 

so that, by the new approach to Fibonacci numbers, we obtain the sequence (which is, of course, identical with 
the original one) * 

Fi = F2=1; F2n = j:(-1)i[n-1
j-'

i)3n-1'2i; n = 2,3,-; 

i=0 
(4.7) 

= 1,2, F2n + 1 =( E (-I? ( V ) I"'* j " ( Z (-W ["'J"' ) I"'1"' W I 

In (4.7), for/7 = 7 in F2n+1, w e nay e t 0 d e f i n e ( °0 ) = 1 . 
From (4.3), we have, with (4.5) 

wn = Fn-1 + Fnw. 
Now. since w2 - w - 1 = 0, we have 

N(w) = -1, 
so that 

N(wn) = (_Vn = M(Fn__1 + FnW) = {fn_1 + FnWl)(Fn,1 + Fnw2) 

= F2_1 + (w1 + w2)Fn.j Fn + F2w1w2 = F2_f + Fn-fFn-F
2 

= Fn_7 + Fn-i(Fn+1- Fn-iJ- Fn = Fn-iFn+T - Fn , 

Fn - Fn-iFn+j = f-1)n , 
a well known formula. 

The analogue for the generalized generating polynomial F2(x) from (2.2) is obtained from (3.4), with N(e) = 

1> v»z- ? , , , , 9 
x* + (Dr + D2)xnyn + (D1D2- d)y* = I 

which solves the Diophantine equation 

x2+(D1 + D2)xy + (D1D2-d)y2 = 1, 

Oj > D2; Dj- D2 = 0(d); d, D1f D2 e Z; d > 1. 
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5. ALTNEULAND*-AN EPILOGUE 

The new Formula for the original Fibonacci numbers, as the author has called it with unforgivable self-styled 
praise, is actually an old formula which could be achieved by elementary means, as was kindly remarked to the 
author in a private correspondence by Professor Verner E. Hoggatt, Jr., of San Jose State University. Here is 
the way it can be obtained from the original Fibonacci numbers: 

F2n+2 = F2n+1 + F2n = F2n + F2n-1 + F2n = 2F2n + F2n.7 = 2F2n + F2n - F2n-2; 

(5.1) F2n+2 = 3F2n - F2n.2 . 

Eq. (5.1) leads to the generating polynomial 

(5.2) x2-3x+1 = 0, 

and from (5.2) the new formula for F2n+2 is easily obtained by the use of Euler's generating functions, as used 
in this paper. But finding a new formula for F2n+2 was not the idea of this paper, as was pointed out in the 
introduction. The aim was two-fold-first finding the most natural generalization for Fibonacci numbers, of 
which the original ones would be a special case; second-to demonstrate the powerful use of units to finding 
combinatorial identities, since, after all, what we have found-and again, this may be considered Altneuland—is 
the combinatorial identity 

(5.3) £ ( 2n 7 -'') - £ (- iy ("- ; - ' ' ) 3n- 1-2i . 
i=0 i=0 

Besides the technique used in this paper, the author has found a new, and, as he believes, powerful different 
technique by using units in algebraic functional fields of any degree for finding new combinatorial identities of 
higher dimension which surely cannot be proved by elementary combinatorial means. These new results will 
appear in a book by the author which is now in preparation. 
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******* 
LETTER TO THE EDITOR 

Dear Editor: 
I am teaching a survey course at the Pennsylvania State University. After two days of studying the elementary 

properties of the Fibonacci sequence, I asked my class to write a poem about Fibonacci. One very talented 
student submitted the following: 

FIBONACCI'S PARTY 
by Cynthia Ellis 

The great mathematician Fibonacci 
Went out to the market and bought a Hibachi. 
He decided to give a small Bar-B-Que 
For himself, his wife, and a good friend or two. 

So he called his friend Joe and he asked him to come 
With a small jug of wine or a bottle of rum. 
"My wife (one) and I (one) make two" figured he, 
"And with Joseph attending, the total is three." 

But then the telephone rang in the hall: 
His parents would be there, making five guests in all. 
And his wife told him also her parents were coming. 
With sister Loretta—now eight was his summing. 

But, oh, he'd forgotten Joe's girlfriend Eileen. 
With her and her family the total's thirteen. 
And Loretta brings friends to wherever there's fun. 
So he counted it up and he got twenty-one. 

Just then he remembered the neighbors next door. 
They'd certainly be there to make thirty-four. 
And then his club's football teams pulled in the drive. 
And he tore at his hair as he thought "Fifty-five!" 

While out in the street he saw line after line 
Of neighborhood moochers to make eighty-nine. 
And 'round from the alley there came at a trot 
His boss and co-workers, the whole bloomin' lot. 

Fib went to the gameroom and sat on the floor 
And figured the total as one-forty-four. 
So he crawled to the bar and swalled a dose 
And started to wonder how three grew to gross. 

So he pulled out his list and he started to count, 
Carefully writing down every amount. 
And discovered the sequence that now bears his name, 
Thanks to the party where everyone came. 

I hope you like the poem and decide to publish it. 
Richard Blecksmith, Mathematics Department, 

Pennsylvania State University, University Park, Pennsylvania 16802. 



DIVISIBILITY PROPERTIES OF RECURRENT SEQUENCES 

CLARK KIMBERLII\IG* 
University of EvansvilSe, Evansvilte, Indiana 47702 

1. INTRODUCTION 

The Fibonacci numbers, the Fibonacci polynomials, and the generalized Fibonacci polynomials, these latter 
defined by 

Unfcy) = xun-.i(x,y) + yun-.2(x,y); u0(x,y) = 0, ui(x,y) = /, 
all have the following divisibility property: 

(1) If m\n, then um\un . 

In their recent paper [3 ] , Hoggatt and Long prove (1) and more: 

(2) If/77 > / a n d / ? > /, then (um,un) = u(m/fl) r 

Further, if p is a prime, then up(x,y) is irreducible over the rational number field, a result originating with 
Webb and Parberry [5 ] . Similar results for Lucas polynomials and generalized Lucas polynomials are proved by 
Bergum and Hoggatt [2 ] . 

In this present paper, we consider divisibility properties of certain polynomials which include the generalized 
Fibonacci polynomials and a modification of the generalized Lucas polynomials as special cases. 

Letx, y, z be indeterminants and let 

(3) fn = (x + ylfn^-xyfn-2; fo= 0, f1 = 1. 

Define c0 = 0, zjf) = f = fx, and 
(fyn-l(f)+zzn-2(f) for even n 

an(x,y,z) = zn(f) = | Hn_l{f)+zin_2{f) + 2zln-nn f Q r o d d n> 

where f' is replaced by f; for/ > 0 after the multiplications involving fare carried out Since 

fn{x,y) = (xn-yn)/(x-y) 

for n > I it is easy to write out the first few sin(x,y,z) as follows: 

£0 = 0 = f0 

z, = (x -y)/(x-y) = fx 

c2 - (x2 -y2)(x-y) = f2 

e3 = fx3 - y3 + 3z(x - y)]/(x -y) = f3 + 3zfx 

e4 = [x4 - y4 + 4z(x2 - y2)]/(x - y) = f4 +4zf7 

c5 = fs +5zf3 + 5z2f, 
fi6 = f6+6zf4+9z2f2 

c7 = fn +7zf5 + 14z2f3 +7z3fx 

28 = f8+8zf6+20z2f4 + 16z3f2 

c9 = f9 +9zfn +27z2fs +30z3f3 + 9z4f, 

In general, 

(4) 
r / 

n(x,v,z) - £ [ ( " + / " ' ) - ("7-_~') ] 'lf«~*- where w = \ %: 
___2 . ____ , I ____ 

^Supported by University of Evansville Faculty Research Grant A6D-0240. 
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2)/2 for even n 
1)/2 for odd n 
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Several special cases of the polynomials SLn(x,y,z) are as follows: 

Fibonacci numbers zn(a,$,0); a +Q = 7, a/3 = - 7 
Fibonacci polynomials sin(a,b,0); a + b = x, ab = -1 
generalized Fibonacci polynomials 9.n(A,B,0); A+B = x, AB = -y 
modified Lucas numbers v.n(1,0,1) 
modified Lucas polynomials zn(x,0,1) 
generalized modified Lucas polynomials %n(x,Ofz) 

For comparison with (unmodified) sequences of generalized Lucas polynomials Ln(x,z), Lucas polynomials 
Ln(x,l), and Lucas numbers Ln(1,1), we have, for/7 = 0, 1, —, 

Z.„(1,1): 2, 1,3,4,7, 11, 18,29,47,76, 123, 199 ,322 ,521 , - , 
c„ (1,0,1): 0, 1,1,4,5, 11, 16,29,45,76,121, 199,320,521, . . ; 

Ln(x,z) = xLn„](x,z)+zLn-2(x,z), LQ(X,Z) = 2, Li(x,z) = x; 
i Ln{x,z) for odd n 

<5) xzn(x,0,z) = \ Ln(x,z)-2zn/2 for even n; 

(6) *n(x,y,z) = ^ ^ - ^ ^ > . 
x - y 

In Section 2 we prove that the divisibilities in (1) hold for the polynomials sin(x,y,z). In Section 3 we prove 
that consecutive terms of the sequence sin(x,yfz) are relatively prime. In Section 4 we prove the same for se-
quences of the form zmn/Q.m, where m is fixed. In Section 5 we prove that (2) holds for the sequence SLn(x,y,z). 
In Section 6 we consider the irreducibillity of some of the sin(x,y,z). 

2. A MULTISECTION THEOREM 

Lemma L The sequence &n(x,y,z), for/7 - 7, 2, •••, is generated by the function 

G(x,y,z,t)= 1+zt2 

(1 -xt-zt2)(l -yt-zt2) 

Proof. Let 
x(t) = 1-xt-zt2 = (1-txt)(l-t2t) and y(t) = 1- yt-zt2 = (1 - t3t)(J - t4t). 

It is easy to check that 

and it is well known [1] that -x'(t)/x(t) generates a sequence of sums of powers of roots ofx(t). Explicitly, 

(7) (x-y)G(x,y,zft) = { s Jx) + s2(x)t + - - [s Jy) + sjyh + - ] \ , 

where snfx) = t" + t% is the /7f/7 (unmodified) generalized Lucas polynomial Ln(x,z). Thus, the sequencesn(x) 
- sn(y) generated in (7) is Ln(x,z) - Ln(y,z). By (6), the proof is finished. 

Theorem 1. \im\n, where m > 7 and /7 > 1, then sim(x,y,z)\sin(x,y,zl 

Proof. (The multisection procedure used here is explained in Chapter 4 of Riordan [4].)The m - 7, m 
section of the series in (7) is 

sm (x)tm-1 + s2m(x)t2m-1 + --[sm(y)tm-1 +s2m(y)t2m-1 + •••], 

which we write as 
fr- y)(*mtm-1 + *2mt2m-1 +"'). 

Again as in [1 ] , we know that sm (x) + $2m Mt + ••• = -X'(t)/X(t), where 
X(t) = (1 - tftHl - t?t) = 1 -sm (x)t + (~z)mt2, 

and similarly, 
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sm (y>+ S2m (yh + - - YW YU), 
where 

Y(t) = (1 -t%t)(1 -t%t) = 1-sm(y)t + (-z)mt2. 
Thus, 

Write 1/XY KH0 + H1t + H2t
2 + - . Then 

*m +*2mt + - - ~ ^ r - IXY' - X'Y)(H0 + H1t + H2t
2 + - ) 

= zm[l-(-z)mt2](H0 + H1t + H2t
2 + .->). 

Therefore, if n = km, then sin = sim [H^-i - (-z)m Hk-3]. 

3. CONSECUTIVE RELATIVELY PRIME POLYNOMIALS 

The m - 1, m section of xG(x,0,z,t) = LX + L2t + L3t
2 + — readily provides a well known (e.g., [4]) recur-

rence relation 
Lnm = LmLfn-Dm- (-z)mL(n-2)m 

for subsequences of (unmodified) generalized Lucas polynomials. Substituting for the L's according to (5), we 
readily obtain the following lemma for modified generalized Lucas polynomials. 

Lemma 2. Let zn = Qn (x,Q,z) for n > 0. Then for n > 2, 

I zm(xz(n-l)m + 2z(n~]f)m/2).+ zm^(n-2)m forodd/7? and odd/? 
V-nm = I x9.mSl(n_1)m +Zm%(n-2)m f° r °dd m a n c ' e v e n n '' 

*nm = (xlm+2zm/2h(n„1}m-zm9.(n-2)m+2z(n-1}m/29.m for even m. 

Theorem 2. Lete^ = SLn(x,0,z) for/7 > 0. Then for/? > 1, 

n_1 i -x(zn+ 2z(n~1}/2})zn + (xzn-i +4z(n'1)/2-fcn+i forodd/? 
xz | (xzn+4zn~2hn-xzn-i%n+i for even/7. 

Proof. The proposition is obviously valid for/? = /. Suppose its validity for arbitrary odd/7. Then for any 
even n, 

xz"'2 = (xin-2 + 4z {n'2)/2hn - x(zn-1 + 2z in'2)/2hn. 1 

xz"'1 = (xzzn„2+4zn/2hn-x(zsin_1+2zn-2hn_1 

= (xzn-x\-1+4zn/2)zn-xzn-1(zzn-1+2zn/2) 

= (xsin + 4zn/2)Qn - x V 1 (x*n + ̂ n- 1 + 2zn/2) 

= (xin+4zn/2hn-xzn-1zn+1 . 

Now suppose the proposition valid for arbitrary even n. Then for any odd n, 

xzn~2 = -xSLn„2*n + (xin-l+4z{n~2)/2K-l 

xz"~1 = -xzzn-2u-n + (xzn-1 + 4z ("~ 1)/2)z^ / 
= -x(z„- xzn. 1 - 2z ("~ 1)/2hn + frs„-1 + 4z ("~ 1)/2)zzn„ 1 

= -x(zn -2z("-1)/2hn + (xin-1+4z("-1)/2)zzn-1 + x2wn-i 

= -x(*n +2z("-1)/2hn + fre„.y +4z("-1)/2)zzn-1 +x\9.n„1 + 4xzi"-1)/2hn 

= -x{iin + 2z("- 1)/2hn + (xsin_ 1 + 4z ("~ 1}/2)(zsin. 1+xsin) 

= -x(zn+2z("-1)/2hn + (xzn-1+4z("-1)/2)zn+1 . 

Corollary 2. Let 2,7 =Qn(x,0,zifor n > 0. Then (zn, zn+1>= 1 for n > l 
Proof. Theorem 2 shows that the only possible divisors of both zn and 9.n+i are of the isxmx'zJ where 

0 < / < 1 and 0 < / < / 7 - 1. Equation (4) shows that/= 0. Reading* for f i n (4), we see that* divides zn (x,Q,z) 
only when n is even. Sincex'z divides consecutive e's, we have / = 0. 
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Lemma 3. Letc^ = zn(x,y,0) = fn for/? > 0. Then (zn, sin+1)= 7 for/7 > 7. 

Proof. Clearly (fiJ2> = fofe) = ^ Suppose for arbitrary n > 2 that (fn_2, fn-i)
 = 7- tfd(x,y) divides 

both fn-j and fn then by (3), d(x,y) divides xyfn-2- Thus d(x,y) divides fn-2, since (xy,fn-2) = ?• But the 
only divisor of both fn^2 and ^ . ; is 1. Therefore ATA;/^ = /. 

Theorem 3. Letc^ = o.n(x,y,z) for/7 > 0. Then fe^, zn+i)= 7 for/7 > 7. 

Proof. Suppose d(x,y,z) divides both zn(x,y,z) and zn+i(x,y,z). Then d(x,y,0) divides both Q.n(x,y,0) and 
$.n+l(x,y,0). By Lemma 3, d(xfy,z) = 7 + ze(x,y,z) for some e(x,y,z). Since 1 +ze(x,y,z} divides sin(xfytz), 
we have 

zn(x,y,z) = q(x,y,z)+ze(x,y,z)q(x,y,z) 

for some q(x,y,z). Nowz does not divide q(x,y,z), sincez does not divide s.n(x,y,z). Therefore the term X in 
9.n(x,y,z) occurs in q(x,y,z), Consequently, unless e(x,y,z) is the zero polynomial, some nonzero multiple of 
zx occurs in the polynomial ze(x,y,z)q(xfy,z). But Q.n(x,y,z) has no such term. Therefore e(x,y,z) is the zero 
polynomial, so that d(x,y,z)= 1. 

4. SUBSEQUENCES OFe,, 

In this section we consider subsequences of the form zm, ^2m^ Q3m^ '" > where m > 1. Since each term is 
divisible by the first term, let us divide all terms by the first, and let X ^ „ =Q-nm/%m for/7 > 0. Then by Theo-
rem 1, for/7? > 7and/r> 7, \m,k\^m,n whenever kI/7. Do the Xsequences also inherit from the e sequence the 
property that consecutive terms are relatively prime? 

Lemma 4a. Let X„ = \m,n(x,0,z) for/7 > A Then for/7 > 7, 

Proof By Lemma 2, 

Thus, for odd/77, 

j X2X/7-7 for odd/7? 
* c f a - / M = I a 2 - 4zm/2)\n- 7 for even //?. 

J xzm for odd/7? 
C2/TI = { 2 M m/2 

\ x£m +4z 2m for even m. 

9.2m ^ \ 
x^(n-1)m = -J- Z(n-1)m = *2*n-1 • 

Q 

,m/2n 

For even m, 

Lemma 4h. LetX„ = \m/n(x,0,z)iorn > 0. Then for odd/77 and/7 >2, 

I X 2 X „ - / +z,7?XA7_2 + 2z (n~1)m/2 for odd n 
X^ = < 

1X2X^-7 +zm\n-2 foreven/7; 
and for even /77, 

X„ = a 2 - ^ m / 2 A „ - 7 - z m A n - 2 * 2z(n'1,m/2 , 
with X# = 0and X7 = 7. 

Proof In Lemma 2, divide both sides of the three recurrence relations by Qm, recalling that \/< = Q-km/^m 
for/r = /7, n- l,n-2. Now replace x e ^ _ i ) m by \2^n-1 for odd /77, and replace A-em by \ 2 - 4zm/ for even 
m. 

Theorem 4a. LetX„ = \mn(x,Ofz) for/7 > 0. Then for odd/?7 and/? > 7, 

x 7r/i-/;m _ i-^2^n^2z(n-1)m/2)\n + (\2\n-1+4z<n-1}m/2)\n+1 for odd/7 

1 (X2^n+4znm/2)\n-X2Xn'An+i for even/7. 
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Proof. Referring to the proof of Theorem 1, we know that for odd m, 

1+zmt2 

so that 
\ 1 + \ 2 t + - = G[sm(x),sm(y),zm,t] . 

§\nwsm(y) = Ln(y,z), as in theproof of Lemma 1, Eqs. (5) and (6) show \\\%\sm(y)= 0for all odd m. Further, 
sm(x) = x9.m, which by Lemma 4a equals Q.2m/y.m, which isX2- Therefore, 

\ l + \ 2 t + - = G(\2,0,zm
ft) = i1(X2,Ofz

m)+si2(X2,Q.zmH + - , 

by Lemma 1. Thus Theorem 2 applies with x and z replaced by \ 2 and zm, respectively. The result is exactly as 
stated above. 

Theorem 4b. Let Xn = \mrn(xfQ,z) for n > 0. Then for even m and n > 7, 

z (Kn-2z )\n+Kn-.i\n+7 . 

Proof. The proposition is clearly valid for n = 1. For arbitrary n > 1, suppose that 
z(n-2,m _ _ f V r ^ « - « j V ) + V A . 

Then 
z(n-1)m = _f_Xn+i + (X2_2zm/2j\n] X„_, - [\n - f\2- 2zm/2)\n-1 - 2z(n-1)m/2l \n 

by Lemma 4b 
= ~(Xn-2z(n'1)m/2)Xn + Xn.1Xn+1 . 

Corollary 4. \-v\\n = \mn(x,0,z) for/7 > 0. Then (Xn, Xn+?) = 7 for all positive integers m and n. 

Proof For odd m, Theorem 4a shows that the only possible divisors of both Xn and Xn+i are of the form 
X'2z

J\ where 0 < / < / and 0 < / < (n - Dm., As in the proof of Theorem 4a, \n = 9.n (\2, 0, zm), so that (4) 
gives (for odd m only), 

w 

Xn ~ IJ [[ J J ~ [ i - 2 ) \ z fn-2i' w n e r e w ~ \ ( n - 7j/?forodd/7, 
i=0 

and fpx,0) = ff<(X2,0) = X2~
1 for k > I Thus X2 divides \ n only when n is even. Since X2 divides consecu-

tive X's, we have/ = 0. 
Now for any m, Theorem 4b and the argument just given show that the only possible divisors of both \ n and 

Xn+1 are of the form zy with 0<j <(n - Dm. Sfzy divides X^ then zy divides e ^ = ^m^n- Thus/ = 0, by (4). 

Lemma 5. Lz\Xn = Xmfn(x,y,0) for/? > 0. Then (Xn, \n+i)= 1 for/7 > 1. 

Proof. Since z = 0, we have \ n = fnm/fm = fn(x
m,yml Now (3) is used to complete the proof, just as in 

the proof of Lemma 3. 

Theorem 5. Let X,, = Xmfn (xfy,z) for n > 0. Then (Xn, Xn+1) = 1 for n > 1. 

Proof The method of proof is exactly as for Theorem 3. Here the exponent of x to be considered is m<n~ 
rather than n~1. 

Theorem 6. Let/77 and/7 be odd. LetX„ = Xm n(x,0,z)iorn > 0. Then for n > 1, Xn=nz(n~1)m/2 mod 
X 2 . 

Proof. By Lemma 4b, 
X„ = (zmXn-2 + 2z(n-1)m/2) modX2 for odd n. 

Repeated application of this congruence gives 

X„ - 2z(n-1)m/2+zm\n-2 - 2z(n-1)m/2+zm(zmXn-4 + 2z(n-3jm/2) = 4z
(n~1)m/2 + z2mXn.4 - -

^2kz(n-1)m/2 + zkmXn-2k for k= it2,---,n-jl m 
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In particular, for k = r^-—, 

\n^(n-1)z<n-1,m/2 + z{n-1)m/2\1, 
as desired. 

Corollary 6a. Let/7? be an odd positive integer. 
Let Xn = Xm/n(1,0,1) forn > 0. Then A2= CA??- I f " «s odd and n = 0mod Xm, then (Xn, Xn+i) = zm- If cm 

is a prime, then (Xn, Xn+j) = 1 for each positive integern satisfying n^ Omoti zm, For m = 1 and/77 = 3, 

(^n>^n+i) = 1 for n > 1. 

Proof. By Lemma 4a, &2m = Q-m, so that X2 = %m. If n is odd, then Xn =n mod X2, DV Theorem 6. Thus 
\ n =n mod Qm, and if n = 0 mod Qm, then Xn =0mod Qm. Since n + 1 is even, X^ divides X,,^-/, by Theorem 
1. Therefore both Xn and Xn + i are divisible by X2- By Theorem 4a, the only divisors of both Xn and Xn+-j are 
divisors of X2- Therefore X2 = (Xn, Xn+i). 

Now for n either odd or even, Theorem 4a still shows that the only divisors of both Xn and X^zare divisors 
of X2. Thus if X2 = zm >s a prime, then the conditions Xn =n mod zm and n4 0 mod sim show thate^ does 
not divide Xn. Thus (Xn, Xn+1) = I 

Form = 1, pu t * = z = / i n Theorem 2. 
For/77 = J, we have X2 = 4, so that after dividing by 4 in Theorem 4a, we find 

l-(Xn+2)Xn + (Xn-<i+ 1)Xn+1 for odd/7 
1 = \ 

( (Xn + VXn - Xn->iXn+i for even n. 
Corollary 6h. Let m be an even positive integer. Let Xn = Xmrfl (1,0, 1) for/7 > 0. Then (Xn, Xn+f) = 1 

for/7 > 1. 

Proof. This is an immediate consequence of Theorem 4b. 
Example. To illustrate Corollary 6a, let/77 = 5. Recalling the abbreviation 

^5 - ^5,n(lO,l) = 9.5nt1A1)/l5(lO,1) 

for/7 > 0 and Lemma 4b, we have for n > 2: 
( 1lXn-j +Xn-2 + 2 for odd/7 

^ A 7 = { 
{1lXn-i+Xn-2 foreven/7. 

We write out the first 12 X's and factor them 
X0 = 0 = 0 

Xt = 1 = 1 

X3 = 11 = / / 
X3 - 124 = 22-31 

>4 = 1375 = XJXl+4) 

X5 = 15251 = 101-151 

X6 = 169136 = X2Xl 

X7 = 1875749 = 29-71-911 

X8 = 20802375 = X4(X2X,+4) 

X9 = 230701876 = X3 (X2 X6 +3) 

X10 = 2558523011 = X2X2
5 

Xn = 28374454999 = X2-199-331-39161. 

In agreement with Corollary 6a, we have (Xn, Xn+j) = 1 for 1 <n < 9, but (XJQ, Xn) = 11. 
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5. THE EQUATION (ZmAn) = Z(m,n) 

Lemma 7. Let Xj = \rlj(x,y,z) for m > 1 and / > 0. If k is a positive integer satisfying (j,k) = 1, then 
(Xj,Xk)=l 

Proof. Write 1 = sj - tk (orsk- tj) wheres and fare nonnegative. Lettf= (Xj, X/<h Then d\XSJ- and d\Xt/< 
by Theorem 1. Thus d\(\SJ; Xt/<), which is to say dKX^, X^+j). By Theorem 5, we have^= 7. 

Theorem 7. Letzm = Q.m(x,y,z)torrn>O.Thenform>1andn>1,(zm,zn) = Z(mfn). 

Proof. Let d = (m,n). Let / = m/d and k = k/d. Then (Xj, X/<)= 1, by Lemma 7. Now em = Xye^ and e„ = 
*Xk%d- Therefore (9.m, zn) = fi<y. 

Lemma 8. The following items hold true when restated in terms of (x,Of 1) and (1,0,1), instead of (x,0,z): 
Lemmas 4a and 4b, Theorems 4a and 4b, Theorem 6, and Lemma 7. 

Proof The resulting restatements are special cases, to which the proofs already given apply. 

Theorem 8. The equations (SLm, zn) = 9.(mnj and (Xj, Xn) = X(jtk) as in Theorem 7 and Corollary 7 
hold if c and X are applied to (x,0,z) and (x,0,1). They also hold for (1,0,1) if m is even or equal to 1 or 3. 

Proof The first statement follows from Lemma 8 exactly as Theorem 7 and Corollary 7 follow from 
Lemma 7. 

For the second statement, we obtain d\(Xtk, Xt/<+i) as in the proof of Lemma 7 and haved = 1 by Corol-
laries 6a and 6b. Then the methods of proof of Theorem 7 and Corollary 7 apply. 

6. IRREDUCIBILITY OF 2 POLYNOMIALS 

Lemma 9. The polynomial Qn(x,y,0) is irreducible over the rational number field if and only if n is a 
prime. 

Proof. It is known [3] that the generalized Fibonacci polynomial zn(A,B,0), where A + B =x and AB = 
-y, is irreducible if and only \\ n is a prime. The present lemma is an immediate consequence. 

Theorem 9, The polynomial SLn(x,y,z) is irreducible over the rational number field if and only if n is a 
prime. 

Proof. If n is not a prime, we have Theorem 1. Suppose n is a prime and that zn(x,y,z) = d(x,y,z)q(x,y,z). 
Then one of the polynomials d(x,y,0) and q(x,y,0) must be the constant 1 polynomial, by Lemma 9. Supposing 
this one to be d(x,y,0), we have d(x,y,z) = 1 +ze(x,y,z) for some e(x,y,z). The remainder of the proof is identi-
cal to that of Theorem 3. 

Lemma 10. The polynomial zn(x,0,z) + 2zn/2, where n is even, is irreducible over the rational number 
field if and only if n = 2k for some k > I Further, the polynomial zn(x,0,z)for odd n is irreducible if and only 
if n is a prime. 

Proof These two results are proved in [2 ] . 

Theorem 10. If n = 2k for some k > 1, then the polynomial 9.n(x,y,z) + 2zn/ is irreducible over the 
rational number field. 

Proof Suppose sin(x,y,z) + 2zn = d(x,y,z)q(x,y,z). Then one of the polynomials d(x,0,z) and q(x,0,z) 
must be the constant 1 polynomial. Supposing this one to be d(x,0,z), we have d(x,y,z) = 1 + ye(x,y,z) for some 
e(x,y,z), by Lemma 10. Consequently, 

SLn(x,y,z)+2zn/2 = q(x,y,z) + ye(x,y,z)q(x,y,zj. 

Once again, the remainder of the proof is identical to that of Theorem 3, except that here we have yxn~ in-
stead of zxn~1. 
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THE FIBONACCI SEQUENCE ENCOUNTERED 
IN NERVE PHYSIOLOGY 

KURT FISCHER 
University of Regensburg, Regerssburg, West Germany 

The pulses travelling along the nerve fibres originate in local currents of Sodium- and Potassium-ions, across 
the membranes which surround the fibres. The Sodium-current is switched on and off by small amounts of 
Calcium-ions. In order to model the operation of Ca , assume that the Na -current flows through identical 
trans-membrane pores, each made up of a string of /? Na "^-binding sites. Also, Qa2+ can enter the pores, occupy-
ing two sites per ion, or, one site when entering the pore (cf. Fig. 2). Thus, a pore may momentarily look like 
Fig. 1. 

0 
Fig. 1 A pore in one of its possible states (0: empty site; 1 : Na ; 2 : Ca ) 
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Fig. 2 Graph for 5-site pore-process; only states with at most one vacant site. 
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Assume, further, that the particles can jump, in a stochastic manner, into a neighbouring empty site, without 
being able to overtake each other. During this process, Sodium may enter and leave the pores on either side, 
whereas Calcium may enter and leave at the left-hand side only. Thus, Calcium ions within a pore block the 
Sodium-current through this pore. 

This model reproduces the relevant outcome of experiments (publication in preparation). 
Where and how do the Fibonacci numbers come in? 
Let the stochastic process described above be Markoffean. Then, the process is conveniently pictured by a 

graph, with its points representing the finite number of possible states of a pore, given by its occupation by 
0, 1, 2 (cf. Fig. 1), and its edges representing the allowed transitions between states. Alongside one has a set 
of homogeneous linear differential equations of the first order, describing the time development of the states' 
probabilities. These are, in essence, the forward-aquations of the Mark off-process. 

For the time-stationary case, these equations are conveniently solved by graph-theoretical methods (T. L. 
Hill, 7. Theor. Biol. (1966), 10, 442-459). Therefore, the graph needs careful investigation. 

First, consider only pores with at most one site vacant. Under feasible physical conditions, these states can be 
shown to be the only relevant ones: only their probabilities differ appreciably from zero. Then, the graph boils 
down to a single cycle (along which Na is transported), and a large tree growing out of the cycle (cf. Fig. 2). 

Note that the tree is made up of two types of subgraphs: each type ends in full pores, between which a va-
cancy travels from right to left (or vice versa). One specimen for each case is indicated by heavy edges, in Fig. 2. 

It can be shown, that, in order to calculate the probabilities of the full-pore-states of the tree, one can throw 
out the one-vacancy-pores, too, ending up, in the case of Fig. 2, with the tree of Fig. 3. 
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Fig 3 Tree of full pores, corresponding to the tree in Fig. 2 

From the general structure of the graph of Fig. 2, one infers that the tree of full-pore-states within the tree of: 
the graph corresponding to /7-site-pores (n = 2, 3, 4, —), has the form of Fig. 4. 

Counting the number of points, N(n), at level n, one finds 

N(n) = Fn (n = 2,3,4,-), 

the Fibonacci sequence with Fx = F2 = 1. The tree of Fig. 4 is, indeed, the graph of Fibonacci's original rabbit 
family. This fact is based on the Ca2+ entering the pore, from the left, in two steps (cf. Fig. 2), as the ion has 
two legs, i.e., elementary charges. 

Lanthanum5"'" is known, in its effect on the Na+-current in nerve, as a super Calcium. If an analogous model 
3+ 2+ + 3+ 

is made, so that La , instead of Ca , switches the Na -current; and if La enters the pores in three steps, 
then the graph corresponding to Fig. 4 is seen to have the structure of Fig. 5. Now the number N (n) of points 
on level n (n = 2, 3, 4, •••) is given by 
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etc. 

Fig. 4 Structure of full-pore-tree for n-sites-pores 

etc. 
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3+ 2+ 
Fig. 5 Tree analogous to Fig. 4, with La instead of Ca 

N3+(n) = N3+(n- l) + N3+(n-3). 

This can obviously be generalized. 
For the membrane model maker, these findings have already been useful. 

^kk^kkkk 



A FIBONACCI PROPERTY OF WYTHOFF PAIRS 

ROBERT SILBER 
North Carolina State University, Raleigh, North Carolina 27607 

In this paper we point out another of those fascinating "coincidences" which are so characteristically associ-
ated with the Fibonacci numbers. It occurs in relation to the so-called safe pairs (an, bn) for Wythoffs Nim 
[1 , 2, 3 ] . These pairs have been extensively analyzed by Carlitz, Scoville and Hoggatt in their researches on 
Fibonacci representations [4, 5, 6, 7] , a context unrelated to the game of nim. The latter have carefully estab-
lished the basic properties of the an and bn, so that even though that which we are about to report is not de-
scribed in their investigations, it is a ready consequence of them. For convenience and for reasons of precedence, 
we refer to the pairs (an, bn) as Wyth off pairs. 

The first forty Wythoff pairs are listed in Table 1 for reference. We recall that the pairs are defined inductively 
as follows: (a-j, b-i) = (1, 2), and, having defined (aj, bj), (a2, b2), —, (an, bn)f an+i is defined as the small-
est positive integer not among ai, bj, a2, b2, —, an, bn and then bn+i is defined asan/n + (n + 1). Each pos-
itive integer occurs exactly once as a member of some Wyth off pair, and the sequences lan) and {bn} are 
(strictly) increasing. t _ 

Wythoff [1] showed that an = fnaj and bn = fna2J, a being the golden ratio (1 + V5)/2; a more elegant 
proof of this appears in [3] . This connection of the Wythoff pairs with the golden ratio suggests to any "Fib-
onaccist" that the Fibonacci numbers are not very far out of the picture. The work of Carlitz et.'al. that we have 
mentioned shows that the an and bn play a fundamental part in the analysis of the Fibonacci number system. 
We now look at another connection with Fibonacci numbers. 

Table 1 
The First Forty Wythoff Pairs 

n 

| 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

3/7 

1 
3 
4 
6 
8 
9 

11 
12 
14 
16 

bn 

2 
5 
7 

10 
13 
15 
18 
20 
23 
26 

n _ _ 

12 
13 
14 
15 
16 
17 
18 
19 
20 

3n 

17 
19 
21 
22 
24 
25 
27 
29 
30 
32 

bn 

28 
31 
34 
36 
39 
41 
44 
47 
49 
52 

n 

~W 
22 
23 
24 
25 
26 
27 
28 
29 
30 

an 

I F 
35 
37 
38 
40 
42 
43 
45 
46 
48 

bn 

54 
57 
60 
62 
65 
68 
70 
73 
75 
78 

n 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

3n 

50 
51 
53 
55 
56 
58 
59 
61 
63 
64 

~~bn~\ 

81 
83 
86 
89 
91 
94 
96 
99 

102 
104 

In examining Table 1, it is interesting to observe that the first few Fibonacci numbers occur paired with 
other Fibonacci numbers: 
(al,bj = (1,2), (a2,b2) = (3,5), (a5, bs) = (8,13), (al3, bl3) = (21,34), (a34, bdA) = (55, 89). 

It is not difficult to establish that this pattern continues throughout the sequence of Wythoff pairs, using the 
fact that lim (bn/an) = a and also lim (Fn+j/Fn) = a. However, an almost immediate proof can be had, based 
on Eq. (3.5) of [4 ] , which states that 

(1) an +bn = abn 

380 
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for each positive integer n. We defer the proof momentarily, it being our intention to state and prove a general-
ization of the foregoing. 

Clearly there are many Wythoff pairs whose members are not Fibonacci numbers; the first such is (a3, b3) = 
(4,7). The pair (4,7) can be used to generate a Fibonacci sequence in the same way X\\dX(au bj = (1,2) can be 
considered to determine the usual Fibonacci numbers; we take G-j = 4, 62 = 7, Gn+2= Gn+f + Gn. The first 
few terms of the resulting Fibonacci sequence are 

4 ,7 ,11 ,18 ,29 ,47 , - . ' 
It is (perhaps) a bit startling to observe that 

(a3,b3) = (4,7), (an,bn) = (11, 18), (alB,bJ = (29,47). 

The pair (a4, b4)= (6, 10) similarly generates a Fibonacci sequence 

6, 10, 16, 26, 42,68, -
and sure enough 

(a4/ bj = (6, 10), (a10, b j = (16, 26), (a26, b j = (42, 68). 

It is time for our first theorem. 

Theorem. Let Gu G2, G3, - be the Fibonacci sequence generated by a Wythoff pair (an, bn). Then every 
pairft?1# G2), (G3, GJ, (G5, GJ, - i s again a Wythoff pair. 

Proof. By construction, every Wythoff pair satisfies 

(2) ak + k = bk . 

Consider the first four terms of the generated Fibonacci sequence: 

an,bn,an+bn,an+2bn. 

According to Eq. (1) 
an+bn = atn, 

so that 
an+2bn = abn + bn . 

Equation (2) with k = bn gives 
abn

 + b„ = bbp , 

so that the four terms under consideration are in fact 
an, bn, abn, bbn . 

Thus we have proven that in general (G3, £ 4 ) is a Wythoff pair when (Gu G2) is. But (G5, G6) can be con-
sidered as consisting of the third and fourth terms of the Fibonacci sequence generated by (G3, GA), and the 
latter is already known to be a Wythoff pair. In this way, the theorem follows by induction. 

Thus we see that each Wythoff pair generates a sequence of Wythoff pairs; the pairs following the first pair of 
the sequence will be said to be generated by the first pair. We define a Wythoff pair to be primitive if no other 
Wythoff pair generates it. It is clear that if (am, bm) generates (an, bn), then m <n. For this reason, one can 
determine the first few primitive pairs by the following algorithm, analogous to Eratosthenes' sieve. The first 
pair (1,2) is clearly primitive. All those generated by (1,2) are eliminated (up to some specified point in the 
table). The first pair remaining must again be primitive, and all pairs generated by that primitive are eliminated. 
The process is repeated. 

The first few primitive pairs so determined are pair numbers 

1,3,4,6,8,9, 11, 12, 14, 1 6 , -

which we recognize at once to be the sequence 
ax, a2, a3, •••. 

This occasions our next theorem. 
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Theorem. A Wythoff pair (an, hn) is primitive if and only if n = a^ for some positive integer k. 

Proof. We have seen that the terms of the Fibonacci sequence generated by any Wythoff pair (an, bn)are 
of the form 

*n.bn.*bn.bbn.abbn.bbbn.~. 

From this it is obvious that any non-primitive pair (an, bn) must have n = bk for some positive integer k, which 
makes every pair (an, bn) with n = a^ a primitive pair. 

On the other hand, the sequence 

an, bn, abp, bbn, -

generated by (an,bn) shows clearly that each pair (abk, bbf<) is generated by (a^, b^); thus every primitive pair 
(an, bn) must have/7 = a^. 

This theorem shows that the number of primitive pairs is infinite, and has the following corollary. 

Corollary. There exists a sequence of Fibonacci sequences which simply covers the set of positive integers. 
An interesting property of the primitive pairs turns up when we calculate successively the determinants 

I 3/7 bn 

31 b1 J ' 
restricting our attention to those (an, bn) which are primitive. We find that 

4 7 

1 2 
= 1, 

6 10 

1 2 

9 15 

1 2 
= 3, 

12 20 

1 2 

and so on. This suggests that the value of the determinant applied to the k primitive is k - 1. By the foregoing 
theorem, we know that the kth primitive is in fact (aa., ba.), so the suggested identity becomes 

23ak-bak = k- 1, 

which follows readily from Eq. (3.2) of [4] . 
We conclude by interpreting our results in terms of the findings in [4] and [6] . According to the latter, the 

Wy'thoff pairs (an, bn) are those pairs of positive integers with the following two properties: first, the canonical 
Fibonacci representation of bn is exactly the left shift of the canonical Fibonacci representation of an, and 
second, the right-most 1 appearing in the representation of an occurs in an even numbered position. (In base 2 
this would be analogous to saying that bn = 2an and that the largest power of 2 which divides * „ is odd). No 
two 1's appear in succession in the representations of an and/?^. If we adda^ and/?,,, each 1 in the representa-
tion of bn will combine with its shift in the representation of an to yield a 1 in the position immediately to the 
left of the added pair, since Fn + Fn„i = Fn+i. This means that bn +an has a representation which is exactly 
the left shift of bn. By exactly the same reasoning, (bn + an) + bn has a representation which is exactly the left 
shift of bn + an, and so forth. Hence, the Fibonacci sequence generated by any Wythoff pair, when expressed 
canonically in the Fibonacci number system, consists of consecutive left shifts of the first term of the sequence. 
In the simplest case, the pair (1,2) generates the usual Fibonacci sequence, which in the Fibonacci number 
system would be expressed 

10, 100, 1000, 10000, 100000, -

and the generated pairs would be 

(10, 100), (1000, 10000), ••• 
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which have the requisite properties that each bn is the left shift of an and that each an has its right-most 1 in an 
even-numbered position. The next case corresponds to the sequence generated by (4, 7); 4, 7, 11, 18, - . In 
Fibonacci, this appears as 

1010, 10100, 101000, 1010000,-. 

This procedure can be traced back an additional step to the index n of the pair (an, bn). Doing so provides in 
addition a simple interpretation of the primitive pairs in terms of Fibonacci representations. There is a prescrip-
tion in [6] for generating a Wythoff pair (an, bn) from its index n, but it necessitates the so-called second can-
onical Fibonacci representation. For present purposes it suffices to remark that the second canonical representa-
tion of any n can be obtained by adding 1 to the usual canonical representation of n - 1. (For example,the 
canonical representation of 7 is 10100, so the second canonical representation of 8 is 10101). The numbers an 

and bn are then obtained from successive left shifts of the second canonical representation of n. Thus, in the 
example of (4,7), we obtain the second canonical representation of 4 as 1000 + 1 = 1001 and generate 

n an bn an+bn = abn, etc. 

10001:10010 100100 1001000 

We have seen that the primitive pairs correspond to the case n = a^. It is readily established on the basis of the 
results in [4] that the numbers a^ are precisely those numbers whose second canonical Fibonacci representa-
tions contain a 1 in the first position (as follows: first, a number is a b/< if and only if its canonical representa-
tion contains its right-most 1 in an odd position-which is never the first-and, second, a second canonical 
representation fails to be canonical if and only if it contains a 1 in the first position). It follows that the primi-

tive pairs (an, bn) are precisely those for which, the second canonical representation of n having a 1 in the first 

position, the canonical representation of an ends in 10 and that of hn ends in 1QO. Other terms of the generated 
Fibonacci sequence have additional zeroes, the location of any number in the sequence being exactly dependent 
on the number of terminal zeroes in its canonical representation. 

This enables one to determine for any positive integer/? exactly which primitive Wythoff pair generates the 
Fibonacci sequence in which that n appears, as well as the location of n in that sequence. First determine the 
canonical Fibonacci representation of n. The portion of the representation between the first and last 1's, in-
clusive, is the second canonical representation of the number k of the primitive Wythoff pair which generates 
the Fibonacci sequence containing n. One left shift produces a^; another produces b^. Counting a^ as the first 
term, b/< as the second, and so forth, the ith term will equal n, where / is the number of zeroes prior to the first 
1 in the Fibonacci representation of A7. For example, let n = 52. In Fibonacci, 52 is represented 101010000. 
Since 10101 represents 8 and the representation terminates in four zeroes, 52 must be the fourth term of the 
Fibonacci sequence generated by the primitive pair (a8, bB). As confirmation we note that this particular se-
quence is 

12 ,20 ,32 ,52 ,84 , - . 

AFOOTWOTE 

Because of the connection of the Wythoff pairs with Wythoff's Mim, the preceding prescription for generating. 
Wythoff pairs is clearly also a prescription for playing Wythoff's Nim using the Fibonacci number system. This 
gives the Fibonacci number system a role in this game quite analogous to the role of the binary number system 
in Bouton's Nim [8]. The analysis of Wythoff's Nim using Fibonacci representations can be made self-contained 
and elementary, certainly not requiring the level of mathematical sophistication required to follow the investi-
gations in [4, 5, 6, 7 ] . For the benefit of those interested in mathematical recreations, we provide this analysis 
in a companion paper [9 ] . It is interesting to note that the role of the Fibonacci number system in nim games 
was already anticipated by Whinihan [10] in 1963. 
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