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In this note, we derive the sums of a number of infinite series, some apparently new, in a rather simple manner. 
It is a simple result that 

00 °° 1 \ 
V tan- — — ^ — = T \ tan"1 x- - tan- - * - I 
~ nT + n+x2 *-* J n n+1 V 
n=1 n=1 { ) 

(1) 2^ tan-1 _ — A _ = y ^ \ tan-1 x- - tan"1 — * r V= t a n - * 
n=1 

More generally, we have 

£ { tan-W-tan-'/*»*/;•}«£ tan- EMj^JL^j) a tan-FM - J i m j a n - F W 

for arbitrary F. In particular, for F(n) = (an + b)/(cn + d), we obtain 

in\ t a n - i ^g-aflf = Y» t , _bcJI_ad_ 
U) t 8 n ab+cd ^ t a n /72^4/7 + Z? ' 

n=0 
where 

/I = 2fa6 +cd)+ I B = b2 + d2 + ab + cd, a2 + c2 = I 

If in (2), we \etbe - ad = x, ah+cd = y, then/?2 + d2 = x2 +y2 giving 

(3) t an"1 j7~ 2 tan_1 -^T-(2y+1)Xn+x2+y2+y 
n=0 

Then by differentiating (3) with respect to x and K, separately we obtain 

iA) V = V n2+(2y+1)n+y2+y-x2 

™ x2+y2 *-* In2 +(2y+ 1)n + y2 +y+x2]2 +x 
n=0 

M I = y 1 (2n+2y+1) 
K0) x2+y2 *-* [n2 +(2y+1)n + y2 +y+x2]2 +x2 

n=0 
and also the following interesting special cases: 

(6) tan- ^ J L , - £ tan-1 
n2 +(2x+1)n+2x2 +x ' 

n=l 

(7) l = y ?OIJZJ 
l " 2 *-* 4n* + 1 ' n=1 
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(8) 4 = ^ liAl > 
n=1 

oo 

iq\ l_ = y n2+n-x2 

x2 + 1 ^ (n2+n+x2)2 +x2 

n=*1 

(10) L. = V 2n±l . 
x2 + 1 *-* (n2 +n+x2)2 +x2 ' 

n=1 
To obtain analogous alternating sums, we let 

F(n) = (-1)" i tan-1 a-H±t x^ l \ 
\ cn + d c i 

which leads to * * 
oo 

(11) t a n - * = V r - / A a n - - xfo+It+JL 
y *-* n2 +(2y+1)n+y2 + 

n=0 
and then by differentiating to 

(~1)n\n2 + (2y+1)n+y2 + y+x2 \(2n + 2y + 7) (12\ Y_ = y (~V }n2 +(2y+1)n+y2 + y+x2 f(2n+2y + 1) 
x2+y2 £* in2 + (2y+1)n+y2 +y-x2l2 +(2n+2y+1)x2 ' 

#13i L = y _, <~V"\n2+ (2y + 1)n + y2+y+x2\ 
2(x2 + y2) ^ in2+ (2y + 1)n + y2 + y-x2\2 + (2n +2y + 1)x2 

n=0 t I 

These three latter formulae include the following special cases: 

(14) ff-tair'* = T r - / r + 7 t an - ' - ^ L t i i L , 
£-4 /72 +n -X2 

n=1 

00 

(15) ten-* - £ <-1)n+1^ 4ni *"* _ 1 , 
n=1 

(16) t a n h - ^ - E ^ - 7 A a n h - | ^ T X T , 

00 

(17) !-E^-„-^, 
n=0 

Ma) 1 - y (-1>n"3 = i y (-vn»2 

1 * ^ 8n*-4n2 + 1 2 *~* 8n4-4n2 + 1 ' 
n=1 n=1 

(19) _x= y r-y/v */?**»; 
2*2 " (n2 +n-x2)2 +(2n + 1)2x2 ' 

n=0 
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To obtain a class of sums complementary to (2), we use another simple general method. Consider any product 
(finite or infinite) 

P = I I (an + ibn), (an, bn - reaU. 
Then, 

E b_n_ 
t a r r * an ' 

n 

(21) \P\* = Il(a2
n+b2

n). 
n 

Applying (20) and (21) to the infinite products 

'z-a+D km1 J \ x + k + iy / J fc=, V / ^ / 

(22) £ tan- ^ - ^ - r = tan- £ - tan- | ^ , A ^ k2-x2+y2
 x tan 7rx 

k=1 

(23) £ tan- j — ^ E L ^ - tan- j tan f tanh f | , 

o/\\ n J r 2(x2 -y2). (x2 + y2)2 ( _ sin2 •nx+smWiry 
U4) * i , \7 k? k* j 7T^+/2>» 

(26) 2 tan- r «* — = arg IYz + 1)T(I- a + 1) 
*—' (x + kr - alx + k) + v2 

e^aY(z+1) 
Vd 

we obtain, 

k=*1 

™ | " " • ' / £ - , m " j ^ | -
(28) n (i + ̂ Jl.) = ber2x+bei2x . 

*=/ * lo,k ' 

The right-hand side of (26) can be explicitly evaluated if either a or z~+z- a is integral. If a is a positive integer, 
a-1 

arg T(z + a)/V(z - a + 1) = J J tan-1 ^ - - . 
k=0 

\i7 +z - a+2 = m (positive integer), then a = 2 + 2x -m and 
m 

argT |IYz + fJTfm-z- 1) = tan- iSOhJK _ y tan-1 K— 
tan TTX *-J m -x — t k=2 
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(the last sum is to be taken as zero if/7? = 1). Further sums can be obtained by continued differentiation of all 
the previous sums containing at least one parameter. 

Some of the sums given here appeared as problems in the Mathematical Tripos. A number of these are given 
among the exercises in Chapter XI of T. J. I'A. Bromwich, An Introduction to the Theory of Infinite Series, 
MacMillan, London, 1947. 

A N O T E O N T H E G O L D E N E L L I P S E 

M. G.MONZINGO 
Southern Methodist University, Dallas, Texas 75275 

In [1 ] , Huntley discusses some of the properties of the golden ellipse; that is, an ellipse whose ratio of the 
major axis to the minor axis is 0, the golden ratio. For example, Huntley shows that the eccentricity, e, of the 
golden ellipse is 1/V/>"- This note is an examination of the golden ellipse as a conic section; see Fig. 1. It will be 
assumed that the plane does not pass through the vertex of the cone. 

Figure 1 

In [2] p. 355, it is shown that the eccentricity is determined by cos a/cos f$ = e, where a and (5 are the angles 
in Fig. 1. Furthermore, for ellipses, (5<a< 90°; 

In Fig. 1, the angle y is formed by the intersection of the plane and the cone, in the plane through the axis of 
the cone and the main axis of the ellipse (easier seen than said). This angle will be referred to as the angle formed 
by the intersection of the plane and the cone. 

Theorem, If a and 0 are such that sec a = 0 and esc 0 = 0, then a and 0 are complementary, and the plane 
intersects the cone at a right angle, forming a golden ellipse. Conversely, if the plane intersects the cone at a right 
angle, forming a golden ellipse, then a and 0 are complementary, sec a = 0, and esc 0 = 0. 

Proof. Firstly, sin 0= 1/0= cos a = sin (IT/2 - a). Therefore, 0= TT/2 -a. From Fig. 1 it follows that y = 
7i- (a + 0). Hence, aand 0are complementary and 7 is a right angle. 

Recalling that 02 - 0 - 1 = 0 , 
cos/3 = V I ~sin2/3 = V I - 1/V02 = V(02 - D/02 = V 0 M 7 = 1/V0 • 

Since cosa= 1/0, e = cos a/cos 0= 1/V0, and so the ellipse is golden. 
Suppose that 7 is a right angle and the ellipse is golden. Then, cos a/cos 0= 1/V0 and since 

TT/2 * 7 = 7r- (a + 0), 
a and 0 are complementary. Thus, cos 0 = sin a. Now, V 0 cosa= cos j3 implies that 

0cos2 a = cos2 0 = sin2 a = 1 - cos2 a . 
Therefore, cos2 a= 1/(0+ 1)= 1/02 and so sec a = 1/cosa = 0 . Also, 

cscjft = 1/sin0 = 1/cosa = 0 . 
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A DIRECT METHOD OF OBTAINING FAREY-FIBONACCI SEQUENCES 

HAiSRAJGUPTA 
Panjab University, Chandigarh, India 

1. Krishnaswami Alladi [1 ] , [2] has recently considered the problem of arranging in ascending order of 
magnitude the fractions Fj / F^, 2 < j < k < n that can be obtained from the ffrst n Fibonacci numbers 
by the relations 

F1 = F2 = 1; Fm+1 = Fm + Fm„1f m > 2 

and discussed the symmetries and properties of this arrangement. As a consequence of these properties he gives 
a rapid method of constructing the Farey-Fibonacci sequence, 

In this note we offer a direct method of obtaining such a Farey-Fibonacci sequence of fractions for n > 3. 
In fact once we prove the order of arrangement, the array on page 1 would give various properties with which 
Alladi started. 

2. For n even, arrange the numbers from 2 to n in the order: 

2 4 6 .» n /? — 1 fl-3 / ? - 5 - 3; 

and for/? odd, arrange them in the order: 

3 5 7 ••• n n - 1 n - 3 n - 5 • • • 2 . 
The method is now best described with the help of an example. Let/? = 10, then the numbers from 2 to 10 are 
written in the order 

(1) 2 4 6 8 10 9 7 5 3 . 

With (1) as the base, complete the structure 
2 
3 2 

2 4 3 
3 5 4 2 

:2 4 6 5 3 
3 5 7 6 4 2 

2 4 6 8 7 5 3 
3 5 7 9 8 6 4 2 

2 4 6 8 10 9 7 5 3 
The building plan of the structure is simple and readily understood. Each figure in the configuration stands for 
a suffix of F. Thus, 5 stands for FSI so to say. The base is separated from the superstructure by a line.The 
figures above the line provide the numerators, those on the base the denominators. For any numerator the 
figure vertically below it on the base provides the denominator. Thus 5 of the sixth row will give the fraction 
F5/F8. We start reading the figures from the top. The even numbered rows are read from right to left, the odd 
numbered rows from left to right. In other words, 2 is regarded as the first entry in each row. The configuration 
now gives the Farey-Fibonacci sequence straight away. In our example, it is: 

F2/F1Q, F7/F., Fd/FlQ, F2/Fs, FjFx„ F3/F9, .» , FjF, . 

in our scheme, there is no loss of labour in extending the structure. Thus, for/7 = 11, we obtain 
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2 
3 

2 4 
3 5 

2 4 6 

2 
3 
4 
5 
6 
7 
8 

2 
3 
4 
5 
6 
7 
8 
9 

10 

2 
3 
4 
5 
6 
7 
8 
9 

2 
3 
4 
5 
6 
7 

2 
3 
4 
5 

2 
_J 

3 5 7 9 11 10 8 6 4 2 
3. To show that our scheme does give the fractions in ascending order of magnitude, we have just to prove 

that 
(i) F2/F3 < F4/F8 < .» < F5/F6 < FJF, ; 

the two terms at the point of change-over being 

Fn-l/Fn, Fn.2/Fn-1 or Fn-2/Fn-i, Fn^/Fn 

according as/7 is odd or even. 

(ij) If Fj/Fj+j > Fk/Fk+1 then Fj/Fj+h > Fk/Fk+h , for every h > 2, and 

(iii) F3/Fk+2 < F2/Fk/ k > 3. 

The proof of (iii) is straightforward and is left to the reader. 

Proof of (i). 
1/1 F2/F3, F3/F4, -.., Fn-j/Fn 

are convergents of the simple continued fraction 
T i l 1 cn = T~ T~ T~ '" T (witri n - 1 partial quotients). 1+ 1+ j+ 1 

The well known properties of even and odd convergents provide immediately the proof of (i). 

Pro of of (ii). We h ave 

(2) Fj+1/Fj < Fk+1/Fk. 

Adding 1 on both sides of the inequality, we get 

(3) FJ+2/Fj < Fk+2/Fk. 

From (2) and (3) by addition, we obtain 
(4) Fj+3/Fj < Fk+3/Fk. 

The process can be continued to establish (ii). 
We leave it to the reader to suggest a rule for obtaining the Farey-Fibonacci sequence for n = m + 1 from that 

for/7 = /77. 
4. We conclude with a formula which gives the position of the fraction Fj/Fk in the Farey-Fibonacci se-

quence for a given n, 2 < / < k < /7. 
First observe that there are in all ¥2(11 - 1)(n - 2) fractions in the sequence. It is now easy to see that FJ/FJ+J 

is the tth term in the sequence, where 

V |//7 - 2)(n -3)+j f , when/ is even, 
(n - 1)(n -2)- (1-3)}, when/is odd. 

All that we need note now is that the position of Fj/Fj+h, 2 <j <m,\n the sequence for/7 = m +h, h > 2, is 
the same as the position of FJ/FJ+J in the sequence for n = m + 1. 

These results follow at once from our scheme. 
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EXAMPLES: F6/F1 is the 31st term in the sequence for n = 10; 

Frj/F& is the 43rd term in the sequence for n = 11; 
and FJF9 has the same position in the sequence for n = 11, as F4/Fs has in that for n = 7. This 
means that F4/F9 is the 12th term in the sequence for n = 11. 
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ON CONSECUTIVE PRIMITIVE ROOTS 

M. G.MONZINGO 
Southern Methodist University. Dallas, Texas 75275 

The purpose of this note is to determine which positive integers have their primitive roots consecutive. Of 
course, if "consecutive primitive roots" is taken to include integers which have only one primitive root, then 2, 
3,4, and 6 would qualify with primitive roots 1, 2, 3, and 5, respectively. It will be shown that 5, with primitive 
roots 2 and 3, is the only positive integer which has its primitive roots (plural) consecutive. It is well known 
that the only positive integers m, greater than 4, which have primitive roots are of the form pn or 2pn, n > 1, p 
an odd prime. Most of these can be eliminated by the first two theorems. 

Theorem 1. If m = 2pn (m >6),n> l,p an odd prime, then the primitive roots are not consecutive. 
Proof. Primitive roots must have inverses, and, consequently, must be relatively prime to the modulus. 

With m > 6, there will be at least two primitive roots. Therefore, there are at least two odd primitive roots and 
no even primitive roots; they are not consecutive. 

Theorem 2. \\m= pn,n>2,p an odd prime, then the primitive roots are not consecutive. 
Proof. Forn>3, 

p < pn'2(p- 1bt>(p- 1) = <t){<t>(pn)). 

This implies that multiples of p occur within a span less than $((/)(pn)). Now, multiples of p are not relatively 
prime to the modulus, and are, therefore, not primitive roots. Since there are $((j)(pn)) primitive roots, they 
cannot be consecutive. For n = 2, <j>(<p(p2)) = (p - 1)<j>(p - 1). For/7 > 3, $(p - 1)>2, and so, 

(p - 1)<t>(p -U > 2(p-1) = 2p-2 = p+p-2 > p. 

The conclusion follows as in the case/7 > 3. For/77 = 32, the primitive roots are 2 and 5, and not consecutive. 
Lemma. If p is an odd prime greater than 5 and not equal to 7, 11, 13, 19, 31, 43, 61, then 2\Jp - 1 < 

HP~11 a; 
Proof The conclusion is equivalent to 4(p - 1) < [<t>(p - VJ\ Let p- 1 = 2ap1 -pa

n
n. and supposethat 

4(p- 1) > [<t>(p- I)]2. Then, 
li\ oa+2 31 an 2(a-1)2(a<i-1) 2(an-1), 2 (n f , 2 
(D 2 p1 -pn >2 p1 -pn \P1-V '"(Pn-V -

I f / ? - l = 2a, then (1) reduces to 2a+2 >22(a"1). This implies that 16>2a,ora<4. Thus, p = 3 or 5. 
Otherwise, (1) reduces to 

(2) 8 > 2*-iPr2(Pi- »2P?2(P2- D2-P
a
n

n-2(pn-D2. 

[Continued on page 394.] 



ON THE INFINITE MULTINOMIAL EXPANSION, II 

DAVID LEEHILLSKER 
The Cleveland State University, Cleveland, Ohio 44115 

In a previous note (Hilliker [7]) we derived, by an iterative argument, the following version of the Multinomial 
Expansion: If the inequalities 

(1) \aj\ < \al + a2 + - + a/-i\, 

for j = 2, 3, - , r all hold, then 
v n 

e» E \ _ ^~* n(n - 1) ••'(n - n 1 - tl2-—nr~i+1) n-j n2 nr-j n-nj-n2 /V-/ 
^ _ _ _ _ _ ^ _ _ drdr_r-.d2 dl 

where the summation is an iterated summation taken under all n; > 0, where / first takes on the va luer- 1, 
then r - 2, and so on until the last value, 1, is taken on. Here/7,5/,32, •••, ar are complex numbers with n not 
equal to a non-negative integer. On the other hand, one can assume a single inequality 

(3) \a2 + a3 + - + ar\ ;< \af\ 

and avoid the more complicated iterative argument by direct employment of the Multinomial Theorem for non-
negative integral exponents. The result is that the same formal expansion (2) holds, but this time the summation 
is taken under all n,> 0 with /?/ + ri2 + -•• + nr„j =j f o r /= 0, 1, 2, —. See, for example, Chrystal [2 ] , where a 
similar version is established. In this note we shall view these two forms from the perspective of a single Multi-
nomial Expansion valid under a certain divisibility condition on r. 

Let p be an integer with 1 ̂  p £. r - /, and assume that the congruence 

(4) r = 1 (mod p) 
holds. If the inequalities 

(5) \ar-(i+1)P+l + 3r-(i+Dp+2 + - + 3r-ip\ < \ai + a2 + ~' + ar-(j+1)p\, 

for \ = 0, 7, 2, ••• q, all hold, where the non-negative integer q is given by x= 7 + (q + Dp, then the formal ex-
pansion (2) holds. Here the summation is taken under all n,-> 0, 7 < i < r - 7, with 

(6) njp+1 + njp+2 + - + njp+p = tj, 

where y = Q, 7,2, —, and where j first takes on the value q then q - 7, and so on until the last value, 0, is taken 
on. 

Our argument rests upon Abel's proof of about 1825 of the Binomial Theorem: 

k=0 
for/7 andz complex and with \z\ < 1. See Abel [1 ] , See also Markushevich [9 ] , I, for this Maclaurin expansion. 
Here, as usual, we define zn as being that branch of the function f(z) = en o g z defined over the complexz-
plane with the non-positive real axis excluded, and with f[X) = 1. That is, the logarithmic function is given by 
logz = log \z\ + i argz with |argz| < m The quantities5/ + a2 + •- + 3rand ai are not 0 by the inequalities (5) 
with / = 0 and / = q, respectively. We will need to assume that they are not negative real numbers. Likewise, in 
the course of the proof we will need to assume that the quantities a-j + a2 + ••- + ar-(,+ i)p, for 0 </" < q— 1, 
are not negative real numbers. If n is a (negative) integer, these restrictions which guarantee single-valuedness, 
may, of course, be ignored. 

392 
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As a first example, let p= 1. Then (4) automatically holds and q = r- 2. The inequalities (5) become identical 
with those of (1), and the summation conditions (6) become nj+1 = fy for/ = r — 2, r- 1, ••• ,0. Thus the first 
mentioned form is covered. 

As a second example, let/? = r - /. Then (4) holds, and q = 0. The inequalities (5) reduce to thesingie in-
equality (3). The summation conditions (6) reduce to the single condition n-j + n2 + - + nr-i = to. Conse-
quently, the second mentioned form is also covered. 

We begin by writing 

(7) (ai + a2 + - + ar)
n = [(a1 + a2 + - + ar„p) + (ar-p+1 + ar-0+2 + - + ar)]

 n 

I r \tQ f r-p \ n-tQ 

- E U ) £ * E - ) • 
t0=O \k=r-p+1 J \ f i - / / 

Here we have used the inequality (5) for the case / = 0. 
Since n - t0 $ 0, we may apply Formula (7) to the summation under c on the right side of (7). We may re-

peat this iterative process. After m iterations of (7), m > 0 and not too large, one obtains, by using (5) for / = 0, 
1 , - , w , 

00 / HP \ V 
(8) (ai + a2 + - + ar)

n = £ E l n - t O - - t ; - t H \ l £ ak ) 

t0rtX,-,tm=O J 0X J '\k=Hj+l)p+1 ) 

I r-(m+1)p \ n-t0~tl tm 

A £ ") 
First we apply the Multinomial Theorem for non-negative integral exponents to the summation under k on 

the right side of (8). Since this summation contains/? terms, we can write 

( MP \ *y 

^ \ ^ til "JP+1"JR+2 „."JP+P 

i L a>< = 2^~n—7^—in—r r-jp aHP-r aHp-P+i > 
where the summation is taken under all non-negative values of the/7 integers niP+i, njP+2, —, njp+p subject to 
the restruction (6). 

Secondly we observe that 
CIO) n: i n-io-11 i;-i \ =

 n(n -V-(n-n1-n2 nmp+p + 1) 
S ( n-tQ-t-, tj-l\ = P(n~ 7'-<n-n1-n2-'" 

j=0 \ V I toftjf-tn,! 

since, by (6), to+ti + -+tm = n-j +n2 + - + nmp+p . 
Finally we note that from (4) we can choose m in such a way t h a t r - (m + Dp = 7, so that the summation 

under c on the right side of (8) reduces to a single term. 
Thus it follows from (8), (9) and (10) that 

„ < A n(n-1)-(n-n1-n2 nr.f+1) 
aj + a2 + - + ar) = > _ —— 

1 * r 4—i ni! no! -nr-.i! 
t0^lf-,tm=0 

Y »nhn2 nr.1 n-n1-n2-—nr.1 
A ar ar„f -• a2 a-j , 

where the summation is first taken under tm, then under tm-i, and so on until the last summation is taken 
under to-

Our expository sequence of papers on the Binomial Theorem, the Multinomial Theorem, and various Multi-
nomial Expansions (Hilliker [3 ] , [4 ] , [5 ] , [6 ] , [7] and the present paper) will continue (Hilliker [8]). 
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[Continued from page 391.] 

Let qb denote one of thep/ and P denote qb~2(q- I)2, Now, 

(3) qb-2(q - 1)2 = qb~1(q -2 + 1/q). 

From (3), it can be seen that/3 > /, for all q, and that/3 > 8, for all q> 11. Furthermore, for# < 11, the fol-
lowing table can be obtained, by checking the right side of (3) for the case b = 1, and the left side of (3) for the 
case b> 2. 

Prime? 3 3 5 5 7 7 
Exponent/? 2 3 1 2 1 2 
P greater than 4 8 2 8 4 8 

or equal to 
Hence, (2) holds for /7- 1 possibly equal to 2-3, 2-32, 2-5, 2-7, 2-3.5, 2-3.7 fa = 1); 4-3, 4-5, 4-3-5 fa = 2); 

or 8-3 (a = 3); and (2) fails to hold for all other choices. These combinations lead to the primes 7, 11, 13, 19, 
31,43,61. 

Theorem 3. If p is a prime greater than 5, then the primitive roots are not consecutive. 

Proof. For the primes excluded in the Lemma, the primitive roots are: for 7 - 3 , 5; for 11 - 2, 6, 7, 8; 
for 1 3 - 2, 6,7, 11; for 19 - 2, 3, 10, 13, 14, 15; for 31 - 3, 11, 12, 13, 17, 21, 22, 24; for 43 - 3, 5, 12, 18, 
19, 20, 26, 28, 29, 30, 33, 34; for 61 - 2, 6, 7, 10, 17, 18, 26, 30, 31, 35, 43, 44, 51, 54, 55, 59. None of these 
primes have consecutive primitive roots. 

Now, let p denote a prime for which the Lemma applies and suppose that k is a positive integer for which 
k2 <p- 1. Then, 

k2-(k- I)2 = 2-k- 1 < 2-k < 2sjp-1 < (p(p - 1). 

Therefore, consecutive squares appear within a span less than <p(p - 1). Since squares are quadratic residues, 
and therefore not primitive roots, no string of consecutive primitive roots can be of length <p(p - //Conse-
quently, the primitive roots are not consecutive. 
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Here is recorded a fascinating sequence of sequences which arise in the first column of matrix inverses of ma-
trices containing certain columns of Pascal's triangle. The convolution arrays of these sequences are computed, 
leading to determinant relationships, a general formula for any element in the convolution array for any of these 
sequences, and a class of combinatorial identities. 

The sequence S1 = \ 1, 1, 2, 5, 14, 42, — j is the sequence of Catalan numbers [1 ] , and the sequence 

S2 = \ 1, 1, 3, 12, 55, — | appeared in an enumeration problem given by Carlitz [2, p. 125]. 

1. SEQUENCES ARISING FROM INVERSES OF PASCAL'S TRIANGLE MATRICES 

We form a series of n x n matrices/7/, /'= 0, 1, 2, 3, ••-, by placing every (i + 1)st column of Pascal's triangle 
on and below the main diagonal, and zeroes elsewhere. Then, PQ contains Pascal's triangle itself, while Pj con-
tains every other column of Pascal's triangle and P2 every third column. We call the inverse of P; the matrix 
Pr1 and record the convolution arrays for the sequences S; which arise as the absolute values of the elements in 
the first column of Pj 

i = 2 

in the tables which follow. 
Table 1.1 Non-Zero Elements of the Matrices/7/1 and/*, 

2 
- 5 
14 

1 
- 3 1 

6 - 4 
-10 10 - 5 1 

1 
- 3 1 

9 - 5 
-28 20 

1 
- 7 

1 
- 1 

3 
-12 

55 

1 
- 1 

4 
-22 
140 

1 
-4 
18 

-38 

1 
-5 
30 

-200 

1 
-7 
42 

1 
-9 
72 

1 
-10 

1 
-13 

1 

1 

Pi 

3 1 
6 4 

10 10 

1 
3 1 
6 5 

10 15 

4 1 
10 7 1 
20 28 10 

1 
5 1 

15 9 1 
35 45 13 

395 
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Next, we will compute the convolution arrays for the sequences S,- which are tabulated below as well as estab-
lish the form of the nth term. 

Table 1.2 The SequencesStArising from Matrices T^"1 

nth term 

— ( 2 n ) 
n+ 1 \ n ) 

h-(3;) 
hi4;) 
h{5:) 

1 

0 

1 

2 

3 

4 

Si 
1 1, I 1, I -

1, 7, 2t 5, 14, -

7, 7, 3, 12, 55, • 

1, 1, 4, 22, 140, 

1, 1, 5, 35, 285, 

2n 

JH 

4n 

k 1,1,k+1,-~ -JL- l(k+Dn\ =L((k+1)n\ 

It is important to note that convolutions of the sequences S,- arisingfrom PJ1 have as their ith convolution 
that same sequence, less its first element. Let S,(x) be the generating function for the sequence S,-, and let * de-
note a convolution. We easily calculate: 

/ = 1: (1, 1, 2, 5, 14, ->)*(1, I 2, 5, 14, •••) = 11, 2, 5, 14, -j 

(1.1) xS\(x) = Sjx) -1 

i = 2: (1, 1, 3, 12, 55, -)*(1, 1, 3, 12, 55, -)*(1, 1, 3, 12, 55, - ) = (1, 3, 12, 55, -) 

(1.2) xS\M = S2(x)- 1 

i = 3: (1, 1, 4, 22, -)*(1, 1, 4, 22, -)*(1, 1, 4, 22, -)*(1, 1, 4, 22, -) = (1, 4, 22, -) 

(1.3) xS%(x) = SJxJ- 1. 

In fact, it will be shown by the Lemma [3] following, that 

(1.4) xSJ+1 = Sj(x)- 1, 

which will allow an easy construction of the convolution array for S,-. 

Lemma: Two infinite matrices (denoted by giving successive column generators), 

(fm(x),xfm+k(x),x2fm+2k(x), . .J and (Am(x),xAm+k(x),x2Am+2k(x), ~) 

are inverses if 
A(x)f(xAk(x)) = 7. 

Here, we take f(x) = 1/(1 - x), the generating function for the first column of the Pascal matrix, and \s\A(x) = 
3,(-x), where S;(x) is the generating function for the sequence S,-, and take k = i + 7. Then 

7 = A(x)f(xAk(x)) = Si{-x)[1-xS?1(-x)]-1. 
or 

1-xSJ+1(-x) = Sj(-x) 

which establishes (1.4) upon replacing (-x) byx and rearranging terms. 
Also notice that, in a convolution triangle, the generating function for the / f column is the / power of the 

generating function forthefirstcolumn. Putting this together with (1.4) gives us a neat way to generate the con-
volution triangle for any one of the sequences S,-. For example, for / = 7, 
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xtffx) S7(x)- 7 
(1.5) xSk+1(x) = s'iM-S'fUx) 

Sk
1(x) = sft(x)+xSk

1
 + 1(x) 

which means that we have a Pascal-like rule of formation for the elements of the convolution triangle. An ele-
ment in the kth column in the sum of elements in the (k - l)st and (k + 1)st columns as shown in the convolu-
tion triangle forS7 (the Catalan numbers) given below: 

Table 1.3 Convolution Triangle for S1 : 1, 1,2, 5, 14, 42, ••• 

Scheme: z = x + y 
1 
1 
2 
5 
14 

1 
2 
5 
14 
42 

1 
3 
9 
28 
90 

1 
4 
14 
48 
165 

1 
5 
20 
75 
275 

1 
6 
27 
110 
429 1 J—v 

X \ Z \ 

Notice that, except for spacing, the rule of formation is the same as that for Pascal's triangle. For Pascal's tri-
angle in rectangular form, the scheme would be a diagram like below, where z = x + y: 

rk,..<_rk-1,,,..^2M 

Similarly, for / = 2, we obtain 

(1.6) Sk
2(x) = S^'1(x)+xSk

2 

which leads to the generation of the convolution triange for $2 below. 

Table 1.4 Convolution Triange forS 2 : 1, 1, 3, 12, 55, -

1 1 1 1 1 1 - Scheme: z = x + y 
1 2 3 4 5 6 
3 7 12 18 25 33 
12 30 55 88 130 182 
55 143 273 455 700 1020 

Sk
2(x) = Sk

3'
1(x) + xSk

3
+3(x) 

For/ = 3, we have 

(1.7) 

which gives a scheme similar to those preceding, using a grid in which the column entries to be added are sepa-
rated by three spaces, as computed below: 

Table 1.5 Convolution Triangle for S3: 1, 1,4,22, 140, 

1 1 1 1 1 - Scheme: z = x+y 
2 3 4 5 6 
9 15 22 30 39 

52 91 140 200 272 
340 

1 
1 
4 

22 
140 EI 612 969 1425 1995 

Returning for a moment to the matrices PJ and comparing them to the convolution arrays for the sequences 
just given, notice that, ignoring signs, P^1 contains the alternate columns of the Catalan convolution array, and 
that PJ is always composed of columns of a convolution array for the sequence in the first column. In fact, 
except for signs, the matr ix /3^ always contains the zeroth column, the (i + Dst column, the 2(i + 1)n column, 
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— , and has its (k + 1) column given by the k(i + 1)st column of the convolution array for the sequence Sj, 
(Notice that the count of the columns for matrices begins with one, but for convolution arrays begins with zero.) 
We have proved this already in applying the Lemma. 

Now, to generalize, the formulation of the convolution triangle for Sj would require a grid in which column 
entries to be added were separated by / spaces, so that the generating function S/(x) for the zeroth column of 
the convolution array for Sj satisfies 

(1.8) S$(x) = SJT1(x)+xSf+1M, 
where, of course, Sf- (x) is the generating function for the (k - 1)st column, k = 1,2, 3, —. 

Then, notice that this means that each row in the convolution array for any of the sequences S,- is the partial 
sum of the previous row from some point on. Thus, each convolution array written in rectangular form has its 
/ row an arithmetic progression of order i, / = 0, 1,2, 3, •••, and the constant of each of these progressions is 
1. By previous results [4 ] , we have 

Theorem 1.1. The determinant of any n x n array taken to include the row of 1's in the convolution array 
written in rectangular form for any of the sequences Sj has value one. 

It will also be shown in a later paper that the determinant of any n x n array taken to include the row of inte-
gers (1, 2, 3, 4, —) and its first column the (j - 1)st column of the convolution array has value 

2. GENERATION OF CONVOLUTION TRIANGLES FOR SEQUENCES Sj FROM PASCAL'S TRIANGLE 

The convolution triangles for these sequences Sj are also available from Pascal's triangle in a reasonable way. 
If one looks at Pascal's triangle as given in Table 2.1, 

Table 2.1 Pascal's Triangle 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 6 4 1 
1 5 10 10 5 1 

1 6 15 20 15 6 1 

and takes diagonals parallel to the central diagonal 

1, 2, 6, 20, 20, 70, 252, •-, ( ^ ) 
one sees that 

1/1, 2/2, 6/3, 20/4, 70/5, 252/6, ••• = 7,12, 5, 14, 42, »• 

2(1/2, 3/3, 10/4, 35/5, 126/6, - ) = 1,2, 5, 14, 42, ••• 

3(1/3, 4/4, 15/5, 56/6, 210/7, •-) = 1, 3, 9, 28, 90, ••• 

4(1/4, 5/5, 21/6, 84/7, 330/8, - ; = 1,4, 14, 48, 165, - , 

where successive parallel diagonals of Pascal's triangle produce successive columns of the Catalan convolution 
triangle. 

To write the convolution triangle for the sequence S2, one uses the diagonal 

1,3, 15,84,495, - , ( ^ ) , - , 
and diagonals parallel to it: 

1/1, 3/3, 15/5, 84/7, 495/9, ••• = 1, 1, 3, 12, 55, ••• 

2(1/2, 4/4, 21/6, 120/8, •>•) = 1, 2, 7, 30, ••• 
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3(1/3, 5/5, 28/7, 165/9, •••) = 1,3, 12, 55, ••• 
4(1/4, 6/6, 36/8, 220/10, •••) = 1,4, 18, 88, •• 

5(1/5, 7/7, 45/9, 286/11, -) = 1, 5, 25, 130, - . 

Notice that we again produce successive columns of the convolution triangle from successive diagonals of Pascal's 
triangle. 

As a final example, we write the convolution triangle for S3 from the diagonal 

1,4,28,220, 1820,-, (4
/?

A7) 
and diagonals parallel to it: 

///, 4/4, 28/7, 220/10, 1820/13, ••• = 1, 1, 4, 22, 140, ••• 
2(1/2, 5/5, 36/8, 286/11, 2380/14, -) = 1, 2, 9, 52, 340, ••• 

3(1/3, 6/6, 45/9, 364/12, - ) = 1,3, 15, 91, -
4(1/4, 7/7, 55/10, 455/13, -) = 1, 4, 22, 140, -
5(1/5, 8/8, 66/11, 560/14, -) = 1, 5f 25, 200, - . 

Before we continue to the general case, observe the arithmetic progressions appearing in the denominators. 
For the Catalan numbers, the sequence Sf, the common difference is one; for S2, two; and for S3, three. For 
S3, for example, we find the parallel diagonals from Pascal's rectangular array by beginning in the leftmost col-
umn and counting to the right one and down 4 throughout the array. To get the sequence^ itself, we multiply 
the Pascal diagonal 1,4, 28, 220, - by 1 and divide by 1,4, 7, 10, 13, •••; to get the first convolution or SI, we 
multiply the first diagonal parallel to 1,4, 28, 220, ••• by 2 and divide by 2, 5, 8, 11, •••; for the second convo-
lution or S3, we take the next parallel diagonal, multiply by 3, and divide by 3, 6, 9, 12, — ;and for £3, we 
multiply the kth diagonal by k and divide by k, k + 3, k + 6, k + 9, •••. 

To find the diagonals easily, write Pascal's triangle in rectangular form: 

Table 2.2 Pascal's Triangle in Rectangular Form 

1 

8 

36 

120 

330 

792 
1716 

which diagonal is found by beginning in the leftmost column and counting to the right one and down (i + 1) 
throughout the rectangular Pascal array. The diagonals which lead to the convolution array for S,- are parallel 
and below this first diagonal. To find the (k - 1)stconvolutionS*,we multiply the k^ diagonal by/rand di-
vide by k, k + 1, k + 2i, k + 3i, •••. The diagonals used to find the convolution triangle forS2 are marked in the 
array above. 

Now, we can find all the positive integral powers of the Catalan sequence in the convolution sense. However, 
let us not neglect the zero or negative powers. Here, we must adopt a convention, and call 0/0 = 1 and -0 /0 = 
- 1 . We find sf, S'-j1, and S~y by following the same process as given above but using an extended Pascal's tri-
angle which includes coefficients for the binomial expansion of (1 +x)~ . 

1 
\ 

- > 
< > 
1 > 

1 

1 1 
\ 2 3 

\ \ 6 

\ 4 \V° 
vox15 

\ 6 \ \ 2 1 

7 \ 28 ̂  

1 
4 

10 
20 
35 
56 
84 

1 
5 

15 
35 
70 

126 

210 

1 
6 

21 
56 

126 

252 

462 

1 
7 

28 
84 

210 

462 

924 
\ \ \ 

Then the sequence Sf- is given by 
/ t«+ 1)n \ 
+ 1 \ " I 
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To see this in perspective, let us write down the parallel diagonals and the numbers to multiply and divide by. 

si 
SI 
Si 

s° 
s:1 

s-s 

3(1/3, 4/4, 15/5y 56/6, 210/7, •-

2(1/2, 3/3, 10/4, 35/5, 126/6, •• 

1(1/1, 2/2, 6/3, 20/4, 70/5, -0 

0(1/0, 1/1, 3/2, 10/3, 35/4, - . ) 

= 1 ,3 ,9 ,28 ,90 , -

= 1 ,2 ,5 ,14 ,42 , -

1, 1,2,5, 1 4 , -

1, 0, 0, 0, 0, -
- K 1 / - 1 , 0/0, 1/1,4/2,15/3,56/4,..) = 1 , - 1 , - 1 , - 2 , - 5 , - 1 4 , -

-2 (1 / -2 , - 1 / - 1 , 0/0, 1/1, 5/2, - ) = 1, - 2 , - 1 , - 2 , - 5 , -

Thus, you see that if we write down the extra terms from "Pascal's attic," the process works in reverse to ob-
tain all columns of the Catalan convolution triangle. This process will provide the zero and negative powers for 
any of the sequences S/. One can also complete the Catalan convolution array to the left to provide negative 
integral powers by using its rule of formation in reverse, which is the following scheme: 

x = z - y 

The rule of formation can be rewritten to work to the left for the convolution array for any of the sequences 

_ j y 

X \ Z \ 

Si-
Now, write the complete Pascal array down in rectangular form as 

1 
-7 
21 

-35 
35 

-21 

1 
-6 
15 

-20 -
15 
-6 

sgular arrangement 

1 1 
-6 - 5 
10 6 
-4 - 1 

0 0 
0 0 

1 
- 4 -

3 
0 
0 
0 

1 
-5 
10 

-10 
5 

-1 

. Now 

1 
-3 

1 
0 
0 
1 

1 
_4 

6 
-4 

1 
0 

1 
-3 

3 
-1 

0 
0 

1 
-2 

1 
0 
0 
0 

if we move the/ 

1 
-2 
0 
0 
1 
6 

1 
-1 

0 
1 
6 

21 

1 
0 
1 
4 

15 
56 

1 
-1 

0 
0 
0 
0 

1 ' 
0 
0 ' 
0 
0 ' 
0 

th row/place 

1 
1 
3 

10 
35 

126 

1 
2 
6 

20 
70 

252 

1 
I 2 
I 3 
I 4 
I 5 

6 

JS to th 

1 
3 

10 
35 

126 
462 

1 
3 
6 

10 
15 
21 

e left, 

1 
4 

15 
56 

210 
792 

1 
4 

10 
20 
35 
56 

/ = 0,1 

1 
5 

21 
84 

330 

1 1 -.. 
5 6 ••• 

15 21 •.. 
35 56 ••• 
70 126 •.. 

126 252 -

, 2, - , we form 

1 1 
6 7 

28 36 
120 165 
495 715 

Now, all diagonals which are parallel to 1, 2, 6, 20, 70, — are all vertical. By proper processing, as just described, 
we can obtain all columns of the Catalan convolution triangle. To obtain the column which gives us S1. we mul-
tiply the column above which starts with 1, k+ 1, - , by k and divide successive terms by k, k+ 1, k + 2, k + 3, 
k + 4, •••, for k = O, ±1, ±2, ±3, - , where we adopt the convention that 0/0 = 1 and -0 /0 = - 1 . If we begin 

th , again with the regular arrangement, but this time move the i " row 2i spaces to the right, we obtain an arrange-
ment which has co in 1 , -

1 
-5 
21 

-84 
330 

2 , 6 , -
1 

-4 
15 

-56 
210 

20, 70, 
1 

-3 
10 

-35 
126 

., as 
4 
1 

-2 
6 

-20 
70 

1 
-1 

3 
-10 

35 

1 
0 
1 

-4 
15 

1 
1 
0 

-1 
5 

1 
2 
0 
0 
1 

1 
3 
1 
0 
0 

1 
4 
3 
0 
0 

1 
5 
6 
1 
0 
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With the same processing as above, we obtain the Catalan convolution array with alternating signs. This shows 
that Pascal's triangle itself contains all that the inverses of the Pascal matrices gives from properly processed 
columns in the Pascal convolution array. By similar movement of the rows of Pascal's triangle and proper pro-
cessing, we can obtain sjf, i = 0, 1, 2, 3, - ; k = 0,±1, ±2, - . 

As we already know, the Catalan sequence Sx and its convolution triangle are obtained by processing properly 
the diagonal 1, 2, 6, 20, 70, —, and those diagonals parallel to it. Since Pascal's triangle has symmetry, we can 
use the parallel diagonals either above or below the central diagonal, when Pascal's triangle is written in rectan-
gular form as in Table 4.4. Then, S1 is obtained by multiplying the parallel diagonal which begins with 1, k + 1, 
— by k and dividing successive entries by k, k+ 1, k+2, —. Now, suppose that we try the same process for the 
Catalan convolution array, using diagonals parallel to 7, 2, 9, 48, 275, - , the central diagonal of the array, as 
given in Table 1.3. 

1/1, 2/2, 973, 48/4, 275/5, - = 1, 1, 3, 12, 55, - = S2 

2(1/2, 3/3, 14/4, 75/5, 429/6, - ) = 1, 2, 7, 30, 143, - = S\ 

3(1/3,4/4,20/5,110/6,637/7,-) = 1 ,3 ,12,55,273, - = S\ 

4(1/4,5/5,27/6,154/7,-) = 1 ,4 ,18 ,88 , - = ^ 

Surely you recognize the convolution array for the next of our sequences, S2! If this same process is used on 
the convolution array for 5,, one obtains the convolution array fo rS/ * / . See [8 ] , [9 ] , [10]. 

3. A SECOND GENERATION OF THE SEQUENCES S,- FROM PASCAL'S TRIANGLE 

These arrays can be obtained in yet another way from the diagonals of Pascal's triangle written in rectangular 

form. To obtain the convolution array for S2 = \ 1, 1, 3, 12, 55, 273, —J, we multiply successive diagonals 
and divide by successive members of an arithmetic progression with constant difference 3 as follows: 

1(1/1,4/4,2177,120/10,-) = 1, 1 ,3 ,12 , - = S2 

2(1/2, 5/5, 28/8, 165/11, - ) = 1,2, 7, 30, - = S\ 

3(1/3, 6/6, 36/9, 220/12, - ) = 1, 3, 12, 55, - = S\ 

4(1/4, 7/7, 45/10, 286/13, - ) = 1, 4, 18, 88, - = S* 

The diagonals are obtained by beginning in the row of ones in the Pascal rectangular array and counting down 
one and righttwo, or by beginning in the column of ones and counting to the right one and down two. The mul-
tiplier is the same as the exponent ofS2/ and the arithmetic progression used is k, k + 3, k + 6, —, k + 3n, n = 
O, 1,2,-. 

To obtain the Catalan sequence, and its convolution triangle, we can use the diagonals obtained by counting 
down one and right one beginning in the column of ones (or in the row of ones) so that the beginning diagonal 
is 1, 3, 10, 35, - , and dividing by successive terms of arithmetic progressions with constant difference two as 
follows: 

1(1/1,3/3,10/5,35/7,126/9,-) = 1 , 1 , 2 , 5 , 1 4 , - = S, 

2(1/2, 4/4, 15/6, 56/8, 210/10, - ) = 1, 2, 5, 14, 42, - = S? 

3(1/3,5/5,21/7,84/9,330/11,-) = 1 ,3 ,9 ,28 ,90 , - = S* 

Again the multiplier is the same as the exponent for Sk
p and the arithmetic progression used for the divisors is 

k + 2n, n = 0, 1,2, - . 
Then, we have a dual system working here for extracting the convolution array of the sequence S; from Pas-

cal's triangle written in rectangular form. To obtain the convolution array for S,, we find successive diagonals 
from Pascal's array by beginning in the column of ones and counting right one and down i, taking the first di-
agonal as 1,1 + 2, - . (Or, we can work to the right, taking the diagonals successively that are parallel to the di-
agonal beginning with 1, i + 2, —, obtained by counting down one and right/throughout the array.) 
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To write S,-, we take the kth diagonal which begins 1, k + i + 1, —, multiply by k, and divide successively by 
the successive terms of the arithmetic progression k + in, n = 0, 1, 2, —. Explicitly, we write themth element of 
S? as 

(i+ 1)m+k • 

') k + im \ m 

for 1 = 0, 1,2,-; k= 1,2,3,-; m = 0, 1,2,-. 
Many cases were shown which verify that the mth term of the (k - 1)st convolution of the sequence Sj, de-

noted by Sj(m,k), is given by 

(3.D 'M'rfe [<i+1)m
m

+k-1)-
m = 0, 1, 2, - ; k = 1, 2, 3, - ; i = 0, 1,2, — . Applying (1.8) leads to a rule of formation for the convolution 
array for any sequence Sj, 

(3.2) Sj(m, k) = Sj(m, k- 1) + s,(m -1,k + i). 

Assume that (3.1) holds for all convolutions for the first (m - 1) terms, and holds for the first (k - ^convolu-
tions for the first m terms. Then sf(m,k) again will have the desired form of (3.1) as shown by 

l(i+1)m+k-1 \[* k - 1 # im+k - 1 + k m rn 1 
\ m l\k - 1 + im ' im + m + k — 1 k + im im + m + k — 1 J 

l(i+ 1)m + k - 1 \ kfim +m+k - 1) 
\ m I ' (k+im)(im+m+k- 1) 

4. THE SEQUENCE OF SEQUENCES S, TAKEN AS A RECTANGULAR ARRAY 

Next, suppose one simply considers the sequence of sequences Sj as the rows of a rectangular array, and con-
siders the progressions appearing in the columns. We omit the first term for each sequence Sj 

Table 4.1 The Sequences Sj 

So-

St: 

S>: 

sy-
S4: 

S5: 

S>: 

57: 

Order of 
AP: 

Constant: 

Form: 1 

1 
1 
1 
1 
1 
1 
1 
1 

0 
1 

-/ 

1 
2 
3 
4 
5 
6 
7 
8 

1 
1 

2° 

1 
5 

12 
22 
35 
51 
70 
92 

2 
3 

37 

1 
14 
55 

140 
285 
506 
819 

1,240 

3 
16 
4 2 

1 
42 

273 
969 

2,530 

5,481 

10,472 

18,278 

4 
125 
53 

1 
132 

1,428 
7,084 

23,751 

62,832 

141,776 

285,384 

5 
1296 

64 

1 
429 

7,752 

53,820 

231,880 

749,398 

1,997,688 

4,638,348 

6 
16807 

I5 

1 
1,430 

43,263 

420,732 

2,330,445 
9,203,634 

28,989,675 

77,652,024 

7 
26^144 

8* nn-2 

Notice that the kth column is an arithmetic progression of order (k - 1), with common difference k , This 
means, using Eves' Theorem [4 ] , [5 ] , 

Eves' Theorem: Consider a determinant of order n whose Ith column (i = 1, 2, —, n) is composed of any 
n successive terms of an arithmetic progression of order ft - 7,/with constant a,% The value of the determinant 
is the product ^ /^2 ••• an -
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that we can write Theorems 4.1 and 4.2. 

Theorem 4.1: The determinant of any # x n array taken to include the column of 1's in the sequence 
of sequences S,- rectangular array has value 

U J". 
1=1 

Theorem 4.2: Take a determinant of order n with its first column in the column of integers, and its 
first row along the row of ones of the rectangular sequence of sequences S; array. The value of the determinant 
is 

n+1 . 0 n r2. 
1=1 

Proof: Subtract the (i - 1)st row from the Ith row, / = n, n - 1, - , 2, to obtain a determinant whose kth 

column is an arithmetic progression of order k- 1 with constant (k + i)'k+"~2
 ancj apply Eve's Theorem. 

Further, the following result seems to be true. 

Conjecture: Take an/? xn determinant such that its first column is the column of integers in the sequence 
of sequences S; rectangular array and its first row is the kth row, k= 1,2,3, •••. Then its determinant is given by 

To prove that the constants of the arithmetic progressions have the form given, we quote Hsu [6, p. 480]: 

m < n 
m = n 

r=0 
2 

and substitute n' = n - 1, t = n , s = -n, m = n - /, to obtain 

(4.D i £ ' <-v'(n7')(n2
az?)-i<«"-'>*»"*. 

where we also make use of the known general form for the/ft*'7 term of S,-. 

5. A CLASS OF COMBINATORIAL IDENTITIES 
- 1 -1 

Returning to the first section, in Table 1.1 we computed matrices/^- . Now, since P,Pl = I, we can write an 
entire class of combinatorial identities. Notice that, since we are dealing with infinite matrices such that all non-
zero elements appear on and below the main diagonals, P,PJ -/ for any n x n matrices/3,-, Pj , and / formed 
from the n x n blocks in the upper left of the original infinite matrices. Since/5/ contains elements taken from 
Pascal's triangle, it is a simple matter to write the element in its (n + 1)st row and (j+ 1)st column as 
(5.1) Pi(n,j)= {"1%). n = 0,1,2,-; j = 0,1,2,-.. 

Now, the elements in PJ1 are the same as those in the convolution array for 5/, except for sign. When / = /, we 
have the Catalan convolution array, and the element of P*}1 in i t s /W 1)st row and (p + 1)st column is given by 
the (r - p)th element of the (2p)th convolution of 5 ; , or the (r - p)**1 element in the sequence S2p+1,which 
is, by (3.1), 

pVr.Pt - t-1)"s,(r-p,*+1) = h ^ ^ ( A ) 
while , „ . . \ 

Pl(n,j) =("+>) . 

Since P7P~^ = I, the element in the (n + 1)st row and (p + 1)st column of/ is given by 
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0 = J2 P^n'^P%P)' n ? p. 
i=0 

Now, when/7 = ft we have the first column of/3;7, of the sequence Sf of Catalan numbers, and 

« '-E#f(7)(V') 
J=o 

which was given as (3.100) by Gould [7 ] . 
Since n >p + 1 gives non-diagonal elements of /, we also have the more general 

(5.3) 0=yUlt^±JLl 2j \, n+j\ 
*-* P+1+J \ J-P l\ 2j I 

We can further generalize by not restricting i. Let the element in the (r + 1) row and (p + 1) column 
o f / ^ b e 
(5.4) pffr, p) = (- m(r -p,ip + 1) = Lzll^JLlkJLlJ ( ' + J j 

Since PfPJ = I, for/7 > p + 1 we obtain a non-diagonal element, giving the very general identity 

(* R) n = V (-VJ~P[(1+i)P+ 11 l J + a \ I » + 4 \ 
<L* p + 1+ij \ J-P I \J + 'J I ' 
J=P 

for/ = 0, 12,3, -;p = 0, 1, 2,->;mdn > p + 1. 
Notice that, f o r /= 0, we have Pascal's triangle in both P,and PJ1, leading to 

(5.6) ' - E ' - ^ U P H / ) ' 
J=P 

and, when / = 0 and p = 0, to the familiar identity, 
n 

(5.7) 0=Y< (~1>j (•)• 
1=0 

For/? = 0 in (5.5), we are in the first column, and 

a* - t ^ ['Y)[Ui)-t^{';')[i) 
j=0 j=0 

gives a recursion relation for the terms of S,-, as 

(5.9) o = £(-i)iSi(n) ( ; ; / ) , 
y=0 

where $,Y/v /J is the/f /7 term of the sequence S- . 
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EXPONENTIALS AND BESSEL FUNCTIONS 
BRO. BASIL DAVIS, C. F. C. 

St Augustine's High School, P. 0. Basse"m Road, 40102 Maharashtra, India 
and 

V.E. HOGGATT, JR. 
San Jose State University, San Jose, California 95192 

A Bessell function of orders may be defined as follows: 

(1) J (x)=Y ^ / * \n+2k 

x=o 
It may be easily shown that for integral n,J^(x) is the coefficient of Un in the expansion of 

"p [!("-£)] 
i.e., 

(2) " 4 J ( « - £ ) ] - I ; un^> 
A7=-CQ 

Now let 
(3) u- 1-= L2k+1, 

where L2k+1 's a Lucas number defined by 
(4) L1 = 1, L2 = 3, Ln = Ln-^ + Ln-2 . 
where n is any integer. 

Equation (3) becomes u - uL2k+i -1 = 0with roots 
2k+i _ ,. , /p X2k+1 2k+1 

where 

( i ^ ) " « a ^ and (i^pT'.p-

a _- l±Jl and & - L^H 
are the roots of the well known quadratic 
(5) 0 2 = <f>+1. 

[Continued on page 418.] 



THE GOLDEN SECTION AND THE ARTIST 

HELENE MEDIAN 
Baltimore, Maryland 21217 

The readers of The Fibonacci Quarterly, interested for the most part in ramifications of their fascinating sub-
ject as expressed in mathematical terms, may also be interested in seeing what happens when the geometric har-
monies inherent in the series are made visible to the eyes. 

The ratio of the Fibonacci series, 1.618 or 0, reciprocal 0.618, when drawn out rectangular form, produces 
the golden section rectangle (Fig. 1). The rectangle can be constructed geometrically by drawing a square, mark-
ing the center of the base and drawing a diagonal from this center to an opposite corner; then with this diagonal 
as a radius and the center base as center, drawing an arc that cuts a line extended from the base of the square. 
This will mark the end of a rectangle whose side will be in 1.618 ratio to the end. The end will be in 0.618 ra-
tio to the side. The excess will itself be a 0 rectangle. 

A line parallel to the side through the point where the diagonal intersects the side of the square will mark off 
another 0 rectangle with a square on its side in the excess, and a 0 rectangle in the square; the remainder of the 
square will contain a 0 rectangle with a square on its end. 

Many instances of the presence of the golden section relation can be found in fine works of art preserved for 
their merits through the centuries. Some works of art can be found that have dimensions whose quotients are 
close to the ratio 1.618. In the cases studied, when these areas were subdivided geometrically as in Fig. 2, all 
main lines of the pictorial designs, and all minor directions and details were found to fall along lines of the dia-
gram and diagonals to further subdivisions. 

The subdivision of the 0 rectangle can be accomplished geometrically by drawing lines parallel to the sides 
through the intersections of diagonals with the side of the square, and lines parallel to side and end through 
intersections of these lines with diagonals of square and excess, and through any other intersections that may 
occur (Fig. 2). 

0 1.6(8 

sx /4\ 
5 

Û * 
/ $ \ 
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s * 

Y/ 
/ * \ 

r\ ^x 
~ / \ 

\J 
l l 

Figure 1 Figure 2 
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Or, it can be done perhaps more precisely by using the Fibonacci series. 
The measurements of Giotto's Ognissanti Madonna, ci310, in the Uffizi, Fig. 3, fall just a little short of the 

1.618 ratio. They are given as, 
10 ' 8 " x6 ' 8 " = 128" x 80" = 1.6 

photos measure, 
25.9 x 16.1 cm = 1.618-.0093 
13.4 x 8.3 cm = 1.618-.0036 

subdivision in the Fibonacci series: 

.618 x 8.3 = 5.1294 
for practical purposes 

8.3 
5.1294 
3.1706 
1.9588 
1.2118 
.747 
.4648 

8.3 
5113 
3.17 
1.96 
1.21 
.75 
.46 

When the golden section rectangle is applied to the photo of the painting, and the main divisions drawn, and 
the Fibonacci subdivisions are marked off on the edges, it will be found that the area occupied by the Madonna 
and Child lies precisely within a main 0 division of the excess at the top, and a main 0 division of the square at 
the bottom, and 0/2 divisions at the sides. Architectural details, the angles of the steepled frame, vertical sup-
ports, centers of arcs, divisions of the platform, fall along subdivisions or along obliques from one subdivision 
to another. The lines of the top of the painting extend to center of golden section excess. The hands of the 
IVIadonna and Child, all lines of the angels, the tilt of their faces, their arms wings, the folds of their garments, 
fall along directions from one 0 subdivision to another. 

In making a study of the apparent incidence of certain geometric patterns in fine art, over 400 paintings of 
accepted excellence were analyzed. All but a few yielded to analysis. The majority clearly showed the presence 
of the 0 relationship, or of its related shape, the sjb rectangle (Fig. 5). However, the overall shape of only a 
small number was in the simple 1.618 proportion. All followed the diagram lines in their designs. Among them 
we can mention: (Measurements starred are from photos of pictures shown within frames or borders, and are in 
centimeters. All others are dimensions given in catalogues or art histories, and are in inches.) 

Duccio Madonna Enthroned (Ruce\\a\) 1285, Florence 14.32x8.85*= 1.618 
Duccio Madonna and Child, Academy, Siena 5.82x3.6* = 1.618 
Martini Road to Calvary, c 1340 Louvre 9-7/8 x 6-1/8 = 1.618-.0058 
da Vinci Virgin of the Rocks, 1483, Louvre 78 x 48 = 1.618 - .007 
Turner Bay of Baise, Tate Gal. 571/2 x 93% = 1.618 - .0008 
Cole Florence from San Marco, Cleveland Museum of Art, 1837 39 x 63-1/8= 1.618-.0001 
Romney Anne, Lady de la Pole, 1786, M FA Boston 951/2 x 59 = 1.618+ .0006 

The photo of an Egyptian stele c. 2150 B.C., in the Metropolitan Museum of Art shows dimensions that 
have the 1.618 ratio. A seated figure fits exactly within the excess, heiroglyphic details fit in subdivisions of 
the square. 

There is a bas-relief of an Assyrian winged demi-god of the 9th Century B.C. in the Metropolitan Museum 
of Art that fits perfectly into a 1.618 rectangle, and the strong lines of the wings, legs, beak follow divisions 
and diagonals of the 0 diagram. 

The Babylonian Dying Lioness, Ninevah, c. 600 B.C., in the British Museum, London, can also be contained 
exactly in a 1.618 rectangle. All lines of the figure, the directions of the arrows, fit on the lines of the diagram. 

In a slab from the frieze of the Parthenon, c. 440 B.C., in the British Museum, showing two youths on pranc-
ing horses, the design also can be contained exactly in a0 rectangle and all lines conform to the pattern of the 
diagram. 
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The measurements given for a marble balustrade relief in the Cathedral Baptistry, Civitale, Italy, c 725-
750 A.D., are "about 3# x 5V In the photo, the border measures 8.2 x 13.25* = 1.618 - .001. All directions 
and details fit into the 0subdivisions. 

The dimensions of many of the paintings studied yielded quotients close to the ratios of figures that con-
sisted of sections of the 0 rectangle, often combined with squares (Fig. 6): 

.618 
2 
1.618 

1.309 = 1+ -

1.4045 = 1 + -

1.302 = 1 + (1 — .618) 

.809 = ^p- (reciprocal, 1.236 = 2 x.618). 

We can see an example of one of these combined areas in Yellow Accent, 1947, private collection, by 
Jacques Villon (Fig. 7). The measurements of the photo of the picture shown in its frame are: 

9.3 x 11.5* = 1.236+ .0004. 
This couldn't be much closer to 1.236. To get subdivisions in the proportions of the Fibonacci series: 

.618 x 9.3 = 5.7474 9.3 
-5.7474 

3.5526 
2.1948 
1.3578 
.837 
.5208 
.316 
.2046 

When the edges of the painting are subdivided in these proportions, lines of the painting will be found to ex-
tend from one point of division to another precisely. 

The same 1.236 framework can be found in L'Arleslenne, painted by Van Gogy in 1888. Its measure-
ments are given as 

36 x 29 = 1.236 + .0053 
Photo 10.5X 8.5* = 1.236- .0007 

All lines outlining areas and giving directions to details go from one 0 division on the edge to another. 



1976] THE GOLDEN SECTION AND THE ARTIST 

# 9 £ 0 * *ft, 

TTT 0 O jS 

Figure 7 



412 THE GOLDEN SECTION AND THE ARTIST [DEC. 

Among paintings that have ratios close to 1.236 and can be analyzed on that there are 

Gos. Bk. of Ebbo St Luke, a. 823, Epernay 5-3/8 x 6-7/8 = 1.236 - .0001 
Cloisters Apocalypse Opening of Book, c 1320, Cloisters, N. Y. 13.4 x 16.6* = 1.236 + .0028 
Cezanne Still Life, c 1890, N G A Wash. 251/2 x 311/2 = 1.236 - .0008 
Seurat Fishing Fleet, c 1885, M Mod. A N Y 8.85 x 10.9* = 1.236 - .0044 
Picasso Lady With Fan, 1905, Harriman Col. 39-3/4 x 32 = 1.236 - .0045 
Gris Painter's Window, 1925, Baltimore M A 39-1/4 x 31-3/4 = 1.236 - .0063 

Many more complicated combinations were found. A figure made of a square plus an excess containing two 
V5 rectangles with a square on their side has the ratio 1.528 (Fig. 8). 

An .809_shape with a 0 rectangle across its side has the ratio 1.427. 
Two V ^ rectangles side-by-side has the ratio 1.118 (2.236/2). 
All but a few paintings with dimensions that give quotients close to these ratios yielded to rigorous analysis. 
The mathematical system on which this study was based was worked out in the early 1900's by Jay Hambidge, 

a minor American artist, who was interested in investigating several phases of art, particularly that of the classic 
Greek, in search of a possible mathematical basis for its apparent perfection. He measured hundreds of Greek 
vases in the Boston Museum of Art and the Metropolitan Museum in New York, and defined a series of figures 
basic to the combinations wjiose ratios kept recurringjn the measurements of the vases. They were rectangles 
in the proportions of 1 to V2 (1.4142), V3 (1.732), V5 (2.236), and the golden rectangle, 1.618 o r 0 . 

To identify the various combinations that he found, and to properly subdivide them, he calculated their ratios 
and obtained their reciprocals. This mathematical material was not new, but his application of it to Greek art 
and his suggestion that artists should use it in their own work were new, and his clarification of the series of 
root rectangles, and their properties and interrelations evidently took even mathematicians by surprise. 

He presented his discoveries in Dynamic Symmetry: The Greek Vase and The Parthenon, Yale University 
Press, 1920 and 1922. The general substance originally published in his review, The Diagonal, 1919-1920, and 
in Elements of Dynamic Symmetry is available now in a Dover publication, 1967. 

In this study I have applied Hambidge's method of finding the specific geometric figure present in a work of 
art by identifying the quotient of its dimensions with the ratio of known geometric figures. As far as I know, 
this is an approach to the subject that has not been made before to works of art other than that of the Egyptians 
and Classic Greeks. 

Hambidge thought that the system of planning works of art, vases, statues, murals, buildings, by the use of 
geometric frameworks disappeared with the classic Greeks, and that the Romans and others used what he called 
"static" symmetry, or a squared-off frame, which gave proportion in line, rather than in area (Fig 9). 

However, it seems that evidences of the Greek knowledge of this process of geometric design can be found in 
later periods in many areas within the Greek sphere of influence. The first statues of Buddha were made in 
Gandhara in northwest India, which was settled by officers and soldiers from the remnants of Alexander's 
army and remained to some extent in contact with the western world. 

There is a seated Buddha, c. 3rd Century A.D., in the Seattle Art Museum (Fig. 10), that shows the Greek 
influence in the treatment of hair and drapery. A 0 rectangle can be applied to a front view photo of it, and all 
parts will be found to conform to the 0 framework. This tradition seems to have persisted, as correlation with 
figures consisting of more complicated combinations of 0 rectangles and squares can be found in a Teaching 
Buddha in Benares of the 5th Century A.D., and in an icon from South India, Shiva as King of Dancers, of the 
12th Century A.D. 

Other examples of works of art done in areas under Greek influence in which the 0 rectangle or its combina-
tions are apparent can be cited: 

f I o o r ti I es Diana the Hun tress sq u a re ̂  0 
Still Life square ^ 0 

wall panels, Fish 6.4 x 8.6* = 1.3455 - .0018 (Fig. 11) 
Man and Lions 7.9 x 5.9* = 1.3455 - .0015 
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wall painting, Hercules and Telephus 9.9 x 8* = 1.236 + .0017 
mms. Georgics, Bk. 111, 5th Century A.D., Vatican Library 
Shepherds Tending Flocks 19 x 19.5* = 1.0225 + .0038 (.618 + .4045) 

As the Graeco-Roman merges into the Early Christian culture, manuscript paintings, mosaics and frescoes 
still give evidence_of the presence of aeometric pattern on various 0 arrangements, and now more frequently, 
on the V2 and y/2 themes: 

Mosaics, 5th Century A.D., Santa Maria Maggiore, Rome 
Abraham and Angels 19.8 x 17.2* = 1.1545 + .0046 
Melchizedek and Abraham 19.3 x 14.8* = 1.309+ .0018 

Manuscripts 
Echternach Gospels, Ireland (?) c. 690 

Symbol of St. Mark 19 x 14.6* = 1.309-.0008 
Book of Durrow, Irish, 7th Century, Trinity College, Dublin 

Symbol of St Matthew 6 x 13.9* = 2.309 + .0076 
Irish Gospel Book, St. Gall, 8th Century 

St. Mark and Four Evangelists 19.7 x 14.65* = 1.3455 - .0008 
Registrum Gregoril, Trier, c. 985, Musee Conde, Chantilly 

Emperor Otto II or III 20.8 x 15.4* = 1.3455 + .0051 
given 10-5/8 x 7-7/8" = 1.3455 + .0037 

Fresco, Catacomb of Commodilla, Rome, 7th Century . 
St Luke 19 x 18 = 2 squares+ V ^ 

All conform in their design to the geometric patterns indicated by the quotients of their dimensions. 
The 0 presence continues through the centuries unfolding into the Renaissance with the works of Duccio and 

Cimabue. Most of the paintings analyzed in this study fell within the Renaissance and Baroque periods, c. 1300 
- c. 1660. Most of the artists were born in, or spent time in special areas, Venice, Florence, Milan, Umbria, 
Rome. One or another of these were also the dwelling places from time to time of the mathematicians Luca 
Paciola, Alberti, Bramanti, and the artist-mathematicians da^Vinci, della Francesca, and Durer. The ratios found 
in this period included many combinations of the 0 and yjb rectangles, of varying degrees of intricacy. 

One of _the combinations found is the 1.691 shape (Fig. 11). This consists of a square and an excess that con-
tains a yjh rectangle with_a square on its side. (Hambidge found this to be part of the floor plan of the Parthe-
non.) The ratio of the V5 rectangle is 2.236, its reciprocal is .4472. The ratio of the excess of the 1.691 figure 
will be 1.4472, reciprocal .691. Among works whose dimensions give a quotient close to 1.691, and yield to 
analysis are: 

Rembrandt Goldweigher's Field (etching) 6.75 x 18.15* = 2.691-.0022 
Sassetta Wolf of Gubbio 25.3 x 15* =1 .691- .0044 
Sassetta St. Francis and the Bishop 26*09x15.4* =1.691 

If the excess of the 1.691 shape is divided in half longitudingly, the ratio of the square and this section will be 

1 + 4 p = 1.3455 
The excess will contain two squares and two V5 rectangles. 

Among works whose dimensions yield quotients close to this figure and that analyze precisely are: 
AvignonPietaf c. 1460, Louvre 6 4 x 8 6 = 1.3455-.0018 

Pollaiuolo (?) Portrait of Man, Nat. Ga. Wash. 201/2 x 151/* = 1.3455-.0013 
Clouet Francis I, Louvre c. 1525 28-1/8 x 32-3/4 = 1.3455-.0033 
David Sabines, 1799, Louvre 152 x 204-3/4 = 1.3455-.0011 
Beardsley Flosshilde 10.1 x 7.5* = 1.3455+ .0011 

The Isenheim Altarpiece, 1511-1515, by Mather Grunewald, consists of a center panel, two side panels, and 
a base. Dimensions given are for the paintings within the frames, and are meaningless as geometric ratios. How-
ever, if the frames are included and the workJs considered as a single plan, as sometimes happened in Medieval 



1976] THE GOLDEN SECTION AND THE ARTIST 415 

and Early Renaissance art, the overall dimensions measured on a photo of the complete work (Fig. 12), are: 
26.55 X 35.72* = 1.3455. 

The center panel plus the sides are contained in an area cut off by a 0 division in the lower part of the square. 
Such are the interrelations of areas in the dynamic shapes that this area has the proportions 

20.28x35.72* = 1.764 (-.0022)1.764 = r 1.309). 
The center panel, The Crucifixion, including the frame, is 

20.28 x 22.72* = 1.118 ( - .0028). 
The painting itself has strong lines of action, all of which coincide with divisions of the 1.118 shape or diagonals 
to prominent intersections. 

The side panels, St. Sebastian and St Anthony measure 
17.5 x 6.5* = 2.691 (+.0013), 

The area remaining in the overall 1.3455 shape after the three panels are cut off consists of 2 $ rectangles, 
2 squares, and a .4677 shape, reciprocal 2.1382 (the shape that Hambidge found to be the floor plan of the 
Parthenon). The Entombment pictured on the stand, has areas and line directions that conform to subdivisions 
of the 0 rectangles and squares in which they occur. 

As far as I know, there is no concrete proof to show that the geometric relations found in the works of art 
were the result of deliberate planning on the part of the artists. The evidence is circumstantial. 

There is a time pattern found in those examined. Pictorial designs on the >J2 theme occurred c. 1200 - c. 1450, 
then seldom appeared again until the late 1800's. The 0 theme was found throughout, peaking c. 1550, the V5 
was most prevalent in the 1600's, the V 0 m the 1700's, reappearing in the late 1800's. 

There is the phenomenon of the irregularity of dimensions of paintings. Of the 400 studied, only about 1/8 
had regular proportions, as 1-1/2, 1-1/3, etc. All the rest had odd measurements, as 70-1/2 x 53-1/2, 33 x 26, 
18-1/2 x 16. The ratios of jail could be closely related to ratios of geometric figures which were combinations 
of squares and \J2, sj%, yjh or 0 rectangles. When the figures appropriate to the dimensions were applied to 
the paintings and properly subdivided, all lines of direction and demarcation of areas to smallest detail, fell into 
place on the parts of the diagram. The experience of finding this correlation tends to be very convincing to one 
who sees it happening over and over again. 

Only a few clear clues were found. Fragments of dotted lines, vertical, horizontal, oblique, that fitted into a 
1.472 shape, in background and design of a drawing by Poussin; an engraving by Durer in a 1.427 rectangle, a 
close copy by Raimondi in a 1.382 shape; construction lines of 0 rectangles showing in the background of a 16th 
Century Japanese screen, whose panels had the ratios of 3.236 and 2.809. 

Matila Ghyka, in his Geometry in Art and Life, has a chapter in which he presents evidence that a secret geom-
etry based on the circle and pentagram was passed on from early Medieval times by secret ceremonies in the 
masons' guilds. He infers that a similar practice could have passed the knowledge down through the artists 
guilds. Ghyka shows instances of the 0 rectangles in Renaissance art and architecture. He thought that know-
ledge of the system disappeared in the late 17th Century after van Dyke, and was rediscovered from time to 
time by individual artists, like Seurat, or by small cults. _ 

However, instances of the presence of the 0 rectangle, and of the special figure of the V 0 (1-273) (Fig. 14) 
can be discerned in some 18th Century paintings, as, 

Pater Bathera c1735 Grenoble 25-1/2 x 32-1/2 = 1.273 + .0015 
Boucher Bath of Diana 1742 Louvre 22-1/2 x 28-3/4 = 1.273 + .0047 
David Death of Marat 1793 Brussells 6 4 x 4 9 =1.309-.0029 
Watteau Gilles c1720 Louvre 58-3/8 x 72-1/4 = 1.235 - .0062 
Chardin Dessert 1741 Louvre 18-1/2 x 22 = 1.191 - .0018 

All elements of the compositions relate closely to appropriate subdivisions. (.382)/2 
Paintings by the early 19th Century artists working in the academic tradition also show 0 relationships: 
Ingres M. Benin 1832 Louvre 37-1/2 x 46 = 1.236 - .009 
Delacroix Massacre at Scio 1824 Louvre 166 x 138-1/2 = 1.191 - .004 
Goya May 3,1808 1814 Prado 104-3/4 x 135-7/8 = 1.309 - .0119 
Gericault Raft of the Medusa 1819 Louvre 193 x 282 = 1.4635 - .0024 

(1.618 — .618/4) 
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The upheaval in the art world, the split away from the academics that occurred in the middle of the 19th 
Century, is usually interpreted in terms of subject matter and technique. From my study, I am inclined to 
think that it was also partly related to the "liberation" of the knowledge of geometric design from the con-
fines of the tight academic circle. Who was responsible for the disclosure? One of the Barbizon painters? 
Courbet? Someone made it known to the outsiders. From internal evidence, Manet had it, and Renoir, Degas, 
Toulouse-Lautrec, Cezanne, Seurat, Van Gogh. 

In the late 80's, there was a group of artists led by Serusier, devoted to the study and application of the 
golden section. Bonnard and Vuillard were members of the group. They centered at Pont Avon, where Gauguin 
was in contact with them. His first well known painiting, Jacob Wrestling with the Angel, was made there in 
1888. It measures 28-3/4 x 36.5= 1.273 - .0034 (V0), and analyzes perfectly on this pattern divided in 0 ratio. 

All of these artists were greatly interested in the newly revealed arts of Japan. We wonder to what extent they 
discerned the presence of geometric relationships in Japanese prints. These can be found clearly and definitely 
in the few examples of Japanese art examined. In four from a series The Manga, in the Metropolitan Museum, 
by Hokusai, 1817, the borders measure: 

10 x 14.45* = 1.4472-.0022(1 + V5~) 
sketches in style of Hokusai 1818 10.5 x 14.5* = 1.382-.0022 
Anecdotes by Hokusai 1850 10.2 x 14.4* = 1.4142 - .0025 (V2) 
Red and White Peppers Freer Gallery 18th Century 4 7 x 1 9 =1.472 - .0017 

1 + (.1.118+1) 
Horses, Baltimore Museum of Art 17th Century 4.5 x 12.2* = 2.7071 +.004 

screen (.7071 = r 1.4142) 
Landscapes of the 4 Seasons 6.73 x 12.3*= 1.8284-.0008 

screen (.4142+ .4142) 
Han-Shan andShih-te screen 16th Century 2.38 x 7.7* = 3.236 (r..309) 
Dai-itoku M F A Boston, painting 11th Century 6'31/2" x 461/2 = 1.618+ .005 
All analyze precisely. 
In Paris, about 1910 there was a group that called itself "Section d'Or," that investigated the use of this pro-

portion. The group included Duchamp, Villon and Picabia. Matisse and Picasso were in contact with them: 
Duchamp Nude Descending Staircase 1912 58-3/8 x 35-3/8 = 1.644 + .006 

(.809+squares) 
Villon Dinner Table 1912 27-3/4 x 32 = 1.236 + .0067 
Matisse Variation on de Heem 1915 71 x 87-3/4 = 1.236 - .0008 
Picasso Lady with a Fan 1905 39-3/4 x 32 = 1.236 - .0045 
One wonders also how the revelation of the geometric system by the publication of Hambidge's investigations 

of Greek art, the probable original source, affected those who were in possession of the secret, who were still 
an "elect" group. At about the time of the revelation of Hambidge's discoveries, some artists in Paris, and 
Duchamp and Picabia in New York, started in a new direction, leading to Dada and Surrealism, the antithesis 
of the ideal of the order of Cubism and Dynamic Symmetry. This movement succeeded in the predominance 
of Surrealism in the 30's, which to some extent dampened interest in the order of geometric design. 

The theory behind this study is that down through the ages from Classic Greek times, the knowledge of the 
process of geometric design was the possession of carefully chosen groups sworn to secrecy. That, of all art pro-
duced at any one time, their works are the ones that have mostly survived, partly because those chosen would 
naturally be the better artists, partly because of the superior effect the ordered proportions gave to their works. 

What effect will the placing of this knowledge at the disposal of all artists have? Hambidge seemed to expect 
that artists would eagerly sieze upon his findings and use them in their work, and thus raise the quality of art 
on all levels. This did happen to a certain extent in illustration, advertising design and layout, industrial design, 
architecture and interior design, paralleling similar developments stemming from the Cubist movement in 
Europe. Hambidge was obviously unaware of the experiments with the golden section of Seurat, or of the 
Serusier group, or of the Section d'Or. Among outstanding American painters of the time who adopted the 
system we can mention Leon Kroil, George Bellows, Robert Henri and Jonas Lie. 
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Many others in the art field closed their eyes to the whole idea. If they should find it to be true, they would 
have to rethink all their concepts about art. Artists, art critics and historians often are not inclined to mathe-
matics, and tend to shy away from it as something they don't know much about, and would have to make an 
effort to understand. 

It takes some mental effort to understand and use the geometrical diagrams. Some can't do it; some, who 
must "paint as the bird sings" find it confusing to the point of interrupting their intuitive inspiration. Many 
artists resented the proposition that proportion and line direction, that they had worked so hard to master, 
could be achieved easily and perhaps more effectively by the use of a diagram. Many, not versed in mathematics, 
cannot appreciate the beauty of order in mathematics, and interpret it as "mechanical." 

Will the situation resolve itself as before-the survival of the fittest-only now with the means of survival open 
to all those equal to grasping it? Or will the secret handed down through the ages as a "precious jewel" to those 
carefully selected for ability and responsibility, be diffused and list in indifference and sloth? 

SOURCES 

Jay Hambidge, Dynamic Symmetri The Greek Vase, Yale University Press, 1920. 
Jay Hambidge, The Diagonal, monthly review, 1920. 
Jay Hambidge, The Elements of Dynamic Symmetry, Dover Publications, Inc., New York, 1967. 
Matila Ghyka, The Geometry of Art and Life, Sheed and Ward, New York, 1946. 

[Continued from page 405.] 

From (5) it can be shown by induction that 

(6) an = aFn + Fn.7 and (5n = (3Fn + Fn.1f 

where Fn and Fn„i are Fibonacci numbers defined for integral n by 

(7) F0 = 0, F1 = 1, Fn+1 = Fn + Fn^. 

From (2) and (3) we may write 
oo 

(8) exp | L2h+1 = £ UnJn(x) 

From (6), we specialize 

i/n „(2k+1)n „ r , c 

U = a = aF(2k+1)n + F(2k+1)n-1 

Un = p(2k+1)n = ^F(2k+1)n + F(2k+1)n^ . 

Therefore (8) becomes 

(9a) exp( |£ 2 ^ / )=a ]T F(2k+1)nJn(x) + £ F(2k+i)n-lJn(x) 
n=-oo n=-oo 

and 
oo oo 

(9b> exp ( I £ 2 / r + / ) = 0 J2 F(2k+1)nJnM+ Yl F(2k+1)n~1^nM 

n=-°° /7=-°° 

[Continued on page 426.] 



GOLDEN SEQUENCES OF MATRICES 
WITH APPLICATIONS TO FIBONACCI ALGEBRA 

JOSEPH ERCOLANO 
Baruch College, CUNY, New York, New York 10010 

1. INTRODUCTION 

As is well known, the problem of finding a sequence of real numbers, \ an J, n = 0,1,2, •••, which is both 
geometric (an+i = kan, n = 0, 1,2, —) and "Fibonacci" (an+i = an +an-i,n = 1, 2, - f with 3 0 - 1) admits a 
solution-in fact, a unique solution. (Cf. [ 1 ] ; for some extensions and geometric interpretations, see [2].) This 
"golden sequence" [1] is: 

1, 0, 02, - ,0 ' 7 , ..., 
where 0 = 1/2<1 + -Jh), the "golden mean," and satisfies the Fibonacci equation 

x2 - x - 1 = 0. 

In this paper, we pose an equivalent problem for a sequence of real, non-singular 2 x 2 matrices. Curiously, 
we will show that this problem admits an infinitude of solutions (i.e., that there exist infinitely many such 
"golden sequences"); that each such sequence is naturally related to each of the others (the relation given in 
familiar, algebraic terms of the generators of the sequences); and that these sequences are essentially the only 
such "golden sequences" of matrices (this, a simple consequence of a classical theorem of linear algebra). Finally, 
by applying two basic tools from the theory of matrices to the generators of these golden sequences, we deduce 
simply and naturally, some of the more familiar Fibonacci/Lucas identities [3] (including several which appear 
to be new); and the celebrated Binet formulas for the general terms of the Fibonacci and Lucas sequences. 

2. THE DEFINING EQUATIONS 
Let 

where x, y, u, v are to be determined subject to the constraint that xv - yu £ 0. Clearly, a necessary and suf-
ficient condition for the geometric sequence 

l,A,A2,A3,-,An,-
to be "Fibonacci" is that 
(0) A2 = A+I; 
that is, that 

( D { X u l ) - ( X u y , ) - { X u l ) + ('o0l)-

(The necessity of (0) is clear; further, (0) implies that 

An+1 = An +An"\ n = 12,3,-, 

so long as A is not nilpotent. This will be the case since we're restricting A to be nonsingular.) A simple calcu-
lation shows that the matrix equation in (1) is equivalent to the following system of scalar equations: 

(2) x2 + yu = x + 1, xy +yv = y, xu + uv = u, yu + v2 = v + 1, 

which we write in the following more convenient form: 

(3.1) x2 - x - 1 + yu = O 

(3.2) (x + v-1)y = 0 
419 
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(3.3) (x + v-1)u = 0 

(3.4) v2 - v - 1+yu = 0. 

We now investigate possible solution sets. 
Case 1. y = 0. Equations (3.1), (3^4) reduce to the Fibonacci equation, implyingx= | 0 , 0 ' } , v= | 0 , 0 ' } , 

where 0 = 1 / 2 (1+ v
/ 5 ) ,0 '= 1/2<1-V5"). 

(a) If u = 0, solution matrices of (1) are 
$ =(<po\ $ _-/M\ $ =(<t>'o\ $ = tp o \ 

(The reader not familiar with the elementary identities involving 0 and 0 ' is referred to either [1 , 3 ] . The 
easily proved identities we will need in the sequel are 

0+0' = 1, 0 - 0 ' = 75, 20-1=>/5# 0-0 ' = -1 , 0 2 = 0 + 1 , 
0 ' 2 = 0 ' + 1 , <(>n+1 = (j>n+(f>n-1

f rn+1 = <l>'n + <P'n-1, n = 0 , ± 1 , * 2 , - . ) 
Application of the appropriate identities shows that each of the sequences 

KV {*?}. {*f}. K") 
is golden (the second and fourth of these sequences are said to be trivial). 

(b) If uj= Q, equation (3.3) implies* + v= 1, and hence, that 

are solution matrices of (1). The general term of the golden sequence generated by ®ou >s easily shown to be 

*<* / \ F„£# 0 ' " ) ' 
where x ' 

Fi = 1, F2= I F3 = 2, F4 = 3, .», Fn = Fn^ + Fn.2, •», 
the Fibonacci sequence. (For elementary properties of the latter, cf. [ 1 , 4].) 

Case 2. y £ 0. 
(a) If u = 0, Eqs. (3.1) and (3.4) reduce to the Fibonacci equation, and Eq. (3.3) implies x + v= 7. The situa-

tion is similar to the one in Case Kb). We will return, however, to the matrix ®oy in Section 4. 
(b) Suppose u £ 0. Equation (3.3) implies x = 1 - v (consistent with Eq. (3.2)). Substitution for A- in Eq. 

(3.1) results in 
(1- v)2 -(1-v)-1+yu = 0, 

which after simplification reduces to v2 - v - 7 + yu = Q, consistent with Eq. (3.4). Thus, the assumptions 
y £ 0, u i= Q reduce the system (3.1) to (3.4) to the following equivalent system: 

(4.1) v = W±>j5-4yu) 

(4.2) x = 1 -v, 

where y £ 0, u j= 0, are otherwise arbitrary. It is in this form of the equations that we will systematically in-
vestigate various sets of solutions of (1) in the next section. 

3. EXAMPLES OF GOLDEN SEQUENCES 

Example 1: If we limit y, u to positive integer values in (4.1), then there is a unique pair which keeps the 
radicand positive: y = u= 1. In this case, we have two sets of solutions: 

x = Of v = 7, y = 1, u = 1; and x = 7, v = 0, y = 1, u = 1. 

The latter set results in the so-called "^-matrix" [3, 4 ] : 

and the corresponding golden sequence 
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where [3, 4] 

nn __ (Fn+i Fn \ 
Q ~\Fn fn-l) ' 

Example 2: As we observed in the previous section, and as we may now corroborate from Eq. (4.1), the pair 
y = u = 0, results in the matrix <I>0, and the corresponding golden sequence 

where 

^0 ~ [o (f>'nj -
A natural question is whether or not Q and $Q are related. A calculation shows that the characteristic equation 
for Q is 
(5) X 2 - X - 7 = 0, 
(the Fibonacci equation), the roots of which are 0and 0 \ the diagonal entries of <I>0. 

Thus, Eq. (5) is the characteristic equation for both Q and <l>0, and by the Cayley-Hamilton theorem, each of 
these matrices satisfies this equation. A comparison of Eqs. (5) and (0) shows that we have in fact a character-
ization for all matrices which give rise to golden sequences: 

Theorem 1. A necessary and sufficient condition for a matrix A to be a generator of a golden sequence 
is that its characteristic equation is the Fibonacci equation. 

Since our hypotheses on the matrix A imply that the characteristic equation is, in fact, the minimal equation 
for / I , we have 

Corollary 1. Any two matrix generators of non-trivial golden sequences of matrices are similar. 

Corollary 2. Q is similar to <£0; i.e., there exists a non-singular matrix 7" such that 

where the columns of Tare eigenvectors of Q corresponding respectively to the eigenvalues 0 and 0 ' . 
In what follows (see Section 4) we will require the matrix T, A straight-forward computation shows that 

' - ( * . } ) • • 
this is easily checked by observing that, in fact, QT= 7"$>0. 

From Corollary 1, we infer that 
an = mn

0r
1, 

and hence, that Qn is similar to $Q. Hence, 

det(Qn) = d e t f ^ A t r a c e d - trace ($n
0), 

and we have our first pair of Fibonacci identities: 

Corollary 3. (i) Fn+iFn-i - F2
n = (~Vn 

(i«) Fn+T + Fn-! = </>" + 0 ' n , 
a =1,2, 3,- - . 

Remark 1: Since Ln = Fn+1 + />,_/ [3 ] , where Ln is the general term of the Lucas sequence [3] 

(6) 1 , 3 , 4 , 7 , 1 1 , - , 

it would appear that line (ii) in Corollary 3 establishes a proof for the Binet formula [3 ] : Ln = (pn + §'n. How-
ever, the formula, Ln = Fn+i + Fn is generally established from the principal Binet formula [3 ] : 

Fn = (<j)n+(/>'" )/((p-(l)'). 
Although we have enough machinery at this point to establish the latter, the proof is not an immediate conse-
quence of the similarity invariants, "trace" and "determinant" (which we would like to limit ourselves to in 
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this section); thus, we defer this proof until Section 4. We do, however, establish the formula: Ln = Fn+i + Fn 

in the next example, within our own framework. 
Remark 2: Motivated from the general term, Qn, in Example 1, where 

nn _ (Fn+1 Fn \ 
Q ~ [Fn Fn-1) '• 

it is natural to inquire as to whether the sequence with general term 

pn L-n+1 Ln 

LA7 

is golden. However, since for n= 1, and setting P = P1, 

P = l 3 1 
1 2 

we see that P does not satisfy the Fibonacci equation; thus we conclude by Theorem 1 that Pn is not a golden 
sequence. Nevertheless, we will show in the next example that the Lucas numbers, (6), do, in fact, enter the 
picture in a natural way. 

Example 3: Referring again to Eqs. (4.1), (4.2), we take y = 7, u = 5/4; then v = 16, x = Y2, and we obtain the 
sequence generator 

and the corresponding golden sequence 

H = ( 1/2 1 \ n \ 5/4 1/2 ) ' 

(1 o\(k A lb* 1 \ rY* > \ (h- * \ (h-» * \ 

where the general term is easily shown to be 

Similarity of Qn (see Example 1) with Hn implies, by the invariance of trace, that 

(7) In = Fn+J + Fn.7 , 

and by determinant invariance, that 
1 ,2 5 r2 _ r r r2 

4Ln~4rn ~ rn+1'~n-1 ~ r
n , 

which after simplification becomes 

(8) L2
n= 4Fn+1Fn.1 + F2

n. 

Whereas, similarity of &n with Hn implies 
(9) Ln = 4>n + <p'n (Binet), 
(10) L2

n-5F2
n = 4(-1)n. 

Example 4: In (4.1), takey = 7, u = -7/ then one set of solutions is v = 2, x = -1, and we obtain the matrix 

' - ( H i ) . 
The general term of the corresponding golden sequence is easily seen to be 
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cv7 _ / -Fn-2 ^n \ 
b -\-F„ Fn+2)-

Similarity with $n gives 

(1D Fn+2-Fn-2 = <!>n+<t>'n 

and 

(12) F2
n-Fn+2Fn_2=(-1)n . 

NOTE: In what follows, we shall only use those similarity results which produce identities not already 
established. 

Similarity with Qn gives 

(13) Fn+1 + Fn^ = Fn+2-Fn-2, 
and 
(14) Fn+1Fn.1 + Fn+2Fn.2 = 2F2

n . 

Similarity with Hn gives 

(15) Ln = Fn+2-Fn„2 
and 

1,2 5 r2 _ r2 r r 

which after simplification becomes 

(16) L2
n = 9F2

n-4Fn+2Fn_2. 

Example 5: By taking y = 1, u = - 5 in (4.1), we obtain v = -2, x = 3, and the generator 

The corresponding golden sequence is 

11 0\ ( 3 /N 14 1\ ( 7 2\ ( 11 3\ .. 
\0 1 ) ' \ -5 -2 J ' \-5 -1 ) ' [ -5-2 ,-3 ) ' \ -5-3 -4 ) ' ' 

with general term 

Ln = I Ln+1 Fn \ 
\-5Fn -Ln.? ) -

i-n+1^n-1+Fn+1Fn^1 = 6Fn . 

5F*-Ln+iLn-i = (-1)". 

Lt + Un+jLn-j = 25F2
n. 

Ln+1-Ln-1 = Fn+2-Fn-2, 

2 
Ln+lLn-1 - Fn+2Fn-2

 = 4Fn-

Remark 3: Although there appear to be infinitely many more golden sequences we could investigate, subject 
only to the constraining equations (4.1) and (4.2), and thus, a limitless supply of Fibonacci identities to dis-
cover (or, rediscover) via the similarity invariants, "trace" and "determinant," we switch our direction at this 
point. 

Similarity with Qn 

(17) 

Similarity with &n 

(18) 
Similarity with Hn 

(19) 

implies 

implies 

gives 

and similarity with Fn gives 

(20) 
and 
(21) 
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In Section 4, we offer two final examples of generators of golden sequences, and compute their eigenvectors. 
With this new tool we will then establish Binet's formula for Fn in terms of 0, 0 ' and their powers, and the 
formulas [3] for 0 and 0 ' in terms of Fn and Ln. 

4. PROOFS OF SOME CLASSICAL FORMULAS 

In (4.1) take u = 0, y =/= 0, but for the time being arbitrary. Then v = (p, x = 0', and we have the matrix (cf. 
Section 1) 

Setting &y = &oy, one easily checks that we generate the golden sequence 

/ / 0 \ ( <P y \ / 02 y \ / 03 2y\ .. 
l o / j ' U f j ' U f 2 ] ' \ M ' 3 ) ' ' 

where the general term is easily seen to be 

$n = f 0" Fnv \ f 

y \ o 0 ' " / 

The eigenvectors, corresponding to the eigenvalue 0, are computed to be ( a
Q j , a £ 0; we single out the eigen-

vector corresponding to a = //while the eigenvectors corresponding to 0 ' are of the form 

Since 0 ' - 0 = - ^ 5 (see Section 2, or [3]), we take y = ^/s (so that <I>K = Q^Js ), and a = I Thus we have the 
two eigenvectors: 

( ' . ) • ( - ' , ) • 

corresponding to the eigenvalues 0 and 0', respectively. Set 

S 

Then by Corollary 1, 

which implies that 

( ; . ; ) • 

* ^ = s<s>n
0s-1, 

and hence, that 
(22) SQfe = S$% 

We write out Eq. (22): 

Multiplying out gives 

which implies that 

(<t>" Fn^5\ ( ; 1\ = ( 1 1\( d>n 0 \ 
\0 0 " ) \0 -1 j yo -1 ) \ 0 cjy'n J 

\0 -4>'n j \ 0 -<j>'n ) ' 

<t>" - Fn^5 = <P'n ; 
or 

(*) Fn - fcf. (Binet) 

For our final example, we will permit our generator matrix to be complex. In (4.1), take y = ¥2, u = 3; then 
take v= (1 + i)/2, so that* = (1 - i)/2, and we obtain the matrix 
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r = i (1 - i)/2 1/2 \ 
b \ 3 (1+1)12} ' 

The corresponding golden sequence is 

(1 0\ (%(1-i) % \ t1M3-i) % \ (1/2(4-2i) V* • 2 \ 
\0 1 ) ' \ 3 %(1+i))'\ 3 %(3 + i ) ) ' \ 3-2 V2(4+2i)) ' " ' 

with general term 
n Jy2(Ln-Fni) %Fn \ 

\ 3Fn %(Ln + Fni)J ' 

Proceeding as in the previous example, we take as eigenvector corresponding to the eigenvalue 0, the vector 

/ vjcp-Ad +i)j\ . 

and corresponding to 0', we take the eigenvector 

(%[^-1/2d +i)] \ 

Setting 

B = (%[<t>-y2(i + i)] %fa'-%(i+i)]\ 

we have by Corollary 1 that 

(23) CnB = B<&n
0. 

Performing the indicated multiplication in (23) results in the matrix equation 

/ % [Ln - Fni]/0 - y2(i + i)j + %Fn %[Ln - Fni] w - y2(i + ,)j + y2Fn \ 

\ Fn[(j> -y2(i + nj + y2[Ln + Fni] Fn[<$>' -y2(i + i)] + %[Ln + Fn,j J 

= ( <t>n/3[<t> - y2(i + nj 4>'n/3[ct>' -1/2(1+ /)] \ 

V 0" vn ) ' 

(a) Equating the corresponding entries in the second row, first column, and simplifying gives 

Ln = 24>n + (1- 2(f>)Fn . 
Solving for0/7 gives 

(24) 0 " = y2(Ln + ^5Fn). 

(b) Equating the corresponding terms in the first row, second column, and noting that these are identical to 
those obtained in (a) except that 0 is replaced by 0', we have 

L„ = 2(j)'n + (1-2<t)')Fn; 
or, solving for 0 ' " , that 

(25) 0 ' " = 1MLn-sj5Fn). 

Remark 4: Equating the two remaining pairs of corresponding entries in the above matrix equation results in 
lines (24) and (25). 

Remark 5: We chose the matrix 

* ^ - ( J JO 
to establish the principal Binet formula (line (*)) because of the simplicity of the proof. It should be noted, 
however, that a proof within the framework of the ^-matrix [4] is also possible. Since the machinery has al-
ready been set up in Example 2, and because of the historical importance of this matrix, we give the proof. We 
have already established (similarity) that 

i.e., that 
QnT = mn

Q; 



4 2 6 GOLDEN SEQUENCES OF MATRICES 
WITH APPLICATIONS TO FIBONACCI ALGEBRA 

Fn+1 Fn \ / 0 / \ / « t \ ( <t>" 0 

Multiplying out gives 
<t>Fn+1 + Fn Fn+1-<t>Fn \_( <f+1 4>'h 

DEC. 1976 

, 0 ^ +F^ Fn -<t>Fn^ r\<t>n (!>'(n~1) 

Equating corresponding terms results in the following equivalent system of equations: 
<t>Fn+1 + Fn = <S>n+1 

Fn+1-<t>Fn = <P'" 

Wn + F-n-, = <P" 

Fn - <i>Fn-j = <t>'(n~1) . 

Solving the second equation for Fn+1 and substituting this into the first equation, gives 
m,n+<s>Fn)+Fn = <f+1. 

Multiplying through by - 0 ' gives 

<S>'n+<t>Fn-VFn = <P"> 

Finally, solving for Fn gives the desired result: 

Fn 
= < £ ^ 

'" ~0 - 0 ' ' 
REFERENCES 
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4. Verner E. Hoggatt, Jr., "A Primer for the Fibooacci Numbers," The Fibonacci Quarterly, Vol. 1, No. 3, 

(Oct. 1963), pp. 61-65. 
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[Continued from page 418.] 

From (9a) and (9b),we obtain 
(10a) £ F(2k+DnJnM = 0 

/7=-oo 

and 

(10b) £ F(2k+1)n-lJn(x) = exp ( | L2k+1 ) . 

Equations (10a) and (10b) can be combined in the following equation, as may be shown by induction 

(1D £ F(2k+1)n+mJn(x> = Fm exp \[~L2k+l] . 

With k = O and m = 1, (11) becomes 

YL Fn+lJn(x>= exp | 



SOME SUMS OF MULTINOMIAL COEFFICIENTS 

L. CARLITZ * 
Duke University, Durham, North Carolina 27706 

1. Recent interest in some lacunary sums of binomial coefficients (see for example [2 ] , [3]) suggests that it 
may be of interest to consider some simple sums of multinomial coefficients. 

Put 
(i j k) = <i+J + k)! 

so that 

(1.1) (x + y+z)n = £ dLk)xiyhk . 
i+j+k=n 

Le te^e , , e3 =±1 and define 

Sooo = SoJn) = £ (Ilk), 
i,j,k even 

Sioo = 5 i o o ^ = J l (i>lk>> e t c " 
/ odd 

j,k even 
where in each case the summation is overall non-negative/^/, k such that /' + j'+ k = n. Since 

c = c = c c = c = c 
^100 ^010 ° 0 0 1 ' p 0 1 1 ^101 J 1 1 0 ' 

it is evident from (1.1) that 

(1.2) S0Q0 + Sl0Q(ex +€2+€j + S0ll(e2ei+e3el + exe2) + Sllxexe2e* = (ex + e2 + ejn . 

Specializing the e, we get 

(I I V:SW0+3Sl00+3Sll0+Snl = 3n 

(—7, i, 1) = SQ00 + $iQ0 — Sll0 — Snl = 1 

(l-l-V:S0<)0-S100-Suo+Snl = (-1)" 

(-l-1,-1):S00o-3Sl00+3Sii0-Sln = (-3)\ 
Solving for the S,^, we get 

8Som = 3n+3 + 3(-1)n + (-3)n 

8Sl00 = 3n+1-(-1)n-(-3)n 

(1.3) 1 8SU0 = 3n- 1-(-V" + (-3)n 

8Sin = 3n-3 + 3(-1)n-(-3)n . 

Tabulating even and odd values of n separately, (1.3) reduces to 

•Supported in part by NSF grant GP-37924X1. 
427 
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(1.4) 

S0j2n) = %(3™+3) 

S100(2n) = 0 

SuJ2nj = %{3m- 1) 

SnJ2n) = 0 

S00J2n+7) = 0 

SlO0(2n+i) = %(3™+l+1) 

SuJ2n + 1) = 0 

Sul(2n+ 1) = %(3m+1 -3). 

It follows from (1.4) and (1.5) that 

(1.6) SmJ2n) = Sll0(2n)+ 1, Sl00(2n +1) = Ssn(2n + D+1. 

We also have the generating functions 

(1.5) 

r 
n=0 

/ - 7x2 

n=0 

(1 -x2)(1 -9x2) 

1 — 3x2 

(T^PTd - 9x2l 

(1.7) < 

n=0 

2x2 

(1 -x2)(1 -9x2) 

6x3 

(1 -X2)(1 - 9 x 2 ) 
_ n=0 

2. Let/77 > 1 and define 

(2.1) Sijk = SJ^(n)= £ {r,s,t). 
r+s+t=n 

where the summation is restricted to non-negative r, s, t such that 

r = i, s = I t = k (mod m). 
We may also assume that 

0 < / < m, 0 < j < m, 0 < k < m. 

Clearly S/jk is symmetric in the three indices i, j, k. Also it is evident from the definition that 

(2.2) SJ^fn) = 0 (n £i+j + k (modm)). 

Hence in what follows it will suffice to assume that n =i+j + k (modm). 
Let f denote a fixed primitive/77f/? root of 1. Then it is clear from (1.1) and (2.1), that for arbitrary integers, 

a, b, c, 
m-1 

(2.3) KaHbHC)= L lra+sb+tc(r,s,t)= £ ^+ib+kcs(m) (n) 

r+s+t=n i,j,k=0 

Since 
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E y-ra = i m (r = 0) 
s \ 0 (0 <r <m) , 

a=0 
it follows from (2.3) that 

m-l 

(2.4) m 3S$>(n) = £ (? + f * + ^f^ai-bi-ck 

afb,c=0 

While this theoretically evaluates S-™ (n), it is not really satisfactory. Form = 3 more explicit results are ob-
tainable without a great deal of computation. 

By (2.4) we have 
2 

27S(
0%(n) = £ (G>a + o>b + a>c)3. 

a,b,c=0 

where GO2 + GO + 1 = 0. This reduces to 
27S000 ("> = 3" + 3(co + 2)n + 3(co2 + 2)n + 3(2GJ + l)n + 3(2GJ2 + l)n 

+ 3(2GJ2 + oj)n + 3(2co + GJ2)n + 6(G? + oo + 1)n + (3oj)n + (3u2f . 
By (2.2), 

3ooo(n) = 0 (n 4 0 (mod3)). 

For n a multiple of 3 we get, replacing n by 3nf 

27S(
0

3J0(3n) = 33n+1+9(2cj + 1)3n + 9(2oo2+ 1)3n (n > 0). 
This reduces to 

( S(
0
3J0(6n) = 36n-2 + 2(-1)n33n~1 (n > 0) 

( Z 5 ) \S$0(6n+3) = 36n+1 (n > 0). 

Check. 
s00()(6j = Wotoi + 31310! = 3 + 3'60 = 63 = 3 -2>3 , SQ00(3) = jfofoT" 3' 

s(o3>> = w w w + www+ www = 5-6-7-8 + 7-8-9+3 = 3-729 = 3?-
Similarly we have 

2 

27S(3
1

)
1(n) = Y. (ua + 0Jb + uc)nGJ-a-b-c = 3n+3(GJ+2)nGJ-1+3(a>2+2)naJ-2 

a,b,c=0 

+ 3(2oo + 1)nGj"2 + 3(2to2 + 1)"GJ- 1 + 3(2 J2 + Gj)noj>'2 + 3(2GJ + co2)u~1 

+ 6(GJ2 + GJ + Vn + (3oj)n + (3co2)n . 

As in the previous case, 
S%M = 0 (n 4 0 (mod3)), 

while 
27S(

1
3
1
)
1(3n) = 3<33n+3(2oo2+ 1)3noj'1 + 3(2GO + 1 )3n GJ>~2 + 3(2 GJ+ 1)3nGj'2 + 3(2GJ3 + 1)3noj'1 

+ 3(2GJ+ V3nGJ~2 + 3(2co2+ V3noj'1 +6(GJ2 + CO+ 1)3n 

= 33n+1 +g(^3)3n^-2 + g(_^}3nu-1 +6(GJ2 + GJ+1)3n . 

It follows that 
( S^fSn) = 36n-2-(-l)n33n'1 (n > 0) 

( m I s\3j1(6n+3) = 36n+1 + (-l)n33n+1 (n > 0). 
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Check. 
?(3) 3€f Q4 ^02 *<3) 31 

siii>6> = wfrn - 3** - 90 = 3 +3 > siii(3) - JTiTTT - * = 3 + 3< 
?(3) ,ai - 3-9! _,_ 3-91 sliJii(9> = TTTTJT + jfirn = 3'^+3'^70 = 3<26 = 37-34. 

We find also that 

(2.7) 

Check. 

f Sjjjb (6n) 

\ S&}
2(6n + 

= 36n-2_(_vn33n-1 (n > Q) 

3)^36n+1_(_vn33n+1 fe>ffl< 

S%2<e> = J 7 W - SO - 34 + 32, S<2%(9) 3-9! = 3
4.28 = 37+34. 

512/2/ 

S^fSn) = S(
2
3J2(6n) 

Note that it follows from (2.6) and (2.7) that 
(2.8) 
and from (2.5), (2.6), (2.7), 
(2.9) Sp/ ; (6n +3) + S(

2
3

2
}
2(6n + 3) = 2S^%(6n + 3). 

3. Since 
lrt s, t) = (r- I s, t) + (r,s- 1, t) + (r, s, t - 1), 

it follows from (2.1) that 
(3.1) s}$(n) = S^jfk(n-1) + Sl™\k(n- V + s!$_,(n-V. 

where 
?(«>), 

when 
i = /' / == / ' k s k' (mod ml 

In particular 
(3-2) S)2lM = 3S]'Vil1(n-1). 

For example, when m = 2, we have 
S(2j0(2n) = 3S<2

(j0(2n-1) 

Sffj(2n + 1) = 3S%(2n) 

S($0(2n+1) = s{)
2
0
)
0(2n) + 2S(

1
2
1
,
0{2n) 

S(,%(2n) = S%(2n- 1) + 2S<
1%(2n - 1) 

in agreement with previous results. 
The case m = 3 is more interesting as well as more involved. We have, to begin with, 

SoQo(3n) = 3S%(3n - 1) 

sffjQn) = 3S?]0(3n-1) 

S(
2
3
2'2(3n) = 3S(

2
3

2
>

1(3n- 1). 

It therefore follows from (2.5), (2.6), and (2.7) that 
J- S(

2
3(j0(6n+5)=36n+3-2{-1)n33n+1 

1 sSL(6n + 2) = 36n 
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Slfi0(6n + 5) = 36n+3+(-1in33n+1 

S%(6n+2) = 36n + (-1)n33 
( 3 " 4 ) i HI Rn n In ^ > 0) 

f 4 f / (Bn + 5) = 36n+3 + (- 1)n33n+1 

(3.5) "S /•?! e o (n > 0). 
\ S(

2%<6n+2) = 36n-(-l)n33n 

Check. 
4*W = srh-, + jj^j - 1+20 - 2/ - 3 5 - ^ , 

s(3j / „ , = a/ 2-g/ 2-8! 8! 
200'°' 81010! 5!3!0! 2! 6! 0! 2! 3! 3! 

= 1 + 112 + 56 + 560 = 729 = 36 ; 

s%(s> - jrfhr + 4TWbl = 20+ w = 30 = 33 + 3' 

S'3> = 7fwoT+4lWbl + iMll + Wfhr = 16 + 70+560 + 56 - 702 - 36- 33 

432i(5) = 2r2TJT=30 = 33 + 3' 

s(
2

32> = snnr + 2rihr = 2 ™ =3°+33-
In the next place, it follows from 

S(2i0(3n) = S(3/0(3n - V + S(
2

3J0(3n - U + S^On - 1) 
that 

S(2i0(6n) = Sffotin- 1) + S(
2

3
0

}
0(6n - 1) + S%(6n - 1) 

= (3Sn-3 _ .(_ 1)n33n-2i + (36n-3 + 2(_ jjnjSn^j + (j6n-3 _ (_ 1)n33n-2) = 36n-2 (p 

s<210 (6n +31 = S {3]0 (6n + 2) + S(2o0 (6n +2) + S% (6n + 2) 

= (3R" + (- 1)n33nj + 36n + (36n _ (_ -jjn^rij = .fn+1 (p > Q) 

that is, 

(3.6) 

Check. 

f S(
2
3)

0(6n) = 36n~2 (n > 0) 

\ S(^0(6n+3) = 36n+1 (n > 0). 

S2t}o(B) - 27jfjl +5TW0! +wlro!=60 + 6+15 = 34> 

S21o(3> = JfjtoT = 3f 

^3) /«, = 91 91 + 91 91 91 91 
°210{Z" 2!1!6! 5!1!3! 214131 811101 514101 217101 

= 94.7+ 9.8-7+ 9-7-20+9+ 9-7-2 + 9-4 = 9-243 = 37. 
Next it follows in like manner from 

S%l3n + 1) = S(
1
3
1

)
1(3nJ + 2S(

2
3
1

)
0(3n) 

S(220(3n +1) = S^2
)
2(3n) + 2S(23)

0(3n) 

S%}
0(3n + 1) * S(

0
3

0
)
0(3n) + 2S(

2
3

1
)
0(3n) 
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that 
f sfL(6n + 1) = 36n-1 - (- 1)n33n-1 

(3.7) < 211 (n > 0) 
[ S(

2
3
1>1(6n + 4) = 36n+2 + (-1)n3n+1 

(3.8) J *220<bn + D = 36"'1 - (-Dn33"-1
 (n > 0) 

f S(
2
3J0(6n + 

1 S%(6n + 4) = 36n+2_(_nn33n+1 

(3.9) J Sl300(6n + V = 36"-1
 +2(-1)n33"-1

 (f} > Q) 

\ S<3j0(6n+4) = 36n+2 

Check. 
S<211<7) = 577777 + WWJT = 42 + 2W = 252 r35 + 32, S3

211(4) = -%-- = 12 = 32
 + 3, 

?(3) lin\ = W! + 2 ' w ! + 10! + 2'wl 

^>21V'U' 8!1!1! 5!4!1! 2!4141 2!7!1! 
= 9-10+ 9-280+ 9-350+ 9-80 = 34-80 = 3S - 34 ; 

^>-2flh-6-32-3' 
<t(3) fin) = 10! + 2'10! + 10! + 2'10! - Q2 R? - ?8+ ?4 
*220"Q> 2! 2! 6! + sHTTi + sfsTW + sTJTdT ~ 9 -82 - 3 + 3 . 

si3do(y> - jiwm + ifwoi +mhr + iMi= 1+70+ uo + u =j2'25 =35-2-32, 
^ id\ - 4! + 2'4! - I + R - r2 

two*4' - JToTo! JTJFoJ ' 1 8 ~ 3 ' 
o(3) (W) = 10! 2-10! 10! • 2-10! 2-10! 2-10! 

1001' W!0!0! 7!3!0! 4! 3! 3! 4! 6! 0! 1!9!0! 1!6!3! 

=» 1+240 + 4200 + 420 + 20+ 1680 = 38. 
This completes the evaluation of the ten functions sfjk'(n). 

vith 
24S(

0
2J00(2n) = (1+1+1+ 1)2n +4(1 +1+1- 1)2n + 6(1+1-1- 1)2n 

(2) 
4. The five functions3)-kSi(n) can be evaluated without much computation. To begin with, we have 

+ 4(1- 1 -1-1)2n + (-1-1-1- 1)2n, 
which reduces to 
(4.1) sL2Jn(2n) = 24n-3 + 22n'1 (n > 0). 

Since 
JOOOl 

S(
0

2(j00(2n) = 4S(2j00(2n-1), 
we get 
(4.2) S%0l2n + 1) = 2

4n~1 +22n'1 (n > 0). 
Next, since 

' WOO1 

sfyoVn+V = Si2^00(2n) + 3S{2
1
}
00(2n)/ 

it follows that 
(4.3) Sff00(2n) = 24n-3 (n > 0). 

Similarly, from 
S(2)

00(2n) = 2S%0(2n - 1) +2S(2
1
}
10(2n - 1) 

we get 
(4.4) Sfiiottn + 1) = 24n~1 - 2 2 " - 1 (n > 0). 
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Finally, it follows from 
S(fi10(2n + 1) = S(

1
2

1
)
11(2n) + 3S(

1
2}

00(2n) 
that 
(4.5) S(2

1
l
l1(2n) = 24n~3-22n~1 (n > 1). 

For example 

S?1'11(6) = m±^rfT = 480 = 29-2s. 

Note that it follows from the above results that 

(4.6) SJftooGn) + S % 1 (2n) = 2S %0(2n) 
and 
(4.7) S(

1
2J00(2n + V + ${fi10(2n + 1) = 8S(fi00(2n). 

5. The results of §4 suggest that it would be of interest to evaluate 

(5.1) fhk(n) = S(2i10...0(n), 

T'T' 
where/, k are arbitrary non-negative integers and the right-hand side of (5.1) has the obvious meaning. Clearly 
(5.2) fjfk(n) = 0 (n 4j (mod 2) I 

To begin with, we have 
2kf0,k(n) = (1+1 + -+!)"+[) )(1 + -+1- 1)n 

+ ( * )(1 + ...+ 1- 1- 1)n + -+ (k
k ) / - / - 7 1)n 

= kn + (k )(k-2)n +(k
2\(k-4)n + -.+ (k

k)(-k)n . 
Thus V V ' K j 

k 

(5-3) fO,k(n) = 2~k Y, (i )(k-2j)n. 

Since 
(5.4) f0,k(n) = kf1fk^(n- 1), 

it follows at once that 5 / ^ - y can be evaluated explicitly by means of (5.3). Next, since 

fl,k-i(n- 1) = f0fk(n-2) + (k- 1)f2,k-2(n-2), 
we get 
(5.5) k(k - 1)f2,k-2(n - 2) = f0,k (n) = kf0,k (n - 2). 
Similarly it follows from 

f2,k-2(n - 2) = 2fhk- 1(n-3) + (k- 2)f3fk.3(n - 3) 
that 
(5.6) k(k - V(k - 2)f3,k-3(n - 3) = f0,kM - (3k - 2)f0fk (n - 2). 

We also find that 
(5.7) kik- 1)(k-2)(k-3)f4,k-4(n-4) = f0.kW- 2(3k- 4)f0fk(n - 2) + 3k(k- 2)f0/k(n - 4), 

(5.8) klk- 1)(k - 2)(k - 4)f5fk.5(n - 5) = f0mk(n) - 2(5k - 10)f0,k(n - 2) 

+ (15k2 - 50k + 24)f0fk (n - 4). 
These results suggest the following general formula: 

(5.9) jj^jjr fLH(n-j) = £ (-1)sPLs(k)f0fk(n-2s) (0 < / < k), 

2s<J 

where PjfS(k) denotes a polynomial in k of degree s. Since 
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it follows that 
ff,k-f (n - j) = jfj- i,k-j+ i<n-j- 1) + (k- j)fj+ 1fk.h i(n-j- 1), 

^ 7 ^ £ I- 1>SpJ.s(k)fo,k(n - 2s) = j {^\^M- £ hlfPhi,s<k)f0,k(n -2s-2) 
2s<j 

+ (k-j) 

2s<j 

(k-j- 1)1 
k! £ (-1)sPj+1fS(k)f0fk(n-2s). 

Hence we take 
(5.10) 

2s<j+1 

Pj+i,s(k) = PjfS(k)+j(k-j+ VPj-1fS-i(k). 

S. ' s 

0 

1 

2 

3 

4 

! 5 

6 

7 

0 

1 

1 

k 

3k-2 

6k-8 

10k - 20 

15k-40 

21k-70 

Pj,s(k) 

2 

3k(k-2) 

15k2-50k+ 24 

45k2-210k+184 

105k2-630k+ 784 

3 

15k(k-2)(k-4) 

105k3 - 840k2 + 1764k - 720 

It is evident that 
(5.11) PLo(k) = 1 (j > 0) . 

Also it follows easily from (5.10) that 
(5.12) 

Since 

we get 

P2j,/(k) = 1-3-5- ». (2j - 1)k(k - 2)(k - 4) -. (k - 2j + 2) (j > 0). 

Pj+l,l(k) = Pj,i(k)+j(k-j+ 1) (j > 11 

This gives 
(5.13) 

Similarly, since 

pj+1,l<k> = £ t(k-t+1). 
t=1 

Pj,l(k) = 1jj(j- Dk-1-i(i- 1)0-2) (j > 0). 

Pj+l,2(k) = Pjt2(k)+j(k-j+ DPj- t1(k) = PL2(k)+1/2J(j- 1)(j-2)k2- | | / 7 / - 1)(j-2)(j 

+/(/- 1H/-2) \ k+1-j(j- D(j-2)(j-3)(j-4) +j(j- 1)(j-2)(j-3), 

-3) 
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we find that 

(5.14) W*>~3(,
4)*2-[20(>)+6(i)]k+[40(l)+24ll)\ 

For example 

- | Hi - DO - 2)(j - 3)k2 - ± j(j - i)(j - 2)0 - 3)(2j - 5)k2 

+ £ Hi - DO - 2)0 - 3)0 - 4)(5] - 7). 

P6.2M = 3- 15k2 - (20-6 + 6- 15)k + (40 + 24-6) = 45k2 -210k+ 184. 

We also find that 
(5.15) Ph3(k) = 15(^)k3-\210^'7)+90( >) 

+ \ 1120^y924h7) + 120^jjk-

;2 

2240^^2688^^720^ > )J 
For example 

P7,3(k) = 15-7k3- (210 + 90-7)kz + (924 + 120-7) - 720 = 105k** - 840kz'+ 1764k- 720. 

We have noted above that PjfS(k) is a polynomial in k of degrees. In addition we can assertthatPjfS(k) i 
polynomial in/ of degree 3s. More precisely, if we put 

s 

(5.16) PLs(k) = X (-Vscs,t(i)k*~t, 
t=Q 

then cSft(j) is a polynomial in/ of degree 2s + t. If we substitute from (4.7) in (4.1) we get 
. s 5—7 
E (-1^1^(1+ D - Cs.tfWk8-* = j(k-j+ 1) E (-rfcs-uO- 1>kS'f'1 -
t=0 t=0 

This gives 
(5.17) cs.tti

+ U-cs,tO) = ics-i,tti- U+j(j- Dcs-i,t-iti- V. 

The table of values of PjfS(k) suggests that 

/ 
E (~ 1)Hp2j,s(k) = 1-3-5- (2j - 1)(k - 1)(k - 3) - (k - 2j + 1) 

(5.18) 
s=0 

E (-VJ~SP2j+l,s(k) = 1-3.5 -~(2j- 1)(2j+ 1)-(k- 1)(k-3)-(k-2j + 1) 

s=0 

These formulas are easily proved by means of (5.10). 
The explicit results (5.13), (5.14), (5.15) also suggest that 

(5.19) PJfS(k) = 0 (j = 0,1,-,2s-1). 

This can be proved inductively using (5.10) in the form 

(5.20) PjtS(k) = Pj+1fS(k)~j(k-j+ 1)PHrS^(k). 

Thus, to begin with, 
P2s-l,s(k) = P2s,s(k)-(2s- 1)(k-2s + 2)P2s-2,s-l(k) = 0, 

by (5.12). In the next place, taking j = 2s-2, we get 

P2s-2,s (k) = P2s- 1,S (k) - (2s - 2)(k -2s + 3)P2s-s^ 1 (k) = 0. 

Continuing in this way, we get 
Pj,s(k) = 0 (1 < j < 2s- 1). 
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Finally, taking/ = / and replacing s by s + 7 in (5.10), we have 

P2.s+ l(k) = P 1,S+ 7 Ik) + kP0Jk), 
which gives PQ.SM = 0. 

6. We now put 

(6.1) Pj(k,x) = Y (-1)sPjfS(k)xh2s, P0 = h Pi = x, 

2s<J 
and 

(6.2) F(z) = F(k,x,z) = Y Pj(Wj -
1=0 

By (5.10), 

Pj+1(k,x)= Y (-VsPLs(k)xj-2s+1+j(k-j+1) Y (-VSPH,s-l(k)xh2s+1, 
2s-<j+1 2s<j+1 

so that 
(6.3) Pj+, (k,x) = xPj(k,x) - j(k - j + 1)Ph 1 (k,x). 

It follows from (6.2) and (6.3) that 
OO OO OO 

F'(z) = Y pi+l(Mjf= x Y Pi(k<x) JT-Z Y* (k-DPjfk,*) jf 
p=0 ' j=o ' j=0 

Hence 
xF(z)-kzF(z)+z2Ff(z). 

F'(z) _ x-kz 

which gives 

(6.4) F(k, x, z) = (1+z)1/2(x+k)(1 - zr
1/2(x-k). 

It follows from the recurrence (6.3) that the polynomials 

(6.5) Pn(k,x) (n = 0, 1,2,-) 

constitute a set of orthogonal polynomials in x. The polynomials have been discussed in [1 , § 9 ] ; in that paper 
the relationship with Euler numbers of higher order is stressed. If we put 

(1+z)*x(1-z)"*x - Y *n(x)£, 
tr=0 

so \\\<&An(x) = Pn(0,x), then, by (6.4), 

(6.6) Pn(k,x) = Y T - 1 - ^ ( T ) An„2s(x). 
2s<n 

Returning to (5.9) and using (5.3), we have 

'(j)fj,k-/M = £ (-1)SPj,s(kh2-k Y, ( t )(k-2t)"-2s 

\ 2s<j t=0 V ' 

= 2~k £ ( t )<k-2t)n £ <-1)sPi,s(k)(k-2tS>-
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so that 

<6-7' P ( j ) fj,k-j<n> = 2~k E ( f ) <k ~ 2t>npj<kr k - 2t) (0 < / < kl 
^ t=0 ^ 

We shall show that (6.7) holds for all j, that is, the right-hand side vanishes indentically for/ > k. To prove 
this, consider the sum 

1=0 n=0 t=0 V t=0 V /7=0 /=0 

= 2'k E ( * yk'2t)y(1+2)^(1-2)' = 2~ke-ky((l+z)e2y + 1-z)k 

t=0 ^ 

= 2~k((1+z)ey+ (1-z)e~y)k = fcosh y +z sinh > / . 

Since this is a polynomial of degree k in z, it follows that the right-hand side of (6.7) does indeed vanish for 
j > k and all n. For example, for k= 1, we get 

Pj(1,1) + (-1)nPj(1,-1) = 0 (j > 1). 

Since this holds for all n, we have 

(6.8) PjfU) = Pj(1,-1) = 0 (j > 11 

Indeed, by (6.4), 

E Pj(V)jr= 1+z, i^Pj(i,-u£ = l-z, 
j=0 j=0 

in agreement with (6.8). 
For k = 2 we get 

2nPl(2,2)+4hnt0Pj(2fQ) + (-2)nPj(2, -2) = 0 (j > 2). 
This implies 

Pj(2, 2) = Pj(2, 0) = Pj(2, -2) = 0 (j > 2). 
Indeed, by (6.4), 

E PjtZ 2)jj- = (1+z)2, £ Pj(2, -2) jf= (1- z)2, X pA °>]T = 1~z2' 
1=0 ' j=0 ' j=0 

Since the determinant 
|( * )(k-2t)n\ t o (t,n = 0, 1,-,k), 

the identical vanishing of the right-hand side of (6.7) implies 

(6.9) Pj(k,k-2t) = 0 (j > k; 0 < t < kl 

This is indeed implied by (6.4), since 
F(k,k-2t,z) = n+zt^n-z)*. 

It follows from (6.9) and (6.1) that 

(6.10) X (-DsPj,s(k)(k-2t)h2s = 0 (j > k; 0 < t < k); 
2s<J 

it evidently suffices to take t < k/2. In particular, iorj=k+ 1, (6.10) becomes 
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(6.11) Yl (- 1)SpLs 0 ~ W ~2r~ 1>h2$ = 0 <2t < ') 
2s<j 

For/even we consider 
/ 

£ (-DSp2j,s(2j- 1)(2j-2t- D2h2s = 0 (0 <t <j). 
s=0 

Since Pho(k) = 1 this may be written in the form 

/ 
(6.12) £ (-1>S~1p2Ls(2J- D(2r- 1)2h2s = (2r- V2J (1 < r < j). 

s=1 

By Cramer's rule the system (6.12) has the solution 

(6.13) P2j,s(2i- V = ~ <1 < * < / A 
where 

D = det f(2r- V2s~2) (r, s = 1,2, -fj) 

and Ns is obtained from D bv replacing the sf column by (2r - 1) . Making use of a familiar theorem on the 
quotient of two alternants [4, Ch. 11 ] , we get 

(6.14) Pq,st2i- V = cs(1
2,32,52, - , (2j- 1)2) (1 < s < j), 

where cs(xi,x2, --rXj) denotes the s elementary symmetric function of thex,. 
For odd/ in (6.11) we consider 

/ 
YJ (-DsP2j+i,s(2J)(2i-2t)2h2s+1 = o (o < t < j). 

s=0 

This may be written in the form 
/ 

(6.15) Yl (-^S'7p2Mfs(m2r)2J'2s+1 = (2r)2J+1 (1 < r < j). 
s=1 

Exactly as in the case of (6.12), the solution of the system (6.16) is qiven by 

(6.16) P2j+l,s(2i> = cs(2
2,42, 62, - , (2j)2) (1 < s <j). 

where again cs denotes the sth symmetric function of the indicated arguments. 
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RESTRICTED COMBINATIONS AND COMPOSITIONS 

MORTON ABRAMSON 
Downsview, Ontario, Canada EVS3J1P3 

INTRODUCTION 

The number of ^-combinations of j 1, 2, —, n \ with no two consecutive integers in a combination is 

(n-V) 
while the number of such restricted "circular" /r-combi nations, that is when 1 and n are also considered as con-
secutive integers, is 

n l n — k \ 
n - k \ k ) • 

These are two well known examples of restricted combinations given by Kaplansky [1943] as preliminary prob-
lems in his elegant solution of the "problSme des menages." Some other examples are given by Abramson 
[1971], Church [1966, 1968, 1971] and Moser and Abramson [1969a, b] . 

In this paper, generating functions and recurrence relations are given for a large class of restricted combina-
tions. This method seems to be a more unified approach than using combinatorial arguments such as those of 
Moser and Abramson [1969a] whose main result is obtained here in Section 7 as a special case of a more gen-
eral result. 

We take a /r-composition of an integer n to be an ordered sequence of non-negative integers 37, 52, —, a^, 
whose sum is n. A one-to-one correspondence between the /r-compositions of n with each summand a,- > 0 and 
the (k - /^-combinations of \ 1, 2, —, n — 1 r is obtained by representing the combinations and composi-
tions by binary sequences, see also Abramson and Moser [1976]. Hence there is a correspondence between re-
stricted combinations and restricted compositions. Also, there is a correspondence between "circular" combina-
tions and "circular" compositions. 

A ^-composition of n may be interpreted of course as an occupancy problem of distributingn like objects in 
k distinct cells, with a,- objects in cell i. Further a /r-composition, 57,^2, —, fy of n corresponds to an /7-combin-
tion, with repetitions allowed, from j 7, 2, —, k \ with the integer /appearing a-, times. Also since every bi-
nary sequence corresponds to a lattice path we have a 1:1 correspondence between lattice paths in a rectangular 
array and combinations. For example expression (2.3) of Church [1970] is case (L) of Section 3 here. Some re-
sults on combinations which have been obtained by Church and Gould [1967] by counting lattice paths have 
been generalized by Moser and Abramson [1969 b] and can also be derived using our approach here. 

Sections 1 to 5 deal with linear compositions and combinations and Sections 6 and 7 with circular composi-
tions and combinations. Throughout we take, as usual, 

!/(n - k)!k!, 0 < k < 
otherwise. 

1. RESTRICTED COMPOSITIONS 

A /r-composition of /7 

(1.1) ai+a2+'~ + ak = n, a; > 1, 

is an ordered sequence of k positive integers 5/, called the summands or parts satisfying (1.1) for fixed n and k. 

It is well known and easy to show the number of compositions (1.1) is ( n. ~ J ) . Let 

439 
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(1.2) A = (AhA2, -,Ak), Aj = { a/7 < aj2 < ai3 < - } 
denote a given collection of A, not necessarily distinct, subsets A/, of 1 1 , 2,3, - }-. Denote by F(n, k; A) the 

number of compositions (1.1) satisfying the restrictions^- e A,-, i = 7, 2, - , k. That is 

(1.3) Ff/7,/r//U = 1 ] / . 
a;+----fa^.=/7 

ajZEAj 

The enumerator generating function as is well known, see Riordan [1958] provides a general method of 
findinq F(n, k; A). This is 
(1.4) £ F<">k>-A)*n = (xai1+xai2 + -Hxa21

+x
a22 + ~)~(x'k1+x'k2 + ~). 

n 

For example, in the case Aj = j 1, 2, 3, — i for all / 

£ F(n,k;A)xn = (x + x* + x* + ^)k = £ ( k + \ " 1 \ xi+k = £ ,' £ ~_ \ \ xn . 

n=1 1=0 n=1 

To each of the compositions (1.1) there corresponds a unique sequence of n - k 0#s and k- 7 1's: 

M r\ 0 0 0 - 0 1 000 -01 - 0 0 0 - 0 1 0 0 0 - 0 

* i - / s2 - 7 ak-<i- 1 ak-l 

Note that since a, > 1 in each part of (1.5) the 1 always appears except for the last part where we have a 
"missing" 1. Replacing the Ts by 0's and 0's by Ts in (1.5) we have a dual representation, 

( 1 R ) 1 1 1 - 1 0 1 1 1 - 1 0 - 1 1 1 - 1 0 1 1 1 - 1 
Vl ' < -> < -> < -> < > 

aj- 7 a2- 1 a/c-i-1 ak- 7 
corresponding to a unique sequence of n - k 1's and k - 7 0's. 

Ini „ . 2. RESTRICTED COMBINATIONS 
We call rintegers 

(2.1) x1 < x2 < •- < xr , 

chosen from j \,2,—,m\ an /--combination (choice, selection) of n. A part of (2.1) is a sequence of con-
secutive integers not contained in a longer sequence of consecutive integers. In a combination (2.1) a succession 
isapairx/, xt+^ withA,

/>/-A,/=- 7. It is easy to see that if a combination has/7 parts then it has r-g successions. 
For example 
(2.2) 1,3,4,5,8,9 

is a 6-combination of 10, with parts (1), (3. 4, 5), (8, 9) of lengths 1, 3, 2, respectively. To each combination 
(2.1) corresponds a unique sequence of r 1's and m - r 0's 

(2.3) t?i,e2, e3, -,em, 

4 1 if/belongs to the/--combination 
where e,- = i 

l 0 if / does not belong to the r-combination. 

For the combination (2.2) the corresponding sequence is 

(2.4) 1011100110. 
To a given restricted composition (1.1) corresponds by the use of (1.5) a unique (k - 7/-combination 

(2.5) x-j < x2 < - < Xk-1 

of n - 7 such that 
(2.6) *1 = ai, n-xk.1 = akf XJ+J-X,- = ai+1, i = 1,2,-,k-2. 
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Hence F(n, k; A) is the number of combinations (2.5) satisfying the restrictions 

(2.7) xr^A7f n-x/c-i e A/<, xi+1 -x; e AJ, i=1,2,~,k-2. 

For convenience, letting/? - 1 = m, k- 1 = r, F(m + 1, r+ 1;A) is the number of combinations (2.1) satisfying 

(2.8) XJ^AJ, n-xr^Ar+1/ xi+1-XjEAi/ i = 1,2,-, r-1, 

where 

(2.9) A = (A1,A2,-,Ar+1), A; = ian < ai2 < - I , i = 1,-,r+ 7 

are the given restrictions. 

3. EXAMPLES OF RESTRICTED COMPOSITIONS AND COMBINATIONS 

Denote by F(n, k; /?/, pi; h2, p2; —*'hk, Pk) the number of/r-compositions of/7 satisfying the restrictions 

(3.1) / < h; < aj < /?;, for fixed hj,pj, i = 1, -,k. 

Using the sieve formula or the enumerator generating function (1.4) with A,= i h,-, h;+ 1, h, + 2, ••-, p,- I , 

-Pij 

(3.2) F(n/k;h1/p1;-;hk/Pk)=^ n ' ^ k
1 " 1 ) 

k 

with h = hi + •- + hk and the summation 2 * taken over ally-combinations// < i2 < • • •</ / of i 7, 2, —, k^. 
We consider now some special cases. 

(A) The number of compositions (1.1) satisfying / < h; < a,; i = 7, —, k, is the case /?/ = n, i = 1, —, k of 
(3.2), 

F(n,k;hl,n;.-.;hk,n) = { n + k - 1 - h
k l - h 2 - ' - - - h k ) . 

(B) The number of compositions (1.1) satisfying 7 < a-, </?/, is the caseh;= 7 for all i, of (3.2) which is 

F(n,k;lPl;-;1,Pk) -( ^ J ) * £ t-V^ ( " " ^^^'f " " 

the summation S * taken over all /-combinations i\ < i2 < ••• < /} of k. 

(C) The number satisfying 1 <t<a,-<w for all / is the case h; = t, p; = w for all i, 

j-o 
while 

(D) the number satisfying / < f <a/ is ( 0 with w = /? or (A) wirh/?/= f, 

F(n,k;t,n;...;i,n) = ( " - " £ : > > - ' ) . 

(E) The number satisfying / < a,- < w is ( 0 with f = 7 or (B) with /7/ = w, 

f fc * 7, HT; •-; /, w) = £ '-"'' ( y* ) (" *'-/"" ' ) " 
A: 

/? — AT 
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£r- / / ( * ) (%?7' ) - ( , ,_%). 
Corresponding restricted combinations. We now give the corresponding restricted combinations to the above 

examples using the correspondence described in Section 2. The number of/--combinations (2.1) of m satisfying 
for fixed 7 <h,- <p,<m, i= 7, 2, —, r+ 1 the conditions 

(3.3) h? < xj < pi, m- (pr+i- 1) < xr < m- (hr+1 - 1) 
and 
(3.4) hj+1 < xj+1-Xj < pj+1, i = 1, 2, •», r- 7 

is equal to F(m + 1, r+ 7;hj,pj; •••;hr+u pr+ jl We consider now some special cases. 
(F) The number of r-combinations satisfying conditions (3.4) only is obtained by putting h 7 = hr+i = 7, 

P1 = Pr+1 = m-
(G) The number of combinations satisfying 

hi < xi, 7 < xr < m - (hr+i - 1) and hj+1 < x,+ i - x,-, i = 7, ••-, r - 7 

is by using (A) equal to 
/ m + r + 1 — h 1 — fi2 — ••• — hr+f \ 

(H) The number satisfying hj+1 <Xj+i - x,, i = 1, —, r - 1 is (G) with /?/ = hr+i = 1, 
I m + r - 1 - h2 - ti3 hr\ 

(I) The number satisfying ^ 

x1 < p-j, xr > m - (pr+1 - J) and xi+1 - x,- < pj+1, i = 1, - , r- 7 

is equal to F(m + 1, r+ 1; 1,pi; •••; 7, Pr+j) while the number of combinations satisfying x,+ i - x,- <p,+ i 
i = 7, ••, r - 7, is given by the expression in (B) with n - 7 = m, k - 7 = r, and pi = pr+i = m. 

(J) The number satisfying 

(3.5) t < x-j < w, m - (w - 1) < xr < m - (w - 1) 
and 

t < x7>; - x, < w, i = 1, —, r - 1 

is given in (C) with n - 1 = m, k - 1 = r, 

r+1 
V 1 (-1)1 I r + 1 \ I m - (r + D(* ~ 1) +J(* ~ w - 1)\ 

(K) The number satisfying (3.5) only is equal to (3.2) with 

n - 7 = m, k - 1 = r, h-j = hr+i = 7 and p-j = pr+i = m, 

r-1 
V * (_f)J ( r - l \ lm- (r- 1)(t- 1)-j(1 +w-t)\ 

(L) The number satisfying t <x,+ ] - Xj, is (K) with w = m, or (H) with ti2 = hs = ••• = hr= t, is 

t m - ( r - l)(t- 1) \ 

while in the case t = 2, no two consecutive elements in a combination, the above reduces to the familiar number 

( " - ; * ' ) • 

(M) The number satisfyingx,+ i -Xj < w is (K) with t= 1, 
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T(-1)J'(r71)(m~riW 
1=0 ^ 7 N 

4. COMBINATIONS BY NUMBER AND LENGTH OF PARTS 

Using correspondence (1.6) the number of (n - /^-combinations of n - 7 with the length of each part less 
than or equal to w- 7 is given by the expression in case (E) of Section 3. Putting/7 = m + 7, k = m - r+ 7, the 
number of /--combinations of m with each part not greater than w- 1 \s equal to 

(4-°) £ (-J,i m-r+'t 
m — r + 1 \ I rn — iw 

i } \ m — r 
i=0 

More generally we consider the following' Given a set of q restrictions 

(4.1) A = (A;, - , Aq), Aj = | 2 < an < aj2 < - J , 
denote by Fq(n, k; A) the number of/r-compositions of n such that, 

(4.2 a) a,.G:Aj, j = 7, 2, —, q, for some ^-combination / ; < i2 < — < iq of | 7, 2, •••/: f . 

(4.2 b) a,- = I for the remaining k-q indices i. 
Then . 

(4.3) Fq(n,k;A) = ( J ) F(n-k + q,q;A) 
or 
(4.4) / ^ f o , Ar;/U = ( M Ffa - k, q; B), where £ = (Bu - , V -

£y- = | 7 < aj1 -1 < aj2- 1 < - \ , j = I -,Q. 
Let a /r-composition of n be given and suppose exactly q of the a-,, 

3i1fai2/-fajq/ / ; • < / 2 < - < i q , 

are each > 2. Using (1.6), to this /r-composition of n corresponds a unique (n - /^-combination of /? - 7 with 
exactly q parts, the length of the / part (reading from left ta right) being a-,. - 1, j = 1, 2, —, q. Hence 
Fq(n, k; A) is the number of (n - /^-combinations of (n - 1) with exactly q parts, the length of the/r /7 equal 
to aj e Aj, j = 7, —, q. 

For convenience putting k = m - r+ 7, n = m + 7, the number of /--combinations of m with the length of the 
jth part equal to aj e /4y is by substituting in (4.3) and (4.4), equal to 

(4.5) Fq(m+1,m-r+l;A) ={m~~q
r+1) F(r + q,q;A) 

or 
(4.6) F<//77 * 7, /77 - r + 7;/IJ = I m ~q

r + 1 I Ffr, ?/£A 5 given in (4.4). 

For fixed 7 <h,< p-, < /7? and reading the parts from left to right it follows that the number of /--combinations 
of m having exactly q parts (or r - q successions) and satisfying the restrictions, 

(4.7) hj < length of the ith part < /?/, / = h~-,q, 
is equal to 
(4.8) (m~q

r+1)F(r/q;hhp1;-;hq/pql 

We consider now some special cases of (4.7). The number of combinations with exactly q parts such that the 
length of each part is greater or equal to t and less than or equal to w is the number (4.8) with h; = t, p\ = w for 
all /, 

l=o x 

q\ I r - q(t- 1) +j(t- w - 1) - 1 

while the number with each part > t is equal to 
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(4.10) ( m~q
r+1 ) C _ < f _ 7 ; ~ / ) -

and the number with each part < w is 

(4-11) (v+^£'-"'(')('«'-'"') • 
j=0 

Summing (4.11) over all q > 7 and using Vandermonde's Theorem, the number of combinations with each part 
< w (and no restriction on the number of parts) is equal to 

m-r+1 
(4.12) Y* (_f)j f m-r+ 1 \ /m-j(w+ 1)\ 

j=0 * ' 

in agreement with (4.0) where each part is < w - /. 
Thus we may enumerate a large class of restricted combinations using the above method. One fu rther example 

is that each part is of even (odd) length while another is that the length is a multiple of a fixed number. 

5. RECURRENCE RELATIONS 

Denote k restrictions A /,-••, Ak by 

(5.1) Ak = (A1f -,Ak), Aj = | 0 < an < ai2 < - } , i=1,-,k, 
Then 

(5.2) F(n,k;Ak)= E / = E E = E F(n - ak, k- 1; Ak~1). 
ai+-+ak=n ak^Ak aj+-+ak-j=n-ak ak^Ak 

aj&Aj ak<n ak<n 

For the particular restrictions 7 < h; < a,- < /?/, i.e., 

(5.3) Aj = | hhhj+ 1,-,pj ) , i = 1,-,k, 
we have 

(5.4) F(n, k;Ak) = J^ F(n -aktk- 7/Ak~1) 

hk<ak<pk 

= F(n-hk,k- l;Ak~1)+ E F<n ~ 1-i>k- 1; Ak~1) 

hk<J<Pk-1 

= F(n-hkfk- l;Ak-1) + F(n- l,k;Ak)- F(n - 1-pk,k- 1;Ak'1)f 

(F(ntk;Ak) = 0, n<0) 

with F(n, k; A ) the same as F(n, k; pi, h-i; •••;pk/ hk) of (3.2). In the ca$eh, = t andp, = n, the number of 
compositions with each part of length not less than t,denoted by F(n,k; > t) is 

n-(k-1)t 

(5.5) F(n, k; > t) = ^ F(n - j, k- 1; > t) = F(n - t , k - l ; > t) + F(n - /, k; > t). 

j=t 

Denoting by F(n, k; < w) the number when 1 <a,< w, and using (5.4) with /?/ = / and p; = w for all i, 
w 

(5.6) F(n,k;<w) = V F(n-j,k- 1;<w) = F(n - 1, k-1; <w) +F(n- 1, k; <w)-F(n - 1-w, k- l;<w). 

j=1 
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If we wish to consider compositions of n with given restrictions but with the number of parts not specified, 
then of course we simply sum over k. That is 

n 

(5.7) Gin;A) = £ F(n,k;Ak). 

k=1 
The generating function is 

£ G(n;A)xn = £ (x*11
 +x°12

+ -)(xa21
 +x

a22 + •••) -(xak1
 + x

ak2
 + • • • ) . 

n k 

For example, the number of compositions of n with each part not less than f, is by summing the expression in 
(D) of Section 3 over all k, 

(5.8) G(n;>t)=Y. ("'"Hi ^ ' ) 
k=1 

and satisfies the relation 
(5.9) Gfn; > t) = G(n - t; >t)+ G(n - 1; > t). 

In the case t = 2, G(n; > 2) is the (n - Vth Fibonacci number, since G(n; > 2) = 1 or each of n = 2,3. The 
number with each part of length not greater than w < n is by summing the expression of (E) in Section 3 over 
all AT, 

n-w k 

(5.10) G(n;<„}=<£ £ <-V> ( ) ) ( " ~^~ ' ) 
k=1 j=0 

and satisfies the relation 
w 

(5.11) G(n; < w) = ^ Gfn - i; < w) = 2G(n - 1; <w)- G(n- 1 - w; < w). 

i=1 

In the case w = 2, \ n~\ 
12} 

and the above relation reduces to G(n; < 2) = G(n - 1; < 2) + Gfn - 2; < 2), G(n;<2) being the fn + Vth 

Fibonacci number since G(n;<2)= l)l2forn= 1,2, respectively. 
We may obtain relations for the number counting restricted combinations by considering the number 

F(n, k; Ak) which counts the corresponding restricted compositions. 

6. CIRCULAR COMPOSITIONS AND COMBINATIONS 

A (linear) composition (1.1) can be seen as a display of the integers 7, 2, —, n in a line, with k- 1 "dividers," 
no two dividers adjacent, which yield the k parts: 
(6.1) 1,2, -,a1/a1 + 1, aj+2, -,a1+a2/-/a1 + - + ak-1+ 1, -,n. 

The length of the ith part (from left to right) is equal to a,-. For example the 4-composition of 9 

(6.2) 2 + 3 + 1 + 3 = 9 
is seen as 
(6.3) 12/345/6/789. 

Analogously, a circular ^-composition of n is a display of 7, 2, •••, n in a circle with k "dividers," no two di-
viders adjacent, yielding k parts each of length greater or equal to 1. We may illustrate a circular /r-composition 
of /? as 
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a1 a2 ak 

(6*4 ) b,b+1, - , n-1,n, 7,2, »., c/c+1,c+2, .», c + a2/-/b - ak, - , b-2,b-V 

1st part 2nd part •••• kth part 

placed on a circle In a clockwise direction with the integer 1 always belonging to the first part, i.e., 

c > I c + n - (b- V = ai, a,- > I 
Clearly the number of circular ^-compositions (6.4) is equal to 

ai+-~+ak~n 
For example, 

(6.5) 

or written as 
(6.6) 

9 ' / 
» 2 
1 3 

y s 

67891/2345/, 

9 ' 2 
^> 3 
8 4 

' . . V 

91234/5678/, 

\ ' 2 
9 3 
• 4 

7 1 5 6 1 

12345/6789/, 

recpectively, are three of the f ^ J circular 2-compositions of 9. 
To each circular composition (6.4) there corresponds a unique sequence placed on a circle in a clockwise 

direction, # 

(6.7) 000 - 01/000 - 0 1 / - / 0 0 0 - 0 1 / 

of n - k 0's and k Vs with theO or 1 in the first part corresponding to the integer 1 of the composition marked 
by " * . " Replacing the Ts by 0's and 0's by Vs in (6.7) we have a dual representation of the composition, 

(6.8) 11? 10/111 •••10/- /111 ..-10/ 

of n - k 1's and k 0's. We will call (6.7) and (6.8) ''circular" sequences. For example, the circular sequences 
corresponding to each of (6.6), respectively, by use of (6.7) are 

00001/0001/, 00001/0001/, 00001/0001/, 
and by use of (6.8) are, respectively, 

11110/1110/, 1 Tl 10/1110/, Tl 110/1110/-

As earlier, consider the restrictions 

A = (A1f -Ak K Ai = \ l < 3/7 < aj2 < •• \ , i = h - , k, 

where each A; is some given subset of | 1, 2, 3, — r . Denote by C(n, k; A) the number of circular composi-
tions (6.4) with a; e A,-, i= 1, - , k. That is 

C{n,k;A) = ] T at-. 
Bi+-"+ak-n 

aj^Aj 
Then the generating function is, 

£ C(n,k;A)xn = (ai1x
a11 + a12x

a12 + -Hx*21 + x*22 + -Hx*31
 + / 3 2 + •••)••• (xak1 +x°k2

 + • • • ) . 

n 

Checking for the case A,- = <1,2, 3, — r for all i, 
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J^C(n,k;A)xn = (x +2x2 + 3x3 + -Hx+x2+x3 + -)k~1 = x(1 - x)'2xk'1(1 - xf 

n=k 

An example of the use of the above generating function is obtained by taking A,- = I hj, hj + 1, h,+ 2, — 11 

i = 7, —, k and letting h = h-j + - + hj<, 

V C(n, k; A) = (h ,xh 1 Hh 1 + 1)xh 1+1 + •• •) U (x"' + / / + ' + •••) 

= ih1-h,x+x)xhHi-xr2xh-hUi-xrlk-1> 

= (h,-h1x+x)xhY.{kV)x' 
i=0 

i=0 

- h h _L\^h1k-hi+ 1 / k + i+ 1 \ ¥h+i+l 

i=0 

_ T - ^ h-jk + n - h (k+n-h\ n 
LJ k+n-h \ k ) * ' 
n=h 

and hence the number of compositions (6.4) with 1<hj<alf i=1,—,k\s 

(6.9) ^ r r * ) . ».->,+•••+**. 
We now consider a more general example which includes as a special case (6.9). Given / < hj <p,<m, the 

number of circular compositions (6.4) satisfying hj < a; <Pi, i= 1,2, —, k is 
P1 

(6.10) C(n,k;h1,p1;-;hk,Pk) = £ a1 = £ j , £ / 
ai+-~+ak=n aj=hj a2+"'+ak=n~a1 
hj<aj<pj hj<aj<pj 

P1 
= S aiF(n- ai,k~ 1>'h2,P2>'~'>'hk,Pk)/ 

aj=h1 

where Ffa, k;h2, P2r - /^Ar, PAT^ is given by (3.2). Using the identity 

/ c n \ V ; I x+k-2-i \ _ tx+k-m \ x+km-m ( x + k-n- 1 \ x + (n + 1)(k- 1) 
(6-11» L ' ( * - 2 ) - ( * ) T 7 ^ T - ( * ) x+*-»-r 

/=A77 
/ x+k-m \ , I x+k-m- 1 \ , it I x+k-n- 1\ fx+k-n-2\ 

and (3.2), (6.10) reduces to 
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C(n,k;h1,p1;-,hkPk) 

k-1 

(6.12) 

where 

Z (-iliy*\ ( x + k ~ h i \ x+khi~hi ( x+k -PI- 1 \ x + (k- D(1 +PI) 1 
{'U \ \ k ) x+k-hi \ k ) x + k - P l - l J 

j=0 U ' ' J 

f^M)^[(x+k
k^) + {x+k

k\
hr1)«i-i)-(x+k

k
pi~1)- {x+k

k
p-Y2)pi}< 

h = h<i + - + hk, x = n-h+hf-j- (pjj-hjj) (Ph-hj.) for J > 0, 

x = n - h +h-j fo r /=0and the summation 2 is taken over all/combinations 

/ / < i2 < •• < // of \2, 3, - , k\ . 

We consider now some of the many special cases of (6.12). The number of circular compositions satisfying: 

(A) hj Oj, i= 7, 2, —, /r is (6.12) with/7/ = /7 for all i, is the first term of second last expression fo r /= ft 
n-h+khj i n-h+k \ 

' n-h+k \ k ) 
in agreement with (6.9), 
(B) aj < ph i= 7, - , A-is (6.12) with hf = / f o r all/; 

Z (-ite'U*)-(*-*>)- ('-XT')pt] 
1=0 l" J 

j=0 

where y = n - (pj1 + ••• + p,-J, the summation 2 * taken over all/-combinations// < •••</) of | 2, ••-, k\ for 
j> 1 and y = n when/= ft 
( 0 h-j <aj <pi and t<aj<wfori = 2, 3, ••-, £ is (6.12) with hj = t, p,- = w, 1 = 2, - , k, 

k-1 
V* (-l)j (k ~ 1 ) ( n - ( k - Dt'+k-hj -j(1 + w - t ) \ n - ( k - Dft-hj) -](1 + w - t) 

j=0 \ / / t V k ) n_ (k_ J)t+k_hj_j(7 + w_ t) 

I n - (k - 1)(t- 1)-pj-j(1 +w-t) \ n- (k- 1)(t- 1 -pj)-j(l +w-t) 1 
* k / n- (k- l)(t- D-p-i-jd + w- t) J 

k~1 r 
= y * (-i)j ik" M ( n ~ ( ! < - 1)(t~ i)-j(i+w-t)-hi + i\ 

i=o 

+ (n-(k-1)(t-1)-j(1 + w-t)-hj\ fh _ JJ 

( n- (k - 1)(t- 1)-j(1 +w-t)-p1.\ , l n - (k - 1)(t- 1)-j(1 +w-t)-p1 - 1 \ _ 1 
\ k ) + { k-1 j p1 j 

(D) t<a/< wis case (C) with hj = t, pj = w, 
(E) t < aj for all i, is case (D) with w = n or case (A) with hj = t for all i, 

n_ in- kit- 1) \ 
~n-k(t- 1) \ k ) " 

(F) a;<w for all/ is case (D) with t= 1 or case (B) with/?/= w. 
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k-1 
V* (-l)i ( k 7 1 ) \ In -jw\ _ I n - w(j + 1) \ n - w(j + 1) + wk 1 
l=o n w J 

= U) *£ t-v'i (V) rk
iw) * (",:!) (n7w) ^ 7 ^ ] 

1=1 

i=0 

and in the case w = 2 another expression is 
1 ( k \ 
k \ n - k ) •' 

see case (E) of Section 3. 
To obtain recurrence relations we proceed as follows. Let Ak = (A1, —, Ak). Then for k > 2, 

(6.13) C(n,k;Ak) = £ a;= £ 5 ] a 7 = X ) C(n - ak, k-1; Ak'1). 

aj+.~+ak=n a^Ak ai+~'+ak-i=n-ak ak^Ak 
a;^A; ak<n ak<n 

This is the same as that for the linear case (5.2) with different initial values. For the particular restrictions 
/ < / ? / < a,- < pi, i.e., 

Aj = \hi,hj+ I -,Pi}, i = 1, - , kr 

we have 

(6.14) C(n,k;Ak) = £ C(n -ak, k- 1;Ak^) 

hk<ak<Pk 

= C(n -hk,k- 1; A k"1) + £ Gin - 1 - j, k - 1; A k~1) 

hk<J<Pk-1 

= C(n -hk, k- 1; Ak~1) + C(n - 1, k; Ak) - C(n - 1 - pk, k- 1;Ak~1), 

(C(n, k; Ak) = 0, n < 0). 

The number of circular compositions with each a; > t, denoted by C(n, k;> t) and given by the expression in 
case (E) above satisfies the relation 
(6.15) C(n, k; > t) = C(n-t,k- 1; > t) + C(n - /, k; > t). 

Denoting by C(n, k; > w) the number when 1 <a,<w then the expression is given in case (F) above and satis-
fies the relation 

w 

(6.16) C(n,k;<w) = ^ C(n - j, k- 1; <w) 

J=1 

= C(n- 1, k- 1; <w) + C(n - 7, k; < w) - C(n - l-w,k- 1; < w). 

Summing (6.15) over all k the number of circular compositions with each part not less than t is 

m 
k=0 
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and 
(6.18) D(n;>t) = D(n - t;> t) + D(n - 1;>t). 

In the case t = 2, the above relation reduces to 
D(n;>2) = D(n - 2;> 2) + D(n - 1;>2) 

and D(n; > 2) is the Lucas number having values 1, 3 for/7 = 1, 2, respectively. Summing (6.16) over all k the 
number D(n; < w) of circular compositions with each part not greater than w is 

(6.19) D(n;<w)=Y. F E ^ ( i) C 7 -7 ') 
k=7 i=0 

and satisfies the relation 
w 

(6.20) D(n; < w) = ] T D(n - j ; < w>/. 
/=/ 

In the case w=2, D(n; > 2) is also the Lucas number with D(n; > 2) having values 1, 3 for/7 = 7, 2, respectively. 
Given a set of q restrictions 

A = (Au -,Aq), Aj ={ 2 < ap < aj2 < - j , 
denote by Cq(n, k;A) the number ofcircular compositions (6.4) such that 

(a) a,- G Aj, j = 1, 2, —, q for some ^-combination 
/y < i2 < • • < iq of 17, 2, ..., Ar}», 

(b) 5 / = 7 for the remaining k - q indicesi. 

Then by partitioning the compositions into those with ai = 7 and a7 > 7 

(6.21) Cq(n,k;A) = (k ~ 1 ) F(n-~ k + q, q;A)+ [kqZ\) C(n-k + q,q;A) 

= [k~1) F(n-k,q;B) + [kqZ] ) C(n - k, q; B)+[^z]) F(n - k, q; B) 

= (J) F(n-k,q;B)+ [kqZ]) C(n - k, q; B), 
where 

B = (Bh-,Bq), Bj = {Kap- 7 <aj2- /<•••}• , j=1,-,q 

and F(n, k; A) is the number of restricted (linear) compositions discussed earlier. 

7. CIRCULAR COMBINATIONS 
A circular k-combi'nation ofn is a set of k integers 

(7.1) x1 < x2 < - < xk 

chosen from the integers 7, 2, —, A? displayed in a circle. That is we consider 7 and /7 to be consecutive. For 
example the circular 6-combination 1, 3, 4, 5, 8, 9 of 9 has parts (891) and (345) each of length 3 while the 
same (linear) 6-combination has parts (1)„ (345), (89). Of course, the number (n) of (linear) £-combina-
tions of n is equal to the number of circular Ar-combinations of n. A succession here is a pair*/, x,+ i with 
Xi+1 ~ *i= 1 with nf 1 also considered a succession. As before if a combination (7.1) has <7 parts it has Ar — q 
successions. As before to each circular combination (7.1) corresponds a unique sequence of A- 1's and n - k 0's. 
(7.2) h>e2, - / * / ? 
with 

[1 if / is in the combination, 
*/ =\ 

tO if / is not in the combination. 
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We shall think of the sequence (7.2) placed on a circle in a clockwise direction. Hence the "circular" sequence 
(7.2) corresponds to the circular sequence (6.7) by agreeing to let ^ 7 correspond to the element of (6.7) marked 
by a *. To a circular composition (6.4) corresponds a unique circular combination (7.2) with 

n - (xk-x-j) = a-j 

Xj+i~ Xj = a/ for / = 1,2, ••-, k- 1. 

Thus the number of combinations (7.1) satisfying the restrictions 

/ I - ^ - X / J G / 1 / and x/+1 -x,- e A,- for / = 1,2, ~, k- 1, 

where the A,- are given by (6.7), is simply the number £77?, k; A) of Section 6. For example the number of com-
binations satisfying 

hi<n-(xf<-xi)<pi and t < x,+ 7 - x; < w for / = 7, 2, —, k- 1 

is the expression of case (C) of Section 6 and is in agreement with Moser and Abramson [1969 a, expression (14) 
for£,i ,*ft . w;h1,p1)]. 

Using the dual representation (6.8) and (7.2) we have a one-one correspondence between the circular com-
positions (6.4) and circular (n- W-combi nations of n. For example the number of circular (n - /^-combinations 
of n with each part of length not greater than w - 1 is the number of circular compositions with a; < w given 
in case (F) of Section 6. Putting n = m and k = m - r the number of circular ^-combinations of m is 

m-r 

™ ^VL '-"'CVMm-'r,-,') 
i=0 

in agreement with Moser and Abramson [1969 a, expression (29)]. 
More generally the number of circular /--combinations of m having exactly q parts, or r- q successions, the 

length of the jth part (reading in a clockwise direction with the first part that part containing the smallest inte-
ger greater than or equal to 1) equal to ay- /, ay e Aj, j = 1,2, —, q \sCq(m,m - r; A) given by (6.21). 

Fonexample letting A,= \ t + 1, t + 2, ••• I for all / the number of circular /--combinations of m with exactly 
q parts and with each part of length not less than t is by using (6„21), (D) of Section 3 and (E) of Section 6, 

(7.4) Cq(m,m-r;A) = ( m ~ r ) F{r, q; B) + [m ~!_~ 1 ) C(r, q; B) 

_ (m-r\lr-q(t-1)-1\,(m-r-1\( r-q(t- 1) \ r 
\ q ) \ q-1 ) \ q-1 ) \ q ) r-qTF=V 

= tm - r \ / r-q(t- 1) - 1 \ m 
\ q j \ q-1 ) m — r 

The number with exactly q parts each of length not greater than w is obtained by taking B,= | /, 2, ~, w j 
for all / and using (E) of Section 3 and (F) of Section 6, 

(7.5) Cq(m,m-r;A)=(m-r)F(r.q;B)+[m-^1)c(r,q;B) 

1=0 

i=0 

Summing (7.5) over all q we obtain the number of circular combinations of m with each part of length not 
greater than w. 

m-r 

^E^tvic";^-') 
i=0 
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in agreement with (7.3) where a part is of length not greater than w - 1. 
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ODE TO PASCAL'S TRIANGLE 

Pascal. . . Pascal, you genius, you, 
Constructed a triangle of powers of two. 
Coefficients, and powers of eleven, by base ten, 
A more useful aid, there's never been. 
Head, tail, tail, head, 
Answers from your rows are read. 
Combinations and expectations, to my delight, 
Can also be proved wrong or right. 
With a little less effort and a little more ease, 
I might have gotten thru this course in a breeze. 
So, Pascal... Pascal, you rascal you. 
Why did you limit it to powers of two? 

. . . Bob Jones 
Southern Baptist College 
Blytheville, AR 72315 

[See p. 455 for "Response."] 



A RECIPROCAL SERIES OF FIBONACCI NUMBERS WITH SUBSCRIPTS 2nk 

V. E. HOGGATT, JR., and MARJORSE BICKNELL 
San Jose State University, San Jose, California 95192 

A reciprocal series of Fibonacci numbers with subscripts 2n was summed by I. J. Good [1] and was pro-
posed as a problem by D. A. Millin [2 ] , and there are many proofs in [4] of 

oo 

E l'F2n = (7-\]5)/2. 
n=0 

Here, we derive a closely related sum, 

n=0 

To sum MF n we get a good start with early examples, making use of the identity F2k
 = Fk^k -

JL = JL ± + _ J _ = Lk+1 = F2k/Fk + 1 
Fk Fk ' Fk F2k F2k F2k 

JL + _ L + - I - = L2k(Lk+D+l =
 F4k/Fk + l-2k+1 

Fk F2k F4k F4k F4k 

1 + - X + J L + J L = F8k/Fk + L4k(L2k+1)+1 
^k F2k F4k F8k F8k 

From 
Lm+P + Lm-p = LmLp, p even, 

and we can rewrite this as 

J _ + _ J _ + J L + - I - = F8k/fk + (L6k + L4k + L2k
 + 1) 

Fk F2k F4k F8k F8k 

Now, the hinge is the Lucas identity 

L2°k (L(2°-2>k
 + L

(2n_4)k
 + - + L ^ + ') = L(2°+1-2>k

 + L(2"+>-4>k
 + "+L» ' 

Thus, 

:—n n1 F 
=0 2'k 2 

But, 
i n +L n +-+LoLr 

(2n-2)k (2n-4)k 2k 

can be summed and converted to a form using powers of 

a = (1 + yj5)/2 and 0 = (1 - y/5)/2, 

making it possible to find the limit as n -
Using a result of K. Siler [3] , 

453 
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^ F (~ 1>aFan-b - Fa(n+ D-b + (~ Va'bFb + Fa.b 
2 ^ Fak-b 
k=t 

whence, with a = 2k, k= j and b = +1; 

l-La + (-1)a 

E c _ F2kn-1 ~ F2k(n+1)-1 + (- V Fj + F2k-1 F2kH _ _ . 
j=1 ZK 

Uow\eta = 2k, k = /, andb= -1; 

E F _ F2k„+i ~ F2k(n+1)+1 + (-I)2k+1F-1 + F2k-1 

M
 F2ki+1 —T=T^ " 

Summing the preceding two series termwise, 

E , _ L2kn~ L2k(n+D-Lo+ L2k _ L2k(n+1) - L2kn - L2k + 2 

M
 i2ki ^rL~ 1—^2 

Now, \etn=2N'1 - 1 , n+ 7 = 2N~1 and return to (1): 

2^-1 

A, F2Nk/Fk \ £ L2kj)+1 

r 1/F2»k v - — — -
fa 2k F2Nk 

- J. + Lk{2N)~L(2N-2)k _ , 
Fk f2NkU2k-2) 

lim /j = J L + i i m Jd^jlLjd^l 
N-*~M

 F /v"™~ FN(L2k-2) 
2 k 

Trying this for k= 1, 

= 7+y/5(y/5- V/2 = (7-y/5)/2 , 
which is the result of Millin and of Good. 

Generally, we get 

k=1 

/ V - > ° ° Âr ^ 2 £ ~ ^ ^ \ ^ 2 * - * I Fk 2 

We need the identity , 

(2) L2
k = L2k+2(-1)k 

which for odd /r gives us 

For odd k, then, we can continue 
hk-2-
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,im A = ± _ 4 +
 5±s* = j . _ ̂  +

 5ltt k odd. 
2 
k 

N"™~»-rk?"-^r = rk ~2+wk' 
However, if we let k be even, then (2) gives us 

so that our limit becomes 
L2

k = L2k+2, L2-4 = L2k-2= 5F2, 

Finally, 

,im A = ± -^+*£2k_ L_ ^ + ik k eyen 
N-»- Fk 2 2(5F2k) Fk 2 2Fk 

2Lk-F2k^5+5F2
k — , k odd; 

^ 1/F2nk=\ 2-Fk^5 +Lk 

n=0 I jp / * even . 

It would seem that the odd and even cases are closely related. First, let k be odd, or, k = 2s+ 1. Then 

V 1/F - 1— + 5f2(2s+D 45 - o 
*-* V(2s+1)2n " 7^7 2L2 ~ 2 " *' 
n=0 ZL2s+1 

Now, let k be even. Let k = 2(2s + 1)f making 

y * 1/F = '[ X _ _ +
 L2(2s+1) J5 _ c 

JU 2(2s+1)2n F2(2s+1) 2F2(2s+1) 2 

Then, notice that B = C + 1/F2s+1. 
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*kkkkkk 
[Cont. from p. 452.] 

RESPONSE 

We push Pascal to the left, up tight, 
To see what else can be brought to light. 
In flowers and trees the world around, 
The Fibonacci numbers do abound. 
Look up to the right while taking sums. 
What you find there will strike you dumb. 

.... Verner E. Hoggatt, Jr. 
San Jose State University 
San Jose, CA 95192 



PELL'S EQUATION AND PELL NUMBER TRIPLES 

M.J. DELEON 
Florida Atlantic University, Boca Raton, Florida 33432 

The Pell numbers are defined by 

Po = 0, Pf = 1, and Pn+2 = 2Pn+1+Pn for n > 0. 

In [1] it was noted that if 
p > q > 0 and p2 - q2 - 2pq = ±N, 

where N is a square or twice a square, then there exist non-negative integers a, b, and n with a > b such that 

p = aPn+2-bPn+i and q = aPn+1-bPn, 
or 

P = bPn+2 + aPn+1 and q = bPn+1+aPn . 

We shall prove this result for/7 >q > 0 and/I/ > 7 and, in addition, show that (a + b)2 - 2b2 = N (Theorem 6). 
We shall also prove the converse of this result (Theorem 8). In order to prove Theorem 6 we shall need Theorem 
2, which gives an interesting property of the fundamental solution(s) to Pell's Equation 

(1) u2 - Dv2 = C, 

where D is a positive integer which is not a perfect square and C £ 0. The converse of Theorem 2 is also true 
but it is neither stated nor proved since it is not needed to prove Theorem 6. 

Before proving these results we need to establish some definitions and theorems concerning (1). For this we 
can do no better than follow Nagel [2, 195-212] with but one_exception. _ 

If u and v are integers which satisfy (1), then we say u + VyjD is a solution to (1). \\ u + V\jDw\&u* + v*s/D 
are both solutions to (1) then they are called associate solutions iff there exists a solution* +y^jD to A-2 - Dy2 

= 1 such that 
fu + Vy/D) = {u* + v*y/D)(x + y>jD). 

The set of all solutions associated with each other forms a class of solutions of (7). Every class contains an in-
finite number of solutions [2, 204]. _ 

It is possible to decide whether the two given solutions u + v^jD and u* + v*s/D belong to the same class or 
not. In fact, it is easy to see that the necessary and sufficient condition for these two solutions to be associated 
with each other is that the two numbers 

— _ _ _ _ a n d _ _ _ 

be integers. 
If K is the class consisting of the solutions 

Uj + vjyjlJ, i = 1,2,3, - , 
it is evident that the solutions _ 

Uj- VjyjD, i = 1,2,3,—, 

also constitute a class, which may be denoted by K. The classes K and K are said to be conjugates of each other. 
Conjugate classes are in general distinct, but may sometimes coincide; in the latter case we speak of ambiguous 
classes. 

456 
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If the diophantine equation u2 - Dv2 = C is solvable then from among all solutions u + v^/D in a given class 
K of solutions to u2 - Dv2 = C, we shall now choose a solution u0 + vQ^]D, which we shall call the fundamental 
solution of the class K. The manner of selecting this solution will depend on the value of C. 

(i) For the case C > 1, let uQ be the least positive value of u which occurs in K. If K is not ambiguous then 
the number i/0 is uniquely determined. If K is ambiguous we get a uniquely determined vQ by prescribing 
that i/0 > 0. 

(ii) For the case C < - 1 or C = 1 let i/0 be the least positive value of v which occurs in K. If K is not ambigu-
ous then the number u0 is uniquely determined. If K is ambiguous we get a uniquely determined uQ by 
prescribing that u0 > 0. _ 

In the sequel we shall always denote the fundamental solution of u2 - Dv2 = 1 byXj + ylSjD instead of by 
u0 +vQ\]D. Since there is only one class of solutions to u2 - Dv2 = 1, we have thatxx > 0 and j / ^ > 0. 

EXAMPLES._ The fundamental solution to u2 - 2v2 = 1 is 3 + 2^J2. The fundamental solution to u2 - 2v2 

= - 1 is 1 + >/21The two different classes of solutions to u2 - 2v2 = 7 have as their fundamental solutions 3 + 
v/2 and 3 - sj2. The four different classes of solutions to u2 - 2v2 = 119 have as their fundamental solution 
11 + V 2 , 11 - %/2, 13 + 5V2, 13 - 5V2. 

REMARK A. It follows from the definition of fundamental solution that if uQ + vQyJD is a fundamental 
solution to a class K of solutions to u2 - Dv2 = C, where C t 0, then 

ID ' 0 + VQ^JD > 0 , 
(ii) forC^M, Wu + Vy/D is in /Cthen 

\u\ > \u0\ and \v\ > | i/0|,and 
(iii) If C > 1 then u0 > 0 and if C < 1 then i/0 > 0. 

In (ii) we must exclude C = 1 since for C = 1, u = 1 and v = 0 is a solution to u2 - Dv2 = 1 but it is not 
the fundamental solution. 

Our definition of fundamental solution differs from Nagel's only when v0 < 0. In this case, while our funda-
mental solution is uQ + v0y/D his is -(uQ + v0y/D). Instead of satisfying uQ + VQSJD > 0 as our fundamental 
solutions do Nagel's satisfy i/0 > 0. 

If u0 + vQsjD is a fundamental solution to a class K of solutions to u2 - Dv2 = C, we shall sometimes simply 
say that uQ + vQ^/D is a fundamental solution to u2 - Dv2 = C. 

Lemma 1. [2, 205-207]. Letx t +ylyJD be the fundamental solution to x2 - Dy2 = 1. l f i / 0 +v0y/D 
is a fundamental solution to the equation u2 - Dv2 = -N, where N > 0, then 

O < |„oi < yplL^ and O < \uQ\ < S/WX^UN . 
1 01 ^2(xx - 1) 

If u0 +vQyjD is a fundamental solution to the equation u2 - Dv2 = N, where N > 1, then 

s/2(xx + 1) 
O < \v0\ < - ^ I J ^ r . and O < \u0\ < sJ1Mxx + 1)N. 

Theorem 2. Letxx +yxsjD be the fundamental solution tox 2 - Dy2 = 1. If 

* - - ^ 7 xl - 1 

and if uQ +v0^/D is a fundamental solution tot/2 - Dv2 =-N, where N > 0, then v0 = \v0\> k\u0\. If 

xx-1 

and if u0 +vQsjD is a fundamental solution to u2 - Dv2 = N, where N > 1, then d/0 = \u0\ > k\vQ\. 

Proof. Assume uQ +vQ\/D is a fundamental solution to x2 - Dy2 =-N and assume | i / 0 j < /r|t/0|.Thus 

-N = u2 - Dv2
Q > u2

Q-Dk2u2
0 = u2

Q(1-Dk2). 

Hence, by Lemma 1, 
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xx-1 

Therefore we have the contradiction 

2u2 

°- < N < ul(Dk2 - 1). 

J- <Dk*-f = 7Jrt„7 = ?±lJr-f 
xt - 7 (xx - V2 x l - 1 xt - 1 

Now assume u0 +vQ^JD is a fundamental solution to*/2 - Dv2 = /!/ and assume \uQ\ < k\v01. Thus 

N - ul-Dv* < k2v\ - Dv2 = (k2 - D)v% . 

Hence, by Lemma 1, 

y\ 
Therefore we have the contradiction 

2fxx + D , 2 _ D _ D[Dy\ - (xx - 1)2] _ _2D__ 2(xx + 1) 
y\ (*i -W * i - i ~ y\ ' 

Lemma 3._ Letu0 + V0<JD be a fundamental solution to a class of solutions to*/2 - Dv2 = C, where C ^ 1, 
and letx+y^/D be a solution to the equation A-2 - Dy2 = 1. In addition, let 

u + Vy/D = (u0 +voSJ~D)(x+y^d). 
If u > 0 and v> 0 then* > 0 and / > 0 (if C= 1, one requires v > 0 instead of v > 0). 

Proof. Since u0 + v0sjd > Omdu + v^/D > Q,x +y^/D > 0. This impliesx>Q. If x = J t hen /= 0 and 
the lemma is_true. Thus assume x > .1 . We need only show y > 0. Since (x +y^jD)(x - y%/D) = 1,y < 0 im-
plies x + y^/D < 1. Whence 

u + VxjD = (uQ +v0s/D)(x+yyjD) < uQ +vQ%/D . 
This is impossible since, by Remark k,u>uQ and v > i/0. 

Lemma 4. [2, 197-198]. If x + y*jD is a solution, with x > 0 and y > 0, to the diophantine equation 
x2 - Dy2 = 1 then 

(x+y^jD) = (xx+yjD)m, 

whereA-J + y_l*jD is the fundamental solution t o * 2 - Dy2 - 1 and/77 is a non-negative integer. 
If u + VyjD is a solution to the diophantine equation u2 - Dv2 = Cthen, by the definition of a fundamental 

solution, _ _ _ 
u + VyjD = (u0 + vQ^/D)(x+y*jD), 

where uQ + vQyjD is the fundamental solution to the class of solutions to u2 - Dv2 = C to which u + V*JD be-
longs and A-2 - Dy2 = 7. By Lemma 3, u > 0 and v > 0 imply x > 0 andy > 0. Hence by Lemma 4, we have 

Theorem 5. If u + V*JD is a solution in non-negative integers to the diophantine equation u2 - Dv2 = 
C, where C f 1, then there exists a non-negative integer m such that 

u + VyjD = (uQ +v0^J~D)(xx +yiy/D)m, 
where u0 + v0sjD isjhe fundamental solution to the class of solutions of u2 - Dv2 =C to which (/ + V\JD be-
longs and xx +yx\jD is the fundamental solution to x2 - Dy2 = 7. 

Theorem 6. Let N be an integer greater than one. If p > q > 0 and/72 - q2 - 2pq = eN, where e= Tor 
- 1 , then there exist non-negative integers a, b, n with a > b such that either 

(2) p = aPn+2 - bPn+1 and q = aPn+1 - bPn , 

or 

(3) p = bPn+2 + aPn+1 and q = bPn+1+aPn , 
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Also we have that (a + b)2 -2b2 = N. 
We shall now indicate how one can explicitly determine which of (2) or (3) is satisfied and also5, b, and/7. 

Since (p - q)2 - 2q2 = p2 - q2 - 2pq = eN, by Theorem 5, 

(4) (p - q) + qs/2 = (u0 + v^2)(3 + 2sj2)m = um + vm*J~2 , 

where u0 + VQ>J2 is the fundamental solution to the class of solutions of u2 - 2v2 = eN XQ which (p - q) + 
qsj2 belongs and m is a non-negative integer. 

If the product eu01/0 is negative then p and q satisfy (2), where f or e = - 1 we have a = i/0, b = i/0 - u0, n = 
2m, and a >b > 0 whereas for e= 1 we have 5 = uQ +v0, b = - i / 0 , n = 2m - 1, m > 1, and a > b > 0. 

If the product eu0v0 is positive then p and q satisfy (3), where for e = - 1 we have a = vQ, b = uQ + i/0, n = 
2m - 7, m > 1, and a > b > 0 whereas for e= 1 we have a = u0 -vQ,b = vQ,n = 2m, and a > Z? > 0. 

If u0 = 0 then p and q satisfy (2) f or a = i/0 = b and n = 2m. Furthermore, if m > 1 then p and q also satisfy 
(3) f or a = vQ = b and n = 2m - 1. 

If v0 = 0 then p and q satisfy (3) for a = u0, b-d, and n = 2m. Furthermore, \\m>\ then p and q also satis-
fy (2) with a = u0,b = Q, and n = 2m - 1. 

In order to prove Theorem 6, we shall need 

Lemma 7. Let u0 + v0\]D be a fundamental solution to u2 - 2v2 = C. For m > 0, let 

um + vm^2 = (u0 + v0 J2)(3 + 2^/2 ) m . 
We have that 
(5) Um + Vm = V0P2m+2 + ("0 ~ V())P2m+1 = (uo + ^O^lm+I + ^0P2m 
and 
(6) vm = v0P2m + i + (u0 ~ V0)P2m = ("0 + V())P2m + ^0P2m-1 -

Proof. The second equality in both (5) and (6) follows directly from Pn+2 = 2Pn+j +Pn. We shall prove 
the first equality in both (5) and (6) by induction on m. Clearly (5) and (6) are true for/77 = 0. Thus assume (5) 
and (6) are true for/7? = k. Now 

uk+1 + vk+1sj2 = (uk + vky/2)(3 + 2^/2) = (3uk + 4vk) + (2uk + 3vk)^/2 . 
Hence 
Uk+1 + Vk+1 = 5uk + 7vk = 5(uk + vk)+2vk = 5voP2k+2 + 5(uo~ vo>p2k+1 + 2v()P2k+ I+2(UQ- vo)P2k 

= 5v0P2k+2 +l5(iio ~ v0)+2v0]P2k+l+2(uo - v0) (P2k+2 - 2P2k+l) 

= (UQ + Vo)(2P2k+2 + P2k+1) + VQP2k+2 

= (UQ + v0)P2k+3 + V0P2k+2 = V0P2k+4 + (uo " V())p2k+3 -
Also 

vk+1 = 2vk + 3vk = 2(uk + vk) + vk = 2[v0P2k+2 + ("0 - vo)p2k+lJ + ^0p2k+1 + ("0 ~ v0>p2k 

= 2v0P2k+2 + 2u0P2k+1 ~ V0p2k+1 + ("0 - V0>(p2k+2 ~ 2P2k+1^ 

= (uo + Vo)p2k+2 + V0P2k+1 = ^0P2k+3 + ("0 ~ ^0>P2k+2 -

Now we are ready for the 
Proof of Theorem 6. Assume/7 >q > 0 and/72 - q2 - 2pq = eN. By (•;) - (6), we have 

(7) p = V0R2m+2 + (uo ~ V0>P2m+1 = ("0 + v0>P2m+1 + ^0P2m 
and 
(8) q = v0P2m+ i + (u0- Vo)p2m = (uo + V())p2m + v0P2m-1 > 

where u + v ^/2 's a fundamental solution to u2 - 2v2 = eN and m > 0. 
If eu0v0 < 0 and e= - 1 then let a = v0,b = v0 -u0, and n = 2m. For this choice of a, b, and/7, by (7) and 

(8), we have that (2) is satisfied. We also have that a > b, b > 0 (by Theorem 2 with D = 2) and n > 0. 
If eu0vQ < 0 and e= 1 then \eta = uQ +vQ,h = -vQ, and n = 2m - 1. For this choice of a, b, and/7, we have 

that (2) is satisfied. We also have that a ^b (by Theorem 2), and b > 0. Finally m £0 since m = 0 implies, by 
(4), the contradiction q = v0 < 0. Thus m > 1. 
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The proof for eu0v0 > 0 and the verification that (a + b)2 - 2b2 = N are left to the reader. 

Theorem 8. If p and q are integers which satisfy (2) or (3) with n > 0, a > b > 0, and (a + b)2 - 2b2 = 
N, then p > q > 0 and p2 - q2 - 2pq = eN, where e = 1 or —1. We have e= - 1 for eitherp and q satisfying 
(2) and n even or/7 and q satisfy (3) with n odd. Otherwise 6 = 1 . 

Proof. First supposep and q satisfy (2). Thus/? = 3 / ^ 2 - £ / W / and 

Q = apn+l ~ bPn = -bPn+2 + (a+2b)Pn+1. 
Hence, 

p2-q2-2pq = (a2 + 2ab - h2)(P2
+2- 2Pn+2Pn+1 - P2

n+1) = N(-1)n+1 = eN, 

where e= - 1 for A7 even and e- 1 for/7 odd. Now we shall show that/? > q > 0. Since n > 0, 

Pn+2-Pn + 1 = Pn+1+Pn > Pn+1 ' Pn -
Therefore, since a > b, 

aPn+2-aPn+1 > bPn+1-bPn. 

This impliesp > q. Since a > b and, for/? > 0, Pn+i >Pn, we see thataPn+i > bPn and this implies # > 0. 
If/7 and # satisfy (3) then 

p2~q2-2pq = N(-1)n+2 = eN, 

where e= - 1 for/7 odd ande= 1 for/7 even. Since n > 0, Pn+2>pn+i andPn+i >Pn . Hence 

/? = bPn+2 + aPn+1 > bPn+1+aPn = q. 

Since a>0,b>0, Pn+1 > O, and Pn>0,q = bPn+1 +aPn > O. 
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ON POLYNOMIALS GENERATED BY TRIANGULAR ARRAYS 

KR1SHWASWAIVJ! ALLADI* 
Vivekananda College, Madras 600004, India 

In this paper we study a class of functions which we call Pascal functions, generated by the diagonals of tri-
angular arrays, and discuss some of their properties. The Fibonacci polynomials become particular cases of 
Pascal functions, and so our results are of a fairly general nature. 

1. DEFINITIONS AMD GENERAL PROPERTIES 

Consider a polynomial function in two variables, p(x,y). It is defined to be a Pascal function of (k - 1)st order 
if 

[n/kJ 
(1) p(x,y) = £ amxn~kmym, 

m=0 

where the am are non-zero constants, and [x] represents, for real x, the largest integer not exceedingx. Let us 
denote the set of all Pascal functions (polynomials) of kth order by I I ̂ . (Note: k is a positive integer.) 

One generalization of the famous Fibonacci polynomials is 

F0(x,y) = 0, F^(x,y) = 1, Fn+2(x,y) = xFn+1(x,y) + yFn(x,y), n = 0, 1,2, 
We find that 

Fn(x,y) e n 7 / n = 0, 1,2,3, - . 

See Hoggatt and Long [1 ] . It is interesting to note that the following properties hold: 

Lemma 1. \ip(x,y) mdp*(x,y) are in U^, then q(x,y) is in 11^, where 
q(x,y) = p(x,y)p*(x,y). 

This is the same as saying that H^ is closed under multiplication. 
If p(x,y)^ Uk-i, and has an expansion as given in (1), then tetD(p) = n. We then have 

Lemma 2. \\p(x,y) m&p*(x,y) are in H^, then 
q(x,y) = p(x,y)+p*(x,y) 

is in II ̂  if and only if D(p) = D(p*l 

Lemma 3. \ip(x,y) is in Ily ,̂ then 

dp(x,y) a n d dp(x,y) 
dx dy 

are in 11^. 
The three lemmas given above can be proved easily. 
We define a sequence of functions 

to be proper if 
(2) D(pn+1) = D(pn)+1 with D(p0) = D(P1) = 0. 

By a Pascal array we mean a triangular array of numbers represented in Fig. 1 below: 
*Graduate Student, UCLA, Los Angeles, Calif. 
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co,o 
C1,0 C1.1 

C2,0 C2,1 C2,2 
C3,0 C3,1 C3,2 c3,3 

Figure 1 

If now we replace every c/j by c,jx'yJ, and take the rising diagonal sums, where the rising diagonals have aslope 
k, we get a proper sequence in 1 1 ^ . Conversely, to every proper sequence in I I ^ , we can associate a triangular 
array as in Fig. 1. Note that we can get infinitely many proper sequences from Fig. 1 as k varies, and all of these 
sequences for different values of k, we call "associated sequences." The triangular array which generates these 
sequences, is called their "associated array." 

We now discuss some special properties afp(x,y) e 11^. 

2. SOME SPECIAL PROPERTIES OF PASCAL FUNCTIONS 

Theorem 1. Consider the proper sequence of Pascal functions \pn(x,y)\li=o e Rk satisfying 

(3) Pn+l(*,y) = axpn(x,y) + aypn-k(x,y), n > k, 
with 

P0(x,y) = 0, Pi(x,y) = a, p2(x,y) = a2x, - , Pk(x,y) = akxk~1. 
Then 

,M\ zpn(x,y) dpn+k(xfy) * - * , , / , 
(4) dx = ~—f = 2- f Pk(x,Y)Pn-k(x,y)-

v k=o 

Proof. One can establish the first part of (4) by induction. It is clear from (3) that 

(5) aW^W = gx a ^ M +aPn(x,y,+ay IBiddHl 
dx dx dx 

and 
IR\ ZPn+k+l(x,y) _ Wn+k(x,y) . / . , f l l / *Pn(x,Y) 
(6) = ax + apn[x,y) +ay . 

dy dy dy 
The form of (5) and (6) together with the fact that the first part of (4) holds for/7 = 1, 2, 3, •••, k, proves it by 
induction. We now want to show 

(7) ^ ^ - £ pk(x,y)pn.k(x,y). 
k=0 

Consider the generating function 

GM = E Pn(x,y)tn = : - ^ 

We have 
n=0 1-axt-aytk+1 

^ dPn(X,y) n = gGft) = g2£_ = fr/ , / 2 

h ~dX ' dX ~ d-axt-aytk+1f~l ' 
This proves (7) and so we have established Theorem 1. 

Corollary. For the Fibonacci polynomials defined before, 

*>Fn(x,y) dFn+1(x,y) \ ^» r / j r / J 
-Tx— = —Tv = h Fk(x,y)Fn„k(x,y). 

dx dy 
k=0 
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Proof. The corollary follows by taking k = 1 in Theorem 1. 

Theorem 2. If 
?>Pn (x,y) f . 
— - — = Pn,i(x,y), 

dx 
then define 

n 
(8) Pnjx,y) = J2 Pk,r-l(x,y)Pn-k(*,y)-

k=0 

Now 
7 drpn(x,y) 

Pnjx,y) 
r! r 

dx 

Proof. Differentiate the generating function G(t) in the proof of Theorem 1, r times. Theorem 2 follows. 

Theorem 3. If a proper sequence of Pascal functions 

{Pn(x,y)\n=0 G Rk 

satisfy (4), then they satisfy (3). (Converse of Theorem 1.) 
Proof. Consider the first (k + 1) members of the sequence 

a0,a1/a2X,a3x
2, -,akx

k 1. 
Because of (4) we have 

•£ (a0) = 2a0al , 
and ax f 0, which gives a0 = 0. 

Further, 

^ (a2x) = a2 = a\. 

Similarly, one may show 
ar = a^ = ar, r = 7, 2, - , k. 

Now assume that (3) holds for n = 0, /, 2, 3,-,/7?. Let now 
m 

p*m+1(xfy) = Y^ Pk(*,y)Pm-k+i(x,y)-
k=1 

Clearly, by Lemmas 1 and 2, we have/7^7 (x,y) e I I ̂  . 
Now, denote 

P%+j(x,y) = axpm{x,y) + aypm-k(x,y). 
We have because of Theorem 1 

dp™+1fx,y) 
dx 

But we know, because p 0 (x,y) = 0, 

Pm+ifay)-

*Pm+i(x,y) _ » f j 
Vx Pm+ltx>V) 

and this gives 
Pm+ifcy) = Pm*+i(x,y) 

by (1) and by Lemma 3. This proves that (3) holds, by mathematical induction. Hence we get Theorem 3. 
3. PASCAL FUNCTIONS WHICH CAN BE PASCALISED 

We now shift our attention to Pascal functions which can be "pascalised." Given a proper sequence of Pascal 
polynomials 
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\Pn(x,y)}n=0 e n * > 
form the associated array J a/j r= A. Now take 

Wn(x,v) 
Qn(x,y) 

dx 

to get a new proper sequence in Ft/.. Let j b/j \ = B be the associated Pascal array to this sequence. If we have 
the relation 

(9) bil^'H^V) 
we say | pn(x,y) i can be "pascalised" to the first order. If 

, . drpn (x,y) 
Qnfay) = ~ T - 7 

dxr 

and 
do) bij = aii[

i;r)n 

we say that the sequence ipn(x,y)l can be pascalised to the rth order. 

Theorem 4. A necessary and sufficient condition that a proper sequence of (k - 1)st order Pascal func-

tions ipn(x,y) \^=o can be pascalised to the first order is that 

fn/kj 

(11) Pn(x,y)='E aj[n-(kJ1jj-1)xn'kHyj 

1=0 
for some sequence of constants aj. 

Proof. We will first prove the theorem for the case k = 2. Consider the sequence i pn(x,y)\°^=of and 
assume that the identity holds for/7 = ft 7, 2, -,m. We have then 

[m/2] 

(12) 

Now let 

which gives 

(13) 

Pm(x.y)* £ ajfn-j-^x^t-'yJ'. 
J=o 

[(m+1)/2] 

Pm+l(xfV)= J2 *fsn(mrJ)xm-2JyJ 

*Pm+i(x,y) 

j=o 

[(m+1)/2] 

i-0 

[m/2] 

dx 
1=0 

= E af,m(mr/)xm-2<'-1yi(m-2j) 

Now comparing coefficients in (12) and (13) and using (9) we get 

which gives 
aj,m ~ aj 

establishing part of the theorem for k = 2. The converse can be proved by retracing the steps. 
Now, once the theorem is proved for the first order (k= 2), it holds for any k > 1, for given a proper sequence 

of Pascal functions of (k - 1)st order, we can find its associated sequence of first order. The Pascal arrays for 
the derivatives of these two sequences is the same since the operator d/dx will operate independently in the ex-
pansion of pn(x,y) with respect to coefficients in the associated Pascal array. This completes the proof of the 
theorem. 
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Theorem 5. If a proper sequence of kth order Pascal functions can be pascalised to the first order, then all 
their associated sequences can be pascalised to first order. 

Proof. Given in the last paragraph of the proof of Theorem 4. 

Theorem 6. If a proper sequence of kth order Pascal functions can be pascalised to first order, they can 
be pascalised to any order. 

Proof. By arguments similar to the above, it is enough if we prove it for k = 1. Furthermore, it is enough 
to prove the theorem for the special case ay = 1 for differential operators are unaffected by constant multiples. 

We know from Theorem 4 that the first-order proper sequence of Pascal functions which can be pascalised to 
first order can be put in the form 

[n/2] 

Pn(*>Y) = JL ln-j-1)xn-2f-'y<'aj. 
1=0 X 

Now, as mentioned, aj~ 1, so thatpn(x,y) = Fn(x,y), the Fibonacci polynomials. We then have 

, . [(n+r)/2] [ n + r - j \ yn+r-2jJ 
J_ Wn+r+l(x,V) = _/_ y » _9_ \ j I X V__ 
r! *vr r! *-* ,vr r! 

j=0 ax 

n+r-2j>0 K ' 

which resembles (9) proving our theorem for Fibonacci polynomials, and so for Pascal functions. We demon-
strate our result with the following: 

Pascal Array for Fn (x,y) Pascal Array for — -—-

I 1 
I I 2 2 
1 2 1 3 6 3 
1 3 3 1 4 12 12 4 
1 4 6 4 1 5 20 30 20 5 

No te l : (2,2) = 2(1,1); (3,6,3) = 3(1,2,1); (4,12,12,4) = 4(1,3,3,1); - . Each row has a common factor. 
Note 2: Theorem 4 also says that each column has a common factor ay. In the above all the ay = 1. 
Note 3: The Pascal array for [dFn(x,y)]/ax is also the Pascal array for 

n 

YJ Fk(x,y)Fn..k(x,y) 
k=0 

for both are equal by Theorem 1. 
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H-267 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Show that 

1 (knx)n 

satisfies S(x) = 

H-268 Proposed by L Carlitz, 

Put 

*-" kn + 1 n! 
n=0 

Duke University, Durham, 

n 

SnM = Y, 
k=0 

North Carolina. 

S(n,k)xk, 

where S(n,k) denotes the Stirling number of the second kind defined by 

n 
x" = 2 T s(n>k)x(x- 1)'"(*-k+ V. 

k=0 
Show that 

xSn(K)=T (~1)H {"ASj^ (x) 

ho 

More generally evaluate the coefficients c(n,k,j) in the expansion 

n+k 

xkSn(x) = V c(n' k>J>SJ(x) (k<n > 0>-
1=0 

SOLUTIONS 
SYSTEMATIC WORK 

H-244 Proposed by L Carlitz and T. Vaughan, Durham, North Carolina and Greensboro, North Carolina. 

Solve the system of equations 
466 
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y-7 n 

(*) xj = aj + naj ^ xt + ajXj + \aj ^ xt (j = 1,2,-, n) 
t=i t=j+1 

forx = xi +X2 + — + xn, where ak £ 0 (k = 1,2, —, n) and X ^ JU. 
Solution by the Proposer. 

For/= 1, (*) reduces to 
Xi = al+alxl+\ax(x - xx), 

so that 
( 1-d-Xla^x, = axOx+1). 

For/= 2, (*) becomes 
x2 = a2 +iia2xx +a2x2 +Xa2(x-xl -x2), 

so that 
( 7 - (1 -X)a2)x2 = a2(\x + 1) - a2(\-ix)xx . 

Hence 
(1-(1- \)a,)(1 -(1- X)a2)x2 = a2(l-(1- v)ax)fkx + 1). 

Similarly, for/= 3, 
x3 = a3 + lxa3(xl + x2) + a3x3 +\a3(x-x1 -x2 -x3). 

After a little manipulation we get 
( / - ( / - Waj)(7 - (1 - 70a2)(l - (1 - X)a3)x3 = a3(l - (1 - v)a){l - (1 - ix)a2 )(\x+1). 

The general formula 
(1) f.Mf.M-fkMxk = akfi(iit'»fk-1(ii)(\x+1) (1 < k < n), 
where 

fk(\)-1-(1-\)ak, 
is now easily proved by induction on k. 

Returning to (*), we take/ = fl. Thus 
xn = an + ixan(x-xn) + anxn , 

so that 
{l-(1-li)an)Xn(ixx+D. 

For/ = /7- /we get 
xn^1 = an-i + lian-<i(x -xn - xn-<i) + an^1xn.1 + \an^1xn. 

This gives 
(l-(1- ii)an)(l -(1- j ^ - f K - * = 3/1-/(7 ~(1- ^an)(ixx + 1). 

Similarly, for/ = /7 -2, 

(1-(1- H)an){l -(1- ix)an^){l -(1- n)an-2)xn-2 = an-2^ - (1 ~ ^)an)(l - (1 - \)an^)(nx + 11 

The general formula 
(2) fntiLih-idi) -fn-k+ifoixn-k+i = a„-k+ifnOO ~fn-k+2M(lxx+1) (1 < k < n) 

is easily proved by induction. 
In (2) replace k by n - k + 1: 

(3) fn(n)fn-lM"fkMxk = akfn(\)-fk+100(vx+D (1 < k < n). 

Comparing (3) with (1) we get 

fl (VJ - fk-1M (\X + 1) = a, -!n^l—fJ<±lM^. (nx + 1). 
dkl^W2lk~m kfnMn-lM~fk(») 
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Since ak £ 0, it follows that 
Fn(ii)(\x+1) = Fn(\)(iix+1), 

where 
(5) Fn(\) = n fk(\) = n (l-(1-\)ak). 

k=1 k=1 % 

Solving (4) for*, we get 
(6) x _ Fn(X)-Fn(fi) 

Since, by (6), 

x+1 = 

\Fn(n)-iiFn(\) 

f\-fi)Fn(X) 
\Fn(n)-nFn(\) 

Hence (1) gives 

(7) x, = a, ^ M ^ - ^ n M (1 < k <n) 

where 
k 

Fk(X) = n fk(\) (1 < k < n). 
J=1 

PRODUCTIVE IDENTITY 
H-245 Proposed by P. B rue km an, University of Illinois at Chicago, Chicago, Illinois. 

Prove the identity n_1 

A x*kik-» V " <1+xr> 

where 
M„ = f 7 - xjf 7 - x2)(1 - x3) »• f 7 - *";, /? = 7, 2, •••; M^ = 7. 

Solution by the Proposer. 

Lemma 1. If 
^ v%n(n+1) n 

A(w,x) = n (1+xrw), then /4/W,^ = lL "71 w • 
r=1 n 'x'n 

n=0 
Proof. In a previously submitted proposed problem for this section [H-236], the author established the 

following identity: 
0 0 2 

(2) f(z,y) = iff (1+y2r~1z) = £ /TT Z" • 

Letting y = x 2, z = wx 2 in this identity, we find that the lemma is established, with A(w,x) = f(wx 2, x 2). 

Lemma 2. If 

B(w,x) = fi (1-xrw)~1, then B(w,x) = Y r~r w"' 
r=1 ~ M„ 

n=0 
Proof. This is equivalent to identity (7) in the above-mentioned problem. Now, consider the product 

F(w,x) = A(w,x)B(w,x), 
which is also equal to 

00 7 +xrw 
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We observe that 

F(wXfX) = n I+J£1IL = n I ± ^ L = LZXKF(WfX)m 
r=1 1-xr+1W r=2 1-xrw 7 +XW 

Now suppose 

F(w,x) = Yl dn(x)wn. 
n=0 

We then have 

(1-xw)Y, 6n(x)wn = (1+xw) J2 On(x)(xw)n, 
n=0 n=0 

which yields the recursion 

0„(x) = ^ilU^ll. On-tM, n = 1,2, - . 
1-xn 

Since F(0,x) = 7 = 6Q(x), we readily obtain, by induction, that 

gnM = 2x!UjJLxJ(lJ^(Ltx^h, n _- l2,..., with SJxi - /. 

Hence, 

„n-1 i 
(3) 

However, since 

F(WfX) = n ^J^L = 1+2Y ^il^hAlJJ^l wn m 
r=1 l-xrw " ^ {x)n 

F(w,x) = A(w,x)B(w,x) = Y --71 w" ' Y TT w" > 
n=0 n=0 

we also obtain the formula 
00 

(4) F(w,x) = Yl w" Y 
n

 xM(k+1) xn-k 

(x)k (x)n.k 
n=0 k=0 

Comparing coefficients of w in (3) and (4), we obtain for n = 1, 2, •••, 

2xn(1+x)~(1+xn-1) = y xn+Vzk(k-1) 

Mn ri MkMn-k 
k=0 

Upon dividing each side by x11, we find that (1) is established. 

Also solved by P. Tracy and A. Shannon. 

F!B,LUC,ETAL 

H-246 Proposed by L Car/itz, Duke University, Durham, North Carolina. 

Put 
m n 

F(m,n) = Y Y Fi+'F™-i+iFi+"-iFi i+jrm-i+j' i+n-j rm-i+n-j 
i=0 1=0 

^m'n^ " Yd Y Li+jLm-i+jt-i+n-jLm-i+n-j -
i=0 j=€ 

[Continued on page 473.] 
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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1 and Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1. 

Also a and b designate the roots (1 + V5 )/2 and (1 - s/b )/2, respectively, of x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-340 Proposed by Phil Maria, Albuquerque, New Mexico. 

Characterize a sequence whose first 28 terms are: 

1779, 1784, 1790, 1802, 1813, 1819, 1824, 1830, 1841, 1847, 1852, 1858, 1869, 1875, 
1880, 1886, 1897, 1909, 1915, 1920, 1926, 1937, 1943, 1948, 1954, 1965, 1971, 1976. 

B-341 Proposed by Peter A. Lindstrom, Genesee Community College, Batavia, New York. 

Prove that the product F2n F2n+2F2n+4 o f t n r e e consecutive Fibonacci numbers with even subscripts is the 
product of three consecutive integers. 

B-342 Proposed by Gregory Wulczyn, Buc knell University, Lewis burg, Pennsylvania. 

Prove that-?*£.; + L3
n + 6L2

n+1Ln^ is a perfect cube for n = 1, 2, •••. 

B-343 Proposed by VernerE. Hoggatt, Jr., San Jose State University, San Jose, California. 

Establish a simple expression for 
n 

/ , tF2k-1F2(n-k)+1 ~ F2kF2(n-k+1)l • 
k=1 

B-344 Proposed by Frank Higgins, Naperville, Illinois. 

Letc and dbe real numbers. Find Jw^Xn, wherexn is defined byxx = c, x2 =d, and 

xn+2 = (*n+l +xn)/2 for n = 7,2, 3, - . 
B-345 Proposed by Frank Higgins, Naperville, Illinois. 

Letr>s>0. Find^l im^ Pn, wherePn is defined by Pj = r + s and Pn+1 = r+s-(rs/Pn)forn = 1,2,3, - . 

SOLUTIONS 
A FIBONACCI ALPHAMETIC 

B-316 Proposed by J. A. H. Hunter, Fun with Figures, Toronto, Ontario, Canada. 

Solve the alphametic 
470 
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T W O 
T H R E E 
T H R E E 

E I G H T 
Believe it or not, there must be no 8 in this! 

Solution by Charles W. Trigg, San Diego, California. 

T < 5, and no letter represents 8. There are five cases to consider. 
(1) \\2T+1 = E, and T= 1, then E = 3, and 0 = 5. 

If H = 6, then W = 9,1 = 2, and 2 + 2R = G, impossible. 
I f / / = 7, then W = 0, I = 4, and I+2R = G, impossible. 
If H =9, then 1 = 8, which is prohibited. 

(2) \\2T+1 = E and T=3, then E=7 and 0=9. 
\\H = 4, then W=8, prohibited. 
\\H = 5, then W = 9 = 0. 
\iH = 6, then W=0, and 4+2R = G, impossible. 

(3) l f^7"+ 1 = E and T=4, then E = 9, 0 = 6, and H = W. 
(4) \\2T=E and T= 1, then E = 2 and 0 = 7. 

\\H = 3, then W = 8, which is prohibited. 
\\H = 4, then W=9 and / = 8 or 9. 

(5) \\2T=E and T= J, then £ = 5 and 0=1. 
\\H = 4, then W= 1 = 0. 
\\H = 2, then M/ = 3 and 5-/-2Z? = G or G + 10. 

Whereupon, R = 0, 6 = 5, and / = 4. Thus the unique reconstructed addition is 

391+32066 + 32066 = 65423. 

Also solved by Nancy Barta, Richard Blazej, Paul S. Brue kman, John W. Milsom, C. B. A. Peck, James F. Pope, 
and the Proposer. 

LUCAS DIVISOR 

B-317 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Prove that 1-2n-l,s a n e x a c t divisor of Z . ^ - / - Tfor/7 = 1, 2, •••. 
Solution by Gerald Bergum, Brookings, South Dakota. 

Using the Binet formula together with aj3= - 1 and a + ]3= 1 we have 

L2nL2n-i = (a2n+(32n)(a2n-1+(32n-1) = a4n~1+$4n~1 + (a^)2"'1 (a + $) = L4n-i - 1-

Also solved by M. D. Agrawal, George Berzsenyi, Richard Blazej, Wray G. Brady, Paul S. Bruckman, Ralph 

Garfield, Frank Higgins, Mike Hoffman, Peter A. Lindstrom, Graham Lord, Carl F. Moore, C. B. A. Peck, Bob 

Prielipp, Jeffrey Shal/it, A. G. Shannon, Sahib Singh, Gregory Wulczyn, David Zeitlin, and the Proposer. 

FIBONACCI SQUARE 

B-318 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Prove that F2
n + 8F2n(^2n + F6n)is a perfect square for n= 1,2, •••. 

Solution by George Berzsenyi, Lamar University, Beaumont, Texas. 

Using well known identities (see, for example, l2l and /7 in Hoggatt's Fibonacci and Lucas Numbers) one 
finds that 

F4n+8F2n(F2n + F6n) = F$n+8F2n(F4nL2n) = F2
4n+8F4n(F2nL2n) = F2

4n+8F2
4n 

= 9F2
n = (3F4n)

2. 
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Also solved by M. D. Agrawal, Gerald Bergum, Richard Blazej, l/l/ray G. Brady, Ralph Garfield, Frank Higgins, 
Mike Hoffman, Peter A. Lindstrom, Graham Lord, Carl F. Moore, C. B. A. Peck, Bob Prielipp, Jeffrey Sha/lit, 
A. G. Shannon, Sahib Singh, Gregory Wulczyn, David Zeitlin, and the Proposer. 

RERUN 
B-319 Prove or disprove: 

JL + JL +.-U- r... = JL I J- _ JL + JL _ ... \ 
1-2 L-6 Lxo T J5 \F2 F6 F1Q I' 

Solution (independently) by Carl f. Moore, Tacoma, Washington, and C. 8.A. Peck, State College, Pennsylvania. 

This problem is a restatement of the problem B-111, proposed and solved by L. Carlitz, The Fibonacci 
Quarterly, Vol. 5, No. 4 (Dec. 1967), p. 470. 

Also solved by Paul S. Bruckman, Mike Hoffman, and the Proposer. 

A SUM 

B-320 Proposed by George Berzsenyi, Beaumont, Texas. 

Evaluate the sum: 
n 

/I FkFk+2m • 
k=0 

Solution by Gerald Bergum, Brookings, South Dakota. 

Using induction it is easy to show that 
2t 

• 2 J FkFk+d = F2tF2t+d+1 • 
k=0 

If n is even, we have, 
n 

\ t FkFk+2m = FnFn+2m+1 -
k=0 

If n is odd, we have 
n 

/ „ FkFk+2m = Fn~1 Fn+2m + FnFn+2m = Fn+1Fn+2m-
k=0 

Also solved by M. D. Agrawal, Paul S. Bruckman, Herta T. Freitag, Frank Higgins, Graham Lord, Carl F. Moore, 
C. B. A. Peck, James F. Pope, Bob Prielipp, Jeffrey Sha/lit, A. G. Shannon, Sahib Singh, Gregory Wulczyn, 
David Zeitlin, and the Proposer. 

A RELATED SUM 
B-321 Proposed by George Berzsenyi, Beaumont, Texas. 

Evaluate the sum: 
n 

2^ FkFk+2m+1-
k=0 

Solution by Gerald Bergum, Brookings, South Dakota. 
Using induction it is easy to show that 

2t 

z2 FkFk+d = F2tF2t+d+1-
k=0 

If n is even, we have 
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7 \ FkFk+2m+1 ~ FnFn+2m+2-
k=0 

If n jsodd, we have 

n 

/ A FkFk+2m+1 = Fn-lFn+2m+1 + FnFn+2m+1 = Fn+1 Fn+2m+1 • 
k=0 

Also solved by the sovlers of B-320. 

-kkkkkkk 
[Continued from page 469.] 

ADVANCED PROBLEMS AMD SOLUTIONS 

Show that 
L(m,n)- 25F(m,n) = 8Lm+nFm+1Fn+1. 

Solution by the Proposer. 

It follows from the Binet formulas 

I'm a_p . Lm a +p 

that 
5FmFn = Lm+n-(a

m(3"+ann, 
so that 

5Fj+jFm-j+n-j - Lm+n - (a yp +a J) 

5F;+n-jFm-i+j = Lm+n -(a y/3 + a y/j '). 

Hence 

/bhj+jrm-.j+Jt-,+n-Jhm-l+n-] - Lm+n- Lm+nia p +a p 

+ a
,+n-^m-i+i + am-i+J(Si+n-J) 

+ (a2i+nn2m-2i+n + a2m~2i+nn2i+n + am+2jnm+2n-2j + am+2n-2jnm+2j^ _ 

It follows that 
25F(m,n) = (m + 1)(n + 1)L2

m+n - 4Lm+nFm+1Fn+1 + 2(-1)n(n + 1)F2m+2 +2(-1)m(m + 1)F2n+2. 

Similarly, 
L(m,n) = (m + 1)(n + 1)Lm+n+4Lm+nFm+1Fn+1 + 2(-1)n(n + 1)F2m+2 + 2(-1)m(m + 1)F2n+2, 

Therefore, 
L(m,n)- 25F(m,n) = 8Lm+nFm+iFn+1. 

Also solved by P. Bruckman. 

EDITORIAL REQUEST! Send in your problem proposals! 
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BERGUM, GERALD E. "Numerator Polynomial Coefficient Array for the Convolved Fibonacci Sequence," 
Vol. 14, No. 1, pp. 43-47 (co-author, V. E. Hoggatt, Jr.). Problems Solved: B-298, Vol. 14, No. 1, p. 
94; B-299, Vol. 14, No. 1, p. 94; B-300, Vol. 14, No. 1, p. 95; B-302, Vol. 14, No. 1, p. 95; B-317, Vol. 
14, No. 5, p. 471; B-318, Vol. 14, No. 5, p. 472; B-320, Vol. 14, No. 4, p. 472; B-321, Vol. 14, No. 5, 
p. 473. 

BERNSTEIN, LEON. "A Formula for Fibonacci Numbers from a New Approach to Generalized Fibonacci 
Numbers," Vol. 14, No. 4, pp. 358-368. 

BERZSENYI, GEORGE. Problems Proposed: B-327, Vol. 14, No. 1, p. 93; H-263, Vol. 14, No. 3, p. 182; 
B-330, Vol. 14, No. 2, p. 188; B-331, Vol. 14, No. 2, p. 188; H-266, Vol. 14, No. 3, p. 282; B-320, Vol. 
14, No. 5, p. 472. Problems Solved: B-298, Vol. 14, No. 1, p. 94; B-299, Vol. 14, No. 1, p. 94; B-300, 
Vol. 14, No. 1, p. 95; B-302, Vol. 14, No. 1, p. 95; B-304, Vol. 14, No. 2, p. 189; B-305, Vol. 14, No. 2, 
p. 189; B-306, Vol. 14, No. 2, p. 189; B-307, Vol. 14, No. 2, p. 190; B-311, Vol. 14, No. 3, p. 287; B-312, 
Vol. 14, No. 3, p. 288; B-317, Vol. 14, No. 5, p. 471; B-318, Vol. 14, No. 5, p. 471; B-320, Vol. 14, No. 
5, p. 472; B-321, Vol. 14, No. 5, p. 473. 

BEVERAGE, DAVID G. " P o l y n o m i a l s / ^ / M SatisfyingP2n+l(Fk)= F(2n+Uk," Vol. 14, No. 3, pp. 197-
200. 

BICKNELL, MARJORIE. "Pascal, Catalan, and General Sequence Convolution Arrays in a Matrix," Vol. 14, 
No. 2, pp. 135-142 (co-author, V. E. Hoggatt, Jr.). "Sequences of Matrix Inverses from Pascal, Catalan, 
and Related Convolution Arrays," Vol. 14, No. 3, pp. 224-232 (co-author, V. E. Hoggatt, Jr.). "A 
Primerforthe Fibonacci Numbers, Part XV: Variations on Summing a Series of Reciprocals of Fibonacci 
Numbers," Vol. 14, No. 3, pp. 272-276 (co-author, V. E. Hoggatt, Jr.). "A Reciprocal Series of Fibon-
acci Numbers with Subscripts 2nk" Vol. 14, No. 5, pp. 453-455 (co-author, V. E. Hoggatt, Jr.). 
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BICKNELL, MARJORIE. (Cont'd). 
"Catalan and Related Sequences Arising from Inverses of Pascal's Triangle Matrices," Vol. 14, No. 5, pp. 
395-405 (co-author, V. E. Hoggatt, Jr.). 

BLAZEJ, RICHARD. Problem Proposed: B-298, Vol. 14, No. 1, p. 94. Problems Solved: B-298, Vol. 14, No. 
1, p. 94; B-312, Vol. 14, No. 3, p. 288; B-316, Vol. 14, No. 5, p. 471; B-317, Vol. 14, No. 5, p. 471; 
B-318, Vol. 14, No. 5, p. 472. 

BRADY, WRAY G. Problems Solved: B-298, Vol. 14, No. 1, p. 94; B-299, Vol. 14, No. 1, p. 94; B-300, Vol. 14, 
No. 1, p. 95; H-237, Vol. 14, No. 2, p. 187; B-305, Vol. 14, No. 1, p. 189; B-306, Vol. 14, No. 2, p. 190; 
H-238, Vol. 14, No. 3, p. 383; B-317, Vol. 14, No. 5, p. 471; B-318, Vol. 14, No. 5, p. 472. Problem 
Proposed: B-377, Vol. 14, No. 3, p. 286. 

BRIDGER, C. Problem Solved: H-241, Vol. 14, No. 3, p. 285. 
BROUSSEAU, BROTHER ALFRED. "Recursion Relations of Products of Linear Recursion Sequences," Vol. 

14, No. 2, pp. 159-166. 

BRUCKMAN, PAULS. "A Generalization of a Series of De Morgan," Vol. 14, No. 3, pp. 193-195 (co-author, 
1. J. Good. Problem Proposed: H-245, Vol. 14, No. 5, p. 468. Problems Solved: H-231, Vol. 14, No. 1, 
p. 90; H-133, Vol. 14, No. 1, p. 91; B-298, Vol. 14, No. 1, p. 94; B-299, Vol. 14, No. 1, p. 94; B-300, 
Vol. 14, No. 1, p. 95; B-301, Vol. 14, No. 1, p. 95; B-302, Vol. 14, No. 1, p. 95; B-303, Vol. 14, No. 1, 
p. 96; H-234, Vol. 14, No. 2, p. 183; H-235, Vol. 14, No. 2, p. 184; H-236, Vol. 14, No. 2, p. 185; H-237, 
Vol. 14, No. 2, p. 187; B-304, Vol. 14, No. 2, p. 189; B-305, Vol. 14, No. 2, p. 189; B-306, Vol. 14, No. 
2, p. 190; B-307, Vol. 14, No. 2, p. 190; B-308, Vol. 14, No. 2, p. 191; B-309, Vol. 14, No. 2, p. 192; 
H-238, Vol. 14, No. 3, p. 283; B-311, Vol. 14, No. 3, p. 287; B-312, Vol. 14, No. 2, p. 288; B-313, Vol. 
14, No. 3, p. 288; B-314, Vol. 14, No. 3, p. 288; B-316, Vol. 14, No. 5, p. 471; B-317, Vol. 14, No. 5, 
p. 471; B-319, Vol. 14, No. 5, p. 472; B-320, Vol. 14, No. 5, p. 472; B-321, Vol. 14, No. 5, p. 473; 
H-245, Vol. 14, No. 5, p. 468; H-246, Vol. 14, No. 5, p. 413. 

CARLITZ, L "The Saalchiitzian Theorems," Vol. 14, No. 1, pp. 55-63. "Some Binomial Sums," Vol.14, 
No. 3, pp. 249-253. "Restricted Compositions," Vol. 14, No. 3, pp. 254-264. "Some Sums of Multi-
nomial Coefficients," Vol. 14, No. 5, pp. 427-438. "Set Partitions," Vol. 14, No. 4, pp. 327-342. 
Problems Proposed: H-258, Vol. 14, No. 1, p. 88; H-231, Vol. 14, No. 1, p. 89; H-236, Vol. 14, No. 2, 
p. 184; H-264, Vol. 14, No. 2, p. 282; H-238, Vol. 14, No. 3, p. 282; H-240, Vol. 14, No. 3, p. 284; 
B-319, Vol. 14, No. 5, p. 472; H-268, Vol. 14, No. 5, p. 466; H-244, Vol. 14, No. 5, p. 466; H-246, Vol. 
14, No. 5, p. 469. Problems Solved: H-231, Vol. 14, No. 1, p. 89; H-236, Vol. 14, No. 2, p. 186; H-237, 
Vol. 14, No. 2, p. 187; H-238, Vol. 14, No. 3, p. 283; H-240, Vol. 14, No. 3, p. 284; B-319, Vol. 14, No. 
5, p. 472; H-244, Vol. 14, No. 5, p. 467; H-246, Vol. 14, No. 5, p. 473. 

CHAKRAVATI, ARAVINDA. "Variation in the Number of Ray- and Disc-Florets in Four Species of Com-
positae," Vol. 14, No. 2, pp. 97-100 (co-author, Partha Pratim Majumder). 

CHEEVES, WARREN. Problem Solved: B-298, Vol. 14, No. 1, p. 94. 

CHOUTEAU, CHARLES. Problems Solved: H-232, Vol. 14, No. 1, p. 90; B-311, Vol. 14, No. 3, p. 287; B-313, 
Vol. 14, No. 3, p. 288. 

CONSUL, P. C. "Some Factorable Determinants," Vol. 14, No. 2, pp. 171-172. 
CULLEN, THEODORE J. "ASummation Identity," Vol. 14, No. 1, pp. 35-36. 

DAVIS, BROTHER BASIL. "Some Remarks on Initial Digits," Vol. 14, No. 1, pp. 13-14. "Exponentials and 
Bessel Functions," Vol. 14, No. 5, p. 405. 

DE LEON, M. J. "Pell's Equation and Pell Number Triples," Vol. 14, No. 5, pp. 456-460. 

DISHON, MENACHEM. "A Method for the Evaluation of Certain Sums Involving Binomial Coefficients," Vol. 
14, No. 1, pp. 75-77 (co-author, George H. Weiss). 
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EDGAR, H. Problem Proposed: H-260, Vol. 14, No. 1, p. 88. 

ENNEKIIMG, E. A. "Generalized Bell Numbers," Vol. 14, No. 1, pp. 67-73 (co-author, J. C. Ahuja). 

ERCOLANO, JOSEPH. "Golden Sequences of Matrices with Applications to Fibonacci Algebra," Vol. 14, No. 
5, pp. 419-426. 

ERDOS, P. "On the Prime Factors of lnk ) ," Vol. 14, No. 4, pp. 348-352 (co-author, R. L Graham). 

FERGUSON, HELAMAN ROLFE PRATT. "On a Generalization of the Fibonacci Numbers Useful in Mem-
ory Allocation Schema; or All About the Zeroes of Zk - Zk~1 - 1, k > 0," Vol. 14, No. 3, pp. 233-
243. 

FINKEL, DANIEL Problems Proposed: H-239, Vol. 14, No. 3, p. 283; B-310, Vol. 14, No. 3, p. 287. Prob-
lems Solved: H-239, Vol. 14, No. 3, p. 283; B-310, Vol. 14, No. 3, p. 281. 

FINKELSTEIN, R. Problem Proposed: H-259, Vol. 14, No. 1, p. 88. 

FISCHER, KURT. "The Fibonacci Sequence Encountered in Nerve Physiology," Vol. 14, No. 4, pp. 377-379. 

FREITAG, HERTA T. Problems Proposed: B-324, Vol. 14, No. 1, p. 93; B-329, Vol. 14, No. 2, p. 188; B-335, 
Vol. 14, No. 3, p. 286; B-336, Vol. 14, No. 3, p. 286; B-314, Vol. 14, No. 3, p. 288; B-317, Vol. 14, No. 
5, p. 471; B-318, Vol. 14, No. 5, p. 471. Problems Solved: B-298, Vol. 14, No. 1, p. 94; B-299, Vol. 14, 
No. 1, p. 94;B-300, Vol. 14, No. 1, p. 95; B-304, Vol. 14, No. 2, p. 189; B-305, Vol. 14, No. 2, p. 189; 
B-306, Vol. 14, No. 2, p. 190; B-307, Vol. 14, No. 2, p. 190; B-309, Vol. 14, No. 2, p. 192; B-311, Vol. 
14, No. 3, p. 287; B-313, Vol. 14,, No. 3, p. 288; B-314, Vol. 14, No. 3, p. 288; B-317, Vol. 14, No. 5, 
p. 471; B-318, Vol. 14, No. 5, p. 472; B-320, Vol. 14, No. 5, p. 472; B-321, Vol. 14, No. 5, p. 473. 

GARFIELD, RALPH. Problems Proposed: H-232, Vol. 14, No. 1, p. 90; H-241, Vol. 14, No. 3, p. 285. Prob-
lems Solved: H-232, Vol. 14, No. 1, p. 90; B-298, Vol. 14, No. 1, p. 94; B-299, Vol. 14, No. 1, p. 94; 
B-300, Vol. 14, No. 1, p. 95; B-305, Vol. 14, No. 2, p. 189; B-306, Vol. 14, No. 2, p. 190; H-241, Vol. 
14, No. 3, p. 285; B-311, Vol. 14, No. 3, p. 287; B-313, Vol. 14, No. 3, p. 288; B-317, Vol. 14, No. 5, 
p. 471; B-318, Vol. 14, No. 4, p. 472. 

GELLAR, RALPH. "The Algebra of Fibonacci Representations," Vol. 14, No. 4, pp. 289-326. (Co-author, 
Robert Silber.) 

GLASSER, M. L "On Some Inverse Tangent Summations," Vol. 14, No. 5, pp. 385-388 (co-author, M. S. 
Klamkin). 

GOOD, I. J. "A Generalization of a Series of DeMorgan with Applications of Fibonacci Type," Vol. 14, No. 3, 
pp. 193-195 (co-author, P. S. Bruckman). Problem Solved: H-237, Vol. 14, No. 2, p. 187. 

GOODSTEIN, R. L Problem Solved: H-234, Vol. 14, No. 2, p. 184. 

GOULD. H. W. Letter to the Editor, Vol. 14, No. 2, p. 143. 

GRAHAM, R. L "On the Prime Factors of !nA ," Vol. 14, No. 4, pp. 348-352 (co-author, P. Erdos). 

GREIG, W. ELLIOTT. "Bode's Rule and Folded Sequences," Vol. 14, No. 2, pp. 129-133. 

GUILI, ROBERT M. Problem Solved: H-231, Vol. 14, No. 1, p. 89. 

GUPTA, HANSRAJ. "A Direct Method of Obtaining Farey-Fibonacci Sequences," Vol. 14, No. 5, pp. 389— 
391. 

HANANI, HAIM. "A Combinatorial Identity," Vol. 14, No. 1, pp. 49-51. 

HANSELL, WALTER. Problem Proposed: B-328, Vol. 14, No. 2, p. 188. 

HATZENBUCHLER, MADELEINE. Problem Solved: B-312, Vol. 14, No. 3, p. 288. 
HEDIAN, HELENE. "The Golden Section and the Artist," Vol. 14, No. 5, pp. 406-418. 
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HIGGINS, FRANK. Problems Proposed: B-305, Vol. 14, No. 2, p. 189; B-306, Vol. 14, No. 2, p. 189; B-344, 
Vol. 14, No. 5, p.470;B-345, Vol. 14, No. 5, p.470. Problems Solved: B-298, Vol. 14, Mo. 1, p. 94; 
B-299, Vol. 14, No. 1, p. 94; B-300, Vol. 14, No. 1, p. 95; B-303, Vol. 14, No. 1, p. 96; H-237, Vol. 14, 
No. 2, p. 187; B-305, Vol. 14, No. 2, p. 189; B-306, Vol. 14, No. 2, p. 190; B-311, Vol. 14, No. 3, p. 287; 
B-314, Vol. 14, No. 3, p. 288; B-317, Vol, 14, No. 5, p. 471; B-318, Vol. 14, No. 5, p. 472; B-320, Vol. 
14, No. 5, p. 472; B-321, Vol. 14, No. 5, p. 473. 

HILLIKER, DAVID LEE. "On the Infinite Multinomial Expansion," Vol. 14, No. 3, pp. 203-205. "On the 
Infinite Multinomial Expansion, I I , " Vol. 14, No. 5, pp. 392-394. 

HI LLMAN, A. P. Editor, "Elementary Problems and Solutions/' Vol. 14, No. 1, pp. 93-96; Vol. 14, No. 2, pp. 
188-192; Bol. 14, No. 3, pp. 286-288; Vol. 14, No. 5, pp. 470-473. 

HILTON, A. J. W. Problem Proposed: H-261, Vol. 14, No. 2, p. 182. 

HINDEN, HARVEY J. Problems Solved: B-311, Vol. 14, No. 3, p. 287; B-313, Vol. 14, No. 3, p. 288. 

HOFFMAN, MIKE. Problems Solved: B-311, Vol. 14, No. 3, p. 287; B-313, Vol. 14, No. 3, p. 288; B-317, Vol. 
14, No. 5, p. 471; B-318, Vol. 14, No. 5, p. 471; B-319, Vol. 14, No. 4, p. 472. 

HOGGATT, V. E., JR. "Numerator Polynomial Coefficient Array for the Convolved Fibonacci Sequence," Vol. 
14, No. 1, pp.43-47 (co-author, G. E. Bergum). "Sums of Partition Sets in Generalized Pascal Triangles, 
I," Vol. 14, No. 2, pp. 117-125 (co-author, G. L. Alexanderson). "Pascal, Catalan, and General Sequence 
Convolution Arrays in a Matrix," Vol. 14, No. 2, pp. 135-142 (co-author, Marjorie Bicknell). "In-
Winding Spirals," Vol. 14, No. 2, pp. 144-146 (co-author, Krishnaswami Alladi). "Sequences of Matrix 
Inverses from Pascal Catalan, and Related Convolution Arrays," Vol. 14, No. 3, pp. 224-232 (co-author, 
Marjorie Bicknell). "A Primer for the Fibonacci Numbers, Part XV: Variations on Summing a Series of 
Reciprocals of Fibonacci Numbers," Vo l 14, No. 3, pp. 272-276 (co-author, Marjorie Bicknell). "Re-
ciprocal Series of Fibonacci Numbers with Subscripts lnk" Vol. 14, No. 5, pp. 453-455 (co-author, 
Marjorie Bicknell). "Catalan and Related Sequences Arising from Inverses of Pascal's Triangle Matrices," 
Vol. 14, No. 5, pp. 395-405 (co-author, Marjorie Bicknell). "Primitive Periods of Generalized Fibonacci 
Sequences," Vol. 14, No. 4, pp. 343-347 (co-author, Claudia Smith). "Exponentials and Bessel Func-
tions," Vol. 14, No. 5, p. 405 (co-author, Brother Basil Davis). Problems Proposed: B-325, Vol. 14, No. 1, 
p. 93; B-299, Vol. 14, No. 1, p. 94; B-300, Vol. 14, No. 1, p. 94; B-302, Vol. 14, No. 1, p. 95; B-328, 
Vol. 14, No. 2, p. 188; B-207, Vol. 14, No. 2, p. 190; H-265, Vol. 14, No. 3, p. 282; B-313, Vol. 14, No. 
3, p. 288; B-343, Vol. 14, No. 5, p. 470; H-267, Vol. 14, No. 5, p. 466. Problems Solved: H-231, Vol. 
14, No. 1, p. 90; B-299, Vol. 14, No. 1, p. 94; B-300, Vol. 14, No. 1, p. 95; B-302, Vol. 14, No. 1, p. 95; 
B-307, Vol. 14, No. 2, p. 190; B-313, Vol. 14, No. 3, p. 288. 

HOSOYA, HARUO. "Fibonacci Triangle," Vol. 14, No. 2, pp. 173-179. 

HUNSUCKER, J. L. Problem Solved: H-230, Vol. 14, No. 1, p. 89. 

HUNTER, J. A. H. Problems Proposed: B-323, Vol. 14, No. 1, p. 93; B-312, Vol. 14, No. 3, p. 287; B-316; 
Vol. 14, No. 5, p. 470. Problems Solved: B-312, Vol. 14, No. 3, p. 288; B-316, Vol. 14, No. 4, p. 471. 

IVIE, JOHN. Problem Solved: B-302, Vol. 14, No. 1, p. 95. 

JONES, JAMES P. "Diophantine Representation of the Lucas Numbers," Vol. 14, No. 2, p. 134. 

KIMBERLING, CLARK. "Divisibility Properties of Recurrent Sequences," Vol. 14, No. 4, pp. 369-376. 

KILLGROVE, R. B. "The Sum of Two Powers is a Third, Sometimes," Vol. 14, No. 3, pp. 206-209. 

KLAMKIN, M. S. "On Some Inverse Tangent Summations," Vol. 14, No. 5, pp. 385-388 (co-author, M. L 
Glasser). Problem Solved: H-238, Vol. 14, No. 3, p. 283. 

KLARNER, DAVID A. "A Model for Population Growth," Vol. 14, No. 3, pp. 277-281. 
KRAVITZ, SIDNEY. Problems Proposed: B-322, Vol. 14, No. 1, p. 93; B-304, Vol. 14, No. 2, p. 188. Prob-

lem Solved: B-304, Vol. 14, No. 2, p. 189. 
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KUNG, S. H. L. "Parity Triangles of Pascal's Theorem," Vol. 14, No. 1, p. 54. 

tEWIS, T. G. "Fibonacci Sequences and Memory Management," Vol. 14, No. 1, pp. 37-41 (co-authors, B. J. 
Smith and M. Z. Smith). 

LINDSTROM, PETER A. Problem Proposed: B-341, Vol. 14, No. 5, p. 470. Problems Solved: B-299, Vol. 14, 
No. 1, p. 94; B-300, Vol. 14, No. 1, p. 95; B-317, Vol. 14, No. 5, p. 471; B-318, Vol. 14, No. 5, p. 472. 

LORD, GRAHAM. Problems Solved: B-298, Vol. 14, No. 1, p. 94; B-298, Vol. 14, No. 1, p. 94; B-300, Vol. 
14, No. 1, p. 95; B-301, Vol. 14, No. 1, p. 95; B-302, Vol. 14, No. 1, p. 95; B-303, Vol. 14, No. 1, p. 96; 
B-304, Vol. 14, No. 2, p. 189; B-305, Vol. 14, No. 2, p. 189; B-306, Vol. 14, No. 2, p. 190; B-311, Vol. 
14, No. 3, p. 287; B-313, Vol. 14, No. 3, p. 288; B-314, Vol. 14, No. 3, p. 288; B-317, Vol. 14, No. 5, p. 
471; B-318, Vol. 14, No. 5, p. 472; B-320, Vol. 14, No. 5, p. 472; B-321, Vol. 14, No. 5, p. 473. 

LOSSERS, 0. P. Problem Solved: H-238, Vol. 14, No. 3, p. 283. 

MAJUMDER, PARTHA PRATIM. "Variation in the Number of Ray- and Disc-Florets in FourSpecies of Com-
positae," Vol. 14, No. 2, pp. 97--100 (co-author, Aravinda Chakravati). 

MANA, PHIL. Problems Proposed: B-301, Vol. 14, No. 1, p. 95; B-332, Vol. 14, No. 2, p. 188; B-333, Vol. 
14, No. 2, p. 188; B-308, Vol. 14, No. 2, p. 191; B-334, Vol. 14, No. 3, p. 286; B-340, Vol. 14, No. 5, 
p. 470. Problems Solved: B-301, Vol. 14, No. 1, p. 95; B-308, Vol. 14, No. 2, p. 191. 

MC QUISTAN, R. B. "Mixed Nearest Neighbor Degeneracy for Particles on a One-Dimensional Lattice Space," 
Vol. 14, No. 4, pp. 353-357. 

1VIILLER, D. A. Problem Proposed: H-237, Vol. 14, No. 2, p. 186. Problem Solved: H-237, Vol. 14, No. 2, p. 
187. 

MILSOM, JOHN W. Problems Solved: B-298, Vol. 14, No. 1, p. 94; B-311, Vol. 14, No. 3, p. 287; B-312, Vol. 
14, No. 3, p. 288; B-316, Vol. 14, No. 4, p. 471. 

MOHANTY, N. C. "Interesting Properties of Laguerre Polynomials," Vol. 14, No. 1, p. 42. 

MOORE, CARL F. Problems Solved: B-317, Vol. 14, No. 5, p. 471; B-318, Vol. 14, No. 5, p. 472; B-319, Vol. 
14, No. 5, p. 472; B-320, Vol. 14„ No. 5, p. 472; B-321, Vol. 14, No. 5, p. 473. 

MONTEIRO, P. "Minimal and Maximal Fibonacci Representations: Boolean Generation," Vol. 14, No. 1, pp. 
9-11 (co-author, R. W. Newcomb). 

MONZINGO, M. G. "On Congruences Modulo A Power of a Prime," Vol. 14, No. 1, pp. 23-24. "A Note on 
the Golden Ellipse, Vol. 14, No. 5, p. 388. "On Consecutive Primitive Roots," Vol. 14, No. 5, p. 391. 

NASH, HUMPHREY. "Some Operational Formulas," Vol. 14, No. 1, pp. 1-8. 

NEWCOMB, R. W. "Minimal and Maximal Fibonacci Representations: Boolean Generation," Vol. 14, No. 1, 
pp. 9-11 (co-author, P. Monteiro). 

NORDEN, HUGO. "Per N e r d ' s Xanon'," Vol. 14, No. 2, pp. 126-128. 

PARKER, F. D. Problem Solved: H-235, Vol. 14, No. 2, p. 184. 
PECK, C. B. A. Problems Solved: B-298, Vol. 14, No. 1, p. 94; B-299, Vol. 14, No. 1, p. 94; B-300, Vol. 14, 

No. 1, p. 95; B-303, Vol. 14, No. 1, p. 96; B-305, Vol. 14, No. 2, p. 189; B-306, Vol. 14, Na 2, p. 190; 
B-311, Vol. 14, No. 3, p. 287; B-312, Vol. 14, No. 3, p. 288; B-316, Vol. 14, No. 5, p. 471; B-317, Vol. 
14, No. 5, p. 471; B-318, Vol. 14, No. 5, p. 472; B-319, Vol. 14, No. 5, p. 472; B-320, Vol. 14, No. 5, 
p. 472; B-321, Vol. 14, No. 5, p. 473. 

POPE, JAMES F. Problems Solved: B-316, Vol. 14, No. 5, p. 471; B-210, Vol. 14, No. 5, p. 472; B-321, Vol. 
14, No. 5, p. 473. 

PRIELLIP, BOB. Problems Solved: B-305, Vol. 14, No. 2, p. 189; B-306, Vol. 14, No. 2, p. 190; B-317. Vol. 
14, No. 5, p. 471; B-318, Vol. 14, No. 5, p. 472; B-320, Vol. 14, No. 5, p. 472; B-321, Vol. 14, No. 5, 
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PRIELLIP, BOB. (Cont'd) 
p. 473. 

PRIEST, DEAN B. "Column Generators for Coefficients of Fibonacci and Fibonacci-Related Polynomials/' 
Vol. 14, No. 1, pp. 30-34 (co-author, Stephen W. Smith). 

PUTTASWAIVIY,T. K. "A Note on a Theorem of W. B. Ford," Vol. 14, No. 1,p. 74. 
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