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RESIDUES OF GENERALIZED FIBONACCI SEQUENCES

€.C. YALAVIG!
Government College, Mercara, India

Consider a sequence of GF numbers, {w,(b,c;P,Q) }L:o Forbh =c =1, L. Taylor [1] has proved the follow-
ing theorem.

Theorem. The only sequences which possess the property that upon division by a (non-zero) member of
that sequence, the members of the sequence leave least +ve, or —ve residues which are either zero or equal in
absolute value to a member of the original sequence are the Fibonacci and Lucas sequences.

Qur objective is to consider the extension of this theorem to GF sequences by a different approach, and show
that a class of sequences can be constructed to satisfy the property of this theorem in a restricted sense, i.e., for
a particular member only. For convenience, w,(b,7; 0,7), w,(b,1; 2.b), w,(b,1; P,Q) shall be designated by
Up, Vp, Hp, respectively.

Let Hypr =(—1) r_7Hk_, {mod H ). Assume without foss of generality, & to be +ve. We distinguish 2 cases:
(A)0<r<k and (B)r >k

(A) Evidently, the members leave least residues which are either zero or equal in absolute value to a member
of the original sequence.

(B) Allow |H_gr7| < |Hg| < |H-g|. Let

(1) Howss = (=15 TH_g (mod Hi ), Hoksser = (—1)H_g-7 (mod Hy) .
Ciearly, the property of above-cited theorem holds for {4, } 2, iff
(1)K Ty o = Ho (mod Hy), and (~1)KH o1 = Hosy (mod Hy),

for some ¢ such that —s + 7 < ¢ < 2k Denote the period of { H,, (mod H,)} & by k(Hy ). Rewrite the given
sequence as  { Hp-} ., where Hj-=H,. Setk’=k +1,5"=s—t and ¢ =2+ Then, it is easy to show that
klH) = 2k+s—, KkiHp) = 2k'+s"— ), and  klHi) = kiHk).

We assert that k(H -} is even, for t= (s — ¢)/2 obtains s” = ¢, k(Hy+) = 2k’, and the substitution of s —2 =2t + 7
leads to s” — ¢" = 1, k(Hy-) = 2k’ + 1, which is a contradiction. Hence, it is sufficient to examine the following
system of congruences, viz.,

(2) Hokr = Hp (mod Hi), Hok+1 = H7 (mod Hi-) .
These congruences imply ’
(3) Hokve = He = (=K1 (mod Hie) = (— 1)K T{H,— (20 — bPJu; } (mod Hy )

= (— 7)k“7{PVt— He } (mod Hg ).

Therefore, (i) P =0, Q = 1, and (ii) P=2 Q = b, furnish readily the desired sequences, and they are the only
sequences for which the property of L. Taylor's theorem holds. For the restricted case, by using the well known
formula H,, = Pup_g + Quy,, it is possible to express H_g = Hg {mod Hg), and H_e_7 =Hor7 (mod Hy ) as two
simultaneous equations in A, @, and obtain their solution for given §, ¢, and 4. In particular, the latter case may
be handled by using k(H%-) = k(uk ), where Hy - is selected arbitrarily to satisfy k”= k(ug-}/2 and

Hir = Pugrq + Quy ,
determines P and Q.

Example: Hg = 19, k(Hg) = 18, P=g a=-5.
1
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COMPOSITES AND PRIMES AMONG POWERS
OF FIBONACCI NUMBERS, INCREASED OR DECREASED BY ONE

V.E. HOGGATT, JR., and MARJORIE BICKNELL-JOHNSON
San Jose State University, San Jose, California 95192

It is well known that, among the Fibonacci numbers F,,, given by
F1=1=F3, Fnt1 = FntFp-g,

F, + 1is composite for each n > 4, while £, — 7is composite forn > 7. It is easily shown that F,?i: 7is also
composite for any n, since

F241 = FpoFaia,  F2F1= FoprFnog .
Here, we raise the question of when fm + 1 is composite.
First, if k & 0 (mod 3), then Fy is odd Fk is odd, and Fk £ 7 is even and hence composite. Now, suppose we

deal with F3k £ 1. Since A — B" always has (A — B) as a factor, we see that ng — 1™ is compaosite except
when (A — B) = 1, that is, for k = 1. Thus,

Theorem 1. F} — 1is composite, k # 3.

We return to F3; + 1. Form odd, then A™ + B™ is known to have the factor (4 + 8), so that £, + 1™ has
the factor (F3, + 7), and hence is composite. If m is even, every even m except powers of 2 can be written in
the form (2/ + 1)2' = m, so that i i
Fge+ 17 = (F3)T 4 (1% )]
which, from the known factors of A + 8™, m odd, must have (F2, + 7) as a factor, and hence, F% + 7is
composite.

This leaves only the case F3; + 7, where m = 2”. When & = 7, we have the Fermat prumesZ " 7, prime for
i=0,1,2 3,4 but composite for/ =5, 6. It is an unsolved problem whether or not 22"+ 1 has other prime
values. We note in passmg that, when k=2, Fg=8= 23, and Bm t]1= (23) £]= (2m} % 7 is always com-
posite, since A3+ B3 s always factorable. It is thought that Fg + 1 is a prime.

Since F3, =0 (mod 10), K =0 (mod 5), F/25’k +1=102"t+1.

Since F2/ =6 (mod 10), / > 2, k% 0 (mod 5), F2' + 1 has the form 70t + 7, k # 0 (mod 5). We can sum-
marize these remarks as
Theorem 2. F; + 1is composite, k #35, F3; + 1is composite, m # 20
It is worthwhile to note the actual factors in at least one case. Since
FrioFi-2 — FF = (=1)K77
Fr+1Fr-1— Flg = (- Hk
moving F,f to the right-hand side and then multiplying yields
Fi-2Fk-1Fi+1Fez = Fe—1.
We now note that
FE~ Fk = Fk-2Fk-1FkFi+1Fis2
which causes one to ask if this is divisible by 51. The answer is yes, if K #3 (mod 6), but if K =3 (mod 6), then

only 30 can be guaranteed as a divisor.
Yotk



DIVISIBILITY BY FIBONACCI AND LUCAS SQUARES

V.E.HOGGATT, JR., and MARJORIE BICKNELL-JOHNSON
San Jose State University, San Jose, California 95192

1. INTRODUCTION

In Matijasevic’s paper [1] on Hilbert's Tenth Problem, Lemma 17 states that Fﬁ, divides £, if and only if
Fm divides r. Here, we extend Lemma 17 to its counterpart in Lucas numbers and generalized Fibonacci num-
bers and explore divisibility by higher powers.

In [2], Matijasevic’s Lemma 17 was proved by Hoggatt, Phillips and Leonard using an identity for £, . Since
that proof is the basis for our extended results, we repeat it here.

We leta=(7+/5)/2, §=(1—+/5)/2. Then it is well known that the Fibonacci numbers F,, are given by

_al=p"
(11) Fn (1—6
and that
(1.2) am:aFm’LFm—L Bm:BFm+Fm-1-

Combining (1.1) and (1.2) with the binomial theorem expansion of & and 8" gives

mr mr
a

r k k
Fr = === = 2 (%) Ffﬁﬁf{f;(g-a—:g-)

k=0
so that
d k
(1.3) Fror = 3 (%) FonFrmt1Fic -
k=0
Since Fg= 0 and F,f, divides all terms fork > 2,

Frr = () FmFinl1F1 = rEm P2y (mod F2) .
Since (Fm, Fm-1J=1, it follows easily that
(1.4) F2|Fm, ifand only it Fplr.

2. DIVISIBILITY BY OTHER FIBONACCI POWERS

The proof of (1.4) can easily be extended to give results for divisibility by higher powers.
Since F,‘: divides all terms of (1.3) for k > 3, and since F; = Fo= 1, proceeding in a manner similar to that
of Section 1,

Frr = tF i dy + L) F2 P12, mod £3)

e
When ris odd, (r— 7)/2 = kis an integer, and
Fir = rFmFE2 (Frg # kFpy) (mod F2) .

Since (F,,, Frye1)=1,
Fm {(Fm-1+kFm)  and Fml FL2,,

50 that £ | Fpnif and only if F2 |1,
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If r is even,
F Fr2/(2F 14 (r— 1)Fm) (mod F2).

Fonr =

2
I (Fry, 2Fm-1) = 1, then F,‘;’;\Fm,if and only if Fm |r. Thus, we have proved
Theorem 2.1. Whenever ris odd, F3)|Fpm, iff F2 |r. Whenever £y, is odd, £, | o, iff F2 |7
Sinilarly, since F7=F>=17and F3=2, from (1.3) we can write

For = bty # L1 2 pr2, 0 = 1220 p3 P25 (mod F)

m' m-1

since F,‘,’7 divides every term for k > 4.
ifr=6k+1 then{r— 1)/2=jand (r— 1)(r— 2)/3 =i for integers and /, so that

Fne = tFm Fin3 (F2 1 # jFp Froeg #iF2) (mod F).

As before, since (Fm, Fr-7)= 1, Fib\Fm iff F2 11,
If r = 6k, then

Fonr = b FnFial1(6F 1+ 300 = 1FmFong + 20r = lr=2)FZ) mod £3) .

I (Fim, 6F 1) = 1, then Fry | Fmy iff Fi3 | Note that (Frn, 6) = 71 m # 30, m # 4. The cases r = 6k:+2
and r = 6k £ 3 are similar. Thus, we have proved
Theorem 2.3. Whenever r=6k £ 1, Fih | F,p, i F2 |r. Whenever m #3q, m # 4, Fi| oy ifE F2) | 1.

Continuing in a similar fashion and considering the first terms generated in the expansion of F,,, we could
prove that whenever r= 6k £ 1, orm # 3q, 4q,

Fo\Fm, iff FAlL andalso  FS\Fm, iff F2r,
but the derivations are quite long. In the general case, again considering the first terms of (1.3), we can state
that, whenever r = kfs — 1)/ £ 1, FS | Fpp, iff FS5 7|1,
fractions generated from the binomial coefficients.

We summarize these cases in the theorem below.

Theorem 2.4. Whenever r =6k = 1,
FS\Frmp iff FST

s=1234256.

,

Whenever m # 3q, m # 4g,
/_-S

m

\Fr it FS T\ 5= 1,23456
Whenever r = kfs — 1)/ £ 1,
FS \Fmp it TP,
Next, we make use of a Lemma to prove a final theorem for the general case.
Lemma. 1f s"—”r, then s”k|(kr) k=1 -, n

Proof. Vin<r thenk<n <r. Casesk =1 and k = rare trivial. Case s = 7 is trivial. 15" 7
for some integer A7, and

_ -1 I ' N L
(2)_%(2—7)=_k_(/r<—7)_—ks (2 7>
If r
k-1 -1
then e (2_7) l
n-ky/r
If ) ‘(k)

ks (1 20)
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then

k|Ms9 (r_;), k <q <n,

r
k

Butk <p9 forp>2 and g > k > 0, a contradiction, so that x must divide

Msk_7(2___77), and s"‘kl(Z)

since ( ) is an integer. That is, k = p 9/, where p is some prime.

It is |mp033|ble forn >r. Ifn<r, thens"” 71r implies Ms"~" = r, where n — 7 > r, and where M is an inte-
ger. But s” T rfors> 2, n—1=>r.

7
Theorem. 1f F))'|r, o Fmr-
Proof.

r
e = 3 (1) FoFEE Fi
k=0
If k=35, then F,, divideseach term Since Fp= 0, F,, divides the termk 0. When k=1, the term is rFp F,) 71
(Fr, Fm 7}—7 so that if FS nFs, leldeer Fr 7, If Fs divides r, then Fs d|V|des ( ) for &
=1, - ,shy the Lemma, and F d|V|des each successive term fork =1, .., sincein the k™ torm we always
haveafactorF while Fs'k appears as a factor of ( ) )

These theorems allow us to predict the entry point of Fk in the Fibonacci sequence in limited circumstances.
The entry point of a number n in the Fibonacci sequence |sthe subscript of the first Flbonacm number of which
n is a divisor. When m # 3/ or 4j, the entry point of F in the Fibonacci sequence is mF "fork = 1,2 3 4,5,
oré.

3. DIVISIBILITY BY LUCAS SQUARES

Next, we will derive and extend the counterpart of (1.4) for the Lucas numbers. It is well known that, analo-
gous to (1.1), the Lucas numbers L,, obey

(3.1) Ly = a"+p"
and B
(3.2) RS L. LY

Combining (3.1) and (3.2) with the binomial theorem expansion of " and ™",

mr o, gmr - (___/;Lt_l_t.\_é_g_/frﬁ) ’ + (_LL”_:_\;E/_:’E >r

Ly =

r

= 08" % (0 ) L FRBITT + (=1)7].

j=0
When / is odd, all terms are zero. We let; = 2/ and simplify to write
[r/2] S
83 Lo 2™ = 5 (5) LRPFRS
=0

All terms on the right of (3.3) are divisible by L,f, except the last term, j = [r/2]. |f r= 2t the last term is

2t 0 22t t _ 2t
(2r) Lo Foist = 5T,
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Since 5 f L,y for any m and Ly, f Fpy forany m > 17, L,f, ,{Zr"ILm,, m > 1. However, if r= 2t + 1, the
last term is

(PP 1) L FRISE = (204 105 L F2L,

and 2 ' (2¢41)m is divisible by L if and only if Lpy|(2t + 1), m > 1. lf m # 3qg, then (L, 2) =1,
and Lm\Lm(gtﬂ; if and only if Lm|(2t+ 1). 1fm= 3q, then L, is even, so that

L £ (2t+ 1), and Ly ){2 U (2e41)m. m > 1.
Return to (3.3) and notice that, when r =2t + 7, all terms except the last are divisible by L,‘f,, so that
L3 Ly ifF L2V (2t41), m > 1.

We summarize these results as
Theorem 3.1. Whenever r is odd,

and $Lm, iff Lm|r

Whenever r is even, Lm )(Lm, m>11fm= 3q > 1, then Lm /fLmr forany r.

We can also determine criteria for divisibility of L,,, by F and Fp, by L . Itis trivial that F2 m A Lmrfo
m#1,2, 3,4, since Fp, f Ly, for other values of m. To determine when Lm 5 Fmy. return to (3.1) and (3. 2)
and use (1.1) and the binomial expansion of @ and 8" to write an expression for F,,, in terms of L . (Re-
call that\/5 =a—8.)

SEFmy = a™ = g™ = (Lm+2\/§/-'m)’_ <Lm_2\/‘5‘,_-m>r

r . . . .
= ()" ;‘] (;) Lo BV (1= (=1)'] .
j=

Here, whenever/ is even, all terms are zero. Setting/ = 2/ + 7 and rewriting, we obtain

[rr2] _ .
\/EFmr = () E (2,+7) L,/;;Z’ 1F57/+7.(\/§}2/+1_2
=0
[r/2]
(3.4) 2r_7Fmr - E <21+7> Lr—2/—7F2/+7 50
=0

Notice that, when r=2t+ 1, Li divides all terms of (3.4) forj < [r/2]. When/ = [r/2] =t the last term is

2t + 1 0 [2t+1 pt _ ptp2t+1
wh|ch is not divisible by Ly, m > 1, since Ly [ Fpp, m > 1, and Ly, )(5tfor any t > 0. Thatis, if r is odd,
m)(Fmrforanym > 1.
However, when r is even, L divides all terms of (3.4) for/ < [r/2] — 1. |f r = 2¢ then the terms/=¢— 1
and / =t give

2t 2t-1,t-1 -1 2t gt _ 2t-1 t-
(5:2%;) LmFRTT55 T+ ) Lot FAT15E = (200, F 155 T 4 0.

(2t+7
Now,
Ln{Fm, m > 1, and L K557, > 1.

Thus, L2 | 2257 F ooy ifand only if L, | 2t If Ly, is odd,
L2 | Fome iff o, L2 |Fmr iff Lyl

The same result holds for L., even, which case depends upon the fact that 4 is the largest powerdf 2 that
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divides the Lucas sequence. If L, is even, m = 3q. If m is even, L, contains exactly one factor of 2, while
Fmr = F(3q)(2t) = Fer contains at least three factors of 2, since Fg = 2% is a factor of Fge. 1 m = 3qg is odd,
then L, contains exactly two factorsof 2, and L, ‘Zt iff t = 25 for some |nteger5 making Frmy = Fr2gs, a mul-
tiple of F 75 = 144 = 2%.32, [ Thus, for L, even, if L2427 Fopy, then L2 | Fray.

Notice that, since also L divides all terms of (3. 4) for reven and / < [r/Z] — 1, it can be shown in the same
manner that )

LI\ Fp iff L20r  or, L3 | Fome iff L2 1.
We summarize these results as follows.

Theorem 3.2. |friseven,
L2\ Fop iff Ly |1,

and m|Fm, iff Lmlr
Further,
LE |\ Fome iff Lyp\t  and L3\ Fome iff L2 ]2,

fris odd, L2 Frmp, m > 1.

4. GENERALIZED FIBONACCI NUMBERS
The Fibonacci polynomials f, (x) are defined by
folx) = 0, f1lx) = 1, foe1(x) = xFolx) +fooqlx),
and the Lucas polynomials L, (x) by
Lolx) = 2, Lilx) = x, Lpt1(x) = xLp(x)+ Lp-1(x).

Since (1.3) is also true if we replace £, by 7, (x) (see [2] ), we can write

(4.1) Fplx) = zr (%) K K () (x).
k=0

Notice that Fp; = £y (1) and L,y = Ly (7). The Pell numbers 1, 2,5, 12,29, 70, -, Py, -+, Pny1=2Pn +Pp_y,
are given by P, = f,(2). Thus, (4.1) also holds for Pell numbers, which leads us to

Theorem 4.1. For the Pell numbers Py, P2 | P, iff Py | .

Similarly, since (3.3) and (3.4) hold for Lucas and Fibonacci polynomials, if the Lucas-analogue R, of the
Pell numbers is given by R, = Pp47 +Pp-q, then L,(2) = R, and we can write, eventually,

Theorem 4.2. \frisodd, B2 | Ry iff Ry | 1. 1f ris even, B2, | P, iff B | 1.

We could write similar theorems for other generalized Fibonacci numbers arising from the Fibonacci
polynomials.

5. DIVISIBILITY BY FIBONACCI PRIMES

From [3], [4] we know thata prime p|Fp-7 or p|Fp+7 depending upon ifp = 5k £ 7 orp = 5k £ 2. Forex-
ample, 13| F74, but, note that the prlme13 enters the Fibonacci sequence earlier than that, since F,=13. From
p| Fp+7 one can easily show that p \F 24p, but squares of primes which are also Fibonacci numbers divide the
sequence earlier than that |e , F7 =13, and 732|F97 = F7.13, where of course, F7. 73 < F132473. Ifpisa
Fibonacci prime, |fp =F2 ]Fm, then p|r and the smallest such r is p itself, so thatp2|Fmp If p = Fy, then
m <p £ 1since Fpi., >p forp > 4. Thus, Fmp <Fprup-

Are there other primes than Fibonacci primes for WhICh Jij |F , n<plp £1)?
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LETTER TO THE EDITOR

March 20, 1974
Dear Sir:
| would like to contribute a note, letter, or paper to your publication expanding the topic presented below.
Following is a sequence of right triangles with integer sides, the smaller angles approximating 45 degrees as
the sides increase:
(1) 3,4,5,—-21,20,29 - 119, 120, 169 — ---.

Following is another sequence of such “Pythagorean’ triangles, the smallest angle approximating 30 degrees
as the sides increase:
(2) 15, 8,17—209, 120, 241-2911, 1680, 3361 — 23408, 40545, 46817 — 564719, 326040, 652081 ---

The scheme for generating these sequences resembles that for generating the Fibonacci sequence 1, 2, 3, 5,
and so on.
Let gx and g7 be any two positive integers, g, > gk—-7 - Then, as is well known,

2 2 2, 2
(3) 9% — Jik-1- 29k9k-1. and g * gk-q

are the sides of a Pythagorean triangle.
Now let m and n be two integers, non-zero, and let

@) Gk+1 = NGk + MYk-1
to create a sequence of g's.

1fg7=192=2 m=1n=2 substitution in (4) and (3) gives the triangle sequence in (1) above.

Ifgy=1 go=4, m=—1,n=4, the resulting triangle sequence is (2) above.

If the Fibonacci sequence itself is used (m = n = 7), a triangle sequence results in which the ratio between the
short sides approximates 2:1.

In general, it is possible by this means to obtain a sequence of Pythagorean triangles in which the ratio of the
legs, or of the hypotenuse to one leg, approximates any given positive rational number p/ (o and ¢ positive
non-zero integers, p > g). ltis easy to obtain m and  and good starting values g7 and g2 given p/g, and there is
more to the topic besides, but | shall leave all that for another communication.

For all | know, this may be an old story, known for centuries.

However, Waclaw Sierpinski, in his monograph Pythagorean Triangles (Scripta Mathematica Studies No. 9,
Graduate School of Science, Yeshiva University, New York, 1962), does not give this method of obtaining such
triangle sequences, unless | missed it in a hasty reading. He obtains sequence (1) above by a different method
(Chap. 4). He shows also how to obtain Pythagorean triangles having one angle arbitrarily close to any given
angle in the first quadrant (Chap. 13); but again, the method differs from the one | have outlined.

[Continued on page 10.]



AN ELEMENTARY PROOF OF KRONECKER'S THEOREM

JOEL SPENCER
Santa Monica, California 90406

Kronecker’s Theoremn. Let p(x) be a monic polynomial with integral coefficients, irreducible over
the integers, such that all roots a of p have |a|= 1. Then all roots a are roots of unity.

This result was first proven by Kronecker using symmetric polynomials. In this note we prove Kronecker’s
Theorem using Linear Recursive Sequences. The condition that p is monic is necessary since p(x) = 5% _6x+5
has roots (3 £ 4j)/5. |t is also necessary that a// roots @ have |a| = 1. For let p be the minimal polynomial of
a=x+iJ1 —x* where x =+/Z — 1. Then |a| = 1 butp(B)=0where §=y +i\/T—y%, y=—-/2 — 1
and 8| > 1.

Proof of Theorvem. Let

Consider the sequence {u; } defined by

Un—7 =1
n
(%) Us = 3 ajlsi for s >n
=1
Then
Us = Z E,-af p
i=1

where ay, -+, a, are the roots of p. Then
n n
Us| < 20 N&illaif® < 22 J&il < W,
=1 =1

independent of s. Since the U are integers there are < (2V + 7) possible Us and hence < (2N + 1)” possible
sequences (U, Us+1, -+, Uss(n-1)) Therefore, forsome 0 <s <t < (2N +1)" +1,

(Us, Ust1, =, Ust(pn-1)) = (Ug, Ugrq, -, Ugrn-1)).
That is
US+/: Uﬁ/ (0</.<I7—H.

By (=) this implies
(%) Ustj = Uy (0 < j).
Setting K = t—s,

n 3 n .

X ke = 3 galT 0 <)

=1 =1

9
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Y ek~ 1)afT =0 (0 <))
=1

Setting x; = E,-(a,k - 1)
n
Y afxi =0 (0<j<n-1).
i=1

The coefficient determinant

s s 4 g
ay an ay ay
+ +
aj ! a, ! s a77 al
det | . : = fag --ap ) det | . 3 0,
as+n-—7 as+n—1 n-1 n-1
7 n ay a,

since this is the Vandermonde matrix and the g; are distinct since p is irreducible. Hence the # linear forms are
independent, so

nl.

Some &; # 0 since U,_7 # 0. For that/, a,-k = 1. Since the a's are roots of an irreducible polynomial, by Galois
theory a/’-‘ =1forl1<j<n

xi =0 (1 <i

A

Q.ED.
Corollary. Kronecker’s Theorem holds even if p is not irreducible.

Proof.  We factor p(x) = Ilp;(x), where the p; are irreducible. All roots a of p; are roots of p so |a| =1
so all roots are roots of unity. But all roots of p are roots of some p; and hence roots of unity.
David Cantor has noted that the proof after (xx) can be shortened using generating functions. For

S - XA
I

n k
i=0 oxt =1
1-3 apxi
i=1
Hence

n
xP(x71) = 71— > aix! [xk -1
=1
p(a}:l?impliesp(a"):[)implies ak- 1=0 ak = 7,s0ak = 1.

Yolodoioioiok
[Continued from page 8.]

| must tell you that | am short of proofs and mast of the propositions would have to be presented as observa-
tions or conjectures. Co-authors with proofs are welcome.
Thank you for your attention to this letter. Please write and let me know whether the subject is of interest,
You are free, of course, to publish this letter or any part of it.
Sincerely,
John W. Jamesaon,
P. 0. Box 205
Edgewood, Maryland 21040



FIBONACCI NUMBERS IN THE COUNT OF SPANNING TREES

PETER J. SLATER*
Applied Mathematics Division, National Bureau of Standards, Washington, D.C. 20234%*

Hilton [3] and Fielder [1] have presented formulas for the number of spanning trees of a labelled wheel or
fan in terms of Fibonacci and Lucas numbers. Each of them has also counted the number ofspanning trees in
one of these graphs which contain a specified edge. The purpose of this note is to generalize some of their re-
sults. The graph theory termmology used will be consistent with that in [2), Fx denotes the ” Fibonacci
number, and Lk denotes the k™ Lucas number. All graphs will be connected, and S7T(G) will denote the num-
ber of spanning trees of labelled graph, or multigraph, G.

Afan on k vertices, denoted Ny, is the graph obtained from path Pg_; =2, 3, ---, k by making vertex 1 adja—
cent to every vertex of Pg_y. The whee/ on k vertices, denoted Wy, is obtained by adding edge (2,k) to V.
That is, Wy = Ny + (2, k). Aplanar araph G is one that can be drawn in the plane so that no two edges intersect;
G is outerplanar if it can be drawn in the plane so that no two edges intersect, and all its vertices lie on the same
face; and a maximal outerplanar graph G is an outerplanar graph for which G + (u,v) is not outerplanar for any
pair u,v of vertices of G such that edge (v,v) is not already in G. For example, each fan is a maximal outerplanar
graph because, as will be used in the proof of Proposition 1, an outerplanar graph on k vertices is maximal outer-
planar if and only if it has 2k — 3 edges.

i 2

Figure 1 Three Graphs on Six Vertices

As shown in Hilton [3],ST(Ny )= Fox-2 and ST(Wy ) = Lok-o — 2. Let UP/ denote the set of maximal outer—
planar graphs with & vertices, of WhICh exactly / are of degree two. Note that /Vk S UPk for k > 4, and, with Gy
asin Figure 1,G;— (3,6) 0P6

*This work was done while the author was a National Academy of Sciences-National Research Council Post-

doctoral Research Associate at the National Bureau of Standards, Washington, D.C. 20234.

** Author is currently at Sandia Laboratories, Applied Mathematics Division-5121, Albuquerque, N.M. 87115.
i 1
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Proposition 1. \fH < OPF, then ST(H) = For_5.

Proof. If k equals 4 or 5, then Usz = {/Vk} and ST(Ny ) = Foi-p for any k. The proposmon will be
proved by induction on k. Suppose it is true for4 < k <n — 7 with n > 6, and suppose H € OP Assume the
vertices of A are labelled so that 1, 2, ---, n is a cycle bounding the outside face and vertex n is one of the two
vertices of degree two, written deg (n) = 2. Now 4 is maximally outerplanar implies thatedge (7, n — 7)isin H.
Also, either (7, n — 2) or(n — 1, 2) isin H, and, by symmetry, one can assume (7, n — 2)is in H. (See Fig. 2.)

: |

-

n—1 n-2

Figure 2 Structure in a Graph H < [IPN2

Since any spanning tree 7 contains at least one edge incident with vertex n, either 7 is a spanning tree of

—(1,n) or H — (n — 1, n), or else T contains both edges (7,n) and (n — 1, n). Now deg (n — 7)=2in H—n
lmplles H-ne 0P _q- Hence, ST(H — (1,n)) = ST(H — (n = 1,n)}) = ST(H — n) = Fon_4. Also, deg (1) >
and deg (n — 2) > .3’ m H, but exactly one of these two vertices will have degree two in # — {n n- 7} that is,
H-{nn-1}e UP _o. Now the number of spanning trees of A using both (7,n) and (n — 7, n) equals the
number of spanning trees of H — n using (1, n — 7). This is obtained by subtracting the number of spanning
trees of H — n that contain {n — 7, n — 2} butnot(7, n — 7) from the total number of spanning trees of H — n,
and one obtains

Fon-a—=ST(H—n—=(1,n~1)) = Fapq—ST(H—{n,n=1}) = Fon-q— Fon-6 = Fan-s5.
Consequently,
ST(H) = ST(H —(1,n)) +ST(H — (n — 1,n)) + Fop.5 = 2Fop-q+ Fop-5 = Fop-2,

and the proposition is proved.

For 0Pk with j > 3, no result like Propomtlon 1is possnble Indeed, letH;=N7+8+(84)+(8,5), and let
Ho=N,+8+(83)+(84) ThenH; < 0P8 Hye 0P8 ST(H1) =368 and ST(H») = 369.

Allowing there to be several edges connecting each pair of vertices, let G be any multigraph. Several observa-
tions can be helpful.

Observation 1. Suppose v is a cutpoint of (connected) multigraph G, and G — v has components
Cy1,Co, -, Cy. 1T Bjis the subgraph of G induced by C;and v (7 </ < t), then

t
ST(6) = T ST(8;).
i=1
For example, vertex 1 is a cutpoint of Ng — (3,4), and ST(Ng — (3,4)) = ST(N3)-ST(N4) = 3-8 = 24.
Observation 2. Suppose (u,v) is an edge of multigraph G and G*is obtained from G by identifying u

and v and deleting (u,v). (Note that even if G is a graph then G” may have multiple edges. Also, if (u,v/is one of
several edges between v and v, then G’ will have foops, but no spanning tree contains aloop.) Then ST(G’) is



1977] FIBONACCI NUMBERS IN THE COUNT OF SPANNING TREES 13

the number of spanning trees of G that contain edge (u,v). For example, S T(Wyc++7) is the number of spanning
trees of “"biwheel” Wy ; (as in Fig. 3) which contain the edge (u,v)

k k+1

k+2

\
oy
/

/

~

—-y
k+j

Figure 3 A “Biwheel’’ on k +/ + 2 Vertices with 7 <j < kand k > 2

Observation 3. Suppose edge (u,v/ is in spanning tree 7 of G. Let U (respectively, V/) by the subgraph
of G induced by the set of vertices in the component of 7 — (u,v) that contains v (respectively, v). Clearly there
are ST(U)-ST(V) labelled spanning trees of G containing (u,v) that produce these same two subgraphs. This pre-
sents another way to count the labelled spanning trees of G containing (v,v). For example, in graph G of Fig. 1,
let v =3 and v = 6. The possibilities for the vertex set of U are

{3}, {3.4},13,4,5}, (3,2},{3,2,4},{3,2,4,5},{3,2,1},{3,2,4, 1}and {3, 2,4,1,5}.

Thus one obtains
1-21+1-3+1-1+1-8+3-3+3-1+1-1+8-1+21-1 = 75

spanning trees containing (3,6).

Let G be any multigraph, and let G” be as in Observation 2, then ST(G) = ST(G — (u,v)) + ST(G’). Thatis,
ST(G) is given by evaluating the number of spanning trees in two multigraphs, each one with fewer edges and
one with one fewer vertices. As this procedure can be iterated, one can compute S7(G/ in this manner for any
multigraph G.

One can also find formulas for classes of graphs, such as the “biwheels,” where the biwheel on k +/ + 2 ver-
tices, denoted Wy ;, is as in Fig. 3 with deg (v) = k + 7 and deg (v) =/ + 1.

Let U (respectively, V) be the fan Vx (respectively, /V;) containing v (respectively, v) in

H = Wk,j— ‘{ (k, k+1), (uv), (1, k +/}} .
Consider the spanning trees of Wy ; that contain (k, k + 7)and (7, k + /) but not (u,v). Any such spanning tree of
Wy ; contains a spanning tree of U or I/, but not both. The number of such spanning trees that contain a fixed
spanning tree of I/ can be found, using a slight variation of Observation 3, by enumerating the number of span-
ning subgraphs of U that have two components, each of which is a tree, one containing vertex 1 and the other
containing vertex k. This equals 2(ST(N ) + ST(Ng_1) + -+ ST(N2)). Similarly, if j > 2, there are
2(STIN;) + ST(Nj_7) + - +ST(N2))
such spanning trees containing a fixed spanning tree of U.
PTOPOSitiOTZ 2. ST{Wk'/') = Log+oj +2F k427 — 2F 25 — 2F o — 2.

Proof. The number of spanning trees of /¥ ; which contain (u,v) is ST(Wyc+j+7 ). The number of span-
ning trees containing (k, k + 7) but not (u,v) or (1, k +/) (or (1, k +) but not (k, k + 1) or (u,v)) is
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STNir1)-STN47).
Thus
ST(Wk, 7) = L2k+2 -2 +2F2k +2(F2 + F4 + ot F2k-2)/
and, ifj > 2,
ST(Wp,j) = Lok+zj— 2+ 2F o Foj+ 2F2(Fo+ Fq+ -+ Forp) # 2F g (Fo + Fg+ -+ Fpp).

Simple Fibonacci identities reduce these equations to the desired formula.

REFERENCES

1. D. C. Fielder, “Fibonacci Numbers in Tree Counts for Sector and Related Graphs,” The Fibonacci Quar-
terly, Vol. 12 (1974), pp. 355—359.

2. F.Harary, Graph Theory, Addison-Wesley Publishing Company, Reading, Mass., 1969.
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The Institute of Mathematics and its Applications, Oxford, 1972.
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THE DIOPHANTINE EQUATION (x; + x5 + - +x,)% = xf +x3 4

Sw

W. R.UTZ
University of Missouri — Columbia, Mo.

The Diophantine equation

(1) . . (X7+X2+"'+Xn)2:X?+X§+'"+X§
has the non-trivial solution x; =/ as well as permutations of this n-tuple since
n n
i=nln+1)2 and Z i3 = n2m+1)%4.
=1 =1

Also, forany n, x; # n forall i = 1,2, ..., n, is asolution of (1). Thus, (1) has an infinite number of non-trivial

solutions in positive integers.
On the other hand if one assumes x; > 0, then for each / one has x; < n?. To see this, let a be the largest co-

ordinate in asolution (x7, x2, -+, X, /). Then,
XytXxpttX, < na.

For the same solution

X3 bx3 bt xS > a3

and so 2 < nZ. Thus, we see that for a fixed positive integer, n, equation (1) has only a finite number of solu-
tions in positive integers and we have proved the following theorem.

Theorem. Equation (1) has only a finite number of solutions in positive integers for a fixed positive inte-
gern but asn — «~ the number of solutions is unbounded.

Clearly if (x 7, x2, =+, x) is asolution of (1) wherein some entry is zerg, then one has knowledge of a solu-
tion (1) forn — 7 and so, except for n = 7, we exclude all solutions with a zero coordinate hereafter.

[Continued on page 16.]



AN APPLICATION OF W. SCHMIDT’'S THEOREM
TRANSCENDENTAL NUMBERS AND GOLDEN NUMBER

MAURICE MIGNOTTE
Université Louis Pasteur, Strashourg, France

INTRODUCTION
Recently, W. Schmidt proved the following theorem.

Schmidt’s Theorem. Let 1, a7, as be algebraic real numbers, linearly independent over £, and let
€ > 0. There are only finitely many integers g such that
(1) “qa;” ”qag“ < c;q‘Fe,
where ¢ is a positive constant and where | | denotes the distance from the nearest integer.

Of course, this theorem can be used to prove that certain numbers are transcendental. We shall take a 7 equal
to the golden number. The integers ¢ will be chosen in the sequence of Fibonacci numbers. It remains only to
take a number ao such that lgas | is small for these values of ¢ and such that 1, ay, a» are @-linearly indepen-
dent. We shall give only one example of such a number a2 but the proof shows clearly that there are many other
possible choices of a5.

THE RESULT

Proposition. Let(uy,up, ) be the sequence of Fibonacci numbers. Put g, = U - Then the number
=
2= Y Z_L(y__)_
n=1 n

is transcendental.

Proof. It is well known and easily proved that

Up+1] 7
ag-——=| ~ —
. Un l \/5U2
Thus,
(2) hgnarl ~ L
V54,

Since upjuzp, qn divides g,+7. Hence,

2+(=1)" _ Py

n On

M=

’

3
It
-

where p,,"is an integer.
Now, it is easily proved that

| ‘.’/_V‘ L2+~ e N

|42 =
N an+1 ‘7/%/
Thus,
N+1, =
3) lgvaz |l ~ 2+(=1)""" N5

an

From (2) and (3), we get 15
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L

’

lawarl fonazll < -5
N

0

where ¢ is a positive constant.
We have verified that (1) holds with e= 1.
It remains only to show that 1, a7, a, are linearly independent aver 2. Suppose that we can find a non-trivial
relation
ko+kga;+koar = 0, /(,'Eﬂ.
We can now limit ourselves to the case of k; & Z. For large V, the previous relation gives

kilanarl = tk2lgnazl -
This contradicts (2} and (3). Thus, 1,37, a2 are &-linearly independent, Now Schmidt's theorem shows that as
is not algebraic. The assertion is proved.
REMARK. The proposition remains true if we put
n n
=X -V
u .
" -y
where x is a quadratic Pisot number and y its conjugate.
Jodododoloiok

x|

[Continued from page 14.]

For small integers 7 the positive solutions of (1) may be found with a machine because of the upper bound of
n? on the coardinates. For n = 3 these solutions are exactly those revealed in the general case. That s, (3,3,3)
and permutations of (1,2,3).

in the complementary case (that is, some coordinate is negative), there are, for each n > 7, always an infinite
number of solutions. For example, fa,7,—a/J, for any integer a, satisfies (1) in casen = 3. Forn =4, (a, a,~a, —a)
satisfies (1), etc. Forn = 3 the solution will be a subset of the solutions of

X‘,?+xg+xg = u2,
an identified problem [1, p. 566].

In case n = 2 the reader will have no difficulty in showing that all sotutions are (a, —al, (1,2}, (2, 1), (2, 2}
together, of course, with (0, 0), (0, 7), (1, 0) which come from the case n = 7. The case n = 2 is a special case of
a well known theorem [1, p. 412 et seq.].

REFERENCE

1. L. E. Dickson, History of the Theorey of Numbers, Vol. Il, Carnegie [nstitution of Washington, D.C., 1920.
Folotokoiok



THE RECIPROCAL PERIOD LAW

W. E. GREIG
West Virginia University, Morgantown, West Virginia 26506

The opinion of scientists on Bode's rule falls into several camps. The computer work of Hills {1, Fig. 2]
proves that an average period ratio exists and lies in the range 9/4 < P < 3. Some think there is a reason for this
[2, 13], while others such as Lecar [3] think that the distances are random subiject to the restraint of not being
too near to each other. The idea that the asteroids were once a planet has been disproven [4]. The interests:l
readership may consult any of the several summaries of physical theories of the origin of the solar system
[6, 7,8, 9, 10, 11]. Almost all theories proposing specific distance rules are discounted {e.g., Blagg's 1.73 rule
{91, Dermott’s rules [12]) by almost all scientists because they have too many independent parameters and
lack any logical basis. More than two parameters is too many. The only models not discounted in this way are
von Weizsacker's [see 5], the author’s [13, 14] and perhaps Schmidt's [see 7]. Von Weizsacker proposed a sys-
tem of eddies of ellipticity = ' lubricated by smaller eddies. One can derive the equation: distance factor =
tan? [m (N + 1)/4N], where /V is the number of eddies in a ring. If the first law of scientific reasoning is that
equations should balance dimensionally, then the zeroth law should be the principle of Occkham's razor—the
paring away of unnecessary assumptions. The mathematical theory in [16] is now given a logical derivation. |
bhegin this essay by a study of first principles.

1. PRINCIPLES
| insist that satellite and planetary systems:
i. are discrete and therefore discrete algebra should be used, namely a difference equation,
ii. have at most two boundary conditions (B.C.) and therefore

(18) 8°Zm = JZm*Zm-1 .
where /,c are constants and 82 = A— V = AV is the central difference operator,
iii. consist of one primary, a pair of secondaries which we ignore and the rest tertiary masses,

iv. by the Commonality Principle must all satisfy the same spacing taw,
v. may equally likely have pro or retrograde outer satellites since retrograde bodies are not irregular,

vi. are stable due to weak (gravitational, tidal or gyroscopic) non-dissipative forces and hence,
vii. the relevant variable is the frequency of nearest approach, the synodic frequency, Y, where

(19) Ym+h = Zm+1—Zm with h =1

viii. cannot have B.C. in empty space and hence they must reside in the primary which means that the recipro-
cal period sequence, Z,,,, must turn around near the outermost body and be asymptotic to the inner bodies up-
on both leaving and returning to the primary. Alone this restricts us to even order difference equations. It
forces the roots of {18) to be reciprocal pairs and by the theory of equations ¢ = 0. Thus

(20) 8Zm = jZm.

To elucidate, values of a =/ + 2 equal to £2 give arithmetic progressions, and +3 gives finite exponential (£,/ or
alternate FL numbers, and +6 gives alternate Pell numbers. The sequence --- 11, 12, 16, 24, - is given by / = %.
The data on near-commensurahilities are not significant [15] if the peculiar ratios of 2 and 4 are omitted.

ix. Intuitive considerations of stability require the minimization of the number of mutual perturbations be-
tween adjacent satellite orbits. This will obtain if adjacent periods are coprime. This, as is proven later, deter-
mines / to be an integer. Now we can determine the value of /.

x. The forces are attractive so the largest root of (20) should be as small as allowed; thus a = £3. Assuming
that the Sun-Jupiter distance is fixed then a better way to state point (x) is that it is the minimization of the

17
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potential energy of the tertiaries with respect to their secondary. Thus satellites try to get as close to their sec-
ondaries as other conditions (ix) will allow. Now a = 0 gives two constant sequences and so is trivial and g = 1
gives cyclical sequences of periodicities 6 and 3 and so is also trivial. Arithmetic progressions, @ = +2, are also
trivial. Hence @ = 3, i.e., j = +1 or —5. | first used bisected FL (Fibonacci Lucas) sequences in a letter [17] .
xi. | assert that only one physical B.C. exists which must equal both matematical B.C. Therefore

(21) Zg = AZy = B.C. or VZg = Zy = B.C.
which differ only in notation. This is equivalent to Gg= Gp in [16]. And from point (x) we have
(22a,b) 62, = Zm or 822y = =52,

where the “—5" case corresponds to outer satellites that are alternately prograde and retrograde. When M is in-
finite, Eqgs. (21) and (22a) give sequence S of [16]. Writing v = </5 for brevity we have

(23a) Sv+7 v+3 v+2 v+3 v+7 5v+18 13v+47  34v+123 89v +322

(23b) v-4 wv-1 0+1 v+4 v+11 8v+29 21v+76 550+ 199
(24) Nept X Uran Satur (Jup) Astrea Mars
(25) /= -7h —3h h 5h 9h 13h 17h

where either sequence may be regarded as the first-order differences (synodic frequencies) of the other. Se-
quence (23) gives an earth value of 521. For convenience, not rigor, sequence (24) has been placed parallel to
(23). The index /= %.

2. CONCEPTS

A FL sequence, H,,, cannot be expressed as a function of 2 and / alone since
(26) (A+V -1, =10.
But a finite exponential (bisected FL) sequence, £,, satisfies
(27) (62 —1)E, = 0.
Further, define a sequence, £;,, such that
(27a) (62 +51)E}, = 0 .

Now let Z,, be a bisection of G, (Eq. 1 and Table 1 of [16]). Then Z,, satisfies (27). |f Z,, represents the real
reciprocal periods of satellites or planets this can be written as a minimum principle,

(28) Y. (82 —1)Zy, — 0.

We may state this in words. A system of satellites (planets) much lighter than their primary tries to act as if
their synodic frequencies correspond to real bodies with their synodic frequencies in turn being the reciprocal
periods of the original bodies. This is true even if all the bodies do not revolve in the same sense. If they are
alternately pro- and retro-grade we can use (31). Thus (28) gives a closed system having a finite number of
sidereal (true) and synodic frequencies.

Now in point (xi) we could not have written Zg= AZ since that leads to monotonically increasing sequences.
Now this point, namely (21) which is the same as Eq. (1) Gg= G led via the theorem in [16] to the beautiful
closure relation (14) 218; = (—1)""s_;. This immediately gives by taking ratios

(29) (Si+2+Si)/(S; +Si—2) = S—i=1/S81-i = (S-j—2—S-i)/(S-i—S2-;).

Now if satellites are alternately pro- and retro-grade then we may interpret the first pair of (29) to mean that
the ratio of adjacent synodic frequencies (since S; is now negative) equals the ratio of the sidereal frequencies
of two other members of the bisection of S aside from a (—1). Real satellite systems have a finite number of
bodies but the difference in the ratios given by {S} and {G,,} for example is less than 1076. Hence (29) is an
excellent approximation to the finite cases.
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Itis easy to show that the ratio of adjacent terms in (23b),
Snh+1/Snh-1 = (Ln+v)/Lp-2 = Lp+2/(Lp—v),
where mod (7, 4) = 3. Similarly the ratio of adjacent terms in (23a) is
Snh+1/Sph-1 = (Ln=v)/Lp-2 = Lps2/(Lp+v),
where mod (7, 4) = 1 and where (25) is the index. For completeness we may define the double bisection of an

FL sequence, 0, , by
(30) (62 —51)D, = 0.

Now asystem of alternately pro- and retro-grade satellites satisfies an £ primed sequence, £;,. But the synadic
frequencies are no longer differences (since every other term is negative) but sums. Application of the sum-
ming of adjacent terms twice is equivalent to the operator (82 +4/). Hence in place of (28) we may write

(31) > (0 —-1)Zy — 0,

where ¢ is the central sum operator defined by

0fp = fpth + Tn-n.
where f,, is any sequence whatsoever. It is then easy to show that
(32) 0% = 4/ +6>.

Z’is a bisection of S or G but with alternate terms multiplied by (—1). A Z” sequence satisfies (27a).

The theory herein has been predicated upon: The Commonality Principle, The Simplicity Principle, and
the assumption that the physical reason for the stability of tertiary orbits is the avoidance of low-order com-
mensurabilities (ALOC). J. C. Maxwell approached the motion of molecules in air in a similar vein of which
James Jeans wrote [19, pp. 97—98] “..by a train of argument which seems to hear no relation at all to mole-
cules or to their dynamics,... or to common sense, reached a formula which according... to all the rules of
scientific philosophy ought to have been hopelessly wrong. ...was shown to be exactly right.”

3. PREDICTIONS

Dermott [12] ignored the outer Jovian and Saturnian satellites. | have chosen to give them an important place
in this paper. The reciprocal period law is the only theory to make very narrow predictions. There is a blank
midway between Saturn’s Phoebe and lapetus in Table 2 of [16]. Hence a Saturnian satellite(s) of (mean) period
207.84 < P < 208.03 day is predicted. | propose to call it Aurelia. If it is ever found, it would constitute proof
positive of the theory herein. The allowed range is 0.1 percent of the numbers but | regard 1 percent as accept-
ible. Similarly a stable orbit in the Jovian system is likely at 97 day with much less likelihood of another at 37
day because of its proximity to the Galilean quadruplet (secondaries).

For the Sun, Jupiter, Saturn their secondaries are Jupiter, the Galilean quadruplet, Titan+Hyperion, respec-
tively. The theory says little about the secondaries. Hence the distance between the primaries and secondaries
and their mass ratio must be determined by the properties of the proto-solar system cloud, namely its mass,
spin, moment of inertia and magnetic field. We infer that the proto-solar system soon formed two clouds -of
cold dust and gas. The larger became the Sun and the smaller became Jupiter and Saturn. These then captur—-
ed enough material to form the other planets and comets by coalesence. During the late phases when dissipa-
tive forces were no longer important, the reciprocal period rule would begin to operate. The Kirkwood gaps
have prevented the coalesence of asteroids into a planet. Gaps exist at 3/8, 4/9, 5/11 of Jupiter's period as well
as at 1/3, 2/5, 3/7 and 1/2. In fact the gap at 3/8 is only 2 percent from the predicted asteroidal planet. See
[18, p. 97].

The physical B.C. (point XI) may: (a) lie in the mean angular velocity of the prinary, (b) be a mean of the
spins of the primary and secondary, (c) lie in the tertiaries as a whole in which case they constitute a self—
enclosed system, (d) be the period of a hypothetical satellite that skims the primary’s surface, or (e) otherwise.
At the moment, | prefer (c).
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4. VENUS
The synodic period, y, of a superior (exterior) body of period z > 1 is given by
(33) 1/z+ 1)y = 1.

The following relations [18, p. 51] are interesting. | use ratios for clarity. Choose the Venusian sidereal (true)
year, 224.701 day, to be the unit of time. Then to better than 5 significant figures the earth’s period is 395/243
(13/8 is less accurate) and the rotation period of Venus is —79/73 (clockwise). Thinking of ourselves as Venus-
jans, then Venus is fixed and the Sun and Earth appear to revolve around us. We have three frequencies: 1,
73/79, 243/395 to be added in pairs. The first pair gives 79/152 for one Venusian solar day. The first and third
using (33) gives 395/152 for the earth’s synodic period (584 da). The latter two give 395/608 for the time be-
tween successive Earth transits. These frequences 152/79, 608/395, 152/395 are in the exact ratios 5, 4, 1.
Hence during every 584 day the same spot on Venus faces the Sun 5 times and the Earth 4 times. Venus must
be aspherical so that torque forces can cause this. Tidal forces tend to pull a body apart and are inverse cube.
But to align two prolate bodies one of whose axes is 6 away from the line joining them requires a sin 6/4°
force which is very weak, yet over long time periods must be sufficient.
In passing we give the continued fraction expansion of the distance factor derived from Kepler's [1i law.

18995476269 = 1+ ++ L 4 L 1 1 11 1 1 1

LIS L 2

A r TFRA i A A A T
whose convergent is 1+ 25253/28073. The first useful convergent is 416/219.
5. COPRIME SEQUENCES

If the recurrence P47 = (integer) P,, £ P,_7 holds we have a Coprime sequence because it satisfies the follow-
ing theorem which is a generalization of one in [20, p. 30]. As an example viz. 0, 1, 4, 15, 56, 11-19, 780,
41-71, ---. Consider Ppry = bP, + cPp-1.

Theorem. 0f all two-point recurrences only those with the middle coefficient 4 an integer and ¢ = 1
have coprime adjacent terms given that an initial pair, Pp and Py say, are coprime.

Proof. The proof obtains by postulating the contrariwise proposition. Letc = 7. LetP,+7 and P, be divis-
ible by some integer d. Then bP,, is divisible by o and so also is P,_7 = Pp+7 — bP,, . But then
Pn-2 = Pp—bPpq

is divisible by ¢ and likewise all earlier terms by induction. Hence both Pg and Py are divisible by & which con-
tradicts the assumption which says that at most one of Pp and Py are divisible by any number. Hence the
theorem must be true.

Choosing ¢ = —7 changes no essential part of the argument.
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BINET'S FORMULA GENERALIZED

A. K. WHITFORD
Torrens College of Advanced Education, Torrensville, 5031, South Australia

Any generalization of the Fibonacci sequence {Fn} =1,1,2,3,5,8, 13, 21, - necessarily involves a change
in one or both of the defining equations

(1) Fi1=Fy=1 Foio = Fpnegt Fn (n > 1)
Here, however, we seek such a generalization indirectly, by starting with Binet’s formula
(7+\/§)”_ <7mﬁ>"
2 2
J5

instead of (1). Suppose we define, for any positive integer p, the sequence G, by

(15 - (=2

Fn =

(n>1)

2 G, = (n>1).
2 5 N
Thus {Gp} = { Fn} in the case p = 5 We can also write
n n
(3) 6= =),
NG
where
_14p =1=p
-Lie, g
are roots of the equation
2_,_(p=1) -
(4) X< —x ( 7 ) 0.
Corresponding to (1), we now have the equations
(5) G1=Go=1 Gpio= Gpis+ (Bz‘—’) Gn  (n>1).

Proof. Clearly a—B=</p and a+ (=1, so that (3) implies
—a-f _ - la-pBNa+p) _ 4
ARV N '

[Continued on page<14.]



ON THE MULTINOMIAL THEOREM

DAVID LEE HILLIKER
The Cleveland State University, Cleveland, Ohic 44115

The Multinomial Expansion for the case of a nonnegative integral exponent n can be derived by an argument
which involves the combinatorial significance of the multinomial coefficients. In the case of an arbitrary ex-
ponent n these combinatorial techniques break down. Here the derivation may be carried out by employment
of the Binomial Theorem for an arbitrary exponent coupled with the Multinomial Theorem for a nonnegative
integral exponent. See, for example, Chrystal [1] for these details. We have observed (Hilliker [6]) that in the
case where 7 isnotequal to a nonnegative integer, a version of the Multinomial Expansion may be derived by an
iterative argument which makes no reference to the Multinomial Theorem for a nonnegative integral exponent.
In this note we shall continue our sequence of expositions of the Binomial Theorem, the Multinomial Theorem,
and various Multinomial Expansions (Hilliker [2], [31, [4], [5], [6], [7]) by making the observation that this
iterative argument can be modified to cover the nonnegative integral case:

r \'7
(1) ( > ai ) = > (’77/”2,,7""'7/') 377352 e’
i=1

nytng+--+n,=n

whereny, no, ---, n, are nonnegative integers and where the multinomial coefficients are given by

( n ) —__n__
ny,n2, -, Ny nqylnol--nd
As before (Hilliker [6]) we begin with a trip/e summation expansion:

n-k

Here, we are using the convention that the empty sum is zero and that 0° = 1.
We next assert that the Multinomial Theorem (1) is covered by the Formula (2). To see this, let us make a
change of notation and write Formula (2) as

r n 2 Q-1 n-2,
(3) < 2 3/) =2 (Q';) aszf( > a ,
: =1 ¢=1

where the double summation on the right is taken under 2, and ¢, with 1 <@, <rand 1 <g, <n. Wesingle
out the terms for which n — ¢, = 0 and write (3) as

r n Q=1
) (Za,-) ST ()T ) T al

=1

Note that, for nonzero terms, 2, = 1 implies thatn — ¢, = 0, so that the range in the summation withn — ¢, >0
is2<¢ <rand1<e, <n-1

We now apply Formula (3) to the summation under ¢ on the right side of (4). This iterative process may be
continued. After /m iterations of Formula (3), m > 0 and not too large, we obtain

22



FEB. 1977 ON THE MULTINOMIAL THEOREM 23

? <>3> Lo () ("52) (" )

N-Qg— =R om>0

P 0 Qm+1-1

2 4 2m+2 Q== .

X a9y 303 " 3om g > asz) 2= am+2
m Q=17

+ n)(n_Q2)...("—22""_22k—2) Ro . Qk
Z Z ( 22 L4 QK Qq803 o7 -

k=1 n-Qo~-2o4=0

Here, the indices are subject to the restrictions

1< Qy <r
(6) 1 < Qjr7 < Rj-g1—1, for7 <i<m,
7<522,-+2<n—522—---—522,', for0 </ < m.

Formula (5) is meaningful as long as m < r, so that the first two inequalities in (6) are possible and as long as
(7) m<n,

so that the last inequality in (6) is possible. We letm = r— 7. Then, by (6) we have 25,7 = 1, for otherwise, we
would have 27 > r. Consequently, for nonzero terms,

n—Q——2Q, = 0.
Formula (5) now takes the form
r n
(8) o _ Z n n— Q9 n—Qy— =209 22 %4 22r
2o ) - !22) ( % ) ( 2 Q7303 M2y
=1 n-2o-+=22,=0
r—1
n n—29o n—2Q9—-—Q.2 L2 g Lk
2 )> (92 )( % ) ( 2k )aQr’Qs N ok-1
k=1 n-Qo=-+~Qof =
’
= n n—22\ fn—Qp=-—Q_ 2 R Qg Lok
Z Z ( Q2 ) ( ] ) ( Lok ) 91893 " k-1

k=1 n-29--+-=R =0
If the range of 227, for 1 </ <r, is extended to include 0, then, the summation under & reduces to asingle term,

k = r; the restriction (7) may be lifted; and, by (6), the subscripts are uniquely determined: ¢7 =1, R3=r—1,
-+, Q9,-7 = 1. The coefficients may be written as

( n )(n_Q2 ) ( ”—92_"'_Q2r—2) _ nln — 7}---(/7—!22_...__;22,.4' 7) - n!
22 2 L2r Q! gl Q2,1 Qol 0q! Q4!
It now follows from (8) that
" " 2 8 2
n! 2 %4 2r
< Zéﬁ) = > oo Aramt A
i=1 n-9o--Qg=0 2 4TE2r

With a change of notation, the Multinomial Theorem (1) now follows.
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Also, since a and Bsatisfy (4), we have the equations

™2 - an+7+(g_;_7) a” Bn+2 - 6n+7+(/1§,_7)6n (n> 1.

Therefore, using {3), it follows that

N N3
n+1 nt1 n n
_al BT eIy a0 _ g (PTG, .
T +( 7 ) N/ n+1 (4 ] on

Thanks to (5) it is now a simple matter (despite the complicated appearance of (2)) to generate terms of the
sequence {Gn}, for any choice of p. Assuming that we are interested only in integer-valued sequences, (5) tells
us to take p of the form 4k + 7, namelyp =7, 5, 9, 13, 17, ---. Thus the first five such sequencesstart as follows:

v |6 6 6 6 65 G G 6 G 6o
1 0 1 i 1 1 1 1 1 1 1 1

5 1 1 1 2 3 5 8 13 21 34 55
9 2 1 1 3 5 11 21 43 85 1M 34
13 3 1 1 4 7 19 40 97 217 508 1159
17 4 1 1 5 9 29 65 181 441 1165 2929

We can use the above table to guess at various properties of the generalized Fibonacci sequence {G‘n}, espe-
cially if our knowledge of {Fn} is taken into account. Generalizations of some of the better-known properties
of {F,,} are listed below. Of course, in each case, the original resutt may be found by taking

p=5 E=l-y7 and G,=F,.

4
(i) lim  Gnt1 _ 1+./p
e TG, 2
n
i) Gp-Gpez— G2, = (—1)7*7 (£4:l) (> 1)

[Continued on page 29.]



A FIBONACCI FORMULA OF LUCAS
AND ITS SUBSEQUENT MANIFESTATIONS AND REDISCOVERIES

H.W. GOULD
West Virginia University, Morgantown, West Virginia 26506

Almost everyone who works with Fibonacci numbers knows that diagonal sums in the Pascal triangle give rise

to the formula [n_7]
2
(1) Fn = ("_/,5*7), n =1
k=0
but not many realize that
%]
2
) Fon= 3o (0% ("7 kTT)gmIo
k=0
or that
n-1
2
3) Fan=2 X (77K T)amiR
k=0

and that these are special cases of a very general formula given in 1878 by Edouard Lucas [5, Egs. 74—76],
[6, pp. 33-34].

Asfaras | can determine, formula (2) first appeared in our Fibonacci Quarterly as a problem posed by Lurline
Squire [10] when she was studying number theory at West Virginia University. M. N. S. Swamy’s solution in-
voked the use of Chebyshev polynomials. | was reminded of the formula recently when Leon Bernstein [1]
found the formula again and asked me about it. He used a new technique involving algebraic number fields.

Formulas (2) and (3) generalize in a curious manner. On the one hand we have for even positive integers r

2]

/.'
(4) Tn _ T (—Uk n—k—1 L”'7'2k, 21r,
F, /:-’;5 ( K ) r !

but on the other hand for odd positive integers  we get the same terms but with all positive signs

7]

Frn =" fn—k—1\ , n-1-2k
(5) 7 - k>;‘b< P >L, .2

where L, is the usual Lucas number defined by L7 =L, + L7, with Lg=2, L7 =1, this of course in con-
trastwith Froe7=F,+ Fp_gand Fp=0, F7=1

Formulas (4) and (5) may be written as a single formula in a clever way as noted by Hoggatt and Lind [4]
who would write

%]
Fun <o 1) (k= 1Y nei-
(6) ?? - kz;o (—1)kl(r=1) <n k 7) Lre12k

25
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valid now for any positive integersn,r > 1.

Formula (6) of Hoggatt and Lind was posed as a problem by James E. Desmond [11] and solved by him using
a result of Joseph A. Raab [7]. The precise same problem was posed again by David Englund [12] and Douglas
Lind pointed out that it was just the same formula.

Formulas (4) and (5) were obtained by Hoggatt and Lind [4] by calculations using compositions and gener-
ating functions. Although they cite Lucas [5] for a number of items they were evidently unaware that the for-
mulas appear in Lucas in a far more general form. Since L, = F5,/F,, formulas (4)—(5) can be written entirely
in terms of F's.

Lucas introduced the general functions U, V defined by

n n
(7) U, =4=b" V. o=a+p",

where a and b are the roots of the quadratic equation
(8) x2-pPx+q0=0,
so thata + b = Pand ab = 0. When we have xZ — x — 7= 0, we getaand b as(7++/5)/2 and (1 —/5)/2 and
thenUp,=F,, Vp=L,.
One of the general formulas Lucas gave is [6, pp. 33—34, note misprint in formula]

n-1
U 2
m _ 2“ k —k—-1 -1-2k f rk
(9) Ur = 2 (__7} (/7 . ) Vrn a ,

which unifies (4) and (5) and is more general than (6). Curiously, as we have intimated, Hoggatt and Lind do
not cite this general formula.

Now of course, there are many other such formulas in Lucas’ work. Two special cases should be paraded here
for comparison. These are

(10) Lrp = (~1)k ;_L/? (";k) L"2% ftorevenr,

and

(1) Ln = 3 ,-]—f—k (”;k) L2 foroddr.
k=0

These can be united in the same manner as (4)—(5) in (6). Thus
n
2 k(r-1) k 2k
_ — r- n n— n-
(11.1) Len = Y, (-1) piy U I Ml
k=0
There is nothing really mysterious about why such formulas exist. There are perfectly good formulas for the

sums of powers of roots of algebraic equations tracing back to Lagrange and earlier. The two types of formulas
we are discussing arise because of

7]
2 n+1 n+1

(12) Z (_l)k (n;k) {Xy}k()(+y}n—2k _ )_(__X_E_;/__ ,
k=0

formula (1.60) in [3], and
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3
2]
(13) k:ZO‘ (—1)k n—j—k (";k ) bxy K (x +y) 72K = x4yt

formula (1.64) in [3], familiar formulas that say the same thing Lucas was saying. The reason it is not myster-
ious that (2) holds true, e.g., is that Fo, satisfies the second-order recurrence relation
Fon+2 = 3Fon ~ Fop-2
with which we associate the characteristic quadratic equation
xZ =3x—1

so that a formula like (2) must be true. For formula (4) with r = 4 we note that Fg,4+4 = 7F4, — Fan-4.
In general in fact,

(14) Frntr = LyFrp— Fppey forevenr, ot Fpprt Fer = LeFm,
and
(15) Frntr = LyFrn# Frpep foroddr, or Fper=- Fo—r=LoFm .

Regularly spaced terms in a recurrent sequence of order two themselves satisfy such a recurrence. Setu, = F,,
to see this for then we have

(16) Upty = Lptp £up-g, with 22 = L,z%1,

so we expect a priori that u, must satisfy a formula rather like (1). Formulas like (12)—(13) give the sums of
powers of the roots of the characteristic equation, whence the general formulas.

Formula (12) corresponds to (B.1) and (13) corresponds to (A.1) in Draim’s paper [2] which the reader may
also consult.

Another interesting fact is that these formulas are related to the Fibonacci polynomials introduced in a prob-
lem [9] and discussed at length by Hoggatt and others in later issues of the Quarter/y. These are defined by

folx) = xfo-1(x) + fn_2(x), n>2
with f7(x) =1 and fa(x) = x.
In general

n-1

(%7 ]
(17) fn(X): Z (H—£—7)Xn"2k—1’

k=0
whence for odd r we have by (5) that

F

(18) foll,) = /_.—m

,
Many other such relations can be deduced.
Finally we want to note two sets of inverse pairs given by Riordan [8] which he classifies as Chebyshev in-
Verse pairs:
[ﬁ
z)

(19) fln) = k;g (~1)¢ L (") o~ 24)
if and only if

r—
N3
| F— )

(20) g(n)

It

(Z) fln — 2k) ;

=
]
(=]
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and
[Zﬁ} n—2k+1 (n
21 f(n):kzz_a 7 (k) aln—2k)
if and only if
n
{E] k (n—k
= ¥ -
(22) oln) = 5= (=1) (" K) fn - 2k).

k=0
Applying (19)—(20) to (10) we get the particularly nice formula
n
2]

(23) L7 =3 (%) Lrtn-2ky, 1 oeven.
k=0

Using (21)—(22) on (4) we get the slightly more complicated formula

2]

n_x~ n=2k+1 ;ny Frint1-2k)
(24) e 3 R () B

I do not recall seeing (23) or (24) in any accessible location in our Quarterly.
If we let r= 0in (4) we can obtain the formula (1.72) in [3] of Lucas, which is also part of Desmond’s prob-
lem [11] who does not cite Lucas,

n-1
%]

(25) n= 3 (=nf (TR 2 g
k=0

It is abundantly clear that the technigues we have discussed apply to many of the generalized sequences that
have been introduced, e.g., Horadam's generalized Fibonacci sequence, but we shall not take the space to -develop
the obvious formulas. It is hoped that we have shed a little more light on a set of rather interesting formulas all
due to Lucas.
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11. Problem H-135, Posed by J. E. Desmond, The Fibonacci Quarterly, Vol. 6, No. 2 (April, 1968), pp. 143—
144 Solved by the Propaser, /bid., Vol. 7, No. 5 (Dec. 1969), pp. 518—519.

12. Problem H-172, Posed by David Englund, The Fibonacci Quarterly, Vol. 8, No. 4 (Dec., 1970), p. 383;
Solved by Douglas Lind, j6/d., Vol. 9, No. 5 (Dec., 1971), p. 519.

13. Problem B-285, Posed by Barry Woalk, The Fibonacei Quarterly, Vol. 12, No. 2 (April 1974), p. 221;
Solved by C. B. A. Peck, jbid., Val. 13, No. 2 (April 1975), p. 192

Fololdodok
[Continued from page 24.]
(i) (fl—ZJ) G2+G2,, = Gopey (0= 1)
(iv) GZ2,,— (P—‘—7)262= G (n=1)
n+2 4 n 2n+2 n =
n—1 . T
y A S Gl S W U] L
r=0
n
(vi) (&Z—l—l) S 6= Gpez—1 (0> 1),
=1

The proofs of the above results, which rely essentially on equations (2), (3) and (5), together with

a-B=p, a+B=1 and a{3:~</12_~7),

are fairly straightforward and left to the reader. Of course, results such as these are not new. For example, {ii)
was proved in a slightly more general form by E. Lucas as early as 1876 (see [1] page 396).

Finally, turning to the vertical sequences in the table given earlier, it follows from (v) that the sequence under
G, (n > 1) is given by

n—1
(6) { > (T ITr ) k- Uf} (k > 1),

r=0

so that for example the sequences under G4 and G5 are {2/( - 7} and {k2 + k- 7}, respectively. Alternatively,
instead of using (6}, we can apply the Binomial Theorem to (2) and obtain the general vertical sequence in the
form

n

{ Z—HZ—I > (f)(zzk—s/”*”/?} (k > 1).

=1
rrt;dd

REFERENCE
1. L. E. Dickson, History of the Theory of Numbers, Vol. 1, Carnegie Institution (Washington 1919).
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NUMERATOR POLYNOMIAL COEFFICIENT ARRAYS
FOR CATALAN AND RELATED SEQUENCE CONVOLUTION TRIANGLES

V. E. HOGGATT, JR., and MARJORIE BICKNELL-~JOHNSON
San Jose State University, San Jose, California 95192

In this paper, we discuss numerator polynomial coefficient arrays for the row generating functions of the con-
volution arrays of the Catalan sequence and of the related sequences S; [1], [2]. In three different ways we can

show that those rows are arithmetic progressions of order /. We now unfold an amazing panorama of Pascal,
Catalan, and higher arrays again interrelated with the Pascal array.

1. THE CATALAN CONVOLUTION ARRAY
The Catalan convolution array, written in rectangular form, is

Convolution Array for Sy

1 1 1 1 1 1 1
1 4 5 6 1 8 9
2 5 9 14 20 27 35 44 54
5 14 28 48 75 110 154 208 273
4 42 90 165 275 429 637 910 1260
2 132 297 572 1001 1638 -

N —
W -

1
4

Let G,(x) be the generating function for the n® row, n = 0, 1, 2,

-+, By the law of formation of the array,
where C,-7 is a Catalan number,

Gp-1(x) = xGn(x) = x2Gp(x)+Cpy .
Since
Golx) = 1M1 =x) = 1+x+x2+ x5+t x # .
Gilx) = M1 =x)? = 1420 +3x5 4t (0 + 1x" + -

we see that by the law of formation that the denominators for G, (x) continue to be powers of (7 — x). Thus,
the general form is

Galx) = N1 x)"*T
We compute the first few numerators as
Nylx) =1, Nalx) =1, Nzlx)=2-x  Nalx) = 5—6bx+2x2,
Ns(x) = 14— 28x + 20x2 - 5,
and record our results by writing the triangle of coefficients for these polynomials:

Numerator Polynomial VV,, (x) Coefficients Related to S'¢

1
1
2 ~1
5 -6 2
14 -28 20 -5
42 -120 135 -10 14

132 495 770 616 252 42
429 -2002 4004 -4368 2730 -924 132
30
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Notice that the Catalan numbers, or the sequence Sy, appears in the first column, and again as the bordering
falling diagonal of the array. The next falling diagonal parallel to the Catalan numbers is the central diagonal of
Pascal’s triangle, taken with alternating signs and deleting the first one, or, the diagonal whose elements are
given by (i” ) The rising diagonals, taken with the signs given, have sums 1, 1, 2, 4, 8, 16, 32, -, 2"'7, e
The row sums are all one. The coefficients for each row also can be used as a convolution with successive terms
in rows of Pascal’s triangle to write the terms in the rows for the convolution triangle. For example, the third
row has coefficients 5, —6, and 2. The third row of Pascal’s rectangular array is 1, 4, 10, 20, 35, 56, 84, ---, and
we can obtain the third row of the convolution array for §7 thus,

5=15.1 -6-0 +2.0
14 = 5.4 —6-1 +2-0
28 = 5-10-6-4 +2-1
48 = 5.20-6-10 + 2-4

75 = 5.35-6-20+2-10
We can take columns in the array of numerator polynomial coefficients to obtain columns in the Catalan con-

volution array. The zeroth or left-most column is already the Catalan sequence S7. We look at successive
columns:

n =10 1011, 2/1, 5/1, 141, 42/1, ) = 1,2, 5, 14,42, .. = 872

n =1 2(1/2, 6/3, 28/4, 120/5, 495/6, ) = 1, 4, 48, 165, 572, - = 374
n =2 3(2/6, 20/10, 135/15, 770/21, --) = 1,6, 27, 110, - = S,G

n =3 4(5/20, 70/35, 616/56, 4368/84, ---) = 1, 8, 44, 208, - = S,g

The divisors are consecutive elements from column 1, column 2, and column 3 of Pascal’s triangle. The first case
could have divisors from the zero ¥ column of Pascal’s triangle and is S?. Thus, the i column of the numera-
tor coefficient triangle for the S; array, the i™ column of the Pascal array, and the i™ column of the convolu-
tion array for S are closely interrelated.

2. THECONVOLUTION ARRAY FORS»

Next we write the numerator polynomial coefficient array for the generating functions for the rows of the
convolution array for the sequence So. First, the convolution array for So is

Convolution Array forSo

1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9
3 7 12 18 25 33 42 52 62
2 30 55 88 130 182 245 320 408
5 143 273 455 700 1020 1428 1938 2565

The numerator polynomial coefficient array is

Numerator Polynomial Coefficients Related to S2
1

1
3 -2
12 -18 7

55 -132 108 =30
273 -910 1155 —660 143
1428 —6120 -
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Again, the row sums are one. The rising diagonals, taken with signs, have sums which are half of the sums of
the rising diagonals, taken without signs, of the numerator polynomial coefficient array related to S;. Again,
the zeroth column is S5, and the falling diagonal bordering the array at the top is Sg, The next falling diagonal
is three times the diagonal 1, 6, 36, 220, ---, which is found in Pascal’s triangle by starting in the third row of
Pascal’s triangle and counting right one and down two. {The diagonal in the corresponding position in the array
related to Sy is twice the diagonal 1, 3, 10, 35, 126, ---, which is found hy starting in the first row and counting
down one and right one in Pascal’s rectangular array.)

Again, columns of the convolution array for S5 arise from the columns of the numerator polynomial coef-
ficient array, as follows:

n =0 11/1,30,12/1,55/1,--) = 1,3,12, 65, = S3

n =1 2(2/4,18/6, 132/8,910/10,6120/12, ) = 1,6,33,182, - = S5
n =2 3(1/21,108/36, 1155/55, ) = 1,9, 63, -~ = 3

n =3 4(30/120, 660/220, 9282/364, --) = 1,12, 102, - = S3°.

Note that the zeroth column could also be expressed as Sg, and could be obtained by muitiplying the column
by one and dividing successively by 1, 1, 1, --. Each column above is divided by alternate entries of column 1,
column 2, column 3 of Pascal’s triangle. Sg(””) is obtained by multiplying the 7% column of the numerator
polynomial coefficient array by » and by dividing by every second term of the (n — 7)5f column of Pascal’s
triangle, n =0, 1, 2, ---. Also notice that when the elements in the i row of the numerator array are convolved
with / successive elements of the /% row of Pascal’s triangle written in rectangular form, we can write the i
row of the convolution triangle for §».

3. The Convolution Array for S3
For the next higher sequence S3, the convolution array is
Convolution Array forS3

1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9
4 9 15 22 30 39 43 60 72
22 52 91 140 200 272 357 45 570
140 340 612 969 1425 1995 2695 3542 4554

1
1

and the array of coefficients for the numerator polynomials for the generating functions for the rows is

Numerator Polynomial Coefficients Related to S3

N

-3
22 -36 15
140 360 312 -91

Again, the first column is S3, or, Sg, while the falling diagonal bordering the array is .S'g, and the falling diagon-
al adjacent to that is four times the diagonal found in Pascal’s triangle by beginning in the fifth row and count-
ing right one and down three throughout the array, or, 1,9, 78, 560, ---. The rising diagonal sums taken with
signs, s;, are related to the rising diagonal sums taken without signs, r;, of the numerator array related to Sz by
the curious formula r; =4s;— i, i=1, 2 ---. Again, a convolution of the numerator coefficients in the/ ™ row
with 7 elements taken from the /%’ row of Pascal’s triangle produces the i row of the convolution triangle for
S3. Forexample, for/ =3, we gbtain the third row of the convolution array for $3 as
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22 = 22-1 —36-0 +15-0
52 = 22-4 —36-1 +15-0
91 = 22-10-36-4 +15-1

140 = 22.20-36-10+ 15-4

We obtain columns of the convolution array for Sz from columns of the numerator polynomial coefficient
array as follows:

0 101/1,4/1,22/1,140/1, ) = 1,4,22,140, - = 53

0=
n =1 2(3/636/9,360/12, ) = 1,860, = S5
n =2 3(15/45,312/78, 1560/120, ) = 1,12, 114, .. = §}2

Here, the divisors are every third element taken from column 0, column 1, column 2, --- of Pascal’s triangle.
4. THE GENERAL RESULTS FOR THE SEQUENCES S;

These results continue. Thus, for S;, the n™ column of the array of coefficients for the numerator polynomi-
ials for the generating functions of the rows of the S; convolution array is multiplied by (n + 7) and divided by
every i successive element in the n™ row of Pascal’s rectangular array, beginning with the /fn + 1)i — 1]°¢
term, to obtain the successive elements in the (in +7 — 7)°% column of the convolution array for S;, or the se-
guence S,’:(""’). That is, we obtain the columns/, 2/ + 1, 3/ + 2, 4i + 3, -, of the convolution array for S;.

We write expressions for each element in each array in what follows, using the form of the m % glement of
Sf given in [1].

Actually, one can be much more explicit here. The actual divisiors in the division process are

(i(m+n)+(n— 7))
n
where we are working with the sequence S;, / =0, 1, 2, ---; the n™ column of Pascal’s triangle,n =0, 1,2, -;
and the m ™ term in the sequence of divisors, m=1,2, 3, ---.

Now, we can write the elements of the numerator polynomial coefficient array for the row generating func-

tion of the convolution array for the sequence S;. First, we write

S{(:f_lg__ /(/'+7)m+k——7)} m=201 2 -
/ lml-+/. m ) ’ r ’ ’

which gives successive terms of the (k — 7)°¢ convolution of the sequence S;. Then, when k = (i + 7)(n + 1),
S,(””(””} - { (i+1)n+1) ((i +1)m+n)+i )} )

mi+ i+ 1)n+1) m
m=012--, =012 n=012-".

Let an+m,n be the element in the numerator polynomial triangle forS;, m =0, 7,2, -, n=10,1, 2, -, in the
n™ column and (n +m) ™ row. Then, the topmost element in the n® column is given by a, ,. Now,
Si(i+7}(n+7) - { (0 + Vaptm,n (/(/'(n +m)+n+i— 7)}

n
so that, upon solving for a,+m, , after equating the two expressions for the m ™ term ofS,-(H”("H), we obtain

i+171 ((i+7)(m+n)+i> (i(n+MI+n+i—7>

CifmAn) it m n

_itl1 ( (i +1)(m+n)+i )( (i + 1)n+ (i — 7}+mi) ,
m m—1 n
Now, we can go from the convolution array to the numerator polynomial array, and from Pascal’s triangle to
the convolution array, and from Pascal’s triangle directly to the numerator polynomial array.
And, do not fail to notice the beautiful sequences which arise from the first terms used for divisors in each
column division for the columns of the numerator polynomial coefficients of this section. For the Catalan
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sequence Sy, the first divisors of successive columns were 1, 2, 6, 20, 70, ---, the central column of Pascal’s tri-
angle which gave rise to the Catalan numbers originally. For So, they are 1,4, 21, 120, ---, which diagonal of
Pascal’s triangle yields S2 upon successive division by (3/+ 1), /=0, 1, 2, -, and Sg = { 1,27, 60, } upon suc-
cessive divisionby 1,2,3,4,---. For S3, the first divisors are 1, 6, 45, ---, which produce Sg= {I, 3, 15,91, - }
upon successive division by 1, 2, 3, 4, ---.
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Triangle Matrices,” The Fibonacci Quarterly, Vol. 14, No. 5, pp. 395—404.
2. V. E. Hoggatt, Jr., and Marjorie Bicknell, “Pascal, Catalan, and General Sequence Convolution Arkaysin a
Matrix,"" The Fibonacci Quarterly, Vol. 14, No. 2, pp. 136—142.
Jokotolokoiok
[Continued from page 66.]

ON THE # CANONICAL FIBONACCI REPRESENTATIONS OF ORDER

=0
forsome NV = 2. Then
o N-1
A D 7 A N A R
k=0

Proof. The case / = 7 amounts to F,'f, ;=1 k=01, N~ 1 If the theorem is true for some/ > 7, then

N—1 N-2 N-2
+it N-k+ + - + k+ N-
N - 7 Fiy i 1 - 2 Fl/f/,/aNk*F/?/,/aN - X (FN,,'7+F/(\7/,/')C‘ “rFR
k=0

k=0 k=0
Now
k+1, 20 a &
FNi *FN,i = FNtkt1 = 20 Finj+ Fi = FIierek— 20 FNitr4 = Fiy et -
j=0 j=0

Also Fp ;= Fﬁ',l, so the above equaticn reduces to

N—-1

N+i+1 _ k N-k

a = Z Fn,i+1@ -
k=0
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FIBONACCI-LIKE GROUPS AND PERIODS OF FIBONACCI-LIKE SEQUENCES

LAWRENCE SOMER
1266 Parkwood Drive, North Merrick, Mew York 11566

The purpose of this paper is to investigate Fibonacci-like groups and use them to show that for any odd prime
p, there are Fibonacci-fike sequences, in fact an infinite number of them, with a maximal period modulo p. At
the conclusion of this paper, we will present a program to show how one might apply Fibonacci-like groups to
problems concerning primitive roots modulo an odd prime. One of our main results will be to prove that the
exponent to which any non-zero residue r of an odd prime p belongs is equal to either the period ar one-half
the period moduio p of a Fibonacci-like sequence, except when both p = 1 (mod 4) and r = £/~ 7 (mod p). We
will give a proof of this theorem and draw some consequences. To continue, we will need a few definitions.

Definition 1. A primary Fibonacci-like sequence {J,,}, hereafter called a P.F.L.S., is one which satisfies
the recursion relation: J,+7 = aJ,, + bJ,-7 for some non-negative integers, 4, 4, and for which Jp=0, J7=17,
and /o = a.

Deﬁnition 2. A generalized Fibonacci-like sequence, hereafter called G.F.L.S., is a Fibonacci-like se-
quence {/(,,} in which K and K7 are arbitrary non-negative integers.

Definition 3. ufa, b, p)isthe period modulo p, p an odd prime, of a P.F.L.S. in which
Jnit = alp+bn_g.

Itis the first positive integer 7 such thatJ, =0 (mod p) and Jp+7=J7 =1 (mod p).

Definition 4. afa, b, p), called the restricted period of a P.F.L.S. modulo p, is the least positive integer m
such that

IJm =slg=10 and Im+1 =847 =5 (mod p)

for some residues. Then s(a, b, p) = s will be called the multiplier of the P. F. L. S. modulo p.

Definition 5. Pla b, p)is the exponent of s(a, b, p) (mod p). ttis equal to u (a, b, p)/afa, b, p).

The next fact that we will need is that if (a* +4b/p) = 0 or 1, where (p/g)is the Legendre symbol, then the
period of the G.F. L.S. modulo p, beginning with either

(Kp =1 Ky =(a+a*+ab)/2)  or  (Kg=1 K;=(a—/a*+4b)/2),
forms a group under multiplication (mod p). The G.F.L.S., reduced modulo p, beginning with
(1, (a+/a* +4b)/2)
will be designated by {/I/In} and the G.F.L.S. beginning with
(1, (g —Ja® +4b)/2)
by {M,Q}. The specific generalized Fibonacci sequence beginning with
(1,(1+/5)/2), and (1,(1-/5)/2),

reduced modulo p, will be designated by {H,,} and {H}}, respectively. Generalized Fibonacci sequences satisfy
the same recursion relation as the Fibonacci sequence.
To prove that these form multiplicative groups modulo p, note that the congruence:

bc +acx = cx* {mod p)

leads to the congruence:
35
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1

bex T # acx™ = ex"*7 (mod p).

This has the solutions
x = Ja + hyfa® +4b (mod p).

Letting £ = 7, we see immediately that we obtain the group generated by the powers of x. These sequences will
be called Fibonacci-like groups modulo p and the sequences {H,,} and {H,Q} will be called Fibonacci-groups
modulo p. Note that these sequences have both the additive structure of a Fibonacci-like sequence and the mul-
tiplicative structure of a cyclic group. For an example of a Fibonacci-like group, let a= 7 and 6 = 3. Then
a Fibonacci-like group exists iff 2
(a< +4b/p) = (13/p) = 0 or 1.
If p =17, then asolution of

x = (1+13)/2 = (1+8)/2 (mod 17)

isx =13 (mod 17), and this gives rise to the Fibonacci-like group (1, 13, 16, 4).

Our method of proof of the main theorem will be based on the length of the periods of special types of
Fibonacci-like groups, namely those for which 6 = 1.

To demonstrate my method of proof, we will investigate the periods modulo p of the Fibonacci groups,
{Hn} and {H,’,}. Using the quadratic reciprocity formula, we can see that Fibonacci groups exist modulo p only
whenp =5 orp=+7 (mod 10).

Any generalized Fibonacci sequence {Gn} beginning with Gg=¢, G7=d, can be generated from the Fibon-
acci sequence {F,,} by the formula:

Gn = (d—C)Fn +CFn+7 .

Thus, all the terms of the two Fibonacci groups {H,} and {H} which are =1 (mod p) can be expressed as:

Hoy = ((1+5)/2)" = ((—1+/5)/2)Fpn + Fner = 1 (modp);
or:

I
Ii
il

Hpy = ((1=/5)/2)" = (—1—/5)/2)Fp + Fpsq

If £, =0 (mod p), then F,47 must be = 1 (mod p) and the n™ term of both the sequences {#,, } and {H}}
will be = 1 (mod p).
Note that the product of the n™ terms of the two Fibonacci groups modulo p, p# 5, is

((1+5)/2)"((1-/51)/2)" = —1" (mod p).

Let us now assume either H,, =7 or H}, = 7 (mod p) but that £, #0 (mod p). Then H, =+1 (mod p)ifH, =1
(mod p), or H, =+7 (mod p) if #;, =17 (mod p).
Let us assume that both H,, and H;, are = 1 (mod p). Then

Hy = ((=1+/5)/2)F, + Fheq = 1 (mod p),

7 (mod p).

and
Hyy, = ((=1—/B)/2)Fp+ Fper = 1 (modp).
Thus,
Hy,—Hpy = 5F, = 0 (mod p).
Since F,, # 0 by assumption, 5 =0 (mod p) and p must equal 5. If p = 5, then
(1+5)/2 =(1-5)/2 = % = 3 (mod 5),

and there is only one Fibonacci group. This group is {1, 3,4, 2} and has a period of 4.
Now, suppose p # 5 and F,, #0 (mod p). Then, either,

(1) Hoy = ((—=1+/5)/2)F, + Fpeq = 1 (mod p)
Hy = ((—1=/5)/2)F, + Fhe7=—1 (modp)

or

(2) Hp,
Hh

((=1+/5)/2)F, + Fpeq
((=1-/5)/2)Fp + Fpeq

—7 (mod p)
7 (modp).

i
LTl
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In both (1) and (2), by adding #,, and H}, we see that F, = 2F,47 (mod p). In (1), by subtracting H}, from
Hp, weobtain Fp =2A/5 and thus Fr+7 = 1A/5 (mod p). In (2), we observe that £, =—2A/5 and Fpp4q =
—1//5 (mod p).

Now, if £, =2F,+7, then

Fr-1 = Fny1— Fn = —Fpey (modp).

Ul

Note that
F2n = FnFI’l-7+FnFn+7 = Fn(Fn—7+Fn+7).

Thus, if £, =2F,+7, Fr # 0 (mod p), then F_7 + Frp7 =0and Fo, =0 (mod p).

Itis known that the only possibilities for 3(7, 7, p) are 1, 2, 0r 4. |1 3(1, 1, p) =4, then a(7, 1, p)is an odd
number. (See [2].) But, then Fp, =0, F,, #0 (mod p) can have no solutions since the zeros of £, (mod p) can
only occur at multiples of af7, 7, p). Thus, F, = 2F,+; (mod p) is not solvable if B(7, 1, p) = 4. Thus, if
B(1, 1, p) = 4, all solutions of H, = 7 or H;, = 1 (mod p) must be generated by F,, =0, Fp4+7 =1 (mod p), as
we have seen before. Thus, the order of the two Fibonacci groups modulo o must both be wf(7, 7, p)ifp # 5.

If8(1, 1, p) = 2, then al1, 1, p) =0 (mod 4) [2]. But the first solution for 4, or H;, = 7 generated by an
F, #0 (mod p) can only be n=%a(1, 1, p), if such a solution exists. This is true since n» must equal %k-al7,7,p)
for some odd integer k. Butboth Hy (s, 7,0y and Hyy(1,1,p) are = 7 (mod p). Thus, n divides

w1, 1,p) = 2a(1, 1,p).

Hence, k = 7 and n = %a(1,1,p). Butsincea(?, 7, p)=0 (mod 4), n = %a(1, 1, p) =0 (mod 2); and. the prod-
uct of H,, and #;, =—1" = 7 (mod p), not —1, a contradiction. Thus, if 87, 7, p) = 2, the order of both Fib-
onacci groups must be uf7, 7, p.

The last case occurs if (7, 1, p)=1. Thena(7, 1, p) =2 (mod 4) [2]. Hence, n = %a(7, 1, p) =1 (mod 2) is
the first place where either H,, or H;, can be =1 and £, # 0 (mod p). Then the product of #,, and

H; = —1" = -1 (modp).
Now, look at the two congruences:
Fon = Fa(1,10) = FnFn-1*+FnFne1 =0 (mod p)
and
Font1 = Fatt, 1,001 = F7+FFey = 1 (mod p).

Solving for F,, and Fj,+7, we see that
F, = +2A/5 and Frer-= BF, = £1A/5 (modp),

in agreement with earlier results. Thus, if 3(7,7,p) = 1, the period of one Fibonacci group is %af(7,7,p) and the
period of the otheris a(7,7,p).
We have now proved our first lemma.

Lemma 1. 1f (5/p) = 0 or 1, p an odd prime, then the periods of the two Fibonacci groups {H,} and
{H7} modulo p are both u(7,7,p) if B(7,7,p) = 2 or 4 and p # 5. If p = 5, the period of the unique Fibonacci
group is 4. [ B(17,1,p) = 1, the period of one Fibonacci group modulo p is af7,7,p) = u(1,1,p), while the period
of the other group is %u(7,1,p).

To generalize this result to other Fibonacci-like groups, it would be helpful if the product of the n # terms of
these sequences, {M,} and {M}}, were = —1" (mod p) as before. The product of the n™ terms of the two
Fibonacci-like groups is:

((a+Ja* +4b)/2)"((a —Ja* +4b)/2)" = (-b)" (mod p).

This product will be =—77if b = 7. From now on, in discussing Fibonacci-like groups {M,,} and {M,’,} modulo
p, b will equal 1 and (a*> +4/p) will equal 0 or 1.

If Kg=c, Ky =d are the first terms of a G.F.L.S., then this sequence can be generated from the correspond-
ing P.F.L.S. by the formula: K}, = (d — ac)JJ,, + ¢Jp+7. Hence, if b =17,

My = ((a+/a* +4)/2)" = ((—a +/a* +4)/2)Jp +Jpsq (mod p)
and
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My = ((a—<Ja* +4) /2)" = ((—a — Ja? +4)/2)Jp + Jp+7 (mod p).

We wili next need a few formulas for P.F.L.S. {J,,} with a and b unspecified. These formulas are simply gen-
eralizations of some familiar Fibonacci identities:

(a) Inetdpr = JF = (=1)""
(b) Jon = bndneg +dndnes
{c) Jon+1 = bJ,12+./5+1 .

These formulas can easily be proven by induction. If # = 7, we obtain exactly the same formulas as for the
Fibonacci sequence.

The method for finding the periods of Fibonacci-like groups with 4 = 7 is along the same lines as before.
B(a, 1,p) must be either 1, 2, or 4. To prove this let n = afa, 1,p). Then J,_1Jps7 — J,? =—1" {mod p).But
Jn =0 (mod p) and

Tdpy = Jpt1 — aly = Jpsg (mod p).

Thus, J2,, = 1" (mod p). £ 0 is odd, J2,, =—1" (mod p); /¥, , = 7 and 3(a, 1,p) = 4. (This also shows that
no term Jop+7 of a P.F.L.S. with b = 7 can be divisible by a prime p =—7 (mod 4) since (—7/p)=—1.)1f
J2 =T thendy =21 1fdpr1 =1, Bla,1,p) = 1. Jpsg=—1 (mod p), Bla, 1,p) = 2.

Let us now look at the terms of {#,} and {#}} which are =1 (mod p). As before if J, =0 (mod p), then
Jn+1 mustbe =1 (mod p) and both ¥,, and M}, = 7 (mod p). o

IfJ,, #0 (mod p) and hoth M, and M}, are = 1 (mod p), then we have: (\/a? +4M, =0 (mod p) and a*> +4 =
0 (mod p). But then there is only one Fibonacci-like group {M,} and M, = (a/2)" (mod p). Buta®+ 4 =
0 (mod p). Thus, a*/4 =(a/2)* =—1 (mod p). Thus, a/2 belangs to the exponent 4 modulo p if (a2 +4/p) =,
and the period of such a Fibanacci-like group (mod p) is 4.

Hence, if either M, or My, =17, J, #0 and a* +4 # 0 (mod p), then one of M,;, M, = 1 and the otheris =—1
{mod p). Solving for J,, and J,,+7, we see that J, .7 = %aJ,, and that

Jp = £2//a* +4, Jni1 = Baly = tal/a® +4 .
Also,
Vidpoy=dper — aly = bady — aly = —hady = —Jpey (mod p).

Thus, as before, if a* +4 # 0 {mod p), the first 7 > 0 such that M, or M/, = 1 (mod p} is generated by aJ,, #
0 (mod p), isn = %afa, 1,p), it it exists. |f 8(a, 7.p) = 4, then no such instance can occur since afa, 7,p/ is odd. If
B(a 1,p) =4, then ufa, 1,p) =4 (mod 8), since afa, 1,p) =1 (mod 2). ,

If Bfa, 1,0) = 2, then one can solve for J, and J,,+7 by the congruences: Jo, =0 (mod p), Jo,+7 =—1 (mod
p). Substituting back, one finds that the product of M, and M}, is = 1 (mod p) in contradiction to what we
have determined before. This also shows that %afa, 7,p) = 0 (mod 2), afa, 1,p) =0 (mod 4), and ufa, 7,p) =0
{mod 8).

If Bfa 1,p) = 1, we solve for J,, and J,+7 by the formulas: Jo, =0 (mod p), J2,+7 = 1 (mod p). Solving, we
find that o o

Jp = £2/\/a* +4, Jdn+1 = Fal, = ta/\/a* +4 (modp),

in accordance with our previous results. Note that this further shows that if §(a, 7,p) = 1, then (a* +4/p) = 1.
Also, if we substitute back to determine M, and M;,, we determine that their product = —1 (mod p). This
shows that %afa 7,p) = 1(mod 2) and afa, 1,p) = 2 (mod 4)if B(a, 1p)= 1.

Thus, we have now proved our second lemma.

Lemma 2. The periods of the Fibonacci-like groups {Mn} and {M,;} modulo p are both ufa 7,p) if
Bla 1,p0)=2ord and (a> +4/p) = 1. If (a> +4/p) = 0, then the period of the single Fibonacci-like group is 4. If
a> + 4/p) = 1 and f{a, 1,p) = 1, then the period of one Fibonacci-like group is %u (s, 7,p) while the period of
the other group is pfa, 7,p).

The remainder of this paper will be devoted to finding for a given odd prime p all the P.F.L.S. with 0 <a <p,
b=1 and (a> +4/p) = 0 or 1, and studying the Fibonacci-like groups that they generate. .
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To find all 0 < a < p such that (a? +4/p)= 0 or 1, all one needs to do is find all solutions of the congruence:
x* —a* = (x+a)(x —a) =4 (modp).
There are p — 7 sets of solutions for x and a, generated by
(x +a) =k, (x —a) =4/k (modp), l<k<p-1.
In general, 4 sets of solutions lead to the same x? and a2
(x+a) =k (x—a) =4k (x+a) =4/k (x—a) =k
(x+al = -k (x—a) = —4/k (x +a) = —4/k, (x—a) = —k (modp).

Since k £ 0, k £ —k and4/k #—4/k (modp). However, 4/k = k iff k=22 (mod p). Also, —4/k =k iff k =+/4
(mod p). Combining these facts with the fact thatp, an odd prime, = 1 (mod 4) iff both +4 are quadratic resi-
dues modulo p, one finds that the number of solutions of x> =a2 +4 (mod p) isn + 1, if p = either4n + 1 or
4n + 3.

| next claim that the set of numbers of the form ((a £</a* + 4)/2), where 0 <a < p and (a> +4/p) =0 or |,
gives rise to all the non-zero residues of p. In general, (a /a2 + 4)/2 gives rise to two distinct residues, a and
—a, exceptin the case where a = 0 (mod p). Combining all these conditions with the fact that a> +4 =0 (mod p)
is solvable only if p = 1 (mod 4), we see that all the non-zero residues are obtained if the congruences:

(a, £ JaTF3)/2 = (a, £ JaT 7412
imply thata, =a, (mod p).
In each of the different cases, if we put the square roots on the same side of the congruence, square both sides
and collect terms, we obtain the congruence:

43% — 8a,a, +4a? = 4(a, —a,)* = 0 (modp).
Thus, a, =a, (mod p). ‘
Combining our previous results, we are now ready to state our main theorem. The P.F.L.S. with recursion re-
fation: Jp+7 = aJy + bJp- 7 will be denoted by {Ja,b}'

Theorem 1. 1 pis an odd prime equal to either 4n + 7 or 4n + 3, then there are 2n + 7 P.F.L.S. {./a,1}
with @ <a <p — T and b = 1, such that (a®> +4/p) = 0 or 1. These generate p — 7 Fibonacci-like groups, the
first terms of which are equal to each of the p — 7 non-zero residues modulo p.

The exponent e to which a non-zero residue r belongs modulo p is equal to the period of the Fibonacci-like
group of which it is the first term,

(1) 1fe=1(mod 2), thene = %u(a 1,0) for some P.F.L.S. {J5 7} with a <p and Bfa, 1,p) = 1.

(2) Ife=2(mod4), thene = ufa 1,p) for some P.F.L.S. {Ja,7} witha <p andf(a 1,p)=1.

(3) Ife#4,e=4(mod8), thene = u(a, 7,0) for some P.F.L.S. {J5 1} witha <p and (3, 7,0) = 4.

(4) 1fe=0(mod 8), then e = u(a, 7,p) for some P.F.L.S. {J,, 1} witha <p and B(a, 1,p) = 2.

(5) If e =4 then there exist ¢(4) = 2 P.F.L.S. {Ja,I} with a < p, afa, 1,p) = p, and f(a,1,p) = 4. Each
P.F.L.S. generates a Fibonacci-like group with a period of 4.

This theorem leads to a number of interesting corollaries. Unless stated otherwise, p is an odd prime, b =17,
and (2> +4/p)=0o0r 1.

Corollary 1. 1f0<a<p— 1, andb =1, then the period of any P.F.L.S., {J, 7}, divides p — 7, is even,
and is not equal to 4. If J dividesp — 7 and d = 2 (mod 4), then the number of P.F.L.S. {Ja,1}, a <p, with
Ula 1p)=dis ¢(d) If d # 4 and d =0 (mod 4), then the number of P.F.L.S. {Ja, 1}, a<p, with ufa 1,p)=d
is 5o (d). :

Proof This follows from Theorem 1 and the fact that the number of residues belonging to a particular ex-
ponent e modulo p, where e dividesp — 7, is ¢ fe).

The next corollary is very important. It states that for any odd prime, p, there exist an infinite number of
P.F.L.S. with the maximum possible period modulo p,

Corollary 2. 10 <a<p, p#5 then the number of P.F.L.S. {a,7) with a maximal period of p — 7 is
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%plp — 1) if p— 1=10 (mod 4). If p — 7 =2 (mod 4), then the number of P.F.L.S. {/, 7} with a maxi-
mal period modulo p of p — 7is ¢(p — 7). |f p = 5, then the P.F.L.S. {J1,1} = {Fp} and {44, 1} each have
periods of 20. (These periods are maximal since (72 +4/5) = (4> +4/5)=0and B(1,1,5) = 3(4,1,5)=4.) If a
now ranges over the non-negative integers, then there are an infinite number of P.F.L.S. {Ja, 7}' with a maximal
period modulo p.

Proof. If (a> +4/p) = 1, then one can generate a Fibonacci-like group whose period is at mostp — 7 and
which equals u(a, 7,p) Thus, ufa 7,p) is at most p — 7. If a=d (mod p), then the P.F.L.S. {Ja,7} and {Jd,7}
have the same period modulo p. The rest follows from Corollary 1.

If (a> +4/p) = —1, then Corollary 2 does not apply, but we can still find isolated cases of P.F.L.S. {Ja,1}
with maximal periods. If (a* +4)=—1and 3(a, 1,p) = 2 or 4, then uu(a, 1,p) can be at most 2(p + 7). Examples
are: (5/7) = =1, (1,1,7) =2 and u(1,1,7) = 16; and (5/13) = —1, 8(1,1,13) = 4, u(1,1,13) = 28. Note that i
Bfa 1,p) = 1, then (a* +4/p) must = 1 as we have shown earlier, and the maximal period modulop isp — 1.

Corollary 3. f0<a<pandp=3(mod4), then every P.F.L.S. {J, 7} has B(a 1,0) = 1.
Proof. This follows from the fact that p — 7 =2 (mod 4).

Corollary 4. 1f 1<a <p, then no P.F.L.S.{J,, 1} has 8(a, 7,p) = 7 iff p is a Fermat prime = 22" 1108
a =0 (mod p), then one gets the trivial P.F.L.S. (0,1,0,1, -+ ) with ((a, 7,p) = 1. This gives rise to the 2 trivial
Fibonacci-like groups, {17} and {—1"}.

Corollary 5. 1f0<a<pandp- 1=2"T1p;, pi =1 (mod 2), then the number of P.F.L.S. {/a, 1} with
Bla 1,p)=Tis i

> ool =2=1 = T1 p,-ki .
dkﬁ'-’ 2 i

The number of P.F.L.S.{J, 7} with B(a,7,p) = 2 is

DY old) .
d}p—I
d=0 (mod 8)

The number of P.F.L.S. {J,, 7} with B(a, 7,p) =4 is

% > old).
dip-1
d=4 (mod 8)
Corollary 6. 110 <a <p and e is an even number dividingp — 7, then the summation of all the a's of
P.F.L.S. {Ja, 7} with w(a, 7,p) = e is = 0 (mod p). In addition, the summation of all the a’s of P.F.L.S. {Ja'7}
with u(a, 7,p) dividing e is = 0 (mod p).

Proof. One can prove this by using the fact that if r belongs to the exponente modulo p, then so does
1/r. Combine this with the fact that if r = (a £ \/a? + 4)/2 (mod p), then 1/r =(—a £/(—a)* + 4)/2 (mod p),
and we obtain the result.

One of my purposes in writing this paper was to see if | could get any general results on the relation between
residues and the primes of which they were primitive roots. Unfortunately, | was unable to obtain any new re-
sults. But | will close this paper with an indication of how one might use P.F.L.S. and Fibonacci-like groups to
obtain results about primitive roots. | will prove, using my method, the well-known result thatifs and 2s + 7
are primes, s = 3 (mod 4), then all quadratic non-residues are primitive roots modulo 2s + 7, excluding —1.

I will use a result of Robert Backstrom [1], to prove this. He stated that if s is a prime and p = 2s + 7 is prime
such that (—b/p) = —1 and (a*> +4b/p) = +1, then afab,p) =p — 1. If b= 1, then p = 3 (mod 4), since (—b/p) =
—1. Hence, p — 7 =2 (mod 4). Thus, every P.F.LS.{J5 1}, 0 <a <p, (a* +4/p)=1,hasPla,1,p)= 1 by
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Corollary 3. The only periods that a P.F.L.S.{Ja, 7} can have is 2 or p — 7, the only even numbers dividing
p — 1 Itiseasily seen that %(p — 3/ of these P.F.L.S. have a period of p — 7, each giving rise to one Fibonacci-
like group with a period of %2(p — 7) and one with a period of p — 7. Those with periods of %(p — 1) correspond
to the quadratic residues of p excluding 1, and the others correspond to the quadratic non-residues, excluding
-1
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SOLUTION OF A CERTAIN RECURRENCE RELATION

DOUGLAS A. FULTS
Student, Saratoga High School, Saratoga, Califomia

At the recent research conference of the Fibonacti Association, Marjorie Bicknell-Johnson gave the recurrence
relation
(1) Pr1=2Pr=PrgtPr2 =1, r=234 -,
that represents the number of paths for r reflections in three glass plates (with initial values Py =1, P> =3 and

P3=6). | submit here an explicit expression for P,, and also obtain its generating function.
Based on the usual theory for such relationships, the general solution of (1) can be given in the form

(2) P. = C1R}+CaR5+C3R%,
where the quantities Ry, B2 and A3 are the roots of the equation
(3) RS -2R%°-R+1=0,

and the constants Cy, C2 and C3 must be determined to fit the specified conditions.
This cubic, whose discriminant is equal to 49, has three real roots, and they can best be expressed in trigono-
metric form, as texts an theory of equations seem to say. The roots of (3) are

Rq =f;[7+\/7cos¢>]
(4) 32=§~[Z—J7cos¢+\/2—75in¢]
Rz = é [2—J7 cos¢— /21 sinp]
where
=1 _1
(5) ¢ 3arccos(2\/7l>,

Such roots can be represented exactly only if they are left in this form. (Approximations of them are
Ry = 2.2469796, R, = 0.5549581, and ARz = —0.8019377.)
The constants in the solution (2) are then found by solving the linear system

[Continued on page 45.]



ON TRIBONACCI NUMBERS AND RELATED FUNCTIONS

KRISHNASWAM! ALLADI*
Vivekananda College, Madras, India 600004
and
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Stanton and Cowan [1] have discussed the two-dimensional analogue of Fibonacci Numbers. They dealt with
numbers

gin+1,r+1) = gln+1,r)+gin, r+1)+gln,r)
gin,0) = gl0r) = 1 rn = 0 integers.
Carlitz [2] has discussed in detail a more general form of gfn,r). In this paper we get the Tribonacci Numbers

from g{n,r) and discuss properties of functions related to Tribonacci Numbers. Analogous identities have been

established by Alladi [3] for Fibonacci Numbers. Bicknell and Hoggatt [4] have shown another method of
getting Tribonacci Numbers.

The numbers gfn,r) can be represented on a lattice as follows:

1 -::11\

1 —\\:9\.:41\\ Array 1

1 T7~_ 25763 _

1 <\\5\\13\\25\ ~41

[ SO N I 7.9 LR
(T 1 1 1 1o

The descending diagonals are denoted by dotted lines. The above figure is transformed into a Pascal-shaped tri-
angle by changing the descending diagonals into rows

1 ~ Array 2 Tribonacci Triangle

[ P
~ o1 W —
(<]
—_

It is interesting to note that the sequence of diagonal sums in the Pascal-shaped triangle is
1,1,2,4,7,13,24,44,81, -,
which is the Tribonacci sequence
Tn = Tp-1+Tp-2*Tp-3 Tp =10 Ty =1, T2 =1.

We now add variables (suitably) x™, y™ on the arrays to make every row a homogeneous function in x and y.

*Currently at UCLA.
: 42
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X y

X2 3xy y2

x®  bx?*y S5xy? y?3

x*  Ix3y  13x*y*  Ixy* y*

The rising diagonal sums give a sequence of functions 7,, with the following rule of formation:
Tnlx,y) = xTp-1ly) +yTn-2(x,y) +xy Tn-3lx,y) .

Let us denote the partial derivatives and convolutions by the following

2Taloy) 3Talty)

* = ——
Fram thixy)

thlx,y) = w

n
Talxy) = 37 Tklxy)To-klxy) .
k=0

As in the case of Fibonacci Polynomials, do there exist relations between these functions? To get symmetric
results we denote 7, (x,y) by 7%, (x,y).

Theorem 1. e (X y) +yTi_1(y) = talxy).
Theorem 2. TnlX,y) + xTn-1(x,y) = ti,1(x,y)
Theorem 3. tierxy) = t,ix,y) = XTo_1(xy) = yTn_2(x,y).

Proofs. Theorem 3 follows immediately from Theorems 1 and 2. Since Theorem 2 is similar to Theorem 1
we prove only Theorem 1.
To prove Theorem 1 we would essentially have to show

(1) Talx,y) +yTa-2(x,y) = ty(xy).
Assume that statement holds for. n =0, 7, 2, 3, ---, m. From the recurrence relation for 7, (x,y) we see that
aTm+1(xy) aTmixy) 3T m-1(x,y) 3T m-2(x,y)
—mrr et = + + _MTe 7t
X Tmxy)+x —== Yo +yTm-2(x,y) +yx X
Now
m+1 m—1
Tm+100Y) #YTm-106y) = 3, TklXy)Tmeks1lxy) +y 32 Telxy)Tm-k-1(xy)
k=0 k=0
m m—=2
=x| 3 Tilxy)Tm-ilxy)+y 3 Tklxy)Tm-k-2(xy)
k=0 k=0

m-1 m-3
ty [Z Tklxy) Tm-k-1xy) +y 3 Trlxy) Tm—'k—3(X,V):|
k=0 k=0

. m-2 m—4 .
Xy [ > Teloy)Tm-g-2(xy)+y 3 Tk(x,y}Tm-k-4fx,y)] +glx,y) +hix,y)
k=0 k=0

applying recurrence for 7,(x,y), where gfx,y) + h(x,y) are the remainder terms from the first and second sum-
mations in each square bracket. Now using the recurrence we may simplify gfx,y) and A(x,y) to
glx,y) = Tmix,y), hix,y) = yTm-2(xy)
which makes the right-hand side to be equal to the partial derivative
aﬂw+1QQ

aX
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This means (1) holds forn =m + 7 and can be verified to hold for n = 0, 7. By mathematical induction it holds
for all positive integral values of n.

We shall now discuss some more properties of the Tribonacci Triangle. If we attach the term x™ to every
member of the (m + 7)% row then the generating function of the (n + 7)% column is

G, (x) = X1+ X)"

(7 _ X}n+1
so that

(1 Y Gatx) = —L
n=0 1-2x—x?

Now (1) clearly indicates that the row sums of the Tribonacci Triangle are Pell-Numbers
Pn = 2Pn-1+Pp2, Po =10 Pr=1
If on the other hand we shifted the (n + 7)% column n steps downwards and in the new array added the term

X™ to every member of the (m + 7)th row, then the generating function of the (n + I}ﬂ7 column of this array
would be

Gxlx) = X2(1+X)"

(7_X)n+7
so that
- 1
2) DD/ A —
n=Z7 " 7~X—X2—X3

Now (2) indicates that the rising diagonal sums of array (2) are Tribonacci Numbers. In fact if we attached
XMy tothe (m + 1) for (r+ Z)th column element of the Tribonacci triangle we get the generating function
of the (n + 7)¥ column as

n
Gp(XY) = XY (1 +x)"

(1-x)"*1
so that
(3) > GaXY) = ——
n=0 1—X-XY-X2Yy

which is the two-variable generating function of array (2). We conclude by considering the inverse of the follow-
ing matrix.

1 ~1

/ X

11 1 \

13 1 = -1 1 |

1 5 5 1 2 =3 1 ;

17 13 7 1 —610—51/
Now denote by T the (n + 1)% row (r+ 1) % column element of
1
-1 1
2 3 1
-6 10 -5 1

Two interesting properties of 7 T#:stand out

n
P.1. > "tr=0  n=1 (= 1forn = 0)
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n
P.2. ST = 1" Ty (=1 forn =0).
r=0

REMARKS. We wish to draw attention to the fact that we obtained Tribonacci Numbers from Stanton and
Cowan’s Diagram. Such a generalization to higher dimensions may be possible but it is very complicated as it is
exceedingly difficult to picture these numbers. However there are other ways of obtaining these numbers as for
example Tribonacei numbers from the expansion of (7 +x +x2)r (4],
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[Continued from page 41.]
CiR;+CoRo+C3R3 =1
(6) C1R?+CaR3+C3R% = 3
C1R3+C,R3+C3R = 6,

whose determinant is
Ry A2 A3

(7) D ={R? fZ R3| = (R1—R2MR1—R3)(Ra~R3) = 7.
R? R3 R3
Thus, using Cramer’s rule, one ghtains constants as
€7 =L RoR3(R3— Ro)[6—3(Ro+ R3)+ RaR3]

7
(8) 02=;H;Hg(/'?]—33)[5—3(H7+H3)+H7ﬁ3]
C3 = L RyRa(Ra— Ry)I6—3(R1+R2)+R1Ral ,

which reduce simply to the fixed numbers
7 7
©) Cr=%(3-FRzl  C2=50G-R1,  C3=L(3-Ry

when many discovered relations between the three roots are taken into account. These involve the following.
Relations between the roots and the coefficient of the cubic gives

(10 Ri+R2+Rz =2 RyRa+RiR3+R2R3 = —1, Ri1RaR3 = —1,

while from the discriminant we have

(11 (Ri—RoMRys—~ B3)(Ro— R3) = /49 = 7.

Use of these and the relation /?72+ /-?22+ ng 6 furnish, after some manipulation,
‘R1R%+RyR3+ R3R% = 4

12 {H,R§+H2ff§+ﬁgﬁ$= -3,

[Continued on page 56.]



SUMS OF FIBONACCI RECIPROCALS

W. E. GREIG
West Virginia University, Morgantown, West Virginia 26506

Good [1] has shown that

1 _ o FB-1
(1) ZFI;' FB' n=>1,

where b =2 and B =2". (We use this notation to achieve clarity in printing.) A generalization may be given as
follows: '

n
(2) Z FL - ¢y - Fkee nk > 1,

where Cy is independent of # and in fact

((1+Fr_1)/Fk for even &,
(1+ Fy_q)/Fr+2/Fo, forodd k.
For k=1, 2, 3, -, the first ten values of Cy are: 3, 2, 10/8, 1, 46/55, 3/4, 263/377, 2/3, 1674/2584, 7/11,
-+ If we write Oy with denominator as Fog then the numerators form the interesting sequence
3,6, 10, 21, 46, 108, 263, 658, 1674, 4305, 11146, 28980, ---

Formula (2) is easily proved by induction. Assuming it holds for n, then for n + 7 we find that we have to
show that

(3) Ck =

1 _ Fk-1 _ F2kB-1
Foke  Fks Foke
and this comes by setting/ = kB in the formula
(—7)/15/' = FojFj-1— Faj-1F; .
which may be proved directly by the Binet formula, or can be seen as a special case of the well known formula
Fm+1Fjt FmFi-1 = Fm+j
when m = —2j and using F_; = (- 7)j+7Fj.
This shows that Formula (2) holds with Ck independent of n. Taking n = 7 we may determine Cx from
1/Fi+ 1/Fax = Cik — (Fak-1/Fak )

[t is from this that we have found (3).
Since Fj/Fi7 — (1 +/5)/2 as j — =, we have a corollary

(@) ): Fkb =C- Lowitn 5= 12

“’_K

Our formula has an interesting application to sums of reciprocals of Fibonacci numbers in another way. As &
and m take on all integer values such that k > 0 and m > 0, then (2k + 1)2'" generates each natural number
once. Hence for absolutely convergent series we have the general transformation formula

46
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oo

(5) S fin) = N 5 M2k+1)27) = 3 3T fk2™).
n=1

k=0 m=0 k=1 m=0

Applying this to the Fibonacci numbers we have

(6) ST T %:Z {ee— 1}, by,

n=1"" k=1 m=0 Kb k=1
k odd k odd
= 2.382.-+0.632--+0.218 .-+ 0.080 --- + 0.030 - -
= 3.35988 -

as given by Brousseau [2, p. 45].
By some simple manipulations with the Binet formula £, = (a" — (—1/2)")//5., formula (6} may be trans-
formed into some variant forms that we believe are of interest. It is easy to verify the following:

- Fe-1 1. /5
(7 T —
k g 2k £7
(8) /T 5 .
Foy 2k 4 7 84k _7
7 /5 5
¢ = * =
@ For 4k _ 7 a.?k 7

Sl (1,2 , Fer 1
(10) DR P S oL
n; F, /?:_:1 {Fk Fog Fi a }
k odd
so that by (7) we get
e 5
(n sSL-v{l+2-—
= Fn P {Fk Fox ) 82k+7 }
k odd
=g - I - < 1
= = +2y -5 ) =L
k=1 Fx k=1 2k k=1 a2K+1
k odd k odd k odd

= 1.8245 ...+ 2.2924 ... — 0.7571 --.
Next, using (8), we get
a frj_:ZFi Z%"fZ,,—k’"—
n=1 "7 k=1 k . k=1 a -1
k odd kodd k odd .

= 1.8245 .-+ 1.1462 .-+ 0.389082 ---
Finally, using (9), this becomes

(13) 3 FL = Z o tE Z ~5k—7——
=1
odd

n=1
k odd

= 1.8245 .-+ 1.5353 -
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This tast form of our resuit is most interesting because it is not at all what we get if we transform the recipro-
cals by simple bisection.
By bisection it is easy to see that

S Loy 1.y Loy 1.y _E_
et Fn k=71 Fy =1 F/ P Fr =1 aZn_a-Zn
whence k odd jeven k odd
o - 0 . = 20
(0 IR N
nmr Fn iy Pk p=1 a® -1
k odd

Comparing this with {13} we find the interesting equivalence
2n >
(15 N S R EN S
n=1 a -1 k=1 a*k -1
k odd

The series on the right seems to converge twice as fast as that on the left, and six terms give the sum as
0.68663 ---, whereas it takes 12 terms of the ather series to get this.

Using the Binet formula it is also possible to rewrite (12) as

oo oo

- . ©a k
(18) E Fl =5 (3K + 22K 1 2K 11 20%) _NE L N { _/(._7__ - 72_3,__ }
n=1 1 k=1 a*k 1 k=1 a“ -1 atk—1
k odd k odd

= (2.083313 - — 0.580727 - /b = (1.5025865492 - )\/5 = 3.359885665 - .

A preliminary form of this paper was written in October 1975 and cammunicated to H. W. Gould and I. J.
Good later. The author is also indebted to H. W. Gould for suggestions leading to the presentation of the ideas
in the present form. A generalization of the main results here will appear in another paper [3]. A generalization
of formula (5) wilt appear in Gould [4]. See [5] for an earlier treatment.
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FIBONACCI NOTES
5. ZERO-ONE SEQUENCES AGAIN

L.CARLITZ*
Duke University, Durham, North Carolina 27706

1. The point of view of the present paper is somewhat different from that in [1]. We shall now consider the
following problem.
Let f(m,n,r,s) denote the number of zero-one sequences of length m +n:

(1.1) (a1,a2, -, am+n) aj = Oor1)
with m zeros, n ones, r occurrences of (00) and s occurrences of (11).
Examples.
.m=3 n=2 r=1 s=20
00 100
(1o 100
(1o o010 £(3,2,1,0) = 4
0100 1)
IWm=4 n=2 r=25s=1
00110 0
000110 74,2,2,1) = 3
01100 0
W.m=4,n=2 r=1s=1 f4,21,1) = 0.

In order to evaluate f(m,n,r,s) it is convenient to define 7j(m,n,r,s$ the number of sequences (1.1) with m
zeros, n ones, r occurrences of (00), s occurrencesof(11) and with a7 =/, where /=0 or 1. [t follows immediate-
ly from the definition that #;(m,n,r,s) satisfies the following recurrences.

folm,n,r,s) = folm—1,n,r—1,5)+f;(m—1,n,1,5)
1.2 { filmn,rs) = folm,n—1,r,5)+f1(mn—1,r,s=1),
wherem > 17, n > 1 and itis understood that
filmn,rs) = 0 (j=00r1)
if any of the parameters/m,n,r,s is negative. We also take

J’ f0(1,0,0,0) = £1(0,1,0,0) = 1

3
(.3) | fol1,0rs) = F1(0.1,r,5) = 0 (r+s > 0)
and
(1.4) f100,0,r,s) = 0 (j=0ori)
forallr,s = 0.

Now put
(1.5) Fi = Filxy,uv) = Z fi(m,n,r,sx"y"u"v®

m,n,r,s=0

*Supported in part by NSF Grant GP-37924X. 19
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and
(1.6) F = Fix,yuv) = Folx,yuv)+Filxyuv) .

It follows from (1.2), (1.3), (1.4) and (1.5) that
{ Folx,y,uyv) = x +xuFglx,y,uv)+xFq(x,y,uv)

Filxyuv) =y +yFolxy,uv)+yvFlxyuv),
or more compactly
(1—xu)Fg—xFq = x
(1.7) { —yFo+(1—yvIF; =y .
Solving this system of equations we get

_ x(1—yv)+xy
Fo (1—xul(1—yv)—xy

(1.8) F, = xy +y(1—xu)
YA —=xul(1=yv)—xy

Therefore, by (1.6),

_ Xty +2xy — xy(u+v)
(1.9) Floyuv) = =) = xy

In the next place, we have

1 . (xy )X _ m(x k o~ (rtk)(stk s
= = y) ( bu ) (yv)
(1=xu)(1—yv)—xy kgt; (7—Xu)k+7(7—yv)k+7 /E(:) r’sZ=a( k ) k )
oo min(m,n) . i
n m \ m- n-
=X o (R (R
m,n=0 k=0

It then follows from (1.9) that

=

F = z { (m;I) (Z)menum -k-1,n-k , (7{1) (n; 7) me"umk n-k-1
m,n,k
+2(m~7)( ;1)menum k=1 n-k=1 _(mk—’)(";’)xmy"umk"k 1
(1.10) (" 1) (n; I)menum ~k=1,n- k}
_ Z {(m;7) (Z:;)menum ~k-1,n-k , (7(7_—71) (n;7)xmynumk n-k-1
m,n, k
+2(mk_1)(";7)xmy”umk7"k1},
Since

F= 3% fimnrsk™y"u"v*,

it follows from (1.10) that
Z(m_7)("_7) (m—r=n—s)

(1.11) fim,n,r,s) = (m_7) (n5_7) (m—r=n—s+1)

0 (otherwise) .
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This holds for all m,n > 0, exceptm =n = 0. 1 m (orn) = Oclearly f{m,n,r,s) = 0 unless r (ors) = 0.
For example, (1.11) gives

#3210 =2(2) (1) =4

(7
0
_ (3 7\ _
4221 = (5)(;) =3
f4,2,1,1) = 0,
in agreement with the worked examples.
We may now state the following
Theorem 1. The enumerant f{m,n,r,s) is evaluated by (1.11).
The simplicity of this result suggests that one may be able to find a direct combinatorial proof.
2. We now examine several special cases. First, for x =y, (1.9) becomes

2+ 22— x2u+v)

(2.1) Fix,x,uyv) = .
(17— xul(1—xv)—x?
Put
(2.2) finrs) = > flkrs),

jt+k=n

so that f(n,r,s) is the number of zero-one sequences of length n with r occurrences of (00) and s occurrences of
(11). To evaluate #(n,r,s) we make use of (1.11).

It is clear from (1.11) that the only values of /& in (2.2) that we need consider are those satisfying

. [+k =n
(2.3) [ It

j\ j—k=r—s+(0, Tor-1).
Thus, for example, if

(2.4) itk =mn
j—k=r—s,
we must have
(2.5) { n =r+s (mod?2)
nz=|r=s|.
If (2.5) is satisfied it follows that
_ Yoln+r—s)—1\ (%ln—r+s)—1
(2.6) finrs) = 2 (% tr=s)=1) J97T)
provided at least one of the numerators is non-negative.
Similarly, if
(2.7) { j*tk =n
j—k =r—s+1 ~

we must have
(2.8) {nEr+s+7 (mod 2)

n = |\r—s+1)|

and we get
_(¥%n+tr—s+1)—1 Yon—r+s—1)—1
(2.9) fin,rs) = (P00 #r=s ) (s ) .
provided at least one numerant is non-negative.
Finally, if
(2.10) { j+k =n
j—k =r—s—1

we must have
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n =r+s+1 (mod2)
@1 { n=zr—s—1
and we get
_ (% —5— — %(n — P
(2.12) finrs) = (% *r s 1= 1)(%n r+ss+7/ 1)

provided at least one numerant is non-negative.
In all other cases

(2.13) fin,r,s) = 0.
We may state

Theorer 2. The enumerant f(n,r,s) defined by (2.2) is evaluated by (2.6), (2.9), (2.12) and (2.13).

3. We next take v = vin (19) so that

2
) F _ Xty +2xy — 2xyu ]
8.1 bey.uu) (1 —xu)(1—yu) - xy

Define
(3.2) glmnt) = 3~ flmnrs),
rts=t
so that g(m,n,t) is the number of zero-one sequences with m zeros, n ones and ¢ occurrences of either (00) or
(11). As in the previous case we need only consider

r+s =t
(3.3) {m—n=r-—s+(0,70r—7).
We get the following results:
- m—1 n—1
(3.4) glmn,t) = 2 < %(m —n + t)) ( %(—m +n +t) )
provided
m+n =t (mod 2)
(3.5) { Ot e,
(3.6) glmnt) = ( m= 1 n-T
: o Vz(m~n+t+1})(%(~m+n+t—7))
provided
m+n =t+1 (mod 2)
(3.7) { t > m—n+1| ;
- m—1 n—1
(3.8) glmn,t) = (Vz(m—n +t— 7}>(Vz(—m +n+tt 11)
provided
m+n = t+1 (mod 2)
(3.9) { t=Im—n—1]| ,

in all other cases
(3.10) glm,n,t) = 0.
We may state

Theorem 3. The enumerant g(m,n,t), defined by (3.2), is evaluated by (3.4), (3.7), (3.9) and (3.10).

4. Forx=y, u=v, (1.9) reduces to

2 2 .2
(41 ) F(X,X,U,U) = gﬁ_z_)_(___:_zx__q_
(1—-xu)? - x?

Thus

o -1

oo K n
_ (1 =xtu—=1))  _  2x - n n-1_ n n—1y\ t
Flox ) = s T =xta =T~ T=xla 77 an::,x ut1)"1=2 30 x g( )t

~

n=1
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Hence if we put
(4.2) hin) = 3 flikrs),
Jj*+k=n

. rts=t
it follows that

(4.3) hing)=2("77) 0 <t <.

The enumerant A(n,t) can be described as the number of zero-one sequences of length n with ¢ occurrences of
either (00) or (11).
We may state

Theorem 4. The enumeranth(n,t) defined by (4.2) is evaluated by (4.3).

This result can be proved by a combinatorial argument in the following way. Let the symbol x denote any
doublet —either (00) or (11). Thus we are enumerating sequences of length n — ¢

(4.4) (a7, a2, -, an-t),

where each a; is equal to 0, 1 or x. Consecutive zeros and ones are ruled out; also if 0 is followed by x, thenx
stands for (11), while if 1is followed by x, then x stands for (00). Thus we can describe the sequence (4.4) in
the following way. Assume it begins with 0 or (00). Then we have a subsequence (0101 ---) of length rg, follow-
ed by a subsequence (xx -/ of length 57, where the x's denote doublets of the same kind; this is followed by a
subsequence of length r; which is either of the type (0101 -+ ) or (1010 --- ) depending on the x, and so on. By
the subsequence (xxx), for example, we understand (0000) or (1111). Thus, for the sequence,

(010(11101(00)(11) )
we haverg=3,s1=2,r1=2,52=1,r0=0,53=1,r3=0,t=4.
Hence
(4.5) hint) =231,

where the summation is over non-negative rg, ry, -, rx and positive sy, -+, s, such that

(4.6 {ro+r7+-~-+fk+57+"'+5k:”_k
.6) Syt tSe =t (/(:0, 7,2,"‘}-

For t = 0 there is nothing to prove so we assume ¢ > 0. Since

{r0+r1+---;r£;n—k—t}: (n_t)

k
and
SpttSe = 1) ot S = t—k —
#{73/,\»/((7 f=#{57 s,-gﬂ }:(tkj)'
it follows from (4.5) and (4.6) that
t t—1

wnd) =2 (")) 2 ot ) () 2t ) =2 (00T

k=1 k=0
5. Forv =20 (1.9) becomes
(5.1) Flx,y,u,0) = X3V *2Xy = xyu

1—xly +u)
The right-hand side of (5.1) is equal to
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(x +y +2xy — xyu) Z xM E( ) ym Ny = Z(mr—7)xm m-r-1 r+2( ) m mr+7r

m=0 =0 m,r

-

+2 (mr_ I)mem—rur_ Z (rrn:;) mem—r+7ur
m.r m,r

=E(mr—7)xmmr—7r4z(m—-7)mm—r+7r+22(m—7) =,

m,r
Since
Fix,yu,0) = 3 fmn,r0x™y"u"

m,n,r
it follows that

2('":7) (m—n =r)

flm,n,1,0) :{ (’" - 7) (m—n=rz1).
!
If we take v = 7 in (5.1), we get

-yt
(5.2) Fix,y,1,0) = Xyt

The RHS of (5.2) is equal to

oo 55 8 (2= S{(7 1) () (31 P 0

Hence

m
- (m+1
(5.3) > fmnno) = (727
r=0
Finally, forx =y, (5.2) reduces to

, - -
Flxx1,0) = 22X = (24x) T Fpx = 5 Fpuox”
T—x—x n=1 n=1

where F,,+2 is a Fibonacci number in the usual notation. It follows from (5.3) that

J
(5.4) T Y fkn0) = Friz .
j+k=n r=0
Clearly

m
> ftm,n,r,0)
r=0
is the number of zero-one sequences with m zeros, n ones and doublets {11) forbidden. Similarly
J
Z Z flj, k,r,0)
Jjtk=n r=0

is the number of zero-one sequences of length 7 with (11) forbidden. Thus (5.3) and (5.4) are familiar results.

6. Put
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(6.1)
so that

(6.2)

(6.3)

FIBONACCI NOTES

Fixyuv) = 3 Fyaluvk™y",

m,n=0
m n
Frnluy) = 37 5 fmnrsh'v®,
r=0 s=0
apolynomial in ¢ and v. Thus (1.9) becomes
Xty +(2—u—vixy _ - m.n
7—XU—VV~I7~Ul/Ixy Z Fm,n(U,V)X vy

m,n=0

It follows that

xty+(2—u—vixy = (1—xu—yv—{(1—uvixy) > Fnnluylx™y" .

m,n=0

Comparing coefficients, we get

(6.4)

Frnluv) = uFm_qnluyv) +vFm poqluv) + (1= uv)Fmeq n-1luv)  (m+n > 2).

Itis evident from (6.3) that

(6.5)

Fr,nluy) = Fo miv,ul.

Also, taking y = 0, (6.3) reduces to

Hence

(6.6)

Since

7—_—);7 = E leofu,V)Xm .
m=0

Fm,oluy) = u™ 7 (m > 0)
Fonluy) = v n>0).

F1 1luv) = vFqpluyv) —uFg 1luyv) = 2—u—v,

it follows that

6.7)

F7,1(U,V) =2

Foru=v =1, (6.3) becomes

so that
(6.8)

m,n=0 T=x-y

Fa(11) = ("57)  Am+n > 0).

m

By mans of (1.11) we can evaluate Fp, ,(u,v/ explicitly, namely:

(6.9)

n—1

Fmnluy) = 2 Z (n T:—ji ) (”s- 7) 4SS
s=0

—1
v LR Pt
o=
n-2
D D RS N i B

[

For example, forn =1,

T Py = KL 2 S gk o 3 (MY ey
k

55
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Fon 1(uv) = 201 4 (m = 1)Ju™ (m > 1),
so that
Finluw) = 20" T+ (n = 1)" (n=1).
For m=n we get
m—1 2 m—1 .
(6.10) Fomluv) =2 5 (™71 ) +utv) 35 (72 T)(75T) w)
r=0 r=0

In connection with the recurrence (6.4), it may be of interest to point out that Stanton and Cowan [3] have
discussed the recurrence

(6.11) gln+1,r+1) =gln, r+1)+gln+11r)+gln,r

subject to the initial conditions
g(n,0) = g(0r) = 1 n=>0r=>0).

The more general recurrences

(6.12) Aln,r) = Aln—1,r—1)+q"Aln, r—1)+q"Aln—1,r)
and
(6.13) Aln,r) = Aln—1,r—1)+p"Aln, r—1)+q"Aln -1, 1)

have been treated in [2].
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If the relations (10), (11) and (12) are used, it can be shown that the much simpler expressions for the con-
stants in the explicit solution (2) are indeed given by equations (9).
The generating function for the sequence P, is defined by

(13) G = Z x'P, = Z [C1(xR1) +Co(xR2) +C3(xR3)],
r=0 r=0

If we now make use of the summation of a geometric series, then
€y, L2 . _C3
1T-xR; 1-xR2 1—xR3
_ Cil1—xRoNT1—xR3)+Co(1—xR1)(1—xR3)+C3(1—xR1)(1—xR2)
1—x(Ry+Ro+R3)+x2(R1Ry+R1R3+ 32/?3)——X3/?]/?2/?3
which, upon employing the relations (9), (10), (11) and (12), finally reduces to the simple equation

(14) G =

(15) 6= —Il=X



ON THE N CANONICAL FIBONACCI REPRESENTATIONS OF ORDER N

ROBERT SILBER
North Carclina State University, Raleigh, Morth Carolina 27607

SUMMARY

Carlitz, Scoville and Hoggatt [1, 2] have investigated Fibonacci representations of higher order. In this paper
we introduce for each V > 2 a series of // distinct canonical Fibonacci representations of order &/ for each posi-
tive integer n which we call the first canonical through the N canonical representations. The first canonical
representation parallels the usual Zeckendorff representation and the N canonical representation parallels
what the aforementioned authors have called the second canonical representation. For each of these canonical
representatlons there is determined a table WN analogous to the tables studied in [1, 3]. For 0 < k < N the
tables WN are shown to be tables of Fibonacci differences of order k of the columns of WN which is the
table generated by the first canonical representation. As a result we obtain a remarkable theorem which states
that for every 0 < k < /V the table of Fibonacci d|fferences of order & of the columns of WN inherits the fol-
lowing characteristics (and more) from the table WN (1) Every entry of the table is a positive integer and every
positive integer occurs exactly once as an entry in the table and, (2) Every row and every column of the table is
increasing. It is interesting to note that no such table exists with analogous properties in terms of ordinary dif-
ferences even for // = 3. In the latter part of the paper we give a generating function for the canonical sequences
(those which generate the canonical representations) and also give the extension of the elegant procedure in
[1, 3] for generating the tables W2 and W2 .

1. THE /¥ CANONICAL REPRESENTATION OF QRDER WV

Asequence {G;}72; shall be called a Fibonacci sequence of order N (N > 2) iff

2:' Givj = Gizpy  forevery /= 1,2,
j=0
The particular Fibonacei sequence { Fp,; } = {FA];} of order ¥ determined by the initial conditions Fp,; =27,
i=1,2 -, Niscalled the sequence of Fibonacci numbers of order N.* For each integerk=1,2, -, N — T we
define a Fibonacci sequence {F/\(,,,-} of order /V by
k-1
P = Fuisk= 30 Fuiwp 0= 123
/=0
Given a Fibonacci sequence {G,-} of order NV and a positive integer n, a canonical representation of n by the
sequence {G; }is asum
= 2 kiGi

in which (i) the summation extends over all positive indices 7 and all but a finite number of the &; are zero,
(i) k; #0 = k; = 1 and

N-1
(i) H ki+j = 0  forall /

*This enumeration of the Fibonacci numbers is shifted by one from thatin [1, 2, 3] ; this shifting seems to be
indicated by Theorem 1.1.
57
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The largest index 7 such that &; # 0 is called the upper degree of the representation and the smallest index / such
that k; # 0 is called the /ower degree of the representation. The principal result of this section is the following
theorem

Theorem 1.1. Let N be a fixed integer greater than one and let k be any integer between 0 and // — 1, in-
clusive. Then every positive integer n has one and only one canonical representation by {F/\ji} of lower degree
congruent to one of the integers {7, 2 -, N— k} modulo M. ’

Note that for & = 0 the theorem gives uniqueness of canonical representations by {FN,/} without restricting
the lower degree of the representation. At the other extreme, canonical representations with respect to {FN,'/}
are required to have lower degree congruent to 1 modulo /. This, combined with the observation that

Fuj= AL, for i= 1,23

explains the connection of these representations by {Fﬁ',’} with the representations in [1, 3] called second
canonical.

Foreach k=1, 2 -, V, the unique representation by {F,/\(,'/} guaranteed by Theorem 1.1 shall be called the
k" canonical Fibonacci representation of order V. ’

The proof of Theorem 1.1 is accomplished with the aid of four lemmas.

Lemma 1.1. Let {G;} be a Fibonacci sequence of order // which is non-decreasing and satisfies G7 = 1
and Gj+7 < 2G; for all . Then for every positive integer n, a canonical representation of 7 by {G;} can be ob-
tained from the following algorithm, which we shall call exhaustion. Let G; be the term of {G,-} of largest in-
dex satisfying G; < n. 1f G; #n let Gj, be the term of {G;} of largest index satisfying G; <n — G;, . Continue
inductively; after finitely many steps an index ip will be found such that

Nd
n= Z Gi,"
1

and this sum will be a canonical representation of n by {G;} .

Proof. Because G7 = 1 and because {G,-} must be unbounded, each term of the sequence iy, ip, -, ip, as
well as p itself, is well defined. From 2G; > Gj+7 we must have /7 > j> > - > i, since the equality of any adja-
cent pair of these indices would contradict the choice of the one with smaller subscript. If there exist among
i1, ig, -, ip sets of V consecutive integers, let/k, ix+7, -, ik +n-7 be that set having first index /¢ of smallest
subscript k. Then

k+N-1
2 Gi; = Giy+1
=k

which contradicts the choice of /.

Lemwma 1.2. Let {G/} be a positive term Fibonacci sequence of order &/ having the property that
k .
> Gi < Gyey for k=12, N-1.
=1

Then (i) {G,-} is strictly increasing except possibly for 67 = Gy and (i) ifEk;G; is any canonical representa-
tion by {G,-} and if the upper degree of representation is p, then ZkiGi < Gp+1-

Proof. The validity of (i) is clear as is that of (ii) for 1 <p < /N. Suppose (ii) holds for all p < m for some
m > N. Of all sums determined by canonical representations by {G,-} of upper degree m let n be the largest. If
is represented canonically by {G,-}, each of the numbers G, Gpy-1, -+, Gm-n+2 Must be present in the repre-
sentation since otherwise its sum could be increased without altering its canonical properties or its upper degree.
The number G,,,—p+7 cannot be present, and so by the same reasoning G ,,-yy must be presentunless it happens

thatm — N =2 and Go= Gy, in which case G; must be present if G2 is not and can be replaced by G > without
altering the sum. It then follows that



19771 ON THE / CANONICAL FIBONACCI REPRESENTATIONS OF ORDER & 59

i=m-N+2

has a canonical representation by {G,-} of upper degree m — /V, which by the inductive hypothesis cannot sum
to more than G,-p+7, SO
m
n < z Gj = Gm+7.

i=m-N+1

Given a Fibonacci sequence {Gf} of order /V, a term G; shall be called redundant if G; can be expressed as a
sum of fewer than /V terms of distinct subscripts from among {Gj, Gj+g, -, Gj-1}, where j = max {I, i— /V}. We
shall make use of the observation that a positive term Fibonacci sequence of order / can contain no redundant
terms beyond the first V.

Lemma 1.3. Let {G,-} be a Fibonacci sequence of order // which satisfies the hypothesis of Lemma 1.2.
Suppose some positive integer n has two distinct canonical representations by {G,-}. Then {G‘i} has a redundant
term G, for which one of the two canonical representations of 7 has lower degree congruent to r modulo /.

Proof. Proof is by induction on the maximum p of the upper degrees of the two representations of n. The
case p = 7 is vacuous. Suppose the lemma holds for all p <m and let p = m. If both representations have upper
degree m, subtract G, from both and apply the inductive hypothesis. Otherwise by Lemma 1.2 the representa-
tion of smaller upper degree can sum to at most G, so the representation having upper degree m must consist
of the single term Gp,. |f m < /N then G, is redundant and r = m. |f m > N the other representation must have
upper degree m — 7 by Lemma 1.2, and must contain all of the numbers G,,-7, Gm-2, -, Gm-n+7 since
otherwise its value could be increased beyond that of G, in contradiction to Lemma 1.2. Since it is canonical
it cannot contain the number G,,-pn. Therefore, upon removal of the terms Gpy-7, Gm-2, -+, Gp-p+7 from
the representation there results a canonical representation for

m-1
n— Z Gi = Gm-N
i=m-N+1
with upper degree less than m — /. By the inductive hypothesis either the lower degree of this representation
for G- is congruent to r modulo /V, in which case the same is true of the canonical representation from which
it was derived by the removal of the last // — 7 terms of the latter, or else m — /V is congruent to » modulo /V, in
which case the same is true of the lower degree of the other representationn = G, .

Lemma 1.4. Let NV be an integer greater than one and let k be a nonnegative integer less than V. Then
the redundant terms of {F//\(/i} are precisely F,((, N-k+1+ F/f,',v_k,LZ, F,((, N~ and in fact

-1
Fr; = 2 FAj. i=N—k+1, o, N
=1

We note that {F,e,-} has no redundant terms.

Proof. By definition Fp; = 27T fori=1,2 -, N. By summation we obtain Fy 7 = 2N — 7 which
proves for/ = 7 the formula )
Fruns = 27202NT —j —q), i=1,2 N
Proof for 2 </ < N follows by induction, using the relation Fy n+; = 2FN, n+i-7 — Fn,i-7- By direct calcula-
tion one now finds that ﬁf,- =2"T%ori=1 2 -, N — k so that none of these terms can be redundant. Again
by direct calculation one finds that
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which verifies the statement of the lemma for / = N/ — k + 7. Suppose the lemma is true for/ < NV — k +/ for
some/ such that 7 <j < k. Then for/=N — k +jwe have NV + 7 <j+ k < 2N so that

k=1 k—1
k _
F,i = Faiek — 0 Fiitp = 2FN,itk-1— FNitk-1-N = D FN,ip
p=0 p=0
k—1
- _ rk
= Fi,itk-1— FN,itk-1-N = D FN,itp-1 = FN -1 * FN,i=1 = FN,itk=1-N
p=1
2
= Y Fp* FNi-1— FNitk=1-N
p=1
by the inductive hypothesis. But
. k-1 itk-2 k-2 i-2
F,i-1 = FNitk-1— 0 FN,ii-1 = 2 Fnp = 2 Fnp = > Fn,p
j=0 p=i+k-N-1 p=i-1 p=i-(N-k+1)

since/+ k— 1>MN. Since/ < /N we have

-2 -2
-1 _ 5i~2  i~(N-k+2) _
> Fnp- Y 2= ) = Fnjet1 = FN k- 1-N -
p=i-(N~-k+1) p=i-(N-k+1)
This gives -2 . i-1
_ K
> Fhp * FNi-1= FN,i+k-1-N = 2, Frp
p=1 p=1

and the induction is complete.

Proof of Theorem 1.1. By the information contained in the statement and proof of Lemma 1.4 we
see that )
Frg =277 for i=1,2-,N—k
that
FNN-k#1 = 2FN N~ 1 and that FR .o = 2Ff; for N—k+1 < i<W,

the latter following from

i -1
PR kK _ rk Kk _ ork
Fnier = o Fhg = Fni*t 9o Fay = 2Fn
=1 J=1
K

=

For k= 0 we know that F/((/,/v+7 = 2Fyn— Tandfork=1,2 -, N — 7 we have, as above,

N
k _ k  _ k
Fhner = 22 FN, = 2Fhn -

=1

Thus for each {F7 ;} we have
1= Flg < Fho << Fan and Fq < 2Ff, for i= 1,2, N+1.

It now follows by induction that {F,(‘,,} satisfies the hypothesis of Lemma 1.1, and it is clear that {F,/\‘,/,-} satis-
fies the hypothesis of Lemma 1.2 and hence also of Lemma 1.3. By Lemma 1.1 each positive integer has by
exhaustion a canonical representation by {F/\l;/} This representation fails to satisfy the condition imposed by
the theorem on the lower degree only if it has lower degree of the form mA +p, N — k < p < V. For this case
we describe a method for obtaining a canonical representation of the desired form which we shall call reduc-:
tion. Replace
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X mN+p-1 B
FNmn+p by > Fn
i=(m-1)N+p
and then replace
« (m-1)N+p~1 p
FN,(m-1)N+p Y 2 Fu
i=(m-2)N+p
and so on, until arriving at
N+p-1 X
> Fai-
i=p

According to Lemma 1.4 we can now replace

p—1

k ok
FN,p by F/\/',' .

=1
and the end result of all these replacements is seen to be a k + 7°¢ canonical representation by {F,ﬁ ,-} of lower
degree one. The uniqueness of this representation comes immediately from Lemmas 1.3 and 1.4.

Given a Fibonacci sequence {G,v} of order /V and a system of canonical representations by {G,'}, we shall say

that the system is /exicographic if whenever

m = Zk;G, and »n = Zk,-’G,-

are two canonical representations in the system, then m < n if and only if the representations

2o kG and Y KG;

differ and differ in such a way that the largest / for which &; # k has k; = 0, k;= 1. Clearly this property implies
uniqueness within the system (although it does not imply existence within the system or uniqueness outside of
the system).

Theorem 1.2. For each N > 2 and for each nonnegative k < & any system of unique representations by
{F/é/,i} is lexicographic.
Proof. This theorem is an extension of Lemma 1.2. Suppose that

Tkifn, and KR,

differ and that &, = 0, k;’o =1 and k; = k; for all / > p. Then remove

k _ P
P TREDD kiF//\(l,/
i>p i>p

from both representations, so that it is sufficient to show that

p P

k ok
Z kiFN,/ < Z k/-FN’/-.
i=1 i=1

Since the upper degree of

p
Zk,-F/\(,,,-
=1
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is less than p, by Lemma 1.2 the sum cannot exceed

Thus we have
p p
) k rk
2 kifni < Z KiFp i .
i=1 i=1
since if the two sums were equal one could replace
ko _ rk
2 kiFn = 2 kiFn,
i>p i>p
and contradict the uniqueness assumption.

Suppose that m and n are positive integers having canonical representations within the system and thatm <
n. Let the canonical representations be

m =3 kiFr; and 0= Y KIFp; .

By the unigueness of canonical representations within the system, the only way the theorem can fail is for
these two representations to differ with k, = 7, k, = 0 and &; = &} for all / > p which givesm > n by the first
half of the theorem.

Theorem 1.3. LetN =2 and 7 < k < /. Then no paositive integer has more than two distinct canonical
representations by {FN,} A number has two distinct canonical representations by {F,V“ if and only if the
representatnon given by exhaustion* is not k + 7°% canonical, and therefore all canonical representations by

FN,} can be found by first applying exhaustion® and then (if the result is not k& + 757 canonical) reduction**.

Proof It suffices to prove that if a positive integer n has two distinct canonical representations by {FN,
then the one which is lexicographically inferior is k + 7°¥ canonical and the other is given by exhaustion. Let

= 3o kiFf = DOKIFR,

canonically with the first representation lexicographically inferior. Let k, = 0, k;, =1, k;=kiforalli>p,so

that P .
2 kiFn; = 2 KR,
i<p-1 i<p

By Lemma 1.2
k ek
2 kiFn; = 2 KR, = Fhp -
i<p- i<p
It k <N — 1, the representation
K
Z ki/:/\/','

i<p-1
and thus also the representation

2 kfF/’\(/,;

*Defined in the statement of Lemma 1.1.
**Defined in the proof of Theorem 1.1.
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must be k + 7°% canonical since otherwise
k k
Fngt 2o kiFn
i<p-1

is also canonical and exceeds FNp, in contradiction to Lemma 1.2. For k =/ — 7 the same remarks apply un-

less k7= 0and ko = k3 == ky = 1, which cannot happen, since if it did we would have
S e R N
2 kNG = 3 ket R = PN = FRpeg
j i=1

contradicting the uniqueness of the first canonical representation.
It remains only to show that

~ o rk
S KFN,
is given by exhaustion. If it were not, it would be lexicographically inferior to that representation of
rk
Z/(/'FN,/'
which was given by exhaustion, which by what has already been proven w_ould make
ek
2 KiFR

k + 1°¥ canonical.
2. THE TABLES W/\(/ AND FIBONACCI DIFFERENCES

We now fix &/ > 2 and fix k such that 0 < k < N and consider the set of k + 7°! canonical representations. For
each/=1,2 -, N —klet { 11}1—7 be the sequence generated by listing in increasing order those positive inte-
gers having & + 1°¢ anonlcal representatlons with Iowerdegree congruent to/ modulo A, and denote the (A — k/-
rowed infinite matrix ((a /) by WN W2 and W3 have been discussed by Carlitz, Scoville and Hoggatt [1, 3].

The following theorem |s an immediate consequence of the lexicographic property of the k + 7°¥ canonical
representation.

Theorem 2.1. ifthe k+ 1°T canonical Fibonacci representation of arder nfa/;/- is

k
E kaN,p'

then fora lt is

2 N i i=223 - N-k.

The k + 71°% canonical Fibonacci representation of order V for ak

by and the first canonical representation for
have identical coefficient sequences {k [

Corollary Each matnx WN has the following properties:

(1) Every entry of WN is a positive mteger and every positive integer occurs exactly once as an entry of WN

(2) Every row and every column of WN is increasing,

(3) Fork- 1,2 - — 1, for any//</V k and for any p,q, a -,q if and only ifa,?p <

@) a,+7 Zalfor/ 1,2 -, N— k—7

otatement {4) makes use of the property FN/+7 2"://\(/,/" /=1 2 --,verified in the proof of Theorem 1.1.
Another useful corollary is the following.

0
ajq and
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Corollary. Letn be apositive integer. Then if the / th canonical representation of n is
N-1
EkaN,p .
the k+ 7°% canonical representation of a; % is
> ko R piv1e i=1,2 - N—k k=01, N-1.

Proof By Theorem 2.1, the first canonical representations of a, , and the N canonical representation of
alyn have identical coefficient sets. But by statements (1) and (2) of the preceding corollary and the fact that

Wﬁ " has just one row, we see that a, n =n for every positive integer n. Thus if the N ganonical representa-

tion of nn is "
-1
Z kp FN,p ’
the first canonical representation of 3?/1 is
: 0
Z kp FN,p
and so by Theorem 2.1 the k + 7! canonical representation of al,(n is
k
Z kPFN,p

and that of a,(fn S
k
2 ko FNprieg -
Given an N-tuple (ay, a2, -, an/ and given an integer k = 7, 2, -, N — 1, we define an (V — k/)-tuple called
the k" Fibonacci difference of (a; as, -, anJ) by
d)k(a;, az; -, an)="(by, ba, -, by-k)
with
bj = aj+k — Z aj+j, i=12-,N-k.

Then we can prove the following theorem.

Theorem 2.2. Foreach NV > 2 and foreach k=12 -,N—1 every column of W,’f, is the k™ Fibonacci
dn‘ference of its corresponding column in WN Thus the tables of k™ Fibonacci differences of the columns of
WN enjoy all of the properties listed in the first corollary to the preceding theorem.

Proof. By Theorem 2.1 we have

Kk _ k
aj _ZkPFN,pH—-I'

2 ko i

is the k + 7% canonical representation ofa/;j. But

where

k—1

K _
FNpi-1 = FNp+itk-1- > Fuptitr-1
r=0

which gives
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k—1
k _ -~
aj = Z kp FN,pitk-1— Z L kp FNptitr-1 -
P =0 p

Again using Theorem 2.1 we obtain

iy = Ak~ Z ajjer

which is the j; entry of the table of k" Flbonacm differences of the columns of WN

In Figure 2.1 we show a portion of W4 with its accompanying tables of Fibonacci differences. One can see
that the properties of the Flbonacm differences given in Theorem 2.2 suffice to determine the table of WN if it
is also required that the rows of WN be increasing sequences forming a disjoint partition of the positive integers.
If one tries the same thing for ordinary differences for / = 3, the result is shown in Fig. 2.2, wherein dupli—
cations occur in the third and fifth, fourth and seventh and fifth and ninth columns (as far as the table goes).

3 5 7 9| N 13 15 16 18 20
6 10 14 |17 21 25 29 31 35 39
121 19| 27 | 33| 41 | 48 56 60 68 75
23 | 37| 52 | 64| 79 | 93 108 | 116 131 145

5 7 8| 10 12 14 15 17 19
9| 13 16| 20 | 28 27 29 33 36
" 181 25 | 31| 38 | 45 52 56 63 70

BN =]~ =

—_
w
ES

6 | 7| 91| 10 | 12 ] 13 15 | 16
5 gl 11| 14| 171 20 23 25 |* 28 31

i 2l 3] sl s s 7 8] 9] 0]

Fig. 2.1 A Portion of Wg and Accompanying Fibonacci Difference Tables

|1357310121415]

2| 6| 9|13 () 18| (B ® @))
4| |08y 23] 29)] s | 41| e8| 52

1 3 4 6 8 9 " 12 14

2 5 7010 | 183 | 15 | 18| 20| 23

j’yTz] 5T 2] 5 6| 7] 8] 9|

Fig. 2.2 Counter-Example to Theorem 2.2 for Ordinary Differences (V = 3)

Our next theorem gives the generalization of the procedure used in [1, 2] to define Wg and Wg.
Theorem 2.3. foreach N =2 and each k= 0,7,-, N — 2,
ak = 1+a’;ag, i= 12 N=k-1.



66 ON THE /. CANONICAL FIBONACCI REPRESENTATIONS OF ORDER /V [FEB.

We note that the information in this theorem is sufficient for the construction of W,‘\J,in the sense of [1, 3],
but not for the construction of W,/f,, unless Wﬁ, has already been constructed.

kao can be obtained through the second corollary to Theorem 2.1 as follows.
e

Proof. Arepresentation for a
7
i

Let a,ﬁ,jhave k + 7°T canonical representation

Z kp F/I\(I,p /

which therefore has lower degree congruent to/ + 7 modulo /. Then by Theorem 2.1 the first canonical repre-

. 0 -

sentation fora?; is
L] k FU

Z P N,p-1-

Since F,\A,/"p7+7 = F,?,,p for all p,
N-1
ZkPFN,p

is a canonical representation for a,-o- by {F%'/’} which, however, is not ¥ ¥ canonical because it has lower de-

gree congruent to /+ 7 modulo /. By Theorem 1.3 the N canonical representation now follows by reduction.

Let the lower degree of
S ko R
P N,p

be mN +/ + 1. Then by the nature of the reduction process we know that the N canonical representation of
a,-ojis given by
Lo S v -~ N-1
T PNyt 2 Fugnet z koFnp -
p=1 q=0 r=i+2 p>mN+i+1
By the second corollary to Theorem 2.1 we have that the & + 75 canonical representation of a¥ 08
1,a;;
i m1 N . "’
TR o
Z FN,p * o Z FN,qN+r+ Z kp FN,p .
p=1 q=0 r=i+2 p>mN+i+1
Now since B
LkpFip
isak + 75 canonical representation of lower degree congruent to/ + 7 modulo // and with / + 7 among the resi- _
dues 0. 1. -, N — k we must have / </V — k and therefore

i
kK _ rk

2 FNp = FRwr—1

p=1

by what has been shown in the proof of Theorem 1.1. Thus if 1 is added to the k + 757 canonical representation
of ak o the terms produced by the reduction process exactly recombine to yield the expression

A8jj
K
2 koFhp.
)

and hence

k = k
a;. ;= 1+a .
i+1, 0
/ lajj

Our last theorem provides a generating function for the sequences {F,/\(, i}-

Theorem 2.4. Letabe a (positive) root of
[Continued on page 34.]
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Good [3] showed that

) o3 251 sy
m=0 F2m F2/‘I

The problem of summing this for 7 — = was posed by Millin [8]. The bibliography at the end of this paper gives
an idea of what has been done with such series and their extensions. A common thread may be found among
many of these studies: explicit or implicit use is made of an interesting partition of the natural numbers. Qur
object here will be to discuss this partition and generalize it, as well as show other uses. Qur main results are
some series rearrangement formulas that are related to multi-sections but differ and do not seem to appearin
the literature.

Qur first observation is that the set {(2k + 7)2" |k > 0, n > 0 }is identical to the set of all natural numbers.
Holding either k or n fixed and letting the other variable assume all non-negative integers, we find that the nat-
ural numbers are generated as the union of countably many disjoint subsets of the naturals. Pictorially, every
natural number appears once and only once in the array:

1 3 5 7 9 11 13 15 17 19
2 6 10 14 18 22 26
4 12 20 28 36

8 24 40
16 48
32 96

This seems to be common knowledge in the mathematical community, but its use in forming interesting series
rearrangements does not seem to he widely known or appreciated. The rearrangement theorem is as follows:

(2) 3 fn) = 2,3 f2k+1)2")
n=1 k=0 n=0

for an arbitrary function 7 provided only that the series on the left converges absolutely so that it can be re-
arranged at will. For a convergent series of positive terms, of course, the formula always holds. The theorem is
used by Greig [4] to obtain the transformation

~ 1 - gL I EN
(3) Z 7 PR P R A
n=1 k=1
k odd
where
(1+Fr1)/Fk foreven k,
(4) Ck =

(74 Fyeg)/Fie + 2/F o forodd k.

The numbers Cg arose in his proof that (1) generalizes to
67
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F n
(5) L =g k21 kn > 1,

but he did not make explicit use of (2) in determining (5), the numbers Cy being introduced in the course of
an inductive proof.

On the other hand, according to Hoggatt and Bicknell [5, p. 275, Method X], Carlitz used what is essentially
(2) to sum (1) whenn — . To make this as clear as possible, we rephrase the argument as follows: With g, &
the roots of 22— z— 7= 0, so that ab = — 1, and a — b = </5, then the Binet formula is £, = (a” — b" )/(a — b),
and so

N
3 *‘
3
I
-
Qu
N
>
|
S3
N
3
1
-
=
i
Q

= (a—b) i i go(2k+1)2" _ i g 2k1
=0

and the double series can be summed by using (2), so that the result follows since everything is then known by
simple geometric sums.
If we apply the same argument to the Lucas numbers, recalling that £,, =a” + 5", we find that
I I Kk -(2k+1)2"
(6) ZL,——;—Z E(‘“I}E ,
n=1 2 n=1 k=0

but the presence of the factor (— 1)k prevents us from going further as (2) cannot be applied then. Perhaps
some other result can be found using (6).

The formula
oo 2[’7
7 X = & <1
(7 n;) o T W ,
- - X

attributed by Bromwich [1, p. 24] to Augustus De Morgan follows easily out of (2): For |x| < 7,

o o o oo oo B
X _ o< un _ (2k+1)2" _ ~ 2" 2n*1
Tx X=X X =2 x0T X k)
n=1 k=0 n=0 n=0 k=0
N
o o2
= Z ,nt1
n=0 ]-x*<

and this is substantially the way that many related results can be found.

For instance, either using (7) or going back to (2) again, we may set down the hyperbolic trigonometric ana-
logue of (1) which is done for n — « in (22) below.

We come now to the generalization of (2). Going first to mod 3, we have:

(8) > fn) = s 2 Hsk+13")+ D0 S H3k+2)3"),
n=1 k=0 n=0 k=0 n=0
provided only that the series on the left converges absolutely.
The two disjoint sets

{Bk+13"\k =0 n =0} and ((3k+2)3"k >0,n >0}

form an interesting partition of the natural numbers. The two sets are easily put down in the arrays
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1 4 7 10 13 16
3 12 21 30 39 48
9 36 63 90
7
1

and
2 5 8 11 14 17
6 15 24 33 42 51
18 45 72 99

b4 135
162 405
The general case, mod m, is:
o0 m-1 00
(9) > fn) =% % 2o flmk+iim"), m > 2
= =1 k=0 n=0

provided the series on the left converges absolutely.

We should remark that when #(n) is replaced by fn)x"” we may use (9) and its special cases as a theorem on
formal power series and matters of convergence may be ignored when we use such a formula to equate coeffic-
ients in proving combinatorial formulae. Tutte [9] has given an interesting new theory of formal power series.

Formula (9) may be further generalized usefully. Itis not difficult to see that multiples of powers of m may
be removed from the set of natural numbers and we obtain the following nice result:

m-1 oo r oo o
(10) S fmk+im™) = 3 fn)— 3 fm™ ) m o> 2
i=1 k=0 n=0 n=1 n=1 r= 0,
=3 fin)-3 fm™ ), m =2
n=0 n=0 r=20

’

provided that the series converge absolutely. Notice that the series on the right may be written in an alternative
manner when 7(0) is defined as then the first terms cancel out. This allows us often to write a more elegant
formula.

We pause now to exhibit a neat application of (10) to derive a general formula found by Bruckman and Good
[2] whose argument is tantamount to formula (10) but it was not explicitly stated. We have, with f(n)=x",

m-1 oo r e r+7
Z Z Z X(mk+/)m Z Xxmon
=1 k=0 n=0 —0 n=0
so that
rom-1. n+1
1 D DD DR LD P G
T=x,_m n=0 i=1 k=0
(11)
rm=1- p n+1 -1 r m™(m-1) n
=szlm (71— xM ) :Z 1—x XM,
’ n+1
n=0 i=1

n=0 (I—an)(I -xm )

which proves the finite series resultin [2]. This formula, of course, is the extension to values other than m = 2
of De Morgan's formula (7) and in a finite setting.
We pause to exhibit a non-Fibonacci application of (10). For the Riemann Zeta function we find

§'(S):Z —7 > ————7—.——2 ~7—, s> 1,
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which simplifies to

m—1 o
(12) (7——7)§/s):2 > 1 sa,
m* i=1 k=0 (mk+i)®
or
m—1
(13) (m®—1)¢(s) = > Sls, i/m),
i=1

in terms of Hurwitz’ generalized Zeta function, which is defined by

$ls,a) = 3 N s > 1, a arbitrary,
k=0 (k+a)*

so that {(s,7) = {(s). But formula (12) or (13) is not new. It is the same result found by using ordinary multi-
section modulo m.
Ordinary multisection means the following formula:

- m e
(14) 2 ) =3 D flmk+i), m=>1,
n=1 =1 k=0

the result again being valid for absolutely convergent series on the left.
Since we are speaking of multisection, it may be worthwhile to set down the formula corresponding to (14)
for a finite series:
n-=i
m—1 [_’-n_J

n
(15) S ftk) =3 > fimk+i), — n—a+1>m=>1
k=a =0 g=[2tmetd]
m

where brackets denote the usual greatest integer function.
Finite multisection in the form (15) has always been a favorite of the author, and it has two interesting fur-
ther special cases worth setting down for reference:

mn-1 m-1 n-1

(16) S ftk) =y > fmk+i), m=1,n>1;
k=0 i=0 k=0

and
mn m n-1

(17) > k) =3 3 fimk+i), m=1n>0.
k=0 =1 k=0

It is well known that there is an analogy between the formulas for Fibonacci-Lucas numbers and trigonomet-
ric functions. To every formula involving Fibonacci and Lucas numbers there is a corresponding formula in-
volving sines and cosines. We know that this is true because of the similarities between the Binet formulas

n n
(18) Fn = 37:_—[,11—, L, = a" +5"
and the Euler formulas
ix -ix ix —ix
(19) sinx = L°2_7~——, cosx = €—~+—Ze——, iZ=_7.

The same may be said for the hyperbolic functions:

inhx = o —e” -eX+e”
(20) sinh x 5 cosh x 3

’
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and we merely cite, e.g., relations like sin 2x =2 sin x cos x, sinh 2x = 2 sinh x cosh x, F2, = £, L,, to remind
of the analogy. It is natural then to set down trigonometric analogues of formulas we have discussed above.
The case n — « of (1) was

oo

(21) S L =725 - 5381966012 -,
F, 2
n=0 2
and the hyperbolic sine analogue is

o

(22) T_ - -—2—7 = 1163953414 .
n=0 sinh2" ¢~

When n - in (5) the special case of Greig's formula is

(23) Y a2 ks

(24) > 1 -2 x> 0.
n=0 sinh27x eX—1

_Although (7) and its congeners are often listed in compendia of series, | am not aware of any ready listing for
them written in the hyperbolic form (24), not even (22).

Possibilities exist for application to number theoretic functions. Since g.c.d. (mk +i, m") =17 forall 1< i <
m — 1, we may apply (2), (8), (9), (10) to multiplicative number theoretic functions as well as completely mul-
tiplicative functions. For instance, using Euler’s ¢-function, we find from (2),

0s) Y Gy Y KUY Sy G2kt 1927 | 3 G2kt 1)
n=1

n®  n=0 k=0 (2k+1)52" =i k=0 (2k+1)2™ k=0 (2k+1)°

S Ly Ok S M2kt1) L,
n=1 2

nstl 2o (2k#1F k=0 (2k+ 1)
which | have not seen stated elsewhere. Since we can also use ordinary multisection of series we have besides

(26) YOO s el2n) S e2krn) o,
n=1 n°  n=1 (2n)° k=0 (2k+1)°

whence, upon comparing {25) and (26) we get the unusual formula

(27) f ! i P2k +1) _ f: ¢(2n) o,
nm1 20T 2o (2k+1)5 a=1 (20)°

To get these results we used ¢p(p") =p” — p"‘7 (v = any prime), and similar formulas to (25) and (27) may be
found for other multiplicative functions. A more complicated result follows with £=¢in (3) or (10).
We should note that (27) is exactly analogous to the formula

. g -
(28) -y S a- e
k=1 a " —1

k odd

Sl

n=1 4

which was found in Greig's paper [4] by an entirely analogous procedure, and which | do not believe is immed-
iately obvious.

Besides these applications it is clear that the general formulas we have given, (2), (8), (9), (10), may be applied
with success to the many generalizations of the Fibonacci-Lucas sequence that have been studied. It is hoped
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that our remarks may shed some light on the nature of the formula (1) and its analogues and why ozthers fail to
exist. For example, what can be said about {22) with sine instead of hyperbolic sine?

A final observation is that our formulas sometimes give transformed series that are very rapidly convergent.
Thus (10) gives

oo o -1 oo
(29) Yo ofn) = 2% Hizk+1)2")+ 3. #2'n),
n=1 k=0 n=0 n=1
and when we can sum the double series, we may take a very large but convenient r and expect the remaining in-
finite series to converge very rapidly. Thus, for the Fibonacci case, using Greig's formulas, we get

it r-1

30) pOA S LA e N A VS S R

nat oo ‘fontr Fapr2z a

Forr=10, 20, or 100 we could sum the first part and the remaining infinite series needs only a few terms to get
agood approximation. | suppose this is an old trick but | am not able to cite a reference. The method must have
been used before.
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A FORMULA FOR Y Fy (x)y"* AND ITS GENERALIZATION
1
TO »-BONACCI POLYNOMIALS

M. N. S. SWAMY
Sir George Williams University, Montreal, P.Q., Canada

1. INTRODUCTION

Some years ago, Carlitz [1] had asked the readers to show that

n—1

(1) S F2"R T = s
(4]

and
n-1

(2) S 127K 23027 - Lo,
-0

where £, and L, are the n™ Fibonacci and Lucas numbers. Recently, King [2] generalized these results to ob-
tain the expressions:
n—1

n-k-1 _ (Toy + 7-—7}1/’7_ Tny = Th-1
(3) Z Ty = 5
0 ye—y-—1
and
n—1 @
(4) > 2" = To27) = T,

0
where the generalized Fibonacci numbers 7, are defined by
Tn = Th-1+ Th-2, T = a To=bh.

The purpose of this article is to generalize these results to sums of the form EFk(x)y"'k, ELk(x)y"'k,
EHk(x}y"_k, where Fg(x), Lifx) and Hy(x) are, respectively, Fibonacci, Lucas and generalized Fibonacci
Polynomials, and then finally to extend these results to ~-bonacci polynomials.

2. FIBONACCI AND LUCAS POLYNOMIALS AS CGEFFICIENTS
The Fibonacci polynomials £, (x) are defined by [3]
(5) Frlx) = xFp_1(x)+ Fp_o(x)
with Fgf(x)=0, Fs(x)=1. Now consider the sum

n n
S= 5 Felbh" =y iy T XFiq )+ Fraal]y ™
7 3
n—1 n—2
- yn—7+Xyn-2+Xy—7 E Fkyn—k+y—7 Z Fkyn—k
2 1

=y axy TS = Fatx)} +y 72 (S = Fooglxly — Falx)}
Hence,
y2=xy—1)S = y™ 1 —yFhri(x) = Fnlx).
73
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1

Letting
(6) Grixy) = y"+7~—yFn+7(X)—Fn(X),
we may write S as
n
_ Gnixy)
7 s = Filey"™ = 20222 Gylxy) # 0.
) ; lxly Giley) 10xy) #
The Lucas polynomials L, (x) are defined by {3]
(8) Lolx) = xLp_q1(x)+ Ly_2(x)

with Lgfx)=2, Lilx)=x.
It may be shown by induction or otherwise that
/.n(X} = F,-,+7/X) + Fn_7(X),

Hence,
n n n n+1 n~1
> L)y ™k = > Freglely" K + > Froglxly ™ = > Frlx)y"t1k > Frelxyy "1k
7 7 7 2 0
n+i 1k n—1 1k G (,y)+ Gp1lx,y)
- E Fk(X}yn 7 +Z Fk(x)yn —F;(X)yn = Yn+7l n-114, _yn,
y ; Gilxy)
using (7) .
_ xy" T+ 2y — y {Fpuolx) # Falx)} = {Fperlx) + F,,_,(x}_}
Gy(X,y) ’
Therefore
) 5 a2t 2yl )= Lale)
1 y<—xy-—1
By letting x = 7, y = 2 in results in {7) and (9), we obtain
n
(10) > A27K = 2™ Fhug = 27-F3 Faug
and ’
n
(11) S 142K =272 s = 2" g~ L
7

which are the results of Carlitz [1]. Further, by lettingx = y = 2 in (7) we get
n

(12) S P2 K = ppp— 2" = P 27Ps
1

where P, is the n % pell number.

3. GENERALIZED FIBONACCI POLYNOMIALS AS COEFFICIENTS
Let us define the generalized Fibonacci polynomials 4, (x ) as
(13) Hn(X} = XHn—](X)'l'Hn—Z(X)

with Hofx) and H 1 (x) arbitrary. It is obvious that the polynomials £, (x) are obtained by letting Hplx) =0,
H1fx) = 1, while the Lucas polynomials £, (x) are obtained by letting Hpfx)=2and H¢(x) = 1. In fact, it can
be established that H,, (x/ is related to F,,(x) by the relation

Hplx) = Hilx)Fn(x)+ Holx)Fp_1(x).
Hence,
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n n n
> Hlby"E = Hte) T Flbdy™  # Holx) 3 Frglaly™ K

7 7 7
n(X ,V} —7-k .
Hylx) .y +Holx) Z Fry™ 175, using (7)
- Hqilx)Gp (X/V) + HO(X)Gn_7(X,y)
Grlxy)
The right-hand side may be simplified to show that
n n+1 n_ B
(14) S Hylely = MW Holaly” = yHpesb) = Hnlx)
y2—xy -1

Some special cases of interest obtainable from (14) are,

n n
ST Hielx)x"K = Hppolx) = x"Halx), > Hilx) = )% [Hoe1(x) +Hylx) = Hilx)— Hotx)],
7

> (1K H (x) = } H=1)"T {Hpiy(x) = Holx)} + {H () = Holx)}] .
7

Itshould be noted that by lettingx = 7, Hg(x) =a and Hy(x) = b in (13), we generate the generalized Fibonacci
numbers 4, defined earlier by Horadam [4]. From (14) it is seen that for these generalized Fibonacci numbers

n n+1 n
: - y—H
(15} E Hk}/n k = b,V +ay Hn+7 12 n
2
and
n
(16) > H 2™ = (2b+8)2" — Hpyg = 2" H3— Hpez

17
which are the results obtained by King [2] .

4. -BONACCI POLYNOMIALS AS COEFFICIENTS
The r-bonacci polynomials F(r)(x) have been defined by Hoggatt and Bicknell [5] as

FI ) = = F) = FlP) =0 FPo =1, A0 = x77,
and
(17) FID i) = x™TE )+ x2F ) otx) # et FI (k)

Let us now consider
n

=3 F,ir)(x)y"_‘k.
7
Denaoting for the sake of convenience
(18) Fi'tx) = Ry

we have,
/= H7yn—7+Xr—7H7yn—2+(Xr- 732+Xr—2/_—',7)yn—3+'"+(Xr—7/_?r_7 +Xr—2/qr_2+_“+xﬁ7)yn—r

n-2 n—r+7]

n
+ 30 X Ry X2 Rpeg bt R K = Ry xRy T 4 Ry
r+1

7L"""Hr-—LV

X727 2[Ry 4 Boy 24t R gy
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l

n- n=2
#xy Ry 4 x "y E X2 T Ry
r r~1
( 1) n-r+1 n-r
+ e r~ Z Ry +y E Rey"™™
2 7
Hence,
n-2
=R yn+r 1+(Xy)r 1 z Hkyn k+(Xy)/‘2 Z quy
1 7
n-r+1
“EXY Z Hkynk+z Rey"™
7
= Ry [ixy )™ +(xy)r_2+-..+{xy}+‘7]/
n
— ) By lxy)F S By
n-1
n " n
~y) L Ry T Ry
n-rt2 n-r+1
Thus,

r-1
/[yl’_z (Xy}k] - R7yn+r—1__yr—7(xr—7’qn +Xr_2/'?,-,._1 ot Rpyrir)

Vr—zf)( r—zﬁn 7LXr__3F"n—7 # ot Rppro)
v PRy +x " Boy # ot Ropes)

— = ylxRp+ Rp-y)— Ry -
Denoting now

G( (xy) = yn+r—7 (I’/](X)y _ yr~2 rZF(I/(X)+Xr—3F(f)7{X)+ +F,{,rlr+2(x)]
(19) —y 33 ) +xf-4ﬂ” (x) # e+ FIT o (x)]
meem y I F )+ FI7 )] — FI7 )

we have

n

: %« G (X )
(20) I= 3 F(x).y "k ZT_JL _

7 67 (X,,V)
The above result for r-honacci polynomials may be considered as a generalization of the result (7) for Fibonacci
polynomials.

Let us now see if we can obtain for the r-bonacci numbers [5], a result corresponding to (10) f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>