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PROPERTIES OF SOME FUNCTIONS SIMILAR TO LUCAS FUNCTIONS 

H.C. WILLI AMS 
Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2 

1. INTRODUCTION 

un = (a"~a2)/(ctf -a2) 
The ordinary Lucas functions are defined by 

(1.1) vn = tf + 4, 
where a / , a2 are the roots of 

x2 = Px- Q, 

A = (aj~a2) =P2 -4Q, andP,£? are coprime integers. These functions and their remarkable properties have 
been discussed by many authors. The best known works are those of Lucas [7] and Carmichael [3] , Lehmer 
[6] has dealt with a more general form of these functions for which P = >J~R and R,Q are coprime integers. 

Bell [1] attributed the existence of the many properties of the Lucas functions to the simplicity of the func-
tions' form. He added, "this simplicity vanishes, apparently irrevocably, when we pass beyond second order 
series." The purpose of this paper is to define a set of third order functions Wn, Vn, Un, and to show that these 
functions possess much of the "arithmetic fertility" of the Lucas functions. 

Consider first the functions vn and un, which are defined in the following manner. We let p^, p2 be the roots 
of 

.,2 
and 

2a-j = i// +U1P1, 

where s, r, v^u-j are given integers. We then put 

rx + s 

2a2 = i// + u-ip2 

4 
where 

u 

» P1 
1 92 

_ 2 
n ' 5 

/ anj 

1 an
2 

If we select values for s, r, v 1, ui s u c n that yn> un a r e both integers for all non-negative integer values of/?, 
then P = a-j + a2 and Q = a-ia2 will be integers. If we further restrict our choices of values for r,s, vu u-j such 
that (P,Q) = 1, then it can be easily shown that the resulting functions vn and un have many properties analog-
ous to those of the ordinary Lucas functions. Indeed, if we selects = L, r= 0,vi = P, ui= 1, the funct ions^ 
and vn are the functions given by (1.1). 

In this paper we shall be concerned with the third order analogues of the above functions. We let p/ , p2, ps 
be the roots of 

x 3 = 

where/; s, t, Wi, Vj, U-t 

(1.3) Wn = | 

rxz + sx + t and 3a,- = W1 + V-JPJ + Uipj (I = 1, 2, 3), 

are given integers. We define 
a" P1 p\ 
aP2 p2 pi 

n 9 
&3 P3 P3 

. Vn 
3 
5 

/ a? pf 
7 4 4 
1 a»3 P2 

- Un 
_ 3 

8 

1 P1 a? 
/ p2 0% 

7 P2 a-3 

where 
97 
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/ Pi Pi 
1 92 P$ 

,2 P3 P% 

* 0. 

\N& also putP = ai+0,2 +CL3, Q = aia2 + a2a3 + a3CLi, R = aja2aj, A =5 . 
Let /I/ be the set of positive integers. If we restrict the values of/-, s, t, Wf, Vj, U7 such that 
(1) Wn, Vn, Un are all integers for any n e/l / , 
(2) P, Q, R are integers and (P,Q,R) = 7, 
(3) there exists p, e N such that U-, = Uj+k^ (mod 3) for all i, /r e /!/, 

the functions Wn, Vn, Un have several characteristics similar to those of the Lucas functions. Functions similar 
to Wn, Vn, Un have been discussed by Williams [10] and [11, (q = 3) ] , but for these functions r = s = Q, A= I 

Conditions (1) and (2) are analogous to the two restrictions placed on the functions of (1.2). These two re-
strictions guarantee that there exists an integer m e/V such that u,=u ,+km (m°d 2) for any i, / re N; however, 
we shall see that conditions (1) and (2) do not imply (3). 

It is necessary to demonstrate what the conditions on r,s,tf W], I / / , Uj are such that (1), (2), (3) are true. 
In order to do this, we require several identities satisfied by Wn, Vn and Un. These identities, which are inde-
pendent of (1), (2), (3), are given in Section 2. 

2. IDENTITIES 

It is not difficult to see from (1.3) that 

(2.1) 3n'1Wn+pVn+p2Un) = (W1+pV1+p2U1)
n . 

where p = p/ r P2, p j . It follows that 

3Wn+m = WnWm + tVnUm + Wn Vm + trUmUn , 

(2.2) 3Vn+m = VnWm + WnVm+sVmUn+sVnUm + (rs + t)UnUm. 

3Un+m = WmUn + WnUm+VnVm+rUmVn+rUnVm + (r2+s)UnUm, 

(2.3) 

V2 Wi,+2tVmUm + trU^, 3W2m 

3V2m = (sr + t)U2
m+2sVmUm + 2VmUm, 

3U2m = V* + 2Wm Un + 2rUm Vm + (r2 + s)U2
m. 

9W3m = W3
m + tV3

m + t(r2 + 2rs + t)U3
m + 6tWm Vm Um 

+ 3trWmU2
m + 3trUm V2 + 3t(r2 + s)U2

m Vm 

(2.4) 9V3m = sV3
m + (sr+ t)(r2 + 2s)U3

m+6sWmVmUm+3VmW2
m 

+ 3(sr + t)WmU2
m + 3(t + rs)Um V% + 3(s2 + sr2 + t)U^ Vm 

9U3m = rV% + (r4 + 3r2s +s2 + 2tr)U% + 6rWm Vm Um + 3Um W% 

+ 3Wm V2
m + 3(r2 + s)Wm U2

m + 3(r2 + 2rs + t)U% Vm, 

3RmW-m = W2 + rWm Vm + (r2 + 2s)WmUm - sV2 - (rs + t)Um Vm + (s2- rt)U2 , 

(2.5) 3RmV. m = -Wm Vm - rV2, - r2Um Vm + (rs + t)U% 

3RmU-m = -WmUm + V2+ rUm Vm - sU2
m 

By using methods similar to those of Williams [12], we can show that 
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9RmWn-m 

Wn tUm 

Vn Wm+sUm sVm + (rs + t)Um 

Un Vm + rUm Wm + rVm+(r2+s)Un 

(2.6) 9RmVn~m 

9RmUn 

wm w„ 
vm vn 

Um Un 

= 
wm 

vm 

um 

tVm + nil m 

sVm + (rs + t)Um 

Wm+rVm + (r2 + s)Um 

Wm Wn 

Wm+sUm Vn 

Vn+rUm Un 

, 

(2.7) 

(2.8) 

(2.9) 

where 

Let 

27R r 

Nn 

I Vm 

I v2n 

Wn 

Un 

tUm tVm + rtUm 

sVm + (rs + t)Um 

Vm + rUm Wm+rVm + (r2 + s)Um 

27 

Wn Vn Un 

Wn+m Vn+m Un+m 

Wn+2m Vn+2m Un+2m 

Wn Wn+m Wn+2m 

l/l/n+m Wn+2m Wn+3m 

Wn+2m Wn+3m Wn+4m 

27 
Vn Vn+m Vn+2m 

Vn +m Vn +2m Vn +3m 

Vn+2m Vn+3m Vn+4m 

27 
Un Un+m Un+2m 

Un +m Un +2m Un +3m 

Un+2m Un+3m U n+4m 

RnNn 

-Rnt2Nm 

-Rn(rs + t)Nm 

-RnN2
m. 

Um 

U2m 
= (Vm+rUm)3-rUm(Vm + rUm)2-sU2JVm + rUm)-tU:

n 

m m m n _. nm m nm m nm m R 
CLi + 0.9 + CLq , Um - CLy &2 + &2 0*3 °^3 a 1 ' "n afapag - Rm. 

From (2.1) and (2.7), we have 

(2.10) 3Pm = 3Wm + rVm + (r2 + 2s)Um, 

(2.11) 9Qm = 3Wm+2rVmUm + (2r2 + 4s)UmWm-sV2
m-<sr + 3t)UmVm + (s2-2tr)U2

1 

(2.7) 27Rm = W3
m + tV% + t2U3

m - <3t + rs)Wm Vm Um + rW2
m Vm-sV2

mWm 

+ (2s + r2)Wm Um + (s2 - 2rt)Wm U2 + trV2
m Um - ts Vm U2

m . 
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€m = 

1 a? a2m 

1 a? 4m 

1 a3 a3 

w\AEm = e^,, then 
(2.14) 
and 
(2.15) 
It should be noted that 
(2.16) Em 

and 

27em = -27R2me-m = 8Nm 

36Em - A/1/2 

= P2
md2

m+ 18PmQmRm-4Q3
m- 4P3

m Rm - 27R, 

A = r2s2- J8rst + 4s3-4r3t-27t2. 
If 

- „3 F(x,y) = xd - rx y - sxy - ty , 

we see from (2.14) and (2.5), that 

RmF(Vm + rUm, Um) = F{(tU2
m - rWmUm - Wm Vm)/3, (-WmUm + V2

m + rUm Vm - sU2)/3). 

WWl, I / / , Ui are selected such that M /̂ = 3af I/7 = 3h, Uj = 3c, where a, h, c are integers and a + Pib + p7c is 
a unit of the cubic field generated by adjoining p ; to the rationals, we can obtain an infinitude of integer solu-
tions of the Diophantine equation 

F(x,y) = F(z,w). 
If we define 

then (Bell [1]) 

Zn 8 

1 91 P" 
7 92 92 
1 93 93 

pn = (Zn+2-rZn+1-sZn) + (Zn+1-rZn)p + Znp
2, 

where p = pi, p2, P3. Using this result together with (2.1), we obtain 

(2.17) 3m-7Wnm = YfJmM-T-Wf (Z2jH+2-rZ2j«+1sZvH)l>ltf-,-JVnU'n, 

3m'1vnm = ^7—-mf (z2i+i+1-rz2j+1)wrHv!
nui , 

u 

where the sum is taken over integers i, j > 0 such that 0 < / +j < m. 
Finally, it should be noted that for a fixed value of /7, each of Wn+km, Vn+^m, Un+km can be represented as 

a linear combination of the kth powers of the roots of the equation 

x3 = Pmx2-Qmx + Rm ; 

consequently, we have 
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(2-18> Wn+(k+3)m = Prn^n+(k+2)m ~ ClmWn+(k+1)m + RmWn+km , 

Vn+(k+3)m = Pm ^n+(k+2)m ~ &m Vn+(k+1)m + Rm Vn+km * 

Un+(k+3)m = PmUn+(k+2)m ~ &mUn+(k+1)m + Rm^n+km • 

The identities (2.1), (2.2), (2.6), (2.7), (2.9), (2.17), (2.18) are analogous to Lucas' important identities (7), 
(49), (51), (46), (32) and (33), (49), and (13), respectively. 

3. PRELIMINARY RESULTS 

We will now show how to obtain values forr, s, t, W1t I / ; , U7 in such a way that JV^, Vn, Un are integers for 
any n e N. We require two lemmas. 

Lemma 1. If Wn, Vn, Un are integers for all /?G/ I / ; then P, Q, R are integers and one of the following is 
true. 

(i) 3\(W1f V1fU1)
f 

(ii) 3\W1f3](Uh V1=-rU1 (mod 3), 3\ t, and 3\s 
(iii) 3\W1f3p1f V1^rU1 (mod 3), 3\t and r2+s^Q (mod 3) 
(iy) 3)(W1,3\V1,3)(U1,W1^-U1 (mod 3), 5 = 1 (mod 3), and t = -r (mod 3) 
(v) 3\W1V1UhW1^U1 (mod 3), V1^tU1 (mod 3), 3\s, 3\r, and 3J[t 

Proof. Since W2, V2, U2 are integers, it follows from (2.3) that one of the cases (i), (ii), (iii), (iv) or (v) 
must be true. In each of these cases, we see that 

r\/1 + (r2-f-2s)U7 = 0 (mod 3); 
hence, P is an integer. 

Now, from (2.18) and the fact that VQ = UQ = 0, we have 

V3 = PV2~QV1f 

U3 = PU2-QU1; 

thus, Q.V1 and QU1 are both integers. Since 9Q is an integer, we see that Q is an integer if 3jfI// or3\\J-]. If 
3\ (V'i, U1), then it is clear from (2.11) that Q is an integer. Using the equations 

V4 = PV3-QV2+ RVh U4 = PU3-QU2 + RU1 

and (2.7), we can show that R must also be an integer. 

Lemma 2. If the conditions of (i) of Lemma 1 are true, Q and R are integers. 
If the conditions of (ii) hold, Q and R are integers if and only if 9\ t 
If the conditions of (iii) hold, Q and R are integers if and only if t = r(s- 2r2) (mod 9). 
If the conditions of (iv) hold, Q and R are integers if and only if s = 1 - tr- r2 (mod 9). 
If the conditions of (v) hold, Q and R are integers if and only if s^t - 1 - tr (mod 9). 

Proof. The proof of the first statement of the lemma is clear from Eqs, (2.11) and (2.7). We show how the 
other statements can be proved by demonstrating the truth of the fourth statement. (The proofs of the others 
are similar.) 

We write 
W1 = -U-1 + 3L, V1 = 3K, 

where L /fare integers. Substituting these values for W-j and I// in (2.11), we get 

9Q = 2U2
1[1 -s-tr-r2] (mod 9), 

Hence, Q is an integer if and only if 
s = 1 - tr- r2 (mod 9). 

tIf x,y,z,-~ are rational integers, we write as usual x\y for x divides y, xj(y for x does not divide y, and (x,y,z,'~) 

for the greatest common divisor of x,y,z,-~- We also wri te yn\\x to indicate that yn\x and / J /x . 
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Assuming that Q is an integer and repeating the above method using (2.7), we get 

27R E= [-] + t2 + 2s + r2-s2 + 2rt]U3
1 (mod 27). 

Thus, 
3R = (It + r)/3 -(s- l)/3)((t + r)/3 +(s- 1)/3)U^ (mod 3). 

Since (s - 1)/3 = r(t + r)/3 and 3\rf we see that R is an integer if Q is. 
The answer to the problem of this section is given as 

Theorem 1. Wn, Vn, Un are integers for any n e N if and only if one of the following is true. 

(a) 3\(W1f V1fU-i) 
(b) 3\W1,3)(U1, V1^-rU1 (mod 3), 3\s, 9\ t 
(c) 3\W1f 3l[Ui, V1^rU1 (mod 3), 3lfs, r2 + s = 0 (mod 3), t = r(s- 2r2) (mod 9) 
(d) 3\W1f 3\!//, 3\U1f W1 = Ui (mod 3), s= 1 (mod 3), t = -r (mod 3), s= 1 - tr - r2 (mod 9) 
(e) 3)(W1V1U1,W1^U1 (mod 3), Vj=tUj (mod 3), 3\s, 3\r, 3fo s = t 2 - 7 - f r ( m o d 9 ) . 

Proof. By Lemmas 1 and 2, one of the above conditions is necessary in order for Wn, Vn, Un to be inte-
gers for any n e N. To show sufficiency of the conditions, we note that in each case W2, I/2, U2* ^ 4 R a r e 

integers. The fact that Wn, Vn, Un are integers for any n e/ l / follows by induction on (2.18). 

Corollary. Let/7 e/l/. 
If the conditions of (a) are true, 

Wn = l/^ ^ ^ = 0 (mod 3). 

If the conditions of (b) hold, 

Wn = 0, Vn = -/- / /„ (mod 3). 

If the conditions of (c) hold, 

W„ = ft l/^ = r ^ (mod 3). 

If the conditions of (d) hold, 
Wn = - ^ , !/rt = 0 (mod 3). 

If the conditions of (e) hold, 

Wn = Un, Vn = tUn (mod 3). 
Proof. These results are easily verified for/7 = 2. The results for general n e/V follow by using induction 

on (2.18). 
For the sake of brevity, we shall say that the functions Wn, Vn, Un are given by (a), (b), (c), (d), or (e) if 

W-j, V1, U1, r, s, t obey the conditions of the cases (a), (b), (c), (d), or (e) above. From this point on, we con-
sider only those functions Wn, Vn, Un which are given by one of these cases. 

4. CONGRUENCE PROPERTIES MODULO 3 

Since 3\ (Wn, Vn, Un) for Wn, Vn, Un given by (a), we will confine ourselves here to an investigation of the 
congruence properties (mod 3) of Wn, Vn, Un when they are given by (b), (c), (d) or (e). In each of these cases, 
9\ A and we let H = A/9. From the corollary to Theorem 1, we see that it is sufficient to discuss Un only. 

We define JJL to be the least positive integer such that 

Uj = Uf+kjji (mod 3) 

for all i,k e N. We further define 
B ={X1,X2,-,XlJi)l 

where Uj = UjX; (mod 3). 

Lemma 3. Forl/l/n, Vn, Un given by (b), (c), (d) or (e), juand£are determined from the following results. 
Case (i) 3^Pr. The values of id, R (mod 3),£ are functions of the values of H and Q (mod 3). These values 

(mod 3) are given in Table 1. 
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Table 1 

H 

1 
7 

-7 
-7 

0 
0 

a 
0, 7 

-7 
7 

0,-1 
P 

-P 

M 
2 
2 
4 

4, 8 
6 
3 

R 

0 
P 
P 

P(l + Q) 
P- 7 
P + 7 

B 

{1,(Q+ DP) 
{ I o} 
[1, ft -7, 0} 

{1, (Q- DP, -1, ft -7, -(Q-
{7, 7, ft -7, -7, 0} 

{I-10} 

- DP, 7, 0 } 

Case (ii). 3\P, 3\r 
In this case, [1 = 2, R =PQ(Q - 1) (mod 3), and B= {1, P + PQ.} . 

Case (iii). 3\P 
In this case, Q = -H (mod 3) and the value of R is independent of Q and H. The values of JU and/? are 

given in Table 2. 
Table 2 

H I a 

\ ° 
- 7 
- 7 

7 

0 
7 
7 

- 7 

•" l"l fi I 
- F 
F = 0 
F£0 

0 

6 
4 
8 
2 

{l F,0,F,-1,0} 
{ 1,0,-1,0} 
{1, F, -1,0,-1, -F, 1,0} 

{IF} 

Here 
F = (-Wt+sUtift 
F = (-W1 + rV1 + (tr-3-r2)U1)/3 
F = (-Wt+rVt-sUiift 

and 
F=(-W1-tV1 + (s+2)U1)/3 

Proof. ForM/n, Vn, Un given by (b), put 

Wf = 31, V1 = -rU7+3K, a = s/3, b = rt/9, A1 = L+rK + aU1fA2 = L, A3 = L + aU 1. 

Then it can be shown by substitution into (2.10), (2.11), (2.7), that 

P = A1 + A2 + A3, Q = A-jA2 + A2A3 + A3A 1+b, R = A 1A2A3 + bA 7, 

A2A3 = (A2 + A3)2>-(A2- A3)2 = (A2 + A3)
2-a2 (mod 3). 

Also, \\3)[r,H = a2-b (mod 3) and if 3\r, H = 0 (mod 3). Hence, if 3\r, 

0. = P(A,+AJ- H (mod 3) 
p =\P(Q-H)(Q + H - 1) (mod 3) when 3JfP 
h ~\(A^A,)(H - 1) (mod3) when 3\P, 

U2 = Ui(A%+Aj = UjfPQ+PH) when 3\P. 
\\3\r, 

P = 2aU1 (mod 3) 

Q = P(A2+A,)-a2 (mod 3) 

R \PQ(Q - 1) (mod 3) when 3JfP 
\-(A2+A3) (mod 3) when 3\P 

U2 = ft2+AJUi = P(Q+ 1)U1 when 3lfP . 

The proof of the lemma for Wn, Vn, Un given by (b) follows by using induction on (2.18). 

for Wn, Vn, Un given by (b), 
for Wn, Vn, Un given by (c), 
for Wn, Vn, Un given by (d), 

for Wn, Vn, Un given by (e). 



104 PROPERTIES OF SOME FUNCTIONS SIMILAR TO LUCAS FUNCTIONS [APR. 

For (c), put 

W1 = 3L, Vj = rU1+3K, a = rt/3 - 1, b = r(t - r(s - 2r2))/9, A1 = L + (a+1)U1f 

A2 = L-rK, A3 = L+2rK + aU1. 
Then 

H = a2-b, P = A1+A2 + A3, Q = A1A2 + A2A3 + A3A1+b, 

R = A1A2A3 + bA1, (A2-A3)
2 = a2, A2A3 = (A2 + A3)

2- a2 (mod 3) . 

For (d), put 
W1 = Ut+3L, I / / = 3K, a = rK, b = r(t + sr)/9, A7 = L+rK + Ur(r

2- 1)/3, 

A2 = L+sfsK+Urft -D/3, A3 = L-y/sK + Urfs-Dti. 
Then 

H = (a-P)2- b, P = A1+A2 + A3/ Q=A1A2 + A1A3 + A2A3 + b, 

R = A1A2A3-b(a+A2 + A3)f (A2- A3)
2 = a2, A2A3 = (A2 + A3)

2'-a2 (mod 3). 

For (e), put 
)/l=tUi+3K, W1 = U1+3Lf Ai = L+tK + U1(1+2t2)/3, 

A2 = L +$1K + $1U1r/3, C = L + $2K + $2U/r/3, 

where j3 7, 02 are the zeros of x2 + (t- r)x + 7. Then// = 0, P = A7 + A2 + A3. 

Q = A1A2 + A3A1 + A2A3, R = A1A2A3f (A2-A3)
2 = 0, A2A3 = (A2 + A3)

2 (mod 3). 

The remainder of the proof of this lemma for Wn, Vn, Un given by (c), (d), or (e) can now be obtained in the 
same way as that for Wn, Vn, Un given by (b). 

Corollary. tfn^N,3\Un if and only if \p\n, where \p is the least positive integer value for/7? such that 
3\ Um. From the statement of Lemma 3, it is clear that \jj = \i, ji/2 orno value for 0 exists. 

in the statement of Lemma 3, we have neglected the case for which 3\Pr, 3\d and J l / / . In this case, it can be 
shown that \x does not exist By the definition of Wn, Vn, Un, we exclude this case; hence, we may not have 
values of/; s, t, W1f V1f Uj such that 3\Pr, 3\ F, 27\ A for Wn. Vn, Un given by (b) or (c) or values of r, s, t, 
W1f V1f (//such that 3JfP,3\(F + P),27\ A \oxWn, Vn, Un given by (d). 

We have now found the conditions on r, s, t, Wj, V'7, U7 in order that the functions Wn, Vn, Un satisfy the 
requirements (1) and (3) of Section 1. We give the conditions for (P,Q,R) = 7 ((2) of Section 1) in Section 5. 

5. FURTHER RESTRICTIONS ON r, s, t,Wu V1fUt 

It is not immediately clear how to select/; s, t, W1, I/7, U1 In order that (P,Q,R) = 7. We show how such se-
lections may be made in 

Theorem 2. Let 3G = (2r2 + 6s)V1 + (2r3 + 7rs + 9t)U7. 
1. If Wn. l / „ , Un are given by (a), (P,Q,R)= / if and only if (W1f V1r Uj) = 3 and (P,G,A) = 2a3p, where 

a> 0 only if 2\(s + r)(V7 + Ui) and (3 > 0 only if none of the following is true. 
(i) 3\r and Wr f tV1 + t2U7 = 0 (mod 9) 
(ii) 3\r, s = 1 (mod 3), and Wj + tUj^Q (mod 9) 
(iii) 3\r, 3\s, and W1(W1 + rV1+U1)^{S (mod 27) 
(iv) 3jfrf s = -1 (mod 3), and0lW; . 
2. If Wn, Vn, Un are given by (b), (c), (d), or (e), then (P,Q,R) = 1 if and only if (W1f Vh U7) = 1 and 

(P,G,HJ = 2a3y, where a> 0 only \t2\(s + r)(V1 + Uj) and y> 0 only i f ^ f . 

Proof. We first prove the necessity of the conditions of the theorem. 

If/7 (£ 3) is a prime and /?l (Wh Vh Uj), then it is clear from (2.10), (2.11), and (2.7) that p\(P,Q,R). If 
9\(W1t V1f Uj), then 3\(P,QM Hence, if (P,Q,R)= I (WuV1f U7)\3. 

Now,suppose that/7 (/= 3) is a prime divisor of (PfG,A). Since 
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we have 

Since 

(5.1) 

we see that 

3W1 = -rV1-(r
2 + 2s)U1 (mod/?), 

27Q EEE (r2 + 3s)V2
1 + (2r3 + 7rs+9t)U1V1 + (r4+4sr2 + 6tr + s2)Li^ (mod/?). 

(2r3 + 7rs + 9t)2 - 4(r2 + 3s)(r4 + 4sr2 + 6tr + s2), -3A 

27'4.(r2 + 3s)Q E= 9G2 (mod/7). 

\i p\2(r
2 + 3s), then /7I Q. \ip\fr2 + 3s), then, from (5.\),pI (2r3 + 7rs +9t). As a consequence of these two 

facts, we deduce that/?I (rs + 9t) md p\(3tr - s2); thus, p\ (r4 + 4sr2 + 6tr +s2) and/?lfl. Combining (2.15) 
and (2.16), we get 

272(P2Q2+ 18PQR -4Q3- 4P3R - 27R2) = A/Vf ; 

consequently, \ip\(Q,P,A) and/? ? 3, then p\ R. Thus, if (P,Q,W = I then (P,G,A) =2*3^, ((P,G,H) = 2a31l 
U2\(P,G,A) and (P,Q,R)=1, then 2J{Q. Q is odd if and only if (s + qHV^U-j) is. If 3\(P,G,A) (or3\(P,G,H)) 
and (P,Q.,R) = 7, then 3\(Q.,R). We will show the conditions under which 3y(Q,R) for part 1 of the theorem 
only. The conditions for part 2 are quite easy to obtain from results used in the proof of Lemma 3. 

Since 3\P and 3\A, we have 
rVj/3 = -(r2 + 2s)(J7/3 (mod 3) and r2s2 + s = rt (mod 3). 

We now deal with four cases. 
(i) 3\r. I f j l / - , then J l * and J l f l . Hence 3\(Q,R) if and only if 3\W1/3 + tV-,/3 + t2U1/3 J 
(ii) 3\r,*=\ (mod 3). Here we have 9\ I / ; and tr =-\ (mod 3); t h u s , * 2 - 2tr = 0 (mod 3) and 3\Q. Hence, 

JJYfl,/^ if and only if 3Jf(W1/3 + tUj/3). 
(iii) 3]frr 3\s. We must have 3\t and 3\Q. f7?,£j is not divisible by 3If and only M9](W1(W1/3 + rV 7/3 + U-j/3). 
(iv) 3)(r,$=-\ (mod 3). Once more, we get 3\t Also ( / / = - 1 / 7 (mod 9); hence 310. j j Y / ? , ^ if and only if 

WN^/3. 
We now show the sufficiency of the conditions. Let/7 (£ 3) be a prime such p\(P, (2, R) and /7J7 A . Put 

T = I// -/• rU-j. Since/7l£/ and/7 j 'A , we must h ave /71 /I/ / and 

3W1 

rT2U-i (5.2) 

Also 

hence, 

(5.3) 

\ip\Uj, then/7ll/7 and /? ! ^ . Suppose/?^7;then 

sTUj-W] = 0 (mod/?). 

rT-2sU1 (mod/?) and /?l^7^2/ 

T2(-r2-3s) + U1T(-sr-9t) + U2
1(-s

2 + 3tr) = 0 (mod/?). 

-9t- rs 
-s 

-3s - /^ 
- r 

- 3 f - ry | 3 / T - ^ -9t-rs -3s - r* 

Evaluating the determinants, we have 

TU", 
-3rt-sz 

-t 
0 

-3s - r 
-r 

-9t - rs -3s-
= 0 (mod/?). 

-3ATU'!1 + rA 0 (mod/?) 

and, consequently, T^3~1rUi (mod /?). Putting this result into (5.2) and (5.3), we get r2 +3$ = Q (mod/7) 
Bnti2r3 + 9sr + 27t = 0 (mod/7). By (5.1)/?lA, this is a contradiction; thus p\(Wj, I/7, ^7 / . 

If 3\(P,Q,R) and J^A, then W^, l/^, Un are given by (a) and we discuss two cases. If 3\r, then 3ifs and from 
(2.10), we must have 9\U7. Using these results in (2.11) and (2.7), we see that 0l I/7 and9\W1. If 3][r, we ob-
tain from (2.10) the fact that 

I/7/3 = -r(l + 2s)U7/3 (mod 3). 
Putting this result into (2.11), we deduce 

(-s-s2+tr)(U1/3)2 E= 0 (mod 3). 
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Since 3JfAf 3\U1/3 and 3\ V1/3/ from (2.7), we have 3\Wj/3. 
if/? (£ 3) is a prime andp\(P,Q,R,A), then 

4-27(r2 + 2s)Q = 9G2 (mod/?) 

and/?l£ I fp =2, then 2\(P,G,A) and we have 2\ (s + r)(U / + Vj). 
If J I ^ ^ A J a n d ^ , Vn, Un are given by (a), it follows from (2.10) that 

rV!/3 + (r2 + 2s)U7/3 = 0 (mod 3). 
Hence, 

G = 2r(rV1/3 + (r2 + 2s)U1/3) + 3rsU1/3+9W1/3 + 6sV1/3 = 0 (mod 3) 

and 3\(P,G,A). By the reasoning given above, one of (i), (ii), (iii), or (iv) must be true. If Wn, Vn, Un are given 
by (b), (c), (d), or (e), then by Lemma 3, 3\ H, and we have 

-4-27.(r2 + 2s)Q = 9G2 (mod 27); 

hence, 3\(P,G,H) and 3\F. 
The values of a, j3, 7 in Theorem 2 can be bounded. We give these bounds in 

Lemma 4. \\(P,Q,R)= 7, then a< 3, 0 < 4, and 7 < 6. 

P r o o f . \\8\(P,G,M, then 
-12(r2 + 3s)Q = 9G2 (mod 8 ) . 

Since ^jY/*2-*-^, we have^lC and it follows that-?!/?. 

3W1/3 + rV1/3 + (r2 + 2s)U7/3 = 0 (mod 81) 
and 

3Q = -[(r2 + 3s)(V1/3)2 + (2r3+7rs+9t)(U1/3)(V1/3) + 3(s2-2rt)(U1/3)2] (mod 243). 

If 27\(r2 + 3$), then 9\d \\ 27\(r2 + 3$), we have 3\r, 3\s and (r/3)2 + (s/3) = 0 (mod 3), Since 81\A, we also 
have r/3 = t (mod 3). Since 

-3Q = (7rs + 9t)(U1/3)(V1/3) + (6rt + s2)(U1/3)2 (mod 27) 

and 7rs+9t = 6tr + s2 = Q (mod 27), it follows that9\Q. From the facts that9\Q, 81\A, 27\NV and 

E1 = A(N1/27)2
f 

we see that J I/?. 
I f 7 > 6 , then J 5 I - J A and 

-4»27(r2 + 3s)Q^9G2 (mod 3*) ; 

hence, 35\(r2 + 3s)Q. It is not difficult to show that 9\Q. Since 3\N] and 3 5 lA , we have 310\AN2, and conse-
quently, j l /7. 

6. PROPERTIES OF M^, ! / „ , { / „ 
In the following sections, we will be demonstrating several divisibility properties of the Wn, Vn, Un func-

tions. Most of these results depend upon 

Theorem 3. . \i n e N, (Wn, Vn, Un)\l 

Proof. Suppose p it 3) is a prime such that p\(W2, V2, U2). From (2.10), (2.11), (2.7), it is clear that 
p\P2, p\G2f p\ R. Since P2 = P2 - 2Q and Q2= Q2- 2RPf we havepI(P,CL,R), which is impossible by defini-
tion of Wn. Vn, Un. \i9\(W2, V2, U2), then 3\R, 3\P2, 9\Q2; hence, 3\(P,d,R). The theorem is true for/7 = 7, 
2. 

Suppose n > 2 is the least positive integer such that/?l(Wn, Vn, Un), where/? (£ 3) is a prime. Since P\R, by 
(2.18), it follows that 

/W„_ 7 = flM^, ^ ^ - 7 - QVn-2,PUn-1 = 0</„-2 (mod/?). 

If/?!/*, then /?^0; hence, / ? l ^ _ 2 , I//7-2, ^ - 2 > l which is impossible by the definition of n. If /?!#, then 
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p\(l/l/n-.j, I /V7, Un-ll which is also impossible. This enables us to write 

Wn^ ^P~1QWn-2, V„-1 ^P-1aVn_2, Un-, ^p-1QUn„2 (mod/7), 
where P~ Q=£ 0 (mod p). From (2.2), we see that 

Wn =p-1QWn-1f Vn ^P~1QVn-1f Un ^P'1QUn.7 (mod/?) 

and consequently pI(Wn„1f Vn„i, Un-i), which is impossible. 
Supposes > 2 is the least positive integer such that 9\(Wn, Vn, Un). From (2.2), it is evident that 

3\(Wn+1,Vn+1,Un+1L 

If \p has the same meaning as that assigned to it in the corollary of Lemma 3, we have 1//I/7 and \p\n + 7; that is, 
1// = 1. Since 3\Wn-3 and 3\R, we have 

PWn-t/3) = Q(Wn.2/3) (mod 3) 
and similar results for ! / „ _ / and Un-j. By reasoning similar to that above, we obtain the result that 

3\(Wn^/3, \/n„7/3,Un-i/3), 
which cannot be. 

Corollary. If n e/V, (Un, Vn, R)\3. 

Proof. If/7 ^ 3 ) is aprime and/?!^^, Vn,R), then p\Wn, which contradicts the theorem. \\9\(Un, Vn,R), 
then by (2.7), 81\W% and 9\Wn, which is also a contradiction. 

We have, with the aid of Theorem 3 and Lemma 3, completely characterized all the divisors of (Wn, Vn, Un). 
We will now begin to develop some results concerning Dn = (Vn, Un). It will be seen that the divisibility prop-
erties of Dn are similar to those of Lucas' un (Carmichael's Dn ). In fact, we have analogues of Carmichael's 
theorems I, I I , I I I , IV, VI, X, XII, XII I , XVII (corollary), in Theorem 3 (corollary), Theorem 3, Lemma 3, 
Theorem 4, Theorem 5 (corollary), Theorem 7, Theorem 8, Theorem 8 (corollary), Theorem 7 (corollary), re-
spectively. We also have the analogues of Corollaries I and II of Carmichael's Theorem VIII as a consequence of 
Theorem 5 and a result of Ward [9 ] . 

Theorem 4. If/7, k^N and m\Dn, then m\Dkn. 

Proof. This theorem is true for k= 1. Suppose it is true for k = j. 

Since 
3V(j+1)n = VnWjn + WnVjn+sVjnUn+sVhUjn + (rs + t)UnUjn 

and 
3U(j+1)n = WjnUn + UjnWn + VnVjn+rUjnVn+rUnVjn + (r2+s)UnUjn, 

we have m\D(j+i)m, when 3\m. If 3\m, then 3\Wn and 3\Wjn; hence, 3m\3V(j+1}n, 3m\3U(j+i)n and 
m\D(j+um. The theorem is true by induction. 

Let DQJ be the first term of the sequence 

in which m occurs as a factor. We call co = co (m) the rank of apparition ofn. 

Theorem 5. If n e N and m is a divisor of Dn, then GO (m)\n. 

Proof. Suppose ojh; then n-koo-+j(0 <j <co). From (2.2) 

3Vn = VjWkoj+WjV^ +sVjUk0> +sVkuUj + (rs + t)Uk0,Ujt 

3Un = UjWk0J +WjUk0}+VjVku +rUkcjVj + rUjUk03+(r2 + s)Uk0jUj. 

\i3\m,m\(VjWkLO/ UjWk0j). Sincem\Dk0j, (m, Wkc0) = 1 and mlDj. 
If 3\m, then 3\Wk(j0 and 3\Wn. If \p is the rank of apparition of 3, we know that \p\n and \p\koo; hence, 

\jj\j and 3\(\Njf Vjf Uj). We now have 3m\(VjWk0J, UjWk0j I If 3\\m, then (m/3, Wk0J ) = 7, m/3\(Vjf Uj), 
3\(Vj, Uj) and consequently m I Dj. U3a\\m anda> /, then 3\\l/\/kCo and m\Dj. 
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IfoJjfn , we can f ind / < GO such that m\Dj. This contradicts the definition of co. 

Corollary. \tn,meN, then D(mn) = (Dm, Dn). 

Proof. This result follows from the theorem and a result of Ward [9 ] . 

Corollary. If m,n are integers and (m,n) = 1, co(mn) is the least common multiple of co(m) and oj(n). 

7. THE LAWS OF REPETITION AND APPARITION 

We have defined the rank of apparition of an integer m without having shown whether it exists or, if it does 
exist, what its value is. We give in this section those values of/7? for which co exists and we partially answer the 
question of the value of co for these m values. The Law of Repetition describes how co (pn) (p a prime) may be 
determined once co(p) is known. In order to prove the Law of Repetition, we must first give a few preliminary 
results. 

Lemma 5 Suppose 3\R and 3\Dm; then 3\(Pm, Qm) if and only \f9\D3m. \i3J(Af then 3\(Pm, Qm) if 
and only if 9\Dm. 

Proof. \19\Dk, then 3\Wk and 3\(Pk. Qk). If A = r
2s2+s- tr^Q (mod 3) and 3\(Pm, Qm), then 

r(Vm/3) + (r2 + 2s)(Um/3) = 0 (mod 3) 
and 

-s(Vm/3)2 -sr(Um/3)(Vm/3) + (s2 - 2tr)(Um/3)2 s= 0 (mod 3 ) . 

If 3\r, then 3\s; hence, \i3\Um/3, 9\Dm. If 3\r, then (Vm/3) = -r(r2' + 2s)Um/3 (mod 3); thus, 

-A(Um/3)2 = 0 (mod 3) 
and ̂ IZ?™. 

If 9\D3m, we have 3\P3m and J lQj A n . Now 

P3m = Pm-3amPm+3Rm, 

Q3m = Qm~ 3RmPm dm + 3Rm ; 

consequently,3\(Pm, Qm). \i3\(Pm, Qm), then since 

VSm/3 = Pm V2m/3 - Qm Vm/3 = 0 (mod 3) 
and 

U3m/3 = PmU2m/3-QmUm/3 = 0 (mod 3), 
we have^lZ?^. 

Lemma 6. Suppose 5^/?, 3\Dm, and 3\A. \^3\Pmf9\D2m if ar|d only if one of the following is true. 
(i) 3\s, 3\ t, 3\rf Wm = Um4U (mod 9), and 9\ Vm . 
(ii) $ = 1 (mod 3), f = - r ^ 0 (mod 3), Wm = -Um£Q (mod 9) and Vm=rUm (mod 9). 

(iii) s = - 1 (mod 3), 3\ tf 3\r, and Wm = -rVm + Um £0 (mod 9). 
Proof Since 3J/Pm and 3\ A , it is clear that 3\r. 

We show the necessity of one of (i), (ii), or (iii). If 9\D2m, then 

(sr + t)(Um/3)2 + 2s(Vm/3)(Um/3) + 2(Vm/3)(Wm/3) = 0 (mod 3) 
and 

(Vm/3)2 + 2(Wm/3)(Um/3) + 2r(Um/3)(Vm/3) + (r2 + s)(Um/3) = 0 (mod 3). 

\\9\Um, then 9\Vm and 3\Pm, which is impossible. If 9\Vm, then 5 l fo + t) and (r2 + s)Um = Wm (mod 9). 
Now since 5JY* * U we have 5b - 7 or 5 k If 5lfr - 1), then 5l fr2 + 2s) and 5l/>m, If 3\s, then 5lf 
and M ^ = Um ^ 0 (mod 9). 

If 9]fUm and SfV m , then 

Wm-(sr+t)Vm+sUm = 0 (mod 9) 
Wm+rVm-(1 + r2 + s)Um = 0 (mod 9) 
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and 
r(s + 1)2Vm = -(s + 1)Um (mod 9). 

If 3\s, rVm = -Um (mod 9) and 3\Pm. If s = 1 (mod 3), then t = -r (mod 3), rVm s Um ^ 0 (mod 9) 
and Wm =-Um (mod 9). If $==-1 (mod 3), then 3\t, andWm=-rVm + Um (mod 9). 

It is clear that any one of the conditions (i), (ii), or (iii) is sufficient tor 9\D2m • 

Theorem 6. If 3}% \p is the rank of apparition of 3, mol9)(D$, then the rank of apparition of 9 is o\p, 
where the value of a is given below. 

I. 3]fA. 
In this case, Wn, ]/n, Un are given by (a) and the value of a is a function of the values (modulo 3) of N i/27, 

A, P, Q. The values of o are given in Table 3. 
Table 3 

N1/27 

0 
±1 
±1 
±1 
±1 

A 

±1 
-7 
- 7 
-7 

P 
P 
±1 
±1 
0 
P 

a 
a 

±1 
0 

a 
a 

o 

2 
4 
8 
8 

13 

II. J l A . 
Here o= 2 if 3JfP$ and one of the following is true. 

(i) 3\s, 3\tf 3\r, W$ = U^j £ 0 (mod 9) and 9\ Vty; 

(ii) s = l (mod 3), t = -r£0 (mod 3), Wty = - £ / ^ ^ 0 (mod 9), and V^^rU^ (mod 9); 

(iii) S H E - 1 (mod 2), 3\t,3](r, and !/l/$ =-rV$ +Uxp £ 0 (mod 9). 

o = 3 if 3\Pxjj. 
o = 6 if 3)(P$ and none of (i), (ii), (iii) is true. 

Proof, Since 3\D$, we have 27\N$ ; hence 

E^j = A(N^/27)2. 
\\3\A, 

P\IJR\IJ = QxjjfQipP^- V (mod 3). 

If j l / ^ t h e n j l f l , / , and 91(1/3$, U3xJj), If 3 j ^ , then 

Ry\t = P$CL$(Q.$- V (mod 3); 
thus, Q^ = - 1 (mod 3) and R$ = -P$ (mod 3). Since 

P2\jj = p l -2Q$ ^0 and Q2]jj = d \ - 2R$P$ = 0 (mod 3), 
it follows from Lemma 5 that 91%^ and 9\D3$. From Lemma 6, we see that#lz?2i// if and only if one of (i), 
(ii) or (iii) is true. 

I f J^A and 8l\N1t then 3\EU3\(P2, Q2) and o=2. 
If A = - 1 (mod3)and#7l/l/7, then 

/V? = P2Q2-Q+ 7 (mod 3). 

Using the formulas 
P2k = P2 ~ 2Qk and Q2k = Q2

k - 2PkRk, 

we see that if 3\P, then Q = \ (mod 3) and P2 = Q2^ 1 (mod 3), £4 =/>4 = - 1 (mod 3), Q8 = Ps = 0 (mod 3); 
consequently, a= 8. The remaining results for this case are proved in the same way. 

If A = 1 (mod 3) and ^JTI / / , then 
PR = P2d2-d- 1 (mod 3). 
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Using the formulas 
Pn+3 = PPn+2-QPn+l+RPn 

Qn+3 = QQn+2-PRQn+1 + R2CLn, 

we see that if 3\P, then Q = - 1 (mod 3) and P13 = Q13 ssiMmod 3). If 3\Pr then R' =-P(Q2 - Q - 1) 

and/7
/ :?EE Q13 = 0 (mod 3). 

Theorem 7. (Law of Repetition). Let p be a prime. If, for X > 0, p x ? 3, 2 and p X\\Dm, then 

pa+K\\DmVpa, where (v,p) = I 

mVp& 

3a+1\D ^ / and 9][DmVl if T\V. 

If px = 2 and v is odd,/?"*rl D <m6 4\DmV. If/?A = 3 and 3\R, then 

Here 
r = o/(m/^Jf o), 

where i//, a have the meanings assigned to them in Theorem 6. If 3\R, then 3\\Dn for any n e/1/. 

Proof. Since/7 is a divisor oip!/[i!j!(p - i-j)!] when i,j^ 0,p, we have (from (2.17)) 

3p~1Vmp =pW%;1Vm ( m o d / * 2 ) 

5 p " 7 ^ p ^pW^1Um (modpx+2) 

if Z?^^ or if/7 - ^ and X > 1. if/? M thenp\Wn]hence/?^ ; I IDm p. By induct ionp^l lZ? a. If 
/77p 

/ + a + / | 0 . „ - t h e n PX+a+1\(D a,D a+1) = D a , ' wjUp » mp jU mp mp 

which is impossible. If/7 = 2 and X = 7, ̂ 1/2/77 = ^ 2 m = 0 (mocS 4);hence, 2 |Z? a a n d ^ Z ? ^ , 

If JxIIZ7m andX> 1, then j l M ^ , and 3X > \ + 4, 2\ + 2 > \ + 4. Using the triplication formulas (2.4), we have 

3x+3\9V3m and 3x+3\9U3m 

ox3x+1\D3m. Also 
W3m = 3VmWm (moo\3x+4) 

9U3m =3UmW2
m (moo\3x+4) . 

Since 9\Wm, 

3x+2\D3m and 3X+1\\D3m. 

\i3\\Dm, then \jj\m and^lz?^ if and only if cn//l/7. Since o\p\mr, we have9\DmT and 30L+1\D a_i. \\r\v, 
then en// jfy/77 and 9\DVm . m 

U3\R and #!/?„, then 8l\W3ot9\Wn, which is impossible. 
The Law of Apparition gives those primes for which the rank of apparition exists and also gives us some in-

formation concerning the value of the rank of apparition. We first define an auxiliary function yn. 

If p is a prime such that/7^/1/7/?. w e riefine the function yn to be the Lucas function un of (1.1), where 
a-j + a2=g (modp),a7a2^h3 (mod/?), and 

h = r2 + 3s, g = 2r3 + 9rs + 271 

Theorem 8. (Law of Apparition). If/? is a prime such that/7^/?, then OJ, the rank of apparition of/7, ex-
ists. If/? =3, then co = \p. Supposep\3R; then co(p)\<&(p), where the value of # is given below. 

We let/? =q (mod 3), where \q\ = 1. 
\ip)(&N1md(&\p) = -1, then fa- 7)ifo) and <5>(p)=p2- I 

IfpfA/l/f/? and (A\p) = +1, then $>(p)=p - 7, w h e n / ^ - ^ / j ^ O (modp);&(p) = p2 + p + 1, when 
/fo-<7//?^0(modp). 

l f /7/A/ l / / , fAl/?J=+1fand/?to, then/7 = 1 (mod 3) and <&(p)=p - 1,when (g\p)3= 1;®(p) = p2 + p + 1, 
when (g\p)3^ 1. 
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I f^Aand/? ! / ! / ; , then^(p) = p - 1. 
If/? = 2 and/? I A , then $(p) = 4. 
Up f^ZplA and/?j7l/7/ then/?lco and $(p) = pip - 11 
\\p£2,p\A and p\N1f then $(p) = p, when/?!(?; <£//7J = p - 1, whence?. 

Proof. These results may be deduced without much difficulty from (2.15) and results of Engstrom [5 ] , 
Ward [8 ] , and Cailler [2 ] . (See also Duparc [4].) 

Corollary. If we define $ (pn) = pn'1^ (p) for/7 ?3,$ (32) = o\p, <$>(3n) = 3n~2<$>(32), and $ (mn) to 
be the least common multiple of $ (m) and $(n), when (m,n) = 1, then oj(m)\<§(m). 

If/7 is of the form 3k + 1 andp^A/V7R, we can sharpen some of the results in the Law of Apparition. 

Theorem 9. Let/7 {= 1 (mod 3)) be a prime such th at p\A N1R. If (A\p) = -1, co\(p2 - 1)/3 if and 
only \UR\p>3= 1. If (&\p) = +l mdy(p„q}/3£§ (modp), then coif/?2 +p + / ; /J if and only if (R\p)3 = I. If 
(A\p) = +1andy(p^g)/3 = Q (mod/?), col (p - 1)/3 only if (R\p)3= I 

Proof. If (A\p) = -1, then (E1\p) = - 7 and the polynomialx3 - Px2 + Qx - R factors modulo/? into the 
product of a linear and irreducible quadratic factor. Let K = GF(p ) be the splitting field for this polynomial 
modulo/7 and let the roots of 

(7.1) x3 -Px2 - Qx- R = 0 

be 9, (p, \jj in K. Then in K 

0P = 6, x = <t>p, Xp = <P, R = ^0X = 6(^+1. 

lJR(p-D/3 = 1 (mocjp) /Wehave 
(7.2) e(P-l)/3^-1)/3 = 1 a n d Q(p2-1)/3 = ^-D/3 = ^(p2-1)/3 

Sincep]fAt it follows X\\^p\D(p2_1)/3. If R(p~1)/3 £ 1 (mod 3), we cannot have (7.2). Sincep)(AN1f\\ is clear 
^tp\D(p2_1)/3. 

\UA\p) = +1 dx\&p\y(p-q)/3, the polynomial* - rx - sx - tis irreducible modulo/?;hence, the polyno-1 

mial x3- Px2 + Qx - R is irreducible modulo/?. If K= GF(p3) is the splitting field of this polynomial (modu-
lo/?^ and 9, 0, x are the roots of (7.1) in K, then 

ep = 0, ep
2 = x , d

p3 = 9, R = e1+p+p\ 

\\Rip"1)/3^\ (mod/?), 
d(p

3-1)/3 = j g n d Qp(p2+p+1)/3 = Qp2(p2+p+1)/3 = Q(p2+p+D/3; 

hencep\D(p2+p+1)/3. If R(p~1)/3 ^ (mod/?), then p\D(pHp+1)/3. 

\i(A\p) = +1 andp\y(p-q)/3, the polynomial x3- Px + Qx - R splits modulop into the product of three 
linear factors. It is not difficult to show that if p\D(p-i)/3, then R*p~''/3' = 1 (mod/?). 

We have not discussed the functions 

Bn = (Wn, Vn) and Cn = (Wn, Un) 

which are somewhat analogous in their divisibility properties to Lucas' Vn or Carmichael's Sn. The functions 
Bn and Cn behave in a rather complicated fashion and in a further paper results concerning these functions will 
be presented together with other results on the Wn, Vn, Un functions. 
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PHI AGAIN: A RELATIONSHIP BETWEEN THE GOLDEN RATIO AND 
THE LIMIT OF A RATIO OF MODI FIED BESSEL FUNCTIONS 

HARVEY J. HINDIN 
State University of New York, Empire State College-Stony Brook University, Stony Brook, New York 11790 

In his study of infinite continued fractions whose partial quotients form a general arithmetic progression, 
D. H. Lehmer derived a formula for their evaluation in terms of modified Bessel Functions [1 ] . We have 

(1) F(a,b) = a0+ — + — +- = fao, ah a2, -J, 
a1 a2 

where an = an + b. It was shown that 

(2) F(a,b) = !f^%l , 

where a = b/a and la is the modified Bessel function 

(3) '*<*> - raj^' ^Tl^W^TJ) • 
m=0 

Using (1) and (2) with ca= 2/a and b = c/2, we have 
(4) F(a,b) = lb, a + b,2a + b, - 7 = ls£l!°2± . 

luica) 
As a-> °° (a -* 0), in the limit (Theorem 5 of [1 ] ) , 

(5) Mm % - 7 - ^ = F(0,b) = [b, b, b, . » ; . 

But, for b = 1, (c = 2), F(0,1) is the positive root of the quadratic equation 

(6) 7 + I = x 
x 

which is represented by the infinite continued fraction expansion [ 1 , 1, 1, • • • ] . 
[Continued on p. 152.] 



LIMITS OF QUOTIENTS FOR THE CONVOLVED 
FIBONACCI SEQUENCE AND RELATED SEQUENCES 

GERALD E. BERGUM 
South Dakota State University, Brookings, South Dakota 57006 

and 
VERIER E. HOGGATT, JR. 

San Jose State University, San Jose, California 95192 

If [Fn}™=1 is the sequence of Fibonacci numbers defined recursively by 

F1 = I F2 = I Fn = Fn-i + Fn-2, n > 3 

then Ci(x), the generating function for the sequence {Fn}™=1, is given by 

(1) Cj(x) = (1-x-x2)'1 = £ Fi+ix! -
i=0 

Letting Cn(x) be the generating function for the Cauchy convolution product of C-j(x) with itself n times 
and FfPj be the coefficient of x1 in the n th convolution, we have 1+1 

(2) CJ*> = (l-x-x2rn = E F^W* n > 1' 
i=0 

In a personal communique, V.E. Hoggatt, Jr., pointed out that he and Marjorie Bicknell have shown that 

hn+1 (3) Mm 'J^J = a 
n -> °° r(r) 

rn 
and 

F(r) 
(4) Mm -La— = g 

F(r+1) 

where a = (1 +V5) /2 . 
An immediate consequence of (3) is 

(5) Mm - ^ - = ak-m n+l 

Fl 

while by using (4), we obtain 

Ft 
(r) 
n+k (6) Mm - j ^ - = 0. 

n+m 

The purpose of this note is to extend the results of (3) and (4) to the columns of the convolution array form-
ed by a sequence of generalized Fibonacci numbers as well as to the array generated by the numerator poly-
nomials of the generating functions for the row sequences associated with the convolution array formed by the 
given sequence of generalized Fibonacci numbers. 

The sequence { Z / ^ } ^ of generalized Fibonacci numbers defined recursively by 

H1 = I H2 = P, Hn = H^ + Hn-2, n > 3 
has generating function C^(x) given by 

113 
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(7) cyx) = £ Hi+1x'' = LULzJ^ = f ; (Fi+1 + (p- w-y. 
i=0 1-X-X2 j=0 

Using C*(x) for the Cauchy convolution product of C)(x) with itself n times and H\+\ for the coefficient of 
x' in the nth convolution, we have 

(8) W> - E »$W = ('-^^Y - E /̂V E W - ;;v 
/=0 \1-x-x ) i=o j=o 

= i{iO(p-viF(r_i+i)x'. 
i=o \ j=0 / 1=0 \ j=0 

Hence, 

J=0 

Using (5) together with the fact that (n. ) = 0 for/ > n, we have 
u (n) / /7 

j j m ^I±l - i ;m V* / ' M / 0 _ f l / c ^ / r ^ 
f/-A7 /=# 7=0 

M 
" " / ' l m ~ E (J) ̂ " ^>feVf^ = a .lim^ ^ 

so that 

(10) Jim -!±1{ = a 

and " ' 

(11) Jim 
u(n) 
ni+k k-m 

' ^ ° ° u(n) Hi+m 
a 

By (6) and an argument similar to that used in the derivation of (10), we have 

H!"> 

while 

so that 

.Mm - — ' — = 0 
' ^ ~ F(n+1) r i-n 

l_j(n+1) n+i 

(n+1) E ( j j 
thn J=0 

H(n) 

(12) .Mm — - ^ = 0 

and 
H(n+1) 

Ht 
(n) 
i+k (13) Jim - f * - = 0 . 
(n+1) Hi+m 

Let Rfn)(x) be the generating function for the sequence of elements in the nth row of the convolution array 
formed by the powers of Cffx). Then 
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(14) R*(x) = E HH+1)X'' -
i=0 

In [1] , it is shown that 

(15) R^x) = (1-x)'1 

(16) R%(x) = P(1-x)~2 

and 

U7) R.MJl^^^ n>3 
(1-x)n (1-x)n 

where N*(x) is a polynomial of degree n - 2 for/7 > 2. 
Let G*(x) be the generating function for the nth column of the left-adjusted triangular array formed by the 

coefficients of the N*(x) polynomials. In [1 ] , it is shown that 

(18) G^x) = q(x) 

(19) G$(x) = DC2(x) 
and 

(20) G*(x) = ~ ^ L 1 ^ G^M, n > 3 , 
(1-x-x2) 

where D = P — P — 7. By induction, it can be shown that 

(21) G*(x) = (E^Lzx£l^w n > 3 

which by an argument similar to that of (8) yields 

(22) G*fx) = D E ( £ (-1)] {"J2) (P~ Vn+2FW+1)x
1'. 

1=0 ' 1=0 
If we let gfr} be the coefficient of x' in G*(x) then we see that 

(23) gjl\= Fl+1 + tP-DFi 

(24) Oft = DF™ 
and 

(25) g(»> = D £ (-1)' (nJ2) (P~ J r ^ F J ^ , n > 3. 
j=0 

Following arguments similar to those given in obtaining (10) through (13), we have 
Jn) 

(26) .Mm yJ±l = a 
' ~* ~ gfn> 

Jn) 
(27) J r n ^ *^j- = ak~m 

B'i+m 

g!n} 

(28) .Mm -II—= o 
• -> °° Jn + 1) 

yi 

and 
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Jn) 
(29) Jim -^L- = 0. 
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SUMMATION OF MULTIPARAMETER HARMONIC SERIES 

B.J. CERIMELE 
Lilly Research Laboratories, Indianapolis, Indiana46206 

1. INTRODUCTION 

Consider the multiparameter alternating harmonic series denoted and defined by 
oo 

(D u(j;k1,.-,kn) = £ (-V'/tj + s;), 
i=0 

where/and the k; are positive integers, 5"̂  = ft sn = S, and 
/,mod n 

sf = [i/n]S+ J^ kt. 
t=1 

Note that the parameters kff •••, kn are successive cyclic denominator increments. In the ensuing treatment 
summation formulas for such series, to be called co-series, are developed which admit evaluation in terms of 
elementary functions. An example is included to illustrate the formulas. 

2. SUMMATION FORMULAS 

The expression of the summation formulas for the co-series (1) is based upon the following two lemmas. 

Lemma 1. 
t 1 

(2) u(j;k) = (MJG(j/k) = J xJ'1 dx/(l+xk) 

0 

= (-l)H(r/k)ln(1+x) 

-<2/k) J2 Fit*) cos ((2i+ Djit/k) - Q; (x) sin ((2i+ VjWk)]\0 , 
i=0 

[Continued on page 144.] 



FIBONACCI CONVOLUTION SEQUENCES 

V. E. HOGGATT, JR., and MARJORiE BICKN ELI-JOHNSON 
San Jose State University, San Jose, California 95129 

The! Fibonacci convolution sequences \Fn \ which arise from convolutions of the Fibonacci sequence 
{ 1 , 1, 2, 3, 5, 8, —, Fn, •••} lead to some new Fibonacci identities, limit theorems, and determinant identities. 

1. THE FIBONACCI CONVOLUTION SEQUENCES 

Let the rth Fibonacci convolution sequence be denoted \F(
n
r'\; note that F„ = Fn, the nth Fibonacci 

number. Then 

(1-D F(„V = £ Fn-ih 
i=0 

(1-2) F<„'> - £ FWFi , 
1=0 

However, there are some easier methods of calculation. 
Let the Fibonacci polynomials Fn(x) be defined by 

(1.3) Fn+2(x) = xFn+1(x) + Fn(x), Fo(x)~0, F7(x) = 1 . 

Then, since Fn(1)= Fn, the recursion relation for the Fibonacci numbers, Fn+2= Fn+i + Fn, follows immedi-
ately by taking x = I In a similar manner we may write recursion relations for {Fff^} . 

From (1.3), taking the first derivative we have 

F'n+2(x) = xF'n+1(x) + F'n(x) + Fn+1(xl 

Since F'n(1) = Fn , takingx = 1 gives us the recursion relation for \Fn j , 

(1.4) Fn+2 ~ Fn+1 + Fn +hn+1 . 

Since the generating function for the Fibonacci polynomials is 

(1.5) ^ - - = D FnMYn. 
1-xY-Y2

 n=i 

while the generating function for the Fibonacci convolution sequences is 

(r)xn (1-6) ( Z-fY' = i ^ 
\ l - x - x 2 j n=l 

it is easy to see that 

(1.7) F(
n

r} = F(
n

r)(l)/r! , 

where F„(x) is the rth derivative of the Fibonacci polynomial Fn(x). Thus we can write 
/ i o\ F(r+1) _ F(r+1) , F(r+1) F(r) 
(1.8) hn+2 ~ hn+1 +hn +rn+1 , 
which enables us to make the following table with a minimum of effort 

We can extend our sequences for negative subscripts to write 
(1.9) F[rJ= (-Vn+1F(

n
r), 

-n 

117 
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n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

1 

] 

2 

3 

5 

8 

13 

21 

34 

55 

F(1) 
' n 

0 

0 
1 

2 

5 

10 

20 

38 

71 

130 

235 

0 

0 

0 

1 

3 
9 

22 

51 

111 

233 

474 

F(3) rn 

0 

0 

0 

0 

1 

| 4 

14 

105 

256 

594 

F(4) rn 

0 

0 

0 

0 

0 

1 

5 

20 

65 

190 

511 

where we note that j f ^ j has 2r+ 1 zeros, and FJ+j = /, F^2
 = r. 

Equation (1.9) can be established for r = 1 quite easily by induction. Assume that (1.9) holds for 1, 2, 3, • 
r, and f o r r + 7 for /7- 1, 2, - , k. Then by (1.8) 

Fi^P = F l ^ ^ F l ^ U F ^ = (-1)k+1 F[rk
+1> H-1)kF[£] + (-l)k+1 F(J> 

(-1) 
k+2rr(r+ll r(r+1) _ r(r)j xk+2t lr.k+1 - F.k - h_kJ - (-JJ r.k_1 

which is equivalent to (1.9) for/7 = k + 1, finishing a proof by induction. 
Returning to (1.6), recall that the recurrence relationjor {F'n

1') has auxjhary polynomial (x2 - x - 1) , 
whose roots are, of course, a, a, j3, 0, where a = (1 +sJb)/2 and /3= (1 - s/b )/2. Then, 

(1.10) F(
n

1) = (A+Bn)an + (C + Dn)$n 

for some constants A, B, C and D due to the repeated roots. Since the Fibonacci numbers are a linear combina-
tion of the same roots, 

(1.11) F(
n

1} = (A* + B*n)Fn+1 + (C* + D*n)Fn„7 

for some constants /4* B*f C*, and D*. By letting n = 0, 1, 2, 3 and solving the resulting system of equations, 
one f i n d s , 4 * ^ - / A B* = C*= D*= 1/5, resulting in 

(1.12) 
which leads easily to 

(1.13) 

5Ft 
(1) (n- 1)Fn+1 + (n + 1)Fn,1t 

z<1) 

Jh 

(nLn-Fn)/5 

where Ln is the nL" Lucas number. 
Returning again to the auxiliary polynomial f o r j / 7 ^ } , since (x2 - x - 1) = x - 2x3 - x2 +2x + 1, we 

can write 
H U ) p(l) -9F(D +F(D 9F(D F(1) 

2. SPECIAL LIMITING RATIOS 
It is well known that 

(2.1) lim FJ£1 = 1+^5 

We extend this property of the Fibonacci numbers to the Fibonacci convolution sequences. First, (1.10) gives us 
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F(
n

1) = (A+Bn)an + (C + Dn)$n 

for some constants A, B, C and D. Thus one concludes 

Mm FJlL = lim [A + B(n + 1)]a+[C + Ofn + 1)1 BJ(B/a)n
 = a 

n^oo F(,} n->~ A+Bn + (C + Dn)($/a)n 

Clearly, this holds for any { ^ } since, by examining the auxiliary polynomial, 

(2.2) F(
n

r} = pr(n)an+qr(n)$n, 

wherepr(n) and qr(n) are polynomials in n of degree r. Then, we have 

,,3, > l h . ?1L •. „,._ ,**t*".,A*u£: . m ,j^» a __ a 

While it is not necessary to be able to writepr(n) and qr(n) to establish (2.3), it would be interesting to find a 
recurrence for these polynomials. 

It is not difficult to show that 

(2.4) J i m 

and that 
"-*<*> F(D 

n 

F(rV 
(2.5) lim -£— = o r* < r . 

n -> °° r (r) 
rn 

We also find a as a value for a special limiting ratio. We define 

(2.6) W<# -FlfijFtt-fFPl2. 
For r = Ot the Fibonacci numbers themselves, W„ = (-1)n, but when r > 1, W„ is not a constant. However, 
we have the surprising limiting ratio, 

yy(r) 
(2.7) lim -J2±L = a2, r > I 

To establish (2.7), we use (2.2) to calculate W(
n

r} as 

W{n] = [pr(n + Dan+1 +qr(n + 1)$n+1][pr(n - 1)an~1 +qr(n - 1)Pn'1] - [pr(n)an+qr(n)$n]2 

= fpr(n + Dpr(n - Va2n +qr(n + 1)qr(n - 1)fn + pr(n + 1)qr(n - 1)an+1$n~1 

+ pr(n - Vqr(n + 1)an'1pn+1] - [p2(n)a2n +2pr(n)qr(n)an(3n +q?(n)fn] 

= [pr(n + Vpr(n - V - p2(n)] a2n + fqr(n + l)qr(n -1)- q?(n)]p2n + Rr(n), 

where Rr(n) is a polynomial in/7 of degree 2r, but each term contains a factor of a5 or|3f, where 5, fare at most 
two, since a(3=-1. Then, if prfn + 1)pr(n - 1)-p2(n) ? ft we find that 

,/l/fr) F(r) F(r) fF(r) j2 

n^oo ^(rj (r) (r) (r} 2 

Please note that for the Fibonacci numbers themselves, it is indeed true that/? = -q = 1/(a- P) and 

p(n + l)p(n- 1)-p2(n) = 0. 

That there are no other polynomials such thatp(n + 1)p(n - 1) ~ p (n) = 0 is proved by considering 

F(
n

r} = pr(n)an + qr(n)p>n, 

wherepr(n) is a polynomial of degree at most r. Consider 
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Pin) = pr(n + l)pr(n - 1)-pf(n) 

which is a polynomia! of degree at mostiV. Thus, P(n) £ 0 for more than 2r values of n. Clearly, then, for all 
large enough n, P(n)^ 0. 

3. DETERMINANT IDENTITIES FOR THE FIBONACCI CONVOLUTION SEQUENCES 

Several interesting determinant identities can be found for the Fibonacci convolution sequences. First, we ex-
amine a class of unit determinants. Let 

z(D r(D r(D r(l) 

(3.1) 

n+3 rn+2 

rd) F(1) 
n+2 rn+1 

' n+1 

-d) 

AD 
rn+1 
cd) 

rd) rd) 
n 

rd) 

Fd) 

pd) 
rn-1 hn-2 
r(D r(D 
hn-2 hn-3 

Then it is easily proved that Dn = 1 by using (1.14), since replacing the fourth column with a linear combina-
tion of the present columns gives us the negative of the first column of Dn+j. That is, since 

-F, (1) = 
n+4 

- Ofd) rd) +?rd) ,rd) 
~ "Ztn+3 ~ tn+2+ Zt n+1 + hn 

r(D 
^n+3 

rd) 
hn+2 

r(D r(D 
^n+2 tn+1 
r(l) rd) 

^n+1 tn 

cd) 

rd) 
n+1 

rd) 

n 

n-1 r(D r(D 
•n-1 tn-2 

-F, 

-F, 

r(D 

n+4 

n+3 
n+2 
(1) 
n+1 

so that Dn = Dn+i after making appropriate column exchanges. Lastly, since Df = 1, Dn= 1 for all n. 

Now, let D^ be the determinant of order (2r + 2) with successive members of the sequence [FJj } written 
-M along its rows and columns in decreasing order such that Fn appears everywhere along the minor diagonal. 

Since \Fn j has an auxiliary polynomial of degree (2r + 2), F^rJ2r+2 's a ' m e a r combination of 
-(r) 
n+2r+t> 

-(r) 
rn+2r> 

-(r) 
rn+2r-1 > 

-(r) 
n+U 

-Jr) 
n 

so that D*n
r' = iDn+j after (2r + 1) appropriate column exchanges. The auxiliary polynomial (x - x - 1)l+ 

has a positive constant term when r is odd, making the last column the negative of the first column of D^lp 

so that 
D (r) (-„2r+1(_m(r)i = DMif r o d d ; 

(r) but, for r even, a negative constant term makes the last column equal the first column of D^Jj, and 
D(r),(„7)2r+1DM1 = 1(r) Jn+1' r even. 

±r, and F^ = 7. We need only to evaluate tijf' for one value of n, then! Now, FJf' = 0 for/7 = 0, ±1, ±2, 
Thus, D'r+r = (-l)r+ since ones appear on the minor diagonal there with zeroes everywhere below. Then, 
D„ = 1 when r is odd, and DJ[' = (-1)n when r is even, which can be combined to 

(3.2) Off* = (~1)n(r+1). 

The special case r = 0 is the well known formula, Fn+jFn-] - F„ = (-l)n . 
A second proof of (3.2) is instructive. Returning to (3.1), apply (1.8) as 

(3.3) z(r) :(r+1) -F, (r+1) _ F(r+1) 
• n ' n+1 rn+2 rn+1 ' n 

taking r = 0. Subtracting pairs of columns and then pairs of rows gives 
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Fn+2 Fn+1 F% Pi11 

Fn+1 F, '<" <=(1) 

rn-1 

n 

Fn-1 

Fn-2 

zd) 
rn-1 

rn-1 rn-2 

hn-2 hn-3 

0 
0 

-/ 

0 Fn 

0 Fn-j 

F 1 F(1} 
rn-1 rn_1 

j n-2 J-n-2 

Fn-1 

Fn-2 

F(1) tn-2 
F(1) hn-3 

Thus, 
Dn (FnFn-2-F^f = 1. 

Notice that this proof can be generalized, and after sufficient subtractions, one always makes a block of zeroes 
in the upper left, with two smaller determinants of the same form in the lower left and upper right, so that D^ 
is always a product of smaller known determinants off**, r* < r, making a proof by induction possible. Each 
higher order determinant requires more subtractions of pairs of rows and columns, but careful counting of sub-
scripts leads one to 

(3.4) D (r) _ [D(
rt

r^].[D(
n

(r'2)/2}]f r e v e n ; 

ID ((r-1)/2)i2 lz, r odd; 
which again gives us (3.2). 

The process of subtraction of pairs of columns and rows can also be applied to determinants of odd order. 
For example, 

F(1) hn+2 rn+1 rn 

:(1) p(1) r(1) 
n+1 rn-1 

F(1) c(D 
n-1 tn-2 

0 

Fn 

Fn-1 

Fn 

W 
C'l 

Fn-1 

p(1) 
rn-1 

p(1) hn-2 

Then, by applying (1.13) and known Fibonacci and Lucas identities, one can evaluate D*. The algebra, how-
ever, is long and inelegant. One obtains, after patience, 

(3.5) D* = (-l)n+1F(
n

1} . 

However, Dp, can also be written out from the form given above on the right, so that 
n* _ / jin + 1 nil) _ np r r(D pUJpH) p2p(D 
Un - {-l> hn ~ ^hnFn-irn.1- hn,1hn -FnFn_J 

f(_1\n~1 + F2 ]F(l)=pFF ,rF(l} - F(1) - F iJ-F2F(1) 
ll-U +rn_1Jf-n -Ztntn.1[tn ~ rn_2- t-n-lJ ~ rnhn_2 

[(Fn-1Fn-F
2

n_1) + F2
n_1-2FnFn-1]F<n

1) = (-2FnFn.7 - F2
n)F

(
nl

}
2- 2FnF

2_1 

-FnLn-2Fn 
(1) 

~Fn^nFn-2 ~ 2Fn Fn_ -j 

by applying known Fibonacci identities. Finally, dividing by -Fn, n =/= 0 and rearranging, we have 

:(D (1) (3.6) Ln-2Fn"-LnFnL'2 = 2Fnt1. 

which we compare with the known 

Ln-2Fn-LnFn-2 = 2(-1)n. 

l fwelet/7* ' denote the determinant of order (2r+ 1) which has successive members of the sequence [Fn } 
written along its rows and columns in decreasing order such that { / ^ j appears everywhere along the minor 
diagonal, we-conjecture that 

(3.7) Df} = (-l)r(n+1)F(
n

r) . 

Equation (3.7) has been proved for r = 1 above, and r= 0 is trivial. When r= 2, it is possible to prove (3.7) by 
using the identity 
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(3.8) F(
n

2) = [(5n2-2)Fn-3nLn]/50 

as well as (1.13). The algebra, however, is horrendous. The identity (3.8) can be derived by solving for the con-
stants/!, B, C, D,E, and f i n 

:(2) (A+Bn + Cn2)Fn + (D + En + Fn2)Ln 

which arises since \F{2'\ has auxiliary polynomial (x2 - x - 1)3, whose roots are a, a, a and /3, 0, 0. 
Two other determinant identities follow without proof. 

= <-1)n[F<n
1J5 + 2Fn-4l 

p(1) 
tn+2 
p(1) rn+1 

p(1) 

p(1) hn+2 

p(1) 

p(1) 

pin 

p(1) rn 

rn 

hn-1 

ril) 
hn-2 

F(1) hn-1 

c(1) hn-2 

hn-3 

rU) 

hn-2 

r(D 
hn-3 

= (-Dn[F(
n
1J2-Fn„2] 

TWO RECURSION RELATIONS FOR F(F(n)) 

EDWARD A.PARBERRY 
Well's College, Aurora, New York 13026 

Some time ago, in [1 ] , the question of the existence of a recursion relation for the sequence of Fibonacci 
numbers with Fibonacci numbers for subscripts was raised. In the present article we give a 6 order non-linear 
recursion for fin) ~ F(F(n)). 

Proposition. Let fin) - F(F(n))f where Fin) is the nth Fibonacci number, then 

fin) - iSfin - 2)2+(-1)F(n+1))f(n - 3)+i-1)F(n)(f(n -3)- i-1)F(n+1)f(n - 6))f(n - 2)/f(n - 5). 

Remark. Identity (1) below is given in [2 ] , and identity (2) is proved similarly. Note also tha t#=£ (mod 
3) implies that 

(-J)F(a) = (_i)F(b) a {_j)Ua) = (_f)Ub)^ 

which is used frequently. 
(1) F(a + b) - F(a)L(b)-(-1)bF(a-b) 

(2) 5F(a)F(h) = Lia + b)-(- 1)aL (b-a). 

Proof of Proposition. In (1), let a - F(n - 2), b = F(n - 1) to obtain 

fin) = f(n-2)L(F(n- V)- (-DF(n'1)F(-F(n - 3)) 

- fin - 2)L(F(n - D) - (- 1)F(n " u(- VF(n~3)+1f(n - 3) 

- fin - 2)L (Fin - D) + (-1)F(n+ 1}f(n - 3). 

[Continued on page 139.] 



A MATRIX SEQUENCE ASSOCIATED 
WITH A CONTINUED FRACTION EXPANSION OF A NUMBER 

DOWALD B. SMALL 
Colby College, Watervilfe, Maine 04901 

INTRODUCTION 

In Section 1, we Introduce a matrix sequence each of whose terms is (] ;?), denoted by L, or (J. I ] , denot-
ed by R. We call such sequences Z./?-sequences. A one-to-one correspondence is established between the set of 
Z./?-sequencesandthe continued fraction expansions of numbers in the unit interval. In Section 2, a partial order-
ing of the numbers in the unit interval is given in terms of the Z./?-sequences and the resulting partially ordered set 
is a tree, called the Q-tree. A continued fraction expansion of a number is interpreted geometrically as an infinite 
patii in the /7-tree and conversely. In Section 3, we consider a special function, g, defined on the Q-tree. We show 
that# is continuous and strictly increasing, but that g is not absolutely continuous. The proof that ^ is not abso-
lutely continuous is a measure theoretic argument that utilizes Khinchin's constant and the Fibonacci sequence, 

1. THEZ./7-SEQUENCE 

We denote the matrix ( ] ° ) by L and the matrix ( J ] ) by /?. 

Definition. An Z./?-sequence is a sequence of 2 x 2 matrices, M-\, M2, —, M-,, ••• such that for each • /, 
Mj= L or M,- = R. 

We shall represent points in the plane by column vectors with two components. The set C = {(V) | both a and 
j3 are non-negative and at least one of a and /3 is positive} will be called the positive cone. Our preseat objective 
is to associate with each vector in the positive cone an /.^-sequence. 

Definition. A vector (jy) e £ is said to accept the Z./?-sequence Mf, M2, •••, M,, - - i f and only if there is 
a sequence 

(?X,).-; (S) 
whose terms are vectors in C, such that 

(£ ) -Q 
and for each i> 7, ( ! ' . " ' ) = / w / ( s ' ) ' 

l f Q ) e C a n d a < , 3 , t h e n ( « ) - - ( ^ a ) and ( ^ ) e C. 

If 0 < a , then 

By induction it can be shown that every vector in C accepts at least one Z./?-sequence. If a is a positive irrational 
number, then ( a ) accepts exactly one Z./?-sequence; if a is a positive rational number, then Q accepts two 
Z./?-sequences. | 

The expression Ra°L3lRa2 - will be used to designate the Z./?-sequence which consists of a0 /?'s, followed 
by 3j Z.'s, followed by a2 R'%, etc. 

We shall follow Khinchin's notation for continued fractions and express the continued fraction expansion of 

123 
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a, a - a0 + as a = [ao;ai,a2, •••/. 
aj+ -1* ... 

32 

The remainder after n elements in the expansion of a is denoted by rn = [an; an+i, an+2, —J. All the well 
known terms and results of continued fractions used in this paper may be found in [1 ] . 

Theorem 1. Leta = fao;ai,a2,-] and let (") accept the Z./?-sequence Rb°LblRb2 - . Then b\ = a; 
for all / > 0 and for 

n Ik 
kn ••= J2 bj. jr-1 = rn+1(a) 

i=0 kn 
if n is odd and 

?*/, _ 7 
5 ^ rn+1(a) 

if/7 is even. 

Proof. Since ( " ) accepts Rb°Lbl Rb2 - , there exists a sequence ( | ° ) , ( - * ) , (Z 2 ) , - , whose terms 
O j 1 

are vectors in £, such t h a t Q ° \ = [V\ and such that if n is even and kn < k < /r,,-/-/, then 

and if /7 is odd, then 

{«) = Rb0LblRb2-Lb"Rk-kn {fk) . 

Since 
rn = [an:rn+1], rn+1 = -— 1 — and an = [rn] . 

rn an 
Therefore an is the least integer/such that r n - j < \ . 

We now use induction on/?. For/? = 0, rp = a. Sinceao is the least integer/such that 

a-/<l ( ? ) = * - ( £ ) . 
where 7 a = a - a 0 a n d 5 a =1.Thus 

^o - a0 and = — - - . 
5/r0 / rx 

We assume the result for 0 < t < n and then consider two cases. 
CASE 1. Let/? be odd. Then 

^kn-bn = lkn.1 = J_ < 1 

bkn-bn
 8kn.f rn 

and since an is the least integer /such that/^ - / < 7, 

( ^ f i - ^ v ,annkn\ 
KK~bn I = L \*kn)-

 w h e r e T ^ = 7 ^ - ^ and 8kn = bkn„bn - an7kn-bn • 

Thus 

h - a and T/C/? - lkn~bn _ 1 

on - an and ~ ^ rn+i . 
bkn

 bkn-bn-anJkn-bn
 rn-an 

CASE 2. Let/7 be even. Then 
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&k -b Sk i ^ 
Kn "n Kn-1 

and since an is the least integer/ such that rn - j < 1, 

U ^ " ) = Ran(sk
n)' w h e r e 1*n = 7k„-bn-°n&kn-bn and 8kn - Sk „ 

Thus 
b =a and ?HlL- V<n-bn-*n&kn-bn _ _ j 
un an anu ^ r — a _ m 

hkn hn-bn rn+1 

The preceding theorem can be extended to hold for rational a by modifying the notation as follows: 
(i) If an

 = 1, express [Q;ai, a2, —, an] as either 

[0;ai,a2,—,an>
6D] o r [0;a?, a2, - , an.j + 1, °°] or 

(ii) If an £ 7, express [0;a•/, a2, —, an] as either 
[0;ai,a2,-,an-1,°°] or [0;a1f a2, - , an,°°] . 

When we permit the use of these expressions we shall speak of continued fractions in the wider sense. One sees 
that the method of LR-sequences provides a common form for the continued fraction expansions for both ra-
tional and irrational numbers. (The non-uniqueness, however, of the expansion of a rational number still 
persists.) 

Definition. Let a = [aorai, 82, •••/. The k order convergent of ais 

Pkfa) r 7 
7 7 j = Lao;ai,a2,-,ak] , 

where 
p-l(a) = 7, p0(a) = 0, q-i(a) = 0, q0(a) = 1, 

and for A: > 7, 
Pk(a) = akPk-i(a)+Pk-2(a) a n d Qk(a>) = a^Qk-l^i + Qk-2(a) • 

When no confusion will result, we shall omit the reference to a and write Pk, q^ forPk(a), qk(a)-

An important proposition in the theory of continued fractions is: If 
„ - r n r 7 t h n n n -Pn+1 _ rn + lPn+Pn~1 
a = [a0;a1f a2, - , an, rn+1], then a - T~7TT~n— ' 

Qn+1 rn + lQn+Qn-1 

We give an analogue of this result in the following theorem and its corrolary. 

Theorem 2. I f a = [0; a1f a2,-1, (^) accepts the LR-sequence/^;, /W2, - , and 
n 

kn = 2T ai> 
i=1 

then 

kn \iPn'1 Pnn) >f n is even 

n /̂ -
/= / /AV, Pn-1\ i f / 7 i s o d d > 

^ <7/7 9 / 7 - / / 

Proof. We use induction on n. For/? = 7, 

n ^ - ^ - C , ?)-($: £) 
We assume the result for 1 <t<n and then consider two cases. 
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CASE 1. Let A be even. 
kn I kn-1 

n Mi=( n MI 

CASE 2. Letn be odd. 

^n / kn- 1 

^n 
(Pn-1 Pn-2 

R =\qn-1 Qn-2 
\ f 1 an\ (Pn-1 anPn-1+Pn-2\ , 
)\0 1 ) = \qn-1 anqn-1 +qn-2 / = 

Pn-1 Pn\ 
Qn- 1 Qn ' 

kn 

1=1 

I *n-1 \ 

(n * , 
an I Pn-2 Pn-1 

\ qn-2 Qn-1 \an 

1 °)= ( Pn~2 + 

an 1 * \ qn-2 + 
Pn-2 + anPn-1 Pn-1 

Corollary. If a =[0;ai, a2, •••/, ( " ] 
n 

kn = L ai> then ( 

The well known result, 

Qn-2+anQn-1 Qn 

accepts the LR-sequence Mj, M2, — , and 

lkn 

i-1 \ / Pn Pn-1 \ 
-1 ) WA7 Qn-1 1 

/Pn Pn-1 
WA? Qn ; > < £ > • where 7kn rn+i(a)-

Pn-lQn-PnQn-1 = (-V , 

is an immediate consequence of the above theorem and the fact that det (L) = det (R) = 1. 

2. THE Q-TREE 

Although (°;) accepts two LR-sequences when a is rational, these two sequences coincide up through a cer-

tain initial segment. 
Definition. Let a be a positive rational number and let ( " ) accept the LR-sequence M7, M2, •••• We call 

the initial segment/^ 7, M2, —, Mn a head of a if and only if 

{a
1)=M1.M2.-,Mn{1

1). 

If a is a positive rational number, the head of a exists and is unique. Thus if M1, M2, —, Mn is the head of a, 

then the two LR-sequences accepted by (^)are M1f M2, ~*,Mn, R,L,L,L, - a n d M / , M2,-,Mn, l,R,R,R, - . 

Definition. Let a-j and 0,2 be rational numbers in (0,1]. We say that a ; is ̂ -related to 0,2 if and only if 
the head of 0,7 is an initial segment of the head of a.2. 

The Q relation is a partial ordering of the rational numbers in (0,1], and the resulting partially ordered set is a 
tree, 

Definition. The set of rational numbers in (0,1] partially ordered by Q is called the tf-tree. 
We may now interpret the continued fraction expansion of a number (in the wider sense) geometrically as an 

infinite path in the £?-tree. Conversely, any infinite path in the Q-tree determines an LR-sequence and thus the 
continued fraction expansion (in the wider sense) for some number. 

The following diagram is an indication of the graphical picture of the Q-tree. 

1/2 L 1/1 

3/4 

L 

5/7 

R 

4/5 
(etc.) 

Figure 1 
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3. THE FUNCTION $r 

Definition. Let a e [0,1] and let (?\ accept the LR-sequenceM/, M2, - . We then define # on the unit 
interval by 

9(o-) = 2 E CJ2~J> where cj = 1 ^ 'jf M> " L
R . 

M I J 

It is clear that g is a one-to-one function. 

Theorem 3. For 0 < a < 1, g is a strictly increasing function. 

Proof. L e t 0 < a < / 3 < 1 , a = [0;a-\,a2, •••/, 0 = [0; b 1t b2, - 7 and let f be the least integer n such that 
an^ bn. Thuspk(a) =Pk((l) md qk(a) = qk(P) for 0 < k < t 

Now 
a < Q iff rtWPt-l +Pt-2 _ rtfajpt-j+pt^ > Q 

if and only if 

if and only if 

rt@tq t-t+q t.2 rt(a)q t-j+q t-2 

rt(a)(pt-2qt-l-Pt-lQt-2) + ft(^(Pt-lQt-2-Pt-2Qt-l) > 0 

it-1 (rt(a)-rtm(-ir' > 0. 

Therefore, rt(a) > rt(fi) if and only if t is odd. Since 

rt(a) = [at;rt+i(a>] and rt((i) = [bt;rt+i(§)]', at > bt 

if and only if t is odd. We consider two cases determined by the parity of t 
CASE 1. Let t be odd. In this case at > bt. If 

(Pt-i(a) v ^ 2 

If 

r = Z a,. then gfaJ < g(!±l™) +-^-

Z > , then M ) > g ^ t M ) + 
Pt-l(W\^2_ 

2s 

Since g is a one-to-one function, s <r and 

(pt-l(a)\ _ fptu.j(P) 
9 ^ - n ) = W ^ f ) impliesthat g(a)-g(P) < - ? - - A < 0 

with equality holding if and only if a=]3. Thus g(a) <g((3L 
CASE 2. Let t be even. In this case at < bt and so s > r. Now 

/ i at 

\qt-i(a)' 2
r'at i?i 2' 2r 1 xQt-l($> 2

s'bt M 2' 

Since /•— af = s - 6 f , 

g(a) - gffi) = 
2r-at 

r at t>t 
* —*— < o 

r+1 

with equality holding if and only if a = /3. Thus gfa) <g((3). 

Corollary. For a e [0,1] ,#Ya>/ exists and is finite almost everywhere. 

Theorem 4. For 0 < a < 1, # is a continuous function. 

Proof. Le tae [0,1], a= [0,-37, 52, — 1. For any e> 0, choose an/? such that 



128 A MATRIX SEQUENCE ASSOCIATED WITH A [APR. 

n2n 
< e. 

Since the even ordered convergents form an increasing sequence converging to a and the odd ordered conver-
gents form a decreasing sequence converging to a, (see [1 ] , p. 6 and p. 9), 

P^L<a<PJn±lm Let 5 
Q2n Q2n+1 

a - ^ n ± l \ , since 
Q2n + 1 I 

P2n+1_ 
Q2n+1 

P2n_ 

Q2n 

If /3e[0,1] and I a - jS l < 5, then either ^ <a<$< P-2-n-^ 0 r P-2-^ < 6 < a < ^ - - ; 

Q2n Q2n+1 q2n Q2n+1 

Since g is an increasing function, 

\g(a)-g(P)\ < ,(P*!±l\-g(ein) 
\Q2n+ll \Q2n' 

2-2 

2n + 1 

- 2 a/ 
i=1 2 

nn+1 
< €. 

In the next theorem, we make use of the Fibonacci sequence <fn>, where fg= 1, fj = 1, and fn = fn.j + fn-2. 

Theorem 5. The derivative of g at u = (-1 + >j5)/2\s infinite. 

Proof. The continued fraction expansion oft/ is [0 ;3 ; , a2/ •" I > where a,- = 1 for all / > 1. Therefore, 

Pn=Pn~1+Pn-2 and Qn = Qn-1 + Qn-2-

Since/?_/= lpo = 0, q-1 = 0/qo = 1,pn = fn ^dgn = fn+jm 

P2n<x<P2nf2<U/ 

Q2n Q2n+2 
then 

Mm 
>u~ u - x 

> lim 
g(u)-g[ -„lpJn+2\ 

Q2n+2 * 

P2n 

Q2n 

= urn 
A7 - > • o 

n+1 

£ 2* k 2* 
u -

f2n 
f2n + 1 

which can be shown equal to (see [2 ] , p. 15) 

hnr 
i=n+2 2 

2i 

~2n „2n 

Since 
I- u-2n

+u
2n+2\ 

= ,im _Jti±u^L ( 
& ) ' • 

Similarly, 

_J_ = Z ± £ £ > / lim gfuLziM. = oo 
4 ( / 4 tf > x^u- u - x 

| i m QiuLzjM = „ 

We omit the details 

Definition. The numbers a = [ag; a-j. a2, —J and ]3= [bo;bi, b2f —7 are said to be equivalent provided 
there exists an N such that an = bn for n > N. 

Corollary 1. \ia= [ao;ai, a2f —7 is equivalent to u, then g'(a)= °°. 

Proof. Since a is equivalent to £/, there exists an N such thata^ = 1 for/7 > /!/. If 

P2n <x<P2n±2_<a<P2n+1 

Q2n Q2n+2 Q2n + 1 

where 2n > N, then 
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g(a)-g(Pjn±2) 

Vm-trM-flM > | j m \j2n+2L = | i m y -^-(q2nq2n + 1). 
P2n+1 P2n n -+ °° :Z^+2 2

2i 
i= 

Q2n+1 Q2n 
Since an = 1 for n > N, 

J5 
Thus 
Mm 

n _» a 

Since 

ff(a) -
a -

1/4u4 

Similarly 

- * 
> Mm 

A7 _ » oo 

= (7+3V51/8 

2 
Z5-4" 
> 1, 

(u2n_u-2n)(u2n + 1+u~2n-1)= | j m 1 (u8n + 1+u4n-1 _„-1 rfjf. 
n->°*15 \4u4) 

lim _ ^ - - £ ^ = ooa 

*-*<* a - x 

| i m + J Z M i z J Z ^ « . 

Corollary 2. In every subinterval of [0,1] there exists a 7such that^YT^ = °°. 

Proof. Let 
fa, 07 c (0,1], a = [0;ah a2, - 7 and 0 - [0;bh b2f - 7 -

We may assume that |3 is not equivalent to u for if it is, there is nothing to prove. 
Let t be the least integers such that an ^ bn. Choosing/? such that2n > t and b2n+2 > h w e define 

x = [0;bh b2, - , b2n, °°7, 7 = fO/bj, b2, - , b2n+l, I I h - 7 , and y = [0;b1f b2, - , b2n+2,°°]. 

Then a<x < y <y < j3and 7is equivalent to u. Thus the derivative of g at 7is infinite. 
The measure used in this next theorem is Lebesgue measure. The measure of a set A is denoted by m(A). 

Theorem 6. For almost all a~ [0;aj, a2, - 7 e (0, 77, g'(a) = 0. 

Proof. Let 
n Un 

A = { a e fft/7." Mm ( O a M = Khinchin's constant} , 

B = [a ^ (0,1]: g'(a) exists and is f in i te}, and 

C = { a e f#, 77: ^ > /7 log/7 for infinitely many values of n). 
Since (see [1 ] , pp. 93,94), 

ml A) = m(B) = m(C) = 1, 
m(A n B n C) = I 

Let 
a <= A n £ n C 

and let { * „ } be any sequence converging to a. We define a second sequence [yn] in terms of the partial quo-
tients, pm/qm, of a Let 

Yn =\ : m i s t n e greatest integer such that (i) I a-xn\ < \a - — and 
1 <7m I < 7 m ' 

(ii) (a-xn) and ( a - — | have the same sign} 
\ Qm I J 

We note that/?? is an unbounded, non-decreasing function of/? and thus/?? goes to infinity as n does and con-
versely. Since g is a strictly increasing function and noting that 
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Pm+2 

Qm+2 

Pm+2\ 

has the same sign as 

we have 

< I a-xn\ and that [a . 
\ Qm+21 

la- em) , 

g(a)-g(xn) 

a-xn 

g(a)-g(P-^\ I [qm+2(qm+2 + Qm+31 [See [1], p. 20.] 
\Qml I 

«*"-'(£)l**« 
< (2.2-«m)2q2

m+3, where km = £ a; . 

i=1 
Since Khinchin's constant is < 3, 

Qm = amqm-i+qm-2 < 2m \ \ ai 

and a e A, we have that 

n2 
Vm+3 < 

m+3 

(2m+3n *) 
x i=i ' 

i=1 

22m+6n2m+6 

forsufficiently large values of m. Nowa^C implies that km > m log /77 for infinitely many values of m and thus 
g(a)-gfxn) 

a~xn 

< 28-36 

\ 9\ogm I 

for infinitely many values of m and n. As n goes to infinity, m goes to infinity and hence given any positive e, 
the inequality 

' g(a)-g(xn)\ < e 

will be satisfied for infinitely many values of n. Since a e 5 , g'(a) exists and therefore g'(a)= 0. 

Corollary. The function g is not absolutely continuous. 

Proof. Sinceg is not a constant function and for almost all a^(0,7] g'(a) = 0, it follows from a well known 
theorem that# is not absolutely continuous. (See [3 ] , p. 90.) 
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GENERALIZED LUCAS SEQUENCES 

VERNER E. HOGGATT, JR., and MARJORIE BICKNELL-JQHNSON 
San Jose State University, San Jose, California 95192 

1. INTRODUCTION 
In working with linear recurrence sequences, the generating functions jre of the form 

(1.D «£{= £ anxn , 
P(X) n=0 

where pfx) is a polynomial and qfx) is a polynomial of degree smaller thanp(x). In multisecting the sequence 
[an] it is necessary to find polynomialsP(x) whose roots are the kth power of the roots of pfx). Thus, we are 
led to the elementary symmetric functions. 

Let 
n 

(1.2) pfx) = n (x-a-,) = xn-Plx
n-1 +p2x

n-2-p3Xn-3 + -<' + (-1)kpkx
n-k + --- + (-1)npn, 

i=1 

wherepk is the sum of products of the roots taken k at a time. The usual problem is, given the polynomial p(x), 
to find the polynomial Pfx) whose roots are the kth powers of the roots of pfx), 

(1.3) Pfx) = xn-P1x
n-1+P2x

n-2-P3x
n-3+-* + f-1)nPn. 

There are two basic problems here. Let 

(1.4) Sk = ak
1+ak

2 + ak
3 + --- + ak , 

where 
pfx) = fx - aj)(x - a2) -"fx - an) = xn +CfXn~1 +C2Xn~ + - + cn 

andck = f-1)kPk-tnen Newton's Identities (see Conkwright [1]) 

S1+c1 = 0 

S2+S1c1+2c2 = 0 

(1.5) 
Sn+Sn-1c1 + - + S1cn-1+ncn = 0 

Sn+1 + Snc / + - + S]Cn + fn + 1)cn+1 = 0 

can be used to compute Sk for S7/ S2, — , Sn..UQ\N, once these first n values are obtained, the recurrence 
relation 
(1.6) Sn+1 + Snc7 + Sn.1c2 + ••• + S7cn = 0 

will allow one to get the next value Sn+i and all subsequent values o f £ m are determined by recursion. 
Returning now to the polynomial Pfx), 

(1.7) Pfx) = fx - a^Hx - ak
2)(x - ak

3) ~(x - ak
n) = xn + Q1x

n~1 + Q2x
n'2 + - + Qn , 

where 
0/ = a ^ a ^ - + aj = Sk 

and it is desired to find the Q j, Q2, Q3, ••-, Qn. Clearly, one now uses the Newton identities (1.5) again, since 
$k* $2k> $3k' '" f $nk c a n De found from the recurrence for Sm, where we knowS^-, S2kf S3k, —, Snk and 
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wish to find the recurrence for the /r-sected sequence. Before, we had the auxiliary polynomial f o rS m and com-
puted the Sj,S2, —, Sn. Here, we have Si<tS2kr ~*,Snk a n^ w ' s n t 0 calculate the coefficients of the auxiliary 
polynomial P(x). Given a sequence Sm and that it satisfies a linear recurrence of order n, one can use Newton's 
identities to obtain that recurrence. This requires only t h a t S y , ^ , S3, —, Sn be known. If 

Sn+i + (S!
nc1+Sn-iC2 + -~ + S1cn) + (n + 1)cn+1 = 0 

is used, then Sn+j = -(Sncj + — + S]Cn) andcn+j = 0. 
Suppose that we know that L1f L2, L3,14, —, the Lucas sequence, satisfies a linear recurrence of order two. 

Then L-j +c-j = 0yieldsCf = -1; L2 + L^cj +2c2= 0yieldsC2 =-1; and L3 + L2C1 + L1C2 + 3c3 = 0 yields 
C3 = 0. Thus, the recurrence for the Lucas numbers is 

Ln+2~ Ln+i - Ln = 0. 

We next seek the recurrencefoj/^, Z.2/0 Lsk< "'• Lnk = ank + j5nk is a Lucas-type sequence and Lk + #7 = 0 

yields Q1 = -Lk; L2k+ ciLk+ 2c2 = 0 yields L2k - L% + 2c2 = 0, but Z.f = L2k + 2(- 1)k so that 

i-2k-il + 2c2 = 0 
gives C2 = (-1) • Thus, the recurrence for Lnk is 

L(n+2)k~ LkL(n+l)k + (-DkLnk = 0. 

This one was well known. Suppose as a second example we deal with the generalized Lucas sequence associated 
with the Tribonacci sequence. Here, S7 = 1, S2 = 3, and 83 = 7, so that 5 / +c-\ = 0 yields cj = -1; 

S2 + ciS2 + 2c2 = 0 yields C2 = -1, 
and 

S3 + C1S2 + C2S1 + 3C3 = 0 yields C3 = - I 
Here, 

where a, /3, 7 are roots of 
x3-x2-x - 7 = 0. 

Suppose we would like to find the recurrence for Snk. Using Newton's identities, 

Sk + Qi = 0 Q1 = -Sk 

32k + Sk(-Sk) + 2Q2 = 0 Q2 = 1MSk - S2k) 

S3k +S2k(-Sk)^SkVMS2
k- S2k>] +3Q3 = 0 Q3 =l(S3

k-3SkS2k+2S2k) 

This is, of course, correct, but it doesn't give the neatest value. What is #2 D U t the sum of the product of roots 
taken two at a time, 

Q2 = (a$)k + (ay)k + (fo)k = -\ + \ + -L = S„k 
yk /T ak 

and 0.3 = (aPy)k = I Thus, the recurrence forSnk is 

(1-8) 3(n+3)k - SkS(n+2)k + S-kS(n+1 )k + Snk = 0. 

This and much more about the Tribonacci sequence and its associated Lucas sequence is discussed in detail by 
Trudy Tong [3] . 

2. DISCUSSION OFE-2487 

A problem in the Elementary Problem Section of the American Mathematical Monthly [2] is as follows: 

\iSk = ak + a2 + - + a* and Sk = k for 1 <k <n, find Sn+i. 
From Sk = ak + ••• + %, we know that the sequence^ obeys a linear recurrence of orders. From Newton's 

Identities we can calculate the coefficients of the polynomial whose roots are a / , 0,2, —, <V (We do not need 
to know the roots themselves.) Thus, we can find the recurrence relation, and hence can find Sn+i. This is for 
an arbitrary but fixed n. 
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Let 
(2.1) S(x) = S1+S2x+S3x

2+-.' + Sn+1x
n + - , 

whereS j, S2,S3, —,Sn are given. In our case,SM = 1/(1 - x)2. 
Let 

(2.2) CM = c1x+c2x
2+ -+cnx

n + '~ . 

These coefficients cn are to be calculated from the S7, S2f —, Sn. 
From Newton's Identities (1.5), 

Sn+i+Snci+Sn-.iC2 + - + $icn + (n + 1)cni-i = 0. 

These are precisely the coefficients of xn in 

SM+SMCM + C'M = 0. 

The solution to this differential equation is easily obtained by using the integrating factor. Thus 

CMe ISMdx = fe rsMdX(-s M)dx + C 
so that n 

CM = ~1+ce'fS(x)dx = -1 +e-(
s^+s^2/2+-+Snx

n/n+-) 

since C(0) = 0. 
In this problem, S(x)= 1/(1 - x)2 so that 

C(X) = -i+e-*
/(1'xS. 

If one writes this out, 
_j +g~x'( 1~~XJ = _ J + -J _ * _L X X J. ... 

11(1 -x) 21(1 -x)2 31(1 -x)3 

From Waring's Formula (See Patton and Burnside , Theory of Equations, etc.) 

rjr7!r^!-'rn!1
r'2^ -nrn 

where the summation is over all non-negative solutions to 

r1 + 2r2 +3r3 + — + nrn=n. 

In our case where S^ = /r for 1 < k < n, this becomes 

c *r (-Dr^+'"+rn 

over all nonnegative solutions to 

rx +2r2 +3r3 +>~ + nrn = n, 
so that 

r+2r^-+nrn=n 'J'*">'" '-1 t l kl 
r1-i-zr2i-----^nrn=n * ~ ~ K=I 

Then 

c> = iT + i-i=-1/6 
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so that 

(2.3) 

(v) fM (vh jzirk'J 
"7 n! 

:(r-!) ^ = 2-) — 
k=1 

3! 

k( 

k! 

Here we have an explicit expression for the cn for Sf< = k for 1 <k <n. 
We now return to the problem E-2487. From the Newton-Identity equation 

Sn+1 + ciSn + - + cnS1 + (n + 1)cn+J = 0. 

We must make a careful distinction between the solution to E-2487 for A? and values of the Sm sequence for 
largern. LetS% be the solution to the problem; then 

S* + c1Sn+c2Sn-i + " + cnS1 = 0, 

where S^ = k for 1 < k < n and the c^ for 1 < k < n are given by the Newton Identities using these S^. We note 
two diverse things here. Suppose we write the next Newton-Identity for a higher value of/?, 

then 

so that 

(2.4) 

Sn+1 + c1Sn + - + cnS1 + (n + 1)cn+i = 0; 

(n + 1)-S*+(n + 1)cn+1 = 0 

' n+1 /jikf n J 
S* = (n + 1)(1 + cn+1) = (n + 1) 

k=1 
k! 

We can also get a solution in another way. 

S* = -fc1Sn+- + cnS1J 

Jh , is the/? coefficient in the convolution ofS(x) and C(x) which was used earlier (2.1), (2,2). Thus 
x x2 , x3 

S*M = -CMS(x) = [1-e'x/(1~x)]/(1-x)2 
+ 

and 

(2.5) 

1!(1-x)3 2!(1-x)4 3!(1-x)5 

Slj = 1/1! = 1 

SJ = 3/1!- 1/2! = 5/2 

•Sj = 6/1!-4/2!+ 1/3! = 25/6 

k=1 

z MHJ: ; ) 
k! 

It is not difficult to show that the two formulas (2.4) and (2.5) for S% are the same. 

3. A GENERALIZATION OF E-2487 

If one lets S(x)= 1/(1 - x)m+1, then 

(3.1) 
and 

(3.2) 

C(x) = -1+en ̂
[l-l/(1~x)mJ 

S*(x) 

-I [ i-u(i-x)mr 
1-em 

(1-x)m+1 
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We now get explicit expressions for Sn, cn, and S*. 
First, 

S(x) 

so that 

(3.3) 

We shall show that 

Theorem 3.1. 

c I n + m\ 
Sn+1 =( n ) 

and 

< » - £ - V I <-1>k(k
a){

am+nn-1) 
a=1 \ ' \ i 

n+1 

k=i k! m 

\ ' ' k=t k!mK
 a=i v / v 

Proof. From Schwatt [4 ] , one has the following. If j / = g(u) and (/ = f(xj, then 

^K - V t i t V f-l)a(k\„k-a d-^l d-JL 
dxn fa k! .4; l«i ,,„„ ,,„* • <*=/ 

We can find the Maclaurin expansion of 

y = e1/me-1/m(1-x)m 

n% n! dx" x=0 

Let y = e 1/meu, where u = -1/m(1- x)m; then tf°W- 7r /m°Y/ - x)ma and 

flfV = (-1)a (ma)(ma+1j-(ma + n- 1) 

dxn ma (1-x)ma+n 

d_^L=J/mu and 
du* 

d^y 

dxk 
7. 

x=0 
Thus, 

so that 

n! dxn 

k I i\k k 

-E ( ' x=0 k=1 
k! a=1 

<*tk\ (~lf~a (-1)alma+n-l\ 

mk-a ma \ " 

k=i klmK
 a=i v M ' 

Thus, since $% = Sn+i + (n + l)cn+i, then 

V- (n
n

+m) +(» + » Z - 4 £ (-'r(*)[7+
+ta) 

v ' k=l k!m a=1 x M ' 
which concludes the proof of Theorem 3.1. 

But 
S*(x) = -C(x)/(1-x)m+1 

so that we can get yet another expression for S*, 
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(3.4) 

where cn is as above and 

Yl (SjCn-j+1> ~ - ]C Sn-j+lCj 
j=1 1=1 

c ,_/n+m— 1\_(n+m— 1\ S"= [ rr, ) - [ n-1 )" 
4. RELATIONSHIPS TO PASCAL'S TRIANGLE 

An important special case deserves mention. If we \v\Sk = m for 1 <k <n, then S(x) = m/(1 - x) and 

£M = -j + e"ffm/(1-x)Jdx = -1 + (1-X)m . 

ck = (-1)k'm 

Therefore, 

for 1 < k < m < n or for 1 <k <n < mf andc^ = 0 for/7 <k <m, and ck = 0 for /r >/7 in any case. Now, let 
Sk = -m for 1 < £ < /7; then 

S M - —/7?/T/ - x) and £frj = -1 + 1/(1 - x)m, 

and we are back to columns of Pascal's triangle. 
If we return to 

Ok 
(~Dk 

k! 

m 1 O 0 0 
m m 2 0 0 
m m m 3 0 
m m m m 4 
m m m m m 

kXk 

then we have rows of Pascal's triange, while with 

°k k! 

-m 1 0 0 0 
-m -m 2 0 0 
—m —m —m 3 0 
—m —m —m —m 4 
—m —m —m —m —m 

kXk 

we have columns of Pascal's triangle. 
Suppose that we have this form forc^ in terms of general Sk but that the recurrence is of finite order. Then, 

clearly, c^ = 0 for /r > n. To see this easily, consider, for example, S; = 7, $2 = 3,S3 = 7, 

$n+3 = $n+2 + Sn+1 +^n • 

Ck = k! 

1 1 0 0 0 0 
3 1 2 0 0 0 
7 3 1 3 0 0 

11 7 3 1 4 (0 
21 11 7 3 1 5 
39 21 11 7 3 1 

1 - 1 = 0 
3 - 1 - 2 = 0 

7 - 3 - 1 - 3 = 0 
1 1 - 7 - 3 - 1 = 0 

2 1 - 1 1 - 7 - 3 = 0 
3 9 - 2 1 - 1 1 - 7 = 0, etc. 

kXk 

Thus, in this case, we can get the first column all zero with multipliers ci, C2, C3, Bach of which is - 1 . 
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5. THE GENERAL CASE AND SOME CONSEQUENCES 

Returning now to 

(5.1) CM = -1+e 

which was found in Riordan [6 ] , we can see some nice consequences of this neat formula. 
It is easy to establish that the regular Lucas numbers have generating function 

-(Slx+S2x
2/2+S3x

3/3+-+Snx
n/n+-) 

(5.2) 1 + 2x S(x) 
1 -X -X' 

-[(1+2x)/(1-x-x2)]dx 

X Ln+1X
n 

n=0 

= e 
ln(1-x-x2) 1- .2 _ 1 + cM. 

Here we know that c ; = - 7 , C2 = - 7 , and cm = 0 for all m > 2. This implies that the Lucas numbers put into 
the formulas for cm (m > 2) yield zero, and furthermore, since Lk, L2k, L3k, — * 0 D e v 7 - Lkx + (-1) x , 
then it is true that Sn = Lnk put into those same formulas yield non-linear identities for the /r-sected Lucas 
number sequence. However, consider 

(5.3) 

and 

l(Llx+L2x
2/2+-+Lnx

n/n+-) = 

)(Lkx+L2kx
2/2+-+Lnkx

n/n+-) 

7 
/ - x - x' 

1 

n=0 

\k„2 1 - Lkx + (-1)Kx 

Let us illustrate. Let Si, S2, S3, - be generalized Lucas: numbers, 

ci = -Sj 

c2 = ys*-s2) 
c3 = l(S$-3SiS2 + 2S3) 

c4 = -—(S* - 6Sfs2 + 8S1S3 + 3S2
2- 6S4) 

n=0 

F(n+i)k vn 
Fk 

Let 5^ = Lnk so that cm = 0 for m > 2. 

while 

1-[L^-3LkL2k+2L3k] = 0 

1-[L$ + 3LkL2k+2L3k] = F4k/Fk 

In Conkwright [1] was given 

(-1)' 
ml 

5 7 7 
52 5 7 

53 S2 

0 0 0 
2 0 0 

5/ 3 0 

which was derived in Hoggatt and Bicknell [5] 
Thus for m > 2 

Lk 

$m-1 
5/77, , Sm-f Sm-2 

... m _ 7 
5 2 5/ 

(5.5) (-1)' 
m! 

L2k 

L3k 

7 0 0 0 
Lk 2 0 0 

L2k Lk 3 0 

L(m-1)k L(m-2)k ... ... ... k~ 7 
Lmk i(m-1)k ... ... L2k

 Lk 
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for all k > 0, where L^ is the kth Lucas number. This same formula applies, since cm = 0 form > 3, if Sm = imk 
where 

£ ; = 7 , L2 = 3, 13 = 7, and im+3 = Lm+2 + Lm+1+Lm 

are the generalized Lucas numbers associated with the Tribonacci numbers Tn 

<T1 = T2 = I T3 = 2, and Tn+3 = Tn+2+Tn+1 + TnJ 

If Lm are the Lucas numbers associated with the generalized Fibonacci numbersFn whose generating func-
tion is 

(5.6) —J- - f Fn+1x
n, 

7 - X - xz- x X n=0 

then if Sm = Lmk, then the corresponding cm = 0 for/77 > r, yielding (5.5) for/77 > /-with Lmk everywhere re-
placed by Lmk, 

Further, let 

then 

and 

/ c 7 \ F'(x) _ l+2x + 3x2 + - + rxr'1 _ *<sp . n 

where in is the generalized Lucas sequence associated with the generalized Fibonacci sequence whose generat-
ing function is 1/F(x). Thus, any of these generalized Fibonacci sequences is obtainable as follows: 

-f[F'(x)/F(x)]dx _ 7 _ v F V7 

F/W = 7 - * - * 2 - x : ? xr; 

Fix) = -1-2x-3x2 rxr~1 

7 - x - x2 - x3 xr
 n=0 

and we have 

Theorem 5.1. 

eLlX+L^/2^+Lnx
n/n^ = yfM = £ p^n 

n=Q 

The generalized Fibonacci numbers 1 ^ generated by (5.6) appear in Hoggattand Bicknell [7] and [8] ascer-
tain rising diagonal sums in generalized Pascal triangles. 

Write the left-justified polynomial coefficient array generated by expansions of 

(l+x+x2 + -+xr-1)n, n = 0, 1,2,3, -,r > 2 

Then the generalized Fibonacci numbers u(n; p,q) are given sequentially by the sum of the element in 
the left-most column and the nth row and the terms obtained by taking stepsp units up and q units right 
through the array. The simple rising diagonal sums which occur for/7 = q = 1 give 

u(n;1,1) = Fn+1, n = 0, 1,2,-. 

The special case r =2, p = q = 7 is the well known relationship between rising diagonal sums in Pascal's triangle 
and the ordinary Fibonacci numbers, 

f(n+1)/2j 

1=0 V 

while 
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[<n + 1)/2] 
(n ~ i\ in 

1 + 1 

<-V/2J 

;=n x ' r i=0 

where 

(V), 
is the polynomial coefficient in the ith column and (n - i)st row of the left-adjusted array. 
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******* 
[Continued from p. 122.] 

From this we have that 

(3) urn) - n<inL±^pii^ 
Now, letting a = F(n), b~ F(n+ 1) in (2), we have 

(4) 5f(n)f(n + 1) = L(F(n + 2)) - (-l)F(n)L(F(n - V). 

Finally, substituting (3) for each term on the right of (4) and rearranging gives the required recursion. 
It is interesting to note that a 5* order recursion for f(n) exists, but it is much more complicated. 

Proposition. 
f(n) = (5f(n-2)2 + 2(-l)F(n+1hf(n-3)2f(n-4) + f(n-2)(f(n-2)-(-1)F(n^ 

2f(n - 4)f(n - 3) 

Proof. Use Equation (2) and the identity 

(5) Ua)L(b) = L(a + b)+(-1)aL(b-a)f 

to obtain 
5f(n)f(n + 1) - 2L(F(n + 2))- L(F(n))L(F(n + 1)1 

Using (3) on the right-hand side and rearranging gives the required recursion. 
REFERENCES 
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AN APPLICATION OF TRIBONACCI NUMBERS 

STANLEY BEZUSZKA 
and 

LOU D'ANGELO 
Boston College, Chestnut Hill, Massachusetts 02167 

An interesting application of the Tribonacci numbers appeared unexpectedly in the solution of the following 
problem. Begin with 4 nonnegative integers, for example, 9, 4, 6, 7. Take cyclic differences of pairs of numbers 
(the smaller number from the larger) where the fourth difference is always the difference between the last num-
ber (7 in the above example) and the first number (9 in the above example). Repeat this process on the differ-
ences. For the example above, we have 

I s t row 9 4 6 7 
2nd row 5 2 1 2 
3rc /row 3 1 1 3 
4f /7row 2 0 2 0 
5f /7row 2 2 2 2 
6f /7row 0 0 0 0 . 

Starting with the numbers 9, 4, 6, 7 and following the procedure described, the process terminates in the 6 ^ 
row with ail zeros. 

Problem. Are there 4 starting numbers that will terminate with all zeros in the 1th row, the 8th row, •••, 
the/7f/7row? 

Various sequences of numbers were tried but they were found unsatisfactory. One development that leads to 
a solution is outlined below. 

(a) Begin with 4 numbers, not all zero, 

(1) a b e d 

which are assumed to be known and then try to get the 4 numbers in the row directly above a, b, c, d, namely, 
the numbers 

(2) xx x2 x3 x4 . 
Thus, 
(3) 2nd row xx x2 xz x4 

15frow a b e d 

(b) Now, rather than try to solve the problem for arbitrary numbers a, b, c, d, we will take the special case 
where 
(4) d = a + b + c. 

In place of (3), we have 
2nd row xx xx+a xx+a + b xx+a + b+c 

*5' 15rrow a b c d = a + b+c. 

At this point, one can select xx to be any nonnegative integer. However, this procedure proves rather unpro-
ductive. We now assume that the summability pattern for the 4 known starting numbers 

a b c d = a + b + c 
also holds for 

(6) xx xx+a xx+a + b xx+ a + b + c. 
140 
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ix the above assumption, we have 

xx+(x1+a) + (xl+a + b) = xl+a+b+c. 

zing f o rx x , we get 
c- a 

ire n o w ^ is determined in terms of the known numbers a and c. Note that c - a must be even f o r x x to be 
nteger. 

nd. ) For a given set of 4 numbers a, b, c, d' = a + b + c, once*! is determined, we can get the 2 row in (5). 
umably, the procedure can then be repeated on the 2 row to get a 3 , 4 , etc. row. The following ex-
le shows that another slight modification is necessary. 
<ample 1. Begin with the four numbers 1, 1, 1, 3. These numbers satisfy the summability condition 
a + b + c. Using the condition in (8) with a = 1, c = /, we have 

_ c -

stituting in (5), we get 
2 ^ r o w 
15frow 

= 0. z 

0 1 2 3 
1 1 1 3 , 

r,nd 2 row now serves as our 4 known numbers a, b, c,d = a+ b + c. Here a = 0, c = 2 and from (8), we have 

) _ c - a 
2 

1 

ng (E 

) 

i) and (S ), we now have 

3 r d row 

2nd row 

l 5 t row 

1 

0 1 2 3 

1 1 1 3 . 

Ve now go on to the 4 t / 7 row. However, if we take the 3rd row 1, 1, 2 ,4 in (11) as our 4 known numbers, 
m a= 7, c = 2 a n d from (8) 

-) Xl 2 2 

lich is not an integer. Apparently, we cannot get the 4 t h row from our present method. 
Ve pause to point out several items of interest in the example above. 
I. We began the example 1 wi th the 4 starting numbers 1, 1, 1, 3. This was a rather arbitrary selection. If we 
j started wi th the 4 numbers 0, 0, 2, 2 we could have calculated the 4 t / ? row but the numbers here would 
IG been 1, 1, 2, 4 precisely the same as in our present example where again we would have been stopped. 
are appears to be no marked advantage in selecting other starting numbers rather than 1, 1, 1, 3, 
. In (11) the numbers in the 3rd row are the first four numbers of the classical Tribonacci sequence 

1 1 
T0 

2 
7\ 

4 

If we start with the Tribonacci numbers in (13), we have for the cyclic differences 

1. 
2. 
3. 
4. 
5. 
6. 
7. 

X all zeros in the seventh row. 

1 2 4 
0 1 2 3 

1 1 1. 3 
0 0 * 2 2 

0 2 0 2 
2 2 2 2 

0 0 0 0 
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Let us now return to (11) where our procedure was stopped. Multiply each element in each row of (11) by 2. 
We have 

3rd row 2 2 4 8 
(15) 2/?0'row 0 2 4 6 

l ^ r o w 2 2 2 6 . 
In the third row of (15),a = 2, c =4 and using (8), we have 

(16) xx = c-=^- = 1 

We can now get the 4 row. From the 4"^ row, we can get the 5 row and from the 5 row, we can get the 
6 f row before we are stopped by a non-integral value of xx. The cyclic differences are shown below. 

(17) 

6. 

5. 
4. 
3. 
2. 
1. 

13 

11 

As in (11) so in (17), the four numbers in row 6 (where we are stopped) are consecutive Tribonacci numbers 
T3 to TCi. A list of the first seventeen Tribonacci numbers is given below. 

(18) 

If we return to (17) and multiply each element in each row by 2, we can get rows 7, 8, 9 before we are stopped. 
The 4 numbers in row 9 are the 4 Tribonacci numbers 7, 13, 24, 44 (T5 to TQ, see (18)). 

The procedure is now clear. From (11), (15) and (17), whenever we are stopped, we multiply each element 
in each row by 2. This will allow us to go 3 rows upward. We are then stopped at a set of 4 Tribonacci num-
bers where the first two Tribonacci numbers overlap with the last two Tribonacci numbers of the preceding 
stopping point. If in (11) and (17), we take the cyclic differences from row 1 downward, we get 4 more rows 
before terminating in all zeros. We summarize the results. 

1 

1 
T1 

274 

Tn-1 

1 
T2 i 

504 
T12 

+ Tn-2 

2 4 
r3 U 

927 
T13 

+ Tn 

1 

T5 

1705 
T14 

-3, 

13 
T6 

n = 
Ti = 
T3 = 

24 44 
T7 T8 

3136 5768 
TIB T-16 

4, 5, 6, ... 
T2

 a 1 
2. 

81 149 
T9 T'fQ 

10,609 
T17 

Starting Tribonacci 
numbers 

T1 to T4 

(19) T3 to T6 

T5 to T8 

7> to T10 

Rows upward 
counting from 
row 1, 1, 1, 3 
row 2, 2, 2, 6 
row 4, 4, 4, 12 
row 8, 8, 8, 24, 

3 
6 
9 
2 

Rows downward 
not counting 

row 1, 1, 1, 3 
row 2, 2, 2, 6 
row 4,4,4, 12 
row 8, 8, 8, 24 

4 
4 
4 
4 

Total rows 

7 
10 
13 
16 

T2n+1 to T2n+4 row2n, 2n, 2n, (3)2n, 3(n + 1) rowi"7, 2h, 2n, (3)2n, 4 3(n+2)+l 

where n = 0, 1, 2, 3, — . 
If we take the four consecutive Tribonacci numbers T2n+1 to T2n+4, n = 0, 1, 2, 3, ••• we get all zeros in the 

3(n +2)+1 row. 
The starting Tribonacci numbers above begin with an odd-numbered term such as Tj, T3, T5, and so on. 

What happens if we start with an even-numbered term of the sequence, say T2, T4, T$f and so on? Actually, 
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we get all zeros at precisely the same row as we did when we started with the odd-numbered Tribonacci se-
quence Ti, T3, T5, and so on. The summary is given below. 

(20) 

Starting Tribonacci 
numbers 

T2 to T5 

T4 to 7> 
T6 to Tg 

Rows upward 
counting from 

row 1, 1, 3, 5 
row 2,2, 6, 10 
row 4, 4, 12. ?0 

Rows downward 
not counting 

row 1, 1, 3, 5, 
row 2, 2,6, 10 
row 4, 4, 12,20 

Total rows 

7 
10 
13 

T2n to T2n+3 2n~1,2n~1,(3)2n-1,(5)2n~1 3n (see column 2) 4 3(n + 1)+1 

where n = 1, 2, 3, •••. 
We can rewrite the results in (19) to agree with the values of n in (20). Thus, for/7 = /, 2, 3, 

(21) Odd numbered starting 
Tribonacci numbers 

T2n-1, T2n 
T2n+1, T2n+2 

Even numbered starting 
Tribonacci numbers (22) txl!u«uJ""n7«M^lu«tr.",M T2n / T2n+1, T2n+2, ^2n+3 

will give all zeros for the 3(n + 1)+ 1 row. 

Conclusion. What are 4 starting numbers which give all zeros at precisely row m, where m = 1,2, 3, — ? 

Number of rows for which 

(23) 

For/?? > 6, note that the numbers 6, 7, 8, 9, •••, are 
a. multiples of 3, so that m = 3(n + 1), n = 1,2, 3, - , 
b. multiples of 3 plus 1, so that m = 3(n + 1) + 1, n= 1,2,3, -, 
c. multiplies of 3 plus 2, so that/77 = J ^ ^ 1)+2, n = 1f2,3, - . 

Actually, we have already solved the problem for the case where m =3(n + 1) + 1, n = 1, 2, 3, ••• (form equal 
to a multiple of 3 plus 1) in (21) and (22), If we take the solution (21), we can easily get the row above (21) 
which will be the solution form =3(n+ 1j + 2,n= 1,2,3, --.Moreover, if we go downward from (21;) by 
taking the cyclic differences, we will have the solution for the casern = 3(n + 1), n = 1, 2, 3, —. Thus, 

we get all zeros 
m = 1 
m = 2 
m = 3 
m = 4 
m = 5 

4 starting numbers 
0, 0, 0, 0 
1,1, U 
2, 0, 2, 4 
0, 2, 2, 4 
1, 1,3,5 

(24) Upward from 
(21) 

Relation (21) 

Downward 
(25) from (21) 

T2n-1 

Starting Tribonacci Numbers 
T2n+1 + T2n - l~2n+2 

T2n-1 T2n T2n+1 T2n+2 

Solution for 
m = 3(n + 1) + 2 

m = 3(n+1)+ 1 

T2n ~ T2n-1 T2n + 1 ' T2n T2n+2 ~ 1~2n+1 ^2n+2 " ^2n-1 m- 3(n+ 1) 

\th , Example 2. Find the 4 starting numbers that give all zerosrfor precisely the 8 row. 
Solution. Here m = 8 and m is a multiple of 3 plus 2. From m = 3(n + 1) + 2 we have 8 = 3(n + 1) + 2 or 

n = 1. From (24) the 4 starting Tribonacci numbers are 0, Tf, Tj + T2, T4 and concretely from (18) 0, 1, 2, 4. 

Now 
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(26) 

0 1 2 4 
1 1 2 4 

0 1 2 3 
1 1 1 3 

0 0 2 2 
0 2 0 2 

2 2 2 2 
0 0 0 0 

Using (21), (24) and (25) we have constructed the following table. 

Table 

m 

6 
! 7 
! 8 
! 9 
I 10 
! 1 1 
I 12 

13 
I 14 

n 

1 
1 
1 
2 
2 
2 
3 
3 

LL 

4 Starting Tribonacci Numbers ! 

0, 1, 2, 3 
1, 1, 2, 4 
0, 1, 2, 4 
2, 3, 6, 11 
2, 4, 7, 13 
0, 2, 6, 13 
6,11,20,37 
7,13,24,44 i 
0, 7,20,44 

• • • • • • • 
[Continued from page 116.] 
where 

q = [k/2], r = k, mod 2, / < / < k, 

Pj(x) = (1/2)ln[x2 - 2x cos ((21 + 1h/k) + 1], 

Q,(x) = arctan f(x - cos ((2i + 1)ir/k)/s\n ((2i + lh/k)] . 

Proof. The G function has the series and integral representation [4, p. 20] 

t1 

G(z) « 2 E (-Dn/(z + n) - 2 J xz~1dx/(1+x) 
n=0 0 

from which the first part of (2) is immediate. The integration formula is recorded in [5, p. 20]. 

Lemma 2. 
(3) cb (j;k1f k2) = (1/S)[\p f(j + k1)/S)-^ (j/S)], 

where the psi (digamma) function is the logarithmic derivative of the gamma function and has integral repre-
sentation for rational argument u/v, Q <u <v, 

(4) ^(u/v) = -C + v J (xv~1-xu~1)dx/(1-xv) 
0 

= -C - Inv- (TT/2) cot (wn/v) 

Q 

+ 1L c o s (2uiTi/v)in(4 sin2/7r/W + (-1)ubr
0ln2 , 

i=1 

where\q = [(v- 1)/2], r = u/2- [u/2], Ch Euler's constant. 
[Continued on page 149.] 



AMATEUR INTERESTS IN THE FIBONACCI SERIES IV 
CALCULATION OF GROUP SIZES OF RESIDUES OF MODULI 

JOSEPH fVSAWDELSOPJ 
Department of the Army, Edgewood Arsenal, SVIarySand 21010 

As indicated in a previous paper [1] , the statement that the residues of any modulus M of the Fibonacci Series 
are periodic was investigated. It was found that, in dividing consecutive Fn by M, residues were formed in a 
Fibonacci-type series until a residue of zero was reached. The succession of residues so formed may be called a 
group and the number of residues in the group, including the terminal zero is the group size. (Note: "Group 
size" is identical numerically to "entry point" found in [2 ] . Editor.) 

If the residue immediately preceding the terminal zero is unity, the next residue will be an exact, repetition 
of the first residues calculated. Therefore, the group ending 1, 0 marks the end of the group and the period. The 
period may contain 1, 2, or 4 groups. For example, when the modulus M = 5, the period contains four groups: 

GROUP RESIDUES 
1 1,1,2,3,0 
2 3 ,3 ,1 ,4 ,0 
3 4, 4, 3, 2, 0 
4 2,2,4,LJ 

Note that each group ends in a zero and that the last group (and the period) ends in a 1, 0. Succeeding residues 
will merely recapitulate the residues in the order shown, starting with the first residue, 1, in the first group. 

After calculating the group and period sizes for successive moduli from 2 through 200 (see Table 1), certain 
regularities were noted, though the table apparently shows nothing of the kind. The group size GM (but not the 
period size) of any modulus given in Table 1 can be calculated from the following two rules. 

Rule 7. Determine the prime factors of the modulus, such that 

(1.1) M = ASiBmCn - , 

where A, B, C, — are primes and c, m, /?,•••,> 1. Then the group size Gj^ior modulus M is the product of the 
group sizes of moduli equal to these factors, i.e., 

(1.2) GM = G^i'GBm'Gcn'~ * 

except that, if any two of the factor group sizes G %, G m, G n, — , contain some common factor D, divide 
A B C 

one or the other of the factor group sizes by D so that the quotient obtained is prime relative to the other 
factor group size in the pair containing that factor D. Continue until all the quotients are prime relative to each 
other. 

Thus: 
G132 = G2*-G3-G7i = 6x4x 10. 

The numbers 6, 4, 10 have common factor D = 2. Divide 6 by 2, giving quotient 3 which is prime relative to 4. 
(Note that dividing the 4 by 2 is incorrect because the quotient 2 is not prime relative to 6.) This leaves 

G132 = 3x4 x 10. 
Now, taking the pair 4 and 10, divide 10 by 2, getting 5 which is prime to 4. The final result is 

G132 = 3x4x5= 60 

which will be found to be correct. 
145 
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As a second example of application of Rule 1, calculate 

Gr26 = G2-G3i-G7 = 3x 12 = 8. 
The pair 8 and 12 contain D = 4„ Divide 12 (not the 8) by 4 to get a quotient of 3 which is prime to 8. Notice 
that the quotient 3 is not prime to the first factor 3. However, the requirement is that the quotient must be 
prime to the other number in the pair, not to all the other factor group sizes. So there remains 

G126 = 3x8x3, 
The two 3's taken as a pair contain D = 3 and one of them is reduced by division to 1, making 

G126 = 1x8x3 = 24, 
which will be found to be correct 

Rule 2. Powers. If M contains only one prime factor A9', then c = 1. 
(2.1) (i) If the final digit in M is 3 or 7, GM=(M+ 1)/a; 

(ii) If the final digit in Mis 1 or9, GM=(M- 1)/a; 

where a is some integer, a>\\ and when e > 1, then 

(2.2) GM = AG^ . 

At least up to M = 200, there are only two exceptions to Rule 2. ForM = 5, GM = M = 5. Here, (2.1) does not 
apply, since 5 is not a final digit mentioned. However, since 5 is the only prime whose terminal digit is 5, this 
exception is easy to bear. It is interesting to note that G$ is the average of (M + 1)/a and (M - 1)/2 if a= I The 
second exception is that for M = 8, G^ = 6. Going by (2.2), G2

3 should be equal to 2G2*
 = ? x 6= 12. If rule 

(1.1) is applied, which Rule 2 specifically forbids, Gg comes out as 2 x 3 = 6. This exception cannot be 
explained. 

While these rules will enable one to calculate group size, one sould not deprive himself of the pleasure of ca l -
culating and recording the individual residues as described in [1] . Of particular interest is the examination of 
corresponding residues in successive groups. Look for equality of corresponding residues or for two residues 
whose sum isM. These will normally occur at the aGth residue, where G is one of the factor group sizes and a is 
an integer, a > 1. Thus, fox M = 200, 

G23 G5* = 6 x 25, 
the 75 t h residue in each of the groups is 50. 

Group 1 Group 2 
25f/7 75f/? 125^ 2hth lhth 125f/? 

Residue: 25 50 125 125 50 25 

Note the mirror image characteristic. This is again shown in the residues which occur in every sixth place of 
both groups. These residues always 
due already identified as 50. Thus: 
both groups. These residues always add up to M ~ 200 and are arranged symmetrically about the 75 resi 

Group 1 
8 

144 
184 
168 
40 
152 
96 
176 
72 
120 
88 
64 
50 

Group 2 
192 
56 
16 
32 
160 
48 
104 
24 
128 
80 
112 
136 
50 

Group 1 
50 
64 
88 
120 
72 
176 
96 
152 
40 
168 
184 
144 
8 

Group 
50 
136 
112 
80 
128 
24 
104 
48 
160 
32 
16 
56 
192 
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Note that no residue in Group 1 occurs in Group 2 but that corresponding residues in the two groups add up 
to M = 200. Also, these numbers have other unusual characteristics. Add any two and the sum will be some one 
or the other of the numbers or, if the sum is greater than 200, subtract M = 200 and the remainder will be found 
somewhere in the list Subtract any two numbers with the same result. Of course, the reader's inspection has 
already noted that the numbers above the central 50 are arranged as mirror images of those below. 

It is interesting to note that mirror-image molecules (stereoisomers) are of the utmost importance in bio-
chemical considerations and in heredity. Since the connection between the Fibonacci Series and certain facts 
in heredity has long been noted, perhaps further investigation of the self-reproductive nature of the Fibonacci 
Series and of its tendency to form mirror images would be fruitful. 
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Proof. By pairwise association and use of the relationship [3, p. 285], 

$'(x/S) s Z VU + x/S)2 

i=0 

which is uniformly convergent forx > 1, one establishes 
00 rI+ki 9 

u> (/; ku k2) = E J dx/(x + iS) 

i=0 j 

= (1/S)2J \l/'(x/S)dx 

j 

which integrates into the statement (3). The integral form of the psi function occurring in (4) is listed in [4, p. 
16] and the integral evaluation is a celebrated theorem of Gauss [3, pf 286;4, p. 18]. 

Corollary. Formula (4) can be extended to an arbitrary positive rational argument via the identity [4, p, 
16], 

n-1 

4j(n+z) = \IJU)+J2 1/(z + i>-
i=0 

An co-series with an arbitrary even number of k; parameters can be grouped into a series of successive cycles 
of parametric incrementation within which the terms are pairwise associated. This procedure leads to an expres-
sion in terms of the biparameter co-series, and application of Lemma 2 yields an explicit summation formula in 
terms of the psi function. 

Theorem 1. 
n-1 

u(j;k1,~',k2n) = Z ^(i + s2ilk2i+uS- k2j+i) 
i=0 

2n-1 

= aw E (-vj+1^((j+s2i)/s). 
i=0 

[Continued on page 172.] 
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INTRODUCTION 

This paper concerns the periodic lengths of the Generalized Fibonacci Sequence modulo/?, where/? is a prime 
integer. The GF sequence will be denoted by Hn, 0=1,2, —, for which 

(1) H1 = P, H2 = bP + cQ, Hn = bHn-t+cHn-2 <n > 2) 

and its periodic length reduced modulo p, i.e., the periodic length of the recurring series 

(2) Hn (mod/7), n = 1,2,-, 

will be represented by k(H,p). Clearly for/?= 1, Q = 0 the periodic length of the series 

(3) U1 = 1, U2 = b, Un = bUn-f+cUn-2 (n > 2) 

is given by k(U,p). We prove the following theorems. 

2. NATURE OF k(H,p) 

Theorem a. For primes whose quadratic residue is b2 + 4c, if (b,c,P,Q) = 1, then k(H,p)\ (p - 1). 

Proof. In the known formula, 

(4) Hn = (1rn-msn)/(r-s), (r + s = b, rs = -c, 1 = P- $Q and m = P-pQ), 

letr,s = lb ±\/(b2 +4c))/2so that it may be simplified by the use of binomial theorem to obtain 

(5) 2nHn = {b»(1-m) + {n
1)b^1s]ISr^Hl+m 

+ - + O (^/7P~+4c))n(1 - (-1)nm)}/(sjWr^4c)). 

Then it is easy to show for/7 = p and/? + 1 that 

(6) Hp = P (mod/?), Hp+1 ^bPtcQ (mod/?), 
if lb2 + 4c)(p~1)/2 = 1 (mod/?) and (b,c,P,Q) = 1. Hence the desired result follows. 

Theorem b. For primes whose quadratic nonresidue \%b2 + 4c, \f (b,c,P,Q)= 1, then k(H,p)\(p2 - 1). 

Proof. On using the known formula Hn =PUn +cQUn-1, (b2 + 4c)^p"1^2 = -\ (mod/?) and the follow-
ing set of congruences, viz., 

(7) Up ES - 7 , Up+1 - 0, Up+2 = -c, 

U2p+1 - I U2p+2 - 0, U2p+2 - <-c)2 

Up(p-D+p-2 = I Up(p-D+P-1 = 0, Upfo-D+p = lr-cf"1, 

it is easy to show that 

150 
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(3) Hp+1 = -cQ, Hp+2 = -cP, Hp+3 = -c(bP + cQ), 

H2p+2 = cQ, H2p+3 = (-c)2P, H2p+4 = (-c)2bP + c(cQ), 

Hp(P-i)+P~i - eft / / p f o - / ^ - r - d p " 7 ^ V + 7 - (-c)p-1bP + c(cQ), 

Hp(p+i) = -cQ, Hp(p+i)+i = (-cfP, Hp(p+1)+2 = (-c)pbP + c(-cQ). 

Clearly (-c)p =-c (mod/?) and (8) shows that k(H,p)\(p2 - 1). 

Theorem c. For primes of the form 2#(<?f + 1)+ 1, where t = h (mod 10) and 4gh + 2g + 1 =±7 (mod 10), 
if 
U{(p-l)/2g}+i+cU {(p-D/2g)-l = 0 (mod/?) and c

(p~1)/2g = 1 (mod U yp.1}/2gj+1 +cU yp.1)/2gy1 ), 

then /f|7/,/?j = fa - /j/#. 
Proof. From the well known formulas, 

(9) U2n+i = Un+1(Un+1+cUn-1) + (-1)n-1cn, U2n = Un(Un+1+cUn-1) and / / „ =PUn + cQUn.1 , 

let us set 
(10) ^ p - / M 7 - ° ( m o d u{(p-i)/2g}+l+cU{(p-l)/29yi). 

It is then easy to show that 

(11) u(p-1)/g = # (mod/?), U{(p-U/g}+i = 7 (mod/?) 
when it follows 

(12) H(p~D/g = # (mod/?) and H{fp-1)M+1 = p (mod/?). 
Hence, tf//,/?; = fa - 7j/# 
Theorem d. For primes of the form4#f-^ /, where t=h (mod 10) and 4gh + 1 =±1 (mod 10), if 

U(p-D/2g = 0 (mod/?) and (-c)(p~~1)/2g ^ 1 (mod/?), 

then tf//,/?J - fa - 7j/#. 
Proof. From the known formulas, 

(13) U2n = Un(Un+1+cUn.1), U2n+1 = Un+1(Un+1 + cUn.1) + (-1)n-1cn and U^-Un+iUn-l = (-c)n~1 , 

it is easy to show that 

(14) U(p..1)/g - 0 ( m o d ^ V ^ ) , Ufr-D/gyj - (-c)(p'1)/2g (mod U{p.1)/2g). 

when it follows 

(15) H(p-1)/g = Q (mod/?), H{(p-i)/g) + l = P (mod/?) . 
Hence tf//,pj = fa - /,!/#. 
Theorem e. For primes of the form 2#f2f-f2j + /, where t = h (mod 10) and 4g + 4gh + 1 = ±\ (mod 10), 

if 
U{(p-D/2g}+l+cU (p-D/2g - 7 = 0 (mod/?) and (-c)(p~1)/2g = 1 (mod/?), 

then k(H,p) = 2(p- 1)/g. 

Proof We have from (14), U(p-i)/g = ft (mod/?) and Uf(p-i)/g\+i = - 1 (mod/?) so that 

(16) H(p-D/g = - | Q (mod/?) and H^1)/gy1 = P (mod/?). 

Hence the desired result follows. 

Theorem f For primes of the form 2g(2t+ 1)+ /, where f = /) (mod 10) and4gh+2g + 1 = ±\ (mod 10), 
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U(P-D/2g = 0 (mod/7) and (-c)(p~1}/29 = 1 (mod/7), 

then Arf//,/?; = 2(p - 1)/g. 

Proof. Let us use (13) to obtain 
u(p-l)/g = ° (mod/7) and ( / { ( p - D / g y i = - 1 (mod/7). 

Then it is easy to show that 

(17) U2(p~j)/g = 0 (mod/7) and U [2(p-D/g}+1 = (mod/7) 
when we get 

(18) H2(p-i)/g = Q (mod/?) and H [2(p-i)/g)+l = ^ (mod/7) 
and the desired result follows. 

Analogously, we state the following theorems. 

Theorem g. For primes of the t®rm2g(2t + 1)- 1, where t = h (mod 10) and4#/? * i t y - 7 = ±3 (mod 
10), if 

U{(p+i)/2g} + i+cU{(p+1)/2gyi = 0 (mod/7) and c
ip+1)/2g = 1 (mod/7), 

then Ar|7/,/7,J = (p + 1)/g. 

Theorem h. For primes of the form 4gt - 1, where t = h (mod 10) and 4gh - / = ±3 (mod 10), if 

U(p+1)/2g = 0 (mod/7) and f-c)(p+1)/29
 s 1 ( m o d ^ 

then Ar/7/,/7J = fa + 7J/# 

Theorem i. For primes of the form 2g(2t + 2) - 7, where f = /? (mod 10) and 4# + 4gh - 1 =±2> (mod 

^{(pH)/2g}-l+cU{(p+1)/2gyi = 0 (mod/7) and (-c)
(p+1)/2g = 1 (mod/7), 

then AYA/,/7j = iY/7 * 7j/#. 
Theorem j. For primes of the form 2g(2t + 1) - 1, where f = /? (mod 10) and 4#/? +2g- / = ±3 (mod 10), 

if 
H(p+D/2g = 0 (mod/?) and (-c)

{p+1)/2g = 1 (mod/7), 

then AYM/7; = 2//7 * 7j/#. 
The proofs for Theorems g-j are left to the reader. 

REFERENCES 
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[Continued from page 112.] 
Therefore, 

(7) F(0,1) = [1,1.7,...] = 1+^4
2

+1 

or 

(8) J i m , ^ = 0 - = LtJL = 0 (the "golden" ratio). 

Expressing <p in this manner as the limit of a ratio of modified Bessel Functions appears to be new [2 ] . 
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Krishnaswami Alladi [1] defined the Farey sequence of Fibonacci numbers of order Fn (where Fn is the n 
Fibonacci number) as the set of all possible fractions Fj/Fj, i= 0, 1, —, n - 1;j= /, 2, —, n; (i <j] arranged in 
ascending order of magnitude, with the last item ](= F1/F2) and the first term 0 (= Fg/Fn^jl 

Now, the necessary and sufficient condition that the fractions h/k, h'/k', of Fn, the/7f/7 ordinary Farey section, 
be consecutive is that 

(1) \kh'-hk'\ = 7 
and the fraction 

(2) (h+h')/(k + k') 

is n o t i n g . 
All terms \x\Fn+i which are not in Fn are of the form (h +h')/(k + k'), where h/k and h'/k' are consecutive 

terms oiFn. (Proofs of these results are given in Hardy and Wright [3].) 
The usefulness of this result in the description of continued fractions in terms of Farey sections (Mack [5]) 

is an incentive to determine its Fibonacci analogue. (Also relevant are Alladi [2] and Mack [4].) 
In the notation of Alladi where f-fn denotes a Farey sequence of order Fn, the analogue of (2) above is: 
All terms of f-fn+i which are not already in f>fn are of the form (F; + F^j/iF^ + F^+^j where Fj/F^ and 

Fj/Fk+1 a re consecutive terms of f»fn (with the exception of the first term which equals Q/Fn). 
The result follows from Alladi's definition of "generating fractions" and it can be illustrated by 

f-f5\ 0/3, 1/5, 1/3, 2/5, 1/2, 3/5, 2/3, 1/1 
and 

M6: 0/5, 1/8, 1/5, 2/8, 1/3, 3/8, 2/5, 1/2, 3/3, 5/8, 2/3, 1/1; 

the terms of f-fe which are not in f-f$ are 

0. 1 = 9±J 1 = 1±! \. = 111 §_ = 3 + 2 
5 ' 8 3 + 5 ' 8 3 + 5 ' 8 3 + 5' 8 5 + 3 " 

It is of interest to consider the analogue of (1) and here we have a result similar to Theorem 2.3 of Alladi [1 ] . 
Our problem is the following; 

•f Ur)n = h/k, and f(r+i)n
 = h/k then to find kh' - hk' purely in terms of r and n. We have the following 

theorem to this effect. 
Theorem: Let f(r)n=h/k and f(r+i)n

 = h'/k'. Then 

rFn-f for r= 1 
kh'- hk" = < Fn.m for / < r < (n2 - 7n + 14)/2 

W for r>(n2-7n + 14)/2 , 
where 

m = 2 + f(sj8r- 15- 1)/2] 

in which [•] is the greatest integer function. 
153 
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Proof. The theorem follows if we combine Theorems 2.3 and 3.1a of Alladi [1 ] , By Theorem 2.3, \i h/k 
and h'/k' are consecutive in f>fn and satisfy 

Fj k k Fh1 

then 
(4) h'-h' = Fj-2 . 

So we first need to find the position of 1/F/ in f - fn. By Theorem 3.1a, 'rtf(r)n
= 1/Fn-m then 

(5) r = 2+{l+2 + 3 + -+) . 

So by (3) and (4) if f(r)n=h/k, and f(r+f)= h'/k'then 

kh'-hk' = Fn.m 

if and only if 

(6) IT-1-- < Ur)n < f(r+1)n < j—1— . 

Now (6) and (5) combine to give 

(7) 2+ {l+2 + - + m -2} = !!lLzM±£ < r < r+1 < 2 + {/ + 2 + ~ + m - 1} = *nLzM±l . 

Now the first inequality of (7) is essentially 

m2-3m+6 < 2r <^> (m - 3 - \ + ^ < 2r <=> (2m-3)2+15 < Br 

<=> m ' 8* - - < 2 + ^8r~ 15~ 1 = ^8r -15 + 3 
2 2 

Similarly the second inequality in (7) may be expressed as 

r+1 < mL=M±4 < = > r < inlzzJIL±2 <==> 2r < {m_y2}2+ 7 
(9)

 2 2, 4 

<=> 8r < (2m - 1)2 + 7 <=> ^-r—^±J < m m 

Now consider for/- >2 

(10) O < \^'r-~^ + 3 _. \lBr-1+ 1 = 2 + J8r -15- yjlfr^l < 1 

Now (10), (9) and (8) together imply 

m = ^EElLtJ] = 2+ [JEElLzJ] 

and that proves the theorem for r>2. For r = 1, the first statement is trivially true. 
Since it is of interest if kh' - hk' = 1, let us determine when this occurs. This will happen if and only if (by 

(6) and (4)) 

(1D yj < f(r)n -
By (5) and (11) we have 

r > 2+ [l + 2 + ~+n-4 \ = oLzM±M 

which is for 

and that completes the proof. 

r > n2 -7n + 14 

REMARK. Note, in our theorem, \if(r)n = h/k, and f(r+i)n=h'/k', we need not know the values of h/k, and 
h'/k'to determine kh'-hk". This is determined purely in terms of rand/7. 
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SUMS OF PRODUCTS INVOLVING FIBONACCI SEQUENCES 

DORON ZEILBERGER 
The Weszmann Institute of Science, Rehovot, Israel 

DEDICATED TO JANE LEGRANGE 

Definition. {Hn} is Fibonacci if Hn = Hn-.f + Hn-2, n > 1. Every Fibonacci sequence { / / „ } can be 
written a$Hn = Aan + B$n, where a,j3are the roots six2 - x - 1 = 0. Thus 

Theorem. 
n 

E *vHiKi= ° 
u=o 

for any two Fibonacci sequences if and only if 
n 

P(z,w) = Yl ajjz'w1 

U=0 
vanishes on {(a, a), (a, $), ($, a), ($, &)}. 

Example. (Berzsenyi [1] ) : If n is even, prove that 
n 

E HkKk+2m+1 = Hm+n + lKm+n + 1 - Hm+iKm+i + HQl<2m+l • 

k=0 

The corresponding P(z,w) is easily seen to satisfy the hypothesis of the theorem (using a/3= - 1 , a2 - a - 1 =0). 
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1. INTRODUCTION 

in this note we consider sequences of numbers defined by the recursion formula 

(1) an+2 = aan+1+$an, n = 1,2, •••, 
with real parameters a, 0 and arbitrary real numbers au a2. The sequence ian\ will be called generalized 
Fibonacci sequence and its elements an the n generalized Fibonacci number. Sequences like these have been 
introduced previously by, for example, Bessel-Hagen [1] and Tagiuri [4 ] . Special cases of (1) are known as the 
classical Fibonacci sequence with a = j3 = 1, al = a2 = 1, the Lucas sequence with a = j3= 1, al = 1, a2 = 3, the 
Pell sequence with a = 2, |3 = 1, ax = 1, a2 = 2 and the Fermat sequences with a= 3, ^=-2,al = \,a2 - 3 or 
al = 2, a2 =. 3. Basic properties of the generalized Fibonacci sequences have been given by A. F. Horadam [3] . 
In this paper we consider generalized Fibonacci sequences from an analytic point of view. We start with a real 
representation of the generalized formula of Binet in the second section. In the third section we repeat and 
complete some properties of finite sums of generalized Fibonacci numbers [3 ] . With these preparations we are 
able to characterize convergent generalized Fibonacci sequences in the fourth section and finally in the fifth 
section we give some limits of Fibonacci series. 

2. BINET'S FORMULA 

For the generalized Fibonacci numbers defined by (1) the (generalized) formula of Binet holds. 

(2) an 

with qj, q2 defined by 

32-37Q2 n-1 .3JQ2-32 n-1 
q ^ -t — — q2 Q1-Q2 Q1-Q2 

^-J+l /V*' Q2 
a 
2 

n = 12, 

! - + * • 

The proof of (2) can be given by induction. 

Theorem 1. Binet's formula (2) has the following real representations 

-,2 
(3a) 

(3b) 

(3c) 

a2-aiq2 n-1 +
 aJ±LZ^2 n-1 

Q1-Q2 1 Q1-Q2 ' 

n-2 

+ $> 0, 

(f) [(n-1h2-%(n-2iai]. \+$=0. 

yn-2 
fa2 sin (n - 1)(p - a-jr sin (n - 2)<p], 

sin (p 

r: = V=0 > 0, 

+ (S < 0, 

>n = 1, 2, - , 

0 < 0; = Cretan ^ ~ (a/2> 

- i + v 
< n, 

with q 7, q2 defined as in (2). 

Proof. Setting R: = (a2/4) + (} the case /? > 0 follows immediately from (2). If R < 0, then q-j and q2 are 
the conjugate complex numbers 
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m = ^2±\SJ-R 

or in polar form q% = re±,(P\N\th r = yj-fi > 0 and 

tan 1 - cos ( 
2 sin0 j_R 

respectively. Further rewriting (2) with q2 ='ql 

_ . - L br 0 < 0 * 2 arctan — 2 < rr, 

- A ? - 2 n-2 n-/ -n-1 
— q i — q i q i — q i 

an = ajqjQt 1L- =J— + a2
 7 7 

Q1-Q1 

employing the polar form mentioned above and using 

m —m 
q 1 ~ ql = m-1 immi 

sin ( 

Q1-Q1 

m = 1,2, - , 
Q1-Q1 

we conclude statement (3c). (3b) follows from (3c) as limit for 0 ^ 0 . From (3a) and (3b) we get two special 
cases, which will be useful in the following discussion. 

Firstleta + /3= 1. Then 

(4) a-2 a-2 
(n - 1)a2- (rr-2)ai, a = 2, 

n = 1,2,-. 

Let be | 3 - a = 1. Then 
.a2 + a1 

(5) 
{a+ i r i + s j ( o ^ 1 ^ ( _ i r K a^_2/^ 

J n = 1,2,-. a+2 a+2 
(-Unf(n- 1)a2 + (n-2)ai], a= -2, 

3. SUMS OF GENERALIZED FIBONACCI NUMBERS 

In this chapter we consider some simple properties of finite sums of generalized Fibonacci numbers. 
Property 1. The sum of the first/? generalized Fibonacci numbers is given by 

n 
(6a) ] T av ^~z~j fan+1 + (3an - a2-(1 - a)ai], n = 1, 2, - , 

V=1 

tfa + Pt 1 and by 

(6b) 
n 

V=1 

[n^LLl>Zl^+ E1Z11 n - { a - i n , at 2. 
a-2 (a-2)2 

l^[n(a2-a1) + 3a1-a2] , a = 2, 
>n = 1,2,-, 

i f a + |3 = 1. 
Repeated use of the recursion formula yields statement (6a). 
If a + ]3 = 1, a $ 2, we get the first part of (6b) from (4) using the formula of the finite geometric series. The 

second part in (6b) follows immediately from (3b) with a= 2. Since the following properties can be shown in a 
similar way, we omit their proofs. 

Property 2. The sum of generalized Fibonacci numbers with odd suffixes is given by 

(7a) Y, d2V-1 = 3-1 + 1 

V=1 a2-($~1)2 
[a2n + (1(1 - $)a2n- J-aa2-$(1- $)a 7] t 

n= 7,2, - , i f a + j 3 M , j 3 - a / = 1, and by 



158 CONVERGENT GENERALIZED FIBONACCI SEQUENCES [APR. 

(7b) J^ a2v-i = 

i f a + 0= 1 and by 

(7c) Y< a2v-i 
V=1 

„ tJLlllilz^ + JUL*L fj-fa- 1)2"], a t 2, 
Z~a a(2-a)2 

n[(n - 1)a2 ~(n- 2)a7J, a = 2, 

2 + a a(2 + a)2 

-n[(n - 1h2 + (n- 2)a7], a = -2, 

> n = 1,2, 

n = 1,2, 

i f / 3 - a = 1. 
Property 3. The sum of generalized Fibonacci numbers with even suffixes is given by 

n 

(8a) £ a2v 1 
a2-((3-D2 

[aa2n+ 1+N1- P)a2n +($- Va2 -afiaj], n = 1, 2, ••, 

i f a + /3f 1 , 0 - a £ 1, and by 

a2- a j(a- 1) (a- 1)(a1 - a2) 
2~a '' a(2-a)2 

n[na2- (n - DajJ, a = 2, 

11-la- 1)2n], at 2, 

(8b) J2 a2v=\ 
V=1 

if a + j5= 1 and by 

n = 1,2, -

(8c) £ a2v 
V=1 

(n BizajiLto) _ (U^Maz + ail [1^(1 + a)2n]/ a ; _2/ 
2 + a a(2 + a)2 

n[na2 + (n- 1)a7], a = -2, 
n = 1,2, - , 

i f 0 - a = 1 . 
Property 4. The sum of generalized Fibonacci numbers with alternating signs is given by 

(9a) £ (-1)V'1^ = a~~kl [(-1>n+1(an+l-$an)~2 + (a+1)ai], 
V=1 

n = 1,2, - , i f | 3 - a £ 1 and by 

a7(1 + a) - a2 a7+a2 

(9b) £ (-lF1
av 

V=1 

+ ——±- [1 + (-Dn-1(a+1)n], at -2, 
2 + a (2 + a)2 

| f(n- 1)a2 + (n-3)a7], a= -2, 

n= 1,2, - , i f 0 - a = 1. 
We terminate this section with one nonlinear property. 
Property 5. The sum of squares of the generalized Fibonacci numbers is given by 

< 1 0 > £ 4= JTf.][a1on + (a2-aa1)rn.1+^a2], 0 t -1, n= 1,2,3,-, 
V=1 P 

with on and rn defined by 

°n: = £ a2v-l. 
v=1 

n 
T" : = £ a2V • 

V=1 

The explicit form of (10) may be found with the formulas (7) and (8). 
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4. CONVERGENT FIBONACCI SEQUENCES 

Using Binefs formula (2) we are able to characterize the convergent Fibonacci sequences. 

Theorem 2. Generalized Fibonacci sequences are convergent if and only if the parameters a,/3 are points 
of the region (see Fig. 1) 

(11) D: = {(a,P) e R2\a + $ < 7, $-a<1, 0 > - 7 } . 

In the interior D of the region D the generalized Fibonacci sequences converge to zero. On the bounday 
a+f}= 1, 0 < a < 2, - 7 < 0 < 7, 

the limit a of the generalized Fibonacci sequences is given by 
, x ap + a iB 

<12> *•• = „ ' ! ! ? . a" = J77f • 
Proof. With the representations (3a)—(3c) for Binet's formula we conclude the following necessary and suf-

ficient conditions for the convergence of the generalized Fibonacci sequences 
n2 

-1 < Qi, Q2 < /, %• +P > 0, from (3a), 

2 

\f\< I ~ +$ = 0, from (3b), 

— n2 

r = V-j3 < 7, j - +$ < 0, from (3c). 

This means in detail in (3a) 

which leads together with ^- + $> 0 to a + fi< l,a<2, and in an analogous way from 

-/ < | - Jj+P < / 
to | 8 - a < 1, a > - 2 , by (3b) we have a2 = - 4 f t - 2 < a< 2, and from (3c) a2 < - 4 f t j3 > - 1 . All these con-
ditions yield the required convergence domain D for the parameters a, ft In D it follows from 

n\\m^ qy2 = 0, \q%\ < 7, from J i m ^ n ( | ) " = 0, | | | < 7, 

and from 

that all limits vanish. On the boundary of DAa + $= 1, \a\ < 2, we get from (4) for/7 -> °° the required result1 

a - - i i m a - ^ ^ a ~ 1>~32 - d2 + $a1 
'• ~ nU™~an-—a-2 JTJ- ' 

5. FIBONACCI SERIES 

Finally we will consider some Fibonacci series, which are defined as convergent series with generalized Fib-
onacci numbers as terms. Since terms of convergent series necessarily converge to zero, we have to choose the 
parameters a,0from the interior D_ of the convergence domain D (11). Tending n to infinity and using Theorem 
2 we get the following limits from the properties 1—5: 

(13) ±av,nllh^l, fcflefl. 

1 ln [2] a special case of this general result is mentioned wi th a = (3 = 1/2/ a = (ax + 2a2)/3. This result is obtained 
by the only use of the recurrence relation (1). 
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Fig. 1 Region D of Convergence of Generalized Fibonacci Sequences 

(14) 

(15) 

(16) 

(17) 

Z , 32V-1 ~ 
V=1 

a2v = 
V=1 

(or +$- Da i-aa2 
a2-(p- 1)2 

(fi- 1h2-a&a1 

a2-($-1)2 

(a,(S) e D, 

(a,j3) e D, 

E , nV-1 (a+ 1hi - a2 i o\ n 
(-1) av = -—zjTT^' {a' V G - ' V=1 

2 _ a2(P- D- 2aPa7a2 + [a2(1 + $> + $- 77a? 
(a, P) e D 

Naturally this list can be extended to other, e.g., cubic or binomial, sums using Theorem 2. 
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ON GENERATING FUNCTIONS 

0. R. AINSWORTH 
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Theorem. Consider the following three statements: 

(1) 

(2) 

WW) = E QnMt0 

n=0 

In W.t) = E -'J1-
n=1 

(3) n<t>n(x) = V Ak(x)<t>n-k(x) . 
k=1 

Any two of these statements imply the third. 

Proof. For convenience in sum manipulation, let us define AQ= /SO that (3) becomes 
n 

(4) * (n + 1hf>n(x) = £ Ak(x)(pn.k(x). 
k=0 

We also normalize the (pn (x) so that §Q(X) = t 
Now assume that (1) and (4) are true; then from (4) we have 

or 

Hence by (1) 

E (n + Wnt" = £ L Ak<t>n-kt". 
n=0 n=0 k=0 

_d_ 
dt 

_d_ 
dt 

t E tnt" 
n=0 

= E E Ak<t>nt"+k 

n=0 k=1 

t^(x,t) E On? E Akt* , 
n=0 k=0 

Therefore 

or, by integration, 

_d 
dt 

t\p{x,t) W*.t) E Akt
k 

k=0 

dt - E Akt
k 1, 

t\p(xrt] k=0 

k Akt In imx,t)l =Yt^lT +^t+K(x). 
k=1 

161 
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Hence 

\n^(x,t) - E ^j-+K(x). 
k=l 

We may assume K(x) = 0 since we assume the <pk(x) do not all have a common factor. 

In Wx,tt = E Akr 

k=1 
k ' 

which is statement (2). 
If we assume (2) and (4) are true, then we have from (4) 

£ (n + lH>„tn = £ £ Ak<pn-kt
n = £ <t>nt° £ / I * , * . 

/7=£7 n=0 k=0 n=0 k=0 

or 

dt t E 0 n ^ 
. n=0 

Divide and integrate, and we obtain 

k~1 

< E 0* *" 
A7=0 

-' E ^^ E ^ 
/7=0 k=0 

V ^ L L -f lnf^-ln/^W. 
" k 

k=1 
Therefore, using (2), 

(5) £ (}>n(x)tn = K(xMx,t) 
n=0 

From (2), In ty(x,0) = O, so that i)(xfO) = I Let f -* 0 in (5) and we get (pjx) = K(x), so K(x) = 1 since 
p0(x) = 1. Hence 

A7=0 

which is statement (1). 
If we assume (1) and (2) are true, we get 

Akf 
\x\M(x,t)l = E H f - +A0\nt 

k=1 

by adding In t to both sides of (2) and remembering thatAo= 1. Replacing \Jj(x,t) by its sum given in (1) and 
differentiating with respect to t, 

$ £ *nf+1= £ fntn+1 £ Akt-U%>. 
n=0 n=0 k=l 

/7=0 /?=0 A:=0 A?=0 Ar=0 

Equating coefficients of tn, 

(n + 1ht>n = £ <pn-kAk 

k=0 
which is (4). 
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By rewording the previous theorem, we obtain this rendition: 
M - - S ^ f " , sothatfi// = 2 ^ t ^ , then 

1 n 

e = Yl®ntn, where n®n = ] P * 0 * - / 0 , i - * . 
k=1 

This naturally leads to all manner of strange generating functions. Omitting the trivial intervening steps, we 
list a small sample and note it is mildly surprising that the left-hand side should generate such a nice set of 
coefficients. 

11 

2 I 

where 

where 

<p {t}exv{xt}exp{j0(t^/l - x 2 j } - H^nt", 

n 

"$" = £ ( JfZJJJ ) Pk-1<Pn-k • 
k=1 

exv{t(]-2xt + t2r1/2 } = X > " ^ 
n 

n(t)n = Z kPk-1<t>n-k • 
k=1 

where 

(1-t)k 

. " k(a + $+ Vk-1 naB . 
"On* E -iJTnlT-7- PkWk • 

41 

where 

(1 + a)k-1 

e x p { r V - / r ' } = E ^ f " , 

n 
k 

k=1 
"*«- T.ijrz-fy, )Bk-i<Pn-k-

In these equations, Pn and P%P are the Legendre and Jacobi polynomials, respectively, and Bn are the Bernoulli 
numbers. The (f)n are polynomials of degree/? except in 4_|. 

The class of integrals easily obtained from these generating functions should delight any collector of the 
esoteric. 

We close with two direct applications of the Theorem. Both are known, but the derivation is quite simplified. 

Since 

and -(1+a)\n(1-t)-j^ = 2 

n=0 

n=0 

1 +a-x(n+ 1) l fn+1 
n+1 J 

then nLn = J^ (1 + a- kx)L*_k, 
k=l 

where L„ are the Laguerre polynomials. 

6l Since (1 -2t cosx-f t2 )~1/z = J^ Pnfco$x)tn and -7A In (1 ~ 2t cos* + t2)= £ — - 7 cosrx 

n=0 r=1 

then (n + 7)Pn(cosx) = 23 coskxPn.k(cosx). 

k=0 
This work was supported in part by a grant f rom the Research Grant Committee of the University of Alabama, 
Project 763. -kkkkkkk 



A RESULT IN ANALYTIC NUMBER THEORY 

K.JOSEPH DAVIS 
Department of Mathematics, East Carolina University, Greenville, North Carolina 27834 

The purpose of this note is to state and prove a result in analytic number theory that seems largely to have 
been overlooked. The usefulness of this result is illustrated by applying it to obtain an extremely simple proof 
of an estimate for a certain set of integers. 

Let the letter/7 be used to denote primes. 

Theorem 1. If fh multiplicative, then a necessary and sufficient condition that 

n=1 

converge absolutely is that 

n £ \ffpn)\ 
p n=0 

converge. Furthermore, in the case of convergence, 

£ ffn) - n ( £ f(Pn)) . 
n=1 p \n=0 J 

Before we prove the theorem a few comments seem to be in order. The necessity is proved by Hardy and 
Wright [7, Theorem 286]. However, Hardy and Wright do not prove or even state the sufficiency condition 
above. Both necessary and sufficient conditions are stated by Ayoub [ 1 , Theorem 1.5], but his statement of 
the sufficiency condition is careless and the proof given is not adequate. 

Proof of Sufficiency. Let the increasing sequence of positive primes be denoted p / , P2, ••• and let t be 
a fixed integer. Then the general term in the product 

h(t\f(p?>\) 
i=1 x k=0 

is of the form 
\f<P°ti)\f(pas)\-\f(pV>\ = \f(P*lPas-PV>\. 

where 
a, > 0 (1 < / < t). 

The last equality is true because f is multiplicative. An integer n will appear in this product (as argument of f) if 
and only if it has no prime factors other thmpi,p2, —,PP By the unique factorization theorem it will then 
appear only once. Thus 

I I E V(Pi)\ = HV(n)\ , 
i<t k=0 (t) 

where the last summation is over all integers n whose only prime factors are in the set/7 /, P2, ••*, Pp Thus 

n f \f(Pkt\ - f«im. n £ \f(p*)\ = ^ £ \f(»>\ • 
p k=0 i<t k=0 (t) 
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Now 
Pt 

^ E \f(n>\ < E I ^ I =Bt. 
n=1 (t) 

since the summation on the right includes at least those on the left. Since {Bt} converges, it is bounded, and 
therefore [At] is a bounded, non-decreasing sequence. The fundamental theorem on monotone sequences ap-
plies and hence iAt} converges. But {At} is a subsequence of the partial sums {sn}oi the series 

£ I'M-
n=1 

It follows that [ ^ } converges and the proof is complete. 
Before we obtain the asymptotic result mentioned above we need the following definition. Let L represent 

the set of positive integers n with the property that/7 divides A? implies that/?2 divides n. An integer in L is call-
ed a square-full integer. The characteristic function of L will be denoted by 1(n) and the summatory function of 
1(n) will be denoted Ux), so that 

LM = E 7M-

The proof of our result depends upon a famous theorem on series due to Kronecker (cf. [9, p. 129]). We give 
it in arithmetical form. 

Lemma 1. If f\s an arithmetical function and 

E . f(nt/n 
n=1 

is a convergent series, then f has mean value ft that is, 

lim 1- Y f(n) = 0. 
n<x 

We now prove that /.has density 0. 

Theorem 2. The set L has density 0; that is, 
lim ±M = 0 . 

Proof. By Lemma 1 we need only show that XUni/n converges. But by Theorem 1 and the multiplicativity 
of Un), it suffices to show that 

n ( s ^ ) 
p n=0 H 

n ( i \ H 1 ) - n(i+f + 7-^ *•••)- n e+"p2 +^3+-> = n ( / ^ ) 

p Kn=0 P 

is convergent By definition of Un) 

,2 

' n=0 P 

which is convergent. 
Earlier proofs of this result were given by Feller and Tournier [6, §9] and Schoenberg [10, §12]. In addi-

tion Erdos and Szekeres [5 ] , Hornfack [8 ] , and Cohen [2] , [3] have considered generalizations of the above 
problem. For a discussion of previous results including refinements of Theorem 2, see [3] and [4 ] . 
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ADDITIVE PARTITIONS I 

V. E. HOGGATT,JR. 
San Jose State University, San Jose, California 95192 

David Silverman in July 1976 found the following property of the Fibonacci Numbers. This Theorem I was 
subsequently proved by Ron Evans, Harry L. Nelson, David Silverman, and Krishnaswami Alladi with myself, 
all independently. 

Theorem I. The Fibonacci Numbers uniquely split the positive integers, N, into two sets AQ a n d ^ 
such that 

AQ U At = N 
A0 n At = 0 

and so that no two members of AQ nor two members of A 7 add up to a Fibonacci number. 

Theorem. (Hoggatt) Every positive integer n £ F^ is the sum of two members of A0 or the sum of 
two members o f / l ; . 

Theorem. (Hoggatt) Using the basic ideas above the Fibonacci Numbers uniquely split the Fibonacci 
Numbers, the Lucas Numbers uniquely split the Lucas Numbers and uniquely split the Fibonacci Numbers, and 
\5F}^=2 uniquely splits the Lucas Sequence. 



PROOF OF A SPECIAL CASE OF DIRICHLET'S THEOREM 

BARRY POWELL 
195 Lake Ave. West, Kirktand, Washington 98033 

For any prime p I give a simple proof that there are infinitely many primesq = -\ mod/7, a special case of 
Dirichlet's Theorem that if g.c.d. (a,m) = 1 there are infinitely many primes =a (mod m). The proof is of inter-
est in that it utilizes several number-theoretic properties of the Fibonacci Numbers, which are also developed 
herein, 

In this paper Fn represents the Pseudo-Fibonacci Numbers, defined as FQ = 0, F-j = 1, and Fn+-j = aFn +bFn.j, 
where a and b are non-zero relatively prime integers. 

Fn may then be written non-recursively as 

ia + ̂ ]a~rT4b\n / a - s/a
r+~4b \n 

d) /:„ = Jz_r_LLL_n—L . 
sja2 +4b 

For a derivation of this result see Niven and Zuckerman [1 ] . 
We will need the following lemmas: 
Lemma 1. For any positive integer r that divides Fn for some n, let h be the smallest positive integer such 

that r divides f/,. Then h is a divisor of n. 

Lemma 2. For any positive integer /?, g.c.d. (Fn, b) = 1. 

These results are noted in a paper by Hoggatt and Long [2] . 

Lemma 3. For any odd primes, 
q-1 

(2) Fq ^(a2 + 4b)2 (mod?) 
9zl 

(3) 2Fq+1 =a(a2 + 4b]2 +a (mod?) 
<3z± 

(4) 2bFq-i = ~a(a2 + 4b) 2 +a (mod q). 

Proof of Lemma 3. Replacing n by q in (1), expanding the right-hand side by the binomial expansion, 
and multiplying by 2q~ we get modulo?, 

2q"1Fq = (a2 + 4b) 2 . 

This gives (2) because 2q~ = 1 mod q. 
Similarly, if we replace n by q + 1 in (1) and expand, noting that ( g + 7 ) =0mod q for2 < / ' < ? - 7, and 

then multiply by 2q, we get 
q-1 

2qFq+1 = (q+1)a(a2 + 4b) 2 +(q + 1)aq (mod?). 

this reduces to (3) by use of aq =a mod ?. Then (4) follows from (2) and (3) and the equality 

2Fq+1 = 2aFq+2bFq-.<i. 

Theorem (Dirichlet). For any primep there exist infinitely many primes? = —1 (mod/?). 
Proof lip = 2 every odd prime satisfies? = - 1 (mod 2). So henceforth let/? be a fixed odd prime. Suppose 
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there are only finitely many primes q-j, q2, —, qm satisfying the congruence. By Theorem 2.27, Chapter 2 of 
Niven and Zuckerman [3 ] , there exist (p.- 1)/2 positive integers k < p - /satisfying k*p~"/2' = 1 mod p. 
Hence there also exist (p - 1)/2 positive integers/ < p - 1 satisfying y ' ^ " = - 1 mod/?. Let X be one of 
these positive integers/and define the positive integers a = 2, 

m 
0 = \ \ \ q f t b = 46-1. 

1=1 
It follows that 

(5) a2 + 4b = 160, i ± ^ - t ^ b = 7+2^0 m 

Using these values of a and/7 in<1) and using (2) from Lemma 3 with q replaced by/?, we see that 
p-1 P-1 P-1 

(6) Fp = (a2 + 4b) 2 = (166) 2 = 4P~]'(Uqjf^X2 ss - / (mod/?). 

Also from (]) and (5) we see that 

(7, Fp = lI±M]Lzti=l^, Fp s p ( m o d m, 
P 4^/6 P 

where the second result here is obtained by expanding the first result and taking everything modulo 40. 
Now let q be a prime factor of Fp. From (6) we see that q? p, and from the second part of (7) we see that? 

is not a divisor of 46, so? is different from the primes 2, qj, q2, —, qm • 
We note that 

q-1 q-1 q-1 g-1 

(a2 + 4b) 2 = (160) 2 = 4q-1(nqj)
q-1\2 = \ 2 EE e mod?, 

where e = +1 ore= - 1 . 
If e = +1 we use (4) from Lemma 3 to conclude that? is a divisor of 2bFQ-j. Butq is odd and by Lemma 2 is 

not a divisor of b, since (Fp, b)= 1 and q is a divisor of Fp, and so? is a divisor of Fq„f. By Lemma 1,wiith n 
replaced by q - 7, h replaced by /7, and r by q, we see that/7 is a divisor of ? - 1 anti$oq= 1 mod/7. Now if 
this congruence holds for every prime divisor? of Fp it would follow from the multiplication of such con-
gruences that Fp = 1 mod/7, contrary to (6). Hence we must have e= - 1 for at least one prime divisor? of Fp. 

In the case e= - 1 we use (3) from Lemma 3 to conclude that q is a divisor of 2Fq+f, and so a divisor 
of Fq+i. By Lemma 1 we see thatp is a divisor of q + 1, so q =—1 (mod/?), contrary to the assumption that 
Q1 r Q2> '"> Qm a r e t n e o n ' y primes satisfying this congruence. Q.E.D. 

Corollary. From the same analysis used to establish the above result, with a = 2 and b = 4\- 1 substitut-
ed into (1),/7-1, for any prime/7 

F - (1+2j\)p-(1-2^fk)p 

is divisible by a prime ? = -1 fmod/7)s Since \<p - 1, a prime 

q = - 1 (mod/?) < (2jj^l + Dp • 

For a proof of the existence of infinitely many primes q = - 1 (mod m), (m any positive integer > 2) using 
polynomial theory, see Nagell [4] . For a simple proof of the existence of infinitely many primes? = 1 (mad/7?) 
see Ivan Niven and Barry Powell [5 ] . 

ADDITIONAL RESULTS 

Theorem: Consider any odd prime/? which dioes not divide (a2 +4b), where (a,b)= 1 as in (1),/7-7. 
Then Fp = 0 mod q, q prime, -* q e 1 mod p or q = - 1 mod p if and only if 

(a2 + 4b)2 = 1 mod? or (a2 + 4b)2 = - 1 mod?. 
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[Co-discovered by Professor Verner E. Hoggatt, Jr., per telephone communication.] 
Proof. We have, from (1), p. 1, 

ta + sf^Tlb \p (a-J^+Jb \p 

Fp = 
x/a2 + 4b 

Multiplying both sides by 2P~7 and using the binomial expansion, we get 

(8) 2p~1Fp = pap'1 mod(a2 + 4b). 

Fp = 0 mod? -» q J( (a2+ 4b). 
Otherwise 

q\(a2 + 4b) -* 2p~1Fp == pap'1 mod q from (8), 

-> pap~ & 0 mn&q -+ q\p N q\a. 

q\p->q=p^Fp^O mod/? -> p \ (a +4b) 

by (2) of Lemma 3, contradicting the assumption that/7 J((a2 + 4b). q \a, since 

a = F2 = 0 mod q -* 2 \p 
by Lemma 1, and/7 is odd. 
• TITUS from Lemma 3, (3) and (4), q_f 

Fq+1 ~ 0 mod q iff (a2 +4b) 2 = -1 modgr 
and 

2bFq„i = 0 modq iff (a2 + 4h) = / mod q. 

Fp=0 mod q and Fq+j =0 mod q -*q = -1 mod/7 by Lemma 1 with /7 replaced by/7. Since 

p\(q+1) -* Fp \Fq+i q-j 

Therefore Fq+1 = ^ m o d ^ . Thus Fq+y = # mod gr iff q = - / mod/7. Hence (a2+4b) 2 = - / mod gr iff gr = - / 
mod^. 5z.7 

Similarly f^_; = 1 mod gr iff gr = 1 mod/7 and hence (a + 4b) = 1 mod gr iff gr == 1 mod/7 follows from 
Lemma 1, Lemma 2, and the fact that/7 |(q - 1) -+ Fp \ Fq-i. 

Conjecture. For/? any positive integer sufficiently large, there exists at least 1 prime q = ±1 mod n divid-
ing Fn. 

EXAMPLES. ^75 of the Fibonacci sequence 
= 610 = 61-10 and 61 = 1 mod 15. 
F18 = 136-19 and 19 = 1 mod 18. 
F20 = 165-41 and 41 ^ 1 mod 20. 
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It is known [1 , p. 142] that if X and \i are fixed positive irrationals such that JJL\ = JJL + X, then the equation 
fnXJ = [mil] has no solution in integers m and n, where [x] denotes the greatest integer less than or equal to 
x. We prove the following generalization. 

Theorem. Let X and fi be fixed positive irrationals. The equation [nX] = [mil] has no solution in inte-
gers/7? and n if and only if [iX = b[i + cX for some integers/? and c such that X> b > 0. 

Proof. LetZdenote the set of integers. Suppose first that(iX= bji + cX, where b,c^Z, X > b > 0. Assume 
(for the purpose of contradiction) that 
(1) [n\] = [mil] 

for some m,n e Z. Write 6 = JU/X, e = mO - [md]. Since fi = bd + c, 6 is irrational and thus 0 < e< 1. By (1), 
nX = mil + o, where - 1 < o < 1. Thus n = mO + o/X = [mO] + (e + o/X). Since X > 1, - 1 < (e + o/X)< 
2. Therefore, n = [md] + 8, where 5 = 0 or 1. 

We have 
(2) mil = mbO + mc = be+ b[md] + mc. 
Hence, 
(3) [mil] = [be] +b[md] + mc. 

We have, using (2), 

(4) [nX] = [(m6 + 8-e)X] = [mii + (8-e)\] = [be + b[mB] + mc + (3 - e)\] 

= [be + (8 - e)X] + b[md] + mc. 
Since the left sides of (3) and (4) are equal, 

[be] = [be+(8-e)\]. 
If 5 = 0, then [be] = [lb - \)e], a contradiction, since be > 0 and (b - \)e < 0. If 8 = 1, then 

b > [be] = [be + (1-e)X] > [be+(1-e)b] = b, 

a contradiction. This proves that there are no integers m,n for which (1) holds. 
To prove the converse, it suffices to show that (1) has a solution in each of the following three cases. Case 1: 

li, 0, and 1 are linearly independent over the rationals, i.e., if aii\ = b{i + cXwlth a,b,c e Z , then a = b = c = 0; 
Case 2: aii\= bii + c\, where a, b, and c are relatively prime integers, a > 0, and a £ 1; Case 3: ii\ = bii + c\ 
where b,c e Z and either b < 0 or X < b. 

Case 1. By Kronecker's Theorem [2, p. 382], there exist/7?, Z j , z2 eZsuch that 

mil = 1/2+ zx +E, 
and 

/7?<9 - 1/3(1+ V+z2 +E2 , 
where |£/| < 1/6(1 + X) for/ = 1,2. Then 

e = m9- [mO] = 1/3(\+ 1) + E2 

and 
/7?jU-eX - (1/2-V3(\+1))+zx +(E\ - XEJ. 

Since \EX - XE21 < 1/6 < 1/2 - X / 3 ( X + 1), we have [mil- eX] =zx. Since [mil] =zlf\Ne have 
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[mix] = [mp-eX] = [(md-e)X] = [[mQ]X], 

so that Eq. (1) has a solution with/? = [md]. 
Case 2. If.a = Of then (1) has the solution m = b, n = -c. Thus assume a > 2. Since (a,h,c)= 1, either a \b or 

a )(c. Without loss of generality, we assume a \b. Since p = b6/a + c/a, 9 is irrational. Thus there existp,q e Z 
such that/70 = r\ + q + E, where r}= 1/a + 1/2a(aX + \b\) and \E\<r\- 1/a. Letm = ap and e= md- [md]. 
Then 

md = (aq + 1) + (ar\ - 1) + aE, 
so that 
(5) [md] = aq+1. 
Also, e = (arj- 1) + aE, so that 
(6) 0 < e < 2(av- D = 1/(a\+ \b\). 
By (5), 
(7) mji = mbd/a + mc/a = be/a + b[m6]/a + mc/a = be/a + b/a + bq + pc. 
Thus, 
(8) [mil] = [be/a + b/a] + bq +pc. 

Since b ){a and since \be/a\ < 1/a by (6), it follows from (8) that 

(9) [mil] = [b/a] +bq+pc. 
By (7), 

mil - eX = (b - aX) e/a + b/a + bq +pc, 
so that 
(10) [mii-eX] = [(b- aX)e/a + b/a] +bq+pc. 

Since \(b- aX)e/a\ < 1/a by (6), it follows from (10) that 

(11) [mil-eX] = [b/a] + bq + pc. 
By (9) and (11), 

[mil] = [mii-eX] = [(md - e)X] = [[mO]X] . 

Thus (1) has a solution with n = [md], 
Case 3. We argue as in Case 2 with a = 1. By (8) with a-\, 

(12) [mil] = [be] + b+bq +pc. 
By (10) with a= 1, 
(13) [mii-eX] = [(b-X)e] + b + bq + pc. 

By (6), with a= 1,0 <e< 1/(X+ \b\l Thus \be\ < 1 and \(b - X)e\ < 1. Moreover, by the hypotheses of Case 
3, be and (b - X)e have the same sign. Thus, by (12) and (13), 

[mil] = [mii-eX] = [(m6 - e)X] = ][mO]XJ . 

Therefore (1) has a solution with n = [md]. Q.E.D. 

Corollary 1. Let X be a positive irrational. Then [nX] = [mX2] has no solution with n,m e Z if and only 
if X= (b + (b2 +4c) )/2 for some positive integers Z7 and c. 

Proof. N ote that if pX = bpi + cX with fccG Zand X> b > 0, then (X- b)(p- c) = be, so thatc > 0. Hence 
Corollary 1 follows from the Theorem with p=X2. Q.E.D. 

Corollary 2. Let X be a positive irrational. Then [nX] = [mX] + m has no solution with n,m e Z i f and 
only if 

X - ((b+c- 1) + ((b+c- 1)2 +4b)yV/2 
for some positive integers b and c. 

Proof. This follows from the Theorem with p=X+ 1. 

Corollary 3. Let a be a positive irrational. Then [no] + n = [m/o] + m hasino solution with n,m e Z . 
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Proof. This follows from the Theorem with ju= 1 + Mo, X= a+ 1, and b = c = 1. Q.E.D. 
(Corollary 3 is part of Problem 22 in [3, p. 84].) 
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[Continued from page 149.] 

For an co-series with an arbitrary odd number of k; parameters two cycles of parametric incrementation are re-
quired to bring the series into alignment for grouping. Use of the identity 

G(z) = ^(z/2+1/2)-^(i/2)f 

[4, p. 20], and Lemma 1 render the following summation expression. 

Theorem 2. 
2n 2n 

w(/;kl.-,k2n+l>=ll (-1)'co(j + si;S) = (1/2S) Z (-D'W + Si)/S). 
j=0 i=0 

3. EXAMPLES 

Some calculations forthe uniparameteir co-series are to be found in [1] and for the biparameter series in [2 ] . 
The above theorems and their proofs can be illustrated with the following triparameter to-series: 

to(1; 1, 1, 2) = HI - 1/2) + (1/3 - 1/5) + (1/6- 1/7)] + 1(1/9 - l/IO) + (1/11 - 1/13) + -] 

+ ld/17- 1/18) + ...; + ... 
= (1 -1/2) + (1/9 - 1/10) + (1/17 - 1/18) + - + (1/3 - 1/5) + (1/11 - 1/13) + -

+ (1/6-1/7) + -
- co(1; 1, 7) + LO(3;2, 6) + LO(6; 1, 7) 
- (1/8)[G(3/4)- G(1/2) + G(1/4)J 
= (1/8)[s/2h- 21 nil + ^/2)- n+^2(n + 21n(1 + s/2))] 
= M8)[2j2- 11. 
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THE FIBONACCI SERIES AND THE PERIODIC TABLE OF ELEMENTS 

AVERY A.MO'RTOW 
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The ratio, 0.6180, of the short, a, to the long, b, part of a line, divided so X\\dXa/b = b/a + b, is common in na-
ture; often is called the "golden mean." An analogous line for the chemical elements is the distance between 
the centers of atoms in a compound. The alkali metal halide salts, which form from atoms at the extremes of 
reactivity in each series of the periodic table, should serve as reference compounds. If the short, a, part of the 
line is the covalent radius of the halogen atom, X, and the long part, b, is the corresponding radius of the alkali 
metal atom, M, in the same series, the mean of the ratio, X/M, for the five series is 0.605 ± 0.043, an under-
standable variation of 7% within itself as Table 1 shows. This mean is within 2.2% of the qolden mean and pos-
sibly should be the same within experimental error. Only the covalent radii (see the Table) give this result. 
Calculations based on the ionic radii show a ratio as high as 2.27 and a 36% decrease from the first to the fourth 
series. Data are lacking for calculations based on the atomic radii, but in the present case the atoms in a com-
pound, not the separate atoms, are under consideration. 

Table 1 
Covalent Radii of the Halide Salts and Calculation of the Factor, /?, in the Fibonacci Equation 

Column 1 2 3 4 5 
Halide pair 

FLi 
CINa 
BrK 
IRb 
AtCs 
?Fr 
Avg. or Min. 
Theory 

? Fr 

Observed* 
covalent 
radus, A 

X M 
0.72 1.23 
0.99 1,54 
1.14 2.03 
1.33 2.16 
1.45 2.35 

Avg. 

Calculatedt 
1,56 2,55 

Ratio 
X/M 

0.585 
0.643 
0.562 
0.616 
0.618 

0.605 
0.618 

0.610 

Summation 
of observed 

radii 
X 

2.26 
3.02 
3.30 
3.68 

M 

1.95 
2.53 
3.17 
3,49 
3.80 

Min. 

i 

I 
Ratio 

X 

0.44 
0.38 
0.40 
0.39 

0.39 

Correction 
Factor, R, 
Obs ;./Sum. 

M 

0.79 
0.80 
(0.68 
0.67 

0.67 

*Data are f rom the Sargent-Welch Company table commonly used by students. 
tCalculated for the unknown francium halide as described in the text. 

To approximate the position of the periodic table in the Fibonacci series we first use the lengths in angstrom 
units, A, of the lithium and fluorine covalent radii for the construction in Fig. 1 of the smallest rectangle with 
dimensions of a + b by b. From that rectangle, and the b by b square, larger and still larger rectangles and 
squares can be constructed in the usual manner [1,3] .The centers of each square are marked with an alkali 
metal in increasing order, Li to Fr. Thus the pattern for a Fibonacci series is evident. A curved line, rather than 
the straight lines shown, could connect the centers between which the symbols for the other elements could be 
written (not done here for lack of space). In that way the periodic table would appear as a spiral, analogous to 
other spirals [1 ] , the galaxies, the whirls in some flowers and plants, the horns of some animals, and the spirals 
in shells, all called the "golden horn." A simple calculation back to zero angstrom units suggests that the first 
series in the periodic table is roughly at the ninth number in the Fi bonacci series. 
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Fr r 

Cs — ^ ^ ^ 

Na 

Li 
" ^ 7 K 

""""—^Rb 

Fig. 1 Geometrical Arrangement According to the Fibonacci Pattern 
of the Five-Plus Series in the Periodic Table 

The numbers in Column 2 of the Table, however, do not follow exactly the simple Fibonacci way where each 
succeeding number is the sum of the two preceding ones as in 

Un = Un-j + Un-2-
This situation is seen in Column 4, where the summation for chloride is 2.26 instead of the observed 0.99; and 
that for sodium is 1.95 instead of 1.54. Such abnormality probably results from the fact that the line (the sum 
of the two radii) does not pass through uniformly similar territory, for the specific volume of the halogen 
is much less and the atomic weight is much more than for the metal of each pair. To compensate for this situa-
tion the ratios of the observed to the summation for each radius are recorded in Column 5 for the X andM 
component of each pair. These values appear to attain minima-- 0.39 for the halogen and 0.67 for the metal. In 
other words in the formula Un = R(Un- / + Un^)the v a l u e of Ft is 0.39 when Un is a halogen and 0.67 when a 
metal. 
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With these ratios, the value for the unknown halogen which would be paired with francium can be estimated 
as 1.56, and for francium would be 2.55. Then the ratio, X/M for that undiscovered salt would be 0.6IO,with-
in 1.3% of the golden mean. 

Whether that unknown halogen will ever be prepared may be doubted. Its atomic number would be 117 if 
the number of elements in the sixth series is the same as in the fifth. Wlodorski [4] has used the Fibonacci series 
to estimate the limiting stability of the nucleus in the transuranium elements and has concluded that efforts 
[5] to extend the series above number 114 cannot succeed. No objection to that prediction is here intended. 
However, attention should be drawn to a recent paper by Anders and co-workers [6] about the possibility of 
elements 115 (or 114, 113) having been found in a meterorite. 
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ON FIBONACCI AND TRIANGULAR NUMBERS 

W.E. GREIG 
West Virginia University, Morgantown, West Virginia 26506 

The infinite sequence discovered by the author in [1 ] , namely the numerators of Ck, i.e., 

(D F2kCk = (1 + Lk + F2k-1) 

are related to the Triangular numbers [Tn }, where T.-j - 0- TQ and 

(2) Tn = n(n + l)/2 for all integral n, 

in general. It is interesting that four members of the sequence defined by T„i+pn are zero, namely those for 
n = -1, 0, 7, 2 It will be shown that 

(3) F2kck = T1+Fk+1+ T-i+Fk_2 

for all natural numbers k. The first term on the right-hand side merely picks off the 2, 3, 4, 6, 9 ̂  — terms of 
{Tn). 
Proof. The proof is direct and easy considering that (3) is not obvious. We first need 

(4) 3Fk+1~Fk-2 = 2Lk 

which is easily derived from Fk+i + Fk-f - Lk. Next we need 
Fk+1 ^ F2k + Fk-1 and Fk-1 = F2k-3~ Fk-2 

which are (I-JQ) and (In) of Hoggatt [2] which enables us to write 

(5) Fk+i + Fk-2 = 2F2K-1 • 

First we write 

2T1+Fk+1+2T.1+Fk_2 - (l+:Fk+1)(2 + Fk+1)+(-1 + Fk-2)Fk-2 = 2 + 3Fk+1 + F2
k+1 + F^2- Fk_2 

which via (4) and (5) = 2 + 2Lk + 2F2k-i 
as was to be shown. 

Table of CkF2k Numbers and Triangular Numbers 

k 
ckF2k 
T1+Tk+1 
T-1+Fk-2 

0 
4 
3 
1 

1 
3 
3 
0 

2 
6 
6 
0i 

3 
10 
10 
0 

4 
21 
21 
0 

5 
46 
45 
1 

6 
108 
105 
3 

7 
263 
253 
10 

8 
658 
630 
28 

9 
1674 
1596 
78 

10 
4305 
4095 
210 

11 
11146 
10585 
561 

12 
28980 
27495 
1485 

Now it would be nice if a generalization obtained for the generalized Cjk in the author's second paper on sums 
of Fibonacci reciprocals [3 ] . Such is the case. First we must define generalized Triangular numbers 

(6) TnJ*n(n+j)/2 

which may not always be integers. L e t { ^ } be any generalized sequence such that 

(7) Pn+1 = iPn+Pn-L 

where/ is an integer/ then using the general Binet formula one can show that 

(8) P2n+1 = P%+1+Pn 
and it definitely is equally obvious that we can show 
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jP2n - P
n+1~ Pn-1 (9) 

Using (8) and (9), we may show that 

(10) Pi+1+Pi-2 = iP2k+P2k-3 = d2+ DP2k-1 

which corresponds to (5) in the Fibonacci case. Now the author [3, (9)] has shown that the numerators of 
Cjk are 

(1D P2kCj,k = (1 + P*k + P2k-1) • 
The /subscript has been dropped from the P's for neatness but they are still a function of/and ideally we should 
write Pjk, 

Theorem. 
(12) (1+pt + p2k-l> = (1 + 2Tpkfj + 2TPk_2f2). 

Theproof is straightforward andnote thatP^=Pk+1 + Pk-i isby definition the Lucas complement of Pk. From 
(6) Eq. (12) becomes 

(13) (l + Pk(pk+J) + pk-l(pk-l+2) = (1+jPk + 2Pk-1+P2
k+P2

k_1)= (1+Pk+l+pk-1+p2k-l) 
by using (8). Note that we did not use (9) and that has led to (12) being different from (3). I illustrate this by 
taking C3A = 1309/3927. Now{/>5 /*} is 0, 1, 3, 10, 33, 109,360, 1189, - . According to (11) and (12) the 
numerator of C3A is I + 33(33 + 3)'+ 10(10 + 2) = 1309 as it should. In (12) be careful to note that / and 2 
are subscripts of Tand not of/7. 

H. W. Gould has called my attention to a known theorem [4] that an integer/7? is the sum of two triangular 
numbers if and only if 4m + 7 is the sum of two squares, say 4m + I - u2 + v2, where (u - v)> 3. Hence for 
the sequence Gk = CkF2k we have the following table. 

(<+4CkF2k) = (u2 + v2) k 

0 
1 
2 
3 
4 

(1 + 4CkF2k) = (u2 + v2) 

17 = 4 2 + 1 2 

13 = 2 2 + 3 2 

25 = 4 2 + 3 2 

41 = 4 2 + 5 2 

85 = 6 2 + 7 2 

185 = 8 2 + 1 1 2 

433 = 1 2 2 + 1 7 2 

1053 = 1 8 2 + 2 9 2 

2633 = 28 2 + 43 2 

6697 = 4 4 2 + 69 2 

We noticed that the differences between adjacent u numbers seems to be twice the Fibonacci numbers and that 
a similar relation holds for the v numbers. V. E. Hoggatt, Jr., in a letter dated Jan. 22, 1977, has found the 
following closed form. 

(14) l+4Gk = 1+4CkF2k = (2(1 + Fk„f))
2+ (1 + 2Fk)

2 = u2 + v2 . 

Now Sloane [5] contains the sequence N2 + (N - 1), his No. 1567, which generates a lot of primes. The 
sequence above may also be prime rich since 17, 13, 41, 433, 2633 are primes. Also G numbers for negative k 
values may be found in the recently submitted [6 ] . Then the sequence (1 + 4G-k) for k = 0, 1, 2, •••gives: 
17, 9, 37, 41, 169, 317, 1009, 2329, 6581, - all of which are primes but 2329 and the perfect squares 9 and 
169. 
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THE PERIODIC GENERATING SEQUENCE 

CHI-LEUI\IGLAU 
Teaching Fellow, University of Oregon, Eugene, Oregon 

Given an integer sequence S = [ajr 32, •••}., a,- > 0. Form a new sequence [rn] by first choosing two inte-
gers r_7 and rg, then setting 

Or? = rm~ 1 am + tm-2' am ^ «->• 

We call S a Generating Sequence. 
Notice that for each /> e {/>,}, we can reduce /> to r^~ Afkirg + B(k)r-j, where A(k) and B(k) are integers. 

Hence {rp, r-j} can be viewed as a "basis" for {rn} . Then, 

r_7 - A(-1)r0 + B(-1)r-i *+ A(-1) = 0, B(-1) = 7, 

r0 = A{Q)r0 +BfOh-t - A(O) = 7, £/W - 0. 

Theorem 1. Suppose two sequences [r'n} and {/•„} are generated from the same sequence with different 
choices of rip r'0 and rZp r'p, then 

'k-1 'k\ 
(-ir r-1 r0\ 

Proof. By induction. 
Notation: Let 

Notice that 

Lemma, det ft) = 

Proof. 

L = A(k) 
A(k- i 

B(k) 
) Bfk- 1)j ' 

(-Dk. 

r'k-i r'kf 

rk-1 rk 
= A (k - Dr'o + Bfk - l)r'_ 1 A (k)r'0 + B(k)r'_ 1 

A(k- Vrg + Bfk - Dr'Sf A(k)r% + BfkhZ-, 

= {A(k)B(k- 1)-A(k- 1)B(k)} 

= de ta ; 

=> c let (L) 

r'-i r'o 

r-1 (6 

= {-Dl 

r-1 rO 
r-1 rO 

k 

Theorem 2. Let 
S = {31*32,"'} 

be the generating sequence for {rn}, then 

Afm) = Afm - 1km+A(m - 2) 

Bfm) = Bfm - 1)am + Bfm -2), am e S. 

Proof We have 
178 
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Then 

rm = rm-iam+rm.2 => fA(m)B(m)J^r J - [A(m-1)B(m- 1)J^\Bm 

+ [A(m - 2)B(m - 2)lY°\ 

=> [A(m)B(m)J - I Aim- 1hm + A(m-2)B(m- 1)am + B(m - 2)J. 

Remark: The above theorem shows that {A(n)} and {B(n)} are also sequences generated by S. Recall that 
A(-l) = Q, A(O) - 1; B(-1) = 1, B(O) = 0. 

We shall now investigate what happens when the generating sequence is an infinite periodic sequence 

We will let k be the period of P for the rest of our work. 
Theorem 3. If [rn\ is generated from Pf then 

[A(nk + u)B(nk + u>] = [A(u)B(u)]Ln . 

Proof. Recall 

, = \A(k) B(k) 1 . \rk I = .\r0 1 
L lA(k-U B(k-1)\ and L -̂/J Hr./J -

rk+u = [Alumuiiy^] - [A(u)B(u)Jl[^J 

r 2 ^ - Z / l W ^ y [ ^_ J - [A(u)B(u)]L[rf
k
k^] 

= [A(u)B(u)l'A2[^J . 
It is easy to see that 

/>,**# = / ^ ^ / ^ [ J 7 ] - [A(nk + u)B(nk + u)][rr°_i\= [Afu)B(u)]Ln[rr°] 

=> [A(nk + u)B(nk + u)J = [A(u)B(u)JLn . 

Corollary. 

\A(nk + u) B(nk + u)\ = (_1\nk\A(u) B(u)\ 
I A(nk + v) B(nk + v) I ' 7 / I >4M £ M I 

Proof . By Theorem 3, we get 
\A(nk+u) Sink +u)l= \A(u) B(uh, n Ufnk + u) B(nk+u)\ = \A(U) B(U)\ . . (.n i 
L / l f o * * ^ B(nk + v)\ I AM B(v)iL \A(nk + v) B(nk+v)\ \A(v) B(v)\^l{L '• 

Theorem 4. If a sequence [rn] is generated from an infinite periodic sequence P with period k, then 
rn+2k-C(k)rn+k + (-1)krn = Q, 

where C(k) is a positive integer independent of the choice of/*_/ and/£. 
Proof. Consider 

rn+2k+xrn+k+vrn = 0. 
Assume the theorem is true except for the existence of x and y. We have 
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rn+2k+xrn+k+yrn = 0 - { [Afn + 2k)B(n + 2k)] +x[A(n + k)B(n + k)] +y[A(n)B(n)])[rr°' J - 0 

[A(n+2k) + xA(n+k)+yA(n) = 0 
^ \B(n+ 2k) + xBin + k) +yB(n) = 0 

These are solvable iff 
n __ \A(n + k) B(n+k)\ 1 n 
U ~ \A(n) Bin) I f U' 

Then by Theorem 3, 

[A(n + k)B(n + k)J = [A(n)B(n)] L = [A(n)A(k) +A(k- 1)B(n)A(n)B(k) + B(n)B(k- 1)] 

=* n = I A(n + k > Bfn + k > \ 
U \A(n) Bin) I 

= A(n)A(k)B(n) + A(k- 1)B(n)2 - A(n)2B(k)- A(n)B(n)B(k - D. 

The only possibilities for making £? vanish are eithern = k- 1 oxn = k. 
When/7~/r- 7, 

D = A(k)A(k~ DBfk- 1)-A(k- l)2B(k) = Afk- Ddet(L) ? 0. 

When n = k, 
D = Afk- DB(k)2-A(k)B(k)B(k- D = -Bfk) tot U) ± 0. 

Hencex and/ exist. Then let/7 = 0, we have 

A (2 k) + xA (k) + yA (0) = 0, B(2k) + xB(k) + yB(O) = 0. 

Since A (0)= 1, B(0)= 0, we get 

x = -B(2k)/B(k)/ y = A(k)[B(2k)/B(k)] - A(2k). 

By Theorem 3, we obtain 

[A(2k)B(2k)J - [A(0)B(0)]L2 ='[1 0]L2 = [Afk)2 + Afk - l)Bfk)Afk)B(k) + B(k)B(k - D]. 
Thus 

x = -B(2k)/B(k) = -(A(k) + B(k- D) => Cfk) = Afk) + B(k- D 

y = A(k)[A(k) + B(k- DJ - [Afk)2' + Afk- 1)B(k)] 

= A(k)B(k- D- Afk- 1)B(k) = det(L) = f-1)k . 

Remark. Since {Afn)} and {Bfn)} are also generated from P, then 

Afn + 2k) - C(k)A(n + k) + f- 1)kA(n) = 0 and Bin + 2k) - C(k)B(n + k) + (- 1)kB(n) = 0. 

By Theorem 3, this leads us to 

[A(n)B(n)]{L2-C(k)L+(~l)kl} = 0 => L2- C(k)L + 6et(L)/ = Of 

I is the identity matrix. 
What happens when P~ {a } since k can be chosen as large as one desires? 

Theorem 5. Suppose {rn} is generated from P= {1} such that 

rn+2k - C(k)rn+k + f- l)krn = 0. 

Then {Cfn)} is also a sequence generated from Pwith C(0) = 2, Cf-D = -a. 

Proof. Recall Cfk) - Afk) + Bfk- D. Then 

C(k)-C(k- Da-Cfk-2) = {A(k)-A(k- Da- Afk- 2)} - {s(k- D - Bfk-2)a-Bfk-3)} 

= 0 - Cfk) = Cfk- Da + Cfk-2l 
Also, 

CfO) = A(0) + B(-D = 2, CfD = AfD + BfQ) = a. 
But then 

CfD = CfQh + Cf-D - Cf-D = -a. 
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Remark. Since [C(n)} is generated tromP = {a}, there exists another sequence [C(n)} such that 

C(n + 2k) - C'(k)C(n + k) + (- 1)kC(n) = 0. 

Notice that {C(n)} = {C(n)}. For example, when P = { 7 } , then 

[A(n)}= {fn+1} 

and [B(nj] = {fn}, C(n) = fn+i + fn-Vr{fn) 's t n e Fibonacci sequence. Remember 

A(n+2k)-C(k)A(n + k) + (-1)kA(n) - 0 ** fn+2k+i ~ (fk+1 + fk-l>fn+k+i + (~1>kfn+l « 0 
and 

B(n+2k)-C(k)B(n + k) + (-VkB(n) = 0 => fn+2k~ (fk+1 + fk-l)fn+k + (~Vkfn = 0. 

Also from Theorem 5 and the last remark, 

C(n + 2k) - C'(k)C(n + k) + (- l)kC(n) = 0 => { fn+2k+1 + fn+2k-i}~ (fk+1 + fk-l){fn+k+1 + W - / } 
+ (~1)k{fn + 1 + fn-l}= 0. 

Theorem 6. Suppose{rn} is generated from/7 = {5} , then there exist* and / such thaty > s>t> 0, 

rn +u + xrn +s + yfn +t = ft 

x and y rational. 
Proof. Think of/? as k since the periodicity can vary. 
Then follow the proof for Theorem 4. Carrying out the proof, we also find that 

x = -

In particular, \NhenP={/ } , we get 

A(u) B(u)\ 
Aft) B(t)\ 
A(s) B(s)\ ' 
Aft) Bft)\ 

I fu+1 fu 
\ft+1 ft 

\fs+1 fs 
\ft+1 ft 

fn+s~ 

v - -

fs+1 
f«+1 

fs+1 
ft+1 

\Afs) Bfs) 
\Afu) Bfu) 
\Afs) Bfs)\ 
\Aft) Bft)\ 

fs 
fu 
fs 
ft 

fn+t ~ 'n+u 

For example, when u = 9, s= 6 and f = 2, 

fn+9 - (13/3)fn+6 + (2/3)fn+2 = 0. 

We are going to relate some of the above results to Continued Fractions. 
A simple purely periodic continued fraction is denoted by c= /a 7, —, a^]. If we takeP= [a 7, —, a^l, then 

immediately we see that A(n)/B(n) is the nth convergent of c. We also know that 

A(n+ 2k) - C(k)A(n + k) + (- 1)kA(n) = 0 and B(n + 2k) - C(k)B(n + k) + (- 1)kB(n) - 0. 

If we regard these as second-order difference equations, then the auxiliary quadratic equation for them is 

x2-C(k)x + (-l)k - 0 
and r— 

x = [C(k)+Jc(k)2-4(-l)k}/2, C(k)2-4(-1)k > 0. 

Let/777, /??2be the distinct zeros such that I/77 /I >\m2\, then A(nk + u) = a^m" + ̂ 1m
n

2 , 

B(nk + u) = a2mrj + $2m2' u < k-

By choosing the appropriate initial conditions for {A(n)} and {B(n)\, respectively, we can solve for 0,7, j37 and 
a2, fo. One can take A(u), A(k + u) to be the initial conditions for {A(n)} and B(u), B(k + u) for {B(n)\ Then 
the {nk + u)th convergent of c is given by 
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Afnjrtu) _ ai+^i(m2/m1)
n 

a2 + $2(m2/m1)
n B(nk + u) 

Hence limit of 
c = Wm^Afnk + u)/B(nk + u)) = a1/a2. 

Notice that a ; and a2 are quadratic irrationals. Is the limit unique? Yes, by Theorem 3, we have 

a is a constant. Then 

As/? 

A(nk+u} B(nk + u)\ = HD+ / / n . 
A(nk+v) B(nk + v)\ Q e T f L ' 

A(nk + u) Afnk + v) 

A(u) B(u) 
A(v) B(v) 

±0 

B(nk + u) B(nk + v) B(nk +u)B(nk + v) 

A(nk + u) _ A(nk + v) = 

B(nk + u) B(nk + v) 
0. 

If c = [a-i, - , aj, aj+i, •••, aj+^J, then take 

P s {a1f -faj,aj+1, 

as the generating sequence, the limit of c is then given by 
*j+k j 

l im 
n —> o 

Mnkjjltjl Q 
B(nk + u+j) ' 

Remark. Actually we have proved just now a theorem in continued fractions: A continued fraction c is peri-
die iff a is a quadratic irrational, for which c is the continued fraction expansion. 

******* 
ADDITIVE PARTITIONS II 

V. E.HOGGATTJR. 
San Jose State University, San Jose, California 95192 

Theorem (Hoggatt). The Tribonacci Numbers, 
1, 2,4, 7, 13, 24,.-., Tn+3 = Tn+2 +Tn+1+Tn, 

with 3 added to the set uniquely split the positive integers and each positive integer/7 / J o r / Tm is the sum of 
two elements tf A0 or two elements of A^. (See "Additive Partitions I," page 166.) 

Conjecture. Let A split the positive integers into two sets AQ and A± and be such thatp^Au {1,2}, 
and/? is representable as the sum of two elements of AQ or the sum of two elements of A±. We call such a set 
saturated (that is A u { 1 , 2}). Krishnaswami Alladi asks: "Does a saturated set imply a unique additive parti-
tion?" My conjecture is that the set { l , 2, 3,4, 8, 13, 24, •••} is saturated but does not cause a unique split 
of the positive integers. Here we have addled 3 and 8 to the Tribonacci sequence and deleted the 7. Paul 

Bruckman points out that this fails for 41* EDI TOE 



A RELATIONSHIP BETWEEN 
PASCAL'S TRIANGLE AND FERMAT'S NUMBERS 

DEWTONHEWGILL 
University of Victoria, Victoria, B.C. 

There are many relations known among the entries of Pascal's triangle. In [1 ] , Hoggatt discusses the relation 
between the Fibonacci numbers and Pascal's triangle. He also gives several references to other related works. 

Here, we propose to show a relation between the triangle and the Fermat numbers f; = 22' + 1 for i = 0, 7, 
2, ••• . Let c(n,j) be Pascal's triangle, where n represents the row index and/ the column index, both indices 
starting at zero. Let aIn] be the sequence of numbers constructed from Pascal's triangle as follows: construct a 
new Pascal's triangle by taking the residue of c(nj') modulo base 2, then, consider each horizontal row of the 
new triangle as a whole number which is written in binary arithmetic. In symbols, let 

n 
(1) a[n] = Ys c*(n,j)2J n = 0, 1,2,-, 

1=0 
where c*(n,j) is the residue modulo base 2 of c(n,j). The first few terms of this sequence are 1, 3, 5, 15, 17, 51, 
85, 255, 257, 771, etc., starting with a[0]. 

Proposition . The sequence of numbers 
n 

a[n] = Y, c*(n,j)2j n - 0, 1,2,-, 

J=o 
constructed from Pascal's triangle, is equal to the sequence of numbers 

bin] = (fkJ°°(fk-i)
a* -(3)a* n = 0, 1,2,-, 

where n = aQax a2 ••• ak in binary number expansion, and f; are the Fermat numbers, 

Proof. The proof is by induction. For the purpose of starting the induction, let us verify the relation for 
a[0] through a [8] by means of the following table; 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 

n (binary) 

000 
001 
010 
011 
100 
101 
110 
111 
1000 

a[n] (binary) 

1 
11 
101 
1111 
10001 
110011 
1010101 
11111111 
100000001 

a[n] (decimal) 

1 
3 
5 
15 
17 
51 
85 
255 
257 

bin] (Fermat form) 

1-1-1 
1-1-3 
1.8-1 
1-5-3 
17-1-1 
17-1-3 
17-5-1 
17-5-3 

257-1-1-1 

To complete the induction proof, we assume the theorem is true for/7 <2 , and prove the theorem for the 
range 2k <n < 2 .We are performing induction on k, and note that the table proves the induction hypothe-
sis for k = 2 and 3. If/? is in the range 2k <n < 2 , then it has a binary expansion of the form \axa2 --ak. 
Next, we observe a pattern forming in the binary construction of an between the levels 2k and 2k+1. For ex-
ample, the above table shows the pattern above n = 4 being repeated, in duplicate, side by side, down to level 

183 



184 A RELATIONSHIP BETWEEN PASCAL'S TRIANGLE AND FERMAT'S NUMBERS [APR. 1977] 

n = 7, but changing at n = 8. The reason that this pattern is formed is that Pascal's triangle can be constructed 
by addition (sums must be reduced modulo 2) with the well known formula 

c(n - 1, r- 1) + c(n - 7, r) = c(n,r). 

We will now describe relationship of the numbers below level 2k to those above 2 . Since fk is equal to one 
plus the number represented by 1 followed by 2k zeros, we can form a[2k +j], f o r /= /, 2, —, 2 , by mul-
tiplying a[j] by fk. This multiplication has the effect of repeating the pattern above level 2k ;side by side, 
down to level 2 — 7, which will then consist of 2 "ones." If we now construct a 12 ] using the addi-
tion method, we see that it will consist of one plus the number represented by 1 followed by 2 zeros. Thus, 
we have the two relations 

a[2k +j] = a[j]fk for / - /, 2, 3, - , 2k~1 

and 
a[2k+1] = fk+1. 

If we apply the induction hypothesis to a[j] for / < 2k, then 

a[n] = (fk)'(fk-i)
ai -(3)a* n<2k+1, 

where 
n = 1a, - a k , and a[2k+1] = fk+1 . 

This completes the proof. 
REMARK. The same proof easily covers the more general case where Pascal's triangle is computed modulo 

base fi. The resulting sequence is then compared to the Fermat numbers to the base c. 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
RAYMOND E. WHITNEY 

Lock Haven State College, Lock Haven, Pennsylvania 17746 

Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics 
Department, Lock Haven State College, Lock Haven, Pennsylvania 17745. This department especially welcomes 
problems believed to be new or extending old results. Proposers should submit solutions or other information 
that will assist the editor. To facilitate their consideration, solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

H-272 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Show that 
m 

1=0 
is symmetric in/7, q, r. 

H-273 Proposed by W. G. Brady, Slippery Rock State College, Slippery Rock, Pennsylvania. 

Consider, after Hoggatt and H-257, the array D, indicated below in which L2n+i (n = 0, 1,2, --J is written 
in staggered columns 

1 
4 

11 
29 
76 

1 
4 

11 
29 

1 
4 

11 1 

Show that the row sums are L2n+2 ~ <?• 
II. Show that the rising diagonal sums are F2n+3 ~ 1, where l-2n+l ls t n e largest element in the sum. 

iii. Show that if the columns are multiplied by 1, 2,3, ••• sequentially to the right then the row sums are 
L2n+3-(2n+3). 

SOLUTIONS 

LOOK-SERIES 

H-251 Proposed by P. B rue km an, University of Illinois at Chicago, Chicago, Illinois. 

Prove the identity: 

it x"2 = it — 
n=0 lMn]

2 n=0 <X)n ' 
where 

(x)n = (i-x)(l-x
2)-(l-xn), (x)0= 1. 

Solution by the Proposer. 

Define f(z,y) by the following: 

(D f(z,y} = I\ (i + y2r~1?)-
r=1 

185 
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Then we may set 

f(z,Y)= E Am(y)zm. 
m=0 

also observing that f(0,y) = 1 = Ag(yl 
Now, 

f(y2z,y) = (l+yzr1f(z,y), 

which is readily derived from the definition of f(z,y), i.e., 

f(z,y) = (1 + yz)f(y2z,y). 

Translating this relation into series notation, we obtain the following: 

£ Am(ykm - £ Am(y)y2mzm+£ A^fyJy^V' 
m=0 m=0 m=1 

This yields the simple recursion: 
(1-y2m)Am(y) = y2m-1Am-1(y), 

with Ag(y) = I By an easy induction, we derive the formula: 

Am(y> = -X— (m = 0,1,2,-). 
(y2)m 

Hence, 
m2 

(2) f(z,y)= f l (1+Y2r~1z)= £ J^~ zm • 

0 . ., , r=l m=0 (y2)m 
Similarly, 

(3) f(z~1,y) = f l a+y2r-1z'1)= £ J ~ 
r=1 n=0 (y2)n 

We now employ the well known Jacobi identity: 

(4) Hz,y)-1(z-\yh\\ (1-y2r)= £ y * V . 
r=l k=- <» 

VA\Q(y) denote the coefficient of z° in f(z,y)-f(z~1 ,y). Multiplying the series in (2) and (3), we see that^rV^ 
is obtained by letting /T? = n; hence, 

(5) 8(y) = X jfy-x-j • 
k-o {(y2)k)

2 

However, from (4), 

0(y) = l l (1-y2r)~1 . 
r=1 

Making the substitutionx = y we obtain the result: 
2 

(6) n n-xr1 = E r-^ • 
r=1 n=0 | (x)n) 

Now the infinite product in (6) is the well known generating function torp(n), the number of partitions of/7; 
however, it is also equal to the series: oo 

Y J^L 
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To establish this, define 

and set 

g(zfx) = n (1-zxrF1. 
r=1 

ffkxi = E Bn(x)zn. 
n=0 

observing that g(0,x) = 1 = BQ(X). By inspection of the infinite product definition of g(z,x], we may obtain the 
relation: g(zx,x) = (1 - zx)g(zfx); as before, translating this into the infinite series expansions, we obtain the 
recursion: 

(1-xn)Bn(x) = xBn-i(x), B0(x) = 1. 

From this, we readily establish that 
Bn(x) = xn/(x)n, n = 0,1,2,-. 

Hence, we have derived the following: 

(7) 0 d-xT' = g(hx) = t P(n)x" - E £- = £ 72^T- , 
r=1 n=0 n=0 {X'n n^O \(x)n)^ 

for suitable region of convergence (actually, for \x\< 1.) This establishes the result. 

Also solved by G. Lord and P. Tracy. 
SUB PRODUCT 

H-252 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Let AnXn be an A7 x /7 lower semi-matrix and BnXn, CnXn
 De matrices such X\\a\AnXnBnXn

 = CnXn. Let 
A/<xk,BkXk,CkXk be the kxk upper left submatrices of AnXn,BnXn, and CnXn, Show AkxkBkxk = CkXk 
fork = 1,2, ...,/?. 

Solution by Paul S. B rue km an, University of Illinois at Chicago, Chicago Circle, Illinois. 

Let ajj, bjj and c,j denote the entries of A, B and C, respectively (i,j = 1, 2, ••-, n). By hypothesis, 
n 

(1) 53 airbn = cij> U = IZ - / n; 
r=1 

(2) ajr = 0 if / < r. 

Combining (1) and (2), we thus have: 
/ 

(3) 53 air°n = cu- 'J = 1* 2 > ' " ' n • 
r=1 

If we impose the restriction: / < k, where k < n, then in view of (2) we may as well extend the sum in (3) as 
follows: 

k 

(4) 53 Vrbrj = c-,j, i = 1, 2, •-, k, j = 1, 2, - , n . 
r=1 

In particular, 
k 

(5) 53 ajrbrj = Cjj, i,j = 1,2, -,k. 
r=1 

This is equivalent to the desired result 
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TRIPLE PLAY 

H-253 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 

t=0 j~0 m=0 

n+m-t-j-1 

r=0 

where 0 is an arbitrary complex number and n and k are positive integers, k <n. 
This identity, in the case 0= 2, arose in solving a combinatorial problem in two different ways. 

Solution by the Proposer. 
To prove the identity we replace n by n + k + 1 and use 

„OL+1 

(D z ( a t P k y k=0 (l-Vx+V 

where wx^ - x + 1 = 0. This follows from the Lagrange expansion formula (cf. Polya and Szegd, Aufgaben und 
Lehrsatze aus der Analysis, I, Berlin, Springer, 1954, p. 125). 

From (1) we have 

to k ] n-m+e • 
where wx® - x + 1 = 0. Also from (1) we get 

00 k n j n+k+m-t-j 

^(Ni^y^^,^/) E ( „ + , + / / _ . . f _ r ) ( ^ ; - ' ) 
k=0 t=0 j=0 m=0 r=0 

»,Mr(.„j-,,rr')-f-'('-^^)s(7) 
7 n+k-m 

A77=0 /-=0 

where n/x^ — x * 7 = £7. 
Now 

jS-f 7 °° . . n . . / . n+k-m 

jj^rrp E^-'^EO) E^ l i , ) E U/_)(2/r?) 
£=0 y=0 /?7=0 r~0 

^ 0 0 00 m j j B+1 -n n °° °° min{/r , / } 

r 7=0 r=0 A:=0 m=0 

-£i£e E(;)"-^-v f f-'^ti) i (i)fr""'^ -
p P 7=0 m=0 Ar=0 

[Continued on page 192.] 
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DEF1WITIOWS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2 = Fn+1 + Fn, FQ = 0, F7 = 1 and Ln+2 = Ln+1 + Ln, L0 = 2, L<i = 1. 

PROBLEMS PROPOSED »!\i THIS ISSUE 

B-352 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Lz\Sn be defined by S0= 1,Si = 2, and 

$n+2 = 2Sn+l +cSn. 

For what value of c is Sn = 2nFn+f for all nonnegative integers n? 

B-353 Proposed by V. £ Hoggatt, Jr., San Jose State University, San Jose, California. 

For k and/? integers with 0 < k < n, \v\A(k,n) be defined by A(0,n)= 1 = A(n,n), A(1,2) = c + 2, and 

A(k+ l,n+2) = cA(k,n) + A(k,n+ 1) + A(k+ l,n+ 1). 

A\so\etSn = A(0,n)+A(l,n) + - + A(n,n). Show that 
sn+2 = 2$n+l +cSn. 

B-354 Proposed by Phil Man a, Albuquerque, New Mexico. 

Show that 
^+k-L^F^(-1)kFn.k[Flk+3Fn+kFnLk] = 0. 

B-355 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

Show that 
^+k-^3k^H-VkFik = 3(-l)nFnFkF2k. 

B-356 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Let 
Sn = F2 + 2F4 + 3F6+- + nF2n • 

Find/77 as a function of/7 so that Fm+1 is an integral divisor of Fm+Sn. 

B-357 Proposed by Frank Higgins, Naperville, Illinois. 

Let m be a fixed positive integer and let k be a real number such that 

2m < soaMw <2m + i, 

loga 

where a = (1 + \j5)/2. For how many positive integers n is Fn < k? 
180 
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SOLUTIONS 

SUM OF SQUARES AS A. P. 

B-328 Proposed by Walter Han sell, Mill Valley, California, and V. E. Hoggatt, Jr., San Jose, California 

Show that 
6(l2 + 22 + 32 + - + n2) 

is always a sum 
m2 + (m2 + 1) + (m2 + 2) + - + (m2 + r) 

of consecutive integers, of which the first is a perfect square. 

Solution by Bob Prielipp, The University of Wisconsin- Oshkosh. 

Since 
6(12 + 22 + 32 + - + n2) = n(n + 1)(2n + 1) = (2n + 1)n2 + [2n(2n + 1)]/2 

and 
m2 + (m2+ l) + (m2 + 2) + - + (m2 + r) = (r + Dm2 + [r(r+ l)]/2, 

the desired result follows upon letting m = n and r = 2n. 

Also solved by Wray G. Brady, Frank Higgins, Mike Hoffman, Herta T. Freitag, Graham Lord, Jeffrey Shaliit, 
Sahib .'Singh, Gregory Wulczyn, David Zeitlin, and the Proposers. 

UNVEILING AN IDENTITY 

B-329 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Fmdr,s, andf as linear functions of n such that 2F2 - FsFt\$ an integral divisor of Ln+2 + Ln for/7 = 1, 2, •••. 
Solution by Mike Hoffman, Warner Robins, Georgia. 

Let 
a=1/2(1 + j5) and $=1Ml-^5). 

Then 

2F2-FsFt = 2 {<*L=£)2- (°Lzj£) (o^lL) 
K.s/5 ' W 5 ' V V ^ ' 

- y a2r-2(a(5)r + 82r _ as+t - g s 0 f - g V + fl**f 

5 5 

_ 2a2r + 2B2r - as+t - 8s+t - 4{a0)r + asBf + q f g * 
5 

= 2-L2r - Ls+t ~ 4(ap)r + (afi) 7 a w + ^ ) 
5 

= 2t-2r-'-s+t + Ls-t(-V
t-4(-1)r 

5 

where we have used Binet form for the Fibonacci and Lucas numbers, as well as the fact a/3 = — 1. Now put 
r = n + 3, s = n + 3, snit = n - /. The above becomes 

2 F ^ _ 2L2n+2-L2n+1 + L 3 ( - i r 1 -4(-1)n+1 

_ L2n+2 + L2n+2-L2n+1 + 4(-1)"-7 - 4(-1)n+1 L2n+2 + L2n _ P 

F2n+1, 
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Thus we have 
l~2n+2 + L2n = 5(2F2

r-FsFt) 
for positive integers 7̂. 

Also solved by the Proposer. 
FINDING AG. C. D. 

B-330 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas. 

Let 
Gn = Fn +29Fn+4 + Fn+8. 

Find the greatest common divisor of the infinite set of integers {GQ, Gj, G2, — } . 
Solution by Graham lord, Universite Laval, Quebec, Canada. 

It is easy to show that Gn = 36Fn+4 by using repeatedly the classical Fibonacci recursion relation. Hence, as 
two consecutive Fibonacci numbers are relatively prime, the g.c.d. of the numbers GQ, GJ, G2, —» is e c * u a ' t 0 

36. 

Also solved by Wray G. Brady, Herta T. Freitag, Frank Higgins, Mike Hoffman, Bob Prielipp, Jeffrey Shallit, 
Sahib Singh, Gregory Wulczyn, David Zeitlin, and the Proposer. 

SOME FIBONACCI SQUARES MOD 24 

B-331 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas. 

Prove that F§n+1 = 1 (mod 24). 

Solution by Gregory Wulczyn, Buckne/I University, Lewisburg, Pennsylvania. 

A congruence table of Fn (modulo 24) is 

n 1 2 3 4 5 6 7 8 9 10 11 12 
Fn (mod 24) 1 1 2 3 5 8 13 21 10 7 17 0 

n 13 14 15 16 17 18 19 2Q 21 22 23 24 
f„(mod24) 17 17 10 3 13 16 5 21 2 23 1 0 

Hence F6n+1 = 1, 13, 17, 5 (mod 24) and F§n+1 = 1 (mod 24). 

Also solved by Herta T Freitag, Frank Higgins, Mike Hoffman, Graham Lord, Bob Prielipp, Sahib Singh, David 
Zeitlin, and the Proposer. 

ONE SINGLE AND ONE TRIPLE PART 

B-332 Proposed by Phil Man a, Albuquerque, New Mexico. 

Let a(n) be the number of ordered pairs of integers (r,s) with both 0 < r <s and 2r + s = n. Find the gener-
ating function 

A(x) = a(0)+xa(l)+x2a(2) + - . 

Solution by Graham Lord, Universite Laval, Quebec, Canada. 

Sf s is written as r + t, where t > 0 then the decomposition n = 2r + s\% the same as 3r + t, where the only re-
striction on r and t is that they be nonnegative integers. Thus a(n) counts the number of partitions of/? in the 
form 3r + t and so has the generating function 

A(x) = (1+x+x2 + -)-(l+x3 + x6 + x9 + .~) = [(1-x)(1^x)(1-x3)]~1. 

Also solved by Wray G. Brady, Frank Higgins, Mike Hoffman, Sahib Singh, Gregory Wulczyn, and the Proposer. 
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BIJECTION \UZ+xZ+ 

B-333 Proposed by Phil Man a, Albuquerque, New Mexico. 

Let Sn be the set of ordered pairs of integers (a,b) with both 0 < a < b and a + b < n. Let Tn be the set of 
ordered pairs of integers (c,d) with both 0 <c<d<nmdc + d>n. For/7 > 3, establish at least one bijection 
(i.e., 1-to-1 correspondence) between Sn and Tn+j. 

/. Solution by Herta T. Freitag, Roanoke, Virginia; Frank Higgins, Naperville, Illinois; and the Proposer (each 
separately). 

c = b and d = n + 1 - a 
or inversely, 

a = n + 1 - d and b = c. 

II. Solution by Mike Hoffman, Warner Robins, Georgia; and the Proposer (separately). 

Q = n + 1 _ p a n C j (J = p + 7 _ g 

or, inversely, 
a = n+1-dandb = n + 1-c. 

It is straightforward to verify that a + b < n if and only if c + d > n and hence that each of I and 11 gives a one-
to-one correspondence. 

[Continued from page 188.] 
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**+%yfn E ( 7 ) " - * M ^ ' E (-vn+J+m(liy-7w)m(i+x^w)J 

"-V+fil-o-

- _ Z W " f / i)i(n\( 1+x*-1w\_ x*+1M-n I -2x*1w\n 

x^ P+12n / XM \ 2nxl3n+l3+1 ^12n I XM 

WW) \T~-x^ 

n 

Comparing this with (1), it is clear that we have proved the identity. 

CORRECTION 
H-267 (Corrected) 

Show that 

sM - £ (M±i£plx2 
k n=0 

satisfies S(x) = exS M. 

******* 
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