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THE TR1B0NACCI SEQUENCE 

APRIL SCOTT, TOM DEL ANEY, AND V. E. HOGGATT, JR. 
San Jose State University, San Jose, California 95192 

By definition, a Fibonacci sequence consists of numbers equal to the sum of the preceding two. Symbolically, 
this means that any term 

Fn = Fn_i + Fn_2. 

This definition can be expanded to define any term as the sum of the preceding three. 
It is the purpose of this paper to examine this new sequence that we will call the TRIBONACCI SEQUENCE 

(the name obviously resulting from " t r i " meaning three (3)). Therefore, let us define this new sequence as T 

and consisting of terms: 
Ti, T2, T3, T4, T5, -,Tn, - , 

where we will define 
Ti = 1, T2= 1, T3 = 2 

and any following term as 
Tn = Tn„i + Tn_2 + Tn_3 . 

For any further study of this sequence, it will be useful to know the generating Hinction of these numbers. To 
find this generating function, let the terms of the sequence be the coefficients of an infinite polynomial T(x) 

giving 
T(x) = T1 + T2x +T3x

2 + T4x
3 + - + TnX71'1 + .» . 

By multiplying this infinite polynomial first by -x, then by -x2 and finally by -x , and then collecting like 
terms and substituting in appropriate values of T±, T2, T3, — , we get the following: 

T(x) = Tx + T2x+ Tzx
2 + 1\x3 + Tsx

4 +.» 
-xT(x) = - 7 > - T2x

2 - T3x
3 - T,x4 - -

-x2T(x) = - T,x2 - T2x
3 -Tdx

4 - -
-x3 T(x) = - l\x3 - T,x3 - -

T(x)-xT(x)-x2T(x)-x3T(x) = Tx = 1 
T(x)(1-x-x2 -x3) = 1 

T(x) = 1 — 
1-x-x2-x3 

Therefore, we have found the generating function of the Tribonacci sequence as T(x) and can be verified by 
simple long division. 

This Tribonacci sequence can be further examined in a convolution array. The first column of this array will 
be defined as the coefficients of T(x). The second and subsequent columns can be found in two (2) ways: 

(1) The first method is by convolution* (thus giving the title of the array). By convolving the first column 
with itself, the second column will result; by convolving the first with the second, we will get the third; the first 
and third to get the fourth and so on. It will also be noticed that the even-numbered columns are actually 

Convolution: a folding upon itself. 
I t wi l l be recalled that a mathematical convolution is as follows: 

Given: Sequence 1 as5x , S2, 5 3 , S4, Ss, S6, ••• 
Sequence 2 asPit P2>P3, P4, P5,P6, - . 

To f ind the sixth term of the resulting sequence: 
(SJ(P6) + (SJ(PS) + (St)(PJ + (SJ(PJ + (S,)(Pt) + (SJ(PJ. 

193 



194 THETRIBONACCI SEQUENCE [Oct. 

squares. That is to say, to get the second column the first is convolved with itself; to get the fourth, the second 
is convolved with itself; the third with itself to arrive at the sikth and so on. 

(2) The second method for deriving the same array clearly shows why the convolution array can also be 
called a power array. Recall that the first column is the Tribonacci sequence and is generated by the function 

7 
1-x •x2-x3 

To derive the second column, then, the first column generating function is squared. The third column is T (x), 
the fourth column is T (x) and so forth. Therefore we can represent the array as: 

Power of T(x) 

0 
Powers 

of 1 
X 

2 

1 2 3 4 5 6 7 8 

And our specific array as: 

II. 1 10 11 

f 1 
1 

2 

4 

7 

13-
: 

1 
2 

5 

12 

26 

56 
• 

1 
3 

9 

25 

63 

153 

1 
4 

14 

44 

125 

336 

1 

5 

20 

70 

220 
646 

1 

6 

27 

104 

1 

7 

35 
147 

1 

8 

44 

200 

1 

9 

54 

264 

1 

10 
1~T 
11 

This specific array can be found and verified in either of the two ways described above. 
A third more simple method of deriving this same array is by the use of a recursion pattern or template. To 

find this template pattern, one must recall the power array (method 2 of getting the convolution array). We 
then realize that: 

7 

generates the first column 

T(x) = 

T2M-

1- 2 3 • xz -xJ 

1~x-x2-x3 

generates the second column and 
7 

T3(x) 
1-x-x* 

generates the third column or, we can rewrite this as: 

Tn(x) 
1- •x2-x3 

which itself can be rewritten as 
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Tn(x) = 
1-x-x2 -x3 

1 

Tn(x) 1 

• X - X" - X 

rn~l/ 

n-1 

1-X 2 3 • xz - xJ 

L(x) 

By multiplying both sides of this equation by (1 - x - x2 - x3) we will get: 

(a) Tn(x) = xTn(x)+x2Tn(x) + x3Tn(x)+Tn-1(x) 

or by collecting all the Tn(x) terms, we get: 

(b) T^Hx) = Tn(x)-xTn(x)-x2Tn(x)-x3Tn(x). 
Jh In words, this means that the n column is equal t o * times itself plus x times itself plus* times itself plus 

the previous column. For a specific example, let us examine T4(x). 
Therefore: 

Tn(x) = T4(x) = 1 + 4x+14x2+ 44x3 + 125x4 + -
Tn-i{x) = TJ(X) = T3, l+3x + 9x2 + 25x3 + 63x4 + • 

By substituting this in Eq. (b) above: 

T4(xJ - xT4(x) - x2T4(x) - x3 T4(x) = T3(x) 

T4(x) = 

-xT4(x) = 

-x2T4(x) = 

-x3T4(x) = 

j + 4x+ 14x2 

- x -

-
4x2-

x2 -

+ 44x3 

- Ux3 -
4x3 -

-x3 -

+ 125x4+-

- 44x4--

Ux4 -
4x4 - ». 

- 1 + 3x+ 9x2 + 25x3+ 63x4--
which indeed is T (x). 

What we would like to do, however, is apply this method to a specific element in any column or row, rather 
than to entire columns. Let us again refer to the equation 

Tn(x) = xTn(x) + x2Tn(x) + x3 Tn(x) + T n~Hx) 

and a specific element in the column. To translate this equation, refer to Array 1 on the previous page, and re-
member what each item in the array represents. Pictorially, then, the equation means the following (we will 
consider each element in the equation separately): 

Tn(x): the specific element in a row and column that we are interested in. We will call itX. 
the element in the same column but up one row. The multiplier x has the effect of shifting it 
down one row. We will call this U. 
the element in the same column but up two rows. The x has the effect of shifting it down two 
rows. We will call this V. 
the element in the same column but up three rows, shifted down by the factor of x , Call this W. 
the element in the same row but the previous column. Call thisZ. 

Therefore, by this pattern we can find any element in the array through the use of a single template. The tem-
plate (from the above equation) is: 

X=U+V+W+Y 

xTn(x): 

x2Tn(x): 

x3Tn(x): 
T^fx): 

Y 

W I 
V 

U 

\x 
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This template, then, because it is so general, will help to see relationships between other convolution arrays and 
numerator polynomial arrays which will be discussed now. 

As we have seen, we know of a function that when expanded, will yield an infinite polynomial whose co-
efficients correspond to the Tribonacci numbers. We also know that this function, namely 

1 

1-x-x2-x3 

when squared and expanded will yield the coefficients of the second column of the convolution array. We have 
seen that this function can also be cubed and expanded to give the entries in the third column of the array, and 
so on. 

Suppose we wish to find a function or series of functions that will generate the rows of this convolution array. 
Let us, then, consider the first row (actually called the zero row, since rows correspond to the powers of x 

in the polynomials and the "f irst" row is the row of constants) of the array as coefficients of the infinite poly-
nomial R(x), giving 

R(x) = 1 +x + x2 +x3 + - . 
By mutliplying R(x) by -x and adding to R(x), the following is obtained: 

R(x) = 1 + x + x2 +x3 +x4 + -

-xR(x) = - x - x2 - x3 - x4 - -

(1-x)R(x) = 1 

RM = —1— . 
1- x 

Thus, 1/(1 - x) will generate an infinite polynomial whose coefficients correspond to the zero™ row of the 
Tribonacci array. It is also true that the function (1/(1 - x))2 will generate the first row of the array. However, 
(1/(1 - x))3 does not generate the second row. 

As a result, the row generating function must be generalized to give all the rows. Let us call, then, the numer-
ator of this function rn(x), giving: 

(1-x)n+l 

The numerators then for row 0 and row 1 are simply equal to 1. For row 2, we will find r2(x) by simple alge-
bra as follows: 

- ^ l - / = 2 + 5x + 9x2+ 14x3 + 20x4 + -
(1-x)3 

r2(x) = (2 + 5x + 9x2+14x3 + 20x4 + -)(1-x)3 

r2(x) = (2 + 5x + 9x2+14x3 + 20x4 + -)(1 - 3x+3x2 -x3) 

r2(x) = "2 + 5x + 9x2+ 14x3 + 20x4 + -

-6x-15x2-27x3 - 42x4--

6x2+15x3 + 27x4 + -

- 2x3 - 5x4 -••• 

r2(x) = 2-x 
and 

R2(x) = 2 

(1-x)3 
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In a similar manner, we can find r3 (x), r^M and so on. These polynomials henceforth will be known as the 
numerator polynomials. A listing of these is as follows: 

roM = 

nix) = 
r2(x) = 

r3(x) = 

r4(x) = 

r5(x) = 

1 

1 

2-

4-

7-

13-

X 

4x + 

9x + 

22x + 

x2 

3x2 

12x2- -2x3 

etc. If one were to take the time and calculate this data, it would soon be realized that there is a considerable 
amount of arithmetic involved. The rnrx) numerator polynomial is obtained by expanding (1 - x)n+1 and us-
ing it to multiply ah infinite polynomial. It turns out, that when this is done and like terms are collected, all 
but a finite number of terms result in zero. Nevertheless, it is quite a time-consuming task. 

The coefficients of these polynomials can themselves be formed into an array similar to our original convolu-
tion array. Like the original convolution array, this array can also be formed in several methods. The first 
method we have already examined: finding rn(x). The other method is by also developing a template pattern. 
This template can be found as follows: 

We know that if we let Rn(x) (where n = 0, 7, 2, 3, 4, ••• ) denote the rows of the Tribonacci convolution 
array, then 

Rn M = 

Similarly: Rn+l M = 

Rn+2M = 

Rn+3(x) = 

rn(x> 
(1-x)n+l 

rn+l M 
(1-x)n+2 

rn+2 M 
(1-x)n+3 

rn+3 M 
(1-x)n+4 

Also looking at the row polynomial in terms of the pattern discussed 

Rn+3 M = xRn+3 (x) + Rn+2 (x) + Rn+1 (x) + Rn (x) 
X = (Y + U + V + W) 

By simple substitution: 
fnf3(x) = xrn+3(x) + rn+2(x) _ rn+1 (x) rn(x) 

(1-xr4 (1-x)n+4 (1-x)n+3 (1-x)n+2 (1-x)n+l 

By simple algebra: 
rn+3 M (j__x) = rn+2(x) + rn+1 (x) + rn(x) 

(1-x)n+4 (1-x)n+3 (1-x)n+2 (l-x)n+1 

rn+3 M = rn+2(x) + rn+1 (x) + rn(x) 
(1-x)n+3 (1-x)n+3 (l-x)n+2 (l-x)n+1 

rn+3 M = rn+2 (x) + (1- x)rn+1 (x) + (1 - x)2rn (x) 
= rn+2 (x) + rn+1 (x) - xrn+1 (x) + rn (x) - 2xrn (x) + x 2rn (x). 

From this information and remembering the procedure for converting this equation to a template pattern, the 
following template for the array of coefficients of the numerator polynomial is 
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[' w u 
T 

V 

z 1 
Y 

X . 

rn(x) 

rn-lM 

rn-2M 

fn-3 M 

X = Y + Z+V+W- T-2U 
We have already discussed a specific Tribonacci sequence and its related convolution and numerator poly-

nomial arrays. Our goal in this portion is to generalize our conclusions from the specific case. We would like to 
examine and investigate the general case and see if any generalized conclusions can be reached. 

Two (2) general Tribonacci sequences exist: 1, \,p, 2 + p, — or \,p, q, 1 + p + q, •••. Since the second is more 
general, we will use it for further investigation. The sequence, then, is as follows: 

l,p,q, 1 + p + q, 1 + 2p + 2q, ~ , 

where each term is defined as the sum of the previous three. 
As in the specific case, a generating function can also be found for the general case. Again, let the terms of 

the sequence be coefficients of an infinite polynomial, giving: 

Gfx) = 1+px + qx2+ f1 + p+q)x3 + (1 + 2p + 2q)x4 + - . 

By multiplying by -x, -x and -x and collecting like terms, we get: 

Gfx) = 1 + px + qx2 + (1 +p + q)x3 + (1 + 2p+2q)x4 + • 

-xG(x) = 

-x2G(x) = 

-x3G(x) = 

- x - px qx 

px3 

(1+p+q) x^ 

q*
4 

px 

(1-x-x2- x3)G(x) = 1 + (p- 1)x+(q-p- 1)x2 

Gfx) 1 + (p- 1)x + (q-p- 1)x< 

1 - x- xz -xJ 

where Gfx) defines the generalized generating function and "p" is the second term in the sequence and "q" is 
the third. 

Again, using the specific case as an example, we can expand the sequence into a convolution array. The first 
column is given and defined as the generalized sequence, with the generating function of 

Gfx) = 1+fp- 1)x + (0-p- 1)X< 

1 •x2-x3 

The subsequent columns can be found by convolution or by giving appropriate powers of the generating func-
tion (as discussed earlier in the specific case). By either method, the resulting array is shown in the table on the 
following page. The columns represent the power of the generating function and the rows are the corresponding 
powers of x. Therefore, we are guaranteed a way of generating this array—by either convolution or raising the 
generating function to a power-two rather tedious, time-consuming methods. If we could find a template pat-
tern for this generalized convolution array, it could be used for any Tribonacci sequence. 

To find this template pattern, recall that the generating function for the first column is 

1 + fp- 1)x + (q-p- 1)x2 

1-x- -x2-x3 

Ah For any n column, the generating function is: 
Gn(x) = f 1 + (P~ Dx + (q-p- Dx' 

\ 1-x-

2\n 

•x2-x3 
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Powers of G(x) 

0 

1 

2 

Powers 
of 
x 

1 

1 

p 

q 

p+q+1 

\2p+2q+ 1 

\3p + 4q+2 

\6p + 7q+4 

2 

1 ] 
2p 

p2 + 2q 

2p+2q + 
2pq + 8 

2p2 + 6p+q2 

+ 4p + 2pq+2 

4p2 +6p + 
2q2+ Wq 
+ 6pq+4 

3 

1 

3p 

3p2 +3q 

p3+3p+3q 
+ 6pq+3 

6p2 + 12p + 
3q2 +6q + 
3p q +6pq 

' 

4 

1 

4p 

6p2 + 4q 

4p3+4p+4q 
+ 12pq + 4 

p4 + 12p2 + 
20p+6q2 + 
8q+ 12p2q 
+ 12pq + 4 

5 

1 

5p 

Wp2 + 5q 

6 

1 

6p 

15p2 + 6q 

or 
Gn(x) -( 1 + (P ~ Vx + (Q ~ p - 1)x2\ll + (p - 1)x + (q - p - Dx1 

\ 1-x-x2-x3 J\ 1-x-x2-x3 

n-l 

which can be rewritten as: 

*(x) = 1+(P- Dx + (g-p- 1)x2
 Gn-1 (x). 

1-x-x2 -x3 

By multiplying both sides of the equation by 1-x-x -x we will get: 

Gn(x)(1-x-x2-x3) = (T+(p- 1)x + (q-p- 1)x2)Gn'l(x) 

Gn(x)-xGn(x)-x2Gn(x)-x3Gn(x) = Gn^(x) + (p- DxG71"1 (x) + (q - p - 1)x2Gn~1(xi 

G^fx) = xGn(x) + x2Gn(x) + x3Gn(x)+ Gn~1(x) + (p - 1)xGn'l(x) + 

+ (q-p- Vx2Gn~1(x) 
Let us represent this symbolically as: 

X = Y+U+V+W+(p- l)Z + (q-p- 1)Q. 

Then, as we discussed earlier, this can be translated pictorally to give our template for the generalized Tribonac-
ci sequence: 

\(q-p- 1)Q 

(p - VZ 

w 

l/l 
u\ 
Y\ 

x\ 

Naturally, in extending this discussion, we can also discuss the numerator polynomials that will generate the 
rows of the \,pf q, — array. Again, by sheer arithmetic, we can generate the numerator polynomials: 
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r0(x) = 1 • • 

ri (x) = p 

r2(x) = q + (p2- q)x 

rpM = (p + q+1) + (-2p- 2q-2pq±- 2)x + (p2 +p+q- 2pq + 1)x2 

r4(x) = (2p+2q + 1) + (2p2' - 4p +q2 - 6q + 2pq - 3)x + (-4p2 + 2p - 2q2 + 6q+3p2q - 4pq + 3)x2 

+ (p4+2p2+2pq-3p2q-2q- 1)x3 

etc. 
Using the same method utilized in discussing the specific case, we can determine a pattern for the coefficients 

of these numerator polynomials. 
First let us translate the pattern for the columns to pattern for the rows. This gives us: 

Rn-2M 

Ryi-lM 

Rn(x) 

Rn+i M 

V 

w 

u 
z 
Y 

X 

Tn-l (x) 

X = Y + Z + U + W+(p-2)V 

xRn+1 (x) + Rn(x) + Rn_t (x) +(p- 2)xRn,1 (x) + Rn,2M 

or 
Rn+l (X)(1 -

We still have the relation that 
x) = RnM + Rn„i(x)(1 + (p-

rn(x) 

2)x) + Rn_2(x). 

By substituting: 
rn+l M 

(1-x)n+2 
(1-x) 

RnM = 

rn(x) 

(1-x)n+l 

(1-x) n+l (1-x)n 
(1 + (p-2)x) + rn-2(*) 

n-l (1-x) 

rn+1 (x) = rn(x) + (1- x)(rn^ (x))(1 + (p - 2)x) + (1 - x)zrn.2(x) 

rn+l M = rn (x) + rn^ (x) + (p - 3)xrn^ (x) + (2 - p)x 2rn_1 (x) + rn„2 (x) - 2xrn,2 (x) + x 2rn„2 (x). 

This yields a pattern for the array of the numerator polynomials: 

rn-2(x) 
rn-lM 

rnM 
rn+i (x) 

N 

M(2-p) 
(-2)T 

(p- 3)V 

U 
Z 

Y 

X 

X = Y + Z+U + (p-3)V+(2-p)M-2T+N. 

There are some interesting features of these numerator polynomials. First of all, this pattern does not hold 
for the entire array. To use the pattern to get the (p2 +q) coefficient of the* term of the r2(x) polynomial, 
some "special" terms must be added to the top of the array. Rather than discuss this at length, it will suffice to 
say that if one were interested in generating this array one could generate the first three rows by the method of 
equating coefficients and then utilize the pattern derived. 

It can also be noted that the sum of the coefficients of each numerator polynomial sums to a power of/?, the 
second element of the Tribonacci sequence. Specifically, the sum of the coefficients of the rn numerator poly-
nomial is/?n. (Note that the sum of the coefficients for the numerator polynomials of the 1,1,2, ••• Tribonacci 
array is always 1. This is logical since the second element of the array is 1 and 1 n is always 1.) 



THE PASCAL MATRIX 

W. FREDLUNNOW 
Math I nstitute, Senghennydd Road, Cardiff, Wales 

The n x n matrix P or P(n) whose coefficients are the elements of Pascal's triangle has been suggested as a 
test datum for matrix inversion programs, on the grounds that both itself and its inverse have integer coefficients. 

For example, if n =4 

(1) P = 

"1 
1 
1 

J 

1 
1 
1 
J 
4 
6 
4 
1 

1 
2 
3 
4 

1 
2 
3 
4 

6 
14 
11 
3 

1 

CO
 

CD 

10 

1 
3 
6 

10 

4 
11 
10 
3 

r 4 
10 
20 

1" 
4 

10 
20 _ 

1] 
3 
3 
1 I 

, r 

1 
1 
1 
1 

"1 
0 
0 
0 

1 = 

0 
1 
2 
3 

1 
1 
0 
0 

4 
- 6 

4 
_~1 

0 
0 
1 
3 

1 
2 
1 
0 

-6 
14 

-11 
3 

0" 
0 
0 
1_ 

11 
3 
3 
U 

r 1 
0 
0 

L ° 
~ 1 

1 
1 

L 1 

4 - 1 
-11 3 

10 - 3 
- 3 1 

1 1 1" 
1 2 3 
0 1 3 
0 0 1 

0 0 0 
1 0 0 
2 1 0 
3 3 1 

\P-\I\ = A4-29X3-f 72X2-29X+1. 
It occurred to us to take a closer look at this entertaining object. We shall require a couple of binomial co-

efficient identities, both of which are easily proved by induction from the fundamental relation 

or 0 unless 0 < / < L 

(2) 

(3) 

LL \k + u)\ k) ~~~~ \s-u) • 
k 

(Here and subsequently all summations over/, j, k, etc., are implicitly over the values 0 ton - 1. Notice that 
our matrix subscripts are also taken over this domain.) P is defined by 

pij ('f') 
First notice that the determinant of P is unity. For subtracting from each row the row above, and similarly 

differencing the columns, we find 

1 0 - 01 
= \P(n- 1)\ = \P(0)\ = 1 (4) P(n) 

0 
/Y/?- /) 
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It follows that P 1 has integer coefficients, since they are signed minors of P divided by \P\. As it happens, 
there is a nice explicit formula for them: 

(5) tr-thrt-ivzene;. 
Proof of (5), Let the RHS temporarily define a matrix Q. Then 

ffw,y = £ ( ' ; * ) (->p+iZ(k
P)(j) 

= ^)(-Aui+ip){k
P)<->p 

k [_ p 

= T(j)(i)(~)i+J by (3) 
k 

= {ilj)(->i+i = « i ; by (3) again. 
That is, Pa =1 and Q = P~1. 

The decomposition of P into lower- and upper-triangular factors is simply 

(6) P = LU, where £,/ = ( j ) , U{j = ({ ) ; 

since (LU)^ is immediately reducible to P^ via (2). And from (5) it is immediate that 

(7) •iULhi = \(r1ki\, 
or the coefficients of UL are the moduli of those of P'1. 

Turning to the characteristic polynomial of P, we need the following method of computing 

\A-\I\=-£cmXn-m 

m 
for any matrix A :-

(8) Let dk = trace (Ak) = J2(Ak)u for k > 0. 
i 

C/Q = rn (instead of n), 

co = I 
then 

k 

This relation enables us to compute the c's in terms of the d's or vice versa, e.g., 
c0 = 1 

ct = -dt 

c2 = -Mctdt +c0d2) = 1Md\ -d2) 
c3 = j(c2d1+c1d2+cod3) = 1

z(-d\ + 3d1d2-2d3l 
Proof of (8). The eigenvalues of Ak are just the kth powers of the eigenvalues of A and our relation is 

simply a special case of Newton's identity, which relates the coefficients of a polynomial to the sums of kth 

powers of its roots, etc. (In numerical computation this formula suffers from heavy cancellation.) 



1977] THE PASCAL MATRIX 203 

Notice also that, by the definition of matrix multiplication, for/77 > 0 

i j k q r 

(over/77 summations and factors). 
Now suppose that A = P(n), and denote by Cm and Dy, the values of (-)mcm and dy,; the former are tabu-

lated for a few small n at the end. The first thing to strike the eye is their symmetry:-

\1U) 6 m = Cyi-m • 

To prove this, it is by (8) enough to show that Dm = Dn_m. Also since the eigenvalues of P'1 are the recipro-
cals of those o f f , and the determinant of P is unity (4), the characteristic polynomial o fP' 1 is just the reverse 
of that of P. So it is enough to show that Dm=dm(P'1l But by (9) and (5) 

dmiP'1) E 
i,j, k, fi 

E 
p,q,r 

E 
p,q,r 

E(f)(j)Tr(j)(g
fe)l|E(ua) 

E(p(/)lfE(feg)(L) 

(p;q)(q+
q

r) ••• b v < 2 > 

E 
P,q,r 

PpqPqr - = ®m by (6) and (9), QED. 

Incidentally, setting m =2 shows that the sums of squares of coefficients (the o^) are t n e s a m e f ° r ^ ar,d P • 
The next striking feature is 

(11) Cm > 0. 

If the characteristic polynomial of some A is expanded explicitly in the form \A - \ J | , it is easily seen that 
(-)mcm is the sum of all principal m x m minors of A So (11) is a consequence of the more general result 

(12) Every minor of Pis positive. 

We denote by M = M(ifk, —, o, q;jf %, -,pj) the m x m minor of/7 

Pa 

kSL 

op 
P 
' qr 

and define the "type" of M to be the triple (m,q,r). One triple is said to be "less than or equal to" another if 
this relation holds between corresponding pairs of elements. With this ordering we prove (12) by induction on 
the type. 

The result is clearly true for m = 0, since any 0 x 0 determinant has value 1. Suppose then that/77 > 0 and 
the result is true for all types less than (m,p,r). According to the fundamental relation Pqr = Pq~i>r

+ Pq,r-l 
etc., so we can decompose the final row of M to obtain M = 
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PH 

M(i, -,q- 1;i,-,r) + 
op 

q,H q,r-l 

where the final row of the latter determinant has been shifted one place to the left. Repeating the decomposi-
tion on the new minor, we eventually reach a zero minor when the final row coincides with row o, and so 

I Pa 
M 

q 

£ 
q'=o+l 

lJ . 
'P. op 

q'j-l '"rq',r-l\ 

Decomposing all the other rows of the summand in turn, we finally get them lined up again to form a respect-
able minor, thus 

(13) M = £ M(i',k',-,o',q';i- / , « - 1-,P- 1,r- 1), 
i',k','--,o',q' 

where-1 < / ' < / < k'< k < •••< o'< o < q'<q. 
I f / > 0, each summand is of type at most (m,q,r- 1). l f / = 0, we need to introduce another row and column 

for/3, defined by Pmitk
 = Pk,-1 =&Ok> t 0 preserve the sense of (13): we need then only consider the case/' = Of 

and (13) becomes 

M = J^ M(k\ -o',q';%- 1,-,p- 1,r- 1), 
k',"-,o',q' 

in which each summand is of type at most (m - 1, q, r- 1). In either case M is a sum of minors of lesser type 
and therefore is positive, QED. 

We can squeeze more than (11) out of (12): since Cm(n+ 1) includes all the minors in Cm(n),\\ follows that 

(14) Cm(n) is an increasing function of/7. 

A squint at the data suggests the tougher conjecture 

(15) Cm(n) is an increasing function of m form < #/? ? 

Concerning P in general, some further questions suggest themselves. The maximum element of/5 is clearly 
Pnn ~ 4n/^/(1/27in) by Stirling's approximation; but what about that o fP _ i ? 

How are the eigenvalues of P distributed? By (10) they occur in inverse pairs, with 1 an eigenvalue for all odd 
/7/how big is the largest? SinceP = LL', it is positive definite and they are all positive, 

1 
1 
1 
1 
1 
1 
1 
1 

1 
3 
9 
29 
99 
351 
1275 

1 
9 
72 
626 
6084 
64974 

1 
29 
626 

13869 
347020 

1 
99 

6084 
347020 

1 
351 

64974 
1 

1275 1 
Coefficients of \P(n) + \I\, n (descending) = 0(1)7. 
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ZERO-ONE SEQUENCES AND STIRLING NUMBERS 
OF THE SECOND KIND 

C.J.PARK 
San Diego State University,San Diego, California 92182 

Letxi,X2, •-rXn denote asequence of zeros and ones of length n. Define a polynomial of degree (n - m)> 0 
as follows 

(D &m+l,n+l(d) =Y*d1-XUd+X1)Ux* .~(d + X1+X2 + >~ + Xn_1)1-Xn 

with Pij(d) = 1, where the summation is overx^, x2, —,xn such that 
n 

E x{ = m. 
i=l 

Summing over*n we have the following recurrence relation 

(2) Pm+itn+i(d) = (m + d)$m+1}n(d)+$min(d), 

where $o,o(d)= 1> 
Summing overA^ we have the following recurrence relation 

(3) (3m+1}n+1(d) = d-(3m+1)n(d) + (3m)n(d+ 1), 

where ]3 o,o(d) = 7-
Now we introduce the following theorems to establish relationships between the polynomials defined in (1) 

and Stirling numbers of the second kind; see Riordan [1 , pp. 32-34] . 
Theorem 1. $mtn(1) defined in (1) is Stirling numbers of the second kind, i.e., Pm>n(1) is the coeffi-

cient of tn/n! in the expansion of (et- 1)m/mi, m,n > 1. 

Proof. From (1) we have $iti(1)= 1 and from (2) we have 

W) Pm+l,n+l(D = (m+Wm+l,n(1) + Pmtn(1t, 
which is the recurrence relation for Stirling numbers of the second kind; see Riordan [ 1, p. 33]. Thus Theorem 
1 is proved. 

Using (2), (3), and (4), we have 

Corollary 1. (a) Pm+itn+i(0) = $m,n(D, 
(b) Pm+l,n+l(V = $m+l,n(D + $m,n(2h 

(c) (2) = m&m+ljYl(1) + $mtn(1) . 

Theorem 2. The polynomial defined in (1) can be written 
(n-m) 

Pm+l,n+l 
<d)= Z (ny)dyVm,n-y(D. 

y=0 
Proof. Assume that n distinguishable balls are randomly distributed into N distinguishable cells such that 

the probability a ball falls in a specified cell is 1/N. Assume that d = ON <N, 0 <6 < 1, of the cells are pre-
viously occupied. 

Define x^ = 1 if / ball falls in an empty cell and X[ = 0 otherwise. The joint probability function of 
(*1, *2, "- f xn ) c a n De written 

205 
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lN-d-xt-x2 xn„1y?nld + x1+x2 + - + xn_1 "\~Xn 

Let fm j , fe be the event that m additional cells will be occupied when/ balls are randomly distributed into /r 
cells such that the probability that a ball falls in a specified cell is 1/k. Now summing (5) over x±,X2, — , xn 

such that 
n 

we have 

(6) p[Em,n,N] = — 777 T—Zfrr Pm+ltn+l(d). 
' run (IV — U — 171 J! 

Let Fy}Yl denote the event tha t / out of n balls will fall in the previously occupied cells, d out of /I/ cells. Then 

But we have 
(n~m) 

where using similar expression as (5) and (a) of Corollary 1r 

(8) PfFm.n,N\FV,n} = PlF m,n-v, 
I ^ ^ (N-d)n~y \N-d-m>1- y 

Thus using (7) and (8) 
f (n-m) *] 

(9) " w - ̂  r¥^fe{ £ (;K<W>;j • 
Equating (6) and (9), Theorem 2 follows. 

From Theorem 2, we have the following recurrence relation for Stirling numbers of the second kind. 
Corollary 2. 

(n-m) 
Pm+l,n+l m,n-y (1) 

y=0 
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ON POWERS OF THE GOLDEN RATIO* 
WILLI AM D. SPEARS 

Route 2, Box 250, Gulf Breeze, Florida 32561 
and 

T.F.HIGGIWBOTHAM 
Industrial Engineering, Auburn University, Auburn, Alabama 30830 

The golden ratio G is peculiar in that it is the number X such that X2 = X + 1. This characteristic permits de-
duction of properties of £ - n o t unlike those of Fibonacci numbers F Also, interesting relations of_F numbers 
are derivable from properties of G-. Some of these properties and relations are given below. 

First, a given n_th power of G is the sum of G71'1 and Gn~2 for 

(1) G"-1 + Gn~2 = Gn~2(G + 1) = Gn . 

Furthermore, for n_ a positive integer, Gn = FnG + Fn_-± which implies that Gn approaches an integer as/7in-
creases. For proof, determine that 

G1 = IG + O 

G2 = G+1 = 1G+ 1 

G3 = G(G+1) = 2G+1 

and from (1), G4 = (1 + 2)G + (1 + 1), G5 = (3 + 2)G + (2 + 1), etc. 
The coefficient of G on the right for each successive power of G is the sum of the two preceding Fn_i and 

Fn_2 coefficients, and the number added to the multiple of G is the sum of Fn_2 and Fn_j. Hence, 

Gn = FnG + Fn_t. 
As/? increases, FnG -> Fn+1, so 

(2) Gn - Fn+1 + Fn^ . 
Hence, Gn approaches an integer as/7 increases, and thus approximates all properties of Fn+1 + Fn_i. 

No restrictions were placed on_/7 in (1), so the equation holds for/? < 0. For example, given /7 = 0, 

6n-l + Gn-2 = l + JL = G±J_ = 1 = G O t 

G G2 g2 

Hence, sums of reciprocals of F numbers assume F properties as Fn+1/Fn -» G. Generally, let FnG represent 

(3) 

Fn+1, and FnG represent Fn+2. Then 
_]__ + _ J ^ __]___ + _/_ = J_f G±± \ = L 
Fn+1 Fn+2 FnG p Q2 n \ G2 J n 

Equation (3) is a special case of a much more general interpretation of (1), for positive or negative fractional 
exponents may be used. To reveal the general application to F numbers, derive from the general equation for 
fn, 

1 (^a)--(^a)-
' n 

Gn-
(-G)r 

s/5 -J5 

that FnSfJ -^ Gn as n increases. Hence, for any positive integers/? and m, 

*We wish to thank Mary Ellen Deese for her help in discerning patterns in computer printouts. 
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— — _ 1 -—..? 
Gm = Gm + Gm~ 
A 1 1 

lc\ rYYl rtn. , rr\ 
(5) r„ -+ F„_^ + F„ 

• m 
n n-m n-2m • 

To illustrate Eq. (4), let/? — / and/?? = 3. 1 1 5 

G7 = GJ+GJ . 
Cubing both sides gives 

_i _i J2 JA 
G = G~3 +3G3 + 3G T+G 3 = G'5(G6) = G. 

The proximity of the relation in (5) even for/7_ small can be illustrated by letting /7 = 10 and m = 2, or 

sj55 = 7.416 - s/21 +sj8 = 7.411. 

Equation (4) adapts readily to -1/m, for 

and from (5), 

Again, letting n = 10 and m = 2f 

_i _i 
fr,n l m — /nn+mj m , /r*n+2m i 

_i _i _i 
p m _+ p m + p m 

n rn+m n+2m 

Fjf = .134839 and r$ + F'$ = . 134835. 

An additional insight regarding F_ relations derives from (2) and the fact that FnSj5 ->' Gn, for 

Fn\/5 -> Gn -> f w + i " ^ - i 

Hence, Fn^/5 approaches an integer as/7 increases, 
These relations of Fand powers of G, especially those involving negative exponents, permit greater perspec-

tive for £ numbers. For example, Vorob'ev [1] states that the condition Un = Un-r
+ Un-2 does not define all 

terms in the F sequence because not every term has two preceding it. Specifically, 1,1,2 ••• does not have two 
terms before 1,1. Such is not true of Gn where -°° < n < °°. Fn properties approach those of Gn as/?-»±<», 
with maximum discrepancy at in = 0. G is usually viewed as the limit of Fn+1/Fn as/7 -» °°;perhaps the more 
mystical concept of a guiding essence for harmonic variations of Fn is in order. Gn brings Fn to taw. The dis-
tortion in Fn relations relative to Gn is never great so long as_/7 is a positive or negative integer. And Gn prop-
erties surmount even /7 = 0. _ 

A last look at Gn will be made in terms of logarithms of Fnumbers to the base G. Because Fn -> Gn/*J5, 

'ogc^n -+ n-% logG 5 = n - 1.6722759 - = fn- 2)+.3277240 ••, 
Therefore, 
(8) Fn^Gn'2G-3277240"\ 

Hence, \o$QFn - \ogc^n-l harmonically approaches unity, and rapidly, 
REFERENCE 
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UNIFORM DISTRIBUTION FOR PRESCRIBED MODULI 
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In [1] the author proves the following 

Theorem. Let/7 be an odd prime and {Tn} be the sequence defined by 

Tn+1 = (p+2)Tn-(p+mn-l 
and the initial values T± = 0, T2 = 1. Then {Tn} is uniformly distributed (mod/77) if and only if m is a power 
of p. 

The proof of the theorem rests on a lemma which states that if p is an odd prime and k is a positive integer, 
p + 1 belongs to the exponent/?^ (modpk+i), jhe lemma is also proved in [1 ] . 

Since for each positive integer /r, 3 belongs to the exponent 2k~1 (mod 2k+1), (see [2, §90]), the lemma 
and the theorem cannot be extended to the case/7 =2. It is the object of this paper to find a sequence of inte-
gers which is uniformly distributed (mod/71) if and only if m is a power of 2. 

We will need the following 

Lemma. For each positive integer/:, 5 belongs to the exponent,? (mod 2k*2 )m 

Proof. See [2, §90] „ 

Theorem. The sequence {Tn} defined by 

Tn+l = 6Tn - 5Tn_1 

and the initial values T1 = 0 and T2 = 1 is uniformly distributed (mod 777) if and only if m is a power of 2. 

Proof, The formula of the Binet type for the terms of {Tn} is 

Tn = VafS"1'1- 1) n = 1,2,3,- . 

To prove this, note that the zeros of the quadratic polynomial 

x2 -6x + 5 

associated with {Tn} are 5 and 1. Solving forc^ and C2 in 

ci • 5 + c2 = 0 

cv5
2 + c2 = 1, 

we find c± = 1/20 and C2 = -1/4. Therefore 

which agrees with the result above. Similar derivations are discussed in [3 ] . 
PART 1. We show in this part of the proof that {Tn) is uniformly distributed (mod 2k) for/r = 1,2, 3, - . 
First we prove that {7"/; / = 1, —, 2k} is a complete residue system (mod 2 ). Accordingly, suppose that 

where 7 </,j<2k. Then 
T{ = Tj (mod^^), 

Vatf'1 - 1) ^V^-1 - 1) (mod<?k) 

5 M = 5 ^ (m^2k+2Y 
209 
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Assuming / >j, we write 

where 0 <e <2k - 7. Then 
Si'1*6 ^Si-1 (mod^+ 2) , 

5e = / ( m o d * * * 2 .) 

But by the lemma, 5 belongs to the exponents (mod 2 ), so e = 0 and / = / . 
Next, we note that as a iconseauence of the lemma, 

52 +i-l s 5i-l ( m o d 2k+2) . = h 2f 3f ... 

or 
T k = Tt (mod2k+2) i = 1,2,3, - . 

2 H 
Thus we see that the complete residue system (mod 2 ) occurs in the first and all successive blocks of length 
2 in {Tn}, proving that {Tn } is uniformly distributed (mod2k). 

PART 2. We prove in this part that {Tn} is not uniformly distributed (mod/77) unless/77 is a power of 2. 
If {Tn} is uniformly distributed (mod m), it is uniformly distributed (mod q) for each prime divisor 7̂ of m. 

We show that {7"H} is not uniformly distributed (mod q) if q £2. 
Suppose first that q = 5. Then 

Tn+j_ = 6Tn — 5Tn_i = Tn (mod5). 

Hence { T „ } (mod 5) is { 0 , 1 , 1 , 1 , - } . 
Suppose finally that q ̂  2,5. Weshowthat 

(1) Tq=0 (mod?) 
and 
(2) Tq+1 = 7 (mod?). 
Note (1) is equivalent to 

MS*'1- U =0 (mod?) 
or 
(3) 5*-1 = 7 (mod 4q) 
which is equivalent to the pair 

and 
S^1 = 7 (mod q) 

both of which are elementary. Eq. (2) also reduces to (3). Equations (1) and (2) imply that the period of \Tn} 
(mod q) divides q- 7, so atleast one residue will not occur in the sequence. Therefore, the distribution of [Tn] 
(mod q) is not uniform. 
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It is a well known result that, for the Fibonacci numbers Fn+2~ Fn+i + Fn, FQ = 0, F-j = 7, 

n -
lim 

Fn+l 1 + ̂ /5 
Fn ' 2 

See [1] , Our main result in this paper is that convolving linear recurrent sequences leaves limiting ratios un-
changed. Some particular cases of our theorem prove an interesting study. It is indeed surprising that such strik-
ing limiting cases have been left unnoticed. 

Definition 1. If [un}n=o <s a sequence of positive real numbers and if 

X - lim UJ& , 
n-+oo Un 

then X is defined to be the limiting ratio of the sequence [un }. 

Definition 2. If {un} is a linear recurrence sequence 
(1) a0Un+r+ aiUn+r-i + a2tin+r-2+ - + arUn = 0 

then 
a0x

r + a1x
r~1 + - + ar = Pu(x) 

is called the auxiliary polynomial for the sequence {un} . 

Definition 3. If {un} - U and [vn} = V are two linear recurrence sequences with generating functions 

FM and BM 
Q(x) and SM' 

respectively, we say {un} and {vn} are relatively prime if 

(P(x),S(x» = (R(x),Q(x)) = U 

The following classic result was known to Euler: 

Lemma. If the auxiliary polynomial Pu(x) for the sequence \un} in (1) has a single root of largest abso-
lute value, say X, then 

lim H0±1 = X. 
n -> - Un 

Let us call such a X as a dominant root ofPu(xl Moreover, let Dom(a,/3) represent the number with bigger 
absolute value. 

The Lemma stated above leads to the following general theorem. 

Theorem 1. Let 
{Un)n=0 a n d [*n}n=0 
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be two relatively prime linear recurrence sequences with auxiliary polynomials Pu(x) and Pv(x) whose domi-
nant roots are Ajy, and A^. Then, if {wn}™=0 is the convolution sequence of \un) a n d { ^ } , 

n 

(2) Wn = £ vkUn-k, 
k=0 

then 
| i m

 lHn±L = DomfX^X,,). 
A 7 _ o c Wn 

Proof. Consider a polynomial P(x) with non-zero roots a 7,02, —, an. Let P*(x) denote a polynomial 
with roots 1/a/, 1/a2, —, Van, We call P*(x) the reciprocal oiP(x). Now denote the reciprocals of Pu Wand 
PVM by P*(xj and P*(x), respectively. It is known from the theory of linear recurrence that 

<3> E "/l** p.7yi 
*=0 r " ( * ; 
^ "iv? 

n=0 

and 

W> t On*" - ^ 
for some polynomials R(x) andSM. 

It is quite clear from (2), (3) and (4) that 

(5) Y w xn - MM*) s T(x) 
~Q

 n P*0c)P*(x) P*u(x)P*v(x) 

which reveals that {wn} is also a linear recurrence sequence. It is easy to prove that \\Pw(x) denotes the auxili-
ary polynomial of [wn], then its reciprocal P^(x) obeys 

(6) Pl(x) = P*(x)P*(x). 

It is clear that 1/X^ and ]fKv are the roots of P*(x) and P*(x) with minimum absolute value, so that 
min (M\u, 1/X„) is the root of P^(x) with minimum absolute value. But, since P^(x) is the reciprocal of 
Pw(x), Dom (\u, X„) is the dominant root of Pw(x). This together with the lemma proves 

,. wn+1 ^ 
lim - = X . 

/7_oo Wn 

We state below some particular cases of the above theorem. 

Theorem 2. Let {un}™=0 be a linear recurrence sequence 

"n + 1 s Un + Un-n uO = °, U1 = 1*2 = "3 = "' = Ur= 1, r e Z+. 

L e t g n i denote the first convolution sequence of {un }n=o 

n=0 
n 

(7) g„,i = £ -OkOn-k 
k=0 

and gn/r the rth convolution (un ~ gn,o) 
n 

(8) gn,r = Yl 9k,r-lUn-k-
k=0 

Then lim un+ j/un exists and 
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, i m °J!±1 = | i m 9n+V 

for every / - G Z , 

Proof. The auxiliary polynomial for { d „ } ~ = 0 is*7"*7 - * r - 7. We will first prove that the root with lar-
gest absolute value is real. Denote the auxiliary polynomial by 

Pu(x) = xr+1 - x r - 1. 

Clearly, A ^ M « - 7 < 0andPu(oo)=<*>. Further, 

flfcf 

for 1 < * < °° so that ^ M - 0 for 1 < x < «» at precisely one point, say X^,. It is also clear that Pu(x) > 0 for 
A- > Xu implies 

(9) I x ^ l > \xr+l\ 

fo r * > Xu. 
Letz0 be a complex root of Pu(x) = Owith \i0\ >XU. Now, sincez0 is a root oiPu(x)= 0, 

But lzJ > Xu, and comparing with (9) we have 

\ i ^ \ < \zr
0\+\l\ , 

a contradiction. One may also show similarly that there is no other rootz0 with \i0\ = X^ proving that X^ is a 
dominant root o1Pu(x). This proves that the limiting ratio of {un} exists and that 

lim U-^J . X u . 

Further, Theorem 1 gives 

Mm UJ1±1 = Mm !s±Lr 

by induction on A and the definition of flr„ r in (8). 

Theorem 3. \U,se Z and f <s, then 

lim - ^ ^ a 
" "* °° 0/7,; 

Proof. For the linear recurrence sequence { t f „ } satisfying 

<W/ = Un + Un-r, 00 = 0, Ui = U2 = - = ^r = ?, 
define a companion sequence of polynomials 

(10) an+1 (x) = xun (x) + un.r(x) 

UQM * 0, uifx) - 7, u2(x) = x, - , ur(x) = xr~1. 

Denote by gn,0(x) - un(x), 

n 

9n.lM s Z Ok(x)tin-k(x), 
k=0 

and 
n 

(11) gn,tM = H 9k,r-l(x)Un-k(x)-
k=0 
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One of us (K. A.) has established in [2] that 
MO\ dton(x) . . 
(12) — - - — - gn,t(x)-

t!dxt 

We know from (10) that 
MOv dfun+iM dtun(x) ^ dx~1un(x) c f V r W 

dxf dx* dxf~1 dxf 

Now, (12) makes (13) reduce to 

(14) 9n+1ttM =xgn,t(x)+-gn-r,t(x) + 9n,t-l(x)'. 
Note from (11) thatgnft(1)~ gnt so that (14) can be rewritten as 

(15) gn+ift = 9n,t + 9n-r.t+9n,t-1-

Dividing (15) throughout by gnt we get 

(1R) 9n+1,t ~ i + 9n_-r,t + 9nf t-1 

9n, t 9n, t 9n, t 

We know from Theorem 2 that 

n'l^oo 9n+l,t/9n,t =• \ and J i m ^ gn-r/t/gn/t = 1/\ru , 

so that (16) reduces to 

(17) \ u = 1 + -L + lim gJh-x-l . 
\ r n-*°° 9n,t 

But, Xu is the dominant root oix^1 - x r - 1 = 0 so that 

lim fffhlzl = a 

T U . . L . _, . n^°° 9n,t 
This gives by induction 

lim ?^L= o for t < s, 

proving Theorem 3. 

Corollary. If {un} is the Fibonacci sequence, then 

Mm fb±Lr^l±JL 
n^°° 9n,r 2 

and 
lim lid = o for f < s. 

We include the unproved theorem: 

Theorem 4. If „2 _ M/ 
9n+1,r9n-1,r~ 9n,r ~ wn . 

then 

Jim ^ » x f . 
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OF THE GENERALIZED FIBONACCI SEQUENCE 

G. E. BERGUIVI 
South Dakota State University, Brookings, South Dakota 57000 

and 
V. E.HOGGATT.JR. 

San Jose State University, San Jose, California 95192 

1. INTRODUCTION 

In [1] , Hoggatt and Bicknell discuss the numerator polynomial coefficient arrays associated with the row 
generating functions for the convolution arrays of the Catalan sequence and related sequences [2 ] , [3 ] . In this 
paper, we examine the numerator polynomials and coefficient arrays associated with the row generating func-
tions for the convolution arrays of the generalized Fibonacci sequence {Hn}n=l defined recursively by 

(D Ht = 1, H2 = P, Hn = Hn^ +Hn„2, n > 3, 

where the characteristic D = P2 - P - / i s a prime. A partial list of P for which the characteristic is a prime is 
given in Table 1. A zero indicates that the characteristic is composite, while P - P - / i s given if the character-
istic is a prime. 

Table 1 
Characteristic P2- P - / is Prime, / <P<179 

CM 
1 
2 
3 I 4j 
5 
6 ' 
7 j 
8 i 
9 
10 
11 
12 
13 
14 
15 
16 
17 

0 

0 
89 
379 
0 

1559 
0 

3539 
0 
0 

8009 
0 

[ 0 
0 
0 
0 

22349 
25439 
28729 

1 

0 
109 
419 
929 
0 

2549 
3659 
4969 

0 
0 

10099 
0 

14519 
17029 
19739 

0 
25759 

0 

2 

0 
131 
461 
991 
1721 

0 
0 
0 
0 
0 

10301 
0 
0 

17291 
20021 

0 
0 

29411 

3 

5 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

4 

11 
181 
0 
0 
0 

2861 
0 
0 

6971 
8741 
10711 

0 
0 
0 
0 

23561 
26731 

0 

5 

19 
0 

599 
0 

1979 
2969 
4159 

0 
0 

8929 
0 

13109 
0 

18089 
20879 
23869 
27059 
30449 

6 

29 
239 
0 

1259 
2069 
3079 
4289 

0 
7309 

0 
0 

13339 
15749 

0 
21169 
24179 

0 
0 

7 
41 
271 
701 
0 

2161 
3191 
4421 
5851 
7481 
9311 

0 
0 

16001 
0 
0 
0 
0 

31151 

8 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

9 

71 
0 

811 
1481 
2351 

0 
4691 

0 
0 
0 
0 
0 
0 

19181 
22051 
25121 

0 
0 

Examining Table 1, we see that/3 - P- / is never prime, with the exception of P = 3, whenever/3 is an inte-
ger whose units digit is a 3 or an 8. This is so because P2 - P- 1 = 0 (mod 5) \\P =3 (mod 5). Furthermore, 
we note that there are some falling diagonals which are all zeros. This occurs whenever/3 = -3 (mod 11) or 
P^4 (mod 11). 

UP is an integer whose units digit is not congruent to 3 modulo 5, then P - P - 1 =±1 (mod 5) and we see 
why no prime, in fact no integer, of the form 5k ± 2 would occur in Table 1. 

215 



216 AN APPLICATION OF THE CHARACTERISTIC [Oct. 

There also exist primes of the form 5k ± 7 which are not of the form P2 - P - 1. Such primes are 31, 61, 
101, 59, 79, and 119. The last observation leads one to question the cardinality of P for which P2 - P- 7 is a 
prime. The authors believe that there exist an infinite number of values for which the characteristic is a prime. 
However, the proof escapes discovery at the present time and is not essential for the completion of this paper. 

2. A SPECIAL CASE 

The convolution array, written in rectangular form, for the sequence {Hn}n=i, where P = 3 is 

Convolution Array when P = 3 

1 
3 
4 
7 
11 
18 

1 
6 
17 
38 
80 
158 

1 
9 
39 
120 
315 
753 

1 
12 
70 
280 
905 
2568 

1 
15 
110 
545 

2120 
7043 

1 
18 
159 
942 

4311 
16536 

1 
21 
217 
1498 
7910 

34566 

1 •• 
24 -
284 ••• 

2240 •• 
13430 ••• 
66056 ••• 

The generating function Cm(x) for them column of the convolution array is given by 

(2) 

and it can be shown that 

(3) 

Lm (X/ 1 + 2x 

1 - x- x 

(1 + 2x)Cm_1(x) + (x+x2)Cm(x) = Cm(x). 

Using Rn>m as the element in the n row and m column of the convolution array, we see from (3) that the 
rule of formation for the convolution array is 

(4) 
'n,m "n-l.m + "n-2,m + "n,m-l + *"n-l,m-l • 

Pictorially, this is given by 

where 
(5) 

| a | 

c \ b \ 

d x 

a + b + d + 2c. 

Letting Rm(x) be the generating function for them row of the convolution array and using (4), we have 

(6) 

(7) 

and 

(8) 

RiM = 

R2M = 

1 
1-x 

3 

RmM 

(1-x)2 

(1 + 2x)Nm_1(x) + (1 -x)Nm_2(x) _ Nm(x) 

(1-x)m 

where Nm (x) is a polynomial of degree m - 2. 
The first few numerator polynomials are found to be 

Nt(x)= 1 
N2(x) = 3 
N3(x) = 4 + 5x 
N4(x) = 7+ 10x+ Wx2 

d-xr 
m > 3, 

N5(x)= ll+25x + 25xz+20x 
N6(x) 18 + 50x + 75x2 + 60x3 + 40x4 . 
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Recording our results by writing the triangle of coefficients for these polynomials, we have 

Table 2 

Numerator Polynomial Nm(x) Coefficients when P = 3 

4 
7 
11 
18 
29 

5 
10 
25 
50 
100 

10 
25 
75 
175 

20 
60 
205 

40 
140 80 

47 190 400 540 530 320 160 

It appears as if 5 divides every coefficient of every polynomial Nm(x) except for the constant coefficient. 
Using (6), (7), and (8), we see that the constant coefficient of Nm(x) \sHm and it can be shown by induction 

that 
(9) Hn-lHn+l Ht 5h1) n+l 

If 5 divides Hn_^ then 5 divides Hn and by (1) Hn_2> Continuing the process, we have that 5 divides //^ = 7 
which is obviously false. Hence, 5 does not divide Hn for any n. 

Using (8), we see that the rule of formation for the triangular array of coefficients of the numerator poly-
nomials follows the scheme 

where 
(10) 

By mathematical induction, we see that 

(11) 

1 
d 

c 

a 

b 

x 

! 
x = a + b + 2c -d. 

Hn+1 ~ 3Fn + Fn_i, 
wherefn is the nth Fibonacci number. 

From (10) and (11), we now know that the values in the second column are given by 

(12) x = a + b + 5Fn . 

Since 5 divides the first two terms of the second column of Table 2, we conclude using (12), (10), and induc-
tion that 5 divides every element of Table 2 which is not in the first column. By induction and (10), it can be 
shown that the leading coefficient of Nm (x) is given by 

ntn-3 (13) 
Now in [4], we find 

Theorem 1. Eisenstein's Criterion. Let 

q(x) --

5, m > 3. 

i=0 

be a polynomial with integer coefficients. If p is a prime such t h a t ^ ^ 0 (mod/?), a/ = 0 (mod/?) f o r / < n , 
and ag ^ 0 (mod p 2) then q(x) is irreducible over the rationals. 

In .15], we have 

Theorem 2. If the polynomial 
g(x) 

i=0 
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is irreducible then the polynomial 

h(x) = ]T an^xl 

i=0 
is irreducible. 

Combining all of these results, we have the nice result that Nm(x) is irreducible for all m > 3. In fact, we 
shall now show that these results are true for any P such that the characteristic P2 - P - 7 is a prime. 

3. THE GENERAL CASE 
Throughout the remainder of this paper, we shall assume that/5 is an integer whereP2 - P - 1 is a prime. 
By standard techniques, it is easy to show that the generating function for the sequence [Hn)n=i is 

(14) 1 + (p~ Vx 

By induction, one can show that 

\l-x-x2 ' \ 1-x-x2' \ 1-x-x2* 

Hence, the rule of formation for the convolution array associated with the sequence {Hn}n=i >s 

"w,m ~ "n-l,m + "n-2,m + "n,m-l + 'P ~~ ''"n-l,m~l -

1 

1-x-x" 

,n+l 

(16) 
Since 

(17) 
and 
(18) 

we have, by (16) and induction, 

(19) 

Ri(x) = 

R2(x) 

1-x 

(1-x)2 

R (X) = <1 + (P~ 1kWm-i (x) + (l- x)Nm„2(x) = Nm(x) m > 3 

(1-x)r (i-xr 
= D2 _ The triangular array for the coefficients of the polynomials Nm(x), with Q=P -P - 7, is 

Table 3 
Numerator Polynomial Nm(x) Coefficients when #2 = P 

1 
P 
P+ 1 D 
2P+ 1 2D (P- VD 
3P + 2 5D (3P-4)D (P-1)2D 
5P + 3 10D (9P - 12)D (4P2 - 10P + 6)D (P - 1)3D 
8P + 5 20D (22P - 31)D (UP2 - 36P + 23)D (5P3 - 18P2 +21P- 8)D (P - 1)4D 

By (19), we see that the rule of formation for the triangular array of coefficients of the numerator poly-
nomials Nm (x) follows the scheme 

where 
(20) 

By induction, we see that 

d a 

c b 

x 

a + b+(P- 1)c-d. 
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(2D Hn-iHn+i-Hj = D(-l)n+1 

and 
(22) Hn+1 = PFn + Fn.t , 

where Fn is the nth Fibonacci number while using (17) through (19) we conclude that the constant term of 
Nm(x)\sHm. 

Following the argument when P was 3 and using (21), we see that D does not divide Hm for any/7? or that 
the constant term of Nm(x) is never divisible by D. 

By (20) and (22), the elements in the second column of Table 3 are given by 

(23) x = a + b + FnD. 

Since D divides the first two terms of the second column of Table 3, we can conclude by using (23), (20), and 
induction that D divides every element of Table 3 which is not in the first column. Using (20) and induction, 
we see that the leading coefficient ot/Vm(x) is given by 

(24) (P- 1)m~3D, m > 3. 
Biy the preceding remarks, together with Theorems 1 and 2, we conclude that Nm(x) is irreducible for all 

m > 3, provided D is a prime. 
4. CONCLUDING REMARKS 

If one adds the rows of Table 2 he obtains the sequence 1, 3, 9, 27, 81, 243, 729, and 2187. Adding the rows 
of Table 3 we obtain the sequence \,P, P2, P3, P4, P5, P6, and/77. This leads us to conjecture that the sum of 
the coefficients of the numerator polynomial Nm(x) IsP771'1. 

From (19), we can determine the generating function for the sequence of numerator polynomialsNm(x) and 
it is 

(25) tHP-W-xJk = £ Nn+l(xfK™. 

1-(1 + (P-1jx)\-(1-x)\2 m=0 

Lettingx = 1, we obtain 

(26) j ^ = f (PVm = £ Nm+l(1fkm 

m=0 m=0 

and our conjecture is proved. 
We now examine the generating functions for the columns of Table 3. The generating function for the first 

column is already given in (14). Using (23), we calculate the generating function for the second column to be 

(27) C2(x) = ^——2 

(1-x-x2) 
while when using (20) we see that 

(28) Cn(x) = P~ 1~x
o Cn-tM. n > 3. 

] - x - x z 

Hence, we have 

(29) 
ctM + x2c2tx) E [X(p-1>-X

? ) 
k=o x 1-x-x2 I 

2 \ k j 

, „ , , . , „ - , 1-xP 
k=0 

In conclusion, we observe that there are special cases when the characteristic D is not a prime and the poly-
nomials Nm (x) are still irreducible. 

In [7 ] , it is shown that 

(30) D = 5ePf*P%* -P*n, e = O or 7, 

where the/3/ are primes of the form 10m ± I 



220 AN APPLICATION OF THE CHARACTERISTIC 
OF THE GENERALIZED FIBONACCI SEQUENCE Oct. 1977 

Assume either e = 1 or some a,- = 7. Following the argument when P was 3 and using (21), we conclude that 
neither 5 nor P{ divides the constant term of Nm(x). We have already shown that D divides every nonconstant 
coefficient of every polynomial Nm(x) so that either 5 orP; divides every nonconstant coefficient of every 
polynomial Nm(x). 

By Theorems 1 and 2 together with (24), we now know that the polynomials Nm(x) are irreducible when-
ever 5 or/3; does not divide P - 1. However, it is a trivial matter to show that neither 5 norP; can divide both 
P - 7 andP2 -P- 1 = D. Hence, Nm(x) is irreducible for all m >3 provided e= /oraz-= / for some/. 

REFERENCES 

1. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Numerator Polynomial Coefficient Arrays for Catalan and Re-
lated Sequence Convolution Triangles, "The Fibonacci Quarterly, Vol. 15, No. 1 (Feb. 1977), pp. 30-34. 

2. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Catalan and Related Sequences Arising from Inverses of Pascal's 
Triangle Matrices," The Fibonacci Quarterly,Mo\. 14, No. 5 (Dec. 1976), pp. 395-405. 

3. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Pascal, Catalan, and General Sequence Convolution Arrays in a 
Matrix," The Fibonacci Quarterly, Vol. 14, No. 2 (April 1976), pp. 135-143. 

4. G. Birkhoff and S. MacLane, A Survey of Modern Algebra, 3rd Ed., Macmillan Co., 1965, p. 77. 
5. G. Birkhoff and S. MacLane, Algebra, Macmillan Co., 3rd Printing, 1968, p. 173. 
6. Fibonacci Association, A Primer for the Fibonacci Numbers, Part VI, pp. 52-64. 
7. Dmitri Thoro, 

******* 

METRIC PAPER TO FALL SHORT OF "GOLDEN MEAN" 

H.D.ALLEN 
NovaScotia Teachers College, Truro, Nova Scotia 

If the greeks were right that the most pleasing of rectangles were those having their sides in medial section 
ratio, >/5 + 1 : 2, the classic "Golden Mean," then the world is missing a golden opportunity in standardizing 
its paper sizes for the anticipated metric conversion. 

Metric paper sizes have their dimensions in the ratio 1 : yj2, an ingenious arrangement that permits repeated 
halvings without altering the ratio, But the 1.414 ratio of length to width falls perceptively short of the 
"golden" 1.612, as have most paper sizes with which North Americans are familiar. Thus, WA x 11 inch typing 
paper has the ratio 1.294. Popular sizes for photographic paper include 5 x 7 inches (1.400), 8 x 1 0 inches 
(1.250), and 11 x 14 inches (1.283). Closest to the Golden Mean, perhaps, was "legal" size typing paper, 
81/2 x 14 inches (1.647). 

With a number of countries, including the United Kingdom, South Africa, Canada, Australia, and New 
Zealand, making marked strides into "metrication," office typing paper now is being seen that is a little 
narrower, a little longer, and notably closer to what the Greeks might have chosen. 

******* 



GENERATING FUNCTIONS FOR POWERS 
OF CERTAIN SECOND-ORDER RECURRENCE SEQUENCES 

BLAGOJ S.POPOV 
Institut de H/Iathematiques,Skoplje, Jugoslavia 

1. INTRODUCTION 
Let u(n) and v(n) be two sequences of numbers defined by 

n+l _ n+1 
(1) u(n) = r-± 2 _ , n = 0, 1,2, ••• 
and ri~r2 

(2) vM = rn
1+rn

2, n = 0,1,2, 
d r2 are the roots of the equation ax +bx + c = 0. 
n that the generating functions of these sequences are 

"lM=[l+jX+jX2Y and H (x) = ( 2+±x) [l + b-x+ | * 2 ) 

where r± and r̂  are the roots of the equation ax + bx + c = 0. 
It is known that the generating functions of these sequences are 

We put 
oo 

(3) ukM = Z ^Mxn 

n=0 
and 

oo 

(4) vk(x) = "£ vk(n)xn. 
n=0 

J. Riordan [1] found a recurrence for u^(x) in the case b = c = ~a. L Carlitz [2] generalized the result of 
Riordan giving the recurrence relations foru^(x) and v^(x). A. Horadam [3] obtained a recurrence which uni-
fies the preceding ones. He and A. G. Shannon [4] considered third-order recurrence sequences, too. 

The object of this paper is to give the new recurrence relations foru^M and v^(x) such as the explicit form 
of the same generating functions. The generating functions of u(n) and v(n) for the multiple argument will be 
given, too. We use the result of E. Lucas [5]. 

2. RELATIONS OF u(n) AND v(n) 

From (1) and (2) we have 
4rzn+n+2 = A u(n)u(m) + v(n + fMm +i) + (-;/~VA (uinMm + 1) + u(m)v(n + V), i = 7,2, 

with A = (b2-4ac)/a2. 
Then it follows that 

2u(m +n+ 1) = u(n)v(m + 1) + u(m)v(n + 1) 

2v(m +n+2) = v(n + 1)v(m + 1) + Au(n)u(m), 
Since 

u(-n - 1) = -q~nu(n - 1), vhn) = -q~nv(n), 
we find the relations 

(5) u((n + 2)m - 1) = u((n + Dm - 1)v(m) - q mu(nm - 1), 

(6) vtnm) = v((n - 1)m)v(m)- qmv((n - 2)m). 

221 
From the identity 
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[W] 
rk!n + rk

2
n=Y, (-Vr

r^-Clr(r^rn
2)k^(rir2r, 

r=0 
if we put u(n) and v(n) we get 

[k/2] 
(7) v(kn) = £ (-1)r jJly Clrqmvk~2r(n), k > 1. 

r=0 
Similarly, from _ 

2r?+1 = v(n +1) + (- Ij^y/AuM, i = 1, 2, 

and taking into consideration 

spl p +s\l 2p + m\ _ nm-1 2p +m I m+p — 1 \ 
JL\ s j \ 2p + 2sj ' m \ P j ' 

we obtain 
[k/2] 

(8) £ ^lkl21'r T~ Cl_rqr(n+1)uh'2r(n) = \k(nh 
r=0 r 

where 
Xufn) =[u(k(n +*)-*), k odd, Akinj \v(h(n + i)), k even. 

3. GENERATING FUNCTIONS OF u(n) AND v(n) FOR MULTIPLE ARGUMENT 

The relations (5) and (6) give us the possibility to find the generating functions of u(n) and v(n) when the ar-
gument is a multiple. Indeed,we obtain from (5) 

(9) (1 - v(m)x + qmx2)u(m,x) = u(m - 1), 

where 
oo 

(10) u(m,x) = £ u((n+1)m- 1)xn. 
n=0 

From (6) we have 

(11) (1-v(m)x + qmx2)v(m,x) = v(m) - qmv(0)x, 

where 

(12) v(m,x) = ] T v((n+1)m)xn . 
n=0 

We find also 

(13) (1-v(m)x + qmx2h(m,x) = v(0)-v(m)x, 

with 
v (m,x) = v(0) + v(m,x)x. 

4. RECURRENCE RELATIONS OFuk(x) AND vk(x) 

Let us now return to (8) and consider the sum 
[k/2] 
£ A[k/2]-r _J_ ^ y £ u^2r(n)(qrx)n = £ ^ ^ n 

r=0 n=0 n=0 

which by (3), (10) and (12) yields the following relation 
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[k/2] 
A'k/2luk(x) = Ms)- Z A[k/2]~r ^ T Clrqruk„2r(qrx), 

r=l 
where 

Xfkx) = \u(k>x)> k o d d 
A f / W \v(k,x), k even. 

Similarly from (7) for v^(x) follows 
[k/2] . 

Vk(x) =v(k,x)+ T (-J)'-1 — - - ClrVk„2r(Qrx). 
r=l k ~ r 

5. EXPLICIT FORM OF uk(x) AND vk(x) 

Next we construct the powers for u(n) and v(n). From (1) and (2) we obtain 
[k/2] 

(14) &lkl2hk(n)= 2 (-DrCW(n+1)^k-2r(n), 
r=0 

and 
[k/2] 

(15) vk(n)= J2 Cr
kqmv((k-2r)n), 

r=0 
where 

VtU \V2V(t), t = 0. 

Hence we multiply each member of the equations (14) and (15) b y x n and sum from/7 =0to/? = °°. By (3) 
and (4) the following generating functions for powers of u(n) and v(n) are obtained: 

[k/2] 
Alk,2luk{xJ= ]T (-1)rCr

kqr\(k-2r,qrx), 
r=0 

and 
[k/2] 

vk(x) = £ Cr
kv(k-2r,qrx). 

r=0 
If we replace u(m,x), v(m,x) and 7(m,x) from (9), (11) and (13), we get 

*[wUkM-™-t!>W^ 
where 

and 

where 

r=0 1-v(k-2r)qrx+qkx2 

fu(k -2r- 1), k Odd, 
\Xkr H v(k~ 2r) -qrv(0)x, k even, k j= 2r 

lv(k-2r)-qrv(0)x, k = 2r, 

vkW = V — 
£o 1-v(k-2r)qrx + qkx2 

w . = P,(0)-qrv(k-2r)x, k 1= 2r, 
~(0)-qr7(k-2r)x, k = 2r. 
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A SET OF GENERALIZED FIBONACCI SEQUENCES SUCH THAT 
EACH NATURAL NUMBER BELONGS TO EXACTLY ONE 

KENNETH B.STOLARSKY 
University of Illinois, Urbana, Illinois 61801 

1. INTRODUCTION 

We shall prove there is an infinite array 

1 2 3 
4 6 10 
7 11 18 

5 
16 
29 

8 
26 
47 

15 24 39 63 

in which every natural number occurs exactly once, such that past the second column every number in a given 
row is the sum of the two previous numbers in that row. 

2. PROOF 

Let a be the largest root o f z 2 - z - 1 = 0, soa= (1 + -JU/2. For every positive integers let f(x) = lax + %] 
where [u] denotes the greatest integer in u. We require two lemmas: the first asserts that f(x) is one-to-one, 
and the second asserts that the iterates of f(x) form a sequence with the Fibonacci property. 

Lemma 1. If x and/ are positive integers and* >y then f(x) > f(y). 

Proof. Since a(x - y)> 1 we have (ax + %)- (ay + 1/z)>1, so f(x) >f(y). 

Lemma 2. Ifx and/ are integers, andy = lax + Vz], \\\enx + y = [ay + V2J. 

Proof. Write ax + 1/2 = y + r, where 0<r< 1. Then 

(1 + a)x + j = ay + ar 

so 
x+.Y + r~ j + f = ay + ar a n d aY+ \ = x + y+ J +(1-aJr.' 

Since 1 <a= 1.618 ~<2m have 0< a- 1 < | < 7 and the result follows. 
We now prove the theorem. Let the first row of the array consist of the Fibonacci numbers 1,2 = f(1), 

3 = f(2), 5 = f(3), 8 = f(5), and so on. The first positive integer not in this row is 4; let the second row be 
4,6= f(4), 10= f(6), 16= f(10), and so on. The first positive integer not in the first or second row is 7; let the 
third row be 7,11 = f(7), 18 = f(11), and so on. We see by Lemma 1 that there is no repetition. By Lemma 2 
each row has the Fibonacci property., Finally, this process cannot terminate after a finite number of steps since 
the distances between successive elements in a row increase without bound. This completes the proof. 

For the array just constructed, let an be the n number in the first column and bn the/? number in the 
second column. I conjecture that for/? > 2 the difference Z?n -an is either Sf or b\ for some/ </?. 

We comment that the fact that Fn+1 = [aFn + 1/2], where Fn is the n Fibonacci number, is Theorem III on 
p. 34 of the bonk Fibonacci and Lucas Numbers, Verner E. Hoggatt, Jr., Houghton Mifflin, Boston, 1969. 



PERIODIC CONTINUED FRACTION REPRESENTATIONS 
OF FIBONACCI-TYPE IRRATIONALS 

V.E. HOGGATT,JR. 
San Jose State University, San Jose, California 95192 

and 
PAULS. BRUCKIV1AN 

Concord, California 94521 

Consider the sequence {ak)k=l' w n e r e ak > 1V k, and also consider the sequence of convergents 

(1) g - = [alf a2, - , ak] = at + a2+ a3+-ak ' k = 1, 2, - . 

It is known from continued fraction theory that Pj, --Putai, a2, - , ak) and Qk = P^_1(a2, a3, - , a j jare 
polynomial functions of the indicated arguments, with Qt = 1; moreover, the condition ay, > 7 V A- is sufficient 
to ensure that ^W^Pk/Qk exists. We call this limit the value of the infinite continued fraction [ah a2,alf . . . / ; 
where no confusion is likely to arise, we will use the latter symbol to denote both the infinite continued frac-
tion and its value. Clearly, this value is at least as great as unity, which is also true for all values of 

Pk, Qk and P-£-., k = 1,2,-. 
Qk 

The computation of the convergents of the infinite continued fraction [ai, a2, a$, •••/ is facilitated by con-
sidering the matrix products 

" (2 &)-( .";)(?. ' )"(?;)• » • ' • * -
where PQ = 1, QQ = 0. Relation (2) is easily proved by induction, using the recursions 

(3) Pk+i = ak+lPk+Pk-l> 

(4) Qk+i = ak+i Qk + Qk-l, k = 1,2,.-. 

Now, given a positive integern > 2, suppose that we define the sequence {ak}k=l as follows: 

(5) af = z, a2 = a$ = - = an = x, an+1 = 2z, ak+n = ak> k = 2*3, 

wherez > 1, x> 1. Also, given that/7 = 7, we may define the sequence { a ^ } ^ as follows: 

(6) ai = z, au = 2z, k = 2,3, - , where z > 1. 

Let 0 n denote the value of the corresponding periodic infinite continued fraction; that is, 

(7) 0 n = [z;x,x,-,x,2z], n = 1,2, - . 

Also, define 6n as follows: n~1 

(8) dn=z-h<t)n. 

Thus, 6n has a purely periodic continued fraction representation, namely 

(9) 6n = [2z/xx,x,-,xJ. 

We let Py 
note that 

n - l 
We let Pk/Qk denote the k convergent of the continued fraction given in (9) (k = 1, 2, — JL In view of (2), 

225 
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(Pn+1 Pn x
 = (2z l\(x lf'Ulz l\ 

\Qn+l On I W 0)\1 0) \1 0/ 

Now, each matrix in the right member of the last expression is symmetric. Taking transposes of both sides leads 
to the result that the product matrix is itself symmetric, i.e., 
(10) Pn = Qn+1. 

We will return to this result later. Our concern is to evaluate 6n, and thus 0 „ , in terms of z, x and n. Another 
result which will be useful later is the special case of (4) with k = n, namely 
(11) Qn+1 = 2zQn + Qn,t. 

Returning to (9), note that this is equivalent to the following: 
(12) 6n = [2z, x^x^jjc, OJ . 

n- 1 
This implies the equation 
H O \ a "n'n + 'n-1 

Un(2n + Qn-i 

Clearing fractions in (13), we obtain a quadratic in dn, namely 

(14) Qn62
n - (Pn ~ Qn-lWn ~ Pn-1 = 0. 

Rejecting the negative root of (14), we obtain the unique solution: 

(15) 6n 
2Qn 

Therefore, using (8), (11) and (10) in order, we obtain an expression f o r0 n , which we shall find convenient to 
express in the form 

(16) 0„ 

We will now show that (16) may be further simplified, and that depending on our choice of z, may be ex-
pressed in terms of a Fibonacci polynomial, with argument*. We digress for a brief review of these polynomials. 
The Fibonacci polynomials Fm(x) are defined by the recursion: 
(17) Fm+2(x) = xFm+1 (x) + Fm(x), m = Q, ±7, ±2, •••, 
with initial values 
(18) F0M = 0, Fi(x) =7. 

The characteristic equation 
(19) f2 = xf+1 

has the two solutions-
(20) a(x)= 1Mx +\Jx* + 4), P(x) = V2(x - V*2 +4), 

which satisfy the relations 
(21) a(x)fi(x) = -1, a(x) + $(x) = x, a(x) - f}(x} = Jx2 + 4. 

Closed form expressions for the Fm'$ are given by: 

(2?) F (x) = <£l*Li£!M. 

for all integers/;?. The Lucas polynomials are also defined by (17), but with initial values 
(23) L0(x) = 2, LiM=x. 
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Closed forms for the Lucas polynomials Lm(x) are given by: 

(24) Lm(x) = am(x) + $m(x), 

for all integers m. A convenient pair of formulas for extending the Fm's and Lm's to negative indices is the 
following. 
(25) F,m(x) = (-l)m'1Fm(x)/ 

(26) L,m(x) = (-1)mLm(x), m = 0, 1,2,-. 

Note that Fm(l) = Fm, Lm(1) = Lm, the familiar Fibonacci and Lucas numbers, respectively. The following 
additional relations may be verified by the reader: 

(27) ar(x) = Fr(x).a(x) + Fr_t (x); 

(28) (x) = F2
r+i (x)Fm (x) + 2Fr+1 (x)Fr(x)Fm^ (x) + F2(x)Fm,2 M ; 

(29) (x2 + 4)Fm+2r(x) = L2
r+1(x)Fm(x) + 2Lr^1(x)Lr(x)Fm_1(x) + L2(x)Fm.2(x); 

Mm ,[^i+2J(xJ = ar(x), provided x > 0. 
m-+ °° V Fm (x) 

(30) 
From (19), 

a2(x) = xafx) + 1, or a(x) = x + —J—t . 

Assumingx > 1, by iteration of the last expression, we ultimately obtain the purely periodic continued fraction 
expression iora(x), namely: 

(31) a(x) = fxj, x > I 

More generally, from (27), 
ar(x)/Fr(x) = a(x) + Fr_i(x)/FrM, 

provided Fr(x) 10. If, in particular, r is natural and x > 1, then in view of (31), we have: 

ar(x)/Fr(x) = ft] +Fr„1(x)/Fr(x) = fx+ Fr_t(x)/Fr(x);x] = [(xFr(x)+ Fr_t(x))/Fr(x);x] , 

or, using (17) with m = r- 1, 

(32) ar(x)/Fr(x) = [Fr+1(x)/Fr(x);x], r natural, x > 1. 

Comparing (30) and (32), it therefore seems reasonable to suppose that, for/-natural and* > 1, the contin-
ued fraction expression for 

7 / 'm-
Fr(x) V F~ 

+2rM 
r(x) V Fm(x) 

should approximate, in some sense, the right member of (32). The exact relationship is both startling and ele-
gant, and is our first main result. Before proceeding to it, however, we will develop a pair of useful lemmas. 

Lemma 1. For all natural numbers/; let 

<33> v*M££fV;g) ' 
Then 
(34) Ar(x) = {AifxtY = ( * tf . 

Proof. LetS be the set of natural numbers /-for which (34) holds. Clearly, 1 E 5 . Supposere£ Then, 
using the inductive hypothesis and (17), we obtain 

= ( xFr+l (x) + Fr(x) Fr+1 (x) \ I Fr+2(x) Fy+f (x)\= , . 
\xFr(x) + Fr„! (x) Fr(x) ) \ Fr+1 (x) Fr(x) J * "-1 {XJ' 

Hence, r^S=>(r+ 1)^S. 
By induction, Lemma 1 is proved. 
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Lemma 2. Suppose [a^ a2, 23, —7 converges. Then, for all c > 0, 

(35) • c[ai,a2,a3,-»] = [cat, —, ca^ , —, - 1 . 
L c c J 

Proof. Consider the convergents 
pi 
-Q- = hi, a2, a3, - , a^J, k = 1,2, 3, - . 

r _]__ _±_ j _ \ _c l_ _l __l_ 
cPk/Qk = c\ai+ a2+ a3+ •••<% \= cat+ a2+ a3+ -ay, = cai + (a2/c)+ a3+ -

Then 1/c 

--{cai^,oa3a-±,^c(^ 
k-i 

Let 

Then 

ak\ 

Pk 
Jim -~- falfa2ta3t - 7 . 

k~i 
[ calt ~ , ca3, - J = felimoo [ c ^ , ^ ca5, - , </ ^ afe J 

= c ^lim^ Ffe/Qfe = ccf) = c[ai,a2,a3, - 7 . Q.E.D. 
Before proceeding to the main theorems, we conclude the preliminary discussion with a brief table of Fm(x) 

and Lm(x), for ready reference: 
m 
0 
1 
2 
3 
4 
5 

0 
1 

X 

x2+1 
x3 +2x 

x4 +3x2 + 1 

L.m\A/ 

2 
X 

x2+2 
x3 +3x 

x4+ 4x2 +2 
x5+5x3 + 5x 

Returning to (16), we may compute the required quantities from the matrix identity: 

(Pn pn-l\ _ t2z l\/x U*1'1 

VQ„ Qn-i)~\i oi\i 0) • 
However, using Lemma 1, this becomes: 

/ Pn Pn-l \ _ / 2z l\[ Fn(x) Fn.t (x) \ _ (2zFn fx) + Fn.t (x) 2zFn,i (x) + Fn„2M 
I'X1 0}\Fn-lM Fn-2M I \ FnM Fn-lM ) 

Substituting these quantities in (16), we thus obtain the result: 

(36) r—x —2-, - Jz2Fn(x) + 2zFn_1M + Fn 
lz,x,^^x,2zj yj FnM 

itx) 

for all natural n, provided z > 1,x> 1. 
The following two theorems are easy consequences of (36): 

Theorem 1. For all natural n and r, x > 1, 

Fr+1 (x) (37) 1_ JFn+2rM 
Fr(x) V FnM Fr(x) ;x, x, 

n - l 

2fr+lM 
Fr(x) 

Proof: Let 
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in (36) and apply (28), with m = n. Since 

Fy+1 M 
Fr(x) 

z = x + -y^rr > x, 
Fr(x) 

the condition z > 1 is clearly satisfied. 
Theorem 2. For all natural n and r, x> 1, 

(38) 
Lr(x) 

/ (xz+4)Fn+2r(x) 
Fn(x) 

Proof: Let 

in (36) and apply (29), with m = n. Since 

Lr+lM 2Lr+1(x) 
Lr(x) 'xd^S' Lr(x) 

n — 1 

Ly+lM 
Lr(x) 

M
 Lr-lM 

Z = X+ , , T > X, 
Lr(x) 

the condition z > 1 is clearly satisfied. 
Corollary 1. 

(39, y ^ 

for all natural n, x > 1. 

Proof. Setr=1 in Theorem 1. 
Corollary 2. 

l(x) 
(x) 

= [x;x,x, — ,x,2x] , 
n- 1 

(40) Fn+4M 
FnM 

[x2+1;J,x2,-,1,x2,i1,2x2 + 2], n =2,4,6,-; 
Y .' 

(Yin — 1) pairs 

\xz + 1;7,xz,:,lx 2 2x2 +2 2 , x\ 1, -, xz, 1,2xz + 2\, n = 1,3,5, - , x > I 

Y2(n — 1) pairs Y2(n — 1) pairs 

Proof Set r = 2 in Theorem 1. Then multiply both sides by F2(x) = x, applying Lemma 2. Distinguish-
ing between the cases n even and n odd leads to (40). 

Corollary 3. 
(41) tFj£L = [1; i i ..., i 2], for all natural n, 

V *~n s v— j 
n — 1 

Proof Set* = 7 in Corollary 1. 
Corollary 4. 

(42) 7 S = [2; I 1,..., 14], for all natural n. 
V rn

 v >C~~/ 
Proof Setx = 7 in Corollary 2. n i 
Corollary 5, 

(43) l(x2+4)Fn+ 

V Fn(x) 
4)Fn+2(x) 

[x2+2;1,x2,->, 1,x2, 1,2x2+4], n=2,4,6,-; 
(Vm — 1) pairs 

x2+2;1,x2,-lx2,^-±-^,x2, 1,-,x2,1,2x2+4 
-J x2 ^_ 

V2(n~l) pairs }6(n- Impairs 

,n= 1,3,5, >x> 1. 



230 PERIODIC CONTINUED FRACTION REPRESENTATIONS 
OF FIBONACCI-TYPE IRRATIONALS Oct 1977 

Proof. S e t r = 7 in Theorem 2. Then multiply both sides by L^x) = x, applying Lemma 2. Distinguish-
ing between the cases n even and n odd leads to (43). 

Corollary 6. 

n (44) yj - ^ = [3; 7, 7, . . . , 7, 6], for all natural n. 

Proof. Setx= 1 in Corollary 5. 

The continued fraction representations of corresponding expressions involving the Lucas polynomials are 
somewhat more complicated, since they contain fractions with numerators other than unity. The theory of 
such general continued fractions is more complex, and is not considered here. The interested reader may pur-
sue this topic further, but will probably discover that the results found thereby will not be as elegant as those 
given in this paper. 

The primary motivation for this paper came out of the diophantine equations studied in Bergum and Hoggatt 
[11. 
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Pl-OH-MY! 

PAULS. BRUCKMAN 
Concord, California 94521 

Though I I i n circles may be found, 
It's far from being a number round. 
Not three, as thought in times Hebraic 
(Indeed, this value's quite archaic!); 
Not seven into twenty-two— 
For engineers, this just won't do! 
Three-three-three over one-oh-six 
Is closer; but exactly? Nix! 
The Hindus made a bigger stride 
In valuing I I ; if you divide 
One-one-three into three-three-five. 
This closer value you'll derive. 
But I l 's not even algebraic, 
And so the previous lot are fake. 
For those who deal in the abstract 
Know it can never be exact 
And are content to leave it go 
Right next to omicron and rho. 
As for the others, not as wise, 
In circle-squarers' paradise, 
They strain their every resource mental 
To rationalize the transcendental! 



ZERO-ONE SEQUENCES AND STIRLING NUMBERS OF THE FIRST KIND 

C.J.PARK 
San Diego State University, San Diego, California 92182 

This is a dual note to the paper [1 ] . Let x^,X2, -,xn denote a sequence of zeros and ones of length n. De-
fine a polynomial of degree (n - m) > 0 as follows 

(1) am+i,n+l(d) = Y*(xi-d)l-x*(x2-(d+1))l-x* ••(xn-(d + n-1))l'Xn 

with 
&i,l(d) = 1 and am+i,n+l(d) = 0, n < m, 

where the summation is overxi, x2, —, xn such that 
n 

i=l 

Summing overxn we have the following recurrence relation 
(2) am+lyn+1 (d) = -(d + n- 1)am+l>n (d) + am>n(d), 
where 

a<0,o(d) = 1 ar,d &o.n(d) = 0, n > 0. 

Summing overx^, we have the following recurrence relation 

(3) a>m+l,n+l(d) = -d&m+l,n(d + 1) + Om,n(d+ V, 
where 

aO,o(d) = 1 and aoyn(d) = 0, n > 0. 
The following theorem establishes a relationship between the polynomials defined in (1) and Stirling numbers 
of the first kind; see Riordan [2, pp. 32-34] . 

Theorem 1. am n(1) defined in (1) are Stirling numbers of the first kind. 
Proof. From (l)ai)1(d)= 1 and from (2) 

(4) 
am+l,n+l(D ~ ~nam+l,n(1) +am,n i 

which is the recurrence relation for Stirling numbers of the first kind, see Riordan [2, p. 33]. Thus Theorem 1 
is proved. 

Using (2), (3) and (4) the following Corollary can be shown. 
Corollary, (a) am+iyn+i(Q) = amyn(1) 

(b) 
am+l,n+l(D am+l,n(2) + 0<m,n(2) 

(c) amyYl(2)- Om+i^U) = -nam+lyn(7) + Oyn^tt). 
Theorem 2. l£\$m+lyn+1(d) be a polynomial of degree (n - m) > 0 given by Park [1 ] . 
Then 

(5) Ylam+i,k+i(d)Pk+i,n+i(d) = 8m+lyn+1 with 8myVl the Kroneckerdelta. 

§m,n = h&mtn = 0, m t n, and summed overall values of k for which am+iy]z+i(d) and Pk+l,n+l (d) are non-
zero. 

231 
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Proof. It can be verified that the polynomial defined in (1) has a generating function 

(6) .(t-d)M = £ tmam+Un+1(d), where (t-d)^ = (t-d)(t-d- 1),-(t-d- n + 1). 
m=0 

The generating function of Pm+i,n+l(d) caR De written 

(7) \n+l 

Using (6) and (7), (5) follows. This completes the proof of Theorem 2 
EXAMPLE: For/? =3, let 

(d). 

A = 

~alfl(d) 0 0 0 

&l,2(d) a<2f2(d) 0 0 
a1}3(d) a,2f3(d) d3}3(d) 0 

[cnf4(d) a2)4(d) a3t4(d) 0,4,4^)] 

1 
-d 

d(d + 1) 

0 
1 

-(2d+1) 

0 
0 
1 

\-d(d+l)(d+ 2) (3dz + 6d + 2) -3(d+1) 1 

\$ll{d) 0 0 0 7 0 

B = Ul,2(d) p2,2ffl 0 0 \ = \d 1 
\$l,3(d) $2,3(d) $3,3(d) 0 \d2 (2d+1) 
\p1)4(d) $2,4(d) fo,4ld) fo,4(d)\ 

Theny4.£ = I . 
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******* 
PROBLEMS 

GUY A, R. GUILLOT 
Montreal, Quebec, Canada 

Proposed by Guy A. R. Guillot, Montreal, Quebec, Canada, 

Prove that 

£ taiT' 1 = £ tan"' -J— 
*** F2n+1 n=i n2+n + 1 .«=* 

Proposed by Guy A R. Guillot, Montreal, Quebec, Canada. 

Show that 

(a) 

(b) 

n=l n Fn+2 

> 'El - Cog 2> , j _ 
12 2 48 

[Continued on p. 257.] 

00 

n=0 hn+2 V 
tan —ZL- \ > 1 +0.0166. 

2n+2 J TT 



GAUSSIAN FIBONACCI NUMBERS 

GEORGE BERZSENYI 
Lamar University, Beaumont, Texas 77710 

The purpose of this note is to present a natural manner of extension of the Fibonacci numbers into the com-
plex plane. The extension is analogous to the analytic continuation of solutions of differential equations. 
Although, in general, it does not guarantee permanence of form, in case of the Fibonacci numbers even that 
requirement is satisfied. The resulting complex Fibonacci numbers are, in fact, Gaussian integers. The applica-
bility of this generalization will be demonstrated by the derivation of two interesting identities for the classical 
Fibonacci numbers. 

The notion of monodiffricity was introduced by Rufus P. Isaacs [1 , 2] in 1941; for references to the more 
recent literature the reader is directed to two papers by the present author [3 ,4 ] . The domain of definition of 
monodiffric functions is the set of Gaussian integers; a complex-valued function / is said to be monodiffric at 
z = x + y/\i 
(1) 4 [f(z + i)-f(z)] = f(z+1)-f(z). 

i 

As Isaacs already observed, if / is defined on the set of integers, then the requirement of monodiffricity deter-
mines /uniquely at the Gaussian integers of the upper half-plane. We term this extension monodiffric continua-
tion. Kurowsky [5] showed that the functional values of /may be calculated by use of the formula 

(2) f(x + yi) = £ ( * ) / * A f c f l W , 
k=o ' 

where the operator A is defined by the relations 

A°f(x) = f(x), A*f{x) = f(x + 1)- fix) and Akffx) = Ak'1{A1Hx)) for k > 2. 

When applied to the Fibonacci numbers Ak behaves especially nicely; one may easily prove that 

&kFn = Fn_k . 
Therefore, via Eq. (2), one may define the Gaussian Fibonacci numbers, Fn+mi, for/? an integer, m a non-
negative integer by 

m I \ 
(3) Fn+mi = 22 [ k )' ^n~k ' 

k=0 
The first few values of Fn+mi a r e tabulated below: 

y f 
3-4/ 

1 
3+\ 

| 

1 
0 

— ^ — 

-3 + 4i 

-2 + i 

0 

1 

1 

-3 + 4i -6 + 8i -9 + 12/ -15 + 201 

5i -1 + 81 -1 + 13i -2 +21i 

2 + 4i 3 +Si 5+ 10/ 8 + 16/ 

3 + 2/ 5 + 3/ 8 + 5/ 13 + 8/ 

3 5 8 13 

Figure 1 
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On the basis of Eq. (3) it is easily shown that 

'4/ 'n+mi = '(n-l)+mi + ' (n-2)+mi > 

that is, for each fixed m, the sequences {Re(Fn+mi)} and {lm(Fn+mi)} are generalized Fibonacci sequences 
in the sense of Horadam [6 ] . 

Our first aim will be to utilize Eq. (4) in order to find a closed form for the Gaussian Fibonacci numbers. The 
development hinges upon the observation (easily proven by induction via Eq. (1)) that for each m = 0, 1,2,• -, 

'm+2mi ~ u/ 
and, consequently, with the help of Eq. (4), one can prove that 

v * 3 ' 'n+2mi ~ 'm+l+2mi'n-m 
for each n = 0, ±1,±2, -,m = 0, 1,2, - . 

Although one could show directly that 

(6) Fm+1+2mi = (1 + 2i)m, 
we shall provide a more insightful derivation. It is well known that if 

a -[11], then fl* = [g+* g j 
for each k = 0, ±1, ±2, •••. Since a matrix must satisfy its characteristic equation, one may then write 

a2 = Q + I. 
With the help of this one finds that 

(Q + il)2 = Q2 + 2iQ-I = (1+2i)Q, 
or, more generally, for #7 =0,1,2,-

(Q + iI)2m = (1+2i)mQm. 
Expansion of the left member of this identity and multiplication by Qn~2m yields 

2 m 
Y(2™)ikQn-k = (1+2i)mQr 

k=0 

Finally, equating the first row second column entries of the two members of this matrix identity gives 
2m 

(7) E[2?)ikFn-k = (1*2irFn_m. 

Since, in view of Eq. (3), the left members of Eqs. (5) and (7) are identical, Eq. (6) is proven. 
The evaluation of the right member of Eq. (3) for odd m is easily accomplished now with the help of Eq. (1). 

The results may be summarized as follows: 

(8a) Fn+2mi = (1 + 2i)mFn.m 

(8b) Fn+(2m+i)i = (1 + 2i)m[Fn_m+iFn_1_m] . 
It may be observed that for fixed odd positive integers, m, the sequences {Fn+mi\ are closely related to the 
generalized complex Fibonacci sequences studied by Horadam [7] and possess similar properties. One may also 
observe that Eq. (6) is a special case of Eq. (8a), arising when n = m + 1. 

The identities, 
m 

(9a) 2 \2k)(~1) Fn'2k = amFn-m 
k-0 

m , 
Ob) Z[%:i)(-'>kFn-2k = b. m+1 'n-m > 

k=o * -•" " * ' 
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promised earlier in the paper, are obtained by equating the real and the imaginary parts of Eq. (7). The num-
bers d£ and by,, defined by 

(1 + 2i)k = ak+bki, 

may also be obtained with the help of the following algorithm (which is more in the spirit of the present publi-
cation): ag = 1, bo = 0 and for k> 1, 

ak = ak-l - 2bk-i and bk = bk-i +2ak-i • 

The table below lists the first few values of a^ and by, obtained in this manner: 

I n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

an 

1 
-3 
-11 
-7 
41 
117 
29 

-527 
-1,199 
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b n j 

2 
4 

-2 
-24 ! 

-38 
44 
278 
336 

-718 
-3,116 

n 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

an 

6,469 
11,753 
-8,839 

-76,443 
-108,691 
164,833 
873,121 
922,077 

-2,521,451 
-9,653,287 

hn 

-2,642 
10,296 
33,802 
16,124 

-136,762 
-354,144 
-24,478 

1,721,764 
3,565,918 

-1,476,984 

Figure 2 
To illustrate the results, we list below the evaluation of Eqs. (9a) and (9b) form = 5: 

Fn-45Fn_2 + 210Fn_4-210Fn_6+45Fn_8-Fn.l0 = 41Fn_5, 

12Fn - 220Fn_2 + 792Fn_4 - 792Fn_6 + 220Fn,8 - 12Fn_l0 = 44Fn_5, 

which, upon simplification, may be combined into the following elegant relationship: 

(11) Fn- 5Fn+2 —9Fn+5 + 5Fn+8 - Fn+10 = O. 

Other simple identities arising as special cases include: 

(12) Fn-3Fn+2 + Fn+4 = O, 

(13) Fn+4Fn+3- Fn+6 = O, 
and 
(14) Fn- 12Fn+2+29Fn+4 - 12Fn+6 + Fn+8 = O. 

In conclusion we note that the entire development can be extended to the study of generalized Fibonacci 
numbers. In fact, if the sequence Hn is defined by 

H0 = P, Hl = Q> Hn = Hn-i +Hn_2 for n > 2, 

wherep and q are arbitrary integers, then Eqs. (9a) and (9b) will readily generalize to 

(15a) 

and 

(15b) 

k=0 

I 2m 
\2k (-1) Hn_2k ~ amHn~ 

^ \2k + l) (~~^ Hn_2k ~ bm+1 Hn-

respectively. 
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CONSTANTLY MEAN 

PAULS.BRUCKMAN 
Concord, California 94521 

The golden mean is quite absurd; 
It's not your ordinary surd. 
If you invert it (this is fun!), 
You'll get itself, reduced by one; 
But if increased by unity, 
This yields its square, take it from me. 

Alone among the numbers real, 
It represents the Greek ideal. 
Rectangles golden which are seen, 
Are shaped such that this golden mean, 
As ratio of the base and height, 
Gives greatest visual delight. 

Expressed as a continued fraction, 
It's one, one, one, •••, until distraction; 
In short, the simplest of such kind 
(Doesn't this really blow your mind?) 
And the convergents, if you watch, 
Display the series Fibonacc' 
In both their bottom and their top, 
That is, until you care to stop. 

Since it belongs to F-root-five 
Its value's tedious to derive. 
These properties are quite unique 
And make it something of a freak. 
Yes, one-point-six-one-eight-oh-three, 
You're too irrational for me. 



ON MINIMAL NUMBER OF TERMS IN REPRESENTATION 
OF NATURAL NUMBERS AS A SUM OF FIBONACCI NUMBERS 

M.DEZA 
31, rue P. Borghese 92 Neuilly-sur-Seine, France 

Let f(k) denote this number for any natural number/:. It is shown that f(k) <n for k < F2n+2 ~ 2, f(k) = n 

for k = F2n+2 - 2 a n d f(k) = n+ 7 for k= F2n+2 ~ 1-

1. A base for natural numbers is any sequence S of positive integers for which numbers n and N may be 
found such that any positive integer > N may be represented as a sum of <n members of S. Any arithmetical 
progression 
(1) 7, 1 + d, 1+2d, - , 
where d is an integer and d > 7, is a base (it is enough to take n=d,N = 1). A geometrical progression 

(2) I q, q2, - , 
where q is an integer and q > 7, is not a base; if we take for any positive integers n and N the number 

m
 f

m+l _ / 

where 
m = max(n,[/gq{] + N(q- 1)}]), 

is greater than N, but may not be represented as a sum of < n numbers of progression (2). The sequence of the 
Fibonacci numbers is defined as Ff = i, where / = 1,2; F^ = F^i + F^2, where / > 2. This sequence may be con-
sidered additive by definition, but it increases faster than any arithmetical progression of type (I). On the other 
hand a specific characteristic of Fibonacci numbers 

,im 5+1 = &+i 
i-^oo F{ 2 

shows that they increase asymptotically as a geometrical progression with a denominator 

however, q* < 2, i.e., Fibonacci numbers increase more slowly than any geometrical progression of type (2). 
We show that Fibonacci numbers, in the representation of the positive integers as a sum of these numbers, act 
as a geometrical progression of type (2). Let us call 

/ 
k = 1L fmv rn{ < m^lf 

i=l 

a correct decomposition, if f= 7, or if f> 1 we have m{ < m^i - 1 for all / <E [2,f]. 
The theorem of Zeckendorf gives that for any positive integer there exists a correct decomposition; moreover 

any decomposition of the positive integer into a sum of Fibonacci numbers contains no fewer terms than its 
correct decomposition. 

2. Theorem 1. 
(1) For any positive integer n the number F2n+2 ~ 7 is the smallest number which is not representable as a 

sum of < n Fibonacci numbers. 
(2) Number F2n+2 - 7 may be represented as a sum of n + 7 Fibonacci numbers. 
(3) Number F2n+2 - 2 is not representable as a sum of < n Fibonacci numbers. 
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Indeed, if n = 1, theorem is evident. Let us assume that the theorem is correct for n < m. The numbers of 
segment [1, F2m+2 ~ 2] may be represented for part (1) of the theorem, as a sum of <m Fibonacci numbers. 
Number (F2m+2 - 2) + 1 = F2m+2 ~ 7 maY De represented for part (2) as a sum of m + 1 Fibonacci numbers. 
Number (F2m+2 - 2) + 2= F2m+2 's a Fibonacci number. The numbers of segment 

(3) lF2m+2 + h F2m+2 + (F2m+1 ~ DJ 
are sums of number F2m+2 ana" ° f t n e corresponding numbers of segment [1, F2m+i - 1], which for part (1) 
of the theorem (since F2m+\ - 1 < F2m+2 - 2) are representable as a sum of < m Fibonacci numbers. 
Number F2m+2 + (F2m+i ~ 1) + 1 - F2m+3 is a Fibonacci number. The numbers of the segment 

lF2m+3 + h F2m+3 + (F2m+2 ~ 2)1 

are representable as a sum of <m + 1 Fibonacci numbers for the same reason as for the numbers of segment (3); 
though in this case we have the number F^m+J ar|d n o t ^2m+2- Thus all numbers not greater than 

F2m+3 + (F2m+2 ~ 2) = F2(m+l)+2 ~ 2 
are representable as sums of <m + 7 Fibonacci numbers. A correct decomposition of numbers F2m+2 ~ <?and 
F2m+2 ~~ 1 contains respectively (on the basis of the inductive assumptions) m and m + 7 terms. If to these de-
compositions we add on the left-hand side the term F2m+3 we obtain the correct decomposition of numbers 
F2m+4 ~ 2 and F2m+4 ~ ?• These latter contain respectively m + 1 and m + 2 terms. From this and from the 
theorem of Zeckendorf it follows that numbers F2(m+i)+2 ~ <?ar|d F2(m+i)+2~ 1 m a v be represented re-
spectively as the sums of m + 1 (but not less) and respectively m +2 (but not less) Fibonacci numbers. 

By the way, it is clear that 
2n n 

F2n+2 - 2 = YL Fi = 12 F2i+1 • 
i=i i=l 

One of more detailed works on these problems is [2 ] . 
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LETTER TO THE EDITOR 
April 28, 1970 

In regard to the two articles, "A Shorter Proof" by Irving Adler (December, 1969 Fibonacci Quarterly) and 
"1967 as the Sum of Three Squares," by Brother Alfred Brousseau (April, 1967 Fibonacci Quarterly), the gen-
eral result is as follows: 

2 2 2 
* +y +z = n 

is solvable if and only if n is not of the form 4*(8k+7), iort= 0, 1,2, -,k = 0, 1,2, -.See [1 ] . 
Since 1967 = 8(245) + 7, 1967 ¥ x2 +y2 + z2. A lesser result known to Fermat and proven by Descartes is 

that no integer 8/r+ 7 is the sum of three rational squares [2 ] . The really short and usual proof is: 
For*, y, and z any integers, x2 = 0, 1, or4 (mod 8) so thatx2 + y2 +z2 - 0 , 1, 2, 3,4, 5, or 6 (mod 8) or 

x2 + y2+z2£ 7 (mod 8). 
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COMPOSITIONS AND RECURRENCE RELATIONS II 
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and 
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Vivekananda College, IV!adras-600004, India 

Sn an earlier paper by the same authors [1] properties of the compositions of an integer with 1 and 2 were 
discussed. This paper is a sequel to the earlier one and contains results on modes and related concepts. We stress 
once again as before that the word "compositions" refers only to compositions with ones and twos unless 
specially mentioned. 

Definition 1. To every composition of a positive integer N we add an unending string of zeroes at both 
ends. The transition ••• 0 + 1 + - - is a rise while •••+ 1 + 0 + -• is a fall. We also defined in [1] that a one followed 
by a two is rise while it is a fall if they occur in reverse order. We also define — 0 + 1 + — + 1 + 2 as a rise and 
. . -2+1 + - + 1 + 0 + -- as a fall. 

Definition 2, A composition of a positive integer N is called "unimaximal" if there is exactly one rise 
and one fall. In other words it is unimaximal if there is no 1 occurring between two 2's. (All the 2's are bunched 
together.) Let M (N) denote the number of unimaximal (unimax in short) compositions of N. 

Definition 3. A composition of a positive integer is called "uniminimal" if there is no 2 occurring be-
tween two 1's. (All the Ts are bunched together.) Let m^fN) denote the number of uniminimal (unimin in 
short) compositions of N. 

We shall now investigate some of the properties of m (N) and M (N) and make an asymptotic estimate of 
m1(N)/M1(N). 

Theorem 1. 
(a) M1(N) = M1(N- 1)+ [N/2] 

(b) m1(N) = m1(N-2) + [N/2] 

(c) MH2N) - 4 ^ i L t i i ± | ^ / L ^ l 

(d) m1(2N) + m1(2N- 1) = ml(2N+1) + m 1(2N - 2), 

where [x] represents the largest integer < x. 

Proof. Lz\Ml(N,1) and M1(N,2) denote the number of unimax compositions ending with 1 and 2, re-
spectively. Clearly M1(N) = M1(N/1) +M1(Nf2). By Definition 2 we see that 

(1) Ml(Nt1) = MUN- 1) 

since the 1 at the end of the compositions counted by M1(N,1) will not affect the bunching of twos. However 
a 2 at the end preserves unimax if and only if it is preceded by another 2 or a complete string of ones only. Thus 

(2) M^NJ) = Ml(N-2,2)+1 

so that decomposing (2) further we arrive at 
M1(2N+1) = N 

and 
(3) M1(2N) = N. 

239 
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Putting (1) and (3) together we get 
(4) M*(N) = MUN-D + INM . 

Now using similar combinatorial arguments form1 with similar notation \oxm1(N,l) and #71(N,2) we see 
(5) m 1(N) = m 1(Nf J) + m 1(Nf2) 
and 
(6) m1Wt2) = m1(N-2) 
while 

ml(Nf1) = m1(N- 7, 1)+1 if N-1 = 0 (mod 2) 
m1(N,1)-= m^N- I 1) if N = 7 (mod 2) 

which gives 
(7) m1(2N) = m1(2N-2) + N 

(8) m1(2n + 1) = m1(2N-1) + N 
or 

From (4) we deduce 
m1(N) = m1(N-2) + [n/2] . 

Ml(2N) = M1(2N+1) + M1(2N-1) 

for 
M1(2N) = M1(2N-l) + N 
M1(2N+1) = M1(2N) + N. 

Finally (7) and (8) together imply 
m1(2N)+m1(2N- 1) = m2(2N+1) + ml(2N-2) 

proving Theorem 1. 
Theorem 2. < 

,im mlM=i 
N-°° MUN) 2 

Proof. Let An denote thenth triangular number 
A _ n(n + 1) 

In general for real x let 

It is not difficult to establish using induction and Theorem 1 that 
(10) m1(2N+V = AN+1 

(11) m1(2N) = m1(2N- 1)+1 

so that (10) and (11) together imply 
(12) m1lN) = AN/2 + 0(1) . 

One can also show similarly that 
(13) M1(2N+1) = AN+i+Au.! 
and 
(14) M1(2N) = Ml<2N+ 1) + M1(2N- 1) = An+1+2AN_1+AN„3 

which give 
(15) M*(N) = 2ANi2 + 0(N) 
for 

N 1 ! ? - &N/AN+1 = 1. 
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Now (12) and (15) together imply 

N im 
M1(N) proving Theorem 2. 

Definition 4. Every rise and a fail determines a maximum. Every fall and a rise determines a minimum. 
Let M(N) and m(N) denote the number of maximums and minimums in the compositions of N, 

Theorem 3. M(N) = M(N - 1) + M(N -2) + FN„2 - 1 
m(N) = m(N- 1) +m(N-2) +FN„2- 1 

m(N) 
N "™ - M(N) I 

Proof. As before split M(N) as 
M(N) = M(N,1) + M(N,2). 

It is clear that the " 1 " at the end of the compositions counted by M(N, 1) does not record a max and so 

M(N,1) = M(N- 1). 

Clearly the " 2 " at the end of the compositions counted by M(N,2) records an extra max if and only if the cor-
responding composition counted by /I/ — 2 ends in a 1 but not f o r /V - 2 = 1 + 1 + ••• / a string of ones. Thus 

M(N,2) = M(N-2) + CN„2(D- 1 
= M(N -2) + Fn_2 - 1 

giving 
(16) M(N) = M(N - 1) + M(N - 2) + FN„2 - 1. 

Proceeding similarly form(l\/) we have 

m(N) = m(N, 1)+m(N,2) and m(N, 1) = m(N - V + CN„i (2) - 1 = m(N -1)+ FN,2 - 7 

while m(N,2) = m(N - 2) giving 
(17) m(N) = m(N-1) + m(N-2) + FN,2- 1. 

It is quite clear from (16) and (17) that m(N) and M(N) are Fibonacci Convolutions so that [see Hoggatt and 
Alladi [ 2 ] ] . 

(18) N 
lim 

m(N) 
0. 

Now pick any composition of N say NQ. Let M(NQ) and m(Nc) denote the number of max and min, respect-
ively in NQ. Since there is a fall between two rises and a rise between two falls we have 

(19) \M(Nc)-m(Nc)\ < 1-

Now from the definition of NQ it is obvious that 

W)\M(N)-m(N) 

by (19). Now if we use (18) we get 

c c 
2 (M(Nc)-m(Nc)) 
c 

< E \M(Nc)-m(Nc)\ 
c 

< CN = FN+1 

I lim ™Ml 
N"™» M(N) 

In other words the number of maximums and the number of minimums are asymptotically equal. 
Let us now find the asymptotic distribution of 1's and 2's in unimax compositions. LetM} (N) and M2(N) 

denote the number of ones and number of twos in the unimax compositions of N. 

Theorem 4. 
Mt (2N +1) = Mi (2N) + M1(2N) + N2, Mt (2N) = Mt(2N - 1) + M1(2N -1) + N(N - 1), 
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Proof. As before, let 

(21) Mt(N) = M1(N,1) + M1(N,2). 

Clearly we have 
Mi(N,7) = Mi(N- 1) + M1(N- 1) 

while 
(22) Mt (N,2) = Mt(N- 2, 2) + (N- 2) 

for the compositions 7 + 1 + 1 — / = N - 2, and 7 + 1 + ••• / + 2 = N are both unimax. Now if we decompose 
(22) further we sum alternate integers,, Then (21) gives the two equations of Theorem 4. 

Theorem 5. M2(2N + 1) = M2(2N)+ N+ (JLzJM 

M2(2N) = M2(2N- 1) + N + -QLiJM 

Proof. By combinatorial arguments similar to Theorem 4 we get 

M2(N) = M2(N,1) + M2(N,2) 

§\\i\n§M2(N,1) = M2(N- 7jand 

M2(N,2) = M2(N-2,2) + M1(N-2,2)+ 1 = N/2 + Mi(N - 2, 2) + M1(N -4, 2)+ ••• 

on further decomposition. We also know from (3) that 

M1(2N+ 1f2) = M1(2N,2) = N 
so th at 

M2(2N + 1) = M2(2N) + W±li f M2(2N) = M2(2N -1)+ lM!tLD 

Theorem 6. ^ ^ 
wx™ooMl(N) 2' 

Proof It is easy to prove that for real x 

(23) fix) = £ N* ~ J 

We know from Theorem (4) that 

(24) Mi(2N+ 1) = M1(2N) + M1(2N) + N2 

(25) M1(2N) = Mi(2N- 1) + M1(2N- 1) + N(N- 7). 

From (4) one can deduce without trouble that 

(26) M1(2N+ 1) = N2 + N + 1 

(27) M1(2N) = N2+1. 

Now substituting (26) and (27) in (24) and (25) and continuing the decomposition using the recursion on 
Theorem 4 we get 

(28) Mt(N)= Z ™2
 + £ m 2

+ 0(N2) - f f f V + Q(N2)~ Uff 
m<N/2 m<N/2 J X Z / J V Z / 

using (23). If we adopt the same decomposition procedure to the two equations in Theorem (5) we get by virtue 
of 

(29) M2(N) = Y, m2 + 0(N2) = 1Jf\ + Q(N2). 
m<N/2 JX ; 

Now (28) and (29) together imply 
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lim MM = L 
A T ^ ~ Mt(N) 2 

establishing Theorem 6, 
We now state theorems analogous to (4) and (5) and (6) for the uniminimal compositions. 

Theorem 7, N-I 
mt(N) - m1(N-2)+Y, ml(n,1) +[N/2] 

n=l 

m2(N) = m2(N-2) + m1(N -2)+ [N/2] . 

Proof. With the usual notation m^N,!) and m^(N,2) we find 

mt(N) = m1(N/1) + m1(N/2) 

mi(Ni2) = mi(N-2) 

since the " 2 " at the end of the compositions counted by m(N,2) will not affect the counting of m 
ones. However for mi(N,1) we find 

rntfN,!) = m^N- 1, 1) + ml(N- 1, 1)+1 

if N-1 = 0 (mod 2) 

= mt(N- 1, 1) + ml(N- 1, 1) 

if N-1 = 1 (mod 2) 

so putting these together we get 
N-1 

m i(N) = mi(N-2)+Y, ml(n,1) +[N/2] , 
n=l 

With similar use of notation for/7? 2 we get 

m2(N) = m2(N,1) + m2(N,2) 

giving 

while 

so that these give 

Theorem 8. 

m2(N12) = m2(N-2) + m1(N-2) 

m2(N,1) = m2(N- 1,1)+1 if N-1 = 0 (mod 2) 

= m2(N- 1) if N-1 = 1 (mod 2) 

m2(N) = m2(N-2) + m1(N-2)+ [N/2] . 

m2(N) _ / 
Ar m — — . = — . 
N-+°o mi(N) 2 

Proof. We know from Theorem 7 that 
N-1 

(29) mt(N) = m1(N-2)+J^ ml(n,1) + [n/2] . 
n=l 

Now from Theorem 1 we deduce that 
mHn,1) = [n/2] 

so that 
N-1 N~l N-1 A 

(30) J ] mtfal) = £ [n/2] = £ [n/2] + 0(N - 1) = ^ + 0(N - 1). 
n=l n=l n=l 

If we continue to decompose mi (N - 2) in (29) and use (30) we will finally get 
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(31) mi(N) =j^bl + AJ±1 + *M +1 +0(N
2) ~ *fl + *f* 

We also know from Theorem 7 that 
(32) m2(N) = m2(N- 2) + m1(N-2) + [N/2] 

It is easy to establish from Theorem 1 that 
ml(2N+1) = AN+1, m1(2N + 2) = m1(2N+l)+ 1 

giving 
(33) mHN) = AN/2 + 0(A/) ~ AN/2 . 
Now decomposing rri2(N - 2) in (32) further and using (33) we get 

m2(N) _- | ^ , I + ^d + \ + m2) = lfa±2 + A^-4 + \ + 0(N2j (34) 

' 2 +^+~\+0<N2) 

since A- ~ y implies Ax ~ Ayr Now if we compare (34) and (31) we get 

lim fRiM = L 
N^°° mt(N) 2 

proving Theorem 8. 
We now shift our attention to compositions called "Zeckendorf compositions." A composition of N in which 

no two consecutive ones appear is called a Zeckendorf composition (1) and if no two consecutive twos appear 
it is called a Zeckendorf composition (2). We denote them in short asz^ and z2 compositions respectively. Note 
that in azj composition there should be a 2 between ones while in a unimin there should not similarly^ is 
the opposite of unimax. Now denote by 

Z(N) = the number of Z2 compositions of N 
z(N) = the number of Z^ compositions of N. 

Theorem 9. Z(N) = Z(N - 1) + Z(N - 31 z(N) = z(N -2)+ z(N - 3). 

lim *M =0 

Proof. As usual partition 
z(N) = z(N,1) = z(N,2) 

c\ear\yz(Nr2)=z(N-2),)iti\\\e , , 
u. z(N,1) = z(N-1,2) = z(N-3) 

this proves , , , 
z(N) = z(N-2)+z(N-3l 

93m Z(N) = Z(Nt 1) +Z(N,2) and Z(N,1) = Z(N - 1) 
while 

Z(N,2) = Z(N -2,1)= Z(N - 3) 
giving 
, L u L Z(N) = Z(N-1)+Z(N-3). 
It can be shown that 

lim m±li = a 
N ™ - Z(N) a 

and 
N -» °° z(N) 

where a and fi are the dominant roots of the auxiliary polynomials x - x - 1 = 0 and x3 - x - 1 = 0 (a> (3). 
See Hoggatt and Alladi [2]. This implies that there exist constants ca, c$ > 0 so that Z(N) > Caa

N 

and 
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z(N) 

N ^ o o 

cN 

< Cpp 

z(N) 
Z(N) 

jv'lm~ 

N 

= 0. 

zW 
CN 

and 

giving 

Corollary. On similar lines 

N l i m ±111/ = j j m ^m = o. 

NOTE. Given a partition of N in terms of 1 and 2, if we rearrange the summands so as to get the maximum 
number of max we getaZ^ composition. If we rearrange to get the maximum number of min we get aZ^ com-
position. Roughly a Zeckendorf composition is either a maximax or a maximin composition. 
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A TOPOLOGICAL PROOF OF A WELL KNOWN FACT 
ABOUT FIBONACCI NUMBERS 

ETHAN D. BOLKER 
Bryn Mawr College, Bryn Mawr, Pennsylvania 

Theorem. Letp be a prime. Then there is a sequence [mA of positive integers such that 
P = 1-p . = 7 - Fm.+ 1 = 0 (mod/7-0. 
'rrij — ' rmj~l rrij-t-i r ' 

The proof depends on the following lemma. 

Lemma. LetG be a topological group whose completion (in the natural uniformity) is compact. Le t#e G. 
Then the sequence #, g , g3, ••• has a subsequence which converges to 1. 

Proof. The sequence of powers of g has an accumulation point h = Jim g 1 in the compact completion 6 

of G. Let/?7y = nj+i - nj. Then g ] -> 7 in G and hence in G. 
To prove the theorem we shall apply the lemma to 

( ; ; ) 
in the group G of 2x2 integer matrices of determinant ±1 topologized /7-adically. That is, for every integern 
write n =pkm, (p,m)= 1 and set \\n\\p =p~k. Then for / I , B e G let 

d{A,B) = max { \ A { j - B{j\\p : i, j = 12} 

G equipped with the metric d satisfies the hypotheses of the lemma. 
It is easy to check inductively that 

«wi _ I 'yn + l 'm 
y ~ \ F F A 

\ rm rm~ 1 

[Continued on p. 280.] 



ZERO-ONE SEQUENCES AND FIBONACCI NUMBERS 

L. CARLITZ* AND RICHARD SCOVSLLE 
Duke University, Durham, North Carolina 27706 

1. INTRODUCTION 

It is well known that the number of zero-one sequences of length n: 

(1.1) (ai>32> '~'an) hi = 0 or 1) 

with consecutive ones forbidden is equal to the Fibonacci number Fn+2. Moreover the number of such se-
quences with an = ai = 1 also forbidden is equal to the Lucas number Ln. This suggests the following two 
problems. 

1. Let /700, noi, niQ, n^ be non-negative integers such that 
n00 + n01+ni0 + nil = n~ 1 • 

We seek the number of sequences (1.1) with exactly ngo occurrences of 00, ngi occurrences of 01 , /?^ occur-
rences of 10 and nu occurrences of 11. 

2. Let/70^, noi, n^g, n^ be non-negative integers such that 
n00 + n01 +nio+nll = n-

We again seek the number of sequences (1.1) with nu occurrences of//, but now anai is counted as a consecu-
tive pair. 

Let a(noo> noi, n^o, n^) denote the number of solutions of Problem 1 andbfnoo, noi> nl0> nll) denote 
the number of solutions of Problem 2. Put 

x _ x / i _ x~^ / i WOO n01 n1Q n11 
'n ~ 'n(x00>x01>x10>xll) ~ 2L, a'n00> n01> n 10> n 11>X00X01 x 10 x 11 > 

nif=0 

/ i v-"- u/ i n00 n01 n10 n l l 
9n = 9n(x00,x01,x10,xll) = 2w b(n00> "01, n 10, n l t )xQ0 XQ1 X1Q XU . 

It is convenient to take 

Put 

n[f=0 

fo = 90 = 0, fi = 9i = 2, 

F(u) = E fnu
n, G(u) = £ 9nun . 

n=0 n=0 
We show that 

(1.2) F(ui = 2u + (x01+x10-x00-x11)u
2 

1 - (x00+xn)u + (x00xn -x01x10)u
2 

and 

(1.3) 2+G(u) = 2-(xo0+x11hL 

1 - (x00+x11)u+(x00x11 -x01x10)u
2 

*Supported in part by NSF Grant GP-37924X1. 
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The special case 

<1-4) x00 = XQI = x10 = I xn = x 

is of some interest In this case (1.2) and (1.3) reduce to 

(1.5) 1 + F(u) = l + (1-x)u _ 
1-(1+x)u-(l-x)u2 

(1.6) 2 + G(u) = —Z^Jl + xhL , 
1-(l + x)u-(l-x)u2 

respectively. These generating functions evidently contain the enumeration of zero-one sequences with a given 
number of occurrences of 11. 

Forx = ft (1.5) and (1.6) reduce to the generating functions for Fn+2 and Ln, respectively. Thus it is natural 
to put 

1+FM= Z fn+2(x>Un, fn(x)= £ Fn,k*k> 
n=0 k 

2+G(u) = L 9n(x)un, gn(x) = £ t-n>kx
k . 

n=0 k 

We find that fn(x), gn(x) both satisfy 
Vn+2 = (1 +x)yn+1 + (7 - x)vn , 

which implies 
Fn+2,k = Fn+l,k + Fn,k + Fn+l,k-l ~ Fn,k-1 

and similarly for Ln,k- Moreover there is the striking relation 

9n (x) = fn+3 (x) - 2fn+2 (x) + 2fn+1 (x) (n > 0). 

2. PROBLEM 1 

In order to enumerate the number of sequences of Problem 1 it is convenient to define 

(2.1) 3l
rs(n00, n01, n10, nn) (i = Of 1) 

as the number of zero-one sequences with /-zeros, s ones, n^ occurrences of jk and ending with i, where 

noo + n01+nw+nil = r + s~ 1. 
Put 

(2.2) f((r,s) = fi(r,s\xoo>xOl,xiO,xil) = V, 3^n00> n0i, n10, nnlx^x^x^^x^1 . 
r,s 

It is convenient to take 
, 9 Q . \f0(0,0) = 0, f0(W = I f0(0,D= 1 
u'6) | fi(0,0) = O, fi(hO) = O, fi(0,1) = 7. 

Deleting the final element in a given sequence, we obtain the following recurrences: 
[fo(r,s) = x0Qf0(r- 1fs) + xl0fi(r- l,s) 
\f1(r/s) = x01f0(r,s- U + xuftfos- 1) 

( 0 A \ \fo(r,s) = x00f0(r- 1,s) + x10fi(r- Is) ( 

Put 

(2.5) F{ = Fi(u,v) = £ fi(r,s)urvs (i =0,1). 
r,s=0 

Then by the first of (2.4) 
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F0(u,v) = uf0(1,0) + vfo(0,1)+xo0u £ ur"1vsf0(r-ls) + x10v £ u^Vftfr- I s), 
r+s>2 r+s>2 

so that 
(2.6) FQ(U,V) = u + x00uF0(ufv) + x tou Fifu.v). 

Similarly 
(2.7) Fi(u,v) = v + xoivFo(u,v)+xuvFi(u,v). 

This pair of formulas can be written compactly in matrix form: 

22. (»"&)• 
(2 9) M ={XooU *10U\ • 
U - 9 ' , , \xoiv xllV) 

It follows at once from (2.8) that . c 

(F',Y «-"•%)• 
Since 

(I-M)'1 = l[1-x^v xH>u\ 
(I M) D\*0iv 1-xoo")' 

where 
(2.10) D = detM = / - XQQU -xltv+ (xoo*n ~ *01xlo)u]/' 
we get 
11 U) !F0\_lu + (x10-x11)uv\ 
( Z 1 1 ) KFirKv + fxoi-xooluv)-

Hence 

(2.12) F(u,v) = F0(u.v) + Fl(u,v)= U + V + ^01±xJ0^^xn)uv_ 
7 - x00u -xnv + (x00xn - x01x10)uv 

This furnishes a generating function for the enumeration of sequences with a given number of zeros and a given 
number of ones and nu occurrences of//. 

Finally, taking u = v, we get the desired solution of Problem 1. 

(2.13) F(u) = F(u,u) = ^lI^l^J^^Q_zJLlllEl^ . 
1-<xoo+xll)u + (x00xll-xolxlo)u2 

Explicit formulas for 
f(r,s) = f0(r,s)+ft(r,s) 

can be obtained from (2.12). The extreme right member is equal to 

U(1 - Xgv) + V(1 - XQQU)- (X01 +X11)llV = ^ (XQjX jQ^U^1 \/k 

(l-xoouXl-xuvt-xoiXiouv " £Q (j-XooU)ktln_Xiiv)k 

(x01xw)xkukvk+1 _ , _ _ . _ , ^ (x0ix10)
kuk+1vk+1 

(XQI+XIO) L 
k=0 (l-xoouftl-xuv)1**1 k=0 (1-x00u)k+l(1-xnv)k+l 

Expanding, we get after some manipulation 

(2.H) xv)= E (-')( i-JrtxomoMVxfi + L (l\\)(si1)(*oixio)kx1oo><u1 

k>0 k>0 

-(xoi+x10) ^{^{iZiyxoiXio^x^xf,-1 (r>0, s>0, r + s>2). 
k>0 
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If we take 
(3.1) 
(2.3) reduces to 
(3.2) 

3. SPECIAL CASES OF PROBLEM 1 

*oo = x01 = xio = I xn = x, 

1 + F(u) 1 + (1 - x)u 

Forx = 0 the right-hand side becomes 

1 - u-u 

as anticipated. We now define Fn: by means of 

l + (1-x)u 

1-(1 + x)u-(1-x)u2 

^ - £ Fn+2«n 

n=0 

(3.3) 

where 
1-(1 + x)u-(1-x)u* 

= £ fn+2Mun, 
n=0 

(3.4) fn(x) = £ Fntjx'. 
j>0 

It follows from (3.3) that fn(x) satisfies 
(3.5) fn+2M = (1 +x)fn+1 (x) +(1- x)fn(x) (n > 2) 

together with f 2 W = h / j W = 2; if we take f^(x) = 1, then (3.5) holds for/7 > I From (3.5) we 
recurrence 
(3.6) Fn+2}k = Fn+1>k + Fn+l,k~l + fn,k - Fn,k-1 . (n > H 

The following table is now easily computed. 

Fn,k 

n^^J? 
1 
2 

I 3 
4 
5 
6 
7 
8 

I 9 10 

0 " 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 

1 

1 
2 
5 
10 
20 
38 
71 

2 

1 
2 
6 
13 
29 
60 

3 

1 
2 
7 
16 
39 

4 

1 
2 
8 
19 

5 

1 
2 
9 

6 

1 
2 

7 

1 

Note that 

(3.7) fn<» = £ Fn,j = 2n'2 

j»0 
This follows at once by taking x = 1 in (3.3). If we take x = -1 we get 

(n > 2). 

which yields 
(3.8) hJ-i) = 2 

n=0 1~2UZ 

n-1 f2n+l(-D = 2" (n > »• 

The table suggests 
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Fn,n-3 = 1 (n > 3) 
(3.9) i Fn>n_4 =2 (n > 4) 

^ Fn,n~5 = n- 1 (n > 5) 

Since 

. 7 + (1-x}u = 7 + £ uk+1(1-u)k'1xk 

1-(1+x)u-(l-x)u2 1-u-u2 k=l (l-u-u2)k+1 

we have also 

(3-10) Z Fn,kun = U (1~U>k+l (k > D. 
n=k+3 (1-U-U1) 

Replacingx by x/u in (3.3) we get 

(3.1D LzJLtlL— = £ un £ Fn+k+2>kx
k , 

1 -X- (1 -X)u- U n=0 k=0 
which furnishes a generating function for diagonals, namely 

(3-12) DnM^Z Fn+h+2,kxk = Z (n-s
s + 1)(1-x)~s . 

k=0 2s<n+l 
For example 

+ -1-+ 1 
1~x n-x)2 

D0(x) = I Dt(x) = 1+ — 1 — , D2(x) = 1+ -2—, D3(x) = 1 
1 - x 1 - x 

in agreement with (3.9). Also, 

D4(x) = 1+-L-+ —3--, D5(x) = 1+ -L- + — i - + —1— , etc. 
1~x (1-x)2 1~x (1-x)2 (1-x)3 

The special case 

(3.10) x00 = x10 = xn = 1, x0i = x 

is considerably simpler than (3.1). Using (3.10), (2.13) reduces to 

(3.11) 1 + F(u)= 1 

1-2u + (1-x)u2 

Since 

-—-—-2 = — T — J = £ -j6^-1 *k»2k i (* + / + i W 
1-2u + (1-x)u2 (1-u)2-xu2 k=0 (1-u)2k+2 k=0 ro V ! ' 

n=0 2k<n 
so that (3.11) becomes 

(3.12) 1 + F(u)= f ) un T.[2
n

k7i)xk • 
n=0 2k<n 

It follows from (3.12) that the number of sequences of length n with k occurrences of 01 is equal to the bi-
nomial coefficient \^+ A • It is not difficult to give a direct combinatorial proof of this result. 

4. PROBLEM 2 
Let 

W.I) a%fnoO'nbl>niO>nil) (U = O) 
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denote the number of sequences with /-zeros and s ones, where r + s = HQQ + rigi + nio + nil + 1, with n^ 
occurrences of hk, beginning with/and ending withy. Also put 

(4.2) fij(r,s)-= fij(r,s\xoo,XQi,x10,xii) = £ 4jn00, n0i, n10, nuh^fx^1 x^x^1, 
nplk=0 

(4.3) F{j = Fij(u,v) = £ fij(r,s)uTvs . 
r,s=0 

Exactly as in §2, we have 

«* [Fff. ':;)•(•« °Xz % 
where M is defined in (2.9). Thus 

FFTO FF°1
1
1)-'I-M>-1(O i 

It follows that 
( 4 5 i / F00 F0l\ = 1(u-xllUv x10uv 

\ F10 Fll I D\xoiw v-x00uvj' 
where as before 

(4.6) D = 1 - x00u- XIIV+ (xoo*n- x0lx10>uv-

For Problem 2 we require 

(4.7) G(u,v) = x00F00 +x10F01+x01F10 + xn Fn . 

Hence, by (4.5) and (4.6), 
G(u v) = x0Qu+x11v-2(x00x11-x01x10)uv 

l-xoou-xav + fxooxn-XQiXiofov 

It is convenient to replace this by 

(4.8) 2 + Gtu.v) = j JzJ^fiZlliL . 
/ - x00u -xnv + (XQQXU - xoix10)uv 

In particular, fox u = v, (4.8) becomes 
(4.9) 2 + g(u,u)= .-2-<*0Q+.x±l)u 

/ - (x0o
+xu)u + (*ooxn - x01xw)u2 

Thus (4.9) furnishes a generating function for Problem 2. 
If we put 

2+G(u,u) = £ 9nu
n, F(u) = £ fnu

n, 
n=0 n=0 

where, by (2.13) 
F(u) = 2u-f-(x01+x10-x00-x11)u

2 

1- (x00+x11)u+ (x0oxii-x01x10)u
2 

then it is clear that 

(2-(x00+x11)u) YL fnu
n = (2u + (x01+x10-x00-x11)u

2) £ gnu
n 

0 0 

Comparison of coefficients gives 

(4.10) fn-(xOO+xll)fn-l = 2Qn-l+ (*01- XlO- XQQ- Xll)9n-2 • 
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5. SPECIAL CASES OF PROBLEM 2 
We take 

(5.1) 
Then (4.9) reduces to 
(5.2) 

*oo = xoi = *io = I *n = x-

2 + G(u,u) 2-(1 + x)u 

1-(1+x)u-(1-x)u2 

Forx = 0 the right side of (5.2) becomes 

2-u 

1-,u-u* 
= L Lnun 

as was expected. We now define Ln>j by means of 

(5.3) 2-<1 + x)u — --*-= Y\ gn(xjun, 
1-{t+x)u-(1-x)u2 „tj 

where 

(5.4) ffnM = £ Ln,jXJ • 
j>0 

It follows from (5.3) \batgn(x) satisfies 
(5.5) ffn+2 M - (1 + x)gn+i (x)+ (1 - x)gn (x) (n > 0) 

together with go(x) = 2, gi(x)= 1+ x. It is also clear that Ln^ satisfies the recurrence 

(5-6) Ln+2,k = Ln+l,k + Ln+i,k~l + Ln,k ~ Ln,k-l (n > 0) 

which is of course the same as (3.6). 
The following table is easily computed. 

-n,k 

I n \ 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 

2 
1 
3 
4 
7 
11 
18 
29 
47 
76 
123 

1 

1 
0 
3 
4 
10 
18 
35 
64 
117 
210 

2 

1 
0 
4 
5 
15 
28 
60 
117 
230 

3 

1 
0 
5 
6 
21 
40 
93 
190 

4 

1 
0 
6 
7 
28 
54 
135 

5 

1 
0 
7 
8 
36 
70 

6 

1 
0 
a 
9 
45 

7 

1 
0 
9 
10 

8 

1 
0 
10 

9 

1 
0 

10 

1 

It is easily proved by means of (5.3) and (5.4) that 
n 

(5.7) 

(5.8) 32n(-1) = 2 

gJ1> = E Ln,k =2" (n > J), 
k=0 

n+1 B2n+l(-D = O (n >0). 

The table suggests that Lnn = 1, 
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Ln,n-1 = 0 (n > 1), 
(5-9) < Ln>n_2 = n (n > 2), 

I ^-n,n-3 = n (n > 3). 
These results are easily proved by induction using (5.6). 

Comparison of (5.3) with (3.3) gives 
(5.10) gnM + (1-x)gn-i(x) = 2fn+2(x)-(1+x)fn+l(x). 
In view of (3.5), this implies 
(5.11) 9nM + (1-x)9n-lM = fn+2(x) + (1-x)fn(x) (n > 1). 

In particular (5.11) contains the familiar relation Ln+1 = Fn+2 + Fn. It would-be of interest to express #n (x) 
in terms of f^(x). 

We find that 
g0(x) = f3(x), gt(x) = f4(x)-f3(x), g2(x) = f5(x) - 2f4(x) + 2f3(x), 

g3 (x) = f6 (x) - 2f5 (x) + 2f4 (x), g4 (x) = f7 (x) - 2f6 (x) + 2f5 (x), g5 (x) = f8 (x) - 2f7 (x) + 2f6 (x), 

g6(x) = f9(x)-2f8(x) + 2f7(x), g7(x) = f10(x)-2f9(x) + 2f8(x). 

This suggests that 
(5.12) gn(x) = fn+3(x)-2fn+2(x) + 2fn+1(x) (n = 0, 1,2,-). 

To prove (5.12) we make use of the identity 

u(2-(1 + x)u) = (1 - 2u + 2U2)(1 + (1 - xju)- (1 - 2U)(1 - (1 + x)u - (1 - x)u2). 

Dividing both sides by D = 1 - (1 +x)u - (1 - x)u2, this becomes 

u 2-(1+x)u = (1_2u+2u2) LtlLjLxkl - i + 2u. 

Hence, by (3.3) and (5.3), 

u £ g„(x)un = (1-2u + 2u2) £ fn+2(x)un-1 + 2u. 
n=0 n=0 

Comparing coefficients of un, we get 

gn„l (x) = fn+2 (x) - 2fn+1 (x) + 2fn (x) (n > 1), 

which is equivalent to (5.12). 
From (5.12) we get 

(5.13) Ln^ = Fn+3jk -2Fn+2)k
+ 2Fn+1^ (k = 0, 1,2,-). 

Note that, for k = 0, (5.13) reduces to the familiar 

Ln
 = Fn+3 ~ 2Fn+2 + 2Fn+l = ~Fn+2 + 3Fn+1 = 2Fn+i - Fn = Fn+i + Fn,1. 

Finally, replacingx by x/u in (5.3), we get 

1 - X- (1 - X>U - U n=0 k=0 

This yields 

(5-14) J2 Ln+kkX^ 3-2^ ^ _]____ ^ /n-s + l\_1___ 

k=0 ' X 2s^n(1~x)S 2s<n+lK ' (1 ~ x)S 

For example 

k=o 
which is correct. 

E W^TEf-Ki)-'' 
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THE UNIFIED NUMBER IDENTITY 

GUY A. RGUILLOT 
Montreal, Quebec, Canada 

The identity illustrated below shows a relation connecting all of the most important constants and numbers 
in mathematics. 

(-DnE2n E (1M 2n 

ei7T[2(S+ £ (-Vn(y/5Fn+1-Ln+1))+a £ 
\ n=0 I n=0 

k=l 
2n 

+ 1 = 0. 
Bn(W) 

In the usual notation the above identity has the following constants and numbers 

CONSTANTS 

ft 1,-1, 2, y/5, i = >J-1t e,n,a = 1-^5, 0 1-J5 
2 ,10. 

NUMBERS 
Notation 

n 
1/k 
Fn+l 

l-n+1 

E2n 

n 
k 
n 
n 
n 

ft 7, •• 
h 2, •• 
ft I •• 
ft I • 
ft 7, • 

Explanation 

denotes zero and the set of positive integers. 
is the collection of fractions of the form 1/k. 
denotes the (n + 1)th Fibonacci number. 

" " Lucas number. 
" nth Bernoulli number. 
" 2nf even Euler number. n = 0,1, 

The author of this note wishes to point out that since the letter n denotes zero and the set of positive inte-
gers, then it must denote most of the conceivable numbers defined by mathematicians so far. Let us name some 
of these numbers. Prime, Fermat, Guy Moebius, Perfect, Pythagorean, Random, Triangular, Amicable, Auto-
morphic, Palindromic, and the list goes on and on •••. 



POLYNOMIALS ASSOCIATED WITH CHEBYSHEV 
POLYNOMIALS OF THE FIRST KIND 

A. F. H OR AD AM 
University of York, York, England, and University of New England, Armidale, Australia 

BACKGROUND 
Jaiswal [1] investigated certain polynomials p„(x) related to Chebyshev polynomials of the second kind 

U„(x) for which 

(1) 
with 

Un+1(x) = 2xUn(x)-Un_1(x), U0(x) = 1, Ui(x) = 2x 

Un(COse) = s - ^ ^ sin 0 

In this article, similar properties are derived for the corresponding polynomials qn(x) related to Chebyshev 
polynomials of the first kind Tn(x) for which 

(2) Tn+1 (x) = 2x Tn (x) - Tn_i (x), T0 (x) = 2, Tt (x) = 2x 

with 
Tn (cos 6) = 2 cos /7(9 . 

The first few Chebyshev polynomials of the first kind are 

T0(x) = 2 
Ti(x) = 2x 
T2(x) = 4x2-2 

3 

(3) 

T3(x) = 8xJ -6x 
T4(x) = 16x4 - 16x2 +2 
T5(x) = 32x5 -40x3 + Wx 
T6(x) = 64x6 - 96x4 +36x2-2 
T7(x) = 128x7-224x5 + 1l2x3 -- 14x 
T8(x) = 256x8 - 512x6 + 320x4 - 64x2 + 2 

THE ASSOCIATED POLYNOMIALS 

Now take the sums along the rising diagonals on the right-hand side of (3). We obtain polynomials qn(x) 
which bear a close relationship to the Fibonacci numbers Fn. It is natural to define qo(x) = 0. 

From (3), the first few polynomials qn(x) are 

f qt(x) = 2, q2(x) = 2x, q3(x) = 4x2, q4(x) = 8x3 - 2, q5(x) = 16x4 - 6xf 

(4) \ q6(x) = 32x5 -16x2, q7(x) = 64x6 - 40x3 + 2, q8(x) = 128x7 - 96x4 + Wx, 

I q9(x) = 256x8 -224x5 + 36x2, q10(x) = 512x9 - 512x6 + 112x3 - 2 . 

Observe in (4) the recurrence relation 

(5) qn+3(x) = 2xqn+2(x)-qn(x) (n > 0) 

which is (not unexpectedly) similar to Jaiswal's recurrence relation. 

SOME PROPERTIES OF THE POLYNOMIALS 
The qn(x) are seen to be connected with Jaiswal'spn(x) by the formula 
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(6) qn(x) = pn(x)- pn„3(x) (n > 3, p0(x) = 0) 

leading to 
oo oo oo 

(7) Z 1n(x)tn = £ PnMtn~ £ Pn-3Mtn (n > 3) 
n=$ n-3 n=3 

i.e., by Jaiswal's generating function, to the generating function 

(8) £ qn(x)tn = (t-t4)(l-2xt+t3r1 

n=3 

For convenience, write the left-hand side of (8) as 

(9) Q(x,t) = £ 
n=3 

from which we have (abbreviating Q(x,t) as Q) 

(-10) ^ = 1~6t3 - t6+6xt4 

dt (1-2xt+t3)2 

qn(xkn 

dQ _ t - t 4 

dx (1-2xt + t3)2 

Manipulation with (10) leads to the partial differential equation 

(11) 2t ^ -(2x-3t2) ^ -8Q + 6G<\ = 0, 
dt d-X 

where, adjusting Jaiswal's notation slightly, we write 

G^X,t) = £ PnMtn = *-— . 
n=3 l-2xt+t3 

But from (9), 

(12) | f = E nqn(x)tn-\ fx = £ qn(x)tn . 
n=3 n-3 

Substitution in (11) yields 

(13) 2xq'n+2(x) - 3q'n(x) = 2(n - 2)qn+2(x) + 6Pn+2M (n > 0). 

Comparing coefficients of tn+1 in (8), we obtain 

qn+1(x) = (2xr ~(n-y2xr-^ + ("-4)^r-6-----{^r-5-(n75y^r-6
+-^ 

that is, 

If] \—} 
(14) Qn+lM = Z(n~2r)(-7,r(2x,n~3r L (n~3

r~2r)(-1)r(2x)n-3'3r . 
r=0 V f r=0 ' 

SPECIAL CASE x= 1 

Putting x = 1 in (4) and w r i t i n g ^ ^qn(1), we obtain the sequence 

n=0 1 2 3 4 5 6 7 8 9 W ••• 

(15) Qn: 0 2 2 4- 6 10 16 26 42 68 110 •• 
=2(0 1 1 2 3 5 8 13 21 34 55 •••) 

Clearly 
(16) Qn = 2Fn (n > O), 

where Fn is the /? Fibonacci number. 
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It might be remarked that when x = 1, Eq. (5) becomes 

Qn+3 = 2Qn+2 - Qn (n > 0) 

which is a characteristic feature of the Fibonacci sequence of numbers. 
pet t ing x = 1 in {iln} and {Tn} gives, on using (1) and (2) (or (3)), the sequences 1, 2, 3, 4, 5, 6, - and] 
L2, 2, 2, 2, 2, 2, - , respectively. J 

Further, one may notice that 

(17) Pn = Qn + Fn-i- I 
where Pn are the numbers obtained from Jaiswal's polynomials pn (k) by putting A- = 7, i.e., Pn = pn(1). 

(Pn+1 = Pn+1 +Pn- 1, P0 = 1, Pt = 1.) 

Finally, x = 1 in (14) yields, with (16), _ 

r [ n l 3 l K L'VJ ] 
(18) Fn+1 = y2\ £ (n-2r)(-j)r2n-3r- ]r n - ^ - 2 r y - / r ^ n - 5 - 5 r [ . 

Our results should be compared with the corresponding results produced by Jaiswal. The generating function 
(8), and the properties which flow from it such as (11) and (13), are slightly less simple than we might have 
wished. However, the Fibonacci property (16) could hardly be simpler. What we lose on the swings we gain on 
the roundabouts! 
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[Continued from p. 232.] 

Proposed by Guy A. R. Guillot, Montreal, Quebec, Canada, 

Show that 

(a) f = £ tan"1
 f 

2F2n +1 

(b) f = £ cos-1 J ^ ^ J 
2 Ti r2n F2n+2 + * 

n—l 

ln\ * V cin-^ 2F2n+l 
2 ™ h2n F2n+2 + * 

n—l 

Proposed by Guy A. R. Guillot, Montreal, Quebec, Canada, 

Find a function Ay, in terms of k alone for the following expression. 
Fn Fn 

Fn = 2 Pk - £ Ak > 
k=l k=l 

wherepfe denotes the k* prime and Fn denotes the n th Fibonacci number. 



SEMI-ASSOCIATES \N Z[y/2] AND PRIMITIVE PYTHAGOREAN TRIPLES* 

DELANO P. WEGENER 
Central Michigan University, Mount Pleasant, Michigan 

1. INTRODUCTION 

Waclaw Sierpinski [2, p. 6 ] , [3, p. 94] raised the following question: 
SIERPINSKI'S PROBLEM: Are there an infinite number of primitive Pythagorean triples with both the 
hypotenuse and the odd leg equal to a prime? 
This questionis equivalent to asking for an infinite number of solutions, in primes, to the Diophantine equa-

tion # 2 = 2p - 1. Other than this simple transformation it seems that no progress has been made toward a solu-
tion to Sierpinski's problem. 

As a result of his work on Sierpinski's Problem, LA. Barnett raised the following questions: 
QUESTION A: Are there an infinite number of primitive pythagorean triples for which the sum of the legs is 

a prime? 
QUESTION B: Are there an infinite number of primitive pythagorean triples for which the absolute value of 

the difference of the legs is a prime? 
QUESTION C: Are there an infinite number of primitive pythagorean triples for which both the sum of the 

legs and the absolute value of the difference of the legs are prime? 
For a complete discussion and characterization of primitive pythagorean triangles with either the sum or the 

difference of legs equal to a prime consult [4 ] . The more interesting aspects of [4] are summarized in the 
following. 

Every prime divisor of either the sum or the difference of the legs of a primitive pythagorean triangle is con-
gruent to ±1 modulo 8. Conversely, if p ̂  ± 1 (mod 8) is prime, there is a unique primitive pythagorean triangle 
with the sum of the legs equal to p. However, there are two disjoint infinite sequences of primitive pythagorean 
triangles, with the difference of the legs equal to p, for every triangle in these sequences. Moreover, every tri-
angle with the difference of the legs equal to p,is in one of these sequences. _ 

In Section 2 of this paper, we define "a is a semi-associate of /3" fora j3eZf^ /2 j and present some elemen-
tary properties of this concept. Thesj? properties are used in Section 3 to show the equivalence of Question C to 
four questions about primes in Z[yJ2]. _ _ 

In this paper we use the integral domain Z[sj2] = {a + by/2 \a, b G Z } , where Z denotes the usual set of 
integers. A detailed discussion of this integral domain is available [ 1 , pp. 231-244], but some of the basic 
facts and some notations are presented in this section. _ 

I will follow the usual custom of referring to elements of Z[^J2] as integers and elements of Z as rational 
integers. _ 

If e= 1 + s/2, thenjhe set of units of Zfjljfc precisely theset {±en \n e / } . 
The primes \nZfsj2j are all associates of: 

(1) s/2 
(2) All rational primes of the form 8k ±3. 

These are called primes of the second degree. 
(3) All conjugate factors of rational primes of the form 8k ±1 

These are called primes of the first degree. _ 
The following notation and terminology will be used. If a = a + b\J2, then 

*This research is a portion of the author's doctoral dissertation wri t ten at Ohio University, Athens, Ohio. 
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a = a- b^/2 is called the conjugate of a 
N(a) = aa is called the norm of a. 
R(a) = a is called the rational part of a. 
1(a) = b is^called the irrational part of a. _ 
e= 1 + \J2 is called the fundamental unit \nZf^/2 ]. 

€~l = _ 7 + ^J2 is called the inverse of e. 

Each of the properties listed in Lemma 1 is an elementary consequence of the definitions of the symbols in-
volved but are useful in later sections. Proofs can easily be supplied by the reader. 

Lemma 1. If a and j3are integers, then 

al= a/3 
N(aP) = N(a)N($), a + a = 2R(a), a-a = 2^/21(a) 

R(a&) = R(a)R((5) + 21(a) W), Ka(5) = I(a)R((3) + R(a)KP) 

R(a~$) = R(a)R($)-2I(a)W), I(a~p) = R@)I(a)- R(a)I((3) 

R(a2) = R2(a) + 2l2(a), I(a2) = 2R(a)I(a) 

R(ae) = R(a) +21(a), I(ae) = R(a) + I(a) 

R(CL€~ 1) = 21(a)- R(a), Mae*1) = R(a)-1(a) 

N(a) = 2l(a)I(ae'1) - R(a)R(a€1)/ N(a) = R(a)I(ae) - R(ae)I(a). 

The following lemma summarizes all of the information needed about Pell-type equations. 

Lemma 2. \\p is a rational prime of the form 8k ±1, the equation x - 2y2 = p has exactly one solution 
x = a,y = b such that the following two equivalent statements are true: 

(i) yjp<a< sJ2p 

(ii) 0 < b < yjp/2. 

The equation x -2y = p has infinitely many solutions, all of which are obtained from (a + bsj2)e \ where 
t is any rational integer and x = a, y = b is any solution of x - 2y2 = p. 

The unique solution which satisfies (i) and (ii) will be called the fundamental solution. 

2. SEMI-ASSOCIATES IN Z[,J2] 

Theorem 1. If a and ]3 are integers in Z[>J2]f then the following are equivalent. 

(1) Some associate, call it 7, of j3 has the same irrational part as a and ye has the same rational part as a. 
(2) There is a rational integer n such that either: 

(a) Wen) = 1(a) and R((Sen+1) = R(a) 
or 

(b) I(-(3en) = 1(a) and R(-(5en+1) =R(a). 

(3) jS is an associate of [R(a) - 21(a)] + I(a)>j2. 

(4) j3 is an associate of a - 21(a). 

(5) ±N($) = N(a) +41(a)[1(a)-R(a)]. 

(6) ±N(P) = N(a)-4l(a)I(ae'1). 

(7) N(a)iNQ) = 41(a)[R(a) - 1(a)] . 

(8) N(a)±N($) = 4l(a)I(ae-1). 

Proof. It is clear from the characterization of associates in Z[^/2] and from Lemma 1 that: (1) <=> (2), 
(3) ~ (4), (5) <=> (6) ~ (7) <=> (8). To complete the proof we show (1) ~ (3) and (4) <=> (5). 
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To see that (3) =* (1), let y = [R(a) - 21(a)] + I(a)sj2 and observe that I(y) = 1(a) and R(ye) = R(a). 
To see that (1) => (3K assume j3 is an associate of y with I(y) = 1(a), and R(ye)= R(a). Then y must be of 

the form 7 =r + I(a)*j2 and hence _ 
ye= [r + 2I(a)] + [I(a) + r]sJ2. 

Now R(ye) = R(a) implies r= R(a) - 21(a). Hence 

y = [R(a>-21(a)]+I(a)s]2. 
To prove (4) <=• (5), note fi is an associate of a- 21(a) if and only if 

±N(P) = N[a- 21(a)] = fR(a) - 21(a)] 2 - 2l2(a) = R2(a) - 4l(a)R(a) + 4I2(a)~ 212(a) 
= N(a) + 4l(a)[I(a)- R(a)J . 

Definition 1. If a and |3are integers \nZ[yJ2] which satisfy any one, and hence all, of the conditions of 
Theorem 1, then a is called a semi-associate of (5. 

It is clear that the relation "is a semi-associate of" is not an equivalence relation. The next sequence of 
theorems characterizes those elements for which the relation is either reflexive, symmetric, or transitive. 

Theorem 2. Let a be an integer in Zfy/2]. a is a semi-associate of itself if and only if 

R(a)I(a)R(ae~1)I(ae'1) = 0. 
Proof, The theorem follows easily from the fact that a is a semi-associate of itself i f and only if 

4l(a)I(ae'1) = N(a) + N(a) = 4l(a)I(ae'1) - 2R(a)R(ae'1) 
or 

4l(a)I(ae'1) = N(a)-N(a) = 0. 
Corollary. The primes in Z[\J2] which are semi-associates of themselves are ±yj2, ±e\]2, ±p, ±ep, where 

pe[p \p is a rational prime of the form 8k ± 3}. 

Proof That each of the primes listed is a semi-associate of itself follows directly from the theorem. To 
see that these are the only possibilities, consider the four cases: 

(i) R(a) = 0 

(ii) 1(a) = 0 
(iii) R(a) - 1(a) = Kae'1) = 0. 
(iv) 21(a) - R(a) = R(ae~1) = 0. 

Theorem 3. Two integers a and 0 are semi-associates of each other if and only if one of the following 
four pairs of conditions is true: 

(i) KalKae-1) = KPJWe'1), R(a)R(ae1) = -R^Rf^e'1) 
(ii) Katttae-1) = -U^We'1), R(a)R(ae1) = Rf^Rf^e'1) 
(iii) 2l(a)I(ae~1) = -R(P)R(?>e~i)f R(a)R(ae1) = 2W)We~1) 
(iv) 2l(a)I(ae'1) = RtfjRipe-1), R(a)R(ae1) = ^KPJKfie'1) . 

Proof If a is a semi-associate of (5 and simultaneously /3 is a semi-associate of a, then by Theorem 1, part 8, 

N(a) ± N(P) = 4l(a)I(ae'1) and N(P)± N(a) = 4l(p)I(^e'1). 

This leads to the following four cases: 

Case.1. N(a) + N{fl) = 4l(a)l(ae1 )f N(a) + N($) = 4l($)I($e1)'. 
Case 2. N(a) - N@) = 4l(a)I(ae'1), N($) - N(a) = 4l((5)We'1). 
Case 3. N(a) + N(p) = 4fta)I(ae~1), Ntf). - N(a) = 4W)I((5e'1). 
Case 4. N(a) - N(fi) = 4l(a)I(ae~1), Nffi) + N(a) = 4l(P)We~1). 
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In Case 1 it is clear that 
KaJHae'1) = WWe'1) 

and then by Lemma 1, 
MtalKae-1) = N(a) + N(f3) = -R(a)R(ae'1) +2l(a)I(ae'1)- R(P)R(Pe'1) + 2l(P)I(P€'1) 

= -RialRfae'1)- Rf^R^e'1)+4l(a)I(ae'1). 
It now follows that 

RfaWfae'1) = -RfplR^e'1). 
Conversely if 

KalKae-1) = K^We'1) and RiajRfae'1) = -Rl^R^e'1) 

then by Lemma 1, 
N(a) + N((3) = -R(a)R(ae-1) + 2l(a)I(ae-1)-R((3)R(Pe~1) + 2W)We~'1) = 4l(a)I(ae1) 

= 4W)I((3e-1). 

Thus by Theorem 1, a and /3 are semi-associates of each other. In Case 2, it is clear that 

KaUfae'1) = -IfpUfPe'1) 
and as in Case 1, Lemma 1 implies that 

R(a)R(ae'1) = Rt^R^e'1). 

The converse again follows from Lemma 1. In Case 3, addition of the two equalities yields 

Nft) = 2l(a)I(ae~1J+2l((3)We-1) 
and then by Lemma 1, 

-R((3)R(Pe-1) + 2l((])We-1) = N(fi) = 2l(a)I(a€'1) + 2I(P)We'1). 
Thus 

2l(a)I(ae'1) = -RWlRt^1). 
On the other hand if the second equality is subtracted from the first and Lemma 1 is used we get 

-R(a)R(ae-1) + 2l(a)I(ae'1) = Nfa) = 2l(a)I(ae'1) - 21(^)1(^6'1) . 
Thus 

R(a)R(ae'1) = 2l(&)I(&e1)t 

Conversely if both conditions in (iii) are true, then direct computation, using Lemma 1, shows 

Nfa) + N((3) = 4l(a)Ifae'1) and N((3) - Nfa) = 4lfj5)We'1) 
and hence a and 0 are semi-associates of each other. In Case 4, addition of the two equalities and Lemma 1 
yields 

RtaJRtae'1) = ^WWe'1). 

Subtraction of the first equality from the second and Lemma 1 yields 
2l(a)I(ae~1) = R^fR^e'1). 

The converse is proved by direct computation as indicated in Case 3. This completes the proof. 
Integers a and |3 which are semi-associates of each other may also be characterized in terms of norms and 

rational parts of integers. 

Theorem 4. Two integers a and fi are semi-associates of each other if and only if one of the following 
four pairs of conditions is true: 
(i) Nfa) = Rf^e-1), N@) = Rfah'1) 

(ii) Nfa) = -Rffe1), N(0) = -Rfah'1) 

(iii) Nfa) = -Rffe1), N(&) = Rfa2^1) 

(iv) Nfa) = Rffe1), N(Q) = -R(a2e~1). 
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Proof. If the conditions in part (i) of Theorem 3 are true, then from Lemma 1, 

R(a2e'1) = R(a)R(ae1) + 2I(a)I(ae1), 
and hence, 

N(&) = 2I(P)We'1)- Rim^"1) = R(a)R(ae-1)+2l(a)I(ae~1) - R(a2e1). 
Similarly 

N(a) = Rl^e'1). 
Conversely, if 

N(p) = R(a2e1) and N(a) = Rf^e'1), 
then 

2l((3)We~1)- R(P)R(0€'1) = N(P) = R(a2e'1) = 2l(a)I(ae1) + R(a)R(ae1), 
and 

2l(a)I(ae~1)- R(a)R(ae~j) = N(a) = R(P2e'1) = 2l(P)I(Pe'1) +R(P)R(Pe'1).-

Addition of these two equalities yields 
l(a)l(ae1) = KPiKPe'1) 

and subtraction yields 
R(a)R(ae1) = -R(P)R(pe'1). 

Thus condition (i) of Theorem 3 is true and a and p are semi-associates of each other. Similar arguments show 
that conditions (ii), (iii), and (iv) of this theorem are equivalent to conditions (ii), (iii), and (iv) of Theorem 3 
and the proof is complete. 

The property of transitivity for the relation "is a semi-associate of" is closely related to reflexivity* This re-
lation is expressed in Theorem 5. 

Theorem 5, If a, P, and 7 are integers in ZfyJ2] such that a is a semi-associate of P and P is a semi-
associate of 7, then a is a semi-associate of 7 if and only if p is a semi-associate of itself. 

Proof. If a is a semi-associate of P and P is a semi-associate of 7 and itself, then p and 7 are associates and 
hence a is a semi-associate of 7. Conversely if j8 is a semi-associate of 7 and a is a semi-associate of both p and 7, 
then p and 7 are associates and thus p is an associate of p - 2I(j5) because 7 is. Hence (3 is a semi-associate of 
itself. 

The following results will be particularly useful in the next section. 

Lemma 3. R(p2e2k+1) = N[pek + 2l(pek)] . 
Proof R(p2e2k+1) = R2(pek) + 4R(Pek)I(Pek) + 2l(pek) 

= [R((3ek} + 2Wek)]2-2l2(Pek) = N[pek + 2l(Pek)] . 
Theorem 6. If a is a semi-associate of p, then 

N(a) = R(p2e2k+1) 
for some rational integer k. 

Proof Since a is a semi-associate of p, it follows from Theorem 1, that there is a rational integer k such 
that exactly one of the following cases is true: 

Case 1. I(pek) = 1(a) and Rffiek) = R(a)-21(a). 
Case 2. I(-(5ek) = 1(a) and R(-(3ek) = R(a) - 21(a). 
In Case 1 we have 

R(p2e2k+1) = R(p2e2k) + 2l(p2e2k) = R2(Pek) +2I2(pek) + 4R(Pek)I(pek) 
= [R(a) - 21(a)] 2 + 2l2(a) + 41(a)fR(a) - 21(a)] 
= R2(a)-2l2(a) = N(a). 

In Case 2 note that 
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I(-ri) = -I(rj) and -R(r]) = R(-r\) 

for any 17 (EZ[^J2] and then 
H(p2€2k+1) = R(p2€2k) + 2l(p2e2k) = R2(pek)+2l2(j5ek)+4R(p€k)I(l5ek) 

= R2(-$ek) + 2l2(-(3ek) + 4R(-$ek)I(-$ek) 
= [R(a) - 21(a)] 2 + 212 (a) + 41(a)[R(a) - 21(a)] 
= R2(a)~2I2(a) = N(a) . 

Theorem 6 gives a necessary condition for one integer to be a semi-associate of another integer. This condi-
tion does not seem to be sufficient, but a partial result in this direction is given in Theorem 7. 

Theorem!. If a is a prime and 
N(a) = R((32e2k+1) 

for some rational integer kf then some associate of a or some associate of a is a semi-associate of |3. 

Proof. If 
N(a) = R($2e2k+1), 

then by Lemma 3 
N(a) = /V[(Sek + 2l(f3eh)] 

so that either a or a is an associate of 

Pek+2I((3ek). 
Consider the case where a is an associate of 

(3ek + 2l((3ek). 
Then there is a rational integer t such that 

±aef = $ek + 2l((3ek). 
Hence 

j3efe = (3ek+2Wek)-2l((3ek) = ±aet-2l(^€k) = ±aet - 2l(±aet). 
Thus j3 is an associate of 

±aet-2l(±aet) 
and hence ±aef is a semi-associate of |3. The remaining case follows in a similar fashion. 

3. EQUIVALENT FORMS OF QUESTION C 

The term "generators" of a primitive pythagorean triple will mean the quantities m and n in the familiar 
formulae: 

x = 2mn, y = m2 - n2, z = m2 + n2 , 

where m and n are of opposite parity, (m,n) = 1, and m > n . 

Theorem 8. Let/? and q be rational primes of the form 8k ± 7 (not necessarily of the same form). Let 
u = a, v = b be the fundamental solution of u2 - 2v^_ = p, and let a = a + b^]2. Letu = c, v = d be the funda-
mental solution of u2 - 2v2 = q and let |3 = c + d*j2. If (xfy,z) is a primitive pythagorean triangle such that 
x + y = p and \x - y | = q, then a is a semi-associate of /3 0r |3. 

Proof. Let/77 and n be the generators of (x,yfz). Since 

p = x + y = (m + n)2 - 2n2 > (2n)2 - 2n2 = 2n2 

it follows that u = m + n and v = n is the fundamental solution of u2 - 2v2 = p. Hencea^/7? + n and b = n. 
Now note that 

N($) = q = \y-x\ = \(m-n)2 -2n2\ = \Nf(m - n) + nJ2]'\ = \N [a-21(a)] \. 
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Since j3 is prime it follows that ]8 or 0 is an associate of a - 21(a) and hence a is a semi-associate of j3or/3. 

Theorem 9. Let a and 0 be primes of the first degree in Z[sJ2]. Let/7 and q be the rational primes 
such that N(a) = p and N($) = q. If a is a semi-associate of j3, then there is a primitive pythagorean triangle 
(x,y,z) such that x + y = p and \x - y\= q. 

Proof. Let a = a + b\J-2 and (3 = c + ds]2. Let m = a - b and n = b. Then m and n generate a primitive 
Pythagorean triangle (x,y,z) such that 

x + y = (m+n)2-2n2 = a2 - 2b2 = N(a) = p. 
Since _ __ 

a = a + bsj2 = (m+n) + n^/2 

is a semi-associate of p= c + d^j2, there is a rational integer no such that the conditions in one of the following 
cases is true: _ _ 
Case 1. $<P* = r + n>J2 and $en°+1 = (m + n) +s^/2 , 

where rand s are rational integers. 

Case2. (S(-en°) = r + n^J2 and $(-en«+1) = (m + n) + Syj2, 

where r and s are rational integers. 
In Case 1 we have 

(m + n) + s^/2 = Peno+1 = (r + nJ2)€ = (r + 2n) + (r + n)sj2 . 

Comparing rational parts yields r= m - n. Thus 

/3en° = (m-n) + nJ2. 

Now we have 

q = N($) = ±N((3en°) = ±Nf(m - n) + nJ2] = ±[(m - n)2 - 2n2] = ±f(m + n)2 - 2m2] = ±(y - x). 

Hence, in this case, \x- y \ = q. In Case 2 we have 

(m + n) + SyJ2 =.(r + nyJ2)e= (r + 2n)+ (r + n)yj2 , 

and as before we conclude q = \x -y |. 
Combining the results of Theorems 1, 8, and 9 yields the following theorem. 

Theorem 10. The following questions are each equivalent to Question C. 

QUESTION D: Are there infinitely many pairs of primes of the first degree \nZf^/2] such that one mem-
ber of the pair is a semi-associate of the other member of the pair? _ 

QUESTION E: Are there infinitely many pairs a and a- 21(a), of primes of the first degree \n_Z[^/2]? 
QUESTION F: Are there infinitely many pairs (a,(3) of primes of the first degree in Z[s]2] such that 

either 
N(a) + N($) = maJKae'1) or N(a) - N(f$) = 41(a)Ifae^1) ? 

Combining the results of Theorems 6, 7, and 10 yields the final theorem. 
Theorem 11. Questions C, D, Ef and F are all equivalent to: 

QUESTION G: Are there infinitely many pairs (a,$) of primes of the first degree in Z[^J2] such that 

N(a) = R(fe2k+1) 
for some rational integer k, depending on a and j3? 
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UNIFORM DISTRIBUTION (MODm) OF RECURRENT SEQUENCES 

STEPHAN R. CAV10R 
State University of New York at Buffalo, Buffalo, New York 14226 

In this paper it is shown that, for any odd prime p, a sequence of integers can be found which is uniformly 
distributed (mod/7?) if and only if/77 is a power of p. 

Suppose m is an integer greater than 1, We say that an infinite sequence of integers { Tn} is uniformly distrib-
uted (mod/77) if f o r /= 0, 7, —, m - 7 

lim - A(n,j,m) = 1 , 

where A(n,j,m) denotes the number of terms among Th ••-, Tn which satisfy the congruence 

T{ = j (m od m) . 
The combined results of Kuipers and Shiue [1] and Niederreiter [2] establish the fact that the Fibonacci se-

quence lfn\ is uniformly distributed (mod m) if and only if m is a power of 5. In this paper we show that, for 
any odd prime /?, a sequence of integers can be defined by a linear recurrence of the second order which is uni-
formly distributed (mod/77) if and only \\m is a power of/?, 

We first prove 
Lemma. Suppose p is an odd prime and that k is a positive integer. Then p + 1 belongs to the exponent 

pk (modpk+1). 

Proof. We use induction. 
For the case k= 1, note that 

(p + Vp = pp + - + (p
2)p2+p2+ 7 ss 7 (mod/72). 

Now ifp + 1 belongs toe (mod/72), it follows thate)/?, hence e = p. 
Suppose now that/7 + 7 belongs to/7fe (mod/7fe+:0. Then 

(p+1)Pk = tpk+1 + l 
and k+j 

(P + i)p = (tP
k+1 + ip = (tP

k+1)p+-+{p2)itpk+l)2+tP
k+2 + i. 

T h u s k+i , _ 
(1) (p+1P s ; ( m o d / + 2 ) . 
So i fp + 1 belongs toe (modpk + 2) , then e]pk+1. But from (1) it follows that 

(p+1)e = 7 (mod/7fe+i); 

and by the inductive supposition,/? \e. Therefore,e =p ore=p . 
Now 

(2) tp+DpK AK)pk + -AK)p2+Pk+l + 1 (mod/7fe+2). 
We next show that 
(3) 

(p+1)pk =(p^lpK...+(p^JP
2+pl 

; divisible by/7 i+2 fory = 2, 3, —, k. It will be useful to recall 

(4) ' P> i 
A pk(pk-n-(P

k-i+i) 

265 
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Let p(n), p(d), and p(q) denote, respectively, the highest power of/7 dividing the numerator, the denomina-
tor, and the quotient in (4). When j = 2, p(n) > k, p(d) = 0, so p(q) > k. When / = 3, p(n) > k, p(q) < 7, 
so p(q) > k - 7. In general, pin) > k, and by the customary formula 

P(d) = £ 
e=l L P"A /E j -

e=l P P~ 1 

Since/7 > 3, we see that 

and since 

it follows that 

Returning to (2), we see that 

is divisible by/7 . Hence 

P(d) < L
2 ; 

£ <i'2 (J k), 

p(q) > k-; + 2 (j = 2,3,-,k). 

(fy (J 2,.», k) 

(p + IP ^pk+1 + 7 £ 7 (mod/7fe+2), 
and it follows finally \\\a\e = p^+i, which completes the proof of the lemma. 

We turn now to our major result. 

Theorem. Let/7 be an odd prime and { Tn} be the sequence defined by 

Tn+i = (p+2)Tn-(p+1)Tn-l 

and the initial values T^ = 0, T2 = 7. Then {Tn} is uniformly distributed (mod m) if and only if m is a power 
of/7. 

Proof. We associate with {l' }the quadratic polynomial 

x2- (p + 2)x+p+ 7 

whose zeros overC are/7 + 7 and /. It can be shown [3] that Tn is expressible in terms of those zeros as 

Tn = j;{(p+rr1-j) . 
PART 1. In this part of the proof we show that \Tn) is uniformly distributed (mod/? ),k= 7, 2, 3, —.. 
As the first step we prove that (?"/, T2, ••-, T A forms a complete residue system (mod/?^). Accordingly, 

suppose that T{ = 7y (mod pk), or equivalently, 

^{(p+ir1-!) - ?-{(p+1)H- 1} (mod/7fe), 

where / </', j <pk. Then 
(p+ir1 = (p+Jji-1 (mod pk+1). 

Supposing i> j, we write 
(p+7)J~1(p+7)e - (p+VH (mo<lpk+1), 

where # < e </? - 7, and it follows that 
(p + 7f ^7 (mo6pk+1). 

But by the Lemma,/? + 7 belongs to the exponent/? (modpk+1), so thate = 0and / = /. 
In this section of Part 1, we prove that {Tn} (mod/?fe) has periodpk. Specifically, we prove that 

T k = Ti and T L = T2 

p +1 p +2 
(mod/7fe). It will follow that 

T( = T k (mod/?fe) 
t+p 
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for / = /, 2, 3, •••. Note first that the congruence 

T k = 1-\(p+1)P - l ] = Q (mod/?fe) 
p +1 p I J 

is equivalent to k 

(5) (p+1)P = / ( m o d / + i ) 

which follows from the Lemma. Note next that the congruence 

T k =1-\(p+1)p+l-l]=1 ( m o d / ) 
P. +2 p I J 

is equivalent to k 

(p+1)P +1 =p + 1 (mod/?fe+i) 
which reduces to (5). 

Combining the results of Part 1, we see that the complete residue system (mod/; ) occurs in the first and all 
successive blocks of/?fe terms of {Tn}, proving that {Tn} is uniformly distributed (mod/?^). 

PART 2. In this part of the proof we show that {Tn] is not uniformly distributed (mod m) if m is not a 
power of p. 

If {Tn} is uniformly distributed (mod m), then it is uniformly distributed (mod ?) for every prime divisor ^ 
of m: We show here that {Tn} is not uniformly distributed (mod ?) for any prime ? j= p. There are two cases to 
consider according to whether (p + 1, qj = 7 or q. 

If (p + 1,q)= h we can prove 
(6) 
and 
(7) 
Equation (6) is equivalent to 

or 
(8) 

V 

Tq = 0 (mod?) 

Tq+1 = 7 (mod?). 

= l{(p+ i)q-i_ / } s o (modflr) 

(p+ Ifi'1 = 7 (mod/??) 
which is equivalent to the pair of congruences 

(9) (p+ l)*'1 = 7 (mod/?) 
and 
(10) (p+D*-1 = 1 (mod?), 
Equation (9) is trivial, and (10) is proved by Fermat's theorem. Equation (7) is equivalent to 

1{(p+Dq- 1} - 7 (mod q) 
p 

or 
(p+ 1)q = p+ 1 (mod/7?) 

which reduces to (8). Now (6) and (7) evidently imply that the period of {ln} (mod ?) is a divisor of ? - 7, 
consequently at least one residue will not occur in the sequence. 

If on the other hand (p + 1, q) = q, then 
Tn+1 = (p + 2)Tn -(p+ 1)Tn_i = Tn (mod ?) ; 

thus { Tn) (mod ?) becomes {0, 1, 1, •••} which plainly is not uniformly distributed (mod ?). This completes 
the proof of the theorem. 

R. T. Bumby has found conditions for a sequence defined by a second-order linear recurrence to be uniform-
ly distributed to all powers of a prime p. 
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TRIBONACCI NUMBERS AND PASCAL'S PYRAMID 

A.G.SHANNON 
The New South Wales Institute of Technology, New South Wales, Australia 2007 

In this paper an expression for the Tribonacci numbers discussed by the late Mark Feinberg [1] is obtained. 
They are expressed as sums of numbers along diagonal planes of what might be called Pascal's pyramid. 

Feinberg [2] used the coefficients of a trinomial expansion as the model of a three-dimensional pyramid. He 
projected this pyramid onto a plane and then added the diagonal lines to get \Tn) , the Tribonacci sequence, 
{1 ,1 ,2 ,4 ,7 , 13,24,44,-} . 

' Lemma. 

( n — m — 2r\lm + r\ _ in — m — 2r — l\lm + r \ l n — m — 2r — l\/m + r — l\ 
m+r ) \ r 1 \ m+r j \ r I \ m + r — 1 j \ r J 

In — m — 2r— l\(m+r— l \ 
[m + r-1 j \ r- 1 J ' 

Proof. The last two terms on the right-hand side 
_ / n — m — 2r — 1 \\im+r — 1 \ , Im + r — 1 \1 _ In— m — 2r — l \ l m + r\ 

\ m + r - 1 j \ \ r J \ r - 1 )j \ m+r-1 ) \ r J' 

I n — m — 2r — l\lm + r\ In — m — 2r— l\lm + r\ _ I n — m — 2r\! m + r\ 
\ m + r — 1 J\ r J \ m + r ) \ r j \ m + r /1 r } ' 

as required. 
Theorem. 

[n/2] [n/3] 
j - _ v-™* TT-* In — m — 2r\ ( m + r\ 

n Z-* Z-* \ m + r 
m=0 r=0 

Proof. We use induction. 
T0=Ti = 7. 

*- i(2~m)-(2oH)-2-
i i 

T3= E zt^2r){vr) = (i)^ni){i)AM>) = 4-m=0 r=0 

Assume true for/7 = 4, 5, 6, —, i - I. 

T - V^ X~* i—m —2r— l\(m+r\ 
' i ' 1 ~ JL* la \ m + r [ r j ' 

m^O r=0 

T = X^ X^ ^ ( i - m - 2 r - 2\ I m + r\ = ST ^ I { ~ m ~ 2r ~ l\l™ + r - l' 
l ' 2 2 ^ 2-r \ m+r \ r j 2L, 2-J \ m+r-1 ) \ r 

m-0 r=0 m=l r=0 

[Continued on p. 275.] 
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ON GENERATING FUNCTIONS WITH COMPOSITE COEFFICIENTS 

PAULS. BRUCKMAIM 
Concord, California 94521 

In this paper, we shall investigate a general problem of an interesting nature, and indicate a systematic method 
for obtaining at least a partial solution of it. The problem we mean is this: given the three generating functions 
(assuming appropriate convergence limitations are satisfied): 

(D f(u) = Y. anun; SM = £ bnun; h(u) = £ anbnun . 
n=0 n=0 n=0 

What is the relationship, if any, which exists between f(u),g(u) and h(u)? By "relationship," we shall here mean 
that h(u) may be expressed explicitly and in closed form as a function of u. 

Many such relationships are well known, a few of which are indicated below, in tabular form: 

an 

Pn 

<-ir$\ 
i 

n! 

(-1)" 
n+ 1 

f(u) 

(1-puj-1 

(1-u)x 

e" 

Und + u) 

bn 

q" 

Qn 

n! 
(-1)" 
n+ 1 

g(u) 

(1-qur1 

(1-qur1 

e'u 

U 

an"n 

P Q 

<-«>V«) 
(-1)" 
n!n! 

1 
(n + I)2 

h(u) 

d-pqu)'1 

(1-qu)x 

J0(2^/u) 

u 0J t 

As the last example illustrates, our general problem encompasses that of determining h(u) when f(u) = g(u), 
i.e., when 

h(u) = £ a„V ,-
n=0 

this latter, more specific case, is discussed briefly by Gould [2 ] . Our approach to the problem will depend on 
finite difference methods. 

We recall the unit difference operators £ and A , satisfying the following formal relationships (assuming arbi-
trary operand 0o): 

(2) En60 = (1 + &)ne0 = 6n 
n n i 

(3) A X = (E- iro0 = E n
k)(-vn-kEke0 = £ l)(-vn~kek. 

k=0 J k=0 V ' 
Using the above relationships, we may develop h(u) as follows: 

h(u) = £ anunEnb0 = E an(uE)nb0 = f(uEb0), 
n=0 n=0 

or 
(4) h(u) = f(u + uAb) = g(u + uAa) (the latter by symmetry). 
Naturally, we are taking great liberties in treating the formal operators £ and A as if they were algebraic quanti-
ties, not to mention the fact that we are also ignoring convergence restrictions, if any. However, these objections 
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may be circumvented if we treat the functions in (1) as formal generating functions, and focus our attention on 
their coefficients. We shall demonstrate that if due care is exercised in the manipulation of the operators and 
their operands, relation (4) may be made to yield results which are consistent with known relationships. In the 
process, we will also obtain some interesting and sometimes useful identities as by-products. Without further 
ado, we will illustrate the applicability of (4), first in obtaining the results already tabulated, then in developing 
other, more general relationships. 

EXAMPLE 1. We begin by applying (3) to 

*o--A%= E [j\(-irk
P

k = (p-1)n . 
k=0 X ' 

Then, using our result in (4), 

h(u)=g(u + u^J=(1-qu-quA^l=(1-qurl[l-l
q^Y = (1-qur1 £ ( y^MVao 

n-0 

^(1-qur1 Z^jM-Yfp-ir^j.^jrl^. (JL-Jhuy = (1_qu -(p-1jqurl 

n=0 
= (1-pqu)'1, 

as was previously stated. We could just as easily have used the relation in (4) obtained by reversing the roles of 
f(u) and g(u), and of an and/?n. The end result would have been identical. 

EXAMPLE 2. By formula (3), 

A% - Lj^r -W(^) - <-tr±(*n)(n:k) - <-»*(*;")=[-*-') 
(using, e.g., formula (3.1) in [1]). As in Example 1, 

hM-gfu + uAJ-d-gur1 £ ( f^J ±"*0 = " -I")'1 £( " V M ^ 
n=0 n=0 

= (1-qur\ 1+lM-y1 = (1-qu)x , 

as stated. It is instructive to reverse the roles of f(u) and g(u) in this example: 

h(u) = f(u + uAb) = (1-u-uAb)
x = (1-u)x( 1-U£~)X = (1~u)x £ ( * ^ j ) n A n b 0 

n=0 

= (1~u)x D ( * jiji^u) (1-1>n> (Using Example 1) 
n=0 

(1-u)x( l-fJLzJJuJ = (1-u-(q-1)u)x = (1-qu)* as before 
\ i - u i 

EXAMPLES. 
n (n\ 

Ana0 = E (-Vn'k^- , 
k=0 

using (3). This may be expressed in terms of an ordinary Laguerre polynomial as (~1)nLn(1) (see formula 1.115 
in [1]) ; however, we will leave it in the summation form, to demonstrate that it is not essential for the/? dif-
ference of the coefficients to be represented in closed form. 
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Then, 
oo oo n / n \ 

h(u) = e-u'u^ = e~u X '-— Afla0 = e~U E ^ T - E (~1>n~k ^7 
n=0 n' n=0 "' k=0 

-u ^ hl£ ^(n\u_2_ -u ^ hu£ ^ U^_ _ -u V t u t P« - V tut. 
^ ki L*\k)n! A klkl ^ n! ^ klkl A £/£/ fe-0 """ «=fe X " ' """ fe=0 " ; , W «=0 "'" k=0 ' V ; A ; fe=o 

by definition of the Bessel function. 
EXAMPLE 4. 

Jott^/Ti), 

^o - £[i)(-irk trf - (-1>n E III • 
k=0 X ' k=0 

We may use formula (1.37) in [1] to evaluate this expression (for the ease* = /) , and find that 
(-IP ,~n+l An

ao = [ffj (2n+1 - 1). 

Now 

^ 71=0 n = 0 k=0 

fe=0 n=fe X ' fe=0 w=0 

Denote the latter expression by y; if we differentiate uy with respect to u, we obtain: 
CO CO CO 1 

{uyy = E f - ^ o j f - / r rVf e= E ^fe fry (2k+1-i)ukd+urk-1 

k=0 n=0 ' k=0 < + 

oo / 2W \ f e oo / U \ k 

= _JL_ V \HJLL - -J— V VL+lJL = -2(1+ u) y (1 _2u\ 1 + u , / 7 _ j / \ 
u+1 /-* k+1 1 + u ~ k+1 (1 + u)(2u) \ 1 + u) u(1+u) \ 1 + u 

k=0 k=0 

= - - ^{—-V1- \n(1 + u) = - 1- \n(1-u). u \ 1 + u I u u 
We may now integrate with respect tot/, noting that uy = 0 when u = 0, and we arrive at the desired expression: 

u u 

uy = uh(u) = / ^ I n / 7 - t)dt, or h(u) = — f ]^^-^ dt . 
0 f " 0 f 

We should observe that, in the foregoing examples, we could have arrived at the desired closed form of h(u) 
by more direct methods, and thus we have not really saved ourselves any effort. On the other hand, these par-
ticular examples were chosen precisely for their simplicity, so as to enable us to check on the consistency of 
our results. In what follows, the value of our method will become apparent. Also, in the examples, both f(u) 
and g(u) were given in closed form (in fact, in terms of elementary functions). It is required that only one of 
these two functions be given in closed form; then, the n difference will be taken on the coefficients of the 
other function. If both f(u) and g(u) are given in closed form, however, as we have seen, we may develop h(u) 
in either of two ways, which should yield the same result. 

We shall begin by "proving" a well known linear transformation for the Gaussian hypergeometric function, 
defined as follows: 
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co l-a\[-b\ 
(5) Ffa,b.c;z) = £ V J L A J L J (-zy\ 

n=0 ( n
c) 

Let 

f(u) = £ (-Vix\n = (l-u)x, and g(u) = £ M / ^ V = f 7 - ^ . 
w=0 ^ ' n=0 W 

From (5), we see that 

"M' i{x
n){y

ny-F(-x,-v,i;u). 
n=0 ' ' 

But using (4), h(u) may be expressed in the alternative form 

n-u-uAjy - (i-u)y{ ,-"£$ - {,-up z(y
n)K(j~)n 

n=0 

= ^ ; - ^ ^ ( ^ ( " V K / ^ r <usin9Examp|ei)' 
= (7 - UPF[-Y, x + 7, 1; YJT~ )= (1- U)XF{-X, y+1, 1; y ^ A (by symmetry). 

These last relations may be found in [3 ] , as formulas 15.3.4 and 15.3.5, setting a = -x, h = -y, c = 1 and 
z = u. As an interesting special case, if we set y = -x - 7, and -u/(1 - u) = w, we obtain the following: 

(6) (1 - w)x+1F(x +1,x+ I 1;w) = (1- w)-xF(-x, -x, 1; w) 

This is equivalent to formula (3.141) in [1 ] . 
Other important special cases of the hypergeometric linear transformation given above occur whenever either 

x or y are positive integers, causing the series to terminate after a finite number of terms. For example, \\x = 3 
and y = 2, our relation yields: 

2 / r \_n /I 1- ~~U\ = M _ ,,\3 c[_Q o 1. —U F(-3,-2, 1;u) = (1-~u)zF[-2,4, 1; -p—) = (1 - u)
JF[-3,3, I 

1-u J ' ' \ ' ' ' 7 - u 
each expression reducing to 7 + 6u +3u , 

Another set of interesting special cases is obtained by setting* = y = -m - 7, wherem is a non-negative inte-
ger. This yields the identity: 

V*» ( m + n\" n _ / - _ ,,)~m~^ \ ^ I m\(m + n\( £/ \ 

~ \ » / ' ' M » I » \i-u • 
n=0 n=0 

If we obtain the convolute of (6), we obtain the identity: 

k = o x ' x ' k = o y ' x ! 

A more general identity is obtained by expanding each side of the general linear transformation formula, af-
ter making the substitution -u/(1 - u) = w: • 

For our second application of (4), we shall use ffu) = eu, and 
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(X) 

E) 
then an = J/nl, andg(u) = F(-x, 1, -y;u). Using identity (3), 

*-«l ̂  (I) f J 
(equivalent to (7.1) in [1]). Now 

h(u) = a«+<*b _- ,« £ U»Anb u y f-U'n{ynX) = ^ , 

where M(a,b,z) is the confluent hypergeometric function, or Kummer function, defined as follows: 

(9) Mate) = £ V4t r̂ 
»-« ft) "' 

(see, e.g., pp. 504-505 of [3]). Since h(u) is also equal to 
oo §X\ 

2 [duir »<-*'-* * 
»=o (») 

we have derived the basic transformation formula for the Kummer function: 
M(x, y, u) = euM(y - x, y, -u), 

substituting -x and -y forx and y, respectively. 
As another application, we will prove the following identity: 

(10) f(r, 

The proof is by induction. We denote the assertion that (10) is true for a non-negative integer r as P(r). We ob-
serve thatP/W implies that f(0,u)= (1 - u)'1, while P(1j implies that 

f(1 U) = (1 - Pur1 - (1 - ciur1 

p-q 

each assertion readily verifiable as being true. We assume the validity of P(r). Also, we define g(u) = f(1,u) and 
h(u) = f(rJ- 1, u), consequently. By application of the result found in Example 1, since 

bn _- e l ^ l , Anb0 = (^JJl=Ja^ir 
Also, ' " « "-" 

0 1-pr'kqku-pr-kqkuAb k=0 (j »kkjj pr-kqkuAb 

1-pr-hqku 

nrE^-EKS-4 ~0 J-Pr'kqku i=0U-pr-kqkU 

to 1-Pr~kqku h\l-pr-kqkul\ P-" 



274 ON GENERATING FUNCTIONS WITH COMPOSITE COEFFICIENTS [Oct 

or 

k=0 7-pr'kqku ]} 1-pr-kqku ' * 1 -pr'kqku ' J 

"(p-qr-1 £ (-1)k(r
k){(7-pr+1-kqku)'1-(1-pr-kqU+1ur1} 

-<,-,H± _^fiL_£ f^bAA\ 

O-p^u h 1-p^'Vu 1-qr+1uj 

b-p^u fr 1-pMqku 1-Qr+lu) 

r+1 

(10a) i ; Fr
nun = 5-1/2r J2 

(_j)kfr+l\ 

f(r+1,u) = (p-qr-l £ — J d k . 
k=o 1-pr+l kqku 

which equals AY/"*- 1). Therefore, P(r)^P(r+ 1), completing the proof. 
If we setp = a and q = j3in (10) (the familiar Fibonacci constants), we obtain the generating function for the 

r power of the Fibonacci numbers, in the form of a partial fraction series: 

n=o " k=o 1-ar~k$hu 

By a very similar development, we can prove the following identity: 

Again, with p = aand q = /3 in (11), we obtain the generating function for the r power of the Lucas numbers: 

(11a) £ W - i —%r < 
We may combine the partial fractions in (10a) and (11a), using known Fibonacci and Lucas identities, to elim-
inate all irrational expressions and condense the result in one closed form. For example, if A(r,u) and B(r,u) 
denote the expressions in (10a) and (11a), respectively, we may obtain the following results: 

A flu) = u/(1 -u- u2); A(2,u) = "-^ ; 
1-2u-2u2 + u3 

A(3,u) = (u-2u2-u3)/(1-3u-6u2+3u3 +u4); B(1,u) = (2- u)/(1 - u - u2); 

B(2.u) = (4-7u- u2)/(1 -2u-2u2 + u3); B{4,u) = -ll^Ziy^^i±ISui±J^ $ 

1-5u- 15u2+15u3 +5u4 -u5 

etc. 
The possibilities for applying our method are virtually unlimited, provided we are careful not to separate the 

A operator in its manipulations. In this respect, A does not behave like an ordinary algebraic quantity, since 
"multiplication" is really successive application of the A symbol. Except for very special cases, moreover, which 
must be treated separately, a closed form for h(u) free of symbolic operators is generally not available. The 
readers are invited to find other examples where the indicated method can yield useful results. 
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In a forthcoming paper on the topic (viz. [4]), an alternative (and more rigorous) approach is presented for 
the general solution of the problem proposed in this paper, under appropriate restrictions of analyticity for 
functions f and g. 

REFERENCES 
1. H. W. Gould, Combinatorial Identities, Morgantown, West Virginia, 1972. 
2. H. W. Gould, "Some Combinatorial Identities of Bruckman-A Systematic Treatment with Relation to the 

Older Literature," The Fibonacci Quarterly, Vol. 10, No. 5, pp. 15-16. 
3. Handbook of Mathematical Functions, National Bureau of Standards, Washington, D.C., 19(70. 
4. Paul S. Bruckman, "Generalization of a Problem of Gould and its Solution by a Contour Integral," The 

Fibonacci Quarterly, unpublished to date. 
******* 

[Continued from p. 268.] 

¥ ¥ 
*•«= E "E (l-m

m-+
2r3)[mry E "E {^:^i1){mV--i

1) • 
m=0 r=0 K i \ I m=2 r=1 I \ / 

Mow, 
[i/2] [H3] 

TI-T^ + TM+TM* E E {l-mTr
2r)[m:r) 

m=0 r=0 

(from lemma) which is what we required. 
Fairly clearly when we are in the plane r = 0, we have the ordinary Fibonacci numbers. Further investigations 

suggest themselves along the lines of Hoggatt [3] and Horner [4 ] . 
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pp. 221-234. 
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FIBONACCI NOTES 
6. A GENERATING FUNCTION FOR HALSEY'S FIBONACCI FUNCTION 

L.CARLITZ 
Duke University, Durham, North Carolina 27706 

1. Halsey [2] defined a Fibonacci function by means of 
m r 1 ~\ 

(1.1) Fu = £ \(u-x) f xu~2k'Ul-x)kdx\ , 
k=0 I 0 J 

where m is the unique integer satisfying 

(1.2) 1/2u- 1 < m < 1/2u, 

i o\ m =\[V2u] (Viu $ integer; 
lm6} m \V2u-l (V2 

The definition (1.1) is equivalent to 

u - k - 1 

(1-5) Fu+1 - Fu- Fu„1 = 

k=0 
where again m is defined by (1.3). 

In a recent note [1] , Bunder has proved that Fu as defined by (1.4) satisfies the recurrence 
f 0 (2m < u < 2m + 1) 

lCm + i"2) (2m + 1 < u < 2m + 2) 
In the present note we construct a generating function for the sequence 

{Fu+n) d = 0,1,2, . . . ;0 < ( / < / A 
We show that 

(1-6) E /r
M+n^H - — " - — 7 W < 1/ < U 

w=0 1-X-X 

This result contains (1.5). It also follows from (1.6) that 

(1-7) Fu+n= £ [U+)-2)Fn-2i+l (0<u<V, 

0<2j<n ' 
where the Fn_2j+i o n the right are ordinary Fibonacci numbers. Thus Fu+n is a polynomial in u of degree 
< n/2. Indeed the coefficients of the polynomials 
(1-8) Pn(u) = n! Fu+2n, Qn(u) = n! Fu+2n+1 

are positive integers. For some properties of these coefficients see § 4 below. 
2. Since m as defined by (1.2), is a function of u, we put /?? = m(u). Then clearly 

(2.1) m(u + 2j) = m(u)+j (j - 0, 1, 2, - 1 

Assume that 

Supported in part by NSF grant GP-37924X. 
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(2.2) 0 < u < 2. 

Then by (1.2), m(u) = 0 and m(u + 2j)=j. Thus 

Fu+2J " E 
fe=o 

u -h 2j — k — 1 
J 

E 
fe=0 

u + j + k - 1 
j ~ k 

Hence 

j=0 j=0 k=0 X ' I*-" 

,2k 

k=0 j=0 

u + j + 2k 

E x2k(1-x2) 
k=0 

2\-u-2k d - x2ru 

1 -x2(1 - x2)'2 

so that 

(2.3) E Fu+2jX 
j=0 

2] (1 -x2)2~u 

(l-x2)2-x2 
(0 < u < 2). 

Assume next that 0 <u < /, so that m(u+ 1) = 0 andmfu + 2j+ 1)=j. Then as above 

3=0 j=0 k=0X ' k=0 j=0 V 

E *2k+l(1-x2) 
k=0 

2ru-2k-l _ x('I -X2)'11'1 

i-x2(i-x2r2 

This gives 

(2.4) ,2]'+* = x(l~x ) 
2\l-u 

E Fu+2j+1x2^ = - ^ - - - V — r (0 < u < V. 
ro (1-x2)2-x2 

Combining (2.3) and (2.4), we get 

(2.5) 
2 \l-u 

La 'u+jX 
j=0 1 - X- X 

3. It is clear from (2.5), to begin with, that 

•u+j*J - — y (0 < u < 1). 

(3.1) I'm Fu+n = Fn+1 (n = 0, 1,2, •), 
u=l~0 

where Fn+\ denotes an ordinary Fibonacci number. In the next place, writing (2.5) in the form 

+JXJ = E (1-x-x2) £ Fu+jXi 
j=0 n=0 

and equating coefficients, we get 

u + n — 2 \ y2n 

(3.2) { F"+2n+1 F
p
u+2n ~ Fu+2n-l _ °{u + 2n\ (0 < U < 1), 

K l~u+2n+2 ~ t~u+2n + l - f~u+2n " \2Yi 

Since, by (1.2), 

and 

k 2n + 2 J 

m(u + 2n) = m(u + 2n+ 1) = n (0 < u < 1), 

2n < u + 2n < 2n + 1, 2n + 7 < u + 2n + 1 < 2n + 2, 

it follows that (3.2) is equivalent to (1.5). 
Since the right-hand side of (2.5) is equal to 
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we get 

(3.3) FM+n = £ (" +i,~2) Fn-2j+i (0 <u < 1). 

Alternatively, since 
,2 

/ « / l X ' r- 77 - . . XT^» / i - r- I 17 ^ . X " r-

7 X 
1 ' X ~ (1-X2) £ * W = 1+X+ £ (Fn+l-Fn-l)xn = 1+ Z / V 

f 2 
l-X-X n=o n=2 n=1 

it follows from (2.5) that 

(3-4) Fu+n = £ ' ( U +]~ ^Fn-lj (0 <u < 1), 
0<2j<n ' 

where the dash indicates that, if F0 occurs, it is to be taken equal to 1. 
From (3.3) or (3.4) we infer that, for 0 < u < 1, Fu+n is a polynomial of degree < n/2. Since 

u + J - 1 \ = u(u+ V -(u + i- V 
j i a 

the coefficients of the polynomial are positive. For example 

Fu = I Fu+1 = 1, Fu+2 = 1 + u, Fu+3 = 2 + u, Fu+4 = 1/2(6 + 3u + u2), 

Fu+5 = j(W + 5u+u2), Fu+6 = L(48 + 23u+6u2 + u3). 

Another corollary of (3.3) may be noted. We have 

Fu+n+l Fk ~ Fu+n Fk+1 = Y ( U + \ ~ ) Fn-2j+2Fk 
0<2j<n+l 

12 f U+J-~ )Fn-2j+lFk+l = J2 \ U + ! ~ )Fn-2j+2Fk- Fn-2j+lFk + l)-
0<2j<n 0<2j<n+lX ' 

Since 
'm+l 'n ~~ 'm 'n+1 ~ « '' 'm-n > 

we get 

(3-5) Fu+n+1Fk- Fu+nFk+1 = (-1) +1 ]T | U+J.~~ )Fn-k-2j+i • 
0<2j<n+l 

In particular, for 0 < k < n + /, again making use of (3.3), 

(3.6) FuHl+1 Fk - Fu+n F^+1 

= h1)k+lFu+n+k + (-1)k+l £ (U+ir2)F2j-n+k-l (0 <k < n). 
n-k+K2j<n+l 

For k = n this reduces to 

(3.7) Fu+tl+1 F„ - Fu+nFH+1 = (- 1)"+1FU + (-Vn+1 £ [u+ir2)F2H . 
0<2j<n+l * ] 



1977] FIBONACCI WOTES 279 

Similar results are implied by (3.4). 
4. We have noted above that, for 0 < u < 1, Fu+n is a polynomial of degree < n/2, indeed of degree [n/2]. 

Put 
W.D n! Fu+2n = Pn(u), n!Fu+2n+1 = Qn(u), 
so that Pn(u) and Qn(u) are of degree/?. However we now think of them as defined for all u by means of (3.4) 
and (4.1). It follows from (1.5) that 

(4.2) 

Now put 

We have also 

Pn(u) = nPn_i (u) + nan_t (u) + (u + n-2)- u(n - 1) 
Qn(u) = Pn(u) + nan_t(u) . 

PJu) = 2 p(n,k)uk, Qn(u) = £ q(n,k)uk 

k=0 k=0 

(u + n- 1).~(u+ 1)u = Y, S(n-k)u > 
k=0 

where S(n,k) denotes a Stirling number of the second kind. Thus 
n+l 

(u + n- l)-u(u-1) = ^ ($(n,k-1)-$(n,k)uk . 
h=0 

Hence (4.2) gives 

(4.3) q(n,k) = p(n,k) + nq(n- Ilk) 
and 
(4.4) p(n,k) = np(n- l,k) + nq(n- 1,k) + S(n- 1,k- 1)-S(n- 1,k). 

Using either (4.2) or (4.3) and (4.4), the following tables are easily computed. 

p(n,k): 

n \. 

0 
1 
2 
3 
4 

0 

1 
1 
6 
48 
504 

1 

1 
3 
23 
242 

2 

1 
6 
59 

3 

1 
10 

1 

1 

l\ h 

n \ . 

0 
1 
2 
3 
4 

0 

1 
2 
10 
78 
816 

1 

1 
5 
38 
394 

2 

1 
9 
95 

3 

1 
14 

4 

1 j 

q(n,k): 

It is evident from the recurrences (4.3) and (4.4) that thep(n,k) and q(n,k) are integers. Moreover, by (3.4), 
they are positive integers. 

By (3.3) and (4.1), 

(4-5) Pn(1) = n!F2n+h Qn(V = n! F2n+2 . 

This furnishes a partial check on the computed values. For example, using the table \wp(n,k), we get 
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4 
] T p(4,k) = 816 = 24.34 = 24F9 . 
k=0 

Similarly 
4 

£ q(4,k) = 1320 = 24.35 = 24F10 . 
k=0 

It is clear that 

(4.6) p(n,n) = q(n,n) = 1 (n = 0, 1,2, - A 

Taking k = n - 1 in (4.3) and/7 in (4.4), we get 

(4.7) q(nf n - 1) = p(n, n- 1) + n (n > 1) 
and 
(4.8) p(n+ 1,n) = 2(n+1) + S(n,n- 1)- 1, 
respectively. Since 

S(n,n- 1) = 1/2n(n- 1), 
it follows that 
lA Q) \P(n, n - 1) = V2n(n + 1) 
V ' 1 q(n, n - 1) = Vm(n + 3) = p(n + 1, n) - 1 . 

As for k = 0,\\ is evident from (3.4) that 
lim Fu+n = Fn, 

so that u~° 

(4.10) p(n,0) = n!F2n, q(n,0) = n! F2n+i . 
It would be of interest to find combinatorial interpretations otp(n,k) and q(n,k). 
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******* 
[Continued from p. 245.] 

(As a corollary, note that we have proved 
Fm+lFm-i-Fl = det(gm) = (~1)m.) 

Then the lemma implies there is a sequence {nij} for which 

*my-' = ( * ? ) 
in the/7-adic topology.Thus we can choose {nij} so thatd(1,g J) <p~]. ThenpJ divides Fm. and 7 - Fm.+1, 
which proves the theorem. 

It is clear that one can vary G and g in the argument above to prove a class of theorems related to the well 
known one quoted. 

******* 
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Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics 
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sheets within two months after publication of the problems. 

H-274 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas. 

It has been shown (77?*? Fibonacci Quarterly, Vol. 2, No. 2 (April, 1964), pp. 261-266) that if 
0 0 A I Fl_t Fn„lFn ' Fl \ 

Q =\0 1 2 \, then Qn = [2Fn.1Fn Fn+1 - Fn.tFn 2FnFn+1 . 
\1 * *j \Fn fnFn+l F2+1J 

Generalize the matrix Q to solutions of the difference equation 

Un = rUn-i +sUn„2 , 
where r and s are arbitrary real numbers, UQ = 0 and U\ = 1. 

H-275 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Let Pn denote the Pell Sequence defined as follows: Pi = 1, P2 = 2, Pn+2 = 2pn+i +Pn(n> V. Consider the 
array below. 

1 2 5 12 29 70 •• (PJ 
1 3 7 17 41 

2 4 10 24 ... 
2 6 14 •.. 

4 8 ». 
4 ... 

Each row is obtained by taking differences in the row above. 
Let Dn denote the left diagonal sequence in this array; i.e., 

Dt = D2= h D3 = D4 = 2, D5 = D6 = 4, D7 = D8 = 8, 

(i) Show D2n-i = D2n = 2n'1 (n > 1). 
(ii) Show that if F(x) represents the generating function for {Pn}n=i and D(x) represents the generating 

function for {Dn}n=i , then 

D(X) = ~y~-F[-^-\ . 
1+x \ 1 + x I 

SOLUTIONS 

DOUBLE YOUR FUN 
H-255 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 
281 
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2fYl 2vi 

E V (- lV+k I 2m \l 2n \ I 2m + 2n\ I 2m + 2n \ = (- 1)m+n (3m + 3n)-' (2m)- (2n^! 

• n i n w A k \ i + k \2m-j + k m!n!(m+n)!(2m+n)!(m+2n)! 
j=0 k=0 

Solution by the Proposer. 

We shall use the following Saalschutzian theorem for double series: 
( 1 1 ) V * V * *m'r(~nh(a'r+s\b)r\C)s _ ,jirn+n fC ~ #/m-/-n\C — a — b )m\C — a — b)n 

t^O s-0 r!s! (c)r+s(d)r(d% Mm+n (c - a - b)m (c- a - b% 

where 
a+ 1 = d + o", c + d = a + b- m + 7, c + d' = a + b'- n + 7. 

(For proof of (\)sw Journal London Math. Soc, 38 (1968), pp. 415-418.) 
In (1) replace/?, b'by b + m, b'+ n, respectively; also replace/77,/7 byj,k. Then (1) becomes 

V V (-JM-UsMr+sfb +i)r(b'+k)s = (c- a)j+k(-d'-k+ Djf-d-j + 74 
hbio r!s!(c)r+s(d)r(d% ~ (c)j+k(d)j(d% 

where now 
(2) a+1=d + d/

/ c = b + d,= b, + d. 
Then 

y {bh^\ (c ~a,j+k(~d'-k + 1>i(~d ~ i+ 7)k j k 
j£0 /.'*•' Tchi~+k(d)j(d% x y 

-y£b i!k! hh ~r!s!(c)r-(dyd% 

V* unr±s (a)r+s<bhr(h')2s rs ^ (b + 2r)j(b + 2s}k j k 
= rh rls!(cK-(dK(d%Xy £ o -i,kl 

*-*n r!s!(cir+s(d)r(d')s 
r,s=0 ' s i 

where a, b, b\ c, d, tf'satisfy (2). 
N ow take b = -2m; c = -2n. Then 

d = c + 2nf d' = c + 2m, a+ 1 = 2c + 2m + 2n. 

The above identity becomes 
2m 2n 

(3) y y (- Vj+k (2m\( 2n ) f'° ~2m~2n + 1h+k(~c -2m-k+ Djf-c - 2n -j + 7)k ; k 
j k i o ^ J !\h ) (c)j+k(c+2n)j(c+2m)k 

= E i (~Dr+s ^ ^ j ^ , 
n n r!s!(c)r+Jc+2n)r(c + 2m)c =0 s=0 

We now takex = y = 1, c = p + 1, wherep is a non-negative integer. Then (3) reduces to 
2YYI 2YI 

iA\ Y~ ' V (- 7lJ+k (2m\ 12n\ ( 2m + 2n + 2p \( 2m + 2n + 2p 
w L* L, f u \ ] \ k ) \ j + k+p \2m+p-j + k 

j=0 k=0 K ' ' ' 
= (-i)m+™ (2m)! (2n)! (3m + 3n + 2p)l (2m +2n+ 2p)! 

ml n!(m+n+p)! (2m +2n + p)! (2m + n + p)f (m + 2n + p)l 
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For/7 = 0, (4) gives the stated result. 

STAGGERING SUM 

H-257 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Consider the array, D, indicated below in which F2n+i (n = 0, 1,2, —) is written in staggered columns. 

I 
2 1 
5 2 1 

D •' 13 5 2 1 
34 13 5 2 1 
89 34 13 5 2 1 

(i) Show that the row sums are F2n+2 (n = 0, 1, 2, •••). 
(ii) Show that the rising diagonal sums are Fn+1 Fyl+2 (n = 0, 1, 2, ••• / 
(iii) Show that if the columns are multiplied by 1, 2, 3, ••• sequentially to the right, then the row sums are 

F2n+3~ Un = 0, 1,2,-). 

Solution by George Brezsenyi, Lamar University, Beaumont, Texas. 

(i) The sum of the entries of the nth row is easily seen to be 
n 

X) F2k+1 , 
k=0 

which is well known to be F2n+2 . 
(ii) The sums seemingly depend upon the parity of n. If n is odd, say n = 2m + 1, then the rising diagonal 

sum is m 

2T F4k+3 > 
k=0 

which may be shown to equal /r2m+2 ^2m+3^ o r Fn+iFn+2> by mathematical induction. Similarly, if n is 
even, say n = 2m, then the desired sum 

m 

2 F4k+1 
k=0 

yields upon evaluation F2m+t F2m.+2> which is also equal to Fn+iFn+2 • 
(iii) To resolve this part of the problem we show that 

n 

£ (n+1- k)F2k+i = F2n+3 ~ 1 • 
k=0 

In n = 0, the result is trivial. Assume it for/7 = m. Then for A7 = m + /we have 

m+l m 
Y ((m+1)+1-k)F2k+i = E (^+2~k)F2h+1 + F2m+3 

k=0 k=0 

m m 
= H (m+l- k)F2k+l + J^ F2k+1 + F2m+3 

k=0 k=0 

= F2m+3 ~ 1 + F2m+2 + F2m+3 = F2(m+l)+3 ~ 1-

Thus the result holds for/7 = m + 1. This completes the induction. 

Also solved by W. Brady, A. Shannon, G. Lord, P. B ruck man, F. Higgins and the Proposer. 
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THE SIGMA STRAIN 

H-258 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Sum the series 

s = j2xaybzCfd> 
where the summation is over all non-negative a, b, cf d, such that 

2a < b + c+d 
2b < a + c + d 
2c < a + b + d 

Jd < a + b + c 

Solution by the Proposer. 

Let 
' a' = -2a + b + c + d 

b' = a- 2b + c + d 
c' = a + b- 2c+d 
d' = a + b + c- 2d. 

3a = b' + c'+d' 
3b = a' + c' + d' 
3c = a' + b'+d' 
3d=a'+b' + c' . 

Then a', b', c', d'are non-negative and 

Thus 

This implies 

and conversely. 
Hence 

b' + c' + d' = 0 
a' + c' + d' = 0 
a' + b'+d' = 0 
a'+b'+c' = 0 

(mod 3). 

where 

a',b',c',d'=o 
a>==b>==c>==d'=i (mod 3) 

a' = b' = c' = d' (mod 3) 

S = SQ + $i+ S2, 

^(b'+c'+d') 3 (a'+c'+d') \(a'+b'+d') \(a\b\c') 
a = o,1,21 

Put a' = 3a + i, etc. Then 

Si = (xyzt)1 53 x ~Y 
asbfc.d=0 

so that 

b+c+d.,a+c+d a+b+d .a+b+c (xyzt)1 

(1 - yzt)(l - xzt)(1 - xyt)(1 - xyz) 
0 = 0,1,2). 

1 + xyzt + (xyzt) z 

(1 - yzt)(1 - xzt)(1 - xyt)(1 - xyz) ' 

POSITIVELY! 

H-259 Proposed by R. Finkelstein, Tempe, Arizona. 

Let/? be an odd prime and AW an odd integer such that/77 ^ 0 (mod/7). Let Fmp = Fp'Q. Can (Fp, Q) > 1? 
[Continued on page 288.] 
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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy Fn+2 = Fn+i + Fn, FQ = 0, F± = 1 and Ln+2 = 
Ln+i + Ln, LQ = 2,LI = 1. Also a and b designate the roots (1 + VJJ/^and (1 - ^JJ)/2, respectively, of x2 - x 
-1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-358 Proposed by Phil Man a, Albuquerque, New Mexico. 

Prove that the integer un such that un < n2/3 < un + 1 is a prime for only a finite number of positive integers 
n. (Note that un = [n2/3], where [x] is the greatest integer in x and that u\ =0,u2 = 1, u3 = 3,u^ = 5, and 
u5=8.) 

B-359 Proposed by R. S. Field, Santa Monica, California. 

Find the first three terms Tu T2, and f3 of a Tribonacci sequence of positive integers {Tn} for which 

Tn+3 = Tn+2 + Tn+1 + Tn and £ (Tn/Wn) = 1/T4 • 
n=l 

B-360 Proposed by T. OX all ah an, Aerojet Manufacturing Co., Ful/erton, California. 

Show that for all integers a, b, c, d, e, f, g, h there exist integers w, x, y, z such that 

(a2 + 2b2 + 3c2 + 6d2 )(e2 +2f2 +3g2 +6h2) = (w2 + 2x2 +3y2 +6z2). 

B-361 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Show that 
oo 

V* xrysun\\T\(r,s)vmdx(r,s) 

r,s=0 
is a rational function oix, y, u, and v when these four variables are less than 1 in absolute value. 

B-362 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Let/77 be an integer greater than one and let Rn be the remainder when the triangular number Tn =n(n + 1)/2 
is divided by m. Show that the sequence RQ, Ru R2, ••• repeats in a block R0, Ru - , Rt which reads the same 
from right to left as it does from left to right. (For example, if m = 7 the smallest repeating block is 0, 1, 3, 6, 
3,1,0.) 

B-363 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Do the sequences of squares Sn = n2 and of pentagonal numbers Pn = n(3n - 1)/2 also have the symmetry 
property stated in B-362 for their residues modulo m? 

285 
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SOLUTIONS 
THE PRIMES PETER OUT 

B-334 Proposed by Phil Mana, Albuquerque, New Mexico. 

Are all the terms prime in the sequence 11, 17, 29, 53, •defined by UQ= 11, un+i =2un - 5 for n > 0? 

Composite of solutions by David G. Beverage, San Diego Evening College, La Mesa, California and Heiko 
Harborth, Technische Universitat Braunschweig, West Germany. 

One easily sees that ug = 1541 = 23*67 is composite. More interestingly, one can show by induction that 
un = 5 + 6-2n. Then(/M = 17 + 6(2n~1 - 1) andi>4 = - / (mod 17) and so 17\u8k+l fo r . * = 1,2,-. Also, 
the Fermat Theorem tells us that 2P~ = 1 (mod/?) for odd primes/7 and this can be used to show divisibility 
properties such as 1l\uiok ar|d 19\ui8k+ii-

Also solved by George Berzsenyi, Wray G. Brady, Paul S. Bruckman, Dinh The' Hung, Sidney Kravitz, H. 
Turner Laquer, D. P. Laurie, Graham Lord, John W. Milsom, T. Ponnudurai, Bob Prielipp, Jeffrey Shallit, 
Sahib Singh, Paul Smith, Gregory Wulczyn, David Zeitlin, and the Proposer. 

FIBONACCI-LUCAS SUM 

B-335 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Obtain a closed form for 
n—k 
^(Fi+kLi + FiL^). 
i=0 

Solution by Graham Lord, Universite Laval, Quebec, Canada. 

The sum multiplied by *JJ equals 
•yi *? Yl-~ /? 

£ [(al+k-bl+k)(ai + bi) + (ai-b%i+k+bi+k)] = 2 £ (a2i+k - b2i+k) 
i=0 1=0 

= 2fa2n-k+1-ak-1-(b2'"k+1-bk-1)J. 
Hence the closed form \s2(F2n-k+i ~~ Fk-il 

Also solved by David G. Beverage, Wray G. Brady, Paul S. Bruckman, Ralph Garfield, Dinh The' Hung, H. 
Turner Laquer, A G. Shannon, Sahib Singh, Gregory Wulczyn, David Zeitlin, and the Proposer. 

PELL SQUARES 

B-336 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Let Q0= 1 = Q, and Qn+2
 = 2Qn+i + Qn. Show that iY#fn - 1) is a perfect square for /?- 1, 2, 3, •••. 

Solution by H. Turner Laquer, University of New Mexico, Albuquerque, New Mexico. 

By induction 2(f22
2n - 1)= (Q2n + D2n~l)2 for/7- 1, 2, ••• giving 2(d\n - 1) as a perfect square. 

Also solved by George Berzsenyi, David G. Beverage, Wray G. Brady, Paul S. Bruckman, Ralph Garfield, Dinh 
The' Hung, Sidney Kravitz, Graham Lord, T Ponnudurai, Bob Prielipp, Jeffrey Shallit, A G. Shannon, Gregory 
Wulczyn, David Zeitlin, and the Proposer. 

RATIONAL POINTS ON AN ELLIPSE 

B-337 Proposed by Wray G. Brady, Slippery Rock State College, Slippery Rock, Pennsylvania. 

Show that there are infinitely many points with both x and y rational on the ellipse 25x + 16y2 = 82. 

Solution by Bob Prielipp, The University of Wisconsin, Oshkosh, Wisconsin. 

We shall establish the stronger result that if a rational number r£ 0 is the sum of the squares of two rational 
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numbers, then it has infinitely many representations as the sum of the squares of two positive rational numbers. 
First, let r = a2 + b2, where a and b are rational numbers both different from zero. Without loss of general-

ity, we may assume that a and/? are both positive and that a > b. For every positive integer k, 

(*) r = ( (k2- Va-2kb\2
 + I (k2- l)h+2ka\2 

^ k2 + 1 ' \ k2 + 1 * 

\\k>3, 3k2 -8k = 3k(k -3) + k>3dnd hence 3(k2 - 1)> 8k. Thus 

2 k 3 a 

so (k - Da > 2kbf from which it follows immediately that 

ak _- (k^lk^lkb > a 

k2+1 

I f / > k, where/ and k are positive integers then 

(j2-k2)a + b(kj- 1)(j-kj > 0. 
But this is equivalent to 

(j2- Va-2/b > (k2- l)a-2kh 
j2 +1 k2 + 1 

Therefore the numbers 
ak = (k2- Va-2kb 

k2+ 1 

increase with k so the a^'s are all different. Hence when k > 3 (*) gives different representations of r as the sum 
of the squares of two positive rational numbers. 

Also solved by David G. Beverage, Pau/S. Bruckman, H. Turner Laquer, Bob Prielipp, Sahib Singh, Paul Smith, 
Gregory Wulczyn, and the Proposer. 

DIFFERENCE OF BINOMIAL EXPANSIONS 

B-338 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas. 

Let k and n be positive integers, letp = 4k + 1 and let/? be the largest integer with 2h + 1 <n. Show that 
h 

UP1 
2i+ 1 

1 i=° ' 
is an integral multiple of 2n . 
Solution by H. Turner Laquer, University of New Mexico, Albuquerque, New Mexico. 

Let 

Mb*) = JL.PJ 
h 

2j+ 1 
j=0 

As 

one has 

(l+x)n = £ xHn) and (l-x)n = f; (~1)Wh) 
j=0 j=0 

M(n,k) = ((1 + ̂ Jp)n-(i- ^Jp) n)/(2yfc). 

Using this and the fact that (1 ± ^Jp)2 = 2± 2yjp +4k, one obtains 
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M(n,k)/2n-1 = M(n - 1, k)/2n~2 + kM(n - 2, k)/2n~3. 
k$M(1,k)= 1 and M(2,k) = 2 one can use induction to prove thatM(n,k) is divisible by 2n~1, 

Also solved by David G. Beverage, Wray G. Brady, Paul S. Bruckman, Herta T. Freitag, David Zeitlin, and the 
Proposer, 

OPERATIONAL IDENTITY 

B-339 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

Establish the validity of E. Cesaro's symbolic Fibonacci-Lucas identity (2u + 1)n = u ; after the binomial 
expansion has been performed, the powers of u are used as either Fibonacci or Lucas subscripts. (For example, 
when n = 2 one has both 4F2 + 4F} + F0 = F$ and4L 2 +4L 1 +L0 = Ls.) 

Solution by Graham Lord, Universite Laval, Quebec, Canada. 

For a fixed K, since both 
FR3 + FK^1=ak and FKb + FK^t=bK, 

the n power of each when added (algebraically) will give the result 

(FKU + FK_t)n = uKn. 

The desired equation is the special case when K = 3. 

Also solved by David G. Beverage, Wray G. Brady, Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, H. 
Turner Laquer, A. G. Shannon, David Zeitlin, and the Proposer. 

[Continued from page 284.] 

Solution by David Beverage, San Diego Community College, San Diego, California. 
•* 

By using the polynomialsP2n+i(x) expressed explicitly as 

l i t pn iy\ - V Rn'r( 1\kr (2n+ 7^(2n - rW y2n+l~2r ** 
IU r2n+iW- 2-. b ' " r!(2n+l-2r)! 

and selectingm = 2n + 1, obtain 

'mp (2) Q = -JZZ = F H±m, 
i-p 

where H is a polynomial in Fp . 
Clearly, 

(Fp,m)\ (FpM 
Select/7? > / with integral coefficients and m\Fp(m£0 (p)) in order that (Fp,Q) > 1 •••. The above conditions 
are satisfied for many numbers m and p. One example: p = 7 and m = 13 produces 

F-p-= 358465123875040793 = Q and (F7, Q) = 13 > 1. 
F7 

Many other interesting divisor relationships may be obtained from the polynomials P2n+1 M-

* 
David G. Beverage, " A Polynomial Representation of Fibonacci Numbers," The Fibonacci Quarterly, Vo l . 9 
No. 5 (Dec. 1971} 

**David G. Beverage, "PolynomialsP2n+1 (x) SatisfyingP2n+1 (Fk) = F(2n+l)k>" The Fibonacci Quarterly, Vol. 
14, No. 3 (Oct. 1976), pp. 197-200. 
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