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THE TRIBONACCI SEQUENCE

APRIL SCOTT, TOM DEL ANEY, AND V. E. HOGGATT, JR.
San Jose State University, San Jose, California 95192

By definition, a Fibonacci sequence consists of numbers equal to the sum of the preceding two. Symbolically,
this means that any term
Fn=F_1+F_2.

This definition can be expanded to define any term as the sum of the preceding three.

It is the purpose of this paper to examine this new sequence that we will call the TRIBONACC! SEQUENCE
(the name obviously resulting from “tri"" meaning three (3)). Therefore, let us define this new sequence as 7
and consisting of terms:

Tl: TZ! Tjr T41 T51 "ty an )
where we will define
Ty=1 Ty=1 T3=2
and any following term as
Tw = Tuag +*Tu2+ Ty 3.

For any further study of this sequence, it will be useful to know the generating function of these numbers. To
find this generating function, let the terms of the sequence be the coefficients of an infinite polynomial 7(x/
giving

1

T(x) = T1+Tox+ T3x2+ T4X3 + o TnX”‘ .

By multiplying this infinite polynomial first by —x, then by —x? and finally by —x3, and then collecting like
terms and substituting in appropriate values of 74, 75, T3, -, we get the following:

Tix) = T, +T,x+T,x* +T,x* + T x* + .

—xT(x) = =T, x-T,x* =T, x> -T,x* -
-x2T(x) = =T, x* =T, x* = Tyx* =
—X3T(X} = ~ T1X3—7-2X3--~

Tlx) = xTlx) = x*T(x)=x*T(x) = T, = 1
Tx)N1—x—x*=x3) =1

Tix) = !

T—-x—-x*-x*

Therefore, we have found the generating function of the Tribenacci sequence as 7(x/ and can be verified by
simple long division.

This Tribonacci sequence can be further examined in a convolution array. The first column of this array will
be defined as the coefficients of 7(x). The second and subsequent columns can be found in two (2) ways:

(1) The first method is by convolution® (thus giving the title of the array). By convolving the first column
with itself, the second column will result; by convolving the first with the second, we will get the third; the first
and third to get the fourth and so on. It will also be noticed that the even-numbered columns are actually

*Convolution: a folding upon itself.
It will be recalled that a mathematical convolution is as follows:
Given: Sequence 1asS,, S,, S,, 8,4, S5, Sg,
Sequence 2 as P,, P,, P,, P,, P,, P, -
To find the sixth term of the resulting sequence:
(S )(Pg )+ (S )(Ps)+ (S5 )(Py) + (S4 J(Ps) + (Ss)(Py) + (Se )(Py )
193



194 THE TRIBONACC! SEQUENCE [Oct.

squares. That is to say, to get the second column the first is convolved with itself; to get the fourth, the second
is convolved with itself; the third with itself to arrive at the sixth and so on.
(2) The second method for deriving the same array clearly shows why the convolution array can also be
called a power array. Recall that the first column is the Tribonacci sequence and is generated by the function
1

7—X—'X2—X3

To derive the second column, then, the first column generating function is squared. The third column is Tj(xl,
the fourth column is 7'4()() and so forth, Therefore we can represent the array as:

I
Power of T(x)

1 2 3 4 5 6 7 8

Powers
of 1

And our specific array as:
. 1 2 3

1 1 1

1 2 3 4 5 6 7 8

2 5 9 14 20 21 35 44 54
41 12 25 44 70 | 104 | 147 | 200 | 264
7

3

10 1

011

26 63 | 1256 | 220
56 | 153 | 336 | 646

1

DD TP Ww N - O

H
4

This specific array can be found and verified in either of the two ways described above.

A third more simple method of deriving this same array is by the use of a recursion pattern or template. To
find this template pattern, one must recall the power array (method 2 of getting the convolution array). We
then realize that:

Tix) = S

7~x—x2—x3

2
2= | ——L
< 7—~X—X2—X3>

. ‘ 3
P i)

generates the first column

generates the second column and

T—x—x“—x
generates the third column or, we can rewrite this as:
T™x) = ( _ 1 )”
T—x—x2-x?
which itself can be rewritten as
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" 7 7 | n-1
T(x) = 3
T—x—-x2_x3 T—x—-x?—x

T"(x) = ( S E—

I—X—XZ—X3

2

By multiplying both sides of this equation by (7 — x — xZ — x> ) we will get:

(a) T™x) = xT"(x)+x°T ") +x7 T (x) + T *x)
or by collecting all the 7, (x) terms, we get:

(b) T™1x) = T™x) = xT™x) — x2T™x) - x> T™x).
In words, this means that the n™" column is equal to x times itselfplusxz times itself plus x> times itsel f plus
the previous column. For a specific example, let us examine 7 (x/.
Therefore:
T'x) = T*x) = 1+4x+ 14x? +44x° + 125x% + ..

T x) = T3(x) = 1+3x+9x2+25x% +63x* + ...
By substituting this in Eq. (b) above:
T*x) = xT ) = x2Tx) = X7 THx) = T(x)
THx) = 1+ 4x + 14x% + 447 + 125x% + .

xTHx) = - x- ax?-1axd - aaxt -
—X2T4(X) = A PSR ¥/ g )
—X3T4(X) = Y

= 1+3x+ 9xZ+25¢7 + 63xt- ..
which indeed is 77(x).
What we would like to do, however, is apply this method to a specific element in any column or row, rather
than to entire columns. Let us again refer to the equation

T™x) = xT™x) +x2Tn{x) + x> TM(x) + T =Yx)

and a specific element in the column. To translate this equation, refer to Array 1 on the previous page, and re-
member what each item in the array represents. Pictorially, then, the equation means the following (we will
consider each element in the equation separately):

T™x): the specific element in a row and column that we are interested in. We will call it X.
xT"(x):  the element in the same column but up one row. The multiplier x has the effect of shifting it
down one row. We will call this U.
x2T™x): the element in the same column but up two rows. The x 2 has the effect of shifting it down two
rows. We will call this V.
X3T”(X).' the element in the same column but up three rows, shifted down by the factor of x>, Call this W,
7" (x): the element in the same row but the previous column. Call this Z.

Therefore, by this pattern we can find any element in the array through the use of a single template. The tem-
plate (from the above equation) is:

X=U+V+W+Y

x|l |s
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This template, then, because it is so general, will help to see relationships between other convolution arrays and
numerator polynomial arrays which will be discussed now.

As we have seen, we know of a function that when expanded, will yield an infinite polynomial whose co-
efficients correspond to the Tribonacci numbers. We also know that this function, namely

7

7-—X—X2—X3

when squared and expanded will yield the coefficients of the second column of the convelution array. We have
seen that this function can also be cubed and expanded to give the entries in the third column of the array, and
so on.

Suppose we wish to find a function or series of functions that will generate the rows of this convolution array.

Let us, then, consider the first row (actually called the zerot row, since rows correspond to the powers of x
in the polynomials and the “first” row is the row of constants) of the array as coefficients of the infinite poly-
nomial R(x), giving

Rix) = 1+x+x%+x3 +....

By mutliplying R(x) by —x and adding to R(x), the following is obtained:

Rix) = 1+x+x%+x> Fxt e
—xR(x) = —x-x?ox?oxt -
(1—x)R(x) = 1
=1
Rtx) 1—x

Thus, 7/(1 — x) will generate an infinite polynomial whose coefficients correspond to the zeroth row of the
Tribonacci array. Itis also true that the function (7/(7 — x))? will generate the first row of the array. However,
(1/(7 - x))? does not generate the second row.

As a result, the row generating function must be generalized to give all the rows. Let us call, then, the numer-

ator of this function r,,(x), giving:
ralx)
(1- X)n+1
The numerators then for row 0 and row 1 are simply equal to 1. For row 2, we will find r,(x) by simple alge-
bra as follows:

R, (x) =

(1-x)?
ralx) = (2+5x +9x% + 14x7 + 20x* + - (1= x)?
ralx) = (2+5x+9x2+ 14x3 + 20x* + . )1 - 3x +3x% = X7)

= 2+5x+9x2 + 14x3 + 20x% + ...

“ralx) = 2+5x+9x%+ 14x7 + 20x* + ...
- 6x- 15x2-27x7 - axx?
6x2+15x7 + 27x* + .
e
ralx) = 2—x
and Pt = PR

(1-x)°
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In a similar manner, we can find r3 (x), r4 (x) and so on. These polynomials henceforth will be known as the
numerator paolynomials. A listing of these is as follows:

rofx) = 1
rilx) = 1
ralx) = 2- x
r3(x) = 4- 4x+ «x
rqfx) = 7— 9x+ 3x?
rsix) = 13- 22x + 12x% = 2x?
etc. |f one were to take the time and calculate this data, it would soon be realized that there is a considerable
amount of arithmetic involved. The r,,(,) numerator polynomial is obtained by expanding (7 — x)"*! and us-
ing it to multiply an infinite polynomial. It turns out, that when this is done and like terms are collected, all
but a finite number of terms result in zero. Nevertheless, it is quite a time-consuming task.

The coefficients of these polynomials can themselves be formed into an array similar to our original convolu-
tion array. Like the original convolution array, this array can also be formed in several methods. The first
method we have already examined: finding r,,(x). The other method is by also developing a template pattern.
This template can be found as follows:

We know that if we let A,,(x) (wheren =0, 1, 2, 3, 4, ---) denote the rows of the Tribonacci convolution
array, then 0

2

Ryx) = —mt)
(7 _ X}n+1
Similarly: Bosplx) = I'n+1 (Xiz
(1-x)"
(x)
Roi2(x) = I'n+2
* (1- X)n+3
(x)
Rysz(x) = —Lnt3 D0
nt (1- X)n+4

Also looking at the row polynomial in terms of the pattern discussed

Rnt3(x) = xRy13(x)+ Ru+2(x) + Ry q(x) + Ry (x)
X = (Y + U + V + W)
By simple substitution:

rnp3(%)_ _ Xrue3(x) o _tar2l) o reaglx) )
(71— X)n—:—4 (1- X}n+4 (1- X}n+3 (1- X}n+2 (71— X)n+1
By simple algebra:

rpt3(x) (1—x) = Fpt2(x) 4 It (x) . ra(x)
”_X}n+4 (7—-X}n+3 (I_X}n+2 ”_X)n+1
ry+3(x) __ruw2(x) 4 nrilX) . rafx)
(71— x)"*3 (1—x)"3 (71— x)™*2 (71— x)r*

Fa#3(X) = Fa2(06) # (1= x)rnsg () + (1= x)%r, (x)
= Fpr20¢) + 11 (X) = Xryig (X) + rylx) = 2xr,(x) + X1, (x).

From .this information and remembering the procedure for converting this equation to a template pattern, the
following template for the array of coefficients of the numerator polynomial is
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rufx) w %
Fyn-1(x) T Z
Fu-2(x} Y
rn-3(x) X

X=Y+Z+V+W-T-2U
We have already discussed a specific Tribonacci sequence and its related convolution and numerator poly-
nomial arrays. Our goal in this portion is to generalize our conclusions from the specific case. We would like to
examine and investigate the general case and see if any generalized conclusions can be reached.
Two (2) general Tribonacci sequences exist: 1, 1,p, 2+p, --or 1,p, g, 1+p +g, --. Since the second is more
general, we will use it for further investigation. The sequence, then, is as follows:

Lpg 1+p+q 1+2p+2qg, -,

where each term is defined as the sum of the previous three.

As in the specific case, a generating function can also be found for the general case. Again, let the terms of
the sequence be coefficients of an infinite polynomial, giving:

Glx) = T+px+qx’+(1+p+gh’ +(1+2p+2g)x* + ...
By multiplying by —x, —xZ and —x7 and collecting like terms, we get:

Gix) = 7+px+qx2+(7+p+q}x3+(7+2p+2q)x4+--~

—xGix) = - x -pxz— qxj- (1+p+q) Xt
—x2G(x) = - x?- px3— qx4-
—x’Gix) = - X3 - px4 .

(1—x=x2=x2)Glx) = 1+(p— tx+(g—p— 1)x?

Gix) = T+(p—Ihx+(g—p— 1?2
T—x—x2-x3 '
where G(x) defines the generalized generating function and “p” is the second term in the sequence and “g” is
the third.
Again, using the specific case as an example, we can expand the sequence into a convolutian array. The first
column is given and defined as the generalized sequence, with the generating function of

Glx) = 1t lo—Ux+(g—p— 12
T—x—-x2-x’

The subsequent columns can be found by convolution or by giving appropriate powers of the generating func-
tion (as discussed earlier in the specific case). By either method, the resulting array is shown in the table on the
following page. The columns represent the power of the generating function and the rows are the corresponding
powers of x. Therefore, we are guaranteed a way of generating this array—by either convolution or raising the
generating function to a power—two rather tedious, time-consuming methods. If we could find a template pat-
tern for this generalized convolution array, it could be used for any Tribonacci sequence.

To find this template pattern, recall that the generating function for the first column is

1+(p— I +(qg—p— 1x?

I—X—XZ—X3

Forany n th column, the generating function is:

Ghyx) = | Itlp—Ix+(g—p— Tk

7—)(——)(2—)(3

2\ n
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Powers of G(x/
7 2 3 4 5 6
0 7 7 7
n 2p 3p 4p 5p 6p
2 q p?+2g | 3p?+3qg | 6pi+ag | 1007 +5g | 15p% +6q
Powers ’
of 3 |prger |PTA* p’+3p+3q 147 +4p+4g
X 2pg + 8 +6pg +3 + 12pg +4
7 7
2 pr+12ps+
+12p +
4 |\2p+2q+1 2p2+6p+q2 gp2+67‘p+ 20p+6‘72+
q q 2
+4p+2pg+2 | 45 2 2 18qg+12p°q
Ip“q +6pg
+12pq +4
4p27+6'p+
5 Bp+dg+2 |29+ 10qg
+6pg +4
6 l6p+79+4
or 2 2 n-1
G'(x) =| I lp—Tx+{g—p—1)x )(7+(p—7)x+(q—p—7ix
T—x—x?-x? T—-x—x?-x?

which can be rewritten as:
Ghx) = 14 lo—Tx+(g—p— 1x° 61 1).
T—x—-x?-x°
By multiplying both sides of the equation by 7 —x — x? = x? we will get:
G N1 —x—x?=x7) = (1+(p— 1+ lg—p— 1k?)G"(x)
G"x)— xG™(x) — x26" (x)— x> 6™ x) = G x)+ (p— TG (x)+ (g —p— 1x?G" 1 (x)
G™Mx) = xG" (x) + x26™(x) + x> 6" (x) + 6" (x) + (0 — G L(x) +

+{g—p— 1x26™1(x)

Let us represent this symbolically as:
X=Y+U+V+W+p—-1)Z+g-p—1)Q.

Then, as we discussed earlier, this can be transiated pictorally to give our template for the generalized Tribonac-
ci sequence:

4
fg—p—-1)0| U
b—12 Y
w X

Naturally, in extending this discussion, we can also discuss the numerator polynomials that will generate the
rows of the 1, g, g, -- array. Again, by sheer arithmetic, we can generate the numerator polynomials:
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rolx) =1

ri(x) = p

ralx) = q+(p? - gk

r3(x) = (p+q+1)+(-2p— 29— 20 = 2)x + (p% +p +q — 2pg + 1)x*?

ralx) = (2p +2q + 7)+(2p2—-4p+q2—6‘q +2pq—3)x+(—4p2+2p—2q2+6‘q +3p2q-—4pq+3)xz

+ (,04 +2p2 +2pq - 3p%q - 29— 1)x°
etc.
Using the same method utilized in discussing the specific case, we can determine a pattern for the coefficients
of these numerator polynomials.
First let us translate the pattern for the columns to pattern for the rows. This gives us:

R,_2(x) U
Ro1lx) |V Z
R, (x) Y
Rurilx) | W) X

X=Y+Z+U+W+p-2)V

Bu_1(x) = xRyi1(x)+ By(x)+ By_1(x)+(p— 2)xRy_1(x) + Ry_2(x)
or

Rur1x)1—=x) = Rylx)+ Ry_1(x)1+(p—2k)+B,_2(x).
We still have the relation that

(x)
R,(x) = L
(1-x)"*1
By substituting:
rn+1(xiz (1- rn(x)+1 _ rpeglx) (1400 - 2)x) + p-2(x)
(1-x)" (1—x)" (1-x)" (1-x)"1

tpt1 (%) = 1)+ (1= x)ry 1 (X1 + (0= 2)x) + (1= x) %1, 2(x)
Pt (X) = ra(x) +rp_q(x) +(p = 3)xry_1(x)+(2— p)x 2rn_1 (x) + rp_2(x) — 2xr,_2(x) +x2rn_g(x).
This yields a pattern for the array of the numerator polynomials:

Fp-2(x) N -2)T | U
Fu-1(x) | M(2-p) | (p=3)V| Z
rn(x) Y
In+1(x) X

X=Y+Z+U+p=3)V+(2—-p)M-2T+N.

There are some interesting features of these numerator polynomials. First of all, this pattern does not hold
for the entire array. To use the pattern to get the (pZ + q) coefficient of the x term of the ry(x) polynomial,
some “special” terms must be added to the top of the array. Rather than discuss this at length, it will suffice to
say that if one were interested in generating this array one could generate the first three rows by the method of
equating coefficients and then utilize the pattern derived,

It can also be noted that the sum of the coefficients of each numerator polynomial sums to a power of p, the
second element of the Tribonacci sequence. Specifically, the sum of the coefficients of the r,, numerator poly-
nomial is p™. (Note that the sum of the coefficients for the numerator polynomials of the 1, 1, 2, - Tribonacci
array is always 1. This is logical since the second element of the array is 1 and 1" is always 1.)

Jokonioiook



THE PASCAL MATRIX

W. FRED LUNNGN
Math I nstitute, Senghennydd Road, Cardiff, Wales

The n x n matrix P or P(n) whose coefficients are the elements of Pascal’s triangle has been suggested as a
test datum for matrix inversion programs, on the grounds that both itself and its inverse have integer coefficients.
For example, ifn =4

11 1 17 4 -8 4 —ﬂ
112 3 4 L6 1w -3
(1) P=11 3 6 10| 7 =] 4 -1 10 -3|°
11 4 10 20 -1 3 -3 1]
M 1 1 17 1 0 o0 olf1 1 1 1]
1 2 3 4| {1 10 0|0 1 23
1 3 6 10| |1 2 1 0oflo o 1 3]°
1 4 10 20 {1 3 3 1)0 0 0 1]
M4 4 1 1 1 1 11 0 0 0]
6 1M 3/_10 1 2 3{|1 100
4 0 3 o0 1 3/{1 2 1 ol
K 3 1) (000 0o 11 3 3 1]

P=\T = A 200% + 7202 — 290 + 1.

It occurred to us to take a closer look at this entertaining object. We shall require a couple of binomial co-
efficient identities, both of which are easily proved by induction from the fundamental relation

()=o) ")= avpmye,

orQunless0<j<i.

@ T 0) (G
@) ) G RISV BRIV

k
(Here and subsequently all summations over i, j, k, etc., are implicitly over the values 0 to n — 1. Notice that
our matrix subscripts are also taken over this domain.) P is defined by

- (1)

First notice that the determinant of P is unity. For subtracting from each row the row above, and similarly
differencing the columns, we find

[10 -0
0

@) Pin) = | Y = \Pln— 1)\ = 1P(O)] = 1

(n=1)

| 201
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It follows that P! has integer coefficients, since they are signed minors of P divided by |P|. As it happens,
there is a nice explicit formula for them:

(5) (P 1)g = (=) (¥ )(]’?) :
k
Proof of (5). Let the RHS temporarily define a matrix Q. Then

oy 207 TG
p ) k

AU blblly
=T ()T e
k

=(;2)F)" = 5y by (3) again.
Thatis, PQ =1 and @ =P
The decomposition of P into lower- and upper-triangular factors is simply

(6) P = LU, where Ly = (1), Uy -(1);
since (LU);; is immediately reducible to P via (2). And from (5) it is immediate that
(7) (ULl = \P1))
or the coefficients of UL are the moduli of those of P~
Turning to the characteristic polynomial of P, we need the following method of computing
[A-N| =% e NP
m

for any matrix A :—

(8) Let dy = trace (A*) = 3 (A%); for k > 0.

1

do = m linstead of n),

cop =1,
then
E Cm-kdp = 0.
k
This relation enables us to compute the ¢'s in terms of the d's or vice versa, e.g.,
co =1
c1 = —0’1

cpy = —72([,‘1[11 +[;0d2} = 7/2{0112__012}
€3 = ;-(Czdj +cq1dy +50d3) = ;‘(_df+3d1d2—2d3)_

Proof of (8). The eigenvalues of A* are just the k" powers of the eigenvalues of 4 and our relation is

simply a special case of Newton's identity, which relates the coefficients of a polynomial to the sums of kth
powers of its roots, etc. (In numerical computation this formula suffers from heavy cancellation.)
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Notice also that, by the definition of matrix multiplication, form > 0
(9) dy, = Z}:Zk: "'ZzAijAjk"'An'
1 ] q r

(over m summations and factors).
Now suppose that A = P(n), and denate by C,, and D}, the values of (—)™c,,, and d,; the former are tabu-
lated for a few small 1 at the end. The first thing to strike the eye is their symmetry:—

(10) Co =Chp .
To prove this, it is by (8) enough to show that 0, = 0,,_,,. Also since the eigenvalues of P! are the recipro-
cals of those of P, and the determinant of P is unity (4), the characteristic polynomial ofP-1 is just the reverse
of that of P, So it is enough to show that 0,,, = d,,, (P~1). But by () and (5)

It ) = % [z(é?x;?)_]“ b <z)<;>]-~-

Z 2 }:(?)(Z)] )

q

Il

2 [sz)“};zx;)]

p,q,t j
-y (P;q)(q;r) - by (2)
par

= > PpgPqr- = Dy by (6) and (9), QED.
P;qrr
Incidentally, setting m = 2 shows that the sums of squares of coefficients (the d») are the same for P and P1

The next striking feature is
(11) Cp > 0

, it is easily seen that

If the characteristic polynomial of some A is expanded explicitly in the form |4 — AN
(—)™¢,, is the sum of all principal m x m minors of A. So (11) is a consequence of the more general result

(12) Every minor of P is positive.
We denote by M = M(ik, ---, 0, q,/,%, -, p,r) the m X m minor of P
Pi
Pro
Pop
Pq,

and define the “type’ of M to be the triple (m,q,r). Qne triple is said to be “less than or equal to” another if
this relation holds between corresponding pairs of elements. With this ordering we prove (12) by induction on

the type.
The result is clearly true for m = 0, since any 0 X 0 determinant has value 1. Suppose then thatm > @ and

the result is true for all types less than (m,p,r). According to the fundamental relation P, = Py_7 .+ Py . 1
etc., so we can decompose the final row of #f to obtain 4/ =
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| Py;

M, -, g =174, -, 1)+ E .
Pop

Paj-1

qu r-1 I

where the final row of the latter determinant has been shifted one place to the left. Repeating the decompoaosi-
tion on the new minor, we eventually reach a zero minor when the final row coincides with row o, and so

q |Pii.
=X Pop
q'=ot1 Pq’,j—j "'Pq’,r—1|

Decomposing all the other rows of the summand in turn, we finally get them lined up again to form a respect-
able minor, thus

(13) M= 3 MK, 0= 18— 1, p= 1, r= 1),
i,xij'")ozq’
where—1</'<i<k’<sk<--<o'<o<g’<q.
1fj > 0, each summand is of type at most (m,q,r — 7). 11/ = 0, we need to introduce another row and column

for P, defined by Py = Pr_1 = oy, to preserve the sense of (13): we need then only consider the case/” =0,
and (13) becomes

M = E M(k’, .‘-a'lq’,-Q— 7, ., p - 7[,__ 7)'
k”““,o’,q’

in which each summand is of type at most (m — 1, g, r— 7). In either case M is a sum of minors of lesser type
and therefore is positive, QED. :

We can squeeze mare than (11) out of (12}: since C,,;(n + 7) includes all the minorsin C,, (n), it follows that
(14) C,, (n}is an increasing function of n.
A squint at the data suggests the tougher conjecture
(15) C,,(n) is an increasing function of m form < %n ?

Concerning P in general, some further questions suggest themselves. The maximum element of P is clearly
P, ~ 4"A/[%n) by Stirling's approximation; but what about that of P19

How are the eigenvalues of P distributed? By (10) they occur in inverse pairs, with 1 an eigenvalue for all odd
n,; how big is the largest? Since P = LL”, it is positive definite and they are all positive,

1

1 1

1 3 1

1 9 9 1

1 29 12 29 1

1 99 626 626 99 1

1. 351 6084 13869 6084 351 1

1 1275 64974 347020 347020 64974 1275 1

Coefficients of |Pfn) + M|, n (descending) = 0(1)7.
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ZERO-ONE SEQUENCES AND STIRLING NUMBERS
OF THE SECOND KIND

C. J.PARK
San Diego State University, San Diego, California 92182

Letxs, x2, - x;,, denote asequence of zeros and ones of length n. Define a polynomial of degree (n —m) > 0
as follows

(1) Bt nigld) = 3 dT50(d #x1) 1% (d b x g+ xp+ et K g)

with 8; 1(d) = 1, where the summation is over x, x, -+, X,, such that

n
S oxi=m.

i=1
Summing over x,;, we have the following recurrence relation
(2) Bm+1,n+1 (d) = (m + d}ﬁm+1,n (d)+ Bm,n (d),

where 8¢ gfd) = 1.
Summing over x ; we have the following recurrence relation
3) ﬁm+1,n+1 (d) = d'ﬁm+1,n(d)+ 6m,n(d+ 7),

where 60)0((1} =1
Now we introduce the following theorems to establish relationships between the polynomials defined in (1)
and Stirling numbers of the second kind; see Riordan [1, pp. 32—34].

Theorem 1. By, ,,(1) defined in (1) is Stirling numbers of the second kind, i.e., 8, ,,(7) is the coeffi-
cient of t"/n! in the expansion of (et — 7)"/m{ m,n > 1. ’
Proof. From (1) we have 87 7(7)= 7 and from (2) we have

(@) ﬁm+1,n+1 (1) = (m+ ”ﬁm+1,n(” * Bm,n(”/

which is the recurrence relation for Stirling numbers of the second kind; see Riordan [1, p. 33]. Thus Theorem
1 is proved.
Using (2), (3), and (4), we have

Corollary 1. (a) Bm+1,1+1(0) = B (1),
b)  Bmtt,n+1(1) = Bmt1,n(1)+ Bim,nl2),
(c) Bm,nl2) = mBus1,n(1)+ B nl1)
Theorem 2. The polynomial defined in (1) can be written

(n-m)

= n\gy
Bm+1,n+1 (d) yz:%) ( y >0’ ﬁm,n—y (1).

Proof. Assume that n distinguishable balls are randomly distributed into &V distinguishable cells such that
the probability a ball falls in a specified cell is 7//. Assume thatd = 0N <N, 0 <6 < 1, of the cells are pre-
viously occupied.

Define x; = 7 if i™ ball falls in an empty cell and x; = 0 otherwise. The joint probability function of

{x{, X2, -, X, ) can be written
205
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(5) (/‘_/:_’Z “f d 1—x1(/V—d—X1)xz(d+X1)1—x2
N ) N I ]
...(/V_ d—Xx1=Xp— '"—Xn-j)x”(d+x1 txo .-.+xn_1)1_xn
N I

Let Em,j,k be the event that m additional cells will be occupied when j balls are randomly distributed into &
cells such that the probability that a ball falls in a specified cell is 7/k. Now summing (8) over x4, x2, -, x,
such that

n

2 xi=m,

i=1
we have

-1 (N —d)!
P =1 __(W—a)
(6) [E s, n,NT oo T—d—mll Bnt1,n+11d).
Let Fy,n denote the event that y out of » balls will fall in the previously occupied cells, & out of AV cells, Then
_[n day” d\"7Y _

(7 PlFyl =(5\N)(1-%) . v=01-n
But we have

(n-m)
P[Em,n,N] = Z P[Fy,n]P[Em,n,Nle,n/,
y=0

where using similar expression as (5) and (a) of Corolfary 1,

- _ 1 (N—d)j
(8) P[Em,n,N Fy,n] = P[Em,n—y,N—d] = (/V_d)”‘y N—d-m)l Bm,nvy”)-

Thus using (7) and (8)
) PLE ] = L N=d) (wim} "V 07 By, 1oy (1)
mn, N N (N —d—m)! =0 (Y) ey ’

Equating (6) and (9), Theorem 2 follows.
From Theorem 2, we have the following recurrence relation for Stirling numbers of the second kind.

Corollary 2.

(n-m)
Bt tnet (1) = 3 () Bunney(7)
y=0
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ON POWERS OF THE GOLDEN RATIO*

WILLIAM D. SPEARS
Route 2, Box 250, Gulf Breeze, Fiorida 32561

and
) T. F.HIGGINBOTHAM
Industrial Engineering, Auburn University, Auburn, Alabama 36830

The golden ratio G is peculiar in that it is the number X such that)_(2 = X + 1. This characteristic permits de-
duction of properties of G” not unlike those of Fibanacci numbers F. Also, interesting relations of £ numbers
are derivable from properties of G”. Some of these properties and relations are given below,

First, a given n ™ power of G is the sum of 6"~ and "2 for
(M 6" +6"% = 6" G+ 1) = 67,

Furthermore, for n a positive integer, G = F,,G + F,,_; which implies that G"* approaches an integer as nin-
creases. For proof, determine that
Gl =16+0
G2 =6+1=16+1
G7 = Gl6G+1) = 26+1
and from (1), ¥ = (1+2)G +(1+ 1), 67 =(3+2)G+(2+1), etc.
The coefficient of G on the right for each successive power of G is the sum of the two preceding F,,_; and
F,._> coefficients, and the number added to the multiple of G is the sum of F,,_» and F,,_3. Hence,
G" = FaG+Fy g,
As nincreases, £, G~ F, 41, SO
(2) G" — Fui1+ Fug.
Hence, G approaches an integer as n incraases, and thus approximates all properties of .7 + F,_q.
No restrictions were placed on n in (1), so the equation holds forn < 0. For example, given n =0,

G”_1+G”‘2:—7-+——7-:G+7=7=GO.
G GZ 62

Hence, sums of reciprocals of F numbers assume F properties as F,,+;/F,, — G. Generally, let £, G represent
F,+1, and FﬂG2 represent F,,+». Then

1 1 1 1 1({G+1 7
(3) —_——F —— F ———— = == — = —
FVL+1 Fn+2 FVLG FHGZ Fn ( GZ > FVl

Equation (3) is a special case of a much more general interpretation of (1), for positive or negative fractional
exponents may be used. To reveal the general application to-F numbers, derive from the general equation for

F
(7+ 5)”_(7—\5)” 6" 1
Fn = 2 2 = (—G)n

V5 V5

1o

that F,,/5 — G" as n increases. Hence, for any positive integers n and m,

*We wish to thank Mary Ellen Deese for her help in discerning patterns in computer printouts.
207



208 ON POWERS OF THE GOLDEN RATIO Oct. 1977

n n_ n_
Gm = Gm + Gm
‘ 1 1 1
) (Gn}m = (Gn—m}m+(0n—2m)m
1 4 1
(5) F;Ln - me +F::12m

To iliustrate Eq. (4),1etn =7 and m = 3. 1 5

1
6°=6%+67 .
Cubing both sides gives
_6 _2 1z 15
6=67+367+36 7+6 7 =-676% = 6.

The proximity of the relation in (6) even for n small can be illustrated by lettingn = 70 and m = 2, or

J55 = 7416 - J21 +J8 = 7411.

Equation (4} adapts readily to —7/m, for
1 1 1
(an)_;L - (GH+M)~7VL+ (Gn+2m)-ﬁ
and from (5),

1 A 1
m m m
Fo" = Fudm * Fuiom -

Again, lettingn =70 and m = 2,

Fi ='.134839  and  F;5+F;} = .134835.
An additional insight regarding £ relations derives from (2) and the fact that £,,\/5 — G", for
Fus/5 = G = Fpug+ Fyg
Fu/5 — Fuag#Fug .

Hence, Fn\/g approaches an integer as n increases,

These relations of £ and powers of G, especially those involving negative exponents, permit greater perspec-
tive for F numbers. For example, Vorob'ev [1] states that the condition U,, = U,,_1 + U,,_5 does not define all
terms in the F sequence because not every term has two preceding it. Specifically, 1,1,2 --- does not have two
terms before 1,1. Such is not true of G where — < n < =, F,, properties approach those of G as 7 — £,
with maximum discrepancy at n = 0. G is usually viewed as the limit of F,,+;/F,, as n — - ;perhaps the more
mystical concept of a guiding essence for harmonic variations of £, is in order, G™ brings F,, to taw. The dis-
tortion in £, relations relative to G™ is never great so long as 1 is a positive or negative integer. And G” prop-
erties surmount even 1 = 0.

Alast look at G™ will be made in terms of logarithms of £ numbers to the base G. Because F,, — G"/\/5,

loggF, = n—% log 5 = n— 16722759 - = (n—2}+.3277240 ---.

Therefore,
(8) F. _ Gn-2g-3277240

n .
Hence, log F,, — logg Fy— 1 harmonically approaches unity, and rapidly.

REFERENCE
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UNIFORM DISTRIBUTION FOR PRESCRIBED MODULLI

STEPHAN R. CAVIOR
State University of New Y ork at Buffalo, Buffalo, New Y ork 14226

In [1] the author proves the following
Theorem. Letp be an odd prime and {Tn} be the sequence defined by
Tut1 = P+ 2)T,— (p+ 1)T,_¢

and the initial values T; = 0, T, = 7. Then {7, } is uniformly distributed (mod m) if and only if m is a power
of p.

The proof of the theorem rests on a lemma which states thatif p is an odd prime and 4 is a positive integer,
p + 1 belongs to the exponentpk (mod p*+1), The lemmais also proved in [1].

Since for each positive integer , 3 belongs to the exponent 2%-1(mod 2k+1), (see [2, §901), the lemma
and the theorem cannot be extended to the case p = 2. It is the object of this paper to find a sequence of inte-
gers which is uniformly distributed (mod m) if and only if m is a power of 2.

We will need the following

Lemma. For each positive integer &, 5 belongs to the exponent?k (mod 2k+2)_
Proof. See [2, §90].
Theorem. Thesequence {T,} defined by
Tut1 = 6T — 5T, 1
and the initial values 7; = 0 and T, = 7 is uniformly distributed (mod m) if and only if m is a power of 2.
Prooﬁ The formula of the Binet type for the terms of {Tn} is
To =511 n=123-".
To prove this, note that the zeros of the quadratic polynomial
x?—6x+5
associated with {7,,} are 5 and 1. Solving forc; and ¢ in
cy1-5+cy
cq1 -52+cz
we find ¢ = 7/20 and ¢ = — 1/4. Therefore

1}
-~ o

o= —F  n=123-,

which agrees with the result above. Similar derivations are discussed in [3].

PART 1. We show in this part of the proof that {Tn} is uniformly distributed (mod Zk) fork=1,23, .

First we prove that {7;: /=17, -, 27"} is acomplete residue system (mod Zk). Accordingly, suppose that

T, =T (mod2F)
where 7 <i,/'<2k_ Then
U571~ 1) = %571~ 1) (mod 2%)
or
571 = 51 (mod 2K72).
209
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Assuming / >/, we write
5i-1.5¢ - 5i-1 (mod2k+2),
where 0 <e < 2% — 1. Then )
5¢ = 1 (mod 2F*2 )

But by the lemma, 5 belongs to the exponent 2% (mod 2k+2), soe=0and/=/.
Next, we note thatas a (conser}euence ofthe lemma,

52 +i—1 = 5i~1 (mod 2k+2) i= 7’ 2, 3’

> k+2
- 7. + -
Ty, =Ti mod2¥%) j=123,..

Thus we see that the complete residue system (mod 2%) oceurs in the firstand all successive blocks of length
2k in {Tn} proving that { T }'is uniformly distributed (mod 2k,
PART 2. We prove in this part that { Tu } is not uniformly distributed (mod /m) unless m is a power of 2.
I1f {Tn} is uniformly distributed (mod m), it is uniformly distributed (mod ¢) for each prime divisor g of m.
We show that { T, } is not uniformly distributed (mod ¢) if g # 2.
Suppose first thatg = 5. Then
T+t = 6T, —8T,,_1 =T, (mod5).

Hence {7,,} (mod 6)is {0, 1,1, 1, -}.
Suppose finally that ¢ # 2 5. We show that

(1) T, =0 (modg)
and
(2) Tg+1 =1 (modg).

Note (1) is equivalent to

%(59° 1~ 1) = 0 (modgq)
or
3) 591 =7 (mod4q)
which is equivalent to the pair

571 =7 (mod4)

I

and
591 = 7 (modg)

both of which are elementary. Eq. (2) also reduces to (3). Equations (1) and (2) imply that the period of {7, }
(mod g) divides g — 7, so atleast one residue will not occur in the sequence. Therefore, the distribution of {7,,}
(mod g) is not uniform,
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LIMITING RATIOS OF CONVOLVED RECURSIVE SEQUENCES

V.E. HOGGATT, JR.
San Jose State University, San Jose, California 95192

and
KRISHN ASWAMI ALLADI
Vivekananda College, Madras 600 004, india

Itis a well known resuit that, for the Fibonacci numbers Fpro= Fpig* Fp, Fo=0, F7=1,
lim_ fnrr 145
= oo > -

See [1]. Our main result in this paper is that convolving linear recurrent sequences leaves limiting ratios un-
changed. Some particular cases of our theorem prove an interesting study. it is indeed surprising that such strik-
ing limiting cases have been left unnoticed.

Definition 1. 1f {u,,}:zo is a sequence of positive real numbers and if

. u
A= lim ntf

n - oo un .
then A is defined to be the limiting ratio of the sequence {u,, 3
Definition.2. 1f {u,} is alinear recurrence sequence
M a0Un+r* @gln+r-1* a2Une-2* -t ary = 0
then
r r-1 =
agx"+aix" ' +ta, = P,x)

is called the auxiliary polynomial for the sequence {u‘n} .
Definition 3. 1f {u,} = U and {v, } = V are two linear recurrence sequences with generating functions

‘f’_(i(l and H(X}

arx) Six)’
respectively, we say {u,,} and {Vn} are refatively prime if
(Plx), Sx)) = (Rix), Qlx)) = 1.
The following classic result was known to Euler:

Lemma. 11 the auxiliary polynomial £, (x) for the sequence {un} in (1) has asingle root of largest abso-
lute value, say A, then

Let us call such a A as a dominant root of P, (x). Moreover, let Dom{a,f) represent the number with bigger
absolute value.
The Lemma stated above leads to the following general theorem.

Theorem 1. Let
{ Up }:;0 and { Yn }I:o=0

21
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be two relatively prime linear recurrence sequences with auxiliary polynomials P, (x) and P, (x) whose domi-
nant roots are A, and ... Then, if { Wn}:=0 is the convolution sequence of {u,,} and{v,}.

n
(2) Wn = D Vkln-k.
k=0

then Wines
. n+ _
Him " Dom (A, Ay).
Proof, Consider a polynomial Pfx) with non-zero roots a s, a», -, a,. Let P*(x) denote a polynomial
with roots /a4, 1/as, -, 1/a,. We call P*(x) the reciprocal of P(x). Now denote the reciprocals of P, (x) and
Py(x) by P;(x) and P;(x), respectively. It is known from the theory of linear recurrence that

S g = Bl
(3) go UnX Prix)
and

~ 0 = Sk
(4) ‘ :—;0 X" = pety)

for some polynomials R(x) and S(x).
[tis quite clear from (2), (3) and (4) that

- n . RxSIx) _ _Tix)
(©) E; WnX = PR Pit)  PElxIPix)

which reveals that {W,,} is also a linear recurrence sequence. It is easy to prove that if P, (x) denotes the auxili-
ary polynomial of {W,,}, then its reciprocal 77 (x) obeys

(6) Prix) = PE(x)PH().

It is clear that 1/A, and 1/A, are the roots of P}(x) and Pj(x) with minimum absolute value, so that
min (1/A,, 1/A,) is the root of P} (x) with minimum absolute value. But, since P}, (x) is the reciprocal of
P, (x), Bom (\,, A, ) is the dominant root of Py, (x). This together with the lemma proves

. Wn+
lim 2211 = )\ .
n—ee

We state below some particular cases of the above theorem,

Theorem 2. Let{up},-p be alinear recurrence sequence

Un+1 = UptlUpy, Ug=0 wdg=uwp=uz=-=u=1 rel.

Let g, 7 denote the first convolution sequence of {un } ::0

oo

Uy Z

n=0
n
(7) 9n1 = D, Uklin-k
k=0
and g, , the % convolution fu,, = 9n,0)
n
(8) In,r = Z Ik, r-1Un-k -
k=0

Then lim  Up+7/up exists and
nz e
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. + .
nllm = = lim
+ e Uy N g,
foreveryre Z°,

Proof. The auxiliary polynomial for {u,,},_, is x™71 — x" — 1. We will first prove that the root with lar-

gest absolute value is real. Denote the auxiliary polynomial by
Pylx)=x"T—x"-1.
Clearly, P,(1) = —1 < Oand P, (=)= . Further,
P, -
d__ux(x_) =+ ik"-m" >0

for 1 < x < e so that P,(x) =0 for 1 <x < = at precisely one point, say A,,. Itis also clear that P, (x) > 0 for
x > Ny implies

(9) ™7 S 1"+ 1l

forx > A,
Letz, be a complex root of P, (x) = O with lz,] > \,. Now, since z, is a root of P, (x) = 0,

lzp" Tl = lzp+ 11 .
But|zo| > Ay, and comparing with (9) we have

fzé”l < lzfl +11l,

a contradiction. One may also show similarly that there is no other root z, with lz,| =\, proving that A, isa
dominant root of P, (x). This proves that the limiting ratio of {u,,} exists and that

. Un+1
lim 2 =, .

n=e gy,
Further, Theorem 1 gives
nlﬁpm %,,777—7 T nS e %’r
by induction on r and the definition of g, , in (8).
Theorem 3. Iftse Z7 and t <s, then
Jim 2t =g
In,s
Proof. For the linear recurrence sequence {0,) satisfying
Up+1 = Up*tlp~y, U9 =0, Wy =u2==u =1,
define a companion sequence of polynomials
(10) Up+1(x) = xX0n(x)+ up-p(x)

uglx) =0, wqlx) =1, aslx)=x -, ux)= X1,

Denote by gn ofx) = uplx),

n
gn,10%) = 3 uklxdup_klx),
k=0
and
n
(11) Inelx) = 3 Gk -1k (x).

k=0
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One of us (K. A.) has established in [2] that
(12) —— = g, +(X).

We know from (10) that

dluperlx)  dl,(x) dTTuntx)  dlup ix)
=x +t- +

(13)
axt axt dxt7 axt
Now, (12) makes (13) reduce to
(14) On+1,¢600) =xgp, ¢() + gnr, 1 06) + g p-1(x).
Note from {11) that g, +(7) = gp, ¢ so that (14) can be rewritten as
(15) n+1,t = Gn,t " Gn-r,t* n,t-1-
Dividing (16) throughout by g, ; we get
(16) !]n+7,t = 7+ gn—r,t * gl'l,f‘7 )
n,t In,t In,t

We know from Theorem 2 that

pliM Gne1,t/9n,e = Ny and - NM gy p /gy, = "\,

so that (16) reduces to

(17) Ay = 1+-L + tim ol
AT Gne
u
But, A is the dominant root of x*7 — x" = 7 = @ so that
: 9n,t-1
lim ==— =g
o . . == gnt
This gives by induction
lim In.t - 0 for t <,

proving Theorem 3.
Corollary. 1t {u,} is the Fibonacci sequence, then

lim  Inttr o 1455
N> gnr 2
and
gn,t

lim 222 =g for t < s

We include the unproved theorem:

Theorem 4. Ii. 2 _
In+1,r9n~1,r = 9n,r = Wn.

then
: Wn+1 2
Him V:"n =27
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1. INTRODUCTION

In [1], Hoggatt and Bicknell discuss the numerator polynomial coefficient arrays associated with the row
generating functions for the convolution arrays of the Catalan sequence and related sequences [2], [3]. In this
paper, we examine the numerator polynomials and coefficient arrays associated with the row generating func-
tions for the convolution arrays of the generalized Fibonacci sequence{Hn};;:z defined recursively by

(M Hy=1 Hy=P H, = Ho1+Hn2 n>3,
where the characteristic 0 = P2 — P — 7 isa prime. A partial list of P for which the characteristic is a prime is

givenin Table 1. A zero indicates that the characteristic is composite, while PZ_pP—1is given if the character-
istic is a prime.

Table 1
Characteristic P2 — P — 7is Prime, 7 <P < 179
0 1 2 3 4 5 6 7 8 9

0 0 0 0 5 1 19 29 41 0 71
1 89 109 131 0 181 0 239 2711 0 0
2| 3719 419 461 0 0 599 0 701 0 811
3 0 929 991 0 0 0 1259 0 0 1481
47 1559 0 1721 0 0 1979 2069 2161 0 2351
5 0 2549 0 0 281 2969 3079 3191 O 0
6| 3539 3659 0 0 0 4159 4289 4421 0 4691
7| 0 4969 0 0 0 0 0 5851 O 0
8 | 0 0 0 0 6971 0 7309 7481 0 0
9| 8009 0 0 0 8741 8929 0 9311 0 0
10 | 0 10099 10301 0 10711 0 0 0 0 0
11 | 0 0 0 0 0 13109 13339 0 0 0
12 | 0 14519 0 0 0 0 15749 16001 O 0
13 | 0 17029 17291 O 0 18089 0 0 0 19181
14 | 0 19739 20021 O 0 20879 21169 0 0 22051
15 | 22349 0 0 0 23561 23869 24179 0 0 25121
16 | 25439 25759 0 0 26731 27059 0 0 0 0
17 | 28729 0 29411 0 0 30449 0 31151 0 0

Examining Table 1, we see that P2 — P— 1is never prime, with the exception of P = 3, whenever P is an inte-
ger whose units digit is a 3 or an 8. This is so because /2 — P — 7 =0 (mad 5) if # =3 (mod 5). Furthermore,
we note that there are some falling diagonals which are all zeros. This occurs whenever P = —3 (mod 11) or
P =4 (mod 11).

If P is an integer whose units digit is not congruent to 3 modulo 5, then P2 _p—1=4%1 (mod 5) and we see
why no prime, in fact no integer, of the form 5k £ 2 would occur in Table 1.

215
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There also exist primes of the form 5k £ 7 which are not of the form P2 — P~ 1. Such primes are 31, 61,
101, 59, 79, and 119. The last observation leads one to question the cardinality of P for which PZ_pP_1isa
prime. The authors believe that there exist an infinite number of values for which the characteristic is a prime.
However, the proof escapes discovery at the present time and is not essential for the completion of this paper.

2. ASPECIAL CASE
The convolution array, written in rectangular form, for the sequence {Hn}:=1 ,where P =3 is
Convolution Array whenP =3 ~

1 1 1 1 1 1 1 1
3 6 9 12 15 18 21 24
4 17 39 70 110 159 217 284
7 38 120 280 545 942 1498 2240
1 80 315 905 2120 4311 7910 13430
8 158 753 2568 7043 16536 34566 66056

The generating function C,,, (x) for the m  ¢olumn of the convolution array is given by

2 Clx) = [——’LZX—Z] "

1—-x—x
and it can be shown that
(3) (14 2X)Cp_1(x) # (x + X2)Cpnlx) = Cpalx).

Using Ry, ,, as the element in the n™ rowand m ™ column of the convolution array, we see from (3) that the
rule of formation for the convolution array is

(4) 'qn)m = 'qn—J,m * Hn—Z,m * Rn,m—i +Zﬁn—1,m—1 .
Pictorially, this is given by

c
d '
where
(5) x=a+b+d+2c.
Letting A, (x) be the generating function for the m th row of the convolution array and using (4), we have

=1
(6) Ry(x) g
(7) Ralx) = p

(1—x)
and
(8) Hm()() - (7+2X}Nm_1(){}+(I_X)Nm_Z(X} - /Vm(X) ., > 3[
(1-x)™ (1—x)™

where V,,, (x) is a polynomial of degree m - 2.
The first few numerator polynomials are found to be

Nylx) =1

Ny(x) = 3

/V3(X} =4+ b5x

Nylx) = 7+ 10x + 10x?

Ns(x) = 11+ 25x + 25x2 + 20x>

Nglx) = 18 +50x + 75x7 + 60x> + 40x* .
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Recording our results by writing the triangle of coefficients for these polynomials, we have

Table 2
Numerator Polynomial AV, (x) Coefficients when P = 3
1
3
4 5
7 10 10

1M 25 25 20

18 50 75 60 40

29 100 175 205 140 80

47 190 400 540 530 320 160

It appears as if 5 divides every coefficient of every. polynomial /V,,, (x) except for the constant coefficient.
Using (6), (7), and (8), we see that the constant coefficient of V,,, (x) is H,,, and it can be shown by induction
that
(9) HuetHues = HE = 5-1)""1.

If 5 divides H,,_; then 5 divides H,, and by (1) H,,_». Continuing the process, we have that 5 divides # ;= 7
which is obviously false. Hence, 5 does not divide 4,, for any n.

Using (8), we see that the rule of formation for the triangular array of coefficients of the numerator poly-
nomials follows the scheme

d| a
c
X
where
(10) X =a+h+2c—d.
By mathematical induction, we see that
(11) Hor1 = 3Fu+ Fu_yq,

where F,, is then th Fibonacci number.
From (10) and (11), we now know that the values in the second column are given by

(12) x =a+h+5F, .

Since 5 divides the first two terms of the second column of Table 2, we conclude using (12), (10), and induc-
tion that 5 divides every element of Table 2 which is not.in the first column. By induction and (10), it can be
shown that the leading coefficient of V,,, (x/ is given by

(13) 235 m > 3.
Now in [4], we find

Theorem 1. Eisenstein’s Criteriosn. Let
n
gix) = Z ax’
=0

be a polynomial with integer coefficients. If p is a prime such that a,, # 0 (mod p), & =0 (mod p) fori <n,
and ap % 0 (mod p2) then g(x/ is irreducible over the rationals.
In [5], we have

Theorem 2. If the polynomial n A
gix) = 3 ax'
i=0
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is irreducibie then the polynomial

n
hix) =3 ay_ix
i=0
is irreducible.
Combining all of these results, we have the nice result that V,, (x/ is irreducible for all m > 3. In fact, we
shall now show that these results are true for any P such that the characteristic PZ_p-Tisa prime.

3. THE GENERAL CASE
Throughout the remainder of this paper, we shall assume that P is an integer where PZ_P—Tisa prime.
By standard techniques, it is easy to show that the generating function for the sequence {/-/n}ff:j is

(14) 1+(p— 1)x
7—)(—)(2
By induction, one can show that
(15) (7+/p—7)x)(—~£-—7”f —”)n+(x+x2)<——p———7+( — 1k )”“=(-J—”‘f ‘”X)””,
\7—x—x? 1—x—x? 1—x—x?

Hence, the rule of formation for the convolution array associated with the sequence { Hn};'f:1 is

(16) Rum = Ructym * Ruom * Buym-1 * fo - 7)Rﬂ—1,m~1 .
Since
- 1
(17) Rqlx) T—x
and
(18) Ralx) = —E£—
(1-x)?

we have, by (16) and induction,
(1+(p— ThINy_ 1 (x)+ (1= xNy_2(x) _ Np(x)

(19) Ryix) = , m>3.
(1—x)™ (1-x)™
The triangular array for the coefficients of the polynomials V,,, (x/, with O =p2_p- 7,is
Table 3
Numerator Polynomial ¥/, (x) Coefficients when H, = P
1
P
P+1 D

P+1 20 (P-1)D

3P+2 50  (3P-4)0  (P—1)%D

5P+3 100 (9P—12)0  (4P? — 10P +6)D P-1)0

8P+5 200 (22P-31)D (14P2 —36P+23)D (5P — 18P2 +21P-8)D (P— 1)%D

By (19), we see that the rule of formation for the triangular array of coefficients of the numerator poly-
nomials V,,, (x) follows the scheme

d

a
b
x

where
(20} x =a+h+P-1)-d
By induction, we see that
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(21) Hn—1H11+1 - HHZ = D(—7)n+1
and
(22) Hn+1 = PFn + Fﬂ—1 ,

where £, is the n" Fibonacci number while using (17) through (19) we conclude that the constant term of
Ny (x)is Hyy,.

Following the argument when P was 3 and using (21), we see that J does not divide #,,, for any m or that
the constant term of AV, (x/ is never divisible by 0.

By (20) and (22), the elements in the second column of Table 3 are given by

(23) x=ath+F,D.

Since O divides the first two terms of the second column of Table 3, we can conclude by using (23), (20), and
induction that 0 divides every element of Table 3 which is not in the first column. Using (20) and induction,
we see that the leading coefficient of V,,, (x) is given by

(24) P-1)"30 m>3.

By the preceding remarks, together with Theorems 1 and 2, we conclude that A, (x/ is irreducible for all

m > 3, provided [ is a prime.
4. CONCLUDING REMARKS

If one adds the rows of Table 2 he obtains the sequence 1, 3, 9, 27, 81, 243, 729, and 2187. Adding the rows
of Table 3 we obtain the sequence 1,P, P2, P3, P4 P35 P6 and P7, This leads us to conjecture that the sum of
the coefficients of the numerator polynomial V,, (x/ is P-1.

From (19), we can determine the generating function for the sequence of numerator polynomials V., (x) and
itis
(25) e D D ST

T—(1+(P— 1)x)\—=(1-x\ m=0
Letting x = 7, we obtain

(26) T—LF’)\ = Z (P\)" = Z Npi 1 (TN
m=0 m=0
and our conjecture is proved.
We now examine the generating functions for the columns of Table 3. The generating function for the first
column is already given in (14). Using (23), we calculate the generating function for the second column to be

0
(27) Colx) = ——————
(1—x— XZ}Z
while when using (20) we see that
(28) Catx) = £=1=X 0 i1, 0 > 3.
T-x—x

Hence, we have

had 2\ k
(29) Cit) +x%Cox) Y X(P=1)=x"\" _ 1
! &=0 ( 7—x—x? ) 1= xp

In conclusion, we observe that there are special cases when the characteristic J is not a prime and the poly-
nomials /V,,, (x) are still irreducible.
In [7], itis shown that

(30) D = 5ep<111P§¥2 .“PO‘n

., e=0or]

where the P; are primes of the form 70m £ 1.
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Assume either e = 7 or some a; = 7. Following the argument when P was 3 and using (21), we conclude that
neither 5 nor P; divides the constant term of NV, (x). We have already shown that J divides every nonconstant
coefficient of every polynomial ¥, (x) so that either 5 or P; divides every nonconstant coefficient of every
polynomial ., {x).

By Theorems 1 and 2 together with (24), we now know that the polynomials /V,,, (x) are irreducible when-
ever 5 or P; does not divide P — 7. However, it is a trivial matter to show that neither 5 nor P; can divide both
P-7and P2 -P-1=0D. Hence, N, (x/ is irreducible for all m > 3 provided e = 7 or a;= 1 forsome/.
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METRIC PAPER TO FALL SHORT OF “GOLDEN MEAN"'

H.D. ALLEN
Nova Scotia Teachers College, Truro, Nova Scotia

If the Greeks were right that the most pleasing of rectangles were those having their sides in medial section
ratio, /B + 1 : 2, the classic “Golden Mean,” then the world is missing a golden opportunity in standardizing
its paper sizes for the anticipated metric conversion.

Metric paper sizes have their dimensions in the ratio 1 :+/2, an ingenious arrangement that permits repeated
halvings without altering the ratio. But the 1.414 ratio of length to width falls perceptively short of the
“golden’’ 1.612, as have most paper sizes with which North Americans are familiar. Thus, 8% x 11 inch.typing
paper has the ratio 1.294. Popular sizes for photographic paper include 5 x 7 inches (1.400), 8 x 10 inches
(1.250), and 11 X 14 inches (1.283). Closest to the Galden Mean, perhaps, was ““legal” size typing paper,
8% x 14inches (1.647).

With a number of countries, including the United Kingdom, South Africa, Canada, Australia, and New
Zealand, making marked strides into “metrication,” office typing paper now is being seen that is a little
narrower, a little longer, and notably closer to what the Greeks might have chosen,
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GENERATING FUNCTIONS FOR POWERS
OF CERTAIN SECOND-ORDER RECURRENCE SEQUENCES

BLAGGJS. POPOV
Institut de Mathematiques, Skoplje, Jugoslavia

1. INTRODUCTION

Let ufn) and v(n) be two sequences of numbers defined by
n+1 n+1

(1) uln) = r_1__:_r£__l n=2012-"
and ri=rz
(2) vin) = ri+ry, n=2012-,

where ry and ro are the roots of the equation ax?+bx+c = 0.
It is known that the generating functions of these sequences are

- b, ,c 2\t _ b b, c 2\!
u1(x)—(7+ax+ax) and v1(x)—(2+ax\)(7+;x+a—x) .

We put

(3) uplx) = f uF(nx™

o n=0

4) vilx) = i VX"
n=0

J. Riordan [1] found a recurrence for ug (x) in the case b = ¢ = —a. L. Carlitz [2] generalized the result of
Riordan giving the recurrence relations foruy(x) and vi{x) A. Horadam [3] obtained a recurrence which uni-
fies the preceding ones. He and A. G. Shannon [4] considered third-order recurrence sequences, too.

The object of this paper is to give the new recurrence relations forug(x) and vy, (x) such as the explicit form
of the same generating functions, The generating functions of u(n) and v(n) for the multiple argument will be
given, too. We use the result of E. Lucas [5].

2. RELATIONS OF u(n) AND v(n)
From (1) and (2) we have
4r"t2 = Aufnjulm) +vin + m + 1) + (= 1)5LJA (ulnv(m + 1) + ulmh(n + 1)), i=1,2
with A = (6% — 4ac)/a’.
Then it follows that
2ufm +n+ 1) = uln)fm+ 1)+ ulmlvin+1)
2vfm+n+2) = vin+ Ivim+ 1)+ Auln)ulm).
Since
ul-n—= 1) = =g ™uln - 1), vi-n) = —g™"™v(n),
we find the relations
(5) ulln+2)m — 1) = ulfn + 1)m — 1vim) — g "ulnm - 1),

(6) vinm) = v((n = 1)m)vfm)— q™v((n — 2)m).
From the identity 221
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[k]2]
k k k k-2
I’1"+r2" = Eo (__7)1’ /_(————f— Ci_r{r?'/-rg) r(r1r2)m,
r=
if we putu(n) and v(n) we get
[k]2] B b2
- r r 7 —4T
(7) V{kﬂ} = }:0 (—7) /‘(-—_—'r— Ck—rq "y (/7), k=1
-

Similarly, from o
er“ =vln+1)+(-1)"L/Auln), =12

and taking into consideration

Z(p+s)( 2p+m>:2m~1 ng+_m<m+pv1> ’

= s |V 2p+2s P

we obtain
[k/2]

(8) S alk2z)r /;_ir— Ch_q " R ) = Npn),
r=0

where

_[u(k(n+1)— 1) k odd,
Ak (n) —{u((k((n+1))), / k even.

3. GENERATING FUNCTIONS OF u(n) AND v(n) FOR MULTIPLE ARGUMENT

The relations (5) and (6) give us the possibility to find the generating functions of ufn) and v(n) when the ar-
gument is a multiple. Indeed, we obtain from (5)

(9) (1= vim)x +q™x? Jufm,x) = ulm - 1),
where
(10) ulmx) = 3 ulln+1)m— 1"
n=0
From (6) we have
(11) (1= vimlx +q™x%(m,x) = vim) — g™v(0),
where
(12) vimx) = 3 viln+ 1mkx™ .
n=0
We find also
(13) (1—vimx +qu2)7(m,xl = v(0)— vimlx,
with

v im,x) = v(0)+vim,x)x.

4. RECURRENCE RELATIONS OF vy (x) AND v (x)

Let us now return to (8) and consider the sum

[k12] o -
Z AlRIZ]-r /(__/(7 ci_rqr Z uk~2r(”}(qrx)n _ Z Aplnx™
=0 n=0 n=0

which by (3), (10) and (12) yields the following relation
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[k]2]
A2 lu ) = Migx) = 5~ Al K g gty 070,
r=1
where
- kx), k odd
Mhkx) '{:((k;){ k even.
Similarly from (7) for v (x) follows
~ [k/zj k T r
velx) = Vilkx)+ 3 (=) o ClVi-2e0 %)

r=1
5. EXPLICIT FORM OF vy, (x) AND vy (x)

Next we construct the powers for #(n) and v(n). From (1) and (2) we obtain

[k/2]
(14) AlRZI k) = S 16l g N gtn),
r=0
and
[k/2]
(15) vin) = S CLa™V Ik~ 2rin),
r=0
where

~o = [o(t) t £ 0,
V(t)_{l/z(lf?t), t=0,

Hence we multiply each member of the equations (14) and (15) by x” and sum fromn = 0 to n = . By (3)
and (4) the following generating functions for powers of u(n) and v(n/ are obtained:
[k/2]
A[k/z_]uk(x): E {_I)YL!zqr)\(k_ZquX}’
r=0
and
[k/2]
vilx) = 3 Cpvlk—2r, q'x).
r=0
If we replace u(m,x), vim,x) and vV (m,x) from (9), (11) and (13), we get

(K21 (—1)elqm py,ix)

AlR2] () = —
=0 1—vlk—2r)qg"x +q"x
where
u(k — 2r— 1), k odd,
Ukr =4 v(k — 2r)— qv(0)x, keven,k#2r
Vik—2r)—q™w(0)x, k = 2r,
and
[k/2] Clw g, lx)
l/k(X) = E L 2
=0 T—vik=2rg"x+q"x
where

w(0)—q vk —20)x, k # 21,
5(0)—q' v (k—2r)x, k = 2r.
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A SET OF GENERALIZED FIBONACCI SEQUENCES SUCH THAT
EACH NATURAL NUMBER BELONGS TO EXACTLY ONE

KENNETH B. STOLARSKY
University of lllinois, Urbana, lllinois 61801

1. INTRODUCTION
We shall prove there is an infinite array

1 2 3 5 8
4 6 10 16 26
1 1 18 29 47
9 15 24 39 63

in which every natural number occurs exactly once, such that past the second column every number in a given
row is the sum of the two previous numbers in that row.

2. PROOF

Let o be the largest root of 22 — z — 7 =0, so a = (1 +~/5 J/2. For every positive integer x let fix) = [ax + /]
where [u] denotes the greatest integer in v. We require two lemmas: the first asserts that fx/ is one-to-one,,
and the second asserts that the iterates of f(x) form a sequence with the Fibonacci property.

Lemma 1. |f x and y are positive integers and x > y then f(x) > fly).
Proof. Since afx —y) > 1 we have (ax + %) — (ay + %) > 1, s0 f(x) > f{y).
Lemma 2. \fx and y are integers, and y = [ax + %], thenx +y = [ay + }5].
Proof. Writeax +% =y +r, where 0 <r < 1. Then

(7+a}x+%= ay +ar
50

Xty +r— %+%-‘= ay+ar and ay+ §=x+y+ %Hl—a)r.

Since 7<a=1.618<2wehavel<a—-1< % < 1 and the result follows.

We now prove the theorem. Let the first row of the array consist of the Fibonacci numbers 7,2 = (1),
3 =1f2), 5=13) 8= f(5), and so on. The first positive integer not in this row is 4, let the second row be
4,6 =1(4), 10= f(6), 16 = f(10), and so on, The first positive integer not in the first or second row is 7; let the
third row be 7,77 = f(7), 18 = f(11), and so on. We see by Lemma 1 that there is no repetition. By Lemma 2
each row has the Fibonacci property. Finally, this process cannot terminate after a finite number of steps since
the distances between successive elements in a row increase without bound. This completes thell)roof.

For the array just constructed, let a,, be the n™ number in the first column and b, the n ™ number in the
second column. | conjecture that for n > 2 the difference b,, — a,, is either a; or b; for some / <n.

We comment that the fact that F,,.; = [aF,, + %/, where F,, is the n® Fibonacci number, is Theorem |1 on
p. 34 of the book Fibonacci and Lucas Numbers, VVerner E, Hoggatt, Jr., Houghton Mifflin, Boston, 1969.
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PERIODIC CONTINUED FRACTION REPRESENTATIONS
OF FIBONACCI-TYPE IRRATIONALS

V.E. HOGGATT, JR.
San Jose State University, San Jose, California 95192
and
PAUL S. BRUCKMAN
Concord, California 94521

Consider the sequence {f"'k }::1 , where ag, > 7 ¥ &, and also consider the sequence of convergents
1 1 7
P S 5 i

(‘” ..a_kl; = [31,32’ .-, ak] = g4+ ast a3+“..ak ’ k = 7’2,

Itis known from continued fraction theory that Py =Py (aq, ag, -, a) and Qi = Py_4(a3, a3, -, a3,) are
polynomial functions of the indicated arguments, with @; = 7; moreover, the condition a,, > 7V & is sufficient
to ensure that kllnw P/ @y, exists. We call this limit the va/ue of the infinite continued fraction lag, a2,43, ],

where no confusion is likely to arise, we will use the |atter symbol to denote both the infinite continued frac-
tion and its value. Clearly, this value is at least as great as unity, which is also true for all values of

Py
a;’

The computation of the convergents of the infinite continued fraction /ay, a2, a3, -/ is facilitated by con-
sidering the matrix products

Py, Q0 and k=12 .

g (ar o) =G )& )= (F 0) k=n20
where Py =1, 0y = 0. Relation (2) is easily proved by induction, using the recursions
3) Pr+1 = ak+1Pr +Pr-1,

(4) Qp+q = ap+1Qp + Qp-q, k=12-.

Now, given a positive integer n > 2, suppose that we define the sequence {ak}Z;j as follows:
{5) 4y =2, a=a3 = =a, =X, ady+1 = 22,  dp+n = ap, k=23,

wherez > 1, x > 1. Also, given thatn = 7, we may define the sequence {3k}§=1 as follows:

(6) a; =z, a, =22, k=23 -, where z3> 1
Let ¢,, denote the value of the corresponding periodic infinite continued fraction; that is,
(7 G = [2;%, X, ~, X, 22], n=12-.
\'_——V——l
Also, define 8,, as follows: n—1
{8) 6, =2+¢, .
Thus, 0,, has a purely periodic continued fraction representation, namely
(9) 0, = [22,, %, x].
n (Ad A,

n-—1
We let P.,/Qy, denote the k™ convergent of the continued fraction given in (8) (k = 7, 2, - ) In view of (2),
note that 295
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(pn+1 Pp N (Zz 1)(36 I)W—I(Zz 1)

Qu+1 Qn/ 1 0/\1 0 1 0/

Now, each matrix in the right member of the last expression is symmetric. Taking transposes of both sides leads
to the result that the product matrix is itself symmetric, i.e.,

(10) Pn = 0,,,+1 .

We will return to this result later. Our concern is to evaluate 8,,, and thus ¢,,, in terms of z, x and n. Another
result which will be useful later is the special case of (4) with k = n, namely

(11) 0,14 = 220,+0,,_4.
Returning to (9), note that this is equivalent to the following:

(12) 0, = (2 x, x,1---,x, 0,].
This implies the equation "

_ enPn +Pn—1
1 8,8, 7 0,

Clearing fractions in (13), we obtain a quadratic in 8,,, namely
(14) 0,62 — (P, - Q_1)6,—Py,_q = 0.
Rejecting the negative root of (14), we obtain the unique solution:

- Pp=10, 4 +\/(Pn_ 011—1)2 *4P,_ 18y
20, :

(15) 9,

Therefare, using (8), (11) and (10} in order, we obtain an expression for ¢,,, which we shall find convenient to

express in the form
n an—1 2
_—2_'_ Qy+Py_g
(16) @, = 7
n

We will now show that (16) may be further simplified, and that depending on our choice of z, may be ex-
pressed in terms of a Fibonacci polynomial, with argument x. We digress for a brief review of these polynomials.
The Fibonacci polynomials F,, (x) are defined by the recursion:

(17) Fs2(x) = xFppq(x)+ Fp(x), m =0 £1,¢2, -,
with initial values

(18) Folx) = 0, Filx) = 1.

The characteristic equation

(19) 2 = xf+1

has the two solutions-

{20) afx) = Blx +/x* +4), Bix) = Blx — Jx? +4),
which satisfy the relations

(21) alx)Blx) = =1, alx)+Blx) = x, alx)—Blx) = Jx* +4.
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