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GENERATING IDENTITIES FOR GENERALIZED 
FIBONACCI AND LUCAS TRIPLES 

A. F. HORADAM 
University of York, York, England, and University of New England, Armidale, Australia 

BACKGROUND 

In his article on generating identities for Pell triples, which involve the two Pell sequences, Serkland [5] 
modelled his arguments on those used by Hansen [1] for Fibonacci and Lucas sequences. Both articles suggest 
generalizations in a natural way. 

Consider the following pairs of sequences (1) and (2), and (3) and (4): 

A?=£7 1 2 3 4 5 6 

(1) 

(2) 

(3) 

(4) 

Fibonacci 

Lucas 

Pell 

Pell 
Pn 

2 

4 

5 

14 

3 

7 

12 

34 

5 

11 

29 

82 

18 

70 

198 

Fn+2 = Fn+1 + Fn 

L-n+2 = Ln+i + Ln 

Pn+2 = 2Pn+l +Pn 

Rn+2 = 2Rn+l + Rn 

rn+l + Fn-1 

Pn+1 +Pn-1 ~ Pn 

for which the recurrence relations 

(5) 

(6) 

(7) 

(8) 
and the summation relations 

(9) 
(10) 
hold. 

It is natural to examine pairs of sequences {An} and {Bn} similar to (1) and (2), and (3) and (4) having the 
properties: 

(i) A0 = 0, At = I An+2 = cAn+1 +c/An (c t 0, d t 0) 
(11) \ (ii) B0 =2, Bt = c, Bn+2 = cBn+1 +dBn 

[ (iii) An+1+An„i = Bn 

Thus, An = Fn and Bn=Ln\\c= 1,d = 1, while An =.'Pn and Bn =Rn\\c = 2, d = 1. 
Generally,/? is any integer. From (11) (i)-and (ii), we may deduce that when d = 1, 

(12) A_n = (-1)n+lAn 

(13) B_n = (-1)nBn 

(14) A-n+i+A^i =B,n : 

Result (14) may be readily derived from (11) (iii), (12) and (13). 
It looks as though d = 1 is a condition for property (11) (iii), which generalizes (9) and (10), to exist. We pro-

ceed to establish this fact. 

289 



290 GENERATING IDENTITIES [DEC. 

GENERALIZATIONS 

The Binet forms for An and Bn are 

(15) An = *-=j-

(16) Bn = an+pn , 

where a,pare the (distinct) roots of x - ex- d = 0, so that 

(17) a = c—^-f p = c-=^~, a + P = c, a-p = D, D = ^IFTTd, ap = -d. 

From (11) (iii), (15) and (16), we have 
(an+l_pn+l) + (an-l_pn-l) = (a_pj(an+^) 

(oP'1 - pn'1)(ap + 1) = 0 on simplification 

afi+1 = 0 •: aT-i-P"'1 t 0 {Le.,atP) 

(18) d = 1 •: ap = -d by (17). 
Thus, the required condition \sd = 1 with c unrestricted. 
Consequently, there are infinitely many pairs of sequences {An} and {Bn} having the properties: 

[ (i) A0 = 0, At = 1, An+2 = cAn+1+An (c 1= 0) 
(11)' j (ii) B0 = 2, Bt - c, Bn+2 = cBn+1 + Bn 

[ (iii) An+1 +An_t = Bn . 

Their Binet forms (15) and (16) now involve 

(17)' a=c-^-f p =• c-=^\ a + P=c, a-p=D, D = ̂ ~cr+~~4, a$ = -1, 

where a,j3are now the roots of x2 - ex - 1 = 0. 
Some terms of these sequences are: 

n = -3 - 2 - 1 0 1 2 3 4 
(19) An - c2 + 1 -c 1 0 1 c c2+1 c3+2c 
(20) Bn - -(c3+3c) c2+2 -c 2 c c2 + 2 c3+3c c4+4c+2 -

Generating functions for these sequences are 

(21) £ Anx
n = x(1-cx-x2) MnA ~ A\ I — LA — A - / 

n=l 

(22) J2 Bnxn = (2-cx)(1-cx-x2)'1 

n=0 

The Theorems given in Serkland [5] follow directly for {An} and {/?„} by employing his methods, though 
in Theorems 1, 2, 3 use of the Binet forms (15) and (16) with (17)' produces the results without difficulty. 

Following Serkland's numbering [5] , we have these generalized theorems: 

Theorem 1. AnBm+An-iBm_i = Bm+n_1 

Theorem 2. AnAm + An_iAm„i = Am+n_t 

Theorem 3. BmBn+ Bm^B^t = Bm+n+Bm+n^2 = (°2 +4)Am+n^t 

q-l 
Theorem 4. ApAqBr = £ (Ak+1Bp+k+r„k - Ap+k+1Bq+r_k) 
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r-1 
Theorem 5. ApAqAr = ]P (Ap+q+r_kAk+i - Ap+h+1Aq+r,k) 

k=0 

p-1 
Theorems. ApBqBr = £ ((c2 + 4)Aq+r+k+1Ap_k - Bq+k+1Bp+r„k) 

k+o 

Theorem 7. BpBqBr= (c2 + 4) 
•p-2 
/2 (Aq+r+k+iBp_k - Ap+r_kBq+k+i) + cAp+q+r 

k=0 

- cBp+qBr+f. 

Of these theorems, we prove only the second part of Theorem 3 and all of Theorem 7 (taking the opportun-
ity to correct some typographical errors in the original). A neater form for the expression of Theorem 3 (second 
part) is 

Bn+l+Bn-l = (C2 +4)An 

which should be compared with 11 (iii). 

Proof of Theorem 3 (second part). 

Bm+n + Bm+n-2 = (Am-Hi+1 + Am+n-l) + (Am+n-l+ Am+n-3 ) by (11)' (iii) 

= (cAm+n+Am+n_1) + 2Am+n_1+Am+n_3 by (11)' (i) 

= c(cAm+n_i +Am+n„2) + 3Am+n^1 + Am+l%_3 by (11)' (i) 

= (c2 +3)Am+n_i + (cAm+n_2 + Am+n-3) 

= (c2+4)Am+n_1 by (11)* (i) . 

Proof of Theorem 7. 

BpBqBr = (Ap+i +Ap_i)BqBr by (11)' (iii) 

P 
= Ap+1BqBr+Ap.1BqBr= J2 ((c2 +4)Aq+r+k+1Ap„k+i - Bq+k+lBp+r-k+l> 

k=0 

P-2 
+ H ((c2 +4>Aq+r+k+lAp-k-l ~ Bq+k+lBp+r-k-l) by Theorem 6 

p-2 
J2 [fc2 + 4>Aq+r+k+l (Ap-k+1 + Ap-k-1 ) ~ Bq+h+l (Bp+r~k+l + Bp+r-k-1)] 

k=0 
+ (c2 +4)A2Ap+q+r-Bp+qBr+2 + (c2 + 4)A1Ap+q+r+1 - Bp+q+1Br+1 

P-2 
J2 (c2 +4)(Aq+r+k+lBp-k - Bq+k+iAp+r„k) 

k=0 
+ (c2 +4)(cAp+q+r + Ap+q+r+i)- (Bp+qBr+2 + Bp+q+lLBr+1) 

by (11)'(iii), (19), 
and Theorem 3 

(c2 +4) 
rP-2 

22 (Aq+r+k+iBp_k - Bq+k+iAp+r„k) + cAp+q+r + Ap+q+ri.-[ 
Lk=0 

- (cBp+qBy+i + Bp+qBr + Bp+q+iBr+-[) = 
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r p-2 
= (c2+4)\ Y, (Aq+r+k+l^p-k-^p+r~k^q+k+l) + cAp+q+r 

L fe=0 
- cBp+qBr+i by Theorem 3. 

Putting c = 7 in Theorems 1-7 we obtain the theorems of Hansen [1] for the Fibonacci-Lucas pair of se-
quences. With c = 2, the theorems of Serkland [5] for the two Pell sequences follow. The forms of Hansen's 
Theorem 5 and Serkland's Theorem 5 should be compared. 

The natural extension of the special cases considered by Hansen [1] and Serkland [5] occurs when c = 3. 
Call these sequences {Xn} and {Yn}, some terms of which are: 

... n=-3 - 2 - 1 0 1 2 3 4 5 6 ... 

(23) 

(24) 

xn 

Yn -

10 

• -36 

-3 

11 

1 

-3 

0 

2 

1 

3 

3 

11 

10 

36 

33 

119 

109 

393 

360 ... 

1298 -

Theorems 1-7, and the associated background details, readily apply with c = 3 (c2 + 4 = 13). Interested 
readers may construct other pairs of related sequences from the infinitely many possibilities manifested in (19) 
and (20). 

CONCLUDING REMARKS 

Examples of familiar pairs of sequences which are excluded from our considerations (i.e., for which d £ 1) are 
(a) the Fermat sequences {2n - 1), {2n + l) (c = 3, d = -2) 
(b) the Chebyshev sequences 

{Tn = 2cosn6}, [un = S]n("+
d

7)d] (c = 2 cos ft d = -1). 

(Obviously, in (a), 2n + 1 = (2n - 1) + 2, i.e., the two Fermat sequences are not independent of each other.) 
Comments on the excluded degenerate case which occurs when a = fi, i.e., D = ^/c2 +4d = O, may be found 

in Horadam [3 ] . 
Further information on the Pell sequences, as special cases of the sequence {Wn} for which 

W0 = a, Wi = b, Wn+2 = cWn+1+dWn 

(which generalizes (11) (i) and (ii)), is given in Horadam [4] . For a partition of {Wn} into Fibonacci-type and 
Lucas-type sequences the reader is referred to Hilton [2 ] , which is generalized to r -order sequences by Shan-
non [6] . 
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ON THE EVALUATION OF CERTAIN INFINITE SERIES 
BY ELLIPTIC FUNCTIONS 

PAULS. BRUCKIVJAN 
University of Illinois at Chicago Circle, Chicago, Illinois 60680 

1. INTRODUCTION 

In this paper, we will obtain closed form expressions for certain series involving hyperbolic secants and co-
secants, in terms of complete elliptic integrals of the first and second kind. By specializing, we will obtain 
closed form expressions for series involving the reciprocals of the well known Fibonacci and Lucas sequences, 
thereby indicating how similar series for related sequences may be evaluated. Also, we will derive some elegant 
symmetrical relationships, which enable numerical evaluation of such series with a high degree of precision. 

2. REVIEW 

We will begin by recalling some of the basic definitions and properties of Jacobian elliptic function theory 
which are relevant to the topic of this paper. The notation used will be that found in [1 ] ; the formulas quoted 
in this section are also taken from [1 ] , for the most part, or in some cases from [2] , with revised notation. 

(1) u = ufrp,m)= f (1-ms\n2 dr1/2d6 . 
0 

The angle ^ is called amplitude, and we write 

(2) if = am u. 

In this paper, we will restrict y to the two values 0 and TI 12, and m to the open interval (0,1). Note that, in 
this domain of definition, u is a non-negative real number, and that lim u(n/2, m) = °°. 

m -> 1~ 

(3) K = K(m) = uM2, m); K' = K'(m) = u(n/2, 1 - m) = K(l-m). 
TT/2 

(4) E = E(m) = f (1 -m $\n2d)V2dd; E' = E(1 - m). 
0 

K and E are called the complete elliptic integrals of the first and second kind, respectively. 

(5) sn u = sin if ; 

(6) en u = cos^; 

(7) dn*/ = (1 ~mi\n2 y)V2. 

In (5)-(7) (as well as in the other nine Jacobian elliptic functions, which are derived from these, and not in-
dicated here), if we wish to draw attention to the dependence of the function upon the parameters, we write 
sn (u\m) forsn u, etc. 

For the values of«/? with which we are concerned in this paper, we obtain the following relations: 

(8) sn K = 1; en 0 = dn 0 = 1; dn K = (1 - m)V\ 

We observe from the definition of K(m) that it is a monotonic increasing (continuous) mapping of (0,1) on-
to (u/2, oo); it then follows that the functionsx and y defined by: 

(9) x = x(m) = itK'(m)/K(m), and y = y(m) = nK(m)/K'(m), 

are one-to-one mappings of (0,1) onto (0,<~). (The notation introduced in (9) is not standard). 
293 
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We also make the following definitions: 

(10) q = exp (-TTK'/K) = e~x; V = TTU/2K. 

In view of the preceding discussion, we see that 0 < q < 1; moreover, for the two admissible values of <p 
which we allow, we obtain two possible triplets (u,v,$), namely: (0,0,0) and (K, n/2, n/2). 

So-called ^-series expansions for the functions given in (3)-(7) exist, as well as for some related functions 
which we will consider, and these are simply listed below: 

°° -4-1/ 

(11) sn</ = -I?- T, q" sm(2n+1)v; 

(12) cnu = -£*- Y. —2 zos(2n+1)v; 
m'AK „=0 1+q2n+l 

(13) dnw = TT/2K + 2TT/K Y, —2 cos 2nv ; 

n=l 1 + Q2n 

(14) (K/ir)2 dn2 u - (KEI/ir2 = 2 £ —S3l- cos 2nv; 
n=l 1-Q2n 

(15) %{2- mHKM2 - 4(KE)/n2 + 1/3 = 8 Y\ -M^L ; 
J _Y 7 _ n

2n 

n-1 I H 

(16) 1~4(KE)/n2 = 8 T (=li!!n3. 

n=l / 

nng2n 

2n 

(17) -1/16\oq(1-m)= £ ^ 
n=i (2n-l)(1-q4n-2) 

3. CLOSED FORMS 

If, in (11)-(14), we substitute the special values oft/ and v indicated in the paragraph following (10), we 
eliminate the trigonometric terms occurring in these identities. We may also make the substitution indicated in 
(10), and if appropriate, extend the summation variable over all integral values. The result of these manipula-
tions is.the following list of identities: 

(18) 2 E (- D"'1 csch (n - 1/2)x = ] £ sech (n - 1/2)x = 2Km*/*; 
n=l n=—°° 

(19) Yl sechnx = 2K/lT' 
n=—°° 

(20) ] T (- 1)n sech nx = 2K(1 - m)V2/n; 

(21) ] T n csch nx = K(K- E)/rr2 

n=l 
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(22) X (~ V"'1/! csch nx = KE/TT2 -(1- m)(K/u)2 . 
n=l 

Since 0 < q < 1, the following series manipulations are valid: 
2j-l 

JH. X X nqW* = E X nqW)" = £ - ^ 
w= j 7 - ? 2 n

 w " y = i ' j=1 n=1 ' j=l (l-q2!-1)2 

that is, 

X n csch nx = 1/2 X csch2(n - 1/2)x. 
n=l n=l 

In a similar manner, we may prove the following identities: 

X (-U^n csch nx = 1/2 X sech2 (n - %)x; 
n=l n=l 

n=l I - q n=l 

\n-1 2n 
X <-*rWn = y4 £ sech 2 ™. 
n=l 1~q2n

 n=l 

Incorporating these results into (15), (16), (21) and (22), we obtain: 

(23) X sech2™ - 4KE/TT2 ; 

n=—°° 

(24) X c s c h 2 nx = 1/6 + 2/3 (2 - m)(K/u)2 - 2KE/IT2 ; 
n=l 

(25) X 2n csch nx = X csch2 (n - 1/2)x = 2K(K- E)/n2 ; 
n=l n=l 

(26) X 2(- l ^ n csch nx = X sech2^ - ^ x - 2KE/<n2 - 2(1 - m)(K/ir)2. 
n=l n=l 

Finally, equation (17) may be recast as follows: 

(27) £ c s c h f ~ 1>x = -1/8 log (1-m). 
n=l 2 n ~ 1 

The results with which we are interested are (18)—(20) and (23)—(27). These are all identities in the implicit 
parameter m. However, we may also view them as identities in the summand parameters, since m, and there-
fore K(m), K'(m) and E(m) are uniquely determined by (9), for any given positives. In this sense, then, (18)-
(20) and (23)—(27) represent closed form expressions for the indicated series, where the sums are expressed as 
implicit functions of x. 

As a matter of interest, we include below two identities free of terms involving m, derived by inspection of 
(18), (19) and (23)-(26): 
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(28) £ (sech2nx + csch2nx) = -1/3+1/31 £ sech/?x 1 -1/61 £ sech fo -^x \,Vx?0. 
n=l \ n=-°° I \ n=-°° * 

OO / OO \ Z 

(29) X fsech2 ^ - %)* + csch2 ^ " *M = I Z sech (n~1/2)x\ , Vx / 0. 

4. APPLICATIONS TO SERIES INVOLVING RECIPROCALS OF FIBONACCI AND LUCAS NUMBERS 

Consider the sequence {Un)lQ of non-negative integers defined by the recursion: 

(30) Un+2 = aUn+1+bUn, n = 0, 1,2, - , 
where a, b, UQ and U i are given non-negative integers, with a and b not both zero, UQ and U± not both zero. 
It is known from the theory of linear difference equations that an explicit formula for Un exists, given by: 

(31) Un = UtGn + bUoGn-i, n = 1,2,3, -, 
where 

rn .ft 
(32) Gn = r ~s , n = 0, 1,2, •- , 

r- s 
and 
(33) r = 1Ma + sja2 +4b), s = "Ma- ^Ja2 +4b) . 

Note that r > 0. If, in particular, b = 1, and if we let L = log r, then Gn takes a form which is of interest to 
the topic of this paper. Specifically, 

(34) G2n = , 2 sinh 2nL, G2n+l = , 2 cosh (2n + 1)L, n = 0,1,2, - . 
y/a2+4 sJa2+4 

Thus, for certain special values of a, UQ and Ui, we see that the identities of the previous section may be used 
to obtain closed form expressions for series involving the reciprocals of our particularsequence {Un}. 

We illustrate with a specific example, by taking a = b = 1. Then let 

(35) a = r = 1/2(1+sj5), j3 = s = 1Ml - V5 ) , X = £ = loga. 
The sequence {Gn} then becomes the familiar Fibonacci sequence {Fn}; using (34), we see that the general 
term of this sequence is given by: 

(36) F2n = 2/^/5 sinh 2n\ F2n+i = 2/^5 cosh (2n + 1)\, n = 0,1, - . 
If we take U'Q = 0, Ui = 1 as initial values, then the sequence {Un} coincides with \Fnf. If we take UQ = 2, 
Ui = 1, the resulting sequence is the Lucas sequence {/.„}, whose general term is as follows: 

(37) L2n =2 cosh 2n\ L2n+1 = 2 sinh (2n + 1)\ n = 0, 1, - . 
If, in definition (9), we \s\x = 2\, this determines a unique constant/i, such that 0 < jU< 1, and 

(38) uK'(}i)/K(ii) = 2\. 

Also, let p = K(id)/n, o= E([JL)/TT. For this particular value of*, we may then use (18)—(20), (23)-(27) and 
(36)—(38) to obtain the following closed-form expressions: 

(39) £ (-r^ = V*PS ; 

(40) £ ir— = tyJsH: 
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(42) 

(41) £ -r- = %P-%: 

E ^ r ^ - = * - KpJi^T ; 

(43) X) ( r M = »pa- ?/<?/ 

(44) U [^-] = & ^ t f . ^ . ^ p a ; 

(45) £ -p̂ - = %yj5pip-a); 
n=i F2« 

(46) ^ (j-1-)2 ^Pip-oi.-

(47) E (-=1f^L = ^JS{pa-(1-n)p2); 
»=i F2n 

£(^) (48) X f ^ - f = l(po-(1-n)p2); 

(49) £ 7 O - - 7 7 P = -s/5/16 log f 7 - ^ . 
^ r/n - VF4„_2 

Since all the series in (39)-(49) are absolutely convergent, we may obtain other formulas by combinations 
of the foregoing expressions. For example, if we alternately add and subtract (41) and (42), we obtain: 

(50) £ f-L- = %(1-sfT^jilp, 
n=l ~4n'2 

and 

(51) S ]
1 - %(1+jl-n)p-i 

A similar process on (45) and (47) yields the pair of identities: 

(52) f T^1 = ̂ 5MP2 ; 
n = l F^2 

(53) *Z ^L = %J~5 {(2 - u)p2 - 2po] 

Adding (43) and (46) yields: n~1 

(54) f 4 = y*P2 ~ 1/8-
n=l L2 
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Adding (44) and (48) yields: 
oo 

(55) E Jr = S +i-(2u~Vp2. 
n—1 rn 

Inspection of the preceding list of closed form expressions yields a variety of interesting identities, some of 
which are shown below: 

° ° oo / o o \ 2 i oo \ / o o \ 

(56) 3 £ ±+S E -j=4(j: -L-) =80 Z 7f ( E T7-)-5^2--

(57) \i-+s*ir'\\-ft3'si"2' 
n=l h2n-l n=l L2n-1 \n=l Z n l ' 

The Lucas sequence may be extended to negative indices, by the following definition, which is consistent 
with the definition in (37): 
(58) L.n = (-1)nLn, n = 0, 1,2,-. 

Using (58), we obtain the following elegant identity: 
oo V 2 

(59) E ~, = ( E rM =P2-
oo . oo V Z 

« - » L 2 \„=-oo ^ n / 
Note 

y 

One more identity is worth including, namely: 

(LbJL) (60) E To 777 = ^ ' o f l i 
M=i (2n-1)L2n,1 \1-yM 

This does not follow from any previous identity in this section, though similar to (49). The proof of (60) 
depends upon a general theorem about elliptic functions, which properly does not belong in this section; it is 
nevertheless instructive to include it here, illustrating how the basic identities in (18)—(20) and (23)—(27) 
may be made to yield other identities not previously covered. 

Theorem. Suppose 2K'(m1)/K(m1) = K'(m2)/K(m2). 
Then: 

(a) Kfmjt) = (l+^]m~2)K(m2); 
(b) K'(ml)=

1/2(1 + y/mJ)K'(m2); 

4s/mJ (c) mi = 1 
1 - 4mJ \2 _ 
1 + ^JtrTz ) (<! + KT2)2 

(d) E/(mi) = E<(m2) + ̂ r2K'(m2) . 

1 + 4™~2 

, . r, , 2E(m2)-(1-m2)K(m2) 
(e) Efmi) = —zr — • 

1+y/m2 

Proof of (a). Let A- = nK'fmiJ/Kfmi). Observing that the series in (18) and (19) are absolutely con-
vergent (this is actually true for all of the series in (18)—(20), (23)—(27)), provided, of course, x is real and 
non-zero, the following manipulation is valid: 
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£ sech 2nx + ]£] sech (2n - 1)x = ^ sech nx. 

Using (18), (19) and the hypothesis, this is equivalent to the following relation: 
2- K(m2)+

 2- mfK(m2) = 2- K(mt). 
This implies (a). TT TT TT 

Proof of (b): An immediate consequence of (a) and the hypothesis. 

Proof of (c): The following is Formula 17.3.29 in [1 ] , slightly modified: 

K(m) = ^ K 
1 + <J1 - m 

Replacing/77 by 1 - m2 yields: 

[\1 + sjm~2 I 
K'(m2) = 4 = K 

1 + sfm^ 
Substituting this result into (b) yields: 

2 

K'(mt) = Kd-mt) = K\( 1 ~ ^ \ \ . 
IV1+ sfm2 1 I 

This result and the fact that K is a one-to-one function on (0,1) imply (c). 

Ptoofof(d): The following is Formula 17.3.30 in [1 ] , slightly modified: 

E(m) = (1^JT^)E\(1--JJ^^\ I- V ^ T K\(l=J^\\ 
\\UsJ1-m I I 1 + s/T=~^ \\1 + y/1-m ) \ 

Replacingm by 1 - m2 and incorporating the results of (b) and (c) yields: 

E'(m2) = (7 + y/mt)EUm1)-yJm^K'fm2). 
Rearrangement yields (d). 

Proof of (e): The following is the famous relation due to Legendre: 

EK'+E'K-KK' = n/2, 

for any (implicit) parameter m. Letting m = mi and substituting the results of (a), (b) and (d) yields (e). This 
completes the proof of the theorem. 

If the constant jU^ is defined by: 
irK'fmJ/Kfmi = \, 

it follows from part (c) of the preceding theorem thatju^ is related tojuby the following identity: 

Hi = 1 

Equation (60) then follows from this last result, by substitutingx = \\x\ (27) and using (37). This same sub-
stitution in the other identities of Section 3, however, results either in series which have already been treated 
(by decomposition into even and odd terms), or in series whose terms contain irrational numbers. Therefore, 
if we are interested only in obtaining closed forms for series of rational numbers, identity (27) is the only 
identity in Section 3 which yields an "interesting" result forx = X. It would therefore appear that the theorem 
we have proved has very limited applicability. This is not the case, however, for if we solve for the functions 
of/772 in terms of the functions of m f, we obtain formulas for other "interesting" series not previously treated, 
in terms of the original parameter mi. Theoretically, this process may be continued indefinitely, but the 
closed forms thereby obtained will become increasingly cumbersome at each step. To illustrate, we set/77^ = \x 
in the theorem of this section, and define ix" by the relation: 
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itK'(ix")/K(ti") = 4X ; 

hence, p" plays the role of/7?2 in the theo rem. Also, let 

p" = K(p")/n and o" = E(p")/ir. 

Using the theorem, we may solve for the "double-primed" functions in terms of the unprimed functions, and 
obtain the following results: 

(61) VM77 = (1 ~ ^jT-^x)/<1 + y/T^H; /-//"= W-V - ; 
(l + y/1-H)2 

(62) p" = M + J1-p.fr; o" = (o + oJ1-n)/(1 + sJ1-ii) . 
If we substitute x = 4\ in (18) and apply (36) and (37), we obtain the formulas: 

s/5 n=1 F4n-2 ~ L4n~2 

Now using the results of (61) and (62), we obtain the identities: 

(63) £ (plll1^ xjsa-JFlJp ; 
n=l F4»-2 

(64) £ —i- = %(j - 4f~ix)p . 
n=l i4n'2 

Similarly, we may derive the following identities from the general ones of Section 3, by means of the same 
substitutions: 

(65) £ r-= %(1 + J1-»)p-% ; 
n=l 4n 

(66) £ hl]H = % _ ii(1 _ rfHp. 

(67) r - f = %(po + p2^T^I)- I ; 
><=1 L 4 n 

(68) £ -j = ̂ {lU2-p.)p2-6po} ; 
,i=l F4n 

(69) £ /£ = %y/5{(2-n)p2-2po} ; 

(70) £ _J_=f{tf-^p2-2pa} ; 
r'=y F4n-2 

(71) £ (-1)l'l4n = ^5(pa-p2^T^-); 

v 
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(72) E ~j— = 1^po-n2^1~ii) ; 
n=l l-4n^2 

Observe that (64) and (65) were previously derived, as indicated in (50) and (51), by a different method. 
Appropriate combinations of (64)—(72) yield the following identities (note that (78) and (79) were previously 
derived, as indicated in (43) and (44)): 

(74) | ^=|{/^-^}V*/ 

(75) t -J-.Ul-d-^p; 
n=1

 L8n-4 O 

(76) £ ^-= ¥4^1(1+ ^~H)2p2-4pa} ; 
n=l Fgn 

(77) £ ^Lzl = y4s/5(1 - jT^]I)2p2 ; 
n~l 

(78) Y, J- = %po- 1/8 ; 
r 2 
-2n 

n=l L2 

(79) E - f = -k {^4<2-n)p2~12po} 
n=l Fn 2n 

By letting x = 8\'m (18)—(20), (23)—(27), and again using the theorem of this section, we may derive yet 
another set of identities, involving the reciprocals of Fibonacci and Lucas numbers of indices 8n or 8n - 4 
(except for the identity derived from (27), which involves Ff^n_g)) the closed forms thereby derived are 
again functions of the three basic constants jU, p and o, albeit more complicated functions. Continuing in this 
fashion, we may, in theory, obtain closed forms for series involving the reciprocals of Fibonacci and Lucas 
numbers, where their indices have one of the two forms: 2 n or 2 (2n - 1). Note, however, that conspicu-
ously absent from the compendium of identities in this section are formulas for the series: 

E J1 -d f TJ-
n=l F*» n=l . L ^ l n=l 

It is seen, from (36) and (37), that these, in turn, depend on an evaluation of the series 

E csch/?^, 
n=l 

which is absent in Section 3. Such an evaluation does not appear to be provided by the elliptic function theory, 
however, and is, in fact, the subject of a separate section of this paper. 

Mention should be made of recent papers by Greig and Gould ([5] and [6]), where elementary techniques 
are used to obtain approximations to the series 
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n=l 
and to more general series. The most significant result to the topic of this paper appears in [5] and may be 
expressed in the following form: 

n=l n n=0 2n+1 4n+2 I 

This formula, however, does not yield a closed form, but only a rearrangement, of the terms in 

oo 

T.J-. 
n=l tn 

albeit one which yields fairly rapid convergence. 
It is clear how the formulas of this section may be extended to other sequences (Un) of the type discussed 

in the beginning of this section. It is not the aim of the author to obtain an indefinite number of identities 
such as are listed in this section, but rather to indicate the methods by which one may proceed in so doing. 

5. SYMMETRICAL RELATIONSHIPS 

Although the formulas of Section 3 (and their applications in Section 4) provide closed forms for the indi-
cated series, they are not very satisfactory from the point of view of numerical evaluation; manual computa-
tions of m (from (9), with given x), and of K(m) and E(m), even with the help of tables of elliptic integrals 
and related tables,can be quite cumbersome, and in any event cannot exceed the accuracy of tire tables. There 
is a much more satisfactory approach, fortunately, which enables the computation of/77, K and E with a high 
degree of precision and a minimum of effort. 

Recall the definitions o f * and]/ given in (9), and note that Ay = IT2. Note also that all of the Section 3 for-
mulas are valid if x is replaced by y, m replaced by (1 - m), K replaced by K\ and E replaced by £"' (see (3) 
and (4) for definitions of K' and £ 1 . However, K, K', E and f a r e not independent of each other, but rather 
satisfy the relations: 
(80) K' = KX/TT 

(a restatement of (9)), and 
(81) £ ' = 7T/2K+X/7T'(K-E) 

(a restatement of Legend re's relation, incorporating the result of (80); see proof of part (e) of Theorem in 
Section 4). 

By means of (80) and (81), we may express the formulas in Section 3 as functions o f / , with closed forms in 
terms aim, K and E. If we then equate these expressions with the original functions ofx, we obtain relations 
between functions of x and functions of / , which display a symmetry of some sort. We illustrate this method 
by deriving the following symmetrical relation: 

(82) \x\ 2 ^2 sech nx = \y\ Y] seen/7/, I/ real x,y such thatxy = nA 5Bbii / / / , v icdi A,y 5uuii u\aiAy - r 

fl——°° fi=—oa 

The proof of (82) follows from (19) and (80): 

Y, sech ny = 2KVTT = 2Kx/n2 = 2K/y = n/y J2 s e c h nx = fr/W^ £ sech nx, 

n '-
provided x,y are real positive numbers such that Ay = 7t . Note, however, that this result is independent of 
elliptic functions and is equally valid \ix and/ are both negative, because sech is an even function. This estab-
lishes (82). 
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An asymmetrical relation is obtained by applying this method to (18) and (20), which again yields a result 
which is independent of m, namely: 

(83) \x\/2 £ sech fa-/^ = \y\
1/2 £ (~VnSBchny (x,y rea\,xy = TT2). 

n=-°° n=-°° 

Similarly, we may derive the following formulas, where in all cases, x and y are arbitrary real numbers such 
XhdXxy = n : 

(84) E (-Vn~1 (nx csch nx+ny csch ny) = 1/2 ; 

(85) E { I*I s e c h 2 (" - 1/2>x + l^1 s e c h 2 (n -1/2)y) = 1 ; 
n=l 

(86) E |x| sech2nx = 2 + 4 E ny csch ny = 2 + E 2\y\ csch2 (n - 1/2)y ; 
n=-°° n=l n=l 

(87) E { M csch 2 / ? * * |y | csch 2,7j/} = ^ - - p i - / . 
n=i 

Aside from whatever elegance equations (82)—(87) possess, they are quite useful for numerical computa-
tions, for we may choose x in such a way that the series involving y converges with extreme rapidity. To see 
this better, we convert (82)—(87) to the forms which are more suitable for numerical computation, valid V 
real x £ 0: 

(88) E s e c h / 7 * - - ^ V s e c h / V / x ; 
n=-°° n=-°° 

(89) E Sech fo - #Jk = -£• T (-1)nsechnn2/x; 
n=~oo I* I „ 
n n=-°° 

(90) £ f-J^ncxhnx = -J-- 2- £ (-J)"'1/! cschmr2/x; 
n=l 2X X2

 n=l 

oo 2 °° 

(91) X ] s e c h 2 f a - ^ j x = -1~ - ?L E sech2 (n - ^ T T 2 A ; 
71 = i ^ 71= i 

(92) E seen2/?* = 2- + ^ L y n csch n<n2/\x\ = — * — E csch2 /̂? - %h2/x ; 
\x\ 2 ^ \x\ 2 ^ 

n=-°° X n=i X n-1 
00 2 2 °° 

(93) E csch2 nx = I - — * — - — E csch2/77r2A . 
n=l OX X n=l 

By choosing 0 < \x\ < n, the convergence of the series in the right members of (88)—(93) is at least as rapid 
as that which occurs when |*| = \y\ = TT, which is itself fairly rapid. If we require \x\ > n, we may then reverse 
the roles of x and y in (88)—(93), and still obtain rapid convergence, using the series in the left members to 
evaluate the required series. 
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6. NUMERICAL EVALUATION OF SERIES INVOLVING RECIPROCALS 
OF FIBONACCI AND LUCAS NUMBERS 

In this section, we will apply the results of the previous section toward numerical evaluation of the con-
stants ^i ,p and a defined by (38). We first need to compute X= log {14(1 + %/§)}. The computations indicated 
in this section were performed manually, with the help of tables found in [1 ] . In all cases, the accuracy does 
not exceed 15 significant digits. An electronic computer would attain far greater accuracy. 

(94) X = .48121 18250 59603, approximately. 

Substituting* = <?A (or* = IT /2\, where appropriate) in (88)—(93) yields, among others, the following iden-
tities: 

(95) £ - L = -% + it/Sk X sech/7/, where y = n2/2\ , 
n=l 2n n=-oo 

si 1 Yl==—°° 

(97) £ -J-=^-—2 £ ^cb2 fn-'Aly; 
n=l '2n-l n=-°° 

1991 £ -j- - - A' £ £ - 2 ^ 
n=l L2n~l oZ i\ n=-°° 

(100) ii-J^ + i t <**2<«-*»: 
Adding (97) and (98) yields: 

(101) £ ~ = 4 - —0 - —0 £ (sech2(n-y2)y + CsCh2ny). 
n=i F2 M 48\2 16\2 n=1 

Adding (99) and (100) yields: 

(102) £ - L = - ! + _ * _ £ (sech2ny + cscb2(n->/2)y). 
„=i L2

n
 8 32\2 X„ 

If we now compare the results of (41) and (95), we obtain: 

(103) p = | J sechflK. 
n=-°° 

Comparing (40) and (96) yields: 

(104) PN/M = ^ E (-Wxchny, 
71=-°° 

from which it follows that 
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(105) vfc = ( £ / - / r s e c h / j | A +1 £ s e c h ny\ 
\ n=~00 / \n=-°° I 

The values of p 2 and p can be obtained by squaring both sides of (103) and (105), respectively. An alterna-
tive approach is indicated below. Sf we compare (54) and (102), we obtain: 

2 °° 
(106) p2 = -JL_ £ fsech2/7j/ + csch2 (n - 1/2>y) . 

Combining (97) and (99) as indicated in (57) and comparing the results, we obtain: 
2 °° 

(107) up2 = - £ _ £ rsech2 ny - sech2 (n - V2)y) . 
16\ y,=^00 

It follows from (106) and (107) that we have: 

(108) p = ( Ts / r s e c h 2 / 7 y - s e c h 2 f / 7 - ^ m ( E ^sech2/?/ + csch2 (n - %)y) J . 
\ n=-°0 I \ n--°° ' 

Again, the computation of psj\ — \x may be accomplished from the values of p and p obtained in (103) and 
(108); a somewhat more accurate result is obtained, however, if we combine the results of (37), (42) and (83), 
which yields: 

(109) PVWT= j% E sech h ~ 1/2>Y • 

In the closed form expressions occurring in Section 4, we observe that the constant o always appears multi-
plied by p; therefore, we will indicate the numerical computation of pa, rather than of a itself. This is most 
easily accomplished by combining the results of (43) and (100), which yields: 

2 °° 
(110) p C T = ^ - + ^ L _ £ C s c h 2 f r - ^ j / . 

Superficially, it would appear that the identities in (103)—(110) are very unwieldy for computational pur-
poses. However, as mentioned previously, the infinite series in the right members of (103)—(110) converge 
quite rapidly; thus, at most eight terms of the series need be included to guarantee an accuracy in the result of 
15 significant digits! Moreover, since the summand terms are symmetrical about the value n = O, only four 
terms of the series, at most, need be computed for 15-digit accuracy! A summary of the computations is ap-
pended; indicated in Appendix II are the computed values of the series occurring in Section 4, using the con-
stants indicated in Appendix I. As a check on the computations, the actual summations were performed by 
the author with the aid of a desk calculator, and all results checked with those indicated in Appendix I I , to 15 
significant digits! It should be emphasized that the values in Appendix II were obtained without performing 
any actual summations. 

7. CONCLUSION 

As mentioned previously, the series 

E csch nx, 
n=l 

(x real and non-zero), apparently cannot be evaluated by elliptic functions. However, the following formula in 
terms of Lambert functions exists: 
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(111) £ ™chnx = 2{i(e-x)-i(e~2x)}, (x > 0), 
n=l 

where 

(112) Uq)= f; -£—. lql < 1, 
n=l 1-qn 

is the Lambert function. 

By decomposing (111) into even and odd-subscript terms, we may deduce the following formulas: 
oo 

(113) y ] csch 2nx = 2{i(e-2x) - i(e~4x')} ; 
n=l 

and 
oo 

(114) £ csch(2n- 1)x = 2{i(e~x)-2Ue-2x) + L(e~4x)}, where x > 0 . 
n=l 

In particular, setting* = X\n (113)—(114) and employing (36)—(37), we obtain the following formulas: 
oo 

(115) x -L = s/5{m2)-L(i54)}/ 
n=l h2n 

and 

(116) T -j-!— = I(-$)-2L($2) + L($4), where/3 is given in (35). 
n=l i 2 ^ 

These results are not new, and were generalized by Shannon and Horadam, as well as by Brady [3 ] . [4] . 
However, their results are in terms of Lambert functions, and it is this fact which the author finds unsatisfac-
tory, since the Lambert function is defined as an infinite series. Hence, we are using an infinite series to obtain 
the "closed form" sum of another infinite series; moreover, it is seen that (111) is little more than an algebraic 
identity, readily obtainable by manipulation of the definition in (112). It seems, therefore, that (111) is sim-
ply an artificiality, and another expression free of Lambert functions would be preferable. 

It is also worth mentioning that the technique of contour integration may be used to derive identities simi-
lar to those given in Section 5. We illustrate by deriving the following identity: 

(117) y sech nx - 111 = x- - I y (-U"'1 coth (n - 1/2)TT2/X VX y 0 
A n2„ 6x 4 TT *~* / 1/\2 

n=l n x n=± [n - V2) 
Let £ be the finite complex plane (z-plane), with z = u + iv, and consider the function f'-Q_^C_ given by: 

(118) Hz) = z~2 sech xz cot in, where x > rr. 

Let /?£ be the residue of f at its pole £. Note that fis meromorphic in C, with simple poles atun= n (n = ±1, 
±2, •••) and ivn = (n - 1/2)JT//X (n = 0, ±1, ±2, •••), and a pole of order 3 at the origin. Calculating the residues, 
we find: 

R = sech nx . /?. = cot fr/Vj = (-l)71'^ coth (n - 1/2)y 
Uyi r\ f It'-ft ry r\ ry > 

Tin -vnx sinh (xivn) (n - 1/2) TT 

where/ = IT /X; RQ is the coefficient of z in the Taylor series expansion of 

- sech XZ-TTZ cot TTZ = - (1 - 1Mxz)2 + -) ( 1 -
TT IT x 

(TTZ)" 

hence, R0 = -X2/2TT- TT/3 . 
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Now, let Rn be the rectangla bounded by the lines u = MN - %), v = ±N-n/x, and form the sequence 
(<&N)J. It is not difficult to show that secxz cot TIZ is uniformly bounded on 

from this, it follows that 

By the Cauchy Residue Theorem: 

U RN : 
N=l 

< 1 1 9 > ff(z)dz= £ *un+ E Bivn + no 
(RJV 0<\un\<N-V2 \vn\<N7T/x 

Allowing N to tend to «, in (119), we therefore obtain: 

' sech/7x " t-iin-l j2 <-irl^(n-^ = x2/2ll+7{/3 
n=^ nn2

 n=_oo (n-y2)2y 

where the first (primed) summation excludes the term for which n = 0. Multiplying throughout by n/2x and 
simplifying, we obtain (117). The following generalization of (117) is obtained similarly, by taking 

f(z) = z~ r sech xz cot irz, 

where r is a positive integer: 
\r+n (120) V sech nx + I V (~1) coth (n-V2)y 

n=i n2rx2r « n=l (n-V^y-1 

, T - (-V B2kE2r-2k 92k-1r~kk = n . 
f* (2k)/(2r-2k)f Z * Y " U ' 

here,/ = IT /x, and the #2&'s ar|d ^2fe's a r e Bernoulli and Euler numbers, respectively. 
Note that if we set r= 0 in (120), we obtain the apparent result: 

(121) V sech nx+^Y, (~1)n coth (n - %)y + y2 = 0. 
n=l n=l 

By manipulations similar to those employed after (22), we may show that, for all positive y, 

(122) J2 (-D71'1 coth (n-y2)y = y2 £ sech/?/. 
n^l n=-°° 

Incorporating this last result into (121) and simplifying, we obtain (88), which shows that (120) is also valid 
for r = 0, though this is seemingly not justifiable by the method of contour integration. The latter method 
apparently provides a richer variety of identities similar to those of Section 5 than does the method of elliptic 
functions; on the other hand, it does not provide closed forms for the indicated series, except for special val-
ues of A- and y. Thus, if we set* = y = it in (84), (85) and (87), we obtain the results: 

(123) T (-1)n-lncschnrr= ±- ; 
n=l 

(124) jr sech2 (n _ ,A)n = j_ 
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(125) ] T CSCh2/77T 
n=l 

± 
2-n 

Another important observation to make is that the identities given in this paper for real values ofx and y 
may, with certain further restrictions, be extended to the complex plane, thereby yielding results involving 
corresponding trigonometric expressions, instead of hyperbolic ones. This opens up a whole new area of ap-
proach, which is beyond the scope of this paper to explore. It suffices to say that there are ample avenues of 
research available, as suggested in this paper, as regards the series discussed. It is hoped that sufficient interest 
has been generated to warrant additional investigations into the indicated topics. 
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APPENDIX I 
X = .48121 18250 59603; 

TT/4X = 1.63212 56513 1825; 

y = TT2/2X = 10.25494 79118 337 . 

e1/2y = 168.59071 21406 95 ; 

ey = 28,422.82822 01066; 

TABLE OF CONSTANTS 

1/4X = .51952 17303 08757 ; 

TT2/16X2 = 2.66383 41416 9102; 

Jyl2 4,791,824.85068 042; 
e~2y = .00000 00012 37842 58468; 
e~3y = .00000 00000 00043 55099 975 ; 

e-7y/2 = .ooooooooooooooo25832; 
-4y .00000 00000 00000 00153; 

sechy/2 =.01186 26323 54457 871 
sech y = .00007 03659 74210 458 
sech 3y/2 = .00000 04173 77525 749 

sech 2y = .00000 00024 75685 169 

sech 5y/2 = .00000 00000 14684 588 

sech 3y = .00000 00000 00087 102 

Q-y = 
e-3y/2 

P~5yl2 

• .00593 15248 58649 77; 

.00003 51&29 87148 8 ; 
.00000 02086 88762 875 ; 

.00000 00000 07342 294 ; 

e-9y/2 = 0000Q 00000 00000 oooQ 

sech2 y/2 = .00014 07220 46377 031; 
sech2]/ = .00000 00049 51370 327 
sech2 3y/2 = .00000 00000 00174 204 

sech 22y = .00000 00000 00000 006 

sech2 5y/2 = .00000 00000 00000 000 
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APPENDIX I-(Cont'd.) 
sech 7y/2 = .00000 00000 00000 517 ; 
sech 4y = .00000 00000 00000 003 ; 
sech 9y/2 = .00000 00000 00000 000 . 

csch//? =.01186 3467109510403 
csch 3y/2 = .00000 04173 77525 749 
csch 5y/2 = .00000 00000 14684 588 

22 sech/?/ = 1.00014 07368 99965; 

cschz y/2 = .00014 07418 51858 435; 
csch2 3y/2 = .00000 00000 00174 204; 
csch2 5y/2 = .00000 00000 00000 000. 

X (~ Dn sech ny = .99985 92730 02775; 

22 sech (n - 1/2)y = .02372 60994 93337 4 ; 

22 sech2/?/ = 1,00000 00099 02741 ; 22 sech2 (n - %)y = .00028 14440 93102 469 ; 

22 csch2 (n - 1/2)y = .00028 14837 04065 278 . 

VJU = .99971 85757 09592; 
V 1 - M = .02372 27608 25520 2; 
(\-l±)-1/4= 6.49258 11249 7349; 
U = i / 2 { ( i_M)^ + ( i _ i L ( ) - ^ } = 3.32330 15370 7076. 

(\-liY 

= .99943 72306 18815; 
'= .15402 1949168033, 

log (1 +N/ / I ) = .69300 64585 13859 
VS"log (1 +v7I) = 1.54960 95500 8338; 
log*/ = 1.20095 87276 7835; 

p = 1.63235 53516 2277; 
pV5 = 3.65005 75296 6408; 
Px/1-iU =.03872 39755 88805 0; 
p(1-p) i / 4 = .25141 85529 91809. 

p2 = 2.66458 39939 7149; 
p2V5" = 5.95819 09422 7815; 
p V W t = -06321 12887 88495 2 ; 
pa = .52027 15562 09976; 

PV£ 
PN/5M 

pV^rr1 

P M 
pVv/5" 
p2x/5<r 
pojb 

M) 

^M) 

log (1 - VM> = -8.17564 70971 5135 ; 
V5 l o g d - v f c ) = -18.28130 26692 792 ; 
v^ log* / = 2.68542 53532 6045. 

= 1.63189 59671 7624; 
= 3.64903 03148 1385; 
= .08658 94417 76510 3 ; 

= 2.66308 44476 8609 
= 5.95483 78548 4858 
= .14134 47386 76446 
= 1.16336 25664 4511 
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APPENDIX II - COMPUTED FORMULAS FOR SERIES IN SECTION A 

£ 
n=l 

i 
n=l 

E 
n=l 

i 
n=l 

E 
n=l 

E 
n=l 

E 

E 
n=l 

E 
n=l 

E 
n=l 

E 

E 
n=l 

E 
n=l 

E 

(-1) n-1 

t-2n-l 

1 
-2n 

2n 

= .81594 79835 88122 ; 

.56617 76758 11385; 

4± = 4.79482 83758 3304 ; 
F2n 

-2n 

u2n-l 

4n-2 
F4n-2 

7_ 
L4n-2 

1 

.13513 57781 04988; 

1.07215 62188 8076; 

2.97741 89274 2429 

= .39840 78440 08491: 

- 1.20729 19969 8575 ; 
L2n 

(-1) n-1 

L-4n 
= .12429 07235 04095; 

—̂ - = .02087 07112 49618 ; 
I2 

L4n 

.11426 50668 55370; 
-4n-2 

1 
(2n - 1)L2n-i 

1.10858 16944 5815 ; 

-8n 

8n 

= .02173 95541 49399 ; 

-p- = .39769 58103 20044; 
F8n 

n=l f2«-l 
1.82451 51574 0692; 

(-11 £ ^ 
n-1 

= .23063 80122 05598; 
n=l 

n=l 

2n 

(-ir^n 
F2n 

2 ~r 
"•=* F2n 

Z-f-
n=l F2n-1 

1 

n=l 
(2n - 1)F4n_2 

1.16000 94790 1554; 

= 1.12939 07263 5581 ; 

- 1.29693 00248 1143; 

= 1.04573 08199 4974; 

E -1 
n=l 4n 

^ r2 
n=l rn 

n=l 
F4n-

n=l F4n 

r / £ 

1.81740 94484 0875; 

= .16776 98318 02894; 

= 2.42632 075116724; 

= .89086 70219 72118; 

= .11342 79589 57717, 

1.01596 27673 9809 ; 
n=l F< 4n-2 

in-1A 
£ (~ 1>

r '
 4n = 1.02201 78277 6866 ; 

n=l F*n 

£ -To TT? = -33567 81691 57557 ; 
nTi (2n ~ 1)F8n-4 

£ -r^— = .14603 02776 53494 ; 
n=l i8«~4 

y 8n-4 

n=l F8«~4 
1.41971 36380 8871. 
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The object of this note is to point out a curious kind of sequence which arises in connection with a binary 
coding of the tree diagram for the production of rabbits by Fibonacci's recurrence. 

At the left below is a standardized way of drawing the usual Fibonacci rabbit tree. At the right is a binary 
code for each level. The code is assigned by a very simple rule. On each level, a single segment | is coded by 0 
and a branched segment \f. is coded by 1. St is clear that this establishes a unique binary coding for each level 
of the Fibonacci rabbit tree (or any other tree for that matter). We suspect that this is not a new idea, but do 
not have a reference. 

TREE CODING 

10110101 

10110 

101 

10 

Fig. 1 Coding Numbers 

311 
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In the next table we give a summary of initial values of the binary coding, first in base 2 and then converted 
into base ten. In each case notice that the coding number for a given level can be expressed in terms of the cod-
ing for the two previous levels. 

Table 1 
Coding Numbers and Recurrences 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

(Cnh 
0 
0 
1 
10 
101 

10110 
10110101 

1011010110110 
101101011011010110101 

(Cn)lQ ~ An 

_ 
0 
1 
2 = 2i(1) + 0 
5 = 2'(2)+1 

22 = 22(5) + 2 
181 = 23(22) + 5 

5,814 = 25(181) + 22 
1,488,565 = 25(5,814) + 181 

i 12,194,330,294 = 2i3(1,488,565) + 5,8V 

We put(Cn)2 for the coding number in binary form, and (Cn)^o orAn for the coding number expressed in 
base ten. 

It is evident from the formation of the rabbit tree that the base ten coding numbers satisfy the recurrence 

(1) 
F -1 

An+2 = 2 An+i + An, n > 2, 

where Fn is the ordinary Fibonacci sequence, Fn+1 = Fn + Fn_i, with FQ = O, F± = 7. Again, from the law of 
formation it is evident that (Cn)2 has exactly Fn_± digits. Thus also 

(2) 2Bn-1>A„> 2Fn'1'\ for n > 3. 

Formula (1), together with initial values defines the sequence An uniquely. Starting with the sequence An 

we may recover the Fibonacci numbers from the formula 
An+3 ~An+1 (3) log2 Ai+2 

Special sums involving the sequence An may be found in closed form. From (1) we can get almost at once 

(4) An+3 + An+2- 1 = E 2FkAk+2, 
k=l 

> Fn Multiply each side of (1) by 2 and use the fact that Fn + Fn_± 

(5) 2FnAl+2 = 2* Mn+1 z ^n> 

n > 7. 

Fn+i. We find then 

n > 2, 

and this form of the recurrence is the clue to the proof of the next formula: 

(6) Z (-Vk2FkAk+2 = (-1)n2Fn+lAn+i, 
k=2 

n >. 2. 

We have not found a generating function for An and this is posed as a research problem for the reader. 
We have also not found the sequence An in Sloane's book [2 ] . Does any reader know any previous appear-

ance of Anl 
The process by which we have obtained An is not restricted to the standard Fibonacci sequence. Here is an-

other example yielding a different sequence with the same behavior. Define a third-order recurrent sequence 
by the recurrence 
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(7) Gn+1 = Gn + Gn„2, with Gt = G2 = G3 = I 
The reader may draw the corresponding rabbit tree and verify that the coding numbers and recurrence val-

ues in the next table are correct. 
Table 2 

Coding Numbers for £?n 

n 

T~~ 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Gn 

1 
1 
1 
2 
3 
4 
6 
9 

13 
19 
28 

(Dnh 

0 
0 
0 
1 

10 
100 

1001 
100110 

100110100 
1001101001001 

(Dnho - Bn 
_ _ . _ 

0 
0 
1 
2 = 2(1)+ 0 
4 = 2(2)+ 0 
9 = 2(4)+1 

38 = 4(9)+ 2 
308 = 8(38)+4 

4,937 = 16(308)+ 9 
158,022 = 64(4,937)+ 38 

Here it is evident that the law of formation is 

(8) Bn+3 = 2Gn~1Bn+2 + Bn, n > 3. 

Again sums such as (4) and (6) can be established. 
It appears that the behavior of these sequences can be predicted to follow in similar fashion for other recur-

rent sequences for which we can draw a suitable tree. 
Recalling that the Lucas numbers are related to the Fibonacci numbers by the formula Ln = Fn_i + Fn+1, 

we see that we can devise a Lucas rabbit tree by adding together two Fibonacci trees. We can call this method 
allowing twins to occur once in the Fibonacci tree. It is then evident that the binary coding must correspond 
t 0 P 
(9) (En)2 = 2 n-3(Cn)2 + (Cn-2)2 , 
and we have the associated sequence Hn = (En)iQ satisfying 

(10) Hn 
pFn-3 A + A 

in terms of our original coding. The corresponding Lucas rabbit tree is exhibited on the following page. 
Because we start the twinning at level 3, we have defined (E3)2 = 1 and //? = (£3)10 = 1 which is consis-

tent with H3 = 2F°A3 + At = 1 + 0=1. 

We make some further remarks about the coding of the original Fibonacci rabbit tree. The sequence defined 
by (11) 
satisfies 
(12) 
because 

Un = 2^'*- 1 

^n+l 

Un+2 

= lFn-lj 

2Fn-1Un+1+Un 

>Fn-l 1 2Fn-1Un+1 + U„ Un+2 = 2~nT1 - 1 = 2~n~U2 n - 1)+2 - , - * un+1 . un, 
and so Un is another solution of the equation (1). 

In fact Un and An can be found as numerator and denominator, respectively, of the partial convergents of 
the continued fraction 

(13) 1+ ~ 
1 1 1 1 1 

2+ 2+ 4+ 8+ 32+ 256+ 

where the terms are defined from 2 n . Thus the partial convergents of (13) turn out to be: 
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CD II 

Q 
O 
o <N , _ 

!JJ 

LU 
CC 
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(14) 

The sequence of'Values 

^» = i .3 • _? 1 1 255. 819J 
A n ' 2' 5 ' 22 ' 181 ' 5814 ' ' 

1 = 1 . 5 

|i= 1.4090909-

255 - 1.408839779-181 

8191 
5814 1.408840729-

^ g g = M08840729-. 

suggests that there exists a limit of the form 

( 1 5 ) J T o o f = J l^oo ^ - = 1,40884073-

which would be somewh at analogous to the well-known limit 

(16) H m ^ ^ t l = LtJE = 2.236068+1 = ,.6,30339+ 

Formula (15) would also yield the asymptotic formula 

(17) An ~ ( 0 . 7 0 9 8 0 3 4 4 2 - ) ^ - ' as n - ~ . 

Davison [1] has just proved that with a = (1 + \J5)/2 then 

°^ 1 _ 1 1 1 T 1 1 (18) T(a) *-* 9[na] 1+ 2+ 2+ 4+ 8+ 32+ •• 
n=l * 

is transcendental. This remarkable result combines two things, the equivalence of the series and continued 
fraction, and the fact that the number so defined is transcendental. T(a) is the reciprocal of the continued 
fraction in (13), so we have the transcendental limit 

(19) ,im i « = 1 i i i L 1 = V _J Mm hi = E -7^7 = 0.709803442 Un 1+ 2+ 2+ 4+ 8+ 32+ - *-; 0[na] 
n n=1 <£ J 

with a = (1 + \j5)/2, end where square brackets denote the greatest integer function. 
So far we have restricted our attention to binary coding. We return now to Table 1 and consider ternary 

coding. Actually what we do is to interpret the numbers (Cn)2 = (Cnh
 as if tneY were in ternary rather than 

binary form. Translating the ternary code to base ten, and writing lCn)$ = An(3), we get the following se-
quence of numbers: 
(20) An(3) = 0, 0 ,1 , 3,10, 93, 2521. 612696, 4019900977, -

and this sequence enjoys most of the properties belonging to the original sequence An = An(2) derived from 
binary coding. Thus 2521 = 33(93) + 10, 612696 = 35(2521) + 93, etc., and in general 

(21) An+2(3) = 3Fn~1An+1(3)+ An(3), n > 2. 
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As a matter of fact it is just as easy to consider the original coding with Q's and 1's as being f-ary coding, 
i.e., numbers in base t, where t = 2, 3, 4, •••. We write (Cn)t = An(t) for this form of the sequence. St is not 
difficult to see then that the formulas we developed for the binary case become in general: 

Fn-1 (22) An+2(t) = t "-'An+tftJ + AJt), n > 2, 

Fn-1-l > t , n 

An+3(t)-An+1(t) 

(23) tFn-! > An(t) > tFn^~\ n > 3, 

(24) Fn = log f An+2(t) 

n F 
(25) (t), n > I 

k=l 

(26) tFnAn+2(t) = tFn+1An+1(t) + tFnAn(t), n > 2, 

(27) J2 (-DktFkAk+2(t) = (-1)ntFn+lAn+l(t), n > 2, 
k=2 

and in place of the sequence Un we have the corresponding extension 

(28) Un(t)= tFn-*-1, 
which satisfies the recurrence 

(29) Xn+2(t) = t^-iXn+iftt + XJt), 
as an extension of (1). 

We also have an asymptotic result of the form 
An(t) - K*tFn~\ n -> ~ . 

We shall find K in terms of continued fractions. 
The continued fraction (13) with partial convergents (14) has a very interesting form in the general f-ary 

case: 

(30) MJ - - <t-i)+i=-l _L JL J- _ L _ . 
An(t) f l + tl+ t2+ t3+ _ tFn,3 

For t = 3 we have the case 

(31) 2 + £• J J - - J - — L - = 2.602142009 ••• 
3+ 3+ 9+ 27+ 243+ •• 

The reciprocal of this is 0.3842987802 •••, and it is now remarkable to note that if we extend the series of 
Davison (18) in the obvious way, we find that 

no\ V — — = i + J - + - L + J - + J - + J - + J - + - =• 0.3842987802 ••• 
\61' iL j[na] 3 gJ 3 4 36 28 39 311 

n=l 

and this is correct to at least as many decimals as shown since we have calculated the sum to 20 terms and the 
2\st term adds only about 1.798865 x W16 to this. 

It is natural to conjecture that Davison's theorem can be extended to show that this number also is trans-
cendental and moreover that the limit of (30) as/7->°° is probably transcendental for every natural number 
t>2. 

Some of the first few partial convergents of (31) are: 

m \ ? § ?6_ i l l 6560 1594322 
' 3 ' 10' 93 ' 2521 ' 612696 ' **' " 

The general theorem which we claim is that for the continued fraction in (30), 



1977] SEQUENCES ASSOCIATED WITH f-ARY CODING OF FIBONACCI'S RABBITS 317 

where the exponents in the continued fraction are the successive Fibonacci numbers. 
The first few partial convergents of the general continued fraction in (30) are: 

U4(t) _ t2_ j U5(t) _ ^_j UjM _ t
S - 1 

*4M~ t ' A5(t)~ t2+1' A6(t)~ t4 + t2 + t 

UjM = t8-1 U8(t) _ t 1 3 - l 

A7!t) t7 + tS- + t4+t2 + J ' A8(t) " t12 + t10 + t9 + t7 + t5 + t4 + t2 + t > 

etc., where, of course, the numerator is t n~1 - /, and the exponents of the t's in the denominator are pre-
cisely the powers of 2 appearing in the original binary coding of the rabbit tree as given in Fig. 1 or Table 1. 

The first 50 values of [naj for use in writing out the series (34) are: 1,3,4,6,8,9, 11, 12, 14, 16, 17, 19, 
21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 
66, 67, 69, 71, 72, 74, 76, 77, 79, 80. This agrees with sequence No. 917 in Sloane [2], where i t is called a 
Beatty sequence because of the fact that an = fnaj and bn = [nb], where a and b are irrational with 1/a + 1/b 
= 1 makes an and bn disjoint subsequences of the natural numbers whose union is precisely the set of all nat-
ural numbers. Such sets are called complementary sequences. 

Relations (30) and (34) may be put in more attractive form. Dividing each side of (30) by t- /we get 

(35) , U"l*}
 tx = 1+ L J- -J- -J- - L ~-1 

(36) 

(t- 1)An(t) t+ t+ t2+ t3+ t5+ ... fFn„3 

and taking reciprocals on both sides we find 
ft- 1)An(t) , 1 1 1 1 1_ 

Un't) i + t+ f+ t2+ ... fi>2-3 

Then the limiting case (34) becomes more elegantly 

^ t[naj n _, ̂  Un(t) ]+ f+ t+ t2 + t3 + {5 + f8 + ... 

apparently valid for all real t > I 

Although the series diverges when t = 1, still the continued fraction makes sense, giving the familiar special 
case 
(38) J i m , |im (t~ 1>A»(t) = ± JL 1 ±... = 1±J$ 

For t = 1, the sequence An(1) = Fn so that we have in the general sequence an extension of the Fibonacci 
sequence. 

Let us now make the definition 

(39) T(x,t) = E - r - 7 

for arbitrary real t > 1 and real x > 0. 
This function has interesting properties, some of which we shall exhibit here. Takex = a - 1= 1/a, a being 

as defined before. Then the sequence of values of [na - n] = fna] - n begins: 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 
8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17,17, 18, 19, 19, 20, •. It does not seem to be tabu-
lated in Sloane [2 ] . Taking t = 2, one finds that T(a - 1,2) = 2.7098016 ••• and it seems evident that in fact 
T(a- I 2) = 2+ T(a,2). For t = 3 we find that 



318 SEQUENCES ASSOCIATED WITH f-ARY CODING OF FIBONACCI'S RABBITS DEC. 1977 

T(a- 1,3) = 1.884298779- = 1.5 + 0.384298779- = Z\l + Tla,3). 

For t =7, we find that 
T(a- 7, 7) = 1.312864454- = 7/6+ T(a, 7). 

The general result appears to be 

(40) T(a - 1, t) = - f - + T(a, t), t > 1. 

This appears to depend on the value of a being (1 + V5) /2 . Indeed, 

T(ir, 7) = 2.923976609 - and T(n- 1, 7) = 0.02083333 -
while 7/6 = 1.16666 - so that (40) does not hold. 

Here is another numerical result that may be of some interest: 

(41) T(a,a) = Z — — = 1.100412718 - . 
n=l a[na] 

Some of the partial convergents from the continued fraction are: 
A6(a) _ 11,09016995 _ i nqqinf i^ f i 
Z W " 10.09016995 ' 1 - 0 9 9 1 0 6 3 5 8 " -

Note that (11/10) = 1.1; 
A7M _ 50.59674778 _ 1 innA78^? 
Ujfal ~ 45.97871383 " 1 1 0 0 4 3 8 5 2 "" • 

Note that (50.6/46)= 1.1; 
A8<a) „ 572.2107019 _ -. i n n z i 1 o R 7 
Z T ^ J - 520.0019205" 1 - 1 0 0 4 1 2 6 7 " • 

Note that (572/520)= 1.1. 
It is interesting to note that T(afa) is just slightly larger than 1.1, suggesting this as a dominant term. 
Here is still another numerical example of (40): Lete = 2.7182818 - . 

T(a,e) = 0.438943611-, T(a - he) = 2.020920317-, e/(e - 1) = 1.581976707 - , 
so that 

T(a,e) + e/(e- 1) = 2.020920318 = T(a- he) 

as closely as we could compute the numbers. 
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FIBONACCI SEQUENCES AND ADDITIVE TRIANGLES 
OF HIGHER ORDER AND DEGREE 
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It is often desirable for either ease of calculation or nicety of expression to represent a function in terms of 
positive integers only. For example, the Binet formula for the Nth term of the Fibonacci series quite easily re-
duces to the expansion: 

FN nN-l ' 

The last term, of course, will be b(N~1)12 if N is odd, or/\Z5^N'2^2 if /I/ is even. 
However, it is well known that the sums of the terms of the ascending diagonals of the Pascal triangle also 

produce the Fibonacci numbers, thus providing another simple expansion, 

FN 
N 
-o'H^n+nn+n 

the last term being N/2 if N is even and 1 if/V is odd. (This comes as no surprise since a common method of 
constructing the triangle is by a two-step additive process.) 
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8 

16 

32 

64 

128 

256 

512 

10 

ith , It is interesting to note that since the sum of the terms of the/1/ diagonal is equal to F^, and the sum of 
he terms of the Nth r 

of the first expansion: 
the terms of the Nth row is equal to 2 , then the product of those two sums is equ al to twice the numerator 

0N 

or [(?) sO+iyW + lyW + Ms3*-

(1 + J5)N-(1-J5)N 
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A Tribonacci triangle, constructed by a three-step additive process, has as the sum of the terms of the N th 
oN 2\N row J , provides the coefficients of the expansion (x +x1+x ) , and has the Tribonacci numbers as sums 

of the ascending diagonals: 

N Z-3 N 

15 5 

90 50 

57 266 

1 
21 

161 
6 

77 
1 

28 

3 

g 

27 

81 

243 

729 

2187 

Fig. 2 Tribonacci Triangle 

Just as the terms in each row of the Pascal triangle are the binomial coefficients, the terms of each row of the 
Tribonacci triangle are the trinomial coefficients; that is, if the trinomial expression (x° + x1 +x2)\s raised 
to a given power such as three, 

(x° + 3x* +6x2 + 7x3 +6x4 +3xs +x6), 

the coefficients of the resulting terms are the terms of the corresponding row (N = 3) of the Tribonacci tri-
angle, 1, 3, 6, 7, 6, 3, 1. 

An easy method of constructing the triangle, rather than actually multiplying the trinomials o r using a gen-
erating formula for each term (which is simple for Pascal's triangle, but much more complex for higher order 
triangles), is to simply create each term by adding the three terms immediately above and to the left in the 
preceding row. For example, the fourth row is derived from the third row as follows: 

/I/ = 3 1 3 6 7 6 3 1 Z = 33 

4 1 4 10 16 19 16 10 4 1 34 

T * A 1\ l\ h ? ( 0 + 0 + 1 = 1 

( 0 + 1 + 3 = 4) 

(1 + 3 + 6 = 1 0 ) 

(3 + 6 + 7 = 16) 

(6 + 7 + 6 = 19) 

(7 + 6 + 3 = 16) 

(6 + 3 + 1 = 10) 

( 3 + 1 + 0 = 4) 

(1 + 0 + 0 = 1) 

Any additive triangle must begin with the number 1, since any quantity with an exponent of zero is by defini-
tion 1. The second row is also composed of ones, since the coefficients of the given trinomial are 1, 1 and 1. 
From this point onward all terms can easily be calculated by the process described above, which is in effect an 
arithmetical short-cut through the lengthy process of multiplying polynomials of ascending powers of X. 

The ascending diagonals of a four-step or Quadronacci triangle provide the terms of that series in a similar 
manner: 



1977] OF HIGHER ORDER AWD DEGREE 321 

fc^L 0 / 1 / 
i / i / 
2 / j ^ 
3 / J / 
4 / / 1 x 

5 / I / 
6 / 1 / 

1 
^ . 
' z 
" / 

>" 
^ 4 / 

/ " 

1 

" X 
" v 
" / 
-io^ 

2 

/ I 

' / V 
/ (O/ 
^ 

4 

s^ 
SYL 

31 

8 

/ 2 
12 
40 

15 

1 
10 
44 

29 

6 
40 

i N 

1 

20 10 

= 1 

4 

16 

64 

256 

Fig. 3. Quadranacci Triangle (x° + x1 + x2 +x3) 

The terms in the Quadronacci triangle are derived just as are those in the Tribonacci triangle, except that 
the terms are added in groups of four instead of th ree. 

Indeed, any order of additive triangle can be thus constructed to give similar results. If the order, K, of an 
additive triangle is defined to be the number of terms in its polynomial base, which is also the number of add-
itive steps necessary to derive each term from the terms of the preceding row, then it may be noted that for 
an additive triangle of K order: each row will have (K- 1) more terms than the preceding row; the sum of 
the terms of each row will equal K ; and the terms in each row will p rovide the coefficients of the expansion: 

(x°+X1 +x2 +x3 + • 
Ah 

•+xK'i)N. 

The sums of the terms of the ascending diagonals of BK order triangle produce the series: 

7"N + TN+I + TM+2 + TN+3 + • - + TN+K-I = TN+K 

Ti - 7, T2 = 1; (K- 1) > I 

Since for Pascal's triangle K = 2 (see fig; 1), the series produced is T^+ T^+i = Tjy+2, the Fibonacci series. 
Similarly, in the Quadranacci triangle, since K = 4, the series produced is 

TN + TM+I + TM+2 + TN+3 = TN+4, T3 =2, T4 = 4. 

If an additive triangle is altered by arranging the ascending diagonals as rows, a corresponding alteration re-
sults in the series produced by the sums of the terms of the new ascending diagonals. The new series consists 
of the same number of steps, but of different terms. For example, the Pascal triangle (see Fig. 1), when altered 
in this manner, now becomes: 

9 13 19 

X / FN+I - 1 
1 

2 

3 

5 

8 

13 

21 

34 

55 

10 -
Fig. 4 Second-Degree Pascal Triangle 
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The ascending diagonals provide the terms of the series 

TN+TN+2 = TN+3 (Tl = T2 = T3 = 1). 

A similar treatment of the Tribonacci triangle produces the series 

TN+ TN+2 + TN+4 = 1~N+5 <Ti = T2 = T3 = 1). 

It can readily be seen that these two new additive series skip every other term. 
If the new ascending diagonals are converted into rows a second time for the Tribonacci triangle, the sums 

of the terms of the resulting diagonals will produce the series 

TN+-TN+3+ TN+6 = TN+7 (Tl = I T2 = I T3 = I T4 = 1). 

Here the series skips twice between each term. 
If the degree, /?, of an additive triangle is defined to be the number of times the triangle has been altered by 

rearranging the ascending diagonals into rows (beginning with R = / f o r the triangle in unaltered form), it may 
then be said that for an additive triangle of AT order and R degree, the sums of the terms of the ascending 
diagonals produce the series: 

TN + TN+R + TN+2R + TN+3R + '" + TN+R(K-1) = TN+R(K-1)+1 

(TI = 1, T2 = h T3 = 1, - , TR+1 = 1) (K-1)>1,R>1. 

For the standard Pascal triangle, since K = 2 and R = 1, the series is the normal Fibonacci series (1, 1, 2,3, 5, 
8, •••), where 

TN+TN+I = TN+2 (Ti = T2 = 1): 

For a five-step additive triangle, the diagonals of which have been twice rearranged into rows (K = 5, R = 31 
the series produced is 

1, 1, 1, 1,2,3,4,6,8,13, 19,28,41,60,88,129, 188, • - , 
where 

TN+ TN+3 + TN+6 + TN+9 + TN+12 = T^+13 (Tl = T2 = T3 = T4 = 1). 

Comparing Fig. 1 with Fig. 4, it will be observed that the terms in each column remained unaltered by a 
change in the degree of the triangle; each column is merely lowered with respect to the column to its left. 
Consequently, if the terms of the N row (and hence the terms of the columns) of a first degree /f order 
triangle can be expressed in terms of N, then it follows that the N term of the additive series produced by 
the sums of the terms of the ascending diagonals of a K order/? degree triangle can be expressed as aser-
iers in N and /?. For example, the sums of the terms of the ascending diagonals of the Pascal triangle (K = 2) of 
R degree produce the series: 

TN + TN+R = TM+R+I • 

The N term of this series is the expansion 

rs=(N-0
1) + (N-1

1-Ry(N-1
2-2R)+(rf-1

3-3R) + ---
It is easy to conjecture that a general expansion in terms of /I/, K and /?is possible for the N term of the ser-
ies generated by the sums of the terms of the ascending diagonals of a triangle of /C^ order and Rth degree, 
but that requires a treatment much more advanced than is offered here. 
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1. INTRODUCTION 

Fermat observed that the numbers 1, 3, 8, 120 have the following property: The product of any two in-
creased by one is a perfect square. Davenport showed that for 1, 3, B,x to have the same property* must be 
120 and that it is impossible to find integersx and y such that the five numbers 1, 3, 8,x, y have this unique 
property. 

In [1] and [2 ] , B. W. Jones extends the problem to polynomials by showing 

Theorem 1.1. Let w2 - 2(x + 1)w + 1 = O have a(x) and fi(x) as roots. Let f^(x) = (ak - pk)/(a- j3jl 
Letck(x) = 2fk(x)fk+i(x). Then the polynomialsx,x + 2, c^(x), c^+ifx) have the property that the product 
of any two plus one is a perfect square. 

Any enthusiast of the sequence of Fibonacci numbers would quickly observe that 1,3, and 8 are terms of 
that sequence whose subscripts are consecutive even integers. That is, they are respectively F2, F4, and F&. 
Using the Binet formula it is easy to show that the property enjoyed by 1,3, and 8 is shared with any three 
terms of the Fibonacci sequence whose subscripts are consecutive even integers. In fact, we have 

(1.1) F2nF2n+2 + 1 = F2n+1 

(1-2) F2nF2n+4 + 1 = F2n+2 
and 
(1-3) F2n+2F2n+4+ 1 = F2n+3-

One might now ask if there exists an integerx such that F2nx + 1, F2n+2x + 1 and F2n+4X + 1 are perfect 
squares. In order to show that the answer is yes we proceed as follows. From (1.1) we see that 

/ = F2n+1 - F2nF2n+2 = F2n+i F2n+2 - F2n F2n+3 
so that 
(1-4) 4F2nF2n+lF2n+2F2n+3 + 1 = (2F2n+1 F2n+2 - 1) . 

Replacing n by n + 1 in (1.1), we have 

/ = F2n+3 + F2n+iF2n+4 - F2n+sF2n+4 = F2n+\ F2n +4 - F2n +3F2n+2 

so that 
(1-5) 4F2n+1F2n+2 F2n+3F2n+4 + 1 = (2F2n+2F2n+3 + 1) . 

Using the Binet formula show that F2n+2 = F2n+1F2n+3 - I Multiply both sides of this equation by 4F2n+2 

to obtain 
(1-6) 4F2n+1 F2

2n+2F2n+3 + 1 = (2F2
2n+2 + 1)2, 

Combining (1.1) through (1.6) we have 

Theorem 1.2. For n > 1, the four numbers F2n, F2n+2, F2n+4, and x = 4F2n+iF2n+2F2n+3 have 
the property that the product of any two increased by one is a perfect square. 

For n respectively 1, 2, and 3 we obtain the quadruples (1, 3, 8, 120), the result of Fermat, (3, 8, 21, 2080) 
and (8, 21, 55, 37128). The authors conjecture that the value* of Theorem 1.2 is unique. 
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324 A PROBLEM OF FERIVIAT AMD THE FIBONACCI SEQUENCE [DEC. 

Although three terms of the Fibonacci sequence whose subscripts are consecutive odd numbers do not have 
the property of those with even subscripts we do have the following. 

Theorem 1.3. Let/? > 1 and x = 4F'2n+2P2n+3 F2n+4 t n e n t n e numbers F2n+i> F2n+3> F2n+5 an^ x 

are such that 
F2n+lF2n+3 ~ 1 = F2n+2 

2 F2n+lF2n+5~ 1 = F2n+3 
2 

F2n+3 F2n+5 ~ 1 = F 2n+4 
F2n+lX+ 1 = (2F2n+2F2n+3+ 1 >2 

F2n+3X+1 = <2F2
2n+3-1)2 

F2n+5X + 1 = (2F2n+3 F2n+4 ~ V • 

Here again the authors conjecture that the value of A- in Theorem 1.3 is unique. Letting/? respectively be 1, 
2, and 3 in Theorem 1.3 we obtain the quadruples (2, 5, 13,-480), (5, 13j 34, 8136), and (13, 34, 89, 157080). 

We now turn our attention to several problems which arose in our investigation of the results of Theorems 
1.2 and 1.3. 

First we wanted to know if there exists an x such that 

F2nx-1 = P2 

F2n+2X- 1 = M2 

j2n+4*- 1 = N2 . 

If such anx exists then by eliminating that value between pairs of equations, we have 
F2nM2-F2n+2P2 = F2n+1 

F2nN< 2 
F 2ii+4 P = i-2n+2 

F2n+2^2-F2n+4M2 F2n+3 

where L{ is the / Lucas number. One and only one of F2n,
 F2n+l> F2n+2 's even- Furthermore there exists 

an integer k such that/7 = 3k, n =3k+ 7, orn = 3k + 2. If n = 3k then P is odd and the first equation becomes 
- / = -p6k+2 =F£k+i = / (mod 4) which is impossible. If n = 3k+ 1 the first equation becomes F^^M -
F6k+4P2 = F6k+3- Since F^J^+J is even either M and/3 are .both even or both odd. If both are even then 0 = 
F6k+3 = 2 (mod 4) which is impossible. If both are odd then —2 = F^^+2 - F^^+4 =2 (mod 8) which is im-
possible. When n• = 3k + 2 M is odd and the first equation becomes J = F^k+4 = ^5^+5 = / (mod 4) which is 
impossible. Hence, the first equation is never solvable. Therefore no* can be found which satisfies the original 
system of equations. Following an argument similar to that given above it is easy to show that 

F2nN - F2n+4P = L2n+2 
is impossible. 

Next we tried to determine if more than one solution exists for 
*2 

(A) 
F2nx +1 = P' 

F2n+2X+1 = M2 

F2n+4x + 1 = Nz 

By eliminating the* we see that a necessary condition for a solution is 

' F2nM2-F2n+2P2 = ~F2n+l 
2 (A') F2nN-F2n+4P 

,2 F2n+2N'-F 2n+4 M* 

L-2n+2 • 

-F2n+3 



1977] A PROBLEM OF FERIVIAT AMD THE FIBONACCI SEQUENCE 325 

F k Fk+3 
F F2 

FkF2
h+3 -

Fk^-k+3-

r3 _ 
- tk+2 -

F3 _ 

F F2 

Fk+4Lk+l 

(-
(-
= 
= 

- V Fh+1 . 

1)k+lFk+2. 

(~Vk+1Lk+2, 

(-Dk+1Lk+2. 

Recognizing that the first and last equations of (A') are essentially the same, we conclude that a necessary 
condition for (A) to be solvable is that there exist a common solution of the Diophantine equations of the 
form 
(1.7) F2nM2-F2n+2P2 = -F2n+i 
and 
(1.8) F2nN2-F2n+4P2 = -L2n+2. 

Because of the relationships that exist between Diophantine equations of the form Ax2 - By2 = ±C, con-
tinued fractions, and linear recurrences, we were led to consider the auxiliary polynomials 

(1.8) w2 -2F2n+1w+ 1 = 0 
and 
(1.10) w2 - 2F2n+2w+ 1 = 0. 

Usingthese auxiliary polynomials we will develop a sequence of solutions to (1.7) and (1.8). In this and future 
developments we need the following lemma all of whose parts can be verified by using the Binet formula or 
formulas found in [1 ] , [2 ] . 

Lemma 1.1. For all /r ̂  / 
(a) 

(b) 

(c) 

. ( d ) 

2. SOLUTIONS OF F2nM2 - F2n+2P2 = -F2n+1 

We first turn our attention to (1.91 whose roots throughout this section are denoted by 

a>=F2n+l+j'F$n + l - 1 a n d $ = f2n+l ~ \/ffn+i ~ / 
LetHm = (am -fim)/(a-(3) then'{Hm}°^=0 is given by 

(2.1) H0 = 0,H'i = 1,Hm = 2F2n+1Hm_1-Hm.2, m>2 

and it can be verified that 

(2.2) Hm_1-HmHm_2 = 1-

With Mm = AHm + BHm_lf Pm = A*Hm + £*//m_j and (2.1), wesee that •• 

f Mm = -M1Hm,2 + M2Hm,1. 
(2.3) \ 

I Pm = -PlHm-2+P2Hm-l • 

Requiring that (Mm, Pm)be a solution of (1.7), provided (M1} P1) and (M2, P2) are, we have 

(Hm~2+HLl - 1)F2n+i= 2Hm^Hm^2(F2n+2P1P2-F2nM1M2) 

which by using (2.1) and (2.2) becomes 
(2.4) F2

n+1 = F2n+2P1P2-F2nM1M2. 

Obviously (±1, ±1) is a solution of (1.7) and Lemma 1.1, part (a), tells us that(±F2n+3, ±F2n+2) is also a 
solution. Checking the sixteen possible combinations respectively iorfM^, P^) and (M2, P2) in (2.4) we find 
only four solutions which are 

{(1U (F2n+3, F2n+2)l {(I-1), (F2n+3, -F2n+2)}, {(- HI (-F2n+3, F2n+2)}/ 

and 
{(-1,-1), (-F2n+3, -F2n+2i} . 

Each of these four solutions, when used in conjunction with (2.3), gives us a sequence \(Mm, Pmj)m=i ° f 
solutions to (1.7) which, except for signs, are the same. Because of the exponents in (1.7) we consider only 
those pairs given by 
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Mm = 2F2n+lMm-l- Mm-2 

I Pyn = 2fr2n+l^m-l ~ Pm-2 

where M1=P1 = 7, M2 = F2n+3, and P2 = F2n+2 • 

Noting that the auxiliary polynomial fo r { / I< f m }^^ md{Pm\m=i \$w -2F2n+iw + 1 = 0, it is easy to 
show by standard techniques that 

( 2 6 ) (Mm = f(F2n(3+ 1)am - (F2na+ 1)Pm]/(a~P) 

[Pm = [(-~F2n_lP+Vam-(-F2n_la+1)pmJ/(a-(3) 

Let DM = MJ^ - Mm_iMm+1 be the characteristic o f { M m } ^ ^ . Using (2.6), it can be shown that 

(2.7) DM = F2n+1F2n+2 and Dp = -F2nF2n+1 

or 
(2.8) F2nDM = -F2n+2DP . 

Using 
( 2 g ) {Mm_2 = 2F2n+1Mm_t-Mm 

I Pm-2 = 2F2n+iPm_i - Pm 

together with part (b) of Lemma 1.1 it can be verified \\\dx{(Mm, Pm))<^l=1 is another sequence of solutions 
of (1.7) where 

( 2 1 Q ) f M~m = 2F2n+1Mm_1 - Mm_2 

I P'm = 2F2n+iPm_i - Pm-2 
with 

Ml = Pt = 1, M2 = -F2n and P2 = F2n-i • 

The sequences {Mm}m=i ^^\PmYm=i are galled conjugate sequences of {Mm}m=i and {Pm}m=l- Since 
the auxiliary polynomial for { M m } ^ = ^ ^^{Pm}m=i 's 

w2-2F2n+l + 1 = 0, 
we see by standard techniques that 

( 2 n ) f Mm = [(-F2n+3&+ Dam-(-F2n+3a+ Wml/(a-&) 

I Pm = f(-F2n+2p+ 1)am - (-F2n+2a+ lWm]/{a-$) 

' 2 ' 1 2 ' DM = F2n+lF2n+2 = °M 
and 
(2.13) Dp = -F2nF2n+1 = DP. 

3. SOLUTIONS N F2nN2-F2n+4P2 = -L2n+2 

We now turn our attention to (1.10) whose roots throughout this section are denoted by 

7 = F2n+2 + ^/F2
2n+2 - 1 and 5 - F2n+2 - s/F2

n+2 - / -

Let 
Hm = (ym-8m)/(7-3) 

then { / / m } ^ = # is given by 

(3.1) H0 = 0, Ht = 1, Hm = 2F2n+2Hm„i -7/m_2, m > 2 

and it can be shown that 

(3-2) Hm^1 - HmHm_2 = 7. 

Let (Ni, Pil (N2, P2) be solutions of (1.8). Let {(Nm, Pm)}Z=3 be given by 
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( 3 3 ) I Nm = -N1Hm„2+N2Hm„1 

[ Pm = -PlHm-2 + P2^m-1 

Let(Nm,Pm)be a solution of (1.8). By an argument similar to that given in Section 2, we find 
(3.4) 

L 2n+2 F2n +2 ~ F2n+4 Pi P2 ~ P2n N \N 2 . 
Lemma 1.1, part (c), yields (±F2n+3, ±F2n+i) as a solution of (1.8). Obviously (±1, ±1) is a solution of 

(1.8). Letting these pairs be (N1} P^) and (N2, P2)we obtain sixteen possible values for (3.4). Using 
(3-5) L2n+2p2n+2 = F2n+4F2n+l+F2nF2n+3 
it is easy to check that only four solutions exist which, except for signs, are the same. The solution we use 
gives rise to 

Nm = 2F2n+2^m-l - Nm~2 

'm ~ ^'2n+2'm-l ~~ 'm-2 
(3.6) 

where 
Ni = Pi = I N2 = -F2n+3 and P2 = F2n +1 

Furthermore, 

(3.7) 
Nm = f(-L2n+38+ Vym - (-L2n+37+ DSm]/(7-S) 

Pm = [(-L2n+i5 + 1hm - (-L2n+17+ DSm]/h- 5 ) 

(3.8) DN = F2n+4l-2n+2> Op = -F2nL2n+2 

and 

(3.9) F2nDN = -F2n+4DP. 

The conjugate sequences{/ym}m=l and {Pm}m=l are 9'ven by 

Nm = 2F2n+2Nm-l - Nm-2 

I Pm ~ 2F2n+2Pm--l ~ Pm-2 

with _ _ _ _ • 
Ni = Pi = 1, N2 = L2n+3, and P2 = L2n+1 . 

Using Lemma 1.1, part (d), it can be shown that {(Nm, Pm))m=l >s a sequence of solutions to (1.8). Further-
more, _ 

Nm = f(F2n+3?> + Dim ~ (F2n+37+ Vhm]/h~h) 
( 3 ' 1 1 ' ' Pm = [(-F2n+1?>+ lhm ~ (-F2n + 17+ 1)8m]/(7-&) 

(3.12) D^ = F2n+4L2n+2 = °N 

and 

(3.13) D¥ = -F2nL2n+2 = 0P. 

Although the results of Sections 2 and 3 do not directly give a solution to (A), we can generate an infinite 
sequence of solutions for each of the equations of (A') by using (2.5), (2.10), (3.6) and (3.10). 

4. COWCLUDIWG REMARKS 

By eliminating thex value between pairs of equations we see that a necessary condition for 

(B) 

or 

F2n+lx+1 = R2 

F2n+3x +1 = S2 

{F2n+5X +1 = T2 
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(0 

to be solvable is 

(B') 

or 

(0 

to be solvable is 

(B') 

or 

(C) 

F2n+1><- 1 = R 
2 

F2n+3X ~ 1 = S 

I F2n+5* - 1 = T2 

Fln+lS' ~ F2n+3R = ~F2n+2 

Fln+lT ~ F2n+5 FT = -L2n+3 

I F2n+3 T ~ F2n+5S = ~F2n+4 

f2n+lX- 1 RZ 

F2n+3X ~ 1 ~ S 

F2n+5* - 1 = T2 

I F2n+lS ~ F2n+3 R = ~F2n+2 

•l-2n+3 

F2n+4 

^ F2n+1 T ~ F2n+5R = ~^-2n+3 

F2n+3 T ~ F2n+5S 

F2n+lS -F2n+3R = F 2n+2 
F2n+lT - F2n+5R = L2n+3 

I F2n+3 F - F2n+5$ = f'2n+4 
Recognizing the similarity of several of the equations we are led to consider only solutions of Diophantine 
equations of the form 

(4.1) 

and 

(4.2) 

F2n+1$ ~ F2n+3Ff = + F2n+2 

F2n+1 T - F2n+Sft = +L2n+3 

CASES: F2n+iS - F2n+3 R = +F2n+2 • 
In this case we consider the auxiliary polynomial 

•2F2n+2W- 1 0 

whose roots are denoted by 

(4.3) 

e = F2n+2 + -jF2
2n+2 + 7 and o = F2n+2 - ^FJn+2 + 1 

Following the techniques of Section 2 it can be shown that 

\ Sm = 2F2n+2$m-l + $m-2 

[_Rm =. 2F2n+2Ryn-l + Rm-2 

with 
St = Rt = I S2 = F2H+4, and R2 = F2n+3> 

is a solution of 

-F271+2 F-2n+lS ~ F2n+3 R~ 
when m is odd and 

FZn+l S - F2n+3 R F2n+2 
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when m is even. Furthermore 

Sm = [(-F2n+i o + lkm - (-F2n+i e + l)om]/(e - a) 
(4.4) , 

Rm = [(F2no+ 1)em - (F2ne + 1)am]/(e - a) 

(4-5) Ds = (-1)mF2n+3F2n+2 % = (-)<)m+1F2n+l F2n+2 

and 

(4.6) F2n+3DR = -F2n+1Ds. 

The conjugate sequences { S m } ^ ^ and {RmJm=i are 9'ven ^y 

(4.7) , _ 
Rm ~ -2F2n+2 Rm-1 + Rm-2 

with _ _ _ 
Hi = ~Rl = 7, S2 = F2n+1 and R2 = -F2n 

When m is odd, (Sm, Rm) is a solution of 
F2n+lS ~F27i+3 R = ~F2n+2 

while it is a solution of 

F2n+1 $ ~ F2n+3 R = F2n+2 

when m is even. 
Furthermore 

(4.8) 
Sm = [(F2n+4€+ 1)(-o)m - (F2n+4o+ 1)(~e)m]/(e- a) 

. Rm = [(F2n+3e+ D(-o)m-(F2n+3o+ 1)(-e)m]/(e- o) 

(4.9) % = DS = (-l)mF2n+3F2n+2 

and 

(4.10) % = DR = (-1)m+lF2n+lF2n+2-

CASE II: F2n+1T2- F2n+5R2 = +L2n+3 . 

In this case we consider the auxiliary polynomial w - 2F2n+3w- 7 = 0 whose roots a re 

^ = F2n+3 + -JF2
2n+3 + 1 and £ = F2n+3 - <jF2

2n+3 + 1 . 

Following the techniques of Section 2, it can be shown that 

' m = ^'2n+3 ' m-1 ' m-2 
(4.11, 

Rm - 2 F2n+3Rm_i+ Rm-2 

with 
Ti = Rt = 1, T2 = -F2n+4, and R2 = F2n+2, 

is a solution of 
2 2 

F2n+1T ~F2n+5R = ~L2n+3 
when/77 is odd and 

F2n+1 T ~ F2n+5 R = L2n+3 

when/77 is even. Furthermore 

f rm = i(L2n+4$+mm = a2«+44> + mmi/w - u 
1 Rm = [(L2n+2%+mm = (L2n+2i>+ mmi/^ - v 
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W.13) DT = (-1)mF2n+5L2n+3, DR = (-1)m+lF2n+lL2n+3 

and 

(4.14) F2n+1DT= -F2n+5DR . 

The conjugate sequences { r m } ^ = j f and { / ? m } ^=^ are given by 

M ic) J T™> = ~2F2n+3 Tm-l + Tm_2 

[/?m = -2F2n+3Rm_1+Rm_2 

with _ _ 
Ti = R1 = 1, ~f2 = -L2n+4 and ~R2 = -L2n+2. 

When/?? is odd (Tm, Rm) is a solution of 

F2n+lT -F2n+5R = -L2n+3 

F2n+lT ~F2n+5R - L2n+3 

while it is a solution of 

when/77 is even. Furthermore 

(4 8) \fm = f(-F2n+4^ + ix-um - (-F2n+4$ + DM rim - v 
I *m = [<F2n+2^J + Df-U™ - (F2n+2% + 1)M)m]/^ - V 

W.9) DT = DT= (~l)mF2n+5L2n+3 

and 

(4-10) D^ = DR = (-1)m+lF2n+lL2n+3. 

In closing, we observe that if you choose m = 3 in (2.5) and (3.6) you obtain 

M3 = 2F2n+1F2n+3 - 7 = 2F2n+2+ h p3 = 2F2n+1F2n+2- 7, and N3 = -2F2n+2F2n+3 ~ 1 

which are equivalent to the values in (1.6), (1.4), and (1.5). Letting/77 =3 in (4.3) and (4.11) you obtain 

$3 = 2F2n+2F2n+4 + 1 = 2F2n+3 - 7, R3 = 2F2n+2F2n+3 + 7, and T3 = -2 F2n+3F2n+4 + 1 

which are equivalent to the values in Theorem 1.3. 

REFERENCES 

1. B. W. Jones, "A Variation on a Problem of Davenport and Diophantus," Quarterly J. of Math., Vol. 27 
(1976), pp. 349-353. 

2. B. W. Jones, "A Second Variation on a Problem of Diophantus," The Fibonacci Quarterly, to appear. 



MORE REDUCED AMICABLE PAIRS 
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IMTRODUCTIiOW 
Perfect, amicable and sociable numbers are the fixed points of the arithmetic function L and its iterates. 

L(n) = o(n) - n, where a is the sum of divisors function. Recently, there has been interest in fixed points of 
functions L+, /._, L±(n) = L(n) ± 1, and their iterates. Jerrard and Temperley [Ustudiedthe fixed points of 
L+ and /._. Lai and Forbes [2] conducted a computer search for fixed points of (L.) . For earlier references 
to L_f see the bibliography in [2 ] . 

We conducted computer searches for fixed points n of iterates of L_ and L+. Fixed points occur in sets where 
the number of elements in the selj equals the power of L_ or L+ in question. 

In § 1, we describe the results of L_. The previous work of Lai and Forbes [2] discovered the fixed points of 
(L_)2 with one element of each pair < 105. We extend the results to n < 10^. No other types of fixed points 
were discovered 

The results for L+ are described in §2. Again only pairs were found. 

1. THE FUNCTION L__ 

Lai and Forbes [2] discovered nine pairs of fixed points oULJ, where at least one element was less than, or 
equal to, 105. In fact, for all pairs, both numbers were less than 105. 

If n is a fixed point of (LJk: i.e. (LJk(n) = n, for k>\, then (LJ(n), (LJ2(n), - , (L_)k~1(n) are also 
fixed points of (L_)k. Thus fixed points of iterates of L_ occur in sets of cardinality k. For at least one integer 
n in such a set, L_(n) > n. Thus it suffices to search among n with L_(n) > n, 

A computer search was conducted using an IBM 370, (Vtodel 135. All natural numbersn, 0 <n < 10 , L__(n) 
> n were examined. The iterates (L_)k(n), 1 <k <50, were calculated. Calculation of iterates stopped if 

(a) (LJm(n) = 0, 1 < m < 50; 
or 
(b) (LJm+k(n) = (LJm(n), 1 < k <4. 

The printout was to list all iterates calculated in case (b) and for the case where (L_)50(n) > 0. The program 
would discover any sets of fixed points arising from iterating L_ on integers n, 105 <n < 106. We found six 
new pairs of reduced amicable numbers. There were no sets of fixed points of cardinality other than 2. Of the 
twelve numbers, only one exceeded 10 . The pairs are listed in Table 1 with the prime factorization. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Table 1 
L 

186615 
206504 
196664 
219975 
199760 
309135 
266000 
507759 
312620 
549219 
587460 
1057595 

= 
= 

K -
= 
= 
= 
= 
= 
= 
= 
= 
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3(2)5-11.13.29 
2(3)83-311 
2(3)13.31.61 
3.5(2)7.419 
2(4)5-11.227 
3.5.37.557 
2(4)5(3)7.19 
3-7.24179 
2(2)5.7(2)11.29 
3-11(2)17-89 
2(2)3-5.9791 
5.7-11.41-67 
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2. THE FUNCTION L + 

Jerrard and Temperley [2] ran a search for fixed points of L+. Every power of 2 is a fixed point But they 
discovered no others. They did not examine fixed points of iterates of L + . 

We call natural numbers augmented perfect numbers, augmented amicable numbers and augmented sociable 
numbers as they are fixed points of L+, of (L+) or of (L+) , k > Z The names are suggested by the name 
reduced amicable numbers for fixed points of (L_)2 as used in [2 ] . 

A computer search for fixed points was run in the range, 0 < n < 10 , No augmented perfect numbers, no 
augmented sociable numbers were found. Eleven pairs of augmented amicable numbers were found. They are 
listed in Table 2. Two pairs have both elements over 106. They arose from iterating L+ on 532512, 844740 and 
869176. 

TABLE 2 ' 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(i) 

(k) 

6160 
11697 
12220 
16005 
23500 
28917 
68908 
76245 

249424 
339825 
425500 
570405 
434784 
871585 
649990 
697851 
660825 
678376 
1017856 
1340865 
1077336 
2067625 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

2(4)5-7.11 
3-7-557 
2(2)5-13-47 
3-5-11-97 
2(2)5(3)47 
3(5)7-17 
2(2)7-23-107 
3-5-13-17-23 
2(4)7-17-131 
3-5(2)23-197 
2(2)5(3)23-37 
3-5-11-3457 
2(5)3-7-647 
5-11-13-23-53 
2-5-11-19-311 
3(2)7-11-19-53 
3(3)5(2)11-89 
2(3)19-4463 
2(T1)7-71 
3(2)5-83-359 
2(3)3(2)13-1151 
5(3)7-17-139 
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FIBONACCI SEQUENCE AND EXTREMAL STOCHASTIC MATRICES 
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1CS11V1A2 

IVlclVSaster University, Hamilton, Ontario, Canada L8S 4K1 

ABSTRACT 
The purpose of this note is to exhibit an interesting connection between the Fibonacci sequence and a class 

of three-dimensional extremal plane stochastic matrices. 
1. A three-dimensional matrix of order n is a real valued function A defined on the s e t 7 ^ of points (i,j,k), 

where 7 < i,j, k < n..\X is customary to say that the value of this function at the point (i,j,k) is an entry of the 
matrix and to denote it by #fj,fe. A plane is defined to be a subset of which results when one of i,j,k is held f i x -
ed. A plane is called a row, column, or horizontal plane according as to whether/,/, or k is held fixed. A matrix 
A is plane stochastic if its entries are non-negative numbers and the sum of the entries in each plane is equal to 
one. If A and B are plane stochastic matrices of order n and 0 < a < 1, then aA + f 7 - a j £ is also a plane 
stochastic matrix. Thus the collection of all plane stochastic matrices of order n is a convex set. The extreme 
points of this convex set are called extremal plane stochastic matrices. Jurkat and Ryser [3] have raised the 
question of determining all the extremal stochastic matrices. This appears to be a very difficult problem. One 
class of extremal plane stochastic matrices is formed by the permutation matrices (with precisely one non-zero 
entry in each plane). But unfortunately very little is known about other extremal matrices. 

In what follows we construct a class of extremal plane stochastic matrices using Fibonacci numbers. 
2. If A is a three-dimensional matrix of ordern, then the pattern of A is the set of all points (i,j,k) for which 

aw ^ 0. Jurkat and Ryser [3] observed that a plane Stochastic matrix A is extremal ifand only ifthere is no 
plane stochastic matrix other than A which has the same pattern as A. 

We are now ready to construct a class of extremal stochastic matrices. Let Sn Q J^^n (n = 1, 2, •••) be the 
pattern defined as follows: The points (n, n, n - 1) and (1, n, n) belong \oSn, In addition (i,j,k)^Sn when-
ever one of the following holds: 

(i) i = j = k for / = 1, • • - , /? - 1; 

(ii) / = j+ 7 and k = n, for / = 2, •••, n; 

(iii) i = j - 1 = k+l, for i = 2,-,n-1. 

The matrix Tn in Figure 1 is a two-dimensional representation of this pattern. The /7',/>entry of Tn equals k if 
and only if (i,j,k)^ Tn. Fortunately, Tn is such that (i,j,k), ti,j,k') e Tn implies k = k'. 

The (two-dimensional) matrix Bn indicated in Figure 2 represents a three-dimensional matrix An of orders. 
If (i,j,k) e Sn, then a^ = b^; if (ij,k) £Sn, then a^ = 0. The sequence fi, f$, h, f$, ••• is the Fibonac-
ci sequence 1, 1, 2, 3, •••. 

Theorem. The matrix An is an extremal plane stochastic matrix of order n. 

Proof. We observe that all the indicated entries of Bn are positive so that the pattern of An \$Sn. In 
order to verify that/4n is plane stochastic, we compute the plane sums of An. First we observe that the row 

This paper was written while the authors were on an exchange visit to the Mathematical Institute o f the 
Hungarian Academy of Sciences, Budapest. 
Research supported by both the U.S. and Hungarian Academy of Sciences. 
2 Research supported in part by the National Research Council of Canada (Grant No. A 4078) and by the 

Hungarian Institute for Cultural Relations. 
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and column plane sums of An are the row and column sums of Bn. It is more convenient to verify that the row 
and column $\\m$tfCn = (fn+2- 1)Bn are all fn+2- I The first row sum of £7n equals 

fn+2 -f3 + fl= fn+2 ~ h' 
the last row sum of Cn is clearly fn+2 - 1. The/"* row sum of Cn, 2 < / < /? - 1, equals 

U + (fn+2 ~ fi+2) + (fi+1 - V = fn+2 " / -
The first,second, and last column sums of Cn equal fn+2~ 1. The/* column sum of Cn, 3 < / <n- 1, equals 

(fr 1) + (fn+2-fj+2) + fj+l = fn+2- 1-
Thus far we have verified that the row and column plane sums of An are one. Now we compute the horizontal 
plane sums of An. The kth horizontal plane sum of An, 1<k<n- 1, equals 

(fn+2 ~ fk+2> + (fk+2 ~ V = j 
fn+2~ 1 

The/7 horizontal plane sum equals 
f1+f2 + -" + fn = 1 

fn+2- 1 
Thus An is a plane stochastic matrix. 

To show that An is extremal, it suffices to show that there is no other plane stochastic matrix with pattern 
on. 

Let £ be a plane stochastic matrix with pattern Sn. Let a> 0 be the (1,n,nhn\x\i of E. Let G = [g{j] be the 
two-dimensional representation of E. We claim that G has the form indicated in Figure 3. 

\~1-(f3-Va fia~\ 
f2a 1- (f4- Da (f3- Da 

6 § t 

Gn = \ * 

fn-ia 1 - (fn+i - Da (fn - Da 
!_ fn a 1 — fn a J 

Figure 3 

We verify this by using step-by-step the fact that the plane sums of E are one. For the first row of G we have 
9ln = a= fla, and f r o m 3 ^ +g^n = 1 we conclude that 

glt = 1- a = 1 - (f3- Da. 

For the second row of G we have #22 = 1 - gu = a= f2a. Since the first horizontal plane sum is one, 

923 = 1-9ii = a= (f3~ Da. 

Finally, g22 = 1 - (f4 - Da can be determined by considering the second row sum of G. Suppose it has been 
verified that the f irst/ rows of G are as claimed for some /with 2 < / < n - /. Considering the / ^ column sum 
of G we compute that 

9i+i,i = 1-9i-i,i-9ii = 1-(fi~ Da~(1-(fi+2- Da) = fi+1a. 

Considering the / horizontal plane sum of E, we compute that 

9i+i,i+2 = 1-9u = 1-(1-(h+2- Da) = (fi+2- Da. 

Finally, considering the (i + Dst row su m of G, we compute that 

9i+l,i+l = 1-9i+i,i-9i+i,i+2 = 1 ~ fi+la- (fi+2- Da = 1 - (fi+3 - Da. 
Thus by induction we have verified our claim up to and including the (n - Dst row of G. By considering the 
(n - Dst column sum and n row sum of g in turn, we calculate that 
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ffn,n-l = 1-9n-2,n-l-ffn-l,n-l = ]'" (fn~l~ Da- (1 - (fn+2- Da) - fnCL, 
and 

9n,n = ' 9n,n-l ~ ' 'n^-

Thus our claim is verified. 
Now by considering the nth horizontal plane sum of E, we see that a is uniquely determined. Hence £ is 

unique, and thus E = An. This completes the proof of the theorem. 
Constructions for other extremal matrices and additional properties of planar stochastic matrices can be 

found in [ 1 , 2 ] . 
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BELL'S IMPERFECT PERFECT NUMBERS 

EDWARTT. FRANKEL 
Schenectady, New York 

A perfect number is one which, like 6 or 28, is the sum of its aliquot parts. Euclid proved that2p~1(2p - 1) 
is perfect when (2P - 1) is a prime; and it has been shown that this formula includes all perfect numbers 
which are even.1 

In Eric Temple Bell's fascinating book2, the seven perfect numbers after 6 are listed as follows: 

28, 496, 8128, 130816, 2096128, 33550336, 8589869056. 

Checking these numbers by Euclid's formula, I found that 

28(29 - 1 ) = 256 x 511 = 130816 
and 

21 0 (2n - 1) = 1024 x 2047 = 2096128. 
However, 511 = 7 x 73; and 2047 = 23 x 89. 
Inasmuch as 511 and 2047 are not primes, it follows that 130816 and 2096128 are not perfect numbers, 

and they should not have been included in Bell's list. 

1 Encyclopedia Britannica, Eleventh Edit ion, Vo l . 19, page 863. 
2rIhe Last Problem, Simon and Schuster, New York, 1961, page 12. 



FIXED POINTS OF CERTAIN ARITHMETIC FUNCTIONS 
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IWTRODUCTIOW 

Perfect, amicable and sociable numbers are fixed points of the arithemetic function L and its iterates, 

L (n) = a(n) - n, 

where o is the sum of divisor's function. Recently there have been investigations into functions differing from 
L by 1; i.e., functions L+, Z.,, defined by L + (n)= L(n)± 1. Jerrard and Temperley [1] studied the existence of 
fixed points of L+ and /._. Lai and Forbes [2] conducted a computer search for fixed points of (LJ . For 
earlier references to /._, see the bibliography in [2 ] . 

We consider the analogous situation using o*, the sum of unitary divisors function. Let Z.J, Lt, be arithmetic 
functions defined by 

L*+(n) = o*(n)-n±1. 

In § 1, we prove, using parity arguments, that L* has no fixed points. 
Fixed points of iterates of L* arise in sets where the number of elements in the set is equal to the power of/ .* 

in question. In each such set there is at least one natural number n such that L*(n) > n. In § 2, we consider 
conditions n mustsatisfy to enjoy the inequality and how the inequality acts under multiplication. In particular 
if n is even, it is divisible by at least three primes; if odd, by five. If /? enjoys the inequality, any multiply by a 
relatively prime factor does so. There is a bound on the highest power of n that satisfies the inequality. Further 
if n does not enjoy the inequality, there are bounds on the prime powers multiplying n which will yield the 
inequality. 

In § 3, we describe a computer search for fixed points of iterates of L*. In the range 0 < n < 110,000, we 
found no sets of fixed points. 

In § 4, we summarize theory and a computer search for L+. Again, by a parity argument, we prove there are 
only two fixed points, 1, 2, for L*. The computer search, 0 < n < 100,000, found no fixed points of iterates 
o f£*„ 

1. THE FUWCTiOW L* 

Let Z be the integers and N_ the natural numbers. The arithmetic function o*: N_-+Z_ is the sum of unitary 
divisors function. For/? = E[/?°> 

(1) o*(n) = Ii(1+pa). 

Define new arithmetic functions L*r L*, L+, by 

(2) L*(n) = o*(n)-n; 

(3) L*(n) = L*(n)- 1; 

(4) L*(n) = L*(n)+1. 

We are interested in the fixed points of /.*, / .* , and their iterates. For/.*, we call these fixed points reduced 
unitary perfect and reduced unitary amicable and sociable numbers. For /.*, augmented unitary perfect, ami-
cable and sociable numbers. The names are suggested by [2] . We consider L* in detail. 

Note that L*(1) = - 1 and L*(2) = 0. 

Lemma 1. For/7 G/I/, L*(n) = Oli, and only i f ,n= pa,p a prime,/? >2,a> 1. 

337 
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Proof. Un=pa, L*(n) = o*(n)-(1 + 'n) = (1 + n)- (1 + n) = 0, 
Wn¥=pa, n= pamf p a prime, a> 1;(p,m)= 1,m> 1, Then L*(n) = o*(n)- (1 + n). 
But a*(n) = a*(pOL)o*(m) 

> (1+pa)(1+m) = 1+pa+m+pam 
L*(n) > pa + m>0. 

Lemma 2. For^e / I / , L*(n) has the same parity as/? if, and only if,/7 = 2a, a> Q. 

Proof. \in = 2° = 1; L*(1) = - 1. 
\in=2a> 7; L*(2a) = 0by Lemma 1. 
If n = Hpa, all p odd primes: 
L:(n)=mi + p0i)-(1 + n). 
Both terms on the right are even, so L*(n) is even. 
If n = 2l3Upa, all/7 odd primes: 
L*(n) = (1 + 2P)U(1 +pa)~ (1 +n). The terms on the right are of opposite parity; and L*(n) 
is odd. 

Theorem A. L* has no fixed points. 

Proof, By Lemma 2, need only consider cases where parity of n and Lt(n) are the same. By Lemma 1, 
in these cases L2(n) < n. 

2. THE INEQUALITY L*(n) > n 

If (LI)k(n) = n,k>2, then the images L*(n), (LI) 2(n), - , (L*)^1 are also fixed points of (L*)\ Thus 
fixed points of (L*) , k> 2, arise in sets of k distinct points. In each set of fixed points, there is at least one 
integerm such that L*(m) > m. The following propositions deal with the behavior of this inequality. 

Proposition 3. \\k = nm, (n,m)= 1, then L*(k) > L*(n)L*(m) + nL2(m) +mL*(n). 

Proof. L*fk) = o*(k) - (1 + k) = o*(n)o*(m)-(1+ mn) 

= fL*(n) + (1 +n)][L:(m) + (1 + m)] - (1 + mn) 

= L*(n)L*(m) + (1+n)L*(m) + (1 + m) + (1+m) 

> L*(n)+m +n 

> L*(n)L*(m) + nL*(m) + mL*(n). 

Corollary 4. If k = nm, (n,m) = 7, then 
Ll(k) < L*(m)L:(n} + (l +m)L*(n) + (1 +n)L*(m) + (l +m)(l +n). 

Fork = 210 = 2-3-5-7, \z\m=6,n=35. 
The inequality of the proposition is: 

365 = L*(210) > L*(6)L*(35) + 6L?(35) + 35L*(6) = 5-12 + 5-35+ 12-6 = 307. 

The corollary inequality, with these numbers is: 
365 < 5-12 + 5-35+ 12-6 = 307. 

Relative primeness is necessary in the proposition. For k =90, m = 6, n = 15, the required inequality is 

80 > 5-8 + 6-8+ 15-5 = 163 
which is false. 

Proposition 5. Let/77 = pan, (p,n) = 1. If L*(n) > n, then L*(m) > m. 

Proof. L*(n) > n => o*(n)- (1 +n) > n => o*(n)-n > n 

L*(m) = o*(pan)-(1+pan) = (1+pa)o*M- 1 - pan 
= o*(n)-(1 + n)+pa[o*(n)-n] +n = L*(n) +pa[o*(n) - n] + n 
> pan + 2n > m. 
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If m = pan, (p,n) = p, the result does not necessarily follow. 

L*(30) = 41 > 30; L*(60) = 59 < 60. 
The inequality fails. 

Proposition 6. Let n = Up®. If L *(n) > n, then 

Proof. The inequality o*(n) - (1 +n) >n is also written as o*(n) > 2n + 1. Then 

olnl>2+L>2. 
But 

o*(n) 
n 

Corollary 7. Lztn = Y[pa. If Z.*(7J>» >/?, then 

> 2. 

The results in Proposition 6 and Corollary 7 are necessary conditions but not sufficient The inequalities are 
first satisfied by an integer n with exponents a equal to 1. Among even integers, n =30 = 2'3-5 is the smallest. 
L*(30) = 41. Among odd integers,n = 15015 = 3-5*7.11-13 is the smallest. 11(15015) = 17240. 

Corollary 8. If n is even and Ll(n) > n, then n is divisible by at least three distinct primes. 

Corollary 9. if n is odd and Ll(n) > n, then n is divisible by at least five distinct primes. 

Proposition 10. For each natural number n, there is a natural number t= t(n) such that for k > f, 

L:(nk) < nk. 

Proof. Let/7 = 11/?"/and Q, the rationals. The function 6 : <N_ x N_ -> Q defined by 

n 1 + w 6(n,s) 

is, for fixed /?, a decreasing function of s bounded below by 1. Let t be the first integer such that 

6(n,t) < 2, 

Proposition 11. Let/77 = pan, (p,n) = 1 with L*(n) < n. If L*(m) > m, then 
2n 

2n~ a*(n) 
Proof L*(n) < n => o*(n)- (1 + n) < n => o*(n)- 1 < 2n 

L*(m) > m => o*(pan)-(1+pan) > pan 

- o*(n)- 1 > 2pan-pao*(n). 

Then using the first inequality 

2n > o*(n)~ 1 > pa[2n-o*(n)] and • 2n\, , > p. 
2n - o*(n) 

This proposition sets the bound on the multiples of a natural number nf L?(n) <n, which enjoy the reverse 
inequality. For/7 = 10, o*(n)= 18, 

2n 20 
2n-o*(n) 20-18 

f = 10. 

The possible p a are J, 7f3
2
f L*J30) = 41. L*J7Q)= 73; L*J90) = 89. 
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Note that for 90, / 

Yl(j+ ± \ = 2. 
\ P*l 

3. THE COMPUTER SEARCH FOR FIXED POINTS OF ITERATES OF L* 

A computer search for natura! numbers n such that L*(n) > n, 0 < n < 110,000, was run on an IBM 370, 
model 135. For each such natural number n, the iterated values (L2) (n) were calculated, until 0 was reached. 
The program allowed fifty iterations. The values under the iterations were printed out The process thus identi-
fies any set of fixed points with an element less than, or equal to, 110,000. 

Table 1 summarizes the results. There were no fixed points discovered. For all integers examined, iterations 
of L* eventually reached zero. For each n, the order of n is the first integerksuch that (L*)kM = O. For each 
value of the order, we list the first occurrence of the order and the frequency, or count, of the natural numbers 
with that order. The first natural number examined was 30; the last, 109,986. Note that there are no numbers 
of order 3 in the internal. Further the count of odd orders is relatively small. This can be explained, in part, by 
the few odd numbers under 110,000 satisfying L*(n) > n. Recall that the first such is 15015. A total of 7697 
numbers were examined. 

It is desirable to develop upper and lower bounds for the first integer which is fixed under (L*)2. 

Table 1 
LI 

Order 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

4. 

1st 
30 
— 
66 

1596 
294 
3290 
854 
1190 
4854 
15890 
14630 
21945 
38570 
76670 
104510 
107030 

Frequency 

2203 
0 

1947 
10 

1733 
38 

1133 
46 
446 
20 
121 
8 
5 
4 
1 
1 

THE FUNCTION L* 

In this section we examine L*. For any natural number/7, L*(n) = L^(n) + 2. So 

L*(n) > n => L*(n) > n. 

L*(1) = 1; L*(2) = 2. 

Thus L* has at least two fixed points. 
Proofs of the following results parallel those above. 

Lemma 12. For/7 e/ i / , L*(n) = 2\\, and only if,/7 =pa,p a prime, a> 1. 

Lemma 13. For n in N_, L*(n) has the same parity as n if, and only if, n = 2a; a> O. 

Theorem B. L* has exactly two fixed points, 1 and 2. 
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Proposition 14. \U = mn,(m,n) = /then L*fk) < L*(m)L*(n) + mL*(n) + nL*(m). 
Proposition 15. Let/7? = pan, (p,n) = 1. If L *(n) > n, then L*(m) > m. 
Proposition 16. Let/7 = 11/7 °\ If 

then L*(n) > n. 

Corollary 17. Let/? = 11/?a. If 

n / + — > 2, 

U[1+ 1-\> 2, 
p 

then L*(n) >n. 
Recall that in Proposition 6 and Corollary 7, the condition 

n ( / + 1- i > n f 7 + — I > 2 

was necessary but not sufficient. Here it is sufficient but not necessary. 

Proposition 18. For each natural number n, there is a natural number t= t(n) such that for k> t, 

< n L$(nk) 
Proof. Using the notation of the proof of Proposition 10, it suffices to let f be the first integer such that 

6(n,t) < | . 

Proposition 19. Let/77 =/7a/7, (p,n) = 1 with L*(n) < n. If L*(m) >m, then 
2n 

2n- o*(n) > p' 

A computer search for natural numbers/? such that L*(n)> n was run, 0 <n < 100,000. The iteration values 
were calculated and printed up to fifty iterations. The end value for iterations is 2 rather than 0. The search 
would have discovered any set of fixed points of an iterate of L* where one element of the set was less than, or 
equal to, 100,000. None were found. The results are in Table 2. The organization is as for Table 1. 

Table 2 
L: 

Order 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

u+ 
1st 
1,2 
6 

82005 
42 
498 
78 

2530 
402 

10650 
1518 

19635 
2470 
15015 
10158 

57030 
84315 

Frequency 
2 

2020 
2 

1274 
27 

1213 
144 
1154 
72 
698 
19 
289 
2 
85 
0 
15 
1 
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FIBONACCI ASSOCIATION RESEARCH CONFERENCE 
October 22, 1977 

Host: MENLO COLLEGE 
(El Camino Real) 
Menlo Park, Calif. 

9:30 Opening Remarks: V. E. Hoggatt, Jr. 

9:40 to 10:20 ARITHMETIC DIVISORS OF HIGHER ORDER 
Krishna Alladi (UCLA) 

10:30 to 11:00 FIBONACCI CHROMATOLOGY or HOW TO COLOR YOUR RABBIT 
Marjorie Johnson (Wilcox High School) 

11:10 to 12:00 PARTITIONS SUMS OF GENERALIZED PASCAL'S TRIANGLES 
(A Second Report) 
Claudia Smith (SJSU) or Verner E. Hoggatt, Jr. (SJSU) 

12:00 LUNCH - to each his own 

1:30 to 2:10 APPLICATIONS OF CERTAIN BASIC SEQUENCE CONVOLUTIONS 
TO FIBONACCI NUMBERS 

Rodney Hansen (MSU, Bozeman, Montana) 

2:20 to 3:00 GAMBLER'S RUIN AN D FIBONACCI NUMBERS 
Fred Stern (SJSU) 

3:10 to 3:30 ENUMERATION OF CHESS GAME ENDINGS 
George Ledin, Jr. (USF) 

3:40 to 4:20 PRIMER ON STERN'S DIATOMIC SEQUENCE 
Bob and Tina Giuls (SJSU) 



GENERALIZED QUATERNIONS OF HIGHER ORDER 

I.L. IAKIN 
University of Mew England, Armadale, Australia 

In a previous article [2 ] , we conjectured that the idea of a quaternion with quaternion components could 
be extended to include higher order quaternions. The purpose of this article is to investigate this concept and 
to obtain further generalizations of the results in [2 ] . 

PROPERTIES 

Firstly, to be able to denote higher order quaternions, we need to introduce an operator notation. Thus for 
X a positive integer we define the quaternions of order \ , after X operations, as: 

(1) 0XWn = 0.(0(0-(OWn)-)) = Ok~1Wn + iSl^Wn+t + jOX'1Wn+2 + m X " % n + 3 

(2) AXWn = A(A(A-(AWn)-)) = A X ~ % n + iq A X - % ^ + jq2 A X ~% n _ 2 + kq3 AX~%n,3 

where we also define 

(3) O0Wn = Wn, A°Wn = Wn, OlWn = OWn, AlWn = Awn 

and the quaternion vectorsi,j,k have the following properties 

(4) i2 - f = k2 = -1, ij = -ji = k, jk = -kj = i, ki = -ik = / 

and where from Horadam [1] we have that for integers a,bfp,q, 

(5a) Wn EE Wn(a,b;p,q) 

Wn = p\Nn-i ~ qWn-2 for n > 2 

W0 = a, Vilt = b 

(5b) Un EE Wn(1,p;P,q) 

(5c) Vn EE Wn(2,p;p,q) 

(5d) e - pab-qa2 - b2 . 

Thus we see from (1), (3), (5b) and (5c) that for X = 1 we obtain the special cases 1(a), Kb) and 1(c) of [2 ] , 
while X = 2 gives us 7(a) and 7(b) of [2 ] . Equation (11) of [2] is obtained from (2) and (3) forX= 1. 

We can now combine the operators O and A to define quaternions of the type O AWn and AOWn, i.e., 

(6) OAIA/n = 0(AWn) = AWn +iAWn+1 + j AWn+2 + kAWn+3 

(7) AOWn = A(OWn) = OWn+iqOWn_1+jq2OWn_2+kq3OWn_3, 

If we expand (6) and (7) we see that 
^A^n f Anwn . 

Since quaternion vector multiplication is non-commutative we also know that 

i-OWmOWn ? OWm-i-OWn ? OWmOWn-i . 

To overcome some of the problems associated with calculations involving higher orderquaternions, resulting 
from the failure of the commutative law for quaternion multiplication, we introduce two new operators, name-
ly O * and A * . We thus define 

(8) 0*OWn = 0*(Q,Wn) = OWn + OWn+1.i + OWn+2-j + OWn+3'k 

343 
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(9) A*AWn = A*(AWn) = AWn+qAWn„vi + qAAWn_2-j + q3AWn„3*k 

Hence we see that the operators £2* and A * are the same as the operators £2 and A except that they create 
quaternions by post-multiplication of the quaternion vectors. Obviously 

Q.*Wn = SlWn 
and since, say 

A f i X = A(Q*Wn) = AQ,Wn 

it follows that the star operators are only meaningful when applied to the L.H.S. of quaternions of order > 1 . 
If we now expand the R.H.S. of Eq. (8) we see that we have result 8(a) of [2 ] , i.e., 

(10) Sl*SlWn = £l2Wn. 

Similarly from (9) it follows that 
(11) A X - A2Wn . 

We leave it to the reader to show, by expanding, that 

(12) £lAWn = A*£lWn 

(13) A£lWn = Q,*AWn 

and to prove the associative laws for the operators, e.g., 

(14) (SlA)£lWn = £l(AQ)Wn, (A£l)AWn = A(£lA)Wn . 

Nowforjua positive integer we know 

£2*£2%n = Ql*(nQt
ll'1)Wn (by (1)) 

= ^ * n ; « M " % „ (Associative laws) 

= n^^^Wn (by (10)) 

(15) ft*S2%w = ^+1Wn ( by (D) . 

If we replace 12 by A in the above proof we obtain the result 

(16) A * A % „ = A^+1Wn . 

Next, induction on JJL produces the results 

(17) 1 2 A % n - (AV^nWn 

(18) A^Wn =. (Q,*)^AWn . 

Using the above results and induction on Awe can prove the following 

(19) AX£lWn = tt*AXWn 

(20) SlXAWn = A*SlXWn 

(21) (Sl*)X^Wn = 1 2 X + % n 

(22) (A*)kAllWn = AX+llWn 

(23) 12XA%M = (A*)^XWn 

(24) AX^Wn = (a *)iXAXWn 

EXTENDED GENERALIZED RESULTS 
In this section we extend some of the identities given in lakin [2 ] . We commence by proving the generaliza-

tion of Eq. (10) of [2 ] . 

(25) nXU_n = -q'n+1AXUn_2 . 

Proof. We prove this result using induction on A. For A = 1 we have Eq. (10) of [2 ] . Assume the result is 
true for A = /7, i.e., 
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ftVw - -q-n+1AhUn-2 . 
Now for X= /7 + 1 we have from (1) 

£lh+1U_n = nhU„n + inhU„n+1+j£lhU„n+2 + k£lhU„n+3 

which becomes on using the assumption 

nh+1U.„ = -q-n+1AhU„_2 -iq-n+2AhUn„3-jQ-"+3AhUn„4 - kq-"+4AhUn„5 

= -q'n+1(AhU„.2f/qAhUn^ +:iq2AhUn^+kq2AhUn^) = -q'n+1A***Un_2 (by (2)) 
Since the result holds for X= 1 and is true for \= h + 1 providing it is true for \ = h, then by the principle of 

induction the result holds for all positive integer values of X. 
Similarly we can show by induction on X that 

(26) ftV-M = q~nAXVn 

(27) ttXW„n = q-n(aAXUn - bAXUn^) 
(28) Q^Wn+r+qr&XWn„r = VrttXWn . 

After a lengthy proof using induction on X + ju we have 

(29) nX+^Wm+n = n^Wm^Un-q^W^i^Un^ 

for which we obtain the special cases 

(30) 2ttX+VUm+n„1 = ^Um^^Vn+n^Vm^Un^ 

(31) 2£lX+llVm+n = QJ
XVmVLlxVn + cl2QXUm,1^llUn.1 

where d2 = p2 - 4q. 
If we again use induction on X + / i we can arrive at 

(32) ^ X M / m a % n - ^ X M / m _ i n % n _ i = aQ?<+^Wm^ + <b-pa)Q^+^Wm^_1 

(33) nXWm+1^Wn+1-q2nXWm,i^ 

Now letting m = n and X = jU in both (32) and (33) gives us 

(34) (^W^-q^Wn^)2 = aa2XW2n + (h-pa)tt2XW2n~i 
(35) Y a X f 4 / ^ 

Note that Eqs, (28), (29), (30), (31), (32), (33), (34) and (35) give, as special cases, Eqs. 24(a) and (b), 22(a) 
and (b), 21(a) and (b), (23), (16) and (17),"(20), (18) and (19), respectively. 

We now list a set of identities whose proofs we omit due to their length and repetitiveness. We leave it to 
the reader to prove by induction the following results: 

wn_rnx+^wn+r+t 

(36) - nXWnQVwn+t + eqn~rttXUr_1ttlIUiH-t„1 

(37) . = Q^Wn+t&wn + eqn-TS^Ur+t-1Q.Vur-1 

QXWn„rtt^Wn+r+t 

(38) - - i r l U A % H + f + e / H ' A V ^ ^ r + f - l 
(39) ;= ^XWnQl^Wn+t+eqn~rU^1AknlxUr+t-.i 
(40) '/'^ = ^Wn+t^Wn + eqn'rUri.t.1I^^U^i 
(41) . = Wn+tnX+^WH + €qn'rAXUr+t.1nldU^1 
and finally fiAM/m_r+^%n 
(42) = Wll.T+tnX+tlWrii+r+s-+eqn-rAXUn-m,1Sltlu2^Hs_1 

(43) = nXWn,r+t^Wm+r+s + eqn"'Un,m^AX^U2r^+s-i 
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(44) = ^XWm+rhs^Wn^t+eqn'TU2^^l^llUn.r^i 
(45) = Wm+r+snX+^Wn.r+t + eqn-r^U2r^+s-l^llUn^m^ . 

Putting X= 1 and/z= 1 in (36), (39) and (40) gives us, respectively, (13), (26) and (27) of [2 ] , while letting 
X - 1, ix = 2 in (39) and (40) gives, respectively, 28(a) and (b). If, however, we let t = 0,s = 0, X = 1 and jx= 1 
in (43) we have as a special case result (29) of [2 ] . 
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LETTER TO THE EDITOR 

16 September 1977 

Dear Professor Hoggatt: 

In a recent article with Claudia Smith (The Fibonacci Quarterly, Vol. 14, No. 4, p. 343), you referred to the 
question whether a prime p and its square p2 can have the same rank of apparition in the Fibonacci sequence, 
and mentioned that Wall (1960) had tested primes up to 10,000 and not found any with this property. 

\ have recently extended this search and found that no prime up to 1,000,000 (one million) has this property. 
My computations in fact test the Lucas sequence for the property 

(1) Lp = 1 (modp2) p = prime. 

For p > 5 this is easily shown to be a necessary and sufficient condition for/7 and/72 to have the same rank of 
apparition in the Fibonacci sequence, because of the identity 

(2) (Lp- V(Lp+V = 5Fp^Fp+1. 
So far I have shown that the congruence (1) does not hold for any prime less than one million; I hope to extend 
the search further at a later date. 

You may wish to publish these results in The Fibonacci Quarterly. 

Yours sincerely, 

s/ Dr. L.A. G. Dresel 
The University of Reading, 

Berks, UK 



ON THE CONNECTION BETWEEN THE RANK OF APPARITION OF A PRIME 
p IN FIBONACCI SEQUENCE AND THE FIBONACCI PRIMITIVE ROOTS 

PETER KISS and BUI MINH PHONG 
Teachers Training College, Eger, Hungary 

Let the number # be a primitive root (mod/7). \ix = g satisfies the congruence 

(1) x2 = x + 1 (mod/?), 

then the g is called Fibonacci Primitive Root. D. Shanks [1] and D. Shanks, L Taylor [2] dealt with the con-
dition of existence of the Fibonacci Primitive Roots and they proved a few theorems. 

In connection with the Fibonacci sequence 

F0 = I Ft = 1, F2 = 1, F3 = 2, .~(Fn = Fn^+Fn„2), 

the natural number a = a(p) is called by D. Jarden [3] the rank of apparition of/? if Fa is divisible by/? and F{ 
is not divisible by /? in case / < a. 

In this article, we shall deal with the connections between the rank of apparition of prime/? in the Fibonacci 
sequence and the Fibonacci Primitive Roots. We shall prove the following theorems: 

Theorem 1, The congruence*2 ^x-/- / (mod/?) is solvable if and only if/? - / is divisible by a(p) or/?=5. 

Theorem 2. If/? = 10k ± 1 is a prime number and there exist two Fibonacci Primitive Roots (mod/?) or 
no Fibonacci Primitive Root exists, then a(p) <p - 1. 

Theorem 3, There is exactly one Fibonacci Primitive Root (mod/?) if and only if a(p) =p - 1 or/? = 5. 

D. Shanks [1] proved that if (1) is solvable then p = 5 or /? = 10k ± 1. But D. H. Halton [4] proved that 
Fp~(5ip) is divisible by the prime p (p /= 5), where (5/p) is the Legendre's symbol, and it is well known that if 
p = 10k ± 1, then (5/p) = 1, therefore Fp_f is divisible by/?. So it is enough to prove the following lemma for 
the verification of the first part of Theorem 1: 

Lemma 1. If Fn is divisible by number/?, then n is divisible by the rank a(p) of/? and if/7 is divisible by 
a(pI then Fn is divisible by/?. 

Let a = a(p) and n = a-m + r, where 0 <r<a. U.U. Vorobev proved that Fy+C = F^-Fc+i + F\y.^Fc ( [5 ] , 
p. 10) and Fb.c is divisible by Fy for every natural numbers/? and c ( [5 ] , p. 29). For this reason/? is a divisor 
of Fa.m and if/? is a divisor of Fn, then 

Fn = Fam+r = Fam^Fy+i + Fam„i-Fr = Fam_i-Fr = 0 (mod/?). 

But Fam and Fam^ are neighboring numbers of the Fibonacci sequence, for that very reason Fam_i is prime 
to Fam (see [5 ] , p. 30). So/? is not a divisor of Fam_i because/? is a divisor of Fam and Fr = 0 (mod/?). From 
this follows a = r by reason of definition of a = a(p). Thus/? is divisible by a = a(p). Should it happen that/? is 
divisible by a = a(p), then, due to the Vorobev's previous theorem, Fn is divisible by Fa(pj and so Fw is "divisible 
by/7, too. With this we proved the Lemma 1 and from this follows the proof of the first part of Theorem 1. 

If /? - / is divisible by a(p), then by reason of Lemma 1 F^i is divisible by /?. From this follows that (5/p) = 
= 1. Namely, if (5/p) = - 7 , then Fp+i is divisible by/?, too, and so Fp = Fp+i - Fp_i also Is divisible by p. 
But F{ and F[+i are relatively prime for every natural number/, therefore (5/p) = 1. From this follows that 
/? = 10k ± 1 and so the congruence (1) is solvable. It completes the proof of Theorem 1. 

Before the proof of Theorem 2 and Theorem 3, we shall prove two Lemmas. 

Lemma 2. If the congruence x = x + 1 (mod /?) is solvable, p / 5 and the two roots are g^, g2, then 
Ql - #2 ^ 0 (mod p). 
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Lemma 3, If x is a solution of the congruence x =x+ 1 (mod/?), then 

xk = Fk-x + ^k-l (mod/7) 
for every natural exponent k. 

Let us prove the Lemma 2 first. If (1) has solutions^ and Q2, then g^ + g2^ 1 (mod/?) and g2 = 1 -
g<L (mod/?), respectively (see [1]). Let us suppose t ha t#^ -#2 = 0 (mod/?), that is 

(2) 29l = 1 (mod/?). 

gi is a root of (1) and $og2 =gi + 7 (mod/?). Let us add this congruence to (2). Then we qetgj+gi =7(mod 
p) and from this 4g1 +4g^ = 8 (mod/?) and (2g^ + I)2 = 9 (mod/?), respectively. From the later congruence 
we get 2g± + 7 = 3 or 2g^ + 1 = -3 (mod /?) and from these subtracting the congruence (2) we get 5 =. 0 
or 7 = 0 (mod/?). But these are true only if/? = 5according to/? >7 , which proves the Lemma 2. In case/? =5 
really #^ -g2 =0 (mod/?) becauseg^ = 3 mdg2 = 1 - gi = -2 =g^ (mod 5). 

We shall carry out the proof of the Lemma 3 by induction over k. In the cases k = 7 and k = 2 indeed 

x = x +0 = Fi«x +FQ and x2 = x^ 7 = F2-x + F^ (mod/?). 

After this if k > 2 and the statement is true for exponents smaller than k, then 

= -Fk-x + Fk-i (mod/?) 
which proves Lemma 3. 

Now let us suppose that/? = 10k± I In this case by reason of [1 ] , (1) is solvable. If both roots#j and #2 are 
primitive (mod/?), then, according to Lemma 3 (using for every primitive rootg(p~ '' = —1 (mod/?) ) 

g^'1)'2 EE F(p„1)i2>gi + F(p_1)/2-i = - / (mod/?) 

^ - i J / 2 ^ F(p_1)/2>g2 + F(p„1)/2-1 = -1 (mod/?). 

The difference of the congruences gives: F(p_ij-/2(gi ~ #2^ = 0 (mod /?) and from this follows by reason of 
Lemma 2 (p/5) that F(p-i)/2 = 0 (mod/?) which by reason of Lemma 1 proves the first part of Theorem 2. 

Let us suppose that neither^ nor #2 »s primitive root (mod/?) a n d ^ belongs to the exponent/?^ and #2 be-
longs to the r)2. Then rif and /?2 are divisors of p— 7 f/7^, /?2 <p- V and 

(3) ^ ES 7, • ^ ^ 7 (mod/?). 

If n^ = ri2 = n, then similarly to the previous cases, using the congruences (3) and the Lemma 3, we get Fn = 0 
(mod /?) and so n is divisible by a(p), that is a(p) <n < / ? - 7. 

If A?J / /?2, then we can suppose that n 1 > 02. But # r # 2 = ~7 (mod/?) (see [1]) for this reason, using the 
congruences (3), 

ffl2 =gni2-922 = (9V92>}H - (-Vn>. (mod/?). 
g^ belongs to the exponent n^ (mod/?) and n^ > (12, so r>2 must be an odd number and#"2 = - 1 (mod/?). In 
this case^^"2 E= 1 (mod/?) and from this follows that/?^ is a divisor of 2ri2, But2n2 < 2nlr so/?^ - 2n2 and 

(4) ^ = $ r f w * = - 1 (mod/?). 

According to congruences (3) and (4) and Lemma 3: 

9fll ^'Fni'9i+'Fnv-i=^ (mod/?) 

922 = Fnrg2 + Fnx_1 = 1 (mod/?) 

and from this we get, as above, using Lemma 2: ffZ = 0 (mod/?) and so by reason of Lemma \rif is divisible 
by a(p). Thus a(p) <n^ < / ? - 1 which proves the second part of Theorem 2. 

Theorem 3 is true in the case p = 5 (see [1]), therefore we can suppose further on that/? £ 5. Let it be now 
a(p) =p - 1. In this case, by reason of Theorem 1, the congruence (1) is solvable. There is exactly one primi-
tive root (mod/?) between the two roots because otherwise a(p) </? - 1 would follow according to Theorem 2. 
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And conversely, if congruence (1) is solvable, one pf the roots is primitive and the other is not (mod/?), that is 
nl=P ~ h then it follows from the foregoing that n£ = (p - 1)/2 and n£ is an odd number. Let us suppose 
that a(p) <p - 7 as opposed to Theorem 3 and let(7 denote the least common multiple of/?2 and alp), q is di-
visible by ri2 and a(p) therefore 

7 ^92 = F
q«g2 + Fq_1 = Fq_t (mod/?) 

(becausep is a divisor of Fq according to Lemma 1). Using this congruence we get 

Q\ ^Fq'91+Fq-i = Fq,i = 1 (mod/?). 
From this follows q = p - / because /?2 and a(p) are divisors of/7 - / and5^ is a primitive root (mod/7). But 
q = p - / is an even number and ri2 is odd, therefore a(p) is an even number. 

N. N. Vorobev proved that for every natural number/? F%+1 = Fn-Fn+2 + (-1)n ( [5 ] , p. 11). Let us use this 
equation for the case n = a(p) - 7, it derives 

Fa(P)-l-Fa(p)+l- F2
a(p) + (-^(P)-

But, on the one hand, a(p) is an even number, on the other hand, 
Fa(p)+1 = Fa(p) + Fa(py1 = Fa(pyt (mod/?), 

so Fa, yi = 1 (mod/?). From this Fa(py1 = —1 (mod p) follows because in the case Fa(v)-l = 1 (mod/?) 
gi cannot be a primitive root (mod p) by reason of 

(5) gdi(p) = Fafpygt+Fafpyt = F a(pyt = 1 (mod/?) 

and the condition a(p) </? - 1. From the latter it follows that, similarly to (5), 

g*/p) - - 1 (mod/?). 

Buigi 's a primitive root (mod/?) and a(p) <p - 7 therefore a(p) = (p - 1)/2 = 112. However,a(p) = n2 is im-
possible, for alp) is even and /?^ is an odd number, so the condition alp) < p - / is impossible. Then alp) = 
p - 7, which completes the proof of Theorem 3. 

The reverse of Theorem 2 follows from Theorem 3 as well: If the congruencex =x + 7 (mod/7) is solvable 
and a(p) <p - 1, then both roots are primitive (mod/?) or neither of them is primitive. The point is that in this 
case, by reason of Theorem 3, there cannot be exactly one primitive root. 
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GENERALIZED QUATERNIONS WITH QUATERNION COMPONENTS 

A.L. IAKIN 
University of New England, ArmidaSe, Australia 

The relations connecting generalized Fibonacci Quaternions obtained by Iyer [3 ] , following earlier work by 
Horadam [2 ] , together with the recent article by Swamy [4 ] , prompted this note on further generalized qua-
ternions, as well as an investigation of generalized quaternions whose components are quaternions. 

Following the ideas of [3] we define 

1. (a) Pn = Wn +iWn+1 +jWn+2 + kWn+3 

(b) Qn = Un +iUn+1 +jUn+2 + kUn+3 

(c) Rn = Vn+iVn+1 +jVn+2 + kVn+3 , 
where 

(d) i2 = j 2 = k2 = -1, i] = -ji = k 

jk = -kj = i, k'i = -ik = j 
and where 

2. (a) Wn = • pW^t - qWn_2 W0 = a, Wt=b 

(b) Un = pUnml-qUn_2 U0 = 1, Ut = p 

(c) Vn = pVn~i-qVn-2 V0= 2, Vt = p . 

Thus from 1(a) and 2(a) we have that 

3. pn = pPn-i-qPn-2> 

Analogous results to equations 2.14 and 2.15 of Horadam [1] are, respectively: 

4. Pn = aQn + (b-pa)Qn^ 

5. Rn = 2Qn-pQn-i . 

The conjugate quaternion of Pn is given by 

6. Pn = Wn - iWn+1 - jWn+2 - kWn+3 

We now define the quaternions Tn and Sn as the quaternions whose components are the quaternions/^ and 
Qn, respectively, viz. 

7. (a) Tn = Pn +iPn+1 +jPn+2 + kPn+3 

(b) Sn = Qn + iQn+1 +]Qn+2 + kQn+3 

which on expanding give 
8. (a) Tn = Wn - Wn+2 - Wn+4 - Wn+6 + 2iWn+1 + 2jWn+2 + 2kWn+3 

and similarly ivxSn. 
The conjugate for Tn is _ 

9. (a) Tn = Pn- iPn+1 - jPn+2 - kPn+3 

which becomes on expansion 
(b) fn = Wn + Wn+2 + Wn+4 + Wn+6 

so that the conjugate quaternion can be expressed solely in terms of Wn'$ and is independent of the vectors 
U,k. 
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Now consider 
Q-n = U„n+iU„n+1+jU„n+2+kU„n+3 . 

Using equation 2.17 of [1] and noting that the result should be 

U„n = -q~n Un_2 
we obtain 

a,n = -q'n+1 [Un„2 + iqUri-3 +jQ 2Un~4 + kq3Un,5] 

10. Q,n = -q-n+1Q*„2, 
where we define 
11. Q* = Un+iqUn.1-tjq

2Un.2 + kq3Un^3 . 
Similarly we have that 

12. Q*n = -Q-n+1Q„-2-

Using the above we shall now establish some relations between these quaternions. The first of these is 

13. PnPn+t + eqn~rQr-lQrht-l = Wn-rTn+r+t-
The proof for this is lengthy and is left to the reader. A direct proof uses 1(a), Kb), 7(a) and equation 4.18 

of Horadam [1] . 
Now letting t = 0 in equation (13) above we have 

14. pt + eq^Qlt = Wn_rTn+r . 

If we let r = 1 in equation (14) we obtain 
3 

15- eq^1 £ Uf = p2 + 2eqn-1Q0-Wn_1Tn+1 , 
j=0 

Another identity is 
16. aPm+n + (b- pa)Pm+ri_1 = WmPn - qWm,1Pn_1 . 

The proof uses 1(a) and equation 4.1 of Horadam [1] . 
Further results are 

17. Pm
pn - qpm-lpn-l = aTm+n + (b - pa)Tm+n_i = WmTn- qWm_i Tn_1. 

For/7? = n in (17) 

18. pl-qp2n-i = aT2n + (b-pa)T2n-i = WnTn-qWn-lTn-i 

19. P2
n+1 - q2Pn-i = bT2n+1 +(b- pa)qT2n-i 

20. bP2n+1 + (b-pa)qP2n-i = Wn+1Pn+1 -q2Wn^Pn^ , 
Now from 7(b) 

21. (a) 2Sm+n^i = p
nQ-m-l + @n-lPm 

(b) 2Qm.hl_i = Um„i Rn + Q-n-l Vm = Qm-l Vn
 + Un-1 ^m 

22. (a) Pn+r = UnPr-qUn-iPr.! = WnQr-qWn^Qr^ 

(b) Tn+r = PnQr-qPn-lQr-l = U nT r-qUn^Tr^ = WnSr-qWn-iSr.! 

23. 2Rm+n = VmRn + d Um-iQn-i, 
9 9 

where d = p - 4q. 

24. (a) Pn+r + qrpn-r = Pn^r 

(b) Tn+r + qrTn-r = TnVr 

Now recalling the notation we established in equation (11) we let 

25. P* = Wn+iqWn-l +jq2Wn-2 + kq3Wn_3 , 
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We are thus able to establish the interesting relations 

26. Pn_rPn+r+t-PnPn+t = eq Ur-tS^+t_1 

27. Pn_rPn+r+t~ Pn+tPn = eq U'rht-l^r-1 • 

Thus we note the change in the R„H,S. expressions for equations (26) and (27) when the only difference in 
the L.H.S. is that the elements in the subtracted product term have been commuted. This is to be expected as 
quaternion multiplication is non-commutative. 

Similarly we obtain 

28. (a) Pn_rTn+r+t-PnTn+t = eqn~rUr_1(Sr+t_1+iqSrht_2+jq2Sri.t^3+kq3SrJ-t_4) 

(b) Pn-rTn+r+t-pn+Jn = eqn~r U Y+t^1(Sr_1+ iqSr,2+ iq2Sr,3 + kq3 Sr^) 

ZcJ. 'm-r'n+r~'n-rm+r ~ eQ ^n-m~1^2r~l 
and where e = pab - qa - b from equation (2). 

At this point it is interesting to note the correlation of the above equations (13), (14), (16), (17), (18), (19), 
(20), (21), (22), (23), (24) and {(26), (27), (28)} with equations 4.18, 4.5, 4.1, 4.1, 4.2, 4.17, 4.17, 4.8, 3.14, 
4.9, 3.16, 4.18 of Horadam [1 ] , respectively. The equations listed from Horadam were in fact used to obtain 
the corresponding results for the generalized quaternions. 

From 9(b) we have for the conjugate quaternion T2n 

T2n = W2n + W2n+2 + W2n+4 + W2n+6 

and thus _ 
aT2n = aW2n + aW2n+2 + aW2n+4 + aW2n+6 . 

Using equation 4.5 of Horadam [1] we have 

af2n = W2
n + W2

n+1 + W2
n+2 + W2

+3 +e(uti + U2 + U2
+1 + U2

n+2) 
but 

P2 = W2- W2
+1 - W2

n+2 - W2
+3 + 2iWnWn+1 + 2jWnWn+2 + 2kWnWn+3 

n 

and similarly fo r# n . 
Therefore 

30. af2n+P2
n + eQl1 = 2(WnPn + eUn_tQn^). 

Many more results can be obtained for the above-defined quaternions. By use of a functional notation the 
ideas expressed in this article can be easily extended. 
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FIBONACCI PRIMITIVE ROOTS AND THE PERIOD 
OF THE FIBONACCI NUMBERS MODULOP 

M.J. DE LEOW 
Florida Atlantic University, Boca Raton, Florida 33432 

One says g is a Fibonacci primitive root modulo /?, wherep is a prime, iff g is a primitive root modulo/7 and 
g = g + 1 (mod p). In [1 ] , [2 ] , and [3] some interesting properties of Fibonacci primitive roots were de-
veloped. In this paper, we shall show that a necessary and sufficient condition for a prime/? ^ 5 to have a 
Fibonacci primitive root is p = 1 or 9 (mod 10) and Alp) = p - 1, where/I//?,/ is the period of the Fibonacci 
numbers modulo p (Theorem 1); for/? = 11 or 19 (mod 20), we shall explicitly determine the Fibonacci prim-
itive root if it exists (Proposition 1). In the sequel, Fn will denote the/7 Fibonacci number and/? will denote 
a prime greater than five. 

Theorem 1, There exists a Fibonacci primitive root modulo/? iffp = 1 or 9 (mod 10) and A(p) = p- 1. 

Before proving six lemmas needed to prove Theorem 1, we shall remark (see [2] for a proof) that the con-
gruence equation*2 =x + 1 (mod/?) has no solutions for/7 = 3 or 7 (mod 10), one solution modulo 5, and two 
solutions modulo/? for/? = 1 or 9 (mod 10). 

Lemma 1. \\g2 =g+ 1 (mod/7) then#n = Fng+ Fn,1 (mod/?). 
The proof of Lemma 1 follows easily by induction. 

Lemma 2. 

Proof. Since 

Lemma 2. \\g2 =g + 1 (mod/?) and \fg has order/? then/? = Alp) or/7 = - ^ 

gMv) s FA(p)g + FA(phl = 1 (mod/?), 

n\A(p). Thus/7 < Alp). 
If Fn = 0 (mod/7), then 

1 = gn = Fng+Fn^t = Fn„t (mod/?). 

Thus Alp) < n and hence in this case n = Alp). 

\iFn± 0 (mod/?) then 

g s
 1-pn-l ( m o d / 7 ) 

'n 
Thus 

0 = o . f ^ (g2-g-VF2 

- ~(Fn ~ Fn Fn-1 ~ &! > " (Fn
 + Fn~l ) " Fn_t + 1 

= l-1)n- Ln+1 (mod/?). 

For/7 even, we have Ln = 2 (mod/7) and this implies, since L2- 5F2=4(-1)n, that FM = 0 (mod/?). Thus we 
must have n odd and hence Ln = 0 (mod /?). Since 

0 = Ln = 3Fn„i + Fn_2 (mod/?), 
we see that 

1 = -<Fli - Fn-Sn-2-Fl2) ^ 5Flt (mod/;). 
Also we see that 

'5 = L*-5F*- 1 ^ -5Fl- 1 = -5(Fl+Flt) = -5F2n_t (mod/;). 
353 
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Thus F2n~l = 1 (m°d /?)• Also F2n = FnLn = Q (mod /?). Hence Alp) < 2n. Thus, sincen\Alp), A(p) = n or 
>4//7j = 2n. In fact, since Fn ^ 0 (mod/?),/I//?,/ = 2n. 

Lemma 3. \\g2 ~g + \ (mod/?), gn = 1 (mod/7), and/7 <A(p), \oer\g is uniquely determined modulo 

Proof. By Lemma 1, 
1 = # n = Fn9+ Fn~i (mod/?). 

Thus, if f n = 0 (mod/7) then Fn^1 = 1 (mod/7). Whence Alp) </?. Thus FH £ 0 (mod/?). This implies that 

^ ^LJ^zl (mod/;) 

and therefore*/ is uniquely determined modulo/?. 

Lemma 4. Assume /? = 1 or 9 (mod 10) and assume^ and #2 are two distinct solutions modulo/? to the 
congruence equation x2 = x + 1 (mod /7>. If A(p) = 2 (mod 4) then one otg1,g2 has order Alp) modulo p 
and the other has order A (p)/2 modulo/?. U Alp) j=l (mod 4) theng^ and #2 both have order Alp) modulo p. 

Proof. By Lemmas 2 and 3, g^ and g2 both have order Alp), or one has order Alp) and the other has 
order A(p)/2. Thus, we may say that at least one of gi, g2 has order Alp) and, without loss of generality, let us 
assume^ has order Alp). 

\f Alp) = 2 (mod 4) then 
_ 7 s h1)A(p)l2 s fgiff2)A(p)/2 = gA(p)l2gA(p)l2 s „^/2 ( | f | o d / | ) > 

Thus the order of#2 is not/4//?,/ so it must beA(p)/2. 
\fA(p) = Q (mod 4) then 

7 s f_7^fr;/2 s (gig2)A(p)l2 = gfp)l2gA(p)l2 s _ ^ ; / 2 ( m ( } d / ? ) 

Thus#2 does not have order A(p)/2 so^2 has order /4f/?A 
If /4(/?J is odd then neither g 1 nor g2 has order /I(p)/2 so both ^^ and #2 have order/I//?/ 

Lemma 5. If there exists a Fibonacci primitive root modulo/? then/? = 1 or 9 (mod 10) and Alp) = p - 1. 

Proof Assume g is a Fibonacci primitive root modulo/?. By the remark after Theorem 1,/? = 1 or 9 
(mod 10). Since g has order/? - 1, by Lemma 4, /? - 1 = Alp), orp - 1 = Alp)/2md Alp) = 2 (mod 4). This 
second possibility must be excluded since /? - 1 is even. 

Lemma 6. lf/? = 1 or9 (mod 10) and Alp) = p - 1, then there exists a Fibonacci primitive root modulo/?. 

Proof. Since/7 =1 or 9 (mod 10), there exists two solutions Xox2 =x + 1 (mod/?). By Lemma 4, at least 
one of these two solutions has order Alp) = p - 1. 

As a final result we prove 

Proposition 1. If/? = 11 or 19 (mod 20) and if g is a Fibonacci primitive root modulo/? then 
1 + Fn_i 

g = ~ - L (mod/?), 
where n = (p - l)/2. n 

Proof Let #2 be the solution other than g to x2 = x + 1 (mod p) and let n = (p - 1)/2. By Lemma 5, 
Alp)=p- 1 =2 (mod 4). Thus, by Lemma 4, #2 has order Afp)/2 = n. If Fn = 0 (mod/?) then 

- 7 =gn = Fng + Fn_t = F„^ s Fng2 +Fn„t m g^ m 1 (mod/?). 

Hence F?7 ^ 0 (mod /?) and the result follows. 
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ON SUMS OF FIBONACCI-TYPE RECIPROCALS 

W.E. GREiG 
West Virginia University, Morgan town, West Virginia 26506 

Letting/ be an integer, consider sequences of the form 

(1) Pn+1 = jPn +Pn-i , 
where P0 = 0. Without loss of generality take Pt = 1. As an example think of 0, 1, 3, 10, 33, 109, •••. We can 
define the Lucas complement of (1) to be 

(2) P* = P„+1+Pn-1 • 
The solution of these via the characteristic equation for the roots of [1] is well known. Let the roots of 

(3) (q2-jq- V = 0 

be a,b. The theory of equations tells us that ab = - 1 and that (a + b)=j. This gives (a- b) = 2a - j. Using the 
initial conditions it can easily be shown following the method of Vorob'ev [1] that 

(4) Pn = (an - bn)/(a - b) and P* = (an+bn). 

A few manipulations suffice to show that 

<5> Pi,2n = Pj,„Pj% 
and using (ab)n = (-1)n we can prove 

(6) Pj,2n-1 = Pj,n-lPj*n ~ C0S ^ -
Although well known for the Fibonacci and Lucas sequences when / = 1, their validity when / i 1 has not 
been appreciated. Similarly we can derive 

O) Pj,4n+t =Pj,2n+lP5n- 1-
Good [2] has derived the harmonic sum 

n 
Y, U/Fh) = 3-FB^/FB , 

m=0 

where b = 2m and B = 2n have the virtue of conciseness. A double generalization follows introducing/ as 
above and k a natural number arbitrary multiplier. 

Theorem. 
n 

(8) J2 <1/Pj>kb) = Cjtk - Pj>kB-i/Pj,kB ^ r n > 1 . 
m=0 

Proof, let j have any value, then as the basis for induction the proposition is certainly true for n = 1 
since that merely defines the parameter C:^. Now assume that it is true for some B = 2n and add the next 
term (1/Pj}k2Bf t 0 e a c n S|de- Hence the added term will equal the new minus the old right-hand side. 

1/Pj,k2B = (Pj,kB-l/PhkB>~(Pj,k2B~l/Pj,k2B>-
Cross-multiplying we have 

Pj,kB = Pj,2kBPj,kB~l~Pi,2kB-lPj,kB 
which is easy to prove using a Binet type of formula (4) as only the cross-product terms are non-zero. But it 
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would be more aesthetically appealing to keep the proof in the realm of integers. This is easily done by sub-
stitution of first (5) and then (6) into the above equation. This completes the inductive transition. 

Recall that Cy & is found from (8) when n = 1. The numerators of Ct^ are t n u s 

<9> Pj,2kCj,k = d + ^k+Pj,2k-l). 

Successive application of (1) shows that 

(10) {Pjtk} = Of 1,j, (j2+1), (j3+2j), (j4+3j2+1), (j5 + 4j3+3j), - . 

And using the definition (2) for the Lucas complement one finds 

(11) {Pf}k} = 2,j, (j2+2), (j3+3j), (j4+4j + 2), (j5 + 5j3+5j), .... 

And using (9) the numerators of Cj^ are 

(12) {PjakCj,k) = 4jj + 2h(2j2 + 4Ui4+j3+3j2 + 3j + 2Uj6 + 6j4+Wj2+4l 

(j8 + 7j6 +j5 + 15j4 + 5j3 + Wj2 + 5j + 2)f - . 

Table of £^£ Values 

(written in the form with denominator/3^ as in Eq. (9)) 

j/k 1 2 3 4 5 6 

108/144 1 
2 
3 
4 
5 
/ 

3/1 
4/2 
5/3 
6/4 
7/5 

6/3 
12/12 
22/33 
36/72 
54/135 
111 

10/8 
44/70 

146/360 
382/1292 
843/3640 

21/21 
204/408 

1309/3927 
5796/23188 

19629/98145 
1// 

46/55 
1068/2378 

13364/42837 
99574/416020 

513402/2646275 

There are some simplifications. When k = 0 (mod 4) then using (5) gives Ci^ = Pjfkh-i/pj,kh> where h = ¥2 
and for A-= 4, 8, -C]}k = (]//), (1/j- 1/P^h - .When k = 2 (mod 4) then using (7') one finds 

cj,k = pJ,kh-l/pJ,kh> 
where h = 1/> and for k = 2, 6, ••• C^y, = 2/j, (1/j - 1/Pf$), •••. A short table of Cjtk values is given and the in-
terested reader can extend it with some patience. 

Returning to the point of this paper, if we sum both sides of (8) over all odd k then the left-hand side is in-
tuitively obviously a sum over all the natural numbers. The right-hand side of (8) is merely a sum over all odd 
k and so the sum of the reciprocals of numbers satisfying (1) (which I call coprime sequences) has been re-
duced to half the number of termsB The special case of Fibonacci numbers,/ = 1, was derived by the author in 
October 1975 and is [3 ] . Gould [4, Eq. 2] expresses the rearrangement array as a sum and goes on to gener-
alize it into partition arrays, his equation (9). So from (8) I write 

13) X Mj,n) 
n=l 

Y, (Cj,k~ 1/a) for k odd 
k=i 

(14) - E 
k=i 

k odd 

[1/Pjtk + 1/Pj,2k +(a~ b)/(a4k - 1)1 

as but two of several expressions that can be derived using Binet's expressions (4), where a +_p = j and ab = - / . 
All of the equations in the author's earlier paper [3] are valid here by merely replacing N/5 by the more gen-
eral (a - b) and I do not see any point in taking up space to repeat them. 1 refer to sequences satisfying (1) as 
coprime sequences because they fulfill a generalization of a theorem in Vorob'ev [1] showing that only in this 
case are adjacent terms always coprime. The author used the generalization of this theorem in an earlier work 
[5] 
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ROW AND RISING DIAGONAL SUMS FOR A TYPE OF PASCAL TRIANGLE 

STEPHEN W. SMITH and DEAN B. PRIEST 
Harding College, Searcy, Arkansas 

As has been noted by Hoggatt [1 ] , Pascal's Triangle can be thought of as having been generated by column 
generators. This provides insight into the row sums and rising diagonal sums of this triangle. Let {ai}o)7=0 ^e" 
note a real number sequence and consider the following array: 

a0,0 a0,l a0,2 a0,3 •" a0,m '" 
al,0 al,l al,2 al,3 - al,m '" 
a2,0 a2,l a2,2 a2,3 "' a2,m "' 

an, 0 an,l an,2 an,3 an,m 

which has the Pascal-like property [3] 

„ = [ai-i,j-i+ai-i,j ' f i>i>1, 
a{j x 0 if j>i>0. 

Under these conditions, it follows readily that 
i-l 

aij = E aKj-l 
k=0 

for all / and /such that / > / > 1. For the following assume that f(x) is the generating function for the sequence 
{ai,o)?=l-

Theorem 1. The generating function for the kth column (k = 0,1,2, •-) in the above array is 

gkM = f(x)[x/(1-x)]h, 

Proof. Let 
fix) = a0i0

 + ai,ox + a2yO
x2 + -

denote the generating function for the zeroth column {ai}o)T=i • Suppose that 

f(x)[x/(1-x)]m = X (a^mix1 

i=Q 

for some positive integer m. Then by the comment preceding Theorem 1 
oo / i—1 \ oo 

f(x)[x/(1-x)]m+l = f(x)[x/(1-x)]m[x/(l-X>] = Y, E akm j*1 = E fym+l)** 

i=0 \k=0 J i=0 
and the proof is complete by induction on m. 

Theorem 2. The generating function for the row sums of the above array is 
[f(x)(1-x)]/(1-2x). 
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Proof. Since#£(x) = f(x)[x/(1 ~ xj] , the generating function for the row sums is 

7 

7-

= fix) GM = E ffkM = fix) £ f 7 f ~ ) = Hx) 
k=o k=o w x ' | / -

Theorem 3. The generating function for the rising diagonal sums of the above array is 

[f(x)(1-x)]/(1-x-x2). 

Proof. Consider the new array: 

7-
l-2x 

a0,0 

31,0 

32,0 
a3,0 

34,0 

0 
30,1 

31,1 

32,1 

33,1 

0 
0 

30,2 

31,2 

32,2 

0 
0 
0 

30,3 

31,3 

0 
0 
0 
0 

ao,4 

f(x) xgi(x) x2g2(x) x3g3(x) x4g4(x) ••• 

Note that the column generator for the k column (k = 0, 1,2, —) \sxkg^(x). Furthermore the row sums of 
this array are the rising diagonal sums of the original array. Thus the generating function for the rising diagonal 
sums in the original array is 

k 

DM = £ xkgk(x) = fix) £ 7-
flx) 1 - x 

k=o k=o ' ' " ' 1-x-x 

Now if f(x) = 1/(1 - x), one has the usual Pascal Triangle and some of results in [1] . Moreover, if 

fix) = x[(1 - x)/(1 - 3x +x2)] + 1 = 11- 2x)/ll - 3x+x2), 

then the theorems above can be used to answer Problem H-183 [4] in this Quarterly. Indeed, since 

H(x) = a + (h-ap)x 

1 - px + qx2 

is the generating function for the generalized Fibonacci sequence^ = wn(a,b;p,q) [2 ] , and 

and 

Olx) 

E(x) 

wi + fwj - fp - 2q)wi ]x 

1-lp2 -2q)x + q2x2 

- wO + l^2~ (P2 ~ 2q)w0]x 

1-lp2-2q)x + q2x2 

are the generating functions for the sequences [w2k+i}7=, and {w2k}°L=lt respectively, then questions similar 
to H-183 can be answered readily by considering the generating functionsxH(x) + 1,xO(x)+ 1, andxE(x)+ 1. 
In particular, if one considers the sequence {a^o^g where aoyo= 1 and a^Q = L.2i~i ( for /= 1,2,3, •-), then 
the array is 

1 
1 1 
4 2 1 

11 6 3 1 
29 17 9 4 1 
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the generating function for the zeroth column is 

(1-2x+2x2)/(1-3x+x2), 

the generating function for the row sums is 

(1 - 3x + 4x2 - 2x3)/(1 -5x + 7x2- 2x3), 

and the generating function for the rising diagonal sums is 

(1 - 3x + 4x2)/(1 - 4x + 3x2 +2x3 - x4). 
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CERTAIN GENERAL BINOMIAL-FIBONACCI SUMS 

J. W. LAYMAN 
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 

Numerous writers appear to have been fascinated by the many interesting summation identitites involving the 
Fibonacci and related Lucas numbers. Various types of formulas are discussed and various methods are used. 
Some involve binomial coefficients [2 ] , [4 ] . Generating function methods are used in [2] and [5] and higher 
powers appear in [6] . Combinations of these or other approaches appear in [1 ] , [3] and [7] . 

One of the most tantalizing displays of such formulas was the following group of binomial-Fibonacci identi-
ties given by Hoggatt [5 ] . He gives: 

<1> l U F 2 n = £ ( l ) F k , 
k=0 

n 
(2) 2nF2n= E {l)F3k, 

k=0 

(3) 3nF2n = £ {n
k)F4k. 

k=o 

In these formulas and throughout this paper Fn denotes the/7 Fibonacci number defined by the recurrence: 

(4) Fn = Fn._1+Fn^2, F0 = 0, Ft = 1. 

Hoggatt attributes formula (2) to D. A. Lind, (3) to a special case of Problem 3-88 in the Fibonacci Quarterly 
and states that (1) is well known. 

The three identities given above suggest, rather strongly, the possibility of a general formula of which those 
given are special instances. Hoggatt does obtain many new sums but does not appear to have succeeded in ob-
taining a satisfactory generalization of formulas (1)-(3). 

In the present paper, we give elementary, yet rather powerful, methods which yield many general binomial-
Fibonacci summation identities. In particular, we obtain a sequence of sums the three simplest members of 
which are precisely the formulas (1)-(3) given above. In addition, similar families of sums are obtained with 
the closed forms a^ mFn and an

3 mF^n for/77 = /, 2, 3, •••, as well as the general two-parameter family of sums 
with the closed form (ar)m)nFrn. 

Our principal tools for obtaining sums will be the binomial expansion formula 
m 

(5) Z (™)(y-Dk = ym, 

and the fact that the Fibonacci number Fn is a linear combination of an and bn, where 

a=l±JL and b = l^f-

are roots of the polynomial equation 

(6) x2=x+1. 

The Fibonacci numbers are then 
(7) Fn = (1/^~5)(an-bn). 
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We are already in a position to obtain a summation formula. Let w stand for a root a orb of (6). Then we 
have 
(8) w2 = w+ 1. 

Clearly, then, by (5) and (8), 

u=0 n=0 

and therefore 

(a2)n-(b2)n = £ (I) (ak-bk). 
n=0 

But from (7), this is seen to be equivalent to 
n 

f2n = E (l)Fk> 
n=0 

which is formula (1). 
In order to obtain more general results, we proceed as follows. From (8) we see that 

w = w+1 = F2W + F1, 

w = w + w = Fjw + F2, 

(9) wm = w™'1 +wm~2 = Fmw+Fm^ 
and, in general, by an easy induction, 

(9) 

Rewriting, we have 

,n,m F 
1- -2— = - -p^w, m t 1, rm~l rm~l 

or, equivalently, 

(10) - I - ^ - 1 w" = V ( " ) I -=L.)k
w

mk -te)""" = £(')(^r) k=0 

where, again, w may be either a or b. Again using the fact that Fn is a linear combination of a and b , we 
obtain 

(^)"f'-|(^-""1^)'f- -"• 
Equation (11) takes on especially simple forms for certain values of m. For example, when m =2 and J, re-

spectively, we have 

(12) Fn= f (n
k)(-Vn+kF2k 

and 

(13) 2nFn= £ (n
k)(-Dk+nF3k. 

Other values of m result in non-integral ratios in (11), e.g.,/77 =4 and 5 give 

(14) (3jYFH = (-ir £ (h
k)h'/*)kF4k 
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and 

(15) U)nFn = (-1)n E {n
h)(-MhF5k, 

x ' k=o 
Each of the sums (12)—(15) and the general sum in (11) yield closed forms of the type 

(al,m) Fn , 

In order to obtain sums with closed forms of the type 

(a2)m)nF2n 
we return to (9). If we let m = 2 and solve for w, w = w - 1, we may substitute this expression into (9) to 
obtain 
(16) wm = Fm(w2~ 1) + Fm„i = Fmw2-(Fm-Fm,1) = Fmw2 - Fm_2. 
This is equivalent to: 

(17) ~ ~ w2 = - — wm + l, m t 2. 
*~m~~2 'm~2 

Now proceeding in the same manner as led to (11) results in the general formula 
n 

(18) (Fm)nF2n = £ (I) (Fm.2rkFmk, mi 2. 
k=o 

The special cases m = 1, 3, and 4 of this general equation are found to give exactly the three sums involving 
F2n which were listed by Hoggatt and given above in (1)-(3). All other cases can easily be seen to lead to for-
mulas containing a power of a Fibonacci number in the summand and in this sense previous investigators can be 
said to have found all "easy" sums of this type. The first two cases giving new sums are thus, for/?? = 5 and 6, 

(19) SnF2n = f ) (n
k)2-'kF5k 

k=0 
and 

(20) 8nF2n= £ (n
k)3n'kF6kf 

Steps similar to those leading to (16) can be followed to express wm in terms of w3. We find, after simplifying, 

2wm 

which, following our general procedure, yields 

2wm = Fmw3 + Fm_3 

(21) (Fm)nF3n= ^ (l)(-irk2k(Fm„2rkFmk, mi 3. 
k=i 

For/77 = 2, 4, 5, 6 we have, respectively, 

(22) F3n = (-ir Z (l)(-2)kF2k, 
k=0 

(23) 3nF3n = (-1Jn E (l)(-2)kF4k, k 
k=0 

(24) snF3n = f-1)n E {l)(-2)kF5k, 
k=0 
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and 

(25) 4nF3n = (-IP i(n
k)(-VkF6k. 

k=o x 

Rather than continuing with these special families of sums, we now proceed to the general two-parameter 
family yielding closed forms of the type 

fa )nF 
i^^ra / rrn -

Let 0 < r < m. From (9) we have 
wr = Frw+Fr„i, wm = FmW+F^i 

which give, after considerable simplification, 

(26) wm = F-f- w' + t-V1"1 % - r , 0 < r < m. 
' r ' r 

The result just obtained is equivalent to 
.. / F \ 

0 < r < m, 
rm-r J \ rm-r / 

which yields the summation 

(27) hirl /^Vr = <-i)T[-P-\wm + i. 
\ 'm-r J \ 'm-r / 

(28) (Fm)nFm = Y,(l)(-1>r(n~k)(Frn-rrk(Fr)kFmk, 
k=0 X ' 

valid for all integral m,n, and /-satisfying 0 < r < m . 
A number of special cases of the above general formula have been given previously in this paper for r= 1, 2, 

and 3. Another interesting case results when m = 2r. Using the well known fact that F2r/Fr\$ the Lucas num-
ber Z.rdefined by the recurrence 

(29) Ln = Ln^+Ln,2, L0 = 2, Lt = 1, 

we have, in this case, 

(30) (Lr)nFrn= £ [l)(-Vr(n^F2rk, 

The special case r = 2p has been obtained by Hoggatt in [5] . Some instances of (30) which have not been given 
among our previous formulas are 

(3D 7nF4n= E [l)FBk 
k=o x ; 

and 
n 

(32) 11nF5n= Z[n
k)(-Vn~kF10k 

which obtain when r= 4 and 5, respectively. 
Of course, if we recall that the Lucas numbers Ln are linear combinations of an and bn, defined in (7), 

specifically 
(33) Ln = an+bn , 
then we see that each sum obtained above remains valid when Ln is substituted for Fn at the appropriate 
occurrences of Fn in each formula. We state some of these. From (18) we have 
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(34) (Fmn2n = E ( l)(Fm-2)n~kLmk, mt2, 
k=0 K ' 

several specific instances being 

^L2n = S ( nk)Lk> 
k=0 V ' 

2"%L2n = X [nk)L3k 
k=0 X ' 

and 

3?l[-2n = J2 \nk)L4k. 
k=0 V ' 

The interested reader may obtain other Lucas number analogs of formulas given above. 
Preliminary results indicate that modifications of the methods used in this paper will lead to many other quite 

general results on binomial Fibonacci sums. Perhaps we might be forgiven for paraphrasing Professor Moriarty 
(see [4]) in saying "many beautiful results have been obtained, many yet remain." 
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A NOTE ON THE SUMMATION OF SQUARES 

VERNERE.HOGGATT,JR. 
San Jose State University, San Jose, California 95192 

Consider 

We wish to find 

(A) 

(B) 

(0 

Pn+2 = pP„+l+qP„, P0 = 0, Pt= 1. 

£ Pj = PnPn+1 if P = Q = 1: 
i=l 

E fj 2 _ PnPn+1 if q = 1; 

" p2 _ 2q2Pn+1Pn + (1f^1 (P2
n+2 + «~P'rf+l ~ U 

1 q(p2+q2j_(p_q)2 
i=i 

The usual way to establish (A) is by induction after (A) has been guessed from tabular data, or by the geo-
metric method of Brother Alfred [1] .We now establish (B) by the method of [1]. 

Form/) unit squares horizontally. Above these add/? copies of/? x p squares. This yields 

p-(p2+1) = P2P3-

\dd to the leftp copies of the square P2 on the edge to get a rectangle P3P4 . 

*v_-

r~ i — ~ 
1 _ „ ! ! L 

p unit squares 
367 
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Since every square P f, P2, P3 is used p times so far 

PJ+P2
2+P2

3 = P3P4/P. 

This obviously may be continued as far as one wishes so that 
n 

E Pf = PnPn+l/p, P * 0, q = 1. 

Second Method: (q = 1) 
Start with 

Pn+2 = PPn+l +Pn 
and multiply through by Pn+1 to get 

Pn+lPn+2 = PP
n+l + PnPn+l 

E pj+2Pj+i = E pp?+i+ E pjPj+i -
j=0 j=0 j=0 

Thus, 
n n+1 n 

Pn+2pn+l = P E PU = P E Pf a n d E Pf = PnPn+l/P-
j=0 " j=l j=l 

Before doing the general case, let us consider the result/? = / and q £ 0. 

Pn+2 = Pn+1 +QPn 
Pn+2Pn+l = Pn+1+ QPn+lPn 

qPn+lPn = QPn+Q2pnPn-l 

q2pnPn-l = Q2Pn-l + q3pn~lPn-2 

Thus, 
qn'1P2Pi = qn'1P2

1+qnP1P0 . 

E VJPn+l-j ~ Pn+lPn+2> 
j=0 

We now proceed to the general case. From 
Pn+2Pn+l = PPn+1+qPnPn+l 

one may at once write 
n+l 

12 (D) E PPj = Pn+2Pn+l + (1 ~ Q) E PjPj+1 > 

while from 
Pf+2 = p2p?+i+q2pf+2pqPjPj+1 

one can immediately write 

(E) P2
n+2 + P2

n+1 - P2 -P2=p2(P2
n+1 -P2)+{p2+q2-1}i, Pj+2pqj: PjPj+1 . 

ri ri 
One can now use (D) and (E) to solve directly for 

n+l n / i f 
ZPPf = Pn+2P„+l + (1-q)Z PjPi+1 = Pn+2Pn+1+<J^M\p2

n+2 + P2
+1-p2- l-p2P2

+1+p< 

= (p2+q2-V £ Pf\ 
ri J 
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n Pn+2Pn+1-ppl1+a^[p2+2+P2+ia_p2)_V 

£ ppf = m. 
j=l (2pq-p2-q2+] + qp2+q3 - 1)/2pq 

Testingp = 7, q = 7, 

E F2 = 2Fn+2Fn+1- 2Fn+1 _ 
ri ^ ~ rn+i tn 

For#= 7 only, 
i=l 2 

V nP2 - 2pPn+2Pn+1-2p2P2
n+1 _ Pn+2Pn+1 -pP2

+1 

i=l p2+1-(p-1)2 2P 
so that 

n 

£ p2i = Pn+iPJp • 
i=l 

Thus, 
2qPn+2Pn+1 - 2pqP2

n+1 + Uf4 [P2
n+2 + (1-p 2)P2

n+1 - 11 
V pf = p-
j=l ' q(p2

+q2)-(p-q)2 

_ 2q2<Pn+lPn) + (:~RL [P2
n+2 + (1 -P^Ll ~ ^ 

q(p2 + q2)-(p-ql2 
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FIBONACCI NUMBERS IN DIATOMS? 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, California 

In the October 1968 issue of Pacific Discovery there appeared an article entitled, "Nature's Opaline Gems," 
by G. Dallas Hanna of the California Academy of Sciences. At the beginning of the article an allusion was made 
to Fibonacci in connection with patterns in nature. This naturally aroused a curiosity about the possibility of 
such numbers having been found in diatoms (nature's opaline gems). Mr. Hanna was good enough to send over 
an electron microscope reproduction of a diatom that looked something like a sunflower (see Fig. 1). However, 
the count did not seem to work out and there were some disturbing features such as rays that started in from 
the edge but did not go all the way to the center. 

A meeting was arranged with Mr. Hanna at the Academy of Sciences and there in the Geology Department 
the author encountered the world of diatoms. Mr. Hanna has been working on these algae of ancient times with 
their silicified cell walls since 1916. Long rows of books dealing with them as well as ponderous tomes contain-
ing drawings made of them in the past century show that this field has attracted the attention of many nature 
explorers. 

After viewing some of the magnificent pictures that are now being produced by a special electron microscope 
(see Fig. 2 for another example), work was begun on going through the books, examining the pictures, counting 
rays and other features. After some time, the author asked Mr. Hanna whether the numbers on these specimens 
remained constant for a given species. He said that they did not; in fact that they varied widely without any 
particular pattern. 

Thus the question whether there are Fibonacci patterns in diatoms seems to have a negative answer. The re-
sult is being reported here as part of the total picture of Fibonacci numbers in nature as well as to suggest that 
those who are interested in the world of microscopic creatures might want to examine them from this point of 
view. 

Figure 1 Figure 2 
This note was writ ten quite some years ago. In the meantime, the gracious and generous G. Dallas Hanna has 

passeci away. 
Shortly after we had virtually writ ten off a connection between diatoms and Fibonacci numbers an article was 

repeived from Edward A. Parberry entitled " A Recursion Relation for Populations of Diatoms " pub shed?n 
The Fibonacci Quarterly of December, 1969, pp. 4 4 9 - 4 5 6 . ' M e u 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited By 
RAYMOWD E.WH1TWEY 

LockH aven State College, Lock Haven, Pennsylvania 17745 

Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics 
Department, Lock Haven State College, Lock Haven, Pennsylvania 17745. This department especially welcomes 
problems believed to be new or extending old results. Proposers should submit solutions or other information 
that will assist the editor. To facilitate their consideration, solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

H-276 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Show that the sequence of Bell Numbers, {BJJ^Q, IS invariant under repeated differencing. 
n 

B0 = I Bn+1 - J2 il)Bk <" > 0). 
k=0 

H-277 Proposed by L. Taylor, Brentwood, New York. 

Up = +1 (mod 10) is prime and x = V5 is of even order (mod/7), prove that* - 3, x - 2, x - 1, x, x + 7 
and x + 2 are quadratic nonresidues ofp if and only if/? = 39 (mod 40). 

SOLUTIONS 
A PLAYER REP 

H-261 Proposed by A. J. W. Hilton, University of Reading, Reading, England. 

It is known that, given k a positive integer, each positive integer /? has a unique representation in the form 

" = (\kHfr})+•••<"!)> 
where t = t(n,k), 3/ = a[(n,k), (i = t, •-, k), t> 1 and, if k > t, ay, > ay,-i > — > at. Call such a representation 
th e k-bin om ial rep re sen ta tion 0 f n. 

Show that, if k> 2, n = r + s, where r > 1, s> / and if the /r-binomia! representations of rand s are 

'-ftW£n*--('"). -ftK'tj)--(v) 
then 

Solution by the Proposer. 

Define a total order <s on the collection of all /r-sized sets of positive integers as follows: If A,B are two dis-
tinct sets of k positive integers write A <s B if 

max {x :X^A/B) < max{x : x ^B/A] . 

Let Sk(r) denote the collection of trie first r sets under <s, and letSj^frJ denote the collection of the firsts 
sets under <s which do not contain any of {1 , •••, r). if A is any collection of/? /r-sized sets of positive inte-
gers let 

AA= {B :\B\ = k- 1 and B c A for some A e A } . 
371 
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The Kruskai-Katona theorem states that [A A | > \AS^ (n) | . Thus 

\ASk(n)\ < \A(Sk(r)u S\(s))\ . 
But 

and 
\A(Sk(r) u S'k(s))\ 

and the required inequality now follows. 
REFERENCES 

G.O.H. Katona/'A Theorem of Finite Sets, Theory of Graphs," Proc. of Colloquium, Tihany, Hungary (1966), 
pp. 187-207. 
J. B. Kruskal, "The Number of Simplices in a Complex,"Mathematical Optimization Techniques, University 
of California Press, Berkeley and Los Angeles (1963), pp. 251-278. 

MODERN MOD 

H-262 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Show that L 2 = 1 (mod/?2) if and only if Lp = 1 (mod/72). 

Solution by the Proposer. 

Put 
Ln = an + $n, a + (3= 1, a$= -1. 

Then 
n-l 

1 = (a + P)n = Ln+Y, (n
k)

akPn~k. 

In particular 

h'>-li(l)akep-h 

k=l 
and 

k=i 

Since 

r 
it follows that 

Lp = 1 (mod/?2) 
if and only if 

P'1 , iik-1 , i 
y til— akpp-k s 0 ( m o d j 
k=i k 

In the next place 

{ k ) = 0 (mod/?2) (p\ k) 

and 
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*£(;;_-/) W - / ^ £ (mod,-). 
Thus Lp2 = 1 (mod p2) if and only if 

£ t ^ — aPk&pKpk - 0 (mod/7). 

Since 

L — — aPP ) ^E ~k— a?kpP-Pk (mod/;), 
k=i / k=i 

it follows that Z.p2 = 1 (mod/?) if and only if 

T t ^ — akpP-k - 0 (mod/7). 

Therefore 
Lp2 = 1 (mod/?2) -<=•• Z.p = 1 (mod/?2). 

REMARK: More generally, if k > 2, we have 

L k = 1 (mod/72) <=> Lv = 1 (mod/?2). 

LUCAS THE SQUARE IS WOW MOD! 

H-263 Proposed by G. Berzsenyi, Lamar University, Beaumont, Texas. 

Prove that Z.fmw = 4 (mod Z.^) for every n,m = 1,2, 3, - . 

Solution by the Proposer. 
Clearly, 

/ _ /„m\2k+l , /om\2k+l 
L(2k+l)m ~ (CL ) +(P ) 

is divisible by Lm = am +$m, where _ _ 
a = LtslL o = 1-y/5 

2 , P 2 -
Consequently, if n is odd, say 2k + 1, then upon using formulae (1^5) and ( l ^ ) of Hoggatt's Fibonacci and 
Lucas Numbers, 

L2nm = Lnm~ 2(~1)nm = L(2k+l)m~^~^ 

and, depending upon the parity of /??, either L2nm + 2 or L2nm - 2 is equal to L,2k+i)m' Hence the product 
(L2nm+2)(L2nm-2) = ^ i m - 4 i s d i v i s i b l e b V ^ m -

If n is even, say n = 2k, we proceed by induction on k. For k = 1, 

L2nm = L4m = L2
2m-2 = (Li-2(-lD2-2 = L4

m-4(-1)m L2
m+2, 

hence, L2nm - 2 and, therefore, i\nm - 4 is divisible by L2
r Assume now that the desired result holds for 

all even integers less than n = 2k. Then 

and hence 

2 
l-2nm = l-4km = ^2km~2' 

L-2nm ~2 ~ L2km ~4 * 
This latter expression is divisible by L2

n either by the induction hypothesis or by the proof for odd/?, thus 
(l-2nm + 2)(l-2nm ~ 2) must also be divisible by L2

%. This completes the inductive step. 

Also solved by G. Lord, D. Beverage, F. Higgins, and G. Wulczyn. 
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AN OLDSE! 
H-256 Proposed by E. Karst, Tucson, Arizona. 

Find all solutions of 
(i) x+y+z = 22n+1- 1, 
and 
(ii) x3 +y3 +z3 = 26n+1 - 1, 
simultaneously for A? < 5, given that 
(a) x, y, z are positive rationals 
(b) 22n+1 - I 26n+1 - 1 are integers 
(c) n = log2\/f / where ns a positive integer. 

Solution by the Proposer. 

From this journal (Dec, 1972, p. 634; April, 1973, p. 188) we have the following 

n, x+y+z = 22n+1 - 1, x3 +y3+z3 = 26n+1 - 1: 

1. 1+1 + 5 = 7 = 23 - 1 13' + 13+53 = 127 = 2r*'-/ 

2. 1+ 11+ 19 = 31 = 25 - 1 13 + 113 + 193 = 8191 = 213 - 1 

3. 1 + 55+71 = 127 = 27 - 1 I3 + 553 + 713 = 524237 = 219 - 7 

4. 19+29 + 79 = 127 = 27 - 1 193 +293 + 793 = 524287 = 219- 1 

5. 1+239 + 271 = 511 = 29- 1 13 +2393 +2713 = 33554431 = 225 - / 

Through the courtesy of Hans Riesel, Stockholm, we have also: 

n = log2 N/34", x,y,z = 13/2, 19, 83/2 

n = I og2 >/*£", x,y,z = 11,47/2, 113/2 

n = \oq2y/76, *,YJ = 26,31,94 

n = \0QzJ79, x,y,z = 29, 121/4,391/4. 

******* 
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DEFIWITIOWS 
The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+l + Fn> Fo = 0, F\ = 1 and Ln+2 = Ln+i + Ln, LQ = 2, Li = I 

Also a and b designate the roots (1 + -Jb)l2 and (1 - yfb)/2, respectively, of x - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-364 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas. 

Find and prove a formula for the number R(n) of positive integers less than 2n whose base 2 representa-
tions contain no consecutive 0's. (Here n is a positive integer.) 

B-365 Proposed by Phil Man a, Albuquerque, New Mexico. 

Show that there is a unique integer m > 1 for which integers a and r exist with Ln = arn (mod m) for all in-
tegers n > 0. Also show that no such m exists for the Fibonacci numbers. 

B-366 Proposed by Wray G. Brady, University of Tennessee, Knoxville, Tennessee, and Slippery Rock State 
College, Slippery Rock, Pennsylvania 

Prove that L{Lj = Lh Z.& (mod 5) when/ +j = h + k. 

B-367 Proposed by Gerald E. Bergum, So. Dakota State University, Brookings, So. Dakota. 

Let fxj be the greatest integer \nx, a= (1 +^/b)/2, and/7 > 1. Prove that 

(a) F2n = [aF2n-i] , 
and 
(b) F2n+i = [a2F2n-l] • 

B-368 Proposed by Herta T. Pre/'tag, Roanoke, Virginia. 

Obtain functions#/W and bin) such that 
n 

J^ iFiLn^i = g(n)Fn+h(n)Ln 

i=l 

and use the results to obtain congruences modulo 5 and 10. 

B-369 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas. 

For all integers n > 0, prove that the set 

$n = \L2n+l, L2n+3, L2n+s) 

has the property that \\x, y e 5 n and* ? y thenxy + 5is a perfect square. For/7 = O verify that there is no in-
teger z that is not in Sn and for which {z, L2n+J[, L2n+3, L2n+$\ has this property. (For/7 > 0 the problem 
is unsolved.) , , - j -
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SOLUTIONS 
BICENTENNIAL SEQUENCE 

B-340 Proposed by Phil Man a, A Ibuquerque, New Mexico. 

Characterize a sequence whose first 28 terms are: 

1779, 1784, 1790, 1802, 1813, 1819, 1824, 1830, 1841, 1847, 1852, 1858, 1869, 1875, 
1880, 1886, 1897, 1909, 1915, 1920, 1926, 1937, 1943, 1948, 1954, 1965, 1971, 1976. 

/. Solution by H. Turner Laquer, University of New Mexico, Albuquerque, New Mexico. 

It can easily be verified that the sequence consists of those years when the United States has celebrated 
independence Day (July 4) on a Sunday. 

//. Solution by Jeffrey Shall it, Wynnewood, Pennsylvania. 

According to the World Almanac, the sequence is characterized by the years in which Christmas falls on a 
Saturday. 

Also solved by the Proposer. 
CLOSE FACTORING 

B-341 Proposed by Peter Lindstrom, Genesee Community College, Batavia, New York. 

Prove that the product F 2nF 2n+2F 2n+4 °f three consecutive Fibonacci numbers with even subscripts is 
the product of three consecutive integers. 

Solution by George Berzsenyi, Lamar University, Beaumont, Texas. 

It is well known (see, for example l ^ in Hoggatt's Fibonacci and Lucas Numbers) that 

F„-kFn+k-F^= (-1)n+k+1F2
k. 

Therefore, replacing n by 2n + 2 and letting k = 2, one obtains 
F2nF2n+4 = F2n+2 " 1 = (F2n+2 ~ D(F2n+2 + V. 

Thus 
F2nF2n+2F2n+4 = (F2n+2 ~ D(F 2n+2>(F 2n+2 + V. 

Also solved by Gerald Bergum, Richard Blazej, Wray Brady, Michael Brozinsky, Paul S. B rue km an, Herta T. 
Freitag, Dinh The'Hung, H. Turner Laquer, Graham Lord, Carl F. Moore, C. B. A. Peck, Bob Prielipp, Jeffrey 
Shallit, Sahib Singh, Gregory Wulczyn, David Zeitlin, and the Proposer. 

PERFECT CUBES 

B-342 Proposed by Gregory Wulczyn, Buc knell University, Lewis burg, Pennsylvania. 

Prove that 

is a perfect cube for/7 = 1, 2, •••. 

Solution by Graham Lord, Universite Laval, Quebec, Canada. 
2LL+Ln+S'-LlLn-i = 2L3

n_1+(Ln+1-Ln„1)3
+6Ll+1Ln_1 = (Ln+1 + Ln^)3 = (5FJ3 . 

Also solved by Gerald Bergum, George Berzsenyi, Wray Brady, Paul S. B rue km an, Herta T. Freitag, Dinh The' 
Hung, H. Turner Laquer, John We Milsom, Carl F. Moore, C. B. A. Peck, James F. Pope, Bob Prielipp, Jeffrey 
Shallit, Sahib Singh, David Zeitlin, and the Proposer. 

CLOSED FORM 

B-343 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Establish a simple expression for 



1977] ELEMEWTARY PROBLEMS AWD SOLUTIONS 377 

J2 tF2k-lF2(n~k)+l ~ F2kF2(n-k+l)J • 
k=l 

Solution by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

1 1 
F2k-lF2n+l-2k~ F2kF2n+2-2k = § lL2n + L4k-2n-2 ~ ^-2n+2 + l-4k~2n~2l = ^ ^4k-2n-2~ ^-2n+lL 

n n 
2 lF2k-lF2(n-k)+l- F2kF2(n-k+l>] = T J2 L4k-2n-2~ TL2n+l 
k=l 1 b 

= $ fF2(2k-l)-2r-2l1i ~ | L2n+1 = ^ lF2n ~ F~2nJ " | L2n+i = -j= [4F2n - nL2n+lJ. 

Also solved by Gerald Bergum, Paul S. B rue km an, Herta T. Freitag, H. Turner Laquer, C. B. A. Peck, Bob 
Prielipp, Sahib Singh, and the Proposer. 

AVERAGING GIVES G.P.'S 
B-344 Proposed by Frank Higgins, Naperville, Illinois. 

Let c and d be real numbers. Find lim xn, wherexn is defined by 
xl = c, x2 = d, ar|d xn+2 = (xn+i +xn)/2 for n = 1,2,3, •-. 

Solution by Sahib Singh, Clarion State College, Clarion, Pennsylvania. 

It is easy to see that X2n+i - x± and X2n -
 x2 a r e D O t n geometric progressions with % as common ratio. 

Thus lim xn = (c+2d)/3. 

Also solved by Gerald Bergum, George Berzsenyi, Wray Brady, Michael Brozinsky, Paul S. B ruck man, Charles 
Chouteau, Herta T. Freitag, Ralph Garfield, Dinh The'Hung, H. Turner Laquer, jointly by Robert McGee and 
Gerald Satlow and Patricia Cianfero, Carl F. Moore, Bob Prielipp, Jeffrey Shallit, A. G. Shannon, Gregory 
Wulczyn, David Zeitlin, and the Proposer. 

AWOTHER LIMIT 

B-345 Proposed by Frank Higgins, Naperville, Illinois. 

Let r >s > 0. Find lim Pyl, where Ptl is defined by 

Pt = r + s and Pn+1 = r + s-(rs/Pn) for n = 1,2,3, - . 

Solution by Wray Brady, Knoxville, Tennessee. 

One can establish by an induction that 

Pn = (rn+1-sn+1)/(rn-sn) 

from which it follows that Pn-^rasn-+ °°. 

Also solved by Gerald Bergum, George Berzsenyi, Paul S. B rue km an, Herta T. Freitag, Ralph Garfield, H. 
Turner Laquer, jointly by Robert McGee and Gerald Satlow, Jeffrey Shallit, A. G. Shannon, Sahib Singh, 
Gregory Wulczyn, David Zeitlin and the Proposer. 
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