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GENERATING IDENTITIES FOR GENERALIZED
FIBONACCI AND LUCAS TRIPLES

A.F. HORADAM
University of York, York, England, and University of New England, Armidale, Australia

BACKGROUND

In his article on generating identities for Pell triples, which involve the two Pell sequences, Serkland [5]
modelled his arguments on those used by Hansen [1] for Fibonacci and Lucas sequences. Both articles suggest
generalizations in a natural way.

Consider the following pairs of sequences (1) and (2), and (3) and (4):

-n=0 1 2 3 4 b 6

(1) Fibonacci F, - 0 1 1 2 3 b 8
(2) Lucas L, 2 1 3 4 7 11 18
(3) Pell P, - 0 1 2 5 12 29 170
(4) Pell R, 2 2 6 14 34 82 198
for which the recurrence relations

(5) Fui2 = Fprgt Fy

(6) Lysz = Lpsg Ly

(7) Pu+2 = 2Pys1 +Py

(8) Ant2 = 2Ru+1* Ay

and the summation relations

(9) Fut1# Fuo1 = Ly,

(10) Pui1 #Pp1 = Ry

hold.

It is natural to examine pairs of sequences {A4,,} and {B,,} similar to (1) and (2), and (3) and (4) having the
properties:
() Ag=0 Ag=1 Ay = cAnsg+dA, (c#0,d#0)
(11) (ii) Byg =2, By =c¢, Byip =cBy+1+dB,
(i) Apss*Anq = By

Thus, A, =F, and B, =L, ifc=1,d =1, while A, =P, and B, =R, ifc=2 d=1.
Generally, n is any integer. From (11) (i)-and (ii), we may deduce that whend =7,

(12) Ay = (114,
(13) B, = (—7)”Bn
(14) Apr1 t A1 =By

Result (14) may be readily derived from (11) (iii), (12) and (13).
It looks as though ¢ = 7 is a condition for property (11) (iii), which generalizes (9) and (10), to exist. We pro-
ceed to establish this fact.

289



290 GENERATING IDENTITIES [DEC.

GENERALIZATIONS
The Binet forms for A,, and B,, are
(15) Ay = C =
a—
(16) B, =a"+8" ,
where a, 8 are the (distinct) roots ofx2—ex—d = 0, so that
(17) =€—4—_-Q, B=€———Q, a+B=c¢ a-B=0, 0 =<J/c*+4d, aff = —d.

2 2
From (11) (iii), (15) and (16), we have
(an+1 _ ﬁn+1) " (an—J _ 671—1) = (a— B)(an "‘511)
(a1 _ " 1)(aB+1) = 0 onsimplification
ap+1=0 = a1 £0 (e, a#B)
(18) d=1 =+ af=-d by((17).
Thus, the required condition is d = 7 with ¢ unrestricted.
Consequently, there are infinitely many pairs of sequences {An} and {Bn} having the properties:
() Ap=0 A; =1 Ayz=cA1*tA, (c #0)
(11)’ (i) Bgp=2 Bi=c¢ Byiy=cBus +B,
(i) Ap41+Ang1 =B, .
Their Binet forms (15) and (16) now involve
an a=958 =20 aipec a-p=0 0=VFTL af=-1,

where a,8 are now the roots of x> —¢cx — 7 = 0.
Some terms of these sequences are:

n=-3 -2 -1 0 1 2 3 4
(19) A, 2+ 1 —c 1T 0 1 c c2+1 P+
(20) B, -~ —(c3+3c) c¢*+2 —¢ 2 ¢ c*+2 c*+3 c*+4c+2
Generating functions for these sequences are
(21) > Apx™ = x(1—ex—x2)7!
n=1

(22) Bux™ = (2—cx)(1—cx — x?)71

M

1l

0

"

The Theorems given in Serkland [5] follow directly for {4, } and {B,,} by employing his methods, though
in Theorems 1, 2, 3 use of the Binet forms (15) and (16) with (17)’ produces the results without difficulty.
Following Serkland's numbering [5], we have these generalized theorems:

Theorem 1. ApBy + Ap1Bm1 = Bipin—1

Theorem 2. AnAm + An1Amet = Amin-i

Theorem 3. BBy +Bm_1Bn_1 = Bumin * Biin-z = (€2 +4)Antn_1
gq-1

Theorem 4. ApAgBr = 3 (Akt1Bptbtri — Apthr1Bgert)

k=0
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r—1
Theorem 5. ApAqhAr = 2 (ApigtrkAlrt = Apskt1Agirt)
k=0
p-1
Theorem 6. ApBgB, = 3 ((c* +4)Agirik+1Ap-k = Batht1Bptrtc)
k+0

p—2
Tbeorem 7. BquBr = (6'2 +4) I: Z (Aq+r+k+13p_k - Ap+‘/—k8q+k+1)+ CAP""'Q’HJ
k=0

- 53p+qBr+1 .

291

Of these theorems, we prove only the second part of Theorem 3 and all of Theorem 7 (taking the opportun-
ity to correct some typographical errors in the original). A neater form for the expression of Theorem 3 (second

part) is
Bui1 #8681 = (52 +4)A,

which should be compared with 11 {iii).
Proof of Theorem 3 (second part).
Bm#‘n * Bmm-Z = (Am+n+1 +Am+n-1) * (Am-f'n—1 * Am+n—3) by (11} Gii)

i}

Amin+1 * 2Am+n-1 + Am+n-3
(CAmﬁq +Amm-1}+2Am+n—1 +Am+n~3 by (117 (I)

CAmtn * 3Amtn-1 * Amn-3

= olcAmin_i * Amin-2) * SAmsn-1+ Aman-3 by {11} i)
(c* + 3JAmin-1* (CAmsn-2+ Amtn-3)

fc? +4)Am4n-1 by (11) (i) .

I

]

Proof of Theorem 7.
BpByB, = (Ap+1+ Ap 1)BqB, by (11)" (iii)

P
= Apr1BgBi# Ap 1BqBy = 3 (e #4)Agirikr1Ap-k+1 — Barkr1Bptri+1)
k=0

p—2
+ (fc* + 4)Aq+r+k+1 Ap~k—1 - Bq+k+1 Bp+r~k-1) by Theorem 6
k=0
p—2
= Z [(52 * 4)Aq+r+le+1 (Ap~k+1 +Ap—]€—1 )= Bq+k+1 (Bp+r~k+1 * Bp+r—k—1)]
k=0
(e +4)A2Ap+qtr = BprqBrea # (€* +4)A1 Apiqiris = Bpiqr1Brei
p—-2
= ¢ +4)(A B, -8B Aptr i) .
Z ket Tpnk T Bkt fped by (1) (i, (19)
and Theorem 3

+(c? +4)(5Ap+q+r +Ap+q+r+1) - (Bp+q Br+2 * Bp+q+1 Br+1)

[}

p—2

(¢ +4) {: 2 (Agtrkr1Bp-k = Barbs1Apsri) + CAprqir + Ap+q+r¢-1jI
k=0

- (CBp+qBr+1 * Bp+q8r +Bp+q+15r+1) =
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p—2

= (c*+4)| 3 (Agirik+1Bpk— Ap+r—k5q+k+1}+CAp+q+r]
k=0

— ¢By1gBris by Theorem 3.

Putting ¢ = 7 in Theorems 1—7 we obtain the theorems of Hansen [1] for the Fibonacci-Lucas pair of se-
quences. With ¢ = 2, the theorems of Serkland [5] for the two Pell sequences follow. The forms of Hansen’s
Theorem 5 and Serkland’s Theorem 5 should be compared.

The natural extension of the special cases considered by Hansen [1] and Serkland [5] occurs when ¢ = 3.
Call these sequences {X,,} and {Y,,}, some terms of which are:

n==3 =2 -1 0 1 2 3 4 5 6
(23) Xy o 0 -3 1 0 1 3 10 33 109 360
(24) Yo - 36 mn -3 2 3 11 36 119 393 1298

Theorems 1—7, and the associated background details, readily apply with ¢ = 3 (¢ + 4 = 13). Interested
readers may construct other pairs of related sequences from the infinitely many possibilities manifested in (19)
and (20).

CONCLUDING REMARKS

Examples of familiar pairs of sequences which are excluded from our considerations (i.e., for which d # 7) are

(a) the Fermat sequences {2" — 7}, {2"+ 1} (c=3 d = -2

(b} the Chebyshev sequences

_ _sinfn+1)8 _ -
{Tn = Zcosnﬁ}, {Un = ——m———} fc = 2cosf, d = —1).

(Obviously, in (a), 2" + 1= (2" — 1)+ 2, i.e., the two Fermat sequences are not independent of each other.)

Comments on the excluded degenerate case which occurs when a = §,i.e., 0 =/c? +4d = 0, may be found
in Horadam [3] .

Further information on the Pell sequences, as special cases of the sequence {Wn} for which

Wo=a Wi=5b W, =cW,q1+dW,

(which generalizes (11) (i} and (i)}, is given in Horadam [4]. For a partition of {Wn} into Fibonacci-type and
Lucas-type sequences the reader is referred to Hilton [2], which is generalized to r order sequences by Shan-
non [6].
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ON THE EVALUATION OF CERTAIN INFINITE SERIES
BY ELLIPTIC FUNCTIONS

PAUL S. BRUCKMAN
University of lllinois at Chicago Circle, Chicago, lllinois 60680

1. INTRODUCTION
In this paper, we will obtain closed form expressions for certain series involving hyperbolic secants and co-
secants, in terms of complete elliptic integrals of the first and second kind. By specializing, we will obtain
closed form expressions for series involving the reciprocals of the well known Fibonacci and Lucas sequences,

thereby indicating how similar series for related sequences may be evaluated. Also, we will derive some elegant
symmetrical relationships, which enable numerical evaluation of such series with a high degree of precision.

2. REVIEW

We will begin by recalling some of the basic definitions and properties of Jacobian elliptic function theory
which are relevant to the topic of this paper. The notation used will be that found in [1] ; the formulas quoted
in this section are also taken from [1], for the most part, or in some cases from [2], with revised notation.

v VZ
(1) u=ulp,m) = f (1—msin2 8)7%d0 .
0
The angle ¢ is called amplitude, and we write
(2) 0 = amu.

In this paper, we will restrict ¢ to the two values 0 and 7/2, and m to the open interval (0,1). Note that, in
this domain of definition, v is a non-negative real number, and that lim  u(7/2, m)= .

m =17
(3) K = Kim) = uln/2, m); K = K{(m) = uln/2, 1—m) = K(1—m).
2 ; :
(4) E=Em)= [ (1-msin*0)%d0;  E = E(1-m).
0
K and £ are called the complete elliptic integrals of the first and second kind, respectively.
(5) snu = sing ;
(6) cnu = cosy;
(7) dnu=(7—msin’g0}1/2.

In (5)—(7) (as well as in the other nine Jacobian elliptic functions, which are derived from these, and not in-
dicated here), if we wish to draw attention to the dependence of the function upon the parameter m, we write
sn (u1m) forsnu, etc.

For the values of with which we are concerned in this paper, we obtain the following relations:

(8) snK=1 ce0=dn0=1  dnk=(1-m"

We ohserve from the definition of K(m) that itis a monotonic increasing (continuous) mapping of (0,1) on-
to (1/2, ), it then follows that the functions x and y defined by:

(9) x = xtm) = wK'(m)/K(m), ad y = y(m) = nK(m)/K'(m),

are one-to-one mappings of (0,1) onto (0,=). (The notation introduced in (9) is not standard).
293
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We also make the following definitions:
{(10) g = exp (~nK/K) = e™%; v = mu/2K.

In view of the preceding discussion, we see that 0 < g < 1; moreover, for the two admissible values of ¢
which we allow, we obtain two possible triplets (u,v,¢), namely: (0,0,0) and (K, 7/2, n/2).

So-called g-series expansions for the functions given in (3)—(7) exist, as well as for some related functions
which we will consider, and these are simply listed below:

hod nt+¥s

2m .
{11) snuy = q sin (2n+ 1)
m%"/( .71:0 7_q2n+1
> n+s
(12) cnu = f” S 9T cos(zn+ i
m/ZK =0 7+q21’L+1
hod n
(13) dnu = /2K +2n/K 3, —%— cos2nv;
n=1 1+q "
(14) (K/m)? dn? v — (KE)/7? = 2 Z ___q_ cos 2nv;
n=1 1-¢q
(15) (2= miK/m) — 4(KEN7* + 113 = 8 Z ——9—— :
n=1 7—
n,, 2n
(16) 1 4KEYT = 8 Y e
n=1 1—gq
hod 2n-1
(17) ~1/16log (1—m) = Y. 4

wmt (20— 1)(1~q%2)

3. CLOSED FORMS

If, in (11)—(14), we substitute the special values of v and v indicated in the paragraph following (10), we
eliminate the triggnometric terms occurring in these identities. We may also make the substitution indicated in
(10), and if appropriate, extend the summation variable over all integral values. The result of these manipula—
tions is the following list of identities:

(18) 2 3 (1) Teseh(n— %k = > sechn—J%h = 2Km"%/x;
n=1 n=-—oc
(19) > sechnx = 2K/7;
e oo
(20) Z (—1)" sechnx = 2K(1 - m}%/ﬂ;
n:—m
(21) > neoschnx = K(K- E)/n?

n=1
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™M

(22) (=1)"n eschnx = KE/n? — (1= m)(K/m)?

]
—~

"

Since 0 < g < 1, the following series manipulations are valid:

DI S SE SN Sl ST VLI S
B j=1 j=1 n=1 i=1 (1-q%1)%
that is,

=

2. neschnx = % D, csch?(n— J)x.
n=1

n=1

In a similar manner, we may prove the following identities:

=

2 (1" neschox = % Y sech? (n—%)x;

n=1 n=1
= pg?n - 2
Y M=y Y esch?ax;
2n

n=1 1—gq n=1

o n-1_2n hod
> LTJ———’;—‘]-— =% 3 sech?nx.
n=1 1-q " n=1

Incorporating these results into (15), (16), (21) and (22), we obtain:

oo

(23) S sech?nx = 4KE/n?
M=—00
(24) > eschZnx = 1/6+2/3(2—mlK/1)? — 2KE/n? ;
n=1
(25) 2 Znceschox = Y. csch? (n— %)x = 2K(K - E)/n? ;
n=1 n=1

(26) > 2-1)"Tneschnx = 3 sech?(n— %)x = 2KE/m? — 2(1 = m)(K/m)? .

n=1 n=1

Finally, equation (17) may be recast as follows:

(27) Y ST _ _ysgi0g(1—m).
n—1
n=1

The results with which we are interested are (18)—(20) and (23)—(27). These are all identities in the implicit
parameter m. However, we may also view them as identities in the summand parameterx, since m, and there-
fore K(m), K’(m) and E(m) are uniquely determined by (9), for any given positive x. In this sense, then, (18)-
(20) and (23)—(27) represent c/osed form expressions for the indicated series, where the sums are expressed as
implicit functions of x.

As a matter of interest, we include below two identities free of terms involving m, derived by inspection of
(18), (19) and (23)—(26):
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oo

oo I 2 2
(28) 2 (sech® nx+csch? nx)=-1/3 + 7/3< > sechnx) —7/6( > sechin- %) ) WX A0,

n=1

n=-—0o n=-o0
- 0 2
(29) D (sech® (n — %)x +csch? (n — %)x) = ( > sech(n~ %x ) , x # 0.
n=-o0 n=—oco

4. APPLICATIONS TO SERIES INVOLVING RECIPROCALS OF FIBONACCI AND LUCAS NUMBERS
Consider the sequence {Un}?f of non-negative integers defined by the recursion:
(30) Un+2 = HUn+1 +bUn, n = 0, 7, 2, Tty

where 4, b, Up and U are given non-negative integers, with a and b not both zero, Uy and U ; not both zero.
Itis known from the theory of linear difference equations that an explicit formulafor U,, exists, given by:

(31 U, = U;1G,+bUyG,_1, n=123 -,
where
(32) G, = ~=s" n=012-",
r—s
and
(33) r = Bla+Ja* +4b), s = WBla—<Ja* +4b) .

Note that r > 0. If, in particular, b= 1, and if we let L = log r, then G,, takes a form which is of interest to
the topic of this paper. Specifically,

(34) G = \/aéz Sinh21L,  Gppey = \/5;%_4 cosh (Zn+ 1)L, n =012 .

Thus, for certain special values of a, U and U ;, we see that the identities of the previous section may be used
to obtain closed form expressions for series involving the reciprocals of our particular sequence {Un} .
We illustrate with a specific example, by takinga =4 = 1. Then let

(35) a=r=31+J5) B=s=n1-I5), A=1L=Iloga.

The sequence {G‘n} then becomes the familiar Fibonacci sequence {Fn }; using (34), we see that the general
term of this sequence is given by:

(36) Fo, = 2//5 sinh 2n) Fonss = 2//5 cosh (Zn + 1)\, n=201 ..

If we take Uy =0, U; = 1 as initial values, then the sequence {Un} coincides with {FH}. If we take Uy =2,
U4 =1, the resulting sequence is the Lucas sequence {Ln }, whose general term is as follows:

(37 Ly, = 2 cosh 2n}, Lo,+q = 2sinh (2n + 1)A, n=240°1 ..
If, in definition (9), we let x = 2, this determines a unique constant u, such that 0 < u< 1, and
(38) nK(uw)/Klu) = 2X\.

Aso,letp = K(u)/w, 0= Efu)/w. For this particular value of x, we may then use (18)—(20), (23)—(27) and
(36)—(38) to obtain the following closed-form expressions:

=)

n-1 —_
(39) 2 i—”— N E
n=1 2n-1

(40) > 7 = %oJ5u ;
nxl

Fon_1
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(41) X L =np-u
n=1 2n
~ (1)
(42) > o %—-hpJT—u ;
n=1 n
= 2
(43) 2. (L—) = hpo—1/8;
n=1 2n
~ (1 V_5 .5 2 1.
(44) n=21 (E) =2 +22-up?- Lo,
(45) > /__—” = fEplp-0);
n=1 2n
(46) S (Y = 4oto— o)
= (LZW-I) 2p(p— 0/,
b n-1 _
@47) b (——7F’2—"- = 55 lpo—(1-ulp?);
n=1 n
(48) )E ( ! )2 =5 (po—(1-1)p?);
n=1 FZnAJ 2 !

~ 7
(49) 2_:1 on = 1Fr s

= —J5/16 log (1 - ).

297

Since all the series in (39)—(49) are absolutely convergent, we may obtain other formulas by combinations

of the foregoing expressions. For example, if we alternately add and subtract (41) and (42), we obtain:

oo . L
(50) = 4(1-J1-ulp,
ngl L4n—2 ' \/ H
and
(51) S L= utreyT=plo- 4
n=1 Lan
A similar process on (45) and (47) yields the pair of identities:
(52) S =Ty fup?
n=1 F4n—2
(53) > ,_?: = uJ5{(2-ulp? - 2p0} -
Adding (43) and (46) yields: "= "
(54) = 1p? - 1/8.

3
I
—~
~

s
Tul~
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Adding (44) and (48) yields: .

S 1 _ 5 ,5 2
(55) > =5 15 u- 1)’
7'1:1 F}% 24 6

Inspection of the preceding list of closed form expressions yields avariety of interesting identities, some of
which are shown below:

oo oo .oo 2 oo oo
I 1. 7 : 1 1 _ 2.
(56) 3 ng ;5 Y o <n2 - ) 30(12 L4”)<1Z L%_Z) 5up”;

Fn n=1 L” =1 2n-1 n=1

o oo 2
1 1 -,/ 1 5,2

(57) D D DI 2\2 ) 3 uo”.

1=1 -

The Lucas sequence may be extended to negative indices, by the following definition, which is consistent

with the definition in (37):
(58) L, = (-1)"L,, n=20°12:".
Using (58), we obtain the following elegant identity:

(59) z L =(

n=-oo L

Note

One more identity is worth including, namely:

(60) A 1/81 (M) .
1/2 (2n — ”[—Zn—l o9 7_\//:‘_

This does not follow from any previous identity in this section, though similar to (49). The proof of (60)
depends upon a general theorem about elliptic functions, which properly does not belong in this section; it is
nevertheless instructive to include it here, illustrating how the basic identities in (18)—(20) and (23)—(27)
may be made to yield other identities not previously covered.

Theorem. Suppose 2K(m1)/Kim¢) = K{mo)/K(my).
Then:
(a) Klmy) = (7+\/Fn_2)/((m2),'
(b) K'(m;}:Vz(7+\/rW;)K'(m2),'
2 —
(c) m1:7—(7 E) = 4m2
1+/m3 (1+m3)?
) Elmy) = E'fmy)+/my K(mjy) :
14 iz
(e) Elm,) = 2E(my)— (1 —iz)/((mg)
7+\/m2

Proofof(a). Letx=nK'(my)/K(m¢). Observing that the series in (18) and (19) are absolutely con-
vergent (this is actually true for all of the series in (18)—(20), (23)—(27)), provided, of course, x is real and
non-zero, the following manipulation is valid:
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oo oo

> sech Znx + > sech(2n— 1) = > sechnx.

N=—oo H= oo fm—co
Using (18), (19) and the hypothesis, this is equivalent to the following relation:

2 Kima)+ 2 m¥Kimy) = 2 Kimy).
This implies (a). m m m

Proofof(b): Animmediate consequence of (a) and the hypothesis.
Proofof (c): The following is Formula 17.3.29 in [1], slightly modified:
2
K(m) = —2 K{("\ﬂ‘”’)'

1+JT—m 1+JT—m

Replacing m by 7 — m yields:
- L2
71— m2 ) I

Kimj) = 2 Kl(
2 i "W\ um,

Substituting this result into (b) yields:

Kimq) = K(1—my) = K{( -——7*\/_57_—2) ]
1+ my .

This result and the fact that K is a one-to-one function on (0,1) imply (c).
Proofof (d): The following is Formula 17.3.30in [1], slightly modified:
.2 2
Elm) = (1+ 7~m)El(————lL——7— 7‘”’)]— 21 —m (7—W—m
v 1+J7T—m 7+\/7—mK 1+J7—m
Replacingm by 7 — m and incorporating the results of (b) and (c) yields:
E’(IWQ} = (7+\/E;)E'(MI/-— \/mZK’(mZ).

Rearrangement yields (d).
Proof of (e): The following is the famous relation due to Legendre:
EK'+E'K— KK = /2,

for any (implicit) parameter m. Lettingm = m; and substituting the results of (a), (b) and (d) yields (e). This
completes the proof of the theorem.
If the constant u 7 is defined by:
7Ky )/Klug) = N,

it follows from part (c) of the preceding theorem that 1t4 is related to by the following identity:

2
- 1-(E)
1+/u
Equation (60) then follows from this last result, by substituting x = Nin (27) and using (37). This same sub-
stitution in the other identities of Section 3, however, results either in series which have already been treated
(by decomposition into even and odd terms), or in series whose terms contain irrational numbers. Therefore,
if we are interested only in obtaining closed forms for series of rational numbers, identity (27) is the only
identity in Section 3which yields an “interesting”’ result for x = A. It would therefore appear that the theorem
we have proved has very limited applicability. This is not the case, however, for if we solve for the functions
of m in terms of the functions of m 4, we obtain formulas for other “interesting” series not previously treated,
in terms of the original parameter m ;. Theoretically, this process may be continued indefinitely, but the
closed forms thereby obtained will become increasingly cumbersome at each step. To illustrate, we setm ; = u
in the theorem of this section, and define u" by the relation:
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7K )/Ku”) = 4x ;
hence, u'* plays the role of m in the theorem. Also, let
p” = Klu”)/n and o” = E(W')/m.

Using the theorem, we may solve for the ““double-primed” functions in terms of the unprimed functions, and
obtain the following results:

(61) S = (= JT=g 1+ ST,  1-ur=I=p
' (1+T—p)?
(62) p” = BI+T=ulp; 0”7 = (0+ofT—p)/(1+JT—p) .

If we substitute x =4\ in (18) and apply (36) and (37), we obtain the formulas:

hod n-1 = J—
L P -a T

:/? =1 Fan-2 n=1 Lyy_2
Now using the results of (61) and (62), we obtain the identities:
> n-1 _
(63) S EUT L (- STl
— Fan
n=1
(64) z L w1 - JT—wp .
n=g1 -4n-2

Similarly, we may derive the following identities from the general ones of Section 3, by means of the same
substitutions:

(65) 3 ZL=%(7+\/7—u}p—%;
n=1 In
> n-1 .
(66) )DL LA AT L
n=1 L4”
(67) S Lo ditpopiyi—pw)- L,
— L2 8
n=1 4n
~ 1 _ 5 2 .
(68) > L =2 {1+02-wp?-6pa} ;
— F2 XA
n=1 Tqy
(69) > ,547” = 55 {(2= wp? - 2pa} ;
n=1 "
~ 1 _5 2 .
(70) 2. = 3{2-wp®- 200} ;
n=1 F~’%n~2
. o n-1 _ R
(71) > (—_Haﬂ = S5 lpo-p>JT=m)
n=1 n
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(72) > =l = dloo- AyT= @
n=1 L4n~2
~ 1 _ B (1= +(1-u™
73) 7; 20— 1)Fgq 8 oo { 2 J

Observe that (64) and (65) were previously derived, as indicated in (50) and (51), by a different method.
Appropriate combinations of(64)—(72) yield the following identities (note that (78) and (79) were previously
derived, as indicated in (43) and (44)):

2
(74) T L= Hir-w o u;
n=1 81 §
i 2
(75) >, ] ! 51{7—(7—u)%}p;
o Len-g 8
(76) > IE&L: %\/5{(7+\/7—u}2p2—4p0} ;
n=1 8n
(77) 2 ?‘4:%ﬁﬁ—Jhuﬂf;
- 8n-4
n=1
(78) > L= upo—18;
n=1 Lgn
(79) > L= S {rraz—w? - 1200} .
_ 2 24
n=1 FZH

By letting x = 8\ in (18)—(20), (23)—(27), and again using the theorem of this section, we may derive yet
another set of identities, involving the reciprocals of Fibonacci and Lucas numbers of indices 8n or 8n — 4
(except for the identity derived from (27), which involves Fg4,,_g); the closed forms thereby derived are
again functions of the three basic constants u, o and o, albeit more complicated functions. Continuing in this
fashion, we may, in theory, obtain closed forms for series involving the reciprocals of Fibonacci and Lucas
numbers, where their indices have one of the two fomms: an or Zk(Zn — 7). Note, however, that conspicu-
ously absent from the compendium of identities in this section are formulas for the series:

= oo

_1
n=1 FZn

7

and
Lon-1

n=1

Itis seen, from (36) and (37), that these, in turn, depend on an evaluation of the series

=

Z csch nx,

n=1

which is absent in Section 3. Such an evaluation does not appear to be provided by the elliptic function theory,
however, and is, in fact, the subject of a separate section of this paper.

Mention should be made of recent papers by Greig and Gould ([5] and [6]), where elementary techniques
are used to obtain approximations to the series
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¥ na

n=1 F”

and to more general series. The most significant result to the topic of this paper appears in [5] and may be
expressed in the following form:

This formula, however, does not yield a closed form, but only a rearrangement, of the terms in

> 1
n=1 Fu
albeit one which yields fairly rapid convergence.
It is clear how the formulas of this section may be extended to other sequences (U,,) of the type discussed

in the beginning of this section. It is not the aim of the author to obtain an indefinite number of identities
such as are listed in this section, but rather to indicate the methods by which one may proceed in so doing.

5. SYMMETRICAL REL ATIONSHIPS

Although the formulas of Section 3 (and their applications in Section 4) provide closed forms for the indi-
cated series, they are not very satisfactory from the point of view of numerical evaluation; manual computa-
tions of m (from (9), with given x), and of K(m) and £(m), even with the help oftables ofelliptic integrals
and related tables,can be quite cumbersome, and in any event cannot exceed the accuracy of the tables. There
is a much more satisfactory approach, fortunately, which enables the computation ofm, K and £ with a high
degree of precision and a minimum of effort.

Recall the definitions ofx and y givenin (9), and note that xy = 7% Note also that all of the Section 3 for-
mulas are valid if x is replaced by y, m replaced by (7 — m), K replaced by K”, and £ replaced by £ (see (3)
and (4) for definitions of K” and £7). However, K, K’, £ and E” are not independent of each other, but rather
satisfy the relations:

(80) K = Kx/m
(a restatement of (9)), and
(81) E’ = /2K +x/m-(K — E)

(a restatement of Legendre’s relation, incorporating the result of (80); see proof of part (e) of Theorem in
Section 4).

By means 0f(80) and (81), we may express the formulas in Section 3 as functions ofy, with closed forms in
terms of m, K and E. If we then equate these expressions with the original functions of x, we obtain relations
between functions of x and functions ofy, which display a symmetry of some sort. We illustrate this method
by deriving the following symmetrical relation:

1 1 s
(82) MG Z sech nx = ¥y\/2 Z sech ny, ¥ real x,y such thatxy = 72 |

n=-00 N=-00

The proof of (82) follows from (19) and (80):

oo

2 sechny = 2K/m = 2Kx/7% = 2Kly = n/y X sechnx = (x/y)” Y sechnx,

n=-o0 1 ==oo Nn=-00

provided x,y are real positive numbers such that xy = . Note, however, that this result is independent of
elliptic functions and is equally valid if x and y are both negative, because sech is an even function. This estab-
lishes (82).
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An asymmetrical relation is obtained by applying this method to (18) and (20), which again yields a result
which is independent of 77, namely:

o

(83) 2 Z sech (n — %)x = |y|1/2 Z (—1)" sechny (x,y real, xy = m2).

n=-o0 N=—00

Similarly, V\ée may derive the following formulas, where in all cases, x and y are arbitrary real numbers such
thatxy = w°:

(84) > (- 1) Lnx csch nx +ny cschny) = %
n=1
(85) b {|x|sech2(n—7.a)x+1y|sech2(n—%)y} =1,
n=1
(86) > kel sech?nx = 2+4 Z ny cschny = 2+ E 2|yjcsch2(n—72)y ;
n=-o0 n=1 n=1

(87)

™M s

{ Ix| CSChan+\y]CSCh2ny} = ‘—”—%ﬂ - 1.

A
~

1

Aside from whatever elegance equations (82)—(87) possess, they are quite useful for numerical computa-
tions, for we may choose x in such a way that the series involving y converges with extreme rapidity. To see
this better, we convert (82)—(87) to the forms which are more suitable for numerical computation, valid ¥/
real x # 0:

= oo

(88) _2: sech nx = % > sechnn/x;
Nn=-co n=-oo
(89) D sech(n— % = ﬁ— 3 (—1)"sech nm?/x
X
n=-c0 J1=—00
o ,
(90) > (-1 neschnx = 57— - 77—2 > (=1)"p eschnm?/x
n=1 X X n=1
o , -
(91) > sech?(n — Js)x = ﬁ - 77—2 > sech? (n — B)a%/x ;
X
n=1 X" n=1

oo =

2 = 2
(92) 5 sech?nx = % + 4% S~ ncsch nl/ixl = ]2—‘+ g%— > esch? (n — %)nl/x ;
X X 5
N=-00 X" n=1 X n=1

oo ;7
(93) 3 esch?nx = b‘l AP S 3 esch? na/x
n=1 lxl bx X2 n=1
By choosing 0 < |x| < 7, the convergence of the series in the right members of (88)—(93) is at least as rapid
as that which occurs when [x| = |yl = 7, which is itself fairly rapid. If we require |x| > 7, we may then reverse
the roles of x and y in (88)—(93), and still obtain rapid convergence, using the series in the /eft members to
evaluate the required series.
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6. NUMERICAL EVALUATION OF SERIES INVOLVING RECIPROCALS
OF FIBONACCI AND LUCAS NUMBERS

In this section, we will apply the results of the previous section toward numerical evaluation of the con-
stants 41, p and o defined by (38). We first need to compute A= log {%(1+/5)}. The computations indicated
in this section were performed manually, with the help of tables found in {1]. In all cases, the accuracy does
not exceed 15 significant digits. An electronic computer would attain far greater accuracy.

(94) A = .48121 18250 59603, approximately.

Substituting x = 2\ (or x = 72/2\, where appropriate) in (88)—(93) yields, among others, the following iden-
tities:

(95) > T = _%+m/8\ > sechny, where y = 2/,
n=1 Loy f=—oo
(96) A N/ RS S ,
HE Fani g n;@ (—1)" sech ny ,
o ,
(97) , > ——7—7—= 3,57\~ _§_7T_2 > sech? (n—sly ;
n=1 F§n—1 32N p=—co
(98) c’:‘——3’—-—-2i—i)\+5iz——5ﬂi icschzny;
w1 F5 2 B g2 6\ o
- 1 __ 1 7’ - 2 .
(99) 2; 7 n +a§ ; sech ny ;
n=1 Loy g n=-c0
o , e
(100) Y Lol l o I T esoh? -y
n=1 Lgn 32X n=-o0

Adding (97) and (98) yields:

o ) ,
(101) Z L. 2% - éﬂ—z _ A Z (sechz(n—Vz}y+csch?ny}.
w1 FZ 8\ 16\ o

~ 7 = _ 1 - 2 2
(102) X L=t (sech“ ny +csch” (n = %y ).
8 32 ,Em

If we now compare the results of (41) and (95), we obtain:

=

(103) o= 477;—\ > sechny.
n=—o0
Comparing (40) and (96) yields:
(104) N [77% Z {—1)" sechny,

from which it follows that
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(105) Vi = < S (—1)" sech ny) +( > sech ny> )

n=-—00 N=-o0

The values of ,02 and u can be obtained by squafing both sides of (103) and (105), respectively. An alterna-
tive approach is indicated below. If we compare (54) and (102), we abtain:

, e
(106) p? = T > (sech? ny +csch? (n — %Jy) .
1) —
Combining (97) and (99) as indicated in (57) and comparing the results, we obtain:
P
(107) up? = —77—5 S (sech? ny — sech? (n — 1Jy) .
16N =

It follows from (106) and (107) that we have:

=

(108) M= ( b (sech? ny — sech? (n — Vz}y)) +( b (sech? ny + csch? (n — %)y}) .

N=—00 N=—00

Again, the computation of p/1— u may be accomplished from the values of p and u obtained in (103) and
(108); a somewhat more accurate result is obtained, however, if we combine the results of (37), (42) and (83),
which yields:

(109) pT=w= 25 3 sech(n—ly .

N=-—00

In the closed form expressions occurring in Section 4, we observe that the constant ¢ always appears multi-
plied by p; therefore, we will indicate the numerical computation of pg, rather than of g itself. This is most
easily accomplished by combining the results of (43) and (100), which yields:

5 o
1 m 2
= L 4+ h — .
(110) PO = Iy 5 > csch? (n— 2%y
16N j=-

Superficially, it would appear that the identities in (103)—(110) are very unwieldy for computational pur-
poses. However, as mentioned previously, the infinite series in the right members of (103)—(110) converge
quite rapidly; thus, at most eight terms of the series need be included to guarantee an accuracy in the result of
15 significant digits! Moreover, since the summand terms are symmetrical about the value n = 0, only four
terms of the series, at most, need be computed for 15-digit accuracy! A summary of the computations is ap-
pended; indicated in Appendix Il are the computed values of the series occurring in Section 4, using the con-
stants indicated in Appendix I. As a check on the computations, the actual summations were performed by
the authorwith the aid of a desk calculator, and all results checked with those indicated in Appendix 1, to 15
significant digits! It should be emphasized that the values in Appendix Il were obtained without performing
any actual summations.

7. CONCLUSION

As mentioned previously, the series

oo

> oschnx,

n=1

(x real and non-zero), apparently cannot be evaluated by elliptic functions. However, the following formulain
terms of Lambert functions exists:
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oo

(111) 3 eschox = 2{efe™)— cfe™?)}, (x > 0),
n=1
where
(112) tlg) = 3 _q_”_, Igl < 1,
n=1 7—(7”

is the Lambert function.
By decomposing (111) into even and odd-subscript terms, we may deduce the following formulas:

(113) Y esch2nx = 2{cle™®) - cle™™)}
n=1
and
(114) Z esch (2n — 1)x = 2{cle™) - 2ele™® )+ cle™ )}, where x > 0.
n=1

In particular, settingx = X in (113)—(114) and employing (36)—(37), we obtain the following formulas:

oo

(115) ¥ gE =B -,
n=1 n
and
(116) Z P ! ; = £(_B}_2L(ﬁz}+,c(ﬁ4}, where 8 is given in (35).
n=1 e

These results are not new, and were generalized by Shannon and Horadam, as well as by Brady [3]. [4].
However, their results are in terms of Lambert functions, and it is this fact which the author finds unsatisfac-
tory, since the Lambert function is defined as an infinite series. Hence, we are using an infinite series to obtain
the “closed form” sum ofanother infinite series; moreover, it is seen that (111) is little more than an algebraic
identity, readily obtainable by manipulation of the definition in (112). It seems, therefore, that (111) is sim-
ply an artificiality, and another expression free of Lambert functions would be preferakle.

It is also worth mentioning that the technique of contour integration may be used to derive identities simi-
lar to those given in Section 5. We illustrate by deriving the following identity:

(117) > secthX _ g; - % _1 i (1)""1 coth (n-%}ﬂz/xl 1
n=1 N X m n=1 (n — %)2

Let C be the finite complex plane (z-plane), with z = u + /v, and consider the function - € —C given by:
(118) flz) = 272 sech xz cot iz, where x > .

Let A be the residue of f atits pole £. Note that fis meromorphic in , with simple poles atu,, =n (n = 1,
22, - ) and iv,, = (n — %)mi/x (n =0, £1, £2, --- ), and apole of order 3 at the origin. Calculating the residues,
we find:

g, -sechmx. o cot (mivy) — _ (=1)"Ixcoth (n— By
Uy 5 7 vy, 5. - 12 2 ,
m —v,x sinh (xiv,,) (n—%)n
where y = 772/)(,' Ry is the coefficient of 22 in the Taylor series expansion of
2
1 sech xz.mz cot 1z = 1 (1— Blxz)? +-) (7— (mz)” _ .. ) ;
m m 3

hence, Bp= —x%/2n— /3.
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Now, let &, be the rectangle bounded by the lines v = #N — %), v = #tN7/x, and form the sequence
(RN)1 . Itis not difficult to show that sec xz cot 7z is uniformly bounded on
U &N ¢
N=1
from this, it follows that

Mmoo S fz)iz = 0

/N
By the Cauchy Residue Theorem:
(119) S flz)dz = > Ru,+ 2., Ruw,*Ro.
RN 0<luy I<KN-% vy [<NTT/x

Allowing /V/ to tend to = in (119), we therefore obtain:

o

1
S sechnx Z (=1)"" coth (n =2y - y2/p1 4173
nN=-0° 7T”2 =~o00 (n - /2) V

where the first (primed) summation excludes the term for which n = 0. Multiplying throughout by 7/2x and
simplifying, we obtain (117). The following generalization of (117) is obtained similarly, by taking

flz) = 272" sech xz cot mz,

where r is a positive integer:

(120) 3 seehox , 15~ (1) coth (o — sy
nmt 2% T (n— 3)2my71

(~1)*BoLE 22t 20 1rk b _
Z k2= 2601 2 yr=0

here, y = 772/)(, and the B,y 's and £ 's are Bernoulli and Euler numbers, respectively.
Note that if we set r=0in (120), we obtain the apparent result:
(121) > sechnx+ L 3 (~1)"coth(n—Bly+% =
n=1 m n=1
By manipulations similar to those employed after (22), we may show that, for all positive y,
(122) S ~1)"cothin—nly =% 3 sechny.

n=1 n=-co

Incorporating this last result into (121) and simplifying, we obtain (88), which shows that (120) is also valid
for r = 0, though this is seemingly not justifiable by the method of contour integration. The latter method
apparently provides a richer variety of identities similar to those of Section b than does the method of elliptic
functions; on the other hand, it does not provide closed forms for the indicated series, except for special val-
ues of x and y. Thus, if we setx =y = min (84), (85) and (87), we obtain the results:

. — n-1 :_7 .
(123) > (=1)""ncschnm ir
n=1
(124) 2 sech?n—nhn=L -

2n

n=1
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=

(125) > esch? n =

n=1

2l
3=

I_
6

Another important observation to make is that the identities given in this paper for real values of x and y
may, with certain further restrictions, be extended to the complex plane, thereby yielding results involving
corresponding trigonometric expressions, instead of hyperbolic ones. This opens up a whole new area of ap-
proach, which is beyond the scope of this paper to explore. It suffices to say that there are ample avenues of
research available, as suggested in this paper, as regards the series discussed. |t is hoped that sufficient interest
has been generated to warrant additional investigations into the indicated topics.
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APPENDIX | — TABLE OF CONSTANTS

\ = .48121 18250 59603 ; 174\ = .51952 17303 08757 ;

78\ = 1.63212 56513 1825 ; /16N> = 2.66383 41416 9102;

y = m/2\ = 10.25494 79118 337 .

e’ = 168.59071 21406 95 ; e = 00593 15248 58649 77 ;
oY = 28,422.82822 01066 ; e = 00003 51829 87148 § ;
e7¥/2 = 4,791,824.85068 042; eY/2 = 00000 02086 88762 875 ;

e2Y = 00000 00012 37842 58468 ; e Y12
e>Y = 00000 00000 00043 55099 975 ;
e"7/2 = 00000 00000 00000 25832 ;

.00000 00000 07342 294 ;

e”*Y = .00000 00000 00000 00153 ; e~?/2 = 00000 00000 00000 0000

sechy/2 = .01186 26323 54457 871 ; sech? y/2 = .00014 07220 46377 031;
sech y =.00007 03659 74210458 ; sech?y = .00000 00049 51370 327 ;
sech 3y/2 = .00000 04173 77525 749 ; sech? 3y/2 = .00000 00000 00174 204 ;
sech 2y = .00000 00024 75685 169 ; sech? 2y = .00000 00000 00000 006 ;
sech 5y/2 = .00000 00000 14684 588 ; sech? 5y/2 = .00000 00000 00000 000 ;

sech 3y = .00000 00000 00087 102 ;
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APPENDIX | — (Cont'd.)
sech 7y/2 = .00000 00000 00000 517 ;

sech4y = .00000 00060 00000 003 ;

sech 9y/2 = .00000 00000 00000 000 .

cschy/Z2 = .01186 3467109510403 ; cschzy/.? = .00014 07418 51858 435 ;

esch 3y/2 = .00000 04173 77525 749 ; csch? 3y/2 = .00000 00000 00174 204 ;

csch 5y/2 = .00000 00000 14684 588 ; csch? 5y/2 = .00000 00000 00000 000 .
Z sechny = 1.00014 07368 99965 ; Z (—1)" sech ny = .99985 92730 02775 ;

n=—oco Hn=—0o0

=

D sech(n— %)y = .0237260994 933374 ;

] =—00

=

3 sech?ny = 1.00000 00099 02741 ; > sech? (n— %)y = .00028 14440 93102 469 ;

n=-oo Nn=-o0

Z csch? (n— %)y = .00028 14837 04065 278 .

=00
N/ = .99971 85757 09592 ; i = .99943 72306 18815 ;
J1=u = .02372 27608 25520 2 ; (1—w%= 15402 1949168033 ;

(1- w)%= 6.49258 11249 7349 ;
U =%{t1-w”+(1-w™ } = 332330 15370 7076 .

log (1+ /1) = .69300 64585 13859 ; log (1—+/u) = —8.17564 709715135 ;
JBlog (1+/a) = 1.54960 95500 8338 ; 5 log (1— /1) = —18.28130 26692 792 ;
logU = 1.20095 87276 7835 ; JB log U = 2.68542 53532 6045 .

P = 1.63235 53516 2277 ; N/ = 1.63189 596717624 ;

NG = 3.65005 75296 6408 ; p~/5u = 3.54903 03148 1385 ;
pJ/T—1 = .03872 39755 88805 0 ; p/BT—p) = .08658 94417 765103 ;

p(1— )" = 25141 85529 91809 .

p? = 2.66458 39939 7149 ; p’u = 2.66308 44476 8609 ;
p?/B  =595819 09422 7815 ; PN = 5.95483 78548 4858 ;
p2/T—pu = .06321 12887 88495 2 ; P2 /B(T— 1) = .14134 47386 76446 ;

po = .52027 15562 09976 ; po/5 = 1.16336 25664 4511.
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ON THE EVALUATION OF CERTAIN INFINITE SEQUENCES BY ELLIPTIC FUNCTIONS DEC. 1977

APPENDIX Il — COMPUTED FORMULAS FOR SERIES IN SECTION A

1
1" _ 81594 79835 88122 ;

1 = 56617 76758 11385 ;
I-Zn
20 - 479482 83758 3304
FZn
1 = 1351357781 04988 ;
LZ
n
2’ = 1.07215 62188 8076 ;
Loy 1
An=2 _ 59774189274 2429
F4n-2
T = 3984078440 08491 ;
L4n—2
—; = 1.20729 19969 8575 ;
[‘271

n-1
C:J_}._ = ,12429 07235 04095 ;
Lyn

L - 020870711249618:
L2
4n

= 11426 50668 55370 ;
L4n-2

7

T - 110858 16944 5815 ;
(2/7 - 7)/—271-1 0
1 = 02173 95541 49399 ;
L8n
81~ 39769 58103 20044 :

M 10 IMs 10 10 I0Me IMe 105 105 105 106105 1M 1: 115 105

3
i
—

! = 1.8245151574 0692 ;
FZn—I
n-1
(=1)""" _ 23063 80122 05598 ;
L2n
n~1
=17"20 - 4 16000 94790 1554 ;
FZn
L = 1.12939 07263 5581 ;
£2
2n
7 = 1.29693 00248 1143 ;
2
Fou-1
7
1 - 10457308199 4874 ;
(Zﬂ — 7)F4n—2
4n = 1.81740 94484 0875 ;
F4n
1 = 16776 98318 02894 ;
Lan
1 = 242632 075116724 ;
FZ
k2
-1
(FL = 89086 70219 72118 ;
4n-2
1 = .11342 79589 57717 ;
£2
4n
! = 1.01596 27673 9809 ;
£2
4n-2
n-1
1740 - 1.0220178277 6866 :
F4n
7
1 -~ 335678169157557:
(2n — 1)F g4
T - 1460302776 53494 :
L8n—4
6n =4 _ 14197136380 8871.




SEQUENCES ASSOCIATED WITH +~ARY CODING
OF FIBONACCI'S RABBITS

H.W. GOULD and J. B. KIM
West Virginia University, Morgantown, West Virginia 26506
and
V.E.HOGGATT, JR.
San Jose State University, San Jose, Califormia 95192

The object of this note is to point out a curious kind of sequence which arises in connection with a hinary
coding of the tree diagram for the production of rabbits by Fibonacei’s recurrence.

At the left below is a standardized way of drawing the usual Fibonacci rabbit tree. At the rightis abinary
code for each level. The code is assigned by a very simple rule. On each level, a single segment § is coded by 0
and a branched segment ¥ is coded by 1. It is clear that this establishes a unigue binary coding for each level
of the Fibonacci rabbit tree {(or any other tree for that matter). We suspect that this is not a new idea, but do

not have a reference.
TREE CODING

10110101

10110

101

10

\ |

Fig. 1 Coding Numbers
n
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In the next table we give a summary of initial values of the hinary coding, first in base 2 and then converted
into base ten. In each case notice that the coding number for a given level can be expressed in terms of the cod-
ing for the two previous levels,

Table 1
Coding Numbers and Recurrences

n (Cn)Z (Cn}IO = A,

1 0 0

2 0 0

3 1 1

4 10 2 =21(1)+0

5 101 5=21(2)+1

6 10110 22 = 22(5)+2

7 10110101 181 = 27(22)+5

8 1011010110110 5,814 = 2°(181)+22

9 101101011011010110101 1,488,565 = 2%(5,814) + 181
10 12,194,330,294 = 27%(1,488,565) + 5,814

We put (C, ), for the coding number in binary form, and (C,, )¢ or A,, for the coding number expressed in
base ten.
Itis evident from the formation of the rabbit tree that the base ten coding numbers satisfy the recurrence

Fy_
(1 Ap+z = 2 " 1An+1 +Ap, n =2

where £, is the ordinary Fibonacci sequence, £, = £, + F,_ 1, with Fp=0, F;= 1. Again, from the law of
formation it is evident that (C,, ), has exactly F,,_ ; digits. Thus also

(2) 2 > A, > ZF”‘FJ, for n = 3.

Formula (1), together with initial values defines the sequence 4,, uniquely. Starting with the sequence 4,
we may recover the Fibonacci numbers from the formula

(3) F1’l = |092 MYLJ .
An+2

Special sums involving the sequence 4,, may be found in closed form. From (1) we can get almost at once

B q

() Apgz + Apgg— 1 = Zn; 2% ape2 0= 1.
k=1
Multiply each side of (1) by 2F” and use the fact that F,, + F,_; = F,+7. We find then
(5) RN L s VS L S |
and this form of the recurrence is the clue to the proof of the next formula:
n

(6) S o0k R p, = 2L, a s 2

k=2

We have not found a generating function for A4,, and this is posed as a research problem for the reader.

We have also not found the sequence A,, in Sloane’s book [2]. Does any reader know any previous appear-
ance of 4,,?

The process by which we have obtained A,, is not restricted to the standard Fibonacci sequence. Here is an-
other example yielding a different sequence with the same behavior. Define a third-order recurrent sequence
by the recurrence
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(7) Gpr1 = G+ Gy_p, with G;=G6Gp =063 =1
The reader may draw the corresponding rabbit tree and verify that the coding numbers and recu rrence val-
ues in the next table are correct.

Table 2
Coding Numbers for G,
n Gy, (Dn}Z {071)10 =By
1 1 0 0
2 1 0 0
3 1 0 0
4 2 1 1
5 3 10 2=2(1)+0
6 4 100 4 =2(2)+0
7 6 1001 9 = 2(4)+1
8 9 100110 38 = 4(9)+2
9 13 100110100 308 = 8(38) +4
10 19 1001101001001 4,937 = 16(308) +9
1" 28 158,022 = 64(4,937) + 38
Here it is evident that the law of formation is
(8) Bys; = 2°" 1B ,+B,, 1 >3

Again sums such as (4) and (6) can be established.

It appears that the behavior of these sequences can be predicted to follow in similar fashion for other recur-
rent sequences for which we can draw a suitable tree.

Recalling that the Lucas numbers are related to the Fibonacci numbers by the formula L, = F,,_ 1 + Fy4q,
we see that we can devise a Lucas rabbit tree by adding together two Fibonacci trees. We can call this method
allowing twins to occur once in the Fibonacci tree. It is then evident that the binary coding must correspond
to

E,_
(9) (En)z = 2772 (Ca)2 +(Caoz)z
and we have the associated sequence H,, = (E,, )1 satisfying
(10) Hy = 21:”—3/47; + An_2

in terms of our original coding. The corresponding Lucas rabbit tree is exhibited on the following page.
Because we start the twinning at level 3, we have defined (E3), = 7 and H3 = (E3) 19 = 7 which is consis-
. F
tentwith H3=2" 043+ A;=1+0=1.
We make some further remarks about the coding of the original Fibonacci rabbit tree. The sequence defined

by ;

(11) u, = 25m1_4
satisfies E

(12) Upns2 = 2 n71un+1 Uy,
because

) F,
U”+2 _ 2Pn+1_ 7= ZFn—j(ZFn_ ”+2Fn—1_ 1=2 H-IU”+1+UW,

and so U,, is another solution of the equation (1).

In fact U,, and A,, can be found as numerator and denominator, respectively, of the partial convergents of
the continued fraction
(13) TP I I A T I

Fop_ .
where the terms are defined from 2" "1, Thus the partial convergents of (13) turn out to be:
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(14) Un _ 3 7 31 255 8191
A, "2"5722°181' 5814
The sequence of values
3 =
7 1.5
7 =
5 14
31 -
5 1.4090909
255 _
181 1.408839779
8131 _
E3 14 1.408840729
2037151 - 1 408840729 --

148856

suggests that there exists alimit of the form

ol

. U . Fy_1
(15) iy, 2o = lim, ZA = 140884073 --

n

which would be somewh at analogous to the well-known limit

(16) nli_r)nwF;” = 115 22300681 - 4 g1g0339°* .
n

Formula (15) would also yield the asymptotic formula
E
(17) A, ~ (0.709803442 -)2° "1 a5 p > w .
Davison [1] has just proved that with a = (7 ++/5 J/2 then

oo

- SN SN I N N S B
(18) T(a} n___zl 2[’1“] 1+ 24 24+ 4+ 8+ 32+ ...

is transcendental. This remarkable result combines two things, the equivalence of the series and continued
fraction, and the fact that the number so defined /s transcendental. 77a/ is the reciprocal of the continued
fraction in (13), so we have the transcendental limit

. A
(19) fm Aeo 111111

n

[‘ - = 0709803442
2 na

Ry
V

8
SQ
N
N
+
N
+
=
+
[==]
+
3|
N
+
1M s

with a = (1 + /5)/2, and where square brackets denote the greatest integer function.

So far we have restricted our attention to binary coding. We return now to Table 1 and consider ternarv
coding. Actually what we do is to interpret the numbers (C,, )2 = (C,, )3 as if they were in ternary rather than
binary form. Translating the ternary code to base ten, and writing (C,, )3 = A,,(3), we get the following se-

quence of numbers:
(20) A.(3) =10,0,1,3,10,93, 2521, 612696, 4019900977, -

and this sequence enjoys most of the properties belonging to the original sequence A,, = A,,(2) derived from
binary coding. Thus 2521 = 3%(93) + 10, 612696 = 39(2521) + 93, etc., and in general

(21) Anea(3) = 314 (3)+ A3, 0> 2.



316 SEQUENCES ASSOCIATED WITH z-ARY CODING OF FIBONACCI'S RABBITS [DEC.

As a matter of fact it is just as easy to consider the original coding with 0's and 1's as being t-ary coding,
i.e., numbers in base ¢ where t = 2, 3, 4, .- . We write (£}, ); = A, (t) for this form of the sequence. It is not
difficult to see then that the formulas we developed for the binary case become in general:

F,
(22) Apralt) = £ 1A i(t)+ Ayl n=2
-y F —
(23) et Alt) > ¢ 1 1, nse3
Az (t)— Ayeqlt)
24) F, = log, == 22
‘ e Y
11
F
(25) Ansslth+ Agialt) =1 = 3t *Apealt), 0> 1,
k=1
F, E F,
(26) t  Apialth = ¢ T AL )+t AL, n=2
n
F F
(27) S =0 R A lt) = (<1 T A lt), 0> 2
k=2
and in place of the sequence U/,, we have the corresponding extension
F,
(28) Upft) = ¢ 11,
which satisfies the recurrence
Fy_
(29) Xpwalt) = £ X eglt) + X (1),

as an extension of (1).
We also have an asymptotic result of the form

F
Anlt) ~ Kot ™1, n - .

We shall find K in terms of continued fractions.
The continued fraction (13) with partial convergents {14) has a very interesting form in the general t-ary
case:

(30 Un(t) = (t—1)+ t=1 1 1 _1 1 3
An(t) 1 1+ t2+ t3+ tFH-3

t°+ t

For t = 3 we have the case )
(31) 2+22 11 1 1 = 2602142009 -

The reciprocal of this is 0.3842987802 .-, and it is now remarkable to note that if we extend the series of
Davison {18) in the obvious way, we find that

e e e 1
{32) ZJ Jina] 3 33+34+36+38+39+311+ 0.3842987802
=

and this is correct to at least as many decimals as shown since we have calculated the sum to 20 terms and the
21°! term adds only about 1.798865 x 107 to this.

Itis natural to conjecture that Davison's theorem can be extended to show that this number also is trans-
cendental and moreover that the limit of (30) as 7 — « is probably transcendental for every natural number
t>2

Some of the first few partial convergents of (31) are:

(33) 5 8 26 242 6560 1594322
’ "3°10" 93’ 2521' 612696 '

The general theorem which we claim is that for the continued fraction in (30),
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s -1
(34) <Z LA = i Z"’” sfp-net=l 1 11
n=g tlmed = Aald tr ot P
where the exponents in the continued fraction are the successive Fibonacci numbers.
The first few partial convergents of the general continued fraction in (30) are:
U4(1‘): 2o Uslt) _FPoq Uslt) g
Aqlt) ¢ As) 2,y Al A2,

Uglt) _ g Uglt} _ 51

Aglt) 7 4 S at e el Aslt) 12, 10,9 T 5 d 2

Y L. .
etc., where, of course, the numerator is ¢ " 1_ 7, and the exponents of the ¢s in the denominator are pre-

cisely the powers of 2 appearing in the original binary coding of the rabhit tree as given in Fig. 1 or Table 1.

The first 50 values of /na/ for use in writing out the series {34) are: 1, 3,4, 6, 8,9, 11, 12, 14, 16, 17, 18,
21,22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, b5, b6, 58, 59, 61, 63, 64,
86, 67, 69, 71, 72, 74, 76, 77, 79, 80. This agrees with sequence No. 917 in Sloane [2], where itis called a
Beatty seguence because of the fact that a,, = /na/ and b,, = [nb/, whera a and b are irrational with 7/a + 1/b
= 1 makes a,, and b,, disjoint subsequences of the natural numbers whose union is precisely the set of all nat-
ural numbers. Such sets are called complementary sequences.

Relations (30) and (34) may be put in more attractive form. Dividing each side of (30) by t — 7 we get

(35) ST N NN B B
(t_ 7)An(t} t+ t2+ 13+ f5+ th’l*j‘
and taking reciprocals on both sides we find
{t— 1)A,(t) 711 1 7
36 RSN C G (L LA S N S
( ) Un(t} 2 Fu-3

Ttk ot ey
Then the limiting case (34) becomes more elegantly

1 (t—1AM) 1 11 1 1 1 1

37) (t—1) - tm —atL f L L
}/E dral = B U (1) PURPTRSUR S S .

apparently valid for all real t > 7.
Although the series diverges when ¢ = 1, still the continued fraction makes sense, giving the familiar special
case

: . {t— 1)A,(1) 7 171 145
38 fim | ARG A7 A LAR S A S S .
(38) N T P T T T 2
For t = 7, the sequence A, (7) = F,, so that we have in the genera sequence an extension of the Fibonacci
sequence.

Let us now make the definition

=

(39) Tixt) = 3 1
(]

n=1

for arbitrary real ¢ > 1and real x > 0.

This function has interesting properties, some of which we shall exhibit here. Takex =a— 7= 1/3 a being
as defined before. Then the sequence of values of /na — nJ = [nal — n begins: 0,1,1,2,3,3,4,4,5,6,6, 7,
8,89, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, ---. [t does not seem to be tabu-
lated in Sloane [2]. Taking t = 2, one finds that 7fa — 7, 2) = 2.7098016 - and it seems evident that in fact
Tla—1,2)=2+T(a2). Fort=23 we find that
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Tla—1,3) = 1.884298779 - = 1.5+ 0.384298779 ... = 3/2 + T(3,3).

For t = 7, we find that
Tla—1,7) = 1.312864454 ... = 7/6+ T(a, 7).

The general result appears to be
(40) Tla—1,¢) = ,Tt7 +T(a, t), t> 1
This appears to depend on the value of a being (1+/5)/2. Indeed,
T(m, 7) = 2923976609 --- and T7(m— 1,7) = 0.02083333 --.
while 7/6 = 1.16666 --- so that (40) does not hold.
Here is angther numerical result that may be of some interest:

=

(41) Tlaa) = Y, —L— = 1.100412718 -
: =1 a[na]

Some of the partial convergents from the continued fraction are:

Asfa) _ 11.09016995 _
Usfa) ~ 1009016995 ~ -099106358 .

Note that (11/10) = 1.1;

A7fla) _ 5059674778

Us(a) 4597871383 1.10043852 --- .

Note that (50.6/46) = 1.1;

Asla) _ 572.2107019 _
Uolal - 5200019205 = 110041267 .

Note that (572/520) = 1.1.

It is interesting to note that 7(a,a/ is just slightly larger than 1.1, suggesting this as a dominant term.

Here is still another numerical example of (40): Lete = 2.7182818 ---.

T(a e) = 0.438943611--, T{a— 1,e) = 2.020920317 --, e/fe— 1) = 1.581976707 ---,
so that
Tla,e)+e/le— 1) = 2.020920318 = T(a— 1,e)
as closely as we could compute the numbers.
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FIBONACCI SEQUENCES AND ADDITIVE TRIANGLES
OF HIGHER ORDER AND DEGREE

THOMAS B. KIRKPATRICK, JR.
Chicago, Illinois

It is often desirable for either ease of calculation or nicety ofexpression to represent a function in terms of

positive integers only. For example, the Binet formula for the /™ term of the Fibonacci series quite easily re-
duces to the expansion:

(e ()5 +(3)8« ()5 -
N-1 !

Fy =

The last term, of course, will be 5(N=1/2 i i is odd, or ¥5™N-2)/2 it W is even.

However, it is well known that the sums of the terms of the ascending diagonals of the Pascal triangle also
produce the Fibonacci numbers, thus providing another simple expansion,

_(N—1), [N—2\ [N-3 N—-4\,
A= (Vo (N ) (Y )
the last term being /2 if V/ is even and 1 if /V is odd. (This comes as no surprise since a common method of
constructing the triangle is by a two-step additive process.)

1 1 2 3 5 8 13 21 34 5 .
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It is interesting to note that since the sum of the terms of the v diagonal is equal te Fp;, and the sum of

the terms of the ¥ ¥ row is equal to ZN, then the product of those two sums is equal to twice the numerator

of the first expansion:
N[{N\g0 , (N\p1 , [N\ 2  (N\:3
2 [<1>5 +<3>5 +<5>5 +<7>5 +]

(16BN (1- JEIN
5
319

or
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A Tribonacci triangle, constructed by a three-step addltlve process has as the sum of the terms of the ¥
row .S’N, provides the coefficients of the expansion (x 04 x +x2) and has the Tribonacci numbers as sums
of the ascending diagonals:

=0 1 1 2 4 7 13 24 44

N = 0/1 =3V = 1
1711 3
271,772 9
37173 31 27
4174 % 10 4 1 81
5 15 51 45 30 15 5 1 243
6176 90 126 141 126 90 50 21 6 1 729
771777 28 717 161 266 357 393 357 266 161 77 28 7 1 2187
81 8 36

Fig. 2 Tribonacci Triangle

Just as the terms in each row of the Pascal triangle are the binomial coefficients, the terms of each row of the
Tribonacci triangle are the trinomial coefficients; that is, if the trinomial expression (x9+x1 +x2) is raised
to a given power such & three,

(x0+3x 1 +6x2+7x3 +6x* +3x° +x°),
the coefficients of the resulting terms are the terms of the corresponding row (/ = 3) of the Tribonacci tri-
angle, 1,3,6,7,6,3, 1.

An easy method of constructing the triangle, rather than actually multiplying the trinomials or using a gen-
erating formula for each term (which is simple for Pascal’s triangle, but much more complex for higher order
triangles), is to simply create each term by adding the three terms immediately above and to the left in the
preceding row. For example, the fourth row is derived from the third row as follows:

N =3 1 3 6 76 31 =3
4 1 4 10 16 19 16 10 4 1 3
(0+0+TIT—"1),X
(0+1+3=4)1
(1 +3+6=10)
(3+6+7=16)

6+ 7+6=19)
(7+6+3= 16)
6+3+1=10)
3+1+0-=4)
(M+0+0=1

Any additive triangle must begin with the number 1, since any quantity with an exponent of zero is by defini-
tion 1. The second row is also composed of ones, since the coefficients of the given trinomial are 1, 1 and 1.
From this point onward all terms can easily be calculated by the process described above, which is in effect an
arithmetical short-cut through the lengthy process of multiplying polynomials of ascending powers of X.

The ascending diagonals of a four-step or Quadronacci triangle provide the terms of that series in a similar
manner:
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N = 1 =4V = 4
A A =t
27172 73 74 73 72 1 16
3~ 173 61012 12 106 6 3 1 64
471 741020 31 40 44 40 31 20 10 4 1 256
515
67 1
7 Fig. 3. Quadranacci Triangle (x 7+ x 1 +x2+x3IN

The terms in the Quadronacci triangle are derived just as are those in the Tribonacci triangle, except that
the terms are added in groups of four instead of th ree.

Indeed, any order of additive triangle can be thus constructed to give similar results, If the order, K, of an
additive triangle is defined to be the number of terms in its polynomial base, which is also the number of add-
itive steps necessary to derive each term from the terms of the preceding row, then it may be noted that for
an additive triangle of Kt order: each row will have (K — 7) more terms than the preceding row; the sum of
the terms of each row will equal KN; and the terms in each row will p rovide the coefficients of the expansion:

(xO x4 x2 4 x3 s x YN,

The sums of the terms of the ascending diagonals of a K™ order triangle produce the series:

TN# TN+t TNe2# Tes #F TNek-1 = TN#K
Ti=1 Ty=1" (K-1)>1
Since for Pascal’s triangle K = 2 (see Fig. 1), the series produced is Tay + Toves = Tz, the Fibonacci series.
Similarly, in the Quadranacci triangle, since K =4, the series produced is
IN+FTINtt TNt 2+TNw3 = Tawa, T3 =2 Tq4=4.

If an additive triangle is altered by arranging the ascending diagonals as rows, a corresponding alteration re-
sults in the series produced by the sums of the terms of the new ascending diagonals. The new series consists
of the same number of steps, but of different terms. For example, the Pascal triangle (see Fig. 1), when altered
in this manner, now becomes:

)

N
(=1
.
—
—
N
w
ES
=7}
7<)
-
o
—
w

=
il

@D W o~ O Tl AW N - O

—_

Fig. 4 Second-Degree Pascal Triangle
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The ascending diagonals provide the terms of the series

TN*TN+2 = TN+3 (Ty =Tz =Tz =1.
A similar treatment of the Tribonacci triangle produces the series
IN*TN+2*+TN+4 = TN+5 (Ty =Ty =Tz = 1)

It can readily be seen that these two new additive series skip every other term.
If the new ascending diagonals are converted into rows asecond time for the Tribonacci triangle, the sums
of the terms of the resulting diagonals will produce the series

TN*TN+3+ TNw6 = TN+7 (Ty =1, T, =1,T3=1,T4=1).
Here the series skips twice between each term.
If the degree, R, of an additive triangle is defined to be the number of times the triangle has been altered by
rearranging the ascending diagonals into rows (beginning with £ = 7 for the triangle in unaltered form), it may

then be said that for an additive triangle of k™ order and A degree, the sums of the terms of the ascending
diagonals produce the series:

TN+ TN+R * TN+2R * TN#3R *+ *+ TN+R(K-1) = TN+R(K-1)+1
(Ty=1 Ty =1 T3 =1 ,Tpes = 1) (K-1)>1 R > 1.
For the standard Pascal triangle, since K =2 and B = 7, the series is the normal Fibonacci series (1, 1, 2,3, 5,
8, -), where
TN+ TN+1 = TN+2 (T =Ty =1).
For a five-step additive triangle, the diagonals of which have been twice rearranged into rows (K =5, R =23),
the series produced is
1,1,1,1,223,4,6,8,613, 19, 28, 41, 60, 88, 129, 188, ---,
where
TN+ TN+3 + TN+6 # TN+9 + TN+12 = TN+13 (Ty =Ty =1T3=T4=1)

Comparing Fig. 1 with Fig. 4, it will be observed that the terms in each column remained unaltered by a
change in the degree of the triangle; each column is merely lowered with respect to the column to its left.
Consequently, if the terms of the nth row (and hence the terms of the columns) of a first degree K™ order
triangle can be expressed in terms of //, then it follows that the N term of the additive series produced by
the sums of the terms of the ascending diagonals of a K™ order R degree triangle can be expressed as a ser-
iers in / and R For example, the sums of the terms of the ascending diagonals of the Pascal triangle (K = 2) of
R™ degree produce the series:

TN+ TN+R = TN+R+1-
The /™ term of this series is the expansion
_ IN—1),(N—1—R\, ([N—1-2R\, [N—1-3R\ _
o= (V0 ) (AR (Y R (YR
Itis easy to conjecture that a general expansion in terms of &/, K and Ris possible for the nth term of the ser-

ies generated by the sums of the terms of the ascending diagonals of a triangle of Kth order and R degree,
but that requires a treatment much more advanced than is offered here.

Jolokdootok



A PROBLEM OF FERMAT AND THE FIBONACCI SEQUENCE

V. E. HOGGATT, JR.
San Jose State University, San Jose, California 95192
and
G.E. BERGUM
South DakotaState University, Brookings, South Dakota 57007

1. INTRODUCTION

Fermat observed that the numbers 1, 3, 8, 120 have the following property: The product of any two in-
creased by one is a perfect square. Davenport showed that for 1, 3, 8, x to have the same property x must be
120 and that it is impossible to find integers x and y such that the five numbers 1, 3, 8, x, y have this unique
property.

In [1] and [2], B. W. Jones extends the problem to polynomials by showing

Theorem 1.1. Let w? — 2(x + 1)w + 1= 0 have afx) and B(x) as roots. Let 7, (x) = (ak — 6k)/(a— B)
Letcy(x) = 2f, (x)fr+1(x). Then the polynomials x, x + 2, c1.(x), cp+1(x) have the property that the product
of any two plus one is a perfect square.

Any enthusiast of the sequence of Fibonacci numbers would quickly observe that 1, 3, and 8 are terms of
that sequence whose subscripts are consecutive even integers. That is, they are respectively F,, F4, and Fg.
Using the Binet formula it is easy to show that the property enjoyed by 1, 3, and 8 is shared with any three
terms of the Fibonacci sequence whose subscripts are consecutive even integers. In fact, we have

(1.1) FonFonez 1= F2es
(1.2) FonFonsqg+1 = an+z
and

(1.3) Fon+2 Foprat 1= F22n+3'

One might now ask if there exists an integer x such that Fo,x + 1, Fp,40x *+ 1 and Fp,+4x + 1 are perfect
squares. In order to show that the answer is yes we proceed as follows. From (1.1) we see that
2
1= Foper— Fonfone2 = Fone1Fonez — Foun Fon+3
so that
(1.4) 4F211F271+1F271+2F2n+3 +1 = (2F2n+1F2n+2_ ”2-

Replacingn by n + 7in (1.1), we have

2
1= Fauuz* Fonr1Foned — Fone3Fontd = Fout1Foned — Fon+3 Fone2
so that

(1.5) 4F 2041 F 2012 Fone3 Foned + 1 = (2F 2002 Fone3 +1)%.

Using the Binet formulashow that an+2 = Fou+1Fon+3 — 1. Multiply both sides of this equation by 4F22n+2
to obtain 5 5 5

(16) 4F27!+1 F27,1+2F2n+3 + 7 = (2F2n+2+ 7) .

Combining (1.1) through (1.6) we have

Theorem 1.2. For n > 1, the four numbers £z, F2,42, Fop+a, and x = 4F 2,41 F2u12F2y+3 have
the property that the product of any two increased by one is a perfect square.

For n respectively 1, 2, and 3 we obtain the quadruples (1, 3, 8, 120), the result of Fermat, (3, 8, 21, 2080)
and (8, 21, 55, 37128). The authors conjecture that the value x of Theorem 1.2 is unique.
323
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Although three terms of the Fibonacci sequence whose subscripts are consecutive odd numbers do not have
the property of those with even subscripts we do have the following.

Theorem 1.3.Letn > 1and x =4F 5,12 F2,,+3 F2,+4 then the numbers Fo,,11, F2,,43, Fon+5 and x
are such that

Fou1Fones—1 = Fus
Font1Fonrs—1 = F5n+3
FonesFones — 1= Fhiiy
Fopp1x+ 1 = (2F2pe0Fonez + 1)°
Fonesx + 1= (2F5,,5— 1)
Fonesx +1 = (2F 243 Fansq — 1)%.

Here again the authors conjecture that the value of x in Theorem 1.3 is unique. Letting n respectively be 1,
2, and 3 in Theorem 1.3 we obtain the quadruples (2, 5, 13,480), (5, 13) 34, 8136), and (13, 34, 89, 157080).
We now turn our attention to several problems which arose in our investigation of the results of Theorems

1.2 and 1.3.
First we wanted to know if there exists an x such that

Foux—1= P?
Fontax—1= MZ
\F211+4X_7:/V2-
1f such an x exists then by eliminating that value between pairs of equations, we have
F211M2 - F2n+2P2 = Fon+t
Fouli? = FapeaP? = Lyyez
2 2
FonsolN® — FoupaM” = Fpus3
where £; is the i Lucas number. One and only one of Fp,,, F2,,+1, F2n+2 iseven. Furthermore there exists
an integer k such thatn =3k, n=3k+ 1, orn =3k + 2. 1f n = 3k then Pis odd and the first equation becomes
—1=—=Fgp+2 =Fgr+1 =1 (mod 4) which is impossible. If n = 3k + 1 the first equation becomes F6k+2/l/}’2—
Fsp+4P? = Fgpe3. Since Fgpez is even either M and P are both even or both odd. If both are even then 0 =
F6r+3 =2 (mod 4) which is impossible. If both are odd then —2 = F41,+2 — Fgp+4 =2 (mod 8) which is im-
possible. When n = 3k + 2 M is odd and the first equation becomes 3 = F4p+4 = Fgp+5 = 7 (mod 4) which is
impossible. Hence, the first equation is never solvable. Therefore no x can be found which satisfies the original
system of equations. Following an argument similar to that given above it is easy to show that
Faull? = Fa,4P% = Lopes
is impossible.
Next we tried to determine if more than one solution exists for
Foux+1 = P?
(A) Foupax +1=M?
Fonrax +1 = N?
By &liminating the x we see that a necessary condition for a solution is
2
’EZHMZ_ Fout2P® = —Fou+q
' 2
(A Foull? = Fap14P” = ~Lonsz .
2 -
Fon+2N* — ’L2n+4MZ = —Fon+3
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Recognizing that the first and last equations of (A’) are essentially the same, we conclude that a necessary
condition for (A) to be solvable is that there exist a common solution of the Diophantine eguations of the
form

(1.7) FZ;’IMZ_ F2;1+2P2 = _F2n+1
and
(1.8) Foul? = FousaP? = —Loyez.

Because of the relationships that exist between Diophantine equations of the form Ax? - By2 =%(, con-
tinued fractions, and linear recurrences, we were led to consider the auxiliary polynomials

(1.9) w? = 2Fgpqwt 1 =0
and
(1.10) w? = 2F oW+ 1 = 0.

Using these auxiliary polynomials we will develop a sequence of solutions to (1.7) and (1.8). In this and future
developments we need the following lemma all of whose parts can be verified by using the Binet formula or
formulas found in [1], [2].

Lemma 1.1. Foralk=>1

(a) FuFles = Fiuy = (=1 Frpy .
(b) FrasFi—Fipy = (=18 1 Fpy.
(C) F{eF;§+3 —F]e+4/:i€2+1 = (—7)k+1L[Q+2
(d) Fulfos = Frpglfoy = (=18 1y

2. SOLUTIONS OF Fo,M? — Fp,12P% = —F o4
We first turn our attention to (1.9) whose roots throughout this section are denoted by
a= Fouri +Fo 1 and B = Fonei —~FZ .~ 1
Let 4y, = (@™ — B™)/fa— B) then {H,}m=o is given by

(2.1) Ho=0Hy =1, Hy=2F+1tHm1—Hno, m =2
and it can be verified that
(2.2) HZ = HypHmoo = 1.

With M,, = AH,,, + BHp_ 1, Py = A*H,, + B*H,,_¢ and (2.1), we see that
{ My = =M iHp2+ MaHm_q

Py = =PiHp_2+PoHpm_1 .
Requiring that (M,,,, P, ) be asolution of (1.7), provided (M4, P{) and (M5, P2) are, we have
(H2 ,+H2 = 1)Foues = 2Hp (Hin2(F2,22P1P2— F2,M1M2)
which by using (2.1) and (2.2) becomes
(2.4) F3 ot = FansaP1P2— FauMMy.

Obviously (£1, £1) is a solution of (1.7) and Lemma 1.1, part (a), tells us that (£F 5,43, £F2,,+2) is also a
solution. Checking the sixteen possible combinations respectively for (M4, P;) and (M5, P2) in (2.4) we find
only four solutions which are

{(71 1), (F2n+3v F2n+2)}/ {(71_7}/ (’E2n+3» —F2”+2)}, {(_ 1,1) (—F2n+3v F211+2)},

(2.3)

and
{(=1~1),  (=Foue3, —Fous2)} .

Each of these four solutions, when used in conjunction with (2.3), gives us a sequence {(M,,;, Py, )} =1 Of
solutions to (1.7) which, except for signs, are the same. Because of the exponentsin (1.7) we consider only
those pairs given by
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{ My = 2F2p41Mp_1— My 2
(2.5) P = 2Fp41Pm_1 — P2
where My =P;=1, My= Fp,+3,and Py =Fy,10.

Noting that the auxiliary polynomial for {Mm};jzz and {Pm}S,ZZI isw? — 2F2u4qw+ 1=0, itis easy to
show by standard techniques that

ij = [(Fy,B8+ 1)a™ — (Fo,a+ 1)8™] /la—B)
Py = l(~Fon_1B+ 1)a™ = (~Fan_gat 1)8™]/(a—B)

Let Dy = Mjl — My 1My 11 be the characteristic of { M,, }m=1- Using (2.6), it can be shown that

(2.6)

(2.7) Dyp = Foue1Fonsz and  Dp = —Fp, Foueg
or
(2.8) FonDy = =Fou120p .
Using
(2.9) { Mp_2 = 2F gy 1tMpm-1 — My,
Po-2 = 2F2u41Pm_1 — Py

together with part (b) of Lemma 1.1 it can be verified that { (¥,,,, P,, )}~ is another sequence of solutions
of (1.7) where

My = 2Fops Mg — My
(2.10) { m 2n+1Mm-1 m-2

ﬁm = 2F2n+1;m—1 - 'TJm—Z
with _ _ B B
Mj:P1-_- 7, M2=-—F2n and P2=F2”_1.
The sequences { M, }ym=1 and { P, } ;= are called conjugate sequences of {#,,} ym=7 and {#,, };m=7. Since
the auxiliary polynomial for {M,,} =1 and {P,,, } =1 is

w2 = 2Fpi +1 =0,
we see by standard technigues that

(2.11) {/T”m = [(=Fpn438+ 1)a™ — (—Fp,43a+ 1)8™] /(a - B)
. L ’Em = [(—Fone2B+ 1)a™ - (—Fop4pa+ I}ﬁm]/(a_ﬁ)

(2.12) Dlﬁ = Fouri1Fontz = Dy

and

(2.13) DT) = _FZH F2n+1 = DP-

3. SOLUTIONS OF Fo,N? — Fp,04P? = —Lopes
We now turn our attention to (1.10) whose roots throughout this section are denoted by
Y= Fousz#F2 ,,—1 and 6= F2n+2—\//%+2—~-7-_,
Let
Hoy = (" =8")/(y-8)

then{ H,, } = is given by
(3.1) Ho=0 Hy=1 Hp=2FmmizHmi—Hmos m>2
and it can be shown that
(3.2) HE f = HppHg = 1.

Let (N4, P1), (N2, P2) be solutions of (1.8). Let {(V,, Py )} m=3 be given by
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(3.3) { Niw = =NiHpy 2+ NoHp g

P = ~PiHm2 + PoHp 1
Let (N, P, ) be asolution of (1.8). By an argument similar to that given in Section 2, we find
(3.4) Lon+2F2n+2 = F2n+aP1P2~ F2ulN N2,
Lemma 1.1, part (c), yields (£Fp,+3, £F2,+1) as a solution of (1.8). Obviously (1, 1) is a solution of
(1.8). Letting these pairs be (N4, P4 ) and (N 5, P2 ) we obtain sixteen possible values for (3.4). Using
(3.5) Lops2Fon+2 = FoustaFontt + F2uFon+s

it is easy to check that only four solutions exist which, except for signs, are the same. The solution we use
gives rise to

(3.6) {/VV” = 2F 242N o1 = N2
Pn = 2F2u+2Pm-1 — Pm-2

»

where
Ny=Py =1 Ny=—Foue3 and Py = Foupq.

Furthermore,
(3.7) { Ny = [(=L2p38+ 1)y™ = (—Lopezy+ 1)8™] /(y—8)

' P = [(=Loyr18 + Y™ = (=Layrgy+ 1)8™] /(y=5)
(3.8) ON = Fou+alons2, Op = —F2ulous2
and
(3.9) FZHDN = ‘F271+4DP'

The conjugate sequences{/T/m};;’,zl and {pm}f;:1 are given by
{ ﬁ/m = 2F271+2/T/m—1 - /T/m~2

3.10) 'Em = 2F2n+273m—1 - 'Em—Z

with _ _ _ _

Ny=Py =1 Ny=Lloyg3 and Py =Ly,
Using Lemma 1.1, part (d), it can be shown that {(V,,, P, )} ;=1 is a sequence of solutions to (1.8). Further-
mare,

(3.11) { N = [(F2ue38 + 1)7™ = (Foue3v+1)8™] /(y—6)
' Pm = [(~F2ue18+ 1)Y" = (=Fonrgy+ 1)8™] /(y=6)
(3.12) DN = Fonvalonsz = DN
and
(3.13) Dﬁ = _F27'1L2n+2 = Dp.

Although the results of Sections 2 and 3 do not directly give a solution to (A), we can generate an infinite
sequence ofsolutions for each of the equations of (A’) by using (2.5), (2.10), (3.6) and (3.10).

4. CONCLUDING REMARKS

By eliminating the x value between pairs of equations we see that a necessary condition for

Fonerx+1 = /:7’2
(B) Fonsesx t1 = SZ
| Fonesx +1= T

or
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Fopeix — 1 = R?

(c) Fopezx—1 = s?

| Fopssx—1=T?

to be solvable is

J F2ut18? = Faus3R% = —Fansz

(B) Fourt T2 = Fopes B = —Lopss

IL F2u43T? = F2n458% = —Fousg

or

Fonsix—1= R?

(C) Foprzx—1=

Fopisx —1=T?

I
(9%}
N

to be solvable is
(F271+1S2 — Fone3 R = —Faues
(8) Font1T? = FoussR% = ~Lones
Fout3T? = FoussS? = ~Fausa

or

F2n+132 = Fon+3 R? = Fon+z
(c) Foust TP = FanssR® = Loyes
LF271+3 TZ— F2n+532 = Fon+d

Recognizing the similarity of several of the equations we are led to consider only solutions of Diophantine
equations of the form

.1) Four1S% = Faue3 B2 = FFouez
and
(4-2) F2n+1 TZ - F2n+5'qz = ?L21l+3 .

CASE I: Fp,418% = Fous3R% = #Fonus .
In this case we consider the auxiliary polynomial
w? = 2Fpppaw—1 =10
whose roots are denoted by
€ = Fou+2 +\/Fg)”_—+-2-: and 0 = Fou4p— W
Following the techniques of Section 2 it can be shown that
J’ Sm = 2F20+28m-1 + Sm-2

(4.3)
LA = 2F2,42Bm 1 *+ Rm-2

with
St = Ry = 1, S2 = Fou44, and Ro = Fou+3,
is a solution of
FZ;H'ISZ — Fou+3 HZ = —F2u42
when m is odd and
Fout1S% = F2ue3R% = Fapez
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when m is even. Furthermore

(4.4) { Sm = [(~Fzu+10+ 1)e™ — (—Fon+1€+ 7)o™] /e — o)
m = [Fon0+ 1)e™ — (Faye + 1)0™]/(e - o)

(4.5) DS = (—7)mt':2n+3 Fon+2 Op = (_7}m+1/'—2n+1 Fantz
and
(4.5) Fou+3DR = —Fon+10s.
The conjugate sequences {S S tm=1 and { m}m:_j are given by
(4.7) { fm = "2F211+2§~m~1 +§T~2
Rum = =2F2n42Rm-1+ Bm2

with _ _ _

Sy = ARy = 1, 82 = Fopey  and Ay = —Fpy.

When m is odd, (S,,, A/ is a solution of
2 2
Fout18" — Faus3 R = —Fouq2
while it is a solution of
2 2
Fous1S° — Fous3 R™ = Fous2
when m is even.

Furthermare
(4.8) {E_m = [(Foprqe+ IN=0)" — (Foppa0+ 1)—€)"]/(e— 0
By = [(Fonrset 1N=0)" = (Fauy30+ 1)(—€)™]/(e~ o)
{4.9) Dy = Dg = (—1)" Fans3 Fonsz
and
(4.10) Dg = DR = (~1)"" Fapes Fausa.

CASE Il Fpuey T2 — FonesR% = Floyss.

In this case we consider the auxiliary polynomial w? - 2F,+3w — 1 = 0 whose roots are

Y= Fauss #JF2 5t 1 and = Fons—FL 1 Sus3 ™t
Following the techniques of Section 2, it can be shown that
(@.11) { Ton = 2F2n+3Tm-1+ Tin-2 )
= 2Fou43 Rmo1t Bm-2
with
Ty =Rs=1 To = —Fopsa, and Rz = Fpue2,
is a solution of
Fous1 T2 = FouisR? = —Lonss
whenm is odd and
Fou+1 T2 ~ Fou+s HZ = Loa+3
when m is even. Furthermore
{ T = [LegE+ D™ = (Lgprgy + ETINY — £)
R = /([-2'71+2'§+ ;,)wm = ([-211+2¢’+ 7)E7M]/(¢’ - E)

{4.12)
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(4.13) D7 = (=1)" Fan+5L20+3, DR = (~1)"  Fonelones
and
(4.14) Fou+10T = —F2,450R .

The conjugate sequences {Tm};’,:j and {ﬁm },‘;:1 are given by

(4.15) {?m = "'2F2n+37—m-1 +7—m—2

Ry = —2F2n+3§m—1 +ﬁm—2
with _ _ _ _
T1 = Fi’1 =1, TZ = —L2n+4 and /?2 = "L2n+2-

When m is odd (7',,1, Rom)is asolution of

Foue1T? = Fou15R? = —Lopss
while it is a solution af

Fone1T? = FonesR? = Lopes

when m is even. Furthermore

{ Ton = [(~Fousay + D=E)™ = (—F gk + =Y )] /(Y — £

(4.8) -
R = [(Fous2 W + IN=E)" — (Fans2E + =)/ - §)
(4.9) D = D1 = (1) F2ns5L 2043
and
(4.10) DE = Dp = (— 7)m+1F2n+1 Loy+3.

In closing, we observe that if you choose m = 3 in (2.5) and (3.6) you obtain

DEC. 1977

M3 = 2Fpi1Fopss — 1= 2F2,0+ 1, P53 = 2Fpu11Fonsz—1, and N3 = —2Fp,10Fpue3— 1
which are equivalent to the values in (1.6), (1.4), and (1.5). Lettingm = 3 in (4.3) and (4.11) you obtain

83 = 2F2442F2usa +1 = 2F55—1,  R3 = 2F2uu2F2u43+1, and T3 = —2Fpu45F2,0a + 1

which are equivalent to the values in Theorem 1.3.
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MORE REDUCED AMICABLE PAIRS

WALTER E. BECK and RUDOLPH M. NAJAR
University of Wisconson, Whitewater, Wisconsin 53190

INTRODUCTION

Perfect, amicable and sociable numbers are the fixed points of the arithmetic function L and its iterates.
L(n) = ofn) — n, where o is the sum of divisors function. Recently, there has been interest in fixed points of
functions L, L_, Ly(n) = L(n) £ 1, and their iterates. Jerrard and Temperley [1]studiedthe fixed points of
L, and L_. Lal and Forbes [2] conducted a computer search for fixed points of (L_)Z. For earlier references
to L_, see the bibliography in [2].

We conducted computer searches for fixed points n of iterates of L_ and L . Fixed points occur in sets where
the number of elements in the set equals the power of L_ or L _ in question.

In §1, we describe the results of L . The previous work of Lal and Forbes [2] discovered the fixed points of
(L_}Z with one element of each pair < 10°, We extend the results to n < 106, No other types of fixed points
were discovered

The results for L, are described in §2. Again only pairs were found.

1. THE FUNCTION £_

Lal and Forbes [2] discovered nine pairs of fixed points of{L_)Z, where at least one element was less than, or
equal to, 10°, In fact, for all pairs, both numbers were less than 10,

If n is a fixed point of (L_)*: ie. (L_)k(n) =p, for k > 1, then (L_)(n), (L_)Z(n), (L_)k“j(n) are also
fixed points of (L_)k. Thus fixed points of iterates of L_ occur in sets of cardinality k. For at least one integer
ninsuch aset, L_(n) > n. Thus it suffices to search among n with L_(n) > n.

A computer search was conducted using an IBM 370, Model 135. All natural numbersn, 0 <n < 10% L_(n)
> n were examined. The iterates (L_}k(n}, 7 < k < 50, were calculated. Calculation of iterates stopped if

(a) (L_)"(n) =0, 17<m<50;
or
(b) (L_J™*(n) = (L_)"™(n), 1 <k<4.

The printout was to list all iterates calculated in case (b) and for the case where (L_)?%n)> 0. The program
would discover any sets of fixed points arising from iterating L_ on integers n, 70° <n < 106. We found six
new pairs of reduced amicable numbers. There were no sets of fixed points of cardinality other than 2. Of the
twelve numbers, only one exceeded 106, The pairs are listed in Table 1 with the prime factorization.

Table 1
L_

(a) 186615 = 3(2)5-11-13-29
206504 = 2(3)83-311

(b) 196664 . = 2(3)13-31.61
219975 = 3.5(2)7-419

(c) 199760 = 2(4)5-11.227
309135 = 3.5.37-557

(d) 266000 = 2(4)5(3)7-19
507759 = 3.7-24179

(e) 312620 = 2(2)5-7(2)11-29
549219 = 3-11(2)17-89

(f) 587460 = 2(2)3-5-9791
1057595 = 5-7-11.41.67
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2. THE FUNCTION L,

Jerrard and Temperley [2] ran a search for fixed points of L. Every power of 2 is afixed point. But they
discovered no others. They did not examine fixed points of iterates of £ .

We call natural numbers augmented perfect numbers, augmented amicable numbers and augmented sociable
numbers as they are fixed points of L, of (L+)2 or of (L+)k, k > 2. The names are suggested by the name
reduced amicable numbers for fixed points of (L_)Z as used in [2].

A computer search for fixed points was run in the range, 0 < n < 70°, No augmented perfect numbers, no
augmented sociable numbers were found. Eleven pairs of augmented amicable numbers were found. They are
listed in Table 2. Two pairs have both elements over 10°, They arose from iterating L, on 632512, 844740 and
869176.

TABLE 2
L,
(a) 6160 = 2(4)5-7-11
11697 = 3.7-557
(b) 12220 = 2(2)5-13.47
16005 = 3.5.11.97
(c) 23500 = 2(2)5(3)47
28917 = 3(5)7-17
(d) 68908 = 2(2)7.23-107
76245 = 3.5.13.17.23
(e) 249424 = 2(4)7-17-131
339825 = 3.5(2)23-197
(f) 425500 = 2(2)5(3)23-37
570405 = 3.5.11.3457
(g) 434784 = 2(5)3.7-647
871585 = 5.11.13.23.53
(h) 649990 = 2.5.11-19-311
697851 = 3(2)7-11-19-53
(i) 660825 = 3(3)5(2)11-89
678376 = 2(3)19-4463
(j) 1017856 = 2(T1)7-71
1340865 = 3(2)5-83-359
(k) 1077336 = 2(3)3(2)13-1151
2067625 = 5(3)7-17-139
RE FERENCES

1. R.P.Jerrard and N. Temperley, “Almost Perfect Numbers,”” Math. Mag., 46 (1973), pp. 84—817.
2. M. Lal and A. Forbes, A Note on Chowla's Function,”” Math. Comp., 25 (1971), pp. 923—925. MR 45-
6737.
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FIBONACCI SEQUENCE AND EXTREMAL STOCHASTIC MATRICES

R. A. BRUALDI®
University of Wisconsin, Madison, Wisconsin 53706

and
J. CSIMA?
MeMaster University, Hamilton, Ontario, Canada L8S 4K1

ABSTRACT

The purpose of this note is to exhibit an interesting connection between the Fibonacci sequence and a class
of three-dimensional extremal plane stochastic matrices.

1. A three-dimensional matrix of order n is a real valued function A defined on the setJ3 ,, of points (i.j.k),
where 7 < jj, k <n. Itis customary to say that the value of this function at the point (i/, k) is an entry of the
matrix and todenote it by ,j ke A plane is defined to be a subset of which results when one of /,/, k is held fix—
ed. A plane is called a row, column, or horizontal plane according as to whether/, /, or k is held fixed. A matrix
A is plane stochastic if its entries are non-negative numbers and the sum of the entries in each plane is equal to
one. If A and B are plane stochastic matrices of order » and 0 < a < 1, then a4 + (7-a)Bisalso a plane
stochastic matrix. Thus the collection of all plane stochastic matrices of order n is a convex set. The extreme
points of this convex set are called extremal plane stochastic matrices. Jurkat and Ryser [3] have raised the
question of determining all the extremal stochastic matrices. This appears to be a very difficult problem. One
class of extremal plane stochastic matrices is formed by the permutation matrices (with precisely one non-zero
entry in each plane). But unfortunately very little is known about other extremal matrices.

In what follows we construct a class of extremal plane stochastic matrices using Fibonacci numbers.

2. If Ais athree-dimensional matrix of order s, then the pattern of A is the set of all points (/,/,k) for which
aijk # 0. Jurkat and Ryser [3] observed that a p/ane Stochastic matrix A is extremal if and only ifthere isno
plane stochastic matrix other than A which has the same pattern as A.

We are now ready to construct a class of extremal stochastic matrices. LetS,, ¢ J3,, (n =1, 2, ) be the
pattern defined as follows: The points (n, n, n — 7) and (1, n, n) belong to S,,. In addition (i,j,k) €S,, when-
ever one of the following holds:

(i) i=j=k for ji=1-,n—-1;
(i) i=j+1 and k=n for i=2-,n;
(iii) i=j—1=k+1, for i=2-,n—1.

The matrix 7,, in Figure 1is a two-dimensional representation of this pattern. The (i,/}entry of 7,, equals £ if
and only if (i,j, k)€ T,,. Fortunately, T,, is such that (i,j,k), (ij,k’) € T,, implies k = k"

The (two-dimensional) matrix B,, indicated in Figure 2 represents a three-dimensional matrix A,, of ordern.
If (ij,k) €S, then a;jp = byj; if (ij,k) & S, then a;;p, = 0. The sequence fy, £z, fx, f4, - is the Fibonac-
ci sequence 1, 1, 2, 3, .

Theorem. The matrix A,, is an extremal plane stochastic matrix of order n.

Proof, We observe that all the indicated entries of B,, are positive so that the pattern of A4,, is S,,. In
order to verify that A,, is plane stochastic, we compute the plane sums of A,,. First we observe that the row

This paper was written while the authors were on an exchange visit to the Mathematical Institute of the
Hungarian Academy of Sciences, Budapest.
! Research supported by both the U.S. and Hungarian Academy of Sciences.
2 Research supported in part by the National Research Council of Canada (Grant No. A 4078) and by the
Hungarian Institute for Cultural Relations.
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and column plane sums of A, are the row and column sums of B,,. It is more convenient to verify that the row
and column sums of £, = (f,.42 — 1)B,, are all f,,.2 ~ 1. The first row sum of C,, equals

fpwp —f3+f1 =0 —1;
the last row sum of £, is clearly £, — 1. The /™ row sum of Cn,2<i<n-—1, equals
it (fpao = fi12) # (freg = 1) = fu2— 1.
The first, second, and last column sums of C,, equal f,,+2 — 1. The/th columnsum of C,,, 3 <j <n— 1, equals
(fi= 1)+ (12 = fr42) + fr1q
Thus far we have verified that the row and column plane sums of A, are one. Now we compute the horizontal
plane sums of 4,,. The k™ horizontal plane sum of A, T<k<n-— 1, equals
(fur2 = fre2) # (fpra~ 1) _
fus2— 1

= f”+2'“ 7.

7.

The n " horizontal plane sum equals

f]+ fZ+"'+fn

—— = ],

fn+2 -1
Thus A,, is a plane stochastic matrix.
To show that A,, is extremal, it suffices to show that there is no other plane stochastic matrix with pattern

Su.
Let £ be a plane stochastic matrix with pattern S,,. Let a > 0 be the (7,n,n)-entry of £. Let G = [g;;] be the
two-dimensional representation of £, We claim that G has the form indicated in Figure 3.

71— (53— 1a fra”
fra T—(fy—Na (f3— 1)a
G, = ‘ - ,
fae1a 1= (fupq1 = Ta (f, = Ta
- fua 7- fna
Figure 3

We verify this by using step-by-step the fact that the plane sums of £ are one. For the first row of G we have
gin=a=fra,and fromgq; +gq, = 7 we conclude that

911 = 1—-a=1-(f3-1)a.
For the second row of G we have gy ;= 7— g;; = a= foa. Since the first horizontal plane sum is one,
923 = 1—g41 = a=(f3-1)a.

Finally, g2 = 7 — (f4 — 7)a can be determined by considering the second row sum of G. Suppose it has been

verified that the first / rows of G are as claimed forsome / with 2 </ <n — 1. Considering the /t* column sum

of G we compute that
9it1,i = 1= gig,i= i = 1—(fi— 1a—(1=(fiyy = T)a) = fizqa.

Considering the i* horizontal plane sum of £, we compute that

1—g;; = 1—(1—=(fir2—1a) = (fuy— 1a.

Finally, considering the (7 + 1)t row sum of G, we compute that

Ji+1,i+2 =

Gitt,i+1 = 1= Giw1,i— Git1,iv2 = 1= firga—(fuz—Ta = 1— (43— 1)a.
Thus by induction we have verified our claim up to and including the (n — 1)t row of G. By considering the

{n— 7)°t column sum and n™ row sum of g in turn, we calculate that
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Inn-1 = 1= 9n-2,n-1—9n-1,n-1 = 1= Afy1—Na~ (1~ (fy12— 1a) = f,a,
and
Inn = 7“9?1,1/1-1 = 1-fa.
Thus our claim is verified.
Now by considering the n™ horizontal plane sum of £, we see that a is uniquely determined. Hence £ is
unique, and thus £ = A,,. This completes the proof of the theorem.
Constructions for other extremal matrices and additional properties of planar stochastic matrices can be
found in [1, 2]. '
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BELL'S IMPERFECT PERFECT NUMBERS

EDWART T. FRANKEL
Schenectady, New Y ork

A perfectnumber is one which, like 6 or 28, is the sum of its aliquot parts. Euclid proved that 2p'1(2p -1)
is perfect when (2P — 7)is a prime; and it has been shown that this formula includes all perfect numbers
which are even.!

In Eric Temple Bell's fascinating book?, the seven perfect numbers after 6 are listed as follows:

28, 496, 8128, 130816, 2096128, 33550336, 8589869056 .
Checking these numbers by Euclid’s formula, | found that

28(2° —1) = 256 x 511 = 130816
and
210211 — 1) = 1024 x 2047 = 2096128 .
However, 511 =7 x 73;and 2047 = 23 x 89.
Inasmuch as 511 and 2047 ar not primes, it follows that 130816 and 2096128 are not perfect numbers,
and they should not have been included in Bell's list.

YEncyclopedia Britannica, Eleventh Edition, Vol. 19, page 863.
2The Last Problem, Simon and Schuster, New York, 1961, page 12.
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FIXED POINTS OF CERTAIN ARITHMETIC FUNCTIONS

WALTER E. BECK and RUDOLPH M. NAJAR
University of Wisconsin, Whitewater, Wisconsin 53190

INTRODUCTION
Perfect, amicable and sociable numbers are fixed points of the arithemetic function L and its iterates.
Lin) = ofn)~n,

where o is the sum of divisor’s function. Recently there have been investigations into functions differing from
L by 1;i.e., functions L, L_, defined by L.(n)= L{n)# 1. Jerrard and Temperley [1] studied the existence of
fixed points of £, and £_. Lal and Forbes [2] conducted a computer search for fixed points of (L_)Z. For
earlier references to L_, see the bibliography in [2].
We consider the analogous situation using ¢*, the sum of unitary divisors function. Let L}, L ¥, be arithmetic
functions defined by
Lifn) = o¥n)-nt1.

In § 1, we prove, using parity arguments, that L * has no fixed points.

Fixed points of iterates of L * arise in sets where the number of elements in the set is equal to the power of L*
in guestion. In each such set there is at least one natural number n such that L*(n) > n. In § 2, we consider
conditions n must satisfy to enjoy the inequality and how the inequality acts under multiplication. In particular
if n is even, it is divisible hy at least three primes; if odd, by five. If » enjoys the inequality, any multiply by a
relatively prime factor does so. There is a bound on the highest power of n that satisfies the inequality. Further
if n daoes not enjoy the inequality, there are bounds on the prime powers multiplying # which will yield thée
inequality.

In § 3, we describe a computer search for fixed points of iterates of L*. In the range 0 <n < 110,000, we
found no sets of fixed points.

In § 4, we summarize theory and a computer search for L. Again, by a parity argument, we prove there are
only two fixed points, 1, 2, for Li. The computer search, 0 < n < 100,000, found no fixed points of iterates
of L},

1. THE FUNCTION L*

Let Z be the integers and // the natural numbers. The arithmetic function o*: A/ — Z is the sum of unitary
divisors function. Forn = [Ip<,

(1 o*n) = T1(1+p%)
Define new arithmetic functions L* L L}, by

(2) L¥*n) = o*n)—n,
(3) L*(n) = L*n)—1;
(4) Lifn) = L¥n)+1.

We are interested in the fixed points of L* L7}, and their iterates. For L ¥, we call these fixed points reduced
unitary perfect and reduced unitary amicable and sociable numbers. For L* augmented unitary perfect, ami-
cable and saciable numbers. The names are suggested by [2]. We consider L * in detail.

Note that L*(7)=—T7and L}(2) = 0.
Lemma 1. ForneNlN, L*(n)=0if, and only if,n=p% paprime,p=>2 a>1.
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Proof 1fn=p% L*n)= o*n)—(1+n) = (1+n)—(1+n) = 0.
fn# p% n=p*m, paprime,a>1,(p,m)=1m> 1. ThenL*n)=0*(n)—(1+n)

But o*n) = a*(p*)o*m)
> (1+p°N1+m) = T+p“+m+p*m
L*(n) = p®+m > 0.

Lemma 2. Forne N, L*(n) has the same parity as n if, and only if, n =2% a> 0.
Proof. Vfn=29=1; L*1) = 1.

Hn=2%>1; L*2% = 0by Lemma 1.

1fn=TMp% all p odd primes:

L*(n)=TUT+p®%)—(1+n)

Both terms on the right are even, so L*(n) is even.

ifn=2PTp® all p odd primes:
L*(n)=(1+2B)T1(1+p®)—(1+n). The terms on the right are of opposite parity; and L *(n)

is odd.
Theorem A. LX hasno fixed points.
Proof. By Lemma 2, need only consider cases where parity of » and L*(n) are the same. By Lemma 1,
in these cases L*(n) < n.
2. THEINEQUALITY L*(n) > n

If (Lf}k(n) =, k > 2, then the images L*(n), (L¥) Z(n}, (Lf)k—1 are also fixed points of (Lf)k, Thus
fixed points of (L_*}k, k > 2, arise in sets of k distinct points. In each set of fixed points, there is at least one
integer /m such that L *(m) > m. The following propositions deal with the behavior of this inequality.

Proposition 3. fk=nm, (nm)=1, then L*(k) > L*(n)L*(m) +nL*(m)+mL*n).
Proof. LX(k) = o*(k) = (1+k) = o*(n)a*(m)—(1+mn)

[LX(n) +(1+n)][LX(m)+(1+m)] = (1+mn)
L*(n)LXm)+ (1 +n)L*(m)+(1+m)+(1+m)

0]

L*(n)+m +n
L*(n)L¥(m)+nL*(m)+mL*(n).

Y

\%

Corollary 4. \fk=nm, (n,m)= 1, then
L*k) < LXm)L*(n)+ (1 +m)L*(n)+ (1 +n)LX(m)+(1+m)(1+n).

Fork=210=2-3-5-7, letm =6, n = 35.

The inequality of the proposition is:
365 = L*(210) > L*(6)L*(35)+6L*(35) +35L*(6) = 5-12+5.35+12-6 = 307.

The corollary inequality, with these numbers is:
365 < 5-12+5.35+12-6 = 307.
Relative primeness is necessary in the proposition. For k =90, m = 6, n = 15, the required inequality is
80 > 5-8+6-8+15-5 = 163

which is false.
Proposition 5. Letm=p®n, (p,n)=1.1£L*(n) > n, then L*(m) > m .

Proof. L*(n) > n = o*n)—(1+n) >n = o*n)—n > n
L*(m) = o*p®n)—(1+p®n) = (1+p%)o*(n)—1-p°n
= 0*n)—(1+n)+p%[c*(n)—n] +n = L*(n)+p®[c*(n)—n] +n
> pn+2n > m.
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Ifm =p®n, (p,n) = p, the result does not necessarily follow.

L*(30) = 471 > 30; L*(60) = 59 < 60.
The inequality fails.

Proposition 6. Letn=I1p® If L*(n) > n, then

H<7+—£)>2.
P

Proof The inequality 0*(n) — (1 +n) > nis also written as 0*(n) > 2n + 1. Then

0—*”’—)>2+1>2.
n n

But
0*(n}:l_[(7+ga}=n 7+_7
n Mp® P ’

Corollary 7. Letn=Tp® If L*(n) > n, then
n( 141 )> 2
p

The results in Proposition 6 and Corollary 7 are necessary conditions but not sufficient. The inequalities are
first satisfied by an integer n with exponents a equal to 1. Among even integers, 7 = 30 = 2-3-5 is the smallest.
L*(30)=41. Among odd integers, n = 150715 = 3-8-7-11-13 is the smallest. L*(75015) = 17240.

Corollary 8. 1fniseven and L *(n) > n, then n is divisible by at least three distinct primes.
Corollary 9. 1fnisodd and L*(n) > n, then n is divisible by at least five distinct primes.
Proposition 10. For each natural number n, there is a natural number ¢ = #/n) such that for k > ¢,
L*n*) < n*
Proof.  Letn=IIp° and @, the rationals. The function 6 : ¥
N

X
Ofns) = 11 [ }

is, for fixed n, adecreasing function of s bounded below by 1 Let t be the first integer such that

/L/ Q defined by

Ont) < 2
Proposition 11. Letm=p®n, (p,n) = 1with L*(n) < n. \f L*(m)>m, then
n @
_ > p
2n— 0*(n)
Proof. L*n) < n = 0*n)—(1+n) < n = o*n)—1 < 2n

L*m) > m = o*p°n)—(1+p%n) > p%n
= 0*n)—1 > 2p% —p“o*(n).
Then using the first inequality

n
2n— a*(n) > P
This proposition sets the bound on the multiples of a natural number n, L *(n) < n, which enjoy the reverse
inequality. Forn =70, a*(n) =18,

2n > o*n)—1 > p®[2n—c*n)] and

n 20
2n—o*n) 20—
The possible p® are 3, 7, 32 L*(30) =41. L*(70) = 73; L *(90) = 89.

=20
TS5 10
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Note that for 90,

[

p
3. THE COMPUTER SEARCH FOR FIXED POINTS OF ITERATES OF L*

A computer search for natural numbers n such that L*(n) >n, 0 <n < 718,000, was run on an I1BM 370,
model 135. For each such natural number i, the iterated values {Lf)k(n) were caleulated, until 0 was reached.
The program allowed fifty iterations. The values under the iterations were printed out. The process thus identi-
fies any set of fixed points with an element less than, or equatl to, 110,000.

Table T summarizes the results. There were no fixed points discovered, For all integers examined, iterations
of L* eventually reached zero. For each n, the order of n is the first integer k such that (L*/#(n) = 0. For eath
value of the order, we list the first occurrence of the order and the frequency, or count, of the natural numbers
with that order. The first natural number examined was 30; the last, 109,986. Note that there are no numbers
of order 3 in the internal. Further the count of odd orders is relatively small. This can be explained, in part, by
the few odd numbers under 110,000 satisfying L *(n) > n. Recall that the first such is 15015. A total of 7697
numbers were examined.

Itis desirable to develop upper and lower bounds for the first integer which is fixed under (L*)?

7+ i)=2.

Table 1
Lx
Order 1st Frequency
2 30 2203
3 — 0
4 66 1947
5 1596 10
6 294 1733
7 3290 38
8 854 1133
9 1190 46
10 4854 446
1 15890 20
12 14630 121
13 21945 8
14 38570 5
15 76670 4
16 104510 1
17 107030 1

4. THE FUNCTION L}

fn this section we examine L. For any natural numbern, L¥{n)=L*(n)+2. So
L*(n) > n = L¥n) > n
LH1) =1, L¥2) =2

Thus L3 has at least two fixed points.
Proofs of the following results parallel those above.

Lemma 12. FornelN, L}(n)=2if, and only if, n =p® paprime, a> 1.
Lemma 13. ForninlN, L}{n) has the same parity as o if, and only if, 7=2%a > 0.
Theorem B. L} has exactly two fixed points, 1 and 2.
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Proposition 14. |fk=mn, (m,n) =1 then L}(k) < L3(m)L3(n)+mL3(n)+nL*(m).

Proposition 15. Letm=p®n, (p,n) = 1.1t L3(n) > n, then L (m) > m.
Proposition 16. Letn=TIp% If
. IT <7+ —7> > 2
p&

H(7+’§\)>2,

then L¥(n) > n.
Corollary 17. Letn=Tp® If

then L3 (n) > n.
Recall that in Proposition 6 and Corollary 7, the condition

H(H l>> H(7+ —7> > 2
P @
p
was necessary but not sufficient. Here it is sufficient but not necessary.
Proposition 18. Foreach natural number 5, there is a natural number ¢ = ¢/n) such that for k > ¢,
Lx(nk) < n*
Proof. Using the notation of the proof of Proposition 10, it suffices to let ¢ be the first integer such that
3
<=,
O(n, t) 7

Proposition 19. Letm =p®n, (p,n) = 1 with L3(n) <n. \f L}(m) > m, then

2n "
—————— > .
In—o*n) "

A computer search for natural numbers n such that L:(n) > nwas run, 0 < n < 100,000. The iteration values

were calculated and printed up to fifty iterations. The end value for iterations is 2 rather than 0. The search

would have discovered any set of fixed points of an iterate of L } where one element of the set was less than, or

equal to, 100,000. None were found. The results are in Table 2. The organization is as for Table 1.

Table 2
L
Order 1st Frequency
1 1,2 2
2 6 2020
3 82005 2
4 42 1274
5 498 27
6 78 1213
7 2530 144
8 402 1154
9 10650 12
10 1518 698
1" 19635 19
12 2470 289
13 15015 2
14 10158 85
15 — 0
16 57030 15

17 84315 1
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