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FIBONACCI AND LUCAS NUMBERS AND THE COMPLEXITY OF A GRAPH

A. G.SHANNON
The New South Wales Institute of Technology, Broadway, New South Wales, Australia

1. TERMINOLOGY
In this note we shall use the following notation and terminology:
the Fibonacci numbers £, : F; = Fp = ],

Fuez = Fpag t Ry, 0217
the Lucas numbers  L,: Ly =1 Ly =3,

Ln+2 = Ln+1+l_n, n=1;

a,f3: zeros of the associated auxiliary polynomial;

acomposition of apositive integer n is a vector (a4, a, -+, a,) of which the components are paositive integers
which sum to n,;

agraph G, is an ordered pair (V/,£), where V/ is a set of vertices, and £ is a binary relation on V; the ordered
pairs in £ are called the edges of the graph.

acycle is asequence of three or more edges that goes from a vertex back to itself;

a graph is connected if every pair of vertices is joined by asequence of edges;

a tree is a connected graph which contains no cycles;

aspanning tree of a graph is a tree of the graph that contains all the vertices of the graph;

two spanning trees are distinct if there is at least one edge not common to them both;

the complexity, k(G), of a graph is the number of distinct spanning trees of the graph.

For relevant examples see Hilton [2] and Rebman [4], and for details see Harary [1].

2. RESULTS

Hilton and Rebman have used combinatorial arguments to establish a relation between the complexity of a
graph and the Fibonacci and Lucas numbers. Rebman showed that

(2.1) KW,) = Ly, -2,

where W¥,,, the n-wheel, is a graph with n + 7 vertices obtained from a cycle on n points by joining each of these
n points to a further point.
Hilton also established this result and

(2.2) Lon=2= 3 (-8 L Fogp o Fag
v(n)
in which y(n) indicates summation over all compositions (a4, -, a;/) of n, the number of components being
variable. It is proposed here to prove (2.1) by a number theoretic approach.
To do so we need the following preliminary results which will be proved in turn:

{2.3) Fon = Foni2—2Fpn+ Fou2,
(2.4) 1-2x2+x% = exp (=2 Z xzm/m> ,
m=1
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(2.5) 3 Foux?? = xzexp( > Lomx?™/m) ,
n=0 m=1
(2.6) 1+ 3y anxzn = (1-2%+x%) exp( h Lmezm/m 3
n=0 m=1
(2.7) 1+ 3 Fpux?" = exp 3 (Lo —2}x2m/m> ,
n=1 m=1
wherein it is assumed that all power series are considered formally.
3. PROOFS
Proofof (2.3).
Fon = F2n+F2n—1"F2n—1
= Fone1— Font Fon— Fou_g
= Font1— Font Fon2
= Fonsz—2Fy+ Fon2 .
Proof of (2.4).

1-2x2+x% = (7—X2/2

= expln(l—xz) )

=exp(-2In(1-x2)")
= exp (—2 > xzm/m> .
m=1

Proof of (2.5).
3T Foux?m= x2/(1-3x%+x%)
= x2/(1-a®x?)1 - %P
In ( f anxz’“) = —In(1-a®x?)1 - B%x?)
' —In(1-a*?)=1n(1-p*3)

* CLZmXZm‘/- o 2mx2m
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Proofof (2.6).

FZnXZVl-—

2
n=0

M

]
S

Now

Z FZnXZH
n=0
So
= 2n _
1+ E Foux<" =
n=1
Proof of (2.7).
1+ Foux?" = (1-x2)* exp

n=1

from (2.4).

To prove the result (2.2) we let
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I

—1+x? > Fpx°"
n=0
= —1+x* exp( > I_mezm/m> .
m=1

= 3 (Fousz—2F 20+ Fan 2 )x?".

s

> Lzmxzm/m> = exp<

m=1

(1-2x? +x4) exp

|

4. MAIN RESULT

m=1

Z Lszzm/Iﬂ) .

Z (LZm - 2}X2m/m

m=1

|

1 )k-1
W, = Z [ 7/(} F2a1"'F2akn
V(n)
Then
= 2n (—7}k_1 2n
Z Wyx<" = Z Z % F2a, "'FZak X
n=1 n=1 |vy(n)
o o L
= Z e Z anx2” k
k=1 n=1
=n|7+) F2”x2”> =3 (Lyy—2)x*/n
n=1 / n=1
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from which we get that
W, =Ly, —2)/n
or

k-1
-~ (-1
Lyy—2= 3 (_)T_Q F2a; - Faay, -
v(n)
These properties have been generalized elsewhe re for arbitrary order recurrence relations [5] .
Hoggatt and Lind [3] have also developed simiiar results in an earlier paper.
The author would like to thank Dr. A. J. W. Hilton of the University of Reading, England, for suggesting the

problem,
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EMBEDDING A GROUP IN THE p'* POWERS

HUGO S. SUN
California State University, Fresno, California

In a finite group G, the set of squares, cubes, orpth powers in general, does not necessarily constitute a subgroup.
However, we can always embed a finite group into the set of squares, cubes, or anypt powers of another group.

A subgroup H of a group G is said to be a subgroup of pth powers if for every y € H, there isan x & G such
that xP =y,

Theorem. Every finite group G is isomorphic to a subgroup ofpth powers of some permutation group.

Proof, Let G be a finite group, and let P be an isomorphic permutation group on » elements, sayasy,a72, ™ -
aiy.
Consider a permutation group @ on pn elements

a11,d12,,81n; 421,322, ,82a; , d8p1,8p2, ", dpn,;
defined in the following manner: For any permutation
in P corresponds the permutation
G = latijay;, 2tipNag; azi, ~azi,) -~ (api; apiy = apiy)
(81748155 1), Na2jy a2, ) -~ (apj 2pjy apj, )
in the symmetric group Spn. Q is clearly isomorphic to P and each elemenr in @ is thepth power of an element in
Spn- Infact, 6 = 77, where
T = (a1i,82i1 *8pi181i582ip *dpiy 81i,32i), *dpit,)

= (a1j,2j1 -+ 8pj 31138255 3pjp 21}y 82y Apjpy )
Sekchodokkk



IDENTITIES RELATING THE NUMBER OF PARTITIONS
INTO AN EVEN AND ODD NUMBER OF PARTS, II

DEAN R. HICKERSON
University of California, Davis, Califomia 95616

Definition. 1fi > 0andn > 1, let qe(n) be the number of partitions of 7 into an even number of parts,
where each part occurs at most / times. Letq (n) be the number of partmons of n into an odd numberof parts,
where each part occurs at most/ times. If/ > 0, letg; €(0) = 1 and qu(O)

Definition. 1fi>0andn >0,let A;(n)=qgf(n)—qf(n).

The purpose of this paper is to determine A;(n) when / is any odd positive integer. The only cases previously
known were /= 1, proved by Euler (see [1]), /= 3, proved by this writer (see [2]), and/ =5 and 7, proved by
Alder and Muwafi (see [3]).

Definition. Ifs, t, u are positive integers with s odd and 1 <s <, and n is an integer, let £ ¢, (n) be the
number of partitions of n in which each odd part occurs at most once and is # #s (mod 2¢) and in which each
even part is divisible by 2¢ and occurs < v times.

Theorem. |fs, t, u are positive integers with s odd and 1 <s < ¢, and 7 is an integer, then

Agpueiln) = (1) % fpuln =% = (t=5)j).

j
Proof.
n 71— x?ti 7 ' P2 (u-1)j
37 Azpuqgln)x™ = M —— =111-x)-[1(1-xN1+x +xT+#x 1)
n A j
>1 =1 i>1
2lj 2t|j
_ I-I (7_X2tj+s)(7_x2tj+2t—sl(7_Xth+2t). H ”_Xj}- n (7+xj+x2f+-~-+x(”"1)j)
j J J
>0 >1 j>1
24§ 2tlj
jE +s(mod 2t)
= E (_ I)thjz‘f'(t—S)j. n (7—Xj)' n (7+)(j+,\’2j+---+,\’(u—1)j),
j j j
i>1 =1
i 2t1j

2]
jELs {mod 2t)

where the last equality follows from Jacobi's identity with k= tand ¢ =t — s, Since s is odd,

l‘/2+(t—s}/ =/ (mod2).

Hence, when we substitute —x for x, we obtain
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S (~1)"A g (n)x" = Z KPS, I (1+x1). M (1+x]+x2% + ..+ x(-1)j)
! ! 1 i>1
Aj 2t1j

2
j#F4s (mod 2¢)

Z th2+(t-s)j_ Z fs,t,u(m)Xm:
j m

]
from which the theorem follows immediately.

Corollary 1. Ifsand ¢ are positive integers with s odd and 1 <s <, and n is an integer, then

Agpygln) = (=1)" 32 fyp 10— 472 = (t=s)j).
J
Note that £ ; 1(n) is the number of partitions of n into distinct odd parts # s (mod 2t).
Proof. Letu.=1in the theorem.
Lettings = 1 and ¢ = 3 yields Theorem 1 of [3].
Corollary 2. 1fi > 2and n is an integer, then (—7)"A;(n) > 0.

Proof.  For even j, this follows from Theorem 3 of [2]; for odd , it follows by letting s = 1 and
t = (i + 1)/2 in Corollary 1.

Corollary 3. If s and t are positive integers with s odd and 1 <s <t and n is an integer, then
Agpqln) = (=1)" 3 fyp20n— 42— (t=s)j).
i

Note that £ ; 2(n) is the number of partitions of n into distinct parts which are either odd but # £s (mod 2t)
or which are divisible by 2.

Proof. Letu=2in the theorem.
Corollary 4. |fuisa positive integer and 7 is an integer, then

Agetln) = (1" 3> f1,2uln 212 =j).
j
Note that f; 2 ., (n) is the number of partitions of n into parts divisible by 4, where each part occurs <v times.
Proof. Lets=1, t=2in the theorem.
Lettingu = 7 yields Theorem 2 of [2] and v = 2, Theorem 2 of [3].
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ON THE EXISTENCE OF THE RANK OF APPARITION
OF m IN THE LUCAS SEQUENCE

JAMES E. DESMOND
Pensacola Junior College, Pensacola, Florida 32504

Let m be an arbitrary positive integer. According to the notation of Vinson [1, p. 37] let s{m) denote the
periad of F,, modulo m and:let #{m) denote the rank of apparition of m in F,, .
It is easily verified that

(1) Font1 = (1) + Fulpeg = (—1)" +Fpsly,

for all integers n.
In the sequel we shall use, without explicit reference, the well known facts that

Fon = Fuly,
and that £, and L,, are both odd or both even and
(Fu,ly) =d <2, and  Fp|Fn
for all integers n and m # 0.
Lemma 1. Fj, =0 {modm)and Fa,+; =(—1)" (mod m) if and only if F,, = 0 (mod m).

Proof.  Let Fz,, =0 (mod m) and Fp,.+1 =(—1)" (mod m). Then by (1), F,, L,,+1 =0 (mod m). Since
Fy,=F,L,=0(modm), we have

Folut2 = Fulysg# Fuly =0 = Fylysg — Fuly = Fuly g (modm) .

So whether n is negative or non-negative we obitain after finitely many steps that F,,L; = F,, =0 (mod m).
Conversely, let £, =0 (mod m). Then F5,, = F,,L,, =0 (mod m) and by (1), F 2,17 =(—1)" (mod m).

Lemma 2. Fj,=0{modm)and Fz,.;=(—1)""1 (mod m) if and only if L,, =0 (mod m).
Proof. Analogous to the proof of Lemma 1.

The following lemma can be found in Wall [2, p. 526]. We give an alternative proof,

Lemma 3. 1fm > 2, then s(m) is even.

Proof. Suppose s(m) is odd, We have by definition of sfm) that

Fastmyr1 = Fstm)+s(m)r1 = Fstmpr1 =1 = (~1)5(")* (mod m) .
Also
Fastm) = Fsm)Ls(m) = 0 (mod m).
Therefore by Lemma 2, Ls/y,) =0 (mod m). But
(Fs(m); Ls(m)} =d<2

which contradicts the fact thatm > 2.

An equivalent form of the following theorem, but with a different proof can be found in Vinson {1, p. 42].

Theorem 1. We have

i} m > 2and fm) is odd if and only if sim) = 4f(m)

i) m=1o0r2ors(m)/2is odd if and only if sfm) = f{m)
iii) ffm) is even and s(m)/2 is even if and only if sfm) = 2f(m).

Proof, We first prove the sufficiency in each case.

7
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Case i): Letm > 2 and f(m) be odd. From Vinson [1, p. 37] we have f(m)|s(m). Since s(m) is even for m >
2 we know that s(m) #f(m) and s(m) #3f(m). We have F2(,)=0 (mod m) and by (1),

Faftmyer = (=™ = —1 (mod m).
Therefore sfm) #2f(m) since m > 2. But F4f(m) =0 (mod m) and by (1),
Faftmyes = (~1)210™) = 1 (mod m) .
Therefore sfm) = 4f(m).
Case ii): The conclusion is clear for m = 1 or 2. Letm > 2 and s/m)/2 be odd. Then by Case i), f{m) is even.
80 F2f(m)=0 (mod m) and by (1),
Faftmper = (=17™ = 1 (mod m)
which implies that s(m) < 2f(m). s(m) #2f(m) since s{m)/2 is odd and #(m) is even. Therefore since f(m)|s(m),
we have sm) = f(m).
Case iii): Let f{m) be even and s(m)/2 be even. Then m > 2. We have F £, )= 0 (mod m) and by (1),
Faftmys1 = (1™ = 1 (mod m).
Therefore s(m) < 2f(m). Now, Fy,,) =0 (mod m) and Fyppy)pq = 1= (- 1)5(™)12 (mod m). So by Lemma 1,
Fs(m)j2 =0 (mod m). Thus s(m) #f(m) and therefore since f(m)|s(m) we have s(m) = 2f(m).

The necessity in each case follows directly from the implications already proved.
The following corollary is part of a theorem by Vinson [1, p. 39].

Corollary 1. Letp be any odd prime and e any positive integer. Then we have
i). f(p©)is odd if and only if s(p€) = 4f(p¢)
ii). f(p®)iseven and f(p€)/2 is odd if and only if s(p¢) = f(p€)
iii). f(p€)isevenand f(p€)/2 is even if and only if s(p€) = 2f(p¢).
Proof. By Theorem 1, we need only prove that s(p€)/2 is odd if and only if #(p€) is even and f(p®)/2 is

odd. The sufficiency is clear by Theorem 1, ii).
Conversely, let 7(p¢) be even and #(p¢)/2 be odd. Then

F oo =F o L o =0 (modp9.
109~ Fpenat e = 0 1motP)
Since
F L =d <2
Froen tpeys! =9 <2 <0
we have L =0 (mod p®). Therefore by (1),

ftr®)12 = (- 7)(f(P JI2)F1 = 1 (mod p©).

f(p )1
Thus s(p€) = f(p€) and so s(p€)/2 is odd.

Definition. |f m divides some member of the Lucas sequence, let g(m) denote the smallest positive in-
teger n such thatm |L,, .

If m divides no member of the Lucas sequence, we shall say that g(m) does not exist.

From Vinson [1, p. 37] we have
(2) F,, = 0 (modm) if and only if f(m)|n.

It is interesting to note from the following proof that if 4|f(4n), then g(4n) does not exist.

Lemma 4. Ifnisan odd integer and g(4n) exists, then 4|Lfr4,,)/2.

Proof By observing the residues of the Lucas sequence modulo 4 we find that 4\L (4n impliesg(4n) =
3 + 6k for some integer k. Therefore g(4n) is odd. We have 4n|L g 4,,)|F2g(4n)- ﬁv (2), f(4n)|29(4n).
Hence 4 | f(4n). Since 4|F (4n) We have by (2) that 6 = f(4)\f(4n Smce f4n)/2 is odd and 3|f(4n)/2 we
have from Carlitz [3, p. 15] that 4 = L3|Lfian))2 .

Theorem 2. f m > 2 and g(m) exists, then 2g(m) = f(m).
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Proof. We have m|Lg(m)|F2g(m). So by (2), flm)|2g(m). Suppose f(m) is odd. Then flm) \g(m)
and therefore by (2),m|Fg). Thus m\(L g/ ), Fg(m)) = d < 2, a contradiction since m > 2, Hence f(m) is
even.

To complete the proof it suffices to show that m [L £, )/2 which implies g(m) = f(m)/2. We have

m|Ffim) = Fom)12Lfom)/2 -
Let m = mymz where m|Ffrm) 2 and m2 |L 1 /2. Since f(m)/2|g(m) we have m 1 |Frm)j2 | Fg(m). There-
fore my|(Fg(m), Lom)) =d <2.Somy=10r2.1fmy=1,thenm; =m|Lf(m)/2, the desired conclusion.
Assume my = 2. Then m is even. Since 2|F ¢/ )/2 we have 2|Lfm)/2. If mz = m/2 is odd, then Zm; =
m |Lfrm)/2, the desired conclusion. Assume m 7 =m/2 is even. Since g(8) does not exist we know that 8 f m.
Therefore my/2 = m/4 is odd. Since g(4(m,/2)) = g(m) exists we have by Lemma 4 that 4|Lf(m)/2. Thus
m = 4(m3/2) |L fm)/2. The proof is complete.

Corollary 2. For any odd prime p and any positive integer e, g(p®) exists if and only if #(p°) is even.

Proof. The sufficiency follows from Theorem 2 and the necessity follows from the facts Fy,, = F,, L,
and (F,, L,)=d <2 <p for all integers n.

Theorem 3. We have

i) g(m) exists and is odd if and only if sfm) = f(m)
ii) gfm) exists and is even if and only if s(m) = 2f(m) and Ff(m)ﬂ =—1 (mod m)
iii) g(m) does not exist if and only if either s(m) = 2f(m) and F ¢, )1 # =1 (mod m) or s{m) = 4f(m).

Proof.  Case i): Let g(m) exist and be odd. The case m = 1 or 2 is clear. Assume m > 2. By Theorem 2,
ffm) = 2g(m). Therefore by (1),
Fitmyer = (=16 = 1 (mod m) .
Hence s(m) = f(m).
Conversely, let sfm) = f(m). The case m = 1 or 2 is clear, Assume m > 2. By Theorem 1, s/m)/2 is odd.
Therefore
Fs(m) = 0 (modm) and  Fopp)rg = 1 = (—1)(S(MI2)* (mod m) .

Hence by Lemma 2, Ly )/2 = 0 (mod m) and thus g(m) exists. By Theorem 2,s(m) = f(m) = 2g(m). There-
fore gfm) is odd.

Case ii): Let g(m) exist and be even. Then'm > 2 and by Theorem 2, f(m) = 2g(m). Thus 4|f(m) and so by
Theorem 1, s(m) = 2f(m). By (1), Ftm)+1 =~ 7)8(m)*1 = _1 (mod m).

Conversely, let s(m) = 2f(m) and Ff/p )14 = —1 (mod m). We have £, ) = 0 (mod m). By Theorem 1,
m > 2 and f(m) is even. If f{m)/2 is odd, then Fitmpr1 = (- 1)5(m)12 (mod m) which implies by Lemma 1
that Ffrm)/2=0 (mod m), a contradiction. Hence f(m)/2 is even. Therefore Frry, )+ 1 = (— 7)(f(m)12)+1 (g
m) which implies by Lemma 2 that L ¢/, )/2 = 0 (mod m). Thus g(m) exists and by Theorem 2, f/(m)/2 = g{m)
is even.

Case iii): Follows from Cases i) and ii) and from Theorem 1.

Corollary 3. Forany odd prime p and any positive integer e we have
i) g(p€) exists and is odd if and only if s(p¢) = f(p¢)

ii) g(p¢) exists and is even if and only if s(p€) = 2f(p€)

iii) g(p€) does not exist if and only if s(p€) = 4f(p®).

Proof.  Inview of Theorem 3 we need only prove that s(p€) = 2f(p®) implies Ff(pe)+1 =—1(mod p®).
By Corollary 1, if s(p€) = 2f(p€), then f(p®) is even and #(p€)/2 is even. We have

=0 (modp® and )=d<2<np.

F = F L . F Lo e
fr)  fe)iz f(p©)i2 fir®)I2’ ~fir°)i2
Therefore L =0 (modp®). Soby (1),
ftr€)i2 e
F = (-1)fP )2 = _q (mod p®) .
foopet = g
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Theorem 4. Letp be an odd prime and e be any positive integer. Then
i) g(p€) exists and is odd if p = 11 or 19 (mod 20)

ii) g(p€) exists and is even if p = 3 or 7 (mod 20)

i) g(p€) does not exist if p = 13 or 17 (mod 20)

iv) gfp€) is odd or does not exist if p = 21 or 29 (mod 40).

Proof. Follows from Vinson [1,p.43] and Corollary 3.
Wall [2, p. 525] has shown that the period of L,, modulo m exists for all positive integers m.

Let A(m) denote the period of L,, modulo m.

Corollary 4. Letg(m) exist. Then
i) m=1or2ifand only if h(m) = g(m)
ii) m > 2 and g(m) is odd if and only if A(m) = 2g(m)
iii) g(m) is even if and only if A{m) = 4g(m).
Proof. Since gfm) exists and g(5) does not exist we have (m, 5) = 1. So from the corollary to Theorem 8
of Wall [2, p. 529] we have s(m) = h(m). We first prove the sufficiency in each case.
Case i) is clear.
Case ii): By Theorems 2 and 3, 29(m) = f(m) = s{m) = h{m).
Case iii): By Theorems 2 and 3, 4g(m) = 2f(m) = s(m) = h(m).
The necessity in each case follows directly from the implications already proved.
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RECURRENCES OF THE THIRD ORDER
AND RELATED COMBINATORIAL IDENTITIES

L.CARLITZ
Duke University, Durham, North Carolina 27706

1. Let g be a rational integer such that A = 4y3 + 27 is squarefree and let w denote the real root of the
equation

(1.1) X rgx—1=0 g >1).

Clearly w is a unit of the cubic field Q(w).
Following Bernstein [1], put

(1.2) w" = rn+s,,w+t,1w2 (n > 0)
and
(1.3) w™ = xn+ynw+znw2 (n > 0).

Making use of the theory of units in an algebraic number field, Bernstein obtained some combinatorial identi-
ties. He showed that

Sp = Int2, tn T n+l, Y = Xn-2, 2Zn = Xn-1

and
. 2 -
(1.4) 3 rut = TAgu” ) DD L —
n=0 7+gu—u3 n=0 7—gu2—u3

Moreover, it follows from (1.2) and (1.3) that

(15) ‘ rrzl_rn—lrn+1 = Xpn-3
X~ Xn-1Xn+1=I'n+3
Explicit formulas for r,, and x,, are implied by (1.4). Substituting in (1.5) the combinatorial identities result.
Since A =Zg3 +27 is squarefree for infinitely many values of g, the identities are indeed polynomial identities.
The present writer [2] has proved these and related identities using only some elementary algebra. For ex-
ample, if we put
T+agx? = x? = (1= ax)(1 = Bx)1—yx)

and define
0, = a'+p"+y" (all n)
and
N (=0
Pn =V x,, (h=0"

then various relations are found connecting these quantities. For example
(1.6) OmOy = Om+n+ Om-nO0-n — Om-2n -

Each relation of this kind implies a combinatorial identity.
In the present paper we consider a slightly more general situation. Let v, v denote indeterminates and put

T—ux+wx? =x> = (1= ax)(1=Bx)(1—yx).
We define o,, by means of

Supported in part by NSF grant GP-37924X.
1
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(1.7) 0, = a"+B" +9" (all n)

and p,, by

(1.8) 0, = Ad”" +BB" +Cy" (all n),

where A, B, C are determined by

7 _ A 4 B, c
T—ux+ux?—x3 T-Byx T-yax 1-afx
Thus
19 D R—
n=0 T—vx+ux*—x
and
ha 2
(1.10) T pux™ = Touxtex”
n=0 7—ux+vx2—x3
while
oo 2
(1.11) S opx" = _3—Zuxtwx”
' " T ux +ux? — 53
d n=0 ux +vx< —x
an
. -n
n=0 7——VX+UX2-—X3

Sincea® —aZu+av—1-= 0, it is clear from the definition of g, p,, that

On+3 = UOp+2 *VOu4q — Oy = 0
and
Pn+3 = UPn+3 T VPu+1 —Pn = 0
for arbitrary n.
If we use the fuller notation

O, = Ouluy), Pn = Puluy),
it follows from the generating functions that
(1.13) O_nluy) = o,(vu), Puluy) = ps  (vu).
We show that
(1.14) OmOn = Om+n* Om-nO-n — Om-2n »
for arbitrary m,n. Similarly
(1.15) OmPn = Pm+n * Pm-nCG-n — Pm-2n .
As far the product p,, p,,, we have first
(1.16) PP = Pns1Pnt = P2n6 — Pr-30n3 -
The more general result is
(1.17) 20mPn — Pm+1Pn-1 — Pm-1Pn+1

= Om-30n-3 — Om+n-6 — Om-3Pn-3 — On-3Pm-3 * 2Pm+n-6 ,

again for arbitrary m,n.

[FEB.

Each of the functions 0,,(u,v), 0_,,(u,v), p,(u,v), p_,(u,v), n > 0,is a polynomial in u,v. Explicit formulas
for these polynomials are given in (2.9), (2.10), (4.5), (4.6) below. Moreover Opn is @ polynomial in 0y, 0_y,;

indeed we have
(1.18) Opnluy) = 0,(0,, 0_y) p=0).

The corresponding formula for Ppn is somewhat more elaborate; see (4.3) and (4.4) below.
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Substitution of the explicit formulas for 0, 0_,,, p», P, in any of the relations such as (1.14), (1.15),
(1.16), (1.17) gives rise to a large number of polynomial identities.

The introduction of two indeterminates v, v in 0,, p,, leads to somewhat more elaborate formulas than
those in [1]. However the greater symmetry implied by (1.13) is gratifying.

2. It follows from

(2.1) T—ux+w? —x? = (1= ax)(1 - Bx)1 — w)
that

a+ f +v=u
(2.2) Br+yataf =v

afy =1
Since aBv =1, (2.1) is equivalent to
(2.3) T—ux+ux? =x% = (1= Byx)(1 = yax)(1 - apx).
We have defined

(2.4) 0, = a"+f"+y",

for n an arbitrary integer. Thus

T—ax T—ux+wx? - x3

i o =Y L= Z(1=Bll=yx)
n=0

which, by (2.2), reduces to

(2.5) T ot = S 2wt
’ n
n=0 T—ux+wx?=x3
Similarly
i X" =3 1 _(1—apx)(1—ayx)
n=0 1= By T—wx+ux?—x>
so that
(2.6) i g x" = Mﬂﬁi
) -n
n=0 T—wx+ux?—x°

Using the fuller notation
0, = ouluyv), 0., = o_yluvl,

it is clear from (2.5) and (2.6) that
(2.1 O_nluyv) = o,lvul.
By (2.1), a, B, v are the roots of

22w rvz-1-=0
and so
(2.8) Op+3 —UOy42 +VOyey — 0y = 0,
forall n.
Next,
- had A = Ry
(1—uxtw? =) = T ix—w?ex) = 5 (=) A
k=0 ij,k=0

=X X" X (- 1)tij.k)uv?

n=0 i+2j+3k=n
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where
S (/+[+k}_l
(k) = S
Thus, by (2.5),

0p=3 2 (~Viijkuvi-u Y ~1)Gjki+v Y (—1)ifij kJu'vi
i+2j+3k=n i+2j+3k=n-1 i+2j+3 k=n-2

= X =1l - 2= 1 k) = (-1, k) .

i+2j+3k=n
Hence
(2.9) o= L 1) ke (> 0.
i+2j43 k=n at
By (2.7) the corresponding formula for o_,, is
_ _ ] n . i ]
(2.10) oy > (-1 7R (k' (n > 0).

i+2j+3k=n

It follows that, for n prime, coefficients of all terms—except the leading term—in o,, are divisible by n.
Returning to (2.4), we have

Om0p = 2a™Za" = 2a™ + Ta"B" +7") = Oppgn + Za@ B +ay ™)

= O+ 20" Ma_, — ™),
which gives

(2-1 1) OmOn = Om+nt Om-nO0-n — Om-2un,

valid for all m, n. Replacingm by m +2n, {(2.11) becomes

(212) Om+3n — Om+21 0y + Opinn Oy — Oy = g.
Form =n, (2.11) reduces to
(2.13) 05 = 02, +20_, .

Hence, form =2n,
GnO2n = 03+ 04 0_y — 3,
so that
(2.14) O3y = oﬁ—b’ono_n+3.
To get the general formula we take
7 S =B )1 —y"x)  _ 3= 20px+04x

Z Upnxk = Z -
p=0

2

1-a"% (1—a"x)(1-B"x)1—+"x) 1-0,x+ O_x?—x°

Comparing with (2.5), it is evident from (2.9) that
(2.15) Opn = 2o (-1} IT/P’L—/( (ij ko' ol (v > 0.
i+2j+3k=p

Substitution from (2.9) and (2.10) in (2.11), (2.12), (2.13), {2.14), (2.15) evidently results in a number of
combinatorial identities. We state only

@ X ey - D 1 22 kv 5 1) e (ki)
i+2j+3k=n / i+2j+3k=2n / i+2j+3k=n / >0
n = .
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3. Put
(3.1) ! -_A _,_B ,_C
T—wx+ux? - x3 T-Byx  T—-vyax T-afx ’
where 4, B, C are independent of x. Then

(3.2) (1-a?B)(1—-a’yh = 1.
Since

(1—a?B)(1—a’yl = 7—a2(6+f'y)+a4{%’y= 1-d*lu-a)+d’ = 1-d?u+2d°,

it follows from @’ — ay +av — 1=0that

(3.3) A= T
3-2av+ay
with similar formulas for 8 and C.
Replacing x by 7/x in (3.1) and simplifying, we get
3
X Ax Aax A
= _ = = - A.
1—ux+ux? —x° 237_)( Z 1-ax Z -ax Z
Since 2 A =1, it follows that

2

1—ux+vx - A
(3.4) — =¥ A

7—ux+vx2—x

We now define p,,, p_,, by means of

(3 5) _7:_gi(_+_l/i(2__ = i P )(1/l

. n
T—ux+w?—x3 n=0

and

(3.6) S S— E o-nx™ .

7—vx+ux2—x3 =0
It then follows from (3.1) and (3.4) that
(3.7) Pop = DAa"

foralln.
By (3.6), we have, for arbitrary m and n,

PmbPn = TAa". T Aa" = EAZCLm+n+EBC( m,yn+,}mﬁn)'

Thus
Pmt1Prot = EAZam-f—n — Bc(ﬁm+1,yn—1 +,ym+1ﬂn—1},
so that
(3.8) Ombn— P Pret = ZBC{(B™y" +y"6") = (™" 4y g )}

The quantity in braces is equal to
—(5—7/(ﬁm7"'1 _ymﬁn—i}.
Hence
PmPn — Pm+1Pn-1 = *ZBC(B—Y)(Bm’yn_I _YmBn_J)

V ombn— Pmt1Pnrr = —ZBCB-YIB™Y™ —y ™)
It follows that
(3.9) 20mPn — Pm+1Pn-1 — Pm-1Pn+1

= —3BC(B-v Z(ﬁm'l’)’”_j +,Ym—1ﬁn—1) )
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By (3.2),
BCIB—y)? = —Ad?,
so that (3.9) becomes

(3.10) 20mPn — Pm+1Pn-1 — Pm-1Pn+1 = ZA(ﬁm—iYn_j +7m—3ﬁn—3} .
In particular, if m = n, (3.10) reduces to

P2~ pps1pn-g = TAB"H" = TAaH
and so

(3.11) 07— Put1 Pt = Pnts  (alln).
To get a more general result consider
BV "B = (BT U™ ") = (BT 4y = (o — @™ N0y — ) = (O — @)
= OOy — 0@ — 0,0™ — Opppy + 20,
Thus
(3.12) ZAB™" +Y"B) = 04,0, — Ot — OBy — 0B + 2P msn -
Combining (3.10) and (3.12) we get
(3.13) 201 Pn— Pm+1Pn-1 = Pm-1Pn+1 = Om-30n-3 — Om+n-6 = Om-3Pn-3 ~ On-3Pm-3 * 2P m+n-6 -
Form =n, (3.13) reduces to
(3.14) PZ = Prt1Pnt = P2n_6 — On-3Pn_3 +0 pt3.
It is not evident that (3.14) is equivalent to (3.11). This is proved immediately below.

4. We now take
Pm0Oy, = ZAA"Ta" = AT+ TACB +Y) = pyan + ZAC QB — ay")
= Pm+n t EAam_m(a—n —-a™),

which gives
(4.1) PmOn = Pm+n * Pm-n0-n — Pm-2n .

In particular, form =n,
4.2) PnOpn = P2n+0_pn—Pn,
which shows that (3.14) is indeed equivalent to (3.11).

Form =2n, (4.1) gives

P3n = P20y —Pu0O_py*t1 = pnoﬁ — 0p0y+P_pOp—PnO-yn*1.

To get a general formula for Ppn take

oo

i panp = Z: xP Z AaP" = Z A _ _SAM1=B"XN1-Y"x)
p=0 p=0 1—a"x  (1=a"x)(1=-B"x)(1-7"x)

= 1- (011 ‘pn)” +p—nX2
3

71— onx+0_nx2 - X

Then, as in the proof of (2.15), we have

(4.3) Ppn = Cpn— (0, — pn}cp—i,n *P-nlp-2,n (>0,
where
(4.4) o = 2 (-1DHijkldlol,

i+2j+3k=p



1978] AND RELATED COMBINATORIAL IDENTITIES

Since

we have in particular

(4.5) pp= 2 (~1ijkldvi (p > 3)
i+2j+k=p-3

and

(4.6) pp = 2 -1kl (p > 0).
i+2j+3k=p

With the fuller notation
Pn = Puluy), P-n = p-nluy),
it is clear from (4.5) and (4.6) that
(4.7) Puluy) = p3_plvu).
Moreover (4.4) becomes
(4.8) Cpn = Ppl0n, 0_p) (b >0).

We may now substitute from the explicit formulas (2.9), (2.10), (4.5), (4.6) in various formulas of Sec-
tions 3 and 4 to obtain a large number of polynomial identities in two indeterminants. To give only one rel-
atively simple example, we take (4.2). Thus

(4.9) { > (—I)j(/;;k)uiv]}{ > (=1 L ik }

—
i+2j+3k=n-3 i+2j+3k=n itk

> (1) Gj k'l — 3 =1k
i+2j+3k=2(n-3) i+2j+3k=n

_q)j N ki ]
* Z (—1) e (ifkV'u (n > 0).
i+2j+3k=n

5. For small n, 0,, and p,, can be computed without much labor by means of the recurrences. Moreover
the results are extended by the symmetry relations
O_nluy) = o,(v,u), Puluy) = p3_nlvul .
A partial check on g, is furnished by the result, that, for prime n,

onpluy) = u” (mod n).
Also, by (2.5),
> 2 2 3
3 01, 1x" = 3-2x+x° _3+tx—x“+x ’
n=0 7—X+X2—X3 1-x*?
which implies

0a(1,1) =3, 04n+1(1,1) = 04,43(1,1) = 1, Ogn42(1,1) = 1.
As for p,,(1,7), we have by (3.5)

> 2

S el Ui = L= XEXT

n=0 T—x+x2-x3 1—x
so0 that
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Panl1,1) = pan+3(1,1) = 1, Pan+1(1,1) = pans2(1,1) = 0.

Table 1
0p=3 071=u, 02=u2-—2v j
03 = u? = 3uv+3 I
04 = vt — P+ 202 vy

05 = u? — 5uy + 5uv? + 5u® — by

0g = u® = 6utv+9u?? +6u° — 2% + 1200+ 3

07 = 77+ 140 + 70 = quv? — 210%0 + P+ 7y

og = u® — 8uby+20u%v? + 8u° — 160%° — 320% v + 2v* + 24uv? + 12u% — 8y
v’ = 9u"v+270°v? +9u® - 3007 - a5utv + 9wt + 54u%0? + 1847

— 92— 270y +3

019 = ul® = 1008y + 350807 + 1007 - 50u*V’ — 60u v + 25u%v* + 10007
— 2% + 25u” — 40u® - 60u?v + 15/° + 10u

09 =

Table 2

po=1 p1=p2=0 p3=1

2
pg=u, ps=u‘-v

Ps = u? —2uv+1

p7 = vt =302 +vZ+ 20

ps = u = 4udy + 3uv? + 3u® - v

P9 = u6—5u4v+6'u2v2+4u3— y3—5u|/+7

P10 = u” = 6u”v+ 10u’v? + 5u? — qu? — 120%v + 3% + 3u
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SOME SEQUENCE-TO-SEQUENCE TRANSFORMATIONS
WHICH PRESERVE COMPLETENESS

J. L. BROWN, JR.
The Pennsylvania State University, State College, Pennsylvania 16801

1. INTRODUCTION

A sequence {si}‘f of positive integers is termed complete if every positive integer &/ can be expressed as a
distinct sum of terms from the sequence; it is well known ([1], Theorem 1) that if {si}f is nondecreasing
with 57 = 1, then a necessary and sufficient condition for completeness is

n

(1) Sprr < T+ 35 forn > 1.
1

Using this criterion for completeness, we will exhibit several transformations which convert a given complete
sequence of positive integers into another sequence of positive integers without destroying completeness. Since
the Fibonacci numbers (F; = F,=1, F, ;11 = F, + F,_1 for n > 2) and the sequence of primes with unity ad-
joined (Py =1, P, =2 3,57 11,13, 17, - ) are examples of complete sequences, our results will yield as
special cases some new complete sequences associated with the Fibonacci numbers and the primes.

2. QUANTIZED LOGARITHMIC TRANSFORMATION
Let /x/ denote the greatest integer contained in x, and define the function <-> by
<x> = 1+ [x] forall real x.

Thus <x> is the least integer >x in contrast to [x/, the greatest integer <x. Both <.> and [-] may be thought
of as quantizing characteristics in the sense that a non-integral x is rounded off to the integer immediately fol-
lowing x in the case of <«> orto the integer immediately preceding x when [-] is used. If x is an integer, then
[x] =x and <x> =1 + x. The following lemma shows that <.> is subadditive:

Lemma 1. AFY> < <X>F <Y,
Proof. 1fx=[x] +n.andy = [y] +n, with0 <ny, ny, < 1,then
xHy> = <[X]+ly] +netny> < I +ly] +2 = 1+ L] +ly] +1 = <x>+<y>.
Lemma 2. LetIn x denote the natural logarithm of x. Then forx, y > 2,
Infx+y) < lnx+Iny

that is, the logarithm is subadditive on the domain [2, = ).

Proof. Forxy > 2,

x+y < 2-max(x,y)<min(xy) max (xy) = xy,

and In (x +y) <In(xy)=Inx +Iny, from the nondecreasing property of the logarithm.

Theorem 1.  Let {s;}7 be a strictly increasing, complete sequence of positive integers. Then the se-
quence {<In s;>}% is also complete.

Proof. By the assumed completeness,
: 19
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n
Suer < 1+ ) s forn > 1.
1
Since s7 = 1, we may write
n
Sprt <2+ 95 for n = 1;
2
hence,
n
Ins,.; < In(2+ > s,') ,
2

and, on noting s; > 2 for/ > 2, it follows from Lemma 2 (by induction) that
n
INsupr < IN2+ 3 Ins;.
2

Now we may use the nondecreasing and subadditive (lemma 1) properties of <-> to conclude

n n n
<Ins,pq> <<\r\2+ > Ins1> < <n2>+ Y <nsp> = 1+y_ <Ins;> for n > 2
2

2 2

Hence (noting <In s> = <In 2> = 1) by the completeness criterion, the sequence {<|n si>}§° is complete,
proving the theorem,

The following theorem vyields a similar conclusion for a class of functions ¢pwhere each ¢ possesses proper-
ties similar to that of the logarithmic function.

Theorem 2. Let {si}T be a nondecreasing complete sequence of positive integers and let ¢(-) be a func-
tion defined on the domain x > 1, nondecreasing and subadditive on that domain with 0 < ¢(1) < 1. Then
{<¢(s;)>) 7 is complete.

Proof. From
Sn+1 < 7*% Si
it follows that 1
Alsyr1) < ¢(7+ ‘Z‘ s,-) < of1)+ Zn: ofs;).
o 1 1
<Plsy41)> < <¢>(7)>+Zn <@fs;)> = 1+ f <ofs;)>,
1 1

so that, with <¢(1)> = 1 and the completeness criterion, the sequence {¢(s,')}2° is complete.

NOTE. Thearem 1 is not a special case of Theorem 2 since the logarithm is not subadditive on [1, «). It is
also clear that the domain of ¢ could be restricted to only those integers lying in [1, ).

EXAMPLE. If ¢fx) = /x — 1/2 for x > 1, the reader may easily verify that ¢ is nondecreasing, subadditive
and 0 < ¢(1) = /1/2 < 1. Therefore {</5; — 1/2>} 7 is complete whenever {s;}7" is a nondecreasing com-
plete sequence of positive integers.

EXAMPLE. The function ¢(x) = ax for x > 1 and some fixed a > 0 is nondecreasing and subadditive, and if
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0 <a< 1,then ¢(1) = aand ¢ satisfies the conditions of Theorem 2. Thus, for example, the sequence
AN
{\2 /}1

is complete whenever {si}m is a nondecreasing complete sequence of positive integers.

EXAMPLE: IfP;=1,P»=2,3,5,7, 11, --- denotes the sequence of primes (with unity adjoined); then it is
well known (2] that {#;}7 is complete. Hence by Theorem 1, the sequence {<In £;>}3 is also complete,
and thus each positive integer / has an expansion of the form

N = Z a;<InP;>,
2

where each a; is binary (zero or one). The series is clearly finite, since a; = 0 for/ > k, where & is such that
<In P> exceeds /V.

It is of interest to prove the completeness of {<In Pi>}5° directly without using the completeness of {Pi}f.
In this manner, we avoid the implicit use of Bertrand’s postulate which is normally invoked in showing the
primes are complete.

Theorem 3. The sequence {<InP;>}3 is complete.

Proof.,  Using Euler’s classical argument, we observe that
n
7+ I1 A
2
is not divisible by Py, Py, -+, P,, and therefore must have a prime divisor larger than P,, ; that is

n
7+n P; > Pyt
2

or
n n
Poer <1+ 1 Pi<2 [] P for n>1.
1 1

Since the logarithm is an increasing function,

n
NPy < In2+ 3 InP

1
and consequently,
n n
NP> < <n2>+ 3, <nPi>=1+3, <InP>
1 1

establishing the result by the completeness criterion.

3. LUCAS TRANSFORMATION

The transformation defined in the following theorem is called a Lucas Transformation since it corresponds
to the manner in which the Lucas sequence is generated from the Fibonacci sequence.

Theorem 4. Let {u;}7 be a nondecreasing complete sequence with vy = u, = 7. Define a sequence
{vi}5 by

Vo = 1

vi = 2

Vy = Up_1 * Un+t for n > 2.

Then {v;}5 is complete.
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Proof. Forn > 1,
n-1 n+1
Va+1 = UptlUys2 < 7+Z U,’+7+Z u; = (Uppq *Fty_1) +luy +Uy_g) + - +{uz+ug) +up+ug+2
1 1

n
= VgtV g F otV FUR UL D S Vg etV Ry Ryt ] S TF D Y,
0

where we have used vy +uy +2 = 4 = vy +vg+ 1. Thusvg = 7 and
n
Va1 < T4 Z Vi
0

for n = 0 which implies that {v,-}E’ is complete.
EXAMPLE: Letu; = F;, where { F;} is the Fibonacci sequence. Then the sequence defined by
vo=1 wvi=2 v, =F,_1+F,+; fTorn>2

is complete by Theorem 4. Moreover, recalling that the Lucas numbers {Ln}?f, defined by

Lop=2 Ly=1 Lyyy=1L,+L, 4 forn =1,
are also expressible by

L, =F,_1+F,pp forn > 2,

we see that {v,,}?f is simply the sequence {Ln]c[f put in nondecreasing order by an interchange of Ly and L.

Completeness is not affected by a renumbering of the sequence; however, the inequality criterion for com-
pleteness must be applied only to nondecreasing sequences.

4. SUMMARY

If § denotes the set of all nondecreasing complete sequences of positive integers, we have considered certain
transformations which map S into itself. In particular, it was shown, as special cases of the general results, that
the sequences{<in F,J5, {<in P,>}5 and{<aF,>}5 are complete sequences, where <-> is defined by <x> =7 +
Ix], {F,} =¢{1,1,2,3,5,..) is the Fibonacci sequence, {7, } = {1,2,3,5,7, 11, -} is the sequence of
primes with unity adjoined and a is a fixed constant satisfying 0 < a < 1.

REFERENCES

1. J. L. Brown, Jr., “Note on Complete Sequences of Integers,” American Math. Monthly, Vol. 68, No. 6,
June—July, 1961, pp. 557-560.

2. V.E. Hoggatt, Jr., and Bob Chow, “Some Theorems on Completeness,” The Fibonacci Quarterly, Vol. 10,
No. 5, 1972, pp. 551-554,



AN IDENTITY RELATING COMPOSITIONS AND PARTITIONS

DEAN R. HICKERSON
University ofCalifornia, Davis, California

The following partition identity was proved in [1]:

Theorem. |f f{r,n) denotes the number of partitions of n of the formn = hg + by + - + b, where for
0 </ <s—1, b >rbj+y, and glr,n) denotes the number of partitions of n, where each part is of the form
1+r+r2+..+riforsome/ > 0, then fr,n) = glr,n).

In this paper, we will give a generalization of this theorem,

In [1], the parts of the partitions were listed in non-increasing order. It will, however, be more convenient
for our purposes to list them in non-decreasing order.

The main result of this paper is given in the following theorem.

Theorem 1. Letry, rp, - be integers. Letcg=1and, fori > 1,letc; =rqci 1 + rocip + - * ricg. Sup-
pose that, for all i > 0, ¢; > 0. Fori> 0, lett;=cq+ - +c; and define T={¢tg, t;, t5, -} . Then, forn > 0,
the number, f(n), of compositions by + -+ b of n inwhich b; > ryb;_ g +robj_g+ - +rbg for 1<i<s, is
equal to the number, gfn), of partitions of 7 with parts in 7,

Proof. Letn = agtg+ -+ agt; be apartition of 7 counted by g(n), where a; > 0. Define, for 0 <i<s,

b; = Z Fits—i Cj -

0sjsi
Then
bo+-+bg = Z be ;= Z Z a4iCj = Z (ak Z L‘j)= Z ayle = n.
0<i<s 0<i<s 0<<s-1 0<k<s 0<j<k 0<k<s
Also, for0<i/<s,
b; = Z Bj#s-iCj * asC; > Z aj+s-i¢; > 0.
o<sj<i-1 osj<i-1

Therefore, b + -+ + b is acomposition of n. Moreover, for 1 </ <s,

bi > 3 aps-ici = 2. <aj+s-z‘ 2 ’k%k) gy < DY "J‘+S~icf~k>

1<j<i 1Kj<i 1£k<] 1<k<i kgii

= 2 (rk 2 3j+s—(i—k)5j>: 2. kbik .

1<k<i 0<j<i-k 1<ks<i

Thus, bg + -+ b, is a composition of n counted by fn).

This constitutes a mapping ¢ from the set of partitions counted by gfn) into the set of compositions count-
ed by fn). It suffices to show that ¢ is one-to-one and onto.

If ¢ is not one-to-one, then there exist distinct partitions a,t, + - + agt; and ajt, + -+ + agrter 0fn which
yield the same composition. From the definition of ¢, it follows thats =s” Let/, be the least/ > 0 such that
as_; # a¢_;. Then

23
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ds-ip = as-igf0 = bi,— D as(ip-j)fj = big— > a-(ig-j)6j = ds-igf0 = ds-ig,
SN iSj<i,
acontradiction. Hence ¢ is one-to-one.
We will now show that ¢ is onto. Let by + - + b be a composition counted by #p). Define, for 0 </ <5,

a-i = bi— 25 ribij.

1<j<i

We claim thatagtg + - + a,t, is apartition counted by g(n) whose image under ¢ is the composition b + - +
bs.

Clearly, a;, =bo > 0. Also, for 1 </ <5,

bi > ribig+-*rhg = 3 ribi
1<j<i
s0 a_; > 0. Also,

agtot-tagty= Y auitei= 9, (bi— 2 fjbi-j)ts-i= > bitei- 2, Fijbits—

0<i<s 0<i<s 1<j<i 0<i<s 0<j<i<s

= 2 bitei— X (bj 2 ’i—jts-i)= 2 bj(fs-j— 2 fi-jts-i)
0<j<s o<j<s\  j<iss 0<j<s j<i<s

-z bs_j (tj~ 2 ’i—s+jts—i)= 2 bs-j(l‘j— > fﬂj-i)
0<f<s s-j<i<s 0<j<s 1<i<j

For 0 </ <s, we have

- 2 ntri= 2 ck- 3 (fi > Ck-i)

1<i<j 0<k<;j 1<igj\ i<k<j

= Z (L‘k — Z r,'ck_,-> =cot Z CL— Z liCl—i ).
0<k<j 1<i<k 1<k<j 1<i<k
By definition,

co=1 and ¢ = Z ricp-; for k=1,

1<i<k

$0
ti— Z ritig = 1 and agtg*--tagts = z bs-j = n.

1<i<j 0<j<s
Therefore, agtg + -+ as t; is apartition counted by gfn).
We have

Y @it = Y, ackCik = D, Ci-k (bk— 2 fjbk-j)= 2 Cimbm

0<j<i 0<k<i 0<k<i 1<j<k 0<m<i

- Z Cikle-mbm = b; + Z b <L‘,’_m — E ci_krk_m) =pb; + E b <L'i-m‘ E ’jc(i—m)—j) = b;

m<k<i 0<m<i 1<j<i-m
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Therefore, the image under ¢ of the partition agt( + --- + a5 ¢, is the composition b + - + b, so the proof is
complete.

We will now determine when Theorem 1 is a partition identity. This occurs if and only if, forevery n > 0, all
compositions counted by f(n) are partitions. Since ¢ +¢ ; + - +¢; is a composition counted by #¢;), a neces-
sary condition is that cp < ¢4 < ¢ < --. We now show that this condition is also sufficient.

Theorem 2. Suppose the hypotheses of Theorem 1 are satisfied, and, in addition, cp < ¢; <cp <--.
Then, for n > 0, the number of partitions by + .-+ bs of n in which b; > ryb;_; +-+r;bg, for 1 <i<s, is
equal to the number of partitions of » with parts in 7.

Proof. It suffices to show that all compositions counted by f/n) are partitions. Suppose by + - + b is
such a composition. Let 1 < k <s. We will show, by induction on j, that, for 1</ <k

b= b1 > (c;—cioghbop-i+ bj<rk.j+ Y (co—co-tre-j-e )
0<j<k-i 1<0<i
Applying this with / = k gives
bp—brq > (cp—ce-1)bg > 0,
which will complete the proof.
We have

bp—bp1 > 2. bimj—bpq=(ci—cobpg+ 2o binj,
0<j<k 0<j<k-1

so the inequality holds for/ = 1. Suppose it holds for/=m — 1, where 2 <m < k. Then

bp—bi_1 > (cm-1— Cm-2Wk-m+1+ 2 b (fk-j + 2 feo—co-1)ri-jg )

0<j<k-m+1 1<0 <m-1
> (-1~ Cm-2) ( Z birkj-m+1 )+ E b; (fk_j + Z (co— CQ—I)fk—j-Q
0<j<k-m+1 0<j<k-m+1 1<9e<m-1

= 2 bj(’k-j"' > leg—co_tIrijg >= Bl-m (fm + 2 Meo- 0;2-1/fm~sz>

0<j<k-m 1<9<m 1<9<m

+ Z b]' <I’k.]'+ Z (co— L‘Q-1)/’k_j_Q ) .

0<j<k-m 1<0<m
But
fm+ 2, leg—cot)rme = Do Cormo— 2. Co-ifm9 = Cm—Cm-1,
1<e<m 0<<m 1<2<m

50

bp—br-1 > (Cm— Cmep Bl + Z []j' (I’k_j+ Z (L‘Q—CQ_jll'k_]'_Q ) ,
0<j<k-m 1<9<m

and the inequality holds for/ = m. This completes the induction and the proof.
The following is an important corollary of Theorem 2.

Corollmy. Suppose ry, rp, -+ are non-negative integers with r; > 1. Define T as above. Then, forn > 0,
the number of partitions b + - + bg of n in which b; > ryb;_q + -+ r;bg, for 1 <i <s, is equal to the num-
ber of partitions of n with partsin 7.

Proof. Fori>1,¢c;=rycig+racip++r;co>ciq, and Theorem 2 applies.

25
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We will now illustrate Theorems 1 and 2 and the corollary to Theorem 2 by some examples.

EXAMPLE 1. In thecorollary,letry=r> 1and rp=r3 == 0, Then, for/ >, ci=ri and t; =7+r+-
+r'. Hence, for 7 > 0, the number of partitions by + -+ bg ofn in which b; > rb;_1 for 1 </ <s is equal to
the number of partitions of n with parts of the form 1+ r+ ...+ r* fori > 0. This is the result of [1].

EXAMPLE 2. In the corollary, letry=rpy=1andrz =rg=--=0.Then, fori>0,¢c;= F+7 and t; = F;+3
— 1. Thus,

T={F-1F-1-)={1247112.-}.
Forn > 0, the number of partitions of 7 in which each part is greater than or equal to the sum of the two pre-
ceding parts is equal to the number of partitions of » in which each partis 1 less than a Fbonacci number.

EXAMPLE 3. In the Corollary, letry=ry=--=1.Thencg=1and, fori> 7,c; = 2L Hence t; = 2° for
i>0,and T = {1, 2,4,8, } Forn > 0, the number of partitions of n in which each part is greater than or
equal to the sum of all preceding parts is equal to the number of partitions of n into powers of 2.

EXAMPLE 4. InTheorem 2,letry=-2,rp=—1,r3=r4=--=0. Then, fori>0,¢c; =i+ 1 and
# = (i+1)(i+2)
1 2 ’

so T = {1, 3,6,10, 15, } . Forn > 0, the number of partitions b + --- + b of n in which 64 > 2b and, for
2<i<s, b;>2b;_;— b;_pisequal to the number ofpartitions of n into triangular numbers.

EXAMPLE 5. InTheorem 1, letry=(—7)"1F; 5 fori> 1. Thencg=1,c1=2,cp=c3=-=1,s0tg=1
and t;=/+2 fori > 1. Hence, T = {1, 3,4,5,6, } Forn >0, the number of compaositions b + -+ + bg of n
in which .

bi > 2b; 1 —3bi_3+5bi3+-+(—1)" 1 Fiaby,
for 1 </ <s, isequal to the number of partitions of » with no part equa to 2.
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ON THE MULTIPLICATION OF RECURSIVE SEQUENCES

A. G.SHANNON
The New South Wales Institute of Technology, Broadway, Australia

1. INTRODUCTION

The object of this note is to generalize the results of Catlin [1] and Wyler [3] for the multiplication of re-
currences, They studied second-order recurrences whereas the aim here is to set up definitions for their arbi-
trary order analogues.

The work is also related to that of Peterson and Hoggatt [2]. They considered a type of multiplication of
series in their exposition of the characteristic numbers of Fibonacci-type sequences. In the last section of this
paper we see how a definition of a characteristic arises from the earlier definition of multiplication.

We define an arbitrary order recursive sequence {Wn} by the recurrence relation

;
(1.1) W, = 3 (-1)7 w5, n>r,
=1
in which the Pj are arbitrary integers, and there are suitable initial values, Wy, W5, ---, W,. (Suppose W,, = 0
forn <0.)
We shall need to consider some particular cases of these as well as some results associated with the product
sums of the roots, a;, of the associated auxiliary equation

T
(1.2) ay = 3 (-1)*pal
j=1
2. PRODUCT SUMS
We define the product sum
Stm = 2 05,4, @,
jFt
with Sy, = 1. For example, when r = 3,
S31 =ag+ay; and S33 = ajaz.
Some results we shall use now follow.
(2.1) Stm = Pm — St m-1.
Proof.
P —@tStym-1 = 3 @, Gj, GG — G 5 @, Gj = Gjp = D Gj, @,
jFt jFt
For example, when r = 3,

Py—a3S11 = ajaz+azaz+aza; —as(az+as) = azaz = Sqz.

(22) Str =0
27
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Proof. Pj = Sij+0asSt i1

r r r
i+1 —f i+1 - i+1 —j+1
> =)PalT = 30 (1S a3 (-1 S e
j=1 j=1 J=1
that is
r o_ r
a; = Sy +S8i0as
which yields the result.
We note out of interest that:

m

(2.3) Stm = 3 (~1"IPal, Py =1
=0

Proof. We use induction on m.

StO =1, St] = P1 —ay, ey,

m
2 P »
Stm = Pm —atStm-1 = Pm — @tPm_1 +a;Stm-2 = 2 (-1)™ ]Pja:n 1,

j=0
r-1 ) r-1 .
(2.4) 2 (~1SGA g = af 3 (~1)IS4A;, 0 >0
j=0 j=0

Proof. We use induction on n. When n is zero, the result is obvious. Suppose the result is true forn = 7,

2, ,k— 1 Then
r-1 . r-1 )
2 (=18 4Absrj = A+ 2 (~1)84jAbsr
j=0 j=1
r . r-1 .
= Z (_’}]+1Pj’4k+r—j+z (_I)JStjAk-H’—j
j=1 j=1
’ r-1 .
+
= (=P AR+ Y (—1)(St = Pi)Aksr
j=1
r-1 .
= (-1 S A+ (170 1 A
j=1
r-2 .
= (=1 asSs, 1Ak + 3 (=11 arSijArer i1
r-1 ) =0
=ar 3, (~1)S4Akir-i-1
=0
b r-1 .
=ai" Y (- 1)J84;A,_; (by the inductive hypothesis),
=0
and so the result follows. In particular, it follows that
r-1 . r-1 .
(2.5) 3 =184 Antr = ar 3 (~1)184Antrig .

=0 =0
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Result (2.4) is a generalization of Wyler’s:
Ap+1 —aiAy, = ag A1 —aqAp).
For ease of notation we shall write
r-1
2t An) = 20 (~1)IS4iAnery.
j=0
3. MATRIX RESULTS

We define matrices with rows /7 and columnsj, 7 </, j<r:

(3.1) wr) = [Wn+r—i+j],
— i+f . _JOoforn<O0
(3.2) M= (1), with P, = {900n <0
(3.3) SO = [(~1)"s,; ], with Sy, = 0 for n < 0,
(3.4) E = [S;j1] (Kronecker delta),
= [g.. ; (=17 gor i = 1
(3.5) Q = [gz], with g; ’{Si_1,j jlor 12

It follows from definitions (3.2), (3.3) and result (2.1) that
M= [(~1)9P ] = [~1)"98¢jq] — ali=17j i 4] = SV — a8 = (I-a,E)5(V.
It can be readily proved by induction on n that

(3.6) Wi = aw®.
Furthermore,
s(t)4(0) - [Z(t, A]-_,-)],

and so by using property (2.5), we find
S(UAIT- a,E) = [S;2 (0, Ar)] .

4. MULTIPLICATION
We can define a product {4, }{ 8,} of two of these sequences to be the sequence {C}, }:

(.1 ¢ = a(0yp(9),
It follows from result (2.4) that
(4.2) glmn) = gme(0)gn” = p(miyg(n).

We can see how these generalize Catlin and Wyler. Whenr=2:

W - () w-[5 ] e (b 5]

Result (4.2) becomes

Fm-f—nﬂ Com+n+3 - l_Am+2 Am+3~ T —Pq||Bn+2 Bu+3
_Cm+n+1 cm+n+2 ,Am+1 Am+2 0 1 Bn+1 Bn+2
_ |Am+2 Am+3 = P1Am+2| |Bu+z Bn+s

Am+1 Am+2_P1Am+1 Bn+1 Bn+2

from which we get, after equating corresponding matrix entries:
Conin+2 = Am+2Bn+2 = P2Am+1Bn+1,
Contnt1 = Am+1Bn+2* Am+28n+1 — P1Am+1Bn+1,
in which we have used the recurrence relation
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Am+3 = P1Am+2 — P2Am+1 .
These results agree with Catlin and Wyler.
Forr =23, we have

0 Ws Ws Ws 1 -P; Py Py —Py P3
w - wy wy; wyl, m=0 1 -], a=|1 0 0
Wy Wy Ws 0 0 1 0 17 0

Result (4.2) now becames

Coints  Cmin+d  Cmin+s
Comint2 Cmints Cmin+4
§m+n+1 Crmn+2  Cmin+s |

Am+3  Am+d—P1Am+s Am+s —P1Am14+P2Ams3| [Buts Burq Burs
Am+2 Am+3—P1Am+2 Am+4 —P1Ams3 1 P2Ams2 | (But2  Bn+z  Buigq
Amt1 Am+2—P1Am+1 Am+3 = P2Am+2+P2Am+1| |But1 Bu+2  Bu+s

from which we obtain, for example,

Conin+3 = Am+3Bu+3 + Am+4Bn+2 — P1Am+3Bn+2 + P3Am+2Bn+1 .
We further obtain

r-1 r—1 r-1
(4.3) Y (—1)I84Crj = 3 (~1)ShAry 3 (~1)184iB,; .
j=0 i=0 =0

Proof. We premultiply each side of definition (4.1) by s,
sWc® = (Va0 = (VA% - a,E)SVB) = 5211, A1 )58,

or

2t Co)  Z(t,Cy) - Tt Cryq)

E(t,C_J} 2(1‘,0_2} E(t,fr_z)

I=t,c1,) =c,) - fCol
= Ag) 0 - 0|[Z(89) =By -~ Z(tB.q)
Z(tAy) 0 - O0||Z(tB4) 2(t,B,) -~ Z( B8, 3
StAi,) 0 - O0||Z(tB;y,) Z(B.) -~ Z(tBy)

and so, -

B(t,Co) = Z(t, Ag) Z(t, By),
as required. When r =2, t = 7, result (4.3) becomes
(Cr—ayCy) = Ay —azA;)(By —asBy)
as in Wyler and Catlin. Whenr=3,t=1:
(C3—(az+a3)Ca+apazCy) = (A3 —(ap+a3)Az+ara3A1)(B3 —(az +a3)B2 +aza381).
Using property (2.4), we get

r~1 r-1 r-1 r-1
2 (=1 SiAmii 2 (=1)84Busrj = a3 (~1)'SAn; 30 (~1)154Br.
i=0 j=0 i=0 j=0

r-1 r—1

= AT 184Gy = X (=18 Contntr
j=0 =0
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as a generalization of Wyler’s:
Conint2 — Q1 Comintt = a3 A2 —a1A1)B2 —a1B1) = (Ams2 — @1Am+1)(Buiz — @1Bpit).

5. NORMS AND DUALS
As in Catlin, we can define norms and duals. We define the norm or characteristic of {I#,,} as

r r-1
(5.1) v,y = T1 X (~1)syW,j .
t=1 j=0
For example, for the “basic” sequences {US,,, } which satisfy the recurrence relation (1.1) but have initial
conditions

Usn = S, n=12-,r,
we have
r r-1 . r
N{Us,n} = “ Z ('"7)]Stjus,r—j = n (—7)r—$3t,r—s ;
t=1 j=0 t=1

in particular, /V{U,,n } = 1. (The "“basic” properties are seen in
r
w, = Z Us,nWs ,
s=1

for instance.)

(5.2) N{A ) N8, = MA, ) B,) .

Proof.
r r-1 . r-1 . r r-1 .

NAIN{B,Y = TT 2 (~1)'S5Ar; 20 (=184, = T1 20 (=1)84C,5 = N{Cn} = N{A,}{B,}.
t=1 i=0 =0 t=1 j=0

As

Z(t,Co) = Z(t Ag)Z(t, By)
is related to c(0)=p (O)MB(O), S0 is
N{Cy} = N{A}N{Bn}
related to |C(0)| =|A(0)]|B(0)}.
When r =2, we have in fact that

/V{W,,,}= ‘%f II:VV:‘ = Wg—W1W3 = Wy —aiW )Wy —asWy).

Furthermore, from definition (5.1) we have that

r r-1 r r-1 . r r-1 .
v,y = PETT 22 (-1)38iW,y = TT of 20 (=1)98Woy = T1 20 (=1)1S4iWinsrj
t=1 j=0 t=1 j=0 t=1 j=0

as a generalization of Wyler's: ,
W2,y = Wari Wi = PIN{W, }.
We can compare this with

win)| = @™ ||w(%)| in Eq.(3.6)
=PI,
Similarly, we can form a dual as in Catlin. Given the recursive sequence {Wn} , we form its dual {W,;‘}from

the initial values
Wn, n=12-,r:
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r-1
(5.3) vx*=<[— ) (ET)k>£v
k=1

where w= [Wy, Wy, -, W,]T,

and £ is the nilpotent matrix of order r defined in (3.4). For example, when r =2,

[wil 1 o)fw]
w3 |7 -1 1)|\Wy)
and J .

Wi =Wy, W;=W;—Wy,

as in Catlin. Whenr = 3,
- ar N

wi 17 0 0 |(Wy

WZ* =|-1 1 0\\\Wy| ,

wi | |1 =1 1 |{Ws
and so on. Essentially, what has been done here is to illustrate how the work for the second-order recurrences
can be extended to any order. It may interest others to develop the algebra further by considering the canoni-
cal forms of elements in various extension fields and rings.

Another line of approach is to consider the treatment here as a generalization of Simson's (second-order) re-

lation:

A2, = AnAnsz = PEN{A,)

or, since NV{F, } =1, ,
Fn+1 _FnFn+2 = (_7)11
for the Fibonacci numbers.
Gratitude is expressed to Paul A. Catlin of Ohio State University, Columbus, for criticisms of an earlier

draft and copies of some relevant unpublished material.
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DIAGONAL FUNCTIONS

A. F. HORADAM
University of York, York, England and University of New England, Armidale, Australia

INTRODUCTION

The object of this article is to combine and generalize some of the ideas in [1] and [2] which dealt with ex-
tensions to the results of Jaiswal, and of Hansen and Serkland. [See [1] and [2] for the references.]
We commence with the pair of sequences {An} and {Bn} for which

(1 Apirz = XApe1+ A, Ag =0 A;=1 (x#0)
2 Btz = XBypi1 + By, By=2 By=x

with the special properties

(3) Aprg+ A, g1 = By

@) Byi1+By g = (x2+4)A,

[See [2], where ¢ has been replaced by x. ]
The first few terms of these sequences {An} and {8, } are

RN 0/ \/2
~._ o1~ ~o x>
~ s ~
\\\/\X /\\// \‘(\X/)‘,Lz\//\
:\\)X2+7‘§\//\ \\/X +3x %

\\

NP SE T SRS (6)\/\ xtrax? 127

;X4+3x2+7%/ /X5+5X +ox >T

x° +4x7 436 T~ 7 x® et +9x% 2 7
X6 eoxtrbx?er o X7 RS AT RS
ToxTH6x7 4 10x7 +dx > xS et +20x +16x2+2

xS amt 1okt o1 /x +9x7+27x5 + 30x% +9x T~

~

RISING DIAGONAL FUNCTIONS

Consider the rising diagonal functionsofx, B;(x), r;(x) for (5) and (6), respectively (indicated by unbroken
lines):

/

Rilx) = 1 Ralx) = x Rslx)=x? Ralx) =x’ +1

(7 4 Rsix) = xt+ox Hg(x}=x5+3x2 H7(x)=x6+4x3+7 /-?g(x)=x7+5x4+3x
Rolx) = x8+6x% +6x? Ryglx)=x” + xS +10x7 +1, -
rilx)=2 ralx) = x rsb) =x? ralx)=x?+2

(8) r5{x}=x4 +3x rglx) = x° +4x? r7(x}=x6+5x3+2 rg(x)=x7+6‘x4+5x
rolx) =x8+7x° +9x% riolx)=x’+8x% + 1457 + 2, -

Define
(9) Rolx) = rolx) = 0.

Observe that, in (7), (8) and (8), forn > 3,
33
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rulx) = Bu(x)+ R,_3(x)
(10) R.(x) = xR,_1(x)+ R,_3(x)
rulx) = xr,_1(x) +r,_3(x)

Generating functions for the rising diagonal polynomials are

(11) A=At =(1-xt—)1 = 3 R,bt"!
n=1
and
(12) B =Blxt) =(1+)1-xt—2)1 = 3 ryemt.
n=2

Calculations with (11).and (12) yield the partial differential equations

A _ 2) A _

(13) s (x +3t*) ™ 0
and
(14) t 28 _(x+3t2) 8 _3p134 = 0.

at ax
leading to
(15) XRy42(x)+ 3R (x)— (n+ 1)R,e2(x) = 0
(16) Xrpa2(x) + 3rp(x) — (n = 2)rp42(x) = 3Ryu42(x) = 0 (n > 2),

where the prime denotes differentiation with respect to x.
Comparing coefficients of t” in (11) we deduce that
[n]3]
(17) Ruvilx) = (

n_.2i>Xn_3i (ﬂ > 3}
i=0

1

where [n/3] is the integral part of n/3.
Similarly, from (12) we derive

[ni3] ; . [(n-3)I3] ) .
(18) Fpelx) = Z (n—i—21>xn—3z+ Z ( n—.?i—Zz)Xn—.?t (=3
i=0 i=0

as may also be readily seen from the first statement in (10).
Simple examples of rising diagonal sequences are:
(a) for the Fibonacci and Lucas sequences (x = 7):

(19) 01 1 1 2 3 4 6 9 13 19
(20) 2 11 3 4 5 8 12 17 25
and

(b) for the Pell sequences (x = 2):
(21) 0 1 2 4 9 20 4 97 214
(22) 2 2 4 10 22 48 106 234

DESCENDING DIAGONAL FUNCTIONS
From (5) and (6), the descending diagonal functions ofx,0;(x ), d;(x) (indicated by broken lines) are:

(23) { Dilx) =1 Dyfx) = x+1 D3lx) = (x+ 1) Dyglx) = (x+1)°
Dsix) = (x+ )% Dglx) = (x+1)5 Dylx) = (x+ 1) Dglx) = (x+1)7,

[FEB.
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dilx) = 2 datx) = (x+ 1)+ (x+1)0 = (x +2)x +1)0 = x+2
(28)< d3lx) = (x + 1) +(x+ 1) = (x+2)x+1) dalx)=(x+ 7)3+(x+7/2 (x +2)(x + 7}2
dstx) = x+ ¥+ (x+ 17 = (x+ 20+ 1)7 dglx)=x+1)7 +lx+1)* = (x+2)(x+ 1)%,

Define
(25) Dolx) = dgix) = 0.
Obviously (n > 2)

( =k + )0yq = (x+ 1)1
d = Dp# 0,4 = (x+2)0y g = (x+2)x +1)72
dy = (x+1dy_qy (n > 2)

(28) < 0, d,
= — (=x+1) (n>2)
Dy g dyg f

L 4, x+2 -

where, for visual ease, we have temporarity written 0,, = 0,,(x) and d,, =d,, (x).
Generating functions for the descending diagonal polynomials are

(21) A=Alt) = [1-(x+ ™1 = 3 D, ey
n=1
and
(28) B=Bixt) = (x+2)[1-(x+ )] 1 = T dpsgtx)t™?
n=1

from which are obtained the partial differential equations

(29) aA (+1) "’A
(30) tﬂg—(x+1)§§+x+7)A=a,
at ax
jeading to
(31) {x + 1)D;(x) = (n— 1)D,(x)
(32) (x + 1dy2(x)— (n+ T p2(x)+ (x + 1)0,(x) = 0

Descending diagonal sequences for some well known sequences are:
(a) for the Fibonacci and Lucas sequences (x = 7):

(33) 1 2 4 8 16 32 64 128 .. 2"

(34) 2 3 6 12 24 48 96 192 .. 3.2
and

(b) for the Pell sequences (x = 2):

(35) 1 3 9 27 81 243 729 2187 .. 3"
(36) 2 4 12 36 108 324 972 2916 .. 4.3"°1

CONCLUDING COMMENTS

1. The above results proceed only as far as corresponding work in [1] and [2]. Undoubtedly, more work re-
mains to be done on functions ;, r;, D;, d; .

2. Excluded from our consideration in this article are the pair of Fermat sequences and the pair of Chebyshev
sequences for both of which the criteria (1) and (2) do not hold. [See [2].]
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3. Jaiswal, and the author [1], deal only with the rising diagonal functions of Chebyshev polynomials of the
first and second kinds.
4, Qur special criteria (3) and (4) prevent the use of the more general sequences {U,, } {V,,} for which

Ups2 = XUn+1+yUn Up=0 U;=1 (x#0y #0
Virz = xViysg +yVy Vo =2 Vi=x.
See [2] and Lucas [3] pp. 312-313.
5. Finally, in passing, we note that the Pell sequence obtained from (1) with x = 2, namely, the sequence
1,2,5,12,29,70, ---, arises from rising diagonals in the “arithmetical square” of Delannoy [lucas [3] p. 174]

Can any reader inform me, along with a suitable reference, whether Delannoy’s “arithmetical square” has
been generalized?

REFERENCES
1. A. F. Horadam, “Polynomials Associated with Chebyshev Polynomials of the First Kind,"” The Fibonacci
Quarterly,
2. A. F. Horadam, “Generating Identities for Generalized Fibonacci and Lucas Triples,"” The Fibonacci Quar-
terly,
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FIBONACCI TILING AND HYPERBOLAS

DOUGLAS HENSLEY
The Institute for Advanced Study, Princeton, New Jersey 08540

ABSTRACT

A sequence of rectangles A,, is generated by adding squares cyclically to the East, N, W, S side of the pre~
vious rectangle. The centers of R,, fall on a certain hyperbola, in a manner reminiscent of multiplication in a
real quadratic number field.

INTRODUCTION

We take a special case for simplicity. Suppose R is the square —7 <x < 7, —7 <y < 1. Ry is the rectangle
—-1<x<3 -1<y<1 Rjistherectangle —7 <x <3, —7 <y < 5. Let F,, denote the nt" Fibonacci num-
ber. Then R,, has sides 2F,, and 2F,,_; for all n.

We ask for information about the center (x,,, y,,/) of R,,. This search leads us to the ring R@ Rin which
R® Risgiven pointwise addition and multiplication. We close with an examination of “rotations” and linear
fractional mappings of R® R. Certain classes of hyperbolas remain invariant under such mappings.

1. DEFINITIONS AND STATEMENT OF RESULTS

Let a;p > 0. Suppose a sequence of rectangles is generated in the following manner. The initial rectangle has
center (0,0) and positive dimensions X7, Y. If the nth rectangle R,, has dimensions X,,, ¥, then R, ¢ is
the union of A, with an incremental rectangle on the East, N. W, S side of R,, accordingasn =1, 2, 3,0 mod
4. The dimensions of the incremental rectangle are a¥,, + b, Y,, if n=1mod 2, and X,,, aX,, + b if n =0mod
2.

Theorem. Let(x,, y,) be the center of B,,. Let D = %(aY; +b), E = 1%(aX; +b).

Then for alln > 7, (x,,, y,,/ lies on the right hyperbola

H = {(x,y}:x2+axy—y2 —Dx+Ey = 0}.

Further, if 4 is the center of A, then the area enclosed by A/ and the rays

h, (Xn, yn) and hr (Xn+4: yn+4}
is independent of n.

REMARK. The proof that the (x,,, y,,/ lie on A is a rather ordinary induction. To prove that the areas en-
closed by 4 and rays from adjacent rectangle centers to / are all equal, we introduce the ring R ® R.

Definition. R ® R is the ring R ® R with addition (x,y) + (x’, y’) = (x + x’, y +y’) and multiplica-
tion (x,y) - (x", y’) =(x-x", y-y’)

Definition. \f (x,y)e R x R, Nix,y) = xy,; and Arg (x,y) = log |(y/x)|if xy # 0.

Definition. \f Nix,y) #0,

(x. vy - (X_' Z_')
(x,y) x "yl
REMARK. N(x,y) =1 is the hyperbolaxy = 7. Arg (x,y/ is the area enclosed by V(x,y) = 7 and the rays
(0,0), (x|, |y|) and (0,0, (ly|, |x|).
It is for this area property, so similar to the one stated in Theorem 1, that we introduce R @ R.

Theorem 2. Letkbereal,a b,c,d zp € R ® R. Assume not both a,6 = (0,0) and not both ¢4, d4

=0 and not hoth ¢y, dy = 0. Let k #0. (Here (¢, cp)=c and (dy, d3)=d.)

37
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Let azth
flz) = m
for all z such that N(cz + d) # 0. Then the image under f of {z: Nfz — zp = k} is of the form

{w:Nw-wy) =k}
where no more than 4 points are missing.

REMARK. Thus except for technicalities, a linear fractional maps hyperbolas of the form Nfz — z9) = k to
hyperbolas of the same form. The analogy with the complex numbers, where linear fractionals map circles to
circles, suggests many more similar results which space does not permit us to list.

2. PROOFS. THEOREM 1,PART 1
The reader may verify by direct calculation that the first couple of (x,,, y,,/ lie on 4. We now claim that
2xy, +tay, +%laY,+b) =D if n =1 mod4.
—ax, +2y, + BlaX,+b) = E if n =2 mod4.
2%, tay, — %aY,+b) =0 if n =3 mod4,

I

and
—ax, + 2y, — BlaX, +b) = E if n =0 mod4.

Observe that if (x,,, y,,) € H and the claim is true for n, then (x,,+1, ¥,+1/) € H. Thus we need only prove
the claim to show that all (x,,, y,,) are on H.
Proof of claim,n =1 mod 2.
If the claim is true for some 7 = 1 mod 4, then
2x, +ay, + %laY, +b) = D.

We show that the claim follows for n + 2.

For,
Xp+2 = X+ BlaY, +b), Yn+2 = Yn * B(b +aX, +32Yn +ab),
and
Ypsz = Yo +h+aX, +a’Y, +ab.
Thus

2Xpi2 + aYniz — BlaYpiz +b) = 2(xy + laYy, +b)) +aly, + Blb +aX, +a°Y, +ab))

—Blb+alY, +b+aX, +a’Y, +ab)) =
(by claim) = D +(aY¥, +b)+(%ab + %a’X, + %a> Y, + ha’b) — %b

— BaY, — Yab — %a’X, — %a’Y, — %a’b
— %laY,+b) = D.

Similarly, if the claim is true for some n = 2 mod 4 it is true forn + 2, if true for some n = 3 mod 4 it is true
for n + 2, and if true for » = 0 mod 4 it is true for » + 2, Thus it is only necessary to check that the claim is
true forn = 1and n =2.1fn =1, x, and y,, = 0 and %(aY; + b) = D by definition. x; = %fa¥Y; +b),
andy,=0. Xo =Xy +aYy +b,and Yy =Y. Thus

—axy + 2y + BlaXo +b) = —KalaY 1 +b) + %laXq +a’Yy +a’Yi+ab+b) = BlaX{+b) = E
by definition. This proves the claim, and hence the centers of B,, lie on H.

For the second part of Theorem 1, we note that # is a hyperbola whose asymptotes are perpendicular. It is
therefore similar, in the geometric sense, to the hyperbola xy = 1. Let

0o R®R ->R®R
be a similarity mapping which takes 4 onto xy =1.

For each n, the line (x,,_1, Yu-1/), (X, vx) is perpendicular to (x,,, ¥,.), (Xn+1, Yn+1). This property is
preserved under the similarity mapping of 4 onto xy = 1.
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Let z, = (x;,, y;,) = Xy, vy, ). Let ¢ be the slope of the line from (x7, y7) to (x3, y5). Let C=(c, 1/).
(¢ #0). Then (with the help of a little algebra)

2, = =C"1 i no=2mod 4,
—C" g4 if n=23mod4
+C_"+1z;1 if n mod 4

il

and
2z, = "1z, i n=1 mod4.

Now the region enclosed by the lines from (0,0) to z,, and to z,,+4, and by xy = 1, has area
|% (ATg (2,44) — Arg (2,))] = |% Arg (2404/2,)| = |% Arg(€*)] or |%Arg(c™))|

depending on whether n is odd or even. Either way, since Arg (C) = Arg (6"1), all such regions have equal
areas.

Thus the corresponding regions bounded by lines from the center of A to the (x,,, y,,/ also have areas equal
to each other’s, since p multiplies areas by a constant.

The mapping r : z > c*7of R ® R onto R ® R may be viewed as a ““rotation” of R ® R, since it
changes Arg (z) but not NV(z). Clearly r sends hyperbolas of the form N(z) = k into themselves. This is remi-
niscent of linear fractional transformations of the complex plane. Although there is no direct further bearing
on Fibonacci tiling, we are inclined to note some similarities.

Proof of Theorem 2. Fixabecd<sR ® R Let(cy,cz)=cand(dy,d2)=d. Suppose notbotha
and b =1(0,0), and (c1,d1) #(0,0) (c2,d2)#(0,0). Fixx,, yo, k#0 € R.

Lemma 1. Under the above conditions, there exist x7, y1, X2, y2, K€ R such that

K#0, x1#x0, x1 #—d1/c1, y1 #yvo, y1 # —d2/c2, x2 # x1,
xz # =di/c1, y2 #y1,v2 # —d2/c2,

and such that (x — xg )y — yo) =k ifand only if (x —x1 )y —y1)/(x —x2 )y —y2) = K or (x,y)=(x1,y2)
or(x2,y1).

Proof. Selectsome k # 0, 1such that

(K—1)(k—xgyo) + K_Z(K - 7}2x0y0 # 0.
Fix K. Let
xz = KUK=1xo+x1), y2 = KUK=Tlyo+y1).
Then the equation
k—=xoyo = (K= 1) xqys — K2((K = 1)xo + x4 K = Tlyg +y1)

has a range of solutions x4, y; in which y; is a non-constant continuous function of x.

When the above conditions are satisfied, and x; #x¢, y1 # yo,

(x=xo)y —yo) = k = (x=x)ly—y1) = Kix —x2)ly —y2).

Thus Lemma 1.

We may restate this as saying that except for a special class of degenerate hyperbolas, every hyperbola
N(z - zg) = k can be put in the form

Niz—2z4) - K.
Nz —2z3)

NowletA € R® R,

cixp+dy cayptdy
(61X1 +dy’ coyg+ds )
Letwy =f(z1), w2 = f(z2). Then

w—wyq z- 21

= s w="fz) or w=wy, z=2p.
w-—wjy Z2—2)
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Thus
Niz—2z1) _
Niz—z5)
has image
Mw—-wq) _
Niw—wy) KN(N .

By our previous results this is also a hyperbola of the same sort.

REMARK. Thus except for isclated points for which necessary divisions are impossiblein RQ R, R® R
behaves just like £ with respect to linear fractional mappings.

One could show without great difficulty that the maps 7 of Theorem 2, are “conformal,” in the R @ R
sense. Self mappings of the “unit circle” V(z) < 1 have properties analogous to their counterparts over £. But
the prospects along this line are quite limited. R® R is only a curiosity, and cannot (in my opinion) support
a deep and rich theory.

For those familiar with the number theory of 0(\/5_), we remark that for the example of the introduction,
by embedding 2(</5) in R® R one may show that the (x,,, y,,) consist of all the integer points on

xitxy—y?-xty =0,

except for (0,1).
REFERENCES
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A PRIMER FOR THE FIBONACCI NUMBERS, PART XVI
THE CENTRAL COLUMN SEQUENCE
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1. INTRODUCTION

The rows of Pascal’s triangle with even subscripts have a middle term

2n il n - n 2
n
A= () - z (i) (n 74) - z (%)
since
{Z) = (n—r-lk) ’
for 0 < k < n. We shall now derive the generating function
w - 5 A 3 ()

n=0 n=0
From

o <[ 2] = 22

one easily gets
(n+1)Au+1 = 2(2n+1)A,.

2. GENERATING FUNCTION
From

Alx) = 5 Apx™ = Ag+ 3 Apsrx™*
n=0 n=0
so that by differention

xAx) = x Z (n+1)Au+1x" = Z nAux™.
n=0 n=0
From tne relation
(n+1)A,+1 = 2(2n + 1)A,
then

Alx) = 5 0+ DAusgx™ = 3 2020+ 1)A,x" = 2( > 2nA X"+ Y Anx")
n=0 n=0 n=0 n=0
so that
Alx) = 2(2xA’(x) + Alx)).

Solving for A 7xJ, one gets, upon dividing by A(x),
41
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Alx) . 2
Alx)  (1-4x)

from which it follows that
InA(x) = =% In(1—-4x)+InC.

Thus
c
Alx) = ,
VT —4x
but Ag = A(0) = 1 implies C = 1, so-that
7 = n
Alx) = = ¥ A",
Vi-4& 3

3. CATALAN NUMBERS
Suppose you know that the Catalan numbers have the form
_ 1 (2n _
cn—m(n): 00—01
and wish to derive the generating function
Cix) = Y, Cox™.

n=0
Recall that

I
™M
h-N
Y
>
I
I
M
2R
x
3
It
-~

Alx)

Then
Cix) = 3, —7—(2"),\(” = L oauxm.
Thus, if we integrate the series for A(x), term-by-term,

[.L:Z ;_-I_Li_AnXﬂ‘f'I_f_C*.

\/7 —4x n=0

But
OX_ _ _y/T=4dx = xClx) +C*,
V1 —4x

which implies £* = —%. This can be salved for
_1=/1-4x
Cix) o .

We now show how to derive the central sequence for the trinomial triangle.

4. THE TRINOMIAL TRIANGLE — CENTRAL TERM

Consider the triangular array 1
1 1 1
1 2 3 2 1
1 3 6 7 6 3 1
x y z

[FEB.
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where w = x +y + z shows the relation between the elements of the array. It is induced by the expansion of

(1+x+x2)" n=20123,-"
Let

2n n
(14x 425" = 5 Bux™ = 5 (R)x*M1 40
m=0 k=0
= (pM1#a0m 4 (7)1 400" D7 et () 100 R 4
The coefficient §3,, is the central term and is given by

s 18 R A L) R i [P

wherea = [n/2]. The §3,, may be written in several forms
[nl2]

b T (1) k) - Z (e (") - /Z] (%)

since

) n—k) - n! (n—Fk) _ n! (2k)! - ( )(Zk)
k ( kitn —k)! kifn—2k)]  (2k)!(n— 2k)Ik!R! 2RI\ E
We now derive the central term generating function,

Thus
oo ) [mi2] ) oo ke v )
Bix) = % Bux™ = 2 ( > (;,1)(2:))»«"‘ - ( 2 (7] ) )
m=0 m=0 \ k=0 k=0 \ m=2k
since
(2";)—0 if 0<m<2k
Thus
e [2k] m . <= [2k x2k
—%‘) (k)mi__:o (z@x _lz:o (k)<(7 X)2k+1)
since
Xk _ ~ n n
( x}k+1 - VE) (k)x
But
_ 2k\ R 7
Alx) (%) Wi
so that
_ 1 2 _ 1 1 _ 7
B(Xl';-,(A(”fX)z) S 1-x B

This completes the derivation.
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Thus, A(x/J, the generating function for central term of the evenly subscripted rows of Pascal’s triangle, is related by
a transformation to the central term generating function for the trinomial triangle

2
Blx) = 71— 4 ( X )
X (1-x)?
Much more can be done with this but that is another paper and is covered in Rondeau [2] and Anaya [1]. It should
be noted that the generating function Bfx/) could also have been derived by Lagrange’s Theorem as in [6].
Sequence 456, in [4], is the Catalan sequence for the Trinomial Triangle 1,1,2,4,9,21,--, G}, .. This sequence
C. can be obtained from the regular Catalan 1,1,2,5, 14,42, - if we truncate the first term, by repeated differenc-

ing. {See [1].) A

2, 1 2 5 14 42 .. (, Catalan Numbers
AC, % 1 3 9 28
AzC, /(;‘ 2 6 19
AcC, % 4 13
AL, %, 9

The Catalan generating function Cfx/ is

o = S~ no_ 1=/1-4x
Cix) ,E; Cox o

_Cl)—1 _ +— 1-2x—JT-
CZ(X) = __(_)L): 1 = Z Cn+1)(n — 2x 27 4x
n=0 2x
Let C;(x) be the generating function for Catalan numbers for the Trinomial Triangle. This is
7 X _ [y 4%

wy) = 1 p2f_x V- _1 | _1+x 1+x
C*tx) 7+xc (7+x) 1+x 2 x2

(1+x)?

=X = JT+xHT=3x] _ 1—x—+J1-2x—3x?
22 2?2

We can also get £*{x) from regular Catalan number generator by another transformation related to summation Webs

2. Catalan Numbers —
101 0 2 0 5 0 14
> 1 1.1 2 2 5 5 14
%. 2 2 3 4 710
» 4 5 7 1117
Z 9 12 18

%, 21 30
"’\ 51

Cix?) = 1=/l =4x?

2x?

CHx) = 7 el )Z =7—x—\/7—2x—3x2
1T—x \17—x 22

o¥

Here the Catalan number generator is

This is the same transformation we saw earlier.
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5. B(x) FROM THE DIFFERENCE EQUATION

In Riordan [3, p. 741, they give the recurrence for the numbers 3,,, the central terms in the rows of a trinomial
triangle. This is

nBy = (2n— 1)1 +3(n—1),_2.
We shall now derive this.
We will start with the well known generating function for the Legendre Polynomials

—7= = Z Pn(t})(n.
JI=2xt+x%  n=0

We introduce a phantom parameter ¢ in the generating function for B(x).
Bix,t) = _’_ =3 M, (tx™,

, J1=2xt—3x? n=0
where clearly B(x,7) = B(x) and M,,(1) = B,, .

Let _ .
xy = —i\/3x and t; = \%,
then
‘: n _ 7 _ 7 _ = n
L M, (t)x" = = = Z Pn(t1)X1.
n=0 J1=2xt=3x%  J1-2xst;+x? =0

It L
= ng P, (f) (~i/3x)" .
We note M,,(7) = 3,,, then _ _
By = (—i/3)"P,(i//3).
The Legendre Polynomials obey the recurrence relation
nP,(x) = (2n — 1)xP,_1(x) — (n — 1)P,_2(x)

forn = 0, with Py(x) = 1 and P;(x) = x. From Py(x) = 1, then

Bo = (-in/3)%Po(i/J3) = 1
and from P; (x) = x, then B; = (—ix/3 )(i/A/3) = 1. Thus directly substituting P,, (x/, with x = i/</3 the recurrence

relation becomes _ 7 — L=
nP,(i/j3) = (2n 1) NG Pn-1(i/NJ3) = (n = 1)Py_2(iA/3)

and
n(—/3i)"P,(i//3) = (2n — 1)(—/3i)" \7’5— 1 (iN/3) = (0 = 1)(=in/3)"Py_2(i//3 ).
Since
Bn = ("i\/é.)npn(i/\/j),
this yields

nBy = (2n = 1)By_1 +3(n — 1)By,
with 8p =1, 87 = 1 as was to be shown.
We note in passing that
lim  Bnrt

N 5 oo

=3.

n

. 6. FROM THE RECURRENCE TO THE GENERATING FUNCTION
We now go from the recurrence relation
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(n+2)By42 = (20 +3)Bp+1 +3(n+ 1)By,
with Bp = 87 = 1, back to the generating function.

Let
Bix) = Zw: Bux",
then i
xBx) = i nB.x" |
n=0

3xB'(x) + 3B(x) = i 3(n +1)B,x".
Further "

xB(x) —0-Bg — xB1 = i nB,x"
N n=2

(B'(x)— 1)/x = i (n+2)B,12x"
Noxt. n=0

Blx) = 1+x 3 Bne1x", BMx) = 3 Bursx™ + 3 nBursx”,
) n=0 n=0

BT S e, 200 = 3 e
n=0

Thus, from the recurrence relation, we may write

B I(X,f =1 _ 2p7x) + BIX } 1+ 3xB'(x) + 3B(x)
or

BN —2x—3x%) = (3x+ 1)B(x), B} - _3x+1
B(X) 7"2X“3X2

Integrating, In B(x) = =% In (1 — 2x - 3x) +In C. Thus
B/X) = 4_____— ‘
J1=2x - 3x?

and since B(0) = By = 1, it follows that £ = 7. This concludes the discussion.
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ENTRY POINTS OF THE FIBONACCI SEQUENCE
AND THE EULER ¢ FUNCTION

JOSEPH J. HEED and LUCILLE A. KELLY
Norwich University, Northfield, Vermont 05663

There is an interesting analogy between primitive roots of a prime and the maximal entry points of Fibonacci num-
bers modulo a prime,

Expressed in terms of the periods of reciprocals of primes in various base representations, the period of the 5-mal
expansion of 1/p is of length d; in ¢(d;) incongruent bases modulo p where d; |p — 1 and ¢ is Euler’s totient function.
A similar statement can be made about certain classes of linear recursive sequences modulo p.

1.0 LetT'"c,q be then t term of a linear recursive sequence,

(c+/g)" = (c = Jg)"
N

rre | (248"~ (58)’

7 for g = ¢? (mod 4)

forg # c? (mod 4)

yielding the sequences defined by
2c0" 1 4 (g - ¢?r?
Fn :{CPH_I +q '—452 Fn—z

with initial values 1, 2c or 1, c.
For ¢ = 1, g = 5 we have the Fibonacci sequence.
We are interested in the entry points of these sequences, modulo p, a prime.
Borrowing the analogy, we will say that I" c,g belongs to the exponent x modulo p, if

p\lT¥ca, pyTYeq fory < x
The main results are:
1.1 For g a quadratic non-residue of p,c ranging from 1 to p, there are ¢ (d;) values ¢ such that I"¢,g belongs to the
exponent d; modulo p, where d;|p + 7, d; # 1.

1.2 For g a quadratic residue of p,c ranging from 1 to p, there are ¢(d;) values ¢ such that I" c,g belongs to d; mod-
ulo p, d;|p — 1, d; # 1, and two values for which the sequence is not divisible by p at all.

1.3 For¢ fixed, c#0 (mod p), g ranging from 1 to p, for each divisor of p — 1 and p +'1, except 1 and 2, there are
¢(d;)/2 values of g such that ' ¢,g belongs to d; module p. In addition there is one value such that I"¢,q be-
longs to p (for g = p) and one for which the sequence is not divisible by p at all (forg =c? mod p).

1.4 Applying these results to the Fibonacci sequence, probabilistic arguments suggest that for primes of the form
10n + 1 the entry point of the Fibonacci sequence should be maximal, (p — 7/, on an average

n
. ¢lpi— 1)
] r 2 —
anw n I:_-ZI pl_3

over primes of that form; and the entry point should be maximal, (p + 7), on an average
47
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Z": Plpi +1)
=1 P
over primes of the form 107 + 3. Investigations of entry points of primes less than 3000 [1,2] show a remarkably
close correspondence with these theoretical values.
Number of Maximal Entry Points for p < 3000
Predicted Observed
Zolp—-1)/p-3 = 17425 76
Zolp+1)/p—-1= 8778 88

2.0 Consider the sequences {I‘"c,q} modulo p, where ¢ and g range over the reduced residue classes module p. Let
d be the exponent to which I ¢,g belongs modulo p.

im L
n

The following can easily be established:
2.1.1 1fp|T"cq, thenp|T'"c,g +pand p|T'"c +p,gq.
2.1.2 Forc=0(modp),d=2.
2.1.3 Forg=0,c#0(modp),d=p.
2.1.4 Forc;+¢;j=0(modp),d;=d;.
2.1.5 Forg=c?(modp),d=.

2.2 Leta=c++/g,a=c—/g. 1§ cq belongs to the exponent & (mod p), we say a has I -order k. That is
ak_ak = 0(modp), a™ —a™ %0 (modp) form <k m # 0.

We wish to determine the smallest 2 such that
a? = a@? (mod o).

We consider two cases, g a quadratic non-residue of p, and ¢ a residue.

3.0 Case 1, g aquadratic non-residue of p. Construct GF(p 2) with typical element ¢ + k+/g (note: kzq s;‘ (mod p),
anon-residue). Forsomec’, g’ a=c’+ /g’ is of orderp2 — 1 since the multiplicative group of GF(p<) is cyclic.

3.1 We show thata = aP.

The conjugate of a can be defined as that element a such that aa and a + a areboth rational, i.e., elements of
GF(p). We know that in GF(p) there are ¢(d;) elements of order d;, d;|p — 7, and that Z ¢ (d;) = p — 1, acceunting
for all the non-zero elements of GF(p). Thus the elements of GF(p2) which are in GF(p) are characterized by erders

which divide p — 7, i.e.,
ak(P'H)’ k=1 2, e, p = 7.

3.1.1 Since ais of orderpz — 1, a-aP is of order p — 7, thus is rational.

3.1.2 To show: a +aP is of order dividingp — 7.
Expanding (a + a?)P~!, and noticing that (P . 1 ) = (—17)* mod p, we obtain

(a+aP)P! = gp1 +(p " 1] @2P2 4oy gP(P-1) = Pl _q20-2 ., qP(P-1)
= P U1 aP T 4 (@P 1) et (@ P (@) 4 (P )

_1,p+1 2_gq
= ap":l [(_I_:LQP___LJ + (ap_I)p] = ap_1 L—i— +apz_p}
1+aP1 1+aP1
= aPlgP" P = gP'-1 = Tmodp.

Thus a + a? is of order dividing p — 1 and is rational. It follows that @ = a? .
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3.1.3 [Itcansimilarly be shown that @® = a®, unless a is a multiple of p + 7. In that case a® is rational and self con-
jugate, cf. §4.0.

Let@®=a®. Then (a®)* = (a®)* for aP* _ %% = 0, a®*(P~1) — 1 (mod p), and ak = 0 (mod p + 1), since ais
of order p2 — 1. k is a divisor of p + 1, say, d;. Let nd; =p + 1, so that n is the smallest non-zero solution to xd; =0
mod (p + 7) (i.e., a” has I" -order d;).

If (tn)d; =0 (mod p + 7), where (¢, d;) =m, t=t'm, d; = dim and d;|p + 1 with d; < d;, then

(tn)d; =0  (modp +1)

and (tn) is a solution to xd; = 0 (mod p + 1) with d; < d;..

x=tn, t=1,2, - aresolutions toxd; = 0 (mod p + 1), and are primitive solutions for (t, d;) = 1. There are exact-
ly ¢(d;) of these less than d;. For each of the ¢(d;) of these tn values, tn <p + 1, a® has I'-order d;.

Consequently, for every divisor d; £ 1 of p + 1, there are ¢ (d; ) valuesa < p + 1, such that a® has I'-order d;.

3.3 We wish to relate the elements in the tables below:

Table 1
¢ [ J
1 I |
2 ————— — — ]
¢ c+/g;
p I I
Table 2
alt(p+1) a1+k(p+1)
2
aé adtk(pt1)
ap+1 a2(p+1) ap2—1

NOTE: The elements of the last row of table two are rational. The elements of columns two through p ~ 1 _are
rational multiples of the elements of the first column, in which for the exponent less than (p + 1), there are ¢(d;)
élements of I"-order ;. Thus the I-orders of the efements in the first p rows are equal by rows and divide p + 1.
Since a is of order p> — 1, all a + b\/g are represented by some power of a. For ¢; #\/g;, g; a non-residue, there is
some a® = ¢; + b\/g =c; +~/g; (mod p). ‘

33.1 Ifak = ¢; +~/g; and a™ =cj*/g;, then a* and a™ are not in the same row in table two, for if
ak _ ax+y!(p+1) a™ = x+y, (p+1) x <p+l

Il

then
C; + q; = ax+yl (P+1)’ cj + q’ = ax+y2 (p+1)

subtracting,
Ci —_ cj = ax(ayl(P+1) —_ ayz(P"'I)}

and a” is rational, i.e., x = p + 1, contrary to hypothesis.

3.2.2 We thus have a one-to-one mapping between elements of distinct rows of table two and elements of the g; col-
umn of table one, indicating that for g; a non-residue, ¢; ranging from 1 to p there are ¢(d;), d;|p + 1 elements,
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¢; */q;, of T-order d; (Result 1.1).

4.0 Case 2, g a quadratic residue ofp Consider the elements of GF(p). Let §; = a; + b, where b = /g (mod p), and
call B; =a; — b. Lety; = B;8; = (a; + b)/(a; — b). \f (a; + b)/(a; — b) = (aj + b)/{aj— b), then a; = a;, and 'if a

ranges through the values 0 to p — 1 the +y; values generated are distinct. Provided a # #b (mod p), these are the ele-

ments 2 through g — 1 of GF(p)

From ((a; + b)/a; — b))k = 'y, it is clear that the I"-orders of 8 correspond with the orders of -y. There are  ¢(d;)
elements,y;, of order d; for each divisor of p — 1 (d; # 1), thus ¢(d;) elements §; with I" ordersd for each divisor of
p — 1 except 1. In addition, for a = b (mod p), i.e., g = 02 (mod p), the equation (a; +h)k= (a; — 5)* has no solu-
tions and we say the I"-order of Bis . (2.1.5). (Result 1.2.)

5.0 To establish Result 1.3, relating to the rows of table one, consider ¢ + \/g; as g; ranges from 1top — 1.
¢ + \/g; has the same I"-order as ck + </k*q and as (ck)’ + \/k*q, where ck + (ck)’=0 (mod p) (2.1.4). Choose
g; a non-residue, ¢; < (p — 1)/2, and & such that k; =c. Then k2g; is a non-residue and (c; +\/g; g;)=c ++/q; and

has the same I"-order. Similarly for g; a residue. Thus the entries in table one with¢; < (p—1)/2 of a resndue column
and a non-residue column correspmlnd with the entires of a row and we have Result 1.3: there are @ (d;)/2 valuesgq

such that I"c,g belongs to d; (mod p) ford;|p — 17,0;|p # 1, with I -order « for ¢ =¢2 (mod p), and I" -order p for
g =0 (mod p).

6.0 Results applied to the Fibonacci sequence. Let ¢ = 1, g = 5. Since 5 is a non-residue for p of the form 10n . 3
and a residue for p = 10n + 1, the maximal entry point for the former isp + 1 and for the latter p — 1. Since ¢ #p
and g # p for p > 5, the probability that the entry point is maximal forp = 10n £3 is

dlp+1)/p—1),

olp — 1)/(p - 3).
Forp < 3000, over primes of the form 107 +3,

ZM = 87.78,
as compared with 88 primes of that form with maX|maI entry points.

Over primes of the form 10n +1,
Yo .z,

as compared to 76 with maximal entry paints.
Entry Points of p = 13 for {I""¢;q; }

and for p of the form 10n £+ 1,

A7 1 2 3 4 5 § 1 8 9 10 11 12
1 =7 12 6 7 14 14 14 17 3 T 3§
2 3 14 6 ~ 7 14 7 71 4 12 14 12
3 12 14 12 4 7 1 14 71 « 6 14 3
4 12 71 « 3 14 1 7 14 12 4 14 6
5 4 7 3 12 14 14 14 7 6 12 1
6 6 14 4 12 14 7 71 14 3 = 7 12

( see properties 2.1.1 — 2.1.5)
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MORE ON BENFORD'S LAW

W. G.BRADY
Slippery Rock State College, Slippery Rock, Pennsylvania

In a recent note, J. Wlodarski [1] observed that the Fibonacci and Lucas numbers tend to obey Benford's
law which states: the probability that a random decimal begins with the digit p is

logzo (p + 1) — logz g p.

(By begins, one means has extreme left digit.)

Wlodarski based his observations on the first 100 Fibonacci and Lucas numbers.

Thisisareport of a further investigation of the Benford phenomena. In this effort, the first 2000 representa-
tives of both the Fibonacci and Lucas numbers were calculated and examined. The occurrences of the first
digits were noted and tabulated. Further this was done for each base & = 3 to 6 = 10. The results of these
calculations suggest an extended Benford law:

The probability that a random decimal written base & begins with p is

ptl 1 . pt1
(1) logsg » Y logy, R
This result is anticipated by Flehinger (2] and is verified here.

In order to provide the statistical data concerning the Fibonacci and Lucas numbers of large magnitude and
to various bases, a computer program was developed. It was written in FORTRAN-IV and has been run on an
IBM 360-40. The program can develop the numbers up to n = 5000 base 10 using the 1000 digits provided.
However, more digits would be needed for a lesser base. As a compromise 7 = 2000 was selected. The propor-
tions of first digits to the various bases is recorded in Tables 1 and 2. Table 3 gives the corresponding results
from (1) for comparison.

Table 1
Proportion of First Digits of Lucas Numbers

Digits
Base 1 2 3 4 5 6 1 8 9
10 .30100 .17600 .12550 .09650 .07950 .06650 .05850 .05100 .04500

9 | .31800 .18150 .13300 .10250 .08300 .07000 .05900 .05300
8 | .33350 .19450 .13950 .10600 .08850 .07400 .06400

7 | .35450 .20850 .15000 .11300 .09350 .08050

6 | .37800 .22400 .16150 .12500 .10250

5 | .43050 .25100 .17950 .13900

4 | 50100 .29150 .20750

3 | .63650 .36350
51
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Table 2
Proportion of First Digits of Fibonacci Numbers

Digits
Base 1 2 3 4 5 6 1 8 9
10 |.30050 .17650 .12500 .09650 .07950 .06650 .05750 .05200 .04600
9 |.31400 .18650 .13200 .09900 .08300 .06950 .06200 .05400
8 (.33400 .19500 .13900 .10600 .08800 .07350 .06450
7 |.35750 .20900 .14600 .11550 .09200 .08000
6 |.38600 .22800 .16050 .12400 .10150
5 |[.43100 .25250 .17800 .13850
4 [.49950 .29200 .20850
3 |.62800 .37200

Table 3

Values of logy, (n + 7)/n

n
Base 1 2 3 4 5 6 7 8 9
10 |.30103 .17609 .12494 .09691 .07918 .06695 .06099 .04815 .04576
9 |.31547 .18453 .13093 .10156 .08298 .07016 .06391 .05046
8 |.33223 .19434 .13789 .10695 .08739 .07389 .06731
7 |.35621 .20837 .14784 .11467 .09369 .07922
6 |.38685 .22629 .16056 .12454 .10175
5 |.43068 .25193 .17875 .13865
4 | .50000 .29248 .20752
3 1.63093 .36907
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FORMULA DEVELOPMENT THROUGH FINITE DIFFERENCES

BROTHER ALFRED BROUSSEAU
St. Mary’s College, California

FINITE DIFFERENCE CONCEPT
Given a function f{n) the first difference of the function is defined
Afln) = fln+1)—f(n).

(NOTE: There is a more generalized finite difference involving a step of size A but this can be reduced to the above

by a linear transformation.)
EXAMPLES

fin) = 5n+3, Affn) = 5(n+1)+3—(5n+3) = §
fin) = 3n% +7m +2 | Afln) = 3(n+1)2 +7(n+1)+2—(3n? +7n +2) = 6n+10.
Finding the first difference of a polynomial function of higher degree involves a considerable amount of arithmetic.
This can be reduced by introducing a special type of function known as a generalized factorial.
GENERALIZED FACTORIAL

A generalized factorial
()™ = xlx = 1)x = 2) ~(x—n +1),

where there are n factors each one less than the preceding. To tie this in with the ordinary factorial note that
”(n) = n!
EXAMPLE
x*) = xtx = 1)ix = 2)(x - 3).
The first difference of x(™ is found as follows:
Ax(™ = (x+ Uxlx = 1) (x=n+3)x—n+2) = x(x = T)x=2) - (x —n+2)(x —n+1)
=xlx=x=2)(x=n+3)x—-n+2)[x+1—(x-n+1)] = ax (1),

Note the nice parallel with taking the derivative of x™ in calculus.
To use the factorial effectively, in working with polynomials we introduce Stirling numbers of the first and second
kind. Stirling numbers of the first kind are the coefficients when we express factorials in terms of powers of x. Thus

x(V = X, x(?) = x(x—1) = xz—x, x(3) = xfx—1)x=2)x-3) = x7 —3x2+2x
x®) = xtx = 1ix=2)x - 3) = x* — 6x7 + 11x% - 6x.
Stirling numbers of the first kind merely record these coefficients in a table.

Stirling numbers of the second kind are coefficients when we express the powers of x in terms of factorials.
x2 = x2 —x+x = x(B 45V
x? = x? —3x2 +2x+(3x% = 3x) +x = x(3) + 3x(2) 4 x(V

As one example of the use of these numbers let us find the difference of the polynomial function
4’ = 7xt rax? —xP+3x - 1.

Using the Stirling numbers of the second kind we first translate into factorials,
53
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TABLE OF STIRLING NUMBERS OF THE FIRST KIND
power of x
n 1 2 3 4 5 6 7 8 9
1 1
2 -1 1
3 2 -3 1
4 —6 1 —6 1
5 24 -50 35 -10 1
6 -120 274 —225 85 -15 1
7 720 —-1764 1624 -735 175 =21 1
8 -5040 13068 —-13132 6769 -1960 322 -28 1
9 40320 -109584 118124 —67284 22449 —-4536 546 -36 1
10 -362880 1026576 —1172700 723680 —269325 63273 —9450 870 45
TABLE OF STIRLING NUMBERS OF THE SECOND KIND
Coefficients of x(*)
n 1 2 3 4 5 6 7 8 9 10
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 156 25 10 1
6 1 3 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1
9 1 255 3025 7770 6951 2646 462 36 1
10 1 511 9330 34105 42525 22827 5880 750 45 1
TABLE OF FACTORIALS
5 A (3 (2 (1),
a’ 4 40 100 60 4
~7? -7 —42 -49 -7
9> g 27 9
—5x? -5 -5
Ix-1 3 -1
Giving

ax(5) 1 33x(*) + 67x(3) + 33x(P) + 4x (1) — 1.
Using the formula for finding the difference of a factorial the first difference is given by
20x*) + 132x3) + 201x?) + 66x(1) +4.

Now we translate back to a polynomial function by using Stirling numbers of the first kind.
4 3 2
X

X X X c
20x%) 20 -120 220 -120
132x(3) 132 -396 264
201x(?) 201 -201
66x(1) +4 66 4

The resulting polynomial function is
20x* +12x7 +25x% +9x +4

[FEB.
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A POLYNOMIAL FUNCTION FROM TABULAR VALUES
From the above it is evident that the first difference of a polynomial of degree » is a polynomial of degreen — 7,
the second difference is a polynomial of degree n — 2; etc., so that the n'h difference is a constant. The (n + 1)°* dif-
ference is zero. As a matter of fact since at each step we multiply the coefficient of the first term by the power of x,

the n" difference of

1 3

agx"+ax" +ayx"7 + . ta,_(x+a,
isagn! :
Conversely if we have a table of values and find that the r** difference is a constant we may conclude that these

values fit a polynomial function of degree 7. For example for

fix) = x> — 7x? +3x - 8
we have a.table of values and finite differences as follows.

x flx) Af(x) Nflx) A%f(x)

0 -8

1
1 -1 16

17 30
2 10 46

63 30
3 13 76

139 30
4 212 106

245 30
5 457 136

381 30
6 838 166

547
7 1385

The problem is how to arrive at the original formula from this table.
Suppose that the polynomial is expressed in terms of factorials with undetermined coefficients by, b4, b3, . The
problem will be solved if we find these coefficients.

fix) = bo+byx(V +b,x%) +b3x(3) b ax® +bsx(%) 4 ..
Aflx) = by +2box(V + 35352 +4byx(3) + 5bsx®) 4 ..
A2f(x) = 2165+ 3%2b3x(1) +4x3b4x%) + 558 5x(3) 4 ..
A>fix) = 3163 +4x3%2b4x V) + 554530 5x(?) 4 ..
A*ix) = 4iby +5x4x35205x(1) + .
Set x = 0. Since any factorial is zero for x = 0 we have from the above:
f0) = by or b = f0)

Af(0) = by or by = Af(0)
A%H0) = 216, or by = AZf0)/2!
Af0) = 315 or b3 = A3HO)/3!
A*HO) = 41by  or b = A*HO)AL.

Hence

fx) = £0) + Afox(D) + A2 f—;%/—x(z)+A3 %‘j—) x(3) 4 p* %7—))((4)+
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This is known as Newton's forward difference formula. We can find the quantities /(0), A f(0), A 2f(0), A 3f(0),
A*(0), - from the top edge of our numerical table of values provided the first value in our table is 0.

fix) = —8+x+16x(2)/21 + 30x(3)/31 = —8 +x +8x% — 8x +5x° — 15x2 + 10x = 8x° — X2 +3x - 8.
Stirling numbers of the first kind can be used in this evaluation.
SUMMATIONS INVOLVING POLYNOMIAL FUNCTIONS

Since a polynomial function can be expressed in terms of factorials it is sufficient to find a formula for summing
any factorial. More simply by dividing the " factorial by &/ we have a binomial coefficient and the summation of
these coefficients leads to a beautifully simple sequence of relations.

To evaluate
n n
Z‘ k, et E k = @(n)
k=1 k=1
meaning that the value is a function of n. Then
n+1 n
Apln) = 3~ k- Z k=n+1.
k=1 k=1

Now An =7and An(?)/2 = n. Hence

n
oln) = Y k= n?/2+n+C = nln+1)/2+C,
k=1
where the C is necessary in taking the anti-difference since the difference of a constant is zero. This corresponds to
the constant of integration in the indefinite integral. To find the value of C letn = 7. Then

1=1+2/2+C sothat € = 0.
Hence

n
> k=nn+1)/2= ("2“)
k=1
a well-known formula. Next, let
D (k+1 Eolee1) & fe+1 +2
1§1 { 2 )=«p(n), AWM::—% ( 2 )"k;i ‘ 2 )=‘n2 J
The difference
A(W;Z n+2

=\ 2
Hence

o= [37) - [r37)ec,

n = 1 shows that C = 0. The sequence of formulas can be continued:

z [32)- %)

and in general

f {k+r =(n+r+1)
r+1 r+2
k=1

One could derive the formula for the summation of a factorial from the above but proceeding directly:
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n

S k= o), . Apl) =+ 1),

b=
Hence, !
n
- () _ (n+1)*1)
©ofln) ;:Z;j k et
Takingn =r,
= e+ ) e 1)+ €
sothat £ =0.

1
(r) _ (n+1)*)
2;1 k r+1

Again there is a noteworthy parallel with the integral calculus in this formula.
For examples we take some formulas from L. B. W. Jolley, Summation of Series,

"
EXAMPLE 1. (45) p. 8, Z (3k— T)3k+2) = 245+ 548+ 8%11+ -,
k=1

This equals

n n 3 2
S (9k2+3k-2) = 3 (kP 126V -2) = 9 &%71(—)+ 12 (~”+T”(—)—2(n+7)+c.
k=1 k=1
Takingn = 1, 255 = 6«2 — 2«2 +csothat£ =2
n
S (3k—13k+2) = 3n° —3n+6n? +6n-2n-2+2 = n(3n? +6n+1).
k=1

EXAMPLE 2. (50) p. 10

n " n
S k(k+3)(k+6) = 1447 +42+5%k+3x6+9+ = 3 (k7 +9k2+18k) = 3 (k7] 412407 4 28k(1))
k=1 k=1 k=1

- (n_.._+47/(4) +12 0 *;’(3) ~28 (0 *2”(2) #¢ = L0 ffn - 1)in-2) + 16n - 1) + 56] +C

i

nin+ 1)(n+6)n+7)/4+C.
Settingn = 1, 1%4+7 = 122+7+8/4 +csothatC =0

Z kik +3)(k+6) = nln+ 1)(n+6)n+7)/4.
k=1
EXAMPLE 3. (49) p. 10

n
S (3k—2)(3k+1)(3k+4) = 1457 +4%7%10%13 + - .
k=1
This can be changed directly into a factorial:

n 7
275 (k=2/3)k+1/3)(k+4/3) = 27 3 (k+4/3)(%)
k=1 k=1
giving
270 +7/3)F 4 + ¢ = (3n+7)(3n +4)(3n + 1)(3n - 2)/12 +C.

Settingn =17, 28 = (10+7+4%7)/12 + C so that € = 56/12
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(3k — 23k + 1)(3k +4) = (3n +7)(3n+4)3n +1)(3n - 2)/12 + 56/12 .

SUMMATIONS THROUGH NEGATIVE FACTORIALS
Starting with the relation
x(M) x(x — m)1) = x(m*n)
setm = —n.
X(_n)*()( -{-n}(n) = X(o) = 1‘
Therefore x(™™ = 1/(x +n)(",
Possibly this bit of mathematical formalism seems unconvincing. Suppose then we define the negative factorial in
this fashion.
AxC™ = 1/l(x+n+ 1)x +a)(x +n — 1) (x +2)] — 1/[(x +n)(x +n — Dx+n—2) - (x+2)x +1)]
= 1x+n)x+n—=1)(x+2)][1/(x +n+1)—1/(x +1)]
= —n/llx+n+1x+n)ix+n—1)(x+1)] = —nx(-"-1)
showing that the difference relation that applies to positive factorials holds as well for negative factorials defined in
this fashion. Consequently the anti-difference which is used in finding the value of summations can be employed
with negative factorials apart from the case of —1.
EXAMPLE 1.
n n
S Ukt Uk +2)] = 3 (k= 1)) = nCRp-2) v = —1/02(0 + 2)n + 1)] +C.
k=1 k=1
Settingn =1, 1/6 = —1/(2+3%2) + C, so that C = 1/4
n
D WIktk+ 1)k +2)] = 1/4 — 1/[2(n +2)(n + 1)] .
k=1
EXAMPLE 2. Jolley, No. 210, p. 40
n n n
> 1Mk =203k + )3k +4)] = (1/27) 5 1/lk = 2/3)k + 1/3)(k + 4/3)] = (1/20) ¥ (k- 5/3) (%)
k=1 - k=1 k=1
= (1/27)(n - 2/3)(-3)/(=2) + € = —1/[6(3n +4)(3n + 1)] +C.
Settingn =1, 1/(1+4%7) = —1/(6x7+4) + C; C=1/24
n
E 1/[(3k — 2)(3k + 1)(3k +4)] = 1/24 — 1/[6(3n + 4)(3n + 1)]
k=1

EXAMPLE 3. Jolley, No. 213, p. 40

S (2k— DIk + Uk +20] = 2 5 A/l + 10k +20] = 5 1/ [k + 1k + 2)]
k=1 k=1 k=1

The second summation was evaluated in Example 1. The first gives

n
2 5 kY =2+ )V,
k=1

-2fn+2) — 1/4 + 1/[2(n + 2)(n + 1)] +C.
Settingn =1, 1/6=-2/3—-1/4+1/12 +CsothatC =1
n
> 2k = 1)/[klk + 1)(k +2)] = 3/4—2/(n+2)+1/[2(n+2)(n+1)].
k=1

Altogether, the result is
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DIFFERENCE RELATION FOR A PRODUCT

Let there be two functions #(n) and g(n). Then

Afinlgln) = f(n + 1)g(n + 1) — fin)g(n) = f(n + 1)g(n + 1) — f(n + 1)g(n) + f(n + 1)g(n) — f(n)g(n)

i}

ftn + 1)Agln) +g(n)A f(n) .

This will be found useful in a variety of instances.
SUMMATIONS INVOLVING GEOMETRIC PROGRESSIONS

A geometric progression with terms ar k=1 can be summed as follows:

n
Z ark1 = ¢oln), Aofn) = ar”
k=1

But Ar™ =r™ — p" = t"(r — 1), Hence

n
o) = z: ark1 -
k=1

Settingn =1, a=ar/(r— 1) + C so that C = —a/[r — 1). Hence,

A lar™) = a™/(r—1)+C.

> ar®l = A~ 1/r-1).
k=1

The summation

n

S kR = o), Ag) = o+ ™ At = o+ et e - 1)+
k=1

1

using the product formula on page 8 with the first function as n and the second as it
(n+ )™ = Afnr™ e = 1)] - e - 1)

™= 1) =" - 1)2 +C

Hence Al + it =
Settingn =1, r=r2/(r—1)=r2/(r=1)%2 +C; C=r/(r— 1)%. Accordingly
n
> kr® = ™ e = 1) = e = 1) 1 0/r - 1)2
k=1
5
EXAMPLE. Do kx3F = 123 +2%9 + 3427 +4+81+5%243 = 1641.
k=1
By formula 5+3%/2-3%/4+3/4 = 1641,
FIBONACCI SUMMATIONS

A Fibonacci sequence is defined by two initial terms 7 and 72 accompanied by the recursion relation
Tur1 = Tyt Thog.
SUM OF THE TERMS OF THE SEQUENCE

n
Z Tp = ¢lnl, A¢ln) = Tyry, AT, =Tpe1—Ty = Tyog
k=1

Accordingly n
‘ E Te = Thez +C.
k=1

Settingn =1, Ty=T3+CorC=T{—-T3=-T,
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n
S Te=Tur2-T2
k=1
SUM OF THE SQUARES OF THE TERMS

n
3 TE=el), Apln) = T .
k=a

The anti-difference bears a strong resemblance to integration in the differential calculus. Just as we know integrals
on the basis of differnetiation so likewise we find anti-differences on the basis of differences. Thus we try various ex-
pressions to see whether we can find one whose difference is the square of 7,,.¢ .

Hence ATuTuts = TusiTusz = TaTust = Tnst(Tasz = Tu) = Thyy.

n
S TE = TuTuss +C.
k=a

Settingn =a, Tf = TaTat1 +C

n
€= TalTa=Tart) = ~TaTat, 3 To = TuTuet = TaTacs.
k=a
SUMMATION OF ALTERNATE TERMS

n

E Tokta = @ln), Agln) = T2(n+1)+a AT2nta = T2nt2+a— T2nta = T2nt1+a.

k=m
Hence
n
A TZ(n+1)+a = Ton+1+a*C, Z T2k+a = Ton+1+a*C.
k=m
Setting k =m,
n
Tom+a = Tom+1+a*C, Z Tok+a = Ton+t+a— T2m-1+a
k=m

SUM OF EVERY FOURTH TERM
n
Z T4pta = w(n), Ag(n) = T4nigsa
k=1

AT4nta = Tan+dta— Tan+a = Tan+3+a* Tans24a — Tan+2+a * Tan+1+a = Tan+3+a* Tan+1+a
To meet this situation we introduce a quantity
Vi = Tt # Tutt .
Va1 * Vst = Ty 4Tyt T+ Tpsy =Ty g1 # Ty + 2Ty + Ty + Tpeg = 5T,
To obtain a difference which gives 7 we start with /. By a process similar to that for 7

Now

AV =V + V. = 5T .
Consequently, dn+a 4n+3+a 4n+1+a 4n+2+a

n
A‘”17'4n+4+a = (Vans24al/5+C = Y Tapsa .
k=1
Settingn =1,

n
C = T4+a—Ve+a/5, Z Takta = (Tan+1+a* Tan+3+a)/5 = (T54a+ T74a)/5 + Tsq.
k=1
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EXAMPLE. We use the terms of the sequence beginning 1,4.

1,4,5,9, 14, 23,317,60,97, 157, 254,411, 665, 1076, 1741,
2817, 4558, 7375, 11933, 19308, 31241, 50549, 81790, 132339, 214129,
346468, 560597, 907065, 1467662, 2374727 .
Leta=2

E Tap+2 = Tg+T10+T14+T18+ T2y =23+ 157 +1076+ 7375 +50549 = 59180 .
k=1
By formula we have
(T3 +T25)/5—(T7+T9)/5+T¢ = (81790 +214129)/5 — (37 +97)/5 +23 = 59180.

SEQUENCE WITH ALTERNATING SIGNS

n
2 (~1)*T 2tera = @ln),  Do(n) = (~1)" Tonszear Vonta = Tonttta* Ton-1 *2

k=m

A(=1)"V2n+4q = (_7}n+1 Vont2+a— (1" Vonsq = (- 7}n+1[|/2n+2+a+ Vontal = (“7}”+15T2n+1+a-
Hence

n
Z (—-7)"T2k+a = (—7}n(V2n+1+a}/5+0 = {"”n[TZrH-a+T2n+a+2]/5+c'
k=m
Letn=m.
(—7)mT2m+a = ("7)m[T2m+a+ 7-2m+2+a]/5""c

n
Z (- 7)kT2k+a = (1) [Tonta* Tontar2l/5 + (_7}m+1[r2m+a *Tomtar2] /5 +(=1)" T 2ma.

k=m
Using the 1,4 sequence once more
7
}: (—7)kT2k+3 = —T9g+T11—T13+T15~T17 = =97 +254 — 665 + 1741 — 4558 = —3325.
k=3

By formula we have
~(T17+T19)/5+(To+T11)/5—Tg = —(4558 +11933)/5 + (97 +254)/5 — 97 = -3325.

GEOMETRIC-FIBONACCI SUMS
POWER of 2.

n
T M-l Aeln) = 2T,
k=1
A2"T, = 27T, +27Ty = 272T 1 #Ty) = 27V,

where we have used the product relation on page 8 and introduced the sequence defined by
Vi = Tyt # Ty
Since A2™V,, = §%2"T, (following the same steps as for 7,/
oln) = A 12", 00 = 2"V, /5+C.
Settingn = 7,2T; =4V,/5 + C. Hence

n
S 2FTy = 27T, + Tusp)/5+ (6T — 4T3)/5.
k=1
EXAMPLE.
2*Ty = 251+ 4%4+ 85+ 169 +32%14 = 650 (1,4 sequence).

™M

bl
i}
~
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By formula [26(14 +37) + 6 — 4+5] /5 = 650.
THE SUMMATION

Z rka.

k=1
The direct approach leads to an apparent impasse. We wish to find the inverse difference of ias Ty+1. Assume that
it is of the form )
Alr*Tyeq +00T,1.
Thisapproach parallels what is done in the solution of differential equations. &, j, and A are undetermined constants.
Taking the difference and setting it equal to it T,.+1 we have
AT, 4, R e = T pid #13r = DTl = P 1700
Replacing 7,,_7 on the left-hand side by 7,,+7 — T,, and equating coefficients of 7,,+; and T7,, gives:
Alrk(r—1)+7%1] = Mt i — 1) -t = g,

From the second j = k + 7. Then the first gives

AlrktT _ pk g k42 ot

Letting k =n + 7 and A = 1/(r +r — 1) establishes equality. Hence
n
Z rka = (1 T+t +r"+27’n)/(r2 +r—1)+C, € = (-r’Ty—rTq Wit +r-1)
k=1
n
> *Ty = Ty 0 2T, — 2T = T I N2 +r = 1).
k=1 .
EXAMPLE (1,4 sequence)

5
S 3%Ty = 3x1+3%%4+3%%5+3%59+ 3 %14 = 4305.
k:

~

By formula,
(30423 +37+14 - 27— 3)/11 = 4305.

FIBONACCI-FACTORIAL SUMMATIONS
THE SUMMATION

> kTp = (n)
k

=1
Aoln) = 0+ Ty
AnTy, = (n+ 1Ty 1+ Ty
AnTyep = N+ 1Tpeq+ Tye2

n
A+ YTpsg = nTpsz = Tne3 #T3+C = 3, KTy,
k=1
in which we have used the formula
A‘ITn.,«.z =Tu+3—T3
n =1 gives

T1 =T3-T4+T3+C; €=10
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so that

n
; kT = nTp42 — Tpe3 +73.
=1

Note that this is also A~ 1(n + 1)Ty11, a fact that is used in the next derivation.
EXAMPLE (1,4 sequence)

5
D kT = 1+1+2+4+3+5+4x9 + 514 = 130.
k=1

By formula 5+36 — 60 + 5 = 130.

THE SUMMATION
n

S k21, = o)

k=1

Aofn) = (n+ 17,4
An(Z)Tn.,.z = {n+ 7/(2)Tn+1 +2nTy+2

n
ST k2T, = 0T — 200 = 1T g3 +2Tyeq —2T4+C
k=1
in which the formula for the previous case was used.
Forn=2
2Ty = 2T4 - 2T5+2T4— 2T4 + C; C = -2T;
n
E k(Z)Tk = n(Z)T”.,.Z —2(n— DT 43+ 2Ty4a —2T4 - 2T3
k=1
VERIFICATION (1,4 sequence)

5
3T k(2Ty = 1%0x7+ 24154 + 35245 + 4x3%G + 5% 414 = 426
k=1

By formula
5x4+37 ~ 25460 +2+%97 — 2+9 ~ 2+5 = 426,
THE SUMMATION

n
Z k(3)Tk = ¢(n
k=1

Aygfn) = (n+ 7)(3)Tn+1
Aﬂ(3)Tn+2 = (n + 7}(3)7_”4-1 +3"(2)Tn+2

kT, = 00T ap = 30 = 1) ¥ Tys3 + 600 — 2)Tyq — 6T 5 +6T5+C.

M-

=
[1}
[

Forn=23,
6T3 = 6T5—6Tg+6T7—-6Tg+7Tg+C; C = 6Ts

n
S kT = 0Ty =300 = 1)P)T 454600 — 2)Tig — 6T 45+ 6T .
k=1
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VERIFICATION (1,4 sequence)

6
S k()T = 6x5+24%9 + 60%14 + 120%23 = 3846.
k=1
By formula forn = 6,
120+60 — 60+97 + 24%157 — 6%254 + 6+37 = 3846 .

The formulas for the next twao cases are written down and the pattern that is emerging is noted.

n
S kT, = 0T g =40 = 1)) T 05+ 12(n = 2)P)T g = 2800 = 3)T 45+ 24T 105 — 24T
k=1

n
S kT = 00T, = 50— 1)T,5 4 2000 — 2) T4 — 6000 = 3) T, 05
k=1
+120(n — 4)T 46 — 120717+ 120T1 1 .
The pattern may be described as follows:
For the rth difference:
The first term isn(7)T .45 .
For the n portion, both 7 and r go down by 1 at each step.
For the 7 portion the subscriptgoes up by 1 at each step for 7 + 1 steps.
The signs alternate.
The coefficients are the product, respectively, of the hinomial coefficients for 7 by 01, 11, 2!, ---, r/, respectively.
The last term is /T 2,1 with sign determined by the alternation mentioned in 4.
Wlth the aid of these factorial formulas it is now possible to find polynomial formulas. For example.

S o RN =

Z K7y, = E (k) + 653+ 76(2) + k() 73, .
k=1 k=1

The first few formulas for the powers are given herewith.

n
Z kZTk = (”2 + 2T a2 —(2n =3T3 - T4
k=1

n
Y KTy = (n? +60—12)T,12— (307 —9n + 19)T,15 + 6T+ T3
k=1

k4

™M=

T = (n* + 1202 = 48n +98)T 45 — (4n° — 18n% + 76n — 159)T 43 — 13T — 11T

&
]
~

n
S KTy, = (n° +200% — 12007 +490n — 1020)T 14z — (5n* — 300> + 190n? — 795 + 1651)T .43
k=1

+120T9 +30T5+ T3 .
In these formulas considerable algebra has been done to reduce the number of terms down to two main terms by
using Fibonacci shift formulas.

GENERAL SECOND-ORDER RECURSION SEQUENCES
Given a secand-arder recursion sequence governed by the recursion relation

Tn+1 = P1Ty+P2Ty 4
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to find
n
Z T = ¢(n)
k=1

Ap(n) = Tytq

ATy +PaTy 4] = Tys1 #+PoTy =Ty —PaTy_q = (P1 +P2—1)T,.
Provided P; + P, -1 is not zero,

n
S Tk = (Tui1 #P2Tu)/(P2+P1— 1) +C.
k=1

Forn=1,
Ti = (T2#P2T1)/(P2+P1—1)+C
C=[P—1)T1—T2]/(P2+P1—1)
n
S Th = [Tysg #P2Tn+(Py = 1)T1 = T21 /(P2 +P1 —1).
k=1
EXAMPLE: Tys1 = 5Ty = 3Ty_g

3,7,26,109, 467, 2008;

5
> Tp = 3+7+26+109+467 = 612.
k=1

By formula (2008 — 3+ 467 +4*3 —7)/(5 — 3 — 1) = 612.
SUM OF TERMS OF A THIRD-ORDER SEQUENCE
Such a sequence is bound by a recursion relation of the form

Tut1 = P1Tu+#PoTy 1 +P3T0 2.

S Te =), A¢ln) = Ty
k=1

A(T, +(P3+Py)Ty_1+P3Tp_2) = Tyup1 +#(P3+P2)T #P3Ty_ 1 — Ty —(P3+P2)Ty_1 —P3Ty 2
= Tu+1 #(P3+P2— )Ty —PaTyy 1 —P3Tn 2 = (P1 #+P2+P3 = 1)T},.
Hence if P; + P2 + P3 — 1is not zero,

n
Y Tk = [Tup1 #(P3+P2)Ty#P3Ty 1] /(P1#P2+P3—1)+C
k=1

Ti+Ty = [T3+(P3+Py)Ty+P3T1]/(P1 +P2+P3—~1)+C
C =[Py +Py—1)T{+(Py —1)T2—T3]/(P{+P2+P3—1)

n
S Tk = [Tps1 +(P3+P2)T, +P3Ty g+ (Py+Py—1)T1 +(Py—1)T2~T3]/(P1 +Pz +P3—1)
k=1
EXAMPLE. Tpr1 = 3T+ 2Ty 1~ Ty2

142+4+15+ 179 =252, Next term is 624,
By formula (624 + 179 — 51+ 4«1+ 2+2 —4)/3 = 252,

65
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FOURTH-ORDER SEQUENCES
The recursion relation is
Torg = P1Ty+PoTy 1 #P3Ty 2 +P4T, 3.

An entirely similar analysis as was made for third-order sequences leads to the formula
Ti = [Ty #(Py+P3+Py)T, +(P3+Pyg)T,_1 +P4Ty_2]/(P1+Py+P3+P4s—1)+C,
where
C =[Py +Py+P3—1)T1+(P1+Py— )Ty +(P;— 1)T3—T4]/(ZP;—1).
EXAMPLE. Tot1 = 3T, +2T_1 — 4T, 2 +3T,_3
1+3+4+6+ 17+56+ 190 + 632 = 909. Next term is 2103. By formula (2103 + 632 — 190 + 3%56 + 4% 3 + 2%4

— 6)/3=909.
FIBONACCI-COMBINATORIAL FORMULAS

These are closely related to the Fibonacci-factorial formulas discussed on pp. 13—15. However the added simpli-
city of these formulas merits a listing of the first few to show the pattern.

n n
Y BTk (Y Taz-Tues #7500 2 (5)7% = (3)Tuez— "7 1) Tuss # Tusa = Ts
k=1 k=1 g

Zﬂ (E)Tk - {g]rn+2~(n;1)rn+3+(nI_Z)Tn+4“' Thts +T7
=1

bl

> (BT = () Twez ("5 1) Twrs # (" 2 2 Twrt = (" 77| Tovws # Tans = T
k=1

Z (.’2] k (5) 1l+2—( 41);11-(-3‘( 3 ]]ﬂ+4 _( 2 )7n+5+("—1 4}7’ 6_.7 7+T11
k=1 n

Sequences governed by
Tnt1 = Tu# Tyt +Ty_2,
where three rather than two preceding terms are added at each step have a summation formula

n
> Tk = (Tpgg #2Ty # Ty # T = T3)/2.

k=1
For sequences governed by

Tut1 = Tp*# Ty 1+ T2+ Ty 3,
where the four previous terms are added

n
Z T = (Tysqg # 3T #2T, 1+ Ty p +2T1+ T2 — T4)/3.
k=1

Where five previous terms are added at each step:
n
S Tk = ATy #4T, +3T g #2T, 2+ Ty 3+3T1+2T2+ T3 - T5)/4.
k=1
Where six previous terms have been added at each step:

n v
Y Tk = (Tpit +6Ty #4871 #3Ty 2+ 2Ty 3+ T4 +4T1 +3T2+2T3+ T4~ T4)/5.
k=1
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EXAMPLE.
1+4244+5+7+8+27+53+104+204 = 415.
By formula
(403 +5%204 + 4104 + 3x53+2x27+8+4+6+8+5—8)/6 = 415.

CONCLUSION

Finite differences have wide application in formula development. There are, of course, many situations in which
the use of this method leads to difficulties which other procedures can obviate. But where applicable the results are
often obtained with such facility that other procedures seem laborious by comparison.

ofoloiniolol

A GOLDEN DOUBLE CROSTIC

MARJORIE BICKNELL-JOHNSON ’
Wileox High School, Santa Clara, California 95051

Use the definitions in the clue story which follows to write the words to which they refer; then enter the appropri-
ate letters in the diagram to complete a quotation from a mathematician whose name appears in the last line of the
diagram. The name of the book in which this quotation appeared and the author’s last name appear as the first letters
of the clue words. The end of each word is indicated by a shaded square following it.

CLUE STORY

The mystic Golden Section Ratio, (1 + /5 )/2, called ___(A1,A2) (the latter most commonly), occurs in
several propositions in __ (A-3, A-4) on line segments and __ (A-b) . This Golden Cut fascinated the an-
cient Greeks, particularly the __ (D-1) , who found this value in the ratio of lengths of segments in the _(D-2)
and __ {D-3) and who also made studies in (D-4) . The Greeks found the proportions of the Golden Rec-
tangle most pleasing to the eye as evidenced by the ubiquitous occurrence of this form in art and architecture, such
as (C-1) __ orin sculpture as in the proportions of the famous ___{C-2) _ _; however, they may have been
copying . (C-3) , for the Golden Proportion occurs frequently in the forms of living things and is closely re-
lated to the growth patterns of plants, as  (C-4, C-5, C-6) , in which occur ratios of Fibonacci numbers, The
Golden Section is the limiting value of the ratio of two successive Fibonacci numbers (named for __ (G-1) ), be-
ing closely approximated by the _(G-2, G-3) .

By some mathematicians, the beauty of the (N} relating to the Golden Section is compared to the theorem of
the {D-1) and to such results from projective geometry as those seen in Pascal’s “Mystic __ (B) "
or even in the applications of mathematics in the Principia Mathematica of __ (1) while the constant (1 +./5)/2
itself is rivalled by __ (E-1) and (E-2)

Unfortunately, not all persons find mathematics beautiful. __ (H-1) was one of the four branches of arithme—
tic given by the Mock Turtle in Alice in Wonderland, and the card player’s description of the sequence 2, 1, 3,4, 7,

18, 29, 47, -.- would be (H-2) , while some have to have all mathematics of practical use, such as: in
readingan __ (M) .
[The solution appears on page 83 of the Quarterly.)
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STOLARSKY'S DISTRIBUTION OF THE POSITIVE INTEGERS

M. D. HENDY
Massey University, Palmerstan North, New Zealand

Let £, bethe n** Fibonacci number, where Fy =1, Fp=2and F,4 = Fp1 *+ Fy, Yn € N. It is well known
that
n”_'}‘-w- Fpi1/Fp = a = B(1+5),

2

the larger root of the polynomial equation x“ = x + 7. Using the mappingg : N - N,

glr) = [ra+ %],
i.e., g(r) is the closest integer to ra, we can give an alternate formulation of F,,. It is easy to show that,
9(F,) = Fpeq, ¥n € N,
soas Fy=1,
F,=g" 1), vnewn,
where we set
g°(r) =r, and g™r) = glg" L(r), Vn  N.
Hence the Fibonacci sequence is
(Fu) = (4" 1(1)).
For each r € ¥/, we will show that the sequence (y”'jlr}} has the Fibonacci recursive property
") = g™r) +g™ ), v e V.

K. Stolarsky constructed a table of these sequences to cover the positive integers in the following way.
¥V mn € N, we define:

(a) Sfm,1) = least positive integer not in T(m) = {S(ij):j € N, i =1, m—1}
(b) Stmn +1) = g(Stm,n)) .

Effectively what is being constructed is a table of sequencesg"‘I(r}, where r is least integer not in an earlier
sequence and, 7 = 1is the starting value for the first sequence, the Fibonacci sequence. Obviously, by construc-
tion S will cover V.

In Table 1, we tist the 100 values of S{m,n) for m,n < 10. It is easily shown (Theorem 1), that each positive
integer r occurs exactly once as a value S(m,n), and that S(m,n +2) — S{m,n + 1) = S(m,n), (Lemma 1).

Table 1
n =1 2 3 4 5 6 7 8 9 10
m =1 1 2 3 5 8 13 21 34 55 89
2 4 6 10 16 26 42 68 110 178 288
3 7 11 18 29 47 76 123 199 322 521
4 9 15 24 39 63 102 165 267 432 699
5 12 19 3 50 81 131 212 343 555 898
6 14 23 37 60 97 157 254 411 665 1076
7 17 28 45 73 118 190 308 499 808 1307
8 20 32 52 84 136 220 356 576 932 1508
9 22 36 58 94 152 246 398 644 1042 1686
10 25 40 65 105 170 275 445 720 1165 1885
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Stolarsky observed in his table, as far as he had calculated, that the differences between the values in col-
umns 2 and 1 of a given row, Sm,2) — S(m, 1), were always integers that had previously occurred in one of
these two columns. He conjectured that this was always the case. J. Butcher conjectured further, on the basis
of computation, that this correspondence was one-to-one.

In this paper we prove both these conjectures, as well as constructing other interesting properties of S(m,n).
To facilitate our construction, we define the following functions:

d:N-WN,dm)=Sm2)—8m,i),

h:N—(=%7%), hir)=ra—g(r);
and
k: N~ N, k(r)= [T~ logy|2h(r)|] .

Hence d(m) is the difference between columns 2 and 1 in row m, and A(r) is the “closeness” of ra to the near-
est integer.
We will show firstly that S is a one-to-one and onto map /V X N to V-

Theorem 1.
Viee N, 3Tm,n € N :r = S(m,n).

We will use this result to establish Stolarsky's conjecture:

Theorem 2.
Ym e N,3n € N:d(m) = S(n,1) or dim) = S(n,2).

We will then improve Theorem 1 by finding explicit invertible formulae relating m,n to S(m,n):

Theorem 3.
Sim,1) = [ma? - %a], Stmn) = g™ 1(S(m, 1)), Ymn € N,

n = k(Stm,n)), m = [S(m,n)a-n-1+ %a]
Further we note that the sequence m, d(m), S(m,7) can be approximated by m, ma and maz, or more
explicitly:

Theorem 4
For hfm) € (=%, —Zv.a’zl,
dim) = glm) -1, S(m,1) = gldim)) - 1;

for him) € (-%a 2, ha™l),
dim) = glm) -1, S(m,1) = gldm)) +1;
and for him) € (Ba™", %),
dim) = glm), 8(m,1) = gld(m)) - 1.
This theorem leads to explicit invertible formulae relating d(m) to S(n,1) and S(n,2):
Theorem 5.
Forhim) € (-5, a3

@

dim) = S(lma™' + %], 1) ;
for him) € (%a™>, %),
dim) = S(lma™? + %], 2) ;

while
Stm,1) = dllma+%a?]), and  S(ma2) = d([ma® - %a"1]).
This leads finally to establishing Butcher’s conjecture:

Theorem 6.
{dtm):m e N} = {Stm1):m e N} 0 {Sm2):m e N}.



12 STOLARSKY'S DISTRIBUTION OF POSITIVE INTEGERS {FEB.

We will now prove these theorems via the following lemmas. We will frequently use identities based on
a’=a+ 1, of the form

" = Fa+F, ., VneN,
a™ = (-1)"F, - Fy_1al), Vn e N.
Lemma 1. Vre N g% = glr)+r.
Proof. ar—% < gr) < ar+ %,

- aglr) =% < g(r) < aglr) + %,
= fa—1glr) =% < g?(r)—glr) < (a— )glr) + .

But

afa— Tr—%la-1) < (a—1)gr) < afa— T)r+%a-1),
and afa—1) = a® —a = 1,
S0

r=Bla-1)-% < g2(r)—glr) < r+%la-1)+%,
=r—1<r—1%a< gZ(r)—g(r) < r+ha < r+l.
Hence asgzlr) —glr) is integral,gz(r) — gfr) = r, and the result of the lemma follows.

Corollary. S(in) = F,.
Proof. T(1) = o= 8(1,1) = 1="Fy, 8§(1,2) =g(1) =2 = Fy.
By Lemma 1,

S(1,n+2) = g2(S(1.n)) = g(S(1,n)) +S(1,n) = S(1,n +1)+S(1,n), Vn e N
so by induction, :
S(’,ﬂ+2):Fn+1+Fn= n+2 Vn e N.

As we move from left to right across the table we find that each value gfn)a gives a better approximation to
an integer (gz(n}) than did na, {g(n)). Explicitly we have the following recursive result.
Lemma 2. Vne N, hlgn)) = —a 1hin).
Proof. higln)) = agln) — g*(n),
agfn} (mod 1),
a?n — ahfn) (mod 1),
an — ahfn) (mod 1), (asa2=a+1),
hin)— ahfn) (mod 1),
= (1-alhfn) (mod1).

1—a=-al, \hgtn)| < 5, |~ahin)| < %,

Wwomomon

so hfgln)) = —a Thin).

Lemma 2 enables us to prove the following relation between S{m,n) and n, namely that r occurs in the
k(r) ™ column of the table.

Lemma 3. k(Stmnn)) = n, Vmn e N.
Proof. Letr=[S(m,7)a™?], and sete=ra—S(m,71). 0 < € < 1.
Form > 1, 8(m,1) —2 < gfr) < S(m,1) + 1, so
glr) = S(m,1}) or Sim,1)—1.
Butg(r) « T(m) as r < S(m,1), and S(m,1) & T(m) so
gir) = Sim, 1) -1, Vm > 1

Also gf0) = [%] =0, S(1,1) -1 = 0, s0
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glr) = Slm,1) -1, Vm e N.

Hence Sim,1) = [ar+ %] +1,
= [Sim,1)+% —¢€] +1
= € > % .

Further, h(Sm,1)) = aS(m,1} (mod 1),

a 1s(m,1) (mod 1), (@sa = 1+a})

Ii

r

—ea™! (mod 1).

il

Hence, for € < %a,
h(Sm,1)) = —ea™! < —na!,
and for € > %a,
hSm1) = 1—ea1 > 1—-at > sat,
Thus in both cases
\h(Sm,1))| € (5a™, %) = Kk(S(m,1)) = 1.

Now using Lemma 2, k(S(m,n + 1)) = k(S{m,n)) + 1, so by induction, k(Sfm,n)) = n.
This means an integer r cannot appear in two different columns. In the next lemma, we show that no inte-
ger can appear more than once in any given column.

Lemma 4. Stm+1,n) > 8m,n), Ymn e N.

Proof. By definition S(m,7) is not the least integer in 7(m), and S(m + 1, 1) the least integer not in
T(m + 1) 2 T(m) v {8(m,1)}, s0 S(m +1, 1) > S(m,1) + 1. Also

Stm+1,2) = glSim+1,1)),
aSim+1,1) =%,

1§

v

> alSim,1) +1)-%,
> aSim,1)+%,

> g(S(m, 1)),

= 8(m,2),

i.e., S(m+1,2)>8(m2). Now by induction, using Lemma 1,
Sim+1,n+2) =8m+1,n+1)+Sm+1,n) > Sm,n+1)+S(m,n)
= 8(m,n +2)‘. Vm,n e N.

Combining this final result with the two initial results we prove the lemma.

Lemmas 3 and 4 now enable us to prove Theorem 1. By the sieve type definition S : &/ X &/ — N must be
onto. If Sfmy, ny) = S(my, ny) = r say, then by Lemma 3, ny =ny = k(r) and then by Lemma 4 m; =m .
Hence S is one-to-one. We have proved:

Theorem 1. VreN Fimne N:r=Slmn).

Stolarsky’s conjecture can now be established by proving one more Lemma.
Lemma 5. kfdim)) <2, VmeWN.
Proof. hld(m)) = ad(m) (mod 1),

= aSim,2) — aS(m,1) (mod 1),
= h(Sim,2)) - h(S(m,1)) (mod 1),
Now by Lemma 2, h(S(m,2)) = —a~1h(S(m, 1)), so
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hid(m)) = —(1+a " )a(S(m, 1)) (mod 1),
—ah(S(m,7)) (mod 1).
Further h(S(m, 1)) (-3, —%a™1) U (%a™1, %) by Lemma 3, so

hld(m)) = 1—ah(Sim,1)) it h(S(m,1)je (-5, —%a"')

il

and
h(d(m)) = —1— ah(S(m,1)) it h(S(m,1)) < (5a, %),
s0 in either case

|hld(m))| = 1—a|h(S(m,1))|,
> 1-’%a,

= a2,
Hence k(d(m)) < 2.
Ashy Theorem 1, the value r = d(m) can occur in only ane position, and as k(d(m)) < 2, by Lemma 3, dfm)
appears in Column 1 or Column 2. Hence we have established our second theorem,

Theorem 2. YmeN,3IneN:dm) =81 or dim) = S(n2).

We now return to improve the result of Theorem 1 by finding an explicit relationship between m,n and
Sfm,n). We note first

Lemma 6. k([na? - Baj) = 1.

Proof. Letr=[na? - %a]. Now
na? - %a = na - %a (mod 1),

= hin) - %a (mod 1) .
Also =2 < =% — Ba < hin) — ba < % — %a <0, so

r = na®— hin) - t

where
t =2 for —% < hin) < Ba—-1 = -%a
and
t =1 for ~%a2 < hin) < %.
Further

hir) = ra (mod 1),
= na’ — hfn)a- ta (mod 1),
= Zna— h(nJa—ta (mod 1),
= hin)(2 — a)—ta (mod 1),
= hin)a? — ta (mod 1).
For—% < hin) < —%ha 2,
t=2=—ta=-2a=-a’ (mod1),
=% < -sa?_a? < hima? —a? < <pa?t —a? = —pa!
~ hlr) = hinJa? —a® and kir) = 1.
For —%a 2 < hin) < sha™! ,

)

t=1=—ta=-a=a? (mod 1),
= pal < a2hm)+1) < %,
= hir) = a ?(h(n)+1) and Kk(r) = 1.
For %a™! < hin) < %,
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t=1=—ta=-a=-a! (mod 1),
=% =pa>—al < hin) < Ba?—al < —Zoa‘l,
= hir) = a2hin)— ! and kMr) = 1.
We can now show that the numbers /na? — %a/ are the only integers occurring in Column 1.
Lemma 7. S(n,1) = [na? - %al.

Proof. Letr=S(n,1), then
hl(r+1) = afr+ 1) {mod 1),
, = h(r)+a (mod 1).

Notinga=a ' = —a? (mod 1) we find: for =% < h(r) < —sa"?,
na < wir)+al < Bal = klr+1) > 1,

i

and for —%a" 1 <h(r) < %,
sat < h)-a? < Bad = klr+1) > 1.

Hence r + 7 cannot be in Column 1, so Column 1 cannot contain two consecutive integers.
Let t(n) = [na? — %aj, then
na® - %a-1 < tin) < na® - ha,

2 2

na®+a? - ha-1 < tln+1) < na +a2—72a,

S0
na®+a® - ha-— 1—(na? - %a) < tin+1)—tln) < na2+a2—%aa—(na2—%a— 1),
and as
na?+a® - tpa—-1-(Mma®-%a) =a’-1=a> 1,
and
na2+a2—%a—(na2—%a— 7)=d?+1=a+2 <4,
we have

1 <tln+1)-tn) < 4.

Hence t/n) and t{n + 1) are distinct integers whose difference is 2 or 3. They both occur in Column 1 (Lemmas
6 and 3), so no other integer can occur in Column 1, as that would imply consecutive integers in Column 1.
We can now specify S(m,n) with the following two lemmas.

Lemma 8. Stm,n) = S(m,1)a’ 1 + F,_2h(S(m,1)), V n € N. (Putting Fgp=1,F_;=0.)
Proof. Trivial forn = 1.
Assume Sfm,n) = S(m, 1)a" 1+ Fo_2h(S(m,1)), for some n > 1, then

Stm, n+ 1) = g(S(m,n)),
= aS(m,n) + h(S(m,n)),
= S(m,1)a™ + F,,_2h(S(m,1))a+ h(S(m,n)).
But, by Lemma 2,
—a 1 h(S(m,n - 1)),

= (=a )" h(stm, 1)),

h(S(m,n))

and asa™ (") = (=1)"(F,_; - F,_sa),
Fuogat(-a) " 1) = F, 4.

Hence
Stm,n+1) = Sm,1)a” + F,._1h(S(m,1)).

Thus, by induction, this result is true V'n € V.
From this result follows

Lemma 9. m = [Stmn)a™ 1+ %al .
Proof. By Lemmas,
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|S(m,n) = S(m,1)a"| = Fo_|(S(m,1))] < %Fp_p.
2

Also, F,,_p < @™, s0
|S(m,n)—.S‘(m,7)a"‘1| < Bal
From Lemma 7
ma? - ha—1 < Slm,1) < ma® - %a,

= -sat_a? < Smta?-m < sal .
But, from above,

—%a~? < Stmpn)a™ 1 = S(m,1)a? < ka3,
s0 adding

tsa = -sal —a?—pa? < Stmn)a —m < Ba? - pal

=0 < S(m,n)a‘”‘1 —m+ha<ha+tba® —nal = gl < 1,

=m = [Simn)a ™! +%al .

[FEB.

This lemma concludes the results for Theorem 3, so combining the results of Lemmas 3, 7 and 9 we have:

Stm,1) = [ma® - %al, Stmn) = g™ 1(S(m,1)),
n = k(S(mn)), m = [Slmn)a™"1 +%al .
We now examine formulae for d(m).

Theorem 3.

dim) = [ma— %a™1].

Lemwma 10.
Proof. Let
f. Le elm) = [ma—%a '],
and set 7=ma_z,a'1—c(m), 0<vy<1.

AsS(m,1) = [ma? - %a], let
e=ma’-%a-8mi), 0<e=<l.

Now
€—y = mla? —a) + %la! —a)+clm) - Stm,1),

=m-—%+clm)—Sim,1),
= % (mod 1).

Thusfore< %, y=€+%,
Sim,1) = ¢lm) +m,

and fore > %, y=€e— %,
Stm,1) = ¢m)+m —1.

Further
clm) +S8(m,1) = mla® +a) - Bla+at)—(e+y),
= mad — Bla3 —2)— (e +7),
= (m-%)a3+(1—e—v),
and

Stm,2) = g(S(m,1)),

= aS(m,1) — h(S(m,1)),

= ma3 - %a2 —ea— h(S(m,1)) .
Combining these two results we find
clm) +S(m,1) — S(m,2)

1-%a+(ea—e—y)—h(Sm,1)).

ForO<e<%,y=€+,

cfm) +8m,1) = S(m,2) = 1-%a+ela—-2)-%—h(S(m,1)) € (-1,1- %a),

and is integral, so
clm) = S(m,2) — Sim,1) = dim).

VmnelN,

Bla? —a’)+lea—e—vy)—h(S(m,1))+1,
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Fork<e<1,
v=€e-Z%,
clm) +8(m,1) —S(m,2) = 1—%a+ela—2)+%—h(Sm,1)) € (ba—-1,1),

and is integral, so
cfm) = S(m,2) — S(m,1) = d(m).

We can now formulate the relationship between i and d(m).

Lemma 11. Forhlm) € (-4, %a” 1),
dlm) = glm) -1,
forhim) e (Ba™!, %)
d(m) = g(m).
Proof. Forh(m) € (-1, Ja™),

glm) = ma—h(m) € (ma—%a™!, ma+%).
Now this interval has length a1 + 7 = 74 < 1, and g(m) is integral, so

glm) = [ma— Ba 1] +1 = dim) + 1,
by Lemma 10.
Forhim) (%a‘l, %),
glm) = ma—h(m) € (ma— %, ma— Bal).

This interval has length % — %al=1-ta< 1, s0

glm) = [ma—%a'] = dim).
Lemma 12. Forhim) < (%, —}%a2),

hid(m)) = —a " (n(m)+ 1),  kldim)) = 1,

forhlm) (——Zaa"z, Vza‘3),

hd(m)) = 1—a l(him) + 1), kld(m)) = 1,
forh(m) (%a‘3, %a‘j),

hid(m)) = 1—a (him)+1), kidim)) = 2,
forhim) (Zva_I, %),

h(d(m)) = —a”X(h(m)), k(d(m)) = 2.
Proof. From Lemma 11
hld(m)) = hlg(m) — <),

where 2 = 0if hfm) > %a~1 ¢ = 1 otherwise. Hence

hld{m)) = ag(m) — a2 (mod 1),

ma? — ahfm) — a2 (mod 1),
ma—ah(m)—ag (mod 1),
h(m)(1—a)—a2 (mod 1),

—a1(h(m) +2) (mod 1) .

L1 A

Iil

Forh(m) € (-%, —%a"2), ¢ = 1,
= % = —a (1-1a?) < —alhim)+ 1) < =sa”?,
= hld(m)) = —a"X(b(m)+ 1), k(d(m)) = 1.
Forhim) € (—%a‘z, Vza‘j), e =1,
— —sa = —a W1+ 5a7) < —anim) +1) < —%,
= hld(m)) = 1—a X(him) +1).

In particular, if h(m) < (—Zaa'z, %a'j),

71
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Bal = 1—al(Ba? +1) < hldlm)) < 1-al(~%a2+1)) = % = kldim)) = 1,
and if him) (%a’3, Vza"j),,

Bal = 1—ana +1) < hldlm) < 1—al(Ba? +1) = Bat = kld(m)) = 2.
For him) € (ha™!, %), e=0,

—sa! < —ah(m) < =%a?,
= hld(m)) = —a"him), k(d(m)) = 2.
Now we can establish the relationship between d(m) and S(m, 1).
Lemma 13. Forh(m) € (%, ~%a %) u (%a"I, %),

Stm,1) = gld(m)) — 1.
Forhim) < (—%a'z, %al)
Stm,1) = gld(m)) + 1.
Proof. Forh(m) € (%, ~%a™?),
gld(m)) = ad(m) — hid(m)),
= ag(m) — a+a L(h{m) + 1), (Lemmas 11and 12),
= ma? — ahlm) — a+a " (him) + 1),
= ma? +({a-1 —allhim) + 1),
= ma? — (him) + 1),
= ma® —ha = ma? - (1- %a2) < gld(m)) < ma® - %,
= gld{m)) = [ma? — %a] +1 = S(m,1)+1.
Forhim) e (~%a™?, %a™l),
gld(m)) = ad(m) — h(d(m)),
= ag(m) — a+alihim)+1) - 7, (Lemmas 11 and 12),
= ma? - him) -2,
= ma? - pal-2 < gldim)) < ma+5a?-2 = ma® - ha-— 1,
— gld(m)) = [ma® = %al ~ 1 = S(m,1) - 1.
Forhlm) < (72(1_1, %)
gld(m))

ad(m) — h(d(m)),
= ma? — ahfm) +a 'h(m), (Lemmas 11 and 12),
= ma? — h(m),
= ma? - ha < ma-% < gld(m)) < ma? — pa! < ma? - ha+ 1,
= gld(m)) = [ma? - %a] +1 = S(m,1)+1.
We can now combine the results of Lemmas 11, 12 and 13 to give the result:
Theorem 4. Forh(m) e (-4, —%a"?),
dim) = gfm) -1, S(m,1) = gld(m))—1;
forhim) (—72(1‘2, VzafI),
dim) = glm)— 1, S(m,1] = gld(m))+ 1,
and for ilm) < (%a™1 %),
dfm) = g(m) Stm,1) = gld{m)) — 1.
We now turn to the problem of finding the values of 7/, so that d(m) = S(i j), foragivenm < N.
Lemma 14. \§d(m)=S(r,1), thenr=[ma™" + %] .
Proof. By Lemma 12,
k(d(m)) = 1 = him) € (-4, %a™),
= d(m) = gfm)— 1, (Theorem 4),
= [ma+ %] ~1,
=ma-%—€¢, 0<e<l

[FEB.
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Also S(r,7) = [ra® — al, so d(m) = S(r,1),

=ra’—%a-1<ma-%—€ < ra® - %a,
=r<mal+bal+%a?_ea? <r+a?,

sr<rtea? <mal+h <ri(l+e)a? <r+2a? <r+i,
=r = [mal+%].

Lemma 15. |f d(m) = S(r,2), then r = [ma ™2 +%] .

Proof. d(m) = S(r.2) = k(d(m)) = 2,
~ him) € (%a3, %), (Lemma 12).

Letr=/ma?2+%] =ma?+%-€, 0 <e< 1 Now

ma?+% (mod1),
-ma+% (mod1),
% —him) (mod 1).

But %a™> < him) < %, s0 €=%—h(m), and r= ma™? +h(m),

Str.1) = [ra? - %al ,
= [m+him)a? - %a] .

Forh(m) € (%a~>, %a‘1}, ~% < h(m)a? - %a <0,
= S(r,1) =m-1
= 8(r,2) = g(S(r,1)),
= glm—1),
= [ma—-a+%],
= [g(m) +h(m) —a+ %] .
Now g(m) — 1 <glm) +him) — a+% < gim)— %a,
= 8(r,2) = glm) -1,
d(m) by Theorem 4,

€

I

Forhim) € (%a‘I, %),
S(r,.2) = g(S(r, 1)),
= glm),
= d(m) by Theorem 4.
Lemma 16. Stm,1) = d(lma+%a%]) VmeN.
Proof. Let n=[ma+%a‘2] = ma-+ %a’z—e, 0<e<l,
= ma+%a?-1<n <ma+72a"2, s
e m=m+had—al+h <nal+h <m+ha+%h=m+al,
=m=[nal+3].

Also
€ =ma+%a? (mod 1),
= h{m) + %a=2 (mod 1).
Hence
€ =him+%a2+1 for him) e (-% ~%a?),
€ = him) + a2 for him) € (-%a-2, %).
Further,
h(n) = na  (mod 1),
= ma? + %a-! — ea (mod 1),
= him)+ %a-1 —ea (mod 1),
For

him) € (-3, ~%a %), €= him)+%a?+1,



80 STOLARSKY'S DISTRIBUTION OF THE POSITIVE INTEGERS [FEB.

= h(n) = —a"1h(m) - a (mod 1),
= hin) = —a~1h(m)-a+1,
= —a1fhim) - 1),
= hin) € (-5, —%a"1).
For hfm) € (-%a-2, %), €=hfm) + %a-2,
= hin) = —a"Ihfm) (mod 1),
= hin) = —a 1him),
= hin) € (-%a-1, %a™3).
Hence in either case h(n) € (-1, %a™>), so applying Lemma 14,
Stm,1) = Stlna™t + %], 1) = d(n) = d([ma+ %a?]).
Lemma 17. Sm2) = d(lma? - %a']), VmeN.
Proof. Letn=/ma? - %a 1] =ma?-sal—-¢ 0<e<1,
=ma?-pal-1<n< maz—%a"I,
=m <na?+%a?+a2 =na?2+% < m+a?
=m = [na-? +%].

)

Also
€ = ma? - pa! (mod 1),
= h(m) - %a-1 (mod 1).
Hence
€=him)—sal+1 for him) e (-4, %a™l),
€ = him) - ha! for him) e (Ba™L, %).
Further
h(n) = na (mod 1),

ma’ — % — ea {(mod 1),
2ma— % - ea (mod 1),

= 2h(m) — % — ea (mod 1),
Forhfm)e (=%, ba™1) e=hlm) - ha-1+1,

= hin) = a2h(m) - a (mod 1),
= hin) = a2h{m)-—a+2,
= a-2(1+h(m)),
= hin) € (a2, %).
Forh(m) e (%a™!, 1), €=h(m) - ha1,
= hin)

fieomm

il

him)(2 — a) (mod 1),
= a-2h(m) (mod 1),
= h(n) = a-2h(m),
= h(n) € (Ba-3, ha-2).
Hence in either case A(n) € (%a™>, %), so applying Lemma 15, S(m,2) = S{[na=2 + %],2) = d(n) = d([ma2 - %a-1])
These four Lemmas together with Lemma 12, give us Theorem 5.
Theorem 5. dim) = S([ma-1+%],1) if —% < him) < %a™>,
=8(fma-2+%],2) it —hal < him) <%,
Stm,1) = d([ma+ %a-2]j),
S(m,2) = d([ma? — %a-1]), Vm e N.
We can note now from Lemma 10 that as d(m) < ma— %a~1 <mfa+1) - ka1 — 1 <dfm + 1), the sequence
d(m) is strictly monotonic increasing and hence by Theorem 5 we establish Butcher’s conjecture.

Theorem 6.
{S(m,l}:m S N} U {S(m,Z}:m e N} ={dm):m < N} .

Yokokokokoiok



ON A CONJECTURE CONCERNING A SET OF SEQUENCES"
SATISFYING THE FIBONACCI DIFFERENCE EQUATION

J.C.BUTCHER
The University of Auckland, Auckland, New Zealand

Let a=(1++/5)/2 and consider the set of sequences

s={0,1, 2 365 8, 13,
(2, 4, 6,10,16,26, 42,
(4, 7,11,18,29,47, 76,
(6, 9,15,24,39,63,102, ),
(7,12,19,31,50,81,131, ), .-},

where asequencev =(ug, uq, uz, -/ is in S iff it satisfies the conditions

'

’

(1) ug, uy, Uy, - are positive integers

(2) u satisfies the Fibonacci difference equationu,, = u,_y +u,_» (n = 2,3,4, )
(3) there does not exist an integer x such that |ax —uq| < %

(4) laws —uz| < %.

Note that, for given ¢, there must exist an integer v satisfying (4), because of the irrationality of a.
Forn=0,1,2,-1etS, ={u, :u ES}. It has been conjectured by Kenneth B. Stolarsky that forany v €,
the value of vy — vy equals the value of either v; or v, for somev e S. Since vy = ug + u1, this is equivalent
to saying that Sgp € S7 U . In this paper we prove the stronger result, that Sp=S; U S>.
Lemma 1. fueSthenforalln=12, -

(5) al™p < |ap-1 —uy| < a2
and
(6) al™/2 < \@Pup-1 —tps1| < a*7/2.

Proof. We first show that, for any v, there is a constant C such that foralln=17,2, -
(7) C = a"|auy_1 —uy| .
If C,, denotes the value of C given by (7) we have

ﬂHlaun —Upt1| = a”lazun — Ay 1|

Cout1 = a
= a"|(a+ Ty — a1 | = a"|aluyrq = un) = uy|
= ar|alp_g —Uy| = Cy.

From (4) we see that C = aZ|au; —uz| < a?/2; also we see that C = alaug —uyg| < a/2since |aug — up |
cannot equal %2 because it is irrational, and cannot be less than % by (3). Combining these inequalities we ob-
tain (5). To prove (6) we simply note that

|a2un—1 - Un+1] = |(CL+ y-g = Uy —Un—I, = |a”n—1 _un’ .

Lemma 2.

8
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is the set of positive integers.

Proof. |If there were paositive integers not in this union, let y be the lowest of these. Since y is not a mem-
ber of Sy, there exists an integer x such that |ax — y | < %. Since x is a positive integer less than y, it must lie
in U,=1S, and therefore x = u,, for some v €S and n a positive integer. Since |au, — y | <%, |au, — Uy+1|
< % it follows that y = vy, 11 €S,41.

Lemma 3. Soc S uUSy.

Proof. Ifthisresultdid not hold, because of Lemma 2, there would exist u,v € S and n > 2 such that u,, =
vg. By (2) we then find

V2= Up+2 = (Vi +Vo) = (Upt+1 +Up) = Vi — Upsg
so that
l(a—1)vi —ups1)| = (favy —v2) = (Quysq — ups2)| < B+ %a™ < %1 +a?),
where we have used Lemma 1 to bound |avs — v2| and |au,+1 — u,, | and made use of the fact that n > 3.
Since @™ = 2a — 3 we find

Vi = ter] < =5 - §(7+2a-3) =7
so that vy = u,,+1. Using Lemma 1 again we find that
‘ % < lavg—vi| = |auy — Up+1] < al™/2 < %,

a contradiction.

Lemma 4. S1 ¢ Sp.

Proof., Lets=+1ifau; —uy > 0and —1 otherwise.

By Lemma 1, we have

(l;i < sfaug —uz) < %.

Lety =uy +s so that
-1

1. _ _ _a_
5 < slauy —y) < 1 >
which implies that | )
_ _a__g4_a  _4_a-1l_a_2a=3_a
lavy —y| < 1 7= 1-3 1 3 3 5 < 5"
If there were an x such that |ax — y | < %, it would follow that
a+1 _d°
\G.U1 —CLX‘ < —2' = 7

which implies
lug —x| < % <1

so that vy = x and v = y which is impossible since |u2 — y| = 7. Hence, no such x exists and therefore y = v4
forsomevesS. Thus jauy — vy | < (a/2). We now find
lug —vo| = |ug —va+vi| < |ug —a Tvg|#|a vy —va+vy| = (a=1)|aug —vq|+|avs —vy|

la—1)a ,

1_
7 777

<

so thatuy =vp €S.
Lemma 5. Sy c 8.

Proof. Lets=+Iif a2u2 —ug > 0and —1 otherwise. By Lemma 1, we have



1978] SATISFYING THE FIBONACCI DIFFERENCE EQUATION 83

- -1
a_ 24— a__
5 < sla“uy —ug) < 5
so that if y = u4 + s then
l—g < =sfa?uy —y) < 7—‘-1—-i
2 2 2
Since ) ,
_a _a-_a
7 5 > 0 and 7 5 3

it follows that
2 a
la“uz —y| < 7
If there were an integer w such that |a2W —y| < % itwould follow that

1+a _ o
2 2
implying that w = u7 and that y = u4, contradicting the fact that |y — u4|= 1. On the other hand, there is an

integer x = y — u such that |ax — y| < % since

azjuz—w| <

afa-1) _ 1

2 2 -
The existence of x (and the non-existence of w) satisfying these conditions, implies that y = v, for some v € S.
Thus,

lax —y| = \fa~ Ty —auz| = (a~ 7}{y-a2u2| <

2 a
}a uz ng < 2
We now find

lug—vo| = |luzg +vy—vz| < |v2a“2—uZ|+\VZ(I—a‘Z}—v1|

h

~1 ~1
a”2(|1/2—a2u2]+[vza—a2v1]) < %—— + aT =al <1
so thatuy = vp € Sp.
Combining the results of Lemmas 3, 4, 5 we have

Theorem. So =81 U8y,

Fododotofokok

A GOLDEN DOUBLE CROSTIC: SOLUTION

MARJORIE BICKNELL-JOHNSON
Wilcox High School, Santa Clara, California 95051

“Geometry has two great treasures: one is the theorem of Pythagoras; the other, the division of a line into extreme
and mean ratio. The first we may compare to a measure of gold; the second we may name a precious jewel.”
J. Kepler. Quotation given in The Divine Proportion by Huntley (Dover, New York, 1970, p. 23).

Fefololoiodok



BINARY SEQUENCES WITHOUT ISOLATED ONES

RICHARD AUSTIN and RICHARD GUY
University of Calgary, Calgary, Canada

Liu [2] asks for the number of sequences of zeros and ones of length five, such that every digit 1 hasat least
one neighboring 1. The solution [1] uses the principle of inclusion-exclusion, although it is easier in this par—
ticular case to enumerate the twelve sequences:

00000, 11000, 01100, 00110, 00011, 11100, 01110, 00111, 11110, 01111, 11011, 11111,

In order to obtain a general result it seemed to us easier to find a recurrence relation.
Call a sequence good if each one in it has a neighboring one, and let a,, be the number of good sequences of
length n. For example,
ar=1 ay=2 a3 =4 a4 =7 and as = 12
Good sequences of length 7 are obtained from other good sequences of length n — 7 by appending 0 or .1
to them, except that
(a) some not good sequences ar also produced, namely those which end in 01, but are otherwise good, and
(b) there are good sequences which are not produced in this way; those obtained by appending 011 toa
good sequence of length n — 3.
So
(1 ay = 2ap{—ay2*anz .
Alternatively, all good sequences are obtained from shorter good sequences by appending 0,11 0r0111, so
that
(2) ay = an-1tap-2%an 4.
The characteristic equation for (2) is the same as that for (1), namely
(3) 2 —x%ix—-1=0,
except for the additional root —1. The equation (3) has one real root, y ~ 1.7564877666247 and two com-
plex roots, at i@, the square of whose modulus, 1/v, is less than 1.
ay = cy"+(a+ibla +iB)" +(a —ib)a—iB)",
where
a=1-"Y%y ~ 0.122561166876, B = /3v* —4v/2 ~ 0.744861766619,
a= (72— 2v+ 2)/2(272— 2v+3) ~ 0.138937790848, b = (2y+ 1)(y— 1)/28 ~ 0.202250124098,
¢ = (Y2 + 10/ (2y? - 2y+3) ~ 0.722124418303,

and a,, is the nearest integer to cy",

* The sequence {an } does not appear in Neil Sloane’s book [3]; nor do the corresponding sequences {aﬁk) }
of numbers of binary sequences of length 7 in which the ones occur only in blocks of length at least k. The
problem so far considered is k = 2. The more general analogs of (1), (2), (3) are

(1) ay = 28y 1 —an-2+an-k-1,

(2) dy = an-1tan-ktan-pk-2%an-k-37 "+t an 2k,
(3') xFH gk xRl _ g - g,

Then

84
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a_ﬂf) = agk) = agk) == agfé =1 agi)r = 1+ %lr+1)(r+2)

for 0 < r < & and for larger values ofn, a,gk) is the nearest integer to cky’,:, where g, is the real root of (3)
which lies between 1 and 2, and ¢y, is an appropriate constant. Approximate values of v, and ¢, for k= 1(1)9
are shown in Table 1.

Table 1

k 1 2 3 4 5 6 7 8 9
Ye 2 17543 1.6180 15289 1.4656 1.4178 1.3803 1.3499 1.3247
cp 1 07221 05854 0.5033 0.4481 0.4082 0.3778 0.3539 0.3344

The sequence {37{3)} is similar to the Lucas sequence associated with the Fibonacci numbers, since y3 =
(1+</5)/2, the golden number.

The characteristic polynomial for (2') is the product of that for (1') with the cyclotomic polynomial xk‘i +
x®2 4+ x+ 1. When kis odd, (3') is of even degree and is reducible and has a second real root between 0
and —1. Table 2 gives the values of a,(,k) for n = 0(1)26, & = 2(1)9. Of course, af):z”, the number of un-

restricted binary sequences of length .

Table 2
n a,gz ) af ) a,g4) af ) 326) a,g7) an(g) af )
0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1 1
3 4 2 1 1 1 1 1 1
4 7 4 2 1 1 1 1 1
5 12 7 4 2 1 1 1 1
6 21 1 7 4 2 1 1 1
7 37 17 1 7 4 2 1 1
8 65 27 16 11 7 4 2 1
9 114 44 23 16 1 7 4 2
10 200 12 34 22 16 1 1 4
1" 351 17 52 30 22 16 1 7
12 616 189 81 42 29 22 16 1
13 1081 305 126 61 38 29 22 16
14 1897 493 194 91 51 37 29 22
15 3329 798 296 137 71 47 37 29
16 5842 1292 450 205 102 61 46 37

17 10252 2091 685 303 149 82 57 46
18 17991 3383 1046 443 218 114 72 b6
19 31572 5473 1601 644 316 162 94 68
20 55405 8855 2452 936 452 232 127 84
21 97229 14328 3753 1365 639 331 176 107
22 170625 23184 5739 1999 897 467 247 141
23 299426 37513 8771 2936 1257 650 347 191
24 525456 60697 13404 4316 1766 894 484 263
25 922111 98209 20489 6340 2493 1220 667 364
26 1618192 158905 31327 9300 3536 1660 907 502

Since these are recurring sequences, they have many divisibility properties. Examples are 5|a£2) justifn=
—4 or -2, mod 12; 8 [a,gz) just if n=—4 or —2, mod 14 and 2 lay(lk) according to the residue class to which n
belongs, mod 2(2(k+1)/2 _ 1), k odd, or mod 2kt _ 1, k even.
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ON THE EQUALITY OF PERIODS OF DIFFERENT
MODULI IN THE FIBONACC! SEQUENCE

JAMES E. DESMOND
Pensacola Junior College, Pensacola, Fiorida 32504

Let m be an arbitrary positive integer. According to the notation of Vinson [1, p. 371 let sfm/ denote the period
of F,, modulo m and let f(m) denote the rank of apparition of /m in the Fibanacci sequence.

Let p be an arbitrary prime. Wall [2, p. 528] makes the following remark: “The most perplexing problem we have
met in this study concerns the hypothesis sfp 2)# s(p). We have run a test on a digital computer which shows that
s(p?) # slp) for all p up to 10,000; however, we cannot yet prove that s(p2) = sfp) is impossible. The question is
closely related to another one, “can a number x have the same order mad g and mod pz?;',"for which rare cases .give
an affirmative answer (e.g., x =3, p = 11, x =2, p = 1093); hence, one might conjecture that equality may heid for
some exceptional p."”

Based on Ward's Last Theorem {3, p. 205] we shall give necessary and sufficient conditions for sp )= sip).

From Robinson {4, p. 30] we have form,n >0

(1) Fu+r = F, (mod m) for all integers 7 if and only if sfm)|n .

¥mn>0andm

n, then Fyy )4 = Fy (mod m) for all 7. Therefore by (1), sfm) |s(n). So we have for m,n >0
(2) m|n implies s(m)|s(n).

It is easily verified that for all integers n
(3) Fopit = (=" 1+ Fpygly, .

From Theorem 1 of [1, p. 39] we have that sfm/) is even if m > 2.
An equivalent form of the following thearem can be found in Vinson [1, p. 421.

Theorem 1. We have
i) s(m) =4f(m)}if and only if m > 2 and f(m/ is odd.
ii) sfm}=f(m)ifand only if m = 1 or 2 and sfm)/2 is odd.
i} sfm) =2f(m} if and only if f{m) is even and s(mJ/2 is even.

To prove the above theorem it is sufficient, in view of Theorem 3 by Vinson [1, p. 42], to prove the following:

Lemma. m =1 or 2 or sfm)/2 is odd if and only if § lm and 2|f{p) but 4 | f(p) for every odd prime, p, which
divides m.

Proof, Let m = 1 or 2 or sm/)/2 be odd. 1f m = 1 or 2, then the conclusion is clear. So we may assume that m >
2 and s/mJ/2 is odd, Suppose 8|m. Then by (2), 12 = 5(8) |s(m). Therefore s(m//2 is even, a contradiction, Hence
8m.

{_et p be any odd prime which divides m. From [1, p. 37] and (2), f(p)|s(p}|s(m). Therefore 4 { f(n). Suppose
2| f(p). Then by Theorem 1 of [1, p. 39] and (2), we have 4f(p) = s(p)|s(m), a contradiction. Thus 2|f(p).

Conversely, let8 [ m and 2|f(p/ but 4 | f(p) for every odd prime, p, which divides m. Let p be any odd prime which
divides m and let e be any positive integer. From [1, p. 401 we have that f(p) and f(p ¢} are divisible by the same
power of 2. Therefore 2|#(p®) and 4 | f{p®). Then since
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PeIF e =F
P08 = Fpenat vz
and (F,,, L) =d <2 < p forall integers n, we have p¢ lLf(
p

and p®f 1 Soby (3),

F
ftr®)i2 ®)
e
F = (=1)fP7)I2* = 1 (mod pe) .
fip®)+ P
Therefore by definition, f(p¢) = s(p®).
Now, suppose that m > 2 and s(m)/2 is even. Let m have the prime factorization m = 2“p;1 ---p,a’wi'tha> 0.
Then by [1, p. 41] )
stm) = Lem. {s(2%, s(p{")} .
1<i<r
Then 4|s(m) implies 4 |s(2%) or 4ls(pff} for somej such that 1 <j <r. 1f 4|s(2), thena > 3. Thus 8|m, a contra—

diction. If 0:|s(pff) = f(p;f), then we have another contradiction. Therefore s(m)/2 is odd orm = 1 or 2.
Various relationships of equality between integral multiples of s(m/, f(m), s(t) and f(t) for arbitrary positive inte-
gers m and t can be obtained as corollaries to Theorem 1. We mention only the following:

Corollary 1. 1fm>2and ¢ >2and

i) s(m)/2 and s(t)/2 are both odd, or

ii) f(m) and f(t) are both odd, or
iii) sfm)/2, s(t)/2, f(m) and f(t) are all even,
then sfm) = s(t) if and only if f(m) = #(t).

Theorem 2.  Letm and t be positive integers such that m |L (), 2 if f(m) is even and t|Lfy),2 if f(t) is even.
Then sfm) = s(t) if and only if f{m) = f(t).

Proof. Lets(m) = s(t). We have m = 7 iff t = 7 and m = 2 iff t = 2, so we may assume that m >2 and ¢t > 2. By
Corollary 1, we need only consider the case; s(m)/2 = s(t)/2 is even and #(m) and f(t) have different parity, say 7(m)
is odd and 7(t) is even. Then by Theorem 1, 4f(m) = s{m) = s(t) = 2f(t). Therefore f(t)/2 = f(m) is odd. Since f(t) is
even we have by hypothesis that t|Lf(t)/2. Thus by (3),

Freyer = (=12 = 1 mod 1)

But t|Fft) and f(t) < s(t). This contradicts the definition of s(t). Therefore the case under consideration cannot occur.
Conversely, let f(m) = f(t). As before we may assume that m > 2 and ¢ > 2. By Corollary 1, we need only -consider
the case; f/{m) = f(t) is even and s(m)/2 and s(t)/2 have different parity, say sfm)/2 is odd and s(t)/2 is even. Then by
Theorem 1,
2s(m) = 2f(m) = 2f(t) = s(t).

Therefore f(t)/2 is odd. Since (t) is even we have t|L /4)/2. Thus by (3), Ffr¢)+1 =1 (mod ¢). But t|Fyy) and f(t) <
s(t). This is a contradiction and therefore the case under consideration cannot occur.

Corollary 2. Letp and g be arbitrary odd primes and e and a be arbitrary positive integers. Then s(p€) = s(g*)
if and only if f(p€) = f(g?).

Proof. By Theorem 2 we need only show that if f(p®) is even then p®|L . We have

f(p€)i2
(F

F oo =F L d p°fF d L =
109 " Ttz ™ P A e @ e e
Thusp®|L

d<2<p

fp€)i2’

Corollary 3. Letépn(x) =x+x2/2 +..+x"/n, and let k(x) = kplx) = (xP~1 _ 1)/p, where p is an odd prime
greater than 5. Thens(p“) = s(p) if and only if ¢ ¢,_1)/2(5/9) = 2k(3/2) (mod p).

[Continued on page 96.]
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DEFINITIONS

The Fibonacci numbers F,, and the Lucas numbers L, satisfy
Foi2 = Fue1+F,, Fp =0 F; =1 and Ly+z = Lypg+Lly,, Lp=2, Li=1
Also 2 and b designate the roots (1 ++/5)/2 and (1 —/5)/2, respectively, of x% — x — 7 =0.

PROBLEMS PROPOSED IN THIS ISSUE
B-370 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania.

Solve the difference equation
Up+2 = SUy1q1 +6Uy = Fy .

B-371 Proposed by Herta T. Freitag, Roanoke, Virginia,
Let
Fo &
Sn = Tj}
k=

—~

=1

where 7; is the triangular number j(j + 7)/2. Does each of n = 5 (mod 15) and » = 10 (mod 15) imply thatS,, =0
(mod 16)? Explain.

B-372 Proposed by Herta T. Freitag, Roanoke, Virginia.
Let S, be asin B-371. Does S,, = 0 (mod 10) imply that » is congruent to either 5 or 10 modulo 15? Explain.

B-373 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California, and P. L. Mana, Albuguerque,
New Mexico.

The sequence of Chebyshev polynomials is defined by
Colx)=1, Cy(x) =x, and C,(x)= 2xCp_1(x)— Cp_3(x)
forn =2, 3, --. Show that cos /n/(2n + 1)] is a root of
[Cor1(x)+Cplx)]/ix+1) =0
and use a particular case to show that 2 cos (/5) is a root of
x2-x-1-=0.
B-374 Proposed by Frederick Stern, San Jose State University, San Jose, California.

Show both of the following:
88
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n+2
Fn = 2—5— [(cos (w/5))" - sin (w/5) - sin (31/5) + (cos (37/5))" - sin (31/5) - sin (97 /5)] ,

F, = %ﬁ [(cos (21/5))" - sin (21/5) - sin (67 /5) + (cas (47 /5))" - sin (470/5) - sin (127/5)] .

B-375 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California.

Express
4
% >~ [lcos (kn/5))" - sin (km/5) - sin (3kn/5)]
k=1
in terms of Fibonacci number F,, .

2n+1

SOLUTIONS
TRIANGULAR CONVOLUTION

B-346 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, California.
Establish a closed form for
n
> ForTak*Tatl,

k=1
where Ty, is the triangular number

(k ;2) = (k+2)(k+1)/2.

Solution by George Berzsenyi, Lamar University, Beaumont, Texas.

Using well-known generating functions one finds that

oo n oo n oo oo
) (Z FZan-k+Tn+7)X"= > ( FZkT—k) X" Y T+ Y X"
n=0 \k=0 n=0 \k=0 n= n=0

( 3 anx") ( > Tnx”) + Tox" + Z x"
n=0 n=0

x 1, _1 1
1=3x+x? (1-x)° (1-x 1-x

+

= —‘—2—){_2 = Z Fon+3x".
1-3x+x n=0

Since for k=0, F2, T,,_, = 0, this implies that
n
Z ForTuk*Tn*t1 = Fapes3.
k=1
Also solved by Paul S. Bruckman, Herta T, Freitag, Ralph Garfield, Graham Lord, C. B. A. Peck, Bob Prielipp, A. G.

Shannon, Gregory Wulczyn, and the proposer.
A THIRD-ORDER ANALOGUE OF THE F's

B-347 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, California.

Let a, b, and ¢ be the roots of x3 - x% — x = 1=0. Show that
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n n n n n n
a"—-b b —c ,Cc —a
a—b b—-c c—a

is an integer forn =0, 1,2, ---.
Solution by Graham Lord, Université Laval, Québec, Canada,

Forn=0, 1, 2 and 3 the expression, £(n), above has the values 0, 3, 2 and 5, for all integers and demaonstrating the
recursion relation when
n=20:EMn+3) = Eln+2)+E(n+1)+E(n).

This latter equation is readily proven since ad=a+a+ 1, etc. That E(n) is an integer follows immediately, by in-

duction, from this recursion relation.

Also solved by George Berzsenyi, Wray Brady, Clyde A. Bridger, Paul S. Bruckman, Bob Prielipp, A. G. Shannon,
Gregory Wulczyn, David Zeitlin, and the proposer.

PENTAGON RATIO
B-348 Proposed by Sidney Kravitz, Dover, New Jersey.

Let Py, -+, Ps be the vertices of a regular pentagon and let @ be the intersection of segments P;.; P;+3 and
P;+2 P;+4 (subscripts taken modulo 5). Find the ratio of lengths @1 Q2/P1P,.
Solution by Charles W. Trigg, San Diego, California.

Extend P4P3 and P4P5 to meet P; P, extended in A and B, respectively. Draw P2P5 .

All diagonals of a regular pentagon of side e are equal, say, to d. Each diagonal is parallel to the side of the penta-
gon with which it has no common point. So, AP3P5P; is a rhombus. It follows that AP3 = AP, =d =BP; =BPs.

From similar triangles,

e/d = P4P3/P3Ps = P4A/AB = (e +d)/(e +2d),

so,dz —ed—e?=0andd= (V5 +1)e/2.
Then, _ _
Q1Q5/P1Py = P4Q1/P4Py = P4P3/P4A = efle+d) = 2/(3+5) = (3—/5)/2 = 0.382= 3%,
Furthermore,

Q102/P3Ps = (Q1Q2/P1P2)(P1P2/P3Ps) = (3—J5)/(\5 +1) = /5 —2 = 0.236=- 53'%\15- =6
Also solved by George Berzsenyi, Wray Brady, Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, Dinh The’ Hing,
C. B. A. Peck, and the Proposer.

GENERATING TWINS
B-349 Proposed by Richard M. Grassl, University of New Mexico, Albuquerque, New Mexico.

Letayp, ay, ap, - be thesequence 1, 1,2,2, 3,3, -, i.e., leta,, be the greatest integerin 1 + (n/2). Give a recur=
sion formula for a,, and express the generating fun<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>