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FIBONACCI AND LUCAS NUMBERS AND THE COMPLEXITY OF A GRAPH 

A.G.SHANNON 
The New South Wales Institute of Technology, Broadway, New South Wales, Australia 

1. TERMINOLOGY 

In this note we shall use the following notation and terminology: 

the Fibonacci numbers Fn: F1 = F2 = 1, 

Fn+2 = Fn+l + Fn, n > 1 ; 
the Lucas numbers Ln: L^= 1, L2 = 3, 

Ln+2 = Ln+1 +Ln, n > 1 ; 

aft: zeros of the associated auxiliary polynomial; 
a composition of a positive integer n is a vector (a\, a2, —, 3k) of which the components are positive integers 

which sum to n; 
3graph G, is an ordered pair (V,E), where V is a set of vertices, and £ is a binary relation on V; the ordered 

pairs in£ are called the edges of the graph, 
a cycle is a sequence of three or more edges that goes from a vertex back to itself; 
a graph is connected if every pair of vertices is joined by a sequence of edges; 
a tree is a connected graph which contains no cycles; 
a spanning tree of a graph is a tree of the graph that contains all the vertices of the graph; 
two spanning trees are distinct if there is at least one edge not common to them both; 
the complexity, k(G), of a graph is the number of distinct spanning trees of the graph. 
For relevant examples see Hilton [2] and Rebman [4 ] , and for details see Harary [1 ] . 

2. RESULTS 

Hilton and Rebman have used combinatorial arguments to establish a relation between the complexity of a 
graph and the Fibonacci and Lucas numbers. Rebman showed that 

(2.1) K(Wn) = L2n-2, 

where Wn, the /7-wheel, is a graph with n+ 1 vertices obtained from a cycle on n points by joining each of these 
n points to a further point. 

Hilton also established this result and 

(2-2) L2n-2= £ (-7)k-1"-F2al-F2ak, 
y(n) 

in which y(n) indicates summation over all compositions (a\, •••, a^) of n, the number of components being 
variable. It is proposed here to prove (2.1) by a number theoretic approach. 

To do so we need the following preliminary results which will be proved in turn: 

(2.3) F2n = F2n+2~ 2F2n + F2n~2, 

(2.4) l-2x2+x4 ="exp I-2 £ x2m/m\ , 
\ m=l I 

1 
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(2.5) £ F2n*Zn = x2 exp £ L2mx2m/m , 

(2.6) 1+ £ F2nx2n = (1-2x2+x4)eM £ ^mx2 m/ /w , 
n=0 \ m=l I 

(2.7) 1+Y. F2n*2n = exp I ^ fZ . 2 m -Zl* 2 m / J , 

wherein it is assumed that all power series are considered formally. 

3. PROOFS 

Proofof(2.3). 

Proof of (2 A). 

Proof of (2.5). 

Thus 

F2n = F2n + F2n-1 ~ F2n-1 
= F2n+1 ~ F2n + F2n ~ F2n-i 
= F2n+1 ~ F2n + F2n~2 
= F2n+2 - 2Fn + F2n~2 • 

1-2x2+x4 = (1-x2)2 

= exp In (1-x2) 
= exp (-2 In (1-x2)'1) 

= exp 1-2 £ x2m/m 
\ m=l ) 

E F2n*2n= X2/(1-3X2 + X4) 
n=0 

= x2/(1-a2x2)(1-fx2) 

In f E F2nx2n~2\ = -In (l-a2x2)(1 - fx2) 

= -\t\(1-a2x2)-\n(1-(32x2) 

= ^ a2mx2m , ~ ^mx2m 
m=l m=l 

= 2 ra2m+/32"Vm/m 

= £ L2mx2m/m. 
m=l 

£ fa,*2"-* = exp I £ L2mx2m/m j and £ F2nx2" = exp ( £ 
n=0 \m=l I n=0 \ m=l 

L2mx2m/m 
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Proof of (2.6). 
CO OO 

£ F2nx2n~2 = £ F2nx2n'2 

n=0 n=l 

E F2n+2* 
n=0 

2n 

exp E L2mx2m/m 
\m=l I 

CO 

2n+2 £ F2n-2X2n = - / + £ F2n* 

2n 

Now 

So 

Proof of (2.7). 

= ~1+X2 E f2n* 

= -7+x 4 exp( E ^ m x 2 m / m ) . 
\m=l f 

E ^ ^ E ^2n + 2~^2n^2n-2^ 2 n . 

' + £ F2nx2n = (1-2x2+x4)expl £ i 2 mx2 m/m). 

/ °° \ / oo 

/ + E / ^ ^ ^ / - ^ e x p E ^2m^2m//^ =exp ^ (L2m-2)x2 

n=l \m=l J \m=l 
from (2.4). 

4. MAIW RESULT 

To prove the result (2,2) we let 

Wn= E l = ^ F2ai-F2ak. 
y(n) 

Then 

n=l n=l I j(n) 
£ ^2" = £^£ ^P^-^f eU2" 

£ - - £ ^ 2 " A 
k=l \ n=l / 

= ln 7 + E ^ " = E (L2n-2)x2n/n 
\ n=l I n=l 
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from which we get that 
Wn = (L2n-2)/n 

or 

y(n) 

These properties have been generalized elsewhere for arbitrary order recurrence relations [5 ] . 
Hoggatt and Lind [3] have also developed similar results in an earlier paper. 
The author would like to thank Dr. A. J. W. Hilton of the University of Reading, England, for suggesting the 

problem. 
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EMBEDDING A GROUP IN JHEpth POWERS 

HUGOS.SUN 
California State University, Fresno, California 

In a finite group G, the set of squares, cubes, or/? powers in general, does not necessarily constitute a subgroup. 
However, we can always embed a finite group into the set of squares, cubes, or any pth powers of another group. 

A subgroup H of a group G is said to be a subgroup of p powers if for every y e H, there is an x & G such 
that x? = y. 

Theorem. Every finite group G is isomorphic to a subgroup of pth powers of some permutation group. 

Proof. Let G be a finite group, and let/7be an isomorphic permutation group onn elements, say au,ai2, '" ' 

Consider a permutation group Q on pn elements 

aii,ai2,-,ain; a2i,a22,~',a2n; •••/ apl,ap2,-,apn, 

defined in the following manner: For any permutation 

o = (au1au2-
au^'"(aljiaij2'"aljm) 

in P corresponds the permutation 

0 = ^h^li2 '"aiik)(a2i1a2i2 '"a2iJ '"(apiiapi2 '"aVi\J 
'•'(aihalj2--aljj(a2j2^a2jj---(apjlapj2^apjm) 

in the symmetric group Spn. Q is clearly isomorphic to P and each elemenr in Q is t h e / / " power of an element in 
Spn. In fact, d = TP, where 

T = (au1a2i1 -apilali2a2i2 '"api2 -aiika2ik -apik) 
-'(aij1a2jl •~apj1aij2a2j2 -apj2 -aljma2jm -apjm). 



IDENTITIES RELATING THE NUMBER OF PARTITIONS 
INTO AN EVEN AND ODD NUMBER OF PARTS, II 

DEAW R. HICKERSON 
University of California, Davis, California 95616 

Definition. If / > 0 and n > 1, let q?(n) be the number of partitions of/? into an even number of parts, 
where each part occurs at most/times. Let q°(n) be the number of partitions of A? into an odd numberof parts, 
where each part occurs at most/times. I f / > 0, let^f(O) = 1 and ^ ( 0 ) = 0. 

Definition. If / > 0 and n > 0, let A{(n) = qf(n) - qf(n). 

The purpose of this paper is to determine Ai(n) when / is any odd positive integer. The only cases previously 
known were /= 1, proved by Euler (see [1]), /= 3, proved by this writer (see [2]), and/= 5 and 7, proved by 
Alder and Muwafi (see [3]). 

Definition. If s, t, u are positive integers with s odd and 1 < s < t, and n is an integer, let fs> t}U (n) be the 
number of partitions of n in which each odd part occurs at most once and is ̂  ±s (mod It) and in which each 
even part is divisible by It and occurs < u times. 

Theorem. If s, t, u are positive integers with s odd and 1 < s < t, and n is an integer, then 

&2tu-i(n) = (~VnZ fs,t,u(n-tj2-(t-s)j). 

Proof. 

z A2tu~i(n)xn = n lzj^1 = n n-*1)- n r / - * ^ w ^ v . . ^ - ^ 
2\j 2t\j 

= JJ (1 _ x2tj+s)(1 _ x2tj+2t-s)(1 _ x2tj+2t)mYY(J_xJh Y\(l+xJ+x2j+...+x(u-l)j) 

i j j, 
j>0 j>l j>l 

2kj 2t\j 
j^+s (mod 2t) 

= E (-Djxtil+(t-s)^ n d-xh- iia+xj+x2j+-+x(u~1)j), 
j J 

j>l 
2\) 

j£±s (mod 2t) 

J J 
j>l j>l 
2\) _ 2t\j 

where the last equality follows from Jacobi's identity with k = tant\z = t-s. Since s is odd, 

tj2 + (t-s)j =/ (mod 2). 

Hence, when we substitute -x forx, we obtain 
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£ (-1)nA2tu„l(n)xn = £ x ^ + ^ - EI d + x')- El (1 + x3+x2i+..-+x(»-l)i) 
n j j j 

j>l j>l 
2\j 2t\j 

f£±s (mod 2t) 

= 2 > ^ ^ ' . £ fs,t,Jm)xm, 
j m 

from which the theorem follows immediately. 

Corollary 1. \is and t are positive integers with s odd and 1 < s < t, and n is an integer, then 

*2t-i(n) = (~1)n E fs,t,l(n-tf2-(t-s)/). 

j 

Note that fS)t,i(n) is the number of partitions of n into distinct odd parts ^ ± s (mod It), 

Proof. Ls\u= 1 in the theorem. 
Letting^ = 1 and t = 3 yields Theorem 1 of [3 ] . 

Corollary 2. If i> 2 and/? is an integer, then (-J)nAi(n)> 0. 

Proof. For even i, this follows from Theorem 3 of [ 2 ] ; for odd i, it follows by letting s = 1 and 
t = (i + D/2 in Corollary 1. 

Corollary 3. If s and t are positive integers with s odd and 1 <s <t, and/? is an integer, then 

A4t-lM = <-Dn £ fs,t,2(n-tj2-(t-s)j). 
j 

Note that fSyt,2(n) 's t n e number of partitions of/? into distinct parts which are either odd but ^±s (mod 2f) 
or which are divisible by It 

Proof Let £/ = 2 in the theorem. 

Corollary 4. If u is a positive integer and n is an integer, then 

±4u-lM = (-Dn L h,2,Jn-2j2-j). 
j 

Note that fi}2,u(n) is the number of partitions of/7 into parts divisible by 4, where each part occurs <u times. 
Proof. Lets= 7, f = ̂  in the theorem. 

Letting u = 1 yields Theorem 2 of [2] and u = 2, Theorem 2 of [3 ] . 
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ON THE EXISTENCE OF THE RANK OF APPARITION 
OF m IN THE LUCAS SEQUENCE 

JAMES E. DESMOND 
Pensacola Junior College, Pensacola, Florida 32504 

Let m be an arbitrary positive integer. According to the notation of Vinson [1 , p. 37] let sfm) denote the 
period of Fn modulo #7 and let ffm) denote the rank of apparition of m in Fn. 

It is easily verified that 

(1) F2n+i = f-1)n + FnLn+1 = (-1)n +Fn+1Ln 

for all integers n. 
In the sequel we shall use, without explicit reference, the well known facts that 

' 2n ~ 'n'-n > 

and that Fn and Ln are both odd or both even and 

(Fn, Ln) = d < 2, and Fm | Fmn 

for all integers n and m =/= 0. 

Lemma 1. F2n = Q (mod/77) and F2n+i =(~Vn (mod/77) if and only if Fn = Q (mod m). 

Proof, Let F2n = 0 (mod m) and F2n+i = f-Vn (mod m). Then by (l),FnLn+1 = 0 (mod/77). Since 
F2n = FnLn = Q (mod m), we have 

F-nLn+2 = FnLn+l + FnLn = 0 = FnLn+i - FnLn = FnLn„i (mod/7?) . 
So whether n is negative or non-negative we obtain after finitely many steps that FnL^ = Fn = 0 (mod/77). 

Conversely, let Fn = 0 (mod m). Then F2n = FnLn = Q (mod/77) and by (1), ^ w + i ^(-Vn (mod/77). 

Lemma 2 . F2n = 0 (mod m) and F2n+i = (- Vn+1 (mod m) if and only if Ln = 0 (mod m). 

Proof. Analogous to the proof of Lemma 1. 

The following lemma can be found in Wall [2, p. 526]. We give an alternative proof. 

Lemma 3. If m > 2, then s(m) is even. 

Proof. Suppose sfm) is odd. We have by definition of sfm) that 
F2s(m)+1 = Fs(m)+s(m)+l = Fs(m)+1 s 1 = f-1rm)+ (mod m) . 

Also 
F2s(m) = Fs(m)Ls(m) = 0 (mod/77) . 

Therefore by Lemma 2, Ls(m) - 0 (mod m). But 

(Fs(m)> Ls(m)> = d < 2 
which contradicts the fact that m > 2. 

An equivalent form of the following theorem, but with a different proof can be found in Vinson [1 , p. 42] . 
Theorem 1. We have 
i) m > 2 and ffm) is odd if and only if sfm) = 4f(m) 

ii) m' = 1 or 2 ors(m)/2 is odd if and only if sfm) = ffm) 
iii) ffm) is even and sfm) 12 is even if and only if sfm) = 2f(m). 

Proof. We first prove the sufficiency in each case. 
7 
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Case i): Let/77 > 2 and ffm) be odd. From Vinson [1 , p. 37] we have f(m)\s(m). Sincesfm) is even for/77 > 
2 we know that sfm) H(m) and sfm) £3f(m), We have f2f(m) = 0 .(mod m) and by (1), 

F2f(m)+1 ^hl)f(m) = - / (mod/77). 
Therefore sfm) £2f(m) since m > 2. But F4f(m) - 0 (m°d m) and by (1), 

% f m ; ^ ^ (-7)2f(m) = 1 (mod/77). 
Therefore s/W = 4/7/77/ 

Case ii): The conclusion is clear for/77 = 1 or 2. Let/77 > 2 ands(m)/2 be odd. Then by Case i), ffm) is even. 
So F2f(m) = 0 (mod m) and by (1), 

F2f(m)+1 - hDf(m) = 1 (mod/77) 
which implies that s/W <2f(m). sfm) ^2f(m) since s(m)/2 is odd and ^/T?,) is even. Therefore since ffm)\sfm), 
we have S//77,/ = 77/77 A 

Case iii): let ffm) be even and s(m)/2be even. Thenm > 2. We have F2f(m) = 0 (mod/77) and by (1), 

F2f(m)+1 - M ^ = 1 (mod/77). 
Therefore s(m) <2f(m). Now, Fs(mj = 0 (mod /77> and Fs(mj+1 = / = f-i)s(m)12 (mod /77>. SO by Lemma 1, 
Fs(m)l2 = 0 (m°d w). Thus^/77j^/Y/77,/ and therefore since f(m)\s(m) we haves(m) = 2f(m). 

The necessity in each case follows directly from the implications already proved. 
The following corollary is part of a theorem by Vinson [1 , p. 39]. 

Corollary 1. Let/7 be any odd prime and e any positive integer. Then we have 

). f(pe) is odd if and only \U(pe) = 4f(pe) 
). f(pe) is even and f(pe)/2 is odd if and only if s(pe) = f(pe) 
). f(pe) is even and f(pe)/2 is even if and only if s(pe) = 2f(pe), 

Proof, By Theorem 1, we need only prove that s(pe)/2 is odd if and only if f(pe) is even and f(pe)/2 is 
odd, The sufficiency is clear by Theorem 1, ii). 

Conversely, let f(pe) be even and f(pe)/2 be odd. Then 

Since 

F e = F e L e = 0 (mod/7e). 
ftp ) f(P )12 f(P )/2 

(F e ,L e ) = d < 2 < p 
f(pe)/2> f(pe)l2 

we have L e = 0 (mod pe). Therefore by (1), 
f(P)'2 F e s (-f)(f(Pe)/2)+l = 1 (mod/7*). 

ftp )+i 

Thuss(pe) = f(pe) and so s(pe)/2 is odd. 

Definition. If m divides some member of the Lucas sequence, \etgfm) denote the smallest positive in-
teger/7 such that m\Ln. 

If m divides no member of the Lucas sequence, we shall say thatg(m) does not exist. 
From Vinson [1 , p. 37] we have 

(2) Fn = 0 (mod/77) if and only if f(m)\n. 

It is interesting to note from the following proof that if 4\f(4n), theng(4n) does not exist 

Lemma 4. If n is an odd integer andg(4n) exists, then 4\Lf(4nj/2. 

Proof By observing the residues of the Lucas sequence modulo 4 we find that4\Lg^nj \mp\\esg(4n) = 
3 + 6k for some integer k. Therefore g(4n) is odd. We have 4n\Lg(4n)\F2g(4n)> So by (2), f(4n)\2g(4n). 
Hence 4 Hf4n). Since *\Fj(4n) we have by (2) that 6 = f(4)\f(4n). Since f(4n)/2 is odd and 3\f(4n)/2we 
have from Carlitz [3, p. 15J that 4 = L3\Lff4nj/2 . 

Theorem 2. If m > 2 and g(m) exists, then 2g(m) = ffm). 
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Proof. We have m |Lg(m)\F2g(m)- So by (2), f(m)\2g(m). Suppose f(m) is odd. Then f(m)\g(m) 
and therefore by (2),m\Fg(my lhmm\(Lg(m), Fg(m)) = d < 2, a contradiction since m > 2, Hence ffm) is 
even., 

To complete the proof it suffices to show that m \Lf(mj/2 which \mo\\e$g(m) = f(m)/2. We have 
m\Ff(m) = Ff(m)l2Lf(m)l2-

Let m = mirr)2 wherem^ \Ff(mj/2 and M2\Lf(m)l2- Since f(m)/2\g(m) we have/^ \Ff(m)l2\Fg(m)> There-
fore /7?̂  \(Fg(m), Lg(m)) = c/ < 2. So /TTJ = 1 or 2. \im^ = 1,then/772 = m\Lf(m)l2> the desired conclusion. 
Assume m^ = 2. Then m is even. Since 2\Ff(mj/2 we have 2|Z.^m^/2. If rri2 = m/2 is odd, then 2m2 = 
m\Lf(mj/2, the desired conclusion. Assume /T?2 = /W/2 is even. Sinceg(8) does not exist we know that 8 j( m. 
Therefore 11)2/2 = m/4 is odd. Since g(4(m 2/2)) = g(m) exists we have by Lemma 4 that 4\Lf(mj/2. Thus 
m = 4(iri2/2) \Lf(m)i2. The proof is complete. 

Corollary 2. For any odd primep and any positive \x\Xs%sx e,g(pe) exists if and only if f(pe) is even. 

Proof. The sufficiency follows from Theorem 2 and the necessity follows from the facts /^w = FnLn 

and (Fn, Ln) = d <2 <p for all integers n. 

Theorem 3. We have 
i) g(m) exists and is odd if and only if s(m) = ffm) 

ii) g(m) exists and is even if and only \is(m) = 2f(m) and Ff/m\+1 = - 1 (mod m) 
iii) g(m) does not exist if and only if either s(m) = 2f(m) and Ff(m)+1 £ - 1 (mod m) oxs(m) = 4f(m). 

Proof. Case i): Let g(m) exist and be odd. The case/77 = 1 or 2 is clear. Assumem > 2. By Theorem 2, 
f(m) = 2g(m). Therefore by (1), 

Ff(m)+1 - (-l)S(m)+1 = 1 (mod 777). 
Hence s(m) = f(m). 

Conversely, let s(m) = f(m). The case m = 1 or 2 is clear. Assume m > 2. By Theorem 1, s/777,//2 is odd. 
Therefore 

Fs(m) = 0 (mod/77) and Fs(m)+1 = 1 = (-1)(s(m)l2)+l (mod m) . 

Hence by Lemma 2, is(m)\2 = 0 (mod w) a n d thus^/W exists. By Theorem 2,s(m) = f(m) = 2g(m). Ihexe-
f ore g(m) is odd. 

Case ii): Let g(m) exist and be even. Then m > 2 and by Theorem 2, f(m) = 2g(m). Thus %\f(m) and so by 
Theorem \,s(m) = 2f(m). By (1), Ff(m)+1^(-1)g(m)+1 = - 1 (modm). 

Conversely, let sf/77) = 2f(m) and Ff(mj+1 = - 1 (mod /T?). We have /y^ m ; = 0 (mod 777). By Theorem 1, 
m > 2 and f /W is even. If f(m)/2 is odd, xhen F^m^+1 = (-i)j(m)'2 (mod /77> which implies by Lemma 1 
that Ff/mj/2 = 0 (mod /77), a contradiction. Hence /Y/7?j/2 is even. Therefore Ff(mj+1 = ( - 1)(j(m)' J+1 (mod 
/77> which implies by Lemma 2 that Lf(m)J2 = 0 (m°d #?)• Thus#/W exists and by Theorem 2, f(m)/2 = g{m) 
is even. 

Case iii): Follows from Cases i) and ii) and from Theorem 1. 

Corollary 3. For any odd primep and any positive integers we have 
i) g(pe) exists and is odd if and only if s(pe) = f(pe) 

ii) g(pe) exists and is even if and only if s(pe) = 2f(pe) 
iii) g(pe) does not exist if and only \U(pe) = 4f(pe). 

Proof. In view of Theorem 3 we need only prove thats(pe) = 2f(pe) implies F e = - 1 (modpe). 
f(P ) + 1 

By Corollary 1, \U(pe) = 2f(pe), then f(pe) is even and f(pe)/2 is even. We have 

F e = F e L e = 0 (modpe) and (F e ,Lr6 ) = d < 2 < p . 
f(P ) f(pe)/2 f(P

e)/2 y f(pe)/2' f(pe)l2 

Therefore L e = Q(mo6pe). So by (1), 
f(P)'2 F e =(-l)(f(Pe)l^ = - 1 ( m o d ^ . 

f(pe)+l 
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Theorem 4. Let/7 be an odd prime and e be any positive integer. Then 
i) g(pe) exists and is odd i fp = 11 or 19 (mod 20) 
ii) g(pe) exists and is even if p = 3 or 7 (mod 20) 

iii) g(pe) does not exist if p = 13 or 17 (mod 20) 
iv) g(pe) is odd or does not exist if p = 21 or 29 (mod 40). 

Proof. Follows from Vinson [1,p. 43] and Corollary 3. 
Wall [2, p. 525] has shown that the period of Ln modulo m exists for all positive integers m. 
Let h(m) denote the period of Ln modulo m. 

Corollary 4. Letg(m) exist. Then 
i) m = 1 or 2 if and only if h(m) = g(m) 
ii) m > 2 and g(m) is odd if and only if h(m) = 2g(m) 
iii) g(m) is even if and only if h(m) = 4g(m). 

Proof. Sinceg(m) exists and g(5) does not exist we have (m, 5)= 1. So from the corollary to Theorem 8 
of Wall [2, p. 529] we have s(m) = h(m). We first prove the sufficiency in each case. 

Case i) is clear. 
Case ii): By Theorems 2 and 3,2g(m) = f(m) = slm) = h(m). 
Case iii): By Theorems 2 and 3,4g(m) = 2f(m) = slm) = h(m). 
The necessity in each case follows directly from the implications already proved. 
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RECURRENCES OF THE THIRD ORDER 
AND RELATED COMBINATORIAL IDENTITIES 

L.CARLITZ 
Duke University, Durham, Worth Carolina 27706 

1. Let g be a rational integer such that A = 4g3 + 27 is squarefree and let w denote the real root of the 
equation 
(1.1) x3 +gx-l = 0 (g > V. 

Clearly w is a unit of the cubic field Q(w). 
Following Bernstein [1 ] , put 

(1.2) wn = rn+snw + tnw
2 (n > 0) 

and 
(1.3) w~n = xn+ynw + znw

2 (n > 0). 

Making use of the theory of units in an algebraic number field, Bernstein obtained some combinatorial identi-
ties. He showed that 

sn ~ rn+2> tn ~ rn+lr Vn ~ xn-2f zn = xn-l 
and 

(1.4) £ rnu"= 1+ff"2 . £ xnun 

n=0 1+gu-u3
 n=0 l-gu2-u3 

Moreover, it follows from (1.2) and (1.3) that 

(1 c\ I rn~~ rn-lrn+l = xn-3 
I x

n
 xn~lxn+l rn+3 

Explicit formulas for rn andxn are implied by (1.4). Substituting in (1.5) the combinatorial identities result. 
Since A =4g +27 is squarefree for infinitely many values of g, the identities are indeed polynomial identities. 

The present writer [2] has proved these and related identities using only some elementary algebra. For ex-
ample, if we put 

1+gx2 -x3 = (1-ax)(1-pxJ(l-yx) 
and define 

an = an+$n
 + yn (all/?) 

and 

Pn 
rn (n > 0) 
x_n (n > 0) 

then various relations are found connecting these quantities. For example 

(l.b) OmOn = Qm+n + ®m-nG-n ~~ ®m~2n • 

Each relation of this kind implies a combinatorial identity. 
In the present paper we consider a slightly more general situation. Let u, v denote indeterminates and put 

1 -ux + vx2 -x3 = (1- axHl - 0x)(1 -yx). 

We define on by means of 

Supported in part by NSF grant GP-37924X. 
11 
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(1.7) on = an+$n + f (all/7) 
and pn by 
(1.8) pn = Aan+B$n+Cyn (all /?), 
where A, B, C are determined by 

1 - A ^ B ^ 

1 - vx + ux - x 
Thus 

(1.9) f P-nXU 

2 _ 3 1 - j&yx / - TOW 1 - aj5x 

2 3 
n=0 1 -VX + UX -X 

and 

(1.10) f ; p„xn - 1-ux+vx2 

while 
n=0 1 - UX + VX2 -X 

3 - 2ux + vx (1.11) £ o„x" = 
n=0 1-UX + VX -X 

and 

(1.12) £ a ^ x " = 3 - * 0 f * £ / * 2 

n=0 l-vx + ux2-x 

Since a 3 - a2*/ * av - 1 = 0, it is clear from the definition of on, pn that 

On+3 - UGn+2 + VOn+1 -On = 0 
and 

Pn+3 ~ "Pn+3 + vPn+1 ~ Pn = 0 
for arbitrary n. 

If we use the fuller notation 
On = On(u,v), pn = Pn(u,v), 

it follows from the generating functions that 

(1.13) 0_n(u,v) = On(v,ll), Pn(u,v) = P3_n(
v,u) • 

We show that 
\ I . IH-; Qm®n = Om+n + ^m-n^-n ~ ^m-2n > 
for arbitrary m,n. Similarly 
U.IOJ @mPn ~ Pm+n + Pm-n^-n ~ Pm-2n • 

As for the product pmpn, we have first 

<1-16) Pn-Pn+lPn-1 = P2n-6 ~ Pn-3 °n-3 • 

The more general result is 

(1-17) ZPmPn - Pm+lPn-1 ~ Pm-lPn+1 

~ °m-3^n-3 ~ ®m+n-6 ~ ^m-3 Pn-3 ~ ®n-3 Pm-3 + *Pm+n-6 > 

again for arbitrary m,n. 
Each of the functions on(u,v), o_n(u,v), pn(u,v), p-n(u,v),n > 0, is a polynomial in u,v. Explicit formulas 

for these polynomials are given in (2.9), (2.10), (4.5), (4.6) below. Moreover opn is a polynomial in an, o_n; 
indeed we have 
(1.18) opn(u,v) = op(on, a_n) (p > 0). 

The corresponding formula for ppn is somewhat more elaborate; see (4.3) and (4.4) below. 
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Substitution of the explicit formulas for on, a_n, pn, p_n in any of the relations such as (1.14), (1.15), 
(1.16), (1.17) gives rise to a large number of polynomial identities. 

The introduction of two indeterminates u, v in on, pn leads to somewhat more elaborate formulas than 
those in [1 ] . However the greater symmetry implied by (1.13) is gratifying. 

2. It follows from 

(2.1) 7 - ux + vx2 - x3 = (1 - ax)(1 - $x)(1 - yx) 
that 

a + j3 + y = u 
fiv + ya + a|3 = v 

a/Jy = / 
(2.2) 

Since a$v= 1, (2.1) is equivalent to 

(2.3) 

We have defined 

(2.4) 

for A7 an arbitrary integer. Thus 

1 -vx + ux2 -x3 = (I - $yx)(1 - yax)(l - afix). 

on = an
+$n+yn, 

E °n*n = E J 
n=0 

1 _ Xd-Md-yx) 
_ a x l-ux + vx2-x3 

which, by (2.2 

(2.5) 

Similarly 

so that 

(2.6) 

), reduces to 

f 
n=0 

n=0 

o.nx
n --

oo 

n=0 

onx
n = 

r V 
2L ;. 

0-n*n '-

3 - 2ux + vx 

7 - ux + vx2 -x3 

1 _(1-apx)(1-ayx) 

~^x 1-vx + ux2-x3 

3 - 2vx + ux 

7 - vx + ux2 - x3 

Using the fuller notation 

it is clear from (2.5) and (2.6) that 

(2.7) 

By (2.1), a, |3, v are the roots of 

and so 

(2.8) 
for all n. 

Next, 

on = on(u,v), o_n = G_n(ufv), 

o_n(u,v) = on(v,u). 

z3 -uz2 + vz- 1 = 0 

On+3 - UOn+2 + VOn+i -Gn = 0, 

(1-ux + vx2-x3)-1 = E (ux-vx2+x3)k = £ (-l)Hi,j,k)uW+2i+3k 

k=0 i,j,k=0 

= E *n E (-DUilklu^, 
n=0 i+2j+3k=n 
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where 

Thus, by (2.5), 

(jjk) = (Lti±klL 

on = 3 E (-Uj(/,f,k)uii/J-2u E <-1)jUk)ulvi + v E (-V'OjMuV 
i+2j+3k=n i+2j+3k=n-l i+2j+3k=n-2 

E (-1)juivi{3(i,j,k)~2(i-l,j,k)-(i,j-l,k)} . 
i+2j+3k=n 

Hence 

(2.9) °n = E <-» jTlTk ft/-^V <n>oh 

i+2j+3k=n ' 
By (2.7) the corresponding formula for o_n is 

(2.10) £ <~1>j jr^Tk (i'i>k)viuJ <n > 0). 
i+2j+3k=n ' 

It follows that, for/7 prime, coefficients of all terms-except the leading term-in on are divisible by n. 
Returning to (2.4), we have 

omon = 2am2an = 2am+n + 2 a w ( / r +yn) = om+n + 2am~n(anpn+anrn) 
= om+n + i:am~n{a.n-^yn), 

which gives 
\L. I 1/ Om On = Orn+n + Om^n G_n — Om_2n > 

valid for all m, n. Replacing m by m + 2n, (2.11) becomes 

(2.12) °m+3n —°m+2n°n +Gm+n°-n-°m = 0. 

For m = n, (2.11) reduces to 

<*n = °2n+2°-n • 

°n °2n = 03n + °n °~n ~ 3, 

03n = °i-3ono_n+3. 

(2.13) 

Hence, for/77 = 2n, 

so that 

(2.14) 

To get the general formula we take 
~ k _ v ./ = S(7-(3nx)(1-ynx) = 3-2onx + o_nx2 

Comparing with (2.5), it is evident from (2.9) that 

(2.15) opn = E (~Vj jjf^ (U,k)Jn<jln (p > 0). 
i+2j+3k=p 

Substitution from (2.9) and (2.10) in (2.11), (2.12), (2.13), (2.14), (2.15) evidently results in a number of 
combinatorial identities. We state only 

(2.16) £ <^JJThUk>uivi 

i+2j+3k=n ' 
' i+2j+3k=2n ' i+2j+3k=n 

(n > 0). 
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3. Put 

(3.1) 1 

1 - vx + ux -x: 

B + C 
]-@yx 1-yax l-a$x ' 

where A, B, C are independent of x. Then 

(3.2) 
Since 

(1-a2$)(1-a2t>()A = / . 

(1 - a2p)(1 - a2y) = 1 - a2(j3+y) + a4!fy = 1-a2(u-a) + a3 = 1-a2u+2a3
! 

3 ? 
it follows from a — a u + av - 1 = 0 that 
(3.3) A = 1~— 

3 - 2av + a2u 
with similar formulas for B and C. 

Replacing x by 1/x in (3.1) and simplifying, we get 

"3 V Ax = Y* ^ax = V ^ _ V* A 
Z-r Qy- x Z-r / _ Qjf Z-r 1_ax LJ 7 -t/A-^-i/x2 - x3 

Since 2/4 = /, it follows that 

(3.4) 

07-

1 - ux + vx2 

1 - ux + vx - x 
- = T - j L - • 
3 ^ 1 -ax 

We now define pn, p_n by means of 

(3.5) 

and 

(3.6) 

2 
1 - ux + vx 2 T = 2 P«*n 

1-UX + VX -X n=0 

? 3 
1 - vx + ux - x n=0 

= E P-n*n • 

It then follows from (3.1) and (3.4) that 

(3.7) pn = 2Aan , 
for all n. 

By (3.6), we have, for arbitrary m and n, 

pmPn = VAam.?,Aan = 2A2am+n + J^BC(0myn+ ^pn). 
Thus 

Pm+lPn-i = ̂ A2am^ = fiCrV^n^^i, 
so that 

(3.8) PmPn-Pm+lPn-l = S f l C { ^ m 7 " + V " l H " ft3M V ^ ^ " " " V " ^ } 
The quantity in braces is equal to 

Hence 

It follows that 
(3.9) 

PmPn-Pm+lPn-l = -2 BC(P-y)(@myn~ - y m 0 W ~ ) 

PmPn-Pm-lPn+l = ^BCfP-yHP^'1 - J ^ ' 1 ) 

2PmPn — Pm+1 Pn-1 — Pm-1 Pn+1 
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By (3.2), 
BC(fi-y)2 = -Aa2, 

so that (3.9) becomes 
(3.10) 2pmpn-pm+1pn_1-pm_lPn+1 = HA(pm-3

7
n-3 +ym-3r3). 

In particular, if m = n, (3.10) reduces to 

and so 
Pn-Pn+lPn-1 = ^AP T = ^Aa 

(3.1D Pn-Pn+lPn-1 = P-n+3 (all /7). 

To get a more general result consider 
pmvn+impn = {?m + ym)(^n +yn} _ (^m+n + ym+n} = ^ _ ^ ^ _ ^ _ ^ ^ __ a m ^ ; 

_ w m , n m+n 
YYl Yl Ytl — Yl — YYl+~Yl ^-^J « 

Thus 

(3.12) S d f l T V +7m/Jw; = a m a n - a m ^ - am i3n - a n i 3 m ^ ^ p m ^ . 

Combining (3.10) and (3.12) we get 

(3.13) 2pmpn- Pm+iPn-l - Pm-lPn+1 = Om-3°n-3 ~ °m+n-6 ~ ^m-3Pn~3 ~ °n-3Pm-3 + 2Pm+n-6 • 

For/77 = n, (3.13) reduces to 

(3.14) pn - Pn+lPn-l = P2n~6 ~ °n-3Pn-3 + O-n+3 • 
It is not evident that (3.14) is equivalent to (3.11). This is proved immediately below. 

4. We now take 

pmon = ZAami:an = VAam+n + ZAam($n +t) = pm+n + ̂ Aam~n(an^n -anjn) 

= pm+n + ^Aam-m(o_n-an), 
which gives 

' ^ • • 1 / Pm®n ~ Pm+n + Pm~n@-n ~ Pm-2n ' 
In particular, for m = n, 

(4.2) pnOn = p2n + O-n ~ P-n > 

which shows that (3.14) is indeed equivalent to (3.11). 
For/77 =2nf (4.1) gives 

P3n = P2nOn~ PnO-n + 1 = Pn^n ~ °n°-n + P-n^n - Pn°-n + 1 • 

To get a general formula for Ppn take 

£ PPn*p= £ xPZAaP"=y:^-= VAd-FxHl-rx) 
P=0 P=0 J-anx (1-anx)(1-(3nx)(1-7nx) 

= 1 ~ <°n- Pn>n+ P-nX 
2 3 

1 - onx + o,nx - x 

Then, as in the proof of (2.15), we have 
(4-3) ppn = cp>n~(on- pn)cp.1)Yl + p,ncp,2,n (P > 0), 
where 
(4.4) cp,„ = £ (-1))(i,j,k)(/nain . 

i+2j+3k=p 
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Since 

we have in particular 
Pi = 2,Aa = 0, p2 = ZAa2 = 0, 

(4-5) pp = E (-niUkhV (p > 3) 
i+2j+k=p-3 

and 

(4-6) p_p = E (-VlfaWu* (p > 0). 
i+2j+3k=p 

With the fuller notation 

Pn = Pn(w), P-n = P-n(w), 
it is clear from (4.5) and (4.6) that 

(4.7) Pn(u,v) = P3_n(v,u). 
Moreover (4.4) becomes 
(4.8) cp>n = pp(on, o_n) (p > 0). 

We may now substitute from the explicit formulas (2.9), (2.10), (4.5), (4.6) in various formulas of Sec-
tions 3 and 4 to obtain a large number of polynomial identities in two indeterminants. To give only one rel-
atively simple example, we take (4.2). Thus 

(4.9) { E (-1)j(i.i.k)uivK[ E (-Vj T^^ O'MtuV 
I i+2j+3k=n-3 J li+2j+3k=n J 

E (-D'UkhV- E (-V'ttiMJu' 
i+2j+3k=2(n-3) i+2j+3k=n 

+ E t-Vj TT(^ OlktfuJ (n>0). 
i+2j+3k=n ' J 

5. For small n, on and pn can be computed without much labor by means of the recurrences. Moreover 
the results are extended by the symmetry relations 

0_n(ll,v) = On(v,u), Pn(u,v) = P3-n(w) • 

A partial check on on is furnished by the result, that, for prime n, 

on(u,v) = un (mod n). 
Also, by (2.5), 

£ onn,vxn = 3-2*+x2 = J**-*2**3
 } 

n=0 1-X+X2-X3 1-X4 

which implies 

On(1,1) = 3, 04n+l(1,V = 04n+3(lV = 1, 04n+2(1,D = - 1 . 
As for pn(1,1), we have by (3.5) 

so that 
n=0 1-X+X -X 1-X 
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P4n(l,l) = P4n+3(1,1) = I p4n+l(1,1) = P4n+2(1,U = 0. 

Table 1 

op = 3, Oj = u, 02 = u - 2v 

03 = u - 3uv + 3 

04 = u4 -4u2v + 2v2 +4u 
05 f u5 - 5u3v + 5uv2 + 5u2 - 5v 
06 ~ u6 -6u4v + 9u2v2 + 6u3 -2v3 + 12uv + 3 
07 = u7 -7u5v+ 14u3v2 +7u4 -7uv3 -21u2v + 7v2 + 7u 
08 = u8 -8u6v + 20u4v2 +8u5 - 16u2v3 - 32u3v + 2v4 +24uv2 + 12u2 - 8v 
09 = u9 -9u7v + 27u5v2 +9u6 -30u3v3 -45u4v + 9uv4 +54u2v2 + 18u3 

- 9v2 - 27uv + 3 __^_______________ 
010 = u10 - 10u8v + 35u6v2 + Wu7-50u4v3 -60u5v + 25u2v4+100u3v2 

- 2v5 +25u4 - 40uv3 - 60u2v + 15v2 + 10u 

Table 2 

Po = 

P4 = 

P6 = 

Pi = 

P8 = 

P9 = 

PlO 

I 
u, 

u3-

u4-

u5-

u6-

-u7 

Pi = P2 = 0, P3 = 1 

PS = u2 -v 

-2uv+1 

-3u2\/ + v2+ 2u 

-4u3v + 3uv2 +3u2 -2v 

-5u4v + 6u2v2 +4u3 - v3 

-6u5v+10u3v2 + 5u4-

- 6uv 

4uv3 -

+ 1 

12u2v + 3v2 + 3u 
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SOME SEQUENCE-TO-SEQUENCE TRANSFORMATIONS 
WHICH PRESERVE COMPLETENESS 

J. L. BROWN, JR. 
The Pennsylvania State University, State College, Pennsylvania 16801 

1. INTRODUCTION 

A sequence {s{}Y of positive integers is termed complete if every positive integer N can be expressed as a 
distinct sum of terms from the sequence; it is well known ( [1 ] , Theorem 1) that if {s;}7 is nondecreasing 
with Sf = 1, then a necessary and sufficient condition for completeness is 

n 
(1) sn+1 < 1 + ^ S{ for /? > /. 

1 

Using this criterion for completeness, we will exhibit several transformations which convert a given complete 
sequence of positive integers into another sequence of positive integers without destroying completeness. Since 
the Fibonacci numbers (F± = F2= 1, Fn+l = Fn + Fn-l f ° r / 7 >2) and the sequence of primes with unity ad-
joined (Pi = 1, ?2 = 2, 3, 5, 7, 11, 13, 17, •••) are examples of complete sequences, our results will yield as 
special cases some new complete sequences associated with the Fibonacci numbers and the primes. 

2. QUANTIZED LOGARITHMIC TRANSFORMATION 

Let fx] denote the greatest integer contained \nx, and define the function <•> by 

<x> = 1 + [x] for all real x. 

Thus <x> is the least integer >x in contrast to fx], the greatest integer <x. Both <•> and [»] may bethought 
of as quantizing characteristics in the sense that a non-integral x is rounded off to the integer immediately fol-
lowingxinthecase of <•> orto the integer immediately precedingx when [•] is used. If x is an integer, then 
fx] = x and <x> = 1 + x. The following lemma shows that <•> is subadditive: 

Lemma 7. <x + y> < <x> + <y>. 

Proof. \ix = [x] +r\x and / = [y] +r}y with 0 <r)x, r\y < 1,then 

<x +y> = <[x] + fy] +Vx + Vy> < M + [yl +2 = 1 + [x] + [y] + 1 = <x> + <y>. 

Lemma 2. Let In x denote the natural logarithm ofx. Then forx, y > 2, 

\n(x + y) < \nx + \x\y 

that is, the logarithm is subadditive on the domain [2, °°). 

Proof. Forx,/ ;>, 2, 

x + y < 2 • max (xfy) < min (x,y) max (x,y) = xy, 

and In (x + y) < In (xy) = In x + In y, from the nondecreasing property of the logarithm. 

Theorem 7. Let {s{}Y be a strictly increasing, complete sequence of positive integers. Then the se-
quence {<ln £ ; > } J is also complete. 

By the assumed completeness, 
19 
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Since s^ = 1, we may write 

hence, 

sn+l < 1+ 23 si for n > ]. 
1 

n 
sn+l < 2+ 23 si for /? > 1; 

2 

x 2 
and, on noting ^ > 2 for / > 2, it follows from Lemma 2 (by induction) that 

n 
\nsn+i < In,?* 23 m*/-

2 

Now we may use the nondecreasing and subadditive (lemma 1) properties of <•> to conclude 

<' n v n n 

\ 2 / 2 2 
Hence (noting <ln S2> = <ln 2> = 1) by the completeness criterion, the sequence { < l n ^ > } J i s complete, 
proving the theorem, 

The following theorem yields a similar conclusion for a class of functions 0where each 0 possesses proper-
ties similar to that of the logarithmic function. 

Theorem 2. Let {SJ}Y be a nondecreasing complete sequence of positive integers and let 0(-) be a func-
tion defined on the domain x > 1, nondecreasing and subadditive on that domain with 0 < 0(1) < 1. Then 
{ < 0 f e ) > ) 7 is complete. 
Proof. From 

n 
Sn+l < 1+ 23 S{, 

1 
it follows that 

/ n \ n 
(t>(sn+i) < 0f 1+ 23 *) < 4>(v+ £ <t>(*0-

Then 
n n 

«p(sn+1)> < <(p(7h+Yl <(p(s{)> =i+ 23 «t>(sO> * 
i i 

so that, with <0(1)> = 1 and the completeness criterion, the sequence { 0 / ^ ) 7 is complete. 
NOTE. Theorem 1 is not a special case of Theorem 2 since the logarithm is not subadditive on [1 , °°). It is 

also clear that the domain of 0 could be restricted to only those integers lying in [1 , 4>). 

EXAMPLE. If 0 M = yjx - 1/2 forx > 1, the reader may easily verify that 0 is nondecreasing, subadditive 
and 0 < 0(1) = V / 2 < 1. Therefore {<y/sj - 1/2>} Y is complete whenever {s{}f is a nondecreasing com-
plete sequence of positive integers. 

EXAMPLE. The function (j>(x) = ax forx > 1 and some fixed a > 0 is nondecreasing and subadditive, and if 
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0 <a< 1, then 0(1) = a and 0 satisfies the conditions of Theorem 2. Thus, for example, the sequence 

is complete whenever {$/}? is a nondecreasing complete sequence of positive integers. 
EXAMPLE: If P\ = 1, ?2 = 2, 3, 5, 7, 11, ••• denotes the sequence of primes (with unity adjoined); then it is 

well known [2] that \P\Si is complete. Hence by Theorem 1, the sequence {<ln P{>}^ is also complete, 
and thus each positive integer N has an expansion of the form 

oo 

N = 1L a{<\nPi> , 
2 

where each a; is binary (zero or one). The series is clearly finite, since az- = 0 for/ > k, where k is such that 
< lnP^> exceeds N. 

It is of interest to prove the completeness of {<ln /*/>} J directly without using the completeness of {Pj}T-
In this manner, we avoid the implicit use of Bertrand's postulate which is normally invoked in showing the 
primes are complete. 

Theorem 3. The sequence {<ln P{>} J is complete. 

Proof. Using Euler's classical argument, we observe that 

1+ l\Pi 
2 

is not divisible by Pi, P2, —, Pn and therefore must have a prime divisor larger than Pn ; that is 

1+I[ Pi> Pn+l , 
2 

or 
n n 

Pn+1 < 1+ Yl P i < 2 II Pi f0r n > 7 ' 
1 1 

Since the logarithm is an increasing function, 
n 

\nPn+1 < In 2+ X) lnPi 
1 

and consequently, 
n n 

<\nPn+1> < <ln2>+ 2 <\nP(> = 1+ £ < l n ^ > 
i i 

establishing the result by the completeness criterion. 

3. LUCAS TRANSFORMATION 

The transformation defined in the following theorem is called a Lucas Transformation since it corresponds 
to the manner in which the Lucas sequence is generated from the Fibonacci sequence. 

Theorem 4. Let {u{}Y be a nondecreasing complete sequence with m = U2 = 1. Define a sequence 
Mo by 

fv0 = 1 
< \f\ = 2 

vn - un_i + un+i for n > 2. 

Then {i/;}cT is complete. 
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Proof. For n > 1, 
n-l n+1 

vn+l = Un+Un+2 < 1 + J2 Ui + 1 + lL, U{ = (un+1 + Un_i> + (un+ Un_2) + >~ + (u3 +Ui) + U2 + U1+2 
1 1 

n 
= Vn+Vn_1 + -+V2+U2+U1+2 = Vn+Vn-i +«- + V2+Vl+V0+1 = 1 + Yl Vi > 

0 

where we have used u2 + Ui +2 = 4 = Vi+vo+1. Thus VQ = 1 and 
n 

vn+i < / + L n 
0 

for/7 > 0 which implies that {i/;)(T is complete. 
EXAMPLE: Let Uj = F{, where {F{}Y is the Fibonacci sequence. Then the sequence defined by 

v0 = 1, Vi = 2, vn = Fn_i +Fn+1 for n > 2 
is complete by Theorem 4. Moreover, recalling that the Lucas numbers \in} 'Q, defined by 

L0 = 2, Li = 1, Ln+1 = Ln + Ln_i for n > \, 
are also expressible by 

Ln = Fn-1 +Fn+2 ^ r n > 2, 

we see that {\/n}^ is simply the sequence { / . n } ^ put in nondecreasing order by an interchange of LQ and Li. 
Completeness is not affected by a renumbering of the sequence; however, the inequality criterion for com-
pleteness must be applied only to nondecreasing sequences. 

4. SUMMARY 

If S denotes the set of all nondecreasing complete sequences of positive integers, we have considered certain 
transformations which map S into itself. In particular, it was shown, as special cases of the general results, that 
the sequences{<ln FytfJ, f<in P^$ a n d f ^ z f ^ J are complete sequences, where <•> is defined by <x> = 1 + 
tx],{Fn) = r { l , 1,2, 3, 5, •••} is the Fibonacci sequence, {Pn} = { 1, 2, 3, 5, 7 ,11, •••} is the sequence of 
primes with unity adjoined and a is a fixed constant satisfying 0 < a < 1. 
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AN IDENTITY RELATING COMPOSITIONS AND PARTITIONS 

DEAE\! R.HfCKEFSSO!\! 
University of California, Davis, California 

The following partition identity was proved in [1 ] : 

Theorem. If f(r,n) denotes the number of partitions of/7 of the form/7 = bo + b± + ~ - + bs, where for 
0 < / < s - 7, b{ > rb{+i, and g(r,n) denotes the number of partitions of/?, where each part is of the form 
1 + r + r2 + ••• + r{ for some / > 0, then f(r,n) = g(r,n). 

In this paper, we will give a generalization of this theorem. 
In [1 ] , the parts of the partitions were listed in non-increasing order. It will, however, be more convenient 

for our purposes to list them in non-decreasing order. 
The main result of this paper is given in the following theorem. 

Theorem 1. Letr?, r^, - b e integers. LetC0= 1 and, for/ > 1, l e t c ^ r ^ j - i + r2Ci-2 + "' + ri^o- Sup-
pose that, for all / > OfC{ > 0. For/> 0, \*\ti = co + — + Ci and define T={to,ti, t2, •••} .Then, for/7 > 0, 
the number, f(n), of compositions bo + — + bs of/7 in which b\ > r^b^i + r2b^2 + — +ribo for 1 < / < $ , is 
equal to the number, g(n), of partitions of A? with parts in T. 

Proof. Let n = aoto+ -' + asts be a partition of/7 counted by g(n), where as > 0. Define, forO < / <s, 

0<j<i 
aj+s-i cj 

Then 

E *>*-(= E E *njCj= E lak E cj)= E 
)<i<5 0</<<r 0<i<s-i 0<k<s\ 0<i<k I • 0<k< 

bQ+- + bs= X, bs_i= £ E *i+ft= 2L [ak E cj)= E \tk = n. 
0<i<s 0<i<s 0<j<s-i Q<k<s\ 0<[<k I 0<k<s 

Also, for 0 < / < $ , 

bi = E 3j+s.iCj + asCi > X aj+s-iCj > °-
0<j<i-l 0<j<i-l 

Therefore, bg + ••• + bs is a composition of /?. Moreover, for 1 < / < s, 

bi> E aj+s-icj = E (aj+s-i E rkCj-k]= E ( ^ E Bj+s-Pj-k) 
Kj<i l<j<i\ l.<k<j ) Kk<i\ fe</<{ ' 

= E ( rk E aj+s-(i-k)Cj )= E . rkbi-k • 
Kk<i\ 0<j<i-k / Kk<i 

Thus, bg + •• + bs is a composition of n counted by f(n). 
This constitutes a mapping 0 from the set of partitions counted by g(n) into the set of compositions count-

ed by f(n). It suffices to show that 0 is one-to-one and onto. 
If 0 is not one-to-one, then there exist distinct partitions a0t0 + •- + asts and a'0t0 + — + a's>ts> of/7 which 

yield the same composition. From the definition of 0, it follows thats = s'. Let/0 be the least/ > 0 such that 
as_i^aU- Then 

23 
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as-io as-iocO b{Q~ 2 ^ as-(i(y-j)cj ~ b%Q— 2 ^ as-(i()~j)Cj ~ as-iQC0 a's-i()> 

a contradiction. Hence 0 is one-to-one. 
We will now show that 0is onto. L e t ^ o * — +bs be a composition counted by ffn). Define, for Q<i <s, 

3s-i = bi- X) rjbH • 
Kj<i 

We claim thataoto + — + asts is a partition counted by g(n) whose image under0is the composition bg + — + 
bs. 

Clearly, as = bg> 0. Also, for 1 < / < s, 

b{ > r1bi.1+- + rib0 = X) rjbi-j 
Kj<i 

so as_i > 0. Also, 

a0to + - + asts= X as-i**-i = 12 ( bi- X) rjbi-j]U-i = X) biU-i~ H ri-jbj*s-i 
0<i^s 0<i<s\ Kj<i I 0<i<s 0<j<i<s 

= £ bjtH- J2[bj X n-jts-i)= E bj(tH- £ rHtsA 
0<j<s 0<j<s\ j<i<s I 0<j<s \ j<i<s I 

= X bs„j(tj- £ rt.s+jts_A= X) bsJtj- X) ritj-i) • 
0<j<s \ s-j<i<s I Q<j<s \ Ki<j ) 

For 0<j<s, we have 

fj- Z) ntj-i = E ck- X (n X ck~i) 
Ki<j 0<k<j Ki<j\ i<k<j J 

£ [ck- X ^fe-i) = ^o^ X) f °k- X! ^fe-t ] • 
0<k 

By definition, 

eg = 1 and Ck = £ rick-i f°r ^ > U 

so 

*j- X) ri'r/-i " 1 a n d 30t0 + - + asts = YJ bs-j = n-
Ki<j 0<j<s 

Therefore, aQto + — + asts is a partition counted by g(n). 
We have 

E aj+s-icj = E , as~kCi-k = E ci~k[bk- E rjbk-j)= E ci-mbm 
0<j<i 0<k<i 0<k<i \ i</<fe / 0<m<i 

X Ci~krk-mbm=bi+ Y. bmlci„m- £ Ci„krk-m)=bi+ X) bm(ci_m- X) nc(i-m)-i) 
°^k<ju 0<m<i \ m<k<i I 0<m<i \ Kj<i~m I 
0<m<k J 
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Therefore, the image under 0 of the partition agto + ••• + asts is the composition b$ + ••• + bs, so the proof is 
complete. 

We will now determine when Theorem 1 is a partition identity. This occurs if and only if, forevery/7 > 0, all 
compositions counted by f(n) are partitions. Since CQ+C i + ••- + C{ is a composition counted by f(t{), a neces-
sary condition is thatr^ <c^ < c2 < — . We now show that this condition is also sufficient. 

Theorem 2. Suppose the hypotheses of Theorem 1 are satisfied, and, in addition, CQ < c± < c2 < — -
Then, for A7 > 0, the number of partitions b$ + — + bs of/7 in which b-x> r^b^i + — + r{bQ, for 1 < / < $ , is 
equal to the number of partitions of n with parts in T. 

Proof. It suffices to show that all compositions counted by f(n) are partitions. Suppose bg + ••• + bs is 
such a composition. Let 1 < k < s. We will show, by induction on i, that, for 1 < / < k, 

bu-bk-l > kj-Ci-.i)bk-i+ £ bjVrk~j+ X (cz-c^ikk^s. ) • 
0<j<k-i \ i<z<i I 

Applying this with i = k gives 
bk-bk-i > (ck-ck-i)bo > 0, 

which will complete the proof. 
We have 

bk-bk-i> lL bjrk-j-b^i = <Ci-c0)bk-i+ J2 bjrk-j > 
0<j<k 0<j<k-l 

so the inequality holds fo r /= 1. Suppose it holds for/ = m - 1, where 2<m <k. Then 

bk - bk-l > (cm-l - cm~2)bk-m+l + H bj\ rk-j' + H, fee - ce-i>fe-/-£ ] 
0<j<k-m+l * i<£<m~l / 

> (cm_i - cm„2) f S bjrk-j-m+i )+ 2 bj[ rk_j + £ fcc - c^tir^A 
\0<j<k-m+l J 0<j<k-m+l \ i< f i<m- i / 

X bj ( rk~j + X fcfi - cc-i ^fe-/-e ) = bk-m lrm+ J^ fcfi ~ C%~1 fcm-s. ) 

X) bj ( rk-j + X fcc - cz-tJrk-j-si ) 
j<k-m \ K C < m / 

But 

SO 

£fe - Afe-i > fcm - Cm-i ^fe-m + X bj I r^j + X fcfi ~ Cz-lH^j-S. ) , 
0<j<k-m \ KQ<m I 

and the inequality holds for/ = /77. This completes the induction and the proof. 
The following is an important corollary of Theorem 2. 

Corollary. Suppose ri, r2, ••• are non-negative integers with r\ > 1. Define fas above. Then, for/7 > 0, 
the number of partitions Z?o ^ -• v- Z?s 0f/7 in which b{> r^bi-i +- + rtfo, for 1 < / < $ , is equal to the num-
ber of partitions of n with parts in T. 

Proof. For/> 7, c{ = rxc^i+ r2c^2 +— +fiCQ> ci-i, and Theorem 2 applies. 

0<j 

+ 
0<j 
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We will now illustrate Theorems 1 and 2 and the corollary to Theorem 2 by some examples. 
EXAMPLE 1. In the corollary, let/^ = /-> 1 and T2 = r3

 = - = 0< Then, for/ > 0, c{ = rl and t{ = 1 + r + ••• 
+ r\ Hence, for /7 > 0, the number ofpartitions bg + — + bs of A? in which b{ > rb^i for 1 < / < s is equal to 
the number of partitions of /7 with parts of the form 1 + r+ ••• + rl for/> 0. This is the result of [1]. 

EXAMPLE 2. In the corollary, let r± = r2 = 1 and o = r4 = ••• = 0. Then, for i> 0,ci= F{+i and t{ = F{+3 

- I.Thus, 
T = {F3-1,F4-1,~) = {1 ,2 ,4 ,7 ,12 , . - } . 

For/7 > 0, the number of partitions of n in which each part is greater than or equâ  to the sum of the two pre-
ceding parts is equal to the number of partitions of A? in which each part is 1 less than a Fibonacci number. 

EXAMPLE 3. In the Corollary, let rt = r2 = ••• = 1.Thenc0= 1 and, for/ > 1,ci=2i~1. Hence t{ = 2\ for 
/ > 0, and 7"= {1, 2,4, 8, •••). For/7 > 0, the number of partitions of/? in which each partis greaterthan or 
equal to the sum of all preceding parts is equal to the number of partitions of/7 into powers of 2. 

EXAMPLE 4. In Theorem 2, let rt = -2, r2 = -1,r3=r4 = ••• = 0. Then, for/ > Q, c{ =i + 1 and 
, - 0+1)0 + 2) 

so r = {1, 3, 6, 10, 15 , - } . For/7 > 0, the number of partitionsbg + — + bs of/7 in which b\ > 2bg and, for 
2 <i <s, b{ > 2b(_i --b{~2 's e c I u a ' t 0 t n e number of partitions of n into triangular numbers. 

EXAMPLE 5. In Theorem 1 Jetr l = (-1)i+lFi+2, for/> hlhenc0
= 1, c 1= 2, c2 = c3 =- = I so t0^1 

and tj = i+2ior/> 1. Hence, T= \ 1 , 3,4, 5, 6, •••}. For/7 > 0, the number of compositions bg+ - + bs of n 
in which 

b{ > 2b{.t - 3bi_2 + 5bi„3 + -. + (- 1)i+lFi+2b0, 
for i < i <s, is equal to the number of partitions of n with no part equal to 2. 
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ON THE MULTIPLICATION OF RECURSIVE SEQUENCES 

A. G.SHANNON 
The New South Wales Institute of Technology, Broadway, Australia 

1. INTRODUCTION 

The object of this note is to generalize the results of Catlin [1] and Wyler [3] for the multiplication of re-
currences. They studied second-order recurrences whereas the aim here is to set up definitions for their arbi-
trary order analogues. 

The work is also related to that of Peterson and Hoggatt [2] . They considered a type of multiplication of 
series in their exposition of the characteristic numbers of Fibonacci-type sequences. In the last section of this 
paper we see how a definition of a characteristic arises from the earlier definition of multiplication. 

We define an arbitrary order recursive sequence {Wn} by the recurrence relation 

r 
(1.1) Wn = Y, (-V^PjWn.j, n > r, 

j=l 

in which the P: are arbitrary integers, and there are suitable initial va lues ,^ , W2, —, Wr. (Suppose Wn = 0 
for/7 <0.) 

We shall need to consider some particular cases of these as well as some results associated with the product 
sums of the roots, at, of the associated auxiliary equation 

(1-2) art = E (-Vj+1Pjap . 

2. PRODUCT SUMS 

We define the product sum 

Stm = H,ajx
ah ~'aim 

with Sf0 ~ 1 • For example, when r = 3, 

$31 = &1+&2 a r |d $32 = CL1&2-
Some results we shall use now follow. 

(2.1) $tm = Pyn —at$t,m~l • 

Proof. 

Pm - atSt>rn^ = £ ajx ah -ajm - at £ ah aj% - a / m = £ ah ah -ajm . 
jj=t jH 

For example, when r = 3, 

P2~al$ll = <li(L2+a2a3+a3al —al(a2+a3) = a2a3 = $12-

(2.2) Str = 0 
27 
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Proof. Pj = Stj + atSt>H 

£ (-V^Pjap = £ M ^ V ^ - i ; hV-j+1St)Hap+1 ; 
j=i j=i j=i 

that is 

which yields the result. 
We note out of interest that: 

at ~ Str + Stoat 

(2.3) Stm = £ (-ir-Jpja?-J, P0 = 1 
j=0 

Proof. We use induction on m. 

sto = h Sn = Pi -at) •», 
w 

j=0 

r-1 r-1 

(2.4) 2 (-WStjAn+r-j = <% E (-WStjAr-j, n > 0. 
j=0 j=0 

Proof We use induction on/7. When/? is zero, the result is obvious. Suppose the result is true for/7 = 7, 
2,-,k- 1. Then 

£ (-1}J'StjAk-H>-j = Ak+r + J2 (-V'StjAk+r-j 
j=0 j=l 

r r-1 

" £ (-1)i+lPjAk+r-j + Y. (-V'StjAk+r^j 

r-1 

*<-1lr+lPrAk + Y, (-V'fStj-PjJAk+T-j 

r-1 

= (- 1)r+latSt>r^Ak + £ (-l)J-1atSt,j-iAk+T-j 
r i 

r-2 
= (-ir1atSt,r-iAk + '£ (-t)iatStjAk*T-j-i 

r-1 . M 

= a t Y . (-1)}StjAk+r-j-i 

k-r r~* 
= at r YJ (-V]StjAr_j (by the inductive hypothesis), 

j=o 
and so the result follows. In particular, it follows that 

r-1 r-1 
(2-5) £ (-IPStjAn+r^ = at £ (-DiStjAn+r-j-1 . 

j=0 j=0 
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3 for i > 1 

Result (2.4) Is a generalization of Wyler's: 
An+l-a>lAn = a^fAi-atAo). 

For ease of notation we shall write 
r-l 

H(t,An) = £ t-1)JStjAn+r-j. 
j=0 

3. MATRIX RESULTS 

We define matrices with rows / and columns/, 7 < /*, / < r: 

(3.1) W(n) = Mn+rA+]l, 

(3.2) M = [(-Di+iPH], with Pn = [YZn-o > 

(3.3) S(t) = [(-i)i+istiH], with' Stn = 0 for /? < 0 , 

(3.4) £ = / S y _ i / (Kronecker delta), 

(3.5) a = [qij], with ^ ={(-^ 

It follows from definitions (3.2), (3.3) and result (2.1) that 

M = f(-Vi+jPH] = [(-Vi+jSt)H]-at[(-1)i+JSt,H„i] = sM-atES® = (l-a^isM. 

It can be readily proved by induction on n that 

(3.6) W(n) = Qnw(0). 
Furthermore, 

S^AW = [2(t,AH)J, 

and so by using property (2.5), we find 

S^A([-atE) = [SijL(t,Ai^)]. 

4. MULTIPLICATION 

We can define a product {An}{Bn} of two of these sequences to be the sequence [Cn }.-

(4.1) C(°> = A(°>MB(°>. 

It follows from result (2.4) that 
(4.2) C(m+n) = Qmc(0)Qn = A(m)MB(n) ^ 

We can see how these generalize Catlin and Wyler. When r = 2: 

\pm+n+2 Cm+n+3\ 
Wm+n+l Cm-hn+2] 

= 

= 

™m+2 Am+3 
\Am+l Am+2^ 

Ayn+2 Am+3 
_pm+l Am+2 -

~7 -PA 
0 1 I 
PlAm+2 
plAm+i_ 

Bn+2 Bn+3 
[Bn+1 Bn+2} 
1 Bn+2 Bn+3 

Bn+1 ®n+2 

Result (4.2) becomes 

\ 

from which we get, after equating corresponding matrix entries: 

Cm+n+2 = Am+2Bn+2- P2Am+iBn+i , 

Cm+n+1 = Am+iBn+2+ Am+2Bn+i - PlAm+xBn+i , 

in which we have used the recurrence relation 
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PlA m+2 

These results agree with Catlin and Wyler. 
Forr = 3, we have 

\W3 W4 % 1 
\w2 w3 w4\ 
\wx w2 w3\ 

w(°) M = 
1 -Pi 
0 1 
0 D 

P2 

-Pi 
1 

, Q = 
Pi -P2 Ps 
1 0 0 
0 1 0 

Result (4.2) now becomes 

^rn+n+3 ^m+n+4 ^m-h%+5 
Cm+n+2 Cm+n+3 ^m+n+4 

^m+n+1 Cm+n+2 ^m+n+3 

Am+3 Am+4 - PiAm+3 Am+5 - PiAm+4 + P2Am+3 

Am+2 Am+3 - PiAm+2 Am+4 - PiAm+3 +P2Am+2 
Am+1 Am+2~ Pl^m+1 Am+3-P2Am+2+P2Am+i 

n+3 &n+4 Bn+5 
&n+2 Bn+3 &n+4 
&n+l &n+2 &n+3 

from which we obtain, for example, 
Cm+n+3 = Am+3Bn+3+ Am+4Bn+2- PlAm+3Bn+2+P3Am+2^n+l > 

We further obtain 

(4.3) £ <-lPStjCH = £ (-D^uAr.i £ (-7)%jBH . 
j=0 i=0 j=0 

Proof. We premultiply each side of definition (4.1) by£'^: 
s(t)c(0) = s(t)A(o)MB(o) = s(t)Aoff_atEfs(t)B(0) = Sip(t,AuOS(t)B(°K 

or 
X(t,C0) ^(t,Ct) 
^(t,d) 2(t,C_2) 

^(t,CUr) V(t,C_r) 

V(t,A0) 

?(t,Cr_2) 

and so, 

2/f, A_t) 

Z(t,AUr) 0 

Z(t,C0) 

o - 6 
O ••• 0 Y.it.B.t) 2(t,B_2) •« ?,(t,Br„2) 

-L(t,BUr) X(t,B.r) - Z(t,B0) 

Z.(t,C0) = 2(t,A0)2(t,B0), 

as required. When r = 2, t= 1, result (4.3) becomes 
(C2-a2C1) = (A2-a2A1)(B2-a2B1) 

as in Wyler and Catlin. When r = 3,t= 1: 
(C3 - (a2 + aj)C2 + a2a-3Ci) = (A3 - (a2 + a^)A2 + a2a3AiHB$ - (a2 + a^)B2 + a2a^Bx). 

Using property (2.4), we get 

T,(-VlSHAm+rM J: (-1)istjBn+H = a?*1 Z f-V'SaAr., £ (-D%jBH 
i=0 j=0 i=0 j=0 

r-1 r-1 

i=o ro 
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as a generalization of Wyler's: 

Cm+n+2 ~ &lCm+n+l = O*™ (A 2 ~ 0>1 A1 HB2 - a^B^ ) = (Am+2 - <liAm+i)(Bn+2 - (LiBn+i) . 

5. NORMS AND DUALS 

As in Catlin, we can define norms and duals. We define the norm or characteristic of {Wn} as 

r r-1 
(5.1) N{wn) - f l l (-iVStjWr-j • 

t=l j=0 

For example,for the "basic" sequences {US)Tl} which satisfy the recurrence relation (1.1) but have initial 
conditions 

Us,n = $s,n> n = 1*2, ~,r, 
we have 

r r-1 r 
N{Us,n) = n E (-V%jUs,r-j = I I (-1'r'%r-s I 

t=l j=0 t=l 

in particular, N{(Jrn} = 1. (The "basic" properties are seen in 
r 

Wn= L Us,nWs, 
s=l 

for instance.) 
(5.2) N{An)N{Bn) = N{An){Bn) . 
Proof. 

N{An}N{Bn) = ft E (-1)%iAr-i E (-VjStjBH = n E (-1)jStjCr-j = N{Cn) = N{An}[Bn). 
t=l i=0 j=0 t=l j=0 

As 
2 ft, £ 0 j = V{t,Ao)V{t,B0) 

is related to c(°)=A^MB(°K so is 
/V{Cn} = /V{/ln}/l/{£n} 

related to \C(0)\ = \A(°)\\B(°)\. 

When/- = -?, we have in fact that 

N{Wn)= \Z2 w3l = W2
2-WlW3 = (W2-a1W1)(W2-a2W1). 

Furthermore, from definition (5.1) we have that 

py{wn] = pn
r n i : (-wstjWr-j = n < 2 (-w'stjWr-j = n E M ^ - W W , 
t=l j=0 t=l j=0 t=l j=0 

as a generalization of Wyler's: 

We can compare this with 

\W(n)\ = \Qn\\w(°)\ in Eq. (3.6) 

= P«\W°\. 
Similarly, we can form a dual as in Catlin. Given the recursive sequence {Wn}, we form its dual {J4^}from 
the initial values 

Wn, n = 1,2, -,r: 
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(5.3) 

where w = [W^, W2, •• 

and E is the nilpotent matrix of order r defined in (3.4). For example, when r = 2, 

and 

as in Catlin. \Nhen r = 3, 

= ~1 0\\ 
-1 i\ \w2 

w\ = wt, w*2 = w2-wu 

7 
-7 
-7 

0 0 I 
7 0 

- 7 7J 

\Wt 

\w2 
[w3_ 

w* 
lW*3 

and so on. Essentially, what has been done here is to illustrate how the work for the second-order recurrences 
can be extended to any order. It may interest others to develop the algebra further by considering the canoni-
cal forms of elements in various extension fields and rings. 

Another line of approach is to consider the treatment here as a generalization of Simson's (second-order) re-
lation: 

^2 

or, since N{Fn}= 1, 
A2

n+1-AnAn+2 = Pn
2N{An) 

Fn+1 - FnFn+2 = (-l)n 

for the Fibonacci numbers. 
Gratitude is expressed to Paul A. Catlin of Ohio State University, Columbus, for criticisms of an earlier 

draft and copies of some relevant unpublished material. 
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DIAGONAL FUNCTIONS 

A. F. HORADAM 
University of York, York, England and University of Mew England, Armidale, Australia 

INTRODUCTION 

The object of this article is to combine and generalize some of the ideas in [1] and [2] which dealt with ex-
tensions to the results of Jaiswal, and of Hansen and Serkland. [See [1] and [2] for the references.] 

We commence with the pair of sequences {An} and {Bn} for which 

xA n+l + AY 

xB n+l + B„ 

AQ = 0, At = 7 

B0 = 2, Bt = x 

(D An+2 

(2) Bn+2 

with the special properties 

(3) 

(4) Bn+1+Bn.t = (xz+4)An . 

[See [2 ] , where c has been replaced by*. 
The first few terms of these sequences {An} and {Bn} are 

(x tO) 

*n+l + A n-1 Bn 

(5) 

,x6 + 5x4 + 6x2 + 1 
^x7 + 6x5 + 10x3 +4x^ ^ 
^x8 + 7x6 + 15x4 + 10x2 + U 

+ 8x6 +20x4 + 16x2 +2^ 
. x9 + 9x7 + 27x5 + 30x3 + 9x. 

RISING DIAGONAL FUNCTIONS 

Consider the rising diagonal functions ^\xfR{(x)r q(x) for (5) and (6), respectively (indicated by unbroken 
lines): 

(7) i 

(8) i 

RlM = 1 

R5(x) = x4 + 2x 

R9(x) = x8 + 6x5+6x2 R10(x) = x9 + 7x6+Wx3+1, 

R2(x) = x 

R6(x) = x5 + 3x2 

R3(x) = x" R4(x)=xJ + t 

R7(x) = x6+4x3 + 1 R8(x)=x7 + 5x4 + 3x 

rtM = 2 

rs (x) = x +3x 

r2(x) = x 

rt(x) = x5 + 4x2 

r3(x)=x< r4(x)=xJ + 2 

r7(x) = x6 + 5x3+2 r8(x) = x7+6x4 + 5x 

{r9(x) = x8 + 7x5 + 9x2 r10(x) = x9 + 8x6 + 14x3+2,-

Define 

(9) R0(x) = r0(x) = 0. 

Observe that, in (7), (8) and (9), for/7 > 3, 
33 
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rn(x) = Rn(x) + Rn-3(x) 

(10) \ K M = xRn~l M + Rn-3 M 

rn (x) = xrn_i (x) + rn„3 (x) 

Generating functions for the rising diagonal polynomials are 

(11) 

and 

A =A(x,t) ^(1-xt-t3)-1 = £ RnMt"-1 

n=l 

(12) B = B(x,t) s d + t^H-xt-t3)'1 = £ rnMt 
n=2 

Calculations with (11) and (12) yield the partial differential equations 

n-l 

(13) 
and 
(14) 
leading to 
(15) 
(16) 

bA 
bt 

-(x+3t2) & 
bx 

t & -(x+3t2) ^ 
bt bx 

3R+3A 

xRn+2 (x) + 3Rn (x) -(n+ l)Rn+2 (x) = 0 

xr'n+2 M + 3r'n (x) - (n - 2)rn+2 (x) - 3Rn+2 (x) = 0 

where the prime denotes differentiation with respect to x. 
Comparing coefficients of tn in (11) we deduce that 

[n/3], 

(17) Rn+i(x)= £ [n-.2iY'3i <n >3) 

(n > 2), 

*y-3i (n > 3) 

where [n/3] is the integral part of n/3. 
Similarly, from (12) we derive 

ln/3]f o.\ ,- Kn'3)l3h 

He) rn+1(x)= 2: ( v 1 ) * + £ r 
i=0 X ' i=0 

as may also be readily seen from the first statement in (10). 
Simple examples of rising diagonal sequences are: 
(a) for the Fibonacci and Lucas sequences (x = 1): 

(19) 0 1 1 1 
(20) 2 1 1 
and 

(b) for the Pell sequences (x = 2): 

(21) 0 1 2 
(22) 2 2 

DESCENDING DIAGONAL FUNCTIONS 
From (5) and (6), the descending diagonal functions of x,D{(x), d{(x) (indicated by broken lines) are: 

Di(x) = 1 . D2(x) = x+1 D3(x) = (x+ I)2 D4(x) = (x+1)3 

2 3 4 6 

3 4 5 8 

4 9 20 44 

4 10 22 48 

9 13 19 

12 17 25 

97 214 

106 234 

(23) ( D5(x) = (x+1)4 D6(x) = (x + Vs D7(x) = (x+1)6 D8(x) = (x+1)7, 
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(di(x) = 2 d2(x) = (x+1) + (x+1)° = (x+2)(x+1)° = x + 2 
W)\d3(x) = (x+l)2+(x+1) = (x + 2)(x+1) d4(x) = (x+1)3+(x+1)2 = (x+2)(x+1)2 

[d5(x)= (x+1)4 + (x+1)3 = (x + 2)(x+1)3 d6(x) = (x+1)5 + (x+l)4 = (x+2)(x+1)4
y 

Define 
D0(x) = d0(x) = 0. (25) 

Obviously (n > 2) 

(26) 

Dn = (x + 1)Dn^ 

(x + 1)dn^ 
4 

= (x+lT1 

(x + 2)Dn_1 

(n > 2) 
(x + 2)(x + 1)n-2 

Jn-1 
(= x+1) (n > 2) 

Jn~l 

Dn = X+1 
dn x + 2 ' 

where,, for visual ease, we have temporarily written Dn = Dn(x) and dn 

Generating functions for the descending diagonal polynomials are 
=-dn(x). 

(27) 

and 

(28) 

n-l A = A(x,t) = [1 - (x + Vt]-1 = £ °n(x)t 
n=l 

B^B(x,t) = (x + 2)[1-(x+ Dt]'1 = £ dn+tfxh"-1 

n=l 

from which are obtained the partial differential equations 

(29) t ^-(x+D ^ 
dt dX 

t 22* - (X + D ^ + (x + DA = 0, 
dt bX 

(x+DDn(x) = (n- DDJx) 

(x + Vdn+2(x) ~(n+ 1)dn+2(x) +(x+ 1)Dn(x) = 0, 

(30) 
leading to 
(31) 
(32) 

Descending diagonal sequences for some well known sequences are: 
(a) for the Fibonacci and Lucas sequences (x = 1): 

(33) 
(34) 
and 

(35) 1 
(36) 2 

1 2 

2 3 

ces (x -

3 

4 

4 
6 

= 2): 

9 

12 

8 

12 

27 

36 

16 
24 

81 

108 

32 64 128 

48 96 192 

243 729 

324 972 

2n 

3-2 n-l 

r n-l 
2187 -
2916 - 4-3 

CONCLUDING COMMENTS 
1. The above results proceed only as far as corresponding work in [1] and [2]. Undoubtedly, more work re-

mains to be done on functions Riy q, Z?;, d{. 
2. Eixcluded from our consideration in this article are the pair of Fermat sequences and the pair of Chebyshev 

sequences for both of which the criteria (1) and (2) do not hold. [See [2].] 
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3. Jaiswal, and the author [1 ] , deal only with the rising diagonal functions of Chebyshev polynomials of the 
first and second kinds. 

4. Our special criteria (3) and (4) prevent the use of the more general sequences {Un}, {Vn} for which 

Un+2 = xUn+1+yUn U0 = 0, Ut = 1 (xtO,yfQ) 
Vn+2 = *Vn+1 + yVn V0 = 2, V-i = x . 

See [2] and Lucas [3] pp. 312-313. 
5. Finally, in passing, we note that the Pell sequence obtained from (1) with x = 2, namely, the sequence 

1,2,5,12,29,70, •••, arises from rising diagonals in the "arithmetical square" of Delannoy [Lucas [3] p. 174] 
Can any reader inform me, along with a suitable reference, whether Delannoy's "arithmetical square" has 

been generalized? 
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FIBONACCI TILING AND HYPERBOLAS 

DOUGLAS HENSLEY 
The Institute for Advanced Study, Princeton, New Jersey 08540 

ABSTRACT 

A sequence of rectangles Rn is generated by adding squares cyclically to the East, N, W, S side of the pre-
vious rectangle. The centers of Rn fall on a certain hyperbola, in a manner reminiscent of multiplication in a 
real quadratic number field. 

INTRODUCTION 

We take a special case for simplicity. Suppose R} is the square - 7 < x < 1,-1 <y < 1. R2 is the rectangle 
-1 < x < 3,-1 <y < 1. R3 is the,rectangle-/ < x <3, -1 <y <5. Let Fn denote then th Fibonacci num-
ber. Then Rn has sides 2Fn and 2Fn_± for all n. 

We ask for information about the center (xn, yn) of Rn. This search leads us to the r ing i?® Rin which 
R(?) jRis given pointwise addition and multiplication. We close with an examination of "rotations" and linear 
fractional mappings o f / ? ® R. Certain classes of hyperbolas remain invariant under such mappings. 

1. DEFINITIONS AND STATEMENT OF RESULTS 

Let a-,b > 0. Suppose a sequence of rectangles is generated in the following manner. The initial rectangle has 
center (0,0) and positive dimensions^, Y^. If the n rectangle Rn has dimensions^, Yn then Rn+i is 
the union of Rn with an incremental rectangle on the East, N. W,S side of Rn according asn = 1, 2, 3, 0 mod 
4. The dimensions of the incremental rectangle areaYn + b, Yn if n = 1 mod 2, and Xn, aXn + b\\n = 0mod 
2. 

Theorem. Let (xn, yn)be the center of Rn. Let/7 = 1MaYl+b), E=1MaXl+b). 
Then for all n > 1, (xn, yn) lies on the right hyperbola 

H = {(x,y): x2 + axy - y2 - Dx + Ey = o]. 

Further, if h is the center of H, then the area enclosed by H and the rays 

h,(xn,yn) and h, (xn+4, yn+4) 
is independent of n. 

REMARK. The proof that the (xn, yn) lie on H is a rather ordinary induction. To prove that the areas en-
closed by H and rays from adjacent rectangle centers to h are all equal, we introduce the ring R ® R. 

Definition. R ® R is the ring R ® R with addition (x,y) + (x't y') = (x+x'f y +y') and multiplica-
tion (x,y) • (x', y') = (x-x\ y-yl-

Definition. If (x,y) e R x R, N(x,y) = xy; and Arg (x,y) = log \(y/x)\ if xy j= 0. 

Definition. \\N(x,y)tQ, 
(*', V'> = ( xl YL\ 
(x,y) \ x ' y I 

REMARK. N(x,y)= 1 is the hyperbola*/= /. Arg 60W is the area enclosed by N(x,y)= 1 and the rays 

(0,0),(\x\,\y\) a n d (0,0),(\y\,\x\)-

It is for this area property, so similar to the one stated in Theorem 1, that we introduce R ® R. 

Theorem 2. Let k be real,a, b, c,d,zo e R ® R. Assume not both a,b = (0,0) and not both c±, d± 
= 0and not both C2, d2 = 0. Letk £0. (Here (c\, 02) = c and (d^,d2) = d.) 

37 
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f(z) = ^ 
cz + d 

for all z such \\\z\N(cz + d) £Q. Then the image under f of {z: N(Z-ZQ = k) is of the form 

{w: N(W-WQ) = k'\ 
where no more than 4 points are missing. 

REMARK. Thus except for technicalities, a linear fractional maps hyperbolas of the form N(z - zo) = k to 
hyperbolas of the same form. The analogy with the complex numbers, where linear fractional map circles to 
circles, suggests many more similar results which space does not permit us to list. 

2. PROOFS. THEOREM 1,PART 1 

The reader may verify by direct calculation that the first couple of (xn, yn) lie on // . We now claim that 

2xn + ayn + 1MaYn +b) = D if n = 1 mod 4. 

-axn + 2yn + 1/2(aXn +b) = E if n = 2 mod 4. 

2xn +ayn - 1/2(aYn+b) = D if n = 3 mod 4, 
and 

-axn +2yn - 1MaXn +b) = E if n = 0 mod 4. 

Observe that if (xn, yn) e H and the claim is true for/7, then (xn+1, yn+ji)G.H. Thus we need only prove 
the claim to show that all (xn, yn) aire on H. 

Proof of claim, n = 1 mod 2. 
If the claim is true for some n == 1 mod 4, then 

2*n + Wn + 1MaYn+b) = D. 
We show that the claim follows for n +2. 

For, 

*n+2 = xn + 1MaYn +b), yn+2 = yn + %(b +aXn +a2Yn +ab), 
and 

Yn+2 = Yn +b +aXn +a2Yn+ab. 
Thus 

2xn+2 + ayn+2 - 1MaYn+2 + b) = 2(xn + 1MaYn + b» + a(yn + 1Mb +aXn+a2Yn+ ab)) 
- 1Mb + a(Yn+ b + aXn+ a2Yn+ ab» = 

(by claim) = D + (aYn+h) + (1/2ab + 1/2a2Xn + 1/2a3Yn + 1/2a2b) - %b 
-1/2aYn- %ab - 1/2a2Xn - 1/2a3Yn - 1/2a2b 

-y2(aYn+b) = D. 
Similarly, if the claim is true for some n = 2 mod 4 it is true for/7 + 2, if true for some n = 3 mod 4 it is true 

for n + 2, and if true for n ss 0 mod 4 it is true for/7 + 2. Thus it is only necessary to check that the claim is 
true for n = 1 and n = 2. If n = 1, xn and yn = 0 and 1/2(aYl + b) = D by definition. x2 - 1/2(aYl +b), 
and y2 = 0. X2 = X± + aYt + b, and! Y2 = Y1. Thus 

-ax2+2y2 + 1/2(aX2+b) = -1/2a(aYt +b) + y2(aXt +a2Yt +a2Yt +ab+b) = 1/2(aXt +b) = E 

by definition. This proves the claim, and hence the centers of Rn lie on H. 
For the second part of Theorem 1, we note that H is a hyperbola whose asymptotes are perpendicular. It is 

therefore similar, in the geometric sense, to the hyperbola xy = 1. Let 

y.R® R - R® R 
be a similarity mapping which takes// onto xy s1. 

For each n, the line (xn_i, yn-i), (xn, yn) is perpendicular to (xn, yn), (xn+i, yn+i). This property is 
preserved under the similarity mapping of H onto xy = 1. 
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Let zn = (x'n, y'n) = ip(xn, yn). Let c be the slope of the line from (x\, y\) to (x'2, y^)- Let C = (c, 1/c). 
(cfQ). Then (with the help of a little algebra) 

zn = -C'^z}1 if n = 2 mod 4, 

-C^zt if n = 3 mod 4 

+C~n+1z~1
1 if /? = mod 4 

and 
zn = +Cn~1z1 if /? = 1 mod 4. 

Now the region enclosed by the lines from (0,0) toz n and to zn+4, and byxy = 1, has area 

\V2(!\K§(zn+4)-l\x%(zn))\ = \y2A^(zn+4/zn)\ = | 1 / 2 A r g ^ 4 J | or |̂ 4 Arg 

depending on whether n is odd or even. Either way, since Arg (C) = Arg (C1), all such regions have equal 
areas. 

Thus the corresponding regions bounded by lines from the center of H to the (xn, yn) also have areas equal 
to each other's, since <p multiplies areas by a constant. 

The mapping r : z -* C z of K ® R onto R ® R may be viewed as a "rotation" of R ® R, since it 
changes Arg (z) but not N(z). Clearly r sends hyperbolas of the form N(z) = k into themselves. This is remi-
niscent of linear fractional transformations of the complex plane. Although there is no direct further bearing 
on Fibonacci tiling, we are inclined to note some similarities. 

Proof of Theorem 2. Fix a,b,c,d e R ® R. Let (c\ ,C2) = c and (d\, 62) = d. Suppose not both a 
and b = (0,0), and fclfdi)t (0,0) (c2,d2)t (0,0). F\xx0,y0, kfti e R. 

Lemma 1. Under the above conditions, there ex is t^ ,y^ ,X2>/2> KeR such that 
K t O, Xi £ x0, xi £ -di/a, yi t yo, y i t -d2/c2, x2 t xlt 

x2 t -di/ci, y2 t yi,Y2 t -d2/c2, 

and such that (x - x0)(y - y0) = k if and only \Ux -x^)(y - yx)/(x - x2)(y - y2) = K ox (x,y) = (xi,y2) 

or (x'2, y'il 

Proof. Select some k £ 0,1 such that 

(K- lHk-xgy0) + K-2(K- 1)2x0y0 t 0. 
Fix /C. Let 

x2 = K~U(K- Vxo+Xi), y2 = K'HiK- Dy0+Yi). 
Then the equation 

k-xoyo = (K- irUxm-K-ZffK- 1)x0+Xi)((K- 1)y0+yi) 

has a range of solutions x^, y\ in which y\ is a non-constant continuous function of x^. 
When the above conditions are satisfied, andx^ #xo,yi £yo> 

(x~-x0)(y-y0) = k o (x-x^fy-y^ = K(x - x2)(y-y2>• 
Thus Lemma 1. 

We may restate this as saying that except for a special class of degenerate hyperbolas, every hyperbola 
N(z - ZQ) = k can be put in the form 

N(z-Zl) 

N(z-z2) 

Now let X e J R ® R, 

x _ fciX2+dt c2y2
+d2 \ 

\cixi +dt ' c2yi +d2 / 
Let \N\ = f(zi), W2 = Hz'2). Then 

w-wi . z - zi £i , 
= X o w = f(z) or w = W2, z = Z2 . 

W-W2 z - z2 
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Thus 
Nlz-Zj) 
N(z-z2) 

has image 
N(w -Wi) 

= K 

N(w - W2) 
= KN(\). 

By our previous results this is also a hyperbola of the same sort. 
REMARK. Thus except for isolated points for which necessary divisions are impossible in R®RyR® R 

behaves just like E with respect to linear fractional mappings. 
One could show without great difficulty that the maps f of Theorem 2, are "conformal," in the R Q R 

sense. Self mappings of the "unit circle" N(z) < 1 have properties analogous to their counterparts over 0. But 
the prospects along this line are quite limited. R®R is only a curiosity, and cannot (in my opinion) support 
a deep and rich theory. 

For those familiaj^with the number theory of Q(sf5), we remark that for the example of the introduction, 
by embedding Q(>J5) in i ? ® R one may show that the (xn, yn) consist of all the integer points on 

x2 +xy-y2 -x+y = 0, 
except for (0,1). 
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A PRIMER FOR THE FIBONACCI NUMBERS, PART XVI 
THE CENTRAL COLUMN SEQUENCE 
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and 
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San Jose State University, San Jose, California 95192 

1. INTRODUCTION 
The rows of Pascal's triangle with even subscripts have a middle term 

,2 

*•-[?)-£ Cll.-J-S C) 
h=0 ' k=0 

since 

(fe) = (n-k) 

for 0 < k < n. We shall now derive the generating function 

Fronn 

one easily gets 

From 

so that by differention 

From tne relation 

then 

AM = £ Anx" = £ (2
n")x" . 

n=0 n=0 

A I 2n\ = (2n)l 

(n + 1)An+1 = 2(2n + 1)An . 

2. GENERATING FUNCTION 

n+l A(x) = ]T An*n = A0+ 23 An+lx 

n=0 n=0 

xA'(x) = x ] T (n + 1)An+lx
n = X I nAnx

n. 
n=0 n=0 

(n + VAn+i = 2(2n + l)An 

OO OO y OO OO 

A'M s £ (n + VAn+1x
n = £ 2(2n + l)Anx

n = 2[ £ 2(nAn)x
n + "£ Anx

n 

n=0 n=0 \ n=0 n=0 
so that 

•A'M = 2(2xA'(x)+AM). 

Solv i t for>4 'M, one gets, upon dividing hyA(x), 

41 



42 A PRIMER FOR THE FIBONACCI NUMBERS [FEB. 

AM 
AM (1-4x) 

from which it follows that 
\nAM = -1/2\r\(1-4x) + \nC. 

Thus 

A(x) = — ^ — , 
s/1-4x-

but AQ = A(O) = 1 implies C= 1, so that 
oo 

AM = ' = T Anx
n. 

3. CATALAN NUMBERS 

Suppose you know that the Catalan numbers have the form 

and wish to derive the generating function 
oo 

CM = £ Cnx
n. 

n=0 
Recall that 

n=0 n=0 sJl-4X 

Then 

n=0 n=0 

Thus, if we integrate the series for>4(x), term-by-term, 

But 

dx f dx 
•4x 

which implies C* = -%. This can be solved for 

= -y2s/1-4x = xCM + C* 

cM = 1~i1-4x. 
2x 

We now show how to derive the central sequence for the trinomial triangle. 
4. THE TRINOMIAL TRIANGLE - CENTRAL TERM 

Consider the triangular array 1 
1 1 1 
1 2 3 2 1 
1 3 6 7 6 3 1 

x y z 
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where w = x + y + z shows the relation between the elements of the array. It is induced by the expansion of 

(1+x+x2)n, n = 0, 1,2,3, •• . 
Let 

2n n 
(1+x+x2)n = £ j5mxm = £ [n

k\x2k(1+x)n-k 

m=0 k=0 ' 

= [n0)(1 +x)n + (*]/7 +x)n-ix2 + ~+[nk)(1 +x)n~kx 

The coefficient j3„ is the central term and is given by 

A.-(S)U)+(")fi=i)+™+(-I(«B-^) -
where a = [n/2]. The (3n may be written in several forms. 

[n/2] [n/2] [n/2] 

A.= E (j)(n-_-aj) = x G H V I - £ ui[?). 
te~i/ fe=0 fe=0 

~k~2k + . 

since 
ln\ l n — k\ _ n! (n -k)l _ w/ f2fej/ _ / « \ I 2k \ 
\kj\ k I kl(n-k)! k!(n-2k)l (2h)l(n - 2k)!k!k! \2k\ \ k j 

We now derive the central term generating function, 
oo 

sjl -2x- 3x2
 n=0 

Thus 

since 

Thus 

since 

But 

so that 

oo oo I [m/2] \ oo / oo \ 

BM - E em*m - E E (5) if) K - r E m*m) (2£)-
m=0 m=0 \ k=0 I k=0 \ m=2k I 

(™) = 0 if 0 < m < 2k. 

£ [2i)i G*)*mis(?)f-4w) • 
fe=o 

(7 -* ; f e + i
 M=0 

AM = E (2
feV / 

k=0 ' V?-4x 

* W _- ̂ J_ ^ *2 ^ - / I L 
1-X \(1-X)2 I-* v^f^) sJ1-2x-3x2 

This completes the derivation. 
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Thus, A(x), the generating function for central term of the svenly subscripted rows of Pascal's triangle, is related by 
a transformation to the central term generating function for the trinomial triangle 

B(x) 
1~x \(1-x)2) 

Much more can be done with this but that is another paper and is covered in Rondeau [2] and Anaya [1]. It should 
be noted that the generating function B(x) could also have been derived by Lagrange's Theorem as in [6]. 

Sequence 456, in [4], is the Catalan sequence for the Trinomial Triangle 1, \, 2,4,9f 21, •••, £ * , - . This sequence 
C* can be obtained from the regular Catalan 1,1,2,5,14,42, - if we truncate the first term, by repeated differenc-
ing. (See [1].) ^ 

1 2 5 14 42 

A2C„ 
V Cn Catalan Numbers 

A3C„ 
A*Cn 

% 

1 3 9 28 
2 6 19 

4 13 
9 

The Catalan generating function C(x) is 

CM = £ cnx" = 1-^-4x 

n=0 

C2(xj = C(XLL1 = £ Cn+1x
n = 1-2*->/1-4x 

X n=0 2X2 

Let C*(x) be the generating function for Catalan numbers for the Trinomial Triangle. This is 

[ ,_ _i*__ //__*L 
C*(x) = -J-C2 l-*-\ - -L-\ - LtJL l±x-

L (1 +x)2 

= 1-x-J1+x)(1-3x) _ 1-x-J1-2x-3x2 

2x2 2x2 

We can also get C*(x) from regular Catalan number generator by another transformation related to summation Webs 
>: Catalan Numbers-> 

V 
1 0 1 0 2 0 5 0 14 

Here the Catalan number generator is 

1 1 1 2 2 5 5 14 
% 2 2 3 4 7 10 

% 4 5 7 11 17 
% 9 12 18 

% 21 30 
\ 51 

c(x*) = T-^-4*1 

2x" 

1~x V1-x] 1 2x2 

This is the same transformation we saw earlier. 
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5. B(x) FROM THE DIFFERENCE EQUATION 
In Riordan [3, p. 74], they give the recurrence for the numbers |3n, the central terms in the rows of a trinomial 

triangle. This is 
/ift, = (2n - Vpn_! + 3(n - 1)pn_2 . 

We shall now derive this. 
We will start with the well known generating function for the Legendre Polynomials 

7 E PnMxn. 
*J1-2xt+X2 n=0 

We introduce a phantom parameter t in the generating function for B(x). 
oo 

B(x,t) = 1- = E Mn(t)x
n , 

y/1 - 2xt - 3x2 n=0 

where clearly B(x, 1) = B(x) and Mn(l) = $n . 
Let 

xt = -iy/3x and t1 = -j=r, 

then 

£ Mn(t)xn = 1 = 1 = £ Pnitt)x
n

t . 
n=0 s/1-2xt-3x2 sJ1 -2x1t1+x\ n=0 

= E Pnl^)(-isj3xr. 
n=0 \>/3l 

We note Mn(1) = $n, then 
ft, = (-isJ3)nPn(i/J3). 

The Legendre Polynomials obey the recurrence relation 
nPn(x) = (2n - 1)xPn_i (x) - (n-1)Pn_2(x) 

for n > Q, with PQ(X) = 1 and Pi (x) = x. From Po(x) = 1, then 
Po = (-iy/3)0P0(i/y/3) = 1 

and from Pi (x)=x, then 0j = H\J3)(i/s/3) = I Thus directly substituting Pn(x), withx = i/J3 the recurrence 
relation becomes - _ _ 

nPn(i/y/3) = (2n - 1) -4r Pn.t (i/^3) ~ (n - 1)Pn_2(i/yJ3) 
• s/3 

and 
n(-J3i)nPn(i/J3) = (2n-1)(-J3i)n -j=r Pn-i07>/3) ~ (n - V(-i>j3)nPn_2(i/s/3). 

Since 
jJn = (-iyJ3)nPn(i/>J3). 

this yields 
nj3n = (2n- 1)^t+3(n- 1)pn, 

with 0o = 1 f fo = 1 as was to be shown. 
We note in passing that 

lim b*L = * 
n - ° ° ftz J ' 

6. FROM THE RECURRENCE TO THE GENERATING FUNCTION 
We now go from the recurrence relation 
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fn +2)$n+2 = <2n + 3)$n+1 +3(n + 1)$n , 

with @o = Pi = 1, back to the generating function. 
Let 

then 

Further 

or 

Next, 

B(x)= X $**"> 
n=0 

xB'M = 22 nHnx
n 

n=0 

3xB'M + 3B(x) = 2L 3<n + 1>$nXn. 
n=0 

xB-M-O-Po-xfa = 22 n$nx
n 

n=2 

(B'M- V/x = 22 (n+2)$n+2xn . 
n=0 

*M = 1+X ]T (3n+7xn, B'M = 22 Pn+lXn+22 "Pn+ix", 
n=0 n=0 n=0 

BMf±= X) / W " , 2B'M+B-&f^ = £ (2n+3)$n+1x
n . 

n=0 n=0 

Thus, from the recurrence relation, we may write 

QMzJ. = 2B'(x) + B(x> ~ 1 + 3xB'M+3BM 
x x 

or 

B'(x)(1 -2x~ 3x2) = (3x + l)B(x), ^ . = 3 x + 1
 o . 

BM 1-2x- 3x2 

Integrating, In B(x) = -Y2 In (1-2x- 3x2) + \\\C. Thus 

BM = C , 
sJ1-2x-3x2 

and since B(0) = Po~ 1, it follows that £7 = /. This concludes the discussion. 
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ENTRY POINTS OF THE FIBONACCI SEQUENCE 
AND THE EULER 0 FUNCTION 

JOSEPH J. HEED and LUCILLE A. KELLY 
tyorwich University, Northfield, Vermont 05663 

There is an Interesting analogy between primitive roots of a prime and the maximal entry points of Fibonacci num-
bers modulo a prime. 

Expressed in terms of the periods of reciprocals of primes in various base representations, the period of the Zr-mal 
expansion of 1/p is of length ^ in $(d{) incongruent bases modulo/? where dj\p - 1 and 0 is Euler's totient function. 
A similar statement can be made about certain classes of linear recursive sequences modulo p. 

1.0 Let rnc,q be the n term of a linear recursive sequence, 

2sfq 

»¥•)•-M)' 
n: for q = c (mod 4) 

r n 'c,q 

yielding the sequences defined by 

2cYn-1+(q-c2)Vn'2 

„2 

with initial values 1, 2c or 1, c. 
For c= 1, q = 5 we have the Fibonacci sequence. 
We are interested in the entry points of these sequences, modulo p, a prime. 
Borrowing the analogy, we will say that Tc,q belongs to the exponent* modulop, if 

p\Txc,q, Pj(ryC,q for y < x. 
The main results are: 

1.1 For q a quadratic non-residue of p,c ranging from 1 top, there are (p(d() values csuch thatTcq belongs to the 
exponent d{ modulo p, where d{ \p + 1, d{ £ 1. 

1.2 For q a quadratic residue of p,c ranging from 1 to/7, there areQfdi) values c such that Yc,q belongs to d{ mod-
ulo/7, d[\p- 1,dit 7, and two values for which the sequence is not divisible by/7 at all. 

1.3 Fore fixed,c^O (mod/?), q ranging from 1 top, for each divisor of p - 1 and p + 1, except 1 and 2, there are 
(p(di)/2 values of q such that F c,q belongs to d{ modulo p. In addition there is one value such that Yc,q be-
longs top (for q = p) and one for which the sequence is not divisible byp at all (for q=c modp). 

1.4 Applying these results to the Fibonacci sequence, probabilistic arguments suggest that for primes of the form 
10/7 ± 1 the entry point of the Fibonacci sequence should be maximal, (p - 1), on an average 

|im ;£fc" 
i _* oo n £-*>* p . ^ 3 

over primes of that form; and the entry point should be maximal, (p + V, on an average 
47 
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-1 n 

lim J-X <t>(Pi + D 

n£ PS-1 
over primes of the form 10/? ± 3. Investigations of entry points of primes less than 3000 [1,2] show a remarkably 
close correspondence with these theoretical values. 

Number of Maximal Entry Points for p < 3000 

Predicted Observed 

2 0 f a - V/p -3 = 74.25 76 

2<l>(p+1)/p-1 = 87.78 88 

2.0 Consider the sequences {Tnc,q} modulo/?, where c and q range over the reduced residue classes modulo/?. Let 
d be the exponent to which Tc,q belongs modulo p. 

The following can easily be established: 

2.1.1 \ip\rnc,q,\tei\p\Tnc,q+pm&p\Tnc+p,q. 

2.1.2 Forc = 0 (mod/?),</=2. 

2.1.3 For <7 = 0 , c^Q (mod/?),</ = /?. 

2.1.4 ForC{+Cj = Q (modp),di = dj. 

2.1.5 For q = c2 (mod p),d = °o. 

2.2 Leta= c + ̂ Jq, a = c- >Jq. MYcfq belongs to the exponent k (mod/?), we say a hasT-order k. That is 

ak - a h = 0 (modp), am - a m £ 0 (mod/?) for/77 <k, m t 0 . 

We wish to determine the smallest d such that 
ad = ad (mod/?). 

We consider two cases, q a quadratic non-residue of p, and q a residue. 

3.0 Case \,q a quadratic non-residue of/?. Construct GF(p2) with typical element c + kyjq (note: k2q = q (mod/?), 
a non-residue). Forsomec',<7',a=c'* v ^ ' i s of order/?2 - 1 since the multiplicative group of GF(p ) is cyclic. 

3.1 We show that a = aP. 
The conjugate of a can be defined as that element a such that aa and a+ a are both rational, i.e., elements of 

GF(p). We know that in GF(p) there are <f>(d{) elements of order d{, d{\p - 7, and that yL(j)(di) = p - 1, accounting 
for all the non-zero elements of GF(p). Thus the elements of GF(p2) which are in GF(p) are characterized by orders 
which divide/? - 7, i.e., 

ak<*+1>t k= 1,2,-,p-1. 

3.1.1 Since a is of order/? - J,a>ap is of order/? - 7 , thus is rational. 
3.1.2 To show: a + oP is of order dividing/? - 1. 

Expanding fa* o ^ - 1 , and noticing that [p 7 1 \ = (~1)k modp, we obtain 

(a+ aPt1 = aP"1*[*> ~ *) a2P~2
 + ».+ a P ^ U oP'1 - a2?~2+ - + ap(t>-1) 

s aP-Ul - aP"1 + (oP~V - .»+ (aP-1)*-1 - (a?-1)* + {aP-1f) 

^aP'1 (l-faP-'F1! +(oP-lf ^ nP'1 
= a1 1-aP2-1 

1 + oP-1 

^aP-iaP2-? ^aP2-1 = 1mod/?. 

Thus a+ oP is of order dividing/? - 1 and is rational. It follows that a = oP. 

1+aP-1 
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3.1.3 It can similarly be shown that a? = aap, unless a is a multiple of/?* 7. In that case ad is rational and self con-
jugate, cf. §4.0. 

Let aa = a"?. Then (aa)k = (aaP)k for aaPk - aak - 0 , aak(P'^ = 7 (mod p), and ak = 0 (mod /? + 1), sinceais 
of order/?2 - 7. Ar is a divisor of p + 1, say,*//. letnd{=p + 1, so that/? is the smallest non-zero solution to xd{ = 0 
md(p + 1) (i.e.,an hasT-orderdj). 

If (tn)di = 0 (mod /? + 7), where ft, *//,/ = m,t = t'm, d{ = djm and dj\p + 1 with dj < (///then 

fr/iA/y s~ 0 (mod/? + 1) 
and fr/?j is a solution to xdj = 0 (mod p + 1) with */y < cf/. 

x = tn,t= 1,2, •••, are solutions toxdj = Q (mod/? + 1),and are primitive solutions for (t,di)= 1. There are exact-
ly <l>(di) of these less than d{. For each of the 0ft//j of these f/? values, tn <p + 1, atn has r-order <//. 

Consequently, for every divisor d{ f 1 of p + 1, there are 0ft/^ values 5 </? + 1, such that a a has F-order </,-. 

3.3 We wish to relate the elements in the tables below: 
Table 1 

2 .- ft - p \ * 1 
! 

C + sM 

I 

I 1 

a 
a2 

a" 

iaP+1 

Table 2 

a1+(P+1) 

a2(P+1) 

al+k(p+i) 

aa+h(p+l) 

a?*-* 

NOTE: The elements of the last row of table two are rational. The elements of columns two through p - 1 are 
rational multiples of the elements of the first column, in which for the exponent less than (p + V, there are <j>(di) 
elements of T-order dj* Thus the reorders of the elements in the first/? rows are equal by rows and divide/? + 1. 
Since a is of order /?2 - 1, all a + b^fq are represented by some power of a. For Cj + \Jqj, ft a non-residue, there is 
som®ak = C( + b^/q = C{ + yftfi (mod/?). 

3.3.1 If ak = C{ + \fqfi and am = Cj + v % then ak and am are not in the same row in table two, for if 

then 

subtracting, 

ak = a*+yi(p+D am = ax+y2(p+l) x < p + 1 

and ax is rational, i.e.,* =p + 1, contrary to hypothesis. 

3.2.2 We thus have a one-to-one mapping between elements of distinct rows of table two and elements of the ft col-
umn of table one, indicating that for ft a non-residue, CJ ranging from 1 top there are <t>(dj), dj\p + 1 elements, 
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Ci + sftli, of r-order*/,- (Result 1.1). 
4.0 Case 2, q a quadratic residue of p. Consider the elements of GF(p). Let ft = a\• + h, where b = yjq (mod/?), and 

call Pi = *,- - b. Let 7; = fi^f1 = faj + b)/(a{ - b). If (a{ + b)/(aj -b) = (aj + b)/(aj - b), then a{ = aj} and if a 
ranges through the values 0 to/? - 1 the 7/values generated are distinct. Provided a £ ±b (mod p), these are the ele-
ments 2 through p - 1 of GF(p). 

From (hi + b)/(ai - b))k = yf it is clear that the r-orders of /3 correspond with the orders of 7 . There are $(d{) 
elements, 7/, of order d{ for each divisor of p - 1 (d\ t 1), thus (j)(d{) elements & with F-orders*// for each divisor of 
p - 1 except 1. In addition, for a ̂ ±b (mod/?), le.,q = c2 (mod/?), the equation (a{ + b) = fa - b) has no solu-
tions and we say the F-order of 0 is <*>. (2.1.5). (Result 1.2.) 

5.0 To establish Result 1.3, relating to the rows of table one, consider c + sfgj asqj ranges from 1 to/? - 1. 
c + sftfi has the same Y -order as ck+ \Jk2q and as (ck)' + \Jk2q, where ck + (ck)'=0 (mod/?U2.1.4). Choose 

qj a non-residue, q < (p - 1)/2, and k such that kc{ = c. Then k2qj is a non-residue and kfa + >Jqj) = c + sjq~{and 
has the same T-order. Similarly for qj a residue. Thus the entries in table one with a < ( p - 1)/2 of a residue column 
and a non-residue column correspond with the entires of a row and we have Result 1.3: there are <p(dj)/2 values^ 
such that Fc,q belongs to d{ (mod/?) ford { \p- 1,d{\p+ 1, with V-order 00 forq&c 2 (mod/?), and F-order/? for 
<7 = 0(mod/?). 

6.0 Results applied to the Fibonacci sequence. Letc= 1,qr = 5. Since 5 is a non-residue for/? of the form 10/? a . 3 
and a residue for/? = 10/? ± 1, the maximal entry point for the former is/? + 1 and forthe latter/? - LSincec//? 
and q t p for/? > 5, the probability that the entry point is maximal for/? = 10/? ±3 is 

Hp + U/(p-1), 
and for/? of the form 10/? ± 1 , 

06i - 7;/fo - 3). 
For/? < 3000, over primes of the form 10/7*3, 

as compared with 88 primes of that form with maximal entry points. 
Over primes of the form 10/7 ± 1, 

yjdE^Jl = 74.25, 

as compared to 76 with maximal entry points. 
Entry Points of/7 = 13 for [Tnaqi) 

\ q 1 2 3 4 5 6 7 8 9 10 11 12 
(* \ _. _ _ . _ „ . ... - «_ - _ — - - B 2-= 3 = = -

06 

3 
12 
12 
4 

I 6 

7 
14 
14 
7 
7 

14 

12 
6 

12 
0 0 

3. 
4 

6 
0 0 

4 
3 

12 
12 

7 
7 
7 

14 
14 
14 

14 
14 
7 
7 

14 
7 

14 
7 

14 
7 

14 
7 

14 
7 
7 

14 
7 

14 

12 
4 

0 0 

12 
6 
3 

3 
12 
6 
4 

12 
0 0 

7 
14 
14 
14 
7 
7 

4 
12 
3 
6 

0 0 

12 
( see properties 2.1.1-2.1.5) 
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MORE ON BENFORD'S LAW 

W . G . B R A D Y 
Slippery Rock State College, Slippery Rock, Pennsylvania 

In a recent note, J. Wlodarski [1] observed that the Fibonacci and Lucas numbers tend to obey Benford's 
law which states: the probability that a random decimal begins with the digit p is 

\o§io(p + D- logio/?. 
(By begins, one means has extreme left digit.) 

Wlodarski based his observations on the first 100 Fibonacci and Lucas numbers. 
This is a report of a further investigation of the Benford phenomena. In this effort, the first 2000 representa-

tives of both the Fibonacci and Lucas numbers were calculated and examined. The occurrences of the first 
digits were noted and tabulated. Further this was done for each base b = 3 to b = 10. The results of these 
calculations suggest an extended Benford law: 

The probability that a random decimal written base b begins with p is 

(1) logio P + 1 1 
\miob 

N b J3±L 

This result is anticipated by Flehinger [2] and is verified here. 
In order to provide the statistical data concerning the Fibonacci and Lucas numbers of large magnitude and 

to various bases, a computer program was developed. It was written in FORTRAN-IV and has been run on an 
IBM 360-40. The program can develop the numbers up to n = 5000 base 10 using the 1000 digits provided. 
However, more digits would be needed for a lesser base. As a compromise n = 2000 was selected. The propor-
tions of first digits to the various bases is recorded in Tables 1 and 2. Table 3 gives the corresponding results 
from (1) for comparison. 

Table 1 
Proportion of First Digits of Lucas Numbers 

Digits 

Base 

10 

9 

8 

7 

6 

5 

4 

3 

1 

.30100 

.31800 

.33350 

.35450 

.37800 

.43050 

.50100 

.63650 

2 

.17600 

.18150 

.19450 

.20850 

.22400 

.25100 

.29150 

.36350 

3 

.12550 

.13300 

.13950 

.15000 

.16150 

.17950 

.20750 

4 

.09650 

.10250 

.10600 

.11300 

.12500 

.13900 

5 

.07950 

.08300 

.08850 

.09350 

.10250 

6 

.06650 

.07000 

.07400 

.08050 

7 

.05850 

.05900 

.06400 

8 

.05100 

.05300 

9 

.04500 
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Table 2 
Proportion of First Digits of Fibonacci Numbers 

Digits 

Base 

10 

9 

8 

7 

6 

5 

4 

3 

1 

.30050 

.31400 

.33400 

.35750 

.38600 

.43100 

.49950 

.62800 

2 

.17650 

.18650 

.19500 

.20900 

.22800 

.25250 

.29200 

.37200 

3 

.12500 

.13200 

.13900 

.14600 

.16050 

.17800 

.20850 

4 

.09650 

.09900 

.10600 

.11550 

.12400 

.13850 

5 

.07950 

.08300 

.08800 

.09200 

.10150 

6 

.06650 

.06950 

.07350 

.08000 

7 

.05750 

.06200 

.06450 

8 

.05200 

.05400 

9 

.04600 

Table 3 
Values of log^ (n + 1)/n 

Base 

10 

9 

8 

7 

6 

5 

4 

3 

1 

.30103 

.31547 

.33223 

.35621 

.38685 

.43068 

.50000 

.63093 

2 

.17609 

.18453 

.19434 

.20837 

.22629 

.25193 

.29248 

.36907 

3 
.12494 

.13093 

.13789 

.14784 

.16056 

.17875 

.20752 

4 

.09691 

.10156 

.10695 

.11467 

.12454 

.13865 

5 

.07918 

.08298 

.08739 

.09369 

.10175 

6 
.06695 

.07016 

.07389 

.07922 

7 

.06099 

.06391 

.06731 

8 

.04815 

.05046 

9 

.04576 

REFERENCES 
1. J. Wlodarski, "Fibonacci and Lucas Numbers Tend to Obey Benford's Law," The Fibonacci Quarterly, 

February 1971, Vol. 9, No. 1, pp. 87-88. 
2. B. J. Flehinger, "On the Probability that a Random Integer has Initial Digit A," Amer. Math. Monthly, 

Vol. 73 (1966), pp. 1056-1061. 



FORMULA DEVELOPMENT THROUGH FINITE DIFFERENCES 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, California 

FINITE DIFFERENCE CONCEPT 

Given a function f(n) the first difference of the function is defined 

Af(n) = f(n + 1)-f(n). 

(NOTE: There is a more generalized finite difference involving a step of size h but this can be reduced to the above 
by a linear transformation.) 

EXAMPLES 

f(n) = 5n+3, Af(n) = 5(n + V +3 - (5n +3) = 5 

f(n) = 3n2 + 7n +2 \Af(n) = 3(n + V2 + 7(n + 1)+2- (3n2 +7n+2) = 6n + 10. 

Finding the first difference of a polynomial function of higher degree involves a considerable amount of arithmetic. 
This can be reduced by introducing a special type of function known as a generalized factorial. 

GENERALIZED FACTORIAL 

A generalized factorial 
W W = x(x - 1)(x - 2) - (x-n + 1), 

where there are n factors each one less than the preceding. To tie this in with the ordinary factorial note that 
/?W = n! 

EXAMPLE 

x<4> = x(x-1)(x-2)(x-3). 
The first difference of x'n' is found as follows: 

Ax(n) = (x + 1)x(x - V - (x-n+3)(x-n+2J- x(x - 1)(x - 2) - (x-n+2)(x-n + 1) 
= x(x - 1)(x - 2) - ( x - n +3)(x - n+2)[x+1 - (x - n + 1)] = nx(n-1}. 

Note the nice parallel with taking the derivative of xn in calculus. 
To use the factorial effectively, in working with polynomials we introduce Stirling numbers of the first and second 

kind,. Stirling numbers of the first kind are the coefficients when we express factorials in terms of powers of x. Thus 

x(1) = x, x(2) = x(x~ 1) = x2 -xt x(3) = x(x- 1)(x-2)(x-3) = x3 -3x2+2x 

x(4) = x(x - 1)(x - 2)(x - 3) = x4 - 6x3 + llx6 - 6x. 
Stirling numbers of the first kind merely record these coefficients in a table. 

Stirling numbers of the second kind are coefficients when we express the powers of x in terms of factorials. 
x = J1* 

x2 = x2 -x+x = x^2) +x^ 

x3 = x3 - 3x2 +2x + (3x2 - 3x) +x = x(3)+3x(2) +x(1) 

As one example of the use of these numbers let us find the difference of the polynomial function 

4x5 - 7x4 + 9x3 - 5x2 +3x-1. 

Using the Stirling numbers of the second kind we first translate into factorials, 
53 
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TABLE OF STIRLING NUMBERS OF THE FIRST KIND 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

power of * 

1 2 
1 

-1 1 
2 -3 

-6 11 
24 -50 

-120 274 
720 -1764 

-5040 13068 
40320 -109584 

-362880 1026576 

3 

1 
-6 
35 

-225 
1624 

-13132 
118124 

-1172700 

4 

1 
-10 
85 

-735 
6769 

-67284 
723680 

5 

1 
-15 
175 

-1960 
22449 

-269325 

6 

1 
-21 
322 

-4536 
63273 

7 

1 
-28 
546 

-9450 

Giving 

TABLE OF STIRLING NUMBERS OF THE SECOND KIND 
Coefficients otx(k) 

n 
1 
2 
3 
4 
5 
6 
7 
8 1 
9 
10 

2 

1 
3 
7 
15 

1 31 
63 
127 
255 

1 511 

3 

1 
6 
25 
90 
301 
966 
3025 
9330 

4 

1 
10 
65 
350 
1701 
7770 
34105 

5 

1 
15 
140 
1050 
6951 
42525 

6 

1 
21 
266 
2646 
22827 

7 8 

1 
28 1 
462 36 
5880 750 

9 

1 
45 

10 

TABLE OF FACTORIALS 
,(5) yW y(V y(2) M) 

4x> 

-7x4 

9x3 

-5x2 

3x- 1 

4 40 

-7 

100 

-42 

9 

60 

-49 

27 

-5 

4 

-7 

9 

-5 

3 -1 

4x(5) + 33x(4) + 67x(3) + 33x(2) +4x(l)-1. 

Using the formula for finding the difference of a factorial the first difference is given by 
20xW + 132x(3) +201x(2)+66x(l)+4. 

Now we translate back to a polynomial function by using Stirling numbers of the first kind. 

x x x x 
20x(4) 20 -120 220 -120 
132x(3) 132 -396 264 
201x^ 201 -201 
66x(1) + 4 66 

The resulting polynomial function is 
20x4 + 12x3 +25x2 +9x + 4 
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A POLYNOMIAL FUNCTION FROM TABULAR VALUES 
From the above it is evident that the first difference of a polynomial of degreen is a polynomial of degree/? - 1; 

the second difference is a polynomial of degree n - 2; etc., so that the nth difference is a constant. The (n + 1)st dif-
ference is zero. As a matter of fact since at each step we multiply the coefficient of the first term by the power of x, 
the/7 difference of 

a0xn + a1xn~1 + a2xn~3 + - + an_1x + an 
\saon! 

Conversely if we have a table of values and find that the rth difference is a constant we may conclude that these 
values fit a polynomial function of degree r. For example for 

fix) = 5x3-7x2+ 3x-8 
we have a.table of values and finite differences as follows. 

X 

0 

1 

2 

3 

4 

5 

6 

f(x) 

-8 

-7 

10 

73 

212 

457 

838 

Af(x) A*f(x) A*f(x) 

1 
i 

17 

63 

139 

245 

381 

547 

16 

46 

76 

106 

136 

166 

30 

30 

30 

30 

30 

7 1385 

The problem is how to arrive at the original formula from this table. 
Suppose that the polynomial is expressed in terms of factorials with undetermined coefficients bg, bi, b2, — • The 

problem will be solved if we find these coefficients. 

fix) = b0+b1x(1)+b2x(2) + b3x(3) + b4x(4) + b5x(5) + -
Af(x) = bt +2b2x(1)" +3b3xm +4b4x(3)+5b5x(4) + -
A2f(x) = 2!b2+3*2b3x(1)+4*3b4x(2) + 5*4h5x(3) + -

A3f(x) = 3!b3+4*3*2h4x(1) +5*4*3b5x(2) + -
A4f(x) = 4!b4 + 5*4*3*2b5x(1) + - . 

Set* = O. Since any factorial is zero forx = O we have from the above: 

f(0) = b0 or b0 = f(0) 

Af(0)=bi 
A2H0) = 2!b2 

A3f(0)= 3!b3 

A4f(0)= 4!b4 
Hence 

fM = no) + LHO)xW + L
2 f^-x^ + L

3 f-§ x^ + A4 f§xW + 

or 
or 
or 
or 

bi ' 
bi-
bs -
b4-

= Af(O) 
-- A2f(0)/2! 
- A3f(0)/3! 
' A4f(0)/4!. 
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This is known as Newton's forward difference formula. We can find the quantities f(O), Af(O), A 2f(0), A3f(0), 
A 4f(0), - from the top edge of our numerical table of values provided the first value in our table is 0. 

f(x) = -8+x + 16x^/21 + 30x(3)/3! = -8 + x + 8x2 - 8x + 5x3- 15x2 + lOx = 5x3 -7x2 +3x- 8. 

Stirling numbers of the first kind can be used in this evaluation. 

SUMMATIONS INVOLVING POLYNOMIAL FUNCTIONS 

Since a polynomial function can be expressed in terms of factorials it is sufficient to find a formula for summing 
any factorial. More simply by dividing the kth factorial by k! we have a binomial coefficient and the summation of 
these coefficients leads to a beautifully simple sequence of relations. 

To evaluate 
n n 

2 k> ,et E k = *(n) 

meaning that the value is a function of n. Then 
n+l n 

A<p(n) = Yl k~ 1L k = n + 1 -

Now A/? = 7 and An(2>/2 = n. Hence 
n 

<p(n) = £ k = n(2)/2+n+C = n(n + l)/2 + C, 

where the C is necessary in taking the anti-difference jsince the difference of a constant is zero. This corresponds to 
the constant of integration in the indefinite integral. To find the value of C let/7 = /. Then 

/ = U2/2 + C so that C = 0. 
Hence 

£) k = n(n + 1)/2= (« / ' ) 

a well-known formula. Next, let 

2 p r ) - - ^ , A*M~z {>+>)-<£ ( f er)-(«r) 
The difference 

Hence 

k = l 

n = 7 shows that C = 0. The sequence of formulas can be continued: 

k=l 
and in general 

£ lk+32) = ln43) 
1 = 1 

E (*;;) = (\+;r) 
One could derive the formula for the summation of a factorial from the above but proceeding directly: 
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u k=1 

Hence, 

n 
£ kW = y(n), Aip(n) = (n + 1)(r). 

1 

yM= y kM = <n + D(r+1)
 +C. 

LJ r+1 
k=l 

Taking n = r, 
rl = (r+V(r+l)/(r+1) + C 

so that C = 0. 

h r+1 
Again there is a noteworthy parallel with the integral calculus in this formula. 

For examples we take some formulas from L. B. W. Jolley Summation of Series, 
n 

EXAMPLE 1.(45) p. 8, ] £ (3k - 1)(3k+2) = 2*5+ 5*8 + 8*11 +-
k=l 

This equals 

f; m2+3k-2)= £ ; m<2) + m<i)-2) = 9 (^i^'*12 (JL±M^-.2(n + i)+c. 
k=l k=l 

Taking n = 1, 2*5 = 6*2 - 2*2 + c so that £ = 2 
n 

J2 (3k- 1)(3k+2) = 3n3 -3n+6n2 + 6n-2n-2+2 = n(3n2 + 6n + 1). 
k=l 

EXAMPLE 2. (50) p. 10 
n n n 

]T k(k + 3)(k + 6) = 1*4*7 + 42*5*k + 3*6*9 + -= ]T (k3 + 9k2 + 18k) = J^ (k(3) + m W + 28k(1)> 
k=i k=l k=l 

= (n+ 1)(4> + u (n + 1)<3) +28(]l+j£l + c = (jU-^[(n-1)(n-2)+16(n-1)+56]+C 

= n(n+1)(n + 6)(n + 7)/4 + C. 

Setting/? = 1,1*4*7 = 1*2*7*8/4 + c so that C = 0 
n 

] P k(k + 3)(k + 6) = n(n+1)(n+6)(n + 7)/4. 
k=l 

EXAMPLE 3. (49) p. 10 
n 

] T (3k-2)(3k + 1)(3k + 4) = 1*4*7 + 4*7*10*13 + - . 
k=i 

This can be changed directly into a factorial: 
n n 

27 £ (k-2/3)(k+1/3)(k + 4/3) = 27 £ (k+4/3p> 
k=l k=l 

giving 
27(n + 7/3)^/4 + C = (3n + 7)(3n + 4)(3n + 1)(3n -2)/12 + C. 

Settingn=1, 28 = {10*7*4*1)112 * £ so that C = 56/12 
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(3k - 2)(3k + 1)(3k + 4) = (3n + 7)(3n + 4)(3n + 1)(3n - 2)/12 + 56/12 . 

SUMMATIONS THROUGH NEGATIVE FACTORIALS 
Starting with the relation 

x(
mh(x-m)W = x(™+") 

set m = -n. 
x(~n>*(x+n)(n) = x(°> = 1. 

T\\extfoxex(-n)=1/(x+n)(n). 
Possibly this bit of mathematical formalism seems unconvincing. Suppose then we define the negative factorial in 

this fashion. 
Ax^ = 1/[(x+n + 1)(x+n)(x+n- 1) ~.(x + 2)1 - 1/[(x +n)(x + n - 1)(x + n -2) -(x + 2)(x + 1)] 

= 1/Ux + nHx + n - 1) -. fx +2)][1/(x+n + 1) - 1/(x + 1)] 

= -n/[(x + n + 1)(x + n)(x + n-1)-(x + 1)1 = -nx^n~^ 

showing that the difference relation that applies to positive factorials holds as well for negative factorials defined in 
this fashion. Consequently the anti-difference which is used in finding the value of summations can be employed 
with negative factorials apart from the case of - 1 . 
EXAMPLE 1. 

£ 1/[k(k + 1)(k+2)] = J2 <k-1)(~3) = n(-2)/(-2) + C = -1/[2(n + 2)(n + 1)] + C. 
k=l k=i 

Setting n = 1, 1/6 = -1/(2*3*2) + C, so that C = 1/4 
n 

J2 f/fkfk + 1)(k + 2)] = 1/4 - 1/[2(n + 2)(n + 1)J . 
k=l 

EXAMPLE 2. Jollev, No. 210, p. 40 
n n n 

£ 1/[(3k - 2)(3k + 1)(3k + 4)] = (1/27) £ 1/fk - 2/3)(k + 1/3)(k + 4/3)1 = (1/27) £ fk - 5/3) (~3> 
k=l ~ k=l k=l 

= (1/27)(n - 2/3) ('2)/(-2) + C = - 1/[6(3n + 4)(3n + 1)1 + C. 

Setting n = 1, 1/(1*4*7) = -1/(6*7*4) + C; C= 1/24 
n 

£ 1/[(3k - 2)(3k + 1)(3k + 4)1 = 1/24 - 1/[6(3n + 4)(3n + 1)1 
k=i 

EXAMPLE 3. Jolley, No.213, p. 40 
n n n * 

£ (2k - 1)/[k(k + 1)(k +2)1 = 2 £ 1/[(k + 1)(k +2)1 - £ f/fkfk + 1)(k + 2)1. 
k=i h=i k=i 

The second summation was evaluated in Example 1. The first gives 

2 £ k<-2) = 2(n + 1)(-l)/(-1) + C. 

Altogether, the result is 
-2/(n +2) - 1/4 + 1/[2(n + 2)(n + 1)1 + C. 

Setting n = 1, 1/6 = -2/3 - 1/4 + 1/12 + C so that C = 1 
n 

£ (2k - 1)/[k(k + 1)(k + 2)1 = 3/4 - 2/(n +2) + 1/[2<n +2)(n + 1)1. 
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DIFFERENCE RELATION FOR A PRODUCT 

Let there be two functions f(n) and g(n). Then 

A f(n)g(n) = f(n + 1)g(n + 1) - f(n)g(n) = f(n + 1)g(n + 1) - f(n + 1)g(n) + f(n + 1)g(n) - f(n)g(n) 

= f(n + 1)Ag(n)+g(n)Af(n). 
This will be found useful in a variety of instances. 

SUMMATIONS INVOLVING GEOMETRIC PROGRESSIONS 

A geometric progression with terms ar can be summed as follows: 

]T ar^1 = y(n), Ay(n) = arn 

k=l 

But Arn = rn+1 - rn = rn(r - 11 Hence 

y(n) = Y, ar = A (arH) = arH/(r- V + c-
k=l 

Setting n = 1, a = ar/(r - 1) + C so that C = -a/(r - 1). Hence, 

£ ar1*"1 = a(rn- 1)/(r- 1). 
k=i 

The summation 

£ krk = <p(n), A#(n) = (n + 1)rn+\ A(nrn+1) = (n + 1)rn+l(r- 1) + r n+l 

uct formula on page 8 M 

(n + 1)rn+l = A [nrn+1/(r - 1)] - rn+1/(r - 1). 
using the product formula on page 8 with the first function as n and the second as rn+1. 

HenCe A~1(n + 1)rn+l = nrn+1/(r - 1) - rn+1/(r - 1)2 + C. 
Setting n = 1, r = r2/(r - 1) - r2/(r - 1)2 + C; C = r/(r - V2. Accordingly 

£ krk = nrn+1/(r - 1) - rn+1/(r- 1)2 + r/(r - 1)2 . 
k=l 
5 

EXAMPLE. ]>? k*3k = 1*3+2*9+3*27 + 4*81+5*243 = 1641. 
k=l 

By formula 5*36/2 - 36/4 + 3/4 = 1641. 
FIBONACCI SUMMATIONS 

A Fibonacci sequence is defined by two initial terms Ti and T2 accompanied by the recursion relation 

Tn+1 ~ Tn + Tn-1 • 
SUM OF THE TERMS OF THE SEQUENCE 

n 
£ Tk = <p(n), Ay(n) = Tn+1, ATn = Tn+1 - Tn = Tn_t . 

k=l 
Accordingly n 

k=l 

Setting n = .1, Ti = T3 + C or C = Ti - T3 = -T2 
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2 Th - Tn+2 - T2 

SUM OF THE SQUARES OF THE TERMS 

£ T2
h = *(n), A<p(n) = T2

n+1 . 

The anti-difference bears a strong resemblance to integration in the differential calculus. Just as we know integrals 
on the basis of differnetiation so likewise we find anti-differences on the basis of differences. Thus we try various ex-
pressions to see whether we can find one whose difference is the square of Tn+i. 

A Tn Tn+i = Tn+t Tn+2 - Tn Tn+t = Tn+i (Tn+2 - Tn) = Tn+1. Hence 

Setting/? = a, r f = TaTa+1+C 
k=Oi 

c - Ta(Ta- Ta+i) TaTa_i, Yl Tk ~ TnTn+l ~ TaTa-i. 
k=a 

SUMMATION OF ALTERNATE TERMS 
n 

J ] T2k+a = V("h Aip(n) = T2(n+l)+a', ^2n+a = T2n+2+a~ T2n+a = ^n+l+a-
k=m 

Hence 

A T2(n+l)+a = T2n+l+a + C* ] T T2k+a = ^2nH+a + ^-
k=m 

Setting k = m, 

T~2m+a ~ T2m+l+a + C' Y ^2k+a ~ ^2n+l+a~ ^2m-l+a 
k=m 

SUM OF EVERY FOURTH TERM 
n 

2 T4k+a = $(n), A<pM = T4n+4+a 
k=l 

A 7~4n+a = T4n+4+a ~ 7~4n+a = ^4n+3+a + "^4n+2+a ~ ^4n+2+a + T~4n+l+a = ^4n+3+a + ^4n+l+a 
To meet this situation we introduce a quantity 
M ^n = Tn-1 + Tn+1 . 
Now 

Vn-1 + Vn+l = Tn_2 + Tn + Tn + Tn+2 =-Tn„i + Tn +2Tn + Tn + Tn+i = 5Tn . 

To obtain a difference which gives T we start with V. By a process similar to that for T 

Consequently, A "4"+fl = V4n+3+a + V4n+1+a = 5Un+2+a' 

n 
A " ' T4n+4+a = (V4n+2+a>/5 + C = £ T4k+a • 

k=l 
Setting n = 1, 

n 
0 = T4+a - V6+a/5, Yl T4k+a = (Un+l+a + l~4n+3+J/5 ~ <T5+a + ^7+J/^ + T4+a • 

k=l 
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EXAMPLE. We use the terms of the sequence beginning 1,4. 
1, 4, 5,9,14, 23, 37, 60,97,15:7, 254,411, 665,1076,1741, 

2817,455M375,11933,19308, 31241, 50549,81790,132339, 214129, 
346468,560597, 907065,1467662,2374727 . 

Leta=Z 
5 

2 T4k+2 = T6 + T10 + T14 + T18 + T22 =23+157+1076 + 7375 + 50549 = 59180. 
k=l 

By formula we have 
(T23 + T25)/5-(T7+T9)/5 + T6 = (81790 +214129)75- (37 + 97)/5 + 23 = 59180. 

SEQUENCE WITH ALTERNATING SIGNS 
n 

£ <-1>kT2k+a = *pM, &<P(") = (-l)n+1T2„+2+a, V2n+a = T2n+l+a +T2n-1 +a 
k=m 

A(-DnV2n+a = (-Dn+lV2n+2+a-(-1)nV2n+a = (-1)n+l[V2n+2+a+V2n+J = (-1)n+15T2n+1+a. 
Hence 

£ <-1>nT2k+a = (-Dn(V2n+1+J/5 + C = (-Dn[T2n+a + T2n+a+2]/5 + C. 
k=m 

Let n = m. 
(-1)mT2m+a

 = (-Dm [T2m+a+T2m+2+J /5 + C 

E (' VhT2k+a = (- Vn[T2n+a + T2n+a+2]/5 + (- 1)m+l [T2m+a + T2m+a+2]/5 + (- 1)mT2m+a. 
k=m 

Using the 1,4 sequence once more 
7 

Jl (- DhT2k+3 = -T9 + T11-Ti3 + T15-T17 = -97+254 - 665 +1741- 4558 = -3325. 

By formula we have 
-(T17 + Ti 9)/5 + (T9 + Ti t )/5 -T9 = -(4558 + 11933)/5 + (97 + 254)/5 -97 = -3325. 

GEOMETRIC-FIBONACCI SUMS 
POWER of 2. 

y 2kTk = <p(n); Atp(n) = 2n+1Tn+1 

A2nTn = 2n+1Tn +2nTn = 2n(2Tn.1 + Tn) = 2nVn, 
where we have used the product relation on page 8 and introduced the sequence defined by 

Vn = Tn_i + Tn+i. 
Since L2nVn = 5*2nTn (following the same steps as for Tn) 

ip(n) = A-1(2n+1Tn+1) = 2n+1Vn+1/5 + C. 

Setting/?^ 7,2T1±4V2/5 + C. Hence 
n 

£ 2kTk = 2n+1(Tn + Tn+2)/5 + (6T1-4T3)/5. 
k=l 

EXAMPLE. 
5 

12 2kl~k = 2*1 + 4*4 + 8*5+16*9+32*14 = 650 (1,4 sequence). 
k=l 
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By formula [26(14 +37) +6-4*5]/5 = 650. 
THE SUMMATION 

n 
E 'kTk. 

The direct approach leads to an apparent Impasse. We wish to find the inverse difference oirn+1Tn+i. Assume that 
it is of the form 

A[rkTn+i+rnn]. 

This approach parallels what is done in the solution of differential equations. k,j, and A are undetermined constants. 
Taking the difference and setting it equal to rn+1Tn+i we have 

A[rk+1Tn +r)+iTn-t +rk(r- l)Tn+1 +rHr- 1)TJ = rn+1Tn+1. 

Replacing 7"w_^ on the left-hand side by Tn+i - Tn and equating coefficients of Tn+i and Tn gives: 

A [rk(r -1) + ri+1] = rn+\ rk+1 + rHr - D - r>+1 = 0. 

From the second/ = k + 1. Then the first gives 

A[rk+1-rk+rk+2J = rn+1. 

Letting k = n + 1 and A = 1/(r2 +r- 1) establishes equality. Hence 

E rkjk = (rn+1Tn+i +rn+2Tn)/(r2+r- 1) + C, C = (-r2T0-rTt)/(r2+r- 1) 

n 
£ rkTk = [rn+lTn+l+rn+2Tn-r2To-rTl]/{r2+r-1). 
k=l 

EXAMPLE (1,4 sequence) 
5 

£ 3kTk = 3*7+32*4+33*5 + 34*9 + 3s*74 = 4305. 
k=i 

By formula, 

THE SUMMATION 

(36*23+37*14-27-3)/11 = 4305. 

FIBONACCI-FACTORIAL SUMMATIONS 

£ kTk = *M 
k=i 

Ay(n) = (n + 1)Tn+l 

AnTn = (n + 1)Tn~l + Tn 

AnTn+2 = (n + 1)Tn+l + Tn+2 

n 
A~Un + 1)Tn+l = nTn+2 - Tn+3 + T3+C = £ kTk 

k=i 

in which we have used the formula 
A~ Tn+2 = Tn+3- T3 

n = 1 gives 

Tt = T3-T4 + T3+C; C = 0 
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so that 
n 

V kTk = nTn+2-Tn+3 + T3. 

Note that this is also A~1(n + 1)Tn+l, a fact that is used in the next derivation. 
EXAMPLE (1,4 sequence) 

5 
J2 kTk = 1*1+2*4+3*5 + 4*9 + 5*14 = 130. 

k=l 
By formula 5*36 -60 + 5= 130. 

THE SUMMATION 

i k(2hh = spin) 
k=l 

A^W = (n+10Tn+1 

&n(2hn+2 = (n + lPhn+1 +2nTn+2 

£ k(2)Tk = n(2)Tn+2 - 2(n - 1)Tn+3 + 2Tn+4 -2T4 + C 
k=l 

in which the formula for the previous case was used. 
torn =2, 

2T2 = 2T4 - 2T5 +2T6 - 2T4 + C; C = -2T3 

£ k(2hk = n(2hn+2 - 2(n - 1)Tn+3 +2Tn+4 - 2T4 - 2T3 

k=l 

VERIFICATION (1,4sequence) 

5 
J2 k(2)Tk = 1*0*1+2*1*4 + 3*2*5 + 4*3*9 + 5*4*14 = 426. 

k=l 
By formula 

For/7 = J, 

5*4*37-2*4*60+2*97-2*9-2*5 = 426. 

THE SUMMATION 

£ k^Tu = <p{n) 
k=i 

A$(n) = {n + 1)(3>Tn+i 
^(3)Tn+2 = (n + D(3)Tn+1 +3n(2kn+2 

E k(3)rk = n(3)Tn+2-3(n-1)(2)Tn+3+6(n-2)Tn+4-6Tn+5+6T6 + C. 
k=l 

6T3 = 6T5-6T6+6T7-6Tg + 7T6 + C; C = 6T5 

£ k<3hk = n(3hn+2 - 3(n - 1Phn+3 + 6(n - 2)Tn+4 - 6Tn+5 + 6T7 . 
k=l 
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VERIFICATION (1,4 sequence) 

6 
]T k(3)Th = 6*5 + 24*9 + 60*14+720*23 = 3846. 
k=l 

By formula for n = 6, 
120*60 - 60*97 + 24* 157 - 6*254 +6*37 = 3846. 

The formulas for the next two cases are written down and the pattern that is emerging is noted. 

n 
£ K(4)Th = n(4hn+2 - 4(n - 1)(3)Tn+3 + 12(n - 2phn+4 - 24(n - 3)Tn+5 +24Tn+6 - 24T9 • 
k=l 

]T k&Tk = n(5hn+2-5(n- 1)(4hn+3+2Q(n -2)(3hn+4- 60(n -30Tn+s 

k=l 
+ 120(n - 4)Tn+6 - 120Tn+7 + 120Tt t . 

The pattern may be described as follows: 
For the rth difference: 

1. The first term \sn(r)Tn+2 . 
2. For the n portion, both n and r go down by 1 at each step. 
3. For the T portion the subscript goes up by 1 at each step for /* + 1 steps. 
4. The signs alternate. 
5. The coefficients are the product, respectively, of the binomial coefficients for r by 0!, 1\,2l,—,r!, respectively. 
6. The last term is rlT2r+i with sign determined by the alternation mentioned in 4. 

With the aid of these factorial formulas it is now possible to find polynomial formulas. For example. 

S ^ = E [k(4)+6k(3) + 7k(2) + k(1)]Tk . 
k=l k=i 

The first few formulas for the powers are given herewith. 

n 
X k2Tk = (n2+2)Tn+2-(2n-3)Tn+3-T6 
k=i 

n 
£ k3Tk= :(n3 + 6n- 12)Tn+2 - (3n2 - 9n + 19JTn+3 + 6T6 + T3 

k=l 

n 
Y, k4Tk = (n4 + 12n2~ 48n +98)Tn+2 - (4n3 - 18n2 + 76n - 159)Tn+3 - 13T8 - 11T7 

k=l 

n 
]T k5Tk = (n5 +20n3 - 120n2+490n - 1020)Tn+2 - (5n4 - 30n3 + WOn2 - 795n + l651)Tn+3 

k=i 
+ 120T9+30T6 + T3 . 

In these formulas considerable algebra has been done to reduce the number of terms down to two main terms by 
using Fibonacci shift formulas. 

GENERAL SECOND-ORDER RECURSION SEQUENCES 
Given a second-order recursion sequence governed by the recursion relation 

Tn+1 = PlTn +P2Tn-l 
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to find 
n 

Y, Tk = <p(n) 

A^p(n) = Tn+1 

^[Tn+PlTn-ll = Tn+1+P2Tn-Tn-P2Tn„1 = (Pi+P2-DTn. 
Provided P± + P2 -1 is not zero, 

n 
£ Tk = (T„+i + P2 T„)/(P2 +Pi-1) + C. 

k=l 
For/7= 1, 

Tt = (T2+P2T1)/(P2+Pi- D + C 
C = [(Pl-1)T1-T2]/(P2+Pi-D 

n 
£ Tk = [Tn+1 +P2Tn + (Pl ~ DTl - T2]/(P2 +Pt - 1). 
k=l 

EXAMPLE: Tn+1 = 5Tn-3Tn_t 

3 ,7 ,26 ,109 ,467 ,2008; 
5 

J2 Tk = 3 + 7 + 26 + 109+467 = 612 . 
k=l 

By formula (2008 - 3*467 + 4*3 - 7)/(5 - 3 - 1) = 612. 
SUM OF TERMS OF A THIRD-ORDER SEQUENCE 

Such a sequence is bound by a recursion relation of the form 

Tn+1 = PlTn+P2Tn-l+P3Tn-2. 
If 

n 
]T Tk = ip(n), A0/W = Tn+i 

k=i 

A (Tn + IP3 + P2)Tn-l + P3 Tn-2) = Tn+1 + &3 + ^Tn + P3 1n-1 1n 
= Tn+1 + (P3 +P2-1)Tn- P2 Tn_t - P3 Tn_2 = (Pi +P2+P3-DTn. 

Hence \\Pi+P2+P3-\ is not zero, 

E ffe = {T»+1 + (P3 + P2)T" + P3 Tn-ilMPl +P2+P3-D + C 
k=l 

Ti+T2 = [T3+(P3+P2)T2+P3T1]/(P1+P2+P3-1) + C 

C = [(Pt +P2- 1)Ti + (Pi - 1)T2 - T3]/(Pi +P2+P3-1) 
n 

E Tk = [Tn+l+(P3+P2)Tn+P3Tn-i + (Pi+P2-1)Tl+(Pl-1)T2-T3]/(Pl+P2+P3-1) 
k=l 

EXAMPLE. Tn+i = 3Tn + 2Tn_t - Tn.2 

1 + 2 + 4 + 15 + 179 = 252. Next term is 624. 
By formula (624 + 179 - 51 + 4* 1 + 2*2 - 4)/3 = 252. 
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FOURTH-ORDER SEQUENCES 
The recursion relation is 

Tn+i = PlTn+P2Tn-l+P3Tn-2+P4Tn-3. 
An entirely similar analysis as was made for third-order sequences leads to the formula 

Tk = [Tn+l+(P2+P3+P4)Tn+(P3+P4)Tn-l+P4Tn-2]/(Pl+P2+P3+P4-l) + C, 
where 

C = [(Pi +P2+P3- VTi +(Pt + P2-1)T2 + (Pl-1)T3-T4]/(XPi- 1). 

EXAMPLE. Tn+1 = 3Tn + 2Tn.t - 4Tn_2 + 3Tn.3 

1 + 3 + 4 + 6 + 17+ 56 + 190 + 632 = 909. Next term is 2103. By formula (2103 + 632 - 190 + 3*56 + 4*3 + 2*4 
- 6 ) / 3 = 909. 

FIBONACCI-COMBINATORIAL FORMULAS 

These are closely related to the Fibonacci-factorial formulas discussed on pp. 13-15. However the added simpli-
city of these formulas merits a listing of the first few to show the pattern. 

£ (5)7* = [nAT„+2 - Tn+3 + T3, £ (2I Tk = (2) Tn+2 -["J1 \Tn+3 + Tn+4 - T5 
k=l ' k=l 

£ [)\Tk= \n
3)T„+2-["]%+! +[n J 2)Tn+4-Tn+5 + T7 

n 

S (4 )Tk = ( 4 ) ^ + 2 ~ ( W 7 )Tn+3-h\^ \Tn+4-\~~i )Tn+5 + Tn+6 ~ T9 
k=l 

FIBONACCI EXTENSION: SUMMING MORE TERMS 

Sequences governed by 
Tn+l - Tn + Tn-t + Tn_2, 

where three rather than two preceding terms are added at each step have a summation formula 

n 
E Tk = (Tn+l +2Tn + Tnrl + Ti- T3)/2. 
k=l 

For sequences governed by 
Tn+1 = Tn + Tn_i + Tn„2 + Tn_3 , 

where the four previous terms are added 
n 

£ Tk = (Tn+l +3Tn +2Tn_t + Tn_2 +2Tt + T2- T4)/3. 
k=i 

Where five previous terms are added at each step: 
n 

Y, Tk = (Tn+l +4Tn +3Tn„t + 2Tn_2 + Tn_3 +3Tt +2T2 + T3- T5)/4. 
k=l 

Where six previous terms have been added at each step: 
n 

£ Tk = (Tn+l +5Tn+4Tn_1 +3Tn_2 +2Tn_3 + Tn_4 +4Tt +3T2 +2T3 + T4- T6)/5. 
k=i 
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EXAMPLE. 
1 + 2 + 4 + 5 + 7 + 8 + 27 + 53 + 104 + 204 = 415. 

By formula 
(403 + 5*204 + 4*104 + 3*53 + 2*27 + 8 + 4 + 6 + 8 + 5 - 8 1 / 5 = 415. 

CONCLUSION 

Finite differences have wide application in formula development. There are, of course, many situations in which 
the use of this method leads to difficulties which other procedures can obviate. But where applicable the results are 
often obtained with such facility that other procedures seem laborious by comparison. 

A GOLDEN DOUBLE CROSTiC 

MARJORIE BICKNELL-JOHNSON 
Wilcox High School, Santa Clara, California 95051 

Use the definitions in the clue story which follows to write the words to which they refer; then enter the appropri-
ate letters in the diagram to complete a quotation from a mathematician whose name appears in the last line of the 
diagram. The name of the book in which this quotation appeared and the author's last name appear as the first letters 
of the clue words. The end of each word is indicated by a shaded square following it. 

CLUE STORY 

The mystic Golden Section Ratio, (1 + >/5 )/2, called (A-1,A-2) (the latter most commonly), occurs in 
several propositions in (A-3, A-4) on Sine segments and (A-5) This Golden Cut fascinated the an-
cient Greeks, particularly the (D-1) who found this value in the ratio of lengths of segments in the (D-2) 
and (D:3) and who also made studies in (D-4) . The Greeks found the proportions of the Golden Rec-
tangle most pleasing to the eye as evidenced by the ubiquitous occurrence of this form in art and architecture, such 
as (C-1) or in sculpture as in the proportions of the famous (C-2) ; however, they may fiave been 
copying (C-3) for the Golden Proportion occurs frequently in the forms of living things and is closely re-
lated to the growth patterns of plants, as (C-4, C-5, C-6) in which occur ratios of Fibonacci numbers. The 
Golden Section is the limiting value of the ratio of two successive Fibonacci numbers (named for (G-1) ), be-
ing closely approximated by the (G-2, G-3) 

By some mathematicians, the beauty of the (N) relating to the Golden Section is compared to the theorem of 
the (D-1) and to such results from projective geometry as those seen in Pascal's "Mystic (B) __ " 
or even in the applications of mathematics in the Principia Mathematica of (I) while the constant (1 + V&)/ 2 
itself is rivalled by (E-1) and (E-2) 

Unfortunately, not all persons find mathematics beautiful. (H-1) was one of the four branches of arithme-
tic given by the Mock Turtle in Alice in Wonderland, and the card player's description of the sequence 2 ,1 ,3 ,4 , 7, 

,18, 29, 47, — would be (H-2) while some have to have all mathematics of practical use, such as in 
reading an (M) 

[The solution appears on page 83 of the Quarterly.) 
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STOLARSKY'S DISTRIBUTION OF THE POSITIVE INTEGERS 

M. D.HENDY 
Massey University, Palmerston North, New Zealand 

Let Fn be the A? Fibonacci number, where F} = 1, F2 = 2 and Fn+2 = Fn+i + Fn, Vn <E/I/. It is well known 
that 

n^F
n+1/Fn = *= W + y/5 ) , 

the larger root of the polynomial equation x2 = x + 1. Using the mappingg: N'-+N, 

g(r) = [ra + %], 
\.e.,g(r) isthe closest integer t o r n , we can give an alternate formulation of Fn. It is easy to show that, 

9<Fn) = Fn+l, V" ^ N, 
so as Fi = 7, 

Fn= g^dlVn <zN, 
where we set 

g°(r) = r, and gn(r) = gfg^fr}}, Vn e N. 
Hence the Fibonacci sequence is 

(FJ = (g^d)). 
For each r e N, we will show that the sequence Ig71'1^)) has the Fibonacci recursive property 

gn+1(r) =gn(r)+gn^(rKVh e N. 
K. Stolarsky constructed a table of these sequences to cover the positive integers in the following way. 

V m,n G N, we define: 

(a) S(m, 1) = least positive integer not in T(m) = {S(/,j): j e Nf i = 1', —, m - / } ; 
(b) S(m,n + 1) = g(S(m,n)). 

Effectively what is being constructed is a table of sequencesgn~ (r), where r is least integer not in an earlier 
sequence and,r= 1 is the starting value for the first sequence, the Fibonacci sequence. Obviously, by construc-
tion S will cover N. 

In Table 1, we list the 100 values of S(m,n) for/77,/7 < 10. It is easily shown (Theorem 1), that each positive 
integer r occurs exactly once as a value S(m,n), and that S(m,n +2) - S(m,n + 1) = S(mrn), (Lemma 1). 

n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

= 1 

1 

4 

7 

9 
12 

14 

17 

20 

22 

25 

2 

2 

6 

11 

15 

19 

23 

28 

32 

36 

40 

3 

3 

10 

18 

24 

31 

37 

45 

52 

58 

65 

Table 1 
4 5 
5 

16 

29 

39 

50 

60 

73 

84 

94 

105 

8 

26 

47 

63 

81 

97 

118 

136 

152 

170 

6 

13 

42 

76 

102 
131 

157 

190 

220 

246 

275 

7 

21 

68 

123 

165 

212 

254 

308 

356 

398 

445 

8 

34 

110 

199 

267 
343 

411 

499 

576 

644 

720 

9 

55 

178 

322 

432 
555 

665 

808 

932 

1042 

1165 

10 

89 

288 

521 

699 

898 

1076 

1307 

1508 

1686 

1885 

70 
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Stolarsky observed in his table, as far as he had calculated, that the differences between the values in col-
umns 2 and 1 of a given row, S(m,2) - S(m,l), were always integers that had previously occurred in one of 
these two columns. He conjectured that this was always the case. J. Butcher conjectured further, on the basis 
of computation, that this correspondence was one-to-one. 

In this paper we prove both these conjectures, as well as constructing other interesting properties of S(m,n). 
To facilitate our construction, we define the following functions: 

d:N-» N, dfm) = S(m,2) - Sfm, 1); 

h: N-^ (-1/2fy2)f Mr) = ra-gfr); 
and 

k:N->N,k(r) = [1-\WcL\2Mr)\] . 

Hence d(m) is the difference between columns 2 and 1 in row/w, and hfr) is the "closeness" of rato the near-
est integer. 

We will show firstly that S is a one-to-one and onto map N x N to N: 

Theorem 1. 
Vr G N, 3 1m, n G N : r = S(m ,n) . 

We will use this result to establish Stdlarsky's conjecture: 

Theorem 2, 
Vm e N,3n e N: d(m) = S(n,1) or d(m) = S(n,2). 

We will then improve Theorem 1 by finding explicit invertible formulae relating m,n to S(m,n): 

Theorem 3. 
S(m,1) = [ma2 -1/2a],S(m,n) = gn~l(S(mf1))/ Vm,n e N, 

n = k(S(m,n)), m = [S(m,n)a-n~l+ 1/2a] 
2 

Further we note that the sequence m, d(m), S(m,1) can be approximated by m, ma and ma , or more 
explicitly: 

Theorem 4 
For Mm) €= l-%, -1/2a2), 

d(m) = g(m)- 7, S(m, 1) = g(d(m)) - 1; 

for him) G (-1/2a-2, ha'1), 

dim) = glm) - 1, SfmJ) = g(d(m» + 1; 

and for h(m) e f^a'1, %), 

d(m) = g(m), S(m,1) = g(d(m» - / . 

This theorem leads to explicit invertible formulae relating dfm) to S(n, 1) and S(nf2): 

Theorem 5. 
For h(m) e= (-1/2,

 1/2a~3), 
dfm) = Sdma'1 + 1/2], 1); 

for h(m) G (1/2a-3, V2), 
dfm) = Sffma~2 + %], 2) ; 

while 

S(m,1) = d([ma+1/2a-2]l and Sfm,2) = dffma2 - Ka'1]). 

This leads finally to establishing Butcher's conjecture: 

Theorem 6. 

{dfm): m G N\ = {S(m,D : m G N) U {s(m,2) : m G N) . 
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We will now prove these theorems via the following lemmas. We will frequently use identities based on 
a2 = a+ 1, of the form 

an+1 = Fna+Fn_u Vn e N t 

a~n = (-l)n(Fn- Fn_ia), Vn e N. 
Lemma 1. Vr e /I/, g2(r) = g(r) + r. 
Proof. ar - 1/2 < gfr) < ar + 1/2 , 

=> agfr) - % < g2(r) < agfr) + 1/2, 
=> (a- l)g(r)-V2 < g2(r)-g(r) < (a- Vg(r) + % . 

But 
a(a- 1)r- 1Ma- 1) < (a- 1)g(r) < a(a- 1)r + 1/2(a- 1), 

and a(a- V = a2 - a = 7, 
so 

r - 1/2(a - 1) - 1/2 < g2(r) - gfr) < r + h(a- 1) + 1/2 , 
=> r - 1 < r - 1/2a < g2(r) - gfr) < r + 1Aa < r + 1. 

Hence as# (r) - gfr) is integral, ̂  (r) - gfr) = r, and the result of the lemma follows. 

Corollary. S(l,n) = Fn . 
Proof. TfD = yp =+:S(1J) = 1 = Fly Sfl,2) = g(1) = 2 = F2. 

By Lemma 1, 
S(1, n+2) = g2fS(hn)) = g(S(l,n))+S(l,n) = S(1, n + 1) + S(l,n), Vn e N 

so by induction, 
S(t, n +2) = Fn+1 +Fn = Fn+2, Vn e N. 

As we move from left to right across the table we find that each valueg(n)a gives a better approximation to 
an integer (g2(n)) than did na, (gin)). Explicitly we have the following recursive result. 

Lemma 2, Vn e N, h(g(n)) = -a~1h(n). 
Proof. h(g(n» = ag(n)-g2(n)t 

= ag(n) (mod 1), 
= a2n- ah(n) (mod 1), 
s an - ah(n) (modi), (as a2 = a+ 1), 
= h(n)- ah(n) (mod 1), 
= (1-a)h(n) (modi). 

l-a= -a'1, \hg(n)\ < 1/2, ^a^Mn^ < %, 
so h(g(n)) = -a~1h(n). 

Lemma 2 enables us to prove the following relation between S(m,n) and n, namely that r occurs in the 
k(r)th column of the table. 

Lemma 3. k(S(m,n)) = n, V m, n e N. 

Proof Let r = [SfmJIaT1], and set e = ra - S(m,1). 0 < e < 1. 

For m > 1, S(m,l) - 2 < gfr) < S(m,1) + /, so 

gfr) = S(m,1) or S(m,1) - 1. 

But gfr) e Tfm) as r < SfmJ), and S(m,7) 4 T(m) so 

gfr) = S(m,l)- 1, Vm > 1. 

Also g(O) = [%] = 0, S(1,1) - 7 = 0, so 
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g(r) = S(m,1) - 1, V m e N. 

Hence S(m,7) = far + 1/2] + 1, 

= [S(m,1) + 1/2 - e] + 1 

Further, h(S(m,D) s aS(m,1) (mod 1), 

= a~lS(m,1) (mod 1), (as a = 1 + a _ i ) , 

= -ea"1 (mod 1). 
Hence, for e < %a, 

h(S(m,D) = -ea'1 < -1/2ar1 , 
and for e > 1/2a, 

h(S(m,1» = 1 - ea-l > 7 - a'1 > £ a _ i , 
Thus in both cases 

\h(S(m,1))\ e VAaT1,*) => k(S(m,D) = 1. 

Now using Lemma 2, k(S(m,n + 1)) = k(S(m,n)) + i, so by induction, k(S(m,n)) = n. 
This means an integer r cannot appear in two different columns. In the next lemma, we show that no inte-

ger can appear more than once in any given column. 

Lemma 4. S(m + 1, n) > S(m,n), V m,n e N. 

Proof. By definition S(m,l) is not the least integer in T(m), and S(m + 1, 1) the least integer not in 
Tim + V D Tim) u {S(m, 1)), so S(m + 1,1)> S(m, 1) + 1. Also 

S(m + 1,2) = g(S(m + 1,V), 

> aS(m + l,1)-1/2, 

> a(S(m,1) + l)-1/2, 

> aS(m,1) + 1/2, 

> g(S(m,D), 

= S(m,2), 

\.e.,S(m + 1,2) >S(m,2). Now by induction, using Lemma 1, 

S(m + 1,n +2) = S(m + 1,n + 1)+S(m + l,n) > S(m, n + 1)+S(m,n) 

= S(m,n+2). Vm,n e N. 

Combining this final result with the two initial results we prove the lemma. 
Lemmas 3 and 4 now enable us to prove Theorem 1. By the sieve type definition S: N x N -> N must be 

onto. If S(mi, n\) = S(m2, 112) = r say, then by Lemma 3, n^= ri2 = k(r) and then by Lemma 4m 1 = m2. 
Hence S is one-to-one. We have proved: 

Theorem 1. V r e N, 3 1m, n e N : r = S(m,n). 

Stolarsky's conjecture can now be established by proving one more Lemma. 

Lemma 5. k(d(m)) < 2, V m e N. 

Proof. h(d(m» = ad(m) (mod 1), 

= aS(m,2)-aS(m,1) (modi) , 

= h(S(m,2))-h(S(m,D) (mod 1), 

Now by Lemma 2, h(S(m,2» = -a~1h(S(m,D), so 
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h(d(m» = -(l+a^hlSim.V) (mod 1), 

= -ah(S(m,V) (mod 1). 

Further h(S(m, V) e (-%, -ha'1) u (ha'1, 1/2) by Lemma 3, so 

h(d(m» = l-ah(S(m,V) if h(S(m,1))e (-fy-KaT1) 
and 

hfd(m)) = -1-ah(S(m,1)) if MSfm^m^f^a'1^), 
so in either case 

\h(d(m))\ = 1-a\h(S(m,1))\, 

> 1-1/2(L, 

= 1Aa'2. 
Hence k(d(m» < 2. 

As by Theorem 1, the value r = d(m) can occur in only one position, and as k(d(m)) < 2, by Lemma 3, d(m) 
appears in Column 1 or Column 2. Hence we have established our second theorem. 

Theorem 2. Vm G ^ J / i e N: d(rri) = S(n,1) or d(m) = S(n,2). 

We now return to improve the result of Theorem 1 by finding an explicit relationship between m,n and 
S(m,n). We note first 

Lemma 6. k([na2 - 1/2a]) = 1. 
Proof. Let r = [na2 - 1/2aJ. Now 

na - 1/2a = na- 1/2a (mod 1), 

= MM - ha (mod 1) . 

Also -2 < -1/2 - %a < MM - %a < 1/2 -
 7/2a < 0, so 

r = na - h(n) - t, 
where 

t = 2 for -% < MM < %a- 1 = -1/2a'2, 
and 

t = 1 for -%a~2 < MM < %. 
Further 

h(r) = ra (mod 1), 

= na - h(n)a- ta (mod 1), 

= 2na- h(n)a- ta (mod 1) , 

= h(n)(2-a)-ta (mod 1), 

= h(n)a -ta (mod 1). 

F o r - ^ < MM < -%a~2, 

t = 2 => -ta = -2a = -a3 (mod 1), 

- -1/2 < -y2a~2 - a'3 < h(n)a~2 - a'3 < ^Aa'4 - a"3 - -ha1, 
=> h(r) = Mn)a~2 - a'3 and k(r) = 1. 

For -y2a~2 <Mn)<1/2a'1 , 

t = 1 => -ta = - a = a'2 (mod 1) , 

=> ha1' < a~2(h(n)+1) < %t 

=> /?W = a~2f/7W * 1) and ArW = /. 
For Aa'1 < MM < 1/2, 
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t = 1 => -ta = -a = -a'1 (mod 1), 
^ -1/2 = 1/2a3 - a 1 < h(n) < %a~2 - a 1 < ^ a 1 , 
=> h(r) = a~2h(n) - a'1 and k(r) = I 

We can now show that the numbers [na2 - 1/2a] are the only integers occurring in Column 1. 

Lemma 7. S(n, 1) = [na2 - 1/2a]. 

Pro of. Let r = S(n, 1), th e n 
h(r + 1) = a(r + 1) (mod 1), 

= h(r) + a (mod 1). 
— 1 — 7 1 

Noting a = a = - a (mod 1) we find: f o r - & < h(r) < -1/2a~ , 
1/2a~3 < hM + aT1 < ha'1 => k(r + 1) > 1; 

and f o r - ^ c T ^ <h(r)<1/2, 
-%a~4 < h(r) - a'2 < %a3 - k(r + 1) > 1. 

Hence r+ 1 cannot be in Column 1, so Column 1 cannot contain two consecutive integers. 
Let tin) = [na2 - 1/2a], then 

na2 - 1/2a- 1 < t(n) < na2 - %a, 

no2 + a2 -1/2a- 1 < t(n + 1) < na2 + a2 - 1/2a, 
so 

na2 + a2 - %a- 1 - (na2 - %a) < tin + 1) - tin) < na2 + a2 - %a- (na2 - 1/2a- 1), 
and as 

na2 + a2 - 1/2a- / - (na2 - 1Aa) = a2 - 1 = a > 1, 
and 

na2 + a2 - 1/2a- (na2 - 7/2a- 1) = a2 +1 = a + 2 < 4, 
we have 

/ < t(n + l)- t(n) < 4. 

Hence t(n) and t(n + 1) are distinct integers whose difference is 2 or 3. They both occur in Column 1 (Lemmas 
6 and 3), so no other integer can occur in Column 1, as that would imply consecutive integers in Column 1. 

We can now specify S(m,n) with the following two lemmas. 

Lemma 8. S(m,n) = Sdn^a"1'1 + Fn_2h(S(m,V), V n e N. (Putting F0 = 1, F^ = 0.) 

Proof. Trivial for/7= /. 
AssumeS(m,n) = S(m,DaP'1 + Fn_2h(S(m,1)), for some/7 > 1, then 

S(m, n+1) = g(S(m,n)), 
= aSlm,n)+hlSlm,n)), 
= Sim, Van + Fn_2h(S(m, l))a + h(S(m,n». 

But, by Lemma 2, 
h(S(m,n)) = -a'1h(S(m,n - D), 

= (-a^r^fSfmM 
and 3sa-(n'1} = (-D^fF^ - Fn_2a), 

F^a+har^ = Fn-i. 
Hence 

S(m, n+1) = S(m, 1)an + Fn_t h(S(m, V). 

Thus, by induction, this result is true S//7 e N. 
From this result follows 

Lemma 9. m = [Sfm^ioT^1 + %a] . 

Proof. By Lemma 8, 
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\S(m,n)-S(mf1)an~l\ = Fn_2\h(S(m,l))\ < 1/2Fn_2.. 
Also, Fn_2 < an~2, so 

\S(m,n)-S(m,7)an-1\ < ha3. 
From Lemma 7 

ma2 - 1/2a- 1 < S(m,1) < ma2 - 1/2a, 
=> -ha'1 -a'2 < S(m,1)a~2 -m < -ha'1 . 

But, from above, 
-ha'3 < Simula'71-1 -S(m,1)<T2 < 1/2a'3, 

so adding 
-ha = -ha'1 - a2 - ha'3 < SfmsJaT"-1 - m < ha~3 - ha'1 

=> 0 < S(m,n)a~n~1 -m + ha<ha + ha'3 -ha'1 = a'1 < 7, 
=> m = [S(m/n)a~n~1 + ha] . 

This lemma concludes the results for Theorem 3, so combining the results of Lemmas 3, 7 and 9 we have: 

Theorem 3. S(m,7) = [ma2-ha], S(m,n) = g^Hslm,!)), Vm,n e N, 
n = k(S(m,n)), m -' [SfmjiJaT"-1 + ha] . 

We now examine formulae for d(m). 

Lemma 10. dim) = [ma-ha'1]. 
Proof. Let . , , 

elm) = [ma- ha ] , 
and se t y = ma- ha'1 - c(m), 0 < y < 1. 
As Sim, 1) = [ma2 - 1/2a], let 

e = ma2 -1/2a- S(m, 1), 0 < e < 1. 
Now 

e-y = m(a2 - a) + hla'1 -a) + c(m) - S(m, 1), 
= m-y2 + c(m)-$(m,1), 
= y2 (mod 1). 

Thus for e < ^ , y=e+1/2, 
Sim, 1) = c(m) + mf 

and for e > 1/2, y=e- y2/ 

Sim, 1) = elm) +m- 1. 
Further 

elm) + Sim, 1) = mla2 + a)- 1/2(a + a'1) - (e + y), 
= ma3 - 7/2fa3 -2)-(e + y), 
= lm-1/2)a3 +11-e-y), 

and 
Sim,2) = g(Slm,V), 

= aS(m,1)-h(S(m,V), 
= ma3 - %a2 -ea- h(S(m, 1)) . 

Combining these two results we find 
elm) + Sim, 1) - Sim,2) = h(a2 - a3) + lea-e-y)- h(S(m,!)) + !, 

= 1-y2a + (ea-e-y)-hfS(m,1)). 
ForO<e<h,y=e + h, 

c(m)+S(m,l)-S(m,2) = 7 - ha + ela-2) - 1/2 -h(S(m,D) e l-l,1-1/2a), 
and is integral, so 

elm) = S(m2)-S(m,1) = dim). 



1078] STOLARSKY'S DISTRIBUTION OF THE POSITIVE INTEGERS 

For 1/2 < e < 1, 

7 = e-%, 

c(m) + S(m,1) - S(m,2) = 1 - 1/2a+e(a-2) + 1/2 - h(S(m,V) G (%a- 1, 

and is integral, so 
c(m) = S(mJ) - S(m,1) = d(m). 

We can now formulate the relationship between m and d(m). 

Lemma 11. For h(m) G (~1/2, Aa'1), 
d(m) = g(m) - 1, 

for Mm) G (1/2a\1/2) 
d(m) = g(m). 

Proof. For h(m) G (-^M'1), 

g(m) = ma-h(m) G (ma- 1/2a , ma+ 1/2). 

Now this interval has length %a-l + & = £a < 1, and g(m) is integral, so 

g(m) = [ma- Aa'1] + 1 = d(m) + 1, 
by Lemma 10. 

For Mm) G (KaT1^), 
g(m) = ma-h(m) G (ma- 1/2/ma- 1/2a~ ). 

This interval has length 1/2 - 1/2a~1 = 1 - %a< 1, so 

g(m) = [ma - Aa'1] = d(m), 
Lemma 12. For h(m) G (-1/2,-

1/2a~2), 

h(d(m)) = -aT1(Mm)+lK k(d(m» = 1, 

iorh(m) G (-1/2a~2, 1/2a~3), 
h(d(m» = 1 - aT1 (h(m) + 1), k(d(m» = 1, 

for Mm) G (KaT3,^1), 
h(d(m)) = 1 - a'1 (Mm) + 1), k(d(m)) = 2, 

for Mm) G (Aa"1,1/.), 
h(d(m» = -a'1 (Mm)), k(d(m» = 2. 

Proof. From Lemma 11 
h(d(m)) = h(g(m) - SL), 

where c = 0 if Mm) > Aa'1, e = 1 otherwise. Hence 

h(d(m)) = ag(m)-asi (mod 1), 
= ma2 - ah(m) - ast (mod 1), 
= ma- ah(m) - ac (modi) , 
= h(m)(1 -a)-as. (mod 1), 

= -a'1 (Mm) + SL) (mod 1). 

For Mm) G (-%,-1/2a~2), s. = 1, 

=> -1/2 = -a'1(1 - 1/2a~2) < -a~1(Mm)+ 1) < -ha'1, 

=> h(d(m» = -a'^Mmt+D, k(d(m» = 1. 

For Mm) G (-1/2a~2, Aa'1), s. = 1, 

=> -1/2a = -a^d + Aa'1) < -a^Mmi+D < -1/2, 

=> Md(m)) = 1 -a~1(h(m)+ 1). 

In particular, if h(m) G (~y2a~ , 1/2a ) , 
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Aa'1 = 7-a'1(Aa'3 + 7) < hfd(m)) < 7 - a'U-Aa'2 + 7» = A => kfdfm)) = 7, 
and if him) e= (1AaT3, KaT1), 

Aa'1 = 7 - a'1 ma'1 + 7) < hfdfm)) < 7 - a'HAa'3 + 7) = Aa'1 => k(dfm)) = 2. 
For him) e (Aa'^A), Q=0, 

-'AcT1 < -a'1 h(m) < -Aa'2, 
*+ h(d(m» = -a"1 Mm), k(d(m» = 2. 

Now we can establish the relationship between d(m) and S(m,1). 
Lemma 13. Fox Mm) e (~1A, -Aa'2) u (Aa'^A), 

S(m,l) = gfdfm))- 7. 
For him) <E f-Aa'2, Aa'1) 

S(m,l) = gfdfm)) + 1. 
Proof. For him) e f-A,-Aa'2), 

g(d(m» = ad(m) - h(d(m))f 

= ag(m) - a+a~1(h(m)+ 1), (Lemmas 11 and 12), 
= ma2 - ah(m) -a + a^fhfm) + 7), 
= ma2 + (a-1 - a)(h(m) + 7), 
= ma2 - (h(m) + 7), 

=> ma2 - Aa = ma2 - (7 - Aa~2) < g(d(m)) < ma2 - A, 
=> g(d(m)) = [ma2 - Aa] + 7 = S(m, 1)+1. 

For Mm) e (-Aa~2, Aa'1), 
gfdfm)) = ad(m) - hfdfm)), 

= ag(m) -a + arl(h(m) + 7)- 7, (Lemmas 11 and 12), 
= ma2 - Mm) - 2, 

=> ma2 - Aa-1 - 2 < g(d(m)) < ma2 + Aa'2 - 2 = ma2 - Aa- 7, 
- g(dfm)) = [ma2 - Aa] - 7 = S(m, 1)-1. 

For him) e (Aa'^A) 
gld(m)) = adfm) - hfdfm)), 

= ma2 - ah(m) + a'1 Mm), (Lemmas 11 and 12), 
= ma2 - h(m), 

=> ma2 - Aa < ma2 -A< g(dfm)) < ma2 - Aa'1 < ma2 - Aa+ 7, 
=> gld(m)) = [ma2 - Aa] + 1 = Sim, 1)+1. 

We can now combine the results of Lemmas 11,12 and 13 to give the result: 

Theorem 4. For Mm) e f-A,-Aa~2), 
dim) = glm) - 7, Sim, 7) = gfdfm)) - 7; 

iorhfml^f-Aa^/Aa'1), 
dfm) = gfm) - 7, Sim,7) = gfdfm)) + 7; 

and for///W e (Aa'1,A), 
dfm) = gfm) Sfm, 7) = gfdfm)) - 7, 

We now turn to the problem of finding the values of i,j, so that dfm) = SfiJ), for a given m e N. 

Lemma 14. If dfm) = Sfr, 7), then r = [ma'1 + A] . 
Proof. By Lemma 12, 

k(dlmj) = 7 => Mm) e f-A, Aa'3), 
=> dfm) = gfm) - 7, (Theorem 4), 
= [ma+A] t- 7, 
= ma- A- €, 0 < e < 7. 
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MsoS(rJ) = [ra2 -1/2a], so dim) = S(r,1), 

=> ra2 - 1/2a- 1 < ma- 1/2 - e < ra2 - 1/2a, 
=> r < ma'1 + y2a~1 + %a~2 - ea~2 < r + a~2 , 
==> r < r + ea~2 < ma'1 + 1/2 < rt(1 + e)a~2 < r +2a~2 < r+1, 
=> r = [ma-1 + 1/2] . 

Lemma 15. If d(m) = S(r,2), then r = [ma~2 + 1/2]. 

Proof. d(m) = S(r,2) - k(d(m)) = 2, 
=> him) e (1/2ar3, 1/2), (Lemma 12). 

Let r = [ma~2 + 1/2] = ma~2 + 1/2 - e, 0 < e < 1. Now 

e = ma~2 + % (mod 1), 
= -ma+% (mod 1), 
= y2-h(m) (mod 1). 

But 1/2a'3 < him) < 1/2, so e= 1/2 - him), and r = ma'2 +h(m)f 

S(r,l) = [ra2 -1/2a] f 
= [m + h(m)a2 - 1/2a] . 

Forh(m) G (%a3, UaT1), -1/2 <h(m)a2 -1/2a<0, 
- S(r,1) = m-1 
=> Sir,2) = g(S(r,1)), 

= glm - 1), 
= [ma- a+1/2], 
= [glm) + him) - a+1/2] . 

Nowg(m) - 1 <g(m) +h(m) - a+% < glm) - 1/2a, 
- S(r,2) = glm) - 7, 

= d(m) by Theorem 4. 

for him) G (KaT^H 
Sir,2) = g(S(r,1)l 

= glm), 
= dim) by Theorem 4. 

Lemma 16. S(m,l) = df[ma+1/2a~2]l V m e N. 

Proof. Let n = [ma+1/2a~2] = ma+1/2a~2 -e, 0 < e < 1, 

=> ma+1/2a~2 - 1 < n < ma+1/2a~2, 
=> m = m + 1/2ar3 -a-1 + 1/2 < na-1 +% < m + 1Aa~3 + 1/2 = m + a' 
=> m = [na'1 + %] . 

Also 

Hence 

Further, 

For 

e = ma+1/2a 2 (mod 1), 
= hlm) + 1/2a~2 (mod 1). 

e = him) + 1/2a~2 + 1 for him) G {-%, -1/2a~2), 
e = him) + 1/2a~2 for him) G l-1/2a~2

f
 1/2). 

h(n) = na (mod 1), 
= ma2 + tea'1 - ea (mod 1), 
= him) + tta'1 - ea (mod 1), 

him) G (-y2/ -y2a-2K e = h(m) + 1/2a'2 + 1, 
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=> h(n) = -a~1h(m) - a (mod 1), 
=> h(n) = -ar1h(m)-a+ 1, 

= -a-1 (Mm)- 1), 
=> h(n) G (-%,-%a-i)m 

For Mm) G (-1/2a-2, %), e = Mm) + %a'2, 

=> Mn) = -a'1 h(m) (mod 1), 
=> Mn) = -a him), 
- Mn) G (-Kar1, 1/2a~3). 

Hence in either case Mn) G (-%, 1/2a~3), so applying Lemma 14, 

tf/n,/; = SdnaT1 +%], V = d(n) = d([ma +AaT2]). 

Lemma 1 7. S(m,2) = d([ma2 - 1/2a71]), Vm•' e N. 

Proof. Let n = [ma2 - 1/2a
1] = ma2 - Aa'1 - e, 0 < e < 1, 

=> /7?a2 - ^ a _ i - 1 < n < ma2 - Aa'1, 
=> m < na2 + V2a~3 + a~2 = na~2 + 1/2 < m + a~2 , 
=> m = [nor2 + 1/2]. 

Also 

Hence 

Further 

e = ma2 - 1/2a
 1 (mod 1), 

= Mm)-ha-1 (mod 1). 

e = Mm) - ha'1 + 1 for Mm) G t-%, V.a'1), 

e = Mm) - ha1 for Mm) G (KaT1, %). 

h(n) = /7a (mod 1), 
= 777^ - % - ea (mod 1), 
= 2ma- 1/2 - ea (modi) , 
= 2h(m)-1/2-ea (mod 1). 

For Mm) G f - & , ^a'^Jt e = / / f e ; - 'ACT1 + 7, 

=> /7//7J = a~2h(m)- a (mod 1), 
=> Mn) = a'2Mm)-a + 2, 

= a-2(1 + h(m)), 
=> Mn) G IKar2,^). 

For Mm) (E ('AaT^H e = h(m) - M'1, 
- /7(W = Mm)(2-a) (mod 1), 

= a~2h(m) (mod 1), 
- /7/W = a'2 Mm), 
- /JW G ^a-^, ^a-^. 

Hence in either case h(n)^(1/2a~3, 1/2), so applying Lemma 15, S(m,2) = S([na~2 + 1/2], 2) = d(n) = d<[ma2- Aa*1 ]) 
These four Lemmas together with Lemma 12, give us Theorem 5. 

Theorem 5. tf/W = Sdmar1 + 1/2], 1) if -% < Mm) < 1/2a~3, 
= S([ma-2 + y2],2) if -%ar3 < Mm) < 1/2, 

S(m,1) = d([ma+1/2a~2])f 

S(m,2) = d([ma2 -Kar1)), V m G N. 
We can note now from Lemma 10 that as d(m) <ma- Aa'1<m(a+ 1) - Aa'1 - 1 <d(m + 1), the sequence 
d(m) is strictly monotonic increasing and hence by Theorem 5 we establish Butcher's conjecture. 

Theorem 6. 
[S(m,1):m G N) U \s(m,2): m G N) = [d(m):m G N) . 



ON A CONJECTURE CONCERNING A SET OF SEQUENCES' 
SATISFYING THE FIBONACCI DIFFERENCE EQUATION 

J. C. BUTCHER 
The University of Auckland, Auckland, New Zealand 

Let a= (1 + sj§ )/2 and consider the set of sequences 

S = { (1 , 1, 2, 3, 5, 8, 13, •••), 
(2, 4, 6,10,16,26, 4 2 , - ) , 
(4, 7,11,18,29,47, 7 6 , - ) , 
(6, 9 ,15 ,24 ,39 ,63 ,102, - ) , 
( 7 , 1 2 , 1 9 , 3 1 , 5 0 , 8 1 , 1 3 1 , - ) , - } , 

where a sequenceU = (UQ, U%, 112, •-) is in S iff it satisfies the conditions 

(1) uo, u\, U2, — are positive integers 

(2) u satisfies the Fibonacci difference equat ion^ = Un-l+un-2 (n = 2,3,4,—) 

(3) there does not exist an integer* such that \ax-ui\ < Yz 

(4) \aut -U2\ < 34. 

Note that, for given u± , there must exist an integer U2 satisfying (4), because of the irrationality of a. 
For/7 = 0 ,1 ,2 , - le t 5M = {un : U(ES}. It has been conjectured by Kenneth B. Stolarsky that for any u^S, 

the value of U2 - u^ equals the value of either v^ or V2 for some veS. Since 1/2 = UQ + UI, this is equivalent 
to saying that SQ C SI U S2. In this paper we prove the stronger result, that So = Si u S2 . 

Lemma 7. If UGS then for all n= 1,2, -

(5) aUn/2 < laun-i-un] < a2~n/2 
and 
(6) aUn!/2 < \a2un_i-un+1\ < a2~n/2. 

Proof. We first show that, for any u, there is a constant C such that for all n = 1,2, -

(7) C = an\aun.! - un\ . 

If Cn denotes the value of C given by (7) we have 

Cn+1 = an+1 \aun - un+11 = an \a2un- aun+1 \ 
= an\(a+ 1)un - aun+1 \ = an\a(un+1 - un) - un\ 
= an\cwn^ -un\ = Cn. 

From (4) we see that C = a2\au\ -U2\ < o?/2; also we see that C = a\auo - ui | < a/2 since \OLUQ- U\ \ 
cannot equal Vz because it is irrational, and cannot be less than ]4 by (3). Combining these inequalities we ob-
tain (5). To prove (6) we simply note that 

\a2un_t - un+1 \= \(a+ 1)un„i -un- un-i \ = \aun_i - un\ . 

Lemma 2. 

U s« 
n=l 

81 
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is the set of positive integers. 

Proof. If there were positive integers not in this union, let y be the lowest of these. Since y is not a mem-
ber of Si, there exists an integer* such that \ax - y\ < Vz. Sincex is a positive integer less than y, it must lie 
in u™=iSn and therefore x = un for somet/eS and n a positive integer. Since \aun - y\ < V2, \aun - un+i | 
< 1/2 it follows that y - un+i e Sn+i. 

Lemma 3. So c Si u S2 . 
Proof. If this result did not hold, because of Lemma 2, there would exist */,i/e,S and/? > 2 such thatun = 

VQ. By (2) we then find 
V2 - un+2 = (vt + v0) - (un+i + un) = vi- un+t 

so that 
\(a- 1)(vi -un+1)\ = \favi -V2>-(aun+i - un+2>\ < 1/2 + 1/2a~n < %(1 + a~3), 

where we have used Lemma 1 to bound \avi - V2 | and \aun+i - un | and made use of the fact that n > 3. 
Since a = 2 a - 3 we find 

\n-un+i\ < ^ • L(1+2a-3) = 1 

so that vi = un+i. Using Lemma 1 again we find that 

¥2 < \avo -vA = \aun - un+i I < a1~n/2 < 1A, 
a contradiction. 

Lemma 4. Si c So. 

Proof Let s = +1 if aui - u2 > 0 and —1 otherwise. 
By Lemma 1, we have 

Let y = u2 + s so that 

a-1 

?j- < stout - u2) < Y2. 

1-< -sfaui-y) < 7 - 5 L . 

which implies that 
\„„ „\ . i a 1 _ 1 a'1 _ - a- 1 _ a 2a-3 ^ a \aut-y\ < 1- — - 1- — - 1- — - — < -

If there were an x such that \ax - y | < 34, it would follow that 

\aui -ax\ < 

which implies 

a+1 _ a2 

\ui-x\ < | < 7 

so that ui = x and U2 = y which is impossible since \u2~ y\ = 1- Hence, no such x exists and therefore y = vi 
for some i / e& Thus \aui - Vf | < (a/2). We now find 

\ul ~~vo\ = \ul~v2 + vi\ < \ui — a" Vi\ + | a" vi -V2 + vi\ = (a- 1) \aui -vi\ + \avj_ - 1/2 \ 
(a- 1)a + L = 7 

2 2 
so that £/̂  = vo^S. 

Lemma 5. S2 c So. 

Proof. Let s = +1 if a U2~ U4 > 0 and - 1 otherwise. By Lemma 1, we have 
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so that \\y = U4 +s then 

Since 

it follows that 

Vy<s(a2u2-u4) < ?y 

7 - ^ < -s(a2u2-y} < T-~ 

«±>Q and / - «£= ! 
\a2u2-y\ < f 

2 
If there were an integer w such that | a w-y\ < Yi it would follow that 

implying that w = U2 and that y = 1/4, contradicting the fact that \y - U4 \ = 1. On the other hand, there is an 
integer* = y - U2 such that | a * - y | < 14 since 

\ax-Y\ = \(a-Vy-au2\ = (a- V\y - a2u2\ < a(a~ V = \ • 

The existence of x (and the non-existence of w) satisfying these conditions, implies that y = V2 for some I/<E& 
Thus, 

\a2u2-v2\ < J -
We now find 

\u2-v0\= \u2 + v1-v2\ < \v2a~2-u2\ + \v2(1 -a~2)-Vi\ 

= a2(\v2-a2U2\ + \v2a-a2v1\) < ^j- + ̂ - = a'1 < 1 

so that U2 = VQ e So . 
Combining the results of Lemmas 3, 4, 5 we have 

Theorem. So =• St u S2 . 

A GOLDEN DOUBLE CROSTiC: SOLUTION 

MABJORIE BICKNELL-JOHNSON 
Wilcox High School, Santa Clara, California 95051 

"Geometry has two great treasures: one is the theorem of Pythagoras; the other, the division of a line into extreme 
and mean ratio. The first we may compare to a measure of gold; the second we may name a precious jewel." 
J. Kepler. Quotation given in The Divine Proportion by Huntley (Dover, New York, 1970, p. 23). 



BINARY SEQUENCES WITHOUT ISOLATED ONES 

Hi CHARD AUSTIN and RICHARD GUY 
University of Calgary, Calgary, Canada 

Liu [2] asks for the number of sequences of zeros and ones of length five, such that every digit 1 has at least 
one neighboring 1. The solution [1] uses the principle of inclusion-exclusion, although it is easier in this par-
ticularcase to enumerate the twelve sequences: 

00000, 11000,01100,00110,00011, 11100,01110,00111, 11110,01111, 11011, 11111. 

In order to obtain a general result it seemed to us easier to find a recurrence relation. 
Call a sequence good if each one in it has a neighboring one, and let an be the number of good sequences of 

length n. For example, 
al = I 32 = 2, a$ = 4, a4 = 7 and a^ = 12. 

Good sequences of length n are obtained from other good sequences of length n - 1 by appending 0 or 1 
to them, except that 

(a) some not good sequences are also produced, namely those which end in 01, but are otherwise good, and 
(b) there are good sequences which are not produced in this way; those obtained by appending 011 toa 

good sequence of length n - 3. 

So 
(D an = 2an,1 - an_2 + an-3 • 
Alternatively, all good sequences are obtained from shorter good sequences by appending 0,11 or0111, so 
that 
(2) an = an„i +an_2 + an-4-

The characteristic equation for (2) is the same as that for (1), namely 
(3) x3 -2x2 +x- 1 = Of 

except for the additional root - 1 . The equation (3) has one real root, y « 1.754877666247 and two com-
plex roots, a± t'P, the square of whose modulus, 1/7, is less than 1. 

an = cyn + (a+/b)(a*-/p)n + (a - ih)(a-i$)n, 
where 

a = 1 -Y2y « 0.122561166876, 0 = J2y*-4yl2 « 0.744861766619, 
a = ( 7 2 - 2 T + 2 ) / 2 ( 2 T 2 - 2 T + 3 ) « 0.138937790848, b = (2?+1) ( ? - D/2/3 - 0.202250124098, 

c = ( y 2 + 1 ) / ( 2 7 2 - 2 7 + 3 ) « 0.722124418303, 

and an is the nearest integer to cyn. 

• The sequence {an } does not appear in Neil Sloane's book [3 ] ; nor do the corresponding sequences {afi*' } 
of numbers of binary sequences of length n in which the ones occur only in blocks of length at least k. The 
problem so farconsidered is k= 2. The more general analogs of (1), (2), (3) are 

(1') an = 2an-i - an„2 + an_k-i, 
(2') an = an„i+ an„k + an-k~2 + an-k-3 + '" + an-2k > 
(3') xk+1-2xk+xk'1- 1 = O. 

Then 
84 
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,(h) = a-i &) = k-i 1; 1 + 1Mr+1)(r + 2) 

for 0 < r < k; and for larger values of n, a ^ is the nearest integer to c^ y\, where y^ is the real root of (3') 
which lies between 1 and 2, and c^ is an appropriate constant. Approximate values of y$, and cy, for k- 1(1)9 
are shown in Table 1. 

Table 1 

k 1 2 
yk 2 1.7549 
ck 1 0.7221 

The sequence {a„ } is similar to the Lucas sequence associated with the Fibonacci numbers, since 73 = 
(1 + V5 )/2, the golden number. 

The characteristic polynomial for (2') is the product of that for (V) with the cyclotomic polynomial x + 
x
k~2 + ... + x + 1 \/\/nen /< j s odd, (3')js of even degree and is reducible and has a second real root between 0 

" for/7 = 0(1)26, A: = 2(1)9. Of course, a^ = 2n, the number of un-

3 
1.6180 
0.5854 

4 
1.5289 
0.5033 

5 
1.4656 
0.4481 

6 
1.4178 
0.4082 

7 
1.3803 
0.3778 

8 
1.3499 
0.3539 

9 
1.3247 
0.3344 

and - 1 . Table 2 gives the values of ah ' 
restricted binary sequences of length n. 

*W ,P) 
Table 2 

JV J5) J6) JV JS) „(9) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

1 
1 
2 
4 
7 
12 
21 
37 
65 
114 
200 
351 
616 
1081 
1897 
3329 
5842 
10252 
17991 
31572 
55405 
97229 
170625 
299426 
525456 
922111 
1618192 

1 
1 
1 
2 
4 
7 
11 
17 
27 
44 
72 
117 
189 
305 
493 
798 
1292 
2091 
3383 
5473 
8855 
14328 
23184 
37513 
60697 
98209 
158905 

1 
1 
1 
1 
2 
4 
7 
11 
16 
23 
34 
52 
81 
126 
194 
296 
450 
685 
1046 
1601 
2452 
3753 
5739 
8771 
13404 
20489 
31327 

1 
1 
1 
1 
1 
2 
4 
7 
11 
16 
22 
30 
42 
61 
91 
137 
205 
303 
443 
644 
936 
1365 
1999 
2936 
4316 
6340 
9300 

1 
1 
1 
1 
1 
1 
2 
4 
7 
11 
16 
22 
29 
38 
51 
71 
102 
149 
218 
316 
452 
639 
897 
1257 
1766 
2493 
3536 

2 
4 
7 
11 
16 
22 
29 
37 
47 
61 
82 
114 
162 
232 
331 
467 
650 
894 
1220 
1660 

1 
1 
1 
1 
1 
1 
1 
1 
2 
4 
7 
11 
16 
22 
29 
37 
46 
57 
72 
94 
127 
176 
247 
347 
484 
667 
907 

2 
4 
7 
11 
16 
22 
29 
37 
46 
56 
68 
84 
107 
141 
191 
263 
364 
502 

Since these are recurring sequences, they have many divisibility properties. Examples are 5 ^ ^ just if n = 

- 4 or - 2 , mod 12; 8 | a ^ just if n = - 4 o r - 2 , mod 14 and 2|a^ ' according to the residue class to which n 

belongs, mod 2(2(k+1)/2 - 1), k odd, or mod 2k+1 - 1, k even. 
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ON THE EQUALITY OF PERIODS OF DIFFERENT 
MODULI IN THE FIBONACCI SEQUENCE 

JAMES E. DESMOND 
Pensacola Junior College, Pensacola, Florida 32504 

Let m be an arbitrary positive integer. According to the notation of Vinson [1, p. 37] let s(m) denote the period 
of Fn modulo m and let f(m) denote the rank of apparition of m in the Fibonacci sequence. 

Let p be an arbitrary prime. Wall [2, p. 528] makes the following remark: "The most perplexing problem we have 
met in this study concerns the hypothesis s(p2) ? sip). We have run a test on a digital computer which shows that 
s(p ) t s(p) for all p up to 10,000; however, we cannot yet prove that s(p2) = s(p) is impossible.The question is 
closely related to another one, "can a number x have the same order mod p and mod p2?," for which rare cases give 
an affirmative answer (e.g., x = 3, p = 11;x = 2,p = 1093); hence, one might conjecture that equality may hold for 
some exceptional p." 

Based on Ward's Last Theorem [3, p. 205] we shall give necessary and sufficient conditions iorsfp ) =s(p). 
From Robinson [4, p. 30] we have for/77,/7 > 0 

(1) Fn+r = Fr (mod m) far all integers r if and only if s(m) \n. 

If m,n > 0 and m \n, then Fsrnj+r = Fr (mod m) for all r. Therefore by (1), s(m) \s(n). So we have for m,n > O 

(2) m\n implies s(m)\s(n). 

It is easily verified that for all integers n 

(3) F2n+1 = (-Dn +Fn+lLn-
From Theorem 1 of [1, p. 39] we have X\\dXs(m) is even if m > 2. 
An equivalent form of the following theorem can be found in Vinson [1, p. 42]. 

Theorem 1. We have 
i) s(m) = 4f(m) if and only if m > 2 and f(m) is odd. 

ii) s(m) = f(m) if and only if m = 1 or 2 and s(m)/2 is odd. 
iii) s(m) =2f(m) if and only if f(m) is even and s(m)/2 is even. 
To prove the above theorem it is sufficient, in view of Theorem 3 by Vinson [1, p. 42], to prove the following: 

Lemma. m = 1 or 2 ors(m)/2 is odd if and only if d\m and 2\f(p) but 4 (///?,/for every odd prime,/?, which 
divides m. 

Proof. Let m = 1 or 2 or s(m)/2 be odd. If m = 1 or 2, then the conclusion is clear. So we may assume that m > 
2 and s(m)/2 is odd. Suppose %\m. Then by (2), 12 = s(8)\s(m). Therefore s(m)l2 is even, a contradiction. Hence 
8f/77. 

Let p be any odd prime which divides m. From [1, p. 37] and (2), f(p)\s(p)\s(m). Therefore 4 ]/ f(p). Suppose 
2 \f(p). Then by Theorem 1 of [1,p. 39] and (2), we have 4f(p) = s(p)\s(m), a contradiction. Thus 2\f(p). 

Conversely, let 8 (/wand 2 \f(p) but 4 \f(p) for every odd prime,/?, which divides m. Let/? be any odd prime which 
divides m and let e be any positive integer. From [1, p. 40] we have that f(p) and f(pe) are divisible by the same 
power of 2. Therefore 2\f(pe) and %\f(pe). Then since 
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f(p6) f(P
e)l2Lf(pe)l2 

and/?6IF e and (Fn, Ln) = d<2 <p for al! integers/?, we havepe\L e . So by (3), 
J(P )l2 f(p )I2 

ftp ) + 1 

Therefore by definition, f(pe) = s(pe). 
Now, suppose that m > 2 and s(m)/2 is even. Let m have the prime factorization m = 2ap<\1 -Pyrmtfoa> 0. 

Then by [1, p. 411 
s(m) = i.c.m. [s(2d),s(p?)} . 

Then 4\s(mj implies $\s(2a) or 4\s(pJj') for some/such that 1 </</-. If 4\s(2a), then5 > 3. Thus 8\m, a contra-

diction. If %\s(p:3) = f(p:J), then we have another contradiction. Therefores(m)/2 is odd orm = 1 or 2. 
Various relationships of equality between integral multiples of s(m), f(m),s(t) and fit) for arbitrary positive inte-

gers m and t can be obtained as corollaries to Theorem 1. We mention only the following: 
Corollary 1. If m > 2 and t > 2 and 
i) s(m)/2 and s(t)/2 are both odd, or 
ii) f(m) and fit) are both odd, or 
iii) s(m)/2, s(t)/2, f(m) and fit) are all even, 
then s(m) = s(t) if and only if f(m) = f(t). 

Theorem 2. Let m and t be positive integers such that m\Lf(mj/2 if f(m) is even and t\Lf(t)/2 if ̂  »s even-
Then s/W = s/W if and only if f(m) = f(t). 

Proof. Let s(m) = s(t). We have m = 1 iff t = 1 and /?? = 2 iff f = 2, so we may assume that m > 2 and t > 2. By 
Corollary 1, we need only consider the case; s(m)/2 = s(t)/2 is even and f(m) and f(t) have different parity, say f(m) 
is odd and f(t) is even. Then by Theorem 1, 4f(m) = s(m) = s(t) = 2f(t). Therefore f(t)/2 = f(m) is odd. Since f(t) is 
even we have by hypothesis that t\Lf(tj/2. Thus by (3), 

Ff(t)+1 - (-V(f(t),2)+1 - 1 (mod?). 
But t\Ff(t) and f(t) < s(t). This contradicts the definition of s(t). Therefore the case under consideration cannot occur. 

Conversely, let f(m) = f(t). As before we may assume that m > 2 and t > 2. By Corollary 1, we need only consider 
the case; f(m) = f(t) is even and s(m)/2 and s(t)/2 have different parity, say s(m)/2 is odd and s(t)/2 is even. Then by 
Theorem 1, 

2s(m) = 2f(m) = 2f(t) = s(t). 

Therefore f(t)/2 is odd. Since f(t) is even we have t\Lf(t)/2- Thus by (3), Ff(t)+i = 1 (mod t). But t\Ff(tj and f(t) < 
s(t). This is a contradiction and therefore the case under consideration cannot occur. 

Corollary 2. Let/7 and q be arbitrary odd primes and e and a be arbitrary positive integers. Then s(pe) = s(qa) 
\im^m\\j\U(pe) = f(qa). 

Proof. By Theorem 2 we need only show that if f(pe) is even then/?61L e . We have 
J(P J'2 

F e = F e L e and pe YFr e and (Fr/ e , , L r, e , = d < 2 < p. 
f(P ) ftP )I2 ftpe)l2 H * ftpe)l2 ftpe)l2' ftpe)l2 

Thus/?e|Z. e . 
' ftp6)l2 

Corollary 3. Let <bn(x) = x+x2/2 + - + xn/n, and letk(x) = kp(x) = (x^1 - 1)/p, wherep is an odd prime 
greater than 5. Thens(p2) = s(p) if and only if <p(p-i)/2(5/9)=2k(3/2) (mod/?). 

[Continued on page 96.] 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A.P.HILLMAN 

University of New Mexico, Albuquerque, New Mexico 87131 

Send all communications regarding Elementary Problems and Solutions to Professor A. P. Hillman, 709 Solano Dr., 
S.E.; Albuquerque, New Mexico 87108. Each solution or problem should be on a separate sheet (or sheets). Prefer-
ence will be given to those typed with double spacing in the format used below. Solutions should be received within 
four months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2 = Fn+l + Fn> F0 = 0, F± = 1 and Ln+2 = Ln+t +Ln, LQ = 2, Li = 1. 

Also a and b designate the roots (1 + N/5)/2and (1 -sj5)/2, respectively, of x2 - x - 1=0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-370 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

Solve the difference equation 
Un+2 ~ 5un+i + 6un - Fn. 

B-371 Proposed by Herta T. Freitag, Roanoke, Virginia. 
Let 

Fn k 

k = l j=l 

where Tj is the triangular number j(j + 1)/2. Does each of n = 5 (mod 15) and n = 10 (mod 15) imply that Sn = 0 
(mod 10)? Explain. 

B-372 Proposed by Herta T. Freitag, Roanoke, Virginia. 

LetSn be as in B-371. DaesSw = 0 (mod 10) imply that n is congruent to either 5 or 10 modulo 15? Explain. 

B-373 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California, and P. L Mana, Albuquerque, 
New Mexico. 

The sequence of Chebyshev polynomials is defined by 
C0 (x) = 1, C± (x) = x, and Cn (x) = 2xCn_1 (x) - Cn_2 M 

for n = 2, 3, —. Show that cos [ir/(2n + 1)] is a root of 

[Cn+l(x) + Cn(x)]/(x+1) = 0 
and use a particular case to show that 2 cos (W5) is a root of 

x2 - x - 1 = O. 

B-374 Proposed by Frederick Stern, San Jose State University, San Jose, California. 

Show both of the following: 
88 
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nn+2 
Fn = — tf cos (TT/5))H . sin (ir/5) * sin (3TT/5) + fcos (3n/5))n - sin (3n/5) - sin (9n/S)J t 

Fn = (dll^l [(cos (27r/5))n . sin (2ir/5J - sin f07r/S7 + (cos f4vr/5>Mn . sin (4n/5) • sin r/^rr/W . 

B-375 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Express 

2 n+l 4 
£ tfcos (kn/5)in • sin ^ T T / # . sin (3kir/5)] 

5 ^ 
in terms of Fibonacci number, Fw . 

SOLUTIONS 
TRIANGULAR CONVOLUTION 

B-346 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Establish a closed form for 
n 

£ F2kTn-k + Tn + 1, 
k=l 

where Ty, is the triangular number 

( f e+2) = (k + 2)(k+1)/2. 

Solution by George Berzsenyi, Lamar University, Beaumont, Texas. 

Using well-known generating functions one finds that 

E ( £ F2kTn-k + Tn + i\xn = £ ( £ f2fer„_fe) *" + £ r„*n
+£ *" 

n=0 \k=0 I n=0 \k=0 j n=0 n=0 

=(£ v U f : TnxA + i rnxn
+j: xn 

\n=0 I \n=0 * n=0 n=0 
1 1 1 
1 + i + —L. 1-3x+x2 (1-x)3 (1-x)3 1-x 

oo 

_ 2 - X _ \ ^ r jn 
7 " L* F2n+3* • 

1-3X+X* n=0 

Since for k = 0, F2h Tn„k ~ Or this implies that 
n 

2 F2k Tn-k + Tn~h1 = F2n+3 • 
k=l 

Also solved by Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, Graham Lord, C. B. A. Peck, Bob Prielipp, A. G. 

Shannon, Gregory Wulczyn, and the proposer. 

A THIRD-ORDER ANALOGUE OF THE F'% 

B-347 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Let a, b, and c be the roots of x - x - x - 1 = 0. Show that 
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a - h b - c c - a 

is an Integer for n = 0, 1,2, •••. 

Solution by Graham Lord, Universite Laval, Quebec, Canada. 

For/7 = 0 , 1 , 2 and 3 the expression, E(n), above has the values 0,3, 2 and 5, for all integers and demonstrating the 
recursion relation when 

n = 0: E(n + 3) = E(n +2)+E(n + 1) + E(n). 

This latter equation is readily proven since a3 = a2 +a + 1, etc. That E(n) is an integer follows immediately, by in-
duction, from this recursion relation. 

Also solved by George Berzsenyi, Wray Brady, Clyde A. Bridger, Paul S. Bruckman, Bob Prielipp, A. G. Shannon, 

Gregory Wulczyn, David Zeitlin, and the proposer. 

PENTAGON RATIO 

B-348 Proposed by Sidney Kravitz, Dover, New Jersey. 

Let Pf, •••, Ps be the vertices of a regular pentagon and let Qi be the intersection of segments Pi+1Pi+3 and 
Pi+2^1+4 (subscripts taken modulo 5). Find the ratio of lengths Qi Q2/P1P2 • 

Solution by Charles W. Trigg, San Diego, California. 

Extend P4P3 and P4P5 to meet P1P2 extended in A and B, respectively. Draw P2P5. 

All diagonals of a regular pentagon of side e are equal, say, to d. Each diagonal is parallel to the side of the penta-
gon with which it has no common point. So, AP3P5P2 is a rhombus. It follows that AP3 = AP2 = d = BPi = BP5. 

From similar triangles, 

e/d = P4P3/P3P5 = P4A/AB = (e+d)/(e+2d), 

$o,d2 -ed-e2 = % and d= fyjs + Ve/2. 
Then, __ __ 

Q1Q2/P1P2 = P4Q1/P4P2 = P4P3/P4A = e/(e+d) = 2/(3+ s/5) = (3-sj5)/2 = 0.382 = f. 
Furthermore, _ 

Q1Q2/P3P5 = (OHOL2/P1P2HP1P2/P3P5) = (3-s/5)/(sJ5 + 1) = y/5-2 = 0.236=-i3~ F
2
3s/5 =-$3. 

Also solved by George Berzsenyi, Wray Brady, Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, Dinh The' Hung, 
C. B. A. Peck, and the Proposer. 

GENERATING TWINS 

B-349 Proposed by Richard M. Grass!, University of New Mexico, Albuquerque, New Mexico. 

Let ao, alf a 2, - b e the sequence 1,1,2, 2,3, 3 f - , i.e., \ztan be the greatest integer in 1 +(/?/2). Give a recur-
sion formula for<?n and express the generating function 

E anx" 
n=0 

as a quotient of polynomials. 

Solution by George Berzsenyi, Lamar University, Beaumont, Texas. 

Since the sequence of integers satisfies the relation xn = 2xn_1 - xn_2, the given sequence obviously satisfies the 
recursion fo rmula^ = 2an_2 - an-4> The corresponding generating function is 

x + 1 

which may be proven by multiplying 
x4 -2x2 + 1 
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E a^n 
n=Q 

4 2 
by A- - 2x + 1 and utilizing the above recurrence relation. 

Also solved by Wray Brady, Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, Graham Lord, David Zeitlin, and 
the Proposer. 

CUBES AND TRIPLE SUMS OF SQUARES 

B-350 Proposed by Richard M. Grassl, University of New Mexico, Albuquerque, New Mexico. 

letan be as in B-349. Find a closed form for 
n 

E an-ktek+k) 
k=0 

in the case (a) in which n is even and the case (b) in which n is odd. 

Solution by Graham Lord, Universite Laval, Quebec, Canada. 

A closed form for the sum in case (a) is (n +2)3/8, and in case (b) (n + 1)(n2 +5n + 6)/8. The proofs of these two 
are similar, only that of case (a) is given. With n = 2m, 

n m m-1 
E an-k(ak+k)= E [1+m-z]{[1 + z] + * « } + £ H+m - e - %]{[1 +* + %] + 2i + /} 
k=o e=o c=o 

m m-1 
= £ {1+m-9.)(1+3*)+Y, (m-2)(2 + 3iL) 

0 0 

m m 
= (3m + 1)(m + 1) + 6m ]£ z-6 E ^ = (m + V3• 

o o 
Also solved by George Berzsenyi, Paul S. Bruckman, Herta T. Freitag, and the Proposer. 

NON-FIBONACCI PRIMES 

B-351 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas. 

Prove that F4 = 3 is the only Fibonacci number that is a prime congruent to 3 modulo 4. 

Solution by Graham Lord, Universite Laval, Quebec, Canada. 

As Fn = 3 (mod 4) IFF n = 6m + 4 =2k, then such an Fn factors ffelfe, and so Fn is a prime IFF Fj, = 1, that is 
IFF/1 = 4. 

Also solved by Paul S. Bruckman, Michael Bruzinsky, Herta T. Freitag, Dinh The' Hung, Bob Prie/ipp, Gordon 
Sin nam on, Lawrence Somer, and the Proposer. 
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H-278 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Show 
5fn+2 

(Continued fraction notation, cyclic part under bar). 

< 3 , 1 , 1 , - , 1 , 6 > 

H-279 Proposed by G, Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

Establish the F-L identities: 

(a) F
n+6r ~ (L4r + D(F

n+4r ~ Fn+2r> ~ Fn = F2rF4rF6rF4n+12r 

<D> Fn+6r+3 + (L4r+2 ~ V(Fn+4r+2 - Fn+2r+1) - Fn = F2r+1 F^r+2^:6r+3 F4n+12r+6 • 

H-280 Proposed by S. Bruckman, Concord, California. 

Prove the congruences 

(1) F3.2n s 2n+2 (mo6 2n+3); 
(2) L3.2" = 2+22n+2 (m^22n+4), n = 1,2,3, -

SOLUTIONS 
SUM-ARY CONCLUSION 

H-264 Proposed by L,K Carlitz, Duke University, Durham, North Carolina. 

Show that 
m-r n-s 
Y"* (s+i\im+n — s — i + l \ = y * ( r + i\fm + n — r — i + 1\ 
i=o l n s i=o l m 

Solution by P. Bruckman, Concord, Calif. 

Let 
m-r 

(1) e(m,n^)=YJ{S+
i
i){m+nn-~s

i + 1) > 

and 
92 
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(2) F(ws,Ytz) = £ E E 0(m,n,r,s)wmxnyrzs 

m,n=0 r=0 s=0 
Then 

F(w,x,y,z) = J ] 0 (m + r, n + s, r, s)wm+rxn+s yrzs 

m,n,r,s=0 

oo m 

= E Y,(SV)(m+r + nn~i + 1)WmXn(WV)r(xZ>S 

m,n,r,s=0 i=0 

E (sli)(m+r + n + 1)wmHxn(wy)r{xz)s 

m,n,r,s,i=0 

oo 

= E ( "Y 1)( "m ~ r " 2) wm(-x)n(wy)r(xz)s(-wP 
m}n,r,s,i=0 

oo 

m,r,s=0 

m,r,s~0 

or 
(3) F(w,x,y,z) = (1 -w-xr1/] -x-wy)'1/] -w-xz)'1 . 

From (3), the following symmetry relation is evident: 

(4) F(wjc,yj) = F(x,w,z,y). 

Hence, 
°° m n 

(5) F(ws,yj= £ £ £ 0 f / ? W , ^ n V V / . 
m,n=0 r=0 s=0 

In the last expression, we may make the following substitutions: 

(6) m-+N, n-+M, r-+S, s-*R. 

Then 
N M 

F(ws,V,z)= E E T,0(NMS,*)xNwMzsyR. 
N,M=0 S=0 R=0 

Now reversing the orders of summation and converting capital letters to small letters again, we obtain: 
<*> m n 

(7) Flw*.yj = E E E W/W/W/z* . 
m,n=0 r=0 s=0 

Now comparing coefficients of (2) and (7), treating F as a function of each of its variables, in order, we 
conclude 
(8) e(m,n,r,s) = Q(n,m,s/l Q.E.D. 
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Also solved by D. Beverage and the Proposer. 

ANOTHER CONGRUENCE 
H-265 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Show that 
F 3 k-i = 0 (mod 3fe), where k > 1 . 

Solution by L Carlitz, Duke University, Durham, North Carolina. 

Let/? bean odd prime,/7^5 and let/w be a positive integer such that/?|Fm. We shall prove that 
(*) F k„! = 0 (mod/) (k = 1,2,3,-1 

mp 
Proof of(*). We have (Binet representation) 

F = a"-j3" F = a?n-8Pn 

l-n a _ j 3 , fpn a _ _ j 3 , 
so that 

F-m = aPn-P~n (cT-pf-1 (mod/7). 

Thus 

{") $* ^(a-pF-tpP-1 (mod/i). 
•VI n 

Now assume that (*) holds up to and including the value k. By (**), 
F k • 

_ E £ _ (a-WP-1/*-1^ s 0 (mod/;), 
h ^i mp 

F k = 0 (modpf fe_^. 
mp mp 

Hence, by the inductive hypothesis, 
F k = 0 ( m o d / + i ) . 

This evidently completes the proof. 
It is known that the smallest positive m such that/? \Fm is a divisor of ^//?2 - 1). It follows that 

F M = o (mod/?^ w = ^ / ? 2 - 7 ; / ^ , * > /;, 
Indeed, if p = ±1 (mod 5), then 

f M = 0 ( m o d / ; (M = (p- Dp*-1, k > 1). 
In particular we have 

F k~i = 0 (mod 3k). 

Also solved by P. B rue km an and D. Beverage. 

IDENTIFY! 
H-266 Proposed by G. Berzsenyi, Lamar University, Beaumont, Texas. 

Find all identities of the form 
n 

2 (t)Frk = sTlFtn 
k=0 

with positive integral r, s and t. 
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Solution by P. Bruckman, Concord, California 

k=0 ^5 k=0 y/S 

If this expression is to equal snFnt, for some natura! triplet (r,s,t), it must hold for all non-negative n. The 
case n = 0 yields no information, merely confirming the trivial identity 0 = 0. The cases n = 1,2 and 3 yield, 
respectively: 
(2) Fr = sFt ; 

(3) 2Fr + F2r = s2F2t; 

(4) 3Fr + 3F2r + F3r = s3F3t. 

Using (2) and (3), we obtain: 

2Fr + FrLr = s2FtLt = sFrLt, 
or, since r> 0, 
(5) Lr + 2 = sLt. 

Finally, using (2), (4) and the identity: 
'3m ~ 'm*'-m —\—U /, 

we have: 
3Fr + 3FrLr + Fr(L2-(-1)r) = s3Ft(L2

t - (-1)*) = s2Fr(L2 - (-1)*); 
dividing throughout by Fr and using the result of (5), we obtain: 

3 + 3Lr + L2~(-1)r = (Lr + 2)2-s2(-Vt, 
or upon simplification: 
(6) 1 + (-1)r + Lr = $2(-1)x. 
We consider two mutually exclusive and exhaustive cases: 

CASE I : r is even 

From (5) and (6), 
Lr + 2 = s 2 M ^ = sLt; 

hence, since s > 0, 
s = (-ifLt. 

Since also t and Lt > 0, thus t is even, and s = Lt, Then by (2), 

Fr = LtFt = F2t, 

which implies r = 2t. We have shown that the triplet (4m, L2m, 2m) is a solution of the desired identity for 
n = 0, 1, 2, 3. It remains to verify this as a solution for all n. Substituting r = 4m in the right member of (1), 
that expression becomes: 

J-Ul + a^f-U + tf™)"} = ^ [a2mn(a2m +$2m)n - (a2m
 +fm)nfmn) = Ln

2mF2mn, 

which is of the desired form, with s = L2m, t = 2m. Hence, 

(7) (r,s,t) = (4m, L2m, 2m), m = 1,2,3, ••• 

is a sequence of solutions, the only ones yielded by this case. 

CASE II : /-is odd 

From (6), 
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Hence, t must be even and Lr = s . Substituting this result in (5), we obtain: sLt- s = 2, which implies s|-?, 
and sos= 1 or 2. 

SUBCASE A : s=l 

Thus, Lr = 12 = 1, and r = 1. Thus, by (2),F1 = 1 = Ft. Since t must be even, thus t = 2. Hence, (1,1,2) is 
another possible solution. Since 

-L{(1+ar-(7 + tVn) = -L{a
2n-(32n} = F2n = 1nF2n, 

thus (1,1,2) is a valid solution, the only one yielded by this subcase. 

SUBCASE B:s = 2 

Then Lr = 22 = 4, so r = 3. Thus, by (2), F3 = 2 = 2Ft. As in Subcase A above, t = 2. This yields the pos-
sible solution (3,2,2). Now 

(1 + a3) = 2a + 2 = 2a2
 ; 

similarly, (1 + f$3) = 2(32, Hence, 

-±{(t + a3)n-(1 + P3)n}=.-&r(a2n-P2n) = 2hF2n, 

which shows that (3,2,2) is indeed a valid solution, the only one yielded by this subcase. 
Therefore, aM solutions (r,s,t) of the desired identity are given by (7), and also by (1,1,2) and (3,2,2). 

Also solved by the Proposer, 

Late Acknowledgements: 
P. Bruckman solved H-258, H-259, H-262, H-263. 
S. Singh solved H-263. 

AAAAAAA 

[Continued from page 87.] 

Proof. From Corollary 2 and [4, p. 205] we have s(p2) = s(p) if and only if f(p2) = f(p) if and only if 

<t>(P~i)i2<5/9) ^2k(3/2) (mod/7). 
From Wall's remark we note that <p(p_1)i2(5/9)£2k(3/2) (mod/?) for all primes/7 such that 5 <p < 10,000. 
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