The Fibonacci Quarterly

THE OFFICIAL JOURNAL OF
THE FIBONACCI ASSOCIATION

VOLUME 16

NUMBER 1

CONTENTS

Fibonacci and Lucas Numbers and the Complexity of a Graph . . . A. G. Shannon 1
Embedding a Group in the $p^{t h}$ Powers. Hugo S. Sun 4
Identities Relating the Number of Partitions into an Even and Odd Number of Parts, II Dean R. Hickerson 5
On the Existence of the Rank of Apparition of m in the Lucas Sequence . James E. Desmond7
Recurrences of the Third Order and Related Combinatorial Identities L. Carlitz 11
Some Sequence-to-Sequence Transformations which Preserve Completeness . J. L. Brown, Jr. 19
An Identity Relating Compositions and Partitions Dean R. Hickerson 23
On the Multiplication of Recursive Sequences 27
Diagonal Functions A. F. Horadam 33
Fibonacci Tiling and Hyperbolas 37
A Primer for the Fibonacci Numbers, Part XVI,
The Central Column Sequence J. L. Brown, Jr., and V. E. Hoggatt, Jr. 41
Entry Points of the Fibonacci Sequence and the Euler ϕ Function Joseph J. Heed and Lucille Kelly 47
More on Benford's Law W. G. Brady 51
Formula Development Through Finite Differences Brother Alfred Brousseau 53
A Golden Double Crostic 67
Stolarsky's Distribution of Positive Integers. 70
On a Conjecture Concerning a Set of Sequences
Satisfying the Fibonacci Difference Equation J. C. Butcher 81
A Golden Double Crostic SolutionMarjorie Bicknell-Johnson 83
Binary Sequences Without Isolated Ones 84
On the Equality of Periods
of Different Moduli in the Fibonacci Sequence James E. Desmond 86
Elementary Problems and Solutions Edited by A. P. Hillman 88
Advanced Problems and Solutions Edited by Raymond E. Whitney 92

דुe Fibonaccı Quarterly
 THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION
 DEVOTED TO THE STUDY
 of INTEGERS WITH SPECIAL PROPERTIES

EDITOR
V. E. Hoggatt, Jr.

EDITORIAL BOARD

H. L. Alder
Gerald E. Bergum
Marjorie Bicknell-Johnson
Paul F. Byrd
L. Carlitz
H. W. Gould
A. P. Hillman

David A. Klarner
Leonard Klosinski
Donald E. Knuth
C. T. Long
M. N. S. Swamy

WITH THE COOPERATION OF

Maxey Brooke
Bro. A. Brousseau
Calvin D. Crabill
T. A. Davis
D. E. Thoro
A. F. Horadam

Dov Jarden
James Maxwell
Sister M. DeSales

McNabb
John Mitchem
D. W. Robinson

Lloyd Walker
Charles H. Wall

The California Mathematics Council

All subscription correspondence should be addressed to Professor Leonard Klosinski Mathematics Department, University of Santa Clara, Santa Clara, California 95053. All checks ($\$ 15.00$ per year) should be made out to the Fibonacci Association or The Fibonacci Quarterly. Two copies of manuscripts intended for publication in the Quarterly should be sent to Verner E. Hoggatt, Jr., Mathematics Department, San Jose State University, San Jose, California 95192. All manuscripts should be typed, double-spaced. Drawings should be made the same size as they will appear in the Quarterly, and should be done in India ink on either vellum or bond paper. Authors should keep a copy of the manuscript sent to the editors.

The Quarterly is entered as third-class mail at the University of Santa Clara Post Office, California, as an official publication of the Fibonacci Association.

The Quarterly is published in February, April, October, and December, each year.

FIBONACCI AND LUCAS NUMBERS AND THE COMPLEXITY OF A GRAPH

A. G. SH ANN ON
The New South Wales Institute of Technology, Broadway, New South Wales, Australia

1. TERMINOLOGY

In this note we shall use the following notation and terminology:

$$
\begin{aligned}
& \text { the Fibonacci numbers } F_{n}: F_{1}=F_{2}=1, \\
& \qquad F_{n+2}=F_{n+1}+F_{n}, \quad n \geqslant 1 ; \\
& \text { the Lucas numbers } \quad L_{n}: L_{1}=1, L_{2}=3, \\
& \qquad L_{n+2}=L_{n+1}+L_{n}, \quad n \geqslant 1 ;
\end{aligned}
$$

α, β : zeros of the associated auxiliary polynomial;
a composition of a positive integer n is a vector ($a_{1}, a_{2}, \cdots, a_{k}$) of which the components are positive integers which sum to n;
a graph G, is an ordered pair (V, E), where V is a set of vertices, and E is a binary relation on V; the ordered pairs in E are called the edges of the graph.
a cycle is a sequence of three or more edges that goes from a vertex back to itself;
a graph is connected if every pair of vertices is joined by a sequence of edges; a tree is a connected graph which contains no cycles;
a spanning tree of a graph is a tree of the graph that contains all the vertices of the graph;
two spanning trees are distinct if there is at least one edge not common to them both;
the complexity, $k(G)$, of a graph is the number of distinct spanning trees of the graph.
For relevant examples see Hilton [2] and Rebman [4], and for details see Harary [1].

2. RESULTS

Hilton and Rebman have used combinatorial arguments to establish a relation between the complexity of a graph and the Fibonacci and Lucas numbers. Rebman showed that

$$
\begin{equation*}
K\left(W_{n}\right)=L_{2 n}-2, \tag{2.1}
\end{equation*}
$$

where W_{n}, the n-wheel, is a graph with $n+1$ vertices obtained from a cycle on n points by joining each of these n points to a further point.
Hilton also established this result and

$$
\begin{equation*}
L_{2 n}-2=\sum_{\gamma(n)}(-1)^{k-1} \frac{n}{k} F_{2 a_{1}} \cdots F_{2 a_{k}}, \tag{2.2}
\end{equation*}
$$

in which $\gamma(n)$ indicates summation over all compositions (a_{1}, \cdots, a_{k}) of n, the number of components being variable. It is proposed here to prove (2.1) by a number theoretic approach.
To do so we need the following preliminary results which will be proved in turn:

$$
\begin{gather*}
F_{2 n}=F_{2 n+2}-2 F_{2 n}+F_{2 n-2}, \tag{2.3}\\
1-2 x^{2}+x^{4}=\exp \left(-2 \sum_{m=1}^{\infty} x^{2 m} / m\right), \tag{2.4}
\end{gather*}
$$

[FEB.
(2.5)

$$
\begin{gather*}
\sum_{n=0}^{\infty} F_{2 n} x^{2 n}=x^{2} \exp \left(\sum_{m=1}^{\infty} L_{2 m} x^{2 m} / m\right) \\
1+\sum_{n=0}^{\infty} F_{2 n} x^{2 n}=\left(1-2 x^{2}+x^{4}\right) \exp \left(\sum_{m=1}^{\infty} L_{2 m} x^{2 m} / m\right) \tag{2.6}\\
1+\sum_{n=1}^{\infty} F_{2 n} x^{2 n}=\exp \left(\sum_{m=1}^{\infty}\left(L_{2 m}-2\right) x^{2 m} / m\right) \tag{2.7}
\end{gather*}
$$

wherein it is assumed that all power series are considered formally.

3. PROOFS

Proofof (2.3).

$$
\begin{aligned}
F_{2 n} & =F_{2 n}+F_{2 n-1}-F_{2 n-1} \\
& =F_{2 n+1}-F_{2 n}+F_{2 n}-F_{2 n-1} \\
& =F_{2 n+1}-F_{2 n}+F_{2 n-2} \\
& =F_{2 n+2}-2 F_{n}+F_{2 n-2} .
\end{aligned}
$$

Proof of (2.4).

$$
\begin{aligned}
1-2 x^{2}+x^{4} & =\left(1-x^{2}\right)^{2} \\
& =\exp \ln \left(1-x^{2}\right)^{2} \\
& =\exp \left(-2 \ln \left(1-x^{2}\right)^{-1}\right) \\
& =\exp \left(-2 \sum_{m=1}^{\infty} x^{2 m} / m\right)
\end{aligned}
$$

Proof of (2.5).

$$
\begin{aligned}
\sum_{n=0}^{\infty} F_{2 n} x^{2 n} & =x^{2} /\left(1-3 x^{2}+x^{4}\right) \\
& =x^{2} /\left(1-a^{2} x^{2}\right)\left(1-\beta^{2} x^{2}\right) \\
\ln \left(\sum_{n=0}^{\infty} F_{2 n} x^{2 n-2}\right) & =-\ln \left(1-a^{2} x^{2}\right)\left(1-\beta^{2} x^{2}\right) \\
& =-\ln \left(1-a^{2} x^{2}\right)-\ln \left(1-\beta^{2} x^{2}\right) \\
& =\sum_{m=1}^{\infty} \frac{a^{2 m} x^{2 m}}{m}+\sum_{m=1}^{\infty} \frac{\beta^{2 m} x^{2 m}}{m} \\
& =\sum_{m=1}^{\infty}\left(a^{2 m}+\beta^{2 m}\right) x^{2 m} / m \\
& =\sum_{m=1}^{\infty} L_{2 m} x^{2 m} / m
\end{aligned}
$$

Thus

$$
\sum_{n=0}^{\infty} F_{2 n} x^{2 n-2}=\exp \left(\sum_{m=1}^{\infty} L_{2 m} x^{2 m} / m\right) \text { and } \sum_{n=0}^{\infty} F_{2 n} x^{2 n}=\exp \left(\sum_{m=1}^{\infty} L_{2 m} x^{2 m / m}\right)
$$

Proof of (2.6).

Now

$$
\begin{aligned}
\sum_{n=0}^{\infty} F_{2 n} x^{2 n-2} & =\sum_{n=1}^{\infty} F_{2 n} x^{2 n-2} \\
& =\sum_{n=0}^{\infty} F_{2 n+2} x^{2 n} \\
& =\exp \left(\sum_{m=1}^{\infty} L_{2 m} x^{2 m} / m\right) \\
\sum_{n=0}^{\infty} F_{2 n-2} x^{2 n} & =-1+\sum_{n=0}^{\infty} F_{2 n} x^{2 n+2} \\
& =-1+x^{2} \sum_{n=0}^{\infty} F_{2 n} x^{2 n} \\
& =-1+x^{4} \exp \left(\sum_{m=1}^{\infty} L_{2 m} x^{2 m} / m\right) .
\end{aligned}
$$

$$
\sum_{n=0}^{\infty} F_{2 n} x^{2 n}=\sum_{n=0}^{\infty}\left(F_{2 n+2}-2 F_{2 n}+F_{2 n-2}\right) x^{2 n}
$$

So

$$
1+\sum_{n=1}^{\infty} F_{2 n} x^{2 n}=\left(1-2 x^{2}+x^{4}\right) \exp \left(\sum_{m=1}^{\infty} L_{2 m} x^{2 m} / m\right)
$$

Proof of (2.7).

$$
1+\sum_{n=1}^{\infty} F_{2 n} x^{2 n}=\left(1-x^{2}\right)^{2} \exp \left(\sum_{m=1}^{\infty} L_{2 m} x^{2 m} / m\right)=\exp \left(\sum_{m=1}^{\infty}\left(L_{2 m}-2\right) x^{2 m} / m\right)
$$

from (2.4).

4. MAIN RESULT

To prove the result (2.2) we let

$$
W_{n}=\sum_{\gamma(n)} \frac{(-1)^{k-1}}{k} F_{2 a_{1}} \cdots F_{2 a_{k}}
$$

Then

$$
\begin{aligned}
\sum_{n=1}^{\infty} W_{n} x^{2 n} & =\sum_{n=1}\left\{\sum_{\gamma(n)} \frac{(-1)^{k-1}}{k} F_{2 a_{1}} \ldots F_{2 a_{k}}\right\} x^{2 n} \\
& =\sum_{k=1}^{\infty}-\left(-\sum_{n=1}^{\infty} F_{2 n} x^{2 n}\right)^{k} / k \\
& =\ln \left(1+\sum_{n=1}^{\infty} F_{2 n} x^{2 n}\right)=\sum_{n=1}^{\infty}\left(L_{2 n}-2\right) x^{2 n} / n
\end{aligned}
$$

from which we get that

$$
W_{n}=\left(L_{2 n}-2\right) / n
$$

or

$$
L_{2 n}-2=\sum_{\gamma(n)} \frac{(-1)^{k-1} n}{k} F_{2 a_{1}} \cdots F_{2 a_{k}}
$$

These properties have been generalized elsewhere for arbitrary order recurrence relations [5] .
Hoggatt and Lind [3] have also developed similar results in an earlier paper.
The author would like to thank Dr. A. J. W. Hilton of the University of Reading, England, for suggesting the problem.

RE FERENCES

1. F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.
2. A. J. W. Hilton, "Spanning Trees and Fibonacci and Lucas Numbers," The Fibonacci Quarterly, Vol. 12, No. 3 (October 1974), pp. 259-262.
3. V. E. Hoggatt, Jr., and D. A. Lind, "Fibonacci and Binomial Properties of Weighted Compositions," J. of Combinatorial Theory, Vol. 4, No. 2 (March 1968), pp. 121-124.
4. Kenneth R. Rebman, "The Sequence 151645121320 … in Combinatorics," The Fibonacci Quarterly, Vol. 13, No. 1 (Feb. 1975), pp. 51-55.
5. A. G. Shannon, "Ordered Partitions and Arbitrary Order Linear Recurrence Relations," Mathematics Student, in press.

* * *

EMBEDDING A GROUP IN THE $p^{t h}$ POWERS

HUGOS.SUN
California State University, Fresno, California

In a finite group G, the set of squares, cubes, or $p^{\text {th }}$ powers in general, does not necessarily constitute a subgroup. However, we can always embed a finite group into the set of squares, cubes, or any $p^{t h}$ powers of another group.
A subgroup H of a group G is said to be a subgroup of $\mathrm{p}^{\text {th }}$ powers if for every $y \in H$, there is an $x \in G$ such that $x^{p}=y$.
Theorem. Every finite group G is isomorphic to a subgroup of $p^{\text {th }}$ powers of some permutation group.
Proof. Let G be a finite group, and let P be an isomorphic permutation group on n elements, say a_{11}, a_{12}, \cdots, $a_{1 n}$.

Consider a permutation group Q on $p n$ elements

$$
a_{11}, a_{12}, \cdots, a_{1 n} ; \quad a_{21}, a_{22}, \cdots, a_{2 n} ; \cdots, \quad a_{p 1}, a_{p 2}, \cdots, a_{p n}
$$

defined in the following manner: For any permutation

$$
\sigma=\left(a_{1 i_{1}} a_{1 i_{2}} \cdots a_{1 i_{k}}\right) \cdots\left(a_{1 j_{1}} a_{1 j_{2}} \cdots a_{1 j_{m}}\right)
$$

in P corresponds the permutation

$$
\begin{aligned}
\hat{\sigma}= & \left(a_{1 i_{1}} a_{1 i_{2}} \cdots a_{1 i_{k}}\right)\left(a_{2 i_{1}} a_{2 i_{2}} \cdots a_{2 i_{n}}\right) \cdots\left(a_{p i_{1}} a_{p i_{2}} \cdots a_{p i_{k}}\right) \\
& \cdots\left(a_{1 j_{1}} a_{1 j_{2}} \cdots a_{1 j_{m}}\right)\left(a_{2 j_{2}} \cdots a_{2 j_{m}}\right) \cdots\left(a_{p j_{1}} a_{p j_{2}} \cdots a_{p j_{m}}\right)
\end{aligned}
$$

in the symmetric group $S_{p n} . Q$ is clearly isomorphic to P and each elemenr in Q is the $p^{\text {th }}$ power of an element in $S_{p n}$. In fact, $\hat{\sigma}=\tau^{p}$, where

$$
\begin{aligned}
\tau= & \left(a_{1 i_{1}} a_{2 i_{1}} \cdots a_{p i_{1}} a_{1 i_{2}} a_{2 i_{2}} \cdots a_{p i_{2}} \cdots a_{1 i_{k}} a_{2 i_{k}} \cdots a_{p i_{k}}\right) \\
& \cdots\left(a_{1 j_{1}} a_{2 j_{1}} \cdots a_{p j_{1}} a_{1 j_{2}} a_{2 j_{2}} \cdots a_{p j_{2}} \cdots a_{1 j_{m}} a_{2 j_{m}} \cdots a_{p j_{m}}\right)
\end{aligned}
$$

IDENTITIES RELATING THE NUMBER OF PARTITIONS INTO AN EVEN AND ODD NUMBER OF PARTS, II

DEAN R. HICKERSON

University of California, Davis, Califo mia 95616

Definition. If $i \geqslant 0$ and $n \geqslant 1$, let $q_{i}^{e}(n)$ be the number of partitions of n into an even number of parts, where each part occurs at most i times. Let $q_{i}^{0}(n)$ be the number of partitions of n into an odd number of parts, where each part occurs at most i times. If $i \geqslant 0$, let $q_{i}^{e}(0)=1$ and $q_{i}^{\circ}(0)=0$.
Definition. If $i \geqslant 0$ and $n \geqslant 0$, let $\Delta_{i}(n)=q_{i}^{e}(n)-q_{i}^{o}(n)$.
The purpose of this paper is to determine $\Delta_{i}(n)$ when i is any odd positive integer. The only cases previously known were $i=1$, proved by Euler (see [1]), $i=3$, proved by this writer (see [2]), and $i=5$ and 7, proved by Alder and Muwafi (see [3]).
Definition. If s, t, u are positive integers with s odd and $1 \leqslant s<t$, and n is an integer, let $f_{s, t, u}(n)$ be the number of partitions of n in which each odd part occurs at most once and is $\equiv \pm s(\bmod 2 t)$ and in which each even part is divisible by $2 t$ and occurs $<u$ times.
Theorem. If s, t, u are positive integers with s odd and $1 \leqslant s<t$, and n is an integer, then

$$
\Delta_{2 t u-1}(n)=(-1)^{n} \sum_{j} f_{s, t, u}\left(n-t j^{2}-(t-s) j\right)
$$

Proof.

where the last equality follows from Jacobi's identity with $k=t$ and $\ell=t-s$. Since s is odd,

$$
t j^{2}+(t-s) j \equiv j(\bmod 2)
$$

Hence, when we substitute $-x$ for x, we obtain

$$
\begin{aligned}
\sum_{n}(-1)^{n} \Delta_{2 t u-1}(n) x^{n} & =\sum_{j} x^{t j^{2}+(t-s) j} \cdot \prod_{\substack{j \geqslant 1 \\
j \geqslant 1 \\
2 \nmid j \\
j \neq \pm s(\bmod 2 t)}}\left(1+x^{j}\right) \cdot \prod_{\substack{j \\
j \geqslant 1 \\
2 t \mid j}}\left(1+x^{j}+x^{2 j}+\cdots+x^{(u-1) j}\right) \\
& =\sum_{j} x^{t j^{2}+(t-s) j} \cdot \sum_{m} f_{s, t, u}(m) x^{m}
\end{aligned}
$$

from which the theorem follows immediately.
Corollary 1. If s and t are positive integers with s odd and $1 \leqslant s<t$, and n is an integer, then

$$
\Delta_{2 t-1}(n)=(-1)^{n} \sum_{j} f_{s, t, 1}\left(n-t j^{2}-(t-s) j\right)
$$

Note that $f_{s, t, 1}(n)$ is the number of partitions of n into distinct odd parts $\equiv \equiv \pm s(\bmod 2 t)$.
Proof. Let $u_{=}=1$ in the theorem.
Letting $s=1$ and $t=3$ yields Theorem 1 of [3].
Corollary 2. If $i \geqslant 2$ and n is an integer, then $(-1)^{n} \Delta_{i}(n) \geqslant 0$.
Proof. For even i, this follows from Theorem 3 of [2]; for odd i, it follows by letting $s=1$ and $t=(i+1) / 2$ in Corollary 1.

Corollary 3. If s and t are positive integers with s odd and $1 \leqslant s<t$, and n is an integer, then

$$
\Delta_{4 t-1}(n)=(-1)^{n} \sum_{j} f_{s, t, 2}\left(n-t j^{2}-(t-s) j\right)
$$

Note that $f_{s, t, 2}(n)$ is the number of partitions of n into distinct parts which are either odd but $\not \equiv \pm s(\bmod 2 t)$ or which are divisible by $2 t$.
Proof. Let $u=2$ in the theorem.
Corollary 4. If u is a positive integer and n is an integer, then

$$
\Delta_{4 u-1}(n)=(-1)^{n} \sum_{j} f_{1,2, u}\left(n-2 j^{2}-j\right)
$$

Note that $f_{1,2, u}(n)$ is the number of partitions of n into parts divisible by 4 , where each part occurs $<u$ times.
Proof. Let $s=1, t=2$ in the theorem.
Letting $u=1$ yields Theorem 2 of [2] and $u=2$, Theorem 2 of [3].

REFERENCES

1. Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers, 3rd ed., pp. 221-222, Wiley, New York, 1972.
2. Dean R. Hickerson, "Identities Relating the Number of Partitions into an Even and Odd Number of Parts," J. Combinatorial Theory, Section A (1973), pp. 351-353.
3. Henry L. Alder and Amin A. Muwafi, "Identities Relating the Number of Partitions into an Even and Odd Number of Parts," The Fibonacci Quarterly, Vol. 13, No. 2 (1975), pp. 337-339.

ON THE EXISTENCE OF THE RANK OF APPARITION OF m IN THE LUCAS SEOUENCE

JAMES E. DESMOND
Pensacola Junior College, Pensacola, Florida 32504
Let m be an arbitrary positive integer. According to the notation of Vinson [1, p. 37] let $s(m)$ denote the period of F_{n} modulo m and let $f(m)$ denote the rank of apparition of m in F_{n}.
It is easily verified that

$$
\begin{equation*}
F_{2 n+1}=(-1)^{n}+F_{n} L_{n+1}=(-1)^{n+1}+F_{n+1} L_{n} \tag{1}
\end{equation*}
$$

for all integers n.
In the sequel we shall use, without explicit reference, the well known facts that

$$
F_{2 n}=F_{n} L_{n}
$$

and that F_{n} and L_{n} are both odd or both even and

$$
\left(F_{n}, L_{n}\right)=d \leqslant 2, \quad \text { and } \quad F_{m} \mid F_{m n}
$$

for all integers n and $m \neq 0$.
Lemma 1. $F_{2 n} \equiv 0(\bmod m)$ and $F_{2 n+1} \equiv(-1)^{n}(\bmod m)$ if and only if $F_{n} \equiv 0(\bmod m)$.
Proof. Let $F_{2 n} \equiv 0(\bmod m)$ and $F_{2 n+1} \equiv(-1)^{n}(\bmod m)$. Then by $(1), F_{n} L_{n+1} \equiv 0(\bmod m)$. Since $F_{2 n}=F_{n} L_{n} \equiv 0(\bmod m)$, we have

$$
F_{n} L_{n+2}=F_{n} L_{n+1}+F_{n} L_{n} \equiv 0 \equiv F_{n} L_{n+1}-F_{n} L_{n}=F_{n} L_{n-1}(\bmod m)
$$

So whether n is negative or non-negative we obtain after finitely many steps that $F_{n} L_{1}=F_{n} \equiv 0(\bmod m)$.
Conversely, let $F_{n} \equiv 0(\bmod m)$. Then $F_{2 n}=F_{n} L_{n} \equiv 0(\bmod m)$ and by $(1), F_{2 n+1} \equiv(-1)^{n}(\bmod m)$.
Lemma 2. $F_{2 n} \equiv 0(\bmod m)$ and $F_{2 n+1} \equiv(-1)^{n+1}(\bmod m)$ if and only if $L_{n} \equiv 0(\bmod m)$.
Proof. Analogous to the proof of Lemma 1.
The following lemma can be found in Wall [2, p.526]. We give an alternative proof.
Lemma 3. If $m>2$, then $s(m)$ is even.
Proof. Suppose $s(m)$ is odd. We have by definition of $s(m)$ that

Also

$$
F_{2 s(m)+1}=F_{s(m)+s(m)+1} \equiv F_{s(m)+1} \equiv 1=(-1)^{s(m)+1}(\bmod m)
$$

$$
F_{2 s(m)}=F_{s(m)} L_{s(m)} \equiv 0(\bmod m)
$$

Therefore by Lemma $2, L_{s(m)} \equiv 0(\bmod m)$. But

$$
\left(F_{s(m)}, L_{s(m)}\right)=d \leqslant 2
$$

which contradicts the fact that $m>2$.
An equivalent form of the following theorem, but with a different proof can be found in Vinson [1, p. 42].
Theorem 1. We have
i) $m>2$ and $f(m)$ is odd if and only if $s(m)=4 f(m)$
ii) $m=1$ or 2 or $s(m) / 2$ is odd if and only if $s(m)=f(m)$
iii) $f(m)$ is even and $s(m) / 2$ is even if and only if $s(m)=2 f(m)$.

Proof. We first prove the sufficiency in each case.

Case i): Let $m>2$ and $f(m)$ be odd. From Vinson [1, p.37] we have $f(m) \mid s(m)$. Since $s(m)$ is even for $m>$ 2 we know that $s(m) \neq f(m)$ and $s(m) \neq 3 f(m)$. We have $F_{2 f(m)} \equiv 0(\bmod m)$ and by (1),

$$
F_{2 f(m)+1} \equiv(-1)^{f(m)}=-1(\bmod m) .
$$

Therefore $s(m) \neq 2 f(m)$ since $m>2$. But $F_{4 f(m)} \equiv 0(\bmod m)$ and by (1),

$$
F_{4 f(m)+1} \equiv(-1)^{2 f(m)}=1(\bmod m)
$$

Therefore $s(m)=4 f(m)$.
Case ii): The conclusion is clear for $m=1$ or 2 . Let $m>2$ and $s(m) / 2$ be odd. Then by Case i$), f(m)$ is even. So $F_{2 f(m)} \equiv 0(\bmod m)$ and by (1),

$$
F_{2 f(m)+1} \equiv(-1)^{f(m)}=1(\bmod m)
$$

which implies that $s(m) \leqslant 2 f(m)$. $s(m) \neq 2 f(m)$ since $s(m) / 2$ is odd and $f(m)$ is even. Therefore since $f(m) \mid s(m)$, we have $s(m)=f(m)$.
Case iii): Let $f(m)$ be even and $s(m) / 2$ be even. Then $m>2$. We have $F_{2 f(m)} \equiv 0(\bmod m)$ and by (1),

$$
F_{2 f(m)+1} \equiv(-1)^{f(m)}=1(\bmod m) .
$$

Therefore $s(m) \leqslant 2 f(m)$. Now, $F_{s(m)} \equiv 0(\bmod m)$ and $F_{s(m)+1} \equiv 1=(-1)^{s(m) / 2}(\bmod m)$. So by Lemma 1,
$F_{s(m) / 2} \equiv 0(\bmod m)$. Thus $s(m) \neq f(m)$ and therefore since $f(m) \mid s(m)$ we have $s(m)=2 f(m)$.
The necessity in each case follows directly from the implications already proved.
The following corollary is part of a theorem by Vinson [1, p. 39].
Corollary 1. Let p be any odd prime and e any positive integer. Then we have
i). $f\left(p^{e}\right)$ is odd if and only if $s\left(p^{e}\right)=4 f\left(p^{e}\right)$
ii). $f\left(p^{e}\right)$ is even and $f\left(p^{e}\right) / 2$ is odd if and only if $s\left(p^{e}\right)=f\left(p^{e}\right)$
iii). $f\left(p^{e}\right)$ is even and $f\left(p^{e}\right) / 2$ is even if and only if $s\left(p^{e}\right)=2 f\left(p^{e}\right)$.

Proof. By Theorem 1, we need only prove that $s\left(p^{e}\right) / 2$ is odd if and only if $f\left(p^{e}\right)$ is even and $f\left(p^{e}\right) / 2$ is odd. The sufficiency is clear by Theorem 1, ii).
Conversely, let $f\left(p^{e}\right)$ be even and $f\left(p^{e}\right) / 2$ be odd. Then

$$
F_{f\left(p^{e}\right)}=F_{f\left(p^{e}\right) / 2} L_{f\left(p^{e}\right) / 2} \equiv 0\left(\bmod p^{e}\right) .
$$

Since

$$
\left(F_{f\left(p^{e}\right) / 2}, L_{f\left(p^{e}\right) / 2}\right)=d \leqslant 2<p
$$

we have $L_{f\left(p^{e}\right) / 2} \equiv 0\left(\bmod p^{e}\right)$. Therefore by (1),

$$
F_{f\left(p^{e}\right)+1} \equiv(-1)^{\left(f\left(p^{e}\right) / 2\right)+1}=1\left(\bmod p^{e}\right) .
$$

Thus $s\left(p^{e}\right)=f\left(p^{e}\right)$ and so $s\left(p^{e}\right) / 2$ is odd.
Definition. If m divides some member of the Lucas sequence, let $g(m)$ denote the smallest positive integer n such that $m \mid L_{n}$.
If m divides no member of the Lucas sequence, we shall say that $g(m)$ does not exist.
From Vinson [1, p. 37] we have

$$
\begin{equation*}
F_{n} \equiv 0(\bmod m) \text { if and only if } f(m) \mid n . \tag{2}
\end{equation*}
$$

It is interesting to note from the following proof that if $4 \mid f(4 n)$, then $g(4 n)$ does not exist.
Lemma 4. If n is an odd integer and $g(4 n)$ exists, then $4 \mid L_{f(4 n) / 2}$.
Proof. By observing the residues of the Lucas sequence modulo 4 we find that $4 \mid L_{g(4 n)}$ implies $g(4 n)=$ $3+6 k$ for some integer k. Therefore $g(4 n)$ is odd. We have $4 n\left|L_{g(4 n)}\right| F_{2 g(4 n)}$. So by (2), $f(4 n) \mid 2 g(4 n)$. Hence $4 \chi^{f}(4 n)$. Since $4 \mid F_{f(4 n)}$ we have by (2) that $6=f(4) \mid f(4 n)$. Since $f(4 n) / 2$ is odd and $3 \mid f(4 n) / 2$ we have from Carlitz [3, p. 15] that $4=L_{3} \mid L_{f(4 n) / 2}$.
Theorem 2. If $m>2$ and $g(m)$ exists, then $2 g(m)=f(m)$.

Proof. We have $m\left|L_{g(m)}\right| F_{2 g(m)}$. So by (2), $f(m) \mid 2 g(m)$. Suppose $f(m)$ is odd. Then $f(m) \mid g(m)$ and therefore by $(2), m \mid F_{g(m)}$. Thus $m \mid\left(L_{g(m)}, F_{g(m)}\right)=d \leqslant 2$, a contradiction since $m>2$. Hence $f(m)$ is even.
To complete the proof it suffices to show that $m \mid L_{f(m) / 2}$ which implies $g(m)=f(m) / 2$. We have

$$
m \mid F_{f(m)}=F_{f(m) / 2} L_{f(m) / 2}
$$

Let $m=m_{1} m_{2}$ where $m_{1} \mid F_{f(m) / 2}$ and $m_{2} \mid L_{f(m) / 2}$. Since $f(m) / 2 \mid g(m)$ we have $m_{1}\left|F_{f(m) / 2}\right| F_{g(m)}$. Therefore $m_{1} \mid\left(F_{g(m)}, L_{g(m)}\right)=d \leqslant 2$. So $m_{1}=1$ or 2 . If $m_{1}=1$, then $m_{2}=m \mid L_{f(m) / 2}$, the desired conclusion. Assume $m_{1}=2$. Then m is even. Since $2 \mid F_{f(m) / 2}$ we have $2 \mid L_{f(m) / 2}$. If $m_{2}=m / 2$ is odd, then $2 m_{2}=$ $m \mid L_{f(m) / 2}$, the desired conclusion. Assume $m_{2}=m / 2$ is even. Since $g(8)$ does not exist we know that $8 \| m$. Therefore $m_{2} / 2=m / 4$ is odd. Since $g\left(4\left(m_{2} / 2\right)\right)=g(m)$ exists we have by Lemma 4 that $4 \mid L_{f(m) / 2}$. Thus $m=4\left(m_{2} / 2\right) \mid L_{f(m) / 2}$. The proof is complete.
Corollary 2. For any odd prime p and any positive integer $e, g\left(p^{e}\right)$ exists if and only if $f\left(p^{e}\right)$ is even.
Proof. The sufficiency follows from Theorem 2 and the necessity follows from the facts $F_{2 n}=F_{n} L_{n}$ and $\left(F_{n}, L_{n}\right)=d \leqslant 2<p$ for all integers n.
Theorem 3. We have
i) $g(m)$ exists and is odd if and only if $s(m)=f(m)$
ii) $g(m)$ exists and is even if and only if $s(m)=2 f(m)$ and $F_{f(m)+1} \equiv-1(\bmod m)$
iii) $g(m)$ does not exist if and only if either $s(m)=2 f(m)$ and $F_{f(m)+1} \equiv-1(\bmod m)$ or $s(m)=4 f(m)$.

Proof. Case i): Let $g(m)$ exist and be odd. The case $m=1$ or 2 is clear. Assume $m>2$. By Theorem 2, $f(m)=2 g(m)$. Therefore by (1),

$$
F_{f(m)+1} \equiv(-1)^{g(m)+1}=1(\bmod m)
$$

Hence $s(m)=f(m)$.
Conversely, let $s(m)=f(m)$. The case $m=1$ or 2 is clear. Assume $m>2$. By Theorem $1, s(m) / 2$ is odd. Therefore

$$
F_{s(m)} \equiv 0(\bmod m) \quad \text { and } \quad F_{s(m)+1} \equiv 1=(-1)^{(s(m) / 2)+1}(\bmod m)
$$

Hence by Lemma 2, $L_{s(m) / 2} \equiv 0(\bmod m)$ and thus $g(m)$ exists. By Theorem $2, s(m)=f(m)=2 g(m)$. Therefore $g(m)$ is odd.
Case ii): Let $g(m)$ exist and be even. Then $m>2$ and by Theorem $2, f(m)=2 g(m)$. Thus $4 \mid f(m)$ and so by Theorem $1, s(m)=2 f(m)$. By (1), $F_{f(m)+1} \equiv(-1)^{g(m)+1}=-1(\bmod m)$.
Conversely, let $s(m)=2 f(m)$ and $F_{f(m)+1} \equiv-1(\bmod m)$. We have $F_{f(m)} \equiv 0(\bmod m)$. By Theorem 1, $m>2$ and $f(m)$ is even. If $f(m) / 2$ is odd, then $F_{f(m)+1} \equiv(-1)^{f(m) / 2(\bmod m) \text { which implies by Lemma } 1}$ that $F_{f(m) / 2} \equiv 0(\bmod m)$, a contradiction. Hence $f(m) / 2$ is even. Therefore $F_{f(m)+1} \equiv(-1)^{(f(m) / 2)+1}(\bmod$ $m)$ which implies by Lemma 2 that $L_{f(m) / 2} \equiv 0(\bmod m)$. Thus $g(m)$ exists and by Theorem $2, f(m) / 2=g(m)$ is even.
Case iii): Follows from Cases i) and ii) and from Theorem 1.
Corollary 3. For any odd prime p and any positive integer e we have
i) $g\left(p^{e}\right)$ exists and is odd if and only if $s\left(p^{e}\right)=f\left(p^{e}\right)$
ii) $g\left(p^{e}\right)$ exists and is even if and only if $s\left(p^{e}\right)=2 f\left(p^{e}\right)$
iii) $g\left(p^{e}\right)$ does not exist if and only if $s\left(p^{e}\right)=4 f\left(p^{e}\right)$.

Proof. In view of Theorem 3 we need only prove that $s\left(p^{e}\right)=2 f\left(p^{e}\right)$ implies $F_{f\left(p^{e}\right)+1} \equiv-1\left(\bmod p^{e}\right)$. By Corollary 1 , if $s\left(p^{e}\right)=2 f\left(p^{e}\right)$, then $f\left(p^{e}\right)$ is even and $f\left(p^{e}\right) / 2$ is even. We have

$$
F_{f\left(p^{e}\right)}=F_{f\left(p^{e}\right) / 2} L_{f\left(p^{e}\right) / 2} \equiv 0\left(\bmod p^{e}\right) \quad \text { and } \quad\left(F_{f\left(p^{e}\right) / 2}, L_{f\left(p^{e}\right) / 2}\right)=d \leqslant 2<p
$$

Therefore $L_{f\left(p^{e}\right) / 2} \equiv 0\left(\bmod p^{e}\right)$. So by (1),

$$
F_{f\left(p^{e}\right)+1} \equiv(-1)^{\left(f\left(p^{e}\right) / 2\right)+1}=-1\left(\bmod p^{e}\right)
$$

Theorem 4. Let p be an odd prime and e be any positive integer. Then
i) $g\left(p^{e}\right)$ exists and is odd if $p \equiv 11$ or $19(\bmod 20)$
ii) $g\left(p^{e}\right)$ exists and is even if $p \equiv 3$ or $7(\bmod 20)$
iii) $g\left(p^{e}\right)$ does not exist if $p \equiv 13$ or $17(\bmod 20)$
iv) $g\left(p^{e}\right)$ is odd or does not exist if $p \equiv 21$ or $29(\bmod 40)$.

Proof. Follows from Vinson [1, p. 43] and Corollary 3. Wall [2, p. 525] has shown that the period of L_{n} modulo m exists for all positive integers m. Let $h(m)$ denote the period of L_{n} modulo m.
Corollary 4. Let $g(m)$ exist. Then
i) $m=1$ or 2 if and only if $h(m)=g(m)$
ii) $m>2$ and $g(m)$ is odd if and only if $h(m)=2 g(m)$
iii) $g(m)$ is even if and only if $h(m)=4 g(m)$.

Proof. Since $g(m)$ exists and $g(5)$ does not exist we have $(m, 5)=1$. So from the corollary to Theorem 8 of Wall [2, p. 529] we have $s(m)=h(m)$. We first prove the sufficiency in each case.
Case i) is clear.
Case ii): By Theorems 2 and $3,2 g(m)=f(m)=s(m)=h(m)$.
Case iii): By Theorems 2 and $3,4 g(m)=2 f(m)=s(m)=h(m)$.
The necessity in each case follows directly from the implications already proved.

REFERENCES

1. John Vinson, "The Relation of the Period Modulo m to the Rank of Apparition of m in the Fibonacci Sequence," The Fibonacci Quarterly, Vol. 1, No. 2 (April 1963), pp. 37-45.
2. D. D. Wall, "Fibonacci Series Modulo m," Amer. Math. Monthly, 67 (1960), pp. 525-532.
3. L. Carlitz, "A Note on Fibonacci Numbers" The Fibonacci Quarterly, Vol. 2, No. 1 (Feb. 1964), pp. 1528.

* * *

RECURRENCES OF THE THIRD ORDER AND RELATED COMBINATORIAL IDENTITIES

L. CARLITZ

Duke University, Durham, North Carolina 27706

1. Let g be a rational integer such that $\Delta=4 g^{3}+27$ is squarefree and let w denote the real root of the equation
(1.1)

$$
x^{3}+g x-1=0 \quad(g>1) .
$$

Clearly w is a unit of the cubic field $Q(w)$.
Following Bernstein [1], put
and

$$
\begin{equation*}
w^{n}=r_{n}+s_{n} w+t_{n} w^{2} \quad(n \geqslant 0) \tag{1.2}
\end{equation*}
$$

$$
w^{-n}=x_{n}+y_{n} w+z_{n} w^{2} \quad(n \geqslant 0) .
$$

Making use of the theory of units in an algebraic number field, Bernstein obtained some combinatorial identities. He showed that

$$
s_{n}=r_{n+2}, \quad t_{n}=r_{n+1}, \quad y_{n}=x_{n-2}, \quad z_{n}=x_{n-1}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} r_{n} u^{n}=\frac{1+g u^{2}}{1+g u-u^{3}}, \quad \sum_{n=0}^{\infty} x_{n} u^{n}=\frac{1}{1-g u^{2}-u^{3}} . \tag{1.4}
\end{equation*}
$$

Moreover, it follows from (1.2) and (1.3) that

$$
\left\{\begin{array}{l}
r_{n}^{2}-r_{n-1} r_{n+1}=x_{n-3} \tag{1.5}\\
x_{n}^{2}-x_{n-1} x_{n+1}=r_{n+3}
\end{array}\right.
$$

Explicit formulas for r_{n} and x_{n} are implied by (1.4). Substituting in (1.5) the combinatorial identities result. Since $\Delta=4 g^{3}+27$ is squarefree for infinitely many values of g, the identities are indeed polynomial identities.
The present writer [2] has proved these and related identities using only some elementary algebra. For example, if we put

$$
1+g x^{2}-x^{3}=(1-a x)(1-\beta x)(1-\gamma x)
$$

and define

$$
\sigma_{n}=a^{n}+\beta^{n}+\gamma^{n} \quad(\text { all } n)
$$

and

$$
\rho_{n}=\left\{\begin{array}{ll}
r_{n} & (n \geqslant 0) \\
x_{-n} & (n \geqslant 0)
\end{array},\right.
$$

then various relations are found connecting these quantities. For example

$$
\begin{equation*}
\sigma_{m} \sigma_{n}=\sigma_{m+n}+\sigma_{m-n} \sigma_{-n}-\sigma_{m-2 n} . \tag{1.6}
\end{equation*}
$$

Each relation of this kind implies a combinatorial identity.
In the present paper we consider a slightly more general situation. Let u, v denote indeterminates and put

$$
1-u x+v x^{2}-x^{3}=(1-a x)(1-\beta x)(1-\gamma x)
$$

We define σ_{n} by means of
Supported in part by NSF grant GP-37924X.
(1.7) and ρ_{n} by (1.8)

$$
\sigma_{n}=a^{n}+\beta^{n}+\gamma^{n} \quad(\text { all } n)
$$

$$
\rho_{n}=A a^{n}+B \beta^{n}+C \gamma^{n} \quad(\text { all } n),
$$

where A, B, C are determined by

$$
\frac{1}{1-v x+u x^{2}-x^{3}}=\frac{A}{1-\beta \gamma x}+\frac{B}{1-\gamma a x}+\frac{C}{1-a \beta x}
$$

Thus
(1.9)

$$
\sum_{n=0}^{\infty} \rho_{-n} x^{n}=\frac{1}{1-v x+u x^{2}-x^{3}}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \rho_{n} x^{n}=\frac{1-u x+v x^{2}}{1-u x+v x^{2}-x^{3}} \tag{1.10}
\end{equation*}
$$

while
(1.11)
and

$$
\sum_{n=0}^{\infty} \sigma_{n} x^{n}=\frac{3-2 u x+v x^{2}}{1-u x+v x^{2}-x^{3}}
$$

(1.12)

$$
\sum_{n=0}^{\infty} \sigma_{-n} x^{n}=\frac{3-2 v x+u x^{2}}{1-v x+u x^{2}-x^{3}}
$$

Since $a^{3}-a^{2} u+a v-1=0$, it is clear from the definition of σ_{n}, ρ_{n} that

$$
\sigma_{n+3}-u \sigma_{n+2}+v \sigma_{n+1}-\sigma_{n}=0
$$

and

$$
\rho_{n+3}-u \rho_{n+3}+v \rho_{n+1}-\rho_{n}=0
$$

for arbitrary n.
If we use the fuller notation

$$
\sigma_{n}=\sigma_{n}(u, v), \quad \rho_{n}=\rho_{n}(u, v),
$$

it follows from the generating functions that

| (1.13) | $\sigma_{-n}(u, v)=\sigma_{n}(v, u), \quad \rho_{n}(u, v)=\rho_{3-n}(v, u)$. |
| :--- | ---: | :--- |
| We show that | |
| (1.14)
 for arbitrary m, n. Similarly
 (1.15) | $\sigma_{m} \sigma_{n}=\sigma_{m+n}+\sigma_{m-n} \sigma_{-n}-\sigma_{m-2 n}$, |
| | $\sigma_{m} \rho_{n}=\rho_{m+n}+\rho_{m-n} a_{-n}-\rho_{m-2 n}$. |

As for the product $\rho_{m} \rho_{n}$, we have first

$$
\begin{equation*}
\rho_{n}^{2}-\rho_{n+1} \rho_{n-1}=\rho_{2 n-6}-\rho_{n-3} \sigma_{n-3} \tag{1.16}
\end{equation*}
$$

The more general result is

$$
\begin{gather*}
2 \rho_{m} \rho_{n}-\rho_{m+1} \rho_{n-1}-\rho_{m-1} \rho_{n+1} \tag{1.17}\\
=\sigma_{m-3} \sigma_{n-3}-\sigma_{m+n-6}-\sigma_{m-3} \rho_{n-3}-\sigma_{n-3} \rho_{m-3}+2 \rho_{m+n-6}
\end{gather*}
$$

again for arbitrary m, n.
Each of the functions $\sigma_{n}(u, v), \sigma_{-n}(u, v), \rho_{n}(u, v), \rho_{-n}(u, v), n \geqslant 0$, is a polynomial in u, v. Explicit formulas for these polynomials are given in (2.9), (2.10), (4.5), (4.6) below. Moreover $\sigma_{p n}$ is a polynomial in σ_{n}, σ_{-n}; indeed we have
(1.18)

$$
\sigma_{p n}(u, v)=\sigma_{p}\left(\sigma_{n}, \sigma_{-n}\right) \quad(p \geqslant 0) .
$$

The corresponding formula for $\rho_{p n}$ is somewhat more elaborate; see (4.3) and (4.4) below.

Substitution of the explicit formulas for $\sigma_{n}, \sigma_{-n}, \rho_{n}, \rho_{-n}$ in any of the relations such as (1.14), (1.15), (1.16), (1.17) gives rise to a large number of polynomial identities.

The introduction of two indeterminates u, v in σ_{n}, ρ_{n} leads to somewhat more elaborate formulas than those in [1]. However the greater symmetry implied by (1.13) is gratifying.
2. It follows from
(2.1)

$$
1-u x+v x^{2}-x^{3}=(1-a x)(1-\beta x)(1-\gamma x)
$$

that

$$
\left\{\begin{array}{rl}
a+\beta+\gamma & =u \tag{2.2}\\
\beta \nu+\gamma a+a \beta & =v \\
a \beta \gamma & =1
\end{array} .\right.
$$

Since $\alpha \beta \nu=1,(2.1)$ is equivalent to

$$
\begin{equation*}
1-v x+u x^{2}-x^{3}=(1-\beta \gamma x)(1-\gamma a x)(1-a \beta x) \tag{2.3}
\end{equation*}
$$

We have defined

$$
\begin{equation*}
\sigma_{n}=a^{n}+\beta^{n}+\gamma^{n} \tag{2.4}
\end{equation*}
$$

for n an arbitrary integer. Thus

$$
\sum_{n=0}^{\infty} \sigma_{n} x^{n}=\sum \frac{1}{1-a x}=\frac{\sum(1-\beta x)(1-\gamma x)}{1-u x+v x^{2}-x^{3}}
$$

which, by (2.2), reduces to

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sigma_{n} x^{n}=\frac{3-2 u x+v x^{2}}{1-u x+v x^{2}-x^{3}} \tag{2.5}
\end{equation*}
$$

Similarly

$$
\sum_{n=0}^{\infty} \sigma_{-n} x^{n}=\sum \frac{1}{1-\beta \gamma x}=\frac{(1-a \beta x)(1-a \gamma x)}{1-v x+u x^{2}-x^{3}}
$$

so that
(2.6)

$$
\sum_{n=0}^{\infty} \sigma_{-n} x^{n}=\frac{3-2 v x+u x^{2}}{1-v x+u x^{2}-x^{3}}
$$

Using the fuller notation

$$
\sigma_{n}=\sigma_{n}(u, v), \quad \sigma_{-n}=\sigma_{-n}(u, v)
$$

it is clear from (2.5) and (2.6) that

$$
\begin{equation*}
\sigma_{-n}(u, v)=\sigma_{n}(v, u) \tag{2.7}
\end{equation*}
$$

By (2.1), a, β, ν are the roots of

$$
z^{3}-u z^{2}+v z-1=0
$$

and so
(2.8)

$$
\sigma_{n+3}-u \sigma_{n+2}+v \sigma_{n+1}-\sigma_{n}=0
$$

for all n.
Next,

$$
\begin{aligned}
\left(1-u x+v x^{2}-x^{3}\right)^{-1} & =\sum_{k=0}^{\infty}\left(u x-v x^{2}+x^{3}\right)^{k}=\sum_{i, j, k=0}^{\infty}(-1)^{j}(i, j, k) u^{i} v^{j} x^{i+2 j+3 k} \\
& =\sum_{n=0}^{\infty} x^{n} \sum_{i+2 j+3 k=n}(-1)^{j}(i, j, k) u^{i} v^{j}
\end{aligned}
$$

[FEB.
where

$$
(i, j, k)=\frac{(i+j+k)!}{i!j!k!}
$$

Thus, by (2.5),
$\sigma_{n}=3 \sum_{i+2 j+3 k=n}(-1)^{j}(i, j, k) u^{i} v^{j}-2 u \sum_{i+2 j+3 k=n-1}(-1)^{j}(i, j, k) u^{i} v^{j}+v \sum_{i+2 j+3 k=n-2}(-1)^{j}(i, j, k) u^{i} v^{j}$

$$
=\sum_{i+2 j+3 k=n}(-1)^{j} u^{i} v^{j}\{3(i, j, k)-2(i-1, i, k)-(i, j-1, k)\} .
$$

Hence
(2.9)

$$
\sigma_{n}=\sum_{i+2 j+3 k=n}(-1)^{j} \frac{n}{i+j+k}(i, j, k) u^{i} v^{j} \quad(n>0) .
$$

By (2.7) the corresponding formula for σ_{-n} is

$$
\begin{equation*}
\sigma_{-n}=\sum_{i+2 j+3 k=n}(-1)^{j} \frac{n}{i+j+k}(i, j, k) v^{i} u^{j} \quad(n>0) . \tag{2.10}
\end{equation*}
$$

It follows that, for n prime, coefficients of all terms-except the leading term-in σ_{n} are divisible by n.
Returning to (2.4), we have

$$
\begin{aligned}
\sigma_{m} \sigma_{n}=\Sigma a^{m} \Sigma a^{n} & =\Sigma a^{m+n}+\Sigma a^{m}\left(\beta^{n}+\gamma^{n}\right)=\sigma_{m+n}+\Sigma a^{m-n}\left(a^{n} \beta^{n}+a^{n} \boldsymbol{y}^{n}\right) \\
& =\sigma_{m+n}+\Sigma a^{m-n}\left(a_{-n}-\beta^{n} \gamma^{n}\right)
\end{aligned}
$$

which gives
(2.11)

$$
\sigma_{m} \sigma_{n}=\sigma_{m+n}+\sigma_{m-n} \sigma_{-n}-\sigma_{m-2 n}
$$

valid for all m, n. Replacing m by $m+2 n$, (2.11) becomes

$$
\begin{equation*}
\sigma_{m+3 n}-\sigma_{m+2 n} \sigma_{n}+\sigma_{m+n} \sigma_{-n}-\sigma_{m}=0 \tag{2.12}
\end{equation*}
$$

For $m=n$, (2.11) reduces to

$$
\begin{equation*}
\sigma_{n}^{2}=\sigma_{2 n}+2 \sigma_{-n} \tag{2.13}
\end{equation*}
$$

Hence, for $m=2 n$,

$$
\sigma_{n} \sigma_{2 n}=\sigma_{3 n}+\sigma_{n} \sigma_{-n}-3
$$

so that
(2.14) $\quad \sigma_{3 n}=\sigma_{n}^{3}-3 \sigma_{n} \sigma_{-n}+3$.

To get the general formula we take

$$
\sum_{p=0}^{\infty} \sigma_{p n} x^{k}=\sum \frac{1}{1-a^{n} \dot{x}}=\frac{\Sigma\left(1-\beta^{n} x\right)\left(1-\gamma^{n} x\right)}{\left(1-a^{n} x\right)\left(1-\beta^{n} x\right)\left(1-\gamma^{n} x\right)}=\frac{3-2 \sigma_{n} x+\sigma_{-n} x^{2}}{1-\sigma_{n} x+\sigma_{-n} x^{2}-x^{3}}
$$

Comparing with (2.5), it is evident from (2.9) that

$$
\begin{equation*}
\sigma_{p n}=\sum_{i+2 j+3 k=p}(-1)^{j} \frac{p}{i+j+k}(i, j, k) \sigma_{n}^{i} \sigma_{-n}^{j} \quad(p>0) \tag{2.15}
\end{equation*}
$$

Substitution from (2.9) and (2.10) in (2.11), (2.12), (2.13), (2.14), (2.15) evidently results in a number of combinatorial identities. We state only
(2.16) $\left\{\sum_{i+2 j+3 k=n}(-1)^{j} \frac{n}{i+j+k}(i, j, k) u^{i} v^{j}\right\}^{2}=\sum_{i+2 j+3 k=2 n}(-1)^{j} \frac{2 n}{i+j+k}(i, j, k) u^{i} v^{j}+2 \sum_{i+2 j+3 k=n}(-1)^{j} \frac{n}{i+j+k}(i, j, k) v^{i} u^{j}$
3. Put

$$
\begin{equation*}
\frac{1}{1-v x+u x^{2}-x^{3}}=\frac{A}{1-\beta y x}+\frac{B}{1-y a x}+\frac{C}{1-a \beta x}, \tag{3.1}
\end{equation*}
$$

where A, B, C are independent of x. Then
(3.2) $\quad\left(1-a^{2} \beta\right)\left(1-a^{2} \gamma\right) A=1$.

Since

$$
\left(1-a^{2} \beta\right)\left(1-a^{2} \gamma\right)=1-a^{2}(\beta+y)+a^{4} \beta \gamma=1-a^{2}(u-a)+a^{3}=1-a^{2} u+2 a^{3}
$$

it follows from $a^{3}-a^{2} u+a v-1=0$ that

$$
\begin{equation*}
A=\frac{1}{3-2 a v+a^{2} u} \tag{3.3}
\end{equation*}
$$

with similar formulas for B and C.
Replacing x by $1 / x$ in (3.1) and simplifying, we get

$$
\frac{x^{3}}{1-u x+v x^{2}-x^{3}}=-\sum \frac{A x}{\beta \gamma-x}=\sum \frac{A a x}{1-a x}=\sum \frac{A}{1-a x}-\sum A
$$

Since $\Sigma A=1$, it follows that

$$
\begin{equation*}
\frac{1-u x+v x^{2}}{1-u x+v x^{2}-x^{3}}=\sum \frac{A}{1-a x} . \tag{3.4}
\end{equation*}
$$

We now define ρ_{n}, ρ_{-n} by means of

$$
\begin{equation*}
\frac{1-u x+v x^{2}}{1-u x+v x^{2}-x^{3}}=\sum_{n=0}^{\infty} \rho_{n} x^{n} \tag{3.5}
\end{equation*}
$$

and
(3.6)

$$
\frac{1}{1-v x+u x^{2}-x^{3}}=\sum_{n=0}^{\infty} \rho_{-n} x^{n}
$$

It then follows from (3.1) and (3.4) that
(3.7)

$$
\rho_{n}=\Sigma A a^{n}
$$

for all n.
By (3.6), we have, for arbitrary m and n,

$$
\rho_{m} \rho_{n}=\Sigma A a^{m} \cdot \Sigma A a^{n}=\Sigma A^{2} a^{m+n}+\Sigma B C\left(\beta^{m} \gamma^{n}+\gamma^{m} \beta^{n}\right)
$$

Thus

$$
\rho_{m+1} \rho_{n-1}=\Sigma A^{2} a^{m+n}=B C\left(\beta^{m+1} \gamma^{n-1}+\gamma^{m+1} \beta^{n-1}\right),
$$

so that

$$
\begin{equation*}
\rho_{m} \rho_{n}-\rho_{m+1} \rho_{n-1}=\Sigma B C\left\{\left(\beta^{m} \gamma^{n}+\gamma^{m} \beta^{n}\right)-\left(\beta^{m+1} \gamma^{n-1}+\gamma^{m+1} \beta^{n-1}\right)\right\} \tag{3.8}
\end{equation*}
$$

The quantity in braces is equal to

$$
-(\beta-\gamma)\left(\beta^{m} \gamma^{n-1}-\gamma^{m} \beta^{n-1}\right)
$$

Hence

$$
\left\{\begin{array}{c}
\rho_{m} \rho_{n}-\rho_{m+1} \rho_{n-1}=-\Sigma B C(\beta-\gamma)\left(\beta^{m} \dot{\gamma}^{n-1}-\gamma^{m} \beta^{n-1}\right) \\
\rho_{m} \rho_{n}-\rho_{m-1} \rho_{n+1}=-\Sigma B C(\beta-\gamma)\left(\beta^{n} \gamma^{m-1}-\gamma^{n} \beta^{m-1}\right)
\end{array} .\right.
$$

It follows that
(3.9)

$$
\begin{gathered}
\quad 2 \rho_{m} \rho_{n}-\rho_{m+1} \rho_{n-1}-\rho_{m-1} \rho_{n+1} \\
=-\Sigma B C\left(\beta-\gamma^{2}\left(\beta^{m-1} \gamma^{n-1}+\gamma^{m-1} \beta^{n-1}\right)\right.
\end{gathered}
$$

By (3.2),
so that (3.9) becomes

$$
B C(\beta-\gamma)^{2}=-A a^{2}
$$

(3.10)

$$
2 \rho_{m} \rho_{n}-\rho_{m+1} \rho_{n-1}-\rho_{m-1} \rho_{n+1}=\Sigma A\left(\beta^{m-3} \gamma^{n-3}+\gamma^{m-3} \beta^{n-3}\right) .
$$

In particular, if $m=n$, (3.10) reduces to
and so
(3.11)

$$
\rho_{n}^{2}-\rho_{n+1} \rho_{n-1}=\Sigma A \beta^{n-3} \gamma^{n-3}=\Sigma A a^{-n+3}
$$

To get a more general result consider

$$
\begin{aligned}
\beta^{m} \nu^{n}+\gamma^{m} \beta^{n}=\left(\beta^{m}+\gamma^{m}\right)\left(\beta^{n}+\gamma^{n}\right)-\left(\beta^{m+n}+\gamma^{m+n}\right) & =\left(\sigma_{m}-a^{m}\right)\left(\sigma_{n}-a^{n}\right)-\left(\sigma_{m+n}-a^{m+n}\right) \\
& =\sigma_{m} \sigma_{n}-\sigma_{m} a^{n}-\sigma_{n} a^{m}-\sigma_{m+n}+2 a^{m+n} .
\end{aligned}
$$

Thus
(3.12)

$$
\Sigma A\left(\beta^{m} \gamma^{n}+\gamma^{m} \beta^{n}\right)=\sigma_{m} \sigma_{n}-\sigma_{m+n}-\sigma_{m} \beta_{n}-\sigma_{n} \beta_{m}+2 \rho_{m+n} .
$$

Combining (3.10) and (3.12) we get
(3.13) $2 \rho_{m} \rho_{n}-\rho_{m+1} \rho_{n-1}-\rho_{m-1} \rho_{n+1}=\sigma_{m-3} \sigma_{n-3}-\sigma_{m+n-6}-\sigma_{m-3} \rho_{n-3}-\sigma_{n-3} \rho_{m-3}+2 \rho_{m+n-6}$.

For $m=n$, (3.13) reduces to
(3.14)

$$
\rho_{n}^{2}-\rho_{n+1} \rho_{n-1}=\rho_{2 n-6}-\sigma_{n-3} \rho_{n-3}+\sigma_{-n+3}
$$

It is not evident that (3.14) is equivalent to (3.11). This is proved immediately below.

4. We now take

$$
\begin{aligned}
\rho_{m} \sigma_{n}=\Sigma A a^{m} \Sigma a^{n} & =\Sigma A a^{m+n}+\Sigma A a^{m}\left(\beta^{n}+\gamma^{n}\right)=\rho_{m+n}+\Sigma A a^{m-n}\left(a^{n} \beta^{n}-a^{n} \gamma^{n}\right) \\
& =\rho_{m+n}+\Sigma A a^{m-m}\left(\sigma_{-n}-a^{-n}\right),
\end{aligned}
$$

which gives
(4.1)

$$
\rho_{m} \sigma_{n}=\rho_{m+n}+\rho_{m-n} \sigma_{-n}-\rho_{m-2 n} .
$$

In particular, for $m=n$,
(4.2)

$$
\rho_{n} \sigma_{n}=\rho_{2 n}+\sigma_{-n}-\rho_{-n},
$$

which shows that (3.14) is indeed equivalent to (3.11).
For $m=2 n$, (4.1) gives

$$
\rho_{3 n}=\rho_{2 n} \sigma_{n}-\rho_{n} \sigma_{-n}+1=\rho_{n} \sigma_{n}^{2}-\sigma_{n} \sigma_{-n}+\rho_{-n} \sigma_{n}-\rho_{n} \sigma_{-n}+1
$$

To get a general formula for $\rho_{p n}$ take

$$
\begin{aligned}
\sum_{p=0}^{\infty} \rho_{p n} x^{p} & =\sum_{p=0}^{\infty} x^{p} \sum A a^{p n}=\sum \frac{A}{1-a^{n} x}=\frac{\sum A\left(1-\beta^{n} x\right)\left(1-\gamma^{n} x\right)}{\left(1-a^{n} x\right)\left(1-\beta^{n} x\right)\left(1-\gamma^{n} x\right)} \\
& =\frac{1-\left(\sigma_{n}-\rho_{n}\right) n+\rho_{-n} x^{2}}{1-\sigma_{n} x+\sigma_{-n} x^{2}-x^{3}}
\end{aligned}
$$

Then, as in the proof of (2.15), we have

$$
\begin{equation*}
\rho_{p n}=c_{p, n}-\left(\sigma_{n}-\rho_{n}\right) c_{p-1, n}+\rho_{-n} c_{p-2, n} \quad(p \geqslant 0) \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{p, n}=\sum_{i+2 j+3 k=p}(-1)^{j}(i, j, k) \sigma_{n}^{i} \sigma_{-n}^{j} . \tag{4.4}
\end{equation*}
$$

Since

$$
\rho_{1}=\Sigma A a=0, \quad \rho_{2}=\Sigma A a^{2}=0
$$

we have in particular

$$
\begin{equation*}
\rho_{p}=\sum_{i+2 j+k=p-3}(-1)^{j}(i, i, k) u^{i} v^{j} \quad(p \geqslant 3) \tag{4.5}
\end{equation*}
$$

and
(4.6)

$$
\rho_{-p}=\sum_{i+2 j+3 k=p}(-1)^{j}(i, j, k) v^{i} u^{j} \quad(p \geqslant 0)
$$

With the fuller notation

$$
\rho_{n}=\rho_{n}(u, v), \quad \rho_{-n}=\rho_{-n}(u, v),
$$

it is clear from (4.5) and (4.6) that

$$
\begin{equation*}
\rho_{n}(u, v)=\rho_{3-n}(v, u) . \tag{4.7}
\end{equation*}
$$

Moreover (4.4) becomes
(4.8)

$$
c_{p, n}=\rho_{p}\left(\sigma_{n}, \sigma_{-n}\right) \quad(p \geqslant 0)
$$

We may now substitute from the explicit formulas (2.9), (2.10), (4.5), (4.6) in various formulas of Sections 3 and 4 to obtain a large number of polynomial identities in two indeterminants. To give only one relatively simple example, we take (4.2). Thus

$$
\begin{align*}
& \left\{\sum_{i+2 j+3 k=n-3}(-1)^{j}(i, j, k) u^{i} v^{j}\right\}\left\{\sum_{i+2 j+3 k=n}(-1)^{j} \frac{n}{i+j+k}(i, j, k) u^{i} v^{j}\right\} \tag{4.9}\\
& =\sum_{i+2 j+3 k=2(n-3)}(-1)^{j}(i, j, k) u^{i} v^{j}-\sum_{i+2 j+3 k=n}(-1)^{j}(i, j, k) v^{i} u^{j} \\
& \quad+\sum_{i+2 j+3 k=n}(-1)^{j} \frac{n}{i+j+k}(i, j, k) v^{i} u^{j} \quad(n \geqslant 0)
\end{align*}
$$

5. For small n, σ_{n} and ρ_{n} can be computed without much labor by means of the recurrences. Moreover the results are extended by the symmetry relations

$$
\sigma_{-n}(u, v)=\sigma_{n}(v, u), \quad \rho_{n}(u, v)=\rho_{3-n}(v, u)
$$

A partial check on σ_{n} is furnished by the result, that, for prime n,

$$
\sigma_{n}(u, v) \equiv u^{n} \quad(\bmod n)
$$

Also, by (2.5),

$$
\sum_{n=0}^{\infty} \sigma_{n}(1,1) x^{n}=\frac{3-2 x+x^{2}}{1-x+x^{2}-x^{3}}=\frac{3+x-x^{2}+x^{3}}{1-x^{4}}
$$

which implies

$$
\sigma_{n}(1,1)=3, \quad \sigma_{4 n+1}(1,1)=\sigma_{4 n+3}(1,1)=1, \quad \sigma_{4 n+2}(1,1)=-1
$$

As for $\rho_{n}(1,1)$, we have by (3.5)

$$
\sum_{n=0}^{\infty} \rho_{n}(1,1) x^{n}=\frac{1-x+x^{2}}{1-x+x^{2}-x^{3}}=\frac{1+x^{3}}{1-x^{4}}
$$

so that

$$
\rho_{4 n}(1,1)=\rho_{4 n+3}(1,1)=1, \quad \rho_{4 n+1}(1,1)=\rho_{4 n+2}(1,1)=0 .
$$

Table 1

Table 2

$\rho_{0}=1, \quad \rho_{1}=\rho_{2}=0, \quad \rho_{3}=1$
$\rho_{4}=u, \quad \rho_{5}=u^{2}-v$
$\rho_{6}=u^{3}-2 u v+1$
$\rho_{7}=u^{4}-3 u^{2} v+v^{2}+2 u$
$\rho_{8}=u^{5}-4 u^{3} v+3 u v^{2}+3 u^{2}-2 v$
$\rho_{9}=u^{6}-5 u^{4} v+6 u^{2} v^{2}+4 u^{3}-v^{3}-6 u v+1$
$\rho_{10}=u^{7}-6 u^{5} v+10 u^{3} v^{2}+5 u^{4}-4 u v^{3}-12 u^{2} v+3 v^{2}+3 u$

REFERENCES

1. L. Bernstein, "Zeros of Combinatorial Functions and Combinatorial Identities," Houston Journal of Math., Vol. 2 (1976), pp. 9-16.
2. L. Carlitz, "Some Combinatorial Identities of Bernstein," SIAM Journal of Mathematical Analysis, to appear.

SOME SEQUENCE-TO-SEQUENCE TRANSFORMATIONS WHICH PRESERVE COMPLETENESS

J. L. BRAWN, JR.

The Pennsylvania State University, State College, PennsyIvania 16801

1. INTRODUCTION

A sequence $\left\{s_{i}\right\}_{1}^{\infty}$ of positive integers is termed complete if every positive integer N can be expressed as a distinct sum of terms from the sequence; it is well known ([1], Theorem 1) that if $\left\{s_{i}\right\}_{1}^{\infty}$ is nondecreasing with $s_{1}=1$, then a necessary and sufficient condition for completeness is

$$
\begin{equation*}
s_{n+1} \leqslant 1+\sum_{1}^{n} s_{i} \quad \text { for } n \geqslant 1 \tag{1}
\end{equation*}
$$

Using this criterion for completeness, we will exhibit several transformations which convert a given complete sequence of positive integers into another sequence of positive integers without destroying completeness. Since the Fibonacci numbers ($F_{1}=F_{2}=1, F_{n+1}=F_{n}+F_{n-1}$ for $n \geqslant 2$) and the sequence of primes with unity adjoined ($P_{1}=1, P_{2}=2,3,5,7,11,13,17, \cdots$) are examples of complete sequences, our results will yield as special cases some new complete sequences associated with the Fibonacci numbers and the primes.

2. QUANTIZED LOGARITHMIC TRANSFORMATION

Let $[x]$ denote the greatest integer contained in x, and define the function $<\cdot>$ by

$$
\langle x\rangle=1+[x] \quad \text { for all real } x .
$$

Thus $\langle x\rangle$ is the least integer $\rangle x$ in contrast to $[x]$, the greatest integer $\leqslant x$. Both $<\cdot\rangle$ and $[\cdot]$ may be thought of as quantizing characteristics in the sense that a non-integral x is rounded off to the integer immediately following x in the case of $\langle\cdot\rangle$ or to the integer immediately preceding x when [.] is used. If x is an integer, then $[x]=x$ and $\langle x\rangle=1+x$. The following lemma shows that $\langle\cdot\rangle$ is subadditive:
Lemma 1. $\langle x+y\rangle \leqslant\langle x\rangle+\langle y\rangle$.
Proof. If $x=[x]+\eta_{x}$ and $y=[y]+\eta_{y}$ with $0 \leqslant \eta_{x}, \eta_{y}<1$, then

$$
\langle x+y\rangle=\left\langle[x]+[y]+\eta_{x}+\eta_{y}\right\rangle \leqslant[x]+[y]+2=1+[x]+[y]+1=\langle x\rangle+\langle y\rangle
$$

Lemma 2. Let $\ln x$ denote the natural logarithm of x. Then for $x, y \geqslant 2$,

$$
\ln (x+y) \leqslant \ln x+\ln y
$$

that is, the logarithm is subadditive on the domain $[2, \infty)$.

$$
\begin{aligned}
& \text { Proof. For } x, y \geqslant 2, \\
& \qquad x+y \leqslant 2 \cdot \max (x, y) \leqslant \min (x, y) \max (x, y)=x y,
\end{aligned}
$$

and $\ln (x+y) \leqslant \ln (x y)=\ln x+\ln y$, from the nondecreasing property of the logarithm.
Theorem 1. Let $\left\{s_{i}\right\}_{1}^{\infty}$ be a strictly increasing, complete sequence of positive integers. Then the sequence $\left\{\left\langle\ln s_{i}\right\rangle\right\}_{2}^{\infty}$ is also complete.

Proof. By the assumed completeness,

$$
s_{n+1} \leqslant 1+\sum_{1}^{n} s_{i} \quad \text { for } n \geqslant 1
$$

Since $s_{1}=1$, we may write

$$
s_{n+1} \leqslant 2+\sum_{2}^{n} s_{i} \quad \text { for } n \geqslant 1
$$

hence,

$$
\ln s_{n+1} \leqslant \ln \left(2+\sum_{2}^{n} s_{i}\right)
$$

and, on noting $s_{i} \geqslant 2$ for $i \geqslant 2$, it follows from Lemma 2 (by induction) that

$$
\ln s_{n+1} \leqslant \ln 2+\sum_{2}^{n} \ln s_{i}
$$

Now we may use the nondecreasing and subadditive (lemma 1) properties of $<\cdot>$ to conclude

$$
\left.\left.\left\langle\ln s_{n+1}\right\rangle \leqslant\left\langle\ln 2+\sum_{2}^{n} \ln s_{i}\right\rangle \leqslant<\ln 2\right\rangle+\sum_{2}^{n}\left\langle\ln s_{i}\right\rangle=1+\sum_{2}^{n}<\ln s_{i}\right\rangle \text { for } n \geqslant 2 .
$$

Hence (noting $\left.<\ln s_{2}\right\rangle=<\ln 2>=1$) by the completeness criterion, the sequence $\left\{\left\langle\ln s_{i}\right\rangle\right\}_{2}^{\infty}$ is complete, proving the theorem.

The following theorem yields a similar conclusion for a class of functions ϕ where each ϕ possesses properties similar to that of the logarithmic function.
Theorem 2. Let $\left\{s_{i}\right\}_{1}^{\infty}$ be a nondecreasing complete sequence of positive integers and let $\phi(\cdot)$ be a function defined on the domain $x \geqslant 1$, nondecreasing and subadditive on that domain with $0 \leqslant \phi(1)<1$. Then $\left.\left\{<\phi\left(s_{i}\right)\right\rangle\right\}_{1}^{\infty}$ is complete.
Proof. From

$$
s_{n+1} \leqslant 1+\sum_{1}^{n} s_{i}
$$

it follows that

$$
\phi\left(s_{n+1}\right) \leqslant \phi\left(1+\sum_{1}^{n} s_{i}\right) \leqslant \phi(1)+\sum_{1}^{n} \phi\left(s_{i}\right)
$$

Then

$$
\left.<\phi\left(s_{n+1}\right)>\leqslant\langle\phi(1)\rangle+\sum_{1}^{n}<\phi\left(s_{i}\right)\right\rangle=1+\sum_{1}^{n}\left\langle\phi\left(s_{i}\right)>\right.
$$

so that, with $\langle\phi(1)\rangle=1$ and the completeness criterion, the sequence $\left\{\phi\left(s_{i}\right)\right\}_{1}^{\infty}$ is complete.
NOTE. Theorem 1 is not a special case of Theorem 2 since the logarithm is not subadditive on $[1, \infty)$. It is also clear that the domain of ϕ could be restricted to only those integers lying in [1, ${ }^{\circ}$).
EXAMPLE. If $\phi(x)=\sqrt{x-1 / 2}$ for $x \geqslant 1$, the reader may easily verify that ϕ is nondecreasing, subadditive and $0 \leqslant \phi(1)=\sqrt{1 / 2}<1$. Therefore $\left\{<\sqrt{s_{i}-1 / 2}>\right\}_{1}^{\infty}$ is complete whenever $\left\{s_{i}\right\}_{1}^{\infty}$ is a nondecreasing complete sequence of positive integers.

EXAMPLE. The function $\phi(x)=a x$ for $x \geqslant 1$ and some fixed $a>0$ is nondecreasing and subadditive, and if
$0<a<1$, then $\phi(1)=a$ and ϕ satisfies the conditions of Theorem 2 . Thus, for example, the sequence

$$
\left\{\left\langle\frac{s_{i}}{2}\right\rangle\right\}_{1}^{\infty}
$$

is complete whenever $\left\{s_{i}\right\}_{1}^{\infty}$ is a nondecreasing complete sequence of positive integers.
EXAMPLE: If $P_{1}=1, P_{2}=2,3,5,7,11, \cdots$ denotes the sequence of primes (with unity adjoined); then it is well known [2] that $\left\{P_{i}\right\}_{1}^{\infty}$ is complete. Hence by Theorem 1, the sequence $\left\{\left\langle\ln P_{i}\right\rangle\right\}_{2}^{\infty}$ is also complete, and thus each positive integer N has an expansion of the form

$$
N=\sum_{2}^{\infty} a_{i}<\ln P_{i}>
$$

where each a_{i} is binary (zero or one). The series is clearly finite, since $a_{i}=0$ for $i \geqslant k$, where k is such that $<\ln P_{k}>$ exceeds N.

It is of interest to prove the completeness of $\left\{<\ln P_{i}>\right\}_{2}^{\infty}$ directly without using the completeness of $\left\{P_{i}\right\}_{1}^{\infty}$. In this manner, we avoid the implicit use of Bertrand's postulate which is normally invoked in showing the primes are complete.
Theorem 3. The sequence $\left\{<\ln P_{i}>\right\}_{2}^{\infty}$ is complete.
Proof. Using Euler's classical argument, we observe that

$$
1+\prod_{2}^{n} P_{i}
$$

is not divisible by $P_{1}, P_{2}, \cdots, P_{n}$ and therefore must have a prime divisor larger than P_{n}; that is

$$
1+\prod_{2}^{n} P_{i} \geqslant P_{n+1}
$$

or

$$
P_{n+1} \leqslant 1+\prod_{1}^{n} P_{i} \leqslant 2 \prod_{1}^{n} P_{i} \text { for } n \geqslant 1
$$

Since the logarithm is an increasing function,

$$
\ln P_{n+1} \leqslant \ln 2+\sum_{1}^{n} \ln P_{i}
$$

and consequently,

$$
\left.\left\langle\ln P_{n+1}\right\rangle \leqslant<\ln 2\right\rangle+\sum_{1}^{n}\left\langle\ln P_{i}\right\rangle=1+\sum_{1}^{n}\left\langle\ln P_{i}\right\rangle
$$

establishing the result by the completeness criterion.

3. LUCAS TRANSFORMATION

The transformation defined in the following theorem is called a Lucas Transformation since it corresponds to the manner in which the Lucas sequence is generated from the Fibonacci sequence.
Theorem 4. Let $\left\{u_{i}\right\}_{1}^{\infty}$ be a nondecreasing complete sequence with $u_{1}=u_{2}=1$. Define a sequence $\left\{v_{i}\right\}_{0}^{\infty}$ by

$$
\left\{\begin{array}{l}
v_{0}=1 \\
v_{1}=2 \\
v_{n}=u_{n-1}+u_{n+1} \quad \text { for } n \geqslant 2
\end{array}\right.
$$

Then $\left\{v_{i}\right\}_{0}^{\infty}$ is complete.

Proof. For $n \geqslant 1$,

$$
\begin{aligned}
v_{n+1} & =u_{n}+u_{n+2} \leqslant 1+\sum_{1}^{n-1} u_{i}+1+\sum_{1}^{n+1} u_{i}=\left(u_{n+1}+u_{n-1}\right)+\left(u_{n}+u_{n-2}\right)+\ldots+\left(u_{3}+u_{1}\right)+u_{2}+u_{1}+2 \\
& =v_{n}+v_{n-1}+\ldots+v_{2}+u_{2}+u_{1}+2=v_{n}+v_{n-1}+\ldots+v_{2}+v_{1}+v_{0}+1=1+\sum_{0}^{n} v_{i},
\end{aligned}
$$

where we have used $u_{2}+u_{1}+2=4=v_{1}+v_{0}+1$. Thus $v_{0}=1$ and

$$
v_{n+1} \leqslant 1+\sum_{0}^{n} v_{i}
$$

for $n \geqslant 0$ which implies that $\left\{v_{i}\right\}_{0}^{\infty}$ is complete.
EXAMPLE: Let $u_{i}=F_{i}$, where $\left\{F_{i}\right\}_{1}^{\infty}$ is the Fibonacci sequence. Then the sequence defined by

$$
v_{0}=1, \quad v_{1}=2, \quad v_{n}=F_{n-1}+F_{n+1} \quad \text { for } n \geqslant 2
$$

is complete by Theorem 4. Moreover, recalling that the Lucas numbers $\left\{L_{n}\right\}_{0}^{\infty}$, defined by

$$
L_{0}=2, \quad L_{1}=1, \quad L_{n+1}=L_{n}+L_{n-1} \quad \text { for } n \geqslant 1,
$$

are also expressible by

$$
L_{n}=F_{n-1}+F_{n+2} \quad \text { for } n \geqslant 2
$$

we see that $\left\{v_{n}\right\}_{0}^{\infty}$ is simply the sequence $\left\{L_{n}\right\}_{0}^{\infty}$ put in nondecreasing order by an interchange of L_{0} and L_{1}. Completeness is not affected by a renumbering of the sequence; however, the inequality criterion for completeness must be applied only to nondecreasing sequences.

4. SUMMARY

If S denotes the set of all nondecreasing complete sequences of positive integers, we have considered certain transformations which map S into itself. In particular, it was shown, as special cases of the general results, that the sequences $\left\{\left\langle\ln F_{n}\right\rangle_{3}^{\infty},\left\{\left\langle\ln P_{n}\right\rangle\right\}_{2}^{\infty}\right.$ and $\left\{\left\langle a F_{n}\right\}_{2}^{\infty}\right.$ are complete sequences, where $\langle\cdot\rangle$ is defined by $\langle x\rangle=1+$ $[x],\left\{F_{n}\right\}=r\{1,1,2,3,5, \cdots\}$ is the Fibonacci sequence, $\left\{P_{n}\right\}=\{1,2,3,5,7,11, \cdots\}$ is the sequence of primes with unity adjoined and a is a fixed constant satisfying $0<a<1$.

REFERENCES

1. J. L. Brown, Jr., "Note on Complete Sequences of Integers," American Math. Monthly, Vol. 68, No. 6, June-July, 1961, pp. 557-560.
2. V.E. Hoggatt, Jr., and Bob Chow, "Some Theorems on Completeness," The Fibonacci Quarterly, Vol. 10, No. 5, 1972, pp. 551-554.

AN IDENTITY RELATING COMPOSITIONS AND PARTITIONS

DEAN R. HIC KERSON

University of California, Davis, California

The following partition identity was proved in [1]:
Theorem. If $f(r, n)$ denotes the number of partitions of n of the form $n=b_{0}+b_{1}+\cdots+b_{s}$, where for $0 \leqslant i \leqslant s-1, b_{i} \geqslant r b_{i+1}$, and $g(r, n)$ denotes the number of partitions of n, where each part is of the form $1+r+r^{2}+\ldots+r^{i}$ for some $i \geqslant 0$, then $f(r, n)=g(r, n)$.

In this paper, we will give a generalization of this theorem.
In [1], the parts of the partitions were listed in non-increasing order. It will, however, be more convenient for our purposes to list them in non-decreasing order.
The main result of this paper is given in the following theorem.
The orem 1. Let r_{1}, r_{2}, \cdots be integers. Let $c_{0}=1$ and, for $i \geqslant 1$, let $c_{i}=r_{1} c_{i-1}+r_{2} c_{i-2}+\cdots+r_{i} c_{0}$. Suppose that, for all $i \geqslant 0, c_{i}>0$. For $i \geqslant 0$, let $t_{i}=c_{0}+\cdots+c_{i}$ and define $T=\left\{t_{0}, t_{1}, t_{2}, \cdots\right\}$. Then, for $n \geqslant 0$, the number, $f(n)$, of compositions $b_{0}+\cdots+b_{s}$ of n in which $b_{i} \geqslant r_{1} b_{i-1}+r_{2} b_{i-2}+\cdots+r_{i} b_{0}$ for $1 \leqslant i \leqslant s$, is equal to the number, $g(n)$, of partitions of n with parts in T.
Proof. Let $n=a_{0} t_{0}+\cdots+a_{s} t_{s}$ be a partition of n counted by $g(n)$, where $a_{s}>0$. Define, for $0 \leqslant i \leqslant s$,

$$
b_{i}=\sum_{0 \leqslant j \leqslant i} a_{j+s-i} c_{j} .
$$

Then

$$
b_{0}+\cdots+b_{s}=\sum_{0 \leqslant i \leqslant s} b_{s-i}=\sum_{0 \leqslant i \leqslant s} \sum_{0 \leqslant j \leqslant s-i} a_{i+j} c_{j}=\sum_{0 \leqslant k \leqslant s}\left(a_{k} \sum_{0 \leqslant j \leqslant k} c_{j}\right)=\sum_{0 \leqslant k \leqslant s} a_{k} t_{k}=n .
$$

Also, for $0 \leqslant i \leqslant s$,

$$
b_{i}=\sum_{0 \leqslant j \leqslant i-1} a_{j+s-i} c_{j}+a_{s} c_{i}>\sum_{0 \leqslant j \leqslant i-1} a_{j+s-i} c_{j} \geqslant 0 .
$$

Therefore, $b_{0}+\cdots+b_{s}$ is a composition of n. Moreover, for $1 \leqslant i \leqslant s$,

$$
\begin{aligned}
b_{i} \geqslant \sum_{1 \leqslant j \leqslant i} a_{j+s-i} c_{j} & =\sum_{1 \leqslant j \leqslant i}\left(a_{j+s-i} \sum_{1: \ll k \leqslant j} r_{k} c_{j-k}\right)=\sum_{1 \leqslant k \leqslant i}\left(r_{k} \sum_{k \leqslant j \leqslant i} a_{j+s-i} c_{j-k}\right) \\
& =\sum_{1 \leqslant k \leqslant i}\left(r_{k} \sum_{0 \leqslant j \leqslant i-k} a_{j+s-(i-k)} c_{j}\right)=\sum_{1 \leqslant k \leqslant i} r_{k} b_{i-k} .
\end{aligned}
$$

Thus, $b_{0}+\cdots+b_{s}$ is a composition of n counted by $f(n)$.
This constitutes a mapping ϕ from the set of partitions counted by $g(n)$ into the set of compositions counted by $f(n)$. It suffices to show that ϕ is one-to-one and onto.
If ϕ is not one-to-one, then there exist distinct partitions $a_{o} t_{0}+\cdots+a_{s} t_{s}$ and $a_{o}^{\prime} t_{0}+\cdots+a_{s}^{\prime} t_{s}$, of n which yield the same composition. From the definition of ϕ, it follows that $s=s^{\prime}$. Let i_{o} be the least $i \geqslant 0$ such that $a_{s-i} \neq a_{s-i}^{\prime}$. Then
[FEB.

$$
a_{s-i_{0}}=a_{s-i} c_{0}=b_{i_{o}}-\sum_{1 \leqslant j \leqslant i_{0}} a_{s-\left(i_{0-j}\right) c_{j}}=b_{i_{0}}-\sum_{i \leqslant j \leqslant i_{o}} a_{s-(i 0-j)}^{\prime} c_{j}=a_{s-i}^{\prime} c_{0}=a_{s-i}^{\prime},
$$

a contradiction. Hence ϕ is one-to-one.
We will now show that ϕ is onto. Let $b_{0}+\cdots+b_{s}$ be a composition counted by $f(n)$. Define, for $0 \leqslant i \leqslant s$,

$$
a_{s-i}=b_{i}-\sum_{1 \leqslant j \leqslant i} r_{j} b_{i-j}
$$

We claim that $a_{0} t_{0}+\cdots+a_{s} t_{s}$ is a partition counted by $g(n)$ whose image under ϕ is the composition $b_{0}+\cdots+$ b_{s}.

Clearly, $a_{s}=b_{0}>0$. Also, for $1 \leqslant i \leqslant s$,

$$
b_{i} \geqslant r_{1} b_{i-1}+\cdots+r_{i} b_{0}=\sum_{1 \leqslant j \leqslant i} r_{j} b_{i-j}
$$

so $a_{s-i} \geqslant 0$. Also,

$$
\begin{aligned}
a_{0} t_{0}+\cdots+a_{s} t_{s} & =\sum_{0 \leqslant i \leqslant s} a_{s-i} t_{s-i}=\sum_{0 \leqslant i \leqslant s}\left(b_{i}-\sum_{1 \leqslant j \leqslant i} r_{j} b_{i-j}\right) t_{s-i}=\sum_{0 \leqslant i \leqslant s} b_{i} t_{s-i}-\sum_{0 \leqslant j<i \leqslant s} r_{i-j} b_{j} t_{s-i} \\
& =\sum_{0 \leqslant j \leqslant s} b_{j} t_{s-j}-\sum_{0 \leqslant j \leqslant s}\left(b_{j} \sum_{j<i \leqslant s} r_{i-j} t_{s-i}\right)=\sum_{0 \leqslant j \leqslant s} b_{j}\left(t_{s-j}-\sum_{j<i \leqslant s} r_{i-j} t_{s-i}\right) \\
& =\sum_{0 \leqslant j \leqslant s} b_{s-j}\left(t_{j}-\sum_{s-j<i \leqslant s} r_{i-s+j} t_{s-i}\right)=\sum_{0 \leqslant j \leqslant s} b_{s-j}\left(t_{j}-\sum_{1 \leqslant i \leqslant j} r_{i} t_{j-i}\right) .
\end{aligned}
$$

For $0 \leqslant j \leqslant s$, we have

$$
\begin{aligned}
t_{j}-\sum_{1 \leqslant i \leqslant j} r_{i} t_{j-i} & =\sum_{0 \leqslant k \leqslant j} c_{k}-\sum_{1 \leqslant i \leqslant j}\left(r_{i} \sum_{i \leqslant k \leqslant j} c_{k-i}\right) \\
& =\sum_{0 \leqslant k \leqslant j}\left(c_{k}-\sum_{1 \leqslant i \leqslant k} r_{i} c_{k-i}\right)=c_{0}+\sum_{1 \leqslant k \leqslant j}\left(c_{k}-\sum_{1 \leqslant i \leqslant k} r_{i} c_{k-i}\right) .
\end{aligned}
$$

By definition,

$$
c_{0}=1 \quad \text { and } \quad c_{k}=\sum_{1 \leqslant i \leqslant k} r_{i} c_{k-i} \text { for } k \geqslant 1,
$$

so

$$
t_{j}-\sum_{1 \leqslant i \leqslant j} r_{i} t_{j-i}=1 \quad \text { and } \quad a_{0} t_{0}+\cdots+a_{s} t_{s}=\sum_{0 \leqslant j \leqslant s} b_{s-j}=n .
$$

Therefore, $a_{0} t_{0}+\cdots+a_{s} t_{s}$ is a partition counted by $g(n)$. We have

$$
\begin{aligned}
& \sum_{0 \leqslant j \leqslant i} a_{j+s-i} c_{j}=\sum_{0 \leqslant k \leqslant i} a_{s-k} c_{i-k}=\sum_{0 \leqslant k \leqslant i} c_{i-k}\left(b_{k}-\sum_{1 \leqslant j \leqslant k} r_{j} b_{k-j}\right)=\sum_{0 \leqslant m \leqslant i} c_{i-m} b_{m} \\
& -\sum_{\substack{0 \leqslant k \leqslant i \\
0 \leqslant m \leqslant k}} c_{i-k} r_{k-m} b_{m}=b_{i}+\sum_{0 \leqslant m<i} b_{m}\left(c_{i-m}-\sum_{m<k \leqslant i} c_{i-k} r_{k-m}\right)=b_{i}+\sum_{0 \leqslant m<i} b_{m}\left(c_{i-m}-\sum_{1 \leqslant j \leqslant i-m} r_{j} c_{(i-m)-j}\right)=b_{i}
\end{aligned}
$$

Therefore, the image under ϕ of the partition $a_{0} t_{0}+\cdots+a_{s} t_{s}$ is the composition $b_{0}+\cdots+b_{s}$, so the proof is complete.
We will now determine when Theorem 1 is a partition identity. This occurs if and only it, for every $n \geqslant 0$, all compositions counted by $f(n)$ are partitions. Since $c_{0}+c_{1}+\cdots+c_{i}$ is a composition counted by $f\left(t_{i}\right)$, a necessary condition is that $c_{0} \leqslant c_{1} \leqslant c_{2} \leqslant \cdots$. We now show that this condition is also sufficient.
Theorem 2. Suppose the hypotheses of Theorem 1 are satisfied, and, in addition, $c_{0} \leqslant c_{1} \leqslant c_{2} \leqslant \cdots$. Then, for $n \geqslant 0$, the number of partitions $b_{0}+\cdots+b_{s}$ of n in which $b_{i} \geqslant r_{1} b_{i-1}+\cdots+r_{i} b_{0}$, for $1 \leqslant i \leqslant s$, is equal to the number of partitions of n with parts in T.

Proof. It suffices to show that all compositions counted by $f(n)$ are partitions. Suppose $b_{0}+\cdots+b_{s}$ is such a composition. Let $1 \leqslant k \leqslant s$. We will show, by induction on i, that, for $1 \leqslant i \leqslant k$,

$$
b_{k}-b_{k-1} \geqslant\left(c_{i}-c_{i-1}\right) b_{k-i}+\sum_{0 \leqslant j<k-i} b_{j}\left(r_{k-j}+\sum_{1 \leqslant \ell<i}\left(c_{\ell}-c_{\ell-1}\right) r_{k-j-\ell}\right)
$$

Applying this with $i=k$ gives

$$
b_{k}-b_{k-1} \geqslant\left(c_{k}-c_{k-1}\right) b_{0} \geqslant 0,
$$

which will complete the proof.
We have

$$
b_{k}-b_{k-1} \geqslant \sum_{0 \leqslant j<k} b_{j} r_{k-j}-b_{k-1}=\left(c_{1}-c_{0}\right) b_{k-1}+\sum_{0 \leqslant j<k-1} b_{j} r_{k-j},
$$

so the inequality holds for $i=1$. Suppose it holds for $i=m-1$, where $2 \leqslant m \leqslant k$. Then

$$
\begin{aligned}
& b_{k}-b_{k-1} \geqslant\left(c_{m-1}-c_{m-2}\right) b_{k-m+1}+\sum_{0 \leqslant j<k-m+1} b_{j}\left(r_{k-j}+\sum_{1 \leqslant \ell<m-1}\left(c_{\ell}-c_{\ell-1}\right) r_{k-j-\ell}\right) \\
& \geqslant\left(c_{m-1}-c_{m-2}\right)\left(\sum_{0 \leqslant j<k-m+1} b_{j} r_{k-j-m+1}\right)+\sum_{0 \leqslant j<k-m+1} b_{j}\left(r_{k-j}+\sum_{1 \leqslant \ell<m-1}\left(c_{\ell}-c_{\ell-1}\right) r_{k-j-\ell}\right) \\
& =\sum_{0 \leqslant j \leqslant k-m} b_{j}\left(r_{k-j}+\sum_{1 \leqslant \ell<m}\left(c_{\ell}-c_{\ell-1}\right) r_{k-j-\ell}\right)=b_{k-m}\left(r_{m}+\sum_{1 \leqslant \ell<m}\left(c_{\ell}-c_{\ell-1}\right) r_{m-\ell}\right) \\
& \quad+\sum_{0 \leqslant j<k-m} b_{j}\left(r_{k-j}+\sum_{1 \leqslant \ell<m}\left(c_{\ell}-c_{\ell-1}\right) r_{k-j-\ell}\right) .
\end{aligned}
$$

But

$$
r_{m}+\sum_{1 \leqslant \ell<m}\left(c_{\ell}-c_{\ell-1}\right) r_{m-\ell}=\sum_{0 \leqslant \ell<m} c_{\ell} r_{m-\ell}-\sum_{1 \leqslant \ell<m} c_{\ell-1} r_{m-\ell}=c_{m}-c_{m-1}
$$

so

$$
b_{k}-b_{k-1} \geqslant\left(c_{m}-c_{m-1}\right) b_{k-m}+\sum_{0 \leqslant j<k-m} b_{j}\left(r_{k-j}+\sum_{1 \leqslant \ell<m}\left(c_{\ell}-c_{\ell-1}\right) r_{k-j-\ell}\right)
$$

and the inequality holds for $i=m$. This completes the induction and the proof.
The following is an important corollary of Theorem 2.
Corollary. Suppose r_{1}, r_{2}, \cdots are non-negative integers with $r_{1} \geqslant 1$. Define T as above. Then, for $n \geqslant 0$, the number of partitions $b_{0}+\cdots+b_{s}$ of n in which $b_{i} \geqslant r_{1} b_{i-1}+\cdots+r_{i} b_{0}$, for $1 \leqslant i \leqslant s$, is equal to the number of partitions of n with parts in T.

Proof. For $i \geqslant 1, c_{i}=r_{1} c_{i-1}+r_{2} c_{i-2}+\ldots+r_{i} c_{0} \geqslant c_{i-1}$, and Theorem 2 applies.

We will now illustrate Theorems 1 and 2 and the corollary to Theorem 2 by some examples.
EXAMPLE 1. In the corollary, let $r_{1}=r \geqslant 1$ and $r_{2}=r_{3}=\ldots=0$. Then, for $i \geqslant 0, c_{i}=r^{i}$ and $t_{i}=1+r+\ldots$ $+r^{i}$. Hence, for $n \geqslant 0$, the number of partitions $b_{0}+\cdots+b_{s}$ of n in which $b_{i} \geqslant r b_{i-1}$ for $1 \leqslant i \leqslant s$ is equal to the number of partitions of n with parts of the form $1+r+\cdots+r^{i}$ for $i \geqslant 0$. This is the result of [1].
EXAMPLE 2. In the corollary, let $r_{1}=r_{2}=1$ and $r_{3}=r_{4}=\ldots=0$. Then, for $i \geqslant 0, c_{i}=F_{i+1}$ and $t_{i}=F_{i+3}$ -1 Thus,

$$
T=\left\{F_{3}-1, F_{4}-1, \cdots\right\}=\{1,2,4,7,12, \cdots\}
$$

For $n \geqslant 0$, the number of partitions of n in which each part is greater than or equal to the sum of the two preceding parts is equal to the number of partitions of n in which each part is 1 less than a Fibonacci number.
EXAMPLE 3. In the Corollary, let $r_{1}=r_{2}=\ldots=1$. Then $c_{0}=1$ and, for $i \geqslant 1, c_{i}=2^{i-1}$. Hence $t_{i}=2^{i}$, for $i \geqslant 0$, and $T=\{1,2,4,8, \cdots\}$. For $n \geqslant 0$, the number of partitions of n in which each part is greater than or equal to the sum of all preceding parts is equal to the number of partitions of n into powers of 2 .
EXAMPLE 4. In Theorem 2, let $r_{1}=-2, r_{2}=-1, r_{3}=r_{4}=\ldots=0$. Then, for $i \geqslant 0, c_{i}=i+1$ and

$$
t_{i}=\frac{(i+1)(i+2)}{2}
$$

so $T=\{1,3,6,10,15, \cdots\}$. For $n \geqslant 0$, the number of partitions $b_{0}+\cdots+b_{s}$ of n in which $b_{1} \geqslant 2 b_{0}$ and, for $2 \leqslant i \leqslant s, b_{i} \geqslant 2 b_{i-1}-b_{i-2}$ is equal to the number of partitions of n into triangular numbers.
EXAMPLE 5. In Theorem 1, let $r_{1}=(-1)^{i+1} F_{i+2}$, for $i \geqslant 1$. Then $c_{0}=1, c_{1}=2, c_{2}=c_{3}=\ldots=1$, so $t_{0}=1$ and $t_{i}=i+2$ for $i \geqslant 1$. Hence, $T=\{1,3,4,5,6, \cdots\}$. For $n \geqslant 0$, the number of compositions $b_{0}+\cdots+b_{s}$ of n in which

$$
b_{i} \geqslant 2 b_{i-1}-3 b_{i-2}+5 b_{i-3}+\cdots+(-1)^{i+1} F_{i+2} b_{0}
$$

for $1 \leqslant i \leqslant s$, is equal to the number of partitions of n with no part equal to 2 .

RE FERENCE

1. Dean R. Hickerson, "A Partition Identity of the Euler Type," Amer. Math. Monthly, 81 (1974), pp. 627629.

ON THE MULTIPLICATION OF RECURSIVE SEQUENCES

A. G. SHANNON

The New South Wales Institute of Technology, Broadway, Australia

1. INTRODUCTION

The object of this note is to generalize the results of Catlin [1] and Wyler [3] for the multiplication of recurrences. They studied second-order recurrences whereas the aim here is to set up definitions for their arbitrary order analogues.
The work is also related to that of Peterson and Hoggatt [2]. They considered a type of multiplication of series in their exposition of the characteristic numbers of Fibonacci-type sequences. In the last section of this paper we see how a definition of a characteristic arises from the earlier definition of multiplication.
We define an arbitrary order recursive sequence $\left\{W_{n}\right\}$ by the recurrence relation

$$
\begin{equation*}
W_{n}=\sum_{j=1}^{r}(-1)^{j+1} P_{j} W_{n-j}, \quad n>r \tag{1.1}
\end{equation*}
$$

in which the P_{j} are arbitrary integers, and there are suitable initial values, $W_{1}, W_{2}, \cdots, W_{r}$. (Suppose $W_{n}=0$ for $n \leqslant 0$.)
We shall need to consider some particular cases of these as well as some results associated with the product sums of the roots, a_{t}, of the associated auxiliary equation

$$
\begin{equation*}
a_{t}^{r}=\sum_{j=1}^{r}(-1)^{j+1} p_{j} a_{t}^{r-j} \tag{1.2}
\end{equation*}
$$

2. PRODUCT SUMS

We define the product sum

$$
S_{t m}=\sum_{j \neq t} a_{j_{1}} a_{j_{2}} \cdots a_{j_{m}}
$$

with $S_{t o}=1$. For example, when $r=3$,

$$
S_{31}=a_{1}+a_{2} \quad \text { and } \quad S_{32}=a_{1} a_{2}
$$

Some results we shall use now follow.

$$
\begin{equation*}
S_{t m}=P_{m}-a_{t} S_{t, m-1} \tag{2.1}
\end{equation*}
$$

Proof.

$$
P_{m}-a_{t} S_{t, m-1}=\sum a_{j_{1}} a_{j_{2}} \cdots a_{j_{m}}-a_{t} \sum_{j \neq t} a_{j_{1}} a_{j_{2}} \cdots a_{j_{m}}=\sum_{j \neq t} a_{j_{1}} a_{j_{2}} \cdots a_{j_{m}}
$$

For example, when $r=3$,

$$
P_{2}-a_{1} S_{11}=a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}-a_{1}\left(a_{2}+a_{3}\right)=a_{2} a_{3}=S_{12}
$$

$$
\begin{equation*}
S_{t r}=0 \tag{2.2}
\end{equation*}
$$

Proof.

$$
P_{j}=S_{t j}+a_{t} S_{t, j-1}
$$

$$
\sum_{j=1}^{r}(-1)^{j+1} P_{j} a_{t}^{r-j}=\sum_{j=1}^{r}(-1)^{j+1} S_{t j} a_{t}^{r-j}-\sum_{j=1}^{r}(-1)^{j+1} S_{t, j-1} a_{t}^{r-j+1}
$$

that is

$$
a_{t}^{r}=S_{t r}+s_{t o} a_{t}^{r}
$$

which yields the result.
We note out of interest that:

$$
\begin{equation*}
S_{t m}=\sum_{j=0}^{m}(-1)^{m-j} p_{j} a_{t}^{m-j}, \quad P_{0}=1 \tag{2.3}
\end{equation*}
$$

Proof. We use induction on m.

$$
\begin{gather*}
S_{t 0}=1, \quad S_{t 1}=P_{1}-a_{t}, \quad \cdots, \\
S_{t m}=P_{m}-a_{t} S_{t, m-1}=P_{m}-a_{t} P_{m-1}+a_{t}^{2} S_{t, m-2}=\sum_{j=0}^{m}(-1)^{m-j} P_{j} a_{t}^{m-j} . \\
\sum_{j=0}^{r-1}(-1)^{j} S_{t j} A_{n+r-j}=a_{t}^{n} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} A_{r-j}, \quad n \geqslant 0 . \tag{2.4}
\end{gather*}
$$

Proof. We use induction on n. When n is zero, the result is obvious. Suppose the result is true for $n=1$, $2, \cdots, k-1$. Then

$$
\begin{aligned}
\sum_{j=0}^{r-1}(-1)^{j} S_{t j} A_{k+r-j} & =A_{k+r}+\sum_{j=1}^{r-1}(-1)^{j} S_{t j} A_{k+r-j} \\
& =\sum_{j=1}^{r}(-1)^{j+1} P_{j} A_{k+r-j}+\sum_{j=1}^{r-1}(-1)^{j} S_{t j} A_{k+r-j} \\
& =(-1)^{r+1} P_{r} A_{k}+\sum_{j=1}^{r-1}(-1)^{j}\left(S_{t j}-P_{j}\right) A_{k+r-j} \\
& =(-1)^{r+1} a_{t} S_{t, r-1} A_{k}+\sum_{j=1}^{r-1}(-1)^{j-1} a_{t} S_{t, j-1} A_{k+r-j} \\
& =(-1)^{r-1} a_{t} S_{t, r-1} A_{k}+\sum_{j=0}^{r-2}(-1)^{j} a_{t} S_{t j} A_{k+r-j-1} \\
& =a_{t} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} A_{k+r-j-1} \\
& =a_{t}^{k-r} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} A_{r-j} \text { (by the inductive hypothesis), }
\end{aligned}
$$

and so the result follows. In particular, it follows that

$$
\begin{equation*}
\sum_{j=0}^{r-1}(-1)^{j} S_{t j} A_{n+r-j}=a_{t} \sum_{j=0}^{r-1}(-1)^{i} S_{t j} A_{n+r-j-1} \tag{2.5}
\end{equation*}
$$

Result (2.4) is a generalization of Wyler's:

$$
A_{n+1}-a_{1} A_{n}=a_{2}^{n}\left(A_{1}-a_{1} A_{0}\right)
$$

For ease of notation we shall write

$$
\sum\left(t, A_{n}\right)=\sum_{j=0}^{r-1}(-1)^{j} S_{t j} A_{n+r-j}
$$

3. MATRIX RESULTS

We define matrices with rows i and columns $j, 1 \leqslant i, j \leqslant r$:

$$
\begin{equation*}
W^{(n)}=\left[W_{n+r-i+j}\right] \tag{3.1}
\end{equation*}
$$

$$
\begin{gather*}
M=\left[(-1)^{i+j} p_{j-i}\right], \text { with } P_{n}=\left\{\begin{array}{l}
0 \text { for } n<0 \\
1 \text { for } n=0
\end{array},\right. \tag{3.2}\\
S^{(t)}=\left[(-1)^{i+j} S_{t, j-i}\right], \text { with } S_{t n}=0 \text { for } n<0, \tag{3.3}\\
E=\left[S_{i, j-1}\right] \quad \text { (Kronecker delta), } \tag{3.4}\\
Q=\left[a_{i j}\right], \text { with } q_{i j}=\left\{\begin{array}{l}
(-1)^{j+1} P_{j-1, j} \text { for } i=1 \\
S_{i-1} i>1
\end{array} .\right. \tag{3.5}
\end{gather*}
$$

It follows from definitions (3.2), (3.3) and result (2.1) that

$$
M=\left[(-1)^{i+j} P_{j-i}\right]=\left[(-1)^{i+j} S_{t, j-1}\right]-a_{t}\left[(-1)^{i+j} S_{t, j-i-1}\right]=S^{(t)}-a_{t} E S^{(t)}=\left(I-a_{t} E\right) S^{(t)}
$$

It can be readily proved by induction on n that
(3.6)

$$
w^{(n)}=a^{n} W^{(0)}
$$

Furthermore,

$$
S^{(t)} A^{(0)}=\left[\Sigma\left(t, A_{j-i}\right)\right]
$$

and so by using property (2.5), we find

$$
S^{(t)} A\left(\left[-a_{t} E\right)=\left[S_{1 j} \Sigma\left(t, A_{1-i}\right)\right]\right.
$$

4. MULTIPLICATION

We can define a product $\left\{A_{n}\right\}\left\{B_{n}\right\}$ of two of these sequences to be the sequence $\left\{C_{n}\right\}$:
(4.1)

$$
C^{(0)}=A^{(0)} M B^{(0)}
$$

It follows from result (2.4) that

$$
\begin{equation*}
C^{(m+n)}=Q^{m} C^{(0)} Q^{n^{T}}=A^{(m)} M B^{(n)} \tag{4.2}
\end{equation*}
$$

We can see how these generalize Catlin and Wyler. When $r=2$:

$$
W^{(0)}=\left[\begin{array}{ll}
W_{2} & W_{3} \\
W_{1} & W_{2}
\end{array}\right], \quad M=\left[\begin{array}{cc}
1 & -P_{1} \\
0 & 1
\end{array}\right], \quad Q=\left[\begin{array}{cc}
P_{1} & -P_{2} \\
1 & 0
\end{array}\right] .
$$

Result (4.2) becomes

$$
\begin{aligned}
{\left[\begin{array}{ll}
C_{m+n+2} & C_{m+n+3} \\
C_{m+n+1} & C_{m+n+2}
\end{array}\right] } & =\left[\begin{array}{ll}
A_{m+2} & A_{m+3} \\
A_{m+1} & A_{m+2}
\end{array}\right]\left[\begin{array}{cc}
1 & -P_{1} \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
B_{n+2} & B_{n+3} \\
B_{n+1} & B_{n+2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
A_{m+2} & A_{m+3}-P_{1} A_{m+2} \\
A_{m+1} & A_{m+2}-P_{1} A_{m+1}
\end{array}\right]\left[\begin{array}{ll}
B_{n+2} & B_{n+3} \\
B_{n+1} & B_{n+2}
\end{array}\right] .
\end{aligned}
$$

from which we get, after equating corresponding matrix entries:

$$
\begin{gathered}
C_{m+n+2}=A_{m+2} B_{n+2}-P_{2} A_{m+1} B_{n+1} \\
C_{m+n+1}=A_{m+1} B_{n+2}+A_{m+2} B_{n+1}-P_{1} A_{m+1} B_{n+1}
\end{gathered}
$$

in which we have used the recurrence relation
[FEB.

$$
A_{m+3}=P_{1} A_{m+2}-P_{2} A_{m+1}
$$

These results agree with Catlin and Wyler.
For $r=3$, we have

$$
W^{(0)}=\left[\begin{array}{lll}
W_{3} & W_{4} & W_{5} \\
W_{2} & W_{3} & W_{4} \\
W_{1} & W_{2} & W_{3}
\end{array}\right], \quad M=\left[\begin{array}{ccc}
1 & -P_{1} & P_{2} \\
0 & 1 & -P_{1} \\
0 & 0 & 1
\end{array}\right], \quad Q=\left[\begin{array}{ccc}
P_{1} & -P_{2} & P_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Result (4.2) now becomes
$\left[\begin{array}{lll}C_{m+n+3} & C_{m+n+4} & C_{m+n+5} \\ C_{m+n+2} & C_{m+n+3} & C_{m+n+4} \\ C_{m+n+1} & C_{m+n+2} & C_{m+n+3}\end{array}\right]$

$$
=\left[\begin{array}{llll}
A_{m+3} & A_{m+4}-P_{1} A_{m+3} & A_{m+5}-P_{1} A_{m+4}+P_{2} A_{m+3} \\
A_{m+2} & A_{m+3}-P_{1} A_{m+2} & A_{m+4}-P_{1} A_{m+3}+P_{2} A_{m+2} \\
A_{m+1} & A_{m+2}-P_{1} A_{m+1} & A_{m+3}-P_{2} A_{m+2}+P_{2} A_{m+1}
\end{array}\right] \cdot\left[\begin{array}{lll}
B_{n+3} & B_{n+4} & B_{n+5} \\
B_{n+2} & B_{n+3} & B_{n+4} \\
B_{n+1} & B_{n+2} & B_{n+3}
\end{array}\right]
$$

from which we obtain, for example,

$$
C_{m+n+3}=A_{m+3} B_{n+3}+A_{m+4} B_{n+2}-P_{1} A_{m+3} B_{n+2}+P_{3} A_{m+2} B_{n+1}
$$

We further obtain

$$
\begin{equation*}
\sum_{j=0}^{r-1}(-1)^{j} S_{t j} C_{r-j}=\sum_{i=0}^{r-1}(-1)^{i} S_{t i} A_{r-i} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} B_{r-j} \tag{4.3}
\end{equation*}
$$

Proof. We premultiply each side of definition (4.1) by $S^{(t)}$:

$$
S^{(t)} C^{(0)}=S^{(t)} A^{(0)} M B^{(0)}=S^{(t)} A^{0}\left(I-a_{t} E\right) S^{(t)} B^{(0)}=S_{i j} \Sigma\left(t, A_{1-i}\right) S^{(t)} B^{(0)}
$$

or
$\left[\begin{array}{llll}\Sigma\left(t, C_{0}\right) & \Sigma\left(t, C_{1}\right) & \cdots & \Sigma\left(t, C_{r-1}\right) \\ \Sigma\left(t, C_{-1}\right) & \Sigma\left(t, C_{-2}\right) & \cdots & \Sigma\left(t, C_{r-2}\right) \\ \Sigma\left(t, C_{1-r}\right) & \Sigma\left(t, C_{-r}\right) & \cdots & \Sigma\left(t, C_{0}\right)\end{array}\right]$

$$
=\left[\begin{array}{llll}
\Sigma\left(t, A_{0}\right) & 0 & \cdots & 0 \\
\Sigma\left(t, A_{-1}\right) & 0 & \cdots & 0 \\
\Sigma\left(t, A_{1-r}\right) & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{llll}
\Sigma\left(t, B_{0}\right) & \Sigma\left(t, B_{1}\right) & \cdots & \Sigma\left(t, B_{r-1}\right) \\
\Sigma\left(t, B_{-1}\right) & \Sigma\left(t, B_{-2}\right) & \cdots & \Sigma\left(t, B_{r-2}\right) \\
\Sigma\left(t, B_{1-r}\right) & \Sigma\left(t, B_{-r}\right) & \cdots & \Sigma\left(t, B_{0}\right)
\end{array}\right]
$$

and so,

$$
\Sigma\left(t, C_{0}\right)=\Sigma\left(t, A_{0}\right) \Sigma\left(t, B_{0}\right)
$$

as required. When $r=2, t=1$, result (4.3) becomes

$$
\left(C_{2}-a_{2} C_{1}\right)=\left(A_{2}-a_{2} A_{1}\right)\left(B_{2}-a_{2} B_{1}\right)
$$

as in Wyler and Catlin. When $r=3, t=1$:

$$
\left(C_{3}-\left(a_{2}+a_{3}\right) C_{2}+a_{2} a_{3} C_{1}\right)=\left(A_{3}-\left(a_{2}+a_{3}\right) A_{2}+a_{2} a_{3} A_{1}\right)\left(B_{3}-\left(a_{2}+a_{3}\right) B_{2}+a_{2} a_{3} B_{1}\right)
$$

Using property (2.4), we get

$$
\begin{gathered}
\sum_{i=0}^{r-1}(-1)^{i} S_{t i} A_{m+r-i} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} B_{n+r-j}=a_{t}^{m+n} \sum_{i=0}^{r-1}(-1)^{i} S_{t i} A_{r-i} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} B_{r-j} \\
=a_{t}^{m+n} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} C_{r-j}=\sum_{j=0}^{r-1}(-1)^{j} S_{t j} C_{m+n+r-j}
\end{gathered}
$$

as a generalization of Wyler's:

$$
C_{m+n+2}-a_{1} C_{m+n+1}=a_{2}^{m+n}\left(A_{2}-a_{1} A_{1}\right)\left(B_{2}-a_{1} B_{1}\right)=\left(A_{m+2}-a_{1} A_{m+1}\right)\left(B_{n+2}-a_{1} B_{n+1}\right) .
$$

5. NORMS AND DUALS

As in Catlin, we can define norms and duals. We define the norm or characteristic of $\left\{W_{n}\right\}$ as

$$
\begin{equation*}
N\left\{W_{n}\right\}=\prod_{t=1}^{r} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} W_{r-j} . \tag{5.1}
\end{equation*}
$$

For example, for the "basic" sequences $\left\{U_{s, n}\right\}$ which satisfy the recurrence relation (1.1) but have initial conditions

$$
u_{s, n}=S_{s, n}, \quad n=1,2, \cdots, r
$$

we have

$$
N\left\{U_{s, n}\right\}=\prod_{t=1}^{r} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} U_{s, r-j}=\prod_{t=1}^{r}(-1)^{r-s} S_{t, r-s} ;
$$

in particular, $N\left\{U_{r, n}\right\}=1$. (The "basic" properties are seen in

$$
W_{n}=\sum_{s=1}^{r} U_{s, n} W_{s}
$$

for instance.)
(5.2)

$$
N\left\{A_{n}\right\} N\left\{B_{n}\right\}=N\left\{A_{n}\right\}\left\{B_{n}\right\}
$$

Proof.
$N\left\{A_{n}\right\} N\left\{B_{n}\right\}=\prod_{t=1}^{r} \sum_{i=0}^{r-1}(-1)^{i} S_{t i} A_{r-i} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} B_{r-j}=\prod_{t=1}^{r} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} C_{r-j}=N\left\{C_{n}\right\}=N\left\{A_{n}\right\}\left\{B_{n}\right\}$.
As

$$
\Sigma\left(t, C_{0}\right)=\Sigma\left(t, A_{0}\right) \Sigma\left(t, B_{0}\right)
$$

is related to $C^{(0)}=A^{(0)} M B^{(0)}$, so is

$$
N\left\{C_{n}\right\}=N\left\{A_{n}\right\} N\left\{B_{n}\right\}
$$

related to $\left|C^{(0)}\right|=\left|A^{(0)}\right|\left|B^{(0)}\right|$.
When $r=2$, we have in fact that

$$
N\left\{W_{n}\right\}=\left|\begin{array}{ll}
W_{2} & W_{3} \\
w_{1} & w_{2}
\end{array}\right|=W_{2}^{2}-w_{1} W_{3}=\left(W_{2}-a_{1} w_{1}\right)\left(W_{2}-a_{2} W_{1}\right)
$$

Furthermore, from definition (5.1) we have that

$$
P_{r}^{n} N\left\{W_{n}\right\}=P_{r}^{n} \prod_{t=1}^{r} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} W_{r-j}=\prod_{t=1}^{r} a_{t}^{n} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} W_{r-j}=\prod_{t=1}^{r} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} W_{n+r-j}
$$

as a generalization of Wyler's:

$$
W_{n+2}^{2}-W_{n+1} W_{n+3}=P_{2}^{n} N\left\{W_{n}\right\}
$$

We can compare this with

$$
\begin{aligned}
\left|W^{(n)}\right| & =\left|Q^{n}\right|\left|W^{(0)}\right| \quad \text { in Eq. (3.6) } \\
& =P_{r}^{n}\left|W^{0}\right|
\end{aligned}
$$

Similarly, we can form a dual as in Catlin. Given the recursive sequence $\left\{W_{n}\right\}$, we form its dual $\left\{W_{n}^{*}\right\}$ from the initial values

$$
W n, n=1,2, \cdots, r:
$$

$$
\begin{align*}
& {\underset{\sim}{w}}^{*}=\left(I-\sum_{k=1}^{r-1}\left(E^{T}\right)^{k}\right) \underset{\sim}{w} \tag{5.3}\\
& w=\left[W_{1}, W_{2}, \cdots, W_{r}\right]^{T},
\end{align*}
$$

and E is the nilpotent matrix of order r defined in (3.4). For example, when $r=2$,

$$
\left[\begin{array}{l}
W_{1}^{*} \\
W_{2}^{*}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
W_{1} \\
W_{2}
\end{array}\right],
$$

$$
W_{1}^{*}=W_{1}, \quad W_{2}^{*}=W_{2}-W_{1},
$$

as in Catlin. When $r=3$,

$$
\left[\begin{array}{l}
W_{1}^{*} \\
W_{2}^{*} \\
W_{3}^{*}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right],
$$

and so on. Essentially, what has been done here is to illustrate how the work for the second-order recurrences can be extended to any order. It may interest others to develop the algebra further by considering the canonical forms of elements in various extension fields and rings.
Another line of approach is to consider the treatment here as a generalization of Simson's (second-order) relation:

$$
A_{n+1}^{2}-A_{n} A_{n+2}=P_{2}^{n} N\left\{A_{n}\right\},
$$

or, since $N\left\{F_{n}\right\}=1$,

$$
F_{n+1}^{2}-F_{n} F_{n+2}=(-1)^{n}
$$

for the Fibonacci numbers.

Gratitude is expressed to Paul A. Catlin of Ohio State University, Columbus, for criticisms of an earlier draft and copies of some relevant unpublished material.

REFERENCES

1. Paul A. Catlin, "On the Multiplication of Recurrences," The Fibonacci Quarterly, Vol. 12 (1974), pp. 365 -368 .
2. Brian Peterson and V. E. Hoggatt, Jr., "On the Solutions to the Diophantine Equation $x^{2}+x y-y^{2}= \pm D$, or the Number of Fibonacci-Type Sequences with a Given Characteristic," The Fibonacci Quarterly, Vol. 13 (1975), pp. 243-251.
3. Oswald Wyler, "On Second-order Recurrences," Amer. Math. Monthly, Vol. 72 (1965), pp. 500-506.

DIAGONAL FUNCTIONS

A. F. HORADAM

University of York, York, England and University of New England, Armidale, Australia

INTRODUCTION

The object of this article is to combine and generalize some of the ideas in [1] and [2] which dealt with extensions to the results of Jaiswal, and of Hansen and Serkland. [See [1] and [2] for the references.] We commence with the pair of sequences $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ for which

$$
\begin{array}{llll}
A_{n+2}=x A_{n+1}+A_{n}, & A_{0}=0, & A_{1}=1 \quad(x \neq 0) \tag{1}\\
B_{n+2}=x B_{n+1}+B_{n}, & B_{0}=2, & B_{1}=x &
\end{array}
$$

with the special properties

$$
\begin{gather*}
A_{n+1}+A_{n-1}=B_{n} \tag{3}\\
B_{n+1}+B_{n-1}=\left(x^{2}+4\right) A_{n} .
\end{gather*}
$$

(4)
[See [2], where c has been replaced by x.]
The first few terms of these sequences $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are
(5)

RISING DIAGONAL FUNCTIONS
Consider the rising diagonal functions of $x, R_{i}(x), r_{i}(x)$ for (5) and (6), respectively (indicated by unbroken lines):
(7) $\begin{cases}R_{1}(x)=1 & R_{2}(x)=x \\ R_{5}(x)=x^{4}+2 x & R_{6}(x)=x^{5}+3 x^{2} \\ R_{9}(x)=x^{8}+6 x^{5}+6 x^{2} & R_{10}(x)=x^{9}+7 x^{6}+10 x^{3}+1, \cdots\end{cases}$

$$
R_{3}(x)=x^{2} \quad R_{4}(x)=x^{3}+1
$$

$$
R_{7}(x)=x^{6}+4 x^{3}+1 \quad R_{8}(x)=x^{7}+5 x^{4}+3 x
$$

(8) $\left\{\begin{array}{llll}r_{1}(x)=2 & r_{2}(x)=x & r_{3}(x)=x^{2} & r_{4}(x)=x^{3}+2 \\ r_{5}(x)=x^{4}+3 x & r_{6}(x)=x^{5}+4 x^{2} & r_{7}(x)=x^{6}+5 x^{3}+2 & r_{8}(x)=x^{7}+6 x^{4}+5 x \\ r_{9}(x)=x^{8}+7 x^{5}+9 x^{2} & r_{10}(x)=x^{9}+8 x^{6}+14 x^{3}+2, & & \end{array}\right.$

Define
(9)

$$
R_{0}(x)=r_{0}(x)=0 .
$$

Observe that, in (7), (8) and (9), for $n \geqslant 3$,
(10)

$$
\left\{\begin{array}{l}
r_{n}(x)=R_{n}(x)+R_{n-3}(x) \\
R_{n}(x)=x R_{n-1}(x)+R_{n-3}(x) \\
r_{n}(x)=x r_{n-1}(x)+r_{n-3}(x)
\end{array}\right.
$$

Generating functions for the rising diagonal polynomials are

$$
\begin{equation*}
A \equiv A(x, t) \equiv\left(1-x t-t^{3}\right)^{-1}=\sum_{n=1}^{\infty} R_{n}(x) t^{n-1} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
B \equiv B(x, t) \equiv\left(1+t^{3}\right)\left(1-x t-t^{3}\right)^{-1}=\sum_{n=2}^{\infty} r_{n}(x) t^{n-1} \tag{12}
\end{equation*}
$$

Calculations with (11) and (12) yield the partial differential equations

$$
\begin{equation*}
t \frac{\partial A}{\partial t}-\left(x+3 t^{2}\right) \frac{\partial A}{\partial x}=0 \tag{13}
\end{equation*}
$$

and
(14)

$$
t \frac{\partial B}{\partial t}-\left(x+3 t^{2}\right) \frac{\partial B}{\partial X}-3 B+3 A=0
$$

leading to

$$
\begin{align*}
x R_{n+2}^{\prime}(x)+3 R_{n}^{\prime}(x)-(n+1) R_{n+2}(x) & =0 \tag{15}\\
x r_{n+2}^{\prime}(x)+3 r_{n}^{\prime}(x)-(n-2) r_{n+2}(x)-3 R_{n+2}(x) & =0 \quad(n \geqslant 2), \tag{16}
\end{align*}
$$

where the prime denotes differentiation with respect to x.
Comparing coefficients of t^{n} in (11) we deduce that

$$
\begin{equation*}
R_{n+1}(x)=\sum_{i=0}^{[n / 3]}\left(\frac{n-2 i}{i}\right) x^{n-3 i} \quad(n \geqslant 3) \tag{17}
\end{equation*}
$$

where $[n / 3]$ is the integral part of $n / 3$.
Similarly, from (12) we derive

$$
\begin{equation*}
r_{n+1}(x)=\sum_{i=0}^{[n / 3]}\binom{n-2 i}{i} x^{n-3 i}+\sum_{i=0}^{[(n-3) / 3]}\binom{n-3-2 i}{i} x^{n-3 i} \quad(n \geqslant 3) \tag{18}
\end{equation*}
$$

as may also be readily seen from the first statement in (10).
Simple examples of rising diagonal sequences are:
(a) for the Fibonacci and Lucas sequences ($x=1$):
(19)
(20)

0	1	1	1	2	3	4	6	9	13	19	\ldots
	2	1	1	3	4	5	8	12	17	25	\ldots

d
(b) for the Pell sequences $(x=2)$:

(21)	0	1	2	4	9	20	44	97	214	\ldots
(22)		2	2	4	10	22	48	106	234	\ldots
	DESCENDING DIAGONAL FUNCTIONS									

From (5) and (6), the descending diagonal functions of $x, D_{i}(x), d_{i}(x)$ (indicated by broken lines) are:

$$
\left\{\begin{array}{l}
D_{1}(x)=1 \tag{23}\\
D_{5}(x)=(x+1)^{4}
\end{array}\right.
$$

$D_{2}(x)=x+1$
$D_{6}(x)=(x+1)^{5}$
$D_{3}(x)=(x+1)^{2} \quad D_{4}(x)=(x+1)^{3}$
$D_{6}(x)=(x+1)^{5}$
$\begin{array}{ll}D_{7}(x)=(x+1)^{6} & D_{8}(x)=(x+1)^{7},\end{array}$.
(24) $\begin{cases}d_{1}(x)=2 \quad d_{2}(x)=(x+1)+(x+1)^{0}=(x+2)(x+1)^{0}=x+2 \\ d_{3}(x)=(x+1)^{2}+(x+1)=(x+2)(x+1) & d_{4}(x)=(x+1)^{3}+(x+1)^{2}=(x+2)(x+1)^{2} \\ d_{5}(x)=(x+1)^{4}+(x+1)^{3}=(x+2)(x+1)^{3} & d_{6}(x)=(x+1)^{5}+(x+1)^{4}=(x+2)(x+1)^{4},\end{cases}$

Define

$$
\begin{equation*}
D_{0}(x)=d_{0}(x)=0 \tag{25}
\end{equation*}
$$

Obviously ($n \geqslant 2$)
(26)

$$
\begin{aligned}
& D_{n}=(x+1) D_{n-1}=(x+1)^{n-1} \\
& d_{n}=D_{n}+D_{n-1}=(x+2) D_{n-1}=(x+2)(x+1)^{n-2} \\
& d_{n}=(x+1) d_{n-1} \quad(n>2) \\
& \frac{D_{n}}{D_{n-1}}=\frac{d_{n}}{d_{n-1}}(=x+1) \quad(n>2) \\
& \frac{D_{n}}{d_{n}}=\frac{x+1}{x+2}
\end{aligned}
$$

where, for visual ease, we have temporarily written $D_{n} \equiv D_{n}(x)$ and $d_{n} \equiv d_{n}(x)$.
Generating functions for the descending diagonal polynomials are

$$
\begin{equation*}
A \equiv A(x, t)=[1-(x+1) t]^{-1}=\sum_{n=1}^{\infty} D_{n}(x) t^{n-1} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
B \equiv B(x, t)=(x+2)[1-(x+1) t]^{-1}=\sum_{n=1}^{\infty} d_{n+1}(x) t^{n-1} \tag{28}
\end{equation*}
$$

from which are obtained the partial differential equations

$$
\begin{gather*}
t \frac{\partial A}{\partial t}-(x+1) \frac{\partial A}{\partial x}=0 \tag{29}\\
t \frac{\partial \boldsymbol{B}}{\partial t}-(x+1) \frac{\partial B}{\partial x}+(x+1) A=0
\end{gather*}
$$

(30)

$$
\begin{gathered}
(x+1) D_{n}^{\prime}(x)=(n-1) D_{n}(x) \\
(x+1) d_{n+2}^{\prime}(x)-(n+1) d_{n+2}(x)+(x+1) D_{n}(x)=0
\end{gathered}
$$

(32)

Descending diagonal sequences for some well known sequences are:
(a) for the Fibonacci and Lucas sequences $(x=1)$:

1. The above results proceed only as far as corresponding work in [1] and [2]. Undoubtedly, more work remains to be done on functions $R_{i}, r_{i}, D_{i}, d_{i}$.
2. Excluded from our consideration in this article are the pair of Fermat sequences and the pair of Chebyshev sequences for both of which the criteria (1) and (2) do not hold. [See [2].]
3. Jaiswal, and the author [1], deal only with the rising diagonal functions of Chebyshev polynomials of the first and second kinds.
4. Our special criteria (3) and (4) prevent the use of the more general sequences $\left\{U_{n}\right\}$, $\left\{V_{n}\right\}$ for which

$$
\begin{array}{lll}
U_{n+2}=x U_{n+1}+y U_{n} & U_{0}=0, & U_{1}=1 \quad(x \neq 0, y \neq 0) \\
V_{n+2}=x V_{n+1}+y V_{n} & V_{0}=2, & V_{1}=x .
\end{array}
$$

See [2] and Lucas [3] pp. 312-313.
5. Finally, in passing, we note that the Pell sequence obtained from (1) with $x=2$, namely, the sequence $1,2,5,12,29,70, \cdots$, arises from rising diagonals in the "arithmetical square" of Delannoy [lucas [3] p. 174]
Can any reader inform me, along with a suitable reference, whether Delannoy's "arithmetical square" has been generalized?

REFERENCES

1. A. F. Horadam, "Polynomials Associated with Chebyshev Polynomials of the First Kind," The Fibonacci Quarterly,
2. A. F. Horadam, "Generating Identities for Generalized Fibonacci and Lucas Triples," The Fibonacci Quarterly,
3. E. Lucas, Theorie des Nombres, Gauthier-Villars et Fils, Paris, 1891.

FIBONACCI TILING AND HYPERBOLAS

DOUGLAS HENSLEY
The Institute for Advanced Study, Princeton, New Jersey 08540

Abstract

A sequence of rectangles R_{n} is generated by adding squares cyclically to the East, $\mathrm{N}, \mathrm{W}, \mathrm{S}$ side of the previous rectangle. The centers of R_{n} fall on a certain hyperbola, in a manner reminiscent of multiplication in a real quadratic number field.

INTRODUCTION

We take a special case for simplicity. Suppose R_{1} is the square $-1 \leqslant x \leqslant 1,-1 \leqslant y \leqslant 1 . R_{2}$ is the rectangle $-1 \leqslant x \leqslant 3,-1 \leqslant y \leqslant 1 . R_{3}$ is the rectangle $-1 \leqslant x \leqslant 3,-1 \leqslant y \leqslant 5$. Let F_{n} denote the nth Fibonacci number. Then R_{n} has sides $2 F_{n}$ and $2 F_{n-1}$ for all n.
We ask for information about the center (x_{n}, y_{n}) of R_{n}. This search leads us to the ring $R \otimes R$ in which $R \otimes R$ is given pointwise addition and multiplication. We close with an examination of "rotations" and linear fractional mappings of $R \otimes R$. Certain classes of hyperbolas remain invariant under such mappings.

1. DEFINITIONS AND STATEMENT OF RESULTS

Let $a_{;} b>0$. Suppose a sequence of rectangles is generated in the following manner. The initial rectangle has center (0,0) and positive dimensions X_{1}, Y_{1}. If the $n^{\text {th }}$ rectangle R_{n} has dimensions X_{n}, Y_{n} then R_{n+1} is the union of R_{n} with an incremental rectangle on the East, N. W, S side of R_{n} according as $n \equiv 1,2,3,0 \bmod$ 4. The dimensions of the incremental rectangle are a $Y_{n}+b, Y_{n}$ if $n \equiv 1 \bmod 2$, and X_{n}, $a X_{n}+b$ if $n \equiv 0 \bmod$ 2.

Theorem. Let $\left(x_{n}, y_{n}\right)$ be the center of R_{n}. Let $D=1 / 2\left(a Y_{1}+b\right), E=1 / 2\left(a X_{1}+b\right)$.
Then for all $n \geqslant 1,\left(x_{n}, y_{n}\right)$ lies on the right hyperbola

$$
H=\left\{(x, y): x^{2}+a x y-y^{2}-D x+E y=0\right\} .
$$

Further, if h is the center of H, then the area enclosed by H and the rays

$$
\overline{h,\left(x_{n}, y_{n}\right)} \text { and } \overline{h,\left(x_{n+4}, y_{n+4}\right)}
$$

is independent of n.
REMARK. The proof that the $\left(x_{n}, y_{n}\right)$ lie on H is a rather ordinary induction. To prove that the areas enclosed by H and rays from adjacent rectangle centers to h are all equal, we introduce the ring $R \otimes R$.

Definition. $R \otimes R$ is the ring $R \otimes R$ with addition $(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}\right)$ and multiplication $(x, y) \cdot\left(x^{\prime}, y^{\prime}\right)=\left(x \cdot x^{\prime}, y \cdot y^{\prime}\right)$.
Definition. If $(x, y) \in R \times R, N(x, y)=x y$; and $\operatorname{Arg}(x, y)=\log |(y / x)|$ if $x y \neq 0$.
Definition. If $N(x, y) \neq 0$,

$$
\frac{\left(x^{\prime}, y^{\prime}\right)}{(x, y)}=\left(\frac{x^{\prime}}{x}, \frac{y^{\prime}}{y}\right) .
$$

REMARK. $N(x, y)=1$ is the hyperbola $x y=1$. $\operatorname{Arg}(x, y)$ is the area enclosed by $N(x, y)=1$ and the rays

$$
\overline{(0,0),(|x|,|y|)} \text { and } \overline{(0,0),(|y|,|x|)}
$$

It is for this area property, so similar to the one stated in Theorem 1 , that we introduce $R \otimes R$.
Theorem 2. Let k be real, $a, b, c, d, z_{0} \in R \otimes R$. Assume not both $a, b=(0,0)$ and not both c_{1}, d_{1} $=0$ and not both $c_{2}, d_{2}=0$. Let $k \neq 0$. (Here $\left(c_{1}, c_{2}\right)=c$ and $\left(d_{1}, d_{2}\right)=d$.)

Let

$$
f(z)=\frac{a z+b}{c z+d}
$$

for all z such that $N(c z+d) \neq 0$. Then the image under f of $\left\{z: N\left(z-z_{0}=k\right\}\right.$ is of the form

$$
\left\{w: N\left(w-w_{0}\right)=k^{\prime}\right\}
$$

where no more than 4 points are missing.
REMARK. Thus except for technicalities, a linear fractional maps hyperbolas of the form $N\left(z-z_{0}\right)=k$ to hyperbolas of the same form. The analogy with the complex numbers, where linear fractionals map circles to circles, suggests many more similar results which space does not permit us to list.

2. PROOFS. THEOREM 1, PART 1

The reader may verify by direct calculation that the first couple of $\left(x_{n}, y_{n}\right)$ lie on H. We now claim that

$$
\begin{array}{ccc}
2 x_{n}+a y_{n}+1 / 2\left(a Y_{n}+b\right)=D & \text { if } & n \equiv 1 \bmod 4 \\
-a x_{n}+2 y_{n}+1 / 2\left(a X_{n}+b\right)=E & \text { if } & n \equiv 2 \bmod 4 . \\
2 x_{n}+a y_{n}-1 / 2\left(a Y_{n}+b\right)=D & \text { if } & n \equiv 3 \bmod 4
\end{array}
$$

and

$$
-a x_{n}+2 y_{n}-1 / 2\left(a x_{n}+b\right)=E \quad \text { if } \quad n \equiv 0 \bmod 4
$$

Observe that if $\left(x_{n}, y_{n}\right) \in H$ and the claim is true for n, then $\left(x_{n+1}, y_{n+1}\right) \in H$. Thus we need only prove the claim to show that all $\left(x_{n}, y_{n}\right)$ are on H.
Proof of claim, $n \equiv 1 \bmod 2$.
If the claim is true for some $n \equiv 1 \bmod 4$, then

$$
2 x_{n}+a y_{n}+1 / 2\left(a Y_{n}+b\right)=D .
$$

We show that the claim follows for $n+2$.
For,

$$
x_{n+2}=x_{n}+1 / 2\left(a Y_{n}+b\right), \quad y_{n+2}=y_{n}+1 / 2\left(b+a X_{n}+a^{2} Y_{n}+a b\right),
$$

and

$$
Y_{n+2}=Y_{n}+b+a X_{n}+a^{2} Y_{n}+a b
$$

Thus

$$
\begin{aligned}
& 2 x_{n+2}+a y_{n+2}-1 / 2\left(a Y_{n+2}+b\right)= 2\left(x_{n}+1 / 2\left(a Y_{n}+b\right)\right)+a\left(y_{n}+1 / 2\left(b+a X_{n}+a^{2} Y_{n}+a b\right)\right) \\
&-1 / 2\left(b+a\left(Y_{n}+b+a X_{n}+a^{2} Y_{n}+a b\right)\right)= \\
&= D+\left(a Y_{n}+b\right)+\left(1 / 2 a b+1 / 2 a^{2} X_{n}+1 / 2 a^{3} Y_{n}+1 / 2 a^{2} b\right)-1 / 2 b \\
&-1 / 2 a Y_{n}-1 / 2 a b-1 / 2 a^{2} X_{n}-1 / 2 a^{3} Y_{n}-1 / 2 a^{2} b \\
&-1 / 2\left(a Y_{n}+b\right)=D .
\end{aligned}
$$

(by claim)

Similarly, if the claim is true for some $n \equiv 2 \bmod 4$ it is true for $n+2$, if true for some $n \equiv 3 \bmod 4$ it is true for $n+2$, and if true for $n \pm 0 \bmod 4$ it is true for $n+2$. Thus it is only necessary to check that the claim is true for $n=1$ and $n=2$. If $n=1, x_{n}$ and $y_{n}=0$ and $1 / 2\left(a Y_{1}+b\right)=D$ by definition. $x_{2}=1 / 2\left(a Y_{1}+b\right)$, and $y_{2}=0 . X_{2}=X_{1}+a Y_{1}+b$, and $Y_{2}=Y_{1}$. Thus

$$
-a x_{2}+2 y_{2}+1 / 2\left(a X_{2}+b\right)=-1 / 2 a\left(a Y_{1}+b\right)+1 / 2\left(a X_{1}+a^{2} Y_{1}+a^{2} Y_{1}+a b+b\right)=1 / 2\left(a X_{1}+b\right)=E
$$

by definition. This proves the claim, and hence the centers of R_{n} lie on H.
For the second part of Theorem 1 , we note that H is a hyperbola whose asymptotes are perpendicular. It is therefore similar, in the geometric sense, to the hyperbola $x y=1$. Let

$$
\varphi: R \otimes R \rightarrow R \otimes R
$$

be a similarity mapping which takes H onto $x y=1$.
For each n, the line $\left(x_{n-1}, y_{n-1}\right),\left(x_{n}, y_{n}\right)$ is perpendicular to $\left(x_{n}, y_{n}\right),\left(x_{n+1}, y_{n+1}\right)$. This property is preserved under the similarity mapping of H onto $x y=1$.

Let $z_{n}=\left(x_{n}^{\prime}, y_{n}^{\prime}\right)=\varphi\left(x_{n}, y_{n}\right)$. Let c be the slope of the line from $\left(x_{1}^{\prime}, y_{1}^{\prime}\right)$ to $\left(x_{2}^{\prime}, y_{2}^{\prime}\right)$. Let $C=(c, 1 / c)$. ($c \neq 0$). Then (with the help of a little algebra)

$$
\begin{aligned}
z_{n}= & -C^{-n+1} z_{1}^{-1} & \text { if } & n \equiv 2 \bmod 4 \\
& -C^{n-1} z_{1} & \text { if } & n \equiv 3 \bmod 4 \\
& +C^{-n+1} z_{1}^{-1} & \text { if } & n \equiv \bmod 4
\end{aligned}
$$

and

$$
z_{n}=+C^{n-1} z_{1} \quad \text { if } \quad n \equiv 1 \bmod 4
$$

Now the region enclosed by the lines from $(0,0)$ to z_{n} and to z_{n+4}, and by $x y=1$, has area

$$
\left|1 / 2 / \operatorname{Arg}\left(z_{n+4}\right)-\operatorname{Arg}\left(z_{n}\right) 川=\left|1 / 2 \operatorname{Arg}\left(z_{n+4} / z_{n}\right)\right|=\left|1 / 2 \operatorname{Arg}\left(C^{4}\right)\right| \text { or }\right| 1 / 2 \operatorname{Arg}\left(C^{-4}\right) \mid
$$

depending on whether n is odd or even. Either way, since $\operatorname{Arg}(C)=\operatorname{Arg}\left(C^{-1}\right)$, all such regions have equal areas.
Thus the corresponding regions bounded by lines from the center of H to the $\left(x_{n}, y_{n}\right)$ also have areas equal to each other's, since φ multiplies areas by a constant.
The mapping $r: z \rightarrow C^{4} z$ of $R \otimes R$ onto $R \otimes R$ may be viewed as a "rotation" of $R \otimes R$, since it changes $\operatorname{Arg}(z)$ but not $N(z)$. Clearly r sends hyperbolas of the form $N(z)=k$ into themselves. This is reminiscent of linear fractional transformations of the complex plane. Although there is no direct further bearing on Fibonacci tiling, we are inclined to note some similarities.
Proof of Theorem 2. Fix $a, b, c, d \in R \otimes R$. Let $\left(c_{1}, c_{2}\right)=c$ and $\left(d_{1}, d_{2}\right)=d$. Suppose not both a and $b=(0,0)$, and $\left(c_{1}, d_{1}\right) \neq(0,0)\left(c_{2}, d_{2}\right) \neq(0,0)$. Fix $x_{o}, y_{o}, k \neq 0 \in R$.
Lemma 1. Under the above conditions, there exist $x_{1}, y_{1}, x_{2}, y_{2}, K \in R$ such that

$$
\begin{gathered}
K \neq 0, \quad x_{1} \neq x_{0}, \quad x_{1} \neq-d_{1} / c_{1}, \quad y_{1} \neq y_{0}, \quad y_{1} \neq-d_{2} / c_{2}, \quad x_{2} \neq x_{1}, \\
x_{2} \neq-d_{1} / c_{1}, \quad y_{2} \neq y_{1}, y_{2} \neq-d_{2} / c_{2}
\end{gathered}
$$

and such that $\left(x-x_{0}\right)\left(y-y_{0}\right)=k$ if and only if $\left(x-x_{1}\right)\left(y-y_{1}\right) /\left(x-x_{2}\right)\left(y-y_{2}\right)=K$ or $(x, y)=\left(x_{1}, y_{2}\right)$ or (x_{2}, y_{1}).
Proof. Select some $k \neq 0,1$ such that

$$
(K-1)\left(k-x_{\theta} y_{0}\right)+K^{-2}(K-1)^{2} x_{0} y_{0} \neq 0
$$

Fix K. Let

$$
x_{2}=K^{-1}\left((K-1) x_{0}+x_{1}\right), \quad y_{2}=K^{-1}\left((K-1) y_{0}+y_{1}\right) .
$$

Then the equation

$$
k-x_{0} y_{0}=(K-1)^{-1}\left(x_{1} y_{1}-K^{-2}\left((K-1) x_{0}+x_{1}\right)\left((K-1) y_{0}+y_{1}\right)\right.
$$

has a range of solutions x_{1}, y_{1} in which y_{1} is a non-constant continuous function of x_{1}.
When the above conditions are satisfied, and $x_{1} \neq x_{0}, y_{1} \neq y_{0}$,

$$
\left(x-x_{0}\right)\left(y-y_{0}\right)=k \Leftrightarrow\left(x-x_{1}\right)\left(y-y_{1}\right)=K\left(x-x_{2}\right)\left(y-y_{2}\right) .
$$

Thus Lemma 1.
We may restate this as saying that except for a special class of degenerate hyperbolas, every hyperbola $N\left(z-z_{0}\right)=k$ can be put in the form

$$
\frac{N\left(z-z_{1}\right)}{N\left(z-z_{2}\right)}=K
$$

Now let $\lambda \in R \otimes R$,

$$
\lambda=\left(\frac{c_{1} x_{2}+d_{1}}{c_{1} x_{1}+d_{1}}, \frac{c_{2} y_{2}+d_{2}}{c_{2} y_{1}+d_{2}}\right)
$$

Let $w_{1}=f\left(z_{1}\right), w_{2}=f\left(z_{2}\right)$. Then

$$
\frac{w-w_{1}}{w-w_{2}}=\lambda \frac{z-z_{1}}{z-z_{2}} \Leftrightarrow w=f(z) \text { or } w=w_{2}, \quad z=z_{2}
$$

Thus

$$
\frac{N\left(z-z_{1}\right)}{N\left(z-z_{2}\right)}=K
$$

has image

$$
\frac{N\left(w-w_{1}\right)}{N\left(w-w_{2}\right)}=K N(\lambda) .
$$

By our previous results this is also a hyperbola of the same sort.
REMARK. Thus except for isolated points for which necessary divisions are impossible in $R \otimes R, R \otimes R$ behaves just like \mathbb{C} with respect to linear fractional mappings.
One could show without great difficulty that the maps f of Theorem 2, are "conformal," in the $R \otimes R$ sense. Self mappings of the "unit circle" $N(z) \leqslant 1$ have properties analogous to their counterparts over \mathbb{C}. But the prospects along this line are quite limited. $R \otimes R$ is only a curiosity, and cannot (in my opinion) support a deep and rich theory.
For those familiar with the number theory of $Q(\sqrt{5})$, we remark that for the example of the introduction, by embedding $Q(\sqrt{5})$ in $R \otimes R$ one may show that the (x_{n}, y_{n}) consist of all the integer points on

$$
x^{2}+x y-y^{2}-x+y=0,
$$

except for $(0,1)$.

REFERENCES

1. James Hafner, "Generalized Fibonacci Tiling Made Easy," to appear.
2. Herbert Holden, "Fibonacci Tiles,".: The Fibonacci Quarterly, Vol. 13, No. 1 (Feb. 1975), p. 45.

A PRIMER FOR THE FIBONACCI NUMBERS, PART XVI THE CENTRAL COLUMN SEQUENCE

JOHN L. BROWN, JR.

Pennsylvania State University, State College, Pennsylvania 16801

 andV. E. HOGGATT, JR.

San Jose State University, San Jose, California 95192

1. INTRODUCTION

The rows of Pascal's triangle with even subscripts have a middle term

$$
A_{n}=\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}=\sum_{k=0}^{n}\binom{n}{k}^{2}
$$

since

$$
\binom{n}{k}=\binom{n}{n-k},
$$

for $0 \leqslant k \leqslant n$. We shall now derive the generating function

$$
A(x)=\sum_{n=0}^{\infty} A_{n} x^{n}=\sum_{n=0}^{\infty}\binom{2 n}{n} x^{n} .
$$

From

$$
A_{n}=\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}},
$$

one easily gets

$$
(n+1) A_{n+1}=2(2 n+1) A_{n}
$$

2. GENERATING FUNCTION

From

$$
A(x)=\sum_{n=0}^{\infty} A_{n} x^{n}=A_{0}+\sum_{n=0}^{\infty} A_{n+1} x^{n+1}
$$

so that by differention

$$
x A^{\prime}(x)=x \sum_{n=0}^{\infty}(n+1) A_{n+1} x^{n}=\sum_{n=0}^{\infty} n A_{n} x^{n}
$$

From the relation

$$
(n+1) A_{n+1}=2(2 n+1) A_{n}
$$

then

$$
A^{\prime}(x)=\sum_{n=0}^{\infty}(n+1) A_{n+1} x^{n}=\sum_{n=0}^{\infty} 2(2 n+1) A_{n} x^{n}=2\left(\sum_{n=0}^{\infty} 2\left(n A_{n}\right) x^{n}+\sum_{n=0}^{\infty} A_{n} x^{n}\right)
$$

so that

$$
A^{\prime}(x)=2\left(2 x A^{\prime}(x)+A(x)\right)
$$

Solving for $A^{\prime}(x)$, one gets, upon dividing by $A(x)$,

$$
\frac{A^{\prime}(x)}{A(x)}=\frac{2}{(1-4 x)}
$$

from which it follows that
Thus

$$
\ln A(x)=-1 / 2 \ln (1-4 x)+\ln C .
$$

$$
A(x)=\frac{C}{\sqrt{1-4 x}}
$$

but $A_{0}=A(0)=1$ implies $C=1$, so that

$$
A(x)=\frac{1}{\sqrt{1-4 x}}=\sum_{n=0}^{\infty} A_{n} x^{n}
$$

3. CATALAN NUMBERS

Suppose you know that the Catalan numbers have the form

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}, \quad C_{0}=0
$$

and wish to derive the generating function

$$
C(x)=\sum_{n=0}^{\infty} C_{n} x^{n}
$$

Recall that

$$
A(x)=\sum_{n=0}^{\infty} A_{n} x^{n}=\sum_{n=0}^{\infty}\binom{2 n}{n} x^{n}=\frac{1}{\sqrt{1-4 x}} .
$$

Then

$$
C(x)=\sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n} x^{n}=\sum_{n=0}^{\infty} \frac{1}{n+1} A_{n} x^{n}
$$

Thus, if we integrate the series for $A(x)$, term-by-term,

$$
\int \frac{d x}{\sqrt{1-4 x}}=\sum_{n=0}^{\infty} \frac{1}{n+1} A_{n} x^{n+1}+C^{*}
$$

But

$$
\int \frac{d x}{\sqrt{1-4 x}}=-1 / 2 \sqrt{1-4 x}=x C(x)+C^{*}
$$

which implies $C^{*}=-1 / 2$. This can be solved for

$$
C(x)=\frac{1-\sqrt{1-4 x}}{2 x}
$$

We now show how to derive the central sequence for the trinomial triangle.

4. THE TRINOMIAL TRIANGLE - CENTRAL TERM

Consider the triangular array

$$
\begin{array}{ccccccc}
1 & & & & & & \\
1 & 1 & 1 & & & & \\
1 & 2 & 3 & 2 & 1 & & \\
1 & 3 & 6 & 7 & 6 & 3 & 1 \\
\cdots & \cdots & . & . & \cdots & z & \\
& x & y & z & & \\
& & & w & & & \\
& & & &
\end{array}
$$

where $w=x+y+z$ shows the relation between the elements of the array. It is induced by the expansion of

$$
\left(1+x+x^{2}\right)^{n}, \quad n=0,1,2,3, \cdots
$$

Let

$$
\begin{aligned}
\left(1+x+x^{2}\right)^{n} & =\sum_{m=0}^{2 n} \beta_{m} x^{m}=\sum_{k=0}^{n}\binom{n}{k} x^{2 k}(1+x)^{n-k} \\
& =\binom{n}{0}(1+x)^{n}+\binom{n}{1}(1+x)^{n-1} x^{2}+\cdots+\binom{n}{k}(1+x)^{n-k} x^{2 k}+\cdots
\end{aligned}
$$

The coefficient β_{n} is the central term and is given by

$$
\beta_{n}=\binom{n}{0}\binom{n}{n}+\binom{n}{1}\binom{n-1}{n-2}+\cdots+\binom{n}{a}\binom{n-a}{n-2 a},
$$

where $a=[n / 2]$. The β_{n} may be written in several forms.

$$
\beta_{n}=\sum_{k=0}^{[n / 2]}\binom{n}{k}\binom{n-k}{n-2 k}=\sum_{k=0}^{[n / 2]}\binom{n}{k}\binom{n-k}{k}=\sum_{k=0}^{[n / 2]}\binom{n}{2 k}\binom{2 k}{k}
$$

since

$$
\binom{n}{k}\binom{n-k}{k}=\frac{n!}{k!(n-k)!} \frac{(n-k)!}{k!(n-2 k)!}=\frac{n!(2 k)!}{(2 k)!(n-2 k)!k!k!}=\binom{n}{2 k}\binom{2 k}{k}
$$

We now derive the central term generating function,

$$
B(x)=\frac{1}{\sqrt{1-2 x-3 x^{2}}}=\sum_{n=0}^{\infty} \beta_{n} x^{n}
$$

Thus

$$
B(x)=\sum_{m=0}^{\infty} \beta_{m} x^{m}=\sum_{m=0}^{\infty}\left(\sum_{k=0}^{[m / 2]}\binom{m}{2 k}\binom{2 k}{k}\right) x^{m}=\sum_{k=0}^{\infty}\left(\sum_{m=2 k}^{\infty}\binom{m}{2 k} x^{m}\right)\binom{2 k}{k}
$$

since

$$
\binom{m}{2 k}=0 \quad \text { if } \quad 0 \leqslant m<2 k
$$

Thus

$$
=\sum_{k=0}^{\infty}\binom{2 k}{k} \sum_{m=0}^{\infty}\binom{m}{2 k} x^{m}=\sum_{k=0}^{\infty}\binom{2 k}{k}\left(\frac{x^{2 k}}{(1-x)^{2 k+1}}\right)
$$

since

$$
\frac{x^{k}}{(1-x)^{k+1}}=\sum_{n=0}^{\infty}\binom{n}{k} x^{n}
$$

But

$$
A(x)=\sum_{k=0}^{\infty}\binom{2 k}{k} x^{k}=\frac{1}{\sqrt{1-4 x}}
$$

so that

$$
B(x)=\frac{1}{1-x} A\left(\frac{x^{2}}{(1-x)^{2}}\right)=\frac{1}{1-x} \frac{1}{\sqrt{1-4\left(\frac{x}{1-x}\right)^{2}}}=\frac{1}{\sqrt{1-2 x-3 x^{2}}}
$$

This completes the derivation.

Thus, $A(x)$, the generating function for central term of the evenly subscripted rows of Pascal's triangle, is related by a transformation to the central term generating function for the trinomial triangle

$$
B(x)=\frac{1}{1-x} A\left(\frac{x^{2}}{(1-x)^{2}}\right)
$$

Much more can be done with this but that is another paper and is covered in Rondeau [2] and Anaya [1]. It should be noted that the generating function $B(x)$ could also have been derived by Lagrange's Theorem as in [6] .
Sequence 456, in [4], is the Catalan sequence for the Trinomial Triangle $1,1,2,4,9,21, \ldots, C_{n}^{*}, \cdots$. This sequence C_{n}^{*} can be obtained from the regular Catalan $1,1,2,5,14,42, \ldots$ if we truncate the first term, by repeated differencing. (See [1].)

The Catalan generating function $C(x)$ is

$$
\begin{gathered}
C(x)=\sum_{n=0}^{\infty} C_{n} x^{n}=\frac{1-\sqrt{1-4 x}}{2 x} \\
C^{2}(x)=\frac{C(x)-1}{x}=\sum_{n=0}^{\infty} c_{n+1} x^{n}=\frac{1-2 x-\sqrt{1-4 x}}{2 x^{2}}
\end{gathered}
$$

Let $C_{n}^{*}(x)$ be the generating function for Catalan numbers for the Trinomial Triangle. This is

$$
\begin{aligned}
C^{*}(x) & =\frac{1}{1+x} C^{2}\left(\frac{x}{1+x}\right)=\frac{1}{1+x}\left[\frac{1-\frac{2 x}{1+x}-\sqrt{1-\frac{4 x}{1+x}}}{2 \frac{x^{2}}{(1+x)^{2}}}\right] \\
& =\frac{1-x-\sqrt{1+x)(1-3 x)}}{2 x^{2}}=\frac{1-x-\sqrt{1-2 x-3 x^{2}}}{2 x^{2}} .
\end{aligned}
$$

We can also get $C^{*}(x)$ from regular Catalan number generator by another transformation related to summation Webs

Here the Catalan number generator is

$$
\begin{gathered}
C\left(x^{2}\right)=\frac{1-\sqrt{1-4 x^{2}}}{2 x^{2}} \\
C *(x)=\frac{1}{1-x} C\left(\left(\frac{x}{1-x}\right)^{2}\right)=\frac{1-x-\sqrt{1-2 x-3 x^{2}}}{2 x^{2}}
\end{gathered}
$$

This is the same transformation we saw earlier.

5. $B(x)$ FROM THE DIFFERENCE EQUATION

In Riordan [3, p. 74], they give the recurrence for the numbers β_{n}, the central terms in the rows of a trinomial triangle. This is

$$
n \beta_{n}=(2 n-1) \beta_{n-1}+3(n-1) \beta_{n-2} .
$$

We shall now derive this.
We will start with the well known generating function for the Legendre Polynomials

$$
\frac{1}{\sqrt{1-2 x t+x^{2}}}=\sum_{n=0}^{\infty} P_{n}(t) x^{n}
$$

We introduce a phantom parameter t in the generating function for $B(x)$.

$$
B(x, t)=\frac{1}{\sqrt{1-2 x t-3 x^{2}}}=\sum_{n=0}^{\infty} M_{n}(t) x^{n}
$$

where clearly $B(x, 1)=B(x)$ and $M_{n}(1)=\beta_{n}$.
Let

$$
x_{1}=-i \sqrt{3} x \quad \text { and } \quad t_{1}=\frac{i t}{\sqrt{3}}
$$

then

$$
\begin{aligned}
\sum_{n=0}^{\infty} M_{n}(t) x^{n} & =\frac{1}{\sqrt{1-2 x t-3 x^{2}}}=\frac{1}{\sqrt{1-2 x_{1} t_{1}+x_{1}^{2}}}=\sum_{n=0}^{\infty} P_{n}\left(t_{1}\right) x_{1}^{n} . \\
& =\sum_{n=0}^{\infty} P_{n}\left(\frac{i t}{\sqrt{3}}\right)(-i \sqrt{3} x)^{n} .
\end{aligned}
$$

We note $M_{n}(1)=\beta_{n}$, then

$$
\beta_{n}=(-i \sqrt{3})^{n} P_{n}(i / \sqrt{3})
$$

The Legendre Polynomials obey the recurrence relation

$$
n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
$$

for $n \geqslant 0$, with $P_{0}(x)=1$ and $P_{1}(x)=x$. From $P_{0}(x)=1$, then

$$
\beta_{0}=(-i \sqrt{3})^{0} P_{0}(i / \sqrt{3})=1
$$

and from $P_{1}(x)=x$, then $\beta_{1}=(-i \sqrt{3})(i / \sqrt{3})=1$. Thus directly substituting $P_{n}(x)$, with $x=i / \sqrt{3}$ the recurrence relation becomes

$$
n P_{n}(i / \sqrt{3})=(2 n-1) \frac{1}{\sqrt{3}} P_{n-1}(i / \sqrt{3})-(n-1) P_{n-2}(i / \sqrt{3})
$$

and

$$
n(-\sqrt{3} i)^{n} P_{n}(i / \sqrt{3})=(2 n-1)(-\sqrt{3} i)^{n} \frac{i}{\sqrt{3}} P_{n-1}(i / \sqrt{3})-(n-1)(-i \sqrt{3})^{n} P_{n-2}(i / \sqrt{3}) .
$$

Since
this yields

$$
\left.\beta_{n}=(-i \sqrt{3})^{n} P_{n}(i) \sqrt{3}\right),
$$

$$
n \beta_{n}=(2 n-1) \beta_{n-1}+3(n-1) \beta_{n}
$$

with $\beta_{0}=1, \beta_{1}=1$ as was to be shown.
We note in passing that

$$
\lim _{n \rightarrow \infty} \frac{\beta_{n+1}}{\beta_{n}}=3
$$

6. FROM THE RECURRENCE TO THE GENERATING FUNCTION

We now go from the recurrence relation

$$
(n+2) \beta_{n+2}=(2 n+3) \beta_{n+1}+3(n+1) \beta_{n},
$$

with $\beta_{0}=\beta_{1}=1$, back to the generating function.
Let

$$
B(x)=\sum_{n=0}^{\infty} \beta_{n} x^{n}
$$

then

$$
\begin{gathered}
x B^{\prime}(x)=\sum_{n=0}^{\infty} n \beta_{n} x^{n}, \\
3 x B^{\prime}(x)+3 B(x)=\sum_{n=0}^{\infty} 3(n+1) \beta_{n} x^{n} .
\end{gathered}
$$

Further

$$
x B^{\prime}(x)-0 \cdot \beta_{0}-x \beta_{1}=\sum_{n=2}^{\infty} n \beta_{n} x^{n}
$$

or

$$
\left(B^{\prime}(x)-1\right) / x=\sum_{n=0}^{\infty}(n+2) \beta_{n+2} x^{n}
$$

Next,

$$
\begin{aligned}
& B(x)=1+x \sum_{n=0}^{\infty} \beta_{n+1} x^{n}, \quad B^{\prime}(x)=\sum_{n=0}^{\infty} \beta_{n+1} x^{n}+\sum_{n=0}^{\infty} n \beta_{n+1} x^{n} \\
& \frac{B(x)-1}{x}=\sum_{n=0}^{\infty} \beta_{n+1} x^{n}, \quad 2 B^{\prime}(x)+\frac{B(x)-1}{x}=\sum_{n=0}^{\infty}(2 n+3) \beta_{n+1} x^{n}
\end{aligned}
$$

Thus, from the recurrence relation, we may write

$$
\frac{B^{\prime}(x)-1}{x}=2 B^{\prime}(x)+\frac{B(x)-1}{x}+3 x B^{\prime}(x)+3 B(x)
$$

or

$$
B^{\prime}(x)\left(1-2 x-3 x^{2}\right)=(3 x+1) B(x), \quad \frac{B^{\prime}(x)}{B(x)}=\frac{3 x+1}{1-2 x-3 x^{2}}
$$

Integrating, $\ln B(x)=-1 / 2 \ln \left(1-2 x-3 x^{2}\right)+\ln C$. Thus

$$
B(x)=\frac{C}{\sqrt{1-2 x-3 x^{2}}}
$$

and since $B(0)=\beta_{0}=1$, it follows that $C=1$. This concludes the discussion. REFERENCES

1. Janet E. Anaya, "Web Sequences and Multisecting the Column Generating Functions of Pascal's Triangle,' Unpublished Master's Thesis, San Jose State University, May, 1977.
2. Michel Rondeau, "The Generating Functions for the Vertical Columns of the ($N+1$)-Nomial Triangles," Unpublished Master's Thesis, San Jose State University, December, 1973.
3. John Riordan, Combinatorial Identities, John Wiley and Sons, New York, N.Y., 1968, p. 74.
4. N. J. A. Sloane, Handbook of Integer Sequences, The Academic Press, New York, N.Y., 1973.
5. Earl D. Rainville, Special Functions, McMillan Co., New York, N. Y., 1960.
6. V. E. Hoggatt, Jr., and Paul S. Bruckman, "H-Convolution Transform," The Fibonacci Quarterly, Vol. 13, No. 4, Dec. 1975, pp. 357-368.

ENTRY POINTS OF THE FIBONACCI SEQUENCE AND THE EULER ϕ FUNCTION

JOSEPH J. HEED and LUCILLE A. KELLY Norwich University, Northfield, Vermont 05663

There is an interesting analogy between primitive roots of a prime and the maximal entry points of Fibonacci numbers modulo a prime.

Expressed in terms of the periods of reciprocals of primes in various base representations, the period of the b-mal expansion of $1 / p$ is of length d_{i} in $\phi\left(d_{i}\right)$ incongruent bases modulo p where $d_{i} \mid p-1$ and ϕ is Euler's totient function. A similar statement can be made about certain classes of linear recursive sequences modulo p.
1.0 Let $\Gamma^{n} c, q$ be the $n^{\text {th }}$ term of a linear recursive sequence,

$$
\Gamma^{n} c, q= \begin{cases}\frac{(c+\sqrt{q})^{n}-(c-\sqrt{q})^{n}}{2 \sqrt{q}} & \text { for } q \not \equiv c^{2}(\bmod 4) \\ \frac{\left(\frac{c+\sqrt{q}}{2}\right)^{n}-\left(\frac{c-\sqrt{q}}{2}\right)^{n}}{\sqrt{q}} & \text { for } q \equiv c^{2}(\bmod 4)\end{cases}
$$

yielding the sequences defined by

$$
\Gamma^{n}=\left\{\begin{array}{l}
2 c \Gamma^{n-1}+\left(q-c^{2}\right) \Gamma^{n-2} \\
c \Gamma^{n-1}+\frac{q-c^{2}}{4} \Gamma^{n-2}
\end{array}\right.
$$

with initial values $1,2 c$ or $1, c$.
For $c=1, q=5$ we have the Fibonacci sequence.
We are interested in the entry points of these sequences, modulo p, a prime.
Borrowing the analogy, we will say that $\Gamma c, q$ belongs to the exponent x modulo p, if

$$
p \mid \Gamma^{x} c, q, \quad p \nmid \Gamma^{y} c, q \quad \text { for } y<x .
$$

The main results are:
1.1 For q a quadratic non-residue of p, c ranging from 1 to p, there are $\phi\left(d_{i}\right)$ values c such that $\Gamma c, q$ belongs to the exponent d_{i} modulo p, where $d_{i} \mid p+1, d_{i} \neq 1$.
1.2 For q a quadratic residue of p, c ranging from 1 to p, there are $\phi\left(d_{i}\right)$ values c such that $\Gamma c, q$ belongs to d_{i} modulo $p, d_{i} \mid p-1, d_{i} \neq 1$, and two values for which the sequence is not divisible by p at all.
1.3 For c fixed, $c \neq 0(\bmod p), q$ ranging from 1 to p, for each divisor of $p-1$ and $p+1$, except 1 and 2 , there are $\phi\left(d_{i}\right) / 2$ values of q such that $\Gamma c, q$ belongs to d_{i} modulo p. In addition there is one value such that $\Gamma c, q$ belongs to p (for $q=p$) and one for which the sequence is not divisible by p at all (for $q \equiv c^{2} \bmod p$).
1.4 Applying these results to the Fibonacci sequence, probabilistic arguments suggest that for primes of the form $10 n \pm 1$ the entry point of the Fibonacci sequence should be maximal, $(p-1)$, on an average

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{\phi\left(p_{i}-1\right)}{p_{i}-3}
$$

over primes of that form; and the entry point should be maximal, $(p+1)$, on an average

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \cdot \sum_{i=1}^{n} \frac{\phi\left(p_{i}+1\right)}{p_{i}-1}
$$

over primes of the form $10 n \pm 3$. Investigations of entry points of primes less than 3000 [1,2] show a remarkably close correspondence with these theoretical values.

Number of Maximal Entry Points for $p<\mathbf{3 0 0 0}$

	Predicted	Observed
$\Sigma \phi(p-1) / p-3=$	74.25	76
$\Sigma \phi(p+1) / p-1=$	87.78	88

2.0 Consider the sequences $\left\{\Gamma^{n} c, q\right\}$ modulo p, where c and q range over the reduced residue classes modulo p. Let d be the exponent to which $\Gamma c, q$ belongs modulo p.
The following can easily be established:
2.1.1 If $p \mid \Gamma^{n} c, q$, then $p \mid \Gamma^{n} c, q+p$ and $p \mid \Gamma^{n} c+p, q$.
2.1.2 For $c \equiv 0(\bmod p), d=2$.
2.1.3 For $q \equiv 0, c \neq 0(\bmod p), d=p$.
2.1.4 For $c_{i}+c_{j} \equiv 0(\bmod p), d_{i}=d_{j}$.
2.1.5 For $q \equiv c^{2}(\bmod p), d=\infty$.
2.2 Let $a=c+\sqrt{q}, \bar{a}=c-\sqrt{q}$. If $\Gamma c, q$ belongs to the exponent $k(\bmod p)$, we say a has Γ-order k. That is

$$
a^{k}-\bar{a}^{k} \equiv 0(\bmod \rho), a^{m}-\bar{a}^{m} \not \equiv 0(\bmod p) \text { for } m<k, m \neq 0 .
$$

We wish to determine the smallest d such that

$$
a^{d} \equiv \bar{a}^{d} \quad(\bmod p)
$$

We consider two cases, q a quadratic non-residue of p, and q a residue.
3.0 Case $1, q$ a quadratic non-residue of p. Construct $G F\left(p^{2}\right)$ with typical element $c+k \sqrt{q}\left(\right.$ note: $k^{2} q \equiv \hat{q}(\bmod p)$, a non-residue). For some $c^{\prime}, q^{\prime}, a=c^{\prime}+\sqrt{q^{\prime}}$ is of order $p^{2}-1$ since the multiplicative group of $G F\left(p^{2}\right)$ is cyclic.
3.1 We show that $\bar{a}=a P$.

The conjugate of a can be defined as that element \bar{a} such that $a \bar{a}$ and $a+\bar{a}$ are both rational, i.e., elements of $G F(p)$. We know that in $G F(p)$ there are $\phi\left(d_{i}\right)$ elements of order $d_{i}, d_{i} \mid p-1$, and that $\Sigma \phi\left(d_{i}\right)=p-1$, accounting for all the non-zero elements of $G F(p)$. Thus the elements of $G F\left(p^{2}\right)$ which are in $G F(p)$ are characterized by orders which divide $p-1$, i.e.,

$$
a^{k(p+1)}, \quad k=1,2, \cdots, p-1
$$

3.1. Since a is of order $p^{2}-1, a \cdot a^{p}$ is of order $p-1$, thus is rational.
3.1.2 To show: $a+a^{p}$ is of order dividing $p-1$.

Expanding $\left(a+a^{p}\right)^{p-1}$, and noticing that $\left(p_{k}^{-1}\right) \equiv(-1)^{k} \bmod p$, we obtain

$$
\begin{aligned}
\left(a+a^{p}\right)^{p-1} & \equiv a^{p-1}+\binom{p-1}{1} a^{2 p-2}+\cdots+a^{p(p-1)} \equiv a^{p-1}-a^{2 p-2}+\cdots+a^{p(p-1)} \\
& \equiv a^{p-1}\left(1-a^{p-1}+\left(a^{p-1}\right)^{2}-\cdots+\left(a^{p-1}\right)^{p-1}-\left(a^{p-1}\right)^{p}+\left(a^{p-1}\right)^{p}\right) \\
& \equiv a^{p-1}\left[\frac{\left(1-\left(a^{p-1}\right)^{p+1}\right)}{1+a^{p-1}}+\left(a^{p-1}\right)^{p}\right] \equiv a^{p-1}\left[\frac{1-a^{p^{2}-1}}{1+a^{p-1}}+a^{p^{2}-p}\right] \\
& \equiv a^{p-1} a^{p^{2}-p} \equiv a^{p^{2}-1} \equiv 1 \bmod p .
\end{aligned}
$$

Thus $a+a^{p}$ is of order dividing $p-1$ and is rational. It follows that $\bar{a}=a^{p}$.
3.1.3 It can similarly be shown that $\bar{a}^{a}=a^{a p}$, unless a is a multiple of $p+1$. In that case a^{a} is rational and self conjugate, cf. §4.0.
Let $\bar{a}^{a}=a^{a p}$. Then $\left(a^{a}\right)^{k} \equiv\left(a^{a p}\right)^{k}$ for $a^{a p k}-a^{a k} \equiv 0, a^{a k(p-1)} \equiv 1(\bmod p)$, and $a k \equiv 0(\bmod p+1)$, since a is of order $p^{2}-1$. k is a divisor of $p+1$, say, d_{i}. Let $n d_{i}=p+1$, so that n is the smallest non-zero solution to $x d_{i} \equiv 0$ $\bmod (p+1)\left(\right.$ i.e.,a^{n} has Γ-order $\left.d_{i}\right)$.
If $(t n) d_{i} \equiv 0(\bmod p+1)$, where $\left(t, d_{i}\right)=m, t=t^{\prime} m, d_{i}=d_{j} m$ and $d_{j} \mid p+1$ with $d_{j}<d_{i}$, then

$$
(\operatorname{tn}) d_{j} \cong 0 \quad(\bmod p+1)
$$

and $(t n)$ is a solution to $x d_{j} \equiv 0(\bmod p+1)$ with $d_{j}<d_{i}$.
$x=t n, t=1,2, \cdots$, are solutions to $x d_{i} \equiv 0(\bmod p+1)$, and are primitive solutions for $\left(t, d_{i}\right)=1$. There are exactly $\phi\left(d_{i}\right)$ of these less than d_{i}. For each of the $\phi\left(d_{i}\right)$ of these $t n$ values, $t n<p+1, a^{t n}$ has Γ-order d_{i}.
Consequently, for every divisor $d_{i} \neq 1$ of $p+1$, there are $\phi\left(d_{i}\right)$ values $a<p+1$, such that a^{a} has Γ-order d_{i}.
3.3 We wish to relate the elements in the tables below:

Table 1

Table 2

a	$a^{1+(p+1)}$		$a^{1+k(p+1)}$		
a^{2}					
\cdots		\cdots			
a^{a}			$a^{a+k(p+1)}$		
\cdots					
a^{p+1}	$a^{2(p+1)}$				$a^{p^{2}-1}$

NOTE: The elements of the last row of table two are rational. The elements of columns two through $p-1$ are rational multiples of the elements of the first column, in which for the exponent less than $(p+1)$, there are $\phi\left(d_{i}\right)$ elements of Γ-order d_{i}. Thus the Γ-orders of the elements in the first p rows are equal by rows and divide $p+1$. Since a is of order $p^{2}-1$, all $a+b \sqrt{q}$ are represented by some power of a. For $c_{i}+\sqrt{q_{i}}, q_{i}$ a non-residue, there is some $a^{k}=c_{i}+b \sqrt{q} \equiv c_{i}+\sqrt{q_{i}}(\bmod p)$.
3.3.1 If $a^{k} \equiv c_{i}+\sqrt{q_{i}}$ and $a^{m} \equiv c_{j}+\sqrt{q_{i}}$, then a^{k} and a^{m} are not in the same row in table two, for if

$$
a^{k}=a^{x+y_{1}(p+1)} \quad a^{m}=a^{x+y_{2}(p+1)} \quad x<p+1
$$

then

$$
c_{i}+\sqrt{q_{i}}=a^{x+y_{1}(p+1)}, \quad c_{j}+\sqrt{q_{i}}=a^{x+y_{2}(p+1)}
$$

subtracting,

$$
c_{i}-c_{j}=a^{x}\left(a^{y_{1}(p+1)}-a^{y_{2}(p+1)}\right)
$$

and a^{x} is rational, i.e., $x=p+1$, contrary to hypothesis.
3.2.2 We thus have a one-to-one mapping between elements of distinct rows of table two and elements of the q_{i} column of table one, indicating that for q_{i} a non-residue, c_{i} ranging from 1 to p there are $\phi\left(d_{i}\right), d_{i} \mid p+1$ elements,
$c_{i}+\sqrt{q_{i}}$, of Γ-order d_{i} (Result 1.1).
4.0 Case $2, q$ a quadratic residue of p. Consider the elements of $G F(p)$. Let $\beta_{i}=a_{i}+b$, where $b \equiv \sqrt{q}(\bmod p)$, and call $\bar{\beta}_{i}=a_{i}-b$. Let $\gamma_{i}=\beta_{i} \bar{\beta}_{i}^{-1}=\left(a_{i}+b\right) /\left(a_{i}-b\right)$. If $\left(a_{i}+b\right) /\left(a_{i}-b\right) \equiv\left(a_{j}+b\right) /\left(a_{j}-b\right)$, then $a_{i} \equiv a_{j}$, and if a ranges through the values 0 to $p-1$ the γ_{i} values generated are distinct. Provided $a \equiv \pm b(\bmod p)$, these are the elements 2 through $p-1$ of $G F(p)$.
From $\left(\left(a_{i}+b\right) /\left(a_{i}-b\right)\right)^{k}=\gamma_{i}^{k}$ it is clear that the Γ-orders of β correspond with the orders of γ. There are $\phi\left(d_{i}\right)$ elements, γ_{i}, of order d_{i} for each divisor of $p-1\left(d_{i} \neq 1\right)$, thus $\phi\left(d_{i}\right)$ elements β_{i} with Γ-orders d_{i} for each divisor of $p-1$ except 1 . In addition, for $a \equiv \pm b(\bmod p)$, i.e., $q \equiv c^{2}(\bmod p)$, the equation $\left(a_{i}+b\right)^{k} \equiv\left(a_{i}-b\right)^{k}$ has no solutions and we say the Γ-order of β is ∞. (2.1.5). (Result 1.2.)
5.0 To establish Result 1.3, relating to the rows of table one, consider $c+\sqrt{q_{i}}$ as q_{i} ranges from 1 to $p-1$.
$c+\sqrt{q_{i}}$ has the same Γ-order as $c k+\sqrt{k^{2} q}$ and as $(c k)^{\prime}+\sqrt{k^{2} q}$, where $c k+(c k)^{\prime} \equiv 0(\bmod p)$ (2.1.4). Choose q_{j} a non-residue, $c_{i}<(p-1) / 2$, and k such that $k c_{i} \equiv c$. Then $k^{2} q_{j}$ is a non-residue and $k\left(c_{i}+\sqrt{q_{j}}\right) \equiv c+\sqrt{q_{i}}$ and has the same Γ-order. Similarly for q_{j} a residue. Thus the entries in table one with $c_{i}<(p-1) / 2$ of a residue column and a non-residue column correspond with the entires of a row and we have Result 1.3: there are $\phi\left(d_{i}\right) / 2$ values q such that $\Gamma c, q$ belongs to $d_{i}(\bmod p)$ for $d_{i}\left|p-1, d_{i}\right| p+1$, with Γ-order ∞ for $q \equiv c^{2}(\bmod p)$, and Γ-order p for $q \equiv 0(\bmod p)$.
6.0 Results applied to the Fibonacci sequence. Let $c=1, q=5$. Since 5 is a non-residue for p of the form $10 n \pm 3$ and a residue for $p=10 n \pm 1$, the maximal entry point for the former is $p+1$ and for the latter $p-1$. Since $c \neq p$ and $q \neq p$ for $p>5$, the probability that the entry point is maximal for $p=10 n \pm 3$ is
and for p of the form $10 n \pm 1$,

$$
\begin{aligned}
& \phi(p+1) /(p-1) \\
& \phi(p-1) /(p-3)
\end{aligned}
$$

For $p<3000$, over primes of the form $10 n \pm 3$,

$$
\sum \frac{\phi(p+1)}{p-1}=87.78
$$

as compared with 88 primes of that form with maximal entry points.
Over primes of the form $10 n \pm 1$,

$$
\sum \frac{\phi(p-1)}{p-3}=74.25
$$

as compared to 76 with maximal entry points.
Entry Points of $p=13$ for $\left\{\Gamma^{n} c_{i} q_{i}\right\}$

$c{ }^{q}$	1	2	3	4	5	6	7	8	9	10	11	12
1	∞	7	12	6	7	14	14	14	12	3	7	4
2	3	14	6	∞	7	14	7	7	4	12	14	12
3	12	14	12	4	7	7	14	7	∞	6	14	3
4	12	7	∞	3	14	7	7	14	12	4	14	6
5	4	7	3	12	14	14	14	7	6	12	7	∞
6	6	14	4.	12	14	7	7	14	3	∞	7	12

(see properties 2.1.1-2.1.5)

REFERENCES

1. Brother U. Alfred, "Additional Factors of the Fibonacci and Lucas Series," The Fibonacci Quarterly, Vol. 1, No. 1, Feb. 1963, pp. 34-42.
2. D. D. Wall, "Fibonacci Series Modulo m," The American Math. Monthly, Vol. 67, No. 6, June-July, 1960, pp. 525-432.

MORE ON BENFORD'S LAW

W. G. BRADY
Slippery Rock State College, Slippery Rock, PennsyIvania

In a recent note, J. Wlodarski [1] observed that the Fibonacci and Lucas numbers tend to obey Benford's law which states: the probability that a random decimal begins with the digit p is

$$
\log _{10}(p+1)-\log _{10} p .
$$

(By begins, one means has extreme left digit.)
Wlodarski based his observations on the first 100 Fibonacci and Lucas numbers.
This is a report of a further investigation of the Benford phenomena. In this effort, the first 2000 representatives of both the Fibonacci and Lucas numbers were calculated and examined. The occurrences of the first digits were noted and tabulated. Further this was done for each base $b=3$ to $b=10$. The results of these calculations suggest an extended Benford law:
The probability that a random decimal written base b begins with p is

$$
\begin{equation*}
\log _{10} \frac{p+1}{p} \cdot \frac{1}{\log _{10} b}=\log _{b} \frac{p+1}{p} . \tag{1}
\end{equation*}
$$

This result is anticipated by Flehinger [2] and is verified here.
In order to provide the statistical data concerning the Fibonacci and Lucas numbers of large magnitude and to various bases, a computer program was developed. It was written in FORTRAN-IV and has been run on an IBM 360-40. The program can develop the numbers up to $n=5000$ base 10 using the 1000 digits provided. However, more digits would be needed for a lesser base. As a compromise $n=2000$ was selected. The proportions of first digits to the various bases is recorded in Tables 1 and 2 . Table 3 gives the corresponding results from (1) for comparison.

Table 1
Proportion of First Digits of Lucas Numbers

Digits									
Base	1	2	3	4	5	6	7	8	9
10	.30100	.17600	.12550	.09650	.07950	.06650	.05850	.05100	.04500
9	.31800	.18150	.13300	.10250	.08300	.07000	.05900	.05300	
8	.33350	.19450	.13950	.10600	.08850	.07400	.06400		
7	.35450	.20850	.15000	.11300	.09350	.08050			
6	.37800	.22400	.16150	.12500	.10250				
5	.43050	.25100	.17950	.13900					
4	.50100	.29150	.20750						
3	.63650	.36350							

Table 2
Proportion of First Digits of Fibonacci Numbers

Digits									
Base	1	2	3	4	5	6	7	8	9
10	.30050	.17650	.12500	.09650	.07950	.06650	.05750	.05200	.04600
9	.31400	.18650	.13200	.09900	.08300	.06950	.06200	.05400	
8	.33400	.19500	.13900	.10600	.08800	.07350	.06450		
7	.35750	.20900	.14600	.11550	.09200	.08000			
6	.38600	.22800	.16050	.12400	.10150				
5	.43100	.25250	.17800	.13850					
4	.49950	.29200	.20850						
3	.62800	.37200							

Table 3
Values of $\log _{b}(n+1) / n$

Base	1	2	3	4	5	6	7	8	9
10	.30103	.17609	.12494	.09691	.07918	.06695	.06099	.04815	.04576
9	.31547	.18453	.13093	.10156	.08298	.07016	.06391	.05046	
8	.33223	.19434	.13789	.10695	.08739	.07389	.06731		
7	.35621	.20837	.14784	.11467	.09369	.07922			
6	.38685	.22629	.16056	.12454	.10175				
5	.43068	.25193	.17875	.13865					
4	.50000	.29248	.20752						
3	.63093	.36907							

REFERENCES

1. J. Wlodarski, "Fibonacci and Lucas Numbers Tend to Obey Benford's Law," The Fibonacci Quarterly, February 1971, Vol. 9, No. 1, pp. 87-88.
2. B. J. Flehinger, "On the Probability that a Random Integer has Initial Digit A," Amer. Math. Monthly, Vol. 73 (1966), pp. 1056-1061.

FORMULA DEVELOPMENT THROUGH FINITE DIFFERENCES

BROTHER ALFRED BROUSSEAU
 St. Mary's College, California

FINITE DIFFERENCE CONCEPT

Given a function $f(n)$ the first difference of the function is defined

$$
\Delta f(n)=f(n+1)-f(n)
$$

(NOTE: There is a more generalized finite difference involving a step of size h but this can be reduced to the above by a linear transformation.)

EXAMPLES

$$
\begin{gathered}
f(n)=5 n+3, \quad \Delta f(n)=5(n+1)+3-(5 n+3)=5 \\
f(n)=3 n^{2}+7 n+2 \mid \Delta f(n)=3(n+1)^{2}+7(n+1)+2-\left(3 n^{2}+7 n+2\right)=6 n+10 .
\end{gathered}
$$

Finding the first difference of a polynomial function of higher degree involves a considerable amount of arithmetic. This can be reduced by introducing a special type of function known as a generalized factorial.

GENERALIZED FACTORIAL

A generalized factorial

$$
(x)^{(n)}=x(x-1)(x-2) \cdots(x-n+1),
$$

where there are n factors each one less than the preceding. To tie this in with the ordinary factorial note that

$$
n^{(n)}=n!
$$

EXAMPLE

$$
x^{(4)}=x(x-1)(x-2)(x-3)
$$

The first difference of $x^{(n)}$ is found as follows:

$$
\begin{aligned}
\Delta x^{(n)} & =(x+1) x(x-1) \cdots(x-n+3)(x-n+2)-x(x-1)(x-2) \cdots(x-n+2)(x-n+1) \\
& =x(x-1)(x-2) \cdots(x-n+3)(x-n+2)[x+1-(x-n+1)]=n x^{(n-1)} .
\end{aligned}
$$

Note the nice parallel with taking the derivative of x^{n} in calculus.
To use the factorial effectively, in working with polynomials we introduce Stirling numbers of the first and second kind. Stirling numbers of the first kind are the coefficients when we express factorials in terms of powers of x. Thus

$$
\begin{gathered}
x^{(1)}=x, \quad x^{(2)}=x(x-1)=x^{2}-x, \quad x^{(3)}=x(x-1)(x-2)(x-3)=x^{3}-3 x^{2}+2 x \\
x^{(4)}=x(x-1)(x-2)(x-3)=x^{4}-6 x^{3}+11 x^{6}-6 x .
\end{gathered}
$$

Stirling numbers of the first kind merely record these coefficients in a table.
Stirling numbers of the second kind are coefficients when we express the powers of x in terms of factorials.

$$
\begin{gathered}
x=x^{(1)} \\
x^{2}=x^{2}-x+x=x^{(2)}+x^{(1)} \\
x^{3}=x^{3}-3 x^{2}+2 x+\left(3 x^{2}-3 x\right)+x=x^{(3)}+3 x^{(2)}+x^{(1)}
\end{gathered}
$$

As one example of the use of these numbers let us find the difference of the polynomial function

$$
4 x^{5}-7 x^{4}+9 x^{3}-5 x^{2}+3 x-1
$$

Using the Stirling numbers of the second kind we first translate into factorials,

power of x										
n	1	2	3	4	5	6	7	8	9	10
1	1									
2	-1	1								
3	2	-3	1							
4	-6	11	-6	1						
5	24	-50	35	-10	1					
6	-120	274	-225	85	-15	1				
7	720	-1764	1624	-735	175	-21	1			
8	-5040	13068	-13132	6769	-1960	322	-28	1		
9	40320	-109584	118124	-67284	22449	-4536	546	-36	1	
10	-362880	1026576	-1172700	723680	-269325	63273	-9450	870	-45	1

tABLE OF STIRLING NUMBERS OF THE SECOND KIND
Coefficients of $X^{(k)}$

n	1	2		3	4	5	6	7	8	9
1	1							10		
2	1	1								
3	1	3	1							
4	1	7	6	1						
5	1	15	25	10	1					
6	1	31	90	65	15	1				
7	1	63	301	350	140	21	1			
8	1	127	966	1701	1050	266	28	1		
9	1	255	3025	7770	6951	2646	462	36	1	
10	1	511	9330	34105	42525	22827	5880	750	45	1

TABLE OF FACTORIALS

$$
\begin{array}{lllllrl}
& x^{(5)} & x^{(4)} & x^{(3)} & x^{(2)} & x^{(1)} & c \\
4 x^{5} & 4 & 40 & 100 & 60 & 4 & \\
-7 x^{4} & & -7 & -42 & -49 & -7 & \\
9 x^{3} & & & 9 & 27 & 9 & \\
-5 x^{2} & & & & -5 & -5 & \\
3 x-1 & & & & & 3 & -1
\end{array}
$$

Giving

$$
4 x^{(5)}+33 x^{(4)}+67 x^{(3)}+33 x^{(2)}+4 x^{(1)}-1
$$

Using the formula for finding the difference of a factorial the first difference is given by

$$
20 x^{(4)}+132 x^{(3)}+201 x^{(2)}+66 x^{(1)}+4 .
$$

Now we translate back to a polynomial function by using Stirling numbers of the first kind.

\[

\]

The resulting polynomial function is

$$
20 x^{4}+12 x^{3}+25 x^{2}+9 x+4
$$

A POLYNOMIAL FUNCTION FROM TABULAR VALUES

From the above it is evident that the first difference of a polynomial of degree n is a polynomial of degree $n-1$; the second difference is a polynomial of degree $n-2$; etc., so that the $n^{\text {th }}$ difference is a constant. The $(n+1)^{s t}$ difference is zero. As a matter of fact since at each step we multiply the coefficient of the first term by the power of x, the $n^{\text {th }}$ difference of

$$
a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-3}+\ldots+a_{n-1} x+a_{n}
$$

is $a_{0} n!$
Conversely if we have a table of values and find that the $r^{\text {th }}$ difference is a constant we may conclude that these values fit a polynomial function of degree r. For example for

$$
f(x)=5 x^{3}-7 x^{2}+3 x-8
$$

we have a.table of values and finite differences as follows.

x	$f(x)$	$\Delta f(x)$	$\Delta^{2} f(x)$	$\Delta^{3} f(x)$
0	-8			
1	-7	1	16	
2	10	17	46	30
3	73	63	76	30
4	212	139	106	30
5	457	245	136	30
6	838	381	166	30
7	1385	547		

The problem is how to arrive at the original formula from this table.
Suppose that the polynomial is expressed in terms of factorials with undetermined coefficients $b_{0}, b_{1}, b_{2}, \cdots$. The problem will be solved if we find these coefficients.

$$
\begin{gathered}
f(x)=b_{0}+b_{1} x^{(1)}+b_{2} x^{(2)}+b_{3} x^{(3)}+b_{4} x^{(4)}+b_{5} x^{(5)}+\cdots \\
\Delta f(x)=b_{1}+2 b_{2} x^{(1)}+3 b_{3} x^{(2)}+4 b_{4} x^{(3)}+5 b_{5} x^{(4)}+\cdots \\
\Delta^{2} f(x)=2!b_{2}+3 * 2 b_{3} x^{(1)}+4 * 3 b_{4} x^{(2)}+5 * 4 b_{5} x^{(3)}+\cdots \\
\Delta^{3} f(x)=3!b_{3}+4 * 3 * 2 b_{4} x^{(1)}+5 * 4 * 3 b_{5} x^{(2)}+\cdots \\
\Delta^{4} f(x)=4!b_{4}+5 * 4 * 3 * 2 b_{5} x^{(1)}+\cdots
\end{gathered}
$$

Set $x=0$. Since any factorial is zero for $x=0$ we have from the above:

$$
\begin{array}{rlrlrl}
f(0) & =b_{0} & \text { or } & b_{0}=f(0) \\
\Delta f(0) & =b_{1} & \text { or } & b_{1}=\Delta f(0) \\
\Delta^{2} f(0) & =2!b_{2} & \text { or } & b_{2}=\Delta^{2} f(0) / 2! \\
\Delta^{3} f(0) & =3!b_{3} & \text { or } & & b_{3}=\Delta^{3} f(0) / 3! \\
\Delta^{4} f(0) & =4!b_{4} & & \text { or } & & b_{4}=\Delta^{4} f(0) / 4!.
\end{array}
$$

Hence

$$
f(x)=f(0)+\Delta f(0) x^{(1)}+\Delta^{2} \frac{f(0)}{2!} x^{(2)}+\Delta^{3} \frac{f(0)}{3!} x^{(3)}+\Delta^{4} \frac{f(0)}{4!} x^{(4)}+
$$

This is known as Newton's forward difference formula. We can find the quantities $f(0), \Delta f(0), \Delta^{2} f(0), \Delta^{3} f(0)$, $\Delta^{4} f(0), \ldots$ from the top edge of our numerical table of values provided the first value in our table is 0 .

$$
f(x)=-8+x+16 x^{(2)} / 2!+30 x^{(3)} / 3!=-8+x+8 x^{2}-8 x+5 x^{3}-15 x^{2}+10 x=5 x^{3}-7 x^{2}+3 x-8
$$

Stirling numbers of the first kind can be used in this evaluation.

SUMMATIONS INVOLVING POLYNOMIAL FUNCTIONS

Since a polynomial function can be expressed in terms of factorials it is sufficient to find a formula for summing any factorial. More simply by dividing the $k^{\text {th }}$ factorial by k ! we have a binomial coefficient and the summation of these coefficients leads to a beautifully simple sequence of relations.
To evaluate

$$
\sum_{k=1}^{n} k, \text { let } \sum_{k=1}^{n} k=\varphi(n)
$$

meaning that the value is a function of n. Then

$$
\Delta \varphi(n)=\sum_{k=1}^{n+1} k-\sum_{k=1}^{n} k=n+1
$$

Now $\Delta n=1$ and $\Delta n^{(2)} / 2=n$. Hence

$$
\varphi(n)=\sum_{k=1}^{n} k=n^{(2)} / 2+n+C=n(n+1) / 2+C
$$

where the C is necessary in taking the anti-difference since the difference of a constant is zero. This corresponds to the constant of integration in the indefinite integral. To find the value of C let $n=1$. Then

$$
1=1 * 2 / 2+C \quad \text { so that } \quad C=0
$$

Hence

$$
\sum_{k=1}^{n} k=n(n+1) / 2=\binom{n+1}{2}
$$

a well-known formula. Next, let

$$
\sum_{k=1}^{n}\binom{k+1}{2}=\varphi(n), \quad \Delta \varphi(n)=\sum_{k=1}^{n+1}\binom{k+1}{2}-\sum_{k=1}^{n}\binom{k+1}{2}=\binom{n+2}{2}
$$

The difference
Hence

$$
\Delta\binom{n+2}{3}=\binom{n+2}{2} .
$$

$$
\varphi(n)=\sum_{k=1}^{n}\binom{k+1}{2}=\binom{n+2}{3}+C .
$$

$n=1$ shows that $C=0$. The sequence of formulas can be continued:

$$
\sum_{k=1}^{n}\binom{k+2}{3}=\binom{n+3}{4}
$$

and in general

$$
\sum_{k=1}^{n}\binom{k+r}{r+1}=\binom{n+r+1}{r+2}
$$

One could derive the formula for the summation of a factorial from the above but proceeding directly:

$$
\sum_{k=1}^{n} k^{(r)}=\varphi(n), \quad \Delta \varphi(n)=(n+1)^{(r)}
$$

Hence,

$$
\varphi(n)=\sum_{k=1}^{n} k^{(r)}=\frac{(n+1)^{(r+1)}}{r+1}+c
$$

Taking $n=r$,

$$
r!=(r+1)^{(r+1)} /(r+1)+C
$$

so that $C=0$.

$$
\sum_{k=1}^{n} k^{(r)}=\frac{(n+1)^{(r+1)}}{r+1}
$$

Again there is a noteworthy parallel with the integral calculus in this formula.
For examples we take some formulas from L. B. W. Jolley, Summation of Series,
EXAMPLE 1. (45) p. 8,

$$
\sum_{k=1}^{n}(3 k-1)(3 k+2)=2 * 5+5 * 8+8 * 11+\cdots
$$

This equals

$$
\sum_{k=1}^{n}\left(9 k^{2}+3 k-2\right)=\sum_{k=1}^{n}\left(9 k^{(2)}+12 k^{(1)}-2\right)=g \frac{(n+1)^{(3)}}{3}+12 \frac{(n+1)^{(2)}}{2}-2(n+1)+C .
$$

Taking $n=1,2 * 5=6 * 2-2 * 2+c$ so that $C=2$

$$
\sum_{k=1}^{n}(3 k-1)(3 k+2)=3 n^{3}-3 n+6 n^{2}+6 n-2 n-2+2=n\left(3 n^{2}+6 n+1\right)
$$

EXAMPLE 2. (50) p. 10
$\sum_{k=1}^{n} k(k+3)(k+6)=1 * 4 * 7+42 * 5 * k+3 * 6 * 9+\ldots=\sum_{k=1}^{n}\left(k^{3}+9 k^{2}+18 k\right)=\sum_{k=1}^{n}\left(k^{(3)}+12 k^{(2)}+28 k^{(1)}\right)$

$$
\begin{aligned}
& =\frac{(n+1)^{(4)}}{4}+12 \frac{(n+1)^{(3)}}{3}+28 \frac{(n+1)^{(2)}}{2}+C=\frac{(n+1) n}{4}[(n-1)(n-2)+16(n-1)+56]+C \\
& =n(n+1)(n+6)(n+7) / 4+C .
\end{aligned}
$$

Setting $n=1,1 * 4 * 7=1 * 2 * 7 * 8 / 4+c$ so that $C=0$

$$
\sum_{k=1}^{n} k(k+3)(k+6)=n(n+1)(n+6)(n+7) / 4
$$

EXAMPLE 3. (49) p. 10

$$
\sum_{k=1}^{n}(3 k-2)(3 k+1)(3 k+4)=1 * 4 * 7+4 * 7 * 10 * 13+\cdots
$$

This can be changed directly into a factorial:

$$
27 \sum_{k=1}^{n}(k-2 / 3)(k+1 / 3)(k+4 / 3)=27 \sum_{k=1}^{n}(k+4 / 3)^{(3)}
$$

giving

$$
27(n+7 / 3)^{(4)} / 4+C=(3 n+7)(3 n+4)(3 n+1)(3 n-2) / 12+C .
$$

Setting $n=1,28=(10 * 7 * 4 * 1) / 12+C$ so that $C=56 / 12$

$$
(3 k-2)(3 k+1)(3 k+4)=(3 n+7)(3 n+4)(3 n+1)(3 n-2) / 12+56 / 12 .
$$

SUMMATIONS THROUGH NEGATIVE FACTORIALS

Starting with the relation

$$
x^{(m)} *(x-m)^{(n)}=x^{(m+n)}
$$

set $m=-n$.
Therefore $x^{(-n)}=1 /(x+n)^{(n)}$.

$$
x^{(-n)} *(x+n)^{(n)}=x^{(0)}=1 .
$$

Possibly this bit of mathematical formalism seems unconvincing. Suppose then we define the negative factorial in this fashion.

$$
\begin{aligned}
\Delta x^{(-n)} & =1 /[(x+n+1)(x+n)(x+n-1) \cdots(x+2)]-1 /[(x+n)(x+n-1)(x+n-2) \cdots(x+2)(x+1)] \\
& =1 /[(x+n)(x+n-1) \cdots(x+2)][1 /(x+n+1)-1 /(x+1)] \\
& =-n /[(x+n+1)(x+n)(x+n-1) \cdots(x+1)]=-n x^{(-n-1)}
\end{aligned}
$$

showing that the difference relation that applies to positive factorials holds as well for negative factorials defined in this fashion. Consequently the anti-difference which is used in finding the value of summations can be employed with negative factorials apart from the case of -1 .
EXAMPLE 1.

$$
\sum_{k=1}^{n} 1 /[k(k+1)(k+2)]=\sum_{k=1}^{n}(k-1)^{(-3)}=n^{(-2)} /(-2)+C=-1 /[2(n+2)(n+1)]+C .
$$

Setting $n=1,1 / 6=-1 /(2 * 3 * 2)+C$, so that $C=1 / 4$

$$
\sum_{k=1}^{n} 1 /[k(k+1)(k+2)]=1 / 4-1 /[2(n+2)(n+1)]
$$

EXAMPLE 2. Jolley, No. 210, p. 40

$$
\begin{aligned}
\sum_{k=1}^{n} 1 /[(3 k-2)(3 k+1)(3 k+4)] & \left.=(1 / 27) \sum_{k=1}^{n} 1 /[k-2 / 3)(k+1 / 3)(k+4 / 3)\right]=(1 / 27) \sum_{k=1}^{n}(k-5 / 3)^{(-3)} \\
& =(1 / 27)(n-2 / 3)^{(-2)} /(-2)+C=-1 /[6(3 n+4)(3 n+1)]+C .
\end{aligned}
$$

Setting $n=1,1 /(1 * 4 * 7)=-1 /(6 * 7 * 4)+C ; C=1 / 24$

$$
\sum_{k=1}^{n} 1 /[(3 k-2)(3 k+1)(3 k+4)]=1 / 24-1 /[6(3 n+4)(3 n+1)]
$$

EXAMPLE 3. Jolley, No. 213, p. 40

$$
\sum_{k=1}^{n}(2 k-1) /[k(k+1)(k+2)]=2 \sum_{k=1}^{n} 1 /[(k+1)(k+2)]-\sum_{k=1}^{n} 1 /[k(k+1)(k+2)]
$$

The second summation was evaluated in Example 1. The first gives

Altogether, the result is

$$
2 \sum_{k=1}^{n} k^{(-2)}=2(n+1)^{(-1)} /(-1)+C .
$$

$-2 /(n+2)-1 / 4+1 /[2(n+2)(n+1)]+C$.
Setting $n=1,1 / 6=-2 / 3-1 / 4+1 / 12+C$ so that $C=1$

$$
\sum_{k=1}^{n}(2 k-1) /[k(k+1)(k+2)]=3 / 4-2 /(n+2)+1 /[2(n+2)(n+1)]
$$

DIFFERENCE RELATION FOR A PRODUCT

Let there be two functions $f(n)$ and $g(n)$. Then

$$
\begin{aligned}
\Delta f(n) g(n)=f(n+1) g(n+1)-f(n) g(n) & =f(n+1) g(n+1)-f(n+1) g(n)+f(n+1) g(n)-f(n) g(n) \\
& =f(n+1) \Delta g(n)+g(n) \Delta f(n)
\end{aligned}
$$

This will be found useful in a variety of instances.

SUMMATIONS INVOLVING GEOMETRIC PROGRESSIONS

A geometric progression with terms ar ${ }^{k-1}$ can be summed as follows:

$$
\sum_{k=1}^{n} a r^{k-1}=\varphi(n), \quad \Delta \varphi(n)=a r^{n}
$$

But $\Delta r^{n}=r^{n+1}-r^{n}=r^{n}(r-1)$. Hence

$$
\varphi(n)=\sum_{k=1}^{n} a r^{k-1}=\Delta^{-1}\left(a r^{n}\right)=a r^{n} /(r-1)+C
$$

Setting $n=1, a=a r /(r-1)+C$ so that $C=-a /(r-1)$. Hence,

$$
\sum_{k=1}^{n} a r^{k-1}=a\left(r^{n}-1\right) /(r-1)
$$

The summation

$$
\sum_{k=1}^{n} k r^{k}=\varphi(n), \quad \Delta \varphi(n)=(n+1) r^{n+1}, \quad \Delta\left(n r^{n+1}\right)=(n+1) r^{n+1}(r-1)+r^{n+1}
$$

using the product formula on page 8 with the first function as n and the second as r^{n+1}.

$$
(n+1) r^{n+1}=\Delta\left[n r^{n+1} /(r-1)\right]-r^{n+1} /(r-1)
$$

Hence

$$
\Delta^{-1}(n+1) r^{n+1}=n r^{n+1} /(r-1)-r^{n+1} /(r-1)^{2}+C .
$$

Setting $n=1, r=r^{2} /(r-1)-r^{2} /(r-1)^{2}+C ; C=r /(r-1)^{2}$. Accordingly

EXAMPLE. $\quad \sum_{k=1}^{5} k * 3^{k}=1 * 3+2 * 9+3 * 27+4 * 81+5 * 243=1641$.
By formula

$$
5 * 3^{6} / 2-3^{6} / 4+3 / 4=1641
$$

A Fibonacci sequence is defined by two initial terms T_{1} and T_{2} accompanied by the recursion relation

$$
T_{n+1}=T_{n}+T_{n-1}
$$

SUM OF THE TERMS OF THE SEQUENCE

$$
\sum_{k=1}^{n} T_{k}=\varphi(n), \quad \Delta \varphi(n)=T_{n+1}, \quad \Delta T_{n}=T_{n+1}-T_{n}=T_{n-1}
$$

Accordingly

$$
\sum_{k=1}^{n} T_{k}=T_{n+2}+C
$$

Setting $n=.1, T_{1}=T_{3}+C$ or $C=T_{1}-T_{3}=-T_{2}$

$$
\sum_{k=1}^{n} T_{k}=T_{n+2}-T_{2}
$$

SUM OF THE SQUARES OF THE TERMS

$$
\sum_{k=\alpha}^{n} T_{k}^{2}=\varphi(n), \quad \Delta \varphi(n)=T_{n+1}^{2} .
$$

The anti-difference bears a strong resemblance to integration in the differential calculus. Just as we know integrals on the basis of differnetiation so likewise we find anti-differences on the basis of differences. Thus we try various expressions to see whether we can find one whose difference is the square of T_{n+1}.

Hence

$$
\Delta T_{n} T_{n+1}=T_{n+1} T_{n+2}-T_{n} T_{n+1}=T_{n+1}\left(T_{n+2}-T_{n}\right)=T_{n+1}^{2} .
$$

Setting $n=a, T_{a}^{2}=T_{a} T_{a+1}+C$

$$
C=T_{a}\left(T_{a}-T_{a+1}\right)=-T_{a} T_{a-1}, \quad \sum_{k=\alpha}^{n} T_{k}^{2}=T_{n} T_{n+1}-T_{a} T_{a-1} .
$$

SUMMATION OF ALTERNATE TERMS

$$
\sum_{k=m}^{n} T_{2 k+a}=\varphi(n), \quad \Delta \varphi(n)=T_{2(n+1)+a,}, \quad \Delta T_{2 n+a}=T_{2 n+2+a}-T_{2 n+a}=T_{2 n+1+a}
$$

Hence

$$
\Delta^{-1} T_{2(n+1)+a}=T_{2 n+1+a}+C, \quad \sum_{k=m}^{n} T_{2 k+a}=T_{2 n+1+a}+C
$$

Setting $k=m$,

$$
T_{2 m+a}=T_{2 m+1+a}+C, \quad \sum_{k=m}^{n} T_{2 k+a}=T_{2 n+1+a}-T_{2 m-1+a}
$$

SUM OF EVERY FOURTH TERM

$$
\begin{gathered}
\sum_{k=1}^{n} T_{4 k+a}=\varphi(n), \quad \Delta \varphi(n)=T_{4 n+4+a} \\
\Delta T_{4 n+a}=T_{4 n+4+a}-T_{4 n+a}=T_{4 n+3+a}+T_{4 n+2+a}-T_{4 n+2+a}+T_{4 n+1+a}=T_{4 n+3+a}+T_{4 n+1+a}
\end{gathered}
$$

To meet this situation we introduce a quantity
Now $\quad V_{n}=T_{n-1}+T_{n+1}$.

$$
V_{n-1}+V_{n+1}=T_{n-2}+T_{n}+T_{n}+T_{n+2}=-T_{n-1}+T_{n}+2 T_{n}+T_{n}+T_{n+1}=5 T_{n}
$$

To obtain a difference which gives T we start with V. By a process similar to that for T
Consequently,

$$
\Delta V_{4 n+a}=V_{4 n+3+a}+V_{4 n+1+a}=5 T_{4 n+2+a} .
$$

$$
\Delta^{-1} T_{4 n+4+a}=\left(V_{4 n+2+a}\right) / 5+C=\sum_{k=1}^{n} T_{4 k+a} .
$$

Setting $n=1$,

$$
C=T_{4+a}-V_{6+a} / 5, \quad \sum_{k=1}^{n} T_{4 k+a}=\left(T_{4 n+1+a}+T_{4 n+3+a}\right) / 5-\left(T_{5+a}+T_{7+a}\right) / 5+T_{4+a}
$$

EXAMPLE. We use the terms of the sequence beginning 1,4 .

$$
\begin{array}{ccc}
1,4,5,9,14, & 23,37,60,97,1577_{\mu} & 254,411,665,1076,1741, \\
2817,4558,7375,11933,19308, & 31241,50549,81790,132339,214129, \\
346468,560597, & 907065,1467662,2374727 .
\end{array}
$$

Let $a=2$.

$$
\sum_{k=1}^{5} T_{4 k+2}=T_{6}+T_{10}+T_{14}+T_{18}+T_{22}=23+157+1076+7375+50549=59180
$$

By formula we have

$$
\left(T_{23}+T_{25}\right) / 5-\left(T_{7}+T_{9}\right) / 5+T_{6}=(81790+214129) / 5-(37+97) / 5+23=59180
$$

SEQUENCE WITH ALTERNATING SIGNS

$$
\begin{gathered}
\sum_{k=m}^{n}(-1)^{k} T_{2 k+a}=\varphi(n), \quad \Delta \varphi(n)=(-1)^{n+1} T_{2 n+2+a}, \quad V_{2 n+a}=T_{2 n+1+a}+T_{2 n-1}+a \\
\Delta(-1)^{n} V_{2 n+a}=(-1)^{n+1} V_{2 n+2+a}-(-1)^{n} V_{2 n+a}=(-1)^{n+1}\left[V_{2 n+2+a}+V_{2 n+a}\right]=(-1)^{n+1} 5 T_{2 n+1+a}
\end{gathered}
$$

Hence

$$
\sum_{k=m}^{n}(-1)^{n} T_{2 k+a}=(-1)^{n}\left(V_{2 n+1+a}\right) / 5+C=(-1)^{n}\left[T_{2 n+a}+T_{2 n+a+2}\right] / 5+C
$$

Let $n=m$.

$$
\begin{gathered}
(-1)^{m} T_{2 m+a}=(-1)^{m}\left[T_{2 m+a}+T_{2 m+2+a}\right] / 5+C \\
\sum_{k=m}^{n}(-1)^{k} T_{2 k+a}=(-1)^{n}\left[T_{2 n+a}+T_{2 n+a+2}\right] / 5+(-1)^{m+1}\left[T_{2 m+a}+T_{2 m+a+2}\right] / 5+(-1)^{m} T_{2 m+a}
\end{gathered}
$$

Using the 1,4 sequence once more

$$
\sum_{k=3}^{7}(-1)^{k} T_{2 k+3}=-T_{9}+T_{11}-T_{13}+T_{15}-T_{17}=-97+254-665+1741-4558=-3325
$$

By formula we have

$$
-\left(T_{17}+T_{19}\right) / 5+\left(T_{9}+T_{11}\right) / 5-T_{9}=-(4558+11933) / 5+(97+254) / 5-97=-3325 .
$$

GEOMETRIC-FIBONACCI SUMS
POWER of 2.

$$
\begin{gathered}
\sum_{k=1}^{n} 2^{k} T_{k}=\varphi(n) ; \quad \Delta \varphi(n)=2^{n+1} T_{n+1} \\
\Delta 2^{n} T_{n}=2^{n+1} T_{n}+2^{n} T_{n}=2^{n}\left(2 T_{n-1}+T_{n}\right)=2^{n} V_{n}
\end{gathered}
$$

where we have used the product relation on page 8 and introduced the sequence defined by

$$
V_{n}=T_{n-1}+T_{n+1}
$$

Since $\Delta 2^{n} V_{n}=5 * 2^{n} T_{n}$ (following the same steps as for T_{n})

$$
\varphi(n)=\Delta^{-1}\left(2^{n+1} T_{n+1}\right)=2^{n+1} V_{n+1} / 5+C
$$

Setting $n=1,2 T_{1}=4 V_{2} / 5+C$. Hence

EXAMPLE.

$$
\sum_{k=1}^{n} 2^{k} T_{k}=2^{n+1}\left(T_{n}+T_{n+2}\right) / 5+\left(6 T_{1}-4 T_{3}\right) / 5
$$

$$
\sum_{k=1}^{5} 2^{k} T_{k}=2 * 1+4 * 4+8 * 5+16 * 9+32 * 14=650 \text { (} 1,4 \text { sequence). }
$$

By formula $\left[2^{6}(14+37)+6-4 * 5\right] / 5=650$.
THE SUMMATION

$$
\sum_{k=1}^{n} r^{k} T_{k}
$$

The direct approach leads to an apparent impasse. We wish to find the inverse difference of $r^{n+1} T_{n+1}$. Assume that it is of the form

$$
A\left[r^{k} T_{n+1}+r^{j} T_{n}\right]
$$

This approach parallels what is done in the solution of differential equations. k, j, and A are undetermined constants. Taking the difference and setting it equal to $r^{n+1} T_{n+1}$ we have

$$
A\left[r^{k+1} T_{n}+r^{j+1} T_{n-1}+r^{k}(r-1) T_{n+1}+r^{j}(r-1) T_{n}\right]=r^{n+1} T_{n+1}
$$

Replacing T_{n-1} on the left-hand side by $T_{n+1}-T_{n}$ and equating coefficients of T_{n+1} and T_{n} gives:

$$
A\left[r^{k}(r-1)+r^{j+1}\right]=r^{n+1}, \quad r^{k+1}+r^{j}(r-1)-r^{j+1}=0 .
$$

From the second $j=k+1$. Then the first gives

$$
A\left[r^{k+1}-r^{k}+r^{k+2}\right]=r^{n+1}
$$

Letting $k=n+1$ and $A=1 /\left(r^{2}+r-1\right)$ establishes equality. Hence

$$
\begin{gathered}
\sum_{k=1}^{n} r^{k} T_{k}=\left(r^{n+1} T_{n+1}+r^{n+2} T_{n}\right) /\left(r^{2}+r-1\right)+C, \quad C=\left(-r^{2} T_{0}-r T_{1}\right) /\left(r^{2}+r-1\right) \\
\sum_{k=1}^{n} r^{k} T_{k}=\left[r^{n+1} T_{n+1}+r^{n+2} T_{n}-r^{2} T_{0}-r T_{1}\right] /\left(r^{2}+r-1\right)
\end{gathered}
$$

EXAMPLE (1,4 sequence)

$$
\sum_{k=1}^{5} 3^{k} T_{k}=3 * 1+3^{2} * 4+3^{3} * 5+3^{4} * 9+3^{5} * 14=4305
$$

By formula,

$$
\left(3^{6} * 23+3^{7} * 14-27-3\right) / 11=4305
$$

FIBONACCI-FACTORIAL SUMMATIONS

THE SUMMATION

$$
\begin{gathered}
\sum_{k=1}^{n} k T_{k}=\varphi(n) \\
\Delta \varphi(n)=(n+1) T_{n+1} \\
\Delta n T_{n}=(n+1) T_{n-1}+T_{n} \\
\Delta n T_{n+2}=(n+1) T_{n+1}+T_{n+2} \\
\Delta^{-1}(n+1) T_{n+1}=n T_{n+2}-T_{n+3}+T_{3}+C=\sum_{k=1}^{n} k T_{k}
\end{gathered}
$$

in which we have used the formula

$$
n=1 \text { gives }
$$

$$
\Delta^{-1} T_{n+2}=T_{n+3}-T_{3}
$$

$$
T_{1}=T_{3}-T_{4}+T_{3}+C ; \quad C=0
$$

so that

$$
\sum_{k=1}^{n} k T_{k}=n T_{n+2}-T_{n+3}+T_{3}
$$

Note that this is also $\Delta^{-1}(n+1) T_{n+1}$, a fact that is used in the next derivation. EXAMPLE (1,4 sequence)

$$
\sum_{k=1}^{5} k T_{k}=1 * 1+2 * 4+3 * 5+4 * 9+5 * 14=130
$$

By formula $5 * 36-60+5=130$.
THE SUMMATION
$\sum_{k=1}^{n} k^{(2)} T_{k}=\varphi(n)$
$\Delta \varphi(n)=(n+1)^{(2)} T_{n+1}$
$\Delta n^{(2)} T_{n+2}=(n+1)^{(2)} T_{n+1}+2 n T_{n+2}$
$\sum_{k=1}^{n} k^{(2)} T_{k}=n^{(2)} T_{n+2}-2(n-1) T_{n+3}+2 T_{n+4}-2 T_{4}+C$
in which the formula for the previous case was used.
For $n=2$,

$$
\begin{gathered}
2 T_{2}=2 T_{4}-2 T_{5}+2 T_{6}-2 T_{4}+C ; \quad C=-2 T_{3} \\
\sum_{k=1}^{n} k^{(2)} T_{k}=n^{(2)} T_{n+2}-2(n-1) T_{n+3}+2 T_{n+4}-2 T_{4}-2 T_{3}
\end{gathered}
$$

VERIFICATION (1,4 sequence)

$$
\sum_{k=1}^{5} k^{(2)} T_{k}=1 * 0 * 1+2 * 1 * 4+3 * 2 * 5+4 * 3 * 9+5 * 4 * 14=426 .
$$

By formula

$$
5 * 4 * 37-2 * 4 * 60+2 * 97-2 * 9-2 * 5=426 .
$$

THE SUMMATION
$\sum_{k=1}^{n} k^{(3)} T_{k}=\varphi(n)$

$$
\Delta \varphi(n)=(n+1)^{(3)} T_{n+1}
$$

$$
\Delta n^{(3)} T_{n+2}=(n+1)^{(3)} T_{n+1}+3 n^{(2)} T_{n+2}
$$

For $n=3$,

$$
\sum_{k=1}^{n} k^{(3)} T_{k}=n^{(3)} T_{n+2}-3(n-1)^{(2)} T_{n+3}+6(n-2) T_{n+4}-6 T_{n+5}+6 T_{6}+C
$$

$$
\begin{gathered}
6 T_{3}=6 T_{5}-6 T_{6}+6 T_{7}-6 T_{8}+7 T_{6}+C ; \quad C=6 T_{5} \\
\sum_{k=1}^{n} k^{(3)} T_{k}=n^{(3)} T_{n+2}-3(n-1)^{(2)} T_{n+3}+6(n-2) T_{n+4}-6 T_{n+5}+6 T_{7} .
\end{gathered}
$$

[FEB.

VERIFICATION (1,4 sequence)

$$
\sum_{k=1}^{6} k^{(3)} T_{k}=6 * 5+24 * 9+60 * 14+120 * 23=3846
$$

By formula for $n=6$,

$$
120 * 60-60 * 97+24 * 157-6 * 254+6 * 37=3846 .
$$

The formulas for the next two cases are written down and the pattern that is emerging is noted.

$$
\begin{gathered}
\sum_{k=1}^{n} k^{(4)} T_{k}=n^{(4)} T_{n+2}-4(n-1)^{(3)} T_{n+3}+12(n-2)^{(2)} T_{n+4}-24(n-3) T_{n+5}+24 T_{n+6}-24 T_{9} \\
\sum_{k=1}^{n} k^{(5)} T_{k}=n^{(5)} T_{n+2}-5(n-1)^{(4)} T_{n+3}+20(n-2)^{(3)} T_{n+4}-60(n-3)^{(2)} T_{n+5} \\
+120(n-4) T_{n+6}-120 T_{n+7}+120 T_{11}
\end{gathered}
$$

The pattern may be described as follows:
For the $r^{\text {th }}$ difference:

1. The first term is $n{ }^{(r)} T_{n+2}$.
2. For the n portion, both n and r go down by 1 at each step.
3. For the T portion the subscript goes up by 1 at each step for $r+1$ steps.
4. The signs alternate.
5. The coefficients are the product, respectively, of the binomial coefficients for r by $0!, 1!, 2!, \ldots, r!$, respectively.
6. The last term is $r!T_{2 r+1}$ with sign determined by the alternation mentioned in 4.

With the aid of these factorial formulas it is now possible to find polynomial formulas. For example.

$$
\sum_{k=1}^{n} k^{4} T_{k}=\sum_{k=1}^{n}\left[k^{(4)}+6 k^{(3)}+7 k^{(2)}+k^{(1)}\right] T_{k}
$$

The first few formulas for the powers are given herewith.

$$
\begin{gathered}
\sum_{k=1}^{n} k^{2} T_{k}=\left(n^{2}+2\right) T_{n+2}-(2 n-3) T_{n+3}-T_{6} \\
\sum_{k=1}^{n} k^{3} T_{k}=\left(n^{3}+6 n-12\right) T_{n+2}-\left(3 n^{2}-9 n+19\right) T_{n+3}+6 T_{6}+T_{3} \\
\sum_{k=1}^{n} k^{4} T_{k}=\left(n^{4}+12 n^{2}-48 n+98\right) T_{n+2}-\left(4 n^{3}-18 n^{2}+76 n-159\right) T_{n+3}-13 T_{8}-11 T_{7} \\
\sum_{k=1}^{n} k^{5} T_{k}=\left(n^{5}+20 n^{3}-120 n^{2}+490 n-1020\right) T_{n+2}-\left(5 n^{4}-30 n^{3}+190 n^{2}-795 n+1651\right) T_{n+3} \\
+120 T_{9}+30 T_{6}+T_{3}
\end{gathered}
$$

In these formulas considerable algebra has been done to reduce the number of terms down to two main terms by using Fibonacci shift formulas.

GENERAL SECOND-ORDER RECURSION SEQUENCES
Given a second-order recursion sequence governed by the recursion relation

$$
T_{n+1}=P_{1} T_{n}+P_{2} T_{n-1}
$$

to find

$$
\begin{aligned}
& \sum_{k=1}^{n} T_{k}=\varphi(n) \\
& \Delta \varphi(n)=T_{n+1}
\end{aligned}
$$

$$
\Delta\left[T_{n}+P_{2} T_{n-1}\right]=T_{n+1}+P_{2} T_{n}-T_{n}-P_{2} T_{n-1}=\left(P_{1}+P_{2}-1\right) T_{n}
$$

Provided $P_{1}+P_{2}-1$ is not zero,

$$
\sum_{k=1}^{n} T_{k}=\left(T_{n+1}+P_{2} T_{n}\right) /\left(P_{2}+P_{1}-1\right)+C
$$

For $n=1$,

$$
\begin{gathered}
T_{1}=\left(T_{2}+P_{2} T_{1}\right) /\left(P_{2}+P_{1}-1\right)+C \\
C=\left[\left(P_{1}-1\right) T_{1}-T_{2}\right] /\left(P_{2}+P_{1}-1\right) \\
\sum_{k=1}^{n} T_{k}=\left[T_{n+1}+P_{2} T_{n}+\left(P_{1}-1\right) T_{1}-T_{2}\right] /\left(P_{2}+P_{1}-1\right)
\end{gathered}
$$

EXAMPLE:

$$
\begin{gathered}
T_{n+1}=5 T_{n}-3 T_{n-1} \\
3,7,26,109,467,2008 \\
\sum_{k=1}^{5} T_{k}=3+7+26+109+467=612
\end{gathered}
$$

By formula $(2008-3 * 467+4 * 3-7) /(5-3-1)=612$.

SUM OF TERMS OF A THIRD-ORDER SEQUENCE

Such a sequence is bound by a recursion relation of the form

If

$$
T_{n+1}=P_{1} T_{n}+P_{2} T_{n-1}+P_{3} T_{n-2}
$$

$$
\begin{gathered}
\sum_{k=1}^{n} T_{k}=\varphi(n), \quad \Delta \phi(n)=T_{n+1} \\
\begin{array}{c}
\Delta\left(T_{n}+\left(P_{3}+P_{2}\right) T_{n-1}+P_{3} T_{n-2}\right)=T_{n+1}+\left(P_{3}+P_{2}\right) T_{n}+P_{3} T_{n-1}-T_{n}-\left(P_{3}+P_{2}\right) T_{n-1}-P_{3} T_{n-2} \\
=T_{n+1}+\left(P_{3}+P_{2}-1\right) T_{n}-P_{2} T_{n-1}-P_{3} T_{n-2}=\left(P_{1}+P_{2}+P_{3}-1\right) T_{n}
\end{array}
\end{gathered}
$$

Hence if $P_{1}+P_{2}+P_{3}-1$ is not zero,

$$
\begin{gathered}
\sum_{k=1}^{n} T_{k}=\left[T_{n+1}+\left(P_{3}+P_{2}\right) T_{n}+P_{3} T_{n-1}\right] /\left(P_{1}+P_{2}+P_{3}-1\right)+C \\
T_{1}+T_{2}=\left[T_{3}+\left(P_{3}+P_{2}\right) T_{2}+P_{3} T_{1}\right] /\left(P_{1}+P_{2}+P_{3}-1\right)+C \\
C=\left[\left(P_{1}+P_{2}-1\right) T_{1}+\left(P_{1}-1\right) T_{2}-T_{3}\right] /\left(P_{1}+P_{2}+P_{3}-1\right) \\
\sum_{k=1}^{n} T_{k}=\left[T_{n+1}+\left(P_{3}+P_{2}\right) T_{n}+P_{3} T_{n-1}+\left(P_{1}+P_{2}-1\right) T_{1}+\left(P_{1}-1\right) T_{2}-T_{3}\right] /\left(P_{1}+P_{2}+P_{3}-1\right)
\end{gathered}
$$

EXAMPLE.

$$
T_{n+1}=3 T_{n}+2 T_{n-1}-T_{n-2}
$$

$1+2+4+15+179=252$. Next term is 624 .
By formula $(624+179-51+4 * 1+2 * 2-4) / 3=252$.

FOURTH-ORDER SEQUENCES

The recursion relation is

$$
T_{n+1}=P_{1} T_{n}+P_{2} T_{n-1}+P_{3} T_{n-2}+P_{4} T_{n-3} .
$$

An entirely similar analysis as was made for third-order sequences leads to the formula

$$
T_{k}=\left[T_{n+1}+\left(P_{2}+P_{3}+P_{4}\right) T_{n}+\left(P_{3}+P_{4}\right) T_{n-1}+P_{4} T_{n-2}\right] /\left(P_{1}+P_{2}+P_{3}+P_{4}-1\right)+C
$$

where

$$
C=\left[\left(P_{1}+P_{2}+P_{3}-1\right) T_{1}+\left(P_{1}+P_{2}-1\right) T_{2}+\left(P_{1}-1\right) T_{3}-T_{4}\right] /\left(\Sigma P_{i}-1\right)
$$

EXAMPLE.

$$
T_{n+1}=3 T_{n}+2 T_{n-1}-4 T_{n-2}+3 T_{n-3}
$$

$1+3+4+6+17+56+190+632=909$. Next term is 2103 . By formula $(2103+632-190+3 * 56+4 * 3+2 * 4$ $-6) / 3=909$.

FIBONACCI-COMBINATORIAL FORMULAS
These are closely related to the Fibonacci-factorial formulas discussed on pp. 13-15. However the added simplicity of these formulas merits a listing of the first few to show the pattern.

$$
\begin{gathered}
\sum_{k=1}^{n}\binom{k}{1} T_{k}=\binom{n}{1} T_{n+2}-T_{n+3}+T_{3}, \quad \sum_{k=1}^{n}\binom{k}{2} T_{k}=\binom{n}{2} T_{n+2}-\binom{n-1}{1} T_{n+3}+T_{n+4}-T_{5} \\
\sum_{k=1}^{n}\binom{k}{3} T_{k}=\binom{n}{3} T_{n+2}-\binom{n-1}{2} T_{n+3}+\binom{n-2}{1} T_{n+4}-T_{n+5}+T_{7} \\
\sum_{k=1}^{n}\binom{k}{4} T_{k}=\binom{n}{4} T_{n+2}-\binom{n-1}{3} T_{n+3}+\binom{n-2}{2} T_{n+4}-\binom{n-3}{1} T_{n+5}+T_{n+6}-T_{9} \\
\sum_{k=1}^{n}\binom{k}{5} T_{k}=\binom{n}{5} T_{n+2}-\binom{n-1}{4} T_{n+3}+\binom{n-2}{3} T_{n+4}-\binom{n-3}{2} T_{n+5}+\binom{n-4}{1} T_{n+6}-T_{n+7}+T_{11}
\end{gathered}
$$

FIBONACCI EXTENSION: SUMMING MORE TERMS
Sequences governed by

$$
T_{n+1}=T_{n}+T_{n-1}+T_{n-2}
$$

where three rather than two preceding terms are added at each step have a summation formula

For sequences governed by

$$
\sum_{k=1}^{n} T_{k}=\left(T_{n+1}+2 T_{n}+T_{n-1}+T_{1}-T_{3}\right) / 2
$$

$T_{n+1}=T_{n}+T_{n-1}+T_{n-2}+T_{n-3}$,
where the four previous terms are added

$$
\sum_{k=1}^{n} T_{k}=\left(T_{n+1}+3 T_{n}+2 T_{n-1}+T_{n-2}+2 T_{1}+T_{2}-T_{4}\right) / 3
$$

Where five previous terms are added at each step:

$$
\sum_{k=1}^{n} T_{k}=\left(T_{n+1}+4 T_{n}+3 T_{n-1}+2 T_{n-2}+T_{n-3}+3 T_{1}+2 T_{2}+T_{3}-T_{5}\right) / 4
$$

Where six previous terms have been added at each step:

$$
\sum_{k=1}^{n} T_{k}=\left(T_{n+1}+5 T_{n}+4 T_{n-1}+3 T_{n-2}+2 T_{n-3}+T_{n-4}+4 T_{1}+3 T_{2}+2 T_{3}+T_{4}-T_{6}\right) / 5
$$

EXAMPLE.

$$
1+2+4+5+7+8+27+53+104+204=415 .
$$

By formula

$$
(403+5 * 204+4 * 104+3 * 53+2 * 27+8+4+6+8+5-8) / 5=415 .
$$

CONCLUSION
Finite differences have wide application in formula development. There are, of course, many situations in which the use of this method leads to difficulties which other procedures can obviate. But where applicable the results are often obtained with such facility that other procedures seem laborious by comparison.

*

A GOLDEN DOUBLE CROSTIC

MARJORIE BICKNELL-JOHNSON
Wilcox High School, Santa Clara, California 95051

Use the definitions in the clue story which follows to write the words to which they refer; then enter the appropriate letters in the diagram to complete a quotation from a mathematician whose name appears in the last line of the diagram. The name of the book in which this quotation appeared and the author's last name appear as the first letters of the clue words. The end of each word is indicated by a shaded square following it.

CLUE STORY

The mystic Golden Section Ratio, $(1+\sqrt{5}) / 2$, called _ (A-1, $\mathrm{A}-2)$ (the latter most commonly), occurs in several propositions in (A-3, A-4) on line segments and (A-5). This Golden Cut fascinated the ancient Greeks, particularly the (D-1)_, who found this value in the ratio of lengths of segments in the (D-2) and (D:3)_ and who also made studies in (D-4)_. The Greeks found the proportions of the Golden Rectangle most pleasing to the eye as evidenced by the ubiquitous occurrence of this form in art and architecture, such as (C-1) or in sculpture as in the proportions of the famous (C-2)_; however, they may have been copying (C-3)_, for the Golden Proportion occurs frequently in the forms of living things and is closely related to the growth patterns of plants, as (C-4, C-5, C-6)_, in which occur ratios of Fibonacci numbers. The Golden Section is the limiting value of the ratio of two successive Fibonacci numbers (named for (G-1)__), being closely approximated by the (G-2, G-3)
By some mathematicians, the beauty of the (\mathbb{N}) relating to the Golden Section is compared to the theorem of the (D-1) and to such results from projective geometry as those seen in Pascal's "Mystic_(B)_" or even in the applications of mathematics in the Principia Mathematica of (I)_ while the constant $(1+\sqrt{5}) / 2$ itself is rivalled by \qquad and \qquad (E-2) .
Unfortunately, not all persons find mathematics beautiful. (H-1) was one of the four branches of arithmetic given by the Mock Turtle in Alice in Wonderland, and the card player's description of the sequence 2, 1, 3, 4, 7,
\qquad ,18, 29, 47, … would be \qquad (H-2) , while some have to have all mathematics of practical use, such as in reading an \qquad .
[The solution appears on page 83 of the Quarterly.)

A-1:
$\overline{6} \overline{10} \overline{25} \quad \overline{40} \overline{89} \quad \overline{127} \overline{177} \overline{176} \overline{35} \overline{153}$
B:
$\overline{9} \overline{27} \overline{87} \overline{116} \overline{51} \overline{100} \overline{116} \overline{128}$
A-3:
$\overline{66} \quad \overline{25} \overline{146} \overline{177} \overline{109} \overline{140} \overline{167}$
D-2:
$\overline{149} \overline{14} \overline{149} \overline{22} \overline{118} \overline{77} \overline{57} \overline{171} \overline{149} \overline{7} \overline{59} \overline{30}$
C-1:

$\overline{\overline{69}} \overline{124} \overline{148} \overline{166} \quad \overline{111} \quad \overline{67} \quad \overline{164} \quad \overline{43} \quad \overline{164} \overline{172} \overline{138}$
$\overline{32}$
$\begin{array}{llllll}148 & \overline{93} & \overline{102} & \overline{166} & \overline{16} & \overline{58}\end{array}$
$\overline{107} \overline{177} \overline{17} \overline{115} \overline{143} \overline{155} \overline{88} \overline{167}$

$\begin{array}{lllllll}\overline{110} & \overline{159} & \overline{141} & \overline{82} & \overline{147} & \overline{104} & \overline{136}\end{array}$
$\overline{135} \overline{61} \overline{157} \overline{96} \overline{36} \overline{12} \overline{2} \overline{21}$
D-3:
$\overline{46} \overline{175} \overline{30} \overline{105} \overline{77} \overline{1} \overline{7} \overline{77} \overline{91}$
A-2:
$\begin{array}{lllll}\overline{40} & \overline{89} & \overline{176} & \overline{35} & \overline{68}\end{array}$
A-5:

N :
$\overline{125} \overline{142} \overline{158} \overline{119} \overline{53} \overline{90} \overline{152} \overline{144}$

C-5:

I:

94	$\overline{39}$	$\overline{150}$	$\overline{34}$	$\overline{29}$	$\overline{94}$	$\overline{24}$	$\overline{76}$	$\overline{54}$	$\overline{120}$
62									

D-4:
$\overline{49} \overline{77} \quad \overline{179} \quad \overline{91} \overline{14} \overline{30} \overline{154}$
$\mathrm{H}-1$:

H-2:
$\overline{74} \overline{165} \quad \overline{173} \overline{50} \overline{163} \overline{174}$
G-3: $\overline{56} \overline{170} \overline{162} \overline{99} \overline{48} \overline{8} \overline{52} \overline{99} \overline{114} \quad \overline{141} \overline{126} \quad \overline{37} \overline{106} \overline{82} \quad \overline{26} \overline{64} \overline{145} \overline{134} \overline{99}$
G-1:
$\overline{78} \overline{151} \overline{3} \overline{99} \overline{101} \overline{161} \overline{95} \overline{147} \quad \overline{121} \overline{82} \overline{131} \overline{156} \overline{99} \overline{147}$
E-2:
$\overline{86}$
C-6:

STOLARSKY'S DISTRIBUTION OF THE POSITIVE INTEGERS

M. D. HENDY
Massey University, Palmerston North, New Zealand

Let F_{n} be the $n^{\text {th }}$ Fibonacci number, where $F_{1}=1, F_{2}=2$ and $F_{n+2}=F_{n+1}+F_{n}, \forall n \in N$. It is well known that

$$
\lim _{n \rightarrow \infty} F_{n+1} / F_{n}=a=1 / 2(1+\sqrt{5}),
$$

the larger root of the polynomial equation $x^{2}=x+1$. Using the mapping $g: N \rightarrow N$,

$$
g(r)=[r a+1 / 2],
$$

i.e., $g(r)$ is the closest integer to $r a$, we can give an alternate formulation of F_{n}. It is easy to show that,

$$
g\left(F_{n}\right)=F_{n+1}, \forall n \in N,
$$

so as $F_{1}=1$,

$$
F_{n}=g^{n-1}(1), \forall n \in N,
$$

where we set

$$
g^{o}(r)=r, \quad \text { and } \quad g^{n}(r)=g\left(g^{n-1}(r)\right), \forall n \in N .
$$

Hence the Fibonacci sequence is

$$
\left(F_{n}\right)=\left(g^{n-1}(1)\right) .
$$

For each $r \in N$, we will show that the sequence $\left(g^{n-1}(r)\right)$ has the Fibonacci recursive property

$$
g^{n+1}(r)=g^{n}(r)+g^{n-1}(r), \forall n \in N .
$$

K. Stolarsky constructed a table of these sequences to cover the positive integers in the following way. $\forall m, n \in N$, we define:
(a) $S(m, 1)=$ least positive integer not in $T(m)=\{S(i, j): j \in N, i=1, \cdots, m-1\}$;
(b) $\quad S(m, n+1)=g(S(m, n))$.

Effectively what is being constructed is a table of sequences $g^{n-1}(r)$, where r is least integer not in an earlier sequence and, $r=1$ is the starting value for the first sequence, the Fibonacci sequence. Obviously, by construction S will cover N.

In Table 1, we list the 100 values of $S(m, n)$ for $m, n \leqslant 10$. It is easily shown (Theorem 1), that each positive integer r occurs exactly once as a value $S(m, n)$, and that $S(m, n+2)-S(m, n+1)=S(m, n)$, (Lemma 1).

n	$=1$	2	3	4	$\begin{gathered} 1 \\ 5 \end{gathered}$	6	7	8	9	10
$m=1$	1	2	3	5	8	13	21	34	55	89
2	4	6	10	16	26	42	68	110	178	288
3	7	11	18	29	47	76	123	199	322	521
4	9	15	24	39	63	102	165	267	432	699
5	12	19	31	50	81	131	212	343	555	898
6	14	23	37	60	97	157	254	411	665	1076
7	17	28	45	73	118	190	308	499	808	1307
8	20	32	52	84	136	220	356	576	932	1508
9	22	36	58	94	152	246	398	644	1042	1686
10	25	40	65	105	170	275	445	720	1165	1885
70										

Stolarsky observed in his table, as far as he had calculated, that the differences between the values in columns 2 and 1 of a given row, $S(m, 2)-S(m, 1)$, were always integers that had previously occurred in one of these two columns. He conjectured that this was always the case. J. Butcher conjectured further, on the basis of computation, that this correspondence was one-to-one.
In this paper we prove both these conjectures, as well as constructing other interesting properties of $S(m, n)$. To facilitate our construction, we define the following functions:

$$
\begin{aligned}
& d: N \rightarrow N, d(m)=S(m, 2)-S(m, 1) ; \\
& h: N \rightarrow(-1 / 2,1 / 2), h(r)=r a-g(r) ;
\end{aligned}
$$

and

$$
k: N \rightarrow N, k(r)=\left[1-\log _{\dot{\alpha}}|2 h(r)|\right] .
$$

Hence $d(m)$ is the difference between columns 2 and 1 in row m, and $h(r)$ is the "closeness" of $r a$ to the nearest integer.
We will show firstly that S is a one-to-one and onto map $N \times N$ to N :

Theorem 1.

$$
\forall r \in N, \exists 1 m, n \in N: r=S(m, n)
$$

We will use this result to establish Stolarsky's conjecture:

Theorem 2.

$$
\forall m \in N, \exists n \in N: d(m)=S(n, 1) \text { or } d(m)=S(n, 2)
$$

We will then improve Theorem 1 by finding explicit invertible formulae relating m, n to $S(m, n)$:
Theorem 3.

$$
\begin{gathered}
S(m, 1)=\left[m a^{2}-1 / 2 a\right], S(m, n)=g^{n-1}(S(m, 1)), \forall m, n \in N, \\
n=k(S(m, n)), m=[S(m, n) a-n-1+1 / 2 a]
\end{gathered}
$$

Further we note that the sequence $m, d(m), S(m, 1)$ can be approximated by $m, m a$ and $m a^{2}$, or more explicitly:

$$
\begin{aligned}
& \text { Theorem } 4 \\
& \text { For } h(m) \in\left(-1 / 2,-1 / 2 \cdot a^{-2}\right), \\
& \text { for } h(m) \in\left(-1 / 2 a^{-2}, 1 / 2 a^{-1}\right), \\
& d(m)=g(m)-1, \quad S(m, 1)=g(d(m))-1 ; \\
& \text { and for } h(m) \in\left(1 / 2 a^{-1}, 1 / 2\right), \\
& \qquad d(m)=g(m), \quad S(m, 1)=g(d(m))+1 ; \\
&
\end{aligned}
$$

This theorem leads to explicit invertible formulae relating $d(m)$ to $S(n, 1)$ and $S(n, 2)$:
Theorem 5.
For $h(m) \in\left(-1 / 2,1 / 2 a^{-3}\right)$,
for $h(m) \in\left(1 / 2 a^{-3}, 1 / 2\right)$,

$$
d(m)=S\left(\left[m a^{-1}+1 / 2\right], 1\right) ;
$$

while

$$
S(m, 1)=d\left(\left[m a+1 / 2 a^{-2}\right]\right), \quad \text { and } \quad S(m, 2)=d\left(\left[m a^{2}-1 / 2 a^{-1}\right]\right)
$$

This leads finally to establishing Butcher's conjecture:
Theorem 6.

$$
\{d(m): m \in N\}=\{S(m, 1): m \in N\} \cup\{S(m, 2): m \in N\} .
$$

We will now prove these theorems via the following lemmas. We will frequently use identities based on $a^{2}=a+1$, of the form

$$
a^{n+1}=F_{n} a+F_{n-1}, \quad \forall n \in N,
$$

Lemma 1.

$$
a^{-n}=(-1)^{n}\left(F_{n}-F_{n-1} a\right), \quad \forall n \in N .
$$

Proof.

$$
\forall r \in N, \quad g^{2}(r)=g(r)+r .
$$

Proof

$$
a r-1 / 2<g(r)<a r+1 / 2,
$$

$\Rightarrow a g(r)-1 / 2<g^{2}(r)<a g(r)+1 / 2$,

$$
\Rightarrow(a-1) g(r)-1 / 2<g^{2}(r)-g(r)<(a-1) g(r)+1 / 2 .
$$

But

$$
\begin{gathered}
a(a-1) r-1 / 2(a-1)<(a-1) g(r)<a(a-1) r+1 / 2(a-1), \\
a(a-1)=a^{2}-a=1,
\end{gathered}
$$

and
so

$$
\begin{aligned}
& r-1 / 2(a-1)-1 / 2<g^{2}(r)-g(r)<r+1 / 2(a-1)+1 / 2 \\
& \Rightarrow r-1<r-1 / 2 a<g^{2}(r)-g(r)<r+1 / 2 a<r+1 .
\end{aligned}
$$

Hence as $g^{2}(r)-g(r)$ is integral, $g^{2}(r)-g(r)=r$, and the result of the lemma follows.
Corollary.

$$
S(1, n)=F_{n} .
$$

Proof.

$$
T(1)=\varphi \Rightarrow S(1,1)=1=F_{1}, \quad S(1,2)=g(1)=2=F_{2} .
$$

By Lemma 1,

$$
S(1, n+2)=g^{2}(S(1, n))=g(S(1, n))+S(1, n)=S(1, n+1)+S(1, n), \quad \forall n \in N
$$

so by induction,

$$
S(1, n+2)=F_{n+1}+F_{n}=F_{n+2}, \quad \forall n \in N .
$$

As we move from left to right across the table we find that each value $g(n) a$ gives a better approximation to an integer $\left(g^{2}(n)\right)$ than did $n a,(g(n))$. Explicitly we have the following recursive result.

Lemma 2.
Proof.
$\forall n \in N, \quad h(g(n))=-a^{-1} h(n)$.
$h(g(n))=a g(n)-g^{2}(n)$,

$$
\equiv \operatorname{ag}(n)(\bmod 1),
$$

$$
\equiv a^{2} n-a h(n) \quad(\bmod 1)
$$

$$
\equiv a n-a h(n)(\bmod 1),\left(\text { as } a^{2}=a+1\right),
$$

$$
\equiv h(n)-a h(n) \quad(\bmod 1)
$$

$$
\equiv(1-a) h(n) \quad(\bmod 1)
$$

$$
1-a=-a^{-1},|h g(n)|<1 / 2,\left|-a^{-1} h(n)\right|<1 / 2,
$$

so $h(g(n))=-a^{-1} h(n)$.
Lemma 2 enables us to prove the following relation between $S(m, n)$ and n, namely that r occurs in the $k(r)^{t h}$ column of the table.

Lemma 3. $k(S(m, n))=n, \quad \forall m, n \in N$.
Proof. Let $r=\left[S(m, 1) a^{-1}\right]$, and set $\epsilon=r a-S(m, 1) . \quad 0<\epsilon<1$.
For $m>1, S(m, 1)-2<g(r)<S(m, 1)+1$, so

$$
g(r)=S(m, 1) \quad \text { or } \quad S(m, 1)-1
$$

But $g(r) \in T(m)$ as $r<S(m, 1)$, and $S(m, 1) \notin T(m)$ so

$$
g(r)=S(m, 1)-1, \quad \forall m>1 .
$$

Also $g(0)=[1 / 2]=0, S(1,1)-1=0$, so

Hence

$$
g(r)=S(m, 1)-1, \quad \forall m \in N .
$$

$$
S(m, 1)=[a r+1 / 2]+1,
$$

$$
=[S(m, 1)+1 / 2-\epsilon]+1
$$

$$
\Rightarrow \epsilon>1 / 2
$$

Further,

$$
\begin{aligned}
h(S(m, 1)) & \equiv a S(m, 1) \quad(\bmod 1), \\
& \equiv a^{-1} S(m, 1)(\bmod 1), \quad\left(\text { as } a=1+a^{-1}\right) \\
& \equiv-\epsilon a^{-1}(\bmod 1)
\end{aligned}
$$

Hence, for $\epsilon<1 / 2 a$,

$$
h(S(m, 1))=-\epsilon a^{-1}<-1 / 2 a^{-1}
$$

and for $\epsilon>1 / 2 a$,

$$
h(S(m, 1))=1-\epsilon a^{-1}>1-a^{-1}>1 / 2 a^{-1}
$$

Thus in both cases

$$
\mid h\left(S(m, 1) 川 \mid \in\left(1 / 2 a^{-1}, 1 / 2\right) \Rightarrow k(S(m, 1))=1\right.
$$

Now using Lemma 2, $k(S(m, n+1))=k(S(m, n))+1$, so by induction, $k(S(m, n))=n$.
This means an integer r cannot appear in two different columns. In the next lemma, we show that no integer can appear more than once in any given column.

$$
\text { Lemma 4. } \quad S(m+1, n)>S(m, n), \forall m, n \in N .
$$

Proof. By definition $S(m, 1)$ is not the least integer in $T(m)$, and $S(m+1,1)$ the least integer not in
$T(m+1) \supseteq T(m) \cup\{S(m, 1)\}$, so $S(m+1,1) \geqslant S(m, 1)+1$. Also

$$
\begin{aligned}
S(m+1,2) & =g(S(m+1,1)) \\
& \geqslant a S(m+1,1)-1 / 2 \\
& >a(S(m, 1)+1)-1 / 2 \\
& >a S(m, 1)+1 / 2 \\
& \geqslant g(S(m, 1)) \\
& =S(m, 2)
\end{aligned}
$$

i.e., $S(m+1,2)>S(m, 2)$. Now by induction, using Lemma 1 ,

$$
\begin{array}{rlrl}
S(m+1, n+2) & =S(m+1, n+1)+S(m+1, n)>S(m, n+1)+S(m, n) \\
& =S(m, n+2) . & \forall m, n \in N .
\end{array}
$$

Combining this final result with the two initial results we prove the lemma.
Lemmas 3 and 4 now enable us to prove Theorem 1. By the sieve type definition $S: N \times N \rightarrow N$ must be onto. If $S\left(m_{1}, n_{1}\right)=S\left(m_{2}, n_{2}\right)=r$ say, then by Lemma $3, n_{1}=n_{2}=k(r)$ and then by Lemma $4 m_{1}=m_{2}$. Hence S is one-to-one. We have proved:

$$
\text { Theorem 1. } \quad \forall r \in N, \exists 1 m, n \in N: r=S(m, n)
$$

Stolarsky's conjecture can now be established by proving one more Lemma.
Lemma 5.

$$
k(d(m)) \leqslant 2, \quad \forall m \in N
$$

Proof.

$$
\begin{aligned}
h(d(m)) & \equiv a d(m) \quad(\bmod 1) \\
& \equiv a S(m, 2)-a S(m, 1)(\bmod 1) \\
& \equiv h(S(m, 2))-h(S(m, 1))(\bmod 1)
\end{aligned}
$$

Now by Lemma $2, h(S(m, 2))=-a^{-1} h(S(m, 1))$, so

$$
\begin{aligned}
h(d(m)) & \equiv-\left(1+a^{-1}\right) h(S(m, 1))(\bmod 1) \\
& \equiv-a h(S(m, 1))(\bmod 1)
\end{aligned}
$$

Further $h(S(m, 1)) \in\left(-1 / 2,-1 / 2 a^{-1}\right) \cup\left(1 / 2 a^{-1}, 1 / 2\right)$ by Lemma 3 , so

$$
h(d(m))=1-a h(S(m, 1)) \text { if } h(S(m, 1)) \in\left(-1 / 2,-1 / 2 a^{-1}\right)
$$

and

$$
h(d(m))=-1-a h(S(m, 1)) \text { if } h(S(m, 1)) \in\left(1 / 2 a^{-1}, 1 / 2\right) \text {, }
$$

so in either case

$$
\begin{aligned}
|h(d(m))| & =1-a \mid h(S(m, 1) 川 \mid \\
& >1-1 / 2 a, \\
& =1 / 2 a^{-2} .
\end{aligned}
$$

Hence $k(d(m)) \leqslant 2$.
As by Theorem 1, the value $r=d(m)$ can occur in only one position, and as $k(d(m)) \leqslant 2$, by Lemma $3, d(m)$ appears in Column 1 or Column 2. Hence we have established our second theorem.
Theorem 2. $\forall m \in N, \exists n \in N: d(m)=S(n, 1)$ or $d(m)=S(n, 2)$.
We now return to improve the result of Theorem 1 by finding an explicit relationship between m, n and $S(m, n)$. We note first

Lemma 6.

$$
k\left(\left[n a^{2}-1 / 2 a\right]\right)=1
$$

Proof. Let $r=\left[n a^{2}-1 / 2 a\right]$. Now

$$
\begin{aligned}
n a^{2}-1 / 2 a & \equiv n a-1 / 2 a(\bmod 1) \\
& \equiv h(n)-1 / 2 a(\bmod 1)
\end{aligned}
$$

Also $-2<-1 / 2-1 / 2 a<h(n)-1 / 2 a<1 / 2-1 / 2 a<0$, so

$$
r=n a^{2}-h(n)-t
$$

where

$$
t=2 \text { for }-1 / 2<h(n)<1 / 2 a-1=-1 / 2 a^{-2},
$$

and

$$
t=1 \text { for }-1 / 2 a^{-2}<h(n)<1 / 2 .
$$

Further

$$
\begin{aligned}
h(r) & \equiv r a(\bmod 1), \\
& \equiv n a^{3}-h(n) a-t a(\bmod 1), \\
& \equiv 2 n a-h(n) a-t a(\bmod 1), \\
& \equiv h(n)(2-a)-t a(\bmod 1), \\
& \equiv h(n) a^{-2}-t a(\bmod 1) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { For }-1 / 2<h(n)<-1 / 2 a^{-2}, \\
& \qquad \begin{aligned}
t=2 & \Rightarrow-t a \equiv-2 a \equiv-a^{3} \quad(\bmod 1) \\
& \Rightarrow-1 / 2<-1 / 2 a^{-2}-a^{-3}<h(n) a^{-2}-a^{-3}<-1 / 2 a^{-4}-a^{-3}=-1 / 2 a^{-1}, \\
& \Rightarrow h(r)=h(n) a^{-2}-a^{-3} \quad \text { and } k(r)=1 .
\end{aligned}
\end{aligned}
$$

For $-1 / 2 a^{-2}<h(n)<1 / 2 a^{-1}$,

$$
\begin{aligned}
t=1 & \Rightarrow-t a \equiv-a \equiv a^{-2} \quad(\bmod 1) \\
& \Rightarrow 1 / 2 a^{-1}<a^{-2}(h(n)+1)<1 / 2 \\
& \Rightarrow h(r)=a^{-2}(h(n)+1) \text { and } k(r)=1 .
\end{aligned}
$$

For $1 / 2 a^{-1}<h(n)<1 / 2$,

$$
\begin{aligned}
t=1 & \Rightarrow-t a \equiv-a \equiv-a^{-1} \quad(\bmod 1), \\
& \Rightarrow-1 / 2=1 / 2 a^{-3}-a^{-1}<h(n)<1 / 2 a^{-2}-a^{-1}<-1 / 2 a^{-1}, \\
& \Rightarrow h(r)=a^{-2} h(n)-a^{-1} \quad \text { and } \quad k(r)=1 .
\end{aligned}
$$

We can now show that the numbers $\left[n a^{2}-1 / 2 a\right.$] are the only integers occurring in Column 1.

Lemma 7.

$$
S(n, 1)=\left[n a^{2}-1 / 2 a\right] .
$$

Proof. Let $r=S(n, 1)$, then

$$
\begin{aligned}
h(r+1) & \equiv a(r+1)(\bmod 1) \\
& \equiv h(r)+a(\bmod 1)
\end{aligned}
$$

Noting $a \equiv a^{-1} \equiv-a^{-2}(\bmod 1)$ we find: for $-1 / 2<h(r)<-1 / 2 a^{-1}$,

$$
1 / 2 a^{-3}<h(r)+a^{-1}<1 / 2 a^{-1} \Rightarrow k(r+1)>1
$$

and for $-1 / 2 a^{-1}<h(r)<1 / 2$,

$$
-1 / 2 a^{-4}<h(r)-a^{-2}<1 / 2 a^{-3} \Rightarrow k(r+1)>1
$$

Hence $r+1$ cannot be in Column 1, so Column 1 cannot contain two consecutive integers.
Let $t(n)=\left[n a^{2}-1 / 2 a\right]$, then

$$
n a^{2}-1 / 2 a-1<t(n)<n a^{2}-1 / 2 a
$$

$$
n a^{2}+a^{2}-1 / 2 a-1<t(n+1)<n a^{2}+a^{2}-1 / 2 a
$$

so

$$
n a^{2}+a^{2}-1 / 2 a-1-\left(n a^{2}-1 / 2 a\right)<t(n+1)-t(n)<n a^{2}+a^{2}-1 / 2 a-\left(n a^{2}-1 / 2 a-1\right)
$$

and as

$$
n a^{2}+a^{2}-1 / 2 a-1-\left(n a^{2}-1 / 2 a\right)=a^{2}-1=a>1
$$

and

$$
n a^{2}+a^{2}-1 / 2 a-\left(n a^{2}-1 / 2 a-1\right)=a^{2}+1=a+2<4
$$

we have

$$
1<t(n+1)-t(n)<4
$$

Hence $t(n)$ and $t(n+1)$ are distinct integers whose difference is 2 or 3 . They both occur in Column 1 (Lemmas 6 and 3), so no other integer can occur in Column 1, as that would imply consecutive integers in Column 1. We can now specify $S(m, n)$ with the following two lemmas.
Lemma 8. $\quad S(m, n)=S(m, 1) a^{n-1}+F_{n-2} h(S(m, 1)), \forall n \in N$. (Putting $F_{0}=1, F_{-1}=0$.)
Proof. Trivial for $n=1$.
Assume $S(m, n)=S(m, 1) a^{n-1}+F_{n-2} h(S(m, 1))$, for some $n>1$, then

$$
\begin{aligned}
S(m, n+1) & =g(S(m, n)), \\
& =a S(m, n)+h(S(m, n)) \\
& =S(m, 1) a^{n}+F_{n-2} h(S(m, 1)) a+h(S(m, n))
\end{aligned}
$$

But, by Lemma 2,

$$
\begin{aligned}
h(S(m, n)) & =-a^{-1} h(S(m, n-1)) \\
& =\left(-a^{-1}\right)^{n-1} h(S(m, 1))
\end{aligned}
$$

and as $a^{-(n-1)}=(-1)^{n-1}\left(F_{n-1}-F_{n-2} a\right)$,

$$
F_{n-2} a+(-a)^{-(n-1)}=F_{n-1}
$$

Hence

$$
S(m, n+1)=S(m, 1) a^{n}+F_{n-1} h(S(m, 1))
$$

Thus, by induction, this result is true $\forall n \in N$.
From this result follows
Lemma 9.

$$
m=\left[S(m, n) a^{-n-1}+1 / 2 a\right]
$$

Proof. By Lemma 8,

$$
\left|S(m, n)-S(m, 1) a^{n-1}\right|=F_{n-2} \mid h\left(S(m, 1) 川 \mid<1 / 2 F_{n-2} .\right.
$$

Also, $F_{n-2}<a^{n-2}$, so
From Lemma 7

$$
\left|S(m, n)-S(m, 1) a^{n-1}\right|<1 / 2 a^{-3} .
$$

$$
\begin{gathered}
m a^{2}-1 / 2 a-1<S(m, 1)<m a^{2}-1 / 2 a, \\
\Rightarrow-1 / 2 a^{-1}-a^{-2}<S(m, 1) a^{-2}-m<-1 / 2 a^{-1} .
\end{gathered}
$$

But, from above,

$$
-1 / 2 a^{-3}<S(m, n) a^{-n-1}-S(m, 1) a^{-2}<1 / 2 a^{-3},
$$

so adding

$$
\begin{aligned}
-1 / 2 a & =-1 / 2 a^{-1}-a^{-2}-1 / 2 a^{-3}<S(m, n) a^{-n-1}-m<1 / 2 a^{-3}-1 / 2 a^{-1} \\
& \Rightarrow 0<S(m, n) a^{-n-1}-m+1 / 2 a<1 / 2 a+1 / 2 a^{-3}-1 / 2 a^{-1}=a^{-1}<1, \\
& \Rightarrow m=\left[S(m, n) a^{-n-1}+1 / 2 a\right] .
\end{aligned}
$$

This lemma concludes the results for Theorem 3, so combining the results of Lemmas 3, 7 and 9 we have:
Theorem 3. $\quad S(m, 1)=\left[m a^{2}-1 / 2 a\right], \quad S(m, n)=g^{n-1}(S(m, 1)), \quad \forall m, n \in N$,

$$
n=k(S(m, n)), \quad m=\left[S(m, n) a^{-n-1}+1 / 2 a\right] .
$$

We now examine formulae for $d(m)$.
Lemma $10 . \quad d(m)=\left[m a-1 / 2 a^{-1}\right]$.
Proof. Let

$$
c(m)=\left[m a-1 / 2 a^{-1}\right],
$$

and set

$$
\gamma=m a-1 / 2 a^{-1}-c(m), \quad 0<\gamma<1
$$

As $S(m, 1)=\left[m a^{2}-1 / 2 a\right]$, let

$$
\epsilon=m a^{2}-1 / 2 a-S(m, 1), \quad 0<\epsilon<1 .
$$

Now

$$
\begin{aligned}
\epsilon-\gamma & =m\left(a^{2}-a\right)+1 / 2\left(a^{-1}-a\right)+c(m)-S(m, 1), \\
& =m-1 / 2+c(m)-S(m, 1), \\
& \equiv 1 / 2(\bmod 1) .
\end{aligned}
$$

Thus for $\epsilon<1 / 2, \gamma=\epsilon+1 / 2$,
and for $\epsilon>1 / 2, \gamma=\epsilon-1 / 2$,

$$
S(m, 1)=c(m)+m,
$$

Further

$$
\begin{aligned}
c(m)+S(m, 1) & =m\left(a^{2}+a\right)-1 / 2\left(a+a^{-1}\right)-(\epsilon+\gamma), \\
& =m a^{3}-1 / 2\left(a^{3}-2\right)-(\epsilon+\gamma), \\
& =(m-1 / 2) a^{3}+(1-\epsilon-\gamma),
\end{aligned}
$$

and

$$
\begin{aligned}
S(m, 2) & =g(S(m, 1)), \\
& =a S(m, 1)-h(S(m, 1)), \\
& =m a^{3}-1 / 2 a^{2}-\epsilon a-h(S(m, 1)) .
\end{aligned}
$$

Combining these two results we find

$$
\begin{aligned}
c(m)+S(m, 1)-S(m, 2) & =1 / 2\left(a^{2}-a^{3}\right)+(\epsilon a-\epsilon-\gamma)-h(S(m, 1))+1, \\
& =1-1 / 2 a+(\epsilon a-\epsilon-\gamma)-h(S(m, 1)) .
\end{aligned}
$$

For $0<\epsilon<1 / 2, \gamma=\epsilon+1 / 2$,

$$
c(m)+S(m, 1)-S(m, 2)=1-1 / 2 a+\epsilon(a-2)-1 / 2-h(S(m, 1)) \in(-1,1-1 / 2 a),
$$

and is integral, so

$$
c(m)=S(m, 2)-S(m, 1)=d(m) .
$$

For $1 / 2<\epsilon<1$,

$$
\begin{gathered}
\gamma=\epsilon-1 / 2, \\
c(m)+S(m, 1)-S(m, 2)=1-1 / 2 a+\epsilon(a-2)+1 / 2-h(S(m, 1)) \in(1 / 2 a-1,1),
\end{gathered}
$$

and is integral, so

$$
c(m)=S(m, 2)-S(m, 1)=d(m) .
$$

We can now formulate the relationship between in and $d(m)$.
Lemma 11. For $h(m) \in\left(-1 / 2,1 / 2 a^{-1}\right)$,

$$
d(m)=g(m)-1,
$$

for $h(m) \in\left(1 / 2 a^{-1}, 1 / 2\right)$

$$
d(m)=g(m) .
$$

Proof. For $h(m) \in\left(-1 / 2,1 / 2 a^{-1}\right)$,

$$
g(m)=m a-h(m) \in\left(m a-1 / 2 a^{-1}, m a+1 / 2\right) .
$$

Now this interval has length $1 / 2 a^{-1}+1 / 2=1 / 2 a<1$, and $g(m)$ is integral, so

$$
g(m)=\left[m a-1 / 2 a^{-1}\right]+1=d(m)+1
$$

by Lemma 10.
For $h(m) \in\left(1 / 2 a^{-1}, 1 / 2\right)$,

$$
g(m)=m a-h(m) \in\left(m a-1 / 2, m a-1 / 2 a^{-1}\right)
$$

This interval has length $1 / 2-1 / 2 a^{-1}=1-1 / 2 a<1$, so

$$
g(m)=\left[m a-1 / 2 a^{-1}\right]=d(m)
$$

Lemma 12. For $h(m) \in\left(-1 / 2,-1 / 2 a^{-2}\right)$,

$$
h(d(m))=-a^{-1}(h(m)+1), \quad k(d(m))=1
$$

for $h(m) \in\left(-1 / 2 a^{-2}, 1 / 2 a^{-3}\right)$,

$$
h(d(m))=1-a^{-1}(h(m)+1), \quad k(d(m))=1,
$$

for $h(m) \in\left(1 / 2 a^{-3}, 1 / 2 a^{-1}\right)$,
$h(d(m))=1-a^{-1}(h(m)+1), \quad k(d(m))=2$,
for $h(m) \in\left(1 / 2 a^{-1}, 1 / 2\right)$,
Proof. From Lemma 11

$$
h(d(m))=-a^{-1}(h(m)), \quad k(d(m))=2
$$

$$
h(d(m))=h(g(m)-\ell),
$$

where $\ell=0$ if $h(m)>1 / 2 a^{-1}, \ell=1$ otherwise. Hence

$$
\begin{aligned}
h(d(m)) & \equiv a g(m)-a \ell(\bmod 1), \\
& \equiv m a^{2}-a h(m)-a \ell(\bmod 1), \\
& \equiv m a-a h(m)-a \ell(\bmod 1), \\
& \equiv h(m)(1-a)-a \ell \quad(\bmod 1), \\
& \equiv-a^{-1}(h(m)+\ell) \quad(\bmod 1) .
\end{aligned}
$$

For $h(m) \in\left(-1 / 2,-1 / 2 a^{-2}\right), \ell=1$,

$$
\begin{aligned}
& \Rightarrow-1 / 2=-a^{-1}\left(1-1 / 2 a^{-2}\right)<-a^{-1}(h(m)+1)<-1 / 2 a^{-1}, \\
& \Rightarrow h(d(m))=-a^{-1}(h(m)+1), \quad k(d(m))=1 .
\end{aligned}
$$

For $h(m) \in\left(-1 / 2 a^{-2}, 1 / 2 a^{-1}\right), \ell=1$,

$$
\begin{aligned}
& \Rightarrow-1 / 2 a=-a^{-1}\left(1+1 / 2 a^{-1}\right)<-a^{-1}(h(m)+1)<-1 / 2 \\
& \Rightarrow h(d(m))=1-a^{-1}(h(m)+1) .
\end{aligned}
$$

In particular, if $h(m) \in\left(-1 / 2 a^{-2}, 1 / 2 a^{-3}\right)$,

$$
\left.1 / 2 a^{-1}=1-a^{-1}\left(1 / 2 a^{-3}+1\right)<h(d(m))<1-a^{-1}\left(-1 / 2 a^{-2}+1\right)\right)=1 / 2 \Rightarrow k(d(m))=1
$$

and if $h(m) \in\left(1 / 2 a^{-3}, 1 / 2 a^{-1}\right)$,

$$
1 / 2 a^{-1}=1-a^{-1}\left(1 / 2 a^{-1}+1\right)<h(d(m))<1-a^{-1}\left(1 / 2 a^{-3}+1\right)=1 / 2 a^{-1} \Rightarrow k(d(m))=2 .
$$

For $h(m) \in\left(1 / 2 a^{-1}, 1 / 2\right), \ell=0$,

$$
\begin{aligned}
-1 / 2 a^{-1} & <-a^{-1} h(m)<-1 / 2 a^{-2} \\
& \Rightarrow h(d(m))=-a^{-1} h(m), \quad k(d(m))=2 .
\end{aligned}
$$

Now we can establish the relationship between $d(m)$ and $S(m, 1)$.
Lemma 13. For $h(m) \in\left(-1 / 2,-1 / 2 a^{-2}\right) \cup\left(1 / 2 a^{-1}, 1 / 2\right)$,
For $h(m) \in\left(-1 / 2 a^{-2}, 1 / 2 a^{-1}\right)$

$$
S(m, 1)=g(d(m))-1
$$

$$
S(m, 1)=g(d(m))+1
$$

Proof. For $h(m) \in\left(-1 / 2,-1 / 2 a^{-2}\right)$,

$$
\begin{aligned}
& g(d(m))=a d(m)-h(d(m)), \\
&=a g(m)-a+a^{-1}(h(m)+1),(\text { Lemmas } 11 \text { and 12), } \\
&=m a^{2}-a h(m)-a+a^{-1}(h(m)+1), \\
&=m a^{2}+\left(a^{-1}-a\right)(h(m)+1), \\
&=m a^{2}-(h(m)+1), \\
& \Rightarrow m a^{2}-1 / 2 a= m a^{2}-\left(1-1 / 2 a^{-2}\right)<g(d(m))<m a^{2}-1 / 2, \\
& \Rightarrow g(d(m))=\left[m a^{2}-1 / 2 a\right]+1=S(m, 1)+1 .
\end{aligned}
$$

For $h(m) \in\left(-1 / 2 a^{-2}, 1 / 2 a^{-1}\right)$,

$$
\begin{aligned}
& g(d(m))=a d(m)-h(d(m)), \\
&=a g(m)-a+a^{-1}(h(m)+1)-1, \quad(\text { Lemmas } 11 \text { and 12), } \\
&=m a^{2}-h(m)-2, \\
& \Rightarrow m a^{2}-1 / 2 a^{-1}-2<g(d(m))<m a^{2}+1 / 2 a^{-2}-2=m a^{2}-1 / 2 a-1, \\
& \Rightarrow g(d(m))= {\left[m a^{2}-1 / 2 a\right]-1=S(m, 1)-1 . }
\end{aligned}
$$

For $h(m) \in\left(1 / 2 a^{-1}, 1 / 2\right)$

$$
\begin{aligned}
g(d(m)) & =a d(m)-h(d(m)), \\
& =m a^{2}-a h(m)+a^{-1} h(m), \quad(\text { Lemmas } 11 \text { and 12), } \\
& =m a^{2}-h(m), \\
\Rightarrow m a^{2}-1 / 2 a< & m a^{2}-1 / 2<g(d(m))<m a^{2}-1 / 2 a^{-1}<m a^{2}-1 / 2 a+1, \\
\Rightarrow g(d(m))= & {\left[m a^{2}-1 / 2 a\right]+1=S(m, 1)+1 . }
\end{aligned}
$$

We can now combine the results of Lemmas 11, 12 and 13 to give the result:
Theorem 4. For $h(m) \in\left(-1 / 2,-1 / 2 a^{-2}\right)$,

$$
d(m)=g(m)-1, \quad S(m, 1)=g(d(m))-1
$$

for $h(m) \in\left(-1 / 2 a^{-2}, 1 / 2 a^{-1}\right)$,

$$
d(m)=g(m)-1, \quad S(m, 1)=g(d(m))+1
$$

and for $h(m) \in\left(1 / 2 a^{-1}, 1 / 2\right)$,

$$
d(m)=g(m) \quad S(m, 1)=g(d(m))-1
$$

We now turn to the problem of finding the values of i, j, so that $d(m)=S(i, j)$, for a given $m \in N$.
Lemma 14. If $d(m)=S(r, 1)$, then $r=\left[m a^{-1}+1 / 2\right]$.
Proof. By Lemma 12,

$$
\begin{aligned}
k(d(m)) & =1 \Rightarrow h(m) \in\left(-1 / 2,1 / 2 a^{-3}\right), \\
& \Rightarrow d(m)=g(m)-1, \quad \text { (Theorem 4), } \\
& =[m a+1 / 2]-1, \quad 0<\epsilon<1 . \\
& =m a-1 / 2-\epsilon, \quad 0<\epsilon<1
\end{aligned}
$$

```
Also \(S(r, 1)=\left[r a^{2}-1 / 2 a\right]\), so \(d(m)=S(r, 1)\),
    \(\Rightarrow r a^{2}-1 / 2 a-1<m a-1 / 2-\epsilon<r a^{2}-1 / 2 a\),
    \(\Rightarrow r<m a^{-1}+1 / 2 a^{-1}+1 / 2 a^{-2}-\epsilon a^{-2}<r+a^{-2}\),
    \(\Rightarrow r<r+\epsilon a^{-2}<m a^{-1}+1 / 2<r+(1+\epsilon) a^{-2}<r+2 a^{-2}<r+1\),
    \(\Rightarrow r=\left[m a^{-1}+1 / 2\right]\).
```

Lemma 15. If $d(m)=S(r, 2)$, then $r=\left[m a^{-2}+1 / 2\right]$.
Proof.

$$
d(m)=S(r, 2) \Rightarrow k(d(m))=2,
$$

$$
\Rightarrow h(m) \in\left(1 / 2 a^{-3}, 1 / 2\right), \quad \text { (Lemma 12). }
$$

Let $r=\left[m a^{-2}+1 / 2\right]=m a^{-2}+1 / 2-\varepsilon, \quad 0<\epsilon<1$. Now $\epsilon \equiv m a^{-2}+1 / 2 \quad(\bmod 1)$,

$$
\equiv-m a+1 / 2 \quad(\bmod 1)
$$

$$
\equiv 1 / 2-h(m) \quad(\bmod 1) .
$$

But $1 / 2 a^{-3}<h(m)<1 / 2$, so $\epsilon=1 / 2-h(m)$, and $r=m a^{-2}+h(m)$,

$$
\begin{aligned}
S(r, 1) & =\left[r a^{2}-1 / 2 a\right] \\
& =\left[m+h(m) a^{2}-1 / 2 a\right] .
\end{aligned}
$$

For $h(m) \in\left(1 / 2 a^{-3}, 1 / 2 a^{-1}\right),-1 / 2<h(m) a^{2}-1 / 2 a<0$,

$$
\begin{aligned}
\Rightarrow S(r, 1) & =m-1 \\
\Rightarrow S(r, 2) & =g(S(r, 1)), \\
& =g(m-1), \\
& =[m a-a+1 / 2], \\
& =[g(m)+h(m)-a+1 / 2] .
\end{aligned}
$$

Now $g(m)-1<g(m)+h(m)-a+1 / 2<g(m)-1 / 2 a$,

$$
\Rightarrow S(r, 2)=g(m)-1
$$

$$
=d(m) \text { by Theorem } 4 .
$$

For $h(m) \in\left(1 / 2 a^{-1}, 1 / 2\right)$,

$$
\begin{aligned}
S(r, 2) & =g(S(r, 1)), \\
& =g(m), \\
& =d(m) \text { by Theorem } 4 .
\end{aligned}
$$

Lemma 16.

$$
S(m, 1)=d\left(\left[m a+1 / 2 a^{-2}\right]\right), \quad \forall m \in N .
$$

Proof. Let $n=\left[m a+1 / 2 a^{-2}\right]=m a+1 / 2 a^{-2}-\epsilon, \quad 0<\epsilon<1$,

$$
\begin{aligned}
& \Rightarrow m a+1 / 2 a^{-2}-1<n<m a+1 / 2 a^{-2} \\
& \Rightarrow m=m+1 / 2 a^{-3}-a^{-1}+1 / 2<n a^{-1}+1 / 2<m+1 / 2 a^{-3}+1 / 2=m+a^{-1}, \\
& \Rightarrow m=\left[n a^{-1}+1 / 2\right] .
\end{aligned}
$$

Also

$$
\begin{aligned}
\epsilon & \equiv m a+1 / 2 a^{-2}(\bmod 1), \\
& \equiv h(m)+1 / 2 a^{-2}(\bmod 1) .
\end{aligned}
$$

Hence

$$
\begin{array}{lll}
\epsilon=h(m)+1 / 2 a^{-2}+1 & \text { for } & h(m) \in\left(-1 / 2,-1 / 2 a^{-2}\right), \\
\epsilon=h(m)+1 / 2 a^{-2} & \text { for } & h(m) \in(-1 / 2 a-1 / 2) .
\end{array}
$$

Further,

$$
\begin{aligned}
h(n) & \equiv n a(\bmod 1), \\
& \equiv m a^{2}+1 / 2 a^{-1}-\epsilon a(\bmod 1), \\
& \equiv h(m)+1 / 2 a^{-1}-\epsilon a(\bmod 1),
\end{aligned}
$$

For

$$
h(m) \in\left(-1 / 2,-1 / 2 a^{-2}\right), \quad \epsilon=h(m)+1 / 2 a^{-2}+1
$$

$$
\begin{aligned}
\Rightarrow h(n) & \equiv-a^{-1} h(m)-a(\bmod 1), \\
\Rightarrow h(n) & =-a^{-1} h(m)-a+1 \\
& =-a^{-1}(h(m)-1) \\
\Rightarrow h(n) & \in\left(-1 / 2,-1 / 2 a^{-1}\right)
\end{aligned}
$$

For $h(m) \in\left(-1 / 2 a^{-2}, 1 / 2\right), \epsilon=h(m)+1 / 2 a^{-2}$,

$$
\begin{aligned}
& \Rightarrow h(n) \equiv-a^{-1} h(m)(\bmod 1), \\
& \Rightarrow h(n)=-a^{-1} h(m), \\
& \Rightarrow h(n) \in\left(-1 / 2 a^{-1}, 1 / 2 a^{-3}\right) .
\end{aligned}
$$

Hence in either case $h(n) \in\left(-1 / 2,1 / 2 a^{-3}\right)$, so applying Lemma 14,

$$
S(m, 1)=S\left(\left[n a^{-1}+1 / 2\right], 1\right)=d(n)=d\left(\left[m a+1 / 2 a^{-2}\right]\right) .
$$

Lemma $17 . \quad S(m, 2)=d\left(\left[m a^{2}-1 / 2 a^{-1}\right]\right), \quad \forall m \in N$.
Proof. Let $n=\left[m a^{2}-1 / 2 a^{-1}\right]=m a^{2}-1 / 2 a^{-1}-\epsilon, \quad 0<\epsilon<1$,

$$
\begin{aligned}
& \Rightarrow m a^{2}-1 / 2 a^{-1}-1<n<m a^{2}-1 / 2 a^{-1} \\
& \Rightarrow m<n a^{2}+1 / 2 a^{-3}+a^{-2}=n a^{-2}+1 / 2<m+a^{-2} \\
& \Rightarrow m=\left[n a^{-2}+1 / 2\right]
\end{aligned}
$$

Also

$$
\begin{aligned}
\epsilon & \equiv m a^{2}-1 / 2 a^{-1}(\bmod 1) \\
& \equiv h(m)-1 / 2 a^{-1}(\bmod 1)
\end{aligned}
$$

Hence

$$
\begin{array}{lll}
\epsilon=h(m)-1 / 2 a^{-1}+1 & \text { for } & h(m) \in\left(-1 / 2,1 / 2 a^{-1}\right), \\
\epsilon=h(m)-1 / 2 a^{-1} & \text { for } & h(m) \in\left(1 / 2 a^{-1}, 1 / 2\right) .
\end{array}
$$

Further

$$
\begin{aligned}
h(n) & \equiv n a(\bmod 1), \\
& \equiv m a^{3}-1 / 2-\epsilon a(\bmod 1), \\
& \equiv 2 m a-1 / 2-\epsilon a(\bmod 1), \\
& \equiv 2 h(m)-1 / 2-\epsilon a(\bmod 1),
\end{aligned}
$$

For $h(m) \in\left(-1 / 2,1 / 2 a^{-1}\right), \epsilon=h(m)-1 / 2 a^{-1}+1$,

$$
\begin{aligned}
\Rightarrow h(n) & \equiv a^{-2} h(m)-a(\bmod 1) \\
\Rightarrow h(n) & =a^{-2} h(m)-a+2 \\
& =a^{-2}(1+h(m)) \\
\Rightarrow h(n) & \in\left(1 / 2 a^{-2}, 1 / 2\right)
\end{aligned}
$$

For $h(m) \in\left(1 / 2 a^{-1}, 1 / 2\right), \epsilon=h(m)-1 / 2 a^{-1}$,

$$
\begin{aligned}
\Rightarrow h(n) & \equiv h(m)(2-a)(\bmod 1), \\
& =a^{-2} h(m) \quad(\bmod 1), \\
\Rightarrow h(n) & =a^{-2 h(m)}, \\
\Rightarrow h(n) & \in\left(1 / 2 a^{-3}, 1 / 2 a^{-2}\right) .
\end{aligned}
$$

Hence in either case $h(n) \in\left(1 / 2 a^{-3}, 1 / 2\right)$, so applying Lemma $15, S(m, 2)=S\left(\left[n a^{-2}+1 / 2\right], 2\right)=d(n)=d\left(\left[m a^{2}-1 / 2 a^{-1}\right]\right)$ These four Lemmas together with Lemma 12, give us Theorem 5.

$$
\text { Theorem 5. } \quad \begin{aligned}
d(m)= & S\left(\left[m a^{-1}+1 / 2\right], 1\right) \quad \text { if }-1 / 2<h(m)<1 / 2 a^{-3}, \\
= & S\left(\left[m a^{-2}+1 / 2\right], 2\right) \quad \text { if }-1 / 2 a^{-3}<h(m)<1 / 2, \\
& S(m, 1)=d\left(\left[m a+1 / 2 a^{-2}\right]\right) \\
& S(m, 2)=d\left(\left[m a^{2}-1 / 2 a^{-1}\right]\right), \quad \forall m \in N .
\end{aligned}
$$

We can note now from Lemma 10 that as $d(m)<m a-1 / 2 a^{-1}<m(a+1)-1 / 2 a^{-1}-1<d(m+1)$, the sequence $d(m)$ is strictly monotonic increasing and hence by Theorem 5 we establish Butcher's conjecture.
Theorem 6.

$$
\{S(m, 1): m \in N\} \cup\{S(m, 2): m \in N\}=\{d(m): m \in N\}
$$

ON A CONJECTURE CONCERNING A SET OF SEQUENCES SATISFYING THE FIBONACCI DIFFERENCE EQUATION

J. C. BUTCHER

The University of Auckland, Auckland, New Zealand

Let $a=(1+\sqrt{5}) / 2$ and consider the set of sequences

$$
\begin{aligned}
S=\{ & (1,1,2,3,5,8,13, \ldots), \\
& (2,4,6,10,16,26,42, \ldots), \\
& (4,7,11,18,29,47,76, \cdots), \\
& (6,9,15,24,39,63,102, \ldots), \\
& (7,12,19,31,50,81,131, \ldots), \cdots\},
\end{aligned}
$$

where a sequence $u=\left(u_{0}, u_{1}, u_{2}, \cdots\right)$ is in S iff it satisfies the conditions
$u_{0}, u_{1}, u_{2}, \cdots$ are positive integers
(2) u satisfies the Fibonacci difference equation $u_{n}=u_{n-1}+u_{n-2}(n=2,3,4, \ldots)$
(3) there does not exist an integer x such that $\left|a x-u_{1}\right|<1 / 2$

$$
\begin{equation*}
\left|a u_{1}-u_{2}\right|<1 / 2 . \tag{4}
\end{equation*}
$$

Note that, for given u_{1}, there must exist an integer u_{2} satisfying (4), because of the irrationality of a.
For $n=0,1,2, \cdots$ let $S_{n}=\left\{u_{n}: u \in S\right\}$. It has been conjectured by Kenneth B. Stolarsky that for any $u \in S$, the value of $u_{2}-u_{1}$ equals the value of either v_{1} or v_{2} for some $v \in S$. Since $u_{2}=u_{0}+u_{1}$, this is equivalent to saying that $S_{0} \subset S_{1} \cup S_{2}$. In this paper we prove the stronger result, that $S_{0}=S_{1} \cup S_{2}$.
Lemma 1. If $u \in S$ then for all $n=1,2, \ldots$

$$
\begin{equation*}
a^{1-n} / 2<\left|a u_{n-1}-u_{n}\right|<a^{2-n} / 2 \tag{5}
\end{equation*}
$$

and
(6)

$$
a^{1-n} / 2<\left|a^{2} u_{n-1}-u_{n+1}\right|<a^{2-n} / 2 .
$$

Proof. We first show that, for any u, there is a constant C such that for all $n=1,2, \ldots$

$$
\begin{equation*}
C=a^{n}\left|a u_{n-1}-u_{n}\right| . \tag{7}
\end{equation*}
$$

If C_{n} denotes the value of C given by (7) we have

$$
\begin{aligned}
C_{n+1} & =a^{n+1}\left|a u_{n}-u_{n+1}\right|=a^{n}\left|a^{2} u_{n}-a u_{n+1}\right| \\
& =a^{n}\left|(a+1) u_{n}-a u_{n+1}\right|=a^{n}\left|a\left(u_{n+1}-u_{n}\right)-u_{n}\right| \\
& =a^{n}\left|a u_{n-1}-u_{n}\right|=C_{n} .
\end{aligned}
$$

From (4) we see that $C=a^{2}\left|a u_{1}-u_{2}\right|<a^{2} / 2$; also we see that $C=a\left|a u_{0}-u_{1}\right|<a / 2$ since $\left|a u_{0}-u_{1}\right|$ cannot equal $1 / 2$ because it is irrational, and cannot be less than $1 / 2$ by (3). Combining these inequalities we obtain (5). To prove (6) we simply note that

$$
\left|a^{2} u_{n-1}-u_{n+1}\right|=\left|(a+1) u_{n-1}-u_{n}-u_{n-1}\right|=\left|a u_{n-1}-u_{n}\right| .
$$

Lemma 2.

is the set of positive integers.
Proof. If there were positive integers not in this union, let y be the lowest of these. Since y is not a member of S_{1}, there exists an integer x such that $|a x-y|<1 / 2$. Since x is a positive integer less than y, it must lie in $\cup_{n=1}^{\infty} S_{n}$ and therefore $x=u_{n}$ for some $u \in S$ and n a positive integer. Since $\left|a u_{n}-y\right|<1 / 2,\left|a u_{n}-u_{n+1}\right|$ $<1 / 2$ it follows that $y=u_{n+1} \in S_{n+1}$.

Lemma 3. $\quad S_{0} \subset S_{1} \cup S_{2}$.

Proof. If this result did not hold, because of Lemma 2, there would exist $u, v \in S$ and $n>2$ such that $u_{n}=$ $v_{0} . \mathrm{By}(2)$ we then find

$$
v_{2}-u_{n+2}=\left(v_{1}+v_{0}\right)-\left(u_{n+1}+u_{n}\right)=v_{1}-u_{n+1}
$$

so that

$$
\left|(a-1)\left(v_{1}-u_{n+1}\right)\right|=\left|\left(a v_{1}-v_{2}\right)-\left(a u_{n+1}-u_{n+2}\right)\right|<1 / 2+1 / 2 a^{-n} \leqslant 1 / 2\left(1+a^{-3}\right)
$$

where we have used Lemma 1 to bound $\left|a v_{1}-v_{2}\right|$ and $\left|a u_{n+1}-u_{n}\right|$ and made use of the fact that $n \geqslant 3$. Since $a^{-3}=2 a-3$ we find

$$
\left|v_{1}-u_{n+1}\right|<\frac{1}{a-1} \cdot \frac{1}{2}(1+2 a-3)=1
$$

so that $v_{1}=u_{n+1}$. Using Lemma 1 again we find that

$$
1 / 2<\left|a v_{0}-v_{1}\right|=\left|a u_{n}-u_{n+1}\right|<a^{1-n} / 2<1 / 2
$$

a contradiction.

$$
\text { Lemma } 4 . \quad s_{1} \subset S_{0}
$$

Proof. Let $s=+1$ if $a u_{1}-u_{2}>0$ and -1 otherwise.
By Lemma 1, we have

$$
\frac{a^{-1}}{2}<s\left(a u_{1}-u_{2}\right)<1 / 2
$$

Let $y=u_{2}+s$ so that

$$
\frac{1}{2}<-s\left(a u_{1}-y\right)<1-\frac{a^{-1}}{2}
$$

which implies that

$$
\left|a u_{1}-y\right|<1-\frac{a^{-1}}{2}=1-\frac{a^{-1}}{2}=1-\frac{a-1}{2}=\frac{a}{2}-\frac{2 a-3}{2}<\frac{a}{2} .
$$

If there were an x such that $|a x-y|<1 / 2$, it would follow that

$$
\left|a u_{1}-a x\right|<\frac{a+1}{2}=\frac{a^{2}}{2}
$$

which implies

$$
\left|u_{1}-x\right|<\frac{a}{2}<1
$$

so that $u_{1}=x$ and $u_{2}=y$ which is impossible since $\left|u_{2}-y\right|=1$. Hence, no such x exists and therefore $y=v_{1}$ for some $v \in S$. Thus $\left|a u_{1}-v_{1}\right|<(a / 2)$. We now find

$$
\begin{aligned}
\left|u_{1}-v_{0}\right|=\left|u_{1}-v_{2}+v_{1}\right| & \leqslant\left|u_{1}-a^{-1} v_{1}\right|+\left|a^{-1} v_{1}-v_{2}+v_{1}\right|=(a-1)\left|a u_{1}-v_{1}\right|+\left|a v_{1}-v_{2}\right| \\
& <\frac{(a-1) a}{2}+\frac{1}{2}=1
\end{aligned}
$$

so that $u_{1}=v_{0} \in S$.
Lemma $5 . \quad S_{2} \subset S_{0}$.
Proof. Let $s=+1$ if $a^{2} u_{2}-u_{4}>0$ and -1 otherwise. By Lemma 1 , we have

$$
\frac{a^{-2}}{2}<s\left(a^{2} u_{2}-u_{4}\right)<\frac{a^{-1}}{2}
$$

so that if $y=u_{4}+s$ then

$$
1-\frac{a^{-1}}{2}<-s\left(a^{2} u_{2}-y\right)<1-\frac{a^{-2}}{2}
$$

Since

$$
1-\frac{a^{-1}}{2}>0 \quad \text { and } \quad 1-\frac{a^{-2}}{2}=\frac{a}{2}
$$

it follows that

$$
\left|a^{2} u_{2}-v\right|<\frac{a}{2}
$$

If there were an integer w such that $\left|a^{2} w-y\right|<1 / 2$ it would follow that

$$
a^{2}\left|u_{2}-w\right|<\frac{1+a}{2}=\frac{a^{2}}{2}
$$

implying that $w=u_{2}$ and that $y=u_{4}$, contradicting the fact that $\left|y-u_{4}\right|=1$. On the other hand, there is an integer $x=y-u_{2}$ such that $|a x-y|<1 / 2$ since

$$
|a x-y|=\left|(a-1) y-a u_{2}\right|=(a-1)\left|y-a^{2} u_{2}\right|<\frac{a(a-1)}{2}=\frac{1}{2}
$$

The existence of x (and the non-existence of w) satisfying these conditions, implies that $y=v_{2}$ for some $v \in S$. Thus,

$$
\left|a^{2} u_{2}-v_{2}\right|<\frac{a}{2}
$$

We now find

$$
\begin{aligned}
\left|u_{2}-v_{0}\right| & =\left|u_{2}+v_{1}-v_{2}\right| \leqslant\left|v_{2} a^{-2}-u_{2}\right|+\left|v_{2}\left(1-a^{-2}\right)-v_{1}\right| \\
& =a^{-2}\left(\left|v_{2}-a^{2} u_{2}\right|+\left|v_{2} a-a^{2} v_{1}\right|\right)<\frac{a^{-1}}{2}+\frac{a^{-1}}{2}=a^{-1}<1
\end{aligned}
$$

so that $u_{2}=v_{0} \in S_{0}$.
Combining the results of Lemmas $3,4,5$ we have
Theorem.

$$
S_{0}=S_{1} \cup S_{2}
$$

A GOLDEN DOUBLE CROSTIC: SOLUTION

MARJORIE BICKNELL-JOHNSON

Wilcox High School, Santa Clara, California 95051
"Geometry has two great treasures: one is the theorem of Pythagoras; the other, the division of a line into extreme and mean ratio. The first we may compare to a measure of gold; the second we may name a precious jewel." J. Kepler. Quotation given in The Divine Proportion by Huntley (Dover, New York, 1970, p. 23).

BINARY SEQUENCES WITHOUT ISOLATED ONES

RICH ARD AUSTIN and RICHARD GUY
University of Calgary, Calgary, Canada

Liu [2] asks for the number of sequences of zeros and ones of length five, such that every digit 1 has at least one neighboring 1. The solution [1] uses the principle of inclusion-exclusion, although it is easier in this particular case to enumerate the twelve sequences:
$00000,11000,01100,00110,00011,11100,01110,00111,11110,01111,11011,11111$.
In order to obtain a general result it seemed to us easier to find a recurrence relation.
Call a sequence good if each one in it has a neighboring one, and let a_{n} be the number of good sequences of length n. For example,

$$
a_{1}=1, a_{2}=2, a_{3}=4, a_{4}=7 \text { and } a_{5}=12
$$

Good sequences of length n are obtained from other good sequences of length $n-1$ by appending 0 or 1 to them, except that
(a) some not good sequences are also produced, namely those which end in 01 , but are otherwise good, and
(b) there are good sequences which are not produced in this way; those obtained by appending 011 to a good sequence of length $n-3$.
So
(1)

$$
a_{n}=2 a_{n-1}-a_{n-2}+a_{n-3} .
$$

Alternatively, all good sequences are obtained from shorter good sequences by appending 0,11 or 0111 , so that
(2)

$$
a_{n}=a_{n-1}+a_{n-2}+a_{n-4} .
$$

The characteristic equation for (2) is the same as that for (1), namely

$$
\begin{equation*}
x^{3}-2 x^{2}+x-1=0 \tag{3}
\end{equation*}
$$

except for the additional root -1 . The equation (3) has one real root, $\gamma \approx 1.754877666247$ and two complex roots, $a \pm i \beta$, the square of whose modulus, $1 / \gamma$, is less than 1 .

$$
a_{n}=c \gamma^{n}+(a+i b)(a+i \beta)^{n}+(a-i b)(a-i \beta)^{n}
$$

where

$$
a=1-1 / 2 \gamma \approx 0.122561166876, \quad \beta=\sqrt{3 \gamma^{2}-4 \gamma} / 2 \approx 0.744861766619
$$

$$
a=\left(\gamma^{2}-2 \gamma+2\right) / 2\left(2 \gamma^{2}-2 \gamma+3\right) \approx 0.138937790848, \quad b=(2 \gamma+1)(\gamma-1) / 2 \beta \approx 0.202250124098
$$

$$
c=\left(\gamma^{2}+1\right) /\left(2 \gamma^{2}-2 \gamma+3\right) \approx 0.722124418303
$$

and a_{n} is the nearest integer to $c \gamma^{n}$.

- The sequence $\left\{a_{n}\right\}$ does not appear in Neil Sloane's book [3] ; nor do the corresponding sequences $\left\{a_{n}^{(k)}\right\}$ of numbers of binary sequences of length n in which the ones occur only in blocks of length at least k. The problem so far considered is $k=2$. The more general analogs of (1), (2), (3) are

$$
\begin{gather*}
a_{n}=2 a_{n-1}-a_{n-2}+a_{n-k-1} \\
a_{n}=a_{n-1}+a_{n-k}+a_{n-k-2}+a_{n-k-3}+\ldots+a_{n-2 k} \\
x^{k+1}-2 x^{k}+x^{k-1}-1=0
\end{gather*}
$$

Then

$$
a_{-1}^{(k)}=a_{0}^{(k)}=a_{1}^{(k)}=\cdots=a_{k-1}^{(k)}=1 ; \quad a_{k+r}^{(k)}=1+1 / 2(r+1)(r+2)
$$

for $0 \leqslant r \leqslant k$; and for larger values of $n, a_{n}^{(k)}$ is the nearest integer to $c_{k} \gamma_{k}^{n}$, where γ_{k} is the real root of (3^{\prime}) which lies between 1 and 2 , and c_{k} is an appropriate constant. Approximate values of γ_{k} and c_{k} for $k=1(1) 9$ are shown in Table 1.

Table 1

k	1	2	3	4	5	6	7	8	9
γ_{k}	2	1.7549	1.6180	1.5289	1.4656	1.4178	1.3803	1.3499	1.3247
c_{k}	1	0.7221	0.5854	0.5033	0.4481	0.4082	0.3778	0.3539	0.3344

The sequence $\left\{a_{n}^{(3)}\right\}$ is similar to the Lucas sequence associated with the Fibonacci numbers, since $\gamma_{3}=$ $(1+\sqrt{5}) / 2$, the golden number.
The characteristic polynomial for (2^{\prime}) is the product of that for $\left(1^{\prime}\right)$ with the cyclotomic polynomial $x^{k-1}+$ $x^{k-2}+\cdots+x+1$. When k is odd, (3^{\prime}) is of even degree and is reducible and has a second real root between 0 and -1 . Table 2 gives the values of $a_{n}^{(k)}$ for $n=0(1) 26, k=2(1) 9$. Of course, $a_{n}^{(1)}=2^{n}$, the number of unrestricted binary sequences of length n.

Table 2

n	$a_{n}^{(2)}$	$a_{n}^{(3)}$	$a_{n}^{(4)}$	$a_{n}^{(5)}$	$a_{n}^{(6)}$	$a_{n}^{(7)}$	$a_{n}^{(8)}$	$a_{n}^{(9)}$
0	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1
2	2	1	1	1	1	1	1	1
3	4	2	1	1	1	1	1	1
4	7	4	2	1	1	1	1	1
5	12	7	4	2	1	1	1	1
6	21	11	7	4	2	1	1	1
7	37	17	11	7	4	2	1	1
8	65	27	16	11	7	4	2	1
9	114	44	23	16	11	7	4	2
10	200	72	34	22	16	11	7	4
11	351	117	52	30	22	16	11	7
12	616	189	81	42	29	22	16	11
13	1081	305	126	61	38	29	22	16
14	1897	493	194	91	51	37	29	22
15	3329	798	296	137	71	47	37	29
16	5842	1292	450	205	102	61	46	37
17	10252	2091	685	303	149	82	57	46
18	17991	3383	1046	443	218	114	72	56
19	31572	5473	1601	644	316	162	94	68
20	55405	8855	2452	936	452	232	127	84
21	97229	14328	3753	1365	639	331	176	107
22	170625	23184	5739	1999	897	467	247	141
23	299426	37513	8771	2936	1257	650	347	191
24	525456	60697	13404	4316	1766	894	484	263
25	922111	98209	20489	6340	2493	1220	667	364
26	1618192	158905	31327	9300	3536	1660	907	502

Since these are recurring sequences, they have many divisibility properties. Examples are $5 \mid a_{n}^{(2)}$ just if $n \equiv$ -4 or $-2, \bmod 12 ; 8 \mid a_{n}^{(2)}$ just if $n \equiv-4$ or $-2, \bmod 14$ and $2 \mid a_{n}^{(k)}$ according to the residue class to which n belongs, $\bmod 2\left(2^{(k+1) / 2}-1\right), k$ odd, or $\bmod 2^{k+1}-1, k$ even.

REFERENCES

1. Murray Edelberg, Solutions to Problems in 2, McGraw-Hill, 1968, p. 74.
2. C.L.Liu, Introduction to Combinatorial Mathematics, McGraw-Hill, 1968, Problem 4-4, p. 119.
3. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973, p. 59.

*

ON THE EQUALITY OF PERIODS OF DIFFERENT MODULI IN THE FIBONACCI SEQUENCE

JAMES E. DESMOND
Pensacola Junior College, Pensacola, Florida 32504

Let m be an arbitrary positive integer. According to the notation of Vinson [1, p.37] let $s(m)$ denote the period of F_{n} modulo m and let $f(m)$ denote the rank of apparition of m in the Fibonacci sequence.
Let p be an arbitrary prime. Wall [2, p.528] makes the following remark: "The most perplexing problem we have met in this study concerns the hypothesis $s\left(p^{2}\right) \neq s(p)$. We have run a test on a digital computer which shows that $s\left(p^{2}\right) \neq s(p)$ for all p up to 10,000 ; however, we cannot yet prove that $s\left(p^{2}\right)=s(p)$ is impossible. The question is closely related to another one, "can a number x have the same order $\bmod p$ and $\bmod p^{2} ?$?"' for which rare cases give an affirmative answer (e.g., $x=3, p=11 ; x=2, p=1093$); hence, one might conjecture that equality may hold for some exceptional p."
Based on Ward's Last Theorem [3, p. 205] we shall give necessary and sufficient conditions for $s\left(p^{2}\right)=s(p)$.
From Robinson [4, p. 30] we have for $m, n>0$

$$
\begin{equation*}
F_{n+r} \equiv F_{r}(\bmod m) \text { for all integers } r \text { if and only if } s(m) \mid n . \tag{1}
\end{equation*}
$$

If $m, n>0$ and $m \mid n$, then $F_{s(n)+r} \equiv F_{r}(\bmod m)$ for all r. Therefore by $(1), s(m) \mid s(n)$. So we have for $m, n>0$ (2) $m \mid n$ implies $s(m) \mid s(n)$.
It is easily verified that for all integers n

$$
\begin{equation*}
F_{2 n+1}=(-1)^{n+1}+F_{n+1} L_{n} . \tag{3}
\end{equation*}
$$

From Theorem 1 of [$1, \mathrm{p} .39$] we have that $s(m)$ is even if $m>2$.
An equivalent form of the following theorem can be found in Vinson [1, p. 42].
Theorem 1. We have
i) $s(m)=4 f(m)$ if and only if $m>2$ and $f(m)$ is odd.
ii) $s(m)=f(m)$ if and only if $m=1$ or 2 and $s(m) / 2$ is odd.
iii) $s(m)=2 f(m)$ if and only if $f(m)$ is even and $s(m) / 2$ is even.

To prove the above theorem it is sufficient, in view of Theorem 3 by Vinson [1, p. 42], to prove the following:
Lemma. $m=1$ or 2 or $s(m) / 2$ is odd if and only if $8 \mid m$ and $2 \mid f(p)$ but 4$\rangle f(p)$ for every odd prime, p, which divides m.
Proof. Let $m=1$ or 2 or $s(m) / 2$ be odd. If $m=1$ or 2 , then the conclusion is clear. So we may assume that $m>$ 2 and $s(m) / 2$ is odd. Suppose $8 \mid m$. Then by (2), $12=s(8) \mid s(m)$. Therefore $s(m) / 2$ is even, a contradiction. Hence 8 /m.
Let p be any odd prime which divides m. From [1, p. 37] and (2), $f(p)|s(p)| s(m)$. Therefore $4 \gamma f(p)$. Suppose $2 \gamma f(p)$. Then by Theorem 1 of $[1, p .39]$ and (2), we have $4 f(p)=s(p) \mid s(m)$, a contradiction. Thus $2 \mid f(p)$.
Conversely, let $8 \psi m$ and $2 \mid f(p)$ but $4 \psi f(p)$ for every odd prime, p, which divides m. Let p be any odd prime which divides m and let e be any positive integer. From [1, p. 40] we have that $f(p)$ and $f\left(p^{e}\right)$ are divisible by the same power of 2 . Therefore $2 \mid f\left(p^{e}\right)$ and 4$\rangle f\left(p^{e}\right)$. Then since

$$
\left.p^{e}\right|_{f\left(p^{e}\right)}=F_{f\left(p^{e}\right) / 2} L_{f\left(p^{e}\right) / 2}
$$

and $p^{e} \nmid F_{f\left(p^{e}\right) / 2}$ and $\left(F_{n}, L_{n}\right)=d \leqslant 2<p$ for all integers n, we have $p^{e} \mid L_{f\left(p^{e}\right) / 2}$. So by (3),

$$
F_{f\left(p^{e}\right)+1} \equiv(-1)^{\left(f\left(p^{e}\right) / 2\right)+1}=1\left(\bmod p^{e}\right)
$$

Therefore by definition, $f\left(p^{e}\right)=s\left(p^{e}\right)$.
Now, suppose that $m>2$ and $s(m) / 2$ is even. Let m have the prime factorization $m=2^{a} p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}$ with $a \geqslant 0$. Then by [1, p. 41]

$$
s(m)=\underset{1 \leqslant i \leqslant r}{\text { l.c.m. }}\left\{s\left(2^{a}\right), s\left(p_{i}^{a_{i}}\right)\right\}
$$

Then $4 \mid s(m)$ implies $4 \mid s\left(2^{a}\right)$ or $4 \mid s\left(p_{j}^{a j}\right)$ for some j such that $1 \leqslant j \leqslant r$. If $4 \mid s\left(2^{a}\right)$, then $a \geqslant 3$. Thus $8 \mid m$, a contradiction. If $\overline{4} \mid s\left(p_{j}^{a_{j}}\right)=f\left(p_{j}^{a_{j}}\right)$, then we have another contradiction. Therefore $s(m) / 2$ is odd or $m=1$ or 2 .
Various relationships of equality between integral multiples of $s(m), f(m), s(t)$ and $f(t)$ for arbitrary positive integers m and t can be obtained as corollaries to Theorem 1. We mention only the following:
Corollary 1. If $m>2$ and $t>2$ and
i) $s(m) / 2$ and $s(t) / 2$ are both odd, or
ii) $f(m)$ and $f(t)$ are both odd, or
iii) $s(m) / 2, s(t) / 2, f(m)$ and $f(t)$ are all even, then $s(m)=s(t)$ if and only if $f(m)=f(t)$.
Theorem 2. Let m and t be positive integers such that $m \mid L_{f(m) / 2}$ if $f(m)$ is even and $t \mid L_{f(t) / 2}$ if $f(t)$ is even. Then $s(m)=s(t)$ if and only if $f(m)=f(t)$.
Proof. Let $s(m)=s(t)$. We have $m=1 \mathrm{iff} t=1$ and $m=2$ iff $t=2$, so we may assume that $m>2$ and $t>2$. By Corollary 1 , we need only consider the case; $s(m) / 2=s(t) / 2$ is even and $f(m)$ and $f(t)$ have different parity, say $f(m)$ is odd and $f(t)$ is even. Then by Theorem $1,4 f(m)=s(m)=s(t)=2 f(t)$. Therefore $f(t) / 2=f(m)$ is odd. Since $f(t)$ is even we have by hypothesis that $t \mid L_{f(t) / 2}$. Thus by (3),

$$
F_{f(t)+1} \equiv(-1)^{(f(t) / 2)+1} \equiv 1(\bmod t)
$$

But $t \mid F_{f(t)}$ and $f(t)<s(t)$. This contradicts the definition of $s(t)$. Therefore the case under consideration cannot occur.
Conversely, let $f(m)=f(t)$. As before we may assume that $m>2$ and $t>2$. By Corollary 1 , we need only consider the case; $f(m)=f(t)$ is even and $s(m) / 2$ and $s(t) / 2$ have different parity, say $s(m) / 2$ is odd and $s(t) / 2$ is even. Then by Theorem 1,

$$
2 s(m)=2 f(m)=2 f(t)=s(t)
$$

Therefore $f(t) / 2$ is odd. Since $f(t)$ is even we have $t \mid L_{f(t) / 2}$. Thus by $(3), F_{f(t)+1} \equiv 1(\bmod t)$. But $t \mid F_{f(t)}$ and $f(t)<$ $s(t)$. This is a contradiction and therefore the case under consideration cannot occur.
Corollary 2. Let p and q be arbitrary odd primes and e and a be arbitrary positive integers. Then $s\left(p^{e}\right)=s\left(q^{a}\right)$ if and only if $f\left(p^{e}\right)=f\left(q^{a}\right)$.
Proof. By Theorem 2 we need only show that if $f\left(p^{e}\right)$ is even then $p^{e} \mid L_{f\left(p^{e}\right) / 2}$. We have

$$
F_{f\left(p^{e}\right)}=F_{f\left(p^{e}\right) / 2} L_{f\left(p^{e}\right) / 2} \quad \text { and } \quad p^{e} \nmid F_{f\left(p^{e}\right) / 2} \quad \text { and } \quad\left(F_{f\left(p^{e}\right) / 2}, L_{f\left(p^{e}\right) / 2}=d \leqslant 2<p .\right.
$$

Thus $p^{e} \mid L_{f(p) / 2}{ }^{e}$.
Corollary 3. Let $\phi_{n}(x)=x+x^{2} / 2+\ldots+x^{n} / n$, and let $k(x)=k_{p}(x)=\left(x^{p-1}-1\right) / p$, where p is an odd prime greater than 5 . Then $s\left(p^{2}\right)=s(p)$ if and only if $\phi(p-1) / 2(5 / 9) \equiv 2 k(3 / 2)(\bmod p)$.
[Continued on page 96.]

ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. HILLMAN
University of New Mexico, Albuquerque, New Mexico 87131

Send all communications regarding Elementary Problems and Solutions to Professor A. P. Hillman, 709 Solano Dr., S.E.; Albuquerque, New Mexico 87108 . Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy

$$
F_{n+2}=F_{n+1}+F_{n}, \quad F_{0}=0, \quad F_{1}=1 \quad \text { and } \quad L_{n+2}=L_{n+1}+L_{n}, \quad L_{0}=2, \quad L_{1}=1 .
$$

Also a and b designate the roots $(1+\sqrt{5}) / 2$ and $(1-\sqrt{5}) / 2$, respectively, of $x^{2}-x-1=0$.

PROBLEMS PROPOSED IN THIS ISSUE

B-370 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsy/vania.

Solve the difference equation

$$
u_{n+2}-5 u_{n+1}+6 u_{n}=F_{n} .
$$

B-371 Proposed by Herta T. Freitag, Roanoke, Virginia,
Let

$$
S_{n}=\sum_{k=1}^{F_{n}} \sum_{j=1}^{k} T_{j}
$$

where T_{j} is the triangular number $j(j+1) / 2$. Does each of $n \equiv 5(\bmod 15)$ and $n \equiv 10(\bmod 15)$ imply that $S_{n} \equiv 0$ $(\bmod 10)$? Explain.

B-372 Proposed by Herta T. Freitag, Roanoke, Virginia.
Let S_{n} be as in B-371. Does $S_{n} \equiv 0(\bmod 10)$ imply that n is congruent to either 5 or 10 modulo 15 ? Explain.
B-373 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California, and P. L. Mana, Albuquerque, New Mexico.
The sequence of Chebyshev polynomials is defined by

$$
C_{0}(x)=1, \quad C_{1}(x)=x, \quad \text { and } \quad C_{n}(x)=2 x C_{n-1}(x)-C_{n-2}(x)
$$

for $n=2,3, \cdots$. Show that $\cos [\pi /(2 n+1)]$ is a root of

$$
\left[C_{n+1}(x)+C_{n}(x)\right] /(x+1)=0
$$

and use a particular case to show that $2 \cos (\pi / 5)$ is a root of

$$
x^{2}-x-1=0
$$

B-374 Proposed by Frederick Stern, San Jose State University, San Jose, California.

Show both of the following:

$$
\begin{gathered}
F_{n}=\frac{2^{n+2}}{5}\left[(\cos (\pi / 5))^{n} \cdot \sin (\pi / 5) \cdot \sin (3 \pi / 5)+(\cos (3 \pi / 5))^{n} \cdot \sin (3 \pi / 5) \cdot \sin (9 \pi / 5)\right], \\
F_{n}=\frac{(-2)^{n+2}}{5}\left[(\cos (2 \pi / 5))^{n} \cdot \sin (2 \pi / 5) \cdot \sin (6 \pi / 5)+(\cos (4 \pi / 5))^{n} \cdot \sin (4 \pi / 5) \cdot \sin (12 \pi / 5)\right] .
\end{gathered}
$$

B-375 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California.

Express

$$
\frac{2^{n+1}}{5} \sum_{k=1}^{4}\left[(\cos (k \pi / 5))^{n} \cdot \sin (k \pi / 5) \cdot \sin (3 k \pi / 5)\right]
$$

in terms of Fibonacci number, F_{n}.

SOLUTIONS

TRIANGULAR CONVOLUTION
B-346 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, California.
Establish a closed form for

$$
\sum_{k=1}^{n} F_{2 k} T_{n-k}+T_{n}+1
$$

where T_{k} is the triangular number

$$
\binom{k+2}{2}=(k+2)(k+1) / 2
$$

Solution by George Berzsenyi, Lamar University, Beaumont, Texas.
Using well-known generating functions one finds that

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} F_{2 k} T_{n-k}+T_{n}+1\right) x^{n} & =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} F_{2 k} T_{n-k}\right) x^{n}+\sum_{n=0}^{\infty} T_{n} x^{n}+\sum_{n=0}^{\infty} x^{n} \\
& =\left(\sum_{n=0}^{\infty} F_{2 n} x^{n}\right)\left(\sum_{n=0}^{\infty} T_{n} x^{n}\right)+\sum_{n=0}^{\infty} T_{n} x^{n}+\sum_{n=0}^{\infty} x^{n} \\
& =\frac{x}{1-3 x+x^{2}} \cdot \frac{1}{(1-x)^{3}}+\frac{1}{(1-x)^{3}}+\frac{1}{1-x} \\
& =\frac{2-x}{1-3 x+x^{2}}=\sum_{n=0}^{\infty} F_{2 n+3 x^{n}}
\end{aligned}
$$

Since for $k=0, F_{2 k} T_{n-k}=0$, this implies that

$$
\sum_{k=1}^{n} F_{2 k} T_{n-k}+T_{n}+1=F_{2 n+3}
$$

Also solved by Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, Graham Lord, C. B. A. Peck, Bob Prielipp, A. G. Shannon, Gregory Wulczyn, and the proposer.

A THIRD-ORDER ANALOGUE OF THE F's
B-347 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, California.
Let a, b, and c be the roots of $x^{3}-x^{2}-x-1=0$. Show that

$$
\frac{a^{n}-b^{n}}{a-b}+\frac{b^{n}-c^{n}}{b-c}+\frac{c^{n}-a^{n}}{c-a}
$$

is an integer for $n=0,1,2, \cdots$.
Solution by Graham Lord, Université Laval, Québec, Canada.
For $n=0,1,2$ and 3 the expression, $E(n)$, above has the values $0,3,2$ and 5 , for all integers and demonstrating the recursion relation when

$$
n=0: E(n+3)=E(n+2)+E(n+1)+E(n) .
$$

This latter equation is readily proven since $a^{3}=a^{2}+a+1$, etc. That $E(n)$ is an integer follows immediately, by induction, from this recursion relation.

Also solved by George Berzsenyi, Wray Brady, Clyde A. Bridger, Paul S. Bruckman, Bob Prielipp, A. G. Shannon, Gregory Wulczyn, David Zeitlin, and the proposer.

PENTAGON. RATIO

B-348 Proposed by Sidney Kravitz, Dover, New Jersey.
Let P_{1}, \cdots, P_{5} be the vertices of a regular pentagon and let Q_{1} be the intersection of segments $P_{i+1} P_{i+3}$ and $P_{i+2} P_{i+4}$ (subscripts taken modulo 5). Find the ratio of lengths $Q_{1} Q_{2} / P_{1} P_{2}$.
Solution by Charles W. Trigg, San Diego, California.
Extend $P_{4} P_{3}$ and $P_{4} P_{5}$ to meet $P_{1} P_{2}$ extended in A and B, respectively. Draw $P_{2} P_{5}$.
All diagonals of a regular pentagon of side e are equal, say, to d. Each diagonal is parallel to the side of the pentagon with which it has no common point. So, $A P_{3} P_{5} P_{2}$ is a rhombus. It follows that $A P_{3}=A P_{2}=d=B P_{1}=B P_{5}$.
From similar triangles,

$$
e / d=P_{4} P_{3} / P_{3} P_{5}=P_{4} A / A B=(e+d) /(e+2 d),
$$

so, $d^{2}-e d-e^{2}=0$ and $d=(\sqrt{5}+1) e / 2$.
Then,

$$
Q_{1} Q_{2} / P_{1} P_{2}=P_{4} Q_{1} / P_{4} P_{2}=P_{4} P_{3} / P_{4} A=e /(e+d)=2 /(3+\sqrt{5})=(3-\sqrt{5}) / 2=0.382=\beta^{2} .
$$

Furthermore,

$$
a_{1} Q_{2} / P_{3} P_{5}=\left(Q_{1} Q_{2} / P_{1} P_{2}\right)\left(P_{1} P_{2} / P_{3} P_{5}\right)=(3-\sqrt{5}) /(\sqrt{5}+1)=\sqrt{5}-2=0.236=-\frac{L_{3}-F_{3} \sqrt{5}}{2}=-\beta^{3} .
$$

Also solved by George Berzsenyi, Wray Brady, Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, Dinh Thê' Hüng, C. B. A. Peck, and the Proposer.

GENERATING TWINS

B-349 Proposed by Richard M. Grassl, University of New Mexico, Albuquerque, New Mexico.

Let $a_{0}, a_{1}, a_{2}, \cdots$ be the sequence $1,1,2,2,3,3, \cdots$, i.e., let a_{n} be the greatest integer in $1+(n / 2)$. Give a recursion formula for a_{n} and express the generating function

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

as a quotient of polynomials.
Solution by George Berzsenyi, Lamar University, Beaumont, Texas.
Since the sequence of integers satisfies the relation $x_{n}=2 x_{n-1}-x_{n-2}$, the given sequence obviously satisfies the recursion formula $a_{n}=2 a_{n-2}-a_{n-4}$. The corresponding generating function is
which may be proven by multiplying

$$
\frac{x+1}{x^{4}-2 x^{2}+1},
$$

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

by $x^{4}-2 x^{2}+1$ and utilizing the above recurrence relation.
Also solved by Wray Brady, Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, Graham Lord, David Zeitlin, and the Proposer.

CUBES AND TRIPLE SUMS OF SQUARES
B-350 Proposed by Richard M. Grassl, University of New Mexico, Albuquerque, New Mexico.
Let a_{n} be as in B-349. Find a closed form for

$$
\sum_{k=0}^{n} a_{n-k}\left(a_{k}+k\right)
$$

in the case (a) in which n is even and the case (b) in which n is odd.
Solution by Graham Lord, Université Laval, Quëbec, Canada.
A closed form for the sum in case (a) is $(n+2)^{3} / 8$, and in case (b) $(n+1)\left(n^{2}+5 n+6\right) / 8$. The proofs of these two are similar, only that of case (a) is given. With $n=2 m$,

$$
\begin{aligned}
\sum_{k=0}^{n} a_{n-k}\left(a_{k}+k\right) & =\sum_{\ell=0}^{m}[1+m-\ell]\{[1+\ell]+2 \ell\}+\sum_{\ell=0}^{m-1}[1+m-\ell-1 / 2]\{[1+\ell+1 / 2]+2 \ell+1\} \\
& =\sum_{0}^{m}(1+m-\ell)(1+3 \ell)+\sum_{0}^{m-1}(m-\ell)(2+3 \ell) \\
& =(3 m+1)(m+1)+6 m \sum_{0}^{m} \ell-6 \sum_{0}^{m} \ell^{2}=(m+1)^{3} .
\end{aligned}
$$

Also solved by George Berzsenyi, Paul S. Bruckman, Herta T. Freitag, and the Proposer.

NON-FIBONACCI PRIMES

B-351 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas.
Prove that $F_{4}=3$ is the only Fibonacci number that is a prime congruent to 3 modulo 4.
Solution by Graham Lord, Université Laval, Quëbec, Canada.
As $F_{n} \equiv 3(\bmod 4)$ IFF $n=6 m+4=2 k$, then such an F_{n} factors $F_{k} L_{k}$, and so F_{n} is a prime IFF $F_{k}=1$, that is IFF $n=4$.

Also solved by Paul S. Bruckman, Michael Bruzinsky, Herta T. Freitag, Dinh Thê' Hüng, Bob Prielipp, Gordon Sinnamon, Lawrence Somer, and the Proposer.

ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY
Lock Haven State College, Lock Haven, PennsyIvania 17745

Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathema-tics Department, Lock Haven State College, Lock Haven, Pennsylvania 17745. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, solutions should be submitted on separate signed sheets within two months after publication of the problems.

H-278 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California.

Show

$$
\sqrt{\frac{5 F_{n+2}}{F_{n}}}=\langle 3, \underbrace{1,1, \cdots, 1,6}_{n-1}\rangle
$$

(Continued fraction notation, cyclic part under bar).

H-279 Proposed by G. Wulczyn, Bucknell University, Lewisburg, Pennsy/vania.

Establish the F-L identities:

$$
\begin{equation*}
F_{n+6 r}^{4}-\left(L_{4 r}+1\right)\left(F_{n+4 r}^{4}-F_{n+2 r}^{4}\right)-F_{n}^{4}=F_{2 r} F_{4 r} F_{6 r} F_{4 n+12 r} \tag{a}
\end{equation*}
$$

(b) $\quad F_{n+6 r+3}^{4}+\left(L_{4 r+2}-1\right)\left(F_{n+4 r+2}^{4}-F_{n+2 r+1}^{4}\right)-F_{n}^{4}=F_{2 r+1} F_{4 r+2} F_{6 r+3} F_{4 n+12 r+6}$.

H-280 Proposed by S. Bruckman, Concord, California.
Prove the congruences

$$
\begin{gather*}
F_{3 \cdot 2 n} \equiv 2^{n+2}\left(\bmod 2^{n+3}\right) \tag{1}\\
L_{3} \cdot 2^{n} \equiv 2+2^{2 n+2}\left(\bmod 2^{2 n+4}\right), n=1,2,3, \cdots \tag{2}
\end{gather*}
$$

SOLUTIONS

SUM-ARY CONCLUSION
H-264 Proposed by L. Carlitz, Duke University, Durham, North Carolina,
Show that

$$
\sum_{i=0}^{m-r}\binom{s+i}{i}\binom{m+n-s-i+1}{n-s}=\sum_{i=0}^{n-s}\binom{r+i}{i}\binom{m+n-r-i+1}{m-r}
$$

Solution by P. Bruckman, Concord, Calif.
Let

$$
\begin{equation*}
\theta(m, n, r, s)=\sum_{i=0}^{m-r}\binom{s+i}{i}\binom{m+n-s-i+1}{n-s} \tag{1}
\end{equation*}
$$

(2)

$$
F(w, x, y, z)=\sum_{m, n=0}^{\infty} \sum_{r=0}^{m} \sum_{s=0}^{n} \theta(m, n, r, s) w^{m} x^{n} y^{r} z^{s} .
$$

Then

$$
\begin{aligned}
F(w, x, y, z) & =\sum_{m, n, r, s=0}^{\infty} \theta(m+r, n+s, r, s) w^{m+r} x^{n+s} y^{r} z^{s} \\
& =\sum_{m, n, r, s=0}^{\infty} \sum_{i=0}^{m}\binom{s+i}{i}\binom{m+r+n-i+1}{n} w^{m} x^{n}(w y)^{r}(x z)^{s} \\
& =\sum_{m, n, r, s, i=0}^{\infty}\binom{s+i}{i}\binom{m+r+n+1}{n} w^{m+i} x^{n}(w y)^{r}(x z)^{s} \\
& =\sum_{m, n, r, s, i=0}^{\infty}\binom{-s-1}{i}\binom{-m-r-2}{n} w^{m}(-x)^{n}(w y)^{r}(x z)^{s}(-w)^{i} \\
& =\sum_{m, r, s=0}^{\infty}(1-w)^{-s-1}(1-x)^{-m-r-2} w^{m}(w y)^{r}(x z)^{s} \\
& =(1-w)^{-1}(1-x)^{-2} \sum_{m, r, s=0}^{\infty}\left(\frac{w}{1-x}\right)^{m}\left(\frac{w x}{1-x}\right)^{r}\left(\frac{x z}{1-w}\right)^{s} \\
& =(1-w)^{-1}(1-x)^{-2}\left(1-\frac{w}{1-x}\right)^{-1}\left(1-\frac{w y}{1-x}\right)^{-1}\left(1-\frac{x z}{1-w}\right)^{-1}
\end{aligned}
$$

or
(3)

$$
F(w, x, y, z)=(1-w-x)^{-1}(1-x-w y)^{-1}(1-w-x z)^{-1} .
$$

From (3), the following symmetry relation is evident:
(4)

$$
F(w, x, y, z)=F(x, w, z, y) .
$$

Hence,
(5)

$$
F(w, x, y, z)=\sum_{m, n=0}^{\infty} \sum_{r=0}^{m} \sum_{s=0}^{n} \theta(m, n, r, s) x^{m} w^{n} z^{r} y^{s}
$$

In the last expression, we may make the following substitutions:

$$
\begin{equation*}
m \rightarrow N, \quad n \rightarrow M, \quad r \rightarrow S, \quad s \rightarrow R . \tag{6}
\end{equation*}
$$

Then

$$
F(w, x, y, z)=\sum_{N, M=0}^{\infty} \sum_{S=0}^{N} \sum_{R=0}^{M} \theta(N, M, S, R) x^{N} w^{M} z^{S} y^{R} .
$$

Now reversing the orders of summation and converting capital letters to small letters again, we obtain:

$$
\begin{equation*}
F(w, x, y, z)=\sum_{m, n=0}^{\infty} \sum_{r=0}^{m} \sum_{s=0}^{n} \theta(n ; m, s, r) w^{m} x^{n} y^{r} z^{s} \tag{7}
\end{equation*}
$$

Now comparing coefficients of (2) and (7), treating F as a function of each of its variables, in order, we conclude
(8)

$$
\theta(m, n, r, s)=\theta(n, m, s, r) . \quad \text { Q.E.D. }
$$

Also solved by D. Beverage and the Proposer.

ANOTHER CONGRUENCE

H-265 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California.
Show that

$$
F_{2}^{3} \cdot 3^{k-1} \equiv 0\left(\bmod 3^{k}\right), \text { where } k \geqslant 1
$$

Solution by L. Carlitz, Duke University, Durham, North Carolina.
Let p be an odd prime, $p \neq 5$ and let m be a positive integer such that $p \mid F_{m}$. We shall prove that

$$
\begin{equation*}
F_{m p}^{k-1} \equiv 0\left(\bmod p^{k}\right) \quad(k=1,2,3, \cdots) \tag{*}
\end{equation*}
$$

Proof of (*). We have (Binet representation)

$$
F_{n}=\frac{a^{n}-\beta^{n}}{a-\beta}, \quad F_{p n}=\frac{a^{p n}-\beta^{p n}}{a-\beta},
$$

so that

$$
\frac{F_{p n}}{F_{n}}=\frac{a^{p n}-\beta^{-n}}{a^{n}-\beta^{n}} \quad\left(a^{n}-\beta^{n}\right)^{p-1} \quad(\bmod p)
$$

Thus
(**)

$$
\frac{F_{p n}}{F_{n}} \equiv(a-\beta)^{p-1} F_{n}^{p-1} \quad(\bmod p)
$$

Now assume that $\left({ }^{*}\right)$ holds up to and including the value k. By $\left({ }^{* *}\right)$,

$$
\begin{gathered}
\frac{F_{m p^{k}}}{F_{m p^{k-1}}(a-\beta)^{p-1} F_{m p^{k-1}}^{p-1} \equiv 0(\bmod p)} . \\
F_{m p^{k}} \equiv 0\left(\bmod p F_{m p^{k-1}}\right) .
\end{gathered}
$$

Hence, by the inductive hypothesis,

$$
F_{m p}^{k} \equiv 0\left(\bmod p^{k+1}\right)
$$

This evidently completes the proof.
It is known that the smallest positive m such that $p \mid F_{m}$ is a divisor of $1 / 2\left(p^{2}-1\right)$. It follows that

$$
F_{M} \equiv 0\left(\bmod p^{k}\right), \quad\left(M=1 / 2\left(p^{2}-1\right) p^{k-1}, \quad k>1\right)
$$

Indeed, if $p \equiv \pm 1(\bmod 5)$, then

In particular we have

$$
F_{M} \equiv 0\left(\bmod p^{k}\right) \quad\left(M=(p-1) p^{k-1}, k>1\right)
$$

$$
F_{4 \cdot 3^{k-1}} \equiv 0\left(\bmod 3^{k}\right)
$$

Also solved by P. Bruckman and D. Beverage.

IDENTIFY!

H-266 Proposed by G. Berzsenyi, Lamar University, Beaumont, Texas.
Find all identities of the form

$$
\sum_{k=0}^{n}\binom{n}{k} F_{r k}=s^{n} F_{t n}
$$

with positive integral r, s and t.

Solution by P. Bruckman, Concord, California
(1)

$$
\sum_{k=0}^{n}\binom{n}{k} F_{r k}=\frac{1}{\sqrt{5}} \sum_{k=0}^{n}\binom{n}{k}\left(a^{r k}-\beta^{r k}\right)=\frac{\left(1+a^{r}\right)^{n}-\left(1+\beta^{r}\right)^{n}}{\sqrt{5}} .
$$

If this expression is to equal $s^{n} F_{n t}$, for some natural triplet (r, s, t), it must hold for all non-negative n. The case $n=0$ yields no information, merely confirming the trivial identity $0=0$. The cases $n=1,2$ and 3 yield, respectively:

$$
\begin{gather*}
F_{r}=s F_{t} ; \tag{2}\\
2 F_{r}+F_{2 r}=s^{2} F_{2 t} ; \\
3 F_{r}+3 F_{2 r}+F_{3 r}=s^{3} F_{3 t} .
\end{gather*}
$$

(4)

Using (2) and (3), we obtain:
or, since $r>0$,
(5)

$$
\begin{gathered}
2 F_{r}+F_{r} L_{r}=s^{2} F_{t} L_{t}=s F_{r} L_{t}, \\
L_{r}+2=s L_{t} .
\end{gathered}
$$

Finally, using (2), (4) and the identity:

$$
F_{3 m}=F_{m}\left(L_{m}^{2}-(-1)^{m}\right)
$$

we have:

$$
3 F_{r}+3 F_{r} L_{r}+F_{r}\left(L_{r}^{2}-(-1)^{r}\right)=s^{3} F_{t}\left(L_{t}^{2}-(-1)^{t}\right)=s^{2} F_{r}\left(L_{t}^{2}-(-1)^{t}\right)
$$

dividing throughout by F_{r} and using the result of (5), we obtain:

$$
3+3 L_{r}+L_{r}^{2}-(-1)^{r}=\left(L_{r}+2\right)^{2}-s^{2}(-1)^{t}
$$

or upon simplification:
(6)

$$
1+(-1)^{r}+L_{r}=s^{2}(-1)^{t}
$$

We consider two mutually exclusive and exhaustive cases:

CASE I: r is even

From (5) and (6),

$$
\begin{aligned}
L_{r}+2 & =s^{2}(-1)^{t}=s L_{t} ; \\
s & =(-1)^{t} L_{t} .
\end{aligned}
$$

hence, since $s>0$,
Since also t and $L_{t}>0$, thus t is even, and $s=L_{t}$. Then by (2),

$$
F_{r}=L_{t} F_{t}=F_{2 t}
$$

which implies $r=2 t$. We have shown that the triplet $\left(4 m, L_{2 m}, 2 m\right)$ is a solution of the desired identity for $n=0,1,2,3$. It remains to verify this as a solution for all n. Substituting $r=4 m$ in the right member of (1), that expression becomes:

$$
\frac{1}{\sqrt{5}}\left\{\left(1+a^{4 m}\right)^{n}-\left(1+\beta^{4 m}\right)^{n}\right\}=\frac{1}{\sqrt{5}}\left\{a^{2 m n}\left(a^{2 m}+\beta^{2 m}\right)^{n}-\left(a^{2 m}+\beta^{2 m}\right)^{n} \beta^{2 m n}\right\}=L_{2 m}^{n} F_{2 m n}
$$

which is of the desired form, with $s=L_{2 m}, t=2 m$. Hence,

$$
\begin{equation*}
(r, s, t)=\left(4 m, L_{2 m}, 2 m\right), \quad m=1,2,3, \cdots \tag{7}
\end{equation*}
$$

is a sequence of solutions, the only ones yielded by this case.

CASE II : r is odd

From (6),

$$
L_{r}=s^{2}(-1)^{t}
$$

Hence, t must be even and $L_{r}=s^{2}$. Substituting this result in (5), we obtain: $s L_{t}-s^{2}=2$, which implies $s \mid 2$, and so $s=1$ or 2 .

SUBCASE A : $s=1$

Thus, $L_{r}=1^{2}=1$, and $r=1$. Thus, by (2), $F_{1}=1=F_{t}$. Since t must be even, thus $t=2$. Hence, $(1,1,2)$ is another possible solution. Since

$$
\frac{1}{\sqrt{5}}\left\{(1+a)^{n}-(1+\beta)^{n}\right\}=\frac{1}{\sqrt{5}}\left\{a^{2 n}-\beta^{2 n}\right\}=F_{2 n}=1^{n} F_{2 n},
$$

thus $(1,1,2)$ is a valid solution, the only one yielded by this subcase.

SUBCASE B : $s=2$

Then $L_{r}=2^{2}=4$, so $r=3$. Thus, by (2), $F_{3}=2=2 F_{t}$. As in Subcase A above, $t=2$. This yields the possible solution ($3,2,2$). Now

$$
\left(1+a^{3}\right)=2 a+2=2 a^{2} ;
$$

similarly, $\left(1+\beta^{3}\right)=2 \beta^{2}$. Hence,

$$
\frac{1}{\sqrt{5}}\left\{\left(1+a^{3}\right)^{n}-\left(1+\beta^{3}\right)^{n}\right\}=\frac{2 n}{\sqrt{5}}\left(a^{2 n}-\beta^{2 n}\right)=2^{n} F_{2 n}
$$

which shows that $(3,2,2)$ is indeed a valid solution, the only one yielded by this subcase.
Therefore, all solutions (r, s, t) of the desired identity are given by (7), and also by ($1,1,2$) and ($3,2,2$).
Also solved by the Proposer.
Late Acknowledgements:
P. Bruckman solved H-258, H-259, H-262, H-263.
S. Singh solved H-263.
[Continued from page 87.]
Proof. From Corollary 2 and $[4, p .205]$ we have $s\left(p^{2}\right)=s(p)$ if and only if $f\left(p^{2}\right)=f(p)$ if and only if

$$
\phi(p-1) / 2(5 / 9) \equiv 2 k(3 / 2)(\bmod p)
$$

From Wall's remark we note that $\phi(p-1) / 2(5 / 9) \equiv 2 k(3 / 2)(\bmod p)$ for all primes p such that $5<p<10,000$.

REFERENCES

1. John Vinson, "The Relation of the Period Modulo m to the Rank of Apparition of m in the Fibonacci Sequence," The Fibonacci Quarterly, Vol. 1, No. 2 (1963), pp. 37-45.
2. D. D. Wall, "Fibonacci Series Modulo m," Amer. Math. Monthly, 67 (1960), pp. 525-532.
3. H-24, The Fibonacci Quarterly, Vol. 2, No. 3 (1964), pp. 205-207.
4. D. W. Robinson, "The Fibonacci Matrix Modulo m," The Fibonacci Quarterly, Vol. 1, No. 2 (1963), pp. 29-36.

SUSTAINING MEMBERS

*H. L. Alder	D. R. Farmer	*James Maxwell
*J. Arkin	Harvey Fox	R. K. McConnell, Jr.
D. A. Baker	E. T. Frankel	*Sister M. DeSales McNabb
Murray Berg	F.B. Fuller	L. P. Meissner
Gerald Bergum	R. M. Giuli	Leslie Miller
J. Berkeley	*H. W. Gould	F. J. Ossiander
George Berzsenyi	Nicholas Grant	F. G. Rothwell
C. A. Bridger	William Greig	C. E. Serkland
John L. Brown, Jr.	V. C. Harris	A. G. Shannon
Paul Bruckman	A.P. Hillman	J. A.Schumaker
Paul F. Byrd	*Verner E.Hoggatt, Jr.	D. Singmaster
C. R. Burton	Virginia Kelemen	C. C. Styles
L. Carlitz	R.P. Kelisky	L. Taylor
G. D. Chakerian	C. H. Kimberling	H. L. Umansky
P. J. Cocuzza	J. Krabacker	*L. A. Walker
M. J. DeLeon	J. R. Ledbetter	Marcellus Waddill
Harvey Diehl	George Ledin, Jr.	Paul Willis
J. L. Ercolano	*C. T. Long	C. F. Winans
*Charter Members	D. P. Mamuscia	E. L. Yang

*Charter Members

ACADEMIC OR INSTITUTIONAL MEMBERS

DUKE UNIVERSITY
Durham, North Carolina
SACRAMENTO STATE COLLEGE
Sacramento, California
SAN JOSE STATE UNIVERSITY
San Jose, California

ST. MARY'S COLLEGE
St. Mary's College, California
UNIVERSITY OF SANTA CLARA
Santa Clara, California

WASHINGTON STATE UNIVERSITY
Pullman, Washington

THE BAKER STORE EQUIPMENT COMPANY
THE CALIFORNIA MATHEMATICS COUNCIL

BINDERS NOW AVAILABLE

The Fibonacci Association is making available a binder which can be used to take care of one volume of the publication at a time. This binder is described by the company producing it as follows:
"...The binder is made of heavy weight virgin vinyl, electronically sealed over rigid board equipped with a clear label holder extending $23 / 4$ " high from the bottom of the backbone, round cornered, fitted with a $1 \frac{1}{2}$ ', multiple mechanism and 4 heavy wires."

The name, FIBONACCI QUARTERLY, is printed in gold on the front of the binder and the spine. The color of the binder is dark green. There is a small pocket on the spine for holding a tab giving year and volume. These latter will be supplied with each order if the volume or volumes to be bound are indicated.

The price per binder is $\$ 3.50$ which includes postage (ranging from 50ϕ to 80ϕ for one binder). The tabs will be sent with the receipt or invoice.

All orders should be sent to: Professor Leonard Klosinski, Mathematics Department, University of Santa Clara, Santa Clara, Calif. 95053.

