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MORE FIBONACCI FUNCTIONS

M. W. BUNDER
Wollongong University College, The University of New South Wales, Wollongong, N. S. W., Australia

Recently there have appeared in this Quarterly a number of generalizations of the Fibonacci number F,, to func-
tions F(x), defined for all real x, and, in general, continuous everywhere.
For such a generalization two properties are particularly desirable:

(A) F(x) = F, for x = n anatural number
and
(B) F(x +2) = F(x)+ F(x +1).

Spickerman [6] proved some general properties of functions satisfying (B).

Of the various generalizations Halsey’s [1] does not generally satisfy (B) (see [7]) and even if defined for all real x,
is not continuous at x = 7.

Heimer's function [2] satisfies (A) and (B) but is quasilinear. Eimore’s function [3] is not a generalization in the
above sense, it is a function of a natural number variable and a real variable.

Parker’s [4] and Scott’s [5] functions which are identical are “smooth curves,” satisfy both (A) and (B) but can
be generalized further.

Both take

Fix) = Re (xx—/—uxrx) SN M eosmx
VT Vi)

\ = L#5
>

It seems, however, that a lot is lost in taking only the real part of
N — (1N
V(5)
Clearly this complex function itself (we will call it £, ) satisfies (A), and also (B) for any complex number x. Also

as the real part of £, satisfies (B) so does the imaginary part and any linear combination of these.
If we let

where

=\ sin mx
Filx) = Re(Fy), Falx) = I(Fy) = ==—"""= ,
1 x 2 x \/(5_)
for x real, then F;(x) +aF »(x) satisfies (A) and (B) for each real number a.
Scott gives a number of identities concerning Fy(x) and also concerning the corresponding Lucas function which
we will call
Li(x) = Re(Ly) = Re\*+(=1)*"\") = XX + N\ cos 7x .

Of course /(Lx) = —F(x)\/5.
We now list some easily derivable properties of F2(x) some of which relate it to F;(x):

Falx) - Fal—x) = ST Folr 1) Fyle—1) = F20x),

Falx+%4) - Falx %) = Fa(2x) Q20X Fx+3) . Fplx - %) = —F2(x) cot’nx,
2J73)
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: . (nl2)-1pn
Filx) = 22X 4 Fp(x) cotmx, Fa(nx) = S0ATX J F2(x)
5F 2t s mx (~1)"

Another possible generalization of £, for x = n is|F,| , which we will call G{(x).
Thus

Gilx) = |Fyp| = VP + Falx) = —L_ /A% — 7 cos mx # A%
160 = 15| NG

Another such function is
Gylx) = JF3(x)— F(x) = - VA2X — 2 cos mx + N2 cos 271X .
V(3)

Clearly
kGi(x)+(1—-k)Go(x) = F,
when x = n for all real £.
The following are some properties of these functions:

G2(x+1)=GI(x) = GZ(x+ %) - 2/5sin mx +4/5 cos mx
612(2)() = 56;’()(} +4 cos 7TX612(X)
G2(x) = (1/5)(L1(2x) - 2 cos mx)
GZix) - G2(x) = 2F2(x).
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PELLIAN DIOPHANTINE SEQUENCES

A. G. SHANNON
The New South Wales Institute of Technology, Broadway, Australia

1. INTRODUCTION

The so-called Pellian Diophantine equation is
ij —-foz =1
which can be generalized to 5
lXZZ—mX12| =1,
or

X22 MX{12
X12 X22

abs.

A generalization of this is in turn provided by

Xrr mXgy MX2y - MXpp_ g
Xy X mx o MXy g

(1.1) abs. r-1,r " 1r rr-2| = 1.
X1r X2r X3r Xer

The aim of this paper is to construct a solution for this generalized Pellian Diophantine equation. The approach
adopted is less general than that of Bernstein [1] but is, in a sense, more direct. For encouragement with an earlier
draft of this paper thanks are due to Bernstein, whose works on pyramidal Diophantine equations [3] and the Jacabi-
Perron algorithm [2] should be seen for further extensions. We designate the determinant in Eq. (1.1) by

D(m;’xjr, ttty, er} .
2. SEQUENCES
We define sequences {Ws(rr); }which satisfy the arbitrary order linear homogeneous recurrence relation

r
(r) - i\ pr-iyy(r)
(2.1) W) = Zi (].)D we o o>
i=
where
D= [w], wan rth-degree irrational:

w' =m

=D"+d, mDd e Z,,
with boundary conditions determined by

r) s<n+l
Ws,i = O5nt1 ‘I 1<n<r
W(r) = 05_1
s,r
(1) = py(r) ’
(2.2) W = oW W,

The initial values WS(,’), s > 2, have not been specified because they are not used in this development. They are readi-
ly determined from Eqgs. (2.1) and (2.2) if required.
99



100 PELLIAN DIOPHANTINE SEQUENCES [APR.

The table provides some examples of Ws(i)and W(j)
Each of the sequences can be expressed in terms of the fundamental sequence [8], {WM }

51

—1 ~f—=1 T

WS(Z: % <S] )DS] Wgﬁl—]
=0

Proof. When's = 1,2, we have respectively
w® = w™  and W(’) = DW(') ()
1,n 1,n In-1"

Suppose the result is true fors=17,2, - ¢

t-1
o) et~ [t—1\ (pti t-j-1
w = pw® ™ - L( ; ){g leti_jH] j Wger B

t+1 t,n t,n-1
j=0
! t— 1 t—1 (1) d tjy(r)
- - - *] T = Ty,
- SA( ) (o ipetw - X (Fe W,
=0 j=0
as required
3. LEMMAS
We define matrices M, VV,, :
0 1 g - 0
g 0 7 g
M= ,
o 0 g - 1
1 0 ’2)02 o
tr
N, = [Uﬁp] 1<k, p<r.
Lemma 1.
Nprr = M™N¢ .
Proof. The result clearly follows from induction an n, since whenn = 7,
0 1 .. ol ro 7 . g7
M/V1 = e - .
g 0 - 17 0 ) g - (}7
T~ r 13
_7 0 - L7 WZ,r+1 Wr,r+1
¥ g .. W(f)
=1 (f) =Ny,
Pl I
T r
Wl r+2 WZ r+2 W£7+Z
Nz = MN,

= MZIV1, and so on.
det, = (1" 1),
detM = (=7)™1 = detN;.
det N, = (—1)(V(n-1)1 7)f‘

r -

r—k k (1 r— k-1

("7 o), - z 20( AL
=

Lemma 2.

Proof.
= (- 7)n(r—1)

Lemma 3. >
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Proof. We consider coefficients of w:

Theorem. Fori k=

r~k~-1

=0

are solutions of the Pellian Diophantine equation

Proof. Lemma 3 becomes

(4.1)

(—7)n(r-1) =

det V" =

101

r—-k-1
r— k —1 - k —1
Z ( )D]W1(4L)1 ﬂ+]+k+1 Z (r )D](DWM jrk+1 W{y{+]+k)
=0
e k= 1\ i)
_ r—k— j T r—k— T
R . { ( )D W: ntjtk+1 +( )Dl z,n+]+k}
=
o k-1 k-1 (r)
_ r—k— r—k — T
- Z {< j—1 ) < j )}D]th+1+k
j=0
ot (1)
- i ;
= < i )D itk as required .
=0
4. RESULT
7[ 2] “'I ,'I
r-k )
13
Xik = z ( j ) ] 1n+]+k
j=0
= D(m,; x1r, "'/er/-
Lok S ke
> owhxig = 20 W Xk
k=1 k=1
w( (r) (r)
1n+1 WZ,n+1 rntl
(r) (r) (r)
Wl,n+2 WZ,n+ Wr,n+2
(r) (r) (r)
W1,n+r WZ,n+r Wr,n+r
r-1 r
w() r—1\piy(r) w(™ r—1\piy(r)
Winer * Z( i )DJ 1,n#j+1 1{,n+1 +Z( ) W, i+t
=1 =1
W) =2\ i) W) - (r)
T r— T T i
1n+2 +‘ - < )D]WI,n+]+2 r,n+2 Z ( )D Wr,n+k+2
= =1
(r) (r) r (r)
W1 ntr-1 DWI,n+r W(r)z+r-1 +DWr n+r
w(r) w()
1 ntr r,n+r
X11  X21 Xr1
X
12 XZZW Xr2| _ D(m,'x1,, X,,)
Xir X2r Xrr
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by equating coefficients of wk in Eq. (4.1).

5. CONCLUSION
Consider, as examples: Whenr =2, m =2, we have

D = [\/5] =17, and X322 = Wgz) Xq2 = W(z)

Whe 7 n+2’ 1n+2"
nn=1,

X2 = Wg’zg =3, Xxq2= Wl(z_g =2
which satisfy , 5 ’
whenn =0, Y22 ™Mz " 4

X322 = ngzé =1 Xxq12= Wgzg =1,
which satisfy , 5 ’

X5, =MX,, = —1.

The relevant recurrence relation is
w?@) = 2p0w(2)  +w(2)
$,n s,n-1 s,n-2 "
Whenr =3, m = 9, we have

D=1[A3] =2 ad x33= Wg,}iﬂ’ X23 = ngn)ﬁ’ X13 = vaiﬂ :

Whenn =0, 5
X33 = Wg,j) =4, x33 = Wg‘g =2, Xy3 = Wg‘g =1,
which satisfy

2

S +mxl +m xf3—3mx13x23)(33 =1.

X33 23

The relevant recurrence relation is
w3 = 302w +30w3)  + w3 n>3.
N s,n~1 s,n-2 s,n-3’

There is scope for further research in generalizing the properties of the second-order Pellian sequence discussed by
Horadam [5]. The use of the Jacobi-Perron Algorithm in this context should be studied first [2]. The other way of
generalizing the Pellian equation, namely,

x"—my" =1,

is still an open and challenging question as Bernstein [4] remarked.
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SOME RESULTS FOR GENERALIZED
BERNOULLI, EULER, STIRLING NUMBERS

L. TOSCANO
Messina, Italy

SUMMARY

The present_paper is a continuation of researches begun by the author in previous publications [3, 4, 5] on three
classes of generalized Bernoulli, Euler, Stirling numbers. And here, of course, will be proved some additional inter-
esting results.

1. GENERALIZED BERNOULLI, EULER NUMBERS AND POLYNOMIALS

The generalized Bernoulli, Euler numbers in question, and the related polynomials, are defined by the series

oo

(1.1) flhw) = —————— n;
(7+Wt}h/“' z—: o

’

1/
(1.2) ol ) = 2w

n;pw ’
(1+Wt)2h/w+7 =0 h ”I

x/w had n
(1) Fixghw) = M0 o5 gt T
(1+wt)" — 1 n

x/w g n
(1.4) ot hw) = LW _ 5 ) L

(1+wt)"" +1 .2

where / and w are real parameters.
These series, for a correct treatment, will be considered in the neighborhood of the origin.
The explicit expressions of B,, 4, ,, (x) forn =0, 1, ---, 5 are

BO,h,w(X) = 71
Binwix) = %(2x —h +w),

Bamuwlx) = xtx—h)+ Lh? —w?),
B3 wix) = Jex(x —h)(2x —h — 3w) — %wlh? —w?),
By wlx) = xlx = h)(x = 2w)(x — h — 2w) - 310 h? —w?)(h? - 19w?)

Bspuwlx) = xtx—hl> = 3 h+5wix? + L(h? + 450w+ 110w%)x + T 17 = 52 hw?

75w3] + w(hZ 2)(,,2 —9w2).

And these can be deduced by the recurrent relation [4]
103
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where (a)g =1, (a),=ala +1) --(a+r—1)
The explicit expressions of £,, 7, ., (x) forn=0, 1, -, 5 are

EO;h,w(X) =h,
Eqwlx) = Bh(2x—h),
Ezpwlx) = hx? —hih +w)lx + %h%w,

Espwlx) = hx’ - 521 hih +2w)x? + hw(3h + 2w)x + 477 h2(h? - aw?),

Egpwlx) = hx* = 2n(h + 3w)x> + hw(9h + 11w)x? + h(h? = 11hw? - 6w’ )x
- % h2wih? - 2w?),

Espuwlx) = hx® - g hih +4wix* + 5hw(dh + Twix> + % hih? - 21hw? - 20w )x?

— 2hw(5h> - 25hw? — 1207 )x — % h2n* - ‘325 h2w? + 24m*).
And these can be deduced by the recurrent relation [4]

n-1

2Epiwix) + 3y ( :‘) (~w)" " (=x W)y vy (X) = 2h(—w)" (—x /W)y, ,
r=0

n > 0. For relations with generalized Bernoulli, Euler, polynomials, it is easy to see that generalized Bernoulli, Euler,
numbers can be derived by the formulas

Buihw = Bn;h,wm}/ Evhw = ann;h,w/Z(Z’}-
The first six values of £,,,4, ,, are given by
Eow = h, Einw= h(1—nh),
Eow = h(1=2h) T hth—T)w,
E3pw = hih—1)(2h% +2n — 1)+ 30(2h — 1)w + 2h(1 = hw? |
Eq;nw = h(2h — 1)(4h2 + 20 — 1) + 6h(1 = h)(2h2 +2h — 1)w + 1Th(1 - 2h)w? + 6h(h — T)w?
Espaw = 40(1—h)(4h* +4n3 —nZ —h — 1)~ 10(8n* — 4% + 1)w + 35h(h — 1)(2h2 + 2h — 1)w?
+50(2h — 1)w? +24h(1 — hjw?* .
Moreover, it will be useful to estimate also the expression
Funw = 2"Enhwi2(h/2) .
And here, of course, we introduce the particular expressions forn =0, 1, ---, 5:
FO;h,w =h, F1;h,w =0, FZ;h,w = —h3;
Fagw = 307w, Fap = h2(502 —11w2),  Fsp, = —500°wih? —w?).
The theory of generalized Bernoulli, Euler, numbers and polynomials was first investigated by R. Lagrange [1],
L. Tanzi Cattabianchi [2], and later extensively in the author’s paper [4].

If h =1, w=0, the numbers B, , ,,,, £, ,, and the polynomials 8,4, ., (x), Ey; 1, 1 (x), reduce to the ordinary
Bernoulli, Euler, numbers and polynomials, generally defined by the generating expansions

e t”
(1.5) —— = > By o |t| < 2m,
e"—1 n=0
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t > n
(1.6 2 -y el <,
e t+7 =0 n!
tetx > t"
(1.7) L~ 3 B0, e < 2m,
P =0 n!
tx o n
(1.8) el DAL T )
et+1 =0 n!

2. GENERALIZED STIRLING NUMBERS
The ordinary Stirling numbers of the first and second kind s,, ,, S, ,, are defined by the initial values
Smq = (1" n=1)1,  sp. =1,
St = Sun = 1,

]

and the recurrences
Snyr = Sn-1,r-1— (n—1)su_1,r, 1T <r<n,

Snr = Sn-1,r-1 *rSn-1,r, T <r<mn,
with

Sn,0 = 0, Su0 =0,

Sur =0, Su,+ = 0, providedr > n.

In our paper [3], they have been generalized with the coefficients agur)"satisfying the recurrence

31%) = ar(z%,rq —[n+rlu—-1)- I]B,Qf)“, 1<r<n,
with
a,gf% = (=1 )y, ar(l% =1,
35,45 =0, a,(ff,) = 0 providedr > n.

And the particular expressions of ar(:‘r) forn=1,2,..,5 r=1,2,-,5 are
aff =1, aff=-u =1,
af) = (wy, a4 =-3u, =1,
af) = ~(u)s,  af4 = ul7u+4),  af§=-6u, a4 =1,

ag”‘; = (u)y, ag”‘; = —bufu + 1)(3u+2), a ?3) = Sufbu +2),

ag‘g = —10u, a_g,‘_g = 1.

Our paper [3] presents an extensive treatment of the coefficients ag",), and it is interesting to note here that

- r
(2.1) a,(l”r) - (=1 A x(x), provided x =0,
R (TR ) M7 A

where A x is the descending difference defined by the relation Zu\xf(x} =f(x +v) — f(x),
v

(2.2) S0 - 1" 5 (-1)% (" tku — &),
T = 1) kz=:1 (k)

105



106 SOME RESULTS FOR GENERALIZED [APR.

n
(2.3) (~1)"tx)y = 3 8l ~ 7)'(7{7/) E
r=1 :
n
(2.0 DM = S 2l gl= 1 (52E)
= n+1,r+1 1—u ,
(2.5) a") = 3 s kS l1—u)*,
’ k=r
from which
(2.6) all) =5,
(2.7) Jim (1 —u) M) =S,
0) _)0r <n,
(2.8) ag’r) _{“ e
2) _ n-r nl —1
(2.9) o) = - i ()
—1) _ 17 n! r
(210) ar(w) = ;‘FI(VL——Y) s r = n/Z,
2.11) (1/’) = (—7}""r'(2n——r——7}! n—1 .
( an)r 221’[—27’ (n _ 7}/ ( r— 1)

For references and applications of the coefficients a,g’,‘,) to the operators satisfying the condition of permutableness
of the second order, see the more recent our paper [5].

3. PARTICULAR EXPANSIONS. n®* DERIVATIVE OF
hiw | .

ylt) = ——————————(”Wﬁh *i
(1+wt)hw _

From (1.5), placing to the left member the term 1, —¢/2 under the summation sign of the right member, we find,
as it is well known, the expansion

, where i?=-1.

2 2n+1

(3.1) tant = Y (~1)"27"*2(22*2 _1)py ., L , \t| < n/2.

n=0 (2n +2)!

Now, an expansion analogous to (3.1) will be derived from (1.1), proceeding similarly. First of all we have
————”;— — 1+ %(h-w)t = ——;— (2t + [(h — w)t = 2] [(1 +wt)"* — 1])
(1+wt)w _ 20(1+wt)h — q]

hai r
= Z Br;h,w :'.‘, .
r=2

At once, changing at first t with 4, w with w/4, and after t with 2t, w with w/2, we obtain the expansions
7
2(1 +we)*lw _ g

(8ht + [4ht — wt — 2] [(1 +wt)*1w — 1])

N L2 t”
= Z 2 rBr;h,w/4 PEE
r=2 )
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! 2hw ~ "
(4ht + [2ht —wt = 2] [(1 +wt) Y — 1]) = 2Bt w2 =,
2[(1 +Wt}2h/w -1 r:z; rh,w/ P
from which it follows that
): (2% By w4 — 2" By w/z) jh (8ht + [4ht — wt — 2] [(1 +wt)*h1¥ _ 1]
= r! 2[(7 +we) v _ q)

— antl(1 +wt) " 4 1] — [2ht — we = 2] [(1+w0) /¥ — 1))
_htl(1+wt)?PY 112 pel(1 +we)PRv _ q)
(1 +wt) ™1 g (1+wt)?h 4 1

hl(1+wt)?v _ q) - I ) "1
3.2) )Zh/w P né\:; 242 Bni2;nwi4 — 3n+2;h,w/2) n+2)1 "

(1+wt
Moreover by (1.4), replacing x by /2, w by w/2, t by 2t, we obtain the other expansion

oo

2h(1 +wt) n "
(3.3) B 2"E i wia(h/2) —,
. (7+Wt}2h/w+] 72} nh,w/ nl

and since
ho, (1+wt)?h 1 2h(1 +wt* hf(1+wt)" T 4]
oremt)? 1 (1ew)?M Y 2 g il +wt)? )
Sh (1w 4
T 1wt

we deduce thus the interesting expansion

oo

h o (1+wt) 1 +i <~ 272 iz "
(34)1 (7+Wt)h/w - Z;; i (2 Bn+2hw/4 Bn+2hw/2) (n+2}/ ; nh,w/Z(h/2} E

After this expansion and for the following, it will be to estimate the n t derivative of
(1wt 4
ylt) = ———h——

(1 +wt)hw

Now we consider two continuous and derivable functions y = f(u), u = o(t), and the formula for derivatives of a com-
posite function

. dﬂ k
d"y _ Z (=1)" _:KZ (_7)k(r rkﬁ, n>40.
dt" r! du” p=1 t

With the assumption
u=gft) = (1+wt),

y = flu) = Di—’l +1,

we arrive at

d_”zz n [(‘7}' 2/(—7} r! Z ( 7}]6() r—k(_wln(:/(_/?) uk-nu)/h]
w n

/
r! (U I)r+1 b1

i

- 2w 5 { (11wt s~ ‘i ) () n],

(1+wt)" =7 | [(1+we)"® —ij™1 (2
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Whence, by (2.2), we deduce, forn >0,

dan (1 +wt)"® 4

(3.5)
de™ (1 +wt)w _ g
o 2w " (U ki) | (1w
(1+wt)" =1 W' T {1 +wet)Pw —
Successively, putting t = 0, we have
(1w ) z": (~1)"rh" | k) 1
dt" (1+we)" |, = W wr (1-ir*
Moreover it is
N Ry L.J . (cos /4 +isin7/4),
7“/ 2 2
- [cos (r+ 1)n/4 +isin (r+ 1)n/4]

(7_,'}1’4‘1 2(7'+1)/2

" +1)/2 [cos(r—1)n/4+isin(r—1)n/4],
2

and, however, it follows that (n > 0)

n hlw -
(3.8) [_l_j__.(7+Wt) +I:'
de" (1 +we)hY 0

_ (=1)"rip’ rlh” g(1-h1w) _ _
w Z T a, - [cos(r—1)u/4 +isin(r— 1)n/4] .

4. FORMULAS FOR THE GENERALIZED BERNOULLI, EULER, STIRLING NUMBERS

We now, by (3.6), deduce the expansion of the function y(t/ into a series of powers of ¢,

- 5[0
=0 dt” 0 n!

=+ Z (wt)n Z ;_(r—)jr)—/z,/hrr £1rh/w)[cos (r— 1)a/d+isin(r— 1Jn/d] .

r=1

Hence, comparing with (3.4), we obtain the expansion
- n+1on+l t"
2 2" Butihwi4 — Bntihwi2) RN
n=1 ’

oo

j : n t" .
+iEonwi2(h/2) #i - 3 2"Eniuw2(h/2) 5 = ih

n=1

n r- 1
z (wt}” Z (—(r} 1)/;/h:+ Llrh/w}[ws (r—1)n/4+isin(r—1/n/4],
2074w
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from which, separating real and imaginary parts, and equating the coefficients of t” on both sides, we establish the
interesting formulas

(4.1) 2n+1 (2n+13n+1 showl4 — Bn+1;h,w/2)
n
_ (=1) " 1ip™ W™ (1hw)
= (p+ = rn W _
(n+1) E Sir-1)72 a, cos(r—1)n/4,
(4.2) 2"Ep gy w2 (h/2)

" r—1 r+1, n-r
-y (=17rIh 7w (1R W) G e — 1y sr
= 2{r~1)/2 n,r

both for n > 0. They realize the principal objective of the present paper.

5. PARTICULAR FORMULAS

In this section we shall indicate some special cases of (4.1), (4.2).
(a) Ifh =1, w=0, the generalized numbers B,, 3, ), Ey;1, 1, reduce to the ordinary Bernoulli, Euler, numbers,
while (1-1/w)
H n-r ~-1/w =
Wl—l—l;noo [W an,r ] - Sn»r

Moreover, it is B2,+7 = 0 forn >0, E,+7 = 0. Consequently, by (4.1), (4.2), we deduce the formulas
2n+1

(5.1) 22—"1%"—}2———’ Bonses = }: "’[1')/; Sonta,r 008 (r = 1)/4,
(5.2) ngj (;(Q;/g Son+1,rsin (r—1)u/4 =

(5.3) ; (2_('{;_)/; Son,rcos (r—1)n/4 = n >0,

(5.4) ‘r};“z (;/’r’_rl )1/; L Sppsin(e—1Jn/d, >0,

Equations (5.1) and (5.4) are two additional formulas concerning ordinary Bernoulli, Euler, Stirling numbers.
(b) If w=h, we have (2.8)

(1-hiw) _ {O,r < m,
a = _

n,r 1,r = n,
therefore, (4.1) reduces to

ntl
(5.5) 2”+1(2n+18n+1 hh)d—Butihn2) = (n+ )H=H)"T cos(n—1)un/4.
»wEy / ey / (n_1)/2
Moreover, by the recurrent relation for B,, 4, 1,/2, it follows that
h
Bunhiz = — %Bn-nh,h/z,

from which
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n
(5.6) Bugihiz = ni(=h)"
2214

Consequently, by (5.5) we deduce
n
(5.7) Bunnia = —”-’(_?Z}— (1420212 Gin (nm/a)] .
2

This formula can be derived by the recurrent relation

n2
Byt %’;7/1 By 1 na * ”("7—5—7”7 Bu_2:h /4

1 — 203
+ ’i‘/ﬂz—@g’—zﬂ’— Bu-snpia =0, 0 >0,

easily transformable in other forms to constant coefficients.
(c} f w=—h, we have (2.9)

(1-hjw) _ ;_qp-r 1 {n —1
ar (=1) r! (r—i) ’

and (4.1) reduces to

(5.8) """ L t,=hf4 = Butih,-hy2)
; n {_ Hr—l n—1
= (n+ )P r—1 ~1n/4 0.
fn+1) Z_; i)z cos(r— 1)n/4, n >

Moreover, it is [4]
Bn;h,—w = (“7)n5n;h,w,
and comparing (5.5) with (5.8) we have the identity, forn > 0,

(5.9) > /—7}7'1(’:’:11)2(”")/2 cos(r—1)n/4 = cosfn— 1)w/4.
r=1 )

Putting into (4.2) at first w = h and after w = —h, and remembering that [4]

Epinw(h/2) = (=1)"Ep 1, w(h/2),
we prove the identity
"

(5.10) -1 (:‘: 11) 207012 Gin (r = 1)u/d = sinfn - 1)n /4,
r=2
forn > 1.
(d) W w=~h/2 we have (2.10)
(1-hjw) _ _1_ nl{ +
an,r on-r rl <n —r) ’ r=n/z,

and (4.1) becomes
(5.11) 2n+1(2n+13n+1;h,h/8 - Bn+1;h,h/4)

n+i n :
=£&i;/2—’:-— ¥ () 2P costr - ajna.
r=n/2

Consequently, returning to (5.7), it follows
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n+1
(5.12) 22"+23n+1;h,h/8 = %-— ( (=1)"H 11+ 203)12 Go (n + 1)m /4]
2

* Zyi (-1 (n_rr) 20312 cos (r - 7)17/4) .

r=n/2

{(e) 1fw=2h, we have (2.11)

g(1-hlw) (=17 (2n—r—1) .<n - 1)
n,r 22n=2r (n— 1)1 r—1/"

Then {4.1), by (5.6) and the relation
Buynwn =0 for n >0,
reduces to the identity, forn > 0,
n

(5.13) 3 rtten—r— 117 = )20 aos (1= 1) /4 = 2%n - 1.
r=1 :

6. A DERIVATIVE FORMULA

Putting
PO;h,w =i,
21’l+1 %Y
Pn;h,w = m . (2n+13n+1;h,w/4 - Bn+1;h,w/2} * If]— En;h,w/Z(h/Z)/ n >0,
the expansion (3.4) can be written in the form
hiw | . hnd n
(6.1) Flt) = (_ItWt)—-H = Z Pn;h,w t—/ -
(1+wt)"™ ;i 420 n
Moreover, it is not difficult to show that the function F(z) satisfies the functional equation
21+wt) dFft) _ ,_ p2
(6.2) B 1—Ff1),
from which the recurrent relation follows,
n
(6.3) 2Pyt hw + 2nWPy gy g + Z (?)Pr;h,wpn—r;h,w =0, n>40.
r=0 d
If A =1, w =0, we have the interesting connections with the ordinary Bernoulli, Euler numbers
2n+1 19 2n+2
_ 7 - -
(6.4) P2n;1,0 = iE 2, Pon+1;1,0 = 2-*—_2”(57 U Bonez,
and from (6.3) we obtain, in conclusion, the special formulas
n-1 2n,,2r+2 2n-2 "
2n \ 2" 2474 _ )27 4T — 1) 2n
(6.5) Z(; (Zr +1) r+1)in—71) B2r+282n-2v — Z{; (ZT)EZTEZVL—ZT
r= r=

2n+2152n+2 _
+2o —=llg, -0 >0

m
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n 2r+1 2r+2
1\2 -2
(6.6) Epn+z = zo (5?11 ) _—r(il_—) Bon+2E2n-2r, n>0.
=
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EXPANSION

PAMILLA GRAVES SMITH
1609 Main Street, Evanston, Wyoming 82930

As every science, save one, is modified and cast aside,
While mathematics only is built upon and grows,

So, too, my life’s whole whims and whimsies pied
See their demise, while my regard for you goes

0n. Like the Sieve of Eratosthenes, you sift

My drifting days and sort the prime.

As determinants reflect a change, | mirror-image you

And, palindromic, backward-forward go, from autumn into spring.
Approaching the limit of joy, you bring a rate of change

Which grows in my heart proportionate to you. Your range

Is my domain. By you, my worthiness a proof shows,

As solid as geometry, as crystalline as snows,

As coming-now as spring.

| am subset of you.

Happily, with you no negative numbers can deride
My existence, that foolish enterprise of sensibility;
Instead, a proper fraction of civility

Is mine. By power of example, exponent of grace,
You multiply and lace my life with life. The race
Is mine! Cantor-like you lift

Me to infinity sublime

And grant me a number prime.



A COMBINATORIAL PROBLEM INVOLVING
RECURSIVE SEQUENCES AND TRIDIAGONAL MATRICES

GERALD E.BERGUM
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and
VERNER E. HOGGATT, JR.
San Jose State University, San Jose, California 95192

In [2], C. A. Church, Jr., shows that the total number of k-combinations of the first » natural numbers such that
no two elements / and / + 2 4ppear together in the same selection is Ffﬁz ifn=2mand F42Fp+3ifn=2m+1.
Furthermore he shows, if the k-combinations are arranged in a circle, so that 7 and n are consecutive with no two
elements / and / + 2 appearing together in the same selection, then the number of k-combinationsof the first n inatural
numbers is L2 if n = 2m and L, Lyy1q it 0 =2m +1.

Letting {U:j =0 be the sequence of k-combinations of the first n natural numbers such that no two elements / and
i +2 appear together in the same selection, we have

Upg=1 U; =2 Uy=4 U3;=6 Us=9 Us=15 Us=25 --.
By applying standard techniques, it is easy to show that the generating function for {U,,,},T:O is

3 = ] 2 3_4_ .5
(1) > Uix" = 3 (F2 1)+ Fon2 Frps 33X 2™ = T+2x+2x%2+ 263 —x* —x
=0 m=0 7—2x2 —ox% +x6

Although this rational function may be very interesting in its own right, it is also surprising to observe what hap-
pens if we replace m by m - 7, multiply by xZ, and then start the summation from m = 0. Doing this we have

. 1+x—x? 7
(2) Z (F2 +1 +Fm+1 Fm+2X}X2m = =
m=0 " T—2x2 —2xt4x®  (1—x=x2)1+x?)
Incidentally, it can be shown that
(3) ST O(Fx+ FoFosg X2 = Xz -
m=0 (1—x—x“)1+x%)

The results of (2) and (3) can be generalized in a very natural way to the sequence of Fibonacci polynomials de-

fined recursively by
fo(h) =0, f1(N) =1, fueq1(N)= MNu(N +f_1(N), n =1

Using the well known fact that

_at-p"
fn()\) ﬂ ’

a:A+:%2+4 and B:}\_Z/_)z+4,
together with the techniques found in part VI of [6], we have

= 2,172 2 _ 4
) 2 (xZm = AN HN+x% —x
mz=:0 2 [1=0\2+2)x2 +x*](1+x?)

113

where
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and

~ 3 3 3 5
(5) T Fonsr Nty 2t = OF 22+ 00 + % = e
m=0 . [1= 02 +2)x% +x*](1+x?)
Adding (4) and (5), we obtain

- 2,13 2 2,13 3_ 4 5
® 3 [ffn+2()\)+fm+2()\)fm+30\)xjx2m CNEEN M EE A TIXE A M =X
m=0 1=\ +2)x 2 +x7](1 +x?)
Replacing m by m — 7, multiplying by x2, and then starting the summation from m = 0, we have

o 2
(N 5 (2 0 # et Naz XX P™ = T+ —x - ! .
w0 " ™ [1=0Z+2x2 +x*]1(1+x2) (1= =xZ)(1+x%)
Minor manipuiations of (4) and (5) will also yield
(8) f [F2 s X # F (N s (NPT = X
m=0 mH " ’ (1= = x?)(1+x?)

As should be the case, (7) and (8) are (2) and (3) when A= 1.
Another generalization of (2) and (3) occurs when we examine the sequence of Pellian Polynomials defined recur-
sively by
PofN) =0, Pi(N) =1, Purgi(N = (T=DNP,(N)=NP,_1N, n =2
Since

-a’-p"
P‘Vl()\) a—B 12

g=l1=N=-J\-6r+1
2

where

and

I ESVEN, O

<,

we can use the techniques found in part VI of [6] together with arguments used to develop (7) and (8) in order to
show that

9) 3 [P2 () # Py (NP (Nx] X 2™ = !
m§=:o i " "2 [1—=(1=Nx + M2 [(1 = \x2)
and
(10) - [PZ 1 (X # Py (NP (NI X2 = X .
,:‘::o ! " [1— (1= Nx + M2 (1= )

When A = —1 we obtain the sequence of Pellian numbers.

Our final generalization of (2) and (3) is obtained by returning to subsets of a given set. Let S, = {1, 2,3 -, h}
and P(S,, ) be the power set of S,,. Let 7, be the number of elements of P(S,,) with no two elements congruent mod-
ulo two. The first nine terms of {7,, iy with Ty = 1are

1,2,4,6,9,12,16,20,25, .

To develop a formula for {Tn} =0 we first note that any element of P(S,,) of order three or more is rejected. Fur-
thermore there is one element of order zero and there are n elements of order one. The number of elements of order

two is » ;
n n —
(5 )(*)

if n is odd and n2/4 if n is even, any even integer with any odd integer. Hence,
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2
Tn=”4-7+n+7=(————-———”+7[}l(”+3), n odd
and
2 2
- n° =(nt2
Tn +n+1 ( 7 ) n even .

The generating function for {7,,),=¢ is

M) X Tux™ = 2 [m+1)2+(m+1)im+2)x]x?™ = X1, 2 !
=0 m=0 (1-x2)°  (1-x%)°  (1-x)%(1-x?)
while
(12) 2 lm+1)2x+mim+ IxPm = — X
m=0 (1-x)%(1-x?)

The authors also found the generating function for the sequence of k-combinations of the first » natural numbers
arranged in a circle, so that 1 and n are consecutive, with no two elements/ and / + 2 appearing together in the same
selection. Letting {Vn}ﬁ;j be the stated sequence, we see that

Vi=1 V=3 V3=9 Vs4=12, Vs=16 Vg=28 V; =49,
and

2 4,2 2 4,3
(L,i+LmLm+1x)X2m = (T+7x% —4x7)x° | (3+6x% —2x")x
1 1-2x2 —2xt+xb  1-2x2—2x*+x?®

M:s

[

13) % V" -
n=1 m
_(1+3x+ Ix% +6x% —ax? — 2x° )x?

1-2x2 —2x4 +X6

Replacing m by m + 1 and summing from m = 0, in order to obtain the same form as (2), we have

- 2 3 4 5
(14) S (L2 # Lyprg Lol ?m = LESX A IXT #6x7 — A = 2x
m=0 7—2X2—ZX4+X6

which does not simplify and is therefare not as appealing as the result in (2).
If we replace m by m — 1in (13), multiply byx2, and then sum from m = 0 we have

(15) f (L2 # Loy g Lyl = 1—2x+2x% +6x° — 9x* +3x% _ 1-3x +6x%— 3x°
—_ m- m
m=0 " 1-2x% —ox*+x8 (7—X—X2)(7+X2)

which does not simplify further and is not as appealing as equation (2).

Theauthors tried several other substitutions and manipulations of (13) in order to obtain a rational function whose
numerator is a one or an x. However, they were not successful.

We now turn to the major result of this article which is the establishment of a relationship between (2), (7), (9),
(11) and a sequence of determinants of tridiagonal matrices defined by the rule P,,(a,b,c) = (a,-]-), where

aj=a it i=j ay=b it i=j-2 a;=c it i=/+2 and a; =0 otherwise.
The first eleven values of £, (a,b,c) with Py (a,b,c) defined to be one are

Polabec) = 1
Pilabe) = a
Pr(ab,c) = a?
Ps(ab,c) = a’ — abe
P4lab,c) = (a° — be)?
Ps(a,b,c) = a° — 3a%bc +2ab%c?
Pslabc) = (a’ ~ 2abc)?
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Pylabec) = a’ — 5a>be + 7a°b%c? — 2ab3c3
Pgla,b,c) = (a® — 3a%bc +b2c?)?
Po(abc) = ad — 7a7hc + 16a5b2c2 — 13a3h3¢c3 + 3ab*c?
Piolabc) = (a5 —4a3bc +3ab2c2)2 .

It would seem at first that there is no order, except for the perfect squares, to the sequence {P,, (a,b,c}}:;a. How-
ever if one were to actually evaluate the determinants he would see a nice pattern developing in the way he finds
those values. In fact it can be shown by induction that

(16) Pu(ab,c) = aP,_1(ab,c) —abcP,_3(ab,c) +bc?P,_4 .
The generating function for { P,,(a,b,c)} -0 is found to be

(17) S Pulabex™ = 1
n=0 (17— bex?)(1 - ax +bex?)

When bc =-7 anda = 7, (17) becomes (2). When bc =-7 and a = \, (17) becomes (7). When bc = Nanda=(7 -\ ),
(17) becomes (9). When 6¢c = 7 and a =2, (17) becomes (11).

The authors were unsuccessful in trying to find a sequence of determinants whose generating function was related
to (15). Similarly we had no success in trying to find such a sequence of determinants for the last two examples
which we shall now discuss.

Our first example deals with a generalization of the problem of C. A. Church which can be found in [1]. Using S,
and P(S,,) as previously defined, we wish to determine the number of subsets of S,, for which 3n, 3n + 3 or 3n + 1,
3n + 4 or 3n +2, 3n + 5 are not in the same subset. Letting U/,, be the number of acceptable subsets for a given n, it
is easy to illustrate that

Up=1 U =2 Uy=4 U3=8 Us=12 Us=18 Ugsz=27 U;=45 Ug=75 Ug=125 -
By applying the results of [3], it can be shown that
Fi,, , if n=3k
(18) Up =< FEipFres, if n=3k+1
FreoFiez, if n=3k+2,
where Fy, is the k" Fibonacci number. Hence, the generating function for {U,,}5=g is

(19) > Upx™ = 3. [F} ot # F2i FnsoX # Fopsg F2ox? 173
n=0

m=

~

_ 1 +2x+4x% +5x° +6x? +6x7 =3x8 —3x7 — 3x8 —x7 —x10 _ 411
(6 —x? = 1)xC+ax? - 1)
Summing (19) from m = 0 and multiplying both sides by x> we have

>~ 2_53 4,5 6
(20 5 [Fet # Frst FnsaX # Foppg Foppx1x7™ = 7+);+X 3 2 - +;( X
m=0 (x° —x = 1)(x° +4x” = 1)

_ (1= x?)1+x+2x% = x% +x%) )
(xS —x? = 1)ixC +ax? ~ 1)

Our final example deals with counting the number of elements of A(S,,) which have no two members of the same sub-
set congruent modulo three. Denoting the sequencs by {V,,} ¢, it is easy to illustrate that

Vo=1 V=2 Vy=4 V3z=8 V4=12 V5; 18, V¢ =27, V;=36, Vg=48, Vg9 = 64, --.

In order to determine a formula for V,,, we first note that all elements of P(S,,) with four or more members are
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rejected in the counting process. Furthermore there is always one element of P(S,;) with no members and there are
n elements of P(S,,) with one member. Let us now assume n = 3k + 7 and arrange the numbers from 1 to n as follows

1 2 3
4 5 6
7 8 9

k-2 3k-1 3k
3k+1
An acceptable element of P(S,,) of order two is found by taking any element of the first column with any element

in columns two or three and any element of the second column with any element of the third column. Hence, the
number of valid elements of P(S,,) of order two is

2k(k + 1)+ k? = 3k? '+ 2k
provided n = 3k + 1. When n = 3k +2 there are 3k? + 4k + 1 allowable sets of order two while the number of such

sets if n = 3k is 3k,
The number of subsets of S, of order three is

( 3k +1 )
3
provided n = 3k + 1. A subset of S,, of order three is not counted.if it contains two elements of one column and one

element from either of the two remaining columns or if it contains three elements from the same column. Hence the
number of valid sets of order three if n =3k + 7 is

(k5 1) = 2k(t5 1) = 2k 1) = 2k (E) (B3 1) = 2(5) = &7 442,

When n = 3k + 2, the number of valid sets of order three is

(52)-2(* Yok -2t fs) (o3 1)~(3) - e

When n = 3k, the number of valid sets of order three is
3k k kY _ .3
( 3 )—Ek(z)“3<3) = k.
Combining the results above, we conclude that
K> +3k% +3k+1 = (k+1)°, = 3k
V, =

n
k2 +4k? +3k+2 = (k+1)%(k+2), n =3k+1
(k+1)(k+2)% n=23k+2.

(21)

k> +5k% + 8k +4

Hence, the generating function for {Vn}:f:o is

(22) S Vux™ = 2 lm 1) #(m+ 1)%(m+2)x + (m + 1)im +2)%x 2]
n=0 m=0
_ x2+1
x2+x+1)%x - 1)*
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ON THE FORMULA 7 = 2% arcot f2k+1

PETER G. ANDERSON
New Jersey Institute of Technology, Newar, New Jersey 07102

While questing the n + 757 digit of 7,
With series by Taylor, MacLauren, et al;
| tried the arcotan of integers high,
While old Leonardo de Pisa did call.

0ld friends are a joy and, at times, a surprise
When they serependiciously drop by to chat.
They lighten our labors and open our eyes.

“Eureka!” quoth I. “Now, how about that!”

For what to my wondering eyes should appear,
Intermix‘t with the spurious inverse contans,
Were eight Fibonacci terms standing right here,
Waiting and patiently holding their hands.

The even term’s arcotangent’s easily seen

to equal the sum of the next pair in line.

Now start back with 7, and keep your eyes keen
It makes 4 arcotan the unit sublime.

Note: 1 is the first and the second old friend.

So rewrite: mequals twice this plus twice that.
“This" is the arcot of the first term of Len.

“That,” which we'll split, is from the second old hat.

From 2 we get 3, 4; from 4, 5 and 6.

The evens keep splitting; the odds hang behind.
Forming convergent series: sum twice arcot £
Sub 2k + 1 which is 7, | remind.

We don‘t know the digit half-million and one.
Guiness, keep stout! There'll be other tries.
I've got half my friends in a pretty new sum.
Well worth the labor to open my eyes.



FIBONACCI SINE SEQUENCES

M. B. GREGORY and J. M. METZGER
University of North Dakota, Grand Forks, North Dakota 58202

INTRODUCTION

The purpose of this note is to find all real numbers x such that nlim sin u,, x exists, where u,, is any sequence of
—

integers satisfying the recurrence u,, = u,,_1 * u,,_3 (ug, u¢ are integers, not both zero).
We will show that the sequence {sin uy, mx } converges only to zero and this happens precisely when x is in an appro-
priate homothet of the set of integers in the quadratic number field @(</5 ).

MAIN RESULTS
We will use the identity sin @ — sin =2 cos %(a + ) sin %(a — () to show that if the limit
limsinu,nx = p
n

exists, then p= 0.
Let a= uy,+17x, = uy_27x, so that Y%la+ ) = u,, 7x, and %la — B) = u,,_; mx. The identity gives

SIN Uy 1 TX — SIN Uy_27X = 2 SiN Uy_ 1 TX COS Uy TIX .
Therefore, if lim sin v, mx = p # 0, then
n

SiN Uy 11 X — SiN Uy,_2TIX

CoS U, X =
2sinu,_smx

shows that lim cos u,, mx = 0. However,
n

SIN Upy+1 TTX = 80 (Uy + Uy_1)TIX = SIN U, TTX COS Uy _1 TX + COS Uy TIX SIN Uy, _q TIX
implies lim sin v,, x = 0, a contradiction.
n

Theorem 1. limsin u, 7x = 0 iff
n

limsin " X (ug+u;¢) = 0, where ¢ = 145 .

Proof. Using Binet’s formula for u,, , we have

sin % {¢”"1(u0 turd) = (1= )" ug +ug(1- )]}

1]

sin u, X

7~ _ an-1 _
sin"—"; 0 1(u0+u1¢)cosﬂ\/"—§(7 O)" fug +uyg(1- )]

—sin :TT);_ (1= )" ug+uq(1-¢)] cos \E/—); 0" ug+uid).

Since (1 — )" — 0 as n — o, the cosine in the first term tends to one, while the sine in the second term tends to
zero, for any x. The theorem follows. I
Theorem 1 makes it plain that we must find the set &8 of all real x for which lim sin ¢"7x = 0.
n

Theorem 2. B is the set of all numbers of the form a + b¢, where a,4 are integers.
119
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Proof. We first observe that 8 is an additive subgroup of the real numbers, for
sin 9" mix —y) = sin ¢"ax cos ¢"my — cos ¢"nx sin ¢" 7y

shows that x — y isin B if both x and y are in B. Now takinguvg = —7, uy =2 in Theorem 1 and observing that 2¢ —
1= \/5, it is apparent that 1 isin 8 and hence the definition of B shows that ¢ is also in B. It follows that B contains
every number of the forma + b¢.
To prove that every member of 8 has this form, we adapt an argument from Cassels [1, p. 136]. If lim sin ¢" x =
4

0, then ¢"x = p,, + r,,, where p,, is an integer and lim r,, = 0. Lets,, = p, 12 — Pu+1 — Py, SO that s, is an integer.
Then o "
Sn = (D" 2x = a2 ) = (" x = rag ) = (§7x = 1)

= "D — = 1) = (ruyz — Fnrs —1a) = =115 = Tn+1 = n).
Since lim r,, = 0, we see that fim s,, = ). Sinces,, is an integer, we must haves,, = 0foralln >np > 1. Thusr,4p =
In+1 +1;,, forn =ng. Using Binzt's formula, we héve forn =nyg,
B R e R N
Iy = -—-————--—\/5_——-—— 4~_—.—-—-—-\/_5_

Because ¢” — « and (1 — ¢)" — 0 asn — «, the coefficient of ¢” must be zero; in other words, Ty +1 = (1= ¢y,
Thus, forn = ny,

(1—-0)".

n, —'n n, — (1 — n
r11:¢ro 101"1 (7_¢}n:¢ro ( ¢}r0(7_
NG V5

'n
= e 1= ) = 1, (1— )"
e 29 O = ra (1= )

o)"

In particular, choosing 7 = ng, we find r,, =r, (71— ¢)™ . Thisimpliesr, =0,and therefore ¢"°x = p,, ,so that

X = puy (1/6)70 .
Using the facts that 1/¢= ¢ — 1 and ¢2 = ¢+ 1, we see that x = a + b¢ for suitable integers a and b. |
CONCLUDING REMARKS
Combining Theorems 1 and 2, lim sin u,, mx exists iff x is a member of the homothet
n
A - 5 . B
Tt ;0 B {u0+u1¢> X:x e } .

It is well known [3; p. 201] that B is the set of all integers in the quadratic number field @(/5 ) and this suggests
comparison with other sine sequences. In [2], it is shown that lim sin 2" 7x exists iff 2”0 x is an integer for some
n

ng € Z Here we have shown that lim sin ¢"nx exists iff ¢™0.x is an integer for someng = Z.
n

In closing, we suggest it would be of interest to consider the same problem for the sine sequences sin v, mx when
the u,, satisfies a recurrence u,, = su,,_; +tu,,_», where s and ¢ are positive integers.
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GENERAL IDENTITIES FOR LINEAR FIBONACCI AND LUCAS SUMMATIONS

RODNEY T. HANSEN
Montana State University, Bozeman, Montana 59717

Many well known identities involving the first » terms of the Fibonacci sequence {F }] —¢ and the Lucas sequence
{LJ}J 20 have extensions to the sequences {F 7 )70, {L]+,] 0. {Fjk}i=0, and {L]k}]—of where  and £ are fixed
integers. Any such result may be consmered as a special case of an |dent|ty related to sequences {F kﬁ},_o and

L]k+r} i=0, and hence it is with these latter sequences that we are principally concerned. Since the suhscnpts are
linear functions of /, these identities are called linear Fibonacci and Lucas summations.

A variety of techniques are used in-deriving many of these summations. We begin by considering several basic re-
sults which are quickly deduced from the Binet definition of the terms of the given sequences. This approach is in-
troduced in [1] and [2], with extensions via a difference equation route given in [3]. We have

jktr  ojktr
(0) Fittr = g'a‘:—T@B”* and Lik+r = a4 gkt
where

a=7+25 and B=——\£7—2 2y

Note that a and (3 are the roots of the equatioan —x—1=0, and hence a+ = 1and af = —1. Using the summa-
tion formula for the first n terms of a geometric progression, the following results are obtained:

() Z jltr = Frt Fletr # Foptr # o # Frpqy = ( gr) (akz:gk+')+ (az’e?‘;:%z’e"’)

+...+(M )

a-p
-1 [ar(a(ﬂ+1)k_ I) _Br(ﬁ(ﬂﬂ)k_ 7)] F(n+1)k+r+("7} nk+r+(‘” Fo,—F,
a-p k1 gk -1 PP
Similarly, one may find
@ Zn: Li+r = L(”‘”)k*r+('—”k+1Lnk+r+(—7)rLk—r" Ly
k+1
Ly—1+(-1)
3) {: {_7)j/:jk+r = (=1 F("H)k'”-/-(*”n Fobtr (1) Fr_p +F,
j k
j=0 Ly +1+(-1)
4) f (=)L = (=1L ftt e (=T * e #(=1)"Lg # L,
4 J %
j=0 Ly+1+(-1)

These identities are used to simplify any summation expression that may be represented as a linear combination of
Fibonacci and/or Lucas numbers. One direction to take is to observe by (0) that

FitetrFjuty = % [Ljtktupririv) = (=1 Ligk ) #(r-0)]
FitetrLjuto = Figktupr(ren) + (=1 Fils)t(r-s)

LikteLjury = Ligktupr(rio) # (=117 Loy #(r-) -
121
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Identities (1) to (4) yield an expression for the sum of the firstn + 7 terms (0 < < n) of each product given above.
Let us explicitly consider only the second such product.

n n n
(5) % FittrLjuto = % Fitktuyt(ro) + (~1) % (1" Fioms)#(r-v)
. = =

_ Frart)eruarrn) (=D By ryairrn) (=10 Epieri)ogrio) = Freo

Lk+u— 7+(_1)k+u+1 Lk+u"' 7+(_”k+u+1
(1) [F fust yte—aitrn) * (=1 P yttran) # (1) Flbs)or) = Fron]
Lk_u . 7 + (_ ”k~u+1
if u is even,
9
(=1)" U= 1)"Fpnt1)hemuitrv) (=" Fagostr—) # (= 1) F o) fr-v) * Fron]
Ly +1+ (—1)k‘“
L if  is odd.

Specifying &, u, r, and v as particular integers leads the reader to a countable number of interesting special cases.

The known (see [3] and [4]) generating functions for sequences {ij+,}1-°20 and {Ljg+r} =0 are now used to find
several additional classes of general linear Fibonacci and Lucas summation identities. We now list these generating
functions for reference—with the first be derived from (0) to show a general approach to such calculations.

hd ]k+r ]k+r i i
(6) > Fiprxd = Ea —B = ZalkXJ g z BJkXJ
0 -B a-— ﬁ =0 o
j j
I S | [(a—BH(—aB +akB’)x
a=B |7_qky I—ﬁkx a-f 7—(ak+Bk)x+a kaz %
- F,+(—7}'Fk_,x - Fr+{Fk+r—FrLk)X
1- ka+(—7)kx2 1- ka+(——1)kx2
(7) i (—7}jF-k+ x) = Frt (*I)rHFk‘rX = Frt(Frlie = Femlx
T
prs ! T+ Lpx+(=1)%%2 1+ Lyx+(~1)%x2
(8) S Lyt = bt U x Lt (L = LeLilx
T
i 1= Lpx +(~1)%x2 1= Lyx +(~1)%x?
(9) S (g nd = et Lo Lot (LyLe = Liwrk
T
j=0 ! 7+ka+(—-7}kxz 7+ka+(—7}kx2

The derivative of these generating functions leads to identities which are of interest in themselves, and these in turn
yield additional summation results. We begin by differentiating both sides of (6) with respect to x.

™ oo .— _F - r
9N S Fprrd | = L | Lt e
dx =0 X AT =Lpx +(-1)%x

S0
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Z (/+ I)F(]+1)k+TX] = [% —-———F-!——-—-v-——k—z l +..g— l (_—I}rFk—TX }
=0 T = Lpx + (=1 ] OX {1+ (—1)Fx2 )
. F, L+ 2-1*x (~1) Fp._, 71— (-1)%x%

1—Lpx+(-1)%x? 1—Lpx+(-1)Fx? I—ka+(—7)kx2 7—Lk)(+(~7)k)(2

oy BBl S
o Fr =
pu .

== 'l
(1) FrrFlirt)ke
cx e,
j=0

14 2—-Lypx
. I—ka+(-7)kxz“
by special cases of (6) and (8),

i (- 7)7+1Fk—rF{j+yk X
Fr

Sl |
F,F :
=2 ‘L‘,@Lk Lj-st1)lex” +
=0 k =0

o0 r (=]

(—1) Fr, Fi i o

+ 3 e iR LT L
=0 Fr =0

by convolution of the series and by (8),

_ i [(—7)’”Fk_rF(,'+1 )k +é Frfisetieliisrie, L (=1 Far Frs ) Lot X
=0 Fr =0 Fr =0 Fe

By equating the corresponding coefficients of the above series, the identity

j
. 7
0 G+ 1F st s = F {(— D™ Fler Fea i + Zb Frstt e lFelse1)l * (_7)rFk-rL(j—s)k]}
5=
is found, which in turn yields

n n i

(1) 2 G+ DF gkt = F—7 2 {(“”rHFk-rF(j-l-I)k"’ > Frstt)rFrlijst1)k +(_7)rFk-rL(j—s)k]}-
=0 k i=o 5=0

Performing the same operations as above on identities (7), (8), and (9) yields results similar to (10) and {11). These

results related to (8) are as follows:

J
(12) G+ 1L G11)eer = é {(— V'kerFirir+ 3 Frsttpelbel(sti)l + (- ”rﬂl-k—rL(j—s)k-/}

s=0
and

n n j
(13) 20 G+ rtpesr= lf% > {(’”rLk-rF(jH)k"'z(:) Fro+1k ILrl(st1)k +("7}r+1Lk-r1-(j—s)k]} .
=0 =0 5=

Taking higher order derivatives of (6), (7}, (8), and (9) leads the reader to additional summation identities that are
similar in form to those listed above. Further, numerous special cases of each identity given may be quickly deduced.

The relationships between binomial coefficients and terms of sequences {ij+r}]f'io and {ij+,}}§0 take the form
of rather simple but elegant summation identities, To begin we return to definition (0),

_adkgr _pikgr _ (a2 - 1)ikar — (82— 1)ikgT _
“4) F]k+r - a__ﬁ - Cl,—ﬁ -
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jk ik
ik 2t+ k-t ik 2t+ it .
t—zo(]t )(a) =1 t~20 (Jt )(ﬁ) -1/ jk - ” 2t+r o 2t+r
- = = = 3 () (~ppik-ti a8
a-f =0 ' Loa-f
i ik j i ik ik
=2 (L Y1) = (I =105 F iz Lz
t=0 t=0
If j = 2j°, then an even more elementary summation results.
) - ., . ik
2]'72—7’w 2,jkpr Jkr_ jkpr J e
(15) Fojhwr = (@2 G =BV (0t VI7a ~ (B+ IR 57 (%),
a—-f a-f t
t=0
For the Lucas numbers, the corresponding results are
jk y ) jk . . t.
(16) Littr = 3 (]tk)("”]k_tl-zm = Z(]tk)(—”]k-t L(st VLgsr
t=0 t=0 s=0
and
ik “
(17 Lojk+r = E(]t )t
t=0

Taking the view-that a summation identity is “improved” by reducing the number of addends (even if the addends
become more complicated), we now consider several methods of approach in an attempt to find additional “im-
proved” results linking binomial coefficients and Fibonacci and Lucas numbers.

The column generators of the columns in the left-justified Pascal Triangle shown below are most useful in this en-
deavor, as was first shown by V. E. Hoggatt, Jr., in [5]

[ G ey
N
—_

1 X X X " Column Generators
T—x (1-x)? (1-x)® (1-x*

That is, defining the binomial coefficient (]”) =0 forn </ we observe

n=0 n=0 (1- X)Z n=0 n=0 (1 X}]+1 n=0
Hence, oo i oo oo ., o .1
2 F]k+r 1 Z F]k-f-r 2: (]>X = E Z(J)F]k+rxn
=0 (1—x)7 =0 n=0 n=0 j=0

By identity (6),
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- - Fot(—1)"Fppx
Z ij-f—rX] = L ——F kkr 2
17— Lpx+(—1)%
and thus, we also have

Z o X1 Fot (=1) Frplx/T=x) Frt [=Fy + (1) Fp_rx
(1—x T T L/l —x) + DM /1 -3 1~ (24 Lpdx {1+ L+ (~ 1)
There are two cases of the above identity to consider:
(i) k even. Then
Z k+r xJ _ R+ [—F, +(—1)"Fp. ] x
_ x)itt T—(2+Lp)(1—x)x

=Pt [~Fp + (1) Flydx) 2 (24 Lpli(1 = x)ixT
j=0

oo j+1
= }:{ Z (24 L) (T)=10% 4+ [t (1) Fir] 3 24 LT )10 5*7}

j=0 s=0 s=1 7

Now let m =s +/. Then we have

o [m]2] [(m+1)/2] )

SR 2L (N1 Ft 1) ] (240 )™ (D)1 }xm

m=0 s=0 s=1
Hence, equating like coefficients of x in the above two series yields, for k even,

[n]2] [(n+1)/2]
(18) E( ik = Fr Z (2+Lk)”s<” NP+ FF+ 1] S (24 0) (2 )1
s=1

(u) k odd. Then

oo

T F X Fet[=Ft (1) Fhydx

4 - C(Ft [Fot 1)  Lx)ixi
et i 1= 2+ L) — Lpxlx (Frt [Pt (1) Ficrlxh 2 1124 L) = Lixd )

j=0

j=0

o oo [m/2]
={Fp# [Fpt (1) Froe ) 30 30 (D)2 4 L) P (Lol (-1 = Z{ 3 (-1)S(m 3)(2+Lk)’" 13,

=0 s=0 =0 s=0
[me /2] 1(m— m~2s+1,s-1
t=Frt (1) Fry] 21 (1 (M 2 L) Ly }xm
=
and thus, for £ odd,
n [nl2] 5
n sfn—-s n-2s
(9 3> (7 )Fierr = Fr 30 (1) ("3%)2+ L) 5L,
=0 s=0
[(n+1)/2]
+[_Fr+(‘7)rFk—r] Z (- Hs— ("_S>(Z+L )n—2s+1Ls -1
s=1

Using the column generators in the left-justified Pascal Triangle with generating functions (7), (8), and (9) leads to
three pairs of summation identities which are similar in form to (18) and (19).
Several special cases of (18) and (19) are given which show the inherent simplicity of these identities.
Letting r = 0 and k = 2 in (18) gives
n [(n+1)/2]
(-5 (),

j=0 s=0
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Ifk=r=1in(19), then

= n [n2] s 2s [(mt1)i2] sin n-2s+1
n —s\ qn- —s -
I SR G E B R ey
j=0 s=0 =1
Taking r =0 and k = 3 in (19) yields
n [(n+1)/2]
Z( ) i3 = 2 Z (_7)5—1(?_—;)6n—25+14$—1
=0
More generally, we deduce from (18) and (19) that
[(n+1)/2]
Fo 3 (=124 L) 25 for K even,
n s=1
" -
L (7= e
=0 Fo. Y - )5°1(7+Lk)"'25+1("_5)L5 1 for k odd
s=1

One of the nicest results linking binomial coefficients and Fibonacci numbers is given in [6]. Here, using the fact
that

n [F F
a* = (; (1)) = <FZ+1 F,,j)’ for any integer n, and

ank'*'r - i ( )a]+rF]Fk—]
J

n-1 "’
=0
the identity
k
(20 Foktr = Z ( )F]+rF Fk—]
j=0 /

is deduced by equating upper right elements in the previous matrix equation. This identity is actually a special case
of the next result.
Since for any integer ¢,
"= 0"t = (F,_,Q+F,_ )0,

where/ = ( f) 0 ) , it follows that

k
Q" = QTIF 0+ Foog g 0] = @ (ROIF] FY L for t#a,
j=0

k k-j
% (10 el

By equating the upper nght elements in this matrix equation we obtain, for any integer ¢ # n,

k

(21) Faktr = % ( VFtitrsiFI_FET .

j=
The companion results for Lucas numbers are deduced by either using the identity L,;, = Fp 41 + Fpy_1 Or the matrix
result - | ;

G - (i ), ey
10 1 2 Lm L1 ]’ or any integer m.
They are '
k-

22 Lnktr = Z (J ) leFn ]1 ’

j=0
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and k

Lnk+r = Z(;( )Ltk+1'+] Nt n]ti’ for tié”'
i=
The final approach we take to find additional linear Fibonacci and Lucas identities is via exponential generating
functions. This productive technique stems fram the Maclaurin series expansion for e*;

X X2 X7 4 and hence %% = 74 (@), (ax)  (ax), andeﬁ"-7+-§—) M ﬁ—+

RS TRS TS T T T

It follows that the basic Fibonacci and Lucas generating functions are

=

haidg n ax Bx n

X' _e " —g X" - ax Bx
20 Fn—n!— and Y. L, %= e+,
n

— /
a-f v’ nl
The exponential generating functions of the sequences of interest in this paper are found to be
o k k
X" _ae®x_pef ¥
(24) Z Fnk-f—r l;l_ = a—ﬁ
n k k
(25) Y Lnker 55 = a6 F 477>
Z"“: 1n X" are—ozkx _ Bre-ﬁkx
(26) = (_ Fnk+r n—l = a_B
k k
(27) E (—1)"Lpitr X—, =ae® X +peP
n=0

Convolutingseries (24) and (25) and equating like coefficients yields an interesting identity. We proceed as follows:

ha n
2 Fuktr % E Lik+r {7 = Z (7 )FierrLin-gesr 5
n=0

n=0 n=0 j=0

nl

2r w k7 X 2r k "X
k k a‘’ 2 (2a%) -8 2 (28%)
(area x greﬁ )(ar Oékx+6reﬂkx) _ aZr Za x BZr 26 x _ =0

a-p a—B a—B
> k+2r nk+2r = n
_ a’*mer _ g X x”
ngo 2”( a—B )-n—l ; Fnk+2r nl
Hence,
n
(28) 2 (7>ij+rL(n-j)k+r = 2"Fuk+2r .
j=0

Many additional identities may be deduced using the generating functions (24), (25), (26), and (27). By convoluting
each of (24) and (25) with itself, the following results are deduced:

(28) E ()it = § (2" Lnerzr # 20=1)" L2
) n
(30) 2 (7)ij+rL(n-j)k+r = 2"Lperzr +2(-1)LY;
j=0

We invite the reader to explore the special cases of the results given and also to use the procedures introduced to
discover additional identities.
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AN INEQUALITY FOR A CLASS OF POLYNOMIALS

DAVID ZEITLIN
Minneapolis, Minnesota 55411
1. INTRODUCTION

Recently, Klamkin and Newman [1], using double induction, proved that
(1.1 > oaie(X Ak> n=12-)
k=1 k=1

where Aj is a non-decreasing sequence with Ag = 0 and Ay, — Ap_; < 1. For A, = &, (1.1) gives the well known
elementary identity

n g M 2
(1.2) K- ( ) k) =12
k=1

k=1
Our inequality (2.1) for polynomials in a single variable x gives (1.1) for x = 7.

2. APOLYNOMIAL INEQUALITY
Our first general result is given by

Theorem 1. Let C; be anon-decreasing sequence with Cg=0and £, —BCy_y <1, k=1,2, -, where B
isa constant, 0 < B < 1. Then, for x > 7, we have the inequality

n p n 2
(2.1) > c,jxk < (Z Ckxk> n=12-).
k=1 k=1

Proof. We will use double induction. For 7 = 7, (2.1) requires that 6'13)( < 6'12)(2, or CIZX(C1 —x) < 0, which
is true, since C7 < 7 and x > 7. Assuming (2.1) is true for k = 7, 2, -, n, we must now show that
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n+1 3 n 2 n+i 2
> Ckxk = Ci+1Xn+1 + CZXk < CZHX”” +< > L‘kxk) < ( b Ckxk> ,
k=1 k=1 k=1 k=1
which requires the truth of
n
(22) 2% Gt s 02~ Curd™ = 1,2,)

Forn =1, (2.2) gives 5
6‘2 - szz < 2Cqx.
Since x > 1, x%C3 > C3, ) .
CZ —Cyx* < CZ —-Cy;
but £y — BC; < 1, and so
C2-¢, < €(BCy < C(B(1+BC;) < C(B(1+B) < 261 < 2C;x,
which is true since B(7 +B) <2 for 0 < B < 1. Assuming (2.2) is true for k= 7, 2, ---, n, we must show that

“n+1
k n+l 2 n+1 2 n+2
2 k21 Cox® > 20, 41x™ " (€5, = Cupgx™) > €5, =€ x""7,

which requires that

K xCiz # Cusg) > €1 y=Chy n = 1,2,

SinceB<1,-BC,+1 >—Cy+1, and so
Cni2—Cut1 < Cpiz2—BCuiq < 1.
Hence

2 2 +1
Cn+2 - Cn+1 < Gy # 0yt < x" (ch+2 +Cn+1 )/

since x > 7. Thus, the truth of (2.2) completes the proof of Theorem 1.

In [1, p. 29], the following,

Lemma. \fx,y >0,p =2, thenp(x — y)(xP~1 +yP~1) = 2(xP — yP),
was used to generalize (1.1) (see [1, (18), p. 29]1). Using the above lemma and double induction, we now obtain a
generalization of Theorem 1, i.e.,

Theorem 2, Let Cp be a non-decreasing sequence with Cp=0and Cp, — BCp_; < 1,k=1,2, -, where B
isaconstant,0 <B < 1. Then, forx > 7and p =2, 3, ---, we have the polynomial inequality

n n 2
(2.3) 2 Y ok < p( > cg'ka) (n=12-).
k=1 k=1

Remarks. For p =2, (2.3) gives (2.1). For B =17 and x = 7, (2.3) gives (18) of [1, p. 29], and (2.1) gives (1.1). The
proof of Theorem 2, similar to the proof of Theorem 1, is omitted. We note that when £, — BCp_; = 1fork=1,2,
..., then

Cr = (1-8%)/(1-8),

B#1andCp=kforB=1.ForB=0andC,=1,k=1,2, - ,(2.1) gives

n

7<Zkk

k=1

so that forn = 7, 7 < x, as required.

[Continued on page 146.]



A PRIMER FOR THE FIBONACCI NUMBERS XVIi:
GENERALIZED FIBONACCI NUMBERS SATISFYING up+1un-1 — ui =+l

V.E.HOGGATT, JR., and MARJORIE BICKNELL-JOHNSON
San Jose State University, San Jose, California 95192

There are many ways to generalize the Fibonacci sequence. Here, we examine some properties of integral sequences
{u,,} satisfying
(1 Up+1lp-1 — Uf = (-1)",
where necessarily ug = 0 and vy = +1. The Fibonacci polynomials f,,(x/ given by
(2) fueg(x) = xf (x) +f,_1(x), folx) =0, filx)=1,

evaluated at x = b provide special sequences {u,, } . Of course, £,,(7) = F,,, the Fibonacci numbers 0, 1, 1,2, 3,5, -,
and £,,(2) = P, the Pell numbers 0, 1, 2, 5, 12, 29, ---. Divisibility properties of the Fibonacci polynomials [1] and
properties of the Pell numbers and the general sequences {f,1 (b}} [2] have been examined in earlier Primer articles.
In the course of events, we will completely solve the Diophantine equations y2 —(a? 4)x? = +4 and show that
all of our generalized Fibonacci polynomials are special cases of Chebyshev polynomials of the first and secand kinds.

1. SOLUTIONS TO y2 — (a2 +4)x% = 24

Theorem 1. Let {u,} be a sequence of integers such that u,,+1uy,_s — uf = (—1)" for all integers n. Then
there exists an integer @ such that

3) Up+2 = Ayt + Uy
Proof. Set
up = auy +buy, uz = aup +buq
for some real numbersa and 4. By Cramer's rule,
bh = ‘“1 ol LU % =__u,u3—u§ =1
uy g Uy Uy I ut —u,u,

since vy u3 —ug =(~1)% and uguy — u12= (-1)1 by definition of {un} . Thus, a is an integer. In fact,u2 =auq +ug
and u3 = aup + uy yield

_Uz—up _uz—Ug

uz uy
Assume that v, +1 =au, +u,_y. Then
a = Up+1 — Un_g
uTl
and
2 2 2
- u —-u + + (—])nt1
Ay Uy, = U_”_f]_.uﬂ:_l U1 + U, = n+i -1 Y41 u, _ Uota (-1)
Uy uy, Uy,

UZ =

But, u, 421, — ey =~ 7)"*1 by definition of the sequence, so that

_ 7.2 :
Un+2 = [un+1 - ”VH-I]/Un; and  Uys2 = Aprs Fuy
for an integer a by the Axiom of Mathematical Induction.

Corollary 1.1. The sequence {tn} has starting values wg = 0, g = +1.

130
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Proof. By Theorem 1,uj =auy +ug. Thus,

2 _ .22 2 _
uy = a‘u] +Zall1u0+u1 = auq(auq +UO)+Ug = au1u2+ug.
Since also ug = uy — au 1, substituting above for u2, we have
2 _ 2 2 2
uy = augup +(uy—2aujuz +a uy), 0 = auqfaus —uz)

Now, either a =0, or vy =0, orup =auy. Ifa=0, uy = ug, and from uyug — u? = —1,ug=0and uq = #1 give the
only possible solutions. If u; = 0, then v = ug leads to uZZ =—1, clearly impossible for integers. If v = au¢, then
uz=auq =auy +ug forcesug = 0, and again vy = #17.

Theorem 2. Let {u.ﬂ} be a sequence of integers such that v, +1 uy+7 — uf =(—1)" for all n. Then x = u,, and
Y = Uy+1 * Uy_q are solutions for the Diophantine equation

(4) yZ—(a? +4)x? = 44,
where also uy,+1 = au,, *+ Uy,_1.
Proof. From Theorem 1, u,+1 = auy, + uy_q. Wy = uy4q + uy_q and x = u,,, then

Upti = Y —Un_g = Y —(Upsr1 —auy) = y— Up+q —ax
yielding
Up+q = (v —ax)/2.
Then
Upi = Y —lUpr1 = y—[y—ax)/2 = [y +ax)/2.

By definition of the sequence {u,,}
Untgln-g —uf = (=1)",

z;ax_y—zax_xz = 41,

(y2—azx2)—4)(2 =+,
y2 - (32 +4)x% = +4.

Now, let the generalized Lucas and Fibonacci numbers £,, and 7, be defined in terms of Fibonacci polynomials as
in Eq. (2):

(5) Ly = T+t (a)+fn—1 (a)
Fy = falal.
Since [2]
(6) st (g (x) = F2(x) = (=1)",
(7 L2 (a?+a)F? = 14

by Theorem 2. Thus, the generalized Lucas and Fibonacci numbers give solutions to the Diophantine equation {4).

Theorem 3. The generalized Lucas and Fibonacci numbers ¢,, and &, are the only solutions to the Diophan-
tine equation

(4) y2 — (a2 +a)x? = #4.

Proof. Now, y‘2 — (2% + 4)x? = +4 has solution x = 0,y =2, aswell asasolutionx =17,y =3ifa=17, butno
solution for x = 7 when a > 7. The other equation yZ - (aZ +4)x? = —4 has solution x = 1,y=a Thecasea=1
was solved by Ferguson [3]. We use a method of infinite descent which is an extension of the method of Ferguson
[3], and take a > 7, x > 7. Thus, y - (a2 + 4)x2 = +4 implies that

ax <y < (a+2)x
since
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v = @2+ +4 = %% +ax? + 4 < a%x? +4ax? +ax?
forces
(ax)? < y? < (a +2)%x2 .

Since y and ax must have the same parity, let
y = ax+2t, T<t<x.
Assume that x is the smallest non-Fibonacci solution. Replace y with ax + 2t in (4), yielding
(ax +2t)? — (a2 +4)x’ 4 = 0
4XZ—4axt—4t2f4 =0.
Solve the quadratic for 2x, yielding
2x = attJa* +4)t* £ 4
But, 2x is an integer, and therefore
(a? +4)t? +4 = 5?
for an integer s so that t = u,, and s = u,, 11 +u,,_y are solutions by Theorem 2. Since x > 0,
2x = at +\/(a* +4)t* £ 4

at+s

auy * (Up+q +Up_1)

(auy +Un_1)+ tn_1
= 2Up+1

so that x = uy,+7. But, if x is the smallest non-Fibonacci solution, then x cannot be the next larger Fibonacci solution
after ¢ This is a contradiction, and there is no first non-Fibonacci solution. Thus, the Diophantine equation

y2 —(a? +4)x? = 14
has solutions in integers if and only if

y = t8y = fueqla) +f,_4(a) and x = £F, = f,(a).

2. SPECIAL SEQUENCES {4, } AND THE EQUATION y2 — (2% — 4)x? = +4

Now, all of these sequences {un} have starting values ugp = 0 and vy = £17. It is interésting to note some special
cases. Notice that the sequence

-,1,0101,01,01,1,2,3,5, -
due to Bergum [4] satisfiesug =0, uy = 1, and
Up+1Un_1 —U,f = (-1)",
where the left-hand part of the sequence has

Up+2 = Uy = O-Upyq +uy
while the right-hand part has
Un+2 = T-Ups1 *uy.
Itisinteresting to note that special cases of the sequences { u,, | satisfying u,,+1 u,,_1 — uj =(-1)" occur from [2]
(8) To-k Lntk — 1:5 = (- 7)"+k+11"i
for the generalized Fibonacci numbers given in Eq. (5). Let

‘ Fnleke Tkt — T2 = (—1)" TR 2
be rewritten
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2
_T(n—l )k Tn+1)k Tnk _ (— 7}(n+1)k+1
Th Tk T:

Now, since 7,2/ T, is known to be an integer [1], letu,, = 7,; /7%, and the equation above becomes

Un+ilUn-1 — U,f = (- 7}(n+1}k+1 ,

where (—7)("* 1R+ ¢ (1) if kis odd but (—7) if k is even. In particular, if kK = 2, the sequence of Fibonacci num-
bers with even subscripts, { 0,1,3,8, 21, } , gives a solution to v, 11 uy,_1 — uf = —1. Another solution is u,, = n,
since (n + 7)(n — 1) —n? = —1 for all n.

Is there a sequence {un} of positive terms for which v, 170,71 — uf = +1? Considering Fibonacci numbers with

odd subscripts, {1, 2, 5,13, 34, } , we observe that u,, = F5, .+ is asolution, and that u,,+7 = 3u,, - .1 Using
Up+1Uy_q —"uf =1 and solving u,,+1 = au,, + bu,_4 as in Theorem 1 yields v, +1 =au,, —u,_1. Ifwelety =u, 1 -
uy_q1 and x = u,,, proceeding as in Theorem 2, we are led to the Diophantine equation y “ — (a2 — 4)x% = -4 We
summarize as

Theorem 4. 1 {u,} is a sequence of integers such that
Up+1lp_1 — Uf = +1
for all n, then there exists an integer a such that
Un+2 = ain+1 —Upn
and y = u,+1 — U,_1 and x = u,, are solutions of the Diophantine equation
(9) y? - (az —4)x? = 4.
Theorem 5. The odd-subscripted Fibonacci and Lucas numbers give the only solutions to the Diophantine
equation
(9) yZ—(a? -4)ix? = -4
Proof. We show that (9) has no integral solutions if |a| # 3, proceeding in the manner of the proof of Theorem

3. Here,
(a—=2)x <y < ax.

Since y and ax must have the same parity, let
y = ax—2t, 1<t<ux
Notice that, if x = 7, y2 — (a2 — 4) = —4 becomes a? - y2 =8, which is solved only bya =3,y = 1.
Let x be the first solution greater than one. Replace y with ax — 2t in (9), yielding
(ax—2t)% — (a2 —4)x? +4 = 0
4x? —gaxt +4t? +4 = 0.
Solving the quadratic for Zx gives

2x = at - \J(a* —4Jt* — 4.
Since 2x is integral, we must have (a% - 4)t? — 4 = 5% for some integer s. By Theorem 4, ¢ = u,, is a solution where
t > 1. But, since x_is the first solution greater than 1, and x > ¢, we have a contradiction, and
y2—(a?—4)x? = —4

is not solvable in positive integers unless a = 3. When a = 3, the equation becomes y2 — 5x? = —4, which is solved
only by

y = Lan+g, X = Faneq,
odd-subscripted Lucas and Fibonacci numbers [5].
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Theorem 6. If {u,} is a sequence of integers such that
Up+1lp-1 — ”5 = -1
for all n, then there exists an integer a such that
Up+2 = alyiq — Uy and Y = Up+q — Un-1 and X = Uy
are solutions of the Diophantine equation
(10) y?2—(a?—4)x? = +4.
Proof. Proceed as in Theorem 4.
Theorem 7. The Fibonacci and Lucas numbers with even subscripts give solutions to the Diophantine equation
yZ—(a? —a)x? = +4.
Proof. Seta=23 and refer to Lind [5].
3. GENERALIZED FIBONACCI POLYNOMIALS

Next, in order to write solutions for the Diophantine equation (10), we consider a type of generalized Fibonacci
polynomial. Let

(11) hofx) =0, hylx) =1, and h,2(x) = xhyeq(x) = hy(x)
and

golx) = 2, g1(x) = x,
where

Ipt2(x) = XGns1(x) +95_1(x).
We note that {h,,, (a}} is a special sequence {un} since

hl’H‘I (a)hﬂ—l (a) - /)3(3} =.—7.
Then

_ aj(x)—aj(x) ) _
hy(x) = T —agh * # 2 hn(2) = n,

Inlx) = a’l(x) +a%(x) = hys1(x) = hy_1(x),
where a¢(x) and a(x) are roots of

Moxm+1 =0
(By way of comparison, the Fibonacci polynomials 7, (x) have the analogous relationship to the roots of
M_m-1=0.

Also note that h,,(3) = F3,.)
It is easy to establish from ay (x)az(x) = 1 that

2a7 = gnlx) + [a1(x) = az(x)]h, (x)

2a} = gulx) - [ag(x) — az(x)]hy(x)
with a;(x) — az(x) = \/x*> — 4. From this it readily follows that

1= al(xlajix) = [gZ(x) - (x? — 42 (x)] /4
or
a20) = (x2 =42 (x) = +.
Now, we are interested in the sequences of integers formed by evaluating ,,(x/ and g,,(x) at x = a. Thus
(12) 02(a) - (a® —4h2(a) = +4.
and we do have solutions to
y2—(a?—4)x? = 4.
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Theorem 8. The generalized Fibonacci numbers {h,,(a)} and generalized Lucas numbers {g, (a)} provide the
only solutions to the Diophantine equation

(10) v2 (a2 —a)x? = +4.

Proof. Note that if x = 7, then y =4, and if x = 0, then y = 2. Now one can proceed as follows. We can write, as
before,
fa—2)x <y < ax.

Clearly, y and ax must have the same parity, so that we can let
y = ax—2t 1<t <x

where x is the first positive integer which is greater than 1, not equal to 4, (a), and a solution. Then, as before, re-
place y with ax — 2t in (10), yielding

(ax —2t)> — (a? —4x? ~4 = 0

4x? —gaxt +4t° -4 = 0.
Solving the quadratic for 2x,
(13) 2x = at +/(a* — 4)t* +4 .
Since 2x is an integer, there exists an integer s such that

(a? —ap?+4 = 52,
with a solution given by
t = h,fa) and s = g,la) = hyrqla) —hy_q(a)
by Eq. (12). Then, (13) taken with the plus sign gives
2x = ahy(a) +hyeq(a) — hy_1(a) = 2h,41(a)

and x = h,,+1(a), a contradiction, since x was defined as not having the form h,,, (a/.
Next, we consider the case of Eq. (13) taken with the minus sign. The casesa = 7 or a = 0 are not very interesting.
We need a lemma:

Lemma. Fora> 1, the sequence { ,,(a)} is a strictly increasing sequence.
Proof of the Lemma.
hofa) =0, hyla) =1, hola) =a hyso(a) = ah,ey(a) —h,(a).

Since
hyr1la) = ahyla) —h,_qla) > (a— 1)h,(a)
if
hy_qla) < hyfla),
then

hy+ila) > hyla).
Thus, if we choose the minus sign in Eq. (13), then we have
2x = ah,(a) — (hy+1(a) = hy_1(a))
= ah,(a) — hy+1(a) +hy_1(a) = 2h,_1(a)

or x = h,,_1(a) which contradicts the restriction that ¢ <x. Thus, we must choose the plus sign in {13), which yield-
ed x = h,,+1 (a). So, even if x is the first integer greater than one for which we have a solution for

yZ—(a?—4)x? = 4

and where x # h,, (a), we find x = h,+1(a). This shows that there is no first positive integer which solves Eq. (10)
which is not of the form x = f1,,,(a). This concludes the proof of Theroem 8.
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We note that the case a = 2 yields y = £2 and x any integer. The recurrence
Uptp = 2Uyi1 — Uy
is satisfied by any arithmetic progression b, b +d, b +2d, ---, B +nd, ---. However, the restriction
Up+qlp_q1 — l.l,f = -1

limits these to the integersn = u,, .
In summary, we have set down the complete solutions to the Diophantine equations

yZ—(a?t4)x? = 14
y% — (a2 +4)x? has solution x = 0, y = 2, for all a. For
y2—(a?+4)x? = 4,
we get x = 1, y = a. Both solutions are starting pairs for the recurrence
Up+2 = alp+1 * Uy,

andy =2, a, -leadsto f,,+4(a) + f,_1(a), and x = 0, 1, -, leads to f,, (a), where f,, (x) are the Fibonacci polynom-
; 2 _ n 2 2 2 _ ; = ;
ials. Here, uy, 11 uy_ 1 — uf = (—1)" lead to y ¢ — (a“ +4)x* = +4 via uy+2 = aUy+1 + Uy, But either

2 2 _
Upsqlp-g—U, = =1 O Uppqly g —u, = +1

lead to the recurrence vy, +2 = au,+1 — u,,, and lead to y2 —(a% - 4)x? = +4. Now yZ — (2% — 4)x? = +4 allows x
=0,y=2and x = 1, y = a as starting solutions, where x =0, 1, -, leads to h,,(a), and y = 2, a, -, leads to A, (a) —
hy,_1(a) for the generalized Fibonacci polynomials A, (x). Finally, y2 — (a2 — 4)x? =4 hassolutionx = 7,y = 1
when |a| = 3, but no solution if |a| # 3. This then becomes y? — 5x? = —4 which is satisfied only by the oddly sub-
scripted Fibonacci and Lucas numbers, which satisfy the recurrence v, +7 = 3u,, — u,,_1, so that

Font1 = hp+1(3) = hu(3),

and, of course, F2,,+1 = f2,+1(7). In all cases, the only solutions arise from sequences of Fibonacci polynomials
f,, (x) evaluated at x = a, or generalized Fibonacci polynomials /1,,(x/ evaluated at x = a. We can then state

Theorem 9. The Diophantine equations
y2—(a?—a)x?=14

y2—(a? +4)x? = 14

have solutions in positive integers if and only if
yZ—(a?-4ix? =4

has a solutionx = 7 or
y?—(a? +4)x? = 4

hasa solution x = 7. Every solution is given by terms of a sequence of Fibonacci polynomials evaluated at 3, {fn (a/},
or generalized Fibonacci polynomials evaluated at x = a, {hn (a}}.

4. CHEBYSHEV POLYNOMIALS
There are Chebyshev polynomials of two kinds:
Un+2(x) = 2xUp+1(x) = Up(x)

Tut2(x) = 2xTpe1(x) = Tpix)

with To(x) =7 and T (x) =x, and Uy (x) = 1 and Uy (x) = 2x. The T,, (x) are the Chebyshev polynomials of the first
kind, and the U,,(x/ are the Chebyshev polynomials of the second kind [8]. There are also related polynomials

Sulx) = U,(x/2) and  C,(x) = 2T, (x/2)
which are tabulated in [8]. Our h,,(x/) and g,, (x) are related to S,,(x) and C,,(x) as follows:
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hplx) = Spq(x) and Gulx) = Culx).

An early article by Paul F. Byrd [10] explains the close connection between Fibonacci and Lucas polynomials and
the U,,(x) and T,,(x). See also Hoggatt [9], and Buschman [11].

5. ANOTHER CONSEQUENCE OF u,,,1t,_; — u? = (—1)"

Finally, we examine another consequence of
Un+1lUp-1 — U;f = (=1)".
We note that
(U, Ups1) =1, Uy, Up-q1) = 1.

Note that 1, -1, —u,,_y, u,,_1 are incongruent modulo u,,, v > 5, and form a multiplicative subgroup of the multi-
plicative group of integers modulo v,,. Since the order of the multiplicative group of integers mod u,, is ¢(u,,), where
@(n) denotes the number of integers less than n and prime to n, and since the order of subgroup divides the order of
a group, 4|p(u,,). This method of proof was given by Montgomery [6] as solution to the problem of showing that
@(F,,) is divisible by 4 if n > 5. The same problem also appeared in a slightly different form in the Fibonacci Quar-
terly [7].We can generalize to

2m+2|80/1'. 2My), n =5,

for the generalized Fibonacci numbers 7,, = f,,(a) by virtue of ¢(s) = 2k = 2 for positive integerss > 2, and’ Ty; =
T84 Since {7,0.4) = 1 or 2, then
@lT2e) = o(Ti)ola),

where a= £, or £;/2 so that 9(a) =2k > 2. Thus,

Tomy = TpluLonlgn, =,
where
ATy )L LonLan ) = 4:2™r
for some integerr > 7.
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1. INTRODUCTION

Put
(1.1) ok = A )
i (1-x)"*
It is well known (see for example [1], [2, Ch. 2] that, forn > 7, A,,(x) is a polynomial of degree n:
n

(1.2) Anlx) = 3 Anex®;

k=1
the coefficients A,, , are called Eulerian numbers. They are positive integers that satisfy the recurrence
(1.3) Aptik = (n—k +2)An, k-1 + kA k
and the symmetry relation
(1.4) Ak = Ann-k+t (1 <k <n)
There is also the explicit formula

k
(1.5) Ange = 3 (=DI(" ) tk=j)" (1 <n < k.
=0
Consider next
hnd n
(1.6) > (/i/—kz—"L—”) Xk = _Gnld)_ (n>0).
5=0 (71— X}2n+1

We shall show that, forn > 7, G,,(x/ is a polynomial of degree 2n — 1.

2n-1
(1.7) Gulx) = 3 Gupx®.

k=0

The G, 1, are positive integers that satisfy the recurrence
(1.8) Gu+1,k = %k(k +1)Gpp — k(2n — k +2)G jp—1 + %(2n —k+2)(2n —k +3)Gp 12 (1 <k<2n+1)
and the symmetry relation

(1.9) Gk = Guon-k (1<k<2n-1).
There is also the explicit formula
k ) , ) n

(1.10) e e G [ e N T B

=0

The definitions (1.1) and (1.6) suggest the following generalization. Let p > 7 and put
- b 60K
(1.11) 2 Tt (n >0,
k=0 P (7 _X)pn+1

where

138
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(1.12) Thp = (*7271)
We shall show that Gﬁp)(x} is a polynomial of degree pn —p + 1.
pn-p+1
(1.13) 6P)x) = kz folix‘k n=>1),
=1
where the "‘ff’zz are positive integers that satisfy the recurrence
m
(p) _ k+p—1 —k+1
(1.14) Gne-lm_ ; ( mp-1 )(pnm—k )Gr(zl,’lg (1 <m <pn+7},
k>m-p
and the symmetry relation ®) - glo)
(1.15) G‘n{’k I,)pn—p—k+2 (1 <k <pn-p-k+1).
There is also the explicit formula
(1.16) (,‘(P)—Z (1) Pn+1)rZ]p (1<k<pn-p+1)
7=0

with Ty, ,, defined by (1.12).
Clearly
6(Vix) = Autx,  6P(x) = Gulx).

The Eulerian numbers have the followmg combinatorial interpretation. PutZ, = {7, 2, -, n},and letm=(ay, az,
-, @,/ denote a permutation of Z,,. A rise of is a pair of consecutive elements a;, a;1+7 such thata; < a;+1; in addi-
tion a conventional rise to the left of a, is included. Then [6, Ch. 8] A, £, is equal to the number of permutations of
Z,, with exactly k rises.

To get a combinatorial interpretation of GY(,P) we recall the statement of the Simon Newcomb problem. Consider
sequences g = |(a1, az, -, aN)‘of length V with a; € Z,,. For 1 <i <n, let/ occur in o exactly e; times; the ordered
setles, ez, 8,) is called the specification of 0. A rise is a pair of consecutive elements a;, a;+ such that a; < aj+1;
a fall is a pair a;, a;+7 such that a; > a;+1; a leve/ is a pair a;, a;+¢ such that a; = ;7. A conventional rise to the left
of a; is counted, also a conventional fall to the right of ap. Let o have r rises, s falls and ¢ levels, so thatr +s + ¢ =
N + 1. The Simon Newcomb problem [5, IV, Ch. 4], [6, Ch. 8] asks for the number of sequences from Z,, of length
N, specification [ey, ey, -+, e,/ and having exactly r rises. Let Aleq, e2, -, e,r/ denote this number. Dillon and
Roselle [4] have proved that Afey, -, e, |r) is an extended Eulerian number (2] defined in the following way. Put

oo

N
—————7 -\ _ -sm _ 7)-N * N-r
§ls) =\~ ; m=\—1) ;A (m,rIN"T,
m=1 r=1
where {(s) is the Riemann zeta-function and
m :pj’i_pgz_,.psn’ N = ey +ez+...+en;
then
Ales,ep, -, ey |r) = A*m,r),
Moreover
e;+r—j—1
(1.17) Aleg, ez, -, e,lr) = Z (—1)] (N+1) n ( i N )

i=1
A refined version of the Simon Newcomb problem asks for the number of sequences from 2y of length N, specifi-

cation feq, e, -, e,/ and with rrisesand s falls, Let Afeq, -,

(1.18) ) S, Aleg, -, e, |r,s}z§1 ZZ”XTVS = xy 1
P = n
€1, en=0 rhs<N+ y 111 4+0c-1)z) -x TL(T1#1y - 1)z;)
i=1 =1

(74— 1)z;) - | fi L(1+0x~1)z;)

However explicit formulas were not obtained for Afe;, -, .1 r.s).
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Returning to Gy(lp) , we shall show that

(p) =
(1.19) 6P, = Alp, -, plk)
Thus (1.17) gives "
k
(r) _ yifpn 1 +h—j—1\"
(1.20) G¥) = Zo (- (en (TR I
i= ]
in agreement with (1.16).
2. THECASEp =2
it follows from {1.6) that
2n+1 o = 2n+1
_ i (2m 1Y, klk +IN" & _ k nif2n+ iy (k= jk=j+ 1)\
G (x) er(j)xf}:(“—f)X_Zx_zj(v(].)(—*L—/——z ).
=0 k=0 k=0 =0
Hence, by (1.7), i<k
2n+1
_ _yif2n+ 1\ (k= ik =i+ T\"
(2.1) Gup = g A )(——L——L—Z )
i<t
Since the (2n + 1) difference of a polynomial of degree <2n must vanish identically, we have
(2.2) Gu =0 [k >20+1),
Let k <Zn. Then
T iy k= i)k = [+ 1)\ Bt i (am e (k= k= + 1)V
- - " - - - - " - -
(23 0= Y, (-ni(20)( k=l ) = Gup r X i () (el 2 1))
7=0 j=k+1
T i et [ (ki 20— 1kt —20)\"
= "+ /= — /-
‘Gn,k‘za (_”]<2n——j+1)( 7 )
i=
2nk i (20 +1\ ((2n—k—j)(2n — k—j+1)\"
- n—k— —k— -
= Gup— ]E} (—7)]< n]. )( / 7 L ) = Gn,k"Gn,Zk—k .
Therefore
(2.4) Guk = G onk (1T<k<on-1).
Note also that, by (2.3),
(2.5) Guon = 0.

Since by (2.4)
Gn,Zn—1 = Gn,l =1,
it is clear that G, (x/ is of degree 2n — 1.
in the next place, by (1.7),
2 Gu+1lx) _ X d—Z{ xGp(x) } _ XZG;:(X) +2xG;,(x)

(1 _X)2n+3 dXZ (1 _X)Z.’n+1

2n,
i20ome1) X G (x) +xG, (x)
(1 _X)2n+1 (1 _X)Zn+2

flon+1)ion+2) 2 Gl
Hence (1-x)2""
(2.6) 26,11 (x) = (1-x)2(x2GJ(x) + 2xG},(x)) + 330+ 1)(1- x)(x2 G}y (x) +xG. (x)) +(2n + 1)(2n +2)x 26,1 (x) .
Comparing coefficients of xk, we get, after simplification,
(2.7) Gyag,p = Joklh +1)Gy 1 - k(20 = k +2)Gyy g + (20 -k +2)(2n -k +3)Gp 2 (1 < k < 2n—1).
For computation of the G, (x/ it may be preferable to use (2.6) in the form

(2.8) 26G,,+41x) = (1 - x}zx(xGn (X)) +2(2n + 101 = x)x(xG,,(x)) + (2n + 1)(2n +2)XZG,, (x) .
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The following values were computed using (2.8):
Golx) = 1, Gilx) = x
(2.9) Gy(x) = x +4x? +X3
G3(x) = x +20x° +48x° +20x +X5
Galx) = x +72x% +603x7 + 1168x* +603x° + 72x6 +x 7
Note that, by (2.1),
G2 =3"=(2n+1), Gp3 = 6"—(2n+1)-3"+n(2n + 1)

Gug = 10" = (20 +1)-6" +n(2n +1):3" ~ L ntan? — 1)

and so on.
By means of (2.7) we can evaluate G,,(7). Note first that (2.7) holds for 1 < k <2Zn + 1. Thus, summing over &, we
get 2n-1 2n 2n+1
Gur1(1) = 3 1k(k +1)Gpp— 3 k(20 =k +2)Gy g+ 32 15020 —k+3)(20 — k +3)Gy 2
k=1 k=2 k=3
2n-1 2n-~1
= 3 {Bklk+3)—(k+ )20 — k+1)+ %20 — k)20 =k +1)}Gppp = 3 (n+1)(2n +1)Gyyp
k=l k=1
so that
(2.10) Gut1(1) = (n+1)(2n +1)G,(1).
It follows that
(2.11) G, (1) = 27"2n)! (n >0 .
In particular

Gy(1) =1, Gp(1) =6 Gs(1) =90, G4(1) = 2520,
in agreement with (2.9),
3. THE GENERAL CASE
It follows from

(p) hod
(3.1) ——G"—(X)— =y TZ xk (p=1n=0,
(1—x)P"*1 o 7P
that )
pn+
+1 +1
6P)x) = zo (=17 (PP 1) X }: Z (-
i
Since k+]<k1
- P
(3.2) Tep ( p )

isa polynomial of degree p in k and the (pn + 7)th difference of a polynomial of degree <pn vanishes identically, we
have

Pt +1
. jipnrhyrn =,
(3.3) g(ﬁ( )k]p 0.
Thus, forpn-p +1 <k <pn, !
k ) ‘i pn+l ‘1\von
n n "N
(3.4) 2 (I (T = > (7)J(P Teip:
j=0 j=k+1

Since, forpn —p+ 1<k <pn, k<p<p+1, wehave —p < k —j <0, so that Tk_j,p=0 (k+1<j<pn+1). That
is, every term in the right member of (3.4) is equal to zero. Hence (3.3) gives

k
(3.5) > (-7)J(P”.+1)rg_jp =0  (pn-p+1<k < pn)
j=0
It follows that G(P)(x} is of degree <pn —p + 1:
pn-p+1
(3.6) 6P =y 6Bl s 1),

k=0
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where
(3.7) 6P/ - Z ()i T (1 <k <pn-p+i).
0
By (3.3) and (3.7), d
) - +1 - 1
— " = i + (A

(3.8) Gn},?k = Z (- 7)](1’ )Tk—j, (—1)P Z (- 7/](1’71] )Tk"‘] -pn-1,p °

j=k+1 j=0
For m > 0, we have (=) 4 1) o + 1) _

= (=m)(=m - =1 _ =

T—m,p P, 2 (- 7}?( ) = (“1)prm—p+1,p .

Substituting in (3.8), we get

(p) = [_q)pn jf{pn+1 nr
6F) = (1) z{;)(n(f’ )=UPT i penp
= i
This evidently proves the symmetry relation

(r) = g(r) _
(3.9) Gn,k npn hpt2 (1<k <pn—p+1).
Forp =1, (3.9) reduces to (1.4); for p =2, it reduces to (1.9).

In the next place, it follows from (3.1) and (3.2) that

]pn+1 "
Z (=1) ( j >T(pn k-p+2)-jp"

G®) 6(P)(x) P ~
p! g _Gitald | x 47 p-1 __ﬂ_X_} = x (p) _dry (xP~ 1(;(10)()()) i ((1=x)P1)
( X}p(n+1)+1 pr (7—X}p"+1 ] 0 pr— pr
3 (B)fon + 1)1 — P! T etg0)
=X Mpn +1)i(1 —x) P70 —— (p-15(P)1y)).
- j=20 ] j P (x PAx))
(pn +1); = (pn+1)(pn +2) - (pn +j) .
We have therefore
P
(3.10) pI6(E, ) = x 3 (P)on+ 11 -7 L2 (r-1(Pp).

= dxP
Substituting from (3.6) in (3.10), we get

pn+l P
pLY GF) x™=x Z( Pfon +1);(1- x)P4. a3’ f z G(p)xk+P t=x () ton+1); Z (1)°(P77)x¢
m=1 dxPJ 7=0 s=0
pn-p +1 .
(3.11) . Z G+l px T = ST x™ 3 (=1 (BY(P Yoo + 1)tk +i)p 6B
k+jts=m
pn+1 m .
=Y MY 6B T —0f(B) (P len # ik il
m=1 k=1 ’ jts=m-k ]
k=m-p
The sum on the extreme right is equal to J
m-k
s pllpn + Hl(k *flpj L ymkej p!lpn +1);i(k +p = 1)!
(312 ) f‘: (1) jlslp —j—s)! Z (=1) jim — k—j)ik +p —m)ilk +j—1)!
jts=m-k
= (gymk pllk+p = 1)! ): & (~m + k)(pn + 1);

(k — 1){{m — k)!(k +p — m)! /I(k}

By Vandermonde’s theorem, the sum on the right is equal to
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tk=pn = Vet _(gymek _fon = k+ Dllk = 1)1
(k) -t (pn —m+1)H{m—1)I"

Hence, by (3.11) and (3.12),

k+p— _
(3.13) Gflfi)lm= kz—:l( ;{11)(1’” 16_21)6(1’) (1<m<pn+i).
k>m-p ]
Summing over m, we get

() pn~p+1 ) k+p .+ 4 b
— —k+
Grﬁd(” Z G(p Zk(k+; m)<pnm——k)'
m=

By Vandermonde's theorem, the inner sum is equal to

(")
so that
(3.14) G(P) (1) = (P” +P>5(P)(1)
Since G(p)(x) = x, it follows at once from (3 14) that
(3.15) GP(1) = (p1) " pn)! .

By (3.10) we have

p .
p!GP)x) =XJZ( )0 + 1)1 = x5

so that
)4 L ,
(3.16) 6Px) = x > (2)( 7)1 =P
f=
The sum on the right is equal to
p .. P ) P p-j . "
M I SE A CAULED M (A DR ARl G CE)
=0 s=0 k=0 =0

The inner sum, by Vandermonde's theorem or by finite differences, is equal to (z ). Therefore
p 2
- k
(3.17) 601 = x kz_o (2) Xk

An explicit formula for Ggp)(x) can be ohtained but is a good deal more complicated than (3.17). We have, by
(3.10) and (3.17),

p i 2 p p-j )
pIGP ) = x 3 ()= 0P dp’,{ 3 (%) xk+p}= XY @1 (B3 1 (P
s=0

=0 dxP =0

) ; r - 2(k+p)!
-2 (’Z) Z: :j))/’ L > x™ Z (-7)%;))(?;!)(}16’) T ),(2P+7,
The inner sum is equal to m=0 k+]+$:
p! (k+p)! _ 2(p\ (k+p)! tiey(2p + 1)
) D /)/< ) (k+%/(2/’+7}f‘ = (B)) Z(I) I(; )(k+7)

ktj+s=m k+t=m

2 (k- 2p) 2 _
- T () ()t G e T (R) () et okt

k+t=m k+t=m
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Therefore
3 GO« X om BN b \(ktp)liZo— k)
(3.18) Pix) = x ZOX kzo(k) (m~k)p/m/(zp_m;/ _
m= =

4, COMBINATORIAL INTERPRETATION

As in the Introduction, putZ, = {7, 2, -, n} and consider sequences 0= (a7, az, -, anJ, where the a; € Z,, and
the element j occurs e; times in 0, 7 <j <n. Arise in 0 is a pair a;, a;+1 such thata; <a;+1, also a conventional rise
to the left of a; is counted. The ordered set of nonnegative integers /es, g2, -, &,/ iscalled thesignature of o.
CleariyN = e; +es + - +¢, .

Let

A/E1, €2, -, en|r)

denote the number of sequences o of specification /ey, e2, -, e, |r/ and having r rises. In particular, fore; =3 =
...:gn =p, we put

(4.1) Aln,p,r) = Alp,p, -, p|r).
The following lemma will be used, ‘—x—’

Lemma. Forn > 1, we have
r

= pn—j+1\[p+j—1 :
(4.2) Aln+1,p,r) Z; < .y >< i >A(n,p,/) (1 <r<pn+l).
j=
j=r-p
It is easy to see that the number of rises in sequences enumerated by Afn + 1, p, r) is indeed not greater than
pn + 1.

To prove (4.2), let o denote a typical sequence from z,, of specification /p, p, -, p/ with j rises. The additional p
elementsn + 7 are partitioned into k£ nonvacuous subsets of cardinality 77, f2, -+, f, = 0 so that
(4.3) fr+fp+tfy =p, f; > 0.
Now when f elements 7 + 7 are inserted in a rise of o it is evident that the total number of rises is unchanged, that is,
/- /. On the other hand, if they are inserted in a nonrise (that is, a fall or level) then the number of rises is increased
by one: j —j + 7. Assume that the additional p elements have been inserted in a rises and & nonrises. Thus we have
j+b=ra+h=k, sothat

a=k+j-r, b =r—j.

The number of solutions 74, 2, -, f, of (4.3), for fixed k, is equal to (I]: - 5) The a rises of o are chosen in

(ﬁ) - (k+§—r> :(rlk)

ways; the & nonrises are chosen in .
pn~f+1> =<zm~j+1

b r—j
ways.

It follows that

j4 . )
Atn+1,p,1) = A p i) 3 (RZ1)( L )67
The inner sum is equal to / k=1

. -1 . . .
("I E () ) - (I ),

by Vandermonde’s theorem. Therefore
r

Aln+1,p,1) = L; (pr NPT ) Al i)
=
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This completes the proof of (4.2). The proof may be compared with the proof of the more general recurrence (2.9)
forAfeq, -, e,|r, s) in [3].
It remains to compare (4.2) with (3.13). We rewrite (3.13) in slightly different notation to facilitate the comparison:
r

“a) 6k, = T (A (P78,

Since (o) (
An{)1 = an,)1) =17 (” = 7, 2, 3, ..‘),

it follows from (4.2) and (4.4) that
(4.5) Gr(;pr) = Afn,p,r).

To sum up, we state the following
Theorem. The coefficient Gr(zplg defined by

) - LT o)k
p =
G (x) an’kx
k=1
is equal to A(n, p, k), the number of sequences o = (a4, a3, -, apn) from Z,,, of specification /p, p, ---, p/ and hav-
ing exactly & rises.
As an immediate corollary we have

pn-p+1
(4.6) 6y = kz_;j 62) = (o)™ (pn)1

Clearly Ggp)(ll is equal to the total number of sequences of length pn and specification /p, p, -, p/, which, by a
familiar combinatorial result, is equal to (p/)-"(pn)! The previous procf (4.6) given in § 3 is of an entirely different
nature.

5. RELATION OF GE(x) TO A, (x)

The polynomial Gg’) can be expressed in terms of the A, (x). For simplicity we take p =2 and, asin § 2, write
Gy(x) in place of G(2)(x).
By (1.6) and (1.1) we have

oo oo n " oo n
; ; Apilx)
o Guld) = S (k(k+1))x* = ok (;l)knﬁ - Z(]ﬂ) S kMixk - 3 (7) n+ln(:(7'+1 )
(1-x)2*1 k=0 k=0 j=0 =0 " k=0 =0\ (1-x)
so that
n
(5.1) 2"Gutx) = 3 (7)1 = 5T Asit),
j=0
The right-hand side of (5.1) is equal to
n n-f . n+j L 2n n n-}-j . .
n sin — S m m- n n —
> <]>Z (—7}( . J)x 3 Anex® = 3 x™ 3 X (-1) (].)(n_]k)An,Lj]k .
7=0 s=0 k=1 m=1 =0 k=1
k<m
Since the left-hand side of (5.1) is equal to
2n-1
2" 3 Gpymx™,
m=1
it follows that
m " n-m+k
- / —9
(5.2) 2"Gpm = k21 (—1)™ Eg (N Zh) Anrie (1 <m <20-1)
= =
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and
2n k-n )

(5.3) 0= 052 (D)gnh)Ansih
k=n j=0

In view of the combinatorial interpretation of A, 3 and G,, ,,,, (5.2) implies a combinatorial result; however the
result in guestion is too complicated to be of much interest.
For p = 3, consider

670 S k2 - 1)k - Z (1" (% )E KBk = 3 gy il
(1-x)""1 5 j=0 k=0 i=0 Pt — et
Thus we have

6"x

(5.4) 6"x6Vix) = > (=1 ()1 =0/ 2l
j=0
The right-hand side of (5.4) is equal to
2n-2j n+2j n

Z ) 3 () z Ansaint = z 3 ) S ) A

k=1
lt follows that

n+2

(5.5) 5"6(%) 2(—1/”‘] ): (~1)m k(2 =2 A ik

n,m~1
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[Continued from page 129.]
Recalling [2, p. 137] that

n
G+1) Z Kkl = Bj+1(”+7}—3j+1,

k=1
where Bj(x) are Bernoulli polynomials with B; (0) = ;, the Bernoulli numbers, we obtain from (2.3) withx =7, 8 =
1, and C}, = k the inequality
(2.4) Bopln +1)=Bap < (Bpln+1)—By)2  (n=1,2 ).
Forp=2k+1,k=1,2, -, Byp+1 =0, and so (2.4) gives the inequality
(2.5) Bap+2(n+1)—Bypip < B 2k+1 n+1) (nk =12 ).

3. ANINEQUALITY FOR INTEGER SEQUENCES
Noting that U}, = £ satisfies the difference equation

) Ur+2 = 2Up+1 — Up
[Continued on page 151.]
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1. INTRODUCTION

The author had been working on the safe combinations (Wythoff pairs) in Wythoff’s game [11] when the re-
searches of Silber [9, 10] came to his attention. As the two approaches differ somewhat, it is probably worthwhile
to indicate briefly the author’s alternative treatment, which may throw a little light on the general problem.

Both Silber and the author use the fundamental idea of the canonical Fibonacci representation of an integer. While
much work has been done recently on Fibonacci representation theory and on Nim-related games, we will attempt
to minimize our reference list.

Wythoff pairs have been analyzed in detail by Caritz, Scoville and Hoggatt, e.g., in [3, 4], though without specific
reference to Wythoff's game. For a better understanding of the principles used in our reasoning which follows, itis
desirable to present a description of the nature and strategy of Wythoff's game.

2. WYTHOFF'S GAME

Wythotf's game was first investigated by W. A, Wythoff [11] in 1907. It is similar toNim (see Bouton [2]) and
may be described thus (Ball [1]):

Unspecified aumbers of counters occur in each of two heaps. In each draw, a player may freely choose counters
from either (i) one heap, or (ii) two heaps, provided that in this case he must take the same number from each.

For example, heaps of 1 and 2 can be reduced to 0 and 2, or 1 and 1, or 1 and 0. The player who takes the last
counter wins the game.

As Coxeter [5] remarks: “An experienced player, playing against a novice, can nearly always win by remembering
which pairs of numbers are “safe combinations’’: safe for him to leave on the table with the knowledge that, if he
does not make any mistake later on, he is sure to win. (If both players know the safe combinations, the outcome de-
pends on whether the initial heaps form a safe or unsafe combination.)”

The safe combinations for Wythoff's game are known to be the pairs:

n=1 2 3 4 5 6 7 8
(1
(1,2), (35), (47, (6,100, (8,13), (9,15), (11,18), (12,20),

A safe pair may also be called a Wythoff pair.
There are several interesting things about the integers occurring in these safe combinations. They are:

(1) Members of the first pair of integers differ by 1, of the second pair by 2, of the third by 3, ---, of the nth
pair by n.

(1} The 0" pair is (a,,, b,) = ([nal, [na?]), where the symbol [x] denotes the greatest integer which is less
than, or equal to, x, and a = (1 +/5)/2 = 1,618 (so that a®=(3 +1/5)/2 = 2.618). We recognize a as the
“golden section” number which is a root of x? — x — 1 =0 (i.e.,, a2 = a + 1). Note that b, = a,, +n, i.e.,
[na?] = [na] +n.

(111) In the list of integers occurring in the ordered pairs for safe combinations, each integer appears exactly once
(i.e., every interval between two consecutive positive integers contains just one multiple of either @ or a“, as
Ball [1] observes).

(IV) Inevery pair of a safe combination, the smaller number is the smallest integer not already used and the larger
number is chosen so that the difference in the nth pair isn.

147



148 WYTHOFF PAIRS [APR.

It might reasonably be asked: How does the "‘golden section” number a come into the solution of Wythoff's game?
The answer is detailed in Coxeter [5] where the solution given by Hyslop (Glasgow) and Ostrowski (Gattingen) in
1927, in response to a problem proposed by Beatty (Toronto) a year earlier, is reproduced. (Coxeter notes that
Wythoff himself obtained his solution "out of a hat”” without any mathematical justification). Basically, the answer
to our query, as given by Hyslop and Ostrowski quoted in [5], depends on the occurrence of the equations (1/x) +
(1/y) =1,y = x + 1 which, when y is eliminated, yield our quadratic equation x2-x-1=0.

That the Wythoff pairs are ultimately connected with Fibonacci numbers should not surprise us since, by Hoggatt

[6], the ntk Fibonacci number
F. = ﬁ + 7_
! [\/7 2 ]

forn=1,2,3, -, ie., both Wythoff pairs and Fibonacci numbers involve [x/. (See (I1) above.)
The first forty Wythoff pairs are listed in Silber [9]. From the rules of construction (I)—(IV) it is only a matter of
patience for the interested reader to form as long a list of Wythoff pairs as is desired.

3. WYTHOFF PAIRS AS MEMBERS OF {H,,(p,q) }
Consider the generalized Fibonacci sequence {4, (p,g)} of integers (Horadam [7]):
Hy H;y Hy H3 Hy Hs Hg Hy

) q p ptqg 2p+q 3p+2qg 5p+3qg 8p+hq 13p+8g
where
(3) Hy = Hyp1 +Hp2 (m > 2)

in which we omit p,g when there is no possible ambiguity. The restriction m > 2 in (3) may be removed, if desired,
to allow for negative subscripts.
The ordinary Fibonacci sequence {Fm} with Fp=0, F1=F2=1occurswhenp=17,9g=0, i.e.,

@) Fm = Hn(1,0).
Itis known [7] that
{5) Hy = pFm +qFpm_q.

Every positive integer ¥/

(a) produces a H; (= [Na] = p) which is the first member of a Wythoff pair, i.e., sequences {H,, (/NaJ, N) } yield
all the Wythoff pairs; and

(b) is, by (IV), a member of a Wythoff pair and a member of some H-sequence (in fact, of infinitely many H-
sequences of which the given H-sequence forms a part),
e.q., 52 = H;(52,32) =H,(32,20) = H3(20,12) = H4(12,8) = H5(8,4) = Hg (4, 4) = H7(4,0) = ...
with infinite extension through negative values of m if the restriction m > 2 in (3) is removed.
" Every positive integer /V is obviously also a member of infinitely many non-Wythoff pairs belonging to infinitely
many different +-sequences, e.g.,

N = 2000 = 20F;{ +4F19(= H11(20,4)) = 20 x 89+4 x 55

is a member of all the H-sequences resulting from the solution, by Euclid’s algorithm or by congruence methods, of
the Diophantine equation 89x + 55y = 2000. Some instances of this are

2000 = H{4(75,-85) = H{1(-35,93)
yielding the non-Wythoff pairs (1235,2000) anc (1237,2000) whereas (1236,2000) is aWythoff pair (= (a754,6 764)).
Now make the identification with the notation in [9]:
(6) an = Hm, by = Hpust, ap, = Hpeo forsome pg .

For example, n = 6 yields the Wythoff pair (ag, bg) = (9, 15) = (H3,H4) for p = 3, q = 3.
To save space, we will assume the results in [9] expressed in our notation:



1978] WYTHOFF PAIRS 149

Theorem. Al pairs in an H-sequence after a Wythoff pair are Wythoff pairs, i.e., each Wythoff pair generates
a sequence of Wythoff pairs.

Theorem. A Wythoff pair (H,,, Hpy+1) is primitive if and only if (for H,, = a,) n = a5, for some positiveinte-
ger &, and for some positive integers g, g.

A primitive Wythoff pair is a Wythoff pair which is not generated by any other Wythoff pairs. Thus, (1,2}, (4.7),
(6,10), (9,15), (88,143} are primitive Wythoff pairs.

4. ZECKENDGORF'S CANONICAL REPRESENTATION

Zeckendorf’s Theorem, quoted in Lekkerkerker [8], states: (Zeckendorf’s Theorem) Every positive integer /' can
be represented as the sum of distinct Fibonacci numbers, using no two consecutive numbers, and such a representa-
tion is unique.

Symbolically, this canonical (Zeckendorf) representation of ¥ is

{7) N = Fpy#Fry+tFp,,

where

(8) ki > k3 > - > k, = 2 (r dependingon )
and

(9) kj—kj+1 =2 {/ = 7,2, I 7).

From [9], the criteria for a Wythoff pair (H,,,, H,,+1) are that, in the canonical representation (7), with (8) and
9,

A. { Hy = Fk1+Fk2+'"+Fkr
(i Hm+1 = Frye1 # Flgrs 1t Fraq
(ii) k, iseven.
For a primitive Wythoff pair, we have further that
"0 k = 2
i N = Frge# Frges ot e
where
(10) z=k—1 tky—z = 1)

so the last term inn(B(ii)) is F; = 1.

Examples. (1) Non-Wythoff pair (62, 100)
62 = Fig+Fs+F3 so k. = 3 which isnot even, and Alii)
is therefore invalid {though A(i} holds).
(2) Non-Wythoff pair (62, 101)
101 = Fyq+Fg+ Fq+FysoAli)isinvalid (and so is Afii)).
(3) Non-primitive Wythoff pair (1236, 2000) = (2744, b 764/
1236 = Fy4+ Fq13+F7+ F4 soBl(i) isinvalid (and so is B{ii)), though A(i), A(ii) are valid.
(4) Primitive Wythoff pair (108, 175) = (a47, bs7)

108 = Fi1+Fy7+F5+F, 175 = Fip+Fg+Fg+F3
so A(i), Alii), B(i) are valid and (175 — 108 =) 67 = Fyg+ Fg+Fq+ Fq
so B(ii} holds.

5. WYTHOFF PAIRS, ZECKENDORF'S REPRESENTATION AND {H,,(p,/) }

From (5) and (7) we have, fork; =m >m -1 > k,,
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(1 N = Hulpg) = pFm+qFmg = Fp +Fey et Fp,
A little thought reveals that

(12) N = Hulpg) = Huwlp'g'),

where

(13) m =z

(14) P’ = Hm_r+1(p.q)

(15) q" = Huz(p.q)

in which (p’, p” + g°) is a primitive Wythoff pair. That is, the sequence {Hm'(p’,q’)} is generated by a primitive
Wythoff pair.

The explanation of {12)—(15) is as follows. If, in (12), p” is the first member of a primitive Wythoff pair, then by
B(i) its canonical representation must end with F,. Thus, by (11), p” precedes N by k, — 2 =z — 1 places by (10),
i.e., p”is located in term position m — (z— 7) =m — z + 1 in the H-sequence. Hence, we have (14) and consequently
(15). Clearly, m’=(z — 1) + 1 = z giving (13}.

It is now possible to determine, for any positive integer V/, exactly which Wythoff pair generates the /-sequence in
which that & appears, as well as the location of # in that sequence (as is done in [9]).

Examples.
m N =52=Fg+F;+Fs
{so z=4 by (10))
= 4F;+0. Fg
by repeated use of F,p, = Fpy_ g + Frp
= H7(4,0}
by(1)(som=7,p=4,4g=0)
= Hq(12,8)

by (12)—(15) since
m'=z=4, p’ = Hs40) =12 q’ = H3(40) = 8.

That is, ¥ = 52 is the 4t term in the sequence{H(72,8)}generated by the primitive Wythoff pair (12,20) = (ag, bg) :

Ho Hy Hy Hz:Hy Hs Hg H; Hg

0 4 4 8i12 0 32 (52)wm

1

{H(12, 8)}
{4, 0)f
) N = 1000 = Fyg+Fy = Hy11(10,2) = Hg(90, 56),

i.e., 1000 is the 6% term in the sequence generated by the primitive Wythoff pair (90, 146) = (as4, b56 )
Ho Hi Hz Hz H4 Hs:Heg Hy; Hg H9 Hig Hyg
2 10 12 22 34 56: 90 146 236 382 618 (1000

; {H (90,56)}

(H(10,2)}

Example (1) is given by Silber [3]. Comparing his zero-unit notation with our A-notation in relation to canonical
representations, we see that our z is a suggestive symbol as it is also the number of zeros at the right-hand end of the
zero-unit notation for a canonical representation. Checking that (12, 20) and (30, 146) in the examples above are in-
deed primitive Wythoff pairs is straightforward,
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and that V,, = 2 satisfies

Vit = 2Vt = Vi,
we can rewrite (1.2) as

This suggests the following result for integer sequences.

Conjecture. Let U, with Ugp =0, Uy =1, and Vy, with V=2, V{ = P, be two solutions of

Witz = PWhss + AWy, k=201,
where P and @ are integers with # > 2 and P + @ > 1. We then claim that
2
n n
(3.1) 2 Z U]‘: < Vn( E Uk> n=12-)
k=1 k=1

Remarks. For P =2 and @ =—17, (3.1) gives (1.2). Using double induction, one can prove the conjecture for P+ @
> 3, which leaves the two cases P+ 2 =2and P+ Q = 7 open.
REFERENCES
1. M. S. Klamkin and D. J. Newman, “Inequalities and Identities for Sums and Integrals,” Amer. Math. Monthly,
83 (1976), pp. 26-30.
2. L. M. Milne-Thomson, The Calculus of Finite Differences, Macmillan, London, 1960.
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GEOMETRIC SEQUENCES AND THE INITIAL DIGIT PROBLEM

RAYMOND E. WHITNEY
Lock Haven State College, Lock Haven, Pennsylvania

Recently, R. L. Duncan discussed the initial digit problem for the sequence of positive integers, J [1]. The sub-
sequence of positive integers with initial digit a {1, 2, -, 9} is denoted by A = {37 } Although the asymptotic
density of A in J/ does not exist, the logarithmic density of A in J is log (1 + 1/a), where log x is the common log-
arithm of x.

The purpose of this note is to show that the relative asymptotic density of A in certain geometric sequences is also
log (1+ 1/a).

Let ¢ denote a positive integer which is not a power of ten. We adopt the following definitions.

Definition 1. Bim)={yly =c"n>1y<c™ meJ}.
Definition 2. B" = || B(m).
me |
Definition 3. Alm) = A n B(m).
Definition 4. A"=AnB.
Definition 5. alm) = 3, 1.
yEA(m)
Definition 6. bm)= 3 1=m.
yEB(m)
Clearly c™ € A” iff
(1) allt < c¢™ < (a+1)10¢ (t =0).
But (1) is equivalent to
2) [t+loga<m <t+|og(af_7))_
logc logc
Let

_ rt+loga t+log(a+7))
It+1 [ logc °  loge ft>0)

and |/¢+1 | denote the length of /;, ;.

Obviously
(3) [fpeq| = 100L1* 1/a) I(H o) L log2 _ 4
og ¢ log ¢

Infact, |/r+7|=1iffa=Tandc=2.

Let z;+7 denote the midpoint of /,.; .

= 4L *7100a(at i

(4) Zt41 2t Tol; ca(a +1) (t >0).

Lemma 1. {2z} is uniformly distributed mod 1.

i — 7 = lim —2_=_2_ 2 isirrati

Proof. Am_ (201~ 2¢) tl_lg; gz - iogs and Ir: is irrational [2].
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Hence, {7t} 1 is uniformly distributed mod 1 [3].

Lemma 2. ([”—f—%i—ai’—)]) = |l1|n +aln),

where [x/ denotes the greatest integer in x.

Proof. Obviously
f a [n+|og(a+7)J)
log ¢
is the number of intervals, /1, /5, ---, /,, which contain an integer and this is n less the number of intervals which con-
tain no integer. Since |/¢+7| < 1, itis clear that each interval contains at most one integer. If |/z.1|=1(c=2,2=1),
then

a<[’%;°29—2]) —n = |lg|n+oln).

{/t+1| < 1, It+1 will not contain an integer if, and only if

Zt+1€(/+‘—l21—l,/+7-v—;r| ,
where z;.; < (j, j + 1) for some integer, /. Using Lemma 1 and the definition of uniform distribution mod 1 [4], we
have
n _a([ﬂ%g_@_fi}]) = (1- |/1 d}n +o(n)
ogc
and the result follows.
Let dfa) denote the relative asymptotic density of A”in B” defined as follows:

(5) dla) = fim_ 3 /7% 1.

a7<x nEX

a'yEA’ neB’
The upper and lower relative asymptotic densities of A”in 57 are obtained by replacing “limit” in (6) by "limit su-
perior” and “limit inferior,” respectively, and are denoted by dfa) and d(a), respectively [5]. We conclude the dis-
cussion with our main result.

Theorem. dfa) = log {1+ 1/a).

Proof. Itis clear that
a([n+logfa+ 7)])

I logc
(6) dla) n”_Lnoo b([n+7+|og{a+]}J) -1
logc
([n +log fa + 7)])
) da = iim log ¢
n—» oo ( n+log(ati) (a+7])
log ¢
Since [n+|og(a+7)]~n+log(a+7)
logce logc ’
the application of Lemma 2 transforms (6) and (7) into
. I1|n +a(n)
(8) da) = lim I = |/{|logc = log (1 +1/a)
n—>entltloglati/ 7It:g|2 (a+1) +ofn)

and
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@) T = i 117 +ofr)
o= M +log(a+1) +oln) = log {1+ 1)

logc
and the desired conclusion follows.
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ADDENDA TO ADVANCED PROBLEMS AND SOLUTIONS

These problem solutions were inadvertently skipped over for a few years. Our apologies.

FORM TO THE RIGHT
H-211 Proposed by S. Krishman, Orissa, India. (corrected)
A, Show that (2: > is of the form 2n°k +2 when n is prime and n > 3.

B. Show that <2” - 2) is of the form nZk — 2n2 — n, when n is prime.

n—1
(rJ”) represents the binomial coefficient, /—;(7”’_,/7
Solution by P. Tracy, Liverpool, New York.
A. The Vandermonde convolution identity is () = = (" L L Y. Appling this to (%7 (using L = p), we
ottty i () - 2" 7)(,, ). Aaaingthis o (%) g L =5
p .2 p-1 2
2p =y p) =2+ (?
k k :
(%) k=0 ( b=t )
Sincepisaprime,pi (’i)fork= 1,2,-,p— 1. Now ,
2 - -2)np—k+
(2 = p2 (p—1ip 2}k! (o=k+1) * (modp?).
Also (p —i)/i=—-1 (mod p) and so
" p-1 2 pty
= 3 (1]:) = = = 2 quad. res. (mod p)
P° k=1 k=1 k
(since every quadratic residue mod p has exactly two roots, _ta). Let g be a primitive root, mod p, then the quadratic
residues are _p-3

1,9% 9% .02
To find the sum of the quadratic residues, we use the geometric sum formula to obtain (gp'J - H/(gz — 7). Note
thatp > 3 implies g% — 7#0 (mod p). Hence = quad. res. = 0 (mod p). Therefore

p-1 3
3 P 2p\ _ 3
[Continued on page 165.] 2p ‘k—zi (¥) and < p>- = 2 (mod 2p7).



A SECOND VARIATION ON A PROBLEM OF DIOPHANTUS AND DAVENPORT*

BURTON W, JONES
University of Colorado, Boulder, Colorado 80309

1. INTRODUCTION

In a paper appearing in the Quarterly Journal of Mathematics [Vol. 20 (1969), pp. 129—137], Harold Davenport
and Alan Baker dealt with the set of numbers: 1, 3, 8, 120. It has the property, noted by Fermat, that the product
of any two increased by one is a square. We call such a set a P-set. Davenport and Baker proved, using the “effective”
results of the latter, that if 1, 3, 8, ¢ is a P-set, then ¢ must be 120.

Long before, Diophantus noticed that the setx, x +2, 4x +4, 9x + 6 is a P-set for x = 1/16. Indeed, the first three
have the same property considered as polynomials in x. In a previous paper [Quar. Jour. Math., Vol. 27 (1976), pp.
349--353] the author proved that the only P-sets containing x and x +2 in Z/[x] are

X, x*2, cix),  crr1(x),

where r is a positive integer and the ¢; are certain polynomials defined recursively.

Here we consider a similar problem in a more general setting. Leta = a(x) and b = b(x/ be two non-zero polynomials
in Z[x] such thatap +1 = WZ, where w is in Z/[x]. [We omit the argument x when there is no ambiguity.] Without
loss, we may assume thata, b, and w are in Z* [x/, that is, have positive leading coefficients. We want to allow 2 and
b to be in Z; in this case Z*[x] becomes the set of positive integers.

First we seek all salutions ¢, = ¢ (x) in Z*/x] of

(1.1) acp+1 = yf, bep +1 = zl‘f, yr and zp in Z*[x] .

An equivalent pair of equations is
2
L -

In the previous paper we considered the case when b = a + 2. Then there was just one sequence of ¢, If b #a + 2,
there ate at least two such sequences. We prove that if a, 5, and ¢ form a P-set and all are of the same positive degree,
then there is no fourth of the-same degree which, with a, b, and ¢, forms a P-set. We prove that if a and b are both
linear or quadratic there are exactly two sequences. If 2 and & are in Z and @ < b < 4a we prove that there are exactly
two sequences of ¢z (unless b = a +2); we also show that if @ <b < ¢ < d form a P-set, then d > ab + 1. Our most
significant result is that when a and 4 are linear over Z*/x/, c =a + b + 2w, and a, b, c, d form a P-set of four ele-
ments, then there is exactly one possible d, namely

colah) = (4w? = 2)c +2(a +b),

where ab + 7 = w?, The proof of this result is an adaptation of one of B. J. Birch given in the previous paper. We
show that if 2 and b are two successive even-indexed Fibonacci numbers, ¢ (a,b) reduces to 4b(b2 + 1) and is not a
Fibonacci number. A final section describes some results which seem true but for which we have no proofs.

Since much of the theory is the same for integers and polynomials it is convenient to define an extension of the
idea of inequality from integers to polynomials in Z/x/.

(1.2) {b—alcy, = zf—yi, b—a= byi—az

Definition. When we write “2 is in Z/x/” we mean that it is either a polynomial of positive degree or an inte-
ger. In the latter case, we call it its own “leading coefficient.”” The symbol a > 0 means that the leading coefficient
of a is positive. Similarly if 2 and b are in Z/[x/, a > b means thata — b > 0. The usual fundamental properties of in-
equality hold for this extension.

We assume throughout that

*The author promises there will not be a third; he has no intention of composing a sonata.
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(1.3) 0 <a< b

If n, = dega denotes the degree of @ in x, and similarly for 13, then (1.3) implies n, < ny, . Note that n, and 7, must
be of the same parity and 2n = n, + ny,, where n = n,,. Define co to be 0 and have as a consequence that ygp =z9 = 1.

2. FORMULAS FOR ¢, IN (1.1) AND (1.2)
In order to find a formula for ¢, we first seek a recursion formula for y, and z3,. To this end, write
(2.1) (Vhyr+~fazi = (w+~Jab)(Nby 1 +~azp-1),
that is
Ve = WY1 *aZp_q
22) 2y = byp_g twzp_y.

To see that (2.2) defines a sequence of solutions of (1.1) suppose that y._y, z_5 is a solution of the second equa-
tion of (1.2). In (2.1) replace \/a by —/2 and multiply corresponding sides of the two equations to get:
2

by,f ~az, = (w? — ab)(bylf_j - azf_l).
Another way to show this is to use Egs. (2.2) directly in the second equation of (1.2). We show below that the first
equation of (1.2) defines cg.
Now wy}, — azp, = ¥z which implies
Vi = Wh-1 *WYk-1 = Vk-2 = 2WYk-1 — Vk-2.
Also wzy, — by = zp_1 implies zp, = 2wzyp_1 — zj_2. SO
(2.3) Ye—2Wyk-1+yp-2 =0 and  zp—2wzp_g+zp.2 = 0.
Note that y; =w +a and z; = b +w with (1.2} imply that c; = 2w + a + b. By induction, deg y% = kn. Hence, from
(1.1) degcy, =2kn — ng, if k >0, and deg z, = (k + 1)n — ng,.
Letaand a! be the zeroes of e — 2we + 7. Thus
a=w+Jab and al=w-.ab.

Note that ab # 0 implies that w # 1. We seek y1, zp, and ¢, in terms of @ and a1, Thus we want to determine r and
s so that

k -k
yi = T
~ a—-a
Nowr—s=a—a ! andra—sa™! =(w+a)la— a 1), This shows that
r=w+a—-a!l and s=w+a-a.
Hence
Ve = (w+alfy —f_; and,similarly, 2z, = (w+b)f, —fr_q,
where
fr =——————~—ak‘a_k .
a—a‘I

Thus we have
(zp, —yilley +ye) = (b —alfp[(2w +a + b)fy — 2f,_1] .

Recalling that ¢; = a + b + 2w, we have, from (1.2),
(2.4) cp = fulcyfp—2fp_1).
Itis interesting and useful to find a recursion formula for cg. To this end note that e’ —2we+1=0 implies

et —(am?-2)e%+1 =0
Thus

(2.5) (@*2)% — (aw? — 2)(a*2)% 1 +(a*2)%2 = 0, for k = 2.
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Then f,f = a?krq?k, N, where /V is independent of &, and (2.5) implies
2 _ 2 2 2 ,
(2.6) f, = (4w —Z)fk_1 —f, IV,
where /7 is independent of k. Furthermore
(fr + frog) = 20(Fp_g + fr2) # (Fo_z + fo3) = 0

implies that (f, + fk_1)2 satisfies the same recursion formula as 2 except for a change in N”. Thus 2f;,f,_; and
f fr—1 satisfy the same recursion formula except for the term independent of k. Thus

cp = (4w? =21 —Cp-2*1L,
where L isin Z/x/ and is independent of k. Taking k = 2, we have
cy = (aw? ~2)cy + L.
On the other hand, (2.4), f, =2w, and f; = 7 imply

(2.7) ¢y = e, —aw.
This shows that L =2¢; — 4w = 2(a +b). Hence we have
(2.8) ck = (4w? = 2)cp g —clpg +2(a +b).

This is the recursion formula we sought.

3. UNIQUENESS OF SOLUTIONS

We could hope that the ¢y, as developed above would be the only solutions of the Egs. (1.1) and (1.2), but this is
not so in general. However the ¢}, are the only solutions if b — a = 2 and, with one exception, when a and b are both
linear polynomials. To show this we develop a useful algorithm.

Leta, b, ¢ be three polynomials in Z*[x/ such thata < b and
(3.1) ab+1=w? ac+1=y% be+1=2% with xyzinZx].

Replacing yz, 2k, Ye—1, Zk-1 in (2.2) by y, z, y’, Z’, respectively, we have the transformation:

(3.2) y = wy’'+az’ z = by’ +wz’

and its inverse,

(3.3) y' = wy —az Z' = —by+wz.

This transformation is an automorph of Aby‘2 - azZ, that is, by’Z —az?= by2 — az2, We now show that if b <a+¢
and if ¢ satisfies (3.1), then (3.3) yields ac” < c. This is the basis of our algorithm.

First we show that y”is in Z+[x/ without further condition on a, b, and ¢ except those in (3.1). Also z”is in Z+/x/
if and only if b <a +¢. From the second equation of (1.2) with subscripts suppressed, we have

alb—a) = w? - 1)y? —a%z?,
that is,

alb —a) + y’? = (wy — az){wy +az) .
Since & > a, the left side is positive and since y and z are positive, wy + az is positive. Hence
wy —az =y > 0.

Similarly,

blb—a) = b%y? —w? - 1)22,
which shows that

(wz — byMwz +by) = 2° —blh—a) = 1+blc+a—b) > 0
if and only if b <a+c. Thus
wz—by =z >0 ifandonlyif b <a+c.

Second, we show that y” and 2’ define ac”in Z/x/ such that
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(3.4) ac’+1=y? and be'+1 =277,
To this end we compute

72 - y’2 = flw—bly+(w-al][(-w—bly +(w+a)z] = (b- allby? +az2) +22 — y2 — 2w(b - alyz

2

= (b—al’, where ¢ = by?+az?+c—2wyz.

Since b —a =by’2 - az’z, we have from the equivalence of equations (1.1) and (1.2) that Egs. (3.4) hold.

Third, assume that 6 is of positive degree and b < a + ¢. Then w is of positive degree. Asin the first part of our
argument with y and y, z and z” interchanged, we have wy” — az” > 0. Hence (3.2) shows

(3.5) Ny* = ny—n.
Ifc’=0,then b <a +c impliesy”’=z"= 7 and hence n,, = n and n, = ny, from (3.2). Ifc”# 0, then, from (3.4)

Na+n = 2ny” = 2ny,—2n = ng+n.—2n = 2n, —2n.
Hence the following holds

(3.8) if ¢ #0 then no-=n.—2n and ny, =n,—n.

Finally,suppose b isin Z and b < a +c. This implies that 2 and w are in Z. It also implies that ¢ is in Z for if ¢ were
of positive degree with leading coefficient o, then (3.1) would imply that ad and bd would be squares; this is impos-
sible if ab + 7 is a square. So if b is in Z, all the letters in (3.1) represent positive integers. As in the previous para-
graph, wy’— az’ > 0 which implies

(3.7 y' < yw.

From (3.4) we have, using (3.7),

ac’ =y P -1 <yiwP 1= (ac+1)wP -1 < ac/w?,

since w > 1. Hence
{3.8) 0 <c <c/w?,
We coliect all these results in the following theorem.

Theorem 1. Let a, b, c bea P--set over Z+[x] with a < b, let y and 2 in Z*[x] be defined by (1.1) with sub-
scripts suppressed, and y” and z* defined by (3.3). Then ¢’ = by2 +az? - 2wyz + ¢ defines ac”such thata, 4, c’isa
P-set and (3.4) holds. Also y” > 0 without further condition, and z” > 0 if and only if b <a +c. If b is of positive de-
gree and & < a + ¢, then conditions {(3.5) and (3.6) hold. If 5 is in Z and b < a +c, then (3.7) and (3.8) hald. [In-
equality (3.8) is sharpened in Lemma 4 of Section 6.]

The resuits of Theorem 1 provide the mechanism to prove two useful theorems.

Theorem 2. 1fa < b <c are polynomials of the same degree over 2+/x] which satisfy Eqs. {3.1) and, when
a, b, ¢ are in Z, the additional condition ¢ < wl=ab+1 holds, thenc =a +b +2w =c{(a,b).

Proof.  The conditions of the theorem imply that n, =n = n. and b <a+c. 1fn>0,n.=n and (3.6) imply
¢’=0 fn=20(3.8) implies¢” = 0. In both cases y’= z"= 7 and (3.2) shows thaty =w +a,ac +1 = y2 and hence
¢=a+b +2w. This completes the proof.

Corollary 1.1fa,b,c,d are four distinct polynomials.of equal positive degree over Z*/x/ they do not form a P-set.

The corollary follows since if they form a P-set we may take 2 < b < ¢ < d and see from Theorem 2 that¢ =4,
which is a contradiction.
The corresponding result fora and 4 in Z is the following.

Corollary 2. Ifaand b arein Zwitha < b and if 2 <b < ¢ < d form aP-set, thend > ab + 7. {In view of
Lemma 4 in Section 6, d > ab + 7 could be replaced by d > 4ab.]
A closely allied resuit is the following.

Theorem 3. f4a>b>a ab+1= wZ, gnda <c < b, then a, b, ¢ do not form a P-setin Z*/x/.



1978] A SECOND VARIATION ON A PROBLEM OF DIOPHANTUS AND DAVENPORT 159

Proof. Note that the conditions 42 > b > a and a < ¢ < b imply that a, &, ¢ are polynomials of the same de-
gree. If ¢ >4, b <4a implies b < ac + 7 and hence from Theorem 2 with 4 and ¢ interchanged,

b =a+c+2w’ where w? = 1+ac.

Then
ab+1=a%tac+2ow'+1 = (a+w)? = w?

impli =y = .
mpliesw’=w-aandc=a+b-2w, Butc >a implies b(b - 4a) >4 which denies b <4a. Ifc < 3itis easy to complete the

proof.

Theorem 3 affirms that if 2 and b are “close enough together,” whether of positive degree or in Z, then no ¢ can be
inserted between a and b to form a P-set of three elements.

Now we assume that a and b are of the same positive degree and seek all ¢ satisfying (3.1). [In Section 6 we con-
sider the same problem for a and 4 in Z./ We can get explicit results if 7. = kn, where n = n, = n.. Since each time
we apply transformation (3.3), Theorem 1 shows that we decrease the degree of ¢ by 2n, we eventually arrive at ac’
of degree n or in Z according as k is odd or even. Then if b <z, Theorem 2 shows that ¢ = ¢ (a,b) =a + b + 2w and
hence ¢ = £, (a,b) for some k. If, on the other hand, ¢ < b we consider two cases separately.

First if £ < b and ¢ is of positive degree n, Theorem 2 with 5 and ¢ interchanged shows that b = a + ¢ + 2y where
72 =ac + 1. As in the proof of Theorem 3, this implies¢ = a + b — 2w. This leads to a whole new sequence which we
designate by Z'j. We can compute the members of this sequence by going back to Section 2 and starting with yg =
1 =—z¢ in place of yg = 7=2z. Then y}, and z;, will satisfy the same recursion formula but will be expressed differ-
ently in terms of the 7. Using an argument similar to that of Section 2 it can be found that

(3.9) Cr (ab) = fp(cqfy +2f,_1), where C; =a+h—2w.

It can also be verified that the Z‘j satisfy the same recursion formula as ¢y, given in (2.8).

Second,'if £ < b and Clisin Z, then ¢ <a < band niseven. If =0, theny = 1 =2, the ¢ before ¢ is c1(a,b) and
¢ =cp,(a,b) for some k. Then it remains to consider 0 < ¢ < a < b. Now, since a < b +¢ we may use Theorem 1 with
C a binplace of a, b, c. Since Ga + 1 =y2,Tb +1=%2 and ab + 1 = w? we define z” and w” by what corresponds
to (3.3), namely

7 =yz-ew

w = az—yw.
By Theorem 1,2h” + 7 = 2’2 defines 5" which, by (3.6), must be in Z. Now since Tb"+ 7, Za + 7, b'a + 1 are all squares
with only a not in Z, the last paragraph in the proof of Theorem 1implies that 5" = 0. Hencea < b +¢ impliesz’ =

w'=Tandb=a+2y+c.Butw=a+y.Hencec=a+b—2wand ¢ = ;(a,b) for some j. We collect these results in
the next theorem.

Theorem 4. If a and b are of the same positive degree, ¢ satisfies (3.1), and the degree of ¢ is a multiple of n,
then ¢ = ¢y (a,b) for some k orc = Z'j{a,b) for some /. The second sequence is omitted if b =a + 2.

Corollary. 1fa and b are both linear or both quadratic in x and if ¢ satisfies (3.1), then ¢ = ¢ (a,4) for some &
orc= Z"j(a,b) for some /. The second sequence is omitted if 6 =a + 2.

The corollary follows since if n = 2, the degree of ¢ satisfying (3.1) must be even. When n > 2, we have in general
more than two sequences. But by (3.3) we can for each ¢ find a Z of degree not greater than n. From these z, stem all
the ¢ satisfying (3.1).

4. WHEN IS ¢ic, + 7 ASQUARE?

To answer this question we first find a formula for c.c, + 7 for k > r. Since we need a similar result for ¢; we adopt
a temporary notation which enables us to derive both results simultaneously. First, by use of fy+; = 2wfp — fi_1,
we can write (2.4) as

(4.1) cp = fplcyfy +2f41), where ¢q =a+b—2w.
Similarly, (3.9) can be written
(4.2) cp = fplcgfr — 2fL41).
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To treat these together, we write

(4.3) dy = fr(d fy +2fr4q),
where d}, = ¢}, or ¢, according as + is + or — and 171 = dj.
Then
(4.4) dpdy +1 = (G fufo £ fpagfy £ Fragfo)? = (Frpg o — fosf,)% +1.
Now
frar  1r _ 2wt —frg 1y _ fr i1 _ f1 fo = f
fors  fo| |2 ~Teer fo|  |f fred] T [fersr foer| R
This shows that
fre1ft = for1fr = Frer.
Thus
(4.5) Dl +1 = (@1 ffy £ 2y fhsg £y )’ — L +1.
Now if k =r + 1, it follows that f,_, = 7 and we have
(4.6) Qrptdy +1 = (T frpgfr £ 26,F0gp 2 1)%.

So we have the following theorem.

Theorem 5. The polynomials ¢ .+ ¢, + 7 and Z,+1¢, + 7 are squares in Z/x/.

5. PSETS WHEN a AND 5 ARE LINEAR

From Theorem 5, ¢ ¢, + 7 is a square when k and r are successive integers. If 2 and b are linear we can show as in
the previous paper that ¢ ¢, + 7 is a square in Z/x/ only if k and r are consecutive integers. The idea of the argument
is the same but the needed modifications cause a little trouble. We need the same result for cp¢, + 7 but since the
proof is almost the same, we omit it. We will need the following three lemmas which, as in the previous paper, we
state without proof since the proofs are easy.

Lemma 1. Let@q(al, p2(a), and Ma) be three polynomials in Z/a, @17 such that the first ¢ coefficients of
@1 (a) and @2 (a) are the same. Then the first ¢ coefficients of ¢ (a/\(a) and @, (a/\(a) are the same.

Lemma 2. Let thefirst ¢ coefficients of ¢;(a) and ¥ ;(a) be the same for / = 1 and 2. Then the first # coefficients
of v1(a)pz(a) and Yy (@)Y 1 (a) are also the same.

Lemma 3. Let g;(a), i = 1,2, be two polynomials in Z/a, a‘l] whose leading coefficients are positive and such
that the first ¢ coefficients of their squares are the same. Then the first ¢ coefficients of the two polynomials are the
same.

Now we prove the basic theorem.

Theorem 6. 1fa and b are linear in Z*/x/,with ab + 7 = w? and win Z*[x/, then a, b, ¢y, Cp is a P-set if and
only if r and & are consecutive integers. The same is true fora, b, ¢, Cp, .

Proof. The “if" part is established by Theorem 5 and/or Eq. (4.6). To prove the “only if” part, first note that
e=a+bh— 2w > 0isequivalent to (b — a)? > 4 with equality if and only if 5 =a +2. So the case e = 0 is covered by
the previous paper. Or the reader may prefer to note the modifications needed in the following proof where we as-
sume thate # 0.

Now 7, can be thought of as a polynomial in Z/a, a‘1] of degree r — 7. It has2r — 7 terms with 1 and 0 alternating
as coefficients. Thus if k£ > r, the sequence of 2r — 7 coefficients of 7, is the same as the sequence of the first2r — 7
coefficients for f,. Henceforth in this proof we assume that k > r + 7, that cc, + 7 is a square in Z/x/ and seek a
contradiction. From what we have just noted, the first 2r + 7 coefficients of efy + 2fy+; and of efyrg + 21,4+ are
the same, where the #; are viewed as polynomials in Z/a, a!]. Note thate =a + 5 — 2w, being different from zero,
is not in Z, for suppose this is true and write

a=ajx+ag, b =byx+bg, and w = wix+wp.
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ThenifeisinZ ash; =wyanday +by — 2wy =0implyas =hy = w1 From this it follows that bg = a9 + 2 and
hence e = 0, contrary to hypothesis. Furthermore ¢ is not in Z/a, a~ ] since a depends only on the product ab and
not on the suma + b. Let Z’= Z[e] and see that ¢y, and ¢, are in Z7a™%, a/.

Using Lemma 2 and (4.1) with ¢7 replaced by e, we then see that the first 2r + 7 coefficients of ¢z, and c,+1 are
the same. Then by Lemma 1, ci ¢, and c,+1 ¢, have the same first 2r + 7 coefficients. Hence the same can be said for

Ikyr = ChCr+ 1 and i, = Crrgc, + 1.

Supposegk FeQ 2(x), that is gk, i a square in Z/x/. We next show that gy, , is also a square in Z/a, a -17,in fact
@lx) = 81 + 02, where @7 and @, are in Z[a, a”!] and ¢"= ¢ for some ¢’ in Z. Note that wq # 0 since a and b are
linear. Since x = (w — wy)/wyq,

olx) = W}to(W) = w;t[WOO(w)+u] ,
where v isin Z, t > 0,and ofw) with og(w/ arein Z[w/. Write e = &1 x + e where, as we showed above, e; # 0. Note
that 2w = a+a"1, and have
olx) = eay(a)feywi 125 + 0p(a)/ey wfz

= gozlallvy + o4lalvy,
where s is a non-negative integer, v7 and v, are positive factors of e4 W;ZS, no factor of v; greater than 1 divides all
coefficients of 203 (@) and no factor of v, greater than 1 divides all coefficients of o4(a). Letvy = vz, vy = hvy,
and (vs3,v4) =1 Then
(5.1) hzvgvfgk,, = 3230 +2evsvs0304 +v32042; ,
This implies that vy [V3‘2 and v |vf and hencevg =v3 = 1. Thus

hzgk’r = 520§ +280304 + Gﬁ .
Hence #2 = 1 and olx) =eaz(a)+ 04(a), which is the result we announced at the beginning of this paragraph.

Now compare
\/gr+1,r = efppgfr + 2fpp2fp + 1,

k,r = 803 +04 .

The degree of \/g,+1,, in @ is 2r and hence each of the first 2r coefficients of \/g,+1 , is divisible by 2 are (or both),
and the first 2r + 7-st coefficient is the term free of a. Now f,; , is a sum of odd powers of a and hence there is o
term free of a in 7.4 f,. This, with (4.6) shows that the 2r + 7-st coefficient of g,..1 , is an odd integer. We showed
above that the first 2r + 7 coefficients of g, , and g,+1 , are the same. Hence, by Lemma 3, the 2r + 7-st coefficient

in /g, is an odd integer. _
0On the other hand, (4.3) with d; = ¢;, d; = ¢ = e implies

O (x) = guy = 21017 + 260 ol Fofns + Ffrng) + 4T B frag + 1.
The degree of g, , in ais 2r + 2k — 2. Thus each of the first 2r + 2k — 2 coefficients is divisible by e or 2. But

r+k—1>=r+r+2—-1 =2r+1.

from (4.6), and

This is the contradiction that proves the theorem for ¢, and ¢,.. The proof for £, and ¢, is almost the same.
Now we prove our principal theorem for 2 and & linear.

Theorem 7. Leta and b be linear in Z*[x/ andab + 7 = w2, win Z+[x]. if
(5.2) ab,a+th+2w,c
is a P-set of four elements, then
(5.3) ¢ = cofab) = calh,a+b+2w).

Proof.  Since a, b, ¢ is a P-set, the corollary of Theorem 4 shows that ¢ = ¢, (a,b) for some k or ¢ = cjfab) for
somej. Nowa +b +2w=cq(ab) and if c = ¢ (a,6), Theorem 6 implies
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(5.4) ¢ =c¢plah) or ¢ = Ej(a,b) for some .

Now use the same argument with a replaced by b and b by a + b + 2w. The corollary of Theorem 4 shows that
c=cplb, a+b+2w) forsome k or ¢ = Ej(b, a +b +2w) for some /. But

(5.5) a=cqylb,a+bh+2w)

and Theorem 6 shows that

(5.6) c=cylba+b+2w) or ¢ = cplb,a+b+2w)
for some 4.

Next we prove that Z2(b, a + b +2w) = c2(a,b). Now b(a +b +2w) + 1 = (b +w)?. So, using the recursion formula
(2.8) for ¢ in place of ¢, we have

alb,a+b+2w) = [4(b+w)? — 2]a +2(a +2b +2w)
= [4(ab+b? + 26w+ 1) —2]a+2(a +b +2w) +2b
= (4ab +2)(a +b +2w) +2a + 2b
= (4w? — 2)c((ab) +2a +2b = cz(ah).

Then if ¢ # c2(a,b) we know from (5.3), (5.4), and (5.6) that Ej(a,b) =cp(b, a+b +2w) for some and k greater
than 2. But since cy, is of degree 2k — 7 and c; of degree 2j — 7, the equality implies / = k. We now reach a contradic-
tion by showing that

(5.7) cplb,a+b+2w) > tplab), if k> 2

We showed above that b(a + b +2w) + 1 = (b +w) 2, that is, b + w is the “w” for the pair b, a + b + 2w. Correspond-
ing to a for this pair is
B=b+w+Jlb+w)* -1 >a=w+ w?—-1.

Lethy = (6k - ﬁ'k)/(B- B~1) to see that hy, corresponds to 7. Thus, from (4.1) and (5.5)
cplb,a+b+2w) = hy(ahy +2hp41).

Using (3.9), the inequality (5.7) may be written

(5.8) ahi +2hphpry > (a+b—2w)ff +2fufyy.

To show that (5.8) holds, it is sufficient to show that ah,f >(a+h— 2w}f,f for k > 2. To this end we first show
that /1, /f, increases with 4. To do this use the recursion formulas for A, and £, to get

Miefp-q1 = fohi-1 > (2Whi_g = hpp_2 ) 1(20f4 g — fr_2)hp- 1
= hpqfp2 —fr-ghp-2 > hofy —hgfy = hp—13 > 0.
Hence hy,/f;, increases with & and (5.8) holds if
ah? > (a+b—2w)fZ, thatis, alb+w)? > (a+b—2ww?.

The last inequality is easy to verify. Hence the inequality (5.7) follows and the theorem is proved. The following cor-
ollary follows immediately from Thearem 2.

Corollary. Leta, b, d be a P-set of three linear elements of Z*/x/ witha < b < d. Then the only P-set contain-
inga, b, and d is

a b, d calab).

REMARK. Notice that the part of the above where we showed c2(a,6) = ¢2(b, a + b +2w) did not depend on a

and b being linear. In the course of proving this result we only assumed ab + 7 = w? and (2.8) for ¢y, and ¢
6. PSETSOVERZ

In this section we assume that a and b are positive integers, 2 <b, andab + 7 = wz, where w is a positive integer.
Also, as in Theorem 3, we assume that a2 and b are “not too far apart,” specifically, that b < 4a. We find all integers
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c such that a, b, ¢ is a P-set. Toward this end we first need to sharpen inequality (3.8) of Theorem 1.

Lemma 4. Leta, b, c satisfy Egs. (3.1) and let (3.3) define y’, and ac” + 7 = y*Z define ¢”, Then, if b <a +¢, it
follows that
(6.1) ¢’ < c/4ah.

Iz’roof. As in the proof of Theorem 1, the condition & <a + ¢ implies that y“and z” are positive. Since bc” + 7 =
2’ we have

2

ac+1 = yz = (wy’+az)? = wlac’+ab +1+a2(1 +bc’) + 2wayz’.

Hence
¢ = (WP+ab)c'+b+a+2wyz’ > 2abc’+a+b +2\/abJabc’,

since w = /ab + 1. Thus ¢ > 4abc” and the proof is complete.
The first part of the proof of the next theorem is like that of Theorem 4. After this, further details must be dealt
with.

Theorem 8. Ifa<b <4a,aand b are in Z*. and Eqgs. (3.1) hold, then ¢ = ¢, (a,b) for some k orc = cjla,b)
for some /. The set E]- is omitted if b =a + 2.

Proof. Ifc> w?, then ¢ > b — a and, by Theorem 1, a sequence of transformations (3.3) yields a ¢ < w2, [We
assume that the ¢ before ¢” in the sequence is not less than w2, 1fc <w? the argument is what follows.] 1fc”> b,
Theorem 2 shows that ¢"=a + b + 2w = ¢ (a,b) and hence ¢ = ¢y (a,b) for some . If, on the other hand, ¢’ <
b, Theorem 3 shows that ¢” < a < b. Then if b <ac”+ 1, Theorem 2 impliesb = a + ¢’ + 2w’, where w?=ac’+1.
Then, as in the proof of Theorem 3,¢"=a + b — 2w and hence ¢ = Ej(a,b} for some j, where this sequence is omitted
ifc’=0, thatis,ifb=a+2.

Itremains to consider 0 <¢”<a <band b >ac”+ 1. Then 4a > b impliesc” < 3. Writeac” + 7 = y’2 and b+ 1 =
2”2, Now we use (3.3) once for ¢’ a, b in place of a, b, c. By Lemma 4 the transformation takes b into 4 satisfying
the inequality

b’ < b/dac” < 1/¢’,

sincea < 7 +h. Hence b”=0 and, as in Theorem 2, this implies
(6.2) b=a+c’+2y’ = cqlc’, a).
Firstifc’=20r3,b >ac”+ 1impliesa +¢”+2y”>ac’+ 1. Then
2y’ > da—d, where =c¢' =1
Then
4ac’+ 1) > d%a? - 2d%a +d?,
(6.3) 0 > d%a? - 2a(d? +2d +2) +d? - 4.

If d = 2, (6.3) becomes 0 > 422 — 20a, that is, a < 5/2 which is impossible. If = 7, (6.3) becomes 0 > a® — 70a —
3 which holds if and only if 2 < 70. Then, under the conditions imposed, the only possibility isa=4, b =12, w=7.
Thena+b—-2w=2=c¢"=c4(ab)andc = Ej(a,.lz) for some /.

Second,if ¢’=7, (6.2) becomesbh =g+ 71 +2y"and 1 +ab = w? impliesw =y’ +a. Hencea +b — 2w =¢"=¢4(a,b).
Then, as in the case whend =17, ¢ = Ej(a,b) for some j. This completes the proof.

Theorem 8 implies the following theorem with only two little details to be filled in.

Theorem 9. \fa b, e=a+b+2w,dis aP-set of four distinct elements of Z* subject to the conditionsa < b
<4aandab +1= wz, then ¢ must be in each of the two following sets:

91 = {cplab) U Ej(a,b)}
3, = {culbe) v Tilbe)}.
One possibility isd = cp(a,b) = c2(be). 1fb=a+2, thend; = {cp(ab)}.

Proof. To apply Theorem 8 to this theorem we must notice that e < 4b is equivalent to 4 < (9b — a)(b — a) which
holds since b > a > 0. For the rest, one notes the Remark after the Corollary of Theroem 7.
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7. PSETS OF FIBONACCI NUMBERS

Let F; denote the i Fibonacci number. The following well known facts can easily be verified fora = F2,_7 ,
b=Fy,r>1:

) w? =ab+1 = (b—a)? thatis, a’—3ab+b? = 1.
i) Ife=Fyppthene=cqfah) = 3b—a,ae+1=(a+w)?=b% be+1=(b +w)? = (2b — 2)?, where
w=hb—-a-=Fy_g.
These two properties show that a, b, e form a P-set. From i),
(7.1) = at, where 2t = 3+./5+4/a*.

This shows that & < 3a with equality only if a = 7. Hence the hypotheses of Theorem 8 hold and all the numbers d
such that a, b, e, d form a P-set can be expressed as ¢y, (a,b) or cjfab). V. E. Hoggatt, Jr., and C. E. Bergum showed
[1] that

(7.2) Far-2, F2r, F2r42,¢ = 4F 2,1 F2,F2,41

is a P-set. It is not hard to show that ¢ in (7.2) is, in our notation, c2(a,b) for a = F5,_5 and b = F,. To thisend,
notice that, since F2,_1 F2,41 = Fgr + 1, ¢ in (7.2) can also be written

(1.3) c=4b(b2+1), where b = Fy,.

This can be shown to be c;(a,b) by using (2.8) withw=5b —a, k= 2.

Our Theorem 3 shows that there is no ¢ between F2,_5 and F2, such thatc, F2,_5, F2, is a P-set. Theorem 2 shows
that if these same three numbers form a P-set with F, <¢ < Ffr_j ,then ¢ = F2,42. The following Theorem shows
that ¢ is not a Fibonacci number.

Theorem 10. |f a = F3,_5, b = Fa,,and r > 1,then
(7.4) Fgro1 < C2(a,b) < Fg,.
Proof. From (1.3),c2(ab) = 4F§r+4F2,. Now

Fp = Q;_—%Z where B = (1+5)/2, B = (1-/5)/2.

Hence L

(7.5) F = f—’—ki(—_”zi = (1/5)[F 33, - 3(~1)*Fy] .
B-8)

Thus the two inequalities in (7.4) will follow if we can show

(7.6) Fer/Far > 8,

(7.7 Fgr/Fgr-1 > 5/4.

Toshow (7.6) use (7.5) to get Fg,/Fz, = 5F22, +3, which shows that F4,/F>, isan increasing function of 7, Then
(7.6) follows from
Fg,/Fa, = F12/F4 = 48 > 8.
Also (7.7) holds since F,/F2,_4 is an increasing function of r and
Fgr/F6r-1 = F12/F11 = 144/89 > 5/4.
Thus the proof is complete.
8. UNFINISHED BUSINESS

For b of degree greater than 2, there does not seem to be much of interest since in most cases there will be more
than two sequences of numbers which with a and 5 form a P-set. For a and b linear it would be interesting to show
that
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(8.1) a, b, clab), cslah)

is not aP-set for any r and 5. The difficulty in proving this is that, if one is to use the method of Birch, one first needs
a pair r,s for which ¢,z + 1 is a square. One might at least prove that there isat most one pair r and s such that (8.1)
is a P-set.

For a and b quadratic functions of x, the basic difficulty is that g , could be a square in Z/x/ without being a
square over Z/a,b/. Even if that were surmounted, adapting Theorem 6 to quadratics would present some difficulties..

For a and b integers, this paper does not add much to present knowledge except to place the probiem in a larger
setting. The Davenport-Baker result shows that in Theroem 9 when a = 7, b = 3, the intersection of JI and Jz is
c2(1,3) = 120. A really significant result would be a proof that this is true for 4 and b any two successive Fibonacci
numbers of even index. To show this independently from their result would present all the difficulties they encoun-
tered for their special case. At one time | hoped that one might by using the sequence of transformations (3.3) and a
proof of “infinite descent” reduce the general result to that of the paira = 7, b = 3, but it does not seem to work.

A somewhat weaker result would be the conjecture that if a, &, ¢ are three successive even-indexed Fibonacci num-
bers and if a, b, ¢, d is a P-set of four numbers, then d cannot be a Fibonacci number. From Theorem 10, c,(a,b) is
not a Fibonacci number. Unfortunately, for ¢z (a,6) with k > 2 there does not seem to be such a definite inequality
as (7.4). One possible approach could be to consider the set of Fibonacci numbers as dividing the line of positive
reals into intervals. Perhaps one could, using Theorem 9, assume, for example, that c,(a,b) and c,(b,e) were in the
same interval and thus get a relationship between r and s which might be fruitful. But this seems like a long hard row
to hoe. Also it would be interesting to show that a, b, ¢ as defined above are not in a P-set of five elements. All of
these results seem very plausible.
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B. We can easily obtain
2p\ , = _ 2p — 2 2py\ _ 3
(p)p 220 - 1) (p# ] ) and from Part A, (p) =2 (modp~).

Thus2p =2(2p — 1) (2;_—12) (mod p3). Since (2, p3) =(2p-1, p3) =1,2, and Zp — 1 we have the multiplicative

inverses (mod p2) and we get p/(2p — 1) = (215:12) (mod p?). Now (2p — 71)-1=—1-2p - 4p2 (mod p3). Hence

p/(2p 1) = p(~1—2p — 4p?) (mod p°) = —p — 2p? (mod p”).
The result then follows.
AN ADJUSTED PASCAL
H-213 Prapased by V. E. Hoggatt, Jr., San Jose State University, San Jose, California.
A. Let A,, be the left adjusted Pascal triangle, with n rows and columns and 0’s above the main daigonal. Thus

Find AW'Athere AI represents the transpose of matrix, A,; .
B. Let

P OoMRO



ON GENERALIZED Gj » NUMBERS

W. E. GREIG
West Virginia University, Morgantown, West Virginia 26506

Most of this paper was finished prior to the author’s involvement in other work [9, 10]. It is the purpose of this
exegesis to find a self-contained definition of {G; } which is not dependent on other sequences. Such are (10), (12)
and (16). I have defined these numbers in [2, (3)] and [3, (9)]. G numbers of the/th order are:

(1) Gj,k = 7+PJ-Tk +Pj,2k—1 R

where the Lucas complement is by definition

2) Pike = Pik+t #Pik-1,
and where coprime sequences are by definition, / an integer,
@) Pik+1 = jPik +Pik-1,
and where the initial conditions (IC) are by choice
(3a) Pio=0 and Pj; =1 forallj.
To begin we need the following easily proven identities. The Lucas complement of the Lucas complement is
@ Pl #Plket = Piksz # 2Pk +Piez = (4 4/ )P
Secondly given any two point recurrence P,+7 = aP,, + bP,_y the recurrence among its bisection is known to be
(5) Puiz = (a? +2b)P, — b?P,_; .
Thirdly we need the central difference operator
(6) §2P, = (A = VIP, = Pyys — 2Py +Py_g
and fourthly | define a new operator small psi
(7 VilP) = [6%2=%1P,,

where /2 is really /2 times the identity operator. Note that if B]-’n is any generalized bisected coprime sequence with
any Bj’() and Bj)1 whatsoever that l,l/j then acts as a null operator, to wit

(8) \bj(Bj,n) =0 forall .

Now when j = 7 then (7) reduces to y(F,,) = [§2 — /] F,,. Consider

(9) VilGi) = WilPi) -

which is obvious from (1) and (8) and the fact that y;(7)= ~2. In (9) elimination of 82 via (6) gives
(9a) VilGir) = (4+j%)Pyi — (2+/% )P —j% .

Theorem. The recurrence for Y;(G; ¢/ is Fibonacci but for the additive constant ;.
Proof. Rewrite (9a) as Y/;G; r+7 and substitute (3) giving
(10) VilGikr1) = L% +41 [jPye + Pi—g] — [ + 2] [P}k + Pi—g] = j°
= jUi(G ) + VilG)-g) +°
EIiminating/3 by calculating YG; p+1 — x[/Gj,k obtains
Corollary 1. VGip+1 = G+ 106G — (G —1)WGjp-1—YGir-2 .
166
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Inserting (7), the definition of psi, one finds the general recurrence

(11) Gj,k+1 = (/'2 +/+3}Gj,k - (/'3 +j2 +3i+2)Gj,k—1 + (1-3 "/2 +3j— 2/Gj,k—2
02~ +3)Gj1-3 - Gjks.

This recurrence is not messy but instead factors into the crowning equation of this paper

(12) (E% — (j% +2)E + INE? - jE — INE ~1)G;p, = 0,

where £ is the forward shift operator. Note that the first, second and third parentheses of (12) are, in fact, the recur-
rences for bisected coprime, coprime and constant sequences respectively! A more useful expression in terms of for-
ward and backward difference operators is

(13) (62—~ 1)(A+Y ~ 1JAG), = 0 = (A% —20% + A-V52)Gj,

only ifj = 7. Now (12) is more general than (1) and (13) is more general than {6‘1} =..79,42,10,9,2,4,3,6, 10,
21,46, 108, ---. An example of (13) is the sequence

(13a) 0,0,0,0,1,5, 18,56, 162, 450, 1221, 3267, 8668, 22880, -,
60204, 158108, 414729,

whose falling diagonal, A t, from the first zero is

(13b) 0,0,0,01,0,3,0,8,0,21,0, .

Hence to obtain/th order G numbers some |C must be introduced. First some simplifications. When j = 7, then Eqgs.
(9a), (10) and (11) become

(9b) (82— 1)Gy = 5Fp—3Ly—1 = —(1+2L}_3)
(10a) YGpts = YGp+YGrg+1
(11a) Gr+1 = 56— 7Gp1+Gp2+36G-3— Gr-4,

respectively. Note that (13a) was calculated by (13) and checked by (11a). Also note that (11), (12), (13), (11a) are
fifth-degree recurrences. Gould [5] found (11a) independently. Directly from (10) one can find the modified
recurrence

(14) Gjprt = (2 +/+2)Gj k= (7 +20)Gj s — (12 = [ #2)Gj 2 + Gj3 +57

which, when j = 7, becomes

(14a) Gr+1 = 4G —3Gp_1 —2Gp_3+Gp_3+1

and from this latter it is easy to derive the exquisite

(14b) 8%Gp42 = 35%Gpe - Gp+1 .
At this point the reader should study Tables 1 and 2. Now a curious fact results from Corollary 1 which | rewrite as
Coroliary 1. V(611 +Gj-2) = (1+j]G +(1—jYGj -1

This says that making both j and & negative reproduces the same recurrence. To be specific replace / by —/ and let
n=(1— k) and the Corollary regenerates itself. Thus 4, 3, 6, 10,21, 46, --- has the same recurrence as 4, 4,9, 18, 42,
101, ---. See Table 1.

Lemma. The zeroth term of all {G;} equals the constant 4.

The proof is direct from Egs. (1) through (3a). Omitting the subscript/ for simplicity and recalling that 7; ; = 1 for
all / we have:
Gop = 1+Py+P_qy = 1+P1+P_1+P_; = 1+3P1 = 4
(15) Gjo =4
From (12) of paper [3] one may easily find

(16a,b) Gi1 = (+2) and %G = 6;1AGj0
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Tahle 1
Array of G; ;, Numbers
j/k —4 -3 -2 -10 1 2 3 4 5 6
6 2027452 53120 1444 32 4 8 176 1640 54796 2034896
5 510354 18761 729 22 4 7 54 843 19629 513402
4 98532 5392 324 14 4 6 36 382 5796 99574
3 13090 1154 121 8 4 5 22 146 1309 13364
2 1020 156 36 4 4 4 12 44 204 1068
1 42 . 10 9 2 4 3 6 10 21 46 108
0 4 2 4 2 4 2 4 2 4 2 4
-1 42 18 9 4 4 1 6 2 21 24 108
-2 1020 184 36 8 4 0 12 16 204 804
-3 13090 1226 121 14 4 -1 22 74 1309 12578
Table 2
The Table of Differences of G},
9. 2 4 3 6 10 21 46 108 -
-1 2 -1 3 4 1" 25 62
9 -3 4 1 7 14 37
-12 7 -3 6 7 23
19 -10 9 1 16
46 -29 19 -8 15
-175 43 =27 23 2
-200 123 -75 =21
323
leaving a fourth initial condition to be chosen in order to define Gj . We may now take this to be
(16¢) 8%6,1 = 26j_;.

One can also show from (1) or from (12) of paper [3] that

(17) Gz =(%+2)% and G;_g =jli—1)+2 = G sy

for all integer /. At this point it will help the reader to go through an example such as the j = 3 case beginning with
P3p=--0,1,3,10,33,6109, 360, 1189, 3927, - . In fact relations stronger than Corollary 1 exist as is evident from
Table 1 where we see that

(18) Gj,k +.G]',_k = G—j,k + G—j,—k
for all integer / and & and indeed a special case follows if e is even
(19) Gj,e =G je

Now (18) and (19) are easily proven from (1) and the odd/even properties of F and L sequences.
DIVISIBILITY PROPERTIES
For the study of divisibility properties we are able to rewrite (1) by substituting (6) of [3],
Pop-1 = PaPyu_q —cos(mn),

into it giving
(20) Gj,k = P]'Tk”‘f‘Pj’k_1)+7+(—7)k+1
(20a) Gp = Lp(1+Fpq)+1+(-1)%1

Hence the divisibility properties of the even G, are known since Jarden [4, p. 97] has tabulated the divisors of (1 +
F,,). The divisibility of the odd Gy, is involved. Three divides Gy, at intervals of eight starting with
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k=-=7109,17 2533, -

and five divides Gy, at intervals of twenty starting with k = ... =3, 77, 37, ...and proceeding in both directions. Divisi-
bility properties are left for a later paper.

Congjecture 1. If Gy is prime then |k | is prime.
Conjecture 2. The number of primes in {64} is infinite.

The known primesare G_s =79, G_; =2, G; =3, G7=263. G 31 may be prime.
The sequence of G_p, is interesting. The first thirteen G_; numbers are placed immediately below their correspond-
ing G numbers beginning with &k = 7 in both cases.

21) 3,6,10,21,46,108,263, 658, 1674, 4305, 11146,28980, 75547, -
2,9,10,42,79,252,582, 1645, 4106, 11070, 28459, 75348, 195898, ---

A glance at these G numbers provide another symmetry property,

(22) G p,—Goy = Fyg, and Gy+G_g = Lyg+2 for d odd.

And more generally it is rather easy to show via (20) that

(23) Gj-2n = Gj2n = Pj2n(Pj2n+1 = Pj2n-1) = iPjs4n

(24) Gjq +Gj-a = Pj2q+2 for d odd

DIFFERENCES OF G,

We need the following:

(25) VkH, = H,_5, andso Vka = H_
(26) vkg, - g, , and Vg, =vg, ,
27) VEA, = signum (A, )|Aprk ],

where B,, is any bisection of #,,, and where (25) and (26) are easily derivable from
(28) Hyp+1 = Hy+H,_ g, anyHpandHy,

and where A,, is a two-point sequence with alternating signs satisfying

(29) An+1 = —AntAu-1

corresponding to/ = —7 in (3), and signum is the sign function.
Then application of (25) and (26) to (1) immediately gives
(30) V Gy = Frog +(-1/%1y,
which becomes —F+¢ in the odd & case. Note that these numbers lie along a falling diagonal from G = 4 in Table 2.

Equation (30) introduces a significant simplicity into the G numbers. Note that (30) is reminiscent of the definition
of the Bell numbers, to wit:

(31) V" IBell, = Bell,_;, n > 2.
Likewise one may also show that
(32) V16, = Fi_4 forodd k > 3

and these numbers 1, 1, 2, 5, --- are a hisection of the falling diagonal from G7 = 3. Note that a// falling diagonals -are
two bisected sequences, B,,, and satisfy for all kK and alln > 1,

(33) A6, = 3026, — ATGy .
| did not expect to find upon glancing at the central differences of Gy that they would be: -3, 19, —75, --- almost

Lucas numbers. We may write
(34) §2"Gy = V26, = 1+(-1)"L3, .
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This may be easily derived from (1) with j = 1 by applying (25). The critical step is

VL = Lpgr = Losp
according to (25). We obtain

(35a) VG, = [ 3440, k=1
(35b) V2RG, = Lgp+F g, k > 1
(35¢) VTG, = L g1 2+F 5, k>0,

where, of course, F_» = —1 and F_; = 1, Equations {35} prove what is obvious by looking at Table 2, namely if we
make a zig-zag below the 4 entry we obtain the sequence: -1, 2,-3,7,-12, 19, =29, 46, —75, 123, --- which is al-
most the Lucas sequence. This makes the whole sequence easy to generate by hand. Finally the choice of letter for
these sequences was Gould's [1] who suggested my name for them after seeing my paper {6].

The author appreciates some comments by Zeitlin [8] concerning (14) and (23). Zeitlin [7] has also pointed out
that the subscript of the subscript of the last term of Eq. (12) of [6] should be (k — 1) and not (kK — 2). This mis:
print is obvious from the expansion in (13) of [6].

Having found that the messy lacking G . sequence actually satisfies the near Fibonacci relationships (10) and (12)
and further that the Lucas numbers have made their presence known, | am impelled to write down an old haiku of
mine in which even the numbers of syilables in each line, namely 3, 2, 5, 7 are themselves a Fibonacci sequence.

PHI
Multiply
Or add
We always reach phi
Symmetries we perpetrate.
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where the /7 column of C,isthe i™ row of Pascal’s triangle adjusted to the main diagonal and the other entries are
0's. Find C, -A;{.
Solution by P. Bruckman, University of lllinois at Chicago, Chicago, lllinojs.

A LetB, = AH-A;‘. Let a;; and bij be the entries in the /™ row and/'th column of A,, and B,,, respectively. Sim-
ilarly, let agf be the jth entry of AZ. Then

2N AT I
31]'<]-~1) if 7=/,
=90 elsewhere;
therefore, - .
i e
aij = i—1> ifi<y

- elsewhere.

H
<

[continued on page 183.]



THE FLUID MECHANICS OF BUBBLING BEDS

F.A.ZENZ
Manhattan College, Riverdale, New York 10471

The basic criterion in establishing a pilot plant fluidized bed reactor, leading to minimal uncertainties in later scale-
up, is to ensure that it simulate exactly a portion of the freely bubbling commercial bed. Though this may frequently
require a larger-than-economically-justifiable design, a knowledge of the considerations surrounding its development
allows some appreciation of the consequences of any compromises. In the scaling of fluidized bed reactors and the
development of bubble models to describe the gas-solids contact, it is necessary that the bubble be definable from its
source to the bed surface. Though an average size may be suitable in certain instances, its determination is in any
event dependent on the very parameters needed to describe the bubble’s entire history; hence a truer-than-average
physical interpretation is to be preferred.

The idealized instantaneous picturization of a freely bubbling gas fluidized bed of solids, as illustrated in Fig. 1,
gives rise to a number of questions forming the bases of realistic scaling criteria and bubble-related kinetics.

1. How do bubbles form?

By what mechanism do they rise?
What lends them stability?
How fast do they rise?
What makes them grow in size?
What size can they attain?
How do bubble and interstitial gas interact?
BUBBLE FORMATION

Bubbles form at the ports where fluidizing gas enters the bed. They form simply because the velocity at the inter-
face of the bed just above the hole represents a gas input rate in excess of what can pass through the interstices with
a frictional resistance less than the bed weight and hence the layers of solids above the holes are pushed aside until
they represent a void through whose porous surface the gas can enter at the incipient fluidization velocity. If the void
attempts to grow larger the interface velocity becomes insufficient to hold back the walls of the void and hence they
cave in from the sides cutting off the void and presenting a new interface to the incoming gas. This sequence is illus-
trated in Fig. 2. The depth of penetration of the grid gas jets has been correlated empirically and the size of the initial
bubble resulting from a detached void shown, within experimental error, to be about half the penetration depth [1].

MECHANISM OF RISE

Bubbles or ““gas voids" rise in a fluidized bed by being displaced with an inflow of solids from their perimeter. Since
free flowing and/or incipiently fluidized bulk solids have shallow angles of repose their walls cannot stand at 90° and
hence the solids slide down the bubble’s walls into its bottom where all the peripheral streams collide to form a so-
called “wake'" as illustrated in Fig. 3. Observations [2] of this downflow of solids in a “shell” around the bubble [3]
have shown it to occupy an annular thickness of % of the bubble diameter so that the overall diameter within which
a bubble can rise “freely’” as it would in a bed of infinite diameter can be defined as 1.5 Dg.

SURFACE STABILITY

Since the peripheral surface of the bubble is simply a layer of particles, it is at first difficult to understand why the
particles do not fall from its roof and annihilate the bubble. Danckwerts [4] simple bed support experiments, illus-
trated in Fig. 4, provide the physical demonstration and Rowe and Henwood's [6] experiments the classical approach.

In Fig. 4(a) the air rate is raised to the point of incipient fluidization and in Fig. 4(b) through 4(f) this same gas
rate is passed through the bed in the opposite direcion. Note that in position (d) the solids do not slide to their angle

17
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bubble - displacing
annular downflowing
“shell" of bed solids

Fig. 3 Bubble Rise via Displacement by Inflow of a Surrounding Down-Flowing Shell of Bed Solids



1978] THE FLUID MECHANICS OF BUBBLING BEDS

175

T ()

R X G
-~:-‘;‘:-‘.?—.‘;‘3:‘..

s
oo

=ooh ;1.5_
e
3 R T RS

[}
a-

(a)

Fig. 4 Bed Support Experiments of P. V. Danckwerts



176 THE FLUID MECHANICS OF BUBBLING BEDS [APR.

of repose but instead are held at 90° and that on reaching (f) the bed is held up without solids falling from what is
now its lower side or conversely the upper surface of a bubble in a fluidized bed. When the surface of a bed is tra-
versed by an incipiently fluidizing flow the particles cannot separate from each other. This not only explains the bub-
ble's surface stability but also the integrity of the walls of a bed penetrating jet as in Fig. 2.

Rowe and Henwood carried out classical drag measurements which revealed that the drag on a downstream particle
is reduced due to the presence of an adjacent upstream particle. This simply means that a particle cannot fall from
the roof of a bubble because if it did then it would immediately be followed by the particle above it, and that by the
particle still further above, etc., so that the entire mass or bed above the bubble would have to collapse as a unit. For
this to occur, the excess gas could not be passed through the bed unless the bed were physically held down or re-
strained at its upper surface.

VELOCITY OF RISE

The velocity at which bubbles rise in a gas fluidized bed has been measured photographically by several investiga-
tors. The results are in excellent agreement with what would be predicted for gas bubbles in liquids from the drag
coefficient versus Reynolds number correlations of such investigators as Van Krevelen and Hoftijzer [6] illustrated
in Fig. 5. Over the range of Reynolds numbers corresponding to reasonable size bubbles the drag coefficient is essen-
tially a constant so that simple substitution shows that if gas density is smali relative to the bed density:

Cr = 49D08(pB — pG)
b=7 7

. _ 4g Dglop—pc)
Vg G e
or -
Vg = 40105 .

This has been corroborated in experiments with freely bubbling beds.
Tarmy and Matsen [7] have shown that in slugging beds the full width of the downflowing solids shell (Fig. 3) is
restricted and the velocity of bubble rise then approximately % that in a freely bubbling bed.

BUBBLE GROWTH

That bubbles must grow by merger as they rise through the bed is obvious from the large and less frequent surface
eruptions relative to a much higher frequency of small voids initiated from a usual multitude of grid ports. Growth
by simple gas expansion resulting from the pressure reduction between bottom and top of a fluidized bed is generally
relatively insignificant.

From the solids inflow model [3] of Fig. 3 it is obvious that a bed must be exceptionally homogeneous to expect
the shell of downflowing solids around a bubble to be flowing at equal rate in every plane. Any bed non-uniformity
can cause a shift in the bubble shape or position. Merely the prior passage of another bubble could alter local densi-
ties or distributions so as to make bed solids in one local area more readily flowable in a given direction than the bed
solids in an adjacent area. The solids inflow model therefore obviates a simple mechanism of bubble merger. If two
bubbles get close enough that their shells of downflowing solids begin to interact, the touching shells will represent
a local downflowing stream of solids faced with more'than one path to the nearest void. The stream could be squeezed
to the point of being insufficient to satisfy both bubbles and thereby drain off leaving no wall between the voids
and hence the appearance of asingle bubble.

It is therefore readily acceptable that the idealized bubbling of Fig. 6(a) will lead to asituation as in 6(b) where
two bubbles of unit initial valume can merge into bubbles of twice this volume. Since larger bubbles rise more rapidly
these double volume bubbles will catch up and merge with other unit volume bubbles to yield bubbles of thrice the
initial bubble volume. These newer bubbles will rise even more rapidly and can catch up with bubbles of 1 or 2 times
the volume of the initial bubble resulting in bubbles of at most 5 times the volume of the initial bubble. The bubble
of five-fold volume can now catch up with bubbles of 1, 2 or 3 times the volume of the initial bubble resulting in
bubbles of at most 8 times the volume of the initial bubble as illustrated in Figs. 6(c) and (d). Carrying on this pro-
cess of overtaking bubbles results in a sequence of maximum multiples of the initial bubble volume in which each
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multiple is the sum of the two previous multiples. This sequence, illustrated in Fig. 7, is the well known “Fibonacci”
[8] series.

Since the levels at which the maxima exist represent the summation of the diameters of their forebearers and since
their diameters are proportional to the cube root of their volumes, it follows that the ratio of merged bubble dia-
meter to initial bubble diameter is equal to the cube root of the number of initial bubbles consumed in the merger,
and also that the level at which the merged bubbles exists relative to the height (or diameter) of the initial bubble is
equal to the summation of the cube root of the number of initial bubbles consumed in the merged bubble. For the
case of the maximum size of merged bubble this is illustrated analytically in Fig. 7 and shown graphically in Fig. 8.

That the mechanism of Figs. 7 and 8 appears in good agreement with experimental observations is illustrated in
Fig. 9 where the empirical bubble growth relationships proposed by Chavarie and Grace [9] ,Werther [10], and Rowe
[11] are superimposed on the curve representing the Fibonacci series. In using Fig. 9 to determine the maximum
bubble diameter, Jg, at any bed level, Lg, above the grid it is necessary to determine the initial bubble diameter,
Dp;, which could exist at the grid level as a result of individual or merged jets. Figure 9 must also not be extrapo-
lated beyond the maximum attainable stable bubble size.

MAXIMUM STABLE DIAMETER

Danckwert’s bed support experiments (Fig. 4) and those of Rowe and Henwood based on particle drag force meas-
urements, demonstrated that a bed interface (and hence a bubble) should be fundamentally stable against collapse as
long as it is traversed by a superficial velocity equal ta its incipient fluidization rate. Since the inflowing solids shell
volume usually far exceeds the incipient fluidization rate, there would appear to be no limit to the attainable bubble
size, or dome, apt to collapse. Presumably, if the dome cannot collapse amid free flowing bed solids then as the bub-
ble grows it could only be limited by particles leaving the shell and being entrained into the bubble void. Such en-
trainment, or particle pickup, would be most likely to occur from the bubble walls as the result of the relative vel-
ocity between gas and surface particles at the interface. Since against the downward velocity of bulk solids the bubble
fluid (whether gas or liquid) rises at approximately an equal velocity, the relative flow of fluid past the particles at
the bubble wall is twice the shell or bubble velocity. Equating twice the bubble velocity to the particle pickup ve-
locity allows calculation of the minimum bubble size necessary to stir up the solids interface and thus thwart bubble
appearance or growth. Since pickup velocity is approximately twice saltation [12], this is equivalent to equating bub-
ble velocity to saltation velocity. This procedure has given results in reasonable agreement with a broad range of ob-
servations reported to date. For example 80 micron particles of sand fluidized with air could sustain a maximum
bubble diameter of the order of 24 inches whereas when fluidized with water the maximum bubble size would be
indiscernable. Sand particles 600 microns in diameter when fluidized with water would permit a maximum stable
bubble size of only % inch and 3,000 micron lead particles a water bubble of 7 inches.

BUBBLE GAS INTERACTION

The outside diameter of the shell of downflowing bed solids surrounding the rising bubble is the minimum reactor
diameter necessary to simulate free bubbling. In addition to simulating free bubbling hydrodynamically it may be
argued that gas permeation from bubble into surrounding bed should also be equalled. This only becomes significant
or controlling with coarse and easily permeated beds having a high incipient fluidization velocity. The gas permeation
or “cloud” diameter is calculable from the depth of gas flow at incipient fluidization velocity over the time interval
required for the bubble to rise a distance of one bubble diameter. Since the bubble rises at a velocity equal to 4 times
the square root of its diameter it follows that:

Thickness of gas penetrated “‘cloud”  _ Vm{

Thickness of downflowing solids “shell” \/D—B~

or since
“shell” 0.D. =150
“cloud” 0.D. = Dp +0.5\0p Vs

In applying free shell or cloud criteria in scaleup or scaledown the relationship between bubble diameter and bed
depth is obtainable from Fig. 9 with the limitation of the system’s maximum stable bubble size. Thus from grid de-
sign, operating superficial velocity, and fluid and particle properties, it is possible to calculate the initial bubble size
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at the grid, the maximum stable size, and the bed depth over which the bubbles may grow from their initial to their
stable diameter. Once having reached their maximum stable diameter any further unlikely mergers would also lead to
collapse, so that bubble diameter may be considered constant once having reached the stable size.

An unquestionably conservative approach to a minimal risk pilot plant reactor free of scaleup considerations would
suggest it equal the larger of either “cloud” or ““shell’”” diameter surrounding the system’s maximum stable bubble.

NOMENCLATURE
Cp = Drag coefficient, dimensionless

Dg = Bubble diameter, feet
Dp; = Bubble diameter at grid level

g = Gravitational acceleration, 32.2 ft./sec.?
Lg = Bed depth, feet
P = Grid jet penetration

Re = Reynolds number, dimensionless

Vg = Bubble rise velocity, ft./sec.

V= Incipient fluidization velocity, ft./sec.
pp = Bed density, Ibs./cu. ft.

pc = Gasdensity, Ibs./cu. ft.
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[Continued fram page 170.) lasiaiaal
Thus,
- T - i— 1 j— 1
bij = 3. dikdy; = )> (};ﬂ(}:k)-
k=1 k=1

Actually, the effective upper limit of this last summation is min. (7,j) = m + 1. Therefore,

m m

i— 1\, j—1 i—1\/ i—1
b= 3 (* k )(ji1—k): 2 (]k >(il—1—k) ’

k=0 k=0
which shows that b;; is symmetric in/ and /.
Actually, the last summation may readily be evaluated by the Vandermonde convolution theorem, so that:

(1) bij = ("7177), forallij <n.

Bi':s before, let 0., = C,, -AZ; let ¢;; and djj ble the entfies in the /7" row andjth column of €, and D,,, respective-
iy. Then ) ’
c,-j:({.:;), j<i<Zj-1

[Continued on p. 187
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S.E.; Albuquerque, New Mexice 87108. Each solution or problem should be on a separate sheet (or sheets). Prefer-
ence will be given to those typed with double spacing in the format used below. Solutions should be received within

four months of the publication date.
DEFINITIONS

The Fibonacci numbers F,, and the Lucas numbers L,, satisfy
Lyvz2 = Lysr*Lly, Lo=2 Ly=1

Fosz = Fus1+F,, Fp=0, Fy =1 and
Also a and b designate the roots (1++/5)/2 and (1 —/5)/2, respectively, ofx?—x—-1=0
PROBLEMS PROPOSED IN THIS ISSUE

B-376 Proposed by Frank Kocher and Gary L. Mullen, Pennsylvania State University, University Park and Sharon,

Pennsylvania.
Find all integers 7 > 3 such that n — p is an odd prime for all odd primesp less than n.

B-377 Proposed by Paul S. Bruckman, Concord, California.

For all real numbersa > 1and 4 > 1, prove that
[a] [b]
S JT-WaFE] = Y [aJTkF]
k=1 k=1

where [x/ is the greatest integer in x.
B-378 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas.
Prove that F3,,+7 +4"F,+3 = 0 (mod 3) forn=0,1,2, ...

B-379 Proposed by Herta T. Freitag, Roanoke, Virg/nié.
Prove that F5,, = n(-1)"*1 (mod 5) for all non-negative integers n.

B-380 Proposed by Dan Zwillinger, Cambridge, MA.

Let a, b, and ¢ be non-negative integers. Prove that
n+a+b—c )

(k+z—1)(n‘——kzb—c) =( rarhs

™M=

1

]

k

my_n;
Here (™) =0ifm <r.
B-381 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California.
+1and az,+1 = Fy 1 Fy+2. Find the rational function that has
3

-2
Letap, = F,
ag taix +32X2 +azxs + -

as its Maclaurin series.
184
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SOLUTIONS
C 1S EASY TO SEE
B-352 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California.
Let S, be defined by Sgp =1, §; =2, and
Sn+2 = 28p+1 + Sy
For what value of ¢ is S,, = 2" F, 14 for all non-negative integers n?

Solution by Paul S. Bruckman, Concord, California.
Substituting the definition of S, into the given recursion yields:
2n+2Fn+3 = 2n+2Fn+2 +L‘-2nFn+1, or Fn+3 = Fu+2 * %L‘-Fn-{-j .

Since
'Fn+3 = Fus2 t Fn+1:

it follows that ¢ = 4.

Alsa solved by George Berzsenyi, Wray G. Brady, Herta T. Freitag, Ralph Garfield, Dinh Thé’ Hung, John Ivie, Graham

Laord, John W. Milsom, C. B. A. Peck, Bob Prielipp, A. G. Shannon, Gregory Wulczyn, David Zeitlin, and the Proposer.
RECURSIVE SUMS

B-353 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California.

For & and n ontegers with 0 < k <n, let Afk,n) be defined by A(0,n) = 1 = Afn,n), A(1.2) = c+2 and
Alk+1,n+2) = cAlkn) +Alk, n+ 1) +Alk+1,n+1).

Also let S, = A(0,n) + A(1,n) + ---+ Afn,n). Show that

Sn+2 = 2Sp+1 465y,

Solution by A. G. Shannon, New South Wales, 1. of T., Australia.

n+2 o n+1 n+1 n+1 n+1
Su+2 = o Alin+2)=2+3 Alin+2)=2+c 3, Ali—1,n)+3, Ali—1,n+7)+3 Alin+1)
i=0 i=1 i=1 i=1 i=1
n n n+1 n+1 ) n
=2+c Y Alin)+ 3 Alpn+1)+3, Alin+1) =2 % Alin+1)+c 3 Afin)
i=0 i=0 i=1 i=0 i=0
= 28y+1 * €Sy,
as required.

Also solved by Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, Dinh Thé” Hung, John Ivie, Graham Lord, John
W. Milsom, C. B. A. Peck, Bob Prielipp, David Zeitlin and the Proposer.

A VANISHING FACTOR
B-354 Proposed by Phil Mana, Albuguerque, New Mexico.

Show that
F2 oy = LEF7 +(=1)%F W [F2  + 3F s Faly] = 0.

Solution by Graham Lord, Universite’ Laval, Québec, Canada.

This follows from a special case of the algebraic identity
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a®+b7 +c7 —3abc = (a+b +c)a? +b% +c? —ab — be - ca),
where
a=Fu4p, b=-LpF, and ¢ = (—Ilan_k .
Note that
Fpsk — LpFy +(—1)%F,pp = 0.
Also solved by Wray G. Brady, Paul S. Bruckman, Ralph Garfield, Dinh The” Hung, John W. Milsom, C. B. A. Peck,
Bob Prielipp, A. G. Shannon, Gregory Wulczyn, and the Propaser.

CUBIC IDENTITY
B-355 Proposed by Gregory Wulczyn, Bucknell University, Lewishurg, Pennsylvania.

Show that
Flo = LskFl +(~1)%F2 , = 3(=1)"F, FLF,.

n
Solution by Graham Lord, Universite’ Laval, Québec, Canada.

The replacement of L3, by L,f -3(- I)kLk and the utilization of the identity of problem B-354 changes the left-

hand side above into
=1 L FulFE = FrsFukl,
which is the same as
3(=1)*LiFu (1) FE,
thatis 3(—1)"F, FLF s .
Alsa solved by Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, John W. Milsom, C. B. A. Peck, Bob Prielipp,
A. G. Shannon, and the Proposer.
SOME SOLUTIONS

B-356 Proposed by Herta T, Freitag, Roanoke, Virginia.
LetS,, = Fy +2F4 +3F4 +--+nF3,. Find m as a function of n so that £, ¢ is an integral divisor of F,,, +S,,.
Solution by Paul S. Bruckman, Concord, California.

We first find a closed expression for S,,. Note that

n n ) ) n+1
Su= 2 kFok = X {KFaes— (k= 1)Fo_q = Foi+Farz ) = { (k= 1F 211 — F2_2}|jeq
k=1 k=1
=nFyut1—Foun.
Clearly,

Fon+Sy = nFan+y,

and so m = 2n is a solution of the problem. Since F; = F, = 1, it is clear thatm = 0 and m = 1 are also (trivial) solu-
tions. The statement of the problem seems to require finding a// solutionsm, and this appears to be a difficult task,
perhaps not intended by the Proposer.

Also solved by George Berzsenyi, Wray G. Brady, Graham Lord, Bob Prielipp, A. G. Shannon, Gregory Wulczyn,
David Zeitlin and the Proposer.
GOLDEN RATION INEQUALITY COUNT

B-357 Proposed by Frank Higgins, Naperville, Illinois.
Letm be a fixed positive integer and let k be a real number such that

om < 15K g iy

loga

where a = (7 ++/5)/2. For how many positive integers n is F,, < k?



1978] ELEMENTARY PROBLEMS AND SOLUTIONS 187

Solution by Paul S. Bruckman, Concord, Califarnia,
Since 2m < log (k\/il/log a<2m + 1, it follows that 2™ < k5 < a?m*, hence,
aZm_me - a —(-a 1)2m < k\/5 < g2m+l _ (- a—1)2m+1 - aZm+1 _02m+1 ,
i.e.,
Fom < k < Fom+q.
Since {/: } is a non-decreasing sequence of positive integers, it follows that £, < k forn = 7, 2, ..., 2m, i.e., for
2m (distinct) values of 5. o
Also solved by A. G. Shannon and the Proposer.
Covds fiom P. 183 Sl
=0 elsewhere.
Therefore,

n n
_ \ T _ k—1\yj—1
dij= 2. Cikdp; = )D (i— k)(]k - 1) ‘
k=1 k=1
The effective limits of this summation are from k = 7 + [%i] to min. (i,j). It will be convenient, however, to consider
the upper limit to be equal to /; if / > j, the extra terms included vanish in any event. Therefore,

i-1 L i1 R i—1
D D PRI [Ca D DR Gl [ (A
k=[%i] k=0
For convenience, let/i—7=r, j—1=s.
Therefore,
[%er] L
dj=0s= 3 ("37),20) s
k=0
let
= ) Opx
r=0
Then
o [Yar] o

nh
M
Ms
x
3
-
&
Pl
=
Z
It')
a2
~——
n
™M
x
N}
™
~
,‘
-
>+
Fand
=
+(’!
-
S~—

Z E (r—erik)

Thus,

by rearranging the combinatorial terms. Then,

oo = k S
- 2k sk _ z 2
y—Ea ($)x%*(1+x) -(7+x/sk§)<;)(—§;) = e (1472,
or: s
(2) y = (1+x+x%)

Therefore, d;; is the coefficient of x*Lin(1+x+x2)71, From this, we may deduce that the d;j's satisfy the fol-
lowing recursion:
(3) di+2: g1 T dl]+dz+1]+d1+2] (ij = 1); di] 1, dZ] = /_7 (=1} di.g =0 (i > 1)

We may readuly construct a matrix (of unspecified dimensions), whose j* " columniis composed of the coefficients
of (1+x +x: }1'1 written in correspondence to the ascending powers of x, beginning with xY. For any given j, d;; =
0 for all i > 2/ (since (7 +x + x2)7~1 contains (2/ — 7) non-zero terms).

Also solved by the Proposer.
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H-281 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California.
Consider matrix equation

7 1 0V A, B, (4,
(a) 11 1) =\D, E, G,| (n=1).
g 1 1 H, 1, Ju
Identify A,,, B,,, Cyy, =+, .
Consider matrix equation
o0 1 oV A, B, Cyp
(b) 17 0 1) =|D," E, G (n > 1)
0 1 0 Hyo Ly Jy

Identify A,,°, B, Cy’, =+, Iy

H-282 Proposed by H. W. Gould and W. E. Greig, West Virginia University.
Prove

2n had

a _ Z 1

n _ 7 Py aZk _

_ k odd

wherea = (1 ++/5)/2, and determine which series converges the faster.

™

a 7 ’

L}
~

n

H-283 Proposed by D. Beverage, San Diego Evening College, San Diego, California.
Define f(n) as follows:

n +k
fin) = 3 (”:k) (;_)n n=10).
k=0
Express f(n) in closed form.

H-284 Proposed by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania.

(A generalization of R. G. Buschman's H-18)
Show that

(a) >

n
(Z)FrkLm—rk = 2", or (FT+L7) % (2F)"
k

(Umbral notation)

S
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n
(b) > (k) Lrklomark = "L +2L7 or (LT4L7)E (2L7)" 420
k=0
n n n
-2
(c) 2 (Z).ka’:m—rk S w2, L’Z L)

k=0
Note. The generalization is valid for all Type | quadratic real fields, i.e, for 0 =5, 13, 29, 53, 61, ---.

Remark on Problem H-123 by Henry Gould, West Virginia University.

The proposer’s solution, Fibonacci Quart. 7 (1969), No. 2, 177—178, uses Stirling number expansions of factorials
and powers. Since, however, it is true that

n
(m)e(k) _ sk _ [0, k #n,
(1) Z gn Sm 6n {1,k=n,
m=k
then, for perfectly arbitrary Fz, and Fibonacci numbers in particular,
o~ g(m)g(k) ~ S g(ms(k) _ S~ Fst
m _ m _ -
EZ: En Ska— E Fe Z xn Sm N Z stn_F”
m=0 k=0 k=0 m=k k=0
as desired. It is also true that
n
(m)a(k) _ sk
(2) Zk simigk) _ g%,
m=
so by the same argument we have the dual formula to the original problem:
n m
, k -
3) > X sisr = F,
m=0 k=0

and, what is more interesting, this and the original formula hold for any sequence { Fo,n> 0}, the Fibonacci num-
bers really having nothing whatever to do with the truth of the formulas.
Relations (1) and (2) are the standard orthogonality relations for the two kinds of Stirling numbers, and are im-
plied by the two expansions
n

@) (X)y = Stnk)x*
k=0

and

(5) x" = 8in,k)(xh,
k=0

where

(x), = x(x—1)(x—=2)--3-2-1, with (x)y = 1.

Expansions (4)—(5) of course are the ones used by the proposer in his solution of his problem. Formulas (1) and (2)
are both in Jordan's “Calculus of Finite Differences,” page 184, the same source quoted by Lind for formulas (4)—
(5). The essential point | am making is the generality of formulas (1)—(2) as opposed to the original solution.

EDITORIAL ACKNOWLEDGEMENT. Gregory Wulczyn, Bucknell University, submitted a solution for H-265 as
well as an extensive partial solution for H-266.
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SOLUTIONS
SUM SOLUTION
H-267 (Corrected) Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California.
Show that

Stx) = Y (kn+ 1 x_
n=0 n

where & is any integer and 00 = 1, satisfies L
Six) = %S ()

Solution by P. Bruckman, Concord, California.
We identify the given series as

() Ste) = X Mo+ 17t XD

n=0

In “The H-Convolution Transform,” V. E. Hoggatt, Jr., and Paul S. Bruckman, Fibonacci Quarterly, Vol. 13, No.
4, Dec. 1975, pp. 357—68, the following result is proved (where, to avoid confusion, we change the notation): Let

(2) fix) = Z a;.0x*,
i=0-
(3) () = 37 apix’,
i=0
where f{0) # 0, f is analytic about x=0. Also, let
() Gople) = 6 = 3 5 aikins-1x
i=0
Then
(5) Gix) = F{x(Glx))*).
In particular, let
(6) flx) = e*, s=1
Then )
. . © il i .
(fix))*1 = o(+1)x _ > ML{— = aj:jx",
i=0 il i=0
which implies ‘
_G+1)
(7) a,-:j = 17—
H , , .
enee S o1 fkit1) kit 1)
ki+s Gikits=1 = gy T il ’

and also G(x) = S(x), as given by (1). From (5), it now follows that
(8) exp (xS*(x)) = S(x).

Also solved by V. E. Hoggatt, Jr.
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USE YOUR UMBRAL-AH
H-268 Propased by L. Carlitz, Duke University, Durham, North Carolina.
Put

n
Salx) = Y. Snkix*,
k=0
where S(n,k) denotes the Stirling number of the second kind defined by

7
X" = 3 Slkixtx—1)(x—k+1).
k=0
Show that

xSplx) = (~1)"( 7.1)5’]41 (x)
-~ j

\

Sn+1lx) = x Jg; (J’.L)Sj(x} .

More generally evaluate the coefficients C(n,k,j) in the expansion

n+k

kan(x) = Z C(n,k,/}Sj(X) (kn > 0).

j=0
Solution by P. Bruckman, Concord, California.

191

For the sake of typographical convenience, we make a slight change in notation. Let S; (n,k/ and Sz (n,k) denote

the Stirling numbers of the first and second kinds, respectively, given by:

(1 x( = xtx=1)x=2) (x-n+1) = S Si (nk)x*

k=0

(2) x" = Z Sz(n,k)x(k) .
k=0

Also, we define x(% = 1. The following orthogonality relation is satisfied by the Stirling numbers:

@) Smen = Z S1(n,j)S2(,m).

j=m

Using (1)—(3), we may derive an explicit expression for the c(n,k,j)'s as follows:

r+k

2 X"
m=0

r+k
D Sqlrk,j)Sz(j,m)

j=m

n n r+k n
XRSut0) = 3 Splnel™* = Y Splng) 3 x™Srikim = 3 Sa2(nr)
r=0 r=0 m=0 r=0
n r+k j n r+k
= Y Salnr) 30 Sylrtkj) 3 Salimix™ = 3 Salng) 35 SilrtkjiS;lx)
r=0 =0 m=0 r=0 j=0
n+k n

Z Sj()(} Z Sa(n,r)S4 (r+kjl,
=0 =M
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where M = max (j — k, 0J. Hence,

n
(4) elnkj) = 3 SanriSelr+kj).
r=M
A more elegant algorithm for computing c(n k,j) may be derived by employing the umbral calculus, whereby S {x)
is replaced by Sf and S is treated as an algebraic quantity. Returning to one of the relations preceding (4), and re-
placing true equality by “umbral equality,” denated by the symbol “¢,” we then have:

rtk r+k . n
xks,(x) = }: Sa(n,r) L S1lr+kj)Silx) 2 Z Sainr) Z Silr+kj)ST = 3 S(n,r)S(*F)
r=0 j=0 =0 =0 r=0

n
= 8% S Symts - k) = sO)s k.
r=0
More precisely, we have the generating function:

n+k .
(5) E clnkjul = u®y— 1)
7=0
An alternative expression, derived by expanding u™®) in terms of S1(kj)'s, is the following:

N
(6) clnkil = 3 (7 )(~k"S10k] =1,
=M

where M has been previously defined and &V = min {j,n). Using the fact
(1) S (1n) = 61/1:1 ,
we find in particular, from (6):
n
emtj) = 3 () -1sa(ti=1),

r=0
where the summation possibly includes undefined terms, which we define to be vanishing terms. Thus,
cln,1,0) = (g) (~1)951(1,0) = $1(1,0) = 0; ¢ln,d,n+1) = (;) (-1)"81(1,1) = (~1)"S1(1,1) = (~1)";
if1<j<n,

eln,1j) = j ")(— Si(1j—r) = (. " )(— isy(1,1)+ ")(—ms (1,0) = (-1 1. " )
22 er 178101, i—1 LI+, 11, i1
r=j—

Therefore, in all cases (i.e., forj=0, 1, -, n + 1),
(8) etn, 1) = (=17 (")
where the binomial coefficients (;) are defined to vanish when s < 0 ors > r. Hence,

n+li n
) xSale) = o =157V it = 3 (7)1 Sjea 0.
j=1 j=0
By the well known technique of binomial inversion,

n

(10) Sur1lx) = x Z (7)site.

Also solved by F. Howard and the Proposer.
Yoloioiolok
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BINDERS NOW AVAILABLE

- The Fibonacci Association is fhaking available a binder which can be used to take
care of one volume of the publication at a time. This binder is described by the
company producing it as follows: ,

“...The binder is made of heavy weight virgin vinyl, electronically sealed
over rigid board equipped with a clear label holder extending 2% high from
the bottom of the backbone, round cornered, fitted with a 1%%’ multiple
mechanism and 4 heavy wires.”

The name, FIBONACCI QUARTERLY, is printed in gold on the front of the
binder and the spine. The color of the binder is dark green. There is a small pocket
on the spine for holding a tab giving year and volume. These latter will be supplied
with each order if the volume or volumes to be bound are indicated.

The price per binder is $3.50 which includes postage (ranging from S0¢ to 80¢ for
one binder). The tabs will be sent with the receipt or invoice.

All orders should be sent to: Professor Leonard Klosinski, Mathematics Depart-
ment, University of Santa Clara, Santa Clara, Calif. 95053.




