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MORE FIBONACCI FUNCTIONS

M. W. BUNDER
Wollongong University College, The University of New South Wales, Wollongong, N. S. W., Australia

Recently there have appeared in this Quarterly a number of generalizations of the Fibonacci number F,, to func-
tions F(x), defined for all real x, and, in general, continuous everywhere.
For such a generalization two properties are particularly desirable:

(A) F(x) = F, for x = n anatural number
and
(B) F(x +2) = F(x)+ F(x +1).

Spickerman [6] proved some general properties of functions satisfying (B).

Of the various generalizations Halsey’s [1] does not generally satisfy (B) (see [7]) and even if defined for all real x,
is not continuous at x = 7.

Heimer's function [2] satisfies (A) and (B) but is quasilinear. Eimore’s function [3] is not a generalization in the
above sense, it is a function of a natural number variable and a real variable.

Parker’s [4] and Scott’s [5] functions which are identical are “smooth curves,” satisfy both (A) and (B) but can
be generalized further.

Both take

Fix) = Re (xx—/—uxrx) SN M eosmx
VT Vi)

\ = L#5
>

It seems, however, that a lot is lost in taking only the real part of
N — (1N
V(5)
Clearly this complex function itself (we will call it £, ) satisfies (A), and also (B) for any complex number x. Also

as the real part of £, satisfies (B) so does the imaginary part and any linear combination of these.
If we let

where

=\ sin mx
Filx) = Re(Fy), Falx) = I(Fy) = ==—"""= ,
1 x 2 x \/(5_)
for x real, then F;(x) +aF »(x) satisfies (A) and (B) for each real number a.
Scott gives a number of identities concerning Fy(x) and also concerning the corresponding Lucas function which
we will call
Li(x) = Re(Ly) = Re\*+(=1)*"\") = XX + N\ cos 7x .

Of course /(Lx) = —F(x)\/5.
We now list some easily derivable properties of F2(x) some of which relate it to F;(x):

Falx) - Fal—x) = ST Folr 1) Fyle—1) = F20x),

Falx+%4) - Falx %) = Fa(2x) Q20X Fx+3) . Fplx - %) = —F2(x) cot’nx,
2J73)
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: . (nl2)-1pn
Filx) = 22X 4 Fp(x) cotmx, Fa(nx) = S0ATX J F2(x)
5F 2t s mx (~1)"

Another possible generalization of £, for x = n is|F,| , which we will call G{(x).
Thus

Gilx) = |Fyp| = VP + Falx) = —L_ /A% — 7 cos mx # A%
160 = 15| NG

Another such function is
Gylx) = JF3(x)— F(x) = - VA2X — 2 cos mx + N2 cos 271X .
V(3)

Clearly
kGi(x)+(1—-k)Go(x) = F,
when x = n for all real £.
The following are some properties of these functions:

G2(x+1)=GI(x) = GZ(x+ %) - 2/5sin mx +4/5 cos mx
612(2)() = 56;’()(} +4 cos 7TX612(X)
G2(x) = (1/5)(L1(2x) - 2 cos mx)
GZix) - G2(x) = 2F2(x).
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PELLIAN DIOPHANTINE SEQUENCES

A. G. SHANNON
The New South Wales Institute of Technology, Broadway, Australia

1. INTRODUCTION

The so-called Pellian Diophantine equation is
ij —-foz =1
which can be generalized to 5
lXZZ—mX12| =1,
or

X22 MX{12
X12 X22

abs.

A generalization of this is in turn provided by

Xrr mXgy MX2y - MXpp_ g
Xy X mx o MXy g

(1.1) abs. r-1,r " 1r rr-2| = 1.
X1r X2r X3r Xer

The aim of this paper is to construct a solution for this generalized Pellian Diophantine equation. The approach
adopted is less general than that of Bernstein [1] but is, in a sense, more direct. For encouragement with an earlier
draft of this paper thanks are due to Bernstein, whose works on pyramidal Diophantine equations [3] and the Jacabi-
Perron algorithm [2] should be seen for further extensions. We designate the determinant in Eq. (1.1) by

D(m;’xjr, ttty, er} .
2. SEQUENCES
We define sequences {Ws(rr); }which satisfy the arbitrary order linear homogeneous recurrence relation

r
(r) - i\ pr-iyy(r)
(2.1) W) = Zi (].)D we o o>
i=
where
D= [w], wan rth-degree irrational:

w' =m

=D"+d, mDd e Z,,
with boundary conditions determined by

r) s<n+l
Ws,i = O5nt1 ‘I 1<n<r
W(r) = 05_1
s,r
(1) = py(r) ’
(2.2) W = oW W,

The initial values WS(,’), s > 2, have not been specified because they are not used in this development. They are readi-
ly determined from Eqgs. (2.1) and (2.2) if required.
99



100 PELLIAN DIOPHANTINE SEQUENCES [APR.

The table provides some examples of Ws(i)and W(j)
Each of the sequences can be expressed in terms of the fundamental sequence [8], {WM }

51

—1 ~f—=1 T

WS(Z: % <S] )DS] Wgﬁl—]
=0

Proof. When's = 1,2, we have respectively
w® = w™  and W(’) = DW(') ()
1,n 1,n In-1"

Suppose the result is true fors=17,2, - ¢

t-1
o) et~ [t—1\ (pti t-j-1
w = pw® ™ - L( ; ){g leti_jH] j Wger B

t+1 t,n t,n-1
j=0
! t— 1 t—1 (1) d tjy(r)
- - - *] T = Ty,
- SA( ) (o ipetw - X (Fe W,
=0 j=0
as required
3. LEMMAS
We define matrices M, VV,, :
0 1 g - 0
g 0 7 g
M= ,
o 0 g - 1
1 0 ’2)02 o
tr
N, = [Uﬁp] 1<k, p<r.
Lemma 1.
Nprr = M™N¢ .
Proof. The result clearly follows from induction an n, since whenn = 7,
0 1 .. ol ro 7 . g7
M/V1 = e - .
g 0 - 17 0 ) g - (}7
T~ r 13
_7 0 - L7 WZ,r+1 Wr,r+1
¥ g .. W(f)
=1 (f) =Ny,
Pl I
T r
Wl r+2 WZ r+2 W£7+Z
Nz = MN,

= MZIV1, and so on.
det, = (1" 1),
detM = (=7)™1 = detN;.
det N, = (—1)(V(n-1)1 7)f‘

r -

r—k k (1 r— k-1

("7 o), - z 20( AL
=

Lemma 2.

Proof.
= (- 7)n(r—1)

Lemma 3. >
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Proof. We consider coefficients of w:

Theorem. Fori k=

r~k~-1

=0

are solutions of the Pellian Diophantine equation

Proof. Lemma 3 becomes

(4.1)

(—7)n(r-1) =

det V" =

101

r—-k-1
r— k —1 - k —1
Z ( )D]W1(4L)1 ﬂ+]+k+1 Z (r )D](DWM jrk+1 W{y{+]+k)
=0
e k= 1\ i)
_ r—k— j T r—k— T
R . { ( )D W: ntjtk+1 +( )Dl z,n+]+k}
=
o k-1 k-1 (r)
_ r—k— r—k — T
- Z {< j—1 ) < j )}D]th+1+k
j=0
ot (1)
- i ;
= < i )D itk as required .
=0
4. RESULT
7[ 2] “'I ,'I
r-k )
13
Xik = z ( j ) ] 1n+]+k
j=0
= D(m,; x1r, "'/er/-
Lok S ke
> owhxig = 20 W Xk
k=1 k=1
w( (r) (r)
1n+1 WZ,n+1 rntl
(r) (r) (r)
Wl,n+2 WZ,n+ Wr,n+2
(r) (r) (r)
W1,n+r WZ,n+r Wr,n+r
r-1 r
w() r—1\piy(r) w(™ r—1\piy(r)
Winer * Z( i )DJ 1,n#j+1 1{,n+1 +Z( ) W, i+t
=1 =1
W) =2\ i) W) - (r)
T r— T T i
1n+2 +‘ - < )D]WI,n+]+2 r,n+2 Z ( )D Wr,n+k+2
= =1
(r) (r) r (r)
W1 ntr-1 DWI,n+r W(r)z+r-1 +DWr n+r
w(r) w()
1 ntr r,n+r
X11  X21 Xr1
X
12 XZZW Xr2| _ D(m,'x1,, X,,)
Xir X2r Xrr
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by equating coefficients of wk in Eq. (4.1).

5. CONCLUSION
Consider, as examples: Whenr =2, m =2, we have

D = [\/5] =17, and X322 = Wgz) Xq2 = W(z)

Whe 7 n+2’ 1n+2"
nn=1,

X2 = Wg’zg =3, Xxq2= Wl(z_g =2
which satisfy , 5 ’
whenn =0, Y22 ™Mz " 4

X322 = ngzé =1 Xxq12= Wgzg =1,
which satisfy , 5 ’

X5, =MX,, = —1.

The relevant recurrence relation is
w?@) = 2p0w(2)  +w(2)
$,n s,n-1 s,n-2 "
Whenr =3, m = 9, we have

D=1[A3] =2 ad x33= Wg,}iﬂ’ X23 = ngn)ﬁ’ X13 = vaiﬂ :

Whenn =0, 5
X33 = Wg,j) =4, x33 = Wg‘g =2, Xy3 = Wg‘g =1,
which satisfy

2

S +mxl +m xf3—3mx13x23)(33 =1.

X33 23

The relevant recurrence relation is
w3 = 302w +30w3)  + w3 n>3.
N s,n~1 s,n-2 s,n-3’

There is scope for further research in generalizing the properties of the second-order Pellian sequence discussed by
Horadam [5]. The use of the Jacobi-Perron Algorithm in this context should be studied first [2]. The other way of
generalizing the Pellian equation, namely,

x"—my" =1,

is still an open and challenging question as Bernstein [4] remarked.
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SOME RESULTS FOR GENERALIZED
BERNOULLI, EULER, STIRLING NUMBERS

L. TOSCANO
Messina, Italy

SUMMARY

The present_paper is a continuation of researches begun by the author in previous publications [3, 4, 5] on three
classes of generalized Bernoulli, Euler, Stirling numbers. And here, of course, will be proved some additional inter-
esting results.

1. GENERALIZED BERNOULLI, EULER NUMBERS AND POLYNOMIALS

The generalized Bernoulli, Euler numbers in question, and the related polynomials, are defined by the series

oo

(1.1) flhw) = —————— n;
(7+Wt}h/“' z—: o

’

1/
(1.2) ol ) = 2w

n;pw ’
(1+Wt)2h/w+7 =0 h ”I

x/w had n
(1) Fixghw) = M0 o5 gt T
(1+wt)" — 1 n

x/w g n
(1.4) ot hw) = LW _ 5 ) L

(1+wt)"" +1 .2

where / and w are real parameters.
These series, for a correct treatment, will be considered in the neighborhood of the origin.
The explicit expressions of B,, 4, ,, (x) forn =0, 1, ---, 5 are

BO,h,w(X) = 71
Binwix) = %(2x —h +w),

Bamuwlx) = xtx—h)+ Lh? —w?),
B3 wix) = Jex(x —h)(2x —h — 3w) — %wlh? —w?),
By wlx) = xlx = h)(x = 2w)(x — h — 2w) - 310 h? —w?)(h? - 19w?)

Bspuwlx) = xtx—hl> = 3 h+5wix? + L(h? + 450w+ 110w%)x + T 17 = 52 hw?

75w3] + w(hZ 2)(,,2 —9w2).

And these can be deduced by the recurrent relation [4]
103
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where (a)g =1, (a),=ala +1) --(a+r—1)
The explicit expressions of £,, 7, ., (x) forn=0, 1, -, 5 are

EO;h,w(X) =h,
Eqwlx) = Bh(2x—h),
Ezpwlx) = hx? —hih +w)lx + %h%w,

Espwlx) = hx’ - 521 hih +2w)x? + hw(3h + 2w)x + 477 h2(h? - aw?),

Egpwlx) = hx* = 2n(h + 3w)x> + hw(9h + 11w)x? + h(h? = 11hw? - 6w’ )x
- % h2wih? - 2w?),

Espuwlx) = hx® - g hih +4wix* + 5hw(dh + Twix> + % hih? - 21hw? - 20w )x?

— 2hw(5h> - 25hw? — 1207 )x — % h2n* - ‘325 h2w? + 24m*).
And these can be deduced by the recurrent relation [4]

n-1

2Epiwix) + 3y ( :‘) (~w)" " (=x W)y vy (X) = 2h(—w)" (—x /W)y, ,
r=0

n > 0. For relations with generalized Bernoulli, Euler, polynomials, it is easy to see that generalized Bernoulli, Euler,
numbers can be derived by the formulas

Buihw = Bn;h,wm}/ Evhw = ann;h,w/Z(Z’}-
The first six values of £,,,4, ,, are given by
Eow = h, Einw= h(1—nh),
Eow = h(1=2h) T hth—T)w,
E3pw = hih—1)(2h% +2n — 1)+ 30(2h — 1)w + 2h(1 = hw? |
Eq;nw = h(2h — 1)(4h2 + 20 — 1) + 6h(1 = h)(2h2 +2h — 1)w + 1Th(1 - 2h)w? + 6h(h — T)w?
Espaw = 40(1—h)(4h* +4n3 —nZ —h — 1)~ 10(8n* — 4% + 1)w + 35h(h — 1)(2h2 + 2h — 1)w?
+50(2h — 1)w? +24h(1 — hjw?* .
Moreover, it will be useful to estimate also the expression
Funw = 2"Enhwi2(h/2) .
And here, of course, we introduce the particular expressions forn =0, 1, ---, 5:
FO;h,w =h, F1;h,w =0, FZ;h,w = —h3;
Fagw = 307w, Fap = h2(502 —11w2),  Fsp, = —500°wih? —w?).
The theory of generalized Bernoulli, Euler, numbers and polynomials was first investigated by R. Lagrange [1],
L. Tanzi Cattabianchi [2], and later extensively in the author’s paper [4].

If h =1, w=0, the numbers B, , ,,,, £, ,, and the polynomials 8,4, ., (x), Ey; 1, 1 (x), reduce to the ordinary
Bernoulli, Euler, numbers and polynomials, generally defined by the generating expansions

e t”
(1.5) —— = > By o |t| < 2m,
e"—1 n=0
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t > n
(1.6 2 -y el <,
e t+7 =0 n!
tetx > t"
(1.7) L~ 3 B0, e < 2m,
P =0 n!
tx o n
(1.8) el DAL T )
et+1 =0 n!

2. GENERALIZED STIRLING NUMBERS
The ordinary Stirling numbers of the first and second kind s,, ,, S, ,, are defined by the initial values
Smq = (1" n=1)1,  sp. =1,
St = Sun = 1,

]

and the recurrences
Snyr = Sn-1,r-1— (n—1)su_1,r, 1T <r<n,

Snr = Sn-1,r-1 *rSn-1,r, T <r<mn,
with

Sn,0 = 0, Su0 =0,

Sur =0, Su,+ = 0, providedr > n.

In our paper [3], they have been generalized with the coefficients agur)"satisfying the recurrence

31%) = ar(z%,rq —[n+rlu—-1)- I]B,Qf)“, 1<r<n,
with
a,gf% = (=1 )y, ar(l% =1,
35,45 =0, a,(ff,) = 0 providedr > n.

And the particular expressions of ar(:‘r) forn=1,2,..,5 r=1,2,-,5 are
aff =1, aff=-u =1,
af) = (wy, a4 =-3u, =1,
af) = ~(u)s,  af4 = ul7u+4),  af§=-6u, a4 =1,

ag”‘; = (u)y, ag”‘; = —bufu + 1)(3u+2), a ?3) = Sufbu +2),

ag‘g = —10u, a_g,‘_g = 1.

Our paper [3] presents an extensive treatment of the coefficients ag",), and it is interesting to note here that

- r
(2.1) a,(l”r) - (=1 A x(x), provided x =0,
R (TR ) M7 A

where A x is the descending difference defined by the relation Zu\xf(x} =f(x +v) — f(x),
v

(2.2) S0 - 1" 5 (-1)% (" tku — &),
T = 1) kz=:1 (k)

105



106 SOME RESULTS FOR GENERALIZED [APR.

n
(2.3) (~1)"tx)y = 3 8l ~ 7)'(7{7/) E
r=1 :
n
(2.0 DM = S 2l gl= 1 (52E)
= n+1,r+1 1—u ,
(2.5) a") = 3 s kS l1—u)*,
’ k=r
from which
(2.6) all) =5,
(2.7) Jim (1 —u) M) =S,
0) _)0r <n,
(2.8) ag’r) _{“ e
2) _ n-r nl —1
(2.9) o) = - i ()
—1) _ 17 n! r
(210) ar(w) = ;‘FI(VL——Y) s r = n/Z,
2.11) (1/’) = (—7}""r'(2n——r——7}! n—1 .
( an)r 221’[—27’ (n _ 7}/ ( r— 1)

For references and applications of the coefficients a,g’,‘,) to the operators satisfying the condition of permutableness
of the second order, see the more recent our paper [5].

3. PARTICULAR EXPANSIONS. n®* DERIVATIVE OF
hiw | .

ylt) = ——————————(”Wﬁh *i
(1+wt)hw _

From (1.5), placing to the left member the term 1, —¢/2 under the summation sign of the right member, we find,
as it is well known, the expansion

, where i?=-1.

2 2n+1

(3.1) tant = Y (~1)"27"*2(22*2 _1)py ., L , \t| < n/2.

n=0 (2n +2)!

Now, an expansion analogous to (3.1) will be derived from (1.1), proceeding similarly. First of all we have
————”;— — 1+ %(h-w)t = ——;— (2t + [(h — w)t = 2] [(1 +wt)"* — 1])
(1+wt)w _ 20(1+wt)h — q]

hai r
= Z Br;h,w :'.‘, .
r=2

At once, changing at first t with 4, w with w/4, and after t with 2t, w with w/2, we obtain the expansions
7
2(1 +we)*lw _ g

(8ht + [4ht — wt — 2] [(1 +wt)*1w — 1])

N L2 t”
= Z 2 rBr;h,w/4 PEE
r=2 )
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! 2hw ~ "
(4ht + [2ht —wt = 2] [(1 +wt) Y — 1]) = 2Bt w2 =,
2[(1 +Wt}2h/w -1 r:z; rh,w/ P
from which it follows that
): (2% By w4 — 2" By w/z) jh (8ht + [4ht — wt — 2] [(1 +wt)*h1¥ _ 1]
= r! 2[(7 +we) v _ q)

— antl(1 +wt) " 4 1] — [2ht — we = 2] [(1+w0) /¥ — 1))
_htl(1+wt)?PY 112 pel(1 +we)PRv _ q)
(1 +wt) ™1 g (1+wt)?h 4 1

hl(1+wt)?v _ q) - I ) "1
3.2) )Zh/w P né\:; 242 Bni2;nwi4 — 3n+2;h,w/2) n+2)1 "

(1+wt
Moreover by (1.4), replacing x by /2, w by w/2, t by 2t, we obtain the other expansion

oo

2h(1 +wt) n "
(3.3) B 2"E i wia(h/2) —,
. (7+Wt}2h/w+] 72} nh,w/ nl

and since
ho, (1+wt)?h 1 2h(1 +wt* hf(1+wt)" T 4]
oremt)? 1 (1ew)?M Y 2 g il +wt)? )
Sh (1w 4
T 1wt

we deduce thus the interesting expansion

oo

h o (1+wt) 1 +i <~ 272 iz "
(34)1 (7+Wt)h/w - Z;; i (2 Bn+2hw/4 Bn+2hw/2) (n+2}/ ; nh,w/Z(h/2} E

After this expansion and for the following, it will be to estimate the n t derivative of
(1wt 4
ylt) = ———h——

(1 +wt)hw

Now we consider two continuous and derivable functions y = f(u), u = o(t), and the formula for derivatives of a com-
posite function

. dﬂ k
d"y _ Z (=1)" _:KZ (_7)k(r rkﬁ, n>40.
dt" r! du” p=1 t

With the assumption
u=gft) = (1+wt),

y = flu) = Di—’l +1,

we arrive at

d_”zz n [(‘7}' 2/(—7} r! Z ( 7}]6() r—k(_wln(:/(_/?) uk-nu)/h]
w n

/
r! (U I)r+1 b1

i

- 2w 5 { (11wt s~ ‘i ) () n],

(1+wt)" =7 | [(1+we)"® —ij™1 (2
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Whence, by (2.2), we deduce, forn >0,

dan (1 +wt)"® 4

(3.5)
de™ (1 +wt)w _ g
o 2w " (U ki) | (1w
(1+wt)" =1 W' T {1 +wet)Pw —
Successively, putting t = 0, we have
(1w ) z": (~1)"rh" | k) 1
dt" (1+we)" |, = W wr (1-ir*
Moreover it is
N Ry L.J . (cos /4 +isin7/4),
7“/ 2 2
- [cos (r+ 1)n/4 +isin (r+ 1)n/4]

(7_,'}1’4‘1 2(7'+1)/2

" +1)/2 [cos(r—1)n/4+isin(r—1)n/4],
2

and, however, it follows that (n > 0)

n hlw -
(3.8) [_l_j__.(7+Wt) +I:'
de" (1 +we)hY 0

_ (=1)"rip’ rlh” g(1-h1w) _ _
w Z T a, - [cos(r—1)u/4 +isin(r— 1)n/4] .

4. FORMULAS FOR THE GENERALIZED BERNOULLI, EULER, STIRLING NUMBERS

We now, by (3.6), deduce the expansion of the function y(t/ into a series of powers of ¢,

- 5[0
=0 dt” 0 n!

=+ Z (wt)n Z ;_(r—)jr)—/z,/hrr £1rh/w)[cos (r— 1)a/d+isin(r— 1Jn/d] .

r=1

Hence, comparing with (3.4), we obtain the expansion
- n+1on+l t"
2 2" Butihwi4 — Bntihwi2) RN
n=1 ’

oo

j : n t" .
+iEonwi2(h/2) #i - 3 2"Eniuw2(h/2) 5 = ih

n=1

n r- 1
z (wt}” Z (—(r} 1)/;/h:+ Llrh/w}[ws (r—1)n/4+isin(r—1/n/4],
2074w
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from which, separating real and imaginary parts, and equating the coefficients of t” on both sides, we establish the
interesting formulas

(4.1) 2n+1 (2n+13n+1 showl4 — Bn+1;h,w/2)
n
_ (=1) " 1ip™ W™ (1hw)
= (p+ = rn W _
(n+1) E Sir-1)72 a, cos(r—1)n/4,
(4.2) 2"Ep gy w2 (h/2)

" r—1 r+1, n-r
-y (=17rIh 7w (1R W) G e — 1y sr
= 2{r~1)/2 n,r

both for n > 0. They realize the principal objective of the present paper.

5. PARTICULAR FORMULAS

In this section we shall indicate some special cases of (4.1), (4.2).
(a) Ifh =1, w=0, the generalized numbers B,, 3, ), Ey;1, 1, reduce to the ordinary Bernoulli, Euler, numbers,
while (1-1/w)
H n-r ~-1/w =
Wl—l—l;noo [W an,r ] - Sn»r

Moreover, it is B2,+7 = 0 forn >0, E,+7 = 0. Consequently, by (4.1), (4.2), we deduce the formulas
2n+1

(5.1) 22—"1%"—}2———’ Bonses = }: "’[1')/; Sonta,r 008 (r = 1)/4,
(5.2) ngj (;(Q;/g Son+1,rsin (r—1)u/4 =

(5.3) ; (2_('{;_)/; Son,rcos (r—1)n/4 = n >0,

(5.4) ‘r};“z (;/’r’_rl )1/; L Sppsin(e—1Jn/d, >0,

Equations (5.1) and (5.4) are two additional formulas concerning ordinary Bernoulli, Euler, Stirling numbers.
(b) If w=h, we have (2.8)

(1-hiw) _ {O,r < m,
a = _

n,r 1,r = n,
therefore, (4.1) reduces to

ntl
(5.5) 2”+1(2n+18n+1 hh)d—Butihn2) = (n+ )H=H)"T cos(n—1)un/4.
»wEy / ey / (n_1)/2
Moreover, by the recurrent relation for B,, 4, 1,/2, it follows that
h
Bunhiz = — %Bn-nh,h/z,

from which
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n
(5.6) Bugihiz = ni(=h)"
2214

Consequently, by (5.5) we deduce
n
(5.7) Bunnia = —”-’(_?Z}— (1420212 Gin (nm/a)] .
2

This formula can be derived by the recurrent relation

n2
Byt %’;7/1 By 1 na * ”("7—5—7”7 Bu_2:h /4

1 — 203
+ ’i‘/ﬂz—@g’—zﬂ’— Bu-snpia =0, 0 >0,

easily transformable in other forms to constant coefficients.
(c} f w=—h, we have (2.9)

(1-hjw) _ ;_qp-r 1 {n —1
ar (=1) r! (r—i) ’

and (4.1) reduces to

(5.8) """ L t,=hf4 = Butih,-hy2)
; n {_ Hr—l n—1
= (n+ )P r—1 ~1n/4 0.
fn+1) Z_; i)z cos(r— 1)n/4, n >

Moreover, it is [4]
Bn;h,—w = (“7)n5n;h,w,
and comparing (5.5) with (5.8) we have the identity, forn > 0,

(5.9) > /—7}7'1(’:’:11)2(”")/2 cos(r—1)n/4 = cosfn— 1)w/4.
r=1 )

Putting into (4.2) at first w = h and after w = —h, and remembering that [4]

Epinw(h/2) = (=1)"Ep 1, w(h/2),
we prove the identity
"

(5.10) -1 (:‘: 11) 207012 Gin (r = 1)u/d = sinfn - 1)n /4,
r=2
forn > 1.
(d) W w=~h/2 we have (2.10)
(1-hjw) _ _1_ nl{ +
an,r on-r rl <n —r) ’ r=n/z,

and (4.1) becomes
(5.11) 2n+1(2n+13n+1;h,h/8 - Bn+1;h,h/4)

n+i n :
=£&i;/2—’:-— ¥ () 2P costr - ajna.
r=n/2

Consequently, returning to (5.7), it follows
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n+1
(5.12) 22"+23n+1;h,h/8 = %-— ( (=1)"H 11+ 203)12 Go (n + 1)m /4]
2

* Zyi (-1 (n_rr) 20312 cos (r - 7)17/4) .

r=n/2

{(e) 1fw=2h, we have (2.11)

g(1-hlw) (=17 (2n—r—1) .<n - 1)
n,r 22n=2r (n— 1)1 r—1/"

Then {4.1), by (5.6) and the relation
Buynwn =0 for n >0,
reduces to the identity, forn > 0,
n

(5.13) 3 rtten—r— 117 = )20 aos (1= 1) /4 = 2%n - 1.
r=1 :

6. A DERIVATIVE FORMULA

Putting
PO;h,w =i,
21’l+1 %Y
Pn;h,w = m . (2n+13n+1;h,w/4 - Bn+1;h,w/2} * If]— En;h,w/Z(h/Z)/ n >0,
the expansion (3.4) can be written in the form
hiw | . hnd n
(6.1) Flt) = (_ItWt)—-H = Z Pn;h,w t—/ -
(1+wt)"™ ;i 420 n
Moreover, it is not difficult to show that the function F(z) satisfies the functional equation
21+wt) dFft) _ ,_ p2
(6.2) B 1—Ff1),
from which the recurrent relation follows,
n
(6.3) 2Pyt hw + 2nWPy gy g + Z (?)Pr;h,wpn—r;h,w =0, n>40.
r=0 d
If A =1, w =0, we have the interesting connections with the ordinary Bernoulli, Euler numbers
2n+1 19 2n+2
_ 7 - -
(6.4) P2n;1,0 = iE 2, Pon+1;1,0 = 2-*—_2”(57 U Bonez,
and from (6.3) we obtain, in conclusion, the special formulas
n-1 2n,,2r+2 2n-2 "
2n \ 2" 2474 _ )27 4T — 1) 2n
(6.5) Z(; (Zr +1) r+1)in—71) B2r+282n-2v — Z{; (ZT)EZTEZVL—ZT
r= r=

2n+2152n+2 _
+2o —=llg, -0 >0

m
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n 2r+1 2r+2
1\2 -2
(6.6) Epn+z = zo (5?11 ) _—r(il_—) Bon+2E2n-2r, n>0.
=
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EXPANSION

PAMILLA GRAVES SMITH
1609 Main Street, Evanston, Wyoming 82930

As every science, save one, is modified and cast aside,
While mathematics only is built upon and grows,

So, too, my life’s whole whims and whimsies pied
See their demise, while my regard for you goes

0n. Like the Sieve of Eratosthenes, you sift

My drifting days and sort the prime.

As determinants reflect a change, | mirror-image you

And, palindromic, backward-forward go, from autumn into spring.
Approaching the limit of joy, you bring a rate of change

Which grows in my heart proportionate to you. Your range

Is my domain. By you, my worthiness a proof shows,

As solid as geometry, as crystalline as snows,

As coming-now as spring.

| am subset of you.

Happily, with you no negative numbers can deride
My existence, that foolish enterprise of sensibility;
Instead, a proper fraction of civility

Is mine. By power of example, exponent of grace,
You multiply and lace my life with life. The race
Is mine! Cantor-like you lift

Me to infinity sublime

And grant me a number prime.



A COMBINATORIAL PROBLEM INVOLVING
RECURSIVE SEQUENCES AND TRIDIAGONAL MATRICES

GERALD E.BERGUM
South Dakota State University, Brookings, South Dakota 57007
and
VERNER E. HOGGATT, JR.
San Jose State University, San Jose, California 95192

In [2], C. A. Church, Jr., shows that the total number of k-combinations of the first » natural numbers such that
no two elements / and / + 2 4ppear together in the same selection is Ffﬁz ifn=2mand F42Fp+3ifn=2m+1.
Furthermore he shows, if the k-combinations are arranged in a circle, so that 7 and n are consecutive with no two
elements / and / + 2 appearing together in the same selection, then the number of k-combinationsof the first n inatural
numbers is L2 if n = 2m and L, Lyy1q it 0 =2m +1.

Letting {U:j =0 be the sequence of k-combinations of the first n natural numbers such that no two elements / and
i +2 appear together in the same selection, we have

Upg=1 U; =2 Uy=4 U3;=6 Us=9 Us=15 Us=25 --.
By applying standard techniques, it is easy to show that the generating function for {U,,,},T:O is

3 = ] 2 3_4_ .5
(1) > Uix" = 3 (F2 1)+ Fon2 Frps 33X 2™ = T+2x+2x%2+ 263 —x* —x
=0 m=0 7—2x2 —ox% +x6

Although this rational function may be very interesting in its own right, it is also surprising to observe what hap-
pens if we replace m by m - 7, multiply by xZ, and then start the summation from m = 0. Doing this we have

. 1+x—x? 7
(2) Z (F2 +1 +Fm+1 Fm+2X}X2m = =
m=0 " T—2x2 —2xt4x®  (1—x=x2)1+x?)
Incidentally, it can be shown that
(3) ST O(Fx+ FoFosg X2 = Xz -
m=0 (1—x—x“)1+x%)

The results of (2) and (3) can be generalized in a very natural way to the sequence of Fibonacci polynomials de-

fined recursively by
fo(h) =0, f1(N) =1, fueq1(N)= MNu(N +f_1(N), n =1

Using the well known fact that

_at-p"
fn()\) ﬂ ’

a:A+:%2+4 and B:}\_Z/_)z+4,
together with the techniques found in part VI of [6], we have

= 2,172 2 _ 4
) 2 (xZm = AN HN+x% —x
mz=:0 2 [1=0\2+2)x2 +x*](1+x?)

113

where
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and

~ 3 3 3 5
(5) T Fonsr Nty 2t = OF 22+ 00 + % = e
m=0 . [1= 02 +2)x% +x*](1+x?)
Adding (4) and (5), we obtain

- 2,13 2 2,13 3_ 4 5
® 3 [ffn+2()\)+fm+2()\)fm+30\)xjx2m CNEEN M EE A TIXE A M =X
m=0 1=\ +2)x 2 +x7](1 +x?)
Replacing m by m — 7, multiplying by x2, and then starting the summation from m = 0, we have

o 2
(N 5 (2 0 # et Naz XX P™ = T+ —x - ! .
w0 " ™ [1=0Z+2x2 +x*]1(1+x2) (1= =xZ)(1+x%)
Minor manipuiations of (4) and (5) will also yield
(8) f [F2 s X # F (N s (NPT = X
m=0 mH " ’ (1= = x?)(1+x?)

As should be the case, (7) and (8) are (2) and (3) when A= 1.
Another generalization of (2) and (3) occurs when we examine the sequence of Pellian Polynomials defined recur-
sively by
PofN) =0, Pi(N) =1, Purgi(N = (T=DNP,(N)=NP,_1N, n =2
Since

-a’-p"
P‘Vl()\) a—B 12

g=l1=N=-J\-6r+1
2

where

and

I ESVEN, O

<,

we can use the techniques found in part VI of [6] together with arguments used to develop (7) and (8) in order to
show that

9) 3 [P2 () # Py (NP (Nx] X 2™ = !
m§=:o i " "2 [1—=(1=Nx + M2 [(1 = \x2)
and
(10) - [PZ 1 (X # Py (NP (NI X2 = X .
,:‘::o ! " [1— (1= Nx + M2 (1= )

When A = —1 we obtain the sequence of Pellian numbers.

Our final generalization of (2) and (3) is obtained by returning to subsets of a given set. Let S, = {1, 2,3 -, h}
and P(S,, ) be the power set of S,,. Let 7, be the number of elements of P(S,,) with no two elements congruent mod-
ulo two. The first nine terms of {7,, iy with Ty = 1are

1,2,4,6,9,12,16,20,25, .

To develop a formula for {Tn} =0 we first note that any element of P(S,,) of order three or more is rejected. Fur-
thermore there is one element of order zero and there are n elements of order one. The number of elements of order

two is » ;
n n —
(5 )(*)

if n is odd and n2/4 if n is even, any even integer with any odd integer. Hence,
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2
Tn=”4-7+n+7=(————-———”+7[}l(”+3), n odd
and
2 2
- n° =(nt2
Tn +n+1 ( 7 ) n even .

The generating function for {7,,),=¢ is

M) X Tux™ = 2 [m+1)2+(m+1)im+2)x]x?™ = X1, 2 !
=0 m=0 (1-x2)°  (1-x%)°  (1-x)%(1-x?)
while
(12) 2 lm+1)2x+mim+ IxPm = — X
m=0 (1-x)%(1-x?)

The authors also found the generating function for the sequence of k-combinations of the first » natural numbers
arranged in a circle, so that 1 and n are consecutive, with no two elements/ and / + 2 appearing together in the same
selection. Letting {Vn}ﬁ;j be the stated sequence, we see that

Vi=1 V=3 V3=9 Vs4=12, Vs=16 Vg=28 V; =49,
and

2 4,2 2 4,3
(L,i+LmLm+1x)X2m = (T+7x% —4x7)x° | (3+6x% —2x")x
1 1-2x2 —2xt+xb  1-2x2—2x*+x?®

M:s

[

13) % V" -
n=1 m
_(1+3x+ Ix% +6x% —ax? — 2x° )x?

1-2x2 —2x4 +X6

Replacing m by m + 1 and summing from m = 0, in order to obtain the same form as (2), we have

- 2 3 4 5
(14) S (L2 # Lyprg Lol ?m = LESX A IXT #6x7 — A = 2x
m=0 7—2X2—ZX4+X6

which does not simplify and is therefare not as appealing as the result in (2).
If we replace m by m — 1in (13), multiply byx2, and then sum from m = 0 we have

(15) f (L2 # Loy g Lyl = 1—2x+2x% +6x° — 9x* +3x% _ 1-3x +6x%— 3x°
—_ m- m
m=0 " 1-2x% —ox*+x8 (7—X—X2)(7+X2)

which does not simplify further and is not as appealing as equation (2).

Theauthors tried several other substitutions and manipulations of (13) in order to obtain a rational function whose
numerator is a one or an x. However, they were not successful.

We now turn to the major result of this article which is the establishment of a relationship between (2), (7), (9),
(11) and a sequence of determinants of tridiagonal matrices defined by the rule P,,(a,b,c) = (a,-]-), where

aj=a it i=j ay=b it i=j-2 a;=c it i=/+2 and a; =0 otherwise.
The first eleven values of £, (a,b,c) with Py (a,b,c) defined to be one are

Polabec) = 1
Pilabe) = a
Pr(ab,c) = a?
Ps(ab,c) = a’ — abe
P4lab,c) = (a° — be)?
Ps(a,b,c) = a° — 3a%bc +2ab%c?
Pslabc) = (a’ ~ 2abc)?
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Pylabec) = a’ — 5a>be + 7a°b%c? — 2ab3c3
Pgla,b,c) = (a® — 3a%bc +b2c?)?
Po(abc) = ad — 7a7hc + 16a5b2c2 — 13a3h3¢c3 + 3ab*c?
Piolabc) = (a5 —4a3bc +3ab2c2)2 .

It would seem at first that there is no order, except for the perfect squares, to the sequence {P,, (a,b,c}}:;a. How-
ever if one were to actually evaluate the determinants he would see a nice pattern developing in the way he finds
those values. In fact it can be shown by induction that

(16) Pu(ab,c) = aP,_1(ab,c) —abcP,_3(ab,c) +bc?P,_4 .
The generating function for { P,,(a,b,c)} -0 is found to be

(17) S Pulabex™ = 1
n=0 (17— bex?)(1 - ax +bex?)

When bc =-7 anda = 7, (17) becomes (2). When bc =-7 and a = \, (17) becomes (7). When bc = Nanda=(7 -\ ),
(17) becomes (9). When 6¢c = 7 and a =2, (17) becomes (11).

The authors were unsuccessful in trying to find a sequence of determinants whose generating function was related
to (15). Similarly we had no success in trying to find such a sequence of determinants for the last two examples
which we shall now discuss.

Our first example deals with a generalization of the problem of C. A. Church which can be found in [1]. Using S,
and P(S,,) as previously defined, we wish to determine the number of subsets of S,, for which 3n, 3n + 3 or 3n + 1,
3n + 4 or 3n +2, 3n + 5 are not in the same subset. Letting U/,, be the number of acceptable subsets for a given n, it
is easy to illustrate that

Up=1 U =2 Uy=4 U3=8 Us=12 Us=18 Ugsz=27 U;=45 Ug=75 Ug=125 -
By applying the results of [3], it can be shown that
Fi,, , if n=3k
(18) Up =< FEipFres, if n=3k+1
FreoFiez, if n=3k+2,
where Fy, is the k" Fibonacci number. Hence, the generating function for {U,,}5=g is

(19) > Upx™ = 3. [F} ot # F2i FnsoX # Fopsg F2ox? 173
n=0

m=

~

_ 1 +2x+4x% +5x° +6x? +6x7 =3x8 —3x7 — 3x8 —x7 —x10 _ 411
(6 —x? = 1)xC+ax? - 1)
Summing (19) from m = 0 and multiplying both sides by x> we have

>~ 2_53 4,5 6
(20 5 [Fet # Frst FnsaX # Foppg Foppx1x7™ = 7+);+X 3 2 - +;( X
m=0 (x° —x = 1)(x° +4x” = 1)

_ (1= x?)1+x+2x% = x% +x%) )
(xS —x? = 1)ixC +ax? ~ 1)

Our final example deals with counting the number of elements of A(S,,) which have no two members of the same sub-
set congruent modulo three. Denoting the sequencs by {V,,} ¢, it is easy to illustrate that

Vo=1 V=2 Vy=4 V3z=8 V4=12 V5; 18, V¢ =27, V;=36, Vg=48, Vg9 = 64, --.

In order to determine a formula for V,,, we first note that all elements of P(S,,) with four or more members are
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rejected in the counting process. Furthermore there is always one element of P(S,;) with no members and there are
n elements of P(S,,) with one member. Let us now assume n = 3k + 7 and arrange the numbers from 1 to n as follows

1 2 3
4 5 6
7 8 9

k-2 3k-1 3k
3k+1
An acceptable element of P(S,,) of order two is found by taking any element of the first column with any element

in columns two or three and any element of the second column with any element of the third column. Hence, the
number of valid elements of P(S,,) of order two is

2k(k + 1)+ k? = 3k? '+ 2k
provided n = 3k + 1. When n = 3k +2 there are 3k? + 4k + 1 allowable sets of order two while the number of such

sets if n = 3k is 3k,
The number of subsets of S, of order three is

( 3k +1 )
3
provided n = 3k + 1. A subset of S,, of order three is not counted.if it contains two elements of one column and one

element from either of the two remaining columns or if it contains three elements from the same column. Hence the
number of valid sets of order three if n =3k + 7 is

(k5 1) = 2k(t5 1) = 2k 1) = 2k (E) (B3 1) = 2(5) = &7 442,

When n = 3k + 2, the number of valid sets of order three is

(52)-2(* Yok -2t fs) (o3 1)~(3) - e

When n = 3k, the number of valid sets of order three is
3k k kY _ .3
( 3 )—Ek(z)“3<3) = k.
Combining the results above, we conclude that
K> +3k% +3k+1 = (k+1)°, = 3k
V, =

n
k2 +4k? +3k+2 = (k+1)%(k+2), n =3k+1
(k+1)(k+2)% n=23k+2.

(21)

k> +5k% + 8k +4

Hence, the generating function f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>