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MORE FIBONACCI FUNCTIONS 

M.W. BONDER 
Wollongong University College, The University of New South Wales, Wollongong, N. S. W., Australia 

Recently there have appeared in this Quarterly a number of generalizations of the Fibonacci number Fn to func-
tions Fix), defined for all real*, and, in general, continuous everywhere. 

For such a generalization two properties are particularly desirable: 
(A) Fix) = Fn for x = n a natural number 

and 
(B) Fix+2) = F(x) + F(x+1). 
Spickerman [6] proved some general properties of functions satisfying (B). 
Of the various generalizations Halsey's [1] does not generally satisfy (B) (see [7]) and even if defined for all real*, 

is not continuous dXx= 1. 
Heimer's function [2] satisfies (A) and (B) but is quasilinear. Elmore's function [3] is not a generalization in the 

above sense, it is a function of a natural number variable and a real variable. 
Parker's [4] and Scott's [5] functions which are identical are "smooth curves," satisfy both (A) and (B) but can 

be generalized further. 
Both take 

FM = Re (\*-(-V*\-*\ = \«-X«co»7ar 

where 

It seems, however, that a lot is lost in taking only the real part of 

Clearly this complex function itself (we will call it Fx) satisfies (A), and also (B) for any complex number*. Also 
as the real part of Fx satisfies (B) so does the imaginary part and any linear combination of these. 

If we let 

Ft(x) = Re(Fx), F2(x) = l(Fx) = ^ ™ nx , 

forx real, then Fi (x) +aF2(x) satisfies (A) and (B) for each real numbers. 
Scott gives a number of identities concerning F^ix) and also concerning the corresponding Lucas function which 

we will call 
Li(x) = He(Lx) = ne(\x + (-7)x\~x) = Xx + X~x cos nx . 

Of course l(Lx) = -F2(x)s/J. 
We now list some easily derivable properties of F2(x) some of which relate it to F± (x): 

F2M - F2(-x) = zmlMf p2(x + 1) - F2(x -1) = F2
2(x), 

F2(x + %) • F2(x - %) = F2(2x) ™±?M Fix + 1/2) • F2(x - %) = -F2Jx) cot2nx, 
2y/(S) ' 2 
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98 MORE FIBONACCI FUNCTIONS APRIL 1978 

Ft(x) = i ^ + ̂ Mcotir*, F2(nx) = s i ™ S^^fiM 
5F2M sin*™ (-VnH 

Another possible generalization of Fn forx = n \s\Fx\, which we will call Gi(x). 
Thus 

*/ ~ \rx\ " v r l ' A ' T^IX/ " -

Another such function is 

GlM = \FX\ = y/F\(x) + FH'x) * -!— sj\2x - 2 cosnx + X-2* 
yft5) 

_ 7 G2(x) = s/F\(x) - F\(x) = -1— sfk2x - 2 cos nx + X'2* cos lux . 

Clearly 
kGl(x) + (1-k)G2M 

\Nhenx = n for all real k. 
The following are some properties of these functions: 

G2(x + 1) - G2(x) = G\(x +1/2>- 2/5 sin irx + 4/5 cos -nx 

G2(2x) = 5G4
1(X)+4COSTTXG2

1(X) 

G2Jx) = (1/5)(Ll(2x)-2cos7rx) '2V 

G2(x)-G2(x) = 2F2(x). 
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PELLIAN DIOPHANTINE SEQUENCES 

A.G.SHANNON 
The New South Wales Institute of Technology, Broadway, Australia 

1. INTRODUCTION 

The so-called Pellian Diophantine equation is 

which can be generalized to 
x2 - ?x2 = 1 22 12 

\x22~mxi2\ = ; 
or 

ahs. i*22 nix12 

Vl2 X22 

A generalization of this is in turn provided by 

\xt 

(1.1) abs. 
xr-l,r 

Xlr 

mxir mx2r 
xrr mxf r 

*3r 

mxr,r-l 
mxr,r-2 

*2 

1. 

The aim of this paper is to construct a solution for this generalized Pellian Diophantine equation. The approach 
adopted is less general than that of Bernstein [1] but is, in a sense, more direct. For encouragement with an earlier 
draft of this paper thanks are due to Bernstein, whose works on pyramidal Diophantine equations [3] and the Jacobi-
Perron algorithm [2] should be seen for further extensions. We designate the determinant in Eq. (1.1) by 

D(m;xir, -,xrr) . 

2. SEQUENCES 

We define sequences {w' r ) } which satisfy the arbitrary order linear homogeneous recurrence relation 

(2.1) 

where 

n > r, V/T> = Y (r\Dr~iw(r) ., 
s,n —̂' \j) s,n-j 

j=l 

D = [w], w an r -degree irrational: 

w = m 

= Dr +d, 171,0,(1 e Z + , 
with boundary conditions determined by 

W(f> = 6, s < n + 1 
s,n 

r s < n + I 
>n+1 [l<„<r 

w(r) = Ds-1 

(2.2) W(r) = DWW + W(r\ , . 
y s,r s~l,n s-l,n-l 
The initial values W\\, s>2, have not been specified because they are not used in this development. They are readi-
ly determined from Eqs. (2.1) and (2.2) if required. 
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The table provides some examples of 
S Yl S Yl / \ 

Each of the sequences can be expressed in terms o'f the fundamental sequence [6], {\Ny } .-

W<* 

Proof. When s = 1,2, we have respectively 

s-l 

j=0 V J 

W(J) = W(r) a n d W(r) = m(r) +w(r) 
l,n l,n 2,n l,n l,n-l 

Suppose the result is true for 5 = 7,2, —, t. 

W(r) = DW(r)+W(r) = y lt-l\ IpHUr) m + DH-lyy(j) # 
t+l,n t,n t,n-l L-i \ j J L l,n-j l,n~J~ 

t-1 

3=0 

t 

as required 

We define matrices M, Nn .-

j=0 j=0 

3. LEMMAS 

M 

0 7 
0 0 

0 0 

0 .» 0 
7 .. 0 

7 
7 rD lr2\D

2 - rD r-l 

Lemma 1. 
Nn+1 = MnNt . 

Proof. The result clearly follows from induction on n, since when n = 7, 

MNi 

0 1 

0 0 
7 rD 

"0 

7 

- rDr-

0 

w(
2% 

N3 

°'\ 
1 

-1 

\° 
\° 
\1 

= MN2 

= l\ 

3 f ... 0 

0 ••• 7 
w(;) ... w(r) 

2,r+l r,r+l 
w(rl 1 

r,3 
W(r) 

r,r+l 

r,r+2 

= N2. 

/l2Nly andst ) on. 

Lemma 2. 
Proof. 

det/Vn = (-1)n(r-lJ. 
\r-l detM = (-IT1 = det/l/i. 

det/i/„ = (-rf'-iXn-Vf-f)''-! = (-7)n(r-^. 

Lemma3. ± L^^oty^ - £ £ f y * ) ^ ^ ^ -
fc=i j=0 k=l j=0 
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Proof. We consider coefficients of w: 

r-k-1 r-k-1 

L ( r - k - l\njw(r) = y> It - k - l\ nj(nW(r) +W(r) ) 
\ j ) U VVi+l,n+j+k+l 2^ \ j ) u \UVV^n+j+k+1 wi)n+j+k> 3=0 j=0 

r-k-1 

j=0 

j=0 

r-k 

j=0 

4. RESULT 

Theorem. Fori,k = 1,2, -,r, 

j=0 x 

are solutions of the Pellian Diophantine equation 
/ = D(m;xir, -,xrr). 

Proof. Lemma 3 becomes 
r r 

(4.1) E wkxik = £ ^fe"Vi,fe • 
k=l k=l 

(-1)n(r-l) = detNn 

i/\/(r) W(r) - W(r) 

VVl,n+l VV2,n+l Vr,n+1 
V l,n+2 2,n+2 r,n+2 

W(J) W(r) 
l,n+r 2,n+r 

r~l 
r,n+r 

W(r) + y (r-l)DJW(r) ... W(r) + y [ > - * \ / 7 % W .^ 
Wl,n+1 ^ \ j j Wl,n+j+l y\,n+l ^ [ j )U'"fr,n+j+l 

j=l 
r-2 

j=l 

Wl,n+2 2-r l / )UVVl,n+j+2 Vr,n+2 ^ [ j Vr,n+k+2 
j=l j=l 

l,n+r-l l,n+r 

l,n+r 

*11 X21 - xrl 
X12 X22 - Xr2 

\xlr x2r - xrr 

r,n+r—l r,n+r 

r,n+r 

D(m;xlr, -,xrr) 
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by equating coefficients of wk in Eq. (4.1). 

5. CONCLUSION 
Consider, as examples: When r = 2,m=2, we have 

When n = 1, 

which satisfy 

when n = 0, 

which satisfy 

D = U2] = I and x22 = W ^ , x12 = W^+2. 

*22 = W(2
2J = 3, x12 = w[2j = 2, 

X22-mX12= 1; 

*22 = W(l{ = I *12 = W^ = I 

The relevant recurrence relation is 

When r = 3, m =9, we have 

When n = 0, 

x222-mx2i2 = ~ ; -

W(2) = 2DW(2>+W(2) 
s,n s,n~l s,n-2 

D = IKJ91=2, and x33 - W ^ , x23 - tf£+y * « = < f j + i 

*33 = W(/J = 4, x23 = WJV = 2, x13 = W[3J = /, 
which satisfy 

x 3+mx23+m x13~3mxi3X23X33 = 1. 

The relevant recurrence relation is 

W(3) = 3D2W(3> , +3DW(3) 0+w(3) ,, n > 3. 
s,n s,n~l s,n~2 s,n-3 

There is scope for further research in generalizing the properties of the second-order Pellian sequence discussed by 
Horadam [5 ] . The use of the Jacobi-Perron Algorithm in this context should be studied first [2 ] . The other way of 
generalizing the Pellian equation, namely, 

xr-myr = 1, 

is still an open and challenging question as Bernstein [4] remarked. 

REFERENCES 
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SOME RESULTS FOR GENERALIZED 
BERNOULLI, EULER, STIRLING NUMBERS 

L.TOSCANO 
Messina, StaSy 

SUMMARY 
The present_paper is a continuation of researches begun by the author in previous publications [3,4, 5] on three 

classes of generalized Bernoulli, Euler, Stirling numbers. And here, of course, will be proved some additional inter-
esting results. 

1. GENERALIZED BERNOULLI, EULER NUMBERS AND POLYNOMIALS 

The generalized Bernoulli, Euler numbers in question, and the related polynomials, are defined by the series 

(1.1) / / -A . - . i - ht 
f(t;h,w) = f = £ Bn;Kw L-, 

(1 + wt)hlw-1 „=0
 n! 

IM\ - / , . ! . . - I - 2h 1+Wtllw ST F *" 
(1.2) ip(t;h,w) — = ^ En^w -j-, 

(1+wt)2hlw + 1 n=0
 n! 

(1.3) F(x,t;h,w) - ht(1+wt)*l» __ £ B (x) t» 
(l+wt)hlw-l ^o n! 

(1.4) <S>(x,t;h,w) = 2h(1+wtjX'W = £ En;KJx) C- , 

where h and w are real parameters. 
These series, for a correct treatment, will be considered in the neighborhood of the origin. 
The explicit expressions of Bn;hfW(x) for n = 0, 7,—,5 are 

B0;h,w(x) = h 
Bl;h,wM = %(2x-h+w), 

B2;h,wM = x(x-h)+1-(h2-W2), 

2_„,2i B3;h,wM = %x(x-h)(2x-h-3w)-1/4w(hz - wz), 

B4;h,wM = x(x-h)(x -2w)(x-h-2w)- ^ (h2 - w2)(h2 - 19w2) 

Bs-h WM = x(x - h)[x3 -%lh +5w)x2 + 1- (h2 +45hw + 110w2)x + ^ h3 - 5-§- hw2 

' ' Z O 0 0 

- 15w3] +1-w(h2 - w2)(h2 - 9w2). 

And these can be deduced by the recurrent relation [4] 
103 
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E (:)(~Wr [1 - 1) „-r-l
B'*>»M = "(-xMn-l. n > 0, 

where (a)0 = 1, (a)r = a(a + 1) - (a+r- 1). 
The explicit expressions of En;^fW(x) for/7 =0, 1, —, 5are 

Eo;h,wM = h, 

Ei;h,wM = 1/2h(2x-h), 

E2;h,w M = hx2 -h(h+ w)x + M 2w, 

E3;h,wM = hx3 - I h(h +2w)x2 +hw(3h +2w)x + 1- h2(h2 - 4w2), 

E4;h,wM = hx4 -2h(h+3w)x3 +hw(9h + 1lw)x2+h(h3 - 11hw2 - 6w3)x 

-3~h2w(h2 -2w2), 

E5;h,wM = hx5 - | h(h + 4w)x4 + 5hw(4h + 7w)x3 + | h(h3 - 21 hw2 - 20w3)x2 

-2hw(5h3 - 25hw2 - 12w3)x- j h2(h4 - 3j h2w2 +24w4). 

And these can be deduced by the recurrent relation [4] 

n-l 
2En;h,w M + Yl ( r) f - ^ ^ M ^ r / M 'X> = 2h(-w)n(-xMn , 

r=0 * ! 

n > 0. For relations with generalized Bernoulli, Euler, polynomials, it is easy to see that generalized Bernoulli, Euler, 
numbers can be derived by the formulas 

"n;h,w = "n;h,w("'t ^n;h,w = * En;h,w/2''2' • 
The first six values of En;^)W are given by 

E();h,w = h, El,h,u> = h(1 -h), 

E2;h,w = h(1-2h)th(h-1)w, 

E3;h,w = h(h - 1)(2h2 +2h- 1)+3h(2h - l)w+2h(1 - h)w2 , 

E4;h,w = M2h- l)(4h2+2h- 1) + 6h(1 - h)(2h2 +2h - 1)w + 11h(l - 2h)w2 + 6h(h - l)w3 , 

Es;h,w = 4h(1-h)(4h4+4h3 -h2 - h - D - 10(8h4 - 4h2 + l)w + 35h(h - 1)(2h2 + 2h - 1)w2 

+ 50h(2h - 1)w3 +24M1 - h)w4. 
Moreover, it will be useful to estimate also the expression 

Fn;h,w = 2nEn;h,wl2(h/2). 

And here, of course, we introduce the particular expressions for n = 0, 1, —,5: 

F0;h,w = h, Fi;hfW = 0, E2;hfW = ~h3, 

F3;h,w = 3h3w, F4;hfW = h3(5h2-llw2), F5;Kw = -50h3w(h2-w2). 

The theory of generalized Bernoulli, Euler, numbers and polynomials was first investigated by R. Lagrange [1 ] , 
L. Tanzi Cattabianchi [2 ] , and later extensively in the author's paper [4 ] . 

If h = 1,w = 0, the numbers Bn.^tWi Enfa,w, and the polynomials Bn;ilw(x)/ En;h)W(x), reduce to the ordinary 
Bernoulli, Euler, numbers and polynomials, generally defined by the generating expansions 

d.5) 7 - - L * » ; 7 - | f | < * i r . 
• * - / n=0 "• 
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0-® - £ - = E En £ , |r| < n/2. 
n=0 e2t+„ 

(1-7) -f^- = E A„W J , IfI <2ir. 
el-1 n=0 "' 

tx (1.8) -f— = J ] fnW £7, |f | < 7T. 
e *7 n=0 

2. GENERALIZED STIRLING NUMBERS 
The ordinary Stirling numbers of the first and second kind snr, Sn)T, are defined by the initial values 

sn,i = (-Ip-^n-D!, sn>n = 1, 

and the recurrences 
5n,r = sn-l,r-l - (n - 1)sn-i>r, 1 < r < fl, 

$n,r = Sn-l,r-l +r^n-l,r> 1 < r < n, 
with 

sn,0 = Of Sn,0 = 0, 
sn,r

 = 0, Sn}T = 0, provided r > n. 

In our paper [3 ] , they have been generalized with the coefficients a(u) satisfying the recurrence 

»($ = a^l,r-l ~ I" + r<u -V- 'J«£ir> J <r<n, 
with 

a$ = 0, a$ = 0 provided r > n . 

And the particular expressions of a$ for/? = 1,2, -,5, r= 1,2, -, 5, are 

a(uj = h a£} = _U/ B(u} = h 

aft = (u)2, aty = -3u, aty = /, 

a$ = -(11)3, aty = u(7u+4), a$ = -6u, afy = 1, 

a(?J = (u)4, a<$uj = -5u(u+1)(3u+2), aty = 5u(5u+2), 

a$ = -JOu, a$ = 1. 

Our paper [3] presents an extensive treatment of the coefficients a^y, and it is interesting to note here that 

(2.1) »W = (~1>nT A x(x)n Provided x = 0, 
(u - 1)rr! u-i 

where A x is the descending difference defined by the relation Axf(x) = f(x + v) - f(x), 

(2.2) aW = (-1)n £ (-1)k(r
k)(ku-k)n , 

n'r (u-1)rr! & {k' 
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(2.3) 

(2.4) 

r=l X ' r 

r=0 

(2.5) aM = . £ snMSk}r(1-u)k-\ 
k=r 

from which 

(2.6) *(1)=snr, 
n,r n>T ' 

(2.7) J i m ^ [<1-ut™a<»>l =Sn>r: 

(2.8) g(0) Jo,r<n, 
n,r l,r - n , 

(2.9) 

(2.10) 

J2) = iivn-r n±[n-l\ 
n,r ' " rj [r- ij ' 

9(-V„ -L.G!f r \ r > n / 2 
n,r pn-r r! \n - r/ 

(2.11) g(y2) = tlJ^r(2n_r_V/,n_y 
n,r 22n-2r (f] _ J}/ \ r-1} 

For references and applications of the coefficients a^/ to the operators satisfying the condition of permutableness 
of the second order, see the more recent our paper [5]. 

3. PARTICULAR EXPANSIONS. nth DERIVATIVE OF 

y(t)= (f+wtjU»Ht w h e r e 72 = _7 

(1 + wt)hlw-i 

From (1.5), placing to the left member the term 1, -t/2 under the summation sign of the right member, we find, 
as it is well known, the expansion 

°° 2n+l 
(3.1) tanr = £ (~1)n22n+2(22n+2 - l)B2n+2 — , \t\ < TT/2. 

n=0 (2n+2)! 
Now, an expansion analogous to (3.1) will be derived from (1.1), proceeding similarly. First of all we have 

J£- 1 + 1/2(h-w)t = 1~ -(2ht + [(h-w)t-2][(l + wt)hlw - 1]) 
(1 + wt)hlw-1 2[(l + wt)hlw -1] 

oo 

- V R , t' 
l^t Dr;h,w ~f -
r=2 

At once, changing at first t with 4t, w with w/4, and after t with 2t, w with w/2, we obtain the expansions 
1— (8ht + [4ht-wt-2][(1+wt)4hlw -1]) 

2[(1+wt)4hlw -1] 

= JL* 2 rBr;h)W/4 -f ,. 
r=2 
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7 
2[(1 + wt)2hlw - 1] 

from which it follows that 

(4ht + [2ht -wt- 2][(1 + wt)2hlw -1]) =YJ 2YBr;h,wl2 j , , 
r=2 

tr 

] T (2 rBr;k}Wi4-2rBr;h,wl2) -. 
1 

r=2 r! 2[(1+wt) 4hlw i] 
(8ht + [4ht -wt- 2][(1 + wt)4h,w - 1] 

\2hlw -4htf(1 + wt)zniw + 1] - [2ht-wt-2][(1 + wt)4hlw - 1]) 

_ht[(l+wt)2hlw-1]2 _ht[(1+wt)2hlw-1] 

,4h/w_1 (1 + wt)2hlw + 1 

(3.2) 
i2h/w +n+l h[(1 + WtrHIW - 1] _ v . 0n+2nn+2n n . t" 

(l+wt)2hlw + 1 £b ( 2}' 
Moreover by (1.4), replacing x by h/2, w by w/2, t by 2t, we obtain the other expansion 

(3.3) 

and since 

2h(1 + wt) 

(1 + wt) 
' ^ — = Z 2nEn.M2(h/2) *-, 
2hlw , - " ' ' ' n! 

^ I n=0 

h_ . (1 + wt)2hlw -1 + 2h(l+wt)hlw
 = h[(1 + wt)hlw +i]2 

<+wt)2hlw + J] 

(1 + wt)hlw+i 

a+wt)hlw-i' 

' a+wt)2hlw + i d+wt)2hlw + i i[a+wt)2hlw+ 1] 
_h (1 + wt)hlw+i 

we deduce thus the interesting expansion 

(3.4) h (1+wt)hl"+i= £ 2-^i(2n+2Bn+2;Kwl4-Bn+2;h>wl2) -J^r- + £ 2nEn;h}Wl2(h/2) f" 
1 (1 + wt)h/w-i „=0 ' (n+2)l „=o "' 

After this expansion and for the following, it will be to estimate t h e n * derivative of 

y(t) (1+wt)hlw+i 

(1+wt)hlw -i 

Now we consider two continuous and derivable functions y = f(uj, u = <p(t), and the formula for derivatives of a com-
posite function 

&.= £ till . &. £ (-1)k[ 
dtn r=l r! dur k=l 

dtn 

With the assumption 

y = M = —.+1. u = <p(f) = (1 + wt)hlw, 
u-1 

we arrive at 

dtn 
r=l L 

f-VT 2i(-1)rr! 
r! (u-i) 

2U-W)n y 
(1+wt)n ~i [(1 

i (-vk(r
ky-k(-wr(d£)nuk-n 

(1+Wt)rhlw y* /_ ;|fc/r\/z*A\ 
+ wt)hlw-i]r+1 t l \ k l \ w I 

-nw/h 
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Whence, by (2.2), we deduce, for n > Q, 

dn (l + wt)hlw+i (3.5) 
dtn (1+wt)hlw-1 

_ 2iwn n (-1)rr!hr
 3(l-hM (l+wt)rhlw 

(1 + Wt)n
 r=l Wr H'r [(1 + Wt)hlw - / / r+1 

Successively, putting t = 0, we have 

' dn (1+wt)h/w + j 

dtn (1+wt)hlw-i t=0 

2iwn T (-1)rr!hT. a(i-u*>) L 
~ ...r n>r l, ; r=l W (1-i) r+1 

Moreover it is 
-~^ = l±l = J- (cos TT/4+I slnn/4), / - / 2 ^ 

1 

(1-i)r+l 2(r+1)'2 
/cos (r + 1h/4 +i$\n(r+ 1h/4] 

1 
2(f+l)l2 

/cos (r - 1)TT/4 + i sin (r - 1h/4] , 

and, however, it follows that (n > 0) 

' dn (1+wt)hlw + j~ (3.6) 
dtn (1+wt)hlw -i t=o 

\r-l„iur = wnT LdllMhl. a(*-U»)fm (r - 1h/4 +i sin (r - 1h/4] . 
£ 2(r~1)l2wr nj 

4. FORMULAS FOR THE GENERALIZED BERNOULLI, EULER, STIRLING NUMBERS 
We now, by (3.6), deduce the expansion of the function y(t) into a series of powers of t, 

vM = £ 
n=0 

dnv(t) 

dtn n! 
J t=0 

'" * E (MfE ('V r9hT at1*1**/cos (r - Vn/4 + isin (r- lh/4]. 
£i n! 7^1 2(r-1)l2wr n'r 

Hence, comparing with (3.4), we obtain the expansion 
oo 

E nn+1 /0n+l „ D j tn 

* [Z Bn+i;h,w/4 - 0n+l;h,w/2/ /^ + jjf 
n=l 

oo 

n=l 

+ S ^ £ H/.'fr - i ^ / c o i (r - th/4 + i sin (r - 1fn/4j. 
~ n! *-J o(r-l) 2 r n>r 

n=l r=l * W 
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from which, separating real and imaginary parts, and equating the coefficients of tn on both sides, we establish the 
interesting formulas 

W.1) 2n (2n Bn+i;h,w/4-Bn+l;h,w/2) 

_- (n + 1) f (-irhih^w™ a(i-hi»)C0S(r_Vn/4f 

fr\ 2(r-1>12 

(4.2) 2nEn.h>w/2(h/2) 

__ £ M/ -W+V- a(M) sjn (r _ 1h/ 
£ 2(

r-^12 

both for n > 0. They"realize the principal objective of the present paper. 

5. PARTICULAR FORMULAS 

In this section we shall indicate some special cases of (4.1), (4.2). 
(a) If h = l,w = 0, the generalized numbers Bn;h>w, En;h)U), reduce to the ordinary Bernoulli, Euler, numbers, 

while 
lim [wn-*J1-llw>] =Snr. 

u> -» oo n,r n>' 
Moreover, it isB2n+i = 0 for/7 >®,E2n+i = 0. Consequently, by (4.1), (4.2), we deduce the formulas 

o2n+ll02n+2 f J
 2n+1 / 7jr-ir/ 

(5.1) ^ {2
n + 1 ~1j B2n+2 = E { y ' l $2n+i,r™s(r- Vir/4, 

n + 1 ^ 2(r~1)12 

2n+l 1 

(5.2) Y. t 1"-$2n+l,r^(r-1fr/4 = 0, 

(5.3) 
2n , r_t 

E ' ) r j l S2n,r COS fr- 1h/4 = 0, n > 0, 

(5.4) E2n = £ { y ~ r . l S2n,r sin (r - 1h/4, n > 0. 
% 2(r-V12 

Equations (5.1) and (5.4) are two additional formulas concerning ordinary Bernoulli, Euler, Stirling numbers. 
(b) \\w = h, we have (2.8) 

(l-hlw) = fo,r < n, 
n,r | l,r = n , 

therefore, (4.1) reduces to 

(5.5) 2n+1(2n+1Bn+1.M4 - Bn+1;hih,2) = (n + 1!!(-^+1 cos (n - 1h/4. 
2(n~lJ/2 

Moreover, by the recurrent relation for Bn;ilfil/2, it follows that 

o nh D 

®n;h,h/2 ~J °n-l;h,h/2 > 

from which 
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n!(-h)n 

n2n 
(5-6) Bn;hfh/2 

Consequently, by (5.5) we deduce 

(5.7) Bn.h>hi4=!±!t!>}l[1+2(n+2)l2
%\n(nT</4)]. 

2 

This formula can be derived by the recurrent relation 
P , 1 , 3nh n , n(n - 1)h2

 D Bn;h,h/4 + -J- Bn-l;h,h/4 + JQ-1— Bn-2;h,hl4 

. n(n- l)(n-2)h3
 D _ n n ^ n 

+ Jjtf " Bn-3;h,hl4 = 0, n > Q, 
easily transformable in other forms to constant coefficients. 

(c) \\w = -h, we have (2.9) 
Jl-h/w) = / 7)n-r n[(n- 1\ 
n,r f " rf \r - 1 j ' 

and (4.1) reduces to 

(5-8) 2n+ (2n+ Bn+1;pl-h/4-Bn+1;h)-h/2) 
n (_ijr-l(n-l\ 

= (n + 1)!hn+l Y / V-n cos (r - 1h/4, n > 0. 

Moreover, it is [4] 

"n;h,~w = i ' / "n ;h,w > 
and comparing (5.5) with (5.8) we have the identity, for A? > 0, 

(5.9) £ '(-Vr-1(?z})2(n~r),2n*(r- 1>«/4 = cos^~ ^/*-
r=l 

Putting into (4.2) at first w = h and after w = ~h, and remembering that [4] 
En;h,-u> (h/2) = (- VnEn;h>w(h/2) , 

we prove the identity 
n 

(5.10) J^ (-1)rfrz})2(n,'r),2*to(r- Dn/4 = m{n-1h/4, 
r=2 VI 

for/7 > 1. 
(d) \\w = h/2, we have (2.10) 

a(l-hlw) = -J-.nJt r \ r > n / 2 

nyr 2n_r r! \n-rj > 

and (4.1) becomes 

(5.1D 2n+1(2n+1Bn+1;hihi8 ~ Bn+1;h}hi4) 

(n + l)!h n+l 
?2n 2M r~l2 

E (-I?-1 {„ I r) 2(Jr+1)'2 cos (r - 1h/4. 

Consequently, returning to (5.7), it follows 
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(5.12) 22»+2Bn+uh>m = (n+J''h
?

n+1 ((-Vn+ln+2W2vn(n+1h/4] 
n2n+2 \ 

+ £ <~irl L - r) 2(3r+5)'2 C0S (r ~ 7,7t/4 ) • 
r>n/2 V 

(e) l f iv = ̂ ,wehave (2.11) 
3(l-hlw) _ (-1)n~r (2n-r-1)! (n-l\ 

n,r 22n~2r ' (n - l)f ' [ r - l j ' 

Then (4.1), by (5.6) and the relation 
Bn;h,h = 0 for n > 0, 

reduces to the identity, for n > 0, 

n 

(5.13) £ r!(2n-r- 1).'('" z})2(r+1),2n* <r ~ *>«/* = 2n(n~1)!n!. 
r=l \ r I 

6. A DERIVATIVE FORMULA 
Putting 

P0;h,v> = ' / 

2n+l +i j2n 

Pn;h,w = fn + jjh ' (2n Bn+l;h)w/4-Bn+l;h,w/2)-h y ~ Enfrtwl2(h/2), n > 0, 

the expansion (3.4) can be written in the form 

(1+Wt)hlw-i n=0 "' 
Moreover, it is not difficult to show that the function Fit) satisfies the functional equation 

(6.2) 2Jl+wtL.dm=1-F2(t)i 

h at 
from which the recurrent relation follows, 

n 
(6.3) 2Pn+1;Kw+2nwPn;Kw+h £ (")Pr;h,wPn-r;h,w = 0, n > 0. 

r=0 V ' 

If h = 1, w = Of we have the interesting connections with the ordinary Bernoulli, Euler numbers 
n2n+l /p2n+2 _ *i 

(6.4) P2n;l,0 ^ f'E2n> P2n+l;l,0 = -J^pj &2n+2 > 

and from (6.3) we obtain, in conclusion, the special formulas 

feci ^ I 2 n \ 22n(22r+2 - 7)(22"-2r- 1) n o v (2n\F F 
( 6 - 5 ) L, \2r + l) (r+t)(n-r) B2r+2B2n-2r-L (2r)E2rE2n-2r 

r=0 r=0 
j2n+2 /n2n+2 

+ Z
 n'2+J = ^ B2n+2 = 0, n > 0, 
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(6.6) E2n+2 = £ ( £ ; ] ) 2 [\-2 ' B2n+2E2n-2r, n>0. 
r=0 
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EXPANSION 

PAMILLA GRAVES SMITH 
1609 Main Street, Evanston, Wyoming 82930 

As every science, save one, is modified and cast aside, 
While mathematics only is built upon and grows, 
So, too, my life's whole whims and whimsies pied 
See their demise, while my regard for you goes 
On. Like the Sieve of Eratosthenes, you sift 
My drifting days and sort the prime. 

As determinants reflect a change, I mirror-image you 
And, palindromic, backward-forward go, from autumn into spring. 
Approaching the limit of joy, you bring a rate of change 
Which grows in my heart proportionate to you. Your range 
Is my domain. By you, my worthiness a proof shows, 
As solid as geometry, as crystalline as snows, 
As coming-now as spring. 

I am subset of you. 
Happily, with you no negative numbers can deride 
My existence, that foolish enterprise of sensibility; 
Instead, a proper fraction of civility 
Is mine. By power of example, exponent of grace, 
You multiply and lace my life with life. The race 
Is mine! Cantor-like you lift 
Me to infinity sublime 
And grant me a number prime. 



A COMBINATORIAL PROBLEM INVOLVING 
RECURSIVE SEQUENCES AND TRIDIAGONAL MATRICES 

GERALD E. BERGUM 
South Dakota State University, Brookings, South Dakota 57007 

and 
VERIER E.HOGGATT, JR. 

San Jose State University, San Jose, California 95192 

In [2 ] , C. A. Church, Jr., shows that the total number of /r-combinations of the first n natural numbers such that 
no two elements / and / + 2 appear together in the same selection is F^+2 if n = 2m and Fm+2Fm+3 \tn=2m+l. 
Furthermore he shows, if the ^-combinations are arranged in a circle, so that / and n are consecutive with no two 
elements / and / + 2 appearing together in the same selection,then the number of /r-combinationsof the first n matural 
numbers is L2\\n = 2m and LmLm+i if n = 2m + 1. 

Letting \Un) ™=o be t n e sequence of /r-combinations of the first n natural numbers such that no two elements / and 
i + 2 appear together in the same selection, we have 

U0 = h Ut = 2, U2 = 4, U3 = 6, U4 = 9, U5 = 15, U6 = 25, - . 
By applying standard techniques, it is easy to show that the generating function for {(Jn}n=o >s 

m V // „« v^• tc2 ,r r vi„2m 7 +2x+2x2 +2x3 - x4 - x 5 
H) 2-# un* = V (Fm+2

+Fm+2Fm+3x)x = . 
n=0 m=0 1-2x2-2x4+X6 

Although this rational function may be very interesting in its own right, it is also surprising to observe what hap-
pens if we replace m by m - 1, multiply by x2, and then start the summation from m = 0. Doing this we have 

(2) £ (F2
m+1 + Fm+1 Fm+2x)x2m = 1+

?
X'x2

4 6 = L
9 J • 

m=0 1-2x2-2x4+x6 (1-x-x2)(l+x2) 
Incidentally, it can be shown that 

oo 

(3) E (F2
m+1x + FmFm+1)x2m = \ . 

m=0 (1-X-X2)(1+X2) 

The results of (2) and (3) can be generalized in a very natural way to the sequence of Fibonacci polynomials de-
fined recursively by 

f0Ck) = 0, fi(\) = 1, fn+1M = XfnM + fn-ifXJ, n > 1. 
Using the well known fact that 

nn nn 
fnM - ̂ f f . 

where 
a = X * V y + * and p=X~f2+4 , 

together with the techniques found in part VI of [6 ] , we have 

(4) £ f2
m+2Mx2m = *2 + 0.2 + 1)x2-x4 

t o [1-(X2+2)x2+x4](1+x2) 
113 
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and 

(5) • £ fm+2(Ufm+3Mx2m+1 - (*L±Vx + l\3+Vx3-te5 

m=0 [1-Ck2+2)X2+X4](l+X2) 

Adding (4) and (5), we obtain 

(6) £ lf2
m+2M + fn+2Mfm+3(KMx2m = ^2+K3+Ux + Ck2

+1)x2 + 0,3 + \)x3-x4-^5 

m=0 H~(k2+2)X2+X4](1+X2) 

Replacing m b y m - / , multiplying by x2, and then starting the summation from m = 0, we have 

(7) E tfLiM+fm+i00fm+2Mx]x2m = 7
1+\"x\ v = h ; • 

m=0 [1 ~ (X2 +2)X2 +X4](1 +X2) (1 - Xx~X2)(l +X2) 
Minor manipulations of (4) and (5) will also yield 

(8) E Via MX + fm Mfm+1 Ml*2™ = —, . 
m=0 (1-\X-X2)(1+X2) 

As should be the case, (7) and (8) are (2) and (3) when A = 1. 
Another generalization of (2) and (3) occurs when we examine the sequence of Pellian Polynomials defined recur-

sively by 
P0(X) = 0, Pi (X) = I Pn+i (X) = (1- X)Pn(X) - \Pn_i (XI n > 2 

Since 
nn on 

where 
a = <1-X) + ̂ /X2 -6X + 1 a n d £ = (7-70- xA2 -6X + 1 

we can use the techniques found in part VI of [6] together with arguments used to develop (7) and (8) in order to 
show that 

oo 

(9) £ [P2
m+i (X) + Pm+i (X)Pm+2(X)x]x2m = 1— -

m=0 [1-(1- X)X + Xx2[(1 - \X2) 
and 

2m _ X < 1 0 > E lp2m+i(X)x+Pm(X)Pm+1(X)]x 
m=0 [1-(1- X)X + Xx2](1 - XX2) 

When X = - 1 we obtain the sequence of Pellian numbers. 
Our final generalization of (2) and (3) is obtained by returning to subsets of a given set. LetS„ = {1,2, 3, —, n} 

andP(Sn) be the power s e t o f f . Let Tn be the number of elements of P(Sn) with no two elements congruent mod-
ulo two. The first nine terms of {Tn)n=o with To = 1 are 

1,2,4,6,9, 12, 16,20,25,-• . 

To develop a formula for {Tn}n=o we first note that any element of P(Sn) of order three or more is rejected. Fur-
thermore there is one element of order zero and there are n elements of order one. The number of elements of order 
two is 

mm 
if n is odd and /?" /4 if /? is even, any even integer with any odd integer. Hence, 
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Tn = »±=Ji+n + 1 = <n + 1)<n+3)0 n o d d 

and 
Tn = j+n+1 =(lL±lf> n even. 

The generating function for {Tn}n=o is 
OO OO -

(1D E Tnx
n = E [(m + I)2 +(m + 1)(m +2)x]x2m = / * / , * 

while 

2* 
m=0 (1-X2)3 (1-X2)3 (1-X)2(1-X2) 

(12) E [<m + 1)2x + m(m + 1)]x2m = * . 
m=0 (1~x)2(1-X2) 

The authors also found the generating function for the sequence of /r-combinations of the first n natural numbers 
arranged in a circle, so that 1 and n are consecutive, with no two elements / and / + 2 appearing together in the same 
selection. Letting {Vn}^=1 be the stated sequence, we see that 

V± = 1, V2 = 3, V3 = 9, V4 = 12, V5 = 16, V6 = 28, V7 = 49, - , 
and 

(13) V V xn - T (L2+l L ^x)x2m - (1 + 7x2-4x4)x2 (3 + 6x2 -2x4)x3 

n=l m=l 1-2x2-2x4+x6 1-2x2-2x4+x6 

= (1 + 3x + 7x2 + 6x3 - 4x4 - 2x5)x2 

1-2x2-2x4+x6 

Replacing m by m + 1 and summing from m = 0, in order to obtain the same form as (2), we have 

fi/n V1 n2 +i i ~\„2m _ 1+3x + 7x2+6x3 -4x4-2x5 
(14) 2 ^ (Lm+1+ Lm+iLm+2X)X 

m=0 1-2x2-2x4+x6 

which does not simplify and is therefore not as appealing as the result in (2). 
If we replace m by m - 1 in (13), multiply b\] x2, and then sum from/?? = 0 we have 

MR* V (i2 +i i vW2m - 1 ~2x+2x2 +6x3 -9x4 +3x5 _ 1-3x + 6x2-3x3 

H5) 2^ (Lm.t+Lm-lLmX)* " 7 " — ; 
m=0 1-2x2-2x4+x6 (1-x-x2)(1+x2) 

which does not simplify further and is not as appealing as equation (2). 
The authors tried several other substitutions and manipulations of (13) in order to obtain a rational function whose 

numerator is a one or an x. However, they were not successful. 
We now turn to the major result of this article which is the establishment of a relationship between (2), (7), (9), 

(11) and a sequence of determinants of tridiagonal matrices defined by the rule Pn(a,b,c) = (a^), where 
au = a if i = j, a^ = b if i = j-2, au = c if i = j+2, and ax = 0 otherwise. 

The first eleven values of Pn(a,b,c) with Po(a,b,c) defined to be one are 
P0(a,b,c) = 1 
Pt (a,b,c) = a 

P2(a,b 
Pi(a,b,c) 

P4(a,b,c) = 
(a,b,c) = a5 

P6(a,b,c) = 

,c) = 
= a> 
•(a1 

-3a-
(aJ-

a2 

-abc 
-be)2 

3bc+2ab2c2 

-2abe)2 
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P7(a,b,c) = a7 -5a5bc + 7a3b2c2 -2ab3c3 

PH(a,b,c) = (a4 - 3a2bc +b2c2)2 

P9(a,b,c) = a9-7a ^bc + 16a5b2c2 - 13a3b3c3 +3ab4c4 

Pio(a,b,c) = (a^ -4a3bc + 3ab2c2)2 . 

It would seem at first that there is no order, except for the perfect squares, to the sequence \Pn(a,b,c)}n=o- How-
ever if one were to actually evaluate the determinants he would see a nice pattern developing in the way he finds 
those values. In fact it can be shown by induction that 

(16) Pn(a,b,c) = aPn_i (aAc) - abcPn_3(a,b,c) +b2c2Pn-4 . 

The generating function for {Pn(a,b,c))n=o "s found to be 

(17) E Pn(a,b,c)x 

fF3 
hk+2 
Fk+2Fk+3> 
Fk+2Fk+3> 

if 

if 

if 

n = 3k 

n = 3k+1 

ru = 3k+2 , 

n=0 (1 - bcx2)(1 -ax + bcx2) 

When be = -1 and a = 1, (17) becomes (2). When be = -1 and a = X, (17) becomes (7). When be = Xand a = (1 - \ ) , 
(17) becomes (9). Whence = 7 and a =2, (17) becomes (11). 

The authors were unsuccessful in trying to find a sequence of determinants whose generating function was related 
to (15). Similarly we had no success in trying to find such a sequence of determinants for the last two examples 
which we shall now discuss. 

Our first example deals with a generalization of the problem of C. A. Church which can be found in [1] . Using Sn 

and P(Sn) as previously defined, we wish to determine the number of subsets of Sn for which 3n, 3n + 3 or 3n + 1, 
3n + 4 or 3n +2,3n + 5 are not in the same subset. Letting Un be the number of acceptable subsets for a given n, it 
is easy to illustrate that 

U0 = 1, Ui = 2, U2 = 4, U3 = 8, U4 = 12, U5 = 18, U6 = 27, U7 = 45, U8 = 75, U9 = 125, -

By applying the results of [3 ] , it can be shown that 

(18) Un 

where F^ is the kth Fibonacci number. Hence, the generating function for {Un}n=o IS 

oo oo 

(19) £ Unxn = £ [F3
m+1+F2

m+1Fm+2x + Fm+1F2
m+2x2]x3m-3 

n=0 m=l 

= 1+2x + 4x2+5x3+6x4+6x5 -3x6-3x7 -3x8-x9 -x10 -x11 

(x6 -x3 - 1)(x6 +4x3 - 1) 

Summing (19) from m = 0 and multiplying both sides by x3 we have 

f?m V fF3 +F2 F ,V + F F2 ~2u.3m , / +X + X2 - 2x3 - X4 + X5 - X6 

UU) 2 ^ lhm+l + Fm+1 Fm+2X + Fm+1 Fm+2X Jx 
m=0 (X6-X3 -1)(X6+4X3 -1) 

= (1-x2)(1+x+2x2 -x3 +x4) 
(x6 -x3 -1)(x6+4x3 -1) 

Ourfinal example deals with counting the number of elements of P(Sn) which have no two members of the same sub-
set congruent modulo three. Denoting the sequence by { l / n }~=o, it is easy to illustrate that 

V0 = 1, Vt = 2, V2 =4, V3 = 8, V4 = 12, V5 = 18, V6 = 27, V7 = 36, V8 = 48, V9 = 64, - . 

In order to determine a formula for Vn, we first note that all elements of P(Sn) with four or more members are 
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rejected in the counting process. Furthermore there is always one element ofP(Sn) with no members and there are 
n elements of P(Sn) with one member. Let us now assume n = 3k + 1 and arrange the numbers from 1 to n as follows 

1 2 3 
4 5 6 
7 8 9 

3 k - 2 3k - 7 3k 
3k+1 

An acceptable element of P(Sn) of order two is found by taking any element of the first column with any element 
in columns two or three and any element of the second column with any element of the third column. Hence, the 
number of valid elements of P(Sn) of order two is 

2k(k+1) + k2 = 3k2 +2k 

provided n = 3k + 1. When n = 3k +2 there are 3k2+ 4k + 1 allowable sets of order two while the nu mber of such 
sets if n =3k\s3k2. 

The number of subsets of Sn of order three is 

provided n =3k + 1. A subset of Sn of order three is not counted .if it contains two elements of one column and one 
element from either of the two remaining columns or if it contains three elements from the same column. Hence the 
number of valid sets of order three if n = 3k + 1 is 

(3k;1)-2k(k+
2
1)-(2k+7)(k

2)-(2k+t)(k
2)-{k+

3
i)-2[k

3) = k3 +k2 . 

When n = 3k+ 2, the number of valid sets of order three is 

(3k
3

+2)-2(k+
2

1)f2k+1)-2(k+7)(k)-2(k+
3

1)-(k) = k(k+1)2. 

When n = 3k, the number of valid sets of order three is 

(?)-«GM5)-*\ 
Combining the results above, we conclude that 

f k3 +3k2 +3k+1 = (k+1)3, n = 3k 
(21) Vn =\ k3 +4k2 +3k+2 = (k+l)2(k+2), n = 3k+1 

[k3 +5k2 +8k + 4 = (k+l)(k+2)2, n = 3k + 2. 

Hence, the generating function for \Vn)^=Q is 

(22) YL vn*n = E [(m + 1)3+(m + l)2(m+2)x + (rn+1)(m+2)2x2]x3m 

n=0 m=0 

(x2+x+1)2(x- I)4 
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O N T H E F O R M U L A n = 2 2 a r c o t f2k+l 

PETER G.ANDERSON 
New Jersey Institute of Technology, Newar, New Jersey 07102 

While questing the n + 1st digit of rr, 
With series by Taylor, MacLauren, et al; 
I tried the arcotan of integers high, 
While old Leonardo de Pisa did call. 

Old friends are a joy and, at times, a surprise 
When they serependiciously drop by to chat. 
They lighten our labors and open our eyes. 
"Eureka!" quoth I. "Now, how about that!" 

For what to my wondering eyes should appear, 
Intermix't with the spurious inverse contans, 
Were eight Fibonacci terms standing right here, 
Waiting and patiently holding their hands. 

The even term's areotangent's easily seen 
to equal the sum of the next pair in line. 
Now start back with TT, and keep your eyes keen 
It makes 4 arcotan the unit sublime. 

Note: 1 is the first and the second old friend. 
So rewrite: n equals twice this plus twice that. 
"This" is the arcot of the first term of Len. 
"That," which we'll split, is from the second old hat. 

From 2 we get 3,4; from 4, 5 and 6. 
The evens keep splitting; the odds hang behind. 
Forming convergent series: sum twice arcot f 
Sub 2k + 1 which is n, I remind. 

We don't know the digit half-million and one. 
Guiness, keep stout! There'll be other tries. 
I've got half my friends in a pretty new sum. 
Well worth the labor to open my eyes. 



FIBONACCI SINE SEQUENCES 

M. B. GREGORY and J. M. METZGER 
University of North Dakota, Grand Forks, North Dakota 58202 

INTRODUCTION 

The purpose of this note is to find all real numbers* such that lim sin unnx exists, where un is any sequence of 
integers satisfying the recurrence un = un-± + un_2 (uo> ul a r e integers, not both zero). 

We will show that the sequence {%\nunnx) con verges only to zero and thjs happens precisely when* is in an appro-
priate homothet of the set of integers in the quadratic number field Q(sj5). 

MAIN RESULTS 

We will use the identity sin a - s i n |3= 2 cos 1/2<a + j3) sin 1/2(a-/3) to show that if the limit 

lim sin unnx = p 
n 

exists, then p = 0. 
Let a = un+i nx, j3 = un-2 nx, SO that 1/2(a + j3) = un nx, and Vz(a - j3) = un_i nx. The identity gives 

sin un+i nx - sin un_2Ttx = 2 sin un_inx cos unnx. 

Therefore, if lim sin unnx = pt 0,then 
n 

sin un+i nx - sin un_2^x 
cos unnx = — n-J— 

2 sin un_i nx 

shows that lim cos unnx = 0. However, 
n 

sin un+i nx = sin (un + un^\)nx = sin unnx cos un„\ nx + cos unnx sin un_inx 

implies lim sin unnx = 0, a contradiction. 
n 

Theorem 1. lim sin unnx = 0 iff 
n 

lim Sin 0 n ™L (uQ+utfy) = 0, where 0 = 1-A^ . 

Proof. Using Binet's formula for un, we have 

s\nunnx = sin ^x- { ^"HUQ +Ui<t>) - (1 - (fr)"'1 [u0 +ut(1 - </>)]} 

nM. 4>n-1(u0+u1(S>)^'^- (1-<l>)n~l[uo+ul(1-<t>)] 

-sin ™L a-cpr^fuo+uid-^Jcos^- ^HUQ+U^). 

Since (1 - (p)n -> 0 as n -> * f the cosine in the first term tends to one, while the sine in the second term tends to 
zero, for any*. The theorem follows. II 

Theorem 1 makes it plain that we must find the set B of all real x for which lim sin (j>nnx = 0. 
n 

Theorem 2. B is the set of all numbers of the form a +b<j>, where a,h are integers. 
lie 
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Proof. We first observe that B is an additive subgroup of the real numbers, for 

sin (pnn(x - y) = sin $n-nx cos (pn7ry - cos (j)n7rx sin (pnny 
showsjhat x - y is in B if both x and y are in B. Now taking UQ = -1, u\ =2'\n Theorem 1 and observing that 2(j>-
1 = yj5, it is apparent that 1 is in B and hence the definition of B shows that 0 is also in B. It follows that B contains 
every number of the form a + / j0 . 

To prove that every member of B has this form, we adapt an argument from Cassels [ 1 , p. 136]. If lim sin c/)nnx = 
n 

0, then <pnx = pn + rn, where pn is an integer and lim rn = 0. Letsn = pn+2 - pn+l ~Pn> so thatsw is an integer. 
Then n 

sn = (<Pn+2x - rn+2) - (<pn+1x - rn+1) - (<j>nx - rn) 
= (pnx((p2 - 0 - 1) - (rn+2 - rn+1 -rn) = -(rn+2 - rn+1 - rj. 

Since \\m rn = 0, we see that lim sn = 0. Since sn is an integer, we must have sn = 0 for all n > HQ > 1. Thus rn+2 = 
n n 

rn+l + rn forn >rig. Using Binet's formula, we have forn >no, 

Because 0n -+ °° and (1 - 0 ) n - * 0 as/? -^ °°,the coefficient of 0 n must be zero; in other words, rn +i = (1 - <f))rn . 
Thus, for/7 >no, 

<brn - rn +i 6rn - (1 - 6)rn 

N/5 ^5 

In particular, choosing n =no, we find rn = rnJl' - (p)n°. This implies rn = 0, and therefore (f>n°x = PHQ , so that 

* = PnJIft}"* • 
Using the facts that 1/0= 0 - 1 and <p2 = 0 + 1, we see that x = a +h(j)for suitable integers a and b. II 

CONCLUDING REMARKS 

Combining Theorems 1 and 2, lim sin unnx exists iff A- is a member of the homothet 
n 

uo+ui(P I uo+ui<p J 
It is well known [3; p. 201] that B is the set of all integers in the quadratic number field Q(sJ5) and this suggests 
comparison with other sine sequences. In [2 ] , it is shown that lim sin 2n7T;r exists iff 2n°x is an integer for some 

n 
no^Z Here we have shown that lim sin (f)nitx exists iff (pn°x is an integer for some no^Z. 

n 
In closing, we suggest it would be of interest to consider the same problem for the sine sequences sin un nx when 

the un satisfies a recurrence un = sun_i + tun_2, where s and t are positive integers. 
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GENERAL IDENTITIES FOR LINEAR FIBONACCI AND LUCAS SUMMATIONS 

RODNEY T.HANSEN 
Montana State University, Bozeman, Montana 59717 

Many well known identities involving the first n terms of the Fibonacci sequence {Fj)™=o and the Lucas sequence 
U/I/So have extensions to the sequences {Fj+^JLo, {Lj+r^o, {Fjk)Y=o> and {Ljk}po> w n e r e r and k are f«*ed 
integers. Any such result may be considered as a special case of an identity related to sequences {F^+r}^ and 
{Ljk+r}f=o, ar |d hence it is with these latter sequences that we are principally concerned. Since the subscripts are 
linear functions of j, these identities are called linear Fibonacci and Lucas summations. 

A variety of techniques are used in deriving many of these summations. We begin by considering several basic re-
sults which are quickly deduced from the Binet definition of the terms of the given sequences. This approach is in-
troduced in [1] and [2 ] , with extensions via a difference equation route given in [3] .We have 

(0) Fjk+r = ̂ zf^ and Ljk+r = Jk+r + Vh+r, 
where ,_ _ 

a=l±£ and 0 = ^ . 
Note that a and j3 are the roots of the equation x2 - x - 1 = 0, and hencea + j3= 1 anda]3=-1 . Using the summa-
tion formula for the first n terms of a geometric progression, the following results are obtained: 

JL t nr Rr \ i rM+r ok+r. . „2k+r n2k+r % 

(D % Fjk+r=Fr + Fk+r + F2k+r + ... + Fn^^^)+(<L^^y{a . -J^ ) 
f nnk+r ntik+r x 

+ -+( a-7 ) 
1_ Snr(a(n+1)k - / \ »rltfn+1)k - M l F(n+l)k+r + <-1)k+lFnk+r + (-DrFk-r- Fr 

' v ?-i 1] Lk-i+(-nk+1 a-p I" 

Similarly, one may find 

(2) 

n 

(3) £ 
j=0 

n 

(4) X 

v _ _ _ _ . 

n 

H Ljk+r = 

(-J)jFjk+r = 

(-V'Lfr+r = 

L(n+l)k+r + (-U +lLnk+r + (-1)rLk-r- Lr 

Lk-1 + (-1)k+l 

(-VnFfn+l )k+r + (-1)n+kFnk+r + (-D'Fk-r + Fr 

Lk + 1+(-1)h 

(-VnLfn+1)k+r + (-Vn+kLnk+r + (-1)rLk-r + lr 

Lk + 1 + (-1)h 

These identities are used to simplify any summation expression that may be represented as a linear combination of 
Fibonacci and/or Lucas numbers. One direction to take is to observe by (0) that 

Fjk+rFju+v = ^ lLj(k+u)+(r+v) ~ (" ^JU V Lj(k-u)+(r-v)l 

Fjk+r Lju+v = Fj(k+u)+(r+v) + (-D]U+VFj(k-u)+(r~v) 
Ljk+rLju+v = Lj(k+u)+(r+v) + (-D3U "Lj(k-u)+(r-v) • 

121 
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Identities (1) to (4) yield an expression for the sum of the firsts + 1 terms (0 <j <n) of each product given above. 
Let us explicitly consider only the second such product. 

n n n 
(5) J2 Fjk+rLju+v = J2 Fj(k+u)+(r+v) + (~1)V YJ (~^JUFj(k-u)-h(r-v) 

j-o j=0 3=0 

\k+u+l 
= F(n+l)(k+u)+(r+v) + (-1) U Fn(k+u)+(r+v) / " ^ VF(k+u)-(r+v) ~ Fr+v 

ik+u+1 lk+U+1 

+ < 

Lk+u-i + h i r w l Lk+u-i + (-u" 

(-VV[F(n+i)(k~u)+fr-v) + (-D ~U+ Fn(k-u)+(r-v) + (-l)r~VF(k-u)-(r-v) ~ Fr-yJ 

if u is even, 

m+k-ur 
hVV[(-DnF(n+1 )fk-u)+fr-v) + (~I)" UFn(h~u)+(r~v) + (-1)' VF(h-u)-(r-v) + Fr-yJ 

Lk„u + 1 + (-1)k~u 

iff/is odd. 
Specifying k, u, r, and v as particular integers leads the reader to a countable number of interesting special cases. 
The known (see [3] and [4]) generating functions for sequences [FJ^+^^Q and {LJ^+^ZQ are now used to find 

several additional classes of general linear Fibonacci and Lucas summation identities. We now list these generating 
functions for reference-with the first be derived from (0) to show a general approach to such calculations. 

(6) / f̂ .f* ,̂._, 
/ 

a-/3 
__£_ 

7 - akx 1- pkx 
(ar-&r) + (-ar8k+akBr)x 

a-B I 7-(ak+Pk)x + akpkx2 J 

(7) 

(8) 

(9) 

= Fr + (-1)rFk_rx = Fr + (Fk+r-FrLk)x 

1-Lhx + (-1)kx2 1-Lkx + (-1)kx2 

£ (-1)jF.k xl = Fr+(-1)r+lFk-rx = Fr + (FrLk-Fk+r)x 

J-0 

j=0 

1 + Lkx + (-1)hx2 1 + Lkx + (-1)hx2 

Lr + (-1)r+lLk-rx _ Lr + (Lk+r-LrLk)x 

1-Lkx + (-1)kx2 1-Lkx + (-1)kx2 

jr (-1)1 L%+ xj = Lr + <-1>rLk-rX = Lr + (LrLk-Lk+r)x 

j=0 ' + r 1 + Lkx + (-1)kx2 1 + Lkx + (-1)kx2 

The derivative of these generating functions leads to identities which are of interest in themselves, and these in turn 
yield additional summation results. We begin by differentiating both sides of (6) with respect to x. 

d_ 
dx 

H, Fjk+rx> 
j=0 

d_ 
dx 

Fr + (-1)rFk_rx 

1-Lkx + (-1)kx2 

so 
\ 
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E (J+1)FQ+l)h+rxJ = 
j=0 

d_ 
dx 

1-Lkx + (-1)*x-k„2 dx 

(-VrFk,rx 

1-Lkx + (-1)kx2 

Fr U+2(-1)k+lx (~DrFk-r 1-(-l)kx2 

1-Lkx + (-1)kx2 1-Lkx + (-1)kx2 1-Lhx + (-1)kx2 1-Lkx + (-1)kx2 

E ^i&xJ.i L(j+1)kxJ 
j=0 t k j=0 

by special cases of (6) and (8), 

+ £ (-^rFk-rF(j+l)k xj 

j=o Fk 
-1 + 

2 - Ly,x 

1~Lkx + (-1)kx2 

tr+li 
= E E Z ^ L(H+1)kxn E ('1> F

F
k~rF(i+1,k *j 

j=0 s=0 k j=0 k 

by convolution of the series and by (8), 
j=0 Fk j=0 

E 
j=0 

(-1)r+ Fk-rF(j+i)k Y* FyFfs+DkL^s+py, M (-1)rFk-rF(s+i)kLfj-s)k 
Fk n Fk ^ Fk 

& S=Q * s=() « 
By equating the corresponding coefficients of the above series, the identity 

(10) 

is found, which in turn yields 

ti+DF(j+l)k+r = f-y~^r+lFk-rF(j+i)k + Yi F(s+l)k[FrL(j-s+l)k +(-DrFk-rL(j-s)k]\ 

(11) £ ti+VF(j+l)k+r = 4- E 1 (-1>r+lFh~rF(j+i)k+Y, F(s+1)k[FrL(H+1)k+hl)rF^rL(H)kl 
j=0 k j=0 I s=0 J 

Performing the same operations as above on identities (7), (8), and (9) yields results similar to (10) and (11). These 
results related to (8) are as follows: 

(12) (i+DL(j+1)k+r = ^<(-VrLk„rF(j+1)k + £ •F(s+l)h[LrL(H+l)h + (-1)^hk.rL(hs)k]\ 

and 
n 1 n f J r+l 

(13) E (i+1)L(j+l)k+r= r E l (-1>rLk-rF(j+l)k + Y* F(s+l)k[LrL(j-s+l)k+(-1)r ^-k-r^(j-s)kJ 
j=0 k j=0 I s=0 

Taking higher order derivatives of (6), (7), (8), and (9) leads the reader to additional summation identities that are 
similar in form to those listed above. Further, numerous special cases of each identity given may be quickly deduced. 

The relationships between binomial coefficients and terms of sequences {Fjk+r}l=o ar |d {^jk+r}j==o t a ^ e t n e f ° r m 

of rather simple but elegant summation identities. To begin we return to definition (0). 

(14) Fjk+r 
gJkar-3ikBr . (a2- fPkar- (B2 - f)jk6r _ 

a-0 a-p 
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2 {j})(a)2t+r(-7Pk-f - 2 {^)m2t+r(~Vjt jk 

*=0 

f=0 f=0 
a-p 

a2t+r_p2t+r 

a - 0 

t=0 t=0 

\\j = 2j', then an even more elementary summation results. 

(15) F2fk+r - raVV-tfVV __ (a+vfij-W+V*? „ g ( ^ 
t=0 

For the Lucas numbers, the corresponding results are 

(16) Ljk+r = E ( f y - / ^ 2 f + r = E ( f ) r - / ^ E Q k • 5 + f 
£=0 *=0 5=0 

and 

(17) 
t=0 

Taking the view that a summation identity is "improved" by reducing the number of addends (even if the addends 
become more complicated), we now consider several methods of approach in an attempt to find additional "im-
proved" results Sinking binomial coefficients and Fibonacci and Lucas numbers. 

The column generators of the columns in the left-justified Pascal Triangle shown below are most useful in this en-
deavor, as was first shown by V. E. Hoggatt, Jr., in [5] 

(l) (") (3) (3) "... 
2 '3 

x x x Column Generators 
1-x (1-x)2 (1-x)3 (1-x)4 

That is, defining the binomial coefficient (n) = 0 for/7 < /we observe 
00 00 00 00 . 0 0 

7^ - £ *" = E UK, -f-2 - E «*" - E (>" -^¥l - E (,>". i>* 
n=0 n=0 (1-xr n=0 n=0 (1 ~ x)^1

 n=0 3 

Hence, °° / °° °° °° n 
2 FMr — ^ = E Fjk+r E (,>" = E E ( " ) ^ ^ " . 
y=0 (1-X)J j=Q n=0 n=0 j=0 

By identity (6), 
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\m-s /m — s \/_iis-l[ m 

E W - 'r+t-trF^ 
j=0 7-Lkx + (-1)kx2 

and thus, we also have 

y. F xi = _ J _ Fr + (-1)rFk-r(x/1-x) = Fr + [-Fr + (-1)rFk_r]x 

M
 Mr (1-x)i+l 1~x 1-Lk(x/1-x) + (-1)k(x/l-x)2 1-[2 + Lk]x + [1 + Lk + (-1)klx2' 

There are two cases of the above identity to consider: 
(i) k even. Then 

| ^ ^ - Fr^2^>«r-^X - i^f-FrH-V^lx) ± t2+Lh>>(1-X>V 

= £ \FT E u+Lkp py-i^+[-Fr+(-DrFk_r] ^ ^ ^ ( / ; j r -^-v^}, 
j=0 <- <r=0 i= i f 

Now let m =s +j. Then we have 
[m/2] [(m+l)/2] 

= E Fr E (2+Lkr-s{m-s)(-i)s+[-Fr+(-DrFk.ri £ <2+Lkr-s{^zs
1)(-^s 

m=0 s=0 s=l 
Hence, equating like coefficients of x in the above two series yields, for /r ei/e/7, 

« (n/27 l(n+l)l2] 
M)Z{f)Fjk+r=Fr j:(2+Lkrs{n~;)(-i)sH-Fr+(-i)rFk_r] ^ (2+Lhr{n

s:i)(-ir1. 
j=0 s=0 s=l 

(ii) /r odd. Then 

j=0 (1-x)l+l 1-U2 + Lk)-Lkx]x j=0 

= {FrH-Fr + H)rFk„rJx}ZT,{{)(2 + t-k)j-s(Lkx)s(-VsxJ= E K E ^ ( ™ ~s
 S)<2 + Lkr2s Ls

k 
j=0 s=0 ' m=0 I J?=0 

+ hFr+h1)rFkr] ^ (-ir'^ifiu+Lu^'+hi-1 \x™ 
s=l J 

and thus, for k odd, 

(19) £ ( 7 ) ^ = /> z (-vs(n-s)(2+Lkr2sLs
k 

j=0 s=0 

l(n+l)l2] 
+ [-Fr + (-1)rFk_r] £ (~1)S'1ins-Sl)(2+ Lk)n~2s+1Lt1 • 

s=l 

Using the column generators in the left-justified Pascal Triangle with generating functions (7), (8), and (9) leads to 
three pairs of summation identities which are similar in form to (18) and (19). 

Several special cases of (18) and (19) are given which show the inherent simplicity of these identities. 
Letting r = 0 and k = 2\n (18) gives 

n l(n+l)l2] 

E(;)^= E M ' - V ^ I J ) . 
j=0 s=0 
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!fA- = /-=7in(19),then 

s(n — s\an-2s+l 

s=0 s=l 
Taking r = 0 and k = 3 in (19) yields 

n [(n+l)l2] 
T.{"Yi3=2 £ hl,s-l{n-^6n-2s+l4s 
j=0 x=l 

More generally, we deduce from (18) and (19) that 
l(n+l)l2] 

j=0 

Fk Z l-U*-H2 + Lkl 
s=l 

n~s,n
sZSi) >f o r k even> 

I(n+l)l2] 

Fk z MrHi+Lhr2s+\n
sz\)Ls^Mk 

s=l 

odd 

I 
One of the nicest results linking binoimial coefficients and Fibonacci numbers is given in [6]. Here, using the fact 

that 

QW = ( i I f ={FFT F^X for any integer/7, and 

Qnk^ = tij)Qi+rFiFti > 
the identity 

(20) 

j=0 

Fnk+r = £ qy^Hl 
j=0 / 

is deduced by equating upper right elements in the previous matrix equation. This identity is actually a special case 
of the next result. 

Since for any integer t, 
Qn = Qn-tQt = (Fn_ta + Fn,t^l)Q\ 

where I = [i
Q J ) , it follows that 

Qnk+r = Q'lF^Q + F^DQ*^ = Qtk+rZ(j)QJFLtF*~{ v for ttn, 

k 

E (k\Qtk+r+JFJ Fk-j 
\j I rn-t n-t-1 ' 

j=0 
By equating the upper right elements in this matrix equation we obtain, for any integer t^n, 

1=0 
The companion results for Lucas numbers are deduced by either using the identity Lm = Fm+i + Fm_i or the matrix 
result 

They are 
(22) 

Km~l 

(15) ( J D - U 
Lm+i 

, I, for any integer m. 
Lm-1 

j=0 
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and k 
Lnk+r = E ( f H t f W ^ tFn~Jt V f ° P f * "' 

The final approach we take to find additional linear Fibonacci and Lucas identities is via exponential generating 
functions. This productive technique stems from the Maclaurin series expansion fo re* ; 

, * = / + ^ + i % * ,
+ . . . a n d h e n c e e « = / + ̂ + ^ + ̂  + . . . a n d ^ - / + ̂  + ̂  + « + . . . . 

It follows that the basic Fibonacci and Lucas generating functions are 
y F xn _eax-e?x _nd f L x^ ooc + jx 
~ h" n! a-0 and ^ Ln nf e e ' 

n=0 n=0 
The exponential generating functions of the sequences of interest in this paper are found to be 

(24) T F u *" - *reax-8re& x 

(25) f i^^-aV^+p'/* 
n=0 

(26) Z h^n^'^ aZle 

n=0 ' P 

n=0 

Convolutingseries (24) and (25) and equating like coefficients yields an interesting identity. We proceed as follows: 

(27) E (-irLnk+r
x-=are'ax

+^e-

H Fnh+r JJ £ Lnk+r JJ ~ £ £ ( :)Fjk+rL(n-j)k+r Jj 
n=0 ' n=0 ' n=0 j=0 

and 
k Rk h h 9 9k 7r 9Rk a2r £ (2ak)n K~-$2r I (2pk)nx-^ 

( a r e a x - ^ x )(ar^K + or/xj = a2re2a x - P2re2P x _ n=0 nl n=p n! 

n=0 n=0 
Hence, 

n 
(28) E {^Fjk+rLfn-jJk+r = 2nFnk+2r-

j=0 
Many additional identities may be deduced using the generating functions (24), (25), (26), and (27). By convoluting 
each of (24) and (25) with itself, the following results are deduced: 

n 
(29) 52 {ni)Fik+rF(n~j)k+r = J &"lLnk+2r +2(-1)r+ L^l 

j=0 
n 

(30) E {")Ljk+rL(n-j)k+r = 2nLnk+2r+2(-VrL^ . 
j=0 

We invite the reader to explore the special cases of the results given and also to use the procedures introduced to 
discover additional identities. 



128 GENERAL IDENTITIES FOR LINEAR FIBONACCI AND LUCAS SUMMATIONS APR. 1978 

REFERENCES 

1. N.N. Vorob'ev, Fibonacci Numbers, Blaisdell Publishing Company, New York, 1961. 
2. Ken Siler, "Fibonacci Summations/' The Fibonacci Quarterly, Vol. 1, No. (1963), pp. 67-69. 
3. David Zeitlin, "On Summation Formulas for Fibonacci and Lucas Numbers," 77?e Fibonacci Quarterly, Vol. 2, 

No. 1 (1964), pp. 105-107. 
4. V. E. Hoggatt, Jr., and D. A. Lind, "A Primer for the Fibonacci Numbers, Part VI," The Fibonacci Quarterly, 

Vol. 5, No. 4 (1967), pp. 445-460. 
5. V. E. Hoggatt, Jr., "A New Angle on Pascal's Triangle," The Fibonacci Quarterly, Vol. 6, No. 2 (1968), pp. 

221-234. 
6. V. E. Hoggatt, Jr., and I. D. Ruggles, "A Primer for the Fibonacci Sequence: Part II I ," The Fibonacci Quar-

terly, Vol. 1, No. 1 (1963), pp. 61-65. 
7. H. T. Leonard, Jr., Fibonacci and Lucas Identities and Generating Functions, San Jose State College Master's 

Thesis, 1969. 
8. L. Carlitz and H. H. Ferns, "Some Fibonacci and Lucas Identities," The Fibonacci Quarterly, VoJ. 8, No. 

1 (1970), pp. 61-73. 
9. John Riordan, "Generating Functions for Powers of Fibonacci Numbers," Duke Math. J., (29) (1962) ppw5r~T2. 

10. R. T. Hansen, "Generating Identities for Fibonacci and Lucas Triples," The Fibonacci Quarterly, Vol. 10, No. 
6 (1972), pp. 571-578. 

******* 

AN INEQUALITY FOR A CLASS OF POLYNOMIALS 

DAVID ZEITLIN 
Minneapolis, Minnesota 55411 

1. INTRODUCTION 

Recently, Klamkin and Newman [1], using double induction, proved that 

n-D E *{ <(£ *fcY t" = it-..), 
k=l \k=l I 

where Ay, is a non-decreasing sequence with AQ = 0 and Ay, -A^-i < /. for Ak = k, (1.1) gives the well known 
elementary identity 

(1.2) £ k3 = (' Z kV (n = 1,2,...). 

Our inequality (2.1) for polynomials in a single variable* gives (1.1) for* = /. 

2. A POLYNOMIAL INEQUALITY 
Our first general result is given by 

Theorem 1. Let C^ be a non-decreasing sequence with Co = O and £% - BC^1 < 1,k= 1,2, —, where B 
is a constant, O <B < 1. Then, forx > 1, we have the inequality 

(2.1) Z C'lxh <(JT Ckxk) (n = 1,2,...). 
k=t \k=i I 

Proof. We will use double induction. For/7 = 1, (2.1) requires that C3x < C^x2, or C2x(Ci - x) < O, which 
is true, since Ci < f and x > 1. Assuming (2.1) is true for k= 1,2, ••-,/?, we must now show that 



1978 AN INEQUALITY FOR A CLASS OF POLYNOMIALS 128 

n+l n / n \ 2 / n+l \ 2 

E #*-C**"+i + £ •'<Ci*B+i+(2: vM < ( E <**'). 
which requires the truth of 

(2.2) * f Ckxk > C2
n+1-Cn+1xn+1 (n = 1,2, - A 

k=l 

For/7 = /, (2.2) gives 

^2 " C2x2 < ^ * ' 
Sincex> 1fx2C2 >C2, 

c2
2-c2x2 < c|-£2; 

but C2 - #£ i < /, and so 

c\-C2 < C1BC2 < CiB(1+BCi) < CtB(1 + B) < ^ < 2 ^ * , 

which is true since B(1+B)<2iorO<B< I Assuming (2.2) is true for k= 1,2, ••>, n, we must show that 

2 £ Ckxk > 2Cn+1xn+1 + (C2
n+1 - Cn+1xn+1) > C2

+2 - Cn+2x«+2 , 
k=l 

xn+1(xCn+2 + Cn+1) > C2-C2 n = 1,2,-. 
which requires that 

v
n+1t„r ~ + r .. J -> t 

n+2 n+l 
Since B <1, -BCn+i > -Cn+i, and so 

&n+2 ~ Cn+1 ^ Cn+2 ~ B^n+1 < 1. 
Hence 

Cn+2 " Cn+1 ** °n+2 + °n+1 < xYl (xCn+2 + Cn+l), 
since x > 1. Thus, the truth of (2.2) completes the proof of Theorem 1. 

In [1,p. 29] , the following, 

Lemma. If x,y >0,p>2, then p(x - yHx?'1 + y?"1) > 2(xp - yp), 

was used to generalize (1.1) (see [ 1 , (18), p. 29]). Using the above lemma and double induction, we now obtain a 
generalization of Theorem 1, i.e., 

Theorem 2. Let Ck be a non-decreasing sequence with CQ = 0 and Cy, - BC^-i < 1,k= 1,2, - , where B 
is a constant,0 <B < 1. Then, forx > 1 and p = 2, 3, - ^ w e have tl}€ polynomial inequality 

(2-3) 2 E c2P-*xk <p(E CP-'XA (n = 1,2, •••). 
k=l \k=l I 

Remarks. Forp=2, (2.3) gives (2.1). For B= 1 mdx= 1, (2.3) gives (18) of [1 , p. 29] , and (2.1) gives (1.1). The 
proof of Theorem 2, similar to the proof of Theorem 1, is omitted. We note that when Ck - BCk-i = 1fork=1,2, 
- , t h e n 

Ck = (1-Bk)/(1-B), 
B11 and Cfe = k for B = 1. For B = 0 and Ck= 1,k= 1, 2, • •, (2.1) gives 

n 
i < £ xk 

k=i 

so that for/7 = 1, 1 <x, as required. 

[Continued on page 146.] 



A PRIMER FOR THE FIBONACCI NUMBERS XVII: 
GENERALIZED FIBONACCI NUMBERS SATISFYING un+iun-l -u2

n = ±l 

V. E. HOGGATT, JR., and MARJORIE BIC KNELL-JOHNSON 
San Jose State University, San Jose, California 95192 

There are many ways to generalize the Fibonacci sequence. Here, we examine some properties of integral sequences 
{un} satisfying 

(1) un+1un-t-u*= (-Vn, 
where necessarily UQ - 0 and ui = ±1 . The Fibonacci polynomials fn(x) given by 

(2) fn+1 (x) = xfn (x) + fn.i (x), f0 (x) = Q, ft (x) = 1, 

evaluated at x = b provide special sequences {un}. Of course, fn(1) = Fn, the Fibonacci numbers 0 , 1 , 1, 2, 3, 5, •••, 
and fn(2) = Pn, the Pell numbers 0 , 1 , 2, 5,12, 29, —.. Divisibility properties of the Fibonacci polynomials [1] and 
properties of the Pell numbers and the general sequences {fn(b)\ [2] have been examined in earlier Primer articles. 

In the course of events, we will completely solve the Diophantine equations/2 - (a2 ±4)x = ±4 and show that 
all of our generalized Fibonacci polynomials are special cases of Chebyshev polynomials ofthe first and second kinds. 

1. SOLUTIONS TO y2 -(a2+4)x2 = ±4 

Theorem 1. Let [un} be a sequence of integers such that un+iun„i - u = (-1)n for all integers n. Then 
there exists an integers such that 

(3) un+2 = aun+i + un . 
Proof. Set 

U2 = aui +buo, uj = aii2+bui 

for some real numbers a and/?. By Cramer's rule, 

b = | M i M 2 | ^ K «o| = UlU* ~ 'u* = 7 
| « 2 W 3 | ' \U2 UX J U\ ~ UQU2 

since U1113 -u=(-1) and U0U2 ~ u, = (-1)1 by definition of {un} .Thus, a is an integer. In Uct,U2=aui +UQ 
and U3 = au2 +ui yield 

U3 ~ "I "2 - uo 
a = 

Assume that un+i = aun + un_i. Then 

and 

aun+i + un - . ur 
Un 

But, un+2un - u2
+1 = (-1)n+l by definition of the • 

Un+2 = lu2
n+1 +(-1)n+l]/un, and un+2 = aun+1 +un 

for an integers by the Axiom of Mathematical Induction. 
Corollary 1.1. The sequence {un} has starting values u0 = Q, ul=+1. 

130 

u2 ut 

= Un+1 ~ Un~l 
Un 

,u -Un+l-Un-lUn+l
+Ul 

un 

Un 

he sequence, so that 

«2n+l
+(-1>n+1 

Un 
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Proof. By Theorem \,u2 = au1 +u0. Thus, 
u2 = a2ul +2autuo+u2

1
 = aui(aut + uo) + u2 = au1u2 + u2

Q. 

Since also UQ = U2- au^ , substituting above for u2, we have 

u2
2 = aui u2 + (u2

2 - 2aui "2 + a2u2
1), 0 = aut (aui - u2) 

Now, either a = 0, or u± =0, or u2=aui. If a = Q, u2 = uo, and from U2UQ -ut = -1,uo = 0and ui =±1 give the 
only possible solutions. If u± = 0, then u2 = uo leads to u2

2 =-1, clearly impossible for integers. If u2 = aui, then 
u2 = aui = aut + uo forces uo = 0, and again u\ = ±1. 

Theorem 2. Let \un) be a sequence of integers such that un+i un+i - u = (~1)n for all n. Then x = un and 
y = un+i + un„i are solutions for the Diophantine equation 
(4) y2 -(a2 +4)x2 = ±4, 
where also un+\ = aun + un_i. 

Proof. From Theorem \,un+i = aun +un„i. If y = un+i + un^i and x = un, then 
Un+1 = y ~ "n-i = y~ (fJn+l ~ aun) = y - un+1 - ax 

yielding 
"n+l = (y-ax)/2. 

Then 
un-l = Y - Un+l = y~ (y ~ ax)/2 = (y + ax)/2. 

By definition of the sequence {un} , 

"n+lUn-l ~Un = (~Vn , 

y+axy-ax _ 2 = y 
2 2 X t ' / 

(y2 -a2x2)-4x2 = ±4, 
y2 ~(a2 +4)x2 = ±4. 

Now, let the generalized Lucas and Fibonacci numbers in and fn be defined in terms of Fibonacci polynomials as 
in Eq. (2): 
(5) £n = fn+l(a) + fn-l(a) 

'%n = *n *a' • 

Since [2] 
(6) fn+iMfn-iM-ffc) = (~Vn, 
(7) i2-(a2+4)f2 = ±4 

by Theorem 2. Thus, the generalized Lucas and Fibonacci numbers give solutions to the Diophantine equation (4). 
Theorem 3. The generalized Lucas and Fibonacci numbers in and^w are the only solutions to the Diophan-

tine equation 
(4) y2-(a2+4)x2 = ±4. 

Proof. Now, y2 - (a2 + 4)x2 = +4 has solution x = 0, y = 2, as well as a solution x = 7, y = 3 if a = 7, but no 
solution for x = 7 when a > 7. The other equation y2 - (a2 + 4)x2 = -4 has solutionx = 1, y = a. The casea=1 
was solved by Ferguson [3] . We use a method of infinite descent which is an extension of the method of Ferguson 
[3] , and take a > 1,x> 1. Thus, y2-(a2 + 4)x2 = ±4 implies that 

ax < y < (a + 2)x 
since 
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y2 = (a2 +4)x2±4 = a2x2 +4x2±4 < a2x2 +4ax2 +4x2 

forces 
(ax)2 < y2 < (a+2)2x2. 

Since y and ax must have the same parity, let 

y = ax + 2t, 1 < t < x. 

Assume thatx is the smallest non-Fibonacci solution. Replace / with ax +2t in (4), yielding 

<ax+2t)2 -(a2+4)x2 ±4 = 0 

4x2 -4axt-4t2 +4 = 0 . 

Solve the quadratic for 2x, yielding 

2x = at± sj(a2 + 4)t2~±T~ 

But, 2x is an integer, and therefore 

(a2+4)t2 ±4 = s2 

for an integer s so that t = un and s = un+i + un_i are solutions by Theorem 2. Since x > 0, 

2x = at+s/(a2 +4)t2 ±4 

= at+s 

= aun+(un+l +Un-l) 

= (aun +un„i) + un_i 

= 2un+t 

$Q\\\dXx = un+i. But, if A- is the smallest non-Fibonacci solution, then x cannot be the next larger Fibonacci solution 
after t This is a contradiction, and there is no first non-Fibonacci solution. Thus, the Diophantine equation 

y2 -(a2 +4)x2 = ±4 

has solutions in integers if and only if 

y = ±ln
 = fn+l(a) + fn~l<3) and x = ±r,n = fn(a) • 

2. SPECIAL SEQUENCES {un } AND THE EQUATION y2 - (a2 - 4)x2 = ±4 

Now, all of these sequences {un} have starting values UQ = 0 and m = ±1. It is interesting to note some special 
cases. Notice that the sequence 

• • • ,1 ,0 ,1 ,0 ,1 ,0 ,1 ,0 ,1 ,1 ,2 ,3 ,5 , .. 

due to Bergum [4] satisfies uo = 0, u^ = 1, and 

"n+lUn-1 -U2 = (-IT, 

where the left-hand part of the sequence has 
un+2 = un = 0'Un+i +Un 

while the right-hand part has 
Un+2 = 1'Un+l + Un. 

It is interesting to note that special cases of the sequences {un} satisfying un+i un_i - u2' = (-1)n occur from [2] 

(8) T„_fc£„+fc-*f = (-i)n+k+1r2
k 

for the generalized Fibonacci numbers given in Eq. (5). Let 

**nk-k*nk+k-**k = (-Vnk+k+h2
k 

be rewritten 
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2 
T(n-i)k T(n+l)k Tnk = /jj(n+l)k+l 

k 

Now, since'Tnk/rk "s known to be an integer [1 ] , let £/„ = r^lr^, and the equation above becomes 

where (-i)(n+1)k+1 j s (-1)n if £ is odd but (-7) if /r is even. In particular, if k = 2, the sequence of Fibonacci num-
bers with even subscripts, { 0, 1, 3, 8, 21, •••} , gives a solution to un+iun„i - u2 = -1. Another solution \$un= n, 
since (n + Din - 1) - n2 = -1 for all n. 

Is there a sequence {un} of positive terms for which un+± un„± - u = +1? Considering Fibonacci numbers with 
odd subscripts, { 1 , 2, 5, 13, 34, •••} , we observe that un = F2n+i is a solution, and that un+i = 3un-un„u Using 
un+iun-i ~un

 = 1 and solving un+i = aun +bun_i as in Theorem 1 yields un+± = aun - u^-i. If we \ety = un+i -
un_i and x = un, proceeding as in Theorem 2, we are led to the Diophantine equation y - (a2 - 4)x = -4. We 
summarize as 

Theorem 4. If {un} is a sequence of integers such that 

for all n, then there exists an integer a such that 

un+2 = aun+i - un 

and y = un+i - un_i and x = un are solutions of the Diophantine equation 

(9) y2-(a2-4)x2 = -4. 

Theorem 5. The odd-subscripted Fibonacci and Lucas numbers give the only solutions to the Diophantine 
equation 

(9) y2 -(a2 -4)x2 = -4. 

Proof. We show that (9) has no integral solutions if \a\ £ 3, proceeding in the manner of the proof of Theorem 
3. Here, 

(a-2)x < y < ax. 

Since y and ax must have the same parity, let 

y = ax - 2t, 1 < t < x. 

Notice that, if x= 1, y2 - (a2 -4) = -4 becomes a 2 -y2 = 8, which is solved only bya=3,y= 1. 
Let;r be the first solution greater than one* Replace/ with ax - 2t in (9), yielding 

(ax~2t)2-(a2-4)x2+4 = 0 

4x2 -4axt + 4t2 +4 = 0. 

Solving the quadratic for 2x gives 

2x = at ± yj(a2 - 4)t2 - 4 , 

Since2x is integral, we must have (a2 -4)t2 -4 = s2 for some integers. By Theorem 4, t = un is a solution where 
t > 1. But, since A- is the first solution greater than 1, and* > t, we have a contradiction, and 

y2-(a2-4)x2 = -4 

is not solvable in positive integers unless a = 3. When a = 3f the equation becomes y - 5x2 = -4, which is solved 
only by 

V = L2n+1, * = F2n+1, 

odd-subscripted Lucas and Fibonacci numbers [5 ] . 
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Theorem 6. If {un} is a sequence of integers such that 
2 -

Un+lUn-1 ~Un = -1 
for all n, then there exists an integer a such that 

un+2 = aun+i - un and y = un+i - un„i and x = un 

are solutions of the Diophantine equation 
(10) y2 -(a2-4)x2 = +4. 

Proof. Proceed as in Theorem 4. 
Theorem 7. The Fibonacci and Lucas numbers with even subscripts give solutions to the Diophantine equation 

y2-(a2 -4)x2 = +4. 
Proof. Set a = 3 and refer to Lind [5]. 

3. GENERALIZED FIBONACCI POLYNOMIALS 
Next, in order to write solutions for the Diophantine equation (10), we consider a type of generalized Fibonacci 

polynomial. Let 
(11) h0(x) = 0, hi(x) = 7, and hn+2(x) = xhn+1(x)-hn(x) 
and 

g0M = 2, gt(x) = x, 
where 

ffn+2 M = xgn+i (x) +gn~i M -

We note that{/?nfo/} is a special sequence [un] since 

hn+i (a)hn-i (a) -h2(a) = -1. 
Then 

h (x} - i f f l * ) - aVx)
 x^2- h (2) = n hn<x) a1(x)-a2M' * ^ ' hnUi "' 

gn (x) = an
t (x) + an

2 (x) = hn+1 (x) - hn,t (x), 

where a± (x) and a2(x) are roots of 
X2 - \x + 1 = 0. 

(By way of comparison, the Fibonacci polynomials fn (x) have the analogous relationship to the roots of 
\2-\x-1 = 0. 

Also note that hn (3) = F2nJ 
It is easy to establish from ai (x)a2(xj = 1 that 

2an
t = gn (x) + [at (x) - a2 (x)Jhn (x) 

2a2 = gn (x) - [at (x) - a2 (x)]hn (x) 

with a^ (x) - a2(x) = V*2 - 4. From this it readily follows that 
/ = an

t(x)an
2(x) = [g2(x)-(x2-4)h2(x)]/4 

or 
g2(x)-(x2-4)h2(x) = +4. 

Now, we are interested in the sequences of integers formed by evaluating hn(x) an6gn(x) aXx = a. Thus 
(12) 
and we do have solutions to 
(12) g2(a)-(a2-4)h2(a) = +4. 

y2 -(a2 -4)x2 = +4. 
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Theorem 8. The generalized Fibonacci numbers {hn(a)} and generalized Lucas numbers {gn(a)} provide the 
only solutions to the Diophantine equation 

(10) y2 -(a2 -4)x2 = +4. 

Proof. Note that if x = 1, then y = a, and if x = 0, then y = 2, Now one can proceed as follows. We can write, as 
before, 

(a - 2)x < y < ax. 

Clearly, y and ax must have the same parity, so that we can let 

y = ax-2t, 1 < t < x, 

where x is the first positive integer which is greater than 1, not equal to hm(a), and a solution. Then, as before, re-
place y with ax - 2t in (10), yielding 

(ax-2t)2 - (a2 - 4)x2 -4 = 0 

4x2 - 4axt + 4t2 - 4 = 0. 

Solving the quadratic for-?*, 

(13) 2x = at ±sj(a2 - 4)t2 +4 . 

Since2x is an integer, there exists an integers such that 

(a2-4)t2 +4 = s2, 

with a solution given by 

t = hn(a) and s = gn(a) = hn+1(a) -hn_i(a) 

by Eq. (12). Then, (13) taken with the plus sign gives 

2x = ahn(a) +hn+i (a) - hn_i (a) = 2hn+i (a) 

andx = hn+i(a), a contradiction, sincex was defined as not having the form hm(a). 
Next, we consider the case of Eq. (13) taken with the minus sign. The casesa= / ora = 0are not very interesting. 

We need a lemma: 
Lemma. For a > 7, the sequence {hn(a)} is a strictly increasing sequence. 

Proof of the Lemma. 
h0(a) = 0, h1(a) = I h2(a) = a, hn+2(a) = ahn+1(a)-hn(a). 

Since 
hn+1(a) = ahn(a) -hn_j[(a) > (a - 1)hn(a) 

if 
hn_i(a) < hn(a), 

then 
hn+i(a) > hn(a). 

Thus, if we choose the minus sign in Eq„ (13), then we have 

2x = ahn (a) - (hn+i (a) - hn_t (a)) 

= ahn (a) - hn+i (a) + hn_i (a) = 2hn,1 (a) 

or x = hn_1(a) which contradicts the restriction that t <x. Thus, we must choose the plus sign in (13), which yield-
ed x = hn+i (a). So, even if x is the first integer greater than one for which we have a solution for 

y2-(a2-4)x2 = +4 
and where x $ hm(a), we find x = hn+i(a). This shows that there is no first positive integer which solves Eq. (10) 
which is not of the form x = hm(a). This concludes the proof of Theroem 8. 
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We note that the case a = 2 yields y = ±2mdx any integer. The recurrence 
un+2 " 2un+i — Un 

is satisfied by any arithmetic progression b, b+d,b + 2d, —, B + nd, — . However, the restriction 

Un+lUn-l-Un = ~1 

limits these to the integers/? = un . 
In summary, we have set down the complete solutions to the Diophantine equations 

y2 -(a2 ±4)x2 = ±4. 
y2 - (a2 +4)x2 has solution* = 0,y = 2, for alia. For 

y2 -(a2 +4)x2 = -4, 
we get x = 1, y = a. Both solutions are starting pairs for the recurrence 

Un+2 = aUn+1 + Un> 
and y = 2,af — leads to fn+i (a) + fn^ (a), and x = Of 1, — , leads to fn (a), where fn(x) are the Fibonacci polynom-
ials. Here, un+iun_i - u2 = (~1)n lead to j / 2 — (a2 + 4)x2 = ±4 v\aun+2 = aun+i +un. But either 

Un+lUn-l ~un = -1 o r ^n+l^n-1 ~ U2 = +1 
lead to the recurrenceun+2 = aun+i - un> and lead toy2 - (a2 -4)x2 = ±4. Now/ - (a2 -4)x2 = +4 allows x 
= 0,y=2andx = 7, y = a as starting solutions, where x = 0, 1, •••, leads to bn(a), and / = 2, a, •••, leads to bn+i (a) -
bn_i(a) for the generalized Fibonacci polynomials hn(x). F inal ly , / 2 - (a2 - 4)x2 =-4 has solution x= 1,y= 1 
when \a \ = 3, but no solution if \a \ ? 3. This then becomes / - 5x2 = -4 which is satisfied only by the oddly sub-
scripted Fibonacci and Lucas numbers, which satisfy the recurrence un+i = 3un - un„i, so that 

F2n+l = hn+i(3) - hn(3), 

and, of course, f2n+ i = hn+ld)- ' n a" cases, the only solutions arise from sequences of Fibonacci polynomials 
fn(x) evaluated dXx = a, or generalized Fibonacci p o l y n o m i a l s ^ ^ evaluated atx = a. We can then state 

Theorem 9. The Diophantine equations 
y2 -(a2 -4)x2 = ±4 

y2 -(a2 +4)x2 = ±4 

have solutions in positive integers if and only if 
y2-(a2-4)x2 = -4 

has a solution x = 1 or 
y2 -(a2 +4)x2 = -4 

has a solution x= 1. Every solution is given by terms of a sequence of Fibonacci polynomials evaluated at a, {fn(a)}, 
or generalized Fibonacci polynomials evaluated atx = a, {hn(a)}. 

4. CHEBYSHEV POLYNOMIALS 

There are Chebyshev polynomials of two kinds: 

Un+2M = 2xUn+i (x) - Un(x) 
Tn+2<x) = 2xTn+1(x)- Tn(x) 

with TQ(X) = 1 and T^ (x)=x, and UQ(X) = 1 and U\ (x) =2x. The Tn(x) are the Chebyshev polynomials of the first 
kind, and the Un(x) are the Chebyshev polynomials of the second kind [8 ] . There are also related polynomials 

Sn(x) = Un(x/2) and Cnfx) = 2Tn(x/2) 
which are tabulated in [8 ] . Our hn(x) mdgn(x) are related to Sn(x) and Cn(x) as follows: 
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hn(x) = Sn+i(x) and gn(x) = Cn(x). 

An early article by Paul F. Byrd [10] explains the close connection between Fibonacci and Lucas polynomials and 
theUn(x)and Tn(x). See also Hoggatt [9 ] , and Buschman [11]. 

5. ANOTHER CONSEQUENCE OF un+1un^ -u% = (-1)n 

Finally, we examine another consequence of 
Un+lUn-l-Un = ("^ 

We note that 
(un,un+1) = 1, (un,un„i) = 1. 

Note that 1 , - 1 , -un_i, un„i are incongruent modulo un,u>5, and form a multiplicative subgroup of the multi-
plicative group of integers modulo un. Since the order of the multiplicative group of integers mod un is $(un), where 
$(n) denotes the number of integers less than n and prime to n, and since the order of subgroup divides the order of 
a group, A\y(un). This method of proof was given by Montgomery [6] as solution to the problem of showing that 
ip(Fn) is divisible by 4 if n > 5. The same problem also appeared in a slightly different form in the Fibonacci Quar-
terly [7 ] . We can generalize to 

2m+2\^t2mn), n > 5, 
for the generalized Fibonacci numbers rn = fn(a) by virtue of $(s) =2k >2ior positive integerss >2, and r2t = 
Tttt. S\ncQ(rtfLt)= 1 or 2, then 

<p(T2t) = VfttHlo>), 
where a = itor ^t/2 so that y(a) = 2k >2. Thus, 

•2^n ~ *n$n^2n^4n> '" > 
where 

ip(Tn)ip(lnl2n£4n~-) = 4'2mr 
for some integer r> 7. 
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1. INTRODUCTION 
Put 

(1.1) T knxk = AnM (n>0). 
k=0 (1-x)n+l 

It is well known (see for example [1], [2, Ch. 2] that, for n > 1,An(x) is a polynomial of degree n: 

(1.2) AnM = £ An>kx
k; 

k=l 
the coefficients An^ are called Eulerian numbers. They are positive integers that satisfy the recurrence 
(1.3) An+1>k = (n-k+2)An)k_1+kAn>k 

and the symmetry relation 
(1.4) 

Anfk ~ ^n,n-k+l (1 < k < n). 
There is also the explicit formula 

k 
(1.5) An>k = X; (-VJ^I^fk-jr (1 < n < k). 

3=0 

Consider next 
d.6) £ (^_±i;)V _- GnM {n>0) 

£0
K 2 ' (1-X)2n+1 

We shall show that, for n > 7, Gn(x) is a polynomial of degree 2n - 7; 
2n-l 

(1.7) Gn(x) = £ GnMxk . 
k=0 

The Gnfk are positive integers that satisfy the recurrence 
(1-8) Gn+lfk = y2k(k + 1)Gn}k~k(2n-~k+2)Gn>k__l + 1/2(2n-k+2)(2n-k + 3)Gnfk_2 (1<k<2n + 1) 
and the symmetry relation 
(1.9) GnM - Gn>2n-k (1 <k <2n-7). 
There is also the explicit formula 

(1-10) Gntk = £ (-i)>^ + i){<l<-m-i+1))n (7<k<2n-1). 
j=0 

The definitions (1.1) and (1.6) suggest the following generalization. Letp > 7 and put 

(1.11) £ TV xk = b " W (n > 0), 

where 
138 
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d.i2) r*,p = ( * * ; - ' ) • 
We shall show that G^(x) is a polynomial of degree pn - p + 1. 

pn-p+l 
(1.13) G<P>(x) = Y G^hk (n > 1), 

k=l 
where the G^ are positive integers that satisfy the recurrence 

m 
(1.14) G(Pj1m= £ (k+p-l\,pn-k + l\G(p) (1<m<pn + 1)t 

n+l,m *—* \ m — 1 I \ m — k I n,k r ' 
k >m~p 

and the symmetry relation 

There is also the explicit formula 
k 

(1.16) G(pl = 12 (-Vj{pn + 1)K. (1 < k <pn-p + 1) 
n,k *—* 1 k-up r r 

j=0 
with r ^p defined by (1.12). 

Clearly 
G^(x) = An(x), G&M = Gn(x). 

The Eulerian numbers have the following combinatorial interpretation. PutZn = {1,2, — ,A7}*and let 7r=(ai, a2, 
—, an) denote a permutation of Zn. A rise of IT is a pair of consecutive elements^-, a[+i such that a\ < a{+i; in addi-
tion a conventional rise to the left of at is included. Then [6, Ch. 8] Antk is equal to the number of permutations of 
Zn with exactly k rises. 

To get a combinatorial interpretation of G^Y we recall the statement of the Simon Newcomb problem. Consider 
sequences o=\(a\, a2, -fa^)\^ length /V wiff ia,-eZw, For 1 <i <n, let/ occur in a exactly^ times; the ordered 
set iei,e2, —, en) is called the specification of a. A rise is a pair of consecutive elements a,-, a{+i such that a{ < a{+i; 
a fall is a pair a^, a{+i such that a; > a{+\; a level is a pair a{, a[+i such that a{ = a{+i. A conventional rise to the left 
of ai is counted, also a conventional falI to the right of a^. Let o have r rises, s falls and t levels, so that r + s + t = 
N + 1. The Simon Newcomb problem [5, IV, Ch.4], [6,Ch„8] asks for the number of sequences fromZn of length 
N, specification [e^, e2, ~, en] and having exactly r rises. LetAfei, e2, -fe^r) denote this number. Dillon and 
Roselle [4] have proved that A(ei, -,en\r) is an extended Eulerian number [2] defined in the following way. Put 

m=l r=l 
where £(s) is the Riemann zeta-f unction and 

then 
m = p^2 ~'Pn > N = Bi+82 + " + *n 

A(ei,e2,-,en\r) =• A*(m,r), 
Moreover 

(1.17) A(91,e2,~,e„\r) = £(-1)i[Nt1)n(ei + r«'~1) • 
j=0 i=l 

A refined version of the Simon Newcomb problem asks for the number of sequences from zn of length N, specifi-
cation [ei,e2, —,er] and with r rises and s falls, let A(ei, ••-, en\r,s) denote this enumerant. It is proved in [3] that 

(1.18) £ £ A(ei,...,en^.../nxy^J1^y-^-^^-^ 
ei,..,en=0 r+s<N+l » y « „ + f r _ ^ _^ « „ +(y _ ^ 

However explicit formulas were not obtained fcMfe,-, ~, en\r,s). 
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Returning to G'p£ , we shall show that 

(1.19) " ' G^l = A(p^\k). 

Thus (1.17) gives 

(1.20) G(
n
pl = E (-vi{pnt1)(p + k-:>-1)n 

' j=0 
in agreement with (1.16). 

2. THE CASEp=2 
It follows from (1.6) that 

2n+l °° / vi °° 2n+l 

onM- E (-vj{2n;V E ( ^ ) V = E *h E t-v^Hk-ito-i+vii 
j=0 k=0 k=0 j=0 J 

Hence, by (1.7), / < * 
2n+l 

(2.D GnM= E <-i)\2- + l)^k-i>'k-i+1>)n 

j=0 J 

Since the (2n + l)th difference of a polynomial of degree <2n must vanish identically, we have 
(2.2) GHfk = 0 (k > 2n + 1). 

Let k<2n. Then 
2n+l * 2n+l 

(2.3) 0 = £ (-1)i{*f%{k-W-i+V)n = Gn$k+ Z (-l)i(^+l){(k-i)(k-i+V)n 

j=0 Z j=k+l J 

j=0 
Therefore 
(2.4) G ^ = Gnt2n-k (f < k <2n-7). 
Note also that, by (2.3), 
(2.5) GnM = 0. 
Since by (2.4) 

Gn,2n-1 = Gn,l = h 
it is clear that Gn (x) is of degree 2n - 1, 

In the next place, by (1.7), 
2 Gn+1(x) = x j^_\ xGn(x) l = x2G'n(x)+2xG'n(x) +2(2n + x2G'Jx)+xGnM 

(l-x)2n+3 dx2\(1-x)2n+1) (1~x)2n+l " (1-x)2n+2 

+ (2n + 1)(2n+2) * GnM ~ 
Hence (1-x)2n+3 

(2.6) 2Gn+1 (x) = (1 -x)2(x2Gn(x) + 2xG'n(x» + 3(3n + 1)(1-x)(x2G'n(x) +xGn(x» + (2n + 1)(2n +2)x2Gn(x) 

Comparing coefficients of x , we get, after simplification, 
(2.7) Gn+1M = 1/2k(k + l)GnM - k(2n - k +2)Grifk_1 + 1/2(2n - k +2)(2n - k+3)GnM_2 (1 < k <2n-1). 

For computation of the Gn(x) it may be preferable to use (2.6) in the form 

(2.8) 2Gn+1(x) = (1-x)2x(xGn(x))" + 2(2n + 1)(1 -x)x(xGn(x))'+ (2n + 1)(2n +2)x2Gn(x) . 
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The following values were computed using (2.8): 
GQ(X) = 1, Gi(x) = x 
G2U) = x+4x2 +x3 

G3(x) = x+20x2 +48x3 +20x4 +x5 (2.9) 

Note that, by (2.1), 
6 ^„7 [G4(x) = x + 72xz + 603xJ + 1168x* + 6Q3x:> + 72x° +x 

Gn,2 = 3n - (2n + 1), GH}3 = 6n - (2n + 1)-3n +n(2n + 1) 
Gn 4 = Wn - (2n + V-6n + n(2n + 1)>3n - ( n(4n2 - 1) and so on. ' o 

By means of (2.7) we can evaluate Gn(1). Note first that (2.7) holds for 1 <k <2n + 1. Thus, summing over k, we 
9 e t 2n-l 2n 2n+l 

Gn+1 (V = E . M(k + VGn,k - Z k<2n ~ k +2>Gn,k-l + E %<2n ~ k+3)(2n - k+3)GnM_2 
k=l k=2 fc=3 

so that 
(2.10) 
It follows that 
(2.11) 

In particular 

in agreement with (2.9). 

It follows from 

(3.1) 

that 

2n~l 2n~l 
J2 {1Mk + 3)-(k + l)(2n -k+1) + 1M2n - k)(2n -k + 1)}Gn>h = J^ (n + l)(2n + 1)Gn>k 
k^i ' k=i 

Gn+l(1) = (n + 1)(2n + 1)Gn(1). 

Gn(1) = 2~n(2n)l (n > 0) . 

Gi(1) = 1, G2(V = 6, G3(1) = 9Q, G4(V = 2520, 

3. THE GENERAL CASE 

GLP)M 
+, = £ Tn

kxk (p> I n>0), 
(1-x)Pn+l k=0 'P 

pn+1 °° pn+1 
G(P)(x)=Y. (-DH^;1)*] £ xk £ (-7)J(P" + 1)Tn 

j=0 ' k=0 j=0 
Since i<h 

(3.2) ^ = ( f e + r ' ) 
is a polynomial of degree p in k and the (pn + l)th difference of a polynomial of degree <pn vanishes identically, we 
have 

pn+1 
(3.3) £ (-1)i(Pn]+l)Tlj,P = a 

j=0 
Thus, for pn -p + 1 <k <pn, 

k pn+1 

j=o J JF j=k+i 

Since, for/7/7 -p + 1 <k <pn, k<p <p + 1,w have -p < k -j < Q, so that 7Vy,p = 0 (k+1 <j<pn + 1). That 
is, every term in the right member of (3.4) is equal to zero. Hence (3.3) gives 

k 
(3.5) £ (-VHpn + *) 7T . = O (pn-p + 1 < k < pn). 

j=0 J H'P 

It follows that is of degree <pn - p + 1: 
n pn-p+l 

(3.6) G^(x) = V G(plxk (n > 1), 
k=0 
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where 

(3.7) GM = E (-vtr;1)^* " < * <p»-p+i)' 
By (3.3) and (3.7), 

pn+l pn-k 

(3.8) G(P) = - £ ^ ' ( P T ) ^ . P - (-IF" £ ' - " ' r / ' K • 
For/# > 0, we have 

r.m,p = (~mH-m + 1)-(-m+p-1)= {_,)P ^ __ hJ)PTm_p+lp . 

Substituting In (3.8), we get 
pn~k pn-k 

Q(P) = (-i)Pn Y" (-i)HPn + 1\.(-i)PnTn = Y* f-iiJ(Pn + 1)rn 

°n,k l " Zu f U \ j J f " ' pn-k-j-p+2,p 2- ' U \ j i' (pn-k-p+2)-j,p' 
j=o • j=o 

This evidently proves the symmetry relation 
<3-9> Gii = G(nP^k-P+2 (K'<P»-P + ». 

For/?= 7, (3.9) reduces to (1.4); for/7 = 2, it reduces to (1.9). 
In the next place, it follows from (3.1) and (3.2) that 

„ G®f __ x jv_ xP-Ajir!M_\ __ x £,P) JP± (xP-iG(P)(x)h JL ((1-x)-pn-t> 
(1 - X,p(n+D+1 dxP ^-xjPn+l) Po^'dxP'1 " dXP 

-x £ {ftpn + qa-xr**-1 £ ^G^M). 
J=0 dxp ] n 

where 
fr/7 + 1)j = (pn + 1)(pn + 2).- fpn +j). 

We have therefore 
(3.10) PltfJiM = x J2(?)(pn + 1)j(1-x)P-i -£1 (x^G^M). 

j=0 J dxp i 
Substituting from (3.6) in (3.10), we get 
pn+l p v • pn-p+1 p p-j 

m=l j*0 dxP* k=0 j=0J s=0 
pn-p+1 

an) . s
 G(

n
pi(k+j>P~jxk+H = z*m E ^n]){v:l){pn+^k+i^G{A 

k=l k+j+s=m 
pn+l m 

= E *m E GS E ^-^(p(p 7y )rp/? * 1W +i>p-i • 
m=l k=l j+s=m-k 

k>m-p 
The sum on the extreme right is equal to j 

(312) V (-1? P!<Pn + 1h<k+i>V'i =
 mx^/_7)m-k-j pKpn + DJk+p-D! 

. ^ ' ' j!s!{p-j-s)l ^ ' j!(m-k-j)!(k+p-m)!(k+j-1)! 
]+s=m-k j=0 

m'k (-m + k)j(pn + J)j = (-Dm-k pHk+p- D! y - f-m+Ujt 
(k-1)!(m-k)!(k+p-m)! ^ j!(k)j 

By Vandermonde's theorem, the sum on the right is equal to 
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(k-pn- Vm_k _ , jm-k (pn-k + 1)!(k - 1)! 
(k)m,k (pn-m + 1)!(m - 1)1' 

Hence, by (3.11) and (3.12), 

(3.13) GM = T.{k+p~1)(pn-k\1)G(pl (1<m<pn + 1). 
n+l,m *-* x m — 1 A m — k I n,k ^ 

k=l i 
k>m-p 

Summing over/77, we get 
pn-p+1 k+p 

Q(P) (J) = V G(p) W k+p-l\(pn-k + l\ 
n+1 Z-J n,k JLd \k + p — m j \ m — k ) 

k=l m=k 
By Vandermonde's theorem, the inner sum is equal to 

(V)-
so that v y ' 
(3.14) G(PjJV = (Pn+P)G(P)(1). 

n+1 \ p ) n 
Since G^(x)=xf it follows at once from (3.14) that 

(3.15) GM(1) = (p!)'n(pn)! . 
By (3.10) we have 

plG^(x) = x £ (P)(p + 1)j(1 - x)P~>- pJ, x>, 
i=o 3 l' 

so that 
(3.16) G(P>M = x £ {?)(p+j)xjn-x)p-j. 

j=0 J' 3 

The sum on the right is equal to 

£ (?xp;v s WW - £ ay z (-i)H(%pV) • 
j=0 s=0 k=0 j=0 

The inner sum, by Vandermonde's theorem or by finite differences, is equal to (^ ). Therefore 

(3.17) Gf(x)=x JtdfxK 
k=0 

An explicit formula for Gy'(x) can be obtained but is a good deal more complicated than (3.17). We have, by 
(3.10) and (3.17), 

P - drt ( P .-.2 , _ 1 P _ M 
p!G(P)(x)=xj;(P)(1-x)P-LJ!n) j:(Pk)xk+P\=xJ2 (2p + V.(P)Z(-VS(P:3)xS 

j=0 dxp J I k=0 J j=0 s=0 

•id)2 rn§^ - * £ *m s <-nw -M)2 ̂ <2p+h 
k=0 m=0 k+j+s=m 

The inner sum is equal to 
£ (~1> j!s!(p-s-j)!\k) (k+j)!UP "l L \k)\t) k! ^ ' U \j>(k + Jh 

k+j+s=m k+t=m j=0 J 

= V" / nt(p\?(p\(k+p)l (k-2p)t ^ (p\2(p\lk+p)! (2p - k)! 
L. ' " \k) \t) kl (k + 1)t , ^ \ k ) \ t ) m ! (2p-mS! ' 

h+t=m ' I k+t=m 
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Therefore 
2t) 771 o 

(3.18) G<*>M.X z *m E(f) LlkY^jffL'JI'-
m=0 k=0 

4. COMBINATORIAL INTERPRETATION 
As in the Introduction, putZn = { / , 2, —,n} and consider sequences o= (ai,a2, — ,a^), where the ̂ e Z w and 

the element / occurs ey times in o, 1 <j <n. A rise in a is a pair a\, a{+i such that a\ < a{+i, also a conventional rise 
to the left of a\ is counted. The ordered set of nonnegative integers le±, e2, ~, enJ tilled the signature of o. 
Clearly N * ei +e2 + ••• * £ n . 

Let 
A(ei, e2, - , en \r) 

denote the number of sequences a of specification fei, e2, ~-,en\
r] ana" havingr rises. In particular, fore\ =e2 = 

— = en = p, we put 
(4.1) A(n,p,r) = A(p,p, ~>,p\r). 
The following lemma will be used. '—v—' 

Lemma. For/7 > 1,we have 

(4.2) A(n + 1,p,r)= £ [^r-j*1){P''V-V)A(n'p'J') (1 < r < pn + V. 
j>r~p 

It is easy to see that the number of rises in sequences enumerated by A(n + 1,p, r) is indeed not greater than 
pn + I 

To prove (4.2), let o denote a typical sequence from zn of specification [p, p, —, p] with / rises. The additional p 
elements n + 1 are partitioned into k nonvacuous subsets of cardinality f^, f2, •-, fk>Oso that 

(4.3) fi+f2 + - + fks P* fi>0. 
Now when f elements n + 7 are inserted in a rise of o it is evident that the total number of rises is unchanged, that is, 
/-+/'. On the other hand, if they are inserted in a nonrise (that is, a fall or level) then the number of rises is increased 
by one: j -+j + 7. Assume that the additional p elements have been inserted in a rises and b nonrises. Thus we have 
j + b=r,a+b = k, so that 

a = k + j - r, b = r - j . 

The number of solutions f^, f2, - , 4 of (4.3), for fixed k, is equal to (^ " *). The a rises of o are chosen in 

(W = U - f j - r ) = ( r-fe) 
ways; the b nonrises are chosen in 

n — j + 1 \ _ / pn — j + 1\ 
b 1 [ r-j j ways. 

It follows that 

The inner sum is equal to 

k=o 
by Vandermonde's theorem. Therefore 

Afn + 1, p, r) = £ {P"r~~Jj+ 1){P+
rL~l1)A(n'P'i>-



1878] GENERALIZED EULER1AN NUMERALS AND POLYNOMIALS 145 

This completes the proof of (4.2). The proof may be compared with the proof of the more general recurrence (2.9) 
forA(ei, -,en\r,s) in [3 ] , 

It remains to compare (4.2) with (3.13). We rewrite (3.13) in slightly different notation to facilitate the comparison: 
r 

(44) G(p) = y (Pn-i + 1\(p+i-1\G(p) 
n+l,r L-J \ r—j l\ r—1 I n,j ' 

Since 
A<£l = G(&=1 ("= 1,2,3,.-), 

it follows from (4.2) and (4.4) that 
(4.5) G^r = A(n,p,r). 

To sum up, we state the following 

Theorem. The coefficient G^} defined by 

pn-p+l 
G(nP)<*> = E G$*k 

k=l 
is equal to A(n,p, k), the number of sequences o= (ai,a2, ~-,apn)itomZn, of specification [p,p, •>, p] and hav-
ing exactly k rises. 

As an immediate corollary we have 
pn-p+l 

(4.6) G(*)(1)= £ ^ l = (p\rn(pn)l. 
k=l 

Clearly G^(7) is equal to the total number of sequences of length pn and specification lp,p, —.p], which, by a 
familiar combinatorial result, is equal to (p!)~n(pn)!The previous proof (4.6) given in § 3 is of an entirely different 
nature. 

5. RELATION OF G$M TO An(x) 

The polynomial G$ can be expressed in terms of \\\s An(x). For simplicity we take/7 =2and,as in § 2,write 
Gn(x) in place of GQHx). 

By (1.6) and (Ll fwehave 
oo oo W n oo n A (V\ 

2n_GnM_= E (k(k + vrxk=XxkE{"yn+i = E(])Z kn+j^k = J:(])~^^ 
(7~x)2n+1 k=0 k=0 j=0 W / j=0K] Jk=0 j=0K3l(1-x)n+1+l 

so that 

(5.1) 2nGn(x) = £ (")(1-x)n-iAn+jM. 
j=0 

The right-hand side of (5.1) is equal to 
n n-j n+j 2n n n+j 

E (")E (-Df;1')*1 E *«<**** - E *m E E (-'>""*{")(n
nz{)A«<i.h • 

j=0 s=0 k=l m=l j=0 k=l 
k<m 

Since the left-hand side of (5.1) is equal to 
2n-l 

on \~^ r> m 
Z^J un,m* > 

m=l 
it follows that 

m n-m+k 
(5.2) 2nGn>m = £ (-1lm-k £ {nMZZi)An+j,k <1<nt<2n-1) 

k=l j=0 
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and 
2n k-n 

<5-3) 0= £ (-*>k E (1)(2
n„Zi)A«+j,k • 

k=n j=0 
In view of the combinatorial interpretation of Antk and Gn>m, (5.2) implies a combinatorial result; however the 

result in question is too complicated to be of much interest. 
For/7 = 3, consider 

6nx 

Thus we have 

p(3)/ i °° n °° n A / i 
"*i ' * ' _ V* i.n/i.2 *m k \~"» / *\n-\ in\ V* i.n+2i_.k V* / 4in-i/n\ ^n+2vx' 

d-xt™ to h [i)to h ^Ut-x^w 

(5.4) 6nxG^(x) = Yl (-Vn-Hn)(l-x)2n'2>An+2jM. 
j=Q 3 

The right-hand side of (5.4) is equal to 
n 2n-2j n+2j 3n n n+2j 

ZJ-irH") E (-vs{2n;2iV E *n+2/,*** = E *m E ^n"y(?) E f̂*""* (*;:£'>««/,* • 
j=0 s=0 fe«i m = i ;=0 fe=i 
It follows that 

n n+2/ 
(5.5) Ti«GWm = £ (-1)n-]{n.) £ (-Vm-k(2n

mZ2
k
k) An+2j,k • 

j=0 k=l 
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[Continued from page 129.] 

Recalling [2, p. 137] that 

(j + i) £ k' = Bj+l(n + 1)-Bj+l: 

where Bj(x) are Bernoulli polynomials with Bj(O) = Bj, the Bernoulli numbers, we obtain from (2.3) with x=1,B = 
1, and Ck = k the inequality 

(2.4) B2p(n + 1) - B2p < (Bpfn + 1)- Bp)
2 (n = 1,2, -J. 

Forp= 2k + 1,k= 1,2, -~,B2k+1 =0, and so (2.4) gives the inequality 

(2-5) B4k+2(n + 1)- B4k+2 < B2
2k+1 (n + 1) (n,k = 7,2, •••). 

3. AN INEQUALITY FOR INTEGER SEQUENCES 
Noting that Uy, = k satisfies the difference equation 

Uk+2 = 2Uk+1 - Uk 

[Continued on page 151.] 



WYTHOFF PAIRS 

A.F.HOBADAM 
University of New England, Artnidale, N.S.W., Australia 2301 

1. INTRODUCTION 

The author had been working on the safe combinations (Wythoff pairs) in Wythoffs game [11] when there-
searches of Silber [9, 10] came to his attention. As the two approaches differ somewhat, it is probably worthwhile 
to indicate briefly the author's alternative treatment, which may throw a little light on the general problem. 

Both Silber and the author use the fundamental idea of the canonical Fibonacci representation of an integer. While 
much work has been done recently on Fibonacci representation theory and on Nim-related games, we will attempt 
to minimize our reference list. 

Wythoff pairs have been analyzed in detail by Carlitz, Scoville and Hoggatt, e.g., in [ 3 ,4 ] , though without specific 
reference to Wythoffs game. For a better understanding of the principles used in our reasoning which follows, it is 
desirable to present a description of the nature and strategy of Wythoffs game. 

2. WYTHOFF'SGAIVtE 

Wythoffs game was first investigated by W. A. Wythoff [11] in 1907. It is similar toNim (see Bouton [2]) and 
may be described thus (Ball [1 ] ) : 

Unspecified oumbers of counters occur in each of two heaps. In each draw, a player may freely choose counters 
from either (i) one heap, or (ii) two heaps, provided that in this case he must take the same number from each. 

For example, heaps of 1 and 2 can be reduced to 0 and 2, or 1 and 1, or 1 and 0. The player who takes the last 
counter wins the game. 

As Coxeter [5] remarks: "An experienced player, playing against a novice, can nearly always win by remembering 
which pairs of numbers are "safe combinations": safe for him to leave on the table with the knowledge that, if he 
does not make any mistake later on, he is sure to win. (If both players know the safe combinations, the outcome de-
pends on whether the initial heaps form a safe or unsafe combination.)" 

The safe combinations for Wythoffs game are known to be the pairs: 
/? = 1 2 3 4 5 6 7 8 

(1) 
(1,2), (3,5), (4,7), (6,10), (8,13), (9,15), (11,18), (12,20), ». 

A safe pair may also be called a Wythoff pair. 
There are several interesting things about the integers occurring in these safe combinations. They are: 

(I) Members of the first pair of integers differ by 1, of the second pair by 2, of the third by 3, - , of t h e / / 
pair by n. 

(\\) The nth pair is (an, bn) = ([no], [no?]), where the symbol [x] denotes the greatest integer which is less 
than, or equal t o , * , and a = (1 + V5) /2 = 1.618 (so that a2 = (3 + x/5 )/2 = 2.618). We recognize a as the 
"golden section" number which is a root of x2 - x - 1 = 0 (i.e., a2 = a+ 1). Note that/?n = an+n, i.e., 
[na2] = fna] +n. 

(III) In the list of integers occurring in the ordered pairs for safe combinations, each integer appears exactly once 
(i.e., every interval between two consecutive positive integers contains just one multiple of either a or a , as 
Ball [1] observes). 

(IV) In every pair of a safe combination, the smaller number is the smallest integer not already used and the larger 
number is chosen so that the difference in thenth pair is/?. 

147 
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It might reasonably be asked: How does the "golden section" number a come into the solution of Wythoff's game? 
The answer is detailed in Coxeter [5] where the solution given by Hyslop (Glasgow) and Ostrowski (Gottingen) in 
1927, in response to a problem proposed by Beatty (Toronto) a year earlier, is reproduced. (Coxeter notes that 
Wythoff himself obtained his solution "out of a hat" without any mathematical justification). Basically, the answer 
to our query, as given by Hyslop and Ostrowski quoted in [5 ] , depends on the occurrence of the equations (Mx) + 
(1//) = 1,y = x + 1 which, when / is eliminated, yield our quadratic equation x - x - 1 = 0. 

That the Wythoff pairs are ultimately connected with Fibonacci numbers should not surprise us since, by Hoggatt 
[6 ] , the nfh Fibonacci number 

/v. - a" +1 
yj 2. 

for/7 = 1, 2, 3, - , i.e., both Wythoff pairs and Fibonacci numbers involve [x]. (See (II) above.) 
The first forty Wythoff pairs are listed in Silber [9 ] . From the rules of construction (I)—(IV) it is only a matter of 

patience for the interested reader to form as long a list of Wythoff pairs as is desired. 

3. WYTHOFF PAIRS AS MEMBERS OF {Hm(p,q)} 

Consider the generalized Fibonacci sequence [Hm(p,q)} of integers (Horadam [7]): 

(7) Ho Ht H2 H3 H4 H5 H6 H7 •"• 
u / q p p+q 2p+q 3p+2q 5p+3q 8p+5q 13p+8q -
where 

(3) Hm = Hm_t+Hm_2 (m > 2) 

in which we omit p,q when there is no possible ambiguity. The restriction m >2\x\ (3) may be removed, if desired, 
to allow for negative subscripts. 

The ordinary Fibonacci sequence {Fm} with FQ = Ot F± = F2 = 1 occurs when/7 = l,q = 0, i.e., 

(4) Fm = Hm(1,0). 

It is known [7] that 

(5) Hm = pFm+qFm^. 

Every positive integer N 
(a) produces a H^ (= [Na] =p)) which iis the first member of a Wythoff pair, i.e., sequences [Hm([Na], N)}yield 

all the Wythoff pairs; and 
(b) is, by (IV), a member of a Wythoff pair and a member of some //-sequence (in fact, of infinitely many H-

sequences of which the given //-sequence forms a part), 
e.g., 52 = Ht (52, 32) = H2 (32, 20) = H3 (20, 12) = H4 (12, 8) = H5 (8, 4) = H6 (4, 4) = / / 7 ( 4 , 0) = •• 
with infinite extension through negative values of m if the restriction m > 2 in (3) is removed. 
r Every positive integer N is obviously also a member of infinitely many non-Wythoff pairs belonging to infinitely 
many different ^-sequences, e.g., 

N = 2000 = 20Fn +4F10 (= Hn(20, 4» = 20x89 + 4 x 55 

is a member of all the //-sequences resulting from the solution, by Euclid's algorithm or by congruence methods, of 
the Diophantine equation 89x + 55y = 2000. Some instances of this are 

2000 = Hn(75,-85) = Hn(-35,93) 

yielding the non-Wythoff pairs (1235,2000) and (1237,2000) whereas (1236,2000) is a Wythoff pair ( - (a764,b764))._j 

Now make the identification with the notation in [9 ] : 

(6) an = Hm, bn = Hm+1, ahn = Hm+2. for some p,q . 

For example, n = 6 yields the Wythoff pair (a^, b^) = (9, 15) = (H3,H4) for p = 3, q = 3. 
To save space, we will assume the results in [9] expressed in our notation: 
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Theorem. All pairs in an //-sequence after a Wythoff pair are Wythoff pairs, i.e., each Wythoff pair generates 
a sequence of Wythoff pairs. 

Theorem. A Wythoff pair (Hm, Hm+1) is primitive if and only if (for Hm =an)n = a^ for some positive inte-
ger k, and for some positive integersp, q. 

A primitive Wythoff pair is a Wythoff pair which is not generated by any other Wythoff pairs. Thus, (1,2), (4.7), 
(6,10), (9,15), (88,143) are primitive Wythoff pairs. 

4. ZECKENDORF'S CANONICAL REPRESENTATION 
Zeckendorfs Theorem, quoted in Lekkerkerker [8],states: (Zeckendorf's Theorem) Every positive integerN can 

be represented as the sum of distinct Fibonacci numbers, using no two consecutive numbers, and such a representa-
tion is unique. 

Symbolically, this canonical (Zeckendorf) representation of N is 
(7) N = Fkl+Fk2 + ~. + Fkr , 
where 
(8) ki > k2 > — > kr > 2 (r depending on N) 
and 
(9) kj-kj+i > 2 (j = 1,2, .,r-7). 

From [9] , the criteria for a Wythoff pair (Hm, Hm+i) are that, in the canonical representation (7), with (8) and 
(9), 
A. f Hm = Fkl+Fk2 + ... + Fkf 

i^m+1 = Fkl+1+Fk2+1+- + Fkr+1 

(ii) kr is even. 
For a primitive Wythoff pair, we have further that 

B. 
(i) kr = 2 

(ii) n = Fk^z + Fk2~z + *" + Fkr-z > 
where 
(10) z = kr-1 (kr-z = 1) 

so the last term in n (B (ii)) is F± = 1. 

Examples. (1) Non-Wythoffpair (62, 100) 
B2 = F\Q + FS + F^ so kr = 3 which is not even, and A(ii) 

is therefore invalid (though A(i) holds). 
(2) Non-Wythoffpair (62,101) 

101 •= F11+ F& + F4 + Fi so A(i) is invalid (and so is A(ii)). 
(3) Non-primitive Wythoff pair (1236, 2000) = (a764, D764) 

1236 = Fit + Fi3 +F7 + F4 so B(i) is invalid (and so is B(ii)), though A(i),A(ii) are valid. 
(4) Primitive Wythoff pair (108, 175) = (a67,b67) 

108 = F11+F7 + F5 + F2, 175 = F12 + F8 + F6 + F3 

so A(i),A(ii),B(i) are valid and (175-108=167 = F10 + F6 + F4 + F1 

so B(ii) holds. 

5. WYTHOFF PAIRS, ZECKENDORF'S REPRESENTATION AND [Hm(p,q)} 

From (5) and (7) we have, fork^ >m >m - 1 >kr, 
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(11)' N = Hm(p,q) = pFm+qFm_t = Fkl +Fk2
 + '~ + Fkr . 

A little thought reveals that 

(12) N = Hm(p,q) = Hm>(p',q'), 
where 
(13) m'= z 

(14) P'= Hm_z+1(p,q) 

(15) q'=Hm-z(P4) 

in which (p't p' + q') is a primitive Wythoff pair. That is, the sequence {Hm'(p',q')} is generated by a primitive 
Wythoff pair. 

The explanation of (12)—(15) is as follows. If, in (12),p' is the first member of a primitive Wythoff pair, then by 
B(i) its canonical representation must end with F2. Thus, by [\\),p' precedes N by kr-2 = z- 1 places by (10), 
i.e., p' is located in term position/?? - (z - 1) = m - z + 1 in the//-sequence. Hence, we have (14) and consequently 
(15). Clearly,m'= (z-1) + 1=zgiving (13). 

It is now possible to determine, for any positive integer N, exactly which Wythoff pair generates the //-sequence in 
which that N appears, as well as the location of N in that sequence (as is done in [9]). 

Examples. 
(1) N = 52 = F9+F7 + F5 

(soz=4by (10)) 

by repeated use of Fm = Fm_i + Fm_2 

by (11) (som = 7,p=4,q = 0) 

by (12)—(15) since 

m' = z = 4, p' = H 4(4,0) = 12, q' = H3(4,0) = 8. 

That is, N = 52 \% the 4 ^ term in the sequence{///'/i,/<9y/}generated by the primitive Wythoff pair (12,20) = (a$, bg): 

4F7 + 0.F6 

H7(4,0) 

H 4(12,8) 

H0 Hi H2 H3 

0 4 4 8 
H4 H5 H6 H7 H8 

12 20 32 (b2) 84 

{//(12,8)} 

l//(4,0)} 
(2) N = WOO = F16+F7 = Hn(10,2) = H6(90, 56), 

i.e., 1000 is the 6 ^ term in the sequence generated by the primitive Wythoff pair (90, 146) = (a$6, bse)'-

H0 Ht H2 H3 H4 H5 

2 10 12 22 34 56 
H6 H7 H8 H9 H10 Hn 

90 146 236 382 618 (lOOO) 

' {//(90,16)} ~" 
{ / /(10,2)} 

Example (1) is given by Silber [9 ] . Comparing his zero-unit notation with our//-notation in relation to canonical 
representations, we see that ourz is a suggestive symbol as it is also the number of zeros at the right-hand end of the 
zero-unit notation for a canonical representation. Checking that (12, 20) and (90,146) in the examples above are in-
deed primitive Wythoff pairs is straightforward. 
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and that Vn = 2 satisfies 
Vn+2 = 2Vn+1 - Vn, 

we can rewrite (1.2) as 
n / n \2 

k=i \ k=i i 
This suggests the following result for integer sequences. 

Conjecture. Let U^, with U0 = 0, Ui = 1, and V^, with V0 = 2,Vt = P, be two solutions of 

Wk+2 = PWk+1+QWk, k = 0,1,-, 

where P and Q are integers with P > 2 and P + Q > 1. We then claim that 

(3-D 2 JT U3
k< vjf: Uk) fn = 1,2,-1 

k=i \k=i I 
Remarks. For P = 2 and Q = -1, (3.1) gives (1.2). Using double induction, one can prove the conjecture f o r / 7 * Q 

>3, which leaves the two cases P * 5 = ̂  and P + Q = 1 open. 
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GEOMETRIC SEQUENCES AND THE INITIAL DIGIT PROBLEM 

RAYMOND E.WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 

Recently, R. L. Duncan discussed the Initial digit problem for the sequence of positive integers, J [1]. The sub-
sequence of positive integers with initial digit a e {1,2, — , 9} is denoted by A = [ay). Although the asymptotic 
density of A in J does not exist, the logarithmic density of Ŝ in J is log (1 + Ma), where logx is the common log-
arithm of x. 

The purpose of this note is to show that the relative asymptotic density of A in certain geometric sequences is also 
log (1 + Ma). 

Let c denote a positive integer which is not a power of ten. We adopt the following definitions. 
Definition 1. B(m) = [y\y = cn, n > 1, y < cm, m e J) . 
Definition 2. B' = I J B(m). 

m €E / 

Definition 3. A(m) = A n B(m). 
Definition 4. A' = A n B'. 

Definition 5. a(m) = YL 1 • 
yE:A(m) 

Definition 6. b(m) = ^ 1 = m . 
y^B(m) 

Clearly cm e A' iff 
(1) a10t < cm < (a+ 1)10* (t > 0). 

But (1) is equivalent to 
(2) \^Mi <m< tjtMk±t)\ 

L logs logc / 
Let 

L log c logc / 
and \lt+i | denote the length of lt+i. 

Obviously 
(3) \lt+1\ = ^(1+1/a) ^ I O C L ^ 7 

1 1] log c logs 
In fact, \/t+i\= 1 iff ̂ = 1 andc = 2. 

Let zt+i denote the midpoint of it+i. 

(4) =2t + \o$a(a+1) {t > Q) 

log c 

Lemma 1. {zt}?=1 is uniformly distributed mod 1. 

Proof. Jim (zt+1-zt) = lim —— = r-̂ — and T^— is irrational [2]. 
J t-^oo t->«»logc logs logs 
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Hence, {zt) ™=1 j s uniformly distributed mod 1 [3]. 
Lemma 2. a(Vl±^±l> ]) = |/j |/i + o(n), 

where [x] denotes the greatest integer in x. 

Proof. Obviously , x 

is the number of intervals, A/, 12, —, ln which contain an integer and this is /? less the number of intervals which con-
tain no integer. Since \lt+i\ < 1, it is clear that each interval contains at most one integer. If \lt+i\- 1 (c = 2,a = 1), 
then 

If \it+11 < 7, lt+i will not contain an integer if, and only if 

where zt+1 e f / , / + 1) for some integer,/. Using Lemma 1 and the definition of uniform distribution mod 1 [4 ] , we 
have 

...JiigAiiZ]).,, _„,„,,. (n) 

and the result follows. 
Let d(a) denote the relative asymptotic density of /TinS'defined as follows: 

(5) d(a) = lim y 1 /T 1 . 
dy<*x n<x 
dy<EA' n<EB' 

The upper and lower relative asymptotic densities of A' in B' are obtained by replacing " l imit" in (6) by "limit su-
perior" and "limit inferior," respectively, and are denoted by d(a) and d(a), respectively [5 ] . We conclude the dis-
cussion with our main result. 

Theorem. d(a) = log (1 + Ma). 
Proof. It is clear that 

J\i±Mk±Jl]\ 
(6) d(a)= lim U_]0M_ " 

J\l±Mja±m\ 
(7) W)= lim r , ^ , J 

\n + |Qg (a + n 1 „ n + |Qg fa * ^ 
•- log c J log c 

the application of Lemma 2 transforms (6) and (7) into 

(8) d(a) = lim ^A'^^l'i! = \'l | log £r = log f 1 + 1/a) 
log £7 

Since 

and 
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_ _ \/An+o(n) 
(9) d(a) = lim . l / _ L f l = |0g (1 + 1/a) 

logc 

and the desired conclusion follows. 
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******* 
ADDENDA TO ADVANCED PROBLEMS AND SOLUTIONS 

These problem solutions were inadvertently skipped over for a few years. Our apologies. 

FORM TO THE RIGHT 

H-211 Proposed by S. Krishman, Orissa, India, (corrected) 

A. Show that (™ jis of the form 2n 3k+2 when/? is prime and/7 > 3. 

B. Show that ( ^ n _ r / ) «S of the form n3k-2n2 -n, when/7 is prime. 

(m) represents the binomial coefficient, . m' .. . 

Solution by P. Tracy, Liverpool, New York. 

A. The Vandermonde convolution identity is P ) = 2 ( n ^ L) ( L_k ). Appling this to (2p) (using/. =p),\NB 
get m p 

F k-Q h=l V 

Sincep is a prime, p i (? ) for /r = 1,2, —,p - 1. Now 

{tfsp2 tp-lMp-2)~tp-k+1) 2
 (moAp3) 

Also (p - i)/i = -1 (mod p) and so 

4 E ( f e ) 2 " £ " 7 s * quad. res. (mod/?) 

(since every quadratic residue mod/7 has exactly two roots, ±a). Let# be a primitive root, mod/?, then the quadratic 
residues are p-3 

lg2,g4,~,g2 

To find the sum of the quadratic residues, we use the geometric sum formula to obtain (gP"1 - 1)/(g2 - 1). Note 
that/7 > 3 impl ies#2- 1^0 (mod/7). Hence Squad, res. = 0 (mod/?). Therefore 

[Continued on page 165.] *>'\X(t)2 a n d ( * } - ' <«»«• V ) . 
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1. INTRODUCTION 

in a paper appearing in the Quarterly Journal of Mathematics [Vol. 20 (1969), pp. 129-137], Harold Davenport 
and Alan Baker dealt with the set of numbers: 1, 3, 8, 120. It has the property, noted by Fermat, that the product 
of any two increased by one is a square. We call such a set a />-set. Davenport and Baker proved, using the "effective" 
results of the latter, that if 1, 3,8, c is a /'-set, then c must be 120. 

Long before, Diophantus noticed that the se t * , * +2, 4x + 4, 9x + 6\s a/'-set for;e= 1/16. Indeed, the first three 
have the same property considered as polynomials i n * . In a previous paper [Quar. Jour. Math., Vol. 27 (1976), pp. 
349-353] the author proved that the only P-sets containing x and x + 2 in Z[x] are 

x, x+2, cr(x), cr+i(x), 

where r is a positive integer and the C{ are certain polynomials defined recursively. 
Here we consider a similar problem in a more general setting. Let a =a(x) and b = b(x) be two non-zero polynomials 

in Z[x] such that ab + 1 = w2, where w is in ZfxJ. [We omit the argument* when there is no ambiguity.] Without 
loss, we may assume that a, b, and w are in Z+ [x], that is, have positive leading coefficients. We want to allow a and 
b to be in Z; in this case Z+[x] becomes the set of positive integers. 

First we seek all solutions cj^ = Ck (x) in Z+fxJ of 

(1.1) ack + 1 = y?, bck + 1 = z2 y^ and z^ in Z+[x] . 

An equivalent pair of equations is 

(1.2) (b - a ) c k = z2
k-y

2
k, b-a = by2 -az2

k . 

In the previous paper we considered the case when b = a +2. Then there was just one sequence of c^. \\bta+2, 
there are at least two such sequences. We prove that if a, b, and c form a P-set and all are of the same positive degree, 
then there is no fourth of the-same degree which, with a, b, and c, forms a P-set. We prove that if a and b are both 
linear or quadratic there are exactly two sequences. If a and b are in Z and a < b < 4a we prove that there are exactly 
two sequences of cy, (unless b = a +2); we also show that if a <b <c <diorm a /'-set, then d > ab + 1. Our most 
significant result is that when a and b are linear over Z+[xJ, c = a + b + 2w, and a, b, c, d form a P-set of four ele-
ments, then there is exactly one possible d, namely 

c2 (a,b) = (4w2 - 2)c + 2(a + h), 

where ab + 1 = w2. The proof of this result is an adaptation of one of B. J. Birch given in the previous paper. We 
show that if a and b are two successive even-indexed Fibonacci numbers, C2(a,b) reduces to 4b(b2 + 1) and is not a 
Fibonacci number. A final section describes some results which seem true but for which we have no proofs. 

Since much of the theory is the same for integers and polynomials it is convenient to define an extension of the 
idea of inequality from integers to polynomials in ZfxJ. 

Definition. When we write "a is in Z[xj" we mean that it is either a polynomial of positive degree or an inte-
ger. In the latter case, we call it its own "leading coefficient." The symbol a > 0 means that the leading coefficient 
of a is positive. Similarly if a and b are in Z[x], a>b means that a - b > 0. The usual fundamental properties of in-
equality hold for this extension. 

We assume throughout that 

*The author promises there will not be a third; he has no intention of composing a sonata. 
156 
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(1.3) 0 < a < b. 

\\na = dega denotes the degree of a "mx, and similarly for/7^,, then (1.3) implies na </?£,. Note that A7a and/7^ must 
be of the same parity and 2n = na + n^, where n = nw. Define co to be 0 and have as a consequence that yo= ZQ = 1. 

2. FORMULAS FOR ck IN (1.1) AND (1.2) 
In order to find a formula forc^ we first seek a recursion formula for y^ andz^. To this end, write 

(2.1) (\/byk + V* zk = (w + sjab My/by^i + V* *fe-i), 
that is 

Yk = wYk-l + azk-i 
(2 2) 

Zk = byk-i+wz^i. 
To see that (2.2) defines a sequence of solutions of (1.1) suppose that y ^ , Z£_;? is a solution of the second equa-

tion of (1.2). In (2.1) rep lace^ by -sja and multiply corresponding sides of the two equations to get: 
byl-azl^w'-abXbyl^-azlJ. 

Another way to show this is to use Eqs. (2.2) directly in the second equation of (1.2). We show below that the first 
equation of (1.2) defines c^. 

Now wyk - azk = yk-i which implies 

Yk = wYk-l +wyk-l ~Yk-2 = 2wYk-l-Yk-2. 
Also wzk-byk=zk-i implies Zk = 2wzk-i -Zk-2- S o 

(2.3) Yk~2wYk-l +Vk-2 = 0 and zk~2wzk-i +zk-2 = 0. 
Note that y± =w+a andz^ = b * w with (1.2) imply thatc^ = 2w + a+b. By induction, deg / £ = kn. Hence, from 

(1.1) degcfe = 2kn - na, if k > 0,and deg z^ = (k + 1)n -na. 
Let a and a'1 be the zeroes of e2 - 2we + 7. Thus 

a = w + yjab and a'1 = w - yjab . 
Note that ab ? 0 implies that w £ 1. We seek y^, zk, and ct> in terms of a and a'1. Thus we want to determine r and 
s so that 

h -k 

a-a 
Now r-s = a-a'1 andra- sa'1 = (w+a)(a-a~1). This shows that 

r-w + a-cf1 and s = w+a-a. 

y^ = (w+ a)fk-fk_i and, similarly, zj^ = (w +b)f^-~ f^i, 

k -k 
f _ or - a * fk - — 

a-a 1 

Hence 

where 

Thus we have 
(zk - yk)(zk + yk) = (b - a)fk [(2w +a+ b)fk - 2fk^J . 

Recalling thatc^ = a + b+2w, we have, from (1.2), 
(2.4) ck = fk(cifk-2fk-i). 

It is interesting and useful to find a recursion formula for q , . To this end note that e - 2we + 1 = 0 implies 
e4 -(4w2 -2)e2 + 1 = 0. 

Thus 
(2.5) (a±2)k-(4w2-2)(a±2)k-1+(a±2)k~2 = Q, for k > 2. 
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Then f'k = a +a +N, where N is independent of k, and (2.5) implies 

(2.6) S f2k = (4w2-2)fl1-fl2+N', 

where /l/'is independent of k. Furthermore 

(fh + fk-l> ~ 2w(fk-l + fk-2) + (h-2 + fk-3> = 0 

implies that (f^ + fk-i)2 satisfies the same recursion formula as f2 except for a change in N'. Thus2f^fk-i and 
fkfk-i satisfy the same recursion formula except for the term independent of k. Thus 

cu = (4w2 - 2)ck-i - cu-2 + L , 
where L is in Z[x] and is independent of k. Taking k = 2,\NQ have 

C2 = (4w2 - 2)ci + L. 
On the other hand, (2.4), f2 = 2w, and f\ = 1 imply 

(2.7) c2 = 4w2a -4w. 

This shows that L = 2ci - 4w = 2(a + b). Hence we have 

(2.8) ck = (4w2 - 2)ck-i - ck-2 + 2(a + b). 

This is the recursion formula we sought. 

3. UNIQUENESS OF SOLUTIONS 

We could hope that the c% as developed above would be the only solutions of the Eqs. (1.1) and (1.2), but this is 
not so in general. However the c^ are the only solutions \\b - a = 2 and, with one exception, when a and b are both 
linear polynomials. To show this we develop a useful algorithm. 

Let a, b, c be three polynomials in Z+[x] such that a < b and 

(3.1) ab+ 1 = w2, ac+1 = y2, bc+1 = z2, with x,y,z in Z+[x]. 

Replacing y^, z^, yu~i, ?k-l «n (2-2) by / , z, y', z', respectively, we have the transformation: 

(3.2) / = wy' + az', z = by' + wz' 

and its inverse, 

(3.3) y' = wy-az, z' = -by + wz. 
This transformation is an automorph of by2 - az2, that is, by/2 - azf2 = by2 - az2. We now show that \i b <a + c 
and if c satisfies (3.1), then (3.3) yields ac' <c. This is the basis of our algorithm. 

First we show tha t / ' i s \nZ+[x] without further condition on a, br and c except those in (3.1). Also z' is in Z+[x] 
if and only if b < a + c. From the second equation of (1.2) with subscripts suppressed, we have 

a(b-a) = (w2 - 1)y2 -a2z2 , 
that is, 

a(b - a) +y2 = (wy - az)(wy + az). 

Since b > a, the left side is positive and since / and z are positive, wy +az is positive. Hence 

wy - az = y' > 0. 
Similarly, 

b(b-a) = b2y2 - (w2 - 1)z2 , 
which shows that 

(wz - byHwz + by) = z2 - b(b - a) = 1 +b(c + a-b) > 0 

if and only if b < a + c. Thus 
wz - by = z' > 0 if and only if b < a + c. 

Second, we show that y' and z' define a c' in Z[x] such that 
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(3.4) ac'+1 = y'2 and hc'+l = z'2. 

To this end we compute 

z'
2 __ y'

2 = [(w - tj)y + (w- a)z][(-w - b)y + (w + a)z] = (h - a)(by2 + az2) + z2 - y2 - 2w(b - a)yz 

= (b - ak'f where c' = by2 + az2 + c - 2wyz. 

Since b - a = by - az , we have from the equivalence of equations (1.1) and (1.2) that Eqs. (3.4) hold. 
Third, assume that b is of positive degree and b < a + c. Then w is of positive degree. As in the first part of our 

argument with y and y', z and z' interchanged, we have wy' - az' > 0. Hence (3.2) shows 

(3.5) ny* = ny-n. 

If c'= 0, then/? <a +c implies y'= z' = 1 and hence ny = n and nz=n\) from (3.2). If c't 0, then, from (3.4) 
na +nc = ^ny' = ?ny ~ ?n = na+nc-2n = 2nz - 2n . 

Hence the following holds 

(3.6) If c' / 0, then nc' = nc- 2n and n/ = nz- n. 

Finally, suppose/? is in Zand/ ; <a+ c. This implies that a and w are i n Z It also implies that c is in Z for if c were 
of positive degree with leading coefficient tf, then (3.1) would imply that ^ and bd would be squares; this is impos-
sible if ab + 1 is a square. So if b is in Z, ail the letters in (3.1) represent positive integers. As in the previous para-
graph, wy'- az'> 0 which implies 

(3.7) y' < y/w. 

From (3.4) we have, using (3.7), 

ac' = y'2 - 1 < y2/w2 - 1 = (ac + 1)/w2 - 1 < ac/w2-, 

since w> 1. Hence 

(3.8) 0 < c' < c/w2. 

We collect all these results in the following theorem. 
Theorem 1. Let a, b, cheaP-set over Z+[x] with a < b, let / and z in Z+fxJ be defined by (1.1) with sub-

scripts suppressed, and y'and z'defined by (3.3). Then c' = by2 +az2 - 2wyz +c defines ac'such thata, b, c ' isa 
P-set and (3.4) holds. Also y'> 0 without further condition, and z'> 0 if and only if b < a + c. if Z? is of positive de-
gree and b < a + c, then conditions (3.5) and (3.6) hold. If b is in Z and b < a + c, then (3.7) and (3.8) hold. [In-
equality (3.8) is sharpened in Lemma 4 of Section 6.] 

The results of Theorem 1 provide the mechanism to prove two useful theorems. 
Theorem 2. If a < b < c are polynomials of the same degree overZ+[x] which satisfy Eqs. (3.1) and, when 

a, b, c are in Z, the additional condition c <w2 = ab + 1 holds, then c = a+b+2w = ci (a,b). 

Proof. The conditions of the theorem imply that /?a = n = nc and b < a + c. If n > 0, nc = n and (3.6) imply 
c' = 0. If n = 0, (3.8) implies cr = £7. In both cases y'=z'= 1 and (3.2) shows that y = w + a, ac + 1 =y and hence 
c = a+b +2w. This completes the proof. 

Corollary 1. \fa,b,c,d are four distinct poiynomiais of equal positive degree QWXZ*[X] they do not form a /'-set. 
The corollary follows since if they form a /*-set we may take a < b < c < d and see from Theorem 2 that c = d, 

which is a contradiction. 
The corresponding result fora and b inZ is the following. 

Corollary 2. If a and b are in Z with a < b and \f a < b < c < d form a P-set, then d > ab + h [In view of 
Lemma 4 in Section G,d>ab + 1 could be replaced byd>4ab.] 

A closely allied result is the following. 

Theorem 3. \f4a>b>a,ab+1 = w2,mda<c<b, then a, b, c do not form a />-set in Z+fxJ. 
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Proof. Note that the conditions 4a > h > a and a < c < b imply that a, b, c are polynomials of the same de-
gree. If c> 4, b < 4a implies b < ac + 1 and hence from Theorem 2 with b and c interchanged, 

b = a+c+2w\ where w = 1 + ac. 
Then 
,-m .. ,_ . §h + 1 = a2+ac+2aw'+1 = (a + w')2 = w2 

Theorem 3 affirms that if a and b are "close enough together/Lwhether of positive degree or in Z, then no c can be 
inserted between a and b to form a /'-set of three elements. 

Now we assume that a and b are of the same positive degree and seek all c satisfying (3.1). [In Section 6 we con-
sider the same problem for a and b in Z.] We can get explicit results if nc = kn, where n = na= nc. Since each time 
we apply transformation (3.3), Theorem 1 shows that we decrease the degree of c by 2n, we eventually arrive at a 'c 
of degree n or in Z according as k is odd or even. Then if b < 'c, Theorem 2 shows that £= a (a,b) = a+ b +2w and 
hence c = nh(a,b) for some k. If, on the other hand,?<Z? we consider two cases separately. 

First if c < b and c is of positive degree n, Theorem 2 with b and ^interchanged shows that b =a +£+2y where 
y =ac+ 1. As in the proof of Theorem 3, this impliesc = a +b - 2w. This leads to a whole new sequence which we 
designate by dj. We can compute the members of this sequence by going back to Section 2 and starting with yg = 
1 = - I Q in place of YQ = 1 = ZQ. Then y^ and z£ will satisfy the same recursion formula but will be expressed differ-
ently in terms of the f^. Using an argument similar to that of Section 2 it can be found that 

(3.9) cu (a,b) = fkfcifk+2fk-lh w n e r e ^1 = a + h -2w. 

It can also be verified that the Cj satisfy the same recursion formula asq,, given in (2.8). 
Second,if ? < b and f is in Z, then ? < a < b and/? is even. If ?= 0, t h e n / = 1 =z , thec bef ore ? is Ci (a,b) and 

c = Ck(a,b) for some k. Then it remains to consider 0 <Z<a<b. Now, since a <b -^?we may use Theorem 1 wiUJi 
£ a, b in place of a, b, c. Since lea + 1 =ry2,l:b + 1 =12, m&ab+ 1 = w2 we define z'and w'by what corresponds 
to (3.3), namely 

z' = / F - 2W 
iv ' = az —'yw. 

By Theorem \,l:b' + 1 = z'2 defines/?'which, by (3.6), must be inZ. Now since 'cb'+ 1,l:a + 1,b'a + /are all squares 
with only a not in Z, the last paragraph in the proof of Theorem 1 implies that b'=Q. Hence a <b *c' impliesz' = 
w'= 1 antib =a+2y'+'c. But w = a+y. Wenze'c = a+h - 2w and c = Cj(a,b) for some/. We collect these results in 
the next theorem. 

Theorem 4. If a and /? are of the same positive degree, c satisfies (3.1), and the degree of c is a multiple of n, 
then c = ĉ fe,Z?>/ for some k or c = h(a,b) for some/. The second sequence is omitted if b = a +2. 

Corollary. If a and b are both linear or both quadratic in x and if c satisfies (3.1), then c = c^(afb) for some k 
or c = 'cj(afb) for some/. The second sequence is omitted if b = a +2. 

The corollary follows since if n = 2, the degree of c satisfying (3.1) must be even. When n > 2, we have in general 
more than two sequences. But by (3.3) we can for each c find a ?of degree not greater than n. From these ?, stem all 
the c satisfying (3.1). 

4. WHEN IS chcr + 1 A SQUARE? 
To answer this question we first find a formula for c^cr + 1 for k > r. Since we need a similar result for C{ we adopt 

a temporary notation which enables us to derive both results simultaneously. First, by use of fk+i =2wfk - fk-l> 
we can write (2.4) as 
(4.1) Ck = fk(cifk+2fk+ll where ct = a + b -2w. 

Similarly, (3.9) can be written 
(4.2) h = fk(cih-2fk+l)-
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To treat these together, we write 

(4.3) dk = fk(d1fk+2fk+1), 

whered^ = ck or q , according as ± is + or - and d1 = d±. 

Then 

(4.4) dkdr +1 = Cdi fkfr ± fk+l fr ± fr+l 4 ^ " (fr+l fk ~ fk+1 U)2 + ? • 
Now 

fr+l fr 
fk+1 fk 

\2wfr - fr_i fr 

\2wfk - fk_i fk 

fr fr-1 
fk fk-l 

fi h 
fk-r+1 fk-r = fk-

This shows that 

Thus 

(4.5) 

fr+lfk-fk+lU = fk-

dkdr+1 = (dlfkfr±2frfk+l±fk„r)
2-f2kr+1 . 

Now if k = r + 1, it follows that f^_r = 1 and we have 

(4.6) dr+1 dr + l = (dt fr+1 fr ±2frfr+2 ± V2. 

So we have the following theorem. 

Theorem 5. The polynomials cr+i cr+ 1 and "cr+{cr + 1 are squares in Z[x]. 

5. />-SETS WHEN a AND b ARE LINEAR 

From Theorem 5, ck cr + 1 is a square when k and r are successive integers. If a and b are linear we can show as in 
the previous paper that c^cr + 1 is a square in Z[x] only if k and r are consecutive integers. The idea of the argument 
is the same but the needed modifications cause a little trouble. We need the same result \wcy:r+ 1 but since the 
proof is almost the same, we omit it. We will need the following three lemmas which, as in the previous paper, we 
state without proof since the proofs are easy. 

Lemma 1. Let <pi (a), $2(al ar,d ^M be three polynomials in Z[a, a'1] such that the first t coefficients of 
ifi (a) and ^ 2 ^ a r e t n e same. Then the first t coefficients of <# (a)X(a) and ^ / W X r W are the same. 

Lemma 2. Let the first t coefficients of iptfa) and \pi(a) be the same fo r /= 1 and 2. Then the firsts coefficients 
of $i (a)$2(a) aRd ^1 (a)^2(a) a r e a ' s o t n e same. 

Lemma 3. Let <#(a), / ° 1, 2, be two polynomials in Z[a, a'1] whose leading coefficients are positive and such 
that the first t coefficients of their squares are the same. Then the first t coefficients of the two polynomials are the 
same. 

Now we prove the basic theorem. 

Theorem 6. If a and b are linear in Z+/x/,with ab + 1 = w and w in Z+[x], then a, b, cr, ck is a P-set if and 
only if r and k are consecutive integers. The same is true for a, b, Fr, £"& . 

Proof. The " i f " part is established by Theorem 5 and/or Eq. (4.6). To prove the "only if" part, first note that 
e=a+b-2w>$ is equivalent to (b - a)2 > 4 with equality if and only \\b= a+2. So the case e = 0 is covered by 
the previous paper. Or the reader may prefer to note the modifications needed in the following proof where we as-
sume that et0. 

Now fr can be thought of as a polynomial in Z[a, a'1] of degree r—1. It ha$2r - 1 terms with 1 and 0 alternating 
as coefficients. Thus if k > r, the sequence of 2r - 1 coefficients of fr is the same as the sequence of the first 2r - 1 
coefficients for fk. Henceforth in this proof we assume that k > r + 1, that ckcr + 1 is a square in ZfxJ and seek a 
contradiction. From what we have just noted, the first 2r + 1 coefficients of ef^ + 2f^+i and otefr+i +2fr+2 are 
the same, where the f-t are viewed as polynomials in Zl^oT1]. Note \\wXe = a+b - 2w, being different from zero, 
is not in Z, for suppose this is true and write 

a = a\x+ao, b = b^x+bo, and w = W^X + WQ. 
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Then if e is in Z, a^bi = Wi and ai + b± -2wi =0 imply ai =bi=wi. From this it follows that bo =ao+2 and 
hence e = 0, contrary to hypothesis. Furthermore e is not in Zfa, a"1 J since a depends only on the product aband 
not on the sum a + b. Let Z'=Z[e] and see that c^ and cr are InZ'faT*, a]. 

Using Lemma 2 and (4.1) with ci replaced by e, we then see that the first 2r + 1 coefficients of cy, and cr+i are 
the same. Then by Lemma 1, c^cr and cr+\ cr have the same first 2r+ 1 coefficients. Hence the same can be said for 

ffk,r = Ckcr+ 1 and gr+i,r = cr+icr+ 1. 
Supposegk>r ^V M, that is,#^r is a square in ZfxJ. We next show t h a t ^ r is also a square in Z'[a, a ], in fact 

ip(x) = e$i + }f2, where ^ and $2 are in Z[a, a'1 J and et'= e for some t' in Z. Note that w^O since a and b are 
linear. Since x = (w - WQ)/WI , 

ip(x) = w~1
to(w) = W^IWOQM + U] , 

where u is in Z, t > 0,and o(w) with OQ(W) areinZ/W/. Writer = eix + eo where, as we showed above, &i / 0. Note 
that 2w = a + a , and have 

y(x) = eoi (a)/ei wtf12s + o2(a)/e1 w\2s 

= eo3 (a)/vi + 04 (a)/v2, 
where s is a non-negative integer, v± and v2 are positive factors of eiw\2s, no factor of v^ greater than 1 divides all 
coefficients of eo^ (a) and no factor of v2 greater than 1 divides all coefficients of 04(a). Let vi = hv^, v2 = hv4, 
and (1/3, V4)= 1. Then 

9 9 9 9 9 9 _ "? 0 

(5.1) /? Vjv^gks = e v4o3 +2e\/^V40^04+ 1/^04 , 

This implies that 1/411/3 and 1/311/4 and hence 1/4 = 1/3= 7. Thus 
h gk,r = e2o2

3+2eo304 + 04 . 
Hence h2 = 1 and ipM = 0(73(0) * 04(0), which is the result we announced at the beginning of this paragraph. 

Now compare 
\/ffr+l,r = efr+lfr+2fr+2fr+1, 

from (4.6), and 
v^Tr = eo3 + 04 . 

The degree of \Jgr+i,r in a i s l a n d hence each of the first -?/- coefficients of \/gr+i>r is divisible by 2 ore (or both), 
and the first 2r + 7-st coefficient is the term free of a. Now fr+i fr is a sum of odd powers of a and hence there is no 
term free of a in fr+i fr. This, with (4.6) shows that the 2r + /-st coefficient of gr+i!r i s a n °dd integer. We showed 
above that the first 2r + 7 coefficients of g^r and gr+ij are the same. Hence, by Lemma 3, the 2r + /-st coefficient 
in \/gk,r is an odd integer. 

On the other hand, (4.3) with d[ = q, d± =ci = e implies 

*2M = gk,r = e2flf2 +2efkfr(frfk+l +fkfr+l)+4fkfrfk+lfr+l + 1-
The degree of g^r in a is 2r+2k - 2. Thus each of the first 2r + 2k-2 coefficients is divisible by e or 2. But 

r + k-1 > r + r + 2-1 = 2r+1. 
This is the contradiction that proves the theorem for q , and cr. The proof for c^ and cr is almost the same. 

Now we prove our principal theorem for a and b linear. 

Theorem 7. Let a and b be linear in Z+fxJ and ab + 1 = w , w in Z+fxJ. If 

(5.2) a/b/a+b+2w/c 

is a P-set of four elements, then 

(5.3) c = c2 (a,b) = ~c2(b,a+b+ 2w). 

Proof. Since a, b, c is a P-set, the corollary of Theorem 4 shows that c = c^(afb) for some k or c = Cj(a,b) for 
some/ Now a +b +2w = ci(a,b) and if c = cy>(a,b), Theorem 6 implies 
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(5.4) c = C2(a,b) or c = Cj(a,b) for some/. 

Now use the same argument with a replaced by b and h by a + h + 2w. The corollary of Theorem 4 shows that 
c = c%(h, a + b + 2w) for some k or c = h (b, a + b + 2w) for some /' But 

(5.5) a = c1(b/a+h+2w) 

and Theorem 6 shows that 

(5.6) c = c2(b,a+b+2w) or c = c^(bfa+b +2w) 

for some/:. 
NextweprovethatC2^/3-^i& + 2w) = c2(a,b). Mo\Nb(a +b +2w) + 1 = (b +w)2. So, using the recursion formula 

(2.8) fore in place of c, we have 

c2(h,a+b+2w) = [4(h+w)2 -2]a+2(a+2b+2w) 

= [4(ab+b2+ 2bw+1)-2]a+2(a+b+2w)+2b 

= (4ab +2)(a +b +2w) +2a+2b 

= (4w2 - 2)ci (a,b) +2a+2b = c2(a,b). 
Then if c j= c2(a,b) we know from (5.3), (5.4), and (5.6) that Cj(a,h) = c^(b, a+b +2w) for some/ and k greater 

than 2. But since c^ is of degree 2k - 1 and cy of degree 2j - 7, the equality implies/= k. We now reach a contradic-
tion by showing that 

(5.7) ck(b,a+b+2w) > l},(ajb), if k > 2. 
We showed above that b(a + b + 2w) + 1 = (h+w)2, that \%,b +w is the " w " for the pair b, a+b + 2w. Correspond-
ing to a for this pair is 

0 = b+w + *J(h +w)2 - 1 > a = w + V ^ 2 - 1. 

Lethk = (@k - p~k)/(p- p-1) to see that hk corresponds to fy. Thus, from (4.1) and (5.5) 

ck(b,a+b+2w) = hk(ahh+2hk+1). 
Using (3.9), the inequality (5.7) may be written 

(5.8) ahl+2hkhk+1 > (a+b - 2w)f^+2fkfk^ . 

To show that (5.8) holds, it is sufficient to show that ah^ > (a+b - 2w)f£ for k>2.Jo this end we first show 
that hk/fk increases with k. To do this use the recursion formulas for /?^ and 4 to get 

Hfk-l ~ fkhk-t > (2whk_t -hk„2)fk_i(2wfk~i ~ fk-2frh~l 

= hk-ifk-2-fk-lhk~2 > 1*2*1 -bif2 = h2-f2 > 0. 
Hence b^/fk increases with k and (5.8) holds if 

ah2 > (a + h-2w)f2, that is, a(b + w)2 > (a + b-2w)w2 . 

The last inequality is easy to verify. Hence the inequality (5.7) follows and the theorem is proved. The following cor-
ollary follows immediately from Theorem 2. 

Corollary. Let a, h,dbea P-set of three linear elements of Z+fx] with a <b <d. Then the only P-set contain-
ing a, b, and d is 

a,b,d,c2(a,h). 
REMARK. Notice that the part of the above where we showed c2(a,b) = ~c2(b, a + b +2w) did not depend on a 

and b being linear. In the course of proving this result we only assumed ah + 1 = w2 and (2.8) for cy, and dj. 

6. P-SETSOVERZ 

Sn this section we assume that a and b are positive integers, a <b, andab + 1 = w2, where w is a positive integer. 
Also, as in Theorem 3, we assume that a and b are "not too far apart," specifically, that b < 4a. We find all integers 
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c such that a, b, c is a P-set. Toward this end we first need to sharpen inequality (3.8) of Theorem 1. 

Lemma 4. Let a, b, c satisfy Eqs. (3.1) and let (3.3) define/', and ac'+ 1 = y'2 define c'. Then, if b <<? +c, it 
follows that 
(6.1) c' < c/4ab. 

Proof. As in the proof of Theorem 1, the condition/? <a+c implies that / 'and z' are positive. Since bc'+ 1 = 
z'2 we have 

ac + 1 = y2 = (wy'+az')2 = w2ac' + ab + 1+a2(1+bc')+2way'z'. 

Hence 
c = (w2+ab)c' + h+a+2wy'z' > 2abc''+a + b + 2sjabsjabc', 

since w = sfab + 1. Thus c > 4abc' and the proof is complete. 
The first part of the proof of the next theorem is like that of Theorem 4. After this, further details must be dealt 

with. 

Theorem 8. If a < b <4a, a and b are in Z+. and Eqs. (3.1) hold, then c = cy,(a,b) for some k or c = Cj(a,b) 
for some/ The set Cj is omitted \\b = a+2. 

Proof. \ic> w2, then c > b - a and, by Theorem 1, a sequence of transformations (3.3) yields a c' < w2. [We 
assume that the c before c' in the sequence is not less than w2. if c <w2 the argument is what follows.] If c' > b, 
Theorem 2 shows that c' = a + b + 2w = c^ (a,b) and hence c = Ck(a,h) for some k. If, on the other hand, c' < 
b, Theorem 3 shows that c' < a < b. Then if b < ac' + 1, Theorem 2 implies/; = a+c' + 2w', where w'2 = ac'+ 1. 
Then, as in the proof of Theorem 3,c' = a + b -2w and hence c = lj(afb) for some j, where this sequence is omitted 
\ic'=0,that\s,\ib = a + 2. 

It remains to consider 0 <c'<a <b and b >ac'+I Then 4a > £ implies c'< 3. Write ac'+ 1 = y<2 and be'+ 1 = 
z'2. Now we use (3.3) once for c'f a, b in place of a, b, c. By Lemma 4 the transformation takes Z? into /?' satisfying 
the inequality 

b' < b/4ac' < 1/c', 

since a < 1 + b. Hence b'= 0 and, as in Theorem 2, this implies 

(6.2) b = a + c' + 2y' = ale', a). 

First if c'= 2 or 3,b >ac'+ 1 implies^ +c' + 2y'>ac'+ 1. Then 

2y' > da-d, where d = c'- 1. 
Then 

4(ac'+1) > d2a2 -2d2a+d2, 
(6.3) 0 > d2a2 -2a(d2 +2d+2)+d2 -4. 

\\d = 2, (6.3) becomes 0 >4a2 -20a, that is,a <5/2 which is impossible. Ud= 1, (6.3) becomes0> a2 - 10a-
3 which holds if and only if a < 10. Then, under the conditions imposed, the only possibility \%a = 4,b = 12, w = 7. 
Thena +b - 2w = 2 = c'= ci(a,b) and c = ij(ajj) for some/. 

Second, if c'= 1, (6.2) becomes b = a + 1 + 2y'and 1 +ab = w2 implies w = y' + a. Hence a + b - 2w = c' = ci (a,b). 
Then, as in the case when d = 1, c = Cj(a,b) for some/ This completes the proof. 

Theorem 8 implies the following theorem with only two little details to be filled in. 

Theorem 9. \\a,b,e = a + b + 2w, d \s a P-set of four distinct elements of Z+subject to the conditions a <b 
< 4a and ab + 1 = w2, then d must be in each of the two following sets: 

^1 = [ck(a,h) u Cj(a,b)} 

$2 = {ck(bfe) u Cj(b,e)} . 

One possibility \sd = C2(aJb) = C2(b,e). \tb = a+2, thenj^ = \Ck(a,b)}. 

Proof To apply Theorem 8 to this theorem we must notice that e < 4b is equivalent to 4 < (9b - a)(b - a) which 
holds since b>a>0. For the rest, one notes the Remark after the Corollary of Theroem 7. 
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7. P-SETS OF FIBONACCI NUMBERS 
Let F{ denote the / Fibonacci number. The following well known facts can easily be verified for 5 = F2r_2 » 

b = F2r, r > 1: 

i) w2 = ab + 1 = (b- a)2, that is, a2 - Sab + b2 = 1. 

ii) If e = F2r+2 .then e = ci (a,b) = 3b - a,ae + 1 = (a + w)2 = b2,be + 1 = (b +w)2 = (2b - a)2, where 

w = b-a = F2r_1. 

These two properties show that a, b, a form a /'-set. From i), 

(7.1) b = at, where 2t = 3 + *j5 + 4/a2. 

This shows that b <3a with equality only if a = 1. Hence the hypotheses of Theorem 8 hold and all the numbers d 
such that a, b, e, d form a P-set can be expressed asck(a,b) NCj(a,b). V. E. Hoggatt, Jr., and C. E. Bergum showed 
[1] that 

(7.2) F2r-2, F2r, F2r+2, c = 4F2r„1 F2rF2r+1 

is a P-set. It is not hard to show that c in (7.2) is, in our notation, c2(a,b) for a = F2r_2 and b = F2r. To this end, 
notice that, since F2r_1 F2r+1 = f f r + I, c in (7.2) can also be written 

(7.3) c = 4b(b2 + 1), where b = F2r. 

This can be shown to bec2(a,b) by using (2.8) with w = b -a, k = 2. 
Our Theorem 3 shows that there is no c between F2r_2 and F2r such that c, F2r-2, F2r is a /'-set. Theorem 2 shows 

that if these same three numbers form a P-set with F2r < c < F\r_t, then c = F2r+2. The following Theorem shows 
that c is not a Fibonacci number. 

Theorem 10. If a = F2r_2, b = F2r, and r > 1,then 

(7.4) F6r,t < c2(a,b) < F6r. 

Proof. From (13),c2(a,b) = 4F3
2f + 4F2r. Now 

Fk = £_z_ |~ , where 0 = (7 + y/5}/2, 0 = (1 - y/5)/2. 

Hence 

(7-5) F{ - ^I'lf = '1/5)IF3k ~ 3(- DkFk] . 

Thus the two inequalities in (7.4) will follow if we can show 

(7.6) F6r/F2r > 8, 

(7.7) F6r/F6r.t > 5/4. 

To show (7.6) use (7.5) to get F$r/F2r
 = 5F2

r+3, which shows that F^r/F2r is an increasing function of r. Then 
(7.6) follows from 

F6r/F2r > F12/F4 = 48 > 8. 

Also (7.7) holds since F2r/F2r_i is an increasing function of r and 

F6r/F6r-1 > F12/Fn = 144/89 > 5/4. 

Thus the proof is complete. 

8. UNFINISHED BUSINESS 

For b of degree greater than 2, there does not seem to be much of interest since in most cases there will be more 
than two sequences of numbers which with a and b form a P-set. For a and b linear it would be interesting to show 
that 
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(8.1) a,b,cr(a,h),cs(a,b) 

is not aAset for any r and s. The difficulty in proving this is that, if one is to use the method of Birch, one first needs 
a pair r,s for which crcs + 1 is a square. One might at least prove that there isat most one pair r and s such that (8.1) 
is a P-set. 

For a and b quadratic functions of x, the basic difficulty is that gy,>r could be a square in Z[x] without being a 
square over Z[a,b]. Even if that were surmounted, adapting Theorem 6 to quadratics would present some difficulties., 

For a and b integers, this paper does not add much to present knowledge except to place the problem in a larger 
setting. The Davenport-Baker result shows that in Theroem 9 when a = 1, h = 3, the intersection of ^ and J2 is 
£2(1,3) = 120. A really significant result would be a proof that this is true for a and b any two successive Fibonacci 
numbers of even index. To show this independently from their result would present all the difficulties they encoun-
tered for their special case. At one time I hoped that one might by using the sequence of transformations (3.3) and a 
proof of "infinite descent" reduce the general result to that of the pair a = 1,b = 3, but it does not seem to work. 

A somewhat weaker result would be the conjecture that if a, b, c are three successive even-indexed Fibonacci num-
bers and if a, b, c, d is a F-set of four numbers, then d cannot be a Fibonacci number. From Theorem 10, C2(a,b) is 
not a Fibonacci number. Unfortunately, for c^(a,b) with k > 2 there does not seem to be such a definite inequality 
as (7.4). One possible approach could be to consider the set of Fibonacci numbers as dividing the line of positive 
reals into intervals. Perhaps one could, using Theorem 9, assume, for example, that cr(a,b) and cs(b,e) were in the 
same interval and thus get a relationship between r and s which might be fruitful. But this seems like a long hard row 
to hoe. Also it would be interesting to show that a, h, c as defined above are not in aP-set of five elements. All of 
these results seem very plausible. 
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B. We can easily obtain 

(2P)p = 2(2p- D(2pZi) and from Part A, (2p) = 2 (mod/?3). 

Thus2p ^2(2p - 1) (2pZf) <m o d P3)' S i n c e & P3^= (2P ~ IP3) = 12, and 2p - 1 we have the multiplicative 
inverses (mod/73) and we get/?/#/? - V = (2p~2) (mod/?5). Now(2p - 1H=-1 -2p-4p2 (mod/?3). Hence 

p/(2p-1) - p(-i-2p-4p2) (mod/?5) = -p-2p2 (mod/?5). 
The result then follows. 

AN ADJUSTED PASCAL 
H-213 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

A. Let An be the left adjusted Pascal triangle, with n rows and columns and 0's above the main daigonal. Thus 

/ 1 0 ••• 0 \ 
1 1 0 - 0 \ 

An " V 1 2 1 0 • 0 / 
\ J / nXtt 

Find An'A
 Twhere A T represents the transpose of matrix, An . 

B. Let 

( 1 0 0 
0 1 0 
0 1 1 0 
0 0 2 10 

nXn 



ON GENERALIZED Gj,k NUMBERS 

W.E. GREBG 
West Virginia University, Morgantown, West Virginia 26506 

Most of this paper was finished prior to the author's involvement in other work [9 ,10] . It is the purpose of this 
exegesis to find a self-contained definition of {Gj} which is not dependent on other sequences. Such are (10), (12) 
and (16). I have defined these numbers in [2,(3)] and [3, (9)] . G numbers of thej'th order are: 

(1» GJtk = 1+P*k+Pj,2k-l, 

where the Lucas complement is by definition 

(2) Pj,k = PjMi+pj,k-i> 
and where coprime sequences are by definition,/ an integer, 

(3) Pjtk+i = JPj,k+Pj,k-l, 

and where the initial conditions (IC) are by choice 
(3a) Pjt0 = 0 and Pjj = 1 for all /'. 

To begin we need the following easily proven identities. The Lucas complement of the Lucas complement is 

(4) PJMI +Pj,k-i = PjM2 +Wj,k +Pj,k-2 = (4 +j2)Pjtk • 
Secondly given any two point recurrence/3^ =aPn +bPn_i the recurrence among its bisection is known to be 
(5) Pn+2 = (a2+2b)Pn-h

2Pn_2 . 

Thirdly we need the central difference operator 
(6) 8 2Pn = (A - V)Pn = Pn+1 - 2Pn +Pn_t 

and fourthly I define a new operator small psi 
(7) VjfPJ = [S2-j2]Pn, 

where j 2 is really j 2 times the identity operator. Note that if B^n is any generalized bisected coprime sequence with 
any BtQ and Bu whatsoever that xjjj then acts as a null operator, to wit 
(8) \\jj(Bj)n) = 0 for a l l / . 
Now when / = / then (7) reduces to \\j(Fn) = [82 - l]Fn. Consider 

(9) ^j(Gj)k) = tyfPlk)-/2 

which is obvious from (1) and (8) and the fact that ^j(V= - / . In (9) elimination of 5 via (6) gives 
(9a) 4jj(Gj)k) = (4 +j2)Pj>k - (2 +j2)P*k -j2 . 

Theorem. The recurrence for \pj(Gjfk) is Fibonacci but for the additive constant/"5. 
Proof. Rewrite (9a) as i/'yGy^+i and substitute (3) giving 

<10) 1>j(GJtk+1) - fj2 +4][jPj)k +Pj,k-lJ ~ ft2 +2][jPlk +Pj,k~l] -J2 

= Mj(Gjtk) + il>j(Gj,k-l)+i3 

Eliminating/^ by calculating tyGj^+i - \pGjfk obtains 
Corollary 1. ^GjM1 = (j+l)^Gjfk - (j- D^Gj^-i - ^Gj>k„2 • 

166 
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Inserting (7), the definition of psi, one finds the general recurrence 

(11) Gj,k+i = (i2+i + 3)Gj,k-(J3 +J2+3j+2)Gjyk_1+(j3 -j2 + 3j-2)Gj}k_2 

+ tj2-j + 3)Gj}k_3-Gj)k_4. 

This recurrence is not messy but instead factors into the crowning equation of this paper 

(12) (E2-(j2+2)E + !)(E2-jE-l)(E-l)Ghk = 0, 
where E is the forward shift operator. Note that the first, second.and third parentheses of (12) are, in fact, the recur-
rences for bisected coprime, coprime and constant sequences respectively! A more useful expression in terms of for-
ward and backward difference operators is 

(13) (82-I)(A+V-l)AGj>k = 0 = (A3-2A2 + A-M82)Gj)k 

only if/ = 7. Now (12) is more general than (1) and (13) is more general than { ^ j = . -79 ,42 ,10 ,9 ,2 ,4 ,3 ,6 ,10 , 
21,46,108, - . An example of (13) is the sequence 

(13a) 0, 0, 0, 0 , 1 , 5, 18, 56, 162,450,1221, 3267,8668, 22880, •••, 

60204,158108,414729, 

whose falling diagonal, A *, from the first zero is 

(13b) 0 , 0 , 0 , 0 , 1 , 0 , 3 , 0 , 8 , 0 , 2 1 , 0 , - . . 

Hence to obtain/ order 6 numbers some IC must be introduced. First some simplifications. When/ = 7, then Eqs. 
(9a), (10) and (11) become 

(9b) (82-l)Gk = 5Fk-3Lk-1 = -(1+2Lk_2) 
(10a) <\)Gk+1 = \pGk + \PGk_1 + f 

(11a) Gk+i = 5Gk - 7G},.! + G^2
 + 3G^3 - Gk-4 > 

respectively. Note that (13a) was calculated by (13) and checked by (11a). Also note that (11), (12), (13), (11a) are 
fifth-degree recurrences. Gould [5] found (11a) independently. Directly from (10) one can find the modified 
recurrence 
(14) GjM1 = (j2+j+2)Gj>k-(j3 + 2/)Gj)k-l ~ 0'2 ~ J +2)Gj>k_2 + Gj)k_3 +j3 , 
which, when/= 7, becomes 

(14a) Gk+1 = 4Gh-3Gk_l-2Gk_2 + Gk_3 + 1 

and from this latter it is easy to derive the exquisite 

(14b) 84Gk+2 = 382Gk+1-Gk + l . 
At this point the reader should study Tables 1 and 2. Now a curious fact results from Corollary 1 which I rewrite as 

Corollary 1. \p (Gj}k+i + Gj)k_2) = (1 +MGj>k + (1 ~ MGj>k-i 

This says that making both / and k negative reproduces the same recurrence. To be specific replace/ by - /and let 
n = (1 - k) and the Corollary regenerates itself. Thus 4, 3, 6,10,21,46, - has the same recurrence as 4,4 ,9 ,18,42, 
101,--.See Table 1. 

Lemma. The zeroth term of all {Gj} equals the constant 4. 

The proof is direct from Eqs. (1) through (3a). Omitting the subscript/for simplicity and recalling that Pjj = 1 for 
all/we have: 

Go = 1+Po+P-l = 1+Pi+P-i+P-i = 1+3Pi =4 

(15) Gj>0 = 4. 

From (12) of paper [3] one may easily find 

(16a,b) Gjfl = (j+2) and b2Gji0 = Gj}1AGjy0 
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Table 1 
Array of G^k Numbers 

j/k - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 
6 2027452 53120 1444 32 4 8 76 1640 54796 2034896 
5 510354 18761 729 22 4 ti 54 843 19629 513402 
4 98532 5392 324 14 4 6 36 382 5796 99574 
3 13090 1154 121 8 4 5 22 146 1309 13364 
2 1020 156 36 4 4 4 12 44 204 1068 
1 42 10 9 2 4 3 6 10 21 46 108 
0 4 2 4 2 4 2 4 2 4 2 4 

- 1 42 18 9 4 4 1 6 2 21 24 108 
- 2 1020 184 36 8 4 0 12 16 204 804 
- 3 13090 1226 121 14 4 - 1 22 74 1309 12578 

TabSe 2 
The Table of D ifferences of Gk 

9 - 2 4 3 6 10 21 46 108 ••• 
- 7 2 - 1 3 4 11 25 62 

9 - 3 4 1 7 14 37 
-12 7 - 3 6 7 23 

19 -10 9 r 16 
46 -29 19 - 8 15 

-75 48 -27 23 2 
-200 123 -75 -21 

323 
leaving a fourth initial condition to be chosen in order to define Gj^. We may now take this to be 

(16c) 32Gj}1 = 2Gj_1. 

One can also show from (1) or from (12) of paper [3] that 

(17) Gj}_2 = (I2 +2)2 and Gjt_i = j(j - 1) + 2 = G^+U.t 
for all integer/. At this point it will help the reader to go through an example such as the/= 3 case beginning with 
p3,k='®. 1»3,10,33,109,360,1189,3927,-. In fact relations stronger than Corollary 1 exist as is evident from 
Table 1 where we see that 

(18) Gj)k+Gj„k = G^k+G.j.y, 

for all integer/ and k and indeed a special case follows if e is even 

(19) Gj>e = G.jt€ 

Now (18) and (19) are easily proven from (1) and the odd/even properties of F and L sequences. 

DIVISIBILITY PROPERTIES 

For the study of divisibility properties we are able to rewrite (1) by substituting (6) of [3 ] , 
P2n-1 = PnPn-1 ~ COS (iw) , 

into it giving 
(20) Gjtk = Plk(l+Pj,k-l> + 1+(-1>k+l 

(20a) Gk = Lkd + Fk.tJ+l + f-V^1 . 
Hence the divisibility properties of the even Gk are known since Jarden [4, p. 97] has tabulated the divisors of (1 + 
Fn). The divisibility of the odd G^ is involved. Three divides G^ at intervals of eight starting with 
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k = • ••- / , 1,9,17,25,33,-

and five divides G^ at intervals of twenty starting with k = — 3 , 17, 37, ---and proceeding in both directions. Divisi-
bility properties are left for a later paper. 

Conjecture 1. If Gk is prime then \k\ is prime. 

Conjecture 2. The number of primes in [GI } is infinite. 

The known primes are G_$ = 79, G_i =2, G± =3, Gj = 263. G$i may be prime. 
The sequence of G_£ is interesting. The first thirteen G_k numbers are placed immediately below their correspond-

ing Gk numbers beginning with k = 1 in both cases. 

(21) 3,6,10,21,46,108,263, 658,1674, 4305,11146, 28980, 75547,-

2,9,10,42,79,252, 582,1645,4106,11070,28459, 75348,195898, -. 

A glance at these G numbers provide another symmetry property, 

(22) G-2n-G2n = F4n and Gd + G„d = L2d+2 for d odd. 
And more generally it is rather easy to show via (20) that 

(23) Gj-2n ~ Gj}2n = Pj,2n(Pj,2n+l ~Pj,2n-lt = JPj,4n 

(24) Gj,d + Gj}„d = P*2d+2 for d odd 

DIFFERENCES OF Gk 

We need the following: 

(25) VkHn = Hn_2k and so lkHh = H_k 

(26) l2kBn = Bn.k and V2k+1Bn = MBn.k 

(27) VkAn = signum (An)\An+k\, 

where Bn is any bisection of Hn, and where (25) and (26) are easily derivable from 

(28) Hn+1 = Hn + Hn_i, any H0 and Ht, 

and where An is a two-point sequence with alternating signs satisfying 

(29) An+1 = -An+An-i 

corresponding to j = -1 in (3), and signum is the sign function. 
Then application of (25) and (26) to (1) immediately gives 

(30) VkGk = Fk-i+(-UkLk, 

which becomes -Pk+i in the odd k case. Note that these numbers lie along a falling diagonal from GQ = 4 in Table 2. 
Equation (30) introduces a significant simplicity into the Gk numbers. Note that (30) is reminiscent of the definition 
of the Bell numbers, to wit: 

(31) V ^ B e l l , , = Belln_i, n > 2. 

Likewise one may also show that 

(32) V^Gfe = Fk-4 for odd k > 3 

and these numbers 1,1,2,5, - a rea bisection of the falling diagonal from Gi = 3. Note that all falling diagonals :3FE 
two bisected sequences, Bn, and satisfy for all k and all n > 1, 

(33) An+4Gk = 3An+2Gk-AnGk . 

I did not expect to find upon glancing at the central differences of GQ that they would be: - 3 , 19 , - 75 , ••• almost 
Lucas numbers. We may write 
(34) d2nG0 = l2nGn = 1 + (-1)nL3n . 
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This may be easily derived from (1) withy = 1 by applying (25). The critical step is 

V2kLk = Lk_4k = L-3k 
according to (25). We obtain 
(35a) V^Gu = L_3k+2, k > 1 

(35b) V2kGk = L_3k+F_u k > 1 

(35c) V2k+1Gk - U3k-2 + ^2, k>U, 
where, of course, F_2 = - 1 and F_f = 1. Equations (35) prove what is obvious by looking at Table 2, namely if we 
make a zig-zag below the 4 entry we obtain the sequence: - 1 , 2 , - 3 , 7 , -12 ,19 , -29 ,46 , -75 , 123, -wh ich is al-
most the Lucas sequence. This makes the whole sequence easy to generate by hand. Finally the choice of letter for 
these sequences was Gould's [1] who suggested my name for them after seeing my paper [6 ] , 

The author appreciates some comments by Zeitlin [8] concerning (14) and (23). Zeitlin [7] has also pointed out 
that the subscript of the subscript of the last term of Eq. (12) of [6] should be (k - 1) and not (k - 2). This mis? 
print is obvious from the expansion in (13) of [6 ] . 

Having found that the messy looking G^y, sequence actually satisfies the near Fibonacci relationships (10) and (12) 
and further that the Lucas numbers have made their presence known, I am impelled to write down an old haiku of 
mine in which even the numbers of syllables in each line, namely 3, 2, 5, 7 are themselves a Fibonacci sequence. 

PHI 
Multiply 
Or add 
We always reach phi 
Symmetries we perpetrate. 
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where the /^column of Cn is t h e / ^ row of Pascal's triangle adjusted to the main diagonal and the other entries are 
0's. Find Cn-A

T. 
n n 

Solution by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois. 
A. Let Bn = An-A^. Let a^ and b{j be the entries in the ith row ar\djth column of An and Bn, respectively. Sim-

ilarly, let a?/ be t h e / ^ entry of AT. Then 
' i ~ 1 > if i>j; 

= o elsewhere; 
therefore, 

< = ({=!)'"</ 
= o - elsewhere. 

[continued on page 183.] 



THE FLUID MECHANICS OF BUBBLING BEDS 

F.A.ZENZ 
Manhattan College, Riverdale, New York 10471 

The basic criterion in establishing a pilot plant fluidized bed reactor, leading to minimal uncertainties in later scale-
up, is to ensure that it simulate exactly a portion of the freely bubbling commercial bed. Though this may frequently 
require a larger-than-economically-justifiable design, a knowledge of the considerations surrounding its development 
allows some appreciation of the consequences of any compromises. In the scaling of fluidized bed reactors and the 
development of bubble models to describe the gas-solids contact, it is necessary that the bubble be definable from its 
source to the bed surface. Though an average size may be suitable in certain instances, its determination is in any 
event dependent on the very parameters needed to describe the bubble's entire history; hence a truer-than-average 
physical interpretation is to be preferred. 

The idealized instantaneous picturization of a freely bubbling gas fluidized bed of solids, as illustrated in Fig. 1, 
gives rise to a number of questions forming the bases of realistic scaling criteria and bubble-related kinetics. 

1. How do bubbles form? 
2. By what mechanism do they rise? 
3. What lends them stability? 
4. How fast do they rise? 
5. What makes them grow in size? 
6. What size can they attain? 
7. How do bubble and interstitial gas interact? 

BUBBLE FORMATION 

Bubbles form at the ports where fluidizing gas enters the bed. They form simply because the velocity at the inter-
face of the bed just above the hole represents a gas input rate in excess of what can pass through the interstices with 
a frictional resistance less than the bed weight and hence the layers of solids above the holes are pushed aside until 
they represent a void through whose porous surface the gas can enter at the incipient fluidization velocity. If the void 
attempts to grow larger the interface velocity becomes insufficient to hold back the walls of the void and hence they 
cave in from the sides cutting off the void and presenting a new interface to the incoming gas. This sequence is illus-
trated in Fig. 2. The depth of penetration of the grid gas jets has been correlated empirically and the size of the initial 
bubble resulting from a detached void shown, within experimental error, to be about half the penetration depth [1 ] . 

MECHANISM OF RISE 

Bubbles or "gas voids" rise in a fluidized bed by being displaced with an inflow of solids from their perimeter. Since 
free flowing and/or incipiently fluidized bulk solids have shallow angles of repose their walls cannot stand at 90° and 
hence the solids slide down the bubble's walls into its bottom where all the peripheral streams collide to form a so-
called "wake" as illustrated in Fig. 3. Observations [2] of this downflow of solids in a "shell" around the bubble [3] 
have shown it to occupy an annular thickness of % of the bubble diameter so that the overall diameter within which 
a bubble can rise "freely" as it would in a bed of infinite diameter can be defined as 1.5 D B . 

SURFACE STABILITY 

Since the peripheral surface of the bubble is simply a layer of particles, it is at first difficult to understand why the 
particles do not fall from its roof and annihilate the bubble. Danckwerts [4] simple bed support experiments, illus-
trated in Fig. 4, provide the physical demonstration and Rowe and Henwood's [5] experiments the classical approach. 

in Fig. 4(a) the air rate is raised to the point of incipient fluidization and in Fig. 4(b) through 4(f) this same gas 
rate is passed through the bed in the opposite direct1'^. Note that in position (d) the solids do not slide to their angle 
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Fig. 2 Bubble Formation from Bed-Penetrating Gas Jets at the Grid Ports 
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Fig. 4 Bed Support Experiments of P. V. Danckwerts 
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of repose but instead are held at 90° and that on reaching (f) the bed is held up without solids falling from what is 
now its lower side or conversely the upper surface of a bubble in a fluidized bed. When the surface of a bed is tra-
versed by an incipiently fluidizing flow the particles cannot separate from each other. This not only explains the bub-
ble's surface stability but also the integrity of the walls of a bed penetrating jet as in Fig. 2. 

Rowe and Henwood carried out classical drag measurements which revealed that the drag on a downstream particle 
is reduced due to the presence of an adjacent upstream particle. This simply means that a particle cannot fall from 
the roof of a bubble because if it did then it would immediately be followed by the particle above it, and that by the 
particle stili further above, etc., so that the entire mass or bed above the bubble would have to collapse as a unit. For 
this to occur, the excess gas could not be passed through the bed unless the bed were physically held down or re-
strained at its upper surface. 

VELOCITY OF RISE 

The velocity at which bubbles rise in a gas fluidized bed has been measured photographically by several investiga-
tors. The results are in excellent agreement with what would be predicted for gas bubbles in liquids from the drag 
coefficient versus Reynolds number correlations of such investigators as Van Krevelen and Hoftijzer [6] illustrated 
in Fig. 5. Over the range of Reynolds numbers corresponding to reasonable size bubbles the drag coefficient is essen-
tially a constant so that simple substitution shows that if gas density is small relative to the bed density: 

4gDB(pB - pG) 
CD 

3pBV2
B 

4g_ DB(PB-PG) 
3k pB 

or 
VB = 4.01^DB . 

This has been corroborated in experiments with freely bubbling beds. 
Tarmy and Matsen [7] have shown that in slugging beds the full width of the downflowing solids shell (Fig. 3) is 

restricted and the velocity of bubble rise then approximately Yz that in a freely bubbling bed. 

BUBBLE GROWTH 

That bubbles must grow by merger as they rise through the bed is obvious from the large and less frequent surface 
eruptions relative to a much higher frequency of small voids initiated from a usual multitude of grid ports. Growth 
by simple gas expansion resulting from the pressure reduction between bottom and top of a fluidized bed is generally 
relatively insignificant. 

From the solids inflow model [3] of Fig. 3 it is obvious that a bed must be exceptionally homogeneous to expect 
the shell of downflowing solids around a bubble to be flowing at equal rate in every plane. Any bed non-uniformity 
can cause a shift in the bubble shape or position. Merely the prior passage of another bubble could alter local densi-
ties or distributions so as to make bed solids in one local area more readily flowable in a given direction than the bed 
solids in an adjacent area. The solids inflow model therefore obviates a simple mechanism of bubble merger. If two 
bubbles get close enough that their shells of downflowing solids begin to interact, the touching shells will represent 
a local downflowing stream of solids faced with more than one path to the nearest void. The stream could be squeezed 
to the point of being insufficient to satisfy both bubbles and thereby drain off leaving no wall between the voids 
and hence the appearance of a single bubble. 

It is therefore readily acceptable that the idealized bubbling of Fig. 6(a) will lead to a situation as in 6(b) where 
two bubbles of unit initial volume can merge into bubbles of twice this volume. Since larger bubbles rise more rapidly 
these double volume bubbles will catch up and merge with other unit volume bubbles to yield bubbles of thrice the 
initial bubble volume. These newer bubbles will rise even more rapidly and can catch up with bubbles of 1 or 2 times 
the volume of the initial bubble resulting in bubbles of at most 5 times the volume of the initial bubble.The bubble 
of five-fold volume can now catch up with bubbles of 1, 2 or 3 times the volume of the initial bubble resulting in 
bubbles of at most 8 times the volume of the initial bubble as illustrated in Figs. 6(c) and (d). Carrying on this pro-
cess of overtaking bubbles results in a sequence of maximum multiples of the initial bubble volume in which each 
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multiple is the sum of the two previous multiples. This sequence, illustrated in Fig. 7, is the well known "Fibonacci" 
[8] series. 

Since the levels at which the maxima exist represent the summation of the diameters of their forebearers and since 
their diameters are proportional to the cube root of their volumes, it follows that the ratio of merged bubble dia-
meter to initial bubble diameter is equal to the cube root of the number of initial bubbles consumed in the merger, 
and also that the level at which the merged bubbles exists relative to the height (or diameter) of the initial bubble is 
equal to the summation of the cube root of the number of initial bubbles consumed in the merged bubble. For the 
case of the maximum size of merged bubble this is illustrated analytically in Fig. 7 and shown graphically in Fig. 8. 

That the mechanism of Figs. 7 and 8 appears in good agreement with experimental observations is illustrated in 
Fig. 9 where the empirical bubble growth relationships proposed by Chavarie and Grace [9],Werther [10],and Rowe 
[11] are superimposed on the curve representing the Fibonacci series. In using Fig. 9 to determine the maximum 
bubble diameter, D%, at any bed level, LB, above the grid it is necessary to determine the initial bubble diameter, 
DBI, which could exist at the grid level as a result of individual or merged jets. Figure 9 must also not be extrapo-
lated beyond the maximum attainable stable bubble size. 

MAXIMUM STABLE DIAMETER 

Danckwert's bed support experiments (Fig. 4) and those of Rowe and Henwood based on particle drag force meas-
urements, demonstrated that a bed interface (and hence a bubble) should be fundamentally stable against collapse as 
long as it is traversed by a superficial velocity equal to its incipient fluidization rate. Since the inflowing solids shell 
volume usually far exceeds the incipient fluidization rate, there would appear to be no limit to the attainable bubble 
size, or dome, apt to collapse. Presumably, if the dome cannot collapse amid free flowing bed solids then as the bub-
ble grows it could only be limited by particles leaving the shell and being entrained into the bubble void. Such en-
trapment, or particle pickup, would be most likely to occur from the bubble walls as the result of the relative vel-
ocity between gas and surface particles at the interface. Since against the downward velocity of bulk solids the bubble 
fluid (whether gas or liquid) rises at approximately an equal velocity, the relative flow of fluid past the particles at 
the bubble wall is twice the shell or bubble velocity. Equating twice the bubble velocity to the particle pickup ve-
locity allows calculation of the minimum bubble size necessary to stir up the solids interface and thus thwart bubble 
appearance or growth. Since pickup velocity is approximately twice saltation [12], this is equivalent to equating bub-
ble velocity to saltation velocity. This procedure has given results in reasonable agreement with a broad range of ob-
servations reported to date. For example 80 micron particles of sand fluidized with air could sustain a maximum 
bubble diameter of the order of 24 inches whereas when fluidized with water the maximum bubble size would be 
indiscernable. Sand particles 600 microns in diameter when fluidized with water would permit a maximum stable 
bubble size of only % inch and 3,000 micron lead particles a water bubble of 7 inches. 

BUBBLE GAS INTERACTION 

The outside diameter of the shell of downflowing bed solids surrounding the rising bubble is the minimum reactor 
diameter necessary to simulate free bubbling. In addition to simulating free bubbling hydrodynamically it may be 
argued that gas permeation from bubble into surrounding bed should also be equalled. This only becomes significant 
or controlling with coarse and easily permeated beds having a high incipient fluidization velocity. The gas permeation 
or "cloud" diameter is calculable from the depth of gas flow at incipient fluidization velocity over the time interval 
required for the bubble to rise a distance of one bubble diameter. Since the bubble rises at a velocity equal to 4 times 
the square root of its diameter it follows that: 

Thickness of gas penetrated "cloud" =
 mf 

Thickness of downflowing solids "shell" ^ ^ 
or since 

"shell" O.D. = 1.5Z?B _ 
"cloud" O.D. = DB + Q.Sy/DBVmf 

In applying free shell or cloud criteria in scaleup or scaledown the relationship between bubble diameter and bed 
depth is obtainable from Fig. 9 with the limitation of the system's maximum stable bubble size. Thus from grid de-
sign, operating superficial velocity, and fluid and particle properties, it is possible to calculate the initial bubble size 
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at the grid, the maximum stable size, and the bed depth over which the bubbles may grow from their initial to their 
stable diameter. Once having reached their maximum stable diameter any further unlikely mergers would also leadto 
collapse, so that bubble diameter may be considered constant once having reached the stable size. 

An unquestionably conservative approach to a minimal risk pilot plant reactor free of scaleup considerations would 
suggest it equal the larger of either "cloud" or "shell" diameter surrounding the system's maximum stable bubble. 

NOMENCLATURE 

CJJ = Drag coefficient, dimensionless 
DB = Bubble diameter, feet 
0Bi = Bubble diameter at grid level 

g = Gravitational acceleration, 32.2 ft./sec.2 

Lg = Bed depth, feet 

P = Grid jet penetration 

Re = Reynolds number, dimensionless 

l/g = Bubble rise velocity, ft./sec. 

Vmf= Incipient fluidization velocity, ft./sec. 

PB = Bed density, Ibs./cu. ft. 

PG = Gas density, Ibs./cu. ft. 
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Etantinttesl from page 170.} 
Thus, 

>ij-i tk'Z-icr-WjZi). 
k=i k=i 

Actually, the effective upper limit of this last summation is min. (ij) = m + 1. Therefore, 
m " m 

^•=E('V)(^7i f c )-r(y^)(/-V-J. 
k=0 k=0 

which shows that by is symmetric in / and / 
Actually, the last summation may readily be evaluated by the Vandermonde convolution theorem, so that: 
(1) bij = ( 7 ^ 7 2 ) ' fo ra , , /V <n' 

B. As before, let Dn = Cn.A
r
n\ let c{] and d{j bfe the entries in the / ' * row and/*2 column of Cn and Dn, respective-

ly. Then 
cij= {[!])> j<i<2i-1 

[Contmued on p. W ] 
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Send all communications regarding Elementary Problems and Solutions to Professor A. P. Hillman, 709 Solano Dr., 
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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+l +Fn, FQ = 0, Fi = 1 and Ln+2 = Ln+i+Ln, LQ = 2, Li = 1. 

Also a and/? designate the roots (1 +>/5)/2 and (1 ~ V 5 ) / 2 , respectively, of x2 - x- 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-378 Proposed by Frank Kocher and Gary L. Mullen, Pennsylvania State University, University Park and Sharon, 
Pennsylvania. 

Find all integers n > 3 such that n - p is an odd prime for all odd primes/? less than n. 

B-377 Proposed by Paul S. Bruckman, Concord, California. 

For all real numbers a > 1 and b > 1, prove that 

N lb] 
. J2 [by/1-(k/aM = £ fay/1-(k/b)*] , 

k=i k=i 
where [x] is the greatest integer in x. 

B-378 Proposed by George Berzsenyi, Lamar University, Beaumont, Texas. 

Prove that F3n+1 +4nFn+3 = 0 (mod 3) for/7 = 0 , 1 , 2, •-. 

B-379 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Prove that F^n = n(-l) (mod 5) for all non-negative integers n. 

B-380 Proposed by Dan ZwiI linger, Cambridge, MA. 

Let a, b, and c be non-negative integers. Prove that 

n • 

E lk+a — l)(ri — k + b— c) _ in+a + b ~ c \ 
\ a l \ b i ~ \ a + b + 1 ) ' 

k=l 

Here (^) = 0 if m <r. 

B-381 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Let a2n = Pn+i and a2n+l = Fn+i Fn+2> Find the rational function that has 
2 3 

ao +aix +a2X +a$x +— 
as its Maclaurin series. 

184 
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SOLUTIONS 
C IS EASY TO SEE 

B-352 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Let Sn be defined by So = 1,$i= 2, and 
Sn+2 = 2Sn+i + cSn . 

For what value of c \%Sn=2nFn+i for all non-negative integers n? 

Solution by Paul S. Bruckman, Concord, California. 

Substituting the definition of Sn into the given recursion yields: 
2n Fn+s = 2n Fn+2+C'2nFn+i> or Fn+3 = Fn+2 + 1/4C-Fn+i. 

Since 
Fn+3 = Fn+2 + Pyi+1 > 

it follows that c = 4. 

Also solved by George Berzsenyi, Wray G. Brady, Herta T. Freitag, Ralph Garfield, Dinh The' Hung, John /vie, Graham 
Lord, John W. Milsom, C.B.A. Peck, Bob Prielipp, A. G. Shannon, Gregory Wulczyn, David Zeitlin, and the Proposer. 

RECURSIVE SUMS 
B-353 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

For/rand n ontegerswith 0 <k <n, \etA(k,n) be defined by A(0,n)= 1 = A(n,n), A(1.2) = c + 2 and 
A(k + 1,n+2) = cA(k,n) +A(k, n+1) +A(k + l,n + 1). 

Also \etSn=A(0,n) +A(1,n) + - + A(n,n). Show that 

"n+2 = Z^n+1 C^n • 

Solution by A. G. Shannon, New South Wales, I. ofl, Australia. 

n+2 n+1 n+1 n+1 n+1 
Sn+2 = H A(i,n+2) = 2+Y< A(i,n+2) = 2 + c Y* A(i-1,n) + J^ A(i - 1,n + 1)+J^ A(i, n + 1) 

i=0 i=l i=l i=l i=l 

n n n+1 n+1 n 

= 2 + c Y A(i,n) + J2 A(i,n+V + J2 A^ni-^ = 212 A<i< n + 1) +c 2 Mjn) 
i=0 i=0 i=l i=0 i=0 

= 2Sn+i +cSn, 
as required, 
Also solved by Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, Dinh The'Hung, John Ivie, Graham Lord, John 
W. Milsom, C. B. A. Peck, Bob Prielipp, David Zeitlin and the Proposer. 

A VANISHING FACTOR 
B-354 Proposed by Phil Mana, Albuquerque, New Mexico. 

Show that 
Fn+k-LkFn+(-^kFn-klFtk+3Fn+kFnLk] = 0. 

Solution by Graham Lord, Universite'r Laval, Quebec, Canada. 

This follows from a special case of the algebraic identity 
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a3 + b3 + c3 -3abc = (a+b +c)(a2+ b2+ c2'-ab -bc-ca), 
where 

3 = Fn+k, b = -LkFn and c = (-1)kFn_k. 
Note that 

Fn+k-LkFn+(-l)kFn~k = 0. 

Also solved by Wray G. Brady, Paul S. Bruckman, Ralph Garfield, Dlnh The'Hung, John W. Milsom, C. B. A. Peck, 

Bob Prielipp, A. G. Shannon, Gregory Wulczyn, and the Proposer. 

CUBIC IDENTITY 

B-355 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

Show that 
F3

n+k ~ L3kF3
n+(-DkF3

n_k = 3(-VnFnFkF2k . 

Solution by Graham Lord, Universitef Laval, Quebec, Canada. 
The replacement of L^ by i \ - 3(-1)kLk and the utilization of the identity of problem B-354 changes the left-

hand side above into 
3(-1)kLkFn[F

2-Fn+kFn„k], 
which is the same as 

3(-VkLkFn(-Vn+k+2F2
k> 

that \s3(-VnFnFkF2k. 
Also solved by Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, John W. Milsom, C. B. A. Peck, Bob Prielipp, 
A. G. Shannon, and the Proposer. 

SOME SOLUTIONS 

B-356 Proposed by Herta T. Freitag, Roanoke, Virginia. 

LetSn = F2 +2F4 +3F& + — +nF2n. Find/77 as a function of A? so t h a t f m + j is an integral divisor of Fm +Sn. 

Solution by Paul S. Bruckman, Concord, California. 

We first find a closed expressfon for Sn. Note that 

n n 
$n = Z kF2k = E {kF2k+i -<k- DF2k-i - F2k + F2k_2 } = {(k- l)F2k_t - F2k_2}\n

k
+

=1 
k=l k=l 

= nF2n+l ~ F2n . 
Clearly, 

F2n + Sn = nF2n+l , 
and so m = 2n is a solution of the problem. Since F1 = F2 = 1, it is clear that/77 = 0 and m = 1 are also (trivial) solu-
tions. The statement of the problem seems to require finding all solutions/77, and this appears to be a difficult task, 
perhaps not intended by the Proposer. 

Also solved by George Berzsenyi, Wray G. Brady,. Graham Lord, Bob Prielipp, A. G. Shannon, Gregory Wulczyn, 
David Zeitlin and the Proposer. 

GOLDEN RATION INEQUALITY COUNT 

B-357 Proposed by Frank Higgins, Naperville, Illinois. 

Let/77 be a fixed positive integer and let k be a real number such that 

2m<^^m<2m + 1, log a 

where a = (1 + s]5)/2. For how many positive integers n is Fn <k? 
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Solution by Paul S. Bruckman, Concord, California. 

Since 2m < log (ky/5)/\o$ a<2m + l,\\ follows that a2m < kyj5 < a2m+1
; hence, 

a2m_b2m = Q2m __ {_a-l}2m < ^ < ^m+1 _ (_a~l^m+l = a2m+l _ b2m+l 

i.e., 
/ ^ m < Ar < f2m+i • 

Since {Fn}7 is a non-decreasing sequence of positive integers, it follows that Fn < A- for n = 1,2,~>, 2m, i.e., for 
2m (distinct) values of n. 

Also solved by A. G. Shannon and the Proposer. 

= 0 elsewhere. 
Therefore, 

k=i k=i 
The effective limits of this summation are from k = 1 + [%i] to min. (i,j). St will be convenient, however, to consider 
the upper limit to be equal t o / ; if/ > / , the extra terms included vanish in any event. Therefore, 

i-l [U(i-l)] 

«/<,- E (i-t-uWu1)- E r r % ^ u ) • 
h=[1/2t] k=0 

For convenience, let / — 1 = r, j - 1 = s. 
Therefore, 

[V2r] 

" iy-f l»-E ( V ) ( , :*)• • 
fe=0 

let 
K = E Or**' • 

r=0 
Then 

K - £ *r E 7 ( 7 * x r : f c ) - E £*r(rk%'.*)-E -2 f eE*rnf e)uf e)-
r=0 fe=0 fe=0 r=2fe k=0 r=0 

Thus, 

K - E ( i ) *"E (*7fc)*r. 
fc=0 ^ r=0 

by rearranging the combinatorial terms. Then, 

y - E ( ; ) * 2 W r * - d+*r E (sfe) ( ^ - " ^ ( " 7 7 7 )*-
fe=0 fe=0 

or: 5 

(2) y = (1+x+x2) . 
Therefore, d^ is the coefficient oix1"1 in f 7 * x +x2)i~1. From this, we may deduce that the tfy's satisfy the fol-

lowing recursion: 
(3) </i+2:/+j = dij+di+1:j+di+2:j 0,j > V; d1:j = 1, d2:j = j-1 (j>U; di:1 = 0 (i > 1). 

We may readily construct a matrix (of unspecified dimensions), whose/ column is composed of the coefficients 
of (1+x ^x2)^'1, written in correspondence to the ascending powers of x, beginning with x . For any given/; d{l = 
0 for all / >2j (since (1 +x+x2)^'1 contains (2j - 1) non-zero terms), 

Also solved by the Proposer. 
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H-281 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Consider matrix equation 
(1 7 OY /An Bn Cn\ 

(a) \1 1 1 \ =[Dn En Gn\ (n > 1). 
\0 1 7 / \Hn ln Jn] 

Identify An, Bn, Cn, -,Jn. 
Consider matrix equation 

(0 7 OY JAn' Bn' Cn<\ 
(b) 7 0 7 = Dn' En* Gn'\ (n > 1). 

\0 7 0] \Hn< ln' Jn>) 

Identify An',Bn\ Cn\ -,Jn'. 

H-282 Proposed by hi. W. Gould and W. E. Greig, West Virginia University. 

Prove 

£ a*>-1 & a2k-1 
k odd 

where a = (1 + ̂ j5)/2, and determine which series converges the faster. 

H-283 Proposed by D. Beverage, San Diego Evening College, San Diego, California. 

Define f(n) as follows: 
\n+k 

k=0 V X 

Express f(n) in closed form. 

H-284 Proposed by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

(A generalization of R. G. Buschman's H-18) 
Show that 

n 

(a) £ [iVrkLm-rk = 2nFm or (FT + L r h (2Fr)n 

k=0 \ * (Umbral notation) 
188 
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(b) £ {iVrkLm-rk = 2nLm+2L« or (L' + L')"* {2Lr)n+2L» 
k=o v ; 

n I \ (2nL -2Ln) 
(C) £ [l)FrkFm-rk = •*" ' ' 

Note. The generalization is valid for all Type I quadratic real fields, i.e, for Z7 = 5 , 1 3 , 2 9 , 5 3 , 6 1 , - . 

Remark on Problem H-123 by Henry Gould, West Virginia University. 

The proposer's solution, Fibonacci Quart. 1 (1969), No. 2,177-178, uses Stirling number expansions of factorials 
and powers. Since, however, it is true that 

(1) Y $(m)S(k) = dk fC) k t n, 
L~s n m n { 1, k = n, 

then, for perfectly arbitrary Fy,, and Fibonacci numbers in particular, 
n m n n n 

E. E < m ; ^ = E Fk £ s^sw - £ Ffe5; - F„ 
m=0 k=0 k=0 m=k k=0 

as desired. It is also true that 

(2) y s(m¥k) = sk , 
*~i n m n 

so by the same argument we have the dual formula to the original problem: 
n m 

(3) £ E s(n
m¥^Fk = F„, 

m=0 k=0 

and, what is more interesting, this and the original formula hold for any sequence [Fn, n > 0), the Fibonacci num-
bers really having nothing whatever to do with the truth of the formulas. 

Relations (1) and (2) are the standard orthogonality relations for the two kinds of Stirling numbers, and are im-
plied by the two expansions 

n 
(4) 

and 

(5) 

where 
(x)n = x(x- 1)(x-2)."3-2-1, with (x)0 = 1. 

Expansions (4)-(5) of course are the ones used by the proposer in his solution of his problem. Formulas (1) and (2) 
are both in Jordan's "Calculus of Finite Differences," page 184, the same source quoted by Lind for formulas (4) -
(5). The essential point I am making is the generality of formulas (1)-(2) as opposed to the original solution. 

EDITORIAL ACKNOWLEDGEMENT. Gregory Wulczyn, Bucknell University, submitted a solution for H-265 as 
well as an extensive partial solution for H-266. 

Mn 

xn = 

= 

n 

k=0 

S(n,k)xk 

0 

$(n,k)(x)k > 



190 ADVANCED PROBLEMS AND SOLUTIONS [APR. 

SOLUTIONS 
SUM SOLUTION 

H-267 (Corrected) Proposed by V. £ Hoggatt, Jr., San Jose State University, San Jose, California. 

Show that 

S(x) = £ (kn + ir-1 x—, 
n=0 "' 

where k is any integer and 0-1, satisfies 

Solution by P. Bruckman, Concord, California. 

We identify the given series as 

S(x) = exS (*) 

(1) S(x) = T (kn + ir-1 *-, . 
n=0 

In "The //-Convolution Transform/' V. E. Hoggatt, Jr., and Paul S. Bruckman, Fibonacci Quarterly, Vol. 13, No. 
4, Dec. 1975, pp. 357-68 , the following result is proved (where, to avoid confusion, we change the notation): Let 

(2) f(x) = £ ai:0x\ 
i=0 

oo 

(3) (f(x)P+1 = £ ai:jx\ 
i=0 

where f(Q)t0, / is analytic aboutx = 0. Also, let 
oo 

i=o'kl+$ 

Then 
(5) GM = f{x(GM)k}. 

In particular, let 
(6) f(x) = ex, s = /. 

Then 

i=0 i! i=0 
which implies 
(7) 
Hence, 
<*> * , , - ^ 

" ai:ki+s-l 
1 (ki+1){ _ (ki+l)1-1 

ki + s "1-^s~1 ki+1 if 

and also G(x) = S(x), as given by (1). From (5), it now follows that 
(8) exp (xSk(x)) = Six). 

Also solved by V. E. Hoggatt, Jr. 
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USE YOUR USVIBRAL-AH 

H-268 Proposed by L Carlitz, Duke University, Qurham, North Carolina. 

Put 
n 

Sn(x) = ] r S(n,k)xk, 
k=0 

where S(n,k) denotes the Stirling number of the second kind defined by 

xn = X S(n,k)x(x-1)-(x-k+1). 
k=0 

Show that 

xsnM = £ (-ir^\sj+1 M 
j=0 

Sn+1M=x £ t^Sjfx) . 
j=0 \} ' 

More generally evaluate the coefficients C(n,k,j) in the expansion 

n+k 
xkSn(x) = X C(n,k,i)SjM (k,n>0). 

j=0 

Solution by P. Bruckman, Concord, California. 

For the sake of typographical convenience, we make a slight change in notation. LetS-i(n,k) andS2(n,k) denote 
the Stirling numbers of the first and second kinds, respectively, given by: 

(1) x<n> m x(x- l)(x-2)-(x-n + 1)= £ St(n,k)xk , 
k=0 

(2) xn = X S2(n,k)x(k) . 
fe=o 

Also, we define x^ ss 1. The following orthogonality relation is satisfied by the Stirling numbers: 

(3) 
um:n ~ 

j=m \ 
Using (1)-(3), we may derive an explicit expression for the c(n,k,j)'s as follows: 

n n r+k n r+k r+k 
xkSn(x) = £ S2(n,r)xr+k = £ S2(n,r) £ xm8r+k:m = £ S2(n,r) £ * m Z S^kJ/S^m) 

j=m =0 m=0 r=0 m=0 

n r+k j n r+k 
£ S2(n,r) £ Stfr+kJ) £ S2(j,m)xm = £ S2(n/) £ Si(r+kj)SjM 
r=0 j=0 m=0 r=0 j=0 

£ SjM itS2(n,r>Si(r + k,j), 
j=0 r=M 
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where M = max (j - k, 0). Hence, 

(4) c(n,k,j) = T< $2 (n/)Si (r + k,j). 
r=M 

A more elegant algorithm for computing c(n,k,J) may be derived by employing the umbral calculus, whereby Sj(x) 
is replaced by SJ, and S is treated as an algebraic quantity. Returning to one of the relations preceding (4), and re-
placing true equality by "umbral equality," denoted by the symbol " - , " we then have: 

YL T~f~fe. Yl Y^K. YL 

xkSnM = Z S2("S) E $t(r + KJ)SjM = £ S2(n,r) £ Sttr + kjW = £ S2(n,r)s(r+h) 
r=0 j=0 r=0 j=0 r=0 

= S(h> J2 S2(n/)(S-k)^ = S^(S-k)n. 
r=0 

More precisely, we have the generating function: 

(5) £ c(n,k,j)uj = u^(u-k)n. 
3=0 

An alternative expression, derived by expanding u' ' in terms of Si (kj)'s, is the following: 

N 
(6) c(nXi) =Y1 (n

r)(-k^l(kJ-r)f 
r=MX } 

where M has been previously defined and N = min (j,n). Using the fact 

(7) Si (In) = bn:1) 

we find in particular, from (6): 

c(n,1j) = £ {n\hDrS1(hi-r)f 
r=0 ^ ' 

where the summation possibly includes undefined terms, which we define to be vanishing terms. Thus, 

c(n,1,Q) = fy(-1}°Si.(f,OJ = StdO) = 0; c(n,l,n + 1) = fyf-irStdV = (-1)nSi(1,V = (-1)n; 
if 1 </ </7, 

c{n,1j) = Z (*)(-»rSl(V-r) = L l t ^ • 
r=j-l 

Therefore, in all cases (i.e., \oxj = 0, 1, •>, n + 1), 

(8) c<n,1j) - (-f)f-1 [. »^ , 

where the binomial coefficients r \ are defined to vanish whens < 0 ors >r. Hence, 

n+l n 

o) / w - j f - r ' f ' l ^ - E h)-D>sj+1M. 
By the well known technique of binomial inversion, 

(10) Sn+1M = x f ) (")SjM. 
j=0 

Also solved by F. Howard and the Proposer. 
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