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INTERPOLATION OF FOURIER TRANSFORMS ON SUMS OF FIBONACCI NUMBERS

ROBERT E. DRESSLER and LOUIS PIGNO
Kansas State University, Manhattan, Kansas 66506

Our notation throughout this paper is that of [3]. Denote by M(T) the
Banach algebra of finite Borel measures on the circle group T and write M, (T)
for those Y € M(T) such that P is absolutely continuous with respect to Le-
besgue measure. Also e M;(T) if we M(T) and U is concentrated on a count-
able subset of T.

The Fourier-Stieltjes transform {I of the measure Y € M(T) is defined by

™
i =3 | e e
-m

where Z is the additive group of integers. In this paper we prove that there
is an infinite subset A of the set of Fibonacci numbers & such that

Ma(T)AIJJr,A CMd(T)A|J+LA;

i.e., on A+ A = {a +b :a,be u4} any transform of an absolutely continuous
measure can be interpolated by the transform of a discrete measure. To prove
this, we shall need the following interesting result of S. Burr [1]:

A natural number m is said to be defective if the Fibonacci sequence
F = fn} does not contain a complete system of residues modulo m.
1

Theorem 1: (Burr) A number m is not defective if and only if m has one
of the following forms:

sk, 2« 5%, 4 - 5K,
37 « 5%, 6 « 5%,
7 » 5%, 14 « 5% where k > 0, j = 1.

Let $% denote the set of all integer accumulation points of § C Z where
the closure of $ is taken with respect to the Bohr compactification Z (see
[3]) of Z. 1In the sequel, we shall also need a theorem of Pigno and Saeki
[6], which we now cite.

Theorem 2: The inclusion

M, (T, C Ma(m],

obtains if and only if there is a measure U € M(T) such that fi(8) = 1 and
fi(e®) = 0.
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194 INTERPOLATION OF FOURIER TRANSFORMS ON SUMS JUNE 1978
OF FIBONACCI NUMBERS

We state and prove our main result:

Theorem 3: There is an increasing sequence U = {fx}l of Fibonacci numbers
such that

M, (T) ]| C M|

A+ A At

Proog: By Theorem 1, we may find an increasing sequence A = {
Fibonacci numbers such that

fr = 5" (mod 2 * 5") for all =. D)

Now it follows from (1) that in the group of 5-adics (see [3, p. 107]) the
only limit points of A+ are 0 and each f)}. Hence, to find the integer
limit points of 4+ in Z we need only look at 0 and each f,. Fix an f,
and consider the arithmetic progression {2k + f) : k € Z}. This arithmetic
progression is a neighborhood of f,/ in Z with the relative Bohr topology,
and furthermore, 2k + f) = f! + f] is impossible because each member of A is
odd [by (1)]. Thus, the only possible integer limit point of 4 +.A is 0.

Clearly the Dirac measure minus the Lebesgue measure separates A+ A and
{0} in the desired fashion. Hence we are done by Theorem 2.

Comments :

(i) Examples of related interpolation problems can be found in [2], [4],
and [5].
(ii) It is an open question as to whether the sum set ¥ + & has the inter-
polation property of this paper. It is a result of the authors that if
A= {a” HI 1) £:Z+}, a any fixed positive integer, then A + A has the
interpolation property.

We wish to thank Professor V. E. Hoggatt, Jr., for the reference to

[1].
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TOPOLOGICAL, MEASURE THEORETIC AND ANALYTIC PROPERTIES OF
THE FIBONACCI NUMBERS

ROBERT E. DRESSLER and LOUIS PIGNO
Kansas State University, Manhattan, Kansas 66506

Our purpose here is to develop a connection between the arithmetic, topo-
logical, measure theoretic and analytic properties of the set, ¥, of Fibonacci
numbers. We begin by topologizing the set, Z, of integers in a rather natu-
ral way and then showing that F has a certain closure property.

Definition: Let A be the topology on Z generated by the set of all arith-
metic progressions. That is, for any integer b, a neighborhood base at p is
given by

{{an +blneizllacez, at O}.
Our main result is
Theorem 1: {0} U F U -F is A-closed.

Proof: We use the theorem of Halton [2] which states that if f, is di-
vided by f, (m >m) then either the remainder r is a Fibonacci number or
fu - r is a Fibonacci number. Here f, is the nth Fibonacci number.

Thus, if » > 0 and » £ F, choose f € F such that f > r and f - r £ F. It
is easy to check, using Halton's theorem, that

(*) ({oy ur N-F)n{fm + rln e 2} = 9.

Also, if » <0 and -r £ F, choose f € F such that f > -r and f +»r £ F.
Again it follows that (*) holds. This establishes the result.

We will, in what follows, omit details for the sake of brevity. However,
we cite references for those readers interested in the technicalities of the
subject.

Observe that {0} U 7 U -F is closed in any topology for Z which is finer
than A. Thus, {0} UF U -F is (see [3, p. 87]) closed in Z with the relative
Bohr topology. This allows us to deduce (since {0} UF U-F is a Sidon set)
that {0} UF U -F 1is a strong Riesz set (see [3, p. 90]). Meyer has proved
[3, p. 90] that the union of a strong Riesz set and a Riesz set is a Riesz set.
One implication of this fact is the following extension of the F. and M.
Riesz Theorem.

Cornollary: Let T be the circle group (that is, the group, under multipli-
cation, of complex numbers of modulus 1). Let U be a bounded Borel measure
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on T. The nth Fourier-Stieltjes coefficient ﬁ(n) of 4 is defined by

i) = —l—f e~ 4u(e) (ne2).

VAN

Suppose {i(n) = 0 for all n > 0 with n ¢ F. Then U is absolutely continuous
with respect to Lebesgue measure on T. Indeed, if R is any Riesz set and
ﬁ(n) = 0 for all » ¢ R U F, then U is absolutely continuous with respect to
Lebesgue measure on T.

Comments :

(1) Observe that since f,41/fn

KE%;~£, it follows that F is a Hadamard

set (see [3]). The above Corollary holds for all Hadamard sets [3, p.
941, but the proof, which depends on the comparatively deep work of
Strzelecki [4], is much more difficult. This difficulty is to be ex-
pected because it is easy to see that there are Hadamard sets H with H
A-dense in Z. Thus, it is the intrinsic arithmetical properties of F
which enable us to give our proof of the Theorem.

(ii) For some interesting arithmetical examples of Riesz sets the reader is
referred to [1].

It is well known that the closure in the Bohr compactification of any
Hadamard set has Haar measure zero. Using Halton's theorem, we can give a
simple proof of this result for the Fibonacci numbers.

Theorem 2: Let F denote the closure of F in the Bohr compactification of

Z. Then H(F) = 0 where W is the Haar measure of the Bohr compactification
of Z.

Proof: We shall use the elementary fact that Haar measure of the closure
of an arithmetic progression in the Bohr compactification of Z is precisely
the natural density of the progression. Thus, it suffices, given € > 0, to
imbed F in a union of residue classes, modulo some fixed modulus, such that
the density of the union is less than €.
2m
In
zero. For any n, by Halton's theorem, f, €f, Z + r where 0 < » < f and reF
or f, — re€F.

But, there are clearly at most 2m integers, r, with 0 < r < f,, and reF
or f, — reF. Thus, F can be imbedded in a union of residue classes (mod 5]

whose density is ?ﬁ < €. This completes the proof.
m

Choose m so large that

< g€, which can be done because F has density
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IDENTITIES FROM PARTITION INVOLUTIONS

DONALD E. KNUTH
Stanford University, Stanford, California 94305
and
MICHAEL S. PATERSON
University of Warwick, Coventry, England Cv4 7AL

To George Pdlya on the 2'%th day after his birth: August 31, 1977.

ABSTRACT

Subbarao and Andrews have observed that the combinatorial technique used
by F. Franklin to prove Euler's famous partition identity

1-0)Q-22)1-20-2*) v+ =1-z-2?2+x’+2" -z -2 +...
can be applied to prove the more general formula
1-x-22yQ-xy) ~23y* A -2y) (L -2%y) ~2*y @A -2y) QA -2%y) QA -2%y) - -+
=l—x—x2y+x5y3+x7y“—xlzys—x15y7+---
which reduces to Euler's when y = 1. This note shows that several finite

versions of Euler's identity can also be demonstrated using this elementary
technique; for example,

l-x-22+x’+2" -2'% - 215
=Q-2)Q-x)Q-xH A -z @ -2°) 1 -2z°)
—z’@ - a-2Ha-z2H@a 2+ @ -z -z —g7tetS

=(l-2)(1-2)Q-2%) -2" 1 -22) (1 -2%) +2*" 5@ - 23) —g*T5%8,

By using Sylvester's modification of Franklin's construction, it is also
possible to generalize Jacobi's triple product identity.

This research was supported in part by National Science Foundation grant
MCS 72-03752 AO03 and by the Office of Naval Research contract N00014-76-C-
0330. Reproduction in whole or in part is permitted for any purpose of the
United States Government.
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0. INTRODUCTION

Nearly a century ago [7], [14, 812], a young man named Fabian Franklin
published what was to become one of the first noteworthy American contribu-
tions to mathematics, an elementary combinatorial proof of Euler's well-known
identity

TTa-eh = 1-z-a?+a®+x’ -0 = - (-1)kg G412, (0.1)

;>
J=1 ~w< k<o

His approach was to find a nearly one-to-one correspondence between parti-
tions with an even number of distinct parts and those with an odd number of
distinct parts, thereby showing that most of the terms on the left-hand side
of (0.1) cancel in pairs. Such combinatorial proofs of identities often
yield further information, and in the first part of this note we shall demon-
strate that Franklin's construction can be used to prove somewhat more than
(0.1).

In the second part of this note, we show that Sylvester's modification of
Franklin's construction can be applied in a similar way to obtain generali-
zations of Jacobi's triple product identity

1-q(z+z ) +q*(z2+272) - ...

D Dkt e (0.2)

-®o<k< oo

]

ﬂ(l_q2j‘lz)(l__qu*lZ—l)(l_qu)

Jjz1

]

1. THE BASIC- INVOLUTION

First let us recall the details of Franklin's construction. Let T be a
partition of » into m distinct parts, so that T = (a,, ..., aml for some in-
tegers a, > .-« > a, > 0, where a;, + +-- + g, = n. We shall write

L(m)y =n, v(m =m, A(m) = a, (1.1)
for the sum, number of parts, and largest part of W, respectively; if 7 is

the empty set, we let L(m) =v(m) =A(m) = 0. Following Hardy and Wright [8],
we also define the "base'" b(m) and "slope" s(m) as follows:

B(m) = min{jljen|, o(m = min{F[A(m) -7 ¢} (1.2)
Note that if T is nonempty we have
A(m) > B(m) + v(m) - 1 and v(m) > o(m). (1.3)

The partition F(m) corresponding to T under Franklin's transformation is
obtained as follows:

(1) 1If B(m) < o(m) and B(m) < v(m), remove the smallest part, B(m), and
increase each of the largest B(Tm) parts by one.

(ii) If B(mw) > o(m) and o(w) < v(m) or o(m) # B(m) - 1, decrease each of
the largest 0(T) parts by one and append a new smallest part, o(m).
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(iii) Otherwise F(m) = m. [This case holds if and only if T is empty or
o(r) = v(m) < B(m) <o(m) + 1.]

These definitions are easily understood in terms of the "'Ferrers graph'" [14,
p. 253] for the partition m, as shown in Figure 1. It is not difficult to
verify that F is an involution, i.e., that

F(F(m)) = (1.4)
for all .
largest part A=6 largest part A=7
e © ¢ © 0 o e o6 © © o o
e © o o © v=3partsie e e o e -
v=14 parts slope 0=2
e © o o slope o=3 e © o o
[
@ base B =14
base B =2
I F(m)

Fig. 1 Two partitions of 17 into distinct parts, obtained from each other
by moving the two circled elements.

For each £ > 0 there is exactly one partition 7 such that A(T) = £ and
F(m) = 7. We shall denote this fixed point of the mapping by f}; it has [2/2]
consecutive parts,

5

(See Figure 2.) Let

{8, o-1, ..., lw2) + 1}. (1.5)

o

il

{For Fi» Fos oon} (1.6)

be the set of all such partitions. Note that the somewhat similar partitions
{2k + 1, 2k, ..., k+ 2} and {2k, 2k - 1, ..., k} are not fixed under F, al-
though their bases and slopes do intersect.

1) ® e o e © o e © o o e © © o o
e o e o o © o o o
e o o
i i iR il f, fs

Fig. 2 The partitions which remain fixed under F.
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2. EXTENDED GENERATING FUNCTIONS

If S is any set of partitions, we define the generating function of S by
the formula

Gy, g, 2) = 9 xb My (mgvlm), (2.1)

mTeS
The identities we shall derive from Franklin's construction are special cases
of the following elementary result:

Theorem 1: 1If S is any set of partitions,

GS(-'L', Ys _y) = GSQQ(',E’ Ys _y) + GS\F(S) (.'XI, Y —y)- (2-2)

Proof: Let W be a partition with w'=F(m)#m. Then Z(m')=2X(m), A1u') =
A(m) 21, and v(T') = v(m) 1, hence

xZ(ﬂ)y)\(Tr)(_y)\)<W) + xZ(ﬂ')y)\(ﬂ’)(_y)\)(ﬂ') = Q. (2.3)

This equation means that T and T’ do not contribute to Gg(x, y, -y) if they
are both members of S. The only terms which fail to cancel out are from par-
titions me S with F(m) = 7, namely the elements of SMN?®, and those from par-
titions meS with F(T) ¢ S, namely the elements of S\F(S). m

3. THREE IDENTITIES

In order to get interesting corollaries of Theorem 1, we must find sets S
for which the corresponding generating functions are reasonably simple.
First, let S be the set P of all partitions. Theorem 1 implies that

Gp(x, Yy, —y) = Go(2, y, =¥). (3.1)
Now
Gplx, y, 8) =1 +2£: tytz T (1 + xiz) (3.2)
L2l 1<j<g
and
Go(x, y, 2) =1 +Z xl(ﬁ+l)/2-|_2/2]([2/2J+1)/2yzzf£/2] (3.3)
221

]

1 +Z<x(3k2—k)/2y2k—lzk+x(3kz+k)/2y2kzk>. (3.4)
k21

Thus we have

Conollany 1.1:

j{:xzyz+1 T"T(l - xjy) = 2{:(-1)k'1<x@k2—kW2y3k—1 + x(ﬂﬂ—kﬂzyak>. (3.5)

221 1<j<g k21
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Franklin essentially considered the special case y = 1 of this identity,
when the left-hand side reduces to 1 - TT;,,(1 - xz7) .  Equation (3.5) was
originally discovered by L. J. Rogers [10, §10(4)], who gave an analytic
proof. The fact that Franklin's correspondence could be used to obtain (3.5)
was first noticed by M. V. Subbarao [12] and G. E. Andrews [2].

Although the power series identity of Corollary 1.1 is formally true, it
does not converge for all x and y; for example, if we set y = x”! we get the
anomalous formula ™! = 27! + 27! - 1 - 2z + 2% + 2% -.... To better under-
stand the rate of convergence, we can obtain an exact truncated version of
the sum by restricting S to the set

P, = {\(m) < n}. (3.6)
Since
BAF(B,) = {n|A(m) = n and B(T) < 0(M) and B(m) < v(m)}
= {m|A(m) = n and B(m) < o(m) and B(M) < n/2}, (3.7)
we have

‘GP,!\F(P")(%,Z/,Z) = 2: (xby”2)< TT (l+sz)>< I | LL‘jZ>. (3.8)

1<b<n/z b<j<n-b
Thus Theorem 1 yields

Corollarny 1.2:

szyzﬂ TT (l - xjy)

1<8<n 1<d<g

= Z (_1)7<—1x(3k2—k)/2y3k—1 + E (_l)k—lx(3k2+k)/2y3k

1< ks (n+1)/2 t<ck<nf2

+ Z (_l)byn+b+l< "I_" a - xgy)>< TT xj+1>.

1<ben/2 b<j<n-b b<jon

For example, the cases m=4 and n=5 of this identity are
xy? +x2y3 (1 -a2y) +235" (1 -zy) (1 - 2%y) +atyS (1 - xy) (1 -2%y) (1 -2%y)
=ay? +x2y’ -xdyS - 27ys - xSyS (1 - x?y) (L -x3y) +x5 Ty’ (3.9
xy? +?y? (1 -ay) +2%Y* (1 -axy) (1 -22y) +2¥y° A -x2y) (1 -2%y) (1 -2’y)
+2°y% (L -2y) (L-z%y) (L -x3y) (L -z*y)
=xy? +22y% - xyS —xTys +212y8 - x6y7 (1 - x2y) (1 - 23y) (1 - z*y)
X858 (1 - x3y). (3.10)
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Setting ¥ = 1 and subtracting both sides from 1 yields truncated versions of
Euler's formula which appear to be new; e.g.,
1-z-x?+x%+z7
=Q-2)A-z2)Q-zH @ -z2") -251 -22) (1 -x®) +25%; (3.11)
1-z-2?+a° +27 -2
=(1-2)(1-2")L-2") (1 -x") 1 -2
—2f (-2 @ -2H @ -z + 2575 -2, (3.12)
l-x-2?+2° +x” - 2% - 21®
=(1L-2)Q-22)(1-2¥)A-2) A -2%) 1 -2°)
71— Q-2 (P -2) Q-2+ A -2®) (@ -2¥) -2 (3.13)
Essentially the same formulas, but with # decreased by 2, would have been
obtained if we had set y = 27! in the identity of Corollary 1.2.

Let us also consider another family of partition sets with a reasonably
simple generating function,

5, = {mlB(M > MM - n and o(m 2 A(M - n}. (3.14)
These sets are closed under F, for if m' = F(T) # T we have either

(1) A(m") = AX(m) + 1, B(w") > B(m + 1, and o(w') = B(m), or
(ii) A(mh AMm) -1, B(w") > o(w), and o(m’) > o(wW).

Note that S, is finite, since m€S, implies that
20(m) - 2n < B(m) + o(m) - 1 < A(m),
hence A(T) < 2n. The set of fixed points S5,N® is {f'o, Fis ooes on}, and

Gy (®,y,8) = Gy (x,y,2) + Zx’{zﬂz( l l 1+ sz)>< I I sz>, (3.15)
2

n<<2n -n<j<n n<j<i

so Theorem 1 yields a companion to Corollary 1.2:
Corollary 1.3:

. _ 2_ _ 2
E :xzygﬂﬂ(l - wiy) = E :(_l)k 1(x(3k k)/zysk T +k)/2y3k>

1<2<n 1<j<8 1<ken
+ E (_l)by2b+n< l | (l _ x.jy) l | .’X:J .
1<bsn b<isn n<j<n+p

For example, the cases n = 2, 3 of this identity are
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ay? +xlyd(L-ay) = ay®+ a2y -2y —a7y® - " (1 - 22y) +2°+4y5;
xy? +2?y (1 - ay) + 2%y (- xy) (L -2%y) = xy® +22y® -2y - 27y® +212y8
+a15y° - 25 (1 - 22y) (1 - 2°y) +at*5y7 (1 - xdy) -2t 5reyS,
Setting ¥y = 1 and subtracting from 1 leads to formulas somewhat analogous to
(3.11) and (3.13):
1-z-z22+2°+2" = L-2)(1-2%) -23@Q -2%) +x°*"; (3.16)
1-z-x2+x’+2’ -2 -2 = -2 -2 -2} -2" @ -22) 1 -z°)
+2*3 (1 -2®) -2 (3.17)

Let us restate the identities arising from Corollaries 1.2 and 1.3 when
y = 1, where n is even in Corollary 1.2:

Lo Y e 4 o)

1<k<n
E : (1)K 2n+2)k=k(k+1)/2 I | 1 - 29) (3.18)

o<ken k<j<2n-k
= E :(-1)’<x"k+k(k+1)/2 l | 1 - z9). (3.19)
0<k<n k<jsn

The latter formula was discovered by D. Shanks [11] in the course of some ex-
periments on nonlinear transformations of series; he observed that it can be
proved by induction on # without great difficulty. There is also a short
proof of (3.18): Let

Ak, n) = (L-axk) +ak@ -2 @ -z ™) + o +2kn (@ -2k) -+« (L-2F"), (3.20)
R(k, n) =a™¥Dk (1 -g*k*y .. (1 -xk*tn). (3.21)

Then A4(0,n) = 0, A(k, 0) = 1-xk, A(k, -1) = 0, and it is not difficult to show
that

Ak, n) = 1-x2**Y - Rk, n) - «¥**24(k+1, n-2) if n > O. (3.22)

Iteration of this recurrence yields identity (3.18). The use of this recur-
rence is actually only a slight extension of Euler's original technique [6]
for proving (0.1).

It is interesting to compare (3.18) and (3.19) to "classical" formulas on
terminating basic hypergeometric series, as suggested in a note to the au-
thors by G. E. Andrews. If we set a =1, b=c=d =®, and g = £ in a highly
general identity given by R. P. Agarwal [1, Eq. (4.2)], we obtain

1+ (DR x(3k2+k)/2)
lggén (
= Z(—l)kxk(k“m( | | (1 -xJ’))/ I | (1 -zx9). (3.23)
K 1

0<k<n <j<2n-k <j<n-k
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In particular, when n = 3 this formula gives the following analog of (3.13)
and (3.17):

legemlaaStn’ ogl? o5 o L=2) Q-2 A -2)A-2*) @ -2°)1-2°%
Q-1 -z?) (-2

_p-e) - A=) a-a® |,

12 (1-z%) (1 -x") o pltes
(1-2)(1-22) -

X

(3.24)

L. SYLVESTER'S INVOLUTION

Let us now turn to Jacobi's identity (0.2), which is formally equivalent
under the substitution g? = uv and 22 = w™! to

TTa-wivi=Y @ -ufvd) @ -ui-1vd)

jz1
-1 4 Z(—l)k(u(kz PR (= B2 (P - B2 (2 k)/z). %.1)
k>1

The left-hand side of this equation can be interpreted as involving parti-
tions of Gaussian integers m+ni into distinct parts of the form p +gZ, where
max(p, q) > 0 and Ip - q] < 1; the coefficient of u™v" will be the excess of
the number of such partitions with an even number of parts over those with an
odd number of parts. The right-hand side says that there exists a nearly
one-to-one correspondence between such even and odd partitions, the only un-
matched partitions being of the form

11, 244, oo, K+ (k=Di} or {4, 1427, ..., k-1+kij. (4.2)

An explicit correspondence of this sort was discovered by J. J. Sylvester

[14, 8857-61, 64-68] shortly after he had learned of Franklin's construction;

at that time Sylvester was a professor at Johns Hopkins University in Balti-
*

more.

*The literature contains several incorrect references to the history of
Sylvester's construction. Sudler [13] says that the approach taken by Wright
[15] is essentially that of Sylvester; but in fact it is essentially the same
as another comstruction due to Arthur S. Hathway, quoted by Sylvester in [14,
§62]. Zolnowsky [16] independently rediscovered Sylvester's rules (i)-(iv),
and observed that these were sufficient to prove Jacobi's identity since
they will handle all cases m+ni with m > n.

Sylvester's original treatment has apparently never been cited by anyone
else, possibly because it comes at the end of a very long paper; furthermore
his notation was rather obscure, and he made numerous careless errors that a
puzzled reader must rectify. Indeed, the present authors may never have been
able to understand what Sylvester was talking about if Zolnowsky's clear
presentation had not been available.
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We shall represent complex partitions T by three real partitions, T4, Ty,
T_-, containing respectively max(p, q) for those parts p+¢gi in which p-g=+1,
0, or -1. For example, the complex partition

m= 43424, 244, 1, 3+37, 1+14, 3+41]

of 13+ 117 will be represented by

T4 = {39 2, l}, Ty = {3, l}, T = {4},

Sylvester noted that if 7 is artificially set equal to 2, we obtain a one-to-
one correspondence between the complex partitions of m+ni and a subset of
the real partitions of m+2n into distinct parts; T+, Ty, and 7- map into the
parts congruent respectively to +1, 0, and -1 modulo 3, hence Jacobi's iden-
tity implies Euler's.

In order to present Sylvester's construction, we recall the definitions of
L(m), v(m), A(mw), B(m), and o(w) for real partitions in Section 1 above; we
also add two more attributes,

Tl = min{k|k+1¢ 7}, (4.3)

and

afl]

]

min{k|kem and k>T(mM)}. (4.4)

By convention, the minimum over an empty set is w; thus, B[T] = © if and only
if 7 is empty, and o[7] = « if and only if T has the form {1, 2, ..., k} for
some k¥ > 0. Sylvester defined an involution F(T) on complex partitions T by
what amounts to the following seven rules:

(i) If B(my) <0(m+), remove the smallest part, B(m;), from Ty and increase
each of the largest B(m,) parts of T, by one.

(ii) If B(my) >o(m4+) > 0 and o(my) # A(T4+), decrease each of the largest
g(m4) parts of m+ by one and append a new smallest part, o(ms+), to Ty.

(1ii) If B(my) >0(m+) = A(W4) and B(m,) <o(m4+) +B(T-), remove the smallest
part, B(my), from Ty and append a new largest part, o(m ) + 1, to T
and a new smallest part, B(my) —o(my), to T-.

(iv) If B(my) >0(m+) = A(ws) > 0 and B(my) +1 > o(m+) + B(w-), remove the
largest part, 0(T4+), from T+ and the smallest part, B(w-), from T-
and append a new smallest part, o(m4) + B(m.) - 1, to Ty,.

(v)  If A(m+) = 0 and a(m-) > B(my) +T(m-) and T(m-) >0, remove the small-
est part, B(my), from Ty, and replace the part T(m-) in 7- by T(T-) +

B(mo) .

(vi) If A(m+) = 0 and a(m-) < B(my) +T(m-) + 1, replace the part o(m.) in
T- by T(7-) + 1, and append a new smallest part, a(m-) - T(m.) - 1, to
Mo

(vii) Otherwise F(m) = m. [This happens if and only if T has the form

(4.2).1
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It can be shown that F(F(m)) =T, and that in fact rules (i)-(ii), (iii)-(iv),
(v)-(vi) undo each other.*

For example, Sylvester's correspondence pairs up the complex partitions in
the following way, if we denote partitions by listing the respective elements
of m4+, m,, M- separated by vertical bars:T

3|1 <+ 4] rules (i) and (ii)
21]1]|1 <+ 31]]1 rules (i) and (ii)
1|21] < 2|2] rules (i) and (ii)
1)3] < 21]]2 rules (iii) and (iv)
|2]21 ~  []41 rules (v) and (vi)
‘1!31 e ||32 rules (v) and (vi)

5. GENERATING FUNCTIONS REVISITED

If S is a set of complex partitions, we let

Go(u, v, y, 2) = unz(n) vsz(n) yx(n) zv(m,) , (5.1)
where
RI(M) = Z(m4) + I(my) + Z(m2) - v(mo)
9z (m) = Z(my) - V(W+) + Z(mg) + Z(ml);
A(T4) if A(ms) > 03
A(m) = (5.2)
-T(m2) if A(my) = 0.

These definitions have the property we want, as shown in the following theo-
rem.

*At this point one cannot resist quoting Sylvester, who stated that these
rules possess what he called Catholicity, Homoeogenesis, Mutuality, Inertia,
and Enantiotropy: "I need hardly say that so highly organized a scheme .
has not issued from the mind of its composer in a single gush, but is the re-
sult of an analytical process of continued residuation or successive heaping
of exception upon exception in a manner dictated at each point in its devel-
opment by the nature of the process and the resistance, so to say, of its
subject-matter" [14, p. 314].

TThese are the complex partitions whose sums have the form k + (11 -2k)Z.
Sylvester gave an incorrect table corresponding to these 12 partitions at the
bottom of [14, p. 315]; in his notation, he should have written

"1st Species. 11 3.8; 6.3.2 6.5; 8.2.1 3.5.2.1.
2d Species. 9.2 5.2.4.
3d Species. 10.1 6.4.1; 7.4 3.7.1."
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Theorem 2: Let S be any set of complex partitions, and let & be the set
of all complex partitions of the form (4.2). Then

Gs(u, U, y,"y) = Gsmqp(u’ v, y,-y) + GS\F(S) (M,ZJ, y’_y)' (5'3)

Proof: As in Theorem 1, we need only verify that if w’=F(T) # T we have
r(m')y = x(m), A(mw') = A(m) £ 1, and v(w{) = v(my) F 1. Rules (i), (iii), (v)
all leave I unchanged, decrease v(m,), and increase A(m); rules (ii), (iv),
(vi) are the inverses. There is one slightly subtle case worth discussing:
Rule (iii) applies when A(T4) =0 and it changes A(T4+) to 1; in that case the
hypothesis B(my) < B(Tm ) implies that T(m-) = 0, hence A(T) = 0. @

6. JACOBI-LIKE IDENTITIES

We shall apply Theorem 2 only to two infinite sets of partitions, leaving
it to the reader to discover interesting finite versions of Jacobi's identity
analogous to Corollaries 1.2 and 1.3.

If P is the set of all complex partitions, we have

Gp(u, v, y, ) = (Zulvl'ly%< ﬂ (l+ujvj’1)><ﬂ (l+uj‘lvj)>
izl

221 1<d<g
+ y'JL(TT uj‘lv”)( 17 (1+uj‘1vj)>> TT a+wiviz);  (6.1)
220 1<y J>a+l izl
furthermore
2 2 _ 2 _ 2
G, (0,9, 8) = 1+ Z (u(k i)z, (k k)/zyk 4 K R e+ k)/zy—k) ) 6.2)
k=1

Setting 2 = -y in (6.1) gives the identity G, (u,v,y, -y) = G, (U, v,y, -¥y),
which can be rewritten as

Conolhbary 2.1:

Zuﬁ,vl“l . . Y . .
E T Y — <ﬁ(l+uJ'le)(l+u‘71)J_l)(l—uJUJy)>
L~ L+u? iy \ja

Jj<o

2 (12—
u(k +7<)/ZUU< k)/?-yk .

-0 < k<o

Our derivation makes it clear that this formula reduces to (4.1) if we set
y = 1 and replace (u,v) by (-u,-v); it is therefore a three-parameter gen-
eralization of Jacobi's identity.

The right-hand side of Corollary 2.1 can be expressed as

2 (uy)(k T2 (vy‘l)(k R TTa +ud 9y @ +ufnd 1) (- wivd)

—w< k<o J<1
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by Jacobi's identity (4.1), hence Corollary 2.1 implies that

yrutotol _ A+ud oly™h @+udviTly) @ -wivd)
AL TTa+u ™ 0y oy a+ufo? ) @+uio? ) @ -uwiody)
7320
Let us set a = -v™ !, ¢ = wv, and & = wvy, to make the structure of this for-

mula slightly more clear; we obtain

Z z” _TTA-aleTlg? ) A —angd) 1 -gi*h 6.3)
L2 TTa-ag* ™ k2 (1-a7lqi™) A -ag?) A -ag?)

jzo

This three-parameter identity turns out to be merely the special case b = 0
of a "remarkable formula with many parameters" discovered by S. Ramanujan
(see [8, Eq. (12.12.2)]); Ramanujan's formula, for which a surprisingly sim-
ple analytic proof has recently been found [5], can be written

1-bgi*"
an TT( 22—
Z jzo<1—aqj+”>

_ (1-balg)y@-a e lgdtH @ -axgH@-¢IthH . (6.4)
jz0 (L-ba e lg?) (1 -a tgI* ) (1 -aq?) (1 -xq?)

If we let S be the set of all complex partitions with 7T+ nonempty,
Gg(u, v, y, 8) and Ggno (4, v, y, ) are given by the terms in (6.1) and (6.2)
involving y% for 2 > 1. The set S\F(S) consists of those partitions with
T+ = {1} and B(m-) < B(m,), hence

Govp(sy (s Vs Y5 B) = uyZub_lvbﬂ(l +udviz) (1 +ud "1od).
b21 J>b

By Theorem 2, we obtain

Cornollary 2.2:

<Z ot iyt T (1+ujuj'1)>(ﬂ a-uiviy)a +uj'1vj)>

221 1<j<® i1
_ z u(kz + k)IZU(k2 _k)IZyk 4 yzubvb‘l—r(l _ ujvjy) (1+uj'lvj) .
k>1 b>1 J>b

If we subtract this identity from that of Corollary 2.1, we get the for-
mula for the complement of S, namely

Zy-z(ﬂ uj—va')(TT (1+u5‘1vj>><ﬂ(1—ujvjy>>

220 1<j<e J>a+l Jj>1



210 IDENTITIES FROM PARTITION INVOLUTIONS [JUNE

- 2 , . . . .
- MW MMJk+kMy4._y}:uleT(l_u%ﬂyMl+uJﬂv”. (6.5)

k20 b21 i>b
Putting y =1 reduces the left-hand side to T13>0(1-ujvj)(li-uj_lvj);hence we
obtain
uboP TT (- wfod) (L4l “hody = D oK i (kiekie, (6.6)
b20 i>b k20
Let g=uv and x==—u—l; this formula is equivalent to the identity
. . 2 X
S @TTa-g)a-giny = Y (-ay*g™ 0, (6.7)
b>o d>b k>0
Equation (6.7) can be derived readily from known identities on basic hy-

pergeometric functions. Let us first divide both sides by1—h>lﬂl—-qj)(l—-qi®,
obtaining =

- : : 3o g
=0 1T @-zgi™a-q'*h TTa-=zg?"H -4 iz

0sd<n izo

Now we use E. Heine's important transformation of such series, a five-param-
eter identity [9, Eq. 79] which essentially states that

fu, vsa, b5 q) = f(v,us b, a; q)

if
Fu, v3 @, by q) = Ut (1-aq?) (1 -vg7) (_l;_y_qJ_> _ (6.8)
20 0<i<n (L-bugi) (1 -g7*) J\izo 1—aqu

In our case we let u = q, v = x/b, a =0, and b > »©, obtaining the desired
result:

C{n : TT(].“CZJ+1)
nso TT (Q-axg?*)y@-qi*h) J\izo

0<jan
(2 N s)
n>0 0<j<n izo (l—qu+1)

It is not clear whether or not the more general equation (6.5) is related to
known formulas in an equally simple way.

An amusing special case of (6.7) can be obtained by setting g = 22 and
multiplying both sides by x:
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2w Aol = w-a+a® - = Y (DFa Y (6.9)

k odd >k k20

"The partitions of n into an odd number of distinct parts in which the least
part is odd are equinumerous with its partitions into an even number of dis-
tinct parts in which the least part is odd, unless n is a perfect square."
An equivalent statement was posed as a problem by G. E. Andrews several years
ago [3], and he has sketched a combinatorial proof in [4, pp. 156-157].
However, there must be an involution on partitions which proves this formula!
If the reader can find one, it might well lead to a number of interesting
new identities.
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EXPANSION OF THE FIBONACCI NUMBER F,, IN nTH POWERS OF
FIBONACCI OR LUCAS NUMBERS

A. S. GLADWIN
McMaster University, Hamilton, Ontario, Canada L854L7

Fibonacci numbers are defined by the recurrence relation F, + F,,; =
and the initial values Fy =0, F; =1. Lucas numbers are defined by L, = F, _;
+ Fn+1. The well-known identities F,, = F2,,-F2_, and Fg, = F3, +F3-F3_,
are shown to be the first members of two families of identities of a more

general nature. Similar identities for L,, and [L,, can be generalized in
similar ways.

Fm+2

1. Let n=2p be an even positive integer, m be any integer, and k be any in-
teger except zero. Then

p P
_ n _ -P n
Fon = E ApF o = 5 E ApLiy 4 o
r=-p r=-p
where a,=0, a_, =-a, and a;,d,, ..., Qp are the solution of the p simul-

taneous equations
- rks

M) D ar D™ sy =
r=1

2. Let n, p, my and kK be as in 1. Then

|4 P
-p
an = z :bY‘FN?*-Y‘k =5 2 :bPL;lld-rk

#=-p r=-p

5971 for =0

0 fors=1,2,...,p-1

where b., =b, and by, by, ..., bp are the solution of the p+1 simultaneous
equations

4
(2) bo + Zbr (_l)rks er(n—Zs) =

r=l

{SP for s=0

0 for s=1,2,..., p.

3. Let n=2p+1 be an odd positive integer, and let m and kX be as in 1. Then

p P
an = ZCI’FVZL*'Y‘]( and an = 5—p ZGTLZ+T7<
£=7p #=7p
where c_, = (—l)rk ¢, and ¢, = by for r > 0.
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4. Since the proofs are similar in all cases, only that for the first identity
need be given. The Fibonacci numbers are first written in the Binet form

F, = 5—%{g“ - )7

1
where g = %—(52 + 1) . Then for n even:

p
-1 -1
Fom =05 2(gnm - gy = Zars ;"{gm+rk _(_g)—m—r’k}n

r=~p

= 5P n (Z)(_]—)ms+sgm(n-23) iap(_l)rks grk(n—Zs)

§=0 r=-p

Equating coefficients of like powers of g for each value of s gives:

p
(3) 577 - a,g™" for s=0
r=-p
p
(&) 5777 = -Z a,g7k" for s=n
r=-p
P
(5) 0= Za,(-l)?ksgr“"'zs) for s=1,2, ..., n-1
r=-p

These n+1 equations can be rewritten in terms of Fibonacci numbers as
follows: Equating the coefficients of like powers of g in (3) and (4)
gives a_y =-a, and a;=0. Equations (3) and (4) are thus equivalent and
can be rewritten in a common form

1 P 4 1 |4
(6) 5p~1 =5 3 apgrkn + argr‘kn =5 5 a (grkn _ g—rkn)
) Py 2
p
= ZarFy-kn
r=1

Similarly, (5) can be rewritten as
£ K
rKs
(D 0= a1 Pry(nozsy for s =1,2,..., n-1
r=1

However, since F_, = -(-1)“F,, this summation is unchanged when s is re-
placed with n-s, and since each term is zero when s =p, only YEn-2)

p -1 values of s give independent equations. These values can be taken as
s=1,2,...,p-1. Thus (6) and (7) together give p equations for the co-
efficients a,, a,, ..., ap, and it is obvious that the conditions for the
existence and uniqueness of the solution are satisfied.

5. For small values of n, the explicit expressions for @, and b, obtained by
solving (1) and (2) can be reduced to simple forms by repeated use of the
identities L,, = Li -2(-1)* =5F2+2(-1)*. The results for n=2, 3, 4 are:
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n=2 1/a, = F, 1/b, = -5(-1)*F2 1/b, = F?

n=3 1/by = —(-1)*F? 1/by = Ly F?

no=4 1/a, = FZk{Ff - (—1)kf§k} 1/a, = ~(-1)*I, /a,
1/by =% (-1)*FiL2 1/b, = F, /L a,

1]

1/b, = -(-1)*12/b,
ACKNOWLEDGMENT

~The writer wishes to thank Professor E. Baumann, Director of the Institute
for Technical Physics, ETH Zurich, for the facilities placed at his disposal.

e



SOME POLYNOMIALS RELATED TO FIBONACCI AND EULERIAN

LEONARD CARLITZ
Duke University, Durham, North Carolina 27706

1. INTRODUCTION

Put
— L 2 = chnx
1 - 7@: - X n=0
and
Caly) = Y Cp, v (n=0,1,2, ...
k=0
By (1.1),
] 00 R j o0 j j__s j+s 0 " n—
Cp X = x?(k + x2)Y = ( )k x = x jz:(
nZ; " J=ZO ,]=OSZO s 'r; 2s<n s
so that

DM O

2s<n

Q
=
1

Since ¢,, is a polynomial in k of degree n, it follows that

Y‘n‘(y)
Cn(y) = ————— (n=0,1,2, ...,
(1 - y)n+1

where »r,(y) is a polynomial in y of degree m. Moreover, since
Cyne1 = Key n +Cp 1
it follows from (1.2) that
Cpyr(x) = Z?:(kck,n + ey -xk
This gives o
Cre1(x) = Ci(x) + Cp-1() (n>1).

Hence, by (1.4),

NUMBERS

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

Supported in part by NSF grant GP-37924X.
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7, @) = (n+)ar, @) +x (1 -x)r)(©) + (1 -x)2r _ () n>1) (1.6)
with ro(x) = r;(x) = 1.
If we put
r, (x) = iRn,kxk, (1.7)
k=0

then, by (1.6), we get the recurrence
(m -k + 2Ry 1 + KBy ¥ Ryoyx =~ 2B, 1,51 + Bpogi_ge (1.8)

By means of (1.8) the following table is easily computed.

> K 0 1 2 3 4 5 6 7
0 1

1 e 1

2 1 -1 2

3 . 3 . 3

4 1 . 14 i 5

5 . 22 60 22 8

6 1 6 99 244 279 78 13

7 . 21 240 1251 | 2016 | 1251 240 21

It follows from (1.6) that

Rn+l,n+l = Rn,n + Rn—l,n-l'

Hence, since R, , = F =1,

1,1
Rpn = Frus n=0,1,2, ...). (1.9)

Hoggatt and Bicknell [2] have conjectured that
Bonsn, i = Bone1,on-k+2 1<k<2n+1). (1.10)

We shall prove that this is indeed true and that

2n+1
Bpponarer + GO (THY) = B, 1 <k<om. (1.11)

The proof of (1.10) and (1.11) makes use of the relatiomship of », (x) to the
polynomial A4, (x) defined by [1], [3, Ch. 2]

1 -z
T = ! +ZA @ (1.12)
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The relation in question is

n-k
r@ =Y ("0 - 2%, @ (1.13)
2k<n
with 4,(x) = 1. The polynomial 4,(x) is of degree n:
n
An(x) = ) Ayt n>1), (1.14)
k=1
where the 4, ; are the Eulerian numbers. Since
A,(x) = x””An(%), (1.15)

it is easily seen that (1.10) and (1.11) are implied by (1.13).

It seems difficult to find a simple explicit formula for R, ; or a simple
generating function for r,(x). An explicit formula for R, , is given in (2.11).
As for a generating function, we show that

o

Zrn(x)% =S a4,@75 (@ - 2@ - 2 e, (1.16)
n=0 n=0
where
fu(a) = %22“”. (1.17)
k=0
Moreover

fn(2) = P,(2) cosh 3 + §,(2) sinh z, (1.18)

where P, (2), §,(3) are polynomials of degree n, n-1, respectively, that are
given explicitly below.

While (1.16) is not a very satisfactory generating function, the explicit
result (1.18) for fn(2) seems of some interest. It is reminiscent of the
like result concerning Bessel functions of order half an integer [4, p. 52].

2. PROOF OF (1.10) AND (1.11)
By (1.2) and (1.3) we have

C,(x) = ixkz (ﬂ;vS)kn—Zs - Z (n;S);Zokn_zsxk'

k=0 2s<n 2s<n

Since [3, p. 39]

it follows that
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and therefore

2@ =y ("% - 4, @,

28<n

Thus we have proved (1.13).

(2.

SO

On

SO

Note that by (1.7) and (1.14), (2.1) yields

D DD NEN Gl PO

28<n j=0

In the next place, since

4,6 = 2", (L) (n > 0),
1) gives
1 n-s8 2 - 1
xn+1r, (E) = Z ( s >(1 _ x) 8 g Zs+1An_28(5).
2s<n
now consider separately the cases 7 odd and 7 even.

Replacing 7n by 2n + 1, (2.3) becomes

x2n+zr,2n+l(%> = Z (”;S)(l -2 A, (@),
3

s§<n

that

2n+2 1
I§n+1(x) x 12n+1<x>'

the other hand

n-
ranan(—i') - Z (2713— S) (1 = z)? gon-2e+ 1A2n—23 (_i-?) +x2(l - 22"
8=0
(20
-5 .
=2 (A - @ A @) - 4= P

s=0

that

1

r, (@) = r2”+1r2n<5) + (1 - x)?n+l,

By (2.4) and (1.7) it follows at once that

Rons1,k = Bons1,2n-x+2 1<k<2n+ 1.

Similarly, by (2.5),

2n+1

2n 2N

- 2n+1
ZRZn’kxk = Z}?zn’kxzn K+l (-1) ( % )xk,
k=0 k=0

k=0

which gives

219

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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Bopx = Bonon-x+r ¥+ ("l)k(znifl) 1<k<22m),
as well as
Ryn,o =1 (n=0,1, 2, ...).
The companion formula
Rons1,0 =0 (n=20,1, 2, ...)

is implied by (2.4).
Clearly, by (1.9) and (2.6),

Ronier,; = Fonso (n=20,1, 2, ...)
while, by (2.7),
Ron,1 = Fopyy = (20 + 1) (n=0,1, 2,
Since

1
A,(y) =y - D a0n,
i=0
where, as usual,

Aom = i(-l)j“s(g)sn = j1S(n, §),
=0

where S(n, J) is a Stirling number of the second kind, (2.1) implies

=) (n;s)(l - x)*° im - 1)t mipdenre
i=0

il

r, (x)
2k<n

mz (T’L;S)n-zzs(x - l)ﬂ‘jA«jOn-—2s-
=0

i
28<n

Hence

Rn,k

[

2s5<n

P
It

n, (2.12) reduces to

n-—38
Ry, = Z( s ):Fnﬂ.

2% n

For example, for

3. GENERATING FUNCTIONS

S (730) e ()
i=0

[ JUNE

(2.7

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

To obtain a generating function for r,(x), we again make use of (2.1).

Thus
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If

we

SO

wh

Wi

Zr (x) an Z(n k) - &) 2 Ao ()

2k<n

n+2k

- Z > (1 ot - 9% .
k=0 n=0

we put
£, (2) = io——————k!(é;f);)! CRAR ————((Zkkil:), Zetn, (3.1)
get
i:rn(x)— —ZA @ f, (1 - 2)2)@ - z)7"z" (3.2)
=0
Clearly

B ® ZZk S 2k + 2 Zk 1_ 2k+1
Folz) = ;(zk)s’ 2E = 2 e s T ' ZZ(zk)' +Z [
that

fo(8) = cosh 3, 2fl(z) = 3z cosh 2z + sinh 2. (3.3)

For n = 2 we get

Lf, (2) = N4k + 1) (k+2) awvz o N (2K + 1) 2k + 2) + 3(2K + 2) a2

2k + 2)! — (2k + 2)!

ich reduces to
bfy(3) = 22 cosh z + 32 sinh z. (3.4)
th a little more computation we find that
8f3(3) = (8% + 322) cosh z + (62% - 3) sinh z. (3.5)
These special results suggest that generally

2"f,(2) = P,(3) cosh z + @,(2) sinh z, (3.6)

where P, (2), &,(8) are polynomials in z of degree n, n-1, respectively. We
shall show that this is indeed the case and evaluate P, (2), 4,(2).

If we put

S5,(2) =P, (2) +9,(), T,(2) = P,(3) - @,(3), 3.7

then (3.6) becomes
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[

2", (2) = 5(3,1(2)82 + T,(z)e?).
By (3.1) we have

2" (k + 1),
2"f, (3) Z 2k ¥ )1 A

This suggests that we put

n
2 (x4 1), =Y a4y Qat G+ 1), s,

j=

[JUNE

(3.8)

(3.9)

(3.10)

where the a,; are independent of x. Clearly the aj; are uniquely determined

by (3.10). Indeed, rewriting (3.10) in the form
1 £ x
n _ - 3 i
2 <—2—(x - n) + l>n = Z(n J)!a”J(n—j>’
i=0
it is evident, by finite differences, that

Gnmeg = Z( ' (D)5 -+ 1),
= F-lri:(—l)j_s(‘g)(s + ) (s+n-=-2) «+- (s -n+2).
§=0

Substituting from (3.10) in (3.9) we get

2. 2k+n

Z”fn (z) = mza”j @k + 4+ 1)
0

S

- 22k+'j

= anjz”"7 ST
= k=o(2k + Jg)!
© 2k =1 a2t
- Lo 2] 2 _ 2
An, 258 {2:(270! Z (Zt)!}
2j<n k=0 t=0

J-1

2k + 1 2¢+1
_ 1 2
+ Za" 2J+1z” 25 - {Z(2k+l)' ;}(2k+l)!

2j<n

E: n-2; 2: n-2j-1 g3
Ap,o5 8777 cosh z + A, 541877 sinh 3

2j<n 2j<n

n-2j-2t an-2j +2t

_Z Za”'zJ 2 28)! _Z Zan 27 +1 (21: Y

2j<n t<j 2j<n t<g

(3.11)

|

(3.12)
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Now
zn—2j+2t Zn—2j+2t
Z Zan-zj T @n,25+1 ]
_ Zzn_zt Z ‘an,zj N 'an.2j+1
(24 - 2¢)! (23 - 2t + 1)!
<2t<n 2t<j<n
= gn-2t 'a”’j
g - 2e)°
0<2t<n 2t<g<n
By (3.11)
Clnj
G - 2¢)!
2t<j<n

n-g .
= Z (j_Zt)}(n_j)!Z(—l)"—J_S(n;J>(s+n)(s+n—2) e (8=-n+2)
2t< g <n 8=0
n-2t 1 J

ST (I s+ (s 4n=2) or (8 -n+2)
et jl(n=-2t-4)! £ (s)

J g
= __}__”it(n—Zt)(s_i_n)(s_'_n_z) e (ot nit(_l)J-S(n—Zt—s
S (n-25)1 &4\ s 2 it )

The inner sum vanishes unless n = 2t + s. Since n > 2¢, the double sum must
vanish. Therefore, (3.12) reduces to

2"f (3) = Zan,zjz"—zi cosh z + Zan,zwz”—%’-l sinh z. (3.13)

25<n 25<n

Comparing (3.13) with (3.6), it is evident that

P (2) = Z U, 2 an-24
2j<n
(3.14)
Qn(z) = Zaﬂ-2j+ gn=2d-1
2j<n

Hence, as asserted above, P,(2), @,(3) are polynomials of degree n, n - 1,
respectively. It is in fact necessary to verify that q, , # 0, a,,, # 0.
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By (3.7) and (3.14) we have

§,(2) =D @, ;a"9, T,(2) = D (-1) a,, ;2" (3.15)

ji=0 Jj=0

L. ANOTHER EXPLICIT FORMULA

While we have found a,; explicitly in (3.11), we shall now obtain another
formula that exhibits a,; as a polynomial in 7 of degree 2j. To begin with
we have, by (3.11),

e®S,(z) = ZOZkZU(—-—jJTan'n—j '
J

k=
J

2| ok & k Y
= ;%Zo(j)zo(-l)g (‘;)(S+n) (s+m=2) +o- (8-n+2)

1
J= 5=

k=0 " g=0 j=¢

It follows that

o

Uy (2) = e*5,(z) = ErmGrn=2) o0 (kontd) op .1
k=0 :
Then
2U)(z) - nUy,(2) =Z (k+n)(k+n;'2) e (k=) g
k=0 :
(zUJ(z) _ nUn(z)) =2 (k+n+1)(k+n;’1) e (k=n1) Ut (a).

k=0
Carrying out the differentiation this reduces to
Sp+1(8) = 380(z) + 2z-n+1)S}(8) + (3-n+1)5,(2). (4.2)
Comparing coefficients we get
Ape1,5 = Ang + M=27+3)a,, ;.. - G-2)(n-g+2a,,;_,. (4.3)
Hence, for j = 0, we get

Ap,o = 1. (4.4)

For j = 1, (4.3) becomes

Aps1,1 = Anr + (0 + L)ay,,,
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which gives
n+1
an = ("3 (4.5)
For n = 2, (4.3) reduces to

Ays1,2 = App + (n = Da,,,

which gives

+1
a,, = 3"} ) (4.6)
With a little more computation we get
n+1 n+1l
aps = 15( . ) - 3( ; ) 4.7)
2, = 105(" 5 1) - as("E ) (4.8)
n 8 6
Caec.e7.0fTL)y _ n+1l n+1l
Gys = 3°5¢7 9(10) 630(8)+45(6). (4.9)
These special results suggest that generally
+1
Tny= ("l)sc-fS(zn‘—ZS)' (4.10)
2s<g J
Indeed assuming that (4.10) holds up to J, it follows from (4.3) that
an+l,j+l— an,j=l
_ . s n+1 . _ = _13\S .. ( n+1
= (=244 3 (07 () G0 -4 D D ey (0" 50 o)
2s< g 2s<j-1

Z(_l)s(Z?fés) {(”‘zj'*'l)cjs + (j'l)(n'j"'l)cj—l,s—l}

28<J

178 A n+1 )
E : D c=7+1,S(2€7'—2s+1

285 g+1

provided
(n-27+28+1)cj 1,0 = (25 - 25+1) ((n-2j+1)ej, @G- M-F+Dejo1,-1)-

This gives

o =i _(J-1)1(2] - 28)!
J» 8 sl(g-8)1(j-2s-1)!"

(4.11)
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Thus (4.10) becomes

- i @G-D1@j-28)! (n+l
amj"QE;Z suj—s)uj—zs—l)!vj-23> (4.12)

NI| O 1 2 3 b 5
0 1
1 1 1
an,j: 2 1 3
3 1 6 3 -3
L 1 10 15 | -15
5 1 15 45 | -30 | -45 | +45
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A RECURRENCE SUGGESTED BY A COMBINATORIAL PROBLEM

LEONARD CARLITZ
Duke University, Durham, North Carolina 27706

SECTION 1

Recurrences of the following kind occur in connection with a certain com-
binatorial problem (see 85 below). Let e;, ..., €, be non-negative integers
and g a parameter. Consider the recurrence

"

Fler, vevs €0) = D .q3F(ey = 815, ory €4 = 605D, (1.1)
i1
where
N=ey+ - + ey, (1.2)
1 (Z=4)
61J = (1-3)
0 (Z#D,
F(O, ..., 0) =1 (1.4)

and F(e;, ..., €,) = 0 if any e; < 0.
Note that, for g = 1, (1.1) reduces to

10
F(eis «evy €4) = EEZF(QI - 61j, vees @n ~ O0y4)
J=1

and F(e;, ..., €,) becomes the multinomial coefficient

(e, + e, + -0 + e !

e lte,! .. eyl
If we put
e=(€1, "',en)s 6j=(61j, -"96nj)9 (1-5)
then (1.1) becomes
I .
F(e) =ZqJ”F(e - 8. (1.6)
Jg=1

For n = 1, the recurrence (1.1) is simply
F) = ¢"F@ - 1), F(0) = 1. 1.7

227



228 A RECURRENCE SUGGESTED BY A COMBINATORIAL PROBLEM [JUNE

The solution of (1.7) is immediate, namely
) = @Y (1.8)
For n = 2, the situation is less simple. We take
F(e,, e,) = qNF(el -1, e, + qZNF(el, e, )l =e, +e,). (1.9)

Iteration of (1.9) gives

it

Fle,;, e,) qzzv—lF(el—Z, ez)+q3N"2(l+q)F(el—l, ez—l)+q“N“2F(el, e,-2)

- q3N—3F(e __3’ 62)+ql+N_s(l+q+q2)F(el_ s 82—1)
+ g (14 q+qHF(ey -1, e, -2) +q*" TP (e,, e, -3).

It is helpful to isolate the exponents as indicated in the following
table.

r 0 1 2 3 4 5
m

0 1

1 N 2N

2 |2y -1 |{3W -2 |4v-

3 |3w-3 | ~-5 |5vm-6 |6 -6

L {4y -6 |58 -9 |68 - 11|70 -12|8W - 12

5 |5V - 106N - 1h |7 - 17 |8V - 19 |9N - 20 | 10N - 20

The special results above suggest that generally, for m > 0,

Fley, ey) = 9 [Z]q(’””)”"”(“'”*%s(s VFe, - s, e, - 1), (1.10)

r+s=m

where

m m=-1 m=r+1
[m]=(1—q)(1—q ) -+~ (1 -4qg ) (1.11)

i Q- -g* - Q-q"

It follows from (1.11) that

[Z]q” * [I‘Tl] = [W;l] (1.12)

For m = 1, (1.10) reduces to (1.9). Assume that (1.10) holds for all
m < M. Then by (1.9)
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M - - 1 -
Fley, e,) = :E: [ ]q(M+r)N M(M=1)+Ls(s I)F(el —s, e, -1

s

r+s=M

_ M]q(M+rﬁN—M(M~1)+%s(s-1) {qN_r_SF(el s -1,e

2

s

r+s=M

229

.__-p)

+ qZ(N'”_S)F(e1 -85, e, -1~ l)}

_ Z {[ll‘ﬂl:]q(zuwﬂ)zv—M2+’§s(s—1)F(el —e-1,e, -1

r+s=M

r

-y %[M] (+r 1)y =+ b (s -1) (o -2)
= 7 q
r+s=M+1

r-1

+ [M]q(M+T+2)N-ﬂ“M+1)+%s(s-1)F(el -5, e, -7 - l)}

+ [ M ]q(M+r+1)N—M(M+1)+%s(S—I)F(el -5, e, - P)}

- q(M+r+1)N—M(M+1)+%s(s—1) {[i{]qM—s+1

r+s=M+1 - M
+ [ ] Fle, - 8, e, - 1)

r-1

_ Z [M-;l]q(M+r+1)1v-M(M+1)+%S(S'I)F(el -8, e, - 1),

r+s=M+1

by (1.12). Thus (1.10) holds for M + 1 and therefore for all m > O.
For m = N, (1.10) reduces to

F(s, 7) = q(2r+s)(r +s)-(1ﬂ+s)(1ﬂ+s—1)+1§s(s—1)[1""3].

r

Simplifying and interchanging » and s, we get

- Ir(r-1)+(r+s)(s+1) r+s
F(r, 8) = g2 [ » :‘

By a familiar identity, (1.13) gives
m
DG RE, m - et = L+ @A+ ga) - (L4 g7,
r=0

SECTION 2

The case n = 3 of (1.1) is more difficult. We have

Fle,, e,, e,) = q'F(e; - 1, e,, e;) + QZNF(el, e, -1, e,)

+ quF(el, e,, €5 = 1).

Iteration gives

(1.13)

(1.14)

(2.1)
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F(e,, e,, €5) = q”(qN_IF(el -2, ey, e3) + g PF(e, -1, e, - 1, e)
+q¥Fle, - 1, e,, e, - 1))-+q2N(qN‘1F(e1 -1l,e, -1, ¢e,)
+ g2 2F(ey, e, - 2, ey) +qV T F (e, e, - 1, e, - 1))
+q¥(q" (e, - 1, ey, e; - 1) +q? 2F(e;, e, - 1, 5 - 1)
+q¥ %r(e,, e,, €5 - 2»

=g® " F(e; - 2, ey, €3) + @2+ @Q)F(e; - 1, e, - 1, ;)

+g" 31 + g YF(e, - 1, e,, ey - 1)+q"""?F(e,, e, - 2, e3)
+ "3+ QF(ey, e, - 1, e, - 1)+¢* *F(e,, e,, 5 - 2).

A second iteration gives

F(e,, e,, e3) = q3N'3F(e]_ -3, e,, e3) + qBN‘GF(el, e, - 3, ey)
M=3p(e,, e,, e; - 3)

S1-8(1 4+ 20 +2¢° + g")F(e; -1, e, - 1, e; - 1)
S+ g+ gP)F(ey - 2, e, - 1, e5)

T+ g% 4+ q”)F(e1 -2,e,,e,-1)

=81 + g*)F(e, - 1, e, - 2, e,)

=91+ q%* + qY)F(e, - 1, e,, e, - 2)

81+ g+ gP)F(e,, e, - 2, 5 ~ 1)

=91 +q + q®)F(e,, e, -1, e; - 2).

+ + + + + + + +
Q Q9 9 9 Q9 Q9 Q Q

It follows from the above that

F(1,0,0) =g, F(0,1,0) = ¢g*, F(0,0,1) = ¢°, (2.2)

F(2,0,0) = q°, F(0,2,0) = ¢°, F(0,0,2) =q°
(2.3)

F(1,1,0) = ¢*(Q+¢q), F(1,0,1) = ¢°(1+¢%), F(0,1,1) = g’ (1L+q),
F(3,0,0) = g%, F(0,3,0) = ¢q'*, F(0,0,3) = g't

F(2,1,0) = g’ (L+qg+qg%), F(2,0,1) = ¢°(L+q>+g")

F(0,2,1) = ¢¥*(L+qg+qg?, F(1,2,0) = ¢g°(L+g+q?) (2.4)
F(1,0,2) = g2 (1 +qg%+q"), F(0,1,2) = g** (A +g+q?)

F(1,1,1) = ¢ (1 +2g+2¢%+q"*).

It is convenient to write (2.1) in operational form. Define the operators
EyY, E3', E;' by means of
EII¢(9U €y, 63) = ¢(el‘l; €o, 93); EEI‘P(el: €o, 33) (2.5)

= (b(el, 62_1’ 63), E:;ld)(el, 225 83) = ¢(ela 92’ 83—1)
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and put

Q= ql"E’I1 + qZNE;1 + anEgl W=, +e, +ey.
Then (2.1) becomes

F(e,, ey, e;3) = QF(e,, e,, e,) v > 0.

For m > 0 we may write

'
Q" = E g2t W e, 5, )BTRS,
=m

r+s+t

where C(r, 8, t) is independent of N. Moreover
c0,0,0) =1

and C(r, s, t) = 0 if any one of », s, t = 0.
By (2.7) and (2.8),

QNF(el,ez,eg)

F(e,, e,, e3)

(ey t2e, +3e;)n

C(r,s,t)F(e,~-r,e,~s,e,-1t),
r+s+t=y
so that

(e, +2e, +3e,)N

F(e,,e,,e;) =q Cleys e, e,).

Hence (2.8) becomes

Qm = 2 : q(r+?_s+3t)(N _m)F(r‘,s,t)EIPE;SE;t

r+s+t=m

W=e, +e,+e,;, 0<m<D).

2

Since
F(ey, e,,e;3) = UF(ey, e,,ey) (0 <m<m,
it therefore follows from (2.11) that
F(e,,e,,e,) = q(P +23+3t)(N*'")F(r,s,t)F(el—r,ez—s,ea-t).

r+s+t=m

This may be written in a more symmetrical form:

F(a,b,e) = 2 q(r+2s+st)(r' +s'+t')F(P’ s, tYF(r', 8", t")

0Rs
g

Qo

14
128
i

kg
44

O<Lm<a+b+e),

.

r+s+t=m
with a, b, ¢, m fixed.

231

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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For example, with a=b=c¢ =1, m= 2, (2.13) gives

F(1,1,1) =q°F(0, 1, 1)F(1, 0, 0) +g*F(1, 0, 1)F(0, 1, 0) +¢3F(1, 1, 0)F(0, 0, 1)
=qB A+ +q"M A+gH +¢0 A +9q)
=g (1 +29+29%+q").

Note that with a=b =c¢ =1, m=1, we get

F(1, 1, 1) =q°F(1, 0, 0)F(0, 1, 1) +g"F(0, 1, 0)F(1, 0, 1) +g°F(0, 0, 1)F(1, 1, 0)
=q%A+q)+q"M (1 +g®) +q¥ 1 +q)
=qm(l+2q+2q3+q“L

Indeed (2.13) is not completely symmetrical in appearance. If we put
m'" =r"+ 8"+ t', then (2.13) yields

F(a, b, c) = Z g\ Rt #IN (A ) it o1t YR(p, s, E). (2.14)

r’+r=aqa

s’+s=ph

t’+t=c
r’+s’ +t’=m

The equivalence of (2.13) and (2.14) can be verified directly by merely in-
terchanging the roles of the primed and unprimed letters in (2.13).

By means of (2.13) a number of special values are easily computed. For
example we have

F(a, 0,a) = g 'F(1, 0, 0)F(a-1, 0, 0)
F(0,b,0) = g2~ Y0, 1, 0)F(0,b-1,0)
F(0,0,¢c) = ¢*° Y p(0, 0, 1)F(0, 0, c-1).

It then follows that
1 3
f(a, 0,0) = g22@*D) 20, b, 0) = q??*D | £(0,0,c) = g2°*) | (2.15)

As another example

F(a, 1, 0) = ¢°F(1,0,0)F( -1,1,0) + ¢g**F(0, 1, 0)F(a, 0, 0)

and we find that

F(a,1,0) = q%(a2 +3a+4) (1+C[+ - +qa). (2.16)
Similarly
F(0, 1, a) = ¢*?F(0, 1, 0)F(0, 0,a) + g**F(0, 0, 1)F(0, 1, a-1),

which gives

F(0, 1,a) = qE@*DBa*®) (1 404009y, (2.17)
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Also
F(a, 0,1) = q%(cﬂ +3a+4) (l+q2+ +q2a)
1 (2.18)
F(1,0,a) = q2a*03a¥2) (q 4 02 4L 4429
(F(1,a,0) = q(”’“)2 (L+g+---+qg%
{ 24 (2.19)
F(0,a,1) = q% "3 (1 +qg+--- +g9).

Note that it follows from (2.16), (2.17), (2.18), and (2.19) that

F(0,1,a) = ¢*“**?F(a, 1,0)
F(1,0,a) = g "V F(q,o0,1) (2.20)
F(0,a,1) = q®¢*2)p(1, a, 0).

SECTION 3

It is evident from (2.1) that F(a, b, ¢) is a polynomial in g with non-
negative integral coefficients. Put

f(a, b,c) = deg F(a, b, c), (3.1)
the degree of F(a, b, ¢). To evaluate f(a, b, ¢) we use (2.1):
F(a, b, ¢) = ¢"F(a-1, b, ¢) +q*"F(a, b-1, ¢) +q*"F(a, b, c-1) (N=a+b+c).
Then

f(a, b, )

max {W+f(a-1,b, ), 20+ f(a, b-1, ¢), 30+ f(a, b, c-1)}. (3.2)
In particular
f(a, b, e) > 3N+ f(a, b, c-1) (¢ >0),
so that
fla, b,e) 230+ (N-1)+-+++3W-c+1)+f(a, b, 0).
Since, by (3.2), ‘
f(a, b,0) > 2(a+b) + f(a,b-1,0),
we get

fla,b,c) > 3V+3W-1)+-+--+3W-c+1)+2W-c)+2(M-c-1)
+:cc+2(-c-b+1) + f(a, 0,0).
Hence, by (2.15)
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f(a, b, e) Z%a(a+l) + b(b+1) + —%o(c+ 1) + 2ab + 3ac + 3bec. (3.3)
We shall prove that, in fact,
f(a, b, ¢) = %a(a+l) + b(b+1) + %c(c+l) + 2ab + 3ac + 3be. (3.4)

This is evidently true for a+b+c

= ,2,3. Assume that (3.4) holds for
a+b+c <M. By (3.4), with a+b+ec

0,1 3
= M, we have

I
Q

fla,b,e-1) +a+b+c- fla,b-1,¢c)

fa,b-1,¢) +a+b+c - fa-1,b,c) = b + c.

Hence (3.2) reduces to
fla, b,c) = 3(a+b+ec) + f(a, b,c-1)
and it follows that (3.4) holds for a+b+c = M.
This completes the proof of (3.4).
The formulas (2.20) suggest the possibility of a relation of the following
kind
F(a,b,c) = q¥a 2 e, b, a), (3.5)

for some integer d(a, b, ¢). 1In view of (3.4)

f(a’ b’ G) - f(c’ ba Cl).

d(a, b, c)

By (3.4) this gives

d(a, b,e) = (c-a)(a+b+c+1). (3.6)
Thus (3.5) becomes
qa(NH)F(a, b, e) = qc(lv”)F(c, b,a), N =a+ b + c. (3.7)

We shall show below (85) by a combinatorial argument that (3.7) is indeed
correct.

SECTION 4

Turning now to the general situation (1.6), we define the operators E’l'l,
E;', ..., E;' by means of

E;'¢(e) = ¢(e - 68;), (4.1)
where the notation is that in (1.5). We also put

Q= quNEj_lcb(e) W=e, + - +e,, (4.2)
i=1

so that (1.6) becomes
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F(e)

QF (e) w>0). (4.3)
Iteration of (4.3) gives

F(e)

Q"F(e) (0 <m<m. (4.4)

Generalizing (2.8), we write

Qm = Y g emE ™ L BT, (4.5)
ZPJ.:m
where
= (P, Py, veey Py), W) =r) + 20, + --+ + ur, (4.6)

and C(r) is independent of N. Then, in the first place, for m = N, (4.5)
yields

Fle) = q“!*)c(e), (4.7)
so that (3.5) becomes
Q" = Z g WMoy g L BT, (4.8)
er=m

It then follows from (4.5) and (4.8) that

Fle) = Y quIW=mpr)Fle - 1), (4.9)

er=m
This result can be written in the more symmetrical form

Fle) = Z g =M p()F(r"). (4.10)

Lr;=m

. [
i+ rl=e;

The remark about the equivalence of (2.13) and (2.14) is easily extended to
(4»ig)é simple application of (4.10) we take

F(as;) = q7 M FrHF((a-1)8;).
Then, since F(8;) = g7, we get

Fas;) = q#*“) (1< <, (4.11)

This is evidently in agreement with (2.15).
Next

F(a, 1,0, ...,0) = ¢g*F(1,0,0, ..., 0)F(a-1,1,0,...,0)

+ ¢**F(0,1,0, ...,0)F(a, 0,0, ...),
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which reduces to
F(@, 1,0, ...,0) = ¢®*'P(a-1,1,0, ...) + grla+t+2a+2,
This gives
F(a, 1,0, ...,0) = g2 @ 2% (1 4 g 4+ vt 4 g9, (4.12)
For example
F(1,1,0,...,0) = ¢g"(1+q), F(2,1,0,...,0) = g’ (L+q+q?),
in agreement with earlier results.

Clearly F(e) is a polynomial in g with non-negative integral coefficients.
Put

d(e) = deg F(e), (4.13)
the degree of F(e). Then by (1.6)
d(e) = max {jN + d(e - 6i)}- (4.14)
1<g4n
Thus, by (4.11)

d(e) > n(l + (W-1) + ++- + (W-e,+1))
+ (n-1) (W-e)+W-e,-1) + -+ + (N-e,-e,_;+1))
+oeee + 2((1;7_@”_..._93) +oeee + (N_en—"'—ez+l))
+ ge, (e, +1).

After some manipulation this becomes

d(e) > 3, + 30, , (4.15)
where
n n
N, = Zje , U, = Z max (2, J)e;e;. (4.16)
j=1 Z,d=1
We shall show that indeed
1 1
d(e) = ENZ + ENl' (4.17)

To prove (4.17) it suffices to show that

N+d(e-6,) - d(e-8,_ 1) =e, +te,  +t-r+e, (k=2,3,...,n)

under the assumption that (4.17) holds up to and including N- 1. Making use
of (4.17) we find that
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k-1
d(e-8,) - d(e=-8,_1) =Zej (k=2,3, ...,n)

j=1

and (4.18) follows.
Corresponding to

e (el’ 92, ceoy en)

we define

e' = (e,, €, 15 «ves €7).
Clearly
n n
N = eJ- = Zen_j+1.
j=1 i=1
However
n 1A
N =D Jenjuy =, (n-g+e; = (n+ DN - I,
ji=1 i=1
Thus
' 1
dle’) = zW+1) ((n+ DN -N,), (4.19)
so that
d(e) - d(e") = W+1)(2W; - (n+D1)I). (4.20)

In particulr, for n = 3, (4.20) reduces to
d(e) - d(e') = (W+1)(c-a)

in agreement with (3.6).
We shall show by a combinatorial argument in 85 that

F(e) = q%(N+l)(2N,-(n+l)N)F(ey). (4.21)

SECTION 5

The combinatorial problem alluded to at the beginning of the paper is the
following. Put

e = (2,,€,,...,€,), N=e,+e,+---+e,, (5.1)
where the e; are non-negative integers. Consider sequences of length N
O = (A1, Qps o005 Ay) s
where the g; are in Z, = {1,2,..., n} and each element 7 occurs exactly e;

times; e is called the signature of o. We define the weight w(og) of o by
means of
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w(o) = Zjaj. (5.3)

j=1

We seek f(e, k), the number of sequences 0 from Z, of signature o and
weight k. It is convenient to define a refinement of f(e, k). TFor 1<j<mn,
we let f;(e, k) denote the number of sequences 0 from Z, of signature o,
weight k, and with last element ay;=gJ. Tt follows immediately from the defi-
nition that

fe, k) =Zlfj( k). (5.4)
i=
Moreover
file, k) =) fi(e=8;, k-gm, (5.5)
=1
where 6j has the same meaning as above.
Put
F(e) = F(e, ) = p_ fle, Kq*
¢ (5.6)
Fi(e) =Fi(e,q = ) fi(e, gk,
x
so that
k
F(e) = ) Fi(e). (5.7)
i=1
Multiplying both sides of (5.5) by g* and summing over k, we get
Fi(e) = DD fi(e=8;, k - g
kK =1
= q/"Yy fle-3;, k)q*
x
= qiF(e-6;).
Hence, summing over J, it is clear that
1
Fle) = ) qI"F(e-3,). (5.8)

j=1

This is identical with the recurrence (1.6); also F(e) satisfies the same
initial conditions as in §1.

The polynomial F(e) also satisfies a second recurrence. To find this re-
currence we let f; (e, k) denote the number of sequences 0 from Z, with sig-
nature e, weight k, and first element e, = j. Then of course
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n
fle, k) =) Fie, 1.
We have also o
n
File, k) =) File=08;, k=W, +7) = fle~8;, k=N, +3),
where o
Ny=e;, +2, + -+ +nex.
Hence, by (5.9)
F(e) =‘é Fe-8;)g™ 7.
ji=1
Now put
= (e, €,_15 +++5 2;)
and
o' = (aj, aj_ys «-+5 aj),
where
al =n-a; +1 Gg=1,2, ..., V).
Corresponding to (5.11), we put
Ny =e, +2,_, + " +ne,.
Thus

(n + 1)N.

v, + N{

The weight of o' is evidently

N
D W-j+1(n-a;+1)

j=1

N N
w(o") =Zja,;_j+l = Z(zv—j+1)aal
i=1 J=1

N N
= (ADIWHD) - T+ DIW+1) - @+DY ay + Y jay.
1 iT1

i=
This gives

w(o’) = %(n+1)N(N+1) - W+ 1)V, + w(0).

239

(5.9)

(5.

(5.

(5.

(5.

(5.

(5.

(5.

10)

11)

12)

13)

14)

15)

16)

Thus there is a 1-1 correspondence between sequences 0 of signature e and

weight k, .and sequences 0’ of signature e’ and weight

LW+ (U -20,) + &,
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so that

1

£ 10 = fle, W+ (e 1W-20,) + ).

This yields

Fe) = q%(zvﬂ)(zzvl- (D) peery,

so that we have proved (4.21).
It is proved in (4.17) that

1
deg F(e) = E(Nl + Nz),
which implies
1
fle, k) =0 (k > SW, + zvz)).
Also the proof of (4.17) gives
f(e, S, + zvz)) - 1.
In the next place, define
G = (ays AQy_ys +ovs A1),

so that

N N
W@ =D day s = P, W-F+Da; = @+, - o).
Jj=1 J=1

It therefore follows from (5.19) and (5.20) that
1 (k = W, + %(zv1 - N2)>
fle, o) = 2
0 (k < Wy + 3 - zvz)).
Thus
_1
wmax(c) = E(Nl + Nz)
1

Wnin(0) = NNI + 5(1‘71 - NZ)'

Finally it is evident from (5.21) that
Fle,q) = qW*D% pee, g7,

where we are using the fuller notation, F(e, q) = F(e).
Put

£, k) = Z Fle, k),

[JUNE

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)
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so that f, (N, k) is the number of sequences from Z, of length N and weight k.
Also put

F, (W, @) = D £, K)gk.
k

Then it follows almost immediately from the definition of f, (W, k) that

N _ And
Fn(N’ q) = q%N(N+1) l lu_‘ (5.25)
j=11 - qJ

Indeed it suffices to observe that the right-hand side of (5.25) is equal to

N .
] |(qJ +
J=1

A curious partition identity is implied by (5.25). Put

20 4 ... + q™).

Q

N ©
TTa-q)™" =3 pm, mq",
m=0

j=1

so that p(m, N) is the number of partitions of m into parts <N. Now rewrite
(5.25) in the form

1—1\/(1\1+1)Z"° P Zm mnz X
qz p(k9 N)C[ - p(m,N)C{ f (IV, k)q .
k=0 m=0 k "

Then, equating coefficients of g%, we get

p(k - %ZV(IV+1)> = 3 pon, I, @,k -m). (5.26)

mn<k
Another identity is obtained by replacing # by 2n in (5.25):

%N(IV+1) N 1 - q?_nj

F, 0,9 =g -
i=1 1 - g’

Then by division

X .
F,, W,q) =F,W, T @+q").
i=1

Hence, if we put
Tn(u+1)

N
1+ qg9) = Dm, Mq™,
;[jl q me q

m=0
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so that p(m, V) is the number of partitions of m into distinct parts <N, we
get
T +1)

Y Fan M, g% = 1L, W, K0qk D Blm, g™
k k me=0

Therefore

Fan@,®) = Y Bln, MF, (0, k=mm). (5.27)

mn<k

For references to other enumerative problems involving sequences see [1].
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[1] L. Carlitz, "Permutations, Sequences and Special Functions,'" STAM Review
Vol. 17 (1975), pp. 298-322.
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SOME REMARKS ON A COMBINATORIAL IDENTITY

LEONARD CARLITZ
Duke University, Durham, North Carolina 27706

SECTION 1

Let k, p, q, v be positive integers, ¢ < p < k, » a non-negative integer
and {A; = 1, A;, Ap, ...} a sequence of indeterminates. Let e(k, j) be the
(signed) Stirling number of the first kind defined by

k
zs(k, Hxd = x(@-1) ... (@ -k +1).
J=0
Put
L, p, q) = Lr1Ty oo Byhg hg, - Mg, » 1.1)

where the summation is over all sets of integers »,, r,, ..., r, such that

p=r,>2r, >2r,>...21r,=p-q, (1.2)
and
d; =7 4 - r G =1, 2, , V) (1.3)
A. Ran [2] proved that
k
D sk, HLG + 7, p, @) 20 (1.4)
J=0

identically, that is, for arbitrary A;, A,, Aj,

Hanani [1] has recently given another proof of (1.4). Hanani's proof is
elementary but makes use of a rather difficult lemma.

The purpose of the present note is first to give another proof of (1.4)
that makes use of the familiar recurrence

s(k+1, ) =8k, g - 1) - kes(k, J) (1.5)

and the recurrence (2.2) below satisfied by L(v, p, g). We show also that a
result like (1.4) can be obtained for the more general sum

Ly, ps @) = 9 (2175 won ) Ag Ag, oen Mg, (1.6)

where again the summation is over all r,, »,,

(1.3).

.., 1, that satisfy (1.2) and

243
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We have been unable to find a simple generating function for L(v, p, q).
However, we do give an operational formula for the sum

L p
Fy(y, 2) =Z ZL(U, p, QPyFz9. (1.7)
p=0 g=0

See (4.5) below.

SECTION 2

In view of (1.2) and (1.3) we can rewrite (1.1) in the following form:

L@, p,q) = Z 0-d) (p-dy=dy) oo p=dy= oo =dIAg Ag, oo hg,  (2.1)
dy+.--+d,=q

where the summation is over all nonnegative integers d,,d,, ... d, satisfy-
ing dy + -+ +d, = g. Thus

L(v+1,p,q) = Z p-D@p-d-4d,) ... (p—d—dl—...—dv)Ad)\dl cee Mg,
d+d, + c+d,=q

Z(p d)A Z (p-d=dy) ... p=d=dy= .. =d)hg .. g,
c+d,=q-d
Z(p d)AdL(v p-d,q-d),
d=0
so that

q

Lw+1,p,q) = Z(p—d)AdL(u,p-d,q-d). (2.2)
d=0

In the next place, by (1.5) and (2.2),

k+1

s(k+1, NIG+n,p, @) = D {s(k, §-1) - k-sk, N}L(G+n,p,q)
J=0 J

J
—st(k, NL(G+n, p, q)
8=0

k
+ Zs(k, NDLG+n+1,p, q)
i=o

J
st(k, LG +n,p, q)

8=0

-
+Zs(k J)Z(p DNEG+n, p-d, q-d)

(continued)



1978] SOME REMARKS ON A COMBINATORIAL IDENTITY 245

J
= k) 8k, HLG+n, D, @)
8=0

q k
Y p-DA Y sk, DLG+n, p-d, q-d).
d=0 J=0

Hence, if we put

k

R(kynyps @) = 9 8k, HIG+n,p,q), (2.3)
j=0

it is clear that we have proved that

q
R(k+1,n,p,q) = -kR(k, n,p, q) +Z(p—d))\d}?(k,n,p—d,q—d). (2.4)
d=0

In particular, for k = p, (2.4) reduces to

q
Rp+1,n,p0,q) = 9, @-DNR@,n,p-d, q-d). (2.5)
d=1
Taking ¢ = 0 in (2.1) we get
L(v, p, 0) = Z (p-dy) «oo (P=dy=...=dAaAg, -+- Ag, = D°

as is also clear from (1.1). Thus substitution in (2.3) gives

.3
Rk, 1,0, 0) = ) 8k, Hp*=propp-1) ... (p-k+1),
Jj=0

so that
R(k,n,p,0) =0 (k >p), (2.6)
while
" o !
R(k, n, p, 0) =7§—T%—! (k < p). 2.7

Finally, by (2.6) and repeated application of (2.4) and (2.5), we have

R(k,n,p, q) =0 (k>p2>2q20). (2.8)

SECTION 3
The above proof of (1.4) suggests the following generalization. Let £2>1
and define generalized Stirling numbers of the first kind by means of

k
D sk, Hzd = w@ - 1)@ - 2% ... (2 - k- D). (3.1)

8=0
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Put
t
Lt(‘l),p,q) =Z(P11’2 “ee I’U) )\dl)\dz e )\d",
where the summation is over all Prs Loy eens Py such that

Pp=ry2r,2r,2 ... 27, =p-qg,

and
d; =r_, - r; G =1, 2, , V)
Then
k
Zst(k DL G +n,p, q)
J=0
where

>0, k>p>q>0.

The proof is exactly like the proof of (2.8) and will be omitted.

SECTION 4
Put
@@,w—z:Ejuqum%qm@,w- -
=0 p-
and
A(2) =Z)\dzd.
d=0
By (2.1),
L(v, p, @) = E: QJCZHp dy=dy) e (pdy= e =)y A
4+
so that
F, (y, ) = Z Z (p—dl)(p—dl—dz)...(p-dl-...

,=0 p2d,+

. }\dl )\dz cee ).duypz

Z Z p(p—dz)...(p—dz—...—dv)
d, +

,dy =0 >d, +
Pt A5 A A P( )d, 2
d, M, +++ 4, Y Yz 2

-d,)

- +d,

[JUNE

(3.2)

(3.3)

(3.4)

(4.1)

(4.2)
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= A(ya) Z Z p(p d) s (p=dy= .. —dy)

,dy,=0 p>d,+ p
 Ag, .- Mg yPaft e
Since
dy
E Z p(p dy) ver (p=dy= o =ddhg, oo Ag yPa T
y=0 p2>d,+
eeo4d,
- (yD) Z 2 (p ) oo (p=dy = e —d)hg oo Ag yPet T
2reeesd,=0 p2dy+
where D, = 9/9y, it follows that
F,(ys 2) = (yhy2)D,)F, 1 (y, 2). (4.3)

Iteration of (4.3) gives
P, (y> ) = (yA@wa)D,)" P Gy, B (@2 1).
Moreover, by (2.1) and (4.1),
Filys ) =D D (o= Dhgyta =3 D phayP (ya)?
d=0 p=d d=0 p=0

- —L—hwa = (yhEHD)P @y, 2.
1 -y

Hence we get

F,(y, 8 = (yhwa)D,) Foly, 2) (v 20) (4.4)
and more generally
Fins 8 = (yA@a)Dy) F,(y, 2) (20, n > 0). (4.5)
By (2.3)
R(k,n,p,q) = Zk:s(k, NDLG+n, Dy Q).
Thus 7
Cpn @ 2) _Z ZR(k 0> QyFal = i)s(k, DFiyn(y,s 2)
£~

k .
Zs(k, N(yA@aHD,) Py, 2.
=0
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Hence if we put

k
20 = z(z-1)...(z-k+1) = ZE:s(k, $zd,

J=0
we have
Grn > 2 = (YA - F (y, 2), (4.6)
where by (2.8),
Grm s B =9 9 Rk, n,p, @yPa’. (4.7)
q=0p=4q
p2k
We remark that in the special case
Ap=1 (n=20,1, 2, ...), (4.8)
(1.1) reduces to
L, p,q) =) 17y «n Ty, (4.9)
where the summation is over all »,, »,, ..., P, such that

p2r 2r, > ... 2r, =p-q.

It is proved in the following article, "Enumeration of Certain Weighted Se-
quences,'" that, when (4.8) holds, L(v, p, q) satisfies

q
Lw,p,q) = pq_!qz:(—l)s(g)(p—s)“q'l (v>1;p>qg2>0). (4.10)
8=0
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ENUMERATION OF CERTAIN WEIGHTED SEQUENCES

LEONARD CARLITZ
Duke University, Durham, North Carolina 27706

SECTION 1

The following problem has occurred somewhat incidentally in the preceding
paper [1]. A complicated solution is implicit in the results of the paper.
In the present paper we give a simple direct solution.

Let v >21 and p > g > 0. Let L(v, p, q) denote the sum

:Z:rlrz N 1.1
where the summation is over all »r,, »,, ., r, satisfying

pzr, z2r

1 g Z e 21, =D~ (o (1.2)

To get a recurrence for L(v, p, q), we observe that, for v > 1,

L0, p, @) = (P - QP r1Ty +vv Tyoys
where now
pzr, 2r, 2 2r ,2p~-¢q
Hence
q
L(v, ps q) = (p - q)zzplrz ryo1s
k=0
where, in the inner sum
p2r,2r,2...21 _,=p- k.

It follows that

q
Lo, p, @ = (p- @ L -1,p, 00  (@>1). (1.3)
k=0

Replacing g by ¢ - 1 in (1.3), we get
qg-1
Lw,p,q-1) = (p-q+D1)Y_Lw-1,p, k).
k=0

Combining this with (1.3) we get the recurrence

p-qg+ LW, p, ) -P-Lw,p,g-1)=(@-q)(p-q+Lv-1,p,q). (1.4
249
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We shall now think of p as an indeterminate and define

L(v, p, @)

M(v, p,q) = 1.5)
ps q) o - q (
Then (1.4) yields
M(U’ ps CZ) = M(Ua Ps C['l) + (p‘Q)M(U"l, ps Q) (v > l)’ (1.6)
together with the initial conditions
M(l’p,Q)=l (C{=0, ]—, 2’ ---)
(1.7)
M(v, p, 0) = p’~? (w=1,2,3, ...).

Clearly M(v, p, q) is uniquely determined by (1.6) and (1.7). The first
few values are easily computed

N o 1 2 3

1 1 1 1 1

2 p 2p -1 3p-3 bp-6

3 | p? 3p?-3p+1 6p2 - 12p+7 10p2 - 30p + 25

L | p® | bp®-6ép2+lp-1 | 10p®-30p2+35p-15 | 20p° - 90p2 + 150p - 90

We shall show that generally

q
M, p,q) = %Z(—l)s(g)(p S (1.8)
8=0

For v = 1, (1.8) reduces to

q—l!i:(d)s (Hw- o7

q%f]:(—l)"'s(i)sq =1 (@=0,1,2, ...,
8=0

by well-known results from finite differences. Also by (1.8),

M(1, p, q)

M@, p,0) =p° ! w=1,2,3, ...).

Thus (1.7) is verified.
Now assume that (1.8) holds for all v, g such that

v+ g <m, (1.9)
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Then, for v + q = m, we have

M@,p,q-1) + (p-q)M(w-1,p,q)
q-1 .
q
B qi!zo(_l)s@)(q's) (-0t %+ —p—q"!ﬁzq:(—l)s(g>(p _g)Pta?
8= &
IS () RS RS

) qi!,i.o(—l)s(@(p -g)P*a-l

=M, p,q).

Hence (1.8) holds for v + g = m, thus completing the induction.
Finally, by (1.5) and (1.8), we have

q
- - - q -
L(v, p, @) = gq!_qz(_l)s (D)p- =" Bq!—qu@ -ttt (1.10)
a=0

q
where pr denotes the finite difference operator defined by

q a-1
A7 = s+ - s, Nror =, - A\, o
For p 2 q 20, v 21, (1.10) evaluates the sum (1.1).

SECTION 2
For p = q, (1.8) reduces to

q q
_ 1 1ve(A\(, _ yv*q-1_ 1 1@ -8(q\vta-1
M, 4, @ = q!;_o( 1 (?)(q- o) D (2)er,
so that
M, q,q) = S(v+q-1,q) v >1), (2.1)

a Stirling number of the second kind. Generally, it follows from (1.8) that
v+qg-1

M, p,q) = qi!zo(—l)s(@ (UJ'?;l)(p—q)”q’t'l(q—s)t,
&= t=0

which gives
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v+q-1

M(v,p,q) =Z(”+?;'l p-q¥ 1 s(t, ). (2.2)
t=a

It follows from (1.8) that
= an 1 sf(q\ (p-8)2 1 _(v-a)= q
Y Mn-q+1,p, PEr = 2> (1) ()e =1, (e* - 1)9,
o 475 P> a5 q! s q!

so that

o n

n
Z ZM(n—q+l,p+q,q)xq5—'= eP? exp {x(ez - 1)}. (2.3)
n=0q=0 :

For additional properties of the sum

q
DX\ - 1)"
;< ¥ (D)@ -n",
see [2, Ch. 1].

SECTION 3

The results of 81 can be generalized in the following way. Let ¢ > 1 and
put

L (v,p,q =Z(r’1r2 R 30 L (3.1)
where the summation is over all » , r , ..., Pr, satisfying
p2r;2r, > ... 27r, =p-4qg.

Then, in the first place

q9
L, @) = (-t Y L(w-1,p,K) (> 1). (3.2)
k=0

It follows from (3.2) that

(p-q+1)°L,(v,p, q) - (p—q)tLt(v, p,q-1)

=(p-9fW-q+1)'L,(v-1,p,q (v > 1). (3.3)
Hence
Mt(v,p’ Q) = Mt(v,p,q_l)+(p_q)Mt(U-'l’p’ C[) (U > l)s (3-4)
where
Lt(v9 P, q)
Mt(vy D C[) = ——_——T

-
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and

M{;(l9p’ CI) 1 (q = 0’ ly 2: '--)

M (v,p,0) = pt¥ YV (w=1, 2,3, ...).

As in 81, we are again thinking of p as an indeterminate.
By means of (3.4) and (3.5) it is easy to show that

M,(v+1,p,q) = 2: gf”(p—nht.” @—qf“.

Lotigt e +1g=0
It then follows that
© q
Smw+1,p, 2% = 3 (1-@-HFE)7
v=0 i=0
Now put

q 4®

q9
. - J
TTa-@-pra)? =) —
j=0 j=01l-(p-g4)%
(t) .
where the 4; are independent of z. Then

q

q

A9 - TTe-e-0"e-H7)" = e-H"TT(e-9" - (-
=0 1=0
iéJ iég

Finally, we have
q
M,w+1,p, @) = P A -,
Ji=0

t
with Ag) given by (3.8).
For t = 1, (3.8) reduces to

253

(3.5)

(3.6)

(3.7)

D)L (3.8)

q J *\q ]
. N DL - ) M b 9
AJSI) = (p-J)qilglo(’L—J) ! = j!(q—j)! = q! (g) (p_J) .
i#d

Hence (3.9) becomes
1 d i(q R
Mﬁv+1¢uq)=—7§ (-1) ()@-J) 5
Q-j=0 J

in agreement with (1.8).
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THE NUMBER OF DERANGEMENTS OF A SEQUENCE
WITH GIVEN SPECIFICATION

LEONARD CARLITZ
Duke University, Durham, North Carolina 27706

SECTION 1

Consider sequences

0= (A, Ay, +-0s Qy), (1.1)

where a; € Z; = {1, 2, ..., k}). The sequence is said to have specification
[ny, ny, ..., ny], where the n; are non-negative integers, N = n; + n, + -+
+ ny, if each element j, 1<j<k, occurs in 0 exactly n; times. The sequence
is called a derangement provided no element is in a position occupied by it
in the sequence

(1, 1, .., 1, 2,2, vooy 2, iy, Ky ky oo, K. (1.2)

Let P(n;, 7y, ..., Ny) denote the number of possible derangements. Even
and Gil is [1] (see also Jackson [2]) have proved the following result.

Ny+n,4eee +1g * _z
Py, Myy vvuy ) = (1) . e
0

k
1Tz, @\ dx, (1.3)
j=1 7

where L,(x) is the Laguerre polynomial defined by

Lo(x) = Z (—1)J'(”)ﬁ. (1.4)

)5
e J/J!

The object of the present note is to give a simple proof of (1.3) along
the lines of the standard proof of the case n;=#n,= .-+ =n;, =1 [3, p. 59].
We also prove some related results.

SECTION 2
Let P(n,m) = P(My, ooy Nys My, ooey mg), (2.1)

where 0 < m; < n;, denote the number of sequences (1.1) in which, for each j,
exactly m; of the values remain in their original position in (1.2). It
follows at once from the definition that

LIy LAy
P(n, m) = P(n -m, o)ﬂ'(ﬁj) = P(n —m)TT(Zi_), (2.2)
j=1

J=1

255
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WITH GIVEN SPECIFICATION

where P(n) = P(n,, n,, > M)
Clearly
= !
ZP("’"’) = (g, ny, s M) T ny!’
[y 1:M2 k
where . n, o, ny
m=0 my=0 m,=0 my=0

Thus, by (2.2),

2(;1) (Z:)Hm) = (Mg, Mgy veey My

This relation is equivalent to

P(n) = E( - M( ) (Z:)(ml cees M) (2.3)
SR -
where M = m, + <+ + m.
SECTION 3

To verify that (2.3) is in agreement with (1.3), we take

/OZ'”{ﬁL,,j (x)} dx / J=1§‘( 1" (,’fé)x

’;(—1)‘4(21) o P / o M
2 - R

This evidently proves the equivalence of (1.3) and (2.3).

]

SECTION 4

By = Y B (4.1)

ny+eee+n=N

Put

Thus P(n) denotes the total number of derangements from Z; of length N. Then
by (2.3) we have

P, (n) = Z i(—l)”‘”@i) (Z:)%?M—'@—v
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-2 ““"wm—.@w Z( ) - ()

my+ece +m =N c+n,=N

where as above M = m,+ +-+ +m. Since the inner sum on the extreme right is
equal to
<N+k—1)
M+ k-1)

V- M N+ k-1
P (N) = Z (-1) m{M+ k - 1)

my+eee +m <N

N
_ Z(_l)w—m(zv + k - 1) Z M!
= M+ k-1 myt .. mg! "

ctm =M

we get

By the multinomial theorem

My+ees +m=M

N
P, (W) = Zﬁ (-1)”‘”(11;: .- Dk“ (4.2)
M=

It follows from (4.2) that

so that

N+k-1
- k=m-1 -
K<lp, () = E A G T
m=k-1
N+k-1

2(1N+kml(]\]+k._1> Z(lN+le(N+§—l>k

and therefore

B, () = kl'k{(k SEPLALEE Z( P (A l>kj} (k21). (4.3)

It follows from (4.3) that, for fixed k > 2,
By ~ KRk - YT s ). (4.4)
On the other hand, if N is fixed and k > «, it is evident from (4.2) that

P, () = ZN:(—I)M(N + Zil; - l)kN—M - i(—l)“%kﬂl'”
M=0 =0

so that
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N

Y '
By ~ k'Y L ), (4.5)
M=0

SECTION 5
Fairly simple generating functions are implied by (4.2). We have first

0 N 00
AN W-M(N + k- T\ om _ MM _N<N+M+k—l)n
NZOxMZ:O(l) <M+k-lk kazwzo(l) M P

M=0
= D RMzM 4 )R
M=0

- a +x)"‘( - 1kfx>_1'

Hence

A+ + 2 - k)t (5.1)

> 5zt
=0

In the next place

0 L] N
N v W-u(N + k - 1
P, (W) x = x (-1) ( )k”
_S Kl SNyl
_Z(M+k— 1):2(‘1) !
M=0 N=0

< kMM
-X —_—n s
e Z(M+k—l)!'
M=0

Thus
Em P (N)———L _ (kx)‘k+le—x ke _kizk_”ix_m (k > 1) (5.2)
N-Ok (N + k - 1)} — m =7 *

It is easily seen that (4.3) is implied by (5.2).
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ENUMERATION OF PERMUTATIONS BY SEQUENCES

LEONARD CARLITZ
Duke University, Durham, North Carolina 27706

SECTION 1

André [2] discussed the enumeration of permutations by number of sequences;
his results are reproduced in Netto [5, pp. 105-112]. Let P(n, s) denote the
number of permutations of Z,=...1,2,...,7n...with s ascending or descending
sequences. For example, the permutation 24315 has the ascending sequences
24, 15 and the descending sequence 431; the permutation 613254 has the ascend-
ing sequences 13, 25 and the descending sequences 61, 32, 54. The total num—
ber of sequences is five. Generally, a permutation of Z, has at most n - 1
sequences; such a permutation is called an up-down or down-up permutation
according as it begins with an ascending or a descending sequence. Clearly,
in this case all the sequences are of length two.

It is convenient to put

P(O, S) = 60,8’ P(l, S) = 60,8 . (l.l)
André proved that P(n, s) satisfies the recurrence
P(n+1, 8) = sP(n, s) + 2P(n, s~-1)+(n-s+1)Pn, s-2) (n>2). (1.2)

With the convention P(1, s) = 60,3’ (1.2) holds for n > 1.

N8| o 1 2 3 4 5
1 1
2 2
P(n, s): 3 2 4
4 2 12 10
5 2 28 | 58| 32
6 2 60 | 236 | 300 | 122

Let A(n) denote the number of up-down and B(n) the number of down up per-
mutations of Z,. Then

Supported in part by NSF grant GP-37924X. AMS(MOS) classification (1972).
05A15.
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A(n) = B(n) = %P(n, n-1) (> 2). (1.3)

Moreover, André [1] showed that

® n
:E:A(n)57-= sec 2 + tan z, (1.4)
n=0 :

with A4(0) = A(1) = 1. Thus, a generating function for P(n, m-1) is known;
also, (1.4) yields an explicit formula for A(n) and, therefore, also for
P(n, n-1).

A generating function for P(n, s) has apparently not been found. We shall
show that

3

n 2
_ 2\-n/2 Z_n_ n-8 _ 1 -2 1 - xZ + sin 3
E (1 - x%) n!sioP(n-fl, 8)x 1+ o < % - cos = . (1.5)

n=0

We have been unable to find an explicit formula for P(n, 8). However, it
follows from (1.2) and (1.3) that

P(n, n - 2)
P(n, n - 3)

2A(n + 1) - 4A(n) (n >2),
An + 2) - 4A(n + 1) - (n - 5)4n) (n > 3),

and so on. Generally, we have

P(n, n-8) = ) fo; MA(+s-7)  (n2 s> 0),
=1

where the f;j(n) are polynomials in n, fz;(n) = 1. However, the f;j(n) are
not evaluated.

If we let P(n, r, 8) denote the number of permutations of Z, with r as-
cending and s descending sequences, it is easy to show that

P(n, r, r) = P(n, 2r)
P(n, », r - 1) = P(n, r - 1, r) =

N =

P(n, 2r - 1).

Moreover, P(n, r, s) = 0 unless » = 8, s + 1, or s — 1. Also, permutations
can be classified further according as they begin or end with either an
ascending or descending sequence. This suggests the four enumerants

Pyy(n, r, 8), Py_(n, r, s), P.(n,»r,s8), P._(n,r, s);

for precise definitions, see §5 below.

It is also of some interest to adapt another point of view. We define
P(n, r, s) as the number of permutations T of Z, with » ascending and s de-
scending sequences in which we count an additional ascending sequence if T
begins with a descending sequence, also an additional descending sequence if
T ends with an ascending sequence. For the relation of P(n, r, s) to the
other enumerants and a generating function, see §§5 and 6.
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SECTION 2
Put
n-1
B, (x) = ZP(n, s)x?® (n>1) (2.1
8=0
and
= n
6@, 2) = ) Py @, (2.2)
n=0
By (1.2) and (2.1),
n+1l
Bp(@ = ) P(n+2, 8)z°
8=0
n+1
=§:{ﬂnn+l,s)+2Pm+1,s—l)+(n—s+2ﬂ%n+l,s—2ﬁxs
8=0

]

TPl (£) + 2Py (2) + ) (n-2)P(n+1, &)z
8=0

xPl (@) = 2P, 1 (®) + nx’Pyy1(x) - x°P ().

Hence
P,io(@) = (nx? + 2x)P, 1 (x) - (x® - )P, (%) n>0). (2.3)

It now follows from (2.2) that

8 o n © gn
o = Y B @i = Y et + B @ - @ - @p, @
n=0 : n=0 *
- 2,0G(x, ) _ .3 _ 409G, 2)
= 2xG(x, 2) + x°z N (x x) . .
Thus
@ - o2 B 2y 12 2 - g, (2.4)
The system
dr  _ dz _ dg 2.5)
x} -z —x2z + 1 226
has the integrals
zVxz? - 1 + arcsin l3 g:——-I-——:LG. (2.6)
x> x -1

It follows that
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x+ iG(x, z) = ¢(2Vx2 - 1 + arcsin %), (2.7)

x£x -

for some ¢(u).
It is convenient to replace & by x~

1+ Lo, xz) = Cb(z\/l - z? + arcsin x) (2.8)

l1-x

! and z by 2z, so that (2.7) becomes

For 2 = 0, (2.8) reduces to

1+
1 -x

G(x™, 0) = ¢(arcsin ).

Since G(x~!, 0) = 1, it follows at once that

_ 1+ sin u
0@ = T —in u” (2.9)
Hence (2.8) becomes, on replacing z by z/¥1 - xz2,
1+ x<;( -1 3 ) _ 1+ sin(z + arcsin x)
_ s s - .
1-x A - 22 1 - sin(z + arcsin x)
It can be verified that the right member is equal to
2 . 2
1l - x°+ sin 2
X - cos 2 ’
Therefore, we have
Bz, z) = L= (/= %% + sin z\° (2.10)
’ 1+ x x - cos B :

where

© 7
- X3 2.-n/2 3" n-g
H(x, 2) = G(m V—=—_1 = z:(l - x%) ‘TE :P(n+l, s)z"~ 8  (2.11)
/1 - x? n=0 n.8=0

SECTION 3
For * = 0, (2.10) reduces to
= n n . 2
:E:P(n-kl, n)%T =+ sinz) _ 2 sec? 2+ 2 sec z tan z - 1. (3.1)
n=0 ' cos? z
By (1.4),
© P )
EE:A(n + l)ﬁT = sec 2 tan 2 + sec” 2 (3.2)
n=0 )

while, by (1.3),

= n = n = n
Zop(n +1, i - 1+221A(n +DE = 12 A+ DEL
n= n= n=0

Hence (3.1) and (3.2) are in agreement.
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We may rewrite (2.10) in the form

i_z_’iip(n + 1, e)xtf = 1-2x(vV1- 2%+ sin(z/1 - z2) 2

(3.3)
1
ey ey L+ x - cos(zV1 - x?)
nnnnn
It is clear from the definition that
n
NP+ 1,8 = (n+ 1) (3.4)
g=0
Hence, for £ = 1, the left-hand side of (3.3) should reduce to
Y+ 1zt = (1 - 2.
n=0
As for the right-hand side of (3.3), we have
1 - xz)% + 2(1 - xz2)% - —l—z (1 - xz)% + o ’
1-x 31
L+ ) o1+ 222 - 22) - Lav@ - 22)2 + ...
2! 41
1+z—§1'—z3(1 —x2) + e f?
= T s
1-7!—2 aA+ax) + .-
which reduces to
2
1+ 2z = (1 - 2)2. (3.5)
1 - 22
Note also that for x = -1, we get (1 + 2)2. It therefore follows from
(3.3) that
n
SRR+ 1,8 =0 (> 2). (3.6)
8=0
This is a known result [2], [5].
Combining (3.6) with (3.4) gives
P(n + 1, 28) = E P(n+1, 28 +1) = %{n + 1)! (3.7)

28<n 28<n

If we take s = n in (1.2) we get P(n + 1, n) = 2P(n, n - 1) + P(n, n - 2).
Thus it follows from (1.3) that

P(n, n—-2) =24(n + 1) - 44(n) (n > 2). (3.8)

Taking s = n - 1, we get



264 ENUMERATION OF PERMUTATIONS BY SEQUENCES [JUNE

Pn+1,n-1) = (n - 1)P(n, n - 1) + 2P(n, n - 2) + 2P(n, n - 3),
which gives
P(n, n-3) =A(n+2) - bAn + 1) - (n - 5)4(n) (n > 3). (3.9)
Next, taking ¢ = n - 2, we get
P(n, n - 4)=An+ 3)-64(n + 2) - 3n - 16)A(n + 1) + (6n - 18)A(n) (3.10)
(n > 4).
Thus it appears that
P(n, n - 8) =§:f8j mAMmn + s - J) (n>s>0), (3.11)
Jj=1

where the f,; (n) are polynomials in n, fy, (n) = 1. 1Indeed, using (1.2), we
find that

8fos1,; M) =Foj (n+1) = (n-s+Df_1; ,m -2, ; ;).  (3.12)

However, it is not evident how to evaluate the fsﬂi(”) from this recurrence.
Returning to (2.10), if we replace x by cos &, we get

. . 2
Z (z/sun x)" ZP(” +1, 8)cos" x = 1 - cos xfsin x + sin z) )

1 + cos x\cos £ - cos 2

Hence

cot %x (—ZM—)—ZP(TL + 1, 8)cos” *x = cot? %(x - 2). (3.13)

n=

Since the right-hand side of (3.13) is symmetric in x, 2, it follows that

Z(z/sm x)" ZP(” +1, )deos" ®zx (3.14)

= cot = Z(x/Sln 2)" ZP(n + 1, &)cos™ "% 2.

It would be interesting to know whether there is some combinatorial result
equivalent to (3.14).

SECTION 5

As a refinement of P(n, s) we define P(n, r, s8) as the number of permuta-
tions of Z, with r ascending and s descending sequences. It is evident that
P(n, r, s) = 0 unless » = g, s + 1, or s - 1. Moreover, since a permutation
can be read from left to right or right to left, we have

Pn, r, » - 1) = P(n, »r - 1, r).
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It accordingly follows that
P(n, r, r) = P(n, 2r)
1 (5.1)
P(n, r, »r - 1) = P(n, » - 1, r) =-§Z%n, 2r)
Now divide the permutations of Z into four nonoverlapping classes accord-
ing as they begin or end with ascending or descending sequence. We denote

the classes by C Cy_, C_y, C__. The permutations in these classes have
the appearance

AR AARAE WA WAL 62

respectively. Denote the corresponding enumerants by

++9

pP,,(n, », 8), P, (n, r, s), P_,(n, r,s), P__(n,r,s.

Then we have the following equalities:

P__(n, s, r) (5.3)

P,.(n, v, s)

and

I

P, (n, r, 8) P_,(n, s, 7).

These relations follow on applying the transformation

b;=n-a; +1 (2 =1, 2, ..., n)
to any permutation (a,;, a,, ..., a,) of Zn. Alternatively (5.3) follows on
first reading a permutation of C,, from left to right and then from right to

left.
In the next place, it is evident from (5.2) that » =s + 1 in C,,, r = 8

in C,, or C__, » =85 - 1 din C__. Thus
P, (n, r, s) =P_,(n, r, s) =0 (r +# 8), (5.5)
P++(7’l, r, 3) =0 (l" # s + 1), (5.6)

]
o

P _(n, r, 8) (r$s-1). (5.7)

Hence

P, (n, r, r) =P_,(n, r, r) =-%E%n, 2r)
(5.8)
1

Piv(n, 7, r - 1)

1]
|
i
1

~~
N
S
|

. ?) = 2P, 2r - 1),

In view of (5.8), generating functions for the four enumerants are implied
by (2.10).
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Another point of view is of some interest. Given a permutation (a,;, a,,

., an) of Z,, we adjoin virtual elements 0, 0' : (0, a;, @y, ..., Qy, 0").
If a; > a,, then Oa, is counted as an additional ascending sequence; if how-
ever a, < a,, the number of ascending sequences is unchanged. Similarly, if
apn-1< ay, then a,0' is counted as an additional descending sequence; if
dy-1 > ay,, the number of descending sequences is unchanged. Also, let
P(n, r, s) denote the number of permutations of Z, with » ascending and s
descending sequences using these conventions. It follows at once that

P(n, r, 8) =0 (r # 8). (5.9)
Moreover we have, by (5.8)
P(n, v, ¥) = Py_(n, v, ») + P_,(n, »r - 1, » = 1) (5.10)
+ Pyy(n, r,r-1) + P__(n, » -1, r).

To illustrate (5.10), take n = 4, r» = 2. The permutations are:

1 3 2 4 2 1 4 3
1 4 2 3 31 4 2
Ces $2 3 1 4 C__ 3 2 4 1
8 2 4 1 3 4 1 3 2
3 4 1 2 4 2 3 1
For n = 3, » = 2, the permutations are:
2 1 3
Cos {3 1 2
For n=3,r=1
1 3 2
C*-{z 3 1°
It follows form (5.8) and (5.10) that
P(n, 2r) = P,_(n, v, r) + P_,(n, » - 1, » = 1) + P(n, 2r - 1). (5.11)
We have also
B, (x) = Py (x) + %P (x) + x7 B (x) + x71P; T (x) (5.12)
and
P, (x) = P (x) + P, (x) + Pit(x) + P; (), (5.13)
where

P, (x) =ZP(n, "k, P, (x) =213(n, r, r)en-2T,
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P;Yx)=§:Eu(n,r,rhﬁ'”,
r

P;+Cr)==2:E;+(n, r, r - D" 2771 ete.
r

Note that P, (x) is not the same as the P, (x) of (2.1).
Comparison of (5.13) with (5.12) gives

P,(x) - 21P, () = (1 - 271)2P} (x). (5.14)

SECTION 6

A generating function for P(n, r, ») can be obtained rapidly by using a
known result on the enumeration of permutations by maxima. Given the permu-
tation (a,, a,, ..., a,) of Zn, then a;, 1 < k < n, is a maximum if Ap-1<ay,
ay > ag-31. In addition, q; is a maximum if a; > ay; ayn is a maximum if g, _;<ay.
Let M(n, m) denote the number of permutations of Z with m maxima.

Clearly if a permutation has m maxima in accordance with this definitionm,
then it has exactly m ascending and m descending sequences and conversely.
Thus

P(n, », ¥) = M(n, r). (6.1)

A generating function for M(n, k) is furnished by [3], [4]:

©

2 unUZk
M(n + 2k + 1, + l)m)‘—'— (6.2)
n,k=0
= {cosh Vu? -v? - S — sinh Vu? - v? _2.
Vu? - v?
Making some changes in notation, this becomes
< -n/2 3" . 1 -2
Sa-an™ FE Mn+1, j+z = ~. (6.3)
n=0 .2j<n (V1 -2% cos 3 - x sin 2)
Finally, in view of (6.1), we have
= )2 3" . . 1-z?
-z Z"E P(n+1,j+1,j+1)a = : ~. (6.4)
n=0 To5<n (V1 -x° cos 2z -x sin 2)

If we put

= -nf2 2" Ny - "=
e, 2) =) -2 5p @), B@, 2) =) A-2" 2B @),
n=0 n=0

= n
B (@, 3) =) (1-2)™ Epin @,
n=0
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it follows from (5.14) that
xH(x, ) -~ 2 'H(x, 2) = (1 - 2 Y2 H  (x, 2). (6.5)

Therefore, by (2.10) and (5.14), we get

2 (1 -x)E (z, 2) = 2 (1+x)? a (Vl-—xz + sin z>2 (6.6)
(Vl-—xz cos z - x sin z)z * -cosa

Values of P(n, r, ¢) for n = 2, 3, 4 follow.

s| 0 1 s| 0 1
n=2 0 . 1 n=73 0 . 1
1 1 . 1 1 L
st 0 1 2 sl O 1 2
r r
0 . 1 . 0 . 1 .
n==4h n=>5
1 1 12 5 1 1 28 29
2 . 5 . 2 . 29 32
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GENERALIZED TRIBONACCI NUMBERS AND THEIR CONVERGENT SEQUENCES

WALTER GERDES
Universitat Karlsruhe, Federal Republic of Germany

1. INTRODUCTION

In this note we consider sequences {an) generated by the third-order re-
currence relation

1) Appg = 0dy4,+ Ba, 41+ Yay, =1, 2, 3, ...,

with real parameters a, B, Y and arbitrary real numbers Ays Ays Age Sequences
like these have been considered by [3], [4], [5] with the TRIBONACCI sequence
fora =B=y=1and a, =a, =1, a; = 2 as a special case [1].

In this paper we give in the second section a general real representation
for a, using the roots of the auxiliary equation

(2) Py(x): = 2° - ax? - fxr - v

in all possible cases. In the third section we characterize convergent se-
quences, give their limits and, finally, in the fourth section we consider
various series with g, as terms and give their limits by the use of a gener-
ating function.

2. REAL REPRESENTATION FOR {an}

According to the general theory of recurrence relations {an} can be rep-
resented by

(3) a, =Aql' "t + Bqr Tt + cq! Y m=1,2,3, ...,

n 1

where g, g2, g3 are the roots of the auxiliary equation P;(x) = 0. The con-
stants 4, B, C are given by the linear equations system from (3) for n=1, 2,
3 with prescribed "start" numbers a,, a,, a;. The determinant of this system
is the VANDERMONDE determinant

1 1 1
a1 9 qs| = Tl -q) = (2 -9 - g5 - qy)

1,k=1
5 )
q1 9; 43 ik

which does not vanish for distinct ¢;, g5, q3- In this case we get

269
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_ 9,959, = (q, + ga, + a, _ -q9,q,2, + (q, + q))a, - a4

(q, - qp(q, - q) (9, - q)(q, - q))

9,9,%, - (q1 + qz)az + a,
(@5 - 9)(q;3 - q)

So we have by (3) a real representation for a,, if the roots of P,(x) are
distinct and real. If two roots are equal, e.g., q, = q,, we get from (3)
the limit as q, approaches q,

(4) ay=Dq} '+ Eql" Y n=1,2,3, ...,
with )
D = 9,%, - 29,4, + a,
(g, - q)?
2
1 91
By = ————[(n - 3)q, - (n-2)q,la\q, - |(n-3)q, - (n-1)—|a,

(Q2 - q1)2 qz

2

4,
+ |:(n -2) - (n - l)—q—-jla3 .

If all roots are equal, we get from (4) the limit as q, approaches q,

(5) a,=F,q, S, u=1,2,3, ...,
with
_n-2)(n - 3) n-1m-3) n-1)m-2)
F, = > a, - 7, a, + )2 a,.
9,

In the last of the possible cases for the roots of P,(x) =0 we have one real

ro_oitw q, and two conjugate complex ones q,, q,. Writing g, = ret?, 9, =49, =
re " we get

(6) ay = Ggl t+ YT =1, 2,03, L.,

with
r?q - 2r cosPa. + a
¢ = 1 2 3
b

r® - 2rq, cos ¥ + g2

. ) 9 .
0 - (a,q, -a)rsin (n-3)¢+(a, -a,q?) sin (n-2)¢+(a,q, -a,)7 sin (n-1)¢
n - s
. 2 2
sin o(r° - 21ﬂq1cos<P+q1)
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/FE____ﬂ____w r+ g, - a
r=yq, -aq, - B, ¥=2 arctan i}rt??;:tr?i,

where g, can be computed by the formula of CARDANO for the reduced form of
P,(x) (without the quadratic term).

3. CONVERGENT SEQUENCES {an}
In the two-dimensional case, that means?Y =0 in (1), we were able to char-
acterize convergent sequences immediately from the real representation for a,

[2]. Some similar considerations yield in the three-dimensional case:

Theonem 1: The sequences { a,} defined by (1) are convergent if and only
if the parameters 0, B, Y are points of the three-dimensional region

(7) &: = {(u, B, Y) eR*|a+B+y <1, -a+B~y <1, Y2-ay-B < 1} (Fig. 1)

Fig. 1 Region ¢
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for all real numbers a,, a,, a,. In the interior ¥ of the region ¢ the se-
quences {a,} converge to zero. On the boundary a + B + v = 1 of ¢ the limit
of a, is given by

ya, + (1 - a)a, + a,

(8) a: = %iﬂ a = pRraEva— , 2+ vy -o# 0.

Proof: From the real representations for a, we obtain the following neces-
sary and sufficient conditions for convergence.

1. All roots of Py(x) = 0 are distinct and real:
(9a) -1< ql’ q2’ q3 <1

2. Two distinct real roots:

(9b) -1 <q, 21, -1<q,=q,<1
3. All roots are equal:
(9¢) “l<q,=q,=9q9;<1

4., One real root and two conjugate complex ones:

2

9d) =1 <gq, 21, 0<g,q,=1r" <1,

This means, for the polynomial P,(x), that

P.(-1) -1 -a+B-v<0,

(10)

P,(1) 1-a-~-B8-7y20.

We have the following relations between the coefficients and the roots of
P,(x) (VIETA):

9, *q, + g5 =0,
(11) 9.9, *+ 4,9, +q,9, = -8,
419,95 = Y-

We start with the case y > 0. Then g, may be the smallest of the positive
roots, the only positive of the real roots, or the only real root of Py(x) =
0. It follows from the last equation (11) with 0 < g,q, < 1 from (9a)-(9d):

0 <y <gq,.
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We can conclude that, in the interval [0, Y], there is no further root of
P,(x); which, using the continuity of Py(x), means that P4(0) and P,(y) have
the same signs. So with P,(0) =-y< 0, Po(Y) =vy(y?’-oay-B-1) < 0, or with
Y > 0,

(12) Y2 - oy - B < 1.

The case Y = 0 leads to the known two-dimensional case [2] and corresponds to
the fact that one or more roots are zero. There we have convergence for
points (0, B) €R? which satisfy the inequalities

(13) a+p <1, ~a+B<1, B>-1.

If Y <0, then g, may be the greatest negative of the negative roots, the
only negative of the real roots or the only real root of P,(x) = 0. It fol-
lows from the last equation (11) with 0 < g,g, < 1 that

g, <Y <O0.

We conclude, as in the first case, that P,(0) and P,(Y) have the same signs.
We have with P (0) = -y > 0, P,(y) = y(y?-ay-B-1) > 0 or because of y < 0

(14) y: - ay - B < 1.

So we have convergence in all cases if and only if (o, B, Y) eR’® satisfy the
inequalities (10), (12), (13), and (14), which define the required region ¢
(Fig. 1).

If (o, B, Y) are points of ¥, the interior of ¢, we have lqvl <l, v=1,
2, 3, and it follows with the limits

lim n'q} =0, =0, 1, 2; v =1, 2, 3,

7 o

n
lim »”* = lim ( 2 =0
nie Hm (q,9,)

from the real representation (3)-(6) for a,, that a, converges to zero. If
P3(1) =1 -0- B~y =0, we are on the boundary of «# (shaded area in Fig.
1). This means that 1 is a root of P,(x). We set g, =1 and get, from (3),
(4), or (6),

ya, - (@-1)a, + a, (LI -a-8a, - (oc-—l)a2 + a,

N 2+y -0 - 3- 20 - B - @

Also, if g, = 1, we have, from (11), g3 = a - 2, 293+ 1= -3, and g3 =Y,
so that y2~ay - B = q,-(q; + 2)g; + 2¢q, + 1 = 1, which contradicts the in-
equalities (12), (14); thus, g, = 1 must be a single root. Dividing Pa(x) by
the linear term (x - 1), we get P,(x): = x?2+(l-)x+1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>