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INTERPOLATION OF FOURIER TRANSFORMS ON SUMS OF FIBONACCI NUMBERS 

ROBERT E. DRESSLER and LOUIS PiGNO 
Kansas State University, Manhattan, Kansas 66506 

Our notation throughout this paper is that of [3]. Denote by Af(T) the 
Banach algebra of finite Borel measures on the circle group T and write Ma(J) 
for those y £ M(J) such that y is absolutely continuous with respect to Le-
besgue measure. Also y e Md(J) if y e Af(T) and y is concentrated on a count-
able subset of T. 

The Fourier-Stieltjes transform y of the measure y e M(T) is defined by 

/•IT 

where Z is the additive group of integers. In this paper we prove that there 
is an infinite subset <A of the set of Fibonacci numbers 9" such that 

i.e., on u4 +.J4 = {a + Z? : a,b £ J<} any transform of an absolutely continuous 
measure can be interpolated by the transform of a discrete measure. To prove 
this j, we shall need the following interesting result of S. Burr [1]: 

A natural number m is said to be defective if the Fibonacci sequence 
9 = <fn i°°  does not contain a complete system of residues modulo 777. 

Tk(l0ti£J(n 1 : (Burr) A number m is not defective if and only if m has one 
of the following forms: 

5*, 2 • 5 \ 4 • 5"\ 

3j • 5\ 6 • 5V 
7 * 5k, 14 • 5 \ where fc >. 0, j = 1. 

Let 2a denote the set of all integer accumulation points of S C 2Z _̂ rhere 
the closure of 2 is taken with respect to the Bohr compactification 7L (see 
[3]) of Z . In the sequel, we shall also need a theorem of Pigno and Saeki 
[6], which we now cite. 

TkzoJiQyil 2: The inclusion 

Ma(jr\s.c Md(jr\t 

obtains if and only if there is a measure y e M(T) such that \i (^) = 1 and 
y(2a) = 0. 

193 
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We state and prove our main result: 

ThzoKOM 3: There is an increasing sequence J< - \f„\ of Fibonacci numbers 
such that 

« a(T)| J + J CM,(T)| J u . 

PKOOfi: By Theorem 1, we may find an increasing sequence <A = {/„'} of 
Fibonacci numbers such that 1 

fl = 5n (mod 2 • 5n) for all n. (1) 

Now it follows from (1) that in the group of 5-adics (see [3, p. 107]) the 
only limit points of <A + <J are 0 and each jf'. Hence, to find the integer 
limit points of *A + ^A in 2Z we need only look at 0 and each /nf. Fix an f£ 
and consider the arithmetic progression {2k + fn '• k £ 2}. This arithmetic 
progression is a neighborhood of /„' in TL with the relative Bohr topology, 
and furthermore, 2k + f£ = f^ + fl is impossible because each member of J< is 
odd [by (1)]. Thus, the only possible integer limit point of ̂ 4 + J, is 0. 

Clearly the Dirac measure minus the Lebesgue measure separates KA + J and 
(O; in the desired fashion. Hence we are done by Theorem 2. 

CommzntA: 

(i) Examples of related interpolation problems can be found in [2], [4], 
and [5]. 

(ii) It is an open question as to whether the sum set ^ + ̂  has the inter-
polation property of this paper. It is a result of the authors that if 
4̂ ~ [an : n £ 2 + } , a any fixed positive integer, then A + ,A has the 
interpolation property. 

[ i ] . 
We wish to thank Professor V. E. Hoggatt, Jr., for the reference to 
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TOPOLOGICAL, MEASURE THEORETIC AND ANALYTIC PROPERTIES OF 
THE FIBONACCI NUMBERS 

ROBERT E. DRESSLER and LOUIS PIGNO 
Kansas State University, Manhattan, Kansas 66506 

Our purpose here is to develop a connection between the arithmetic, topo-
logical, measure theoretic and analytic properties of the set,F, of Fibonacci 
numbers. We begin by topologizing the set, Z, of integers in a rather natu-
ral way and then showing that F has a certain closure property. 

V^inJjtioyi'. Let J be the topology on Z generated by the set of all arith-
metic progressions. That is, for any integer b, a neighborhood base at b is 
given by 

{{an + b\n z Z}\a e Z, a + 0|. 

Our main result is 

TkdOtim 1 : {0} U F U -F is ,A-closed. 

VXOO^: We use the theorem of Halton [2] which states that if fn is di-
vided by fm (n > m) then either the remainder r is a Fibonacci number or 
fm - r is a Fibonacci number. Here fn is the nth Fibonacci number. 

Thus, if r > 0 and r jzf F, choose f £ F such that f > r and f - r f£ F. It 
is easy to check, using Halton1s theorem, that 

(*) ({0} U F Pi -F)D {fn + r\n e z) = 0. 

Also, if v < 0 and -r jef F, choose f £ F such that f > -v and f + r £ F. 
Again it follows that (*) holds. This establishes the result. 

We will, in what follows, omit details for the sake of brevity. However, 
we cite references for those readers interested in the technicalities of the 
subject. 

Observe that {o} U F U -F is closed in any topology for Z which is finer 
than J. Thus, {o} U F U -F is (see [3, p. 87]) closed in Z with the relative 
Bohr topology. This allows us to deduce (since {o} U F U -F is a Sidon set) 
that {0} U ^ U - ^ is a strong Riesz set (see [3, p. 90]). Meyer has proved 
[3, p. 90] that the union of a strong Riesz set and a Riesz set is a Riesz set. 
One implication of this fact is the following extension of the F. and M. 
Riesz Theorem. 

CoKolZoJttj: Let T be the circle group (that is, the group, under multipli-
cation, of complex numbers of modulus 1). Let y be a bounded Borel measure 
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on T. The nth Fourier-Stieltjes coefficient ]l(ri) of y is defined by 

y(») = ± 1 e~inQ dy(6) (n e Z). 

Suppose y(n) = 0 for all n > 0 with n t F. Then y is absolutely continuous 
with respect to Lebesgue measure on T. Indeed, if R is any Riesz set and 
\±(n) = 0 for all n i R U F9 then y is absolutely continuous with respect to 
Lebesgue measure on T. 

Comm&wtA: 

/J + 1 (i) Observe that since fn + i/fn ~* o 9 it follows that F is a Hadamard 

set (see [3]). The above Corollary holds for all Hadamard sets [3, p. 
94], but the proof, which depends on the comparatively deep work of 
Strzelecki [4], is much more difficult. This difficulty is to be ex-
pected because it is easy to see that there are Hadamard sets H with H 
./-dense in Z. Thus, it is the intrinsic arithmetical properties of F 
which enable us to give our proof of the Theorem. 

(ii) For some interesting arithmetical examples of Riesz sets the reader is 
referred to [1]. 

It is well known that the closure in the Bohr compactification of any 
Hadamard set has Haar measure zero. Using Haltonfs theorem, we can give a 
simple proof of this result for the Fibonacci numbers. 

Th&OKQJM 2: Let F denote the closure of F in the Bohr compactification of 
Z. Then \l(F) = 0 where y is the Haar measure of the Bohr compactif ication 
of Z. 

VflOO^; We shall use the elementary fact that Haar measure of the closure 
of an arithmetic progression in the Bohr compactification of Z is precisely 
the natural density of the progression. Thus, it suffices, given e > 0, to 
imbed F in a union of residue classes, modulo some fixed modulus, such that 
the density of the union is less than £. 

Choose m so large that —7;— < £, which can be done because F has density 
Jm 

zero. For any n9 by Helton's theorem, / e f Z + r where 0 <_ r < fm and r EF 
or fm - reF. 

But, there are clearly at most 2m integers, r9 with 0 <_ v < fm and reF 
or fm -reF. Thus, F can be imbedded in a union of residue classes (mod fm) 
whose density is —z— < e. This completes the proof. 
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ABSTRACT 

Subbarao and Andrews have observed that the combinatorial technique used 
by F. Franklin to prove Eulerfs famous partition identity 

(l-x)(l-x2)(l-x3)(l-x1*) ••• = 1-x-x2 +x5 +x7 -x12 -x15 + ••• 

can be applied to prove the more general formula 

l-x-x2y(l-xy) -x3y2(±-xy)(±-x2y) - xhy3 (1 - xy) (1 - x2y) (1 - x3y) 

= 1 -x-x2y+x5y3+x7yk -x12ye -x15y7 + • •• 

which reduces to Eulerfs when y = 1. This note shows that several finite 
versions of Euler's identity can also be demonstrated using this elementary 
technique; for example, 

1-x-x2+x5+x7-x12 -x15 

= ( 1 - * ) ( 1 - ^ 2 ) ( 1 - ^ 3 ) ( 1 - ^ ) ( 1 - X 5 ) ( 1 - ; E 6 ) 

- x 7 a - x2) a - x3) a - xk) a - xs) +x7+s a - x3) a - x1*) -x7+e+5 

= a ~ x ) a - x 2 ) a ~ x 3 ) - x k a - x 2 ) a - x 3 ) + x l > + 5 a - x 3 ) - x k + 5 + 6 . 
By using Sylvester*s modification of Franklin's construction, it is also 
possible to generalize Jacobi's triple product identity. 

This research was supported in part by National Science Foundation grant 
MCS 72-03752 A03 and by the Office of Naval Research contract N00014-76-C-
0330. Reproduction in whole or in part is permitted for any purpose of the 
United States Government. 
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0. INTRODUCTION 

Nearly a century ago [7], [14, §12], a young man named Fabian Franklin 
published what was to become one of the first noteworthy American contribu-
tions to mathematics, an elementary combinatorial proof of Euler's well-known 
identity 

7 7 ( 1 - ^ ' ) = l-x-x2+x5+x7 = ] T ( - l ) k * ( 3 k 2 + f e V2, (o . i ) 
i - 1 -~<k<oo 

His approach was to find a nearly one-to-one correspondence between parti-
tions with an even number of distinct parts and those with an odd number of 
distinct parts, thereby showing that most of the terms on the left-hand side 
of (0.1) cancel in pairs. Such combinatorial proofs of identities often 
yield further information, and in the first part of this note we shall demon-
strate that Franklin's construction can be used to prove somewhat more than 
(0.1). 

In the second part of this note, we show that Sylvester's modification of 
Franklin's construction can be applied in a similar way to obtain generali-
zations of Jacobi's triple product identity 

y\a-q2j-lz)a-q2;j~lz-1)a-q2h = i - ^ + s " 1 ) + ^ ( 2 2 + 2"2)----
= ]T (-l)VV. (0.2) 

- •' '•'•-• - c o < k < o o 

1. THE BASIC INVOLUTION 

First let us recall the details of Franklin's construction. Let TT be a 
partition of n into m distinct parts, so that TT = \al9 ..., am\ for some in-
tegers a1 > ••• > am > 0, where al + ••• + am = n. We shall write 

£(TT) = n, V(TT) = m9 A(TT) = ax, (1.1) 

for the sum, number of parts, and largest part of TT, respectively; if TT is 
the empty set, we let £(TT) = V(TT) = X(TT) = 0. Following Hardy and Wright [8], 
we also define the "base" Z?(TT) and "slope" S(TT) as follows: 

3(TT) == min{j|j GIT}', a(iT) = min{j | X(TT) - j t TT}. (1.2) 

Note that if TT is nonempty we have 

A00 >. 6(TT) + V(TT) - 1 and V(TT) >. a(-rr). (1.3) 

The partition F(TT) corresponding to TT under Franklin's transformation is 
obtained as follows: 

(i) If $00 <_ 0(TT).. and 300 < V(TT), remove the smallest part, $00, and 
increase each of the largest 3(TT) parts by one. 

(ii) If 3(TT) > a (IT), and a 00 < V(TT) or a(Tr) + 3(TT) - 1, decrease each of 
the largest a(Tr) parts by one and append a new smallest part, a (IT). 
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(iii) Otherwise F(TT) = IT. [This case holds if and only if TT is empty or 
CF(7T) = V(TT) £ 3(TT) _< a(TT) +1.] 

These definitions are easily understood in terms of the "Ferrers graph" [14, 
p. 253] for the partition TT, as shown in Figure 1. It is not difficult to 
verify that F is an involution, i.e., that 

F{F(i\)) = TT (1.4) 

for all IT. 

largest part X = 6 largest part \ = 7 

® ® • • • (^/S slope a = 2 
m m ® ® 
N v < 

base 3 = h 

base 3 = 2 

TT F(TT) 

Fig. 1 Two partitions of 17 into distinct parts, obtained from each other 
by moving the two circled elements. 

For each I J> 0 there is exactly one partition TT such that A(TT) = I and 
F("n) = TT. We shall denote this fixed point of the mapping by / ; it has [&/2~\ 
consecutive parts, 

ft - {l, l - 1, ..., LV2J + l}. (1.5) 

(See Figure 2.) Let 

$ = {/„, /lf f2, . . - } (1.6) 
be the set of all such partitions. Note that the somewhat similar partitions 
{2& + 1, 2fc, ..., fe + 2} and {2&, 2fc - 1, ..., &} are not fixed under F> al-
though their bases and slopes do intersect. 

mm mm® m ® ® ® 

m m m 

JQ J I J 2 J 3 •'if ' 5 

Fig. 2 The partitions which remain fixed under F. 
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2. EXTENDED GENERATING FUNCTIONS 

If S is any set of partitions, we define the generating function of S by 
the formula 

Gs(x, y, z) ̂ x ^ V ^ V ^ . (2.1) 
TTES 

The i d e n t i t i e s we sha l l derive from Franklin 's construction are special cases 
of the following elementary r e s u l t : 

Tfieo îem 1% If S i s any set of p a r t i t i o n s , 

Gs(x9 y9 -y) = Gsn^(x, y, -y) + Gs\F{s) (x 9 y, -y) . ( 2 .2 ) 

Vtioo{\ Let TT be a p a r t i t i o n w i t h TT ' = F(TT) i if. Then £(TT ' ) = E(ir) , X(iTf) = 
X(TT) ± 1 , and v(iTf) = V(TT) + 1, hence 

*s(*y (^(-z,)^*) + ^ V U ° H / ) v U ° = 0. (2.3) 
This equation means that IT and TT ' do not contribute to Gs(x9 y9 -y) if they 
are both members of S. The only terms which fail to cancel out are from par-
titions if e S with F(if) = TT, namely the elements of 5D$, and those from par-
titions ifeS with F(if) £S9 namely the elements of S\F(S) . m 

3. THREE IDENTITIES 

In order to get interesting corollaries of Theorem 1, we must find sets S 
for which the corresponding generating functions are reasonably simple. 

First, let S be the set P of all partitions. Theorem 1 implies that 

Gp(x, y9 -y) = G^(x9 y9 -y). (3.1) 

Now 

Gp(x, y, z) 

and 

£$(*> y, s) 

Thus we have 

CoKoUiaAij 1.1: 

]T*V + 1 77 U " *J"2/) = J2 (-l)k-llxW-k)/2y3k-1 + x(-3kZ-^2y3k\. (3.5) 
^^1 i<j<i k>i \ ) 

i + 22 xZyz% J7 (i + x^z) (3.2) 
, > l 1 <J<£ 

1 + Z *£(£+1 )/2-L£/2j (U/2j + l)/2 £^U/2l (33) 

£ > l 

= 1 + ̂(^
3fc2-^2fc-lsfc+^(3^+fc)/2^2^fcY (3.4) 

k> 1 \ / 
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Franklin essentially considered the special case p 1 of this identity, 
when the left-hand side reduces to 1 - J"[j>i(l "" #J) • Equation (3.5) was 
originally discovered by L. J. Rogers [10, §10(4)], who gave an analytic 
proof. The fact that Franklin's correspondence could be used to obtain (3.5) 
was first noticed by M. V. Subbarao [12] and G. E. Andrews [2], 

Although the power series identity of Corollary 1.1 is formally true, it 
does not converge for all x and y; for example, if we set y - x~l we get the 
anomalous formula x~l - x"1 + x"1 - 1' - x + xh + x6 - .. . . To better under-
stand the rate of convergence, we can obtain an exact truncated version of 
the sum by restricting S to the set 

Pn = {A(TT) <n}. (3.6) 

Since 

Pn\F(Pn) = {TT|X(7T) = n and B(TT) <_ a(n) and 0(ir) < V(TT)} 

= {TT| A(TT) = n and BOO £ a(Tr) and BOO <_ nil), (3.7) 

we have 

i ^ b < n / 2 \b< 3 <.n-b /\n-b<c<.n / 

Thus Theorem 1 y i e l d s 

CoxoJULaJiy 7 . 2 : 

y%v + i y j (i - x )̂ 

X <-i)*-v3*2-*^3*"1 + XI (-I)^1^ 
i < k < ( n + i ) / 2 i < k < n / 2 

^ - l r ( 3 k 2 + k ) / 2 3fc 

+ 
i<b<n/2 \b<3<-n-b /\n-b<j<n / 

For example, the cases n = 4 and n = 5 of this identity are 

#z/2 +x2y3 (1 - r a / ) +^3z/If (1 -#z/) (1 -x2y) + xhys (1 -xzy) (1 -^ 2 iy ) (1 -# 3 ? / ) 
= ^ 2 + x2y3 -x5y5 -x7ys - x5y6 (1 - x2y) (1 -# 3 z / ) + ^ 5 + 4 z / 7 ; (3 .9 ) 

#2/2 + x 2 z / 3 ( l -xzy) + #3z/lf (1 -xy) (1 -^ 2 2 / ) +x l f z / 5 ( l -aci/) (1 -x2y) (1 -# 3 z / ) 
+ a?5z/6 (1 - xy) (1 - x2y) (1 - *3z/) (1 - x^y) 
- xy2 +x2yz - x5y5 - x7ys +xl2y8 - x6y7 (1 - ^ 2 z / ) (1 - #3zy) (1 - xhy) 

+ x6 + 5y8(l-x3y). (3 .10) 
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Setting y = 1 and subtracting both sides from 1 yields truncated versions of 
Eulerfs formula which appear to be new; e.g., 

= ( l - ^ K l - ^ M l - ^ M l - ^ ) -x5(l-x2)(l-x3)+x5 + h; (3.11) 
1-x-x2 + x5 +x7 -x12 

= (1 - x) (1 - x2) (1 - x3) (1 - xh) (1 - x5) 
-x6a-x2)(l-x3)(l-x1*) + x6 + 5(l-x3); (3.12) 

1 -x-x2 +x5 +x7 -x12 -x15 

= (1 - x) (1 - x2) (1 - x3) (1 - xh) (1 - x5) (1 - x6) 
- x 7 a - x2) a - x3) a - xh) a - x5) + x7+s a - x3) a - x1")-x7+s+5. (3.13) 

Essentially the same formulas, but with n decreased by 2, would have been 
obtained if we had set y = x~l in the identity of Corollary 1.2. 

Let us also consider another family of partition sets with a reasonably 
simple generating function, 

Sn = {TT|B.(IT) > X(TT) - n and a (IT) >_ A(TT) - n}. (3.14) 

These sets are closed under F, for if IT f = F(i\) ^ IT we have either 

(i) X(TT') = A(TT) + 1, B(7T') >. 3(TT) + 1, and a(TT') = 6(TT), or 

(ii) X(TT') = X(TT) - 1, B(TT') >.a(7r), and a(TT') ^a(TT). 

Note that 5 n is finite, since TT £ £ n implies that 

2X(TT) - 2n <_ B(ir) + a(ir) - 1 <_ X(ir), 

hence A (IT) <. 2n. The set of fixed points Sn O $ is |/0, fx, ..., f 2n } > and 

ŝ (x, y, s) - £p (x, i/, 2) + ^ " V y M J~|" (1 + a'ajw J"|" a^aY (3.15) 
n < & < 2 n \Jl - n < 7 < n / \ n < 7 < £ / 

so Theorem 1 yields a companion to Corollary 1.2: 

CoKoltoJifJ 1.3: 

1 < £ fL n l<,j < I 1 < k 1. n 

l < b < n \b<3<.n /\n<j <_n + b / 

For example, the cases n = 2, 3 of this identity are 
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xy2 +x2y3{l-xy) = xy2 + x2y3 - x5y5 - x7ys - x3yh (1 - x2y) + x3 + hy6 ; 
xy2 +x2z/3( l -xy) + x3yh (1 - xy) (1 - x2y) = xy2 + x2y3 - x5y5 - x7y6 +x12y8 

+ x15ys-xhyHl-x2y)(l-x3y)+xl* + 5y7(l-x3y)-xl*+5+SyS-

Setting y = 1 and subtracting from 1 leads to formulas somewhat analogous to 
(3.11) and (3.13): 

l-x-x2+x5+x7 = (l-x)(l-x2)-x3(l-x2)+x3 + l¥; (3.16) 

l-x-x2+x5+x7 -x12 - x 1 5 == ( 1 - ^ ) ( 1 - ^ 2 ) ( 1 - ^ 3 ) - ^ ( l - ^ K l - r c 3 ) 

+ *I t + 5 ( l - x 3 ) - ^ + 5 + 6 . (3.17) 

Let us restate the identities arising from Corollaries 1.2 and 1.3 when 
y = 1, where n is even in Corollary 1.2: 

^ {-l?(x(3kl-W2 +x^2+k»2) 1 + 

= S (-D^ ( 2 n + 2 ) k " k ( k + i ) / 2 X T ( i •xj) (3-i8) 
0 < k < n k < j < 2 n - k 

= \ ^ (-i)kxnk+Mk+i)/2 J T (1 - xi). (3.19) 

0£k<Ln k < ^ n 

The latter formula was discovered by D. Shanks [11] in the course of some ex-
periments on nonlinear transformations of series; he observed that it can be 
proved by induction on n without great difficulty. There is also a short 
proof of (3.18): Let 

A(k9 n) = (l-xk) + xk(l-xk)(l-xk+1) + -.. +xkn(±-xk) ••• (l~xk+n), (3.20) 

i?(fc, n) =x{n+1)k (l-xk+l) ••• (l-xk+n). (3.21) 

Then A(0, n) = 09A(k, 0) = l-xk
9A(k9 -1) = 0, and it is not difficult to show 

that 

A(k9 n) = l-x2k + 1 - R(kf n) - x3k+2A(k + l9 n-2) if n > 0. (3.22) 

Iteration of this recurrence yields identity (3.18). The use of this recur-
rence is actually only a slight extension of Euler's original technique [6] 
for proving (0.1). 

It is interesting to compare (3.18) and (3.19) to "classical" formulas on 
terminating basic hypergeometric series, as suggested in a note to the au-
thors by G. E. Andrews. If we set a = 1, h =c = d= °°, and q - x in a highly 
general identity given by R. P. Agarwal [1, Eq. (4.2)], we obtain 

V (-i)̂ Hk+i)/2/ j~y (1 _ xo\ j~y (1 __ xo)m (3#23) 
Tvir, Y<j<.2n-k II l<c<^n-k 

1 + 
l±k < n 

0 < k< n 
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In p a r t i c u l a r , when n = 3 th i s formula gives the following analog of (3.13) 
and (3.17): 

l-x-x2+x5+x7-x12 -x15 = a - ^ H l - ^ H l - ^ H l - ^ H l - ^ H l - * 6 ) 
a~x)(i~x2)(i-x3) 

^a-x^g-x^a-x^a-x5) + ^ a - ^ a - ^ ) _ ^i+2+3 (3 24) 
a-x)a-x2) a~x) 

k. SYLVESTER'S INVOLUTION 

Let us now turn to Jacobifs identity (0.2), which is formally equivalent 
under the substitution q2 - uv and z1 = uv~l to 

J7d - wM"1) (1 - uV) (1 - uj ~ V ) 

= 1 + J^(-l)k(u{k2+k)/2v{kZ-k)/2 + u{kZ-k)/2v{k2+k)l2). (4.1) 
k>l 

The left-hand side of this equation can be interpreted as involving parti-
tions of Gaussian integers m + ni into distinct parts of the form p+qi9 where 
max(p, q) > 0 and \p - q\ <_ 1; the coefficient of umvm will be the excess of 
the number of such partitions with an even number of parts over those with an 
odd number of parts. The right-hand side says that there exists a nearly 
one-to-one correspondence between such even and odd partitions, the only un-
matched partitions being of the form 

{l, 2 + i, ..., k+(k-l)i\ or [i9 l + 2i, ..., k-l + ki). (4.2) 

An explicit correspondence of this sort was discovered by J. J. Sylvester 
[14, §§57-61, 64-68] shortly after he had learned of Franklin1s construction; 
at that time Sylvester was a professor at Johns Hopkins University in Balti-

*The literature contains several incorrect references to the history of 
SylvesterTs construction. Sudler [13] says that the approach taken by Wright 
[15] is essentially that of Sylvester; but in fact it is essentially the same 
as another construction due to Arthur S. Hathway, quoted by Sylvester in [14, 
§62]. Zolnowsky [16] independently rediscovered Sylvester?s rules (i)-(iv), 
and observed that these were sufficient to prove Jacobi?s identity since 
they will handle all cases m + ni with m >_n* 

Sylvester's original treatment has apparently never been cited by anyone 
else, possibly because it comes at the end of a very long paper; furthermore 
his notation was rather obscure, and he made numerous careless errors that a 
puzzled reader must rectify. Indeed, the present authors may never have been 
able to understand what Sylvester was talking about if Zolnowsky ?s clear 
presentation had not been available. 
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We shall represent complex partitions TT by three real partitions, TT + , TT0, 
TT_, containing respectively max(p, q) for those parts p + qi in which p-q = +l, 
0, or -1. For example, the complex partition 

TT = {3 + 2i, 2 + i, 1, 3 + 3i, 1 + i, 3 4- H) 

of 13 + H i will be represented by 

TT + = {3, 2, l}, TT0 = {3, l}, TT. = {4}. 

Sylvester noted that if % is artificially set equal to 2, we obtain a one-to-
one correspondence between the complex partitions of m+ni and a subset of 
the real partitions of m + 2n into distinct parts; TT+, TT0, and TT_ map into the 
parts congruent respectively to +1, 0, and -1 modulo 3, hence Jacobifs iden-
tity implies Euler's. 

In order to present Sylvester*s construction, we recall the definitions of 
£(?!"), V(TT), A(TT), 3(T0? and a(7r) for real partitions in Section 1 above; we 
also add two more attributes, 

T[TT] = mln{k\k + l£i\}9 (4.3) 

and 

a[i] = mln{k\k£-n and fe>T(ir)|. (4.4) 

By convention, the minimum over an empty set is 00; thus, 3[TT] = °°  if and only 
if TT is empty, and a[ir] = °°  if and only if TT has the form {l, 2, ..., k) for 
some k >_ 0. Sylvester defined an involution F(TT) on complex partitions TT by 
what amounts to the following seven rules: 

(i) If 3(^0) SO(i\+) , remove the smallest part, 3(TT0), from 71"0 and increase 
each of the largest 3(TT0) parts of 7T+ by one. 

(ii) If 3(TT0) > a(TT+) > 0 and a(7T+) f A(TT+), decrease each of the largest 
0(11+) parts of TT+ by one and append a new smallest part, a(Tf+) , to TT0. 

(iii) If 3(TT0) >a(TT+) = X(TT+) and 3(TT0) < a(TT+) + 3(TF_) , remove the smallest 
part, 3(TT0), from TT0 and append a new largest part, o(n ) + 1, to TT 
and a new smallest part, 3(TT0) - G(TT+) , to TT_. 

(iv) If 3(TT0) >a(TT+) = A(TT+) > 0 and 3(TT0)+1 > a(TT+) + 3(TT_), remove the 
largest part, 0(u+) , from TT+ and the smallest part, 3(TT_) , from TT_ 
and append a new smallest part, a(TF+) + 3(TT_) - 1, to TT0. 

(v) If A(TT+) = 0 and a(TT-) > 3(TT0) + T(TT-) and T(TT_) >0, remove the small-
est part, 3(TT0), from TT0 and replace the part T(TT-) in TT- by T(TT_) + 
3(TT0). 

(vi) If A(TT+) = 0 and a(TT_) < 3(TT0) + T(TT_) 4- 1, replace the part a(TT_) in 
TT- by T(TT_) + 1, and append a new smallest part, a(iT-) - T(TT_) - 1, to 
TT0. 

(vii) Otherwise JP(TT) = TT. [This happens if and only if TT has the form 
(4.2).] 
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It can be shown that F(F(u)) = TT, and that in fact rules (i)-(ii), (iii)-(iv), 
(v)-(vi) undo each other.* 

For example, Sylvester's correspondence pairs up the complex partitions in 
the following way, if we denote partitions by listing the respective elements 
of TT + , 7T0, 7T_ separated by vertical bars:*r 

3111 •*+ 4|| rules (i) and (ii) 

2l|l|l +-* 311 11 rules (i) and (ii) 

l|2l| «-* 2|2| rules (i) and (ii) 

1131 *-*• 2l||2 rules (iii) and (iv) 

12121 -*-* | 141 rules (v) and (vi) 

11131 +-> | 132 rules (v) and (vi) 

5. GENERATING FUNCTIONS REVISITED 

If S is a set of complex partitions, we let 

GS(U, v, y,B) = Y, u*lM U ' £ U ) yM s V U ) • <5-u 
TieS 

where 

q?E(7r) = E(TT+) + E(TT0) + S(TT_) - V(TT_) ; 

^Z(TT) = Z(TT + ) - V(7T + ) + E(TT0) + E(TT- ) ; 

( A(TT+) i f A(TT+) > 0; 
X(TT) = { ( 5 .2 ) 

( - T ( T T - ) i f X(TT+) = 0. 

These definitions have the property we want, as shown in the following theo-
rem. 

*At this point one cannot resist quoting Sylvester, who stated that these 
rules possess what he called Catholicity, Homoeogenesis, Mutuality, Inertia, 
and Enantiotropy: "I need hardly say that so highly organized a scheme . . . 
has not issued from the mind of its composer in a single gush, but is the re-
sult of an analytical process of continued residuation or successive heaping 
of exception upon exception in a manner dictated at each point in its devel-
opment by the nature of the process and the resistance, so to say, of its 
subject-matter" [14, p. 314], 

^These are the complex partitions whose sums have the form k+ (11-2/c)^. 
Sylvester gave an incorrect table corresponding to these 12 partitions at the 
bottom of [14, p. 315]; in his notation, he should have written 

"1st Species. 11 3.8; 6.3.2 6.5; 8.2.1 3.5.2.1. 
2d Species. 9.2 5.2.4. 
3d Species. 10.1 6.4.1; 7.4 3.7.1." 
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TkdOtl&n 21 Let S be any set of complex partitions, and let $ be the set 
of all complex partitions of the form (4.2). Then 

Gs(u9 v, y9 -y) = Gsn^(u9 V9 y9 -y) + GS\F{S) (u, v9 y9 -y). (5.3) 

Pfioofi: As in Theorem 1, we need only verify that if Tr' = F(TT) ^ TT we have 
E(irf) = Z(TT), A(TT') = A (IT) ± 1, and v(ir0f) = V(TT0) + 1. Rules (i), (iii), (v) 
all leave £ unchanged, decrease V(TT0), and increase A Or); rules (ii), (iv), 
(vi) are the inverses. There is one slightly subtle case worth discussing: 
Rule (iii) applies when A(TT+) = 0 and it changes A(TT+) to 1; in that case the 
hypothesis 3(TT0) < 3(TT ) implies that T(TT-) = 0, hence A(TT) = 0. • 

6. JACOBI-UKE IDENTITIES 

We shall apply Theorem 2 only to two infinite sets of partitions, leaving 
it to the reader to discover interesting finite versions of Jacobi!s identity 
analogous to Corollaries 1.2 and 1.3. 

If P is the set of all complex partitions, we have 

GP(u9v9y,z) = (yVt>*-y(Tj U + K V ^ V T T U H V - V ) ) 
\Z>1 \l<j<£ A Q>\ I 

Y]y-{ JT u'-ivH TT (i+^'~V))j 77 u+wVa); (6.D + 

furthermore 

2) G, (u9 v9 y9 B) - 1 + Y (u{k2+k)l2v{k2- k)l2yk + r^' k)l2v{kZ + k)l2y'k) . ( 6 . 

Setting z = -y in (6.1) gives the identity Gp(u9v9y9-y) = G^(u9 V9 y, -y) , 
which can be rewritten as 

CofioUaAy 2J: 

Z i SL SI-1 / \ 

J<0 

Z ) M (k2+k)/2y(k2^)/2 * 
-00<fc<0 

Our derivation makes it clear that this formula reduces to (4.1) if we set 
y = 1 and replace (u, v) by (~u9 -v); it is therefore a three-parameter gen-
eralization of JacobiTs identity. 

The right-hand side of Corollary 2.1 can be expressed as 

^(^z/)(k2+k)/2(z;2/-1)(k2"k)/2 = Y\(l + uj-lv'y-l)(l+ujv^1y)(l-u'vj) 
- o o < / c < o o J < 1 



1978] IDENTITIES FROM PARTITION INVOLUTIONS 209 

by Jacobifs identity (4,1), hence Corollary 2.1 implies that 

V " yluzv1'1 = —jg+ui^yiy-1) (l+u^v^~ly) (1-uV) 

-oo^ooTT(l + ̂ J + ^ ' + £"1) 3>i (1 + w V " 1 ) (1 + M V " 1 ) ( 1 - M V I / ) " 

Let us set a = -V~l , q - UV 9 and x = wi?z/, to make the structure of this for-
mula slightly more clear; we obtain 

y^ xn
 = T-r (1 - fl"V"V'+ 1) (1 - axg*) (1 - <7J'+1) (6 3 ) 

-oô Wco T T d - < V + n ) k>o (l - a" V + 1) (1 - aqi) (1 - xq*) 
j>o 

This three-parameter identity turns out to be merely the special case b = 0 
of a "remarkable formula with many parameters" discovered by S. Ramanujan 
(see [8, Eq. (12.12.2)]); Ramanujanfs formula, for which a surprisingly sim-
ple analytic proof has recently been found [5], can be written 

_ — (i - ba^g*) (1 - a'lx- V + 1) (1 - axq*) (1 - q^1) ^ ( ^ 4 ) 

j>o (i-ia-v-you-a~ V+1)(i-<V)(i- v') 

If we let S be the set of all complex partitions with TF+ nonempty, 
Gs(u, V,y9 z) and Gs n§ (u9 V9 y, z) are given by the terms in (6.1) and (6.2) 
involving yl for £ >_ 1. The set S\F(S) consists of those partitions with 
7T+ = {1} and g(TT-) < 3(7T0)9 hence 

Gs\F{s)(u9v9y, z) = w^^ufc"1y^J7(l + Mj^js)(l + Mj"1z;J). 
& > 1 J > fc 

By Theorem 2, we obtain 

Co/io££aA£/ 2 . 2 : 

\StTi i< j<«. / V j> i / 

= 22u
{k2 + k)/Vk2 -k)/V + y^y^JJa -u'v*y)d+^~^j)• 

If we subtract this identity from that of Corollary 2.1, we get the for-
mula for the complement of S, namely 

£ > 0 \ l < j < £ / \ J > £ + 1 / \ j > l 
2/) 
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- £ M
( k * - k ) ' V k 2 + k ) V k - y j y v T T a - ^ ^ a + ̂ '-V). (6.5) 

Putting y = 1 reduces the left-hand side to TTj>0(l - u3V3) (1 + u3 ~1V3); hence we 
obtain 

^ ^ n u - w V m + ^ ' - V ) = jyx'-tt/y*1^'2. (6.6) 
£> > 0 J > ̂  k > 0 

Let q = uv and a^-M*"1; this formula is equivalent to the identity 

Y,qbT\a-qi)a-qix) = £>*)kc?(k2 + k)/2. (6.7) 
2? > 0 J > i> fc > 0 

Equation (6.7) can be derived readily from known identities on basic hy-
pergeometric functions. Let us first divide both sides byJ^\->l(l-qJ)(l-q3x)> 
obtaining 

S^_ = / 1 lV(-ar)k ' 
„•*« T T /i _„„o+i\ri „i + i^ T T n j + iwn „c + i\l^~X q 

. _ . ^ c „{kz + k)l2 

fa TT (i-v+1)(i-4j+1) I n ^ - V ^ m - ^ * 1 ) ] ^ 
0 < j < n \ j > 0 

Now we use E. Heine*s important transformation of such series, a five-param-
eter identity [9, Eq. 79] which essentially states that 

f(u, v; a, b; q) = f(v9 u; b, a; q) 

if 

f(u, v; a, b; 0 - feu* JT ^ - ^ ^ ' ^ \(jl(±^\. ( 6 .8 ) 
\frfo o<j<n ( i - ^ ) ( i - ^ + 1 ) / \ i > o \ i - a u ^ / / 

In our case we let u = q9 v = x/b, a = 0, and 2? -* °°, obtaining the desired 
result: 

E - V r r a - *<+i A 

fe*k TT ( V ) V T T — 1 — ^ 
\^To 0<3<n /V-° (±-Xq0 + l)) 

0 <J<n 

It is not clear whether or not the more general equation (6.5) is related to 
known formulas in an equally simple way. 

An amusing special case of (6.7) can be obtained by setting q = x2 and 
multiplying both sides by x: 
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^ ^ 7 7 ( 1 - ^ ' ) = x-x^+x3 --•• = £(-l)ka?(k + 1)\ (6.9) 
k odd C >k k>0 

"The partitions of n into an odd number of distinct parts in which the least 
part is odd are equinumerous with its partitions into an even number of dis-
tinct parts in which the least part is odd, unless n is a perfect square." 
An equivalent statement was posed as a problem by G. E. Andrews several years 
ago [3], and he has sketched a combinatorial proof in [4, pp. 156-157], 
However, there must be an involution on partitions which proves this formula! 
If the reader can find one, it might well lead to a number of interesting 
new identities. 
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EXPANSION OF THE FIBONACCI NUMBER Fnm IN nJH POWERS OF 

FIBONACCI OR LUCAS NUMBERS 

A. S. GLADWIN 
McMaster University, Hamilton, Ontario, Canada L854L7 

Fibonacci numbers are defined by the recurrence relation Fm + Fm + l = Fm + 2 
and the initial values FQ = 0, F1 =1. Lucas numbers are defined by Lm = Fm_1 
+ Fm + l . The well-known identities F2m = F% + 1-F%1.1 and F3m = F% + l+F%-F%-X 
are shown to be the first members of two families of identities of a more 
general nature. Similar identities for L2m and L3m can be generalized in 
similar ways. 

1. Let n = 2p be an even positive integer, m be any integer, and k be any in-
teger except zero. Then 

nm / j urr m + rk / j ur1Jm + vT< 

v = -p 

where a0 = 0, a_v = -ar and a19a29 ..., av are the solution of the p simul-
taneous equations 

P ( 5P_1 for s = 0 
(1) Y%ar(-l)rksFrk(n_2s) = < 

?rf ( 0 for e = l,2 p-1 

2. Let n, p, m, and k be as in 1. Then 

p P 

r = -p r=-p 

where b.v = bY and Z?05 ̂ is ... , £p are the solution of the p-f-1 simultaneous 
equations 

(2) ^ 0 + 12h-(~1)rkS Lrk(n-2s) = } 
r- 1 ( 

5P for s = 0 

0 for s = 1, 2, ..., p. 

3. Let n=2p + l be an odd positive integer, and let m and k be as in 1. Then 

Fnm = Zmmmj0r'Fm + vk a n d Lnm = 5 / ^ OrLm + rk 
r = -p v=-p 

vk 
where o_r = (-1) cv and cT - br fo r r >_ 0. 

213 
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4. Since the proofs are similar in all cases, only that for the first identity-
need be given. The Fibonacci numbers are first written in the Binet form 

K = $~%u - (-gru) 
where g = y (5 2 + l) . Then for n even: 

p 

Fnm = ^ignm - g-™) = 2 a ' 5 " i B { ? " + Wc -(-9Tm~rkY 
r = -p 

= 5~pJ2(f)(-i)ms+sgm{n~2s) Y,ar(-Vrks 9rk{"~2s) 

s= 0 v = -p 

Equating coefficients of like powers of g for each value of s gives: 

(3) 5P~2 = ^ T a ^ 1 * * for s = 0 

r = -p 

X P 

(4) 5P~2 = - 5 3 a ^ - r k n fors = n 
P 

(5) 0 = ^2 ar(-Drks grk(n-ls) for s = 1, 2, " ... , n - 1 
r = -p 

These n + 1 equations can be rewritten in terms of Fibonacci numbers as 
follows: Equating the coefficients of like powers of g in (3) and (4) 
gives CL-r = -ar and a0 = 0. Equations (3) and (4) are thus equivalent and 
can be rewritten in a common form 

(6) S?'1 = S-^a^1-"" + f^arg'kn] = 5-iJ2ar(grkn - g~Pkn) 
P 

v=l 

Similarly, (5) can be rewritten as 

P 
(7) 0 = ^2ar(-lfks Frk{n.2s) for s = 1,2 n-1 

r=l 

However, since F_u = -(-l)uFu9 this summation is unchanged when s is re-
placed with n-s9 and since each term is zero when s=p, only \ (n ~ 2) 
p-1 values of s give independent equations. These values can be taken as 
s = l, 2, ...,p-l. Thus (6) and (7) together give p equations for the co-
efficients a19 a2, ..., ap, and it is obvious that the conditions for the 
existence and uniqueness of the solution are satisfied. 

5. For small values of n, the explicit expressions for av and br obtained by 
solving (1) and (2) can be reduced to simple forms by repeated use of the 
identities Llu = L* - 2(-l)" = 5F* + 2(-l)w. The results for n = 2, 3, 4 are: 
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n = 2 l/ax = F2 l/bQ = -\{-V)kF\ l/b, = F? 

n = 3 l/&0 = -(-l)kF* 1/i! = LkF{ 

n = 4 l/al = F2kJFk
2 - ( -1)**^} l/a2- = -(-l)kL2k/ax 

l/Z>o = *S<-1)**£4 1/&! = Fk/Lkax 

l /62 = - ( - 1 ) * ^ / ^ 

ACKNOWLEDGMENT 

The writer wishes to thank Professor E. Baumann, Director of the Institute 
for Technical Physics, ETH Zurich, for the facilities placed at his disposal. 



SOME POLYNOMIALS RELATED TO FIBONACCI AND EULERIAN NUMBERS 

LEONARD CARLITZ 
Duke University, Durham, North Carolina 27706 

1 . INTRODUCTION 

Put 

— - — r = I X * n a-D 
1 - kx - X n-0 

and 
oo 

cn(y) = ^2c
knyk (« = o, I , 2, . . . ) . (i.2) 

Jc-o 
By ( 1 . 1 ) , 

^ = 0 j = 0 j = 0 s = 0 n = 0 2s <n 

so t h a t 

°*»- z ( w ; s ) f e n " 2 s - a-3) 
2s < n 

Since c?kn i s a polynomial i n fc of degree n9 i t fo l lows t h a t 

rn (y) 
Cn(y) = (n = 0 , 1 , 2 , . . . ) , ( 1 .4 ) 

( l - y)n+1 

where vn{y) is a polynomial in y of degree n. Moreover, since 

Ck%n + l = ^Ck,n + °kyn-l> 

i t fo l lows from (1 .2 ) t h a t 
oo 

^ + 1^) = X/^,n + ^ .n- l )^ ' 
k = 0 

This g i v e s 

Cn + 1(aO = £„'(*) + Cn.±(x) (n .> 1 ) . (1 .5 ) 

Hence, by ( 1 . 4 ) , 

Supported in p a r t by NSF g ran t GP-37924X. 
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^n + 1 ( ^ ) = (n + l)xrn (x) + x(±-x)rjl(x) + (1 - x)2rn_±(x) ( n > l ) 

w i th r0(x) = rl(x) = 1 . 

I f we put 

k = 0 
then, by (1.6), we get the recurrence 

(n - k + 2)i?njk_1 + kRHtk + Rn-l,k ~ 2^tt-l,k-l + Rn-l,k-2' 

By means of (1.8) the following table is easily computed. 

(1.6) 

(1.7) 

(1.8) 

n \ 
0 

1 1 
2 

3 
4 

5 
6 

I 7 

0 1. 

1 

-1 

3 
• 

8 

6 

21 

2 

2 
• 

14 

22 

99 
240 

3 

3 
4 

60 
244 

1251 

4 

5 
22 

279 
2016 

5 

8 

78 

1251 

6 

13 
240 

7 

21 

It follows from (1.6) that 

Rn+l,n + l = Rn,n + ^n-l,n-l ' 

Hence, s i n c e i?0,o = -̂ 1 1 = 1 ? 

^w,n = -̂n + 1 (n=0, 1, 2, . . . ) , 

Hoggatt and Bicknell [2] have conjectured that 

Ro R* (1 <. k <_ In + 1). L 2 n + l , k ±l2n + l, 2n-k+ 2 

We shall prove that this is indeed true and that 

*2n.2n-fc+l + ("Dfc(2nfc+1) = *2».fc d < * < 2*). 

(1.9) 

(1.10) 

(1.11) 

The proof of (1.10) and (1.11) makes use of the relationship of rn (x) to the 
polynomial An(x) defined by [1], [3, Ch. 2] 

xe 
( I - x) z = 1 + 2>»<*>§r (1.12) 

n-l 
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The relation in question is 

2k<n 

with AQ(x) = 1. The polynomial An(x) is of degree n: 
n 

An(x) = Y^An,k*k (w>.l), (1.14) 

where the A H t k are the Eulerian numbers. Since 

An(x) = xn + 1An(^)> (1.15) 

it is easily seen that (1.10) and (1.11) are implied by (1.13). 
It seems difficult to find a simple explicit formula for i?n>^ or a simple 

generating function for rn (x). An explicit formula for Rnik is given in (2.11). 
As for a generating function, we show that 

£r n(a:)~ = ^An{x)fn ((1 - x)z)(l - x)~n zn, (1.16) 
n- 0 * n = 0 

where 

k = 0 

Moreover 

/n (s) = Pn(s) cosh 3 + Src(s) sinh 2, (1.18) 

where Pn (s) , Qn(z) are polynomials of degree n, n - 1 , respectively, that are 
given explicitly below. 

While (1.16) is not a very satisfactory generating function, the explicit 
result (1.18) for fn(z) seems of some interest. It is reminiscent of the 
like result concerning Bessel functions of order half an integer [4, p. 52]. 

2. PROOF OF (1.10) AND (1.11) 

By (1.2) and (1.3) we have 

<w -X>kZ;(V)*"_2' = E (V)£*"-2-»* 
k = 0 2s < n 2s < n k = 0 

Since [3, p. 39] 

i t follows that 

}knxk = , 
k=0 ( 1 - X) 

2s <n 
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and therefore 

*„(*) = £ (n'sS)a ~ X)2SK-2s(x)- (2.D 
2s<n 

Thus we have proved (1.13). 
Note that by (1.7) and (1.14), (2.1) yields 

2s < n Q » 0 

In the next place, since ince 

An(*) = xn + 1An(^j (n > 0), 

(2.1) gives 

*"+l2,(§) - E (V)*1 - *)28--2s+1^-4!> (2.3) 
2s< n 

We now consider separately the cases n odd and n even. 
Replacing n by 2n + 1, (2.3) becomes 

2s < n 

r2n+1(x) = * 2 * + ^ 2 n + 1 ( J ) . (2.4) 

so that 

On the other hand 
n-l 

^ 2 - + i ^ g ) = z (2n; > - *>2s - 2 n - 2 s + i ^n- 2 s © + *<* - -)2" 
s = 0 

= £( 2 n ; s )a -^) 2 s ^2„-2 S w - <i-ao2B+i, 
so that 

ln(x) = p 2 - ^ P 2 n ( i ) + (1 - * ) 2 " + 1 . (2.5) 

By (2.4) and (1.7) it follows at once that 

*2n + l,fc = *2» +l,2n-k+2 (1 < ft < 2n + 1) . (2.6) 

Similarly, by (2.5), 

2n^ 2n 2n+l 

k = 0 k=0 

which gives 
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*zn.* " *2n.2»-k + i + ( " D'CV 1 ) (1 < fc < 2n), (2.7) 

as well as 

i?2n>0 = 1 (n = 0, 1, 2, . . . ) . (2.8) 

The companion formula 

R2n + uo = 0 (n = 0, 1, 2, ...) (2.9) 

is implied by (2.4). 
Clearly, by (1.9) and (2.6), 

*2» + lfi = 2̂n + 2 (" = 0, 1, 2, ...) (2.10) 

while, by (2.7), 

^2n, i = 2̂n + i - (2n + 1) (n = 0, 1, 2, . . . ) . (2.11) 

Since 
n 

An(y) = 2/]£<2/ - Dn~ JVo n, 
j-o 

where, as usual, 

A j 0 n = X ! ( - 1 ) J " 8 ( J ) s n = J'!5(n' J-)' 
s = 0 

where £(n, j) is a Stirling number of the second kind, (2.1) implies 
n - 2 s 

2s~ 3 A j n
n " 2 s pn(^) = xJ2,(n~s

s)a - x)2s ]T(* - Dn'2fl-JAjo 
2k < n j ' = 0 

2s < n j = 0 

Hence 
n - 2s 

*»•* - E ( V ) £ ( - 1 ) n j-k+1(nk~-lY°n~zs- (2-12) 
2s < n j = 0 

For example, for fe = n, (2.12) reduces to 

2s < n 

3. GENERATING FUNCTIONS 

To obtain a generating function for rn (x), we again make use of (2.1). 
Thus 
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^ = 0 2 k < n n = 0 n = 0 2 k < n 

? n + 2k 

k * 0 w = 0 

If we put 

f , z ) = V (fe + n ) ! 2k+n= y* (k + 1 ) w .»+>. f 3 ,> 
• r n U ; 2-vfc! (2£ + n) ! 3 Z^(2fe + n ) ! 2 ' U *" U 

k'O k-0 

we get 

£ r „ w | = £ ^ ) / „ ( ( l - i ) 2 ) ( l - i ) - V . (3.2) 
n=0 n=0 

Clearly 

oo 2k °°  o 7 _ °°  2^ 

so that 

f0(z) = cosh s5 2f1(z) = s cosh s + sinh z« 

For ft = 2 we get 

k = 0 

,2*:+ 1 

( 3 . 3 ) 

A^ /„x _ V^4(fe + l)(fe + 2) _2?c + 2_ \ p (2fc + l)(2fc + 2) + 3(2fe + 2) 2fc+2 
4 J 2 ( ' S ; Z ^ ( 2 f e + 2 ) ! S Z ^ ( 2 f e + 2 ) ! Z 

k = 0 k = 0 

which reduces to 

4/2(;3) = z2 cosh z + 3z sinh s. (3.4) 

With a little more computation we find that 

8/3(3) = (z3 + 3z2) cosh z + (6s2 - 3) sinh z. (3.5) 

These special results suggest that generally 

2nfn(z) = Pn(z) cosh g + Qn(z) sinh 2, (3.6) 

where Pn (z) , Qn(z) are polynomials in 2 of degree ft, ft-1, respectively. We 
shall show that this is indeed the case and evaluate Pn(z) , Qn(z). 

If we put 

Sn(z) = Pn(s) + Qn(z)9 Tn(z) = Pn(g) - Qn(z), (3.7) 

then (3.6) becomes 
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2n/n(» = \{sn(z)e* + Tn(z)e'*). (3.8) 

By (3.1) we have 
» 2n(k + i)M 

k = 0 

This suggests that we put 

n 
2n(ar+-l)n = ̂ a n J ( 2 * + j + 1 ) ^ . , (3.10) 

j = o 

where the anj are independent of #. Clearly the aWj are uniquely determined 
by (3.10). Indeed, rewriting (3.10) in the form 

2-(|<«- »> +1)„ - E ( w - ^ , a X - j ) » 
j =0 

it is evident, by finite differences, that 

3 
2 

a 
l n , n-j 

s = 0 

3 

s = 0 

Subst i tut ing from (3.10) in (3.9) we get 

k = 0 j = 0 

^Lja^zn dLj (2k + j ) ! 

X, an,2j^ 2J < 2^(2&)! Xf (2*)!Y 
2j<n ( k = 0 t = 0 j 

+ 2^ a n ' 2 J + l S )Z^(2fc + l ) ! 2^(2^ + 1)! 

= / ^ an,2j ^ n _ 2 j " cosh z + V ] an,2j + i zn~2^'1 sinh 3 
^7< 

E ^ zn-2j-2t —y _ s n - 2 . j + 2 t 

2^an'2^' (2t)! ~Z> 2-(a"*^ + 1 (2* + 1)! ' ( 3 ' 1 2 ) 2 j < K t < j 2j<n t<j 
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Now 

Q-v, 11 " - 7 2 , 2 ^ + 1 

E r ^ ^ n - z j + zr _ ^ , _ ^ n - z j + zr 

2^an,2j (2t)! + 2-J 2~jan>2J + l~(2 + 1)1 
2j<n t< j 2j<n t < j 

_ Vs-24 v an'2j + 
L~> \ LJ (23 - 2*)! + 

<2t<n f2t<c 

By (3.11) 

(2j - 2 t ) ! (2j - 2* + 1)! 
<2t<n f 2t<j<n 

an,S 

U - 2t)! 
0 < 2t< n 2t <j<n 

£ (J - 2t) ! 
2 t < 3 < n 

= Z (J--2t)t(n-J-)1s<-i>n"J"(n;0(a+w)(B+n-2) ••• (s-n+2) 
2t<Q<n S~° 

= n^|(n-2t-j)»^(-1)J"(e)(8 + n ) ( 8 + w - 2 ) • • • ( S " n + 2 ) 

j = 0 s - 0 

• F w S " ; a ) " « " - » - <«-«> "f <-i>'-(-A-)-
s = 0 

The inner sum vanishes unless n = 2t + s. Since n > 2t, the double sum must 
vanish. Therefore, (3.12) reduces to 

2nfn{z) = 5^an'2^n2j COSh Z + ^ a n ' 2 J + lSn"2j_1 Sitlh Z' (3.13) 

Comparing (3.13) with (3.6), it is evident that 

-23 
*n, 2j " 

2j<n 
(3.14) 

2j<n 

Hence, as asserted above, Pn(s), Qn(z) are polynomials of degree n, n - 1, 
respectively. It is in fact necessary to verify that aHi0 ^ 0, antl ^ 0. 
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By (3.7) and (3.14) we have 

n n 

J = 0 3 = 0 

4. ANOTHER EXPLICIT FORMULA 

While we have found anj explicitly in (3.11), we shall now obtain another 
formula that exhibits anj- as a polynomial in n of degree 2j. To begin with 
we have, by (3.11), 

k=0 J 

o°  K. 3 

£fr£G)E ( - 1 ) , '" s ( f ) ( s + n ) ( s + n - 2 ) ••• <s-w+2> 
k=0 j=0 s = 0 

fc = 0 s = 0 

It follows that 

V = r\ c ~ c\ J - o v f 

VnW = «•*„(«) .£(fc + ")(fc + "-2)-(ft-n + 2),>. (4.i) (k + n)(k + n- 2) ••• (fe-n + 2) ^ 

Then 

fc = o 

(*/„»(«) - «*„<*>) .^(fe + » + l>(ft + n-l> •••(&-» + !>,* = yn + l(2). 

Carrying out the differentiation this reduces to 

Sn + 1(z) = s^'(s) + (2j3-n + l)S„'(;3) + (2 - n + l)£n(2). (4.2) 

Comparing coefficients we get 

an + i,j = anj + (w-2j + 3)a„iJ-_1 - («/- 2)(n-j + 2)anfJ._2. (4.3) 

Hence, for j = 0, we get 

a H t Q = 1. (4.4) 

For j = 1, (4.3) becomes 
a« + l,i = «nl + (n + l)an0, 
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which gives 

For n = 2, (4.3) reduces to 

which gives 

3(T). <*-6> cn2 

With a little more computation we get 

' - - " ( " D - ' C ; 1 ) (4.7) 

^ = 105(^1)-45(^1) (4.8) 

an5 = 3 • 5 • 7 • ̂ o 1 ) - G S O ^ 1 ) + 4s(» J X ) . (4.9) 

These special results suggest that generally 

2s <j 

Indeed assuming that (4.10) holds up to j, it follows from (4.3) that 

(n- 2 j > l ) 2 / - 1 > " ^ . ( 2 j - 2 e ) - W - 1 ) ( " - J ' + 1 ) Z ) ( - 1 ) ' ^ - ^ ( 2 / - 2 a 1 - 2 ) 
2 8 < J - 1 

= Z ( " 1 ) S ( 2 i - 2 S ) {(W-2J' + I ) e ^ + W - D ^ - J + D ^ - i . a - l } 
2 S < J 

= 2™^ ( " 1 ) S ^ ' + 1 > s V2 j -2s + l ) 
2fl< j + l . 

provided 

( n - 2 j + 2s + l ) a / + 1>8 = ( 2 j - 2 s + l ) ((n-2j + l)cjs + (j - 1) (n - j + Daj _ l f 8 _ x) . 

This gives 

c . _ 2-J (J - 1) ' (2J - 2s) ! ( 4 u ) 
C j ' s ^ 8 ! ( j - f l ) ! ( j - 2 e - l ) ! * ^ • i l ; 
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Thus (4.10) becomes 

2-S < j 

• (j-l)i(2j-2s)! / w+1 \ 
s\(j-s)\(j-2s-l)l\2j-2s) (4.12) 

:n,j' 

^ M . II , l — | ~ — 

! o 
1 
2 

3 
k 

5 

0 1 

1 

3 
6 

10 
15 

2 

3 
15 
45 

3 

-3 
-15 
-30 

A 

-45 

5 

+45 
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A RECURRENCE SUGGESTED BY A COMBINATORIAL PROBLEM 

where 

LEONARD CARLITZ 
Duke University, Durham, North Carolina 27706 

SECTION 1 

Recurrences of the following kind occur in connection with a certain com-
binatorial problem (see §5 below). Let el9 ..., en be non-negative integers 
and q a parameter. Consider the recurrence 

n 
F(el9 . . . , en) = ^q**F{el - 6 l j 9 . . . , en - 6WJ-), ( 1 .1 ) 

j - i 

N = ei + ••' + en, (1-2) 

1 ( i = J ) 
( 1 .3 ) 

0 {if j) , 

F (0 5 . . . , o) = 1 (1 .4 ) 

and F ( e l 5 . . . , e n ) = 0 i f any ei < 0 . 
Note t h a t , fo r q = 1 , (1 .1 ) r educes t o 

n 

F{el9 . . . , en) = 2^F^ei " 6 i j ' * " ' ' en " 6 ^ 
j = i 

and F(el9 ..., en) becomes the multinomial coefficient 

(eY 4- e2 + • - • + e n)! 

\ P ? 
'1 '^2 * e '£c 

If we put 

e = (el9 ...9en), Sj = (6lj5 . .., 6nj-), (1-5) 

then (1.1) becomes 

n 
F(«) = ]T ̂ F(<? - 6j). (1.6) 

j-i 

For n = 1, the recurrence (1.1) is simply 

F(ff) = ^F(tf - 1), F(0) = 1. (1.7) 

227 
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The solution of (1.7) is immediate, namely 

For n = 2, the situation is less simple. We take 

F(elt e2) = q><F(e1 - 1, e2) + q2NF(elt e2)(N = ex + e 2 ) . 

I t e r a t ion of (1.9) gives 

(1.8) 

(1.9) 

F{elt e 2 ) = q^~1F(e1-2, e2) + qiN ^ ( 1 + q)F(ei - 1 , ez - 1) + qkN '2F{ex, e2 - 2) 

= q3N'3F(e - 3 , e2) + q*B-sa + q + q2)F(e, - , e2-l) 

,5iV-6 (l+q + q^Fie^l, e2 - 2) + q6fl ~6F(ei, e 2 - 3 ) . 

It is helpful to isolate the exponents as indicated in the following 
table. 

7WX 

[o 
1 
2 

3 
4 

5 

0 

1 

N 

IN - 1 

3/1/ - 3 
4/1/ - 6 

5il/ - 10 

1 

2/1/ 

3/1/ - 2 
4/1/ - 5 

5/1/ - 9 
6/1/ - 14 

2 

4/1/ - 2 

5/1/ - 6 
6/1/ - 11 

7/1/ - 17 

3 

6/1/ - 6 

7/1/ - 12 

8/1/ - 19 

4 

8/1/ - 12 

9/1/ - 2 0 

5 

10/1/ - 20 

The special results above suggest that generally, for m >_ 0, 

v + s = m 

where 

(1 - Q ( l - qm'1) «•• (1 - qm~r + 1) [-] (1 - <?)(! - q1) ••• (1 - <?*) 

(1.10) 

(1.11) 

It follows from (1.11) that 

(1.12) 

For 777 = 1, (1.10) reduces to (1.9) . Assume that (1.10) holds for all 
m <. M. Then by (1.9) 
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r + s~M 

= Y, \MyM+T)N-M{M-1)+is(s-^ lq"-*-F{e1 - s -1, e2-T) 
r + s.M1-^-1 ( 

+ q
2^-p-s)F(e1 - s, e2 - r - 1)1 

+ \l[\q{M+r+2)N-M(M + ^+is{s-^F(e1 - e, e z - r - 1)1 

V ^ 5["M"I (M+r + l)ff-M2 + i ( s - l ) ( S - 2 ) 
r+8*M + 1 + [ / i y M + m ) J " " ( ' f + 1 ) + i 8 ( s " 1 ) F ( e 1 - 8, e2 - r)\ 

_ \ " (M+r+l)ff -M(M+1) + 4rs(s -1) ) VM~l U-s + 1 

r+s -M+1 v r ft -i) 

+ Lr-lJ(F(ei " s' e2 " r) 

= Y ^ [M+iy«+'+i)i»-"C + i)+i»t«-i)i.(ei - 8, e2 - r ) , r+s=M+l 

by (1.12). Thus (1.10) holds for M + 1 and therefore for all m >_ 0. 
For m = N, (1.10) reduces to 

F(s P ) = c7(2^ + s)(̂  +s^-(^ + s)(3-+s-i) + is(s-i)r^-+-sl 

Simplifying and interchanging r and s, we get 

F(r, a) = ^ ' e - n + e + aHa-Oj-r + ej. (1.13) 

By a familiar identity, (1.13) gives 

^<?'m(m"2' + 1)F(p, m - p)xr = (1 + x)(l + <?*) ••• ( l * ^ " 1 * ) , (1.14) 

r= o 

SECTION 2 

The case n = 3 of (1.1) is more difficult. We have 

F(el9 e2, e3) = q ^ ( ^ - 1, e2, e3) + q2NF(e19 e2 - 1, e3) (2.1) 

+ q3fl/F(e15 e2, e3 - 1). 

Iteration gives 
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F(elt e2, e 3 ) = qN[qN~1F(e1 - 2, e2, e3) + q2N'2F(e1 - 1, e2 - 1, e3) 

+ qw->F{ei - 1 , e2, e3 - 1)) + q2N (qN~1F(e1 - 1, e2 - 1 , e 3 ) 

+q2N-2F(e1, e2 - 2, e3) + q3N ~3F(ei, e2 - 1 , e 3 - 1)) 

+ q3N(qN-1F(e1 - 1 , e2, e3 - 1) +q2N " ^ ( e , , e2 - 1, e3 - 1) 

+ q3B-3F(elt e2, e3 - 2)) 

= q2S-'lF(el - 2, e2, e3) + q3N ~2 (1 + q)F(e1 - 1 , e 2 - 1 , e3) 

+ ^ " " ' ( l + <7 )F (S j - 1 , e 2 , e 3 - 1) + qhw~2F(.e1, e2 - 2, e3) 

+ qs"-3(l + q)F(elf e2 - 1 , e3 - 1) +q6"-3F(e1, e2, e3 - 2 ) . 

A second i t e r a t i o n g i v e s 

F ( e j , e 2 , e 3 ) = <7sff-sJ?'(e1 - 3 , e 2 , e 3 ) + q M " 6 F ( « „ e 2 - 3 , e 3 ) 

+ ^ " V ^ , e 2 , e 3 - 3) 

+ ^ 6 f f " 8 ( l + Iq + 2<73 + qk)F(e1 - 1, e2 - 1, e3 - 1) 

+ q™-*{! + q + q2)F{ex - 2 , e 2 - 1 , e 3 ) 

+ ?
M " 7 ( 1 + q2 + q * ) F ( e 1 - 2 , e2, e3 - 1) 

+ q5"-Ba + q2)F{ex - 1 , e2 - 2, e 3 ) 

+ <77fl,-9(l + ^ + ^ V t e , - 1, e2, e3 - 2) 
+ <77*-8(l + q + c ? 2 ) F ( e i , e 2 - 2 , e 3 - 1) 

+ qM-9(l + q + q2)F{ex, e2 - 1 , e 3 - 2 ) . 

I t fo l lows from t h e above t h a t 

F ( l , 0 , 0) = q, F(0, 1, 0) = q2, F ( 0 , 0 , 1) = q3, ( 2 .2 ) 

F ( 2 , 0 , 0) = q3, F ( 0 , 2 , 0) = <76, F ( 0 , 0 , 2) = q-9 

^ ( 1 , 1 , 0) = q\l+q), F(l, 0 , 1) = q5(l+q2), F{0, 1 , 1) = q1 (1 + q) , 
(2.3) 

F ( 3 , 0, 0) = q6, F(0, 3 , 0) = q12 , F(0, 0 , 3) = q18 

F{2, 1 , 0) = ^ ( l + ^ + t? 2 ) , F ( 2 , 0 , 1) = ^ ( l + ^ + g " * ) 

F(0, 2, 1) = qr 1 3 ( l + ? + ?
2 ) , F{1, 2, 0) = < ?

9 ( l + ^ + ?
2 ) (2 .4 ) 

' F ( 1 , 0 , 2) = ( 7
1 2 ( l + ( 7

2 + c ? ^ ) , F ( 0 , 1, 2) = ql5a + q + q2) 

•F(l, 1 , 1) = c ^ 0 ^ 24 + 2 ^ + < ? " ) . 

It is convenient to write (2.1) in operational form. Define the operators 
E^1, E2

l, E~3
l by means of 

E~1
l^{e1, e2, e3) = (\>(e1 - 1, e2, e3) , E~2

 1$(e1, e2, e3) ( 2 .5 ) 

= (^(Sj., e2 - 1, e3), E~1<p(e1, e2, e3) = <p(e1, e2, e3 - 1) 
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and put 

a = q®E\l + q2NE~2
l + q3N E~3

l (N = ex + e2 + e 3 ) . (2 .6 ) 

Then (2 .1 ) becomes 

F(el9 e29 ez) = Q,F(el, e29 e3) (N > 0 ) . ( 2 .7 ) 

For m >_ 0 we may w r i t e 

^ 9
( r + 2 8 + 3 t ) j ' c (2 . ,8 , * )B- l , f f - s ^* , a" : 

p + s + t = m 

where C(r, s, t) is independent of N. Moreover 

(2.8) 

C(0, 0, 0) = 1 (2.9) 

and C(r, s9 t) = 0 if any one of P, S, £ = 0. 
By (2.7) and (2.8), 

^ i , e29 e3) = fi^F^j, e25 e3) 

<7 C(r9 s, t)F(e1 - r, e2 - s, e3 - t), 

so that 

F(g l, e2, e3) = ̂  +2Sz + 3 e 3 ) V ( e i , e2, e 3 ). (2.10) 

Hence (2.8) becomes 

Um =Y\q{^2s*u){N-^F{v,s,t)E-l
rElSE-i

t (2.11) 
v+s+t=m 

(N = ex + e2 + e3, 0 <. TW <. tf). 

Since 
F(Sl, e2, e3) = ̂ F(e1 5 e2, e 3) (0 ± m <_ N), 

it therefore follows from (2.11) that 

• F{elte2,e3) - ^ q ( r + 2 s + 3 t ) ( " " m >F( r , s , t ) ! ^ - r , ^ - s , e 3 - * ) . (2 .12) 
v+s+t=m 

This may be w r i t t e n in a more symmetr ica l form: 

F{a,b,e) = ] T q
{r+2s+3t)(p'+s'+t,)F(r,s,t)F(r',s',t') (2 .13) 

? + ! ' : £ (0<.m^a + b + a), 
r+s+t=m 

wi th a , fe, o9 ?77 f i x e d . 
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For example, w i t h a = 2 ? = < ? = l , m = 2 , (2 .13) g ive s 

F ( l , 1 , D=q5F(0, 1 , 1 ) F ( 1 , 0, 0)+qkF(l9 0 , 1 ) F ( 0 , 1 , 0 ) + < 7 3 F ( 1 , 1 , 0 ) F ( 0 , 0 , 1 ) 
= q13a + q)+qll(l + q2)+qlQa + q) 

= q10 (l + 2q + 2q3 + qk). 

Note t h a t w i t h a=b=c=l9m=l9 we ge t 

F ( l , 1 , l ) = q 2 F ( l , 0, 0)F(0: , 1 , l)+qkF(09 1 , 0 ) F ( 1 , 0, ±)+qsF(09 0, 1 ) F ( 1 , 1 , 0) 

= ql\± + q)+qll(l + q2)+ql3{± + q) 

= q10 (± + 2q + 2q3 +qh). 

Indeed (2 .13) i s no t comple te ly symmetr ica l i n appea rance . I f we put 
m' = r' + sr + tr

9 then (2 .13) y i e l d s 

F(a >b>0) = S q{rf+2s'+3t'Hr + s+t)F(r>9s'9t>)F(r,s,t). (2 .14) 
r'+r = a 
s' + s = b 
t' + t = Q 

The equivalence of (2.13) and (2.14) can be verified directly by merely in-
terchanging the roles of the primed and unprimed letters in (2.13). 

By means of (2.13) a number of special values are easily computed. For 
example we have 

F(a, 0, a) = qa~lF(l9 0, 0)F(a-l, 0, 0) 

F(09 b, 0) = q2{b'l)F(09 1, 0)F(0, b- 1, 0) 

F(0, 0, a) = ^3( c"l)F(0, 0, 1)F(0, 0, c - 1). 

It then follows that 

f(a, 0, 0) = qi^a + 1^ , f(0, b, 0) = qb{b + 1) , f(0, 0, o) = ^"f"*1) . (2.15) 

As ano the r example 

F{a, 1 , 0) = qaF(l, 0, 0)F( - 1 , 1 , 0) + q2aF(0, 1, 0)F(a, 0, 0) 

and we f ind t h a t 

F(a9 1 , 0) = qi{a2 +3a + li)a + q+--+qa). (2 .16) 

S i m i l a r l y 

F ( 0 , 1 , a ) = q2aF(Q, 1 , 0 ) F ( 0 , 0 , a ) + q3aF(09 0 , 1 ) F ( 0 , 1 , a - 1) , 

which g ives 

F ( 0 , l , a ) = ^ ( a + 1 ) ( 3 a + i f ) ( l + < ? + • • • +qa). (2 .17) 
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Also 

F(a, 0 , 1 ) = qi{a2+3a + h)(l + q2 + --+q2a) 
(2 1 8^ 

F ( l , 0 , a ) = < 7
i ( a + 1 ) ( 3 a + 2 ) ( l + <7

2 + - " + < 7 2 * ) 

F ( l , a , 0) = q{a+1)2 (l + q+ • • • + ^ a ) 
(2 .19) 

F ( 0 , a , 1) = <?* + 3 a + 3 ( l + c 7 + . . - + <?«). 

Note that it follows from (2.16), (2.17), (2.18), and (2.19) that 

F(0, l,a) = qa{a+2)F(a, 1, 0) 

F(l, 0, a) = qa{a~l) F(a9 0, 1) (2.20) 

F(0, a, 1) = qa(a+2)F(l, a, 0). 

SECTION 3 

It is evident from (2.1) that F(a9 b9 c) is a polynomial in (7 with non-
negative integral coefficients. Put 

f(a9 b9 o) = deg F(a, b, e), (3.1) 

the degree of F(a, 2?, c). To evaluate /(a, 2?, c?) we use (2.1): 

F(a, fc, c) = qNF(a- 1, t, c) + q2N F(a9 b- 1, c) +q MF(a, 2>, c- 1) (i!7= a+&+<?). 

Then 

/(a, i, e) = max {tf+/(a-l, i, e), 2tf+/(a, i-1, c), 3tf+;f(a, 2>, c-1)}. (3.2) 

In particular 

f(a, b, c) > 3N + f(a, b,o-l) (o > 0), 

so that 

f(a9b9a) >. 3/V + (tf-1)+.••• +3(ff-e + l)+/(a, 2>, 0). 

Since, by (3.2), 

f(a, b90) > 2(a + b) + f(a9b-l9 0), 

we get 

/(a, £>,<?) >. 3tf+3(tf-l) + ••• +3(N-c + l) + 2(N-c) +2(N-c-l) 
+ ••• +2(N-c-b + l) + /(a, 0,0). 

Hence, by (2.15) 
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f(a9 b9 o) >.ya(a + l) + b(b + l) + j-c(c + l) + lab + 3ac + 3bc. (3.3) 

We shall prove that, in fact, 

f(a9 b, a) = ya(a+l) + b(b + l) + |e(c + l) + 2a£ + 3ac + 3bc. (3.4) 

This is evidently true for a + b + G = 0, 1, 2, 3. Assume that (3.4) holds for 
a + b + c < M. By (3.4), with a + b + c = M9 we have 

f(a9 b9e-l)+a + b + c- f(a9 b - 1, c) = e 
f(a9 b-l9 e) + a + b + c - f(a -l9b9c)=b + c. 

Hence (3.2) reduces to 

f(a9 b9 c) = 3(a + b + e) + f(a9 b9 o - 1) 

and it follows that (3.4) holds for a + b + e - M. 
This completes the proof of (3.4). 
The formulas (2.20) suggest the possibility of a relation of the following 

kind 

F(a, b9 o) = qd^> b> °^F(c9 b, a), (3.5) 

for some integer d(a9 b9 o). In view of (3.4) 

d(a9 b9 c) = f(a9 b9 a) - f(c9 b9 a). 

By (3.4) this gives 

d(a9b9c) = (c-a)(a + i + c + l). (3.6) 

Thus (3.5) becomes 

qa{N + l)F(a, b, a) = q a(ff+1)F(c, 6, a), N = a + & + a. (3.7) 

We shall show below (§5) by a combinatorial argument that (3.7) is indeed 
correct. 

SECTION 4 

Turning now to the general situation (1.6), we define the operators E±l, 
E'J1, ..., E~l by means of 

Ejl<$>(e) = <P(e - 6,-), (4.1) 

where the notation is that in (1.5). We also put 

n 
Q = ^q3'NE/lHe) (N = ex + -•• + en)9 (4.2) 

so that (1.6) becomes 
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F(e) = QF(e) (N > 0). (4.3) 

Iteration of (4.3) gives 

F(e) = QmF(e) (0 <_ m £ N). (4.4) 

Generalizing (2.8), we write 

Qr = ] T qu{r)n C(r)E~Vl . . . S'"1'", (4.5) 

where 

= (p l 5 r 2 , . . . , p n ) , o)(r) = T1 + 2r2 + - •• + nrn (4.6) 

and C(r) is independent of /\7. Then, in the f i r s t place, for m = N9 (4.5) 
yields 

F(e) = q^'^C(e), ( 4 . 7 ) 

so that (3.5) becomes 

nm= J^ q"{r){N-m)C(r)E;ri ... E'r». (4.8) 
Zvj = m 

It then follows from (4.5) and (4.8) that 

F(e) = HI qa)(r)U"m)^7(r)F(e - r). (4.9) 

This result can be written in the more symmetrical form 

F(e) = i C ^t" ( r ) U " m ) F ( r)^ 7( r f ). (4.10) 
E r̂  = m 

The remark about the equivalence of (2.13) and (2.14) is easily extended to 
(4.10). 

As a simple application of (4.10) we take 

F(a&d) = ^^(a-1)F(6J-)F((a»l)6J-). 

Then, since F(6j) = qJ, we get 

F(a6j) = q^"a(a + 1) (1 <_ j <_ n). (4.11) 

This is evidently in agreement with (2.15). 
Next 

F(a9 1,0, ..., 0) = qaF(l, 0, 0, ..., 0)F(a-l, 1, 0, . . . , 0) 

+ q2aF(Q, 1,0, ...,0)F(a, 0, 0, . . . ) , 
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which reduces to 

F(a,1,0, . . . , 0 ) = qa + 1F(a- 1 , 1 , 0 , . . . ) + < ? i a ( a + 1 ) + 2 a + 2 . 

This g ive s 

F(a, 1 , 0 , . . . , 0) = <7±<a 2 + 3 a + l f ) ( i + q + . . . + qr«). (4 .12) 

For example 

F ( l , 1 , 0 , . . . , 0) = qh(l + q), F ( 2 , 1 , 0 , . . . , 0) = q7(l + q + q2), 

in agreement with earlier results. 
Clearly F(e) is a polynomial in <? with non-negative integral coefficients. 

Put 

d(e) = deg F(e), (4.13) 

the degree of F(e). Then by (1.6) 

d(e) = max {jN + d(e - 6^)1. (4.14) 
l<j<n K > 

Thus, by (4.11) 

d(e) >_n(N+ (N-l) + ••• + (N-en + lj) 

+ (n-l) ((tf-en) + (tf-en-l) + ••• + (N - en - en _2 +1)) 

4- ... + 2((N-en e3) + • •• + (N - en e2 + l)) 

+ je1(e1 + l). 

After some manipulation this becomes 

d(e) >jN1 +jN2 , (4.15) 

where 

#i = YlJ'e ' 2̂ = X̂  max (^y^eiec- (4.16) 
j' = i ^,j = i 

We shall show that indeed 

d{e) = ytf2 + | ^ . (4.17) 

To prove (4 .17) i t s u f f i c e s t o show t h a t 

N + d(e - 6 k ) - ^ ( « - V i > = ek+ek + 1 + -.+en (k = 2 , 3 , . . . , n) 

under the assumption that (4.17) holds up to and including N-l. Making use 
of (4.17) we find that 
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d(e-Sk) - d(e-6k_x) = Yjec (fc=2,3, ...,n) 
j-i 

and (4.18) follows. 
Corresponding to 

e = (el9 e29 ..., en) 

we define 

e = (en' en-i» ° ••9 e \ ) • 

Clearly 
n n 

J -1 J -1 

However 

J - 1 J " 1 

Thus 

d(e') = |(il/ + l)((n + l)il/-iV1)5 (4.19) 

so that 

d(e) - d(e') =|(iV + l)(2il/1 - (n + l)fl). (4.20) 

In particulr, for n = 3, (4.20) reduces to 

d(e) - d(er) = (ff + l)(c-a) 

in agreement with (3.6). 
We shall show by a combinatorial argument in §5 that 

F(e) = qi(^^(^-(n + l)N)F(ef)t ( 4 > 2 1 ) 

SECTION 5 

The c o m b i n a t o r i a l problem a l l u d e d to a t t he beg inn ing of t h e paper i s t h e 
f o l l o w i n g . Put 

e = (el9 e2, . . . , en) , i i 7 = e 1 + e 2 + - - - + e n , ( 5 .1 ) 

where the e$ are non-negative integers. Consider sequences of length N: 

o = (a15 a2, ... , aj,) , 

where the CLJ are in Zn = (l, 2, ..., n} and each element £ occurs exactly ei 
times; e is called the signature of a. We define the weight a)(a) of a by 
means of 
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w(a) = Y^3ar (5.3) 

We seek f(e, k) , the number of sequences G from Zn of signature cr and 
weight k. It is convenient to define a refinement of f(e9 k) , For l.<J.<w, 
we let fj(e, k) denote the number of sequences O from Zn of signature o" , 
weight 7c, and with last element aN = J. It follows Immediately from the defi-
nition that 

n 

Moreover 
n 

/,•(•, fc) " J ] / * (•-«;,, fe-J»), (5-5) 
1-1 

where 6j has the same meaning as above. 
Put 

F<«) = F(e, q) = £ / ( • , *><7k 

so that 

J3 
k 

(5.6) 

k 

F(C) = S^'(° - (5'7) 
J = i 

Multiplying both sides of (5.5) by qk and summing over k, we get 

n 

k i= 1 

k 

= qj'NF(e- 6j). 

Hence, summing over j , it Is clear that 

n 

F(e) = ^q^F^e - 6j). (5.8) 
J = I 

This is identical with the recurrence (1.6); also F(e) satisfies the same 
initial conditions as in §1. 

The polynomial^F{e) also satisfies a second recurrence. To find this re-
currence we let fj (e, k) denote the number of sequences O from Zn with sig-
nature e9 weight k, and first element ex = j. Then of course 
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f(e,k) = £/..(«,&). (5.9) 

We have also 
n 

fj(e>k) = Z ) ^ ( e ~ 6 ^ fc-^i+j") = /(«-«j» k-i^+j), (5.10) 
i = 1 

where 

#! = ̂  + 2e2 + ••• + n£n . (5.11) 

Hence, by (5.9) 
n 

F(e) =^T ^-^)q^~J'. 
i = i 

Now put 

er = (en, en_l9 ..., ex) (5.12) 

and 

a' = (a£9 <%f_1? ..., a{), (5.13) 

where 

aj = n - aj + 1 (j = 1, 2, ... , N). 

Corresponding to (5.11), we put 

N[ = en + 2en-1 + ••• + n e r (5.14) 

Thus 

Nx + N[ = (n + 1)217. (5.15) 

The weight of 0! is evidently 

N W IV 

,7 = 1 J = 1 J = 1 

= (n + l)N(N+l) - ~(n + l)N(N + I) - (N+l)^^ + ̂ jaJ.. 
j = i J = i 

This gives 

W(af) = y(n + l ) W + D - (tf + l ) ^ + a)(a). (5.16) 

Thus there is a 1-1 correspondence between sequences a of signature e and 
weight fe, and sequences Gr of signature e1 and weight 

y(tf + l)((n + !)/!/ - 2 ^ ) + k9 
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so that 

f(*,k) = f(e, j(N + l)((n + l)N-2Nl)+ fc). 

This yields 

F(e) = qil»+»(™i-(»+i)*)F(e')t (5.17) 

so that we have proved (4.21). 
It is proved in (4.17) that 

deg F(e) = | ( ^ + N2)9 (5.18) 

which implies 

f(e, k) ==0 (k > j(Nx + ff2)). (5.19) 

Also the proof of (4.17) gives 

f(e, \{Nl + N2)\ = 1. (5.20) 

In t h e nex t p l a c e , d e f i n e 

a = (aN, aN_19 . . . , a x ) , 

so t h a t 
IV W 

^ = X)^-J+I = Y1(N~ <? + 1 ) a</ = (^+D^i-w(a). (5.21) 

It therefore follows from (5.19) and (5.20) that 

1 (k = M x + ^(N1 - N2)) 
f(e, k) = { ) t ( (5 .22) 

0 f fc < NNX + j(Nx - iV2)j . 

Thus 

l o ) m i n ( a ) = M 2 + j(N1 - tf2). 
(5.23) 

F i n a l l y i t i s ev iden t from (5 .21) t h a t 

F(e,q) = ^ + 1)*i *>(«, ^ - i ) , (5 .24) 

where we are using the fuller notation, F(e, q) = F(e). 
Put 

fn(N, k) = ^T f(e> k)> 
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so that fn (N, k) is the number of sequences from Zn of length N and weight k. 
Also put 

k 

Then it follows almost immediately from the definition of fn (N> k) that 

Fn(N,q) = qW» + »f\L^j£L. (5.25) 
j-i1 - q^ 

Indeed it suffices to observe that the right-hand side of (5.25) is equal to 

N 

Y\(qj + <?2j" + ••• + qn;j). 

A curious partition identity is implied by (5.25). Put 

TJa - q r 1 =22v{m>mqm> 
3 = 1 m = 0 

so that p(tfz, #) is the number of partitions of m into parts <.N. Now rewrite 
(5.25) in the form 

l*£p(fc, #)<?* -J2p(m9N)qmnJ2fn(N9k)q" 
k = 0 m = 0 

Then, equating coefficients of qk, we get 

p(fc - |ff(ff+l)) = ^p(/7z, #)/„(#, fc - m w ) . (5.26) 

ran <.k 

Another identity is obtained by replacing n by In in (5.25): 

F2n(N,q) -qW + vf]1-^ . 
j=i 1 - q3 

Then by division 

F2n(N,q) = Fn(N,q)y[a + <?"'). 

Hence, if we put 

U(tf+ i) 

TJ(1 + q3) = 2 ^ V^i,B)qm, 
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so that p(m9 N) is the number of partitions of m into distinct parts <.N9 we 
get 

k k m = o 

Therefore 

f2n(N,k) =^p0n9N)fn(N,k-mn). (5.27) 
mn<k 

For references to other enumerative problems involving sequences see [1]. 
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Vol. 17 (1975), pp. 298-322. 
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SECTION 1 

Let k9 p, q, V be positive integers, q < p < k9 n a non-negative integer 
and \A0 = 1, Al5 A2, ...} a sequence of indeterminates. Let s(k, j) be the 
(signed) Stirling number of the first kind defined by 

k 
^s(fe, j)xJ = x(x - 1) ... (x - k + 1). 

Put 

Hv, p , q) = X > i ^ 2 • • • rvXd,Xd2 • • • Xdv ' ( 1 - 1 ) 

where the summation is over all sets of integers r19 rZ9 , . . 9 rv such that 

P = ^o - pi Z. r2 - • ' • - rv = P " 4* (1-2) 

and 

^. = rd.1 - v. (j = 1, 2, ..., y). (1.3) 

A. Ran [2] proved that 

k 

J2s(k> J)L{J + n9 p9 q) = 0 (1.4) 
j-o 

identically, that is, for arbitrary Al5 A2? A3, ... . 
Hanani [1] has recently given another proof of (1.4). Hanani's proof is 

elementary but makes use of a rather difficult lemma. 
The purpose of the present note is first to give another proof of (1.4) 

that makes use of the familiar recurrence 

s(k + 1, j) = s(k, J - 1) - k • s(k9 j) (1.5) 

and the recurrence (2.2) below satisfied by L(v9 p, q). We show also that a 
result like (1.4) can be obtained for the more general sum 

Lt(v9 p, q) =Y,^iv2 '" Tv^Xdl
Xd1 ••• Xdv (1-6) 

where again the summation is over all ri
1, P2, ..., vv that satisfy (1.2) and 

(1.3). 

243 
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We have been unable to find a simple generating function for L(v9 p, q). 
However, we do give an operational formula for the sum 

00 P 

p-0 (7-0 

See (4.5) below. 

SECTION 2 

In view of (1.2) and (1.3) we can rewrite (1.1) in the following form: 

L(v9 p , q) = 2> {p-dl){p-dl -d2) . . . (p-dx - . . . - d ^ X ^ X^ . . . Xdy (2 .1 ) 
dx + >>• +d0~q 

where t h e summation i s over a l l n o n n e g a t i v e i n t e g e r s d19d2, . . . dv s a t i s f y -
ing dl + • • • + dv - q« Thus 

L(v + 1, p , q) = 2 . (p-d)(p-d-dl) . . . (p - d - dl - . . . - d t f )X d X d i . . . Xdv 

d + dx + ••• +dv~q 

= Y^(p-d)\ ^ ( p - d - ^ ) . . . (p-d-di- . . . - d „ ) X d i . . . A 
d~° dl + .--+dv = q-d 

= ^ P (p-d)XdL(v9 p-d9 q-d), 

<*„ 

d-0 
so t h a t 

L(z; + l , p , q ) = ] T ( p - d ) X d L ( i ; f p - d , q r - d ) . (2 .2 ) 
i - o 

In t h e nex t p l a c e , by (1 .5 ) and ( 2 . 2 ) , 

fc + 1 

J - 0 3 
y^^sjk + l , j)L(j + n9 p9 q) = ^ { s f c i r l ) - k - s(k9 j)}L(j + n , p , q) 

" ^ X / S ^ ' 0)^U ^n9p9 q) 
a = 0 

+ ] • % ( & , j)Ltf + n + l9p,q) 
3 - 0 

J 
-^2_^s( /c , j)L(j +n9 p9 q) 

8 = 0 

+ n , p - d9 q - d) 
3 * o d . o 

('continued,) 
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= -k^s(k9 j)L(j +n, p, q) 

q k 
+ X] ̂  " ^ ^2S^' J)L(j +n, p- d, q- d) . 

d - o j - o 

Hence, if we put 
k 

R(k,n,p9q) = ̂ s(fc, j)L(j + n, p9 q), (2.3) 
j-o 

it is clear that we have proved that 

i?(Hl,n,p, q) = -fcff(fc, n,p, q) + ̂ P (p - d)\dR(k, n, p - d, q - d). (2.4) 

In particular, for k = p, (2.4) reduces to 
<? 

i?(p + l, n, p, <?) = 2 ^ (P -d)\dR(p, n, p -d, q - d). (2.5) 

Taking q = 0 in (2.1) we get 

L(v9 p , 0) = ^> ( p - ^ i ) . . . (p-dx- . . . - d y ) X d i X d 2 . . . A^ = p y 

<*! + ••• +^„-o 
as is also clear from (1.1). Thus substitution in (2.3) gives 

k 
i?(k,n,p,0) = J^s(k9 j)pJ' + n= pn-p(p-l) ... (p-fc + 1), 

so that 

i?(fc, n,p, 0) = 0 (k > p), (2.6) 

while 

R(k,n,p,0) = (pn, ̂ t (fe<P>- (2-7> 

Finally, by (2.6) and repeated application of (2.4) and (2.5), we have 

R(k9 n,p, q) = 0 (k>p>_q>_0). (2.8) 

SECTION 3 

The above proof of (1.4) suggests the following generalization. Let t >_1 
and define generalized Stirling numbers of the first kind by means of 

k 
^st(fe, j)xJ = *(rc - l * ) ^ - 2t) ... (x - (k - 1)*). (3.1) 



246 SOME REMARKS ON A COMBINATORIAL IDENTITY [JUNE 

Put 

Lt(v9p,q) =J^(r1r2 . . . vv?\di\d% . . . Xdv , (3 .2 ) 

where t h e summation i s over a l l r , r , . . . , rv such t h a t 

p = rQ >. P X >. r2 >_ . . . >. rv = p - q, 

and 

^ = 3?j-i - ^ (J = 1 , 2 , . . . , v). 

Then 

^Ts*( f e » J)Lt(j + n,p9q) = 0 , (3 .3 ) 

where 

ft > 0, k > p >. q > 0. (3.4) 

The proof is exactly like the proof of (2.8) and will be omitted. 

SECTION k 

Put 
00 00 

and 
00 

A(S) = X ! A ^ - <4-2) 

By ( 2 . 1 ) , 

L(v9p,q) = V ] (p- d1)(p-d1 -d2) . . . (p-dl- . . . - d y ) ^ A^ . . . A^ , 

so t h a t 

^ Q/> 3) = ^ ^ ^ (p-dl)(p-d1-d2) . . . (p-dx- . . . - d y ) 

• ^ A , 2 . . . A ^ V ^ ' " ^ 

/ „ / , , p(p-d2) . . . ( p - d 2 - . . . -<fy) 
< i 1 , . . . , i y - 0 p>_d2 + ••• +dv 
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My*) ^ ] T P(p-d2) ... (P-d2-...-dv) 
d2,. • .,<*„« 0 Pld2 + ••• +dv 

-> -v V d2 + *' ' + dv 
xd7 • • • ^dXz 

Since 

} J 22 P ( P " ^ 2 ) • " (P~d2~ ••• -^>Acf2 •'• ^2/PSf l p d2 + • • • + d v 

d2t...,dv-0 p>_d2 + - - +dv 

= (yDy) Yl J2 (p-d2)...(p-d2-...-dv)\d2...\dvypzd> + 

d2,...,d9«0 p>_d2 + --> +dv 

where Dy = 3/8z/, it follows that 

Iteration of (4.3) gives 

Moreover, by (2.1) and (4.1), 

d-0 p - i d-0 p«0 

= -A(^) = (yMyz)Dy)F0(y9 z). 
(1 " */) 

Hence we get 

^ ( 2 / , 2) = (yMyz)Dy)vF0{y9 z) (v^O) 

and more g e n e r a l l y 

^ + n0/> *> = (yMyz)Dy)vFn(y9 z) (v >_ 0 , n >. 0 ) . 

By (2 .3 ) 

R(k9.n9p9q) = 2 j s ( f c , j)L(j + n9 p9 q). 

Thus 

** > n (2 / , s ) = ] T 2^i?(fc, n , p , <7)2/P3* = £ % ( f c , j)Fj + n(y9 z) 
q = 0 p=q j - 0 

= ^ s ( / c , j)(yMyz)Dyy' - ^ Q / , g). 
J - 0 
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Hence if we put 

z (TO = z(z - 1) .. . (z - k + 1) = ^s(k, j)sJ', 
j-o 

we have 

Gk,n<y> s> = {yHyz)Dy)k -F (y, z), (4.6) 

where by (2.8), 

GKn (y> 3> =YJ & ( / C > n ' p> q)ypzq- (4.7) 
?-o p-q 

p>_k 

We remark that in the special case 

Xn = 1 in = 0, 1, 2, . . . ) , (4.8) 

(1.1) reduces to 

L(v,p,q) =]T]z,1r2 ... rn, (4.9) 

where the summation is over all rY, r2, ..., rn such that 

p >. ?i >. r2 — - • • — rv = V - <?• 

It is proved in the following article, "Enumeration of Certain Weighted Se-
quences," that, when (4.8) holds, L{v, p, q) satisfies 

q 

L(v,p,q) = E-^J2(~1)S{qsYp~s)V + q'1 (V - 1; P ~ * ~ 0)' (4'10) 

REFERENCES 

[1] H. Hanani, "A Combinatorial Identity," The Fibonacci Quarterly, Vol. 14 
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ENUMERATION OF CERTAIN WEIGHTED SEQUENCES 

LEONARD CARLITZ 
Duke University, Durham, North Carolina 27706 

SECTION 1 

The following problem has occurred somewhat incidentally in the preceding 
paper [1]. A complicated solution is implicit in the results of the paper. 
In the present paper we give a simple direct solution. 

Let V >_ 1 and p >_ q >_ 0. Let L(v9 p, q) denote the sum 

where the summation is over all 2>1? P2, . .., vv satisfying 

p >. T1 >_ r2 _> . . . >. vv = p - q. (1.2) 

To get a recurrence for L(v9 p, q), we observe that, for v > 1, 

L(v9p,q) = (p - q)^yxr2 ... rv_l9 

where now 

p >.rx >r2 >_ . . . >_rv_1 >p - q. 

Hence 

L(y5p5 q) = (p - ̂ ?)^X]PiP2 "•• py-i5 

fc-0 
where, in the inner sum 

p ̂  r1 >_ r2 2. • • • >. ̂ y _x = P - &• 

It follows that 

L(v9p9q) = (p - q)Y^L(v " ljP» fe) (y > 1)' (lo3) 

Replacing q by q - 1 in (1.3), we get 

L(t>,p,<?-1) = (p-^ + D ^ ^ ^ - l , ? , ^ ) -
fc = o 

Combining this with (1.3) we get the recurrence 

(p-q + l)L(v9p9 q) - (p-q)L(v9p9 q - 1) = (p - q) (p - q + l)L(v - 19 p9 q) . (1.4) 

249 
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We shall now think of p as an indeterminate and define 

Then (1.4) yields 

M(v9 p, q) = M(v9 p, q - 1) + (p - q)M(v - 1, p, <?) (t; > 1) , 

together with the initial conditions 

(M(l,p5 q) = 1 (q = 0, 1, 2, ...) 

M(z;, p5 0) = p; y-l (z; = 1, 2, 3, . . . ) . 

(1.5) 

(1.6) 

(1.7) 

Clearly M(v9p9 q) is uniquely determined by (1.6) and (1.7). The first 
few values are easily computed 

r* 1 

2 

3 

k 

0 

1 

P 

P2 

P3 

1 

1 

2 p - 1 

3p2 - 3p+ 1 

hp3 - 6p2 + hp - 1 

2 

1 

3 p - 3 

6p2 - 12p + 7 

10p3 - 3 0 p 2 + 3 5 p - 15 

3 

1 

4 p - 6 

10p2 - 3 0 p + 2 5 

20p3 - 90p2 + 150p - 90 

We shall show that generally 

M(v9p9q) -^U-U'iiyp-e?*'-1- (1.8) 
s*0 

For V = 1, (1.8) reduces to 

M(l,p, q) = ~ T ^ ( - D S ( s ) ( P - ^ 
8-0 

i E ^ ^ ' G ) 8 ' - 1 «7-0. i. 2. •••>, 
8-0 

by well-known results from finite differences. Also by (1.8), 

M(v9p9 0) = pv (v = 1, 2, 3, . . . ) . 

Thus (1.7) is verified. 
Now assume that (1.8) holds for all V9 q such that 

V + q < m. (1.9) 
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Then5 for V + q = m, we have 

M(v,p9q-1) + (p-q)M(v-l,p,q) 

_ J L 

a-0 ^* 0-0 ' 

-^•i;<-i)'(j)<p-«),'+ ,'2(^-e)+cp-?)) 
a - 0 

<?!a-0 

M(v,p, q). 

Hence (1.8) holds for v + q = m, thus completing the induction. 
Finally, by (1.5) and (1.8), we have 

H V> *• *> - Vi> 1 ) S (s) ( p - s ) U + " 1 = ^ r A > " ^V+q-1 d.io) 
where A denotes the finite difference operator defined by 

AP«p> = f(p+i> - / ( P ) , l\q/(P) =A P • A?
P"1/(p)' lp - ^ ' " ^ ' " XJ- ' ' L i p ^ ^"' L_*p L i p 

For p _> q >_ 0, u >. 1, (1.10) evaluates the sum (1.1) 

SECTION 2 

For p = q9 (1.8) reduces to 

^ 8 - 0 ^ 0 • 0 

so that 

M(y5 q, 4) = S(v + q-l9 q) (v>l)9 (2.1) 

a Stirling number of the second kind. Generally, it follows from (1.8) that 
v + q-l 

M(i \ ^ 

which gives 

'"."^E^OEt*'."1)*-^"'"'-'"-"'. 



252 ENUMERATION OF CERTAIN WEIGHTED SEQUENCES [JUNE 

M(v,p,q) ^(^I'yp-qf^^-'sit^q). (2.2) 

It follows from (1.8) that 

n-0 8-0 

so that 

oo n 

'%2'Jji(.n-q + l,p + q,q)a?'%-- ep' exp {x(ez - 1)1. (2.3) 

n* 0 q"0 

For additional properties of the sum 

see [2, Ch. 1]. 

SECTION 3 

The results of §1 can be generalized in the following way. Let t >_ 1 and 
put 

L (v,p,q) = ̂ ( ^ ^ ... *„)*, (3.1) 

where the summation is over all r , v , ..., py satisfying 

P >. ̂ i >. ̂ 2 >. • • • >. *»y = P - <?• 

Then, in the first place 

<7 

L,(z;,p,q) = (p-q)*^Lt(t;-l,p, fc) (v > 1). (3.2) 
fc-0 

It follows from (3.2) that 

(p-q + l^L^v.p.q) - (p-q^LtiVtPtq-l) 

= (p-q^ip-q + l^L^v-l^p, q) (v > 1). (3.3) 

Hence 

Mt(v,p9q) = Mt(v9p9q-1) + (p - q)Mt(v - 1, p, q) (v > 1) , (3.4) 

where 
Lt(v,p, q) 

Mt(v, p, q) 
(P " qY 
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and 

Mt(l,p,q) = 1 (q = 0, 1, 2, ...) 

Mt(v,p,0) = V
tiv~l) {V = 1, 2, 3, . . . ) . 

As in §1, we are again thinking of p as an indeterminate. 
By means of (3.4) and (3.5) it is easy to show that 

(3.5) 

Mt(v + l,p,q) = ^ p*'*^-!)*1* ... (p-q)M . (3.6) 

It then follows that 

q 

y =. 0 j - 0 

Now put 

1 « / .*> 
TT(i - (P- i )M- 1 =E 1 , v 
J = 0 J - 0 l - ( p - j ) 3 

(t) 
where the i4j are independent of z. Then 

4t} = fui-cp-^te-jr*)-1 = (p-^TKcp-^-cp-i)*)"1. o.s) 
i o o t - o 
l f4 J ^ 5* J* 

Finally, we have 

Mt(v + l,p,q) =XX'(^~J') t y > 
J-0 

with i4j given by (3.8) . 

For t - 1, (3.8) reduces to 

^ ' = ( p - j r i I U - J ) 
£ - 0 
i? 4 j 

(3 .9 ) becomes 

Mx(2; + 1 , p , q) 

J*S 

^ J - 0 

in agreement with (1.8). 



25^ ENUMERATION OF CERTAIN WEIGHTED SEQUENCES JUNE 1978 
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THE NUMBER OF DERANGEMENTS OF A SEQUENCE 
WITH GIVEN SPECIFICATION 

LEONARD CARLITZ 
Duke University, Durham, North Carolina 27706 

SECTION 1 

Consider sequences 

a = ( a l s a2 , . . . , aN), (1.1) 

where cij S Zk = {l, 2, . .., k). The sequence is said to have specification 
[n1? n2, ...5 w^], where the nj are non-negative integers, N = nl + n2 + ''' 
+ Wfc, if each element j, l^j<.k9 occurs in O exactly rij times. The sequence 
is called a derangement provided no element is in a position occupied by it 
in the sequence 

(1, 1, ..., 1, 2, 2, ..., 2, ..., k, k, . . . , k). (1.2) 

Let P(ni, n2, •••> ny) denote the number of possible derangements. Even 
and Gil is [1] (see also Jackson [2]) have proved the following result. 

nl + n2+>>.+nk f°° ( T""T I 
Pin,, n2, ..., nk) = (-1) • / ex l \ \Ln. (x)\ dx, (1.3) 

where Ln(x) is the Laguerre polynomial defined by 

M * ) = | ; (-i)'Q)§(. d.4) 
The object of the present note is to give a simple proof of (1.3) along 

the lines of the standard proof of the case nl=n2 = ••• = nk = 1 [3, p. 59]. 
We also prove some related results. 

SECTION 2 

Let P(», m) = P(n19 ..., nk; ml, ..., mk), (2.1) 

where 0 <. rrij <. nj , denote the number of sequences (1.1) in which, for each j, 
exactly rrij of the values remain in their original position in (1.2). It 
follows at once from the definition that 

P(n,m) = P(n -m, 0)fT(M = Pin -m)f](^\ (2.2) 

255 
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[JUNE 

where P(n) = P(n19 n2, . . . , nk). 
Clearly 

P(n,m) = (n , , n 9 , . . . , nk) = —: :—'- r , 

m ™ ° m1»0 m2^0 mk=*0 

Thus, by (2 .2 ) , 

This relation is equivalent to 

^ = E^ f f - M ft ) - - -&> 1 ' - - - '^ (2-3) 
= Y(-if-»(nA ... (n*\ ^- mk! ' 

where M = m, + • • • + mfe. 

SECTION 3 

To verify that (2.3) is in agreement with (1.3), we take 

This evidently proves the equivalence of (1.3) and (2.3). 

SECTION k 

Put 

Pk(N) = ^ P P(n). (4.1) 

Thus P(n) denotes the total number of derangements from Zfc of length 21/. Then 
by (2.3) we have 
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V (-i/-M_ Ml V (n{\ (nk\ 
L-d y ' m1\...mk\ l_j \mj---\mj' 

m1 + "-+mk=N n1 + -—+nk = N 

we ge t 

where as above M = m1+ • •• + mk. Since the i n n e r sum on the extreme r i g h t i s 
equa l t o 

(N + k - A 
\M + k - l / ? 

P (N) = V (-DN'M ^ (N + * - A 
k { ) Z^ { ±} m^. . . . mkl\M + k - l) 

m1 + -" +mkSN 

M-O \M+k - l) L J mx\ . . . mkl ' 
m, + • • • +mj, - Af 

By the multinomial theorem 

ml + • • • + m k = Af 

so t h a t 
N 

iw-E<-^-"C:J:i>" «•*> M = 0 

I t fo l lows from (4 .2 ) t h a t 

ff + fc-l 
N + ls - m - 1/717 J- Z* _ l \ 

\ m ) 

N + k - 1 v k - 2 

m = 0 J = 0 

and t h e r e f o r e 

pkw = ki-4ik - D1**-1 - g (-i/**-*-^+ j - x y j <*> i). (A.3) 

It follows from (4.3) that, for fixed k > 2, 

P* (N) ~ kx'k(k - i / 4 " ^ 1 (ff + oo). (4.4) 

On the other hand, if i!7 is fixed and k ->• °°, it is evident from (4.2) that 

so that M = 0 * - o * 
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SECTION 5 

Fairly simple generating functions are implied by (4.2). We have first 

" " » - « x ' M'O tf = 0 x / 

£W(1 + *)""" 

-"•^(i-TTj)'1-
Hence 

^ P f e ( 1 ) ^ = (1 + x)~k + 1 (1 + x - for)""1 . (5.1) 
tf = 0 

In the next place 

z-f * w (i7 + fc - 1 ) ! Z-r (^ + k - 1 ) i Ls l)
 \M + k - ±r 

Zs (M + k - l ) lZ - / 1 ; 71/! 
A / - 0 tf = 0 

e LJ (M + (M + fc - 1) ! ' 

Thus 
fc-2 

Ep* w(g + f- ryr • w k + V*.U - E ^ l ( ^ D- (5-2) 
i V - 0 ^ m - 0 • J 

It is easily seen that (4.3) is implied by (5.2). 
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ENUMERATION OF PERMUTATIONS BY SEQUENCES 

LEONARD CARLITZ 
Duke University, Durham, North Carolina 27706 

SECTION 1 

Andre [2] discussed the enumeration of permutations by number of sequences; 
his results are reproduced in Netto [5, pp. 105-112], Let P(n, s) denote the 
number of permutations of Zn= ... 1,2, . . . , n . . . with s ascending or descending 
sequences. For example, the permutation 24315 has the ascending sequences 
24, 15 and the descending sequence 431; the permutation 613254 has the ascend-
ing sequences 13, 25 and the descending sequences 61, 32, 54. The total num-
ber of sequences is five. Generally, a permutat ion of Zn has at most n — 1 
sequences; such a permutation is called an up-down or down-up permutation 
according as it begins with an ascending or a descending sequence. Clearly, 
in this case all the sequences are of length two. 

It is convenient to put 

P(05 s) = 60>8, P(l, s) = 60>8 . (1.1) 

Andre proved that P(n, s) satisfies the recurrence 

P(n + 1, s) = sP(n, s) + 2P(n, s - 1) + (n-s + l)P(n, s - 2) (n >_ 2). (1.2) 

With the convention P(l, s) = 60s8 , (1.2) holds for n _> 1. 

1 

2 

3 

4 

5 
6 

0 

1 

1 

2 

2 

2 

2 

2 

2 

k 

12 

28 

60 

3 

10 

58 

236 

k 

32 

300 

5 ] 

122 

Let A(n) denote the number of up-down and B(n) the number of down up per-
mutations of Zn. Then 

Supported in part by NSF grant GP-37924X. AMS(MOS) classification (1972). 
05A15. 
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A(n) = B(n) = yP(ft, n - 1) (ft 2 .2) . (1.3) 

Moreover, Andre [1] showed that 

00 „ 

E z A(n)— = sec z + tan s, (1.4) 
n = 0 

with A(Q) = ̂ 4(1) = 1. Thus, a generating function for P(ft, n - 1) is known; 
also, (1.4) yields an explicit formula for A(n) and, therefore, also for 
P(ft, ft- 1). 

A generating function for P(ft, s) has apparently not been found. We shall 
show that 

y(1 _ x2}-»/2 ̂ y p ( M + 1 a ) a . „ - . = l ^ ( j 4 j ^ 2 + BlnaVj 
^ v n\£~a ' 1 + a: V # - cos s / v 

We have been unable to find an explicit formula for P(ft, s). However, it 
follows from (1.2) and (1.3) that 

P(ft, n - 2) = 2A(n + 1) - 44 (n) (ft ̂  2), 

P(ft, n - 3) = 4(n + 2) - 44(ft + 1) - (n - 5)4(n) ( n > 3 ) , 

and so on. Generally, we have 

8 

Pin, n-s) = £)/ 8 J - (n)4(n + s-j) (n >. s > 0), 

where the f8J (ft) are polynomials in ft, /8l (ft) = 1. However, the / • (ft) are 
not evaluated. 

If we let P(ft, P, s) denote the number of permutations of Zn with P as-
cending and s descending sequences, it is easy to show that 

P(ft, p, P) = P(ft, 2P) 

P(ft, p, P - 1) = P(ft, P - 1, p) = yP(ft, 2P - 1). 

Moreover, P(ft, P, s) = 0 unless P = s, s + 1, or s - 1. Also, permutations 
can be classified further according as they begin or end with either an 
ascending or descending sequence. This suggests the four enumerants 

P++(ft, P, s), P+_(ft, P, s), P_+(ft, r, s), P__(ft, P, s); 

for precise definitions, see §5 below. 
It is also of some Interest to adapt another point of view. We define 

P(ft, P, s) as the number of permutations TT of Zn with p ascending and s de-
scending sequences in which we count an additional ascending sequence if TT 
begins with a descending sequence, also an additional descending sequence if 
TT ends with an ascending sequence. For the relation of P(ft, P, s) to the 
other enumerants and a generating function, see §§5 and 6. 
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SECTION 2 
Put 

n - l 

s = 0 
and 

rc-0 
By (1 .2 ) and ( 2 . 1 ) , 

n + l 

pnix) ^^2^(ri3 s)x8 {n >_ 1) (2 .1 ) 
8 = 0 

oo 

^+2^) = ^Cp(n+2> s)^s 
8 = 0 

n + l 

= ] P {sP(n + l , s) + 2P(n + l 5 s - 1 ) + (n - s + 2)P(n + 1 , s - 2 )} ; 
8 = 0 

= ffPn'+1fcc) + 2xPn + 1(x) + ] P (w-a : )P(n + l , s ) # 
8 = 0 

= *Pn'+i(a?) = 2;rPn + 1 ( x ) + ra2Pn + 1 0 r ) - x3Pn' + 1 ( x ) . 

Hence 

Pn + 2 ( ^ ) = (nx2 + 2x)Pn + 1(x) - (xs - *)Pw'.f lG£) (w >_ 0 ) . (2 .3 ) 

It now follows from (2.2) that 

n = 0 n = 0 

= 2^(*, 3) + ^ ^ Z) - (x3 - x ) 3 g ( ^ Z) . 

Thus 

( a 3 _ X)W&_*L _ {X2S _ ^ a g f a , z) . 2 a r C > ( 2 # 4 ) 

The system 

*3 - x -x2z + 1 2 ^ 
(2.5) 

has the integrals 

z 

It follows that 

v42 - 1 + arcsin -, X + \ G. (2.6) 
X* X - 1 v / 
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^Z\G&, a) = ^ x 2 - 1 + arcsin ± ) , (2.7) 

for some (J)(u). 
It is convenient to replace x by x~l and 2 by xz9 so that (2.7) becomes 

J-Tl^te"1* x s ) = *(s/l - ̂ 2 + arcsin x). (2.8) 

For s = 0, (2.8) reduces to 

-r——G(x~l, 0) = (j)(arcsin x) . 

Since £Gc_1, 0) = 1, it follows at once that 

,/ v 1 + sin w ,0 nN 
4>(u) = : . (2.9) 
Y 1 - sm u Hence (2.8) becomes, on replacing z by z/vl - x2, 

1 + x I a-\ xz \ = 1 + sin(g + arcsin x) 
1 - x \ ' /j ~ £"/ 1 - sin(s + arcsin x) 

It can be verified that the right member is equal to 

A - x2 
+ sin z* 

i 2 

X - COS Z 

Therefore, we have 

x Ivl - x* + sin z H(x9 z) = ̂ —- , 
1 + x \ x - cos z 

where 

(2.10) 

#(x, g) = GIX'\ -_gf_ j = J u - x2rn/2 f rX p ( n + 1 ' s^n*8- ( 2 - n ) 

\ VI ~ X2 / n = 0 n * 8 = 0 

SECTION 3 

For x = 0 , (2 .10) r educes t o 

ZTW , -i \ ^ n (1 + s i n z) 0 2 , o ,_ -, /o i \ 

P(n + 1 , n ) — = — = 2 sec z + 2 sec s t a n s - 1 . (3 .1 ) 
«-o " c o s 2 z 

By ( 1 . 4 ) , 
00 

L z A(n + 1 ) — = sec s t an s + sec z ( 3 .2 ) 
n = 0 

while, by (1 .3 ) , 

£ > ( n + 1, n ) J ^ = l + 2 j / ( n + l)gj- = - l + 2 ^ / ( n + 1 ) ^ . 
n = 0 " n = l n = 0 

Hence (3 .1 ) and (3 .2 ) a r e i n agreement . 
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We may rewrite (2.10) in the form 

n = 0 8 = 0 \ X - C0S(S / ! - X ) / 

n n n n n 

It is clear from the definition that 

Y^P{n + 1 , s) = (n+l)! (3.4) 
8-0 

Hence, for x - 1, the left-hand side of (3.3) should reduce to 

^ ( n + l)sn = (1 - s)~2. 
n = 0 

As for the right-hand side of (3.3), we have 

(1 - X2)* + 3(1 - X2)2 - Jj-3 (1 - x2)* + 

1 + * * x - 1 + yj-s2(l - *2) - ̂ " ( l - * 2 ) 2 + 

1 + z - 3y23(l - x1) + 

i - yr^d + *} + "" 

which reduces to 

l + 2\ ^ _.N-2 
1 - ^ 

2 = (1 - z)'\ (3.5) 

Note also that for x = -1, we get (1 + z)2 . It therefore follows from 
(3.3) that 

n 
]P(-l)n"8P(n + 1, s) = 0 (n > 2). (3.6) 
8 = 0 

This is a known result [2], [5]. 
Combining (3.6) with (3.4) gives 

2_.P(n + 1, 2s) = y^]p(n + 1, 2s + 1) = y(n + 1)! (3.7) 
2s £n 2a<_n 

If we take s = n in (1.2) we get P(n + 1, n) = 2P(n, n - 1) + P(n, n - 2) . 
Thus it follows from (1.3) that 

P(n, n - 2) = 2A(n + 1) - 44(n) (n >. 2). (3.8) 

Taking s = n - 1, we get 
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P(n + 1, n - 1) = (n ~ l)P(n, n - 1) + 2P(n, n - 2) 4- 2P(n, n - 3), 

which gives 

P(n, n - 3) = 4(n + 2) - U(n + 1) - (n - 5)4(n) (n >_ 3). (3.9) 

Next, taking s = n - 2, we get 

P(rc, n - 4) = 4(n + 3) - 64 (n + 2) - (3n - 16)^(n + 1) + (6n - 18)^(n) (3.10) 

( n > 4 ) . 

Thus it appears that 
8 

P(n, n - s) - 5^/^. (n)A(n + s - j) ( « > s > 0 ) , (3.11) 

where the /SJ- (n) are polynomials in n, /gl (n) = 1. Indeed, using (1.2), we 
find that 

*/a + ij <*> = /efj <* + D - <" - * + D / a . w . 2 (n) - 2 / , ^ (n). (3.12) 

However, it is not evident how to evaluate the f8j (n) from this recurrence. 
Returning to (2.10), if we replace x by cos x, we get 

E ( s / s i n x)n V ^ -n/ . -. \ n-e 1 ~ cos # / s i n a? + s i n z\2 

•±—L r — > P(n + 1, S)C0S" X = ; I . n\ £—J 1 + cos x \ c o s x - cos z) 
n- o s = o ' 

Hence 

c o t fx]C K! ]CP(n + ls s)cosn-s x = cot2 y(x - s). (3.13) 

Since the right-hand side of (3.13) is symmetric in x, z, it follows that 

1 ^ V ^ (3/sin XT V r>/ . i \ n-8 /o i / \ 

2"x2-^ ^j 2-f (n ' ) c ° S (3-l4) 
n-0 ' s=0 

oo n 
_• 1 \~^(#/sin z)n \r^ _,, , - N n_s 

= cot 7 s / , j — I , F(n + 1> x)cosn s z. 

It would be interesting to know whether there is some combinatorial result 
equivalent to (3.14). 

SECTION 5 

As a refinement of P(n, s) we define P(n, r, s) as the number of permuta-
tions of Zn with V ascending and s descending sequences. It is evident that 
P(n, r9 s) = 0 unless r = s9 s + 1 , o r s - 1 . Moreover, since a permutation 
can be read from left to right or right to left, we have 

P(n, r9 r - 1) = P(n, r - 1, r). 
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I t accordingly follows that 

P(n9 r9 p) = P(n9 2v) 
, (5.1) 

P(n9 P , r - 1) = P(n5 P - 1, p) = yP(n? 2p) 

Now divide the permutations of Z into four nonoverlapping classes accord-
ing as they begin or end with ascending or descending sequence. We denote 
the classes by C++9 C+_9 C_ + 9 C__. The permutations in these classes have 
the appearance 

SSV> « A / W V W ' W * v (5-2) 

respectively. Denote the corresponding enumerants by 

P++(n, r9 s)9 P+_(n5 r, s), P_+(n5 P, s), P__(n5 P ? s). 

Then we have the following equalities: 

P++(n9 r, s) = P__(n9 s3 P) (5.3) 

and 

P+_(n9 r9 s) = P_+(n9 s9 r). 

These relations follow on applying the transformation 

hi - n - ai + 1 (i = 1, 2, ..., ri) 

to any permutation (a19 a2, *.., an) of Zn. Alternatively (5.3) follows on 
first reading a permutation of C++ from left to right and then from right to 
left. 

In the next place, it is evident from (5.2) that r = s + 1 in C++9 r = s 
in C++ or C__, P = s - 1 in C__. Thus 

P+_(n9 r9 s) = P_+(ns P? s) = 0 

P++(n, p5 s) = 0 

P__(n, v9 s) = 0 

(r * a) , 

(r ^ s + 1), 

(r + s - 1). 

(5.5) 

(5.6) 

(5.7) 

Hence 
1 

P+_(n, P , p) = P_+(n? P ? P) = yP(n3 2p) 

.P++(n9 p, p - 1) = P__(n9 v - 1, p) = jP(n, 2p - 1). 
(5.8) 

In view of (5.8), generating functions for the four enumerants are implied 
by (2.10). 
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Another point of view is of some interest. Given a permutation (al5 a2, 
..., an) of 2n, we adjoin virtual elements 0, 0' : (0, al9 al9 ..., an9 0r). 
If al > al9 then 0a1 is counted as an additional ascending sequence; if how-
ever ax < a2, the number of ascending sequences is unchanged. Similarly, if 
an-l< ari9 then an0f is counted as an additional descending sequence; if 
an-l> an> t n e number of descending sequences is unchanged. Also, let 
P(n9 P, s) denote the number of permutations of Zn with P ascending and s 
descending sequences using these conventions. It follows at once that 

P(n9 P, s) = 0 (p ± s). (5.9) 

Moreover we have, by (5.8) 

P(n, P, P) = P+-(n9 P, p) + P_+(n, P - 1, p - 1) (5.10) 

+ P++(n9 r9 r - 1) + P_„(n9 P - 1, P) . 

To illustrate (5.10), take n = 4, v = 2. The permutations are: 

1 3 2 4 
1 4 2 3 
2 3 1 4 CL. 
2 4 1 3 
3 4 1 2 

For n = 3, P = 2, the permutations are: 

<M2, \ 
For n = 3, P 

1 3 2 '•-{: C+- > 2 3 ]_ 

It follows form (5.8) and (5.10) that 

P(n9 2P) = P+_(n, P, P ) + P_+(n, P - 1, p - 1) + P(n, 2 P - 1). (5.11) 

We have also 

Pn(x) = P+'ix) + x~zP~+(x) + x~1P++(x) + x"xP~"(x) (5.12) 

and 

Pn(x) = P+-(a?) + P~+(x) + P++(*) + P;~(x), (5.13) 

where 

Pn<*> = S P ( n > ^ " ' ^ PnW = ]CP<n> »̂ P)^n~2r, 
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V 

Pn+M = X X + ( W > r> * - Dxn-2r-\ etc. 
V 

Note that Pn(x) is not the same as the Pn(x) of (2.1). 
Comparison of (5.13) with (5.12) gives 

Pn(x) - x-1Pn(x) = (1 - x-l)2P + '(x). (5.14) 

SECTION 6 

A generating function for P(n, r9 r) can be obtained rapidly by using a 
known result on the enumeration of permutations by maxima. Given the permu-
tation (a19 a2, • ••> an) of Zn, then ak9 1 < k < n9 is a maximum if ak_1<ak, 
ak> ak-im -*-n addition, ax is a maximum if a^ > a2 ; an is a maximum if an_T_<a„. 
Let M(n9 m) denote the number of permutations of Z with m maxima. 

Clearly if a permutation has m maxima in accordance with this definition, 
then it has exactly m ascending and m descending sequences and conversely. 
Thus 

P(n, r, r) = M(n, r). (6.1) 

A generating function for M(n, k) is furnished by [3], [4]: 
oo 

£ * < « + 2* + 1, * + 1) {f+
VZ) ! (6'2) 

cosh vu2 - V2 - sinh /w2 - V2 

Making some changes in notation, this becomes 

2 

X>-*2>~n/2 £ > > w + 1 ' J'+1)a; =
 r y r ^ 1 " r ^ 7 - (6-3) 

n = 0 2j<n (vl - X COS S - X Sin 3) 
Finally, in view of (6.1), we have 

Yja-x2yn/2 ^ V p ( n + l , j + l , j + l ) * = * — . (6.4) 
n = o * 2j£n ( / l - # 2 cos z - x s i n s ) 2 

I f we put 

Six, z) = £ (l-x2r"/2 ^P n + 1W, *(*, a) = £ (l-x2)-"/2 ^P n + 1 ( * ) , 
n= 0 

•(x, z) =Y^a-x2yn/2 —P:;^), 
n = 0 
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it follows from (5.14) that 

xH(x9 z) - x~1H(x9 z) = (1 - x~1)2H+~(x9 z). 

Therefore, by (2.10) and (5.14), we get 

f/T-x~1(l-x2)H+~(x9 z) = x2(l+x)2 

\vl-x2 cos z - x sin z) 

Values of P(n, r9 s) for n = 2, 3, 4 follow. 

L -x2 + sin z\ 
x - cos z J 

(6.5) 

(6.6) 

2: 
rxi 

0 

1 

0 

1 

2 

0 ! 

• 

1 

0 

. 

1 

• 

1 

1 

• 

1 

1 

12 

5 

2 

• 

5 

• 

n = 5: 

px 
I ° 

1 

0 

1 

2 

0 

• 

1 

0 

• 

1 

0 

1 

1 

4 

1 

1 

28 

29 

2 

• 

29 

32 
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GENERALIZED TRIBONACCI NUMBERS AND THEIR CONVERGENT SEQUENCES 

WALTER GERDES 
Unlversitat Karlsruhe, Federal Republic of Germany 

1 . INTRODUCTION 

In t h i s n o t e we c o n s i d e r sequences {an\ gene ra t ed by t h e t h i r d - o r d e r r e -
cu r r ence r e l a t i o n 

( i ) Ln + 3 aan + 2 + 3a n + 1 + yan, n = 1 , 2 , 3 , . . . , 

with real parameters a, 3? Y and arbitrary real numbers a,, a2, a . Sequences 
like these have been considered by [3], [4] , [5] with the TRIBONACCI sequence 
for a = 3 = Y = 1 and a1 = a2 = 1, a3 = 2 as a special case [1], 

In this paper we give in the second section a general real representation 
for an using the roots of the auxiliary equation 

(2) P3(x): = x - ax2 $x 

in all possible cases. In the third section we characterize convergent se-
quences, give their limits and, finally, in the fourth section we consider 
various series with an as terms and give their limits by the use of a gener-
ating function. 

2. REAL REPRESENTATION FOR |an} 

According to the general theory of recurrence relations {anJ can be rep-
resented by 

(3) in = Aq» ?rx + Cq^1, n 1, 2, 3, 

where ql3 q2, q-$ are the roots of the auxiliary equation P3(x) - 0. The con-
stants A 9 B9 C are given by the linear equations system from (3) for n=l, 2, 
3 with prescribed "start11 numbers a19 a2, a3. The determinant of this system 
is the VANDERMONDE determinant 

2 2 2 
<7l <?2 <?3 

TT ^h " %^ = ( ^ 2 - <7l>(<73 - ^ l ) ( ^ 3 ~ <?2) 
i,k = l 

i>k 

which does not vanish for distinct ql9 q2, ^3- In this case we get 

269 
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4 2 ^ 1 - <?2 + ^3)a2 + a3 

A = 7 — B 
-^^ 3

a i + <?l + ^3)a2 " a3 

(<73 - <72
)(^2 " ̂ i> 

c = 
?l<72ai " (C?1 + ^2)a2 + 

^ 3 " <?2 ) ( <? 3 " <?1> 

So we have by (3) a r e a l r e p r e s e n t a t i o n for an9 i f t h e r o o t s of P3 (#) a r e 
d i s t i n c t and r e a l . I f two r o o t s a r e e q u a l , e . g . , q = q , we ge t from (3) 
t h e l i m i t as q approaches q 

(4) 

w i th 

an = Dq"-1* Enqn
2~\ n = 1 , 2 , 3 , 

a a - 2<7 a + a 
^ 2 1 ^ 2 2 3 

(q2 - qx): 

(q2 - qx)'' 

[ (n - 3)(72 - (n - 2)ql\alql (n - 3)q - (n - 1)-

(n - 2) - (n - 1 ) — 
^ 2 

If a l l r o o t s a r e e q u a l , we ge t from (4) t he l i m i t as q approaches q 

(5) 

w i th 

n - l 
an = Fnq1 , w = 1 , 2 , 3 , 

„ _ (n - 2 ) ( n - 3) (n - 1 ) ( n - 3) (n - 1 ) ( n - 2) 
Fn - ax a2 + : an. 2< 

In the l a s t of t h e p o s s i b l e cases for t h e r o o t s of P3(x) = 0 we have one r e a l 
r o o t q and two con juga te complex ones q , q . Wr i t ing q = re'1*, q - ~qo = 

_ 7 * < « 1 2 3 2 3 2 
r e we ge t 
(6) an = &?" " ^ Hnrn'l9 n = 1 , 2 , 3 , . . . , 

w i th 

G = 
v a - 2v cos V'a + a 

1 2 3 

r 2 - 2rq cos <P + q2 

q 
(an, - a )r s i n (n - 3)<£ + (a - a a2) s i n (n - 2)<P + (a q - a ) — s i n (n - l ) v 

1^1 2 3 P I 2 n l 3 P 

s i n <p(r2 - 2rqi cos <P + q2) 
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ft *P = 2 arctan 
f2r + qx 

IT - qx + a ' 

where ql can be computed by the formula of CARDANO for the reduced form of 
P3(x) (without the quadratic term). 

3. CONVERGENT SEQUENCES |an| 

In the two-dimensional case, that meansY = 0 in (1), we were able to char-
acterize convergent sequences immediately from the real representation for an 
[2]. Some similar considerations yield in the three-dimensional case: 

Thzo^Kim 1: The sequences { an) defined by (1) are convergent if and only 
if the parameters a, 3, Y are points of the three-dimensional region 

(7) &: = {(a, g, y) £/?3|a+e + y <. 1, -a+ 3-y < 1, Y2 -ay- 3 < l} (Fig. 1) 

7 

Fig. 1 Region # 
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for all real numbers a19 a2, a3. In the interior j> of the region # the se-
quences {an) converge to zero. On the boundary a + $ - f Y = l o f # the limit 
of an is given by 

yal + (1 - a)a2 + a3 

(8) a: = lim a = — ; , 2 + y - a + 0. 
n + °o 2 + y - a ' 

Vh.00^'. From the real representations for an we obtain the following neces-
sary and sufficient conditions for convergence. 

1. All roots of P3(x) = 0 are distinct and real: 

(9a) -1 < q19 q2, q3 <. 1 

2. Two distinct real roots: 

(9b) -1 < qx <_ 1, -1 < q2 = qs < 1 

3. All roots are equal: 

(9c) -1 < qx = q2 = q3 < 1 

4. One real root and two conjugate complex ones: 

(9d) -1 < qx <. 1, 0 < ^2(73 = P 2 < 1. 

This means 5 for the polynomial P3(#), that 

P3(-l) = - l - a + e - y < 0 , 
(10) 

P3(l) = l - a - B - Y ^ - 0 . 

We have the following relations between the coefficients and the roots of 
P3(x) (VIETA): 

qx + q2 + q3 = a, 

(ID qxq2 + <72<73 + qxq3 = "3, 

We start with the case Y > 0- Then qY may be the smallest of the positive 
roots, the only positive of the real roots, or the only real root of P 3 0 E ) = 
0. It follows from the last equation (11) with 0 < q2q3 < 1 from (9a)-(9d): 

0 < y < ?!• 
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We can conclude that, in the interval [0, y] , there is no further root of 
P3(x); which, using the continuity of P3(x), means that P3(0) and P3(y) have 
the same signs. So with P3(0) =-y < 0, P3(y) = y(y2 - ay - B - D < 05 or with 
Y > 0, 

(12) y2 - ay - B < l. 

The case y = 0 leads to the known two-dimensional case [2] and corresponds to 
the fact that one or more roots are zero. There we have convergence for 
points (a, 3) eR2 which satisfy the inequalities 

(13) a + B <. 1, -a + B < 1, B > -1. 

If y < 05 then qx may be the greatest negative of the negative roots, the 
only negative of the real roots or the only real root of P3(x) = 0. It fol-
lows from the last equation (11) with 0 < q2q3 < 1 that 

qx < Y < 0. 

We conclude, as in the first case, that P3(0) and P3(y) have the same signs. 
We have with P3(0) = -y > 0, P3(y) = Y(y2 - ay - B - 1) > 0 or because of y < 0 

(14) y2 - ay - B < 1. 

So we have convergence in all cases if and only if (a, B5 y) eR3 satisfy the 
inequalities (10), (12), (13), and (14), which define the required region & 
(Fig. 1). 

If (a, B, Y) are points of $, the Interior of tf, we have \q | <1, V = 1, 
2, 3, and it follows with the limits 

Urn np<7n = 0 , y = 0, 1, 2; y = 1, 2, 3, 
tt + oo V 

lim rn = lim (q0qj% = 0 

from the real representation (3)-(6) for an, that an converges to zero. If 
P3(l) = l - a - B - Y = 0, we are on the boundary of # (shaded area in Fig. 
1). This means that 1 is a root of P3(#). We set ql = 1 and get, from (3), 
(4), or (6), 

ya1 - (a-l)a2 + a3 (1 - a - $)al - (a-l)a2 + a3 

a: = lim aM = A = r— = r 5 = G. 
n + oo n 2 + y - a 3 - 2 a - B 

Also, if q2 = 1, we have, from (11), ̂ 3 = a - 2 , 2g3 + 1 = -B, and qs = y, 
so that y2 - ay - B = q3 - (q3 + 2)q3 + 2q3 + 1 = 1 , which contradicts the in-
equalities (12), (14); thus, q = 1 must be a single root. Dividing P (x) by 
the linear term (x - 1), we get P2(x)i = x2 + (1 - a)x + 1 - a - B. Since qx = 1 
is a single root, we obtain P (1) ̂  0, so that 2 + y - a = 3 - 2 a - B ^ 0 , as 
stated in (8). 
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k. CONVERGENT SERIES 

By the use of the generating function 

a \ + (a2 " Giai)x + (a
3 ~ 0^2 ~ &Z )tf2 

< 1 5 > 1 3 = XX+1^ 
1 - ax - $x - yx v = o 

we will give some limits of infinite series with av, V = 1, 2, . . ., as terms. 
First, we determine the radius of convergence p of the power series in (15). 
It is given by the smallest absolute value of the roots of 

(16) • Q3(x): = 1 - ouc - gx2 - yx3 = 0. 

Substituting in Q3(x)y = —, x i 0, we get 

(17) Q3(±) = -^(y3 - ay2 - gz, - y) = -\p3(y). 
\y; y y 

Using the notation of §3, with q , V = 1, 2, 3, as the roots of P3(x) for the 
radius of convergence, we get 

. [ i 
p = m m 

or as a further result, 

(18) l i m - ^ - i - i n a x { | g i | , \q2\, \q3\}. 

If (a, g, y) e #we have |^v| < 1, v = 1, 2, 3, so that 

p > 1, (a, g, y) e£. 

Especially, we have convergence in (15) for x = 1 . So we get for x = 1: 

» (1 - a - g)a + (1 - a)a + a 
(19) 2]a v = 1 _ a _ , (a, 3, y) e & 

Y 

for x = -1: 

~ _ (1 + a - 3)ax - (1 + a)a2 + a3 

(20) 2_,(-l)v~ av 1 + a_ B + Y . («. 3. Y)£i 

Addition or subtraction of (19) and (20) and division by 2 yields 
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» [(l - B)2 -a2 -2ay]a1 + (y + aB)a2+ (1 - B)a3 
(21) )a2v = : , (a, B, y)e^ 

v=l (1 - B)2 - (a + Y ) 2 

or 

Yd - B ) ^ - [1 - B - a(a + y)]a2 + (a + y)a3 
2^a2v = , (a, B, Y) e &• 
7=i (1 - B)2 - (a + Y ) 2 
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ABSTRACT 

This paper shows that on any big enough rectangular chessboard there is a 
knight's path. If the number of squares is even there is a circuit. 

A board is big enough if its smaller dimension is at least 5. 

KNIGHT'S TOUR REVISITED 

Almost two hundred years ago Euler investigated the problem of whether it 
was possible to move a knight through every square of a chessboard once and 
return to the starting square. Euler demonstrated that this knightTs tour 
was possible by displaying a chessboard with the required sequence of moves. 
He also generalized the problem by showing that there were other size boards 
on which the knight's tour was possible. 

We must recall at this point that the standard chessboard has 64 squares 
arranged in 8 equal rows and columns. The knight is the chess piece that 
often looks like a horse. If the knight is on square (£, j) , it is allowed 
to move to one of the eight possible squares (-£ ± 1, j ± 2) and (•£ ± 2, j ± 1) , 
if these squares are on the board. 

We first became interested in knight's tour when we wanted some examples 
to test the behavior of a heuristic algorithm on graphs that had Hamiltonian 
paths. A graph is a pair (T, E)9 where V is a finite set of objects called verti-
ces or nodes, and E9 the set of edges, is a subset of Vx Fsuch that if (i, j) £ E, 
then (j, i,) £ E. A Hamiltonian path (named after the famous Irish mathematician 
William Rowan Hamilton), is a sequence of vertices Vl9 V2, ...9vN that in-
cludes each vertex once, and such that (v^, V^+1) £ E. The path is a Hamil-
tonian circuit if (vN 9 Vx) is also in E, Hamilton demonstrated that the 
dodecahedron has a Hamiltonian circuit. It is suspected [2] and [4] that 
determining whether or not a given graph has a Hamiltonian circuit or path 
is difficult in the sense that there might be no easier way than looking at 
all the Nl permutations of the vertex set and testing each for the circuit 
or path property. 

Thus it is of some interest to have a large class of graphs that have the 
Hamiltonian path or circuit property. The knight's problem is: For what 
(n, m) does the graph derived from the n x m chessboard by the allowed 
knight's moves have a Hamiltonian path or circuit? Restated, the problem is: 
Does the n x m chessboard have a knight's path or a knight's circuit? 

276 
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It is easy to show that some chessboards do not have a knight's circuit. 
Let us recall that the chessboard has squares of two colors, usually red and 
black, such that two squares that have a side in common are of different color. 
This implies that the knight must move in one step from one color to the other 
color. Thus if the board has an odd number of squares, a knight's circuit is 
impossible, since there are more squares of one color than the other color. 
But this does not rule out the possibility of a knight's path. 

When we needed some examples of graphs with Hamiltonian paths, we used n x 
n chessboards with n >_ 5. We assumed that it was well known that all such 
boards have the required paths. But when we were asked to produce a refer-
ence, we had none. A search of the literature was called for. The standard 
books on recreational mathematics were little help. Kraitchik [6] had a dia-
gram which proved that if n = 1 (mod 4) , then the n x n chessboard has a 
knight's path. Ball [1] had a technique that he claimed would show that if 
n = 0 (mod 4), then the n x n chessboard has a knight's circuit. But we must 
confess that we were unable to fill in the details and we have doubts that 
the technique works. Dudeney [3] boldly states that if n ^ 5, then the n x n 
board has a knight's path, and if n is even there is a knight's circuit. Un-
fortunately, he neither gives a proof nor gives a reference to a proof. We 
were delighted to find that Kraitchik [5] had written a monograph on the 
knight's problem. But when we obtained a copy we were disappointed to find 
no proof of the general statement. Instead, there is a large collection of 
paths and circuits with various degrees of symmetry, the diagram for the case 
n = 1 (mod 4), and a detailed discussion of 4 x n boards. 

Unable to find a proof in the literature, we were forced to construct our 
own. The proof that follows may be of some interest to others. 

In what follows, it is often necessary to refer to a particular square on 
a board. We may do so in either of two ways. We can refer to a square by a 
pair of integers (£, j) with 1 £ £ <. n and 1 ± j <. m for an n x m board. The 
square (1,1) will be in the lower left-hand corner of the board. If we have 
displayed a knight's path on a board, we may instead refer to a square by a 
single integer £, such that square i is the ith square visited on a particu-
lar path. This second method is used throughout the figures. 

Ltmma. 1: The 5 x m board with m >_ 5 has a knight's path that starts in 
the lower left and exits at either the lower right or at the upper right. 

PKOO&: The lemma is true for 5 x v boards with r £ {5, 6, 7, 8, 9}, as 
shown in Figure 1. For any m >_ 10y partition the board into a sequence of 
5 x 5 boards ending with a 5 x r board. Clearly, we can take the knight's 
path for the first 5 x 5 board, starting in the lower left and exiting into 
the lower left of the next 5 x 5 board, and continue doing so until we land 
in the lower left of the 5 x r board. But then we can take the knight's path 
for the 5 x r board that ends in either the upper right or the lower right, 
and the lemma is proved. 
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Loinma 2: Every 6 x m board with mJ> 5 has a knight Ts circuit and a knight's 
path starting in the lower left and exiting at the upper left. 

VH.00^1 Looking at the 6 x 5 board in Figure 2, we can see that we can 
connect two 6 x 5 boards together so that we start in square 1 of the first, 
follow the indicated numbers until square 27, then jump to square 1 of the 
next board, and follow its knightfs path ending in square 30, from which we 
can jump back to square 28 of the first board and complete its knight?s path. 
This construction does not depend on the boards being 6 x 5; in fact, it will 
work on 6 x k boards as long as the starting square is in the lower left (1, 
1), the end square is diagonally below the upper left (5, 2), and the squares 
(2, k-1) and (4, k) are adjacent. From Figure 2, this is true for 6 x v 
boards with v £ {5, 6, 7, 8, 9}. Thus every 6 x m board has a knightfs path 
beginning in the lower left and ending in the upper left, since we can par-
tition the 6 x m board into a series of 6 x 5 boards and one 6 x r board, and 
connect them following the construction. 

For the knight's circuit, we note that for 6 x v with r e {5, 6, 7, 8, 9} 
the circuits are given in Figure 3. If m >_ 10, we can partition the board 
into a 6 x 5 board and a 6 x (m - 5) board. Looking at the circuit for the 
6 x 5 board in Figure 3, we can start in square 1, follow the circuit until 
square 28, then jump to the 6 x (jn - 5) board. By the half of the lemma that 
has already been proved, this board has a knightfs path that starts at (1, 1) 
and ends at (5, 2), but from 28 on the 6 x 5 board we can jump to (5, 2), then 
take the path backwards until (1, 1) is reached. From (1, 1) we can jump to 
29 on the 6 x 5 board and complete the circuit. 

Fig. 2 
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Fig. 3 
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L<zmma 3: Every 8 x m board with m >_ 5 has a knight ?s path starting in the 
lower left and ending in the upper left, and a knight*s circuit. 

Vh.00^-. From Figure 4, there are 8 x p circuits for r £ {5, 6, 7, 8, 9}. 
Since in each of these circuits the two squares (2, v - 1) and (4, r) are ad-
jacent, we can join two boards together to form a larger circuit. Start in 
square 1 and follow the circuit until one of the squares (2, r - 1) or (4, r) 
is reached. Then jump to the next board at either (1, 1) or at (3, 2). Fol-
low the circuit on this board and when it is finished jump back to the first 
board at the square (2, v - 1) or (4, r), whichever has not been visited, and 
complete the circuit. Since this construction can be carried out for any 
number of boards, there is always a circuit of the 8 x m board if m >_ 5. 

The required paths for 8 x r, r e {5, 6, 7,8, 9} are displayed in Figure 
5. If m >_ 10, partition the board into an 8 x 5 board and an 8 x im - 5) 
board. Start in the lower left of the 8 x 5 board, follow the path to 34, 
then jump to (3, 2) of the 8 x (m - 5) board. Take the circuit of the 8 x 
(jn - 5) board that ends in (1, 1) and then jump back to 35 on the 8 x 5 board 
and complete the path. 
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Fig. 5—continued 
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Lemma 4: Every n x m board with n odd, min(n, m) >_ 5, has a knight's path 
that starts in the upper left and exits at the upper right. 

VH.00^: If m >_ 10, partition the board into an n x 5 board and an n x (w - 5) 
board. If the lemma holds for each of these subboards, then it holds for the 
whole board. Thus the result holds by induction if we can show that it holds 
for all n x r boards with r e {5, 6, 7, 8, 9} and n odd. The cases r = 6 
and P = 8 have been proved in the previous two lemmas. 

For the n x 5 case, we have as the base of an induction the boards that 
appear in Figure 6. If n > 10, we partition the board into a 5 x 5 board and 
an (n - .5) x 5 board. Notice that in Figure 6 the squares 16 and 17 of the 
5 x 5 board would command the squares (3, 2) and (1, 1) , respectively, of the 
(n - 5) x 5 board. If that board has a circuit, we could go from 1 to 16 on 
the 5 x 5 board, jump to (3, 2) on the (n - 5) x 5 board, take the circuit 
ending in (1, 1), jump back to 17 in the 5 x 5 board and complete the path. 
If n - 5 = 6 or n - 5 = 8, we have shown that the required circuit exists in 
the previous two lemmas. 

To show that there is a circuit if n - 5 >: 10, we can again partition the 
(« - 5) x 5 board into a 5 x 5 board and an (n - 10) x 5 board. We know from 
Lemma 1 that there is a knight's path on the 5 x 5 board that starts at the 
lower left and exits at the lower right. To complete the circuit we need the 
(n -• 10) x 5 board to have a knight's path that starts at the upper right and 
exits at the Upper left, i.e. , into the starting square of the path on the 
5 x 5 board. But interchanging left and right, this is what we are trying to 
prove. Thus we conclude by induction that the 5 x n board has the required 
path. 

The argument for the 7 x n and 9 x n boards is similar. We need as our 
induction base the 7 x 5 and 9 x 5 boards of Figure 1 and the 7 x 7 , 7 x 9 , 
9 x 7 , and 9 x 9 boards of Figure 7. 
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Fig. 7—continued 
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ThdOKQJdd 7: An n x m board with nm even, min(n, m) _> 5, has a knight fs 
circuit. 

?SiOO{>: If n even, n :> 10, partition the board into a 5 x m board and an 
(ft - 5) x m board. Choose as the starting square the upper left-hand corner 
of the (ft - 5) x m board. Since n - 5 is odd, we know from Lemma 4 that there 
is a knight*s path on this board that will end in a square accessible to the 
lower right-hand corner of the 5 x m board. From Lemma 1 we know that there 
is a knight's path of the 5 x m board that starts in the indicated corner and 
exits at the lower left. But this was the starting square for the (ft - 5) x m 
board, so we have constructed a knight's circuit. Of course, the same con-
struction works if m is even and 77? >_ 10, by switching rows and columns. The 
only other cases are n - 6 or n - 8, and we have demonstrated in Lemma 2 and 
Lemma 3 how to build circuits in these cases. 

Th<L0ti2m 2: Every n x m board with min(n, m) >_ 5 has a knight's path. 

VK.00^-. By Lemma 4 this follows if the board has n or m odd. If n or m is 
even the previous theorem assures a circuit and thus a path. 
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A FAMILY OF TRIDIAGONAL MATRICES 

GERALD E. BERGUM 
South Dakota State University, Brookings, SD 57007 

and 

VERNER E. HOGGATT, JR. 
San Jose State University, San Jose, CA 95192 

Consider the sequence of tridiagonal determinants \ Pn (a, b9 c)\ de-

fined by Pn
{k) (a, b9 c) = Pn

U) = \{a^)\ where 

a, 
b, 
c, 
0, 

1 = J 
i = j ~ k 
i = j + fc" 
o t h e r w i s e 

. ( 1 ) [TO We shall assume P^l} ^ 0. The determinant Pn has a?s down the main diag-
onal, 2?'s down the diagonal k positions to the right of the main diagonal 
and c's down the diagonal k positions below the main diagonal. 

In [1], the authors discuss {P^ )n=i a n d f i n d i t s generating function. 
This note deals with a relationship that exists between 

[p^Tn., and W ^ L x ^r fc> 2. 

The first few terms 

P 

P 

P. 

P 

P, 

P5 

Pe 

Py 

°*wi)}:. with P (1) defined as one are: 

= 1 
= a 

= a2 

= a3 

- be 

- labc 

ah - 3a2bc + b2e2 

a5 - 4a3fce + 3ab2c2 

a6 - 5a?bo + 6a2b2c2 - b3o3 

a7 - 6a5bc + 10a3b2c2 - ^ab3a3 
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By induction on n, it can be shown that 

(A) ,(D ,(!:) oPnVi - boP1ii) , n > l . (i) 

When a = 1 and £>c = - 1 , we obtain the Fibonacci sequence. This result can 
also be found in [3] and [4]. 

The first few terms of | P ^ 2 H can be found in [1] and are: 

P[2) = a = pWpW 
P(

z
z] = a2 == [pf0]2 

P3
(2) = a3 - aba = P^P^ 

P< 2 ) = (a2 - b e ) 2 = [ P 2
( 1 ) ] 2 

P5
(2) = a5 - 3a2ba + 2ab2a2 = P^pW 

P6
(2) = (a3 - labc)2 = [ P 3

( 1 ) ] 2 

P < 2 ) = a7 - 5a5ba + la3b2e2 - 2ab3c3 = P^P^ 

P8
( 2> = (a* - 3a2bc+b2c2)2 = [ p j 1 ' ] 2 

As with J P ^ H _ , it can be shown by induction that 

(B) P (2) aV (2) ,(2) ,2^2p(2) abcP^l + bzczPjtl, n >_5. 

• (3) Not until our investigation of P^ ' did we become suspicious of the fact that 
7 .U)p(i) *, = 9^ - i 

(C) 3 ( 2 ) 
^<? ^ - 1 : 

fc(1,]2> 
n = 2q 

n = 2q 

The proof of the result (C) is as follows. Multiply the first and second 
rows of P^1' by -c/a and add the results respectively to the third and fourth 
rows. Evaluate the new determinant using the first two columns to obtain 

.(2) 

Multiply the first and second rows of the new determinant by -c/P£ ' and add 
the results respectively to the third and fourth rows. Evaluate the new de-
terminant using the first two columns to obtain 

0 

Q 

0 

0 
p ( l ) 
^ 2 
0 
c 

bp±i} 

0 
a 

0 

0 

bP™ 
0 

a 

0 
0 
b 

0 

0 
0 
0 

b . . . 
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p ( l ) 

0 
a 

0 

0 
p ( l ) 

0 

o 

bP^l) 

0 

a 

0 

0 

2>P2
(1) 

0 

a 

0 
0 

i 
0 

0 
0 . . . 

0 

b 

>U) ^ 

Repeating the process, using -c/P^1' , we see that 

>U) 

Let n = 2q - 1 and continue the technique above, evaluating by two columns at 
a time for q - 1 times until you obtain 

P ^ ; 

0 
Q 

0 

0 
p ( l ) 

1+ 

0 
c 

m" 0 
a 
0 

0 

bpp 
0 
a 

0 
0 

h 
0 

0 
0 
0 

b . . . 

)(2) 

p(l) 

0 

0 
p ( l ) 
- < 7 - l 

0 

&p, 
0 

a 

(i) 
?-2 

p(Dp(l) 

If n~2q and we evaluate by two columns at a time for ̂  times using the same 
technique as above we obtain 

>U) 
,(i) 

.(3) 

0 

p ( l ) • W"]'-
This procedure applied to Pn , where you evaluate by using three columns 

at a time instead of two, yields 

([Pq
{lM%{1) , n- 3q-2 

Pn
{3) = ^ [ P ^ ] 2 , n = 3 q - l . 

( [ P ?
( ! l ] 3 , n= 3q 

In fact, i t is easy to show if n = kq - v that 

(D) Pj;k) =[pq^]r[pq^]k-r lor 0 <r <k. 

The authors found an alternate way of proving (C), but the technique did 
not apply if k >_ 3. This procedure is as follows. First show by induction, 
using (B) and (A), that 

(E) ,(2) boR (2) p ' l) ri > 1 
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Next apply the results of Horadam [2], where 

p ( D = aP(D _ bcpd) 
cn U£n-1 uurn-2 

is Wn(a9 b: p, q) with a = 1, b = a, p = a, and q = be to obtain 

(F) ap£_x + J V [ P ' ! » J . [ P ( ^ . 
Finally, using (A), (B), (E),. (F), and induct ion, you can show (C). 

REFERENCES 

[1] V. E. Hoggatt, Jr. , & G. E. Bergum, "A Combinatorial Problem Involving 
Recursive Sequences and Tridiagonal Matrices," The Fibonacci Quarterly, 
to appear. 

[2] A. F. Horadam, "Basic Properties of a Certain Generalized Sequence of 
Numbers," The Fibonacci Quarterly, Vol. 3, No. 3 (Oct. 1965), pp. 161-
176. 

[3] American Mathematical Monthly, "Problem E-834," by Donald Walter, Octo-
ber 1948, p. 498, 

[4] American Mathematical Monthly, "Solution to E-834," by Alex Tytun, June 
1949, p. 409. 



SUSTAINING MEMBERS 
*H» L. Alder 
*J. Arkin 
D. A. Baker 
Murray Berg 
Gerald Bergum 
Jo Berkeley 
George Berzsenyi 
Co A. Bridger 
John L. Brown, Jr. 
Paul Bruckman 
Paul F. Byrd 
C. R. Burton 
L. Carlitz 
G. D. Chakerian 
P. J. Cocuzza 
M. J. DeLeon 
Harvey Diehl 
J. L. Ercolano 
^Charter Members 

D. R„ Farmer 
Harvey Fox 
E. To Frankel 
R. Mo Giuli 
*H. W. Gould 
Nicholas Grant 
William Greig 
V. C. Harris 
A. P. Hillman 
*A. Fo Horadam 
*Verner E. Hoggatt, Jr. 
Virginia Kelemen 
R. P. Kelisky 
C. H. Kimberling 
Jo Krabacker 
George Ledin5 Jr. 
*C. T. Long 
J, Ro Ledbetter 
D. P. Mamuscia 

*James Maxwell 
R, K. McConnell, Jr. 
*Sister M. DeSales McNabb 
L, P. Meissner 
Leslie Miller 
Fo J. Ossiander 
P. Go Rothwell 
C. E. Serkland 
A. G. Shannon 
J. A. Schumaker 
D. Singmaster 
C. Co Styles 
L. Taylor 
H. L. Umansky 
*L. A. Walker 
Marcellus Waddill 
Paul Willis 
C. F. Winans 
E. Lo Yang 

ACADEMIC OR INSTITUTIONAL MEMBERS 

DUKE UNIVERSITY 
Durham, North Carolina 

STo MARY'S COLLEGE 
St. Mary's College? California 

SACRAMENTO STATE COLLEGE 
Sacramento 5 California 

UNIVERSITY OF SANTA CLARA 
Santa Clara, California 

SAN JOSE STATE UNIVERSITY 
San Jose? California 

WASHINGTON STATE UNIVERSITY 
Pullman -9 Washington 

THE BAKER STORE EQUIPMENT COMPANY 

Typed by 
•i JO ANN VINE J-

Campbells California 




