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PROPERTIES OF GENERATING FUNCTIONS OF A CONVOLUTION ARRAY

VERNER E. HOGGATT, JR.
and
MARJORIE BICKNELL-JOHNSON
San Jose State University, San Jose, California 95192

A sequence of sequences S which arise from inverses of matrices contain-
ing certain columns of Pascal's triangle provided a fruitful study reported
by Hoggatt and Bicknell [1], [2], [3], [4]. The sequence S, = {1,1, 2,5, 14,
42, } is the sequence of Catalan numbers. Convolution arrays for these
sequences were computed, leading to classes of combinatorial and determinant
identities and a web of inter-relationships between the sequences S;. The
inter-relationships of the generating functions of these related sequences
led to the H-convolution transform of Hoggatt and Bruckman [5], which provided
proof of all the earlier results taken together as well as generalizing to
any convolution array. The development required computations with infinite
matrices by means of the generating functions Si(x) for the columns containing
the sequences S, . In this paper, properties of the generating functions S5y (x)
are studied and extended.

1. INTRODUCTION

We define Sx(x) as in Hoggatt and Bruckman [5]. Let f(x) be the generating
function for a sequence {f;} so that

o

Fx) = if‘ixi =) ay, @t (1.1)
1=0

1=0

where f(0) = f, = a,, # 0 and

[F@1* =D am%, §=0, %1, 2, %3, ... (1.2)
=0
where a; _, = 1 if 2 =0 and a;,_, = 0 if © # 0. Form a new sequence with

generating function S,(x) given by

o o

Az . .
5, (x) = Z = _T_lel = Zs,’-xﬂ', (1.3)

=0 =0

where {a;;} was generated in the convolution array by f(x) as in (1.2). Then
if we let f(x) = S,(x), from [5] we have f’(acSl (x) = S, (),

f(ﬂCSk (x)) = Sy (x) (1L.4)

and
F(xsi(@) = S (@), (1.5)

289



290 PROPERTIES OF GENERATING FUNCTIONS OF A CONVOLUTION ARRAY [Aug.

as well as
, - J .
si@) = Zmai.ki+j_lx1, k=0,1, 2, ... (1.6)
1=0

In particular, if f(x) = 1/(1 - ), we have the generating functions for
the columns of Pascal's triangle and the sequences S, are the Catalan and re-
lated sequences reported in [1], [2], [3], [4], and Ay i+ j-1 is the binomial

((1’ + l)kk+ J - l). The sequence generated by S;'Z.(x) is the (§j - 1)st convo-

lution of the sequence Sy. The sequence Sy is formed by taking the absolute
values of the elements of the first column of the matrix inverse of a matrix
P, , where P, is formed by placing every (k + 1)st column of Pascal's triangle
on and below the main diagonal, with zeroes elsewhere. P; is Pascal's trian-
gle itself, and P, contains every other column of Pascal's triangle and gives
the Catalan numbers 1, 1, 2, 5, 14, 42, ..., as the sequence 9;.

We now discuss properties of the generating functions S, (x).

2. THE GENERATING FUNCTIONS S, ()
We begin with

FlxS(x)) = S(x) (2.1)

by assuming that f(x) is analytic about £ =0 and f(0) =1. We also note that
S(x) # 0 for finite x, since S(x) = 0 would violate f(0) = 1.

Theorem 2.1: If f(xS(x)) = S(x), then S(x/f(x)) = f(x).

Proof: Note that f(x) # O for finite x. Let y = xS(x) so that f(y) =5(x)
and 2 = y/S(x) = y/f(y). Therefore, f(y) = S(y/f(y)). Changing to x we get
S(x/f(@) = fx).

Theorem 2.2: 1f S(x/f(x)) = f(x), then f(xS(x)) = S(x).

Proof: Let y = x/f(x). Then S(y) = f(x), ® = yf(x) = yS(y) which implies
flyS)) = flx) = S(y) so that f(xzS(x)) = S(x).

Theorem 2.3: The solution to f(xS(x)) = S(x) is unique.

Proof: Assume f(xS(x)) = S(x) and f(xT(x)) = T(x). We shall show that
T(x) = S(x). By Theorem 2.1, S(x/f(x)) = f(x). Let x = xT(x) so that

S(xT () / f(xT (x))

S(xT (x)/T(x)) = S(x).
But also

ST ()) / f(T (x))

Thus, S(x) = T(x).

f@r(@) = T'x).

Theorem 2.4: 1In S(x/f(x)) = f(x), f(x) is unique.
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Proof: Assume S(x/f(x)) = f(z) and S(xz/g(x)) = g(x). Apply Theorem 2.1,
S(x) = fxS(x)), letting x = x/g(x). Then S(x/g(x)) becomes

S(z/g@) = fl(z/g@)S(elg@)] = fl(alg@) - g@)] = F@),
but S(x/g(x)) = g(x) so that f(x) = g(x).

3. THE GENERATING FUNCTIONS S, (x) WHERE S,(x) GENERATES PASCAL'S TRIANGLE

We now go on to another phase of this problem. Let

So@) = To— = f(@) (3.1)

and So(xsl(x)) = S,(x) be the unique solution, and from Sl(m/SO(x)) = 5, (x),
when x = 0 we have 5;(0) = S§,(0) = 1. From

S (@S 1(®)) = Spp1(@) (3.2)
one can easily prove
So(@Sk @) = 5, (@) (3.3)

for all integral k as in Hoggatt and Bruckman [5].
Thus from Sy(x) = 1/(1 - x), we have

So(xsﬁ(x)) = — L = S (@)
1- xSi(x)
or
5K ) - 5, (@) +1 =0, k>0,
and from
So(@/sk @) = ————1—k—— = 5_, (),
1 - x/S_k(x)
@Sk (@) - Sp(x) + 1 =0, k>0.

Clearly, So(xsg(x)> = Sy(x). Thus, uniformly
2SEt N x) - 5, (x) +1 =0 (3.4)

for all integral K.
In particular, by (3.4),

©8%(x) - S,(x) +1 =0,

1 £v1 - 4

51(@) = 2x
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Clearly, S;(x) is undefined for & > 1/4. The solution with the positive radi-
cal is unbounded at the origin, while

1 -vV1 - 42

Sy (@) = 2%

is bounded at the origin, and ;39%;,91(x) =1, Sl(x) is the generating func-
tion for the Catalan numbers. Note that Sl<x52(x)) = 5,(x) leads to

1 -V1 - 4xS, (x)
2285 (x)

Sy (x) =
defined for xS, (x) < 1/4, where 1}§£Fmﬁz(x) = 0 while S,(x) # 0 for any .
We now proceed to the proof that
25%(z) - S(z) +1 =0

has only one continuous bounded function in the neighborhood of the origin.
We first need a theorem given by Morris Marden [6, p. 3, Theorem (1.4)]:

Theorem: The zeroes of a polynomial are continuous functions of the co-
efficients.

Theorem 3.1: There is one and only one continuous solution to
sz(z) -SE)+1=0

which is bounded in the neighborhood of the origin, and this solution is such
that laic‘l‘iot S(x) = 1.

Proog: Let S§(3), S%(z), ..., Sf(3) be the continuous zeroes (solutions)
to 85%(2) - S(2) + 1 = 0, and rewrite this as

skz) - S(z)/z + 1/z =0, =z # 0.

(5=-8H(S =58 ... (5-54) =5%-5/z+1/z=0.

Therefore, S§{S§S% ... S = (-1)*/z as the last coefficient, and

S§5355% - Sz( + +

RIS

1 _ k
+oee +§§) = (-1*/z

Salm
Sl

from the next-to-last coefficient. Therefore,

1 1 1 1
e e b S e == 1, (3.5)
STt 5

Let Sf(z) be bounded in the neighborhood; then

limit (zs’;"(z) - S§(2) + 1) = limit 25}(z) - limit S¥(2) + 1 = 0,
2+0 20 20
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Linie 257(s) = 0, and 1imit5%(s) = §§(0) = 1. Thus limit 1/5}() = 1.
Suppose Qf(z) is continuous but unbounded in the neighborhood of z = 0.
Then 1%T%tl/5f(z) = 0. From (3.5), we therefore conclude that S%(z) is the

only continuous and bounded solution to our equation as 2 + 0. We also note
that since the right side is indeed 1 for all 3 # 0, there is one bounded
solution. This concludes the proof of Theorem 3.1.

. S S
Theorem 3.2: S_, (x) = e
Proof: S_,(x) satisfies
-m+1

xS_p () - S_,(x) +1

1]
o

Multiply through by S:;(x) to yield
@S h(x) - 1+ S_n(x) = 0.

Replace x by (-x),

—xSTM(-z) - 1 + S_L(-x) = 0,
which can be rewritten as
x(S:;(—x))m - (S:;(—x)) +1=0.
This is precisely the polynomial equation satisfied by S, _,(x), which is

xSy (@) - Sp-(x) +1 = 0.

Since S,-1(0) = 1, it is the unique continuous solution which is bounded in
the neighborhood of the origin. If S_,(x) is such that

l%@%t.s_m(x) = S_,00) =1,
then
limit SIi(x) = 85I4(0) = 1.
Therefore, by Theorem 3.1, we conclude that
SIE(-x) = Sy, (x) S (z) = —L
_m(-x) = S,-.1(x) or —m 5 ()

which concludes the proof of Theorem 3.2.

Theorem 3.3: 1If Sp(x) obeys
xS,f”(x) - 5@ +1=0,

then S, (x) # 0 for any finite x, k # -1.
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Proog: Let S, (x) be the continuous solution as a function of x. Then,
lg-f_fl]‘;ct; Sk (%) = Sk(xo)a
where Sy (x,) is finite. If Sy(xy) = 0, then
K+1

limit [ Sy

x> x,

@ - 5@ +1] =140,

which contradicts the fact that xS:H(.'Jc) -8(x) + 1 = 0. However, if k = -1,
then S_,(x) = 1 + £, which is zero for x = -1. For all other k, S;(x) =0
for all finite x.

L4, EXTENDED RESULTS FOR GENERALIZED PASCAL TRIANGLES
The results of Section 3 can be extended. Let

1

AC 1+ cexg(x)’

e+ 0, f(0O) =1, (4.1)

g(x) a polynomial in x. Then f(xS(x)) = S(x) yields

1
1+ cxS(x)g(xS(x))

= S(x) (4.2)
or
1 - S(&) + cxS(x)g(xS(z)) =0

which is a polynomial in S(x). Because of the 1 and -S(x) relationships in
the equation, all of the previous results hold. For example, all of the gen-
eralized Fibonacci numbers from the generalized Pascal triangles arising from
the coefficients generated in the expansions of the multinomials (1 +x+x% +
« 4+ x™" will have convolution arrays governed by the results of this paper
and similar to those reported for Pascal's triangle in [1] through [4].
Now, looking at (4.2), since g(0) = 1, the polynomial in S is of the form

—li+-c—x—;—ls + .o + 5%@) = 0.
X X
As before, inspecting the coefficients yields, for roots S§f, 5%, ..., S%,
5$545% ... 5% = (-1)*/x*
and
1,1 1 (ex - 1) (1)
SHSESE L. SEl =+t e ) =
1P2°3 k (S’f 5% 5*) 2k
so that
1 1 1
sxtaxt e +EFp=1-cx
S ' 5% 5%
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Now,
it (=t w1 o 51 ) .
Limit (Sm) TH@ T T E® > b

Thus, lit_[:]'at 1/5%(0) = 1 and l}t_eiot l/Sj*(x) = 0, and we again have one and only
xX

one bounded and continuous solution near the origin.
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SOME MORE PATTERNS FROM PASCAL'S TRIANGLE

0. D. ANDERSON
Civil Service College, London SW1V 1RB

1. INTRODUCTION

Over the years, much use has been made of Pascal's triangle, part of which
is shown in Table 1.1. The original intention was to read the table horizon-
tally, when its znth row gives, in order, the coefficients of x7 {m =0,1,...,
n} for the binomial expansion of (1 + x)".

Pargeter [1] pointed out that the consecutive elements, read downwards, in
the nth column gave the coefficients of ™" {m=0,1,..., 00} for the infi-
nite expansion of (1 - x)" . More recently, Fletcher [2] has considered the
series whose coefficients are obtained (in the representation of Table 1.1)
by starting on one of the diagonal unities and making consecutive '"knight's
moves' of two steps down and one to the right. Again, moving down the diag-
onals of Table 1.1, we obtain consecutive series of the so-called "figurative
numbers," for instance, see Beiler [3]; and the ingenious reader will be able
to find other interesting series, which can be simply generated. As with all
work on integer sequences, Sloane [4] will be found invaluable.

Table 1.1 Pascal's Triangle

1

3 1

6 4 1

10 10 5 1

15 20 15 6 1

21 35 35 21 7 1

28 56 70 56 28 8 1

36 84 126 126 84 36 9 1

k45 120 210 252 210 120 L5 10 1

55 165 330 462 462 330 165 55 11 1

— OWOONOVUVI FWN =

€8 e e e e e ek e el e e
—_——

However, the object of this paper is to draw attention to some equally
striking, but rather more subtle patterns, obtainable from Pascal's triangle.
The results emerged from the study of the determinants of a class of matrices
which occurred naturally in a piece of statistical research, as reported by
Anderson [5].

296
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2. THE DETERMINANTAL VALUE FOR A FAMILY OF MATRICES

Consider any two positive integers r and s, and define the rth order de-

, . 2s
terminant D,(s) as having (s + - j) for its general Z,jth element. Then it

is well-known that

Dr(l) =r+1, r2>1

and, interestingly enough, it can be shown that D (s)

St @+ (r+s -1 TN r+8) (r+s+1)° T o (425 -2)2 (r+25 - 1)
- 5
1.22 oo (8-1)° g% (s +1)° 7Y .. (28 -2)2(28 - 1)
r, s > 1. For instance, see Anderson [6].
If we write out the family of determinants D,(s): r, s > 1 as a doubly
infinite two-dimensional array, we get Table 2.1.

Table 2.1 Values for Family of Determinants D,{s)

8
1 2 3 4
6 20 70
20 175 1764

50 980 24696
105 4116 232848

L
W N -
Vi W

What is really pretty is that this table can be written down quite simply,
and in several ways, from Pascal's triangle.

3. GENERATING THE DETERMINANTS FROM PASCAL'S TRIANGLE

3.1 Generating the Rows of Table 2.1

The first row is obtained just by making the 'knight's moves" from the
apex of the triangle—see Table 3.1.1. If we then evaluate the second-order
determinants, with leading terms at these "knight's moves," we obtain the
second row—see Table 3.1.2. Similarly, if we evaluate the third-order de-
terminants, shown in Table 3.1.3, and the fourth-order determinanys, shown in
Table 3.1.4, we get the third and fourth rows, respectively. In both cases,
the determinants have the "knight's moves" for their leading terms. Continu-
ing in this way, Table 2.1 can be extended to as many rows as we like,
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Table 3.1.1 Generation of the First Row

2

Table 3.1.2 Generation of the Second Row

2 1
|3 3
6  k
10 10
20 15
35 35
70 56
ime 126

Table 3.1.3 Generation of the Third Row

2 1 0
3 3 1
4 6 L 1
10 10 5
15 20 15 6

35 35 21

56 70 56 28
126 126 84
210 252 210
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Table 3.1.4 Generation of the Fourth Row

2 1 0 0
3 3 1 0
L 6 b 1 0
5 10 10 5 1
15 |20 15 6 1

21 |35 35 21 7
56 70 56 28 8
84 126 126 84 36
210 252 210 120
330 462 462 330

3.2 Generating the Columns of Table 2.1

299

The first column can be picked out as the natural number diagonal of Table
2.1, shown in Table 3.2.1. For the second column, the overlapping second-
order determinants, shown in Table 3.2.2, are evaluated; while the third and
fourth columns are obtained from the determinants of the overlapping arrays

in Tables 3.2.3 and 3.2.4, respectively. And so omn.
Table 3.2.1 Generation of the First Column

2

3 3
Ih 6' L
10 10 5'
20 15 6
35 21

Table 3.2.3 Generation of the Third Column

L 6 4
5 10 10 5
6 15 20 15 6
21 35 35 21 7
56 70 56 28
126 126 84
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Table 3.2.4 Generation of the Fourth Column

10 10 5
15 20 15 6
21 35 35 21 7
28 56 70 56 28 8
36 84 126 126 84 36
120 210 252 210} 120
330 462  L462 330

o~ oV

3.3 Generating the Diagonals of Table 2.1

Finally, the diagonals of Table 2.1 can be obtained as follows. The tth
member of the main diagonal is found by evaluating the tth-order determinant
with leading terms given by the ¢th "knight's move" from the apex of the tri-
angle. The first super-diagonal is achieved using the same principle, but
starting with the second "knight's move." Thus its t¢th term is the tth-order
determinant whose leading term is the (¢+1)th "knight's move.'" The tth term
of the second super-diagonal is given by the ¢th-order determinant, starting
with the (£+2)th "knight's move." And so on for all the other super-diago-
nals. The sub-diagonals can be obtained in a similar way; by using, instead
of the "knight's move" sequence, a sequence diagonally down from it in the
triangle. For the first sub-diagonal, the new sequence is one step down; for
the second, two steps down, and so on.

L. GENERATING THE DETERMINANTS FROM A DIFFERENT
REPRESENTATION OF PASCAL'S TRIANGLE

If we represent Pascal's triangle as in Table 4.1, where the ones have been
omitted, we get a more meaningful row and column array. We then find that
Table 2.1 can be generated in still further ways, as the reader can readily
verify.

TABLE 4.1 Alternative Representation of Pascal's Triangle

3 4 5 6
6 10 15 21
10 20 35 56
15 35 70 126
21 56 126 252

VT W N

5. IN CONCLUSION

All the patterns discussed can, of course, be verified by combinatorial
algebra. Thus, for instance, in Section 3, the second column of Table 2.1
is claimed to have for its nth element the second-order determinant:
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(n+1) <n+1>
n -1 n

(n*F2> (n-+2>
n - 1 n

On evaluation, this gives

n+ 1w+ 220+ 3)
12

as required.
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COEFFICIENTS OF THE CYCLOTOMIC POLYNOMIAL F,,, (x)

MARION BEITER
Rosary Hill College, Buffalo, New York 14226

Let F, be the mth cyclotomic polynomial. Bang [1] has shown that for m =
pqr, a product of three odd primes with p < g < r, tlie coefficients of F, (x)
do not exceed p-1 in absolute value. The smallest such m is 105 and the co-
efficient of &’ in F,y is -2. It might be assumed that coefficients 2 and/
or -2 occur in every F3qp+ This is not so. It is the purpose of this paper
to characterize the pairs ¢,r in m=3qr such that no coefficient of absolute
value 2 can occur in Fy,.

1. PRELIMINARIES
e(m)
Let F,(x) = chm". Then for m=3qr, ¢, is determined [1] by the number
n=0
of partitions of n of the form:

n = a + 30g + 3Br + yqr + §,q + §,7», M
0 <ac<3; 0, B, Y, nonnegative integers; §; € {O, l} . If n has no such par-
tition, ¢, = 0. Each partition of » in the form (1) contributes +1 to the
value of ¢, if §, = §,, but -1 if 6, # §,. Because F,(x) is symmetric, we
consider only n < ¢(m)/2=(q-1)(r-1). Forn > (q-1)(r-1), ¢,=c,r, with
n' = ¢(m) -n. We note that for n < (¢-1)(r-1), Y in (1) must be zero.

A permissible partition of »n is therefore one of these four:

Py = a; + 30,9 + 38,7, P, =a, + 30,q + 38, + g + r,

(2)

Py =a, + 30,9 + 38,7 + q, P a, + 30,9 + 3B,r + r.

" Y

Partitions P, and P, will each contribute +1 to ¢,, while P; and P, will each
contribute -1. When n < (¢=1)(r~-1), only one partition for each P,, 7 = 1,
., &4, is possible [1].
Lemma 1: For any B; in (2), 3B; < q - 2 for all q.

Proof: Following Bloom [3] we have 38, < (q-D(r-1) < (g-1L)r. Thus,
38; < g - 1.

Conollarny: 3B; < q - 3 for 2 = 2, 4.

Lemma 2: Either » + ¢ £ 0 (mod 3) or r - g = 0 (mod 3), for all primes q
and r with 3 < g < r.

302
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Proog: Let g = 2k + 1, » = 2k; + 1. Since 3 divides one and only one of
the numbers 2¢, 2(£+1) when 2¢£+4+1 is a prime, it follows that 3 divides one
and only one of the numbers r + g = 2(k + k; + 1) or r - g = 2(k - k).

2. BOUNDS ON THE COEFFICIENTS

We set 3 < g < r and make repeated use of the expressions:

P, - Py =a, -a; +3(, -a,)g+3B,-BJr+qg+r=0; (3)
P, -Py=a, -az+3(, -a)g+ 3B, -B)r+r-q=0. (4)
Theorem 1: 1In Fa,, (2),
(a) if r - ¢ =0 (mod 3), then -1 L ¢, < 2,
(b) if r+ g = 0 (mod 3), then -2 L ¢, < 1.
Proof of (a): Assume ¢, = -2 for some n, i.e., partitions of n of forms

Py and P, exist. Taking (4), modulo 3, we obtain a, - a3 = 0 (mod 3). But
a < 3, so that a, = a;. Now taking (4), modulo g, we obtain [3(B, - B83) +
1]lr = 0 (mod q). Then 3(B, - B3) + 1 = Bg, for some integer B # 0. Either
3(By - Bs) =Bg-12>qg -1, or 3(Bs - By) = |Blg+12>qg+ 1. But 3B, <q-2
by Lemma 1. Therefore, P; and P, cannot both exist and we have ¢, # -2.

The proof of (b) follows from a similar argument by considering (3), mod-
ulo 3, and then modulo g.

Remark 1: F3,, may have a coefficient of 2 or of -2 but not of both.

Remark 2: 1If g and » are twin primes, ¢, = -2 with P; = 2 + ¢, P, = ».

3. SPECIAL CASES

I+
N

Before taking up the general case, we consider r = kg * 1 and r = kg
We prove a theorem about r = kq * 1.

Theorem 2: Let » = kq + 1. In Fy, (x), |e,| <1 if and only if k = 0 (mod
3).

Proof: To show the sufficiency of the condition, let r = 3hg + 1, with
q =1 (mod 3). Then r - q 20 (mod 3), and ¢, # -2 by Theorem 1. We show
¢, # 2, i.e., there is no »n for which partitions P, and P, can both exist.
Taking (3), modulo 3, we obtain a, - a; = 1 or -2. We note that r =1 (mod
g). Then (3), modulo g, leads to one of the equations:

3(82 - B = Bq -2 or 3(82 = Bl) = BC] +1

with B = 2 (mod 3). Obviously, there is no value of B which satisfies Lemma
1. Hence there is no n, 0 <#n < (¢-1)(r-1), for which partitions P; and P,
both exist. Similarly, with ¢ = 2 (mod 3), it can be shown that there is no
n for which partitions P, and P, can both exist. When r = 3#g -1, r = 2 (mod
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3). If g = 2, the proof leads to the same two equations as above with B
Thus both equations are inconsistent with Lemma 1. If g = 1, the same e
tions appear with B, and B, replaced by B, and B3, respectively, and B
Thus lcn < 1.

The necessity of the condition ¥ = 0 (mod 3) is shown by the counterex-
amples in Table 1. Values of k are given modulo 3. For each »n, other par-
titions are not possible. We illustrate with the first counterexample, r =
kq + 1 with ¥ = 1. The only possible » and ¢ are » = 2 and ¢ = 1 (mod 3).
Note that for n = r, n = 2 (mod 3). Thus in partitions P; or P,, a;=a, = 2.
Then Py, = 2 + 3049 + 3B = r = P, = 2 + 30,9 + 38,7 + ¢ + . 1In neither P,
nor P, is it possible to find nonnegative o and B to satisfy the equations.
Hence, the coefficient of x” in Fy,, is -2.

1.
ua-
2.

a1

Table 1 » = kg + 1

2 Examples
(mod 3) r Partitions of n e, gl r|n
1 kg+ 1|P3=1+(k-1)g+q|P, =2 =20 712929
1 kg - 1|Ps=(k-1)q+gqg P,=1+r -2 5[19]20
kg +1|P, =1+ (k+ 1)g P,=q+r 2| 5| 41|46
2 kg - 1P, = (k + 1)q Pyo=1l+qg+r| 2| 7]|13|21

Theorem 3: Let r = kg * 2. In Fy,, (®), |es| < 1 if and only if k = 0 and
g =1 (mod 3).

The proof follows the method in Theorem 2 and is omitted here. Table 2
gives counterexamples to show the necessity.

Table 2 » = kq * 2

% Examples
(mod 3)| = Partitions of n el gl 2| n
N0 kg +2|Py=2+(qg+ Dr/2 |P, = 14 (g - Nkq/2+q+»| 2| 5]17]53
'go é kq - 2| Py = (q+ )r/2+q [Py = 1+(q - V)kq/2+r |-2|| 5|13 |4k
1 - kg + 2|Py=(k - 1)g+g+2|P, =» -2 || 513737
1 |kq-2|Py=(k=-1)g+q |P,=2+2 -2 | 7|47 k9
2 |kg+2|Pp=(k+1)g+2 |P,=qg+r 2| 7|37 | Lk
2 |kg-2|P, = (k+1) P,=q+mr+2 2| 5]23}30
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L. THE GENERAL CASE

More generally, for all primes ¢ and » with 3 < g < r, we have r = (kg +
/h, or » = (kg - D/h, h < (g - 1)/2. If h =1, Theorem 2 applies. There-
fore we set 1 < h. 1In r = (kg * 1)/h, we may consider », ¢, k, %1 as four
independent variables with % dependent. Since r and ¢ each have two possible
values modulo 3 and k has three, there are 24 cases to be examined. We shall
examine one of them. Then we shall present Table 3 showing all 24 cases and
from the table we form a theorem which states conditions on g and r so that
len] <1 in Fygp.

First we take » ¢ =1, kK =0 (mod 3)in » = (kgq-1)/h, 1 < h £ (g-1)/2.
Note that %« = 2. Since » - g =0 (mod 3), ¢ # -2 by Theorem 1. We show
¢, # 2. Taking (3), modulo 3, we find a, - @; = -2 or 1. Then taking (3),
modulo g, we obtain two possible congruences:

-2 + [3(B, - By) + 11(-1/h) =0 and 1 + [3(B, - B;) + 1]1(-1/R) = 0.

The first leads to the equation 3(B, - B;) = Bg - 2A - 1 with B = 2. No such
value of B will satisfy Lemma 1. The second congruence leads to the equation
3(B, = By) = Bg+h - 1with B =2, If # =2, there is no value of B which
satisfies Lemma 1, and ¢, # 2. If h >2, then 38, = ¢ - h + 1 satisfies Lem-
ma 1. Substituting this value in (3), we obtain 30, = » - kK = 1. Then P, =
(g-h+1) and P, = (r - k - 1)g + g + r with a; = 0, a, = 1. But when we
set a; + 30, + 3Br+ g = (g ~-h+ 1), we obtain Py =2+ (r - 2k - 1) +
(h + )r + q. Moreover, if we let a, = 1, a, = 2, partitions P, and P, exist
but also P, exists. Thus, there is no n for which ¢, = 2.

In Table 3 the values for », g, k, and % are all modulo 3. From an inspec-—
tion of Table 3 for the cases when max lcn] = 1, we state

Theorem 4: Let r = (kg + 1)/h, 1 < B < (q - 1)/2. 1In Fa, (@), |ea] <1
if and only if one of these conditions holds: (a) X = 0 and # + ¢ = 0 (mod
3) or (b) =0 and Xk + » = 0 (mod 3).

Table 3 r = (kg £ 1)/, 1 <h < (g - 1)/2

(Values for g, », h, k are modulo 3)

kKlhi+l Partitions of n max | e, |
0| 1| +|Py=2+(qg-2h+ N)r P, =(r -2k - 1)g+qg+r 2
—| 112 +|P; =2+(2k + 1)g Py, = (2h - Nr+qg+r 2
il 2 0 + 1
o
mio|2) - 1
St1jo| =Py =2+ 2k + 1)r P, = (2k - 1)g+q+r 2
21| -|Py =2+ (r - 2k + 1)q P, ={q-2h-Nr+qg+r 2

(continued)
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Table 3—continued
K|k |1 Partitions of n max | ey |
0 +|P, = (r - 2k + 1)q P,=2+(g - 2n - Nr+qg+r 2
o~ 1 0 + 1
”; 201 | +|P, = (2n+ 1)r P, =2+ (2k - 1)g+q+r 2
m|{O]| 1] - 1
S -, = (2k + 1)gq P, =2+ (2k - N)r+qg+r 2
2|0 -|P,=(g-2n+1)r P,=2+(r -2k - 1)g+q+r 2
o1+ 1
o~
wl1]o Py=2+(q-2n+ Nr+q|P, = (r-2k+ 1)g+r 2
Sl 22| +|Py=2+(2k - 1)g+gq P, =(2n - Nr+r 2
=lo|2|-|Py,=2+(r-2k=-1)g+q|P, = (g - 2k - )r+r 2
11
o 11| -|Py=(k-1)g+q P, =1+(h - Nr+r 2
210 - 1
o2 + 1
" 1 Py=1+(k - 1)g+q y = (- Nr+r 2
120 +|P, (r—Zk-l)q+q Pq=2+(q-2h-1)r+r 2
w01 -|Py=1(qg-2n+ Nr+gq P, =2+(r -2k + 1)g+r 2
1
o1 - 1
2 -|Py= (g -2n+ Nr+g P,=2+(r -2k + 1)g+xr 2
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SIMPLIFIED PROOF OF A GREATEST INTEGER FUNCTION THEOREM

J. L. BROWN, JR.
The Pennsylvania State University, University Park, PA 16802

The purpose of this paper is to give a simple proof of a result, due ori-
ginally to Anaya and Crump [1], involving the greatest integer function [°].

1+ V5. - V5 a® - p"
2

In the following, a = = 1.618, b = 1 = -0.618; and F, =

2 V5
defines the nth Fibonacci number for »n > 1.

2

Definition: Let § be defined by § = —%— - b—s > 0.
n
Lemma 1: For n > 2, 65%ib—5-.
—b2 ibn n 2 . .

Proof: Equivalent to —= < e or *p" < b°, which is clearly true for

n > 2, since |b| < 1. 5

Lemma 2: For n > 2 and any Y satisfying IY] <8,

a” 1] _

[G+v+3]-m

a® 1 . a® - p"
Proof: We must show F, < -—/g + v + 5 <F,+1, or using F, = ———/5_ and

—|Y| <y =< IY], the required inequality will be true if

l _n
< -yl +%SIY| +7<%+1.

-p"

V5

Th treme left and right inequalities reduce to lyl <l+ﬁ and |Y] <l—E

e extrem g q St E PR
respectively, both valid for |Y| < § by Lemma 1.

Theorem 1: (Cf. [1]): For m > 1 and 1 < k < #n, [aan + %] = Fpike

Proog: [a"Fn + l] = [M + l] = [ak+n - (-L)kprk + l] (using

2 /5 2 V5 V5 2
. (_l)k+1bn—k |b
ab = -1) = F, ., by Lemma 2 since —-—‘/?—— _<_7—5_— < 4.
Conollary 1: ([2], pp. 34-35): F,., = [aFn +%] for n = 2, 3, 4, ...

Proof: Take k = 1 in the theorem and note 1 = k < #n for n =2, 3, 4, ...

307
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v

Vol 1.

Proof: Clearly true for m = 1, since a = 1.618. For n > 2, the result
follows from Lemma 2 with y = 0.

Conollary 2: (Cf. [3]1, p. 22): [g—n+£:| = F, for all n

Note: The case k = n is not treated in Theorem 1, and in fact the result
of the theorem fails for n > 1, 1 < k <n whenn =1 and kX = 1, since

[ +3]-[e+3]- zms1 =247, -1

(thus the statement of the theorem in [1] requires modification). However,
we can easily prove the following:
Theorem 2: Let n > 2 and k = n. Then [a"Fn + %] =F,,.
1] _fa” 1] _[a®" D" |1 a®® .1 1
Proog: [a”F +—]={—:(a"—b") +—]=[ - + 51 = J—’—"+—]
LA G 1 I - S Rl
2n 2n
. a 1 1 a 1 .1
which will be F since >F, and ===+ = > 0} if T —4+=<F, +1
2 ( s e AT > s e

2n
or 71 + L < b—,
/5 /5
With both n and k unrestricted positive integers, we can also state two
simple inequalities which depend on the fact that [¢] is a nondecreasing
function of its argument.

an inequality which is easily verified for n > 2.

Corollary 3:

(i) For n even, [a"Fn + %—] < Fopp 21, k21)

(ii) For n odd, [aan+ %] > Fypp (21, k21).

Proog:

. . ar . k 1 ak+r 1) _

(1) With n even, N > F, and [a F, + 2:| < |: 7z + 5| = Fp4r by Cor. 2.

n k+n
(ii) Similarly, » odd implies g‘/-_g < F, and [aan + %—] > [a/g + %—] = Fix

again by application of Cor. 2.

We may also obtain a similar result on Lucas numbers due to Carlitz [4] by an
analogous approach (recall L, = a™ + b" for n > 1).

Lemma 2: TFor all m > 4 and 7y satisfying |y| < b?, [a” + v + %] = Ly
Proof: We must show L, <a™+ Yy + % <L,+1, or, using L, =a” + b",
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1 .
p* <y +5 < b" + 1. since |Y| < B?, the required inequality is satisfied if
b"s—b2+%—<b2+%<b”+1.

But b" + b% < %-and p* - b% > —%—for n > 4, so the result follows.

Theorem 3: (Cf. [4]): For k> 2 and n > k + 2, [akLn + %] = Lpiie

Proog: [akL,, + %] = [ak(a" + b)) + %] = [a"+’<+ -D¥p" 7 + %] = Lpex by

Lemma 2, since |(—l)kb"_k| <b* and n + k > 4.

Corollary 4: [a" +-%] =L, for n > 2.

Proof: TFor m > 4, result is established by Lemma 2 on taking y = 0. For
n= 2, 3, a direct verification suffices. [Recall a® = a + 1, so that a® =
(a + 1)a = 2a + 1]. The result is also immediate from the fact that

|a™ = (@™ + ™| = |b|" < %-for n>2,
which shows that L, is the closest integer to a” for m > 2. It then follows
that

[a"+%]=L,, for n > 2.
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ON SQUARE PSEUDO-FIBONACCI NUMBERS

A. ESWARATHASAN
University of Sri Lanka, Jaffna Campus, Tirunelvely, Jaffna, Sri Lanka

If the Fibonacci numbers are defined by
Up = Uy = L1, Upyy = Upyy = Uy,

then J. H. E. Cohn [1] has shown that

Uy = U, =1 and Uy, = 144

are the only square Fibonacci numbers.
If n is a positive integer, we shall call the numbers defined by

Uy =1, uy = by, uy, = U, +tou, 1

n+1l

pseudo-Fibonacci numbers.
The object of this paper is to show that the only square pseudo-Fibonacci
numbers are

uy =1, u, = 4, and u, = 9.

If we remove the restriction n > 0, we obtain exactly one more square,
Uu_g = 81,

It can easily be shown that the general solution of the difference equation
(1) is given by

Lan+ 87 - —2

(xn—l + n-1 s 2
i T g™"1) @)

Uy =
where
a=1+vV5, B=1-5,

and » is an integer. Let

a” + BY af - p”
n = =TT .
» pra . o

Then we easily obtain the following relations:

1
Uy, = §(7nn - nn—l)’ (3)
Ny = Npoy + Nypops Ny =1, Ny = 3, (4)

310
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gr = Ep-.]_ + g:p-Zs E]_ = l! 52 = l’

ni - 582 = (-1)74,

n2r

2n

m+n

28

m+n

ni + (-1)7*2,

56,8, ¥ NN,

N,&n + Ny&.s

Ezr = nrgp'

The following congruences hold:

u = (-1)"*u, (mod n,27%),

n+2r

(-1)"up (mod £,275),

1

un+2r

where S = 0 or 1.

Let ¢, = Nn,t, where ¢ is a positive integer.

br41 = ¢i - 2.
We also need the following results concerning ¢;:
¢, is an odd integer,

2
¢, =

3 (mod 4),

2 (mod 3), t > 3.

We also have the following tables of values:

n -8 0 1 2 3 4 5 7 9 11 12
Unp 81 3 1 4 5 14 37 97 254 411
t 7 14 4 7 8
Ne 29 3281 ¢ 3 13 37
Let
z? = Uy

The proof is now accomplished in sixteen stages:

(a) (17) is impossible if n = 3 (mod 8).

U, = uy (mod £,) =5 (mod 3).

Since (%) = -1, (17) is impossible.

Then we get

13
665

15
1741

311

(5)
(6)
€))
(8)
9

(10)

(11)

(12)

(13)

(14)

(15)

(16)

an

For, using (12) we find that
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(b)

(c)

(d)

(e)

(£

(2)

(h)

(1)

@3)

ON SQUARE PSEUDO-FIBONACCI NUMBERS

(17) is impossible

U, = Ug
Since (%;) =
(17) is impossible

U, = Uy
Since (%) =
(17) is impossible

Up = Ups

1741) ~
7

(17) is impossible

Since (

Uy = Up

[Aug.

if w =5 (mod 8). For, using (12) we find that

(mod &,) = 14 (mod 3).

-1, (17) is impossible.

if n# = 0 (mod 16). TFor, using (12) in this case

(mod £E5) = 3 (mod 7), since 7'&8.

-1, (17) is impossible.

if n = 15 (mod 16). For, using (12) we find that
(mod &4) = 1741 (mod 7), since 7 |Eg.

(17) is impossible.
if n £ 12 (mod 16). For, using (12) in this case

(mod &4) = 411 (mod 7), since 7[58.

Since (éll> = -1, (17) is dimpossible.

7

(17) is impossible

Uy = u,

since (35) - (33)

(17) is impossible
U, = Fu,

: :Si) -
Since (13 =
(17) is impossible

un-:—us

(-

if n = 7 (mod 14). For, using (12) we find that

(mod £,) = #37 (mod 13).

= -1, (17) is impossible.

if n = 3 (mod 14). For, using (12) in this case
(mod '£,) = %5 (mod 13).

-1, (17) is impossible.

5 (mod 14).

if n = For, using (11) we find that

(mod n;) = 14 (mod 29).

Since (%%) = -1, (17) is impossible.

(17) is impossible
Un = Fupy

Since 13

(17) is impossible

Uy = iull

if n = 13 (mod 14). Sor, using (12) in this case

(mod &,) = %665 (mod 13).

:ééé) = (gg;) = -1, (17) is impossible.

if » = 11 (mod 14). For, using (12) we find that

(mod &,) = *254 (mod 13).
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(k)

(1)

(m)

(n)

(o)

(p)
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. -2
Since ( 124) = (%E;) = -1, (17) is impossible.

(17) is impossible if n = 9 (mod 14). For, using (12) we find that
U, = *ugy (mod £,) = 97 (mod 13).

Since ;E;) = (%%) = -1, (17) is impossible.

(17) is impossible if n = 15 (mod 28). For, using (11) we find that

Uy, = *uy, (mod ny,) = £1741 (mod 281), since 281/n,.

-1741) _ (1741
281 281

(17) is impossible if #n = 1 (mod 4), n # 1, that is, if n = 1 + 2%p,
where 7 is odd and ¢ is a positive integer > 2. For, using (11) in
this case

Since ( ) = -1, (17) is impossible.

Uy = -u; (mod Nyt - 1) = =1 (mod ¢,_;).

Now, using (15) we have ¢,_, = 4k + 3, where k is a nonnegative inte-

. -1 \_(_-1 \__ . .
ger. Since <¢t—1> = (4k T 3> = -1, (17) is impossible.

(17) is impossible if n = 2 (mod 4), #n # 2, that is, if n = 2 + 2%p,
where r is odd and ¢ is a positive integer > 2. For, using (11) we
find that

Uy = -Up (mod Nyt = 1) = =4 (mod ¢,_q).

Now, using (15) we have ¢,_, = 4k + 3, where X is a nonnegative inte-

ger. By virtue of (14), (2, ¢,_,) = 1. Since <¢—4 > = <4k—i 3)=__1’
(17) is impossible. t-1

(17) is impossible if #n = 4 (mod 16), #n # 4, that is, if n = 4 + 2%p,
where » is odd and ¢ is a positive integer > 4. TFor, using (11) we
find that

Up = -uy (mod Nyt-1) = -9 (mod ¢y-1).

Now, using (16), we get (p,_;, 3) = 1, and by virtue of (15), ¢,_; =
4k + 3, where k is a positive integer > 11.

-9\ _ -9 _ L .
¢t—1> = (4k " 3> = -1, (17) is impossible.

(17) is impossible if n = -8 (mod 16), n # -8, that is, if n = -8 +
2%y, where r is odd and t is a positive integer > 4. For, using (11)
in this case

Next, since (

Uy = ~U._g (mod nzt - l) = =81 (mod d)t_l).
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1.

Now, using (16) we
4k + 3, where k is

ON SQUARE PSEUDO-FIBONACC1 NUMBERS Aug. 1978

get (¢;,_;, 3) =1, and by virtue of (15), ¢,., =
a positive integer > 11.

Next, since < _81‘> = —81 ) = -1, (17) is impossible.

We have now

(L
(2)
(3)
(4)

When
When
When
When

S I I =

$s-1) \4k + 3

four further cases, n = -8, 1, 2, and 4, to consider.

= -8, u, = 81 is a perfect square.

=1, u, = 1 is a perfect square.
=2, u, =4 is a perfect square.

=4, u, = 9 is a perfect square.
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FIBONACCI, INSECTS, AND FLOWERS

JOSEPH DE VITA
U.3. C., Los ingelez 50007

It remains an interesting phenomenon that elements of the Fibonacci and
Lucas sequences appear in numerous structural entities belonging to varied
species of higher plants. McNabb [3] cites the abundance of flower species
with numbers of petals (up to 89 in Michaelmas daisies) that correspond to
Fibonacci numbers. Karchmar [1] obtained the commonly observed angle between
adjacent leaf primordia (137°30') by applying the limiting value of the fol-
lowing Fibonacci ratio:

I @

Fn+1

where F, and F,4+; denote, respectively, the nth and (n+1)th elements of the
Fibonacci sequence.

Although there exists a considerable body of literature pertaining to
plant structure and Fibonacci sequences, the above references are singled out
for their use of expression (l1). As pointed out by McNabb [3], phyllotaxic
descriptions are often denoted in the form of expression (1). It is to ex-
pression (1) that we give most of our concern in relation to insects which
reside on flowers of field thistle (Circeium discolor). Specifically, we are
interested in the sequences of lengths among these insects. Table 1 lists
the species of insect, sample size, mean length, and standard deviation.

Table 1

Length Statistics of Five Insect Species Resident on
Flowers of Civeium discolor

Sample Mean Length Standard

Insect Size (mm) Deviation
Diabrotica longicornis (beetle) 15 6.0 0.58
Plagiognathus (bug) 13 3.7 0.23
0librus semistriatus (beetle) 17 2.2 0.25
Orius insidiosus (bug) 14 2.0 0.10
Frankliniella tritiei (thrip) 15 0.9 0.12

Let us assume that because flowers are of a limited volume, insects are
competing for space. Another alternative is that of competition for food,
but since we rarely observe flowers devastated by insects, we presently re-—
ject this alternative. We can further speculate that if competition is for
space, we expect the appearance of ecological and evolutionary mechanisms
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aimed at the avoidance of physical encounter. Such an avoidance may be re-
alized if each insect were to possess a '"refuge" (i.e., a volumetric space)
for the avoidance of larger insects. Within a complex flower, such as field
thistle, smaller insects could avoid larger insects by seeking crevices which
larger insects could not enter. This mechanism does not exclude other means
of avoidance, although if we accept the mechanism of avoidance by spatial
refuge, then there should arise constraints on the size of each insect spe-
cies. We can thus imagine that, of a pair of insects, the larger will "push"
the smaller (over evolutionary time) to a reduced size. We assume here that,
upon encounter, the smaller insect is more likely to move away from the lar-
ger than the larger move away from the smaller. In this manner, the largest
insect residing on the flower will determine, at a first approximation, the
entire size sequence of the remaining insects.

From the above consideration, we make use of the Fibonacci sequence in an
unusual manner. Since it is assumed that the largest insect determines the
length sequence, we start our sequence backwards, setting our largest number
as the first term in the sequence. We then define our sequence, on the basis
of the first term (u,), as:

U, = u, (B"H (2)

where B=1/a and o (the Fibonacci ratio in the limit) approximates the value
of 1.62. Thus, B = .62.

We are now able, given the first term, to calculate elements of (2). Re-
calling that the length of the largest insect is 6.0 mm, we may set this
value as the first term in the sequence, and then proceed to calculate the
next four terms. A comparison of the empirical and predicted sequences is
impressive.

Predicted Empirical
Sequence Sequence
6.0 6.0
3.7 3.7
2.3 2.2
1.4 2.0
0.9 0.9

We may imply from this comparison that the length ratio of two neighbor-
ing insects in the sequence, taking the larger to the smaller, should approx-
imate 1.62. This ratio can then be viewed as a "limiting similarity" [2] for
two species, i.e., how similar can two species be in the utilization of a re-
source (this resource being space in our consideration) before one excludes
the other.

If we accept the above comparison of sequences as noncoincidental, we can
go on to hypothesize that the refuge volumes occupied by these five species
of insects may be a function of the insects' lengths. If the volume occupied
is simply related to the insect's length by a constant (k), then we can de-
note a volume sequence (u)) as:

u) = ku, (8"
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which is qualitatively identical to (2). That is, these insects may possess
refuge volumes which correspond, in magnitude, to a Fibonacci sequence.

ACKNOWLEDGMENTS

Thanks is given to M. Farrell and D. Taylor for their review of the manu-
script. L. G. Stannard and G. Coovert kindly identified the insects. My ac-
quaintance with the Fibonacci sequence was the result of stimulating discus-
sions with D. Moles.

REFERENCES

1. E.J.Karchmar, "Phyllotaxis," The Fibonacci Quarterly, Vol. 3, No. 1
(February 1965), pp. 64-66.

2. R. MacArthur & R. Levins, 'The Limiting Similarity, Convergence, and Di-
vergence of Coexisting Species,' Amer. Nat., Vol. 101 (1967), pp. 377-385.

3. Sr. M.D. McNabb, "Phyllotaxis," The Fibonacci Quarterly, Vol. 1, No. 4
(December 1963), pp. 57-60.

Wk



ON THE DENSITY OF THE IMAGE SETS OF CERTAIN
ARITHMETIC FUNCTIONS—I

ROSALIND GUARALDO
St. Francis College, Brooklyn, NY 11201

1. INTRODUCTION

Throughout what follows, we will let » denote an arbitrary nonnegative in-
teger, S(n) a nonnegative integer-valued function of #n, and T(n) = n + S(n).
We also let ® = {x|x =T(n) for some n} and C = complement of R = {n > 0|n ¢ ®}.

It is of interest to ask whether or not the set € is infinite. We can also
pose the question: does the set ® have asymptotic density and, if so, does R
(or ¢) have positive density? It might be suspected that if S(n) is "small"
there is a good chance that ® has density. However, this suspicion is incor-
rect, as can be seen from the following example: for a given n > 1, let k be

the unique integer satisfying k! < »n < (k +'1)! - 1 and define
0 if k is odd
Sn) = <1 if n==%k! + k;, k and k, even, 0 < k, < (k +1)! -1

0 if n = k! + k,, k even, k, odd and as above

Then # or n+1 belongs to ® for every natural number #n, so if § and A denote
the lower and upper density of ®, respectively, we have ¥ < § < A < 1. Now
if D(n) = {x < n|x = T'(y) for some y} then

Dk + 1)t - 1) B+t -k - (k! -1 - (k-1)1) - ---

k+ D! -1 &+ D! -1 <%+ o)
if k is even, and
D((k + )t = 1) _ (k+ 1)t -kt =%(k! =1 - (k-1)1) - --- 4o

k+ 1) -1 (k+ 1! -1

if k is odd. Hence, § = % and A = 1. Therefore, even if S(n) can take on
only the values 0 and 1, it is possible for ®R not to have density.

k
Let b > 2 be arbitrary and let n = Zdij be the unique representation

k =

J=0
of n in base b. Define S(n) = Z f'(dj, J), where f(d, J) is a nonnegative

770

integer-valued function of the digit d and the place where the digit occurs,
and T(n) =n+S5(n). The consideration of functions of this form is motivated
by the problem (which was posed in [1]) of showing that ¢ is infinite when

k

T(n) =n + E d;. A solution, as given in [2], was obtained by recursively
J=0

constructing an infinite sequence of integers in C for all bases b. It was

also observed in [2] that if b is odd then T(n) is always even. In fact, R
is precisely the set of all nonnegative even integers when b is odd. To see
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this, observe that n=S(#) (mod b -1) and, therefore, T(n) =25(n) (mod b -1)

k
where S(n) = jz:c%. Hence T(n) is even if b is odd. Since T(0) = 0, T(n + 1)
i=o
< T(n) + 2 for every natural number n, and T(n) + © as n + ©, the result is
proved.

2. EXISTENCE AND COMPUTABILITY OF THE DENSITY

k k

Again, letting n =y db’, S = Y f(d;, §), and T(w) = n + 5(n), we
J=0 J=0

prove that the density of R exists and is in fact computable when suitable

hypotheses are placed on the function f. We will adhere to the following

notation:

Qk, ) ={T@) |k <x < 7r)
Q(r) = 20, »r)
Dk, r) = |k, r)|
D(r) = |Q(r)|.
Theorem 2.1: Let f(d, §) (d=0,1, ..., b - 1) be a family of nonnega-

tive integer-valued functions satisfying

(a) f(, §)=0,4=0,1,2, ...
®) fd, ) = o), 1 <d<b-1.

Then the density of Q@ exists.

Proof: TFirst, we show that
D(db*, db* + ) = D(r), 0 <pr <b¥ = 1,0<d<b - 1. (2.2)
To prove this, suppose that

k=1 ) k=1 )
w=db +p db and y=dbt+ ) dlp.
Jj=0 ji=0
Clearly T(x) = T'(y) if and only if
k-1 k-1 )
T(Zdﬁ) =T<Zdj'b‘7).
J =0 J=0
Now if dy_y = dg-p=+++=dy.y = 0 (or if df_y = df_,=-+--=d}l_, = 0), then,
by assumption (a), we see that
k=t=1 ) k-1 ) k-1 )
T<Zdjb‘7) = Zdﬂﬂ) - T<§ }Zj'ba>.
Jj=0 7 =0 J=0

We therefore have a one-one correspondence between the elements of Q(dbk,
dbk + ) and Q(r), 0 < » < p¥ - 1, from which (2.2) follows. In particular,
if » = p¥ = 1, we have

p(av®, (d + 1)b* - 1) = D* - 1). (2.3)
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Our next lemma will enable us to relate D(bk+1 - 1) to
b-1

;D(dbk, d + 1)b* - 1).
=0

Lemma 2.4: There exists an integer k, such that for all k > k, the sets
Q(0, bk - 1), Q®*, 2b* - 1), ..., (b - 1B, B**! - 1) are pairwise dis-
joint, except possibly for adjacent pairs.

Proof: The maximum value of any element in Q(db*, (d + 1)b* - 1) is at
most (d + 1)b* - 1 + M, (k + 1), where M, = max {f(d, §)|0 < j < k} and the
minimum value of any element in Q((d + Z)bk, (d + 3)b* - l) is at least
(d + 2)b*. Because of assumption (b), there exists k{ such that f(d, j) <b?/2
for all j > k| and there exists kj, >2k{ such that f(d, J) <b?/2 - M, (K + 1),
whenever k, >k/, where ’

My, = max { f(d, §)]|0 < 4 < k§}.

Therefore, X

k kg ko
Zf(dj, J) = if(dj, J) + Z fd;, §) + Z fd;, 9)
J=0 J=0

F=ki+1 J=ke+1
k
<My (k§+ 1)+ Y, b2 - My (k§ + 1) (K = ko)
j:k",'f'l

k .
< Y, b7/2 < b* for all k > K,
J=ki+1
so, in particular, Mk(k + 1) < b*. Hence,
(d+ Db* = 1+ Mk +1) < (d+ 2)bF
whenever k > k,, which completes the proof of the lemma.
b-1
Now D(b¥*' - 1) = ; p(dp*, (d + 1)p* - 1) - @, where @ depends on the
=0

size of the intersections of the sets
Q, b* - 1), @k, 2bF - 1), ..., (® - 1bF, P - 1).
Define
Agx = lQ(db*, @+ Dp* - 1) Nad + 1b*, ((d+ 2)p* - 1), 0<d<b-2.

Using Lemma 2.4 and Equation (2.3), we obtain
b-1
DE** - 1) = BDF - 1) = DA, ., k2 K. (2.5)
d=0

Let
b-2
Ay = DOF - 1)/b% and €, = 3 A, /BT, K 2 k.
d=0
Then 2.5 can be rewritten as

Aper = Ap = €.

Therefore,
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Arer — A = -
A = Ay = ~€x s
Ako'”' - Ako = _ekn

and by telescoping, we obtain
k

Apsr = Ay = D €50
J=ko
Replacing k + 1 by k yields
k-1
Ay = Ay =) e, k2 k. (2.6)
J=ky
k-1 k
Obviously, 1/pk L4, £1 and Zsj = Ak0 -4, <4, <1. Thus Zej is a
0
7=k J =k

series of nonnegative terms bounded above by Akn, hence 1is convergent. Let

©

L= 4y, - D€ 2.7)

J=ko
(We have just shown that 0 < L <1). Then, (2.6) yields

A= L+ D e, k2 ks
=k

Ay = L+ o(1). (2.8)

Hence

D(b* - 1) = Ib* + o(D5). (2.9)

Using (2.3), (2.4), (2.9), and recalling the definition of the A, , and the
€x, we have ’

d-1 d-2
D - 1) = )] D(eb*, (e + DB* - 1) =) Ay
ec=0 c=0
d-1
= (I + o(b%)) + 0B " tey) = dbFL + 0 (BY);
i.e., ¢=0
D(db* - 1) = db*L + o(b¥). (2.10)

k .
Now let 7 =:E: dij be any nonnegative integer. Then

Jj=0 k J
D(Z:odjb>
J:

D(n)
KON, Ld
D(db* - 1) + D(dkb , z:djb> - q,

i=o
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where ¢ is the number of elements that the sets

x \
d,p* - 1) and Q(dkbk, Zdﬂ)
=0

have in common. Therefore, if n is sufficiently large, then by using (2.10),
(2.2), and the definition of the Ay, we have

k-t . k=1
D(n) = db*L + o(B) + D(Zdjv“) +o®") = 4L + p(Zdﬂ) + o).

Ji=0 J=0
t
Applying the same reasoning to the quantities D<:E:Jjb§ » kg £t <k -1, we

eventually obtain i=0
k \ ko=l ) k ]
D(n) = L( }: dij> + D(Z dij> + Z o)
i.e., J=ky i=0 J=k,
ko-1 A ko—1 |
D(n) = L( - 5: dij) + D( dJ.b"’) +o(n).
=0 J=0

Dividing both sides of this equation by n yields
D(n)y/n =L + o(1),
which proves the density of R is L.

Remasrk: It should be noted that Equation (2.2), and therefore the above
proof of Theorem 2.2, breaks down if we 1lift the condition f(0, J) = 0.

A particular case of Theorem 2.1 of interest occurs when we assume that f
depends only on d:

Conollarny 2.11: If f(d) is an arbitrary nonnegative function of d, 1 < d
< b -1, and f(0) = 0, then the density of R exists and is equal to L, where
L is defined as in Equation (2.7).

We also easily obtain the following two corollaries to Theorem 2.1:

Cornollary 2.12: L < 1 if and only if the function T(n) is not one-one.

Proof: We have

L=Ay - 9. €5 =4 -9 ¢, for all k 2 k,
=%k, J=k
where k, is defined as in Lemma 2.4. If T(x) = T(y), * # y, and k is such
that kK > k, and « < b* - 1, y < b*¥ - 1, then, since 43 = D(P* - 1)/b*, it
follows that L < 4, < 1. If T is one-one, then it follows from the defini-
tion of the 4; and the g, that 4, = 1 and g, = 0 for all k, so L = 1.

Corollary 2.13: If f(d, §) = f(d) depends only on d and if f(0) = 0 and
f-1) # 0, then [ < 1.

Prood: Let f(b - 1) = e > 0. Then T(* - 1) = T((B- 1P} + (b-1)p* 2
+ oo +b-1) =P -1+ ks.
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r .
Now, if k is such that ks - 1 - f(1) < b and n =Zdij satisfies T(n) =
Ji=0

ks - 1 - f(1), then n < b* since T(n) > n. Hence T(P* + n) = T(*) + T(n) =
bk + £(1) + ks = 1 - f(1) = b* = 1 + ks = T(b* - 1). Therefore T is not one-
one, so L < 1 by the above corollary. If there is never any # which satis-
fies the equation T(n) = ks -~ 1 - f(1), then almost all integers of the form
ks - 1- f(1), k =1, 2, 3, ..., do not belong to ®, hence, C has positive
density, so L <1 in this case also.

Remark: The problem posed in [1] is now an immediate consequence of the
above corollary.

More generally, it seems to be true that if f(d) is not identically O and
f(0) = 0, then we again have [ < 1. We let this statement stand as a conjec-
ture. Note that the hypothesis f(0) = 0 is essential; for example, if [ is
any nonzero constant, then T(n) is strictly increasing and therefore L = 1.

There is another question which can be raised about the value of the den-
sity L: must one always have L > 0 under the hypotheses of Theorem 2.17?
Again, the proof of this result, if true, seems to be elusive. Since

L =4 -y e; for k 2k,
j=k
we see that L = 0 if and only if Ay = 0(l), which means that the function
T(n) must be very far from being one-one.

3. EXISTENCE OF THE DENSITY WHEN £(d, 7) = 0(b7/5% log? J)

The main drawback to Theorem 2.1 is the condition f(0, J) = 0. It seems
to be difficult to prove that the density of Q@ exists if we assume only that
f(d, §g) = o(b?) for all digits d. On the other hand, it also seems to be
difficult to find an example of an image set ® which does not have density
under the latter assumption on f, so that the statement that ®R does have den-
sity under this assumption will be left as a conjecture. However, the fol-
lowing weaker result does hold:

Theorem 3.1: If f(d, §) = 0(b; /3% log? ) for all d, then the density of
R exists.
k .
Proof: Letting n = Zdjba, we have
k=0
S(n) =) 07 /5% log? j) = 0(B*/K? log? k). (3.2)

i=0
Now if r < s <t (r <¢t) and s < bk“, then, letting D and Q be the same as
in the proof of Theorem 2.1, we see that

D(r, t) = D(r, s) +D(s + 1, t) - |Q(r, )N Q(s + 1, £)].
Hence, by (3.2),
D(r, t) = D(», 8) + D(s + 1, t) + 0(b*/k? log? k). (3.3)

In particulr, if » = 0, ¢ = b*"! - 1, and t = b* - 1, then
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D(b* - 1) = D0, ¥ = 1) + DB*7L, BF - 1) + 0(B* "/ (k - 1)? 1og?(k - 1)).
Similarly, we see that
D7 - 1) = D0, b9t - 1) + DY, BT - 1) + 0(P9" /(g - 1)? log?(q - 1)),
1<g<k-1.
Using the two latter equations and (3.2), we obtain
D(* - 1) = D) + DA, b - 1) + -+ + DB, BT - 1) (3.4)
+ e + DR, PR - 1) + 0b%/K? 1log? k).

Let us now consider the quantity D(dbk, (d + 1)b* - 1) . From (3.3), we
have

p(dv*, (d+ 1)b* - 1) = D(db*, db*) + D(db* + 1, db* + b - 1)
+ D(db* + b, (d + 1)b* - 1) + 0(b*/k? 1log? k).
A second application of (3.3) yields
D(db*, (d + 1)b* - 1) = D(db*, db¥) + D(db* + 1, db* + b - 1)
+ D(db* + b, db* + b% - 1) + D(db* + b2, (d + 1)b* - 1)
+ 0(b*/k? 1log? k),
and by repeatedly applying (3.3), we eventually obtain
D(db*, (d + 1)b* - 1) = D(db*, db*) + D(db* + 1, db* + b - 1) (3.5)
+ eoo + D(d* + BT, db* + BT - 1)
4+ oeo 4+ D(AP* + bR, db* + bR - 1) + 0(bX/k log? k).
Since all integers x satisfying
db* + p? <x < dp*F+ b9t -1 (0<qg<k-1)

have the same number of leading zeros, there is a one-one correspondence be-
tween the elements of Q(db* + b?, db* + p9™! - 1) and Q(9, p?*! - 1), i.e.,

D(db* + b7, dp* + B9t - 1) = D(BY, B! - 1).
Using this fact, (3.5) becomes

D(db*, (d + 1)b* - 1) = D(0) + D(1, b - 1) (3.6)
+ oeee + DY, PR - 1) + 0BF/K 10g? k),
and (3.4) and (3.6) imply that
p(db*, (d + 1)b* - 1) = D(b* - 1) + 0(b*/k log? k). (3.7)
Now, from (3.7),
D(P**Y - 1) = DBk - 1) + DK, P*FE - 1) + 0(B*/k? log? k)

D(b¥ - 1) + D(b¥, 2b* - 1) + D(2b*, P**! - 1)
+ 0(b*/k* 1og? k)

2D(b* - 1) + D(2b*, b**Y = 1) + 0(b*/k log? k).

By repeated application of (3.7), we have
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D(*Y - 1) = BD(* - 1) + 0(b*/k log? k). (3.8)
Letting 4, = D(b* - 1)/b*, (3.8) becomes
**A, 0 - b, = 0(b* /K 1log? k)
and therefore
Apgr = Ay = 0(1/k log? k).
k
Since ZO(I/j log? 4)

Jj=0

0(1/1og k), there exists a constant L such that

Ay = L + 0(1/1og k). (3.9)

k k
Let n = dklb Yo dkzb * + --- be any integer, each d, # 0. Then
J
k
D(n) = D(dy b = 1) + D(dy, b, n) + (6" /&2 1og? k).
By the same reasoning used to obtain (3.8), we see that

D(dklbk‘ -1) dle(bk‘ - 1) + 0(p™ /k, log? k).

Therefore, by (3.9), we have
D) = dy B (L + 0(1/1og k) + O(b*! /K, Log? k,)
+ D(dklbk‘ , dk‘bk‘ + dkzbk2 + o0,
Since dki # 0 for any j, we know that
D(dy b, 4y B + dy B2+ -0) = D(dy, b + -++)
[c.f. the reasoning applied between equations (3.5) and (3.6)]. Hence,
D(n) = dklbkl(L + 0(1/log k;)) + o(bk‘/k1 log? k;) + D(dkzbkz + o).
Continuing in this manner, we have .
D(n) = nL + O(bk‘/k1 log? kl) + ZE:O(bj/log J) = nL + O(bklllog kl).
This last equation shows that the dé;Z;ty of ® is L, q.e.d.

Remark I: This theorem, in contrast to Theorem 2.1, has the drawback that
no formula for the density of R has been derived.

Remark IT: It is interesting to note that there exist sets ® which do not

have density under the assumption that f(d, §) = 0(7). For example, let
fld, j) = 0 if J is even and f(d, j) = b? if j is odd. Evidently,

k-1 . k-1 .
TGk+§:@H>=bk+2:@H44#+b“2+~-+b22#
Jj=0 J=0

if k is odd, and
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k-1 . k-1 .
T(bk+2djbd> =k 4y &b + PP e b
j= j=0

i=0
if k is even.

Therefore, the number of integers between b* and 2b% in ® if k is odd is
at most 1 + b*¥"2 + b*¥™* + ... + b, and the number of integers between b¥ and
2b* in ® if k is even is at least b* - p¥71 — k73 _ ... _ b, Hence, if we
let. § and A denote the lower and upper density of R, respectively, we see
that

8§ <1/b* + 1/b* + 1/b® + +++ = 1/ (B® - 1)
and

A>1-1/b-1/b% - 1/p% - +++ =1 - p/(B* - 1).
Since 1 - b/(b%2 = 1) > 1/(b? - 1) when b >2, it follows that ® does not have
density if b # 2.

It is also interesting that we can obtain examples in which the set ® is
of density 0 if f(d, j) = 0(b?). For example, if b = 10 and f(d, §) = O if
d# 1 and f(d, j) = 8 +107 if d = 1, then no member of ® has a 1 anywhere in
its decimal representation, and the set

k
n ={Edj10'7, d; # 1,0 5jsk}
i=0

is a set which is well known to have density O.

Cornollary 3.10: 1If f(d) is an arbitrary nonnegative function of the dig-
it d, then the density of ® exists.

ACKNOWLEDGMENT

The author wishes to thank her thesis advisor, Professor Eugene Levine,
of Adelphi University, for the guidance received from him during the prepar-
ation of this work.

REFERENCES

1. "Problem E 2408," proposed by Bernardo Racomon, American Math. Monthly,
Vol. 80, No. 4 (April 1973), p. 434.

2. "Solution to Problem E 2408," American Math. Monthly, Vol. 8L, No. 4
(April 1974), p. 407.

Rt



MATRICES AND CONVOLUTIONS OF ARITHMETIC FUNCTIONS
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1. INTRODUCTION

The purpose of this paper is to relate certain matrices with integer en-
tries to convolutions of arithmetic functions.

Let n be a positive integer, let 0, B, and Y be arithmetic functions (com—
plex-valued functions with domain the set of positive integers), and let a[n]
denote the 1 x 7 matrix [a(l) a(2) ... a(n)].

We define the n x n divisor matrix D, = (dy) by dy =1 if 2]j, dy = 0
otherwise. Both D, and its inverse, D;l, are upper triangular matrices. The
arithmetic functions Vi, O, and € are defined by v,(n) = nk for k = 0, 1, 2,

o(n) = z;d, and €(n) =1 if n=1, e(n) = 0 if n > 1. We also consider the
din

divisor function T, the Moebius function i, and Euler's ¢-function. We ob-
serve that

Vorn1D = Tia1s (1)
Vi1 D = Opns 2)
€105 = Vinls (3
\)1[,,]]);1 = $(n]- (4)

These matrix formulas, which can be used to evaluate arithmetic functions as
in [2], are consequences of the following equations which involve the Diri-
chlet convolution, *,.

Vo*pV, = T, an
V kv, = 0, 2"

E#pl = U, € = Ud#pVg, 3"
vkl = ¢, dEpv, = V. 4"

As an illustration, consider matrices Dy and Dgl which appear below.
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Any omitted entry is assumed to be zero. By (2),

[123456]D

[0(1) 0(2) o(3) a(4) a(5) a(6)],

so that 0(6) = dzljd = dzl:\)l(d) (V1%pV,) (6). And by (4),
6 6

[123456]D51

[¢(1) ¢(2) ¢(3) ¢(4) ¢(5) ¢(6)1,

so that ¢(6) =1 -2 -3+ 6 (v, *,1) (6).
These observations lead us to define and illustrate matrix-generated con-
volutions.

2. MATRIX-GENERATED CONVOLUTIONS

Suppose that G = (giJ) is an infinite dimentional (0, 1)-matrix with 9:
1if 2 = 4 and 95 = 0 if © > j, and that the 1's in column #n of G appear in
TOWS 7y, Moy eeey nk (n, <m, < ... <nxp=mn). We say that G generates the
convolution #*, defined by

k
(@#8) () = D d(n)B(ey1_,)> 7= 1, 2, 3,
v=1

Clearly, ®*; is a commutative operation on the set of arithmetic functions.
We denote by G, the n x n submatrix of G = (91 Ywith 1 <72 <n,1<J<mn.
The convolutlons in Examples 1-4 below are deflned and referenced in [3].

Exampfe 1: The matrix D = (d,;), with dy; = 1 if 2|, di; = 0 otherwise,
generates the Dirichlet convolution #%,. D, is the n x n divisor matrix, and
the set {#n,, n,, ..., ny} is the set of positive divisors of #.

Example 2: The unltary convolution is generated by the matrix U = (u;;)
with U = 1if £ £ 4 and z[g and 7 and J/7i are relatively prime, u;; =0
otherwise.

Exampfe 3: The matrix C = (¢;;) defined by c;; =1 if < <j, ¢y =0
otherwise, generates a convolution %, related to the Cauchy product. Since
{nys nps vouy ny}={1, 2, ..., n}, we have

(ax;B) (n) = a()B(n) + a(2)B(n - 1) + --- + a(m)B(D).

Example 4: TFor a fixed prime p, let the matrix L = (Zij) be defined by
li5 =14if £ £ j and p f (J 1), l;; = 0 otherwise. The convolution #; gen-

erated by L is related to the Lucas product. The entries shown in the matrix
L,, for p = 3 are easily determined by the use of a basis representation cri-
terion given in [1].



19781 MATRICES AND CONVOLUTIONS OF ARITHMETIC FUNCTIONS 329

1 1111111111111
110110110110 1
100 100100100

1111110001 1
11011000 0 1
10010000 0

I - 11100 00 0
14 11 0 0 0 0 O
(= 3) 1 0 0 0 0 O
111 1 1

110 1

10 0

11

1]

3. A GENERAL MOEBIUS FUNCTION

In view of (3'), we next define a general Moebius function U, by Vox U =
€. It is immediate from G;'G, = I, (the n x n identity matrix) that

if G,'=(F;;) theng;; = u(f) for g =1,2,...,nandn=1,2,3,... (5)

For example, the elements in row one of D! are Hp(1) = (@), w2, ..., u(6)
(in that order). The values of the unitary, Cauchy, and Lucas Moebius func-
tions given in [3] agree with corresponding entries in row one of U,, C,, and
L,, respectively. Property (5) implies E[n]G;1 = Ug[n]» which is a general-
ization of (3).

The following three properties are related to the Moebius function and are
stated for future reference.

a%x,€ = o for all arithmetic functions a. (6)
%; 1s an associative operation on the set of arithmetic functioms. (7
If g,; = 0 then g;; = 0, where G;' = (F;), n=1,2,3, .... (8)

Property (6) is equivalent to
gy =1 forj=1,2,3,.... 6"

For (6') clearly implies (6); and if g,, = 0 for some n, and o is such that
a(n) # 0, then (axge)(n) = 0 # a(n).

Example 5: Let the matrix P = (p;;) be defined by p,; =1 if < < J and 7
and j are of the same parity, p,; = O otherwise. Evidently, (6') and (6) do
not hold here. For example, (Vo#p€)(2) =v,(2)e(2) = 0 # v(2). Although €,
defined by €’(1) = €'(2) = 1, €'(n) = 0 if n > 2, satisfies axpe’= o for all
arithmetic functions o, €’ is not related to matrix multiplication in G;lGn =
I, in the desirable way that € is.

We note that if (6) and (7) hold then we can apply Moebius inversion in
the form o = v *,B iff B = W *,0 [as illustrated in (4')]. It is clear that
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(6) holds and well known that (7) holds for the convolutions in Examples 1-4;
so (8) holds as well, as can be verified by direct computation or by applica-
tion of the following theorem.

Theonem 1: Property (7) implies property (8).

Proof: Assume that (8) is false. Let j be the smallest positive integer
such that for some ¢ we have g,, = 0 and g;; # 0; let this j = n. Consider

the largest value of ¢ such that g;, = 0 and g;, # 0; let this < = ¢. It

follows by the assumptions and GnGn_l = I, that g,, =1, g,, =0, 7, #0,

there is an integer r such that ¢ <»r» <#n and g,, =1, and g,, = 1. Since

re {ny, ..., ng} and 9:» = 1, then a(¥) is a factor in some term of
((oxgB)%,Y)(n) .

But no term of (a*G(B*GY))(n) has a factor a(t) because t ¢ {nl, ey nk}.
Therefore, (7) is false and the proof is complete. B

L. THE MAIN THEOREM

We now define some special functions and matrices leading to the main re-
sult in this paper. Assume that the matrix (G generates the convolution %
and define the arithmetic functions 4 and B by

A@) =D g, (@) and B() = D7, ().
i=1

=1
Then for n =1, 2, 3, ..., we have
O(‘[n]Gn = A[YL] (9)
and
Bs1Gn = Blnl- (10)

Define G, = (s;;) to be the n x n matrix with s;; =1 if Z=n, and J = 74, _,,
v=1,2,...,k, 8;;= 0 otherwise. Note that Gj is a symmetric (0, 1)-matrix
with at most one nonzero entry in any row or column. If M? denotes the trans-
pose of a matrix M, then

(axgB) (n) = oc[ﬂ]G;?(B[n])t (11)
and
(4#GB) (n) = A[n) Gy (Brn1)? - (12)
The matrix Gnt is of special interest and can be characterized as follows.
Column 7, of GnGﬁ equals column #y4;_, of G,, for v = 1,2, ...,k;
the other columns (if any) of G,G. are zero columns. (13)

Although GnG;f is symmetric (for all positive integers ») for the matrices de-
fined in Examples 1-5, GnG,‘f is not symmetric for G, = E, given below.
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1 1 0 0 00 0 0 1
E,=10 1 1f, EJ=10 0 1|, EgES=1|0 1 1
0 0 1 0 1 0 0 1 0
Theorem 2: The matrix GnGﬁ is symmetric for m» = 1, 2, 3, ... if and only
if (axzB) (n) = (4#;B) (n) for all arithmetic functions o and B, and for all
positive integers #.
Proof:
1. Assume that Gnt is symmetric for » = 1,2,3, ... . This and the sym-

metry of G imply that (G,G5)° = G,(G5)*. 1In view of (9), (10), (11),
and (12), we have

(4#:B) () = A[n) Gy (Brn1)*

0 (n]GnGE(Bra1GRY)"

= 0, G5 (@ (Bray)"
a[n]Gf(B[n])t

(0xgB)Y (M), m=1,2,3, ....

2. Assume that there is a positive integer » such that Gnt is not sym-
metric. Then G,Gf # (G.G5)? implies that G,G5(G,Y)Y # G5 and that
(A*%zB) (n) = a[n]Gnt(Gzl)t(B[n])t and (ax;B) (n) are not identically
equal. Therefore, there exist arithmetic functions & and B such that

(A%;B) (n) # (axgB) (n).
This completes the proof of the theorem. @
Next, we give an appiication of this theorem.
Example 6: Since P,PS is symmetric for m = 1, 2, 3, ... for P in Example

5, we can apply Theorem 2 with n = 2t -1 (for t a positive integer), a = v,,
B(2k-1) = k for k=1, 2, ..., t, to obtain the identity

t t
D v, = ) Qk-1)(E-k+1),
k=1 k=1

which can be expressed in the form

t t-1
3= D v (k) + P k(2K+1).
k=1 k=1

5. A GENERAL EULER FUNCTION

Assume that the matrix G generates the convolution #;. In 83, we defined
a general Moebius function Hg and obtained‘a generalization of (3). 1In this



332 MATRICES AND CONVOLUTIONS OF ARITHMETIC FUNCTIONS [Aug.

section, we define a general Euler function ¢, for G such that *; satisfies
(6) and (7), and derive a generalization of (4).
First, we consider the property

GnG;f is symmetric for m = 1, 2, 3, ... (14)
and some preliminary theorems.
Theorem 3: Property (7) implies Property (14).
Proo§: Assume that G,GS = (h;;) is not symmetric.

Case 1: Suppose that column w of G,,G;f is a zero column and that hy, =1
for some q¢ € {1, 2, ..., n}. By (13), gy, = 0 and q € {n,, ..., ny); say q =
Ngs1-t- Then gun, =1 = gpon = gneny and ((axgB)%e7Y) (1) has a term with fac-
tor a(w); but (OL*G(B*GY))(VL) has no term with factor a(w) and (7) is false.

Case 7: Suppose that hy,,,= 0 and #An,n, = 1, where n; and n, belong to
{nl, ey nk}. Then guynyyr-r = Os Inpnper-o = Ls @nd gn,n = 1 = gy, There-
fore, (0#B) (My4+,-,)Y(ns) has a term with factors a(n,) and Y(ns), but
o(ny) (Bx;Y) Mg +1-,) has no term with a y(ng) factor. Again, (7) is false. B

Theonem 4: Property (14) implies Property (8).

P/Looﬁ: Assume that (8) is false and let ¢ and » be defined as in the
proof of Theorem 1. Column t of G,GS is a zero column (since Jen = 0); but
a 1 entry appears in row t of G,GS (because gip =1 =gu,), so that Gnt is
not symmetric. @

We note that (7) implies (8) and (14), and that (14) implies (8); there are
no other implications among the properties (6), (7), (8), and (14) (as will
be shown in §5).

It follows from (9) that A = vy*;a. If G and %; satisfy (6) and (7), then
(by Theorems 3 and 2) we have (ax;B)(n) = (ox;Vy*%;8) (n) for all arithmetic
functions o and B and for n = 1, 2, 3, ... . Therefore, we have

B(n)

(Vo%;B) (1) ;
and
B(n)

1]

(B*;u;) (1) (15)

for all arithmetic functions B and for n =1, 2, 3, ... follows by Moebius
inversion.

Theorem 5: 1If properties (6) and (7) hold for G and #;, then
—g—_nv” = uG(nk-!-l—u)) v = l; 2, ceey k.

Proof: Define the arithmetic functioms B,, v =1, 2, ..., k,by B,(n) =1
if n = n,, By(n) = 0 otherwise. Property (15) implies that

n k
D BT, = 9 BUING (rerr-y) (16)
i=1 v=1
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for all arithmetic functions B and for n = 1, 2, 3, ... . Let

G = %, in (16)
to obtain g, , = He(Mg+1-p)3 this is valid for v =1, 2, ..., k. @

For G and *; which satisfy (6) and (7) we define the general Euler func-
tion ¢, by ¢; = V *,U,. We can now generalize (4).

Theonem 6: 1If G and *; satisfy (6) and (7), then vl[n]G;l = ¢gn]-

Proof: This is a direct comsequence of Theorem 5 and Property (8) (which
follow from (6), (7), and Theorems 3 and 4). B

Other general functions such as T; and 0; can be defined analogously.

6. REMARKS

First, we show that there are no implications among properties (6), (7),
(8), and (14) except (7) implies (8) and (14), and (14) implies (8). 1If Ry
is as shown and R = (r;;) is defined for Z>5and § >5by r;; =141f 2 =g
or 7 =1, r;; = 0 otherwise, then R satisfies (6) but not (7), (8), and (14).
The matrix P defined in

11
1

e
O

Rg = Mg =

= o
=
o oR
"
e
e

Example 5 satisfies (7), (8), and (14) but not (6). A matrix M = (m;;) which
satisfies (8) but not (7) and (14) can be defined for Z>5 and j>5 by my; =1
if ¢ = §, my; =0 otherwise, with My as shown. If K, is as shown and K= (k;;)
is defined for ¢ >10 and J§>10 by k;; = 1 if ¢ = j, k;; = 0 otherwise, then
(14) holds, but (7) is false since, for example,

(V%9 ) %,V,) (10) # (V% (V%)) (10).

1 1 1 1
1 0 0

10
1

HOOOK
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Properties (6), (7), (8), and (14) all hold for the matrices (and generated
convolutions) in Examples 1-4 as well as for those defined in our concluding
example.
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A

Example 7: Let F = {1, 2, 3, 5, 8, ...} be the set of positive Fibonacci
numbers. Define F = (fi;) by fi; =1if 2 = J or if 2 < j and 2 €F, jzj =0
otherwise. F can be replaced by any finite or infinite set of positive inte-
gers which includes 1, and properties (6), (7), (8), and (14) will be satis-
fied. If F is replaced by the set of all positive integers, we obtain the
matrix C in Example 3.

et
F
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A NEW SERIES

JAMES M. SUTTENFIELD, JR.
Apopka High School, Apopka, Florida

There is a series very similar to Fibonacci's that also displays some in-
teresting properties. An article by Marjorie Bicknell [1] in The Fibonaceti
Quarterly (February 1971) casually mentions the series as a result of more
investigation of Pascal's Triangle. The series is 0,1,1,1,2,3,4,6,9, 13,

Each term is found from the relationship

nel = Fn + Fp_s.
The series resulted from my research in the Great Pyramid of Gizeh, where
the base-to-height ratio is 7/2 and the slant height of a side to the height

approximates V9. ¢ represents the series limit of the Fibonacci Series (see
Figure 1).

BASE _

)

BASE
Fig. 1

One of the properties of the new series presented in this paper is that it
better fits into the design features of the pyramid than does the accepted
fact that Fibonacci's Series limit is intended to be decoded.

The series limit of the new series is represented by the symbol Y and rep-
resents the number 1.46557123..., which will be used as

¥ = 1.465571232
in this paper.

Referring to Figure 1 again, the ratio of slant height to height is much
better represented by the following relationship,

s h. _ /1 -1n Y
ho In ¢

This relationship yields a slant height which is only 1.67 inches from the

335
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measured values. Fibonacci's Series limit being employed yields a slant
height that is 2.7 inches greater than the measured value; the new series
limit yielding 1.67 inches less. This is not to dispute the existence of
the Fibonacci Series limit as being intended, but to confirm that both ex-
pressions are intended by the Designer of the Great Pyramid.

Fig. 2

Figure 2 shows one other place where the new series limit is found in the
Great Pyramid. From the corner angles the outside edges of the Pyramid that
follow the diagonals form the series limit divided by two as shown and ex-
pressed in radian measure.

To find any number in the new series, the recursion formula

Fiey = Fy + Fioy ey
can be used, where
Fﬁ = 0, Ff = F; = Fj =1,

*
. n+l P P
The ratio, E o reaches a definite limit as one uses latter numbers of
n

the series. This ratio is

F*
Y = lim —ZFL = 1.46557123... . (2)

Lim g
Further investigation reveals that
i -yt -1=0 (3)
and o )
ne — % *
¥ = P°FY + an_z +F_ . (4)
Equation (3) reveals that ¥ is a root of the equation
x*-x*-1=0 (5)
The roots of (5) are of considerable interest. These are easily verified to
be the true roots of (5). Let the roots be o, B, and Y.
o= (6)
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8= (1 V) <7>
v=-L (- o o1 8

2y?

Roots (6), (7), and (8) will be used in (4) to develop a formula for Fr.

o™t = oPEF 4+ oFfF_, + F¥_, 9)
B"*Y = BPF} + BFE_, + F¥_, (10)
YU = YPEE 4 yFE o+ Fr_, (11)
Solving,
a™*tl o 1
B'ﬂ"‘l B l
YRy 1
F¥ = (12)
a? a 1
B? 1
v2 Y
yielding,
F* _ O{l‘n-f'l(B _ Y) + BT’L+1(,Y _ OC) + Y”+1(OL _ B) (13)
n
o® (B - ) + Ry - + ¥3(a - B)
which reduces to
n+l - n+l _ n+l _

n

-7 V31

Equation (14) successfully computes Eﬁ. The algebra gets fairly involved
for higher numbers of the series, but the results agree with the established
series.,

Geometrical considerations are next. If one considers the relationship

-l—+i+i=1p, (15)

Pyt
a line of length ¥ can be thought of as divided into three parts as indicated
on the left side of (15).

4 L 1
‘b' 1 '1‘ i w

L]
Line of Length ¥
Fig. 3
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The result of (15) also leads to another interesting fact. The parts of the
line in Figure 3 can be used to establish a proportion

1.1 1
iz (16)
VYR
which is better represented by the proportion
p2iy:l (17)

The proportion in (17) established the sides of a special triangle which will
be named the P2::1 triangle.

W2
Y2:P:1 Triangle

Fig. &4

The 11)2:1,():1 triangle incorporates an angle of 120° g5 its largest angle. This
fact suggests that it can be placed into the vertices of the regular hexagon.

I L - |

S~

Fig. 5
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Figure 5 represents a unit hexagon with six of the dﬂ:w:l triangles at the

. L L L .
vertices such that —:—=:—5 proportions are maintained in each.

UIRTERRTE

C
o,

Using Figure 6, we see that

. _sin C _4{@
sin 4 = D 20 (18)
and
n= 3L 19)
A"
The area of each small triangle in Figure 5 then is
2
area = ;-L'ZE% = XEE;, (20)
29 2y 4y
and for the total area represented by the six triangles
2
area total = éﬁg%—; (21)
2y
the area of the hexagon
2
area hexagon = éﬁ%@__ (22)
A comparison of (22) to (21) yields
area hexagon _ ws (23)

area six triangles

This further indicates that the area of each small wz:w:l triangle is given

by area hexagon

6>

area of small Y?:y:1 triangle = (24)
Rearranging equation (3),

PP o=yt +1 (3

gives the suggestion of volume as indicated in Figure 7.
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i
-—

P? 1

—

¥ ¥
Fig. 7
The next property of the series limit is stated as a theorem.

Theorem: Given any triangle, choose any one of its sides and divide the
length of that side by the factor ¥, the resulting length by ¥; and the final
resulting length by Y, so as to have three new lengths from the original side
of the triangle. The three resulting lengths, when placed inside the trian-
gle parallel to the side chosen will create equal perpendicular distances be-
tween the longest resulting length and side chosen as well as the shortest
length of the vertex opposite the chosen side.

h,

h

Fig. 8
Figure 8 represents one orientation of a given triangle with a side L. It

is to be shown that
A
11)3

By similar triangles the height of the topmost triangle is

h, = (25)

&, the second is

h 2 v
—; the third is wu It is easily seen that
n-t oo,
or T
n(1 - $)=hv. (26)



1978] A NEW SERIES 341

From the identity in (3),

p -y -1=o0, 3)
then
1= 9% - y?
and
1 1
= =1-=, 27
v v N
Substituting (27) into (26) yields
h
h, = ﬂ;g. (25)

A similar analysis can be used to prove the other orientations of the trian-
gle.

Clarles Funk-Hellet [3], a French mathematician, constructed an additive
series similar to Fibonacci's by replacing the second one in the series by a
five and adding as in the original series. The series was developed into 36
rows, each row containing 18 entries. Table 1 illustrates Funk-Hellet's re-
sults in part.

Row 2 of the table contains the 1/¢, 1, ¢, and ¢2 values, while the 14th
entry of the 24th row yields a very precise value for m. The 7th column rep-
resents the one-eighth divisions of a circle. Other results were found by
Funk-Hellet concerning other matters.

We construct a similar series using the series concerned in this paper by
replacing the third one by six and adding as in the original series. Table 2
shows some of the results. This table was constructed in the same manner as
Funk-Hellet's.

The 10th, 1lth, and 12th entries of row 1 are values for 1/5¢% 1/5y?, and
1/5y, respectively; the l4th through 18th places represent 2V, sz, 293, 29",
and 2Y°. The last entries of the 5th row give wvalues for 1/¢°, 1/y*, ...,
/v, 1, ¥, ...,w“, Y. The 9th entry of the 26th row represents ¢ - 1/2; the
9th entry of the 29th row represents one-half the value of twice the height
of the Great Pyramid less its base. The 6th entry of the 31lst. row yields the
value for the log e.

One might wonder why Funk-Hellet chose to add the number five in his table
and six was chosen in the newest case. It could be because the pentagon re-
lates the Fibonacci limit and the hexagon relates the Y-number 1limit. For
whatever reason, the chosen numbers in conjunction with the related series to
each yield some unexpected results.

As a final note:

o, =¥ = %[4(29 +3 ./3‘@)] Vi 4 %[4(29 +3 /3"/§I)]'1’3 +% (6)
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SOME PROPERTIES OF A GENERALIZED FIBONACCI SEQUENCE MODULO m

MARCELLUS E. WADDILL
Wake Forest University, Winston-Salem, NC 27109

The Fibonacci sequence reduced by the modulus m has been examined by Wall
[1], Dynkin and Uspenskii [2], and others. In this paper we investigate the
generalized Fibonacci sequence {Kn}, where X, = 0, K, = K, = 1, and

K, =K

+ K, ,+K, 5, n>2. )

n=-1

We reduce {Kn} modulo m, taking least nonnegative residues.

Deginition: Let h = h(m), where h(m) denotes the number of terms in one
period of the sequence {Kn} modulo m before the terms start to repeat, be
called the Zength of the period of {k,} (mod m).

Example: The values of {K,} (mod 7) are

0, 1, 1, 2, 4, 0, 6, 3, 2, 4, 2, 1, 0, 3, 4, 0, 0, 4, 4, 1, 2, 0, 3, 5,
1, 2,1, 4,0, 5, 2, 0,0, 2, 2, 4, 1,0, 5, 6, 4, 1, 4, 2, 0, 6, 1, O,

and then repeat. Consequently, we conclude that A(7) = 48. Note that K,g =
1, K, = K,g =0, K, g =1 (mod 7). Hence the sequence has started to repeat
when we reach the triple 1, 0, 0. Note also that K,5; = K, = 0, K3, = Ky, =
0 (mod 7), so that the 48 terms in one period are divided by adjacent double
zeros into three sets of 16 terms each. This example illustrates a general

principle contained in

Theorem 1: The sequence {K,} (mod m) forms a simply periodic sequence.
That is, the sequence is periodic and repeats by returning to its starting
values 0, 1, 1.

Proo4: 1If we consider any three consecutive terms in the sequence reduced
modulo m, there are only m® possible such distinct triples. Hence at some
point in the sequence, we have a repeated triple. A repeated triple results
in the recurrence of X,, K;, K,, for from the defining relation (1),

Koy =Kyyy - K, - K,

Therefore, if

Kiyy = Kgpqs Kp = Kg, and K, _

1l
]

f (mod m),

then

Kooy =Kyyy ~E, - Kpy = Kgqy ~ Ky - K

8

= Ky_, (mod m)

344
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and, similarly (assuming that ¢ > &),

K
K

1

teo3 K, _, (mod m)

oy = Ky _, (mod m),

Ky gun = K, (mod m)
Kt—s+1 = Kl (mod m)
Ki o =Ky  (mod m)

1t

Hence, any repeated triple implies a repeat of 0, 1, 1 and a return to the
starting point of the sequence.

If h is the length of the period of {K,} (mod m), then clearly kK, =0,
Ky+1 = Kywp =1 (mod m). From the defining relation (1), it also follows
that X, _, =0, Ky, =1, Kj_3 =m-1, and K;_, = 0 (mod m). We now list some
identities for the sequence {Kn} which will be useful in the sequel. These
identities and their proofs may be found in [3].

Kpwp = KnKpyy + Ky ((Kp + Ky 1) + K, 0K, n22, p 215 (2)
Kpsp = Ky owKpursr * Koy 1 Kpyn + Ky 1) + Kyl oK, (3)
n>2,p21l, p+2<r<n-1;
Ln = Kn-l + Kn—z; (4)
n
1 1 Kn+1 n+1 Kn

1 0 0] = |k, L, Kpovl|, m > 23 (5)

0 1 Kn—l Ln-l Kn—z

2 3 2 =

KnKn-a + Kn—l + Kn—zkn+1 - Kn+1Kn—1Kn—3 - ZKnKn_lKn_z - l, n 2 3. (6)

The following theorem gives an unusual property about the terms which im-
mediately precede and follow adjacent double zeros in the sequence {Kn} (mod
m).

Theorem 2: 1f K = K

n n=-1

Z0 (mod m), then X3 = KZ+1 = 1 (mod m).

n=-2 =

K3,, (mod m) follows from the defining rela-
K, 1 =0 (mod m). To prove the other part,

Prood: The fact that K3_,
tion (1) and the fact that X,
we observe by (6) that

1

2 3 =
K2_ K, _, + K K, K, ,=1.

n=1"n-4

2
2 + Kn--SKYL - KnKn—ZKn—h - an—l

All terms on the left side of this equation, except Ki_z, are congruent to O

modulo m. Hence we have

K:_, =K .0 =1 (mod m).

n



346 SOME PROPERTIES OF A GENERALIZED FIBONACCI SEQUENCE MODULO m [Aug.

Theorem 3: If j is the least positive integer such that K;iy 2K; 20
(mod m), then

(a) Knj-l = Knj = 0 (mod m), for all positive integers n and

(b) if K,_; = K; = 0 (mod m), then ¢ = nj for some positive integer n.

Prnoog of (a): The proof is by induction on n. For m = 1, the conclusion

is immediate from the hypothesis. If we assume as induction hypothesis that
K ZK,; =0 (mod m), then by (2)

ng=-1 =
Kiner); = Knjay = KK + Koy 1Ky + Kjq) + Kpp 5K; = 0 (mod m).
A similar argument shows that Knj_1 = 0 (mod m).

Proog of (b): Let ¢ be such that K, = X, _; =0 (mod m). We have t > j
since j was least such that K; = K; , = 0 (mod m). If j does not divide ¢,
then by the division algorithm,

t=gg+r, 0<prc<y.
We have by (2),

Ky = Kjgup = KjgKpsy + Kjoy (Kyoy + K,) + Ko K, =0 (mod m).

But since qu = K.

ig-1 = 0 (mod m), this equation implies that

qu_zK 0 (mod m).

By Theorem 2,

K3

Gq-2 = 1 (mod m),

which implies that no divisors of m divide qu-z' Thus,

0 (mod m).

KI’
Similarly, we can show that

K

r-1

=0 (mod m).

But » < j, and so these last two congruences contradict the choice of j as
least such that

KJ = Kj—l =0 (mod m).

The following theorem shows that in considering properties about the length
of the period of {Kn} (mod m) we can, without loss of generality, restrict
the choice of m to p*, where p is a prime and ¢ a positive integer.



1978] SOME PROPERTIES OF A GENERALIZED FIBONACCI SEQUENCE MODULO m 347

Theorem 4: 1If m has prime factorization

- b1 4t t
m = pllgbz cee D%

and if %; denotes the length of the period of {XK,} (mod p:i),then the length
of the period of {Kn} (mod m) is equal to l.c.m. [%;], the least common mul-

tiple of the ;.

Proof: TFor all 4, if h; denotes the length of the period of {X,} (mod p™),
2

i

Khi_1 = Ky, 0 (mod p:i)

Ky,-p 2 Ky,41 =1 (mod p:f),

and also

= 0 (mod p;i),

s
>

B
|

=1 (mod pfi)

B
S
>

&
+
A

I

Krh,;-?. =

for all positive integers r. If j = l.c.m. [k;], it follows then that

~
.,

1"

~

1

I

= 0 (mod m),

1 (mod m).

Conversely, if % is the length of the period of {K,} (mod m), then

N
-
I

=K,_.; =0 (mod m),

1 (mod m),

Kh = Kh+1

which implies that for all <,
Ky = K,_y =0 (mod pf*),
Kp-p = Kppp =1 (mod pl*).

By Theorem 3, % = h;r; for all h; and an appropriate r;. That is, % is a
common multiple of the h;. By definition of % then, A = j, the l.c.m. [h;].

Theorem 5: If K, = K,_, =0 (mod m), then X;_, = 0 (mod m).
Proof: By the defining relation (1) and the hypothesis, we have

Ky

K., +K; , +K,_4 =0 (mod m), (7
Kt‘l = Kt_z + Kt-3 + Kt_.u =0 (mod m)- (8)

Now subtracting (8) from (7), we have
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K, , - X,_, =0 (mod m),

or
K, , = K,_, (mod m).

The next theorem gives an interesting transformation of a certain factor
from the subscript te a power in moving from the modulus m to m? when the
subscript is a specified function of the length of the period of {Kn} (mod
m). This theorem is useful in establishing the length of the period of {Kn}
(mod p?*) relative to the length of the period of {Kn} (mod p), p a prime.

Theonem 6: If h is the length of the period of (Kn} (mod m), then the
following identities hold in terms of the modulus m?.

Keps, = Kppy (mod m?), 9

Koy -1 = 8K3Z3K, ., (mod m?), (10)

Kgp-» = Kj_, (mod m?), (11)

Ken = (Kyay = SK§Z3Ky_y = Kp-p) (mod m?). (12)

Prooq of (9): The proof is by induction on s. For s = 1, the conclusion

is immediate. If we assume that
Kop+1 = Kyyy (mod m?),
then, by (2),
Kriynsr = Ken+1)an = KenarKnar + Ky (K, + Ky 1) + Ky 1Ky,

Since % is the length of the period of {Kn} (mod m), and also using Theo-
rem 3, we have

K, =K,y =Kg = Kg,., =0 (mod m).
But these congruences imply that
K;h (K, +K,_,) =Kz K, =0 (mod m*),
which together with the induction hypothesis implies that
Koriynsr = KenerKnay = KKy = K3 (mod m?),
and the result is proved.
The proofs of (10) and (11) follow in a similar manner.

Proof of (12): Using the defining relation (1) and (9), (10),.and (11),
we have
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Ko = Kopar = Kooy = Koo = (Kj o) = sKZTIK . = K7 ) (mod m?).
We return now to the question of the relation between the length of the
period of {K,} (mod p) and the length of the period of {k»,} (mod p*) where »
is an arbitrary positive integer. First, a preliminary theorem:

Theorem 7: 1If p is a prime and % = h(p) is the length of the period of
{£,) (mod p), then X/, =1 (mod p?).

Proof: If Ky

1 (mod pz), then K,fﬂ = 1 (mod pz) trivially. If K., #
1 (mod pz), then

P - -
Kpwg = 1= (Kyyy - l)(K5+% + K}?ﬁ toeee ¥ K}sz+1 + 1.
Now
Kpy1 =1 =0 (mod p) (13)
and

K ., =1 (mod p)
for any s. Therefore,
Ky +rf2+ oo +K,, +1=21+1+ ... +1=0 (mod p). (14)
Using (13) and (14), we see that
KEyp -1 20 (mod p%).
We now state the main theorem.

Theorem §: 1If p is a prime and h(p?) # h(p), then A(p®) = p” 'h(p) for
any positive integer r > 1.

Proo4: We prove the case when r = 2. The general case follows in a simi~
lar manner by means of induction. Since % = h(p) is the length of the period
of {K;} (mod p), then using (5), we have

h
1 1 1 K4+, ILpu K, 1 0 0
1 0 0 = |k, Ly Kyl 210 1 0] (mod p),
0 1 0 K,y Iy, K,/ |0 o 1

where k is the smallest sech power for which this property holds. [The se-
quence {Ln} is defined by (4).] Now also by (5),
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hp
1 th+1 th+1 th
10 0| = |&, Lip Kppo
th-l th th—z

If h(p) # h(pz), then using (9), (10), and (12), the first column of the ma-
trix on the right has values as follows:

Kyp a1 = K, (mod p?), (15)
Kypp = KP4y - PKE 23Ky, = K} _p) (mod p?), (16)
Kyp -y = PKEZ3K, -y (mod p?). an

By Theorem 7 and (15), it follows that
Kppep = 1 (mod p?). (18)
Using Theorem 7, (16), and (17), it follows that
Kyp 5 Kpyoy =0 (mod p?), 19)

From (18) and (19) we conclude that the length of the period of {Kn} (mod pz)
is hp if

>
1

=1 (mod p?), (20)

=

<+
"
PN
I

=0 (mod p?), (21)

for no t < hAp. To see that this is indeed the case, we observe that since
20) and (21) also imply that

Kt"‘l

1t

1 (mod p), (22)
K, =K,y 20 (mod p), (23)

then by Theorem 3, ¢ = hg for some g. Now assuming that (22) and (23) hold,

t hq q
11 1 11 1 Kyv, Lye, Ky 100
1 0 0/ =|1 0 0of = |k, L, Kyl =00 1 0f (mod p?)
01 0 0 1 0 Kn-1  Lp-y  Kp-p 0 0 1
Since h(p) # h(pz),
Kpor  Lner K 1 0 0
4 = |k, L, Ky | 20 1 0| (mod p*,

Knoy Ly-,  Ku_, 0 0 1
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but by (18) and (19),
AP = 4% = T (mod p?).

Since 4 Z I (mod p?) and p is prime, this implies that p divides q or p < g
and t = hg > hp. Thus hp is the len§th of the period of {K,} (mod p?).
Whether the hypothesis %(p) # A(p®) is necessary or whether h(p?) can ne-
ver equal h(p) is an open question. No example of A(p) = h(pz) was found,
yet a proof that none exists was not found either. In the event that k is
largest such that h(pk) = h(p), it can be shown that A(p*) = p* *h(p).

Theorem 9: 1f K, = K,_, =0 (mod m), then Kz 4, = K¢y (mod m) for all
positive integers s.

Proof§: The proof is similar to the proof of (9).

The example illustrates that at the end of a period, the triple 1, 0, O
occurs in the sequence {K,} (mod m). In the example, we also saw that ad-
jacent double zeros (mot necessarily preceded by 1) occur at equally spaced
intervals throughout the period and that adjacent double zeros occur three
times within the period. For one period of {Kn} (mod 3), we have

0,1,1,2,1,1,1,0, 2,0, 2,1, 0

in which the adjacent double zeros occur once (at the beginning or end) of a
period cycle. A general principle is given by

Theorem 10: 1If t is the least positive integer such that X, = K, ; =0

(mod m), then either K;y; = 1 (mod m) or Kg.,; =1 (mod m) and the length of
the period is ¢ or 3t.

Proof: Suppose K., = 1 (mod m). Then using (6) and K; ZK,_; =0 (mod
m), we have

1

2 3 2
Kth-B + Kt-l + Kt-ZKt*'l - Kt+1Kt-1Kt—3 - ZKth—th-S

Kf Kiyy = Kiyy (mod m),

since K,_, = K., (mod m). By Theorem 9,

= %3
Kaper = Kiyy (mod m)

and so we have

Kypyy =1 (mod m)

as required.

To show that Ky, 4 Z 1 (mod m) if Kiy; Z 1 (mod m) we assume the contrary
and observe that

- - = = 2
Kyoep = Kigy 512 Kypuy = Kiyy (mod m).
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Hence,
3 = 2
Kiy1 = K4y (mod m),

which implies that K,,; = 1 (mod m) since the g.c.d. (X2,,, m) = 1. This is
a contradiction of our assumption that K,,; Z 1 (mod m).

Remark: 1If K,_; =K, =0 (mod m) and K,,; # 1 (mod m), then we showed in
the proof of Theorem 10 that

K3,y =1 (mod m).
It also follows that
th+1 = 1 (mod m),

since
K2t+1 = (K§+1)3 = (Ki+1)2 =12 =1 (mod m) .
Theorem 10 and the Remark would imply that only integers n which can occur
in the sequence {Kn} (mod m) immediately preceding and following adjacent

double zeros are such that

=1 (mod m),

S
I

or

7 =1 (mod m).

1

The Remark would also imply that if n # 1 (mod m), then there exist at least
two distinct values 7n,, 1, such that

=nd =1 (mod m),

3
1 2

n

where 7n,, n, are the immediate predecessors and successors of adjacent double
zeros in the sequence {X,} (mod m).

Theorem 11: If p is prime, h = h(p), and Ky = Kty = 0 (mod p) where
t < h, then % = 3¢ and

K, + Kpyiy + Kpypy =0 (mod p).

Proof: That h = 3t is an immediate consequence of Theorem 9 since t < A.
To prove the second statement, we have by (2),
Kot = KpprKy + (Kp + Ko DK, _, + KK, , = K,K,_, (mod p) (24)

since K, = K;—-; = 0 (mod p).

Kpvor = KpyosrKe + Ky ¥+ Kpyp 1)Ky + KpytKy o5 = Kpyh K., (mod p) (25)
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Kpvst = Kpgor 1Ko + (Kpyop + Kpyor 1)Ke 1 + Kyt Ky (26)

= Kpppp Ky, (mod p).

Now adding the left and right sides of (24), (25), and (26) and using the
fact that K,,;, = K, (mod p), we get

Kppp + Kpyoy + Kp =Ky + Ky + Ky )Xy, (mod p). (27)
Since K,_, # 1 (mod p) and p is prime, (20) implies that
Kp + Kpyy + Kz'+2t =0 (mod p)

as required.
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AN INVARIANT FOR COMBINATORIAL IDENTITIES

LEON BERNSTEIN
Illinois Institute of Technology, Chicago, IL 60616

Dedicated to Dn. Thomas L. Mantin, Jn.

0. INTRODUCTION

By an invariant of a mathematical structure—a matrix, an equation, a field
—we usually understand a relation, or a formula emerging from that structure
—which remains unaltered if certain operations are performed on this struc-
ture. An invariant is, so to speak, the calling card of some mathematical
pattern, it is a fixed focus around which the infinite elements of this pat-
tern revolves. Matrices, the general quadratic, and many other mathematical
configurations have their invariants. So do groups, if they are not simple.
A prima donna invariant is the class number of algebraic number fields. She
is far from having been unveiled. Some serenades have been sung to her from
the quadratic, and to a much lesser extent, the cubic fields. Higher fields
are absolutely taboo for their class number, and will probably remain so for
many decades to come. With certain restrictions, also the set of fundamental
units of an algebraic number field is an invariant.

This paper states a new invariant for all cubic fields. In a further paper
a similar invariant will be stated for all algebraic number fields of any
degree. Here the cubic case is singled out, and completely solved, since the
technique, used in this paper, will carry over, step by step, to the general
case. We shall outline the idea of this new invariant, as obtained here in
the cubic case. Let e be any unit (not necessarily a fundamental one) of a
cubic number field. Since e and e~! are of third degree, both can be used as
bases for the field. This must not be a minimal basis, so that we can put

Vo=

eV = x,+yetze?, Ty, Y, 8y EZ, v=0,1,..., e’ =pr,+g,e !t +t,e"2.

x, and r, are then calculated explicitly as arithmetic functions of v. From

eV « e”V = 1, we obtain the combinatorial identity

—_ 2
Ly = Ty = Py-1Py 41

and this is an invariant, regardless of how the cubic field and one of its
units is chosen. We also obtain a second invariant, viz.,

_ .2
P, =Xy = Ly-1Tp41-

Few invariants can please better the heart of a mathematician.

354
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1. POWERS OF UNITS
Let
= ;3 2

Flx) =x° + cz* + C + gy ¢ ,C,,c, € (L.1)
be an irreducible polynomial in & over Z of negative discriminant, having one
real root w, and one pair of conjugate roots. By Dirichlet's theorem, §w)
has exactly one fundamental unit e, viz.,

e =1, + 7,0+ rw; vy, v, Py € 4.

Of course, e is a third-degree algebraic irrational. Since

0 =w'+cw?+cw+ e,,

we find the field equation of e by the known method

- 2
e=r +rw+rw,
- 2
we = v + rnfw+ rjw, (», ), » €9
2 2
we = r! + riw+ rjw, (z, rg, rg € Q)
and obtain
e’ - alez - a,e - a, = 0,
(1.2)
= +
ays Gy, Ay €L, ay *1.
Here we investigate, w.e.g., the case a; = 1, hence
e’ - aqe?-aqe -1=0
(1.2a)

e3

It

1+ aye + aje?; ay, a, # 0, by presumption.

Our further aim is to obtain explicit expressions for the positive and nega-
tive powers of e¢. To achieve this, we take refuge to a very convenient trick
which makes the calculations uncomparably easier. We use as a basis for @(w)
the triples 1, e, e? and 1, e¢~!, e~2; the question whether these are minimal
bases is not relevant here. We put

e’ =z, +yye + 3,8%; Xy, Ypr By, EZ; v = 0,1, ..., (1.3)
xy =1, x;, =x, = 0. (1.3a)

We obtain from (1.3), multiplying by e, and with (1.2a)

v+1

I

e zye + y,e? + 2,(1 + a,e + a,e?)

2, + (X, + @3,)e + (y, + a,3,)e’

2
Tyer t Yper@ T Bye,
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Hence, by comparison of coefficients,

Ly+1 = By

Yp1 = Ty + 33,

zu+1 = y?) + alzv-
Thus, we obtain
Yy = Ty + QT (=1, 2, ...)

By, = Xy 4 (1.4)

e’ =z, + (T, _, + ayx,)e + x, 4,07
Lyap = Ty_y + G, + A 1T, 413
Lyas = Ty + ATy 4 + ATy, (Vv =0, 1, ...). (1.4a)

Formula (l.4a) is the recurrence relation which will enable us to calculate
explicitly x,, and with it e”. We set

v o 2 v
E T,U” = X, + XU + xou” + E xT,u,
v=0 V=3

and, with the initial values from (1.3a),

vau” =1 +vau” =1 +va+3u"+3. (1.4b)
v=0 v=3 v=0

Substituting on the right side the value of & from (1l.4a) [and taking into
account (1.3a)], we obtain

©

v+3
1+ E (x, + apxy 41+ a1 2,4,)U
v=0 v=

0
] ©o
v+2
1+ ud E z,u’ + a,u’ E T, u’ Tt + agu E Ty 4 olU

v=0 v=0
1+ usE x,u’ + azuz[(z xz,u’ ) - xo] + ayu (E xvu”> -z, - XU
v=0 v=0 v=0

00
3 2 v 2
1+ (u + a,u” + a,u E x,u’ - a,u’ - au.

]

8
:C
]

v=0
We have thus obtained
(1 - ayu - au® - u3)2xuu” =1 - au- au’. (1.4¢)
v=0

Since % is an indeterminate, and can assume any value, we choose

1-au-au?-u#0, (1.44)
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and obtain from (l.4c) and (1.4d)

had 3
Z u

xvuv =1+ s
7=0 1 - aqu - au® - u®

and from (1.4b)

0 ed 3
vauv =1 +va+3uu+3 =1+ = >
2 3
v=0 v=0 1 -aqu-au -u
© 3
+3 U
va+3uv - 2 3’
v=0 1 -aqu-au -u
and since u # 0,
D ow,u = 1 . (1.4e)
v=0 1 - ula, + au + u?)
Choosing, additionally to (1.4d),
0 < ]u(al + aqu+u?)| <1,
we obtain, from (1.4d)
qu+3u” = z:uj(a1 + a,u + uy’ . (1.5)
v=0 j=0

To calculate x, explicitly, we shall compare the coefficients of u" (m=0, 1,
...) on each side of (1.5). On the left, this equals to x,4+3. On the right
side we investigate

}:u’”";(al + a,u + u2ym-*t =
=0

m-7 .
um-i m=t o\ (g )Y WY
Z E (yl,yz,y3> 1 2

Z=0 y1+y2+y3=m—i

(1.5a)

Since we demand that the element u have the exponent m, we obtain
m-i+y, + 2y, =m.

Y, + 2y, =1, (1.5b)
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Y = T = 2y,, (1.5¢)
and

feld Yo ty, tys=m-1 (1.5d)
yie

Yy, =m-=1 -1+ 2y, -y,

Yy, =m-2¢ +y,. (1.5e)

We further have

m- 1 _(m=-2) _ (m -~ 7)!
Yi>Yo>¥s)  Yailyalys!  (m = 20+ y )t (@ - 2yy)ly,!
_ (m =)@ - y)!

(1 - y)tm =20 +y )1y - 2y,)ty,!

m = i\(? - ¥s
T = Y3 Ys ’

m-to\ o (m=TN\(T -y, (1.5£)
Y15 Y35 Y3 Y, Y,

Writing J§ for y,, we thus obtain

ZZ(?Z g ;)(7, - J)ar{:—zuja;;-zj. (1.58)

1=0g4=

We shall determine the upper bounds of 7 and j. From the binomial coeffi-

cient (t ; J), we obtain
j<i-g, 25<i, Js<% (1.5h)
. . . m- 7 .
From the binomial coefficient (i _ j)’ we obtain
m-i1>1-4, m=- 27 > -7,

and from (1.5h), -5 > —53 so that

. 7 3 . 2 .
m- 27 2 =% mzzz, i <3m (1.51)

hence,
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_ m=T\(1T = J\ _m-2¢+; i-2;
x = . s . Y)a 7 =0, 1, ... .
m+3 bt b (1, - J)( J ) 1 a, (m 1 ) (1.6)

[

We shall verify formula (1.6) which does not lack harmony in its simple

structure. From (1.3a) and (l.4a), we obtain, for v =0, 1, ...,

x; =1,

x, = a,

xg =a, +a?,

g =1+ 2aa, +al.

From (1.6), we obtain, for m= 0, 1, 2, 3,
0\ 4L
m=0, 3 =1, since 2 = § = 0, ( ) 1.
m=1; i =g =0, x, = a;

m=23; 1=0, j=0; <7 af +a,;

1]
=
Q@
]
(@]
8
o
]

2, 4=1, z =a’ + 2a,a, + 1.

0; 7

]
=
-
G,

]
o
-
o

]

m=13; 2=0, J

We shall proceed to calculate the negative powers of e, and put

e’ =1, +s,e”! + tye?. (1.7)

For the initial values, we obtain again

v=20,1, 2; r,=1 r, =r, =0. (1.8)

1

For the field equation of e *, we obtain, from (1.2a),

e?=1-aqgelt -ae?a, a #0. 1.9

If we compare (1.9) with (1.2a), we see that the recursion formula for e™”,
with the same initial values for v = 0, 1, 2, is the same as that for e?, sub-
stituting only -a, for a, and -a, for a,; hence we obtain, in complete anal-
ogy with (1.4), (1.4a), and (1.6),

8y = Py — AP,

Ty = Tyay (1.9a)
eV =p, + (r,_, -ar))e 4+, e’
Tyrg =0, =7 )~ A1,
(28] (£ .

=0 j=0
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@) (]
Tn+s = i: Z

(—1)'””"‘7'(”.7 - /”)C“ g J)a”;‘zﬂ'a'"'z“j; (m=0,1, ...). (1.9b)
=0 J=0

t-4J J

Formulas (1.6) and (1.9b) are our main tools in establishing new identities
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