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PROPERTIES OF GENERATING FUNCTIONS OF A CONVOLUTION ARRAY 

VERNER E. HOGGATT, JR. 
and 

MARJORIE BICKNELL-JOHNSON 
San Jose State University, San Jose, California 95192 

A sequence of sequences Sk which arise from inverses of matrices contain-
ing certain columns of Pascalfs triangle provided a fruitful study reported 
by Hoggatt and Bicknell [1], [2], [3], [4]. The sequence S1 = {l, 1, 2, 5, 14, 
42, .. . } is the sequence of Catalan numbers. Convolution arrays for these 
sequences were computed, leading to classes of combinatorial and determinant 
identities and a web of inter-relationships between the sequences Sk. The 
inter-relationships of the generating functions of these related sequences 
led to the ̂ -convolution transform of Hoggatt and Bruckman [5], which provided 
proof of all the earlier results taken together as well as generalizing to 
any convolution array. The development required computations with infinite 
matrices by means of the generating functions Sk(x) for the columns containing 
the sequences Sk . In this paper, properties of the generating functions Sk (x) 
are studied and extended. 

1. INTRODUCTION 

We define S^(x) as in Hoggatt and Bruckman [5], Let f(x) be the generating 
function for a sequence {f^} so that 

where f(0) ~ f0 = aQ0 + 0 and 

[/0r)]J' + 1 = £ X J ^ > ^ = °> ±ls ± 2> ± 3 > ••• (1'2) 

i = 0 

where aii_l = 1 if i = 0 and &it_l = 0 if i £ 0. Form a new sequence with 
generating function Sx(x) given by 

s^x) = S TTixi =T<SiXi' (1-3) 

i=0 i=0 
where {cia} was generated in the convolution array by f(x) as in (1.2). Then 
if we let f(x) = SQ(x)5 from [5] we have f(xS1(x)) = S1(x)9 

f(xSk(x)) = Sk(x) (1.4) 
and 

f(xS*(x)) = Sk(x), (1.5) 

289 



290 PROPERTIES OF GENERATING FUNCTIONS OF A CONVOLUTION ARRAY [Aug. 

as well as 
00 

4w = LHVT"*.*<+*-!*** k = ° ' v> 2> ••• (1-6) 

i = o d 

In particular, if f(x) = 1/(1 - x), we have the generating functions for 
the columns of Pascal's triangle and the sequences Sk axe. the Catalan and re-
lated sequences reported in [1], [2], [3], [4] , and aitki+ . _1 is the binomial 

( T, J. The sequence generated by Sk(x) is the (j - l)st convo-
lution of the sequence Sk. The sequence Sk is formed by taking the absolute 
values of the elements of the first column of the matrix inverse of a matrix 
Pk, where Pk is formed by placing every (k + l)st column of Pascal's triangle 
on and below the main diagonal, with zeroes elsewhere. PQ is PascalTs trian-
gle itself, and Px contains every other column of Pascal's triangle and gives 
the Catalan numbers ,1, 1, 2, 5, 14, 42, . . . , as the sequence Sx. 

We now discuss properties of the generating functions Sk(x). 

2. THE GENERATING FUNCTIONS Sk(x) 

We begin with 

f{xS(x)) = S(x) (2.1) 

by assuming that f(x) is analytic about x - 0 and f(0) =1. We also note that 
S(x) $ 0 for finite x9 since S(x) = 0 would violate f(0) = 1. 

ThdOtim 2. J: If f(xS(x)) = 5(a), then S(x/f(x)) = f(x). 

FlOO^i Note that f(x) + 0 for finite a. Let y = xS{x) so that f(y) = S(x) 
and x = y/S(x) = y/f(y). Therefore, f(y) = S(y/f(y)). Changing to x we get 
S(x/f(x)) = /(a). 

IkdOKQM 1.1\ If S(x/f(x)) = /(a), then /(o:5(x)) = 5 (a?). 

Vtioofai Let 2/ = x/f(x). Then 5Q/) = f(x), x = yf(x) = yS(y) which implies 
AySiy)) = fix) = S{y) so that f{xS(x)) = 5(a). 

JhzofiQjm 2.3: The solution to f(xS(x)) = 5(a) is unique. 

P/LOÔ : Assume /(a5(a)) = S(x) and f(xT(x)) = T(a). We shall show that 
T(x) = S(x). By Theorem 2.1, S(x/f(x)) = f{x). Let x = a^(a) so that 

S(xT(x))/f(xT(x)) = S(xT(x)/T(x)) =S(x). 

But also 

S(xT(x))/f(xT(x)) = /(aT(a)) = T(x). 

Thus, 5(a) = T(x). 

Thzo/im 2.4: In S(x/f(x)) = / ( a ) , /(a) is unique. 
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Pswofi: Assume S(x/f(x)) = f(x) and S(x/g(x)) = g(x). Apply Theorem 2.1, 
S(x) = f(xS(x)) , letting x = x/g(x). Then S(x/g(x)) becomes 

S(x/g(x)) = f[(x/g(x))S(x/g(x))] = f[{x/g(x)) * g(x)] = f(x), 

but S(x/g(x)) = g(x) so that /(a;) = g(x). 

3. THE GENERATING FUNCTIONS Sk(x) WHERE £0(a:) GENERATES PASCAL'S TRIANGLE 

We now go on to another phase of this problem. Let 

S0(x) = ~r^= fix) (3.1) 

and S0(xS1(x)) = S1(x) be the unique solution, and from S'1(a;/50 (a;)) " Sx (x), 
when x = 0 we have S1(,0) = S0(0) = 1. From 

Sk(xSk+1(x)) = Sk+1(x) (3.2) 

one can easily prove 

S0(xS£(x)) = 5fc(a?) (3.3) 

for all integral k as in Hoggatt and Bruckman [5], 
Thus from SQ(x) = 1/(1 - x) 9 we have 

SQ(xS*(x)) = 1 = Sk(x) 
1 - xS*(x) 

xs\ + 1(x) - Sk(x) + 1 = 0, k > 0, 

and from 

1 - x/S2k(x) 

xSZk
k*l(x) - S.k(x) + 1 = 0, k >_ 0. 

Clearly, ̂ (arSJJfcc)) = S0(x). Thus, uniformly 

a?££ + 1(a0 - Sk(x) + 1 = 0 (3.4) 

for all integral k. 
In particular, by (3.4), 

xS\{x) - Sx(x) + 1 = 0, 

s,« = ̂ 4 ^ 
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Clearly, Si(x) is undefined for x > 1/4. The solution with the positive radi-
cal is unbounded at the origin, while 

is bounded at the origin, and limit Sx (x) = 1. Sx (x) is the generating func-

tion for the Catalan numbers. Note that sAxS2(x)\ = S2(x) leads to 

1 -Vl - bxS2(x) 
S2(x) = -

2xS2(x) 

defined for xS2 (x) < 1/4, where limit xS2 (x) = 0 while S2(x) + 0 for any x. 

We now proceed to the proof that 

zSk(z) - S(z) + 1 = 0 

has only one continuous bounded function in the neighborhood of the origin. 
We first need a theorem given by Morris Marden [6, p. 3, Theorem (1.4)]: 

lhd0h,2M\ The zeroes of a polynomial are continuous functions of the co-
efficients. 

TkdOAdm 3.1: There is one and only one continuous solution to 

zSk(z) - S(z) + 1 = 0 

which is bounded in the neighborhood of the origin, and this solution is such 
that limit S(x) = 1. 

x-*- 0 

Vh.00^\ Let S$(z), S£(z), ..., Sfc(z) be the continuous zeroes (solutions) 
to zSk{z) - S(z) + 1 = 0, and rewrite this as 

Sk(z) - S(z)/z + 1/z = 0, z + 0. 

(S - S*)(S - S*) ... (S - S*) = Sk - S/z + 1/z = 0. 

Therefore, S*S*S* ... Sfc = (-l)k/z as the last coefficient, and 

sppi... s*(j!+jl+jl+..-+±y (.1)*/* 
from the next-to-last coefficient. Therefore, 

~qW """ ~QW "*" qX + • • • + q,̂  = 1. (3. J) 

Let S$(z) be bounded in the neighborhood; then 

limit (zS*\z) - S*(z) + l) = limit zSf(z) - limitSfGO + 1 = 0, 
3+ 0 \ l I 3 + 0 l Z + 0 L 
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limit zS\(z) = 0, and limit SUz) = S*(0) = 1. Thus limit 1/5?(s) = 1. 

Suppose S*(z) is continuous but unbounded in the neighborhood of z = 0. 
Then limit 1/SHz) = 0. From (3.5), we therefore conclude that S*(z) is the 

2 + 0 "̂  J-

only continuous and bounded solution to our equation as z ->- 0. We also note 
that since the right side is indeed 1 for all z ^ 0, there is one bounded 
solution. This concludes the proof of Theorem 3.1. 

TktoJwn 3.2: S_m(x) = - — ^ — ^ . 

VHjOOi'. S_m(x) satisfies 

xSZT\x) - S_m(x) +1 = 0. 

Multiply through by S_m(x) to yield 

xSZm
m(.x) - 1 + Sl\(x) = 0. 

Replace a; by (-x) , 

-saSC"(-x) - 1 + SZli-x) = 0, 

which can be rewritten as 

x(s:l
m(-xy)m - {s:l

n(-x)) + i = o. 
This is precisely the polynomial equation satisfied by Sm _ ±(x), which is 

xSl.^x) - ^.xCx) + 1 = 0. 

Since Sm.1(0) = 1 , it is the unique continuous solution which is bounded in 
the neighborhood of the origin. If S.m(x) is such that 

limit S_m(x) = S-m(0) = 1, 
x -*• 0 

then 

limit silix) = s:Uo) = i. 
x -*• 0 

Therefore, by Theorem 3.1, we conclude that 

SCJU-tf) = 5m„1(^) or S.m(x) = ̂  ^ y 

which concludes the proof of Theorem 3.2. 

Tk2.OH.2jn 3.3: If Sk(x) obeys 

^ + 1(x) - Sk(x) + 1 = 0, 

then Sk(x) ^ 0 for any finite x9 k 4 -1. 
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VKOO^i Let Sk(x) be the continuous solution as a function of x. Then, 

limit Sk(x) = Sk(x0), 

where Sk(x0) is finite. If Sk(x0) = 0, then 

limit \xS% + 1(x) - Sk(x) + l] = 1 + 0, 

k + 1 which contradicts the fact that xSk (x) - Sk(x) + 1 = 0. However, if k = -1, 
then £_!(#) = 1 + x, which is zero for x = -1. For all other k, Sk(x) = 0 
for all finite x. 

h. EXTENDED RESULTS FOR GENERALIZED PASCAL TRIANGLES 

The results of Section 3 can be extended. Let 

(̂tf) a polynomial in x. Then /(#5(a:)) = £(x) yields 

1 
1 + cxS(x)g(xS(x)) S(x) (4.2) 

1 - £(a?) + cxS(x)g(xS(x)) = 0 

which is a polynomial in £(#). Because of the 1 and -S(x) relationships in 
the equation, all of the previous results hold. For example, all of the gen-
eralized Fibonacci numbers from the generalized Pascal triangles arising from 
the coefficients generated in the expansions of the multinomials (1+x + x2 + 
• •• + xm)n will have convolution arrays governed by the results of this paper 
and similar to those reported for PascalTs triangle in [1] through [4], 

Now, looking at (4.2), since #(0) = 1, the polynomial in S is of the form 

•h + °x 1 Xs + • • • + sk(x) = o. 
XK Xk 

As before, inspecting the coefficients yields, for roots S*9 S£, ..., S£, 

spis*3 . . . s* = {-i)k/xk 

and 

spp* . . . s ^ _ + — + .. . + -^ J ?* I ̂  - ̂  - . . . ̂ ^ _ 1 _ («c - D(-D* 

so that 

-L + -L + ... + _L 
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Now, 

iHiot(sfm+s^) + ••• + ^ W ) = 1; 

Thus, limit 1/S^(0) = 1 and limit 1/S?(x) = 0, and we again have one and only 

one bounded and continuous solution near the origin. 
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SOME MORE PATTERNS FROM PASCAL^ TRIANGLE 

0. D. ANDERSON 
Civil Service College, London SWlV 1RB 

1. INTRODUCTION 

Over the years, much use has been made of Pascal's triangle, part of which 
is shown in Table 1.1. The original intention was to read the table horizon-
tally, when its nth row gives, in order, the coefficients of xm {m = 0, 1, ..., 
n) for the binomial expansion of (1 + x)n . 

Pargeter [1] pointed out that the consecutive elements, read downwards, in 
the nth column gave the coefficients of xm {m = 0,1,..., 00} for the infi-
nite expansion of (1 - x)n . More recently, Fletcher [2] has considered the 
series whose coefficients are obtained (in the representation of Table 1.1) 
by starting on one of the diagonal unities and making consecutive "knight's 
moves" of two steps down and one to the right. Again, moving down the diag-
onals of Table 1.1, we obtain consecutive series of the so-called "figurative 
numbers," for instance, see Beiler [3]; and the ingenious reader will be able 
to find other interesting series, which can be simply generated. As with all 
work on integer sequences, Sloane [4] will be found invaluable. 

Table 1.1 Pascal's Triangle 

1 1 
1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
1 10 
1 11 

1 
3 
6 
10 
15 
21 
28 
36 
45 
55 

1 
4 
10 
20 
35 
56 
84 
120 
165 

1 
5 
15 
35 
70 
126 
210 
330 

1 
6 
21 
56 
126 
252 
462 

1 
7 
28 
84 
210 
462 

1 
8 
36 
120 
330 

1 
9 
45 
165 

1 
10 
55 

1 
11 

However, the object of this paper is to draw attention to some equally 
striking, but rather more subtle patterns, obtainable from Pascal's triangle. 
The results emerged from the study of the determinants of a class of matrices 
which occurred naturally in a piece of statistical research, as reported by 
Anderson [5]. 

296 
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2. THE DETERMINANTAL VALUE FOR A FAMILY OF MATRICES 

Consider any two positive integers r and s, and define the pth order de-

terminant Dp(s) as having ( + f __ .J for its general i,jth element. Then it 

is well-known that 

Dr(l) = r + 1, v >_ 1 

and, interestingly enough, it can be shown that D (s) 

_ (r + l)(r + 2) 2 ->• (p + s - p ^ ^ p + sj^p + g + l ) 3 " 1 ••• Q + 2s-2)2(r + 2s-l) 

1.22 ... (s-l)s-V(s + l ) s - 1 ... (2s-2)2(2s-l) 

p, s >_ 1. For instance, see Anderson [6]. 
If we write out the family of determinants Dr(s)i P, s J> 1 as a doubly 

infinite two-dimensional array, we get Table 2.1. 

Table 2.1 Values for Family of Determinants Dr(s) 

1 
2 

v 3 
4 

1 

2 
3 
4 
5 

2 

6 
20 
50 
105 

s 
3 

20 
175 
980 
4116 

i, 

70 
1764 

24696 
232848 

What is really pretty is that this table can be written down quite simply, 
and in several ways, from Pascalfs triangle. 

3. GENERATING THE DETERMINANTS FROM PASCAL'S TRIANGLE 

3.1 Generating the Rows of Table 2.1 

The first row is obtained just by making the "knightfs moves" from the 
apex of the triangle—see Table 3.1.1. If we then evaluate the second-order 
determinants, with leading terms at these "knight?s moves," we obtain the 
second row—see Table 3.1.2. Similarly, if we evaluate the third-order de-
terminants, shown in Table 3.1.3, and the fourth-order determinanys, shown in 
Table 3.1.4, we get the third and fourth rows, respectively. In both cases, 
the determinants have the "knightfs moves" for their leading terms. Continu-
ing in this way, Table 2.1 can be extended to as many rows as we like. 
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Table 3.1.1 Generation of the First Row 

2 

6 ! _ 

t — 20 

• ^70 

Table 3.1.2 Generation of the Second Row 

2 

3 

1 

3 
6 h 

10 10 

20 15 

35 35 
70 

126 

56 
126 

Table 3.1.3 Generation of the Third Row 

2 

3 
k 

1 

3 
6 
10 

15 

0 

1 

k 

10 

20 

35 
56 

1 

5 
15 

35 
70 
126 
210 

6 
21 

56 
126 
252 

28 

84 
210 
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Table 3.1.4 Generation of the Fourth Row 

1 
3 
6 
10 
15 
21 

0 
1 
4 
10 
20 
35 
56 
84 

0 
0 
1 
5 
15 
35 
70 
126 
210 
330 

0 
1 
6 
21 
56 
126 
252 
462 

1 
7 
28 
84 
210 
462 

8 
36 
120 
330 

3.2 Generating the Columns of Table 2.1 

The first column can be picked out as the natural number diagonal of Table 
2.1, shown in Table 3.2.1. For the second column, the overlapping second-
order determinants, shown in Table 3.2.2, are evaluated; while the third and 
fourth columns are obtained from the determinants of the overlapping arrays 
in Tables 3.2.3 and 3.2.4, respectively. And so on. 

Table 3.2.1 Generation of the First Column 

Table 3.2.2 Generation of the Second Column 

3 
4 

3 
6 4 
10 10 

20 
5 

|15 
I 35 

6 
21 

Table 3.2.3 Generation of the Third Column 

4 
5 
6 

6 
10 
15 
21 

4 
10 
20 

5 
15 

35 
56 

35 
70 
126 

6 
21 
56 
126 

7 
28 
84 
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Table 3.2.4 Generation of the Fourth Column 

5 
6 
7 
8 

10 
15 
21 
28 
36 

10 
20 
35 
56 
84 
120 

5 
15 
35 
70 
126 
210 
330 

6 
21 
56 
126 
252 
462 

7 
28 
84 
210 
462 

8 
36 
120 
330 

3.3 Generating the Diagonals of Table 2.1 

Finally, the diagonals of Table 2.1 can be obtained as follows. The tth 
member of the main diagonal is found by evaluating the tth-order determinant 
with leading terms given by the tth "knight's move" from the apex of the tri-
angle. The first super-diagonal is achieved using the same principle, but 
starting with the second "knight's move." Thus its tth term is the tth-order 
determinant whose leading term is the (t + l)th "knight's move." The tth term 
of the second super-diagonal is given by the tth-order determinant, starting 
with the (£+2)th "knight's move." And so on for all the other super-diago-
nals. The sub-diagonals can be obtained in a similar way; by using, instead 
of the "knight's move" sequence, a sequence diagonally down from it in the 
triangle. For the first sub-diagonal, the new sequence is one step down; for 
/the second, two steps down, and so on. 

4. GENERATING THE DETERMINANTS FROM A DIFFERENT 
REPRESENTATION OF PASCAL'S TRIANGLE 

If we represent Pascal's triangle as in Table 4.1, where the ones have been 
omitted, we get a more meaningful row and column array. We then find that 
Table 2.1 can be generated in still further ways, as the reader can readily 
verify. 

TABLE 4.1 Alternative Representation of Pascal's Triangle 

2 
3 
4 
5 
6 

3 
6 
10 
15 
21 

4 
10 
20 
35 
56 

5 
15 
35 
70 
126 

6 
21 
56 
126 
252 

5. IN CONCLUSION 

All the patterns discussed can, of course, be verified by combinatorial 
algebra. Thus, for instance, in Section 3, the second column of Table 2.1 
is claimed to have for its nth element the second-order determinant: 
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On evaluation, this gives 

as required. 

/ n + 2 \ / w + 2\ 

\ n - 1 / \ n / 

(w + l)(n + 2)2(n + 3) 
12 
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COEFFICIENTS OF THE CYCLOTOMIC POLYNOMIAL F3qr (*) 

MARION BEITER 
Rosary Hill College, Buffalo, New York 14226 

Let Fm be the 777th cyclotomic polynomial. Bang [1] has shown that for m = 
pqv> a product of three odd primes with p < q < r, tile coefficients of Fm(x) 
do not exceed p - 1 in absolute value. The smallest such m is 105 and the co-
efficient of x7 in F105 is -2. It might be assumed that coefficients 2 and/ 
or -2 occur in every Fs . This is not so. It is the purpose of this paper 
to characterize the pairs q9r in m = 3qr such that no coefficient of absolute 
value 2 can occur in F3 . 

1. PRELIMINARIES 
<p{m) 

Let Fm(x) = 2.enxn. Then for m=3qr9 on i s de termined [1] by t h e number 
n = 0 

of p a r t i t i o n s of n of t h e form: 
n = a + 3aq + 33^ + yqr +' 6xq + 6 2 P , 

0 <_ a < 3; a, 3, Y, nonnegative integers; 6i e {0, l} . If n has no such par-
tition, on = 0. Each partition of n in the form (1) contributes +1 to the 
value of cn if &x = 62, but -1 if Sl ^ 62. Because Fm(x) is symmetric, we 
consider only n <. <p(m)/2 = (q - 1) (r - 1) . For n > (q - 1) (r - 1) , cn = £nr , with 
n' = <P(m) -n. We note that for n <_ (q - 1) (r - 1) , y in (1) must be zero. 

A permissible partition of n is therefore one of these four: 

Px = a1 + 3044 + 33^, P2 = a2 + 3a2^ + 33 2P + q + r, 
(2) 

P3 = a3 + 3a3^ + 3g3r + q9 Fh = ah + 30^4 + 3 3 ^ + r. 

Partitions Px and P2 will each contribute +1 to on, while P3 and P4 will each 
contribute -1. When n <_ (q - 1) (r - 1) , only one partition for each P̂  , *£ = 1, 
..., 4, is possible [1]. 

Lzmma 7: For any 3^ in (2), 33^ <. q - 2 for all q. 

Psioofi: Following Bloom [3] we have 3 3 ^ <_ (q - 1) (r - 1) < (q - l)r. Thus, 
33; < q - 1. 

CoKoltaAiji 33; <. q - 3 for i = 2, 4. 

Lemma 2: Either r + q E 0 (mod 3) or r - ̂  E 0 (mod 3), for all primes q 
and r with 3 < q < r. 
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Vtioohi Let q = 2k +' 1, r = 2 ^ + 1. Since 3 divides one and only one of 
the numbers 2t, 2(t + l) when 2t + l is a prime, it follows that 3 divides one 
and only one of the numbers r + q = 2(k + k\ + 1 ) or r - q = 2(k - kx). 

2. BOUNDS ON THE COEFFICIENTS 

We set 3 < q < r and make repeated use of the expressions: 

P2 - Pl = a2 - ax + 3(a2 - 04)4 + 3(32 - B 2 ) P + 4 + r = 0; (3) 

p4 - p3 = ah ~ a3 + 3(a4 - a3)q + 3(3^ - $3)r + r - q = 0. (4) 

Tk^oXQjn 1: In F3qr (x), 

(a) if r - 4 = 0 (mod 3), then -1 <. an <. 2, 

(b) if v + q E 0 (mod 3), then -2 <. cn <. 1. 

VKOofa ofi [d] 1 Assume en - -2 for some n, i.e., partitions of n of forms 
P3 and P4 exist. Taking (4), modulo 3, we obtain ah - a3 = 0 (mod 3). But 
a < 3, so that a4 = a3. Now taking (4), modulo q9 we obtain [3(3̂ . — 33) + 
l]r = 0- (mod 3). Then 3(3^ - 63) + 1 = $q, for some integer 3 ^ 0 . Either 
3(34 - 33) = $q - 1 >. q - 1, or 3(33 - 30 = I 3 k + 1 •> 4 + 1- B u t 3 3 ^ ^ - 2 
by Lemma 1. Therefore, P3 and P^ cannot both exist and we have on ^ -2. 

The proof of (b) follows from a similar argument by considering (3), mod-
ulo 3, and then modulo q. 

RemcVlk 1: F3 may have a coefficient of 2 or of -2 but not of both. 

RomoAk 1\ If q and r are twin primes, ov = -2 with P3 = 2 4- q9 Ph = r3. 

3. SPECIAL CASES 

Before taking up the general case, we consider r = kq ± 1 and r = fcq ± 2. 
We prove a theorem about r - kq ± 1. 

Tk^OXQjm 2: Let r = kq ± 1. In P3 (xc) , | on | <.l if and only if k = 0 (mod 
3). 

Vnooh*. To show the sufficiency of the condition, let r = 3/zq + 1, with 
q = 1 (mod 3). Then r - q = 0 (mod 3), and on + -2 by Theorem 1. We show 
on i1 2, i.e., there is no n for which partitions Px and P2 can both exist. 
Taking (3), modulo 3, we obtain a2 - al = 1 or -2. We note that 2? = 1 (mod 
q). Then (3), modulo q9 leads to one of the equations: 

3(32 - 3X) = 3q - 2 or 3(32 - Si) = 3<7 + 1 

with 3 = 2 (mod 3). Obviously, there is no value of 3 which satisfies Lemma 
1. Hence there is no n9 0 <. n <_ (q - 1) (r - 1) , for which partitions Pl and P2 

both exist. Similarly, with q = 2 (mod 3), it can be shown that there is no 
n for which partitions P3 and P4 can both exist. When r = 3hq-l, r = 2 (mod 
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3). If q = 2, the proof leads to the same two equations as above with 3 = 1. 
Thus both equations are inconsistent with Lemma 1. If q = 1, the same equa-
tions appear with 32 and 3i replaced by 3^ and 33, respectively, and 3 = 2 . 
Thus \cn] <_ 1. 

The necessity of the condition k = 0 (mod 3) is shown by the counterex-
amples in Table 1. Values of k are given modulo 3. For each n, other par-
titions are not possible. We illustrate with the first counterexample, v = 
kq + 1 with k = 1. The only possible r and q are r = 2 and <? = 1 (mod 3). 
Note that for n = r, n = 2 (mod 3). Thus in partitions Px or P2, al=a2 = 2. 
Then Px = 2 + 3a ̂  + 33i^ = r = P2 = 2 + 3a2q + 332^ + (7 + r. In neither Px 

nor P2 is it possible to find nonnegative a and 3 to satisfy the equations. 
Hence, the coefficient of xT in F3qr is -2. 

Table 1 r = kq ± 1 

k 
(mod 3) 

1 
1 
2 
2 

2» 

fo? + 1 
kq - 1 
fc? + 1 
kq - 1 

P3 = 
P* = 

* i = 

Pi = 

Par t i t ions of n 

1 + (fc - \)q + (7 
(fe - Dqr + (7 
1 + (fc + D<? 
(fc + D<7 

Pi> = 3? 

P4 = 1 + r 

P2 = <7. + r • 
P2 = 1 + q + r 

Examples 

^n 

-2 

-2 
2 
2 

1 ^ 
7 
5 
5 
7 

2» 

29 
19 
41 
13 

n 

29 
20 
46 
21 

Th<M)H,m 3: Let r = kq ± 2. In P3q2, Or), |eM| <_ 1 if and only if k - 0 and 
g = 1 (mod 3). 

The proof follows the method in Theorem 2 and is omitted here. Table 2 
gives counterexamples to show the necessity. 

Table 2 v = kq ± 2 

& 
(mod 3) 

M Q ^ 

111 "5 

^0 J 1 

1 

2 

2 

r 

kq + 2 

kq - 2 

kq + 2 

kq - 2 

kq + 2 

kq - 2 

* i = 

* 3 = 

* 3 = 

^ 3 = 

Pi = 

* 1 = 

P a r t i t i o n s of n 

2+ (q + ])z>/2 

(q + ])r/2+q 

(k - ])q+q + 2 

(k - ])q + q 

(k + })q + 2 

(k + 1) 

P 2 = 1 + (q -

Ph = 1 + (q -

Pk = r 

Pk = r + 2 

P2 = q + r 

P 2 = q + r + 

1) fo?V2 + (7 + r 

])kq/2+r 

2 

Examples 
Gn j 

2 

-2 

-2 

-2 

2 

2 

1 ? 
5 

5 

5 

7 

7 

5 

r 

17 

13 

37 

47 

37 

23 

n 

53 
44 

37 

49 
44 

30 
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k. THE GENERAL CASE 

More generally, for all primes q and r with 3 < q < p, we have v = (kq + 
l)//25 or v = (kq - l)/h, h <_ (q - l)/2. If h = 1, Theorem 2 applies. There-
fore we set 1 < h. In v = (/cq ± l)//z, we may consider 2% <?, &, ±1 as four 
independent variables with h dependent. Since v and q each have two possible 
values modulo 3 and k has three, there are 24 cases to be examined. We shall 
examine one of them. Then we shall present Table 3 showing all 24 cases and 
from the table we form a theorem which states conditions on q and v so that 
\en\ <. 1 in F3qp. 

First we take rEqE±9k = 0 (mod 3) in r = (kq-l)/h9 1 < h <, (q-l)/29 
Note that In = 2. Since r - q = 0 (mod 3) , o / -2 by Theorem 1. We show 
on £ 2. Taking (3), modulo 3, we find a2 - czx = -2 or 1. Then taking (3), 
modulo q9 we obtain two possible congruences: 

-2 + [3(32 - Br) + 1K-1//0 = 0 and 1 + [3(32 - 3X) + 1](-1A) = 0. 

The first leads to the equation 3(32 - 3i) = $q - 27z - 1 with 3 = 2 . No such 
value of 3 will satisfy Lemma 1. The second congruence leads to the equation 
3(32 - Si) = $q + h - 1 with 3 = 2 . If h = 2, there is no value of 3 which 
satisfies Lemma 1, and on ^2, If h > 2, then 33i = q - h + 1 satisfies Lem-
ma 1. Substituting this value in (3), we obtain 3a2 = r - k - 1. Then Pl = 
(q - h + 1) and P2 = (r - k - l)q + q + r with ax = 0, a2 = 1. But when we 
set a3 + 3a3q + 33 3P + q = 0? - /z + 1) , we obtain P3 = 2 + (p - 2k - 1) + 
(/z + 1 ) P + q. Moreover, if we let al = 1, a2 = 2, partitions Px and P2 exist 
but also Ph exists. Thus, there is no n for which on = 2. 

In Table 3 the values for P, q9 k9 and h are all modulo 3. From an inspec-
tion of Table 3 for the cases when max \cn\ ~ 1* w e state 

IkdOKm 41 Let v = (kq ± l)//z, ± < h ± (q - l)/2. In F3qr (x) , |c„| <_ 1 
if and only if one of these conditions holds: (a) k = 0 and h + q = 0 (mod 
3) or (b) h = 0 and k + p E 0 (mod 3). 

Table 3 r = (fo? ± 0/fc, 1 < h < {q - 0/2 

(Values for <?, p, h, k are modulo 3) 

1 — 

I I ! 

in 
5s 

k 

0 

l 

2 

0 

1 

2 

/z 

1 

2 

0 

2 

0 

1 

±1 

+ 

+ 

+ 

-

-

Pi 
Pi 

Pi 

Pi 

P a r t i t i o n s of n 

= 2 + (q - 2/2 + O P 

= 2 + (2fc + 0<7 

= 2 + (2/z + O P 

= 2 + ( r - 2/c + 0<? 

P2 = {r - 2k - l)q + q + r 

P 2 = (2/z - ])r + q + r 

P 2 = (2fe - \)q + q + r 

P2 = (q - 2h - l)r + q+r 

max | c n | 

2 

2 

1 

1 

2 

2 

(continued) 
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Table 3—continued 

CM 

I I I 

I I I 

5 H 

CM 

I I I 

Cr 

I I I 

I I I 

CM 

I I I 

k 

0 

1 

2 

0 

1 

2 

0 

1 

2 

0 

1 

2 

0 

1 

2 

0 

1 

2 

ft 

2 

0 

1 

1 

2 

0 

1 

0 

2 

2 

1 

0 

2 

1 

0 

1 

0 

2 

±1 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

P a r t i t i o n s of n 

Px = (r - 2k + \)q 

Px = (2ft + 1 ) P 

P x = (2fc + \)q 

Px = (q - 2h + 1 ) P 

P 3 = 2 + (4 - 2h + 1 ) r + <? 

P 3 = 2 + (2fc - D<? + <7 

P 3 = 2 + ( r - 2fc - 1 )<? + <? 

P3 = (fc - 0<7 + ? 

P 3 = 1 + (k - 1)^ + q 

P 3 = (r - 2^: - l)q + q 

P 3 = ((7 - 2h + ])r + q 

P 3 = {q - 2ft + O r + q 

P 2 = 2 + ((7 - 2h - l ) r + q + p 

P 2 = 2 + (2k - O q + q + p 

P 2 = 2 + (2fc - 1 ) P + <? + P 

P 2 = 2 + ( P - 2k - 1)<? + <7 + P 

Ph = (p - 2fc + \)q + r 

Ph = (2ft - 1)3?+ r 

P^ = (4 - 2ft - l ) p + p 

Ph = 1 + (ft - 1 ) P + P 

P^ = (ft - 1 ) P + P 

Ph = 2 + (q - 2ft - 1 ) P + P 

P^ = 2 + (p - 2k + l)q+r 

Ph = 2+ (r - 2k + \)q + r 

max \on\ 

2 

1 

2 

1 

2 

2 

1 

2 

2 

2 

2 

1 

1 

2 

2 

2 

1 

2 
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SIMPLIFIED PROOF OF A GREATEST INTEGER FUNCTION THEOREM 

J. L. BROWN, JR. 
The Pennsylvania State University, University Park, PA 16802 

The purpose of this paper is to give a simple proof of a result, due ori-
ginally to Anaya and Crump [1], involving the greatest integer function [•]. 

1 + /5~ 1 - / 5 " nn - hn 

In t he f o l l o w i n g , a = 2 = 1 .618, b = 2 = - 0 . 6 1 8 , and Fn = ° 

d e f i n e s t h e n t h F ibonacc i number fo r n >_ 1 . 

V^Zyiitlon: Let 6 be de f ined by 6 = -r- - -= > 0 . 

Lemma J: For n > 2 , 6 < ^ ± ^7=« ~ - 2 /J 

VK.00^1 Equivalent to —J=<L
:I-J= or ±bn <. b2, which is clearly true for 

n >_ 2, since |2>| < 1. /5 /5 

Lemma 2: For n _> 2 and any y satisfying |y| < 6, 

./̂  + Y + \] = K 
an 1 a n - 2?n 

Psioofii We must show F n < -^= + y + y < Frt + 1 , or u s i n g Fn = — - y = — and 

-|Y| <. Y <. |Y|» tne required inequality will be true if 

=£1 < _|Y| + 1 < |Y| + 1 < Z^l+ x /f ~ IYI + 2 ~ |T| ^ 2 /J" 

1 b*' 1 frn 

The extreme left and right inequalities reduce to |y| <_y + y= and |y| <Y""~7=' 
respectively, both valid for |y| < 6 by Lemma 1. 

ThdOKm 7: (Cf. [1]): For n >_ 1 and 1 <. k < n, afeFn + j = Fn + k. 

P ^ : [a^ + ̂  J = [ ^ + y J = ["7f / f — + J J (uSing 

I (-l)k + 1 & " ~ f e I l&l 
a& = -1) = Fn+k by Lemma 2 since - — — y = _< -y=r < 6. 

CotoMjOAy I: ([2], pp. 34-35): Fn + 1 = jaFn + .«1 for n = 2, 3, 4, ... 

P̂ tOOj}: Take k = 1 in the theorem and note 1 = k < n for w = 2, 3, 4, ... 

307 
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CotioWxAy 2: (Cf. [3], p. 22): j ^ + yl = Fn for all n > l . 

P̂ .00̂ : Clearly true for n = 1, since a = 1.618. For n >_ 2, the result 
follows from Lemma 2 with y = 0. 

No£&: The case k = n is not treated in Theorem 1, and in fact the result 
of the theorem fails for n >_ 1, 1 <. k <_ n when n = 1 and fc = 1, since 

[aFx + y~J = [a + |] = [2.118] = 2 ̂  F2 = 1 

(thus the statement of the theorem in [1] requires modification). However, 
we can easily prove the following: 

Thojon&m 2: Let n •> 2 and k = n. Then \anFn + y = F2n. 

/ ^72n 1 1 \ ^72n 1 1 
which will be F2n (since ̂ — > F2n and ±-p + y > 0 J if —=r ± "T= + y < ̂ 2n +

 1 

— 1 1 —h2'n 

or -77- ± — < — — , an inequality which is easily verified for n >_ 2. 
2 /J 1/5 

With both n and fc unrestricted positive integers, we can also state two 
simple inequalities which depend on the fact that [•] is a nondecreasing 
function of its argument. 

CoxollaAy 3: 

(i) For n even, 

(ii) For n odd, 

fFn + y_ 

akFn + y 

n + k 

> Fn + % (n >. 1, fc i 1). 

(i) With n even, ^= > Fn and |a*F„ + y| <. | ^~j^- + f | = F„ + k by Cor- 2-[a*F„ + J] < | 2 ^ + |J = Fn + J; by 
an ft ll (~ak + n ll (ii) Similarly, n odd implies y= < Fn and a*Fn + y >_ — T = ~ + y = ̂ n 

again by application of Cor. 2. 

We may also obtain a similar result on Lucas numbers due to Carlitz [4] by an 
analogous approach (recall Ln = an + Z?n for n >. 1) . 

Lemma 2: For all n >. 4 and y satisfying |y| <. b2, an + y + y = Lw. 

P̂ LOÔ J: We must show Ln <_ a n + y + y < Ln + 1 , o r , u s i n g L n = a n + 2?", 
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b < . y + y < Z ? n + I 8 Since | y | <_ b2, t he r e q u i r e d i n e q u a l i t y i s s a t i s f i e d i f 

bn <_-b2 +\< b1 + | < bn + 1. 

But bn + b2 < j and bn - b2 > ~— fo r n >_ 4 , so t h e r e s u l t f o l l o w s . 

Tho.on.dm 3 : <Cf. [ 4 ] ) : For k >. 2 and w>. fc + 2 , | a k L n + y j = £„ + *• 

P/ioo^: [ a * L n + | ] = [ a k ( a n + &n) + | ] = [ a n + k+ ( - l )Vk + j ] = £n + k by 

Lemma 2 , s i n c e | ( - l ) ^ " " * ! < b 2 and w + k >_ 4 . 

CO/LO££OA(/ 4 : a n + - | 1 = L n fo r w >. 2 . 

VK.00^% For n >. 4 , r e s u l t i s e s t a b l i s h e d by Lemma 2 on t a k i n g y = 0. For 
n = 2 , 3 , a d i r e c t v e r i f i c a t i o n s u f f i c e s . [Reca l l a = a + 1 , so t h a t a -
(a + l ) a = 2a + 1 ] , The r e s u l t i s a l s o immediate from t h e f a c t t h a t 

\an - (an + bn) | = | £ | n < i f o r n > 2 , 

which shows that Ln is the closest integer to an for n >_2. It then follows 
that 

[—*] Ln for n >. '2. 
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ON SQUARE PSEUDO-FIBONACCI NUMBERS 

A. ESWARATHASAN 
University of Sri Lanka, Jaffna Campus, Tirunelvely, Jaffna, Sri Lanka 

I f t h e F ibonacc i numbers a r e de f ined by 

U-y — li2
 =: I? Un+2 ~ ^n + i = ^n» 

then J. H. E. Cohn [1] has shown that 

ul = u2 = 1 and u12 = 144 

are the only square Fibonacci numbers. 
If n is a positive integer, we shall call the numbers defined by 

ux = 1, u2 = 4, un+2 = un+l + un (1) 

pseudo-Fibonacci numbers. 
The object of this paper is to show that the only square pseudo-Fibonacci 

numbers are 

ul = 1, u2 = 4, and u^ - 9. 

If we remove the restriction n > 0, we obtain exactly one more square, 

U_Q = 81. 

It can easily be shown that the general solution of the difference equation 
(1) is given by 

Un = rh*(a"+ pn)" 5 . 1
2 n - i < a ' " 1 + e n _ 1 ) ' <2> 

where 

a = l + / 5 " , 3 = 1 - / 5 " , 

and n is an integer. Let 

= ar + &r ar - gy 
nr " 2' ' ̂  2VT # 

Then we easily obtain the following relations: 

un = j(7n„ - n ^ ) , O) 

nr = nr-i + nr-2» Hi = 1, n2 = 3, (4) 

310 
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=»2» £/•-! + 5 r - 2 s ?1 ~ I s ?2 ~ 1 ' (5) 

n* - 5?^ = ( - i ) * 4 , (6) 

r i 2 r = Tlr + ( - D r + 1 2 , (7) 

2 \ + „ = 5 ^ n + Omnn, (8) 

25m+n = ̂  + nm5„, (9) 

?2r = nr5r- (10) 

The following congruences hold: 

M«+2r = ( - D r + 1Wn(mod T ^ " 3 ) , (11) 

M„ + 2 r S ( - l ) r
M n ( m o d ZT2~S), (12) 

where 5 = 0 or 1 . 
Let <J>t = r|2t , where t i s a p o s i t i v e i n t e g e r . Then we ge t 

<f>* + i = *t - 2.- (13) 

We also need the following results concerning (f)̂ : 

cj)t is an odd integer, (14) 

$t = 3 (mod 4), (15) 

(f)t E 2 (mod 3), * >. 3. (16) 

We also have the following tables of values: 

n 
un 

t 

nt 
Let 

-8 

81 

7 

29 

0 1 2 

3 1 4 

14 
3 • 281 

3 

5 

4 

9 

5 

14 

x2 

1 

37 

t 

5* 

= un. 

9 

97 

4 

3 

11 12 

254 411 

7 8 

13 3*7 

13 

665 

15 
1741 

(17) 

The proof is now accomplished in sixteen stages: 

(a) (17) is impossible if n = 3 (mod 8). For, using (12) we find that 

un = u3 (mod 5^) = 5 (mod 3). 

Since (-«•) = -1, (17) is impossible. 
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(b) (17) is impossible if n• = 5 (mod 8). For, using (12) we find that 

un E u5 (mod gif) = 14 (mod 3). 

Since (~o~) = -1, (17) is impossible. 

(c) (17) is impossible if n = 0 (mod 16). For, using (12) in this case 

un = uQ (mod £8) = 3 (mod 7), since 7|£8. 

Since (yj = -1, (17) is impossible. 

(d) (17) is impossible if n = 15 (mod 16). For, using (12) we find that 

un - wi5 (mod 58) = 1741 (mod 7), since 7 |£8. 

Since (—-—J = -1, (17) is impossible. 

(e) (17) is impossible if n •= 12 (mod 16). For, using (12) in this case 

un = ul2 (mod £8) = 411 (mod 7), since 7 |58. 

Since (~y~) = -1, (17) is impossible. 

(f) (17) is impossible if n = 1 (mod 14). For, using (12) we find that 

un = ±u7 (mod 57) - ±37 (mod 13). 

Since (~pr~) = ("To") = ~1? (17) is impossible. 

(g) (17) is impossible if n = 3 (mod 14). For, using (12) in this case 

un = ±u3 (mod 57) = ±5 (mod 13). 

Since lyr) = (TT) := ~1» (17) i s impossible. 

(h) (17) is impossible if n = 5 (mod 14). For, using (11) we find that 

un = u5 (mod n7) =14 (mod 29). 

Since ("577) = -1, (17) is impossible. 

(i) (17) is impossible if n = 13 (mod 14). Sor, using (12) in this case 

un - ±w13 (mod ^7) E ±665 (mod 13). 

/-665\ /665\ n / T - 7 N • • . . . 
Since I I = l~pr"/ = "1> (17) is impossible. 

(j) (17) is impossible if n = 11 (mod 14). For, using (12) we find that 

un = ±Uu (mod ^7) E ±254 (mod 1 3 ) . 



1978] ON SQUARE PSEUDO-FIBONACCI NUMBERS 313 

/ - 2 5 4 \ / 2 5 4 \ , / 1 7 , 
Since I . . I = l~To~/ = - 1 , (17) i s i m p o s s i b l e . 

(k) (17) i s imposs ib l e i f n = 9 (mod 1 4 ) . For , u s i n g (12) we f ind t h a t 

un = ±us (mod g 7 ) = ±97 (mod 1 3 ) . 

Since ("To") = I To") = "1> (17) is impossible. 

(1) (17) is impossible if n = 15 (mod 28). For, using (11) we find that 

un E ±ullf (mod T]lk) = ±1741 (mod 281), since 281/iv 

/-1741\ /1741\ , ,-_. . . Since I 2 8 1 — 1 = I 2fi1 I = -1, (17) is impossible. 

(m) (17) is impossible if n = 1 (mod 4), ft ̂  1, that is, if rc = 1 + 2*2*, 
where v is odd and t is a positive integer >_ 2. For, using (11) in 
this case 

un = -u1 (mod T)2t - 1) E -1 (mod-(J)t-1). 

Now, using (15) we have <t*t_1 = 4fc + 3, where k is a nonnegative inte-

ger. Since I-T J = I ,, ~ 1 = -1, (17) is impossible. 

(n) (17) is impossible if ft E 2 (mod 4), ft ̂  2, that is, if n = 2 + 2*3?, 
where r is odd and t is a positive integer >_ 2. For, using (11) we 
find that 

un E -u2 (mod r)2£ " 1 ) = -4 (mod c()̂ _1). 

Now, using (15) we have (J)t_1 = 4fc + 3, where ^ is a nonnegative inte-

ger. By virtue of (14), (2, (^t_1) = 1. Since f-r2—)= (,," J = - l , 

(17) is impossible. V^-i/ V*K + J/ 

(o) (17) is impossible if n = 4 (mod 16), ft ̂  4, that is, if ft = 4 + 2*p, 
where r is odd and t is a positive integer >_ 4. For, using (11) we 
find that 

un E -uh (mod T12*-1) = -9 (mod (j)t_1). 

Now, using (16), we get (<t>t_l5 3) = 1, and by virtue of (15), $t_1 = 
4fc + 3, where ^ is a positive integer >_ 11. 

Next, since j = (,, , o) = ~1» (17) is impossible. 

(p) (17) is impossible if n = -8 (mod 16), n £ -8, that is, if n = -8 + 
2*2% where r is odd and M s a positive integer >_ 4. For, using (11) 
in this case 

un E -u_8 (mod T)2t - 1) E -81 (mod <J>t-i). 
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Now, using (16) we get ($t_l9 3) = 1, and by virtue of (15), (j)t_1 
4/c + 3, where k is a positive integer >_ 11. 

Next, since I-r 1 == ( . 1 ) = -1, (17) is impossible. 
\*t-i/ W + 3/ 

We have now four further cases, n - -8, 1, 2, and 4, to consider. 

(1) When n - -8, un = 81 is a perfect square. 
(2) When n = 1, w„ = 1 is a perfect square. 

(3) When n - 2, un - 4 is a perfect square. 
(4) When n = 4, un = 9 is a perfect square. 
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FIBONACCI, INSECTS, AND FLOWERS 

JOSEPH D'E VITA 
U.S. C , Los imgelas 90007 

It remains an interesting phenomenon that elements of the Fibonacci and 
Lucas sequences appear in numerous structural entities belonging to varied 
species of higher plants. McNabb [3] cites the abundance of flower species 
with numbers of petals (up to 89 in Michaelmas daisies) that correspond to 
Fibonacci numbers. Karchmar [1] obtained the commonly observed angle between 
adjacent leaf primordia (137° 30f) by applying the limiting value of the fol-
lowing Fibonacci ratio: 

F 

-£*- (i) 
where Fn and Fn+1 denote, respectively, the nth and (n + l)th elements of the 
Fibonacci sequence. 

Although there exists a considerable body of literature pertaining to 
plant structure and Fibonacci sequences, the above references are singled out 
for their use of expression (1). As pointed out by McNabb [3], phyllotaxic 
descriptions are often denoted in the form of expression (1). It is to ex-
pression (1) that we give most of our concern in relation to insects which 
reside on flowers of field thistle {Circium discolor). Specifically, we are 
interested in the sequences of lengths among these insects. Table 1 lists 
the species of insect, sample size, mean length, and standard deviation. 

Table 1 

Length Statistics of Five Insect Species Resident on 
Flowers of Circium discolor 

Insect 

Didbrotica longicornis (beetle) 
Plagiognathus (bug) 
Olibrus semistriatus (beetle) 
Orius insidiosus (bug) 
FranklinieI la tritici (t h ri p) 

Sample 
Size 

15 
13 
17 
14 
15 

Mea n Length 
(mm) 

6.0 
3.7 
2.2 
2.0 
0.9 

Standard 
Deviation 

0.58 
0.23 
0.25 
0.10 
0.12 

Let us assume that because flowers are of a limited volume, insects are 
competing for space. Another alternative is that of competition for food, 
but since we rarely observe flowers devastated by insects, we presently re-
ject: this alternative. We can further speculate that if competition is for 
space, we expect the appearance of ecological and evolutionary mechanisms 
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aimed at the avoidance of physical encounter. Such an avoidance may be re-
alized if each insect were to possess a "refuge" (i.e., a volumetric space) 
for the avoidance of larger insects. Within a complex flower, such as field 
thistle, smaller insects could avoid larger insects by seeking crevices which 
larger insects could not enter. This mechanism does not exclude other means 
of avoidance, although if we accept the mechanism of avoidance by spatial 
refuge, then there should arise constraints on the size of each insect spe-
cies. We can thus imagine that, of a pair of insects, the larger will "push" 
the smaller (over evolutionary time) to a reduced size. We assume here that, 
upon encounter, the smaller insect is more likely to move away from the lar-
ger than the larger move away from the smaller. In this manner, the largest 
insect residing on the flower will determine, at a first approximation, the 
entire size sequence of the remaining insects. 

From the above consideration, we make use of the Fibonacci sequence in an 
unusual manner. Since it is assumed that the largest insect determines the 
length sequence, we start our sequence backwards, setting our largest number 
as the first term in the sequence. We then define our sequence, on the basis 
of the first term (ux), as: 

un=u 1(B n- 1) (2) 

where 3 = 1/ot and a (the Fibonacci ratio in the limit) approximates the value 
of 1.62. Thus, 3 = .62. 

We are now able, given the first term, to calculate elements of (2). Re-
calling that the length of the largest insect is 6.0 mm, we may set this 
value as the first term in the sequence, and then proceed to calculate the 
next four terms. A comparison of the empirical and predicted sequences is 
impressive. 

Predicted Empirical 
Sequence Sequence 

6.0 6.0 
3.7 3.7 
2.3 2.2 
1.4 2.0 
0.9 0.9 

We may imply from this comparison that the length ratio of two neighbor-
ing insects in the sequence, taking the larger to the smaller, should approx-
imate 1.62. This ratio can then be viewed as a "limiting similarity" [2] for 
two species, i.e., how similar can two species be in the utilization of a re-
source (this resource being space in our consideration) before one excludes 
the other. 

If we accept the above comparison of sequences as noncoincidental, we can 
go on to hypothesize that the refuge volumes occupied by these five species 
of insects may be a function of the insects' lengths. If the volume occupied 
is simply related to the insect's length by a constant (k) , then we can de-
note a volume sequence {uf

n) as: 

feMe""1) 
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which is qualitatively identical to (2). That is, these insects may possess 
refuge volumes which correspond, in magnitude, to a Fibonacci sequence. 
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ON THE DENSITY OF THE IMAGE SETS OF CERTAIN 
ARITHMETIC FUNCTIONS—I 

ROSALIND GUARALDO 
St. Francis College, Brooklyn, NY 11201 

1. INTRODUCTION 

Throughout what follows, we will let n denote an arbitrary nonnegative in-
teger, S(n) a nonnegative integer-valued function of n, and T(n) = n + S(n). 
We also let <£ = {x\x = T(n) for some n) and C = complement of 35 = {n >_ 0\nto). 

It is of interest to ask whether or not the set G is infinite. We can also 
pose the question: does the set Q have asymptotic density and, if so, does ̂  
(or C) have positive density? It might be suspected that if S(ri) is "small" 
there is a good chance that 32 has density. However, this suspicion is incor-
rect, as can be seen from the following example: for a given n >_ 1, let k be 
the unique integer satisfying k\ <_ n <_ (k + 1)! - 1 and define 

!

0 if k is odd 
1 if n = k\ + k19 k and \ even, 0 £ kx <_ (k + 1) ! - 1 
0 If n = k\ + k.9 k even, k odd and as above 

Then n or n + 1 belongs to <$ for every natural number n9 so if 6 and A denote 
the lower and upper density of <£, respectively, we have \ <_ 6 j< A j< 1. Now 
if D(n) = {x <_ n\x = T(y) for some y) then 

D((k + 1)! - 1) .ig((fe + 1)! - k\) - (ft! - 1 - (fc - 1)!) - ••• < y , _ n. 
(fc + 1)! - 1 " (fc + 1 ) ! - 1 <% + o{l) 

if k is even, and 

D((k + ! ) ! - ! ) _ (fc + D ! - fe! - ̂ (fe! - 1 - (fe - 1)0 - ••• > -, , n , n 

(fc + 1)! - 1 " (k + 1)! - 1 - X ° U ; 

if fe is odd. Hence, 6 = i> and A = 1. Therefore, even if S(n) can take on 
only the values 0 and 1, it is possible for <£ not to have density. 

k 

Let b >_ 2 be arbitrary and let n - / d.b3 be the unique representation 

V ^ J = 0 

of n in base 2?. Define S (n) = / A f (dn- , j) , where / W , j) is a nonnegative 
j = o 

integer-valued function of the digit d and the place where the digit occurs, 
and T(n) =n+S(n). The consideration of functions of this form is motivated 
by the problem (which was posed in [1]) of showing that C is infinite when 

k 

T(ri) = n +y.dj. A solution, as given in [2], was obtained by recursively 
d = o 

constructing an infinite sequence of integers in C for all bases b. It was 
also observed in [2] that if b is odd then T(n) is always even. In fact, ̂  
is precisely the set of all nonnegative even integers when b is odd. To see 
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this, observe that n=S(n) (mod b - 1) and, therefore, T(n) -2S(n) (mod b - 1) 
k 

where S(n) = ̂ J d-. Hence T(n) is even if b is odd. Since ^(0) = 0, T(n + 1) 

j< T(n) + 2 for every natural number n, and T(jt) •> °°  as n •> °°, the result is 
proved. 

2. EXISTENCE AND COMPUTABILSTY OF THE DENSITY 
k t k 

Again, letting « = X ^ ^ ^ J ' S ^ = i C - ^ J ' j ) ' and ™ = n + SM > w e 

prove that the density of <£ exists and is in fact computable when suitable 
hypotheses are placed on the function /. We will adhere to the following 
notation: 

ti(k, r) = {T(x)\k <_ x <_ v) 

fi(r) = fi(0, r) 
D(k9 r) = |fl(fc, r)\ 

D(r) = \ti(r)\. 

Thzotim 2.7: Let f(d, j) (d = 0, 1, . . . , b - 1) be a family of nonnega-
tive integer-valued functions satisfying 

(a) /(0, j) = 0, j = 0, 1, 2, ... 
(b) f(d, j) = *(&J'), l < d < l - l . 

Then the density of <£ exists. 

VK,00^\ First, we show that 

D(dbk, dbk + r) = D(r), 0 ±r ±bk - 1, 0 <. d <. i - 1. (2.2) 

To prove this, suppose that 
k - l . k - l x = dhk + XX'̂ ' and y = di)k +J2do!bJ ' 
j = 0 j = 0 

C l e a r l y T(x) = T{y) i f and only i f 

-(M •'&*} 
Now i f ^ k _ x = cZfe_2 = • • • = dk_t = 0 (or i f ^ - j = d{-2 = • • • = d{-t = 0 ) , t h e n , 
by assumption ( a ) , we see t h a t 

sfzV) --{zy)--^^)-
We therefore have a one-one correspondence between the elements of Q(db , 
JZ?fe + r) and ft(r) , 0 £ v <_ bk - 1, from which (2.2) follows. In particular, 
if v = bk - 1, we have 

D(dbk
9 (d + l)bk - 1) = D(bk - 1). (2.3) 



320 ON THE DENSITY OF THE IMAGE SETS OF CERTAIN [Aug. 
ARITHMETIC FUNCTIONS—I 

Our next lemma will enable us to relate D(b +1 - 1) to 
b-l 

YlD(dbk> w + i)hk -i)-
Lmma. IA\ There exists an integer kQ such that for all k >. kQ the sets 

ft(0, bk - 1), U(bk
9 2bk - 1), ..., fi((Z? - l)bk

9 bk + 1 - 1) are pairwise dis-
joint, except possibly for adjacent pairs. 

Pfioofi: The maximum value of any element in £l(dbk , {d + l)bk - l) is at 
most (d + l)bk - 1 + Mk(k + 1), where Mk = max \f(d9 j)JO <. j <. k} and the 
minimum value of any element in ti (id +*2)bk, id + 3)bk - 1 ) is at least 
(d + 2)bk. Because of assumption (b) , there exists k$ such that f{d9 j) <bJ/2 
for all j 2.fe'o a n d there exists k0 >_k^ such that /(d, j) <£>J'/2 - Mk, (k'Q + 1), 
whenever k0 >_k^9 where 

Mkf = max {f(d9 j)|0 < J < fc0'}. 
Therefore, fc ' ,Q fc 

< Mk,(k'Q + 1) + 2 ^ J / 2 " ^fc'<fco + DC* - ^o) 

- ] C ^J/2 < ** for a11 k'-ko> 
J = kf+1 

s o , i n p a r t i c u l a r , M̂  (fc + 1) < bk. Hence, 
(d + l)bk - 1 + Mk(fc + 1) < (d + 2)Z>k 

whenever k >_kQ9 which completes the proof of the lemma. 
b-l 

Now D(bk + l - 1) = 53 D (<%>*> W + D^^ - l) - S, where § depends on the 

size of the intersections of the sets 

fl(0, £k - 1), fl(ik, 2£k - 1), ..., fl((2> - 1)&\ fck + 1 - 1). 

Define 

xdjk = \a(dbk
9 (d + i)£k - i) n nw + i ) £ \ (W+ 2)&* - i ) | , o <d <b -2. 

Using Lemma 2.4 and Equation (2.3), we obtain 
b-l 

D(bk + l - 1) = bD(bk - 1) "53^,k> k ^ k o - (2-5> 
d = o 

Let 
b-2 

^ = 0(2>* ... l)/bk and efc = 53 A d,k/^ + 1 > k ^ ko' 
d-o 

Then 2.5 can be rewritten as 

Ak+1 ~ Ak = ~ek' 

Therefore, 
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&k ~ ^ k - 1 = ~ e k - l 

AkQ+l Ak0 ~ ekQ 

and by telescoping, we obtain 
k 

«7=ko 

Replacing k + 1 by k yields 
k-l 

\ -A*. - E ^ k-k°- (2-6) 
k-l k 

Obviously, l/bk <. Ak <_ 1 and Y ] e^ = Ak - 4fc < Ak <. 1. Thus ̂ £ j is a 
«7=k0 «7=ko 

series of nonnegative terms bounded above by Av , hence is convergent. Let 

L-AK " I > i (2.7) 

(We have just shown that 0 £ L <_ 1) . Then, (2.6) yields 

i.e., *'=fc 

i4fc = L + 0(1). (2.8) 

Hence 

D(bk - 1) = Li* + 0(2>*). (2.9) 

Using (2.3), (2.4), (2.9), and recalling the definition of the Xd k and the 
ek, we have 

d-l d-2 

D(dbk - 1) = J ] £(cfc*, (e + 1)2>* - 1) - J2 Xd,k 
C = 0 (3 = 0 

d-l 

= 53 (^ + o(bk)) + 0(bk+1ek) = dbkL + o(bk); 

1) = <&*£ + o(bk). (2.10) 

Now 
j=o 

K 

let n = y d-b be any nonnegative integer. Then 

°D(n) - O j E ^ ^ J 
V = °  / / k v 

= 2?(dki* - l) + £>K&\ E ^ 6 J " 
j = o 
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where Q is the number of elements that the sets 

tt(dkbk - 1) and £lldkbk , ^d^.b3' 
\ j = o 

have in common. Therefore, if n is sufficiently large, then by using (2.10), 
(2.2), and the definition of the Xd k , we have 

Bin) = dkbkL + o(bk) + ^[Y^d-b^ + o(bk) = dkbkL + D( Yd3h°j + oftk). 

Applying the same reasoning to the quantities I)\ / djbC\ , k0 <_ t <_ k - 1, we 
eventually obtain V = o 

\j = k0 I \ j = 0 / J = k0 

J = 0 / \ j = 0 / 

D 

D(n) = L'|w - 2 ^ ^ ) + P l 2 ^ , Z ? I + o(n), 

Dividing both sides of this equation by n yields 

D(n)/n = L + 0(1), 

which proves the density of 9 is L. 

RojfnaAk: It should be noted that Equation (2.2), and therefore the above 
proof of Theorem 2.2, breaks down if we lift the condition f(0, j) = 0. 

A particular case of Theorem 2.1 of interest occurs when we assume that / 
depends only on d: 

Cotiotta/LiJ 2,11: If f(d) is an arbitrary nonnegative function of d, 1 <_ d 
<L b - 1, and f(0) = 0, then the density of ̂  exists and is equal to L, where 
L is defined as in Equation (2.7). 

We also easily obtain the following two corollaries to Theorem 2.1: 

CoKottoXij 2.12: L < 1 if and only if the function T(n) is not one-one. 

Vnooi: We have 

L = \ • £e^= A* • £ ^ > f ° r ai1 k *- ko> 
3 = k0 3 = k 

where fc0 is defined as in Lemma 2.4. If T(#) = T(y) , x ^ y9 and fc is such 
that fc >. &0 and ar £ i k - 1, y £ Z?k - 1, then, since Ak = D(bk - l ) / i k , i t 
follows that L < Ak < 1. If ? is one-one, then i t follows from the defini-
tion of the Ak and the ek that Ak = 1 and e^ = 0 for a l l k, so L = 1. 

Co/iO t̂oLi/ 2. 73: If / (d , j ) = /(d) depends only on d and if /(0) = 0 and 
/(fc - 1) ^ 0, then L < 1. 

?/L00£: Let /(2> - 1) = s > 0. Then T(bk - 1) = T((£ - l ) ^ " 1 + (£ - l )£ k ~ 2 

+ . . . + b - 1) = bk - 1 + ks. 
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Now, if k is such that ks - 1 - f(l) < bk and n = ^.d^b3 satisfies T(n) = 
j = o 

ks - 1 - /(l), then n < bk since T(n) >, n. Hence T(bk + n) = T(bk) + T(n) = 
bk + f(l) + ks - 1 - /(l) = £k - 1 + ks = T(bk - 1). Therefore T is not one-
one, so L < 1 by the above corollary. If there is never any n which satis-
fies the equation T(n) = ks - 1 - f(l), then almost all integers of the form 
ks - 1 - /(l), fe = 1, 2, 3, ...., do not belong to <£, hence, C has positive 
density, so L < 1 in this case also. 

RojtnaJik: The problem posed in [1] is now an immediate consequence of the 
above corollary. 

More generally, it seems to be true that if f(d) is not identically 0 and 
/(0) = 0, then we again have L < 1. We let this statement stand as a conjec-
ture. Note that the hypothesis f(0) = 0 is essential; for example, if / is 
any nonzero constant, then T(n) is strictly increasing and therefore L - 1. 

There is another question which can be raised about the value of the den-
sity L: must one always have L > 0 under the hypotheses of Theorem 2.1? 
Again, the proof of this result, if true, seems to be elusive. Since 

L = Ak - ̂ £ j for k > ^0, 

we see that L = 0 if and only if Ak = 0(1), which means that the function 
T{n) must be very far from being one-one. 

3. EXISTENCE OF THE DENSITY WHEN f{d, j) = 0(bj/j2 log2 j) 

The main drawback to Theorem 2.1 is the condition /(0, j) = 0. It seems 
to be difficult to prove that the density of <Q exists if we assume only that 
f(d9 j) = o{bd) for all digits d. On the other hand, it also seems to be 
difficult to find an example of an image set Q which does not have density 
under the latter assumption on /, so that the statement that <£ does have den-
sity under this assumption will be left as a conjecture. However, the fol-
lowing weaker result does holds 

Thzotim 3.1: If f(d9 j) = 0(bj / j 2 log2 j) for all d9 then the density of 
<£ exists. 

k 
PKOO^: Letting n = /_\d-bc , we have 

S(n) =X0(2?J/J'2 log2 j) = 0(^klk2 log2 k). (3.2) 
j = o 

Now if r <_ s <_ t (r < t) and s < b , then, letting D and Q be the same as 
in the proof of Theorem 2.1, we see that 

D(r, t) = D(r, s) + D(s + 1, t) - \ti(r9 s) D Q(s + 1, t)\. 

Hence, by (3.2), 

D(r, t) = D(r9 s) + D(s + ! , £ ) + 0(bk/k2 log2 &). (3.3) 

In particulr, if P = 0, s = 2?k"1-l, and t = &k - 1, then 



324 ON THE DENSITY OF THE IMAGE SETS OF CERTAIN [Aug. 
ARITHMETIC FUNCTIONS—I 

D(bk - 1) = D(0, bk~l - 1) + D(bk'\ bk - 1) + 0{bk~lKk - l) 2 log2(k - 1)). 

Similarly, we see that 

D(bq - 1) = D(09 bq~l - 1) + D(bq~l, bq - 1) + 0{bq~lKq - l ) 2 l o g 2 ((7 - 1 ) ) 5 

1 <. q <. k - 1 . 
Using the two latter equations and (3.2), we obtain 

D(bk - 1) = D(0) + D(l, 2> - 1) + ... + ZHM"1, i* - 1) (3.4) 

+ ••• + D(bk~\ bk - 1) + 0(2?V&2 log2 k ) . 
Let us now c o n s i d e r t h e q u a n t i t y D (db , (d + 1)2? - l ) . From ( 3 . 3 ) , we 

have 

D(dbk, (d + l)bk - 1) = Z)(d2?\ d2?k) + D(dbk + 1, dbk + b - 1) 

+ D(dbk + b, (d + l)bk - 1) + 0(2>Vk2 log2 fc). 
A second application of (3.3) yields 

D(dbk, (d + l)i* - 1) = D(dbk
9 dbk) + 0(d&* + 1, dbk + 6 - 1) 

+ ZKc&fe + b, dbk + b2 - 1) + D(dbk + b2, (d + l)2?k - 1) 
+ 0(bk/k2 log2 fc), 

and by repeatedly applying (3.3), we eventually obtain 

D(dbk, (d + l)bk - 1) = D(dbk, dbk) + 2W2>k + 1, dbk + 2? - 1) (3.5) 

+ ••• + D(dbk + bq, dbk + bq+l - 1) 

+ ••• + D(dbk + b k ' \ dbk + bk - 1) + 0(2>*/fc log2 k). 

Since all integers x satisfying 

dbk + bq <_ x 1 dfe* + 2?<7+1 - 1 (0<(?<lt-l) 

have the same number of leading zeros, there is a one-one correspondence be-
tween the elements of Q(dbk + bq, dbk + bq+1 - 1) and Q(bq, bq+1 - 1), i.e., 

D(dbk + bq, dbk + 2?«+1 - 1) = D(bq, bq+1 - 1). 

Using this fact, (3.5) becomes 

D(dbk
9 (d + l)bk - 1) = D(0) + D(l, 2? - 1) (3.6) 

+ . . . + Atf^"1 , bk - 1) + 0(2>k/fc l o g 2 / 0 , 
and (3 .4 ) and (3 .6 ) imply t h a t 

D(dbk, (d + l)bk - 1) = D(bk - 1) + 0(2>k/fc l o g 2 k). (3 .7 ) 
Now, from ( 3 . 7 ) , 

D(bk + l - 1) = D(2?fe - 1) + P(2?k, 2?k + 1 - 1) + 0(2?*7?<2 l o g 2 k) 

= £«>* - 1) + D(bk, 2bk - 1) + Z?(2ik, bk + l - 1) 

+ 0(2>*7k2 l o g 2 k) 

= 2/}(2?k - 1) + D(2bk, bk + 1 - 1) + 0(2>fc/fc l o g 2 k). 

By r e p e a t e d a p p l i c a t i o n of ( 3 . 7 ) , we have 
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D(bk+l - 1) = bD{bk - 1) + 0(6*7* log2 k). (3.8) 

Letting Ak = D(bk - l)/bk, (3.8) becomes 
bk+lAk+i ~ bk+1Ak = 0(6*/fc log2 k) 

and therefore 

^k+i - Ak = °(1/k l o § 2 &)• 

Since ^0(l/j log2 j) = 0(l/log fc), there exists a constant L such that 
j = o 

Afe = L + 0(l/log fc). (3.9) 

k k 
Let n = dk b ' + <fk 6 2 + ••• be any i n t e g e r , each rffc_ 5s 0. Then 

0(n) = D(dkibkl - l ) + D(dkibkl , n) + o(bkl/k\ log2 fc^. 

By the same reasoning used to obtain (3.8), we see that 

D(dkibkl - l ) - dkiD(bkl - l ) + o(bK/k1 l o g 2 fej. 

T h e r e f o r e , by ( 3 . 9 ) , we have 

D(n) = dkbkl(L + 0 ( l / l o g kx)) + 0 ( 6 * ' / * i l o g 2 fcj 

+ D(dkbkl, dkbK +dkbK + . . - ) . 

Since ^fe. ^ 0 f ° r a n y «7» w e know t h a t 

D{dkbk>, dkbk> •+dky* + • • • ) = D(dkbk* + • • • ) 

[c.f. the reasoning applied between equations (3.5) and (3.6)]. Hence, 

B(n) = dk bk>(L + 0 ( l / l o g ^ ) ) + 0(bkl/k1 l o g 2 fcx) + B(dkbK + • • •) . 

Cont inuing i n t h i s manner, we have 
k> 

B(n) =nL + 0(bkl/kl l o g 2 kx) + X ^ 0 ( ^ J / l o g J<) = nL + °(^7log &i)-

This last equation shows that the density of ̂ J is L, q.e.d. 

R&ncUtk I: This theorem, in contrast to Theorem 2.1, has the drawback that 
no formula for the density of <£ has been derived. 

RojmaJtk II: It is interesting to note that there exist sets <£ which do not 
have density under the assumption that f(d, j) = 0(bJ). For example, let 
f(d9 j) = 0 if j is even and f(d9 j) = b3' if J is odd. Evidently, 

( k-i \ fc-i 

v J = 0 / J = 0 

fc 

if k is odd, and 
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T\bk +J2djbj) = bk +Y,djbj + bk~l + bk~3 + ••• + b 
\ j=o / j=o 

if k is even. 
Therefore, the number of integers between bk and 2b in ̂  if k is odd is 

at most 1 + 2? ~2 4- 2? "̂  + *•• +2?, and the number of integers between bk and 
2bk in q? if k is even is at least bk - bk~l - bk~3 - ••• - 2?. Hence, if we 
let. 6 and A denote the lower and upper density of Q, respectively, we see 
that 

6 < lib2 + 1/6* + 1/2?6 + ••• = 1/ (2?2 - 1) 
and 

A >. 1 - 1/2? - 1/2?3 - 1/2?5 - • • • = 1 - 2?/(2>2 - 1 ) . 

Since 1 - b/ (b2 - 1) > l/(b2 - 1) when 2? > 2, it follows that <B does not have 
density if b ^ 2. 

It is also interesting that we can obtain examples in which the set <£ is 
of density 0 if f(d, j) =< 0(bh . For example, if b = 10 and f(d, j) = 0 if 
d ^ 1 and f(d, j) = 8 • 10J if d = 1, then no member of <R has a 1 anywhere in 
its decimal representation, and the set 

is a set which is well known to have density 0. 

CoKol&X/iy 3.10: If f(d') is an arbitrary nonnegative function of the dig-
it d, then the density of <R exists. 
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MATRICES AND CONVOLUTIONS OF ARITHMETIC FUNCTIONS 

E. E. GUERIN 
Seton Hall University, South Orange, NJ 07079 

1. INTRODUCTION 

The purpose of this paper is to relate certain matrices with integer en-
tries to convolutions of arithmetic functions. 

Let n be a positive integer, let a, 3, and y be arithmetic functions (com-
plex-valued functions with domain the set of positive integers), and let ari 
denote the 1 x n matrix [a(l) a(2) ... a(n)]. 

We define the n x n divisor matrix Dn = (d^) by di 1 if i\j, di 
otherwise. Both Dn and its inverse, Dn , are upper triangular matrices. The 
arithmetic functions Vk, a, and e are defined by Vk(n) = nk for k = 0, 1, 2, 

o(n) = 2 ^ , and e(n) = 1 if n = 1, e(n) = 0 if n > 1. We also consider the 
d\n 

divisor function T, the Moebius function y, and Euler's ^-function. We ob-
serve that 

;0[n] D 

}l[n]> 

T[n] 

0[n] 

^[nl^'n1 = P[n] > 

;i[n]^n }[n]' 

(1) 

(2) 

(3) 

(4) 

These matrix formulas, which can be used to evaluate arithmetic functions as 
in [2], are consequences of the following equations which involve the Diri-
chlet convolution, *D . 

V 0 * D V 0 = T > 

e*Dy = y, 

v ^ y = <|>, 

PVo 

)*nVn 

As an illustration, consider matrices D6 and D~s which appear below. 

1 1 1 1 1 II 
1 0 1 0 1 

1 0 0 1 
1 0 0 

1 0 
l| 

327 

5 D?-

1 - 1 
1 

- 1 
0 
1 

0 
- 1 

0 
1 

- 1 
0 
0 
0 
1 

1 
- 1 
- 1 

0 
0 
1 

d') 
(2') 

(3') 

(4') 
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Any omitted entry is assumed to be zero. By (2), 

[ 1 2 3 4 5 6]DS = [a(l) a(2) a(3) a(4) a(5) a ( 6 ) ] , 

so that 0(6) = Y*d = Y,Vl(d) = (v^pV,,) (6) . And by (4) , 
d\6 d\6 

[ 1 2 3 4 5 6W;1 = [c()(l) cj)(2) (f)(3) (f)(4) (f)(5) (f)(6)], 

so that (f)(6) = 1 - 2 - 3 + 6 = (v1*2?y)(6). 
These observations lead us to define and illustrate matrix-generated con-

volutions. 

2. MATRIX-GENERATED CONVOLUTIONS 

Suppose that G = (g^) is an infinite dimentional (0, 1)-matrix with g.> = 
1 if v - j and g^. = 0 if i > j, and that the l's in column n of G appear in 
rows nl5 n2, ..., nk (n1 < n2 < ... < nk = n). We say that £ generates the 
convolution *G defined by 

k 

(a*G$)(n) = ̂ ]^(ny)3(nk+1^y), n = 1, 2, 3, .... 

Clearly, *G is a commutative operation on the set of arithmetic functions. 
We denote by Gn the n x n submatrix of G = (ĝ  • ) with 1 ̂  i <^ n, 1 < j < n. 

The convolutions in Examples 1-4 below are defined and referenced in [3], 

Example, 1: The matrix Z? = (d^) , with d^ = 1 if £|j, dij • = 0 otherwise, 
generates the Dirichlet convolution *D. Dn is the n x n divisor matrix, and 
the set {nl9 n2, ..., nk) is the set of positive divisors of n. 

Example, 2: The unitary convolution is generated by the matrix U = (u^) 
with uij = 1 if i <L j and i|j and i and j/i are relatively prime, w^- = 0 
otherwise. 

Example, 3: The matrix C = (c^-) defined by c^ = 1 if t i j , ĉ - = 0 
otherwise, generates a convolution *£ related to the Cauchy product. Since 
{nl9 n29 •••> n k } = {I? 2, ..., n}, we have 

(a*c3)(n) = a(l)3(n) + a(2)B(n - 1) + • • • + a(n)B(l). 

Example, 4: For a fixed prime p, let the matrix L = (l^) be defined by 
lic- = 1 if i 1 j and p -f f . _ j, Z^ = 0 otherwise. The convolution ±L gen-
erated by L is related to the Lucas product. The entries shown in the matrix 
Llh for p = 3 are easily determined by the use of a basis representation cri-
terion given in [1]. 
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'lh 

(p = 3) 

1 1 
1 1 

1 

1 
0 
0 
1 

1 
1 
0 
1 
1 

1 
1 
1 
1 
1 
1 

1 
0 
0 
1 
0 
0 
1 

1 
1 
0 
1 
1 
0 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
0 
0 
0 
0 
0 
0 
0 
0 
1 

1 
1 
0 
0 
0 
0 
0 
0 
0 
1 
1 

1 
1 
1 
0 
0 
0 
0 
0 
0 
1 
1 
1 

1 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
1 

1 
1 
0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
1 

3. A GENERAL MOEBIUS FUNCTION 

In view of (3 ') , we next define a general Moebius function \iQ by VQ*G\lG 
e. It is immediate from G^lGn = In (the n x n identity matrix) that 

if G'^ig..) then 
^j 1iQ y(j) for j = 1,2, ..., n and n = 1, 2, 3, ... (5) 

For example, the elements in row one of D~s
l are yD(l) = y(l)3 y(2), . ,.,y(6) 

(in that order). The values of the unitary, Cauchy, and Lucas Moebius func-
tions given in [3] agree with corresponding entries in row one of Un, Cn9 and 
Ln, respectively. Property (5) implies e^^G'1 = yGj-n], which is a general-
ization of (3). 

The following three properties are related to the Moebius function and are 
stated for future reference. 

a*re = a for all arithmetic functions a. (6) 

*G is an associative operation on the set of arithmetic functions. (7) 

If gi5 = 0 then g^ = 0, where G~l = (#. .), n = 1, 2, 3, ... . (8) 

Property (6) is equivalent to 

0U 1 for j = 1, 2, 3, ... (6') 

For (6f) clearly implies (6); and if gln = 0 for some n, and a is such that 
a(n) i 0, then (a*Ge)(n) = 0 + a(n). 

ExampZz 5: Let the matrix P = (p^ ) be defined by p.. = 1 if i i j and i 
and Q are of the same parity, p.. = 0 otherwise. Evidently, (6f) and (6) do 
not hold here. For example, (v0*Pe)(2) =v0(2)e(2) = 0 ^ V0 (2). Although e', 
defined by ef(l) = e'(2) = 1, er(n) = 0 if n > 2, satisfies a*PeT = a for all 
arithmetic functions a, ef is not related to matrix multiplication in G~n

lGn = 
In in the desirable way that E is. 

We note that if (6) and (7) hold then we can apply Moebius inversion in 
the form a = V0*G3 iff 3 = ]iG*Ga> [as illustrated in (4')]- It is clear that 
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(6) holds and well known that (7) holds for the convolutions in Examples 1-4; 
so (8) holds as well, as can be verified by direct computation or by applica-
tion of the following theorem. 

Tkzotim 7: Property (7) implies property (8). 

VKOO^\ Assume that (8) is false. Let j be the smallest positive integer 
such that for some £ we have -g.. = 0 and #".. ^ 0; let this j = n. Consider 
the largest value of i such that gin - 0 and ~gin ^ 0; let this i = t . It 
follows by the assumptions and GnG^1 - In that gtt - 1, gtn = 0, ~gtn ^ 0, 
there is an integer r such that t < v < n and gt = 1, and grn = 1. Since 
v e {n19 ..., n^} and gtT = 1, then a(t) is a factor in some term of 

((a*G3)*GY)(n). 

But no term of (a*c(3*cY)) (n) -.has a factor a(t) because t £ {n19 ..., 7^}. 
Therefore, (7) is false and the proof is complete. B 

k. THE MAIN THEOREM 

We now define some special functions and matrices leading to the main re-
sult in this paper. Assume that the matrix G generates the convolution *G 

and define the arithmetic functions A and B by 
n n 

AW =J2gina(i) and B(n) = iC^n&W-
i - 1 i m 1 

Then for n = 1, 2, 3, ..., we have 

and 

3[n]^;1 = B[n]. (10) 
Define G^ = (s^-) to be the n x n matrix with Sij =1 if i = ny and j =nk + l_v9 
V = 1, 2, . .. , fc, ŝ - = 0 otherwise. Note that G% is a symmetric (0, l)-matrix 
with at most one nonzero entry in any row or column. If Mt denotes the trans-
pose of a matrix M, then 

and 
(a*cB)(n) = a[ n ]^(0[ n])t (11) 

(A*GB)(n) = A[n]£*(B[n])*. (12) 

The matrix GnG„ is of special interest and can be characterized as follows. 
Column nv of GnG^ equals column nk+l_v of Gn, for v - 1, 2, ..., k; 

the other columns (if any) of GnG% are zero columns. (13) 

Although GnG„ is symmetric (for all positive integers n) for the matrices de-
fined in Examples 1-5, GnG% is not symmetric for Gn = E3 given below. 
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1 
0 
0 

1 
1 
0 

0 
1 
1 

> < = 
0 
0 
0 

0 
0 
1 

0 
1 
0 

> E z E l = 
0 0 
0 1 
0 1 

1 
1 
0 

ThdOtim 2: The matrix GnGs
n is symmetric for n = 1, 2, 3, ...if and only 

if (a*GB) (n) = (A*GB) (n) for all arithmetic functions a and 3, and for all 
positive integers n. 

Vtioohi 

1. Assume that GnG% is symmetric for n = 1, 2, 3, ... . This and the sym-
yS\t metry of G* imply t h a t (GnG%y = Gn(G*y . In view of ( 9 ) , ( 1 0 ) , ( 1 1 ) , 

and ( 1 2 ) , we have 

(4* c B)(n) = A[n]Gs
n{B[n]y 

= 01[n]Gr
n(?^(3[n]G;

n
1) 

= 0 [ » ] ^ ( 3 I B ] ) * 

= (a* G |3 ) (n ) , n = 1 , 2 , 3 , . . . . 

2. Assume that there is a positive integer n such that GnG% is not sym-
metric. Then GnG„ ± (G„ffn)* implies that GnG^Gn1)* 5s <?£ and that 
04*cS)(n) = a[n]GnGn

s(^1)t(B[n])* and (a*G6)(w) are not identically 
equal. Therefore, there exist arithmetic functions a and 3 such that 

(A*GB)(n) + (a*G3)(n). 

This completes the proof of the theorem. 11 

Next, we give an application of this theorem. 

ExampZz 6: Since PnP„ is symmetric for n = 1, 2, 3, ... for P in Example 
5, we can apply Theorem 2 with n - It - 1 (for t a positive integer), a = Vx, 
3(2^-1) = k for fc = 1, 2, ..., t, to obtain the identity 

t t 

k = i k = i 

which can be expressed in the form 

t t - i 

fc«l fc-l 

5. A GENERAL EULER FUNCTION 

Assume that the matrix G generates the convolution *G . In §3, we defined 
a general Moebius function ]iG and obtained a generalization of (3). In this 



332 MATRICES AND CONVOLUTIONS OF ARITHMETIC FUNCTIONS [Aug. 

section, we define a general Euler function $G for G such that *G satisfies 
(6) and (7), and derive a generalization of (4). 

First, we consider the property 

GnG„ is symmetric for n = 1, 2, 3, ... (14) 

and some preliminary theorems. 

Th&OJiQJM'• 3: Property (7) implies Property (14). 

VKOO^i Assume that GnG„ = (h^) is not symmetric. 

C<X6£ 7: Suppose that column w of GnG„ is a zero column and that hwq = 1 
for some q e {l, 2, . .., n}. By (13), gwn = 0 and q e {n1 , . . . , n^}; say q = 
nk+i-t- T h e n 3 W =1 = gntn = gntnt and ((a*G3)*Gy) (n) has a term with fac-
tor a(w); but (ou^g^y)) (n) has no term with factor a(w) and (7) is false. 

CaAd 2: Suppose that hn8rlp= 0 and hnrna = 1, where ns and nv belong to 
{nl9 ..., nk). Then ^n.nk+1.r = 0, 9nrnk+1-B

 = 1' and ^„fln = 1 = gnpn. There-
fore, (a*Gg) (nk+ x_ e )y(ns) has a term with factors a(nr) and y(ns), but 
a(nr) (3%Y) (W/£ + 1_ r) has no term with a y(ns) factor. Again, (7) is false. B 

Th&OSim 4: Property (1.4) implies Property (8). 

VJIOQ^I Assume that (8) is false and let t and r be defined as in the 
proof of Theorem 1. Column t of GnG^ is a zero column (since gtn = 0 ) ; but 
a 1 entry appears in row t of GnG% (because gtv - 1 = grn) , so that GnGn is 
not symmetric. H 

We note that (7) implies (8) and (14) , and that (14) implies (8) ; there are 
no other implications among the properties (6), (7), (8), and (14) (as will 
be shown in §5). 

It follows from (9) that A = V0*Ga. If G and *G satisfy (6) and (7), then 
(by Theorems 3 and 2) we have (a*GB) (n) = (a*GV0*GB) (n) for all arithmetic 
functions a and @ and for n - 1,2, 3, ... . Therefore, we have 

3(n) = (v0*GB)(n); 
and 

B(n) = <B*tfUG)(n) (15) 

for all arithmetic functions 3 and for n = 1, 2, 3, ... follows by Moebius 
inversion. 

TktOtim 5: If properties (6) and (7) hold for G and *G , then 

Wnvn == yG0*k+l-y)> V = 1, 2, ..., k. 

Vh,00^\ Define the arithmetic functions gy, y = 1, 2, ..., fc, by $y(n) = 1 
if n = ny, 3y(w) = 0 otherwise. Property (15) implies that 

n k 

S3(i)^n = £s<W|>)M*fc + l-t>> (16) 
i = 1 v • 1 



1978] MATRICES AND CONVOLUTIONS OF ARITHMETIC FUNCTIONS 333 

for all arithmetic functions 6 and for n = 1, 2, 3, ... . Let G = *G in (16) 
to obtain ~gn n = Uo^k + i-v) I this is valid for £> = 1, 2, . . . , & . • 

For £ and *G which satisfy (6) and (7) we define the general Euler func-
tion $G by <\>G = Vi*GUG> We can now generalize (4). 

TkzofL&m 6: If G and *G satisfy (6) and (7), then V^-jG"1 = $G[n]' 

Vh.00^1 This is a direct consequence of Theorem 5 and Property (8) (which 
follow from (6), (7), and Theorems 3 and 4). • 

Other general functions such as TG and 0G can be defined analogously. 

6. REMARKS 

First, we show that there are no implications among properties (6), (7), 
(8), and (14) except (7) implies (8) and (14), and (14) implies (8). If R5 
is as shown and R = (r^j ) is defined for £ > 5 and J > 5 by r^- = 1 if £ = j 
or £ = 1, 2»̂  • = 0 otherwise, then R satisfies (6) but not (7), (8), and (14). 
The matrix P defined in 

1 1 
0 0 
1 1 

1 
Mr 

Example 5 satisfies (7), (8), and (14) but not (6). A matrix M = {m^) which 
satisfies (8) but not (7) and (14) can be defined for i>5 and J >5 by m 
if £ = J, m^ =0 otherwise, with M5 as shown. 
is defined for i > 10 and J > 10 by k^ = 1 if 
(14) holds, but (7) is false since, for example, 

If K10 is as shown and K = (k^-) 
t = J 5 &£i = 0 otherwise, then 

((V1*XV 1)*J CV 0)(10) + (v1*x(v1*^v0))(10). 

L10 

1 
1 

1 
0 
1 

1 
0 
0 
1 

1 
0 
0 
0 
1 

1 
1 
0 
0 
0 
1 

1 
0 
0 
0 
0 
0 
1 

1 
0 
0 
0 
0 
0 
0 
1 

1 
0 
0 
0 
1 
0 
0 
0 
1 

1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

Properties (6), (7), (8), and (14) all hold for the matrices (and generated 
convolutions) in Examples 1-4 as well as for those defined in our concluding 
example. 
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Example, 7: Let F = { l , 2, 3, 5, 8, .. . } be the set of positive ̂Fibonacci 
numbers. Define F = (fij) by f^ = 1 if i = j or if i < j and ieF, f^ - 0 
otherwise. F can be replaced by any finite or infinite set of positive inte-
gers which includes 1, and properties (6), (7), (8), and (14) will be satis-
fied. If F is replaced by the set of all positive integers, we obtain the 
matrix C in Example 3. 
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A NEW SERIES 

JAMES M. SUTTENFIELD, JR. 
Apopka High School, Apopka, Florida 

There is a series very similar to Fibonacci's that also displays some in-
teresting properties. An article by Marjorie Bicknell [1] in The Fibonacci 
Quarterly (February 1971) casually mentions the series as a result of more 
investigation of Pascal's Triangle. The series is 0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 
... . Each term is found from the relationship 

77* _ 77* JL 77* 

The series resulted from my research in the Great Pyramid of Gizeh, where 
the base-to-height ratio is TT/2 and the slant height of a side to the height 
approximates /(f). <J> represents the series limit of the Fibonacci Series (see 
Figure 1). 

BASE 

Fig. 1 

One of the properties of the new series presented in this paper is that it 
better fits into the design features of the pyramid than does the accepted 
fact that Fibonacci's Series limit is intended to be decoded. 

The series limit of the new series is represented by the symbol ^ and rep-
resents the number 1.46557123..., which will be used as 

ip = 1.465571232 

in this paper. 
Referring to Figure 1 again, the ratio of slant height to height is much 

better represented by the following relationship, 

s.h. = / l - In TJT 
h V In ^ 

This relationship yields a slant height which is only 1.67 inches from the 

335 
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measured values. FibonacciTs Series limit being employed yields a slant 
height that is 2.7 inches greater than the measured value; the new series 
limit yielding 1.67 inches less. This is not to dispute the existence of 
the Fibonacci Series limit as being intended, but to confirm that both ex-
pressions are intended by the Designer of the Great Pyramid. 

Fig. 2 

Figure 2 shows one other place where the new series limit is found in the 
Great Pyramid. From the corner angles the outside edges of the Pyramid that 
follow the diagonals form the series limit divided by two as shown and ex-
pressed in radian measure. 

To find any number in the new series, the recursion formula 

77* _ 77* _|_ 77* (1) 

can be used, where 

F* = 0, F\ = F\ = F% = 1. 

jp* 

The ratio, w* , reaches a definite limit as one uses latter numbers of 

the series. This ratio is 
F* 

\p = lim -J$L = 1.46557123.. . . (2) 

Further investigation reveals that 

and 
ijj3 - ty2 - 1 = 0 

tyn r n r n-2 n-1 

Equation (3) reveals that ^ is a root of the equation 

X3 - X2 - 1 = 0 

(3) 

(4) 

(5) 

The roots of (5) are of considerable interest. These are easily verified to 
be the true roots of (5). Let the roots be a, 3, and y. 

a = xp (6) 
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e - - - i r ( i + iv£jFTT) 
2f 

Y-.-ir(i- i >^nrT) 

(7) 

(8) 

Roots (6), (7), and (8) will be used In (4) to develop a formula for F*. 

an + 1 = a2F* + aF*_2 + F*_x (9) 

Solving, 

Yn + 1 = Y2F* + YF*„2 + F*^ 

F * = 

^n + 1 

,n + l 
y 

a 1 

6 1 

Y 1 

yielding, 

which reduces to 

vn + i (B - v) + 5 n + l (Y - a) +• Y x ( a - g) 
a 2 (B - Y) + B2(Y - a) + y 2 (a - 3) 

" ( B - Y) +. 3 n + 1 (Y - a) + Y n + 1 ( a - B) 

(10) 

(11) 

(12) 

(13) 

(14) 

Equation (14) successfully computes F*, The algebra gets fairly involved 
for higher numbers of the series, but the results agree with the established 
series. 

Geometrical considerations are next. If one considers the relationship 

ip3 ip2 \\J 
* , (15) 

a line of length ip can be thought of as divided into three parts as indicated 
on the left side of (15). 

1 i JL 
* 

•p 
1 

Line of Length 4> 

Fig. 3 
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The result of (15) also leads to another interesting fact. The parts of the 
line in Figure 3 can be used to establish a proportion 

_L._L._L (16) 

which is better represented by the proportion 

(17) 

The proportion in (17) established the sides of a special triangle which will 
be named the ty2:\pil triangle. 

120°  

* 

^ 

*/>2:*/>:1 Triangle 

Fig. k 

The ty2:ty:l triangle incorporates an angle of 120°  as its largest angle. This 
fact suggests that it can be placed into the vertices of the regular hexagon. 

Fig. 5 
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Figure 5 represents a unit hexagon with six of the ip2:ijj:l triangles at the 
, , L L L 

vertices such that —:—ji—-5- proportions are maintained in each. 

C 

JL &• J* 

*B 

Fig. 6 

Using Figure 6, we see that 

and 

sin A sin C /I 

ft = 

* 2*' 

/3L 
2i^ 

The area of each small triangle in Figure 5 then is 

_ ±.kS3L _ /3L2 

a r e a " 2 if, 2 ^ " 4i^5 ' 
and for the total area represented by the six triangles 

3/3L2 

the area of the hexagon 

area total = 

area hexagon 

2r s 

3/3L2 

A comparison of (22) to (21) yields 

area hexagon 
area six triangles 4>5 

This further indicates that the area of each small ty ityil triangle is 

r- 11 12 1 1 ,_ . , area hexagon 
area of small ^ :ip:l triangle = E — - — 

6i|r 
Rearranging equation (3), 

if;3 = if;2 + 1 

gives the suggestion of volume as indicated in Figure 7. 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

given 

(24) 

(3) 
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+ 1 

The next property of the series limit is stated as a theorem. 

Tk&OtiQMi Given any triangle, choose any one of its sides and divide the 
length of that side by the factor ip, the resulting length by ijj; and the final 
resulting length by i//, so as to have three new lengths from the original side 
of the triangle. The three resulting lengths, when placed inside the trian-
gle parallel to the side chosen will create equal perpendicular distances be-
tween the longest resulting length and side chosen as well as the shortest 
length of the vertex opposite the chosen side. 

i 

h 
0 

i 

h 
V 

T 

h 

r\ 

hv 

Fig. 8 

Figure 8 represents one orientation of a given triangle with a side L. It 
is to be shown that 

(25) 

h By similar triangles the height of the topmost triangle is —r; the second is 
h h ^ 
— ; the third is ̂ . It is easily seen that * V 

h - | = K 

(26) 
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From the identity in (3), 

then 

and 

Substituting (27) into (26) yields 

^ -

1 
1 

. ^ -

= ^ 3 

= 1 -

• 1 = 

-r 
1 

0, (3) 

(27) 

K=p. (25) 
A similar analysis can be used to prove the other orientations of the trian-
gle., 

Claries Funk-Hellet [3], a French mathematician, constructed an additive 
series similar to Fibonacci f.s by replacing the second one in the series by a 
five and adding as in the original series. The series was developed into 36 
rows, each row containing 18 entries, Table 1 illustrates Funk-Hellet!s re-
sults in part. 

Row 2 of the table contains the l/(j), 1, (f), and (j)2 values, while the 14th 
entry of the 24th row yields a very precise value for 7T. The 7th column rep-
resents the one-eighth divisions of a circle. Other results were found by 
Funk-Hellet concerning other matters. 

We construct a similar series using the series concerned in this paper by 
replacing the third one by six and adding as in the original series. Table 2 
shows some of the results. This table was constructed in the same manner as 
Funk-Helletf s. 

The 10th, 11th, and 12th entries of row 1 are values for l/5î 3, l/5^2, and 
1/5^, respectively; the 14th through 18th places represent 2I(J5 2ip2, 2^3, 2 ^ , 
and 2i|;5. The last entries of the 5th row give values for l/^5, 1/ty1*$ * * » 3 

1/iJV 1 , ^ j •••••J^1*J llj5». T n e 9th entry of the 26th row represents </> -1/2; the 
9th entry of the 29th row represents one-half the value of twice the height 
of the Great Pyramid less its base. The 6th entry of the 31st row yields the 
value for the log e. 

One might wonder why Funk-Hellet chose to add the number five in his table 
and six was chosen in the newest case. It could be because the pentagon re-
lates the Fibonacci limit and the hexagon relates the ip-number limit. For 
whatever reason, the chosen numbers in conjunction with the related series to 
each yield some unexpected results. 

As a final note: 

ax = ty = f [4(29 + 3 /y/ST)]173 + |[4(29 + 3 /3"/3l)]"1/3 + ~ (6) 
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SOME PROPERTIES OF A GENERALIZED FIBONACCI SEQUENCE MODULO m 

MARCELLUS E. WADDILL 
Wake Forest University, Winston-Salem, NC 27109 

The F ibonacc i sequence reduced by t h e modulus m has been examined by Wall 
[1] , Dynkin and Uspensk i i [ 2 ] , and o t h e r s . In t h i s pape r we i n v e s t i g a t e t he 
g e n e r a l i z e d F ibonacc i sequence {Kn}, where KQ = 0 , K1 = K2 = 1 , and 

Kn = Kn_, + Kn_2 + Kn_3, n > 2 . (1) 

We reduce {Kn} modulo m9 taking least nonnegative residues. 

Vdl^LVlUtLovii Let h = h(m), where h(m) denotes the number of terms in one 
period of the sequence {.Kn} modulo m before the terms start to repeat, be 
called the length of the period of {Kn} (mod m). 

Example: The values of {Kn} (mod 7) are 

0, 1, 1, 2, 4, 0, 6, 3, 2, 4, 25 1, 0, 3, 4, 0, 0, 4, 4, 1, 2, 0, 3, 5, 

1, 2, 1, 4, 0, 5, 2, 0, 0, 2, 2, 4, 1, 05 5, 6, 4, 1, 4, 2, 0, 6, 1, 0, 

and then repeat. Consequently, we conclude that h(7) = 48. Note that K^6 = 
1, Kk7 = Kh8 E 0, Kh2 = 1 (mod 7). Hence the sequence has started to repeat 
when we reach the triple 1, 0, 0. Note also that Kl5 = K16 = 0, Z31 = K32 = 
0 (mod 7), so that the 48 terms in one period are divided by adjacent double 
zeros into three sets of 16 terms each. This example illustrates a general 
principle contained in 

Tko.OA.Qjm 1: The sequence {Kn} (mod m) forms a simply periodic sequence. 
That is, the sequence is periodic and repeats by returning to its starting 
values 0, 1, 1. 

PK00&: If we consider any three consecutive terms in the sequence reduced 
modulo m, there are only m3 possible such distinct triples. Hence at some 
point in the sequence, we have a repeated triple. A repeated triple results 
in the recurrence of KQ9 K19 K2, for from the defining relation (1), 

An_2 = K-n + 1 ~ Kn - A M - 1 , 

Therefore, if 

Kt + 1 = K8+.l9 Kt E K89 and Kt_1 = K8_x (mod m) , 

then 

3kh 
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and, similarly (assuming that t > s), 

K t-3 Ka (mod 777) 

(mod 7??) , 

^t-s+2 - %z (mod m) = 1 
Kt-8+1 = #1 (mod w) = 1 

Zt_8 E Z0 (mod 777) = 0. 

Hence, any repeated triple implies a repeat of 0, 1, 1 and a return to the 
starting point of the sequence. 

If h is the length of the period of {Kn} (mod 77?), then clearly Kh = 0, 
Kfr + i = Z^+2 = 1 (mod 77?). From the defining relation (1), it also follows 
that Kh_1 = 0, Kh„2 - 15 %-h-z E m-l9 and A^..^ = 0 (mod m) . We now list some 
identities for the sequence {Kn) which will be useful in the sequel. These 
identities and their proofs may be found in [3]. 

Kn+ = KnKp + l + Kn^iKp + K x) + Kn_2K n > 2 , p > l ; 

K. n + p ~ ^-n-r^-p + r+l + ^ - n - r - 1 ̂ p + r + -̂ p + r - 1 ' "** -̂ n • r -2^p + 'r> 

w >. 2 , p > 1 , - p + 2 £ p £ n - 1 ; 

(2) 

(3) 

•^n-l "** ^n-2» 

1 
1 

0 

1 
0 

1 

1 
0 

0 

•"-w + 1 Jn + 1 

M - l 

z„ 
Kn-1 

Kn-2 

, n > 2 ; 

KnKn_3 + A n - 1 + Kn_2Kn+1 Kn+lKn-lKn-3 2KnKn^Kn_2 = 1, n > 3. 

(4) 

(5) 

(6) 

The following theorem gives an unusual property about the terms which im-
mediately precede and follow adjacent double zeros in the sequence {Kn} (mod 
777). 

Thzotim 21 if K K„ 0 (mod 77?) , then £^_2 K. w + 1 1 (mod m) , 

PJiOOfi: The fact that K*_2 = K „ + 1 (mod 77?) follows from the defining rela-
tion (1) and the fact that Kn 
we observe by (6) that 

Ky, 0 (mod m). To prove the other part, 

A iA , 4- A n 4- A o-̂ ,̂ -~ K K n A „ . n - l n - 4 n - 2 n-3 n n n-2 n-k 2Kn-lKn-2Kn-3 " l o 

All terms on the left side of this equation, except Kn-2> a r e congruent to 0 
modulo 77?. Hence we have 

Kl-2 E Kl+1 E 1 (mod m). 
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Tk&OXQjn 3: If j is the least positive integer such that K-x = K- = 0 
(mod m), then 

(a) Knj-i = -̂ nj = 0 (mod m), for all positive integers n and 

(b) if Kt_l E Zt E 0 (mod TTZ) , then £ = nj for some positive integer n. 

Pftoofi ofi (a) : The proof is by induction on n. For n = 1, the conclusion 
is immediate from the hypothesis. If we assume as induction hypothesis that 
Knj-i - Znj E °  (m° d w)»' then by (2) 

*(n + l)j = ^ + J = ̂ n^j + 1 + *nj-l<*j + *j -1 > + ^-2Kc E °  <m° d W> • 

A similar argument shows that Kn-1 = 0 (mod w). 

P/LOÔ  0<{ (fa): Let t be such that Zt = Kt.l = 0 (mod w) . We have £ > J 
since j was least such that Kj = Kj_1 = 0 (mod m). If j does not divide t, 
then by the division algorithm, 

t = jq + r, 0 < r < j. 

We have by (2) , 

Kt = Kjq + r = *j>*r + l + ^ -1 <̂ r -1 + *P> + ^ -2*r E °  (m° d *> • 

But since Z- E K. 1 E 0 (mod m), this equation implies that 

K3q-1K E °  (mod ^ ) -

By Theorem 2, 

J^_2 E 1 (mod m), 

which implies that no divisors of m divide Kjq _2. Thus, 

Kr = 0 (mod m). 

Similarly, we can show that 

X2,_1 E 0 (mod 772). 

But r < j 9 and so these last two congruences contradict the choice of j as 
least such that 

Kj E Kj_1 E 0 (mod m). 

The following theorem shows that in considering properties about the length 
of the period of {Kn} (mod 77?) we can, without loss of generality, restrict 
the choice of m to p*, where p is a prime and t a positive integer. 
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IkdOKoya 4: If m has prime factorization 

m = p*1 p£* ... p*- , 

and if hi denotes the length of the period of {Kn } (mod p*f) , then the length 
of the period of {Kn } (mod m) is equal to l.c.m. [h^]9 the least common mul-
tiple of the hi. 

Vh.00^1 For all i9 if hi denotes the length of the period of {Kn} (mod p**) , 

*7x,-i = *fc« E <> Uod p**) 

^ - 2 E ^hi + i E 1 (^d p**), 

and also 

K*h<-1 E Krhi. = 0 (modp/*), 

^rhi-2 E ^r^+1 E 1 (mod P*0 

for all positive integers p. If j = l.c.m, [hi], it follows then that 

Kj EZj.i = 0 (mod m), 

Kc-i EKj + i E ! (modm). 

Conversely, if h is the length of the period of {Zn } (mod #?) , then 

Kh = j^-i = 0 (mod m), 

^ . 2 = ^ + i = 1 (mod 772), 

which implies that for all i, 

% = ̂ _ x E 0 (mod p**), 

**-2 E *h + i E 1 (mod p**). 

By Theorem 3, /z = /z.^ for all 7ẑ  and an appropriate r^ . That is, /z is a 
common multiple of the hf By definition of h then, h = j, the l.c.m. [/ẑ ]. 

Tht0h.Qjn Si If Kt = Kt^1 = 0 (mod w) , then Kt_h E 0 (mod 777). 

Pswofii By the defining relation (1) and the hypothesis, we have 

Kt = Kt^l + Zt_2 + Zt_3 E 0 (mod m), (7) 

Kt.l = Zt_2 + Zt_3 + Kt„h E 0 (mod m) . (8) 

Now subtracting (8) from (7), we have 
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or 

Kt^1 E Kt_h (mod rri). 

The next theorem gives an interesting transformation of a certain factor 
from the subscript te a power in moving from the modulus m to m when the 
subscript is a specified function of the length of the period of {Kn } (mod 
rri). This theorem is useful in establishing the length of the period of {Kn) 
(mod pr) relative to the length of the period of {Kn} (mod p) , p a prime. 

Tk^Oftm 6% If h is the length of the period of {Kn} (mod rri) , then the 
following identities hold in terms of the modulus m2. 

Ksh+i E <+i (mod/772), (9) 

Ksh-i E sKh'lKh-i (mod^2), (10) 

Ksh-2 E *2-2 (mod TT?2), (11) 

Zs^ E ( 4 + 1 - e^li^-! - #J|-2) (mod m 2 ) . (12) 

VhX)Q^ 0& (9): The proof is by induction on s. For s = 1, the conclusion 
is immediate. If we assume that 

K8h + 1 E X*+1 (mod m2), 

then5 by (2)s 

# ( e + l)fc + l = K{eh+l) + h = Ksh + lKh + l + Ksh(Kh + -̂ h-l) + Ksh-lKh' 

Since h i s t h e l e n g t h of t h e p e r i o d of {Kn} (mod rri), and a l s o u s ing Theo-
rem 3 , we have 

h = Kh., = Ksh = K^., E 0 (mod m). 

But these congruences imply that 

Ksh(Kh + Xh_x) E X ^ . ^ E 0 (mod m 2 ) , 

which together with the induction hypothesis implies that 

and the result is proved. 

The proofs of (10) and (11) follow in a similar manner. 

VKOOi ol [12)% Using the defining relation (1) and (9), (10), and (11), 
we have 
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K sh+l K8h - 1 ~ K8h -2 ~ (K 
h+l 8K°H-12KH-I " K-2) (mod m2)e 

We return now to the question of the relation between the length of the 
period of {Kn } (mod p) and the length of the period of {Kn} (mod pv) where r 
is an arbitrary positive integer. First, a preliminary theorem; 

ThtOtim 7: If p is a prime and h = h(p) is the length of the period of 
{Kn} (mod p), then K(+l E 1 (mod p 2 ) . 

VKOOi'. I f Kh + i E 1 (mod p 2 ) , then z£+1 = 1 (mod p2) trivially,, If Kh + l t 
1 (mod p 2 ) , then 

Now 

and 

< + 1 - 1 = (xh+1 - D(^p;i + *£;? + ••• + C i + D' 

%h+i " 1 E ° ( m o d P) 

^ + 1 E X ( m o d P) 

(13) 

for any s. Therefore, 

K-P-i + 1L P-2 + *ft + l + 1 1 + 1 + + 1 0 (mod p). (14) 

0 (mod p 2 ) . 

Using (13) and (14), we see that 

vP 
Kh + l 

We now state the main theorem. 

Th&otL&m 8: If p is a prime and h(p2) + h(p), then h(pr) = pp"1/z(p) for 
any positive integer r > 1. 

P/L00$: We prove the case when r = 2. The general case follows in a simi-
lar manner by means of induction. Since h = h(p) is the length of the period 
of {Kh} (mod p) , then using (5), we have 

K +1 

fc-i 

K h-l 

"•h-2 

1 
0 

0 

0 

1 
0 

0 
0 

1 

(mod p), 

where h is the smallest sech power for which this property holds. [The se-
quence {Ln) is defined by (4).] Now also by (5) , 
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1 

1 

0 

1 

0 

1 

1 

0 

0 

hp 

= 
yhp+l 

hP 

hp-l K 

Jhp + i 

Fjhp 

Vjhp 

hp-l 

hp~2 

I f h(p) + h(p2), then u s ing ( 9 ) , ( 1 0 ) , and ( 1 2 ) , t h e f i r s t column of t he ma-
t r i x on t h e r i g h t has v a l u e s as f o l l o w s : 

Khp+1 E Kh+1 M P 2 ) , 

KhP = (Rh+i - p ^ : X - i - **-2> <m o d P 2 ) > 

K. hp •i = P 4 = ^ - i (mod p 2 ) . 

By Theorem 7 and (15), it follows that 

Khp+1 E 1 (mod p 2 ) . 

Using Theorem 7, (16), and (17), it follows that 

KhP - KhP-i 0 (mod p 2 ) , 

(15) 

(16) 

(17) 

(18) 

(19) 

From (18) and (19) we conclude t h a t the l e n g t h of t h e pe r i od of {Kn} (mod p 2 ) 
i s hp i f 

Kt+l - 1 (mod p ) , 

Kt E Kt_l E 0 (mod p 2 ) , 

(20) 

(21) 

for no t < hp. To see that this is indeed the case, we observe that since 
20) and (21) also imply that 

Kt+1 - 1 (mod p), 

Kt_1 E 0 (mod p), 

(22) 

(23) 

then by Theorem 3, t = hq for some (7. Now assuming that (22) and (23) hold, 

1 1 1 
1 0 0 

0 1 0 

t 

= 
1 

1 

0 

1 
0 

1 

1 
0 

0 

hq 

= = \K, 
h + l 

Kh_ 

Jh + i 

Jh-i 

*h 

Kh-1 
Kh-2 

<? 

= 
1 
0 

0 

0 0 

1 0 

0 1 

(mod p 2 ) 

Since h(p) f h(p2) , 

K2 h+l 

Ku 

Lh + l 

Lh 

£ f t - l 

"•h-1 

Yh-2 

0 0 
1 0 

0 0 
(mod p 2 ) , 
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but by (18) and (19), 

AP = Aq E I (mod p 2 ) . 

Since A % I (mod p ) and p is prime, this implies that p divides q or p <. q 
and t = 7zg>. /zp. Thus hp is the length of the period of {Kn} (mod p 2 ) . 

Whether the hypothesis h(p) ^ h(p ) is necessary or whether h(p2) can ne-
ver equal h(p) is an open question. No example of h(p) = h(p2) was found, 
yet a proof that none exists was not found either. In the event that k is 
largest such that h(pk) - h(p) , it can be shown that h(pr) - pr~kh(p). 

IktOHm 9: If Kt E Kt_l E 0 (mod m) 9 then Ket + 1 = K*+1 (mod m) for all 
positive integers s. 

VtiOQ^i The proof is similar to the proof of (9). 

The example illustrates that at the end of a period, the triple 1, 0, 0 
occurs in the sequence {Kn} (mod 777). In the example, we also saw that ad-
jacent double zeros (not necessarily preceded by 1) occur at equally spaced 
intervals throughout the period and that adjacent double zeros occur three 
times within the period. For one period of {Kn} (mod 3), we have 

0, 1, 1, 2, 1, 1, 1, 0, 2, 0, 2, 1, 0 

in which the adjacent double zeros occur .once (at the beginning or end) of a 
period cycle. A general principle is given by 

Th<L0K<m 10: • If t is the least positive integer such that Kt .= Kt_1 = 0 
(mod m) , then either Kt+l = 1 (mod m) or K3t + 1 = 1 (mod 77?) and the length of 
the period is t or 3t. 

VK.00^: Suppose Kt + l = 1 (mod m). Then using (6) and Kt EKt^l = 0 (mod 
m) , we have 

1 = KtKt-3 + Kt-l + Kt-2Kt+l " Kt + lKt-lKt-3 ." 2KtKt-lKt-3 

E K2_2Kt + 1 E Kl + 1 (mod 777), 

since Kt_2 E Kt + 1 (mod 777). By Theorem 9, 

and so we have 

K3t + 1 = 1 (mod m) 

a s r e q u i r e d . 

To show t h a t K2t+1 j£ 1 (mod 777) i f Kt + 1 j£ 1 (mod 77?) we a s s u m e t h e c o n t r a r y 
and o b s e r v e t h a t 

Ku+l E K3
t + 1 E 1 E K2t+l E K2

t + l (mod m). 
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Hence, 

Kt + i E Kl+i (mod m^> 

which implies that Kt+1 = 1 (mod m) since the g.c.d. (̂ +̂1, m) = 1- This is 
a contradiction of our assumption that Kt+1 i 1 (mod m). 

R&maSik: If #t_i = Kt = 0 (mod #z) and #t + 1 £ 1 (mod m) , then we showed in 
the proof of Theorem 10 that 

K3
t+1 E 1 (mod m) . 

It also follows that 

K2t+1 E -1- ( m 0 d m^ ' 

z L + i E (4 + i ) 3 E (^t+i)2 E I2 E 1 (mod m). 

Theorem 10 and the Remark would imply that only integers n which can occur 
in the sequence {Kn} (mod m) immediately preceding and following adjacent 
double zeros are such that 

n = 1 (mod m), 

or 

n 3 E 1 (mod m). 

The Remark would also imply that if n $ 1 (mod m), then there exist at least 
two distinct values n19 n2 such that 

n\ = n\ = 1 (mod m), 

where nl5 n2 are the immediate predecessors and successors of adjacent double 
zeros in the sequence {lin} (mod m). 

ThdOttOM Hi If p is prime, 7z = h(p) 9 and i^ E Z^_x E 0 (mod p) where 
t < h9 then h = 3t and 

Zr + Zr + t + Zr + 2t; E 0 (mod p). 

P/LOÔ : That h = 3t is an immediate consequence of Theorem 9 since t < h. 
To prove the second statement, we have by (2), 

Kr+t = %r + lKt + (Kr + *i.-i)*t-i + KrKt-2 E ^ Z t - 2 ( m o d P> <24> 

since Zt = Zt . j E 0 (mod p). 

Kr + 2t = Kr + t + lKt + (#r+* + Zr+*-1)^t -1 + ^r + A - 2 E Kr+tKt-2 ( m o d P) (25> 
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%r + 3t ~" ^r + 2t+l^t + (%r + 2t + %r + 2t -1 )%t -1 + ^r+2t^t-2 (26) 

= %r + 2tKt-2 ( m o d P ) ' 

Now adding t h e l e f t and r i g h t s i d e s of ( 2 4 ) , (25) , and (26) and us ing t he 
f a c t t h a t Kr + 3t = Kr (mod p) , we ge t 

Kr+t + Kr+2t + Kr = (tfp + Z r + t + Kr+2t)Kt_2 (mod p) . (27) 

Since Kt_2 $ 1 (mod p) and p is prime, (20) implies that 

KP + Kr+t + Kr+2t = 0 (mod p) 

as required. 
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AN INVARIANT FOR COMBINATORIAL IDENTITIES 
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0. INTRODUCTION 

By an invariant of a mathematical structure—a matrix, an equation, a field 
—we usually understand a relation, or a formula emerging from that structure 
—which remains unaltered if certain operations are performed on this struc-
ture. An invariant is, so to speak, the calling card of some mathematical 
pattern, it is a fixed focus around which the infinite elements of this pat-
tern revolves. Matrices, the general quadratic, and many other mathematical 
configurations have their invariants. So do groups, if they are not simple. 
A prima donna invariant is the class number of algebraic number fields. She 
is far from having been unveiled. Some serenades have been sung to her from 
the quadratic, and to a much lesser extent, the cubic fields. Higher fields 
are absolutely taboo for their class number, and will probably remain so for 
many decades to come. With certain restrictions, also the set of fundamental 
units of an algebraic number field is an invariant. 

This paper states a new invariant for all cubic fields. In a further paper 
a similar invariant will be stated for all algebraic number fields of any 
degree. Here the cubic case is singled out, and completely solved, since the 
technique, used in this paper, will carry over, step by step, to the general 
case. We shall outline the idea of this new invariant, as obtained here in 
the cubic case. Let e be any unit (not necessarily a fundamental one) of a 
cubic number field. Since e and e~l are of third degree, both can be used as 
bases for the field. This must not be a minimal basis, so that we can put 

ev = xv +yve + zve2
3 xv>, yv, zv e 2, v = 0, 1, ..., e"° = vv +sve'1 +tve'2. 

xv and rv are then calculated explicitly as arithmetic functions of V. From 
ev . e-v _ 2_9 we obtain the combinatorial identity 

_ 2 

and this is an invariant, regardless of how the cubic field and one of its 
units is chosen. We also obtain a second invariant, viz., 

_ 2 

Few invariants can please better the heart of a mathematician. 

354 
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1. POWERS OF UNITS 
Let 

F(x) = x3 + QXX2 + o2x + a3; al9 o2> o3 e U (1.1) 

be an irreducible polynomial in x over 7L of negative discriminant, having one 
real root W, and one pair of conjugate roots. By Dirichletfs theorem, Q(w) 
has exactly one fundamental unit e9 viz., 

e = r1 + r2w + v3w2\ rl9 P2, P 3 e Q. 

Of course, e is a third-degree algebraic irrational. Since 

0 = w3 + c ^ 2 + c2w + £3, 

we find the field equation of e by the known method 

e = vx + P 2 W + P3ZI;2 , 

&;£ = P / + P2'W + r3
rw2, ( P / , P 2 ' , P3 ' e §) 

w2g = r[r + r£'w + P^ 'W 2 , ( P " , v'2\ rr
3

r e Q) 

and o b t a i n 
e3 - a, e2 - a0e - a = 0 , 

(1 .2 ) 
z x , a2 , a3 e S , a3 = ± 1 . 

Here we i n v e s t i g a t e , w . e . g . , t h e case a 3 = 1 , hence 

e3 - a1e2 - a2e - 1 = 0 
(1.2a) 

e3 = 1 + a2e + a1e2; d\, a2 ̂  0, by presumption. 

Our further aim is to obtain explicit expressions for the positive and nega-
tive powers of 0. To achieve this, we take refuge to a very convenient trick 
which makes the calculations uncomparably easier. We use as a basis for Q(w) 
the triples 1, e, e2 and 1, e~l, e'2; the question whether these are minimal 
bases is not relevant here. We put 

ev = xv + yve + zve2; xv, yv9 zv e TL\ v = 0,1,..., (1.3) 

x0 = 1, xx = x2 - 0. (1.3a) 

We o b t a i n from ( 1 . 3 ) , m u l t i p l y i n g by e9 and w i t h (1 .2a ) 

ev+1 = xve + yve2 + zv(l + a2e + ale2) 

= zv + (xv + a2zv)e + (yv + axzv)e2 

2 
~ xv +1 + \)v + \ e + Zv + le s 
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Hence3 by comparison of coefficients, 

xv + 1 ~ 2y» 

2/u +1 = xv + a2Sz?J 

su+i = y v + a1zv. 

Thus5 we obtain 

s, = a:„+1 (1.4) 

ey = xv + (xv_x + 0,^)0 + xu + 1e2 

**V+2 == ̂ V - 1 "*" &2XV "*" ̂ 1*^1;+1? 

^u+3 = xv + a2xu+i + ai^v+2; (y = °> !» • • • ) • (1.4a) 

Formula (1.4a) is the recurrence relation which will enable us to calculate 
explicitly xV9 and with it ev. We set 

2 . %vuv = xQ + x^u + x2u2 + / j xvuv, 
V=0 U = 3 

and5 with the initial values from (1.3a), 

y=0 V=3 y=0 

Substituting on the right side the value of x from (1.4a) [and taking into 
account (1.3a)], we obtain 

^\yW y = 1 + 22, (xv + a2^y +1 + ^ i ^ y + 2 ) ^ u + 3 

u=0 v= 0 

= 1 + u3/.xvuV + o,2u2y^xv + iUv+1 •+ a1wV^^y + 2wy 

y = 0 y = 0 

= 1 + ^ 3 / ^ ^ ^ + a2u2 /^jT^w1' \ - #0 + axu j y_]xvuV | ~ ô " ^iw 

= 1 + (w3 + a2u2 4- a^u)2_,x
v

uV " a 2^ 2 " d^w. 
v = 0 

We have thus obtained 
00 

(1 - axw - a2u2 - uZ)/_\XvUV = ! " aiu " a2^2 • (1.4c) 
y = 0 

Since u is an indeterminate, and can assume any value, we choose 

1 - axu - a2u2 - u3 ̂  0, (1.4d) 
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and obtain from (1.4c) and (1.4d) 

t 1 - .axu - a2u 
x„W 

v = o 1 - axu - a2u - u£ 

Y^xy = i + 
1 - axu - a2u2 - u3 

4,-^lA, ~ U_2 

and from (1.4b) 

00 00 

v=0 v=0 

OO o 

E V + 3 _ U_ 
Xv+3U > 

V = Q 1 - axu - a2u - u 

and since u ^ 0, 

XX+3^y = — — • 
v = o 1 - u(ax + a2u + u ) 

Choosing, additionally to (1.4d), 

0 < \u(a1 + a2u + u1)\ < 1, 

we obtain, from (1.4d) 

1 - a,u - a0w - u 

(1.4e) 

(1.5) 

To calculate iĉ  explicitly, we shall compare the coefficients of um {m~ 0, 1, 
. ..) on each side of (1.5). On the left, this equals to xm + 3. On the right 
side we investigate 

Y^Um~i{Cil + a2U + U1)™-1 = 

T V " * Y ( m ~ l \ay
1Ha2u)!hu 

(1.5a) 

»1 " »2 ^3 

Since we demand that the element u have the exponent m9 we obtain 

m-i+y2-\-2y3=rn. 

y 2 + 2z/3 = i9 (1.5b) 
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y2 = i - 22/3, (1 .5c ) 
and 

2/i + 2/2
 + 2/3 = m ~ l (1 .5d) 

y i e l d 
z/x = TTZ - i - i + 2z/3 - 2/3, 

y1 = m - 2i + y$. (1 .5e ) 

We further have 

/ m - i \ (m - i ) ! _ (m - i ) ! 
\2/i> 2/2*2/3/ 2/i^2/2!2/3! (w? - 2 i + 2/3) ! ( i - 2 2 / 3 ) ^ 3 ! 

(m - i ) ! (i - 2/3)! 
= ( i - 2/3)!(ra - 2^ + 1/3)! (2/ - 2z/3)!2/3! 

\i - 2/3/v 2/3 / ' 

/ m - * \ Im- i \ / i -ys\ 
\2 / i>2/ 2 >2/ 3 / V " 2 / 3 / \ 2/3 / 

Writing j for i/3, we thus obtain 

^+3=Ei:(-:5)C;-J>""+^"2J'- (1-5s) 

We shall determine the upper bounds of £ and j. From the binomial coeffi-

cient ( . J, we obtain 

A <r A —A 0 A s A A ^ 

2 
J <. i - J, 2j <_ i , j <. y; (1.5h) 

From the binomial coefficient ( . . 1, we obtain 

U - or 

m - i >_ i - j , TW - 2% >_ - j , 

and from ( 1 . 5 h ) , - j 2 l -y> so t h a t 
i, 3 2 

m - 2i '>_ - y , tfz >. y i , £ <. T-W. ( 1 . 5 i ) 

From (1.5h) and (1.5i), we have thus obtained 

hence, 
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m m *.•» = £ E(*:}XV>r«* iai-1* ; {m = 0, 1, (1.6) 
t = Q J = 0 

We shall verify formula (1.6) which does not lack harmony in its simple 
structure. From (1.3a) and (1.4a), we obtain, for V = 0, 1, ..., 

# 3 = 1 , 

X^ = <2. , 

X5 = a2 + al> 

x6 = 1 + 2axa2 + 

From (1.6), we obtain, for m = 0, 1, 2, 3, 

z3. 

0, x3 = 1, since i, 
» • ( 0/ 

77? = 1; i = j = 0, xh = ax; 

w = 2; i = 0, j = 0; i = 1, j = 0, xs =• a\ + a2\ 

m = 3; i = 0, j = 0; i = 1, j = 0; i = 2, j = 1, x6 = al + 2a2a2 + 1 

We shall proceed to calculate the negative powers of e9 and put 

e~v = rv + sve~l + tve~2. 

For the initial values, we obtain again 

(1.7) 

V 0, 1, 2; r0 = 1; PX 0. 

For the field equation of e l , we obtain, from (1.2a), 

a, e a2£ 2; al5 a2 ^ 0. 

(1.8) 

(1.9) 

If we compare (1.9) with (1.2a), we see that the recursion formula for e'v , 
with the same initial values for V = 0, 1, 2, is the same as that for ev

9 sub-
stituting only -a1 for a2 and -a2 for al; hence we obtain, in complete anal-
ogy with (1.4), (1.4a), and (1.6), 

sv = rv_x - axrv9 

(1.9a) 

<VW2 
[f1] [^] 

+3 = J E ( r f / h ) m - 2 " w ^ ^ = 0 j = 0 
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S IS 
m j _ j/m _ -7 \ /-? _ --f\ • « . « • . • 

(m = 0 , 1, . . . ) . (1.9b) 
.-" \ £• — .// \ ./ / 

t = 0 J • 

m m 

Formulas (1.6) and (1.9b) are our main tools in establishing new identities 
of combinatorial structures. Both xm and vm are arithmetic functions, and we 
shall show that there exist simple relations between them. 

2. TRUNCATED FIELD EQUATIONS OF UNITS 

We shall now drop the restriction (1.2a), viz., al,a1iz 0, and investigate 
the cases when either a1 or a2 equal zero. We shall start with 

a2 = 0, e3 = 1 + axe2; ax + 0. (2.1) 

(e a cubic unit; al e Z) 

Formulas (1.9) take the form, setting 

ev = xv + yve + zve2 (v = 0, 1, ...; xV9 yv , zv e 7L) (2.2) 

yv = xv_x, 

sy = ̂ V + 1 ) (z.za) 

ey = ̂  + a ^ e + xv + le2, (v = 1, 2, ...) 

and (1.4a) becomes 

^y + 2 = ^y + a i ^ + 3» (#0 = 1 > ^ 1 = X2 = °  5 y = ° ' 1» • • • ) • ^2'3) 

To calculate xv explicitly from (2.3), there is no need to go through the 
whole process of using Euler's generating functions. Instead, we can proceed 
straight to formula (1.5a). Here we shall then keep in mind though, that the 
condition a2 - 0 results in y2

 = 0> and we obtain 

Xy-'K + u )"-* = J^-'^f72 ". ^aT^W . (2.4) 
i = 0 i=0 j- = 0 \ <7 / 

Since we are looking for powers um, we obtain 

m - i + 2 j = m, 

i = 2j; (2.4a) 

since, from the binomial coefficient on the right side of (2.4), 

m - i >_ j, m - 2j >_ j, j <. j (2.4b) 

and formula (1.6) takes here the final form, 
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[f] 
••-£("-/>? m-3j 0, 1, ... . (2.5) 

j =o 

Instead of proceeding to calculate the negative powers of e for the case 
a2 = 0 from e3 = 1 + a^ 2, we shall first calculate the positive powers of e 
for the case a1 = 0. The reasons for this will become clear in the sequel. 
We set again 

%v ~*~ 2/y^ •" ̂ y ^ s «^0 ~" 1> *^l ~ *^2 0 

I e 3 = l + a 2 e ; z/y = xv.l+a2xv; zv = xv + 1; x3 + v = xv+a2xv + l; a2 + 0 . 

(1 .5 ) now t a k e s t he form 

(2 .6 ) 

Y^xv+3uv = ]C u 2 J * (°>2 + ̂ )j'» (2.6a) 
j=o 

It is convenient to calculate x0m,0 and #„ ,, separately because of the fac-
tor w J under the second sigma sign. Because of the factor u 3 , we shall 
calculate separately the coefficients of u2m (v = 2m) and u2m +1 (v = 2m +1). 
We obtain, after easy calculations, 

[f] 
X2.m + 3 Z-J \ 2i ) 

,m-3i (m = 0, 1, ...) 

LVl (2.6b) 

(x, = 0). 

We can now easily calculate the negative powers for ev in the cases ax = 0, 
and a2 = 0. In the case ax = 0, we obtain, from (2.6) 

rv + sve x + t„e~ 

1 - a0e'2, 
(2.7) 

and from (2.2a), 

and from (2.5). 

rv + vv-ie~l + rv+ie~ (2.7a) 

[f] 
w3 = z(m"/0(-^ 

J = 0 

m - 3 j 



362 AN INVARIANT FOR COMBINATORIAL IDENTITIES [Aug. 

.[« 
rv + 3 - E f }2J')("1)B,"^"3J» ̂ ^ °» ̂  ••' " ^ ^ 

J=0 

In the case of a2 = 0} we obtain, from (2.1), 

and from ( 2 . 6 ) , 

e~z = 1 - a ^ " 1 , 

e" y = vv + (rv_x - a ^ e " 1 + p y + 1 e ' 2 , 

and from (2 .6b) 

[ f ] 
r2 m + 3 = E(m2i l) ( _ a i : \m - 3i (m = 0 , 1 , . . . ) 

(2.7c) 

tf: 
2m + 3 J2 (-l)m'i^~i'Cym

l-H , (m = 0, 1, . . . ) (2.7d) 

[*£*] 
2m+if 

£ (>l)--i^-+^a-3-i5 ( O T . x> 2 , . . . ) . (2.7e) 

3. COMBINATORIAL IDENTITIES 

In this section, we shall establish the new combinatorial identities, by 
means of the powers of the units which we have stated explicitly in §1. We 
shall enumerate the main results we have obtained there in order to save the 
reader unnecessary backpaging. 

e3 = 1 + a2e + axe2; al, a2 + 0 (by presumption); 

ev = xv + y e + zve2\ xv, yv , zv , a19 a2 £ H; 

%V+3 ~ &v ^2XV ^lXv ' *^0 = ' *^1 ~ ^2 ~ ' 

e~v = vv + s y e _ 1 + £ y £ - 2 ; py , sV9 tv e 7L\ 

sv = vv _ Y - a1rv ; tv = ry + 1 ; 
Pv+3 Py " a i P y + l ~ a2Py + 2 ' P0 = ' VI = V2 ~ ' 

(3.1) 

From the last equation of (3.1), multiplying both sides first by e , then by 
e~l, we obtain 
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e - -a2 - aYe + e , 
e~2 = -a2(-a2 - axe + e2) - al + e, 

e"1 = -a2 - axe + e2; e = a\ - a1(a1a2 + l)e - a2e2. 

We now obtain, from (3.1) and (3.2), 

1 = e
ve'v =. (xv + yve + zve2) (vv + sve'1 + tve'2) 

= xv?v +' 2/ySy + Sy^y + (Vvrv + s
ySy)£ + ^v^v^ 

+ (jjyS,, + yvtv)e~l + ^ t j g - 2 

= x y p y + yvsv + s y £ y + (z/ypy + 3 y s y ) e + s y r y e 2 

+ (xvsv + yvtv)(-a2 - axe + e 2 ) 

+ [ a 2 - al + ( a x a 2 + l ) e - a 2 e 2 ] # y £ y . 

(3.2) 

(3 .2a ) 

1 = xvrv + (2/y " aixv)sv + [ ^ + (a2 - a>l)xv - a2yv]tv 

+ (yvrv + (zv - alxv)sv + [{ala2 + l)xv - a1yv]tv
>je (3 .2b) 

+ {(*vrv + xv$v + 0/y - a2xv)tv)e2. 

Comparing i n (3 .2b) c o e f f i c i e n t s of equa l powers of e on bo th s i d e s , and r e -
minding t h a t e i s a c u b i c i r r a t i o n a l , we o b t a i n t h e system of t h r e e l i n e a r 
e q u a t i o n s i n the t h r e e i n d e t e r m i n a t e s vv , sV9 and tV9 

( xvrv + (yv - a2xv)sv + [zv + (a2 - ax)xv - a2yv]tv = 1 , 

yvrv + (zv - axxv)sv + [(a1a2 + l)arv - ^ Z / J T ^ = 0 , 

{ zvrv + xvsv + (2/y - a 2 ; r y ) t y = 0 . 

(3.3) 

Adding to the first equation of (3.3) the a2 multiple of the third one, we 
obtain, adding also to the second the al multiple of the third, 

(xv + a2zv)rv + yvsv + (zv - axxv)tv = 1, 

Q/ti + aiZv^rv + ZvSv + Xvtv = 0, 

syry + xvsv + (z/y - a2*y)ty = 0. 

(3.3a) 

Since the indeterminates rv , sy , £y are to be expressed by xv9 yv , sy , we 
calculate the determinant A y + 2 of the system (3.3a), viz., 

x„ + a0z l^v 

yv + axzv zv 

Z TI Xn, 

zv - &ix
v 

xn Jv 

*2 v 

A U + : (3.3b) 

Why this determinant has the index V + 2, and not V, as would seem proper, 
will be understood, and justified, soon. 
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We have, for the first row of the determinant (3.3b) from (3.1), and simi-
larly for the second and third 

Xv + aiZv ~~ Xv + a 2 ^ u + l » 

yv 
xv - 1 &2xv J ( 3 . 3 c ) 

"V +1 Cv-2 + a
2
XV-l' 

With (3.3c), (3.3b) becomes 

Ay +2 

#y + a2Xy + x 

^y+2 

#y +1 

xv - 1 "1" a2Xv 

^y +1 

*£y 

^y-2 + a 2^y-2 

*£y 

#y -1 

(3.3d) 

The third row of (3.3d) is obtained from (3.1) as follows: 

2 y ~ xv+l9 }JV ~ &2Xv = Xv-1 ~*~ a2Xv ~" a2Xv = Xv-l> 

the first entry of the second row is obtained as follows: 

ljv + CL]XV — x
v - \ "•" dixv "*" ^ l ^ y + l = Xv+2' 

Subtracting in the determinant of (3.3d) from the first row the a2-multiple 
of the third row, we obtain 

JV + 2 JV + 1 

X7) _ i 

(3.3e) 

Interchanging in (3.3e) the first row with the second, and then the second 
with the third, we finally obtain 

A
v + 2 

Xv +2 

XV + 1 

xv 

X-IJ 

xv 

x v - l 

XV-2 

(3.3f) 

Substituting for the entries of the first row of (3.3f) the value from (3.1), 
viz*, 

xk + 3 = xk + a2xk + l + alxk + 2> ^ = k + 2, V + 1, V) 

Ay+2 

XV - 1 +a2Xv ~*~aiXv + 1 x y - 2 + a 2 5 : i > - 1 + a i ^ y ^ u - 3 "*" a 2 ^ f - 2 ~*~ aiXv ~ 1 

*Ey + 1 

XV 

xv _1 
#y-2 

. (3.3g) 

Subtracting in (3.3g) from the first row the a1 -multiple of the second, and 
the a2-multiple of the third, we obtain 
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A*+ 2 xv +1 

X,, uy -1 

xv - 3 

#y - 1 

^y -2 

(3.3h) 

Interchanging in (3.3h) the first row with the second, and then the second 
with the third, we obtain 

A, + 2 = 
^v ^v-1 

Xv_ i Xv„2 

Zv - 1 *̂ y -2 ^y - 3 I 

From (3.3f) and (3.3i) we obtain the important result 

Ay + 2 = A y + i = Ak; (fc = 5, 6, . . . ) . 

(3.3i) 

(3.4) 

Taking in (3.4) k = 5, and reminding, from (.3.1), that x3 = 1, x1 = x2 = 0, 
we obtain 

Al>+2 = 

A „ + 2 = -1. 

* 5 

** 
1 

xh 

1 
0 

1 

0 

0 
- 1 , 

(3.4a) 

With (3.4a) we have finally calculated the determinant of the system of equa-
tions (3.3a). By Cramer?s rule we now obtain from (3.3a) and (3.4a), 

yv a^Xy 
(3.5) 

S u b s t i t u t i n g in ( 3 . 5 ) , 

zv = xv + j , yv = xv _ 1 + cc^Xy , 

we o b t a i n 

Z*v = xv " xv - lxv + 15 \V ~ 1 > ^ J . . . ) . (3.6) 

(3.6) is the desired combinatorial identity. Its full beauty will be appre-
ciated when we substitute the values for rv and xv. Its simple structure in 
the form (3.6) is really astonishing. We must explain its remarkable origin. 
The reason for this harmoniousness is the fact that we have chosen to manipu-
late with the powers of a unit e in Q(w) and a basis of the powers of e as 
the basis of Q(w). For only this leads to the determinant A y + 2 ° f tne system 
of equations (3.3a) equal to ±1. Had we chosen any other cubic irrational a 
in Q(w) , then the identity av • a~v = 1 would have led to a system of equa-
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tions whose determinant is generally different from ±1. Formula (3.6) is 
therefore, in a certain sense, an invariant of any cubic field Q(w), vead of 
aVL the cubic fields. The surprising explanation for this is the relation-
ship 

A.„ + 2 = ®(ev) = (®(e))V = ±1; (v = 0, 1, . . . ) . (3.7) 

We shall prove (3.7). We obtain, denoting 

a = ev = xv + yve + zve2; e3 = 1 + a2e + axe2; 

ae = xve + yve2 + zv(l + a2e + axe2), 

ae = zv + (xv + a2zv)e + (yv + axzv)e2
9 

ae2 = yv + a ^ + [ a ^ + (axa2 + l)zv]e + [#„ + a ^ + (a2 + a 2 ) s y ] e 2 . 

We thus obtain 

N(a) 

(-1)' «/k oj l" CLO *"•* 7• % + <*!*„ 
t/„ + axzv a2yv + (a1a2 + l)su xv + axyv + (a\ + a2)zv 

(3.7a) 

Subtracting in the determinant (3.7a) from the third row the ̂ -multiple of 
the second row, we obtain 

N(ev) 
yv 

yv + ai*v 

\yv
 a2yv - aixv + zv xv + a2*v\ 

and subtracting from the second column the a2-multiple of the first column, 

\xv y^ a2xv zv 

N(ev) = -\zv xv yv + axzv 

\yv
 zv - aixv xv + aizv 

Comparing (3.3b) with (3.7b), we obtain 

N(ev) = Ay + 2 = 1. 

Had we chosen any a £ Q(w), formula (3.6) would take the form 

N(a)rv= x2
v - xv_lxv + l9 

(3.7b) 

(3.7c) 

(3.7d) 

where rv and xv have similar meanings as before, our invariant (3.6) would be 
dependent on a. The corresponding combinatorial identity would be deprived 
of its beautiful structure. But, of course, in such a way we can obtain 
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infinitely many combinatorial identities (3. 7d) for any cubic irrational in 
Q(w). Of course, every time 1, a, a2 and 15 a"1, a"2 are to be taken as bases 
for Q(w). 

Now, returning to the powers ev and e~v in the general cubic cases, the 
reader will understand that, in principle, there is no structural difference 
if, in the system of linear equations (3.3a), we take xv , yv9 zv as indeter-
minates and rv , sy, tv as coefficients. Carrying out the same calculations, 
we would then arrive at a formula, completely analogous to (3.6), viz., 

*V-i*Wi; (v = !> 2> • • • ) . (3.8) 

We shall verify (3.8) for a few values of V. We calculate from (3.1), viz., 

V + 3 i, ^ a 2 ^ + 2 ; P 0 

0; 
0. 

a2 + a^; xe = 1 + 2aja2 + a\. 

-ax + ax; r6 1 + 2alaz 

a\ - l(-a1 + a\) 

Xs = r 2 _ j , ^ 

a2 + a\ = (-ax + a|) - (-a2)(1 + 2axa2 - a2) 

= a? 2axa2 + a^ + a2 + 2a2a2 

It exposes the complicated structure of formulas (3.6) and (3.8), if we write 
out in full these combinatorial identities and substitute the corresponding 
values for xv and rv We obtain from (1.6) and (1.9b) 

= xm + l ~ ^ + 2 ^ + 4 ' (.777 = U , I , . . . ) 

ffl [*] . . . 
E £<-i>"~'~'(!TS)(V)a{"2'ar"+i 

* - 2 j 

£ = 0 7̂ = 0 

E EC 
£ = 0 j = 0 

777 - 1 - ^ 

i - 0 'X ' ; •>?" - l - 2 £ + J £ - 2 j 

E ECwTrK""^ • 2 j 

(3.9) 

; axa2 ^ 0. 
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(3 .9 ) i l l u s t r a t e s t h e c o m p l i c i t y of t h e s e c o m b i n a t o r i a l i d e n t i t i e s , and i t 
would be a c h a l l e n g i n g problem t o p rove i t by " e l emen ta ry" means . In t h e 
same way, we o b t a i n 

xm + 3 = rm + 3 - rm+2rm+lt, (m = 0 , 1 , . . . ) 

M { 
i-2j 

mi=0 3=0 
ty.u-i-'Q- ffiyy^ia;-"" 

g ^( - l ) -*- ' - 1 ^ l i ~- *)(* -• ^aY^aT^^ 
t = 0 J =0 

[̂ ffl , - + 1 V / . -x 
i - 0 j = 0 

(3 .10) 

; ala1 f 0. 

Now l e t 

e3 = 1 + a2e, a2 ^ 0, 

°2m 

rmi 
,m- 3t 
2 9 

m-3i-1 
2 : 

l ) f f l " j a r 3 j , 7w = 0 , 1 , 

(3 .11) 

We have 

P 2 y + 3 ^ 2 y + 3 X 2 y + 2 ^ 2 y + 4 3 (3.12) 

and substituting in (3.12) the values of (3.11), we obtain 
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m 

-> • Y 

fefl feel 

(3.13) 

v^ (m - 1 - i\ m-2-n *S (m-i\m-3i-i , _ 7 , . 
L \ 2i + 1 ) a 2 LJ \li + l)a2 , (m - 2, 3, . . . ) • 

Special cases of (3.11) were investigated by the author in two previous papers 
[1] and [2], and by L. Carlitz [3] and [4]. 

The case a1 ^ 0, a2 = 0 is treated analogously. 
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SOLVED^ SEMI-SOLVED, AND UNSOLVED PROBLEMS 

IN GENERALIZED INTEGERS: A SURVEY 

E. M. HORADAM 

1. DEFINITION AND DESCRIPTION OF GENERALIZED INTEGERS 

The original definition of generalized integers and the name of "general-
ized primes" were given by Arne Beurling in 1937 {Acta. Math. , Vol. 68, pp. 
255-291).* Translated from the French, the notation changed, and the word 
"finite" added, Beurling1s definition was "With every sequence, finite or in-
finite, of real numbers (p): 

KPl <p2 < ... <pn < ... (1) 

we can associate a new sequence {g}i 

i = gl < g2 <g3 < ... <gn < ... (2) 

formed by the set of products 

9 = VniVn% - - > Pnp , nx ^ n2 ^ ... <, nr, r ^ 1 (3) 

with the convention that gl = 1 and every other number g appears in (2) as 
many times as it has distinct representations (3) . We call the p the gen-
eralized primes (g.p.) of the sequence {g} and designate by ir(x) the number 
of p <_ x and by N(x) the number of gn <. x." It was Bertil Nyman (1949) who 
first used the term "generalized integer" (g.i.) to denote the numbers gn and 
first referred to Beurlingfs paper, although V. Ramaswami (1943) seems to 
have independently invented generalized integers. 

Thus the generalized primes need not be natural primes, nor even integers. 
Also, factorization of generalized integers need not be unique. From the 
definition, the basic properties of the g.i. are that they can be multiplied 
and ordered, that is, counted, but not added. The following three sequences 
all fit the definition of a sequence of generalized primes <p\ together with 
the corresponding sequence of generalized integers \gn\. 

{pn} = (2, 5, 11, ...) 
(4) 

[gn\ = (1, 2, 4, 5, 8, 10, 11, ...) 

*A bibliography of the work on generalized integers is given at the end of 
this paper. 

370 
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fry \ = (-\ H 13f_ 7. 1 i i i 13. I 
\9n) y-9 1V n 2 ' 5' 2 ' n 3 ? 11 5s 

(5) 

\ p \ = (2, 3, 4, 5, 7, 11, 13, ...) 

1 ( 6 ) 

{<7n} = (1, 2, 3, 2.2,4, 5, 6, 7,2.2.2, 2.4, 9, 10,11, 2.2.3,4.3,13, . . . ) . . 

If unique factorization is also assumed, then analogues of the well-known 
multiplicative arithmetical functions, for example the Moebius function, can 
be defined and theorems, such as the Moebius inversion formula for g.i., can 
be proved. Much of this work has been carried out by the author. 

However, for his work, Beurling needed an assumption on the size of N(x) . 
He and later writers on this topic were mainly concerned with the way in 
which N(x) affected T\(x) and vice versa. 

It can be seen that taking the g.p. to be a subset of the natural primes 
also fits the definition, but this covers a very large block of the total 
work done in Number Theory. Thus, this work is only included when it has 
been used in the context of generalized integers, even when the numbers being 
studied are also ordinary integers. 

2. HISTORY OF THE SOLVED PROBLEMS 

As succinctly stated by Beurling, his original question was "in what man-
ner should e(x) converge to zero when x tends to infinity, so that the hy-
pothesis N(x) = x{A + £(#)), A a positive constant, infers the asymptotic law 
TT(#)~x/log xl" In fact he showed that the hypothesis N(x) = Ax+ 0(x/logy x) , 
pn -*-°°, implies Tr(#)~ #/log x if y > 3/2, but it can fail to hold if y 1 3/2. 
This was proved using a complex variable and a zeta function for the g.i. 
Thus, Beurling was concerned with having a prime number theorem (p.n.t.) for 
generalized integers. Much of the later work revolved about this topic main-
ly in the direction of refinements in the hypothesis on N(x). Amitsur (1961) 
gave an elementary proof of the p.n.t. when N(x) =Ax +0(x/logy x) holds with 
y > 2. 

B. M. Bredihin (1958-1967) used the following algebraic definition: "Let G 
be a free commutative semi-group with a countable system P of generators. 
Let N be a homomorphism of G onto a multiplicative semi-group of numbers such 
that, for a given number x9 only finitely many elements a in G have norm N(a) 
satisfying N(a) <.#." It can be seen that BredihinTs definition includes 
Beurling?s definition of the g.i. except that factorisation of any a is uni-
que but more than one element can have the same norm. Bredihin used the hy-
pothesis 

N(x) = AxQ + O(^01), 0 > 0, and 0! < 0; 

and proved that 

l im TTOE) log x/xQ = 1/0. 

He was the first (1958) to publish an elementary proof of a prime number the-
orem for g.i. 



372 SOLVED, SEMI-SOLVED, AND UNSOLVED PROBLEMS [Aug. 
IN GENERALIZED INTEGERS: A SURVEY 

During the 1950?s, A. E. Ingham gave lectures on Beurlingfs work in Cam-
bridge 9 England, and thus extended interest in the g.i. 

The motivation for Beurlingfs work was to find how the number of general-
ized integers affected the number of generalized primes, and later on the 
converse problem was studied. A history, bibliography up to 1966, and demon-
stration using complex variable of the work done on this problem up to 1969, 
excluding the work of Bredihin and Remond (1966), is given in Bateman and 
Diamond's article in Volume 6, MAA Studies in Number Theory (1969). Again, 
"the additive structure of the positive integers is not particularly relevant 
to the distribution of primes. As the g.i. have no additive structure, they 
are particularly useful to examine the stability of the prime number theorem." 
Work on the error term for TT(#) and the converse problem has been carried out 
by Nyman (1949), Malliavin (1961), Diamond (1969, 1970), and later writers. 

A more complete history of generalized integers may be obtained by reading 
the reviews which W. J. Le Veque has classified under N80 in his "Reviews in 
Number Theory" (1974). 

Recently, the work on generalized integers has been given a completely 
different twist by J. Knopfmacher in a series of papers (1972) to (1975) and 
later papers and a book Abstract Analytic Number Theory, Volume 12 of the 
North-Holland Mathematical Library and published by North-Holland, Amsterdam 
(1975). This book contains a complete bibliography up to 1974. In essence, 
Dr. Knopfmacher has used the techniques associated with generalized integers 
to prove an abstract prime number theorem for an "arithmetical semigroup" and 
has applied it to contexts not previously considered by other writers. 

Segalfs 1974 paper has the descriptive title "Prime Number Theorem Ana-
logues without Primes." He states that the underlying multiplicative struc-
ture for g.i". is not all-important—a growth function is all that is needed. 

There are also papers combining Beurling's generalized integers with an 
analogue of primes in arithmetic progressions. This means that the ideas of 
multiplicative semi-groups without addition had to be combined with the idea 
of primes in arithmetic progressions. The possibility of such an effort was 
worked on by Fogels (1964-1966) and Remond (1966). Knopfmacher has used an 
arithmetical semi-group to attack a similar problem. 

3. UNSOLVED PROBLEMS 

Most unsolved problems are associated with the prime number theorem for 
generalized integers. One such set by Bateman and Diamond is listed on pages 
198-200 in Volume 6 of Studies in Number Theory , mentioned previously. Of 
these, one was solved by Diamond and R. S. Hall in 1973. Another states that 
Beurlingfs theorem can be established by elementary methods with y < 2, but 
that no one has yet succeeded in establishing it by elementary methods for 
3/2 < y < 2. Dr. Diamond has also published four further problems from the 
Seminaire de Theorie des Nombres, 1973-74. He conjectures that 

N(x) - x\x~2 dx < °°  =^}\)(x) « x. 

Segalfs paper of 1974 concludes with some open questions (pages 21 and 22). 
A list of very general open questions is posed by Dr. Knopfmacher on pages 

287-292 of his book (1975). 

/ 
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4. SOLVED PROBLEMS—ARITHMETICAL FUNCTIONS 

In my own work on generalized integers (1961 to 1968), I have assumed the 
g.i. to be not necessarily integers but with unique factorization. Some of 
my papers on g.i, have concentrated on their arithmetical properties, that 
is, without a hypothesis on N(x), and it is those I am concerned with here* 
Those needing a hypothesis on N(x) , I assume included in §2. However, the 
fact that the g.i, can be ordered and so a counting function N(x) exists, is 
important. 

Since there will now be a slight change in notation, I will repeat the 
definition I shall use for generalized primes and integers. 

Suppose, given a finite or infinite sequence of real numbers (generalized 
primes) such that 

1 < Pi < p2 < p3 "< ... . 

Form the set {g} of all possible -products, i.e., products p\lp^2 •••> where 
Vl9 V2, ... are integers >_0 of which all but a finite number are 0. Call 
these numbers "generalized integers" and suppose that no two generalized in-
tegers are equal if their t?fs are different. Then arrange {g} as an increas-
ing sequence: 

i = gl < g2 < gd < ... . 

Notice that the g.i. cannot be added to give another g.i. For example, in 
(4), 1 + 2 = 3 but 3 t {gn}B 

However, division of one g.i. by another is easily defined as follows: We 
say d\gn if 3D so that dD = gn and both d and D belong to {g)« From these 
definitions, it follows that greatest common divisor, multiplicative func-
tions, Moebius function, Euler <J)-f unction, unitary divisors, etc., for the 
g.i. can be defined. These lead to further arithmetical properties mainly 
published by the author. 

H. Gutmann (1959) and H. Wegmann (1966) also published results on proper-
ties of arithmetical functions. Gutmann worked with g.i. which were subsets 
of the natural numbers and he assumed that both 

1 1 
were convergent. 

5. A SEMI-SOLVED PROBLEM 

Consider the sequence of natural numbers 

and let [x] denote the number of integers <_x a Then, since every dth number 
is divisible by d9 it follows that [x/d] will give the number of integers <_x 
which are also divisible by d3 for they are the numbers 

1 • d3 2 • d, 3 • d, ..., [|1 • d. 
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Hence, if n = a + b so that -? = -3 + -7, it follows that 75 >_ 77 + 77' 

and, in particular, if d is a prime p, then 

[?] i [ f ]+m-
We now extend these ideas to generalized integers with unique factorization. 
In order to show the similarity between the integral value function [x] and 
the counting function N(x) for generalized integers, we change the notation 
and define 

[x] = number of g.i. <, x = N(x). Then [gn] = n. 

Again, if in the sequence gl9 g2, ..., gn, d\gn, there are in this sequence 

--T- multiples of d9 namely the numbers 

1 •' d9 g2 • d, ..., g • d9 ..., [-jj • d. 

So -j will again give the number of g.±, <^x which are also divisible by d. 

Suppose now that n = a + b , i.e., [gn] = lga1 + [̂ 1̂• Is it still true that 

fir] * fir] + M- and ln p«t icu l a r [y] * [y] + [y} whe- P is a*-
eralized prime? 

Consider the following example: 

{p} 5 < 7 < 8 < 11 < 13 < 29 < . . . 

{g} , 1 < 5 < 7 < 8 < 11 < 13 < 25 < 29 < . . . 

[a?] 1 2 3 4 5 6 7 8 . . . 

Then [8] = 4 = 2 + 2 = [5] + [ 5 ] . 

Now take p = 5 and we have I -?- I = 1 and — = 1 . So in this case 

m - til •i - ra+ra • [a •[*]- ' 
so that m < m+m-
So far as I know, the way in which g is affected by always (or some-

times) having the generalized primes constructed so that 

[^HTMI] when M-M + W 
has not been investigated. 

We now consider the way in which g is affected by always having the gen-
eralized primes constructed so that 

[y] * [y]+ [y] when ^ - t^i + w. (7) 
Given the sequence p < p2 < p < ..., the sequence of g.i. must begin 
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1 < Px < p. 2 < 

1 < Pi < Pi < P2 < ... 
or 

1 < Pi < V\ < Pi < P2 < .«., etc. 

Suppose we assume (9) to be the case; then 

{9} 1 < Pi < Pi < P2 < ... 

[a] 1 2 3 4 ... 

and a • has to be found. 

First notice that if \ — \ iL [<7C]S then —— >_ g . Now 

1 + 4 [1] + [p2] 
[<75] 

2 + 3 [Pl] + [pj] 

So 

+ 2 

- 3 = [p*l. 

1 + 2 

Hence,, ĝ  >_p?, and since p3 has not yet occurred, it follows that 

Repeating the process, we have 

1 + 5 [1] + [p3] 

[g6] = 6 = 2 + 4 = [P l ] + [p2] . 

3 + 3 [pf] + [pf] 

Hence, 

Kl* 
0 + 3 

1 + 2 = 4 = [ p 2 ] . 

2 + 2 

Hence, #6 = p1p2-

1 + 6 [1] + [ P l p 2 ] 

[g7] = 7 = 2 + 5 = [P l ] + [Pl
3] , 

3 + 4 [p?] + [p2] 
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m 
[§f>[¥] 

0 + 4 

So | ^ | > 1 + 3 = 4 = [p2] 

2 + 2 

Hence g7 >.p1p29 which we knew already. It is certainly true that 

2 

is not less than any combination of rzp + \ T7~ • The value for g is there-
fore not precisely determined. If it is not to be p , since the sequence is 
now 

1 < Pl < V\ < P2 < V\ < P1P2 

1 2 3 4 5 6 

then g7 must be pj. However, since there is room for another prime, and the 
assumption will still be satisfied, I take g7 = p3. Although we will not go 
through the routine, the next number must be pj. 

1 + 7 [1] + [p3] 

2 + 6 [Pl] + [Plp2] 

3 + 5 [pf] + [pf] 

4 + 4 [p2] + [p2] 

So 

m 
0 + 4 

1 + 4 
= 5 = [pl] 

2 + 3 

2 + 2 

Hence qQ = p?, as stated previously. Notice that the maximum value of — rg-f8 Fl' LPJ 
+ — can only increase by 1 at each step in the routine. 

If this process is continued with primes being inserted wherever there is 
room for them, what sequence is developed and is the inequality sufficient 
to determine it? 

(a) If the sequence starts as (8), then the total sequence becomes the 
natural numbers when px = 2 and p2 = 3. This was proved by induction by the 
author and D. E. Daykin. Dr. Daykin also proved that a sequence generated by 
only two generalized primes always satisfies the inequality. He conjectured 
that a sequence generated by three generalized primes only cannot satisfy the 
inequality. 
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(b) In his Masterfs thesis for the University of Melbourne (1968), R. B. 
Eggleton solved a variant of the problem in an algebraic context. He also 
proved that if the sequence starts as (8) then the total sequence is isomor-
phic to the natural numbers under multiplication. 
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THE NUMBER OF PRIMES IS INFINITE 

S. P. MOHANTY 
Indian Institute of Technology, Kanpur 208016, U.P. India 

For the theorem used as the title of this paper, many proofs exist, some 
simple, some erudite. For earlier proofs, we refer to [1]. We present here 
three interesting proofs of the above theorem, and believe that they are new 
in some sense. 

ThzoXQjm 1: Let AQ = a + m9 where a and m are positive integers with (a, rri) 
= 1. Let An be defined recursively by 

An + 1 = An " ^ n + **-

Then each A^ is prime to every A •, J ^ i . 

P/WO&i By definition, 

Ax = A2
0 - mA0 + m = aAQ + m. 

Again, 

A2 = A\ - mAl + m = Al(Al - m) + m = aAQAx + m. 
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Assume that 

A k = aA0Ax ... A k _ l 4- m. 

By hypothesis, we have 

A-k + i = Ak "" mA-k + m = ^ W f e - m) + m. 

Now, substituting*a^Q^! ... ̂ k-i for ̂  - w in the preceding line, we obtain 

Ak+l = a ^ . . . Ak+m. 

So, by induction hypothesis, we get 

An = a^o^! ... Ayi-i + m for all n. 

Again, from A0 = a (mod 77?) , it follows that ̂  E a2 (mod w?) . Suppose that 

Ak = a (mod 7??). 

Since we have ̂  + 1 = A\ - mAk + m, we have 

A k + 1 = (a ) (mod w), 

that is, 

^k + l = a (moc* ^ ) • 

Hence, by induction, 

^ = a2* (mod TT?) . 

Next, l e t d = (Ais Aj) , j > i . Since 

^ = aA0Ax . . . i4 t /_1 + m, 

we have d|wz. But d divides Ai = a2 (mod m) . Now d|^ and d|m together im-
ply d = 1 for (a, 77?) = 1. Hence, 

04;, Ad) = 1, j > i, 

and the theorem is proved. 

CoKolIxUiij 1: The number of primes is infinite. 

VKOO^i It is easy to see that Al9 A2, ... are all odd. Since each Ai is 
prime to every Aj by Theorem 1, each of the numbers Al9 A2, ... is divisible 
by an odd prime which does not divide any of the others, and hence there are 
at least n distinct primes <.An. This prov.es the corollary. 
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We note that Polya's proof of the theorem using Fermat numbers [2] is a 
particular case of the above theorem. Taking a = 1, m = 2 in the above the-
orem, we have AQ = 3, A1 = 5, A2 = 17, etc. These are Fermat numbers defined 
by Fn = 22" + 1, satisfying Fn + 1 = Fn2 - 2Fn + 2 with F0 = 3. Again, the the-
orem in [3] is obtained when we put a = 1 and m = 1. 

ThtOXtm 2: Every prime divisor of ^-(2P + 1), where p is a prime > 3, is 
greater than p. 

Psioofi: First, we show that j(2p + 1) where p is a prime >3 is not divisi-
ble by 3. Now, 

f ( 2 p
+ l ) = f ^ = 2P"! - 2 p - 2

+ ... + 1 

is an integer. Again 

|(2P + 1) = (2P _ 1 + 2P~3 + ... + 1) - (2P"2 + 2P~" + ... + 2) 

_ — 2 • — - — (mod 3) = -^—z (mod 3) . 

Since p is a prime >3 we have p = 6k + 1 or 6k + 5. Then, 

-̂(z + 1; = — ~ = 1 (mod 3) 

1(2P + 1 } " 6 k "2
5 + 3 -1 (mod 3). 

Next, suppose that -^(2P + 1) = 0 (mod q)9 where q is a prime <.p. Clearly, (7 

is odd and q ^ 3 when p > 3. Now, by Fermatfs little theorem 

2q~l = 1 (mod q). 

If 3 = p > 3, we have 2P = 1 (mod q), whence 2P = 2 (mod q). But 

|(2P + 1) = 0 (mod q) 

by assumption. Hence, we obtain 3 = 0 (mod q), a contradic t ion. Therefore, 
<? < p„ Now, ((7 - 1, p) = 1 implies tha t there ex is t in tegers a and b such 
that ap + b(q - 1) = 1. Then 

2 = 2 a p + M ^ D = (2
p)a • (2*"1)* = ( - l ) a ( l ) b (mod ? ) E -1 (mod q) 

for a odd. Hence, 2 = -1 (mod (7) or 3 = 0 (mod q). Since q is a prime and 
<7 ̂  3, we have again a contraction; hence, q > p. Therefore, every prime di-
visor of ̂ -(2P + 1) is greater than p. Now it is a corollary that the number 

of primes is infinite. 
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We note that "Every prime divisor of 2 - 1 where p is a prime is greater 
than p" was a problem in the American Mathematical Monthly. 

Tk&Ofiejrn 3: Let p be an odd prime >5. Then every prime divisor of Up is 
greater than p where Up is the pth Fibonacci number. 

The Fibonacci numbers are definable by U1 = U2 = 1 and Un+1 = Un + Un_Y. 
We use the following facts to prove the theorem: 

(1) Un+m = Un^Un + UnUm + 1. 

(2) If m\n then Um\Un and conversely. 

(3) Neighboring Fibonacci numbers are relatively prime to each other. 

(4) For any m> n we have (Um9 Un) = Z7(m,n) , where (a, b) means g.c.d. of 
a and b. 

(5) If p is an odd prime, then p\Up, p\up-\9 or p\Up+\9 according as p = 
5, p = 10m ± 1, or p = 10m ± 3. 

P/LOÔ : For p = 2, 2|Fp + 1 = 2. Let p.be an odd prime >5. Then Up is odd 
since only U3t's are even. So, every divisor of Up is odd. Let q\Up where 
q is a prime. If q = p9 then p |Z7p. This is impossible for p > 5, Suppose 
q < p. Now, (f/p, Uq) = C/(P, ̂) - Ul = 1, (i7̂ -i, C/p) = U{q-itv) = U1 = 1 and 
(Uq+l9 Up) = U(q + i9 P) = U1 = 1. Hence, q\Uq9 q)(Uq-l9 and ql^.^. This 
contradicts (5). Therefore, q > p and the theorem is proved. 

Thus, it is a corollary that the number of primes is infinite. 

A R&qu&Ati The author is trying to collect all the proofs on infinitude 
of primes. Any information in this regard will be very much appreciated. 
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