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CONVOLUTION ARRAYS FOR JACOBSTHAL AND FIBONACCI POLYNOMIALS 

V. E. HOGGATT, JR., and MARJORIE BICKNELL-JOHNSON 
San Jose State University, San Jose, California 95192 

The Jacobsthal polynomials and the Fibonacci polynomials are known to be 
related to Pascal's triangle and to generalized Fibonacci numbers [1]. Now, 
we show relationships to other convolution arrays, and in particular, we con-
sider arrays formed from sequences arising from the Jacobsthal and Fibonacci 
polynomials, and convolutions of those sequences. We find infinite sequences 
of determinants as well as arrays of numerator polynomials for the generating 
functions of the columns of the arrays of Jacobsthal and Fibonacci number se-
quences, which are again related to the original Fibonacci numbers. 

1. INTRODUCTION 

The Jacobsthal polynomials Jn (x), 

(1.1) JQ(x) = 0 , Jx(x) = 1, Jn+2(x) 

and the Fibonacci polynomials Fn(x), 

(1.2) FQ(x) = 0, Fx(x) = 1, Fn+2(x) 

Jn+l(x) + xJn(x), 

xFn+l(x) + Fn(x) 9 

have both occurred in [1] as related to Pascal's triangle and convolution 
arrays for generalized Fibonacci numbers. We note that Fn(l) = Jn(1) = Fn, 
the nth Fibonacci number 1, 1, 2, 3, 5, 8, 13, ..., while Fn(2) 
Pell number 1, 2, 5, 12, 29, ... 
quences below. 

Pn , the nth 

Fn(x) 

We list the first polynomials in these se-

Jn{x) 

n = 1 
n = 2 
n = 3 
n = 4 
n = 5 
n = 6 
n = 7 
n = 8 
n = 9 

1 
X 
x2 + 1 
x3 + 2x 
xh + 3x2 

x5 + kx2 

x* + 5xk 

x7 + 6x5 

x8 + 7x6 

+ 
+ 
+ 
+ 
+ 

1 
3x 
6x2 

10;r3 

15x4 

+ 
+ 
+ 

1 
kx 

lO^c2 + 1 

1 
1 
1 + X 
1 + 2x 
1 + 3x + 
1 + kx + 
1 + 5x + 
1.+ 6x + 
1 + Ix + 

x2 

3x2 

6x2 

10x2 

15x2 

+ 
+ 
+ 

x3 

kx3 

10^ 3 + xh 

Notice that the coefficients of Jn(x) and Fn(x) appear upon diagonals of 
Pascal's triangle, written as a rectangular array: 

/ 

(1.3) 

1V,1 
» / ' / 

'7' / / / 

VI 

1 
j 

/ 3 

/ e 
10 

15 

1 
4 

10 

20 

35 

1 
5 

15 

35 

70 

The diagonals considered are formed by starting from successive elements in 
the left-most column and progressing two elements up and one element right 
throughout the array. We shall call this the 2,1-diagonal, and we shall call 

385 



386 CONVOLUTION ARRAYS FOR JACOBSTHAL AND FIBONACCI POLYNOMIALS [Oct. 

such a diagonal formed by.moving up p units and right q units the p,^-diago-
nal. 

The sums of the elements on the p,^-diagonals of Pascal's triangle are 
the numbers u(n; p - 1 , q) of Harris & Styles [4], 

We shall display sequences of convolution arrays in what follows: If 

KLo and {MI=o 
are two sequences of integers, then their convolved sequence 

is given by 

cn = a'b -o o^o' aQbx + b0al.. ?2 + albl + a2b0. 

(1.4) cn = ^a-cbn-i 

Notice that this is the Cauchy product if an, bn, cn are coefficients of in-
finite series. The convolution array for a given sequence will contain the 
successive sequences formed by convolving a sequence with itself. 

Pascal's triangle itself is the convolution array for powers of one. Look-
ing back at the display (1.3), we find that the sums of elements appearing on 
the 1,1-diagonal are 1, 2, 4, . .., 2", ....; on the 2,1-diagonal are 1, 1, 2, 
3, 5, on the 1,2-diagonal, 1, 2, 5, 13, Fon -1 while 

1 
2 
4 
8 
6 

1 
4 
12 
32 
80 

1 
6 
24 
80 
240 

1 
8 
40 
160 
560 

1 
10 
60 
280 
1120 

the coefficients of (1 + x)n appear on the 1,1-diagonal, and those of Fn(x) 
and Jn(x) appear on the 2,1-diagonal. 

The convolution array for the powers of 2 is 

(1.5) 

Notice that the sums of elements appearing on the 1,1-diagonal are powers of 
3, and that the 1,1-diagonal contains coefficients of (2 + x)n . The 2,1-di-
agonals contain the coefficients of F*+2(x) = 2xF*+l(x) + F*(x), F\(x) = 1, 
i^G^) = 2a:, and have the Pell numbers 1, 2, 5, 12, 29, ..., as sums, while 
the 1,2-diagonal sums are the sequence 1, 3, 11, 43, 171, ..., J in-\(X) * ••• • 
Noting that in the first array, Fn = Fn(l) , while in the second array the Pell 
numbers are given by Fn (2)9 it would be no surprise to find that the numbers 
Fn(3) appear as 2,1-diagonal sums in the powers of 3 convolution array. In 
fact, 

Tk£.0H.<im 1.1: When the powers of k convolution array is written in rec-
tangular form, the sums of elements appearing on the 1,1-diagonals are the 
powers of (k + 1) , while the 1,1-diagonal contains the coefficients of (k + 
x)n. The numbers given by Fn(k) appear as successive sums of the elements of 
the 2,1-diagonals, which contain the coefficients of the polynomials F*(x) 9 
where 

F%+2(x) = JucF%+1(x) + F*(x), F\{x) = 1, F%(x) kx. 
The sums of the elements appearing on the 1,2-diagonal are given by the num-
bers c72n_1(^). 



1978] CONVOLUTION ARRAYS FOR JACOBSTHAL AND FIBONACCI POLYNOMIALS 387 

PKOO&i Since the powers of k are generated by 1/(1 - koc) 9 the numbers 
Fn(k) by l/a-kx-x2)9 a n d ^ ^ f e ) by (1 - kx) / (l - {Ik + l)x + k2x2), the re-
sults of Theorem 1.1 follow easily from Theorem 1.2 with proper algebra. 

We need to write the generating function for the sums of elements appear-
ing on the p,^-diagonal for any convolution array. We let 1/G(x) be the gen-
erating function for a sequence ian|^_0. Then [l/G(x)]k+l is the generating 
function for the kth convolution of the sequence (an) and thus the generating 
function for the kth column of the convolution array for {an), where the left-
most column is the Oth column. 

Thzotim 7.2: Let 

1/G(x) = Ylanxn 

n - 0 

be the generating function for the sequence {an}. Then the sum of the ele-
ments appearing on the p,q-diagonals of the convolution array of {an} has 
generating function given by 

[G(x)]q~l 

[G(x)]q - xp 

VK.00^'. We write the convolution array for {an} to include the powers of 
x generated: 

a0 b0 o0 d0 

CI 1 X U •% X C i X CI1 X . . . 

a2x2 b drsX2 

GtqtA/ & qt/0 O qtX/ Ct oX . . . 

We call the top-most row the Oth row and the left-most column the Oth column. 
In order to sum the elements appearing on the p ,q-diagonal, we begin at the 
element anxn, n - 0, 1, 2, . .., and move p units up and q units right. We 
must multiply every qth column, then, successively by x , x2p , x3p , ..., so 
that the elements summed are coefficients of the same power of x. The gener-
ating functions of every <̂ th column, then, when summed, will have the succes-
sive sums of elements found along the p 9q -diagonals as coefficients of suc-
cessive powers of x9 so that the sum of the adjusted column generators becomes 
the generating function we seek. But, we notice that we have a geometric 
progression, so that 

1 | xp
 { x2p

 | m m m 1/G(x) = [G(x)]q~l 

G(X) [G(x)]q+1 [G(x)]2q+1 l-xp/[l/G(x)]q [G(x)]q-xp' 

The sums of elements appearing on the p,^-diagonals of Pascal's triangle 
and generalized Pascal triangles can be found in Hoggatt & Bicknell [2] , [3] , 
and Harris & Styles [4]. 

2. FIBONACCI AND JACOBSTHAL CONVOLUTION ARRAYS 

Returning to Pascal's triangle (1.3), since the Jacobsthal polynomials 
defined in (1.1) have the property that Jn (x) = 1 for x = 0 and n = 1, 2, 3, 
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..., Pascal's triangle could be considered the convolution triangle for the 
sequence of numbers Jn (0). Recall that the 2,1-diagonal contains the coeffi-
cients of Jn(x) as well as having sum Fn =Jn(l). We now write the convolution 
array for the sequence of numbers Jn(1), which, of course, is also the Fibo-
nacci convolution array: 

(2.1) 

Observe that the sums of elements appearing along the 2,1-diagonals are 1,1, 
3, 5, 11, 21, 43, ..., Jn(2), ... . 

If one now writes the convolution triangle for the numbers Jn(2) , 

1 
1 
2 
3 
5 
8 
. . 

1 
2 
5 
10 
20 
38 
... 

1 
3 
9 
22 
51 
111 
. • . 

1 
4 
14 
40 
105 
256 
. • . 

1 
5 
20 
65 
190 
511 
. . • 

, . 
.. 
. . 
. . 
. . 

.. 

1 
1 
3 
5 
11 
21 

1 
2 
7 
16 
41 
94 

1 
3 
12 
34 
99 
261 

1 
4 
18 
60 
195 

1 
5 
25 
95 
340 

. . 

. . 

. . 

.. 

. . 
(2.2) 

one finds that the sums of elements appearing on the 2,1-diagonals are 1, 1, 
4, 7, 19, 40, ..., Jn(3), ... . 

Finally, we summarize our results below. 

Tk2.OH.dm 2,1: When the convolution array for the sequence Jn(k) obtained 
by letting x = k9 k = 0, 1, 2. 3, ..., in the Jacobsthal polynomials Jn(x)9 
n = 1, 2, 3, ..., is written in rectangular form, the sums of the elements 
appearing along successive 2,1-diagonals are the numbers Jn(k + 1), and the 
2,1-diagonal contains the coefficients of the polynomials J*(x)9 n = 1, 2, 3, 

J*+Z(x) = JUite) + Vi + x)J*(x), J\(.x) = 1, J$(x) = 1. 

VflOO^: The Jacobsthal polynomials are generated by 

G(x) x - yx 
I>„ + i <*/>*" 

From Theorem 1.2, the sums of elements on the 2,1-diagonals have generating 
function 

G(x) (1 x he2) - x2 
X (k + l)x* 

the generating function for the numbers Jn (k + 1). 
If one now returns to the array given in (2.2), notice that we also have 

the convolution array for the Fibonacci numbers, or for the numbers Fn(l) . 
In Pascal's triangle, the 1,1-diagonal contains the coefficients of the Fibo-
nacci polynomials, but in the Fibonacci convolution array, the 1,1-diagonals 
contain the coefficients of Fn(x + 1), where Fn(x) are the Fibonacci polyno-
mials. If one replaces x by (x + 1) in the display of Fibonacci polynomials 
given in the introduction, one obtains: 
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1, x + 1, x2 + 2^ + 2, #3+3tf2+ 5# + 3, xk + bx3 + 9x2 + 10^ + 5, .... 

If we replace x by (x + 2) in successive polynomials Fn(x), we obtain: 

1, x + 2, x2 + 4x + 5, x3 + 6x2 + 14;r + 12, xh + Sx3 + 27;c2 + 44a; + 29, 

where the constant terms are Pell numbers. We next write the convolution 
array for the Pell numbers, or the numbers Fn(2) , 

(2.3) 

1 
2 
5 
12 
29 

1 
4 
14 
44 
... 

1 
6 
27 
104 
... 

1 
8 
44 
200 
... 

1 
10 
65 
340 
... . .. 

and observe that the 1,1-diagonals contain exactly those coefficients of suc-
cessive polynomials Fn(x + 2). Also, the sums of elements appearing in the 
1,1-diagonals are 1, 3, 10, 33, 109, ..., Fn(3), ..., while in the Fibonacci 
convolution array those sums were given by 1, 2, 5, 12, 29, ..., Fn(2), ..,, 
and in Pascal1s triangle those sums were the Fibonacci numbers themselves. 

We summarize as follows. 

Tk&OK&n 2,2: When the convolution array for the sequence Fn(k) obtained 
by letting x - k, k = 1, 2, 3, ..., in the Fibonacci polynomials Fn(x), n = 1, 
2, 3, .. . , is written in rectangular form, the sums of the elements appearing 
along successive 1,1-diagonals are the numbers Fn(k +1)9 and the 1,1-diagonals 
contain the coefficients of the polynomials Fn (x + k). 

Vh.00^1 The Fibonacci polynomials are generated by 

G(x) yx 
= XX + l(^n 

From Theorem 1.2, the sums of elements on the 1,1-diagonals have generating 
function 

G(x) kx 1 - (k + l)x 
the generating function for the numbers Fn(k + 1). 

Rather than using the definition of convolution sequence, one can write 
all of these arrays by using a simple additive process. For example, each 
element in Pascal1 s rectangular array is the sum of the element in the same 
row, preceding column, and the element above it in the same column. In the 
Fibonacci convolution array, each element is the sum of the element in the 
same row, preceding column, and the two elements above it in the same column. 

In the convolution array for {Fn(k)} , the rule of formation is to add the 
element in the same row, preceding solumn, to k times the element above, and 
the second element above, as 

{Fn(x)} convolution: 

X 

w 

y 
z 

x + ky + w9 k = 1, 2, 



390 CONVOLUTION ARRAYS FOR JACOBSTHAL AND FIBONACCI POLYNOMIALS [Oct. 

The convolution array for \Jn (k)} is formed by adding the element in the 
same row, preceding column, to the element above, and to k times the second 
element above the desired element, as 

{Jn (x)} convolution: 

X 

w 

y 

z 

z. = x + y + kw, k = 0, 1, 2, 

Both additive rules follow immediately from the generating function of 
the array. For example, for the {jn(k)} convolution, if Gn(x) is the gener-
ating function of the nth column, then 

Gn+1(x) = G1(x)Gn(x) = [1/(1 - x - kx2)]Gn(x), 
Gn + l(x) = Gn(x) + xGn+1(x) + kx2Gn + l(x). 

As a final example, we proceed to the Tribonacci circumstances. The Tri-
T bonacci numbers 1, 1, 2, 4, 7, 13 

(2.4) ™n + 3 = ™n + 2 + ™n + l + ^nJ 0, 2\ 1, 
appear as the sums of successive 1,1-diagonals of the trinomial triangle 
written in left-justified form. The trinomial triangle contains as its rows 
the coefficients of (1 + x + x )' 

(2.5) 
1 
3 
6 
10 

2 
7 

16 

1 
6 
19 

3 
16 

0, 1, 2, 

1 
10 

and the coefficients of the Tribonacci polynomials Tn(x) (see [5], [6]), 

1 njr3 \X) —XI n + 2 \^) *^ n+ 1 V^' -L n v»W ? 

T-xGr) = T0(x) = 0, S^Gc) = 1 

along its 1,1-diagonals. We note that Tn(1) = Tn. 
If we write instead three other polynomial sequences—tn(x), £*(#)', and 

£**(#) —which have the property that tn(l) = £*(1) = t**(l) = Tn, we find a 
remarkable relationship to the convolution array for the Tribonacci numbers. 

n = 1 
n = 2 

n = 3 

n = 4 

n = 5 

'n + 3 

1 

X 

^n+3 un+2 + #tr + £* 

xA + 1 
ic3 + 2# + 1 

^ + 3x2 + 2̂r + 1 

1 

1 

X + 1 

2^ + 2 

#2 + 3x + 3 

and 
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Vn + 3 Vn+2 + Vn + l + Xtn 

n = 1 
n = 2 

n = 3 

n = 4 

n = 5 

1 

1 

2 

a; + 3 

2x + 5 

We write the convolution array for the Tribonacci numbers: 

(2.6) 

1 
1 
2 
4 
7 
13 
24 

1 
2 
5 
12 
26 
56 
... 

1 
3 
9 
25 
63 
• . . 

1 
4 
14 
44 
. o » 

1 
5 
20 
70 
* . o . 0 e 

If we replace x with Or + 1) in £n(#),we get 15 re + 1, a:2 + 2a: + 2, a:3 + 3a:2 

+ 5a: + 4, ..., whose coefficients appear along the 1,1-diagonals. Putting 
(x + 1) in place of x in t*(x) gives 1, l,x + 2, 2x + 4, ̂ 2 + 5 x + 7 , ..., 
which coefficients are on the 2,1-diagonal, while replacing x by (x + 1) in 
£**(#) makes 1, 1, 2, a; + 43 2a: + 7, 5a: + 13, a:2 + 12a: + 24, ..., which coef-
ficients appear on the 3,1-diagonal. The coefficients of t*L(x + k) appear 
along the 1,1-diagonals of the convolution array for £*(&), and similarly for 
t*(x + k) and the array for t*(k)9 and for t**(x + k) and t%*(k). 

The Tribonacci convolution array can be generated either by the defini-
tion of convolution or by dividing out its generating functions [1/(1-a:-a: 
- x3)]n or by the following simple additive process: each element in the ar-
ray is the sum of the element in the same row but one column left and the 
three elements above it in the same column, or, schematically, 

s = p + i<; + a: + z/. 

Generalizations to generalized Pascal triangles are straightforward. 

3. ARRAYS OF NUMERATOR POLYNOMIALS DERIVED FROM FIBONACCI 
AND JACOBSTHAL CONVOLUTION ARRAYS 

In this section, we calculate the generating functions for the rows of 
the Fibonacci and Jacobsthal convolution arrays of §2. We note that, in each 
case, the first row is a row of constants; the second row contains elements 
with a constant first difference; . ..; and the ith row forms an arithmetic 

p 

w 

X 

y 

z 
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progression of order (i - 1), i = 1, 2, . .., with generating function N^(x)/ 
(1 - x)v . We shall make use of a theorem from a thesis by Kramer [8]* 

Th&Otim SI (Kramer) : If generating function 

A(x) = N(x)/(1 - x)r+l 

where N(x) is a polynomial of maximum degree r, then A(x) generates an arith-
metic progression of order r, and the constant of the progression is #(1). 

We calculate the first few row generators for the Fibonacci convolution 
array (2.1) as 

1 1 2 - x 3 - 2x 5 - 5x + x2 8 - 10a; + 3x2 

(1 - x)5 ' (1 - x)6 1 

ay 

1 
1 
2 
3 
5 
8 
13 
21 

- x9
 (1 - x)2' (1 -

the coefficients of 

-1 
-2 
-5 
-10 
-20 
-38 

1 
3 
9 
22 

-1 
-4 

* ) 3 ' 
the 

(1 --ar)"' 
successive 

(3.1) 

The rising diagonal sums are 1, 1, 2, 2, 3, 3, 4, 4, ..., but if we use ab-
solute values, they become the Tribonacci numbers 1, 1, 2, 4, 7, 13, 24, 44, 
.... The row sums are all 1, which means, by Theorem 57, that Nn(l) = 1, or 
that the constant of the arithmetic progression of order (n - 1) found in the 
nth row of the Fibonacci convolution array is 1. However, the row sums, us-
ing absolute values, are 1, 1, 3, 5, 11, 21, 43, 85, . . . , Jn(2) , ... . Notice 
that successive columns are formed from successive columns of the Fibonacci 
convolution array (2.1) itself. We defer proof to the general case. 

If one now turns to the convolution array (2.2) for {jn (2)} , the first 
few row generators are 

1 1 3 - 2# 5 - 4a; 11 - Ux + kx2 

1 x (1 - x)2 (1 - x)s (1 - x)* (1 - x)5 

Displaying the coefficients of the numerator polynomials, 

(3.2) 

1 
1 
3 
5 
11 
21 
43 

-2 
-4 
-14 
-32 
-82 

4 
12 
48 

we find that the rising diagonal sums are 1, 1, 3, 3, 7, 7, 15, 15, ..., 
while, taking absolute values, they are 1, 1, 3, 7, 15, 35, 79, ..., where 
the kth term is formed from the sum of the preceding term and twice the sum 
of the two terms preceding that, a generalized Tribonacci sequence. Each row 
sum is again 1. However, using absolute value, the row sums become 1, 1, 5, 
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9, 29, 65, 181, . .., c/n(4), .... Notice that successive columns are multi-
ples of successive columns of (2.2), the second column being twice the second 
column of (2.2), the third column four times the original third column, and 
the fourth column eight times the original fourth column. 

Notice that the Fibonacci numbers are also the numbers Jn (1) . We state 
and prove a theorem for the general Jacobsthal case. 

Th&Ofim 3.7: Let J°n
 + l (k) denote the nth element of the jth convolution 

of {jn(X))' Let Nm(x) / (1 - x)m denote the generating function of the mth row, 
m = 1, 2, ..., in the convolution array for {Jn (k)}. Then 

[(m-l)/2] 

P/LOOfi: [Note that J„(k) = Jn (k) . ] From the rule of fo rmation of the 
convolution array for {Jn(k)) derived in §2, the row generators Dn(x) obey 

(3.3) Dn(x) = xDn(x) + ̂ . j W + kDn_2(x) = ]_ JDn_1(x) + kDn_2(x)] 

NAx) N Xx) kN (x) 

(1 - x)n~l (1 - x)n~2 
(1 - x)n x 

(3.4) Nn(x) = N^^x) + (1 - x)kNn_2(x) = Nn_1(x) + kNn_2(x) - kxNn_2(x) . 

Comparing (3.4) to the original recurrence for Jn(k) and noting that N1(x) = 
N2(x) = J1(k) = J2(k) = 1, the constant term is given by Nn(0) = Jn{k). The 
rule of formation of the convolution array can also be stated as 

(3.5) J^HX) = Ji+_\(k) + kJi+_l
2(k) + ^ m . 

Let un be the coeff icient of x in Nn(x). Then 

Un = "„_ ! + kun_2 ~ kJn_2(k). 
If UA = -k.J2-2(k), 3 = 3 , 4, . . . , n - 1, then 

un = -kJ2
n_3(k) - k2J2

n_h(k) - kJn_2(k) 

= ~k(J2_3(k) + kJ2
n_hiX) + Jn_2(k)) = -kJ2

n_2{k) 

by (3.5). Thus, the coefficient of x has the desired form for all n >_3. 
Next, let un be the coefficient of xl and Vn the coefficient of xv~ in 

Nn(x). If ud = (-l)V*!|f(k)fcf and Vj = (-1) *"1fef-1j/_2i (fc) for j = 3, 4, 
..., n - 1, then 

Wn = "„-l + k"n-2 - kVn-2 

= <-i)V(4-i-2i(fc> + kji+_l-2i(k) + jUiVO) 
= ( - D V C J ^ O O ) 

by again applying (3.5), establishing Theorem 3.1, except for the number of 
terms summed. By Theorem 57 [8] , i <_ m, since the degree of Nm(x) is less 
than or equal to m. But J^tli (̂ ) = °  f o r [(rn - 1)/2] < i <_ m. 
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By Theorem 3.1, the generating function for the ith column of the numera-
tor polynomial coefficient array for the generating functions of the rows of 
the convolution array of \JnOO) is now known to be 

( i - x - kx2y 
Summing the geometric series 

1 + kx2
 + k2xh

 + mmmSS 1 
1 - x - kx2 (1 - x - kx2) 2 (1 - x - kx2)3 1 - x - (2k)x2 

which proves that the rows1 sums, using absolute values, are given by Jn(2k). 
However, summing for the rows as originally given, we use alternating signs 
in forming the geometric series, and its sum becomes l/(l-#), so that Nm(l) 
= 1. That is, the ith row is an arithmetic progression of order (i - 1) with 
constant 1 in every one of the arrays for {Jn(k)}, k - 1, 2, 3, .... 

Turning to the cases of convolution arrays for the sequences {Fn(k)}, k = 
1, 2, 3, ..., we look at Fn(2) as in array (2.3). The first few row genera-
tors are 

1 2 5 - x 12 - kx 29 - \kx + x2 70 - kkx + 6x2 

1 " x* (1 - x)9-9 (1 - ^ ) 3 ' (1 - x)k' (1 - x)5 ' (1 - x)6 

The array of coefficients for the numerator polynomials is 

1 
2 
5 -1 

(3.6) 12 -4 
29 -14 1 
70 -44 6 

The row sums are 1, 2, 4, 8, 16, 32, . .., 2n, . .., and the coefficients of 
successive columns appear in the original array (2.3). We state the situa-
tion for the general case. 

Tke.0A.2m 3.2: Let F^+1(k) denote the nth element in the jth convolution 
of the numbers {Fn(k)} , k = 1, 2, 3, ...,n= 1, 2, 3, ... . Let the generat-
ing function of the 777th row in the convolution array for {Fn(k)} be N*(x)/ 
(1 - x)m, m = 1, 2, ... . Then 

[(/n-l)/2] 

The proof is analogous to that of Theorem 3.1 and is omitted in the in-
terest of brevity. 

Theorem 3.2 tells us that the -ith. column of the numerator coefficient 
array form the generating functions of the rows of the convolution arrays for 
Fn(k) is given by (-1)1 x2z /(1 - kx - x2)z . Then, N*(l) is the sum of the rows 
given by the sum of the geometric series 
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so that N*(l) = kn~ By Theorem 57 [8], the (i-l)st order arithmetic pro-
gression formed in the ith row of the convolution array for {Fn(k)} has con-
stant kn~l, in every one of the arrays, ̂  = 1, 2, 3, .... 

4. ARRAYS OF SUCCESSIVE JACOBSTHAL AND 
FIBONACCI POLYNOMIAL SEQUENCES 

In [7], Whitford considers an array whose rows are given by successive 
sequences derived from the Jacobsthal polynomials, such as 

k | The sequence {jn(k)} 

(4.1) 

0 
1 
2 
3 
4 

1 
1 
1 
1 
1 

1 
1 
1 
1 
1 

1 
2 
3 
4 
5 

1 
3 
5 
7 
9 

1 
5 

11 
19 
29 

1 
8 

21 
40 
65 

1 1 1 1 
13 21 34 55 
43 85 171 341 
97 217 508 1159 
181 441 1165 2929 

The successive elements in each column are given byl, 1, k + 1, 2?c + 1, 
k + 3k + l9 . . . , by the recursion relation for {Jn (k)}. The vertical sequences 
above are given by 

(4.2) ^ ) = E ( w - r > ' = r ^ r E ( ^ + i ) ^ 1 ) / 2 

where n is fixed, n >_ 1, and k = 0, 1, 
i 

r odd 
2 3, (see [7]). 

We now wish to obtain the generating functions for the columns of the ar-
ray (4.1). Notice that the first two columns are constants, the next two 
columns have a constant second difference, the next two have a constant third 
difference, etc. This means that if Dn(x) is the generating function for the 
nth column, n - 1, 2, 3, . . 
each given by (1 - x)m . We 
quoted in §3. 

One has 

then the denominators of D2m_1(x) and D2m(x) are 

D 2m -1 (X) 

shall again make use of Theorem 57 [8], which was 

(x) 

(1 - x) 
V?m (X) 

r2m(x) 

- x) 
by virtue of 

1 - x kxz i>*+i<fc>*n-
Now, if Jn+l(k) has fixed (n + 1) and k varies, we generate the columns. If 
we fix k and let n vary, we generate the rows. Jn+1(k) is a polynomial in k 
with coefficients lying along the 2,1-diagonal of Pascal!s triangle. To get 
the ordinary generating function, we can note that 

Ak(x) 

(1 - x) k + l £ nkx? 

where the Ak(x) are the Eulerian polynomials. (See Riordan [9] and Carlitz 
[10]). Thus, we note that the polynomials J"2m-i(?c) and J2m (k) are both of 
the same degree, and we will expect the generating functions to reflect this 
fact. 
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From careful scrutiny of the array generation, we see 

(4.3) Dn + 2(x) = Dn+l(x) + xV'n(x). 

One then breaks this down into two cases: 

(4.4) 

Xx) 

,(*) 

' 2m + 2(*> 

(1 
r 

m + l x) 

2m + 3 ^ ) 

r2m + lM 

a - xy 
P 2 . + 2 ^ ) 

+ X 

(1 - x) m+2 a - x) m + l 
+ X 

dx 

_d_ 
dx 

v (x) 
2m 

- x)' 

2 m + l ^ 

(1 - x) m + l 

This leads to two simple recurrences: 

(4.5) 
,(*) 

r2m + i ( ^ + x(l - x)v^m{x) + mxr2m(x) 

r2m + s ^ = d - x)r2m+2(x) + x(m + l)r2m + 1(x) + x(l 

The first fifteen polynomials rn(x) are: 

n vn (x) 

X'r2m+1(X' 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

1 
1 
1 
1 + 
1 + 
1 + 
1 + 

x 
2x -
5x 
9x- 3xz 

7x2 1 + 17a; + 
1 + 29a: + llx2 -
1 + 50a; + 76a:2-

17a:d 

6x3 

1 + 83a: + 164a;2 - lOOor 
l + 138o; + 516a;2 + llOoT 

x 
29a:4+ 
45a;4 

50a:3 - 571a;1* 
421a:4 

l + 226a: + 1121a:z 

1 + 370a: + 2843a;2 + 2344a:3 

1 + 602a: + 6071a:2 + 4956a;3 - 5249a:4 - 1430a:5 + 89a:6 

8a;5 + 
98a;5 + 

row sums 

MD 
0! 
1! 
1! 
2! 
2! 
3! 
3! 
4! 
4! 
5! 
5! 
6! 
6! 
7! 
7! 

We observe that vn(1) = [n/2]\, where [x] is the greatest integer contained 
in x. This follows immediately by taking x = 1 in (4.5) to make a proof by 
mathematical induction. By Theorem 57 [8], rn(l) also is the constant of the 
arithmetic progression formed by the elements in the nth column of the Jacobs-
thai polynomial array (4.1). There is a pleasant surprise in the second col-
umn of the numerator polynomials rn(x), whose generating function is 

1/[(1 - x - x2)(l - x)(l - x2)]. 

The sequence of coefficients is 0, 0, 0, 
370, 602, ...3 
relation that 

(4.6) 
*2k • 2k -1 

r = 1, 2, 3, 

- k 

1, 2, 5, 9,17,29,50,83, 138, 226, 
We can prove from the recurrence 

k 

as v is odd or even. By returning to (4.5), we can write a recurrence for 
the ur simply by looking for those terms which contain multiples of x only, 
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so that 

U2m+2 " U2m+1 + U2m + m 

U2m + 3 = ^ 2 , + 2 - 1 ) + ( ^ + 1 ) + U2m + 1 = U ^ ^ + U ^ ^ + 777 

Since we know that (4.6) holds for r = 1, 2, ...,15, we examine w2 m + 2
 a n d 

u2m-\-3> assuming that (4.6) holds for all v < 2m + 2. Then 

u (F2m + 1 - (m + 1)) + (F2m -m) +m- F2m+2 - (m + 1) 

u0 (^+2 " & + D ) + (F2m + 1 - (m + 1)) + m = F2m + 3 - (777 + 2) , ^ + 3 " V- 2m+2 v " r " ^ ^ V x 2/7J + 1 V " ̂  -̂ -/ T '" " r2m + 3 

so that (4.6) holds for all integers v by mathematical induction. 
To determine the relationship between elements appearing in the third 

column of the numerator polynomial array, examine (4.5) to write only those 
terms which contain multiples of x2. Letting the coefficient of x in ii

n{x) 
be vn9 we obtain 

V2m+2 = V2m+1 + 2v2m + (777 - V)U2m 

V2m + 3 = V2m+2 + ^V2m + l + mU2m+l ~ U 2 m + 2 

which, when combined with (4.6), gives us 

(4.7) 

U 2 m + 2 = y
2 m + l + 2 U

2 m 

= V2m+1 + 2 ^ 2 m 

U2m + 3 = U 2 m + 2 + 2V2m+l ~ u->~ ^ + ^ o m J . i " 2 t „ 

W 2 m 

(77? • 

- W 

+ mF2m ~ 

~ D ^ 2 m " 

2 m + 2 + mF: 

2 
77? 

- 777) 

2 7 7 7 + 1 

= ^ 2 m + 2 + 2V2m + 1 + (777 + l ) F 2 m + 1 - F2m + 3 - (777 + 1 ) 

where tm = 777(777 + l)/2, the rnth triangular number. 
Continuing to the fourth column, if the coefficient of x3 in vn (x) is wn, 

we can. write 

^2m+2 = U2m + 1 + 3W2m + (777 - 2 ) y 2 m 

W2m+3 = W2TT?+2 + 3 ^ 2 m + l + (777 - l)7J>2m + l " v2m + 2> 

and so on. 
Now, if we wish to generate the columns of the numerator polynomials ar-

ray, it is easy enough to write the generators for the second column if we 
take two cases. To write the generating function for 1, 5, 17, 50, 138, ..., 
u2n, ..., since this is the sequence of second partial sums of the alternate 
Fibonacci numbers 1, 3, 8, 21, 55, ..., the generating function is 

1/[(1 - 3x - x2)(l - x)2, 
except to use it properly, we must replace x by x2, so that 

~~ / _A ^ 2 n + W^ 

(1 - 3x2 + x^il - x2)2 „=o 

Now, the generating function for u2k_1 results from combining the known gen-
erators for F2k_1 and for the positive integers. 

Since 

^ " — 1 + 2x + 5x2 + 13^3 + 3 4 ^ + • • • 
3x + x2 
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and 

1 + 2x + 3x2 + hx3 + 
(1 - x)" 

1 - x 

1 - 3x + x2 (1 - x)' (1 - 3x + x2)(l - xY £(*,2n-l-*>*n~1-

To adjust the powers of x9 first replace x by x and then multiply each side 
by x, obtaining finally 

2x~ 
(1 - 3x2 + xh){l - x2Y 

E^n-l ri)x In • ' - E Un ,X In - 1 
In -1 

On the other hand, if one writes the array whose rows are given by suc-
cessive sequences derived from the Fibonacci polynomials, 

(4.8) 

The sequence {Fn(k)} 

1 
2 
3 
4 

2 
5 
10 
17 

3 
12 
33 
72 

5 
29 
109 
305 

8 
70 
360 
1292 

13 
169 
1189 
5273 

21 
308 
3927 
22384 

The 
The successive elements in each column are given by 1, k, k2 + 1, k3 + 2k, 
kh + 3k3 + 1, . . . , by the recursion relation for Fn(k) , k = l , 2, 3, . . 
vertical sequences above are given by 

n -1 

(4.9) Fn(k)=E(K_rr)fen"2r"1 

where n is fixed, n >_ 1, and k = 1, 2, 3, , or by 

S ^ + iOÔ , 

which generates the rows for k fixed, n = 1, 2, 3, ..., and the columns for n 
fixed, k = 1, 2, 3,.... 

As before, we wish to generate the columns. We observe, since the nth 
column has a constant (n-l)st difference, that the denominators of the col-
umn generators will be (1 -x)n, n = 1, 2, 3, ... . 

If we let D*(x) be the generating function for the nth column, and let 

(4.10) D*(x) 
r*(x) 

(1 - a;)" 

this time we find that 

B*+Z(x) = xDZl^x) + D*(x); 

(4.11) r*+2(x) = x(n + l)p*+1Gr) + x(l - x)r^ll(x) + (1 - x)2r*(x), 

We list the first few numerator polynomials r*(x): 
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1 
2 
3 
4 
5 
6 
7 

1 

1 -

1 + 

1 + 

X 
x + 

3x + 

8x + 
6x + 

2x2 

Ux2 + 
22x2 + 
99a;2 + 

3a;3 

4a;3 + 
60a;3+ 

244a;3 + 

5xh 

22a;4+ 
2 7 9 ^ + 

8a;5 

78a:5 + 

r*(x) p*(l) 

0! 
1! 
2! 
3! 
4! 
5! 

13a;6 6! 
8 21a: + 240a;2 + 1251a:3 + 20 1 6 ^ + 1251a;5 + 240a;6 + 21a:7 7! 
9 1 + 25x + 715a;2 + 5245a;3 + 142090^ + 14083a:5 + 5329a;6 + 679a?7 + 34a;8 8! 

We find that r*(l) = (n - 1 ) ! , and that the coefficient of the highest power 
of x in r*(x) is Fn, It would also appear that the coefficients of x are al-
ternate Fibonacci numbers in even-numbered rows. In fact, D. Garlick [11] 
observed that, if un is the coefficient of the linear term in r*(x) 9 then 

u2k-i = Fik-i - (2& - 1 ) , 

which can be proved from the recurrence relation by induction. 
Let on be the constant term in r*(x) . By studying (4.11) carefully to 

find first, constant terms only, and then just the linear terms, we can write 

(4.13) 
uv 

(n + l)en + 1 + un+1 + un - 2cr "n + 2 
Since o1 = 1 and c2 = 0 , c2k + 1 = 1 and o2k = 0 . Assume t h a t (4 .12) i s t r u e 
for a l l n <. 2k. Then, t a k i n g n = 2k - 1 i n (4 .13) , 

u2k+l = (^°2k + U2k + u2k-l ~ 2o2k-l 

= 0 + F2k + F2k^ - (2k - 1) - 2 = F 2 k + 1 - (2fc + 1 ) . 

Similarly, from (4.13) for n = 2fc, 

W 2 k + 2 = < 2 f c + 1 > C 2 / c + l + M2fc+1 + U2k ~ 2°2k 

= (2k + 1) + F2fe+1 - (2/c + 1) + F2k - 0 = F2fc+2, 

so that (4.12) holds for all integers k > 0. 
Continuing, let vn be the coefficient of x2 in r*(x). By looking only at 

coefficients of x2 in (4.11), we have 

vn+2 = (n + l)un+1 + 2vn + 1 - un+1 + vn - 2un + on 

= 2vn+1 + vn + nun+1 - 2un + on9 

which, combined with (4.12), makes 

»2h+2 = 2V2k + 1 + V2k + 2k(F2k + 1 - (2k + 1 ) ) - 2F2k 

u 2 k + 1 = 2v2k + Vzk_x + (2k - l)F2k - 2(F2k_1 - (2k - 1 ) ) + 1 . 

Now, to p rove t h a t t he c o e f f i c i e n t of t h e h i g h e s t power of x i s Fn, we 
l e t t he c o e f f i c i e n t of t h e h i g h e s t power of x i n v*(x) be hn» As b e f o r e , 
(4 .11) g ive s us 

hn+2 = (n + l)hn+1 -• nhn+l + hn = hn+l + hn. 
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Since hl = 1 and h2 = 1, hn = Fn . 
Further, it was conjectured by Hoggatt and proved by Carlitz [12] that 

l>\n(x) is a symmetric polynomial. Note that this also gives the linear term 
of v\n (x) the value F2n since we have just proved that the highest power of x 
has Fn for a coefficient. 

5. INFINITE SEQUENCES OF DETERMINANT VALUES 

In [13] and [14], sequences of m x m determinants whose values are bino-
mial coefficients were found when Pascal's triangle was imbedded in a matrix. 
Here, we write infinite sequences of determinant values of m x m determinants 
found within the rectangular arrays displayed throughout this paper. We will 
apply 

EveV TklOSizm: Consider a determinant of order n whose ith row (column) 
(-£ = 1, 2, . . . , ri) is composed of any n successive terms of an arithmetic 
progression of order (i - 1) with constant a^. Then the value of the deter-
minant is the product aYa0 ... an. 

Consider the convolution array for the powers of 2 as given in (1.5). 
Each row is an arithmetic progression of order (i - 1) and with constant 
2% , i = 1, 2, 3,.... Thus, the determinant of any square m x m array 
taken to include elements from the first row of (1.5) is 2° 2122 ... 2m~l = 
2 m ' m " 1 ) / 2 . Further, noticing that each element in the array is 2 t _ 1 times 
the element of Pascal's triangle in the corresponding position in the -£th 
row, i = 1, 2, ..., we can apply the theorems known about Pascal's triangle 
from [13] and [14]. However, if we form the convolution triangle for powers 
of k, then each element in the ith row is kz~l times the corresponding ele-
ment in the ith row of Pascal's triangle written in rectangular form, i, - 1, 
2, ... . Thus, applying the known theorems for Pascal's triangle, we could 
immediately evaluate determinants correspondingly placed in the powers of k 
convolution triangle. 

Also, we notice that the convolution array for the sequence {e/n(fc)}n = 0> 
k = 0, 1, 2, 3, ..., has its rows in arithmetic progressions of order (i - 1) 
with constant 1, i - 1, 2, ..., while the convolution array for the sequence 
{Fn(k)}n=0, k = 1, 2, 3, ..., has its rows in arithmetic progressions of or-
der (i - 1) with constant fc^-1, i = 1, 2, ... . From these remarks, we have 
the theorem given below. 

Th.10K.Qjn 5.1: Form the m x m matrix A such that it contains 777 consecutive 
rows of the original array, with its first row the first row of the original 
array, and m consecutive columns of the original array with its first column 
the jth column of the original array. In the convolution array for the se-
quence {jn(^)}n=o> & = 0, 1, 2, ..., det A = 1. In the convolution array for 
the sequence {Fn (k)}n = 0 , k = 1, 2, 3, . . . , or in the convolution array for the 
powers of k9 det A = fc^"1)/2. 

Determinants whose values are binomial coefficients also appear within 
these arrays. To apply the results of [13] and [14], we must first express 
our convolution arrays in terms of products of infinite matrices. Let the 
rectangular convolution array for \Fn(k)} be imbedded in an infinite matrix 
gr , and similarly, let J, be the infinite matrix formed from the convolution 
array for (c7n(/c)}. Let P be the infinite matrix formed by Pascal's triangle 
written in rectangular form. Consider the convolution array for the powers 
of k9 written in rectangular form. Each successive 1,1-diagonal contains the 
coefficients of (x + k)n,, Form the matrix A\ such that the coefficients of 
(k+n)n appear in its columns on and beneath the main diagonal, and the matrix 
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in exactly the same way, except use the coefficients of (1 + kx)n . Then, 
^T, and ByP We illustrate, using 5 x 5 matrices, for k = 2: 

1 
0 
0 
0 
0 

0 
2 
1 
0 
0 

0 
0 
4 
4 
1 

0 
0 
0 
8 
12 

0 ... 
0 ... 
0 ... 
0 
16 ... 

1 
1 
1 
1 
1 

1 
2 
3 
4 
5 

1 
3 
6 
10 
15 

1 
4 
10 
20 
35 

1 
5 ... 
15 ... 
35 ... 
70 ... 

1 
2 
5 
12 
29 

1 
4 
14 
44 
121 

1 
6 
27 
104 
366 

1 
8 
44 
200 
810 

1 ... 
10 ... 
65 ... 
340 ... 
1555 ... 

oP = 

1 
0 
0 
0 
0 

0 
1 
2 
0 
0 

0 
0 
1 
4 
4 

0 
0 
0 
1 
6 

0 ... 
0 ... 
0 ... 
0 ... 
1 ... 

1 
1 
3 
5 
11 

1 
2 
7 
16 
41 

1 
3 
12 
34 
99 

1 
4 
18 
60 
195 

1 ... 
5 ... 
25 
95 ... 
340 ... 

= S2 

Using the methods of [13] and [14], since the generating function for the 
jth column of Ak is [x(k 4- x) ]J ~1 while the jth column of P is 1/(1 -x)J\ the 
j'th column of AkP is 1/ [1 - x(k +x) ] J = [1 - kx - x2]J

9 where we recognize the 
generating functions for the columns of the convolution array for {Fn(k)} 9 so 
that AkP = 9^. Similarly, since the jth column of Bk is generated by [x(l + 
for)]*7'-1, BkP i s gene ra t ed by 1 / [1 - x(l + kx)]J'~1= 1 / [1 - x - kx]J'~1,so t h a t 
BkP = Jk . 

Each submatrix of Jk taken with its first row anywhere along the first 
row or second row of Jk is the product of a similarly placed submatrix of P 
and a matrix with unit determinant. The case for 9^ is similar, except that 
an 77? x m submatrix of P is multiplied by an m x m matrix whose determinant 
is 
P 

km^ 
[13] 

Since we know 
we write 

how to evaluate determinants of submatrices of • i ) / 2 

. [14]. 

Tk2.0H.Qjn 5,2: Form an m x m matrix B from 777 consecutive rows and columns 
of the original array by starting its first row along the second row of the 
original array and its first column along the jth column of the original ar-
ray. In the convolution array for the sequence {Jn(k)} ^_0, k = 0, 1, 2,..,, 

det B = ( J . In the convolution array for the sequence {Fn(k)}°^=0, 

k = 1, 2, 3, . . . , or in the convolution array for the powers of k, det B = 
km(m-l)/z( j ~ l + m \ 

We could extend the results of Theorem 5.1 to apply to any convolution 
array for a sequence with first term 1 and second term k9 since Hoggatt and 
Bergum [15] have shown that such convolution arrays always have the ith row 
an arithmetic progression of order (i - 1) with constant k. It is conjectured 
that Theorem 5.2 also holds for the convolution array of any increasing se-
quence whose first term is 1 and second term is k. 
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Proceeding to the array formed from the Jacobsthal sequences themselves, 
as given in (4.1), the nth column is an arithmetic progression of order 
[(n - l)/2], where [x] is the greatest integer contained in x. That makes 
determinants of value zero very easy to find. Any determinant formed with 
its first column the first, second, or third column of the original array 
containing any m consecutive rows of m consecutive columns, m > 3, is zero. 
Det A = det B = 0 whenever m > j, for matrices A and B formed as in Theorems 
5.1 and 5.2. However, determinants formed from 77? consecutive rows taken from 
alternate columns have value (0!)(1!)(2!) ... (m - 1)! or (1!)(2!) ... (ml) 
depending upon whether one takes the first column and then successive odd 
columns or begins with the second column and then successive even columns. 

Similarly, the array (4.8) formed of the sequences {Fn(k)}°^=0, k = 1, 2, 
3, ..., has its ith column an arithmetic progression of order (i - 1) with 
constant (i - 1)!, so that any determinant formed from any m consecutive rows 
of the first m columns has determinant (0!)(1!) ... (m - 1)!. 
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THE FIBONACCI SEQUENCE MODULO N 

ANDREW VINCE 
903 W. Huron Street #4, Ann Arbor, MI 48103 

Let n be a positive integer. The Fibonacci sequence, when considered 
modulo n, must repeat. In this note we investigate the period of repetition 
and the related unsolved problem of finding the smallest Fibonacci number di-
visible by n. The results given here are similar to those of the simple 
problem of determining the period of repetition of the decimal representation 
of 1/p. If p is a prime other than-2 or 5, it is an easy matter to verify 
that the period of repetition is the order of the element 10 in the multipli-
cative group Zp of residues modulo p. Analogously, the period of repetition 
of the Fibonacci sequence modulo p is the order of an elenjent £ in a group to 
be defined in §1. This result will allow us to estimate the period of repe-
tition and the least Fibonacci number divisible by n. Sections 2 and 3 con-
tain the exact statements of these theorems; in §4, related topics are dis-
cussed. 

1. DEFINITIONS AND PRELIMINARY RESULTS 

The Fibonacci sequence is defined recursively: f1 =1, f2=l9 and fn + i = 
fn + fn-i for all n >_ 2. If we define 

e = (1 + /5)/2, 

then it is easy to verify the following by induction. 

Lmma 7: em = (/^ +fm + 1)/2 + (fm/2). 
Letting Zn be the ring of residue classes of integers modulo n, define 

Zj/5"] = {a + b/5\a, b e Zn|. 

This becomes a ring with respect to the usual addition and multiplication. 
For n relatively prime to 5 define the norm as a mapping /l/:Zn[/5~] -»• Zn given 
by N(a + b/5) = a2 - 5b2. If Z*[/F] denotes the multiplicative group of in-
vertible elements of Zn[/5"], then the norm restricted to Z*[/5"] is a surjec-
tive homomorphism N:Z%[i/5] -> Z*. That the mapping is onto can be verified by 
observing that the number of elements in the image of N is over half the or-
der of Z*. 

Now consider the Fibonacci sequence modulo n. Define p(n) to be the least 
integer 777 such that fm=0 (mod ri). Let o(n) be the period of repetition of 
the Fibonacci sequence modulo n, i.e., O is the least positive integer m such 
that fm+i = 1 and fm+2 - 1- T n e following fact is well known [5], 

Lmma 2: fm = 0 (mod ri) <N=>p|m. 
This implies that p|a, and define D(n) = 0(n)/p(n). 

2. THE PERIOD OF REPETITION 

Let n = Pi1 P22 ••• pVm be the prime decomposition of n. The first theo-
rem relates o(n) to the structure of the group Z*[/5l. The second reduces 
the problem to a study of the groups Zp

ri [/IT] , and the third further reduces 
it to properties of the groups Zp[/5). 

TkzoKQjn 1: If n is odd then O (n) is equal to the order of e in the group 

403 
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Theorem 2 : a(n) = [o(pil ) , o(plz) , . . . , cr(p̂ m ) ] , where [, ] denotes the 
least common multiple. 

ThdOJiQJfn 3: Let s be the greatest integer <_ r such that o(ps) = o (p) . 
Then a(pr) = pr~so(p) . 

P^0O$ 0$ ThdOKQM 7: By Lemma 1, 

£ a = Cfo-l +/a + l>/2 + (/a/2)^=, (fg + 2/a-1)/2 + (/CT/2)/§"= /g _ x = 1. 

Conversely, if £ m = 1, then, again by Lemma 1, it follows that fm
 = 0 and 

f m - i = 1. Hence, w is a multiple of a. D 

VKOO^ O£ lh(LOKQX(\ 2: The proof is immediate since, for any integers a and 
b, 

a = b (mod ri) 
if and only if 

a = b (mod p rt. ) 

for all i. D 
For any group G let | G | denote its order. The following result will be 

helpful in the next proof. 

pzr~z(p - l)(p + 1) if p = ±2 (mod 5) Lemma 3: . 2i>-2, 

|Z* [/5]| 
p2r~2(p - 1) if p = ±1 (mod 5). 

P/100̂ : By the law of quadratic reciprocity, if p = ±2 (mod 5), then 5 
has no square root modulo p. A quick calculation then reveals that the ele-
ments a + b/5 in the ring Z*r[/5~] without multiplicative inverse are of the 
form a = up and b = vp for any integers u and v with 0 <_ u < p1"1 and 0 <_ v < 
p r ~ l . Hence, |z*r [/5~] | = p 2 r - p 2 ^ _ 1 ) . On the other hand, if p = ±1 (mod 
5 ) , then 5 does have a square root mod p and hence a square root mod p r . The 
criteria for a + b/5 to have no multiplicative inverse in Z*r[^5] is that 

(a + &/5)(a - b/5) ~ a2 - 5b2 E 0 modulo p. 

There are p 2 ^ ~1' (2p - 1) solutions to this congruence, so that 

|z*p,[/5"]| = p 2 - p 2 -1 (2p - 1 ) . 

VK.00^ O{ Th&Ohm 3: Let p be an odd prime and consider 

g:z*AS5] ->• z*[S5), 
the homomorphism which takes an element of Z*r[v̂ ~] into its residue in Z*[/fT]. 
Theorem 1 implies that 0(p)\o(pr) and also that ea(P) lies in H> the kernel 
of g. A calculation using Lemma 3 indicates that \H\ = p r~ and hence the 
order of £CT(P) in Z*r[/5~] is a power of p. Since eCT(p) belongs to # it may 
be represented as 

e°M = (l + a1p + a2p2 + ...+a2,_1pr-1) + (Z^p + Z^p2 + -.. +br_lP
r'l)/5 

where 0 <_ a^ < p and 0 <_ bi < p for all i. Let s be the smallest integer 
such that either a8 4 0 or bs ^ 0. A simple induction then suffices to show 
that r - s is the least integer k such that ea(P^k= 1 in Z£r[/5~]. The above 
definition of s is equivalent to cr(ps) = cr(p) , which completes the proof. We 
leave to the reader the slight alteration of method needed to show that 0(2r) 
= 3 • 2V~\ n 
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These three theorems show that the problem of determining a is equivalent 
to the determination of s and the order of £ in the group Z*[/5] for odd 
primes p. Comments on the conjecture that s is always 1 will be made in §4. 
The next theorem gives bounds for O in the case of an odd prime. 

IkdOKdm 4: Let p = ±2 (mod 5) and p + 1 = 2V • k9 where k is odd. Then 
a|2(p + 1) and 2y+1|a. If p = ±1 (mod 5), then o\p - 1; furthermore, /5 ex-
ists in Z* and O equals the order of £2 as an element of Z*. 

It is not always true that 0 = 2(p + l) or O = p-1. For example, cr(47) 
= 32 and cf(101) = 50. 

VKOoi o& ThojOJim 4: Let p = 2 (mod 5). Since Zp[/5"] is a finite field, 
Z*[/5"] is a cyclic group [2]. Consider the elements of norm 1, i.e., the 
kernel K of the map N. As a subgroup of Z*[J5], K is also cyclic, and since 
N is surjective, \K\ = (p2 - l)/(p - 1) = p + 1. The norm of £ is -1, which 
implies that £2 is an element of K. This shows that a|2(p + 1). Now let a 
be a generator of the group Z*[/5~] . Any element of K must be of the form 
a(p-i)j £or s o m e integer j . Since £2 belongs to K but £ does not, there must 
be an integer j such that £ = a^p" ^J l'2' . Therefore, cr(p) is equal to the 
smallest positive integer m such that p2 - 117??(p - 1) (j + 1/2) , which is equiv-
alent to 2(p +1)\m(2j +1). Since 2j +1 is odd, this concludes the proof for 
the case p = ±2 (mod 5). 

Now let p = ±1 (mod 5). The fact that 5 has a square root modulo p gives 
rise to a canonical homomorphism h:X*[/5] ->• Z*, which takes any element of 
Zp[/5"] into its residue mod p. We can then define a map /:Z*[/5~] -> Z* x Z* 
by jT(a) = (il/(a), h(a)). Routine calculation bears out that / is one-one and 
onto and thus an isomorphism. Since |Z*| = p - 1 , the order of any member of 
Zp[/fT] divides p - 1 ; in particular, a|p-l. The last statement in the theo-
rem becomes apparent by noting that the first coordinate of f(e ) is 1. • 

3. THE SMALLEST FIBONACCI NUMBER DIVISIBLE BY n 

By Lemma 1, the value of p(n) is the least positive integer m such that 
£m lies in the subgroup 

J1 = {a + b/5 £ Zw[i/5] \b = o}. 

In addition, N(ep) = (71/£)p = (-l)p = ±1 indicates that p is actually the 
least positive integer m such that em lies in the subgroup 

J = {a + b/5 £ Z*[i/T] |i = 0 and a2 = ±l}. 

If we define Vn = Z*[/5]/J9 and carry out proofs exactly as in §2, we obtain 
three theorems concerning the value of p corresponding to Theorems 1, 2, and 
3 of §2. 

ThzotKim 5: If n is odd, then p (n) is equal to the order of n in the 
group Vn. 

Ihdonm 6: p(n) = [p(p1J'1)5 p(p[2)» •••> P(P^m)^ where n = p^p^2 • •• Pjm 

is the prime decomposition of n, 

IkzoKtm 7: For an odd prime p let t be the greatest integer <_ r such that 
p(p*)= P(p). Then p(pr) = pP"t(p). Also 

Ptf') = 
3 • 2P _ 1 if p = 1 or 2 

3 8 2r"2 if r > 3. 
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The final theorems describe the relationship between p and O and give 
bounds for p in the case of an odd prime. 

TkdOtidm 8: If n = 2 ̂°  p f1 p ̂ 2 ... vTm where the p. are distinct odd primes, 
then p = 0/D(n) with 

( 1 if rQ <. 2 and £(p^) = 1 for all i 
Bin) = < 4 if rQ £ 1 and Z?(p̂  ) = 4 for all i 

I 2 otherwise 

and for an odd prime p, 

1 if p E 11 or 19 (mod 20) 
2 if p E 3 or 7 (mod 20) 

D(p) = { 4 if p E 13 or 17 (mod 20) 
1 or 4 if p E 21 or 20 (mod 40) 
1, 2, or 4 if p = 1 or 9 (mod 40). 

ThdOKOM 9: Let p be an odd prime and express p.+ 1 = 2V • k9 where k is 
odd. 

If p E 3 or 7 (mod 20), then p|p + 1 and 2y|p 
If p E 13 or 17 (mod 20), then p|(p + l)/2 and 2y_1|p 
If p E 1 (mod 5), then p|p - 1. 

The proofs will utilize the following lemma. 

Lumma 4: For n odd, 

Bin) = 1 «=> p = 2 (mod 4) 
D(n) = 2 <=» p E 0 (mod 4) 
D(n) = 4 <=> p E 1 or 3 (mod 4) <=» o 

VK.00^\ By Lemma 1 , we have i n Zn[/5~] , 

ep = f 
^ J p - i 
£2P = / p - l = f p / p -2 + ( " I ) " = ( - D 
e4p = 1 

so that D = 1, 2, or 4. We will prove the above equivalences in the follow-
ing order. 

£ = 4 < = » p E l o r 3 (mod 4): p = 1 (mod 2) <==» e2p = -1 ̂ =^ Z? = 4. 

D = l ^ p E 2 (mod 4): If D = 1, then (ep/2)2 = ep = 1. Now ep/2 = ±1 
would contradict the fact that fp is the least Fibonacci number divisible by 
n. Since +1 and -1 are the only square roots of 1 with norm 1, ep^2 has norm 
-1. Then -1 = N(ep/2) = (/l/e)p/2 = (-1)p/2 implies p = 2 (mod 4). 

D = 2 <?H> p E 0 (mod 4): Assume D = 2. Since D ± 4, p is even and N(eQ) 
= (il/e)p = 1. Therefore, e2p = 1 implies ep = -1. Then e 2 is a square root 
of -1. A small calculation shows that the only square roots of -1 in [v5] 
with norm -1 lie in J. However, £ cannot lie in J by Theorem 5 and thus 
has norm +1. Now 1 = N(ep/2) = (Ne)p/2 = (-1) 2 implies p = 0 (mod 4). The 
remaining implications follow logically and immediately from the above. • 

VtiOOl oi Thuotim 8: Let p be an odd prime. If p E 3 or 7 (mod 20), then 
by Theorem 4, a E 0 (mod 8) and by Lemma 4, D = 2. If p E 13 or 17 (mod 20), 
then a E 4 (mod 8) by Theorem 4 and D = 4 by Lemma 4. If p = 11 or 19 (mod 
20), then by Theorem 4, o\p - 1, which implies that O E 2 or 6 (mod 8). Then 

a E 2 or 6 
a E o 
a E 4 

(mod 8) 
(mod 8) 
(mod 8 ) . 
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by Lemma 4, D = 1. If p = 21 or 29 (mod 40), then o\p - 1 implies that O ^ 0 
(mod 8). By Lemma 4, D ^ 2. This concludes the proof of the second part of 
the theorem. By Theorems 2 and 6, a formula for D(n) is obtained: 

[D(2r° )p(2"°  ), 5(pMp(p'i), ..., 2?(pir»)p(p2,«)] 
DM = 1 I 1 * . 

[p(2r° )5 p(p^), ..., p(p*")] 

For an odd prime p, we have, by Theorems 3 and 7, 

<7(pr)/p(pr) = pr-8cr(p)/pr-*p(p) = p*-sa(p)/p(p). 

Since this value is either 1, 2, or 4, it must be the case that s = t, and 
hence, D(pr) = Dip). The formula above reduces to 

[D(2r° )p(2r»), D(p )p(p ), ..., 0(p )p(p )] 
Din) = l- X- = ^ — . 

[p(2r° ), p(pr), ..., p(pm)] 
A routine checking of all cases—using Lemma 4, the formula above, and the 
formulas for o(2T) and p(2P)—-verifies the remainder of Theorem 8. • 

Theorem 9 is now an immediate consequence of Theorems 4 and 8. 

4., RELATED TOPICS 

Several questions remain open. We would like to know, for example, whe-
ther a formula for D(p) is possible when p = 1 or 9 (mod 20). 

One may also ask whether 0(p2) ± 0(p) for all odd primes p. If so, our 
formulas of Theorems 3 and 7 would be simplified so that s = t = 1. This 
question has been asked earlier by D. D. Wall [6], Penny & Pomerance claim 
to have verified it for p <_ 177,409 [4]. Using Theorem 1, the conjecture is 
equivalent to ep 2 _ 1 ^ 1 in Z*2[/5 ] . A similar equality 2P~1 = 1 in Zp has 
been extensively studied, and the first counterexample is p = 1093. The an-
alogy between the two makes the existence of a large counterexample to o(p ) 
* 0(p) seem likely. REFERENCES 
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CONGRUENT PRIMES OF FORM (8r + l) 

J. A. H. HUNTER 

An integer e is congruent if there are known integral solutions for the 
system X2 - eY2 = Z2, and X2 + el2 = Z2. At present, we can be sure that a 
particular number is congruent only if corresponding X, Y values have been 
determined. 
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However, it has been stated and accepted that integers of certain forms 
cannot be congruent. Proofs exist for most of those excluding conditions, but 
not for all—no counterexamples having been discovered as regards the latter. 
For example, a prime of form (8P + 3 ) , or the product of two such primes, 
cannot be congruent. 

L. Bastien and others have stated that a prime of form (Sr + 1) , repre-
sentable as (k + t ) cannot be congruent if (k + t) is not a quadratic resi-
due of that prime. But no proof of this has been known to exist in the lit-
erature. 

The necessary proof will be developed in this paper. 
We first show that the situations regarding primes of form (Sr 4- 1), and 

those of form (Sr + 5), are not the same. For this we use the Collins analy-
sis method. 

It is well known that every congruent number must be of form uv(u2 - V2)/ 
g2. Then, if e be a prime of form (Sr + 5) or (Sr + 1), for congruent e we 
must have solutions to uv(u2 - V2) = eg2: from which it follows that one of 
u, V, (u - v) , (u + v) must be ea2, say, and the other three must all be 
squares. 

Consider each of the four possibilities. 

(1) u + v = ea2, u -

Then, b2 

possible 
- 2e2 -
with e 

Similarly, b2 + 
possible 

Also, a2 

with e 

+ d2 = 

- V = 

= -ea4 

== Sr 

2d2 -
--= Sr 
ea2, 

b2, 
i. 

+ i; 

= ea2 

+ l; 
and 

u = c2, 

imp oss 

imp oss 

e2 - d2 

v = 

ible 

ible 

= b' 

d2. 

with 

with 
i 

e 

e 

= Sr 

= 8r 

+ 

+ 

5. 

5. 

both possible for e = Sr + 1 and for e = Sr + 5. 

Hence, this case (1) applies to e = Sr + 1, but not to e = Sr + 5. 

(2) u - v = ea2 , u + v = b2, u = o2, y = d2. 

Then, &2 - 2c2 = -ea2: 
possible with e = 8P + 1; impossible with e = 8P + 5. 
Similarly, &2 - 2d"2 = ea2: 
possible with e = 8r + 1; impossible with e = Sr + 5. 

Also, o2 - d2 = ea2 , and c2 + d2 = &2: 
both possible for e = 8r + 1 and for e = Sr + 5. 
Hence, this case (2) applies to e = Sr + 1, but not to e = Sr + 5. 

(3) u = ea2, u + y = 2?2, u-t> = c2, v = d2. 

Then, &2 + e2 = lea2, Z?2 - c2 = 2d2, b2 - d2 = ea2, and e2 + d2 = ea2: 
All possible for both e = Sr + 1 and e = 8P + 5. 

Hence, this case (3) applies to both. 

(4) v = ea2, u + y = & 2 , u - y = e 2 , u = d2. 

Then, fr2 - c2 = 2ea2,&2 + a2 = 2d2, b2 - d2 = ea2, and d2 - c2 = ea2: 
All possible for both e = 8r + 1 and e = 8P + 5. 

Hence, this case (4) applies to both. 

So, for e = 8r + 5, we have possible: 
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Case 

Case 

Case 

(4) 

(2) 

(4) 

x2 + y2 = lz2 \ 
x2 - y2 = lew2) 

x2 + y2 = z2 \ 
2 2 2 ( 

x - y = ew ) 
x2 + y2 = 2z2 1 
x2 - y2 = lew2 I 

Case (3) x2 + y2 = lez2\ 
x2 - y2 = lw2 j 

But, for e = 8r + 1, we have possible: 

Case (1) x2 + y2 = es2 

2 2 2 
ar - 2/ = ZJ 

Case (3) x2 + y2 = 2g;s2 

x2 - y2 = lw2 

We now show that each of the subsidiary-equation systems (1) , (2) , and 
(3) will provide a solution for the system (4) for any congruent number prime 
(8P + 1). 

From (1) to (4): 

Say x2 + y2 = ez2, x2 - y2 = w2, and A2 + B2 = 1C2, A2 - B2 = 2e£2. 

Setting 4 = xh + 2#2z/2 - z/1*, B = x4 - 2#2z/2 - z/4, we have 

^2 + B2 = l(xk + z/)2, A2 - B2 = le • (2xzysu)2. 

As an example, 

52 + 42 = 41 • 12\ 11692 + 4312 = 2 • 8812 • i 2 } 52 - 42 = 32 j 11692 - 4312 = 2 • 41 • 1202! 

From (2) to (4): 

Say x2 + y2 = z2, x2 - y2 = ew2, and A2 + B2 = 2C2, A2 - B2 = 2eB2. 

Setting i4 = xh + lx2y2 - yh^ B = xh - lx2y2 - y h
9 we have 

A2 + B2 = l(xh + y1*)2, A2 - B2 = le * (Ixyzw)2. 

As an 

From 

Say x 

exampli 

212 + 
212 -

(3) to 
2 + zy2 

e5 
202 = 
202 = 

(4): 

= lez2 

292 

41 

, x2 

A 3872812 + 3183192 = 2 • 3544812 

3872812 - 3183192 = 2 • 41 • 243602 

y2 = w2, and A2 + B2 = 2C2, A2 - B2 = 2 ^ 2 . 

Setting A = O s 2 ) 2 + 2es2u2 - w* 9 B = (es2)2 - lez2w2 - Wh, we have 

A2 + B2 = 2[(es2)2 + z/]2, ^2 - B2 = 2e • (Ixyzw)2. 

As an example, 

33z + 31z = 82 
332 - 312 = 2 

• 52) 11777292 + 9153292 = 2 • 10547212 \ 
• 82 J 11777292 - 9153292 = 2 • 41 • 818402/ 

We may also consider the system (4) itself: 

Say x2 + y2 = 2s2, x2 - y2 = lew2 . 

From the first of the two equations we require 

x = u2 + 2ut; - v2
 9 y = u2 - luv - v2

 9 z = u2 + v2. 

Then x2 - y2 = (2u2 - lv2)buv, 
whence, kuviu2 - V2) = eix?2, which we know has solutions if e is a congru-
ent number. 
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Now, having shown that: each of the four possible systems of subsidiary 
equasions, for prime e of form Sr + 1, must have solutions if e is to be con-
gruent—and that system (4) is linked to each of the other three systems—a 
proof that any one of the four systems will not have solutions for any parti-
cular value of e must be proof that no other of the four systems can have 
solutions. Accordingly, we now show that e cannot be congruent if e = k + 
t 2 , and (k + t) is not a quadratic residue of e. For this we investigate the 
subsidiary-equation system (1). 

Say e is a prime of form (Sr + 1), represented uniquely as k + t . 
We have the system: x2 + y2 = ez2, x2 - y2 = w2. Thence, 

(kz)2 = x2 + y2 - (tz)2, 

with solution 

kz = a2 + b2 - c2 ) x = a2 - b2 + o2 

hence, 

making 

whence, 

so 

tz = lao ) y = lab 

Ikac = ta2 + tb2 - to2, 

t2o2 + Iktac - t2a2 = t2b2 

(to + ka)2 - (ka)2 - (ta)2 = (tb)'' 

(to + ka)2 - e a 2 = (tb)2, 

(M) 

fca = 2fc???n ) tb = m2 —2 

with solution 

£c + fca = m2 + en2( to = mz - Ikmn + en^ 
2 

en 

Without loss of generality, that becomes 

a = Itmn, b = mz - en2, o = m2 - Ikmn + en2. 

Substituting in (M), and omitting the common term kmn, we get 

whence 

and 

x = km2 - lemn + ken2, y = t(m2 - en2), 

x + y = (k + t )w 2 - 2e/??n + (fc - t)2 

x - z/ = (k - t )m 2 - 2ewn + (k + t ) 2 . 

Now, since we have x + yz = es2, with g an odd prime, x and y cannot be of 
same parity. Hence, each of (x + y) and (x - y) must be a square. 

So, say, x + y = p2. Then, 

[(k + t)m - en]2 -le(tn)2 = (k + t)p2, 

which is possible only if (k + t) is a quadratic residue of e. 
That completes the proof that a prime of form (8r + 1), uniquely repre-

sented as (k2 + t2), cannot be congruent if (k + t) is a quadratic nonresidue 
of e. 
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SOME CLASSES OF FIBONACCI SUMS 

LEONARD CARLITZ 
Duke University, Durham, North Carolina 27706 

1. INTRODUCTION 

Layman [3] recalled the formulas [2] 

n 

(i.D *2„ - £ (UK 
k = 0 

(1.2) 2"F2n = £ ( ? K » 
k = 0 

a-3) 3 » F 2 B - £ ( J ) V , 
k = 0 

where, as usual, the Fn are the Fibonacci numbers defined by 

F0 = 0, Fx = 1, Fn + 1 = Fn + Fn_x ( n ^ l ) . 

As Layman remarks, the three identities suggest the possibility of a general 
formula of which these are special instances. Several new sums are given in 
[2], Many additional sums occur in [1]. 

Layman does not obtain a satisfactory generalization; however, he does 
obtain a sequence of sums that include (1.1), (1.2), and (1.3). In particu-
lar, the following elegant formulas are proved:: 

(1.4) 5"F2n = i2(l)2"-kF5k, 
k= 0 

n 

(1.5) 8nF2n = £(j)3"- k F 6 k , 
k= o 

n 

(1.6) F3n = (-DnS(^)(-2)^> 
k= 0 
n 

(1.7) 5nF3n = (-irJ^(l)(-2)kF5k. 
k = o 

He notes also that each of the sums he obtains remains valid when Fn is re-
placed by Ln, where the Ln are the Lucas numbers defined by 

L0 = 2, Lx = 1, Ln+1 = Ln+Ln_x (n > 1). 
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In the present paper, we consider the following question. Let p, q be 
fixed positive integers. We seek all pairs X, y such that 

n 

(1.8) XnFpn = J^(l)u%k (n = 0, 1, 2, . . . ) . 
k = 0 

It is easily seen that p ^ q. We shall show that (1.8) holds if and only if 

(1.9) X = (-l)p -p-, v = (-1) 

Since (1.8) is equivalent to 
n 

(1.10) (-V)nFqn = 2(fc)("A)fcFPfc (n = °' 1' 2> --0' 
k=o 

we may assume that p < q» However, this is not necessary since we may take 
F_n = (-l)n~1Fn. Also, the final result is in fact for all p, q, p ̂  q. 

For the Lucas numbers, we consider 
n 

(1.11) XnLpn = Y,{k)]lkL^ (n = °> X> 2' •••)' 
k=0 

We show that (1.11) holds if and only if X, y satisfy (1.9) or 

d.9)' x- /2- , y—/2-. 
p + <? p + q 

In the next place, if w denotes a root of x2 = a? + 1, we show that 

(1.12) ^ P " - £ ( J ) p V * (n = 0, 1, 2, . . . ) , 
k=0 

if and only if X, y satisfy (1.9). 
The stated results concerning (1.8) and (1.11) can be carried over to the 

more general 
n 

(1.13) XnFpn + r = Y^(iykF^ + r (n = °> !> 2> •••> 
k = o 

and 
n 

(1.14) XnLpn+r = Yl{k)llkL^k + r (n = 0 , 1 , 2 , . . . ) , 
k = o 

where r is an arbitrary integer. We show that (1.13) holds if and only if X, 
y satisfy (1.9); thus, the result for (1.13) includes that for (1.8). How-
ever, (1.14), with v ± 0, holds if and only if X, y satisfy (1.9); thus, the 
result for (1.13) includes that for (1.8). But (1.14), with r + 0, holds if 
and only if X, y satisfy (1.9); thus, the values (1.9)' for X, y apply only 
in the case r = 0. 

As for 

n pn+r \ ^ ( 71 \ v qk + r , n t n N 
XW = 2-j\krW (?2 = 0 j l s 2 ' "')'-k=0 

it is obvious that this is equivalent to (1.12) for all r, 
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The formulas (1.8), (1.11), (1.12), (1.13), (1.14) with X, y satisfying 
(1.9) can all be written in such a way that they hold for all p, q. For ex-
ample, (1.8) becomes 

(i.i5) Fq\n = E ( - i ) p ( " - k ) ( ^ ) F p ^ : ^ . 

For p = q9 this reduces to a mere tautology. However, for (1.11) with A,y 
defined by (1.9), we have 

(i.i6) F , V = E<-i>fc(fc)vP";fr 
k=0 

For q = p, this reduces to 
n 

(1.17) Lpn = J^(-Vk(l)Zp~kZpk-k=0 

Note that (1.15) and (1.16) had been obtained in [1], 
For some remarks concerning (1.17) see §7 below. In particular, the fol-

lowing pair of formulas is obtained: 
n 

(1.18) (-l)*Lpn_r = £ (-l)k (n
k)Lnf kLpk + r, 

fc=o 
n 

d.19) (-iy~lFpn_r = Y*<-1)k(k)Ll~kFp*+*> 
k=0 

where r is an arbitrary integer. 
Formulas (1.18) and (1.19) differ from (1.13) and (1.14) in a rather es-

sential way. The former pair suggest the problem of determining X,y,Cr 

such that 
n 

CrX Lvn_r = / j (-1) ( kJU Lpk + r, 
k =0 

and similarly for 
n 

Cr^nF
pn-r = 2^ ^~^ \k)^ FPk + r> 

k=0 

where Cr depends only on r. This is left for another paper. 

SECTION 2 

Let a, b denote the roots of x2 = x + 1. We recall that 

(2.1) F„ = ^ I X» £n= a" + &n. 

Thus, the equation 

k=0 

becomes 
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(2.3) Xn(apn - bpn) = J2 (Uk)vHaqk - bqk). 

Multiplying both sides of (2.3) by x and summing over n we get 

—p ^7- = E x" £ (IV^ - bqk) 
1 - \avx 1 - Xbpn „ = 0 ktoXK' 

k=0 n=0 

y*(<T - b ) 
(1 - * ) * + 1 

Since 

(2.4) ^ 
1 - XLpx + (-l)pXzxz (1 - x)A - ]iLqx(l - x) + ( - I )*y z aT 

For # = 0, t h i s r educes to 

(2 .5 ) XFp = ]iFq. 

Thus, 

(2 .6 ) 1 - XLpx + (-l)pX2x2 = (1 - x)2 - ]iLqx(l - x) + ( - l ) V ^ 2 . 

Equat ing c o e f f i c i e n t s of x and # 2 , we ge t 

(2 .7 ) XLp = 2 + y l ^ 

and 

(2 .8 ) ( - D P A 2 = 1 + ]iLq + ( - l ) V , 

r e s p e c t i v e l y . 
Now by (2 .5 ) and ( 2 . 7 ) , we have 

XLpFq = 2Fq + \iLpLq = 2Fq + XFpLq, 

so t h a t 

(2.9) X(LpFq - FpLq) = 2 ^ . 

It is easily verified that 

(2.10) LpFq - FpLq = 2 ( - l f - \ . q . 

Hence, (2.9) yields 

(2.ii) A = ( - D p ^ - , v = ( - D p / ^ ; 
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the second equality is of course a consequence of (2.5). 
It remains to consider the condition (2.8). We shall show that (2.8) is 

implied by (2.11), or, what is the same, by (2.5) and (2.7). To do this with 
a minimum of computation, note that (2.5), (2.7), (2.8) can be replaced by 

( 2 . 5 ) ' X(ap - bp) = (1 + \iaq) - (1 + \ibq), 

( 2 . 7 ) ' X(ap + bp) = (1 + \iaq) + (1 + ]ibq), 

( 2 . 8 ) ' X2(ab)p = (1 + \iaq)(l + vbq), 

respectively. Subtracting the square of (2.5)f from the square of (2.7)', we 
get (2.8)'. 

We have therefore proved that (2.5) and (2.7) imply both (2.8) and (2.11). 
Conversely, (2.11) implies (2.5) and (2.7). The first implication, (2.11) 
(2.5) is immediate. As for (2.11) -> (2.7), we have 

p *PF< " FPL? q 2(-l) PV p XLp - ]iLq = (-l)p- = — = (-1)* = , 
£q-p q-p 

by ( 2 . 1 0 ) . Hence, XLP - \iLq = 2 . 
This completes the proof of the following: 

TkzoKQjm 1: Let p, q be fixed positive integers, p ^ q. Then, 

n 

(2.12) XnFpn = J2(l)^qk (n = 0, 1, 2, . . . ) , 
k = 0 

if and only if 

(2.13) X = (-l)p
lr

L-, y = (-1) jp 3 K \ -1-/ jp ' 
£q-P £q~P 

Thus, we have the explicit identities 
n 

(2.14) (-lfnF^Fpn = Y,(-VPk(l)FpFZ:k
pFqk (n = 0, 1, 2, . . . ) . 

k = o 

If we use the fuller notation X(p, q) , \i(p, q) for A, y in (2.13), then, 

\l(q, p) = (-IF"1^-, 
<7-P 

so that 

(2.15) y ( q , p ) = -A(p, <?). 

In proving Theorem 1, we have not made any use of the positivity of p and 
q. All that is required is that p and q are distinct nonzero integers. This 
observation gives rise to additional identities. Replacing p by -p in (2.13) 
we get 

vP F1 / \ FP 
r p + q r p + q 

k=0 

(2. ,16) 

and (2, 

(2 . • 17) 

.14) 

H-P, q 

becomes 

F F 
*-q *-pn 

= 

Comparison of (2.17) with (2.14) yields 



416 SOME CLASSES OF FIBONACCI SUMS [Oct. 

(2.18) i-l)pn-l£(-l)Pk(Z)FpF?-+fak -E(-D*^pn;^ 

(n = 0, 1, 2, ...; p2 ̂  q 2). 

Similarly, 

Mp, -?) = F^-= ("l)PA(-p, <?), 
p + <? 

(2.19) 

y(p, -?) ='(»I) £ ?" 1TT Z-= (-ify(-p, ?) 

and we again get (2.17). 
Finally, the formulas 

X(-p, -<?) = r f i - = (-l)PA(p, q-), 
(2.20) 

v(-P, -q) = (-I)*/*-- (-Dp + *y(p, ?) 
^p + 4 

again lead to (2.14). 

We remark that for q = p + 1 and p + 2, (2.14) reduces to 

(2.2i) P;+ 1^B = I>i>p("-*>(]jW*(p+1)k 

and 

(2.22) *p»+2*pn = E ( - i ) p ( " - k ) ( ? ) ^ ( p + 2 ) , , 
k = o 

respectively. 

SECTION 3 

We now c o n s i d e r 
n 

(3.1) XnLpn = S ( j ) y ^ q » (« = 0, 1, 2, . . . ) , 
fc = 0 

where p, ̂  are distinct nonzero integers. Since Ln- an + bn, we have 

Hence, 

1 - A a ^ 1 ~ AZ? # n = o , k = o 

1 

1 " x _ y < ^ ! _ y ^ g 
1 - X 1 - X 

so that 
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2 - \Lpx 2 - (2 + \iLq)x 
(3 .2 ) 

1 - XLpx + (~l)pX2x2 1 - (2 + \iLq)x + ( l + \iLq + ( - D ' V ) a : 2 

Equating coefficients and simplifying, we get 

( XLp = 2 + \iLq 
(3.3) { 

) (-1)PA2 = 1 + ]iLq + (-l)V. 
C o e f f i c i e n t s of x2 and of x3 bo th l ead t o t h e second of ( 3 . 3 ) . 

We can r e w r i t e (3 .3 ) i n t h e form 

S X(ap + bp) = (1 + ]iaq) + (1 + y i* ) 

A 2 (a£ ) p = (1 + y a « ) ( l + \xbq). 

Squar ing t h e f i r s t of (3 .4 ) and s u b t r a c t i n g four t imes t h e second, we ge t 

X*(a
p - bp)2 = M2(aq - bq)2, 

and t h e r e f o r e , 

XFp = ±]iFq. 

I f we t a k e XFp = }iLq, t h e n , by t h e f i r s t of ( 3 . 3 ) , 
XLpFq = 2Fq + ]iLqFq = 2Fq + \LqFp , 

that i s , 
(3 .5 ) X(LpFq - LqFp) = 2Fq. 

S i n c e , by ( 2 . 1 0 ) , 
LPF^ - LqFp = 2 ( - l ) p F < ? . p , 

W e g 6 t F Fv 
(3 .6 ) X = ( - D ^ T T 1 - , y = ( - 1 ) P T T ^ - . 

On t h e o t h e r hand, i f XLp = -]lLq, then 

X(LpFq + L^Fp) = 2 ^ , 

which reduces t o 
Fq FP 

(3 .7 ) x = - = — = x ( p , -<?), y = - p — = y(-p» ? ) • 
^ p+ q p + q 

This completes the proof of 

lkQ.Oh.dm 2: Let p, q be fixed nonzero integers, p ^ q. Then, 

n 

(3.8) A%n = £ (?)y%c (n = °> lj 2' ---̂  
if and only if X and y satisfy either (3.6) or (3.7). 

Thus we have the explicit identities 

(3.9) i-DpnFn
qLpn = £ ( - D p k (£)#*•,»:&* (n - °> ^ 2' •••) 

and 

(3.10) FnLpn = 2 ( - D k ( J ) ^ p n ; ^ f c (n = 0, 1, 2, . . . ) . 
k=o 
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Note that (3.9) becomes (3.10) if p is replaced by -p or q is replaced by 
-q. 

SECTION k 

Let w be a r o o t of x2 = a; + 1 and c o n s i d e r 

(4.1) Xnwpn =J2vkw«k (n = 0 , 1 , 2 , . . . ) , 
fc = o 

where p, (7 are fixed nonzero integers, p ^ q, and A and y are assumed to be 
rational. Since (4.1) is simply 

Xnwpn = (1 + ]iwq)n (n = 0, 1,2, . . . ) , 

it suffices to take n = 1: 

(4.2) A^p = 1 + yw*. 

Recall that 

(4 .3 ) wn = Fnwn+ F n _ x (n = 0 , ± 1 , ±2 , . . . ) , 

so t h a t (4 .2 ) becomes 

X(Fpw + F p _ x ) = 1 + y ( F ^ + Fq_x). 

Since X and y a r e assumed t o be r a t i o n a l , we have 

( XFp = ]iFq 

(4 .4 ) { 
J XFp^ = 1 + y ^ _ x . 

Eliminating y, we get 

It is easily verified that 
/? 7? _ W V = (-.1^ P— 
rp-lrq EV q-\ K J J? ' 

<7-P 
and therefore, 
(4.5) X = (-Dp/^-5 y = (-DPT^-. 

r 4 ~ P <7~P 
We state 
IhdOKQxa 3: Let u denote a root of #2 = x + 1 and let p9 q be fixed non-

zero integers, p =f q. Then, 
(4.6) Xwp = 1 + \xw\ 
where p and q are rationale if and only if (4.5) is satisfied. Hence, (4.6) 
becomes 

(4.7) Fqwp = (-DPFq.p + Fpwq. 
It follows from (4.7) that 

k=0 
re we get both 

(4.8) Fq\n ^(-^(lyr-^ 

k=o 
and therefore we get both 

k=o ' ' 
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and 

(4.9) F»Lpn = ^(-Dn-k(l)F^:k
pFpLqk, 

k=o 
in agreement with (2.14) and (3.9), However, this does not prove Theorems 1 
and 2, 

SECTION 5 

We now discuss 
n 

(5.1) A % n + ,= ^(%)v%k + r (n = 0, 1, 2, . . . ) , 
k=o 

where p ^ q but p, q, r are otherwise unrestricted. One would expect that 
the parameters A, y depend on v as well as p and q. However, as will be seen 
below, A and y are in fact independent of p. 

It follows from (5.1) that 

b1 

yP„ 1 _ ^ ^ 1 - ^ 1 - Aap^ 1 - yb^x x J - ya^x _ y£>?x 

1 - (1 + ya^)x 1 - (1 + \ibq)x 
so that 

k=0 k = 0 k=o k=Q 

Equating coefficients of x , we get 

(5.2) ar(\kapk- (1 + \iaq)k) = J ^ x V * - (1 + y & V ) 

(fc = 0, 1, 2, . . . ) . 

For fc = 1, (5.2) implies 

(5.3) XFp + r = Fr + \±Fq + r. 

We now consider separately two possibilities: 

(i) XaP = 1 + mq; 
(ii) Aap ̂  1 + ya^. 

It is clear from 

a*(Xap - (1 + \iaq)) = 2^(A£P - (1 + yj*)) 

that (i) implies 

(5.4) Xbp = 1 + yZ/7. 

Subtracting (5.4) from (i), we get 

(5.5) XFp = \xFq. 

Hence, again using (i), 

Fq - aqFpJn - rq (apFq - aqFv)X = Fg. 
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Since 
a% - aqFp = —L^(ap(aq - bq) - aq(ap - bp)) 

_ aqhp - apbq _ , n p p 
a - b " K L) I-P> 

i t fo l lows t h a t 

(5 .6 ) A = ( - 1 ) P / ^ , y = i-lf-fi-. 
q-p < ? - p 

We now assume ( i i ) . Take k = 1 , 2 , 3 i n ( 5 . 2 ) : 

a*{\ap - (1 + y a ? ) ) = br(\bp - (1 + y& ? )) 

a r ( A 2 a 2 p - (1 + vaq)2) = &r(A22>2p - (1 + yZ>?)2) 

a r ( A 3 a 3 p - (1 + p a ' ) 3 ) = 2>r(A3&3p - (1 + y 2 / 0 3 ) . 

Dividing the second and third by the first, we get 

\av + (1 + \±aq) = A£p + (1 + yM) 
(5 .7 ) 

X2a2p + a p ( l + ya*) + ( l + ]iaq) = A 2 £ 2 P + A £ (1 + ]ibq) + (1 + yZ/7)2. 

The f i r s t of (5 .7 ) y i e l d s 

(5 .8 ) XFp + ]iFq = 0 

wh i l e t h e second g ives 

(5 .9 ) X2F2 p + XFp + XyFp + ^ + 2\iFq + \x2F2q = 0 . 

M u l t i p l y i n g (5 .9 ) by Fq and e l i m i n a t i n g y by means of ( 5 . 8 ) , we ge t 

\2F2pFq + XFpFq - XzFpFp + q - 2\FpFq + A 2 F p % = 0 , 

t h a t i s , 

X(LpFq - Fp + q+ FpLq) = Fq. 

Since 

L'Tpkq ~ £p + q "*~ ^pljq ~ £p + q> 

we hstve, f i n a l l y , 
F4 FP 

(5 .10) ^ = i r — , y = - - ~ ~ . 
£p + q r P + q 

On the other hand, it follows from (5.3) and (5.8) that 

X(Fp+rFq + Fq + rFp) = FvFq. 

This g ives 

A = - *'** n ^ F ? 

Fp + rFq + Fq + rFp
 F

P + q' 

Hence, possibility (ii) is untenable and only the value of X and y furnished 
by (5.6) need be considered. 

Conversely, since (5.6) implies Xap - (1 + \iaq) = 0 = Xbp - (1 + y&*) , 
and this in turn implies (5*2), it is clear that (5.1) holds only if (5.6) is 
satisfied. 

This completes the proof of the following 
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Tk&OSim 4: Let p, q be fixed nonzero integers, p f q, and let r be an 
arbitrary integer. Then, 

n 

(5.11) XnFpn + r= Y^(l)vkFqk+r (n = 0, 1, 2, . . . ) , 
i f and only i f 

Tv7 77 

(5.12) A = ( -1 ) P TT^- 5 y = ( - D V 2 - . 
r ( ? - p r ? - p 

Thus, we have t h e e x p l i c i t i d e n t i t y 

(5.13) Fn
qFpn+r = X ) ( - l ) P ( " " k ) ( j ) F X : ^ , f c + 1 . (n = 0, 1, 2, . . . ) . 

k = 0 

We note that, as stated, (5.13) holds for arbitrary integers p, q9 r. In 
particular, for q = -p, (5„13) becomes 

(5.14) ^ P „ + , = i(-l)(p-1)("-k)(fc)^2"p-^-P*+r '(" = 0. 1. 2' • • • ) • 
k=0 

SECTION 6 

We turn finally to 

n 

(6.1) XnLpn + r = 2(j)v k£, k + , (n = 0, 1, 2, . . . ) . 

It follows from (6.1) that 

1 - Xapx 1 - A2?pa; 1 - (1 + y a q ) x 1 - (1 + \ibq)x 

Hence, 

( 6 . 2 ) ar(Xkapk - (1 + ]iaq)k) = -br(Xkbpk - (1 + y M ) k ) 
(fc = 0 , 1 , 2 , . . . ) . 

For /c = 1 , (6 .2 ) i m p l i e s 

(6 .3 ) X L p + r = L r + y ^ + P . 
As in §5, we again consider the two possibilities: 

(i) Xap = 1 + \iaq; 
(ii) Xap 1 1 + ya«. 

I t i s c l e a r from 

av{Xap - (1 + y a * ) ) + £r(A£P - (1 + y £ q ) ) = 0 

and ( i ) t h a t 

(6 .4 ) Xbp = 1 + y i * . 

Adding t o g e t h e r ( i ) and ( 6 . 4 ) , we ge t 

( 6 . 5 ) XLP = 2 + \xLq. 
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X(aqLp - avLn) = aq 

Again u s i n g ( i ) , 
JP 

which g ives 
F F 

(6 .6 ) X = ( - l ) p y ^ ~ , y = ( - D P ^ - , 
cq-p n q-p 

Assuming ( i i ) , we have 
ar(Xap - (1 + ]iaq)) = -b"(Xbp - (1 + \ibq)) 

ap(Xzalp - (1 + \xaq)2) = -br{X2bZp - (1 + ]ibq)2) 

a r ( X 3 a 3 p - (1 + p a ' ) 3 ) = -br(X3b3p - (1 + y&*) 3 ) . 

This g ive s 

Xap + (1 + \iaq) = Xbp + (1 + y&'?) 
(6 .7 ) 

A 2 a 2 p + A a P ( l + p a ? ) + ( l + p a ? ) 2 = X2Z>2p + Xbp (1 + \ibq) + (1 +pZ>?)2 . 

Then, exactly as in the previous section, we get 
j? v 

(6.8) X = — 2 - , y = P 
7? > H 7T 

On the other hand, by (6.3) and the first of (6.7), that is, 

\Fp = \iFq = 0, 
we get 

^(FqLp + r + Fp^q + r) = LqLr. 
This gives 

ijqhr> £a 

X = yj VlTT * T1- (̂ 0), 
^q-L'p+r ' -Fp^q + r ^p + q 

Hence, (ii) leads to a contradiction and only (i) need be considered. Since 
(6.6) implies (i), it is clear that (6.1) holds only if (6.6) is satisfied. 

We may state 

77ieo/i£m 5: Let p, q9 r be fixed nonzero integers, p ̂  q9 v =f 0. Then we 
have 

n 

(6.9) A"Lpn + r = ^(iykLqn + r {n = 0, 1, 2, ...) 
k = 0 

if and only if 

(6.10) A = (-Dp/^-, p = (-DP^-. 
r q - p r ^ - p 

Thus, we have 

n 

(6.1D Fq
nLpn+r = £ (-Vn-k(T)KFVpL

qn + P (» = 0, 1, 2, ...) 

for all p9 q9 r. 

R&maJik: Theorem 5 does not include Theorem 2 since, for r = 0, A, y may 
also take on the values (3.7). 
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SECTION 7 

The identity 
n 

(7-1} Lpn = Yl^1)k{k)Lp'kLPk (H = °' ls 2' "^ 
k = 0 

has been noted in the Introduction. This suggests the problem of finding se-
quences U = {uQ, ul9 u29 . ..} such that 

n 

<7'2> Un = ̂ (-Uk(k)<~kuk (n = °> 1» 2' "")' 

The sequence Z7 is not uniquely determined by (7.2). We shall assume that 
ul ^ 0. For n = 1, we have u1 = u 0u x - u l 5 so that u 0 = 2. For n = 2, we get 
u2 = UQII\ - 2u\ + uz. For n = 2???, m > 0, (7.2) reduces to 

2m-1 

(7.3) S(-l)fc(2feZ)"f'k"k = °  0" = 1, 2, 3, . . . ) . 
k = o 

For n = 2m - 1, (7.2) yields 
2w -2 

(7.4) 2u2 m.1-x;<- i>f c(2 mfc i)"?m"k"i"k ^ = i - 2 ' 3> • • • > • 
n 

k = 0 

k = Q 
n 

Un- sn = ^2(-l)k{k)ui'k(s^ -u^ 
k = 0 

2m -1 

(7.5) -2(S2m - u2m) = X > l ) f c ( 2
f e

m ) W r k ( ^ " u k ) . 
k=0 

Hence (7 .4 ) i s a consequence of t h e e a r l i e r r e l a t i o n s 

Sk = uk (k = 1 , 25 3 , . . . , 2m - 2 ) . 
In t h e nex t p l a c e , i f we pu t 

E x n 

Unrii9 

n- 0 
it follows from (7.2) that 

«*> • Eff £<-«*©<- v - £(-»'-.ff i ^ -
Thus, "=0 k = 0 n = 0 k=0 

G(x) = eUlXG(-x). 

In particular, the sequence (L 0, L p 9 L 2 p , ... }, with u1 = L p , satisfies 
(7.2); incidentally, a direct proof of (7.1) is easy. Hence, if we put 

Put 

Then k=° 

so that 

and so 2m-i 
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Z xn 
Lpn ^T ' nl 

we have 

(7.6) GL(x) = eu^xGL(-x) {ux = Lp). 
It then follows from (7.6) that 

F(a?) = G(x)/GL(x) = F(-aO. 

Thus, 

k = 0 

where the coefficients <?2, <? , <2g, ... are arbitrary. We have therefore,, 

(7.7) Un = 2 ^ (2^)e2k^p(n-2) 
2k<n 

for any sequence satisfying (7.2) with ax = Lp. 
This result also suggests a method for handling (7.2) when un is arbi-

trary. Put 

(7.8) ul = a + 3, 

where a, 3 are unrestricted otherwise. Then we have 
n 

S ( _ 1 ) ; c ( f e ) ( a + e)"~k(ak + ek) 
k=0 

k = 0 J = 0 k = 0 J = 0 

= EG)a-^E(-i)k(n^>i;G)°"-e'i;<-i) a)=«" -̂. 
j =o k = o s = o k = o 

Hence, if we define 

(7.9) un = a" + 3" (n = 0, 1, 2, . . . ) , 

it is clear that 
n 

(7.10) un = ̂ (-^(fe)*?"*"* (n = °' lj 2' ••")-
k = 0 

Thus (7.2) is satisfied with un defined by (7.9). 
We can now complete the proof of the following theorem exactly as for the 

special case u, = Lp. 
ThlOKOM 6: The sequence {uQ = 2, ul9 u2, ...} satisfies (7.10) if and 

only if 

(7.11) un = 2-J y2Ji)°2kun-2k (n = °> 1» 2» • • • ) , 
where a0 - 1 and c2, e^, c6, ... are arbitrary. An equivalent criterion is 

(7.12) un = an + Bn (w = 0, 1, 2, ...) 

for some fixed a, 3. 
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We remark that 
n 

aH = S^1)"(«)(a+ 3)n~V (n = 1, 2, 3, ...) 
k = 0 

is not correct. For example, 

(a + 3) - a = 3 
(a + 3)2 - 2(a + 3)a + a2 = 32. 

We shall prove 

n 

3"= J^(-Dk (?)(«+ 3)B"*ak 

n (7.13) < k;°  (n= 0, 1, 2, . . . ) . 

an = "y^C-1 ̂ k (n^f^ -L Q\^-kQk 
k=Q 

It suffices to prove the first of (7.13). We have 

£(-l)fc(£)(a+ B)-*a".^(-l)*(J)a*2(n^)a»-k-V 
k= 0 k = 0 j" = 0 

j = o k = o 

This completes the proof. Note that this result had occurred implicitly in 
the discussion preceding (7.10). 

It follows from (7.13) after multiplication by ar (or 3P) that 
n 

(7.14) (a$fun_r - E (-1)" (l)u?-kuk+T (n = 0, 1, 2, . . . ) , 
k = 0 

where now un = an + 3 n for all integral n. Similarly, we have 
n 

(7.15) -(a3)r^n_p = S(-l) k(fe)wr^ k + r (« = °> !> 2> •••>• 
k = 0 

where 
(7.16) vn=^ 

n _ on 

In both (7.14) and (7.16), v is an arbitrary integer. 
In the case of the Lucas and Fibonacci numbers, we can improve slightly 

on (7.14) and (7.16) by first taking a = ap, 3 = bp in (7.13) and then multi-
plying by av (or br) . Thus, we get 

(7.17) <-D*LPfl_, = E < - i > k u y , - v + , (" - °' x>2- •••> 
k = 0 

and 

(7.18) (-l)r-Vpn_r = £(-!)* (^"^V-K, (n = 0, 1, 2, ...), 
k = o 

where r is an arbitrary integer. 
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FIBONACCI CHR0M0T0L0GY OR HOW TO PAINT YOUR RABBIT 

MARJORIE BICKNELL-JOHNSON 
Wilcox High School, Santa Clara, California 95051 

Readers of this journal are aware that Fibonacci numbers have been used 
to generate musical compositions [1], [2], and that the Golden Section ratio 
has appeared repeatedly in art and architecture. However, that Fibonacci num-
bers can be used to select colors in planning a painting is less well-known 
and certainly an exciting application. 

One proceeds as follows, using a color wheel based upon the color theory 
of Johann Wolfgang von Goethe (1749-1832) and developed and extended by Fritz 
Faiss [3]. Construct a 24-color wheel by dividing a circle into 24 equal 
parts as in Figure 1. Let 1, 7, 13, and 19 be yellow, red, blue, and green, 
respectively. (In this system, green is both a primary color and a secondary 
color.) Halfway between yellow and red, place orange at 4, violet at 10, blue-
green at 16, and yellow-green at 22. The other colors must proceed by even 
graduations of hue. For example, 2 and 3 are both a yellow-orange, but 2 is 
a yellow-yellow-orange, while 3 is a more orange shade of yellow-orange. The 
closest colors to use are: (You must also use your eye.) 

1 Cadmium Yellow Light 
2 Cadmium Yellow Medium 
3 Cadmium Yellow Deep 
4 Cadmium Orange or Vermilion Orange 
5 Cadmium Red Light or Vermilion 
6 Cadmium Red Medium 
7 Cadmium Red Deep or Acra Red 
8 Alizarin Crimson Golden or Acra Crimson 
9 Rose Madder or Alizarin Crimson 

10 Thalo Violet or Acra Violet 
11 Cobalt Violet: 
12 Ultramarine Violet or Permanent Mauve or Dioxine Purple 
13 Ultramarine Blue 
14 French Ultramarine or Cobalt Blue 
15 Prussian Blue 
16 Thalo Blue or Phthalocyanine Blue or Cerulean Blue or 

Manganese Blue 
17 Thalo Blue 4- Thalo Green 
18 Thalo Green + Thalo Blue 
19 Thalo Green or Phthalocyanine Green 
20 Viridian 
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21 Emerald Green 
22 Permanent Green 
23 Permanent Green Light 
24 Permanent Green Light + Cadmium Yellow Light 

(Note: Expect problems in mixing a true tertiary color if using acrylic 
paints.) 

Fig. 1. 24-Color Wheel 

To select colors to plan your painting, construct a second 24-color wheel 
but rather than coloring the spaces, cut out the spaces marked 1, 2, 3, 5, 8, 
13, and 21. Place 1 at any position (primary or secondary color preferred) 
and use the colors thus exposed. The color under 1 should dominate, and 21 
would be an accent color. This scheme solves the problem of color selection 
which occurs if one wishes to paint using bright, clear color; if one is ac-
customed to painting with "muddy" colors, he may feel that he has no problems 
with harmony. 

Fritz Faiss has many other color schemes based upon the 24-color wheel. 
The color sequences based upon the Fibonacci sequence are particularly pleas-
ing, and Fritz Faiss has done many paintings using these color sequences. 
Unfortunately, to fully appreciate the beauty of the color combinations that 
arise, one needs to actually see a properly constructed color wheel and some 
examples of its application. 

All the color schemes generated as just described are quite lovely, and 
the Lucas sequence also seems to select pleasant schemes or, at least, non-
discordant ones. But, to see what a color battlefield can be constructed, make 
a 24-color wheel using the more familiar yellow, red, and blue as primary 
colors placed at 1, 9, and 17 with the in-between colors again placed in order 
by hue (so that, for example, 21 is green and 19 is blue-green, 20 is a green 
blue-green, and 18 is halfway between blue and blue-green). Then, the Fibo-
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nacci sequence does not select pleasing combinations, and one comes to appre-
ciate the problem involved in selecting bright, true colors which harmonize. 

This short article certainly will pose more questions than it answers, 
since mathematicians are not usually accustomed to thinking about color the-
ory as used in painting; Fritz Faiss has devoted fifty years to the study of 
color theory in art. Fibonacci numbers seem to form a link from art to mu-
sic; perhaps some creative person will compose a Fibonacci ballet, or harmo-
nize Fibonacci color schemes with Fibonacci music. 
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ON THE DENSITY OF THE IMAGE SETS OF CERTAIN 
ARITHMETIC FUNCTIONS—II 

ROSALIND GUARALDO 
St. Francis College, Brooklyn, NY 11201 

1. INTRODUCTION 

Throughout this article, we will be using the following notation: n > 0 
k 

is an arbitrary nonnegative integer and n = / d-b its representation as an 
i=o 

integer in base b, b >_ 2 arbitrary. Define 
k 

(1.1) Tin) = n +^2 do [̂ (O) = °] 
j = o 

CR = [n\n = T(x) for some x) and 

C = {n\n ^ T(x) for any x). 

It has been shown ([1]) that the set C is infinite for any base b. More 
generally, it is true that C has asymptotic density and that C is a set of 
positive density; these results are derived from the following more general 
theorem and its corollary (proofs of which may be found in [2]). 

Tfeeô em: Let 

k 
n.= /_\^.b3 , b >_ 2 arbitrary, 

j'-o 

and define 

k 

T(n) = n + ^2 f(dJ > d) and <£ = { n\n = T{x) for some x}9 
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where f(dj, j) satisfies: 

a. /(O, j) = 0 for all integers J >. 0; 
b. f(d9 j) = o{b^) for all j and all digits d such that 1 <_ d <_ b - 1. 

Then the density of <£ exists and is equal to L, where L is computable, as 
follows: let 

\dyk = \{T(x) \dbk <_ x £ (d + l)fck - 1} 
H {T(a;)| (d + l)bk < x ± (d + 2)£k - l } | , 0 £ d < . 2 ? - 2 

D(bk - 1) 

^ k 

L 

d = 0 

= |{T(tf) |0 <. x 

= Z K ^ 

= ^ k • 

- l ) / 2 > * . 

0 0 

£ b k 

= ^ k • 

- 1 } I 

00 

-Z'. 
j = k 

Then 

for all k >_ kQ , where fc0 is an integer having the property that for all k >_ 

kQ9 the sets {T(x)\Q <_ x £ bk - 1} , {T(x)|&k <_ a: <_ 2bk - 1} , .. . , {T(x)\ (b -

l)b <_ x <_ b - l) are pairwise disjoint, except possibly for adjacent 

pairs. 

CoJioJULaALf: If f(d, J) = f(d) depends only on the digit d and if /(0) = 0 
and /(fc - 1) + 0 then L < 1. 

Now it is easy to see that when T(n) is the function defined by formula 
(1.1), we have kQ = 0 and that the value of the ^d,k does not depend on the 
digit d. Hence, if we let \ k = ^d,k f° r each digit d, our equation for L be-
comes 

(1.2) L = A0 - ^ e j = 1 - £ (6 - DXj/b**1. 

2. COMPUTATION OF THE DENSITY WHEN B IS ODD 

Henceforth, let T(n) be the function n + the sum of its digits, the func-
tion defined by formula (1.1). It is not difficult to prove that when b is 
odd, Q is the set of all nonnegative even integers, so that L = 1/2 whenever 
b is odd ([1] , [2]). We now give another proof of this fact, independent of the 
proof in [2], using formula (1.2). 

Our principal objective is the proof of the following 

TkdOKdm 2.1: Xk = k(b - l)/2 for all odd bases b. 

Using this result and equation (1.2), we see that 

L = 1 - (b - l)z/2b£j/bd = 1 - (0> - ±)2/2b)(b/(b - l)2) = 1/2 
J = i 

= 1/2 whenever b is odd. 

The proof of Theorem 2.1 depends on the following two lemmas: 
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Lemma 2.2: If b is odd then there exists an x < bk such that T(x) = T(bk) 
for all natural numbers k. 

VKOO^i The proof is by induction on k. If k = 1 then we have 

T((b + l)/2) = b + 1 = T(£). 

Assume that 

and assume t h a t t h e fo l lowing c la im i s t r u e . 

Clcujn: d0 can be chosen so t h a t d0 >_ (b - l ) / 2 . Then 

T((b - l)bk + d ^ ^ ' 1 + . . . + dxb + d0 - (b - l ) / 2 ) 

i k ~ l 

"" — / J T " !) — I T / 1 J 1^ . 

\ j = o / 

= bk + 1 - bk + T(bk) = bk + l - bk + bk + 1 = T(£ k + 1 ) 

£* + J - l + T[ YLdch] - (̂  - D 

So that all remains to be done is to prove the above claim. Observe that 

T(dk_1bk~1 + • • • + dzb2 + (dl + l)b + d[ - (b + l ) / 2 ) 

= T^^b*'1 + . . . + J 2 £ 2 + dxb + d'Q), ft + l ) / 2 < ^ ' < ^ - l . 

Therefore the claim is proved if dx ^ 0. If dm - dm^l = ••• = dl = 0 and if 
dOT+1 ^ 0, we sill show that there exists 

such t h a t 
' f c - 1 

Ttd^b*-1 + ^ „ 2 ^ " 2 + ••• + (dm + 1 - l ) Z > r a + 1 + y) = T ( 5 > 2 > ' > 
i . e . , V = 0 / 

T(zy) = T(bm + 1 + d0), d0 < 0 - 3 ) / 2 

and this will finish the proof of the claim. 

Now if d0 = 0 then the existence of such a y is guaranteed by the induc-
tion hypothesis. If dT

Q - (b - l)/2 then we have 

T 

Hence 
( Y L d i h ' + (b - i ) / 2 ) = T^m+i). 

T[Y^d!bJ + (b + 1)/2J = 57»m + 1 + 1) 

T[12dJbJ + ^ " 2 ) = T(bm+l + Q> ~ 3) /2) 

done i f <i0' = (2? - l ) / 2 . i 

T(1Ldjbd + do) = T^m+i) 
and we are done if d[ = (2? - l)/2. Suppose now that <f0f _> (b + l)/2, so that 



1978] ON THE DENSITY OF THE IMAGE SETS OF CERTAIN 431 
ARITHMETIC FUNCTIONS—I I 

[Y^d!b* + d'Q + 11 = T(bm+l + 1) 

\Tjd?" + * - ! ) = T^m + 1 + b - 1 - dp. T 

We then o b t a i n t he fo l lowing e q u a t i o n s 

T (j^dlb" + {d[ + l)b + {b - 1 ) / 2 J = T(bm + l + b - d[) 

T {S^d'b* + {d[ + ±)b + (b + l ) / 2 j = T(bm + l + b - d[ + 1) 

51 ( & i ^ ' + <di' + 1)h + do ~ 1 ) = T&m + l + (b - 3 ) / 2 ) . 

Note that by induction we may assume that d{ fi b - 1. The claim has now been 
completely proved, so that the proof of the lemma is complete as well. 

Rema/Lfe: Lemma 2.2 is not valid in general if b is even. For example, if 
k = 1, there is no x < b satisfying T(x) = T(b) = b + 1, since x < b implies 
that T(x) = 2x and b + 1 is odd. 

Lemma 2.3: If b is odd and 
m 

or 

then t h e r e e x i s t s a z/ = bm + l + J^jdjb3 w i t h d0 <. (2? - l ) / 2 such t h a t T O ) = 

P^LOO :̂ Again, t he proof i s i n d u c t i v e . I f m = 1 then # = ( £ > - 1)2? + rQ9 
r0 >. (b + l ) / 2 . Now 

T((b - ±)b + (2? + l ) / 2 ) = 2 ? 2 - 2 ? + 2 > - l + 2? + l = 2?2+2? 

= T(2?2 + Q> - D / 2 ) . 
Hence 

T((b - 1)2? + (2? + 3 ) / 2 ) = T(b2 + (fc + l ) / 2 ) = T(2?2 + 2?) 

T((b - l)b + (b + 5 ) / 2 ) = T(2?2 + 2? + 1) 

T((Z? - ±)b + 2? - 1) = T(b2 + b + (b - 5 ) / 2 ) 
and therefore the statement is true for m = 1. Assuming that the statement 
is true for all natural numbers ±m. consider 

x = S ( Z ) " 1)h' + p o> p o - & + 1)/2' 
J = I 

We have 
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n(x) = T{(JD - ±)bm+1) + T( ]T0> - l)bm + r'\ 

bm+2 - bm+1 +*b - 1 + T{y) 

bm+1 + b - T(bm+1) + T(y) = bm+2 + b + yf V d . i A 

= T\bm+1 + Y^djb* + (6 - l ) / 2 ] . 

I f d0 = 0, we a r e obv ious ly done. I f d0 ^ 0 , assume by i n d u c t i o n t h a t dx ^ 
2? - 1 (cf . t h e case m = 1 ) . Since 

= 2l£m+2 + Y^ddbj + (d1 + ±)b + d0
f - (2> + l ) / 2 j , d[ >. (b + l ) / 2 , 

the result is proved. 

Vttook ofa ThQ.on.tm 2.1: I f w and n a r e i n t e g e r s w i th m <_n^ d e f i n e 

Q(m, n) = {T(x) \m <_ x <_ n). 
Then 

Ak = |ft(0, £ k - 1 ) 0 fl(fc*, 2 i k - l ) | . 

It is easy to see that the theorem is true when k = 1, so it suffices to prove 
that Ak+1 - Xk = (b - l)/2 for all natural numbers fc. Observe that if 

k-l \ i k-l 

v«7=0 / \ j = 0 / J = 0 

and i f <ij ^ 2? - 1 , t hen we can choose d^ <_ (b - l ) / 2 s i n c e 

T \bk + lLdJbl = T [bk + XX'2^' + W i + 1)2) + do - & + D/2J 

for a l l d ' 2l (2? + l ) / 2 . A l s o , suppose t h a t we have 
k - l \ / k - l 7( E^-^j = * (**+ jypj + < * - D * + ̂ ) • 

Since T [ ^T,djb* ) <_ bk - 1 + fc(2> - 1 ) , i t i s e v i d e n t t h a t d 'k_x < b- 1 , 

Lemma 2.3 says that we can choose d'Q <. (b - l)/2 in this case as well. 
Clearly 

[J2dJbJ) - ?ibk + J^djbM , d0' <(b- l)/2 
y if 

Ho> - Dbk + Yld3bi = T(bk+l + Xk/^7' + do+ ® -i)/2) 



1978] ON THE DENSITY OF THE IMAGE SETS OF CERTAIN 433 
ARITHMETIC FUNCTIONS—II 

By the same type of reasoning used to prove Lemma 2.2, we can see that the 
only values in tt(bk+1, 2bk + 1 - 1) which we need to consider, besides the val-
ues T(bk+1 + d0'), 0 £ dT

Q <_ (b - 3)/2, are values of the form 

ok + l + 
3 = 0 

where d[ >_ (b - l)/2. 
We therefore obtain the following correspondence (corresponding values on 

the left-hand side belonging to 0,(0 9 bk - 1) if and only if corresponding val-
ues on the right-hand side belong to ̂ (0, b - 1): 

T\bk + J2djbi ^ T ( b k + i + XXfZ^ + {h" i ) / 2 V 
where d[ <. (b - l)/2. 

The only other values in Q(b +1, 2b +1 - 1) which are left to consider 
are the values of the form T(bk+l + d0f) , 0 £ d[ <_ (b - 3)/2. By Lemma 2.2, 
there exists an integer 

k-i 

£ d,b°, d0 >_ (b - l)/2, 
such that / k-i 

3 = 0 ' 

k-l 

T (b - l)bk + YldcbJ ~ (h ~ D / 2 + 1) = T(Z?k + 1 + 1) 
3 = 0 

TUb - l)bk + X k ' ^ ' ~ X J = T ( ^ + 1 + (* - 3)/2) 

i.e., the values T(bk+1 +d'Q)9 0 <_ d[ <_ (b - 3)/2 all belong to ft(0, &k + 1 - 1). 
Since each of these values are different from each other and from all the 
other values in tt(bk+l

3 2bk+l - 1) , we conclude that Xk + l - Xk = (b - l)/2, 
Q.E.D. 

3. AN ESTIMATE OF THE DENSITY WHEN 5 = 1 0 

In contrast to the above result, the Xk behave somewhat irregularly when 
b is even, as the following table, constructed for the case b = 10, shows. 

The values in the table were computed essentially by finding the first 
integer in Q(0, bk - 1) which also belongs to Q,(bk, 2bk - 1); this appears 
to be difficult to do in general if b is even. 

By using the table below, we obtain the following estimate of the density 
for base 10. 

IkdOKQM 3.1: When b = 10, the density of <R is approximately 0.9022222; 
the error made by using this figure is less than 10"7. 
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ARITHMETIC FUNCTIONS—I I 

The Values of Xk and Xk + 1 - Xk for the Case b = 10, 1 <. k <_ 50 

r k 
i 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

1 14 
! 15 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

** 

0 
9 
16 
23 
30 
37 
44 
51 
58 
65 
72 
90 
90 
95 
102 
109 
116 
123 
130 
137 
142 
169 
188 
169 
175 

Xk+i " Xk 

9 
7 
7 
7 
7 
7 
7 
7 
7 
7 
18 
0 
5 
7 
7 
7 
7 
7 
7 
5 
27 
19 

-19 ! 
6 : 

& 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

K 
181 
188 
195 
202 
209 
210 
246 
252 
250 
249 
255 
260 
267 
274 
281 
240 
321 
327 
313 
320 
329 
335 
339 
346 
353 

f̂c+i ~ \ 

6 
7 
7 
7 
7 
1 
36 
6 
-2 
-1 
6 
5 
7 
7 
7 

-41 
81 
6 

-14 
7 
9 
6 
4 
7 
7 

P/toorf: Since max{a;|x e ft(0, &* - 1)} = J>fe - 1 + k(b - 1) , i t i s c lear tha t 
Ak < fc(J> - 1) for a l l k. Formula (1.2) says that 

L = 1 - £ ( & - l)Xk/bk+1 - £ ( & - l)\k/bk+1. 
Now _ * = 1 k = 8 

^ ( b - l)\k/bk+1 < {{b - l)2/b) • Y,k/bk 

and *"^ k-i 
f i f t ' - (1 ~ l/^)8(l/fe)8 + (1/Z>)9 

Using the table and the above equations, our result is readily verified. 
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THE FIBONACCI PSEUDOGROUP, CHARACTERISTIC POLYNOMIALS AND 
EIGENVALUES OF TRIDIAGONAL MATRICES, PERIODIC LINEAR 

RECURRENCE SYSTEMS AND APPLICATION TO 
QUANTUM MECHANICS 

HELAMAN ROLFE PRATT FERGUSON 
Brigham Young University, Provo, Utah 84602 

INTRODUCTION 

There are numerous applications of linear operators and matrices that give 
rise to tridiagonal matrices. Such applications occur naturally in mathemat-
ics, physics, and chemistry, e.g., eigenvalue problems, quantum optics, mag-
netohydrodynamics and quantum mechanics. It is convenient to have theoretical 
as well as computational access to the characteristic polynomials of tridiag-
onal matrices and, if at all possible, to their roots or eigenvalues. This 
paper produces explicitly the characteristic polynomials of general (finite) 
tridiagonal matrices: these polynomials are given in terms of the Fibonacci 
pseudogroup Fn (of order fn, the nth Fibonacci number), a subset of the full 
symmetric group 6n. We then turn to some interesting special cases of tri-
diagonal matrices, those which have periodic properties: this leads directly 
to periodic linear recurrence systems which generalize the two-term Fibonacci 
type recurrence to collections of two-term recurrences defining a sequence. 
After some useful lemmas concerning generating functions for these systems, 
we return to explicitly calculate eigenvalues of periodic tridiagonal matri-
ces. As an example of the power of the techniques, we have a theorem which 
gives the eigenvalues of a six-variable periodic tridiagonal matrix of odd 
degree explicitly as algebraic functions of these six variables, generalizing 
a result of Jacobi. We end with a brief discussion of how to explicitly cal-
culate the characteristic polynomials of certain finite dimensional repre-
sentations of a Hamiltonian operator of quantum mechanics. 

SECTION A. THE FIBONACCI PSEUDOGROUP 

We give a few essential definitions and observations about finite sets 
and permutations acting upon them which will be necessary in the sequel. We 
may think of this section as a theory of exterior powers of sets. 

Let A be a finite set and let |yt| denote the number of distinct elements 
in A. Let 2A denote the class of all subsets of A and define AkA to be the 
subclass of 2A consisting of all subsets of A with exactly k distinct elements 
of A. Thus for B e 2A, B e AkA iff \B\ = k. Clearly, 

\/\kA\ = M^'l (binomial coefficient) and \2A\ = 2 U I . 

We have 

2A - U A A (disjoint class union) 
o <. k <. Ul 

which implies the usual relation 

2"= EGO-
0 < k < « 

Note that A0A = {0} (empty class) and that A,i4U = A. 

435 
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Let Sn denote the full symmetric group of all permutations on n elements. 
Assume Sn acts by permuting the set of ciphers N = {l, 2, . .., n}. We will 
write the permutation as disjoint cycles; empty products will be the identity 
permutation. Consider the following subset Fn C Sn , defined by 

Fn = {(h, ^1 + 1) ... (£fc, Ik + D|l < ̂ i + 1 < i2> ^2 + 1 < ̂ 3> 

..., ik_l + ± < ik < n}. 
Fn is a certain subset of disjoint two-cycle products in Sn. Observe that 
(1) e Fn9 (1) = identity of Sn. For 0 e Fn , a2 = (1), thus every element of 
Fn is of order two and is its own inverse. Thus, if 0 e Fn, then a"*1 e Fn . 
Suppose a, p e Fn. Then ap e Fn iff a and p are disjoint; all the two-cycle 
products of Fn are not disjoint. A pseudogroup is a subset of a group which 
contains the group identity, closed under taking inverses, but does not always 
have closure. In the present case Fn = Sn iff n = 0, 1, 2. If n< 2, Fn is not 
a group, but Fn is a pseudogroup. We call Fn the Fibonacci pseudogroup be-
cause of the following lemma. 

Lmma A7: Let fn denote the nth Fibonacci number. Then 

\Fn\ = fn> n >_ 0. 
?H,00i'. We may write 

Fn ~ U ^ktn (disjoint union) 
0 <k < [nil] 

where Fk n consists of k disjoint two-cycles of Fn. But observe that 

and the lemma follows. Note that (-l)k is the sign of the permutations in 

Fk^n . Then there are c^ \ k J w i t n n e g a t i v e sign and ^ \ k ) w i t n 

k odd k even 

even sign: this gives an alternative proof with \Fn\ = \Fn_±\ + |Fn_2|» by 

observing that \FQ\ = 1, |F1| = 1. 

Returning now to the finite set N = {l, 2, ...,n} and the action of Sn 
on N9 consider the convenient map 

Fix: Sn •> 2^ 

given for O e Sn by Fixer = { £ £ # : CT(̂ ) = i}, i.e., the set of elements of 
N fixed by a. Thus, Fix (1) = N. We also define CoFix O = {i e N: o(i) + i) 
and note that N - Fix a U CoFix a (disjoint union) for every 0 e Sn. If n > 
3, then Fix can be onto. 

Restricting Fix to Fn, the Fibonacci pseudogroup definition yields the 
handy facts that if 0 e FktH, then |FixO~| = n - 2k and | CoFix 0 | = Ik. 

It will be convenient to work with just half of the set CoFix 0; there-
fore, we define the subset of CoFix a, (small c) coFix 0 = {i e N: cr(i) = % + 
l}. Then J coFix 0 \ - k. Also, the number of elements of Fix a, 0 e Fk n 

i i / YI — k \ (Yi — k \ 
with I Fix a I = n - 2k is exactly ( _ or, ) = I r, )• Again combining defini-

tions, if 0 e Fk^n, then |A£Fixcr| = (n *kY 
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SECTION B. APPLICATIONS OF THE FIBONACCI PSEUDOGROUP TO DETERMINANTS 
AND CHARACTERISTIC POLYNOMIALS OF TRIDIAGONAL MATRICES 

We consider tridiagonal n x n matrices of the following form. 

(1) A„ = 

ax 

°i 
0 

0 

0 

0 

0 

* 1 
a2 

°2 
0 

0 

0 

0 

0 

b2 

as 

cs 

0 

0 

0 

0 

0 

b3 . 
ah . 

0 

0 

0 

0 

0 

0 

0 

a 
c n-2 

We define vectors 

a = (a15 ..., a n ) , b = (b± , ..., bn_1) 9 o = (c± . Jn-l' 

and regard An as a function of these three vectors, An= An(a9 b9 c) or as a 
function of 3n - 2 variables. Let det 4 denote the determinant of A. We re-
cord some simple facts about the determinant and characteristic polynomial of 

Lumma. B1: Let An be the tridiagonal matrix defined above. Then, 

a. d e t A n = an d e t A n _ x - bn.1on_1 d e t ^ n _ 2 . 

b . de t (An(a, b, c) - Xl) = ( - l ) n d e t (XI - Ay, ( a , b, o)) 

= de t ( A n ( a , - 6 , -Q) - XX) 

= ( - l ) n de t (XI - A ( a , -b, -o)) 

= ( - l ) n de t (X + A ( - a , fc, c ) ) . 

Our object is to give explicit information about det (An - XI). We sum-
marize this information using the notation of Section A in the result. 

TkzoSiQJM B1: The characteristic polynomial of a tridiagonal matrix can be 
written as the sum of a polynomial of codegree zero and a polynomial of co-
degree two as follows: 

(2) det (An(a, b, o) - XI) = T T (ak - X) + Pn(X; a, b9 e) 

where 

and 

(3) 

deg Pn (X; a, b9 c) = ? 

Pn(X; a, b, o) 

= (-D" E *" E H)" 
0 ^ y ^ n - 2 !<.&<. [n/2] 

1 <. k ± n 

2 

•v-kl £ n b*c, 3 3 
j e coFix a V4 e A' 

E TT 
In particular, 

(4) det An = ] T sgn (a) f j af 1~[ fycj. 
0 e jF ^ e Fix ° 3 e coFix a 
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This theorem gives complete closed form information about the polynomial 
Pn (X). Pn(X) explicitly describes the perturbation of the characteristic 
polynomial of A from the characteristic polynomial of the diagonal of A. 
Further, consider the family of hyperbolas xkyk = dk, l<_k<_n-lln E2n"2 

space, d.9 ..., dn_1 fixed constants. Then for fixed a e (Rn, points on these 
hyperbolas parameterize a family of tridiagonal matrices An(a, x, y) which 
all have exactly the same latent roots with the same multiplicities. The co-
efficients of the powers of X in Pn (A) are elegantly expressed polynomials in 
the components of a, b9 a and can be easily generated for computational pur-
poses: the set Fn can be generated from {l, 2, .,., n) in order 0 <_ k <.[n/2]9 
Fk n ; coFix is had immediately therefrom, and AmFix can be generated from a 
combination subroutine. 

To prove the theorem, we begin with 

detAn = ^ S g I 1 ( a ) a^(D •• • a?(n) ' 
a e Sn 

where aj = ai, bi9 oi9 0 for £ = J, £ + 1 = J, £ - 1 = j, otherwise, respec-
tively, 1 <L i9 j <L n. However, det An is really a sum over Fn C Sn9 has, in 
general, /„ terms, and bici occurs whenever b^ occurs (Lemma Bl) . From the 
partition of Fn into k two-cycles, 0 <. k <, [n/2] , we have 

(6) detAn = Yl (-D^Z) al(i) ••• ao(n) 
0 <, k ^ [n/2] a e Fk<n 

= Z (-DkTT at T\ b.c. 
0. <. fe <. [n/2] i e Fix a J e coFix a 

because there are three cases, j = o(j) , j > O(j) , and j < a(j) . If a^.) ̂  0 

then Ij - 0(j)\ <_ 1. In case of equality, ai,.. a. j) = bn-c- occurs in the 
°  \J ) Q tl J 

product. For cr e Fktn , O moves 2k elements and fixes n - 2k elements and is 
characterized by its fixed elements. The most O can fix for k > 0 is n - 2, 
so that (replacing each ak by ak - X) we have deg Pn(X, a, b9 o) = n - 2. 
Setting Pn (A) = Pn(X, a, 2?, e) , we have 

(7) P„(X) - E <-!>" **.„<*> 
1 <. fe J< [n/2] 

where deg Pfe n (A) = n - 2k and 

(8) pk „ (X) = X ) TT («i - *> TT bj c. 
' o e FT, „ i e Fix a j e coFix a 

Let M CN9 then 

(9) TT<««-*>- E (-1)|MM(E n ^ A M - 4 

is simply the symmetric polynomials identity rewritten in the notation of ex-
terior powers of sets. From this fact (9) and rearranging (8) for M = Fix G 
we have 

0 e Fk>n 0 < . £ £ n - 2 k j e coFix a AeA*Fixcr izA 
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For comparison, we note that combining equations (9) and (2) gives a direct 
evaluation of the traces of exterior powers of An (in this context, exterior 
powers of An are the compound matrices of An). This is so from the identity 

(ID det (An - XI) = J ] (-l)"-k(trA"-kil„)X* + (-1)*A\ 
0 <. k <. n - 1 

where An can be an arbitrary n x n matrix, tr is the trace of a matrix, AkAn 

is the kth exterior power of An (an ( -i J x (,) matrix). Thus, it is possi-

ble to also give trA An(a9 b9 o) as an explicit polynomial in the components 

of a, b, o for 1 <. k <_ n. 
We conclude this section with two examples. The first arose in a problem 

of positive definiteness of certain quadratic forms of interest in a plasma 
physics energy principle analysis. 

a. Let 1 <_ m <_ n and choose am = a/m, bmom = b. Then 

(12) nl detAn = ] T (-1)' 
0 <. k < [n/2] 

Bk,na 
n-lknk 

where t h e B 

(13) 

k, n 

}k, n 

are cer ta in integers 

a z F^.n we CoFix o 

(note the upper case C on CoFix here, |CoFix G| 
of these integers. 

2k), See Table 1 fo r a few 

Let 1 <_m <_ n and choose am = a , bmom - b. Then 

(14) detAn = J2 (-D*^ ~ccn-lkbk 
'k, n c 

where t h e C k, n 

0 <. k <. [n/2] 

are ce r ta in integers 

7 7 Z . (15) ,̂n = £ TT 
a e ^ ^ me Fix a 

Table 1 also contains a few of these integers. 

Table 1. The First Few CoFix; Fix Integers Bfef„; CktH Defined by 
Equations (13); (15), Respectively; 6 <. k <. [n/2] 

1 
2 
3 
4 
5 
6 
7 
8 

1; 
l; 
1; 
i; 
l; 
1; 
l; 
i; 

0 

l 
2 
6 
24 
120 
720 
5040 
40320 

2; 
8; 
20; 
40; 
70; 

112; 
168; 

J. 

1 
4 
18 
96 
600 
4320 
36480 

2 

24; 1 
184; 9 
784; 72 

2464; 600 
6384; 5400 

3 

720; 1 
8448; 16 

42272; 196 

4 

40320; 1 
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SECTION C. PERIODIC LINEAR RECURRENCE SYSTEMS 

It is now possible to use the results and notation of Sections A and B to 
draw conclusions about periodic linear recurrence systems. Of course, these 
generalize the usual linear recurrences; however, it is surprising that the 
Fibonacci pseudogroup is the key idea in their description. We first state a 
natural corollary to Theorem Bl without restriction of periodicity. 

Th(LOfl2M C1 : Given a pair of arbitrary sequences a , a , a , ... and b , 
b29 Z?3, ..., then the one-parameter class of linear recurrences 

(16) fn(t) = ajn_x + tK.^.2 
with fQ = 1, fi = di, has the general solution n > 1 

(17) /„<*> = £ *k £ TT «< TT V 
0 <. k <. [n/2] a e Fk>n i e Fix a j e coFix a 

For example, t a k i n g t = 1 , afe = a , Z?fc = b , k >_ 1, and r e c a l l i n g t h a t fo r 

a e Fk n , I F ix a I = n - 2k, | coF ix a | = k9 and |Ffe n | = ( , 1 y i e l d s 

0 <k < [n/2] 

the general solution of fn - an_1 + bfn_29f0 = 1, j\ = a. Taking a = b = 1 
yields the well-known sum over binomial coefficients expression for the Fibo-
nacci sequence. On the other hand, writing the generating function 

-2kbk 

d9) at) = £/„*" 
and recognizing that G{t) is a rational function of at most two poles, indeed 
G(t) = 1/(1 - at - bt2), yields the alternative solution 

( -\n + l / r— \n + lt 

(2Q. n -i. j i a + /a + 4Z?\ (a - /a + 4& 

/a2 + 4& 

Of course, from (18) we may regard fn = fn(a9 b) as a polynomial in a and b. 
In particular /„(a - X, b) as a polynomial in X can be written 

(21) f n i a - \ , b) = J] ("1)m( S (%feXn;2/C)an-m-2^Vm. 
0 £ m £ n \ 0 < . f e < . [ n / 2 ] / 

We see now that the zeros, X , 1 <_ k <_ n9 of polynomial (21) are precisely 

(22) Xk = a + 2/^F cos (i\k/(n + 1)), 1 <. fc <. n. 

This follows from equation (20), for fn = 0 implies that 

so that 
a + /a2 + 4i = (a - /a2 + 42>)^2^/n + 1 

/a2 + 4Z? = - A l a 2 tan 7Tfc/n + 1. 

Squaring gives a2 sec2 (nk/n + 1) = -42?. Replacing a by a - X gives equation 
(22). We have basically done the case of a period of length one. 
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We now take up the case of period two, 

Lmma CI: Let { fn) , n >, 0, be a sequence defined by 

fn = anfn-l + K-lfn-2> f0
 = 1' f\ = ai 

and the sequences { a n } , {bn} , have pe r i od two, i . e . , 

a 2 n = a 2 , a 2 n _ x = a19 b2n_± = b± , b2n = b2, n 2. 1. 

Then t h e g e n e r a t i n g f u n c t i o n i s r a t i o n a l w i th a t most four p o l e s : 

(23) G(t) - £ / „ * " 

1 + a,t - b0t2 

(24) = i 2 
2 . z, -u 4-^ 1 - (Z?x + b2 + a ^ H + Z?1Z?2̂  

, . _ ^ ( a > 3) . 4 ( - a , 3) . 4 ( g , a) , A(-$, a) 
^ ; " 1 - a*"1" 1 + at 1 - $t 1 + Bt 
where for D = b1 + b2 + ala2, 

(26) 2a 2 = D + /Z)2 - kbxb2, 23 2 = Z) - /z?2 - 4 2 ^ 

and 

(27) i4(a, 6) = (a 2 + axa - b2)/2(a2 - g 2 ) . 

PsiOO^: Write £(t) in terms of its even and odd parts (two functions). 
Then substitute the period two relations in to get the rationality of G(t) 
from the pair of relations 

(28) 

(29) 

/ a2-a1 b,+b9 A /a9-a1 b2-b, \ 
( l - % l t - l

2
 2t2JG(t) + ( 2 * + 2

2
 1t2\G{-t) -

/ a2 -a, b9 - b, A / a9 +a, b9 + b, 0\ 

^—V"^ + ~V~^ r( t ) + 1 1 + ~ V ~ ^ • - J - 2 - L *)<?(-*> 
where the determinant of this system is the denominator of the right-hand 
side of equation (24). 

Of course, comparing coefficients will give an expression for /„ as a 
linear combination of powers of poles of G(t) analogous to equation (20). On 
the other hand, there are polynomial expressions in the four variables a%, 
az ' ̂ i ' ̂ 2 ° ^ t*ie tyPe (18) which follow directly from Theorem B. 

We give only one example of the former. 
Let f2n = f2n_1 + f2n_2, f2n + 1 = f2n + 2fln_.L , / 0 = 1 , fl = 1, so t h a t / „ 

i s t h e sequence 1 , 1 , 2 , 4 , 6 , 14 , 20 , 4 8 , 68 , 166, 234, . . . . Then, we have 

(30) f2n = | ( ( 2 + /2")n + (2 - / 2 ) n ) , 

(3D 4 . + i - ^ ( C 2 + ^ > n + 1 - ( 2 - ^ ) n + 1 ) . 

Alternatively (30) and (31) can be shown by induction to satisfy the linear 
recurrence of period two. 

We now consider the general case of rationality of generating functions 
of arbitrary periodic systems of linear recurrences. 



kkl THE FIBONACCI PSEUDOGROUP [Oct. 

Idmma C2: Let fn = anfn.1 + bn_±fn.2 b e given with f0 
pose that an - a% and bn = bi if n E & (mod fc) and that 

i, A Sup-

^£5 1 < ̂ < ^ , Z?£, 0 ± I ±k 
are given as the first elements of the sequences {an} and {bn} which are not 
in two /c-periods. Call the system a period k system. Set 

(32) Git) =^fntn 

then G(t) is a rational function of t where 

(33) Git) = Pit)/Qit) 

and Pit), Qit) are polynomials In i, deg Pit) <_ 2k 

Vtooi: First write 

(34) Git) = ^ Gi{t) 

where 

(35) GAt) 

1, deg Qit) < 2k. 

1 <. !• <. fc 

H (mod /c) 

and where the sum is over integers n >_ 0, n congruent to £ modulo fc. From 
the relations 

(36) fn = a ^ / ^ + bl.1fn_2 if n = £ (mod fc), 

we have that 

(37) ££(t) = altGl_1{t) + ££_it2££_2(t). 

Using the modulo /c relations we can write the following equations 

(38) G^t) = a^G^t) +b0t2G_1(t) = axt + axtGk{t) + b0t Gk_1(t), 

(39) G2(t) = a2tGx(t) + i1t2G!0(t) = a^tG^t) + Z^t2 + blt2Gk(t), 

(40) £3(i) = a3tG2(t) + b2t2G1(t) 

(41) Gfc(£) = aktGk_^t) + ifc-i^-z^) 

This gives the system of equations in matrix form as: 

(42) 

-a2t 

-b2t2 

0 

0 

0 

0 

-a3t 

~-aht 

~bht2 

0 

0 

0 

1 

-a5t 

A -2*' 

0 

0 

0 

0 

1 

-ak-l* 

-\r -axt 

-bxt2 

-akt 

Gxit) 
G2it) 
G3it) 
Ghit) 
G5it) 

<?*-i(*> 
Gkit) 

= 

1 

0 

0 

0 
0 

0 

0 
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We rewrite equation (42) as 

(42) EG = J, 

with the obvious interpretation. Now H is invertible (in the indeterminant 
t) and we can solve for Gl(t)y . .., Gk(t) separately as rational functions, 
their sum is G(t). But, clearly, deg det H(t) = 2k, so that the denominator 
of G(t) must divide this, i.e., deg Q(t) <_ 2k. Also, the adjoint of H is given 
by polynomials of degree £ 2k - 1, thus, deg P(£) <_ 2k - 1. 

This rationality result is the starting point to produce further facts of 
which Lemma Bl and equation (20) are examples. The central difficulty lies 
in analyzing the denominator of the rational function to display sums of pow-
ers of its roots. We will apply the technique to tridiagonal matrices of 
periodic type in the next section. 

SECTION D. APPLICATIONS OF PERIODIC RECURRENCES TO TRIDIAGONAL MATRICES 

We return to tridiagonal matrices to apply the results of Section C first 
to recover a result of Jacobi and second to give a generalization of Jacobi?s 
theorem. 

ThdOKQjm VI (Jacobi) : The latent roots of the tridiagonal n x n matrix 

(43) 

a 
c 
0 
0 

b 
a 
c 
0 

0 
b 
a 
c 

0 
0 
b 
a 

0 
0 
0 
b . 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

a 
a 

a r e g iven for 1 <_ k <_ n by 

Xk = a - 2/bo cos i\k 
n + 1 " 

Vh.00^1 This follows directly from Lemma Bl and equation (22), by recog-
nizing that the matrix (43) defines a (period one) linear recurrence system. 

TkzosieJM V2: The latent roots of the (2n + l) x(2n + l) tridiagonal matrix 

(44) 

a 
d 
0 
0 
0 

0 
0 
0 

b 
c 
f 
0 
0 

0 
0 
0 

0 
e 
a 
d 
0 

0 
0 
0 

0 
0 
b 
o 
f 

0 
0 
0 

0 
0 
0 
e 
a 

0 
0 
0 

0 
0 
0 
0 
0 

a 
d 
0 

0 
0 
0 
0 
0 

b 
c 
f 

0 
0 
0 
0 
0 

0 
e 
a_ 

lie among the values (1 _< k £ n + 1 with the plus sign, 1 _< k <_ n with the 
minus sign): 
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(45) a + c /(a
 2 °\ + bd + ef + ifbdef cos 7T/C 

n + 1 

P/LOÔ J: Note that when a = c, fc = e, and d - f this reduces to the case of 
the period one theorem. By Lemma Bl, we recognize (44) as defining a period 
two linear recurrence system. Take therefore the odd case in Lemma CI, thus 
( - I ) 2 * - 1 

(46) 

= -1 and 

A(a, 3) iU-ot. 3) 

, 2-nik 

4(B, a) - A(-B, a) 

Then fn is zero iff (a/B)2n + 2 - o 
tion (22) yields 

(47) bd + ef + ac = iSbdef cos 

0 £ k <_ n + 1. 

i\k 

Reasoning as w i t h equa-

n + 1 
Replacing ac? by (a - X) (e - X) and solving for X gives (45). Thus we have all 
latent roots of a five-parameter family of matrices. 

Again, to apply similar techniques to families of matrices with more par-
ameters involves analyzing the denominator in Lemma C2. We point out that 
for large periodic matrices of special type (particular sparse matrices) the 
root analysis is relatively easy to do numerically, say, for periods small 
relative to the size of the matrix. 

SECTION E. THE APPLICATION TO A HAMILTON I AN OPERATOR OF QUANTUM MECHANICS 

The differential equation of the quantum mechanical asymmetric rotor may 
be written as (JD - E )W = 0 . (Schroedinger equation) where the matrix cor-
responding to the inertia tensor is 

(48) 
A 
0 

_0 

0 
B 
0 

0 
0 
c 

v a r i a b l e s a , 3 , 5 

"A 
B 
C 

2 
-2 

0 

0 1 
0 1 
1 1 

(49) 

so that 3 = C - (A + B) , and the differential equation becomes (single vari-
able representation) 

(50) 

where 

(51) 

^'^ds 1 " + ^^Iz + Ri-Z) = ° 
P ( s ) = a s 6 + 32" + a s 2 , 
« (* ) = 2 a ( j + 2 ) 3 5 + 3 s 3 = 2 ( j + l ) s , 
R(z) = ( j + l ) ( j + 2)zh - E z1 + a ( j + 1 ) ( j + 2 ) . 

After choosing a convenient 3-basis of eigenfunctions, getting the correspond-
ing difference equation with respect to that basis we have a tridiagonal ma-
trix appear. This tridiagonal matrix, however, is tridiagonal with the main 
diagonal and second upper and lower diagonals, but it is possible to reduce 
it to direct sums of the usual tridiagonals that we have already treated in 
Section B. We are not concerned here with giving the representation theory, 
and so we will sketch briefly the facts we need. 

The difference equation alluded to above becomes 
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where 

R A o, 

J,™ 

Rl 

U - rn) (j - m - 1 ) , 

(J + m)U + m - 1). 
We have here for convenience replaced — by 3, — by #; note that Pj,m = R3-,m9 

where m varies through -j <. m <. j 9 j may be a half integer. We choose the 
Yl — 1 
— « — and the matrix of interest is the n x 

i - 1) j = <£ + 2, 

2) i = j + 2, 

otherwise 

variable n = 2j + 1, so that j = 

n matrix A - (a^-)5 where 

, n - 2% + 1 

(53) (n 

0 

2 

i) (n 

Da 

This is a nonstandard tridiagonal matrix with off diagonal integer entries. 
Generalizing this situation slightly, we define 

(54) 

al 

0 

0 
0 

0 

0 
0 

0 

a2 

0 

bn-2 
0 

a 3 

o „o 

e o 

0 

&n-3 
o De 

0 . 
•. 

9 0 

bn-3 
0 

0 

• • 

••. 
s o 

a 

p 
b 

0 0 

0 

0 

a, 

We see immediately that the directed graph of this matrix has two components 
each of which is the directed graph of a standard tridiagonal matrix. This 
observation will give the first direct sum splitting: we shall see that each 
of these splits for sufficiently large n. 

Lumma El: The n x n matrix A is similar to a direct sum of four tridiag-
onal matrices if n is not trivially small. Alternatively, the characteristic 
polynomial of the n x n matrix A factors into four polynomials whose degrees 
differ by no more than one. 

PKOO&I It is sufficient to exhibit the similarity transformations that 
convert the generalized supertridiagonal matrix A into similar standard tri-
diagonal matrices. For the first stage define the permutation 09 

(55) a(fc) 
if k < 

if k > 

n + 1 
~ 2 

n + 1 



446 THE FIBONACCI PSEUDOGROUP [Oct. 

where 1 <_ k <_ n and [x] denotes the greatest integer in x function. Associa-
ted with O is an n x n permutation matrix S0. Then, S0AS^ will be a stand-
ard tridiagonal matrix, i.e., zero entries everywhere except the main diag-
onal, first above and first below diagonals. Further, setting B = SaAS^ , B 
will be, in general, (n _> 3), a direct sum of two tridiagonals: 

[n + 11 k x k and (n - k) x (n - k) where m - — - — . 

But these tridiagonals are of a special kind, in fact, of the form 

(56) 

am-i bm+i 0 0 

bm_x am bm 0 

0 bm am
 hm-i 

0 0 bm+1 an Lm-1 

f o r t h e e v e n c a s e and 

(57) B" 
"m-i 

bm-l 

0 

b m 

am 

bm 

+ 2 0 

b m+1 

a m + 1 

for the odd case. Because of the special up and down features, we can split 
these matrices by means of the similarity matrices: 

(58) 
I 

_-J 

J ' 

I_ 
for n even; P" 

I 
0 

-J 

0 
1 
0 

J 
0 

I 
for n odd; 

where I is the identity matrix of appropriate size and J is zero everywhere 
except for ones on the main cross diagonal. Thus, PBP'1 (with appropriate 
primes on the P and B) is a direct sum of two matrices and of the form 

(59) 'bm-l 

bm+1 

am + b„ 

bm+i 

b m-l 

a-m-i 

for n even, and 

(60) 

CCm-l br 

2b n 

bm+i 

when n is odd. 
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We can now apply the lemmas of Section B to write down explicitly the 
characteristic polynomials of these quantum mechanical Hamiltonian operators; 
from such explicit forms one expects to elicit information about energy lev-
els and spectra, viz., the eigenvalues are roots of these polynomials. 
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VECTORS WHOSE ELEMENTS BELONG TO A 
GENERALIZED FIBONACCI SEQUENCE 

LEONARD E. FULLER 
Kansas State University, Manhattan, Kansas 66502 

1. INTRODUCTION 

In a recent paper, D. V. Jaiswal [1] considered some geometrical proper-
ties associated with Generalized Fibonacci Sequences. In this paper, we shall 
extend some of his concepts to n dimensions and generalize his Theorems 2 and 
3. We do this by considering column vectors with components that are elements 
of a G(eneralized) F(ibonacci) S(equence) whose indices differ by fixed in-
tegers. We prove two theorems: first, the "area" of the "parallelogram" de-
termined by any two such column vectors is a function of the differences of 
the indices of successive components; second, any column vectors of the same 
type form a matrix of rank 2. 

2. PRELIMINARY RESULTS 

We shall be considering submatrices of an N x N matrix T = [Ti + J-_±] where 
Ts is an element of a GFS with. T1=a and T2 =b. For the special case a = b = 
1, we denote the sequence as Fs . We shall indicate the kth column vector of 
the matrix T as Tok = [Ti + k _J . In particular, the first two column vectors of 
T are T01 = [T^] and TQ2 = [Ti + 1\. We shall now prove a basic property of the 
matrix T. 

Lumma 2.1: The matrix T = [Ti+j_j] is of rank 2. 

From the fundamental identity for GFS, 
IT = J? rp i p m 

r + s L v + 1^ s L r -1 s - 1 ' 

it follows that 

T0k = Fk-l^Q2 + Fk-2T01e 
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Hence, the first two column vectors of T span the column space of T. Further, 
these two vectors are linearly independent, for if TQ2 = QTQ1 , it would fol-
low that cTi = Ti + 1 for all indices i . This implies that 

o2Ti = cicTt) = cTi + 1 = Ti + 2. 

However, 

so that 
n + 2 Ti + 1 + Ti = oTi + Ti = (Q + l)Ti , 

(o2 - a - 1 ) ^ 0. 

The solutions for a are irrational, so the components of Tok would also be 
irrational. Thus, there is no c and the vectors are linearly independent. 

In the next lemma, we evaluate the determinant of some 2 x 2 matrices. 

Lmma 2.2: For any k, 

•k+ l 

Lk + l 

Lk + 2 

- (-DHb2 ab) + 0. 

To prove this, we first show in two steps that the subscripts can be re-
duced by 2 without changing the value of the determinant. For this, we re-
place one column by the other column plus a column with subscripts decreased 
by 2. This gives the determinant of a matrix with two equal columns plus an-
other determinant. The first determinant is zero and is omitted. 

lk + l 

Tk+l 

Tk + 2 

Tk Tk + Tk-l 

Tk + i Tk+1 + Tk 

Tk-l + Tk-2 Tk-l 

Tk + Tk_Y Tk 

Tk Tk-\ 

Tk+1
 Tk 

Tk-2 Tk-1 

Tk-l Tk 

In the case where k is even, repeated application of the process yields 
the determinant 

T* T, T + T 

T3 + T2 

Recalling that 571 = a, T2 = b, so T3 = a + b, the determinant is equal to 
b2 -a2 - ab. 

In the case where k is odd, repeated application of the process yields 
the determinant 

To 
(-1) 

T9 T* 
(~D(b2 ab) 

This proves the first part of the lemma. For the last condition, it is 
easy to verify that if the determinant were zero, then a and/or b would be 
irrational. 



1978] VECTORS WHOSE ELEMENTS BELONG TO A GENERALIZED FIBONACCI SEQUENCE kk3 

The final lemma is concerned with the "area" of the "parallelogram" formed 
by any two column vectors. The proof is based on the property that the deter-
minant of the inner product matrix for the two column vectors is the square 
of the area of the parallelogram they determine. 

Ltmma 2.3: The square of the "area" of the "parallelogram" formed by the 
two n x 1 vectors a = [a^] and 0 = [bi] is 

J>1 
aj bJ 

The inner product matrix for a and 3 is 

a i i i 

n 

2> k^k 

n 

fe = i 

The determinant of t h i s matrix i s 

fc=1 k=l \ k=l I 

k = 1 j > £ fe-1 J > i 

3 > ^ 

a,- &„• 

a j ^ 

3. MAJOR RESULTS 

We shall be concerned in this section with two n x 1 submatrices of I7 of 
the form [Tdi+ ax -i] and [Tdi + a2- i]. Because these are submatrices of T9 the 
^ will form a monotonic increasing sequence. They are in fact the indices 
of the rows of T appearing in the submatrix. The oY and o2 are the column 
indices for the submatrix. For convenience, we shall assume that o2 > Q\* 

TkdOKom 3.1: The area of the parallelogram formed by a = [Tdi+ a^i] a n d 

3 = [Td, + ao-i] is 

\b> -a- -ab\Fa2_eiJ^(Fdj_diy t 0. 

By Lemma 2.3, the square of the area is given by 

z 
3 > ̂  

Ldi + o1 -1 

Ld,+ a, 

Ldi+ a2-.l 

ld;+ C2 -1 

Using the fundamental identity for GFS, 

™dk + a2 - 1 = ™ e2 - a l + l ^ d k + c l - l + ^a2 - c l ™dk + ax -2' ^ = 'Z' > <7 • 
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We can replace the second column vector in our determinant by a sum of two 
vectors. The first gives a zero determinant, while the second gives 

Ld,+ 

Ld^cx 

Ld< + 

Ld,+ a. -2 

for the square of the area. 
In a similar manner, we can express the second row vector as a linear 

combination using the identity, 

^dj + ox-k Fdj-di+lTdi + 

This reduces our expression to 

E' 
di + al • 

Ld, + o, 

• k + ^dt-di Tdt + Gl-k-l9 k 

•di + a, -2 

By Lemma 2.2, this determinant has the constant value (b: 

the area of the parallelogram is 
ab)2. Thus, 

v 3 > i 

This area is nonzero, since none of the factors can be zero. 
The next theorem follows from the theorem just proved. 

Tk&OXQJM 3.2: Any r x s submatrix of T = [Ti + J-_±], where r9 s > 1, is of 
rank 2. 

By Theorem 3.2, any two column vectors of the submatrix form a parallelo-
gram of nonzero area. Hence, they must be linearly independent, so the rank 
must be at least 2. But by Lemma 2.1, the matrix T has rank 2 and hence the 
rank of any submatrix cannot exceed 2. Therefore, the rank is exactly 2. 

The result given in Theorem 3.2 would seem to indicate that the geometry 
associated with GFS is necessarily of dimension 2. A check of the results of 
the Jaiswal paper confirms this observation. 
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ONNTH POWERS IN THE LUCAS AND FIBONACCI SERIES 

RAY STEINER 
Bowling Green State University, Bowling Green, Ohio 43402 

A. INTRODUCTION 

Let Fn be the nth term in the Fibonacci series defined by 

F = 0 F = 1 F = F + F 

and let Ln be the nth term in the Lucas series defined by 

£0 = 2, Ll = 1, L n + 2 = L„+1 +L„. 

In a previous paper [3], H. London and the present author considered the 
problem of finding all the Nth powers in the Lucas and Fibonacci series. It 
was shown that the problem reduces to solving certain Diophantine equations, 
and all the cubes in both series were found. However, the problem of finding 
all the cubes in the Fibonacci sequence depended upon the solutions of the 
equations y2 ± 100 = x3, and the finding of all these solutions is quite a 
difficult matter. 

In the present paper we first present a more elementary proof of this 
fact which does not depend on the solution of y2 ± 100 = x3. We then show 
that if p is a prime and p >_ 5, then L3k and L2k are never pth powers. Fur-
ther, we show that if Fztk is a pth power then t <. 1, and we find all the 5th 
powers in the sequence F2m. Finally, we close with some discussion of Lucas 
numbers of the form yp + 1. 

In our work we shall require the following theorems, which we state with-
out proof: 

TkzoHdm 1: The Lucas and Fibonacci numbers satisfy the relations 

L2
n - 5F2 = 4(-l)* and LmFm = F2m. 

lh(L0K<m 1 (Nagell [6]): The equation Ax3 + By3 = C, where 3J(AB if C = 3 
has at most one solution in nonzero integers (u9 v ) . There is a unique ex-
ception for the equation x3 + 2y3 = 3, which has exactly the two solutions 
(u, v) = (1, 1) and (-5, 4). 

T/iea/iem 3 (Nagell [7, p. 28]): If n is an odd integer >_ 3, A is a square-
free integer >_ 1, and the class number of the field Q(/^A) is not divisible 
by n then the equation Ax2 + 1 = yn has no solutions in integers x and y for 
y odd and >_ 1 apart from x = ±11, y = 3 for 4 = 2 and n = 5. 

Tfieô em 4 (Nagell [7, p. 29]): Let n be an odd integer >. 3 and let A be 
a square-free integer _> 3. If the class number of the field Q{/^-A) is not 
divisible by n, the equation Ax2 + 4 = yn has no solutions in odd integers A9 
x, and y, 

Thzotim 5 (Af Ekenstam [1], p. 5]): Let £ be the fundamental unit of the 
ring R(/m). If N(e) = -1, the equation x2n - My2n = 1 has no integer solu-
tions with y ^ 0. 

Tfieô em 6 [5, p. 301]: Let p be an odd prime. Then the equation y2 + 1 
= xp is impossible for x > 1. 

451 
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B. CUBES IN THE LUCAS SEQUENCE 

By Theorem 1, we have 

(1) L2
n - 5F2 = 4(-l)n. 

If Ln = y 3 , Fn = x, we get 
y6 - 5x2 = 4(-l)n 

with w > 0 and x > 0. Suppose first n is even, then we get 

y 6 - 4 = 5x2. 
If 2/ is even, this equation is impossible mod 32. Thus, y is odd, and 

(y3 + 2)(y3 - 2) = x2 

with 

(y3 + 2, y3 - 2) = 1; 

this implies that either 

( y3 + 2 = u2 

\ y3 - 2 = 5vz 

or , 

\ y 3
 + 2 = 5f 

\y3 - 2 = v2. 
But it is well known (see, e.g., [9], pp. 399-400) that the only solution 

of the equation y3 + 2 == u2 is y = -1, u = 1. This, however, does not yield 
any value for V. Further, the equation y3 - 2 = v2 has only the solution 
V = ±5, y = 3. But this does not yield a value for u. Therefore, there are 
no cubes in the sequence L2m-

Note: This result also follows immediately from Theorem 5 since the class 
number of Q(/5) is 1. 

Next, suppose n is odd, then we get 

(2) 5x2 - A = yK 
If y is even, this equation is impossible mod 32. Thus x and y are odd, and 
(2) reduces to 

(3) 5x2 - 4 = u3, 
with u a square. Equation (3) may be written 

(2 + /5#)(2 - /5x) = u3, 

and since x is odd, 

(2 + /5x9 2 - /5x) = 1. 

Thus we conclude 

2 + /B* = (^^)3 

(5) 2 + /5*= (^^y(k+^y 
(4) 

or 

Equation (4) yields 

3a2b + 5£3 = 8, 
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which, in turn, yields 

a = b = 1, v = 1. 
To solve (5), we note that 

fa + b/5 \ . 2 
I 2 / = u» i.e., a N I " ' """ ) = u9 i.e., a'1 - 5b2 = 4w. 

Since u is odd, a and b are odd, thus ( ~ 1 is of the form S + 2V5", with 
5 even and T odd. And \ / 

'X ± £ \ {S + TS5) 

can never be of the form A + B/5. Thus, (5) is impossible. We have proved 

TkzoSl&m 7: The only cube in the Lucas sequence is Lj = 1. 

C. CUBES IN THE FIBONACCI SEQUENCE 

First, suppose m is even. Then F2n = x3 implies FnLn = x3. If n f 0 (mod 
3), (Fn, Ln) = 1. Thus, Ln = t3 and n = 1. 

If n = 0 (mod 3), (Fn , Ln) = 2 and either: 

a. Ln Is a cube , which i s i m p o s s i b l e ; 
b . Ln = 2 s 3 , F = 42/3; or 
c . Ln = 4 s 3 , F = 2z/3. 

We now use equation (1) and first suppose n even. Then case (b) reduces to 

z3 - 20y3 = 1, 

with y and z squares. By Theorem 2, the only solutions of this equation are 
z = 1, y = 0, and z = -19, y = -7. Of these, only the first yields a sqaure 
for z and we get n = 0. Case (c) reduces to solving 

4s3 - 5y3 = 1, 

with y and s squares. Again, by Theorem 2, the only solution of this equa-
tion is z = -1, y = -1, which does not yield a square value for z. If n is 
odd, we get the two equations 

z3 - 20y3 = -1 and 4s3 - 5y3 = -1 

with z and zy squares. By the results above, the only solutions of these two 
equations are (s, y) = (-1, 0), (19, 7), and (1, 1). Of these, only the last 
yields a square value of z and we get n - 3. Thus, the only cubes in the se-
quence Fln are FQ = 0, F2 = 1, and Fs = 8. 

If 772 is odd, and Fm = x3
 9 Fm cannot be even since then (1) yields 

Ll - 5xs = -4, 
which is impossible (mod 32). Thus, the problem reduces to 

(6) 10y3 - 8 = 2x2
9 

with x.and y odd. But (6) was solved completely in [4, pp. 107-110], We out-
line the solution here. Let 03 = 10, where 0 is real. We use the fact that 
Z[0] is a unique factorization domain and apply ideal factorization theory to 
reduce this problem to 

(7) yd - 2 = (-2 + 6) (a + fee + g e 2 \ 
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and three other equations, all of which may be proved impossible by congru-
ence conditions. 

To solve (7), we equate coefficients of 0 and 02 to get 

(8) a2 + 20bc - 5b2 - Wac = 9, 

and 

(9) b2 + 2ac = ab + 5c2. 

Equation (9) may be written 

(6 + 2c - a)(b - 2c) = c2 , 

and (8) and (9) yield a odd, b even, and c even. Thus, we conclude 

b - a + 2c = dh\ 
(10) b - 2c = kdh\ 

c - 2dh1h2e 
where e = ±1, d, h19 h2 are rational integers, and d > 0. If we solve (10) 
for a, b9 c and substitute in (8) we get 

hh + 4ft*7z2e - 2 4 f t ^ - 1 6 / z ^ e - 64/z!j = 9Id2, 

which reduces to 

(11) uh - 30u2v2 + 40m;3 - 15vh = 9Id2. 

If d - 1, (11) is impossible (mod 5). If d = 3, (11) may be written 

(u - 5v)(u3 + 5u2v - 5uv2 + 15y3) = 1, 

and from this it follows easily that the only integer solutions of (11) are 
(u, V) = (±1, 0). Thus, we have: 

Th<LQHdm 8: The only cubes in the Fibonacci sequence are 

FQ = 0, Fl = F2 = 1, and F6 = 8. 

D. HIGHER POWERS IN THE LUCAS AND FIBONACCI SEQUENCES 

In this section, we investigate the problem of finding all pth powers in 
the Fibonacci and Lucas sequences, where p is a prime and p .> 5. We show 
that L3n and L2n are never pth powers, and that if F t is a pth power, then 
t = 0 or 1. We conclude by finding all the 5th powers in the sequence Fln. 

Suppose Ln = xp; then equation (1) yields 

X*P _ 5j?2 = 4(-l)n. 

If n = 0 (mod 3), x and F2n are even, and this equation is impossible (mod 
32) regardless of the parity of n. 

Suppose further that n = 2m, m % 0 (mod 3); then (1) yields 

5F2 + 4 = x2?, 

with x and Fm odd. Since the class number of §(/̂ 3") is 2, this equation has 
no solutions with Fm odd. Thus, we have: 

Tko.OSi2Jfn 9: L3k and L2k are never pth powers for any k. Finally, if n is 
odd, n ^ 0 (mod 3), we have to solve 

5y2 - 4 = ar2p. 
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Unfortunately, known methods of treating this equation lead to the solution 
of irreducible equations. Thus, it is quite difficult to solve. 

Now let us suppose F„ = xp. If n = 3 (mod 6), Fn is even and Equation 
(1) becomes 

L2
n - 5x2p = -4, 

which is impossible (mod 32). Thus, F&k + 3 i s n e v e r a Pt n power for any k. 
Now we prove: 

IhdQKm 10: If F6k is a pth power, then k = 0. 

VKQOfa: Let m = 3k 9 then (Fm, Lm) = 2, and since L$k is not a pth power, 
we conclude: 

a. ( Lm = 2MP 

or 

b. JL m = 2 r p - V 

with u and i? odd, m even, and r >_ 1. 
Now note that m cannot be odd in either case, since then (1) yields 

L2
m - 5F2 = -4 = L2 - 5 • 2 V p for some integer t , 

which is impossible (mod 32). 
If we substitute Fm - 2vp in (1), case (b) reduces to 

(12) x2 - 1 = 5v2p, 

since m is even. If v is odd, (12) is impossible (mod 8). Thus, x is odd, 
V is even, and (12) yields 

u2p 

i.e., 
U
2P _ 5V*P = i. 

Since the fundamental unit of Z[l, /!"] is 2 + 5 and/i/(2 + /J) = -1, this 
equation has no solution for v 4- 0, by Theorem 5. The solution V - 0 yields 
LQ = 2 and p = 2, which is impossible. Thus, F6k ^ 2vp for any k 4 0. 

To solve case (a), suppose m ^ 0 and m = 2ti, & odd, £ = 0 (mod 3). Then 

Since F2t-\l ^ 2?;p and Ĵ *-1*, i s n o t a P1-*1 Power5 w e conclude 

F2t-lg - 2 z;l5 

with wx and V1 odd. By continuing this process, we eventually get 

F = yp for some s and y odd, 

F% - yp for 2/ odd, or 

F£ = 2syp for some s and y odd. 

tf + 
2 

1 

1 
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Since F2
8i an^ Fi a r e even if I = 0 (mod 3), the first two of these equations 

are impossible. 
To settle the third, note that we have 

Ft-2'y* 

with I odd, & = 0 (mod 3) and # and 2/ odd. Then (1) yields 

x2? - 5 • 4s"Vp = -1. 
If s > 1, this equation is impossible mod 20; if s = 1, we get 

X2P - 5l/2P = -1, 

which is impossible mod 4, since x and y are odd. Thus, m = 0. 
Next, suppose m f 0 (mod 3), and F2m is a pth power. Then 

^2m = FmLmi (Fm J ^m) = ! 

and i^ and Lm are both pth powers. This enables us to prove the following 
result: 

Tk2.0h.QM 11: If F2tm is a pth power, m odd, w? j£ 0 (mod 3), then t <_ 1. 

Vh.00^: Suppose ^2t is a pth power with m odd, m $ 0 (mod 3) and £ > 1. 
Then 

^ ' / n " F2t-1mL2t-lm 

and both L2t-\ and F2t-i a r e P1-*1 Powers« Further, 

^V^m = F 2 t " 2 m L 2 t - 2 m > 
and both F2t-zm and L2t-zm are powers. By continuing this process, we even-
tually get 

F = F L 
and both F2 and L are pth powers. This is impossible by Theorem 9, and 
thus t £ l.m 

If m is odd, m $ 0 (mod 3) and F2m is a pth power, then 

F2m = FmLm 

and bo th Fm and Lm a r e p t h powers . Thus, we must so lve 

(13) x2? - 5z/2P = - 4 . 
Unfortunately, it seems quite difficult to solve this equation for arbitrary 
p. We shall g'ive the solution for p = 5 presently, and shall return to (13) 
in a future paper. 

Finally, if m is odd and Fm = xp, we have to solve 

x2p+ 4 = 5y2p , 
with y odd. Again, the solution of this equation leads to irreducible equa-
tions and is thus quite difficult to solve. To conclude this section, we prove 

Tho.OH.Qjm 12: The only 5th power in the sequence F2m is F2 = 1. 

VKOO^: if we substitute p = 5 in (13), it reduces to 
(14) x5 + 5z/5 = 4, 

and we must prove that the only integer solution of this equation is x = -1, 
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y = 1. To this end, we consider the field S(9) , where G5 = 5. We find that 
an integral basis is (1, 8, 92, 93, 94) and that a pair of fundamental units 
is given by 

e1 = 1 - 10 - 592 + 363 + 4 9 \ 

e2 = -24 + 159 - 562 - 203 + 5Qk. 

Since (2, -1 + 9)2 = (-1 + 9), the only ideal of norm 4 is (-1 + 9). Thus, 
(14) reduces to 

(15) u + vQ = (-1 + 9)e™e:2\ 

We now use Skolemfs method [8]. We find 

e? = 1 + 55x 
with 

?! = 393 + 494 + 5A 
and 

4 = i + 5?2 
with 

52 = 393 + 5B, 
where A and B are elements of Z[9]. 

If we write m - 5u + r9 n = 5v + s and treat (15) as a congruence (mod 5) , 
we find that it holds only for r = s = 0. Thus, (15) may be written 

u + vQ = (-1 + 9)(1 + 55i)w(l + 5?2)y 

= (-1 + 9)[1 + 5(u^ + z;?2) + . . . ] . 

Now we equate the coefficients of 93 and 9̂  to 0 and get 

-3w + 3v + 0(5) = 0, 

-w + 3v + 0(5) = 0. 

1-3 3| 
Since 2 0 (mod 5), 

|-1 31 
the equation 

u + vQ + wQ2 = (-1 + 9)e*e* 

has no solution except m = n = 0, when 777 = n = 0 (mod 5), by a result of Sko-
lem [8] and Avanesov [2], Thus, the only solution of (15) Is m = n = 0, and 
the result follows. 

E. LUCAS NUMBERS OF THE FORM yp + 1 

For our final result, we prove 

ThdOtim 13: Let p be an odd prime. If L2m = yp + 1, then m = 0. 

P/ioofi: Again, we use (1). We set Llm = yp + 1, F2m = x, and get 

(yp + l) 2 - 4 = 5x2, 
i.e. , 

y2p + 2yp - 3 = 5x2, 
i.e. , 

(yp + 3)(2/P - 1) = 5x2. 



458 ON NTH POWERS IN THE LUCAS AND FIBONACCI SERIES [Oct. 

The GDC of yp 4- 3 and yp - 1 divides 4. If y is even, both these numbers are 
relatively prime, and we get 

\ yP - 1 = 5v2, 
or 

U P + 3 = 5w2, 

\yP - 1 = u2. 

Since 1/ is even, both these systems are impossible (mod 8). 
Suppose next that y = 3 (mod 4). Then (yp + 3, yp - 1) = 2, and we get 

( yP + 3 = 10u2, 

\yP - 1 = 2y2. 

By Theorem 3, the equation y - 1 = IQu2 has no solution with y odd for y ^ 1 
since the class number of Q(V-±0) is 2. But 2/ = 1 contradicts y = 3 (mod 4). 
Further, z/p - 1 = 2v has no solution with y odd except y = 1, t> = 0, and 2/ = 
3, V = ±11, p = 5. But z/ = 3 does not yield a value for u. 

Finally, if y = 1 (mod 4), (yp + 3, zyp - 1) = 4, and we get 

yp + 3 = 20z/, 

2yP - 1 = 4^2, 

2/P + 3 = 4u2, 

2/P - 1 = 20y2. 

By Theorem 6, yp - 1 = 4^2 has no integer solution except y = 1, v = 0. 
However, this does not yield a value for u. By Theorem 3, the only solution 
of yp - 1 = 20t>2 with y odd is z/ = 1, v = 0, and we get 

y = 1, u = 1, and a? = 0. 

The result follows. 
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GENERALIZED TWO-PILE FIBONACCI NIM 

JIM FLANIGAN 
University of California at Los Angeles, Los Angeles, CA 90024 

1. INTRODUCTION 

Consider a take-away game with one pile of chips. Two players alternate-
ly remove a positive number of chips from the pile. A player may remove from 
1 to f(t) chips on his move, t being the number removed by his opponent on 
the previous move. The last player able to move wins. 

In 1963, Whinihan [3] revealed winning strategies for the case when f(t) -
It, the so-called Fibonacci Nim. In 1970, Schwenk [2] solved all games for / 
nondecreasing and fit) _> t \/t. In 1977, Epp & Ferguson [1] extended the solu-
tion to the class where f is nondecreasing and fil) >_ 1. 

Recently, Ferguson solved a two-pile analogue of Fibonacci Nim. This mo-
tivated the author to investigate take-away games with more than one pile of 
chips. In this paper, winning strategies are presented for a class of two-
pile take-away games which generalize two-pile Fibonacci Nim. 

2. THE TWO-PILE GAME 

Play begins with two piles containing m and mf chips and a positive in-
teger w. Player I selects a pile and removes from 1 to w chips. Suppose t 
chips are taken. Player II responds by taking from 1 to f(t) chips from one 
of the piles. We assume / is nondecreasing and f(t) >_ t Vt. The two players 
alternate moves in this fashion. The player who leaves both piles empty is 
the winner. If m = mf, Player II is assured a win. 

Set d = mf - m. For d >_ 1, define Lim, d) to be the least value of w for 
which Player I can win. Set Lim, 0) = °°  Mm >_ 0. One can systematically gen-
erate a tableau of values for Lim, d). Given the position im,d,w), the play-
er about to move can win iff he can: 

(1) take t chips, 1 <_ t <_ W, from the large pile, leaving the next player 
in position (m, d - t , fit)) with f(t) < L(m, d - t) ; or 

(2) take t chips, 1 <_ t <_ w9 from the small pile, leaving the next player 
in position (m - t , d + t, f(t)) with fit) < Lim - t , d + t). 

(See Fig. 2.1.) Consequently, the tableau is governed by the functional 
equation 

Lim, d) = min|t > 0\fit) < Lim, d - t) or fit) < Lim - t , d + £)} 

subject to Lim, 0) = +°°  Mm >_ 0. Note that L(m, d) <. d \/d >. 1. Dr. Ferguson 
has written a computer program which can quickly furnish the players with a 
60 x 40 tableau. As an illustration, Figure 2.2 gives a tableau for the two-
pile game with fit) = It, two-pile Fibonacci Nim. 
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m 

m 

d + t 
L(0, 1) L(0, 2) 

L(l, 1) L(l, 2) 

L(m - t, d + t) 

(1) 
(2)/ 

L(m, d - t)~+ 

Fig. 2.1 The Tableau 

•L(m9 d) 

Given /, one can construct a strictly-increasing infinite sequence <^Hk\°° 
as follows: E1 = 1 and for k >_ 1, Hk + 1 = Hk + #j where j is the least inte-
ger such that f(Hj) >. Ey_. For example, ^ # k ^ " is the Fibonacci sequence when 
/(£) = 2t, and Hk = 2k~l, fe 2. 1 when /(£) = £. Schwenk [2] showed that each 
positive integer d can be represented as a unique sum of the Hk*s 

8 

(2.1) d = £ X . such that f(fln.) < H„.+1 f or ^ 2, s - 1. 
<£«! 

0) chips, Moreover, for the take-away game with a single pile of d (= 
Player I can win iff he can remove Hni chips from the pile (i.e., iff Hni <. 
w). So for the two-pile game with one pile exhausted, 

(2.2) L(0, d) = Hni. 

For the one-pile game with d = Hni + ••• 4- HHe , s >. 1, chips, Hni is the 
key term. It turns out: that for the two-pile game where d = mr - m - Hni + 
Hnz + ••• + Hng , s >_ 15, #n2 (when it exists) as well as Hni plays a decisive 
vole. Denote nY - n and n2 (when it exists) = n + v. Thus, we shall write 

d = Hn + Hn + v + ••• + Hng , e >. 1. 
For each positive integer k, define i(k) to be the greatest integer such 

that 

(2.3) /(£*-.*(*>) >£*. 

Note that £(1) = 0, l(k) >. 0, and Hk + 1 Hk + #*-*<*) Vk 21 1. 

In the sequel, we present winning strategies for the class of two-pile 
games for which i(k) e (0, l} \/k. We refer to such games as generalised two-
pile Fibonacci Nim. 

It would be nice if one could find some NASC on / such that i(k) e {0, l} 
\/k. The following partial results have been obtained: 

(1) If f(t) < (5/2)t Vt, then l(k) e {O, l} \fk. 
In particular, for /(£) = ct, 
(a) if 1 <. o < 2, then l(k) = 0 Vfe > 1; 
(b) if 2 < c < 5/2, then £(fe) = 1 Mk >. 2; 
(c) if c > 5/2, then £(3) = 2 or £(4) = 2. 

(2) If £(fe) e {0, 1} V/c, then /(it) < 6t V£. 

(3) A NASC such that i(k) = 0 V H s /(2fe) < 2k+1 Mk >_ 0. 
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(4) A NASC such that £(&) = 1 Mk >_ 2 is Fk <_ f(Fk _ ±) < Fk + 1 \/k ^ 2 , where 
< ^ X is the Fibonacci sequence 1, 25 3, 5, 8, 135 ... . 
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^ • J - ^ < f ^ - v f < J ^ < r < f - * < r ^ < r < f < r < f ' < t ^ - < f < f H H H H H H H H H H H H H H H H H H H H H H 
COCOCOCOCOCOC^C^COCOCOC^COCOCOCOCOCOCOCOCOCMCM^Csl 
H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 

COCOCMCMCMCMCMCMCMCMCMCMCMCMCMCMCsJCMCMCMCMCMCslCvlCMCNCMC^ 

CNHrHCNCMCMCMCMCMCMCMCsJCMCMCMCMCMCMCvlCMCMCMCM(NCMCMCMCMCN 

r H r H r H H r H r H r H r H r H r H r H H H H r H r H i H r H r H r H i H H H H H r H H r H H r H H H r H H r H H i H H H H H H r H 

o o o o c o o o o o i n L n i n L O u o i n L n L o o i n i n i n i n u o L n u o L n ^ ^ ^ ^ L O u ^ 

( N H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 

t n t n i n c o c o c o c o c o i n L n i n i n i n i n i n i n i n i n L O L n 

r H r H t H r H t H t H H r H i H H H H r H t H H H t H r H r H r H r H H r H r H > H i H r H i H r H i H H r H r H t H r H i H H r H r H H 

COCOCMCMCMCOCOCOCOCOCMCMCMCMCMCMCNCMCMCMCMCMCMCMCMCMCMCMCN 

CMiHrHCMCMCMiHrHrHiHiHCMCMCMCMCvJCNCMCMCMCMCMCM(NCMCMCMCMCMCMC^ 

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 

H H H H H H H H H H H H H r O n t n n c n r o r O c n c n r o c n c n c O P I t n . c n r o r o r o n n H H H H H H H H H 
C N l C N C ^ O J O J i N N C N N C N t N N i N H H H H H H H H H H r l H H H H H r l H H r l H i N N N l N i N C N f N l l N N 
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H H H H H H H H H H H H H H H . H H H H H H H H H H H H H H H H H H H H H ' H H H H H H H 
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CM 

* Computer program supplied by T. S. Ferguson. 
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3. SOME GOOD AND BAD MOVES 

L&nma: For the position (m, d) 9 d = Hn + ••• + Hn , s >v 1, it is never a 
winning move to take 

(1) t chips from the large pile if 0 < t < Hn. 
(2) t chips from the small pile if 0 < t < En 9 t 4- #n-£(*)• 

It is always a winning move to take 
(3) En chips from the large pile with the possible exception of the spe-

cial ease: d = En + En + 2 + • • • + EUs , s > 2 , l(n + 1) = l{n + 2) = 1, m >_ Hn + 1. 
(4) Hn-i(n) chips from the small pile when d = En 4- Hn + 2+ • • • + Eng9 s >_2, 

Z(n + 1) =£(n + 2) = 1, m 2l^n-£(n)« (This contains the special case.) 

P/LOÔ : The statements (l)-(4) imply that L(rn9 d) e \En9 Hn„Z(n A Mm > 0. 
We shall use this observation and double induction in our argument. 

Schwenk [2] proved the assertions for the positions (0, d)'9 Md >_ 1 (see 
equation 2.2). Suppose they hold for the positions (777, d) Mm <_ M - 1, Md J> 1 
for some M >_ 1. We must show that (l>-(4) hold for the positions (M, d) Md >_ 1. 

The claim is trivial for position (M, 1). Suppose it is true for (M, d) 
Md <_ D - 1 for some D _> 2. Consider the two types of moves which can be made 
from position (Af, D) , D = Hn + Hn + r + • • • + HHs , s >_ 1. 

A. Taking i^om tkz b^g pilzi 
Take t chips, 0 < t < Hn, from the big pile. Then Z? - £ = #*+•••+ #Me 

where k < n. t >. H^.i if A(/c) = 1, and t >_ Ek if £(fc) = 0. By the inductive 
assumption L(x¥, Z) - t) .<. i7̂ . Hence, 

/(t) >: f(Hk_1) >_Ek >_ L(M, D - t) if Z(k) = 1, 
and 

fit) >L f(Hk) .> ̂  >: L(M, D - t) if l(k) = 0. 

Statement (1) follows. 
Suppose you take t - En chips from the big pile. Consider the following 

cases. 
(1) D = En. Taking En chips from the large pile is obviously a winning 

move. 

(2) D > En. Write D - En = En + r + • • • + Es. 

(a) r - 1. Necessarily, l(n + 1) = 0. By the inductive assumption, 
L(M9 D - En) = Hn + 1. Thus, f(En) < L(M9 D - En) and it is a good 
move to take En chips from the large pile. 

(b) r >_ 3. By the inductive assumption, L(M, D - En) J> En + 2> Thus, 
f(En)< En + 2 <. L(M9 D - En) and it is a good move to take En chips 
from the large pile. 

(c) r = 2 . 
(i) &(n 4- 1) = 0. f(En) < En + i and, by the inductive assumption, 

L(M9 D - Hn) >. Hn+i. A good move is to take En chips from the 
big pile. 

(ii) l{n + 1) = 1 and l(n + 2) = 0. By the second equation and 
the inductive assumption, L(M9 D - En) = En + 2. Thus, f(En) < 
En + 2 <. L(M9 D - En) , so taking En chips from the large pile 
wins. 

(iii) £(n + 1) = 1 and i(n + 2) = 1. Here f(En) >_ Hn + 1. By the in-
ductive assumption, it is possible that L(M9 D - En) = En + 1 . 
If L(M, D - En) = En + l9 then M >_ En + 1 follows from (1) of the 
Lemma. The possibility of f(En) >_ L(M9 D - En) signifies that 
taking En chips from the large pile might be a bad move. Thus, 
(3) holds. 
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B. Tabing {n.om tkz £>mcUUL pZlzi 
If t chips, 0 < t < Hn9 t ^ #n-£(n)> are removed from the small pile, the 

resulting position is (M - t9 D + t) , D + t = Hn _ k + • • • + EUs for some k >_ 1 
and t >. Hn_k. But L(M - t, D + t) £ #n_/< by assumption. Since 

f(t) >_t>_En_k>_L(M-t9D + t)9 

this is a bad move. Thus, (2) holds. 

C. C<Z6£ A2.c.(iii) /icv^Uttcd: 
Here £ = #n + #n + 2 + . . . + Ene , £(n + 1) = £(n + 2) = 1. Suppose taking Hn 

chips from the large pile is not a good move. Then, L(M9 D - En) = Hn+i. 
For position (M, D) , M >. Hn~i(n), take # n _ £ ( n ) chips from the small pile 

to get (M - Hn-Mn) , D + #*-*(«)). £ + #w - A(n ) " 

En8 = # n + x + # n + 2 + • • • + HHs = # n + k + • • • + #„s,9 for some k >. 3 and nsi >. ns , 
since l(n + 2) = 1. By the inductive assumption, L(M - Hn-i(n)> D + #n-£.(«)) 
2l#n + 2. But /(#«-*<*)) <-/(#«) < Hn + 2. Thus, 

/(#«-*<«)) < ̂  " Hn-Un)9 D + Rn-Hn)). 
Taking En-z(n) chips from the small pile is a good move, so (4) holds. 

In A, B, and C we established that (l)-(4) hold for the position (M, D), 
which completes the induction on d. Hence, they hold for (M9 d) Md _> 1. This 
in turn completes the induction on m. Thus, (l)-(4) hold for (rn9 d) Mm >_ 0, 
Md >. 1. Q.E.D. 

CoKoJUaAy 1: L(m9 d) e {En9 Hn.Hn)} Mm >. 0. 

Observe that if l(n) = 0, then L0??, 6?) = En Mm >_ 0. But when £(n) 
= 1, there are two possible values L(m9 d) might assume. However, if m <-Hn_19 
then L(m9 d) = En« 

CofiolZcuiy 2—How to wtn (^ you can) u)kcn you know L(m, d) : 

(1) If L(m9 d) = Hn_l9 take #n_i chips from the small pile to win. 
(2) If L(m9 d) = EU9 a winning move is to take Hn chips from the large 

pile, except possibly for the special case cited in the Lemma. In 
the special case, take Hn chips from the small pile to win. 

k. HOW TO WIN IF YOU CAN 

Knowing L(m9 d) at the beginning of play reveals whether Player I has a 
winning strategy. Compare L(m9 d) and w. If Player I knows the value of L(m9 
d) and w J> L(m9 d), he can use Corollary 2 to determine a winning move. 

Which of the two possible values L(m9 d) assumes is not obvious under 
certain circumstances. The position (m9 d9 w) defies immediate classification 
when L(m9 d) is unknown and En-±<^w < Hn. 

Fortunately, not knowing whether one can win at the beginning of play 
does not -prevent one from describing a winning strategy, provided such a 
strategy exists. A strategy of play, constructed from the Corollaries, is 
presented in Table 4.1. This table tells how to move optimally in all situ-
ations in which there exists a possibility of winning. An N(P) represents a 
position for which there exists a winning move for Player I (II). 

The only case in which the status of a position is now known at the start 
of play arises in 2(b) of the table. There, the player about to move is an 
optimist and pretends L(m9 d) = En_le This dictates taking En.1 chips from 
the small pile. The outcome of the game will reveal the value of L(m9 d) de-
pending on who wins. 
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Tab le 4 . 1 . How To Win ( I f You Can) W i t h o u t Knowing L(m, d) 

(1) I f &(n) = 0 [so n e c e s s a r i l y L(m, d) = En] and 

(a) d = En + Hn+2 + ••" + # » . , s >_ 2 , £(n + 2) = l(n + 1) = 1 

m >_ En m < Hn 

w hHn 

w < En 

(b) no t as in (a) 

w < H„ 

N, Take Hn from s.p. 

P 

N, Take Hn from l.p. 

P 

m >_ Hn m < Hn 

N9 Take En from l.p. 

P 

N, Take En from l.p. 

P 

(2) I f ft(n) = 1 and 

(a) d = Hn + # n + 2 + ••• + Hng , s >_ 2 , £(n + 2) = £(n + 1) = 1 

m>.Hn-i(L(m9 d) = ^ . ^ m<Hn^L(m9 d) = # n ) 

Hn>w>Hn_1 

(b) n o t as i n (a) 

w >Hn 

Hn >W>Hn.1 

N9 Take Hn_1 from s.p. 

N9 Take En_1 from s.p. 

P 

N9 Take #n from l.p. 

P 

P 

>Hn-i(L(m, d) = ??) m<Hn.1(L{m, d) = H„) 

N, Take #n from l.p. 

??, Take ^n_x from s.p. 

P 

/!7, Take En from l.p. 

P 

P 

(Note: s.p. = small pile; l.p. = large pile.) 

As an illustration, consider two-pile Fibonacci Nim. It was first solved 
by Ferguson in the form of Table 4.1. For fit) - 2t9 the sequence <^Eky°° is 
the Fibonacci sequence. The first few values are 

k 
Hk 

1 
1 

2 
2 

3 
3 

4 
5 

5 
8 

6 
13 

7 
21 

8 
34 

9 
55 

10 
89 

£(1) = 0 and l(k) = 1 Mk :> 2, since Ek+l = Ek + Ek.1 Mk >_2. What is the sta-
tus of position m = 20, d = 42, w = 6? d = 34 + 8 = #8 + E5. Player I is an 
optimist and assumes that L(20, 42) = 5, not 8. 2(b) in the table tells him 
to take 5 chips from the small pile. 
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Player II is left in position w = 2 0 - 5 = 1 5 , d = 4 2 + 5 = 4 7 , ^ = /(5) 
= 10. d = 34 + 13 = HQ + #6, £(6) = 1, r = 2, £(8) = £(7) = 1 . #5 = 8 <. w 
< H6 = 13. By 2(a) of the above table, this is a winning position (L(15, 47) 
= 8). Player II takes 8 chips from the small pile to win. We conclude that 
Player I has no winning strategy for the position (20, 42, 6). Consequently, 
L(20, 42) = 8, not 5. 

Only after playing the game for a while were we able to determine who 
could win. 

5. ELIMINATING SUSPENSE 

It turns out that the suspense which can arise when L(m9 d) is unknown 
can be eliminated. The Theorem of this section presents a simple method for 
computing L(m, d). If d = Hn + • • • + EUs , then the entries in the dth column 
of the tableau can assume only the values En and Hn_±. We say that the dth 
column of the tableau makes k flips, 0 <. k <_ °°, if it has the form in Figure 
5.1. If k < °°, the kth flip is followed by an infinite string of 

Hn
fs if & is even 

En_iS if k is odd. 

vd d = ff„ + + Er, 

Hn-1 

Hn_1 entries 

• H„ entries 

Hn+1 entries 

-first flip 

.second flip 

•third flip 
E n ~ l S 

'Hn+2 entries 

Fig. 5.1 The dth Column Makes k "flips" 

Tkco/im: For n >_ 1, set An = {z\z >_ 0, l(n + z) = 0}. Then: 

A. SJjnpJLt Ccti>£i d = Hn. The <£th column makes k flips, where k = min A n . 
(Convention: min 0 = ° °.) 

B. Compound C(U&: d = Hn + Hn + r + - - - + En& , s >. 2. The dth column makes fc 
flips, where 

p - 1 if min An > r, 

min i4n if min An <. r, 
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A. Slmpln Code: 

(1) An i- 0. We proceed by induction on k = min An. For k = 0, L(m, #„) 
= En V/n >. 0, since X(n) = 0. There are zero flips. 

Suppose the result holds V/< <L K - 1 for some Z >_ 1. (That is, if d - Em 
and min Am <, K -• 1, then the column for d ~ Em makes min Am flips.) 

By the Lemma, each entry of the column d = Hn is En, unless a good move 
can be made by taking B.n_1 from the small pile. Removing En-± chips from the 
small pile is a winning move for position (M, En) , M >_En.1 iff f(En_{) < 
LQd - En.l9 En + En_1). Since i(n) = 1, #n + En_± = En + 1 and L(M - #n_l5 ff„ + 1) 
= En + i or #n. Moreover, #n + i > /(#n-i) -̂. #??• This can be a good move iff 
L(M - #n_i, En + 1) = En + X. The column <i = #n + i makes Z ~ 1 flips. Thus, the 
column d = En makes K flips. (See Fig. 5.2). This completes the induction on 
k. 

(2) An = 0, l{n + k) = 1 and An + k= 0 V/c >. 0. We show that each column 
d = En+k, k >. 0, makes infinitely many flips. Let us proceed by induction on 
m. 

2 En+1 - En + En_1 

Fig. 5.2 Case A(1] 

By the remark to Corollary 1, L(m9 En + k) = En + k Mm < En_±, Mk >_ 0. The 
tableau has the desired values for the first En_i entries in columns d = En+li9 
k :> 0. 

Suppose that the tableau assumes the desired values in the entries 171=0, 
1, ..., M - 1 in the columns 
find &0 ^ 0 such that 

ff. n + k ' k >. 0 , f o r some M J> # „ _ ! . . One can 

# „ _ ! + i?n + . - + # n + ko - 1 >M > En_x + En + . . . + # n + k o - ! - 1. 
' -1 i f k0 = 0 , 

E q u i v a l e n t l y , # „ + • • • + # n + k - 1 >. M - En_±>< 
En + - - - + ffn + k . ! - 1 i f fe0 > I -
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By the inductive assumption, 

L(M - H„.lt Hn+1) = 
H„ if k 0 is even, 
Hn if kQ is odd 

(See Fig. 5.3.) Thus, for the position (M, Hn), 

(a) if k0 is even, taking Hn_1 chips from the small pi±e is a good 
move since /(#„-i) < Hn + 1 = L(M - Hn_l9 Hn + 1); 

(b) if kQ is odd, taking Hn _ x chips from the small pile is a bad move 
since f(Hn_±) >. Hn = L(M - Hn_l9 Hn + 1) . 

As desired, we conclude 

En if kQ is odd, 
£(M, #n) 

^n_1 if &0 is even. 

An identical argument reveals that the entries L(M9 Hn + k), k > 0, have the 
desired values. Thus, the row m-M assumes the desired values in the entries 
corresponding to columns d = EnJrk^ k ^0. This completes the induction on 777. 

J5L Hn+1 ~ Hn + Hn-1 

2w-l 

H 

H. rc+1 

H« 

n-1 

ln-l 

2n+l 

zn+l 

&0 even 

zn-i 

B„+ko\L(M, Hn) 

g o o d j ^ -

fCHn-0 

&0 odd 
zn-l 

#n 

Hn+k0{L(M, EnY 

bad 5 ° ^ - -
.*——"̂  \ > Hn 
f ( H n - l } " 

• ( 

_ _ - ^ L(M - Hn_l9 Hn+1)} Hn+kQ 

Fig., 5.3 Case A(2) 
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B* Compound Coae: 

Suppose &(n) = 0. Then L(m, d) = #n Mm >_ 0. There are no flips in the 
dth column. Note that min An = 0. 

If ^(n) ~ 1> w e consider two cases: 

(1) k = min An <. p. By Corollary 1, L(w, d - #n + Hn + k) >_ Hn + k \/m >. 0. 
The tableau from column d - Hn + 1 to column d - Hn + Hn + k- 1, inclusive, is 
a copy of the tableau from column 1 to column Hn + k - 1, inclusive. The dth 
column is identical to the #nth column. By Part A, the latter column makes k 
flips, k - min An. 

(2) min An > r. Here £(n) = l(n + 1 ) = ... = i(n + v) = 1. Necessarily, 
r > 1. Let dr = d - Hn + Hn + r_1. Since l(n + p) = 1, dT has the form dr = 
#n + r + w+ ' *°  + Hna,,9 for some u >_ 1 and ns, _> ns. By Corollary 1, L (m9 dr) _> 
Hn+r + u-i. Consider the position (m, d") , m j> Hn + r-3, where d" = d - Hn + 
Hn+r-2* Note that dn + Hn+r-3 - d \ It is a good move to take Hn + v-3 chips 
from the small pile, since f(Hn+r_3) < Hn + r-i < L(m9 dr) . Thus, L (m, d" ) = 
Hn + r-3 ^m ^- Hn + r-3* The column d" - d - Hn + Hn + r_2 makes one flip. Since 
the column dn makes one flip, argue as in Part A(l) of the proof that column 
dnr = d - Hn + Hn+P_3 makes two flips. Similarly, column d%v -d - En + Bn + r_h 
makes three flips. Continue and argue that column d=d-Hn+Hn makes r -
1 flips. (See Fig. 5.4). Q.E.D. 

t + #n+r-r 

dtv = ••• 

t + Hn+r _ 4 

d" = 

t+ Hn+r-2 

d' = 

Hn+r-4Z\ ' Hn+r-3\ • / 

2 flips 

/ 3 flips 

r - 1 flips 

Fig. 5.^ Case B(2) 

Notation: t = d - Hn. 
*- = a good move. 
^ = a bad move. 

rc+r-u+l 
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6. TWO-PILE FIBONACCI NIM REVISITED 

Ferguson's solution for two-pile Fibonacci Nim was in the form of Table 
4.1. His solution does not necessarily reveal which player can win at the 
beginning of play, because L(m9 d) might not be known then. The Theorem tells 
us the value of L(m9 d) be revealing the behavior of the columns of the tab-
leau. Knowing L(m9 d) at the start of play leaves no uncertainty as to who 
can win. As an illustration of the Theorem, we compute L(m9 d) for two-pile 
Fibonacci Nim. 

Suppose d = En for some n. If d = H19 then L(m9 d) = H1 = IVm >_ 09 since 
£(1) = 0. If n 2.2, the dth column makes infinitely many flips, since An = 0. 
For a particular value of m9 find the least integer k0 >_ -1 such that En_± + 
En + ... + Hn+ko - 1 2 m. Then, 

S En if k0 is odd, 

En_± if k0 is even. 
Suppose d has compound form d = En + Hn+r + ••• + EHg , s > 2,- Note that 

r > 1. If n - 1, the dth column of the tableau has each entry equal to 1. 
If n 2 2, the dth column makes r - 1 flips. If k0 is the least integer such 
that k0 2 -1 and En.1 + ̂ w.+ ••• + En + k0 - 1 >.'̂ > then 

/ Hn if ̂ o i s o d d a n d ^ o — v ~~ 2, or 
\ p is odd and kQ > v - 2. 

£0?, d) = < 
I En_1 if kQ is even and ?c0 <. r - 2, or 
\ p is even and k0 > r - 2. 

7. CONCLUSION 

The function &(/c) was defined by (2.3). In Table 4.1, a winning strategy 
(provided one exists) is given for the class of two-pile take-away games in 
which l(k) £ {0, l} Vk >_ 1. By revealing L(m9 d), the Theorem enables us to 
determine at the beginning of play whether such a strategy exists for the 
player about to move. 

The author has considered several particular two-pile take-away games in 
which &(&) assumes values other than 0 and 1. For example, when f(t) = 3t, 
then H(k) = 3 Mk 2. 5. I have found no general solution for any such gamee 
Can we find solutions for the general class of games which impose no restric-
tions on l(k)1 Can we extend to games beginning with arbitrarily many piles 
of chips? Let me know if you can. 
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ON JfrH-POWER NUMERICAL CENTERS 

RAY STEINER 
Bowling Green State University, Bowling Green, Ohio 43402 

1. INTRODUCTION 

In a previous paper [2], we considered the problem of determining all 
positive integers which possess fcth-power numerical centers, and proved that 
there are infinitely many positive integers possessing first-power numerical 
centers and that the only positive integer possessing a second-power numeri-
cal center is 1. In the present paper, we treat the cases k = 3, 4, and 5. 

2. THE CASE k = 3 

Let us begin by recalling the following 

Vz^AMCtLovii Given the positive integer n, we call the positive integer 
N, (N <_ n), a /cth-power numerical center for n in case the sum of the fcth 
powers of the integers from 1 to N equals the sum of the kth powers from 
N to n. 

In this section, we prove the following 

IhdOKQM 1i The only positive integer possessing a third-power numerical 
center is 1. 

VK.00^: Let N be any third-power numerical center for the positive inte-
ger n. Since the sum of the cubes of the first N positive integers is given 
b y a 2 

Y- .3 _ N2(N + l) 2 

JU% " 4 

the condition that N be a third-power numerical center for n requires that 

N2(N + I) 2 n2(n + l) 2 _ N2(N - l) 2 

4 4 4 

On setting X = 2N2 + 1, we obtain 

(1) X2 - 2n2(n + I) 2 = 1. 

Let us now consider the following 
PSLObZQjm: To find a l l t r iangular numbers whose square i s also t r i angu la r . 

This requires 

(2) (Sfefil)2 . EU^J± . 
and, on setting X = 2n + 1, we again obtain equation (1). But equation (2) 
was solved by Ljunggren [3] and Cassels [1], who showed that its only positive 
integer solutions are (n, N) = (1, 1) and (3, 8). Thus, the only positive 
integer solutions of (1) with X odd are (x, n) - (3, 1) and (17, 3). 

From this, it follows that the only positive integer solution of (1) 
satisfying X = In + 1 is (J, ri) = (3, 1), and our result is proved. 

470 
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3. THE CASES k = 4 AND 5 

Since 

E'4 ^ + l)(6/l/3 + 9N2 + N - 1) 
% ~ 30 

the condition that N be a fourth-power numerical center for n requires 

N(N + 1) (6/1/3 4- W 2 + N - 1) 

= n(n + l)(6n3 + 9n2 + n - 1) - N(N - 1) (6N3 - 9N2 + N + 1), 

and on setting X = 2n + 1, J = 2/1/, we obtain 

(3) 3J5 - 10X3 + IX = 6J5 + 40T3 - 167 

subject to the conditions 

(4) X positive and odd, Y positive and even. 

Further, since 

Y ^ - 5 _ N2(N 2+ 2/1/ + 1)(2N2 + 2/1/ - 1) 
Z / " 12 
t'™ 1 

the condition that N be a fifth-power numerical center for n requires 

N2(N2 + 2N + 1)(2/1/2 + 2/1/ - 1) 

= n 2 ( n 2 + 2n + 1) (2n2 + 2n - 1) - /I/2 (/I/2 - 2/1/ + 1) (2N2 - 2N - 1 ) , 

and, on setting 

X = (2n + l ) 2 , J = (2/1/)2 

it reduces to 

(5) J3 - 5X2 + 7J - 3 = 2J3 + 20J2 - 167 

subject to the conditions 

(6) X a positive odd square, J a positive even square. 
Unfortunately, we have been unable to discover a method of solving equa-

tions (3) and (5) completely, although we have used a computer to verify that 
the only integer solution of (3), subject to (4), with X < 205 is (J, Y) = 
(3, 2) and that the only integer solution of (5), subject to (6), with X < 411 
is (J, Y) = (9, 4). 
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A PROPERTY OF WYTHOFF PAIRS 

V. E. HOGGATT, JR. 
San Jose State University, San Jose, CA 95192 

and 
A. P. HILLMAN 

University of New Mexico, Albuquerque, NM 87108 

The Wythoff pairs An and Bn are the ordered safe-pairs in the game. See 
for example [1]. 

A = {An) = {[wot]} = {1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, . . .} 

B = {Bn} = {[na2]} = { 2, 5, 7, 10, 13, 15, 18, 20, 23, . ...} 

where a = (1 + /3")/2. a2 = a + 1. The following properties will be assumed: 
(i) The sets A and B are disjoint sets whose union is the set of posi-

tive integers. 
(ii) Bn = An + n. 

Lemma 1: AAn + 1 = Bn. 

VH00^\ Consider t he s e t of i n t e g e r s 1 , 2 , 3 , . . . , Bn . Of t h e s e , n a r e 
B1 s , and t h e r e s t a r e i4 l 5 42» A33 . . . , Aj = S n - 1. Thus, j + n = Bn, bu t An 
+ n = £ „ , so t h a t AAn + 1 = 5 „ . 

I f we c o n s i d e r the s e t of i n t e g e r s 1 , 2 , 3 , . . . , A.n9 t h e r e a r e n A's and 
Bl9 B2y . . . , Bj < An ™ 1; t h u s , 

Lemma 2: There a r e An - n B f s l e s s than i4w. 

Tfceo/Lem: ^ n + 1 - ^ n = 2 , ^ S n + 1 - A B n = 1 ; 
5 4 n + i ~ BAn = 3 , 5 B „ + I " BBn = 2 . 

P/LOÔ : It is easy to see that no two B!s are adjacent. Consider An + 1 = 
^n + i o r An+1 - Bj , then 

^n + i ~ (w + 1) - (An - n) = 1 iff 4n + 1 = Bj. 
Fix j, then since An + 1 is a strictly increasing sequence in n, there is at 
most one solution to An + 1 = Bj , and from AAn + 1 = Bn, we see n = Aj, so 

^ , + 1 " AA. = 2 and 4Bj + ]L - A B . = 1. 

From A n + n = Bn , it easily follows that 

BA.+1 - 5̂ . = 3 and BBj+1 - BB. = 2. 

We now show that {An} and {Bn} are self-generating sequences. We illus-
trate only with Bn = [na2] = {2, 5, 7, 10, 13, . . . } : Bl = 2 and B2 -Bl = 3, so 
B2=5; £ 3 - B 2 = 2 , so B3 = 7; B 4 - 5 3 = 3, so 5^ = 10; 5 5 - 5 4 = 3, so S5=13. Now, 
knowing that 

5n+i - Bn Is 2 If n E B and B n + 1 - B n = 3 if n t B9 

we can generate as many terms of the {Bn} sequence as one would want only by 
knowing the earlier terms and which difference to add to these to obtain the 
next term. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN 

University of New Mexico, Albuquerque, New Mexico 87131 

Send alt communications legaAding ELEMENTARY PROBLEMS AND SOLUTIONS to 
Professor A. P. Hillman, 709 Solano Dr., S.E. , Albuquerque, New Mexico 87108. 
Each solution OK problem should be on a bepanate Aheet [OK *heett>). P/iêe/i-
ence wilt be given to thoAe typed with doable spacing In the {onmat tued be-
low. Solution* should be deceived within 4 month* o{ the publication date. 

DEFINITIONS 

The Fibonacci numbers F and Lucas numbers L satisfy Fn + 2 = Fn + 1 + Fn , 
FQ = 0, Fx = 1 and Ln+2 = Ln+1 + Ln9 L0 = 2, L1 = 1. Also a and b designate 
the roots (1 + /5)/2 and (1 - /5")/2, respectively, of x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-382 Proposed by A. G. Shannon, N.S.W. Institute of Technology, Australia. 

Prove that L has the same last digit (i.e., units digit) for all n in 
the infinite geometric progression 

4, 8, 16, 32, .... 

B-383 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 

Solve the difference equation 

Un+2 - 5Un+1 + 6Un - Fn 

B-384 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 

Establish the identity 

r̂c+10 = 55C^«+8 " ̂ M+2) " 385(Fn+6 - Fn+h) + Fn. 
B-385 Proposed by Herta T. Freitag, Roanoke, VA. 

Let Tn = n(n + l)/2. For how many positive integers n does one have both 
106 < Tn < 2 • 106 and Tn E 8 (mod 10)? 

B-386 Proposed by Lawrence Somer, Washington, B.C. 

Let p be a prime and let the least positive integer m with Fm =0 (mod p) 
be an even integer 2fc. Prove that Fn + lLn + kEFnLn + k+l (mod p). Generalize to 
other sequences, if possible. 

B-387 Proposed by George Berzsenyi, Lamar University, Beaumont, TX. 

Prove that there are infinitely many ordered triples of positive integers 
(x, y, z) such that 

3x2 - y2 - z2 = 1. 

473 
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SOLUTIONS 

ALMOST ALWAYS COMPOSITE 

B-358 Proposed by Phil Mana, Albuquerque, New Mexico. 

Prove that the integer un such that un^n2/3<u + 1 is a prime for only 
a finite number of positive integers n. (Note that un = [n2/3], where [x] is 
the greatest integer in x and u\ = 0, u2 = 1, u3 = 39 uh = 5, and u5 = 8.) 

Solution by Graham Lord, Universite Laval, Quebec. 

If n = 3m, 3m + 1, or 3m + 2, where m = 0, 1, 2, ..., then, wn = 3m2, 
m(3m + 2) or (m + 1) (3m + 1), respectively. Thus, the only values of un that 
are prime are 3 and 5. 

Also solved by George Berzsenyi, Paul S. Bruckman, Roger Engle & Sahib Singh, 
Herta T. Freitag, Bob Prielipp, and the proposer. 

TRIBONACCI SEQUENCE 

B-359 Proposed by R. S. Field, Santa Monica, CA. 

Find the first three terms Tx, T2, and T3 of a Tribonacci sequence of 
positive integers {Tn} for which 

T« +3 =
 Tn + 2 + ?n + l + Tn and £ ( T n / 1 0 " ) = 1/T,. 

tt=l 

Solution by Graham Lordf Universite Laval, Quebec. 
00 

If S(x) = ^ ^ a ? " , then 
n = l 

S(x) = [̂ (a; - #2 - x3) + T 2 0 2 - x3) + T3# ]/(l - x - x2 - a:3), 

and, in particular, 

5(1/10) = (89T1 + 9TZ + T3)/889. 

Hence, 
Th(S9T1 + 9T2 + Ts) = 889 = 7 • 127. 

Since Th = T3 + T2 + T > 3, it must be the smaller prime factor, 7, and 

89271 + 9T2 + T3 = 127. 

Thus, 2Y = 15 T2 = 4, and T3 = 2. 

Also solved Jby George Berzsenyi, Michael Brozinski, Paul S. Bruckman, Roger 
Engle & Benjamin Freed & Sahib Singh, Charles B. Shields, and the proposer. 

APPLYING QUATERNION NORMS 

B-360 Proposed by T. O'Callahan, Aerojet Manufacturing Co., Fullerton, CA. 

Show that for all integers a, b9 c, d, e, f, g, h there exist integers 
W9 x, y9 z such that 

(a2 + 2b2 + 3c2 + 6d2)(e2 + 2/2 + 3g2 + 6h2) = (w2 + 2^2 + 3z/2 + 6s2). 

Solution by Roger Engle & Sahib Singh, Clarion State College, Clarion, PA. 
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Defining the real quaternions A and B as 

A = a + (/2b)i + (/3c)j + (/6d)k9 

B = e + {/lf)i + (/3g)j + (/6h)k 

and using the multiplicative property of norm N, namely N(AB) = N(A)N(B), we 
conclude by comparison that 

w = ae - 2bf - 3og - 6dh9 x = af + be + 3ch - 3dg, 

y = ag - 2bh + oe + 2df9 z = ah + bg - of + de. 

Also solved by Paul S. Bruckman, Bob Prielipp, Gregory Wulczyn, and the pro-
poser . 

A RATIONAL FUNCTION 

B-361 Proposed by L. Carlitz, Duke University, Durham, N.C.-

Show that 

X ] x
pz/sumin(p's)z;raax^'s) 

is a rational function of x9 y9 u9 and i; when these four variables are less 
than 1 in absolute value. 

Solution by Roger Engle & Sahib Singh, Clarion State College, Clarion, PA* 

If S denotes the required sum, then 

s = Yl{xv)i + lL<yvY + * yuvS 
^ = l 

.'. S(l - xyuv) = - • + —^-
^ 1 - xv 1 - yv 

. ̂  = 1 - xyv2 

(1 - xv)(1 - yv)(1 - xyuv) 
Also solved by Paul S. Bruckman, Robert M. Giuli, Graham Lord, and proposer. 

TRIANGULAR NUMBER RESIDUES 

B-362 Proposed by Herta T. Freitag, Roanoke, VA. 

Let m be an integer greater than one (1) and let Rn be the remainder when 
the triangular number Tn =n(n +l)/2 is divided by m. Show that the sequence 
RQ9 Rl9 R2, ..- repeats in a block RQ9 Rl9 ..., Rt which reads the same from 
right to left as it does from left to right. (For example, if m - 7 then the 
smallest repeating block is 0, 19 39 65 3, 1, 0.) 

Solution by Graham Lord, Universite Laval, Quebec. 

Since Tn+2m = Tn + m(2n + 1 + 2m) then Rn = Rn+2mi the sequence repeats 
in blocks. And for 0 <_ n < m, as T2m_n_l = Tn + m(2m - 2n - 1) it follows 
that Rn = R2m_n_19 which implies the reflecting property. 

Note that if m is even the period is 2m, since neither Tm nor T2 is con-
gruent to 0 modulo m. And if m is odd the period is m. The latter is proven 
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thus: As Tn+m = Tn (mod m) , the period, d9 must divide m. But, by the re-
flecting property and the periodicity T0 = 2^-1 = Td (mod m), that is, 777 di-
vides Td - 2^-1 = d. Hence, d = m. 
Also solved by George Berzsenyi, Paul S. Bruckman, Roger Engle & Sahib Singh, 
Bob Prielipp, Gregory Wulczyn, and the propeser. 

OVERLAPPING PALINDROMIC BLOCKS 

B-363 Proposed by Herta T. Freitag> Roanoke, VA. 

Do the sequences of squares Sn = n2 and of pentagonal numbers Pn =n(3n -
l)/2 also have the symmetry property stated in B-362 for their residues mod-
ulo ml 
Solution by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 

For this symmetry property, it is necessary that two consecutive members 
of Sn or Pn be congruent to zero modulo m. 

(a) Sn = n2, Sn+1 - (n + l) 2 . 

Since (n, n 4- 1) = 1 , Sn does not have the symmetry property of B-362. 

(b) Pn = j(3n - 1), Pn + 1 - 2-+JL( 3 W + 2), Pn = 1, 5, 12, 22, 35, ... . 

For any factor m of n, (n,.n + 1) = 1, (n, 3n + 2 ) = 1, 2. 
For any factor m of 3n - 1, (3n - 1, 3n + 2) = 1, (3n - 1, n + 1) = 1, 2, 4. 

Since the only common factor to Pn and ?n + 1 is 2, Pn does not have the 
symmetry property of B-362. 

Also solved by Paul S. Bruckman, Roger Engle & Sahib Singh, Graham Lord, Bob 
Prielipp, and the proposer. 
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H-285 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA. 

Consider two sequences \Hn> and \Gn\ _ such that 

(a) (Hn9 Hn+l) = 1, 
(b) (Gn, Gn+l) = 1, 
(c) Hn+2 = Hn+1 + Hn (n >. 1), and 
(d) Hn+l + Hn_, = sGn (nil), 

where s is independent of n. 
Show s = 1 or s = 5. 

H-286 Proposed by P. Bruckman, Concord, CA. 

Prove the following congruences: 

(1) Fsn E 5n (mod 5*+ 3); 

(2) F^ E L^n+l (mod 52n + 1 ) , n = 0, 1, 2, ... . 

H-287 Proposed by A. Mullin, Ft. Hood, Texas. 

Suppose #(•) is any strictly-positive, real-valued arithmetic function 
satisfying the functional equation: 

(g(n + l)/(n + 1)) + n = (n + l)g(n)lg(n + 1) 

for every integer n exceeding some prescribed positive integer m. Then g(n) 
is necessarily asymptotic to Tr(n), the number of prime numbers not exceeding 
n; i.e. , g(ji) ~ Tr(n) . 
H-288 Proposed by G. Wulczyn, Bucknell University, Lewisburg, PA. 

Establish the identities: 

(a) FkLk + 6r+3 - Fk + 8r+H^k + 2r+l = ^ ' ^ L2r + lF2r + l^k + hr +2 • 

(b) FkLk + Sr - Fk + QrLk + 2r = (-1) ^2rF2r^k+kr • 

H-289 Proposed by L. Carlitz, Duke University, Durham, N.C. 

Put the multinomial coefficient 

(m1 + m2 + • • • + mk)! 
(m1, m2, . . . . , mk) m1\m2l . . . mk\ 

hll 
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Show t h a t 

(*) L2 &> s ' t>)(jn - 2r> n - 2s9 p - 2t) 
r+s+t=X 

^ ( - 2 ) > + J ' + * ( £ , j , k , u)(m-j-k,n-k-i,p-i-(j)(m + n + p>2\) . 
i+j+k+u=\ 

SOLUTIONS 

A PAIR OF SUM SEQUENCES 

H-269 Proposed by G. Berzsenyi, Lamar University, Beaumont, Texas. 

The sequences \CLn\ and \bn> , de f ined by 

[>/3 ] [n/2] 

k = 0 k = 0 

E fn-kl 
\2k+l\> 

7, _ n u -J k = 0 

are obtained as diagonal sums from Pascal's triangle and from a similar tri-
angular array of numbers formed by the coefficients of powers of x in the ex-
pansion of (x2 + x + l) n , respectively. 

(More precisely, * is the coefficient of xk in (x2 + x + l)n.) 

Verify that an = bn_1 + bn for each n = 1, 2, ... . 

Solution by A. Shannon, School of Math Sciences, New South Wales Institute of 
Technology, Broadway, Australia. 

It follows from Equation (4.1) of Shannon [2] with P = P = 1, § = 0, that 
an = an+l + an+3* 

A Pascal triangle for * can be set up as follows, 

" " X f t 
n ̂ \ 
0 
1 
2 
3 
4 
5 

0 1 

1 
2 
3 
h 
5 

2 

1 
3 
6 
10 
15 

3 

2 
7 
16 
30 

4 

1 
6 
19 
45 

5 

3 
16 
51 

6 

1 
10 
h5 

7 

k 
30 

8 

1 
15 

9 

5 

1 0 i 

1 j 

and it can be observed, and readily proved by induction that, 

[i\- ["i1]* [ti]+ [VAI 
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By an extension of the methods of Carlitz [1] we can establish with somewhat 
tedious detail that 

bn = bn_2 + bn_3 + bn_h. 

Then, again with inductive methods, we get 
an = an-l + ^n-3 = 2?n_1 + b„_2 + 2?„_3 + Z?n_If = &„_! + &n , 

as required. 

REFERENCES 

1. L. Carlitz, "Some Multiple Sums and Binomial Identities," S.I.A.M. J. Ap-
pl. Math., Vol. 13 (1965), pp. 469-486. 

2. A. G. Shannon, "Iterative Formulas Associated with Generalized Third-Order 
Recurrence Relations," S.I.A.M. J. Appl. Math., Vol. 23 (1972), pp. 364-
368. 

Also solved by P. Bruckman and the proposer. 

IT'S A SINH 
(Corrected) 

H-270 Proposed by L. Carlitz, Duke University, Durham, N.C. 

Sum the series 

-=T. xayhz° 
(b + Q - a)\{o + a - b)l(a + b - a) I 

a, b, o 

where the summation is over all nonnegative a, b9 o such that 
a <_ b + e9 b <_ a + c9 c <_ a + b. 

Solution by P. Bruckman, Concord, CA. 

Let v = b + c - a, s = a + c - b9 and t - a + b - <3. Then, p + s = 2c, 
s + £ = 2a, r + t = 2b; this implies that P, S, and t are either all even or 
all odd. Hence, 

i(e+t) i(t+r) ^(r + e) 

r, s, t > 0 
r =s= t (mod 2) 

tl 

Thus, 5 = S^ + S29 where 

(2> 5 i 2 ^ (2p ) ! (2s) ! ( 2 t ) ! : 
y* #s + * y t + r z r + B 

, t >o 

E s + t + 1 t + r + 1 N r + s + l 

— ^ ( 2 P + 1 ) ! . (2s + 1 ) ! {It + 1)1 
r, 5, t >0 

But £ and S are readily evaluated, namely: 

V (Sy*)2r (Jxz)2s (/xy)2t * /— u /— u /— 
Si = 2-* (2i0' ( 2 S V (?t)f = c o s h ^y* ' c o s h /5:s # c o s h /a#» (2P)! (2s)! (2*)! 

*\ S, t > 0 
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and 

52 = Z , (2r + 1)1- (2s + 1)! (2t + 1)! = slnh ^ ' slnh ^ ' slnh ^ 
r,8tt > 0 

Therefore, 

(4) 5 = cosh /xy # cosh /z/i~ • cosh /zx + sinh /xy • sinh /z/S" • sinh /zx. 
Also solved by W. Brady and the proposer. 

H-271 (corrected) 

Proposed by R. Whitney, Lock Haven State College, Lock Haven, PA. 

Define the binary dual, D9 as follows: 

D = h \ t = TJ(a€ + 2i); a* e {o, l}; n > ol. 

Let D denote the complement of D with respect_ to the set of positive in-
tegers. Form a sequence, <£n>M=1, by arranging D in increasing order. Find 
a formula for Sn. 

(Note: The elements of D result from interchanging + and x in a binary 
number.) 

***** 
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