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CONVOLUTION ARRAYS FOR JACOBSTHAL AND FIBONACCI POLYNOMIALS

V. E. HOGGATT, JR., and MARJORIE BICKNELL-JOHNSON
San Jose State University, San Jose, California 95192

The Jacobsthal polynomials and the Fibonacci polynomials are known to be
related to Pascal's triangle and to generalized Fibonacci numbers [1]. Now,
we show relationships to other convolution arrays, and in particular, we con-
sider arrays formed from sequences arising from the Jacobsthal and Fibonacci
polynomials, and convolutions of those sequences. We find infinite sequences
of determinants as well as arrays of numerator polynomials for the generating
functions of the columns of the arrays of Jacobsthal and Fibonacci number se-
quences, which are again related to the original Fibonacci numbers.

1. INTRODUCTION
The Jacobsthal polynomials J, (x),
(1.1) Jo (@) =0, Jy(x) =1, Ju4p@) =J,4,@) + xJ, (),
and the Fibonacci polynomials F, (x),
(1.2) Fo() =0, F(x) =1, F, ,(x) =xF,  , (x) + F,(x),

have both occurred in [1] as related to Pascal's triangle and convolution
arrays for generalized Fibonacci numbers. We note that F,(1) = J,(1) = F,,

the nth Fibonacci number 1, 1, 2, 3, 5, 8, 13, ..., while F,(2) = P,, the nth
Pell number 1, 2, 5, 12, 29, ... . We list the first polynomials in these se-
quences below.
F, (x) Iy (X)

n=1 1 1

n 2 x 1

n=3 a*+1 1+ x

n 4 z® + 2 1+ 2x

n 5 ¥ + 32 + 1 1+ 3z +

n 6 x°+ 42+ 3z 1+ 4x + 32?

n=17 x°+52"+ 62>+ 1 1+ 5¢z+ 622+ x°

n 8 x7 4+ 6x° + 10z° + 4x 1+ 6x + 10x% + 42t

n=9 x%+ 72% + 15z" + 1022 + 1 1 + 7x + 1522 + 10x2° + z*

Notice that the coefficients of J,(x) and F,(x) appear upon diagonals of
Pascal's triangle, written as a rectangular array:

1//1 1 1 1
/2/3 4 5

(1.3) 1/3/6 10 15

1/4 10 20 35
1/5 15 35 70

The diagonals considered are formed by starting from successive elements in
the left-most column and progressing two elements up and one element right
throughout the array. We shall call this the 2,1-diagonal, and we shall call
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386 CONVOLUTION ARRAYS FOR JACOBSTHAL AND FI1BONACCI POLYNOMIALS [Oct.

such a diagonal formed by moving up p units and right g units the p,g-diago-
nal.

The sums of the elements on the p,g-diagonals of Pascal's triangle are
the numbers u(n; p-1, q) of Harris & Styles [4].

We shall display sequences of convolution arrays in what follows: If

{a”}:=o and {b”}:=o

are two sequences of integers, then their convolved sequence

{ertma

is given by

ey = aghby, ¢y =ayb, +bya,, ¢, =ayb, +a,b, +a,bg,

n

Zaibn_i.

=0

(1.4) Cn

Notice that this is the Cauchy product if a,, b,, ¢, are coefficients of in-
finite series. The convolution array for a given sequence will contain the
successive sequences formed by convolving a sequence with itself.

Pascal's triangle itself is the convolution array for powers of one. Look-
ing back at the display (1.3), we find that the sums of elements appearing on
the 1,1-diagonal are 1, 2, 4, ..., 2", ...; on the 2,1-diagonal are 1, 1, 2,
3, 5, ..., F,, ...; on the 1,2-diagonal, 1, 2, 5, 13, ..., Fy,-15 ..., while
the coefficients of (1 + x)" appear on the 1,l-diagonal, and those of F, (x)
and J, (x) appear on the 2,l-diagonal.

The convolution array for the powers of 2 is

1 1 1 1 1

2 4 6 8 10

(1.5) 4 12 24 40 60
8 32 80 160 280

16 80 240 560 1120

Notice that the sums of elements appearing on the 1,l-diagonal are powers of
3, and that the 1,l-diagonal contains coefficients of (2 + 2)". The 2,1-di-
agonals contain the coefficients of F¥,,(x) = 2xFi,,(x) + Fi(x), F¥(x) = 1,
F3(x) = 2x, and have the Pell numbers 1, 2, 5, 12, 29, ..., as sums, while
the 1,2-diagonal sums are the sequence 1, 3, 11, 43, 171, ..., d,, _;(2), ... .
Noting that in the first array, F, = F,(1), while in the second array the Pell
numbers are given by F, (2), it would be no surprise to find that the numbers
F,(3) appear as 2,l-diagonal sums in the powers of 3 convolution array. In
fact,

Theorem 1.1: When the powers of k convolution array is written in rec-—
tangular form, the sums of elements appearing on the 1,1-diagonals are the
powers of (k + 1), while the 1,1-diagonal contains the coefficients of (k +
x)". The numbers given by F, (k) appear as successive sums of the elements of
the 2,1-diagonals, which contain the coefficients of the polynomials F}(x),
where

Fro,(x) = ReFky (@) + Fi(x), Fi(x) = 1, Fi(x) = kex.

The sums of the elements appearing on the 1,2-diagonal are given by ‘the num-
bers J,, _;(x).
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Proof: Since the powers of k are generated by 1/(1 - kx), the numbers
F,(k) by 1/(1-kx-x?), and J,,_;(x) by (1-kx)/(1- (2k+1)x+k*xz*), the re-
sults of Theorem 1.1 follow easily from Theorem 1.2 with proper algebra.

We need to write the generating function for the sums of elements appear-
ing on the p,gq-diagonal for any convolution array. We let 1/G(x) be the gen-
erating function for a sequence ank::v Then [1/G(xz)]1**! is the generating
function for the kth convolution of the sequence {an} and thus the generating
function for the kth column of the convolution array for {an},where the left-
most column is the Oth column.

Theonem 1.2: Let

1/G(x) = Z‘:anx"

n=0

be the generating function for the sequence {a’n}. Then the sum of the ele-
ments appearing on the p,g-diagonals of the convolution array of {an} has
generating function given by

[G(x)17 7!
[G(x)]7 - «P

Proof: We write the convolution array for {a,} to include the powers of
x generated:

Qo bo Co do
a,x b,x e, d,x
2 2 2 2
a,x b,x c, d,x
3 3 3 3
asx bax cyx dsx

We call the top-most row the Oth row and the left-most column the Oth column.
In order to sum the elements appearing on the p,q-diagonal, we begin at the
element aq,x2", n =0, 1, 2, ..., and move p units up and g units right. We
must multiply every gth column, then, successively by z , z??, x%, ..., so
that the elements summed are coefficients of the same power of x. The gener-
ating functions of every gth column, then, when summed, will have the succes-
sive sums of elements found along the p,g-diagonals as coefficients of suc-
cessive powers of x, so that the sum of the adjusted column generators becomes
the generating function we seek. But, we notice that we have a geometric
progression, so that

| LA S 1/G(x) __le@i1}
G(x) q+1 2q +1 B P q q p’
[G(x)] [G(2)] 1-2P/[1/6x) 17 (6@ -«

The sums of elements appearing on the p,g-diagonals of Pascal's triangle
and generalized Pascal triangles can be found in Hoggatt & Bicknell [2], [3],
and Harris & Styles [4].

2. FIBONACC!I AND JACOBSTHAL CONVOLUTION ARRAYS

Returning to Pascal's triangle (1.3), since the Jacobsthal polynomials
defined in (1.1) have the property that J,(x) = 1 for £ = 0 and n = 1, 2, 3,
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., Pascal's triangle could be considered the convolution triangle for the
sequence of numbers J,(0). Recall that the 2,1-diagonal contains the coeffi-
cients of J,(x) as well as having sum F, =J,(1). We now write the convolution
array for the sequence of numbers J, (1), which, of course, is also the Fibo-
nacci convolution array:

1 1 1 1 1 ce
1 2 3 4 5
2 5 9 14 20

(2.1) 3 10 22 40 65 oo
5 20 51 105 190 “en
8 38 111 256 511

Observe that the sums of elements appearing along the 2,l1-diagonals are 1,1,
3, 5, 11, 21, 43, ..., J,(2),
If one now writes the convolution triangle for the numbers J,(2),

1 1 1 1 1 oo
1 2 3 4 5 ves
3 7 12 18 25 oo

(2.2) 5 16 34 60 95
11 41 99 195 340 ..
21 9% 261 ... ... et

one finds that the sums of elements appearing on the 2,l1-diagonals are 1, 1,
4, 7, 19, 40, ..., J,(3),
Finally, we summarize our results below.

Theorem 2.1: When the convolution array for the sequence o, (k) obtained
by letting « = k, Kk = 0, 1, 2. 3, ..., in the Jacobsthal polynomials J, (x),
n=1, 2, 3, ..., 1is written in rectangular form, the sums of the elements
appearing along successive 2,l1-diagonals are the numbers J,(k + 1), and the
2,1-diagonal contains the coefficients of the polynomials JX¥(x), n =1, 2, 3,

>

Thap(@) = Jhe1(x) + (kK + x)J¥(x), Ji@) =1, Ji(x) = 1.
Proof: The Jacobsthal polynomials are generated by

=)

1 l T n
@ 1 D DAL

2
- - yx n=0

From Theorem 1.2, the sums of elements on the 2,l1-diagonals have generating
function
1 1 1

G(z) - z° ) 1 -2z - kx?) - 2? ) 1-2- (k+ l)x2

the generating function for the numbers J,(k + 1).

If one now returns to the array given in (2.2), notice that we also have
the convolution array for the Fibonacci numbers, or for the numbers F,(1l).
In Pascal's triangle, the 1,1-diagonal contains the coefficients of the Fibo-
nacci polynomials, but in the Fibonacci convolution array, the 1,1-diagonals
contain the coefficients of F,(x + 1), where F,(x) are the Fibonacci polyno-
mials. If one replaces & by (x + 1) in the display of Fibonacci polynomials
given in the introduction, one obtains:

b
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1, x+1, ®+2x+2, x®+322 +52+3, =% +423 + 922 + 102 +5,
If we replace x by (x + 2) in successive polynomials F, (x), we obtain:
1, x+2, x> +4x+5, x> +6x? +14+12, x*+8x% +27x2 +44x+29, ...,
where the constant terms are Pell numbers. We next write the convolution
array for the Pell numbers, or the numbers F,(2),

1 1 1 1 1 cis
2 4 6 8 10 ven
(2.3) 5 14 27 A 65
12 44 104 200 340
29 ceh e eee e

and observe that the 1,l1-diagonals contain exactly those coefficients of suc-

cessive polynomials F,(x + 2). Also, the sums of elements appearing in the

1,1-diagonals are 1, 3, 10, 33, 109, ..., F,(3), ..., while in the Fibonacci

convolution array those sums were given by 1, 2, 5, 12, 29, ..., F,(2), ...,

and in Pascal's triangle those sums were the Fibonacci numbers themselves.
We summarize as follows.

Theorem 2.2: When the convolution array for the sequence F, (k) obtained
by letting x = k, k =1, 2, 3, ..., in the Fibonacci polynomials F,(x),n = 1,
2, 3, .., 1is written in rectangular form, the sums of the elements appearing
along successive 1,1-diagonals are the numbers F,(k + 1), and the 1,1-diagonals
contain the coefficients of the polynomials F, (x +k).

Proof: The Fibonacci polynomials are generated by

1 1 Y
= = F +l(y)x”
G@) 1 - yx - x? nz;o "

From Theorem 1.2, the sums of elements on the 1,l1-diagonals have generating
function

1 1 1

- - ’
Gl) —a g ke - x> -« 1 - (k+ L - x?
the generating function for the numbers F, (k + 1).

Rather than using the definition of convolution sequence, one can write
all of these arrays by using a simple additive process. For example, each
element in Pascal's rectangular array is the sum of the element in the same
row, preceding column, and the element above it in the same column. In the
Fibonacci convolution array, each element is the sum of the element in the
same row, preceding column, and the two elements above it in the same column.

In the convolution array for {F,(k)}, the rule of formation is to add the
element in the same row, preceding solumn, to kX times the element above, and
the second element above, as

{F,(x)} convolutidn: Y z=x+ky+w, k=1,2, ....
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The convolution array for {Jn(k)} is formed by adding the element in the
same row, preceding column, to the element above, and to k times the second
element above the desired element, as

w

{J, (x)} convolution: y z=x+y+kw, k=0, 1, 2,

x 3

Both additive rules follow immediately from the generating function of
the array. For example, for the {Jn(k)} convolution, if G,(x) is the gener-
ating function of the nth column, then

Gper (@) = G (@)G,(x) = [1/ (1 - x - ka®)]16,(x),
Guor1(@) = G, (x) + 2G, . (x) + kx20n+1(x).
As a final example, we proceed to the Tribonacci circumstances. The Tri-
bonacci numbers 1, 1, 2, 4, 7, 13, ..., T,, ., given by

(2.4)  Tppg =T+ T oy +T,, Ty=0, T, =7,=1,

appear as the sums of successive 1,l-diagonals of the trinomial triangle
written in left-justified form. The trinomial triangle contains as its rows
the coefficients of (1 +x + x2)", n =20, 1, 2, ...,

1
1 1 1
(2.5) 1 2 3 2 1
1 3 6 7 6 3 1
1 4 10 16 19 16 10 4 1

and the coefficients of the Tribonacci polynomials T, (x) (see [5], [61),
Toys(X) = 227, ,,(x) + T, (@) + 7, (x),
T._.l(x) =T0(.’X:) = 0, Tl(x)=l

along its 1,l1-diagonals. We note that 7,(1) = T,.

If we write instead three other polynomial sequences—t,(x), t%(x), and
t%*(x)—which have the property that ¢,(1) = ¢%(1) = t%*(1) = T,, we find a
remarkable relationship to the convolution array for the Tribonacci numbers.

Trnag = lyyn + Lypy + Ty thes = thaa + Xty + 13
n=1 1 1
n=2 x 1
n=73 x® + 1 x + 1
n =14 3+ 22+ 1 222 + 2
n=>5 zh + 32 + 2z + 1 z? + 3z + 3

and
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byiy = L, L, werr
n=1 1
n=2 1
n=3 2
n=14 x + 3
n=>5 20 + 5

We write the convolution array for the Tribonacci numbers:

1 1 1 1 1
1 2 3 4 5
(2.6) 2 5 9 14 20
4 12 25 44 70
7 26 63
13 56
24

If we replace x with (x + 1) in ¢,(x),we get 1, x + 1, x% + 22 + 2, 2% + 322

+ 52 + 4, ..., whose coefficients appear along the 1,l-diagonals. Putting
(x + 1) in place of x in t¥(x) gives 1, 1, & + 2, 22 + 4, x®> + 52 + 7, ...,
which coefficients are on the 2,1-diagonal, while replacing x by (x + 1) in
t**(x) makes 1, 1, 2, x + 4, 2x + 7, 5z + 13, 2 + 12z + 24, ..., which coef-
ficients appear on the 3,1-diagonal. The coefficients of ¢%(x + k) appear
along the 1,1-diagonals of the convolution array for t%(k), and similarly for
t¥(x + k) and the array for tX(k), and for ¢i*(x + k) and t%*(k).

The Tribonacci convolution array can be generated either by the defini-
tion of convolution or by dividing out its generating functions [1/(1 - -2?
- 2%)1" or by the following simple additive process: each element in the ar-
ray is the sum of the element in the same row but one column left and the
three elements above it in the same column, or, schematically,

w

g=pt+tw+x+y.

p| =

Generalizations to generalized Pascal triangles are straightforward.

3. ARRAYS OF NUMERATOR POLYNOMIALS DERIVED FROM FIBONACCI
AND JACOBSTHAL CONVOLUTION ARRAYS

In this section, we calculate the generating functions for the rows of
the Fibonacci and Jacobsthal convolution arrays of §2. We note that, in each
case, the first row is a row of constants; the second row contains elements
with a constant first difference; ...; and the Zth row forms an arithmetic
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progression of order (¢ - 1), 2 = 1, 2, ..., with generating function N;(x)/
(1 - 2)*. We shall make use of a theorem from a thesis by Kramer [8].

Theorem 57 (Kramer): If generating function
A@) = @)/ (1 - =)™ "

where N(x) is a polynomial of maximum degree r, then A(x) generates an arith-
metic progression of order r, and the constant of the progression is N(1).

We calculate the first few row generators for the Fibonacci convolution
array (2.1) as

1 1 2 - % 3-2x 5 -5¢+x* 8- 10x + 3«2
=% -2 a-2° Q-2 @-2)° (1-z"

We display the coefficients of the successive numerator polynomials:

1
1
2 -1
3 -2
(3.1) 5 -5 1
8§ -10 3
13 -20 9 -1
21 -38 22 -4

The rising diagonal sums are 1, 1, 2, 2, 3, 3, 4, 4, ..., but if we use ab-
solute values, they become the Tribonacci numbers 1, 1, 2, 4, 7, 13, 24, 44,
The row sums are all 1, which means, by Theorem 57, that ¥,(1) = 1, or
that the constant of the arithmetic progression of order (n-1) found in the
nth row of the Fibonacci convolution array is 1. However, the row sums, us-
ing absolute values, are 1, 1, 3, 5, 11, 21, 43, 85, ..., J,(2), ... . Notice
that successive columns are formed from successive columns of the Fibonacci
convolution array (2.1) itself. We defer proof to the general case.
If one now turns to the convolution array (2.2) for {Jh(Z)}, the first
few row generators are

1 1 3 - 2x 5 - 4x 11 - lbéx + 4x?
=2 oo a-o° @-2" (1 -5

Displaying the coefficients of the numerator polynomials,

1
1
3 -2
(3.2) 5 -4
11 -14 4
21 -32 12
43 -82 48 -8

we find that the rising diagonal sums are 1, 1, 3, 3, 7, 7, 15, 15, ...,
while, taking absolute values, they are 1, 1, 3, 7, 15, 35, 79, ..., where
the kth term is formed from the sum of the preceding term and twice the sum
of the two terms preceding that, a generalized Tribonacci sequence. Each row
sum is again 1. However, using absolute value, the row sums become 1, 1, 5,
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9, 29, 65, 181, ..., J,(4), ... . Notice that successive columns are multi-
ples of successive columns of (2.2), the second column being twice the second
column of (2.2), the third column four times the original third column, and
the fourth column eight times the original fourth column.

Notice that the Fibonacci numbers are also the numbers J,(l). We state
and prove a theorem for the general Jacobsthal case.

Theorem 3.1: Let Ji+1(k) denote the nth element of the jth convolution
of {Jn(k)}. Let Nm(x)/(l-x)m denote the generating function of the mth row,
m=1, 2, ..., in the convolution array for {Jn(k)}. Then

[(m-1)/2]
_ it il 2
O IED DI C AN OL
=0

Proof: [Note that Ji(k) = J,(k).] From the rule of formation of the

convolution array for {Jn(k)} derived in 82, the row generators D,(x) obey

(3.3) D) = aD, (%) + D,_,(x) + kD,_,(x) = T%—

x[Dn_l(x) + kD, _,(x)]

N, (x) 1 v, _(x) ki, _, (x)
+

T1-z

a-a=" a-=""" @-xo"?

(3.4) N,(x) = N, _,(x) + (L - x)kN,_,(x) = N, _,(x) + kN, _,(x) - kxN,_,(x).

Comparing (3.4) to the original recurrence for J,(k) and noting that N, (x) =
Ny(x) = J,(k) = J,(k) = 1, the constant term is given by N,(0) = J,(k). The:
rule of formation of the convolution array can also be stated as

(3.5) I = JETIR) + RIETL(R) + TR
Let u, be the coefficient of x in ¥,(x). Then
neo = kI, _, (k).

If uj; = -kJ?_z(k), J=3,4, ..., n -1, then

Up = U,_; + Ku

= 2 272
Uy = =kJ;_5(k) -k Jn_q(k) - kJ,_, (k)
- 2 2 - 172
= -k(Jn_s(k) + kI, (k) + Jn-z(k)) = ~kJ, _, (k)
by (3.5). Thus, the coefficient of & has the desired form for all n > 3.
Next, let u, be the coefficient of x? and v, the coefficient of x*~! in
Wo(x). If uj = (-1)*J7E (KK* and v; = (-1)*7'k*7H7_,; (k) for =3, 4,

.., n =1, then

Uy = U n-2 = KV, _p

DPRAEY )+ k(DRI (k) - k(DT (k)

n-1-27 n-2-27 n-27

LRI L () + RIS L () + ), (R)

(DRI (K))

n-z1
by again applying (3.5), establishing Theorem 3.1, except for the number of
terms summed. By Theorem 57 [8], 7 < m, since the degree of N,(x) is less

than or equal to m. But Jif;i(k) =0 for [(m - 1)/2] <7 < m.
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By Theorem 3.1, the generating function for the 7<th column of the numera-
tor polynomial coefficient array for the generating functions of the rows of
the convolution array of {J (k)} is now known to be

ki—lxz(i»l)

(1 -2 - kxz)i
Summing the geometric series
2 2,4
1 + kax + k< I S
1-z-ke® (1-2-ke?)? (1 -~ ka?)?® 1 - x- (2k)x?

which proves that the rows' sums, using absolute values, are given by J,(2k).
However, summing for the rows as originally given, we use alternating signs
in forming the geometric series, and its sum becomes 1/(1 -x), so that N,(1)
= 1. That is, the Zth row is an arithmetic progression of order (Z -1) with
constant 1 in every one of the arrays for {J,(k)}, k=1, 2, 3, ...
Turning to the cases of convolution arrays for the sequences {F (k)} k =

1, 2, 3, ..., we look at F,(2) as in array {(2.3). The first few row genera-
tors are

1 2 5 - g 12 - 4x 29 - lbx + 2> 70 - hhx + 622
L= g _»?2 1-2°% 1-o° (1 -8 (1 -

The array of coefficients for the numerator polynomials is

1

2

5 -1
(3.6) 12 -4

29  -14 1
70 44 6

oo 0

The row sums are 1, 2, 4, 8, 16, 32, ..., 2", ..., and the coefficients of
successive columns appear in the original array (2.3). We state the situa~
tion for the general case

Theorem 3.2: Let FJ"'(k) denote the nth element in the jth convolution
of the numbers {F,(k)}, k=1, 2, 3, ...,n =1, 2, 3,.... Let the generat-
ing function of the mth row in the convolution array for {F,(k)} be N¥(x)/
@-=2",m=1, 2, ... . Then

[(n-1)/2]
WEE) = P, ((DPFLTL (st

m-217
1=0
The proof is analogous to that of Theorem 3.1 and is omitted in the in-
terest of brevity.
Theorem 3.2 tells us that the <Zth column of the numerator coefficient
array form the generating functlons of the rows of the convolution arrays for
F, (k) is given by (- ~1)ix2t /(1 - - 2%, Then, N%(1) is the sum of the rows
given by the sum of the geometrlc series
1 x? axt 1

- + — e =
1-ke -2 (1 -kr-22)? (L-ke-2x?)?3 1 - ke
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so that NX(1) = k™ '. By Theorem 57 [8], the (Z -1)st order arithmetic pro-
gression formed in the Zth row of the convolution array for {F,(k)} has con-
stant k"1, in every one of the arrays, k = 1, 2, 3,
L, ARRAYS OF SUCCESSIVE JACOBSTHAL AND
FIBONACCI POLYNOMIAL SEQUENCES

In [7], Whitford considers an array whose rows are given by successive
sequences derived from the Jacobsthal polynomials, such as

The sequence {J, (k)}
1 1 1 1 1 1
5 8 13 21 34 55

(4.1) 11 21 43 85 171 341 .
19 40 97 217 508 1159

29 65 181 441 1165 2929

L IS
e
e
U W N
O N U W

The successive elements in each column are given by 1, 1, k + 1, 2k + 1,
k*+3k+1, ..., by the recursion relation for {J, (k)}. The vertical sequences
above are given by

n=1

@ - BT S (B e

r=0 2 r=1
r odd
where n is fixed, n > 1, and kK = 0, 1, 2, 3, ... (see [7]).

We now wish to obtain the generating functions for the columns of the ar—
ray (4.1). Notice that the first two columns are constants, the next two
columns have a constant second difference, the next two have a constant third
difference, etc. This means that if D,(x) is the generating function for the
nth column, n = 1, 2, 3, ..., then the denominators of D, _,(x) and D, (x) are
each given by (1 -x)™. We shall again make use of Theorem 57 [8], which was
quoted in §3.

One has r, () r. ()
m=1 2m
DZm—l(x) = m DZm('x) = ’
(1 - x) (1 - x)
by virtue of

___l—z Jn+1(k).%'n.
) 2 : .
1 -2 - kx n=0

Now, if J,,,(k) has fixed (w+ 1) and k varies, we generate the columns. If
we fix k and let n vary, we generate the rows. J,,;(k) is a polynomial in k
with coefficients lying along the 2,l-diagonal of Pascal's triangle. To get
the ordinary generating function, we can note that

Ay () =

= § nkxn’

(1 - okt

where the A, (x) are the Eulerian polynomials. (See Riordan [9] and Carlitz
[10]). Thus, we note that the polynomials J,,_,(k) and J,,(k) are both of
the same degree, and we will expect the generating functions to reflect this
fact.
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From careful scrutiny of the array generation, we see
(4.3) Doy (@) = D,y (@) + xD)(x).

One then breaks this down into two cases:
r2m+2(x) 1ﬁzm+1(‘%.) d sz(x)
Dymin (@) = 1" - + @ I\
(1 - x) (1L - o (1 - x)
P omas (%) 2 g 42 () d < o1 () >

+ o =
1 -x)"? @ - )"t dx 1 - x)"tt

I

(4.4)

Dypmesl) =

This leads to two simple recurrences:

) Pomsa @) =1, () + (1 - x)r) (x) + mer,, (x)
Pones@ = (L - x)r, (@) +xim+ Lr, ., @ +x(1 - x)r) . @)

The first fifteen polynomials »r,(x) are:

YOw Ssums

n r, () r, (1)
1 1 0!

2 1 1!
3 1 1!

4 1+ x 21!
5 1+ 2x- x? 2!
6 1+ 5z 3!
7 1+ 92-  3x%- 28 31

8 1+ 17z+  7z?- z3 41

9 1+ 29z+ 1lx?- 1728 41
10 1+ 50x+ 76x%-  6x°- xz" 51
11 1+ 83x+ 164x?- 100x®- 29z"+ z° 51
12 1+138z+ 51l6x%+ 110x2%- 45z 61
13 1+226c+1121x% - 50x2%- 571z* -  8z%+ 2% 6!

14 143702+ 2843x% +23442°% - 4212 ~ 98z 4+ x° 7!
15 146022+ 6071x? +4956x° - 52492 - 14302° +89x° 71

We observe that »,(1) = [n/2]!, where [x] is the greatest integer contained
in . This follows immediately by taking « = 1 in (4.5) to make a proof by
mathematical induction. By Theorem 57 [8], r,(1) also is the comstant of the
arithmetic progression formed by the elements in the #nth column of the Jacobs-—
thal polynomial array (4.1). There is a pleasant surprise in the second col-
umn of the numerator polynomials r,(x), whose generating function is

/[ -z=-22)Q - 20 - x?)].

The sequence of coefficients is 0, 0, 0, 1, 2, 5, 9,17, 29, 50, 83, 138, 226,
370, 602, ..., U,, ..., r=1, 2, 3, ... . We can prove from the recurrence
relation that

Upp-1 = Fopoy = &
(4.6)
Ugp = Fop - K

as r is odd or even. By returning to (4.5), we can write a recurrence for
the u, simply by looking for those terms which contain multiples of x only,
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so that

Upmez = Uppay T Uy, +m

u (Uppyy =~ 1) + (m+ 1) +u =y + u +m

2m+s 2m+1 2m+2 2m+1
Since we know that (4.6) holds for » =1, 2, ..., 15, we examine u,,,, and
Uyprys assuming that (4.6) holds for all » < 2m + 2. Then

Upmaz = (Foper -+ 1)) + (Fy, -m +m=F -(m+ 1)

2m+2

Upprs = Fopeg =+ 1) + (F, ., -m+ 1)) +m="F, .-+ 2),
so that (4.6) holds for all integers r by mathematical induction.

To determine the relationship between elements appearing in the third
column of the numerator polynomial array, examine (4.5) to write only those
terms which contain multiples of x2. Letting the coefficient of x% in rﬂ(x)
be v,, we obtain

Vom+z = Vamsr + 202m + (M = Dupy

Vom+s = Vomaa T 2Vopa1 F Mhpyiq = Uppan

which, when combined with (4.6), gives us

— 2
Vomtz = Vopay T 205, = Uy, +mF, = m

= Ve T 20,, = n - (F, -m
(4.7)
Vom+s = Vomaz T 2Vony1 = Uppyo T MFy, oy = 28,
= Vyptp + 2Womer + M+ DFopey = Fopsg = (m+ 1)72
where ¢, = m(m + 1)/2, the mth triangular number.

Continuing to the fourth column, if the coefficient of x® in r, (x) is wy,,
we can write

Wopts = Wops1 + 3y, + (1 = 2)v,,

Wom+s = Womes + Woper + M = D)Vopa1 = Vopeas

and so on.

Now, if we wish to generate the columns of the numerator polynomials ar-
ray, it is easy enough to write the generators for the second column if we
take two cases. To write the generating function for 1, 5, 17, 50, 138, ...,
U,,s ..., since this is the sequence of second partial sums of the alternate
Fibonacci numbers 1, 3, 8, 21, 55, ..., the generating function is

/I -3z -2 - o3,
except to use it properly, we must replace x by xz?, so that

w0

1 2n
. Uy 44T

(1 -3+ - z% n=0

Now, the generating function for u,; .; results from combining the known gen-
erators for F,, _; and for the positive integers.
Since
1 -x

l——3—+——2=1+2x+5x2+13x3+34x“+---
- 32X X
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and
S R T LI
(1-a)?
1-x 1 _ 222 - x° < n-1
> 2 2 2 _Z(an'l-n)x '
1-3x+«x (1 - x) (1 -3+ 2x2°)1 - x) =1

To adjust the powers of x, first replace x by xz? and then multiply each side
by x, obtaining finally

©

o
2n =1 _ 2n -1
Z(an-l n)x _ZuZn—lx .

(L -322+2@A - 2?2 n=1 n=1

265 - 27

On the other hand, if one writes the array whose rows are given by suc-
cessive sequences derived from the Fibonacci polynomials,

k The sequence {F, (%)}
1 1 1 2 3 5 8 13 21
(4.8) 2 1 2 5 12 29 70 169 308
: 3 1 3 10 33 109 360 1189 3927
4 1 4 17 72 305 1292 5273 22384

The successive elements in each column are given by 1, k, k% + 1, k° + 2k,
k* + 3k%® + 1, ..., by the recursion relation for F,(k), k=1, 2, 3, ... . The
vertical sequences above are given by

n-=-1
(4.9) Fn(k) =Z(n—:][‘)_lﬂ)kn—2r-1
r=0

where n is fixed, n > 1, and k= 1, 2, 3, ..., or by

) ©
—_— = F,o (R,
1 - kx - 2° nz=:o *

which generates the rows for k fixed, n =1, 2, 3, ..., and the columns for #
fixed, k = 1, 2, 3, .

As before, we wish to generate the columns. We observe, since the nth
column has a constant (n -1)st difference, that the denominators of the col-
umn generators will be (1-2)", n =1, 2, 3, ....

If we let D}(x) be the generating function for the nth column, and let

ry(x)
(4.10) D¥(x) = ——,
1-a)"
this time we find that
Dyso(x) = xDii,(x) + D (x);
(4.11)  rE, (x) =x(+ DrF (@) +2@0 - 2)r! (@) + 1 - x) 2r¥(x) .

We list the first few numerator polynomials rj(x):
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" T;(x) r¥(1)
1 1 0!
2 x 1!
3 1- x4+ 2x° 21
4 3¢ + 328 31
5 1+ l4x® + L4z’ + 5z 41
6 8x+ 22224+ 60x3+  22x% + 8x° 51
7 1+ 6x+ 9922+ 24423+ 2792+  782°+ 13x° 6!
8 21x + 24022 +1251x% + 2016z + 1251z + 240x°+ 21x’ 7!
9

1+ 252+ 71522 +5245x° + 14209x" + 140832° +53292°% + 67927 + 3428 8!

We find that r}(1) = (n - 1)!, and that the coefficient of the highest power
of x in r;}(x) is F,. It would also appear that the coefficients of x are al-
ternate Fibonacci numbers in even-numbered rows. In fact, D. Garlick [11]
observed that, if u, is the coefficient of the linear term in r}(x), then

Usr = Foy

Upg -1 = Fopoy — (2k = 1),

which can be proved from the recurrence relation by induction.
Let ¢, be the constant term in r}(x). By studying (4.11) carefully to
find first, constant terms only, and then just the linear terms, we can write

Cni2 = Cn

(4.13)

u (m+ Ve, +u, oy +u, - 20,

Since ¢; = 1 and ¢, = 0, cyp4; = 1 and c,, = 0. Assume that (4.12) is true
for all n < 2k. Then, taking n = 2k - 1 in (4.13),

Uppwy = (ZR)Cyy + Uy + Uy g = 205

=0+ Fy +Fyp - Qk-1)-2="F,,., - Qk+1).
Similarly, from (4.13) for n = 2k,
Upppp = @k + 1)cy 0+ Uy g + Uy = 20,
= Qk+ 1) + Fpyy - Qk+1) +Fy = 0=Fypy 0,

so that (4.12) holds for all integers k > O.
Continuing, let v, be the coefficient of xz? in r¥(x). By looking only at
coefficients of x? in (4.11), we have

Vpgpo = M+ Dy + 20,40 — Uy T 0, = 2Uy + 2y

=20, t Uy + MUy - 2u, + oy,
which, combined with (4.12), makes
Vorwa = 2Wopar + Vop + 2k(Fyppyy - 2k + 1)) - 2F,,

Vppe1 = 2oy + Vo + 2k - DF,, - 2(F,, _, - (2k - 1)) + 1.

Now, to prove that the coefficient of the highest power of x is F,, we
let the coefficient of the highest power of x in r*(x) be %h,. As before,
(4.11) gives us

Pnsr = 0+ Dhpyy = 0hpyy + Ry = hpyy + By

-1
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Since A; = 1 and h, = 1, h, = F,.

Further, it was conjectured by Hoggatt and proved by Carlitz [12] that
ry, (x) is a symmetric polynomial. Note that this also gives the linear term
of r3,(x) the value F,, since we have just proved that the highest power of x
has F, for a coefficient.

5. INFINITE SEQUENCES OF DETERMINANT VALUES

In [13] and [14], sequences of m X m determinants whose values are bino-
mial coefficients were found when Pascal's triangle was imbedded in a matrix.
Here, we write infinite sequences of determinant values of m X m determinants
found within the rectangular arrays displayed throughout this paper. We will
apply

Eves' Theorem: Consider a determinant of order » whose ith row (column)
(=1, 2, ..., n) is composed of any #» successive terms of an arithmetic
progression of order (Z - 1) with constant a;. Then the value of the deter-—

minant is the product a,a, ... a,.

Consider the convolution array for the powers of 2 as given in (1.5).
Each row is an arithmetic progression of order (Z - 1) and with constant
2*71 ¢ =1, 2,3,.... Thus, the determinant of any square m X m array
taken to include elements from the first row of (1.5) is 292122 ..., 27! =
gmm=1)/2 Further, noticing that each element in the array is 2¢71 times
the element of Pascal's triangle in the corresponding position in the Zth
row, 2 =1, 2, ..., we can apply the theorems known about Pascal's triangle
from [13] and [14]. However, if we form the convolution triangle for powers
of k, then each element in the ¢th row is k*"! times the corresponding ele-
ment in the Zth row of Pascal's triangle written in rectangular form, 7 = 1,
2, .... Thus, applying the known theorems for Pascal's triangle, we could
immediately evaluate determinants correspondingly placed in the powers of k
convolution triangle.

Also, we notice that the convolution array for the sequence {Jﬁ(k)}:zo,
k=0, 1, 2, 3, ..., has its rows in arithmetic progressions of order (7 -1)
with constant 1, 7 =1, 2, ..., while the convolution array for the sequence
{Fn(k)}n:os k=1, 2, 3, ..., has its rows in arithmetic progressions of or-
der (¢ -1) with constant k*7', ¢ = 1, 2, ... . TFrom these remarks, we have
the theorem given below.

Theorem 5.1: Form the m x m matrix A such that it contains m consecutive
rows of the original array, with its first row the first row of the original
array, and m consecutive columns of the original array with its first column

the jth columnwof the original array. In the convolution array for the se-
quence {J, (K)}n=0, Kk =0, 1, 2, ...,det A = 1. 1In the convolution array for
the sequence {Fn(k)}n:o, k=1, 2, 3, ...,or in the convolution array for the

powers of k, det 4 = kmlm-1)/2,

Determinants whose values are binomial coefficients also appear within
these arrays. To apply the results of [13] and [14], we must first express
our convolution arrays in terms of products of infinite matrices. Let the
rectangular convolution array for {F,(k)} be imbedded in an infinite matrix
Fp and similarly, let J, be the infinite matrix formed from the convolution
array for {Jn(k)}. Let P be the infinite matrix formed by Pascal's triangle
written in rectangular form. Consider the convolution array for the powers
of k, written in rectangular form. Each successive 1,1-diagonal contains the
coefficients of (x + k)"”. TForm the matrix Ax such that the coefficients of
(k +n)" appear in its columns on and beneath the main diagonal, and the matrix
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By in exactly the same way, except use the coefficients of (1 + kx)”. Then,
AP =Ty and ByP = §,. We illustrate, using 5 x 5 matrices, for k = 2:

1 o o o o 1 1 1 1 1
0 2 0 0 0 1 2 3 4 5
Lp- |0 1 4 0 0 1 3 6 10 15
2 0 0 4 8 0 1 4 10 20 35
0 0 1 12 16 1 5 15 35 70
— —
11 1 1 1
2 4 6 8 10
_| 5 14 27 s 65 | _g
12 44 104 200 340 ... 2
L29 121 366 810 1555
1 0 0 0 © 1 1 1 1 1
0O 1 0 0 0 1 2 3 4 5
0 2 1 0 o0 3 7 12 18 25
B2P=109 0 4 1 o0 "P=15 16 34 60 95 =J
0 0 4 6 1 Lll 41 99 195 340

Using the methods of [13] and [14], since the generating function for the

Jth column of Ax is [x(k+x)]¢ ! while the jth colummn of P is 1/(1 -x)7, the
Jth column of AP is 1/[l-x(k+x)]? = [1-kx-x2]Y, where we recognize the
generating functions for the columns of the convolution array for {Fn(k)} , SO
that AxP = Fx. Similarly, since the jth column of Bx is generated by [x(1 +
kx)]‘hl, BxP is generated by 1/[1 -a(1 + kx)]'j'1= 1/[1 - = - kx]J"l, so that
ByP = .
, Ea%zfl submatrix of Jx taken with its first row anywhere along the first
row or second row of J, is the product of a similarly placed submatrix of P
and a matrix with unit determinant. The case for Fx is similar, except that
an m X m submatrix of P is multiplied by an m X m matrix whose determinant
is k™""1)/2  gince we know how to evaluate determinants of submatrices of
P [13], [14], we write

Theorem 5.2: Form an m x m matrix B from m consecutive rows and columns
of the original array by starting its first row along the second row of the
original array and its first column along the jth column of the original ar-
ray. In the convolution array for the sequence {J,(k)},-0, kK =0, 1, 2,...,

det B = (‘7 _r]r-z+m) . In the convolution array for the sequence {Fn (k)}:=0,

k=1, 2, 3, ..., or in the convolution array for the powers of k, det B =
gm(m=1)/2 Jg-1+m

We could erfctend the results of Theorem 5.1 to apply to any convolution
array for a sequence with first term 1 and second term k, since Hoggatt and
Bergum [15] have shown that such convolution arrays always have the Zth row
an arithmetic progression of order (£ - 1) with constant k. It is conjectured
that Theorem 5.2 also holds for the convolution array of any increasing se-
quence whose first term is 1 and second term is k.
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Proceeding to the array formed from the Jacobsthal sequences themselves,
as given in (4.1), the nth column is an arithmetic progression of order
[(m = 1)/2], where [x] is the greatest integer contained in x. That makes
determinants of wvalue zero very easy to find. Any determinant formed with
its first column the first, second, or third column of the original array
containing any m consecutive rows of m consecutive columns, m > 3, is zero.
Det 4 = det B = 0 whenever m > j, for matrices 4 and B formed as in Theorems
5.1 and 5.2. However, determinants formed from m consecutive rows taken from
alternate columns have value (0!)(1!)(2!) ... (m - 1)! or (11)Q2!Y) ... (m")
depending upon whether one takes the first column and then successive odd
columns or begins with the second column and then successive even columns.

Similarly, the array (4.8) formed of the sequences {F, (kK)}n—o, k = 1, 2,
3, «.., has its Zth column an arithmetic progression of order (¢ - 1) with
constant (¢ - 1)!, so that any determinant formed from any m consecutive rows
of the first m columns has determinant (0!)(1!) ... (m - 1)!.
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THE FIBONACCI SEQUENCE MODULO N

ANDREW VINCE
903 W. Huron Street #4, Ann Arbor, MI 48103

Let n be a positive integer. The Fibonacci sequence, when considered
modulo 7, must repeat. In this note we investigate the period of repetition
and the related unsolved problem of finding the smallest Fibonacci number di-
visible by n. The results given here are similar to those of the simple
problem of determining the period of repetition of the decimal representation
of 1/p. 1f p is a prime other than. 2 or 5, it is an easy matter to verify
that the period of repetition is the order of the element 10 in the multipli-
cative group Z; of residues modulo p. Analogously, the period of repetition
of the Fibonacci sequence modulo p is the order of an element € in a group to
be defined in 81. This result will allow us to estimate the period of repe-
tition and the least Fibonacci number divisible by n. Sections 2 and 3 con-
tain the exact statements of these theorems; in §4, related topics are dis-
cussed.

1. DEFINITIONS AND PRELIMINARY RESULTS

The Fibonacci sequence is defined recursively: f; =1, fo,=1, and fr4+; =
fo + fnoy for all n > 2. 1If we define

e=(1+V5)/2,
then it is easy to verify the following by induction.

Lemma 1: €™ = (f _,+Fna)/2 + (Fr/2).

Letting Z, be the ring of residue classes of integers modulo #, define
z,[/5] = {a + b/5la, b e zn}.

This becomes a ring with respect to the usual addition and multiplication.
For »n relatively prime to 5 define the norm as a mapping N:Z,[V5] - Z, given
by N(a + b/5) = a* - 5b%. If Z*[/5] denotes the multiplicative group of in-
vertible elements of Z,[V5], then the norm restricted to Z*[V/5] is a surjec—
tive homomorphism N:Z*[V/5] - Z%. That the mapping is onto can be verified by
observing that the number of elements in the image of N is over half the or-
der of Z%.

Now consider the Fibonacci sequence modulo n. Define p(n) to be the least
integer m such that f,, = 0 (mod n). Let o(n) be the period of repetition of
the Fibonacci sequence modulo 7, i.e., 0 is the least positive integer m such
that f,,; = 1 and f, 4, = 1. The following fact is well known [5].

Lemma 2: f, = 0 (mod n) <> p|m.
This implies that plG, and define D(n) = o(n)/pn).

2. THE PERIOD OF REPETITION

Let n = p,'py? ... p,™ be the prime decomposition of #. The first theo-
rem relates 0(n) to the structure of the group Z%*[V/5]. The second reduces
the problem to a study of the groups Zp~[/5], and the third further reduces
it to properties of the groups Zpl[ngf

Theonem 1: If n is odd then o(n) is equal to the order of € in the group
Z:[V5].

4o3
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Theorem 2: o(n) = [O(pf‘ ), U(pgz), e, O(p;”’ )], where [,] denotes the
least common multiple.

Theorem 3: Let s be the greatest integer < r such that o(p®) = o(p).
Then 0(p?) = p*~*a(p).

Proof of Theorem 1: By Lemma 1,
€7 = (fyu1 + Fou) /2 + (F5/2)V5 = (fy + 2F5_ /2 + (£,/2)V5 = f, | =

Conversely, if €™ =1, then, again by Lemma 1, it follows that f, = 0 and
fm-1 = 1. Hence, m is a multiple of 0. O

|
-

Proo§ of Theorem 2: The proof is immediate since, for any integers a and
b,

a = b (mod n)
if and only if
a = b (mod plrt.)
for all <. O
For any group G let l G[ denote its order. The following result will be
helpful in the next proof.
Lemma 3:

2 15| P 2(p - D + 1) if p = £2 (mod 5)
pr =

pzr—z(p -1 if p = #1 (mod 5).

Proof: By the law of quadratic reciprocity, if p = #2 (mod 5), then 5
has no square root modulo p. A guick calculation then reveals that the ele-
ments a + bvY5 in the ring Z"E‘)r[/g] without multiplicative inverse are of the
form a = up and b = vp for any inte%ers # and v with 0 < u < pl"'1 and 0 < v <
p"~'. Hence, |Z}. [/5]| = p* - p? *=1) | 0On the other hand, if p = *1 (mod
5), then 5 does have a square root mod p and hence a square root mod p*. The
criteria for a + bY/5 to have no multiplicative inverse in Z’;r[/g] is that

(@ + b/5)(a - b/5) = a® - 5b? = 0 modulo p.
There are pz(r_l) (2p - 1) solutions to this congruence, so that
|z%. V51| = p* - p*> "' (2p - D).
Proof of Theorem 3: Let p be an odd prime and consider
g:z%.[V/51 ~ Z3[v51,

the homomorphism which takes an element of Z’;,[/S—] into its residue in Z;[‘/S_]'
Theorem 1 implies that 0(p)|lo(p?) and also that €°(P) lies in H, the kernel
of g. A calculation using Lemma 3 indicates that [H| = p?*”% and hence the
order of €9(P) in Z;r[/s—] is a power of p. Since €9(P) belongs to H it may
be represented as

e?(?) = (L+ap+a,p’+---+a,_p"™ " + (bp+b,p*+---+b _p" /S5

where 0 <a; <p and 0 < b; < p for all Z. Let s be the smallest integer
such that either az # 0 or bs # 0. A simple induction then suffices to show
that - s is the least integer k such that €°(P)P*= 1 ip Z"[gr[/S_]. The above
definition of s is equivalent to o(p®) =0(p), which completes the proof. We
leave tg_) Ehe reader the slight alteration of method needed to show that o(27)
=3 277,

]
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These three theorems show that the problem of determining ¢ is equivalent
to the determination of s and the order of € in the group Z*[/w] for odd
primes p. Comments on the conjecture that s is always 1 will be made in §4.
The next theorem gives bounds for ¢ in the case of an odd prime.

Theorem 4: Let p = *2 (mod 5) and p + 1 = 27 « k, where k is odd. Then
GIZ(p + 1) and 2”+1[G. If p = +1 (mod 5), then Olp - 1; furthermore, V5 ex—
ists in Z; and 0 equals the order of €? as an element of Z;.

It is not always true that 0 = 2(p+1) or 0 = p-1. For example, 0(47)
= 32 and 0(101) =

Proog of Theorem 4: Let p = 2 (mod 5). Since Zp[/gj is a finite field,
Z;[/g] is a cyclic group [2]. Consider the elements of norm 1, i.e., the
kernel X of the map N. As a subgroup of Z*[/_] K is also cyclic, and since
N is surjective, I ] 2 - 1)/(p -1) =p+ 1. The norm of € is -1, which
implies that € is an element of K. This shows that o|2(p + 1). Now let a
be a §enerator of the group Zp[/_] Any element of X must be of the form
alp-t for some integer J. Since g? belongs to K but € does not, there must
be an integer j such that € = u(p_li +U2) Therefore, 0(p) is equal to the
smallest positive integer m such that p -l[m(p 1)(J+1/2), which is equiv-
alent to 2(p-+l)[m(23-+l) Since 25 +1 is odd, this concludes the proof for
the case p = £2 (mod 5).

Now let p = *1 (mod 5). The fact that 5 has a square root modulo p gives
rise to a canonical homomorphism #: Z*[/-] + Z%, which takes any element of
Z;[/—] into its residue mod p. We can then define a map [f:Z} [vV51 » Z} x L}
by f(a) = (N(u), h(u)) Routine calculation bears out that f is one- one and
onto and thus an isomorphism. Since ]Z*] p -1, the order of any member of
Z*[/_] divides p-1; in particular, o|p-1. The last statement in the theo-
rem becomes apparent by noting that the first coordinate of f(e®) is 1.0

3. THE SMALLEST FIBONACCI NUMBER DIVISIBLE BY »n

By Lemma 1, the value of p(n) is the least positive integer m such that
g” lies in the subgroup
Jy = {a + /5 e z,0/51|b = 0}.

In addition, N(gP) = (Ne)P = (-1)P = *1 indicates that p is actually the
least positive integer m such that €™ lies in the subgroup

J={a+b/5ezi[/51]b = 0 and a® = t1}.

If we define V, = Z¥[¥5]/J, and carry out proofs exactly as in §2, we obtain
three theorems concerning the value of p corresponding to Theorems 1, 2, and
3 of §2.

Theornem 5: 1f n is odd, then p(n) is equal to the order of »n in the
group V,.

Theorem 6: p(n) = [o(p*), 0(p;2)s .., (p.")] where n = p*p,* el

is the prime decomposition of n.

Theosem 7: For an odd prime p let ¢ be the greatest integer < » such that
0(p?) = p(p). Then p(p*) = p" " *(p). Also

0(2") = 30270 if p=1or 2
3272 4if p > 3,
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The final theorems describe the relationship between p and 0 and give
bounds for p in the case of an odd prime.

Theorem §: 1If n = 2"prip: ... p " where the p, are distinct odd primes,
then p = 0/D(n) with

1 if », <2 and D(p;)
D(n) = ¢4 if r; <1 and D(p;)
2 otherwise

1 for all <
4 for all 7

and for an odd prime p,

1 if p =11 or 19 (mod 20)
2 if p= 3 or 7 (mod 20)
D(p) = 4 4 if p =13 or 17 (mod 20)
1l or 4 if p =21 or 20 (mod 40)
1, 2, or 4 if p = 1 or 9 (mod 40).

Theorem 9: Let p be an odd prime and express p + 1 = 2” + k, where k is

odd.
Ifp= 3 or 7 (mod 20), then plp + 1 and 2°|p
If p =13 or 17 (mod 20), then p|(p + 1)/2 and 2°7%|p
Ifp= 1 (mod 5), then op|p - 1.

The proofs will utilize the following lemma.

Lemma 4: For n odd,

D(n) =1<>p =2 (mod 4) <0 =2 or 6 (mod 8)
D(n) =2<>p =0 (mod 4) <=0 = 0 (mod 8)
D(n) =4<>p=1o0or 3 (mod 4) <0 =4 (mod 8).

Proof: By Lemma 1, we have in Z,[V5],

e’ = f, .,
e = fii = fofor ¥ (F1° = (1)
g*? =1

so that D = 1, 2, or 4. We will prove the above equivalences in the follow-
ing order.

D=4<>p=1or 3 (mod 4): p =1 (mod 2) «<=>¢€?? = -1 <D = 4,

D=1<>p =2 (mod 4): If D=1, then (”/2)? = ¢ = 1. Now e°? = %1
would contradict the fact that f, is the least Fibonacci number divisible by
n. Since +1 and -1 are the only square roots of 1 with norm 1, €°2 has norm
-1. Then -1 = N(e”2) = (We)*/? = (-1)*'2 implies p = 2 (mod 4).

D=2<>p =0 (mod 4): Assume D = 2. Since D # 4, p is even and N(eg®)
= (We)® = 1. Therefore, €*° = 1 implies € = -1. Then € 2 is a square root
of -1. A small calculation shows that the only square roots of -1 in [/5]
with norm -1 lie in J. However, €°? cannot lie in J by Theorem 5 and thus
has norm +1. Now 1 = N(Epm) = (Z\7€)p/2 = (-1) 2 implies p = 0 (mod 4). The
remaining implications follow logically and immediately from the above. 0O

11

Proof of Theorem §: Let p be an odd prime. If p = 3 or 7 (mod 20), then
by Theorem 4, 0 = 0 (mod 8) and by Lemma 4, D = 2. If p = 13 or 17 (mod 20),
then 0 = 4 (mod 8) by Theorem 4 and D = 4 by Lemma 4. If p = 11 or 19 (mod
20), then by Theorem 4,0¢p - 1, which implies that 0 = 2 or 6 (mod 8). Then
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by Lemma 4, D = 1. If p = 21 or 29 (mod 40), then 0|p - 1 implies that 0 Z 0
(mod 8). By Lemma 4, D # 2. This concludes the proof of the second part of
the theorem. By Theorems 2 and 6, a formula for D(n) is obtained:

[D2")p2" ), DI )eEN), ...y DEMP@E™)]
[p€27), p(P1),s vvvs p(BI™)]
For an odd prime p, we have, by Theorems 3 and 7,

op)/e(p?) = p* o) /p* tp(p) = pt-*o(p)/p(p).

Since this value is either 1, 2, or 4, it must be the case that ¢ = ¢, and
hence, D(p?¥) = D(p). The formula above reduces to

[DQ27)p@™), DB o® ), -.vr DB )om )]

D(n) =

D(n) =

[p(2™), p(py)s «ovs 0(p,)]

A routine checking of all cases—using Lemma 4, the formula above, and the
formulas for o(2%) and p(27)—verifies the remainder of Theorem 8. O
Theorem 9 is now an immediate consequence of Theorems 4 and 8.

L. RELATED TOPICS

Several questions remain open. We would like to know, for example, whe-
ther a formula for D(p) is poa51ble when p = 1 or 9 (mod 20)

One may also ask whether G(p ) # o(p) for all odd primes p. If so, our
formulas of Theorems 3 and 7 would be simplified so that s = ¢ = 1. This
question has been asked earlier by D. D. Wall [6]. Penny & Pomerance claim
to have verified it for p < 177,409 [4]. Using Theorem 1, the conjecture is
equivalent to gP'=1 4 1 in Z*[/_] A similar equality 2p" =1 in Z3}: has
been extensively studied, and the first counterexample is p = 1093. The an-
alogy between the two makes the existence of a large counterexample to G(p )

# 0(p) seem likely. REFERENCES

1. Z. Borevich & I. Shafarevich, Number Theory (New York: Academic Press,

1966).

S. Lang, Algebra (Reading, Mass.: Addison-Wesley, 1965).

3. W. LeVeque, Topics in Number Theory, I (Reading, Mass.: Addison-Wesley,
1956).

N
.

4. Penny & Pomerance, American Math. Monthly, Vol. 83 (1976), pp. 742-743.
5. N. Vorob'ev, Fibonacci Numbers (New York: Blaisdell, 1961).
6. D. D. Wall, 4dmerican Math. Monthly, Vol. 67 (1960), pp. 525-532,

it

CONGRUENT PRIMES OF FORM (87 + 1)

J. A. H. HUNTER

An 1nteger e is congruent if there are known integral solutions for the
system X% - ey? = 72 , and X% + e¥? = 7%, At present, we can be sure that a
particular number is congruent only if corresponding X, Y values have been
determined.
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However, it has been stated and accepted that integers of certain forms
cannot be congruent. Proofs exist for most of those excluding conditions, but
not for all-—mno counterexamples having been discovered as regards the latter.
For example, a prime of form (82 + 3), or the product of two such primes,
cannot be congruent.

L. Bastien and others have stated that a prime of form (8r + 1), repre-
sentable as (k2-+t2) cannot be congruent if (k + t) is not a quadratic resi-
due of that prime. But no proof of this has been known to exist in the lit-
erature.

The necessary proof will be developed in this paper.

We first show that the situations regarding primes of form (8» + 1), and
those of form (8r + 5), are not the same. For this we use the Collins analy-
sis method.

It is well known that every congruent number must be of form uv(uz-vz)/
gz. Then, if e be a prime of form (8» + 5) or (8r + 1), for congruent e we
must have solutions to wv(u® - v?) = egz: from which it follows that one of
u, v, (u-7v), (u+ v) must be eaz, say, and the other three must all be
squares.

Consider each of the four possibilities.

1) u+v==ea®, u-v="~0% u-= e?, v = d°.
Then, b? - 262 = -ea?:
possible with e = 8» + 1; impossible with e = 8» + 5.
Similarly, b? + 2d? = ea?:
possible with e = 8» + 1; impossible with e
Also, ¢® + d? = ea®, and ¢? - d% = b%:
both possible for e = 8» + 1 and for e = 8» + 5.

8r + 5.

Hence, this case (1) applies to e = 8» + 1, but not to e = 8»r + 5.
@2) u-v==ea®, u+v="0% u=c?, v=4d>.

Then, b? - 2¢% = -ea?:

possible with ¢ = 8» + 1; impossible with e = 8» + 5.
Similarly, b? - 2d% = ea?:
possible with ¢ = 8» + 1; impossible with e = 8r + 5.

Also, ¢® - d? = ea®, and ¢? + d% = b2:
both possible for e = 8 + 1 and for e = 8» + 5.

Hence, this case (2) applies to e = 8» + 1, but not to e = 8r + 5.

B)u=ea®, u+v=>0% u-v=c?, v=4d>.
2

Then, b? + ¢? = 2ea?, b? - ¢? = 2d°%,b% - d% = ea?, and ¢®> + d* =ea’:
All possible for both e = 8 + 1 and e¢ = 8» + 5.

Hence, this case (3) applies to both.
4 v=ed?®, u+v=">0% u-v=2c? u=d4d2.

Then, b? - ¢? = 2ed?, b% + % = 24%,b? - d?
A1l possible for both ¢ = 82 + 1 and e = 8»

ea’, and d? - ¢? =ed?:

5.

1]

+

Hence, this case (4) applies to both.

So, for e = 8r + 5, we have possible:
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But,

(3)
(8r

Case (3) 2% + y* = 2ezz} Case (4) x? + y® =232 }
x® - y? = 20° x? - y? = 2ew?
for e = 8r» + 1, we have possible:
Case (1) x® + y® = ezz} Case (2) +
2? = y? = 2

@+ y? = 52 }
22— 2 = o?
y® = ew
Case (3) x® + y? 2922} Case (4) x? + y? = 222 }
z? -y 2w? z? - y? = 2ew?

We now show that each of the subsidiary-equation systems (1), (2), and
will provide a solution for the system (4) for any congruent number prime
+ 1).

From (1) to (4):

Say x® + y® = ez?, x® - y® = w?, and 4% + B® = 202, A% - B? = 2¢D%.

N
on

Setting 4 = z* + 2x%y? - y*, B = " - 2z%® - y", we have
4% + B® = 2(x" + y")?, 4% - B? = 2¢ -« (2xyaw)?.
As an example,

52 4+ 4% = 41 - 12 11692 + 4312
52 - 4% = 3%

2 - 8812 }
11692 — 4312 = 2 « 41 - 120°
From (2) to (4):
Say x® + y? = 2%, % - y® = ew®, and 4% + B? = 2¢%, 4% - B? = 2eD%.
Setting 4 = x* + 2x%y? - y*, B = x* - 22%y® - y | we have

A% + B® = 2(x" + y")?, 4% - B?

]

2e + (2xyzw)?.
As an example,

212 + 20% = 292 } 3872812 + 3183192
212 - 20% = 41 - 1% 3872812 - 3183192

it u

2+ 354481° }

2+ 41 ¢ 243607

From (3) to (4):

Say x® + y? = 2ez?, x® - y? = w?, and 4% + B = 2¢%, 4% - B? = 2eD°.

Setting 4 = (ez®)? + 2ez%w? - w", B = (ez?)?® - 2ez%w® - w", we have
A% + B® = 2[(ez®)? + w*]?, A* - B* = 2e + (2xyzw)?.

As an example,

332 + 312 = 82 - 52} 11777292 + 9153292
332 - 312 = 2 . 82 11777292 - 9153292

]
it

2« 10547212 }
2 o 41 - 818402

We may also consider the system (4) itself:

Say x? + y2 = 232, x% - yz = 2ew?.

From the first of the two equations we require

2 2

z=u?+ 2uw - v,y =u® - 2uw - v*, 3 =u? + v2.

Then z® - y? = (2u® - 20%)4uv,

whence, 4uv(u?® - v?) = ew?, which we know has solutions if ¢ is a congru-
ent number.



k1o CONGRUENT PRIMES OF FORM (8» + 1) [Oct.

Now, having shown that each of the four possible systems of subsidiary
equasions, for prime ¢ of form 8» + 1, must have solutions if e is to be con-
gruent—and that system (4) is linked to each of the other three systems—a
proof that any one of the four systems will not have solutions for any parti-
cular value of e must be proof that no other of the four systems can have
solutions. Accordingly, we now show that e cannot be congruent if e = k% +
tz, and (k + t) is not a quadratic residue of e. For this we investigate the
subsidiary-equation system (1).

Say e is a prime of form (8r + 1), represented uniquely as k> + #2.

We have the system: x° + y2 = ez?, z° - yz = w?. Thence,

(kz)? = 2% + y? - (tz2)?,

with solution

kz = a® + b? - 02} z=a? - b + cz}
ee. (M)
tz = 2ac y = 2ab
hence,
2kae = ta® + th* - te?,
making
t?¢® + 2ktac - t2a? = b2
whence,
(te + ka)? - (ka)? - (ta)? = (tb)?
so

(te + ka)? - ea? = (th)?,

with solution

ka 2kmm th = m? - en?

Without loss of generality, that becomes

1l

te + ka = m®> + enz} te = m? - 2kmn + enz}

- en?, ¢ = m? - 2kmm + en®.

a = 2tm, b = m*
Substituting in (M), and omitting the common term 4mn, we get

t(m? - enz),

i

x = km* - 2emn + ken?, y
whence
(k + tYym* - 2emm + (k - t)?

x + Yy
and
(k ~ e)ym? - 2emn + (k + £)2.

-y
Now, since we have 2 + yz = ¢z?, with e an odd prime, x and y cannot be of

same parity. Hence, each of (x + y) and (x - y) must be a square.
So, say, x +y = pz. Then,

[(k + t)m - en]? =2e(tn)? = (k + t)p?,

which is possible only if (k + ¢) is a quadratic residue of e.

That completes the proof that a prime of form (8» 4+ 1), uniquely repre-
sented as (k® + t2), cannot be congruent if (k + t) is a quadratic nonresidue
of e.
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SOME CLASSES OF FIBONACCI SUMS

LEONARD CARLITZ
Duke University, Durham, North Carolina 27706

1. INTRODUCTION
Layman [3] recalled the formulas [2]

(1.1) F,, = Z (Z)Fk

k=0

(1.2) 2, =Y (%)7s
k=0

(1.3) 3'F, = Z <Z)Fuk,
k=0

where, as usual, the F, are the Fibonacci numbers defined by

Fy=0, F,=1, F ., =F, +F _| (n>1).

As Layman remarks, the three identities suggest the possibility of a general
formula of which these are special instances. Several new sums are given in
[2]. Many additional sums occur in [1].

Layman does not obtain a satisfactory generalization; however, he does
obtain a sequence of sums that include (1.1), (1.2), and (1.3). In particu-
lar, the following elegant formulas are proved:

(1.4) 5"y = i:(’;)z”“kmk,
k=0
(1.5) 8"F,, = i(2)3”‘kF6k,
k=0
(1.6) Fao = (1" (7)) -2 Fays
k=0
(1.7) 5"F,, = (-1)”2(2)(-2)@5,{.

k=0

He notes also that each of the sums he obtains remains valid when F, is re-
placed by L, where the L, are the Lucas numbers defined by

Ly=2,L,=1,L,,, =L, +L,_, (u>1).
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In the present paper, we consider the following question. Let p, g be
fixed positive integers. We seek all pairs A, U such that

n

n .
(1.8) \'E,, = Z(@;u"]qu (n=0,1,2, ....
k=0
It is easily seen that p # g. We shall show that (1.8) holds if and only if
Fq Fp
(1.9) A= (-1 uo= (-1) .
F‘?"P, F‘?—P

Since (1.8) is equivalent to

1.10)  (-W)"F,, = i(;)(-x)kppk (n=0,1,2, ...,

k=0

we may assume that p < g. However, this is not necessary since we may take
F_, = (-1)*-'F,. Also, the final result is in fact for all Py g, P ¥ Q.
For the Lucas numbers, we consider

n

(1.11) X'Dp, = Z(z>uquk (n=0,1,2, ...).

k=0
We show that (1.11) holds if and only if A, Y satisfy (1.9) or
F Fp
(1.9)' A==t p=- .
Forq Fovgq

In the next place, if w denotes a root of z% =z + 1, we show that
n
1) W= 3 (BT =0, 1,2, .00,
k=0
if and only if A, u satisfy (1.9).

The stated results concerning (1.8) and (1.11) can be carried over to the

more general
14

@13 NFpar = 2 (F)W ks (=0, 1,2, 100
k=0

and
"

(1.14) N'Lppsn = Z(Z)Uk%kw n=0,1, 2, ...),
k=0

where r is an arbitrary integer. We show that (1.13) holds if and only if A,
U satisfy (1.9); thus, the result for (1.13) includes that for (1.8). How-
ever, (1.14), with » # 0, holds if and only if X, u satisfy (1.9); thus, the
result for (1.13) includes that for (1.8). But (1.14), with » # 0, holds if
and only if A, U satisfy (1.9); thus, the values (1.9)' for A, Yy apply only
in the case r = 0.

As for

n

D L Z(Z) T =0, 1, 2, ...),

k=0

it is obvious that this is equivalent to (1.12) for all r».
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The formulas (1.8), (1.11), (1.12), (1.13), (1.14) with A, u satisfying
(1.9) can all be written in such a way that they hold for all p, q. For ex-
ample, (1.8) becomes

1
n _ p(n-x)[(" n-k
(1.15)  E'Fpy = g (-1) (7)EF2kr,,.
=0

For p = g, this reduces to a mere tautology. However, for (1.11) with A,u
defined by (1.9), we have

n
n _ k(n -k
1.16) By = 90 D) BB iy
k=0
For g = p, this reduces to
n
(1.17) Lpn = Z(—l)k(Z)Lg_kka.
k=0

Note that (1.15) and (1.16) had been obtained in [1].
For some remarks concerning (1.17) see §7 below. In particular, the fol-
lowing pair of formulas is obtained:

(1.18) (-1)"Lpp_p = i(—l)k(Z)LZ'kkaw,
k=0
(1.19) D Py = i(—l)k(Z)LZ"‘Fpkw
k=0

where r is an arbitrary integer.
Formulas (1.18) and (1.19) differ from (1.13) and (1.14) in a rather es-
sential way. The former pair suggest the problem of determining A, M, C»r

such that
n
n
Z ('1)k( k)Ukka+r,
k=0

7

n
N Py = 2 D ()W s
k=0

CoX' Ly

and similarly for

where C, depends only on ». This is left for another paper.

SECTION 2
Let a, b denote the roots of 2?2 = x + 1. We recall that
no_ n
(2.1) P, =—“a—_—2—, Lp,=a"+Db".

Thus, the equation

@.2) N = 2 ()

becomes
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(2.3) A (aP” - pP"y = :i: (Z)uk(aqk - by,

k=0

Multiplying both sides of (2.3) by x and summing over n we get

1 _ 1 HZ::O o kizo(z>uk(aqk _ bqk)

1-2xPx 1- %
St - 3 (1)
k=0

[

I

n=0
. k, qk qk xk
- ™ - T —
k=0 (1 -2
- 1 1 _ 1
1-= 1 va'x 1 - wb’x
1l1-=x 1-x

Since

1 1 _ 1 _ 1
3
a-b\1-4% 1-0p% 1 - Lpz + (-1)P3z2
it follows that

AF, g
(2.4) 2 = : .
1 - Apx + (-1)FA%x* (1 - 2)? - uL,e(l - =) + (-1)7p’z?

For x = 0, this reduces to

(2.5) AF, = uF,.

Thus,

(2.6) 1= Mpx + (-1)P2%% = (1 - 2)? - uLee(l - o) + (-1)7p2z2.
Equating coefficients of x and x?, we get

(2.7) AL, = 2 + uLgq

and

(2.8) (-1)PA% = 1 + upg + (-1)%?,

respectively.

Now by (2.5) and (2.7), we have
MpFy = 2Fg + Wipl, = 2F, + AF,L

p—q»

so that

(2.9) ALpF, - F,Ly) = 2F,.

It is easily verified that

= q-1
(2.10) LyF, - FyLy = 2(-1)" "F,_q-
Hence, (2.9) yields
F F

2. A= (-1 = (-1)P—E£—;
(2.11) (-1 7 M (-1 7

q-p q-p
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the second equality is of course a consequence of (2.5).

It remains to consider the condition (2.8). We shall show that (2.8) is
implied by (2.11), or, what is the same, by (2.5) and (2.7). To do this with
a minimum of computation, note that (2.5), (2.7), (2.8) can be replaced by

(2.5)" Aa? - By = @ + pa?) - @+ wh,

2.7)’ A@P + bP) = (1 + ua?) + (1 + up?),

(2.8)' A (@b)? = (1 + pad) (1 + pb9),

respectively. Subtracting the square of (2.5)' from the square of (2.7), we
get (2.8)7,

We have therefore proved that (2.5) and (2.7) imply both (2.8) and (2.11).
Conversely, (2.11) implies (2.5) and (2.7). The first implication, (2.11)
(2.5) is dimmediate. As for (2.11) -+ (2.7), we have

p
L,F, - F,L, 2(-1FF, _,

= (..1)q - —_—
FQ—p q-p ’

ADp - ULg = (-1)7+

by (2.10). Hence, ALp - uLg = 2.
This completes the proof of the following:

Theorem 1: Let p, g be fixed positive integers, p # g. Then,

n
(2.12) N'F,, = Z(Z)“quk n=0,1,2, ...,
k=0
if and only if
p Fq
(2.13) A= (-1) 7

Fp
, W= D
q-p q9-p
Thus, we have the explicit identities

n
pn n _ N PR (7 n-k -
(2.14) -1 FF,, = RZ_S( 1) (k>Fqu_quk (n=0,1,2, ...
If we use the fuller notation A(p, g), U(p, g) for A, ¥ in (2.13), then,
P
u(gs p) = L
q-p
so that
(2.15) g, p) = -Alp, ).

In proving Theorem 1, we have not made any use of the positivity of p and
g. All that is required is that p and g are distinct nonzero integers. This
observation gives rise to additional identities. Replacing p by -p in (2.13)
we get

r ¥4 Fp
(2.16) >\(_p’ C]) = (-1) 7 » U(—P» q) =_F )
p+q p+gq
and (2.14) becomes
"
@0 B, = -3 COME)ERTER, =0, 1, 2, 0.
k=0

Comparison of (2.17) with (2.14) yields
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(2.18) (-1)P"" 1Z( 1)’”‘( ) b Py v Z( DD A s 8

(n=20,1, 2, ...;p #q).

Similarly,
Fq p
Mp, -@) = 7 — = (DPACp, ),
(2.19) e .
u@, - = (D= = D uC-p,

p+4q
and we again get (2.17).
Finally, the formulas

_ _ Fq _ p
Aep, =@) = 5= (D", @),
p+q
(2.20)

1]

u-p, -q) = (- l)q = -1 ", ¢

P+q
again lead to (2.14).

We remark that for ¢ = p + 1 and p + 2, (2.14) reduces to

(2.21)  FlF, Z< PO (VR )

and

-k
(2.22) Fp+2 pn Z( peee )( )F Flpe2)is

respectively.
SECTION 3

We now consider
n

(3.1) N'ipw = 2 (F)WeLan  m=0,1,2, .0,
k=0

where p, g are distinct nonzero integers. Since L, = a” + b", we have

A (aP" + pPT) = ‘i(’;)pk(a“ + by,

k=0

1 + 1 _ 5’: e i(z)uk(aqk + %)
n=0 k=0

1 - rafx 1 - AbPx

Hence,

so that
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2 - N 2 - (2 +uLyx
(3.2) =

1 - AMpz + LPA%% 1 - (2 + uLgdxe + (1 + uLg + (-1)%u?)x?
Equating coefficients and simplifying, we get

)\Lp =2 +ULq

(3.3)
(-1)PA% = 1 + ur, + (-T2

Coefficients of x? and of x°® both lead to the second of (3.3).
We can rewrite (3.3) in the form

Aa? + bP) = (1 + pa?) + (1 + wp?)
(3.4)
A2 (ab)? = (1 + pa?) (1 + pp?).
Squaring the first of (3.4) and subtracting four times the second, we get
)\z(ap — bp)z - UZ(CZQ - bQ)Z’
and therefore,
AF, = *uF,.
If we take AF, = ULg, then, by the first of (3.3),
MDpFq = 2F, + WL,F, = 2F, + AL F,,
that is,
(3.5) A(LpFy = LqFp) = 2Fg.
Since, by (2.10),
LpFq = LoFy, = 2(-1)PF, _,,
we get

( A= (1Pt (-1)P—E
3.6) = (-1 , H= (-1
Fqop Fq-p
On the other hand, if ALp = -uLg, then
AMLpFq + LgFp) = 2F,,
which reduces to
(3.7) A==, ) i
3. = = , = , u=-
Fpiq p. Fp+q
This completes the proof of

= u(-p, q).

Theorem 2: Let p, q be fixed nonzero integers, p # q. Then,

(3.8) N'L, = i ()W re  @=0,1,2, ..,

k=0

if and only if X and Y satisfy either (3.6) or (3.7).
Thus we have the explicit identities

n
(3.9) (-1P"FJL,, = Z(-l)P"(Z)FPRF;:’;qu m=0,1,2, ...)
k=0

and

n
N\ pkpn-k
(3.10)  F'Lpn = 3 (R )ER g (&
k=0 )

1l
o
—
N

.

N’
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Note that (3.9) becomes (3.10) if p is replaced by -p or g is replaced by
-q.
SECTION 4

Let w be a root of 2 = £ + 1 and consider

n

(4.1) AP =Zukw"k n=0,1,2, ...),
k=0

where p, g are fixed nonzero integers, p # g, and A and U are assumed to be
rational. Since (4.1) is simply

N'wP" = (1 + w?)™ n=0,1,2, ...),

it suffices to take n = 1:

(4.2) WP =1 + ww?.
Recall that
(4.3) w" = Fw+F, (n =0, 1, %2, ...),

so that (4.2) becomes
AMBw+ Fp 1) =1+ u(Fw + F,_y).
Since A and Y are assumed to be rational, we have

AF, = UFq
(4.4)
A%_1=]_+u%_r

Eliminating u, we get

MF,_F, - F,F ) = F,.

p-17q P q-1
It is easily verified that 7
_ p_°p
Fp_ F, - F,F,_, = (-1) F,_
and therefore,
Fq » Fp
(4.5) A= (D w= DY
q-p q-p
We state

Theorem 3: Let w denote a root of 2? = 2 + 1 and let p, g be fixed non-
zero integers, p # g. Then,

(4.6) WP =1+ w9,

where p and g are rational, if and only if (4.5) is satisfied. Hence, (4.6)
becomes

P - (_1)? q
(4.7) Fw (-1) Fq_p + pr .
It follows from (4.7) that
n
n . pn _ k(" pn-kp ., qk
Fqu™" = kz(_l)” (k)Fq—prw >
=0

and therefore we get both

"
i = n-k(n -kpk
(4.8) FFyp -k_S_ (% ) FrskekE,
=0
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and "
k(N -
R S
k=0

in agreement with (2.14) and (3.9). However, this does not prove Theorems 1
and 2.

SECTION 5

We now discuss

n
n
(5.1) Xann+T= Z(k)uquk+P (n = 09 1’ 2’ "’):
k=0

where p # ¢ but p, ¢, r are otherwise unrestricted. One would expect that
the parameters A, U depend on r as well as p and g. However, as will be seen
below, A and U are in fact independent of .

It follows from (5.1) that

a” ~ b” _ 1 a” _ b”
1-2Pe 1-upPe 1°-% 1 - valx 1 - ub?x
1 -2 1 -2
a’ b”

5
1-@+uDe 1- @+ wHe
so that

)

ar’z Aeq PRy - b”z AepPRgk = a"Z (1 +ua?kak - brz @+ .
k=0 k=0 k=0

k=0
Equating coefficients of x , we get
(5.2) a?(FaP* = (1 + pa®H*) = > (B2 - (1 + )
(k =0, 1, 2, ...).
For k = 1, (5.2) implies
(5.3) AFpyp = Fp + UFg o
We now consider separately two possibilities:

(i) XaP =1 + pa;
(ii) XaP # 1 + paf.

It is clear from
ar(Ma? = (1 + ua®)) = p*(W? - @ + wp?))
that (i) implies

(5.4) AP = 1+ bt
Subtracting (5.4) from (i), we get
(5.5) AFp = UFq.

Hence, again using (i),

(@’Fy - a?F))\ = F,.
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Since
a’Fy - a'F, = E—Eﬂ:—b(ap(aq - bY) - a%(a? - bP))
4P pPpq
a'h’ - a'b p
= a-p - (Wi
it follows that
(5.6) S S I R .
Fogop Fq-p

We now assume (ii). Take k=1, 2, 3 in (5.2):
a®(AaPf - (1 + w?) = p"(»? - @ + wh)
at(Ma®? - (1 +ua®D?) = p"(\%% - 1 + uwp)?)
a*(W3%a®f - (1 +ua®)?) = b7 - (1 + pp?)®).
Dividing the second and third by the first, we get

AP+ @+ wa?) = '+ @+ )
(5.7)
Ma®P+ aP(L + wa?) + (1 + ua®) = AP 42b (1 + wb?) + (1 + W

The first of (5.7) yields
(5.8) AFp + WFg = 0

while the second gives

2, - 2 =
(5.9) A sz + AP, + Au]«p+q+ 2uF, + uF,, = 0.
Multiplying (5.9) by Fy and eliminating u by means of (5.8), we get
2 2 2427 _
A szE; + XE%EQ - A F%Fp+q = 2MF,F, + M FpLg = 0,
that is,

MIpFy = Fpyq+ FyLg) = Fy.

Since
LpFqg = Fpyqt Fplq = Fpygs
we have, finally,
Fq Fyp
(5.10) =TT U= —= .
Fouq Fptq

On the other hand, it follows from (5.3) and (5.8) that
MEFparFq + FyyuFy) = FoFy.

This gives

F,F, F
A = r-p 4 q .
PpirFq + FgrnFy | Fyyy

Hence, possibility (ii) is untenable and only the value of A and p furnished
by (5.6) need be considered.

Conversely, since (5.6) implies XaP? - (1 + pa%) =0 = AbP - (1 + up®),
and this in turn implies (5.2), it is clear that (5.1) holds only if (5.6) is
satisfied.

This completes the proof of the following
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Theorem 4: Let p, q be fixed nonzero integers, p # g, and let r be an
arbitrary integer. Then,

1

(5.11) )‘ann+r= Z(Z)Uquk.,.p n=20,1, 2, ...),
if and only if k=0

Fq Fp
(5.12) A= (D5, u= Dy

F‘?'P FQ'P
Thus, we have the explicit identity

n
p(n=-k)( "N kpn=k

(5.13) FyFy oy = Z(—l) (n )(k)FpF;_quk” (n=0,1, 2, ...).

k=0

We note that, as stated, (5.13) holds for arbitrary integers p, g, r. In
particular, for g = -p, (5.13) becomes

n
- - n -
(5.14) FlFppse= 9, (<11 k)(k)pgpfp P ewe (0=0, 1,2, ...
k=0
SECTION 6
We turn finally to
7N
n
(6.1) MLy = Z(k)“quk“ (n=0,1,2,...).
k=0

It follows from (6.1) that

ar + b” _ a” + b

1-2Prx 1 -2 1-@A+padHe 1 - @@+ ppHe

Hence,
(6.2) a®(MaP* - (1 + pa?)k) = -p*(*pP* - (1 + ub9)k)
(k =0, 1, 2, ...).
For k = 1, (6.2) implies
(6.3) AL =L, + UL

p+r q+re
As in 85, we again consider the two possibilities:

(1) AaP =1+ ua%;
(i1) XaP # 1 + uaf.

It is clear from
at(AaP - (1 + pa?)) + b*(AbP - (L +ub?H) =0
and (i) that
(6.4) AP = 1 + upf.

Adding together (i) and (6.4), we get

(6.5) Mp = 2 + ul,.
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Again using (i),

Aa%Lp - a’Ly) = af - b7,
which gives

. B , F
6:6) A= (DPE ws (D,
Assuming (ii), we have

a’"(Aa? - (1 + pa?)) = -b"(Ap° - @ + up?))

a®(Z2a?? - (1 + ua®?) = -b*(A\%p2%F - (1 + pp?)?)

ar(Z3a® - (1 + pa??3) = -p"(A%p% - (1 + uwp?")?).

This gives

AaP + (1 + ua9 = AP + (@ + )
6.7)
A2a%P +aaP (L +ua®) + (L +pa®)? = A2b2P 4+ ApP (L +ubT) + (L + b 2.

Then, exactly as in the previous section, we get
F

F
_ q - _ p
(6'8) )\ - F ) o= F

p+q

prq
On the other hand, by (6.3) and the first of (6.7), that is,

AFp = uF, =0,
we get

X(Epr+r + E%Lq+r) = LqLy.
This gives
LqlLy Fq

= r # 0).
FgLpwr * FpLgsr g Fpeq 70

A

Hence, (ii) leads to a contradiction and only (i) need be considered. Since
(6.6) implies (i), it is clear that (6.1) holds only if (6.6) is satisfied.
We may state

Theorem 5: Let p, g, r be fixed nonzero integers, p # q, » # 0. Then we
have
n

(6.9) XL,y = Z(Z)uqu,H_r (n=0,1,2, ...
k=0
if and only if
F F
(6.10) A= (D, w= (DT
q-p q-p
Thus, we have
n
n _ -k(n kpn-k _
(6.11) FyLypyr = -n- (k>Fqul_qun+r (n=20,1,2, ...

k=0
for all p, g, ».

Remark: Theorem 5 does not include Theorem 2 since, for » = 0, A, U may
also take on the values (3.7).
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SECTION 7
The identity

(7.1) Ly, = i(—l)k(Z)L;"kka m=0,1,2, ...
=0

has been noted in the Introduction. This suggests the problem of finding se-
quences U = {u,, %y, Uy, ...} such that

(7.2) ", = zn:(—l)k(;é)u;‘_kuk (n=0,1,2, ...).
k=0

The sequence U is not uniquely determined by (7.2). We shall assume that
u, # 0. For n = 1, we have u; = uou; - u;, so that uy, = 2. For n = 2, we get
U, = ugu? - 2u% + u,. For n = 2m, m > 0, (7.2) reduces to

2m=1
(7.3) 2o ()Wt =0 m=1, 2,3, ...
k=0
For n = 2m - 1, (7.2) yields
2m -2
(7.4) 2uy = 9 D (), =1, 2, 5, ).
Put n k=0
S, = Z(—l)k (z\)u;"kuk.
Then k;o
U, = Z(—l)k(Z)u’f'kSk,
so that k=0 "
Uy = 5, = Z(—l)k(’;)u?‘wsk - uy)
and so k=0 om-1
(7.5) -2(S,, - u,,) = Z(—l)k(iﬂui’”‘k(sk - u).
k=0

Hence (7.4) is a consequence of the earlier relatiomns
Sy = Uy, (k=1, 2, 3, ..., 2m - 2).
In the next place, if we put

o

xn
“niy >

n=0

G(x)

it follows from (7.2) that

©

3 2 S e (P,
k=0

n=0

L (uyx)”

k=0

G(x)

Thus,
G(x) = e G(~x).

In particular, the sequence{Lo, Ly, Lyp, ...}, with u;, = Lp, satisfies
(7.2); incidentally, a direct proof of (7.1) is easy. Hence, if we put
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® o
G, (x) = ZLpn YR
n=0
we have
(7.6) G, (x) = " "G, () (u, = Lp).

It then follows from (7.6) that
F(x) = G(x) /G, (x) = F(-x).
Thus,

- 2k
F@) = s gt (2o = D)y

k=0
where the coefficients c,, ¢, Cg» -.. are arbitrary. We have therefore,
(7.7) we = 9 (2 )ent
. n 2k ) C2k p(n-2)
2k<n

for any sequence satisfying (7.2) with a; = Lp.
This result also suggests a method for handling (7.2) when u, is arbi-
trary. Put

(7.8) u; = o+ B,

where 0, B are unrestricted otherwise. Then we have

i(—l)k(’;)w + B R(ak + BY)
k=0 '

y A a n-k

: g(—l)k(z)ak;(n‘;k)an_k_j%r;(—l)k(z)sf; <n,;'k>a”‘k-a’ej
- =4 n s

- 2 (3o o () + L (D) e b (§)- o e
J=0 k=0 pyrd oyt

Hence, if we define
(7.9) U, = o + g" n=0,1, 2, ...),

it is clear that
n
n -
7.10) = 2 D ()i, (=0, 1,2, 0.
k=0

Thus (7.2) is satisfied with u, defined by (7.9).
We can now complete the proof of the following theorem exactly as for the
special case u; = L.

Theorem 6: The sequence {u, = 2, u;, u,, ...} satisfies (7.10) if and
only if

(7.11) in = 2 (Z”k)c?_kun_m (n=0,1,2, ...,

2k<n
where ¢, = 1 and ¢,, ¢,, ¢4, ... are arbitrary. An equivalent criterion is
(7.12) u, = o + p" n=0,1, 2, ...)

for some fixed o, B.
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We remark that

a® = i(—l)k(’;)(a + B) kK (n=1, 2, 3, ...)
k=0

is not correct. For example,

@+ B) -a=RB
(0 + B2 - 2(a+ Ra+ a? = g2

We shall prove

BVZ

?;(—m (%)co+ mmro

i(—l)k(2)<a+ B) "Tkgk
k=0

It suffices to prove the first of (7.13). We have
n=k\ n-x-dni
. o
2. (")

zn:(—l)k<2)(u+ B) " Tkak Zn:(—l)k(z>cx’<
k=0 =0 e
zn:(g-)@n—jﬁjini(_l)k<n;<j> = B".
k=0

Jj=0

(7.13)

OLn

n-k
0

it

This completes the proof. Note that this result had occurred implicitly in
the discussion preceding (7.10).
It follows from (7.13) after multiplication by a? (or B”) that

(7.18) @, = 2 D (), (=0, 1,2, L,
k=0

where now u, = 0" + B" for all integral n. Similarly, we have

"

(7.15) =By, = 2D (F)ui v, (r=0,1,2, .0,
where k=0

B a” - B"
(7.16) vn—————u_ 5

In both (7.14) and (7.16), » is an arbitrary integer.

In the case of the Lucas and Fibonacci numbers, we can improve slightly
on (7.14) and (7.16) by first taking o = af, B = bP in (7.13) and then multi-
plying by a? (or b*). Thus, we get

n
(7.17) 'L, _, = Z(—l)k(Z)L"‘kka” (n=0,1,2,...)
k=0
and
(71.18) (DT, = 9 CDM()E e, (=0, 1, 2, 100,
k=0

where r is an arbitrary integer.
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FIBONACCI CHROMOTOLOGY OR HOW TO PAINT YOUR RABBIT

MARJORIE BICKNELL-JOHNSON
Wilcox High School, Santa Clara, California 95051

Readers of this journal are aware that Fibonacci numbers have been used
to generate musical compositions [1], [2], and that the Golden Section ratio
has appeared repeatedly in art and architecture. However, that Fibonacci num-
bers can be used to select colors in planning a painting is less well-known
and certainly an exciting application.

One proceeds as follows, using a color wheel based upon the color theory
of Johann Wolfgang von Goethe (1749-1832) and developed and extended by Fritz
Faiss [3]. Construct a 24-color wheel by dividing a circle into 24 equal
parts as in Figure 1. Let 1, 7, 13, and 19 be yellow, red, blue, and green,
respectively. (In this system, green is both a primary color and a secondary
color.) Halfway between yellow and red, place orange at 4, violet at 10, blue-
green at 16, and yellow-green at 22. The other colors must proceed by even
graduations of hue. For example, 2 and 3 are both a yellow-orange, but 2 is
a yellow-yellow-orange, while 3 is a more orange shade of yellow-orange. The
closest colors to use are: (You must also use your eye.)

1 Cadmium Yellow Light
2 Cadmium Yellow Medium
3 Cadmium Yellow Deep
4  Cadmium Orange or Vermilion Orange
5 Cadmium Red Light or Vermilion
6 Cadmium Red Medium
7 Cadmium Red Deep or Acra Red
8 Alizarin Crimson Golden or Acra Crimson
9 Rose Madder or Alizarin Crimson
10 Thalo Violet or Acra Violet
11 Cobalt Violet
12 Ultramarine Violet or Permanent Mauve or Dioxine Purple
13 TUltramarine Blue
14 French Ultramarine or Cobalt Blue
15 Prussian Blue
16 Thalo Blue or Phthalocyanine Blue or Cerulean Blue or
Manganese Blue
17 Thalo Blue + Thalo Green
18 Thalo Green + Thalo Blue
19 Thalo Green or Phthalocyanine Green
20 Viridian
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21 Emerald Green

22 Permanent Green

23 Permanent Green Light

24  Permanent Green Light + Cadmium Yellow Light

(Note: Expect problems in mixing a true tertiary color if using acrylic
paints.)

O

20 18

Fig. 1. 24-Color Wheel

To select colors to plan your painting, construct a second 24-color wheel
but rather than coloring the spaces, cut out the spaces marked 1, 2, 3, 5, 8,
13, and 21. Place 1 at any position (primary or secondary color preferred)
and use the colors thus exposed. The color under 1 should dominate, and 21
would be an accent color. This scheme solves the problem of color selection
which occurs if one wishes to paint using bright, clear color; if one is ac-
customed to painting with "muddy" colors, he may feel that he has no problems
with harmony.

Fritz Faiss has many other color schemes based upon the 24-color wheel.
The color sequences based upon the Fibonacci sequence are particularly pleas-
ing, and Fritz Faiss has done many paintings using these color sequences.
Unfortunately, to fully appreciate the beauty of the color combinations that
arise, one needs to actually see a properly constructed color wheel and some
examples of its application.

All the color schemes generated as just described are quite lovely, and
the Lucas sequence also seems to select pleasant schemes or, at least, non-
discordant ones. But, to see what a color battlefield can be constructed, make
a 24-color wheel using the more familiar yellow, red, and blue as primary
colors placed at 1, 9, and 17 with the in-between colors again placed in order
by hue (so that, for example, 21 is green and 19 is blue-green, 20 is a green
blue-green, and 18 is halfway between blue and blue-green). Then, the Fibo-
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nacci sequence does not select pleasing combinations, and one comes to appre-
ciate the problem involved in selecting bright, true colors which harmonize.

This short article certainly will pose more questions than it answers,
since mathematicians are not usually accustomed to thinking about color the-
ory as used in painting; Fritz Faiss has devoted fifty years to the study of
color theory in art. Fibonacci numbers seem to form a link from art to mu-
sic; perhaps some creative person will compose a Fibonacci ballet, or harmo-
nize Fibonacci color schemes with Fibonacci music.
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ON THE DENSITY OF THE IMAGE SETS OF CERTAIN
ARITHMETIC FUNCTIONS—II

ROSALIND GUARALDO
St. Francis College, Brooklyn, NY 11201

1. INTRODUCTION
Throughout this article, we will be using the following notation: #n > 0
%
is an arbitrary nonnegative integer and = =:z: d&bJ its representation as an
Jj=0
integer in base b, b > 2 arbitrary. Define

(1.1) Tr(n)

]

13
n+y.d; (70 = 0]
=0

R = {n|n = T(x) for some x} and

C={n|n # T'(x) for any x}.

It has been shown ([1]) that the set (C is infinite for any base b. More
generally, it is true that ( has asymptotic density and that C is a set of
positive density; these results are derived from the following more general
theorem and its corollary (proofs of which may be found in [2]).

Theorem: Let

k .
J . .
n = Zdjb , b > 2 arbitrary,
j=0

and define

K
I(n) =n +Zf(dj, J) and ®R={n|n = T'(x) for some x},
J=0
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where f(d;, §) satisfies:

a. f(0, J)
b. fd, §)

Then the density of R exists and is equal to L, where L is computable, as
follows: let

Ao = (1@ |d* <= < @+ DB - 1)
NA{T(x)| (d + 1)b* <z < (d + 2)b* - 1}

b-2
Ek =Z Ad,k /bk+1
d=0

D - 1) = |{T@) |0 < & < b¥ - 1}]

0 for all integers § > 0;
0(b?) for all j and all digits d such that 1 <d <b - 1.

, 0<d<h -2

4, = D(b* - 1)/b*.
Then -
J=k, J=k

for all k > k,, where k; is an integer having the property that for all k >
ky» the sets {T(x)]|0 < o < b* - 1}, {T(x)|bk <& < 2% - 1}, ..., {T@)|® -
Db* <z 5_bk+l - 1} are pairwise disjoint, except possibly for adjacent
pairs.

Cornollarny: 1f f(d, §) = f(d) depends only on the digit d and if f(0) = 0
and f(b - 1) # 0 then L < 1.

Now it is easy to see that when T(n) is the function defined by formula
(1.1), we have ko = 0 and that the value of the A4, does not depend on the
digit d. Hence, if we let Ay = Mg,k for each digit d, our equation for L be-
comes

0

(1.2)  L=4g - g =1- k-1 /b
j=o0 =1
2. COMPUTATION OF THE DENSITY WHEN B IS 0DD

Henceforth, let T(n) be the function n + the sum of its digits, the func-
tion defined by formula (1.1). It is not difficult to prove that when b is
odd, ® is the set of all nonnegative even integers, so that L = 1/2 whenever
b is odd ([1], [2]). We now give another proof of this fact, independent of the
proof in [2], using formula (1.2).

Our principal objective is the proof of the following

Theorem 2.1: Ay, = k(b - 1)/2 for all odd bases b.

Using this result and equation (1.2), we see that

L

1]

1- @ - l)Z/Zij/bj =1 - (b -12/20)(B/ B - 1)2) = 1/2
J=1
1/2 whenever b is odd.

The proof of Theorem 2.1 depends on the following two lemmas:
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Lemma 2.2: If b is odd then there exists an x < b¥ such that T(x) = T(b¥)
for all natural numbers k.
Proof: The proof is by induction on X. If X = 1 then we have
(b + 1)/2) = b + 1 =T(b).

Assume that
k-1
J - k
T Zdjb = 7(b%)
j=0

and assume that the following claim is true.
CLaim: d, can be chosen so that d, > (b - 1)/2. Then
(b - ¥ + d_p* P+ cee +dip+dy - (b - 1)/2)

k-1
=M b e -1+l D dr ] - -1
i=0

= DM - bR+ TF) = PR - BF 4+ bR 4+ 1 = TR,
So that all remains to be done is to prove the above claim. Observe that
k_
T(d,_b*+ e+ d PP+ (d + DD+ A} - (B +1)/2)
= T(dy_p* P+ oo+ d b2 +db+dD, B+ 1)/2<dl <b- 1.

Therefore the claim is proved if d, # 0. If d, = d,-; = +++ =d; = 0 and if
dps1 # 0, we sill show that there exists

y= . b, dp> -1/

such that §=0

k-1
T(dy b*7H + dy P 72+ e (dyyy = P 4 y) = T Zi:dij >
st

T(y) = TG™* + dy), dy < (b - 3)/2
and this will finish the proof of the claim.

Now if dy = O then the existence of such a y is guaranteed by the induc-
tion hypothesis. If d] = (b - 1)/2 then we have

J _ m
T(Zdj’b + o - 1)/2) - (™Y,

i=1

T(Zdj'bj + (b + 1)/2) = 7" + 1)

i=1

Hence

T(Zdj'bj + b - 2) = 7" + b - 3)/2)

i=1
and we are done if df = (b - 1)/2. Suppose now that d} > (b + 1)/2, so that

T<Zdj’bj + d0'> = 7"

J=1
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T (Zdj'bj +d] + 1) = 7™ + 1)
=

T(Zdj’bj +b - 1> = T®™ + b -1 -d).
=1

We then obtain the following equations:
m .
T <Zq2j'b‘7 + (! + Db+ (b - 1)/2> = 7" b - d))
j=2

7 (Zdj'bj +(d! + )b + (b + 1)/2> = T@™ 4 b - dl + 1)

Jj=2

j=2

T (Zdj’bj +(d!+ b +d]! - 1) ="+ B - 3)/2).

Note that by induction we may assume that d{ # b~ 1. The claim has now been
completely proved, so that the proof of the lemma is complete as well.

Remask: Lemma 2.2 is not valid in general if b is even. For example, if
k = 1, there is no & < b satisfying T(x) = T(b) = b + 1, since x < b implies
that T(x) = 2x and b + 1 is odd.

Lemma 2.3: 1If b is odd and

x = j{:(b - b " + 2y, vy > b+ 1)/2,

i=1 n

then there exists a y = pmtl o+ :Z:d%bj with dy, < (b - 1)/2 such that T(x) =
@) . Ji=0

Proo4: Again, the proof is inductive. If m =1 then x = (b - )b + r,
ry > (b +1)/2. Now

(b -1b+ (b+1)/2)=b>-b+b-1+b+1=0b>+D
=1(p* + (b - 1)/2).
Hence,
7((h - 1)b + (b + 3)/2) = 7(b* + (b + 1)/2) = T(h* + b)
T((h - 1)b + (b + 5)/2) = T(h*> + b + 1)
7((h - 1)b+b-1) =7(d>+b+ (b - 5)/2)

and therefore the statement is true for m = 1. Assuming that the statement
is true for all natural numbers < m, consider
m+1

@= Db - Db +p, p 2 (b +1)/2,

0
i=1

We have
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T(® - 1™+ T(Zm:(b - DP" + r0'>

=1

T(x)

- bm+2 _ bm+l +¢b -1+ T(y)

m .
=" 4+ b - TG + T@y) = "+ b+ T(Zdﬁ)

J=0
= T(?m+2 + :Z:dybj + b - 1)/2) .

=0

If d, = 0, we are obviously done. If d, # 0, assume by induction that d, #
b - 1 (cf. the case m = 1). Since

T(b”’+2 + Y d.p7 + dg)

i=1
m .
= {b"2 + ) dp (@ + Db+ - B 1)/2), ar > b+ 1)/2,
j=2
the result is proved.
Prood of Theorem 2.71: 1If m and n are integers with m < n, define

Qm, n) = {T(x)|m < x < n}.
Then
o= |R00, BF - 1) N ek, 2% - 1.

It is easy to see that the theorem is true when k = 1, so it suffices to prove
that Ay y; = A = (b - 1)/2 for all natural numbers k. Observe that if

k-1 k-1
T(Zdibj> =7 (bk + Zdj'bJ)
J=0 Jj=0

and if d{ # b - 1, then we can choose dé,g (b - 1)/2 since

k-1 k-1
T <b" + Zdj'bj> - T<bk + A+ @]+ Db+ Ay - b+ 1)/z>

Ji=0 ji=2
for all d] > (b + 1)/2. Also, suppose that we have

k=1 k-1
T(Zdﬁ) = T<bk + Zd;bﬂ' + (b - )b+ d0'> .

§=0 i=2
k-1
Since T< djb‘j _<_bk -1+ k(® -1), it is evident that d% _, < b- 1, so
J=0

Lemma 2.3 says that we can choose dy < (b - 1)/2 in this case as well.
Clearly

k-1 k-1
T(Zdjbj> = T<b’< + Zdj'bg> , df < (- 1)/2
J=0

j=0
if and only if

k-1 k=1
T((b - Bk + Z}zﬁ') - T(bk” + A s - 1)/2) :

J=n i=1
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By the same type of reasoning used to prove Lemma 2.2, we can see that the
only va%ues in Q(**!, 2p**! - 1) which we need to consider, besides the val-
ues T(b*+! + d{), 0 <dl < (b - 3)/2, are values of the form

k
T<bk+1 + Zdj’bj> ,
J=0

where df > (b - 1)/2.

We therefore obtain the following correspondence (corresponding values on
the left-hand side belonging to Q(0, b* — 1) if and only if corresponding val-
ues on the right-hand side belong to Q(0, pE*L - 1)

k-1 k-1
T(bk + Zdj'bﬁ> <> T(bk“ + D bl + o - 1)/2),
J=0 Jg=0
where d < (b - 1)/2.
The only other values in Q(bk+1, 2p** o 1) which are left to consider

are the values of the form T(b**' + dg), 0 <df < (® -3)/2. By Lemma 2.2,
there exists an integer

k-1
Zdija dO _>.. (b - l)/Z,
such that ‘7

Y
k-1
T(Zdjbj> R
Ji=0

k=1
r\@ - vBF + Y d
(o

and therefore

Hence

b ~ 1)/2> = T(p**H)

k=1
T (b - 1b* + Zdjbj (b - 1)/2 +1) = TP + 1)
. J=0

. k-1
T((b - Dbk + Y db 1)
izo

i.e., the values T(B*"' +d!), 0 < d! < (b - 3)/2 all belong to 2(0, BRI L 1),
Since each of these values are different from each other and from all the
other values in Q(p**1, 2b**! - 1), we conclude that Ag1 — A= (B - 1)/2,

Q.E.D.

7(p** + (b - 3)/2)

3. AN ESTIMATE OF THE DENSITY WHEN B = 10

In contrast to the above result, the A; behave somewhat irregularly when
b is even, as the following table, constructed for the case b = 10, shows.

The values in the table were computed essentially by finding the first
integer in 0(0, ¥ - 1) which also belongs to Q(pk, 2b* - 1); this appears
to be difficult to do in general if b is even.

By using the table below, we obtain the following estimate of the density
for base 10.

Theonem 3.1: When b = 10, the density of R is approximately 0.9022222;
the error made by using this figure is less than 1077.
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The Values of Xk and A - X, for the Case b = 10, 1 < k < 50

k+1

K M Mesr = Ax K Ak Aeer = My
1 0 26 181 6
2 9 9 27 188 7
3 16 7 28 195 7
4 23 7 29 202 7
5 30 7 30 209 7
6 37 7 31 210 1
7 44 7 32 246 36
8 51 7 33 252 6
9 58 7 34 250 -2
10 65 7 35 249 -1
11 72 7 36 255 6
12 90 18 37 260 5
13 90 0 38 267 7
14 95 5 39 274 7
15 102 7 40 281 7
16 109 7 41 240 =41
17 116 7 42 321 81
18 123 7 43 327 6
19 130 7 44 313 -14
20 137 7 45 320 7
21 142 5 46 329 9
22 169 27 47 335 6
23 188 19 48 339 4
24 169 -19 49 346 7
25 175 6 50 353 7

Proog: Since max{x[a:EQ(O, bk - 1)} = p - 1 + k( - 1), it is clear that

Ay < k( - 1) for all k. Formula (1.2) says that

Now

and

7 ©
L=1-0 (/b = D b - DA /B*
k=1

k=8

DB - DA/ < (B - DE/B) - D KB
k=g k=g

N, ok _ (1 - 1/b)8(1/B)® + (1/b)°
;k/b - oy i

Using the table and the above equations, our result is readily verified.
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THE FIBONACCI PSEUDOGROUP, CHARACTERISTIC POLYNOMIALS AND
EIGENVALUES OF TRIDIAGONAL MATRICES, PERIODIC LINEAR
RECURRENCE SYSTEMS AND APPLICATION TO
QUANTUM MECHANICS
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INTRODUCT ION

There are numerous applications of linear operators and matrices that give
rise to tridiagonal matrices. Such applications occur naturally in mathemat-
ics, physics, and chemistry, e.g., eigenvalue problems, quantum optics, mag-
netohydrodynamics and quantum mechanics. It is convenient to have theoretical
as well as computational access to the characteristic polynomials of tridiag-
onal matrices and, if at all possible, to their roots or eigenvalues. This
paper produces explicitly the characteristic polynomials of general (finite)
tridiagonal matrices: these polynomials are given in terms of the Fibonacci
pseudogroup F, (of order f,, the nth Fibonacci number), a subset of the full
symmetric group &,. We then turn to some interesting special cases of tri-
diagonal matrices, those which have periodic properties: this leads directly
to periodic linear recurrence systems which generalize the two-term Fibonacci
type recurrence to collections of two-term recurrences defining a sequence.
After some useful lemmas concerning generating functions for these systems,
we return to explicitly calculate eigenvalues of periodic tridiagonal matri-
ces. As an example of the power of the techniques, we have a theorem which
gives the eigenvalues of a six-variable periodic tridiagonal matrix of odd
degree explicitly as algebraic functions of these six variables, generalizing
a result of Jacobi. We end with a brief discussion of how to explicitly cal-
culate the characteristic polynomials of certain finite dimensional repre-
sentations of a Hamiltonian operator of quantum mechanics.

SECTION A. THE FIBONACCI PSEUDOGROUP

We give a few essential definitions and observations about finite sets
and permutations acting upon them which will be necessary in the sequel. We
may think of this section as a theory of exterior powers of sets.

Let 4 be a finite set and let IA] denote the number of distinct elements
in A. Let 2# denote the class of all subsets of 4 and define A¥4 to be the
subclass of 24 consisting of all subsets of 4 with exactly k distinct elements
of A. Thus for B € 2*, B ¢ A*4 iff |B| = k. Clearly,

|AkA\ = <I£l> (binomial coefficient) and |2A[ = Z'Al.
We have

24 = U A*4 (disjoint class union)
0<ks 4l

which implies the usual relation

Note that A’4 = {¢} (empty class) and that AIA'A = 4.

435
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Let S, denote the full symmetric group of all permutations on # elements.
Assume S, acts by permuting the set of ciphers N = {l, 2, .., n) We will
write the permutation as disjoint cycles; empty products will be the identity
permutation. Consider the following subset 7, C S,, defined by

Byo= {(y, 4+ 1) wus Gy G+ D1 < i+ 1 <4y, 4, +1 <1y,
os Tyoy + 1< 7 <nf

F, is a certain subset of disjoint two-cycle groducts in S5,. Observe that
(1) € F,, (1) = identity of S,. For 6 € F,, 0° = (1), thus every element of
F, is of order two and is its own inverse. Thus, if 0 € F,, then o™t e F,.
Suppose 0, p € F,. Then 0p € F, iff 0 and p are disjoint; all the two-cycle
products of F, are not disjoint. A pseudogroup is a subset of a group which
contains the group identity, closed under taking inverses, but does not always
have closure. In the present case F, = 5, iff n = 0, 1,2. If n<2, F, is not

a group, but F, is a pseudogroup. We call 7, the Fibonacci pseudogroup be-
cause of the following lemma.

Lemma Al: Let f, denote the nth Fibonacci number. Then
|Ful = £ n20.
Proof: We may write
F, = U F, (disjoint unionm)
0 <k < [n/2]
where Fk‘n consists of k disjoint two-cycles of F,. But observe that

5.0 = (73F)

and the lemma follows. Note that (-—l)k is the sign of the permutations in

\ n=-k\ . . . (n - k)
Fk,n . Then there are ‘Z < % ) with negative sign and Z % with
k odd k even
even sign: this gives an alternative proof with IF”] = an—1| + IFn_2| , by
observing that |F0| =1, [Fll = 1.
Returning now to the finite set N = {l, 2, o, n} and the action of S5,

on NV, consider the convenient map
Fix: S, » 2%

given for 0 € S, by Fixo = {1, e N: o(Z) = 7;}, i.e., the set of elements of
N fixed by 0. Thus, Fix (1) = N. We also define CoFixo = {7 € N: 0(Z) # 7}
and note that N = Fix 0 U CoFix 0 (disjoint union) for every ¢ € S,. If mn >
3, then Fix can be onto.

Restricting Fix to F,, the Fibonacci pseudogroup definition yields the
handy facts that if 0 € Fy ,, then |Fix 6| = n - 2k and |CoFixo| = 2k.

It will be convenient to work with just half of the set CoFix 0; there-
fore, we define the subset of CoFix 0, (small ¢) coFix o ={7Z € : o(¢) = 7 +

1}. Then | coFix 0| = k. Also, the number of elements of Fix o, 0 € Frn

with IFixGl = n - 2k is exactly (nn-_zkk> = <n;k> Again combining defini-
. . -2

tions, if 0 € F, ,, then |A\*Fixo| = (” N k).
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SECTION B. APPLICATIONS OF THE FIBONACCI PSEUDOGROUP TO DETERMINANTS
AND CHARACTERISTIC POLYNOMIALS OF TRIDIAGONAL MATRICES

We consider tridiagonal 7 X #» matrices of the following form.

a, b, 0 0 ... 0 0 0o |
¢, a, b, 0 0 0 0
0 e, a, b, 0 0 0
(1 Ay =0 0 ¢, a, 0 0 0
0o 0 o0 0 a,, b,
0 0 0 Cpop Gpey bpoy
0 0 Cpa1 a,

We define vectors
a=(a;, «ev5 ay)y b= (b, <o, by_y)s = (C15 euny Cpy)

and regard A, as a function of these three vectors, 4,= A4,(a, b, ¢) or as a
function of 3n - 2 variables. Let det4 denote the determinant of A. We re-

cord some simple facts about the determinant and characteristic polynomial of
Ay.

Lemma Bl1: Let A, be the tridiagonal matrix defined above. Then,
a. detd, =a, detd, . - b, 1o, detd,_,.

b. det (4,(a, b, ¢) - M) = (-1)"det (A\T - 4,(a, b, c))

det (4, (a, -b, -¢) - AI)

(-1)" det (AT - 4 (a, -b, -¢))
(-1)"det (A + A (-a, b, &)).

Our object is to give explicit information about det (4, - AI). We sum-
marize this information using the notation of Section A in the result.

Theosrem Bl: The characteristic polynomial of a tridiagonal matrix can be
written as the sum of a polynomial of codegree zero and a polynomial of co-
degree two as follows:

2) det (4,(a, b, &) = AI) = 11 (a, -2 +P,(As a, b, ©)
1<k<n
where
deg P,(X; a, b, ¢) = n - 2
and
P,(X; a, b, ¢)

(3) et e o TT bjcj< > ‘|‘[a1> ,

0<pus<n-2 1<kx< [n/2] geF,  \jecoFixo de N PPixo fea
In particular,

%) det An = sgn (@ TT a; T7 bie;.

g€ F, i€ Fixo je coFixgo
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This theorem gives complete closed form information about the polynomial
P,(A). P,(A) explicitly describes the perturbation of the characteristic
polynomial of A from the characteristic polynomial of the diagonal of A4.
Further, consider the family of hyperbolas x3y;, = dy, 1 <k <n -1 in R?" =2
space, dl, . dn_l fixed constants. Then for fixed a € R"”, points on these
hyperbolas parameterize a family of tridiagonal matrices A4,(a, x, y) which
all have exactly the same latent roots with the same multiplicities. The co-
efficients of the powers of A in P,(A) are elegantly expressed polynomials in
the components of a, b, ¢ and can be easily generated for computational pur-
poses: the set F, can be generated from {1,2, ..., n} in order 0 < k < [n/2],
Fk_n; coFix 1is had immediately therefrom, and A"Fix can be generated from a
combination subroutine.

To prove the theorem, we begin with

det 4, =ngn (@) a},(l) a;‘(n),

g€ Sy,

where ad?' =a;, by, ¢;, 0 for 2 =4, 4+ 1 =4, < -1=g, otherwise, respec—
tively, 1 £ %, J < n. However, det 4, is really a sum over F, C S,, has, in
general, f, terms, and b,c; occurs whenever b; occurs (Lemma Bl). From the
partition of F, into k two-cycles, 0 < k < [#n/2], we have

(6) det 4, = Z (-1)7<Z Tiry - Dacm)

0 < k< [n/2) 0 € Fyn

= > (—l)kﬂ a; ﬂ bjcj

0< k< [n/2] e Fixo J € coFix o

because there are three cases, j = 0(j), J > 0(J),and § < o(j). If ac'j,(j) £ 0
. oG

Sy 4

product. For O € Fy ,, O moves 2k elements and fixes n - 2k elements and is

characterized by its fixed elements. The most O can fix for kK > 0 is n - 2,

so that (replacing each @, by a, - A) we have deg P, (A, a, b, ¢} =n - 2.

Setting P, (A) = P, (A, a, b, ¢), we have

then |J - 0(7)| £ 1. 1In case of equality, a = bjc; occurs in the

@ P,O) = 2, (-DFR, (M)

1< k< [n/2]

where deg P, (A) =n - 2k and

(8) P, = 2 TT@-n TI e

Let MQ]V, then o€ Fy,, teFixo J € coFix g

(9) TT @ -2 = Z (_1)1M|—2< Z TT a~;> )\lMi"z
teM 0<1 < |u Aerty ied

is simply the symmetric polynomials identity rewritten in the notation of ex-
terior powers of sets. From this fact (9) and rearranging (8) for M = Fix o
we have

(10) Bea =2 3 VTN TT be; 2, T as

cehR , 08 <n-2k J € coFix ¢ AenFixo i€d
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For comparison, we note that combining equations (9) and (2) gives a direct
evaluation of the traces of exterior powers of A, (in this context, exterior
powers of A4, are the compound matrices of 4,). This is so from the identity

(11) det (4, - AI) = Z (-1)"*(er A" R ) AK 4+ (<1)"A",

0<kz<n-1

where 4, can be an arbitrary » X » matrix, tr is the trace of a matrix, A4,
. . n n . A .
is the kth exterior power of 4, <an <k> X <k> matrlx). Thus, it is possi-

ble to also give trAkAn(a, b, ¢) as an explicit polynomial in the components
of a, b, ¢ for 1 < k < n.

We conclude this section with two examples. The first arose in a problem
of positive definiteness of certain quadratic forms of interest in & plasma
physics energy principle analysis.

a. Let 1 <m < n and choose a, = a/m, b,c, = b. Then

(12) n! det4d, = Z (_l)kBk‘nan-Zkbk
0 < k< [n/2]

where the B, = are certain integers

(13) By » = Z TT =

o€ Fy,n meCoFixo

(note the upper case C on CoFix here,|CoFix OI = 2k). See Table 1 for a few
of these integers.

b. Let 1 <m < »n and choose a, = a, b,c, = b. Then

(14) det 4, = D (-, ,a" %k
0<k< n2)

where the C, , are certain integers

(15) Cow =9, TT m

o€ Fy p me Fix o

Table 1 also contains a few of these integers.

Table 1. The First Few CoFix; Fix Integers By,,; Cy,, Defined by
Equations (13); (15), Respectively; 0 < k < [n/2]

n K 0 1 2 3 4

1 1; 1

2 1; 2 2; 1

3 1; 6 8; 4

4 1; 24 20; 18 245 1

5 1; 120 40; 96 184; 9

6 1; 720 70; 600 7845 72 720; 1

7 1; 5040 112; 4320 24645 600 8448; 16

8 1; 40320 168; 36480 6384; 5400 422725 196 40320; 1
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SECTION C. PERIODIC LINEAR RECURRENCE SYSTEMS

It is now possible to use the results and notation of Sections A and B to
draw conclusions about periodic linear recurrence systems. Of course, these
generalize the usual linear recurrences; however, it is surprising that the
Fibonacci pseudogroup is the key idea in their description. We first state a
natural corollary to Theorem Bl without restriction of periodicity.

Theorem Cl: Given a pair of arbitrary sequences Ay, Ay, Ay -.. and bl,
b2, ba’ ., then the one-parameter class of linear recurrences

(16) f,(8) =a,fu.1 + thy_1fu->
with fy = 1, f; = a;, has the general solution n > 1

tkz ﬂaiﬂbj.

0< k< [n/2] oeFy,, i€Fixo J € coFix o

a7 1, @

For example, taking £ =1, a, = a, by = b, k > 1, and recalling that for
. . n-k\ .
O€F ., |Fix 6| = n - 2k, |coFixo| = k, and |Ek’n| = ( % ) yields

o G
0 < k< [n/2])

the general solution of f, = a,.; +bf,_,,fy =1, f; =a. Takinga=»5b =1
yields the well-known sum over binomial coefficients expression for the Fibo-
nacci sequence. On the other hand, writing the generating function

(19) G(t) =) f,t"
n>0

and recognizing that G(¢) is a rational function of at most two poles, indeed
G(t) = 1/(1 - at - bt?), yields the alternative solution

1
- 1 a+ Va? + 4b " _ (e - Va? + 4b "
Vit : :

Of course, from (18) we may regard f, = f,(a, b) as a polynomial in g and b.
In particular f,(a - A, b) as a polynomial in X can be written

@1 f@-A b=y <-1>'"( > (”;k)(”;fk)a"-'"-%k) z

0<m<n 0<kx [n/2]

(20) £,

We see now that the zeros, A , 1 < k < n, of polynomial (21) are precisely
(22) Ay =a+ 2/=b cos (Tk/(n + 1)), 1 < k < n.
This follows from equation (20), for f, = O implies that

a + Va2 + 4p = (a - M)eank/n+1
Va?® + 4b = /T a? tan Tk/n + 1.

Squaring gives a® sec? (Tk/n + 1) = -4b. Replacing a by a - A gives equation
(22). We have basically done the case of a period of length one.

so that
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We now take up the case of period two.
Lemma C1: Let {f,}, » > 0, be a sequence defined by
fo = @l s+ buifuys Fo=1, f; = a,
and the sequences {a,}, {b,}, have period two, i.e.,

Qop = Ayy Ay, 1 = Ay, by, 1 = Dby, by, = Dby, n2>1.

n

Then the generating function is rational with at most four poles:

(23) G(t) =D f,t"
n>0
- b t?
(24) - 1+at-b,
1 - (bl + bz + alaz)tz + blbztu
(25) _ Ao, B) L AGa, B) L A, @) | AC-B, ©)

1-at 1+ at 1 - Bt 1+ Bt

where for D = b, + b, + a;a,,

(26) 20* = D +vD* - 4b,b,, 2B% =D - V/D® - 4b b,
and
(27) Ao, B) = (of + aja - b,)/2(a® - B?).

Proof: Write G(t) in terms of its even and odd parts (two functions).
Then substitute the period two relations in to get the rationality of G(¢)
from the pair of relations

a, —a b.+b - b,-b

(28) ( - 22 Ly - 12 2t2>G(1;)+<a22a1t+ 22 1t2>G(—t) =1
- b,-b + b,+b

(29) (—a22a1t+ 22 1t2>G(t) +(1 +a22a1t - 22 1#)5:(_75) -1

where the determinant of this system is the denominator of the right-hand
side of equation (24).

Of course, comparing coefficients will give an expression for f, as a
linear combination of powers of poles of G(£) analogous to equation (20). On
the other hand, there are polynomial expressions in the four variables a
a,, b,, b, of the type (18) which follow directly from Theorem B.

We give only one example of the former.

Let fy, = Fono1 + Foncas Foner = FH, + 20,15 fo =1, f1 = 1, so that f,
is the sequence 1, 1, 2, 4, 6, 14, 20, 48, 68, 166, 234, ... . Then, we have

1°
29

(30) £, = 3@+ D+ @ - VD),
(31) j2n+l = E%§<(2 + /§>n+1 - @ - /§>n+1>.

Alternatively (30) and (31) can be shown by induction to satisfy the linear
recurrence of period two.

We now consider the general case of rationality of generating functions
of arbitrary periodic systems of linear recurrences.
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Lemma C2: Let f, = a,fn-1 + by_1fn-2 be given with fy =1, f, =q,. Sup-
pose that a, = ay and b, = by if n = & (mod k) and that

ag, 1 <8<k, by, 0 <k -1

are given as the first elements of the sequences {an} and {bn} which are not
in two k-periods. Call the system a period k system. - Set

D fat”

n>0

i

(32) G(®)

then G(¢) is a rational function of ¢ where

(33) G(E) = P(£)/Q(%)

and P(t), §(t) are polynomials in %, deg P(%) £ 2k -1, deg Q(t) £ 2k.
Proof: TFirst write

(34) G(E) = D G,(®)

where

(35) Gu(®) = P ft"

n = L& (mod k)

and where the sum is over integers n > 0, # congruent to £ modulo k. From
the relations

(36) fo =afy, ¥ by 1fu_, if n Z L (mod k),
we have that
(37) G () = a,tGy_(£) + by 187G, _,(E).
Using the modulo k relations we can write the following equations
= 2 =
(38) G (B) = atG (L) + D t°G_ [ (E) = ayt + a,tG (2) + byt Gy _,(F),
(39 Gp(8) = a,tG () + b t?G%(t) = a,tG, (¢) + b t? + b t?G (8),

- 2

(40) Gy (t) = a t@,(t) + b,t*G, (%)

(41) Gy (£) = a,tGy _(£) + by t°G,_, (%)

This gives the system of equations in matrix form as:
— - -
1 0 0 0 0 oo =bott —ayt | |G, () 1
-a,t 1 0 0 0 . 0 -b,t2] |G, (¥) 0
-b,t? -a,t 0 0 0 0 0 Gy (E) 0

2

w2y |0 ~b,t? -a,t 1 0 . 0 0 G, () | _|0
0 0 -b,t%* -ast 1 0 0 Gs () 0
0 0 cee mby t? -a, 1 0 Gp_1(8) 0
0 0 “b,_t?  maut 1 LGk(t) 0
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We rewrite equation (42) as
(42) HG = J,

with the obvious interpretation. Now H is invertible (in the indeterminant
t) and we can solve for G;(¢), ..., Gy(¢t) separately as rational functioms,
their sum is G(¢). But, clearly, deg det H(¢t) = 2k, so that the denominator
of G(¢) must divide this, i.e., deg@(¢) < 2k. Also, the adjoint of H is given
by polynomials of degree < 2k - 1, thus, deg P(¢) < 2k - 1.

This rationality result is the starting point to produce further facts of
which Lemma Bl and equation (20) are examples. The central difficulty lies
in analyzing the denominator of the rational function to display sums of pow-
ers of its roots. We will apply the technique to tridiagonal matrices of
periodic type in the next section.

SECTION D. APPLICATIONS OF PERIODIC RECURRENCES TO TRIDIAGONAL MATRICES

We return to tridiagonal matrices to apply the results of Section C first
to recover a result of Jacobi and second to give a generalization of Jacobi's
theorem.

Theosem D1 (Jacobi): The latent roots of the tridiagonal n x 7 matrix

@ »p 0 o0 o0 0 0
ec a b 0 0 0 0
0 ¢ a b 0 0 0
(43) 0 0 ¢ a b 0 O

0 0 0 0
o o 0o 0 0 ... ¢

o
Q
18 <

are given for 1 < k < n by
mk
Ay = a - 2Vbe cos prmra i

Proof: This follows directly from Lemma Bl and equation (22), by recog-
nizing that the matrix (43) defines a (period one) linear recurrence system.

Theorem D2: The latent roots of the (2n+1) x (2n+1) tridiagonal matrix

(@ » 0 0 o0 0 0 0
d e e 0 0 0 0 O
0 f a b 0 0 0 0
0 0 d e e 0 0 0
0 0 0 f a 0 0 0
(44) .
0 0 0 0 0 a b 0
0 0 0 0 0 d ¢ e
0 0 0 0 O o f a

lie among the values (1 < k < n + 1 with the plus sign, 1 < k< n with the
minus sign):
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2
(45) A =4 ; ¢+ V/(“ - @) + bd + ef + 2/bdef cos

Tk
n+ 1"

Proof: Note that when @ = ¢, b = e, and d = f this reduces to the case of
the period one theorem. By Lemma Bl, we recognize (44) as defining a period
two linear recurrence system. Take therefore the odd case in Lemma Cl, thus
(-1)?""! = -1 and

Ao, B) = A(-0, B)
(46) 2(B, 0) = A(=B, O

Then f, is zero iff @/B)*"*%=
tion (22) yields

(47) bd + ef + ac = 2vbdef cos

a
8-
ek 0 <k <mn+ 1. Reasoning as with equa-

_TK
n+ 1"
Replacing ac by (a-A)(ec -A) and solving for A gives (45). Thus we have all
latent roots of a five-parameter family of matrices.

Again, to apply similar techniques to families of matrices with more par-
ameters involves analyzing the denominator in Lemma C2. We point out that
for large periodic matrices of special type (particular sparse matrices) the

root analysis is relatively easy to do numerically, say, for periods small
relative to the size of the matrix.

SECTION E. THE APPLICATION TO A HAMILTONIAN OPERATOR OF QUANTUM MECHANICS

The differential equation of the quantum mechanical asymmetric rotor may

be written as (D - E )¥ = 0. (Schroedinger equation) where the matrix cor-
responding to the inertia tensor is

4 0 0
(48) 0 B O

o o0 c
Define the variables o, B, § by the equation

4 2 0 1|f[a
(49) B -2 0 1{|8B8

L C 0o 1 1 _ﬁ
so that B = C - (4 + B), and the differential equation becomes (single vari-
able representation)
(50) Py Ly + Ay L + RGz) = 0

dz? dz

where

P(z) = az® + Bz" + 022,
(51) Q(z) = 20(j + 2)2° + Bz = 2(j + 1)z,
R(2) G+1G+2)2"-FE22+a( + 1) +2).

After choosing a convenient Z-basis of eigenfunctions, getting the correspond-
ing difference equation with respect to that basis we have a tridiagonal ma-
trix appear. This tridiagonal matrix, however, is tridiagonal with the main
diagonal and second upper and lower diagonals, but it is possible to reduce
it to direct sums of the usual tridiagonals that we have already treated in
Section B. We are not concerned here with giving the representation theory,
and so we will sketch briefly the facts we need.
The difference equation alluded to above becomes
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(52) E?JTAW+2-+ (Qj’m - B)A, - Rj”"Am_z =0,
where
Biy= (@G -m@G-m-1),
_ 2
QJ',m = Bm”,

Rim= (G +m+m-1).

We have here for convenience replaced g by B, % by E; note that P;,n = Rj,m,
where m varies through -j <m < j, j may be a half integer. We choose the
variable n = 2j + 1, so that § = n 5 L and the matrix of interest is the n x
© matrix 4 = (aij), where

g n= %f + 1 i=37,
(53) ag; = n-i)yn-121-1) gJ=1+2,

(-1 - 2) =49+ 2,

0 otherwise

This is a nonstandard tridiagonal matrix with off diagonal integer entries.
Generalizing this situation slightly, we define

a, 0 Bpey O 0, 0 0 0
0 a, 0 bn-s .'-".

b, 0 O

(54) L b, | 0-._..a4_. .

0 . . a, 0 2 0
0 el Tt as 0 b,
0 B by-3 P a, 0
0 0 Bpy O a,

We see immediately that the directed graph of this matrix has two components
each of which is the directed graph of a standard tridiagonal matrix. This
observation will give the first direct sum splitting: we shall see that each
of these splits for sufficiently large n.

Lemma E1: The #n X n matrix A is similar to a direct sum of four tridiag-
onal matrices if 7 is not trivially small. Alternatively, the characteristic
polynomial of the n x n matrix A factors into four polynomials whose degrees
differ by no more than one.

Proof: It is sufficient to exhibit the similarity transformations that
convert the generalized supertridiagonal matrix A into similar standard tri-
diagonal matrices. For the first stage define the permutation O,

2% - 1 if kgﬁ—;i

2k-[%] ifr k>ntl

(55) o(k) =
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where 1 < k < »n and [x] denotes the greatest integer in x function. Associa-
ted with 0 is an n X n permutation matrix Sy. Then, SOASU_l will be a stand-
ard tridiagonal matrix, i.e., zero entries everywhere except the main diag-
onal, first above and first below diagonals. Further, setting B = SBASgl, B
will be, in general, (n > 3), a direct sum of two tridiagonals:

k xk and (n - k) x (n - k) where m = Ezfg—l].

But these tridiagonals are of a special kind, in fact, of the form

Am-1 bm+1 O 0

(569 51 o bu-1  Qm bm 0
bn A bn-1
0 0 Dns1  Qpoy

for the even case and

— —_

Ap-1 bm+z O
(57) B" = bm-1  an b m+1

bm A m+1

for the odd case. Because of the special up and down features, we can split
these matrices by means of the similarity matrices:

I |J I 0 J
(58) P' = for n even; P" = 0(1{0 for n odd;
-J | I - 0 I

where I is the identity matrix of appropriate size and J is zero everywhere
except for ones on the main cross diagonal. Thus, PBP~! (with appropriate
primes on the P and B) is a direct sum of two matrices and of the form

Ay -1 Dm+1
bu_i a, - bn

(59) 4y + by bu-t for n even, and
bm+1 Apm-1
A pm-1 D m+2
(60) bu-r an when 7 is odd.

Am+1 Zb’”

bm+1 A
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We can now apply the lemmas of Section B to write down explicitly the
characteristic polynomials of these quantum mechanical Hamiltonian operators;
from such explicit forms one expects to elicit information about energy lev-
els and spectra, viz., the eigenvalues are roots of these polynomials.
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VECTORS WHOSE ELEMENTS BELONG TO A
GENERAL.IZED FIBONACCI SEQUENCE

LEONARD E. FULLER
Kansas State University, Manhattan, Kansas 66502

1. INTRODUCTION

In a recent paper, D. V. Jaiswal [1] considered some geometrical proper-
ties associated with Generalized Fibonacci Sequences. In this paper, we shall
extend some of his concepts to n dimensions and generalize his Theorems 2 and
3. We do this by considering column vectors with components that are elements
of a G(eneralized) F(ibonacci) S(equence) whose indices differ by fixed in-
tegers. We prove two theorems: first, the "area" of the 'parallelogram' de-
termined by any two such column vectors is a function of the differences of
the indices of successive components; second, any column vectors of the same
type form a matrix of rank 2.

2. PRELIMINARY RESULTS

We shall be considering submatrices of an N X N matrix Zl=[72+j-1] where
T, is an element of a GFS with 7, =g and T, =b. For the special case a = b =
1, we denote the sequence as F,. We shall indicate the kth column vector of
the matrix T as Ty, = [T;+x-1]. In particular, the first two column Vvectors of
T are Ty, =[T;] and Ty, =[T;,,]. We shall now prove a basic property of the
matrix 7.

Llemma 2.7: The matrix T = [T;,;_;] is of rank 2.
From the fundamental identity for GFS,
Tr+s = FI‘+1TS +FI‘TS—1’

it follows that
Tox = Feo1Top + g Tore
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Hence, the first two column vectors of T span the column space of 7. Further,

these two vectors are linearly independent, for if Ty, = cI,; , it would fol-
low that eT; = T;,; for all indices Z. This implies that

czTi =c(cl;) =cl;yq1 = T+,
However,

T,L-+2= Ti+1+Ti = OTi+Ti = (C+1)Ti,
so that
(c? - e -1)1; = 0.

The solutions for ¢ are irrational, so the components of T,3x would also be
irrational. Thus, there is no ¢ and the vectors are linearly independent.
In the next lemma, we evaluate the determinant of some 2 x 2 matrices.

Lemma 2.7: For any k,

Ty Ty 41

= (-1)*®? - a% - ab) # O.

T T

k+1 k+2

To prove this, we first show in two steps that the subscripts can be re-
duced by 2 without changing the value of the determinant. For this, we re-
place one column by the other column plus a column with subscripts decreased
by 2. This gives the determinant of a matrix with two equal columns plus an-
other determinant. The first determinant is zero and is omitted.

T, Tysr B Tk Ty + Ty ~ Ty Te

Ty Tysr Tr+1 Trs1+ T Tk+1 Tk
Tyor + Ti-2 Ty, Toey Tra
Tk + Ty Ty Tk—l Vi

In the case where kK is even, repeated application of the process yields
the determinant

T,

T, T, T, T,+7T, T, T,

Recalling that T; =a, T, =b, so Ty =a + b, the determinant is equal to
b? - a?® - ab.

In the case where k is odd, repeated application of the process yields
the determinant

Ty T, I, ) )
= (-1) = (-1) (° - a® - ab)
T, Ty T, T,

This proves the first part of the lemma. For the last condition, it is
easy to verify that if the determinant were zero, then g and/or b would be
irrational.
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The final lemma is concerned with the "area" of the '"parallelogram" formed
by any two column vectors. The proof is based on the property that the deter-

minant of the inner product matrix for the two column vectors is the square
of the area of the parallelogram they determine.

Lemma 2.3: The square of the "area" of the "parallelogram" formed by the
two n x 1 vectors o = [a;] and B = [b:] is

i>1|% J

The inner product matrix for o and B is

n
2
a, b1 Eak Zakbk
. . | k=1

Ay ve. Ay et
b . b . . n
1 "Ilan ba| | D b, Db
— k=1 k=1

The determinant of this matrix is
n » n ’ n 2
ILDILA GICEN
k= k=1 k=1
n n
272 2,2 272 2,2 .
Zakbk + Z(aibj + ajbi> - Zakbk - ZZaibiajbj
k=1 j k=1

is>i J > 2

2, @b - 2abiashy + b} = Z(aibj - ajbi>2 -2 R

i>1 J>1 Ji>1 aj bj

3. MAJOR RESULTS

We shall be concerned in this section with two n X 1 submatrices of T of
the form [T4,+c,-1] and [T4;+c,-1]1. Because these are submatrices of T, the
d; will form a monotonic increasing sequence. They are in fact the indices
of the rows of T appearing in the submatrix. The ¢, and ¢, are the column
indices for the submatrix. For convenience, we shall assume that ¢, > c¢;.

Theorem 3.1: The area of the parallelogram formed by o = [Tg4,+.,-1] and
B = [Td,;+cz-1] is

|b? - a® - ab|F.,- ., Z(Fdj-diy # 0.

Ji>1i

By Lemma 2.3, the square of the area is given by

2
Z Tdi+c1—1 Tdi+c2—,l

i>i de-t-cl—l Ta;+cp-1
Using the fundamental identity for GFS,

Tdk+ c-1 " Fﬂz-cl+lek+ c1—1+ Fez—clek+cl-z’ k=1,4.
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We can replace the second column vector in our determinant by a sum of two
vectors. The first gives a zero determinant, while the second gives

2
2 Tdi+el—l Tdiv+ e, -2
27

i>i de+c-,-1 Tdii+cl'2
for the square of the area.

In a similar manner, we can express the second row vector as a linear
combination using the identity,
12j+cl-k = R@—di+11}i+c‘~k + Rﬁ-digui+cx‘k‘l’ k=1, 2.

This reduces our expression to

ZFZ ) Taive, -1 Ta,+e, -2
@2-¢) Fdj_di

J>i d,+e,-2 Tdi+cl-3

2

By Lemma 2.2, this determinant has the constant value (b2 - a? - gb)?. Thus,
the area of the parallelogram is

|6? - a* - ablF, _, Z(Fdj—di)z'

J>1

This area is nonzero, since none of the factors can be zero.
The next theorem follows from the theorem just proved.

Theorem 3.2: Any r x s submatrix of T = [T;,;_;], where r, s > 1, is of
rank 2.

By Theorem 3.2, any two column vectors of the submatrix form a parallelo-
gram of nonzero area. Hence, they must be linearly independent, so the rank
must be at least 2. But by Lemma 2.1, the matrix T has rank 2 and hence the
rank of any submatrix cannot exceed 2. Therefore, the rank is exactly 2.

The result given in Theorem 3.2 wouyld seem to indicate that the geometry
associated with GFS is necessarily of dimension 2. A check of the results of
the Jaiswal paper confirms this observation.
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ON NTH POWERS IN THE LUCAS AND FIBONACCI SERIES

RAY STEINER
Bowling Green State University, Bowling Green, Ohio 43402

A. INTRODUCTION
Let F, be the nth term in the Fibonacci series defined by
Fo=0,F =1, F,, =F, +F,
and let L, be the nth term in the Lucas series defined by

Ly=2,0,=1,1L L

In a previous paper [3], H. London and the present author considered the
problem of finding all the Nth powers in the Lucas and Fibonacci series. It
was shown that the problem reduces to solving certain Diophantine equationms,
and all the cubes in both series were found. However, the problem of finding
all the cubes in the Fibonacci sequence depended upon the solutions of the
equations yz + 100 = 2%, and the finding of all these solutions is quite a
difficult matter.

In the present paper we first present a more elementary proof of this
fact which does not depend on the solution of yz + 100 = x>, We then show
that if p is a prime and p > 5, then L,, and L, are never pth powers. Fur-
ther, we show that if F,:;, is a pth power then ¢ < 1, and we find all the 5th
powers in the sequence F,,. Finally, we close with some discussion of Lucas
numbers of the form y? + 1.

In our work we shall require the following theorems, which we state with-
out proof:

n+2= n+1 +L1’L'

Theorem 1: The Lucas and Fibonacci numbers satisfy the relations
L% - 5FZ = 4(-1)" and L,F, = F,,.

Theorem 2 (Nagell [6]): The equation Ax® + By® = C, where 3JAB if C = 3
has at most one solution in nonzero integérs (u, v). There is a unique ex-
ception for the equation z3 + 2y3 = 3, which has exactly the two solutions
(u, v) = (1L, 1) and (-5, 4).

Theorem 3 (Nagell [7, p. 28]): If n is an odd integer > 3, 4 is a square-
free integer > 1, and the class number of the field Q(V:Z) is not divisible
by #n then the equation Az + 1 = y™ has no solutions in integers x and y for
y odd and > 1 apart from & = *#11, y = 3 for A = 2 and n = 5.

Theorem 4 (Nagell [7, p. 29]): Let »n be an odd integer > 3 and let 4 be
a square-free integer > 3. If the class number of the field @(V-4) is not
divisible by #n, the equation Ax? + 4 = y" has no solutions in odd integers 4,
x, and y.

Theornem 5 (Af Ekenstam [1], p. 5]): Let € be the fundamental unit of the
ring R(V/m). 1If N(e) = -1, the equation x*" - k@zn = 1 has no integer solu-
tions with y # 0.

Theorem 6 [5, p. 301]: Let p be an odd prime. Then the equation y2 +1
= xP is impossible for x > 1.

k51
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B. CUBES IN THE LUCAS SEQUENCE
By Theorem 1, we have
(¢H) L2 - 5F%2 = 4(-1)".
If L, = ys, F, = x, we get
y® - 522 = 4(-1)"
with # > 0 and * > 0. Suppose first n is even, then we get
y® - 4 = 527,
If y is even, this equation is impossible mod 32. Thus, y is odd, and
W+ 2)@° -2) =2”

with
+2,y*-2)=1;
this implies that either

y3 +2=1?
y3 - 2 = 5p%

{ y?+2 = 54°
3

or

y? -2 =902

But it is well known (see, e.g., [9], pp. 399-400) that the only solution
of the equation y3 + 2 = y? is y =-1, u=1. This, however, does not yield
any value for v. Further, the equation y3 - 2 = v? has only the solution
v =15, y = 3. But this does not yield a value for u. Therefore, there are
no cubes in the sequence L,,.

Note: This result also follows immediately from Theorem 5 since the class
number of Q(/5) is 1.
Next, suppose n is odd, then we get

(2) 502 - 4 = y®,

If y is even, this equation is impossible mod 32. Thus x and y are odd, and
(2) reduces to

(3) 502 - 4 = u®,

with u a square. Equation (3) may be written
2 + VB52) (2 - V5x) = u?,

and since x is odd,
2 + 3z, 2 -~ V5z) = 1.

Thus we conclude

(4) 2 + /5x = <g-+2b/§>3

°r /5 \° V5
a + bv5 1+ V5

(5) 2 + /5z¢ = < 5 ( 5 ).

Equation (4) yields
3a®b + 5b° = 8,
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which, in turn, yields
a=b=1,v = 1.

To solve (5), we note that

i <9—159£5> = u, i.e., a® - 5b% = 4y,

3
Since u is odd, a and b are odd, thus <2—i§éﬁi> is of the form S + TV5, with
S even and T odd. And

(l—iélﬁi) (S + TV5)

can never be of the form 4 + BY/5. Thus, (5) is impossible. We have proved

Theorem 7: The only cube in the Lucas sequence is L; = 1.

C. CUBES IN THE FIBONACCI SEQUENCE
First, suppose m is even. Then F,, = x? implies F, L, = xd,
3), (F,, L,) = 1. Thus, L, = t* and n = 1.
If »n =0 (mod 3), (F,, L,) = 2 and either:

If n # 0 (mod

a. L, is a cube, which is impossible;
b. L,=22% F = 4y3; or
c. L,=4z°, F = 2y°.

We now use equation (1) and first suppose #n even. Then case (b) reduces to
z% - 20y3 =1,

with y and 2 squares. By Theorem 2, the only solutions of this equation are
z2=1,y =0, and 2 = -19, y = -7. Of these, only the first yields a sqaure
for 2 and we get » = 0. Case (c) reduces to solving

4z% - 5y% =1,

with y and 2 squares. Again, by Theorem 2, the only solution of this equa-
tion is 2 = -1, y = -1, which does not yield a square value for 3. If = is
odd, we get the two equations

z% - 20y® = -1 and 43% - 5y =-1

with 2 and y squares. By the results above, the only solutions of these two
equations are (2, y) = (-1, 0), (19, 7), and (1, 1). Of these, only the last
yields a square value of 2z and we get n = 3. Thus, the only cubes in the se-
quence F, are F, = 0, F, = 1, and Fg = 8.

If m is odd, and F, = x®, F, cannot be even since then (1) yields

LZ - 5x°% = -4,
which is impossible (mod 32). Thus, the problem reduces to
(6) 10y°% - 8 = 222,

with « and y odd. But (6) was solved completely in [4, pp. 107-110]. We out-
line the solution here. Let 6% = 10, where 6 is real. We use the fact that
Z[0] is a unique factorization domain and apply ideal factorization theory to
reduce this problem to

2
- 4O~ 2 = (<2 + 8) (a_+_be+_c6>

3
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and three other equations, all of which may be proved impossible by congru-
ence conditions.
To solve (7), we equate coefficients of 6 and 82 to get

(8) a® + 20bc - 5b% - 10ac = 9,
and
9) b% + 2ac = ab + 5c2.

Equation (9) may be written
b+ 2c-a)b - 2c) = cz,
and (8) and (9) yield a odd, b even, and ¢ even. Thus, we conclude

b - a+ 2 = dn?
(10) b - 2¢c = 4dh}
c Zdhlhze

where € = £1, d, h,, h, are rational integers, and d > 0. If we solve (10)
for a, b, ¢ and substitute in (8) we get

h* + 4hih,e - 24W5R5 - 16k h,e - 64hy
which reduces to
(11) u - 30u?v? + 40w - 750% = 9/4%.
If d =1, (11) is impossible (mod 5). If d
u - 50) (u? + 5u%v - 5uv? + 150%) = 1,

9/d?,

3, (11) may be written

and from this it follows easily that the only integer solutions of (11) are
(u, v) = (*1, 0). Thus, we have:

Theorem §: The only cubes in the Fibonacci sequence are

Fy=0, F, =F, =1, and Fy = 8.

D. HIGHER POWERS IN THE LUCAS AND FIBONACCI SEQUENCES

In this section, we investigate the problem of finding all pth powers in
the Fibonacci and Lucas sequences, where p is a prime and p > 5. We show
that L, and L,, are never pth powers, and that if F,. 1is a pth power, then
t =0 or 1. We conclude by finding all the 5th powers in the sequence F, .

Suppose L, = xP; then equation (1) yields

2P - 5F2 = 4(-1)".

If n = 0 (mod 3), & and F,, are even, and this equation is impossible (mod
32) regardless of the parity of n.
Suppose further that n = 2m, m Z 0 (mod 3); then (1) yields

5F2 + 4 = x?P,

with & and F, odd. Since the class number of @(v-5) is 2, this equation has
no solutions with F, odd. Thus, we have:

Theorem 9: L, and L,, are never pth powers for any k. Finally, if n is
odd, n Z 0 (mod 3), we have to solve

5y% - 4 = x2P,
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known methods of treating this equation lead to the solution
equations. Thus, it is quite difficult to solve.
suppose F. xP. If n =3 (mod 6), F, is even and Equation

e

- 5x%F = -4,

ssible (mod 32).
ove:

0:

Thus, F,, ., 1s never a pth power for any k.

If Fg, is a pth power, then k = O,

Let m = 3k, then (F,, L,) = 2, and since Lg, is not a pth power,

2uPf
er—l

vP,
27P Ty

20F,

odd, m even, and r» > 1.

that m cannot be odd in either case, since then (1) yields
- 5F?
ssible (mod 32).

stitute F, = 2vP in (1), case (b) reduces to

-4 =12 -5 < 2%% for some integer ¢,

(12) xz® - 1 = 5v%F,
since m is even. If v is odd, (12) is impossible (mod 8). Thus, x is odd,
v is even, and (12) yields

x4+ 1 _ 2p

5 = U

X ; 1 - 5U2p’

i.e.,
u?? - 507 = g,

Since the fundamental unit of Z[1, v5] is 2 + 5 and N(2 + V5) = -1, this
equation has no solution for v # 0, by Theorem 5. The solution v = 0 yields
Ly = 2 and p = 2, which is impossible. Thus, Fg # 2vP for any k # O.

To solve case (a), supposem # 0 and m= 24, £ odd, £ = 0 (mod 3). Then

-1
Fovg =Fpeory Iy, = 27Ty P,
Since F,s-1, # 20° and L2t4£ is not a pth power, we conclude
th—ll = Zuf,
_ n¥P-1.P
Fz**z =2 Vi,
with'#; and v; odd. By continuing this process, we eventually get
= p
E}SZ Y for some s and y odd,
F,o=y?F for y odd, or
F, = 2°y? for some s and y odd.
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Since F,s, and Fy are even if £ = 0 (mod 3), the first two of these equations
are impossible.
To settle the third, note that we have

L, = 2x?
F, = 2°y*

with £ odd, 2 = 0 (mod 3) and x and y odd. Then (1) yields
@ -5 . 4772 o g,

If s > 1, this equation is impossible mod 20; if s = 1, we get
x?? - 5y = -1,

which is impossible mod 4, since x and y are odd. Thus, m = 0.
Next, suppose m # 0 (mod 3), and F,, is a pth power. Then

FZm = F%Lm, (E%’ Lm) =1

and F, and L, are both pth powers. This enables us to prove the following
result:

Theorem 11: 1If F,t, is a pth power, m odd, m # 0 (mod 3), then ¢ < 1.

Proof: Suppose F,t
Then

is a pth power with m odd, m # 0 (mod 3) and ¢ > 1.

m

L, t-1

ot=ly 2 m

F2tm = F
and both L,:-1, and F,:-1  are pth powers. Further,

Foeaa =F ¢-2 L,

2 m 2 m2t"2%m?

and both F,:.», and L,:-2 are powers. By continuing this process, we even-
tually get

ka = FZmLZm’
and both F, and L, are pth powers. This is impossible by Theorem 9, and
thus ¢ < 1.
If m is odd, m # 0 (mod 3) and F, K is a pth power, then
Fon = FyLy

and both F, and L, are pth powers. Thus, we must solve
(13) x?P — 5y%P = -4,

Unfortunately, it seems quite difficult to solve this equation for arbitrary
p. We shall give the solution for p = 5 presently, and shall return to (13)
in a future paper.

Finally, if m is odd and F,, = xP, we have to solve

x?P+ 4 = 5y%P
with y odd. Again, the solution of this equation leads to irreducible equa-
tions and is thus quite difficult to solve. To conclude this section, we prove
Theorem 12: The only 5th power in the sequence F, is F, = 1.

Proof: if we substitute p = 5 in (13), it reduces to
(14) x5 + 5y° = 4,

and we must prove that the only integer solution of this equation is x = -1,



19781 ON NTH POWERS IN THE LUCAS AND FIBONACCI SERIES 457

y = 1. To this end, we consider the field Q(6), where 8% = 5. We find that
an integral basis is (1, 0, 62, 6%, 6%) and that a pair of fundamental units
is given by

1 - 10 - 502 + 36°% + 406",
, = -24 + 156 - 56% - 20° + 50",

Since (2, -1 + 0)2 = (-1 + 6), the only ideal of norm 4 is (-1 + 6). Thus,
(14) reduces to

€1

€

(15) u+v0 = (-1 + 0)eTe].
We now use Skolem's method [8]. We find
e; = 1 + 5§,
with
£, =30° + 40" + 54
and
g5 = 1 + 5&,
with
g, = 306° + 5B,

where 4 and B are elements of Z[6].
If we write m = 5u+ r,n = 50 + s and treat (15) as a congruence (mod 5),
we find that it holds only for » = s = 0. Thus, (15) may be written

U+ 00 = (-1 +6)@ + 55)“ (@ + 58,)°
= (-1 + 0)[1 + 5(ug, +vg,) + ---1].
Now we equate the coefficients of 6° and 6" to 0 and get
-3u + 3v + 0(5) = 0,
-u + 3v + 0(5) = 0.

-3 3

Since Z 0 (mod 5),

-1 3
the equation
u + v8 + wb? = (-1 + 08)eTe’

has no solution except m = n = 0, when m = n = 0 (mod 5), by a result of Sko-
lem [8] and Avanesov [2]. Thus, the only solution of (15) is m = n = 0, and
the result follows.
E. LUCAS NUMBERS OF THE FORM yP + 1

For our final result, we prove

Theorem 13: Let p be an odd prime. If L,, = y? + 1, then m = 0.

Proof: Again, we use (1). We set L,, =yP+ 1, F,, = x, and get

(y? + 1)% - 4 = 522,

-

2

y?? + 2yP - 3 = 522,

(y? + 3)(y? - 1) = 527,
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The GDC of y? + 3 and yP - 1 divides 4. If y is even, both these numbers are
relatively prime, and we get

yP+ 3 =%,
yP - 1 = 502,
yP+ 3 = 5u%,
y? - 1 = v,

Since y is even, both these systems are impossible (mod 8).
Suppose next that y = 3 (mod 4). Then (y? + 3, y? - 1) = 2, and we get

y? + 3 = 217,
yP - 1 = 1002,

or
yP + 3 = 1007,
yP -1 = 207,
By Theorem 3, the equationy -1 = 10v® has no solution with y odd fory # 1

since the class number of @(/-10) is 2. But y = 1 contradicts y = 3 (mod 4).
Further, y? - 1 = 20 has no solution with y odd except y =1, v =20, and y =
3, v=14%11, p=5. But y = 3 does not yield a value for u.

Finally, if y = 1 (mod 4), (y? + 3, y? - 1) = 4, and we get

yP + 3 = 20u%,
yP - 1 = 4v?,

yP + 3 = &u?,
y? -1 = 2002,

By Theorem 6, y? - 1 = 4v? has no integer solution except y = 1, v = 0.
However, this does not yield a value for u. By Theorem 3, the only solution
of y? = 1 = 200? with y odd is y = 1, v = 0, and we get

y=1, u=1, and x = O.
The result follows.
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GENERALIZED TWO-PILE FIBONACCI NIM

JIM FLANIGAN
University of California at Los Angeles, Los Angeles, CA 90024

1. INTRODUCTION

Consider a take-away game with one pile of chips. Two players alternate-
ly remove a positive number of chips from the pile. A player may remove from
1 to f(t) chips on his move, t being the number removed by his opponent on
the previous move. The last player able to move wins.

In 1963, Whinihan [3] revealed winning strategies for the case when f(%) =
2t, the so-called Fibonacci Nim. In 1970, Schwenk [2] solved all games for f
nondecreasing and f(¢) > ¢t V¢t. In 1977, Epp & Ferguson [1] extended the solu-
tion to the class where f is nondecreasing and f(1) > 1.

Recently, Ferguson solved a two-pile analogue of Fibonacci Nim. This mo-
tivated the author to investigate take-away games with more than one pile of
chips. In this paper, winning strategies are presented for a class of two-
pile take-away games which generalize two-pile Fibonacci Nim.

2. THE TWO-PILE GAME

Play begins with two piles containing m and m' chips and a positive in-
teger w. Player I selects a pile and removes from 1 to w chips. Suppose ¢
chips are taken. Player II responds by taking from 1 to f(Z) chips from one
of the piles. We assume f 78 nondecreasing and f(t) > t Vt. The two players
alternate moves in this fashion. The player who leaves both piles empty is
the winner. If m = m', Player II is assured a win.

Set d =m' —m. For d > 1, define L(m, d) to be the least value of w for
which Player I can win. Set L(m, 0) = o VYm > 0. One can systematically gen-
erate a tableau of values for L(m, d). Given the position (m, d, w), the play-
er about to move can win iff he can:

(1) take t chips, 1 < ¢t < w, from the large pile, leaving the next player

in position (m, d - ¢, £(t)) with f(t) < L(m,d - t); ot

(2) take t chips, 1 < ¢t < w, from the small pile, leaving the next player

in position (m - t,d + £, f(¥)) with f(¢) < L(m - t,d + ¢).
(See Fig. 2.1.) Consequently, the tableau is governed by the functional
equation

Len, d) = min{t > O|f(£) < L(n,d - £) or f(t) < L(m - t,d + )}

subject to L(m, 0) = 4oVyYm > 0. Note that L(m, d) < d ¥d > 1. Dr. Ferguson
has written a computer program which can quickly furnish the players with a
60 X 40 tableau. As an illustration, Figure 2.2 gives a tableau for the two-
pile game with f(¢) = 2¢, two-pile Fibonacci Nim.
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w3 1 2 3 e o det oueed .. d+ t
0 L0, 1) L(0, 2) ...
1 L, 1 L@a, 2) ...
m L t ) ' L(m - t,d+ t)
: (2)
. 1)
m L(m,d - ty<———L(m, d)

Fig. 2.1 The Tableau

Given f, one can construct a strictly-increasing infinite sequence <Hk>f
as follows: H; =1 and for kK > 1, Hy41= Hy + H; where j is the least inte-
ger such that f(H;) > Hy. For example, {H; >} is the Fibonacci sequence when
f(£) = 2¢, and Hy, = 2%-1, k > 1 when f(¢) = £. Schwenk [2] showed that each
positive integer d can be represented as a unique sum of the Hy's

8
(2.1) d = H,, such that f‘(H,,i> < Hp41 for £ =1, 2, ..., s - L.

i=1
Moreover, for the take-away game with a single pile of d (= m' - 0) chips,
Player I can win iff he can remove H,, chips from the pile (i.e., iff H, <
w). So for the two-pile game with one pile exhausted,

2.2) L@, d) = H,,.
For the one-pile game with d = Hy, + -+ + H,,, s 2 1, chips, H,, is the
key term. It turns out that for the two-pile game where d = m' - m= Hy, +

Hy, + *++ + Hy,, s > 1, H,, (when it exists) as well as H,, plays a decisive
role. Denote n; = n and n, (when it exists) = n + »r. Thus, we shall write

d=Hy+ Hupso+ oo + Hyy 8 2 1.

For each positive integer k, define 2(k) to be the greatest integer such
that

2.3 f(Fero) 2 B
Note that £(1) = 0, 2(k) > 0, and Hy,,= Hy + Hr_p(x) Yk > 1.

In the sequel, we present winning strategies for the class of two-pile
games for which &(k) € {0, 1} Yk. We refer to such games as generalized two-
pile Fibonacci Nim.

It would be nice if one could find some NASC on f such that 2(k) 8{0, 1}
Vk. The following partial results have been obtained:

(1) If F(t) < (5/2)t ¥t, then (k) € {0, 1} Vk.

In particular, for f(¢) = ct,

(a) if 1 < ¢ < 2, then 2(k) = 0 Vk > 1;
(b) if 2 < ¢ < 5/2, then (k) = 1 Vk > 2;
(c) if ¢ > 5/2, then 2(3) = 2 or 2(4) = 2.

(2) 1f 2(k) € {0, 1} Yk, then F(£) < 6t Vt.
(3) A NASC such that (k) = 0 Vk is £(2%) < 2%*1 vk > o.
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(4) A NASC such that 2(k) = 1 Vk > 2
2

<F%>T is the
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Fibonacci sequence 1

b b
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s Fy < f(Fx-1) < Fryq1 Yk > 2, where
8, 13,
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3, O N ™M NOUNOAOHNNITNONODANANOHNNITITNONOVAODAHNNITINWONONO - AN
3 HeH A A AA A A A ANNNNNNNNNNONNNONMNNMNT TS
*Computer program supplied by T. S. Fer
. S. guson.
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3. SOME GOOD AND BAD MOVES

Lemma: For the position (m, d), d = H, + -+ + H, , s 2 1, it is never a
winning move to take

(1) t chips from the large pile if 0 < ¢

(2) t chips from the small pile if 0 < ¢
It is always a winning move to take

(3) H, chips from the large pile with the possible exception of the spe-
ctal case: d = Hp + Hpyo+ o+ Hyyy s 22, Am+1)=2m+2)=1, m2> Hy,;.

(4) Hp-g(n) chips from the small pile when d = Hy + Hpyp+-+-+ H, , 58 >2,
Ln + 1) =2Mm + 2) =1, m>H,_y(ny. (This contains the special case.)

Proof: The statements (1)-(4) imply that L(m, d) € {Hn, Hn-z(n)} ¥Ym > 0.
We shall use this observation and double induction in our argument.

Schwenk [2] proved the assertions for the positions (0, d), Vd >1 (see
equation 2.2). Suppose they hold for the positions (m, d) Ym < M - 1, ¥d > 1
for some M > 1. We must show that (1)-(4) hold for the positions (M, d) ¥d > 1.

The claim is trivial for position (¥, 1). Suppose it is true for (¥, d)
Yd < D - 1 for some D > 2. Consider the two types of moves which can be made
from position (M, D), D = H, + Hyyp +-+-+ H,, , 8 > 1.

A. Taking rom the big pile:

Take ¢ chips, 0 < £ < H,, from the big pile. Then D - ¢ = Hy + -+ + H,,
where k < n. t > H,_, if &(k) = 1, and ¢t > H, if (k) = 0. By the inductive
assumption L{M, D - t) < Hy. Hence,

f(t) > fH,_) > H, > LM, D - t) if L(k)

n

< H,.
< Hpy t # Hyog(ny

1,
and
F(E) > F(H) > By > LM, D - ¢) if (k) = 0.

Statement (1) follows.
Suppose you take t = H, chips from the big pile. Consider the following
cases.
(1) p = H,. Taking H, chips from the large pile is obviously a winning
move.

(2) D> H,. Write D = H, = Hyyp + -+ H,.

(a) » = 1. Necessarily, #(n + 1) = 0. By the inductive assumption,
L(M,D - H,) = Hp41. Thus, f(H,) < L(M,D - H,) and it is a good
move to take H, chips from the large pile.

(b) » > 3. By the inductive assumption, L(¥,D - H,) > H,,,. Thus,
f(H)< Hyyo < LM,D - H,) and it is a good move to take H, chips
from the large pile.

(¢) r =2,

(i) 4(n +1) = 0. f(H,) < Hp41 and, by the inductive assumption,
LM,D - H,) > H,,1. A good move is to take H, chips from the
big pile.

(ii) 8w + 1) =1 and 2(n + 2) = 0. By the second equation and
the inductive assumption, L(M, D - H,) = Hp+,. Thus, f(H,) <
Hpy» < LM,D - H,), so taking H, chips from the large pile
wins.

(1ii) 4(n + 1) = 1 and &(n + 2) = 1. Here f(4,) > H,,;. By the in-
ductive assumption, it is possible that L(M,D - H,) = H, 1.
If L(M,D - H,) = Hy41, then ¥ > H,,,; follows from (1) of the
Lemma. The possibility of f(H,) > L(M, D - H,) signifies that
taking H, chips from the large pile might be a bad move. Thus,
(3) holds.
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B. Taking from the small pile:

If ¢ chips, 0 < ¢ < H,, t # Hy_g(n), are removed from the small pile, the
resulting position is (¥ - ¢, D+ ¢), D+t =H,  ++--++ H, for some k > 1
and ¢ > H,_ . But LM - £,D + t)< H,_x by assumption. Since

F&) 2t 2H, 3 2LM~-1t,D+ t),
this is a bad move. Thus, (2) holds.

C. Case A2.c.(iii) revisited:

Here D = Hy + Hy,p + -+ H, , A(m + 1) = &(n + 2) = 1. Suppose taking #,
chips from the large pile is not a good move. Then, LM, D - H,) = Hy+1.

For position (M, D), M > Hy-4(n), take H,_g(n) chips from the small pile
to get (M = Hy_g(n), D+ Ha-g(m))+ D+ Hua(n) = Huog(ny + Ho + Hyug + 00 +
Hy, = Hyor+ Hyyp + oo+ Hy = Hyyx +++++ H, , for some k > 3 and ng> ng,
since &(n + 2) = 1. By the inductive assumption, L(M - Hy_v(nys D+ Hulo(ny)
_>._Hn+2. But f(Hn_g,(n)) < f(Hn) < Hn+2. Thus,

f(Hn—l(n)> < L(M - Hn~2(n)’ D+ Hn—ﬂ(n))-

Taking Hy-4(n) chips from the small pile is a good move, so (4) holds.

In A, B, and C we established that (1)-(4) hold for the position (¥, D),
which completes the induction on d. Hence, they hold for (M, d) VYd > 1. This
in turn completes the induction on m. Thus, (1)-(4) hold for (m, d) Ym > 0,
vd > 1. Q.E.D.

Corollany 1: L(m, d) e {H,, Hoogenyf Ym 2 0.

Observe that if 2(n) = 0, then L(m, d) = H, Ym > 0. But when 2(n)
= 1, there are two possible values L(m, d) might assume. However, if m < H, _,,
then L(m, d) = H,.

Conollarny 2—How to win (L§ you can) when you know L(m, d):

(1) If L(m, d) = H,_;, take H,_; chips from the small pile to win.

(2) 1If L(m, d) H,, a winning move is to take H, chips from the large
pile, except possibly for the special case cited in the Lemma. In
the special case, take H, chips from the small pile to win.

L., HOW TO WIN IF YOU CAN

Knowing L(m, d) at the beginning of play reveals whether Player I has a
winning strategy. Compare L(m, d) and w. If Player I knows the value of L(m,
d) and w > L(m, d), he can use Corollary 2 to determine a winning move.

Which of the two possible values L(m, d) assumes is not obvious under
certain circumstances. The position (m, d,w) defies immediate classification
when L(m, d) is unknown and H,-; < w < H,.

Fortunately, not knowing whether one can win at the beginning of play
does not prevent one from describing a winning strategy, provided such a
strategy exists. A strategy of play, constructed from the Corollaries, is
presented in Table 4.1. This table tells how to move optimally in all situ-
ations in which there exists a possibility of winning. An N(P) represents a
position for which there exists a winning move for Player I (II).

The only case in which the status of a position is now known at the start
of play arises in 2(b) of the table. There, the player about to move is an
optimist and pretends L(m, d) = H,_;. This dictates taking H,_; chips from
the small pile. The outcome of the game will reveal the value of L(m, d) de-
pending on who wins.
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Table 4.1, How To Win (If You Can) Without Knowing L(m, d)

(1) 1f &4(n) = 0 [so necessarily L(m, d) = H,] and
(@) d=Hp+ Huyo + 2o+ H,yyy 822, Mn+2) = n+1) =1

m2>H, m < H,
w > H, N, Take H, from s.p. N, Take Hn from 1l.p.
w < H, P P
_(plnot as in (a)
m2H, m < Hy
w>H, N, Take H, from 1.p. N, Take H, from 1l.p.
w < H, P P

(2) 1If 2(n) = 1 and
(@) d=H, + Hyyp+-+++H, , 822, 8n+2)=4n+1) =1
2,y (D, @ = Hpy)  m<B(0n, @) =

|
=]
3
~—

w > H, N, Take H,_, from s.p. N, Take H, from 1l.p.
H, >w>H,_, | N, Take H,_; from s.p. p
w<H, 1 P P

&)_not as in (a)

m2Bna(LGn, &) = 27)  m<B,_o(L0n, D) = )

w 2> H, N, Take H, from l.p. N, Take H, from 1l.p.
H, >w > 4H, , |??, Take H,_; from s.p. P
w < H,_, P 2

(Note: s.p. = small pile; l.p. = large pile.)

As an illustration, consider two-pile Fibonacci Nim. It was first solved
by Ferguson in the form of Table 4.1. For f(¢) = 2¢, the sequence <Hk>u: is
the Fibonacci sequence. The first few values are

k|1 2 3 4 5 6 7 8 9 10
H, |1 2 3 5 8 13 21 34 55 89 °

(1) = 0 and (k) = 1 Vk > 2, since Hy,,=Hy + H;_; Yk > 2. What is the sta-
tus of position m = 20, d = 42, w = 6? d = 34 + 8 = Hg + H5. Player I is an
optimist and assumes that L(20, 42) = 5, not 8. 2(b) in the table tells him
to take 5 chips from the small pile.
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Player II is left in positionm = 20 - 5 =15, d = 42 + 5 = 47, w = f(5)
10. d =34 + 13 = Hg + Hg, 2(6) =1, r =2, 2(8) = 2(7) =1. Hy = 8 < w
He = 13. By 2(a) of the above table, this is a winning position (L(15, 47)
8). Player II takes 8 chips from the small pile to win. We conclude that
Player I has no winning strategy for the position (20, 42, 6). Consequently,
L(20, 42) = 8, not 5.

Only after playing the game for a while were we able to determine who
could win.

Al

5. ELIMINATING SUSPENSE

It turns out that the suspense which can arise when L(m, d) is unknown
can be eliminated. The Theorem of this section presents a simple method for
computing L(m, d). 1f d = H, +++++ Hyp,, then the entries in the dth column
of the tableau can assume only the values H, and H,_,. We say that the dth
column of the tableau makes k flips, 0 < k < o, if it has the form in Figure
5.1. If k < », the kth flip is followed by an infinite string of

H,"s if k is even
H,_1's if k is odd.

” dl 1 2 3 see d=H, +---+H,
0 i,
1 . H,_, entries
2 Hy first flip
Hn-l
. i, entries
Hyy < second flip
H‘VL
H,,, entries
, third flip
Hn—l
H,,, entries
Hn—l

Fig. 5.1 The dth Column Makes k '"flips"

Theorem: TFor m > 1, set A, = {z’z >0, 2(n + z) = 0}. Then:

A. Simple Case: d = H,. The dth column makes k flips, where k = min 4,.
(Convention: min @ = «.)

B. Compound Case: d = H, + H,y, ++++ H, , s > 2. The dth column makes Xk
flips, where

y { r-1 if min 4, > »,

min 4, if min 4, < 7.
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