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ON THE DENSITY OF THE IMAGE SETS OF CERTAIN 
ARITHMETIC FUNCTIONS—111 

ROSALIND GUARALDO 
St. Francis College, Brooklyn, NY 11201 

1. INTRODUCTION 

Let n be a fixed but arbitrary nonnegative integer. It is known (see [1], 
for example) that n may be uniquely represented in the form n = d 11 +d 2! + 
• •• + dkkl , 0 <_ dj <. J. Suppose that fid, j) is a nonnegative integer-valued 
function of j for each "digit" d, 0 £ d <_ j, j = 1, 2, . .., and define 

k 
S(w) = ^2f(dd9 j), 

j-i 

^(n) = n + Sin), 

fl(fc, 3?) = {̂ (ar) |fe £ x <_ p), 

£(&, P) = |fi(fc, P ) | 

ft(p) = fi(0, P) 

£(p) = D(0, p) 

P̂ = {a:|a: = Tin) for some n}, and 

C= {x\x ± T{n) for any n). 

Our objective here is to prove some results concerning the asymptotic 
density of the sets Q and C analogous to those which we proved when we con-
sidered the representation of n as an integer in base b (see [2] and [3]). 

2. EXISTENCE AND COMPUTABILITY OF THE DENSITY 

Th&OKm 2.7: Let fid, j) , 0 <_ d <_ J be as described above. If 

(a) / ( 0 , j ) = 0, j = 1 , 2 , . . . 
(b) fid, j ) = O(Q\) un i formly i n j , i . e . , 

sup {fid, j), 0 < d < j } = o ( j ! ) 
then t h e d e n s i t y of <R e x i s t s . 

VKOOfa: We f i r s t show t h a t 

(2 .2 ) Didkl, dk\ + P ) = £ ( * ) , 0 <_r ±k\ - 1 . 

To prove 2.2, let us suppose that 

k-l k-l 

x = dk\ + Y^ djjl and y = ̂ ! + ]C ̂ P'! • 
J = i j = i 

Clearly, T(x) = T(y) if and only if 

481 
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Suppose that dk_ x = dk_ 2 = • • • = dk_ t =. 0 (or that dk_1 = dk_ 2 = • • • = dk_ t = 0). 

Since /(0, j) = 0, it must be the case that 

We have therefore exhibited a one-one correspondence between the elements of 
tt(dkl , dkl + p) and ^(r), 0 £ p £ kl - 1, and hence 2.2 follows. In particu-
lar, if v - kl - 1, we obtain 

(2.3) D(dkl9 (d + l)kl - 1) = D(k\ - 1). 

Our next result will enable us to find a relationship between 

fe_+i 
D{(k + 1 ) ! - 1) and ^ Z?(dfe! - 1 ) . 

c? = 0 

Lojnmci 2.4: There exists an integer k0 such that for all k >_ k0 the sets 
ft(0, k\ - 1) , fi(/c! , 2k\ - 1) , . . . , fi(fefe! , (k + 1) ! - 1) are pairwise disjoint, 
except possibly for adjacent pairs. 

Vsioofi: The maximum value in Q,(dkl , (d + l)kl - 1) is at most (d + ±)k\ -
1 + kMk, where Mk- max {f(d9 j) , 1 £. J £, fc}, and the minimum value in Q((d + 
2)kl , (6? + 3)fc! - 1) is at least (d + 2)/c!. By assumption (b) , there exists 
kr

Q such that f(d9 j) < j!/2, for all j >L ?c0f, and there exists kQ _> kr
0 such 

that f(d> j) < jl/2 - k0'Mfc(r , for all j >. k0 , where Mfer = max {f(d9 j) | 1 <_ J <. 
/CQ}. Therefore, if k >_k09 we have 

E^> ^ = E/^> ^ + E fw** o) + E /WJ» o) < KMK 

+ E i!/2 - fco^;(^ " fco> 1 E J'!/2 < ̂ !-
J = k o + 1 ° j = k f

0 + l 
In p a r t i c u l a r , kMk < kl i f fc >. k0 . Hence, we c e r t a i n l y have (d + l ) /c! - 1 + 
kMk < (d + 2)&! i f /c .> ?c0 , so t h e r e s u l t i s p roved . 

Now l e t Xdyk = \Q(dk\ , (d + Dkl - l ) fl fi((d + l)kl , (d + 2)fc! - l ) | , 0 <_ 
d <_ k - 1 . Using 2 .3 and 2.4 and t h e f a c t t h a t 

k 

D((k + 1)! - l) = J^D(dk\9 W + Dkl - 1) - e, 
J = o 

where ^ depends on the number of elements that the sets £7(0, Zc! - 1 ) , Q(kl , 
2fc! - 1 ) , ..., ft(/c&!, (A: + 1) ! - l) have in common, we obtain 

fc-i 
(2 .5 ) Z?((fe + 1 ) ! - 1) = (k + DD(kl - 1) - ] T Xd . j k . 

i = o 
fc-i 

Let 4 k = £(&! - l ) / fc ! and Ek = ] T Ad > k/(fe + 1) ! , k >_kQ. Then 2 .5 becomes 
d = o 

T h e r e f o r e , 
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Ak+l ~ Ak ~ ~ek 

Ak ~ Ak-1 = ~ek-l 

Ak - Av = - e k 

k k-1 

so Ak + 1 - Ak^ = -J2eJ> i - e * ' ^k + i = Ak0 ~ J2 eJ' Rep lac ing k + 1 by k, we 
o b t a i n j = k0 j=k 0 

(2.6) ^ =i,o - £ > , . 
J'="°  fc-i 

Clearly, 1/&! £ 4fe £ 1 and ]T E^ = Ak^ - Ak <_ Ak <_ 1. Thus, ]P e^ is a 

series of nonnegative terms bounded by Ak , hence is convergent. Let 

(2.7) L = AK - ^ e j . 

Note that we have just shown that 0 <_ L <_ 1. Then, 2.6 yields 

(2.8) Ak = L + ]T £j., fc ̂ k Q . 

Since V^ e^ = 0(1) as & ->• °°, we have 
J = k ^ = L + o ( l ) . 

Multiplying both sides of this equation by kl and using the definition of the 
Aki we obtain 

(2.9) D(kl - 1) = Lk! + o(fc!). 

Using 2.3, 2.4, 2.9, and the definition of the A!s and the e's, we have 

d-l d-l 
D(dkl - 1) = X^^!, ̂  + ̂ kl " D " X A^ 

(3=0 O = 0 
d-l 

= ̂  (Lfc! + o{k\)) + o((fc + l)lek) 
e = 0 

= dfc!L + o((k + 1)!) + o((k + 1)!), 
i.e. , 

(2.10) D(dk\ - 1) = dklL + o((fc + 1)!). 
k 

Now let n = £^ djjl be any nonnegative integer. Then D(n) = D(dkkl - 1) + 
j-o 

D(dkkl, dkkl +dk_i(k - 1) I + •••) - §, where fi is the number of elements that 
the sets Q(0, dkkl -1) and Q,(dkkl , dkkl + ̂ ^ ( k - l ) ! + •••) have in common. 
Hence, if n is sufficiently large, then, by using 2.2, 2.10, and the defini-
tion of the A's, we obtain 

D(n) = dkk\L + D{dk_1(k-l)l + ..-) + o((k + l)l) + o{(k + l)l) 

= dkk\L + £(aVi(k-D! + ...) + o((k+l)\). 
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Applying the same type of reasoning yields 

D(dk_±(k - 1)! + ...) = dk_±(k - 1)! + o(kl) 

= dk_±(k - 1)!L + o{(k + 1)!). 

Continuing in this manner, we obtain 

D(n) = Ll n - £ d ^ ! j + M Z dtf\ J + (k - k0), 

T h e r e f o r e , 

errors of size o((/c + 1) !) , 

! + o(k\)9 

D(n)/n = L - L • o(l) + 0(1) + 0(1), 

which implies that the density of 9 is L, so the proof is complete. 

Our next result is an immediate consequence of Theorem 2.1. 

Con,oJULcUivj 2.11: If f(d9 j) = f(d) depends only on d, where f(0) = 0 and 
f(d) = o(j\) uniformly in j for all other "digits" d9 then the density of Q 
is L, where L is defined as in equation 2.7. 

CoKottaJty 2.12: We have L < 1 if and only if the function T(n) is not 
one-one. 

Vtioofa: We have L = Ak^ " ̂  ej = Ak ~ Z ec < f o r a 1 1 ^ — ^o» w n e r e ^o i s 

J a fe J = ^o 
defined as in Lemma 2.4. Therefore, L <_ Ak if k >_ k . if TOr) = T{y) 9 x + y, 
and & is such that k >_ k0 and x <_ kl - 1, y <_ kl - 1; then, since 

4* = D(kl - l)/fc!, 

it follows that L <_ Ak <_ 1. If T is one-one, then it follows from the defi-
nition of the A1 s and the £fs that Ak = 1 and e^ = 0 for all ?C, so L = 1. 

It seems to be true, although possibly difficult to prove, that L < 1 if 
each f(d, j) = /(<i) depends only on d and / satisfies the hypotheses of The-
oren 2.1. It also seems to be the case that we should always have L > 0 un-
der these hypotheses; this result again will be left to conjecture. 

3. EXISTENCE OF THE DENSITY WHEN f(d, j) = 0(j!/j2 log2j) 

The main drawback to Theorem 2.1 is the condition f(09 j) = 0. If we as-
sume that f(d9 j) = 0(j!) uniformly in j for all "digits" d9 it seems to be 
difficult to find a workable relationship between the quantities Ak9 but on 
the other hand, it also seems to be difficult to find an example of an image 
set <R which does not have density under this assumption. However, we do have 
the following result. 

JhzoJiQJtn 3.1: If f(d9 j) = 0(j!/j2 log2j) uniformly in j, then the density 
of Q exists. 

k k 

Vnoo{: Let D and fi be as before. If n = Y] d j \ 9 then S(n) = ^0(j!/j 2 

log2j) = 0(k\/k2 log2k). j-i j-i 
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Suppose that r <_ s <_ t(r < t) and s < (k + 1) ! ; then, 
D(r, t) = D(r, s) + D(s + 1, t) - |Q(r, s) H Q(s + 1, t) | . 

Since S(n) = 0(/c!/k2 log2k), we have 

(3.2) D(r, t) = D(r9 s) + D(s + 1, t) + 0(k!/k2 log2k). 
In particular, if r = 0, s = (/c - 1) ! - 1, and £ = k\ - 1, we obtain 

D(k\ - 1) = 0(0, (fc - 1)! - 1) + D((k - 1)!, k\ - 1)) 
+ 0((fc - l)!/(fc - D 2 log2(k - 1)). 

Applying the same reasoning to compute the quantities D(09 jl - 1 ) , 2 
<_ k - 1, we see that 

£(&! - 1) = 0(0) + 0(1!, 2! - 1) + £(2!, 3! - 1) + ••• 

+ £>((& - 1)! , k\ - 1) 
+ 0((fc - l)!/(fc - D 2 log2(^ - 1)) 

+ 0((fc - 2)!/(fe - 2 ) 2 log2(/c - 2)) + •'•• 

so we finally obtain 
fc-i 

(3.3) Z?(fe! - 1) = D(0) + ̂ Z?(q!, (q + 1)! - l) + 0(kl/k2 log2k). 

Now, by 3.2, we have 

D{dk\9 (d + l)k\ - 1) = D(dkl, dk\) + D(dk\ + 1, (dfc+ 1) ! -
+ 0(kl/k2 log2k) 

and by repeated application of 3.2, we obtain 

D{dk\, (d + l)kl - 1) = D(dkl, dk\) + D(dkl + 1, dk\ + ! -

+ •-• + D(dkl + (fc - 1)!, (d+l)k\-l 
errors of s ize 0(kl/k2 log2k), 

i . e . , k_± 

(3.4) Z?(d/c!, W + l)k\ - 1 ) = £(dfc!, dfc!) + ^D{dk\ + 4 ! > ^ ! 
+ (q + 1)! - 1 ) % 0(fc!/fc log 2 k) . 

Since all integers x which satisfy dk\ + q\ £ x <_ dk\ + (q + 1) S - 1 
the same number of leading zeros, we have 

D(dk\ + q\, dk\ + (q + 1)» - 1) = D(q\, (q + 1)! - 1), 
1 1 q <. k - 1 

(cf. the argument used to prove 2.2). 

Using this fact, 3.4 becomes 
fc-i 

(3.5) 0(dfe! , (d + 1) ! - 1) = 0(0) + X £(<7! , (? + 1)! - 1) 

+ 0(fc!/fc log2k) 

and 3.3 and 3.5 imply that 

(3.6) D(dkl9 (d + l)fe! - 1) = D(k\ - 1) + 0(fc!/fc log2fe). 
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Now, using 3.6, we obtain 

D((k + 1)! - l) = D(k\ - 1) + D(k\, (k + 1)1 - 1 + 0(kl/k2 log2k) 

= D(kl - 1) + D(k\9 2k\ - 1) + D(2kl, (k + 1)! - 1) 

+ 0(k\/k2 log2k) + 0(k\/k2 log2k) 

= 2D(k\ - 1) +D{2k\, (k + 1)! - 1) + 0(k\/k log2k). 

By repeated application of 3.6, we finally obtain 

D((k + 1)1 - 1) = (k + l)D(kl - 1) + k + 1, 

errors of size 0(kl/k log2k); 

thus, 

(3.7) D((k + 1)1 - 1) = (k + l)£(fc! - 1) + 0(ft + l)!/fe log2k). 

Define Ak = Z?(fe! - l)/kl. Then 3.7 becomes 

(fc + l)\Ak + 1 - (k + l)Mfc = 0((fc + l)!/fc log2k); 

and by telescoping, we see that 

k 
Ak + i = Ao + E 0 ^ ' log^')-

k 

It is not difficult to verify that ^0(l/j log2j) = <9(l/log2A:) . Therefore, 
j-i 

using the above equation, we may conclude that there exists a constant L such 
that 
(3.8) Ak = L + 0(l/log fc). 

Now l e t n = 2, dk.k\. be any nonnegat ive i n t e g e r , where each dk. i2 0 . Then 
j = 1 

D(n) = D(dkmk\m - 1) + D(dkmk\ + A - i ^ _ i + •••) + 0(fc!/*4 l o g 2 ^ ) . 

By the same type of reasoning employed to get 3.4 and 3.7, we see that 

D{dkmk\m - 1) = dKD(kl - 1) + 0(kl/k log2km) + D{dKk\m, dknk\m+ • • • ) • 
Since dk f 0 for any j , we have 

/ m \ / m - 1 ' ' 

T h e r e f o r e , \ J " 1 ' \ J = X 

Z?(«) = ^ ^ ( L + 0 ( l / l og km)) + 0{k\Jkm log2/cm) + D( Y.dk.kl) . 

Continuing in this manner yields 

DM = nL + 0(fc!/fcm l o g 2 ^ ) + £ o ( j ! / l o g j ) . 
J = I 

Hence, £>(n) = nL + Of/cl/log kj , 

so Z?(n)/n = L + 0 ( l / l o g fcm) = L + 0 ( 1 ) , 

which proves that the density of ̂  is L. 
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RomoJtk 1: Theorem 3.1 has the drawback that the computability of the 
density has been lost. 

ROMCUik 2: If we assume that f(d9 j) = o(j\) uniformly in j, then there 
exists an image set <£ which does not have density. For example, let f(d9 j) 
= 0 when j is even and f(d, j) = j! when j is odd. Then, 

/ \zi \ fe.i 

if /c is odd, and 

( k-l \ k-l 

kl + X^!J = kl + Z 6 ^ ' 1 + (fe - D ! + (fe - 3)! + --- + 1! 
J = I / j-i 

if fc is even. Therefore, the number of integers between k\ and 2kl that be-
long to ^ if fe is odd is at most 1 + (k - 2)! + (k - 4)! + ••• + 1, and the 
number of integers between k\ and 2k\ that belong to 9 if k is even is at 
k\ - (k - 1)! - (k - 3)! - • • • - 1!. Hence, if we let 6 and A denote the lower 
and upper density of <£, respectively, we see that 

6 <. 0 + 0(1) and A >. 1 + 0(1), 
so 6 = 0 and A = 1. 

It is also interesting to note that, if we let f(d9 j) = o(jl) uniformly 
in j, there do exist image sets ̂  of density 0. For example, if f(d, j) = 0 
when d f 1 or j = 1 and f(d9 j) = 2j! if d =. 1 and j > 1, then no member of 

(except 1) has the "digit" 1 anywhere in its factorial representation, and 
the set 
(3 .8 ) | n\n = J^ djJl> dd + 19 1 <3 <k\ 

is easily seen to be the set of density 0. 
Our next result is an immediate corollary of Theorem 3.1. 

CotiolloAbj 3 . 9 : I f f(d9 j) = f(d) depends only on d and 

fid) = 0 ( j ! / j 2 l o g 2 j ) 
uniformly in j, then the density of ̂ P exists. 

Finally, just as in [2] and [3], we wish to consider the special case that 
arises when we assume that f(d, j) = f(d) =d for all "digits" d [so that Tin) 
is the function n + the sum of the "digits" of n] . Clearly, f(d) satisfies 
the assumptions of Corollary 2.11, so we know that the density of <R is L9 
where L is defined as in 2.7. In this case, it is easy to verify that kQ = 0 
and that the value of Xdyk does not depend on d, .Let us therefore set \d,k = 

Afc, 0 £ d <_ k. In the following table, we give the values of Xk and ek to the 
nearest 6 decimal places; it appears to be difficult to develop an algorithm 
to calculate the \k in general. 

Using this table together with Taylor's formula and Lagrange's form for 
the remainder, we obtain the following result. 

TknoKom 3.10: When T(n) is the f unction n + the sum of the "digits" of 
n9 the density of. 9 is 0.879888. The error made using this figure is less 
than e/2 "9!. Therefore, Q has positive density in this case. 
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The Values of Xk and ek , 1 <. k <_ 10 

k 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

K 
0 
0 
0 
2 
6 
8 
14 
17 
26 
39 

£fc 

0 
0 
0 
0.066667 
0.041667 
0.008929 
0.002401 
0.000375 
0.000064 
0.000009 
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EVALUATION OF SUMS OF CONVOLVED POWERS 
USING STIRLING AND EULERIAN NUMBERS 

H. W. GOULD 
West Virginia University, Morgantown, W. Va. 26506 

ABSTRACT 

It is shown here how the method of generating functions leads quickly to 
compact formulas for sums of the type 

0±k±n 
using Stirling numbers of the second kind and also using Eulerian numbers. 
The formulas are, for the most part, much simpler than corresponding results 
using Bernoulli numbers. 

1. INTRODUCTION 

Neuman and Schonbach [9] have obtained a formula for the series of con-
volved powers 

n 
(1.1) S(i,j;n) = £fcf(n - k)s' 

fc = o 
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using Bernoulli numbers. Although the formula expresses S(i,j;n) as a poly-
nomial of degree i + j + 1 in n, and this mode of expression is useful, still 
the formula is rather clumsy and hard to recall. Below we shall show how the 
method of generating functions can be used to obtain elegant closed forms for 
(1.1) very quickly. The first of these uses the Stirling numbers of the sec-
ond kind, and the second uses the Eulerian numbers. Both results give (1.1) 
as series of binomial coefficients in n, rather than directly as polynomials 
expressed explicitly in powers of n. For many purposes of computation and 
number theoretic study, such expressions are desirable. The significant re-
sults below are formulas (3.6), (3.8), (5.3), and (7.3). 

Glaisher [4] and [5] was the first to sum (1.1) using Bernoulli numbers. 
Carlitz [3] has shown some extensions of [9] and connections with Eulerian 
numbers. Our results overlap some of those of Carlitz, but were obtained in 
August 1974 before [3] was written. 

2. A GENERATING FUNCTION 

Y, tnS(i,j;n). 
n = 0 

k = 0 n=*k k=0 n = 0 

so that we have at once the elegant generating function 

(2.2) G(t;i,j) = £ kHk • £ ^ n -
k = 0 n = 0 

The generalized power series 

2>v< 
k 

may be summed in a variety of ways. We shall use the methods of (i) Stirling 
numbers of the second kind and (ii) Eulerian numbers. Our (2.2) is (3.4) in 
Carlitz [3]. 

3. METHOD OF STIRLING NUMBERS OF THE SECOND KIND 

It is an old fact that 
P 

(3.1) (tDff(t) =X S(p9k)tkDkf(t), 
k = 0 

where D = d/dt and S(p,k) is a Stirling number of the second kind. Expli-
citly, 

(3.2) k!S(p,k) = A V = E<-D*-J"0)fcP. 
j-o w / 

The formula dates back more than 150 years, but, for a recent example, see 
Riordan [10, p. 45, ex. 18]. Riordan gives a full account of the properties 
of Stirling numbers of both first and second kinds. Other historical remarks 
and variant notations are discussed in [6], Applying the formula is easy be-
cause (tD)ptk = kptk, whence we have 

(2.1) G(t;i,j) 

Then 

G(t;i,j) 
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(3.3) £ ̂ V = V k\S(p,k) ^—— . 

This, too, is a very old formula. It converges for \t\ < 1, but we treat it 
as a formal power series. Carlitz [2] gives a good discussion of formal power 
series techniques. 

Using (3.3) in (2.2), we find 

• i+j P v 

(3.4) G(t;iJ) = E " ,+ 2 Z ^ ! ( p - k)lS(i,k)S(j,r-k). 
r=0 (1 - t) k=0 

Throughout the rest of the paper, we shall write, for brevity, 

r 

(3.5) 5,(i,j) =2/c!(r-/c)!5(i,/c)5(j,2»-/c). 
k = o 

Applying the binomial theorem, we find next 

i> = 0 n = 0 

=Ei(i«)«-«.''' 
v = 0 n=r 

n=0 r=0 

In the next-to-last step here, the upper limit v = i, + j might as well have 
been v = °°  because of zero terms involved, since S(p,k) = 0 when k > p. This 
makes manipulation easier. Equating coefficients of tn and dropping some zero 
terms, we find finally then our desired formula 

(3.6) S(iJ;n) =J2[Hl)sr(i,j). 
r = 0 

This simple expression may be compared with the bulky form of expression given 
in [9] using Bernoulli numbers. 

Having found our desired formula, we can next offer a much quicker proof. 
Recall [10, p. 33] that 

n 
(3.7) x" - £ (X\v\S(n,r). 

V = 0 
This gives at once 

k \ n „ ky =Y( rlS(i,r)i2slS(j,s)(l)(n-k), 
£?o ZTo \i /\ s / 

whence, using formula (3.3) in [8], a modified Vandermonde addition formula, 
we get on summing from k = 0 to k = n, 

(3.8) S(i,j;n) ^riSfi.rl^lsy.s)!^! 
r=Q s=0 
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By simply putting s - v for s and interchanging the summation order, we see 
that this is nothing other than our former result (3.6). 

h. EXAMPLES OF THE STIRLING NUMBER METHOD 

For the sake of completeness, we recall [10, p. 48] some of the values of 
S(n,k): 

0 
1 
2 
3 
4 
5 
6 
7 

n 

0 

1 

1 

1 
1 
1 
1 
1 
1 
1 

2 

1 
3 
7 

15 
31 
63 

3_ 

1 
6 
25 
90 
301 

4_ 

1 
10 
65 
350 

5 

1 
15 
140 

6 

1 
21 

7 -

1 

U k_ 

Here, S(n,k) = 0 when k > n and S(n,0) = 0 for n >. 1. 
For j = 0, formula (3.6) becomes the well known 

(4.1) S(i 
1 

,0;n) = £ (" + J)r!S(i,i>), w >. 0, i > 0 . 
v> - n > ' 

Incidentally, in some places in the vast literature r\S(i-,r) has been called 
a Stirling number, and both arrays turn up very often in odd places with new 
notations. There are at least 50 notations for Stirling numbers. Here are a 
few examples of (4.1): 

S(l,0;n) = (n+
2
1), 

5(2,0;») = ( n 2 1 ) + 2 ( " 3 1 ) ' 

5(3.0;„,-(»J1) + 6(»^) + 6(»;1). 

S(,,0;n) - (n+
2

1) + 14(^) + Se^1) + 2 A ( ^ 1 ) . 

For j = 1 we shall obtain substantially the same coefficients, the difference 
being that the lower indices are each increased by 1. Thus: 

5(2,1;«) = { 3 ) + 2̂  4 J = 12 > 
3?r 5nd + 2n 

60 

^^^^crj^ftVKn1)-^;1) 
2n6 - 5 ^ + 3n^ 

60 

where we have indicated, for comparison, the values obtained in [9]. 
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For j - 1, the following is a brief table of the coefficients in the ar-
ray: 

i = 2 
i = 3 
i = 4 
i = 5 
i = 6 

1 2 
1 6 6 
1 14 36 24 
1 30 150 240 120 
1 62 450 1560 1800 720 

For j = 3, we find the following formulas: 

sa,3;n)-(n+
3
1)+6(nl1) + 6(n+

5
1)t 

5(2,3;.) = (" + 1) + afj 1 ) + isf^1) + 12(^;1), 

S(3,3;n> - (" + 1) + n f ^ 1 ) + A S ^ 1 ) + 72(^ 1) + S G ^ 1 ) , 

and so forth. 

5. METHOD OF EULERIAN NUMBERS 

The Eulerian numbers [1], [10, pp. 39, 215] are given by 

(5.D A„fi ^ ( - D T ^ C J - k)K-
k = o 

These must not be confused with Euler numbers appearing in the power series 
expansion of the secant function. The Eulerian numbers satisfy 

A n>3 = An,n-j + i9 row symmetry, n >_ 1 , 

= jAn.1}j + (n - j + D ^ « - i , j - i , 
and 

An, 
n 

J = l 

Again, for completeness, here is a brief table of A n ^ 

0 
1 
2 
3 
4 
5 
6 
7 

n 

0 

1 

1_ 

1 
1 
1 
1 
1 
1 
1 

2 

1 
4 
11 
26 
57 
120 

3_ 

1 
11 
66 
302 

1191 

4_ 

1 
26 
302 

2416 

5_ 

1 
57 

1191 

6 

1 
120 

7 • 

1 

j J_ 

These numbers are frequently rediscovered, for example, recently by Voelker 
[11] and [12], where no mention is made of the vast literature dealing with 
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these numbers and tracing back to Euler. For our purposes, we need the well-
known expansion 

(5.2) x>K^= a - tr-lyEtk
Antk. 

k=0 k=0 

This expansion is known to be valid for \t\ < 1, but again we treat all series 
here as formal power series since we do not use the sums of any infinite se-
ries. We never assign t a value, but equate coefficients only. 

Applying this to (2.2), we find 

. . l 3 

G(t;i,j) = (1 - t)"W~2XX^jrX]t%.)e 
r=0 s=0 

i + 3 

E(i+J'r+1)*5>x; 
fe=0 / r=0 s=o 

A . A . 

n = 0 r = 0 N " * 's=0 

and by comparison of coefficients of tn we have our desired formula 
i + j 

A- a A • «.3) w^-zf i^nE j , r-8 
0 

Here we have again dropped some of the terms that are zero by noting that 
An • = 0 whenever j > n. Formula (5.3) is (3.6) in Carlitz [3]. 

As with our previous Stirling number argument, we could obtain (5.3) by 
another method. We recall that in fact 

(5.4) ^n=i2(x+i~i)^,i 
J=0 

and form the product kz (n - k)J and sum from k = 0 to k = n to obtain a for-
mula for (5.3) analogous to (3.8). We omit the details. 

6. EXAMPLES OF THE EULERIAN NUMBER METHOD 

When j = 0, formula (5.3) becomes, of course, the familiar relation 

(6.1) S(i,0;n) = £ (" + l)Ai, r . n >0, i >l. 
r = l 

To see that this is so, we proceed as follows. By (5.3), 

•^i, s ^ 0 , v - s 

\ i+1 )Ai,r, s i n c e A0jr_s = 0 f or r f s, 
r= 0 
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= iL \ " + i )Ai,r > since Ait0 = 0 for i >_ 1, 
r= 1 

i 

= Y^ Q + iV^-^+i' by PuttinS ̂  - ̂  + 1 for p, 
r= 1 

t 

( '+i)Ai,r9 by the symmetry relation. 
I» = 1 

For J = 0, then, we have the following formulas: 

5(1,0;n) = j^ 1 ) , 

S(2,0;n) = ( " ^ ) + ( ^ 2 ) , 

W.O^-C^+ll^ + ̂  + ll̂ Ĵ + f'J4), 
etc. 

For j = 1, we find 

5 ( 2 , i ; » ) - ( M ; 1 ) + ( n : 2 ) 

s ( 3 , i ;n ) . ( B ; i ) + *f , ; 2 ) + (n;3) 

and so on. These again are a different way of saying what was found in [9], 

7. ALTERNATIVE EXPRESSION OF THE STIRLING NUMBER EXPANSION 

( n +1\ Formula (3.6) uses the values of I -. ). We wish to show now that we can 

transform this result easily into a formula using just f . i)> i-e«? direct-
ly as a series of binomial coefficients in n rather than n + 1. We will need 
to recall, see [10], the recurrence relation for Stirling numbers of the sec-
ond kind 

(7.1) S(m,k) = kS(m-l,k) + S(m-l,k-l). 

In this, set m = j + 1 and replace k by v - k. We get 

(7.2) S(j+l,r-k) = (r-k)S(j9r-k) + S(j ,r - k - 1). 
Now, by (3.6) and the usual recurrence for binomial coefficients, we have 
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1 + J' i +^ x 

D(")5,(i,«;) + U (Z)Sr-iV>3) 

^95 

V = 0 

r=0 

However, Sr(i,j) + Sr_1(iij) 
•p V - l 

= J^ kl (r -k)\S(i,k)S(j,r -k) + £ k\ (r - 1 - k) \S(i,k)S(j,r - 1 - k) 
k = o fc = o 

r v- 1 
]T 7<! (p - fc - 1) \S(i9k) (r - k)S(j,r - k) + ̂  fc! (p - 1 - fc) \S(i9k)SU,r -1-k) 
k = 0 k = 0 

= X feKr-l-WllW^W+l^-fe) -5(i,/c)5'(j,3?-fe-l)}, by (7.2) 
k = 0 

r- 1 

+ J^kl(Y>-l -k)\S(i,k)S(j,r-l -k) 
v-1 fe=0 

= £ f c ! (r-fe-l)!5(t,W5(j+l,r-W + r\S(i,r)S(j ,0). 
k = 0 

The extra term here may be dropped when we consider j >_ 1. . Therefore, we have 
the new result that 

i + j r 

(7.3) S(i,j;n) =• ]T ( J )£fc! (r-fc) !S(i,fc)S(j+l,r+ 1-fc), j il, iiO. 
r = 0 fe = 0 

ExampteA: Let J = 1 again. We find 

5(0, l;n) = (J) + (2), 

5(l,l;n)-(;) + (5), 

5(2,l;») -•(?)+ 3(5) +2(»), 

For j = 1, the general pattern of these coefficients begins as follows: 

0 
1 
2 
3 
4 
5 
6 

£ 

0 

1 

1 

1 
1 
1 
1 
1 
1 
1 

2_ 

1 
3 
7 

15 
31 
63 

3_ 

2 
12 
50 
180 
602 

4_ 

6 
60 
390 
2100 

5_ 

24 
360 
3360 

6_ 

120 
3520 

7 -

720 

V 

It is interesting to note that these coefficients appear in another old 
formula: 
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i k 

(7.4) S(i,0;n) = £ <-!)*(*. + ± ) E ^ ( )) W + D* , 
fc = 0 j" = 0 

val id for £ J> 1, n >_ 1. 
Ex.ampZ&>: 

S<1,0;») - (J) + (^), 

*«••"•>• ( I ) + 'G) + " ( 3 ) + 'fi)-
and so forth. 

There is yet another old formula involving Stirling numbers of the second 
kind which we should mention. It is 

i 
(7.5) S(i,0;n) = E (-1)*" "("+ iV«S'(i,r) , n >. 0, i >. 1. 

r = 0 

This occurs, for example, as the solution to a problem [13] in the .American 
Mathemat-ieal Monthly. 

Examples: 

S(l,0;n) = j ^ 1 ) , 

5(2,0;n)-.("J1) + 2("+ 2 ), 

^<3,0;») - ("J1) - 6(» + 2) + 

^(4,0;n) = -(-;1) + "(W32) " ̂ D + 24(WD' 
and so forth. 

8. FINAL REMARKS 

It is interesting to note that the original sum (1.1) is a type of con-
volution. So also formulas (3.6), (5.3), and (7.3) involve convolutions of 
the Stirling and Eulerian numbers. The formula found in [9] is not of this 
type. This is so because of the way in which the binomial theorem was first 
used. It would evidently be possible to obtain convolutions of the Bernoulli 
numbers. To get such a formula using Bernoulli polynomials is easy. Let us 
recall that 

(8.D ~—=Y,h~B»(x)> 1*1 < 2 7 T > 
defines the Bernoulli polynomial Bn(x). Then Bn(0) = Bn are the Bernoulli 
numbers. It is also a well-known old formula that then for all real x> 

n 

(8.2) x" =;r^TEr£1Hfe), n > 
k-o k 
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Form the product k1'(n - kY by using this formula to expand kl and (n - k)J'. 
Sum both sides and we get 

(8-3) S(iJ;n} - ̂ t^^^jt^^tBAmAn - k), 
r=0 ' d s=0 k = 0 

which brings in a convolution of Bernoulli polynomials. Since the Bernoulli 
polynomials may be expressed in terms of Bernoulli numbers by the further 
formula 

n 

(8.4) BAx) = X) {l)xn""B^ 
m = Q 

it would be possible to secure a convolution of the Bernoulli numbers. How-
ever, the author has not reduced this to any interesting or useful formula 
that appears to offer any advantages over those wev have derived here or those 
in [9]. We leave this as a project for the reader. 

It is also possible to obtain a mixed formula by proceeding first as in 
[9] to get 

7(i,j;n) = £(-1)' (^J'~l>i+r> 
v = 0 ' k = 0 

apply one of our Stirling number expansions to the inner sum and get, e.g., 

J i + r 

(8.5) S(i,j;n) = £ ('V ( ̂ ""'"'E (l X ±
1}klS(i +r>k) > 

V=0 fc=0 

but the writer sees no remarkable advantages to be gained. 
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b-ADIC NUMBERS IN PASCAL'S TRIANGLE MODULO b 

HEIKO HARBORTH 
Technische Universitat Braunschweig, West Germany 

For the binomial coefficients in Pascal's triangle we write their small-
est nonnegative residues modulo a base b. Then blocks of consecutive integers 
within the rows may be interpreted as Z?-adic numbers. What Z?-adic numbers 
can occur in the Pascal triangle modulo bl In this article we will give the 
density of such numbers and determine the smallest positive integer h(b) , 
such that its b-ad±c representation does not occur (see [3] for b = 2). 

We use the notation 

m 

t =Y1 a ^ = (amam-l '" a i a v \ > 0 - ai - b ~ X ' am $ ° > 
i = 0 

for positive integers t . First we will prove the existence of b-ad±c numbers 
which do not occur. 
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L<imma 1: (1011) 2 is not to be found within any row of the Pascal trian-
gle modulo 2. 

PXOO&i We assume that there are integers n and k with 

(*H*«H*IS)SI - (*Ii)s ° < - » • 
These congruences substituted in 

a) <* + ! + *>(* + ? + * ) - < * - * - * > ( * ; * ) 
for i = 0, 1, 2, gives n E k (mod 2), & E 0 (mod 2), and n E 1 (mod 2), re-
spectively, which is a contradiction. 

Lomma 2: (111)^ is not to be found within any row of Pascalfs triangle 
modulo b with b > 2. 

Psioofi: We assume that 

Together with (1), for i = 0 and £ = 1, we conclude that n E 2& + 1 (mod 2?), 
and w E 2fc + 3 (mod b), respectively. However, both congruences are possible 
only if b = 2. 

We are now able to determine the density. 

ThdOJiQjn 1: Almost all b-ad±c numbers cannot occur within the rows of 
Pascal's triangle modulo b. 

VKOO^X As noted in [4], it is well known that the density of those £-adic 
integers not containing a given sequence of digits is 0 (see [2], p. 120). 
Thus, the proof is given by Lemmas 1 and 2. 

Jk2.0h.Qyn 2: Let h(b) be the smallest b-ad±c number not being found with-
in any row of Pascal's triangle modulo b. Then, h(b) - b2 + b + 1 = (111)^ 
for b > 2, and 7z(2) = 11 = (1011) 2. 

We first prove two lemmas. 

Lemma 3: Let b = bYb2 with (bl9 b2) = 1. Then (am ... a0)b occurs in the 
Pascal triangle modulo b if and only if (aim ... a ^ ) ^ for i = 1, 2 occur in 
the triangles modulo bi with a^j E a3- (mod b^) , j = 0, 1, . . . , m. 

VJ100&: One direction of the proof is trivial. , , 
In the following, we use the result of [1] and [6], that (̂ j (mod b) is 

periodic for fixed k with the minimal period N being the product of all prime 
powers p a + $ with pa from the canonical factorization of b and 3 from p$ ^k 
< p£ + 1. Thus, N depends only on the prime factors of b and on k (see [5] for 
further references). By reasons of symmetry, a corresponding periodicity of 

I n _j_ £ \ 
length L holds for I 7, , p ) with fixed n and k. 

From this and by the assumption, we are able to find n^ and k^ such that 
for i = 1, 2, 

with minimal periods L^ each being the lowest common multiple of m + 1 minimal 
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periods. From (Z?l5&2) = 1 we have (Ll5L2) = 1. Thus, the diophantine equa-
tion, 

K. 1 "t" X T±J I — fVo ' vC lyLl p 5 

has solutions o^ , #2. For fixed values xl9 x2J we then have minimal periods 
N with 

lni +xiLi+yiNi\ _ 
(mod bi), j = 0, 1, . . . , m. 

Finally, (/1/1, /l/2) = 1 guarantees solutions z/15 z/2 of 

n2 + a^Lj + ylNl = n2 + x2L2 + y2N2, 

which completes the proof. 

Lzmma 4: In Pascal's triangle modulo pa, p being a prime, there are ar-
bitrarily large partial triangles with 

0 £ £ ) = *(.*) (»° dP«),n>0, fc>0. 
for every r from 1 to pa. 

VK.00^', We first show 

(2) (^/T) E ° ( m ° d p a ) f° r p a 3 " P a 3 " a + 1 < ^ < P a B + p a 3 ' a + 1, 
fc ^ p a 3 . 

Let y be the exponent of p in the canonical factorization of the binomial 
coefficient in (2). Then, by a theorem of Legendre ([7], p. 13), we have, 

y-Z 
i2-l 

ppQ k 

T. - V% 

rpag - k 
pi _ 

t = a$ - a +1 

where [#] means the greatest integer not exceeding x. 

We further show by induction on a that ( Pag 1, for v = 1, 2, 

a complete system of residues modulo pa. Let 

(3) Pj (r) - TT (r " y + l • 
i = 1 

Then for a = 1 we can write 

3 

K)= ^TT^-^) E v < m o d p)« 
\ ^ / j - 1 

In general, with p = z;pa_1 + p, l ^ . p ^ p a _ 1 , 0 <. z; <L p - 1, we get 

/ a$\ a^ a - 1 a _ 1 a ~ 1 

(ppae ) = p T T p j ( p ) E ^TTpj(p) E P T T P J ( P ) E ^ p a _ 1 + P T T P J ( P ) <mod pa>-
J = l J = l J-.l <7 = 1 
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If we assume pirP. (p) to take all residues modulo pa~x, then the induction is 
complete. 

As (3 may be chosen arbitrarily large, Lemma 4 follows with nr = rpa® and 
kT = pae. 

VKOOh ofi Tk&Ofl&n 2: Lemmas 1 and 2 yield h(b) <_ . . . . Because of Lemma 
3, we need to consider only prime powers as moduli. Trivially, 

teo)p-:x , 1 1 a0 < pa, 

occur as [-L ) in the Pascal triangle modulo pa (let n = a0 and k = 1) , and so 

do (la0)pX (let n - a0 and k = 0,1), with 1 _£ a0 j£ pa. We then multiply the 

digits of (la0)pa by r, 1 < p < pa, and obtain all numbers (a1a0)pa , includ-

ing those with (a1? pa) > (a0, p a ) . This is because of Lemma 4 and the sym-

metry of binomial coefficients. Further, (100)pa occurs if n = 2pa, k = 0, 

1, 2, and (110)pa if n = 2pa + 1, k = 0, 1, 2. 

Now 

so that f^j E 0 (mod pa) , if n = rpa - 2 and k = p a - l. Using (3), and with 

y being an integer, we have 

(4) (7aa_"22) " — ^ - r T T ? - (r) = 1 + vp (mod p»), 
\P *• I rpa - 1 j = i J 

( 5 ) ( , - - 2 ) . ( , . i , ' - - ^ ; - ^ : , - ! ) . * - !>(->>;-) <„„, P . , . 

As (1 + vp, pa) = 1 , we can find an integer x such that multiplying (4) and 
(5) by x yields the residues 1 and r - 1. Because of Lemma 4, corresponding 
binomial coefficients occur in the Pascal triangle, so that the existence of 
all numbers (10(r - l))pa , 2 <_ r <_ pa, is proved. 

Thus, we have shown h(b) >_ (lll)z? for b _> 2. The remaining binary numbers 
(111)2, (1000)2, (1001)2j and (1010)2 are to be found within the rows 3, 4, 
5, and 6, respectively. 
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DIVISIBILITY PROPERTIES OF POLYNOMIALS IN PASCAL'S TRIANGLE 

V. E. HOGGATT, J R . , and MARJORIE BICKNELL-JOHNSON 
San Jose State University, San Jose, California 95192 

D i v i s i b i l i t y p r o p e r t i e s of t he F i b o n a c c i sequence {Fn} a r e w e l l known, 
i n c l u d i n g t h e p r o p e r t y of g r e a t e s t common d i v i s o r s , 

\^m s ^n ' ~ ^ (m, n) ' 

Here the derivation of the greatest common divisor of a sequence pair is ex-
tended to the Fibonacci polynomials, the Morgan-Voyce polynomials, the Cheby-
shev polynomials, and more general polynomials from a problem of Schechter [1] . 
Moreover, all of these polynomials have coefficients which lie along rising 
diagonals of Pascal's triangle, and all of these polynomials satisfy (um(x), 
un(x)) = U(m nx(x) with suitable adjustment of subscripts. 

1. INTRODUCTION 

The Morgan-Voyce polynomials in [2], [3], and [4] are defined by 

BQ(x) = 1, Bx(x) = x + 2; bQ(x) = 1, b1(x) = x + 1, 
and 

Bn(x) = bn.±(x) + (1 + x)Bn-!(x), 

(1.1) bn(x) = xBn_1{x) + bn_±(x), 

Bn(x) = Bn.±(x) + bn(x). 

It is easy to show that B_x(x) = 0, and b_1(x) = 1. These mixed recurrences 
could be solved for pure recurrences as each separately satisfies 

(1.2) un+2(x) = (x + 2)un+1(x) - un(x), 

with uQ = 1 and ul = x + 2, and uQ = 1 and u1 = x + 1, respectively. 
If one lists these polynomials, 

b0(x) = 1 
B0(x) = 1 
b1(x) = x + 1 
Bl(x) = x + 2 
b2(x) = x2 + 3x + 1 
Bz(x) = x1 + kx + 3 
b3(x) = x3 + 5x2 + 6x + 1 
BAx) = x3 + 6x2 + 10^ 4- 4 

Clearly, we see that the coefficients of this double sequence lie along the 
rising diagonals of Pascal's triangle. 

The Fibonacci polynomials are 

(1.3) f0(x) = 0, f.ix) = 1, fn+2{x) = xfn+1(x) + fn(x), 

and we list the first few of these polynomials: 

fx(x) = 1 
fz(x) = x 
f3(x) = x2 + 1 
fn(x) = x3 + 2x 

501 
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f5(x) = xh + 3x2 + 1 
fe(x) = x5 + kx2 + 3x 
f7(x) = xe + 5xh + 6x2 + 1 
f8(x) = x7 + 6x5 + lÔ r3 + kx 

Once again, we see that the coefficients lie along the rising diagonals of 
Pascal's triangle. 

It can be shown that [3], [4] 

bn(x2) = f2n + 1 (x) 
(1.4) 

xBn(x2) = f2n + 2 (x), 

and the fact that coefficients lie on the rising diagonals of Pascal's tri-
angle follows from that property for the Fibonacci polynomials. The Fibonacci 
polynomials obey 

(1.5) /„+„(*) = (x2 + 2)fn + 2(x) - fn(x), 
which agrees with (1.2) when x is replaced by x throughout. 

Next, we are interested in finding the greatest common divisor of a pair 
of Fibonacci polynomials. 

lh<lOK<m 1.1: For F ibonacc i po lynomia l s , 

(fm(x)> fnW) = f(m,n) (#)-

Vtioofa: Rewrite the recursion (1.3) for the Fibonacci polynomials, 

fm + 1(x) - xfm(x) = fm_±(x)9 

and set (fm(x), fm + 1(x)) = d(x) . Then, since d(x)\fm(x) and d(x) \fm + 1 (x) , we 

must have d(x) \fm_ ± (x). In turn, fm(x) - xfm_1(x) = fm_2(x) implies that 

d(x)\f _ (x) 9 and, continuing, finally d(x)\f1(x) = 1. Therefore, d(x) = 1, 

and Theorem 1.1 holds for n = m + 1, or, 

(1-6) (/„(*>> /n + i ^ » = 1-
From [5], we also have 

(1.7) /p + r(a0 = fP-i(x)fr(x) + /p(a0/r + 1 (*), 

and 

(1 .8) /m ( # ) ! / „ (#) i f a n d only i f 777 | n . 
Next, let c = (m, ri) , and let c?(̂ ) = (fm(x), fn(x)). Since c\m and c\n, 

by (1.8), /e (a;) |/m(ar) and fa{x)\fn(x) implies that fa(x)\d(x). Since c = (rn, 

ri) , by the Euclidean algorithm, there exist integers a and 2? such that c = 
3??7 + bn. Since c <_ m, m9 n > 0, a £ 0 or b £ 0. Suppose a £ 0 and let & = -a. 
Then bn = c + km applied to (1.7) gives 

fhn (*) = fa + km(x) = fc.1(x)fkm(x) + fo(x)fkm + 1(x). 

By ( 1 . 8 ) , fn(x)\fbn(x) and fm (x)\fkm (x), and s i n c e d(ff) | / n (x) and <2(#) | / m (#) , 

we have d(x) \fc (x)fkm + 1(x) . But (/fc (a?) , /few + 1 ( a0 ) = 1 by ( 1 . 6 ) , w h i c h i m p l i e s 
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that (d(x) , fkm + 1(x)) = 1, and d(x)\fa(x). Also, since fc(x)\d(x), d(x) = 

fa(x), or (fm (x) , fn(x)) = /(m > n ) (x) , concluding the proof, which is similar 

to that by Michael [6] for Fibonacci numbers. Also see [7] and [8]. 

2. POLYNOMIALS FROM A PROBLEM BY SCHECHTER 

Next, we consider some polynomials arising from a problem by Schechter 
[1] and their relationships to the Fibonacci polynomials and the Morgan-Voyce 
polynomials. Consider the sequence defined by Sl = 1, S2 = m, and 

!

Sk = mSk_1 + Sk_2, k even, 

Sk = nSk_x + Sk_2, k odd. 
We now list the first few polynomials in m and ft, and compare to the Morgan-
Voyce polynomials. 

Sl(m, n) = bQ(mn) 

S2(m, ri) = m = mB0(mn) 

S3(m, n) = mn + 1 = b1(mn) 

Sh(jn9 ri) = m(mn + 2) = mBl(mn) 

S5(m, ri) = (mn)2 + 3mn + 1 = b2(mn) 

S6(m, ri) = m[(mn)2 + kmn + 3] = mB2(mn) 

Thus, it appears that 

!

S2k + 2 (jn, n) = mBk(mn) , 
s2k + i (m> n ) = bk(mn). 

Now, from (1.4), we have mnBk(m2n2) = f2k+2(mn)» thus, 

(2.3) S2k^2(m2, n2) = m2Bk(m2n2) = % f2k+2 (mn). 

For example, Sh(m2, n2) = m2 (m2n2 + 2), Bl (m2n2) = m2n2 + 2, and fh (mn) = (mn) 3. + 
2777ft, and we see that 

Sk(m2, n2) = m2B1(m2n2) = ^(mn) (m2n2 + 2) 

Next, we state and prove a matrix theorem in order to derive further re-
sults for the polynomials Sk(m, ri). 

Th2.0A.rn 2.1: Let A = (j o)' 5 = (l o) * T h e n' 

/ bk(xy) xBk_1(xy)\ 
(AB)k = 

\yBk_1(xy) bk_±(xy) ) 

where bk(x) and Bk(x) are the Morgan-Voyce polynomials. 
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{AB) -\o 1/ i 
XyB.^xy) b_x(xy) , 

l / , i v / b Axy) xBn(xy)\ 

(AB) =/^ + l *\ = f ̂  ^ M 
Assume that (AB)k has the form of the theorem. Then, 

( xybk(xy) + xyBk_1(xy) + bk(xy) x[(xy + l ^ . i G r z / ) + fcfc_i0c7/)r 

ybk(xy) + yBk_1(xy) xyBk_x(xy) + fck-1(a:z/) , 

( fcfc-iO*^) xBk{xy) 

yBk(xy) bk(xy) 
by applying the mixed recurrences of (1.1), completing a proof by induction. 

Now, returning to the matrices of Theorem 2.1, since the determinant of 
AB is 1, it follows that 

(2.4) bk(xy)bk_1(xy) - xyB2
k_1 = 1. 

Returning to the polynomials Sk(m, ri) , we have also that 

71 
$2k + l mS2k 

fc _ I — • " 777 045)* = 

so that, taking determinants, 
^zk -1 . 

(2.5) S2k-iS2k + i " w^2k - 1B 

The polynomials 5^ (m, n) sire related to the Morgan-Voyce polynomials by 

$2k + i (m9 n) = bk(mn) , 

(2.6) (^2fc(w» n) = nBk_1(mn) , 

S2k(m, n) - mBk_1(mn). 

Since the polynomials Sk(m, n), the Morgan-Voyce polynomials, and the 
Fibonacci polynomials are interrelated by (1.4) and (2.3), which can be re-
written as 

Sik + i(m> n) = f2k + 1Umn), 
(2.7) ; 

171 i 
S2k(m9 n) = -7=/9. (vmn) : 
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and since the coefficients of the Fibonacci polynomials lie along the rising 
diagonals of Pascal's triangle, we can write the following theorem. 

ThdOtim 2.2: The coefficients of fk(x), bk(x) , Bk (x) , and Sk(m, ri) are 
all coefficients which lie along the rising diagonals of PascalTs triangle. 

3. DIVISIBILITY PROPERTIES OF POLYNOMIALS IN PASCAL'S TRIANGLE 

Using the relationships of §2, we can expand upon Theorem 1.1 to write a 
greatest common divisor property for Morgan-Voyce polynomials. 

Th&Ofiem 3.1: For t h e Morgan-Voyce polynomia ls bn(x) and Bn(x) , 

( i ) (Bm(x), Bn(x)) 
D (m + 1, n + l ) - l 

( i i ) (bm(x)9 bn(x)) = b{(Zm + i, 2 n + l ) - l ) / 2 (x) , 

( i i i ) (Bm(x)9 bn(x)) = b ( ( 2 m + 2 j 2 n + 1 ) _l)/2 (x). 

Vnoo{\ 
( i ) x(Bm(x2), Bn(x2)) = (f2m+2(x)9 f2n + 2(x)) = f2(ffl + 1 > n + 1 ) (*) 

= CCB(m + l t n+l)-l(%Z) 

by app ly ing ( 1 . 4 ) , Theorem 1 . 1 , and r e t u r n i n g to ( 1 . 4 ) . For x ^ 0 , ( i ) i s 
immediate by r e p l a c i n g x2 w i th x a f t e r d i v i d i n g bo th s i d e s by x. I f x = 0 , 
Bn = n + 1 , making ( i ) become (777 + 1 , n + 1) = (m + 1 , n + 1) - 1 + 1. 

Applying (1 .4 ) and Theorem 1.1 to ( i i ) , 

(£>m(x2), bn(x2)) = (f2m + 1 ( a r ) , / 2 n + 1 ( ^ ) ) 
= f(2m + l, Zn + 1) (X) = Afc + l ^ 

since the greatest common divisor of 2m + 1 and 2n + 1 is odd. Thus, 

(M*2), M**)) = bk(x2) 
by (1.4), where 2k + 1 = (2^+1, 2n + 1), so that 

fc = ((2m + 1, 2n + 1) - l)/2. 

Replacing x2 by x yields (ii). 
Finally, we observe that bn(0) = 1, so that x\bn (x), and again use (1.4) 

and Theorem 1.1: 

(Bm(x2), bn(x2)) = (xBm(x2)9 bn(x2)) 

Next, s e t (2m + 2 , 2n + 1) = 2/c + 1 , s i n c e i t must be odd, and 

(Sm(x2), M * 2 ) ) = f2k + 1(x) = b k ( x 2 ) 
where 

fe = ((2m + 2 , 2n + 1) - l ) / 2 . 

Replacing x2 by # establishes (iii), finishing the proof of Theorem 3.1. 
Returning to the polynomials Sk(m, ri), and using (2.7) with Theorem 1.1, 

gives us 

IkdOKQjm 3.2: (Si(m9 ri), Sj(m, ri)) = £(i,j) (m9 ri). 

VfiOO^i If i and j are both odd, (2,7) and Theorem 1.1 give the above re-
sult immediately. If i, and j are both even, 
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(Si(m9 n), Sj(m, n)) = (S2k(m,n), S2h (m, n)) 

\vmn lK Vmn h I 

= -p=(f2k (i/™?)> f2h (S™b) = ~F=f2{k h^ff™) Vmn 2K zn Vmn ZKK>n) 

= Si{k,h) (m, n) = S(2k,2h) (m, n) = £ ( i , j ) ( m , n). 

I f i i s odd and j i s even, s i n c e S2k + 1(m, n) always ends i n t h e c o n s t a n t 

1 so t h a t Vmn)(S2k + 1 Qn9 n), and s i n c e f2k + 1 (x) a l s o ends in 1 , 

{SiQn, n), S3-(m9 n)) = (S2k + 1(m, n), S2h (m, n)) 

= (S2k + 1(m, n), /mnS2h(m, n)) 

= (/2fe + i ^ v / ^ " ) ' mf2yl^m<^)) = (f2k + 1(i/mn) > f2h(Jrnn)) 

= / ( 2 H i , 2h) ^™^ = s(2k + i, 2/2) (m9 n) = SU}j)(m, n) , 
where we can again use (2.7) because (2/c + l, 2/z) is odd, concluding the proof 
of Theorem 3.2. 

We quickly have divisibility properties for the polynomials Sk(m, n) . 

Ikdonm 3.3: S^im, n)\Sj(m, n) if and only if i\j. 

Vnoo^\ If i\j, then (i, j) = i, and 6̂ 0??, n) l̂ -(777, n) by Theorem 3.2. If 

S^(m, n)\Sj(m, n) with i )(j, then /^(^)|/. (#) where i^j, a contradiction of 
(1.8). J 

From all of this, we can also write divisibility properties for Morgan-
Voyce polynomials. 

TkzotiQM 3.4: For the Morgan-Voyce polynomials, 

Bm(x)\Bn(x) if and only if (jn + 1) | (n + 1) ; 

bm(x)\bn(x) if and only if (2m + 1)|(2n + 1); 

bm(x)\Bn(x) if and only if (2m + 1)|(n + 1). 

VKOO^: Bm(x)\Bn(x) if and only if (Bm(x), Bn(x)) = Bm(x), but 

(Bm(x), Bn(x)) = B( 
m+15rc+ 1) - 1 

by Theorem 3.1. Setting the subscripts equal, m = (m + 1, n + 1) - 1, or, 
777 + 1 = (TT? + 1, n + 1), which forces (m + 1) | (n + 1) . The case for bm(x) and 
bn(x) is entirely similar. 

In the case of bm(x) and Bn(x), Bn(x) cannot divide bm(x) for n > 0 be-
cause bm(x) always ends in the constant 1, while the constant for Bn(x) is 
greater than 1, n > 0. Since bm(x)\Bn(x) if and only if 

(bm(x), £n(a;)) = bm(x), 
and since 

(Z^O^), Bn(x)) = ̂ ((2n+2, 2m + l)-l)/2^) 

by carefully rearranging (iii) in Theorem 3.1, equating the subscripts leads 
t 0 777 = ((2n + 2 , 2777 + 1) - l ) / 2 , 
or 

2777 + 1 = (2777 + 1 , In + 2 ) . 
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Thus, (2m + 1)I(2n + 2), but since (2m + 1) is odd, we must have 

(2m + 1) | (n + 1), 

concluding the proof. 
Returning to the greatest common divisor property of the Fibonacci poly-

nomials, (fm(x) , fn(x)) = f(mtn)(x)9 we make some observations from Theorem 
3.1(i) regarding the Morgan-Voyce polynomials Bn(x). From 

(Bn(x), Bm(x)) = B ( n + 1, m + 1) -

it would follow that if B*(x) = Bn^1(x) and B*(x) = Bm_1(x), then 

(3.1) (B*(x), B*(x)) = Bfn>a) 

which sequence {B*(x)} ={0, 1, x -f 2, ...} obeys 

(3.2) B*(*) = (x + 2)£*_x(x) - B*_2(ar) 

and is in fact the Fibonacci polynomial, so to speak, for the auxiliary poly-
nomial A2 - (x + 2)X + 1 = 0, since 

where Aj and A2 are the roots. But (3.2) can also be expressed as 

U n = XU n _ ] _ — Un _ 2 

where x is replaced by (x + 2). Thus one set of polynomials with coefficients 
on diagonals of Pascal's triangle transforms into another set with the same 
property. 

This property of transforming one set of polynomials whose coefficients 
are on diagonals of Pascal's triangle to another set of polynomials with co-
efficients also on diagonals of Pascal's triangle is shared by the Chebyshev 
polynomials {Tn(x)} [9] of the first kind, defined by TQ(x) = 1, Tx(x) = x, 
and 

(3.3) Tn + 1(x) = 2xTn(x) - Tn_±(x), 
since 
(3.4) Tn{Tm(x)) = Tm(Tn(x)) = Tmn(x). 

The property (3.4) is easy to prove from the Binet form associated with the 
auxiliary polynomial 

(3.5) A2 - 2x\ + 1 = 0, 

with roots Ax and A2. 
The Chebyshev polynomials {Un (x)} of the second kind are UQ(x) = 1, and 

Ul(x) = 2x, 
(3.6) Un + 1(x) = 2xUn(x) - Un_±(x). 

First, to establish (3.4), we prove by induction that 

(3.7) 

We prove only one part, since the second part is entirely similar. Since, 

£/-i(aO = 0, and TQ(x) = 1, A^ = Tn(x) + / ( x 2 - l)Un_1(x) for n = 0. Assume 

Ax 

xl 

= Tn(x) + /(x2 • 

= Tn(x) - /(x2 • 

- lJUn^iix) , 

- !)£/„_! ( a ) . 
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t h a t Ai = Tk(x) + / O r 2 - ±)Uk_1(x) and x\ + 1= Tk + 1(x) + / \ x 2 - 1) U (x). 
Then, by ( 3 . 5 ) , 

Ai + 2 = 2xXk
1
+1 - x\ = (2xTk + 1(x) - Tk(x)) + /(x2 - 1) (2xUk + 1(x) - Uk(x)) 

= Tk+2(x) + / ( x 2 - l)Uk + 1(x), 

using (3.4) and (3.6), establishing the form of Xl in (3.7) by mathematical 
induction. 

Notice that, since AXA2 = 1, by multiplying the forms of A^ and A2 from 
(3.7), we can derive 

(3.8) T2(x) - 1 = (ar2 - l)^_i(x). 

Also, by adding in (3.7), we can establish 

(3.9) Tn(x) = (Ar+ Xn
2)/2. 

Now, Xl(x) = x + /x^ - 1. Replace x by Tm(x) 9 and the root becomes 

A^Gc)) = Tm(x) + A2(^) - 1, 
satisfying the auxiliary polynomial (3.5), so that 

X2(Tm(x)) - 2Tm(x)X1{Tm(x)) + 1 = 0. 
That is, 

A2 (Tm (x) ) + 1 
Tm(x) = 2X1(Tm(x)) = [ Ai^-( x )) + 1 A I ( ^ W ) ] / 2 . 

But X1XZ = 1, so 

Tm(x) = [A^f r)) + A2(Tm(x))]/2. 

Referring back to (3.9), we write 

Ax = Xm
l{Tm{x)) and A* = A 2 ( T m ( * ) ) . 

Now, 

^ n W = U 7 n + A 2
n ] / 2 = [(A?)n + (A*) n ] / 2 = [Xi(Tw(a?)) + Xn

2(Tm(x))]/2, 

so that Tmn(x) = Tn(Tm(x)) and similarly, Tmn(x) = Tm(Tn(x)), finishing the 
proof of (3.4). 

Returning to divisibility properties, observe that the Chebyshev polyno-
mials of the second kind are the polynomials with the Fibonacci-like property 

xl- x\ 

where Ax and A2 are the roots of A2 - 2xX + 1 = 0. We now list the first few 
polynomials and let 

U*ix) = £/ n - i (x 

U.l{x) = 0 

U0(x) = 1 

Ux(x) = 2x 

U2(x) = hx2 -

U3(x) = 8x3 -

Uk(x) = 16a: * 

) • 

1 

4x = 

- 12a;: 

4x(2x2 -
2 + 1 

- 1) 

= U*{x) 

= U*(x) 

= U*(x) 

= U*(x) 

= U*(x) 

= U*(x) 
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U5(x) = 32;c5 - 32^3 + 6x = 2x(Sxh - 8x2 + 3) = U%(x) 

UAx) = 64* 6 - 80*4 + 24*2 - 1 = U*(x) 

It would appear that 

(3.10) U*(x)9 U*(x) = U*mtn)(x). 

That this Is indeed the case can be established very simply. Since U*(x) 
satisfies 

U*+1(x) = 2xU*(x) - C ^ . ! ^ ) , 

{[/ n (x)} i s a s p e c i a l case of t h e polynomial sequence {Un (x, y)} d e f i n e d by 
Hoggatt and Long [7] as 

(3 .11) Un+2(x, y) = xUn + 1(x9 y) + yUn(x9 y), 

where U0(x9 y) = 0 and U1{x9 z/) = 1. Note that {U*(x)} is the special case 
x = 2x and y = -1. Since 

(3.12) ( M * , 2/), M * . 2/)) = U(min)(x, y)9 

we see that (3.10) is immediate. 
We summarize as 

Tk&OSl&n 3.4: By suitable shifting of subscripts in the original defini-
tions, the Fibonacci Polynomials, the Morgan-Voyce polynomials Bn(x), the 
Chebyshev polynomials Un (x) , and the polynomials S]<(m9 n) all satisfy 

(um9 un) = U(m> n ) . 

k. A MORE GENERAL POLYNOMIAL SEQUENCE 

Define Sk(a9 b9 c9 d) by taking Sl = 1, S2 = a, 

^ = aSk_1 + bSk_l9 k even, 
(4.1) 

£fc = c5fc_! + dSk_29 k odd. 

Let S* = 1, S* = c, and define 5*(a, 2?, c, d) by taking 

S* = <?£* _ ± + dS* _ 2 , /c even, 
(4.2) 

S* = aS* ± + ^*_2, fe odd. 

Let K0 = 0 , K1 = 1 , Z n = (ae + 2) + d)Kn_1 - bdKn_2. 

T _ ^ / # &\ /<? ^ \ ( ac + b ad\ _, 
Let « = li o j ' d o ) i c dp then-

^2fc + i ^ 2 * \ / %-k + i ~ d%k daKk 

S*2k dS2k.J \oKk d(Kk - bKk_x) 

Now, {Kn} is the "Fibonacci sequence," 
Xx - X2 

7/ _ _ _ 
n Xx - A2

? 



510 DIVISIBILITY PROPERTIES OF POLYNOMIALS IN PASCAL'S TRIANGLE [Dec. 

for the quadratic X2 - (ac + b + d)x + bd = 0, with roots X19 X2. Applying 
results [7] for {Un(x9 y)} from (3.11) and (3.12) to {Kn}, we have immediate-
ly that 

To continue, we write the first few terms of {Sk(a9 b, c9 d)}. 

S, = 1 

52 = a 

53 = ac + d 

Sh = a2c + ad + ab 

55 = a2c2 + 2acd + abo + d2 

56 = a3c2 + 2a2cd + 2a2bo + a^2 + abd + a£2 

£7 = a3o3 + 3a2c2J + 2a2bo2 + 3aad2 + 2a&c^ + ab2o + ^3 

We consider some special cases. If a - 0, then S2k + z = 0> and S2k + i ~ dk
9 

k >. 0. If fc= 0, ^2^ + 2= a(ac + d)k and S2k + 1 = (ac + d)k, & >, 0. If c = 0, 
then 52k_! = c^-i and £2k =a[(dk - bk)/ (d - b)]9 k > 1. If d = 0, then S2k = 
a(ae + b)k~1 and /Ŝ k + i = ao(aa + b)*"1

9 k >_1. The expansions of £*(a, b9 
c9 d) are not very interesting, since they are the same as those of Sk(a9 b9 
c9 d) with the roles of a and c exchanged. 

The special case of Sk(a9 b9 c9 d) where b = d proves fruitful. We list 
the first few terms of {Sk(a9 b9 c)} below: 

51 = 1 

52 = a 

53 = ac + b 

S^ = a2c + lab 

55 = a2c2 + 3abc + b2 

56 = a3c2 + ha2bc + 3ab2 = a(ac + b) (ac + 32?) = S2S3(ao + 3b) 

We are interested in the case b = d, or, taking Sk(a9 b, c) and S^(a, b, 
c) , so that £3 will divide S6. It is not difficult to prove by induction 
that 

( 4 . 3 ) S2k + j = Sj + lS2k + bSjS2k-l> 

( 4 . 4 ) ^ 2 ^ + i + j = Sj + iS 2k + i + bS^S2k' 
I t i s n o t h a r d t o s e e t h a t 

( 4 . 5 ) $2k+i = $*k+i a n d aS2k = cS*k-

We now prove Sj\Sjm for j odd and m odd, or, jm = 2k + 1. From (4.4), 

Sj(m + 1) = Sj + lSjm + bS^S 2k = Sj + iSjm + Z?^- 5 27c J 

since 5j = S^ for j odd. So, if Sj \Sj and 6̂  l^-^, then Sj \Sj(m + i) for j odd. 
Thus, for j and m both odd, we see that Sj\Sjm for all odd m. 

Next, suppose that j is odd and m is even; then, from (4.3), 
S2m'j + j - Sf+1S2mlj + bS-S^.j^, m = 2m'. 
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Now, i f SjlSj and Sj\S2mlj9 then Sj\S(2ml+1)j = Sj(m+1). 
Next, l e t j be even; 

S2k+2j = s*j' + iszk + bS2j'S2k-i and Ik = 2j'm. 
Since S-\S2-, and Sj\S2{jtm = S2k , we have Sj \S 2jfm + zj' ~ -Sj'o + i) • This com-
p l e t e s t h e proof t h a t i f i\j9 then S^Sj, S i n c e , a l g e b r a i c a l l y , {Si} a r e of 
i n c r e a s i n g degree i n t he two v a r i a b l e s a and c c o l l e c t i v e l y , SJ-)(Si for i < j . 
L a s t , u s ing (4 .3 ) and ( 4 . 4 ) , i t i s now s t r a i g h t f o r w a r d to show 

ThzoKQjm 4 A: Sj(a9 b> o)\Si(a9 b9 c) i f and only i f j \ i . 

We can a l s o now prove 

Jh(LOK.m 4.2: (Si(a9 b9 c), Sj(a9 b9 c)) = S^t3-)(a9 b9 c). 

VK.00^: Let P(x) be a monic polynomial of degree v + s with integral co-
efficients with two factors Q(x) and R(x) of degree v and s9 respectively. 
Then, 

br + 3P(x/b) = brQ(x/b)bsR(x/b) 

P*(x9 b) = Q*(x9 b)R*(x9 b). 

In p a r t i c u l a r , i f P(x) i s of degree p , T(x) of degree t , W(x) of degree w, and 
(P(x)9 T(x)) = J/(ar), then 

{bpP(x/b)9 btrP{xlb)) = bwW(x/b). 

For a p p l i c a t i o n to Theorem 4 . 2 : 

(4 .6 ) c2S2m{a2, b2, a2) = ac i 2 " -Y 2 B I ( ac /Z>) ; 

( 4 -7 ) . S 2 r a + 1 ( a 2 , &2, c 2 ) = fc2ffl/2m+1(ac/&). 

Co6£ 7: Both s u b s c r i p t s even. 

(o2SZm(a2, b2, a2), o2S2n(a2, b2, a2)) 

= {acb2m-xfZm(,aclb), aob2n-lfln{ae/b)) 
(2m, 2n) - 1 . = acb^m>^^f{2my2n)iac/b) 

= c2S(2mi 2 n ) ( a 2 , £ 2 , c 2 ) . 

T h e r e f o r e , 

(S2m(a2, b2, a2), S2n(a2, b2, c2)) = S ( 2 n > 2 B ) ( a 2 , b 2 , e 2 ) . 

Ca6£ 2: Both s u b s c r i p t s odd. 

( S 2 m + 1 ( a 2 , Z?2, a2), S2n + 1(a2, b2, a2)) 

= (b2mf2m+1(ac/b), b2nf2n+l(aa/b)) 

= $ (2m + l, 2n + l) ($ s D , <3 ) . 

Ca6£ 3: One s u b s c r i p t odd, one s u b s c r i p t even. 

(c2S2m(a2
9 b2

9 c2)9 S2n+1(a2
9 b2 , c 2 ) ) 

= (acb^-^Jac/b), b2nf2n + 1(ao/b)) 
_ h(2m, 2n + l)-1 n (rr^/h^ 

= S (2m, Zn+1) i.CC 9 b 9 O ) 9 
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since (ao9 b) = 1. Also, since (o2, S2n+1) = 1, 

(c2S2m(a2, b2, c2)9 S2n+1(a2, b2, o2)) 

= (S2m(a2, b2, c2)9 S2n+1(a2, b2, o2)) 

= ^(2/n, 2n+l) (& , & 2 , C2) , 

finishing the proof of Theorem 4.2 by replacing a2 with a, Z?2 with b9 and <? 
with e. 

Let f*(x) be a modified Fibonacci polynomial, with 

fn to) = /„ to), n odd, 

f2(x) = , n even. 

Listing the first few values, 

/*(*) =.1 

f^W = 1 
f*s(x) = x2 + 1 

f*(x) = x2 + 2 

/*(#) = ̂  + 3jr2 + 1 

f%(x) = ^ + kx2 + 3 
/ * t o ) = ^ 6 + 5X4 + 6x2 + 1 

/*(a?) = x 6 + 6 ^ + 10;c2 + 4 . 

Here , 

fn + 2 <*> = f*+l ( ^ ) + fn^ ' n e v e n ' 

/*+2 to) = *2/*+ 1 (x) + / ; t o ) , n odd. 

This is {Sk(a, b, o, d)} with a = b = d = 1, o - x2. Thus, by Theorem 4.2, 

(/•*(*), /* (x) ) = / f m > n ) ( x ) . 
Let Vk(x) be a modified Morgan-Voyce polynomial defined by 

v2n+2(x) = Bn(x), v2n+1(x) = bn(x). 

The first few values for {vk(x)} are 

= b0(x) 

= B0(x) 

= bx(x) 

= Bito) 

v5(x) = x2 + 3x + ± = 2? 2 to) 
y 6 t o ) = x 2 + 4x + 3 = S 2 t o ) 
y 7 t o ) = a:3 + 5x2 + 6^ + 1 = b3(x) 

vQ(x) = x3 + 6x2 + lOx + 4 = to + 2) to2 + 4^ + 2) = B3(x) 

vi to) 
y2to) 
z;3to) 
7^ to) 

= l 

= l 

= x + 1 

= a; + 3 
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Since Vk(x) satisfies 

( vn(x) = vn_1{x) + vn_2(x), n even, 

( vn(x) = xvn_±(x) + vn_2(x), n odd, 

this is {Sk(a, b, c, d)} with a = b = d = 1 and c = x* Then, by Theorem 4.2, 

(vn (x), vm(x)) = v 
(m,n) 
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THE GOLDEN SECTION IN THE EARLIEST NOTATED WESTERN MUSIC 

PAUL LARSON 
Temple University, Philadelphia, PA 19122 

The persistent use of the golden section as a proportion in Western Art 
is well recognized. Architecture, the visual arts, sculpture, drama, and po-
etry provide examples of its use from ancient Greece to the present day. No 
similar persistence has been established in music. One possible reason is that 
what ancient Greek music has survived is of such a fragmentary nature that it 
is not possible to make reliable musical deductions from it. However, begin-
ning with the early Middle Ages a large body of music has survived in manu-
scripts that from ca. 10th century can be read and the music can be performed. 
This body of music is known as Roman liturgical chant or, more commonly, as 
Gregorian chant. These chants have not previously been analyzed from the 
standpoint of the golden section. Acknowledging the probability of the pres-
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ence of a number of structural designs and proportions in these chants, it is 
the author's intention to establish the musical use of the golden section as 
an organizing principle in them. 

The official collection of Roman liturgical chant is the Libev Usualis. 
The chants selected for the present study are "Kyrie" chants of which there 
are 30 in the collection. The chants span at least 600 years, having been 
written beginning with the 10th century. 

The basic structure of a "Kyrie" is determined by the text, as shown in 
Diagram 1: 

Diagram 1 

un 11 

un 11 

un 11 

Kyrie eleison.~\ 
Kyrie e'leison. 
Kyrie eleison. 

Christe eleison. 
Christe eleison. 
Christe eleison. 

Kyrie eleison. 
Kyrie eleison. 
Kyrie eleison. 

sect ion 

total chant 

Each chant falls into nine separate sections. The three repetitions of the 
sections form three larger units which, in turn, make up the complete chant. 
While there is considerable variety in the melodic treatment of the text, the 
text itself had remained constant in the above form since ca. 900. 

The actual nature of the rhythm of these chants is still open to question. 
Because music is a time art, any analysis that does not account for the pro-
portional movement of the pitches in time cannot pretend to be a statement 
about the total nature of the music. In this sense, the following findings, 
though factual, remain theoretical to the degree that while pitches in suc-
cession imply time, exact temporal proportions are not deducible from that 
succession alone. In addition, the reader should be advised that there are 
more than 200 "Kyrie" melodies known to exist. In this light, the chants 
analyzed for this study represent a sampling of the repertory. 

METHOD OF ANALYSIS 

Because different treatments of the same text are usually set to differ-
ent pitches, 146 distinct musical sections are present in the 30 chants, the 
remaining being exact repetitions of other sections. The pitches in each sec-
tion were totaled, and <f> was determined for each section. A section was ex-
amined to determine if any significant musical event occurred at either the 
major or minor mean. A significant event was defined as the beginning or end-
ing of a musical phrase. The three statements of the "Kyrie," the "Christe," 
and the "Kyrie" tend to form larger units; these were analyzed according to 
the same procedure. Finally, the pitches in the complete chant were totaled, 
i.e., nine separate sections of text. 

THE FINDINGS 

Applying the analytical method described above revealed the presence of 
the golden section in 105 of the 146 individual sections of the "Kyries" in 
the Liber Usualis. These 105 sections make up .72 of the cases. The major 
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mean precedes the minor mean twice as often as the minor mean precedes the 
major mean. Example 1 is a section of chant conforming to the M:m propor-
tion, 

Ky-n - e e _ | e _ j _ s o n 

Example 1* 

Example 2 shows the proportion in reverse. 

l̂ y—•-* •-* • ' *-* *,* • " » „ *j " a • , + ^ 
C h r i s - te e - l e - i - s o n 

Example 2* 

Twenty-one sections have phrase divisions occurring at the arithmetic mean. 
The same method was applied to the next larger formal unit, i.e., the 

three repetitions of each exclamation. In 30 chants there are 90 such units. 
<t> is found in 53 (.59) of these units. Where the musical phrase either falls 
short of the exact mean or extends beyond it, a tolerance of .02 of the to-
tal number of pitches was maintained in defining the unit as a golden sec-
tion. 

A performance of an entire chant includes nine sections as shown in Dia-
gram 1. An analysis of the 30 chants revealed that 20 (.66) exhibit the 
golden section proportion. In more than half of the cases, the mean occurs 
at the end of the first or at the beginning of the second "Christe eleison." 

CONCLUSION 

At this stage, these findings tend to establish the presence of the gol-
den section in one of the earliest notated forms of Western music, i.e., the 
"Kyrie" chants. To establish the presence of the golden section in chants 
other than the "Kyrie," requires further analysis of the general body of 
Gregorian chant. 

0N FIBONACCI NUMBERS WHICH ARE POWERS 

NEVILLE R0BBSNS 
University of San Francisco, San Francisco, CA 94117 

INTRODUCTION 

Let F(n), L(n) denote the nth Fibonacci and Lucas numbers, respectively. 
(This slightly unconventional notation is used to avoid the need for second-
order subscripts.) Consider the equation 

(0) F(m) = GP, 

"Source: Liber Usualis (Desclee & Co., Tournai [Belb.], 1953), p. 25. 
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where p is prime and m > 2, so that c > 1. (The restriction on m eliminates 
from consideration the trivial solutions which arise because cp=c if o = 1, 
o = 0, or c - -1 and p is odd.) 

The complete solution of (0) was given for p = 2 by J. H. E. Cohn [1] and 
by 0. Wyler [4], and for p == 3 by H. London and R. Finkelstein [3]. In this 
article, we consider (0) for p >_ 5. It follows from Theorem 1 that if a non-
trivial solution exists, then one exists such that m is odd. In Theorem 2, 
we give some necessary conditions for the existence of such a solution. 

PRELIMINARIES 

We will need the following definitions and formulas; r, s denote odd in-
tegers such that (p, s) = 1. 

V^ZyiObLon 7: If q is a prime, then z(q) is the Fibonacci entry point of 
q, i.e., z(q) = min{m: q\F(jn)} . 

V^l^wUtLoyi 2: If q is a prime, then y (q) is the least prime divisor of 
z(q). 

(1) If (x, y) = 1 and xy = zn, then a? = un and y = vn, where (u, v) = 1 and 
wi> = z. 

(2) F(2n) = F(n)L(n). 
/o\ /n/ \ r/\\ (2 if n = 0 (mod 3) 

(3) (*(n), L(n)) = j x ±f „ ̂  0 (mod 3) 
(4) F(n) = 2r «-* n = 3 (mod 6) ++ L(n) = 4s. 
(5) If (a:, y) = 1 < x, and xmy = zn, then n|/7?. 

(6) F(n) = 2kr9 k > 1 «-> k >_ 3, 3^2fc"2|n •*-> L(n) = 2s. 

(7) 2|F(w) «-* 3|n. 

(8) 3|F(n) •<-• 4|n. 

(9) (F(n), F(kn)/F(n))\k. 

(10) t odd -* (F(t), F(3t)/F(t)) = 1. 

(11) £ > 0 -* F(£) < F(6t). 

(12) ^|F(w) -> s(q) Im. 

(13) F(2n + 1) = F(n)2 + F(n + I) 2. 

(14) c, n odd •+ cn = c (mod 8). 

Re.maA.kA: (1) through (8) and (11) through (14) are elementary and/or well-
known; for proof of (9), see [2], Lemma 16; (10) follows from (8) and (9). 

THE MAIN THEOREMS 

For a given prime, p, let m = m(p) >2 be the least integer such that, by 
assumption, (0) has a nontrivial solution. By inspection, 

777(2) = 12 and 7??(3) = 6. 

Tk&Ofim 7: If m = 2n > 2 is the least integer such that F(m) = cv, where 
p is prime, then either (i) m = 6, p = 3, or (ii) m = 12, p = 2. 

Cctt>& J —If n £ 0 (mod 3), then by hypothesis, (1), (2), and (3), we have 
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F(n) = bp. If b > 1, we have a contradiction, since n < m. If b = 1, then 
hypothesis ->n = 2->m = 4-> F(m) = 3, a contradiction. 

C<UZ 2 —If ft = 3 (mod 6), then (4) -> F(n) = 2p, L(n) = 4s, with rs odd. 
Now hypothesis and (2) -> F(/77) = 8PS = cp, so that (5) -»• p 13 -> p = 3. By [3] , 
we must have c=2,n=3,m=6. 

Co6e 3-If n = 0 (mod 6), let n = n0 = 2J3fet, where j, fc > 1 and (6, £) = 
1. Let m = 2~Vz0 for each i such that 1 <_ i <_ j . Let fr0 = rij = 3kt, and let 
hi = 3~^/z0 for each i such that 1 <_ i <_ k, so that t = hk. By (6), we have 
F(n) = 22+^r, L(n) = 2s, where rs is odd and (p, s) = 1. Now hypothesis, (1), 
and (2) imply r = r%9 s = SQ, with r0s0 odd and (P0 , s0) = 1. Therefore, F(n) 
= F(n0) = 22+JTQ, L{n) = L(nQ) = 2sp , ^OSO = c' Since ni = 2n^ + i, we may re-
peat our reasoning to obtain F(m) = F(rii + 1)L(ni + 1) = 2Z + J'"2'p?, L(ft̂ ) = 2s| 
for i = 0, 1, 2, ..., j - 1. By (4) we have F(hQ) = F(rij) = 2r?, L(n3-) = 4sJ; 
moreover, r^s^ = 2^ _ x is odd and (r^ , s^) = 1 for i = 1, 2, 3, ..., J. Now, 
let rj = Mo, so that F(7z0) = 2up. We have F(hi-i) = F{hi)^F{hi.{)/F{hi) for 
i = 1, 2, 3, . . . , k. By (7), (10), and (1), if i < k, we have F(hi) = 2u\, 
F{hi-i)lFQii) = v\\ if i = k, we have F(t) = F(hk) = u p, F(hk_x) /F(hk) = 2 ^ ; 
moreover, (ui, Vi) = 1 and u^Oi = u^_i is odd for i = 1, 2, 3, ..., fc. 

But (11) + F(t) < F(6t) <. F(n) < F(m) = c p - * u k = l - * t = l . If k >_ 2, 
then F(hk-1)lF(hk_1) = F(9)/F(3) = 17 = v£_ ± ->• p = 1, a contradiction. Hence, 
k = 1, ft0 = nJ = 3- I f C ^ 2> t h e n Li^o-2) = £(12) = 322 = 2s|_2 -* sf_2 = 
161 -> p = 1, a contradiction. Therefore, k = j = 1, ft = 6, m = 12, p = 2. 

Cofio&Lafiy: If (0) has a nontrivial solution for p _> 5, then it has a non-
trivial solution such that m is odd. 

VfLOO&i The proof follows directly from Theorem 1. 

Tk&Oltm 2: If F(m) = cv > 1, where the prime p ^ 5, and m is odd, then 
either (i) m = ±1 (mod 12) and c = 1 (mod 8) or (ii) m = ±5 (mod 12) and <? = 
5 (mod 8; furthermore, if q is any prime factor of c, then 2/(q) >. 5, so that 

q e {5, 13, 37, 73, 89, 97, 113, 149, 157, ...}. 

Vnooi'. If 2\c9 then 2P | op -> 2P |F(m) , so that by (6), 3*2p~2\m, contradict-
ing hypothesis. Now c is odd, so that F (m) is odd, and by (7), 3)(m. There-
fore, m E ±1 or ±5 (mod 12). If q is any prime factor of o, then 

(12) + #(4) |g(q) |TTZ. 

Since (6 , m) = 1, we must have y (q) >_ 5 . 
Co6£ ?—If w = 12t ± 1, then (13) ->• F(w?) = F ( 6 t ) 2 + F (6 t ± l^2 = c p . Now, 

F(6t) = 0 (mod 8) and F(6t ± 1) i s odd, so F(6t ± l ) 2 E l (mod 8 ) . T h e r e f o r e , 
cp E 0 + 1 El (mod 8 ) , and (14) i m p l i e s c = 1 (mod 8 ) . 

Co6e 2 —If m = 12t ± 5 , then (13) •> F(TT?) = F ( 6 t ± 3 ) 2 + F(6t ± 2 ) 2 = cp. 
Now, F ( 6 t ± 3) = 2 (mod 8) and F(6t ± 2) i s odd, so F(6t ± 2 ) 2 = 1 (mod 8 ) . 
T h e r e f o r e , c p E 4 + l E 5 (mod 8 ) , and (14) i m p l i e s c = 5 (mod 8 ) . 
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PRIMES, POWERS, AND PARTITIONS 

B. DE LA ROSA 
University of The Orange Free State 

Bloemfontein 9300, Republic of South Africa 

Elementary arguments are employed in this paper to give a characteriza-
tion of the set of primes and to extend this set to a larger one whose ele-
ments are defined by a single property: we show that a positive integer is 
either a prime or a power of 2 if and only if such an integer cannot be ex-
pressed as a sum of at least three consecutive positive integers. This fact 
provides an easy sieve to isolate the primes (and if one prefers, the immedi-
ately recognizable powers of 2) less than or equal to any preassigned positive 
integer. We also describe the possible ways in which a given composite num-
ber may be expressed as a sum of at least three consecutive positive integers; 
such representations for the sake of brevity shall be termed a-partitions of 
the given integers. Furthermore, "number" shall mean "positive integer" and 
the set of all these numbers will, as usual, be denoted by IN. 

LzmmCL 1: An odd number m admits a a-partition if and only if m is a com-
posite number. 

VKOO{ (=»): Let m = n + (n + 1) + • • • + (n + ft), n e IN, ft >_ 2. Then, 

m = —^—(2 n + ^ ) . 

If ft + 1 is even, then (ft + l)/2 is an odd number _> 3, since ft >_ 3 in this 
case; obviously, thereforey In 4- ft is an odd number >_ 5. Hence, m is a com-
posite number. If ft + 1 is odd, then ft is even, and since ft >. 2, one must 
have that In + ft is an even number >_ 4. Since m is an odd number, it follows 
that {In + ft)/2 is an odd number > 2. The fact that ft + 1 >. 3 now shows that 
m is a composite number. 

VKOO^ (<=): Consider an arbitrary factorization m = kg, (3 <_ ft <_ g). 

m = kg = |(2<7) = ffifg - ^ - ^ ) + ft - l] = |(2a + ft - 1) 
where 7 

a = g ^— E: ^e 

Hence, we have . 

m = / \ , (q + p - 1) , 
p = i 

which i s a a - p a r t i t i o n , s i n c e a e IN and ft J>. 3 . 
CoKolLoJtij 1 : An odd number i s prime i f and only i f i t admits no a - p a r t i -

t i o n . 

L&nma 1\ An even number m admits a a - p a r t i t i o n i f and only i f m i s no t a 
power of 2 . (Cf. [ 1 ] , p . 17 . ) 

Vfioo^ (=») : Let m = n + (n + 1) + ••• + (n + ft); n e IN, ft >. 2 . Then, 

ft + l / 0 , 7 N w = — - — ( 2 n + ft). 

If m = 2s , then, since ft >. 2, we must have that ft + 1 = 2t, £ _> 2, and In + ft 
= 2", u •>. 2. This is a contradiction, since ft 4- 1 = 2* would imply that ft is 
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odd, so that In + k would also be odd. Hence,, we have that m is not a power 
of 2. 

VKOO^ (<=): Suppose that m is not a power of 2. Set m = 2 v, n >_ 1, y an 
odd number >. 3. 

CcU>& U) : y < 2 n . Wri te fc = i; and g = 2 n . Then, 

m = kg = ~^{2g) = -
where 

^ - 1 
a = g _ — — e i$jm 

2(g - ^~Y^) + k - A = l ( 2 a + k - 1}> 

Thus we have 
k ]T (a + r - 1) m = 

r = 1 

which is clearly a a-partition. 
C<U£ ill) : y > 2n. Write Zc = 2n and g = V. Now, 

and we have 

g <_ 2k - 1 ^ k ^^—^^ k > ^-—^k - <L-^ e ^> 

m = gk = f (2/0 = f [2^ - 2-^A) + ^ _ ij = | ( 2 a + ^ - 1) 

where -
a = k - ^"2"^ . 

Hence, 9 
m = y^ (a + p - 1), 

r = 1 

a a-partition. On the other hand, 

g > 2k - 1=> S 1 ^ - > fe=» ̂ 4 - ^ - k e IN, 

and now 

where 

Ik 2k 
-Y9 = -y 

2(SLX^ - k) + 2k - l\ = *£, ^ + r - 1) 

a = ^ ^ 1 - k e IN, and clearly 2k >. 4. 

This completes the proof. 

CoswLlcUiy 2: An even number is a power of 2 if and only if it admits no 
a-partition. 

We now have a natural extension of the sequence of primes, defined by a 
single property, in the following direct consequence of our two corollaries. 

Tk2.Oh.1im 1 : A number m is either a prime or a power of 2 if and only if m 
admits no a-partition. 

This theorem provides an easy sieve to isolate the set of primes (and im-
mediately recognizable powers of 2) less than or equal to any preassigned 
number x of moderate size: one simply writes down the segment 1, 2, 3, . . . , x 
and crosses out the a-partitions less than or equal to x, starting with those 
with leading term a = 1, then those with a = 2, etc. The least upper bound 
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t x — 3l < x — 3 

— « — , for clearly a = — - — if and 
only if 3a + 3 f #, which is equivalent to a + (a + 1) + (a + 2) = x. 

A simple example of "sieving" out the primes, for instance with x = 15, 
shows that a given composite number may admit more than one a-partition. Our 
next problem is to give an account of the different possible a-partitions of 
a given composite number 77?. First, we deal with the case where 77? is an odd 
number. Consider an arbitrary factorization m = kg (3 j< k <. g) . Correspond-
ing with this factorization, one always has the a-partition 

^) L [(̂  " ̂ T"^) + r ~ X] of m' 
If g < 2k + 1, then k - ^—^ £ IN, and once again direct computation shows 
that Z 

(2) 
•• 1 1 

is a a-partition of 77?. Clearly, (2) coincides with the fixed partition (1) 
if and only if k = g9 i.e. , the case where m is a square and is factored as 
such, 

If g _> 2k + 1, then clearly ^—z k E IN, and we obtain the a-partition 
2k 17 \ 1 

(3) E [(^HP - *) + *• - ! ] °f m-
The partitions (1) and (3), having different lengths, can never coincide. 

Conversely, the indicated possible a-partitions corresponding to the par-
ticular type of factorization of m are the only possible ones m can have. 
For, consider an arbitrary a-partition 

t[(* ~^)+r-l] 

m E (a + P - 1) = ~(2a + n - 1), n > 3 . 
r = 1 

If n is even, then n/2 is an odd divisor of m and so is 2a + n - 1. Clearly, 
2 a + n - l > n > n/2 so that we may write k = n/2 and g = 2a + n - 1, k < g. 
In this notation, we have that g = 2a + 2k - 1 >_ 2k + 1, since 2a >_ 2, and a 
= (g + l)/2 - /c. Hence, the given partition is of the form (3). If n is an 
odd number, we have that 2a + n - 1 is even and that W = (2a + n - l)/2 is an 
odd divisor of m. If n < w, we put k = n and # = U. Then, 2^ = 2a + k - 1, 
so that a = g - (fe - l)/2, and the given partition has the form (1). If n > 
W9 we write k = w and g = n. Then, 2k = 2a + g - 1, so that g = 2/c + 1 - 2a 
< 2k + 1, since a >_ 1, and a = k - (g - l)/2. This shows that the given 
partition has the form (2). 

Summarizing these observations, we obtain the following characterization 
of the a-partitions of a given composite odd number. 

Tk&OSl&m 2: The a-partitions of a composite odd number m are precisely 
those determined by the factorizations of the form 777 = kg (3 <. k <_ g), namely 

V = 1 L J 

and exactly one of 

(2) £ [(fc " ̂ T^) + r ~ x] (lf g < 2/c + 1} 
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and 

< } £ Lv^ir1 ~ k) + r ~ X J (if a > 2k + i ) • 
If g < 2k + 1, the two valid partitions (J) are (2) are different, except in 
the case where g = k9 and if g >_ 2k + 1, the valid partitions (1) and (3) are 
always different. 

Now consider any two different factorizations (if they exist) of 777 into 
two factors: m = kg (3 £ k <_ g) and m = kTgr (3 <_kr <_ gr) . Then, comparing 
the lengths of the resulting a-partitions, one sees that every possible par-
tition corresponding with m = kg differs from every possible one correspond-
ing with 777 = kTgr. Hence, if 777 admits t different factorizations of the form 
m = kg (3 <_ k £ g) , then 7?? admits It different a-partitions, except in the 
case where m is a square in which case the number is 2t - 1. 

Finally, we consider the nature and number of a-partitions of even num-
bers other than powers of 2. 

Tfieô em 3: Let m be an even number other than a power of 2. Then, there 
exists at least one factorization of the form m = kg (k < g) , where one of 
the factors is an even number and the other an odd number J> 3. For each such 
factorization, exactly one of the following three conditions holds: 

(1) k is even, g is odd and g < 2k + 1; 
(2) k is even, g is odd and g >_ 2k + 1; 
(3) k is odd, g is even; 

and only t h a t sum in t h e l i s t 
9 

2k r / \ -1 

(V) 

(2<) 

•• 1 ' 

which corresponds with the valid condition is a a-partition of m. Finally, 
these are the only possible types of a-partitions of m. 

PflOO&i First we observe that m may be written in the form m = 2nu, where 
n >_ 1 and u is an odd number >_ 3. Now, consider an arbitrary factorization, 
m = kg (k < g), into an even and an odd factor. If k is even, then the pos-
sibility (3) is ruled out and the ordering axiom ensures that exactly one of 
(1) and/or (2) holds. If k is odd, then the first two possibilities are ex-
cluded and (3) obviously holds. 

Concerning the next part of Theorem 3, we note that each of the indicated 
sums is of the form 

,(a + v - 1), E' V = 1 

and that n >_ 3 and a e fft, providing that the condition to which the particular 
sum corresponds holds. Moreover, in each of these cases the indicated summa-
tion results in the product kg. On the other hand, the validity of any given 
condition (i) clearly results in a f£ IN in the sums (j f) 5 i 4 j . This concludes 
this part of the proof. 
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Final ly , we consider an a rb i t r a ry cr-parti t ion 
n 

m = ^2 (a + v -" !) = j(2a + n - 1). 
r = 1 

If n is even, then 2a + n - 1 is an odd divisor of w, and since m is even, 
one must have that n contains a factor 4. Since 2 a + n - l > n > n/2, we may 
write k = n/2 and a = 2a H- n - 1. Then m = kg, k < g, k Is even and ^ is odd. 
Moreover, g > 2k, so g >_ 2k + 1. Finally, from g = 2a + 2k - 1, we obtain 

a + 1 7 

a = z—^ k. 

Hence, the given partition has the form (2f). If n is odd, then n is a divi-
sor of 7?? and 2a + n - 1 Is an even number. Since 777 is even, we must have that 
(2a + n - l)/2 is an even divisor of m and we may write (2a + n = l)/2 = 2w. 
Considering first the case where n > 2w and using the notation g = n and k = 
2w, one easily checks that k and g satisfy the requirements of condition (1) 
and that the given partition has the form (1 f). A similar straightforward 
analysis of the case n < 2w shows that k = n and g = 2w satisfy condition (3) 
and that the given partition has the form (3f). This completes the proof. 

In conclusion, we want to determine the number of different a-partitions 
of an even number 7?7 other than a power of 2. We once again consider two dif-
ferent factorizations as specified in the theorem (if they exist): 

(a) 777 = kg, 
(3) m = krgr. 

Let condition (i) in the theorem be satisfied in (a), and let condition (j) 
be satisfied in (3). We consider two possibilities: 

i, = j : Here k and kf are both even or both odd. Since k ^ kr and g ^ gr 

we must have that the a-partition (i ') relative to (a) is different from the 
a-partition (j') = (ir) relative to (3). 

i ^ j : Suppose that k and kr are both even. Then g and gr are both odd 
and of the resulting a-partitions one is of the form (1') and the other of the 
form{2')» Noting that one of the lengths here is odd and the other one even, 
we conclude that the two a-partitions are different. Suppose now that one of 
the factors k and kr is even and the other one odd. Without loss of general-
ity we may assume that k is even. Then j = 3 and the factorization (3) yields 
the a-partition (3r) of odd length. If i = 1, then the equality of (1 ') rela-
tive to (a) and (3f) relative to (3) would imply that g = kr, so that k = gr. 
This, however, would imply that k > g, a contradiction. Hence, we have that 
the two resulting a-partitions are different in this case as well. If -i = 2, 
then the partition (2r) relative to (a) has even length, while (3r) relative 
to (3) has odd length, so they do not coincide. Therefore, we may conclude 
that if 777 admits t factorizations m = kg where one of the factors is an even 
number and the other one an odd number >_ 3, then m admits t different a-par-
titions. 
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ON ODD PERFECT NUMBERS 

G. L. COHEN 
The New South Wales Institute of Technology, Sydney, Australia 

If O(n) denotes the sum of the positive divisors of a natural number n, 
and o(n) = 2n, then n is said to be perfect. Elementary textbooks give a 
necessary and sufficient condition for an even number to be perfect, and to 
date 24 such numbers, 6, 28, 496, ..., have been found. (The 24th is 

219 9 36 /ol 99 37 _ -, x 

discovered by Bryant Tuckerman in 1971 and reported in the Gu-iness Book of 
Records [3]. The three preceding ones were given by Gillies [2].) 

It is not known whether there are any odd perfect numbers, though many 
necessary conditions for their existence have been established. The most in-
teresting of recent conditions are that such a number must have at least 
eight distinct prime factors (Hagis [4]) and must exceed 100200 (Buxton and 
Elmore [1]). 

Suppose p , . . . , p are the distinct prime factors of an odd perfect num-
ber. In this note we will give a new and simple proof that 

(1) £-±-<log2, 
i = 1 r"z-

a result due to Suryanarayana [5], who also gave upper and lower bounds for 
t 

1 Z 
when either or both of 3 and 5 are included in (p , ...,p }. 

Most of these bounds were improved in a subsequent paper with Hagis [6], 
but no improvement was given for the upper bound in the case when both 3 and 
5 are factors. We will prove here that in that case 

t 
Z ^ < .673634, 

the upper bound in [5] being .6 73770. We will also give a further improvement 
in the upper bound when 5 is a factor and 3 is not; namely, 

V- 1 
> — < .677637, 

the upper bound in [6] being .678036. (These are six-decimal-place approxi-
mations to the bounds obtained.) 

We assume henceforth that n is an odd perfect number. 
An old result, due to Euler, states that we may write 

i = l 
where p , . . . , p are distinct primes and pk E ak = 1 (mod 4) for just one k 
in {l, . .., t) and a{ = 0 (mod 2) when i ^ k. We will assume further that 
p < ... < p , and later will commonly write a(r) for a^ when pi = r. The 
subscript k will always have the significance just given and IIr and Z' will 
denote that i, = k is to be excluded from the product or sum. 

523 
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We w i l l need t h e well-known r e s u l t 

(2) \{pk + l)\n, 

which is easily proved (see [6]). It follows that 

(3) PX ±\ipk + 1 ) . 

We a l s o use t he i n e q u a l i t y 

(4) 1 + x + x2 > expLr + -rx2} , 0 < x <_ -k 

To prove t h i s , n o t e t h a t 

exp(x + ^x2^) - (1 + x + x2) = 1 + x + ~~ + - y L r + —-) + • • • - (1 + x + x2) 

1 2 _, x3 ^ xh , 1 / , x 2 V 

so we wish to prove that 

x , x2 , 1 ( x2\3 , 1 ( x2Y 1 1 

Now, 

and 
f + f U n + Jiiir-09 

i / , * 2 V . i I , *2 X* a; + -7- + r uc + -7- + 3!x2 \ W 4!a;2\ 4 

< ^ ( * + T ) 3 ^ + T)+(* + T ) 2 + 

1 / l 3 \ 3 36 
~ 18 \ 1 2 / 23 < '±2' 

Hence (4) is true. Other and better inequalities of this type can be estab-
lished but the above is sufficient for our present purposes. 

Now we prove (1). Since n is perfect, 
t 

In = o(n) = Y\ (1 + p. + p? + • . . + p*1) 

' - f t K - * •••••£) 
By E u l e r ' s r e s u l t , ak >_ 1 and a^ >_ 2 (i- ^ k) , so 

Pk/ i = i \ Pi P ? / \ Pfc/i.'i VPi 4P; 
by ( 4 ) . Hence, 

l o g 2 > 1°8(1 +t)+5'(t+^) 
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t , t , t 
l- - -5- + y A. + I y'J_ > y _!_ + J^ _ _i_ 
K H ttx Pi 4 & P ? M P , 4Pl

2 2p2 

> 
~ti?i (Pk + D 2 2p£ , 4 l P i 

u s ing ( 3 ) . 
We end w i th t h e 

Th2.OA.2m: ( i ) I f 15 I n , then 

x - l ^ l ^ l ^ l ^ l , , 2950753 
A F T 3 + T + l 3 + 6 l + l o g 2815321 = a ' s a y ' 

( i i ) I f 5 | n and 3 | n , then 

v - 1 ^ 1 ^ 1 ^ 1 ^ , 293105 , 
Z-^7 < I + 31 + 61 + l o g 190861 = 6 ' S a y ' 
£ = l r ^ 

Vh.00^1 The proofs consist of considering a number of cases which are 
mutually exclusive and exhaustive. 

(i) We are given that p, = 3 and p = 5. Suppose first that ax = 2 and 
a2 = 1 (so that we are assuming, until the last paragraph of this proof, that 
k = 2). Since cr(32) = 13, we have 13 \n. 

Suppose 01(13) = 2, so that, since a(132) = 183 = 3 8 61, 6l\n. Since also 
0(5) = 6 = 2 • 3, we cannot have a(61) = 2, for a(612) = 3783 = 3 • 13 • 97 and 
we would have 33|n (i.e., a,1 > 2). Hence, oi(61) iL 4. Then, using a simple 
consequence of (4), 

t 

61 612 

P;* 13,61 

so, taking logarithms and rearranging, 
t V^ 1 <, -, o , 13 , 6 183 14076605 ^ - < l o g 2 - l o g T - l o g - - log ̂  - log 1 3 8 4 5 8 4 1 

i = i 

+ 1 x 1 , 1 , 1 = 
3 5 13 61 a' 

If ot/13N .> 4 , then we s i m i l a r l y o b t a i n 

£ ^7 < log 2 - log(l + i + i ) - log(l + i ) 

- l o g ( l + -r \ + ~ \ + - ^ + - ^ - ) + ~ + i + ~~ 
V 13 13 2 1 3 3 1 3 V 3 5 13 

Suppose now t h a t OL1 >. 4 and a 2 = 1. Then, 

ZjT < ^g 2 - log(l + f + ^ + ̂  + i ) - log(l + i ) + i + \ < a. 

13 < a -
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Next, suppose that a2 >_ 5. Then, 

X)~< l°g 2 - logfl +f + ̂  

L o g ( 1 + I + A+J_ + i + ^ + l + I < a . 

Finally, suppose k > 2, so a2 > 2, Since ak >_ 1, we obtain, proceeding as 
above, 

log 2 > log(l + j-) + log(l + I + ̂ ) + log(l + I + -L) + g'-L 

E 1 j. i 1 3 a. i 3 1 ! ! ! — + log T • + log 25 " 3 " j " - r • 

But p _>_ 13 (though we can easily demonstrate that in fact p >_ 17), so, 
t k 

E l ^ 0 , 13 n 3 1 1 1 1 ^ — < log 2 - log — - l o g — + - • + - + 333 < a. 
i = l ^i 

This completes the proof of (i). 

(ii) We are given that pl = 5. The details in the following are similar 
to those above. Suppose, until the last paragraph of this proof, that ax = 2. 
Since a(52) = 31, we have 31 \n. Now, a(312) = 993 = 3 - 3 3 1 and 3Jn, so we 
must have a(31) >_ 4. It follows from (2) and from the fact that 3/fft, that 
if p < 73, then pk must be either 13, 37, or 61 (so we cannot have a1 = 1). 

Suppose first that p =61. Then a(61\ >_ 1 and 

t ^ < i o g 2 - i o g ( i + i + i)-iog(i + i + - i T + -i? + -i,; 

- iog(l+^ + i + ̂ - + ̂ -= b. 

If pk = 1 3 , t h e n , by ( 2 ) , p 2 = 7. a ( 7 2 ) = 57 = 3 - 1 9 , so a 2 >. 4 , s i n c e 3/fn. 
Also , ot , j 3» .> 1 , so 

L ^ < log 2 - iog(i + j + jr) - iog(i + y + -yr + yj + y^ 

-log(l+^)-log(l+i + ̂  + ̂  + ^ 

If pk = 37, then, by (2), 19 \n. a(192) = 381= 3-127, soa ( 1 9 ) >_ 4. Since 

V — < log 2 - logfl + i + - M - logfl + -~r + — + -^— + — 
f^Pi \ 5 52/ *\ 19 192 193 19L 

logfl +-~ + ~ + ̂ j + ~ 
3 1 31z 313 314 



1978] A SIMPLE CONTINUED FRACTION REPRESENTS 527 
A MEDIANT NEST OF INTERVALS 

If p >: 73, then, as in the last paragraph of the proof of (i), we h ave 
t 

Finally, suppose 04 >. 4. Then pk >_ 13 and, as in the preceding paragraph, 

S i < l o g 2 - l o g ( 1 + i + ^ + ^ + ^ ) + i + rri?< &-
This completes the proof of (ii). 

I am grateful to Professor H. Halberstam for suggesting a simplification 
of this work through more explicit use of the inequality (4). 
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A SIMPLE CONTINUED FRACTION REPRESENTS 
A MEDIANT NEST OF INTERVALS 

IRVING ADLER 
North Bennington, VT 05257 

1. While working on some mathematical aspects of the botanical problem 
of phyllotaxis, I came upon a property of simple continued fractions that is 
simple, pretty, useful, and easy to prove, but seems to have been overlooked 
in the literature. I present it here in the hope that it will be of interest 
to people who have occasion to teach continued fractions. The property is 
stated below as a theorem after some necessary terms are defined. 

2. TeAmZnoZogy: For any positive integer n, let n/0 represent °°. Let 
us designate as a "fraction" any positive rational number, or 0, or °°, in the 
form alb, where a and b are nonnegative integers, and either a or b is not 
zero. We say the fraction is in lowest terms if (a, b) = 1. Thus, 0 in low-
est terms is 0/1, and °°  in lowest terms is 1/0., 

If inequality of fractions is defined in the usual way, that is 

alb < eld if ad < be, 

it follows that x < °°  for x = 0 or any positive rational number. 
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3. Tfie M&cLiant: If a/b and c/d are fractions in lowest terms, and a/b 
< c/d, the mediant between a/b and c/d is defined as (a + c) / (b + d) . Note 
that a/b < {a + c)/(b + d) < c/d. 

ExamptoJs—The mediant between 1/2 and 1/3 is 2/5. If n is a nonnegative 
integer, the mediant between n and °°  is n + 1. If n is a nonnegative integer 
and m is a positive integer, the mediant between n and n + l/m is n +1/(777 + 1). 

4. A Mediant N&>t: A mediant nest is a nest of closed intervals I0,Il9 
..., Tn, ... defined inductively as follows: 

^o = [0, "J. 

For n >_ 0, if In = [r, s] , then .Tn + 1 = either [r, m] or [m, s] , where 777 is the 
mediant between v and s. 

It is easily shown that: if at least one In for n >_ 1 has for form [r,m], 
then the length of Jn approaches 0 as n -*• °°, so that such a mediant nest is 
truly a nest of intervals, and it determines a unique number x that is con-
tained in every interval of the nest. For the case where every In for n >_ 1 
has the form [m, s] , let us say that the nest determines and "contains" the 
number °°. Mediant nests are obviously related to Farey sequences. 

5. Long Notation ^OH. a Mediant N&>t: A mediant nest and the number it 
determines can be represented by a sequence of bits b1b2b3 ...b^ ... , where, 
for £ > 0, if Ii^i = [P, s] and 77? is the mediant between r and s, bi = 0 if 
Ii = [P, m] , and bi = 1 if _Z\- = [777, s] . 

ExampZ&> — 0 = 0; 1 = °°; 10 = T, the golden section; where each of these 
three examples is periodic, and the recurrent bits are indicated by the dots 
above them. 

6. kbbfizvtat&d Notation ^OK. a Mediant N&6t: The sequence of bits repre-
senting a mediant nest is a sequence of clusters of ones and zeros, 

b1b2b3 . . . bi . . . = 1 ... 10 ... 01 ... 1 .. . 

where the a^ indicate the number of bits in each cluster; 0 ^ a 1 ^ . o o ; 0 < a 
<_ °°  for n > 1; and the sequence (at) terminates with an if ccn = °°. As an ab-
breviated notation for a mediant nest and the number x that it determines we 
shall write x = (a19a29 . . . ) • Then a 1 < _ x < a 1 + l. The sequence (a^) ter-
minates if and only if x is rational or °°. Every positive rational number is 
represented by exactly two terminating sequences (at). 

Example—(™) = i = 00; (o, 00) = 6 = 0; (0, 2, «>) = 00I = % ; (0, 1, 1, <») = 
010 = \ . In general, if x = (a2 , . . . , an_ l9 an, °°) where an > I, then x = (a\, 
. . . , an_i, an - 1, 1, °°) , and vice versa. 

7. ThdOKom: If x = (a1? a2, . . . , an, . . .) , then x = a1 + ±/a2 + • • • +l/an 
+ • • • and conversely. If x = (a1 , . . . , an , 00) 9 then x = aY + l/a2 + • • • + l/an 
and conversely. 

P/LOO^ 0^ the. Tko.on.zmi 

I. The nonterminating case, # = (a1, a2, ..., a^, . . . ) . Thus, x is irra-
tional. Let p^/q^9 for £ >_ 1, be the principal convergents of a2 + l/a2 + 
... . Then a straightforward proof by induction establishes that for all 
even £ _> 2, 
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and for all odd £ _> 1, 

J«x + --'+^ = [Pi/Rt> Pi-i/Vi-i]-
Consequently, the nest determined by successive pairs of consecutive princi-
pal convergents of al + l/a2 + • • • + l/an + • • • defines the same number as the 
mediant nest (ax, a2, . . . , an, ... ). 

II. The terminating case, x = (ax, ...,an, °°) . It follows from I that 

Ia1 + -..+an+1 = [pn/qn, Pn + 1/qn + l] o r [ P n + l / ^ n + 1* P» / ? » ] > 
where 

Pn + 1/qn + 1 = (pn_! + an + lPn)/(qn_1 + an + 1qn). 
Since 

it follows that 

x = ^lim^ Jai + ... + an+1 = pn/qn = a1 + l/a2 + ••• + l/an. 

III. The "conversely" in the theorem follows from the fact that the map-
ping of the set of mediant nests into the set of simple continued fractions 
established in I and II is one-to-one and onto. 

Examptz—The mediant nest (0, 2, 3, °°) and the continued fraction 0 + 1/2 
+ 1/3 represent the same number. Verification: 

a. (0,2,3, °°) is the abbreviated notation for the sequence of bits 

001110. 

The intervals In defined by this sequence of bits are: 

Mediant between Endpoints of Interval 

(0 + 1)/(1 + 0) = 1/1 

(0 + 1)/(1 + 1) = 1/2 

(0 + 1)/(1 + 2) = 1/3 

(1 + l)/(3 + 2) = 2/5 

(2 + l)/(5 + 2) = 3/7 

(3 + l)/(7 + 2) = 4/9 

(3 + 4)/(7 + 9) = 7/16 

0 In = [3/7, mn-i] n >. 6, mn.\ = the mediant between the 
endpoints of Xn_i-

Since lim rnn_1 = 3/7, the number defined by this mediant nest is 3/7. 
n -»- °°  

b. The continued fraction 

0 + ^ - = 3/7. 
2 + h 

it 

0 

0 

1 
1 
1 
0 

lo 

Ii 

Ii 

I, 

I, 

I5 

I, 

Interval 

= [0/1, 1/0] 

= [0/1, 1/1] 

= [0/1, 1/2] 

= [1/3, 1/2] 

= [2/5, 1/2] 

= [3/7, 1/2] 

= [3/7, 4/9] 



FOLDED SEQUENCES AND BODE'S PROBLEM 
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Readers of this journal have long been interested in Bode's Rule, see, 
e.g., [26] and [15]. Indeed attempts to solve it have ranged from those de-
void of science but fairly accurate to those based on some physical prin-
ciple (s) but rather inaccurate, such as Berlage's and 0. Schmidt's theories. 
The problem of planetary motions was first tackled by Eudoxus, who proposed 
rotating tilted concentric spheres, rather like a gyroscope, to explain each 
planet. When Kepler solved the problem of their motions with the concept of 
areal velocity, the area swept out in an invariable plane divided by the time 
is a constant, the problem of a law for their spacing remained. Indeed, I 
think the unit of angular momentun should be named after Kepler for his con-
tribution of area as a vector. Bode's problem is of great value to the his-
tory and especially the philosophy of science. The qualities that distinguish 
pure mathematics are succinctness, elegance, fertility, and relevance to the 
unsolved problems. But to a scientist the first criterion is reproducibility. 
The multifarious, variegated, and at times loquacious and mellifluous mono-
graphs on this aspect of cosmogony attest to man's persistent and insistent 
attempts, at times based on specious assumptions, to find order in a theatre 
of nature that may have no reason to be other than nearly random. Such is 
one view. But while science corrects its mistakes (so far) it must be remem-
bered that Boltzmann committed suicide because his contemporaries would not 
accept his counting of molecules, Wagoner's 1911 theory of continental drift 
was not believed until the 'sixties, and Newton's theory was not believed on 
the continent until Clairaut's prediction of the return of Halley's comet in 
1759 (P = 76.75 ± 1.5 yr) came true. Such is the lag between prediction and 
proof. The final answer to Bode's problem will be known within twenty years 
when sophisticated computer simulations are finished. My work will probably 
remain the most accurate, namely 1-percent with a few exceptions either way. 
In any case, my work has led to some interesting mathematics, especially the 
Self-Lucas property (see Section 2). May it be that Urania and Euterpe have 
recessed a part of Nirvana to sequester all who have slaved over this vexing 
problem. The impetus for this paper comes from Kowal's [17] recent discovery 
of an object between Saturn and Uranus that prima faciae, see Table 1, fits 
my rule [6, 7] and does not fit any other rule published! Sequentially, I 
present an overview of the history of Bode's Rule, Kowal's discovery and then 
generalized folded sequences. 

1. BODE'S PROBLEM AND KOWAL'S DISCOVERY 

Historically, the first offered solution to Bode's problem was Kepler's 
[1] perfect solids, which model, in fact, antedates Bode by two centuries. 
Gingerich [11] has discussed the accuracy of Kepler's youthful proposal. At 
first, the Titius-Bode mnemonic was successful with the Asteroids and Uranus 
but it fails badly for Neptune and Mercury. Attempting to save it, Miss Blagg 
[3] introduced two more parameters into it. Nieto, see [9] of paper [7], sup-
ports her work. The literature is full of algebraic rules of the form, dis-
tance « bn and indeed of more complicated rules. It is interesting to look 
at the range of b values. A partial list is: 

530 
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Dermott 
von Weizsacker 
Greig 
Quadranacci 
Dermott 
Cale 
Pierucci & Dermott 
Gaussin 
Blagg 
Dermott 
Belot 
von Weizsacker 
Greig 
Quadranacci 
Titius 

b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

2 = 1.2599 (Saturnian moons) 
1.370889 (10 eddies, inner planets), 
1.378241 (Saturn's inner moons) 
1.380 (see below) 
3 = 1.4422 (Uranian moons) 
0/J3 = 1.5115 (see [15]) 
41/3 = 1.5874 (Jovian moons) 
1.72 
1.73 
61/3 = 1.817121 
1.886 
1.894427 
1.8995476 
1.905 (see below) 
2.00 

See Gould [15] for references I have not cited. Dermott (see [2] and [10] of 
paper [7]) was forced to take Earth and Venus together to retain his period 
factor of /6~. Dermott Ts arbitrary period factor of /2~ for Saturn's moons 
misses both Rhea and Janus. 

Indeed, I have myself happened upon some rather well-fitting arbitrary 
rules. One such is a bisection of the Quadranacci recurrence Qn+i = Qn+Qn_3, 
namely: 1, 1, 1, 1, 2, tf=3, 4, £/=5, 7,4 = 10, 14, J = 19, ...,£= 95, 
..., which is very good at representing reciprocal distances. Another one 
for the distances begins: 4, 7, 10, 15, ... . The distance factor, b, is 
(1.380278)2 = 1.905166. The most complex rule of which I am aware is Roth-
man's (see [9]), d = n(5. 5 + F2)/9 (1 +Fn ). It has seven parameters: n, 5.5, 
2, 9, and 1, and two to determine the Fibonacci sequence, and since only 9 
planets are fitted then only 2 degrees of freedom are left which is unscien-
tific. All of the above rules are arbitrary, except von Weizsacker's and my 
own. My own view is that any rule with more than two parameters violates 
Occkham's razor, "Essentia non sunt multvpticanda yvaetev necessitatem." 

Dermott {ibid.) proposed different period factors for each satellite sys-
tem, whereas my theory is simpler since the same limiting ratio, 0 , applies 
to all. He also ignored the outer Jovian and Saturnian moons. I chose to 
emphasize them. This suggests the principle of Contrary Ignorability: what-
ever earlier researchers ignore—that is the path to pursue. My work indi-
cates that outer Jovian moons should cluster well within 10 percent of 97, 
257, 730, and 608 days (Table 2 of [6]). The announcement of Jupiter's XIII 
moon [21] at 239 day and i = 27°  [25] came after my initial work [4], [22] 
and satisfies the above sequence. I also studied the relevance, if any, of 
rotation periods and grazing periods of parent bodies in [4], using: 

(35) PgPM = 3TT/C7 where G = 498 day"2 (g/cc) "x. 

The period of a satellite just grazing the surface of Saturn, the Sun, Jupi-
ter, and Uranus would be 0.167, 0.116, 0.12, and 0.11 day. The criterion 
for coalescence against tidal forces may be written 

(36) pm > /M/distance3 or Pm > PgJ (4TrfpM /3pm) 

where m, M are the satellite and parent masses, pm and pM their densities, Pm 
the period of a satellite at this Roche limit, and / a factor between 2 and 
10 [24, p. 18]. When (36) is not satisfied "rings" result. In [4] an inner 
Uranian moon was suggested which would have a period of 1/1.3292 = 0.752 day 
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according to (17) of [6]. It has even been proposed that the separation, a, 
between binary stars satisfies Bode's rule [27], but I am very skeptical of 
that. 

My own interest in Fibonacci numbers dates back at least to 1966 when I 
obtained a copy of Vorobyev's book. I tried these numbers on the planets 
with what seemed good accuracy and communicated this to Gould [13] , pointing 
out the relevance of bisected Fibonacci sequences. After long arduous ef-
forts, I thought I had put the problem to rest when news of Kowal's discovery 
[17] of a planetoid between Saturn and Uranus, too big to be a comet nucleus 
and too small to be a large planet, was announced. He calls the object Chiron 
after one of the Greek half-man/half-horse animals. Is this discovery to 
prognosticate that this Chinese year 4676 (see [18]), beginning 7 Feb. 1978, 
should not be the year of Earth-Horse, but rather the year of the Centaur!? 
One can see in Table 1 that Chiron fits very neatly into the bisected half-
integer sequence. I could have predicted this object three years ago [5, 6] 
from the folded sequences I had discovered but it would have been considered 
wildly delusionary at the time. The major body that should occur before Nep-
tune in my sequence given in [5] and Table 2 of [6] is easily calculated to 
have a reciprocal period corresponding to -1974 - 4558 = -6532. Its period 
should then be 317816/6532 = 48.66 yrs. The agreement with ChironTs period 
of 47 to 51 yrs is quite good. The ellipsis (...) in [5] and [6] clearly in-
dicated that the sequence continued in both directions so that a body at Chi-
ron's position was implied. In an earlier work [4] I had stated, " . . . one 
should really ask why don't Jupiter, Uranus and Neptune have a plane of par-
ticulate matter [rings] inside Roche's limit since that is natural consider-
ing the pervasiveness of grains and cometesimals . . ." (p. 16). As we now 
know, rings have been found around Uranus [16], [28]. The way to test my the-
ory would be a computer simulation using reciprocal periods given by (23a) or 
(23b) or [7] (or, perhaps, using part of a bisected odd-N folded sequence in 
[6]) to see if the broad maxima in [10] can be sharpened. 

The agreement of Chiron's period with Folded Fibonacci sequences is 
reassuring but not perfect. I have been able to represent Neptune and outer 
satellites in general more accurately than any other rule simply because I 
worked with recursive sequences rather than naive power laws. Also, mine is 
the only work to represent the several comet groups (see Table 1). So that, 
in terms of completeness and goodness of fit, my hypothesis is the best. It 
remains for a computer simulation to test whether my proposal gives maximum 
stability. Such a simulation may solve the following question: Why are some 
period ratios nearly but not quite small integers? Saturn:Jupiter is not 5:2 
but is 6551:2638 to seven, significant digits. Accurate to only five digits 
is 149:30. Neptune:Uranus is not 2:1 but is 51:26 to five digits. And Ura-
nus : Saturn is 77:27 to nearly five digits. Similarly, Earth:Venus is not F7: 
F6 but 1172:721 to eight-digit accuracy. These ratios suggest that low-order 
commensurabilities (LOG) are avoided, except for the ratio 2 among the Gali-
lean satellites. The Kirkwood gaps indicate that LOC are unstable if the 
ratio >i 2, such as 11/5, 9/4, 7/3, 5/2, 8/3, and 3/1. 

The problem is ancient. The Pythagoreans believed in orbits in arithme-
tic progression and added a Central Fire and a Counter-Earth [23] to obscure 
that Fire so that the total number of moving bodies be the "magic" number 
1 + 2 + 3 + 4 = 10. Yet Aristarchus placed the Sun in the center for reasons 
of simplicity 18 centuries before Copernicus. Later, Ptolemy and others con-
founded the picture with equants and epicycles, until Kepler discovered that 
blemished curve—the ellipse. 
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Further back in time, the concepts become anthropocentric and folklorish 
as in the mural of Ra and Noot found in the tomb of Rameses VI. 

There is still the possibility that Bode's problem has no solution or that 
the distribution of planets is random on a logarithmic axis, save that they 
cannot be too close to each other. But my work has led to some interesting 
sequences that I will discuss in the future. 

TABLE 1 

The Correspondence between the Half-Integer Sequence and the Planets 

Reciprocal 
Period 

Period 
(yrs) Solar System 

-550 -
340 + 

-210 -

130 + 
-80 -

50 + 
-30 -
20 + 
-0 -
0 + 

-
0 + 
0 -
20 
30 -
50 -
80 -
130 -
210 -
340 -
550 -
890 -
1440 -
2330 -
3770 -
6100 -
9870 -

233 
144 
89 

55 
34 

21 
13 
8 
5 
3 

2 
1 
1 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 

0.999969 
1.618 
2.6183 

4.235 
6.859 

11.07 
18.035 
28.66 
48.66 
69.73 

161.00 
123.0 
521.0 
99.5 
83.55 
45.42 
29.42 
17.85 
11.11 
6.849 
4.237 
2.6177 
1.618 
1.0 
0.618 
0.382 
0.236 

null 
Hungaria #434 (991 da = 2.71 yrs), etc. (Average 
= 2.75 yrs) 

null 
Faye (7.35 yrs); Brooks II (6.72 yrs); d'Arrest 

(6.67 yrs), Finlay (6.90 yrs), etc. 
null 
Neujmin (17.97 yrs) 
null 
Chiron (47 to 51 yrs), other Centaurs 
Olbers (69.6 yrs); Brorson-Metcalf (69.1 yrs); 
Pons-Brooks (71 yrs); Halley 

Neptune (164.79 yrs); N + P (168.4 yrs) 
Swift-Tuttle (119.6 yrs); Barnard II (128.3 yrs) 
Planet X (464.? yrs) 
null 
Uranus (84.01 yrs) 
null 
Saturn (29.46 yrs) 
null 
(Jupiter 11.86 yrs) not meant to fit Jupiter. 
null 
Astrea (4.13 yrs); asteroids (0.23 yr ) 
null 
(Mars) 
(Earth) 
(Venus, 0.615 yr) 
null 
(Mercury, 0.241 yr) 

2. GENERALIZED FOLDED SEQUENCES 

The obvious generalization of the definition of folded sequences, (4) of 
[6], is 

(37) {%•,»}*= Pj.k + (~lf + 1Pj,k-N with 0<k<Fl-l 
where a script letter denotes a folded sequence, {Pj} is the jth coprime se-
quence as in (1) of [20], and {̂ -.jy} is finite if N is finite. This latter 
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point differs from (1) of [6] wherein folded sequences were made infinite by 
repeating the cycle ad infinitum. It will help to display the Folded Pell 
array {q>2} in Table .2: 

TABLE 2 

Folded Pell Sequences for N Odd 

N 

1 

3 

5 

7 

9 

11 

13 

15 

17 

V 

5741 

-13859 

985 

-2377 

5743 

-13855 

169 

-407 

987 

-2373 

5753 

-7/2 

29 

-69 

171 

-403 

997 

-2349 

5811 

6+5/8 

-5/2 

5 

-11 

31 

-65 

181 

-379 

1055 

-2209 

-2 -2/8 

6 +/8 

-3/2 

1 

-1 

7 

-7 

41 

-41 

239 

-239 

1393 

2+/8~ 

-2-0 

-h 

3 

3 

17 

17 

99 

99 

577 

577 

2 +0 

2 +/8~ 

/2 

13 

27 

75 

157 

437 

915 

2547 

6 +/8~ 

2 +2/8" 

3/z 

71 

167 

413 

973 

2407 

5671 

6+5/8 

5/2 

409 

983 

2383 

5729 

13889 

7/2 

2379 

5739 13861 

13865 

Sum 

1 

7 

41 

239 

1393 

8119 

47321 

The last row is the half-integer subscript v defined by 2k = 2v + N. Both 
infinite folded sequences (which I often call half-integer sequences) are 
given, namely for N= 1 (mod 4) and N = 3 (mod 4). Subscripts within braces 
are part of the name of the array/sequence, whereas those outside the braces 
indicate the value of the row/element. 

In order to find the jth Half-Integer sequence the theorem in [6] is gen-
eralized. 

Th<LOH.Qjmi {%-,s)k + 1 /{cPj,N)k approaches a limit as N+°° for each k depen-
dent only upon the value of N modulo 4. 

Pl00&: Define 0 = N modulo 4. Since r = (k - N/2) then r = -h gives 

k = (N - l)/2 = [N/2]. 

We will need P_kP_k_i/(Pk+1Pk) = -1, from which one finds 

P„k/Pk + 1 = -z = -Pk/P-k.±. 
Thus z -> ±3 as N-+°°, while 0 = 3 or 1, respectively. Then, 

= i^^a - g ) / a + z) 
which -> ±((a - 1) / (a + 1))± x as il7->°°, while /V = 1 or 3 (mod 4), respectively. 
Hence, where the limit of 9 is S, 

(38) {S.-U/isA = (a + D/(a - 1) = -{S$}„/{$£}-,,. 
In the following the first subscript of 5j\r and Pj,n is suppressed. 
A number of relations follow from the elegant 

(39) §r= P*+h + dPr_h and S* = P*_ h + d P r + h ; 
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these are (40), (41), (42), (43), and (45). 

(40) jP% = (Qm + h~ £*_h) and Pn = (£*n+h- Qn.h)/jd, 

(41) 

(42) 

(2 + d)P*+h = 2* + 1 + £r and d(d + 2)Pr_h = (§p + 5 ? ^ ) , 

(5r + 5*) = 2 Cot* and ($r - S$ ) = 2^3r, 

and the Binet-like formulas 

Qr= £(ar + i3r) and §* 

£ = (ah + ^3_/z) = (a 

and analogous to Fn 

(43) 
where 
(44) 

(-l)n+1F.n. 

(45) ^> Y> ' ^ 2 (5. £*PH 

+ oT") = -i($} 

we have 
• r + h 

1) , where i, -1, 

Now the initial values are determined by (37) or (38) and are 

(46) »j,-fe (2 + d) = § and SJ.?J J for all j. 

The bisections of the general Half-Integer sequence for N = 1 (mod 4) ap-
pear in (47) and (48), where t instead of j is used from now on for the par-
ameter. Compare with the penultimate rows of Table 2. Also (49) is the 
subscript r. In Table 3 note that (2 + d) = Z,' 

(47) (th+dth+i±t2+3dt2+d+2) (t2+dt2+d+2) 

= (ah 

2+d 

+ a~n)/L and V 

(t2+2+d) 

/ 5 . 

(48) -(t3+dt3+3t+2dt) -(t+dt) (t3+3t+dt) 

(49) 

TABLE 3 

Parameters of Half-Integer £-Fib Sequences 

I-h/Ih (ah + a-h) (ah-a'h) td 

Jv - 2 
1//I 

1 

1.5 

2 

/5 

8/3 

3 

2/3 

4 

/32" 

/y + 2 

3//2 

/5 

5/2 

/8 

3 

10/3 

/n 
4 

/20 

6 

1.272020 

1.414213 

1.618034 

2.0 

2.414213 

2.618034 

3.0 

3.302776 

3.732050 

4.236068 

5.828427 

8.352410 

5.828427 

4.236068 

3.0 

2.414213 

2.236068 

2.0 

1.868517 

1.732050 

1.618034 

1.414214 

2.014490 

2.030104 

2.058171 

2.121320 

2.197368 

2.236068 

2.309401 

2.367605 

2.449490 

2.544039 

2.828427 

0.241187 

0.348311 

0.485868 

0.707107 

0.910180 

1.0 

1.154700 

1.267103 

1.414213 

1.572303 

2.000000 

1.000 

1.500 

2.236 

3.750 

5.657 

6.708 

8.888 

10.817 

13.856 

17.888 

33.941 
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Table 3 shows us that the Half-Integer Pell sequence is the only one in 
which the ratio of the central pair, S_-h/Sh equals the characteristic root. 
This is clear from (a + l)/(a - 1) = a whose solution is 1 + /l. Sequences 
given by (a^ + a~h) = a have a very simple Binet-like formula but the larger 
root a = 2.1478990 is the solution to a cubic. Are there Half-Integer se-
quences with integer terms? Consider t-Fib sequences, 

^t, n + 1 = tPt t n + Pt, n-1 •> 

for which d is an integer, d = t + 4. Consider the Root-Five sequences, 
t = /F, which have the PL-types: 1, 0, 1, v, 6, 7v, 41, 48y, 281, (7 • 47)i>, 
(18 • 107), (55_- 41) , ... and 2, v, 7, Sv 9 47, 55y, (23 • 14), 377y, 2207, 
... where v = /5. In the corresponding Half-Integer sequence, from v = -llh 
to +ll/z, 

(50) ..., -199v, 170, -29y, 25, -4i>, 5, v, 10, lly, 65, 76y, 445, ... 

we see that both bisections are integers (after dividing by common factors). 
Furthermore, one bisection consists of every fourth Fibonacci number includ-
ing F5 and the other consists of every fourth Lucas number including L5. Can 
this be generalized? As a little algebra shows, yes, 

(51) di = d\ - 2 or d± = t\ + 2 or ti = thdh 

where t4, dh refer to the sequence from which every fourth term is extracted 
and di, ti refer to the chosen sequence. To illustrate this, the Root-32 
Half-Integer sequence, see Table 3, has from (46) 

Sh = t = k/2 and S_h = 2 + d = 8. 

The bisections of this reduced by common factors are: 

(52) ..., 33461, 985, 29, 1, 5, 169, 5741, ... 

(53) ..., -8119, -239, -7, 1, 41, 1393, 47321, ... 

which are every fourth Pell number as expected beginning with P5 = 29 and 
P*/2 = 41. Proofs of statements above follow easily from (39) or (43). So 
(23a, b) are every fourth term of the t = /(/5 - 2) sequences. The "F" se-
quence to 3 decimals is ..., 1.236, -0.486, 1, 0, 1, 0.485868, 1.236, 1.086, 
1.764, 1.943, ... and clearly the ratios 

1.236:1:1.764 = 3 + v:2 + v:3 + 2v = 20:0 + 1 : 0 + 3 

show that every fourth term of "F" gives (23a) of [7] and equivalently a bi-
section of Table 1. The general recurrence of these bisections is 

Bt,n + 1 = P't,>+Bj,n ~ P>t,n-1 

where P* h = 34 for (52) and (53). A bisected t-Fib sequence has the recur-
rence 

Pn+2 = (t2 + 2)P„ - P„_2 or &2Pn = t2Pn. 

Indeed the recurrence's middle term for ̂ -sectioning has a coefficient given 
by the 777th rising diagonal of the Lucas triangle. The bi-bisection case is 
Pn+1+ = (ah + ka2b + 2b2)Pn - bhPn.hi and so on. 

We come now to what I regard as the most important property of these se-
quences. The Self-Lucas property, (14) of [6.], remains unchanged in this 
generalization, namely 

(54) (2r + 1 + gr.j)/d = (-l)r'\.P and (.i* + 1+S*.1)/d=(-lf+hS*1., 
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where d = (a - 3) and (a + g) = j = t . Now (54) may be proven from (43). 
Note that terms with subscripts (r + 1) , (r - 1) and -r all belong to the 
same bisection of §t or •§£. This is obvious since (r + 1) - (r - 1) = 2 and 
(r - 1) - (-p) = 2k - (N + 1) which is also even. Taking ratios of (54) one 
may form the triplet rule, for both £t

 an<3 £?, 

(55) (§r + Q>v + 2)/(Q>r + §r_2) = S-r-i/S-r+i. 

Now this is readily illustrated when J is an integer so consider (50). Obvi-
ously (10 + 65)/3 = 25 and (lit; + 76y)/3 = 29i> and both are members of (50). 
Again from (52) one has (985 + 29)/6 = 169. From Table 1, I illustrate (55) 
by ((80 - 2) + (30 - l))/((30 - 1) + (0 - 1)) = (0 + 5)/2 by using the trick 
(0 + 2) = 0v. But this last ratio, (0 + 5):2 is Chiron:Neptune. 

I introduce a new operator capital lambda, A: 

(56) A E I + E, 

where E and I are the forward shift and identity operators and, therefore, 
(A - V) E (E + E~l). Then the Self-Lucas property may be written 

(57) (A - V)$t,r = d(-l)"*St,-r, 

where 2" is another notation for § and §*, respectively. We may also write 
KBn - dB-n or -dB-n depending upon which bisection of Qt or §* is being con-
sidered. The Self-Lucas property does not hold for F-like sequences: Pt)1 = 
1 = Pt)_1? or L-like sequences: P%t 1 = 1 = -P%t_1. In this sense, the Half-
Integer sequences are more important. 

How are (54) and (57) to be interpreted geometrically? Let alternate 
terms of the bisection be made negative, then the recurrence is 

(58) 6zNn = ~(t2 + 4)tfn. 
Further let the terms of Nn be reciprocal periods of planets and let a minus 
sign mean retrograde (backward) motion. Then the Self-Lucas property may be 
written 

(59) ANn = -dN-n, 
which in words says that the set of synodic (apparent) frequencies of a col-
lection of alternately pro- and retrograde planets are simply proportional to 
the negative of the sidereal (real) frequencies in reverse order. 

3. COMMENTS ON THE RECIPROCAL PERIOD RULE 

Why are the planetary frequencies not Folded or Half-Integer Pell sequen-
ces? The limiting distance ratio would be 3.2386766. One solution to this is 
point (x) of [7], namely to bring the planets closer to each other, thereby 
minimizing their potential energy which is negative; that is, 

(60) m^YJ{GMJmi/d2
av), 

i * J 
where Mj is Jupiter's mass, m^ the mass of any planet except Jupiter, and dav 
is a time-weighted distance from Jupiter. The Pell and, indeed, all t -Fib 
sequences satisfy point (ix), the avoidance of low-order commensurabilities, 
since gcd(Pt,n+i, Pt,n) = 1 for all integers t and n. This can also be seen 
by noting that the continued fraction of the roots of any t-Fib recurrence 
consists of repeated (l/t)Ts, so no one convergent is a great deal better 
than another. The sequence, 11, 12, 16, 24, 38, ..., is an example who---
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gcd(12, 16) ̂  1. Given that the total number of planets is a constant, then 
minimization of the cumulative perturbation frequencies (synodic) occurs as 
t becomes small (point xii). Of course, as t becomes small the average dis-
tance becomes smaller and the average perturbation force becomes very large. 

k. FINALE 

The logic [7] of my rule suggests that other civilizations may be signal-
ing us in binary code with 1/02 = 0.01100,00111,00100,01000,01100, .... But 
let me assure you that my getting into Bode's Rule was not a matter of choice. 
Its rewards, though, have been a large number of empyreal highs, some over 
ideas I later rejected; but now I am glad to be through with this whirlpool. 
Finally, we all know that the idea of the "music of the spheres" which dates 
back to Eudoxus is poetic license, nonetheless I could not help noting that 
though most of the "notes" in my scale are cacophpnous, the first note, 2+v, 
corresponds to C-sharp two octaves high, since (2+v) = 225 . 
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FIBONACCI NUMBERS IN COIN TOSSING SEQUENCES 

MARK FINKELSTEIN and ROBERT WHITLEY 
University of California at Irvine, Irvine, CA 92717 

The Fibonacci numbers and their generating function appear in a natural 
way in the problem of computing the expected number [2] of tosses of a fair 
coin until two consecutive heads appear. The problem of finding the expected 
number of tosses of a p-coin until k consecutive heads appear leads to clas-
sical generalizations of the Fibonacci numbers. 

First consider tossing a fair coin and waiting for two consecutive heads. 
Let 0n be the set of all sequences of H and T of length n which terminate in 
BE and have no other occurrence of two consecutive heads. Let Sn be the num-
ber of sequences in 0n. Any sequence in 0n either begins with T, followed by 
a sequence in 0n-i, or begins with ET followed by a sequence in Cn_2. Thus, 

(1) Sn = Sn-1 + Sn-2, Si = 0, S2 = 1. 

Consequently, Sn-i = Fny the nth Fibonacci number. The probability of 
termination in n trials is Sn/2n. Letting 

^ ) = Z "n̂ n> 
2 

and using the generating function (1 - x - x2) ~l for the Fibonacci numbers, 
yields g{x) = x2/(1 - x - x2). Hence, the expected number of trials is 

J2nSn/2n = (1/2)̂ (1/2) = 6. 
n = l 

We generalize this result to the following 

Tk<lOKQjn'. Consider tossing a p-coin, Pr(E) = p, repeatedly until k consec-
utive heads appear. If Pn is the probability of terminating in exactly n 
trials (tosses), then the generating function 

(2) G(x) =Y,Fnxn is given by G(x) = (px) U-px) 
k 1 - x + -^ ^-(px)k + 1 

The expected number of trials, Gr(l) is 

(3) 1/p + 1/p2 + ... + l/pk = r 1 ' X 
k 

- 1 
P\ 

VtiOO^: Let 0n be the set of all sequences of H and T of length n which 
terminate in k heads and have no other occurrence of k consecutive heads. 
Let Sn be the number of sequences in 0n and Pn = Pr(On) be the probability 
of the event 0n. One possibility is that a sequence in 0n begins wi h a T, 
followed by a sequence in 0n_i\ the probability of this is 



5̂ 0 FIBONACCI NUMBERS IN COIN TOSSING SEQUENCES [Dec. 

Pr(T)Pr(On^±) = qPn.l9 q = 1 - p. 

The next possibility to consider is that a sequence in On begins with HT> 
followed by a sequence in 0n-2\ this has probability 

Pr(HT)Pr(On_2) = qpPn.2. 

Continuing in this way, the last possibility to be considered is that a se-
quence in 0n begins with k - 1 #Ts followed by a T and then by a sequence in 
(9n_k, the probability of which is qpk~1Pn_^. Hence, the recursion: 

(4) Pn = qPn.± + qpPn.2+ -•- + ^ p ^ - 1 ? ^ , 

(Note that the probability of achieving k heads with k tosses is pk, while 
with less than k tosses it is impossible.) The technique to find the gener-
ating function for the Fibonacci numbers applies to finding 

00 

G(X) = J^ Pn*"' 

Consider 

then 

Hence, 

On the o 

H{x) = £) Pn + 1xn; 
n = k 

xH(x) = £ Pn + 1xn + 1 = ]T 
k k 

H(x) = [G(x) - (px)k]/x. 
ther hand, 

^Pnxn - Pkxk = G(x) - (px)h 

HM = £ p n + 1tfn = ] T (qPn + qpPn_^ + ••• + qpk~ xPn _k + Jx" 
k k 

and r e c a l l i n g t h a t Pj = 0 fo r j < k, 

= ^XX*" + <lPX12PnXn + ••• + ^(px)^ 1 ^]?^" 
fe k ' k 

= ^[1 + P* + ... + (p*)*-M = ^ p x r ^ r ] -
Solving for (9 yields (2). 

In the case p = 1/2, the combinatorial numbers Sn = 2 Pn satisfy the re-
cursion Sn = £„_ i + 5n_2 + ... + Sn_ic. For these numbers, the generating 
function (1 - x - x2 - ••• - xk)~l was found by V. Schlegel in 1894. See [1, 
Chap. XVII] for this and other classical references. 

An alternate solution to the problem can be obtained as follows. Consider 
a sequence of experiments: Toss a p-coin Xl times, until a sequence of k - 1 
heads occurs. Then toss the p-coin once more and if it comes up heads, set 
Y = 1. If not, toss the p-coin X2 times until a sequence of k - 1 heads oc-
curs again, and then toss the p-coin once more and if it comes up heads, set 
Y = 2. If not, continue on in this fashion until finally the value of Y is 
set. At this time, we have observed a sequence of k heads in a row for the 
first time, and we have tossed the coin Y + X± + X2 + • • • + XY times. The X^ 
are independent, identically distributed random variables and J is independent 
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of all of the Xi. Let Ek = the expected number of tosses to observe k heads 
in a row. Let Z = Zx + ••• + XY. Then, 

Ek = E(Y + Z) = E(Y) + E(Z) 

= E(Y) + tf(Z|y = l)Pr(Y = 1) + #(Z|j = 2)Pr(J = 2) + . . . 

= E(Y) + J2E(Z\Y = n)Pr(Y = n) = E(Y) + Y^rLE{Xx)Pr{Y = n) 
n=l n=l 

= E(Y) + E{XX)E{Y). 

But E(Y) = the expected number of tosses to observe a head = 1/p, and E(X{) = 
E7;,.!. Thus S7?, = 1/p + (l/p)Ek_±, which yields (3). 
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STRONG DIVISIBILITY SEQUENCES WITH NONZERO INITIAL TERM 

CLARK KIMBERLING 
University of Evansville, Evansville, IN 47702 

In 1936, Marshall Hall [1] introduced the notion of a kth order linear 
divisibility sequence as a sequence of rational integers uQ, u19 ,.,,un9 ... 
satisfying a linear recurrence relation 

(1) un + k = alun+k_l + .- - + akun9 

where a19 a2, . . . , ak are rational integers and um\un whenever m\n. Some di-
visibility sequences satisfy a stronger divisibility property, expressible in 
terms of greatest common divisors as follows: 

(um, un) = U(m^ n) 

for all positive integers m and n. We call such a sequence a strong divisi-
bility sequence. An example is the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8,... . 

It is well known that for any positive integer m9 a linear recurrence 
sequence {un} is periodic modulo m. That is, there exists a positive integer 
M depending on m and al9 a2, . . . 9 ak such that 

(2) un+M E un (mod m) 

for all n >. n0[m9 a19 a2, . . . , ak] ; in particular, nQ = 0 if (afe, w) = 1. 
Hall [1] proved that a linear divisibility sequence {un} with uQ ^ 0 is 

degenerate in the sense that the totality of primes dividing the terms of 
{un} is finite. One should expect a stronger conclusion for a linear strong 
divisibility sequence having u0 4- 0. The purpose of this note is to prove 
that such a sequence must be, in the strictest sense, periodic. That is, 
there must exist a positive integer M depending on al9 al9 ..., ak such that 

^ n + M ~ ^n> n — \J 9 I, ... 
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Suppose {un} is a kth order linear strong divisibility sequence. In terms 
of a generating function for {un}, we write 

U ; U° + U i r + UzV + K(t) (1 - Xit)a - x2t) •-. (1 - xkt)' 
where H(t) and K(t) are polynomials with integer coefficients. Let q = x x 
. . . xk (=ak) . We assume that q ^ 0. 

Lmma 1: um\qmu0 for w = 1, 2, ... . 

Vh.00^: The 0th ̂-multisection of (3) (e.g., Riordan [2]) gives 

where the Mi are integers. Since um\uQm for <3 = 1, 2, ..., we have 

and this finishes the proof, because Mk = qm. 
Another proof of Lemma 1, depending on the periodicities (2), may be found 

in Hall [1]. 
Henceforth, we assume uQ ̂  0. Let p1, p 2 , . . . , pv be all the prime divi-

sors of quQ9 so that we may write 

q= p ^ p s
z ' ... pys» and uQ = pjl-°  p*'-' ... p*-° . 

Then, since um\qmuQ for m = 0, 1, 2, ..., we can write 

"m = Pi1" Pi'" ••• ?„""•" , m = 0, 1, 2, .... . 

Consider the set o£ = { £ £ t l5 i £j 2, . . . } , £ = 1, 2, ..., i?. Let |a£ | be the 

number of elements in C£ , with j 0" ̂ j = °°  if G£ is an infinite set. Define az(j) 
for j = 1, 2, ... inductively as follows: 

a£(l) = 1 

(l if K | = 1 
least w such that iliW H u , if | cf£ | > 1 

a£(2) = 

\a%U ~ 1) if \°z\ l i - 1 
a*( j ) ~ J least w such that i£)W £ Ui,ai{r) :1 <. r < j - l\ 

(if Kl > j - 1. 
Thus, either the sequence a£(l), a£(2), a£(3), ... is strictly increasing and 
unbounded, or else it is strictly increasing up to some point and constant 
thereafter, or else it is the constant sequence 1, 1, ... . 

Lemma 2: Suppose I <_ £ <v. Then a£(j)|a£(j + 1) for j = 1, 2, ... . 

VK00^\ TO simplify notation, let a = a£(j), b = &iU + 1) > and c = (a, b) . 
Without loss we assume a ^ b. Clearly c _<_ a. Suppose 1 <_ e < a. Then i£,c = 
ti,as(r) for some r < j, so that i£,c ̂  ̂ £,a and i%t0 i i%,b- From uc = (ua, 
Ub) follows iii0

 = niin{tj()a, ii,b}> This contradiction shows that c = a, as 
required. 

LmmOL 3: Suppose 1 <. I < V and j > 1. If 1 <_ w <_ a£(j) = a, then 



1978] STRONG DIVISIBILITY SEQUENCES WITH NONZERO INITIAL TERM 5^3 

VKooi'. If 1 <. W <. a, then il}W = iZiai(r). for some v < j . Since az(r) \a9 
by Lemma 2, we have ua^r) \ua3 so that ii>ai(i>) <_izia-

Lemma, 4: Suppose 1 • <_ I <_ v and j >_ 1. If 1 <. w <. a^ij) = a, then 

Vtiooi: (uW9 ua) = U(Wta)9 so m±n{iZtW, ig,a} = ii,(w,a) • Now iitW±iita, 
by Lemma 3, so iZi(<Wya) = ^i,w 

Lmma. 5: Suppose 1 <_ £ <_'z; and j >_ 2. Suppose a = az(j) >_ 2 and H s a 
positive integer. Then 

( t i , b a + i , t [ , k + 2j •••» ^A.fca + a-l) = (^Z,ly ^ 1, 2 •> • • • s ^£,a-l)« 

VhOO&i Suppose- 1 £ w ^ a - 1. Then (w^a+w, ua) = U(ba + W,a) = "(w,a)» so 
min{^£, foa + w, ii,a) = ^£,(w,a) = ̂ £,w by Lemma 4. Since i£ > w < i£jCr by defi-
nition of a, we conclude in h , 

Lemma 6: Suppose 1 <_ £ <_ v and 2 <_ |a£| < <». Let L = a£(|a^|), and let 
b be a positive integer. Then 

(^,W + l) ^l,bL + 2 • • • J ^£,2£L-l) = (̂ Jl, 1 » ^ £ , 2 J •••J ^Jt,2>L-l)« 

Vh.00^1 By Lemma 5, we already know 

= (^£,2L+1 s • • • J ^£, 3L-1 ) 

= (^.(fc-DL + l, ---J ^ £ , £ L - l ) 5 

so it remains only to see that -£#,,£ = ii,2L = ••• = ii,(b-i)L' F o r 1 <_ <2 <. 
2> - 1, we have (wcL, wL) = uL, so that min{i£ > c L, i£jL} = £*,,L". Since i ^ c L 

< i i i L , we conclude i^5oL = ilyL* 

LQMnCL 7: There exists a positive integer M such that w M + , 
1 , 2 , ..., fc. 

P/LOO^: For 1 <. I <^ v, if \oz\ = °°, choose j £ so large that a£(j£) > k9 
and if |G£ | < °°, let az(jz) = ae(|a £|). Let M be the least common multiple 
of the numbers a1(j1) , a2(j2^ •••j^y(jy)» 2^- (We include 2fc to ensure that 
M > fc in case \oz\ < °°  for all £.) 

Now, by Lemma 5, for each I with |G£| = °°, we have 

This same equation holds, by Lemma 6, for each £ with 2 _< [G^l < °°, and clearly 
holds also for d£ = 1. Therefore, for 1 _< j _< k, we have ii,M + j = ̂ £,7- f ° r 

1 _< £ <. V, so that u M + J- = Uj for 1 <_ j _<_ /c. 

Tfieo/Lem: Suppose {un}, n = 0, 1, . . . , is a kth. order strong divisibility 
sequence with uQ £ 0. Then the sequence {wn} is periodic and has a generat-
ing function of the form H(t)/(1 - tp), where p is the fundamental period of 
{un). If H(t) has no linear factor of the form 1 - rt, where rp = 1, then p 
is the least possible recurrence order of {un}. If 

P = P l ' p 2 « . . . p t ' 

if the prime factorization of p, then 

Up = UU^e, Upe? . . . UQet 

HJ 
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for some nonzero integer U. Finally, u0 = up, and un\u0 for n = 0, 1, ... . 
VK.00^'. By Lemma 7 and the fact that {un} is a kth order recurrent se-

quence, the sequence {un) is periodic with period M. Letting p be the funda-
mental period, we now show that the denominator of the generating function 
H(t)/K(t) must be of the form 1 - tp: 

Y^r = u0 + uxt + ••• + Up.^"1 + uQtp + u1tQ + 1 + ••• 

= u0(l + tp + t2p + ...) + uxt(X + tp + t2p + ...) + ••• 

= (u0 + uYt + ••• + Mp_itp"1)(l + tp + t2p + •••) 

= (w0 + wxt + ... + Up^t9'1)- — . 
A. — "0 

If H(t) has no linear factors 1 - rt with rp = 1, then H(t) has no linear 
factors in common with K(t). This means that no recurrence order for {un\ 
can be less than p. 

We see that pf<: |p and (pfS pSj ) = 1 for 1 _< i < j <_ t, so that 

Up = tfW 8l U fll . . . U et 

for some integer U. For n 2>_ 1> we have wnp = up and wn|^np, so that un\up. 
That wo = Up, so that un\u0 for all n, follows from 

a^u0 = uk - <̂ 2w/c-i - ••• - afcu2 

= Mp+fc- ^2UP+k-l ~ ""• ~ akuP + l 

= akup. 
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MINIMUM PERIODS MODULO n FOR BERNOULLI NUMBERS 

W. HERGET 
Technische Universitat, Braunschweig, Fed. Rep. Germany 

The Bernoulli numbers Bm may be defined by 

(1) * » - d ^ 2 ( n : > (m>o)-
i = 0 

By the Rummer congruence, we have [2, p. 78 (3.3)], 

(2) f (-iy (r.)^i^ = o i o d p " , 

with u: = pe~1{p - 1), where r >_±, e >_ 1, m > re, p prime such that p - 1̂/7 
With r = 1 we get, in particular 
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(3) = — mod pe, 
m+y6-1^ - 1) 

where m > e, p - ±\m. 
Therefore, the sequence of the Bernoulli numbers is periodic after being 

reduced modulo n (where n is any integer) in the following sense. A ration-
al a/b with a, b e Z, gcd(a, b) = 1, may be interpreted as an element of Zn, 
the ring of integers modulo n, if,and only if the congruence relation yb = a 
mod n has a unique solution y e {0, 1, 2, . .., n - l} , i.e., if and only if 
gcd(b, ri) = 1. In this case, a/b is said to be n-integral. 

By the famous von Staudt-Clausen theorem we have for integer i and prime 
p (cf. [1] and [2]), 

B2i p - i n t e g r a l «=>p - l \ l i . 

Since B0 = 1 , B1 = - 1 / 2 and B 2 i + 1 = 0 for i e N, we ge t 

(4) Bm p - i n t e g r a l <=^>p - l)(mVm = OVw £ ( 3 , 5 , 7, . . . } . 
Now let Lin) be the smallest integer greater than 1 with the following prop-
erty: 

3 77?0 V/c, m >_ m0: 

(5) fSj, n-integral A /c = 7?7 mod L(n) ^ Bm ?z-integral f\Bk E 5m mod n). 

L(n) is called the period-length of the sequence {Bk mod n}. 
The smallest possible integer mQ in (5) is then called the pvepeviod of 

\Bk mod n} and will be denoted by Vin) . 
If n = n1n2 , where ni, n2 are coprime, then clearly 

L(n) = lcm(L(ni), L(n2)) and 7(n) = max(7(n1), F(n2)). 

Hence, it suffices to discuss the case n = pe , p a prime. We will prove 

Thzo/im J: (a) L(2e) = L(3e) = 2 

(b) F(2e) = F(3e) = 2 

(c) L(pe) = pe(p - 1), where p > 3 

(d) V(pe) <.e + 1. 
VK.00^'. If l\n or 3|n, none of the B2i is n-integral by (4); since B2 

= 0, this proves (a) and 7(2e) , V(3e) <_ 2. But 7(2e) = 1 and V(3e) = 1, re-
spectively, is impossible because Bl = -1/2 is not 2-integral and Si ^ 0 mod 
3e. So we get (b) too. 

Now let p > 3. From (3) we have, for m > e, p - l)fm, t >_ 0, 

£ m + £ p e - 1 ( p - 1) _ Bni 
1 1£ j — _ — moc| pe. hence, 

m + tpe (p - 1) 
(6) k = m + spe(p - l)Ap --±\mhm > e =^Bk ~ Bm mod pe. 

Consequently, L(pe)|pe(p - 1). On the other hand, we first prove p - 1 \L(p e ) : 
suppose p - l)(L(pe); we may choose 7?7 >. V(pe) + L(pe) such that p - 1|777 (and 
therefore m f 0 and 7?? £ (3, 5, 7, ...}), hence by (4) Bm is not p-integral. 
For k: = m - L(pe) , we have k = m mod pe, k >_ V(pe) and p - l\k, hence by (4) 
Bk is p-integral. But this is a contradiction to (5). So L(pe) = pl (p - 1) 
where t- e {0, . . . , e). It remains to show % = e. For this, we choose q e N 
such that s: = (qp(p - 1) + 2)p^ > V(pe). Because pe|s and p - l\s, we have 
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Bs - 0 mod pe [2, p. 78, Theorem 5]. Now suppose i < e. Then, Bk = Bs l 
mod pe if k = s mod p.(p - 1). Take 

k: = s + (p - l ) p * = (2 + (<7p2 + 3 ) ( p - D ) p * = 2 + t(p - 1) , 
where 

t : = 2 r _ ^ + (qp* + 3)p i e ff; 
P 

then by (3) w i th e = 1 and m = 2 , 

52 _ B2 + ( p - l ) _ _ Bk 
T = 2 + (p - T ) = • " = x m o d p ' 

where Bk E 0 mod pe. But, pe|s and pe\(p - l)pl gives p 6 ^ and, therefore, 
B2/2 E 0 mod p, contradictory to 52 = 1/6. Hence, i = e holds, and thus 

L(pe) = pe(p - 1) and F(pe) <_ e + 1 

by (6). 
Now we may improve this last inequality as follows: 

Th&QJim 2: 
1. V(p) = 2 for p prime. 
2. Let p be a prime, p > 3 and e e (2, 4, 6, ...}. Then, 

(a) Be f 0 mod p A p - l f e =>V(pe) = e + 1. 
(b) fc maximal such t h a t 

V0<.i<.k: ( 5 e . 2 i E 0 m o d p 2 i + 1 V p - l | e - 2 t ) 

^V(pe) = e - 1 - 2k. 

3 . Let p be a pr ime , p > 3 and e e { 3 , 5 , 7, . . . } . Then, 
(a) Be-i ? 0 mod p2A p - l\e - 1 => V(pe) = e. 
(b) & maximal such that 

VO £ i <_ k: {Be_l_2i E 0 mod p2i + 2\/p - l\e - 1 - 2£) 

=>F(pe) = e - 2 - 2k. 

VKOOl: By Theorem 1(d), we have V(p) <. 2. But V(p) < 2 is impossible 
since B1 - -1/2 ̂  0 mod p and S1 + L(P) = 0, thus V(p) = 2. 

For the proof of the other assertions we note that [4, p. 321, Cor.]: 

Y,(-iy(l)Bm + iv(l -p»-i + <vj = OBodp'C")- 1, 
i =0 

where p prime, p ̂  2, p - l|v, and pw is the highest power of p contained in 
V. 

Setting r: = 1 and v: = fc - #?, we get 

5^(1 - pm_1) - Bk(l - pk-x) E 0 mod pe, 

where pe(p - 1) \k - m and k >_ m >_ 1. Because 

k - 1 >_ m + pe(p - 1) - 1 >_ pe(p - 1) ̂  3e • 2 >_ e, 

we have , for k > m >_ 1 , p - l/fw: 
(7) fc E m mod p e (p - 1) =>Bk - Bm E p " 7 - 1 ^ mod p e . 

Now it is easy to verify the assertions. 
It is not very difficult to derive the following corollary, which gives 

the value of V(pe) "explicitly" for regular p (a prime p is said to be regu-
lar if and only if Bk f 0 mod p for each k e {2, 4, ..., p - 3}. 
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Cosiollasiy 7: Let p be r e g u l a r , p > 3 and e > 0. 
(a) I f 2\e then 

F(p e ) = e + l < ^ > p | e A p - l | e 

7 ( p e ) <. e - l < ^ = > p | e V p - l | e 

F (p e ) £ e - 3 <=> (p\eAp - l\e - 2 ) V ( p - l\eAp3\e - 2) 

^ e = 2 p mod p(p - 1) V e = 2 - 2p3 mod p 3 ( p - 1) 

F (p e ) = e - 5 «=>p = 5 A e E 252 mod 500 

V(pe) >. e - 5 . 

(b) I f 2 | e then 

F(p e ) = e <=^p2\e - l A p - \\e - 1 

F (p e ) £ e - 2 < = » p 2 | e - l V p - l\e - 1 

7 ( p e ) <. e - 4 < ^ > ( p 2 | e - l A p - l\e - 3) V (p - l\e - ±hph\e - 3) 

<=> e = 2p2 + 1 mod p 2 ( p - l ) V e 

= -2ph + 3 mod p^(p - 1) 

V(pe) = e - 6«=^p = 5Ae E 1253 mod 2500 

V(pe) >_ e - 6. 

For the proof, note that l\V{pe) holds for e > 1 and that in case of regular 
p and p - \\li,, we have 

S2i E 0 mod pe «=^>pe|2i. 

The assertions of Corollary 1 with "<==" are also valid for any irregular 
prime p. 

By Corollary 1, you may see that only for greater integers pe, the value 
V(pe) differs from e and e + 1, respectively. We get 

CoKolLcUty 2: For prime p , p > 3 , l e t e 1 = p - l , e2 = p , e3 = 2p, e^ = 
2 p 2 + l , e5 = 252, e6 = 1253. Then we have 

(a) F ( p e O < e { - i , t £ { l , . . . , 4 } . 
If p is regular, then V(pei) = ei - i, i e {l, ...,4), and there is 
no smaller power of p such that V(pe) = e - i. 

(b) 7(5&t ) = e{ - t, i e {5, 6}, and there is no smaller power of 5 such 
that V(5e) = e - i . 

(c) If p is regular and p > 5, then V(pe) >_ e - 4. 

For irregular primes, it is naturally somewhat more difficult to derive 
similar results about the smallest power of p such that V(pe) = e - i , where 
•i >_ 1. By Theorem 2, we get 

Be E 0 mod pA2|e => 7(pe) <. e - 1; 

hence, for each irregular prime p, we have V(pe) <L e - 1 for at least one e 
such that e £ e± = p - 1. 

Considering the table of irregular primes in [1] we may compute that n = 
691 2 is the smallest power of an irregular prime such that V(pe) = e - 1. 

There are still some open questions: 
1. Are there powers n - pe of some (necessarily irregular) prime p such 
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that e < et and V(pe) <.£-£, where i e {-2, 3, 4}? (By the computa-
tional results in [5] we may conclude that this does not happen when 
p < 30,000.) 

2. Is there a power n = pe of some irregular prime such that 

V(pe) < e - 5 ? 

VAJIGJL RojncUik: Professor L. Carlitz and Jack Levine in [3] asked similar 
questions about Euler numbers and polynomials. Analogous results about the 
periodicity of the sequence of the Bernoulli polynomials reduced modulo n and 
the polynomial functions over Z generated by the Bernoulli polynomials will 
be derived in a later paper. 
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THE RANK-VECTOR OF A PARTITION 

HANSRAJ GUPTA 
Pan jab University, Chandigarh, India 

1. INTRODUCTION 

The Ferrars graph of a partition may be regarded as a set of nested right 
angles of nodes. The depth of a graph is the number of right angles it has. 
For example, the graph 
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is four deep or is of depth four. It is clear that a graph of depth k can-
not have less than k nodes. 

Denote by x± the number of nodes on the horizontal, and by yi the number 
of those on the vertical section of the ith. right angle, starting with the 
outermost right angle as the first. Then, the partition can be very conve-
niently represented by the 2 x k matrix: 

hi 

^2 ^3 

ys 
or simply by 

.yi 
Evidently, we must have 

(1.1) xi >_ xi + 1 + 1 , ^ _> yi + 1 + 1, i <_ k - 1. 

It must be remembered that x% s and y! s are positive integers. The Atkin-ranks 
of the graph [1] are given by 

(1.2) yi<. y^ ykl = I** - yih> 
which we shall call the rank-vector both of the graph and of the partition it 
represents. 

The number of nodes in the graph is given by 

(1.3) ^ (xi + yi - 1). 

In our graph, the matrix 

"7 5 3 2" 

.9 4 3 1. 

represents a partition of 30 and its rank-vector is 

[-2 1 0 1]. 

Obviously, if Rk is the rank-vector of a partition, then the rank-vector of 
its conjugate partition is -i?/<. Hence, the rank-vector of a self-conjugate 
partition of depth k must be [0]k. _ _. 

Again, if [rAk is the rank-vector of the partition given by / , then 
we have 

(1.4) yi 

2. SOME CONSEQUENCES OF (1.1] 

Since yi >_ y^ + 1 + 1, we must have x^ - v± >_ xi + 1 
each i <_ k - 1, 
(2.1) Xi >_ max(xi + 1 + 1, xi + 1 + ri - ri + 1 + 1). 

Since yk is a positive integer, we conclude that 

(2.2) xk >_ max(rk + 1 , 1). 

From (1.3) and (1.4), we further have 

+ 1. Hence, for 

(2.3) Y^Xi = Un + k +Y,rA. 
i=i \ i=i / 
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Hence a partition of n with a given rank-vector [2^]^ can exist only if n has 
the same parity as 

k 
k + E rt • 

i= 1 

In what follows, we assume that our nTs satisfy this condition. Moreover, i 
shall invariably run over the integers from 1 to L 

3. THE BASIS OF A GIVEN RANK-VECTOR 

There are an infinite number of Ferrars graphs which have the same rank-
vector. All such graphs have the same depth but not the same number of nodes 
necessarily. 

ThJL0h&m\ Among the graphs with the same rank-vector, there is just one 
with the least number of nodes. 

VJWOfa: Using the equality sign in place of the sign _>_ in (2.2) and (2.1), 
we obtain the least value of each of the x± 's, i £ k. (1.3) and (1.4) then 
give n0 that is the least n for which a graph with the given rank-vector ex-
ists. This proves the theorem. 

Incidentally, we also get the unique partition with the given rank-vector 
and the least number of nodes. We call this unique partition the basis of 
the given rank-vector. 

Example: Let us find the basis of the rank-vector [-2 3 0 1 ] . With 
the equality sign in place of the of the inequality sign, (2.2) gives xh = 2. 
With the equality sign in place of _> , (2.1) now gives, in succession, 

x3 = 3, x2 - 7, and x1 = 8. 

From (4) of Section 1, we now have 

yh = 1, y3 = 3, y2 = 4, and yl = 10. 

Hence, the required basis is 

"8 7 3 2" 

.10 4 3 1_ 

This represents a partition of 34. 
We leave the reader to verify the following two trivial-looking but very 

useful observations: 

(a) If M is the basis of [r3 ]̂ and h is an integer, then the basis of 

the vector [v^ + h] is given by 

+ K 

y<i lyi 
according as h is positive or negative. 

(b) If hi >_ h2 _> ... >_ hk >_ 0 are integers, then the graphs of 

and 

Mi 

XJS + 7z,-l 

.Mi + 7*1 
have the same rank-vector. 
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k. PARTITIONS OF n WITH A GIVEN RANK-VECTOR 

Let M be the basis of the given rank-vector and n0 the number of nodes 

in the basis. For our n to have any partitions with the given rank-vector, 
it is necessary that n has the same parity as n0 and n>_nQ. Assume that this 

Write 

m = j(n - n 0). 

List all the partitions of m into at most k parts. Let 

m = hl + h2 + ••• + hk, 
with hi >_ h2 >_ •L b>k — O J t>e a n y s u c n partition of m. Then the matrix 

(4.1) 
2/t 

+ hi 

+ /z, 
provides a partition of n with the given rank-vector. 

The one-one correspondence between the partitions of m and the matrices 
(4.1) establishes the following 

Tfieo/LCm: The number of partitions of n with the given rank-vector is the 
same as the number of partitions of m into at most k parts where m is as de-
fined above. 

-1] and n = 43. Then 

10 

13 

9 

12 

8 

6 

7 

5 

4 

3 

5 

4 

1 

2 

2 

3 

Example: Let the given rank-vector be [-3 
the basis of the vector is readily seen to be 

" 7 6 4 1 " 

_10 4 3 2. 

so that n0 = 33 and m = 5. 
The partitions of 5 into at most 4 parts are: 

5; 4 + 1 , 3 + 2 ; 3 + 1 + 1 , 2 + 2 + 1 ; 2 + 1 + 1 + 1 . 

1 

2, 

l" 
2. 

We leave it to the reader to see how the graphs of partitions of n can be 
constructed directly from that of the basis. As an exercise, he/she might 
also find a formula for the number of self-conjugate partitions of n. 

As a corollary to the theorem of this section, we have 

CofiolZa/iy: The number of partitions of n + hk, h > 0, with rank-vector 
[v. + h] is the same as the number of partitions of n with rank-vector \vi ]. 

This follows immediately from observation (a) in the preceding section. 

5. THE BOUNDS FOR THE ATKIN-RANKS 

What can be said concerning the Atkin-ranks of partitions of n for which 

Therefore, the r 
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We show that these ranks are bounded both above and below. Since x1 <. a, 
the number of rows a partition of n can occupy is not less than u, where 

u - 1 < n/a <_ u. 

Hence, none of the ranks can exceed (a - u). 
Similarly, none of the ranks can fall short of (v - b), where 

v - 1 < n/b <_ v. 

Of course, for n to have a partition of said type, it is necessary to have 

n <_ ab, 
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THE ANDREWS FORMULA FOR FIBONACCI NUMBERS 

HANSRAJ GUPTA 
Panjab University, Candigarh, India 

7. In what follows: small letters denote integers; n > 0; p denotes an 
odd prime other than 5; [ ] is the greatest integer function; and for conve-
nience, we write 

(n;p) for [™J . 
The two relations 

(1.1) (n;p) = (n;n - r), and 

(1.2) (n;r - 1) + (n;r) = (n + l;r) 

are freely used, and we take, as usual, 

(t;0) = 1 for all integers t, and 

(n;p) = 0 if v > n, and also when v is negative. 

We further define 

(1.3) S(n,r) = Y,(n;j), 
J 

where j runs over all nonnegative integers which are E p (mod 5). 
As a consequence of this definition and the relations (1.1) and (1.2) we 

have 

(1.4) S(n,r) =S(n,n - r), and 

(1.5) S(n9r - 1) + S(n,r) = S(n + l,r). 

2. The Fibonacci numbers Fn are defined by the relations 

(2.1) Fl = 1 = F29 and 

(2.2) Fn + Fn + 1 = Fn + 2 for each n >_ 1. 
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G. E. Andrews [1] has given the following formulas for F : 

<2'3) Fn =H (-l)'(n - l;[(n - 1 - 5j)/2]); 
3 

(2.4) Fn = Y, (-DJ'(n;[(n - 1 - 5j)/2]); 
3 

where j runs over the set of integers. 
The object of this note is to provide a simple proof of these formulas 

and to obtain some congruence properties of Fn . Let 

[(n - l)/2] = m (mod 5) 

so that 
n - 1 = 2m or 2m + 1 (mod 10) 

according as n is odd or even. Then (2.3) and (2.4) can be written as: 

(2.5) Fn = S(n - l9m) - S(n - l,m - 2); 

(2.6) Fn = S(n9m) - S(n9m - 1). 

We first assert that (2.5) and (2.6) are equivalent and prove the asser-
tion as follows: 

For any integer j, we have 

(n;m + 5j) - (n - ±;m + 5j) = (n - l;m + 5j - 1). 
Also 

(n;m - 1 + 5j) - (n - l;m - 2 + 5j) 

= (n;n - m + 1 - 5j) - (n - l;n - m + 1 - 5j) 

= (n - l;n - m - 5j) 

= (n - ±;m + 5j - 1). 

Hence, letting J vary suitably, we get 

S(n,m) - Sin - l,m) = S(n,m - 1) - S(n - l9m - 2), 

and our assertion follows immediately. 

3. Proof of (2.5) is by induction. It is easy to verify that (2.5) and 
(2.6) hold for n = 1 and n = 2. Assume that they hold for each n <_ t + 1. 
Then, from (2.6), we have 

(3.1) Ft = S(t,m) - S(t9m - 1) 

with m = [(t - l)/2] (mod 5). For the same TT?, (2.5) gives 

(3.2) Ft+1 = S(t,m) - S(t9m - 2) for t odd, 

(3 .3 ) = S(t9m + 1) - S(t9m - 1) fo r t even. 

I f t i s odd, l e t t = 10fc + 2777 + 1; then 

(3 .4 ) S(t9m) = S(t9t - m) = S(t910k + m + 1) = S(t9m + 1 ) . 

I f t i s even, l e t t = 10/c + 2TT7 + 2 ; then 

(3 .5 ) S(t9m - 1) = S(t9t -777 + 1) = S(t910k + m + 3) = S(t9m - 2 ) ; 

so t h a t 

(3 .6 ) Ft + 1 = S(t9m + 1) - S(t9m - 2) for t odd as w e l l as t even. 
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From (3 .1 ) and ( 3 . 6 ) , we ge t 

Ft + Ft + 1 = {S(t,m) + S(t9m + 1)} - {S(t,m - 1) + S(t,m - 2)} 

= S(t + 1,777 + 1) - S(t + 1,777 - 1 ) . 
Thus, 

Ft + 2 = S(t + 1,777 + 1) - S(t + 1,777 - 1 ) . 
Inductive reasoning now proves (2.5) for all n > 0. 

4. From (2.5) and (2.6), we can derive not only the well-known congru-
ences modulo p for Fp , Fp + i, and Fp-i (in the manner of Andrews) , but also 
some congruences modulo p2. 
We first give the expressions for Fp2 , Fp2 + i , and Fp2_i. 

(i) If p is a prime of the form 10k ± 1, then we have 

[(p2 - l)/2] E 0 (mod 5), 

and so also 

[p2/2] = 0 (mod 5). 
Hence, 

Fp2 = S(p2, 0) - S(p2, 4), 

V + i = 5 ( P 2 ' 0 ) " 5 ( P 2 ' 3 ) ; 

and t h e r e f o r e , 

F p , . ! = 5 ( p 2 , 4) - 5 ( p 2 , 3 ) . 
( i i ) I f p i s a prime of t h e form 10k ± 3 , then 

[ ( p 2 - l ) / 2 ] E 4 (mod 5 ) , 

and so a l s o i s 
[ p 2 / 2 ] E 4 (mod 5 ) . 

Hence 
Fp 2 = 5 ( p 2 , 4) - 5 ( p 2 , 3 ) , 

* W i = £(p2> 4) - ^ ( p 2 , 2 ) ; 
and t h e r e f o r e , 

*V-i = 5 ( ^ 2 ' 3 ) " 5 ( P 2 ' 2 ) -
All that we need now for our purpose is the 

Lmmcii For l £ ^ £ p 2 - l , 

(p2; h) E (-l^'VA (mod p 2 ) . 

P/LOOfJ: We have 

( p 2 . fe) = £ j . P 2 - 1 . P 2 - 2 p 2 - ft + 1 
*-P ' n> h 1 2 h - 1 

Since for 1 <. r £ ft - 1 , 

^-f^- = -1 (mod p2) 

t h e lemma fo l lows immedia te ly . 
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Evidently, if pj[h9 then 

(4.1) (p2;h) E 0 (mod p2) ; 

otherwise, 

(4.2) (p2;h)/p 5 (-D^p/fc (mod p). 

We have, of course, 

(4.3) (p2;0) = 1 - (p2;p2). 

As an application of the lemma, we have, for example: 

(i) when 1 £_ m j£ 4, 

(4.4) S(p\m) = Y, (P2;^ + 5j) (mod p2). 
j'>.o 

On the right of the sigma in (4.4), we need consider only those nonnegative 
values of j for which 

m + 5j <_ p2 and 77? + 5j E 0 (mod p) ; 

( i i ) when 77? = 0, we have , 

(4 .5 ) S(p2,0) - 1 = £ ( p 2 ; 5 j ) (mod p 2 ) , 

so t h a t J ~ 1 

( 4 . 6 ) * ( p 2 , 0 ) - X E ^ ( - l ^ - V S j (mod p ) , 
J 

where 1 <_ j < p / 5 . Thus 

^121 ~ 1 1 1 1 1 
11 ^ - ^ + t - i E 9 - 1 0 + 3 - 5 - 8 (mod 1 1 ) . 

T h e r e f o r e , 
Fl21 E 89 (mod 121) . 
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OPERATIONAL FORMULAS FOR UNUSUAL FIBONACCI SERIES 

H. W. GOULD 
West Virginia University, Morgantown, W.Va. 26506 

Operational formulas can play a fascinating role in finding transforma-
tions and sums of series. For instance, by using the differential operator 
D (=d/dx) we can transform 

(1) 

i n t o 

2 , * * -•• 
k = 0 

YJkxk~1 
£ri (1 - x)2 
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The operator 0 = xD is even more interesting. It has the basic property that 
0pxk = kvxk, so that (1) can be transformed into 

<2> S*v-6'{5-M-
and since it can also be shown (and is well known) that 

P 
(3) epf(x) = £ Sip, k)xkDkf(x), 

k = 0 

where Sip, k) are Stirling numbers of the second kind, explicitly 

(4) k\S(p, k) = A*0* = £ (-D""J'(5)jp5 
j-o X J / 

then series (2) can be found in closed form for it is trivial to find the 
higher derivatives needed in (3). The result is a very old and well-known 
formula. In [7] is given an extension of (3) applied to generalized Hermite 
polynomials. There are numerous similar generalized expansions involving the 
D operator. Here we propose to examine some rather unusual variations that 
are not too well known, and which have applications to Fibonacci numbers 
among other things. 

We shall need several, other well-known operational formulas whose proofs 
involve some calculus and/or mathematical induction, and we tabulate these 
below: 
(5) 9 = Dz, where x = ez

 9 

(6) e" = D?, 
(7) x»D£-nl(Dz), 
where the binomial coefficient is defined as usual by ( J = x(x - 1) ... 
(x - n + l)/n!, with (g) = 1. V ' 

(8) eD = 1 + A = E, 

where 
A/(a:) = fix + 1) - f{x) and Ef(x) = f(x + 1) . 

More generally 

(9) etD* = f(x + t) = Efix). 
x ,h 

The ^-operator 

(10) fiqx) = Qf(x), where Q = q* . 
This was used, e.g., in [10], and is very convenient when working with basic 
hypergeometric series. 

In the references at the end are several papers, viz. [1], [2], [4], [5], 
from the older literature where properties of a great number of familiar and 
unfamiliar operators were developed. The master calculator was almost cer-
tainly George Boole. The English literature for the period from about 1830 
to 1890 is especially rich in papers on unusual operators. 

In [1], Boole gave the pair of very remarkable operational expansions 

(11) f(x + 0riD))uix) = e^D)fix)e-*{D)uix), 

and 

(12) f(D + 0rix))uix) = e-4(x)f(D)e0(xy>uix), 
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which hold for arbitrary functions /, 0, and u. The formulas are certainly-
true for polynomials, and in order to avoid matters of convergence of any 
series we shall explain that we interpret these as statements about formal 
power series. In that context there is no difficulty and we use formal power 
series definitions of all operators. Thus, if L is a linear operator, we 
should like to define eL by 

(13) *L-t,WLK 

k = o ' 
Boole's formulas (11)-(12) have a bearing on expansions in [7]. They are 

representative of some of the most unusual operational formulas. 
But stranger still, we shall consider the operator LL, which we define as 

follows: 

(14) LLf(x) = {(L - 1) + l}Lf(x) = E(^)(£ - D"fW 
n = 0 

= ZE^E(-i)«-k(^k/(x) 
n = 0 j = 0 k = 0 

where Cj are Stirling numbers of the first kind, i.e., coefficients in the 
expansion of a binomial coefficient: 

j =0 

In the familiar notation of Riordan, nlCj = s (n, j). 
For a particular choice of L we may be able to give a more compact defi-

nition. Thus, with / = f(x), 

(16) DDf={(D-l)+l}Df=Y,(D
n)(D-l)nf 

n = 0 

= Z fr^Ac - 1)"/, by (7), with z = e*, 

= ESt(-D"-k(?)o^). 
n = 0 ' k = 0 x 

For an example of this expansion, let f(x) = eax. Then 

whence 

n = 0 " k = 0 

n = 0 k=0 

k = 0 
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= zaJ2{n)(a " 1)n = zCCaa = aae<ZX> 
n = 0 

so that we have the attractive formula 
(17) DDeax = aaeax, 
It is instructive to compare this with Qpx = kpx , and to recall a little 
terminology from vector analysis. A characteristic vector for a linear trans-
formation L is a non-zero vector / such that Lf - of for some scalar c. With 
each operator we like to find a natural function or characteristic function. 
For the operator 0 it is xk

9 for D'^it is eax, etc. 
Formula (17) allows us to write down symbolic sums for various peculiar 

series. Thus 
n - l n - l n - l 

(18) " Y,kkek*tk = ^tkDDekx = DD ^(te*)k = DD {*"*"* " H . 
In particular, 

(19) y>*** = W — ^ — \\ 

All that would be necessary to sum (19) would be to find a different method 
of attaching a meaning to the right-hand member. 

For a Fibonacci-Lucas application, recall the general Lucas function 

Ln = Ln(a, b) = an + bn. 
Then 

(20) £>*«*%* = W g
p « » , + V» V 

fc=o * ap£ - 1 bpex - 1 
and for the generalized Fibonacci function 

Fn = Fn(a, b) = (an - bn) / (a - b), 
then 

•aP"gn* _ x 2)Pn5n X - 1 
(21) (a - b)^kkek*Fpk = W -

apex - 1 bpex 

Following the methods outlined in [3], [6], [8], [9], or [11], we could set 
down complicated symbolic formulas for the general series 

(22) J2kkek*u%lL°k, 
k = 0 

but we shall not take the space to exhibit the result. 
For another application, let us rewrite (17) as aa = e~xDDeax, so that we 

have an obvious application in the two forms 

(23) LL
n
n = e-xDDeLnX , F*" = e-xDDeF"x , 

which allow us to introduce Fibonacci powers of Fibonacci (and Lucas powers 
of Lucas) numbers into known series. In particular, 

(24) !>*£"" = e-'DD^ttneL-x, 
rc = 0 n • 0 

and a similar formula with F in place of L . 
In principle then we could sum such series if we could sum the series 

(25) S(t, u) = £] tnuLn , 
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and 

(26) T(t9 u) = ]T tnuFn . 
n = 0 

These a r e o f f e r e d as r e s e a r c h p r o j e c t s ; t he au tho r would be i n t e r e s t e d i n 
h e a r i n g of any succes s by o t h e r s . DUS\U=1 and DUT\U=1 a r e known. 

The o p e r a t o r 0e may be cons ide red f i n a l l y . We f ind 

' / = {(e - i) + i} f l /= E (®)(e - iff 
n = 0 

= E f r W " DV, by (7), 
n = 0 " 

- t f i * - £ ( - i ) B ~ * ( * ) e ^ n = 0 * k=0 

so we have 
(27) B°f(x) =Y,^D^(-l)n-k(n)&Kf(x). 

n = 0 " k = 0 x ^ ' 
Let / ( x ) = x p , then 

) e x p 

= xPE(n)(P " 1)K = PPx?' 
or therefore, another formula analogous to (17), 

(28) QBxp = ppxp. 

As an application we can get a different version of formula (19) as 

(29) £**** = eeJ>* = e9!^}. 
We wish to remark that even stranger formulas have been published. Cay-

ley [4], [5] expressed the Lagrange series inversion formula in the most 
curious operational form 

(30) F(x) = (DJ^'^F'^e^^)}, 
where x = u 4- hf(x) and F(x) is an arbitrary function. By differentiation, 
he expressed the second form of this expansion as 

Cayley says these are well known, and goes on to write similar formulas for 
functions of several variables. 

Bronwin [2] writes 

(32) f(a + x) = D!{f(a)ex) 

as a symbolic form of Taylor's expansion. This is, of course, a special case 
of the Lagrange expansion. 

In conclusion, we wish to emphasize that the formulas presented here are 
offered more for further research than as final answers to any of the questions 
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raised. It certainly is possible to introduce unusual terms into generating 
functions by the use of unusual operators. 
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A FIGURATE NUMBER CURIOSITY: EVERY INTEGER IS A 

QUADRATIC FUNCTION OF A FIGURATE NUMBER 

HARVEY J. HIND IN 
Empire State College, Stony Brook, NY 11790 

In this note we prove the following: Every positive integer n can be ex-
pressed in an infinite number of ways as a quadratic function for each of the 
infinite number of figurate number types. 

The nth figurate r-sided number pr is given by 

(1) p* = n((r - 2)n - r + 4)/2, 

where n = 1, 2, 3, ... and r = 3, 4, 5, ... . Therefore, the snth figurate 
number is given by 

(2) pv
sn = sn((r - 2)sn - r + 4)/2. 

However, (2) is a quadratic in n. Solving for n and taking the positive root 
yields 

(p - 4) + /(r - 4) 2 + 8(r - 2)ps
r
n 

which allows us to express n as stated above. A special case of (3) for pen-
tagonal numbers (r = 5) was obtained by Hansen [1]. 
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Send all communication* hegaJtdlng ELEMENTARY PROBLEMS AND SOLUTIONS to 
Professor A. P. Hillman, 709 Solano Dr., S.E., Albuquerque, New Mexico 87108. 
Each solution on phoblem should be on a Aepa/iate Aheet [oh Aheet*). Vhe{oJt-
ence wiUL be given to tho*e typed with, double spacing in the ^ohmat u*ed be-
low. Solution* should be heceived within 4 month* ofi the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy Fn + 2 = Fn + 1 + Fn , 
FQ = 0, Fx = 1 and Ln + 2

 = Pn + i + ̂ n? L0 = 2, Lx = 1. Also a and b designate 
the roots (1 + /5)/2 and (1 - /5~)/2, respectively, of x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-388 Proposed by Herta T. Freitag, Roanoke, VA. 

Let Tn be the triangular number n(n + l)/2. Show that 
Ti + Ti + Ts + '•" + T2n-i= l2 + 32 + 52 + ••• + (2n - l) 2 

and express these equal sums as a binomial coefficient. 

B-389 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 

Find the complete solution, with two arbitrary constants, of the differ-
ence equation 

(n2 + 3n + 3)Un + 2 - 2(n2 + n + l)Z7w + i + (n2 - n + l)Un = 0. 

B-390 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA 

Find, as a rational function of x9 the generating function 

B~391 Proposed by M. Wachtel, Zurich, Switzerland. 

Some of the solutions of 5x2 + 1 = y2 in positive integers x and y are 
(x9y) = (4,9), (72,161), (1292,2889), (23184,51841), and (416020,930249). 
Find a recurrence formula for the xn and yn of a sequence of solutions (xn, 
yn) and find ±±m(xn + 1/xn) in terms of a = (1 + /5")/2. 

n -y 00 

B-392 Proposed by Phil Mana, Albuquerque, NM. 

Let Yn = (2 + 3n)Fn + (4 + 5n)Ln. Find c o n s t a n t s h and k such t h a t 

Yn+2 ~ Yn+l ~ Yn = hFn + kLn. 
B-393 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose,CA. 

Let Tn = ( n 2 X ) ' po = X> Pn = TiT
2 •"Tn ^r n > 0 , and [ j ] = Pn/PkPn.k 

for i n t e g e r s k and n w i t h 0 £. k £ n . Show t h a t 
f n l = 1 (n\(n + ±\ 
lk\ n - k + l U / U + 1 / 

562 
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SOLUTIONS 

1NCONTIGUOUS ZERO DIGITS 

B-364 Proposed by George Berzsenyi, Lamar University, Beaumont, TX. 

Find and prove a formula for the number R(n) of positive integers less 
than 2 whose base 2 representations contain no consecutive O's. (Here n is 
a positive integer.) 

Solution by C. B.A. Peck, State College, PA. 

Let Sn be the number of integers 777 with 2n~ <_ m < 2n and having a binary 
representation 5(777) with no consecutive pair of 0Ts. Clearly Sn = Rn - i?n_i 
for n > 1 and S1 = R±. Also, 

Sn = £n_i + 5n_2 for w > 2, 

since Sn_1 counts the desired 77? for which B(m) starts with 11 and Sn_2 counts 
the desired 77? for which 5(777) starts with 101. It follows inductively that 
Sn = Fn+1> a n d t h e n 

Rn = S, + S2 + • • • + Sn = F2 + F3 + . • . + Fn + 1 = Fn + 3 - 2. 

Also solved by Michael Brozinsky, Pauls. Bruckman, Graham Lord, Bob Prielipp, 
A. G. Shannon, Sahib Singh, Rolf Sonntag, Gregory Wulczyn, and the proposer. 

CONGRUENT TO A G.P. 

B-365 Proposed by Phil Mana, Albuquerque, NM 

Show that there is a unique integer m > 1 for which integers a and r ex-
ist with Ln E avn (mod 777) for all integers n >_ 0. Also, show that no such 777 
exists for the Fibonacci numbers. 

Solution by Graham Lord, Universite Laval, Quebec. 

Since 7 = LiiLl = a2r5 E LZL3 = 12 (mod 777), then 77? divides 5, hence 777 = 5. 
Furthermore, a = ar° E L0 = 2 (mod 5). And finally, or2 =L2 = L1 + LQ E av + 
a (mod 5) together with a E 2 (mod 5) implies v1 E v + 1 (mod 5), i.e., v E 3 
(mod 5). In all, 777 = 5, and a and v can be taken equal to 2 and 3, respec-
tively. Note for any n >_ 1, Ln + 1 = Ln + Ln_1 E apn + ap n _ 1 E arn + 1 (mod 5). 

For the Fibonacci numbers, if 777 were to exist, then 

3 = FxFh E a2p5 E F2F3 = 2 (mod 777), 

i.e., 1 E 0 (mod 777), which is impossible if 777 > 1. 

Also solved by George Berzsenyi, Paul S. Bruckman, Bob Prielipp, A. G. Shannon, 
Sahib Singh, Gregory Wulczyn, and the proposer. 

LUCAS CONGRUENCE 

B-366 Proposed by Wray G. Brady, University of Tennessee, Knoxville, TN and 
Slippery Rock State College, Slippery Rock, PA. 

Prove that LiLj E LhLk (mod 5) when i + j - h + k. 

Solution by Paul S. Bruckman, Concord, CA and Sahib Singh, Clarion State Col-
lege, Clarion, PA (independently)• 

Using the result of B-365, 
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L.L- - LhLk = 2 • 3i + j - 2 • 3h + k = 0 (mod 5 ) , 

since i + j = h + k. 

Also solved by George Berzsenyi, Herta T. Freitag, Graham Lord, T. Ponnudurai, 
Bob Priellpp, A. G. Shannon, Gregory Wulczyn, and the proposer. 

ROUNDING DOWN 

B-367 Proposed by Gerald E. Bergum, Sr. , Dakota State University, Brookings, 
SD. ' 

Let [x] be the greatest integer in x, a = (1 + /5)/2 and n >. 1. Prove 
that 

(a) F2n = [aF2n_L] 
and 

(b) F2n+1 = [a^^.J. 

Solution by George Berzsenyi, Lamar University, Beaumont, TX. 

In view of BinetTs formula, 

a2n-i _ 2)2n~1
 a

2n - b2n 

ccFr>n_ T — F 0y. = a 7 — 7 — —b 
zn l Zn a - b a - b 

Similarly, 
„2p j? _ ~ 2 & ~ O a - O _ h 2 n - l 
a F ^ ' 1 " F^ + 1 ~ a a - b " a - b " ~b 

Since -1 < b = « < ° implies that 0 < -b2n~x < 1, the desired resul ts 
follow. 

Also solved by J. L. Brown, Jr., Paul S. Bruckman, Graham Lord, Bob Priellpp, 
A. G. Shannon, Sahib Singh, and the proposer. 

•CONVOLUTING FOR CONGRUENCES 

B-368 Proposed by Herta T. Freitag, Roanoke, VA. 

Obtain functions g(n) and h(n) such that 
n 

^2^FiLn-i= g(n)Fn + h(n)Ln 
i-l 

and use the results to obtain congruences modulo 5 and 10. 

Solution by Sahib Singh, Clarion State College, Clarion, PA. 
n 

Let An = 2_\^i^n-i' Then the generating function A1 + A2x + A3x2 + ••• 
i = i 

is a rational function with (1 - x - x ) as the denominator. It follows that 
g(n) and lain) are quadratic functions of n. Then, solving simultaneous equa-
tions for the coefficients of these quadratics leads to 

so that 

g(n) = (5n2 + lOn + 4)/10 and h(n) = n/10 

(5n2 + l\)Fn + nLn = 0 (mod 10). 

This also gives us nLn - Fn (mod 5). 

Also solved by Paul S. Bruckman, Graham Lord, Gregory Wulczyn, and the pro-
poser. 
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NO LONGER UNSOLVED 

B-369 Proposed by George Berzsenyi, Lamar University, Beaumont, TX. 

For all integers n >_ 0, prove that the set 

£>n = \^Zn+l9 -^2n+3J -^2n+5/ 

has the property that if x> y £ Sn and x ̂  y then xy + 5 is a perfect square. 
For ft = 0, verify that there is no integer z that is not in Sn and for which 
(ss ^2n+i' ^2n+3s -^n + s) n a s this property. (For n > 0, the problem is un-
solved. ) 

Solution by Graham Lord, Universite Laval, Quebec. 

That Sn has the property follows from the identities: 
2 

^2n+1^2n+3 + 5 = L 2 n + 2 5 
and 

L2n + lL2n+5 + 5 = L2r7 + 3 ' 

In the second part of this solution use is made of the results: 

® 2 lL6/c + i and 2 lL6fe+5 
© 4 = L

3lL6fc+3 
© 4|L2k 

Of these, (l) is somewhat well known and the latter three are conse-
quences of the results in "A Note on Fibonacci Numbers," The Fibonacci Quar-
terly, Vol. 2, No. 1 (February 1964), pp. 15-28, by L. Carlitz. 

By (T) and \2) there is exactly one even number, L6fc+3 > in the set Sn, 
n >. 0. So if {2} U 5n has the desired property, then zLsk+3 + 5 will be an 
odd square and thus congruent to 1 modulo 8. This implies that 2, if it ex-
ists, is odd. 

Now the other two members of Sn are either: 

(a) L6k_i, Lsk+1; (b) L s k + 5 , L6k+7; or (c) L6k+l9 LBk+5-

Each of these is odd by (l), and hence the sum of 5 and any one of them 
multiplied by z will equal an even square. Thus, in case (a) [and similarly 
in case (b)]: 

zLsk_1 + 5 E 0 (mod 4), and zL6k+1 + 5 = 0 (mod 4); 
i. e. , 

zL&k = z(L6k + 1 - L6k_i) = 0 (mod 4). 

But this is impossible by (5) and the fact that z is odd. 
And in case (c), 

z • 5Fek+3 = (zLsk+5 + 5) - (zL6k+1 + 5) = 0 (mod 4 ) , 

which is also impossible by (4). 
Consequently, no z exists such that the set {z} U Sn has the desired 

property. Note that it was not assumed that n = 0. 
Also solved by Paul S. Bruckman, Herta T. Freitag, T. Ponnudurai, Bob Prielipp, 
A. G. Shannon, Sahib Singh, and the proposer. 
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H-290 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 

Show that: 

( a ) Fk* k + 6r +3 ~ ^k+kr + 2 ~ ( " 1 / ^2r +l^k+8r +h ~ ^k+kr+2' > 

(b) FkFLsr ~ ?U,r = (-Dk + 1F2
Zr(Fk + 8p + 2Fk + l f r ) . 

H-291 Proposed by George Berzsenyi, Lamar University, Beaumont, TX 

Prove that there are infinitely many squares which are differences of 
consecutive cubes. 

H-292 Proposed by F. S. Cater and J. Daily, Portland State University, Port-
land, OR. 

Find all real numbers v £(0,1) for which there exists a one-to-one func-
tion fr mapping (0,1) onto (0,1) such that 

(1) fr and f~ are infinitely many times differentiable on (0,1), and 
(2) the sequence of functions fr, frofP9 frofrofr, fv^fv°fv°fv > •'••• 

converges pointwise to v on (0,1). 

H-293 Proposed by Leonard Carlitz, Duke University, Durham, NC. 

It is known that the Hermite polynomials <Hn(x)\ defined by 

n = 0 n' 
satisfy the relation 

I>» + *(*>S = e2XZ-*2Hk(x - z) (k = 0, 1, 2, . . . ) . 
n = 0 ' 

Show that conversely if a set of polynomials \fn(x)\ satisfy 

<x> Z-4+fc^Jr = E^^Jr4( x - z) (k = 0, 1, 2, . . . ) , 
n = 0 n = 0 

where f0(x) = 1, fx(x) = 2x, then 
fn(x) = Hn(x) (n = 0, 1, 2, . . . ) . 

566 
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H-294 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 

Evaluate 

^ 2 r + l ^ 6 r + 3 - ^ 1 0 r + 5 ^lhr+7 ^ I 8r +9 

* hr +2 ^ 1 2 r + 6 ^ 2 OP + 1 0^2 8r + 1 h^ Z Sv + 1 8 

^ 6 r + 3 ^ 1 8 r + 9 ^ 3 6 r + 1 5^4 2 ^ + 2 1^5 4 r + 2 7 

^ 7
8 r + L f -^ 7 2i+P+12^ 7 i+0P + 2 0 ^ 5 6r + 2 8^7 2 r + 3 6 

^ 1 Or + 5^2 Or + 1 5^5 Or +2 5^7 Or + 3 6^5 Or+1+5 

SOLUTIONS 

SYMMETRIC SUM 

H-272 (Correc ted) Proposed by Leonard Carlitz, Duke University, Durham, NC. 

Show t h a t 

EmcAX^rv^A™) Cm(p, (7, r) 

is symmetric in p, q, v. 

Solution by Paul Bruckman, Concord, CA. 

Define 

a) j =0 

Clearly, Cm(p, q, v) = Cm(q, p, r). A moment's reflection reveals that it 
therefore suffices to show that Cm(p, q, r) = Cm(q, p, p). Replacing j by 
/?? - j in (1) and applying Vandermonde? s convolution theorem on the term in-
volving p and q yields: 

".<p-"-')-i;(.̂ )(5)(j)/(;)fc^)«) 
j-o 

m m - J 

k=0 

j = 0 k = 0 
Replacing k by m - k in the last expression yields 

m m 

E0t(A)UKi)(.?oc;')/(j)-
7 = 0 fe = 0 

te last expression yields: 

'.<*•«•'>-E£(.-*)(5)(.?*)(0(*)/(;) 
J = 0 fc = j 

- E U ) ( . ! , ) E ( . - * ) 0 ) ( 5 ) / ( " ) -
However, it is easy to verify that 

(»-,)/(?)-O/rTO-O^'/fT1)-
Therefore, 

777 k 

*.<*.«. w • C)E(?)(.f*)?:w)'(J)(5)/(-r1)-
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Now, formula (7.1) in Combinatorial Identities (H. W. Gould, Morgantown,1972), 
is as follows: 

<« D-u'UK^/cr)/©-
fc-0 

Letting k = J, n = k, % = q, y = m - r •- 1 In (4), we therefore simplify (3) 
as follows: 

*.«.*> = Q|:axA)riT~i)/CT1) 
fr\SLy(P\t 1 \/q+r-m + k\ I IT -m + k\ 

= \m)ls\k)\m-k)\ k ) / \ k ) ; 

k = 0 
once again and replacing k by j y i e l d s : 

m 

<p.,.rt=E(?)(„^-)L-J-)r'r+j')/(™) 3 

= Cm(q, p, p). Q.E.D. 

Also solved by the proposer. 

A RAY OF LUCAS 

H-273 Proposed by W. G. Brady, Slippery Rock State College, Slippery Rock, PA. 

Consider, after Hoggatt and H-257, the array D, indicated below, In which 
^2n+i (n = 0, 1, 2, ...) is written in staggered columns: 

1 
4 1 
11 4 1 
29 11 4 1 
76 29 11 4 1 

i. Show that the row sums are L2n + 2 ~ 2; 
ii. Show that the rising diagonal sums are F2n+3 ~ 1 where L2n+1 is the 

largest element in the sum. 
iii. Show that if the columns are multiplied by 1, 2, 3, ... sequentially to 

the right then the row sums are L2n+3 - {In + 3). 

Solution by A. G. Shannon, The N.S.W. Institute of Technology, Australia. 

In effect we are asked to prove: 
n 

i* 2Ll ^2n-2j +1 = ^2n+2 ~ 2 ; 
J - 0 
[n/2] 

i 1 , 2Ls ^2n-kj + i ~ F2n+3 - i ; 
J - 0 
n 

i i i . ^ (j + l)L2n_2j+1 = L2n + 3 - {In + 3) . 
j - o 

n n / \ n n+1 

( ^ Z^L2^-2J + 1 = I-** \ L 2 n - 2 ( j - 1) " L 2 n - 2 j ) = / ^ L 2 n - 2 ( j - 1 ) " / , L 2 n - 2 ( , i - l ) 
J = 0 j - 0 j = 0 j = l 

= £J2n+2 " ^ O J a s required. 



1978] ADVANCED PROBLEMS AND SOLUTIONS 569 

[«/2] [n/2] [n/2] [n/2] + l 

( i i ) 2 ^ L2n-Hj + 1 = 2-J {F2n-Hj + 3 " F 2n - 4 j - 1 ) = ^ F2n-kj + 3 ~ X , F2n-kj+3 
J-o j = o ' ^ . Q j-i 

= F2n+3 ~ ̂ i^(25 «) "
 F.1o(29 n + 1) = F2n+3 - 1 

in which 

!

1 if n\m9 

0 if n\m. 
n n n n 

(iii) £ (J + l)L2n_2j,+ 1 - £ SL2n-2i+l = Z)(L2n-2i + 2 - 2) 
i = 0j' = 1 *-0 [from (i)] 

n 
= 2-j\^2n-2i+ 3 ~ -̂ 2n-2i+l ~ ^j 

rc + 1 £=0 
= *YjL2in+i)-n+i - Ll - (L2n + 2 - 2) - 2(n + 1) 

i = Q 

= L2n+, - 2 - 1 - L2n + 2 + 2 - 2(n + 1) 

= L2n+3 - (In + 3 ) , as required. 

Also solved by P. Bruckman,• G. Wulczyn, H. Freitag, B. Prielipp, Dinh The'Hung, 
and the proposer. 

Late Acknowledgments: F. T. Howard solved H-268 and M. Klamkin solved H-270. 

A CORRECTED OLDIE 

H-225 Proposed by G. A. R. Guillotte, Quebec, Canada. 

Let p denote an odd prime and xp + yp = zp for positive integers, x, y, 
and z. Show that 

(A) p < xj(z - x) + y/(z - y), and 

(B) z/2(z - x) < p < y/(z - y). 
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Problems Solved: B-352, B-353, B-354, B-355, Vol. 16, No. 2, 



576 VOLUME INDEX Dec. 1978 
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No. 5, pp. 474-476 (co-solver, Roger Engle); B-359, Vol. 16, No. 5, p. 474 
(co-solvers, Benjamin Freed & Roger Engle). 

SINNAMON, GORDON. Problems Solved: B-351, Vol. 16, No. 1, p. 91. 
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Solved: B-351, Vol. 16, No. 1, p. 91. 

SONNTAG, ROLF. Problem Solved: B-364, Vol. 16, No. 6, p. 

STEINER, RAY. "On Nth Powers in the Lucas and Fibonacci Series," Vol. 16, 
No. 5, pp. 451-469; "On fcth Numerical Centers," Vol. 16, No. 5, pp. 470-
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Vol. 16, No. 2, pp. 103-112. 

TRIGG, CHARLES W. Problem Solved: B-348, Vol. 16, No. 1, p. 90. 

VINCE, ANDREW. "The Fibonacci Sequence Modulo /I/," Vol. 16, No. 5, pp. 403-
407. 

WACHTEL, M. Problem Proposed: B-391, Vol. 16, No. 6, p. 562. 

WADDILL, MARCELLUS E. "Some Properties of a Generalized Fibonacci Sequence 
Modulo m," Vol. 16, No. 4, pp. 344-353. 

WHITLEY, ROBERT. "Fibonacci Numbers in Coin Tossing Sequences," Vol. 16, No. 
6, pp. 539-541 (co-author, Mark Finkelstein). 

WHITNEY, RAYMOND E. "Geometric Sequences and the Initial Digit Problem," Vol. 
16, No. 2, pp. 152-154. Problem Proposed: H-271(corrected), Vol. 16, No. 
5, p. 480. Editor: "Advanced Problems and Solutions," Vol. 16, No. 1, pp. 
92-96; Vol. 16, No. 2, pp. 188-192; Vol. 16, No. 5, pp. 477-480; Vol. 16, 
No. 6, pp. 566-569. 

WULCZYN, GREGORY. Problems Proposed: B-370, Vol. 16, No. 1, p. 88, H-279, 
Vol. 16, No. 1, p. 92; B-353, Vol. 16, No. 2, p. 186, H-284, Vol. 16, No. 
2, p. 188; B-383, B-384, Vol. 16, No. 5, p. 473, H-288, Vol. 16, No. 5, p. 
477; B-389, Vol. 16, No. 6, p. , H-290, H-294, Vol. 16, No. 6, pp. 566-
567. Problems Solved: B-346, B-347, Vol. 16, No. 1, pp. 89-90; B-352, B-
354, B-355, B-356, Vol. 16, No. 2, pp. 185-186; B-360, B-362, B-363, Vol. 
16, No. 5, pp. 474-476; B-364, B-365, B-366, B-368, Vol. 16, No. 6, pp. 
563-565, H-273, Vol. 16, No. 6, p. 568. 

ZEITLIN, DAVID. "An Inequality for a Class of Polynomials," Vol. 16, No. 2, 
pp. 128-129, 146. Problems Solved: B-237, B-349, Vol. 16, No. 1, pp. 90, 
91; B-352, B-353, B-356, Vol. 16, No. 2, pp. 185, 186. 

ZENZ, F. A. "The Fluid Mechanics of Bubbling Beds," Vol. 16, No. 2, pp. 171-
183. 

ZWILLINGER, DAN. Problem Proposed: B-380, Vol. 16, No. 2, p. 184. 
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