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PYTHAGOREAN TRIPLES CONTAINING FIBONACCI NUMBERS: 
SOLUTIONS FOR F* ± F* = K2 

MARJORIE BICKNELL-JOHNSON 
A.C. Wilcox High School, Santa Clara, CA 95051 

1. INTRODUCTION 

When can Fibonacci numbers appear as members of a Pythagorean triple? 
It has been proved by Hoggatt [1] that three distinct Fibonacci numbers can-
not be the lengths of the sides of any triangle. L. Carlitz [8] has shown 
that neither three Fibonacci numbers nor three Lucas numbers can occur in a 
Pythagorean triple. Obviously, one Fibonacci number could appear as a member 
of a Pythagorean triple, because any integer could so appear, but F3(2m+i) 
cannot occur in a primitive triple, since it contains a single factor of 2. 
However, it appears that two Fibonacci lengths can occur in a Pythagorean 
triple only in the two cases 3-4-5 and 5-12-13, two Pell numbers only in 
5-12-13, and two Lucas numbers only in 3-4-5. Further, it is strongly 
suspected that two members of any other sequence formed by evaluating the 
Fibonacci polynomials do not appear in a Pythagorean triple. 

Here, we define the Fibonacci polynomials {Fn{x)} by 

(1.1) F0(x) = 0, Fx(x) = 1, Fn + 1(x) = xFn(x) + Fn_±(x), 

and the Lucas polynomials {Ln{x)) by 

(1.2) Ln(x) = Fn+1(x) + Fn_±(x) 

and form the sequences {Fn (a)} by evaluating {Fn(x)} at x = a. The Fibonacci 
numbers are Fn = Fn (1) , the Lucas numbers Ln = Ln(l) , and the Pell numbers 
Pn = Fn(2). 

While it would appear that Fn(a) and Fk (a) cannot appear in the same 
Pythagorean triple (except for 3 - 4 - 5 and 5-12-13), we will restrict our 
proofs to primitive triples, using the well-known formulas for the legs a and 
b and hypotenuse a, 

(1.3) a = 2mn, b = m2 - n2, c = m2 + n1, 

where (m,n) = 1, m and n not both odd, m > n. We next list Pythagorean tri-
ples containing Fibonacci, Lucas, and Pell numbers. The preparation of the 
tables was elementary; simply set Fk = a, Fk = b, Fk = c for successive values 
of k and evaluate all possible solutions. 

1 
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Table 1 

PYTHAGOREAN TRIPLES CONTAINING Fk , 1 <. k <_ 18 

m n 2mn m2 - n2 m2 + n2 

2 
3 
3 
4 
7 
5 
11 
5 
17 
8 
28 
8 
45 
37 
20 
15 
13 
9 
72 
36 
24 
18 
12 
13 
117 
16 
19 
189 
21 
21 
23 
305 
61 
494 
166 
34 
74 
34 
799 
647 
325 
53 
55 
1292 
646 
323 

1 
2 
1 
1 
6 
2 
10 
•3 

1 
3 
27 
5 
44 
35 
16 
9 
5 
8 
1 
2 
3 
4 
6 
8 
116 
11 
4 
188 
8 
13 
9 
1 
5 
493 
163 
13 
67 
21 
798 
645 
321 
15 
21 
1 
2 
4 

4 
12 
6 
8 = F6 

84 
20 
.220 
30 
34 = Fs 
48 
1512 
80 
3960 
2590 
640 
270 
130 
144 = F12 
144 = F12 
144 = Fl2 

F\2 
^12 
F\2 
208 
27144 
352 
152 
71064 
336 
546 
414 
610 = Fls 
610 = Fig 
487084 
54116 
884 
9916 
1428 
1275204 
834630 
208650 
1590 
2310 
2584 = FIB 
2584 = F1Q 
2584 = F18 

3 = Fh 
5 = F5 
8 = F6 
15 
13 = F7 
21 = F8 

21 = F8 
16 
288 
55 = F10 
55 = F1Q 
39 
•Fii = 89 

144 = F12 
144 = F12 
144 = F12 

144 = Fl2 
17 
5183 
1292 
567 
308 
108 
105 
233 = F13 
135 
345 
377 = F14 

377 = Flh 
272 
448 
93024 
3696 
987 = F16 
987 = F16 

987 = Fls 
987 = Fl6 
715 
1597 = Fl7 
2584 = F18 

2584 = F1B 
2584 = F18 

2584 = F1B 
1669263 
417312 
104313 

5 = F5 
13 = F7 
10 
17 
85 
29 
221 
34 = F3 
290 
73 
1513 
89 = Fu 
3961 
2594 
656 
306 
194 
145 
5185 
1300 
585 
340 
180 
233 = F13 
27145 
377 = Flh 
377 = Flh 
71065 
505 
610 = F15 
610 = Fl5 
93026 
3746 
487085 
54125 
1325 
9965 
1597 = F17 
1275205 
834634 
208666 
3034 
3466 
1669265 
417320 
104345 

(not 

(not 
(not 

(not 
(not 
(not 
(not 

(lot 
(not 
(not 
(not 

(not 
(not 
(not 
(not 

(not 
(not 
(not 
(not 

(not 

primitive) 

primitive) 
primitive) 

primitive) 
primitive) 
primitive) 
primitive) 

primitive) 
primitive) 
primitive) 
primitive) 

primitive) 
primitive) 
primitive) 
primitive) 

primitive) 
primitive) 
primitive) 
primitive) 

primitive) 
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Table 1 (continued) 

2mn 

76 
68 
38 
Fn + l 

Fk+1 

17 
19 
34 
Fn 

* f c - l 

2584 = F18 

2584 = Fl8 

2584 = F1Q 

2-̂ n Fn +1 
2h 
Fsm 

(Flm±l ~ D/2 
2Ffc + lA-l 

5487 
4263 
288 
Fn - 1 Fn + 2 

^ - 1 

(̂ L - 4)/4 
F3w±l 

^2k 

6065 
4985 
2600 

Fln + l 

F2
k + 1 

(*1m + 4)/4 

(^±i + D/2 
^k + 2Ffe-iFfe+i 

(not primitive) 

Table 2 

PYTHAGOREAN TRIPLES CONTAINING Lk, 1 <. k <. 18 

2wn wz + nz 

2 
4 
6 
9 
5 
15 
24 
20 
19 
38 
62 
22 
100 
23 
161 
20 
261 
422 
142 
42 
342 
682 
341 
62 
31 
1104 
1786 
2889 

1 
3 
5 
1 
2 
14 
23 
18 
2 
1 
61 
19 
99 
7 
1 
11 
260 
421 
139 
20 
340 
1 
2 
11 
22 
1103 
1785 
1 

4 = L3 
24 
60 
18 = L6 

20 
420 
1104 
720 
76 = L9 

76 = L9 

7564 
836 
19800 
322 = L12 
322 = L12 
440 
135720 
355324 
39476 
1680 
232560 
1364 = L15 

1364 = Lis 
1364 = L15 
1364 = Lis 
2435424 
637020 
5778 = Li8 

3 = L2 
7 = Lh 

11 = L5 
80 
21 
29 = L7 

47 = L8 

76 = L9 

357 
1443 
123 = L10 

123 = L10 

199 = Ln 
480 
25920 
279 
521 = Li3 
843 = Llh 
843 = Llh 
1364 = L15 

1364 = L15 

465123 
116277 
3723 
471 
2207 = L1 6 

3571 = L i 7 

8346320 

5 
25 
61 
82 
29 = L 7 

421 
1105 
724 
365 
1445 
7565 
845 
19801 
578 
25922 
521 = Li 3 

135721 
355325 
39485 
2164 
232564 
465125 
116285 
3985 
1445 
2435425 
6376021 
8346322 

(not primitive) 

(not primitive) 

(not primitive) 
(not primitive) 

(not primitive) 
(not primitive) 

(not primitive) 
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Table 2 (continued) 

2mn 

3 
9 
27 

5778 = L18 

5778 = Li8 

5778 = Lis 

927360 
102960 
10720 

927378 
103122 
12178 

(not primitive) 
(not primitive) 
(not primitive) 

Table 3 

PYTHAGOREAN TRIPLES CONTAINING PELL NUMBERS R , 1 < k < 8 

m 

2 
3 
6 
5 
15 
35 
7 
12 
85 
103 
53 
204 
102 
51 
68 
34 
17 
Pyi + 1 

n 

1 
2 
1 
2 
14 
1 
5 
5 
84 
101 
49 
1 
2 
4 
3 
6 
12 
Pn 

2mn 

4 
12 = P^ 
12 = P4 

20 
420 
70 = P6 

70 = P6 

120 
14280 
20806 
5194 
408 = P8 

408 = P8 

408 = P8 

408 = P8 

408 = P8 

408 = P8 

2J°n ?n +1 

2 2 
w - n 

3 
5 = P, 
35 
21 

5 

29 = P5 

1224 
24 
119 
169 = 
408 = 
408 = 
41615 
10400 
2585 
4615 
1120 
145 
Pri-l^n 

Pi 
PQ 
P* 

: + 2 

7722 + n2 

5 = P3 
13 
37 
29 = P5 

421 
1226 
74 
169 = P7 

14281 
20810 
5210 
41617 
10408 
2617 
4633 
1192 
433 
Pln + l 

(not 
(not 

(not 
(not 

(not 

(not 

primitive) 
primitive) 

primitive) 
primitive) 

primitive) 

primitive) 

We note that in 3-4-5 and 5-12-13, the hypotenuse is a prime Fibo-
nacci number, and one leg and the hypotenuse are Fibonacci lengths. These 
are the only solutions with two Fibonacci lengths where a prime Fibonacci 
number gives the length of the hypotenuse. If Fp is prime, then p is odd, be-
cause FW\F2W' If Fp is a prime of the form 4/c - 1, then there are no solu-
tions to m2 + n2 = Fv , and if Fp is a prime of the form l\k + 1, then m2 + n2 

has exactly one solution: 

a = 2FkF
k+i: 

Lk + 1 n = Fk , or, the triple 

• iFk + 2 ' ?2k + i (see [2]). 

In either case, Flk+1 does not appear as the hypotenuse in a triple contain-
ing two Fibonacci numbers if P2£ + i ^s prime. These remarks also hold for the 
generalized Fibonacci numbers {Fn(a)}. 

Also note that some triples contain numbers from more than one sequence. 
We have, in 3-4-5, Fi±-L3-F5, or L2-L3-F5, or Fi+-L3-P39 while 5-12-13 has 
P5-P4-P7, or P3-P4-P7, and 20-21-29 has P8 and L7 or P8 and P5. There also 
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are a few "near misses," which are close enough to being Pythagorean triples 
to fool the eye if a triangle were constructed: 55-70-89, 21-34-40, and 
8-33-34. However, 3-4-5 and 5-12-13 seem to be the only Pythagorean 
triples which contain two members from the same sequence. 

Lastly, note that numbers of the form km + 2 cannot be used as members 
of a primitive triple, since one leg is always divisible by four, so that 
Fibonacci numbers of the form F6^+3 are excluded from primitive Pythagorean 
triples. 

2. SQUARES AMONGST THE GENERALIZED FIBONACCI NUMBERS {Fn{a)} 

Squares are very sparse amongst the sequences {Fn(a)}, beyond F0 (a) = 0 
and F1 (a) = 1 . In the Fibonacci sequence, the only squares are 0, 1, and 144 
[3]; in the lucas sequence, 1 and 4; and in the Pell sequence, 0, 1, and 169. 
There are no small squares other than 0 and 1 in {Fn (a)}, 3 £ a <_ 10; it is 
unknown whether other squares exist in {Fn(a)}, except when a = k , of 
course. 

Cohn [3] has proved the first two theorems below, which we shall need 
later. 

TktQtim 2.7: If Ln = x2
 9 then n = 1 or 3. 

If Ln = 2x2, then n = 0 or n = ±6. 

TkdO/tm 2.2: If Fn = x2, then n = 0, ±1, 2, or 12. 
If Fn = 2x2, then n = 0, ±3, or 6. 

We shall need the following lemma: 

L<immci 2.1: For the Fibonacci and Lucas polynomials, 

Fm+2k(x) = Lk(x)Fm + k(x) + (-l)k + 1Fm(x). 

VKOO^' Lemma 2 . 1 appears i n [4] w i t h only a change in n o t a t i o n . 

We w i l l use Lemma 2 . 1 w i th x = 2 , so t h a t Fn (2) = Pn and Ln(2) = Rn, 
t h e P e l l numbers and t h e i r r e l a t e d sequence . 

CovijdctuAZ 2 . 3 : i f Pn = x2, n = 0, ± 1 , or ±7. 

PcUvUal PflOOJ: Let Rk = Pk_± + Pk + 1 so t h a t Rk = Lk(2) . Then 

R2m = 8P2 + (-if * 2 , o r , R2m = ±2 (mod 8) so t h a t Rlm + K2. 

^ik+l = F2k + P2k + 2 = P2k + 2P2k+l + P2k 

= 2(P2k+l + P2k) = 2(2M + 1) 

since 2|Pn if and only if 2\n. Thus, R2k+i + &2 and Rn + K2 for any n. 
Suppose n is even. Since P2k = Pj^R^, if n = 4p + 2, then 

Pn = P2p + iR2P + i where (P 2 p + i ^ 2 P + i ) = 1-
Then Pn = Z 2 i f and only i f R2p + i = &2 and P2p + i = y2, bu t R2p + i ^ %2, so 
Pn + K2. I f n = 4p, then 

pn = P2pi ?2P where (P2p,R2p) = 2 , 
so Pn = Z 2 . i f P 2 p = 2x2 and i?2p = 2z/2, bu t s i n c e R2p = 8Pp ± 2 = 2 ( J 2 ± 1) , 
P2p = 22/2 only fo r p = 0, g i v i n g P 0 as t h e only s o l u t i o n . Thus, Pn £ K2 for 
n even, u n l e s s n = 0. 
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Since Pm + 8 = Pm (mod 8) and P8m±l = 1 (mod 8) and Psm±3 = 5 (mod 8 ) , 
s i n c e a l l odd squa res a r e congruent t o 1 (mod 8 ) , i f w i s odd, n = 8m ± 1 i f 
P„ = K2. Of c o u r s e , Pn = fc2 for n = ± 1 , ±7. The c o n j e c t u r e i s no t r e s o l v e d . 

ConjdctuUtu 2.4: I f Pn = 5fc2, then n = 0 or n = ±3. 

PaAtial VKOOJi I f Pn = 5/c2, then Pn E 5 • 0 E 0 (mod 8 ) , or Pn = 5 • 1 E 5 
(mod 8 ) , or Pn E 5 • 4 E 4 (mod 8 ) , so t h a t n = 8m, 8 m + 4 , 8m+ 3 , or 8 m + 5 , 
s i n c e PM E 0 (mod 8 ) , Psm+H- - 4 (mod 8 ) , and Psm±3 = 5 (mod 8 ) . 

I f n i s even, then n = 4fc, and Pn = P ^ = P2k^ik w n e r e (Pik^zk^ = 2 

and Rlk ^ x2, P 2 k ^ 2 x 2 , and P 2 k ^: 5x2 s i n c e 5\R2k. We have Phk ± K2 u n l e s s 
k = 0, or, Pn f K when n is even, unless n = 0. 

If n is odd, then n = 8m ±3. Now, n = ±3 gives a solution. If n ^ ±3, 
then n = 8m ± 3 = 2 • 4 u ± 3 , and since P_3 = P3 = 5, both of these give 
Pn = -P3 (mod R^w) = -5 (mod Rh ) by way of Lemma 2.1 and 

(2.D Pm+2* = SkPm+k + (-Dk + l P m 

where m = ±3 and k - kw. Now, if w is odd, then R, divides R, , and we can 
write, from (2.1), 

so that, since Rh = 34, Pn E -5 (mod 34), where -5 is not a quadratic residue 
of 34. It is strongly suspected that -5 is not a quadratic residue of Ri^u > 
but the conjecture is not established if w is even. 

Tk&OKm 2.5: if Fn = 5x2, then n = 0 or n = ±5. 

VK00{\: If n is even, Fn = F2k = P^P^ = 5#2 if Fk = 5x2 and Lk = y2
9 or F̂  = 

# and Lk = 5k2 (impossible), which has solutions for k = 0 only. 
If n is odd, then n E 3 (mod 4) or n E 1 (mod 4). If n E 3 (mod 4), 

then write n = 3 + 4M = 3 + 2 • 3M • fc, where 2|fc, 3|fc, and 

5Fn E -5P3 E -10 (mod Lk) , 

but Pfe E 3 (mod 4) if l\k9 3J(k9 so -10 is not a quadratic residue, and 

5Fn + k2 so Fn + 5k2. 

If n E 1 (mod 4), n = 5 is a solution. If n ^ 5 

n = 1 + 4M = 1 + 2 • 3r • k9 

where 2\k9 3J(k, and 

5Fn E - 5 ^ E -5 (mod Lfc) , 

but -5 is not a quadratic residue, and 

5Fn f k2 so Fn $ 5K2 when n is odd, unless n - 5. 

Since P_n = (-l)n + 1Pn , n = -5 is also a solution. Thus, Fn 4- ^x2 unless n = 
0, ±5. 

We will find another relationship between squares of the generalized 
Fibonacci numbers useful. 

Thzonzm 2.6: 

F2(x) = (-l)n+kF2(x) + Fn_k(x)Fn+k(x)_ 
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VK.00^: For simplicity, we will prove Theorem 2.6 for Fibonacci numbers, or 
for x = 1, noting that every identity used is also an identity for the Fibo-
nacci polynomials [4]. In particular, we use 

(2.2) {-l)n+1Fn(x) = F.n(x) 

(2.3) Fp+I,(x) = Fp.1(x)Fr(x) + Fp(x)Fr+1(x) 

(2.4) F*(x) = (-l)n+1 + Fn.1(x)Fn+1(x) 

(2.5) Fn+Ax^ + *"»(*) = J*2»*i(a) 

Proof i s by mathemat ica l i n d u c t i o n . Theorem 2.6 i s t r u e for k = 1 by 
(2 .4 ) Set down t h e theorem s t a t emen t as P(k) and P(k + 1 ) : 

P(k): F2 = (-l)n+kF2 + Fn_kFn+k 

P(k + 1 ) : Fn
2 = (~Dn+k + 1Fl + 1 + F n . , . 1 F n + , + 1 

Equat ing P(fc) and P(fc + 1 ) , 

( - l ) n + + ( P £ + 1 + F2j = Fn_kFn+k + Fn_k_1Fn+k + 1 

= ( -1) ~n+ Fk_nFn+k + (-1) n ^ + 1 _ M ^ n + k + i 

by (2.2). By (2.5) and (2.3), the left-hand and right-hand members become 

?2k + l ' 

Since all the steps reverse, 

(-l)n+k+1F2k+1 = (-l)k-n + 1F2 

(-l)n Fk + ± + Fn-k-lFn+k + l - ("!)" Fk + Fn-kFn+k " Fn 

so that P(& + 1) is true whenever P(k) is true. Thus, Theorem 2.6 holds for 
all positive integers n, 

3. SOLUTIONS FOR F2(a) + F2 (a) = K2 

By Theorem -2.6, when n and k have opposite parity, 

(3.1) F2(a) + p£(a) = Fn_k(a)Fn+k(a). 

Since (Fn(a),Pfe(a)) = 1 = F(ntk) (a) by the results of [5], (n,fc) = 1 and op-
posite parity for n and k means that (n - k9n + k) = 1 so that 

(Fn_k(a),Fn+k(a)) = 1. 

Thus, Fn.k(a)Fn + k(a) = K2 if and only if both Fn_k(a) = x2 and Fn + k(a) = y2. 
We would expect a very limited number of solutions, then, since squares are 
scarce amongst \Fn(a)}. 

Since one leg is divisible by 4 in a Pythagorean triple, one of n or k 
is a multiple of 6 if a is odd, and a multiple of 2 if a is even; thus, n 
and k cannot both be odd. Also, n and k cannot both be even, since F 2{d) is 
a factor of F2m(a) and F2(a) > 1 for all sequences except Fn (1) = Fn . 

Restated, 
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Ik&onm 3.1: Any solution to F2(a) + Fk (a) = K2 in positive integers, a >_ 2, 
occurs only for such values of n and k that Fn_k(a) = x2 and Fn+k(a) = y2. 

Conjzctusiz 3.1: F2(2) + Fk(2) = K2, n > k > 0, where Fn(2) = Pn, the nth 
Pell number, has the unique solution n - 4, /c = 3, giving 5-12-13. 

PsiOO^: Apply Theorems 3.1 and Conjecture 2.3. 

ThdOKQjn 3.3: If F2 + F2 = K2,n>k>0, then both n and k are even. 

VtlOOJ: Apply Theorems 3.1 and 2.2. 

ThtQtim 3.4: If F2 + Fk = K2, n > k > 0, then Fl0 = 55, FQ = 21, F 1 8 = 2584, 
F6 = 8, and F4 = 3 each divide either Fn or î , , and 13 is the smallest prime 
factor possible for K. 

VftOO^: Since 3 divides one leg of a Pythagorean triple, F^ divides Fk or Fn . 
Since 4 divides one leg of a Pythagorean triple, and the smallest Fn divisi-
ble by 4 is Fe9 F6 divides Fk or Fn . That F10 divides either Fn or Fk follows 
by examining the quadratic residues of 11. The quadratic residues of 11 are 
1, 3, 4, 5, and 9. It is not difficult to calculate 

F2
l0w E 0 (mod 11) 

F\,w±2 E 1 (mod 11) 

F2
l0w±h E 9 (mod 11) 

where we need only consider even subscripts by Theorem 3.3. Notice that 
F 1 0 u > + Flow±2 E 1 (mod I D a n d F210W + Flow±k E 9 (mod I D ' W h e r e 1 a n d 9 a r e 

quadratic residues of 11, so that these are possible squares, but F2
Qw±2 + 

F2
Qw±l^ E 10 (mod 11), where 10 is not a residue. F2

Qw±2 + F\0w±2 produces 
the nonresidue 2, and similarly F1Qw±l^ + F10u±lf E 7 (mod 11), so. that either 
Fn = -F10zJ or Fk = FlQw. In either case, Fl0 divides one of Fn or Fk . 

Similarly, we examine the quadratic residues of 7, which are 0, 1, 2, 
and 4. We find 

F\m E 0 (mod 7 ) 

Fz
Bm±2 E 1 (mod 7 ) 

FL±, E 2 < m o d 7 ) 
where Fim + Fsm±2=l (mod 7) and Fgm+Fgm±J+ E 2 (mod 7) are possible squares 
but F\m±2 + F\m±h E 3 (mod 7) is not a possible square. But, F2

Qm and Fgm±i+, 
or F\m and F\mii , or FgOT±lt and FgOT*±l+, cannot occur in the same primitive tri-
ple, since they have common factor Fh. F\m±1 and F\mi(±2 cannot be in the same 
triple, because F^ divides one leg, and neither subscript is divisible by 4. 
Thus, FQm is one leg in the only possible cases, forcing FQ to be a factor of 
Fn or of Fk. 

Using 17 for the modulus, with quadratic residues 0, 1, 2, 4, 8, 9, 13, 
15, 16, we find 

F2 
c 18m ,2 
18m ±2 

,2 
18m ± k 

,2 
18m ± 6 

,2 
18m ± 8 

-
E 

E 

E 

= 

0 (mod 17) 

1 (mod 17) 

9 (mod 17) 

13 (mod 17) 

16 (mod 17) 
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Now, F'lQm can be added to any of the other forms to make a quadratic residue 
(mod 17). F\Qm±2 + ^iam±2 E 2 (mod 17), but one subscript must be divisible 
by 6- F\sm±2 + ^ie»i4 E 1 0 <mod 17> i s n o t a residue. F2

8OT ± 2 + ^ 8 w ± 6 = 14 
(mod 17) is not a residue. ^ i 8 w ± 2 + ^ i 8 w ± 8 = 0 (mod 17), but one subscript 

must be divisible by 6. ^ i 8 m ± 4 + ^i8m±6 E 5 (mod 1 7) i s n o t a residue, while 

^i8m±4 + Fi8m±8 E ^ (mod 17), but one subscript must be divisible by 6. 

^18^+4 + Fi8m±h a n d Fi8m*±8 + Fi8m±8 a r e a l s o discarded because one subscript 

is not divisible by 6. F\Qm±6 + ^ i 8 w ± 6 have a common factor of F6 so cannot 

be in the same primitive triple, and F\8m±6 + ^13^+3 produce the nonresidue 
12 (mod 17). The only possibility, then, is that F18m appears as one leg, or 
that F1Q divides either Fn or Fk . 

Since K cannot have any factors in common with Fn or with Fk , we note 
that the prime factors 2, 3, 5, 7, and 11 occur in F10 , Fe, F1Q, F6, and Fh, 
but 13 does not, making 13 the smallest possible prime factor for K. 

IhdOKm 3,5: If F2 4- Fk = Z2, n > k > 0, has a solution in positive inte-
gers, then the smallest leg Fk >_ F50 , which has 11 digits. 

VH.OO{)1 Consider the required form of the subscripts n and k in the light of 
Theorem 3.4. Because 4|Fn or ^\Fk , and both subscripts are even, we can write 
F\m + F\ , where p = 3j ± 1,-making the required form F2

m + F\.±2, Since 3 
divides one subscript or the other, 4 divides one subscript or the other, 
leading to 

(i) FL + F\iw±^ f o r 3 o d d > 
and to 

(ii) F\lm + F2
12w±2i for j even. 

First, consider (i) . Since F8 = 21 divides one leg or the other, FQ 
must divide Fln ^ , to avoid a common factor of F. = 3 , so w is odd, making 

F? + F«, . 0 the required form. Next, F,Q divides a leg. If F,Q divides 

Fizw±h> t h e n ^ekizwuf b u t 6H12w ± 4>- So> ^iske^' making the required 
form become F2 + F2

 + . Next, since F10 divides a leg, we obtain the two 
final forms, 

(1) F30m + F2kq±8 OT ( ^ ) ^18/77 + F120s ± kO ' 

Next, consider (ii) . Since FQ = 21 divides a leg, we must have FQ\Fl2m 
to avoid a common factor of ̂  = 3, making the form become F\hm + F\2w±2. 
Also, F1Q divides a leg, but must divide Flhm to avoid a common factor of 
F69 making the form be F2

2m + F\2m±2. Since we also have F1Q as the divisor 
of a leg, we have the two possible final forms 

(3) F2
36Qr + F\2W±2 or (4) Ff2m +^ 0 p± io-

Now, if Fk is the odd leg, then Fk = m2 - n2, and the even leg is Fn = 
2mn. The largest value for 2mn occurs for (jn + n\ = Fk and (m - n) = 1 , so 
we do not need to know the factors of Fk . Solving to find the largest values 
of m and n, we find m = (Fk + l)/2 and n = (Fk - l)/2, making the largest 
possible even leg Fn = 2mn = (Fk - l)/2. We have available a table of Fibo-
nacci numbers Fn , 0 <L n <_ 571 [6], 
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We look at the four possible forms again. In form (1), F90 has 19 dig-
its, the smallest possible even leg. Possible odd legs are F16 , ̂ 3 2 J ̂i+o > 
F56 , ... where F^Q has 9 digits, so that (F2

Q - l)/2 has less then 19 digits, 
making the smallest possible leg in form (1) be F56 . In form (2), F\8m + 
1̂20(7 ± *+o » *-he smallest leg occurs for m = 1, known not to occur in such a 
triple from Table 1; m = 2 gives a common factor of 4 with the other sub-
script, making m = 3 the smallest usable value, or the smallest possible leg 
F5h. Now, form (3) has F3SQ, a number of 75 digits, as the smallest value 
for the even leg, making the smallest possible odd leg greater than Fl70 , 
which has 36 digits. Lastly, form (4) has its smallest leg F5Q, which has 11 
digits. Comparing smallest legs in the four forms, we see that the smallest 
leg possible is F50. 

ThZQtim 3.6: L2
n + L\ = K2

 3 n > k > 0, has the unique solution n = 3, k = 2, 
or the triple 3-4-5. 

ince 4 \LYI or 4 |-̂ ĵ either YI — 3(2k H~ 1) or k — 3(2/c "4- 1) , so that 
one subscript is odd. Since 3 divides one leg in a Pythagorean triple, one 
leg has to have a subscript of 2(2k + 1), which is even, since Lp\Lq if and 
only if q = {2k + l)p (see [1]). Thus, n and k must have opposite parity. 
If n and k have opposite parity, then (n - k) is odd. Since L_n = (-l)nLn, 
from [1] we have both 

(3.2) Ln.kLn + k - L2„ = 5(-l)n+kFl, 

(-lf-kLn_kLn + k- L\ =-5(-l)B + k F „ 2 , 

where n - k is odd. Adding the two forms of (3.1), 

Ln + Lk = ^(Fk + Fn) = 5Fn_kFn + k 

by (3.1). Now, 5Fn.kFn + k = K2 if and only if either Fn.k = 5a:2 and Fn + ̂  = y2 

or Fn_k = y and Fn+^ = 5x . By Theorems 2.5 and 2.2, either n + k - 1 and 
n - fc = 5 orn - fe = 1 and n + k - 5, making the only solution n = 3, /c = 2. 

4. SOLUTIONS FOR F2(a) - F2 (a) = K2 

By Theorem 2.6, when n and /c have the same parity, 

(4.1) F2(a) - F2(a) = Fn.k (a)Fn + k(a). 
As in Section 3, Fn_k(a) Fn + k(a) = K2 if and only if both Fn_k(a) = x2 and 
Fn+k(a) = y2, indicating a limited number of solutions in positive integers. 
Note that n and fc cannot both be even if a >_ 2, because F2p (a) and Flv(d) 
have the common factor F2(a) > precluding a primitive triple. 

Lemma 4.1: if a is odd, 2\Fzk(a), 3\Fkk(a)9 and 4|-F6k(a). 

PJLOO£: We list F0 (a) =0, Fx(a) =1, F2 (a) =a, F3(a) = a2 + 1, £\ (a) = a3 + 2a, 
F5(a) = a* + 3a2 + 1, and F6(a) = a5 + 4a3 + 3a. If a is odd, then F3(a) is 
even. If a = 2m + 1, then 

F^(a) = (8m3 + 12m2 + 6m + 1) + (4m + 2) 

= (8m3 + km) + (12m2 + 6m + 3) 

= 4m(2m2 + 1) + 3(4m2 + 2m + 1) 

= 3M + 3£ = 3W9 
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since either 3|m or 3J (2m2 + 1). Also, a = 2m + 1 makes 

F6(a) = (2m + l)5 + 4 (2m + 1)3 + 3(2/7? + 1) 

= (4Z + 10m + 1) + 4M + (6m + 3) 

= 4Z + 4M + 16m + 4 = 4P. 

Since Fm (a)\Fmk (a), m > 0, the lemma follows. 

Lzmma 4.2: if a is even, 2|P2?c(a), 3|Ftffc(a), and 4|F1+fc(a). 

Psioofi: Refer to the proof of Lemma 4.1 and let a = 2m. Then F 2(a) = 2m, and 
i^Ca) = 8m3 + 4m = 4[m(2m2 + 1)] = 4 • 3Af, and the Lemma follows as before. 

Tfceo/iem 4.7: if F2(a) - Pjj; (a) = Z2, ft > k > 0, has solutions in. positive 
integers, then n ^ 4fc. If a is even, n cannot be even. If a is odd, n ^ 3k 
and n + kk. 

PfiOO^'- Lemmas 4.1 and 4.2 show that 3 \F hk (a), and since 3 divides one leg in 
a Pythagorean triple, n - kk would cause a common factor of 3, preventing a 
primitive triple. For similar reasons, n f 2k if a is even, and n $ 3k if a 
is odd. 

ConjZdtuJiQ. 4.2: Any possible solution for P2 - P2 = Z2, n > k > 0, occurs 
only if ft = 2p + 1 and k = 4w, or if Pn is odd and Pfc is a multiple of 12. 

Psioofi: Considering (4.1), ther.e is no solution to Fn_k = x2, Pn+£ = z/2 if ft 
and fc have the same parity, if Conjecture 2.3 holds. Also, n cannot be even, 
because 2|P2m and 4 divides one leg in a Pythagorean triple, precluding a 
primitive triple. If k is even, then Pk is even, and the even leg is divisi-
ble by 4, making Pk have the form P hw. Since P^ = 12, Phw is a multiple of 
12. 

Tfeeô -em 4.3: F2 - Fk = K2 has solutions in positive integers for n = 7, k = 
5, forming the triple 5-12-13, and for n = 5, k = 4, forming the triple 
3-4-5. Any other solutions occur only if n and k have opposite parity, 
where either ft = 12w ± 2 and k is odd, or n = 6m ± 1 and /c is even. 

PK.00^: Using (4.1) and Theorem 2.2, the only solution for Fn_k = x2 and 
Fn+k ~ y where ft and k have the same parity is ft = 7, k = 5, making the tri-
ple 5-12-13. If any other solutions exist, ft and k have opposite parity. 
It is known that ft = 5, fc = 4 provides a solution, giving the triple 3-4-5. 
If n is even, n ^ 3k, ft ^ 4/c, so ft = 12w ± 2, and k is odd. If ft is odd, 
n ^ 3k, so ft = 6m ± 1 and k is even. 

T/ieô tem 4.4: If ft and fc have different parity, any solutions for P2 - Fk = K2 

other than ft = 5, k = 4, or the triple 3-4-5, must have ft >_ k + 5. 

Pyc^: Pn + i - Pn2 = Pn-iPn + 2, where (Pn-i,Pn + 2) = 1 or 2, so that P„_iPn + 2 = 
K2 either if Fn_1 = x2 and Pn + 2= z/2, or if Pn-i = 2x2 and Fn + 2 = 2y2. By 
Theorem 2.2, there are no solutions to Fn-i = ^ and Fn + 2

 = yA •> but Pn-i = 
2x2 and P„ + 2 = 2z/2 is solved by ft = 4, yielding the 3-4-5 triple, There 
are no other solutions for subscripts differing by 1. Since ft and k have 
opposite parity, they differ by an odd number. 

Fn+3 - Fn = ^Fn+iFn + 2 + R1 unless ft = 0 or -1 by Theorem 2.2. 

Thus, the hypotenuse has a subscript at least five greater than the leg. 
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Th&QJKim 4.5: F2(a) - Fk(a) = K2 has no solution in positive integers if Fn(a) 
is prime. 

PfLOO^: See the discussion at the end of Section 1. 

TkdQfiZM 4.6: If L2
n - L\ = K2, n > k > 0, has solutions in positive integers, 

then either n = km and k is odd, or n = 6p ± 1 and fc is even. 

VK.00^: We parallel the proof of Theorem 3.6, except here we take n and k 
with the same parity, so that n + k is even, and subtract: 

Ln-kLn+k ~~ Ln = 5(-l) n + ^ 

(-l)»-*Ln_fcLn+fc - L\ = 5(-iy+kF2 

Ln ~ Lk = 5(Fn - Fk) = 5Fn_kFn+k = K 
if and only if Fn_k = 5x2 and Fn + ]< = y2, or Fn+/£ = 5^2 and FM_^ = y2. By 
Theorem 2.5, the only solution for n and k the same parity is n - k = 0, 
which does not solve our equation. 

If n and k do not have the same parity, consider n even. Then, n = kk 
or n = kk + 2, but n = 4fc + 2 is impossible because the hypotenuse would have 
the factor 3 in common with a leg. Thus,n = 4fc, and & is odd. If n is odd, 
then n = 6p ± 1 to avoid a factor of L2 = 3, and /c is even. 

CovijZCtUiAz: The only solutions to F2(a) ± Fk (a) = K2, n > fc > 0, in positive 
integers, are found in the two Pythagorean triples 3-4-5 and 5-12 -13. If 
a >_ 3 and a 7̂  k , the only squares in \Fn (a) } are 0 and 1. 

I wish to thank Professor L. Carlitz for suggesting reference [9] and 
for reading this paper. 
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STRONG DIVISIBILITY SEQUENCES AND SOME CONJECTURES 

CLARK KIMBERLING 
University of Evansville, Evansville, IN 47702 

1. INTRODUCTION 

Which recurrent sequences {tn : n= 0, 1, ... } satisfy the following 
equation for greatest common divisors: 

(1) (tm,tn) = t(m>n) for all 772, n > 1, 

or the weaker divisibility property: 

(2) tmItn whenever m\nl 

In case the sequence {tn } is a linear recurrent sequence, the question 
leads directly to an unproven conjecture of Morgan Ward. (See [3] for further 
discussion of this question.) Nevertheless, certain examples have been stud-
ied in detail. If tn is the nth Fibonacci number Fn , then (1) holds and con-
tinues to hold if tn is generalized to the Fibonacci polynomial Fn(x,z), as 
defined in Hoggatt and Long [2], Not only does (1) hold for these second-
order linear recurrent sequences, but (1) holds also for certain higher-order 
linear sequences and certain nonlinear sequences. For example, if {sn} and 
{tn} are sequences of nonnegative integers satisfying (1), then for fixed 
77? 2. 2 the sequences <tr^l:n = 0, 1, ...> and \tSn : n = 0, 1, . . . > also satisfy 
(1). Other examples include Vandermonde sequences, resultant sequences and 
their divisors, and elliptic divisibility sequences. These are discussed 
below in Sections 3 and 4, in connection with the main theorem (Theorem 1) 
of this note. 

In the sequel, the term sequence always refers to a sequence tQ, tl9 
t29 ••• of integers or polynomials (in some finite number of indeterminates) 
all of whose coefficients are integers. With this understanding, a sequence 
is a divisibility sequence if (2) holds, and a strong divisibility sequence 
if (1) holds. Here, all divisibilities refer to the arithmetic in the appro-
priate ring; that is, the ring J of integers if tn e I for all n, and the 
ring I[x1 , ..., x3- ] if the tn are polynomials in the indeterminates x1 , ..., 
Xj . 

A sequence {tn} in I (or I[xl9 ..., Xj]) is a kth-order linear recur-
rent sequence if 

(3) tn+k = altn+k.1 + ••• + aktn n = 0, 1, ..., 

where the a^Ts and t0 , ..., tn-i lie in I (or I[xl9 . . . , x3- ]) . A kth-order 
divisibility sequence is a kth-order linear recurrent sequence satisfying 
(2), and a kth-order strong divisibility sequence is a fcth-order linear re-
current sequence satisfying (1). 

2. CYCL0T0MIC QUOTIENTS 

For any sequence {tn} we define cyclotomic quotients Q19 Q2, ... as 
follows: for n >_ 2, let P1, P2, ..., Pr be the distinct prime factors of n; 
let 

- ^ o = tn, 
and for 1 £ k <. r, let 

n^ = n t n / P i i P^ ... P̂  , 

13 
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the product extending over all the k indices i$ which satisfy the conditions 

1 < fj < i 2 < ... < H £ ^. 

Let Qx = 1, and for n >L 2, define 

n 0 n 2 ... 
<3> « - iWTr : • 

The following lemma is a special case of the inclusion-exclusion prin-
ciple: 

Lemma 7: Let # be a set of T real numbers. For i = 1, 2, ..., T, let ̂  be 
the family of subsets of H which consist of t- elements. Let 

Then A ew* 

777 1 ~ W2 + m3 ~ * * * ~ (~1) mr = m a x H. 

PflOO^'* We list the elements of H as ^ _<_ 7z2 _<_ . . . <^ hT = max #. Clearly 

for i = 1, 2, ..., T, so that 

m1 - m2 4- m3 - ••• - (-1)T?77T 

- f t i E W ( T i 1 ) + ft2
Tf(-i)<(T:2) + -"+/»x-iE(-i)<(i)+ftT 

£ = 0 t = 0 £ = 0 

= hT. 

Ih&OKQN 1: Let {tn :n = 0, 1, . . . } be a strong divisibility sequence. Then 
the product nin3 ... divides the product non2 ... . [That is, the quotients 
(3) are integers (or polynomials with integer coefficients).] 

VKOOJ: Let n = P{X ... Pv/v , and write tn = q\x ... qh
T

T . Then 

(4) II0II2II4 ... = tnJitn/P P Utn/P, Pm p. p. ..., and 
M vl t-i t 2 t 3 t i t 

(5) n1n3iT5 ... = TTtn/.Pi ntn /P i ip i 2p i 3 n t n /p i i p i i p i i p i ^ . s ... . 

Now tn/P. = ^J*1 <?£" . . . qh
T

ix fo r t = 1 , 2 , . . . , V, where 

(6) In $ >_ htj fo r j = 1, 2 , . . . , T , and i = 1 , 2 , . . . , V. 

F u r t h e r , 

*»/*,*, = (*»«>.,, w4l) - T J ^ K ^ . 4 , 

^n/P^P^Pt, - ynlPixP^ ' tn/PilPi, > tn/PuPi) ~ T T ^J 
' 3 = 1 
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and so on. Consider now for any j satisfying 1 <_ j <_ T the set 

H = {hx., h2., ..., hv.}. 
For 1 <^i <_ V, l e t ^i and mi be as i n Lemma 1. Then t h e exponent of q^ i n 
II0II2 . . . i s hj + mz + m,+ + '" and the exponent of qi i n II lJls . . . i s m1 + m3 + • • • . 
Consequent ly , t h e exponent of q^ i n (3) i s 

hj - [m1 - m2 + m3 - - • - - (-1)T777T]. 

By Lemma 1, this exponent is h3- - max H9 which according to (6) is nonnega-
tive. 

It is easily seen that Equation (2) would not be sufficient for the 
conclusion of Theorem 1: define 

( n for n = 05 1, 2, 4,6,8,... 
tn = < 2 for n = 3 

( 2n for n = 5, 7, 9, 11, ... 

Then Equation (2) is satisfied, but, for example, the cyclotomic quo-
tient t6t1/t2t3 is not an integer. 

3. RESULTANT SEQUENCES AND THEIR DIVISORS 

Suppose 
P 

(7) X(t) = 7 7 (t - xj = tP - XxtV~X + - • • + (-1)% 
A i = 1 

and 
<7 

(8) Y(t) =Y\ (t - y.) = tq - Y^-1 + ... + (-1)% 
J = i 

are polynomials; here any number of the roots x± and y • maybe indeterminates, 
and we assume that the coefficients Xk and Yz lie in the ring I[x19 ..., xp, 
Ui> • • • > Uq ]• Thus all roots which are not indeterminates must be algebraic 
integers. Instead of regarding the roots as given indeterminates, we may re-
gard any number of the coefficients X^ and Y& as the given indeterminates; 
in this case the roots x± and y. axe regarded as indeterminates having func-
tional interdependences. 

The resultant sequence based on {xl, . . . , xp, y1, . . . , yq) (or {X19 ... , 
Xp, Yl9 ... , Yq}) is the sequence {tn : n = 0, 1, ...} given by 

« P X l - 2/" 

(9) ** -TTTT g _ ' -
Note that tn = Rn/Rl9 where Rn is the resultant of the polynomials 

p 1 

i = 1 3 = 1 

By a divisor-sequence of a resultant sequence {£«}, we mean a linear 
divisibility sequence {sn :n = 0, 1, ...} such that sn\tn for n = 1, 2, ... . 

We may now state Ward's conjecture mentioned in Section 1: every lin-
ear divisibility sequence is (essentially) a divisor-sequence of a resultant 
sequence. We further conjecture: every linear strong divisibility sequence 
of integers must lie in the class T of second-order sequences (i.e., Fibonacci 
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sequences) or else be a product-sequence \t\nt<in ... £ m : n = 0, 1, ...} where 
each divisor-sequence {tjn : n = 0, 1, ...} lies in T, for j = 1, 2, . . . , m. 
The interested reader may wish to consult especially Theorem 5.1 of Ward [8], 

One salient class of divisor-sequences of resultant sequences are the 
Vandermonde sequences, as discussed in [3]. Briefly, a Vandermonde sequence 
{tn i n = 0, 1, ...} arises from the polynomial (7) by 

tn = I I x - - x • ' 
iSiSJSp t' 3 

Thus, tn is akin to the discriminant of the polynomial 

P 

H(-O = TT<* - *V> 
i = l 

as well as the resultant of H(£) and its derivative Er(t). (See, for exam-
ple, van der Waerden [5, pp. 86-87].) 

If one or more of the roots x^ and y • underlying a divisor-sequence of 
a resultant sequence is an indeterminate, then, except for certain possible 
irregularities which need not be mentioned here, the sequence is a strong 
linear divisibility sequence. 

As an example of a strong linear divisibility sequence of polynomials, 
we mention the 6th-order Vandermonde sequence which arises from 

X(t) = t3 - ^/xt2 - 1. 

With generating function 

t(t2 + t + l) 2 

(t2 + t + l) 3 + xt2(t + l ) 2 ' 

this sequence {'£«} has, for its first few terms, tQ = 0, t l = 1, t2 =-1> t3 = 
-x9 th = 2x + 1, t5 = x2 + x - 1, ts = -3a:2 - 8x, t7 = -a:3 -x2 + 9a: + 1, 
t8 = 4a:3 + 18a:2 + 6a: - 1. If x = -1, then ("£n } is no longer a strong linear 
divisibility sequence, but is, of course, still a divisibility sequence. As 
reported in [3], we have 

\tn\ L̂ Fn (= n t n Fibonacci number) 

for 1 <_ n <_ 100. It is not yet known if this inequality holds for all n. 
Another conjecture follows: for any strong linear divisibility sequence 

of polynomials tQ, t19 t 2 , . .. which has no proper divisor-sequences, the 
polynomial tn is irreducible if and only if n is a prime. A stronger conjec-
ture is that the cyclotomic quotients (3) are all irreducible polynomials. 

k. ELLIPTIC DIVISIBILITY SEQUENCES 

Consider the sequence of polynomials in x, y9 z defined recursively as 
follows: 

u Q U , Ix-i = X , ^ 0 — tAj, i^q y , ^ l± IX/^J, 

^2n + i = tn + 2tn - £ n _ i £ n + i for n >_ 2 
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The sequence {tn : n = 0, 1, ... } is an elliptic divisibility sequence. 
If x, y, or z is an indeterminate then {tn} is a strong divisibility se-
quence. In this case, we conjecture, as in Section 3 for linear sequences, 
that the cyclotomic quotients (3) are the irreducible divisors of the poly-
nomials tn. 

If a?, y, and z are all integers, then {tn } is a strong divisibility 
sequence if and only if the greatest common divisor of y and xz is 1, as 
proved in [11]. 

We conclude with a list of the first several terms of a numerical 
elliptic strong divisibility sequence: 

to 
t l 
t2 
t3 
U 
t5 
ts 
t i 
t8 
U 
tlO 
t i l 
tl2 
t l 3 
t\h 
tis 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

0 
1 
1 
-1 
1 
2 
-1 
-3 
-5 
7 

-4 
-23 
29 
59 
129 
-314 

£l6 
tl7 
£l8 
t 19 
tlQ 
£21 
£22 
^23 
^24 

tis 
tie 
tn 
tzQ 
£29 
^30 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

-65 
1529 
-3689 
-8209 
-16264 
83313 
113689 

-620297 
2382785 
7869898 
7001471 

-126742987 
-398035821 
1687054711 
-7911171596. 
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GREATEST COMMON DIVISORS OF SUMS AND DIFFERENCES OF 
FIBONACCI, LUCAS, AND CHEBYSHEV POLYNOMIALS 

CLARK KIMBERLING 
University of Evansville, Evansville, IN 47702 

I t i s w e l l known t h a t t h e F ibonacc i polynomials Fn(x) , t h e Lucas p o l y -
nomials Ln(x), and t h e Chebyshev polynomials of bo th k i n d s s a t i s f y many 
" t r i g o n o m e t r i c " i d e n t i t i e s . For example, t h e i d e n t i t y 

F2m ( # ) + F2n ^ = Fm+n^L\m-n\ 0*0 f o r e v e n 171 + Yl 

is analogous to the trigonometric identity 

sin A + sin 5 = 2 sin -AA + B) cos j(A - B). 

Just below, we list eight well-known identities in the form which natu-
rally results from direct proofs using the usual four identities for sums and 
differences of hyperbolic sines and cosines, together with certain identities 
in Hoggatt and Bicknell [4]: 

( \ sinh 2nd r \ - cosh (In +1)6 
h i n W ~ c o s h 6 *2n + iW> =:

 c o s h 0 

J2n (x) = 2 cosh 2nd L2n + i ^ =: 2 s i n h (2n + !)0> 

where x = 2 sinh 0. Writing simply Fn and Ln for Fn (x) and Ln(x) and assum-
ing m >_ n > 0, the eight identities are as follows: 

(1) F*. + F. 2m ^ L2n 

(2) F^ - F. 2m *• 2n 

( 3 ) F2m + 1 + F2n+1 

W F
2m+1 - F

2n+1 

Fm+nLm-n i f m '+ n i s e v e n 

Fm '*,£„+*, i f m + n i s odd 
m-n m+n 

i f 77? + n i s even 

Fm+nLm-n i f 777 + n i s o d d 

Fm+n+lLm-n i f m + n i s e v e n 

Fm-nLm+n+l i f m + n i s o d d 

Fm-nLm+n + i ±f m + n Is even 

^m+n+l^-n i f m + n i s o d d 

18 
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(5) L2m + L2n 

(6) L lm 

( 7 ) L2m + \ + L2n+1 

( 8 ) L2m + 1 ~ L2n + 

Lm+nLm-n If m + n Is even 

Or + k)Fm+nFm_n i f m + ft i s odd 

(x2 + 4) 
Fm+n.F m-n i f 777 + ft i s e v e n 

Lm+nLm-n If m + n Is odd 

Lm-nLm+n + i i f 7?? + ft i s even 

Or2 + lOFm+n + iFm-n If m + n Is odd 

(x2 + k)Fm+n+1Fm_n i f 77? + n i s even 

i f 777 + n i s odd 

These identities are derived in [2] in a manner much less directly dependent 
on hyperbolic or trigonometric identities. See especially identities (72)-
(79) in [2], which generalize considerably the present identities. An inter-
mediate level of generalization is at the level of the generalized Fibonacci 
polynomials Fn = Fn(x9z) and the generalized Lucas polynomials Ln = Ln(x,z). 
For example, (5) becomes 

L2m + L2n = &2 + bs)Fm+nFm _n i f 777 + ft i s o d d . 

Let us recall the substitutions which link the Fn
?s and Zn's with Che-

byshev polynomials Tn(x) of the first kind and Un (x) of the second kind: 

Tn(x) = ^Ln(2x,-1), ft = 0, 1, ... 

Un(x) = Fn + 1(2x,-l), ft = 0, 1, ... . 

Clearly, our discussions involving Fn
 ?s and Ln

fs carry over immediately to 
Tn's and £/n's; bearing this in mind, we make no further mention of Chebyshev 
polynomials in this paper. 

Identities (l)-(8) show that greatest common divisors for certain sums 
and differences of the various polynomials can be found in terms of the ir-
reducible divisors of individual generalized Fibonacci polynomials and gener-
alized Lucas polynomials. In [7], we showed these divisors to be the gener-
alized Fibonacci-cyclotomic polynomials ^n(x9z). The interested reader should 
consult [7] for. a definition of these polynomials. Theorems 6 and 10 in [7] 
may be restated for ft >_ 1 as follows: 

( i) Fn(x9z) = T T ^ (*>*-) 
d\n 

(II) Ln(x,z) = J""] ^it + xd (#»3) , where n = 2tq9 q odd, t >_ 0. 
d\q 

The (ordinary) Fibonacci and Lucas polynomials are given by Fn (x) = Fn(x,l) 
and Ln(x) = Ln(x,l), and their factorizations as products of the irreducible 
polynomials CJ (x) = <$(x,l) are given by (I) and (II). With these factoriza-
tions, we are able to prove the following theorem. 
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ThdOKQjm 1: For any nonnegative integers a, b9 o9 d, the greatest common di-
visor of LaFb and LQFd is given by 

F(b,2c)*F(b,c,d) %F(2atd) *F(a,b,d) ' F ( 2a ,2c ) *F(a,a) 
(LaFb >LcFd^ = F(b,d) ~p 7^ 7^ 7p 77F 7F t i m e s 

* (b,a) h (b,2c,d) h (a,d) h (2a,b,d)** ( 2 a , c ) ^ ( a , 2a) 

F (2ayb,o) " F (a,b,2c)'F (2a,c,d) %F {a,2c,d) [_F ( 2a,b,2c,d ) " F (a,b,c,d) J 

F (2a,b,2a) ' F ( a,b,c )'F( 2a,2c,d) *F(a,c,d) ]/ ( 2a ,b ,c ,d ) *F(a,b,2a,d) J 

Vtioofa: Write a = 2sa, a odd, and o = 2ty, Y odd. Let 

A = < 6': 6 = 2s q for some q satisfying q\oi\ 

C = |6 : 6 = 2 +1q for some q satisfying g|y 

5 = {6 : 6|Z?} and D = {(5 : 6|d}. 

In terms of these sets, let 

sl = B n D 

s2 = BDc-BncnD 
s, = AD D - A n B nD 

sk ^ A n c - A n s2 - c n s3. 

T h e n , 

(LaFb,LoFd) = ( T T < T R , TXTKWfr Tfo-
\$EA 6eB fiec <5 e D I i = l 6 eS1 

One may now readily verify that "[""f^ = F(b d) ' 

F(b,2a) F(b,2c,d) ~ r F(2a,d) F(2a,b,d) 

Hf6 = ~^wT ' * ^ r and J elf* = v 7 ' ^ ^ r 
For the product involving S^9 we have 

^ - y F ( 2a,2c ) ' F ( a , c ) 

6 e / i n c r ( 2 a , c ) r ( a , 2 c ) 

^ - y ^ ( 2 a , £ , 2 c ) " F(a,b,a) F(2a,b,c,d) * F(a)bi2a,d) 
I I ^ = p r? * ? r^ > a n d 

ScADS (2a,b,c) h (a,b,2c) h (2a,b,2c,d) h (a,b,c,d) 

^ r F(2a,d,2c) " F(a,d,c) F(2a,b,o,d) " F(a,b,2c,d) 

TT^ = 6eADS F(2a,d,c) * F(a,dt2c) F(2a,b,2c,d) ' F(a,b,c,d) 
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Now us ing 

T K = TW* * TT̂ 6 * TT^ . 
5 e 5 t 6eAC\C &£ADS2 8 BADS* 

the desired formula i s eas i ly put together . 

CottoZlcUiij: (La,La) 
F(2a,2c)* F(a,e) 

F(2a,c)* F(a,2c) 

It is easy to obtain formulas for (FaFb,FaFd) and (LaLb,L0Ld) using 
the method of proof of Theorem 1. The Lucas-formula has the same form as 
that in Theorem 1, but even more factors. The Fibonacci-formula too has this 
form, but few enough factors that we choose to include it here: 

F(b,e)° F(a,d)9F(a,c)aF(a,b,e,d) 
(FaFb>FcFd^ = F(b,d) ^ 7~B 7~w ' 7~p • 

*{b,e,d) *{a,b,d) h{a,b,c) °^(a,atd) 

Returning now to sums and differences of polynomials, we find from 
identities (1) and (3), for example, that 

(1 ') Fi±k+n + Fn = F2kF2k+n f° r any nonnegative integers k and n. 

Thus, Theorem 1 enables us to write out the greatest common divisor of any 
two terms of the sequence 

JP JP + JP JP JL JP JPJL.JP 

or of the sequence 

F, +1, F5+ 1, F9 + 1, F13 + 1, ... . 

With the help of (3 ') below, we can refine the latter sequence to 

Fl + 1, F3 + 1, F5 + 1, F7 + 1, ... 

and still find greatest common divisors. (But what about the sequence {Fn +l} 
for all positive integers n?) 

Following is a list of double-sequence identities like (1')- These are 
easily obtained from identities (l)-(8). 

(1') Fhk+n + Fn = L2kF2k+n 

( 2 ' ) Fkk+n ~ Fn = F2k L2k+n 

( 3 ' ) Fhk+n+2 + Fn = L2k+n+lF2k+l 

( 4 ' ) Fi*k+n+2 " Fn = F2k+n+lL2k + l 
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(5 ) ^hk+n + ^n ~ ^2k^2k+n 

(6') L,k+n - Ln - (x2 + VF2kF2k+n 

(8 ') ^i+fe+n+2 ~ Ln = ^2k+1^2k+n+l' 

We note that the divisibility properties of some of these sequences are 
much the same as those of the sequence of Fibonacci polynomials [namely, 
(Fm ,Fn) = F(m>n) with Fp irreducible over the integers whenever p is a prime] 
or the sequence of Lucas polynomials. For example, the sequence sQ, s19 s2, 
..., given by 

0, L2 + 2, Lh - 2, L6 + 2, LQ - 2, ..., 

has (sm,sn) = (x2 + 4)FfOTjn) for all positive integers 777 and n. 
One might expect Theorem 1 to apply to sequences other than (1T)-(8T) 

in the manner just exemplified. A good selection of forty identities, some 
admitting applications of Theorem 1, is found in [3], pp. 52-59. 
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PROBABILITY VIA THE NTH ORDER FIBONACCI-r SEQUENCE 
STEPHEN JOHN TURNER 

St. Mary's University, Halifax, Nova Scotia B3H3C3 

Suppose we repeat a Bernoulli (p) experiment until a success appears 
twice in a row. What is the probability that it will take exactly four trials 
when p = .5? Answer: There are 24 equi-probable sequences of trial outcomes. 
Of these, there are exactly two with their last two entries labeled success 
with no other consecutive entries successes. Hence, there is a l/(23) chance 
that the experiment will be repeated exactly four times. 

Immediately, questions arise: What is the probability that it takes 5, 
6, 7, ..., n trials? What are these probabilities when p ^ .5? What answers 
can be provided when we require 71/ successes in a row? 

The answers for the most general case of 717 successes involve a unique 
approach. However, it is instructive to treat the case for 71/ = 2 first in 
order to set the framework. 

THE CASE FOR 71/ = 2 

We shall use the idea of "category." 

Vz^sLviutLovi'' Category S is the set of all 5 + 1 sequences of trial outcomes 
(denoted in terms of s and f) such that each has its last two entries as s 
and no other consecutive entries are s, 

Now we have a means for designating those outcome sequences of inter-
est. 

UotjQUbLovii 71/(5) denotes the number of elements in category S9 

S = 1, 2, 3, ... . 

There is but one way to observe two successes in two trials so that 
category one contains the one element (s9s). Also, category two contains one 
element (f,s,s). The value of 71/(3) is determined by appending an / to the 
left of every element in category two and then an s to the left of each ele-
ment in category two beginning with an /. Thus, category three has two ele-
ments : 

(f,f,s,s) and (s,/,s,s). 

Observe that this idea of "left-appending may be continued to con-
struct the elements of category 5 + 1 from the elements of category S by ap-
pending an / on the left to each element in category S and an s on the left 
to each element in category S beginning with an f. There can be no elements 
in category 5 + 1 exclusive of those accounted for by this "left-appending" 
method. 

A result we can observe is that 

71/(5 + 1) = 71/(5) + "the number of 5-category elements 
that begin with an /" 

= 71/(5) + 71/(5 - 1). 

So we obtain the amazing result that the recursion formula for category size 
is the same as the recursion formula for the Fibonacci sequence! Since 71/(1) 
= 71/(2) = 1, we see that when p = .5 the probability that it will take 5 + 1 
trials to observe two successes in a row is given by 

23 
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(N(S)/(2S+1)) = (FS)/(2S+1) 

where Fs denotes entry S in the Fibonacci sequence. 
If p ^ .5, then each category element must be examined in order to 

count its exact number of / entries (or s entries). Such an examination is 
not difficult. 

Suppose category S - 1 has a^ elements which contain exactly i. entries 
that are /, and that category S has b% elements which contain exactly i en-
tries that are /, £ = 0, 1, 2, . . . , 5 - 2 . Then category S + 1 contains 
exactly ai + bi elements which contain exactly i, + 1 entries that are /. Jus-
tification for this statement comes quickly as a benefit of the "left-append-
ing" approach to the problem. Hence, we can construct the following partial 
table: 

Number of Elements Containing Exactly 
Category i Entries Which Are f 

Observe that nonzero entries of the successive columns are the succes-
sive rows of the familiar Pascal triangle! This observation is particularly 
useful because the kth. entry of the £th row in the Pascal triangle is 

0 

1 

0 

0 

0 

0 

0 

0 

1 
0 

1 

1 

0 

0 

0 

0 

2 

0 

0 

1 

2 

1 
0 

0 

3 

0 

0 

0 

1 

3 

3 

1 

4 

0 

0 

0 

0 

1 

4 
6 

5 
0 

0 

0 

0 

0 

1 
5 

6 

0 

0 

0 

0 

0 

0 

1 

/i-l\ = (i - p! 
u - i / (a - i) - (& - i»!(fe D! 

Also, since category i contains exactly one element containing i - 1 entries 
which are /, we know the £th row of the Pascal triangle will always begin in 
row i and column £ - 1 of the table. Thus, if we move along the nonzero en-
tries of row t of the table (from left to right) we encounter the following 
successive numbers: 

(VMVMV) (?)• 
To characterize ( - ), notice that row k of the Pascal triangle ends in row 

2k - 1 of the table. Thus, if t > 1 is odd, then a = b = (t - 1)12. And if 
t > 1 is even, then a = t/2 and b = (t/2) - 1. 

Thus, whenever t > 1, we know that the probability that "it takes t + 1 
trials" is given by 
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(t-X)/2 

i = 0 

where 

t - C ^ + i n ^ _ t-(i + i) (t + i)-(t-(i+i)) 

1, if t is odd 
2, if t is even 

THE GENERAL CASE 

Now we will be answering the question of the probability that it takes 
k trials to observe n successes in a row, k >_ n. To begin, we generalize the 
concepts of category, Fibonacci sequence, and Pascal triangle. 

V^sLyivtLon'• Category x is the set of all n + (x - 1) sequences of /'s and 
s's (denoting failure and success, respectively) such that the last n entries 
in each sequence are s, and no other n consecutive entries in the sequence 
are s, 

VQ.{\yLv\JJUx)Yli The nth order Fibonacci-T sequence, denoted /n, is the sequence 
a 2 , a 3 , . . . , a 

ai = 

i 5 • • • 3 

( i - D 

E 

k= i - n 

wher 

a k , 

afc, 

e ax = 1 and 

i f 2 <. i <. n 

i f i > n. 

It is instructive to first define the nth order Pascal-.?7 triangle by 
example: 

(1) If n = 2, the Pascal-T triangle is the familiar Pascal triangle; 

(2) If n = 3, the Pascal-T triangle is of the form 

1 
1 1 1 

1 2 3 2 1 
1 3 6 7 6 3 1 

1 4 10 16 19 16 10 4 1 
1 5 15 30 45 51 45 30 15 5 1 

(3) If n = 4, the Pascal-T triangle is of the form 

1 
1 1 1 1 

1 2 3 4 3 2 1 
1 3 6 10 12 12 10 6 3 1 

J(j-l)n-(j-2 

The nth order Pascal-T triangle has (j - l)n - (j - 2) entries in the 
jth row. Letting the first to last of these be denoted by j 1 ? J2, J3, ..., 

, the fcth entry in row j + 1 is given by 

m±n(k,(j-Dn- (j -2)) 

/ J ii for k = 1, 2, 3, ..., jn - (j - 1). 
i =max(l,£ -n + 1) 
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We can now proceed by enlisting the "left-appending" procedure outlined 
earlier. There is but one way to observe n successes in n trials. So N(l) = 
1. Likewise, there is but one element in category two. To obtain the ele-
ments of category three, we append an f to the left of each element in cate-
gory two and then append an s to the left of each element in category two. 
So category three contains the two elements 

(f,f9s9s9 ..., s) and (s9f9s9s9 ..., s) 

where s9s9 ..., s signifies that the entry s occurs n times in succession. 
We may proceed in this manner for each category k9 k <_ n + 1. 

It is clear that category n + 1 will contain exactly one element which 
has the entry s in its first n - 1 positions. Thus, category n + 2 will have 
2(N(n + 1)) - 1 elements. 

Now note that when constructing category k + n, we proceed by appending 
an f to the left of each element in category (k + ri) - 1 and an s to the left 
of each element in category (k + n) - 1 which does not begin with the entry s 
in its first n - 1 positions. But the number of elements in category (k + ri) 
- 1 containing the entry s in their first n - 1 positions is the same as the 
number of elements in category k which begin with an fl Hence, 

N(n + k) = 2(N(n + k - 1)) - "number of elements in 
category k which begin with an /" 

= 2/1/(n + k - 1) - N(k - 1). 

We now prove the following useful 

Tk&OKzm: 
n 

N(n + k) =J2 N(n + k - i), k = 1, 2, 3, ... 
i =1 

Vtioofa: We use simple induction. 

(1) N(n + 1) = 2n"1 = 1 + J2 2 i-2 
L 

= 2V(1) + (N(2) + N(3) + /V(4) + ••• + N(n)) 

= ]T N(n + 1 - i). 
i =1 

(2) Supposing truth for the case k, we have 

N(n + k) + 1 = 2N(n + k) - tf(fc) = 2^2N(n + k - i) - ̂ (fe) 
i = i 

n - 1 n 
= J2 N(n + k ~ ^ +^ N(n + k - i) 

i=l i=l 
n-1 

= X] ̂ ^ + k ~ ^ + ̂^ + V 
i = l 

n 
= J^ N[(n + k) + 1 - i].m 
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Now note that since 21/(1) = 1, the sequence 71/(1), 217.(2), 21/(3) , ... is an nth 
order Fibonacci-T sequence via the theorem! 

Thus, if p = .5, then the probability that it will take n + (k - 1) 
trials to observe n successes in a row, k >_ 1> is given by 

N(k)/(2n+k-1) = ( ^ ) / ( 2 " + ' c - 1 ) , 

where fk denotes the kth entry in the nth order Fibonacci-T sequence. 
We will now determine the probabilities when p ^ .5. A foundation is 

set by observing that if category k-n+i has an element M which has exactly 
x entries that are f, then the element (s,s, ..., s9f,M)9 beginning with n -
(£ + 1) entries which are s, is a member of category k and it contains x + 1 
entries that are /. This is true for £ = 0, 1, 2, ..., n - 1. If we let a^9 
£ = 0, 1, 2, ..,, n - 1 represent the number of elements in category k-n+1 
which have x elements that are /, then category k contains a0 +a1 +a2 + ••• + 
an-i elements which have x + 1 entries that are /. This is the recursive 
building block for the nth order Pascal-T triangle where row £ begins in 
category i and ends in category (i - l)n + 2! The following table partially 
displays the situation. 

Number of Elements Containing 
Category 

1 
2 
3 
4 
5 

Exactly £ 

i = 0 
1 
0 
0 
0 
0 

1 
0 
1 
1 
1 
1 

Entries 

2 
0 
0 
1 
2 
3 

Wh: 

3 
0 
0 
0 
1 
3 

n + 1 
n + 2 
n + 3 

2n 
2n + 1 
2n + 2 
2n + 3 

3n + 1 
3n + 2 
3n + 3 

0 
0 
0 

1 
1 
0 

0 
0 
0 
0 

0 
0 
0 
0 

3 
2 
1 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

3 
1 
0 

Since the number of entries in two successive rows of the nth order 
Pascal-T triangle always differ by n, then moving from left to right in the 
table, the £th category row will see its first nonzero entry in column m - 1 
where (m - 2)n + 2 ^ i <_ (m - l)n + l, i > 1 and m > 1. 
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Let 7, denote the kth entry in the ith row of the nth order Pascal-

T triangle, k = 1, 2, 3, . .., (i - l)n - (i - 2). Suppose i >_ 2. Then the 
successive nonzero entries in the ith category row, listing from right to 
left are 

LlJn' L 2 J«> L 3 Jn' •'•' L(i -77?) +lJn 

where (/?? - 2)n + 2 <. i <_ (m - l)n + 1 for some m _> 2. 
Thus, the probibility that "it will take n + (£ - 1) trials," i >_ 2 9 

is given by 

fe = o 

where (777 - 2)n + 2 <^ % <_ (m - l)n + 1 for some m _> 2. 

AUTHOR'S NOTE 

The machinery used in the above solution generates a number of ideas 
which the reader may wish to explore. A few examples are: 

1. If f£ denotes the kth entry in the second order Fibonacci-:?7 sequence, 

then it can be shown that the sequence <f If is a Cauchy sequence 

and so being, has a limit g2. From this, it follows that g2 = 1 + l/g2 

so that g2 is the golden ratio. This brings up the question of the 

identity of gn = lim fn If when n >_ 3. (Here, f£ denotes the kth en-

try in the nth order Fibonacci-?7 sequence.) It can be argued that gn < 

2 for any value of n and lim g = 2. 

2. It has been shown that 

fl = [(g2)k - (-<72>~*]/|>2 + - t e 2 r 1 ] -
Can we find a similar expression for / when n >_ 3? 

3. We can generalize the nth order Fibonacci-T sequence by specifying the 
first n entries arbitrarily. For instance, the first three cases would 
be 

n = 1 
n = 2 
n = 3 

a, a, a, a, a, a, .. . ; 
a, b, a +b, a+2b, 2a + 3b, 3a + 5Z?, . .. ; 
a, 2?, o9 a+b+c, a + 2(b+c), 2a + 3(b+e)+c, 

where a, b9 and e are arbitrarily chosen. The investigation of the 
properties and relationships between these generalized sequences could 
provide some interesting results. 

REFERENCE 

H. S. M. Coxeter, Introduction to Geometry, 1969, pp. 166, 167. 



SOME CONGRUENCES INVOLVING GENERALIZED FIBONACCI NUMBERS 
CHARLES R. WALL 

University of South Carolina, Columbia S.C. 29208 

1 . INTRODUCTION 

Throughout t h i s p a p e r , l e t {Bn} be t h e g e n e r a l i z e d F ibonacc i sequence 
def ined by 

(1) H0 = q, Ex = p , Hn+1 = Hn + # n _ l 5 

and let \Vn) be the generalized Lucas sequence defined by 

(2) Vn = Hn + 1 + Hn_±. 

If q = 0 and p = 1, {Hn} becomes {Fn}, the Fibonacci sequence, and {Vn } be-
comes (Ln), the Lucas sequence. We use the recursion formula to extend to 
negative subscripts the definition of each of these sequences. 

Our purpose here is to examine several consequences of the identities 

(3) Hn+r + (-1) Hn_r = LrHn 

and 

(4) Hn+r - (-l)rHn.r = FrVn9 

both of which were given several years ago in my master's thesis [12]. Iden-
tity (3) has been reported several times: by Tagiuri [5], by Horadam [8], 
and more recently by King and Hosford [10]. However, identity (4) seems to 
have escaped attention. 

We will first establish identities (3) and (4), and then show how they 
can be used to solve several problems which have appeared in these pages in 
the past. We close with a generalization of the identities. 

2. PROOF OF THE IDENTITIES 

The Binet formulas 

Fn = (an - en)//5" and Ln = an + 3n
5 

where a = (1 + /5~)/2 and 3 = (1 - v/5~)/2, easily generalize to 

Hn = (Aun - B$n)//5 and Vn = Aan + B$n, 

where A = p - q$ and B = p - qa. Any of these formulas may be obtained eas-
ily by standard finite difference techniques, or may be verified by induc-
tion. 

Since a3 = -1, we have 

Hn+r + (-l)rHn-P = {Aan+r - B$n+r + are>rAan~r - ar^B&n "r}//5 

= {Aana* + Aan$r - B$nar - S3n3r}//5~ 

= jar + $r}«{Aan - B$n}//5 
- LrHn. 

Therefore, (3) is established. 

29 
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S i m i l a r l y , 
Hn+r - (-l)rHn_r = {Aa«+r - B$n+r - ar^TAan-r + uv$vB$n-v}//5 

= [Aanav + B$nur - A$naT - B&n&r}//5 

= [Aan + 5 3 n } - { a ^ - 3 r } / / 5 

= F V 

so (4) i s a l s o v e r i f i e d . 

3. CONSEQUENCES OF THE IDENTITIES 

It is sometimes more convenient to rewrite identities (3) and (4) as 

( LhHk+h (h odd) 
(5) Hk + 2h - Hk = \ 

( FhVk + h (h even) 
and 

\FhVk+h (h odd) 
(6) Hk + 2h + Hk = ' 

LhHk+h (h even), 

In the discussion which follows, it is helpful to remember that: 

i. If Hn = Fn, then Vn = Ln. 

ii. If Hn = Ln> then Vn = 5Fn. 

iii. For all k, Fn divides Fnk . 

iv. If k is odd, then Ln divides Lnk . 

By (5), we have 

Hn+2h ~ Hn = F±2 Vn+12 = X^^Vn+12 • 

Therefore, with Hn = Fn , 

?n + m = Fn (mod 9 ) , 

as asserted in problem B-3 [9], 
Direct application of (5) yields 

"•n+hm+2 ~ Hn = L2m+iHn+2m+i 

so t h a t 

-^n+km + 2 ~ F
n = ^ 2 m + l ^ n + 2 m + l J 

as claimed in problem B-17 [13]. 
Since L0 = 2, identity (4) gives us 

L2k - 2(~l)fe = Lk+k - (~DkLk_k 

= Fk{5Fk) = 5Fl 

Therefore, Llk = 2(-l)fe (mod 5 ) , which was the claim of problem B-88 [14]. 
If k is odd, then (5) tells us that 

Hnk+2k ~ Hnk = ^k^nk+ki 
F(n + 2)k E Fnk (mod Lk) {k odd) 

as asserted in problem B-270 [6]. 
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By (6) we have 

F8n-k + F8n + F8n+h = Fn + F8n+h + F 8n - h 

= F8n + F,F8n = <* + 7>^8n = 8F8 n . 
Since 21 = F8 divides F8n , it follows that 

F8n-k + F8n + ^8n + - E 0 (™od 168) 

as claimed in problem B-203 [7], 
In problem B-31 [11], Lind asserted that if n is even, then the sum of 

2n consecutive Fibonacci numbers is divisible by Fn. We will establish a 
stronger result. Horadam [8] showed that 

El + H2 + • •• + H2n = H2n + 2 - H2. 

If n is even, then by (5) we have 

^ 1 + H2 + ' " ' + ^ 2 n = #2rc+2 ~ F2 = FnVn+2> 

which is clearly divisible by Fn. Because the sum of In consecutive general-
ized Fibonacci numbers is the sum of the first In terms of another general-
ized Fibonacci sequence (obtained by a simple shift), Lind's result holds for 
generalized Fibonacci numbers. In addition, we may similarly conclude from 
(5) that if n is odd, the sum of 2n consecutive generalized Fibonacci numbers 
is divisible by Ln. 

By (5), 

F2n(2k+1) ~ F2n = F2n+hnk ~ F2n 

= F2nk V2n+2nk = F2nk V2n(k+1) ' 

Therefore (with Hn = Ln and Vn. = 5Fn) 
L2n(2k+1) ~ L2n = ^F2nk F2n(k+1) ' 

so not only is it true that 

L2n(2k+1) = L2n (mod F2n ) J 

as asserted in problem B-277 [1], but indeed 

L2n(2k+1) = L2n (mod F\n ) 

s i n c e F2n d i v i d e s both F2nk and F2n(k+1^ . 

In a s i m i l a r f a s h i o n , 
F(2n +1) (hk +1) ~ F2n+1 = F 2n+l-h^k(2n+1) ~ F2n+1 

F2k(2n + 1) ^2n + I+2k(2n+l) 

= F2k(2n + l) V(2k+l)(2n+l) 
so that 

Therefore, 

L(2n+l)m+D ~ L2n + 1 5F2k(2n +1) F (2k +1) (2w +1) ' 

L (2n+l)(hk+l) ~ L2n + 1 ( m ° d F2n+0 
and in particular 

L (2n+l)(kk+l) ~ L2n + 1 (mod F2n+1^ 

as claimed in problem B-278 [2]. 
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Also, 

Therefore, 

F2n(^k + 1) ~ F2n = F2n + 8nk ~ F2n 

= Fhnk V2n + hnk 

= Fhnk ^2n(2k + l) 

F2n(hk + 1) ~ F2n - F^nk^2n(.2k+1) » 

F2nM+l) = F2n ( m o d L 2n(2k +1) ) • 

Since L2n d i v i d e s L2n(2k + i) > w e have 
F2n(hk+1) E F2n ( m o d L 2n ) > 

which establishes problem B-288 [3]. 
Now let us consider 

F(2n + l)(2k+l) ~ F2n+1 = H 2n+ 1+2k(2n+ 1) 

By (5) we have 
Fk(2n + 1) F(k+I)(2n + 1) i f & I S o d d , 

There fo re 
Ffe(2n+1) 7 ( k + l ) ( 2 n + l ) i f & i s e v e n « 

^ (2n+l ) (2 fc + l ) - F2n+1 

LH2n + l) F(k+l)(2n+l) i f k i s o d d 

Ffc(2n + i) L(k+i)(2n+i) i f & i s even. 

If fc i s odd, -Zj/c(2n + i) i s d i v i s i b l e by L2n + 1; i f k i s even, then fe + 1 i s odd, 

so L2n+i d i v i d e s L (fc+i)(2n+i) • Hence, i n any c a s e , 
F(2n + 1) (2/c + l ) E F 2 n + 1 ( m o d L 2 n + i), 

which was the claim in problem B-289 [4], 
Finally, we note that adding (3) and (4) yields 

Fn+r> = i^rFn + FrLn)/2 

i f En = Fn (and 7n = L„) , and 

Fn+r = (FpLn + 5FrFn)/2 

i f # n = Ln (and 7n = 5 F n ) . S u b t r a c t i o n of the same two i d e n t i t i e s g ives us 

Fn_r = (-l)r(LrFn - FrLn)/2 
and 

Fn_v = (-1) (LrLn - 5FrFn)/2. 

These results appear to be new. 

h. GENERALIZATION OF THE IDENTITIES 

Let {un} be the generalized second order recurring sequence defined by 

u0 = q, ul = p, un + 1 = gun + hun.ly 

where g2 + 47z 4 0 (to avoid having repeated roots of the associated finite 
difference equation). Define {vn} by 
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let { sn } be defined by 

s0 = 0, s1 = 1, sn + 1 = gsn + hsn_±, 
and let {tn} be defined by 

tn ~ sn+l + ftSn-I* 

Extend each sequence to negative subscripts by means of the recurrence rela-
tion. 

Then if 

a = f g + /g2 + kin) 12 and 

the Binet-like identities are easy to prove: 

sn = (an - 3n)/(a - 3) 

*„ = an + 3n 

un = (Aan - 53n)/(a - 3) 
vn = Aun + B$n, 

where A = p - q& and B = p - got. 
Then it is a simple matter to establish that 

3 = (g - /g2 + 4/z)/2, 

and 
Un+r — \—rl) Un_T = SrVn. 

9. 
10. 
11. 
12. 

13. 
14. 
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ENUMERATION OF TRUNCATED LATIN RECTANGLES 

F. W. LIGHT, JR. 
229 W. Swatara Dr., P.O. Box 276, Jonestown, PA 17038 

NOMENCLATURE 

An r xk rectangle is a rectangular array of elements (natural numbers) 
with r rows and k columns. A row with no repeated element is an R-row. A 
column with no repeated element is a (7-column; otherwise, it is a C-column. 
If all rows of a rectangle are i?-rows, it is an R-rectangle. An i?-rectangle 
subject to no further restrictions will be called, for emphasis, free. One 
whose first row is prescribed (elements arranged in increasing numerical or-
der) is a normalized i?-rectangle. 

An i?-rectangle all of whose columns are C-columns is an R-C-rectangle; 
one whose columns are all C-columns is an R-C-rectangle. An r xn R-C-rec-
tangle each of whose rows consists of the same n elements is a Latin rectan-
gle (L-rectangle). (i?-C-rectangles whose, rows do not all consist of the same 
elements are the "truncated" L-rectangles of the title.) 

ENUMERATION OF CERTAIN i?-RECTANGLES 

The most obvious enumerational question about L-rectangles is, prob-
ably: How many distinct normalized r xn L-rectangles are there? Denoting 
this number as M*9 we have, as in [1], 

(1) M: = ±(-l)^[(n-k)lf-\ 
k = 0 

where & r>n is the number of free r xk R-C-vec tangles that can be built up 
with (7-columns constructed from elements selected from r rows each of which 
consists of the elements 1, 2, ..., n. 

The number of free r xn L-rectangles is 

(2) ^ = £(-l)S(;!)[(n- <0 !]*<„, 

since Nn = n\Mv
n. 

Such formulas are effective numerically, of course, only if all the dpjn 
are known. This is the case for r <_ b, viz. (a^n E 1, by definition): 

a\n = 0 for all k > 0 and all n. 
k = n{k) , where n(/c) = n(n - 1) ... (n - k + 1) , 

a notation used throughout this report. 
2,n 

oujn = n(3n - 2k)a\jni1 + 2(k - l)n(n - DoL^~n
2.2 > 

a result easily obtained by eliminating the $i 
from the pair of formulas given in [1], 

a4>n may be found by using the 13 recurrences given in [1]. 

Except for k <. 4 (see below), the ar n for r > 4 are, in general, not known. 

3h 
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Consider now i?-C-rectangles that are not necessarily L-rectangles. Let 

v = number of rows, 

m = number of columns (jn <L ̂ ) 

n = number of elements available for each row 
(the same set of elements for each row) . 

= number of free i?-(7-rectangles with the 
indicated specifications. 

m i \ 

= E / - 1 ) s ( s ) [ ( K - 6 ) ( m " s ) ]'<«-
Formula (3) may be derived by using the same nr-cube that was used 

([1]) to get the formula for Mn. In this instance, we work with only the 
first m of the structures of highest dimensional level (thus with stripes, 
if v = 4). Proceeding as in the earlier case, and making appropriate adjust-
ments in the multipliers that arise (e.g., if r = 4, the number of /c-tuples 
of bad cells in any 77? ( >_k) stripes is now 

-a. 

We have 

(3) 

v m,n 

v m,n 

n <*)
 k > n 

each fc-tuple of bad cells combines with [ (n - k)^m k^ ]3 cells—of any kind), 
we get a formula for Mm^n (the normalized counterpart of A7m>n ) and finally, 
since N^n = n(m) M^n , formula (3). 

The free R-C-rectangles are more convenient in many respects than the 
normalized ones. It is immediate that there is a reciprosity between m and 
r: 

•p m 

(4) iVm?n = Nrtn . 
Formula (3) may be inverted, to give: 

(5) < „ = J (-Ds (m
8)[(n - *)<"-> ]'<„ . 

s =0 

Formulas (3) and (5) are identical, the self-inversive property being, of 
course, inherest in the definitions of ajjn and Nm>n . By utilizing (4) and 
(5), we can find aj?>n for 77? <. 4, for any values of r and n. Thus, the first 
few terms of (2) are known for v > 4. 

A more general formula of the sort discussed above can be given, cover-
ing cases in which some columns are C-columns and some are C-columns. Let 

Nm,k;n = number of free i?-rectangles in which: 

v = total number of rows, 

k = total number of columns, 

777 = number of C-columns (the othevr k - m being C-columns) , 

n - number of elements available for each row 
(the same set for each row). 

Clearly, m <_ k <_n. 



36 ENUMERATION OF TRUNCATED LATIN RECTANGLES [Feb. 

Then 

(6) K,^ = (^)E(-l)S(^)[(«-fe+m-S)(m-S)]^-r,n 

The derivation resembles that of (3), the diagram for the n^-cube again being 
helpful. 

A few special cases are: 

I f m = 0, we have NQ k.n = OLr>n • 

I f m = k, we have Nm,m;n = Nm,n • 
If k = n, we have N^in;n , the number of free rxn i?-rectangles each of 

who_se rows consists of the elements 1, 2, . .., n, having 77? C-columns and n -
m C-columns. 

Note that Nm £;n is divisible by k\ (giving the number of normalized 

i?-rectangles with the specified properties). That result is further divisi-

ble by ( ) (giving the number of normalized i?-rectangles with the 777 ̂ -col-

umns preceding the k - m C-columns). That result is still further divisible 

by ( 7, ) (giving the number of normalized i?-rectangles whose C-columns start 

with 1, 2, ...,777 in that order, and whose C-columns start with m + 1, 777+2, 
..., k ±n that order). Thus, Nm,k',n is divisible by ( m(?c) . For example, 

if r = 2, k = 5, 7?7=3, n = 6, 
^3 5-6 = 79,200, the number of free i?-rectangles; 

79 200 
j=-j = 660, t he number of normal ized i ? - r e c t a n g l e s ; 

and finally, 

660 

( ! ) 

66 

a) 

66, the number with C-columns preceding ^-columns; 

11, the number with 3 C-columns headed by 1, 2, 3 
and 2 C-columns headed by 4, 5 in that order, 
as may be verified easily by direct count. 
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THE NORMAL MODES OF A HANGING OSCILLATOR OF ORDER N 

JOHN BOARDMAN 
Brooklyn College, Brooklyn N.Y. 11210 

ABSTRACT 

The normal frequencies are computed for a system of N identical oscil-
lators, each hanging from the one above it, and the highest oscillator hang-
ing from a fixed point. These frequencies are obtainable from the roots of 
the Chebyshev polynomials of the second kind. 

A massless spring of harmonic constant k is suspended from a fixed 
point, and from it is suspended a mass m. This system will oscillate with an 
angular frequency oo0 = (k/m)1/2 . If N such oscillators are thus suspended, 
each one from the one above it, we will call this system a hanging oscillator 
of order N. 

The Lagrangian for this system is 

N N 

(1) L(ql9 ...,qn, ql9 ...,qn) = y ^ X ^ i " "2^1 " Jk12^i " 4i-i>2> 
i = 1 i = 2 

where q^ is the displacement of the ith mass from its equilibrium position. 
This Lagrangian can also be written in the language of matrix algebra as 

(2) L = \mqTT'q - ^mu2
0qTUq 

where q and q are, respectively, the column vectors col(q19 q2, ..., qN) and 
col(q19 q29 ...9qN). It is obvious that T = I, where I is the N x N identity 
matrix. For U9 we state the following theorem. 

Tfieô em V: ua = 2 and Ui^+i = ui+lji = -1 for i = 1, 2, . . . , N - 1; uNN = 
1, and all other values of u^j are zero. 

This can be demonstrated by mathematical induction. It is obvious for 
N = 1. For N = n the last two terms in (1) are 

(3) -2-™o(<7n_i " ^n- 2 ) 2 " -2^1 (qn ~ qn-i^' 

From these terms come the matrix elements Mn-i,n-i= 2, un-i,n - Un,n-i ~ -15 

unn - 1. For N = n + 1, these terms are added to (1): 

(4) J^n+l ~ 2"™?^n + l -<7n)2' 

The matrix element unn is now increased to 2, and the additional elements 
un,n+i = un + i,n = -1, un + ltn + 1 = 1 now appear in the new (n + 1) x (n + 1) 
matrix U, 

The characteristic function for this problem is det(-mod2T + rnu^U) . If 
we let x = a)/co0, then the normal frequencies for a hanging oscillator of or-
der N are given by the N positive roots of the polynomial det(-a;2X + U) = 0. 
Each of the diagonal elements of this determinant is (- x2 + 2) except for the 
last, which is (-x2 + 1). The only other nonzero elements are those immedi-
ately next to the diagonal elements; they are each -1. 

37 
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In the solution of this problem, the Fibonacci polynomials [1] will be 
useful. These polynomials are defined by the recurrence relation 

Fn+i(x} = xFn + 1(x) + ^n(x^ 9 where Fl(x) = 1 and F2(x) = x. 
By repeated application of this recurrence relation, we can prove: 

TkzoKm 2: Fn + k(x) = (x2 + 2)Fn + 2(x) - Fn (x) . 

Theorem 2 can be used to prove: 

ThZQtiQJn 3: The characteristic function for the hanging oscillator of order 
N is 

(5) (m^2
0)NF2N + 1(ix)a 

The factor (mui2,)1* comes out of the determinant, leaving det(-x2I + U) . 
Theorem 3 thus reduces to the evaluation of the determinant 

+ 2 

-1 

0 

-xz + 2 

0 

0 

'. 
0 . 

0 

. . - 1 

. . 0 

- 1 
-x2 + 2 

- 1 

0 
- 1 

-x2 + 1 

(6) 

to show that it equals F2N + 1 (ix) . 
If N = 1, Theorem 3 obviously holds, and F3(x) = - x 2 + 1. Let us assume 

that the determinant (6) is F2n+1 (ix) for N = n. Then for N = n + 1 we will 
expand the determinant by minors. It is Vn times the minor of P n minus z;12 
times the minor of ^12- But the minor of y n = -x + 2 is the characteristic 
function F2n + 1 (ix) for N = n. The minor of ^12 is (-1) times the character-
istic function F2n_1 (ix) for N = n - 1. The determinant (6) is therefore 

(-x2 + 2)F2n + 1(ix) - F2n_1(ix), 

which by Theorem 2 is equal to 

^2(n + i) +1 (^x) • 

Theorem 3 is thus proved by mathematical induction. 

Tknosium A' The characteristic frequencies of a hanging oscillator of order 
N are 

(7) O)0a:-- = 0)j = 2a)0 cos J^ , j = 1, 2, ..., N. 
2N + 1' 

The Fibonacci polynomials and the Chebyshev polynomials of the second kind 
UN(x) are related by [2]: 

(8) ^ + i(*) = i~^(f^)' 
The Fibonacci polynomials of imaginary argument then become: 

(9) FN + 1(ix) = i~NUN (~^x) 
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and the Fibonacci polynomials of interest in this problem become: 

(10) F2N+1 (ix) = (-l)^(|:r). 

The roots of the eigenvalue equation obtained by setting the characteristic 
function (5) equal to zero are those given by (7) [3], Theorem 4 is thus 
proved. 

Two interesting special cases present themselves when 271/ + 1 is an in-
tegral multiple of 3 or of 5. 

If 2N + 1 = 3P, where P is an integer, then the root corresponding to 
j = P is 0) = U)0. Thus, one of the normal frequencies is equal to the fre-
quency of a single oscillator in the combination. 

If 221/ + 1 = 5Q9 where Q is an integer, then the roots corresponding to 
j = Q and to j = 2Q are, respectively, oo = (J)O)0 and 03 = (j>~1u)Q9 where 

cf> = 1.6180339885... 

is the larger root of x2 - x - 1 = 0, the famous "golden ratio." This ratio 
occurs frequently in number theory and in the biological sciences [4], but 
its appearances in physics are very few, and usually seem contrived [5], 

The coordinates q as functions of time are given by [6] 

N 

(11) Q a ^ = Yl ajk cos ^ k t ~ 5fe) 
fe = i 

where aft is the kth component of the eigenvector <Zj which correspond to the 
normal frequency 0)̂  given by (7). These eigenvectors are obtained from the 
equation 

(12) m(-u2T + ^U)ad = mu2
0(-x2I + U)ad = 0, 

and their components therefore obey the following equations: 

2JTT _ 
-2a j± cos 2FTT " aj2 = ' 

( 1 3 ) 2JTF 
~aj,k-2 ~ 2aj,k-i cos 2 F T T " aik = °' k = 3 ' 4 ' ' ' ' ' N' 

The components of aQ- a r e t h e r e f o r e 

ai2 

aJk 

~ 

= 

-2aj± 

~2a3\k 

C O S 

- 1 

IN 

cos 

+ 

2i 

1 ' 

2JTT 
N + 1 

(14) 
2j,k-2 9 f o r ^ = 3 , 4 , . . . , N. 

The components aft can be evaluated from this recursion relation for the 
Chebyshev polynomials of the second kind [3, p. 782]: 

(15) Uk(x) = 2xUk_1(x) - Uk_2(x) 

and we obtain 

(16) ajk = (-if-'a^U^cosj^j). 

where a^i is arbitrary. 
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If the initial position and velocity of the jth mass are, respectively, 
Xj and VJ , then the normal coordinates are [6, p. 431] 

(17) h(t) - Re J2">"ft **"*'(% - ^ V ) 
J = l \ K I 

= ReJ2m(-l)k~1adlUk[cos 2/y 7 1 ) e x P [2^o^ c o s
 2N + 1 J 

ivc 

2o30 cos w I ± 
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CONGRUENCES FOR CERTAIN FIBONACCI NUMBERS 

N0RVALD MIDTTUN 
Norwegian Naval Academy, Post Box 25, Norway 

The purpose of this note is to prove some of the well-known congruences 
for the Fibonacci numbers Up and f/p-i, where p is prime and p = ±1 (mod 5). 
We also prove a congruence which is analogous to 

ay - 8P ? 
Uy, = ^—, where a and 3 are the roots of a; - # - 1 = 0. 
" a - 3 

We start by considering the congruence 
(1) x2 - x - 1 = 0 (mod p), which can also be written 
(2) y2 E 5 (mod p), 

on putting 2x - 1 = y. 
It is well known that 5 is a quadratic residue of primes of the form 

5m ± 1 and a quadratic nonresidue of primes of the form 5m ± 3. Therefore, 
(2) has a solution p if p is a prime and p E ±1 (mod 5). 

It also has -y as a solution, and these solutions are different in the 
sense that 

y t -y (mod p). 

This obviously gives two different solutions x1 and x2 of (1). 
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(1) is now written 

(3) x2 = x + 1 (mod p), 

or, which is the same, 

X2 E UXX + U2 (mod p), 

where U1 and Uz are the first and second Fibonacci numbers. 
When multiplied by x, (3) gives 

x3 =x2+x=x+l+x=2x+l (mod p ) , 

or, which is the same, 

X3 ~ U3X + Uz (mod p). 

Suppose, t h e r e f o r e , t h a t 

(4) Xk E UkX + Uk_± (mod p) for some Zc. 

Now (4) i m p l i e s 

Xk + 1 E UkXz + Uk_1X E [7^(1 + 1) + [/£_!* E (Uk_1 + ^ ) J + £/fc 

= Uk+1X + £/fc (mod p ) , 

which, together with (3) shows that (4) holds for k >_ 2. 
For the two solutions xl and #2> we now have 

x\ E UkX1 + Uk_x (mod p) 
and 

X\ E [/kJ2 + ^ _ ! (mod p). 

Subtraction gives 

(5) ** - X\ E |yk(Z1 - J2) (mod p). 

Putting k = p - 1 In (5) and using Fermat's theorem, we get 

X i ' 1 - X l ' 1 E UP-I(X1 - X2) E 1 - 1 = 0 (mod p). 

Since Jx ^ J2 (m°d p) , this proves 

Up_x E 0 (mod p). 

Putting fc = p in (5), we get in the same manner 

(6) Xl- Xl E X1 - X2 E Z7p(J1 - J 2 ) (mod p) , 

which proves 

Up E 1 (mod p). 

At last, (6) can formally be written 

X1 - X2 

Up = x _ x (mod Ph 
L 1 yi2 

which shows the analogy with the formula 

Un = -
n a -



SOME DIVISIBILITY PROPERTIES OF GENERALIZED 

FIBONACCI SEQUENCES 

PAUL S. BRUCKMAN 
4213 Lancelot Drive, Concord, CA 94521 

1. INTRODUCTION 

Let c be any square-free integer, p any odd prime such that (c/p) = -1, 
and n any positive integer. The quantity ./IT, which would ordinarily be de-
fined (mod pw) as one of the two solutions of the congruence: x2 E c (mod 
p n ) , does not exist. Nevertheless, we may deal with objects of the form 
a + b/c~(mod pn), where a and b are integers, in much the same way that we 
deal with complex numbers, the essential difference being that /^Tfs role is 
assumed by /~c~. Since we are dealing with congruences (mod pn), we may with-
out loss of generality restrict a and b to a particular residue class (mod 
pn), the most convenient for our purpose being the minimal residue class 
(mod pn). Accordingly, we define the sets Rn(p) and Rn(p9c) as follows: 

(1) i?n(p) = <a : a an integer, \a\ £ y(pn - 1)>; 

(2) Rn(p9c) = | s : z = a + b/c~9 where a,b e i?n(p)l. 

In the sequel, congruences will be understood to be (mod pn) , unless 
otherwise indicated, and we will omit the modulus designation, for brevity, 
provided no confusion is likely to arise. The symbol "E" denotes congruence 
and should not be confused with the identity relation. 

We also define the set R(p9c) as follows: 

(3) R(p9c) = < z : z = a + b/o~, where a and b are rational numbers 
whose numerators and denominators 
are prime to pi. 

The set Rn(p9o) satisfies all of the usual laws of algebra, and its elements 
may be manipulated in much the same way as complex numbers, provided we iden-
tify the "real" and "imaginary" parts of z = a +b/e9 namely a and b, respec-
tively. 

If z = (a + b/o) e Rn(p,o) and (ab9p) = 1, then z has a multiplicative 
inverse in Rn(p9o), denoted by z'1, given by 

(4) z-1 = (a2 - b2o)~1{a - b/o), 

where (a2 - b2o)~x is the inverse of (a2 - b2o), all operations reduced (mod 
p n ) , in such a manner that (a2 - b2o) , its inverse, and z'1 are in Rn(p9a). 
The condition (ab,p) = 1 is both necessary and sufficient to ensure that z'1 

exists. Two elements z-^ = ak + b^/o, k = 1, 2, of R(p9c) are: said to be 
congruent (mod pn) (or more simply eongvuent) iff a1 = a2 and b1 = b2. They 
are said to be conjugate iff a1 = a2 and 2?j_ = -b2. Hence, every element of 
Rn(p9c) has a unique conjugate in Rn(p 9c) , and every element of Rn(p) is 
(trivially) self-conjugate. 

It is not difficult to show that Rn(p9c)9 which is the set in which we 
are really interested, is a commutative ring with identity; moreover, Rx(p9c) 
is a field. 

hi 
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Next, we recall some basic results of "ordinary" number theory. For all 
z e Rn(p), such that (z9p) = 1, 

(5) **•<*"> = (|), 

(6) zHpn) = 1 [where (f)(pn) = (p - Dp""1 is the 
Euler (totient) function]. 

Note that (5) implies (6), which is a generalization of Fermat's Theo-
rem. A more general formulation of (6) is the following: 

(7) zpn E zpn~l , for all z £ i?n(p). 

The following theorem generalizes the last result even further. 

Tfieo/Lem 7: For all s £ Rn(p9a)9 

(8) spn E (I)^"1 „ 

PtLOOfi: We will first prove (8) for the case n = 1, then proceed by induction 
on n. Suppose s = (a + b/o) £ i?„(p,e). Then, by the binomial theorem, 

P 

S
p = (a + £/?)p = ^(l)ap'\b/Z)k E a p + (£/£)p (mod p) , 

k = 0 

[V\ for fc = 1, 2 , . . . , p - 1 . But ap = a and bp = b (mod p) [by ( 7 ) , 

w i th ft = 1] . Since ( —) = -1? thus zp = z (mod p) , which i s t h e r e s u l t of (8) 
for t h e case n = 1, [(/c) = c2 /c E | - - j / ^ " = - / 5 " , by ( 5 ) ] . 

Let S deno te t h e s e t of n a t u r a l numbers ft such t h a t (8) ho lds for a l l 

z E R (p9c). We have j u s t shown t h a t 1 £ S. Suppose m £ S. Then zp = ~zp + 

wpm
9 fo r some w £ R1(p9o), T h e r e f o r e , 

( s P m ) p = zpm + 1 = ( s p m _ 1 + wp™)? E I p m + p s ( p " 1 ) p m _ 1
W p w E ^ m (mod p m + 1 ) . 

Thus, m £ 5 => (777 + 1) £ 5. The result now follows by induction. 

Given any z = (a 4- fofc) £ R(p,c)9 t h e r e e x i s t s a unique 

s* = (a* + b*Jc) £ i ? n ( p , e ) , 
such that a E a*, & E &*, i.e., 3 E z*. Moreover, 1/s = (a - b/o) I {a2 - b2 o) 
and (s*)"1 both exist and 1/s E (s*)-1. These properties may be deduced from 
the preceding discussion. Therefore, when no confusion is likely to arise, 
we will omit the "starred" notation in the sequel, and treat elements of 
R{p9c) as elements of Rn(p9c) interchangeably, though the reader should bear 
the technical distinction in mind. 

2. APPLICATIONS TO GENERALIZED FIBONACCI SEQUENCES 

Suppose u = (a + b/c) eR(p9o)9 v = u = a - b/o9 where 2a is an integer, 
(a2 - b2o) = ±1. Define the sequences \(Pk\ and \Xk\ as follows: 

(9) * > - 4 ^ , 
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(10) Xk = uk + vk
9 k = 0, 1 , 2 , . . . 

As i s commonly known, t h e «/??s and X ? s a r e i n t e g e r s and s a t i s f y t he same r e -
c u r s i o n : 

(ID Y*+2
 = 2 a ^ + i + ^ " a^Vk-

Note that b ^ 0 (mod p) , which implies (w - v) " x = (2&/5)"1 = w ei?„(p,c), 
Hence, we may treat | <Pw and 4 Xk \ as sequences in Rn(p) . By application of 
Theorem 1, we may deduce certain divisibility properties of these sequences 
(mod p n ) . To illustrate, we prove the following 

TkdOHQJM 2: Given u and v as defined above, if m = m(p9n) = (p + l)pn"1, then 

(12) <pm = 0, and 

(13) X m = 2(a2 - £ 2 c ) . 

P/L00{j: By Theorem 1, 

pn _ vn~1 

Hence, 

M
p"w

p "" = vp"vp"1 (uv)p" , 
i.e., 

um = vm = (a2 - b2a)p" = (a2 - b2o). 

Note that (u - v) ~ exists. Hence, applying the definitions in (9) and (10), 
the result of Theorem 2 now follows. 

The preceding theorem eloquently illustrates the power of the method of 
"complex residues." By dealing with certain nebulous objects of the form 
a + b/c (mod p n ) , which have no "real" meaning in the modular arithmetic, we 
have deduced some purely number-theoretic results about generalized Fibonacci 
and Lucas sequences. The analogy with bona fide complex numbers and their 
applications should now be more evident. 

A somewhat stronger result than (13) is actually true, but the method 
of complex residues does not appear to be of help in such fortification. We 
will first state the strengthened result, then state and prove a number of 
lemmas, returning finally to the proof. 

Th&Qtizm 3: Let u9 V9 and 77? be defined as in Theorem 2. Then 

(14) 2(az b2o) (mod p2n) . 

Lemma 1: Let Xk be as given in (10). Then 

<"> Z (-i>Vh(V)C2i = x 2ns (s 
n 

0, 1, 2, . 
1, 2, 3, . . . ) . 

YhjQQ^' We may prove the result by generating functions. 
following, essentially, is formula (1.64) in [1]: 

Alternatively, the 
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(16) 

[in] l n - i \ 

T W&*)* = -JU*l±Jil\ where xml + /JTTT, 
i-o n2 x ^ / — — 2/ = 1 - / i + T . 

In (16), le t z = -4/A^ (note X2s ^ 0 V s) . Then 

^ _ ^ AL " 4 „2a _ y2s (U ~ lO*2 f l 
/ s + 1 = 

^ 2 s ^?8 

Hence, 
x = 2u2s/X2s9 y = 2v2s/X2s9 x + y = 2 . 

Substituting in (16), we obtain: 

\in\ (n-i\ 

^ n - ^ 
1 /2n(z^zns 4- vAns) 

i = o nl \ An„ • 2 v2s 

This simplifies to (15), proving the lemma. 

Lemma 2: 

£ ( - D ^ f ^ ) 2 " - M = 2 (n= 1, 2, 3, . . . ) . 
£ =0 

VKoo^i Let s = 0 in Lemma 1. 

Lemma 3 : r i -. 
[in] 
£ ( - l ) Y ^ ) 2 n " 2 * = n + 1 (n = 0, 1, 2, . . . ) . 
i = o 

PJiOOJ: This is formula (1.72) in [1] . 

Lemma 4' r i .- . 

(17) ^ ( _ 1 ) ^ ( n _ 2 i ) ^ T ( W - f ' ) 2 " - 1 - M = W
2 (* = 1 , 2 , 3 , . . . ) . 

i = 0 

PtiOO^: The left member of (17) is equal to 

£>!)< (2n - 2, - n)^(^) 2 --2i 

t = 0 

E <-!)*(" r>-M-t«E^)*^T(Mr)2-
i = 0 

= n(n + 1) - -wn * 2 = n2 (using Lemmas 2 and 3). 

VKool 0^ Tko.OA.2Jfn 3: From Theorem 1, with n= 1, > up = V, Vp = u (mod p) . 
Hence, since u = v, there exists w £ R (p,e), such that 

(18) UV E y + pw, yp E u + pzj (mod p2) . 
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Multiplying these last two congruences, we have: 

(uv)p = uv + p{uw + vw) (mod p 2 ) . 

However, uv = a1 - b2o = ±1, so (uv)p = uv. Hence, it follows that 

(19) uw + uw = 0 (mod p) . 

If, in (18), we multiply throughout by u and v9 respectively, we obtain: 

up+ = uv + puw, vp E uv + puw (mod p 2 ) . 

Now adding these last two congruences and using (19), we obtain the result 

(20) Ap + 1 E 2(a2 - h2c) (modp2). 

This is (13) for the case n = 1. Let T be the set of natural numbers n for 
which (13) holds; we have shown that 1 e T. Suppose v e T9 and let 

ml = (p + l)pr~1
a 

By Lemma 1, since ml is even, 

i = 0 

2r But, by the inductive hypothesis, XTOi = 2uv + Kp r, for some integer X. Hence, 

(-1)* 
P ~ ^ 

xpmi= 2]T ^if-^^-^duv + xP
2^-2' 

£ = 0 

i(p - 1) . p - U 

t ("1 ) <^r(Pi i ) ? (P7')(2^>P~2W t^2*)' <-o P " ̂  ^ ^/T-o v ^ 

P [i(p-j)] 

E^ 2 *) ' E (-1)'^(pi')(p"7-2')(2^)p"2''J' 
i = o J = 0 

i =0 r 

i(p-D 
uvY'c%'L (mod p2^ + 2 ) 

i = o 

= uv 
i = Q 

i(p-D 
p-2i 

+ ̂  E ( - D ' ^ T P ^ ) ^ " 2i)2p"M-1 (mod p*-2) 
i-o p v ' 

S 2wy + Z p 2 1 ^ 2 (mod p 2 r + 2) = 2wy (mod p 2 r + 2 ) 
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(using Lemmas 2 and 4). Hence, v e T => (p+1) e T. The result of the theo-
rem now follows by induction. 

CoHoltcUtlj 1 (of Theorems 2 and 3) : 

Let p be any odd prime such that (—j = -1, n be any natural number, 
and 77? = 77?(p,n) = (p + l)pn"1. Then V^' 

(21) Fm = 0 (mod p w ) , and 

(22) Lm = -2 (mod p2n). 

PH.OOJ: Let a = b = y,c = 5, and apply (12) and (14) and the definitions of 
Fibonacci and Lucas sequences. 

3. THE CASE (~\ = 1 

We will now deal with the case where f—J = 1, starting our discussion 

anew. We soon find that this case is much simpler than the first, since now 
is an element of i?n(p), in the modular sense, and thus has a "real" mean-

ing. In fact, if all the definitions of the preceding discussion are retained 

with the exception that now (—1 = 1 , we see that objects (a + b/o) of 

R(p9c) are actually congruent (mod pn) to objects of i?n(p), and that we do 
not need to concern ourselves with En(p,o) at all. In other words, the the-
ory of "complex residues" is irrelevant in this simpler case. With this idea 
in mind, we may "rethink" the results of the previous section. Thus, Theorem 

1 is replaced by (7), for the case (—J = 1. The counterpart of Theorem 2 is 
the following, for this case. 

Tkz.0H.2JM 4: Let the sequences | <Pk > and {^kj be given by (9) and (10), and let 

M = (p - Dp"'1 = 0(pM). Then 

(23) % = 0, and 

(24) XM = 2. 

VHOOJi By (6), uM = VM = 1, which implies: uM - VM = 0, uM + VM = 2. Since 
(u - v)~l = (2b/c)~l exists, we may apply the definitions in (9) and (10), 
thereby proving the result. 

The counterpart of Theorem 3 is the following fortification of (24): 

Tk^QHdm 5: 

(25) \M E 2 (mod p 2 n ) . 

VHoo^i BY (7), with n = 1, up E u, vp E v (mod p). Thus, there exist x and 
y in i?1(p) such that 

(26) up E u + px, vp E v + py (mod p 2 ) . 

Multiplying these two congruences, we obtain: (uv)p = uv + p{uy + vx) (mod 
p 2 ) . But UV = ±1, so (w^)p = uv. Hence, we have 
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(27) uy + vx - 0 (mod p). 

Returning to (26), if we multiply throughout by V and u, respectively, we 
obtain: up~1(uv) E uv + p(vx) , vp~1(uv) = uv + p(uy) (mod p 2 ) . Now, adding 
these last two congruences and using (27), we have: uv(up ~1 + i^"1) E 2wy 
(mod p2) , which implies (25) for the case n = 1. 

The remainder of the proof of Theorem 5 is nearly identical to that of 
Theorem 3, except that in the latter, we replace.77? 1 by Mx = (p - ±)pr~1. 

k. SUMMARY AND CONCLUSION 

We may combine Theorems 2 thru 5 thus far derived into the following 
main theorem. For the sake of completeness and clarity, we will incorporate 
the necessary definitions in the hypothesis of the theorem. 

Thd.OK<im 6: Let a be any square-free integer, p any odd prime such that o t 0 
(mod p) , and n any positive integer. Let a and b be any rational numbers 
such that neither their numerators nor their denominators are divisible by p, 
2a is an integer, and (a2 - b?~o) = ±1. Let 

u = a + b/c, v = a - b/o9 <Pn= (un - vn) / (u - v), Xn = un + vn. 

Finally, let 

m = m(n,p) =<p - (flfP7*"1-
Then 

(28) ^m = 0 (mod p"), and 

(29) \m = 1 + UV + (1 - uv) (£\ (mod p2n). 

CoKolZcUtij 2: Let {Ffe} and {Lk} be the Fibonacci and Lucas sequences. Let p 

be any odd prime ± 5, and m = <p "(p-)fPn"15 ^ = 1, 2, 3, ... . Then 

(30) Fm = 0 (mod p"), and 

(31) Lm = 2(|) (mod p 2 n ) . 

PX00&: Let a = & = y, c = 5 in Theorem 6. 

Cosiotta/iy 3 : Let {Pfc} and {^fe} be t h e P e l l and " L u c a s - P e l l " sequences (a = 

b = 1, o = 2 i n Theorem 6 ) . Let p be any odd p r ime , and m = < p -\^)\pn~1
9 

n = 1, 2 , 3 , . . . . Then 

(32) Pm = 0 (mod p n ) , and 

(33) 5m E 2 ( | ) (mod p 2 n ) . 

Theorem 6 is the main result of this paper. However, it should be 
clear to the reader that the basic result of Theorem 1 may be used to obtain 
other types of congruences, where the indices of the generalized Fibonacci or 
Lucas sequences are other than the "m" of Theorem 6. The corresponding re-
sults, however, do not appear to be quite as elegant as that of Theorem 6. 
Nevertheless, some information maybe gathered about the periodicity (mod pn) 
of the sequences in question. For example, using the methods of this paper, 
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we may deduce that, if P (N) denotes the period (mod N) of the Fibonacci and 
Lucas sequence (the periods for the two sequences are tne same, except when 
5\N, cf. [2]), and if p is any odd prime ^ 5, then 

(34) p(pn) divides |^3p + 1 - (p + 3) (-jjp""1, n = 1, 2, 3, ... . 

We will leave the proof of this result to the reader. 
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A NOTE ON A PELL-TYPE SEQUENCE 

WILLIAM J. O'DONNELL 
George Washington High School, Denver, CO 

The Pell sequence is defined by the recursive relation 

Pl = 1 , P 2 = 2 , and P n + 2 = 2Pn+1 + Pn , fo r n > 1. 

The first few terms of the sequence are 1, 2, 5, 12, 29, 70, 169, 408, ., 
It is well known that the nth term of the Pell sequence can be written 

"•••k (H*)"-(H^)" 
Pn -2 + /8 It is also easily proven that lim — = ~ . 

For the sequence \vn\ defined by the recursive formula 

V1 = 1, V2 = 2, and Vn + 2 = kVn + 1 + Vn , for k >. 1, 

we know that 
Vn -k + A1 + 4 

lim Vn + l 

If we let k = 1, the sequence < Vn > becomes the Fibonacci sequence and the 
limit of the ratio of consecutive terms is « = -618, which is the "gol-

den ratio." For k = 2 the ratio becomes .4142, which is the limit of the 
ratio of consecutive terms of the Pell sequence. 

Both of the previous sequences were developed by adding two terms of a 
sequence or multiples of two terms to generate the next term. We now consi-
der the ratio of consecutive terms of the sequence \Gn\ defined by the recur-
sive formula 

^1 = ^l> ^ 2 ~ ^ 2 ' 8 • • J &n = &n s &n<3 

and 
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^n+i = waw. + (n ~ l)an-i +•(n - 2)an-2 + • • • + 2a2 + al 

where ai is an integer > 0. 
Suppose that when this sequence is continued a sufficient number of 

terms it is possible to find n consecutive terms such that the limit of the 
ratio of any two consecutive terms approaches r. The sequence could be writ-
ten 

_ Gm Gm Gm , Gm 
p 2* p°  p n x 

The next term, — , may be written as 

£-»(^)-M»-i)(;£h)- p 

Simplifying, 

£m = np£m + (n - l ) r 2 £ m + . . . + 2r n ~ 1 £ m + vnGm. 

Div id ing by Gm, we o b t a i n 

1 = nr + (n - 1 ) P 2 ' • + . . . 4- 2 P " " 1 + pM 

or 

(1) rM + 2 p n " 1 + ••'• + (n - 2 ) p 3 +• (n - D P 2 + nr - 1 = 0. 

The limiting value of p is seen to be the root of equation 1. 
If we let n = 4, Gx = 2, £2 = 4, £3 = 3, and £4 = 1, the corresponding 

sequence is 2, 4, 3, 1, 23, 105, 494, 2338, 11067, 52375, ... . The ratios 
of consecutive terms are 

=^- = 0 2125 494 U-ZJ^3 

494 
0.2113 

2 
4 

4 
3 

3 
1 

1 
23 

23 

= 

= 

= 

= 

= 

0. 

1. 

3. 

0, 

0, 

,5000 

.3333 

.0000 

,0434 

.2190 

2338 

2338 
11067 

11067 
52375 

0.2113 

0.2113 

The computed ratio approaches .2113. Using equation 1 we have, for this se-
quence, rh + 2p3 + 3r2 + 4r - 1 = 0. By successive approximation, we find 
r « .2113. The reader may also wish to verify this conclusion for other in-
itial values for the sequence as well as for a different number of initial 
terms. 
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PERIODS AND ENTRY POINTS IN FIBONACCI SEQUENCE 
A. ALLARD and P. LECOMTE 

Universite de Liege, Liege, Belgium 

1. INTRODUCTION 

Let the F 's be defined as follows: 

F0 = 0, F1 = 1, Fn + 2 = Fn+1 + Fn , U > 0 . 

Let k > 0 be any integer. There is then a smallest positive 777 such 
that k\Fm [if a, b denote integers, we sometimes write a\b instead of b = 0 
(mod a), a\\b instead of b .= 0 (mod a), and b $ 0 (mod a2)]. This unique w 
will be denoted by 3^; ̂ 3 is usually called the entry point of k. Moreover, 
the sequence Fn (mod k) is well known to be periodical. We denote by lk the 
period and we let yk = lk/$k. 

Our purpose in this paper is to compute (at least in a theorical way) 
y for each prime p. In [1], Vinson also computes yp, but our point of view 
and our methods are really different from those of Vinson, so that we obtain 
new results regarding yp and additional information about 3p • 

This paper is based on a few results which are summarized in Section 2 
and proved in Section 6. Some of these are well known and their proofs (ele-
mentary) are given for the benefit of the reader. 

2. PROPOSITIONS 

We now state those propositions that will be useful later. 
Let p be a prime with p > 5. For simplicity, we let 3 = 3p, 1 = lp, 

and y = yp. Then 

(1) p\Fm <^>3|w, V m. 

This shows that Y is an integer. 

(2) Y £ {lj 2, 4}; to be more precise, 

y = 1 <=^F3_1 E l (mod p) 

y = 2 <=»F3-1 = -1 (mod p) 

Y = 4 <=>F32_1 E -1 (mod p) 

(3) Y = 4 ̂ ^ 3 ̂ s 0&? 

4|3 ^ Y = 2 

(4) The following holds for any j e {o, 1, ..., 3 - l} and anz/ & > 0: 

In particular, letting j = 1, we obtain 

(5) For all a, 2? > 0, we have 

b 
JP _ V rkwkwh~kw (rk - bl \ 
hab ~ 2^ Lbbaha-lhk \Cb ~ kl (b - k) I ) ' k=l 

51 
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[Note that if p is a prime, then p\Cp for k = 1, . . . , p - 1. Then the above 
formula with a = q and b = p together with Fermatfs theorem implies that 

Fpq = FpFq (mod p) 

for all prime p and all integers q.] 

(6) If p = 10m ± 1 , t/zen Fp E l (mod p) and 3 | ( p - 1 ) . 
If p = ±0m ± 3, then Fp E - 1 (mod p) and 3 | ( p + 1 ) . 

(7) 2 3 | ( p ± 1) <=>p = 1 (mod 4) 

[according that p is (p - 1) or is not (p + 1) a quadratic residue mod 5]. 

We are now in a position to state our main results. We will investi-
gate separately the cases p = 10m ± 1 and p = 10m ± 3. The conclusions are 
of very different natures. 

3. COMPUTATION OF y WHEN p = 10m ± 3 

T/ieô iem 7: Let p be of the form 10m ± 3. Then either p = 4 m ' - l , y = 2 , 
and 4|3, or p = 4m' + l, y = 4 , and 3 is odd. 

This theorem allows us to calculate y by a simple examination of the 
number p. Such a result does not hold in the case where p = 10m ± 1. 

VKOO^I By (6) above, we can write p = y3 - 1 and Fp = -1 (mod p). Thus, by 
(4), we have 

(3.1) F ^ = -1 (mod p). 

Since y = 1 implies F^_± E l (mod p) and since F^_± E 1 (mod p), we conclude 
from (3.1) that y > 1 and l\\]i. 

Suppose 3 is even. Then y = 2 and Fg _ ± = -1 (mod p). From (3.1), this 
implies that y is odd. Suppose 2||3. Then p = y3 - 1 = 1 (mod 4), so that by 
(7), 23|(p + 1), which is a contradiction. Thus, 4|3 and p E -1 (mod 4). 

Suppose 3 is odd. Then y = 4 and F^_± E -1 (mod p). From (3.1), this 
implies that 2||y. Hence, p = y3'- 1 = 1 (mod 4). The theorem is proved. 

From the preceding proof, we obtain another statement. 

Tk&QSiem 2: I f y = 1 , then p = 10m ± 1. 

k. COMPUTATION OF y WHEN p = 10m ± 1 

This case is more complicated and it is convenient to introduce the 
characteristic exponent aofp, well defined [recall (6)] by 

= 2av3 + 1, V odd. 

The explicit computation of a will be made later, by means of the following 
lemma. 

Lmmci: If p = 10m ± 1 = 2%3 + 1 with V odd, then 

FP-I 
(8) y = 1 =»-£— E 2a (mod p) 

jp 

(9) Y = 2 ̂ ^ ^ = -2Q (mod p) 
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V i (10) Y = 4 ^>-f^ E -2V V
 1 (mod p). 

^v3 P 

In fact, apply (5), with a = v3 and b = 2° . Then 

2a 

F , = Y^ Ck Fk F2a~kTP 
k = l 

This implies that 

(4-1) - ^ - = 2 ^a-i (mo d P>-

On the other hand, (6) and (4) imply 

(4.2) Ff_\ E 1 (mod p). 

Then, from (4.1) and (4.2): 

rp 

(4.3) fv .-|^- E 2a (mod p). 
-c v3 

Suppose y = 1, then F^_ 1 E 1 (mod p) and (8) follows from (4.3). 

Suppose Y = 2, then Fg_, E -1 (mod p), and since V is odd, (9) follows 
from (4.3). 

Suppose Y = 4, then F$_ 1 E -1 (mod p). Since V is odd, we have F^_x E 
-1 (mod p), so that (10) follows from (4.3). 

ThdOSizm 4' Let p = 10m ± 1. Then, p can be written uniquely as p = 2rs + 1 
with s odd, and we have 

Fp-i y = 4 «=> — — £ o (mod p) 

Y = l <=^-^i E 221-1 (mod p) 
F2s 

T = 2 ^ E 0 and ^ ^ f ' 1 (mod p) . 

(The statement concerning y = 2 will be made more precise later.) 

P/ioofi'- Suppose y = 4. Then, 3 is odd and, thus, a = r, v3 = s, so that, by 
the lemma, we have 

5 p - -2'F;^ t 0 (mod p). 

Suppose y = 1. Then, 3 is even, but 2[|B, since 4|3 implies y = 2. So 
a = r - 1 and v3 = 2s; thus, by the lemma, we have 

Ef± = 2r-i ( m o d p ) . 
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F 
Conversely, suppose — — ^ 0 (mod p) . Then p\Fs , since p|F . Thus, 

7 

F, \s, and so 3 is odd, proving that y = 4. Suppose that -^ E 22'~1 (mod p) 
2s 

We want to prove that y = 1 in this case. We now have 312s. If 3 is odd, 
F

P-i 
then y = 4 and, as seen above, —^— E -2vFyi^1 (mod p). But, since g|a, 

so that 

2 ="pr = ^ ( F . . 1 + F . + 1 ) = - ^ r - = - 2 ^ d ? > -
This is clearly a contradiction, since p is odd. If 2||3 and y = 2, we have 

F 
a = v - 1 and v3 = 2s. So, by the lemma, - = — E -2r~ (mod p). But, we as-

F _i 2s 

sume that -= E 2 (mod p). Hence, a contradiction. Thus y = 1, and the 
^2 

lemma follows. 

CoSLollaAy: If p = 10m ± 1 = 4m' - 1, then y = 1. 

In fact, one has % ' - 1 = 2 s + 1, s odd, if and only if r = 1. In 
this case, Fp.1 = F2g and, by Theorem 4, y = 1. 

We are now in a position to compute the characteristic exponent a of 
p. It is clear that if y = 4, then a = r; if y = 1, then a = r - 1. We have 
only to look at the case y = 2. 

lkdOK.(Lm Si Let 1 < k <_ r. Then a = r - k and y = 2 if and only if 

Fv -i ^ p - l ^ p - l * _ & 
(4 .4 ) * _ = . . . = — £ E 0 and -f— E -2r k (mod p ) . 

hs F2n-i6
 F2ks 

We see that a is determined by the rank of the first nonvanishing * P - I 

(mod p). 2Js 

VKOO^i Suppose that y = 2 and a = v - 1. By the lemma, we can conclude that 
F 
_p" E - 2 r ' k (mod p). On the other hand, since 2J's £ 0 (mod p) for j = 0, 

. .., /c - 1, we see that (4.4) holds. 
Conversely, suppose (4.4) holds. Then, by Theorem 4, since k > 1, 

y < 4, and y + 1, that is y = 2. Moreover, 6|2*s, but 3|2k'1s. Thus v3 = 2ks 
and a = r - k. Hence the result. 

5. FURTHER PROPERTIES OF y AND SOME INTERESTING RESULTS 

?H.opo&AjLLon 1: For any prime p , y = 2 i m p l i e s 4-1 3-
In f a c t , when p = 10m ± 3, t h i s fo l lows from Theorem 1. When p = 10m ± 1 , 

we prove t h a t 2 | | 3 i m p l i e s y = 1 . As 2 | | $ , y < 4 , and p\F2s, bu t p)(Fs and so 

V i + F a + i E " 0 (mod p ) . 
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But F28_1 = F;^1 + F; and, as s i s odd, FS_1F8+1 = F* - 1. Thus, s i n c e 2s = 
v 3 , we can w r i t e 

Vl E F 3 - l E ^ 2 e - l E - * 8 - 1 * 8 + 1 + Fs E 1 (mod p ) . 

Hence y = 1 , and t h e r e s u l t i s p roved . 
TP JP 

PsiopoA^Uon 2: If p = 10/77 ± 1, then y = 2 if and only if - ^ = ~^- = 0 
(mod p) . * 2s 

This is obvious from what precedes. Practically, however, this can be 
of some interest: to compute y, compute F8 (mod p). If Fs £ 0 (mod p),then 
Fp-i _ 
—— = 0 (mod p) and, thus, y ^ 4. Compute then Fs_i + Fs+1 (mod p) . If it 

does not vanish, then F2s t 0 (mod p) so that y ^ 1 and, thus, y = 2. 

PsiOpO&sUbLon 3: Let p be any given prime number. Then the greatest t such 

that p*|-fg is the greatest £ such that pt\Fp±i. 

In fact, either p = 10m ± 1, p = A3 + 1, or p = 10̂ ? ± 3, p = y$ - 1. By 
(5), this implies 

P P x 

T 1 = XFpX;J £ 0 (mod p) or - ^ - E u i ^ J j 1 £ 0 (mod p) , 

respectively. Hence, Proposition 3. 

6. PROOFS OF PROPOSITIONS 

This section is devoted to the proofs of the propositions stated in 
Section 2, except for (7), for which the reader is referred to The Fibonacci 
Quarterly 8, No. 1 (1970):23-30. 

Vh.00^ 0^ [4] : Since the sequence Fn (mod p) starts with 

FY E l , F2 = l, F3 E 2, ..., Fp.^O, 

it follows from Fn + 2 = Fn + 1 + Fn that the following 3 members of this sequence 
are obtained by multiplying the first 3 one by F&mml so that, for any j = 0, 
..., 3 - 1, F2$ _-• E Fg.iFg. . (mod p). The argument can be applied again to 
prove that ̂ 33 ̂  = ̂ 3-1^3-j and, more generally, that -Fkg_i E £3-î cfc-i) 3 - 1 
(mod p). Proposition (4) then holds in an obvious way. 

VK.00J oj (5) : Recall that 

where <P and - — satisfy y2 - y + 1. From this, it is clear that 

<P*=<PFn +Fn_x and (-1)"= (-^„ + Fn-i-

Then 

E fe k b -k C F Fa_1Fk9 u s ing b inomia l expansion and FQ = 0. 
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Vhool °i [1) ^nd (2): Recall that for any integer m we have 

Fm-iFm + i = Fl + <-Dm. 
Let 77? = @ in this formula. Thus, 

(6.1) Fg2.! E (-1)3 (mod p), 

taking account of F$+1 E ,Fg _ i (mod p). On the other hand, 1 is the smaller m 
such that Fg_i = ̂ m0-i = 1 (mod p) . Recall also that 1 = y3, by the very def-
inition of y. Then, 

(a) suppose 3 odd. Thus, by (6.1), 

F2_1 E -1 so that F3_! f 1 and F ^ = 1. 

Thus y = 4. 

(b) suppose 3 even. Then (6.1) implies that 

F2 = 1 

Since p is a prime, either 

Fg_1 E 1 and y = 1, or F3.2 = -1 and y = 2. 

Hence (2) is proved. 

VKOOI ol (3) : To prove (3), we have only to show that 4|S implies y = 2. For 
this, we show that 

FhX E 0 (mod p) ) 
(6.2) V =^F2X E °  (mod P)-

F,.x + 1 E 1 (mod p) ) 

Suppose that the left member of this implication holds. Then from well-known 
formulas: 

Fh\+1 = 'F2\ + F2X+1 = F2X + F2.\F2\ + 2 " ( - 1 ) 

= F2X^2X + F2X+2> + 1 = 1 (mod p ) . 

Hence 
^2X^2X + F 2 X + 2) E 0 ( m ° d P>-

To p r o v e ( 6 . 2 ) , i t s u f f i c e s t o show t h a t GCD(F2X + F2A + 2>P) = 1- T o d o t h i s , 
s i n c e p\Fh^ i t s u f f i c e s t o prove t h a t GCD(F4X ,F2\ + F 2 \ + 2) = !• B u t 

6 = GCD(F^,F2X + Fzx + 2) = GCD(F 2 X (F 2 A + 1 + FA_J,Fzk + F2X + 2) 
and, as GCD(Fzx,F2X+2) = 1 , 

6 = GCD(F2, + 1 +F2X_1,Fn + 2 +FZX). 

I t i s then eas i ly seen that 

5|(^2X + l + ^2X-l)> «|(^2A-1 + ^2X-3>5 ..., $\F2 = 1. 
Hence (3). 

Vkooj 0& (6) -' Recall first that ( *r J = 1 or -1, according that p is or is 

not a quadratic residue mod 5, that is, p = 10m ± 1 or p = 10m ± 3, respec-
tively. Thus, we have to show that 

(%-\ = ±1 =>Fp E ±1 (mod p) and 31 (p + 1). 
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p-i 

Recall also that \£j = (-) = 5 2 (mod p) . Now we prove that Fp = ±1 (mod 

p). We have 

P /5 J z 3 k odd 

since p|C2 +1 for each k E <Q, 1, . .., *-——>. As 2P = 1 (mod p) , we have 
P-i ^ z ' 

Fp E 5 2 (mod p) , 

so that (-=-) E Fp (mod p). When ( —j = 1, we can give another proof. There 

exists a p such that p2 E 5 (mod p) . Then, for such a p, 6 = —(p + 1) and 

6' = y(p - 1) are roots of x2 - x - 1 = 0 (mod p) and thus, 

, 3,n E 0'*-i + 0'"-2 (mod p). 

I t i s then e a s i l y seen t h a t 

(6 .3 ) Fn E i [ G n - 0 '»] (mod p ) . 

But, as p i s a p r ime , 0 P ~ E 0 f P _ 1 E l (mod p) by Fermatf s theorem. Now from 
(6 .3 ) i t i s obvious t h a t 

Fp.± E 0 (mod p) 

Fp E 1 (mod p) . 

Now, to prove that 31 (p + 1) according that (—) = -1, it will suffice 

to develop Fp + 1 in a way similar to the method used above for Fp . 
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GENERATING FUNCTIONS OF CENTRAL VALUES 
IN GENERALIZED PASCAL TRIANGLES 
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1. INTRODUCTION 

In this paper we shall examine the generating functions of the central 
(maximal) values in Pascal1s binomial and trinomial triangles. We shall 
compare the generating functions to the generating functions obtained from 
partition sums in Pascalfs triangles. 

Generalized Pascal triangles arise from the multinomial coefficients 
obtained by the expansion of 

(1 + x + x2 + • • • + x*-1) , j >_ 2, n >_ 0, 

where "n" denotes the row in each triangle. For j = 2, the binomial coef-
ficients give rise to the following triangle: 

1 
1 1 
1 2 1 
1 3 3 1 
1 4 6 4 1 
etc. 

For j = 3, the trinomial coefficients produce the following triangle: 

1 
1 1 1 
1 2 3 2 1 
1 3 6 7 6 3 1 

The partition sums are defined 

M rr i\ 
S(n,j,k,r) = £ [ r +

n
i / c I ; 0 < r < k - 1, 

where 
M = [U ~ ̂  ~ r ] , 

[ ] denoting the greatest integer function. To clarify, we give a numerical 
example. Consider 5(6,3,4,2). This denotes the partition sums in the sixth 
row of the trinomial triangle in which every fourth element is added, begin-
ning with the second column. The 5(6,3,4,2) = 15 + 45 + 1 = 61. (Conven-
tionally, the column of lfs at the far left is the 0th column and the top row 
is the 0th row.) 

In the nth row of the j-nomial triangle the sum of the elements is j n . 
This is expressed by 

S(n,j,k,0) +S(n9j,k9l) + ••• + S(n,j,k9k -1) = j". 
Let 

S(nj9k90) = (jn + An)/k 

58 
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S(nJ,k,l) = Un + Bn)/k ... 
S(nJ,k,k-l) = (jn + Zn)/k. 

Since S(Q,j9k,Q) = 1, 

s(o,j,k,i) = 0 ... s(o9j9k9k-i) = 0, 
we can solve for A Q 9 BQ9 . .., Z 0 to get 4 0 = k - 1, Z 

Now a departure table can be formed with A Q 9 

row. The term "departure" refers to the quantities, 
part from the average value jn/k. Pascal's rule of addition is the simplest 
method for finding the successive rows in each departure table. The depar-
ture tables for 5 and 10 partitions in the binomial triangle appear below. 
Notice the appearance of Fibonacci and Lucas numbers. 

Table 1 

SUMS OF FIVE PARTITIONS IN THE BINOMIAL TRIANGLE 

>o = "!> 
B0, . . . . 
A B 

..., z0 = -1. 
, Z0 as the 0th 
. . . , Zn that de-

4 
3 
1 
-3 
11 
22 

-1 
3 
6 
7 
5 
-7 

-1 
-2 
1 
7 

14 
18 

-1 
-2 
-4 
-3 
4 
18 

-1 
-2 
-4 
-8 
-11 
-7 

Table 2 

SUMS OF TEN PARTITIONS IN THE BINOMIAL TRIANGLE 

-1 -1 -1 -1 -1 -1 -1 -1 
8 

16 
22 
24 
18 

-2 
6 
22 
44 
68 

-2 
-4 
2 
24 
68 

-2 
-4 
-8 
-6 
18 

-2 
-4 
-8 
-16 
-22 

-2 
-4 
-8 
-16 
-32 

-2 
-4 
-8 
-16 
-32 

-2 
-4 
-8 
-16 
-32 

-2 
-4 
-8 
-16 
-32 -22 

The primary purpose of this paper is to show that the limit of the gen-
erating functions for the (H - L) / k sequences is precisely the generating 
functions for the central values in the rows of the binomial and trinomial 
triangles. The (H - L)Ik sequences are obtained from the difference of the 
maximum and minimum value sequences in a departure table, divided by k9 where 
k denotes the number of partitions. 

2. GENERATING FUNCTIONS OF THE (H - L)Ik SEQUENCES 
IN THE BINOMIAL TRIANGLE 

Table 3 is a table of the (H - L)Ik sequences for k = 3 to k = 15 par-
titions . 

The generating function of the maximum values in the binomial triangle 
is 

1 + 2x - A - kx7 

A - 4x2 V 2^ 

We shall examine this and show it to be the limit of the generating functions 
of the (H - L)Ik sequences. 
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Table 3 

(H - L)/k SEQUENCES FOR k = 3 TO k = 15 

10 11 12 13 14 15 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

* 1 
1 
2 
2 
4 
4 
8 
8 
16 
16 
32 
32 
64 
64 

128 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 
610 

1 
1 
2 
3 
6 
9 

18 
27 
54 
81 
162 
243 
496 
729 

1458 

1 
1 
2 
3 
6 
10 
19 
33 
61 
108 
197 
352 
638 
1145 
2069 

1 
1 
2 
3 
6 
10 
20 
34 
68 
116 
232 
396 
792 

1352 
2704 

1 
1 
2 
3 
6 
10 
20 
35 
69 
124 
241 
440 
846 
1560 
2977 

1 
1 
2 
•3 

6 
10 
20 
35 
70 

125 
250 
450 
900 
1625 
3250 

1 
1 
2 
3 
6 
10 
20 
35 
70 

126 
251 
460 
911 
1690 
3327 

1 
1 
2 
3 
6 
10 
20 
35 
70 

126 
252 
461 
922 
1702 
3404 

1 
1 
2 
3 
6 
10 
20 
35 
70 

126 
252 
462 
923 
1714 
3417 

1 
1 
2 
3 
6 
10 
20 
35 
70 

126 
252 
462 
924 
1715 
3430 

1 
1 
2 
3 
6 
10 
20 
35 
70 

126 
252 
462 
924 
1716 
3431 

Consider the relation Sn + 2 = Sn + 1- x2Sn, expressed by the equation 

K2 - K + x2 = 0. 

The two roots are 

v i + A - kx2 i - A - kx2 

Xi = and K2 = , Kx > K2 . 

Therefore, 
Sn+1 

lim —Q— = K} = L 

by Gauss's theorem that the limit is the root of the maximum modulus. 
The generating functions for the odd partitions, k = 2m + 1, were found 

to have the form 

£>m - 1 

bm — XOrr, 

The generating functions for the even partitions, k = 2m9 were found to have 
the form 

Sm - 1 + Sm - 2 

Sm — x S„ Jm-2 

We show these two forms have the same limit. 

Sn- 1 ^n- 1 
l im 
tt-*-oo £>n — X&n„l 

£>n - 1 Sn. 
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where 

£>n-l 

1 
L - x 

+ $n-2 

X Sn _2 

i + / T 

i 

Sn _ ± xSn _ 2 

S.n - 2 $n - 2 

Sn % ^n - 2 

^ n - 2 ^rc-2 

1 

- 4a:2 - 2x 1 
2 

(l + 2x - A -

L + a: 1 
r 2 2 r 
L - x L - x 

2 
- 2x + / l - 4a:2 

4a:2 \ 

We pause now to consider the generating function for 

1 + 2x + 6xz + 20a:d + 70aT + • •- + ( )xn + ••••£> / l - 4a; 

(see [ 1 ] , p . 4 1 ) . 1 
Now the Catalan number •——( generating function is 

n + l \ n / 6 & 

^ / \ 1 - / l - 4a: 
C ( X ) = 2^ 

Thus, 

/ l - 4 ] r 
r — ) = 1 + 3x + 10a:2 + 35a:3 + 
2x 

( see [2] ,• p . 8 ) . 
We observe the following relationship between these two series: 

(1 + 2x + 6x2 + 20a:3 + 7 (to1* + ••• - l)/2a? 

2a: (1 + 3a: + 10x2 + 35a:3 + 
2a: 

Next we wish to blend these two series. Replace x with x 

1 /l - /l - 4a: \ 

/I - 4a: 
2 

/l - 4a:2 
1 + 2a:2 + 6a:4 + 20a:6 + 70a:8 + 

We multiply the latter by xy after replacing x with x . 

A - 4a:2 V 2a: 

1 X kx X x + 3a:3 + 10a:5 + 35a:7 + 

Therefore, the generating function for the blend, 
-.5 _j_ on^.6 
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which is precisely the value of . Thus, we see that the limit of the 
h — X 

generating functions for the (H - L) Ik sequences is precisely the generating 
function for the maximum values in the rows of the binomial triangle. 

3. GENERATING FUNCTIONS OF THE {H - L)Ik SEQUENCES 
IN THE TRINOMIAL TRIANGLE 

Table 4 exhibits the (H -L)/k sequences for k = 4 to k = 16 partitions. 
The generating function of the maximum values in the trinomial triangle is 

l//l - 2x - 3x2. 

Table 4 

(H - L)/k SEQUENCES FOR k = 4 TO k = 16 

k = = 4 

1 
1 
1 

5 

1 
1 
2 

6 

1 
1 
3 

7 

1 
1 
3 

8 

1 
1 
3 

9 

1 
1 
3 

10 

1 
1 
3 

11 

1 
1 
3 

12 

1 
1 
3 

13 

1 
1 
3 

14 

1 
1 
3 

15 

1 
1 
3 

16 

1 
1 
3 

5 11 14 17 18 19_ 19 19 19 19 19 19 
8 21 31 41. 45 49 50 51. 51 51 51 51 
13 43 70 99 114 129 134 139 140 141 141 141 
21 85 157 239 288 337 358 379 385 391 392 393 

Consider the relation Fn + 2 = Fn+1 + Fn9 which is expressed by the equa-
tion 

and 

thus 

2 

F 
Ln+l 

l i m jn 

Fn + 2 
Fn+1 

L = 1 + • 

L2 = L + 

L2 - L -

1 

+ 

1 
L9 

1, 

1 

= 0 . 

L 

1 
Fn + 1 

Fn 

= 0 . 

Next consider the relation Sn + 3 =Sn + 2 - %Sn + i + %3Sn> expressed by the 
equation 

K3 - K2 + xK - x3 = 0, 

or in factored form 

(K - x)(K2 - (1 - x)K + x2) = 0. 
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Sn+l 
lim — - — = L9 
n + °°  on 

which is the root of the maximum modulus by Gaussfs theorem. Further, 
Sn -i 

l im 
n"°° Sn + 1 - x2Sn.1 A - 2x - 3a?2 ' 

which i s t h e g e n e r a t i n g func t ion of t h e maximum v a l u e s of t h e t r i n o m i a l t r i -
a n g l e . 

Assume 

Sn Sn_± 

Sn + 1 - X1Sn_1 ^ ± _ ^ L* - ^ 

where 
S. 

L - l im 

Sn-i 

J_J-l.ll q, 

and 
_2 , ^n + 1 ^n 
L = l im n -*• °° ^ S-n-1 

The r o o t s of 

X3 - X2 + a?Z - x 3 = 0 

1 - x - A - 2x - 3x2 

X, ^ 5 

and 
1 - x - A - 2x - 3x2 

2 _ x + A - 2a? - 3a?2 
The dominant r o o t i s r , which i s L. Thus, 

r 2 _ (1 - x)2 - 2x2 + (1 - x)A - 2x - 3x2 

2 ~ 

and 
r 2 2 (1 - a?)2 - 4a?2 + (1 - x)V± - 2x - 3x2 

L — X — 7y 

T h e r e f o r e , 

L 1 - x + A - 2a; - 3a?2 

L2 - x2 (1 - x)2 - 4a?2 + (1 - x)A - 2a: - 3a; 2 

1 - x + A - 2a? - 3a?2" 

(1 - 2a? - 3a?2) + (1 - x)A - 2a? - 3a?2 

/ l - 2a? - 3a?2 
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The generating functions for the odd cases were found to have the form 

Sn(x) 

Sn+1(x) - x2Sn_1(x) 

i 

as follows: 
The polynomials Sn with the recurrence Sn + 3 = Sn+2 - xSn+1 + x3Sn are listed 

5 i = 1 
52 = 1 
53 = 1 - x 

Sfy = 1 - 2x + x3 

S5 = 1 
Ss = 1 - kx + 3x2 + 3x3 - 2xh 

S7 = 1 - 5x + 6x2 + 3x3 - bxh + xs 

etc. 

Thus, the generating functions for N = 2n 4- 1 are as follows: 

* - 5 - * 

7 is 

11 is 

13 is 

s3 

sh 

Ss 

Ss 

s7 

- x2Si 

s3 
- xzSz 

Sn 

- x2S3 

Ss 

- x2S,t 
Se 

- x2S5 

Sv 

1 - x - x2 

1 - x 
1 - 2x - x2 -

1 - 2x + x3 

x3 

1 - 3x + x2 + 2x3 

1 -

1 -

1 

kx + 2;c2 + 5x3 - 2xh - x5 

1 - kx + 3x2 + 3x3 - 2xh 

5x + 5x2 + 6x3 - lxh - 2x5 + x& 

- 5x + 6x2 + 3x3 - 6xh + xs 

N = 15 is 
58 - ;r2£6 1 - 6x + 9x2 + 5x3 - 1 5 ^ + 5x6 

Before the generating functions for the even cases are given, the Lucas, 
Ln(x), and Fibonacci, Fn (x) , polynomials for the factor K2 - (1 - x)K + x 
will be derived. The Lucas and Fibonacci polynomials are defined: 

Ln(x) = an(x) + bn(x) 

Fn(x) = an(x) - bn(x)/a(x) - 2?(a?) 

where a and b are the roots of the polynomial equation 

K2 - A(x)K + B(x) = 0. 

The recurrence relation for the Lucas polynomials is 

Ln+2(x) = (1 - x)Ln+1(x) - x2Ln(x). 
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.e polynomials are 

L0 = 2 

L1 = 1 - x 

Li 2 = 1 "" 2X — X 

L3 = 1 - 3x + 2x3 

Lh = 1 - kx + 2a;2 + 4x3 

L5 = 1 - 5x + 5x2 + 5x3 

- X* 

- 5xh -- x5 

etc. 

The recurrence relation for the. Fibonacci polynomials is 

Fn + 2(x) = (1 " x)Fn+1{x) 
The polynomials are 

F0 = 0 

Fx = 1 

F2 = 1 - x 
F3 = 1 - 2x 
Fk = 1 - 3x + x2 + x3 

F5 = 1 - 4x + 3x2 - 2x3 -

- xzFn(x) 

- xk 

etc. 

The generating functions for N = kn were found to have the fo 

Fn 

and the generating functions for N = kn + 2 were found to be 

Fn ~ *2Fn-l 

Ln - x Ln_i 

They are listed below. 
Fi 

N = 4 is LY I - x 

i 
is -

F, - x2Fn 

L1 - x2LQ 1 - x - 2x2 

. ^ 2 i - x 
is 

L2 i _ 2x - x2 

F2 ~ X2F1 1 - X 
N = 10 is — -1 X 

L - x2Ll 
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N- 12 is £• = - X ' 1 X 

3 1 - 3x + 2x3 

„ , 7 . F3 ~ * F2 \ - 2x - x2 + x3 
N = 2.4 is = 

L3 - ;r2L2 1 - 3x - x2 + 4#3 + xh 

_, r . r^ 1 - 3x + x2- + ar 
JV = 16 is — = 

•̂  1 - 4a: + 2ar + 4xd - x* 

Lastly, we show 
F i Fy, - x Fw . 

lim — = and lim 
n^°° Ln / l - 2x - 3x2 n^co Ln - x2Ln.1 A - 2x - 3x2 

We r e c a l l t h a t t h e e q u a t i o n 

K2 - (1 - x)K + x2 = 0 

has r o o t s 
(1 - x) + / ( l - 2 0 2 -- 4x2 , _, (1 - x) - / ( l - x ) 2 - 4a:2 

i ^ = : ~ - and K0 

We d e f i n e n n 

F = 

and 
* 1 " * 2 

Tn , 7,n Ln = Kr; + K; 

Note t h a t 

Thus, 

Kl - K2 = A - 2x - 3x 2 . 

L" (K1 - K2){Kn
x + K") 1 + 

K l l < « ! - * 2 > 

Now, s i n c e Z > Z , 

Jf2\" 
1 - W. ^_ 

l i m ——• = = L. ikh 
We use this result to prove the second limit = L. 

2
Fn-l 

X 
Fn X Fn~l l>n-l Ln-1 L2 - X2L 

l im 
Ln 2

Ln-l L - X2 
X 

L n _ ! L n-1 



1979] GENERATING FUNCTIONS OF CENTRAL VALUES 67 
IN GENERALIZED PASCAL TRIANGLES 

Fr, F, n-1 
Fn-i Fn_1 Ln_1 

= L 2 

4. GENERATING FUNCTIONS OF THE (H - L)/k SEQUENCES 
IN A MULTINOMIAL TRIANGLE 

We challenge the reader to find the generating functions of the (H - L)/k 
sequences in the quadrinomial triangle. We surmise that the limits would be 
the generating functions of the central values in Pascal's quadrinomial tri-
angle . 
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SOLUTION OF V * 1 ) = \x+i) I N TERMS OF FIBONACCI NUMBERS 

JAMES C. OWINGS, J R . 
University of Maryland, College Park, MD 20742 

In [2 , pp . 262-263] we so lved t h e Diophan t ine e q u a t i o n P J = ( ^ J 

and found t h a t (x,y) i s a s o l u t i o n i f f for some n >_ 0, 

(x + 1,2/ + 1) = ( £ /(4fc + 1), J /(4fc + 3)), 
\ k - 0 k = 0 / 

where / ( 0 ) = ^ f{±) = ^ f{n + 2) = f(n) + f(n + 1 } . 

We show h e r e t h a t (x,y) i s a s o l u t i o n i f f for some n >_ 0 , 

(x + l.z/ + 1) = (f(2n + l)f{2n + 2 ) , f(2n + 2)f(2n + 3 ) ) , 

i n c i d e n t a l l y d e r i v i n g t h e i d e n t i t i e s 

f(2n + l)f(2n + 2) = ] T / ( 4 k + 1) , 
k = o 

n 
f(2n + 2)f(2n + 3) = ] T /(4fe + 3 ) . 

k = 0 
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We 

Briefly, in [2], we solved (̂  ) = f ^ as follows. When multiplied 
out this equation becomes 

x2 + y2 - 3xy - 2x - 1 = 0. 
Now, if (x,y) is a solution of this polynomial equation, so are {x1 ,y) and 
(x,yr), where xr = -x + 3y + 2 and y ' = -y + 3x, because 

0 = x2 + y2 - 3xy - 2x - 1 = y2 + x(x - 3y - 2) - 1 
= y2 + x(-x') - 1 = y2 + x'(-x) - 1 

= y2 + xf(x' - 3y - 2) - 1 = (x')2 + z/2 - 3x 'y - 2x' - 1, 

and similarly for Gr,zyf). So from the basic solution x = 0, y = 1 we get the 
four-tuple 

(y r,x,y,xf) = (-1,0,1,5) 

in which each adjacent pair of integers forms a solution. Repeating the pro-
cess gives 

(-1,-1,0,1,5,14); 

doing it twice more we get 

(-3,-2,-1,-1,0,1,5,14,39,103). 

have now found three solutions to y ^ J — ̂ »̂_j_̂ y' namely (0,1), (5,14), 

(39,103). In [2] we showed, with little trouble, that all integral solutions 
to the given polynomial equation may be found somewhere in the two-way infi-
nite chain generated by (0,1). (See Mills [1] for the genesis of this type of 
argument.) Hence (x,y) is a solution to the binomial equation iff 0 <_x < y 
and (x,y) occurs somewhere in this chain. If we let 

(a:(0),2/(0)) = (0,1), (tf(l),2/(l)) = (5,14), etc., 

and use our equations' for xr and y', we find that 

x(n + 1) = -x(n) + 3y{n) + 2, 

y(n + 1) = -y(n) + 3x(ri). 

(WARNING: In [2] the roles of x and y are reversed.) 
We prove our assertion by induction on n, appealing to the well-known 

identities 

/2(2n + 2) + 1 = f(2n + ±)f(2n + 3), 

/2(2n + 1) - 1 = f(2n)f(2n + 2). 

Obviously, x(0) + 1 = /(l)/(2) , z/(0) + 1 = /(2)/(3). So assume 

(x(n) + 1,2/(n) + 1) = (f(2n + l)/(2w + 2) ,/(2n + 2)/(2w + 3)). 

Then 

x{n + 1) + 1 = 3y(n) - x{n) + 3 = 3(y(n + 1) + l) - (x(n) + l) + 1 
= 3f(2n + 2)/(2n + 3) - f(2n + l)f(2n + 2) + 1 
= 2/(2n + 2)/(2n + 3) + f(2n + 2)(f(2n + 1) + f(2n + 2)) 

- f(2n + ±)f(2n + 2) + 1 
= 2/(2n + 2)/(2n + 3) + (/2(2n + 2) + l) 
= 2/(2w + 2)f(2n + 3) + f(2n + ±)f(2n + 3) 
= f(2n + 2)/(2n + 3) + /2(2n + 3) = f(2n + 3)/(2n + 4). 
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So, 
y(n + 1) + 1 = 3x(n + 1) - y(n) + 1 

= 3 (^ (n + 1) + 1) - (z/(n) + 1) - 1 
= 3f(2n + 3 ) / ( 2 n + 4) - f(2n + 2)f(2n + 3) 
= 2f(2n + 3 ) / ( 2 n + 4) + f(2n + 3 ) ( / ( 2 n + 2) 

- f(2n + 2 ) / ( 2 n + 3) 
= 2f(2n + 3 ) / ( 2 n + 4) + (f2(2n + 3) - l ) 
= 2f(2n + 3)f(2n + 4) + / (2w + 2 ) / ( 2 n + 4) 
= f(2n + 3 ) / ( 2 n + 4) + f2(2n + 4) 
= f(2n + 4) / (2w + 5 ) , 

completing the proof. 
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THE DIOPHANTINE EQUATION Nh2 = c2 + N + 1 

DAVID A. ANDERSON and MILTON W. LOYER 
Montana State University, Bozeman, Mon. 59715 

Other than b = c - 0 (in which case N = -1) , the Diophantine equation 
Nb2 = c2 + N + 1 has no solutions. This family of equations includes the 
1976 Mathematical Olympiad problem a2 + b2 + c2 = a2b2 (letting N = a2 - 1) 
and such problems as 6b = a2 + 7, a2b2 = a2 + a2 + 1, etc. 

Noting that b2 ^ 1 (since N ^ a2 + N + 1), one may restate the problem 
as follows: 

Nb2 = c2 + N + 1 

M?2 - /!/ = c2 + 1 

/l/0>2 - 1) = o2 + 1 
N = (c2 + l)/(£2 - 1). 

Thus the problem reduces to showing that, except as noted, (a2 + 1)/(b2 - 1) 
cannot be an integer. [This result demonstrates the interesting fact that 
a2 i -1 (mod b2 - 1), i.e., that none of the Diophantine equations a2 = 2 
(mod 3), c2 =7 (mod 8), etc., has a solution.] 

It is well known [1, p. 25] that for any prime p, p\o2 + 1 =^p - 2 or 
p = km + 1.* 

b2 - l\a2 + 1 =>b2 - 1 = 2s(4w1 + 1) (4w2 + 1) ••• (4m + 1) 

= 2s (4M + 1) 

b2 = 2s(4M) + 2s + 1 

"The result of this article is not merely a special case of this theo-
rem [e.g., according to the theorem (c2 + l)/8 could be an integer], 

- 1 
+ f(2n + 3)) 
- 1 
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s + 0, since s = 0=^b2 = ^M+2 

=^b2 is even 

=> b is even 

(b/2)(b) is even 

but (b/2)(b) = Z?2/2 = 2M + 1, which is odd 

s > 0 =^b2 Is odd 

=3> Z) is odd, so let b = 2k + 1 

(2fe + l) 2 = 2s (4M) + 2s + 1 

4k2 + kk + 1 = 2s (4M) + 2s + 1 

4(k2 + fe - 2SM) = 2s 

=>s >. 2 

=> 4 i s a f a c t o r of Z?2 - 1 

^ > 4 | c 2 + 1 

=^ c2 + 1 = 4n 

=̂  c is odd, so let c = 2h + 1 

(2/z + l) 2 = 4n - 1 

kh2 + 47z + 1 = 4n - 1 

4/z2 + .47z + 2 = 4n 

2^2 + 2/z + 1 = 2n 

But this is a contradiction (since the right-hand side of the equation 
is even, and the left-hand side of the equation is odd). So, (c +1)/(Z? - 1) 
cannot be an integer, and the Diophantine equation Nb2 := o2 + N + 1 has no 
nontrivial solution. 

Following through the above proof, one can readily generalize 

to 
Nb2 = o2 + N + 1 

Nb2 = c2 + tf(4Zc + 1) + l. 

Just letting N = 1, one includes in the above result such Diophantine equa-
tions as 

b2 - c2 = 6, £2 - c2 = 10, 

and, in general, 

b2 - c2 = 2 (mod 4). 
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MATRIX GENERATORS OF PELL SEQUENCES 

(1) 

JOSEPH ERCOLANO 
Baruch College, CUNY 

SECTION 1 

The Pell sequence {Pn} is defined recursively by the equation 

P = ?P + P 

n = 2, 3, ..., where Pl = 15 P2 = 2. As is well known (see, e.g., [1]), the 
members of this sequence are also generated by the matrix 

M 
1 

|1 0| 

since by taking successive positive powers of M one can easily establish that 

My 
P P 
r n +1 rn 

Related to the sequence {Pn} is the sequence {Rn}, which is defined recur-
sively [1] by 

Rn+i - 2Rn + Rn-ii 

2, 3, > R i R? In what follows, we will require two other 
Pell sequences; they are best motivated by considering the following problem 
(cp. [2]): do there exist sequences ip \ , p1 = 1, satisfying (1) which are 
also "geometric" (i.e., the ratio between terms is constant)? These two re-
quirements are easily seen to be equivalent to p satisfying the so-called 
"Pell equation" [1]: 

(2) P 2p + 1. 

The positive root of this equation is ip = y(2 + /8) , and one easily checks 

that the sequence {ipn} is a "geometric" Pell sequence. In a similar manner, 

by considering the negative root in (2), tyr = y(2 - /8), one obtains a second 

geometric Pell sequence \^)rn}. (Since ipr = —r-, these two sequences are by no 

means distinct. However, it will be convenient in what follows to consider 
them separately.) That these four sequences are related to each other is ap-
parent from the following well-known Binet-type formulas, which are verified 
mathematically by induction [1]: 

pn = ̂ : l?, Rn = ipn + ip'\ r = i(j?„ +pnm. 

Our purpose in this paper is threefold: we will give a constructive 
method for finding all possible matrix generators of the above Pell sequences; 
we show that, in fact, all such matrices are naturally related to each other; 
and finally, by applying well-known results from matrix algebra, we establish 
the above Binet-type formulas and several other well-known Pell identities. 

71 
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SECTION 2 

A direct calculation shows that the matrix 

I2 1l 
M = 

|l 0| 
satisfies the Pell equation; i.e., 

Mz = 2M + I, 

where I 
1 0 

0 
. Let A 

x y 

U V 
, where x, y, u9 V are to be determined 

subject only to the condition that xv - yu f 0. Substitution of A into (2) 
results in the following system of scalar equations: 

(3.1) x2 - 2x - 1 + yu = 0 

(3.2) (x + v - 2)y = 0 

(3.3) (x + v - 2)u = 0 

(3.4) v2 - 2v - 1 + yu = 0 

We now investigate possible solutions of these equations. Since the tech-
niques are similar to those used in [3], we omit most of the details. 

Co6e 7: y = 0 

Equations (3.1), (3.4) reduce to the Pell equation, implying 

x = {*, ^' } 5 v = {^, *'}. 
(a) If u = 0, we obtain the following matrix generators: 

U ol 
^n 

ijj 0 

0 iK 

\\)r 0 

0 ijJ 

^ 
0 i); 

i(jf 0 

0 ip' 

(b) If u f 0, (3.3) implies # + y = 2, and hence, that 

I ip -f 0 I 
•Yn 

ij; 0 
¥„ 

^ 

The nth power of the matrix ¥0w is easily shown to be 

}pn 0 

\Pnu ty,n 

where {Pn } is the sequence defined in (1). 

1 n 
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Co6e 2: y 1 0 

(4.1) 

(a) If u = 0, the situation is similar to that of Case 1(b), and we 
omit the details. 

(b) Suppose u + 0. Equation (3.3) implies x = 2 - v—this is consis-
tent with (3.2)—and substitution for x in (3.1) gives, after col-
lecting terms 

V2 - 2v - 1 + yu = 0, 

which is consistent with (3.4). Thus, the assumptions y + 0, u + 0 
result in the following reduced system of equations: 

1 
(2 ± /8 - kyu) 

(4.2) v, 
Before investigating some matrix generators corresponding to solutions of the 
equations (4.1), (4.2), we pause to summarize our results. 

We have been tacitly assuming that for a matrix A to be a generator of 
Pell sequences it must satisfy (2), the Pell equation. However, since our 
prototype generator is the matrix 

M 

whose characteristic equation is easily seen to be the Pell equation (2), and 
since this latter equation is also the minimal equation for M, we would like 
to restrict our matrices A to those which also have the latter property. The 
initial assumption on A9 xv - yu 4- 0, rules out, e.g., a matrix of the form 

ol 

0 

which evidently satisfies (2). We would, however, also like to rule out ma-
trices of the form ¥x and ^3 which satisfy (2) but do not have (2) as minimal 
equation. Thus, the following 

V(L^AjlLtiovii A 2 x 2 matrix A = 
y 

is said to be a nontrivial generator 
\u v | 

of Pell sequences if xv - yu 7̂  0, and its minimal equation is the Pell equa-
tion (2). 

The above discussion then completely characterizes nontrivial genera-
tors of Pell sequences, which we summarize in the following: 
Tko.on.tm: A 2 x 2 matrix A is a nontrivial generator of Pell sequences if and 
only if it is similar to 

^ n 

0 I/J; 

Rma/ik 1 : Evidently, M is similar to ¥0. [We show below that M is obtained 
as a nontrivial generator by an appropriate choice of solutions to the system 
(4.1), (4.2).] In light of this similarity an indirect way of obtaining non-
trivial generators is to form the product §^0$-1, for any nonsingular matrix 
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SECTION 3 

Examptd 1: If we limit y, u to be positive integer values in (4.1), then 
there is a unique pair which keeps the radicand positive: y = u = 1. This 
results in two sets of solutions: 

y 1, u ~ 1, v = 2, x 0 

and 

y = 1, u = 1, v = 0, x = 2. 

The latter set results in the "M-matrix" 

U II 

where 

M 

M n = 

1 0 

Pn + l 

(Cp. §1.) Since Mn is similar to ¥0, we conclude that the traces and deter-
minants of these two matrices are the same. Hence, 

(5) 

(6) 

•Pn + l + ^n-

P P rn + lrn-l = ("I)", 

two well-known Pell identities [1]. 

Example 2: In (4.1), take y = 2, u = 1. Then one obtains 

Il 2| 
tf = 

| i i 
and one easily checks that 

2Pn 
Nn = 

2" n 

2"̂ n 

Similarity of Nn with ^Q implies (trace invariance) that 

(7) Rn = ^n + f* 

and that (determinant invariance) 

(8) Ei 8Pn2 = A(-l)n. 

Whereas, similarity of Nn with Mn implies, respectively (by trace and deter-
minant invariance), that (cp. [1]) 

(9) 

(10) 

+ P. 

*».= ^Pn + lPn-l +Pn)-
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Example 3: In (4.1), take y = 2, u = - 1 ; one possible set of solutions for 
x and v is, respectively, x = 3, v = - 1 , and we obtain 

H = 
-1 2 

-1 3 

-yi?n _ i 2P, 

1 
Pn+1 

Similarity of # n with ¥" gives (cp. [1]) 

(ID 

(12) 

Hott 7: 

Rn + 1 ~ ^n- 2(ljjn + l|;'n) 

8Pf *»+l*»-l = ^ ( ~ D n -

Lines (12) and (8) imply that 

Rn ~ Rn+lRn-l = 8 ( - l ) , 
or 

Rn+1Rn-l - Rl = 8 ( - l ) " + 1 . 

(Cp. [1 ] . ) 
Similarity of Hn with Mn gives 

(l^) Pn + 1 + ^n-l = 2"(^n + l - ^n-l) 

(14) *„ + ! * » - 1 = 4(3Pn
2 - Pn + 1 P n . ! ) . 

Similarity of #" with /!/" gives (cp. [1]) 

(15) 

(16) 

Rn + 1 Rr 2R„ 

K + Rn + lRn-l = 16Pn2 

RdmOJik 1' Clearly, the computing of further matrix generators can be carried 
out in the same fashion as above. (The reader who is patient enough may ob-
tain as his/her reward a new Pell identity.) In the next section, we concen-
trate our efforts on establishing the classical Binet-type formulas mentioned 
in §1. To this end, we will require not only the eigenvalues but the eigen-
vectors of two of our matrix generators. 

SECTION k 

In (4.1), set y = 0, u ̂  0, but, for the time being, u otherwise arbi-
trary. From §1, we know that 

ip 0 

u \\)r 

i)n o 

Pnu il)'n 
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An eigenvector corresponding to the eigenvalue Jp is computed to be 

I 2/2 I 

while an eigenvector corresponding to IJJ ' is 

2 0| 

Now take u = /5", set S 

, and simply denote ^ ^ by ¥/2- BY similarity, XY/j ~ S^QS > which 

implies that ^ = CTQn5_1, and finally that 

(17) y^s = svn
0. 

Writing out line (17) gives 

(18) 
i>n 0 

\P„/I ^» 

Multiplying out in (18) , we have 

2\pn 0 

\Pn2/2 + \\)m \l)rn 

2 

1 

0 

1 

2 

1 

ol 
l | 

Hn 

1° 
0 

i f j ' n 

2i(jn 0 

which implies that Pn 2/2" + i^'n = i(jn; or, recal l ing that i|j -i(j ' = 2/5", we have 

(19) 

the classical Binet-type formula. ., 
To obtain the last of the Binet-type formulas, viz., \\)n = y(i?„ + Pn/8), 

we use the matrix 

N = 
|1 1| 

A pair of eigenvectors corresponding to ip, \pr are computed to be 

1/2 V2I 
, and proceeding as above, we have that Setting T = 

i.e., that 

/5" 

1 

-/2 

1 

1 1 

o n -̂̂ n 

P 77 rn 2 

/5" -/2 

1 1 1 1 

l(;n 0 

0 ^'n 
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M u l t i p l y i n g out g ives 

—Rn + 2Pn 

^Pn +\*n 

-\-Rn + 2Pn 

-V2Pn + \Rn 

/ 2 i p n - /2~i |j 'n 

i\)n i\)fn 

which i m p l i e s t h a t 

V = /2P n + | i ? n = y ( / 8 P n + i ? n ) . 
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TWO THEOREMS CONCERNING HEXAGONAL NUMBERS 

WILLIAM J. O'DONNELL 
Sayre School, Lexington, KY 40506 

Hexagonal numbers are the subset-of polygonal numbers which can be ex-
pressed as Hn = In - n, where n = 1, 2, 3, ... 
numbers can be represented as shown in Figure 1. 

Geometrically hexagonal 

Figure 1 

THE FIRST FOUR HEXAGONAL NUMBERS 

Previous work by Sierpinski [1] has shown that there are an infinite 
number of triangular numbers which can be expressed as the sum and difference 
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of triangular numbers, while Hansen [2] has proved a similar result for pen-
tagonal numbers. This paper will present a proof that there are an infinite 
number of hexagonal numbers which can be expressed as the sum and difference 
of hexagonal numbers. 

A table of hexagonal numbers is shown in Table 1. 

1 
231 
861 

1891 
3321 
5151 
7381 

10011 
13041 
16471 

6 
276 
946 

2016 
3486 
5356 
7626 

10296 
13366 
16836 

Table 1 

THE FIRST 100 HEXAGONAL NUMBERS 

15 
325 

1035 
2145 
3655 
5565 
7875 

10585 
31695 
17205 

28 
378 

1128 
2278 
3828 
5778 
8128 

10878 
14028 
17578 

45 
435 

1225 
2415 
4005 
5995 
8385 

11175 
14365 
17955 

66 
496 

1326 
2556 
4186 
6216 
8646 

11476 
14706 
18336 

91 
561 

1431 
2701 
4371 
6441 
8911 

11781 
15051 
18721 

120 
630 

1540 
2850 
4560 
6670 
9180 

12090 
15400 
19110 

153 
703 

1653 
3003 
4753 
6903 
9453 

12403 
15753 
19503 

190 
780 

1770 
3160 
4950 
7140 
9730 

12720 
16110 
19900 

It is noted that 

H„ - H n-l [2nz 

2n2. 

= 4n 

We observe that 

(a) H12 = H5 + Hu 

(b) H33 = H9 + H3Q 

(c) HQZ = Hl3 + HQl 

In each instance Hm 

- n 

3. 

n] - [2(n - 1Y 

2n2 4- 5n - : 

(n-l)] 

Hkn+1 + Hm_l for n = 1, 3, 
2(4n + 1)' (4n + 1) 

= 32nz + 12n + 1. 

From the previous work, it is clear that 

We note that 

HJ Xj-i = 4 j 32n2 + 12n + 1, for some n. 

Solving for j , we find that 

j = 8n2 + 3n + 1, 

which is an integer. These results yield the following theorem. 

IhdoKtm 7: E, Hkn+i + H8n2 + 3n f o r a n Y integer n >..!.. 
For n = 1, 2, 3, ..., we have directly from Theorem 1 that 

H< (4tt)2+3(4rc)+l 
or 

(*•' ^128n2+12n + l 

Now consider #i28n2+i2n+i 

Hk(kn)+1 + H8(kn)z+3(Hn) 

"I6n+1 + ^128n2+12n" 

Hk_l = 4fc - 3. Then, 
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#i28n2 + i2n + i = 2(128n2 + 12n + l) 2 - (128n2 + 12n + 1) 

= 32768n4 + 6144n3 + 672n2 + 36n + 1 = kk - 3. 
Solving for k9 we find 

fc = 8192nlt + 1536n3 + 168n2 + 9w + 1, 

which is an integer. We now have 

W # 1 2 8 n 2 + 1 2 n + l = # 8 192n' t + 1 5 36n 3 + 1 6 8n2 + 9n + l 

" 8 1 92n* +1 5 3 6 n 3 + 16 8n 2 + 9 n • 

Combining equations (1) and (2) , we have the following theorem. 

Th&QtiQjm 2: For any integer n > 1, 

# 1 2 8 n 2 + 1 2 n + l = # 1 6 n + l + # 1 2 8 n 2 + 1 2 n 

= # 8 \ 3 2 n h + 1 5 3 6 n 3 + 1 6 8 n 2 + 9n 

~ # 8 192W1* + 1 5 3 6 n 3 + 1 6 8n2 + 9 n 

For n =: 1 , 2 , we have 

# 1 4 1 ~ # 1 7 + # l i+ 0 

= # 9 906 - # 9 9 0 5 
or 

39,621 = 561 + 39,061 
= 196,247,766 - 196,208,145 

and 
#5 3 7 = #3 3 + #536 

= #1440 51 - #144 0 50 
or 

576,201 = 2145 + 574,056 
= 41,501,237,151 - 41,500,660,950. 

CONCLUSION 

Theorem 2 establishes that there are an infinite number of hexagonal 
numbers which can be expressed as the sum and difference of hexagonal numbers. 
This result, along with the results of Sierpinski and Hansen, suggests that 
for any fixed polygonal number there are an infinite number of polygonal num-
bers which can be expressed as the sum and difference of similar polygonal 
numbers. A proof of this fact, though, is unknown to the author. 
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SOME SEQUENCES L I K E F I B O N A C C I ' S 

B . H . NEUMANN a n d L . G. WILSON 
CSIRO Division of Mathematics and Statistics, 
POB 1965, Canberra City, ACT 2601, Australia 

INTRODUCTION 

Define a sequence (Tn) of i n t e g e r s by 
Tn = Tn_1 + Tn_,2 + Tn_3 + 1 when n i s even, 

Tn = Tn_l + Tn„2 + Tn_3 - 1 when n i s odd, 

o r , more c o n c i s e l y , by 

(1) Tn = Tn.x + Tn_2 + Tn_3 + ( -1) , 

w i th i n i t i a l v a l u e s 

(2) T1 = 0, T2 = 2, T3 = 3 . 

One of us (L.G.W.), playing with this sequence, had observed a number of ap-
parent regularities, of which the most striking was that all positive prime 
numbers p divide Tp—at least as far as hand computation was practicable. He 
then communicated his observations to the other of us, who—being a profes-
sional mathematician—did not know the reason for this phenomenon, but knew 
whom to ask. Light was shed on the properties of the sequence by D. H. Lehmer,* 
who proved that, indeed, Tp is divisible by p whenever p is a positive prime 
number, and also confirmed the other observations made by one of us by expe-
riment on some 200 terms of the sequence. [These further properties will not 
be referred to in the sequel—the reader, however, may wish to play with the 
sequence.] 

In this note we shall present Lehmerfs proof and state a conjecture of 
his, and then look at some other sequences with the same property. 

LEHMER'S PROOF 

It is convenient to replace the definition (1) of our sequence (Tn) by 
one that does not involve the parity of the suffix n, namely 

(3) T„ = 2T„_2 + 2T„_3 + Tn.h. 

This is arrived at by substituting 

Tn-i = Tn_2 + Tn_3 + Tn_h + (-l)""1 

in (1) and observing that (-1)""1 + (-l)n = 0. As the recurrence relation 
(3) is of order 4, we now need 4 initial values, say 

(4) ^o = 2, Tx = 0, T2 = 2, T3 = 3. 

It Is well known that the general term of the sequence defined by (3) is of 
the form 

(5) Tn = Aan + 53n + Cyn + D6n, 

*The authors are greatly indebted, and deeply grateful, to Professor 
Lehmer for elucidating the properties of this sequence. 

80 
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where a, 3, y, 6 are the roots of the "characteristic equation" of (3), 

(6) f(x) E x
h - 2x2 - 2x - 1 = 0, 

and where the constants A, B, C, D are determined from the initial values 
(4) 

Put 

Sn = an + gn + yK + 6\ 
so that the sequence (Sn) satisfies the same recurrence relation as (Tn). If 
a15 a2, a3, Ok are the elementary symmetric functions of the roots of (6), 
that is 

a1 = a + g + y + 6 = 0, 

a2 = a3 + ay + a6 + 3y + 36 + y6 = -2, 

a3 = a3y + a36 + ay6 + 3y6 = +2, 

oh = a3y6 = -1, 

where the values are read off the identity 

o3x + ok9 

then 

fix) 

Si -
s2 = 

= xk 

°i = 

o\ -

- a 

o, 
2a2 

xx 

= 

3 + 

4, 

a2x2 

S3 = o\ - 3axa2 + 3a3 = 6, 

and, of course, 

S0 = a" + 3°  + Y°  + 6°  = 4. 
Thus, the initial values of (Sn) are just twice those of (Tn) see (4)—and 
it follows that 

for 

in 

all 

(5). 

w, 

T 

or, 

A •• 

2 

equivalently, 

= B = C = D = 

, that 

1 
2 

We now use the formula 

(7) (x + y + z + y)p = xp + yp + zp + tp -h p ° Fp (x,y,z,t), 

where p is a prime number, x, y, z, t are arbitrary integers, and Fp (x,y9z,y) 
is an integer that depends on them and on p. This identity stems from the 
fact that in the multinomial expansion of the left-hand side of (7) , each 
term is of the form 

iljlklllx y z v 

v' 
with i, + j + k + I = p; and the coefficient ., ., '-, , -,, is divisible by p unless 

one of the i, j, k, I equals p and the other three are zero. In our case, 
putting 
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x = a, y = (3, z = y, t = 6, 

and recalling that a + (3 + Y + 6 = 51 = 0, we see that 

Sp = _p .Fp(afB,Y,6), 

which is divisible by p. Thus also, Tp = -^Sp is divisible by p when p is an 

odd prime. But for p = 2 we also have this divisibility, as T2 = 2. Thus, 
the following result is proved. 

lh(LQftQjn 1: If p is a positive prime number, then Tp, defined by the recur-
rence relation (3) with initial values (4), is divisible by p. 

D. H. Lehmer calls a composite number q a pseudopvime for the sequence 
(Tn) if q divides Tq , and he conjectures that there are infinitely many such 
pseudoprimes. The smallest such pseudoprime is 30, and we have found no other. 
It may be remarked that when q is a power of a prime number, say q = pd, then 
Tq is divisible by p but not, as far as we have been able to check, by any 
higher power of p. 

OTHER SEQUENCES 

Lehmer's argument presented above gives us immediately a prescription 
for making sequences of numbers, say (Un) , defined by a linear recurrence re-
lation and with the property that for prime numbers p the pth term is divisi-
ble by p. All we have to ensure is that the roots of the characteristic 
equation add up to zero, and that the initial values give the sequence the 
right start. Thus, we have the following theorem. 

Tk&Qfl&m 1: Let the sequence (Un) of numbers be defined by the linear recur-
rence relation of degree d > 1: 

(8) Un = a2Un_2 + asUn_3 + ••• + adUn_d 

with integer coefficients a2, a3, ..., a and initial values 

(9) U0 = d, Ul = 0, U2 = 2a2, U3 = 3a3, ..., 

and, generally, 

(10) Ui = af + a| + • • • + a], 

where a,, a2, ..., a are the roots of the characteristic equation 

xd - a2xd'2 - a3xd~3 - ••• -ad = 0, 
and i = 0, 1, 2, . . . , d - 1. Then Up is divisible by p for every positive 
prime number p. 

The proof is the same, mutatis mutandis, as that of Theorem 1, and we 
omit it here. 

We remark that d = 2 is uninteresting: we get U2m = 2a^ when n = 2m 
is even, and Un = 0 when n is odd. Thus, the first sequences of interest 
occur when d = 3. We briefly mention some examples. 
Examptz 1: Put d = 3, a2 = 2, a3 = 1. The sequence can be defined by 

un = un.1 + un._2 + (-i)n, 

which has the same growth rate, for n •> °°, as the Fibonacci sequence. The 
pseudoprimes of this sequence, that is to say the positive composite integers 
q that divide Uq , appear to include the powers 4, 8, 16, ... of 2. 
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Example 2: Put d = 3, a2 = 1, a 3 = l . The sequence becomes 

3, 0, 2, 3, 2, 5, 55 7, 10, 12, ..., 

with a much slower rate, for n -> °°, than the Fibonacci sequence. The roots, 
say a, 3, Y, of the characteristic equation are approximately 

a = 1.324718, 
3 = -0.662359 + i "0.5622195, 
y = -0.662359 - i * 0.5622795, 

and as n -*- °°, the ratio of successive terms of our sequence tends to a. This 

is substantially less than the ratio — + -^/5 = 1.61803... to which successive 

terms of the Fibonacci sequence tend. We have found no pseudoprimes for this 
sequence. 

If the "dominant" root of the characteristic equation, that is the root 
with the greatest absolute value, is not single, real, and positive (if it is 
not real, then there is in fact a pair of dominant roots; and also in other 
cases there may be several dominant roots or repeated dominant roots), the 
sequence may oscillate between positive and negative terms, as it will also, 
in general, if continued backward to negative n. 

Example. 3: The sequence defined by 

Un = 3Un_2 - 2Un_3 

with i n i t i a l values 
UQ = 3 , Ul = 0 , U2 = 6 

has the property that positive prime numbers p divide Up. It can also be 
described, explicitly, by 

Un = (-2)n + 2. 

For positive n, from n - 2 on, the terms are alternatingly positive and nega-
tive. 

These sequences have, like the Fibonacci sequence, suggested to one of 
the authors an investigation of certain groups, but this is not the place to 
describe the problems and results. They are related to those of Johnston, 
Wamsley, and Wright [1]. 
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NEARLY LINEAR FUNCTIONS 

V. E. HOGGATT, JR. 
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and 

A . P. HILLMAN 
University of New Mexico, Albuquerque, N.M. 87131 

Let a = (1 4- /5)/2, [x] be the greatest integer in x, a^n) = [an], and 
cc2{n) = [a2n] . A partial table follows: 

n 1 2 3 4 5 6 7 8 9 10 11 
al(n) 1 3 4 6 8 9 11 12 14 16 17 
a2(w) 2 5 7 10 13 15 18 20 23 26 28 

It is known (see [1]) that a1(n) and a2(n) form the nth safe-pair of 
Wythofffs variation on the game Nim. These sequences have many interesting 
properties and are closely connected with the Fibonacci numbers. For exam-
ple, let 

o(n) = al(n + 1) - 1; 
then 

o2(n) = o[o(n)] = a2(n + 1) - 2, 
a(Fn) = Fn+1 for n > 1, 

and 
a(Ln) = Ln+i for n > 2. 

Here we generalize by letting d be in {2, 3, 4, ...} and letting /zn be 
the ̂ Zth-order generalized Fibonacci number defined by the initial conditions 

(I) hi = 21'1 for 1 <. i <_ d 

and the recursion 

(R) hn+d = hn + ^n+1 + '•• + hn+d-l' 
The recursion (R) easily implies 

( R f ) ^ n + c7 + l = 27zn + d " fori OT hn = 2hn + d - hn + d + 1' 

The first of these is convenient for calculation of hn for increasing values 
of n and the second for decreasing n. 

Representations for integers as sums of distinct terms hn will be used 
below to study some nearly linear functions from/l/ = {0, 1,2, ...} to itself; 
these will include generalizations of the Wythoff sequences. Associated par-
titions of Z+ = {l, 2,3, ...} will also be presented. 

1. CHARACTERISTIC SEQUENCES 

Let T be the set of all sequences {en} = s15 £2> ••• w i t n each en in 
{0, 1} and with an n0 such that en - 0 for n > n0. Let z = z(E) be the small-
est n with en = 0 and let E* be the {e%} in T given by ej = 0 for n <z, e$ = 
1, and e* = en for n>z. If some <sn = 1, let u(E) be the smallest such n. 

If E = {en} is in T and J = {z/n} = yl9 y 2, . .. is any sequence of inte-
gers, then &Yyx + ^2^2 + '*" -̂ s really a finite sum which we denote by E •!, 
For each integer j, let H-j = {hn + j} = hj + i, hj+n ••• where the 7zM are defined 
by (I) and (R). Also, let H = HQ. 

8k 
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iQJfnma 1: Let z = z (E) and b = E* • H. - E • H. . Then 
(a) u(E*) = z. 

(b) If z = 1 , b = ^ . + 1 . I f 3 > 1 , b = /2S+J. - ^ a + J-_! - /z2 + J--2 - ^ + i-
(c) If 1 < 2 < d a n d j = 0 , S = 1. 

Vh.OO^i P a r t s (a) and (b) fo l low immed ia t e ly from t h e r e l e v a n t d e f i n i t i o n s . 
Then (c) fo l lows from ( b ) , t h e i n i t i a l c o n d i t i o n s ( I ) , and t h e f a c t t h a t 

1 + 2 + ••• + 2 3 " 2 = 2 3 " 1 - 1 . 

2. THE SUBSET S OF T 

Let S consist of the {cn} in T with 

°ncn + l ••• cn + d-l = ® f ° r a H n i n ^ + . 
Lemma 2: If C is in S then: 

(a) 1 <_ z(C) <_ d, 
and 
(b) C* ° H - C - H = 1. 

VK.00^'- Part (a) follows from the defining condition, with n =. 1, for the 
subset 5. Then Lemma 1(c) implies the present part (b) . 

Lammci 3: If (7 •# = C °H with C and 6" in S9 then C = Cf. 

Psioofi: Let C = {cn} and C! = {c-^}. We assume C ± Cf and seek a contradic-
tion. Then ek f a'k for some k, and there is a largest such k since an = 0 = 
c^ for n large enough. We use this maximal k and without loss of generality 

0 and o{ = 1. Then 

fc-i 
(1) C" •# - £ •# =J] (c! - Q.)hi <hk -J^^hi9 

since hi > 0 for i, > 0. Let ft = ^J + r, where q and r are integers with 0 <_ 
r < d. Then one can use (R) to show that 

(2) hk = (hl + h2 + h3 + ••• + hk_l) - (hr + hr + d + hr + 2d + ••• + hk.d) +1. 

(The interpretation of this formula when 1 <_ ft < d is not difficult.) Since 
cn = 0 for at least one of any c? consecutive values of n and hn < hn + i for 
n > 0, (2) implies that 

hk > clhl + c2h2 + ••• + ck_lhk_l. 
This and (1) give us the contradiction Cr *H>C *H« Hence Cr = C, as desired. 

L&mmci 4: For every E in T there is a C in £ such that: 

(a) E ' Hj = C • Hj for all j, 

(b) 8(E) = z(C) (mod J), 

(c) u(E) = u(C) (mod d). 

(d) This (7 is uniquely determined by E, 

Vtioo^: We may assume that E = {en} is not in S. Then 

gfcefe+i ••• efe+d-i = 1 f o r s o m e fe-
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There is a largest such k since en - 0 for large enough n. Using this maxi-
mal k, one has e-^+d ~ 0 an& w e let E1 = {&n~i be given by e^ = 0 for k <_ n < 
k + d9 e{ + a - 1, and en' = en for all other n. The recursion (R) implies that 
E • Hj = Er * Hj for all j. It is also clear that z(E) = z(Er) (mod d) and 
u(E) = u(Er) (mod d) . If Er is not in 5, we give it the same treatment given 
E. After a finite number of such steps, one obtains a C in S with the desired 
properties. Lemma 3 tells us that this C is uniquely determined by E. 

3. THE BIJECTION BETWEEN N AND S 

We next establish a 1-to-l correspondence m<—>Cm = {omn} between the 
nonnegative integers m and the sequences of S. 

LzmmOL 5: S is a sequence C0 , C1? ... of sequences Cm such that Cm • H = m and 
^ ( ^ + i) E z(Cm) (mod d). 

?KO0i} The only £ in 5 with C • # = 0 is 

^0 = ^0n> = °> °> °> ••• • 
Now, assume inductively that for some k in N there is a unique Ck in S with 
Ck *H = k. Then Lemma 2(b) tells us that C£ • # = Cfc« # + 1 = Zc + 1. It fol-
lows from Lemma 4 that there is a unique Ck + 1 in 5 with C^ + 1 • E = C£ •#= fc + 
1. Finally, w(Cm + i) = z(Cm) (mod d) is a consequence of Lemma 1(a) and 
Lemma 4(c). The desired results then follow by induction. 

Ltmma 6: Let E be in T and E ' E = m. Then # • #,- = Cm • ̂  , for all j , s(tf) = 
z(Cm) (mod 6?) , and w(#) = u(Cm) (mod d) . 

?KO0_£_i Lemma 4 tells us that there us a C in 5 with E • Ej = C • #j for all 
integers j, 2 (E7) = z(C) (mod d) , and u(#) = u(C) (mod d) . The hypothesis 
E m E - m and Lemma 5 then imply that C - Cm. 

h. THE SHIFT FUNCTIONS 

Let functions Oi{m) from N = {0,1,...} into Z = {...,-2,-1,0,1,...} 
be given for all integers i, by 

(3) oHm) = Cm -H^ 
That is, C'l(Cm • H) = Cm • H^. Using this, one sees easily that 

oi[o3\m)] = Oi + 3\m) 
for all integers i and j and all 777 in N. We also note that 

o°(m) = Cm -E = m. 
Lemma 7: 
(a) QJ(0) = 0 and Oc{hn) = 7zn + j for all integers j and n. 

(b) 0°\E • #) = E ' Ej for all integers j and all E7 in T. 

(c) If S7 and E' are in T, E • £" = 0, E • E = m9 and 5" • ff = n, then 

aJ'(m + n) = aJ'(w) + aJ'(n) for all j in Z. 

VK.00^ •' Part (a) is clear. Part (b) follows from (3) and Lemma 6. For (c) , 
let E - {en}, Er = {e^}, and z/n = en + gn'. The hypothesis E*Er implies that 
Y = {i/n} is in T. Then Y'E = E*E + E,*E = m + n. This and (b) tell us 
that '0$ (m + n) = J • ̂  , which equals # • ̂  + E' ' Ej = aJ"(w) + aJ'(n), as de-
sired. 
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5. A PARTITION OF Z+ 

For i = 1, 2, . .., d let A± be the set of all positive integers m for 
which u(Cm) E i (mod <£) • Clearly these Ai partition Z + , i.e., they are dis-
joint and their union is Z + . 

Lmma 8: Let k be in At. Then k = hi + C ° Hi for some (7 in S. 

PtoOjfc Let w(Ck) = w. Then 

(4) k = hu + cktli + 1 hu + 1 + - • • = hu + Cf » Hu for some C in 5. 

Since /c is in 4^, w E i (mod d) .' If u > i , we use (4) and the recursion (R) 
to obtain 

k = hu.d + hu.d + 1 + •-. + hu.± + C *HU = hu-d + C"°  Hu_d9 

with C" in 5. 

If u - d > i , we continue this process until we have k = hi +C • ̂  with C in 
5. This completes the proof. 

Now, for every integer j, we define a function â  from Z + into Z by 

cijin) = /zj + aJ'(n - 1). 

Clearly this means that, for m in il/, 

(5 ) ^-(777 + 1) = hj + Cm °Hj = hj + ^ w i ^ j + i + Cm2hj + 2 + ' " ' 

It follows from (5) that, for constant k9 an(k) has the same recursion for-
mulas as the hn. In particular, 

(6) aj + iM = 2aJ-(n) - a3-.d(n). 

Lamma 9: la^r) |P e Z + | = ̂  for 1 £ t £ d. 

VKOQI'* Let p be in Z+ and m = r - 1. One sees from (5) that 

a = ai(r) = a^im + 1) 

if of the form E • # with n(Z?) = i. Then £ E u(Ca) (mod 6?) by Lemma 6. Hence 
a is in Ai. 

Now let & e Ai. Then Lemma 8 tells us that k = hi + C * Hi with C in 5. 
Let C *H = m. Then C = Cm and it follows from (5) that 

k = cti(m + 1) e {a^OrOlr e Z + l . 

This completes t h e p roof . 

6. SELF-GENERATING SEQUENCES 

Next we d e f i n e bij for 1 <. i <_ d and a l l i n t e g e r s j by 

(7) bld = ^- + i, bij = 7zi + J. - ^ + J.-i - fci + j-2 - ••• - fcj + i for 2 < t < J. 

We will use these 2?̂ - to show that the sets A^ are self-generating and to 
count the integers in A± C\ {l, 2, ..., n}. 

One can show that the bij could be defined alternatively by the initial 
conditions biQ = 1 for 1 <_ i <_ d and the recursion formulas 

KJ + I = hij + bi + i,j for 1 <_i < d; bdfJ + 1 = b^ = bd + 1 . 

These show, for example, that 

(8) bn = 2 for 1 <. £ < d and 2?dl = 1. 
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The definition (7) for bin in terms of the /Vs implies that, for fixed i , the 
bin satisfy the same recursion formulas as the hn; in particular, one has 

bin ~ 2bi,n+d ~ ^un+d + 1' 

This can be used to show that 

(9) bi9-t = 1 for 1 £ i <_ d9 bid- = 0 for -d <_ j < 0 and i + - j . 

Tfieo^tem 1: Let bj (m) = a3'(m + 1) - a3-(m). Then bj (m) = b^j for m i n i4^. 

VnjQO^i I t fo l lows from (5) t h a t bj (jn) = Cm • Hj - Cm_i • Hj . In t h e proof of 
Lemma 5 , we saw t h a t Cm • Hj = C%_± • Hj ; hence 

(10) fy fa) = Cm_l - ^ " Cj-i •#. 

Let u = u(Cm) and s = ^((7^-1). The hypothesis m e ̂  means that u = i 
(mod d) . Then z = i (mod d) by Lemma 5. This, the fact that 1 .< £ <. <i, and 
Lemma 2(a) imply that z = £. Finally, s = i and Lemma 1 tell us that the 
bjQn) of (10) is equal to the &£ • defined in (7). 

TkzoK<im 1: For 1 <_ -i <_ d9 b„i(m) equals 1 when 777 is in A± and equals 0 when 
m is not in A^. 

VKOO^'* This follows from Theorem 1 and the formulas in (9) . 

ThdOtiQJM 3' The number of integers in the intersection of Ai and {l, 2, ..., 
m] is a_i(m + 1) for 1 <_ i < d and is a_d(m + 1) - 1 for i = d. 
VAXw£: One sees that a_^(l) = h-i + C0 • H-i = h-i = 0 for 1 <_ i < d and that 
a_i(l) = h-d = !• It is also clear that 

a-i(m + 1) == a_*(D + &-t(D + b-i(2) + ... + b-i(m). 
This and Theorem 2 give us the desired result. 

7. COMPOSITES 

First we note that 

(11) a 1 [a-jM] = hi + o^a^n) - 1] = hi + ol[hj - 1 + oJ'(n - 1)]. 

For 1 <_ j <L d9 we have ftj = 2 J - 1 and hence we have 

ft j - 1 = hY + ft2 + • • • + hj-i for 1 < j <. d. 

Al so , we know t h a t O3 (n - 1) i s of form <?1ftJ-+1 + c 2^ j+2 + *"* w i t n c/< ^ n {0* 
1 } . Hence (11) l e a d s to 

cii[aj(n)] = ft; + a M ^ ! + ft2 + • • • + f t j - i + c1ftJ- + i + • • • ] 

= hi + fti + l + ft;+2 + ••• + fti + j - l + ^ l ^ i + j + l + • " ' 

= ft; + ftt + i + • • • + fti + j - i + a i + ^'(n - 1) 
(12) = ft; + ft; + i + • • • + hi + j-i - hi + j + cii + jtyi) 
for 1 < j ^ d and all integers £. 

Letting i = -d and using the facts that ft_j = 1 = h0 and ftn = 0 for 
-d < n < 0, (12) implies that 

(13) a_d[aj(n)] = 1 + a ^ C r c ) for 1 <_ j < d, a.diccdW] = a 0 ( n ) = n . 
Our derivation applies for 1 < j <_ d, but the result in (13) for j = 1 can 
also be seen to be true. 
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One may note that (12) implies 

ai[aj(n)] - ccj[cci(.n)] = hi + hi + 1 + • • • + hj . i for 1 <_ i < j <_ d. 

Th&0>i2m 4: For 1 <_ j < d, aj + 1(n) is 2a j (n) minus the number of integers in 
the intersection of Ad and 

{1, 2, 3, . . . , (Zj(n) - 1}. 

VfiOO^i Since the an(m), for fixed m9 satisfy the same recursion formula as 
the hn, we see from (Rr) that 

aJ- + 1(n) = 2aj(n) - aj_d(n). 

This and (13) give us 

(14) aj + 1(n) = 2cij(n) + ia_d[aj(n)] - 1} for 1 <_ j < d. 

Using Theorem 3, we note that the expression in braces in (14) counts the 
integers that are in both Ad and {l, 2, . .., a^ (n) - 1}. This establishes 
the theorem. 

Theorem 4 provides a very simple procedure for calculating the a3- (n) 
for 1 <_ Q <_ d. We know that al(l) = 1. Then the theorem gives us <Zj (1) for 
1 < j j< d. Next, a1 (2) must be the smallest positive integer not among the 
CLj(X) and the theorem gives us the remaining aJ-(2). Thus, one obtains the 
a.j (3), and ^-(4), etc. 

Tk&QJi&m 5: For 1 <. j < cZ, let ^ (m) = aj+ i(w) - a^ (m), and £,• = ig. (m) \m e Z+\. 
Then G19 G2, . .., 6r^_1 form a partition of Z + . 

PXOO^: Let Z* be the set of positive integers that are not in Ad. For every 
n in Z* there are integers m and j with n - aj(m) , m >_ 1, and 1 <. </ < <i; we 
let x(n) be g^irn) for this 777 and j. Let ad(m) = am for w in Z + . 

Then it follows from Theorem 4 that 

a:(n) = <Zj + i(m) - aj(m) = a^{m) = n for n = 1, 2, . . . , ax - 1; 

x(n) - a-j{m) - 1 = n - 1 for n = ax + 1, al + 2, ..., a2 - 1; 

and in general that 

x(n) = n - r for n = aP + 1, ar + 2, ..., ar+i - 1. 

This shows that every positive integer is an x(n) for exactly one n in Z* and 
hence is in exactly one of the Gj , as desired. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 
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A. P. HILLMAN 

University of New Mexico, Albuquerque, NM 87131 

Send* all communications Kegaxdlng ELEMENTARY PROBLEMS AND SOLUTIONS to 
Professor A. P. Hillman, 709 Solano Dr., S.E., Albuquerque, New Mexico 87108. 
Each solution on problem should be on a sepahate sheet [OK sheet*). VKe^oJi-
ence wilt be given to those typed with double spacing In the ^oftmal used be-
low. Solutions should be received within 4 months ofa the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy Fn + 2 = Fn + 1
 + Fn > 

FQ = 0, F1 = 1 and Ln + 2
 = £*n + i + Ln, L0 = 2, L\ = 1. Also a and b designate 

the roots (1 + /5)/2 and (1 - /5)/2, respectively, of x1 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-39^ Proposed by Phil Mana, Albuquerque, NM. 

Let P(x) = x(x - 1)(x - 2J/6. Simplify the following expression: 

P{x + y + z) - P(y + z) - P{x + z) - P(x + y) + P(x) + P{y) + P(z) . 

B-395 Proposed by V. E.Hoggatt, Jr., San Jose State University, San Jose, CA. 

Let o = (/J - l)/2. For n = 1, 2, 3, ..., prove that 

l/^ + 2 < e» < 1/Fn + 1 . 

B-396 Based on the solution to B-371 by Paul S. Bruckman, Concord, CA. 

Let Gn = Fn(Fn +l)(Fn + 2)(Fn + 3)/24. Prove that 60 is the smallest 
positive integer m such that 10|Gn implies 10|£n + m. 

B-397 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 

Find a closed form for the sum 

2s 

k = 0 

B-398 Proposed by Herta T, Freitag, Roanoke, Va. 

Is there an integer K such that 
n 

K •- Fn+6 + E ^ 
J = l 

is an integral multiple of n for all positive integers n? 

B-399 Proposed by V. E.Hoggatt, Jr., San Jose State University, San Jose, CA. 

Let f(x) = • U\ + u2x + u3a:2 + •.• • and g(x) = Vx + z;2̂  + ^s^2 + • • • > where 
Ui = u2 ~ l , u3 = 2, wn + 3 = un + 2 + wn + i + wn, and vn+s - vn + 2 + vn + i + i?n. 

Find initial values vl9 V2, and v3 so that eg * = f(x). 

90 
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SOLUTIONS 

Nonhomogeneous Difference Equation 

B-37O Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 

Solve the difference equation: un+2 - 5un + 1 + 6un-Fn . 

Solution by Phil Mana, Albuquerque, NM. 

Let E be the operator with Eyn = yn+1. The given equation can be re-
written as 

(E - 2)(E - 3)Un = Fn. 

Operating on both sides of this with (E - a) (E - b) , where a and b are the 
roots of x2 - x - 1 = 0, one sees that the solutions of the original equation 
are among the solutions of 

(E - d)(E - b)(E - 2)(E - 3)Un = 0. 

Hence, Un = han + kbn + 2n o + 3nd. Here, o and d are arbitrary con-
stants. But h and k can be determined using n = 0 and n = 1, and one finds 
that han + kbn = Ln+3/5. Thus, Un = (Ln+3/5) + 2n<? + 3nd. 

Also solved by Paul S. Bruckman, C. B. A. Peck, Bob Prielipp, Sahib Singh, and 
the proposer. 

No, No, Not Always 

B-371 Proposed by Herta T. Freitag, Roanoke, VA. 
Fn k 

Let Sn =2^ 2l̂  -̂7 ' w n e r e 7̂ is t n e triangular number j(j + l)/2. Does 
fe-i j=i 

each of n = 5 (mod 15) and n = 10 (mod 15) imply that Sn = 0 (mod 10)? Ex-
plain. 

J. Solution by Sahib Singh, Clarion College, PA. 

The answer to both questions is in the negative as explained below: 

k k 

S I - E C D - C I 2 ) 
J = 1 J = 1 

Sn = £ f 3^ = (F%+3) = Fn(Fn + 1) (**» + 2) (Fn + 3)/24. 
fe «= 1 

One can show that S25 t 0 (mod 10) and S35 f 0 (mod 10) even though 25 = 10 
(mod 15) and 35 E 5 (mod 15). 

i i . From the solution by Paul S. Bruckman, Concord, CA. 

It can be shown that 5 = 0 (mod 10) if and only if n = r (mod 60) where 
r e {0, 5, 6, 7, 10, 12, 17, 18, 20, 24, 29, 30, 31, 32, 34, 36, 43, 44, 46, 
53, 54, 56, 58}. 

Also solved by Bob Prielipp, Gregory Wulcyzn, and the proposer. 
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Still No 

B-372 Proposed by Herta T, Freitag, Roanoke, VA. 

Let Sn be as in B-371. Does Sn = 0 (mod 10) imply that n is congruent 
to either 5 or 10 modulo 15? Explain. 

Solution*by Paul S. Bruckman, Concord, CA. 

56 = (F64+3) = (141) = 11 '10 -9 -8/24 = 330 = 0 (mod 10) but 6 is not 

congruent to 5 or 10 modulo 15. 

Also solved by Bob Prielipp, Sahib Singh, Gregory Wulczyn, and the proposer. 

Golden Cosine 

B-373 Proposed by V. E. Hoggatt, Jr. , San Jose State University, San Jose, CA 
and P. L.Mana, Albuquerque, NM. 

The sequence of Chebyshev polynomials is defined by 

CQ(x) = 1, Cx(x) = x9 and Cn (x) = 2xCn_1(x) - Cn_2(x) 

for n = 2 , 3 , . . . . Show t h a t cos [ir/(2n + 1 ) ] i s a r o o t of 

[Cn + 1(x) + Cn(x)]/(x + 1) = 0 

and use a particular case to show that 2 cos (TT/5) is a root of 

x2 - x - 1 = 0. 

Solution by A. G. Shannon, Linacre College, University of Oxford. 

I t i s known t h a t i f x = cos 0 then Cn(x) = cos n 9 . L e t t i n g 

9 = 7T/(2n + 1 ) , 
one has 

x + l = cos 6 + 1 ^ 0 
and 

Cn + 1(x) + Cn(x) = cos [ (n + l)Tr/(2n + 1) ] + cos [nir/(2n + 1 ) ] 

= - c o s [ni\/(2n + 1 ) ] + cos [mr/(2n + 1) ] = 0 

as r e q u i r e d , s i n c e cos (TT - a) = - c o s a . 
The s p e c i a l case n = 2 shows us t h a t cos (TT/5) i s a s o l u t i o n of 

[C3(x) + C2(x)]/(x +' 1) = 0, 

which turns out to be 
(2x)2 - 2x - 1 = 0. 

Hence, 2 cos (TT/5) satisfies x2 - x - 1 = 0. 

Also solved by Paul S. Bruckman, Bob Prielipp, Sahib Singh, and the proposer. 
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Fibonacci in Trigonometric Form 

B-37^ Proposed by Frederick Stern, San Jose State University, San Jose, CA. 

Show both of the following: 

2 n + 2 |"/ ir\n . TT . 3TT _,_ I 3TrV* . 3TT . 9TT"1 Fn = —-— (cos —1 s i n — s m — + (cos — J s i n -£- s i n -r- , 

( - 2 ) n + 2 [/ 2i\\n' . 2TT . 6TT ^ / 4fr\n . 4TT . 12TT1 
^n = Icos — I s m — s i n -=- + Icos —J s i n — s m —p— . 

Solution by A. G. Shannon, Linacre College, University of Oxford. 

Let xn = [2 cos (7T/5)]n and z/n = [2 cos (3TT/5) ] w . I t fo l lows from B-373 
t h a t xn + 2 = ^ n + i + xn> an<^ i t fo l lows s i m i l a r l y t h a t <yn + 2

 = 2/n + i + yn • Hence 
the f i r s t r e s u l t i n t h i s problem i s e s t a b l i s h e d by v e r i f y i n g i t fo r n = 0 and 
n - 1 and then u s i n g t h e r e c u r s i o n fo rmulas fo r Fn9 xn, and yn.. The second 
r e s u l t fo l lows from t h e f i r s t u s ing 

cos (3ir/5) = - c o s (2TT/5) and cos (TT/5) = - c o s (4TT/5) . 

Also solved by Sahib Singh, Herta T. Freitag, Bob Prielipp, Douglas A. Fults, 
Paul S. Bruckman, and the proposer. 

Fibonacci or Ni1 

B-375 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose,CA. 

Express — - — > (cos -r~j • s m — • s m — — m terms of Fibonacci num-

ber F„ 

Solution by Herta T. Freitag, Roanoke, VA. 

Using the relationships established in B-374, the expression of this 
problem becomes Fn[l + (-1) ]/2, which is Fn for even n and zero for odd n. 

Also solved by Paul S. Bruckman, Douglas A. Fults, Bob Prielipp, A. G. Shannon, 
Sahib Singh, and the proposer. 
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H-295 Proposed by G. Wulczyn, Bucknell University, Lewisburg, PA. 

Establish the i d e n t i t i e s 

and 
(a) FkFk + Sv+3 - Fk + Qr + kFk + 2r + 1 - (-1) F2r + lL2r + lLk + hr+2 

( b ) FkFk+sr - Fk+QrFk+2r = (-1) F2rL2rLk + kr . 

H-296 Proposed by C. Kimberling, University of Evansville, Evansville, IN, 

Suppose x and y are positive real numbers. Find the least positive in-
teger n for which 

r j L _ l = [E l 
l_n + y J In J 

where [s] denotes the greatest integer less than or equal to 2, 

H-297 Proposed by V.E. Hoggatt, Jr., San Jose State University, San Jose, CA. 

Let P0 = Pl = 1, Pn(X) = Pn^iX) - XPn_2(X). Show 

00 

lim Pn 1(X)/Pn(A) = (1 - A - 4X)/2X = £ Cn + 1xn, 
n^° °  n = 0 

where Cn is the nth Catalan number. Note that the coefficients of Pn(X) lie 
along the rising diagonals of Pascal's triangle with alternating signs. 

H-298 Proposed by L. Kuipers, Mollens, Valais, Switzerland. 

Prove: 

( i ) Fn
6

+ 1 - 3Fn
5

+1F + 5 F „ 3
+ 1 ^ - 3Fn + 1F„5 - F„6 = ( - 1 ) " , « = 0 , 1 , . . . ; 

( i i ) F„6
+6 - 1UF*+S - 90F« + 4 + 350F*+ 3 - 90F6

n + 2 - UFe
n + l + Fn

6 

= ( - 1 ) " 8 0 , n = 0 , 1 , . . . ; 

( i i i ) F„6
+6 - X3Fl + s + 41F„6

+, - 41F* + 3 + 13Fn
6

+2 - F*H + 1 

= -40 + y ( l + ( - ! ) " ) 8 0 (mod 144) . 

94 
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SOLUTIONS 

A Soft Matrix 

H-27^ Proposed by George Berzsenyi, Lamar University, Beaumont, TX. 

It has been shown [The Fibonacci Quarterly 2, No. 3 (1964) :261-266] that 

'°  0 1\ hl_x Fn,lFn F* 

i f Q = | 0 1 2 J, t hen Q" = ( 2 ^ . ^ Fn + 1 - Fn.xFn 2FnFn + 1 

M 1 1 / \Fn. FnFn+1 F2n + 1 

Generalize the matrix Q to solutions of the difference equation 

Un = rUn.1 + sUn_2, 

where r and s are arbitrary real numbers, U0 = 0 and U1 = 1. 

Solved by the proposer. 

The key to the extension Is the identity 

Fn + i ' F F = F2 + F Fn + l , 

which allows one to generalize the central entry of Q . It is easily estab-
lished then by mathematical induction that 

/0 0 S2\ / s 2 ^ . l 82Un_±Un S2Ul 

i f R =( 0 s 2rs J , then Rn = 1 2s£/n_i£7 s(£/* + Un_1Un + 1) 2sUnUn + 1 

u2 unun+1 u2
n+1 

A Corrected Oldie 

H-225 Proposed by G. A. R. Guillotte, Quebec, Canada. 

Let p denote an odd prime and xp + yp = zp for positive integers x9 y, 
and z. Show that 

A) p < x/(z - x) + y/(z - y) 
and 

B) s/2 (3 -a;) < p < z//0s - z/). 

Solved by the proposer. 

Consider (x/z)1 + (z//s)t = 1 + e^ for e0 = 1, ep = 0, and zi E (0, 1), 
for 1 <. £ <_ p - 1. Then 

P P P 

£(*/*)* + E^/s)' = P + X +Z£i 
•£ = 0 i=0 i =0 

becomes 
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(1 - (x/z)p+1)/(l - x/z) + (1 = (y/z)P+1)/a - y/z) = p + 1 + X) ̂  • 
t = 0 

Now p 

1/(1 - ay/s) + 1/(1 - y/z) > p + l + ^ ] e { . 

Hence 
p-i 

s/(s - x) + 2/(2 -z/) > p + 1 + 1 4- ̂  e^ , 
i-l 

since e0 = 1 and ep = 0. But 

z/(z - x) - 1 = #/(s - x) and s/(s - y) - 1 = y/(z - y). 

Therefore 
p-i 

x/(z - x) + y/(z - z/) > p + X e^ > p. 

Similar reasoning leads to part B). 

EdsLtoSvLaZ hiotn: Please keep working on those oldies! 

Sp&CsL&t Note,: It has long been known that any solution for the basic pair of 
equations for 103 as a congruent number would entail enormous numbers. For 
that reason, 103 had not been proved congruent: on the other hand, it had 
not been proved noncongruent. 

Then, in 1975, two brilliant computer experts—Dr. Katelin Gallyas and 
Mr. Michael Buckley—finally proved 103 to be congruent, working along lines 
suggested by J. A. H. Hunter. The big IBM 370 computer of the University of 
Toronto was used for this achievement. 

For the system 

X2 - 103I2 = Z2, X2 + 103I2 = W2
9 

the minimal solution was found to be: 

X = 134 13066 49380 47228 37470 20010 79697 
Y = 7 18866 17683 65914 78844 74171 61240 
Z = 112 55362 67770 44455 63954 40707 12753 
W = 152 68841 36166 82668 99188 22379 29103 

REFERENCE 

"Fibonacci Newsletter," September 1975. 

• * • * • & # • * 


