e “Fibonacci Quarterly

THE OFFICIAL JOURNAL OF
THE FIBONACCI ASSOCIATION

YOLUME 17 NUMBER 1
CONTENTS

Pythagorean Triples Containing Fibonacci Numbers:

Solutions for F> + Ff =K* .......... Marjorie Bicknell-Johnson 1
Strong Divisibility Sequences and

Some CONJECLUTES v oossessonccaneosonssoness Clark Kimberling 13
Greatest Common Divisors of Sums and Differences of Fibonacci,

Lucas, and Chebyshev Polynomials ............. Clark Kimberling 18
Probability via the Nth Order Fibonacci-T

SEQUENCE tutvruoonroonosoonnssonconssnonsss Stephen John Turner 23
Some Congruences Involving Generalized

Fibonacci NUMBETS teevvreronosconosoncereononns Charles R. Wall 29
Enumeration of Truncated Latin Rectangles ...... F. W. Light, Jr. 34
The Normal Modes of a Hanging Oscillator

Of Order IV tviivneinuiooononaocoonoscecenaonnses John Boardman 37
Congruences for Certain Fibonacci Numbers ....... Novrvald Midttun 40
Some Divisibility Properties of

Generalized Fibonacci Sequences .....occoovens Paul S. Bruckman 42
A Note on a Pell-Type SequUENCE ......coeeves William J. O'Donnell 49
Periods and Entry Points in

Fibonacci SEQUENCE .ceessosovoccssoosss A. Allard and P. Lecomte 51
Generating Functions of Central Values in Generalized

Pascal Triangles ..... Claudia Smith and Verner E. Hoggatt, Jr. 58
Solution of (y;;l) = (x%il> in Terms of Fibonacci

NUMDETS oo vseeoosnssosonosessssnnsesanns James C. Owings, Jr., 67
The Diophantine Equation

Wh?2 =c* + V41 .oue... David A. Anderson and Milton W. Loyer 69
Matrix Generators of Pell Sequences ............. Joseph Ercolano 71
Two Theorems Concerning Hexagonal Numbers .. William J. O'Domnell 77
Some Sequences Like Fibonacci's .. B. H. Neumann and L. G. Wilson 80
Nearly Linear Functions ... V. BE. Hoggatt, Jr., and A. P. Hillman 84
Elementary Problems and Solutions ....... Edited by A. P. Hillman 90
Advanced Problems and Solutions .... Edited by Raymond E. Whitney 94
FEBRUARY 1979



@e Fibonacci Quarterly

" THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION
DEVOTED TO THE STUDY
OF INTEGERS WITH SPECIAL PROPERTIES

EDITOR
Verner E. Hoggatt, Jr.

CO-EDITOR
Gerald E. Bergum

EDITORIAL BOARD

H. L. Alder David A. Klarner
Marjorie Bicknell-Johnson Leonard Klosinski
Paul F. Byrd Donald E. Knuth
L. Carlitz C. T. Long

H. W. Gould M. N. S. Swamy

A. P. Hillman D. E. Thoro

WITH THE COOPERATION OF

Maxey Brooke James Maxwell
Bro. A. Brousseau Sister M. DeSales
Calvin D. Crabill McNabb

T. A. Dabis John Mitchem

A. F. Horadam D. W. Robinson
Dov Jarden Lloyd Walker

L. H. Lange Charles H. Wall

The California Mathematics Council

All subscription correspondence should be addressed to Prof. Leonard
Klosinski, Mathematics Department, University of Santa Clara, Santa
Clara, California 95053. All checks ($15.00 per year) should be made
out to the Fibonacci Association or Fibonacci Quarterly. Two copies
of manuscripts intended for publication in the Quartesly should be
sent to Verner E. Hoggatt, Jr., Mathematics Department, San Jose State
University, San Jose, California 95192. ALL manusciipts should be
typed, doublLe-spaced. Drawings should be made the same size as they
wll appear in the Quarterly, and should be drawn Ain India ink on
elthen vellum ox bond paper. Authors should keep a copy of the manu-
scipts sent to the editons.

The Quarterly is entered as 3rd-class mail at the University of Santa
Clara Post Office, Calif., as an official publication of The Fibonacci
Association.

The Fibonaced Quarterly is published in February, April, October, and
December each year.



PYTHAGOREAN TRIPLES CONTAINING FIBONACCI NUMBERS:

SOLUTIONS FOR F, * F; = K’

MARJORIE BICKNELL-JOHNSON
A.C. Wilcox High School, Santa Clara, CA 95051

1. INTRODUCTION

When can Fibonacci numbers appear as members of a Pythagorean triple?
It has been proved by Hoggatt [1] that three distinct Fibonacci numbers can-
not be the lengths of the sides of any triangle. L. Carlitz [8] has shown
that neither three Fibonacci numbers nor three Lucas numbers can occur in a
Pythagorean triple. Obviously, one Fibonacci number could appear as a member
of a Pythagorean triple, because any integer could so appear, but Fj3(sm+1)
cannot occur in a primitive triple, since it contains a single factor of 2.
However, it appears that two Fibonacci lengths can occur in a Pythagorean
triple only in the two cases 3-4 -5 and 5-12-13, two Pell numbers only in
5-12-13, and two Lucas numbers only in 3 -4 -5. Further, it is strongly
suspected that two members of any other sequence formed by evaluating the
Fibonacci polynomials do not appear in a Pythagorean triple.

Here, we define the Fibonacci polynomials {F, (z)} by

(1.1) Folx) =0, Fi(x) =1, Fu(x) =xF,(x) + F,_;(x),
and the Lucas polynomials {I,(x)} by
(1.2) L,(x) = Fp e (x) + F,_(x)

and form the sequences {F, (a)} by evaluating {F,(x)} at x = a. The Fibonacci
numbers are F, = F,(1l), the Lucas numbers L, = L,(1), and the Pell numbers
B, = F,(2).

While it would appear that F,(a) and F; (¢) cannot appear in the same
Pythagorean triple (except for 3-4-5 and 5-12-13), we will restrict our
proofs to primitive triples, using the well-known formulas for the legs a and
b and hypotenuse c,

(1.3) a=2mm, b=m?>-n?c=m*+n?,

where (m,n) = 1, m and n not both odd, m > n. We next list Pythagorean tri-
ples containing Fibonacci, Lucas, and Pell numbers. The preparation of the
tables was elementary; simply set F, = a, F} = b, F, = c for successive values
of k and evaluate all possible solutions.
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Table 1
PYTHAGOREAN TRIPLES -CONTAINING F%, 1 <k<18

m n 2mn m? - n? m? + n?

2 1 4 3 =F, 5 = Fq4

3 2 12 5 = Fs 13 = 7y

3 1 6 8 = Fg 10 (not primitive)
4 1 8 = Fg 15 17

7 6 84 13 = Fy 85
5 2 20 21 = Fy 29
11 10 2220 21 = Fyq 221
5 3 30 16 34 = Fq (not primitive)
17 1 34 = Fy 288 290 (not primitive)
8 3 48 55 = FlO 73
28 27 1512 55 = Fig 1513
8 5 80 39 89 = Fy,
45 44 3960 Fip = 89 3961
37 35 2590 144 = Fq, 2594 (not primitive)
20 16 640 144 = Fi, 656 (not primitive)
15 9 270 144 = Fy, 306 (not primitive)
13 5 130 144 = Fy, 194 (not primitive)
9 8 144 = Fy, 17 145

72 1 144 = Fy, 5183 5185

36 2 144 = Fy, 1292 1300 (10t primitive)
24 3 Fis 567 585 (ot primitive)
18 4 Fiy 308 340 (not primitive)
12 6 Fis 108 180 (not primitive)
13 8 208 105 233 = Fq4
117 116 27144 233 = F3 27145
16 11 352 135 377 = Fqy
19 4 152 345 377 = Fy,
189 188 71064 377 = Fqy 71065

21 8 336 377 = Fq, 505
21 13 546 272 610 = Fis (not primitive)
23 9 414 448 610 = F;i5 (not primitive)
305 1 610 = Fy; 93024 93026 (not primitive)
61 5 610 = Fi5 3696 3746 (not primitive)
494 493 487084 987 = Fig 487085
166 163 54116 987 = Fiq 54125
34 13 884 987 = Fy¢ 1325

74 67 9916 987 = Fy, 9965
34 21 1428 715 1597 = Fq4

799 798 1275204 1597 = Fi4 1275205

647 645 834630 2584 = Fig 834634 (not primitive)
325 321 208650 2584 = Fiq 208666 (not primitive)
53 15 1590 2584 = F. 4 3034 (not primitive)
55 21 2310 2584 = F4 3466 (not primitive)
1292 1 2584 = Fyg 1669263 1669265

646 2 2584 = Fi4 417312 417320 (not primitive)
323 4 2584 = Fg 104313 104345
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Table 1 (continued)
m n 2mn m? - n? m? + n?
76 17 2584 = Fig4 5487 6065
68 19 2584 = Fi4 4263 4985
38 34 2584 = F,q 288 2600 (not primitive)
Fpa1 Fn 2FnFn+1 Fn—an+2 F2n+l
2F, Fr-1 FE+1
Fen (Fén = 4)/4  (F&n + 4)/4
(Egmil = D/2 Py (Fgmtl +1)/2
Frer Fror 2R B Fox Fi + 2F, 1 Frpy
Table 2
PYTHAGOREAN TRIPLES CONTAINING Lk, 1 <k<18
m n 2mn m? - n? m? + n?
2 1 4 = L, 3 =1, 5
4 3 24 7 = L, 25
6 5 60 11 = Ls 61
9 1 18 = L 80 82 (not primitive)
5 2 20 21 29 = L,
15 14 420 29 = Ly 421
24 23 1104 47 = Lg 1105
20 18 720 76 = Lg 724 (not primitive)
19 2 76 = Lq 357 365
38 1 76 = Lq 1443 1445
62 61 7564 123 = Lj, 7565
22 19 836 123 = Ly 845
100 99 19800 199 = L, 19801
23 7 322 = L, 480 578 (not primitive)
161 1 322 = Ly, 25920 25922 (not primitive)
20 11 440 279 521 = L4
261 260 135720 521 = L, 135721
422 421 355324 843 = Ly, 355325
142 139 39476 843 = Ly, 39485
42 20 1680 1364 = L,s 2164 (not primitive)
342 340 232560 1364 = L5 232564 (not primitive)
341 2 1364 = L1s 116277 116285
62 11 1364 = L5 3723 3985
31 22 1364 = L5 471 1445
1104 1103 2435424 2207 = Lqg 2435425
1786 1785 637020 3571 = L4 6376021
2889 1 5778 = Lig 8346320 8346322 (not primitive)
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Table 2 (continued)

m n 2mn m? - n? m? + n?

963 3 5778 = Lig 927360 927378 (not primitive)

321 9 5778 = L1g 102960 103122 (not primitive)

107 27 5778 = L1s 10720 12178 (not primitive)
Table 3

PYTHAGOREAN TRIPLES CONTAINING PELL NUMBERS EZ, 1<k<38

m n 2mn m? - n? m® + n?

2 1 4 3 5 =P,

3 2 12 = P, 5 = P, 13

6 1 12 = P, 35 37

5 2 20 21 29 = P,

15 14 420 29 = P, 421

35 1 70 = Pg 1224 1226 (not primitive)
7 5 70 = Pq 24 74 (not primitive)
12 5 120 119 169 = P,

85 84 14280 169 = Py 14281

103 101 20806 408 = Py 20810 (not primitive)
53 49 5194 408 = Pg 5210 (not primitive)
204 1 408 = Pg 41615 41617

102 2 408 = Py 10400 10408 (not primitive)
51 4 408 = Py 2585 2617

68 3 408 = Py 4615 4633

34 6 408 = Py 1120 1192 (not primitive)
17 12 408 = Pg 145 433

Pn+l Pn ZPHPVL+1 Z:}rL-1Pn+Z P2n+l

We note that in 3-4 -5 and 5-12-13, the hypotenuse is a prime Fibo-
nacci number, and one leg and the hypotenuse are Fibonacci lengths. These
are the only solutions with two Fibonacci lengths where a prime Fibonacci
number gives the length of the hypotenuse. If F, is prime, then p is odd, be-
cause EbinM. If Fp is a prime of the form 4k - 1, then there are no solu-
tions to m? + n? = F,, and if Fp is a prime of the form 4k + 1, then m? + n?
has exactly one solution: m = 7 n = F,, or, the triple

k+1°
a=2FF, .. b =F 1Fiess ©C=Fypy (see [2]).

In either case, Fjy,; does not appear as the hypotenuse in a triple contain-
ing two Fibonacci numbers if F,, ., is prime. These remarks also hold for the
generalized Fibonacci numbers {7, (a)}.

Also note that some triples contain numbers from more than one sequence.
We have, in 3 -4 -5, Fy,~[3-Fs, or Ly-L3~Fs, or Fy,-L3-P;, while 5-12-13 has
Fs-Py-F7, or P3~P,-F,, and 20 -21 -29 has Fg and L, or Fg and Py. There also
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are a few 'mear misses,' which are close enough to being Pythagorean triples
to fool the eye if a triangle were constructed: 55-70-89, 21 -34-40, and
8 -33-34. However, 3-4-5 and 5-12-13 seem to be the only Pythagorean
triples which contain two members from the same sequence.

Lastly, note that numbers of the form 4m + 2 cannot be used as members
of a primitive triple, since one leg is always divisible by four, so that
Fibonacci numbers of the form Fgi,3 are excluded from primitive Pythagorean
triples.

2. SQUARES AMONGST THE GENERALIZED FIBONACCI NUMBERS {7, (a)}

Squares are very sparse amongst the sequences {E%(a)}, beyond Fy(a) = 0
and F;(a) = 1. In the Fibonacci sequence, the only squares are 0, 1, and 144
[3]; in the lucas sequence, 1 and 4; and in the Pell sequence, 0, 1, and 169.
There are no small squares other than 0 and 1 in {Fg(a)}, 3 <ax<10; it is
unknown whether other squares exist in {F,(a)}, except when a = k?, of
course.

Cohn [3] has proved the first two theorems below, which we shall need
later.

Theorem 2.1: 1f L, = x?, then n = 1 or 3.
If L, = 22%, thenn = 0 or n = *6.
Theorem 2.2: 1If F, = x?, thenn = 0, =1, 2, or 12.
If F, = 222, then n = 0, *3, or 6.

We shall need the following lemma:
Lemma 2.1: For the Fibonacci and Lucas polynomials,
Frar (@) = Ly (@) g () + (-1, ().

Proof: Lemma 2.1 appears in [4] with only a change in notation.

We will use Lemma 2.1 with x = 2, so that F, (2) = B, and L,(2) = R,,
the Pell numbers and their related sequence.

Conjecturne 2.3: 1f P, = x%, n =0, *1, or 7.
Parntial Proof: Let Ry = P,_, + P, , so that R, = L,(2). Then
8P2 + (-1)" + 2, or, R,, = *2 (mod 8) so that R,, # K°.
Rorsr = Pox + Pogan = Pop + 2Py 40 + Py

= 2(Pypyy + Pyy) = 202M + 1)

since 2|P, if and only if 2|n. Thus, Roxs1 # K% and R, # K? for any n.
Suppose n is even. Since P,; = PRy, if n = 4p + 2, then

Rva

B, = Pops1lop4y where (Po,41,R5,41) = 1.

Then P, = K* if and only if Rpp4; = z? and Popyr = y?, but Raps1 # x%, so
P, # K*. 1f n = 4p, then

P, = P,,R,, where (P,,,R,,) = 2,

n
so P, = K* if P,, = 22 and R,, = 2y®, but since R,, = 8P * 2 = 2(X* t 1),

Rop = 2y? only for p = 0, giving P, as the only solution. Thus, B, # K? for
n even, unless n = 0.
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Since P,4g = P, (mod 8) and Pg,,; = 1 (mod 8) and Pg,z3 = 5 (mod 8),
since all odd squares are congruent to 1 (mod 8), if n is odd, n = 8n = 1 if
P, = K*. Of course, P, = k% for n = %1, *7. The conjecture is not resolved.

Conjecture 2.4: 1f P, = 5k?, then n = 0 or n = 3,
Partial Proof: 1If P, = 5k*, then P, =5 « 0 = 0 (mod 8), or P, =5 + 1 =5
(mod 8), or P, =5 * 4 = 4 (mod 8), so that n = 8m, 8n+4, 87 +3, or 8m+5,

since Py, = 0 (mod 8), Pgysy = 4 (mod 8), and Pg,:3 = 5 (mod 8).
If n is even, then n = 4k, and PF, = Py, = P, R,, where (Py ,R,;) = 2

and R, # 2, R, # 2x?, and R,, # 5x” since 5/R,;. We have P,, # K* unless

k =0, or, P, # K* when n is even, unless n = 0.

If n is odd, then n = 8m *3. Now, n = %3 gives a solution. If n # *3,
then w = 8n £ 3 =2 ¢« 4w £ 3, and since P_3= P3 =5, both of these give
P, = -P; (mod R,,) = -5 (mod Ruw) by way of Lemma 2.1 and

(2.1) Pryox = BPrsr -1**'p,

where m = #3 and k = 4w. Now, if w is odd, then R, divides wa, and we can
write, from (2.1),

P =R, «K-P

243 w3 T Pr3

so that, since R, = 34, P, = -5 (mod 34), where -5 is not a quadratic residue
of 34. It is strongly suspected that -5 is not a quadratic residue of R,,,
but the conjecture is not established if w is even.

Theorem 2.5: If F, = 5x%, then n = 0 or n = *5.

Proof: 1If n is even, F, = F, = F,L, = 5x° if F, = 5x% and Ly = y?, or F, =
x“ and Ly = 5k? (impossible), which has solutions for k = O only.

If n is odd, then # = 3 (mod 4) or n =1 (mod 4). If n = 3 (mod 4),
then write n = 3 + 4M = 3 + 2 + 3" « k, where 2|k, 3/k, and

5F, = =5F, = -10 (mod L),
but Ly = 3 (mod 4) if 2[k, 3*k, so -10 is not a quadratic residue, and
5F, # k? so F, # 5k2.
If n =1 (mod 4), n =5 is a solution. If n # 5
n=1+4u=1+2 3" «FL,
where 2!@, 3*k, and
5F, = -5F, = -5 (mod Ly),
but -5 is not a quadratic residue, and

5F, # k% so F, # 5K when 7 is odd, unless n = 5.

Since F_, = (-1)"*!'F,, n = -5 is also a solution. Thus, F, # 5x2 unless n =
0, #£5.

We will find another relationship between squares of the generalized
Fibonacci numbers useful.

Theorem 2.6:
F2(x) = (-1)"FF2 (@) + By g () F, 4 (@)
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Proof: For simplicity, we will prove Theorem 2.6 for Fibonacci numbers, or
for & = 1, noting that every identity used is also an identity for the Fibo-

nacci polynomials [4]. 1In particular, we use
(2.2) D" E, (@) = Fo, (@)

(2.3) Fpan(x) = Fpoy (0)F, () + Fb(x)5;+1(x)
(2.4) Fi(x) = (-1)"" + Fy 1 (@) Fyyq ()
(2.5) F7 (@) + F2(®) = Fapyy (@)

Proof is by mathematical induction. Theorem 2.6 is true for k = 1 by
(2.4) Set down the theorem statement as P(k) and P(k + 1):

P(k): F2 = (-1)"**FZ + Fy_Fpz
k+1
Pk + 1): Fﬁ = (1" F£+1 tE k1B

Equating P(k) and P(k + 1),

n+k+1 2
-1 (Fk+1

2
+ Fk) Fn—an+k + Fn-k-an+k+1

1

LR TR e GO T T R P

by (2.2). By (2.5) and (2.3), the left-hand and right-hand members become
(—l)n+k+lF2k+1 = (_l)k_n+lF2k+1-

Since all the steps reverse,

(_l)n+k+lF2

_ +k 42 _ 2
k+1 t B ko1Fuiker = -1" Fk + Py xFuer = Fy

so that P(k + 1) is true whenever P(k) is true. Thus, Theorem 2.6 holds for
all positive integers u.

3. SOLUTIONS FOR F2(a) + F.(a) = K*
By Theorem-2.6, when n and k have opposite parity,
(3.1) Fi(a) + Fi(a) = F, 3 (@ Fpex(a).

Since (F,(a),Fx(a)) = 1 = F¢n, 1y (@) by the results of [5], (n,k) = 1 and op-
posite parity for n and k means that (n - k,m + k) = 1 so that

(Fp_x (@) s Fper(@)) = 1.

Thus, Fy_3(a)Fn+x(a) = K? if and only if both F,_i(a) = x? and Fy.x(a) = yZ.
We would expect a very limited number of solutions, then, since squares are
scarce amongst {Fn(a)}.

Since one leg is divisible by 4 in a Pythagorean triple, one of n or k
is a multiple of 6 if a is odd, and a multiple of 2 if a is even; thus, n
and k cannot both be odd. Also, » and k cannot both be even, since F,(a) is
a factor of Fy,(a) and F,(a) > 1 for all sequences except F, (1) = F,.

Restated,

2
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Theorem 3.1: Any solution to Fﬁ(a) + Fﬁ(a) = K? in positive integers,a > 2,
occurs only for such values of n and k that F,_;(a) = x? and Foerla) = yz.

Conjecture 3.2: FZ2(2) + Ff(2) = K*, n >k > 0, where F,(2) = P,, the nth
Pell number, has the unique solution n = 4, k = 3, giving 5-12 -13.

it

Proof: Apply Theorems 3.1 and Conjecture 2.3.
Theonem 3.3: If Ef + Fﬁ = K*, n >k > 0, then both n and k are even.
Proof: Apply Theorems 3.1 and 2.2.

Theorem 3.4: 1If Ff + Ff = K>, n > k >0, then Py, = 55, Fg = 21, F,s = 2584,
Fe¢ = 8, and /'y = 3 each divide either F, or F,, and 13 is the smallest prime
factor possible for X.

Proof: Since 3 divides one leg of a Pythagorean triple, 7, divides B, or F,.
Since 4 divides one leg of a Pythagorean triple, and the smallest F, divisi-
ble by 4 is Fg, F¢ divides F, or F,. That F;; divides either F, or F, follows
by examining the quadratic residues of 11. The quadratic residues of 11 are
1, 3, 4, 5, and 9. Tt is not difficult to calculate

Fiop =0 (mod 11)

Ffpss =1 (mod 11)
Flopey = 9 (mod 11)

where we need only consider even subscripts by Theorem 3.3. Notice that
F2s ¥ Flowso = 1 (mod 11) and F3, + Fiy, ., = 9 (mod 11), where 1 and 9 are
quadratic residues of 11, so that these are possible squares, but Ewaiz +
Flopsy = 10 (mod 11), where 10 is not a residue. F?owxz + E%omtz produces
the nonresidue 2, and similarly Efoth +'E€Owik = 7 (mod 11), so.that either
F, = Fy, or Fy, = F,;,. In either case, F,, divides one of F, or F.

Similarly, we examine the quadratic residues of 7, which are 0, 1, 2,
and 4. We find

F5 =0 (mod 7)
Fi.:, = 1 (mod 7)
FZ ., =2 (mod 7)

where E%m-+ F%miz =1 (mod 7) and Fgm‘*E%mtu Z 2 (mod 7) are possible squares

but FZ, ., + F5,., = 3 (mod 7) is not a possible square. But, F2. and F3,..,
or F%m and Fgm*, or Fﬁmiq and F%m*iq,cannot occur in the same primitive tri-
ple, since they have common factor F,. F5,., and F2,«., cannot be in the same
triple, because F, divides one leg, and neither subscript is divisible by 4.
Thus, F,, is one leg in the only possible cases, forcing Fy; to be a factor of
F, or of Fy.

Using 17 for the modulus, with quadratic residues 0, 1, 2, 4, 8, 9, 13,
15, 16, we find

F2,, =0 (mod 17)

Foumsr = 1 (mod 17)
F2insy =9 (mod 17)
Figmse = 13 (mod 17)
Flamss = 16 (mod 17)
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Now, F?Bm can be added to any of the other forms to make a quadratic residue
(mod 17). F%sm*fz + F18m+2 = 2 (mod 17), but one subscript must be divisible

+ F?

by 6. F%smzz + F?Bmi“ Z 10 (mod 17) is not a residue. F? lemse = 14

18m+2

(mod 17) is not a residue. F%SWHZ + F%8m+ g =0 (mod 17), but one subscript

+ F?

must be divisible by 6. F? 1smze = O (mod 17) is not a residue, while

18mtL
F?Bm*‘k + Fle+8 =8 (mod 17), but one subscript must be divisible by 6.

2 2 2 . .
Flomen T F18m+u and Flgusg * Flgn: s are also discarded because one subscript
. 2 2
is not divisible by 6. Fig .. + Flg,., have a common factor of Fy so cannot

be in the same primitive triple, and F%Bmte + F%amrs produce the nonresidue
12 (mod 17). The only possibility, then, is that F.g, aPpears as one leg, or
that F,g divides either F, or Fj.

Since K cannot have any factors in common with F, or with F,, we note
that the prime factors 2, 3, 5, 7, and 11 occur in F,,, Fg, Fi4, Fg, and F,,
but 13 does not, making 13 the smallest possible prime factor for K.

Theorem 3.5: If F? + sz = K2, n >k >0, has a solution in positive inte-
gers, then the smallest leg F, > Fgj,, which has 11 digits.

Proof: Consider the required form of the subscripts # and kX in the light of
Theorem 3.4. Because 4[F or 4|Fk , and both subscripts are even, we can write
F2. + ng, where p = 35 % 1, making the required form F + F§J+2 Since 3
divides one subscript or the other, 4 divides one subscrlpt or the other,
leading to

(i) FZ, + F?, .., for j odd,

and to
2 .
(ii) F12m + Fl,,+,> for J even.
First, consider (i). Since Fg = 21 divides one leg or the other, Fy4
must divide F,, ., to avoid a common factor of F, = 3, so w is odd, making

Fgm + F2L+q+8 the required form. Next, F,, divides a leg. If F,, divides

Fiyp+ys then F6\F12w+,+, but 6)((12&7 t 4). So, Fy4 'FSM, making the required
form become F%sm + ngq,fs Next, since F,;, divides a leg, we obtain the two

final forms,
(&D) F90m + F.g_leqis or (2) Fle +F120s+uo

Next, consider (ii). Since Fy = 21 divides a leg, we must have Fg|F,,
to avoid a common factor of F, = 3, making the form become F3,, + F%,,.,.
Also, F,; divides a leg, but must divide F,,, to avoid a common factor of
Fg¢, making the form be F%zm + F§2m+2 Since we also have F,, as the divisor
of a leg, we have the two possible final forms

2
(3) Figon + F%zu:z or (4) F%Zm +t Foopeio-

Now, if F, is the odd leg, then F, = m? - n?, and the even leg is F, =
2mn. The largest value for 2mm occurs for (m + n) = F, and (m - n) = 1, so
we do not need to know the factors of F; . Solving to find the largest values
of m and n, we find m = (F, + 1)/2 and n = (Fp - 1)/2, making the largest
possible even leg F, = 2mn = (sz - 1)/2. We have available a table of Fibo-
nacci numbers F,, 0 < n < 571 [6].
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We look at the four possible forms again. In form (1), Fo, has 19 dig-
its, the smallest possible even leg. Possible odd legs are Fi5, Fg,, Fupo
Feey ... where F,; has 9 digits, so that (Fﬁ0 - 1)/2 has less then 19 digits,
making the smallest possible leg in form (1) be Fg;. In form (2), E@Sm +
E%ZOinO! the smallest leg occurs for m = 1, known not to occur in such a
triple from Table 1; m = 2 gives a common factor of 4 with the other sub-
script, making m = 3 the smallest usable value, or the smallest possible leg
Fg,. Now, form (3) has Fg,,, a number of 75 digits, as the smallest value
for the even leg, making the smallest possible odd leg greater than F,.,,
which has 36 digits. Lastly, form (4) has its smallest leg F,, which has 11
digits. Comparing smallest legs in the four forms, we see that the smallest
leg possible is Fg,.

Theorem 3.6: Li + Li = X%, n >k > 0, has the unique solution n = 3, k = 2,
or the triple 3-4-5.

Proof: Since 4|L, or 4|L;, either n = 3(2k + 1) or k = 3(2k + 1), so that
one subscript is odd. Since 3 divides one leg in a Pythagorean triple, one
leg has to have a subscript of 2(2k + 1), which is even, since Lpqu if and
only if g = (2k + 1)p (see [1]). Thus, #»n and k must have opposite parity.
If n and k have opposite parity, then (n - k) is odd. Since L_, = (-1)"L,,
from [1] we have both

(3.2) Lp-xLnsk = L3 = 5(-1)""*F2,
U F Ly gL - B2 = 51" EE,

where 7 - k is odd. Adding the two forms of (3.1),
2
L% + L% = 5(F; + F}) = 5F, _4Fp.x

by (3.1). Now, 5F,_3Fn+x = K? if and only if either Fn_x = 5x° and Fp4p = y°
or Fy_3 = yz and Fp+x = 5x2. By Theorems 2.5 and 2.2, either n + k = 1 and
n-k=50rn-k=1and n+ k =5, making the only solution n = 3, k = 2.

k. SOLUTIONS FOR F;(a) - Fi(a) = K*
By Theorem 2.6, when #n and k have the same parity,
4.1) Fi(a) - Ff(a) = Fy_ g (@) Fnsr(a).

As in Section 3, F,_p(a)F,ix(a) = K% if and only if both F, _x(a) = 2% and
Foix(a) = y?, indicating a limited number of solutions in positive integers.
Note that » and k cannot both be even if a > 2, because Fy,(a) and Fy,(a)
have the common factor F,(a), precluding a primitive triple.

Lemma 4.1: 1If a is odd, 2|Fa (a), 3|Fu(a), and 4|Fg (a).

Proof: We list Fy(a) =0, Fi(a) =1, Fy(a) =a, Fi(a) =a® + 1, Fy(a) =a® + 2a,
Fgla) = a* + 3a® + 1, and Fe(a) =q® + 4a% + 3¢. 1If g is odd, then Fi(a) is
even. If a = 2m + 1, then

F,(a) = (8m> + 12m* + 6m + 1) + (4m + 2)
8m® + 4m) + (12m® + ém + 3)
tm(2m® + 1) + 3(4m® + 2m + 1)
3M + 3K = 3W,

il
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since either 3|m or 3] @m?® + 1). Also, a = 2m + 1 makes
Fe(a) = Cm+ 1D + 40Cm + 1% +3@2n + 1)

(4K + 10m + 1) + &M + (6m + 3)

4K + 4M + 16m + 4 = 4P.

Since F,(a)|F,; (@), m > 0, the lemma follows.

Lemma 4.2: 1f aq is even, 2]F2k(a), 3‘Fuk(a), and 4|F,+k (a).

Proof: Refer to the proof of Lemma 4.1 and let ¢ = 2m. Then Fz(a) = 2m, and
rF.la) = 8m® + 4m = 4[m(2m? + 1)] = 4 +3M, and the Lemma follows as before.

Theorem 4.1: 1If Fﬁ(a) - F,f(a) = Kz, n >k > 0, has solutions 1in positive
integers, then n # 4k. If g is even, » cannot be even. If g is odd, n # 3k
and n # 4k.

Proog: Lemmas 4.1 and 4.2 show that 3IF4k(a), and since 3 divides one leg in
a Pythagorean triple, n = 4k would cause a common factor of 3, preventing a
primitive triple. For similar reasons, n # 2k if o is even, and n # 3k if a
is odd.

Conjecture 4.2: Any possible solution for P2 - Pi =K%, n>k>0, occurs
only if n = 2p + 1 and k = 4w, or if P, is odd and P, is a multiple of 12,

Proog: Considering (4.1), there is no solution to P,_; = xz?, Poyx = yz if n
and k have the same parity, if Conjecture 2.3 holds. Also, #n cannot be even,
because 2\P2m and 4 divides one leg in a Pythagorean triple, precluding a
primitive triple. If k is even, then P, is even, and the even leg is divisi-
ble by 4, making P, have the form P, . Since P, = 12, P, is a multiple of
12.

Theorem 4.3: F2 - F;f = K has solutions in positive integers for n = 7, k =
5, forming the triple 5-12-13, and for n = 5, k = 4, forming the triple
3-4-5. Any other solutions occur only if #n and k have opposite parity,
where either n = 12w * 2 and k is odd, or n = 6m £ 1 and k is even.

Proof: Using (4.1) and Theorem 2.2, the only solution for F,_; = x? and
F,+x =y~ where n and k have the same parity is n = 7, k = 5, making the tri-
ple 5-12-13. If any other solutions exist, # and k have opposite parity.
It is known that n = 5, k¥ = 4 provides a solution, giving the triple 3-4-5.
If n is even, n # 3k, n # 4k, so n= 12w * 2, and k is odd. If » is odd,
n # 3k, son =6m £ 1 and k is even.

Theorem 4.4: 1f n and k have different parity, any solutions for F7 —F,f = K2
other than n = 5, k = 4, or the triple 3 -4 -5, must have n > k + 5.

Proof: F2,.q — F? = Fy-1Fn42, where (F,_1,Fn+2) = 1 or 2, so that Fy_1Fn4y =
K either if F,_, = & and Fp4p=y>, or if Fp-1 = 2> and Fnyz = 2y°. By
Theorem 2.2, there are no solutions to Fy-1 = &° and Fp4p = yz, but Fp-1 =
22% and F,,, = 2y is solved by n = 4, yielding the 3 -4-5 triple, There
are no other solutions for subscripts differing by 1. Since #n and k have
opposite parity, they differ by an odd number.

F2,y = Ff = 4F, 1F,., # K* unless n = 0 or -1 by Theorem 2.2,

Thus, the hypotenuse has a subscript at least five greater than the leg.
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Theorem 4.5: Fﬁ(a) —Ei(a) = ¥? has no solution in positive integers if F,(a)
is prime.

P&OOﬁ: See the discussion at the end of Section 1.

Theonem 4.6: If Li-—Li = X%, n > k > 0, has solutions in positive integers,
then either n = 4m and k is odd, or n = 6p + 1 and k is even.

P&ooﬁ: We parallel the proof of Theorem 3.6, except here we take n and k
with the same parity, so that n + k is even, and subtract:

Dy tDpar = D = SC1FF
(-1)""*L, _3Lpex - LE = 5(-1)"**F

2 2
1% - 1}

5(F2 = F?) = 5F, _3Fpup = K°

if and only if F,_, = 52% and Fovn = yz, or Fu4x = 502 and Fn_x = y By
Theorem 2.5, the only solution for » and k the same parity is n - k = 0,
which does not solve our equation.

If n and k¥ do not have the same parity, consider n even. Then, n = 4k
or n = 4k + 2, but n = 4k + 2 is impossible because the hypotenuse would have
the factor 3 in common with a leg. Thus,n = 4k, and k is odd. If » is odd,
then n = 6p * 1 to avoid a factor of L, = 3, and k is even.

2

Conjecturne: The only solutions to Fﬁ(a) iff(a) =K%, n >k >0, in positive
integers, are found in the two Pythagorean triples 3 -4 -5 and 5-12-13. If
a > 3 and a # k%, the only squares in {Fn(a)} are 0 and 1.

I wish to thank Professor L. Carlitz for suggesting reference [9] and
for reading this paper.
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STRONG DIVISIBILITY SEQUENCES AND SOME CONJECTURES

CLARK KIMBERLING
University of Evansville, Evansville, IN 47702

1. INTRODUCTION

Which recurrent sequences {tn: n=20, 1, ... } satisfy the following
equation for greatest common divisors:

(1) (Emstn) = timm for all m, n > 1,
or the weaker divisibility property:
(2) tmltn whenever mln?

In case the sequence {tn} is a linear recurrent sequence, the question
leads directly to an unproven conjecture of Morgan Ward. (See [3] for further
discussion of this question.) Nevertheless, certain examples have been stud-
ied in detail. If ¢, is the wth Fibonacci number 7,, then (1) holds and con-
tinues to hold if ¢, is generalized to the Fibonacci polynomial F,(x,2), as
defined in Hoggatt and Long [2]. Not only does (1) hold for these second-
order linear recurrent sequences, but (1) holds also for certain higher-order
linear sequences and certain nonlinear sequences. For example, if {sn} and
{tn} are sequences of nonnegative integers satisfying (1), then for fixed
m > 2 the sequences {th :m =0, 1, ...} and ts,: n=0, 1, ...}also satisfy
(1). Other examples include Vandermonde sequences, resultant 'sequences and
their divisors, and elliptic divisibility sequences. These are discussed
below in Sections 3 and 4, in connection with the main theorem (Theorem 1)
of this note.

In the sequel, the term sequence always refers to a sequence t,, ¢,
t,, ... of integers or polynomials (in some finite number of indeterminates)
all of whose coefficients are integers. With this understanding, a sequence
is a divisibility sequence if (2) holds, and a strong divisibility sequence
if (1) holds. Here, all divisibilities refer to the arithmetic in the appro-
priate ring; that is, the ring I of integers if ¢, € I for all n, and the
ring I[xl, cees xj] if the t, are polynomials in the indeterminates x,,
.’L‘j.

.

A sequence {t,} in I (or I[x;, ..., x;]) is a kth-order linear recur-
rent sequence if

(3) tYL*’k = altn+k_l+ cee + aktn n = O, l, e ey

where the a;'s and tg, ..., tn-1 lie in I (or I[x;, ..., x;]1). A kth-order
divisibility sequence 1is a kth-order linear recurrent sequence satisfying
(2), and a kth-order strong divisibility sequence is a kth-order linear re-
current sequence satisfying (1).

2, CYCLOTOMIC QUOTIENTS

For any sequence {t,} we define cyclotomic quotients Q,, @,, ... as
follows: for n > 2, let P;, P,, ..., P, be the distinct prime factors of n;
let

I, = ¢

nos

and for 1 < k < r, let

M = Mtpwp, 2, ... B, »

Tk
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the product extending over all the k indices 7; which satisfy the conditions
11, <7, < ... <%, <mr,
Let &, = 1, and for n > 2, define
I,
(3) & =T, L

The following lemma is a special case of the inclusion-exclusion prin-
ciple:

Lemma 1: TLet H be a set of T real numbers. For 2 =1, 2, ..., T, let H; be
the family of subsets of H which consist of 7 elements. Let

m; = 2: min 4.

Then A e
My =My, F Mg = e = (—l)TmT = max H.
Proof: We list the elements of H as hy; < h, < ... < h; = max H. Clearly
-1 T-2 -1
e = (v:—1)h1 * (i—l)hz o (i-l)hf"‘”
for 2 =1, 2, ..., T, so that
my = my +mg = oo = (1) m,
o, ifT-1 & T-2 - 1
_ [T - i T - i
=i 0 (T e e () e e (D) e
=0 =0 =0
= N,

Theorem 1: Let {t,:n =0, 1, ...} be a strong divisibility sequence. Then
the product II;II; ... divides the product IIjII, ... . [That is, the quotients
(3) are integers (or polynomials with integer coefficients).]

. _ nh £ . _ n .
Proof: Let m = Pi* ... Py*, and write t, = q* ... q.". Then
(4) HOHZHL; N tnntn/al z, Ht"/Pi, BB B, e and
(5) H1H3H5 cea = th/pi 1-[75,1/131:11:}“:z Pi, th/Pi, p‘,‘z Pi:Pi. Rx’,
Now ¢ = gha gha Pir for =1, 2 Vv, where

/B qi* q, cee gL w2, cea, V),
(6) hy > hgy for § =1, 2, ..., T, and 2 =1, 2, ..., V.
Further,

T
min{hi,j,Ria g
tosp by, = (tn/f;.l s tn/P£,> = ﬂ Q'jm{h kit
i=1

T
_ min{h{lj,hilj,h{,j}
tn/l’,:l B, B, (tn/PhP;i L4 tn/Pi|Pi, » 2‘;n/PL-lP._-,> = | | UJ >
j=1
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and so on. Consider now for any j satisfying 1 < J < T the set

B={ny, by e, Pog b
For 1 <7 < v, let ¥; and m; be as in Lemma 1. Then the exponent of ¢, in

Ty ov. is Bj+my+my++++ and the exponent of q; in IIT5 ... is my+mg+
Consequently, the exponent of g, in (3) is

h; - [ml -y + Mg = eee = (=1)° mT].
By Lemma 1, this exponent is A; - max H, which according to (6) is nonnega-
tive.

It is easily seen that Equation (2) would not be sufficient for the
conclusion of Theorem 1: define

n form=20,1, 2, 4, 6, 8,
ty = 2 forn 3

2n  for mn 5, 7, 9, 11,

Then Equation (2) is satisfied, but, for example, the cyclotomic quo-
tient tgt;/t,t3 is not an integer.

3. RESULTANT SEQUENCES AND THEIR DIVISORS

Suppose
p
(7) ) =TT -2 =7 -0t 4 o 4 (<D,
and Lzl
(8) @) =TT -y =t -0t H+ o+ (-Dx
J=1

are polynomials; here any number of the roots x; and Y; may be indeterminates,
and we assume that the coefficients X; and Y, lle in the ring Ilx,, <5 Xp,
Yys =oes yq] Thus all roots which are not indeterminates must be algebraic
integers. Instead of regarding the roots as given indeterminates, we may re-
gard any number of the coefficients X; and Y, as the given indeterminates;
in this case the roots x; and y; are regarded as indeterminates having func-
tional interdependences.

The resultant sequence based on {xl, cees Xy Y eens yq}(or {x 1s
Xpy Yy5 ouevy Yq}) is the sequence {tn tnm=0, 1, ...} given by

H

9 TTTT '_

=1 7=1 xl—yJ

Note that ¢, = K,/R,, where R, is the resultant of the polynomials
p q
T—T (t - x}) and 1—T (t - y?
i=1 j=1

By a divisor-sequence of a resultant sequence {f»}, we mean a linear
divisibility sequence {s, :n = 0, 1, ...} such that s,|t, for n = 1, 2,

We may now state Ward's conjecture mentioned in Section 1: every lin-
ear divisibility sequence is (essentially) a divisor-sequence of a resultant
sequence. We further conjecture: every linear strong divisibility sequence
of integers must lie in the class T of second-order sequences (i.e., Fibonacci
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sequences) or else be a product-sequence {tlntzn oo lim tn =0, l,...} where
each divisor-sequence {tjn tm =0, 1, ...} lies in 7, for j =1, 2, ..., m.
The interested reader may wish to consult especially Theorem 5.1 of Ward [8].

One salient class of divisor-sequences of resultant sequences are the
Vandermonde sequences, as discussed in [3]. Briefly, a Vandermonde sequence
{tn:in =0, 1, ...} arises from the polynomial (7) by

ol - xh
J

b= TT s

1i<j<p % J

Thus, %, is akin to the discriminant of the polynomial

P
By =TT -,
i=1

as well as the resultant of E(¢) and its derivative E7(%). (See, for exam-
ple, van der Waerden [5, pp. 86-87].)

If one or more of the roots x; and y; underlying a divisor-sequence of
a resultant sequence is an indeterminate, then, except for certain possible
irregularities which need not be mentioned here, the sequence is a strong
linear divisibility sequence.

As an example of a strong linear divisibility sequence of polynomials,
we mention the 6th~order Vandermonde sequence which arises from

X(#) = t° - Vat? - 1.
With generating function

t(t2 + £+ 1)2
(2 + ¢+ 1)° + 2t2(¢ + 1)?

this sequence {bn} has, for its first few terms, ¢, =0, ¢, = 1, ¢,=-1, ¢, =
-z, t, =22+ 1, tg=a> +x -1, tg=-3x% - 8x, t;=-x°-2%2 + 92+ 1,
ty = 4x + 18x% 4+ 6x - 1. If = = -1, then {&,} is no longer a strong linear
divisibility sequence, but is, of course, still a divisibility sequence. As
reported in [3], we have

It < 7, (= nth Fibonacci number)

for 1 < »n < 100. It is not yet known if this inequality holds for all n.
Another conjecture follows: for any strong linear divisibility sequence
of polynomials t,, ¢;, £,, ... which has no proper divisor-sequences, the
polynomial ¢, is irreducible if and only if » is a prime. A stronger conjec-
ture is that the cyclotomic quotients (3) are all irreducible polynomials.

L, ELLIPTIC DIVISIBILITY SEQUENCES

Consider the sequence of polynomials in x, y, z defined recursively as
follows:

ty =0, t, =1, t, =2, £ty =y, &, = Xz,

t2n+1 = LTypt+2tn - tn—ltn-f-l for n > 2

1,
Tonta = E(tn%ﬁtn«#ltn = tpe1tu-1tn+z) for n > 2.
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The sequence {t, :n = 0, 1, ...} is an elliptic divisibility sequence.
If x, y, or 2 is an indeterminate then {tn} is a strong divisibility se-
quence. In this case, we conjecture, as in Section 3 for linear sequences,
that the cyclotomic quotients (3) are the irreducible divisors of the poly-
nomials tn.

If x, y, and 2 are all integers, then {tn} is a strong divisibility
sequence if and only if the greatest common divisor of y and xz is 1, as
proved in [11].

We conclude with a 1list of the first several terms of a numerical
elliptic strong divisibility sequence:

to = 0 ti1e = —65
t]_ = 1 t17 = 1529
T, = 1 t1s = —-3689
ta = -1 tlg = -8209
tq = 1 tzo = —16264
ts = 2 tzl = 83313
te = -1 ﬁzz = 113689
t7 = -3 tzg = -620297
ts = -5 tzq = 2382785
tg = 7 to5 = 7869898
tio = -4 tag = 7001471
ti11 = -23 to7 = =126742987
t12 = 29 ‘ﬁza = -398035821
ti13 = 59 tog9 = 1687054711
th = 129 t30 = -7911171596.
ti1s = =314
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GREATEST COMMON DIVISORS OF SUMS AND DIFFERENCES OF
FIBONACCI, LUCAS, AND CHEBYSHEV POLYNOMIALS

CLARK KIMBERLING
University of Evansville, Evansville, IN 47702

It is well known that the Fibonacci polynomials F, (x), the Lucas poly-
nomials L,(x), and the Chebyshev polynomials of both kinds satisfy many
"trigonometric'" identities. For example, the identity

Fop () + Fy, () = Fpyy (©)L|p-p| (x) for even m + n
is analogous to the trigonometric identity
sin 4 + sin B = 2 sin %(A + B) cos %{A - B).
Just below, we list eight well-known identities in the form which natu-
rally results from direct proofs using the usual four identities for sums and

differences of hyperbolic sines and cosines, together with certain identities
in Hoggatt and Bicknell [4]:

_ sinh 2n6 _ cosh (2n + 1)6
Fon (@) = cosh 6 Fan+1 () cosh 0
L,,(x) = 2 cosh 2nb Ly 41 (x) = 2 sinh (2n + 1)0,

where £ = 2 sinh 6. Writing simply F, and L, for F,(x) and L,(x) and assum-
ing m > n > 0, the eight identities are as follows:

FinLlmon if m + n is even
(D) Fomp + F,, =
: o wlnen if m + n is odd
B nlpan if m + n is even
(2) Fopp = Fy, =
Fosnlp_n if m + n is odd
Fntn+1lm-n if m + n is even
(3) Fomer 7 Foper =
By pLmin+1 if m + n is odd
B nlimen+1 if m + n is even
(4) Fomsr = Fopsr =
Fosn+1Llm-n if m + n is odd

18
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L4nLm-n if m + n is even
(5 L2m + Z-’2n =

(@? + 4)Fy P, if m+ n is odd

(x® + W)y snF oy if m + n is even
(6) Ly, = Ly, =

Lyysnlim—n if m + n is odd

Ly nLmn+1 if m + n is even
7 Lomer ¥ Lonyr = )

(@2 + 8)Fy, y 1 Fo_,  if m + 7m is odd

@ + 81 Fron if m + n is even
(8) Loansr = Lonsr =

Ly wLpan+1 if m + n is odd

These identities are derived in [2] in a manner much less directly dependent
on hyperbolic or trigonometric identities. See especially identities (72)-
(79) in [2], which generalize considerably the present identities. An inter-
mediate level of generalization is at the level of the generalized Fibonacci
polynomials F, = F,(x,2) and the generalized Lucas polynomials L, = L,(x,2).
For example, (5) becomes

Loy + Loy = (x* + 43)Fy,,Fy_, if m + n is odd.

Let us recall the substitutions which link the F,'s and L,'s with Che-
byshev polynomials T, (x) of the first kind and U, (x) of the second kind:

T,(2) = 3I.(22,-1), n =0, 1,

U,(x) = F, 41 (2x,-1), n

i
o
=

Clearly, our discussions involving F,'s and L,'s carry over immediately to
T,'s and U,'s; bearing this in mind, we make no further mention of Chebyshev
polynomials in this paper.

Identities (1)-(8) show that greatest common divisors for certain sums
and differences of the various polynomials can be found in terms of the ir-
reducible divisors of individual generalized Fibonacci polynomials and gener-
alized Lucas polynomials. In [7], we showed these divisors to be the gener-
alized Fibonacci-cyclotomic polynomials F,(x,2). The interested reader should
consult [7] for a definition of these polynomials. Theorems 6 and 10 in [7]
may be restated for m > 1 as follows:

(1) P (x,2) = |)|gd(x’2)
d|n

(1I1) L,(x,2) = T_T Fptr1g (x,2), where n = th, q odd, t > 0.
dlq

The (ordinary) Fibonacci and Lucas polynomials are given by F, (x) = F,(z,1)
and L,(x) = L,(x,1), and their factorizations as products of the irreducible
polynomials F(x) = F(x,1) are given by (I) and (II). With these factoriza-
tions, we are able to prove the following theorem.
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Theorem 1: For any nonnegative integers a, b, ¢, d, the greatest common di-

visor of L,F, and L,F; is given by

Fp,20y F(b,e,d) *Fl2a,d) *Fap,d) *F (2a,20) *Fase)

(Lan ,Lch) = F(b,d)

Fp,eyF(b,20,a) " Fa,arF (2a,0,0) *F (2a,0)*F (a,20)

times

2
Faapb,e)® F (ab,22) F(2a,e,d) *F (ay2e,d) [F(Za,b,Zc,d) *F (a,b.c,d)]

5 -
F (2a,b,20) " I (a,b,e)*F(2a,2¢,d) * F(a,e,d) [F(Za,b,c,d) *F(ab2e.d) ]

Proof: Write a = 2°0, o odd, and ¢ = 2%y, y odd. Let

A= {6‘: § =2°*y for some g satisfying q|0L}

Q
1]

{6 :8 = 2°*g  for some g satisfying q]y}

{s:6]p} ana D={s:5lal.

[sy]
]

In terms of these sets, let

S, =BND
S,=BNC-BNCND
S;=AND-ANBND
5,=4NC-4ANS, -CNS,.

Then,

(LoFy L Fy) = <ﬂg6ﬂ<; , ﬂgdﬂ‘35> =ﬁ TTs.

Sed SeB §eCc 8eD i=1 8eS5,

One may now readily verify that 1_]'4376 = F

(b,d) °
§es,
F(p,2e) F(b,20,d) ﬂg Flaa,d) Floap,d)
I |g = + and s = .
ses, 8 F(b,a) F(b,c,d) Ses, F(a,d) F(a,b,d)
For the product involving S,, we have
F(Za,Zc) * F(a,c)
(1% = 5 o
seANc (2a,c) (a,2¢c)
- Flaap,2e) * Fap,e . Floaped) * Flab,e,d) ;
| I s = B N an
seans, F(2a,0,6)* ¥ (ab,20) Flaa,p,2e,0) * Flapie,d)
Faa,a,20) * Frad,e) Flaa,p,e,d) * Fab,2e,d)

TT% =

seans, FQade) Fadze)  Faapzed) * Flabed
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Now using

TT%= Tl ¢ TTo = TTs;s S

Se3, SedNnc §eANS, §edNs,

the desired formula is easily put together.

F(Za,ZG)' Fla,ey
Conollarny: (L,,L,) =

F(Za,c)o F(a,Zc)

It is easy to obtain formulas for (F,F,,F,F;) and (L,Lp,L,Lz using
the method of proof of Theorem 1. The Lucas-formula has the same form as
that in Theorem 1, but even more factors. The Fibonacci-formula too has this
form, but few enough factors that we choose to include it here:

. 2
Fvert Fea,ay Fa,ey  Flap,e,d)
(FoFp F Fy) =

F
Bod) Fipod) * Fapdy * Flabie) * Flare,d)

Returning now to sums and differences of polynomials, we find from
identities (1) and (3), for example, that

@an Furen * Fy = LogFopen for any nonnegative integers k and 7.

Thus, Theorem 1 enables us to write out the greatest common divisor of any
two terms of the sequence

Foy, Fe + F., F

5 19 + F

L 6 2o Fq ¥ Fyg,

or of the sequence
Fo+ 1, Fg+ 1, Fg + 1, F, + 1,
With the help of (3') below, we can refine the latter sequence to
F,o+1, Fo+1, Fo+1, F, + 1,
and still find greatest common divisors. (But what about the sequence {E; +1}
for agll positive integers n?)

Following is a list of double-sequence identities like (1'). These are
easily obtained from identities (1)-(8).

(l'> Fh,k+n + Fn = LZkFZk+n
2" Frgan = Fn = P Dogeiy
3" Fogansr T8 = Logani1Fop s

4"

Fqk+n+2 -, = F27<+n+1L2k+l
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(5 ') qu+n + LYL = LZkL2k+n
6" Lygyn = In = @ + )E, 2
an Liygsnsz ¥ In = @ + 8)Fp 1 Fypynan

(8 ') L'+k+n+2 - L‘ﬂ = L2k+lL2k+n+1'

We note that the divisibility properties of some of these sequences are
much the same as those of the sequence of Fibonacci polynomials [namely,
(FysFy) = F(pny with Fp irreducible over the integers whenever p is a prime]
or the sequence of Lucas polynomials. For example, the sequence s;, 8,, S,,
..., given by

0, Ly, +2, L, =2, Ly +2, L, -2, ...,

has (Sy,8n) = (x? + A)Ffmm) for all positive integers m and n.

One might expect Theorem 1 to apply to sequences other than (1')-(8")
in the manner just exemplified. A good selection of forty identities, some
admitting applications of Theorem 1, is found in [3], pp. 52-59.
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PROBABILITY VIA THE NTH ORDER FIBONACCI-T SEQUENCE

STEPHEN JOHN TURNER
St. Mary's University, Halifax, Nova Scotia B3H3C3

Suppose we repeat a Bernoulli (p) experiment until a success appears
twice in a row. What is the probability that it will take exactly four trials
when p = .5? Answer: There are 2 equi-probable sequences of trial outcomes.
Of these, there are exactly two with their last two entries labeled success
with no other consecutive entries successes. Hence, there is a 1/(2%) chance
that the experiment will be repeated exactly four times.

Immediately, questions arise: What is the probability that it takes 5,
6, 7, ..., n trials? What are these probabilities when p # .5? What answers
can be provided when we require N successes in a row?

The answers for the most general case of I successes involve a unique
approach. However, it is instructive to treat the case for N = 2 first in
order to set the framework.

THE CASE FOR NV = 2
We shall use the idea of '"category."

Definition: Category S is the set of all S + 1 sequences of trial outcomes
(denoted in terms of s and f) such that each has its last two entries as s
and no other consecutive entries are s.

Now we have a means for designating those outcome sequences of inter-
est.

Notation: N(S) denotes the number of elements in category S,
S=1, 2, 3,

There is but one way to observe two successes in two trials so that
category one contains the one element (s,s). Also, category two contains one
element (f,s,s). The value of N(3) is determined by appending an f to the
left of every element in category two and then an s to the left of each ele-
ment in category two beginning with an f. Thus, category three has two ele-
ments:

(F,F,8,8) and (s,f,s,8).

Observe that this idea of "left-appending may be continued to con-
struct the elements of category S + 1 from the elements of category S by ap-
pending an f on the left to each element in category S and an s on the left
to each element in category S beginning with an f. There can be no elements
in category S + 1 exclusive of those accounted for by this 'left-appending"
method.

A result we can observe is that

N@s + 1)

N(S) + "the number of S-category elements
that begin with an f"

N(S) + N(S - 1).

So we obtain the amazing result that the recursion formula for category size
is the same as the recursion formula for the Fibonacci sequence! Since N(1)
= N(2) = 1, we see that when p = .5 the probability that it will take S + 1
trials to observe two successes in a row is given by

23
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W) 1% ) = (Fs)/(2°Hh

where Fy; denotes entry S in the Fibonacci sequence.

If p # .5, then each category element must be examined in order to
count its exact number of f entries (or s entries). Such an examination is
not difficult.

Suppose category S - 1 has a; elements which contain exactly 7 entries
that are f, and that category S has b; elements which contain exactly % en-
tries that are f, 2 =0, 1, 2, ..., S - 2. Then category S + 1 contains
exactly a; + b; elements which contain exactly 7 + 1 entries that are f. Jus-
tification for this statement comes quickly as a benefit of the "left-append-
ing'" approach to the problem. Hence, we can construct the following partial
table:

Number of Elements Containing Exactly
Category 7 Entries Which Are f

7= 0 1 2 3 4 5 6
1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 1 1 0 0 0 0
4 0 0 2 1 0 0 0
5 0 0 1 3 1 0 0
6 0 0 0 3 4 1 0
7 0 0 0 1 6 5 1

Observe that nonzero entries of the successive columns are the succes-
sive rows of the familiar Pascal triangle! This observation is particularly
useful because the kth entry of the <th row in the Pascal triangle is

(7:-1>= (£ - 1)1
k-1 ((£ - 1) - (k = D)1k -1

Also, since category 1 contains exactly one element containing 7 - 1 entries
which are f, we know the Zth row of the Pascal triangle will always begin in
row 2 and column < - 1 of the table. Thus, if we move along the nonzero en-
tries of row ¢t of the table (from left to right) we encounter the following

successive numbers:
(t—l> (t—2> (t-—S) (a)
0 3 l bl 2 E) ERCICIEY b .

To characterize <;§>, notice that row k of the Pascal triangle ends in row

2k — 1 of the table. Thus, if ¢+ > 1 is odd, then a = b = (¢ - 1)/2. And if
t > 1 is even, then ¢ = ¢/2 and b = (£/2) - 1.

Thus, whenever ¢ > 1, we know that the probability that "it takes % + 1
trials" is given by
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CQP -+ : :

( : >(1 _ p)t—(1+lhft+1)-(t—(1+1»
1=0
1, 4if ¢ is odd

where L= { 2, if ¢ is even

THE GENERAL CASE

Now we will be answering the question of the probability that it takes
k trials to observe n successes in a row, kK > n. To begin, we generalize the
concepts of category, Fibonacci sequence, and Pascal triangle.

Definition: Category x is the set of all n + (x - 1) sequences of f's and
s's (denoting failure and success, respectively) such that the last n entries
in each sequence are g, and no other n consecutive entries in the sequence
are s.

Definition: The nth order Fibonacci-T sequence, denoted f”, is the sequence
Ay Ay Qgs vevy dpy -+, Where a; = 1 and

(2 -1)
a,, if2<41<n
k=1

(Z-1)
ay, if 7 > n.

k=1-n

It is instructive to first define the nth order Pascal-T triangle by
example: .

(1) If n = 2, the Pascal-T triangle is the familiar Pascal triangle;
(2) If n = 3, the Pascal-T triangle is of the form
1
1 1 1
1 2 3 2 1

1 3 6 7 6 3 1
1 4 10 16 19 16 10 4 1
1 5 15 30 45 51 45 30 15 5 1

(3) If n = 4, the Pascal-T triangle is of the form

1
1 1 1 1
1 2 3 4 3 2 1
1 3 6 10 12 12 10 6 3 1

The nth order Pascal-T triangle has (j - 1)n - (j - 2) entries in the
Jth row. Letting the first to last of these be denoted by j,, J,, Js»
i the kth entry in row J + 1 is given by

JG-vn-G-2
min(k,(j—l)n—(j—z))
J, for k=1,2,3, ..., gn-(j-1.

7 =max(l,k-n+1)
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We can now proceed by enlisting the "left-appending' procedure outlined
earlier., There is but one way to observe n successes in » trials. So N(1) =
1. Likewise, there is but one element in category two. To obtain the ele~
ments of category three, we append an f to the left of each element in cate-
gory two and then append an s to the left of each element in category two.
So category three contains the two elements

(fyfs8585 vovy 8) and (8,158,885 +evy 8)

where 8,8, ..., 8 signifies that the entry g occurs »n times in succession.
We may proceed in this manner for each category k, kK < n + 1.

It is clear that category # + 1 will contain exactly one element which
has the entry s in its first n - 1 positions. Thus, category n + 2 will have
Z(N(n + l)) - 1 elements.

Now note that when constructing category k + 7, we proceed by appending
an f to the left of each element in category (k + #n) -1 and an s to the left
of each element in category (k + n) —1 which does not begin with the entry g
in its first m - 1 positions. But the number of elements in category (k + »)
- 1 containing the entry & in their first n - 1 positions is the same as the
number of elements in category X which begin with an f£! Hence,

N(in + k) Z(N(n + k - l)) - "number of elements in

category k which begin with an f"
2N(n + k - 1) - N(k - 1).

We now prove the following useful

Theorem:
n

Hin+ k) =) N+ k-1%), k=1, 2, 3,

i=1

Proo4: We use simple induction.

(D) F+1) =27 =1+ 2%-?

=2
= N(1) + (W(2) + N(3) + N(4) + ==+ + N(n))
=D 0+ 1-4).

=1

(2) Supposing truth for the case k, we have

Nin+ k) +1

W + k) - WK = 2) N+ k - ) - H(K)

=1
n-1 n
=Y W+ k- 4) + Y B+ k- 1)
i i=1

u
e

X
1

Nn +k - 172) + Nn + k)

i

=) Nln+k) +1-4il.m

=1
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Now note that since N(1) = 1, the sequence N(1), N(2), N(3), ... is an nth
order Fibonacci-T sequence via the theorem!

Thus, if p = .5, then the probability that it will take #n + (k - 1)
trials to observe n successes in a row, k > 1, is given by

n(ky /@Y = (@Y,

where f; denotes the kth entry in the nth order Fibonacci-T sequence.

We will now determine the probabilities when p # .5. A foundation is
set by observing that if category k -#n +7 has an element M which has exactly
x entries that are f, then the element (s,s, ..., s,f,M), beginning with n -
(Z + 1) entries which are s, is a member of category k and it contains x + 1
entries that are f. This is true for ¢ = 0, 1, 2, ..., n - 1. If we let a,,
7=0,1, 2, ..., n - 1 represent the number of elements in category k-n+1
which have x elements that are f, then category k contains a, ta; +a, + -+ +
a,_.7, elements which have x + 1 entries that are f. This is the recursive
building block for the nth order Pascal-T triangle where row ¢ begins in
category 7 and ends in category (£ - 1)n + 2! The following table partially
displays the situation.

Number of Elements Containing

Category Exactly 7 Entries Which Are f
=0 1 2 3
1 1 0 0 0
2 0 1 0 0
3 0 1 1 0
4 0 1 2 1
5 0 1 3 3
n+1 0 1
n+ 2 0 1
n+ 3 0 0
2n 0 0 3
2n + 1 0 0 2
2n + 2 0 0 1
2n + 3 0 0 0
3n + 1 0 0 0 3
3n + 2 0 0 0 1
3n + 3 0 0 0 0

Since the number of entries in two successive rows of the nth order
Pascal-T triangle always differ by n, then moving from left to right in the
table, the Zth category row will see its first nonzero entry in column m - 1
where (m = 2)n + 2 <72 < (m-1)n+1, 2 >1 and m > 1.
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Let [i]n denote the kth entry in the <th row of the nth order Pascal-

T triangle, k =1, 2, 3, ..., (£ - 1)n - (£ = 2). Suppose 7> 2. Then the
successive mnonzero entries in the Zth category row, listing from right to

left are
0 03] S,

where (m - 2)n + 2 <72 < (m -~ 1)n + 1 for some m > 2.
Thus, the probibility that "it will take n + (£ - 1) trials," < > 2,
is given by

i~m

-k (E-k) -1 _ n+(E-1)-((E-k -1)
2:|:z<+](l'p)1 A

k=0
where (m — 2)n + 2 <4 < (m - 1)n + 1 for some m > 2.

AUTHOR'S NOTE

The machinery used in the above solution generates a number of ideas
which the reader may wish to explore. A few examples are:

1. 1If ff denotes the kth entry in the second order Fibonacci-T sequence,
then it can be shown that the sequence {ff+l/ff} is a Cauchy sequence
and so being, has a limit g,. From this, it follows that g, = 1 + 1/g,
so that g, is the golden ratio. This brings up the question of the
identity of g, =%£§ f::l/lewhen n > 3. (Here, f; denotes the kth en-
try in the nth order Fibonacci-T sequence.) It can be argued that g, <
2 for any value of » and lim g, = 2.

7+

2. It has been shown that

2 -k -1
fpo= [ - (a7 /g, + @) 7]
Can we find a similar expression for f; when n > 37
3. We can generalize the nth order Fibonacci-T7 sequence by specifying the
first n entries arbitrarily. For instance, the first three cases would
be
n=1 a, a, a, a, a, a, 5
n=2: a, b, a+b, a+2b, 2a+3b, 3a+5b, ...;
n=23: a, b, e, atb+e, a+2(b+e), 2a+30h +c) +c, ...,

3

where @, b, and ¢ are arbitrarily chosen. The investigation of the
properties and relationships between these generalized sequences could
provide some interesting results.

REFERENCE
H. S. M. Coxeter, Introduction to Geometry, 1969, pp. 166, 167.
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SOME CONGRUENCES INVOLVING GENERALIZED FIBONACCI NUMBERS

CHARLES R. WALL
University of South Carolina, Columbia S.C. 29208
1. INTRODUCTION

Throughout this paper, let {Hn> be the generalized Fibonacci sequence
defined by

(l) HO = q, Hl = p, Hn+l = HYL + Hn—l’
and let {Vn} be the generalized Lucas sequence defined by
(2) Vn = Hn+1 + Hn—l'

If ¢g=0and p =1, {H,} becomes {F,}, the Fibonacci sequence, and {V,} be-
comes {Ln}, the Lucas sequence. We use the recursion formula to extend to
negative subscripts the definition of each of these sequences.

Our purpose here is to examine several consequences of the identities

(3) Hyvp + (-1)"Hy_p = LyH,
and
(4) Hn+r= - (_l)an—r = FrVna

both of which were given several years ago in my master's thesis [12]. Iden-
tity (3) has been reported several times: by Tagiuri [5], by Horadam [8],
and more recently by King and Hosford [10]. However, identity (4) seems to
have escaped attention.

We will first establish identities (3) and (4), and then show how they
can be used to solve several problems which have appeared in these pages in
the past. We close with a generalization of the identities.

2. PROOF OF THE IDENTITIES
The Binet formulas
F, = (a® = BM/V5 and L, = o + 8",
where o = (1 + v/5)/2 and B = (1 - V/5)/2, easily generalize to
H, = (Ao - BR™)/V5 and V, = Aa™ + BR",

where 4 = p - qgB and B = p - qu. Any of these formulas may be obtained eas-
ily by standard finite difference techniques, or may be verified by induc-
tion.

Since 0B = -1, we have

Hysp ¥ (-1)7Hyop = {40~ BR™*T + 07p740" "7 - A Y
{Aomar + 4anB” - BE"ar - BR"E7}/VS
{ar + 8"}« {4a" - BE"}//S
= LpHy,.
Therefore, (3) is established.

29
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Similarly,
Hywp - CL"H, ., = {Aom” - BR™*T - aTR"4a™T + o&"e’BB”'”}/E
= {Aorar + BT - AB"a” - BE"7 IS
= {do™ + BB"} . {oﬂ‘ - Br}//g
=l
so (4) is also verified.
3. CONSEQUENCES OF THE IDENTITIES

It is sometimes more convenient to rewrite identities (3) and (4) as

LyHy vy (R oodd)

(5) Hyyon — Hy =

FVisn (h even)
and

Py Vyyn (B 0dd)
(6) Hyyon + Hy =

LyHysn (B even).

In the discussion which follows, it is helpful to remember that:
i. 1If H, = F,, then V, = L,.
ii. I1f H, = L,, then V, = 5F,.
iii. For all k, F, divides Fp .
iv. If k is odd, then L, divides L, .
By (5), we have
Hyvoy = Hy = Fp Vypqp = 144Vn412 .
Therefore, with H, = Fy,
Frsoy = F, (mod 9,
as asserted in problem B-3 [9].
Direct application of (5) yields
Hysum+s = Hu = Lomy1Hyvomer
so that
Fovumes = Fo = Lopy1Fnvomer»

as claimed in problem B-17 [13].
Since L, = 2, identity (4) gives us

Dy = 2(-1% = Lyyp = (-D¥Lyy
Fy, (5F,) = 5F;.

Therefore, Ly = 2(-1)¥ (mod 5), which was the claim of problem B-88 [14].
If k¥ is odd, then (5) tells us that

Hugvor = Hox = LiHprs s

s Fonenx = Fax (mod L) (kK odd)

as asserted in problem B-270 [6].
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By (6) we have

Fopow * Foy + Foypy = Fn + Fouy + Fgyy
= Fg, + L,Fy, = (1L + 7)Fg, = 8F, .
Since 21 = Fg divides Fg, , it follows that
Fgn-y + Fgy + Fg,p,, =0 (mod 168)

as claimed in problem B-203 [7].

In problem B-31 [11], Lind asserted that if »n is even, then the sum of
2n consecutive Fibonacci numbers is divisible by F,. We will establish a
stronger result. Horadam [8] showed that

H + Hy, + +-+ + Hy, = Hyyy - Hy.
If n is even, then by (5) we have

H + H, + «++ + Hy, = Hypyp = Hy = F, Vy 42,
which is clearly divisible by F,. Because the sum of 27 consecutive general-
ized Fibonacci numbers is the sum of the first 2» terms of another general-
ized Fibonacci sequence (obtained by a simple shift), Lind's result holds for
generalized Fibonacci numbers. In addition, we may similarly conclude from
(5) that if n is odd, the sum of 21 consecutive generalized Fibonacci numbers
is divisible by L,.

By (5),
Hopor+y — Han = Homuek — Hay
= o Vonsonk = Fok Vonk+1)

Therefore (with H, = L, and V, = 5F,)

Longr+1y = Lan = 5P Fops1y >
so not only is it true that

LZn(2k+l) = LZn (mOd FZn )’
as asserted in problem B-277 [1], but indeed

- 2

Lonr+y = Lan  (mod F3,)

since F,, divides both Fy,; and Fiy,k 1)

In a similar fashion,

Honsyek+1) =~ Hm+1 = Hopv14uk@n+n — Hm+
= Forn+1) Von+1+2k@n+1)
= Fon+ny Vark+1@n+1)

so that

Don+ywe+ny — Lom+1 = SForen+1y Farsry@n+n -

Therefore,

!
t~

2
L an+1y i +1y m+1  (mod Fa )

and in particular

Lon+nywk+1)y = Loan+r  (mod Fpyyq)
as claimed in problem B-278 [2].
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Also,
Hypunsry — Hu = Hopyske — Hap
= thk V2n+lmk
= Fume Vancr+1)
Therefore,
Fonwr+y = Fan = FumpLoner+1) >
so
FZn(uk+1) = an (mOd LZn(2k+l) )-

Since L,, divides L,,(2x+1) > we have

Foni+1y = Fop (mod L),
which establishes problem B-288 [3].
Now let us consider
Honsyor+1) — Hoper = Honsr142k@n+1) = Hopsr-
By (5) we have
Lk(2n+l) Hk+1)(2n+1) if k is odd,

Fron+1y Y@+ @n+n if k is even.
Therefore

Liyan+n) Fr+en+y Iif k is odd

Fansry @+~ Fans1 _ ,
Fron+y Lk+nan+1 1if k is even.

If k is odd, Lyon+1) 1is divisible by Ly, ,,; if k is even, then k + 1 is odd,
80 Ly, 4+; divides L(x+1)@n+1) - Hence, in any case,

Fansy @r+n = Fopey  (mod Lopiq),

which was the claim in problem B-289 [4].
Finally, we note that adding (3) and (4) yields

Fopwp = (LpFy + FpLy)/2
if H, = F, (and V, = L), and
Lyty = (LyLy + SFan)/z

I

if H, = L, (and V, = 5F,). Subtraction of the same two identities gives us

Fn-—r = (—l)r (Lan - Fan)/z
and
Ly_»= (-1)"(LpL, - SF.F,) /2.

These results appear to be new.

4, GENERALIZATION OF THE IDENTITIES
Let {un} be the generalized second order recurring sequence defined by
Ug = 4> ul =D, Uyt = GUn + hun-ls

where g2 + 4k # 0 (to avoid having repeated roots of the associated finite
difference equation). Define {Un} by

Up = Un+a + hun—la
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let {Sn} be defined by

89 =0, 8, =1, 8,41 =gsn + hs,_1,
and let {tn} be defined by

ty = Sp+1 + hSp-1.

Extend each sequence to negative subscripts by means of the recurrence rela-
tion.
Then if

= (g + ¢92 + 4h>/2 and B = <g - ng + 4h>/2,
the Binet-like identities are easy to prove:
8§, = (@" - B")/(a - B)
t, = a” + B"
= (Ao™ - BB™)/(a - B)
v, = Ao” + BR",

where A = p - gB and B = p - qa.
Then it is a simple matter to establish that

Up+p T (—h)run-r = Tply

and ]
Unsr = (<P U, p = SpVa.
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ENUMERATION OF TRUNCATED LATIN RECTANGLES

F. W. LIGHT, JR.
229 W. Swatara Dr., P.O. Box 276, Jonestown, PA 17038

NOMENCLATURE

An r xk rectangle is a rectangular array of elements (natural numbers)
with r rows and X columns. A row with no repeated element is an R-row. A
column with no repeated element is a (-column; otherwise, it is a C—column.
If all rows of a rectangle are R-rows, it is an R-rectangle. An R-rectangle
subject to no further restrictions will be called, for emphasis, free. One
whose first row is prescribed (elements arranged in increasing numerical or-
der) is a normalized R-rectangle.

An R-rectangle all of whose columns are (-columns is an R—C—Pectangle;
one whose columns are all C-columns is an R-C-rectangle. An r xn R-C-rec-
tangle each of whose rows consists of the same n elements is a Latin rectan-—
gle (L-rectangle). (R-C-rectangles whose, rows do not all consist of the same
elements are the "truncated" L-rectangles of the title.)

ENUMERATION OF CERTAIN R-RECTANGLES

The most obvious enumerational question about L-rectangles is, prob-
ably: How many distinct normalized » xn L-rectangles are there? Denoting
this number as ¥,, we have, as in [1],

n k

&I“Vl r-
b My =y CUFE - 0117

k=0

where d@m is the number of free »r xk R-C-rectangles that can be built up
with C-columns constructed from elements selected from r rows each of which
consists of the elements 1, 2, ..., 7.

The number of free r» xn L-rectangles is

n
n
@) RPN (D)t - o170t
since Nj, = niM,,.

Such formulas are effective numerically, of course, only if all the dﬁﬂ
are known. This is the case for r < 4, viz. (ug,n = 1, by definition):

k =0 for all k > 0 and all n.
K =n® where n® =nn-1) ... (n -k +1),
RO
a notation used throughout this report.
o, =nGn - 2)ak t, + 2k - Dnm - Dak 2,

a result easily obtained by eliminating the B;
from the pair of formulas given in [1].

uﬁﬂl may be found by using the 13 recurrences given in [1].
<

Except for k 4 (see below), the uﬁﬂi for » > 4 are, in general, not known.

34
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Consider now R-(-rectangles that are not necessarily L-rectangles. Let
r = number of rows,
m = number of columns (m < »n)

n = number of elements available for each row
(the same set of elements for each row).

IV,I,:’,,L = number of free A-C-rectangles with the
indicated specifications.
We have
m
m -
3 Wi =20 (0e (D)o - )0 17
s=0

Formula (3) may be derived by using the same n”-cube that was used
([1]) to get the formula for M:. In this instance, we work with only the
first m of the structures of highest dimensional level (thus with stripes,
if r = 4). Proceeding as in the earlier case, and making appropriate adjust-
ments in the multipliers that arise (e.g., if r = 4, the number of k-tuples
of bad cells in any m (>k) stripes is now

m®
Oy n
IR

b

each k-tuple of bad cells combines with [(n - k) ™~% 1® cells—of any kind),
we get a formula for M;,n (the normalized counterpart of N,i,q’n) and finally,
since ]V;,’)n =nmy; , formula (3).

The free R—C—l"ectangles are more convenient in many respects than the
normalized ones. It is immediate that there is a reciprosity between m and
r:

r m

(4) Nppw = Vo«

Formula (3) may be inverted, to give:

%) O = Zm: (-1° (Z) [(n - g)lm=9) ]"1\]:’" .

s=0

Formulas (3) and (5) are identical, the self—inve}rsive property being, of
course, inherest in the definitions of a;.",n and N, , . By utilizing (4) and
(5), we can find Ot;n’n for m < 4, for any values of » and n. Thus, the first
few terms of (2) are known for »r > 4.

A more general formula of the sort discussed above can be given, cover-
ing cas<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>