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If [n] represents the first # natural numbers, D. Stephen showed in [3]
that no topology on [n] with the exception of the discrete topology has more
than 3(2"'2) elements and that this number is a maximum. 1In this article we
show that, if kX is a nonnegative integer and k < z, then no topology on [#]
with precisely #n - k open singletons has more than (1 + 2%¥)2%-%-1 clements
and that this number is attainable over such topologies for k < nm. We also
show that the topology on [n] with no open singletons and the maximum number
of elements has cardinality 1 + 2,_,.

Recently, A. R. Mitchell and R. W. Mitchell have given a much simpler
proof of Stephen's result [2]. Their proof consists of showing (1) If n > 2
and x,y € [n] with & # y, then

I'(z,y) {4 CIn): xedoryt A}

is a topology on [#n] with precisely 32" %) elements, and (2) If I is a non-
discrete topology on [#n], there exist x,y € [n] with T C I'(x,y). In Section
1, we give proofs of two theorems which in conjunction produce Stephen's re-
sult and which dictate what form the nondiscrete topology of maximum cardi-
nality must have.

1. STEPHEN'S RESULT

We let ]AI denote the cardinality of a set 4. If I is a topology on
[n] and x € [n], we let M(I',x) be the open set about x with minimum cardinal-
ity. Evidently, I' = {4 C [n]: M(T,x) C A whenever x € 4}.

Theorem 1.1: If k is a positive integer and T is a topology on [xn] with pre=-
cisely n - k open singletons, there is a topology A on [#n] with precisely
n - k + 1 open singletons and |T'| < |A].

Proo4: Choose x € [n] such that {x} is not open. Let
p={4U@NhH: 4,8 €T}

Then A is a topology on [n] with precisely n - k + 1 open singletons, which
satisfies TC A and I' # A. The proof is complete.

Theorem 1.2: If k is a positive integer and T' is a topology on [n] with pre-
cisely n — k open singletons and for some x € [n], {y} is open for each

y € M(T,x) - {z} and |[M(T,x)| > 2,

there is a topology I on [n] with precisely n - k open singletons satisfying
IT| < fal.

Proof: Choose y € M(T',x) - {x} and let
A={aU BN W@, - y): 4,8 T}

Then A is a topology on [n] with precisely n - k open singletons, which sat-
isfies T C A and T # A. The proof is complete.

Coroflarny 1.3: Each nondiscrete topology on [#] has at most-3(2n-2) elements
and this number is a maximum.
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Proog: 1f I' is a nondiscrete topology on [#], then n > 2. From Theorem 1.1,
if I has the maximum cardinality over all nondiscrete topologies on[n], then
I' has precisely n -1 open singletons; and by Theorem 1.2, if {n} is the non-
open singleton, we must have [M(l",n)l = 2. So there is an ¢ € [n - 1] with
M(T,n) = {n, x}. Thus,

I ={4Cilnl:n¢apU{acCinl: {n, =} C4f.
Consequently, |Fl =2""1 4272 -32" % and the proof is complete.
Remark 1.4: The topology A in the proof of Theorem 1.1 (1.2) is known as the
simple extension of I' through the subset {x} (M(T,x) - {y}) [1].
2. SOME PRELIMINARIES

In this section we present some notation and prove a theorem which will
be useful in reaching our main results. If k €[n], let A(k) be the collection
of topologies on [n] which have {1}, {2}, ..., {k} as the nonopen singletons.
If 1 <m < k, let C(m) be the set of increasing functions from [m] to [k];
for each g € C(m), let

u(r,mg) = U uT,g(2))
and Z€[m

QT,m,g) = {4C [n]: U(Tym,g) C A and |4 N [k]] = m}.
Lemma 2.1: The following statements hold for each topology I' € A(k).

k
@ T={4Ccn:4nkl =0ulU U T,mg).

m=1 gec(m)

(b) For each m € [k] and g € C(m), we have
[Q(T,myg)| = 0 or |2(,mg)]| = g n-k+m-lu@mal|
(¢) (T,ymg) N Q(T,4,h) =@ unless (m,g) = (J,h).

Proof o4 (a): Let A represent the set on the right-hand side of the equality
sign in (a), and let W € I'. If WN[k] = @, then W € A. If WN[k] # @, then
|[WN[k]| = m for some me [k]. Let g be the strictly increasing function from
[m] to WN[k]. For each g(Z) we have WD M(I‘,g(i)), so

WO Uul,myg), WeQl,mg), and T C A.

If W ¢ A and WN[k] = @, then W € I'. Otherwise, W € Q(I',m,g) for some m e [k]
and g € C(m). For this (m,g) we have

g([m]) C u(l',m,g) C W;

thus, W € I', since

W =uUT,mg) U (W - U(F,m,g)), u(l,m,g) eI,

W - uT,mg)) N [k] = @3

so ACT and (a) is verified.

|

and |

Proof o4 (b): It is easy to verify that Q(T,m,g) is the set of all subsets
of [n] - ([k] - g(Im])) which contain U(T,m,g) for each pair (m,g). Conse-
quently (b) holds.
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Proog of (c): If 4 e Q(T,m,g) N Q(T,j,h), thenm = |A N [k]| = . Also,
g(Iml) U h(lm]) C 4 N [k],

which gives
lg(Im]) U h([m])| = m.

Since g and % are strictly increasing, we must have g = h, and the proof is
complete.

We are now in a position to establish the following useful theorem.

Theorem 2.2: 1If T is an element of A(k), then

k
,FI izn—k +z Z 2n—k+m—|U(F,m,g)|

m=1 gec(m)
with equality if and only if Q(T,m,g) # @ for any pair (m,g).
Proof: From Lemma 2.1(a) and (c), we have

k
IT| = {aCnl: AN (k] = 0} +Y, D, [eT.mg)].

m=1 geC(m)
So from Lemma 2.1(b) we get

k
,Fl izn_k +Z Z 2n—k+m-]U(l",m,g)|

m=1 geC(m)
with equality if and only if Q(I',m,g) # @ for any pair (m,g9). The proof is
complete.
3. THE FIRST TWO OF OUR MAIN RESULTS

The Case 0 < k < n: The results are clear for kK = 0. In the following, we
assume that k € [n].

Theonem 3.1: 1If n is a positive integer and T € A(k), then
IT| < @+ 2%)2 7%,

Proof: We proceed by induction on #n. The case n=1 is true vacuously. Sup-
pose n > 1 and the result holds for all integers J € [n - 1].

Case 1: |U(T,m,g)| = m for some pair (m,g). Then we have
UT,m,g) C [k].

Let W ¢ T with ¥ C [k] and |W| a minimum. Then |W| > 2 and M(T,z) = W for
each x € W. Without loss, assume that 1 € ¥ and if [n] - W # @, assume that
[n] - W=12, 3, ..., n - |W| +1}. Define a topology A on [n - |W| + 1] by
the following family of minimum-cardinality open sets:

M(,1) = {1}, M(A,x) = (M(T,x) - W)U{1} if M(T,x) N W # ¢
and
M(A,x) = M(T',x) otherwise.
It is not difficult to show that |A| =|T'| and that A has n - k + 1 open sin-

gletons. So by the induction hypothesis, we have
IT| < (1 + 2%-1P1)on =% (1 4 2¥%ypn koL,
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Case 2: ]U(T,m,g)[ > m for each pair (m,g). Here we have
IU(F;m9g)| >m+ 1

for each pair (m,g) and, from Theorem 2.2, we get

k k
n-k * n=k+m-|U(T,m,gl n-k (k) n-k-1,
| <2"F 437 D2 <2 +<Zm 2 ;

m=1 gecm) m=1
we see easily that

k
2"k 4 (Z (;)) 2" o @+ 2Ry TR

m=1
The proof is complete.

It is obvious that if T ¢ A(k) with IU(F,m,g)] =m+ 1 for each pair
(m,g) then !F] will be a maximum over )(k) and we will have

IT| = @1+ 2)n"k-1

If such a T has |Ti a maximum over A(k), we must have
|[M(T,2) | = 2 and |M(T,x) N [k]] =1

for each x € [k], since g € C(1) defined by g(1) = x must satisfy
|U(F,l,g)| =2 and Q(T,l,9) # ¢

from Lemma 2.1(b). Moreover, if x <y and x,y € [k], then
|M(T,2) U M(T,y) | = 3

since g € ((2) defined by g(1) = x and g(2) = y must satisfy

|u(r,2,9)| = 3.
Thus,
M(T,x) N M(T,y) # 0.

This implies that there must be a j €[n] - [k] with M(T',x) = {x, j} for each
x € [k] and that

I={4Clnl: 4N [kl = 8} U{4C [nl: {®, j} C4 for each x € 4 N [k]}.
We have
IT| = @ + 2¢)2"~*!
from the arguments above and the second of our main results is realized.

Theorem 3.2: For 0 < k < n, there is a topology on [n] with precisely n - k
open singletons and (1 + 2")2"""1 elements.

As a by-product of these main results, we obtain Stephen's result.

Conoflary 3.3: The only topology on [n] having more than 3(2""%) open sets
is the discrete topology. Moreover, this upper bound cannot be improved.

Proof: If the topology I' on [n] is not discrete, then n > 1 and there is at
least one nonopen singleton. If X is the number of nonopen singletons, we
have, from Theorem 3.1, that

lrl < 271-1 + zn—k—l

n-1 n-2

= 302" Y,

and since 7 # 1, there is a topology on [n] with precisely 3(2"7%) elements,
from Theorem 3.2. The proof is complete.

<2"t 42



1979] MAXIMUM CARDINALITIES FOR TOPOLOGIES ON FINITE SETS 101

L. OUR FINAL TWO MAIN RESULTS
The Case kR = n: It is obvious that for k = n, no topology on [n] has
(1 + 2k)on-k-1

elements. If I € A(n), we let
P ={4C[nl: A= MT,x) for each x € 4, and # 0.
It is clear from the argument in Case 1 of Theorem 3.1 that P([') # 0.

Theorem 4.1: 1If T is an element of A(k) which has maximum cardinality over
X(k), then |4| = 2 for each 4 € P(I).

E&ggﬁ} If 4 € P(I') with IA] > 2, choose x,y € 4 with & # y and let
s={vu@n iz, yH: v,B e T}

Then A € A(k), TC A, and T # A. The proof is complete.

Theorem 4.2: If T is an element of A(n), then || <1 + 2" 2,

Proog: Lé£ T' e AX(n) with ]Tl a maximum. Then ]A’ = 2 for each 4 € P(T'). For
each 7 € [|P(D)]], let

PG) = {n - 2|P(D)| +4, n -4+ 1};
without loss, assume that

P(TY = {P(E): ¢ € [|P(T)|1}

and that

[n] —H)A = [n - 2|P(D)|1 if n # 2|PMD)].
Define a topology A on [n - |¢(T)|] by specifying its minimum-cardinality
open sets for each x ¢ [n - ‘@(F)]] as

M(h,x) = <M(T,x) - U A> Uin - 2| +42: PG)N M(T,x) # 91

()
Then A has precisely ]@(T)[ open singletons and |F| = !A]. By Theorem 3.1,

IT] < (1 + 2"'2""””)2""”"'1

where the expression on the right side of the inequality decreases as l@(T)]
increases. Thus, IFI <14 2" 2% for all T € A(n) and the proof is complete.
Theorem 4.3: TFor n > 1, there is a topology on [n] with no open singletons
and 1L + 272 elements.

Proog: From Theorem 3.2, there is a topology T on [ -1} with 1 + 2"7% ele-
ments. For this topology, M(T,x) = {x, n - 1} for x # n = 1 and (T, n- 1) =
{n - 1} may be assumed to be the minimum-cardinality open sets. Let

5 ={4Cnl: MT,x) U {n} C A when M(T,z) C 4}.

Then A is a topology on [n] with no open singletons and [A| = [I'|. The proof
is complete.

5. SOME FINAL REMARKS

The following observations may be made from the Theorems and construc—
tions above.
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Remark 5.1: 1t is easy to comnstruct for each 1 <j<n-k a topology T & A(k)
with cardinality (2% + (-1 + 27))2" %9 Let M(T,x) = {z} for each x ¢ [n] -
[k] and m(T,x) = {x, k+ 1, k+ 2, ...,k + 7} for each x € [k]. We see from
Theorem 2.1 that |T] is the required number.

Remasrk 5.7: More generally, if k € [n] and for each x € [k], W(x) is a non-
empty subset of [n] - [k], let T be the topology on [#] having minimal cardi-
nality open sets M(T',z) = {x} U W(x) for x e [k] and M(T,x) = {x} otherwise.
Then from Theorem 2.1

k .
IFI _ zn_k +Z Z 2n—k+m—(m+ H]W(g(z)))
m=1 gec(m)
since
lu(r,m,g) | = ; [U]M(T,g(vl))l = |gmD | + [U] W(g (L)) ‘ =m+ [U]W(g(i))l.

Remark 5.3: For each k e {n], let '
wk) = {T € A(®): QT,m,g) # @ for any pair (m,g)}.

Then u(k) = {T e A(k): for each x e [k], M(T,z) = {x} U W(x) for some nonempty
W(x) C [n] - [k]}. Thus ’U(k)f = (-1 + 2""%k for each subset of [n] of cardi-
nality k. Therefore,

(Z)(—l + 277k
is the number of topologies, I', on [n] such that
I'e AM(k) and Q(T,m,g) # @ for any pair (m,g).

The total number of such topologies is

> (Z)(—l + 2Rk

kenl
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A PRIMER ON STERN'S DIATOMIC SEQUENCE

CHRISTINE GiULI
University of Santa Clara, Santa Clara, CA 95053
and
ROBERT GIULI
University of California, Santa Cruz, CA 96050

PART I: HISTORY
1. Eisenstein's Function

In 1850, F. M. G. Eisenstein, a brilliant mathematician and disciple of
Gauss, wrote a treatise [1] on number theoretic functions of a reciprocating
nature. In this paper he discusses the following sequence as part of another
discussion.

For positive integers A, u, and v:

1) 24,5 = Tuusv + Tyip,» (mod A), for u + v < A;
2) Lu,p = Q, for u + v > A;
3) Xyup= U, for u + v = A,

On February 18, 1850, M. A. Stern, who taught theory of equations at the
University of Gottingen, attended a conference on Mathematical Physics where
Eisenstein mentioned that the function described in his paper was too complex
and did not lend itself to elementary study. Within two years of that con-
ference, Eisenstein would die prematurely at the age of 29, but the study of
Stern numbers had been born, and research was in progress.

2. Stern's Version

In a paper written in 1858, Stern presented an extensive discussion [2]
on what may be characterized as "Generalized Stern Numbers.'" Many important
results were generated in this paper, some of more importance than others.
The authors will attempt to present a synopsis of these results, translated
from German, as they were presented.

(1) Stern provided the following definition as his specialization of Eisen-
stein's function. The sequence is a succession of rows, each generated from
a previous row starting with two numbers, m and #.
m ”n
m m+n n
m 2m + n m+n m + 2n "

etc.

Stern also provided some special terms for the elements of the rows.

Definition: ARGUMENT—The starting terms, m and n, are called
ARGUMENTS of the sequence.

Definition: GRUPPE—In each successive row every other term is
from the previous row and the terms in between are
the sum of the adjacent two. Any three successive
elements within a row are called a GRUPPE.

Definition: STAMMGLIED—In each GRUPPE, the two numbers which
were from the previous row are termed STAMMGLIED.

103
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Definition: SUMMENGLIED—In each GRUPPE, the middle term,
the summed element, is termed SUMMENGLIED.

Some results are immediately obvious. The first SUMMENGLIED, m+n, is always
the center element in succeeding rows. The arguments m and »n always straddle
the row. The row is symmetric about the center if m = n; even so, if a SUM-
MENGLIED is of the form km+1n, then Im+kn appears reflected about the cen-
ter element (MITTELGLIED).

(2) If there are k elements in a given row, then there are 2(k -1) + 1 ele-
ments in the next row; if the first row has three elements, the pth row has
2P + 1 elements. Also, if we let Sp(m,n) denote the sum of the elements in
each row, then

p
Sp(m,n) = §——;——l—(m + n).

Note that Sp(m,n) is reflexive or that Sp(m,n) =Sp(n,m). Stern also observed
that

Sp(m',n') m'+mn'

Sp(mym)  m+n

and
Spm+m',n +n') = S,(myn) + Sp(m',n').
This latter result led to
SP(Fn’Fn+1) 1
lim 1 + —————————— = «, the golden ratio,

no SP(Fn—laFn) - 1
S

a nice Fibonacci result.!

(3) Stern observed next that some properties concerning odd and even numbers
as they occur, or more precisely, Stern numbers mod 2. He noted that, in any
three successive rows, the starting sequence of terms is

odd, even, odd
odd, odd, even
odd, even, odd

(4) Given a GRUPPE a, b, ¢, where b is a SUMMENGLIED in row p, the number
will appear also in row p - k, where

a+b-c
2b :

Also, if b is in position

207107 - 1) + 1

k =

in row p, then it occurs also in row p - (¢ - 1) in position 27. Related to
this, Stern noted that with two GRUPPEs a, b, c and d, e, f in different rows,
but in the same columns, that

lrhis is a generalization of what was actually presented. The study of
Fibonacci numbers as such was not .yet in play. Hoggatt notes that this result
is also true for generalized Fibonacci numbers.
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atc_d+f »
b e

(5) No two successive elements in a given row may have a common factor.
Furthermore, in a GRUPPE g, b,c (b = a + ¢), a and ¢ are relatively prime.

(6) Two sequential elements a, b cannot appear together, in the same order,
in two different rows or in the same row. When m = n = 1 (the starting ele-
ments) then a group @, b may never occur again in any successive row.

(7) The GRUPPEs a, b, ¢ and ¢, b, a may not occur together in the first (or
last, because of the symmetry) half of a row.

(8) 1In the simple Stern sequence using m = n = 1, all positive integers will
occur and all relatively prime pairs a, ¢ will occur. TFor all elements of
this same sequence that appear as SUMMENGLIED, that same element will be
relatively prime to all smaller-valued elements that are STAMMGLIED. Stern
pointed out that this is also a result of (6).

(9) The last row in which the number # will occur as a SUMMENGLIED is row
n - 1. The number n will occur only »n - 1 more times.

(10) Given a relatively prime pair b, ¢ (or ¢, b) of a GRUPPE, the row in
which that pair of elements will occur may be found by expansion of b/c¢ into
a continued fraction. That is, if

%= (k) k'a k”’ trr km’ rm—l)’

then b, ¢ occurs in row
(K + k" + K"+ oo + Rk, +2r,_; - 1),
and the pair (1,r,_;) occurs in a row (k + k' + --- + k).

(11) Let (m,n) denote row p generated by the Generalized Stern Sequence
starting with m and n. Then

mn)y £ (m";n")y, = mEtm',n £np,

which says that the element-by-element addition of the same row of two se-
quences is equal to row p of a sequence generated by the addition, respec-
tively, of the starting elements.

In particular, an analysis of (@,1)p generates an interesting result.
The first few rows are:

% (0, 1)

9 0,1

1 0,1,1

2 0,1,1,2,1

3 0,1,1,2,1,3,2,3,1

Interestingly enough, all the nonzero elements in row k appear in the same
position in every row thereafter. Stern observed also that in any given col-
umn of (1, 1)p the column was an arithmetic progression whose difference was
equal to the value occurring in the same relative column of (0, 1)p.

2The authors note that (a+¢)/b being an integer is not surprising, but
the fact that this ratio is the same within columns is not immediately obvious.
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(12) From the last result in (4), we recall that

atc_d+f
b

T e
where a,b,c; and d, ¢, f are GRUPPEs and in the same column positions, but
perhaps different rows, then

|db - ael = [p; - p,l,
where p, and p, are the row numbers.

(13) The next special case of interest is the examination of row (1,n)p, for
n > 1. The first noteworthy result is that all elements of the row (1,n)p
appear at the start of the row (1, 1)p4pn-1. Also, all terms are of the form
k+ In or 1T + kn.

(14) Moving right along, the rows (1l,n)p may be written as

1+ n,1+1n,0 + 1n
1+ dn,2+1n,1+1n,1+2n,0 + 1n
1+®Mm,3+1n,2+1In,3+2n,1 +1n,2 +3n,1 +2n,1+ 3n,0 + 1n

etc.

Notice that the constant coefficients are the elements of (1, 1)p-2, and that
the coefficients of n are the elements of (§, 1)p-1. Note also that the dif-
ference between any two successive elements, k + In and k' + 1'n, within a
row is

Ikz, - k'ZI = l’
and no element may have the form
hk + h'kn.

(15) With k and k' in (14), k and k' are relatively prime. Correspondingly,
7 and 7' are also relatively prime.

(16) Given N > n in the sequence (1,n) and of the form N = X - In, then X and
L are relatively prime; N and n are relatively prime; L and I are relatively
prime as well as K and N. Numbers between @ and N/»n that occur in (1l,n) will
be relatively prime to all N whenever N is a SUMMENGLIED.

(17) In order to proceed symmetrically, Stern next examined the sequence of
rows (n,1)p. The first immediately obvious result is that (n,1)p is reflex-
ively symmetric to (1l,n)p about the center element. When m and #n of (m,n)
are relatively prime and p is the largest factor of m or », then for (n',n'),
where m = pm' and n = pn’', each element of (m',n') multiplied by p yields the
respective element of (m,n). Stern noted at this point that all sequences
(m,n) appear as a subset somewhere in (1, 1).

(18) Given that N occurs in (m,n) and
N =mk + nl

for k and I relatively prime, Stern reported that a theorem of Eisenstein's
says that N is relatively prime to elements between (ny/n)NV and (my/m)N where
my and n, are such that ]nmo - mnol = 1; N is a SUMMENGLIED. When m = my = 1
and n, = ® - 1, N is relatively prime to elements between (n -1/n)N and N.
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(19) Given again that V = mk + In and N relatively prime to elements between
(ny/n)N and (my/m)N and, further, that we are given a GRUPPE

kK'm+ 1'n, N, k"m + 1"n, then (k' + k") (k"m + 1") = n (mod N).

Eisenstein stated that for a GRUPPE «, IV, B where

B=k'm+ 1'n + sl
and

Hi

B k'm + 1'"n + TN,
then

B = k"m + 1" (mod N).

(20) Eisenstein continued to contribute to Stern's analysis hoping to arrive
at the more complex function he had originally proposed. Stern stated that
in the analysis of row (1, 2)p and N that are SUMMENGLIED, that N is rela-
tively prime to elements between @ and N/2. Further, since (1,1)p occurs
in the first half of (1, 2)p , that N occurring in the (1,1)p, portion are
relatively prime to the rest of the system [not in (1, 1),] mod V. And last,
but not least, Eisenstein commented that if N is relatively prime to numbers
between (n,/n)N and (my/m)N then it is also relatively prime to numbers be-
tween (m — my/m)N and (n - ny/n)N.

(21) Let us now examine rows (m,n)p and SUMMENGLIED of the form kn + In. Let
the GRUPPE be

kK'm+ 1'n, km + In, kK"m + 1",
then
1) k'l - kL'

1
and

2) k"l - k1" = -1.

Now presume that the continued fraction

k

7= (@, ay, azs «ovs am)
and that k' = kg and 7' = 1y or k" = ky and 7" = 1, (at the reader's option).
Eisenstein states that the following is true:

k!

%7 = On + (-1, Apo1s eves Qs @)

and, consequently, that
p=a+t+a, + - +a, - 1.
This result is, of course, similar to the result (1) observed by Stern.

(22) Now with some of Stern's sequence theory under our belts, we can analyze
Eisenstein's function:

(a)  f(mmn) = flmym + n) + f(m + n,m) when m+ n < A;
)  f(m,n)
(c) fGn,m) =@ whenm+ n > A;

n when m+ n = A;

where m and n are positive numbers and A is prime.
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Note the relationship to Stern numbers when expanding f(m,n):

flm,n) = f(m,m + n) + f(m + n,n)
= f(m,2m + n) + f2m + n,m + n)
+ f(m + n,m + 2n) + f(m + 2n,n)
The arguments of the function are generalized Stern numbers. The following

conclusion can now be drawn concerning Eisenstein's function.
1. For any given f(km + In,k'm + 1'n), that (k+ k")Ym+ (L + 1")n = ).

2. If m=1and n = 2, then (16) implies that f(1,2) can be composed
of elements of the form f(=,A - «) and that

P2 = A w At
>\Jrlslﬂsk-l,
2

F1,2) = LI (mod 1.

3. For whole numbers "»" such that

4. For whole numbers '"»" such that, as in (18),

oA moA
n T T m
then

Fnm) = L= (mod ).
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A MULTINOMIAL GENERALIZATION OF A BINOMIAL IDENTITY

LOUIS COMTET
Department des Mathematiques, Faculte des Sciences, 91 - ORSAY

1. The binomial identity which we wish to generalize is the following:
n_ N~ (2n-k-1 N Ty \"F
= k+ 4 .
1 ( +y) ;g&( -1 )(x Y )<x n y)

It can be found and is proved in [2]. Let us begin by giving a demonstration
suitable to a generalization to more than two variables. Symbolizing C..f (%)
for the coefficient a, of ¢" in any power series f(¢) = E: a,t”, it is easily
shown that the second number of (1) is: n>0
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\ x y _xy N
) A <1 T x T 1- ty)(l tr+ y) :

Indeed, it is sufficient to carry out the Cauchy prodyct of the two following
power series (in %):
x Y
1 - tx+ 1-ty

Z (xk + yk)tk'l

k=1
_ xy \"* _ n+l-1 z< xzy \*
(l tx+y> ZZ%( n—l)t x+y)
To calculate (2) otherwise, let us apply the Lagrange reversion formula

under the following form [1, I, p. 160 (8c)]: 1let f(¥) = Z a,t” be a formal

n20
series a; =0, a; #0, of which the reciprocal series is f<_1> (t) [that is to
say, f'(f<_1> t)) = f<_l>(f(t)) = t], and let ®(£) be any other formal series

with derivative @’(£); then we have:
(3) 1Cn (£ () = Cpnr <1>'(t)<i(tﬂ)_n.

In view of demonstrating (1), let us put in (3),

= £ - 2. %Y ' = x Y
F@) =t -t o) = i

which guarantees that the second member of (3) is effectively (2) in this
case. But then,

o(t) -log(l - tx) - log(l - ty)
—log{l - t(x + y) + t2xy}
-log{l - (x + Y F(E)},

that is to say, thanks to the well-known expansion -log(l - T) = Z T™/n for
(*): n>1

1 0(F V() = nCer - Log{l - @ + PFEFT @)}

nCyn - log(l - (x + y)t) @ (@ + "

Consequently, we have equality (1) as a result of (3).

2. To generalize formula (1), let us call o,, 0,, 04, ... the elementary
symmetric of the variables Xy, X5, «+., %y, and Sy, Sy, S3, ... the symmetric
functions which are sums of the powers; in other words,

(4) 0, = Z Ly, O, = Z X, Ly, » Oy = Z Liy Liy iy s

1<i<m 124)<% <m 1241<i2<3<m

(5) Sy (=0) = 3wy, S, = 3 @k, 5, = 9. xl,

1<i%m 1<7<m 1<7<m
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Let us apply the Lagrange formula (3), this time with

02 O3 m-1 Op
() =t - tP==+ 2= oo 4 (-1)" Ly
s 5t 1"
1
= gl-{l - (- =) - twy) e (1 - tmy)),
8(t) = ~log(l - 0,f(¥)) = -log(l - tx ) (1 - tx,) --+ (1 - txy,)
m
= =Y log(l - tx;),
J=1
X, T X, T
’ = e _
(%) 1 - tx, + 1 - tx, + + 1 - txy
Now, the first member of (3) equals:
(6) nCpn = log{l = o, f(F C(D)} = nChn - Log( - 0,8) = of,

and the second member of (3) may be written

Q) Conms @7 () (f—(f—)>

c Ly Lm 03 .
= Cyn-1 l—:’_%?‘.';;-l—.'.-km 1—1;6—1‘+t01—... .

Let us introduce the simplified writing for the multinomial coefficients

(m=-1+vy+v,+er +v_p!
(m=1)1vytv,! oo v g!

(n-1, Vi, Vys veey Yp-1) =

[in particular, (a,b - a) = (2)], and in expanding (7) as a multiple series

of order (m - 1), [1, I, p. 53 (12m')], there comes:

(8) ctn-l{z sktk'l}{ > (n =1, vV, Vyy -eu,
R

k>1

v v
v )tv1+2v2+3\)3+--- o2\ O3 z
m-1 Ol 01 M

Finally, by comparing (3), (6), and (8), we find:
Theosem: With the notations (4) and (5), we have the multinomial identity:

n

(9) On s . ( l)\)2+vh+\)s...(n _ ]_, vy,
1 k
Vi +2v,+e st (m = 1)y, ==

R T EER )
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For example, by m = 2, we find again formula (1) under the term

(@, +2,)" zsk(Zn k - l>< 1>‘ﬂ—k

For three variables, x,, x,, 5, m = 3, we have (V = v,):

" n -k -1 - 1 o, \*-k-2v a.\’
(-'271 +x, +.’L‘3) =Z Sy Z ( l) (7’1( Z)!\)!(n—z)—2\))!<6_j-> (gj’) .

k=1 O<\)<
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WHICH SECOND-ORDER LINEAR INTEGRAL RECURRENCES HAVE
ALMOST ALL PRIMES AS DIVISORS?

LAWRENCE SOMER
U.S. Department of Agriculture, FSQS, Washington, D.C. 20250

This paper will prove that essentially only the obvious recurrences have
almost all primes as divisors. An integer »n is a divisor of a recurrence if
n divides some term of the recurrence. In this paper, "almost all primes"
will be taken interchangeably to mean either all but finitely many primes or
all but for a set of Dirichlet density zero in the set of primes. In the
context of this paper, the two concepts become synonymous due to the Froben-
ius density theorem. Our paper relies on a result of A. Schinzel [2], whose
paper uses "almost all" in the same sense.

Let {w,} be a recurrence defined by the recursion relation

(1) Wny2 = QWns1 + Dy

where a, b, and the initial terms w,, w;,; are all integers. We will call a
and b the parameters of the recurrence. Associated with the recurrence (1)
is its characteristic polynomial

(2) 22 - ax - b =0,

with roots o and R, where oo+ B = a and aB = -b.
Let.

= (a0 - B2 =a% + 4b

be the discriminant of this polynomial.
In general, if D # O,

(3) w, = ¢,o" + ¢,B”,

where
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(4) e, = (W, - wyB)/(a - B)
and
(5) e, = (wWya - w,)/ (o - B).

We allow 7 to be negative in (3), though then w, is rational but not neces-
sarily integral.

There are two special recurrences with parameters a and b which we will
refer to later. They are the Primary Recurrence (PR) {u,} with initial terms
Uy, =0, U, =1 and the Lucas sequence {vn} with initial terms v, =2 and v, =a.
By (4) and (5) we see that the nth term of the PR is

(6) up = (a* - M/ (a - B)
and the nth term of the Lucas sequence is
@) v, = a” + B".

The following lemma will help give us a partial answer to the problem of
determining those recurrences which have almost all primes as divisors.

Lemma 1: Let {wn} be a recurrence with parameters a and b. Let p be a prime.
If b # 0 (mod p), then {wp} is purely periodic modulo p.

Proof: First, if a pair of consecutive terms (w,,W,+1) is given, the recur-
rence {w,} is completely determined from that point on by the recursion re-
lation. Now, a pair of consecutive terms (W,,Wn+1) must repeat (mod p) since
only p? pairs of terms are possible (mod p). Suppose (Wp,Wm4+1) is the first
pair of terms to repeat (mod p) with m # 0. But then

bwm-l S Wpyy = QW
by the recursion relation. Hence,
- 2-1
Wy_1 = b " Wpey — awp) (mod p).

Thus, w,.; is now determined uniquely (mod p) and the pair (w,.;,w ) repeats
(mod p) which is a contradiction. Therefore, m = 0 and the sequence is pure-
ly periodic modulo p.

Thus, we now have at least a partial answer to the question of our title.
The PR {un} clearly satisfies our problem since any prime divides the initial
term u, = 0. Further, any multiple of a translation of this sequence also
works. The sequence {w,}, where w, = ru_,, w, = PU_,,; with r rational and
n > 0 clearly has 0 as a term. Moreover, by our previous result, Lemma 1, if
p{b, then p divides some term of {w,}, where w, = ru,, w, = ru,,, with »
rational and n» > 0. Clearly, there are only finitely many primes p dividing
b. We shall show that these are essentially the only such recurrences satis-
fying our problem. This is expressed in the following main theorem of our
paper.

Theonem 1:  Consider the recurrence {w,} with parameters a and b. Suppose
b #0, D# 0, w, # 0wy, and w; # PBwy.

Then almost all primes are divisors of the recurrence {w,} if and only if
Wy = TUy,, W; = Pl,,q

for some rational r and integer 7, not necessarily positive.
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We will now explore how far we can go towards proving our main theorem
using just elementary and well-known results of number theory.

Theorem 2: Cogsider the recurrence {w,} with parameters a¢ and b. Suppose
that neither wi - wow, nor (-b) W} - wy,) is a perfect square. Then, there
exists a set of primes of positive density that does not contain any divisors

of {wa}.
Proog: It can be proved by induction that
(8) W = W aner = W] - wew,) (BT

By the law of quadratic reciprocity, the Chinese remainder theorem, and
Dirichlet's theorem on the infinitude of primes in arithmetic progressions,
it can be shown that there exists a set of primes p of positive density such
that
(-b/p) =1 and @32 - wuw,/p) = -1.
We suppress the details. Now suppose that p divides some term w,_;. Then
wh -0 = Wi~ ww,) (k)" (mod p).
But -
w3 /p)

1
and

(W? - wow,) (-B)""1/p) = (1)(-1) = -1.
This is a contradiction and the theorem follows.

Unfortunately, there are recurrences which are not multiples of trans-
lations of PRs and which do not satisfy the hypothesis of Theorem 2. For ex-
ample, consider the recurrence {w,} with parameters a = 3, b = 5, and initial
terms 5, 21, 88, 369. Then

2 -
w] —ww, =1

and the conditions of Theorem 2 are not met. However, it is easily seen that

this recurrence is not a multiple of a translation of the PR with parameters
3 and 5.

To prove our main theorem, we will need a more powerful result.

Lemma Z: Let L be an algebraic number field. If A and © are nonzero elements
of L and the congruence

A® 2 6 (mod P)

is solvable in rational integers for almost all prime ideals P of L, then the
corresponding equation

A =0 7
is solvable for a fixed rational integer.
Proog: This is a special case of Theorem 2 of A. Schinzel's paper [2].
Before going on, we will need three technical lemmés.
Lemma 3: 1In the PR {u,} with parameters a and b, suppose that b # 0. Then
Uy = (1" (u,/b™)  for m 2 0.
Proog: Use induction on #.

Lemma 4: Consider the PR {u,} with parameters ¢ and b. Then
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O, = bu,_1 + u,0
and

Bn bun_l + unB

where n > 0.

Proog: Notice that

(9 a*? = ga*! + po
and
(10) 872 = aB™*t + bR™.

Now use induction on # and the recursion relations (9) and (10).
Lemma 5: 1In the recurrence {w,} with parameters a and b, suppose that
D#0,Db#0,w, #aw,, and v, # Bw,.

Let ¥y = w; - w,0 and § = w, - w,B be the roots of the quadratic equation
x? 2 (2w, - awgdx - (bwi + awgw, - w?) = 0.

Y/§ = (a/B)

for some rational integer n, not necessarily positive, if and only if

Then

Wo = PlU_p, Wy = PlU_p41

for some rational number r.

Proof: First we will prove necessity. Suppose that
Y/8 = (a/B)".

By hypothesis none of a, B, Y, - or § is equal to 0. Then y = ma”™ and § = mB"
for some element m of the algebraic number field X = @¢/D). We now claim that
m is a rational number. Let % be the kth term of the PR with parameters
2w, - aw, and bw + awyw, - wi. Then

e = (k- 85 /(v - ).
In particular,
t, = 2w, - aw, = (M*a®* - m?*B*")/ (ma™ - mp")

ma”® + B = mv,,

where v, is the nth term of the Lucas sequence with parameters a and b. Hence
m= (2w, - awy)/vn

is a rational number. Now remember that
Y =w

= n = - = n
| — W0 = ma™ and § =w, -w,B =mB".

By Lemma 4, we can express o" and BA"in terms of u,.1, Uy, o, and B. Now 7y
and § are already expressed in terms of w,, w;, &, and B. We can thus solve

for w,, w, in terms of a, B, u,_.;, and u,. We now use Lemma 3 to express
U_, in terms of u,. If n is positive, we obtain
(11) we = [1)"mb™u_,, w, = [(-1)"mb"lu_ps1-

If n is negative or zero, we obtain
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(12) Wo = MU_py Wy = MU_yyy

as required. We have now proved necessity. To prove sufficiency, we simply
reverse our steps in the proof so far.

We are now ready for the proof of our main theorem.

Proog o4 Theorem 1: We have already shown the sufficiency of the theorem in
our remarks following Lemma 1. To prove necessity, suppose that for almost
all primes p there exists a rational integer »n such that plwn. Then by (3),

w, = c,0" + ¢,B" = 0 (mod p)
is satisfiable for some integral » for almost all rational primes p. In the
algebraic number field X = Q(/D), we thus have
c.a™ + ¢,B8" = 0 (mod P)
for the prime ideals P dividing (p) in K. Thus,
(a/B)* = -c,/c, = Y/§ (mod P)
by the definition ¢,, ¢,, Y, and 6. Consequently,
v/8 = (a/B)® (mod P)
is solvable for almost all prime ideals P in K. Hence, by Lemma 2,
v/8 = (a/B)"
for some rational integer n. Therefore, by Lemma 5,
Wy = PU_,, W; = PhU_py4
fog&some rational number r and we are done.

For completeness, the next theorem will answer the question of the title
for those recurrences excluded by the hypothesis of Theorem 1.

Theorem 3: 1In the recurrence {w,} with parameters a and b, suppose that
(wq,w,) = (0,0), b =0, D=0, w, = 0wy, or w; = Bw,.

Let p denote a rational prime.
(i) If w, = 0 and w; = 0, then plwn for all n regardless of a and b.
Note that in this case, the recurrence {wn} is a multiple of the PR {u,}.
(i) If b = 0 and (w,,w;) # (0,0), then the recurrence {w,} has almost
all primes as divisors only in the following cases:

(a) b=0, a#0, wy =0, and w; # 0. Then p|w, for all primes p
and p*wn, n>1, if p*awl. Clearly, in this case the recurrence is a multi-
ple of the PR {u,}.

() b=0,a+0, wy # 0, and w; = 0. Then w, = 0 for n > 1 and
plw, for all p if n > 1. 7

(¢) b=0, a=0. Then plw, for all p if n > 2.

(iii) Suppose b = 0, (wy,w;) # (0,0), a # 0, and b # 0. Then the recur-
rence {w,} has almost all primes p as divisors if and only if w; # (a/2)w.

(iv) Suppose that w; = ow, or w; = Bw,. Further, suppose that D is a
perfect square, wy # 0, and b # 0. Then almost all primes are not divisors
of the recurrence {w,}. Moreover, pfw, for any n if pjw,.

Proog: (i) and (ii) can be proved by direct verification.
(iii) Let a’ = a/2. It can be shown by induction that

(13) Wy = (@ awy + W, - awy)n).
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We can assume that a’ £ 0 (mod p) since, by hypothesis, a’ = 0 (mod p) holds
only for finitely many primes p. Then if w, - a'wy, # 0 (mod p), w, = O when

n = -a'wy/w, - a'wy) (mod p).

If w; - a'wy, 20 (mod p) for almost all primes p, then w, = a'w,. Hence, by
(13),
w, = (@)"w, = otw,.

In this case, the only primes which are divisors of the recurrence are
those primes which divide ¢'w,. Note that if the hypotheses of (iii) hold,
then the only recurrences not having almost all primes as divisors are those
that are multiples of translations of the Lucas sequence {vn,}.

(iv) Since

ant? = acx"*l + ba”
and +2 1

n

B"™" = a™** + bR,

it follows that either the terms of the recurrence {w,} are of the form {a"wg}
or they are of the:'form {B"™w,}. The result is now easily obtained.

To conclude, we note that as a counterpoise to Theorem 1, which states
that essentially only one class of recurrences has almost all primes as divi-
sors, there is the following theorem by Morgan Ward [3]. It states that, in
general, every recurrence has an infinite number of prime divisors.

Theorem 3 (Wand): 1In the recurrence {w,} with parameters ¢ and b, suppose
that » # 0, w, # aw,, and w,; # Bw,. Then if o/B is not a root of unity, the
recurrence {w,} has an infinite number of prime divisors.
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NOTE ON A TETRANACCI ALTERNATIVE TO BODE'S LAW

WILLIAM 1. McLAUGHLIN
Jet Propulsion Laboratory, Pasadena, CA 91103

Bode's law is an empirical approximation to the mean distances of the
planets from the Sun; it arises from a simply-generated sequence of integers.
Announced in 1772 by Titius and later appropriated by Bode, it has played an
important role in the exploration of the Solar System [1].

The Bode numbers are defined by

By = 4

B, =2"" x3+4,n=2,
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Then the quantities 0.1B,, n = 1, ..., 10 represent the mean distances of the
nine planets and the asteroid belt from the Sun in terms of the Earth's dis-
tance.

In view of the numerical explorations reported in [2], [3], and [4]; it
seems plausible to look for improvements to Bode's law among the Multinacci
sequences and, indeed, the Tribonacci, Tetranacci, Pentanacci, and Hexanacci
numbers are suited to this task. The Tetranacci numbers provide the best
~ fit, slightly superior to the original Bode solution.

The Tetranacci numbers are defined by the recurrence

Tl’ e ey Tu = 1

4
T, =D Tpg, n =75,
=1

The alternative Bode numbers are then given by
By =T,,3+3, n=1,

The quantities O.lén can then be compared with their Bode counterparts. See
the accompanying table.

Planet Actual Distance Bode Tetranacci
Mercury 0.39 0.40 0.240
Venus 0.72 0.70 0.70
Earth 1.00 1.00 1.00
Mars 1.52 1.60 1.60
(asteriods) 2.70 2.80 2.80
Jupiter 5.20 5.20 5.20
Saturn 9.54 10.00 9.70
Uranus 19.18 19.60 18.40
Neptune 30.06 38.80 35.20
Pluto 39.44 77.20 67.60

It can be seen that the fits are poor for Neptune and bad for Pluto.
However, the Tetranacci alternative is somewhat better in both cases.

No rigorous dynamical explanation is apparent for the Bode or Tetranacci
representations. They are either numerical coincidences, as the result in
[5] indicates, or, if they contain physical information, may simply illus-
trate that the period of revolution of a planet is strongly a function of the
periods of nearby planets. This conjecture arises from the Kepler relation
(distance)?® « (period)? and the fact that period relationships are often im-
portant in determining the state of a dynamical system.
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REFLECTIONS ACROSS TWO AND THREE GLASS PLATES

V. E. HOGGATT, JR., and MARJORIE BICKNELL-JOHNSON
San Jose State University, San Jose, CA 95192

1. INTRODUCTION

That reflections of light rays within two glass plates can be expressed
in terms of the Fibonacci numbers is well known [Moser, 1]. 1In fact, if one
starts with a single light ray and if the surfaces of the glass plates are
half-mirrors such that they both transmit and reflect light, the number of
possible paths through the glass plates with n reflections is F,, ,. Hoggatt
and Junge [2] have increased the number of glass plates, deriving matrix
equations to relate the number of distinct reflected paths to the number of
reflections and examining sequences of polynomials arising from the charac-
teristic equations of these matrices.

Here, we have arranged the counting of the reflections across the two
glass plates in a fresh manner, fixing our attention upon the number of paths
of a fixed length. One result is a physical interpretation of the composi-
tions of an integer using 1's and 2's (see [3], [4], [5]). The problem is
extended to three glass plates with geometric and matrix derivations for
counting reflection paths of different types as well as analyses of the nu-
merical arrays themselves which arise in the counting processes. We have
counted reflections in paths of fixed length for regular and for bent reflec-
tions, finding powers of two, Fibonacci numbers and convolutions, and Pell
numbers.

2. PROBLEM I
Consider the compositions of an even integer 27 into ones and twos as
represented by the possible paths of length 2n taken in reflections of a
light ray in two glass plates.
REFLECTIONS OF A LIGHT RAY IN PATHS OF LENGTH 2n

n=2
N X \ \ (AT S T |

AR NV ETAT AT AR A
R AV

] \
For a path length of 2, there are 2 possible paths and one reflection; for a
path length of 4, 4 possible paths and 8 reflections; for a path length of 6,

n=1

o 4

|V
|

=

—_—t ——t =
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8 possible paths and 28 reflections. Notice that an odd path length would
end at the middle surface rather than exiting. ’

First, the number of paths possible for a path length of 21 is easily
derived if one notes that each path of length 2(n - 1) becomes a path of
length 2n by adding a segment of length 2 which either passes through the
center plate or reflects on the center plate, so that there are twice as many
paths of length 2n as there were of length 2(n - 1).

Result 1: There are 2" paths of length 2n.

Continuing the same geometric approach yields the number of reflections
for a path length 2n. Each path of length 2(n - 1) gives one more reflection
when a length 2 segment is added which passes through the center plate, and
two more reflections when a length 2 segment is added which reflects on the
center plate, or, the paths of length 2n have 3 *2"-1 new reflections coming
from the 2"~ ! paths of length 2(n - 1) as well as twice as many reflections
as were in the paths of length 2(n — 1). Note that the number of reflections
for path lengths 2n is 2" 1(3n - 2) for n = 1, 2, 3. If there are

2""2(3(n - 1) - 2)
reflections in a path of length 2(n - 1), then there are
2« 2" %3(m - 1) - 2) +3 2"t =273y - 2)

reflections in a path of length 2#, which proves the result following by mathe-
matical induction.

Result 2: There are 2" 1(3n - 2) reflections in each of the paths of length
2n.

Proogs: Let A represent a reflection down or up \/, and B represent a
straight path down 1 or up i, where both 4 and B have length two. Note that

it is impossible for the two types of A4 to follow each other consecutively.
Now, each path of length 2#n is made up of A's and B's in some arrangement.
Thus, the expansion of (4 + B)" gives these arrangements counted properly,
and N = 2n, so that the number of distinct paths is 27".

Now, in counting reflections, there is a built-in reflection for each 4
and a reflection between 4 and B, 4 and 4, and B and B. Consider

j=o \J

Each term in (4 + B)" has degree n and there are (n - 1) spaces between fac-
tors. The x"~! counts the (n - 1) spaces between factors, since each 4 has
a built-in reflection. The exponents of x count reflections from A; there
are no reflections from B. Since we wish to count the reflections, we dif-
ferentiate f(x) and set x = 1.

1@ = {tn - Dam i+ )" 4 1L + 2y
(n-12" +7n 2" =2"" 30 - 2).

z=1

Interpretation as a composition using ones and twos: All the even in-
tegers have compositions in which, whenever strings of ones appear, there
are an even number of them. Each 4 is a 1 + 1 (taken as a pair) and each B
is a 2, and each reflection is a plus sign. From f(x), let s =n - 1+ J so
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that j = 8 - n + 1, and we get ) compositions of*2n, each with ex-—

n
(s—n+1
actly s plus signs. Note that s >n -1, with equality when all twos are used.

We note in passing that the number of possible paths through the two
plates with n reflections is F,,,, while the number of compositions of n us-
ing all ones and twos is E,,1 [3].

3. PROBLEM II

Given a particular configuration (path), how many times does it appear
as a subconfiguration in all other paths with a larger but fixed number of
reflections? :

This leads to convolutions of the Fibonacci- numbers.

PATHS WITH A FIXED NUMBER OF REFLECTIONS

N=0 1N=1 IV = 2 1N =3 ' I
I TV N W o W N W U N W N U S
% | | |
! | | |
| | : | |
Vi R TR T 1
N =4
\ \ \ \ \ \ \ \

¥ \ \ \ { ! 4 \

Note that the subconfigurations i,§§;f.each occur 1, 2, 5, 10, 20, ... times

in successive collections of all possible paths with a larger but fixed num-
ber of reflections. The same sequence occurs for any subconfiguration chosen.

Consider a subconfiguration that contains N reflections. It could be
preceded by s reflections and followed by k reflections. Clearly, since each
path starts at the upper left, the configurations in the front must start in
the upper left and end up in the upper right, which demands an odd number of
reflections. Thus, s is odd, but conceivably there are no configurations in

8 N reflections Tk

the part on the front. Now, the part on the ‘end could join up at the top or
the bottom, depending on whether N is odd or even. 1In case N is even, then
the regular configurations may be turned over to match. Thus, if the total
number of reflections is specified, the allowable numbers will be determined.
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L. RESULTS OF SEPARATING THE REFLECTION PATHS

In Sections 2 and 3, the reflection paths \\ and ,/2 and //\\ and \\//,

were counted together. If one separates them, then, with the right side up,
one obtains {1, 1, 4, 5, 14, 19, 46, 65, ...} which splits into two convolu-
tion sequences:

{Als Aa; AS’ "‘}

{1, 2, 5, 13, ...} * {1, 2, 5, 13, ...};

{4y, Ay, g, ..}

{1, 2, 5, 13, ...} # {1, 3, 8, 21, ...}.

This second set agrees with the upside-down case {0, 1, 1, 5, 6, 19, 25, 65,
...} which splits into two convolution sequences:

{B1, B3, Bs, ...} =1{0, 1, 3,8, ...} *# {1, 3, 8, 21, ...};

{Bz, Bq_, BGS ..n} = {Az, Aq, AGS ...}.

Clearly, there are only two cases, \\ s \\//, where we assume that the

configurations in which these appear start at the left top and end at either
right top or right bottom.
First we discuss the number of occurrences of \ . Here we consider only

those patterns which start in the upper left. If there are no prepatterns,
then we consider odd and even numbers of reflections separately. We get one

free reflection by joining \ to a pattern which begins on the bottom left.

Let us assume that the added-on piece has k (even) internal reflectioms.
There are Fy,, such right-end pieces and F;,, =F, =1 left-end pieces. Next,
let the piece on the right have kX -2 internal reflections and the one on the
left have one internal reflection:

AN o /
M (k - 2)
7
Froo * Fr_oye
Generally,
F\Fpg, Y EF, ¥ F B, + -
Specifically,

k=0: FF, =1
k=2 FiF, +F,F,=1+3+2+1=5
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b: F\Fo +F,F, +FF,=1*8+2+3+5-1=19

k=6: F1F3+F3FG+F5F|++F7F2=1‘2l+2'8+5'3+13'l=65
If k is odd, the same basic plan holds, so that for no pieces front or back,
F,F, =1,

k=1: FFy+F,F, =1+2+ 21 =14

k=3: FiFg+FFy+FF, =1+5+2+2+5¢+1=14
This is precisely the same as the other case except that it must start at the
top left, have a free reflection where it joins a section at the top, a free

reflection where it joins the right section at the bottom, and the right sec-
tion must end at the bottom. ’

|
T
|
|
N N
h's | A
S -
1

X

Any of our subconfigurations can ‘appear complete by itself first. Our sam-
ple, of course, holds for any block with an even number of reflections. The
foregoing depends on the final configuration starting on the upper left and
the subconfiguration (the one we are watching) also starting on the upper
left. However, if we '"turn over'" our subconfiguration then we get a differ-
ent situation

which must fit into a standard configuration which starts in the upper left.
Hence, this particular one cannot appear normally by itself, nor can any one
with an even number of reflections. Here we must have a pre-configuration
with an even number of reflections.

Let k be even again.

F,F,=1+1=1
FFy + F,F, =1+3+3:1=6
FoFg + F,F, + FF, =18+ 3+3+ 8«1 =25
Let k be odd.
F,Fy=1+1=1
FoFg + F,F, =1+2+3+1=5
FoFg + FuFy + FgFp = 1+5+ 32+ 8+1 =19

These sequences are {1, 1, 4, 5, 14, 19, ...}V(right side up) and {0, 1, 1,
5, 6,19, ...} (upside down), and added together, they produce the first Fi-
bonacci convolution {1, 2, 5, 10, 20, 38, ...}.
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Each subconfiguration which starts at the upper left and comes out at
the lower right can be put in place of the configuration which makes a straight
through crossing with the same results, of course.

For the results dealing with

AV

the restrictions on the left are exactly the same as just described, and the
endings on the right are merely those for the earlier case endings turned up-
side down to match the proper connection.

Reconsidering the four sequences of this section gives some interesting
results. In the sequences {4,} (right side up) and {B,} (upside down), adding
A; and B; gives successive terms of the first Fibonacci convolution sequence.
Taking differences of odd terms gives 1-0=1, 4-1=3, 14-6=8, ..., which

is clearly 1,3,8,21, ..., F,, ..., the Fibonacci numbers with even subscripts.
Further, for {4.},
1+ 1+ 2= 4 1+ 4= 5
4+ 5+ 5 =14 5+ 14 =19
14 + 19 + 13 = 46 19 + 46 = 65
Ay Y Apsr1 + Fpyy = 4uyo, noodd Ay + 4,,1 = Anya, N even
while for {Bn},
1+ 1+ 3 5 0+ 1= 1
54+ 6+ 8 =19 ) 1+ 5= 6
19 4+ 25 + 21 = 65 6 + 19 = 25
By + Buy1 + F,,, = B, ., n even By + Bnt1 = Bns2, n odd

The results of this section can be verified using generating functions
as follows. (See, for example, [6].) The generating function for the first
convolution of the Fibonacci sequence, which sequence we denote by {Féﬂ}, is

1 2 a2
- = = F X
(l - - xz) r;) n+1l

while the sequence of odd terms of {4,} is the first convolution of Fibonacci
numbers with odd subscripts, or,

1 - ‘,L.Z >2 )
i - Y xh
(l - 3x?% + " nZ_O an+l

and the sequence of odd terms of {B,} is the first convolution of Fibonacci
numbers with even subscripts, or,

2 -]
X
[ o A — = E B x”
(l - 3x2 + .’L‘“‘) n=0 m+l

and the even terms of {4,} as well as of {B,} are the convolution of the se-

quence of Fibonacci numbers with even subscripts with the sequence of Fibo-
nacci numbers with odd subscripts, or,

x 1 - 2 ) . -
. = A, xh = B, x™".
(1 - 32 + x“) (1 - 3?2 + gt ,:Z-:o n nZ-O o

That {F{?’} is given by the term-wise sum of {4,} and {B,} is then simply
shown by adding the generating functions, since
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(1 - x2)?2 20(1 - xz?) + 22

(1 - 322 + 22 (1 -32%+2x2%H2% (1 - 322 +z"?

1+ x - 2%)? _ 1+ x - 2%)?2

(1 - 3z%2 +2")?% (1 - 2x% + z* - 22)?

1+ x - x%)?2 1

1L-x2+20)2@Q-2%2-22% @-2z-a22

Quite a few identities for the four sequences of this section could be derived
by the same method.

5. THREE STACKED PLATES

Theornem A: 1In reflective paths in three stacked glass plates, there are F,_,
paths of length »n that enter at the top plate and exist at the top or bottom
plate.

VoW e

R R |74\ |

number of 1 | V1 | | |
paths 1 :l * :2 :3 * * 3 :

Discussion: Note that the paths end in lengths 3, 2 + 2, 1 + 1, or 1 + 2.
We therefore assume of the paths of length n, that there are F,_, which end
in 3, F,-; which end in 1+ 1, F,_5 which end in 2 + 2, F,_, which end in
1+ 2, where n > 5. This is the same as saying that there are F,_, paths of
length n - 3 reflecting inwardly at an inside surface.

Proof: We proceed by induction. Thus the paths of length kK + 1 are made up
of paths which end in 3, 1 + 1, 2 + 2, or 1 + 2. We assume that there are
Fy_3 paths which end in 3, Fy_., paths which end in 1 + 1, Fix_y which end in
2 4+ 2, and Fy_.; which end in 1 + 2. Since Fyp_4 + Fp_, + Fy_y + Fy_3 =Fy, we
will have a proof by induction if we can establish the assumption about path
lengths. The first three are straightforward, but that Fx.3; paths end in
1 + 2 needs further elaboration. 1In order to be on an outside edge after
1 + 2, the ray must have been on plate x or y with a reflection at the begin-
ning:

How can the paths get to the x-dot for n even or the y-dot for n odd? Assume
that there are Fy_; paths of length X - 5 which come from the upper surface,
go to plate y, and then to the x-dot (note that the total path would then
have length X + 1, since a path of 2 + 1 would be needed to reach the x-dot
and a path of 1 + 2 to leave the x-dot). There are Fy_s paths which reflect
from plate x, go to plate y and return to the x-dot, and Fi.s paths which re-
lect from the bottom surface upward to the x-dot. Thus, there are
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Fk—ﬁ + Fk—5 + Fk-S = Fk—3

paths of length X - 2 coming upward to a reflection x-dot if % is even and
downward to a y-dot if k is odd.

By careful counting, one can establish several other results involving
Fibonacci numbers.

Iheonem B: There are F, paths of length 7 in three stacked plates that enter
at the top plate and terminate on one of the internal surfaces.

Theorem C: There are F,,, paths of length # which enter at the top plate and
terminate on one of the four surfaces, and F,.; that terminate on outside
surfaces.

Theorem D:  Of paths of length n terminating on any one of the four surfaces,
there are F, paths that end in a unit jump. There are 2F,.; paths that end
in a two unit jump, and there are F,_, paths that end in a three unit jump.

Theorem E: There are nF,_, ones used in all paths of length » which termi-
nate on outside plates.

Theorem F: “For m > 3, the number of threes in paths of length »n which ter-
minate on outside plates is a convolution of 1, O, 1, 1, 2, 3, ..., Fy_s,

., with itself. The convolution sequence is given by 2F,_, + C,_,, where
Co = ML,eq + Fy)/5.

Theorem G: Let T, be the number of threes in all paths of length »n that end
on an inside line. Then the number of twos used in all paths of length n
which terminate on outside faces is 2T,,, = 2F,_5 + 20, _s.

Theorem H: T) =T, - F,_,, where T, is the number of threes used totally in
all paths of length »n which terminate on outside faces, and T, is the number
of threes in all paths of length »n which end on an inside plate.

Corollary: The number of twos used in all paths of length n which terminate
on outside surfaces is

2(Tpyey = Fruog) = 2Q2F,_, + Cp_g = F,_) = 2[5F,_,+(n - 5)L,_, + 2F,_.1/5.

From this, of course, we can now discuss the numbers of ones, twos, and
threes used in the reflections. We will let U, be the number of ones used,
D, the number of twos, T, the number of threes used in all paths of lengthn
terminating on outside faces, while we will prime these to designate paths
that only terminate on inside plates.

n-5 n-u

We return to the proof of Theorem A, that there are F, ., paths of length
n in three stacked glass plates, to glean more results. Recall that the plate
paths end in 3, 1 + 1, 2 + 2, and 1 + 2.

Let B, be the number of paths of length n. Then

Py =Ppog v Py + Py + Q)n-s’

where P,_; paths end in 3, B,_, in 1+ 1, P,_, in 2 + 2, and #,_4 is the num-
ber of paths terminating on an inside plate and of length n, but the last
path segment was from the inside (i.e., from plate y to x). Suppose we ap-
proach x from below and the path is n ~ 3 units long; then we add the dotted
portion. However, we can get to % from y or we can get to x from 2. The
number of paths from 2z is F,_g by induction since there are F,_; paths. The
number of paths from y is @,_,. Assume ¢, = F,_; also so that
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=
|
=
+
"xj
1
"z
+
Py
]
"y

n+l

Now
=P

n-2

+ P

n-1

+ Pn-3 + ¢n-2
= (Fyog ¥ Fp_p) + (Fy_y + Fr_y)
= Fp +Fy, =F,.

n+1

If we display all F,_; paths of length »n, the number of ones used is nF,_j,.

We need some further results. Earlier we saw that there were F,_, paths
from the inside approaching one of the inside plates. We now need to know
how many paths approach the inside lines from outside (a unit step from an
outside line). Clearly, it is F,_,; since the path length to the inside line
is n, then the path length to the outside line is » - 1, making F,_, paths.
Let U, be the number of ones used:

Upsy = WUnao + 20U, 3) + (Upo3) v Uy ) + Wyog + Uy,

considering paths ending in 1 + 1, 3, 2 + 2, and 1 + 2.
Let us look at T,, the number of threes used in paths of length n. By
taking paths ending in 3, then 1 + 1, 2 + 2, and 1 + 2, we have

(4) Ty = (Tyog + Fy_y) + Tyoy + 7T
(B) T =Taor + Tnee

wou T Tnog
Writing (A) for T,4+; and subtracting the expression above for T, gives
Tpor = Tp = Tpoy = Tpoy + I, - Tr{—s + Fyog = F

n-t
=Ty 1+ Fas + (Taop = Tyog = Tuly)

=T 4+ F,_+0.
Therefore,
Tpor =T, +17, , + F,_s,
which shows that {7,} is a Fibonacci convolution (first) sequence. It is
easy to verify that
Ty =2F,_.,+C, oy T, =0, T,=0, 7, =1,

T, =0, T, =2, T, =2,
where {C,} is the first Fibonacci convolution sequence.

Also,
I) =T, - Fu_y

Next, consider D,, the number of twos used in paths of length n. Again
taking paths ending in 3, then in 1 + 1, 2 + 2, and 1 + 2, we have

©) Dy = (Dp_y + 2Fy_s) + Dy_y + Dy_y + D)y + Fy_y)
(D) D! =D}, + Dy_y + Fp_y

]
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Proceeding exactly ‘as before, writing (C) for D,,, and subtracting the expres-—
sion for D,, and then using identity (D), one derives

Dpyr = Dy + Dy + 2F,_,.

We now show that D, = 2T;+1. From T = T, - F,_,»> then
2Ty = 2Tpyp = 2F,_,
= 2T,,, - 2F,_5 + 2T, - 2F,_, + 2F,_,

by taking advantage of T; =T, ,+7T,_, +F,_,. Therefore,
Tav2 = Tugr + Ty + Fpog = Fpog = Tpyy + Ty + Fyiy.
From the total length of F,_; paths of length n, we know that
Uy, + 2D, + 3T, = nF,_,,
so that
v, = n¥F,_, - 3T, - 2D,,.
On the right-hand side, each term will satisfy a recurrence of the form
“Hy = Hpoy + Hyop + Ky,
where K, is a generalized Fibonacci sequence. In this case, by looking at
U, =0,U,=2,U3=20,U, =4,
Un = Upoy t Upp + Ly
This is precisely satisfied by U, = nF,_j3.

If U, is the number of ones used, D, the number of twos, and 7, the num-
ber of threes, then clearly every number is followed by a reflection except
the last one. Thus, if there are F, total paths, then the number of reflec-
tions in paths of length »n which terminate on outside faces is

By =Up + Dy + Ty - Fpp_y

ary_) + (BI5E, s + (- D)L, + 28, ,0)
 + QF,_, + [(n - 6)L, g + 2F,_(1/5) - F,_,
[(5n - 3)F,_4 + (n - 3)L,,_,1/5, n > 1.

In summary, we write

Theonem I: 1In the total paths of length » which exit at outside plates, the
number of paths is F,_,, and the number of reflections R, is

U, + D, + T, - F,_,,

where
Up = nFy_3
2
D, = (E{SE;_3 + (n = 5)Ly_y + ZFn_5]>
T, =2F,_, + [(n - 6)L,_g + 2F,_¢1/5

o]
]

, = 1(n - 3)F,_ 4+ (n - 3)L,_,1/5.

To conclude our discussion of paths and reflections in three glass plates,
we consider a fixed number of reflections for paths which exit through either
outside surface.
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When there are r =0 reflections, there is 1 path possible; for » =1, 3 paths,
and for =2, 6 paths. The number of paths P, for r reflections yields the
sequence 1, 3, 6, 14, 31, 70, 157,
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Theonem J: Let P, be the number of paths which exit through either outside
face in three glass plates and contain r reflections. Then

Poyy =2B, +P._, - P,_,
where
Py=1,P =3,P,=6,P, = 14,

It is easy to derive the sequence {Pn}. P,,; is formed by adding a re-
flection at the outside face for each F, path, and by adding a reflection at
surface 1 or 2, which is the number of paths in P, that end in a two unit jump
plus twice the number ending in a three unit jump, which is P,_;. The number
ending in a unit jump in 7, paths is P,_,. The number ending in a two unit
jump in P, paths is P, - P,_, - P,_,. Thus,

Ppyy =P + (Py = Pu_y = Ppoy) + 2P,
= 2P, + Pp_y - Pp_s-

Fults [7] has given an explicit expression for P, as well as its generating
function.

6. A MATRIX APPROACH TO REFLECTIONS IN TWO AND THREE STACKED PLATES

Besides counting paths of constant length or paths of a constant number
of reflections, there are many other problems. one could consider. Here,
matrices give a nice method for solving such counting problems.

We return to two glass plates and the paths of length »n, where we con-
sider paths that go from line zero to lines one and two, one step at a time.
Let #,, vVy,, and wy be the paths of length » to lines 0, 1, and 2, respective-
ly, and consider the matrix ¢ defined in the matrix equation below, where we
note that @V, = V,,, and Q"V, = V,,,, as below:

0 1 0 Uy Uptr
, =11 0 1 Rvy ) =17, = Vas
0 1 0/\w, Wy 41

It is easy to see that #,4; = Vn, since a path to line zero could have come
only from line 1; therefore, each path to line zero was first a path of length
n to line 1, then one more step to line zero. Paths to line 1 could have come
from line zero or line two, so that v,,; = U, + wW,. Paths to line 2 came
from line 1, or, w,4; = Un. This sets up the matrix ¢ whose characteristic
polynomial is x? - 2x = 0 with solutions x = 0 or x2 = 2, so that

Unps = 2Upy VUyppo = 2Un, and Wy, = 20,.
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All paths of length zero start on line zero, and in one step of unit length
one obtains only one path to line 1, or, using matrix @,

0 1 0 1 0
vy =1 o 1)fo)=(1] =7
0 1 0 0 0
Sequentially, we see Q"V, =7,, or,
1 0 1 0 2 0 4 i 0
ot=-f11l1>1tol=-121l=tol-1ls)~>101|~ 0 -l 2"
0 0 1 0 2 0 4 on-t 0

Now, notice that there are 2771 paths coming out of the top line and 2n-t
paths coming out of the bottom line, each of length 2n, so that there are 2"
such paths.

If one lets uf, v}, and w} be the number of regular reflections on the
paths of length »n beginning on the top plate and terminating on the top, mid-

dle, or bottom plate, respectively, then it can be shown that, from the geom-
etry of the paths,

* = %
Uhor = Up + Uy
* = * %
Vi T Uy towy + 20,1

D4k = *
Wyper = Vn + Wp-1

We can write both systems of equations in a 6 x 6 matrix

0o 1 o0 E 1 0 0 uk ut, .
1.0 1tro 2 0 vE v
RIS O (T (O
6 0 o0;0 1 O Uy Uy
0 0 011 0 1 Vo, Vn
0 0 0'0 1 0 Wy Wy

The method of solution now can be through solving the system of equations
directly and, once the recurrence relations are obtained, recognize them. Or
one can work with the characteristic polynemial [x(x2 -2)]? via the Hamilton-
Cayley theorem and go directly for the generating functions. The recurrence
relations yield the general form of the generating function

r(x) -
P, (x)

2
= A, + Az + A,x" + -

b

whence one can get as many values as needed from the matrix application re-
peated to a starting column vector, as
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0 1 01 0 0 0
1
1 0 1! 20 0
0 1 010 0 1 0
____________ e ————— e °
0 0 0'0 1 0 1
0 0 0 E 1 0 1 0
0 0 0'0 1 0 0

to use the method of undetermined coefficients for r(x).
The regular reflections are /A\ or \V/ , while the bends look like /
\ / \: These occur in paths which permit horizontal moves as well

as jumps between surfaces. These are necessarily more complicated. The ma-
trix @* yields paths of length n where "bend" reflections are allowed. That
is,

1 1 0 Uy, u

n+1
Q*V, = 1 1 1 . Un Uns1 Va1
0 1 1 Wy Wn41

allows paths to move along the lines themselves as well as between the lines.
The same reasoning prevails. The characteristic polynomial (1-2)(x®-22-1)
yields Pell numbers for the paths of length n, sequentially, as

1 1 0 1 1 2 4 9 21 50
1 1 IO }=t1 )12 ]=>\5 |>1{12 })>| 29 }J~>| 70 | >
0 1 1 0 0 1 3 8 20 49

The formation of the number sequences themselves is easy, since

Upse1 = Un t Upy Wpy1 = Uy — 1, and v,y = 20, + Uy

We see that paths of length »n to line 1 are the Pell numbers P,,

P,y1 = 2P, + P Py =0, P, =1,

n-17°
while the paths to lines 0 and 2 have sums 1, 3, 7, 17, ..., the sum of two
consecutive Pell numbers. In terms of Pell numbers P,, we can write

Up +w, = B, + P,_y and u, - w, =1,

so that
Up = (P, + P,_1 + 1)/2
v, = P,
w, = (P, + P,_; - 1)/2.

This méans that u, and w, separately obey the recurrence

Upes = 3Upyp = Upyr = Uy,

whose characteristic polynomial is

23 -3¢ +x+ 1= (x-1)(x? - 2x - 1).
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The corresponding matrix for the system with bend reflections is

% *
ux U

I 1 0,0 2 0 1
I
I 1 1'2 0 2 v vE
I
S N DN BB N
0 0 0'1 1 0 Up_y Uy
1
0 0 0.1 1 1 v, v,
o 0 o030 1 1 Wy 1 W,

Now, there are, of course, regular reflections along these paths, too,
as well as bends, and the corresponding matrix for these is

u* u

1 1 0,1 0 0 % £

1 1 1 E 0 2 0 vt vE

0 1 1,0 0 1 w} wh,
—5—__6—__5_?_1___1_—_6_ B Y I

0 0 0,1 1 1 Vo1 Vn

0 0 0 E 0 1 1 W, 1 W,

with starting vector uf = v§{ =w}{ =0, u, =1, v, = w, = 0.

One can verify that the generating functions for uj, vk, and wﬁ are

1 - 2)" + 222

uk:
(1 - 2)2(1 - 2¢ - x2)?
3
o 3(1 - x)°x
(1 -2)%@1 - 22 - x2)?
2
Wi 4(1 - x)? - 22

1 -2)2@0 - 22 - 2%)?
while their sum, u} + v} + w?, yields the generating function

1+ 2+ 22°
(1 - 2z - x%)?

all clearly related to the Pell sequence, Pell first convolution, and partial
sum of the Pell first convolution sequence.

In three stacked plates, these three systems of matrices generalize
nicely. For regular reflections in paths of equal length n without horizon-
tal moves,
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0 1 0 0r1 0 0 0[u ] ut oy
1 0 1 0,0 2 0 0 [|v} vi
1
0 1 0 1'0 0 2 0 ||lw wih,
! * *
0.0 1 010 0 o st | _|uh|
6 0 o0 o0o;0 1 0 O Upy_1 Uy
0o 0 0 0:+1 0 1 0]|ov,, Vn
1
6o 0 0 0,0 1 0 1 W, o1 Wy
0o 0 0 010 0 1 0 ||y, Y
while the bend reflections have the system
- - -
1 1 0 0'0 2 0 0 |[ug ut o,
1 1 1 0.2 0 2 0 ||v vE,
I
0 1 1 1t'0 2 0 2 ||w} wi,
1
o o6 1 1.0 0 2 © Yn _ | ¥ne ,
0 0 0 0'1 1 0 0 ||u._, U
0 0 0 0+1 1 1 0 o1 Vi
I
6 0 o 0,0 1 1 1 W, o1 Wn
I
_O 0 o0 0+ 0 0 1 1 | _yn_l | _yn |

and the regular reflections in bent paths are given by

1
1

1 1 0 0'1 0 o o |[ut ]| Uier |
1 1 1 0 E 0 2 0 0 ||v% v
o 1 1 1!0 0 2 O wi w1
00 L Lo 0 0 v || ¥
6 0 o0 o0o;1 1 0 O Up-1 Un
0 0 0 04+v1 1 1 0 ||{v,, Vn
6 0 0 O E 0 1 1 1 Wy, Wn
o 0 0 0.0 0 1 1 ||y, Yn

L JL J L |

7. REFLECTIONS ALONG BEND PATHS IN THREE STACKED PLATES

Here we count bend reflections and regular reflections in paths where
bends are allowed. We begin with bend reflections in bend paths. Let Un, Van,
Wn, and Y, be the number of paths of length # terminating on lines 0, 1, 2,
and 3, respectively. Let Uf, V#, Wi, and Y} be the number of bend reflections
for those paths, and let a bend be a horizontal segment in a path. We shall
show the following:

(a) Ufor = Vi + UF + 2V
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(B) Via, = Vi+US+ WE+ 2(Uy_1 + Wy_y)
() WAl = Wh+ YA+ VE+ 2,1 +7V,_1)
(D) Y = YR+ WE+ 20,

We need a geometric derivation for the bends.

D
D

UYL OUn+1 0
%1 o7, Ve !
s W, -O- 2
< UYn S 3

The paths to the point marked U, contain U} bends, and there are U such
paths. We can go to U,4,, from V,_; by either the upper or lower path, but we
have added a bend at the upper path and a bend at the lower path;

—_—

Un+l

Vn -1

thus, 2V,_; merely counts the extra bends by these end moves. We can reach
Upyp from U, and from V, and each of these path bundles contains by declara-
tion U} and V} bends, respectively. Thus,
Ufer = U+ VE+ 2V, 4,

establishing (A). The derivation for (D) is similar.

We now tackle (B). Notice that we can reach V,4; in a unit step from
Up, V,, or W,, so that we must count all bends in each of those previously
counted paths, with no new bends added. We cannot use V,_;, but paths routed
through W,.; and U, or Wn-1 and W, as well as those through U,-; and U, or
through U,_.; and V, each collect one new bend, so that the number of added
bends is 2(U,_1 + Wn-1), making

Vigr = Ug + Vi + Wi + 2(Up_q + Wyl1),s
which is identity (B). Similarly, we could establish (C).

o==——=0 = 0
Un\-l\ U\ Un+1
O O O~ 1
Vn-l V /n-)-l
= :,\
2
Wn-l Wﬂ
3

To solve the system of equations (A), (B), (C), (D), let
A;=U§+Y;§ A, = Uy, + Yy
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and

Bf = V¥ + W} B, =V, + W,
Then (A) added to (D) yields
(E*) A%, . = AF + Bf + 2B,_,
while (B) plus (C) yields
(G*) B . =A%+ 2B + 2(4,_1 + B,_1).
Let

CH=U% - Y3 Cp = Uy - Yp
and

DY =V} - W} Dy = Vn = Wa
Then subtracting (D) from (A) and (C) from (B) yields, respectively,
(F*) C¥,1 = CH+ D%+ 2D,
and
(H*) Df, . =Ch+2(Choq + Dy_y).

Now, 4,, Bn, Cn, and D, are easily found. Returning to the first diagram of

this section, from Uy4y; = Uy + V,, and Y, = 7, +
(E) Apyr = An + Ban

(F) Cps1 = Cn + D

while V, , = U, + Vy + Wy and W,y = Wy + V,, + ¥
&) B,,1 = 2By + 44

(H) Dyyr = Cn-

Wy, we have

yield

From (E), we get B, = A4,,1 - 4A,, which we use in (G) to obtain

Apnsz = Any1) = 2(Ap41 - An) + Ay,

so that
Antz = 34p41 + 4y = 0.
1,

From the starting data, 4; =
odd subscript, and

An = Fpyy

Bn = Aps1 - An = F2n+1 T fan-1

A, = 2, so that4,

is a Fibonacci number with

F. =B, -

From (F) and (H), in a similar manner, one finds that

Con = Fpi1 and D, = F,.

From these, we can find U,, V,, ¥,, and Y, by simultaneous linear equations,

using

Uy + Y, = Fy,_q v, +
Un - Yn = Fpy1 Vn -

The solutions are

Uy = (Fyp_q + Foe1)/2 V, =
Y, = (EEn-l . EZ+1)/2

Wn = F
W

n

n

F?l

(F,, + Fp)/2
(FZn - Fn)/z
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Notice that
U, +Vy v+ W, + Y, = Foppq1.

Next, we can solve the full system for 4%, B}, 3, and D}, since we now
know 4,, B,, C,, and D,. From (E*),
BY = Afar = AF - 2By,
which substituted into (G*) gives us
(A:+2 - A2+1 - ZBn) = Aﬁ + 2(‘4;+1 - A; - ZBn—l) + Z(An—l + Bn—1>
which simplifies to

AX,, = 3A%, + Af = 2By + 24, 1 - 2B, = 2Lon_2

where we recognize the recursion relation for alternate Fibonacci numbers on
the left while, as seen above, B, and 4, _; are alternate Fibonacci numbers.
It can be verified directly that if

A% = 2(n - 1)F,, _y,
then 4%,, - 345, + A} = 2L,, _,. From B} = A%,, - A} - 2B, , and B, = F,,
we get

B = nF,, 4 — 2F,, 3 = 2(n - 1)F,, 5.
In a similar fashion, we can verify that

Ck,, = Ciyy - C} = 2L,

is satisfied by

C‘*

n

li

2(n - 1F,_,

and from

[

DE = CF_ 1+ 2(C, .0 + Dy _y)
where C, = F,,; and D, = F,, we obtain
D¥=2(n- 1F,_;.

From these, we get

Uf= (- D)y + Fy)

+

VA = (n = 1)(F, Fy_s)

n-3

n -3

WE = (n = 1) (Fyy_y = Fy_s)

Y= (n

t

D (Fppv = Froz)

This completes our solution for bend reflections in bend paths in three glass
plates.

It is instructive, however, to consider a matrix approach to counting
bend reflections in bend paths. A matrix which corresponds to the system of
equations just given, counting the number of paths of length » and the number
of bend reflections for those paths, is



136 REFLECTIONS ACROSS TWO AND THREE GLASS PLATES [April

r = r‘ = r =
1 1.0 01'0 2 0 0 U* Ui,
1 1 1 0,2 0 2 0 v Vi,

1
*
0 1 1 1'0 2 0 2 W Wi,
I
0 0 1 1i0 0 2 0 | _ | T
0 0 0 0'1 1 0 0 Uyoy Un
0 0 0 0,1 1 1 0 V.., Vn
1
0o 0 0 0'0 1 1 1 Wy Wn
0 0 0 0,0 0 1 1 Y, 1 Y,
L _ L J L J

Expanding the characteristic polynomial,

[(@-1)"%-3(x-1)%+1]2

[(@-D%-1)2 - (@-12]?

[x2 -2x4+1-1-(x-1)]2%[z®-2x+1 -1+ (x-1)]2
(22 = 3z + D3 (x? - x-1)2=0

Notice that (xz-—3x-+1) = 0 yields the recurrence relation for the alternate
Fibonacci numbers, while (z2 - x - 1) = 0 gives the regular Fibonacci recur-
rence. A generating function derivation could be made for all formulas given
in this section.

Values of the vector elements generated by the matrix equation for
n=1, ..., 7

are given in the table below.

BEND REFLECTIONS

n 1 2 3 4 5 6 7
Ui 0 0 4 12 40 120 360
v 0 2 4 18 56 180 552
Wk 0 0 4 12 48 160 516
Vi 0 0 0 6 24 90 300
U, , 1 1 2 4 9 21 51
V.1 0 1 2 5 12 30 76
Wy_1 0 0 1 3 9 25 68
Vo 0 0 0 1 4 13 38

Finally, we list values for 4%, B}, C}, and Dj:
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n 2 3 4 5 6 7 n

A% = U + Y3 0 4 18 64 210 660 2(n - 1)F,,_,
B* = Vi + W* 2 8 30 104 340 1068 2(n - 1)F,,_,
C* = Ut - Y3 0 4 6 16 30 60 2(n - 1)F,_,

D = V¥ - W 2 0 6 8 20 36 2(n - 1)F,_q

We now shift our attention to the problem of counting regular reflections
The matrix which

which occur in paths of length 7 in which bends are allowed.
solves the system of equations in that case follows,

where starred entries

denote regular reflections; otherwise, the definitions are as before. Notice
that the characteristic polynomial is the same as that of the preceding ma-

trix.

|

o O O olo o = =
O O o OoOlo = = =

Values of successive
following:

o o o Ol B +H O
o O o oIk B O O
o ok rle oo
o B B HIO O N O
H B B OlO0 N O O

vector elements for

REGULAR REFLECTIONS

|
= B O Ol O O O

_Uz
&
Wy
7
Un-l

U?('

n+1
T/:+1
W3 e
S
U
Vs
Wn

Yy

-

n=1,...,8 are given in the table

IN BEND PATHS

n 1 2 3 4 5 6 7 8
u# 0 1 2 7 20 60 176 517
144 0 0 3 9 31 95 290 868
WA 0 0 0 5 20 75 250 794
Y 0 0 0 0 6 30 118 406
Up_1 1 1 2 4 9 21 51 127
Vyo1 0 1 2 5 12 30 76 195
W1 0 0 1 3 25 68 182
Ypo1 0 0 0 1 4 13 38 106
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The system of regular reflections in bend paths is not solved explicit-
ly here, but generating functions for successive values are not difficult to
obtain by using the characteristic polynomial of the matrix just given. Gen-
erating functions for A%, BY, C%, and D} are:

2% (1 - 4z + 6x?)
(1 - 3¢ + x2)?

AY = Uk + Y2

n n:

2%(3 - 4x)
(1 - 3¢ + x2)2

22 (1 + 22%)

(L - x - xz)z

23(3 - 22)

D = Vi - Wk
(1 -x-ab)?

n

Since A} + Bi=Uj+ V} + ! + Y%, the generating function for regular reflec-
tions in bend paths terminating on all four surfaces is

2

(x? - 2% + 22"

(1 - 3z + 22)°?

8. REGULAR REFLECTIONS IN THREE STACKED PLATES

If one wishes equations for the number of paths ending upon certain lines
and the number of regular reflections, the procedure is the same as when
"bends' are allowed, as in the last section. Let U,, V,, ¥,, and Y, be the
number of paths of length n from line O to lines 0, 1, 2, and 3. Let U}, V%,
W#, and Y* be the number of regular reflections counted for those paths.

The system of equations to solve is

U:+1 = V; + Unoa Upsr = T
Viey = US + W5+ 20, Vopr = Un + Wn
Moy = Y0+ Vo + 20, Wpir1 =V + ¥y
YS+1 = W; + Y, Y,i1 = Wa

These differ from the equations used in Section 7 only in that no horizontal
moves along the lines are allowed, so that one represses terms that corre-
spond to that same line. The method of solution is exactly the same.

One finds that

Usp = Fopn Usg+1 = 0
Yorsr = Foy Yor 0
Vorar = Foran Vor 0

Wor = Fox Woger = 0

which agrees with Theorems A and B of Section 5, since U, + Y, = F,_; is the
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number of paths ending at outside lines, while V, + W, =
paths ending on inside surfaces. Notice that U, + V, + W,
agrees with Theorem C.

As for the number of reflections to paths ending on outside surfaces,

F, is the number of
+ Y, = F,,1, which

Ul =Cph_qy = 20,2+ 3C,_4, n even; U} = 0, n odd;

YrA=0C, - 20, , +3C,_5, nodd; Y* =0, n even;

n
where {C,} is the first Fibonacci convolution, ¢, = nL,,, + F;)/5. One can
verify that the total number of reflections for paths of length »n which exit
at either outside surface is U} + Y = C,_1-20,_; + 3C,_;, which is equiva-
lent to the formula given for R, in Theorem I of Section 5.
Finally, we write, again for the first Fibonacci convolution {C,},

VA =3C,_, - Cu.3, n odd; V¥ =0, n even;
Wt =3C,_,~-C, 35, neven; W} =0, n odd.

Here, the matrix solution for the number of regular reflections in paths
without bends follows from

—

|
1
I

0 1 0 0 E 1 0 0 0 Uk Ut .
1 0 1 0!'0 2 0 © v VA, L
0 1 0 1 E 0 0 2 o W WA
0 0 1 0!'0 0 0 1 v} R,
0 0 0 0.0 1 o0 o |u.| |
0 0 0 0 E 1 0 1 0 Vo1 Vi
0o 0 0 0 E 0 1 0 1 ooy Wn
0o 0 0 0!'0 0 1 0 Y, Y,

9. NUMERICAL ARRAYS ARISING FROM REGULAR REFLECTIONS
IN THREE STACKED PLATES

Let circled numbers denote reflections on paths coming to the inside
lines from the inside. Let boxed numbers denote reflections in paths to the
outside lines.

5/® /O ©-0+E
©) N/ 3

Note that Z is one longer and one reflection more than ¥, while it is two
longer and one reflection more than X. Since the paths under discussion are
to the inside lines from the inside, paths going from 2 to 1 imply a reflec-
tion as indicated. Since the paths from 3 must have come from 2, this also
implies a reflection as shown. Thus, @ = @ + . Secondly, the two types
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of reflections are related by = @+ from considering the following:

0
NS /.
SO

3

(1] -@ +[5]

Paths indicated which come through from the inside are extended to Y by one
but do not add a reflection. The paths coming through which have one added
reflection at the inside line imply a reflection at X since paths to the top
line can come only from the middle line.

The geometric considerations just made give the recursive patterns in
the following array. The circled numbers are the number of reflections for
paths of length n which enter from the top and terminate on inside lines by
segments crossing the center space only (not immediately reflected from either
outside face), while the boxed numbers are regular paths from the top line to
either outside line.

Reflections
Path 0 1 2 3 4 5 6 7
Length 1

=G
EHCHERNCNE

SHRHCONENC
GHCHENCOHE

6 ® | O
7 [ ®
8 ® | ® |0

EHCHE
[5]
@|[5]

[E - +® +[c] +[0] @ = @ + 29
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Please note that each row sum is 2F,_1, where the sum of the circled numbers
as well as the sum of the boxed numbers is in each case F,_1. Also note that
the row sum is not the total number of paths of length », since, for example,
when 7n = 5, there is one path with two reflections which terminates inside,
and one path with four reflections which terminates inside. Also note that
the circled diagonal numbers in the table are partial sums of the boxed diag-
onal numbers in the diagonal above.

Let Dy(x) be the generating function for the nth diagonal sequence going
downward to the right in the table. That is, D,(x) generates the boxed se-

quence 1, 0, 1, 0, 1, 0, 1, ... and D,(x) generates the circled sequence 1,
1, 2, 2, 3, 3, 4, 4, ..., while D,(x) generates the béxed sequence 1, 1, 3,
3, 6, 6, ... . From the table recurrence, C* = B* + A*, since (C#* and B* are

on the same falling diagonal,

Di(x) = xle(x) + Do (x),

so that
Di(@) = [Dy(x)]/(1 - &%).
We write
Dylw) = —%—
1 - 22
Dy(x) = 1tz
(1 -zx%*
D, () = _l+tx
1 -z’
2
D, (x) = 1 + x)
(1 -2
2
D) = LHE)T
(1 - x2?)°

Notice that D,(x) generates boxed numbers for n even and circled numbers for
n odd. Summing D, (x) for n even gives the row sum for the boxed numbers by-
producing the generating function for the Fibonacci sequence and, similarly,
for taking »n odd and circled numbers. The column sums of circled or boxed
numbers each obey the recurrence U, = 2u,_; + Upy_p = Upy_3-

Notice that

Dypp (@) = [DG@) 1"
Dy, @) = (1= @)Dy, @) = Q1 = 2)[D; @)1

so we see once again the pleasantry of a convolution array intimately related
to Pascal's triangle.

2n+
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ON PSEUDO-FIBONACCI NUMBERS OF THE FORM 2S°7,
WHERE § IS AN INTEGER

A. ESWARATHASAN
University of Sri Lanka, Jaffna, Sri Lanka

If the pseudo-Fibonacci numbers are defined by

(1) Uy =1, uy =4, Uyyy; = Upyr + u,, n >0,

then we can show that u; =1, u, = 4, and u, = 9 are the only square pseudo-
Fibonacci numbers.

In this paper we will describe a method to show that none of the pseudo-
Fibonacci numbers are of the form 252, where S is an integer.

Even if we remove the restriction n > 0, we do not obtain any number of
the form 25%, where § is an integer.

It can be easily shown that the general solution of the difference equa-
tion (1) is given by

1

E—E;:;(u”‘l + 8",

) w, = —l—(@® + 8" -
5.2
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where
o=1+ /3; B=1- /E; and n is an integer.
Let
ar + B” o - B”
nr = ______@_; gp = _____Ji_
2" 275
Then we easily obtain the following relations:
1
(3) e = =My = Ml 1),
(4) Ny = Nyp_y ¥ Nyppy, Ny =1, 1, =3
(5) Er = &py + &np, &y =1,8,=1
2 2
(6) n, - 56, = (-1)"4,
(7) Nyp = N5+ (1712,
(8) Mpyn = 5EnEn + NNy
(9) 2€m+n = nngm + nngm’
(lo) Ezr = npgr

The following congruences hold:
(ll) Upyop = (_1)r+1un (mOd ﬂrz—s),
(lz) Mn+2r = ("l)run (mOd £r2-5>’

where S = 0 or 1.

We also have the following table of values:

n 0 1 2 3 4 5 6 7 8 9 12 14
Uy 3 1 4 5 9 14 23 37 60 97 411 1076
t 4 5 8 10 e s
€t 3 5 3.7 5-11 E N, 11

Let

(13) 22® = u,, where x is an integer.

The proof is now accomplished in eighteen stages.

143

(a) (13) is impossible if n = 0 (mod 16), for, using (12) we find that

Uy = Uy (mod £g)
3 (mod 7), since 7/&,

10 (mod 7).
Thus, we find that

L THE 1

Un

75-5 5 (mod 7), since (2,7) =1,
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(b)

(c)

(d)

(e)

(£)
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and since (%) = -1, (13) is impossible.

(13) is impossible if n = 1 (mod 8), for, using (12) in this case

Uy = Uy (mod gq)
= 1 (mod 3)
= 4 (mod 3).
Thus,
Un
j;’f 2 (mod 3), since (2,3) =1,
and since (%) = -1, (13) is impossible.
(13) is impossible if n = 2 (mod 8), for, using (12) we find that
Uy = Uo (mod Eq)‘
= 4 (mod 3).
Thus, we find that
un — .
- = 2 (mod 3), since (2,3) =1,
and since (%) = -1, (13) is impossible.

(13) is impossible if n = 3 (mod 16), for, using (12) in this case

U, = uz (mod Eg)
= 5 (mod 7), since 7/&,
=12 (mod 7).
Thus,
Mn
TZ~E 6 (mod 7), since (2,7) =1,
and since (g) = -1, (13) is impossible.

(13) is impossible if # = 4 (mod 10), for, using (12) we find that

tu, (mod &)
+9 (mod 5)
+4 (mod 5).

Thus, we find that

Un

eI

1l

Un
7;»5 +2 (mod 5), since (2,5) = 1,
and since (%%) = (%) = -1, (13) is impossible.

(13) is impossible if # = 5 (mod 10), for, using (12) in this case

Up = Fus (mod E5)
= 214 (mod 5).
Thus,
u?’[

— = *7 (mod 5), since (2,5) = 1,.
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(g)

(h)

(1)

(3

(k)
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and since (%;) = <%> = -1, (13) is impossible.

(13) is impossible if n = 6 (mod 20), for, using (12) we find that

Uug (mod &,y)
23 (mod 11), since 11/&,,
12 (mod 11).

Un

e

Thus, we find that

Uy

5 = 6 (mod 11), since (2,11) =1,

and since ({%) = -1, (13) is impossible.

(13) is impossible if n = 7 (mod 8), for, using (12) in this case

U, = uz (mod &)
= 37 (mod 3)
= 34 (mod 3).
Thus,
Un
-5 = 17 (mod 3), since (2,3) =1,
and since <%;> = -1, (13) is impossible.
(13) is impossible if n = 8 (mod 10), for, using (11) we find that
U, = ug (mod Ng)
= 60 (mod 11).
Thus, we find that
Up, :
7?-5 30 (mod 11), since (2,11) = 1,

and since (%%> = -1, (13) is impossible.

(13) is impossible if # = 1 (mod 10), for, using (12) in this case

U, = *u, (mod &)
+1 (mod 5)
+4 (mod 5).
Thus,
Up
TZAE +2 (mod 5), since (2,5) =1,
and since (%%) = (%) = -1, (13) is impoésible.

(13) is impossible if n = 12 (mod 16), for, using (12) we find that

Up Uy, (mod Eg)
411 (mod 7), since 7/&,
404 (mod 7).

Thus,

u
—z'i = 202 (mod 7), since (2,7) = 1,



146

D)

(m)

(n)

(o)

(p)

ON PSEUDO-FIBONACCI NUMBERS OF THE FORM 252 [April

and since (Z%Z) = -1, (13) is impossible.

(13) is impossible if n = 3 (mod 10), for, using (11) in this case

U, = usz (mod Ns)
= 5 (mod 11)
= 16 (mod 11).
Thus,
Un
TZ-E 8 (mod 11), since (2,11) =1,

and since ({%) = -1, (13) is impossible.

(13) is impossible if n = 14 (mod 16), for, using (12) we find that

U, = u;, (mod &g)
= 1076 (mod 7), since 7/&,.
Thus,
uﬁ. —_
-5 = 538 (mod 7), since (2,7) = 1,
, 538 A .
and since =) = -1, (13) is impossible.
(13) is impossible if » = 0 (mod 10), for, using (11) in this case
U, = o (mod ng)
= 3 (mod 11)
= 14 (mod 11).
Thus, we find that
u')’[ .\
j?-f 7 (mod 11), since (2,11) = 1,

and since <i%> = -1, (13) is impossible.

(13) is impossible if n = 16 (mod 20), for, using (12) we find that

Up = U (mod &14)
= 2817 (mod 11), since 11/&,,
= 2806 (mod 11).
Thus,
MT[
- = 1403 (mod 11), since (2,11) =1,
AN
and since (l%%i) = -1, (13) is impossible.

(13) is impossible if n = 2 (mod 10), for, using (11) in this case

Uy = Tu, (mod &g)
= 44 (mod 5).
Thus, we find that
MTL

- = 2 (mod 5), gince (2,5) =1,
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. -2 2
and since (ﬁ;) = (g) = -1, (13) is impossible.
(@) (13) is impossible if # = 7 (mod 10), for, using (11) in this case
U, = Uy (mod ng)
= 37 (mod 11)
= 26 (mod 11).
Thus,
Un
75-5 13 (mod 11), since (2,11) =1,
and since <%%) = -1, (13) is dimpossible.
(r) (13) is impossible if n = 9 (mod 10), for, using (11) we find that
Uy = Ug (mod Ns)
= 97 (mod 11)
= 86 (mod 11).
Thus, we find that
Un
TZ-E 43 (mod 11), since (2,11) =1,
and since (%%) = -1, (13) is impossible.

Hence, none of the pseudo-Fibonacci numbers are of the form 252, where S is
an integer.
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In [7], D. A. Millin poses the problem of showing that
~ -1 _ 71 -V5
(1 DI

where F; is the kth Fibonacci number. A proof of (1) by I. J. Good is given
in [5], while in [3], Hoggatt and Bicknell demonstrate ten different methods
of finding the same sum. Furthermore, the result of (1) is extended by Hog-
gatt and Bicknell in [4], where they show that
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©

2
(2) ZF-"l =i+_._o_‘___i'l_

n=0 2K P a(a® - 1)

The main purpose of this paper is to 1lift the results of (1) and (2) to

the sequence of Fibonacci polynomials Ek(x)}k -1 defined recursively by

Fo@) = 1, Fy(x) = @, By, (@) = afy, (@) + B (@), k > 1.

Furthermore, we will examine several infinite series containing products of
Fibonacci and Lucas polynomials where the Lucas polynomials are defined by

Ly(x) = Fro (@) + Fro ().

If we let a(x) = (x + V%2 + 4)/2 and B(x) = (¢ - vx? + 4)/2, then it is
a well-known fact that

(3) F, (x) = [ak(x) - B (x)1/[o(x) - B(x)]
and
(4) Ly (x) = ak(x) + B*(x).

When * > 0, we have -1 < B(x) < 1 and a(z) > 1 so that |B(x)/a(x)| <1
and lim[B(x)/a(x)]™ = 0. But, from (3), we obtain
N+o0

For1(@) o™ 1(x) - 8" () a(x) - B(x)
(5) = = + .
Fp (2) an(x) - B"(x) 1 - [Ba t(x)]” P
Therefore,
Fn+1(x)
(6) lim = o(x), 1f « > 0.

N+ Fn (.’L‘)

When & < 0, we have 0 < a(x) < 1 and B(x) < -1 so that B(x)/a(x) < -1.
From (5), we see that :

. Fasi(e) o .
(7 %}g —EZYES—’— B(x), if x < 0.

(Using (3) and (4), it is easy to show .that

n+k(x) + Ly (@) = L,(x)Lx(x), k even
and

F, (x) = Ly@)F, (x).
Letting S, be the nth partial sum of

- -1
prz"k (&)
n=1

and using the two preceding equations with induction, it can be shown that

n-1_q
s, = o (x)': ELZ e @ F 1] .

The definition of L, (x) together with (6) enables us to show for 2 > 0
that

L _ 0 @x) + 1 [a®() + 1l
lim 5, = EE: a2ty () [0 (2) - 1]

H+oo
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while for x < 0 we use (7) to obtain

lin 8, = xi B(x) + 1 _  [B*(x) + 1]z
e 1R () B(x) [B% (x) - 1]
Hence,
- (@® (@) + Dz|/| ate) (@®* @) - 1)|, =z >0
(8 D aF)) (x) = F“Q(GT)J’ [ ]/[ ] :
n=0 [(Bz(x) + 1)x]/[8(x)(62k(x) - l)], x <0

We now examine the infinite series

o (-1)T*ORE L (@)F, ()

(9) U(q,a,b,-’l&') =’; Fqn+a_k(x)Fqn+b(x)

First observe that, by using (3) and (4), we can show

» g =Db - a+ k.

149

(10)  Fopea @ oy (@) = Fanya 18 Fanyy (@) = (DT (@)F, ., ().

Letting S, be the nth partial sum of (9) and using (10), we notice that there

is a telescoping effect so that
S Fb+k(x) Fqn+b+k(x)
" F, (x) Fonyp (@)

Hence, by (6) and (7), we have
Py (@) { ak(x), x >0

y Y@ TTE T ek, s <0

where ¢ = b - a + k. In particular, we see that

w2 Vs =3 _ (-(z))zFf(x()x) e - {aam), @ >0
no1 fan a(n+1) B¥(x), x <0
w n B(x), « >0

(13) U(l,1,1,z) = 22225735%%%:157 = { om0
- 2 x? - za(x) + 1,

(14 vz,2,2,0) =,§1 F oy @Fy, @)~ {xz - 2B(x) + 1,

and = (-DPPF () Fy,, (@) a@),

(15) U(b,1,b,x) =,; @ @ T R@ {

B(x),

If we combine (13) and (14) with the identity
Loper (@) = L, (@)L, 1(x) + (-1)"

we obtain the very interesting result

8

8

8

8

3
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n+1l
=, DL, @) 1

et P (@) Fpney(@) &

(16)

Next, we examine the infinite series

o (@ + &) EDTTEFE @F, L @
(17) V(g,a,b,x) = -z K b-a+k

n=1

Lan+a-1(®)Lan+p(x) ’
q=>b-a+k.

To do this, we first use (3) and (4) to show that

(18) Lan+a{®) Lan+ (&) = Lgn+a-k(%) Lan+b+x()

= -2+ &) DR () F, L, ().

-a+

Letting S, be the nth partial sum of (17) and using (18), we notice that there
is a telescoping effect so that

Lb+k(x) Lgn+p+1(x)
P L@ Lgnss(®)

Using the definition of L,(x) together with (6) and (7), we obtain
L, () {ock(x), x>0

(19) V(q’ayb’x) = Lb(x)

B (=x), x <0
where g = b - a + k. In particular, we note that

= (2 + O EDTFX() L, () {oc“(x), x>0

(20) V(a,a,a,x) =—Z Lon () L + 1)(®) T L)

n=1

B (x), x <0

(21) v(b,1,b,x) = -Z _ _b+1

o (% + 4)(—1)bnfb(x) L (x) alx), £ > 0
Lbn (x)Lb(n+1)<x> L, () - {

n=1 B(x), ©x < 0
In conclusion, we observe that
(22) Py 1 (@)F, (@) = By (@)F, _,(x) = (-1)"(z® + 1).

Letting S, be the nth partial sum of

i F(_l):x()i’z . (];c))
@),
and using (22), we see that
F_i(x) F,_,(x) 1 F,_, ()
TF@ FLL,@ = F,,@

Sy =

so that

(23) D e LW Rl

D" (@ + 1) 1 {Ba@c), z >0

al(@), x <0
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A NOTE ON 3 -2 TREES*

EDWARD M. REINGOLD
University of Illinois at Urbana-Champaign, Urbana, IL 61801

ABSTRACT

Under the assumption that all of the 3-2 trees of height % are equally
probable, it is shown that in a 3-2 tree of height h the expected number of
keys is (.72162)3h and the expected number of internal nodes is (.48061)3"%,

INTRODUCTION

One approach to the organization of large files is the use of "balanced"
trees (see Section 6.2.3 of [3]). In particular, one such class of trees,
suggested by J. E. Hopcroft (unpublished), is known as 3-2 trees. A 3-2 tree
is a tree in which each internal node contains either 1 or 2 keys and is hence
either a 2-way or 3-way branch, respectively. Furthermore, all external nodes
(i.e., leaves) are at the same level. Figure 1 shows some examples of 3-2
trees.

Insertion of a new key into a 3-2 tree is done as follows to preserve
the 3-2 property: To add a new key into a node containing one key, simply
insert it as the second.key; if the node already contains two keys, split it
into two one-key nodes and insert (recursively) the middle key into the par-
ent node. This may cause the parent node to be split in a similar way, if it
already contains two keys. For more details about 3-2 trees see [1] and [3].

*This research was supported by the Division of Physical Research, U.S.
Energy Research and Development Administration, and by the National Science
Foundation (Grant GJ-41538).
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oL

(a) . The unique 3-2 tree The only two 3-2 trees
of height 0 of height 1

(c) A 3-2 tree of height 3 with 15 keys, 11 internal nodes,
and 16 external nodes (leaves)

FIGURE 1.—SOME EXAMPLES OF 3-2 TREES. THE SQUARES ARE EXTERNAL NODES
(LEAVES), THE OVALS ARE INTERNAL NODES, AND THE DOTS ARE KEYS.

Yao [4] has studied the average number of internal nodes in a 3-2 tree
with k keys, assuming that the tree was built by a sequence of k¥ random in-
sertions done by the insertion algorithm outlined above. He found the ex-
pected number of internal nodes to be between .70k and .79k for large k. Un-
fortunately, the distribution of 3-2 trees induced by the insertion algorithm
is not well understood and Yao's techniques will probably not be extended to
provide sharper bounds.

Using techniques like those in Khizder [2], some results can be obtained,
however, for the (simpler) distribution in which all 3<2 trees of height
are equally probable. 1In this paper we show that, under this simpler dis-
tribution, in a 3-2 tree of height % the expected number of keys and internal
nodes are, respectively, (.72162)3" and (.48061)3%,

ANALYSIS

Let au,» be the number of 3-2 trees of height h with »n nodes and k keys.
Since there is a unique tree of height 0 (consisting of a single leaf—see
Figure 1), and since a 3~2 tree of height # > 0 is formed from either two or
three 3-2 trees of height # - 1, we have

{ 1 ifn=%k = 0

An,k,0 =
0 otherwise

1 An,keyn = }: Agyu,h-105wh-1 F Z Aiyusn =1 Agovsh=1 Azu,1 -1

T+fmn-1 i+i+l=n-1
u+v=k-1 utv+w=k-2
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Let
Ap(x,y) = 2: 2: e, T"YK
n=0 k=0
be the generating function for a,y,;,. From (1) we have
Ag(e,y) =1
(2)

Ay (x,y) = wyhdh (@, y) + ay®A}_ (x,y)

and thus the number of 3-2 trees of height % is 4, = 4,(1,1), the total num-
ber of keys in all 3-2 trees of height % is

94, (x,y)

B oY z=y=1
and the total number of internal nodes in all 3-2 trees of height % is
944 (x,y)

Vo= .
h ox x=y=1

The table gives the first few values for 4;, X;, and N, as calculated from
the recurrence relations arising from (2).

THE FIRST FEW VALUES FOR 4,, K,, AND W,

' oAy (x,y) Ay (,y)
h Ay = 4, (1,1 Ky = —— N, = —————
h n(1,1) n 5 g1 3 T -
0 1 0 0
1 2 . 3 2
2 12 68 44
3 1872 34608 21936
4 6563711232 377092654848 237180213504

Assuming that all of the 3-2 trees of height % are equally probable, the
average number of keys in a 3-2 tree of height % is given by

04, (x,y)
S
h Ah Ah(x,y) x=y=1

and the average number of internal nodes in a 3-2 tree of height 7 is given
by
04y, (x,y)
N 9%
Ah Ah(xsy‘) x=y=1

To determine K,, we use the recurrence relations for 4, and Kj arising
from (2):
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4, =1
= 42 3
Ay = Ay o+ A,
and
Ky =0
= 2 3 2
K, = 2Ah—1Kh_1 tA 2, F 345 Ky

Rewriting the equation for X, in terms of K, gives

= 2 2
Ky = Ky (34, = AZ_) + 24, - A

h-1
and so
K Az 42
. _onma _Znm1
Kh_Ah_Kh—1(3 Ah>+2 4,
2
_ h-1
= 3Kh-1 + 2 - T(Kh_l + 1)
giving
) Koy 4y
(kp +1) =3k, +1) - 57—
A1+ Ap
K, + 4
Letting €, = —, we get
nTaz g "8
h .
(ky +1) = 3"k, + 1) - D 3% e, .
i=1
Ky 0
But kg +1=—+1=—+1=1, and so
Ay 1
Ky n A 5 e
(3) Z—+1=Kh+l=3(_z—h:—i—;—1=3 l—z P
h i=1 3 i=0 3
i.e.,
Kh had €.
lim S| 1) =123 .
h+o 3h Ah = 3‘»4-1
What is :E: 5??74 It is easy to show by induction that A; > K, and so
=0
o - K; + 4, .
i 2 o :
Ai + A,

The comparison test thus insures that the summation converges:

h
A . €4
Now, in order to use _s_ ——— as an approximation to E =TT

1=0 =0

we need an upper
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bound on E: 777+ From the definition of €, we have
’L=7’L+13
1 X; 1
© o © Pr
) S oohely ph A L
i+l 2t .2 . . 3 -,
ien4l S 3 Gt A v, 3.5, 4+

QL.%Z_ £ Eif £i_ 1
34, 3k = 3! ’
and so (4) becomes
i Sl oy 1 1 > L
T+1 , T
i3 3i=h+1A1 +1 3i=h+1A7f
But since 4, = A:_l + A;_l > ZAi_l, we have by induction that 4, > %-ZN, and
so
- €4 2 — ot 2/( o _ph+1 _oh+l_ 1 _ohtl
Z W<§Ez <§<2 + 2 >=2 .
i=h+1 i=h+1
Using the values in the table, we find that
boey :
D~ = .2783810593,
i=03
and thus
w .
0< 31-11 - .2783810593 < 272" < 3 x 10717,
=0

We conclude that

0 < lim =

Ky, . 1o
S — + 1} - .7216189407 < 3 x 10 .

Ay

Thus, under the assumption that all the 3-2 trees of height % are equally
probable, the expected number of keys in a 3-2 tree of height % is

K, = = ~ (.7216189407) 3"
nh Ah N\ M

A similar analysis works for V;, the average number of inteérnal nodes in
a 3-2 tree of height %. We again use the recurrence relations arising from

(2):

2 3
+
h Ah—l Ah-l

™~
]
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.
as before, and

Ny =0
- 2 3 2

N, = 24, N, + A2+ A3 4347 N
= 2
=24, N |+ 342 N + 4.

Rewriting this last equation in terms of v, = , /Ah gives

B = Vi (34, = A5_)) + 4y,

. A N
h h-1 h-1
\)h_—_—\)h-l(B— Ah>+1—3\) +1 -

and so

giving

Letting §; = 7,» ve set
h

1 % 1 0,1 1
But VvV, + 53 =—+ - =—+ 5 =+, and so
0 2 4, 2 1 2 2
b, 1 1 .nf1 Sy g 1 S8
) L, T2 vty =3 5‘257,:?1 =3 5‘23“1’
i=1 =0
i.e.,
1 (" 1 1 - &
we (1) -1-%
4o 3R +1
n 3 Ay 2 2 — 37
© 61: R
What is Z:O 3i+1? It is easy to show by induction that 4, , > N; and so
i=

8; = Ny/A;,, < 1; hence, the comparison test insures that the summation con-
verges:

w 8; w© 1 1
Z 3i+1 < Z qi+1 =5
=0 =0

h@‘ m6
D iy s o spproximation 0 3

In order to use 4 ST as an approximation to L 737 we need an upper
- i=

O

Z

bound on 2: 3i+1'
i=h+1

' ) 1

From the definition of §;, we have

o 61 l © 3’L
o F seiE s

2
i=h+1 i=h+1Ai+Ai

N;
Ay
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Since 0 < §; < 1, (5) tells us that

B YANSY ;‘Zl 5 _1
3771471 2 3h 037l+1 2°

=

and so (6) becomes

o

. s .
2 el T L

2 2
i=h+1 i=n+1ds T AG i=n+14%
Recalling that 4; > %-22: this becomes
= 6,; 1 - i+l 2 = : 2 -
X <L 4 . 2_2 _ 2 -9t _( _2k+1 _2k+2 _1> _ _2k+2
i;é;4_§7:7 =2 T2 2 <20 + 2 22t

and t

i=h+1 i=h+2

Using the values in the table, we find that

3

03
> —rr = .0193890884,
izo 3

0< 3
i=0

hus

8 . i
Siil - .0193890884 < 272" < 3 x 107'°,

We conclude that

1V 1 -10
0 < lim —{ — + =} - .4806109116 < 3 x 1071°,
haro 3h Ah 2

Thus, undér the assumption that all 3-<2 trees of height % are equally

probable, the expected number of internal nodes in a 3-2 tree of height % is

N
v, = = = (.4806109116)3",
Ap
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CONCAVITY PROPERTY AND A RECURRENCE RELATION
FOR ASSOCIATED LAH NUMBERS

J. C. AHUJA and E. A. ENNEKING
Portland State University, Portland, OR 97207
ABSTRACT
A recurrence relation is obtained for the associated Lah numbers,
Ly (m,n),
via their generating function. Using this result, it is shown that L, (m,n)
is a strong logarithmic concave function of »n for fixed k and m.
1. INTRODUCTION

The Lah numbers L (m,n) (see Riordan [4, p. 44]) with arguments m and n
are given by the relation

& o,y = 0o /ad(E 1Y),

where L(m,n) = 0 for n > m. Since the sign of L(m,n) is the same as that of
(-1)", we may write (1) in absolute value as

= 1 /9! m-—l)
(2) |LGn,m) | (m./n.)(n_l.
We define the associated Lah numbers L, (m,n) for integral k > O as
n
_ n-r (N m+rk—l>
® L = oD D (7)(m

]

whére Ly (m,n) 0 for m > m. Using the binomial coefficient identity (12.13)
in Feller [2, p. 64], it can be easily seen that

(4) L (m,n) = |L(m,n)|.

The use of the associated Lah numbers 7L;(m,n) has recently arisen in a
paper by the author [1], where the n-fold convolution of independent random
variables having the decapitated negative binomial distribution is derived in
terms of the numbers Li(m,n). In this paper, we first provide a recurrence
relation for the numbers Li(m,n). This result is then utilized to show that
Ly(m,n) is a strong logarithmic concave (SLC) function of n for fixed k and
m, that is, L,(m,n) satisfies the inequality

(5) [Ly(m,m)1* > LpGmn + 1)L, (myn - 1)
for k=1, 2, ..., m=3, 4, ..., and n = 2, 3,

cey m = 1.

2. RECURRENCE RELATION FOR Lk(m,n)

The author [1] has provided a generating function for the numbers L, (m,n)
in the form

(6) [ -6 - 11" =) nlL, (mn)6"/m!.

m=n

158
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Differentiating both sides of (6) with respect to 6, then multiplying both
sides by (1 - 0), gives

(7) nk[(1 - 6)7% = 11"71 (1 - 8)7F = (1 - 8)In!L, (m,n)8™ 1/ (m - 1)1
which, using (6), becomes
(8) nkIn!Ly, (m,n)0"/m! + nkI(n - 1)!L, (m,n - 1)6"/m!

= (1 - 0)En!L,(mm)0"  /(m - 1)!.

Now, equating the éoefficient of .6’" in (8), we obtain the recurrence formula
for Ly(m,n) as
9) Lym+ 1,n) = (nk + m)Ly, (m,n) + kLi(m,n - 1).

The recurrence relation (9) is used to obtain Table I for the associated
Lah numbers Lz(m,n) for n = 1(1)5 and m = 1(1)5. It may be remarked that,
for k = 1, Table I reduces to the one for the absolute Lah numbers given in
Riordan [4, p. 44].

3. CONCAVITY OF L,(m,n)

The proof of the SLC property of the numbers L,(m,n) is based on the
following result of Newton's inequality given in Hardy, Littlewood, and Polya
[3, p. 52]: If the polynomial

m
P(x) = Z c,x"
n=1

has only real roots, then

2
(10) Cn > Cn+1%n -1

forn =2, 3, ..., m - 1. To establish the SLC property, we need the follow-
ing:

Lemma: If

m
P,(x) = Z Ly(mm)ax™
n=1
then the m roots of P,(x) are real, distinct, and nonpositive for all m = 1,
2,

Proo4: It can be easily seen that P, (x), using (9), may be expressed as

(11) Py (@) = D Ly(m,n)xn
n=1

=D [k +m~ 1)L (m - 1,n) + kL, (n - 1,n - 1)]a"

n=1

= (kx +m - 1)P,_,(x) + ka[dP,_,(x)/dx].
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FOR ASSOCIATED LAH NUMBERS
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FOR ASSOCIATED LAH NUMBERS

By induction, we find that

Py(x) = kx, Py(x) = ka(ke + k + 1),

and

Py(x)

]

kel kz? + 3k(k + Dz + (k + 1) (k + 21,

so that the statement is true for m= 1, 2, and 3. For m > 3, assume that
P,_,(x) has m - 1 real, distinct, and nonpositive roots. If we define

(12 T ()

]

Zpnm/K
e®x™rp (x),
then, since

£, (0)

]

0,

Tp(x) has exactly the same finite roots as B,{(x), and the identity (11) for
Pp(x) gives

(13) T, (x) = ka®*V*gr  (2)/da.

By hypothesis, F,-,(x), and hence T,.,(x), has m~- 1 real, distinc¢t, and non-
positive roots. I, _,(x) also has a root at -», and, by Rolle's theorem, be-
tween any two roots of T, ,(x), dTm_l(m)/dx will have a root. This places
m - 1 distinct roots of T, _,(x) on the negative real axis; =0 is obviously
another one, making m altogether. This proves the result by induction.

Thus the above lemma, together with the inequality (10), provides us the
following:

Theorem: For m >3, k=1, 2, ..., andn =2, 3, ..., m - 1, the associated
Lah numbers L;(m,n) satisfy the inequality (5).

It may be remarked that, as a consequence of the above result and rela-
tion (4), we have the following:

Cornollarny: For m > 3, and » = 2, 3, ..., m — 1, the Lah numbers L(m,n) sat-
isfy the inequality

(14) [LGn,n)1% > L(m,n + L)L(m,m - 1).
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FIBONACCI NUMBERS'

J. C. de ALMEIDA AZEVEDO
Universidade de-Brasilia, Brasil

The purpose of this paper is to derive a few relations involving Fibo-
nacci numbers; these numbers are defined aceording'td the expressions

fn+1 f +f 1af O f

due to Girard [1]. They can also be obtained from a known [2] matrix repre-
sentation that we rederive in Part II. In Part III we obtain the sum of two
infinite series and some recurrence.relations.

PART 1: HISTORICAL NOTE

The sequence of integers {f,} was discovered by ‘Leonardo Pisano [3, 4],
in his Liber Abacci, as the solution to a hypothetical problem concerning the
breeding of rabbits; in this problem, Pisano admitted that the rabbits never
die, that each month every pair begets a new .-pair that ‘becomes productive
at the age of two months. The experiment begins in the first month with a
newborn pair. Fibonacci numbers occur in many different areas. In geometry,

for instance, in Euclid's goldenﬂsectioﬁ problem where the number %(/3'— 1)

appears. In the botanical phenomenoﬁvcelied phyllotaxis, where it is well
known that in some trees the leaves are dlsposed in the spirals accordlng to
the Fibonacci sequence “

1123 In
1! 2’ 3’ 5; e fn+1 ‘
that results from the expansion of %(/gl——l)'giﬂ continued fractions. It is

also known that in the sunflower the number of spirals usually present are
the Fibonacci numbers 34 and 55; in the giant sunflower they are 55 and 89,
and recent experiments have reported that sunflowers of 89 and 144 as well
as 144 and 233 spirals also exist. ' These are all Fibonacci numbers.

| PART I1:. THEORY
Consider the numbers fy,_k =0; 1, 2, ..., defined by

f fi 1 1\k -
e.1n kil - ( -
: , o
7R,
“For k = 1, we have f| = fg, fl fl, and fz iy . Let us suppose that

fi = f, is valid for arbitrary n. It is easily. seen from (2.1) that f] = f,
is also valid for n n + 1, since we -have from (2.1) that

, n+2 f%+1 + f f;+2’ f¥+1 = f;\+ f; 1 = fne1-
',We see then that (2.1) defines the ‘Fibonacei numbers f;.
Define the matrices F(n) and 4 accordlng to the follow1ng expressions:

e
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fasi T (1 i>
(2.2) F(n) = = 4% 4=
) fn fn-l l 0

It is easily proved that the above equation contains Lucas' definition
of Fibonacci numbers:

2.3) £ - Tlg[(l +2 /5“>n . _(1 —z/g)n];

in fact, the eigenvalues of 4 are A, = %(l + /3} and A, = %{1 - ¥/5). We see

therefore that the matrix that diagonalizes 4 is given by

oAy a,A, .
(2.4) U= , where o = (1 + A3)7Y2,
Oy Oy .

. Ay, O
UPAU = A = .
, 0 A

We have then, from (2.2),
(2.5) F(n) = UN'U™Y,

which explicitly reads as:

n+l n+1l n
fn+l fn 1 >\1 - >\2 )\1 - >\121
=T n-1 n-1
£, fia) B\ ow-n M-
PART [11: SERIES AND RECURRENCE RELATIONS

From (2.2), We write the following expression:
. = l . A -
(3.1) LS F(n) = eb -1,
- T n!

from which we infer that

(3.2) YL utrmy = et - 1.
T n!
The matrix elements are given by:
- /5
(3.3) [U7'P (U], = %(f;+1 t ) 5 =0

[0 'Fm)U],, = -[UTFm)U],, = %fm = fy = fa-1) = 0

[0 FU],; = 2y + Fuon) - o fy = B
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From (3.1), the following series are derived:

@ 26@& ) ZE
(3.4) %Z'—fn = '7—-5— sinh < 2 >

fi?%{f941 + fo_y) = 2¢¥* cosh <%§>,
0 .

where we extended Fibonacci numbers to negative values according to

Fon = (D",
We now set 4 = 1 + B in (2.2) to obtain
n
- N\pk
(3.5) F(n) = %:(k>B.

B% can be easily evaluated if we use Cauchy's integral

Bk

2m2) " [ (dz)z*(z - B)"L.
Bk ig given by

f%-l —f%

_f% j;+1

Therefore, we have the following recurrence relations that also define
Fibonacci numbers if we add to them the appropriate boundary conditions

fo=0,f1=l:

> D (F) e

(3.6) Bk

It

F(k) ! = SHLE

(3.7) Foer

It

% ZOI DR (R,

If we multiply (2.2) by (-1)"F(n)~!, we obtain the following orthogon-
ality relations:

(3.8) > Dk (D) Fweres = D7

n+k

é(—l)k (%) fuer = 0

Many important relations can be easily obtained from (2.2), and we just
list a few of them.
The determinant of (2.2) gives

fn+1fn-1 - fnz = (_l)n'

Setting n = § + k and 4™ = A%4% in (2.2) gives the following well-known
recurrence relations:
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(3.9 f.7.‘+k~_~1 = f.;'tlfkil + f;f,;,
f:i+k = f.;'+1fk + f:ffk+1'

From the above, or from F(np) = F(n)?, we are also able to obtain other
familiar expressions such as:

(3.10) Foner = F2 + Fiurs
f;ﬂ" = foer + Faca
fan = fj+1 + fj - :-1;
f;: i e M
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A NOTE ON BASIC M-TUPLES

NORMAN W00
California State University, Fresno, Fresno, CA 93710

Deﬁinétion 1: A set of integers {bi}iZI will be called a base for the set of
all integers, whenever every integer #n can be expressed uniquely in the form

@ J
n = E a;b;, where a; = 0 or 1 and 2: a; < o,

i=1 i=1

Now, a sequence {di}i>1 of odd numbers will be called basic whenever the se-

quence {di Zi'%izl is a base. If the sequence {di} of odd integers is

121
such that d;4+s = dg for all Z's, then the sequence is said to be periodic mod
g and is denoted by {dl, d,, d3,...,d8}. In reference [2], I have obtained

some results concerning nonbasic sequence with periodicity mod 3 or nombasic
triples. In this paper, we are concerned with basic sequence.

Theornem 1: A necessary and sufficient condition for the sequence {di}¢>1 of

odd integers, which is periodic mod s, to be basic is that
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m
0=) a;2¢"*d; = 0 (mod 2" - 1)
i=1 .

is impossible for n > 1 and a; = 0 or 1 for all Z > 1.
Proog: This is proved in reference [1].
Theorem 2: The m-tuple

{2+t -1, -1, -1, L, 1)

is a basic sequence where k and m are integers with k > 1 and m > 2.

Proof: Suppose that the given m—tﬁple is not basic. Then (1) of Theorem 1.8
holds for some integers » > 1. Then there exist integers ay, Dis vues r; for
0 <k <7 -1 such that '

2™+ L 1)ay - 2bg = 220y = -+ = 2™ lpg 4 (27RFL _o1)27g,
—2m+1b1 _ 2m+zcl - _ 22m—1r1 + (zmk+1 _ 1)22-ma2 _ 22"'+1b2

_22m+202 v - 23”"'11/’2 + e +'(2mk+1 - 1)2mn=my

mn-m+1 mn-m+2
—mp - 2

(1)
n-1

Cpoy = vre = 2™, 20 (mod 2™ -1).

n=1 r

n-
Collecting terms in the above.congruence, we obtain
(2 +2™ — 1) (a, + 2Ma, + 2%Mq, + cec o+ 2MTMg )
=2(by + 2"by + e + 2™ ) = 2%(c, - 2Me, + 2%Me, + e e
+2MTMe ) = e = 2™ (g + 2T 4 e 4 27 e 1) 20 (mod 27 -1)

. nm 2m e mn-m
- (a, + 2%, + 2%a, + + 2 a,_,)

+ 202k q 4 2mKEMG 4 gmEEIMG oyl gmkdmAomg

=b, =2"b, = oo = 2™ =20, - 2™c

1 1

0

mn-m+1 m=-2 2m =2
- 2 e,y o 2 r, 2 r, oo

= 0 (mod 2" -1)
which can be put in the form
-(a, + 2"a, + 22”'a2 + oo+ 2" )+ 2(2”‘7‘(ao - by - 2cx = +--

- 2" 4 2" (ay = byyy = 2oy = e = M)+

+ ZM(n_l)(an-l-k =b,y - 20,y - e - zm_zrn-l)
mn m-2
+202"a,_,=by, - 20, = o0 = 2" 00) 4 e
m(k=1) s _ om=2
+ 2 (2™a, | = by, - 2c,_, - 2 rk_l)

om=2
+ (2"a,_, = by = 2¢, = -+ - 2" Ep ) 4+ e
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+

(k-1 C ‘ - :
2" 2"y oy = by = 204y = e = 27 zfn_l)}

11

0 (mod 2""-1).
Now define a,_; = a_; for,l{f_i.ffk; and'iét
@=-(ag +2"ay + 2"Ma, + oo + 27 g ) 4+ 2{2"k(q, - by - 2¢4
- e = 2" 4+ ZM(k+1ka1 = byay = 2044y = cee = 2770 0)
(3) o -IA-“‘Z”'(”_'I)(a;l:l_k - ‘b;;_l_ = 28,0y = eee = 2720 )
+ (a;, - by - 2¢, - e —Zém"zro);+ cee + ZM(k“l)(a_1 - by,
- éek_l'; ee s 2'"-2,'1»,{;1)} = 0 (mod 2™-1).
Rearranging terms in (3), we obtain |
Q= {-a, + 2(a_, - P, “échf;;:' - 2m‘zré)} +2M-a, + 2(a_,y,

- b, - 2, - -*-“-'%m_z?l) + e+ 2mk-D g+ 2(al, - by,

(4) 20,y = ser = 2" 2p )+ 2™ g 4 2(aq, - by - 204

.. —',2",_217]()} + ',‘""",-'-t ZM(n_l){_qn—l + z(an—l—k -
-2 ) :} y ‘
- e = 2™ )} 20 (mod 2"" -1).

Taking absolute values and using the triangle inequality, we obtain

l@] < (2" - 1) +2™(Q2" = 1) + 222" = 1) + ... + 2"CTDQ7 - 1)

" - 1) + (22" - 2"+ (23h _ zzh) A P LICEE N
2" - 1, |

Now, |Q| = 2™- 1, provided

~a; + 2(a_ye; - bi -_éci - e = 2"y = 2" -1

‘n = 1. -But this clearly implies that

In

for all © with 0 < <

a; =1, a_gu; = 0, and b; = c; = +++ = r; =1 for all 7.
Since the first two equalities are clearly contradictory, it follows that we
must have @ = 0 and hence

) ~ay = 2(ayy; - by o= 265 = ee. = 272

r;),

and yet a; = 0 or a; =1 for all 2. Since the right-hand side of (5) is di-
visible by 2, it follows that r, = 0 for all Z, Thus,

7

Gh 0=2(agse;= by = 205 = - = 2" %py)
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or
(6) A_g4i; = by = 20, + «-- + 2m'2ri for all 7.

Possibilities for a_j.; - b; are 0, 1, and -1. But the right-hand side of (6)
is divisible by 2. Hence, we must have that a_j4+; — b; = 0 for all <. Since
A.x+¢ = 0 for all ©, this implies that b; = 0 for all 7 and hence that c¢; =
0, ..., r, =0 for all <. But since this contradicts Theorem 1.8, it follows

2mk+1

that the m-tuple -1, -1, -1, ..., =1 is basic as claimed.
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PYTHAGOREAN TRIPLES AND TRIANGULAR NUMBERS

DAVID W. BALLEW and RONALD C. WEGER
South Dakota School of Mines and Technology, Rapid _City, SD 57701

1. INTRODUCTION

In [4] W. Sierpifiski proves that there are an infinite number of Pytha-
gorean triples in which two members are triangular and the hypotenuse is an
integer. [A number T, is triangular if T, is of the form T, = n(n + 1)/2
for some integer n. A Pythagorean triple is a set of three integers x, y, 2
such that z? + yz = 32.] Further, Sierpinski gives an example due to Zaran-
kiewicz,

T 4, = 8778, T,,5 = 10296, and T4, = 13530,

in which every member of the Pythagorean triple is triangular. He states that
this is the only known nontrivial example of this phenomenon, and that it is
not known whether the number of such triples is finite or infinite.

This paper will give some partial results related to the above problem.
In particular, we will give necessary and sufficient conditions for the ex-
istence of Pythagorean triples in which all members are triangular. We will
extend these conditions to discuss the problem of triangulars being repre-
sented as sums of powers.

2. PYTHAGOREAN TRIPLES WITH TRIANGULAR SOLUTIONS

By a triangular solution to a Diophantine equation f(x , ..., x,) = 0,
we mean a solution in which every variable is triangular.

Theorem 1: The Pythagorean equation %2 4+ y2 = 22 has a triangular solution
x=T,, y=1"T,, 3=170, if and only if there exist integers m and k such that

T =m®+ (m+ 1)+ o0+ (m+ k)Y

that is, Tg is a sum of kK + 1 consecutive cubes.
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Proof: It is a known formula that

n 2 2
ke e DE e
k=0

So if -
T2+ T2 = T2

with a < b, then

2 _ 2 2 _ 3
T2 =72 272 = Y k3,
k=a+1

To show the converse, we need only reverse the steps. Q.E.D..

Using Zarankiewicz's example, we can note that T%us is a sum of 31 cubes;
i.e.,
16k
2 _ 3
Tlus_ Zk'

k=133

3. TRIANGULARS AS CUBES AND SUMS OF CUBES

We first show that a triangular cannot be a cube. This is an old result,
first proved by Euler in 1738 [2]. However, it is so closely related to our
work that we will include a proof here.

Lemma 2: The triangular T, is a kth power if and only if T? is a kth power.

Proof: This is an easy exercise using the fact that every integer has a
unique decomposition into primes.

Lemma. 3: The equality T, = mk holds nontrivially if and only if the equa-
tions xk - 2y* = £1 have nontrivial solutions. Take the plus sign if 7 is
even and the minus sign if n is odd.

Proof: Let

nn + 1) -

T, = 7 My

Clearly (n,m + 1) = 1. Let n = 2j; then
(27) (24 + 1)/2 = mk.
Thus there are integers x and y such that j =y and 2§ + 1 = x*; whence
xk - 2yk = 1,
Now let n = 2§ - 1. -In the same way as above, there are integers y, & such

that § = yk, 2§ - 1 = xk, and xk - 2yk = -1.
Since the steps are reversible, the converse is easily proved. Q.E.D.

Theorem 4: There is no triangular number greater than 1 which is a cube.

Proof: 1f T, = m®, then by Lemma 3, x° - 2y3 = -1 has a solution. However,

by (1, p. 721, =% - 2y3 =1 has only x = -1, y = 0 as solutions. Hence, by
the construction in Lemma 3, » = 1 or 0. Q.E.D.

We will now state, without proof, a theorem due to Siegel which will be.
of utmost importance in that which follows.
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Theorem 5: (Siegel [3, p. 264]) The equation

y? = axm + "t + oo+ g,

has only a finite number of integer solutions if the right-hand side has at
least three different linear factors.

We can immediately apply this theorem in the proof of the following re-
sult.

Theorem 6: For a fixed k, there are only a finite number of sums of k con-
secutive cubes which can be the square of a triangular number. For every Kk,
there is at least one such sum which is the square of a triangular.

Pnooﬁ: The last statement follows from the identity

k

3 _ m2
:Z:va = TI;.
n=0

To prove the first statement we consider two cases. Assume k = 27 + 1.
Consider the equation

7
(1) T2 = 3 (m+ 4)°.
L

We want to show that this equation has only a finite number of solutions in
n and m. We have

Z‘
(2) T2 =% (m+ )3 =4An’ +Bn  AB#0
i=-t m(4m® + B).

Now Am? + B is never a square since (am + b)? always has a first-degree term.
Thus, equation (2) has no squared linear factors on its right-hand side, and
by Theorem 5 it has only a finite number of solutions.

If k = 27, we consider )

1+1

dm+

-1
QL+ 1)m® + (L - 1)Q@L+ 1)m+ (m+ L - 1)°
(L + 1)(2m® + 3m® + (2L% + 4L + 3)m + (L + 1)2).

(3) 72

To show that the right-hand side does not have a square linear factor, we
show that it and its derivative,

6m> + 6m + (2L% + 4L + 3)

have a greatest common divisor of 1. This is an easy application of the Eu-
clidean algorithm. Hence, using Theorem 5, equation (3) has only a finite
number of integral solutions. Q.E.D.

Combining Theorems 1 and 6, we have a type of finiteness condition for
all members of a Pythagorean triple to be triangular. Of course, the k can
vary, so we do not have the condition that only a finite number of such tri-
ples exist, but that for a fixed k, only a finite number exist.
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4. TRIANGULARS AND SUMS OF HIGHER POWERS
We can prove theorems similar to Theorems 4 and 6 for higher powers.
Theorem 7: The equations T, = m* and T, = m° are impossible for n > 1.
Eiggﬁ} This follows from Lemma 3 and the -fact that the equations
Cxt - 2y% = £1 and x® - 2y° = #1
have no nontrivial solutions [1]. Q.E.D.

Theorem 7 was first stated by Fermat in 1658, but he apparently gave no
proof; at least none has been found. The first proof was given by Euler [3].

Theorem §: TFor a fixed k, the equations
k

2: m+ 1)

=0

2
Tn

and
k

D m+ 1)°

=0

2
Tn

have only a finite number of solutions.

Proog: These statements are proven using techniques completely similar to
the proof of Theorem 6. Greatest common divisor calculations are extremely
complicated and are therefore omitted. Q.E.D.

The techniques of Theorem 6 appear to apply to even higher powers. How-
ever, there does not appear to be a general method of handling all such cases
simultaneously because of the differences of the equations and the deriva-
tives.

5. THE EQUATION T(,4y2 = k2

The theorems of this section digress from the main topics of this paper,
but they are included as nice illustrations of the use of Theorem 5.

Theorem 9: The equation T(y,4qy2 = k? has only a finite number of solutions.
Proof: If (n + 1)?((n + 1)% + 1)/2 = k*, then

(4) 2k% = n* + 4n® + % + 6n + 2.
The derivative of the right-hand side is
tn® + 120 + l4n + 6 = 2(n + 1) (2n® + 4n + 3).

It is easy to check that no root of the derivative is a root of equation (4),
so equation (4) has no squared factor. Hence, by Theorem 5, there are only
a finite number of solutions to the equation of the theorem. Q.E.D.

Note that Ty = (l)2 and T(yy2 = (35)2.
In [4] Sierpifski shows that the equation
(Ty)2 + (Ty, )% = [Qu + 1)v]?

with v2 = 4% + (u + 1)? has only a finite number of solutions. Since we have
that the identity ’
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2 2
(Tous)™ + (T,)° = T au+1)?
holds, we have the following theorem.
Theorem 10: The equation
Teawsn? = [Qu + 1)v]?
with v2 = 22 + (w + 1)? has only a finite number of solutions.

Proof: Use Theorem 9.
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EXTENSIONS OF THE W. MNICH PROBLEM

HAIG E. BOHIGIAN
The City University of New York, New York, NY 10019

ABSTRACT

W. Sierpinski publicized the following problem proposed by Werner Mnich
in 1956: Are there three rational numbers whose sum and product are both one?
In 1960, J. W. S. Cassels proved that there are no rationals that meet the
Mnich condition. This paper extends the Mnich problem to k-tuples of ration-
als whose sum and product are one by providing infinite solutiomns for all
k > 3. It also provides generating forms that yield infinite solutions to
the original Mnich problem in real and complex numbers, as well as providing
infinite solutions for rational sums and products other than one.

HISTORICAL OVERVIEW

Sierpinski [6] cited a question posed by Werner Mnich as a most inter-
esting problem, and one that at that time was unsolved. The Mnich question
concerned the existence of three rational numbers whose sum and product are
both one:

¢9) x+y+2=u0xyz =1 (x, y, 8 rational).

Cassels [1] proved that there are no rationals that satisfy the conditions
of (1). Cassels also shows that this problem was expressed by Mordell [3],
in equivalent, if not exact form. Additionally, Cassels has compiled an ex-
cellent bibliography that demonstrates that the '"Mnich" problem has its roots
in the work of Sylvester [13] who in turn obtained some results from the 1870
work of the Reverend Father Pépin. Sierpifiski [9] provides a more elementary
proof of the impossibility of a weaker version of (1), along with an excel-
lent summary of some of the equivalent forms of the "Mnich" problem. Later,
Sansone and Cassels [4] provided another proof of the impossibility of (1).
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EXTENSIONS TO k-TUPLES

It is natural to consider the generalization of the "Mnich" problem. Do
there exist k-tuples of rational numbers such that their sums and products
are both one for a given natural number %:

(2) y +xy, Yy + o0+, = 22,05 ... 2 =1, for k> 3?

Sierpifiski [6, p. 127] states that Andrew Schinzel has proven that there are
an infinite number of solutions for every k-tuple in (2). However, in the
source cited, Trost [14] only appears to credit Schinzel with the proof of
infinite k-tuples in (2) when k is of the form 4n or 4n + 1, where #n is a
natural number (i.e., kK = 4, 5,8, 9,12, 13, etc.). Schinzel provided a gene-
ral form for generating an infinite number of solutions to (2) when k = 4.
He provided one case for k¥ = 5 (viz., 1,1, 1,-1, -1), but failed to demon-
strate any solutions at all for (2) when the values of k are of the form 4n +
2 or 4n + 3 (viz., 6, 7,10, 11,14, 15, etc.). Explicit generating functions
will now be given which prove that there are indeed an infinite number of
rational k-tuples for all k > 3 that satisfy (2).

It is quite obvious that for k = 2 there are no real solutions, since
xy = x +y = 1 yields the quadratic equation 2% - 2 + 1 = 0 whose discrimi-
nant is -3. For kK = 4, a general form was given by Schinzel [14]:

(3) {(n*/(n* - 1), 1/Q - n?, % - 1)/n, 0 - n®)/n}, n # %1, 0,
e.g., forn = 2,
4/3 - 1/3 + 3/2 - 3/2 = (4/3)(-1/3)(3/2)(-3/2) = 1.
I derived the following general generating functions for all k-tuples greater
than 4. Beyond the restrictions cited, they yield an infinite set of solu-
tions for (2) by using any rational value of n.
(4) For k = 5, {n, -1/n, -n, 1/n, 1}, n # 0,
e.g., forn = 2, )
2 -1/2 -2+ 1/2+1=(2)(-1/2)(-2)(1/2)(1) = 1.

(5) For k = 6, {1/n*(n + 1), -1/n*(n + 1), (n + 12, -n?, -n, -n},

n# 0, -1,
e.g., for n = 2,

1/12 - 1/12 4+ 9 - 4 = 2 = 2
= (1/12)(-1/12) (9) (-4) (-2) (-2) = 1.

(6) For k = 7, {(n - 1)%, (n - 1/2), (n - 1/2), 1, -n?,
1/nn - 1)(n - 1/2), -1/n(n - 1)(n - 1/2)},
n#0,1,1/2,
e.g., forn = 2,
1+3/2+3/2+1-4+1/3-1/3
(1) (3/2)(3/2) (1) (-4)(1/3)(-1/3) = 1.
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Since the elements of the set U = (1, -1, 1, -1) have a sum of 0 and a
produce of 1, U forms the basis for generating all remaining explicit expres~
sions beyond kK = 7 by adjoining the elements of U onto the k-tuple results
for k = 4, 5, 6, and 7. The process is then repeated as often as is neces-
sary as a 4-cycle. For example:

(7 For k ='8,
{n*m* -1, n* - 1/n, 1 - n?/n, 1/1 - n?, 1, -1, 1, -1}
={k =4, U}, n#0, -1, +1, or {k = 4, k = 4}.

(8) For k = 9,
{n, -1/n, -n, 1/n, 1, 1, -1, 1, -1} = {k = 5, U}, n # O.

(9) For k = 10, {k = 6, U}; for k = 11, {k = 7, U};
for k = 12, {k = 4, k = 4, k = 4} or {k = 6, k = 6)
or {k =8, U} or {k =8, k=4yor{k =7, k =5}
or {k =4, U, U}.
‘ Etc.

No claim is made here that the k-tuple form of the generating functions
in (4) through (9) are unique.

EXTENSIONS TO OTHER NUMBER SYSTEMS®

Although the conditions for generating rational roots for equation (1)
have been demonstrated to be impossible, it is clear that rational roots ap-
proximating the Mnich criterion can be generated with any degree of accuracy
required. Consider the example:

(10) (7/3)(-5/9)(-27/35) = 1, but 7/3 - 5/9 - 27/35 = 951/845
and
(11) -.726547 - .540786 + 2.333333 = 1, but

(-.726547)(-.5406786) (2.333333) = 0.9999999.

If the solution domain for equation (1) is expanded from the rationals
to the reals, then there are an infinite number of solutions of the form
(a * /E; ¢) which can be derived from the Mnich conditions

20+ ¢ =1 and (a® - b)e = 1.

One form of the solution in reals yields the following infinite set in which
a is real:

(12) (@+vVa®> +1/Qa-1), a-Va> +1/Qa - 1), 1 - 2a), a # 1/2,
e.g., for a = 2,

2+ /13/3 + 2 - Y1373 - 3 = (2 + /1373)(2 - VI3/3)(-3) = 1.

>

The generating form in (12) remains real as long as a + 1/(2a - 1)
which is the case provided that a > 1/2 or a < ~.6572981.

0,
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This latter condition for a makes the discriminant in (12) zero and
yields the only solution with two equal elements:

(13) 4 = {¥-53/216 + /137216 + ¥-53/216 - /137216 + 1/6};
B = 2{1/3 - ¥~53/216 + /13/216 - V/-53/216 - V13/216;

A+A+B=AWU®B =1.

For values of ¢ in the interval -.6572981 < g < 1/2, the generating fbrm in
(12) yields complex conjugate results, e.g.,

(14) a=0, {#, 1}, and a = -1/2, {(-1 + £)/2, 2}.

Solutions of the Mnich problem in reals have not appeared in the literature,
although Sierpifski [7, p. 176] does cite the first example in (14).

Also absent from the literature is a discussion of the Mnich problem in
the complex plane. Assuming that the solution for (1) is of the form

(a t Vb, e)

yields the infinite generating form with »n real as follows:
1+ i/’ - n+2)/(n -2 -

(15) { i (n nn )/ (n )’nnz}’ w0, 2,

e.g., for a = 4 {(1 % 2/31)/4, 1/2}.

The generating form in (15) remains complex as long as
n®-n+2)/(n-2) >0,

which is the case provided that n > 2 or n < -1.5213797. Note that these
limits are the reciprocals of those for (12). When n is in the interval
-1.5213797 < n < 2, (15) generates real solutions. Clearly, the generating
forms (12) and (15) presented here for yielding real and complex solutions
to (1) are not unique.

EXTENSIONS TO OTHER CONSTANT SUMS AND PRODUCTS

If the restriction in (2) that the product and sum must be equal to one
is replaced by some rational number ¢, then a more general Mnich problem de-
velops for rational xz;: '

(16) . x

A\
N

,tx, v, + ety = x0,x, .00, = ¢, for k >

When k = 2, the infinite generating set is of the form:

(17) {x, ©/(x - 1)} where the product and sum = 22/ (x
e.g., 2+ 2=(2)(2) =4, and 3 + 3/2 = (3)(3/2)

, x#1,
9/2.

When k = 3, then x + y + 2 = xyz = ¢. If we assume that y = z/(x - 1) as in
(17), then solving for 2z yields 2z = (x + y)/(xy - 1) = 22/(x%2 - 2 + 1). The
infinite set is:-
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- 2
(18) {x, = x T L " 1}’ x # 1, and the product and
- x? -

sum equal z*/(x® - 222 + 2x - 1),
e.g., 24+ 2+ 4/3 = (2)(2)(4/3) = 16/3.

When kX = 4, using the previous results yields the infinite set:
2 L

oz x x
19 X - s } l’
(19) {‘ -1 xf —x+ 1zt —xd -222 -2z + 1) ° *

e.g., 2+ 2+ 4/3 +16/13 = .(2)(2)(4/3)(16/13) = 256/39.

It is obvious that this process can be generalized in a recursive way to gen-
erate infinite rational solutions for any k-tuple.
Sierpinski [6, p. 127] credits Schinzel with demonstrating that the ele-

ments in (16) can be restricted to integers by the following substitutions
for all k > 2:

(20) Zy-1 =2 and 23 =k (fulfilled first), and

Lys Tyy Ly eeesy Tp_p = L.

The following table presents the results of (20).

k-Tuple Solution Set Product = Sum = C
2 (2, 2) ‘ 4
3 (1, 2, 3) 6
4 (1, 1, 2, &) 8
5 1, 1, 1, 2, 5) 10
. . . k-2
k 1, 1, vvuy 1, 2, k) k+2+21=2k
— kﬂfz' k=1

It is worth noting that the number of integer solutions for sufficiently
large k in (16) is still an open question. Also worth noting is that the re-
sult for k = 3 in the above table can be derived from assuming that the inte-
gers are of the form x - p, x, x + p, from which it follows that

x = t/p% + 3. ,
The only rational results generated are for p =1 (1, 2, 3), and for p = -1

(-1, -2, -3).

SUMMARY

This paper traced the ''Mnich" problem back to the work of Father Pépin
in the 1870s, and identified the proofs of Cassels, Sansone, and Sierpifski
as having decided the question in (1) in the negative. This restatement is
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needed because their results are not widely known, and sources such as (10)
and (12) continue to cite the "Mnich' problem as unsolved.

Infinite generating forms for the extension of the Mnich conditions to
all k-tuples greater than three are provided in (3)-(9). Infinite generating
forms for the "Mnich" problem in the real and complex plane are provided in
(12) and (15), respectively; also, approximate rational solutions are given
in (10) and (11). Finally, the "Mnich" problem is extended to rational sums
and products other than 1, and the recursive generating forms are provided
for an infinite number of rational solutions for k¥ > 2, with k=2, k = 3,
and k = 4 given explicitly, in (17)-(19).
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GROWTH TYPES OF FIBONACCI AND MARKOFF*

HARVEY COHN
City College of New York, New York, NY 10031

1. PRELIMINARY REMARKS

The pattern of Fibonaccian growth in pure and applied mathematics is
well known and seemingly ubiquitous. In recent work of the author (see [1]),
a generalization of this pattern emerged where the "linear' growth of Fibo-
nacci type is replaced by a "tree'" growth which might appropriately be called
the "Markoff type." There are many instances where tree-growth is used for
number-theoretic functions (for a recent example, see [4]). What is differ-
ent here is the application of the tree to (noncommutative) strings of sym-
bols. This, paradoxically, makes for a simpler device but one with applica-
tions to many different fields.

The use of the "Markoff'" designation requires some clarification. We
refer to A. A. Markoff (1856-1922), the number-theorist. He was also the
probabilitist (with the name customarily spelled 'Markov'" in this context),
but the growth type we desire is nomrandom and strictly a consequence of his
number-theoretic work. To compound the confusion, he had a lesser known bro-
ther, V. A. Markoff (also a number-theorist), and a very famous son, the lo-
gician A. A. Markov (still alive today).

2. SEMIGROUP

We consider S, a free semigroup consisting of strings of symbols in 4
and B (including ";" the null symbol) to form words w = w(4,B). If the word
w has a symbols A and b symbols B (for a > 0, b > 0), then we say word w has
coordinates {a, b}. For instance, some coordinates and words are

{o, o}, {1, o}, {o, 1}, {1, 1}, {1, 1}, {4, 2},
1, A, B, AB, BA,  AAABAB, etc.

Of course, distinct words (e.g., 4B and BA) may have the same coordinates.
Naturally, we abbreviate AAABAB as A’BAB, etc.

We also introduce the concept of equivalence. Two words of S, are said
to be equivalent if they are cyclic permutations of one another including the
trivial (identity) permutation. This is denoted by "~". Thus,

w,(4,B)w,(4,B) ~ w,(4,B)w,(4,B).
ABAA ~ ABAA ~ BAAA ~ AAAB ~ .-

Equivalent words have the same coordinates, of course (but not conversely,
ABAB and AABB have coordinates {2, 2}).

Actually w, ~ w, means Tw, =w,T (for T'eS,), and for computational pur-
poses it might be convenient to do computations inside the free group by
writing w1'= T'lsz. In principle, however, growth requires only a semigroup.
We also need the symbol when we have multiple equivalence

*Supported by NSF Grant MCS 76-06744.
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W, Wys v0e) ~ Wlwg, «.) =Ty =wT, Tw

for the same 7 in each case.

3. TYPES OF GROWTH

Fibonaccian growth suggests the sequence

(f_2=l, f—l =O)’ fo =l’ fl =1, f2 =2, ..’.,

n+1l

=fn_1 + 1

179

If we start with 4 and B instead of f; and f, we have a sequence of strings,

wn(AsB)
Wy =4, wy =B, w, =A4B, ..., W4, = W, _W,.
To list a few strings with coordinates
{l.’ O}’ {O’ l}’ {l’ 1}’ {l, 2}9 {2, 3}’
4, B, AB, BAB, ABBAB,

Clearly w,(4,B) has the coordinates {f,_,, f,-}-

Here we have used the strings w,(4,B) instead of f, but the progression

is still linearly ordered:

cee P Wyo1,wy) (W, W, W) o (Fibonacci type).

We now consider a generalization of this growth where the ordering is not

linear but tree-like,

w',w™")
(Markoff type).
(wf,w ’w") (w”’w lel)

Thus, once w(=w'w'") is formed, we have the choice of dropping w' (Fibonacci

again) or dropping w”.

We illustrate the Markoff tree generated by starting with the pair (4,B).

(The "+" and "-" signs are explained in Section 4 below).
4,B)"
N
(4,AB)* (B,AB)”

VRN SN
(4,AAB)*  (AB,AAB)” (B,BAB)~ (4B,BAB)*

N/ N 7 N/ X

! possible pairs on the nth level.

There are 2"~

The reader can easily recognize Fibonaccian growth on the extreme right

diagonal (o)
A, B, AB, BAB, ABBAB, ...
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On the extreme left diagonal (B), we see the simpler growth
B, AB, AAB, AAAB,

This may seem asymmetrical, but a parallel diagonal (Yy) gives
B, AB, BAB, BBAB,

which is equivalent (with the same "T" = B) to

B, BA, BBA, BBBA,

L, EUCLIDEAN PARTITION
If we look at the words in the Markoff tree (in Section 3), we see that
they have coordinates as follows:

({1, o}, {0, 1hH*

/ N

({1, o}, {1, 1H* ({0, 1}, {1, 11"

N\

({1, 0}, {2, 1H* (1, 1}, {2, 1H~ (o, 1}, {1, 21~ (1, 1}, {1, 2}y

In general, a pair (w,,w,) has the coordinates
({a,, by}, {a,, b,}) where a;b, - a,b, = *1.

(The "+'" and "-" designations give this sign in Section 3 and above.) We can
prove an even stronger result if we introduce a definition:

Let a, a'’, a", b, b', b" all be > 0, then we say
(a,b) = (a',b’) + (a”,b")

is a euclidean partition exactly when a'b"” -b'a”=+1. Then every such (a,b)
has a euclidean partition if ab > 0 by virtue of the euclidean algorithm by
the solvability of

arx - by =1, (0 <x<b, 0<yc<a.

For +1, (x,y) = (a",b"); for -1, (x,y) = (a',b'). Clearly any (a,b) can be
ultimately partitioned to (0,1) and (1,0). For instance, if we start with
(5,7), we have:

(5,7) = (3,4) + (2,3), (3,4) = (1,1) + (2,3),
(2,3) (1,1 + (1,2), (1,2) (1,1 + (0,1),
(1,1) (1,0) + (0,1).

We now see, generally, that if (w',w’) is in the Markoff tree and w =w'w”
with {a’, '}, {a", b"}, and {a, b} the coordinates of w', w", and w (respec-
tively), then we write

w',wM* = (a,b)

w',w"~ = (a,b)

(al’bl) + (all’bll)
(all,bll) + (al’bl)’

as euclidean partitions in each case. The property is preserved in the Mar-
koff tree, so every {a, b} with ged (a,b) =1 (and a > 0, b > 0) is represented
as the coordinate of some word in the Markoff tree.
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We shall next see how words in the Markoff tree are composed by euclid-
ean partitions.
5. STEP-WORD

The symbol we introduce to explain words in the Markoff tree is called
the step-word

(4,B)? =TT 4B*, ¢, = [sb/al - [(s - 1)b/al
g§=1

where n = [£] is the integral part of £ (satisfying n < £ < n + 1). Here we
assume a > 0, b > 0, and ged (a,b) = 1. The further definition "by fiat" in-
cludes a = 0 (b = 1),

(4,B)%1 = B.
a
In any case, (A,B)aJ has coordinates {a, b}, (?.e., 2: e, = b).

Some of the simple cases are:
A4, =4, 4, =B, @,B)"! = 4B
(A,B)n,l - AnB, (A,B)l’n = AB™, (A,B)2m+1’2 - AmBAm+lB,
(4,B)%2m*L = ap™ip™*l (4,B)%3"*2 = AB™AB™FlAB™*!, etc.

Note that the values of e¢; (if more than one occurs) are chosen from two con-
secutive integers, [b/a] and [b/al + 1.

The symbol can be extended to an arbitrary integral pair (a,b) but this
is not relevant to present work.

To see why the symbol is called a "step-word" let us note that the val-
ues of e, ..., e, are found by differencing the sequence [bs/a] for s = 0,
1, 2, ..., a, in other words, by differencing the integral values of the
step-function y = [bx/a] lying just below the line y = bx/a for 0 < x < a.

6. NIELSEN PARTITION

We now construct a partition of step-words w = (A,B)am based on the
euclidean partition of (a,b). (It is called a "Nielsen partition'" for rea-
sons explained in [1].) The idea is that if

(a,b) = (a',b") + (a",b™)

is a euclidean partition, then the step-word has a (Nielsen) partition
4,B%? = (4,B°*" """ -+ (4,B)"?".

For example, since (5,7) = (3,4) + (2,3), we obtain the partition:
ABABAB?ABAB® = ABABAB* + ABAB®.

The justification is that the triangle bounded by the (integral) lattice
points (0,0), (a’,b’), (a,b) has no lattice points in its interior and lies
below the line y = bx/a (since ab' - ba’' = -1). Hence the step-function for
y = bx/a agrees with that of y = b'x/a’ for 0 < x < a’ and agrees with that
of the segment from (a’,b') to (a,b) (of slope b"/a"), for

a'<x <a'"+a" = a.



182 : GROWTH TYPES OF FIBONACCI AND MARKOFF [April

Inductive property of Nielsen partituons. Let (w],w[) be a pair of words
in the Markoff free. Assume that if (W{,wH)* occurs, then W§,w}) ~ w',w'")
with w = w'w" a Nielsen partition (of step-words), and also assume that if
(wq,wy)” occurs, then W/[,w() ~ W',w") with w = w'w"” a Nielsen partition (of
step-words). Then, the same property is hereditary to the next stage of the
tree.

The property is almost immediate, the only difficulty is in the order of
the words. If we have (w{,w{)* then if (W{,w)) ~ W',w") then W§,wi,wgwy)
~ W' w",w'w"), so the property passes on to (W{,wjwy)*. On the other hand,
W, wi,wi)” ~ Wi,wiwi)*, (using "T" = w]). Hence the property passes on to
w{,wl,wiwly)”™ as well! The rest of the details are left to the reader.

7. MAIN THEOREM

If w(4,B) is a word in the Markoff tree (with the coordinates {a, b}),
then ¢ > 0, b > 0, gcd (a,b) = 1, and

w(4,B) ~ (4,B)%P |

Conversely, ' for every pair (a,b) satisfying the above conditions, a repre-
sentative w(4,B) occurs in the Markoff tree.

The proof is a direct consequence of the inductive property of the eu-
clidean partition and the Nielsen partition. Clearly, the first stage (4,B)
gives a Nielsen partition AB = A.B!

A strange consequence of this result is that the same proof would hold
if we used the step-word as (B,A)?:? instead. (Basically, this is a conse-
quence of the relation AB ~ BA.) Thus, since the main theorem is now very
clear on obtaining both (4,B)%? and (B,A)?:2 , we have

-(A,B)a’b ~ (B_,A)b’a .

This is an elementary fact to verify but it is not trivial. For instance, if
(a,b) = (5,7), we have .

ABABA.B%ABAB? ~ B24ABAB?.ABABA

The dot indicates the point at which cyclic permutations would begin. The
reader will find it amusing to explicitly write the T for which

4,B)*P T = 1(B,4)b:2.

[It involves the congruence bx = -1 (mod a).]

8. MARKOFF TRIPLES

In conclusion, we shall indicate (without proofs) how some basic number-
theoretic work of Markoff [2] leads to Markoff trees of words of a semigroup.
The central device is the equation in positive integers defining a so-called
Markoff triple (my,m,,ms)

m? 4+ mi+ms = 3mm,m,,  (mgy > 0).
This so-called Markoff equation is discussed in [1] in terms of its connec-
tions with many branches of mathematics.

The important fact about the Markoff triple is that if m} = 3mymy = my,
mi = 3mgmy — my, m§ = 3mm, - m, then additional Markoff triples are verifi-
able as
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*
(mlamz’ma); (mlamg’mg)a (m19m2sm§)'

The presence of three neighbors is exactly the property of”the Markoff tree,
one neighbor is the ancestor of (m,,m,,m;) and two neighbors are descendents.
The point is that all solutions can be obtained from (1,1,1) by neighbor for-
mation, and if we comsider only solutions which have unequal my,m,,ms3, they
can be obtained from (1,2,5). [Its neighbors are (29,2,5), (1,13,5) and (1,
2,1), which is excluded, see the tree below.]
The connection with the semigroup S, arises as follows: If 4 = (i 1)
5 2
and B = (2 l) , then every word on the Markoff tree consists of a pair of
matrices (w',w"). Then a general Markoff triple (of unequal m;) is given (in
some order) by

1 1 1
my =3 trace w'y, m, =% trace w", my = T trace w'w".

3 3
Since traces are equal for equivalent words, then, by the main theorem, the
Markoff triple is given by step-words in a Nielsen partition w'w'" = w. Since

the partition is unique, each triple is given by the coordinates {a, b} of
(say) w. The reader can verify that for {1, 1}, w’,w") =(4,B) and the tri-
ple (1,2,5) comes from 1/3 of the traces of 4, B, and 4B.

More generally, the Markoff tree of Section 3 leads to three solutions
(rearranging the order so m; <m, <my):

{1, 1}(1,2,5)

{2, 1}(1,5,13) {1, 2}(2,5,29)

/ \ e N\

{3, 13(1,13,34) {3, 2}(5,13,194) {1, 3}(2,29,169) {2, 3}(5,29,433)

A result which is still a troublesome conjecture (see [3]), is that there
exists a unique nonnegative pair (a,b) for which the matrix

(2 1 (5 2\\a>b

M_<(l 1)’ 2 1>>

has a given trace. Thus, my (= 1/3 trace M) determines m,,m, completely (if
we keep m; < m, < m; as before).
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DEFINITIONS
The Fibonacci numbers F, and the Lucas numbers L, satisfy
Fpsg = Fpyy T By Fyp =0, Fy =11
and
Lyyo =L,y +L,, L,=2,L, =1.

Also a and b designate the roots (1 + v5)/2 and (1 - V5)/2, respectively, of
2?2 -x-1=0.
PROBLEMS PROPOSED IN THIS ISSUE

B-400 Proposed by Herta T. Freitag, Roanoke, VA

Let T, be the nth triangular number n(n + 1)/2. For which positive in-
tegers 7 is T% + T% + e + If an integral multiple of T,7?
B-401 pProposed by Gary L. Mullen, Pennsylvania State University, Sharon, PA

Show that lim [n)?*/(n?)1] = 0.

n+o

B-402 proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA
Show that (LyLy4+3, 20,410,405 5F,,,5) is a Pythagorean triple.

B-403 pProposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA
Let m = 5". Show that L,, = -2 (mod 5m?).

B-404 proposed by Phil Mana, Albuquerque, NM

Let x be a positive irrational number. Let a, b, ¢, and d be positive
integers with a/b < ¢ < ¢/d. 1f a/b < r < x, with » rational, implies that
the denominator of r exceeds b, we call a/b a good lower approximation (GLA)
for x. If x < » < ¢/d, with »r rational, implies that the denominator of »r
exceeds d, c¢/d is a good upper approximation (GUA) for x. Find all the GLAs
and all the GUAs for (1 + v5)/2.

B-405 proposed by Phil Mana, Albuguerque, NM

Prove that for every positive irrational x, the GLAs and GUAs for x (as
defined in B-404) can be put together to form one sequence {Rz/qn} with

Pos19 ~ Pa9usr = 1 for all n.

184
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SOLUTIONS
Complementary Primes

B-~376 Proposed by Frank Kocher and Gary L. Mullen,
Pennsylvania State University, University Park and Sharon, PA

Find all integers » >3 such that n -p is an odd prime for all odd primes
p less than 7.

Solution by Paul S. Bruckman, Concord, CA

Let n be a solution to the problem, and p any odd prime less than #.
Since p and n -p are odd, clearly n must be even. Hence, n = 0, 2,4 (mod 6).
Since 4 - 3 =6 -5 =8-7 =1 and 1 is not a prime, it follows that n # 4,
n+ 6, n# 8 Hence, n > 10,

If n = 0 (mod 6), then n — 3 = 3 (mod 6), which shows that n -3 is com-
posite and > 9. Likewise, if # = 2 (mod 6), then n - 5 = 3 (mod 6), which
shows that n - 5 is composite and > 9. Finally, if n = 4 (mod 6), then n - 7
= 3 (mod 6), which is composite, unless n = 10, in which case n - 7 = 3, a
prime. Hence, » = 10 is the only possible solution. Since 10 - 3 =7, 10 -
5=5, 10 - 7 = 3, which are all primes, 7 = 10 is indeed the only solution
to the problem.

Also scolved by Heiko Harborth (W. Germany), Charles Joscelyne, Graham Lord;
J. M. Metzger, Bob Prielipp, E. Schmutz & M. Wachtel (Switzerland), Sahib
Singh, Rolf Sonntag (W. Germany), Charles W. Trigg, Gregory Wulczyn, and the
proposer.

Counting Lattice Points

B-377 Proposed by Paul S. Bruckman, Concord, CA

For all real numbers a > 1 and b > 1, prove that
[a] [p]
S A - ®aE) = Y [ah - IbE),
k=1 k=1

where [x] is the greatest integer in x.

Solution by J. M. Metzger, University of North Dakota, Grand Forks, ND

Each sum counts the number of lattice points in the first quadrant of

2 2

_','c_z._l__x_z:l,

a b
the first along the vertical lines, x = 1, £ = 2, ..., x = [a], the second
along the horizontal lines, y = 1, y = 2, ..., y = [P]. The two counts must

agree.

Also solved by Bob Prielipp, Sahib Singh, and the proposer.
Congruence Mod 3

B~378 Proposed by George Berzsenyi, Laram University, Beaumont, TX

Prove that Fg,,, + 4 F,,, = 0 (mod 3) for n = 0, 1, 2,
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Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oskosh, WI

We shall establish that Fg,., + F,.3 = 0 (mod 3) for n =20, 1, 2, ...,
which is equivalent to the stated result because 4" = 1 (mod 3) for each
nonnegative integer n. Clearly the desired result holds when =n 0 and when
n=1. Assume that Fg ., + Fp . = 0 (mod 3) and T 0 (mod 3),
where k is an arbitrary nonnegative integer. Then, by addition,

F3k+1 + F3k+’+ + Fk+5 =0 (mod 3).

i

But

6Fgpen + 6Fqe1 ¥ Fagqn = Fapyy
so

Fagsr + Fagan = Fagay  (mod 3).
Hence

Fager ¥ Frys =0 (mod 3)
and our proof is complete by mathematical induction.
Also solved by Paul S. Bruckman, Herta T. Freitag, Graham Lord, Sahib Singh,
Gregory Wulczyn, and the proposer. :

Congruence Mod 5

B-379 Proposed by Herta T. Freitag, Roanoke, VA

Prove that F,, = n(=1"*! (mod 5) for all nonnegative integers nu.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, WI

Clearly the desired result holds when n = 0 and when #n = 1. Assume that
Fop = k(—l)k+1 (mod 5) and F,p:, = (K + 1) (-1)k+2 (mod 5), where k¥ is an ar-
bitrary nonnegative integer. Then, since

Forvuw = 3040 = Fors

Foprw = Bk + 3)(-1)%*2 = k(-1)**! (mod 5)
(-1)%*2(4k + 3)  (mod 5)

(k + 2) (=1)**3 (mod 5).

Our solution is now complete by mathematical induction.

m

Also solved by Paul S. Bruckman, Charles Joscelyne, Graham Lord, Sahib Singh,
Gregory Wulczyn, and the proposer.

Binomial Convolution

B-380 pProposed by Dan Zwillinger, Cambridge, MA
Let a, b, and ¢ be nonnegative integers. Prove that
2”: (k+a—l>(n-7<+b—c =(n+a+b—c
—~ a b . a+b+1l )

Here <Z> =0 if m < r.
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Solution by Phil Mana, Albuquerque, NM
For every nonnegative integer d, the Maclaurin series for (1 - x)—d_lis
- (")
S (4.
n=0 d
Then
Q-2 Q- = -2,

N (THa).; s [dFD\ ;< +a+b+1\_,
I R EED (O EED M (e tat

Equating coefficients of x”~¢-! on both sides, one has

n-c

Z (k—l+a><n—c—k+b> _ (n—c+a+b>

a b a+b+1

k=1
The upper limit n - ¢ for the sum here can be replaced by n, since any terms
for n - ¢ < k < n will vanish using the convention that (ZZ) = 0 for m < r.
This gives the desired result.
Also solved by Paul S. Bruckman, Bob Prielipp & N. J. Kuenzi, A. G. Shannon,
and the proposer.

Generating Function

B-381 proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA

Let a,, = F2+1 and a

n ome1 = FpaiF, Find the rational function that
has

n+l n+2°
a, +a.x + a,x®> + axd + .-
0 1 2 3

as its Maclaurin series.

Solution by Sahib Singh, Clarion State College, Clarion, PA

n
By the result 2: Ff =FF , we get the Mclaurin series as:

n-n+1l
i=1
F2 4+ Flx(1 + x” + o + ++) + F3X5 + FPX°(1L + o + 2 + «+2) + -
- 2 T 252 % 25k % N\ ...
—F1<l+l_x2>+F2X <l+l_x2>+F3X <1+l_x2>+

2
- l—+ﬁc—'—x—[F2+F2X2+F2X“ + F2XS 4+ e,
1 - 22 1 2 3 B

) an_an
Using F, = (—5~:—Z—> , the above becomes
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Ltz -a?), 1 [(a2+a“x2+a6x"‘+---)
1 - x2 (a - b)?

+

(b? + b*z? + bz + -++) - 2ab(1 + abx?® + a’b2x" + )]

=<1+x—x2>_ 1 [ a? + b? _ 2ab ]
1 - x? (@a-b2L1 - a%x? 1-Db%% 1 - ghx? ’

which simplifies to

(l+x—x2>< (1 - x2?) >= 1+2x - x2
1 - x2 1+ 2 - 322 +2%) (1 +22) (1 - 302 + z2%)

Also solved by Paul S. Bruckman, R. Garfield, John W. Vogel, and the proposer.

HFHHHE

ERRATA
The {§ollowing errons have been noted:

Volume 16, No. 5 (October 1978), p. 407 [J. A.H. Hunter's '"Congruent Primes

of Form (8r +1)"]. The equations presented in the second line of the article
should read

X% - e¥? = 22, and X% + eY¥? = W2.

Volume 17, No. 1 (February 1979), p. 84 (A. P. Hillman & V. E. Hoggatt, Jr.'s
""Nearly Linear Functions'). Equation (1) should read

(1) C"H—C°H=zk:(ci’—ci)hizhk—kzlcihi.
i=1 i=1
The second line of the proof of Lemma 7 should read
The hypothesis E *E' = 0 implies .
In the proof of Theorem 1, Equation (10) should read

(10) by (m) = C}_, *H; = Cp_y ~Hj.

(Kindness of Margaret Owens)
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H-299 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA
Vandermonde determinants:

(A) Evaluate

FZr Fez' Z;'101/’ F1‘+r FlBr
Py Frop  Foor  Fogp  Fien
A= Fer Fler FSOP Fqu F5'+r
FBr FZBr FkOP FSGr F72r
F10r Faor FSOP F70r F90r
(B) Evaluate
1 Loy +1 Lyp+2 Ley+3 Lep+y
1 -Lep+s Lior+s Ligr+o Loup+12
D=1 Liop+s Loop+10 L3op+15 Lyor+20
1 -Liyp+7 Logr+1y  =Luzr+21 Lsegr+2s
1 Lygr+g L3gr+1s Lsun+27 Lyop+36
(C) Evaluate
1 Loy Lyp Ler Lgy
1 Lsr Ll?_r Ller L2‘+r
D, =
1 Lior Laor L3op Lyop
1 Ljgr L6y LSMP L72r

H-300 Proposed by James L. Murphy, California State College,
San Bernardino, CA

Given two positive integers A and B relatively prime, form a "multipli-
cative" Fibonacci sequence {4;} with 4, = A, 4, = B, and 4;,, = A%;,,;. Now
form the sequence of partial sums {S,} where

189
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n
Sn = ZAi'
i=1

{3,} is a subsequence of the arithmetic sequence {T,} where
T, = A+ nB,

and by Dirichlet's theorem we know that infinitely many of the T, are prime.
The question is: Does such a sparse subsequence {S,} of the arithmetic se-
quence A + #B also contain infinitely many primes?

Notes :
S, =4, S, =A+B, S;=4A+ B+ 4B,
S, =A+ B+ AB+ AB?, S, =A+ B+ AB + AB* + A’B®, etc.

Some examples:

For A = 2 and B = 3, the first few S5; are:
2, 5, 11, 29, 137, 2081, all prime, and
S, = 212033 = 43%4931.

For A = 3 and B = 14, the first few S; are:

3, 17, 59, 647, 25343, 14546591, all prime, and
5, = 358631287199 = 43%8340262493.
For A = 2 and B = 21, the first few S are:
2, 23, prime; S3 = 65, a composite; but
Sy = 947 and S5 = 37881, both prime.

Looking at the first six terms of the sequence {S;} for 68 different
choices of 4 and B, I found the following distribution:

Number of Primes in Number of Sequences Having -
the First Six Terms This Number of Primes

2
19
21
22

2

2
68

[e )G, BE S L I S S

H-301 Proposed by Verner E. Hoggatt, Jr.,
San Jose State University, San Jose, CA

Let Ay, A7, Ayy «v., Ay, ... be a sequence such that the nth differences
are zero (that is, the Diagonal Sequence terminates). Show that, if

o
2: Aixi’
=0

Ax) = I E = D<l z >, where D, (x) =Z dixi.

- x 4
=0

A(x)
then
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SOLUTIONS
Pell Mell
H-275 Proposed by Verner E. Hoggatt, Jr.,
San Jose State University, San Jose, CA
Let P, denote the Pell Sequence defined as follows:
pPy=1,P,=2,P,,,=2P ,+P, (n>1).

Consider the array below:

1 2 5 12 29 70 ... (Py)
1 3 7 17 41 ...
2 4 10 24 .,
2 6 14 .
4 8
4

Each row is obtained by taking differences in the row above.
Let D, denote the left diagonal sequence in this array; i.s.,

D,=D,=1,D,=D, =2, Dg =Dy =4, D, = Dy = 8,
(1) Show Dy,_q = Dy, = 2"71 (n > 1).

©

(ii) Show that if F(x) represents the generating function for {P%}n=1

and D(x) represents the generating function for {Dn}m then

n=1°2
b = P (i) -

Solution by George Berzsenyi, Lamar University, Beaumont, TX

First observe that each row in the array inherits the recursive relation
of the Pell numbers. This is true more generally, for if {x,} is a sequence
defined recursively by

Lyyp = Ay 4y + Bty
and if {y,} is defined by

Yn = Lyn+1 — Ln,
then

Ynea = Tppg = Tnyo = 0@y = Tpyr) + B@pyr = @)
= 0Ypiy + By,
Let E, be the second diagonal sequence in the array; i.e.,
E,=2,E,=3,FE,=4,F, =6, FE; =28,
We shall prove by inducfion that for eachn =1, 2, ..., D,, , =D, = 2n-1)
while E,,_, = 2 +2""! and E,, = 3 +2"7'. The portion of the array shown ex-

hibits this fact for n = 1; assume it for » = k. Then the first few members
of the 2k - 1st and 2kth rows can be obtained by using the recursion formula
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and upon taking differences one obtains the first two members of the next two
rows as follows:

2k-1 2 e 2k"1 5 k-1 12 + 2k 29 «2k-1
2k-1 3. 2k-1 7 «2k-1 17 - 2k-1
2k 2 .2k 5 « 2k
2k 3 .2k

This completes the induction and establishes part (i).

To prove part (ii), recall that

Fz) = ——"—,
1l -22 -2

and therefore,
E’( x _ oz + x?
1+ 1 - 222

On the other hand, if

o

D(x) = E: D,x",
then el
D(x) = (x + 22) + 2(x® + ") + 22(x> + z®) + -
while
-222D(x) = -2(x® + 2% - 22(x% + x28) - ..

Hence, (1 - 222)D(x) = = + %2, and

x + x?
D(x) = ————.
@ 1 - 2x2
Consequently the desired relationship, D(z) = E’(l f x) follows.

Also solved by V. E. Hoggatt, Jr., P. Bruckman, G. Wulczyn, and A. Shannon.

Late Acknowledgment: P. Bruckman solved H-27k.
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