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If [n] represents the first n natural numbers, D. Stephen showed in [3] 
that no topology on [n] with the exception of the discrete topology has more 
than 3(2n" ) elements and that this number is a maximum. In this article we 
show that, if k is a nonnegative integer and k <_ n, then no topology on [n] 
with precisely n - k open singletons has more than (1 + 2k)2n"k~1 elements 
and that this number is attainable over such topologies for k < n. We also 
show that the topology on [n] with no open singletons and the maximum number 
of elements has cardinality 1 + 2n_2. 

Recently, A. R. Mitchell and R. W. Mitchell have given a much simpler 
proof of Stephenfs result [2]. Their proof consists of showing (1) If n > 2 
and x,y e [n] with x 4- y, then 

TO,?/) = {A C [n]i x e Aov y t A} 
is a topology on [n] with precisely 3(2n~ ) elements, and (2) If T is a non-
discrete topology on [n], there exist x,y e [n] with T C T(x9y). In Section 
1, we give proofs of two theorems which in conjunction produce Stephenfs re-
sult and which dictate what form the nondiscrete topology of maximum cardi-
nality must have. 

1. STEPHEN'S RESULT 

We let \A\ denote the cardinality of a set A. If T is a topology on 
[n] and x e [n] , we let M(T,x) be the open set about x with minimum cardinal-
ity. Evidently, V = {A C [n]: M(T9x) C A whenever x e A}. 

lh<lOH<Lm 1.1: If k is a positive integer and T is a topology on [n] with pre-
cisely n - k open singletons, there is a topology A on [n] with precisely 
n - k + 1 open singletons and |r| < |A|. 

P/LOÔ : Choose x e [n] such that {x} is not open. Let 

A = {A U (B Pi {x}): A9B e r}. 

Then A is a topology on [n] with precisely n - k + 1 open singletons, which 
satisfies T C A and T ̂  A. The proof is complete. 

The,0K2Jfn 1.2: If k is a positive integer and T is a topology on [n] with pre-
cisely n - k open singletons and for some x e [n], {y} is open for each 

y e M(T,x) - {x} and \M(T,x) \ > 2, 
there is a topology T on [n] with precisely n - k open singletons satisfying 
|r| < |A|. 
Vkoo^: Choose y e M(T,x) - {x} and let 

A = {A U (B D (M(I» - {y})): A9B e v). 
Then A is a topology on [n] with precisely n - k open singletons, which sat-
isfies T C A and r + A. The proof is complete. 

CofiolZa/iy 1.3: Each nondiscrete topology on [n] has at most 3(2 ) elements 
and this number is a maximum. 
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Psioofi: If T is a nondiscrete topology on [n], then n >_ 2. From Theorem 1.1, 
if T has the maximum cardinality over all nondiscrete topologies on [n], then 
T has precisely n-1 open singletons; and by Theorem 1.2, if {n} is the non-
open singleton, we must have \M(T9n)| = 2. So there is an x e [n - 1] with 
M(T9n) = {n, x}. Thus, 

r = {A C [n] : n t A) U {A C [n]: {n9 x] C i}. 
Consequently, |r|=2 w ~ + 2 n " = 3(2n~ ) and the proof is complete. 

Rtma/ik 1.4: The topology A in the proof of Theorem 1.1 (1.2) is known as the 
simple extension of T through the subset {x} (M(T9x) - {y}) [1]. 

2. SOME PRELIMINARIES 

In this section we present some notation and prove a theorem which will 
be useful in reaching our main results. If k £ [n], let A(/c) be the collection 
of topologies on [n] which have {l}, {2}, ..., {k} as the nonopen singletons. 
If 1 <_ m <_ k, let C(m) be the set of increasing functions from [ml to [k] ; 
for each g £ C(m), let 

U(T9m9g) = U M(T,g(i)) 
and zeM 

tt(T,m,g) = {A C [n] : U(T9m9g) C A and \A D [k]\ = m}. 

L&nma 2.1: The following statements hold for each topology T £ \(k). 
k 

(a) T = {A C [n]: A (1 [k] = 0} U (J U tt(T9m9g). 
m=l geC(m) 

(b) For each 777 £ [/c] and g £ C(m) , we have 

|^(r,w,^)I = 0 or \u(± 9m9g) \ =2 

(c) (T9m9g) H ti(T9j9h) = 0 unless (TTZ,̂ ) = (j,/z). 

VKOO^ O£ (fl) : Let A represent the set on the right-hand side of the equality 
sign in (a), and let W £ T. If WD[k] = 0, then W £ A. If WD[k] + 0, then 
|f/n[/c] I = m for some m e [k] . Let ̂  be the strictly increasing function from 
[m] to W(l[k]. For each g(i) we have f/ D M(T9g(i)) , so 

J/ 3 U(T9m9g) , ,17 e ti(T9m9g), and T C A. 

If W £ A and ^n[fe] = 0, then J/ £ T. Otherwise, W £ Q(T9m9g) for some m £ [k] 
and g £ C(rri). For this (m9g) we have > 

#(!>]) C U(T9m9g) C fv7; 

thus, J/ £ T, since 

A/ = U(T9m9g) U (tf - U(T9m9g))9 U(T9m9g) £ T9 
and 

(A/ - U(T9m9g)) H [fc] = 0; 

so A C T and (a) is verified. 

VK.00^ O& (b) '- It is easy to verify that Q,{Y9m9g) is the set of all subsets 
of [n] - {[k] - g([m])) which contain U(Y9m9g) for each pair (m9g). Conse-
quently (b) holds. 
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Vnooj oj (c): If A e ti(T9m9g) D Q(T,j,h), then m = \A H [k]| = j. Also, 

gam]) U M M ) C A D [k], 
which gives 

\g([m]) U h([m])\ = ro. 

Since g and /z are strictly increasing, we must have g = h9 and the proof is 
complete. 

We are now in a position to establish the following useful theorem. 

Tfoeo/iem 2 . 2 : I f r i s an element of \(k) , t hen 
k 

\Y\ < 2n~k + y ^ y ^ 2 n - k + m " ' [ / ( r ' m ' 0 ) i 
m = 1 geC(m) 

with equality if and only if ti(T9m9g) £ 0 for any pair (m,g). 

VKOOI' From Lemma 2.1(a) and (c), we have 

|r| = \{A C [n]i A D [k] = 0}| + ]T YJ \tt(?>™,G)\ -
m = 1 geC(m) 

So from Lemma 2.1(b) we get 

| r | < 2
n ~ k + Y* y ^ 2

n"k + m" | l / ( r , ," '^) l 
m-l geC(m) 

with equality if and only if fi(r,m,^) ̂ 0 for any pair (m9g). The proof is 
complete. 

3. THE FIRST TWO OF OUR MAIN RESULTS 

Tkd Cctt>£ 0 <_ k <. n: The results are clear for k = 0. In the following, we 
assume that /c £ [n]. 

TkcoKm 3.1: If n is a positive integer and T e X(/c) , then 

| r | <. ( i + 2k)2n'k~1. 
VK.00{'. We proceed by induction on n. The case n = 1 is true vacuously. Sup-
pose n > 1 and the result holds for all integers j e [n - 1]. 

Co6e 1:. \U(T,m9g)\ = m for some pair (m9g). Then we have 

U(T,m9g) C [fe]. 
Let J/ e r w i t h W C [fe] and | j / | a minimum. Then |fif| >. 2 and M(T,x) = f/ fo r 
each x e W. Without l o s s , assume t h a t 1 e W and i f [n] - W 4 0 , assume t h a t 
[n] - W = {2, 3 , . . . , n - |f/| + 1 } . Define a topology A on [n - \w\ + 1] by 
t h e fo l lowing family of min imum-ca rd ina l i t y open s e t s : 

M(A,1) = {1} , M(A,x) = (M(T,x) - w)u{l] i f M(T,x) C) W + 0 
and 

M(k,x) = M(r ,x) o t h e r w i s e . 

It is not difficult to show that |A| = |r| and that A has n - k + 1 open sin-
gletons. So by the induction hypothesis, we. have 

|T| < (1 + 2k-W)2n-k< (1 + 2k)2n-k-\ 
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CcU>e 2: \u(T,m9g) | > m for each pair (m9g). Here we have 

\u(T9m9g) | >. m + 1 
for each pair (m9g) and, from Theorem 2.2, we get 

|r| < 2 " - * + £ 2̂"-'£ + m-|t'(r'^)l<2'I-': + (x)(^j)2"-':-1; 
m - 1 9 e C(m) \n? - 1 / 

we see eas i ly tha t 

2n-k+(ib(*))2n~k~i = a + 2")2"-fc-1. 
\W-1 / 

The proof is complete. 

It is obvious that if T e X(k) with \u(T9m9g)| = m + 1 for each pair 
(m9g) then |r| will be a maximum over X(k) and we will have 

|r| = (i + 2
kr'k'x . 

If such a T has |r| a maximum over X(k) 9 we must have 

|Af(T,x) 1 = 2 and \M(T9x) H [k]\ = 1 

for each ar e [k], since ^ e: (7(1) defined by ^(1) = x must satisfy 

1*7(1% 1,0)| = 2 and fi(r,l,^) * 0 

from Lemma 2.1(b). Moreover, if x < y and x9y e [k], then 

|#(I%a;) U M(T,z/) | = 3 

since g e (7(2) defined by g(l) = x and g{2) = z/ must satisfy 

\U(T,29g)\ = 3. 
Thus, 

M(r,^) n M(r,z/) ^ 0. 
This implies that there must be a j £ [n] - [k] with M(T 9x) = {#, j} for each 
x e [k] and that 

r = {A C [«]: A D [k] = 0} U {A C [n] : {x, j} C A for each x e A D [A:]}. 

We have 

| r | = a + 2 k ) 2 n - " - 1 

from the arguments above and the second of our main results is realized. 

T/ieô em 3.2: For 0 <_ k < n, there is a topology on [n] with precisely n - k 
open singletons and (1 4- 2k)2n~ 1 elements. 

As a by-product of these main results, we obtain Stephen1s result. 

CoKolIxUiy 3.3: The only topology on [n] having more than 3(2n~2) open sets 
is the discrete topology. Moreover, this upper bound cannot be improved. 

Vtioofa: If the topology T on [n] is not discrete, then n > 1 and there is at 
least one nonopen singleton. If k is the number of nonopen singletons, we 
have, from Theorem 3.1, that 

|T| < 2n'1 + 2n'k'1 < 2n'1 + 2n"2 = 3(2n"2), 

and since n f 1, there is a topology on [n] with precisely 3(2n" ) elements, 
from Theorem 3.2. The proof is complete. 
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4. OUR FINAL TWO MAIN RESULTS 

Tfee. Co6e k = n: It is obvious that for k = n, no topology on [n] has 
(1 + 2k)2n-'k~1 

elements. If T e X(n), we let 

<P(r) = U C [n]i A = M(T,x) for each x e A, and + 0}. 

It is clear from the argument in Case 1 of Theorem 3.1 that 9(T) + 0. 

ThdOKQjm 4-.1: If r is an element of \{k) which has maximum cardinality over 
A(Ze), then |̂ | = 2 for each A e <P(T). 

R̂ OoJ_: If i e 9(r) with |̂4 | > 2, choose a?,z/ e A with x + y and let 

A = {v U (BD {x, y})i V 9B e v]. 

Then A e A(fc), r C A , and T + A. The proof is complete. 

Tho.on.rn 4.2: If r is an element of X(n) , then | T | <. 1 + 2n~2. 

Pxooj: Let T e A(n) with |r| a maximum. Then |̂  | = 2 for each A e9(r). For 
each i e [ |9(D | ] , let 

P(i) = {n - 2|9(D| + i , n - i + l}; 

without loss, assume that 

9(D = {P(i)i i e [|9(D|]} 
and that 

[n] - U A = [n - 2|9(D|] if n i 2 |9(D I . 
*(r) Define a topology A on [n - I^CD | ] by specifying its minimum-cardinality 

open sets for each x e [n - ^(T) | ] as 

M(k9x) = [M(T9x) - U A) U in - 2 |9(T) | + i: P(i) H M(T9x) ^ 0 }. 

Then A has precisely |9(r)| open singletons and |r| = |A|. By Theorem 3.1, 

| r | < ( I + 2 n - 2 l c p ( r ) l ) 2 | q ) ( r ) | " " 1 

where the expression on the right side of the inequality decreases as ̂ (T)| 
increases. Thus, |r| <L 1 + 2n"2 for all V e X(n) and the proof is complete. 

TkzotLQJM 4.3: For n > 1, there is a topology on [n] with no open singletons 
and 1 + 2n~2 elements. 

VtiOO^: From Theorem 3.2, there is a topology Y on [n -1] with 1 + 2" ele-
ments". For this topology, M(T 9x) = {x, n - 1} for # ^ n - 1 and M(T, n - 1) = 
{n - 1} may be assumed to be the minimum-cardinality open sets. Let 

A = {^C [n] : M(T9x) U M C A when M(T9x) C A^. 
Then A is a topology on [n] with no open singletons and |A| = |F|. The proof 
is complete. 

5. SOME FINAL REMARKS 

The following observations may be made from the Theorems and construc-
tions above. 
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ROMOJik 5.1: It is easy to construct for each 1 <_$ <_n - k a topology T e X(k) 
with cardinality (2k + (-1 + 2j))2n~k'{j. Let M(T9x) = {x} for each x e [n] -
[k] and m(T9x) = {x9 k + 1, k + 2, . . . , /c + j} for each # e [&].- We see from 
Theorem 2.1 that |r| is the required number. 

RojnoJik 5.2: More generally, if k e [n] and for each x e [k] , W(x) is a non-
empty subset of [n] - [k], let T be the topology on [n] having minimal cardi-
nality open sets M(T,x) = {x} U W(x) for x e [k] and M(T,x) = {x} otherwise. 
Then from Theorem 2.1 

w-fc y^ y^ n-fc + m-(m+|U ^(^))|) 

m = l geC(m) 

\u(T,m,g) UM(T9g(i)) 
[m] 

\gttm]) U W(g(i)) 
[m] 

= m + Uw(g(i)) 
[m] 

RojnaJik 5.3: For each k e In] 9 let 

\x(k) = {T e X(k) : Q,(T9m9g) + 0 for any pair (m9g)}. 

Then \i(k) = {r eX(k): for each a? e [fc] , Af(r,#) = fe} U J7(#) for some nonempty 
W(x) C [n] - [fc]}. Thus \\i(k) | = (-1 + 2n'k)k for each subset of [n] of cardi-
nality k. Therefore, 

co<- 1 + 2n~k)k 

is the number of topologies, F, on [n] such that 

T e \(k) and fi(r,77Z,^) ̂ 0 for any pair (m9g). 
The total number of such topologies is 

£(2)<-l + 2»-*)*-. 
keln] 
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A PRIMER ON STERN'S DIATOMIC SEQUENCE 
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PART I: HISTORY 

1. Eisenstein's Function 

In 1850, F. M. G. Eisenstein, a brilliant mathematician and disciple of 
Gauss, wrote a treatise [1] on number theoretic functions of a reciprocating 
nature. In this paper he discusses the following sequence as part of another 
discussion. 

For positive integers A, u, and v: 

1) %u,v = %u,u+v + %u+v,v (mod X) , for u + v < X; 
2) xUiV = 0, for u + V > X; 
3) xUfV = v9 for u + v = X. 

On February 18, 1850, M. A. Stern, who taught theory of equations at the 
University of Gottingen, attended a conference on Mathematical Physics where 
Eisenstein mentioned that the function described in his paper was too complex 
and did not lend itself to elementary study. Within two years of that con-
ference, Eisenstein would die prematurely at the age of 29, but the study of 
Stern numbers had been born, and research was in progress. 

2. Stern's Version 

In a paper written in 1858, Stern presented an extensive discussion [2] 
on what may be characterized as "Generalized Stern Numbers." Many important 
results were generated in this paper, some of more importance than others. 
The authors will attempt to present a synopsis of these results, translated 
from German, as they were presented. 

(1) Stern provided the following definition as his specialization of Eisen-
stein1 s function. The sequence is a succession of rows, each generated from 
a previous row starting with two numbers, m and n. 

m n 

m m + n n 

m 2m + n m + n m + In n 

etc. 

Stern also provided some special terms for the elements of the rows. 

Definition: ARGUMENT—The starting terms, m and n, are called 
ARGUMENTS of the sequence. 

Definition: GRUPPE—In each successive row every other term is 
from the previous row and the terms in between are 
the sum of the adjacent two. Any three successive 
elements within a row are called a GRUPPE. 

Definition: STAMMGLIED—-In each GRUPPE, the two numbers which 
were from the previous row are termed STAMMGLIED. 
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Definition: SUMMENGLIED—In each GRUPPE, the middle term, 
the summed element, is termed SUMMENGLIED. 

Some results are immediately obvious. The first SUMMENGLIED, m+n9 is always 
the center element in succeeding rows. The arguments m and n always straddle 
the row. The row is symmetric about the center if m - n; even so, if a SUM-
MENGLIED is of the form km + ln, then Im+kn appears reflected about the cen-
ter element (MITTELGLIED). 

(2) If there are k elements in a given row, then there are 2(/c-l) + 1 ele-
ments in the next row; if the first row has three elements, the pth row has 
2P + 1 elements. Also, if we let Sp(m,n) denote the sum of the elements in 
each row, then 

3P + 1 
Sp(m,n) = ^ (m + n ) -

Note that SP(m9n) is reflexive or that Sp(m9n) = Sp (n,m) . Stern also observed 
that 

Sp(mr,n') mT + n' 
Sp(m9n) m + n ' 

and 
Sp(m + m1 >n + nf) = Sp(m,n) + Sp(mT,nr). 

This latter result led to 

SP(Fn9Fn+1) 1 
l im ( =-\" = 1 + ~, = °S the golden r a t i o , 
n + oo bp K^n-1 ^n) -i _, 1 

1 + . 

a nice Fibonacci result. 

(3) Stern observed next that some properties concerning odd and even numbers 
as they occur, or more precisely, Stern numbers mod 2. He noted that, in any 
three successive rows, the starting sequence of terms is 

odd, 
odd, 
odd, 

even, 
odd, 
even, 

odd 
even 
odd 

(4) Given a GRUPPE a, b9 c, where b is a SUMMENGLIED in row p, the number 
will appear also in row p -• k, where 

v - a + b ~ c 
K ~ lb 

Also, if b is in position 

2t_1(2^ - 1) + 1 

in row p, then it occurs also in row p - (t - 1) in position 21. Related to 
this, Stern noted that with two GRUPPEs a,b,o and d9 e9f in different rows, 
but in the same columns, that 

lThis is a generalization of what was actually presented. The study of 
Fibonacci numbers as such was not-yet in play. Hoggatt notes that this result 
is also true for generalized Fibonacci numbers. 
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a + c _ d + f 2 
b ' e • 

(5) No two successive elements in a given row may have a common factor. 
Furthermore, in a GRUPPE a9b9o(b=:a + o)9a and c are relatively prime. 

(6) Two sequential elements a, b cannot appear together, in the same order, 
in two different rows or in the same row. When m - n = 1 (the starting ele-
ments) then a group a, b may never occur again in any successive row. 

(7) The GRUPPEs a, b, c and o, b9 a may not occur together in the first (or 
last, because of the symmetry) half of a row. 

(8) In the simple Stern sequence using m = n = 1, all positive integers will 
occur and all relatively prime pairs a, o will occur. For all elements of 
this same sequence that appear as SUMMENGLIED, that same element will be 
relatively prime to all smaller-valued elements that are STAMMGLIED. Stern 
pointed out that this is also a result of (6). 

(9) The last row in which the number n will occur as a SUMMENGLIED is row 
n -- 1. The number n will occur only n - 1 more times. 

(10) Given a relatively prime pair b, o (or c, b) of a GRUPPE, the row in 
which that pair of elements will occur may be found by expansion of b/c into 
a continued fraction. That is, if 

— = (k9 kr, kn, ..., km, rm_1), 

then b, c occurs in row 

(k + k' + k" + ... + km + rm_± - 1), 

and the pair (l,pm_1) occurs in a row (k + kf + ••• + km). 

(11) Let (m,n) denote row p generated by the Generalized Stern Sequence 
starting with 777 and n. Then 

(m9n)p ± (mr
9nr)p = (jn ± mf,n ± nr)p, 

which says that the element-by-element addition of the same row of two se-
quences is equal to row p of a sequence generated by the addition, respec-
tively, of the starting elements. 

In particular, an analysis of (0,l)p generates an interesting result. 
The first few rows are: 

p (0, 1) 

0 0,1 
1 0,1,1 
2 0,1,1,2,1 
3 0, 1,1, 2,1, 3,2, 3,1 

Interestingly enough, all the nonzero elements in row k appear in the same 
position in every row thereafter. Stern observed also that in any given col-
umn of (1, l)p the column was an arithmetic progression whose difference was 
equal to the value occurring in the same relative column of (0, l)p . 

•^The authors note that (a+c)/b being an integer is not surprising, but 
the fact that this ratio is the same within columns is not immediately obvious. 
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(12) From the last result in (4), we recall that 

a + Q _ d + f 
b " e 

where a,b,o; and d9 e9f are GRUPPEs and in the same column positions, but 
perhaps different rows, then 

\db - ae\ - |pi - p2 I > 

where p1 and p2 are the row numbers. 

(13) The next special case of interest is the examination of row (l,n)p, for 
n > 1. The first noteworthy result is that all elements of the row (l,n)p 
appear at the start of the row (1, l)p + n-i» Also, all terms are of the form 
k + In or I + kn. 
(14) Moving right along, the rows (l,n)p may be written as 

1 + 0n, 1 + In, 0 4- In 

1 + 0n, 2 + In, 1 + In, 1 + 2n, 0 + In 

1 + 0n, 3 + In, 2 + In, 3 + 2n, 1 + In, 2 + 3n, 1 + 2n, 1 + 3n, 0 + In 

etc. 

Notice that the constant coefficients are the elements of (1, l)p-2, and that 
the coefficients of n are the elements of (0, l)p-i. Note also that the dif-
ference between any two successive elements, k + In and k' + lrn, within a 
row is 

\kl' - k'l\ = l, 

and no element may have the form 

Ink + h'kn. 
(15) With k and kr in (14), k and kf are relatively prime. Correspondingly, 
I and Zr are also relatively prime. 

(16) Given N > n in the sequence (l,n) and of the form N =K - Ln, then K and 
L are relatively prime; N and n are relatively prime; L and N are relatively 
prime as well as K and N. Numbers between 0 and N/n that occur in (l,n) will 
be relatively prime to all 217 whenever N is a SUMMENGLIED. 

(17) In order to proceed symmetrically, Stern next examined the sequence of 
rows (n,l)p. The first immediately obvious result is that (n,l)p is reflex-
ively symmetric to (l,n)p about the center element. When m and n of (m,n) 
are relatively prime and p is the largest factor of m or n, then for (mr,n'), 
where m = pm! and n = pn\ each element of (mf,nr) multiplied by p yields the 
respective element of (m9n). Stern noted at this point that all sequences 
(m,n) appear as a subset somewhere in (1, 1). 

(18) Given that N occurs in (m,n) and 

N = mk + nl 
for k and 1 relatively prime, Stern reported that a theorem of Eisenstein!s 
says that N is relatively prime to elements between (n0/n)N and (m0/m)N where 
m0 and n0 are such that \nmQ - mn0\ = 1; N is a SUMMENGLIED. When m = m0 = 1 
and n0 = n - 1, N is relatively prime to elements between '(n-l/n)N and N. 
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(19) Given again that N = mk + In and N relatively prime to elements between 
(nQ/n)N and (mQ/m)N and, further, that we are given a GRUPPE 

k'm + l'n, N,k"m + l"n, then (k' + k") (k"m + l"n) = n (mod tf). 

Eisenstein stated that for a GRUPPE % #9 3 where 

3 = fc '77? + Z 'n + sN 
and 

B = k"m + Z"n + Til/, 
then 

6 = £"77? + l"n (mod 21/). 

(20) Eisenstein continued to contribute to Stern1s analysis hoping to arrive 
at the more complex function he had originally proposed. Stern stated that 
in the analysis of row (1, 2)P and N that are SUMMENGLIED, that N is rela-
tively prime to elements between 0 and N/2. Further, since (l,l)p occurs 
in the first half of (1, 2)p , that N occurring in the (l,l)p portion are 
relatively prime to the rest of the system [not in (1, l)p ] mod 21/. And last, 
but not least, Eisenstein commented that if N is relatively prime to numbers 
between (n0/n)N and (mQ/m)N then it is also relatively prime to numbers be-
tween (m - m0/m)N and (n - nQ/n)N. 

(21) Let us now examine rows (m,n)p and SUMMENGLIED of the form kn + In. Let 
the GRUPPE be 

k'm + lfn, km + In, krrm + l"n, 
then 

1) k'l - kl> = 1 
and 

2) k"l - kl" = -1. 

Nowr presume that the continued fraction 

K - , ^ 
y — \CL, CL\* &2> •••> am) 

and that k' = k0 and Ir = l0 or k" = k0 and I" = l0 (at the reader's option). 
Eisenstein states that the following is true: 

7777 = G-m "•" ("1? ^m-b ..., G-i 9 &) \ 

and, consequently, that 

p = a + a, + ••• + am - 1. 

This result is, of course, similar to the result (1) observed by Stern. 

(22) Now with some of Stern's sequence theory under our belts, we can analyze 
Eisenstein's function: 

(a) f(m,n) = f(m,m + n) + f(m + n,n) when m' + n < \; 

(b) f(m,n) = n when 777 + n - X; 

(c) f(jn9n) = 0 when m + n > \; 

where m and n are positive numbers and X is prime. 
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Note the relationship to Stern numbers when expanding f(m,n): 

f(m,n) = f(m,m + ri) + f(m + n,n) 
= f(m,2m + n) + f(2m + n,W7 + n) 

+ /X777 + n9m + 2n) + /(w + 2n,n) 
The arguments of the function are generalized Stern numbers. The following 
conclusion can now be drawn concerning EisensteinTs function. 

1. For any given fikm + ln,krm + l'n)9 that (k + kr)m + (I + l')n = X. 

2. If m = 1 and n = 2, then (16) implies that /(l,2) can be composed 
of elements of the form fi^yX - «) and that 

/(l, 2) = X - * 4- X - <*' + X - cc" + . . . 

3. For whole numbers "P" such that — ~ — <_ r <_ X - 1, 

/(l. 2) E E ^ (mod X). 
r 

4. For whole numbers 'V such that, as in (18), 

n 0 X m0X 
— — < r < 

n ~~ ~ m 
then 

f(m,n) = Y.~ (mod *)• 
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A MULTINOMIAL GENERALIZATION OF A BINOMIAL IDENTITY 

LOUIS COMTET 
Department des Mathematiques, Faculte des Sciences, 91 - ORSAY 

1. The b inomia l i d e n t i t y which we wish to g e n e r a l i z e i s t h e f o l l o w i n g : 

- - .*, <n-k 
\ n - 1 / V ^ / I T. 4- 77 

fc-1 
u> <-s>- = i;(^1-1)(^)(^r-
It can be found and is proved in [2], Let us begin by giving a demonstration 
suitable to a generalization to more than two variables. Symbolizing Ctnf(t) 
for the coefficient an of tn in any power series f(t) = TJ antn, it is easily 
shown that the second number of (1) is: n>_o 
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Indeed, it is sufficient to carry out the Cauchy product of the two following 
power series (in t): 

^ x + y) f^Q\ n-1 J \x + z// 
To calculate (2) otherwise, let us apply the Lagrange reversion formula 

under the following form [1, I, p. 160 (8c)]: let fit) = /^ OLntn be a formal 
n >_0 

series a0 =0, ax ^ 0 , of which the reciprocal series is f^-'1'(t) [that is to 

say, fif^'^it)) = f^'^ifit)) = t], and let $(£) be any other formal series 

with derivative '$'(£); then we have: 

(3) nCtn 0(f<_1>(t)) = Ct,-i $'(*)(^-) " . 

In view of demonstrating (1), let us put in (3), 

x fit) = t - tz~^f--9 <Df(i) = „ * + -
J x + y l - tx i - ty9 

which guarantees that the second member of (3) is effectively (2) in this 
case. But then, 

$(£) = -log(l - tx) - log(l - ty) 

= -log{l - t(x + y) + t2xy} 
= -log{l - (ar + y)f(t)}9 

that is to say, thanks to the well-known expansion -log(l - T) = /^ Tn/n for 
(*): n>.i 

w^n$(/<" *>(*)) = nCtn - log{l - (a: + 2/)/(/<"1>(«)} 

= nCt» - log(l - (x + 2/)t) (=} (x + 2/)n ; 

Consequently, we have equality (1) as a result of (3). 

2. To generalize formula (1), let us call ol9 a2, a3, ... the elementary 
symmetric of the variables xl9 x2f> ,..9xm9 and Sl9 S2, S3, ... the symmetric 
functions which are sums of the powers; in other words, 

(4) Ox = J2 xi> °2 = ]C ̂ ^ , ^ 3 = ^ ^ ^ ^ 3 , . . . 
l< . i< .m l±ii<i2^m l<.ii<iz<H<_m 

(5) 5X (=ax) = £ *<, 5 2 = £ arj, 5 3 = £ x\, . . . . 
l<_i<.m l£t£m l<.i<.m 
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Let us apply the Lagrange formula (3), this time with 

f{t) . t . ^ + t s £ i . . . . + ( . i ri |- t. u i ° i ° i 

- -^-{I - (I - txja - tx2) ••• (i - txj), 

*(*) = - l o g ( l - oxf(t)) = - l og ( l - txx)(Y - tx2) ••• (1 - txj 

* ' < * ) 
-L ~ uOb -J JL ~~ uCC r\ x. ~~ Z^u ^ 

Now, the first member of (3) equals: 

(6) nCtn - log{l - o.fif^^it))} = nCtn - log(l - a^ ) = an
l9 

and the second member of (3) may be wr i t ten 

( 7 ) Ctn-1 $ ' ( * ) 
t 

\1 - ta^ " " 1 - txm)\ a2 ax " 7 

Let us introduce the simplified wri t ing for the multinomial coeff ic ients 

(n - 1 +Vi +v2 +• • • +v w - i ) ! 
( n - 1 , v l 5 v2 , . . . , v,_x) = ( n _ i ) ! V l ! v 2 ! . . . v ^ , 

in par t i cu la r , (a, 2? - a) = \ a / J s and in expanding (7) as a multiple sei 
of order (m - 1) , [ 1 , I , p . 53 (12w')] , there comes: 

(8) Ct»-r\Y, Sktk-M £ ( n - 1, V,, v 2 , . . . . 
(fc>Ll ) ( v 1 , v 2 , . . . , v m - 1 > . 0 

Finally, by comparing (3), (6), and (8), we find: 

TkdQtiQMi With the notations (4) and (5), we have the multinomial identity: 

(9) < = E k E ' (-DVl+V,;+V"(»-l, vz, 

V2, ...) ( £ r & r •••(£)""•' 
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For example, by m = 2, we find again formula (1) under the term 

For three variables, xl9 x2, x39 m = 3, we have (v = V2) : 
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WHICH SECOND-ORDER LINEAR INTEGRAL RECURRENCES HAVE 
ALMOST ALL PRIMES AS DIVISORS? 

LAWRENCE SOMER 
U.S. Department of Agriculture, FSQS, Washington, D.C. 20250 

This paper will prove that essentially only the obvious recurrences have 
almost all primes as divisors. An integer n is a divisor of a recurrence if 
n divides some term of the recurrence. In this paper, "almost all primes" 
will be taken interchangeably to mean either all but finitely many primes or 
all but for a set of Dirichlet density zero in the set of primes. In the 
context of this paper, the two concepts become synonymous due to the Froben-
ius density theorem. Our paper relies on a result of A. Schinzel [2], whose 
paper uses "almost all" in the same sense. 

Let {wn} be a recurrence defined by the recursion relation 

(1) wn+2 = awn+1 + bwn 

where a, b9 and the initial terms wQ9 w1 are all integers. We will call a 
and b the parameters of the recurrence. Associated with the recurrence (1) 
is its characteristic polynomial 

(2) x2 - ax - b = 0, 

with roots a and 3, where a 4- 3 = a and a3 = ~b. 
Let 

D = (a - 3)2 = a2 + kb 
be the discriminant of this polynomial. 

In general, if D ± 0, 

(3) wn = oxan + c23n
5 

where 
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(4) ex = (wx - w0B)/(a - B) 

and 

(5) c2 = (w0a - wj/ia - B). 

We allow n to be negative in (3), though then wn is rational but not neces-
sarily integral. 

There are two special recurrences with parameters a and b which we will 
refer to later. They are the Primary Recurrence (PR) {un} with initial terms 
u0 *=0, wx =1 and the Lucas sequence {vn} with initial terms yQ = 2 and ̂ j =a. 
By (4) and (5) we see that the nth term of the PR is 

(6) un = (a" - Bn)/(a - B) 

and the nth term of the Lucas sequence is 

(7) vn = an + Bn. 

The following lemma will help give us a partial answer to the problem of 
determining those recurrences which have almost all primes as divisors. 

LzmmCL 7: Let {wn} be a recurrence with parameters a and b. Let p be a prime. 
If b $ 0 (mod p) , then {wn} is purely periodic modulo p. 

VKOO^i First, if a pair of consecutive terms (wn9Wn + i) is given, the recur-
rence {wn} is completely determined from that point on by the recursion re-
lation. Now, a pair of consecutive terms (wm9wm+i) must repeat (mod p) since 
only p2 pairs of terms are possible (mod p). Suppose (wm9Wm + {) is the first 
pair of terms to repeat (mod p) with m £ 0. But then 

by the recursion relation. Hence, 
wm-i E b~l(wm+1 - awm) (mod p). 

Thus, Wm_i is now determined uniquely (mod p) and the pair (wm_l9W ) repeats 
(mod p) which is a contradiction. Therefore, m = 0 and the sequence is pure-
ly periodic modulo p. 

Thus, we now have at least a partial answer to the question of our title. 
The PR {un} clearly satisfies our problem since any prime divides the initial 
term u0 = 0. Further, any multiple of a translation of this sequence also 
works. The sequence {wn}9 where w0 = TU_n9 wl - ru_n+1 with r rational and 
n >_ 0 clearly has 0 as a term. Moreover, by our previous result, Lemma 1, if 
p)(b9 then p divides some term of {wn}, where w0 = run9 w1 = run + 1 with r 
rational and n >_ 0. Clearly, there are only finitely many primes p dividing 
b. We shall show that these are essentially the only such recurrences satis-
fying our problem. This is expressed in the following main theorem of our 
paper. 

TkzoH.Qjn 1: Consider the recurrence {wn} with parameters a and b. Suppose 

>b + 0, D £ 0, w1 + awQ9 and Wi + B^o • 
Then almost all primes are divisors of the recurrence {wn} if and only if 

w0 = run9 w1 = run + 1 

for some rational p and integer n, not necessarily positive. 
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We will now explore how far we can go towards proving our main theorem 
using just elementary and well-known results of number theory. 

ThdOtKim 2: Consider the recurrence {wn} with parameters a and b. Suppose 
that neither w\ - W0W2 nor (-fc) (w\ - WQW2) is a perfect square. Then, there 
exists a set of primes of positive density that does not contain any divisors 
of {wn}. 
Vh.OO^i It can be proved by induction that 

(8) w2
n - wn_1wn^.1 = (w\ - w0w2)(-b)n~l . 

By the law of quadratic reciprocity, the Chinese remainder theorem, and 
DirichletTs theorem on the infinitude of primes in arithmetic progressions, 
it can be shown that there exists a set of primes p of positive density such 
that 

(-b/p) = 1 and (w\ - W0w2/p) = -1. 
We suppress the details. Now suppose that p divides some term wn_i. Then 

wl - 0 = (w\ - w0w2)(-6)n-1 (mod p). 
But 

(wllp) =1 
and 

{{w\ - w0w2) (-&)"- Vp) = (D(-l) = -1. 
This is a contradiction and the theorem follows. 

Unfortunately, there are recurrences which are not multiples of trans-
lations of PRs and which do not satisfy the hypothesis of Theorem 2. For ex-
ample, consider the recurrence {wn} with parameters a = 3, b = 5, and initial 
terms 5, 21, 88, 369. Then 

w\ - wQw2 = 1 . 

and the conditions of Theorem 2 are not met. However, it is easily seen that 
this recurrence is not a multiple of a translation of the PR with parameters 
3 and 5. 

To prove our main theorem, we will need a more powerful result. 

L&mma, 2: Let L bean algebraic number field. If X and 0 are nonzero elements 
of L and the congruence 

\ x E 0 (mod P) 

is solvable in rational integers for almost all prime ideals P of I, then the 
corresponding equation 

Xx = 0 

is solvable for a fixed rational integer. 

VtiQOJi This is a special case of Theorem 2 of A. Schinzelfs paper [2], 

Before going on, we will need three technical lemmas. 

L&mma 3: In the PR {un} with parameters a and b, suppose that b ^ 0. Then 

u.n = (-l)n + 1 (un/bn) for n >. 0. 

VK.00^i Use induction on n. 

Lojnma 4: Consider the PR {un} with parameters a and b. Then 
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aM = bun.1 + una 
and 

3n = bun.1 + un3 

where n >_ 0. 
Vhjoo^x Notice that 

(9) an + 2 = aa**1 + ban 

and 

(10) 3n + 2 = a3n + 1 + Z>Bn. 

Now use induction on n and the recursion relations (9) and (10). 

Lemma 5: In the recurrence {wn} with parameters a and Z?, suppose that 

D ^ 09 b ^ 09 wl =f OLW0, and ^ + $w0. 

Let y = w1 - W0a and 6 = w1 - W0$ be the roots of the quadratic equation 

x2 - (2wj - aw0)x - (bwl + CCDQWJ - w\) = 0. 
Then 

y/6 = (a/3)n 

for some rational integer n, not necessarily positive, if and only if 

w0 = ru.n9 wl = ru_n+1 

for some rational number r. 

Vtioofa: First we will prove necessity. Suppose that 

y/6 = (a/6)n. 

By hypothesis none of a, 3, Y, o r $ is equal to 0. Then Y = ™ n anc* <5 = m$n 

for some element m of the algebraic number field K = Q(/D). We now claim that 
m is a rational number. Let £& be the fcth term of the PR with parameters 
2w1'- awQ and bwl + a^o^i ~ wi« Then 

tk = (Yk - 6k)/(Y - «). 

In particular, 

t2 = 2wl - aw0 = (m2a2n - m2$2n)/(man - m$n) 
= m(an + 3n) = mvny 

where vn is the nth term of the Lucas sequence with parameters a and b. Hence 

m = (2w1 - awQ)/vn 

is a rational number. Now remember that 

Y = wl - w0a = man and 6 = w1 - w03 = m$n. 
By Lemma 4, we can express an and 3n in terms of un„l9 wn, 06, and 3. Now y 
and 6 are already expressed in terms of wQ9 wl9 a, and 3. We can thus solve 
for w0 ) W1 in terms of a, 3, wn-1, and un. We now use Lemma 3 to express 
w_n in terms of un. If n is positive, we obtain 

(11) w0 = [(-l)nmbn]u_n9 w1 = [(-Dnmbn]u_n + 1. 

If n is negative or zero, we obtain 
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(12) w0 = mu_n, w1 = mu_n+1 

as required. We have now proved necessity. To prove sufficiency, we simply 
reverse our steps in the proof so far. 

We are now ready for the proof of our main theorem. 

Vhoofa o{± TknoSi&m 1: We have already shown the sufficiency of the theorem in 
our remarks following Lemma 1. To prove necessity, suppose that for almost 
all primes p there exists a rational integer n such that p\wn. Then by (3), 

wn = £xan + c2$n = 0 (mod p) 

is satisfiable for some integral n for almost all rational primes p. In the 
algebraic number field K = Q(fD), we thus have 

cxan + c2$n = 0 (mod P) 

for the prime ideals P dividing (p) in K. Thus, 

(a/3)n = -c2/ol = y/6 (mod P) 

by the definition cl9 c2, Y, and 6. Consequently, 

y/6 = (a/B)* (mod P) 

is solvable for almost all prime ideals P in K. Hence, by Lemma 2, 

Y/6 = (a/3)n 

for some rational integer n. Therefore, by Lemma 5, 

w0 = ru_n, w1 = ru_n+1 

for*some rational number v and we are done. 
<f 

For completeness, the next theorem will answer the question of the title 
for those recurrences excluded by the hypothesis of Theorem 1. 
Th2.Oh.2m 3: In the recurrence {wn} with parameters a and b9 suppose that 

(zJo,^) = (0,0), b = 0, D = 0, wl = awQ9 or wl = 3w0. 

Let p denote a rational prime. 
(i) If W0 = 0 and wl = 0 , then p\wn for all n regardless of a and b. 

Note that in this case, the recurrence {wn} is a multiple of the PR {uM}. 
(ii) If b = 0 and (^,1^) + (0,0), then the recurrence {wn} has almost 

all primes as divisors only in the following cases: 
(a) b = 0, a + 0, w0 = 0, and wl 1 0. Then p\w0 for all primes p 

and p\wn9 n >_ 1, if p\awY. Clearly, in this case the recurrence is a multi-
ple of the PR {uM}. 

(b) b = 0, a + 0, ̂ 0 + 0, and wx = 0. Then wn = 0 for n >_ 1 and 
p\wn for all p if n >_ 1. 

(c) b = 0, a = 0. Then p\wn for all p if n > 2. 
(iii) Suppose b = 0, (w0»^i) ^ (0>0), a + 0, and b ^ 0. Then the recur-

rence {w„} has almost all primes p as divisors if and only if U>i f (CI/2)WQ, 
(iv) Suppose that wx = aw0 or wx = gw0. Further, suppose that M s a 

perfect square, w0 + 0, and b ^ 0. Then almost all primes are not divisors 
of the recurrence {wn}< Moreover, p\wn for any n if pj(w1. 
VflOO^i (i) and (ii) can be proved by direct verification, 

(iii) Let af = a/2. It can be shown by induction that 

(13) wn = (ar)n"1(arwQ + (wx - aw0)n). 
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We can assume that ar ? 0 (mod p) since, by hypothesis, ar - 0 (mod p) holds 
only for finitely many primes p. Then if w1 - arWQ f- 0 (mod p) , wn = 0 when 

n = -a'wQ/(Wi - arwQ) (mod p). 

If W1 - arw0 = 0 (mod p) for almost all primes p, then &?]_ = arW0. Hence, by 
(13), 

wn = (ar)nw0 == anw0. 

In this case, the only primes which are divisors of the recurrence are 
those primes which divide afwQ. Note that if the hypotheses of (iii) hold, 
then the only recurrences not having almost all primes as divisors are those 
that are multiples of translations of the Lucas sequence {vn}. 

(iv) Since 

an + 2 = aan + 1 + ban 

and 
e"+ 2 = a g n + 1 + &en, 

it follows that either the terms of the recurrence {wn} are of the form {anWo} 
or they are of thejform {$nw0}. The result is now easily obtained. 

To conclude, we note that as a counterpoise to Theorem 1, which states 
that essentially only one class of recurrences has almost all primes as divi-
sors, there is the following theorem by Morgan Ward [3]. It states that, in 
general, every recurrence has an infinite number of prime divisors. 

TktO^L&n 3 [Wo/id] » In the recurrence {wn} with parameters a and b, suppose 
that b f 0, w1 4 OOJJQ, and w1 ^ $WQ. Then if a/g is not a root of unity, the 
recurrence {wn} has an infinite number of prime divisors. 
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NOTE ON A TETRANACCI ALTERNATIVE TO BODE'S LAW 

WILLIAM i. MCLAUGHLIN 
Jet Propulsion Laboratory, Pasadena, CA 91103 

Bodefs law is an empirical approximation to the mean distances of the 
planets from the Sun; it arises from a simply-generated sequence of integers. 
Announced in 1772 by Titius and later appropriated by Bode, it has played an 
important role in the exploration of the Solar System [1], 

The Bode numbers are defined by 

Bi = 4 

B„ = 2""2 x 3 + 4, n = 2, . . . 
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Then the quantities O.U5n, n = 1, ...,10 represent the mean distances of the 
nine planets and the asteroid belt from the Sun in terms of the Earth's dis-
tance. 

In view of the numerical explorations reported in [2], [3], and [4],, it 
seems plausible to look for improvements to Bode's law among the Multinacci 
sequences and, indeed, the Tribonacci, Tetranacci, Pentanacci, and Hexanacci 
numbers are suited to this task. The Tetranacci numbers provide the best 
fit, slightly superior to the original Bode solution. 

The Tetranacci numbers are defined by the recurrence 

Tl9 ..., Th = 1 

4 

-Ln — / J -J-n- i s ^ — -1) • • • 
i = l 

The alternative Bode numbers are then given by 

Bn = Tn+3 + 3, n = 1, ... 

The quantities 0.1£n can then be compared with their Bode counterparts. See 
the accompanying table. 

Planet 

Mercury 
Venus 
Earth 
Mars 
(asteriods) 
Jupiter 
Saturn 
Uranus 
Neptune 
Pluto 

Actual Distance 

0.39 
0.72 
1.00 
1.52 
2.70 
5.20 
9.54 
19.18 
30.06 
39.44 

Bode 

0.40 
0.70 
1.00 
1.60 
2.80 
5.20 
10.00 
19.60 
38.80 
77.20 

Tetranacci 

0.40 
0.70 
1.00 
1.60 
2.80 
5.20 
9.70 
18.40 
35.20 
67.60 

It can be seen that the fits are poor for Neptune and bad for Pluto. 
However, the Tetranacci alternative is somewhat better in both cases. 

No rigorous dynamical explanation is apparent for the Bode or Tetranacci 
representations. They are either numerical coincidences, as the result in 
[5] indicates, or, if they contain physical information, may simply illus-
trate that the period of revolution of a planet is strongly a function of the 
periods of nearby planets. This conjecture arises from the Kepler relation 
(distance)3 °c (period)2 and the fact that period relationships are often im-
portant in determining the state of a dynamical system. 
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REFLECTIONS ACROSS TWO AND THREE GLASS PLATES 

V. E. H0GGATT,JR., and MARJORIE BICKNELL-JOHNSON 
San Jose State University, San Jose, CA 95192 

1. INTRODUCTION 

That reflections of light rays within two glass plates can be expressed 
in terms of the Fibonacci numbers is well known [Moser, 1], In fact* if one 
starts with a single light ray and if the surfaces of the glass plates are 
half-mirrors such that they both transmit and reflect light, the number of 
possible paths through the glass plates with n reflections is Fn+2 . Hoggatt 
and Junge [2] have increased the number of glass plates, deriving matrix 
equations to relate the number of distinct reflected paths to the number of 
reflections and examining sequences of polynomials arising from the charac-
teristic equations of these matrices. 

Here, we have arranged the counting of the reflections across the two 
glass plates in a fresh manner, fixing our attention upon the number of paths 
of a fixed length. One result is a physical interpretation of the composi-
tions of an integer using lfs and 2fs (see [3], [4], [5]). The problem is 
extended to three glass plates with geometric and matrix derivations for 
counting reflection paths of different types as well as analyses of the nu-
merical arrays themselves which arise in the counting processes. We have 
counted reflections in paths of fixed length for regular and for bent reflec-
tions, finding powers of two, Fibonacci numbers and convolutions, and Pell 
numbers. 

2. PROBLEM I 

Consider the compositions of an even integer In into ones and twos as 
represented by the possible paths of length In taken in reflections of a 
light ray in two glass plates. 

REFLECTIONS OF A LIGHT RAY IN PATHS OF LENGTH In 

For a path length of 2, there are 2 possible paths and one reflection; for a 
path length of 4, 4 possible paths and 8 reflections; for a path length of 6, 
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8 possible paths and 28 reflections. Notice that an odd path length would 
end at the middle surface rather than exiting. 

First, the number of paths possible for a path length of In is easily-
derived if one notes that each path of length 2 in - 1) becomes a path of 
length In by adding a segment of length 2 which either passes through the 
center plate or reflects on the center plate, so that there are twice as many 
paths of length In as there were of length 2(n - 1). 

ReALlkt 1: There are 2n paths of length In. 

Continuing the same geometric approach yields the number of reflections 
for a path length In. Each path of length 2(n - 1) gives one more reflection 
when a length 2 segment is added which passes through the center plate, and 
two more reflections when a length 2 segment is added which reflects on the 
center plate, or, the paths of length In have 3 •2"""1 new reflections coming 
from the 2n~1 paths of length 2 in - 1) as well as twice as many reflections 
as were in the paths of length 2 (n - 1). Note that the number of reflections 
for path lengths In is 2n~1(3n - 2) for n = 1, 2, 3. If there are 

2n"2(3(n - 1) - 2) 

reflections in a path of length 2(n - 1), then there are 

2 • 2n"2(3(n - 1) - 2) + 3 • 2n'1 = 2n_1(3n - 2) 

reflections in a path of length 2n, which proves the result following by mathe-
matical induction. 

RQAuZt 2: There are 2*~1(3n - 2) reflections in each of the paths of length 
In. 
VKOQ.fa: Let A represent a reflection down / \ or up \/ , and B represent a 

straight path down t or up L where both A and B have length two. Note that 

it is impossible for the two types of A to follow each other consecutively. 
Now, each path of length In is made up of A1 s and 5!s in some arrangement. 
Thus, the expansion of (A + B)n gives these arrangements counted properly, 
and N = 2n, so that the number of distinct paths is 2n. 

Now, in counting reflections, there is a built-in reflection for each A 
and a reflection between A and B9 A and A9 and B and B. Consider 

n 
1 + 3 , 

Each term in (A + B)n has degree n and there are (n - 1) spaces between fac-
tors . The xn~1 counts the (n - 1) spaces between factors, since each A has 
a built-in reflection. The exponents of x count reflections from A; there 
are no reflections from B. Since we wish to count the reflections, we dif-
ferentiate f{x) and set x = 1. 

f'(x) = {{n - l)£n-2(l + x)n + nxn'Hl + ^)""1}| 

= in - l)2n + n • 2 n _ 1 = 2n"1(3n - 2). 

Interpretation as a composition using ones and twos: All the even in-
tegers have compositions in which, whenever strings of ones appear, there 
are an even number of them. Each A is a 1 + 1 (taken as a pair) and each B 
is a 2, and each reflection is a plus sign. From fix), let s = n - 1 + j so 
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that j = s - n + 1, and we get 
\s-n+ 1/ 

compositions of'2n, each with ex-

actly s plus signs. Note that s>_n-±, with equality when all twos are used. 
We note in passing that the number of possible paths through the two 

plates with n reflections is Fn+2 , while the number of compositions of n us-
ing all ones and twos is Fn+i [3]. 

3. PROBLEM II 

Given a particular configuration (path), how many times does it appear 
as a subconfiguration in all other paths with a larger but fixed number of 
reflections? 

This leads to convolutions of the Fibonacci numbers. 

PATHS WITH A FIXED NUMBER OF REFLECTIONS 

N - 0 

Note that the subconfigurations + , ^ ^ e a c h occur 1, 2, 5, 10, 20, ... times 

in successive collections of all possible paths with a larger but fixed num-
ber of reflections. The same sequence occurs for any subconfiguration chosen. 

Consider a subconfiguration that contains N reflections. It could be 
preceded by s reflections and followed by k reflections. Clearly, since each 
path starts at the upper left, the configurations in the front must start in 
the upper left and end up in the upper right, which demands an odd number of 
reflections. Thus, s is odd, but conceivably there are no configurations in 

1 • — i 

s 
r i 

N r e f l ec t ions 
» 1 
" k j 

the part on the front. Now, the part on the end could join up at the top or 
the bottom, depending on whether N is odd or even. In case N is even, then 
the regular configurations may be turned over to match. Thus, if the total 
number of reflections is specified, the allowable numbers will be determined. 
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4. RESULTS OF SEPARATING THE REFLECTION PATHS 

In Sections 2 and 3, the reflection paths \ and /9 and / \ and \ / , 

were counted together. If one separates them, then, with the right side up, 
one obtains {l, 1, 4, 5, 14, 19, 46, 65, . ..} which splits into two convolu-
tion sequences: 

{Al9 A39 A59 ...} = {1, 2, 5, 13, ...} * {1, 2, 5, 13, ... } ; 

{A29 Ah9 AB9 ...} = {1, 2, 5, 13, ...} * {1, 3, 8, 21, ...}. 

This second set agrees with the upside-down case {0, 1, 1, 5, 6, 19, 25, 65, 
...} which splits into two convolution sequences: 

{Bl9 B3, B5, ...} = {0, 1, 3, 8, ...} * {1, 3, 8, 21, .., } ; 

{ S 2 , Bh9 B69 ...} = {A2, A k 9 A S 9 . . . } . 

Clearly, there are only two cases, \ , \ y , where we assume that the 

configurations in which these appear start at the left top and end at either 
right top or right bottom. 

First we discuss the number of occurrences of \ . Here we consider only 

those patterns which start in the upper left. If there are no prepatterns, 
then we consider odd and even numbers of reflections separately. We get one 

free reflection by joining \ to a pattern which begins on the bottom left. 

\ I . rr: A 

Let us assume that the added-on piece has k (even) internal reflections. 
There are Fk+2 such right-end pieces and FQ+2 -F2 =1 left-end pieces. Next, 
let the piece on the right have k - 2 internal reflections and the one on the 
left have one internal reflection: 

7^/ 
X / (fc - 2) 
—^e 

-̂ 1 + 2 °  ^k-2+2 

Generally, 

Specifically, 
V * + 2 + F3Fk + V * - 2 + 

k = 0: F1F2 = 1 

k = 2: FxFk + F3F2 = 1 * 3 + 2 * 1 = 5 
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k = 4: F1F6 + F3Fk + F5F2 = 1-8 + 2*3 + 5-1 = 19 

k = 6: FXFQ + F3F6 + FsFh + F7F2 = 1 • 21 + 2 • 8 + 5• 3 + 13 • 1 = 65 

If k is odd, the same basic plan holds, so that for no pieces front or back, 
F2F2 = 1, 

k = 1: FlF3 + F3Fl = 1-2 + 2-1 = 4 

fc = 3: F1F5 + F3F3 + F5FX = 1 • 5 + 2 • 2 + 5 • 1 = 14 

This is precisely the same as the other case except that it must start at the 
top left, have a free reflection where it joins a section at the top, a free 
reflection where it joins the right section at the bottom, and the right sec-
tion must end at the bottom. 

\ 
-&~ 

\ • \ / . v -*£-

Any of our subconfigurations can appear complete by itself first. Our sam-
ple, of course, holds for any block with an even number of reflections. The 
foregoing depends on the final configuration starting on the upper left and 
the subconfiguration (the one we are watching) also starting on the upper 
left. However, if we "turn over" our subconfiguration then we get a differ-
ent situation 

^o-

which must fit into a standard configuration which starts in the upper left. 
Hence, this particular one cannot appear normally by itself, nor can any one 
with an even number of reflections. Here we must have a pre-configuration 
with an even number of reflections. 

Let k be even again. 

F F 
r 2 r2 

1-1 = 1 

1 - 3 + 3 - 1 

F9FR + FhFL + F^F, + 3-3 + 8-1 25 

Let k be odd. 

F2F3 + FhFl = 1-2 + 3 

FoF* + FuF, + FRF hL 3 er 1 

1 = 5 

1 • 5 + 3 • 2 + 19 

These sequences are {l, 1^ 4, 5^ 14, 19̂ , ...} (right side up) and {0, 1̂ , 1, 
5_, 6, _19̂  ...} (upside down), and added together, they produce the first Fi-
bonacci convolution {l, 2, 5, 10, 20, 38, ...}. 
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Each subconfiguration which starts at the upper left and comes out at 
the lower right can be put in place of the configuration which makes a straight 
through crossing with the same results, of course. 

For the results dealing with 

the restrictions on the left are exactly the same as just described, and the 
endings on the right are merely those for the earlier case endings turned up-
side down to match the proper connection. 

Reconsidering the four sequences of this section gives some interesting 
results. In the sequences {An} (right side up) and {Bn} (upside down), adding 
Ai and Bi gives successive terms of the first Fibonacci convolution sequence. 
Taking differences'of odd terms gives 1-0=1, 4-1=3, 14-6=8, ..., which 
is clearly 1,3,8,21, ..., Flk , ..., the Fibonacci numbers with even subscripts. 

Further, for {An}, 

1 + 1 + 2 = 4 1 + 4 = 5 
4 + 5 + 5 = 14 5 + 14 = 19 

14 + 19 + 13 = 46 1 9 + 46 = 65 

An + An+1 = An+29 n even An + An + i + Fn + 2 - An + 2, 
while for {Bn}, 

1 + 1 + 3 = 5 
5 + 6 + 8 = 19 
19 + 25 + 21 = 65 

Bn + Bn + i + Fn + 2 = BnJj_2, 

n odd 

n even 

0 
1 
6 

+ 
+ 
+ 

1 
5 
19 

= 
= 
= 

1 
6 
25 

Bn + Bn + i = Bn + 2, n odd 
The results of this section can be verified using generating functions 

as follows. (See, for example, [6].) The generating function for the first 
convolution of the Fibonacci sequence, which sequence we denote by {Fn }, is 

/ 1 V = \T FW x 
\1 — x — x J «»o 

w h i l e t h e sequence of odd terms of {An} i s t he f i r s t convolu t ion of F ibonacc i 
numbers w i t h odd s u b s c r i p t s , o r , 

/ 1 _ x2 \ 2 ^ • 
i -̂) = > A2n + 1x 
\ 1 - 3xz + x* I frrQ 

'0 

and the sequence of odd terms of {Bn} is the first convolution of Fibonacci 
numbers with even subscripts, or, 

v2 

(l - J2 +x0 =S 5 2" H 

and the even terms of {An} as well as of {Bn} are the convolution of the se-
quence of Fibonacci numbers with even subscripts with the sequence of Fibo-
nacci numbers with odd subscripts, or, 

That {F^2)} is given by the term-wise sum of {An} and {Bn} is then simply 
shown by adding the generating functions, since 
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(1 - x2)2
 ( 2a?(l - x2) ] 

(1 - 3x2 + xh)2 (1 - 3*2 + xh)2 (1 - 3a;2 + xh)2 

_ (1 + x - x2)2 _ (1 + x - x 2 ) 2 

(1 - 3x2 + x 4 ) 2 (1 - 2*2 + xh - x2): 

(1 + x - xz) 2^2 

(1 - x2 + ^)2(1 - x2 - x)2 (1 - x - x2)2 

Quite a few identities for the four sequences of this section could be derived 
by the same method. 

5. THREE STACKED PLATES 

IhtOKzm A: In reflective paths in three stacked glass plates, there are Fn_1 
paths of length n that enter at the top plate and exist at the top or bottom 
plate. 

length 

number of 
paths 

ViACUAAion: Note that the paths 
We therefore assume of the paths 
in 3, Fn_3 which end in 1 + 1, 
1 + 2, where n >_ 5. This is the 
length n - 3 reflecting inwardly 

VK.00^' We proceed by induction. 
of paths which end in 3, 1 + 1 
Ffc_3 paths which end in 3, F^_2 
2 + 2, and Fk_ 3 which end in 1 + 
will have a proof by induction i 
lengths. The first three are s 
1 + 2 needs further elaboration. 
1 + 2, the ray must have been on 
ning: 

end in lengths 3, 2 + 2, 1 + 1, or 1 + 2. 
of length n, that there are Fn.h which end 

which end in 2 + 2, Fn which end in 
same as saying that there are Fn_h paths of 
at an inside surface. 

Thus the paths of length k + 1 are made up 
, 2 + 2, or 1 + 2. We assume that there are 
paths which end in 1 + 1, F̂ _i+ which end in 
2. Since Fk_3 + Fk_2 + Fk_h + Fk_3 = Fk , we 
f we can establish the assumption about path 
traightforward, but that F^_3 paths end in 

In order to be on an outside edge after 
plate x or y with a reflection at the begin-

^ S 
How can the paths get to the x-dot for n even or the y-dot for n odd? Assume 
that there are Fk_6 paths of length k - 5 which come from the upper surface, 
go to plate 2/, and then to the x-dot (note that the total path would then 
have length k + 1, since a path of 2 + 1 would be needed to reach the #-dot 
and a path of 1 + 2 to leave the x-dot). There are Fk_5 paths which reflect 
from plate x, go to plate y and return to the tf-dot, and Fk_5 paths which re-
lect from the bottom surface upward to the #-dot. Thus, there are 
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Fk-e + **-5 + Fk-5 = Fk-s 
paths of length k - 2 coming upward to a reflection x-dot if k is even and 
downward to a y-dot if k is odd. 

By careful counting, one can establish several other results involving 
Fibonacci numbers. 

Tko.QH.Qjm B: There are Fn paths of length n in three stacked plates that enter 
at the top plate and terminate on one of the internal surfaces. 

Tkd.OK.Qjm C: There are Fn+i paths of length n which enter at the top plate and 
terminate on one of the four surfaces, and Fn_l that terminate on outside 
surfaces. 

Tko.OH.om V: Of paths of length n terminating on any one of the four surfaces, 
there are Fn paths that end in a unit jump. There are 2Fn_3 paths that end 
in a two unit jump, and there are Fn_h paths that end in a three unit jump. 

Tko.OH.Qjm E: There are nFn_3 ones used in all paths of length n which termi-
nate on outside plates. 

Thz.OH.Qjm F: 'For n >_ 3, the number of threes in paths of length n which ter-
minate on outside plates is a convolution of 1, 0, 1, 1, 2, 3, ..., Fn_29 
. .., with itself. The convolution sequence is given by 2Fn_h + Cn_69 where 
Cn = (nLn+l + Fn)/5. 
Tko.OH.Qjm G*' Let T„ be the number of threes in all paths of length n that end 
on an inside line. Then the number of twos used in all paths of length n 
which terminate on outside faces is 2T„ + 1 = 2Fn_3 + 2Cn_5. 

Tko.OH.Qjm tf: T£ = Tn - Fn_hf9 where Tn is the number of threes used totally in 
all paths of length n which terminate on outside faces, and T^ is the number 
of threes in all paths of length n which end on an inside plate. 

CoH.ottaAy.* The number of twos used in all paths of length n which terminate 
on outside surfaces is 

2(2'„+i " Fn-,) = 2<2F„_3 + Cn_5 - Fn_3) = 2[5F„_3 + (n - 5)L„_, + 2Fn.5]/5. 

From this, of course, we can now discuss the numbers of ones, twos, and 
threes used in the reflections. We will let Un be the number of ones used, 
Dn the number of twos, Tn the number of threes used in all paths of length n 
terminating on outside faces , while we will prime these to designate paths 
that only terminate on inside plates. 

We return to the proof of Theorem A, that there are Fn_1 paths of length 
n in three stacked glass plates, to glean more results. Recall that the plate 
paths end in 3, 1-fl, 2 + 2, and 1 + 2. 

Let Pn be the number of paths of length n. Then 

Pn = Pn-3 + Pn-2 + ^n-4 + 0n-3> 

where Pn_3 paths end in 3, P„.2 in 1 + 1, Pn_h in 2 + 2S and 0M_3 is the nUffl-
ber of paths terminating on an inside plate and of length n9 but the last 
path segment was from the inside (i.e., from plate y to x). Suppose we ap-
proach x from below and the path is n - 3 units long; then we add the dotted 
portion. However, we can get to x from y or we can get to x from z. The 
number of paths from z is Fn_6 by induction since there are Fn_l paths. The 
number of paths from y is 0n_4. Assume 0n = Fn_l also so that 
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+ F - F + F = F 

25 2̂  
X 

y 
z 

Now 
^n + 1 "n - 2 + ^n - 1 + ^n - 3 + ™n - 2 

= ^n - 1 + Fn - 2 = Fn • 

If we display all Fn_x paths of length n, the number of ones used is nFn_3. 

We need some further results. Earlier we saw that there were Fn_1 paths 
from the inside approaching one of the inside plates. We now need to know 
how many paths approach the inside lines from outside (a unit step from an 
outside line). Clearly, it is Fn_2; since the path length to the inside line 
is n, then the path length to the outside line is n - 1, making Fn_2 paths. 
Let Un be the number of ones used: 

Un+1 = (Un_2 + 2Un_3) +07n_3) +(Z7n_4> +(^n-3 + tfn-if), 

considering paths ending in 1 + 1 , 3, 2 + 2, and 1 + 2 . 
Let us look at Tn, the number of threes used in paths of length n. By 

taking paths ending in 3, then 1 + 1 , 2 + 2 , and 1 + 2, we have 

(A) Tn = (2>„_3 + Fn.h) + Tn_2 + Tn_k + T;.S 

(B) K = Tn-l + Tn-2 
Writing (A) for Tn+1 and subtracting the expression above for Tn gives 

•Fn+i ~ Tn = Tn_ x - Tn_h + Tn_2 - Tn_ 3 + Fn_3 - Fn_k 

= Tn-1 + Fn-5 + (̂ n-2 - Tn-3 ~ Tn-h) 

?n-l + Fn.5 + 0. 

Therefore, 

•*• n + 1 -F-n "*~ ™n _ l + Fn _ 5 , 

which shows that { n̂} is a Fibonacci convolution (first) sequence. It is 
easy to verify that 

Tn = 2Fn_, + Cn_6, T, = 0,.T2 = 0, T3 = 1, 

2\ = 0, T5 = 2, T6 = 2, 

where {Cn} is the first Fibonacci convolution sequence. 

Also, 
Tn ~ Tn - Fn.h, 

Next, consider Dn9 the number of twos used in paths of length n. Again 
taking paths ending in 3, then in 1 + 1, 2 + 2 , and 1 + 2 , we have 

(C) Dn = (Dn_k + 2Fn_5) + Dn_3 + Dn_2 + (Z?n'_3 + Fn_h) 

(D) ^ = ^ - 1 + ^ - 2 + ^ - 3 
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Proceeding exactly as before, writing (C) for Dn+1 and subtracting the expres-
sion for Dn, and then using identity (D) , one derives 

2T-; + 1. From T£ = Tn - Fn_^9 then 

2-^n + i ~ 2Tn + 2 2Fn_ 2 
= 2Tn+1 - 2Fn_3 + 2Tn - 2Fn_h + 2Fn_k 

by taking advantage of Tn = Tn-1 4- Tn_2 + Fn.6. Therefore, 

^« + 2 = ^n + 1 + Tn + ^n - 2 ~ Fn - 3 = ^n + 1 + ^n + ^n - if 

From the total length of Fn_1 paths of length n9 we know that 

I7n + 2Dn + 3Tn = nFn_l9 

so that 

On the right-hand side, each term will satisfy a recurrence of the form 

• Hn = Hn,l + Hn_ 2 + Zn, 

where Zn is a generalized Fibonacci sequence. In this case, by looking at 

Ux = 0, U2 = 2, U3 = 0, #„ = 4, 

"» = y„-.i + Un-2 + K-H-
This is precisely satisfied by Un = nFn_3. 

If Un is the number of ones used, Dn the number of twos, and Tn the num-
ber of threes, then, clearly every number is followed by a reflection except 
the last one. Thus, if there are Fn total paths, then the number of reflec-
tions in paths of length n which terminate on outside faces is 

5-, _. 
In 

+ 2F 

U„ + Dn + Tn - Fn.1 

inFn„3) + ( | [ 5 F B _ 3 +•(n 
+ ( 2 ^ . , + [ (« -

- 5), 

6)L, 
» - 5 ] ) Jn-h 

i.5 + 2 ^ « -6]/ 5 ) " Fn-1 

= [(5n - 3)Fn_3 + (n - 3)Ln_2]/5, n >. 1. 

In summary, we write 

TkZQfiQJfn I «• In the total paths of length n which exit at outside plates, the 
number of paths is Fn_l9 and the number of reflections Rn is 

Un + Dn + Tn - Fn.l9 

where 

Dn = (f[5**-3 + (" - 5)^-<* + 2F„_5]) 

Tn = 2Fn_, + [(n - 6)Ln_5 + 2Fn.6]/5 

i?n = [(5n - 3)Fn_3 + {n - 3)Ln_2]/5. 

To conclude our discussion of paths and reflections in three glass plates, 
we consider a fixed number of reflections for paths which exit through either 
outside surface. 
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When there are r = 0 reflections, there is 1 path possible; for v = 1, 3 paths, 
and for v = 2, 6 paths. The number of paths Pr for v reflections yields the 
sequence 1, 3, 6, 14, 31, 70, 157, ... . 

ThzoJlCJfn J" Let Pr be the number of paths which exit through either outside 
face in three glass plates and contain v reflections. Then 

where 
2P„ + v 

1, P1 = 3, 14. 

It is easy to derive the sequence {Pr }. Pr+i is formed by adding a re-
flection at the outside face for each Pv path, and by adding a reflection at 
surface 1 or 2, which is the number of paths in Pr that end in a two unit jump 
plus twice the number ending in a three unit jump, which is Pr_l. The number 
ending in a unit jump in Pr paths is Pr_Z' ^ e numt>er ending in a two unit 
jump in Pr paths is Pv - Pr_2 ~ ^r-i* Thus, 

p,+i =p + (Pr ~ Pr-2 ~ 
2Pr + Pr _ i - Pr . 2 • 

Pr.j) + 2P,_! 

Fults [7] has given an explicit expression for Pr as well as its generating 
function. 

6. A MATRIX APPROACH TO REFLECTIONS IN TWO AND THREE STACKED PLATES 

Besides counting paths of constant length or paths of a constant number 
of reflections, there are many other problems, one could consider. Here, 
matrices give a nice method for solving such counting problems. 

We return to two glass plates and the paths of length n, where we con-
sider paths that go from line zero to lines one and two, one step at a time. 
Let un, Vn, and wn be the paths of length n to lines 0, 1, and 2, respective-
ly, and consider the matrix Q defined in the matrix equation below, where we 
note that QVn - vn+l 

QVn -

and 

/° 
h \o 

e'Vj 

i 
0 

1 

= 

oN 
I 

0 

yn+ 

\/u 

r V 

as below: 

= K + i 

It is easy to see that un+l = Vn, since a path to line zero could have come 
only from line 1; therefore, each path to line zero was first a path of length 
n to line 1, then one more step to line zero. Paths to line 1 could have come 
from line zero or line two, so that Vn + 1 = un + wn. Paths to line 2 came 
from line 1, or, Wn+l = vn. This sets up the matrix Q whose characteristic 
polynomial is x2 - 2x = 0 with solutions x = 0 or x2 = 2, so that 

2u„ 2vn, . and wn+2 = 2wn 
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All paths of length zero start on line zero, and in one step of unit length 
one obtains only one path to line 1, or, using matrix Q, 

QVo = Vi 

Sequentially, we see QnVQ 

'6 

Now, notice that there are 2i~"L paths coming out of the top line and 2r 

paths coming out of the bottom line, each of length 2n, so that there are 2n 

such paths. 
If one lets u%9 v*9 and w* be the number of regular reflections on the 

paths of. length n beginning on the top plate and terminating on the top, mid-
dle, or bottom plate, respectively, then it can be shown that, from the geom-
etry of the paths, 

n+l u: + W* + 2vn 

= V* + Wr Jn+l un ' wn~1 _ 
We can write both systems of equations in a 6 x 6 matrix 

1° ' 1 -

0 

0 

i o 
V 

1 
0 

1 
0 
0 

0 

0 1 
1 

0 
0 
0 

0 

1 

0 
0 
0 

1 
0 

0 
2 

0 

1 
0 

1 

0 
0 

1 
0 
1 
0 

0\ iul \ fu*\ 

V 
The method of solution now can be through solving the system of equations 

directly and, once the recurrence relations are obtained, recognize them. Or 
one can work with the characteristic polynomial [x(x2 -2)]2 via the Hamilton-
Cayley theorem and go directly for the generating functions. The recurrence 
-relations yield the general form of the generating function 

Pn(x) A °  + AYx + A2x 

whence one can get as many values as needed from the matrix application re-
peated to a starting column vector, as 
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1° 
1 

0 

0 

0 

\ o 

1 
0 

1 
0 
0 

0 

o ! I 

I ; o 
o ! o 
o ; o 
o ! i 
o ; o 

0 
2 

0 

1 
0 

1 

0 
0 

1 
0 
1 

0 

:\ d\ 

to use the method of undetermined coefficients for v(x). 
The regular reflections are /\ or \ / , while the bends look like / 

\ J \ . These occur in paths which permit horizontal moves as well 

as jumps between surfaces. These are necessarily more complicated. The ma-
trix Q* yields paths of length n where "bend" reflections are allowed. That 
is, 

'l 1 0' 

Q*Vn v, n + l 

allows paths to move along the lines themselves as well as between the lines. 
The same reasoning prevails. The characteristic polynomial (1 - x) (x -2x-V) 
yields Pell numbers for the paths of length n, sequentially, as 

1 
1 

0 

1 
1 

1 

0 
1 

1 

The formation of the number sequences themselves is easy, since 
Un+1 = Vn + Un9 Wn+1 = Un+1 - 1, and Vn+1 = 2vn + Vn_1. 

We see that paths of length n to line 1 are the Pell numbers Pn , 

-̂ rc + 1 = 2-Pn +^n_i? ^o = 05 P\ = 1J 

while the paths to lines 0 and 2 have sums 1, 3, 7, 17, ... , the sum of two 
consecutive Pell numbers. In terms of Pell numbers Pn , we can write 

un + wn = Pn + Pn-i and un - wn = 1, 
so that 

Un = (Pn + Pn-1 + D/ 2 

Vn = Pn 

' Un = (Pn + Pn.x - l)/2. 

This means that un and Wn separately obey the recurrence 

Un + 3 = 3Un+2 - Un+] 

whose characteristic polynomial is 

• i - U n , 

X" 3x2 + x + 1 = (x - 1)(x2 - 2x - 1). 
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The corresponding matrix for the system with bend reflections is 

1 
1 
0 
0 
0 

\ o 

1 
1 
1 
0 
0 
0 

0 
1 
1 
0 
0 

0 

; o 
1 2 

! o 
! i 
; i 
s 0 

2 
0 
2 

1 
1 
1 

0 
2 
0 
0 
1 
1 

Now, there are, of course, regular reflections along these paths, too, 
as well as bends, and the corresponding matrix for these is 

/ : 
0 

0 

° \ o 

1 
1 
1 

0 
0 
0 

0 

1 
1 

0 
0 
0 

1 
0 
0 

1 
1 
0 

0 
2 
0 

1 
1 
1 

0 
1 

0 

ll 
un- 1 

with starting vector u\ 

1I Wl/ 
0, u0 = 1, vc 

Wn 

0. 

One can verify that the generating functions for u%, V*9 and w^ are 

(1 - x)h + 2x2 

(i - x)za 2x x1)2 

3(1 - x)6x 

(i - x)za -

4(1 - x)2 

2x x2)2 

2xz 

(1 - x)2(l - 2x - x2)2 

while their sum, u% + V* + w%, yields the generating function 

1 + x + 2xz 

(1 - 2x x2)2 

all clearly related to the Pell sequence, Pell first convolution, and partial 
sum of the Pell first convolution sequence. 

In three stacked plates, these three systems of matrices generalize 
nicely. For regular reflections in paths of equal length n without horizon-
tal moves, 
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0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

o ; o 
0 

0 

0 

1 

0 

0 

0 

2 

0 

0 

1 

0 

1 

0 

0 

0 

2 

0 

0 

1 

0 

1 

0 

0 

0 

1 

0 

0 

1 

0 

r ' < 
Vn 

< 
y*n 

un-l 

Vn-1 
wn-l 

- 2 / » - i 

" w » + l l 

n + 1 

<+l 1 
y * 
J n + 1 
un 

vn 

^n 

yn 

while the bend reflections have the system 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

2 

0 

0 

1 

1 

0 

! o 

2 

0 

2 

0 

1 

1 

1 

0 

0 

2 

0 

2 

0 

1 

1 

1 

0 

0 

2 

0 

0 

0 

1 

1 

'< 
K 
< 
y*n 

U„-l 

Vn-l 

Wn-1 

^n-l 

= 

K+i~] 
K+i 
<+i 

y n+1 

un 

Vn .. 

Wn 

yn 

and the regular reflections in bent -paths are given by 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

0 

0 

0 

1 

1 

0 

0 

0 

2 

0 

0 

1 

1 

1 

0 

0 

0 

2 

0 

0 

1 

1 

1 

0 

0 

0 

1 

0 

0 

1 

1 

" n 

v*n 

< 
y*n 
un~ 1 

V l 

Wn-1 

2 / » - i '. 

= 

un+l 

Vn+1 

K + l 
J n + l 

Un 

Vn 

Wn 

yn,. 

7. REFLECTIONS ALONG BEND PATHS IN THREE STACKED PLATES 

Here we count bend reflections and regular reflections in paths where 
bends are allowed. We begin with bend reflections in bend paths. Let Un, Vn, 
Wn, and Yn be the number of paths of length n terminating on lines 0,1, 2, 
and 3, respectively. Let U£, 7^, W* , and Y* be the number of bend reflections 
for those paths, and let a bend be a horizontal segment in a path. We shall 
show the following: 

(A) V* + U* + 27„.! 
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(B) 

(C) 

(D) 

K+i = K + U* + W* + 2(Un_x + Wn_{) 

K+i = K + n + n + 2a„.! + v o 
YUl = n + K + Wn-1 

We need a geometric derivation for the bends. 

-0- -e -e 
-Or 

u„ 
-Bi 

^n+] 

-e-
'n-1 

-e-
-e-

-BT 

^n + 3 

-0-

-e -e-r„ 
The paths to the point marked Un contain U£ bends, and there are Un such 
paths. We can go to L7„ + 1 from Vn_i by either the upper or lower path, but we 
have added a bend at the upper path and a bend at the lower path; 

Un + 1 

thus, 2Vn_1 merely counts the extra bends by these end moves. We can reach 
Un+i from Un and from Vn and each of these path bundles contains by declara-
tion U* and 7* bends, respectively. Thus, 

UUl = U* + V* + 27„_1, 
establishing (A). The derivation for (D) is similar. 

We now tackle (B) . Notice that we can reach Vn + 1 in a unit step from 
Un? Vn s o r n̂> s o that we must count all bends in each of those previously 
counted paths, with no new bends added. We cannot use Vn_l9 but paths routed 
through Wn-i and Un or Wn-± and Wn as well as those through Un-i and Un or 
through Un_x and Vn each collect one new bend, so that the number of added 
bends is 2(Un_i + Wn-±) 9 making 

V*n + i = U* + V* + W* + 2 (£/„_! + Wn.x) , 
which is identity (B). Similarly, we could establish (C). 

To solve the system of equations (A), (B), (C), (D), let 

A* = U* + Y* A n = Un + ln 
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and 
K = v* + w* Bn = vn + wn 

Then (A) a d d e d t o (D) y i e l d s 

(E*) A*+1 = Al + B*.+ 2Bn_1 

w h i l e (B) p l u s (C) y i e l d s 

(G*) B*+1 = A*n + 2B\ + 2(An.1 + S n _ x ) . 

L e t 
^n~~^n~Yn Cn = Un - Yn 

and 
K = Vn ~ Wn Dn = Vn - Wn 

Then subtracting (D) from (A) and (C) from (B) yields, respectively, 

(F*) C*+1 = CI + D* + 20„_1 

and 

(H*) D*+1 = C* + 2(1-„.1 + /)„.,). 

Now, An, Bn, Cn, and Dn are easily found. Returning to the first diagram of 
this section, from Un+1 = Un + Vn and Yn+1 = Yn + Wn, we have 

(E) An+1'= An.+ Bn 

(F) Cn+1 = Cn + Dn 

while Vn + 1 = Un + Vn + J/n and J/n + 1 = J/n + Vn -f 7„ yield 

(G) Bn + 1 = 2Bn + ,4n 

(H) ^n + 1 = ̂ n-

From (E), we get Bn = An+1 - An, which we use in (G) to obtain 

(An + 2 - An + 1) = 2(An + 1 - An) + An9 

so that 
An + 2 - 3An + 1 + An = 0. 

From the starting data, A1 = 1, A2 = 2, so that^4n is a Fibonacci number with 
odd subscript, and 

^ = F2n_± 

Bn = ^n+l ~ A
n = F2n+1 " F 2 n - 1 = F2n ' 

From (F) and ( H ) , i n a s i m i l a r m a n n e r , o n e f i n d s t h a t 

Cn = Fn+1 and Dn = Fn • -

From these, we can find f/n , 7n , Wn, and Jn by simultaneous linear equations, 
using 

' Un + Y„ = F2n_1 (Vn+Wn = F2n 

K ~ ?n = Fn + 1 \Vn - Wn = Fn 

The s o l u t i o n s a r e 

'"n = (F2n-1 + ^» + l ) / 2 ( f „ = (?2» + ^ n ) / 2 
/ „ = ( ^ . i - Fn + 1)/2 (Wn = (F2n - Fn)/2 
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Notice that 

Next, we can solve the full system for A*, B*, C£, and D*, since we now 
know An, Bn, Cn, and Dn . From (E*), 

B*n = A* + 1 - A* - 2Bn_±, 

which substituted into (G*) gives us 

W» + 2 - An + i ~ 2Bn) = A* + 2(A*+1 - A% - 2Bn.1) + 2W„_ 1 + Bn.1) 
which simplifies to 

An + 2 ~ 3An + l + K = 2Bn + 2An_1 - 2Bn_1 = 2L2n-2 
where we recognize the recursion relation for alternate Fibonacci numbers on 
the left while, as seen above, Bn and An_± are alternate Fibonacci numbers. 
It can be verified directly that if 

A* = 2(n - l)F2n_k, 
then A*n + 2 - 3A*n + 1 + A* = 2LZn_2. From B% = A* + 1 - A*n - 2Bn_1 and Bn = F2n 
we ge t 

Bn = 2nF2n_3 - 2F 2 n _ 3 = 2(n - l)F2n^. 
In a similar fashion, we can verify that 

is satisfied by 

C* = 2(n - 1)F„_2 

and from 

K = C*_± + 2{Cn_2 + Dn_2) 

where Cn = Fn + 1 and Dn = Fn, we obtain 

K = Un - l)Fn.3. 

From these, we get 

U* = (n 

V*n = {n 

W* = (n 

Y* = (n 

- D(F2n.h + Fn_2) 

~ D ( ^ 2 n - 3 + F n - 3 > 

- 1) (^2n-3 ~ Fn-3^> 

- V(F2n_k - Fn_2) 

This completes our solution for bend reflections in bend paths in three glass 
plates. 

It is instructive, however, to consider a matrix approach to counting 
bend reflections in bend paths. A matrix which corresponds to the system of 
equations just given, counting the number of paths of length n and the number 
of bend reflections for those paths, is 
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U*n 

K 
y n 

n 
Un-1 

Vn-1 

K-l 
*»-l 

u* 
u n + l V* 

n + l 
n + l 

Y* 
n + l 

un 
Vn 

Wn 

yn 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 

0 

2 

0 

1 i 0 
4 

0 ' 1 

0 

0 

0 

1 

0 

0 

2 

0 

2 

0 

1 

1 

1 
0 

0 

2 

0 

2 

0 

1 

1 

1 

0 

0 

2 

0 

0 

0 

1 

1 

Expanding the characteristic polynomial, 

[(x - l)h - 3(x - l ) 2 + l ] 2 

= [ ( ( x - I ) 2 - I) 2 - (x - I) 2] 2 

= [x2 - 2x + 1 - 1 - (x - 1) ] 2 [x2 - 2x + 1 - 1 + (x - 1) ] 2 

= (x2 - 3x + 1 ) 2 0 2 - x - l) 2 = 0 

Notice that (x - 3x + 1) = 0 yields the recurrence relation for the alternate 
Fibonacci numbers, while (x2 - x - 1) = 0 gives the regular Fibonacci recur-
rence. A generating function derivation could be made for all formulas given 
in this section. 

Values of the vector elements generated by the matrix equation for 

n = 1, ..., 7 

are given in the table below. 

BEND REFLECTIONS 

n 

n 
n 
w* 

n 
vn-
Vn-

K-
?n-

1 

1 

1 

1 

1 

0 

0 

0 

0 

1 

0 

0 

0 

2 

0 

2 

0 

0 

1 

1 

0 

0 

3 

4 

4 

4 

0 

2 

2 

1 

0 

4 

12 

18 

12 

6 

4 

5 

3 

1 

5 

40 

56 

48 

24 

9 

12 

9 

4 

6 

120 

180 

160 

90 

21 

30 

25 

13 

7 

360 

552 

516 

300 

51 

76 

68 

38 

Finally, we list values for A^, B*, C*, and D*: 
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n 

Rn un ^ 1n 

B* = Y* + W* 

n* _ JJ* _ Y* 

D* = Y* - W* 
\ u n v n yv n 

1 

0 

0 

0 

0 

2 

0 

2 

0 

2 

3 

4 

8 

4 

0 

4 

18 

30 

6 

6 

5 

64 

104 

16 

8 

6 

210 

340 

30 

20 

7 

660 

1068 

60 

36 

n 

2(n - ±)F2n_h 

2(w - l)F2n_3 

2(n - DF n _ 2 

2(n - l)Fn_3 

We now shift our attention to the problem of counting regular reflections 
which occur in paths of length n in which bends are allowed. The matrix which 
solves the system of equations in that case follows, where starred entries 
denote regular reflections; otherwise, the definitions are as before. Notice 
that the characteristic polynomial is the same as that of the preceding ma-
trix. 

1 

1 
0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 
1 

1 

0 

0 

0 

0 

0 ' 

0 

1 

1 

0 

0 

0 

0 

1 

0 

0 

0 

1 

1 

0 

0 

0 

2 

0 

0 

1 

1 

1 

0 

0 

0 

2 

0 

0 

1 
1 

1 

0 

0 

0 

1 

0 

0 

1 

1 

u* 
u n 
v n 

rv n 

K 
Un-X 

Vn-1 

w , 
n - 1 

Yn-l 

u n+l 

V* 
n + l 
n+l 

n + l 

Un 

Vn 

Wn 

?n 

Values of successive vector elements for n = 1, . ..,8 are given in the table 
following: 

REGULAR REFLECTIONS IN BEND PATHS 

n 

n 
K 
n n 

n 
Un-l 

Vn-1 

Mn-1 

?n-l 

1 

0 

0 

0 

0 

1 
0 

0 

0 

2 

1 

0 

0 

0 

1 
1 
0 

0 

3 

2 

3 

0 

0 

2 

2 

1 

0 

4 

7 

9 

5 

0 

4 
5 

3 

1 

5 

20 

31 

20 

6 

9 
12 

9 

4 

6 

60 

95 

75 

30 

21 
30 

25 

13 

7 

176 

290 

250 

118 

51 
76 

68 

38 

8 

517 

868 

794 

406 

111 | 
195 

182 

106 



138 REFLECTIONS ACROSS TWO AND THREE GLASS PLATES [April 

The system of regular reflections in bend paths is not solved explicit-
ly here, but generating functions for successive values are not difficult to 
obtain by using the characteristic polynomial of the matrix just given. Gen-
erating functions for A^9 5*, C*, and D£ are: 

A* - n* + y*. ^2(1 ~ ^ + 6X2) 

(1 - 3x + x2)2 

V* + Wi: 

Y*: 

D* = y* - w* 

x3(3 - 4a?) 

(1 - 3x + x2)2 

x2(l + 2x2) 

(1 - x - x2Y 

x3(3 - 2x) 

(1 - x - x2)2 

Since A* + B^ = U* + V* + W^ + Y*, the generating function for regular reflec-
tions in bend paths terminating on all four surfaces is 

(x2 - x3 + 2xk) 

(1 - 3x + x2)2 

8. REGULAR REFLECTIONS IN THREE STACKED PLATES 

If one wishes equations for the number of paths ending upon certain lines 
and the number of regular reflections, the procedure is the same as when 
"bends" are allowed, as in the last section. Let Un, Vn, Wn, and Yn be the 
number of paths of length n from line 0 to lines 0, 1, 2, and 3. Let [/*, 7*, 
W^, and Y* be the number of regular reflections counted for those paths. 

The system of equations to solve is 

u* 
u n + l V* 

n + l 
% + l 

n + l 

= 
= 
= 

= 

K 
n 
Y* 
-*• n 

nn 

+ 
+ 
+ 

+ 

Un-

K 
n 
Yn-

.. i 

+ 
+ 

- 1 

2 ^ - i 

2K-i 

Un + i = 
V

n+1 = 

K+i = 
¥n + l 

V„ 

Un 

Vn 

Wn 

+ 

+ 
Wn 

?n 

These differ from the equations used in Section 7 only in that no horizontal 
moves along the lines are allowed, so that one represses terms that corre-
spond to that same line. The method of solution is exactly the same. 

One finds that 

U 2k = F2k- l U2k + l = 0 

y 
-1 2k+ l 

v 2 k + 1 

»2U 

= 

= 
= 

F2k 

F2k + 

F2k 

1 

Y2k 

v2k 
W2k+l 

= 
= 

= 

0 
0 
0 
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number of paths ending at outside lines, while Vn + Wn = Fn is the number of 
paths ending on inside surfaces. Notice that Un + Vn + Wn + Yn = Fn + 1 , which 
agrees with Theorem C. 

As for the number of reflections to paths ending on outside surfaces, 

U* = Cn.1 - 2Cn_2 + 3(7n_3, n even; U* = 0, n odd; 
Yn = Cn-i ~ 2^n-2 + 3Cn - 3, « odd; J* = 0, n even; 

where {Cn} is the first Fibonacci convolution, Cn = (nLn + 1 + Fn)/5. One can 
verify that the total number of reflections for paths of length n which exit 
at either outside surface is U* + Y* = Cn_1-2Cn_2+ 3C„_3, which is equiva-
lent to the formula given for Rn in Theorem I of Section 5, 

Finally, we write, again for the first Fibonacci convolution {Cn}, 

VI = 3Cn_2 - Cn_3, n odd; 7^ = 0, n even; 

^ = 3Cn_2 - Cn__3, n even; W% = 0, n odd. 

Here, the matrix solution for the number of regular reflections in paths 
without bends follows from 

f 0 1 

1 0 

0 1 

0 0 

0 0 

0 0 

0 0 

0 0 

9. NUMERICAL ARRAYS ARISING FROM REGULAR REFLECTIONS 
IN THREE STACKED PLATES 

Let circled numbers denote reflections on paths coming to the inside 
lines from the inside. Let boxed numbers denote reflections in paths to the 
outside lines. 

0 

2 

3 

Note that Z is one longer and one reflection more than J, while it is two 
longer and one reflection more than Z. Since the paths under discussion are 
to the inside lines from the inside, paths going from 2 to 1 imply a reflec-
tion as indicated. Since the paths from 3 must have come from 2, this also 
implies a reflection as shown. Thus, ®= © + S e Secondly, the two types 

0 

1 

0 

1 
0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 
0 

0 

0 

2 

0 

0 

1 

0 

1 

0 

0 

0 

2 

0 

0 

1 

0 

1 

0 

0 

0 

1 
0 

0 

1 

0 

n 
K 

n 

K 

Y. 

l 

l 

n- 1 

1 

u* 
u n+1 
V* i n + 1 

^ n + 1 

Y* ^ n + 1 

Un 

Vn 

Wn 
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of reflections are related by h H = (Ẑ )+ PH from considering the following: 

A ® z + x 

Paths indicated which come through from the inside are extended to Y by one 
but do not add a reflection. The paths coming through which have one added 
reflection at the inside line imply a reflection at X since paths to the top 
line can come only from the middle line. 

The geometric considerations just made give the recursive patterns in 
the following array. The circled numbers are the number of reflections for 
paths of length n which enter from the top and terminate on inside lines by 
segments crossing the center space only (not immediately reflected from either 
outside face), while the boxed numbers are regular paths from the top line to 
either outside line. 

Reflections 

Path 
Length 1 

2 

3 

4 

5 

6 

7 

8 

H -

0 

® 
m 

m 
® 
0 

s + 

i 

m 
® 
m 
® 
m 

m 

® + 

2 

® 
[U 
® 
m 
® 

m 
0 + 

3 

m 
® 
® 
® 
0 

[j*l 

© 

m 

4 

® 
m 
® 

© 

5 

B' 
® 
E 

6 

® 

0 

7 

m 

-© + \I*\ 
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Please note that each row sum is 2Fn_l9 where the sum of the circled numbers 
as well as the sum of the boxed numbers is in each case Fn_r Also note that 
the row sum is not the total number of paths of length n, since, for example, 
when n = 5, there is one path with two reflections which terminates inside, 
and one path with four reflections which terminates inside. Also note that 
the circled diagonal numbers in the table are partial sums of the boxed diag-
onal numbers in the diagonal above. 

Let Dn(x) be the generating function for the nth diagonal sequence going 
downward to the right in the table. That is, DQ(x) generates the boxed se-
quence 1, 0, 1, 0, 1, 0, 1, ... and D1(x) generates the circled sequence 1, 
1, 2, 2, 3, 3, 4, 4, ..., while D2(x) generates the beixed sequence 1, 1, 3, 
3, 6, 6, ... . From the table recurrence, C* = B* + A*, since C* and B* are 
on the same falling diagonal, 

so that 

We write 

Dl(x) = x2D1(x) + DQ(x), 

D^x) = [D0(x)]/(1 - x2), 

DAx) 

£i 0*0 

D2(x) 

1 -

1 

(1 • 

1 

( 1 • 

(1 

(1 

(1 
(1 

x2 

+ X 

- x2)2 

+ X 

- x2)" 

+ x)2 

- xV 
+ x)2 

- x2)s 

DAx) = 

Dk(x) = 

Notice that Dn(x) generates boxed numbers for n even and circled numbers for 
n odd. Summing Dn(x) for n even gives the row sum for the boxed numbers by 
producing the generating function for the Fibonacci sequence and, similarly, 
for taking n odd and circled numbers. The column sums of circled or boxed 
numbers each obey the recurrence un = 2un„1 + un_2 - un_3. 

Notice that 

D2n+l(x) = [D.ix)]^1 

D2n(x) = (1 - x)D2n+l(x) = (1 - x)[D1(x)]n + \ 

so we see once again the pleasantry of a convolution array intimately related 
to Pascal's triangle. 
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ON PSEUDO-FIBONACCI NUMBERS OF THE FORM 2S2j 

WHERE S IS AN INTEGER 

A . ESWARATHASAN 
University of Sri Lanka, Jaffna, Sri Lanka 

If the pseudo-Fibonacci numbers are defined by 
(1) u1 = 1 , w2 = 4 , un+2=un+1+un, n > 0, 
then we can show that ux = 1, u2 ~ 4, and uh = 9 are the only square pseudo-
Fibonacci numbers. 

In this paper we will describe a method to show that none of the pseudo-
Fibonacci numbers are of the form 2S , where S is an integer. 

Even if we remove the restriction n > 0, we do not obtain any number of 
the form 252, where S is an integer. 

It can be easily shown that the general solution of the difference equa-
tion (1) is given by 

(2) w„ = -^-(aB + p") kzr^"'1 + 3*"1), 
5.2 5.2 
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where 

Let 
1 + /5, 3 = 1 ~ v55 and n is an integer. 

n, or + 
S p 

2 ' 22,/5~ 
Then we e a s i l y o b t a i n t h e fo l lowing r e l a t i o n s : 

un = 5"(7nn - n n _ i ) , (3) 

(4) nP = Hp_! + rip_2? n! = i , n2 = 3 

(5) ? P = ? P - 1 + ?P_ 2 ? ?1 = 1 , ? 2 = 1 

(6) n^ - 5?2
r = ( - 1 / 4 , 

(7) n2p = np + ( - D r + 1 2 5 

( 8 ) 2 r W n = ^KmKn + n m n n ? 

(10) ?2P = ripSp 

The following congruences hold: 

(11) un + 2r = (~iy+1un (mod r]p2-s)? 

(12) un + 2r = (-l)I'un (mod 5p2"e)? 

where S = 0 or 1. 

We also have the following table of values: 

n 
Uy, 

0 

3 

1 
1 

2 
4 

3 
5 

4 
9 

12 14 16 

14 23 37 60 97 411 1076 2817 

t 

u 
4 

3 

5 

5 

8 10 

3 - 7 5 11 

t 

^ 

5 

11 

Let 

(13) 2x = un, where x is an integer. 

The proof is now accomplished in eighteen stages. 

(a) (13) is impossible if n E 0 (mod 16), for, using (12) we find that 

un E u0 (mod £8) 
E 3 (mod 7), since 7/58 
E 10 (mod 7). 

Thus, we find that 

-y- = 5 (mod 7), since (2,7) = 1, 
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and since (yj = -1, (13) is impossible 

(b) (13) is impossible if n - 1 (mod 8), for, using (12) in this case 

un = «i (mod 5it) 
E 1 (mod 3) 
E 4 (mod 3). 

Thus, 

— = 2 (mod 3), since (2,3) = 1, 

and since (-r-j = -1, (13) is impossible. 

(c) (13) is impossible if n E 2 (mod 8), for, using (12) we find that 

un ~ u2 (mod £ it) 
E 4 (mod 3). 

Thus, we find that 

un 
— = 2 (mod 3), since (2,3) = 1, 

and since (-r-j = -1, (13) is impossible. 

(d) (13) is impossible if n - 3 (mod 16), for, using (12) in this case 

Un E us (mod £8) 
E 5 (mod 7), since 7/^8 
E 12 (mod 7), 

Thus, 
un 
— ~ 6 (mod 7), since (2,7) = 1, 

and since I—J = -1, (13) is impossible. 

(e) (13) is impossible if n E 4 (mod 10), for, using (12) we find that 

un E ±uh (mod ^5) 
E ±9 (mod 5) 
E ±4 (mod 5). 

Thus, we find that 

^y E ±2 (mod 5), since (2,5) = 1, 

and since (~E~) = (7) = -1, (13) is impossible. 

(f) (13) is impossible if n - 5 (mod 10), for, using (12) in this case 

Un = ±w5 (mod £;5) 
E ±14 (mod 5). 

Thus, 
Uy, 

_ ±7 (mod 5), since (2,5) = 1, 



1979] ON PSEUDO-FIBONACCI NUMBERS OF THE FORM IS2 U 5 

and since y—J = ( — ) = -1, (13) is impossible. 

(g) (13) is impossible if n - 6 (mod 20), for, using (12) we find that 
un E u6 (mod ?10) 

= 23 (mod 11), since 11/£10 

E 12 (mod 11). 

Thus, we find that 
u 
— - = 6 (mod 11), since (2,11) = 1 , 

and since (-ry) = -1? (13) is impossible. 

(h) (13) is impossible if n - 1 (mod 8), for, using (12) in this case 

un E u7 (mod 5^) 
= 37 (mod 3) 
= 34 (mod 3). 

Thus, 

— = 17 (mod 3), since (2,3) = 1, 

and since (~y) = -13 (13) is impossible. 

(i) (13) is impossible if n = 8 (mod 10), for, using (11) we find that 

un - uQ (mod r|5) 
E 60 (mod 11). 

Thus, we find that 

y =30 (mod 11), since (2,11) = 1, 

and since (yr) = -lj (13) is impossible. 

(j) (13) is impossible if n = 1 (mod 10), for, using (12) in this case 

±ul (mod ^5) 
±1 (mod 5) 
±4 (mod 5). 

Thus, 
Uy, 

E ±2 (mod 5), since (2,5) = 1, 

and since f-r-j = f-r-J = -1, (13) is impossible. 

(k) (13) is impossible if n = 12 (mod 16), for, using (12) we find that 

Thus, 
Uy 

ul2 (mod XQ) 
411 (mod 7), since 7/^e 
404 (mod 7). 

202 (mod 7), since (2,7) = 1, 
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and since (~~T~) = "1? (13) is impossible. 

(1) (13) is impossible if n ~ 3 (mod 10), for, using (11) in this case 

un = u3 (mod n5) 
E 5 (mod 11) 
E 16 (mod 11). 

Thus, 

- 8 (mod 11), since (2,11) = 1, 

and since \TT) ~ -1, (13) is impossible. 

(m) (13) is impossible if n E 14 (mod 16), for, using (12) we find that 

- ulh (mod £8) 
E 1076 (mod 7), since 7/5£ 

Thus, 

-y E 538 (mod 7), since (2,7) = 1, 

and since (~=r~) = -1, (13) is impossible. 

(n) (13) is impossible if n E 0 (mod 10), for, using (11) in this case 

un E ẑo (mod r]5) 
E 3 (mod 11) 
E 14 (mod 11). 

Thus, we find that 

-y E 7 (mod 11), since (2,11) = 1, 

and since lyr) = -15 (13) is impossible. 

(o) (13) is* impossible if n E 16 (mod 20) , for, using (12) we find that 

un E u16 (mod g10) 
E 2817 (mod 11), since 11/?10 
E 2806 (mod 11). 

Thus, 

-y E 1403 (mod 11), since (2,11) = 1, 

and since (———J = -1, (13) is impossible. 

(p) (13) is impossible if n E 2 (mod 10), for, using (11) in this case 

un E ±u2 (mod 55) 
E ±4 (mod 5). 

Thus, we find that 
un 
— - 2 (mod 5 ) , s^ince (2 ,5 ) = 1, 
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and since ( — J = ( — ) = -1, (13) is impossible. 

(q) (13) is impossible if n ~ 7 (mod 10), for, using (11) in this case 
un E u7 (mod T]5) 

E 37 (mod 11) 
= 26 (mod 11). 

Thus, 
u 
-y' = 13 (mod 11), since (2,11) = 1, 

and since (yy) = -1, (13) is impossible. 

(r) (13) is impossible if n = 9 (mod 10), for, using (11) we find that 

un E us (mod r)5) 
E 97 (mod 11) 
= 86 (mod 11). 

Thus, we find that 

-— = 43 (mod 11), since (2,11) = 1, 

and since (TT") = -1, (13) is impossible. 

Hence, none of the pseudo-Fibonacci numbers are of the form 2S2, where S is 
an integer. 
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INFINITE SERIES WITH FIBONACCI AND LUCAS POLYNOMIALS 

GERALD E. BERGUM 
South Dakota State University, Brookings, SD 57006 

and 

VERNER E. HOGGATT, JR. 
San Jose State University, San Jose, CA 95192 

In [7], D. A. Millin poses the problem of showing that 

/5 (i) E C =z 
n 2 

n = 0 

where F^ is the fcth Fibonacci number. A proof of (1) by I. J. Good is given 
in [5], while in [3], Hoggatt and Bicknell demonstrate ten different methods 
of finding the same sum. Furthermore, the result of (1) is extended by Hog-
gatt and Bicknell in [4], where they show that 
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(2) 
or + 1 

a(a 2k 1) 

The main purpose of this paper is to lift the results of (1) and (2) to 
the sequence of Fibonacci polynomials <Fk(x)>°° defined recursively by 

2^ fa) = 1, Fz(x) = x, Fk + 2(x) = xFk+1(x) + Fk fa), k >_ 1. 

Furthermore, we will examine several infinite series containing products of 
Fibonacci and Lucas polynomials where the Lucas polynomials are defined by 

M * > = Fk+iW + *k-ifa). 

If we let a fa) = fa + A 2 + 4)/2 and 3(a;) = fa - /r2 + 4)/2, then it is 
a well-known fact that 

(3) Fk(x) = [ak(x) - $k(x)]/[a(x) - $(x)] 

and 

(4) 

When x > 0 , we have - 1 < 3fa) < 1 and a(x) > 1 so t h a t | 3 f a ) / a f a ) | < 1 
and l i m [ 3 f a ) / a f a ) ] n = 0. But , from ( 3 ) , we o b t a i n 

Lk(x) = ak(x) + 3 f e fa) . 

(5) 

T h e r e f o r e , 

(6) 

a**1 fa) - 3* + 1 f a ) *Vx+lfa) 
^nfa) ~ a

n f a ) - 3* fa) 
a fa ) - 3fa) 

1 - [ B f a ^ f a ) ] " 
+ 3 (a?). 

l im a f a ) , i f x > 0. n+~ ^n fa) 
When x < 0 , we have 0 < a fa ) < 1 and 30*0 < - 1 so t h a t $(x)/a(x) < - 1 . 

From ( 5 ) , we see t h a t 
F n + 1 f a ) 

(7) 

and 

l im 3 fa), i f x < 0. n+oo F„ fa) 

Using (3) and ( 4 ) , i t i s easy to show t h a t 
Ln + k(x) + Ln__k(x) = Ln(x)Lk(x), k even 

F2n(x) = Ln(x)Fn(x). 

Letting Sn be the nth partial sum of 

E < » * <*> 
n = l 

and using the two preceding equations with induction, it can be shown that 

£„ = x 
F2„k (x) L-d 2n 

t = 1 
2"/c- 2kt fa) +.1 

The d e f i n i t i o n of Lk(x) t o g e t h e r w i th (6) enab le s us t o show for x > 0 
t h a t 

l im £ a2(x) + 1 

t - i a -

[a2 fa)- + lja; 
2fc Lfa) a f a ) [a fa) - 1] 
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while for x < 0 we use (7) to obtain 

r^ g2 (x) + 1 _ [&2(x) '+ l]x i • o \~^ £> {X) -t 
l im Sn = x) *—̂  

t = i 3 2 k t + 1fe) e(x)[32fcte) - i] 
Hence, 

- ( ["(a2 (a?) + l)x}l\a(x)(oi2k(x) - 1 ) 1 , a? > 0 
(8) )xF~ (x) = - + < ' 

- o Z"k F W ( [(^(x) + l)x]/[B(x)(^k(x) - 1)], x <o' 

We now examine the infinite series 

(9) U(q,a,b,x) = 2- v oF)F M ' 4 = b - a + k. 

First observe that, by using (3) and (4), we can show 

( 1 ° ) Fqn + aWFqn+bW " *?» + a - k&)Fqn + b + , ( x ) = ( - I ) " 1 + ° " " ^ ( x ) F , . Q + , ( * ) . 

Letting Sn be the nth partial sum of (9) and using (10), we notice that there 
is a telescoping effect so that 

_ h + k ^ _ Fqn+b + k(.x) 
Sn ~ Fb&) ~ Fqn+b{x) • 

Hence, by (6) and ( 7 ) , we have 
Fb + k(x) ( ak(x), x > 0 

(11) U(q9a,b,x) = M - { 
*b w { $k{x)\ x < 0 

where q = b - a + k. In particular, we see that 

- (-l)anF*(x) ( ̂ a(x), x > 0 
(12) U(a,a,a,x) = } ^ ™—7~TB 73T = La(x) - < 

^ ±an{x)ta(n + 1){x) ^ 3a(x), x < 0 

(13) ffW'1's)'?l^&- { 
3(x), r̂ > 0 

a(x), x < 0 

2 ( ̂ 2 - #a(#) + 1, x > 0 
(14) [7(2,2,2,*) = E y - 7 ^ ) f (^T= i 2 

„ = 1^2n^^2(n + l ) W ( X 2 - ^3(^) + 1, X < 0 

and 
- (~l)bnFb(x) Fb+l(x) . (a(x),x>0 

(15) u ( b 9 l 9 b 9 X ) =^j-^p M=TW--
„-l ^ i n ^ ^ M n + D ^ ; ^ £ W (&(x)9X<0 

If we combine (13) and (14) with the identity 

L2n+1(x) = Ln(x)Ln+1(x) 

we obtain the very interesting result 

L2n+1(x) = Ln(x)Ln+1(x) + (-l)n+1x 
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t (-1>"'i-fa) * jfri F2n(^)^2(n + 1)(^) X 

Next, we examine the infinite series 

- (x2 + V(-Dqn + a-kFk(x)Fb_a + k(x) 
(17) V(q,a,b,x) = - £ Lqn + a.k(x)Lqn + b(x) ' 

n = 1 ^ 

(7 = 2? - a + fc. 

To do this, we first use (3) and (4) to show that 

(18) Lqn + a(x)Lqn + b(x) - Lqn + a_k(x)Lqn + b + k(x) 

= -(x2 + V(-Dqn + a'kFk(x)Fb_a + k(x). 

Letting Sn be the nth partial sum of (17) and using (18) , we notice that there 
is a telescoping effect so that 

^b+k(X^ ^qn + b + k(x) 

Fb(x) Lqn+b(x) 

Using the definition of Lm(x) together with (6) and (7), we obtain 

£<\ + k(x) (ak(x), x > 0 
(19) V(q,a9b9x) = ~ , - < 

jUb^X) { $k(x), x < 0 
where q = b - a + k. In particular, we note that 

,2 , /, w -i \an -rnl - {xA + h)(-±)anFA
a(x) L2a(x) C aa(x), x > 0 

(20) V(a,a,a,x) =-V —-—-r-rj T-T— = . , - ̂  

. (x2 + L)(-l)bnFb(x) L (x) (a(x),x>0 
(21) v{b,i,b9x) = - £ - ( g ) L ST" = -TT^T " 1 

In conclusion, we observe that 

(22) ^n-i^^n + i^) " Fn + 2(x)Fn_2(x) = ("Dn(^2 + D-

Letting Sn be the nth partial sum of 

y* (-l)n(x2 + 1) 

^ r i ^ + i ^ ) ^ » + 2 ^ ) 

and u s i n g (22) , we see t h a t 

F - i f e ) Fn,l(x) 1 Fn_1(x) 
n F2(x) Fn + 2(x) x Fn + 2(x) 

so t h a t 

, , „ y (-i)"(«2 + i) 1 i e 3 ( x ) ' x > 0 
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A NOTE ON 3-2 TREES* 

EDWARD M. REINGOLD 
University of Illinois at Urbana-Champaign, Urbana, IL 61801 

ABSTRACT 

Under the assumption that all of the 3-2 trees of height h are equally 
probable, it is shown that in a 3-2 tree of height h the expected number of 
keys is (.72162)3^ and the expected number of internal nodes is (.48061)3^. 

INTRODUCTION 

One approach to the organization of large files is the use of "balanced" 
trees (see Section 6.2.3 of [3]). In particular, one such class of trees, 
suggested by J. E. Hopcroft (unpublished), is known as 3-2 trees. A 3-2 tree 
is a tree in which each internal node contains either 1 or 2 keys and is hence 
either a 2-way or 3-way branch, respectively. Furthermore, all external nodes 
(i.e., leaves) are at the same level. Figure 1 shows some examples of 3-2 
trees. 

Insertion of a n-ew key into a 3-2 tree is done as follows to preserve 
the 3-2 property: To add a new key into a node containing one key, simply 
insert it as the second.key; if the node already contains two keys, split it 
into two one-key nodes and insert (recursively) the middle key into the par-
ent node. This may cause the parent node to be split in a similar way, if it 
already contains two keys. For more details about 3-2 trees see [1] and [3]. 

"kThis research was supported by the Division of Physical Research, U.S. 
Energy Research and Development Administration, and by the National Science 
Foundation (Grant GJ-41538). 
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(a) 

• 
The unique 3-2 tree 

of height 0 
(b) The only two 3-2 trees 

of height 1 

(c) A 3-2 tree of height 3 with 15 keys, 11 internal nodes, 
and 16 external nodes (leaves) 

FIGURE 1.—SOME EXAMPLES OF 3-2 TREES. THE SQUARES ARE EXTERNAL NODES 
(LEAVES), THE OVALS ARE INTERNAL NODES, AND THE DOTS ARE KEYS. 

Yao [4] has studied the average number of internal nodes in a 3-2 tree 
with k keys, assuming that the tree was built by a sequence of k random in-
sertions done by the insertion algorithm outlined above. He found the ex-
pected number of internal nodes to be between ,70k and ,79k for large k. Un-
fortunately, the distribution of 3-2 trees induced by the insertion algorithm 
is not well understood and Yao*s techniques will probably not be extended to 
provide sharper bounds. 

Using techniques like those in Khizder [2], some results can be obtained, 
however, for the (simpler) distribution in which all 3-2 trees of height 
are equally probable. In this paper we show that, under this simpler dis-
tribution, in a 3-2 tree of height h the expected number of keys and internal 
nodes are, respectively, (•.72162)3* and (.48061)3*. 

ANALYSIS 

Let an kh be the number of 3-2 trees of height In with n nodes and k keys. 
Since there is a unique tree of height 0 (consisting of a single leaf—see 
Figure 1), and since a 3-2 tree of height h > 0 is formed from either two or 
three 3-2 trees of height h - 1, we have 

(1 if n = k = 0 
an,k,0 = \ 

I 0 otherwise 

(1) ln,k,h / .A <Zi,u,h-l&3,v,h-l + 2-* -H,w,7z- 1 ̂ J ,v,/i-l &l,w,h-l. 

i + J 
u + v • fc-1 u+v+w*k-2 
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Let 

n m o k - 0 

be the generating function for an,kih. From (1) we have 

40(a?,2/) = 1 
(2) 

Ah(x9y) = ̂ ^ ( ^ z / ) + scy2A^ 1 (x,y) 

and thus the number of 3-2 trees of height 7z is ̂  = 4^(1,1), the total num-
ber of keys in all 3-2 trees of height In is 

Ki = 

Mh(x,y) 

dy \x=y=l 

and the total number of internal nodes in all 3-2 trees of height h is 

%Ah(x,y) 

\x = y= 1 
^ 8x 

The table gives the first few values for Ah9 Kh, and Nh as calculated from 
the recurrence relations arising from (2). 

THE FIRST FEW VALUES FOR Ah, Kh, AND Nh 

Ah = Ah(l,±) 
3Ah(x9y) 

dy x = y = l 

dAh(x,y) 

dx x = y=l 

1 
2 

12 
1872 

6563711232 

0 
3 
68 

34608 
377092654848 

0 
2 
44 

21936 
237180213504 

Assuming that all of the 3-2 trees of height h are equally probable, the 
average number of keys in a 3-2 tree of height h is given by 

Mh(x,y) 

Ah(x,y) \x=y=l 

and the average number of internal nodes in a 3-2 tree of height h is given 
by 

U} 

AH 

t(x9y) 
dx 
(x,y) x~y*l 

To determine Kh9 we use the recurrence relations for Ah and K^ arising 
from (2): • 
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An = 1 

and 
Ah = 4 - r + ^ - ! 

KQ = 0 

K. = 2A. ,K* , + A2 , + 2A? 1 + 3A2 ,K, , . 
h h -I n- I h - 1 /z - 1 h - 1 h- 1 

Rewriting the equation for Kh in terms of Kh gives 

Kh = Kh_l(3Ah - A ^ ) +2Ah - A ^ 

and so 
K» ( Al-i\ Al-i 

h Ah h~l\ Ah I A 

A2 

= 3Kf c - 1 + 2 - -TT-dCfc.! + 1) 

giving 
Kh , + A. . 

<Kh + 1) = 3(Kfc.2 + 1) " ^ ^ 

Kh + Ah 
Letting eh = —— , we get 

Ah Ah 
h 

(Kh + 1) = 3J'(K0 + 1) - £ 3i_1 

i- 1 
^o 0 

But K 0 + 1 = — + 1 ' = — + 1 = 1 , and so 
AQ 1 

Eh-*-

(3) ^ + 1 = K h + l= 3*1 - T - ^ - = 3*1 - E - 1 -

i.e., 

h — 3* \̂ fc / fa0 3 l + ] 

V""* £t 2 

What is > i+ x? It is easy to show by induction that A^ > Ki and so 
i = o 3 

£. = < 1. 
" A l + A l 

The comparison test thus insures that the summation converges: 

y J±-< y __i__ i 
Z-^ o^ + i ^ o^ + i 2 
•t = o J i == o J 

Now, in order to use > —^T as an approximation to J — r — we need an upper 
£ = o 3 f = o ̂  



1979] A NOTE ON 3-2 TREES 155 

i+1 . From the definition of ei, we have 

Z-̂  3i + i 3 Z^ 3i ,2 3 2^ , -, 

From (3) and the fact that 0 < ei < 1, we know that 

3* ̂  3^ ^ o 3i + 1 < ' 

and so (4) becomes 

E et < i y" i < I y* _I_ 

But since A, = A2 + A? , > 2A2 , we have by induction that Ah > — 22 , and 
n h - 1 h -1 h - 1 n 2 

so 

i=/2+lJ i = h +1 

Using the values in the table, we find that 

4 e-
.- Z ^ 7 T T = .2783810593, 

and thus 

A f o'L 

i = o J 

2"2 

0 < V —^— - ,2783810593 < 2~2" < 3 x 10~10. 

We conclude that 

i = o J 

0 < l i m T r ( - p + l ) - .7216189407 < 3 x 10" l c \ 
h-. 3* 

Thus, under the assumption that all the 3-2 trees of height h are equally 
probable, the expected number of keys in a 3-2 tree of height h is 

:h = -f- * (.7216189407)3* 
Ah 

A similar analysis works for Vh, the average number o£ internal nodes in 
a 3-2 tree of height h. We again use the recurrence relations arising from 
(2): 

A Q = 1 

A% = A2 + Az 
h h-l h-1 
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as before, and 

N0 = 0 

h = 2 VA- i +ALi +Ali + 3AlA-i 
= 2AH-A-i + ULi\-i+AK-

Rewr i t ing t h i s l a s t equa t ion i n terms of V^ = Nh/Ah g ives 
Nh = \-,OAh - Al_,) +Ah, 

and so 

|=V,(3-^)--Vl+I V" Ah -h-iy Ah I : - "*-i ' ̂  Ah 

giving 

h Letting &h = — , we get 

h-1 

H 

(v* + £ ) - 3 * ( v 0 + i ) - i ; 3 * - i 6 h . 

1 ^o 1 0 1 1 
B u t V °  + 2 = Ta

 + 2 = 1 + 2 = 2> a n d s o 

i . i v ; i - , » i f J*zi_\ . ,* i ^ - ^ - > ' * - £ * £ r ->^-£?ir}-
h-i~ 6, 

i.e., 

lim 

^ <5; 
What is > —:—-? It is easy to show by induction that A . , , > N. and so 

t = 0 J 

6̂  = N^/A^ 1 < 1; hence, the comparison test insures that the summation con-
verges: 

Z-< ot+i Z»^ o^ + i 2 
i=0 J £ « 0 J 

—i+1 as an approximation to 2_^ ~T+7 w e n e e ^ an upper 
£ = o 3 {«o 3 

—:-— . From the definition of o„- , we have 
£ = h+1 J 

(6) ^ t-i 3*+l 3 Z-r . . + 
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Since 0 < 6; < 1, (5)* tells us that 

A^L IA _L\ V _li_ 1 
3h Ah 2\- 3h) 2^ ot + i < 25 

i =0 
and so (6) becomes 

y 4 i - < i y i < i y i 
1 ?i 

Recalling that A± > y 2 , this becomes 

t ^ < i £ 4 • 2-'" =iEr"<f(r-%!-.) = r 
Using the values in the table, we find that 

3 6, 
Z TiTT= -0193890884, 

and thus 
£ -o ̂  

t = o 

We conclude that 

0 < V —^— - .0193890884 < I'2" < 3 x 10~10. 

0 < lim -^-(-r- + T I - .4806109116 < 3 x 10~10. 
fc— 3h \Ah 2/ 

Thus, under the assumption that all 3-2 trees of height 7z are equally 
probable, the expected number of internal nodes in a 3-2 tree of height h is 

Nh vh = — * (.4806109116)3^. 
Ah 
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CONCAVITY PROPERTY AND A RECURRENCE RELATION 
FOR ASSOCIATED LAH NUMBERS 
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ABSTRACT 

A recurrence relation is obtained for the associated Lah numbers, 

Lk(m,n), 
via their generating function. Using this result, it is shown that Lk(m,n) 
is a strong logarithmic concave function of n for fixed k and 777. 

1. INTRODUCTION 

The Lah numbers L (m,n) (see Riordan [4, p. 44]) with arguments m and n 
are given by the relation 

(1) L(m,n) = (-l)B(m!/«!)(*" J), 

where L(m,n) = 0 for n > m. Since the sign of L(m,n) is the same as that of 
(-l)n, we may write (1) in absolute value as 

(2) \L(m,n)\ = ( m i / n ! ) ^ " ^ . 

We define the associated Lah numbers Lk(m9n) for integral k > 0 as 

(3) . Lk(m,n) = ^/n^ti-ir-r^*^-1) 

where Lk(m9n) = 0 for n > m. Using the binomial coefficient identity (12.13) 
in Feller [2, p. 64], it can. be easily seen that 

(4) Ll(m,n) = \L(m9n) | . 

The use of the associated Lah numbers L^im^n) has recently arisen in a 
paper by the author [1], where the n-fold convolution of independent random 
variables having the decapitated negative binomial distribution is derived in 
terms of the numbers L^(jn9n) . In this paper, we first provide a recurrence 
relation for the numbers L^irn^n). This result is then utilized to show that 
Lk(m,n) is a strong logarithmic concave (SLC) function of n for fixed k and 
??7, that is, Lk(m,n) satisfies the inequality 

(5) [Lk(m,n)]2 > Lk(m,n + l)Lk(m9n - 1) 

for k = 1, 2, ...,??7=3,4S ..., and n = 2, 3, ...,7?7-l. 

2. RECURRENCE RELATION FOR Lk(m9n) 

The author [1] has provided a generating function for the numbers Lk(m,n) 
in the form 

(6) [(1 - eyk - 1]" = £ n\Lk(m,n)dm/ml. 

158 
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Differentiating both sides of (6) with respect to 0, then multiplying both 
sides by (1 - 9), gives 

(7) nkld - Q)'k - l]n_1(l - e)'k = (1 - Q)ZnlLk(m9n)Qm-1/(m - 1)! 

which, using (6), becomes 

(8) nkZnlLk(m9n)Qm/m\ + nkZ(n - l)\Lk(m9n - l)Qm/ml 

= (1 - Q)ln\Lk(m9n)Qm-l/(m - 1)1. 

Now, equating the coefficient of 0m in (8), we obtain the recurrence formula 
for Lk(m,n) as 

(9) Lk(m + ^-^ = (n^ + ^)Lk(m,n) + kLk(m9n - 1). 
The recurrence relation (9) is used to obtain Table I for the associated 

Lah numbers Lk(m,n) for n = 1(1)5 and m = 1(1)5. It may be remarked that, 
for k = 1, Table I reduces to the one for the absolute Lah numbers given in 
Riordan [4, p. 44]. 

3. CONCAVITY OF Lk(m,n) 

The proof of the SLC property of the numbers Lk(m9n) is based on the 
following result of Newton's inequality given in Hardy, Littlewood, and Polya 
[3, p. 52]: If the polynomial 

P(oc) = J2 °nxn 

« = 1 

has only real roots, then 

(10) 4 > °n+l°n-•1 

for n = 2, 3, . . . , m - 1. To establish the SLC property, we need the follow-
ing: 

Lmma: If 

pm(%) = X^ Lk(m,n)xn 

n-l 

then the m roots of Pm (x) are real, distinct, and nonpositive for all m = 1, 
2, ... . 

PfiOO^'- It can be easily seen that Pm (x) , using (9), may be expressed as 

m 

(11) Pm(x) = Y, Lk(m,n)xn 

n = l 

m 

= J2 link + m - l)Lk(m - l , n ) + kLk(m - l,n - l)]xn 

n = l 

= (kx + m - l)Pm_l(x) + kx[dPm_l(x)ldx}9 
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By induction, we find that 

Px(x) = kx, P2(x) = kx(kx + k + 1), 

and 

P3(x) = kx[k2x2 + 3k(k + l)x + (k + l)(fc + 2], 

so that the statement is true for m = 1, 2, and 3. For m > 3, assume that 
•POT_iĈ c) n a s m-1 real, distinct, and nonpositive roots. If we define 

(12) Tm(x) = exxm/kPm(x), 

then, since 

Pm(O) = 0, 

Tm(x) has exactly the same finite roots as Pm (x), and the identity (11) for 
Pm (x) gives 

(13) Tm(x) = kx(k + l)/kdTm_l(x)/dx. 

By hypothesis, Pm-i(x), and hence ^-^(ar), has m-1 real, distinct, and non-
positive roots. Tm_1(x) also has a root at -«>, and, by RolleTs theorem, be-
tween any two roots of Tm_1(x) , dTm_1(x)/dx will have a root. This places 
m-1 distinct roots of Tm_l(x) on the negative real axis; x - 0 is obviously 
another one, making m altogether. This proves the result by induction. 

Thus the above lemma, together with the inequality (10), provides us the 
following: 

Tkdonm: For w >_ 3, k = 19 2, ..., and n = 2, 3, . . . , TT? - 1, the associated 
Lah numbers Lk(m9n) satisfy the inequality (5). 

It may be remarked that, as a consequence of the above result and rela-
tion (4), we have the following: 

CotioULaJiy: For m >_3, and n = 2, 3, ..., 777 - 1 , the Lah numbers L(m9n) sat-
isfy the inequality 

(14) [L(m,n)]2 > L(m,n + l)L(m9n - 1). 
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FIBONACCI NUMBERS 
J. C. de ALMEIDA AZEVEDO 

Universidade de Brasilia, Brasil 

The purpose of this paper is to derive a few relations involving Fibo-
nacci numbers; these numbers are defineci according to the expressions 

fn+1 = fn +^.1,'f0. = O - ^ =;! { ., 
due to Girard [1]. They can also be obtained from a known [2] matrix repre-
sentation that we rederive in Part II. In Part III.we obtain the sum of two 
infinite series and some recurrence relations. ' 

PART I : '•• HISTORICAL NOTE 

The sequence of integers {fn} was discovered by Leonardo Pisano [3, 4], 
in his Liber Abacei, as the solution to a hypothetical problem concerning the 
breeding of rabbits; in this problem, Pisano admitted that the rabbits never 
die, that each month every pair begets a new pair that becomes productive 
at the age of two months. The experiment begins in the first month with a 
newborn pair. Fibonacci numbers occur in many different areas. In geometry, 

for instance, in Euclid's golden section problem where the number y(/F - 1) 

appears. In the botanical phenomenon called, phyllotaxis, where it is well 
known that in some trees the leaves are disposed in the spirals according to 
the Fibonacci sequence -!*' r .'.'••/ 

1 1 2 3 fn "'•-:• • 
v 2 ' 3 ' 5 ' • * " fn+1 ';•';•;• 

that results from the expansion of y(/5~ - 1)' in continued fractions. It is 

also known that in the sunflower the number of spirals usually present are 
the Fibonacci numbers 34 and 55; in the. giant sunflower they are 55 and 89, 
and recent experiments have reported that sunflowers of 89 and 144 as well 
as 144 and 233 spirals also exist. These are all Fibonacci numbers. 

PART II:. THEORY 

Consider the numbers /' k = 0, 1, 2, ..., defined by 

/ fr f r \ / 1 1 \ k 

I Jk + l J k \ I \ (2.1) 

\f^ fUl \ \ ° 
For k = 1, we have /0f = f0, f[ = fl9 and f'2 - f2. Let us suppose that 

fn ~ fn ^s valid for arbitrary n. It is easily seen from (2.1) that fn
f - fn 

is also valid for n n + 1, since we have from (2.1) that 

. Jn + 2 = .fn + 1 + fn fn + 2> fn + 1 f n "^ f n -1 fn+1' 

We see then that (2.1) defines the Fibonacci numbers fn. 

Define the matrices F(n) and A according to the following expressions: 

.' 162 
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(2.2) F(n) An: 
1 1 

1 0 

It is easily proved that the above equation contains LucasT definition 
of Fibonacci numbers: 

(2.3) f* " V5 (H^T - (H^T 
in fact, the eigenvalues of A are X2 = y(l + /5) and A2 = —(1 - /J). We see 

therefore that the matrix that diagonalizes A is given by 

(2.4) 
a1X1 a2A2 

, where a$ = (1 +, A*)~1//2, 

2/ M/7 
Xx 0 

0 A, 

We have then, from (2.2), 

(2.5) F(n) = UAnU~ 

which explicitly reads as: 

J n+1 Jn 

.fn 

' n+1 n + 1 
Al " A 2 

fn-J ' ^ \ *" -*2 

A-K 

PART [II: SERIES AND RECURRENCE RELATIONS 

From (2.2), we write the following expression: 

(3.1) E^F(n) = e* - 1, 
i nl 

from which we infer that 

(3.2) Jt-^.U^FWU = eA - 1. 

The matrix elements a re given by: 

(3.3) [U^FWU]^ - j ( / M + 1 + A - i ) + 2 y / n = a»; 

[ [ / "^(n)[ / ] 1 2 = - [ ^ ( n ) ^ , = %fn + 1 ~ fn ~ fn-i) = 0 

[ ^ ^ ( n ) [ / ] 2 . 2 - j ( / n + 1 + / „ . ! > - ^ / n = 3 n . 
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From (3.1), the following series are derived: 

(3.4) ±±fn =^sinh(f) 

t+ifn + i + /„.!) = 2,1/2 cosh ( f ) , 

where we extended Fibonacci numbers to negative values according to 

/.„ = (-Dn + 1/n. 
We now set A = 1 + B in (2.2) to obtain 

(3.5) F(n) = £ (J)**-

5k can be easily evaluated if we use Cauchyfs integral 

Bk = (27a)"1/ (dZ)Zk(Z - B)~l. 

Bk is given by 

/ Tk -1 ~^k 
(3.6) 5k = F(k)"1 = 

Therefore, we have the following recurrence relations that also define 
Fibonacci numbers if we add to them the appropriate boundary conditions 

fo = °. A = 1: 

(3-7) fntl = t(-Dk(l)fk±1 

fn - E ( - i ) k + l ( ; ) / k . 

If we multiply (2.2) by (-l)nF(n)_1, we obtain the following orthogon-
ality relations: 

(3.8) £<-»» (£)/„•*.i- <-"* 

? '-1'* (2)'.« • °-
Many important relations can be easily obtained from (2.2), and we just 

list a few of them. 
The determinant of (2.2) gives 

fn + lfn-l ~ fn = (~1) • 
Setting n = j + k and 4n = i4J'i4k in (2.2) gives the following well-known 

recurrence relations: 
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V + fc±l V ± l ^ ± l + - 0 4 ; 

*\/ + fc = *j + lfk + fjfk + 1* 

From the above, or from F(np) = F(n)p , we are also able to obtain other 
familiar expressions such as: 

(3.10) f2n±1 =fn+fl±1; 

— = f + f 
J n 

J 3n = Jn + 1 + J n J~n-1> 

3n £ ^ 9 
f = ^ n + 1 + 4 + Jn + l J n - 1 " 
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A NOTE ON BASICM-TUPLES 
NORMAN WOO 

California State University, Fresno, Fresno, CA 93710 

V^AJivtion 1: A set of integers \bi\i>_i will be called abase for the set of 
all integers, whenever every integer n can be expressed uniquely in the form 

00 CO 

n = /J d-i^i , where ai = 0 or 1 and Y^ ai < °°. 
i-l i=l 

Now, a sequence < di \ . > of odd numbers will be called basic whenever the se-

quence {di 21'~l\i>
 i s a base. If the sequence \di)i>1

 o f o d d integers is 

such that di + e = di for all Vs, then the sequence is said to be periodic mod 

s and is denoted by |d1, d2, d3, ...,d8}. In reference [2], I have obtained 

some results concerning nonbasic sequence with periodicity mod 3 or nonbasic 
triples. In this paper, we are concerned with basic sequence. 

Th&QtiQjm 1: A necessary and sufficient condition for the sequence \di\i>1 of 

odd integers, which is periodic mod s, to be basic is that 
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0 =YJ ai^'ldi E ° (m o d 2"8 - 1 ) 
£ - 1 

i s impossible for n _> 1 and a^ = 0 or 1 for a l l i _> 1. 

V^lOJs} This i s proved in reference [1] . 

ThZQSim 2: The m-tuple • 

{ 2 ^ + 1 - 1 , - 1 , - 1 , . . . , - l } 

is a basic sequence where k and m are integers with k >_ 1 and m >_ 2. 

VKOO^I Suppose that the given ???-tuple is not basic. Then (1) of Theorem 1.8 
holds for some integers n >_ 1. Then there exist integers a^, b^, . . . , v^ for 
0 £ k <_ n - 1 such that 

(2wfc + 1'- l)a0 - 2Z?0 - 22c0 - ... - 2m-1r0 + (2mk+l - 1 ) 2 ^ 

-2m + 1b, - 2m+1ol - .... - 2 ^ - ^ , + (2m*+1 - l)22wa2 - 22m + lb2 (1) 
- 2 2 m + 2 c 2 - . . . T 23m~lr2 + . . . + ' (2 m f e + 1 - l ) 2 m n - m a n _ 1 

- 2 " m - m + 1 £ n _ 1 - 2 m n - m + 2 c n _ 1 - , . . . - 2mn~lrn_l E 0 ( m o d 2 m n - l ) . 

Collecting terms in the above,congruence, we obtain 

(2 -2mk - l ) ( a 0 + 2max + 2 2 *a 2 + ••• + 2 ' 7 7 n ^a n _ 1 ) 

-2(Z>0 + 2wfe1 + ••• + 2 m n - m b n . 1 ) - 2 2 ( e 0 - 2mel + 2 2 % + . . . 

+ 2mn~men_l) - . . . - 2 m " 1 ( p 0 + 2mpx••+ ••• + 2 m n " m p n - i ) E 0 ( m o d 2 m - l ) 

- (a 0 + 2max + 22ma2 + • - • + 2Bfn--man_1) 

+ 2(2mkaQ + 2mk+mal + 2mk+2ma2 + ••• + 2m*+mn-m< a n - i 

-b0 . - 2mbl - . . . - 2mn-mbn_l - 2a0 •- 2 w + 1 c 1 . - ••• 

_ nmn-fn+l _ _ 9 m - 2 _ 9 2 m - 2 „ _ _ nmn-2 N 
z c n - 1 ^ x 0 * • £ 1 ' ' * l n - \ } 

E 0 (mod 2m - 1 ) 

which can be put i n t h e form 

- ( a 0 4- 2max + 2 2 m a 2 + ••• + 2mn~man_{) + 2{2mk(aQ - bk - 2ek -

- 2™~\) + 2»<* + l > ( a 1 - . 6fc + 1 - 2ef c + 1 - , . . - 2 - 2 P , + 1 ) + - - . 

+ .2"< n " 1 >(a B . 1 . f c - &„_!• - 2en_x - . . . - 2 * - 2 2 V l ) 

+ 2(2"X-fc"&o - 2^o - • - - 2 * ~ S ) + / • • 

+ 2 ^ " 1 > ( 2 - a n . i ~ V i " 2 <Vi - • • ; - 2"-2*fc_1) 

+ (2mnan_k - 6 0 - 2a0 - . . . . - 2"-2r0) + . . . 
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+ 2"<*-1>(2"»a„_:i - ik..; -•2C f c. 1 - ....- 2-2r„.1)} ' 

E o (mod 2"m-i). ;':,-. 

Now d e f i n e a n _ { = a_f for , 1 £ i .<."&, and l e t 

Q = - ( a 0 + 2m
ai + 22ma2 + • • • + 2an-manll) + 2{2mk(a0 - bk - 2ok 

- • • • . . - 2-2rfc0:+ ^ ^ K - &, + 1 - 2cfc + 1 2-V, + 1) 

O) • + ' " + / ( n - I ) K . 1 . f c , ^ . 1
: ; 2 C B , 1 - . . . - 2 « - V 1 ) 

• + ( a . k - &0 " 2e0';-• • • • - : 2 m - 2 r o y : + . . . + 2m (*-1>(a_1 - 2>k_x 

" . .2ck-i - • •• •- 2m-2rk.\)) = 0 ( m o d 2 m " - l ) . 

Rear rang ing terms in ( 3 ) , , w e o b t a i n , 

Q = {-a0 + 2(a_k-b0 - 2o6 - .•.',. - 2"-2r0)) + 2m{-ax + 2(a_ f c + 1 

- Z*! - 2 c ! - •;• • ' - 2 w _ 2 r x ) ' + . . . . ' + 2 " * - 1 ' - a ^ + 2 (a_ 1 - i , ^ 

(4) - 2 ^ - . . . • ' • - 2"-22y_1.) . + 2ra" - a , + 2 (a 0 - &fc - 2 c , 

- • • • -.2m-2rk)) .+ .v-v+-2-<:—1><-an_1.+ 2 ( a n . 1 . k - *>„„, - 2e B _ 1 

- . . . - 2m-2Tn^)} =0 <mod 2 m " - l > . 

Taking a b s o l u t e v a l u e s and us ing t h e t r i a n g l e i n e q u a l i t y , we o b t a i n 

\Q\ .'<. (2m - 1 ) . + 2m(2m - 1) + 2 2 m (2 m - 1) + . . . + 2m^n~l){2m - 1) 

= (2m - 1) + (22m - 2mY + (23m - 22mV 4- • • • + (2m n - 2/"^n""1^) 

Now, | e | = 2/ 7 m- 1 , p rov ided 

. - a* + 2(a„fc + ^ - 6* - 2 c * - >. - 2 m " 2 p . ) = 2m - 1 

for all £ with 0 .<_ £ <_ n T 1. But this clearly implies that 

a* = 1, a_k + i = 0, and bi = C£= • • • = ri = 1 for all £. 

Since the first two equalities' are clearly contradictory, it follows that we 
must have Q = 0 and hence 

(5) -a, = 2(a.k+. - &,- 2c, - ... - 2m-2ri), 

and yet a'f-= 0 or a, = 1 for all i . Since the right-hand side of (5) is di-
visible by 2, it follows that ri = 0 for all i . Thus, 

(5') 0.- 2{a_k+i - bi - lot - ••' - 2m-2Ti) 
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(6) a_k + i - hi = 2ci + •••. + 2m-2ri for all i . 

Possibilities for a_k + i - bi are 0, 1, and -1. But the right-hand side of (6) 
is divisible by 2. Hence, we must have that a_k + t - b± ~ 0 for all i . Since 
a„k + t = 0 for all i, this implies that bi = 0 for all i and hence that Ci = 
0, ..., vi = 0 for all i . But since this contradicts Theorem 1.8, it follows 

that the m-tuple 2m +1 - 1, -1, -1, ..., -1 is basic as claimed. 
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PYTHAGOREAN TRIPLES AND TRIANGULAR NUMBERS 

DAVID W. BALLEW and RONALD C. WEGER 
South Dakota School of Mines and Technology, RapidjCity, SD 57701 

1. INTRODUCTION 

In [4] W. Sierpinski proves that there are an infinite number of Pytha-
gorean triples in which two members are triangular and the hypotenuse is an 
integer. [A number Tn is triangular if Tn is of the form Tn = n(n + l)/2 
for some integer n. A Pythagorean triple is a set of three integers x, y, z 
such that x2 + y2 - z2.] Further, Sierpinski gives an example due to Zaran-
kiewicz, 

T132 = 8778, Tllt3 = 10296, and Tl6h = 13530, 

in which every member of the Pythagorean triple is triangular. He states that 
this is the only known nontrivial example of this phenomenon, and that it is 
not known whether the number of such triples is finite or infinite. 

This paper will give some partial results related to the above problem. 
In particular, we will give necessary and sufficient conditions for the ex-
istence of Pythagorean triples in which all members are triangular. We will 
extend these conditions to discuss the problem of triangulars being repre-
sented as sums of powers. 

2. PYTHAGOREAN TRIPLES WITH TRIANGULAR SOLUTIONS 

By a triangular solution to a Diophantine equation f(x , ..., xn) - 0, 
we mean a solution in which every variable is triangular. 

ThdQtKim 1: The Pythagorean equation x2 + y2 = z2 has a triangular solution 
x - Ta , y - Tb , z = T0 if and only if there exist integers m and k such that 

m + (m + 1) 3 + • • • + (m + k) 3; 

that is, T£ is a sum of k 4- 1 consecutive cubes. 



1979] PYTHAGOREAN TRIPLES AND TRIANGULAR NUMBERS 169 

Pfioofi: It is a known formula that 

k = 0 
So if 

with a <_b, then 

Tl + Tl = Tl 

k = a +1 

To show the converse, we need only reverse the steps. Q.E.D.. 

Using Zarankiewicz's example, we can note that T^h3 is a sum of 31 cubes; 
i.e., 

164 

n>. - £ *3-
-fc - 1 3 3 

3. TRIANGULARS AS CUBES AND SUMS OF CUBES 

We first show that a triangular cannot be a cube. This is an old result, 
first proved by Euler in 1738 [2]. However, it is so closely related to our 
work that we will include a proof here. 

Ltmma 2: The triangular Tn is a fcth power if and only if T\ is a kth power. 

VKOO^I This is an easy exercise using the fact that every integer has a 
unique decomposition into primes. 

Lemma, 3-' The equality Tn = mk holds nontrivially if and only if the equa-
tions xk - 2yk = ±1 have nontrivial solutions. Take the plus sign if n is 
even and the minus sign if n is odd. 

VKOOJ- L e t 
n{n + 1) 

1 n 2 k' 

C l e a r l y (ft, ft + 1) = 1. Let ft =. 2 j ; then 

( 2 J ) ( 2 J + l ) / 2 = m*. 

Thus t h e r e a r e i n t e g e r s a; and 2/ such t h a t j - y and 2 j + 1 = xk; whence 

xk _ 2z/fe = 1 . 

Now let n = 2j - 1. In the same way as above, there are integers y9 x such 
that j* = yk, 2j - 1 = x^5 and .a?* - 2yk = -1. 

Since the steps are reversible, the converse is easily proved. Q.E.D. 

Thz.0H.2m 4: There is no triangular number greater than 1 which is a cube.1 " 

VH.OQ&: If Tn = w3, then by Lemma 3, x3 - 2z/3 = -1 has a solution. However, 
by [1, p. 72], x3 - 2y3 = 1 has only x = -1, y = 0 as solutions. Hence, by 
the construction in Lemma 3,ft=lorO.Q.E.D. 

We will now state, without proof, a theorem due to Siegel which will be, 
of utmost importance in that which follows. 
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Tknotim 5: (Siegel [3, p. 264]) The equation 

y2 = aQxn + a^x71'1 + ... + an 

has only a finite number of integer solutions if the right-hand side has at 
least three different linear factors. 

We can immediately apply this theorem in the proof of the following re-
sult. 

T/ieô em 6** For a fixed k9 there are only a finite number of sums of k con-
secutive cubes which can be the square of a triangular number. For every /c, 
there is at least one such sum which is the square of a triangular. 

Vh.00^1 The last statement follows from the identity 

n = 0 

To prove the first statement we consider two cases. Assume k = 21 + 1. 
Consider the equation 

I 
(1) T\ = £ (rn + J ) 3 . 

j--z-

W.e want to show that this equation has only a finite number of solutions in 
n and m. We have 

Z 
(2) T2 = ̂ 2 0" + j) 3 = ̂ 3 + Bm AZ + 0 

d"'1 = m(Am2 + B). 

Now Am2 + B is never a square since {am + 2?) always has a first-degree term. 
Thus, equation (2) has no squared linear factors on its right-hand side, and 
by Theorem 5 it has only a finite number of solutions. 

If k = 2Z-, we consider 
l + i 

(3) T2 = £ (m + J ) 3 

= {1L + l)m3 + L(L - I)(2L + l)m + (w 4- L - 1) 3 

= (L + 1)(2/T?3 + 3/7?2 + (2L2 + 4L +. 3)TW + {L + l)2). 

To show that the right-hand side does not have a square linear factor, we 
show that it and its derivative, 

6m2 + 6m + (2L2 + 4L + 3) : 

have a greatest common divisor of 1. This is an easy application of the Eu-
clidean algorithm. Hence, using Theorem 5, equation (3) has only a finite 
number of integral solutions. Q.E.D. 

Combining Theorems 1 and 6, we have a type of finiteness condition for 
all members of a Pythagorean triple to be triangular. Of course, the k can 
vary, so we do not have the condition that only a finite number of such tri-
ples exist, but that for a fixed /<, only a finite number exist. 
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4. TRIANGULARS AND SUMS OF HIGHER POWERS 

We can prove theorems similar to Theorems 4 and 6 for higher powers. 

ThdQfim 7: The equations Tn = mh and Tn = m5 are impossible for n > 1. 

TtlOOl'. This follows from Lemma 3 and the fact that the equations 

xk - 2yh = ±1 and x5 - 2y5 = ±1 

have no nontrivial solutions [1]. Q.E.D. 

Theorem 7 was first stated by Fermat in 1658, but he apparently gave no 
proof; at least none has been found. The first proof was given by Euler [3]. 

TktOKUm 8: For a fixed k9 the equations 

and 
k 

i-0 

have only a finite number of solutions. 

VKOO^i These statements are proven using techniques completely similar to 
the proof of Theorem 6. Greatest common divisor calculations are extremely 
complicated and are therefore omitted. Q.E.D. 

The techniques of Theorem 6 appear to apply to even higher powers. How-
ever, there does not appear to be a general method of handling all such cases 
simultaneously because of the differences of the equations and the deriva-
tives. 

5. THE EQUATION T(n+l)* = k1 

The theorems of this section digress from the main topics of this paper, 
but they are included as nice illustrations of the use of Theorem 5. 

Tk&OH.em 9: The equation T(n + 1^ = k2 has only a finite number of solutions. 

VKooji If (n + l)2((n + l) 2 + l)/2 = k2, then 

(4) 2k2 = n1 + 4n3 + 7n2 + 6n + 2. 

The derivative of the right-hand side is 

4n3 + 12n2 + 14n + 6 = 2(n + 1)(2n2 + 4n + 3). 

It is easy to check that no root of the derivative is a root of equation (4), 
so equation (4) has no squared factor. Hence, by Theorem 5, there are only 
a finite number of solutions to the equation of the theorem. Q.E.D. 

Note that T(1) = (l)2 and T(7)z = (35)2. 

In [4] Sierpinski shows that the equation 

(T2U)2 + (T2u+1)2 = [(2w + l)v]2 

with V - u + (u + 1) has only a finite number of solutions. Since we have 
that the identity 
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(T2u + 0 + (^2M) " (̂2w + l)2 

holds, we have the following theorem. 

TktOK.(im 10: The equation 

(2w+l) 

(u + ] 

VKoai} Use Theorem 9. 

T(2u+rt*- = t(2" + D y ] 2 

with V - u + (u + 1) has only a finite number of solutions. 
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EXTENSIONS OF THE W. MNICH PROBLEM 

HAIG E. BOHIGIAN 
The City University of New York, New York, NY 10019 

ABSTRACT 

W. Sierpinski publicized the following problem proposed by Werner Mnich 
in 1956: Are there three rational numbers whose sum and product are both one! 
In 1960, J. W. S. Cassels proved that there are no rationals that meet the 
Mnich condition. This paper extends the Mnich problem to fc-tuples of ration-
als whose sum and product are one by providing infinite solutions for all 
k > 3. It also provides generating forms that yield infinite solutions to 
the original Mnich problem in real and complex numbers, as well as providing 
infinite solutions for rational sums and products other than one. 

HISTORICAL OVERVIEW 

Sierpinski [6] cited a question posed by Werner Mnich as a most inter-
esting problem, and one that at that time was unsolved. The Mnich question 
concerned the existence of three rational numbers whose sum and product are 
both one: 

(1) x + y + z = xyz,= 1 (x, y, z rational). 

Cassels [1] proved that there are no rationals that satisfy the conditions 
of (1). Cassels also shows that this problem was expressed by Mordell [3], 
in equivalent, if not exact form. Additionally, Cassels has compiled an ex-
cellent bibliography that demonstrates that the "Mnich" problem has its roots 
in the work of Sylvester [13] who in turn obtained some results from the 1870 
work of the Reverend Father Pepin. Sierpinski [9] provides a more elementary 
proof of the impossibility of a weaker version of (1) , along with an excel-
lent summary of some of the equivalent forms of the "Mnich" problem. Later, 
Sansone and Cassels [4] provided another proof of the impossibility of (1). 
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EXTENSIONS TO ^-TUPLES 

It is natural to consider the generalization of the "Mnich" problem. Do 
there exist ^-tuples of rational numbers such that their sums and products 
are both one for a given natural number "k: 

(2) x1 + x2 + x3 + ' - ' + xk = x1x2x3 ... xk = 1, for k > 3? 

Sierpinski [6, p. 127] states that Andrew Schinzel has proven that there are 
an infinite number of solutions for every k-tuple in (2) . However, in the 
source cited, Trost [14] only appears to credit Schinzel with the proof of 
infinite &-tuples in (2) when k is of the form 4n or 4n + 1, where n is a 
natural number (i.e., k = 4, 5,8, 9,12, 13, etc.). Schinzel provided a gene-
ral form for generating an infinite number of solutions to (2) when k = 4. 
He provided one case for k = 5 (viz., 1,1, 1,-1, - 1 ) , but failed to demon-
strate any solutions at all for (2) when the values of k are of the form 4n + 
2 or 4n + 3 (viz., 6, 7,10, 11,14, 15,etc.). Explicit generating functions 
will now be given which prove that there are indeed an infinite number of 
rational ^-tuples for all k > 3 that satisfy (2). 

It is quite obvious that for k = 2 there are no real solutions, since 
xy = x + y = 1 yields the quadratic equation x - # + 1 = 0 whose discrimi-
nant is -3. For k = 4, a general form was given by Schinzel [14]: 

(3) {n2/{n2 - 1), 1/(1 - n 2 ) , (n2 - l)/n, (1 - n2)/n}, n * ±1, 0, 

e.g. , for n = 2, 

4/3 - 1/3 + 3/2 - 3/2 = (4/3)(-1/3)(3/2)(-3/2) = 1. 

I derived the following general generating functions for all fc-tuples greater 
than 4. Beyond the restrictions cited, they yield an infinite set of solu-
tions for (2) by using any rational value of n. 

(4) For k= 5, \ni -l/n9 -n, 1/n, l}, n + 0, 

e.g., for n - 2, 

2 - 1/2 - 2 + 1/2 + 1 = (2)(-1/2)(-2)(1/2) (1) = 1. 

(5) For k = 6, {l/n2(n + 1), -l/n2(n + 1), (n + l ) 2 , -n2, -n, -n), 
n + 0, -1, 

e.g., for n = 2, 

1/12 - 1/12 + 9 - 4 - 2 - 2 

= (1/12)(-1/12)(9)(-4)(-2)(-2) = 1. 

(6) For k = 7, {(« - l) 2 , (n - 1/2), (n - 1/2), 1, -n2, 

l/n(n - l)(n - 1/2), -l/n(n - 1) (n - HD), 
n * 0, 1, 1/2, 

e.g., for n = 2, 

1 + 3/2 + 3/2 + 1 - 4 + 1/3 - 1/3 

= (1) (3/2) (3/2) (1) (-4) (1/3) (-1/3) = 1. 
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Since the elements of the set U - (1, -1, 1, -1) have a sum of 0 and a 
produce of 1, [/ forms the basis for generating all remaining explicit expres-
sions beyond k = 7 by adjoining the elements of U onto the A:-tuple results 
for k = 4, 5, 6, and 7. The process is then repeated as often as is neces-
sary as a 4-cycle. For example: 

(7) For k = 8, 

{n2/n2 - 1, n2 - 1/n, 1 - n2/n9 1/1 - n2, 1, -1, 1, -1} 

= {k = 4, U), n + 0, -1, +1, or {k = 4, k = 4}. 

(8) For k = 9, 

(n, -1/n, -n, 1/n, 1, 1, -1, 1, -1} = {k = 5, £/}, n f 0. 

(9) For fc = 10, (fe = 6 , [/}; fo r £ = 1 1 , {k = 7, u}; 

fo r fc = 12 , {k = 4 , fc = 4 , k = 4} or (k = 6, fc = 6} 

or {k = 8, U) o r {̂c = 8, k = 4} or {A: = 7, fc = 5} 

or {k = 4 , J/, £/}. 

E t c . 

No claim is made here that the k-tuple form of the generating functions 
in (4) through (9) are unique. 

EXTENSIONS TO OTHER NUMBER SYSTEMS 

Although the conditions for generating rational roots for equation (1) 
have been demonstrated to be impossible, it is clear that rational roots ap-
proximating the Mnich criterion can be generated with any degree of accuracy 
required. Consider the example: 

(10) (7/3)(-5/9)(-27/35) = 1, but 7/3 - 5/9 - 27/35 = 951/845 

and 

(11) -.726547 - .540786 + 2.333333 = 1, but 

(-.726547)(-.5406786)(2.333333) = 0.9999999. 

If the solution domain for equation (1) is expanded from the rationals 
to the reals, then there are an infinite number of solutions of the form 
(a ± /F, c) which can be derived from the Mnich conditions 

2a + c = 1 and (a2 - b)o = 1. 

One form of the solution in reals yields the following infinite set in which 
a is real: 

(12) (a +/a 2 + l/(2a - 1), a - /a2 + l/(2a - 1), 1 - 2a), a + 1/2, 

e.g., for a = 2, 

2 + /1373 + 2 - /137T - 3 = (2 + /H/T) (2 - /13/3) (-3) = 1. 

The generating form in (12) remains real as long as a + l/(2a - 1) >. 0, 
which is the case provided that a > 1/2 or a <_ -.6572981. 
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This latter condition for a makes the discriminant in (12) zero and 
yields the only solution with two equal elements: 

(13) A = {#-53/216 + /13/216 + #-53/216 - /13/216 + 1/6}; 

B = 2{l/3 - #-53/216 + /13/216 - #-53/216 - /13/216}; 

A + A + B = 04) 04) (5) = 1. 

For values of a in the interval -.6572981 < a < 1/2, the generating form in 
(12) yields complex conjugate results, e.g., 

(14) a = 0, {±i, 1}, and a = -1/2, {(-1 ± i)/29 2}. 

Solutions of the Mnich problem in reals have not appeared in the literature, 
although Sierpinski [7, p. 176] does cite the first example in (14). 

Also absent from the literature is a discussion of the Mnich problem in 
the complex plane. Assuming that the solution for (1) is of the form 

(a ± i\/b, c) 
yields the infinite generating form with n real as follows: 

n , . j 1 ± i/(n3 - n + 2) I in - 2) n - 2 
U J ; I n ? n 

e . g . , for a = 4 {(1 ± ^ / 3 l ) / 4 , 1/2}. 

The generating form in (15) remains complex as long as 

(n3 - n + 2)/(n ~ 2) >. 0, 
which is the case provided that n > 2 or n < -1.5213797. Note that these 
limits are the reciprocals of those for (12). When n is in the interval 
-1.5213797 <_ n < 2, (15) generates real solutions. Clearly, the generating 
forms (12) and (15) presented here for yielding real and complex solutions 
to (1) are not unique. 

EXTENSIONS TO OTHER CONSTANT SUMS AND PRODUCTS 

If the restriction in (2) that the product and sum must be equal to one 
is replaced by some rational number c, then a more general Mnich problem de-
velops for rational Xi: 

(16) xl + x2 + x3 + • • • + xk = x1x2x$ .. . xk = o, for k >_ 2. 

When k = 2, the infinite generating set is of the form: 

(17) {x, xl(x - 1)} where the product and sum = x2/(x - 1)? x f 1? 

e.g., 2 + 2 = (2) (2) = 4, and 3 + 3/2 = (3) (3/2) = 9/2. 

When k = 3, then x + y + z = xyz = e. If we assume that y - xl(x - 1) as in 
(17), then solving for z yields z = (x + y)/(xy - 1) = x2/(x2 - x + 1). The 
infinite set is: 

n 1 0, 2, 
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(18) f x x2 } 
<x9 —r > x ^ 1, and the product and 
I x - 1 "ar - x + 1; 
sum equal xh/ (x3 - 2x2 + 2x - 1) , 
e.g., 2 + 2 + 4/3 = (2)(2)(4/3) = 16/3. 

When k = 4, using the previous results yields the infinite set: 

(19) \X* ^ T ^ - x + l' x* - x* - 2x* - 2x + IV X * lf 

e.g., 2 + 2 + 4/3 + 16/13 =(2)(2)(4/3)(16/13) = 256/39. 

It is obvious that this process can be generalized in a recursive way to gen-
erate infinite rational solutions for any fc-tuple. 

Sierpiiiski [6, p. 127] credits Schinzel with demonstrating that the ele-
ments in (16) can be restricted to integers by the following substitutions 
for all fc >. 2: 

(20) xk.1 = 2 and xk = k (fulfilled first), and 

X •, 9 X 2 j ^ 3 ) > xk-2 1. 

The following table presents the results of (20). 

k-Tuple 

2 

3 

4 

5 

k 

(2, 

(1, 

(1, 

(1, 

(1, 

Solution Set 

2> 
2, 3) 

1, 2/4). 

1, 1,2, 5) 

1, ..., 1, 2, 

k - 2 

k) 

Product = Sum = C 

4 

6 

8 . 
10 

fc-2 
k + 2 + ^ 1 = 2k 

k = l 

It is worth noting that the number of integer solutions for sufficiently 
large k in (16) is still an open question. Also worth noting is that the re-
sult for k = 3 in the above table can be derived from assuming that the inte-
gers are of the form x - p, x, x + p, from which it follows that 

x = ±/p2 + 3. 

The only rational results generated are for p = 1 (1, 2, 3), and for p = -1 
(-1,-2, -3). 

SUMMARY 

This paper traced the "Mnich" problem back to the work of Father Pepin 
in the 1870s, and identified the proofs of Cassels, Sansone, and Sierpinski 
as having decided the question in (1) in the negative. This restatement is 
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needed because their results are not widely known, and sources such as (10) 
and (12) continue to cite the "Mnich" problem as unsolved. 

Infinite generating forms for the extension of the Mnich conditions to 
all /c-tuples greater than three are provided in (3)-(9). Infinite generating 
forms for the "Mnich" problem in the real and complex plane are provided in 
(12) and (15), respectively; also, approximate rational solutions are given 
in (10) and (11). Finally, the "Mnich" problem is extended to rational sums 
and products other than 1, and the recursive generating forms are provided 
for an infinite number of rational solutions for k >_ 2, with k = 2, k = 3, 
and k = 4 given explicitly, in (17)-(19). 
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GROWTH TYPES OF FIBONACCI AND MARKOFF* 

HARVEY COHN 
City College of New York, New York, NY 10031 

1. PRELIMINARY REMARKS 

The pattern of Fibonaccian growth in pure and applied mathematics is 
well known and seemingly ubiquitous. In recent work of the author (see [1]), 
a generalization of this pattern emerged where the "linear" growth of Fibo-
nacci type is replaced by a "tree" growth which might appropriately be called 
the "Markoff type." There are many instances where tree-growth is used for 
number-theoretic functions (for a recent example, see [4]). What is differ-
ent here is the application of the tree to (noncommutative) strings of sym-
bols. This, paradoxically, makes for a simpler device but one with applica-
tions to many different fields. 

The use of the "Markoff" designation requires some clarification. We 
refer to A. A. Markoff (1856-1922), the number-theorist. He was also the 
probabilitist (with the name customarily spelled "Markov" in this context), 
but the growth type we desire is nonrandom and strictly a consequence of his 
number-theoretic work. To compound the confusion, he had a lesser known bro-
ther, V. A. Markoff (also a number-theorist), and a very famous son, the lo-
gician A. A. Markov (still alive today). 

2. SEMIGROUP 

We consider S2 a free semigroup consisting of strings of symbols in A 
and B (including "/' the null symbol) to form words w = w(A,B). If the word 
W has a symbols A and b symbols B (for a >_ 0, b >_ 0) , then we say word w has 
coordinates {a, b}. For instance, some coordinates and words are 

{0, 0}, {1, 0}, {0, 1}, {1, 1}, {1, 1}, {4, 2}, 

1, A, B, AB, BA, AAABAB, etc. 

Of course, distinct words (e.g., AB and BA) may have the same coordinates. 
Naturally, we abbreviate AAABAB as A3BAB, etc. 

We also introduce the concept of equivalence. Two words of S2 are said 
to be equivalent if they are cyclic permutations of one another including the 
trivial (identity) permutation. This is denoted by "~". Thus, 

w1(A,B)w2(A9B) ~ w2(A,B)wl(A,B). 

ABAA - ABAA - BAAA ~ AAAB ~ -•• 

Equivalent words have the same coordinates, of course (but not conversely, 
ABAB and AABB have coordinates {2, 2}). 

Actually W1 ~ W2 means Tw\ = W2T (for TeS2), and for computational pur-
poses it might be convenient to do computations inside the free group by 
writing w1 = T~lw2T. In principle, however, growth requires only a semigroup. 
We also need the symbol when we have multiple equivalence 

^Supported by NSF Grant MCS 76-06744. 
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(w19w.2, ...) ~ (w[9w'v ...) ^>Twi = w[T9 Tw2 = w[T9 ... 

for the same T in each case. 

3. TYPES OF GROWTH 

Fibonaccian growth suggests the sequence 

(f-2 = 1, f-i = 0), /„ = 1, f1 = 1, /2 = 2, ..., f„ + 1 =/n.1 +/„. 

If we start with A and.B instead of fQ and fx we have a sequence of strings, 

W0 = A, w1 = B, w2 = AB9 . .., ^n + 1 = wn.1z*?n/ 

To list a few strings with coordinates 

{1, 0}, {0, 1}, {1, l}, {1, 2}, {2, 3}, 

A 9 B , AB, / M 5 , AB&4B , • • . 

Clearly wn(A,B) has the coordinates {/n_2, /n_x}. 

Here we have used the strings Wn(A9B) instead of fn but the progression 
is still linearly ordered: 

•••-->• (wn_l9Wn) -* (&;„,&?„_•,&?„) ->--•- (Fibonacci type). 

We now consider a generalization of this growth where the ordering is not 
linear but tree-like, 

(w'9w") 
^—^ ^^v. (Markoff type). 

(y'9w'w") (w"9w'w") 

Thus, once w(=wTw") is formed, we have the choice of dropping w' (Fibonacci 
again) or dropping w". 

We illustrate the Markoff tree generated by starting with the pair 04,5). 
(The "+" and "-" signs are explained in Section .4 below). 

(A9B)+ 

{A9ABY (B9ABT 

/ \ / X 
(A9AAB)+ (AB9AAB)~ (B9BAB)~ (AB9BAB)+ 

/ \ e t c . / \ / \ e t c . / \ 
n ~ 1 There are 2 possible pairs on the nth level. 

The reader can easily recognize Fibonaccian growth on the extreme right 
diagonal (a) 

A9 B9 AB, BAB, ABBAB, ... 
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On the extreme left diagonal (3), we see the simpler growth 

B9 AB9 MB, AAAB9 ... 

This may seem asymmetrical, but a parallel diagonal (y) gives 

B, AB9 BAB, BBAB, . .. 

which is equivalent (with the same "T" = B) to 

B9 BA9 BBA9 BBBA, ... 

4. EUCLIDEAN PARTITION 

If we look at the words in the Markoff tree (in Section 3), we see that 
they have coordinates as follows: 

({1, 0}, {0, 1})+ 

({1, 0}, {1, 1})+ ({0, 1}, {1, I})" 

({1, 0}, {2, 1})+" ({1, 1}, {2, I})" ({0, 1}, {1, 2})" ({1, 1}, {1, 2})+ 

In general, a pair (w1,W2) has the coordinates 

({al9 bx}, {a2, b2}) where alb2 - a2b1 = ±1. 

(The "+" and "-" designations give this sign in Section 3 and above.) We can 
prove an even stronger result if we introduce a definition: 

Let a, a', a'7, b9 br
9 b" all be >. 0, then we say 

(a9b) = \a',b') + (a",2?") 
is a euolidean partition exactly when a rb" - b fa!t = +1. Then every such (a,b) 
has a euclidean partition if ab > 0 by virtue of the euolidean algorithm by 
the solvability of 

ax - by = ±1, (0 £ x < b, 0 <. y < a). 

For +1, (x,y) = (a,r
9brr); for -1, (x,y) = (ar,br). Clearly any (a9b) can be 

ultimately partitioned to (0,1) and (1,0). For instance, if we start with 
(5,7) , we have: 

(5,7) = (3,4) + (2,3), (3,4) = (1,1) + (2,3), 
(2,3) = (1,1) + (1,2), (1,2) = (1,1) + (0,1), 
(1,1) = (1,0) + (0,1). 

We now see, generally, that if (wT
9Wfr) is in the Markoff tree and w -WfW,! 

with {af, b '}, {a", b"}, and {a, b} the coordinates of wr, w", and w (respec-
tively) , then we write 

(w',w")+ ^(a9b) = (a',b') + (a"9b") 

(w'9w"y =>(a9b) = (a"9b") + (a',&'), 

as euclidean partitions in each case. The property is preserved in the Mar-
koff tree, so every {a, b} with gcd (a,b) =1 (and a >_ 0, b >_ 0) is represented 
as the coordinate of some word in the Markoff tree. 
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We shall next see how words in the Markoff tree are composed by euclid-
ean partitions. 

5. STEP-WORD 

The symbol we introduce to explain words in the Markoff tree is called 
the step-word 

a 
{A,B)a>h =J]ABee , es = [sb/a] - [ (s - l)b/a] 

s»l 

where n = [£] is the integral part of g (satisfying n <_ E, < n + 1) . Here we 
assume a > 0, b > 0, and gcd (a,b) = 1. The further definition "by fiat" in-
cludes a = 0 (b = 1), 

(A.B)0'1 = B. 

In any case, (A,B)a* has coordinates {a, b}, [i.e., V"* e8 - b\. 

Some of the simple cases are: 

G4,B)1, 0 = A> (A,B)°>1 = 5 , (A9B)ul = AB 

(A,B)n'1 = AnB, (A9B)Un = ABn, (AiB)2m + l^2 =AmBAm+1B, 

(A,B)2'2m + l =ABmABm+l
9 (A,B)3>3m+2 = ABmABmtlABm + l, etc. 

Note that the values of e8 (if more than one occurs) are chosen from two con-
secutive integers, [b/a] and [b/a] + 1. 

The symbol can be extended to an arbitrary integral pair (a,b) but this 
is not relevant to present work. 

To see why the symbol is called a "step-word" let us note that the val-
ues of gp ..., ea are found by differencing the sequence [bs/a] for s = 0, 
1, 2, ..., a, in other words, by differencing the integral values of the 
step-function y = [bx/a] lying just below the line y = bx/a for 0 <_ x <_ a. 

6. NIELSEN PARTITION 

We now construct a partition of step-words W = (A,B)Uy based on the 
euclidean partition of (a,b). (It is called a "Nielsen partition" for rea-
sons explained in [1].) The idea is that if 

(a,b) = (ar,bf) + (a",b") 

is a euclidean partition, then the step-word has a (Nielsen) partition 

(A,B)a>b = (A9B)a''b' • {A9B)a"*h\ 

For example, since (5,7) = (3,4) + (2,3), we obtain the partition: 

ABABAB2ABAB2 = ABABAB2 • ABAB2. 

The justification is that the triangle bounded by the (integral) lattice 
points (0,0), (aT,br)9 (a9b) has no lattice points in its interior and lies 
below the line y = bx/a (since ab' - ba f = -1). Hence the step-function for 
y - bx/a agrees with that of y = bfx/af for 0 <_ x <_ af and agrees with that 
of the segment from (ar

9br) to (a,b) (of slope b"/ar!) , for 

ar <_ x <_ af + a" = a. 
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Inductive property, of Nielsen partituons. Let (WQ9W") be a pair of words 
in the Markoff free. Assume that if (WQ9W") + occurs, then (WQ9W") ~ (wr

 9Wrr) 
with W - w'w" a Nielsen partition (of step-words), and also assume that if 
QJ)Q,W")~ occurs, then (WQ9WQ) ~ (wr ,Wn) with w = W Tw" a Nielsen partition (of 
step-words). Then, the same property is hereditary to the next stage of the 
tree. 

The property is almost immediate, the only difficulty is in the order of 
the words. If we have (WQ9W") + then if (w£9w") ~ (wf,Wn) then (w'Q 9W",WQW") 
~ (wr

 9wn
 9wrW,r).9 so the property passes on to (WQ 9WQW") + . On the other hand, 

(W"9WQ9W")~ ~ (WQ 9W"WQ)+
 9 (using "T" = w"). Hence the property passes on to 

(,WQ 9W Q-9WQW" )" as well! The rest of the details are left to the reader. 

7. MAIN THEOREM 

If w(A9B) is a word in the Markoff tree (with the coordinates {a, b}) , 
then a >_ 0, b >_ 0, gcd (a9b) = 1, and 

w(A,B) - (A9B)a>b . ." 

Conversely, for every pair (a9b) satisfying the above conditions, a repre-
sentative w(A9B) occurs in the Markoff tree. 

The proof is a direct consequence of the inductive property of the eu-
clidean partition and the Nielsen partition. Clearly, the first stage (A9B) 
gives a Nielsen partition AB = A.Bl 

A strange consequence of this result is that the same proof would hold 
if we used the step-word as (B9A)b>a instead. (Basically, this is a conse-
quence of the relation AB ~ BA.) Thus, since the main theorem is now very 
clear on obtaining both (A,B)a>b and (B9A)b>a , we have 

\A9B)a>b ~ (B9A)h'a . 

This is an elementary fact to verify but it is not trivial. For instance, if 
(a9b) = (5,7), we have 

ABABA.B2ABAB2 ~ B2ABAB2.ABABA 

The dot indicates the point at which cyclic permutations would begin. The 
reader will find it amusing to explicitly write the T for which 

(A9B)a'£ T = T(B9A)b>a . 

[It involves the congruence bx = -1 (mod a).] 

8. MARKOFF TRIPLES 

In conclusion, we shall indicate (without proofs) how some basic number-
theoretic work of Markoff [2] leads to Markoff trees of words of a semigroup. 
The central device is the equation in positive Integers defining a so-called 
Markoff triple (m19m29m3) 

m\ + 7772+ m\ = 3W177?277?3 , (777^ > 0 ) . 

This so-called Markoff equation is discussed in [1] in terms of its connec-
tions with many branches of mathematics. 

The Important fact about the Markoff triple is that if m\ = 3rn2m3 - m19 
m\ - 3m3m1 - m29 rn% - 3m^m2 - m3 then additional Markoff triples are verifi-
able as 
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(m*l9m29m3), (ml ,m*,m3), (m19mZ9m%). 

The presence of three neighbors is exactly the property of the Markoff tree, 
one neighbor is the ancestor of (m1,m2,m3) and two neighbors are desoendents. 
The point is that all solutions can be obtained from (1,1,1) by neighbor for-
mation, and if we consider only solutions which have unequal ^1,^2,^35 they 
can be obtained from (1,2,5). [Its neighbors are (29,2,5), (1,13,5) and (1, 
2,1), which is excluded, see the tree below.] 

The connection with the semigroup S9 arises as follows: If A = ( ^ ^ ) 
(5 2\ ^1 X / 

and B = [~ . ) , then every word on the Markoff tree consists of a pair of 
matrices (w!,W,r). Then a general Markoff triple (of unequal m^) is given (in 
some order) by 

ml = — trace wr
9 m2 = — trace w", m3 = — trace wrw". 

Since traces are equal for equivalent words, then, by the main theorem, the 
Markoff triple is given by step-words in a Nielsen partition w'w" - w. Since 
the partition is unique, each triple is given by the coordinates {a, b} of 
(say) W. The reader can verify that for {l, l}, (wr,w") = (A,B) and the tri-
ple (1,2,5) comes from 1/3 of the traces of A9 B, and AB. 

More generally, the Markoff tree of Section 3 leads to three solutions 
(rearranging the order so m1 < m2 < m3): 

{1, 1}(1,2,5) 

{2, 1}(1,5,13)" {1, 2}(2,5,29) 

/ \ / \ 
[3, 1}(1,13,34) {3, 2}(5,13,194) {l, 3}(2,29,169) {2, 3}(5,29,433) 

A result which is still a troublesome conjecture (see [3]), is that there 
exists a unique nonnegative pair (a,b) for which the matrix 

\atb 
M {(i D-d i))' 

has a given trace. Thus, m3 (= 1/3 trace M) determines m19m2 completely (if 
we keep m1 < m2 < m3 as before). 
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Send all communications KegaKdtng ELEMENTARY PROBLEMS AND SOLUTIONS to 
Professor A. P. Hillman, 709 Solano Dr., S. E. , Albuquerque, New Mexico 87108. 
Each notation on pKoblem should be on a bepajiate hheoJi [OK sheets). VKe^eK-
ence will be given to tho&e typed with double Spacing in the fioKmat used be-
low. Solutions should be Keceived within 4 months ofi the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

F = F + F F = 0 F = 1 
and 

Ln + 2 = Ln + l + Ln> L0 = 2> Li = 1' 
Also a and b designate the roots (1 + /5)/2 and (1 - /5)/2, respectively, of 
x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-400 Proposed by Herta T„ Freitag, Roanoke, VA 

Let Tn be the nth triangular number n(n + l)/2. For which positive in-
tegers n is T\ + T\ + ••• + T2 an integral multiple of Tn? 

B-^01 Proposed by Gary L. Mullen, Pennsylvania State University, Sharon, PA 

Show that lim [(n!)2n/(n2)!] = 0. 
n-»-oo 

B-402 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Show that (L„Ln+3, 2Ln+1LM+2, 5̂ 2n + 3̂  -*-s a Pythagorean triple. 

B-403 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Let m = 5n. Show that L2m = -2 (mod 5m2). 

B-404 Proposed by Phil Mana, Albuquerque, NM 

Let x be a positive irrational number. Let a, £>, c, and 6? be positive 
integers with alb < x < old. If alb < v < x, with r rational, implies that 
the denominator of r exceeds b, we call a/b a good lower approximation (GLA) 
for x. If x < v < c/d, with v rational, implies that the denominator of v 
exceeds d, old is a good upper approximation (GUA) for x. Find all the GLAs 
and all the GUAs for (1 + /5)/2. 

B-405 Proposed by Phil Mana, Albuquerque, NM 

Prove that for every positive irrational x, the GLAs and GUAs for x (as 
defined in B-404) can be put together to form one sequence {p /q } with 

p q - p q , = ±1 for all n. 

184 
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SOLUTIONS 

Complementary Primes 

B-376 Proposed by Frank Kocher and Gary L. Mullen, 
Pennsylvania State University, University Park and Sharon, PA 

Find all integers n >3 such that n -p is an odd prime for all odd primes 
p less than n. 

Solution by Paul S. Bruckman, Concord, CA 

Let n be a solution to the problem, and p any odd prime less than n. 
Since p and n -p are odd, clearly n must be even. Hence, n = 0, 2, 4 (mod 6). 
Since 4 - 3 = 6 - 5 = 8 - 7 = 1 and 1 is not a prime, it follows that n 4- 4, 
n ^ 6, n ^ 8. Hence, n >_ 10. 

If n = 0 (mod 6), then n - 3 = 3 (mod 6), which shows that n - 3 is com-
posite and >1 9. Likewise, if n = 2 (mod 6), then n - 5 = 3 (mod 6), which 
shows that n - 5 is composite and >. 9. Finally, if n = 4 (mod 6), then n - 1 
= 3 (mod 6), which is composite, unless n = 10, in which case n - 7 = 3, a 
prime. Hence, n = 10 is the only possible solution. Since 10 - 3 = 7, 10 -
5 = 5 , 10 - 7 = 3, which are all primes, n = 10 is indeed the only solution 
to the problem. 

Also solved by Heiko Harborth (W. Germany), Charles Joscelyne, Graham Lord, 
J. M. Metzger, Bob Prielipp, E. Schmutz & M. Wachtel (Switzerland) , Sahib 
Singh, Rolf Sonntag (W. Germany), Charles W. Trigg, Gregory Wulczyn, and the 
proposer. 

Counting Lattice Points 

B-377 Proposed by Paul S. Bruckman, Concord, CA 

For all real numbers a >_ 1 and b >_ 1, prove that 
[a] [b] 

£[2>/l - (k/a)2] = J^W1 ~ (k/M2J> 
where [#] is the greatest integer in x. 

Solution by J. M. Metzger, University of North Dakota, Grand Forks, ND 

Each sum counts the number of lattice points in the first quadrant of 
2 2 

— + — = 1 
a b 

the first along the vertical lines, x = 1, x = 2, . . . , a; = [a] , the second 
along the horizontal lines, z/ = 1, 2/ = 2, ...,£/=[&]. The two counts must 
agree. 

Also solved by Bob Prielipp, Sahib Singh, and the proposer. 

Congruence Mod 3 

B-378 Proposed by George Berzsenyi, Laram University, Beaumont, TX 

Prove that F3n+l + 4nFM+3 = 0 (mod 3) for n = 0, 1, 2, ... . 
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Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oskosh, WI 

We shall establish that F3n + l + Fn + 3 E 0 (mod 3) for n = 0, 1, 2, . .., 
which is equivalent to the stated result because 4" = 1 (mod 3) for each 
nonnegative integer n. Clearly the desired result holds when n = 0 and when 
n = 1. Assume that F3k+l + Fk + 3 E 0 (mod 3) and Fsk+k + Fk + h = 0 (mod 3) , 
where k is an arbitrary nonnegative integer. Then, by addition, 

F3k+i + ̂ afc+if + Fk + 5 E 0 (mod 3). 
But 

6F3k+2 + ^F3k+1 + F3k+h = F3k + 7 
SO 

F3k + 1 + ^3k+if E F3fc+7 ( m o d 3 ) . 
Hence 

F3k + 7 + *fc + 5' E ° (mod 3> 
and our proof is complete by mathematical induction. 

Also solved by Paul S. Bruckman, Herta T. Freitag, Graham Lordf Sahib Singh, 
Gregory Wulczyn, and the proposer. 

Congruence Mod 5 

B-379 Proposed by Herta T. Freitag, Roanoke, VA 

Prove that F2n = ft(-l)n+1 (mod 5) for all nonnegative integers n. 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, WI 

Clearly the desired result holds when n = 0 and when n - 1. Assume that 
F2k E k(-l)k+1 (mod 5) and F2k+2 = (fc + l)(-l)k+2 (mod 5), where k is an ar-
bitrary nonnegative integer. Then, since 

F2.k+h = 3F2k+2 - F2k, 

F2k + h E {3k + 3)(-l)k+2 - k(-l)k + l (mod 5) 

E (~-l)k + 2(bk + 3) (mod 5) 

E (k + 2)(-l)k+3 (mod 5). 

Our solution is now complete by mathematical induction. 

Also solved by Paul S. Bruckman, Charles Joscelyne, Graham Lord, Sahib Singh, 
Gregory Wulczyn, and the proposer. 

Binomial Convolution 

B-380 Proposed by Dan Zwillinger, Cambridge, MA 

Let a, by and o be nonnegative integers. Prove that 

E (k+a -l\(n -k+b -c\ (n+a+b - c \ 
\ a \ b \ a+b+1 ' 

fc-i 

Here ( '" 1 = 0 if m < P . 
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Solution by Phil Mana, Albuquerque, NM 

For every nonnegative integer d, the Maclaurin series for (1 - x)~d~l is 

± (-:">'• 
Then 

( i - a O ~ a - 1 ( i - x)-*-1 = ( i - x)'a-h-2, 

z: (':v- ±(Jt">'- -ti'iitii1)"-
i = 0 j - 0 n = 0 x 

Equat ing c o e f f i c i e n t s of xn~a~1 on bo th s i d e s , one has 

Y^ (k -1 +a\/n -c -k+b\ = In -o +a+b\ 
2-4 \ a ) \ b ) \ a+b+l ) 
k = l 

The upper limit n - c for the sum here can be replaced by n, since any terms 

for n - o < k <_ n will vanish using the convention that ( ) = 0 for m < r. 

This gives the desired result. 

Also solved by Paul S. Bruckman, Bob Prielipp & N. J. Kuenzl, A. G. Shannon, 
and the proposer. 

Generating Function 

B-381 Proposed by V. E. Hoggatt, Jr. , San Jose State University, San Jose, CA 

Let a2n = Fn+1 and &2n + 1 = F +1Fn+ . F i n d t he . r a t i o n a l f unc t i on t h a t 
h a s 

aQ + axx + a2x2 + a3x3 + 

as its Maclaurin series. 

Solution by Sahib Singh, Clarion State College, Clarion, PA 
n 

By the result 7 F} = F F ̂ ,, we get the Mclaurin series as: 
i = 1 

F\ + F\x(± + x2 + x1* + • • •) + F\X\ + F2X3(1 + oo2 + xh + •••) + 

\F\ + F\X2 + F2
3Xh + F\X* + • • •] . 

1 + x - x2 

1 - x 

/dn - bn \2 

Using Fn = ( h ) ' t*le a b ° v e becomes 
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(1+X 'f) ±—r [(a2 + a V + a6^ + •••) 
\ 1 - x2 I (a - b)2 L 

+ {b2 + bhx2 + & V + • • • ) - IdbiX + abx2 + a2b2x* + • • • ) ] 

= I1 + x ~ x2\ . 1 [" a2
 + fe2 lab 1 

V 1 - * 2 / {a - b)2\_l - a2x2 1 - b2x2 I - abx2J 

which simplifies to 

l l + x - x2\ I (1 - x2) \ = 1 + x - x2 

V 1 - x2 / \ (1 + x2) (1 - 3x2 + a?1*)/ (1 + x2) (1 - 3* 2 + xh) ' 

Also solved by Paul S. Bruckman, R. Garfield, John W. Vogel, and the proposer. 

ERRATA 

Tne &oZloiA)Zng ojvi.oh& hewn been notzd: 

Volume 16, No. 5 (October 1978), p. 407 [J. A. H. Hunter's "Congruent Primes 
of Form (8r+l)"]. The equations presented in the second line of the article 
should read 

X2 - el2 = Z2, and X2 + eY2 = W2. 

Volume 17, No. 1 (February 1979), p. 84 (A. P. Hillman & V. E. Hoggatt, Jr.'s 
"Nearly Linear Functions"). Equation (1) should read 

k k-1 
(1) C -H - C «H = J(c/ - c.)h. >_hk - Y*°ihi' 

i=l i=l 

The second line of the proof of Lemma 7 should read 

The hypothesis E *Ef = 0 implies . . . . 

In the proof of Theorem 1, Equation (10) should read 

(10) bd(jn) = 0%^-Hj - Cm_x -Hj. 

(Kindness of Margaret Owens) 
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H-299 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Vandermonde determinants: 

(A) Evaluate 

(B) Eva lua t e 

L Sr 

F c 8r 
F 

1 

1 

1 

1 

1 

6r 

12r 

18a? 

L>2v +1 

-LSr + 3 

•LiOr +5 

-L l if r + 7 

L\ 8r + 9 

\hr 

3 0 P 

5 0 P 

5*t2> 

7 2 r 

7 0 P 

Lhv+2 

^12r +6 

^ 2 0 r + 10 

^ 2 8 r + l k 

^ 3 6 r + 18 

L&r + 3 

^18r + 9 

- ^ 3 0 P +15 

- - ^ 4 2 P + 2 1 

^5kr+27 

Lar+k 

£J2hr + 12 

Z ^ O r + 2 0 

• ^ 5 6 ^ + 2 8 

-^72r + 36 

(C) Evaluate 

1 

1 

1 

1 

LIT 

LSr 

L\0r 

Li Qr 

L^r 

L\2v 

LZQV 

L36r 

L&r 

Ll8r 

^30r 

L5L^T 

^8r 

L2hv 

Li+Qr 

L72r 

H-300 Proposed by James L. Murphy, California State College, 
San Bernardino, CA 

Given two positive integers A and B relatively prime, form a "multipli-
cative" Fibonacci sequence {A^} with A1 = A, A2 = B9 and A^+2 = A*At+l. Now 
form the sequence of partial sums {Sn} where 

189 
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i = l 

{Sn} is a subsequence of the arithmetic sequence {Tn} where 

Tn = A + nB, 

and by Dirichlet's theorem we know that infinitely many of the Tn are prime. 
The question is: Does such a sparse subsequence {Sn} of the arithmetic se-
quence A + nB also contain infinitely many primes? 

HotdA : 

S1 = A, S2 = A + B, S3 = A + B + AB, 

£\ = A + B + AB + AB2, S 5 = A + B + AB + AB2 + ^ 2 5 3 , etc. 

Some examples: 

For A = 2 and 5 = 3 , the first few Si are: 

2, 5, 11, 29, 137, 2081, all prime, and 

S7 = 212033 = 43*4931. 

For A = 3 and 5 = 14, the first few Si are: 

3, 17, 59, 647, 25343, 14546591, all prime, and 

S? = 358631287199 = 43*8340262493. 

For A = 2 and B = 21, the first few S are: 

2, 23, prime; S3 = 65, a composite; but 

£4 = 947 and S5 = 37881, both prime. 

Looking at the first six terms of the sequence {Si} for 68 different 
choices of A and B9 I found the following distribution: 

Number of Primes in Number of Sequences Having 
the First Six Terms This Number of Primes 

1 2 
2 19 
3 21 
4 22 
5 2 
6 2 

68 

H-301 Proposed by VernerE. Hoggatt, Jr., 
San Jose State University, San Jose, CA 

Let AQ9 Al9 A2, ..., An, ...be a sequence such that the nth differences 
are zero (that is, the Diagonal Sequence terminates). Show that, if 

then 
A(x) =^2 Aixi> 

t = 0 

A(X) = j-r^: • ^(i~r-^)' w h e r e Dnte) = ]C ^ ^ -
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SOLUTIONS 

Pell Mell 

H-275 Proposed by Verner E. Hoggatt, Jr., 
San Jose State University, San Jose, CA 

Let Pn denote the Pell Sequence defined as follows: 

Px = 1, P2 = 2, Pn+2 = 2Pn+1 + P„ ( n i l ) . 

Consider the array below: 

1 2 5 12 29 70 ... (PM) 

1 3 7 17 41 ... 

2 4 10 24 ... 

2 6 14 ... 

4 8 ... 

4 

Each row is obtained by taking differences in the row above. 
Let Dn denote the left diagonal sequence in this array; i.s., 

Dl = D2 = 1, D3 = Dh = 2, Z)5 = £6 = 4, £7 = DQ = 8, ... . 

(i) Show D2n_1 = D2n = 2n~l (n >_ 1) . 

(ii) Show that if F(x) represents the generating function for \Pn( 

and D(x) represents the generating function for \Dn\ , , then 

Solution by George Berzsenyi, Lamar University, Beaumont, TX 

First observe that each row in the array inherits the recursive relation 
of the Pell numbers. This is true more generally, for if {xn} is a sequence 
defined recursively by 

and if {?/n} is defined by 

then 
Hn + 2 ~ xn + 3 ~ xn + 2 = ° K^n + 2 "" ̂ w+1/ "*" ̂ ^ n + 1 ~ ̂ n/ 

= ayn + l + pz/n. 
Let En be the second diagonal sequence in the array; i.e., 

El = 2, E2 = 3, E3 = 4, Eh = 6, #5 = 8, ... . 

We shall prove by induction that for each n = 1, 2, ..., D2n_l = D2n = 2n~1, 

while #2n-i = 2 •2 n ~ 1 and #2n = 3 »2n~1. The portion of the array shown ex-

hibits this fact for n = 1; assume it for n = k. Then the first few members 

of the 2k - 1st and 2/cth rows can be obtained by using the recursion formula 
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and upon taking differences one obtains the first two members of the next two 
rows as follows: 

2k~1 2 " 2 k _ 1 5 • 2 k ~ 1 12 • 2 k ~ 1 29 • 2k~l 

>k-i 3 • 2k~l 1 * 2 k ~ l 17 • 2k' 

2 -2h 5 «2* 

2k 3-2^ 

This completes the induction and establishes part (i), 

To prove part (ii), recall that 

x F(x) = 
1 - 2x - x 2' 

and therefore, 

•n ( X \ - X + X 

F\l + x) " ! _ 2x 
2 

2xi' 

On the other hand, if 

then 

while 

n-l 

£(ff) = (ar + a?z) + 2(xd + x4) + 2z0rb + xb) + 

-2xzD(x) = -2(xd + x4) - 2z(xb + tfb) 

Hence, (1 - 2x2)D(x) = x + x2, and 

D(x) x + ar 
1 - 2x2 

Consequently the desired relationship, D(x) = F I T ~ r — ) follows. 

Also solved by V. E. Hoggatt, Jr., P. Bruckman, G. Wulczyn, and A. Shannon. 

LatZ Acknowledgment! P. Bruckman solved H-27^. 
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