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INTRODUCTION 

Cauchy gave a necessary condition for the convergence of an infinite 
series, 

k = l 

namely, that the sequence (a(n)) converges to zero as n tends to infinity. 
Olivier proved a variation of this theorem, which has, in a sense, gen-

erated more interest: Let (a(n)) be a monotonic nonincreasing sequence of 
positive numbers, tending to zero, such that 

lim ) a(k) 

exists, then lim n • a(n) = 0. 
n -> co 

For one thing, OlivierTs theorem allows for extensions in several direc-
tions [4]. Niven and Zuckerman, for instance, have proved the following 
theorem [5]: 

Tk&OHQjn 7: Let (a(n)) be a monotonic nonincreasing sequence of positive num-
bers. Then 

[An] 
(1) lim Yj a{^ 

* + ~ k=n+l 

exists for each X > 1, if and only if lim n • a(n) exists. 
n ->- co 

Clearly, Niven and Zuckerman's condition for the convergence of 

(n • a(n)) 

is weaker than that of Olivier. On the other hand, they have given a neces-
sary and sufficient condition for the convergence of 

In this paper, Olivierss theorem will be extended further in this same 
direction. We consider a sequence of positive numbers (0(n)) (as yet unspe-
cified) and a monotonic nonincreasing sequence of positive numbers (a(n)), 
such that 

[An] 
lim ¥?^Y ^ a(k) 

YI ° a(YI) exists for every A > 1. We will show that lim — n , N — exists. 
«+oo 0(n) 

193 
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When 0(n) = 1, n = 1, 2, 3, . .., the problem reduces to the case con-
sidered by Niven and Zuckerman. But more generally, as we will prove, (0(n)) 
can be any regularly varying sequence, i.e., any sequence of positive numbers 
which satisfies 

(2) limTC
0(JAn]) = i(j(A) for every A > 0, 

where ip(A) = X , where the index p is real. 
We summarize this result in Theorem 2. 

Th^0K.<im 1: Let (0(n)) be a regularly varying sequence and let (a(n)) be a 
monotonic nonincreasing sequence of positive numbers. Then 

(3) l i m ^ - £ > ( * : ) =H(X) 
k= n + 1 

Yl • CL (YI) 

exis t s for each A > 1, if and only if lim —TTT~\— e x i s t s . 
n+oo 0(n) 

P/LOOfj: L e t 
-, [ A n ] 

E(X) = 11m Hn(\) = llm-z-^r V a(k) . 
k = n + 1 

For each i n t e g e r m > A, l e t n = [m/X] i n Hn(X) and l e t r = m - [nX]. 
Since 0 = m - 777/A • A <L 777 - n • A, we have m >_ nX = [nX]. A l so , 

Since 

and 

we have 

0 <. r = m - [nA] < m - (nX - 1) < m - (m/X - 1) = A + 1 . 

n n x v ( [nA] - n ) • a([nX]) ( [nA] - n) • q(777) 
"nKA) ~ 0 ( n ) - 0 ( n ) 

[nA] + p nA + A + 1 777 + A + 1 ^ 77? + A + 1 
[nA] - n ~ ~ n A - l - n ~ (777/A - 1)A - l - n — 7 7 7 - A - l - TT?/A' 

77? •aim) _ m * a(m) 0 ( n ) [nA] + v 0[TT?/A] 
0 ( n ) " 0 ( n ) " 0(77?) - [nA] - n - / / * C A ; " 0(77?) 

?n + A + 1 # # 0 ( [ ^ / X ] ) 
777 - A - 1 - 777/A ^ ; 0(777) 

Hence, by ( 2 ) , 

(4) i i i : 8 u p 2 - g i < _ A _ . f f ( x ) . ( 1 A ) P . 

We assert that 

,. ^([Ayn]) - A([\in]) „ , , , 
lim 7T~F7 7"\ ~ ti{A) , 
n - » 0([]in]) 

where A > 1, y > 0, and 
[ A n ] 

A([Xn]) = J2 a(k)' 
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It is sufficient to show 

[Ann] 
l i m 77-77 TV 7 , aCk) = 0 , 
«+«, 0([\in]) ^ K } 

k = (A[yn]) + l 

A([Xyn}) - A([]in]) 
0 ( [ y n ] ) aiv 

Clearly, by (2) and (4), 

[Apn] 

k= ( A [ y n ] ) + i 

[Aim] 
1 

l i m 
V u yn i) 

k = {\[\in]) + l 

L A l J n j 

[A[yw]]a([A[yw]]) 
-IH^Mf • ( [ A ] + 2 ) : - = 0 , 

»~ 0 ( [ y n ] ) [X[y«]] 0([X[yn]]) 
so our assertion is proved. 

Therefore, we have 

(5) H(X]i) = ff(A)yp + H(]i), ' 

since 

i4([Xyiw]) - A(lim]) . g([yw]) , A([]m}) - 4(«) 
"V y; 0([yn]) 0(K) + 0(n) 

Interchanging y with A in (5) and manipulating the equations simultane-
ously, we have, if p / 0, H(\i)/\iQ - 1 = H(X)/XP - 1 = A, A a constant, which 
implies 

# ' ( 1 ) = l i m , = l i m n — • l i m —; — = A • p , 
A - i + A - 1 x + i + A p - 1 A + i + A - 1 

( 6 ) H(X) = ^ ^ - ( A p - 1 ) . 

If p = 0, then #(Ay) = H(X) + H(\i). Since #(•) is monotonic increasing, 
#(•) has a point of continuity and it is not hard to show H(°) is continuous 
on [I,00]. Hence H(m) is of the form 

(7) H(X) = Hr(l) log A. 

Since 

i / / ^ ^ 1 • n °aM . ([An] - n) ., . - n • a(n) ff(A) ̂  U". ~0W n = (A - 1) lim -J^~, 
we have 

#'(1) = lim -, = lim — M / \ 
AH-I A - 1 „-» 0(n) 

On the other hand, as a consequence of (4), we have 
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H(X) A(n) - A([n/X]) (n - [n/X]) r n - a(n) 
—T — = lim ^7—r > lim sup • /* / x • 

Therefore, from (6) and (7), 

um\ i- ff(A) ,. n • a (re) H (1) = lim sup — = lim sup ^ , N . 
A*I* Ap(i - l/A) " — 0<«) 

Hence, 

lim ^, s = H ' (1) . 
rc+oo 0(n) 

We now prove the converse. 

V2.fisLn<LtsLon: Let f(x) be a real valued, measurable function which satisties 

i. /(far) ,p lim *„. x = A 

for every X > 0. Then /(x) is a regularly varying function of index p. 
Every regularly varying function f(x) of.index p can be written as 

(8) f(x) = XpL(x) 

where L(x) is regularly varying of index 0 (slowly varying). (See [2].) 

L&mma 1 •' Let (0(n)) be a regularly varying sequence of index p, then the 
function f(x) defined by 

fix) = 0([x}) 

is a regularly varying function of index p. 

Lmmci 1: If L(x) is a slowly varying function, then for every [a,b], 0 < a < 
b < °°, the relation 

L(Xx) 
lim L(x) 

holds uniformly with respect to x e [a,b]. 

Lemma 2, known as the Uniform Convergence Theorem for slowly varying 
functions, has been proved by several persons. A nice proof is given in [1] 
by Bojanic and Seneta. Lemma 1 is proved by the author in [3], 

By hypothesis, 

-M™ k *a(fc) _ r 1 l m /* /-? \ — C/. 

Also, by (8), 0(k) can be written as 

0(fc) = fcP£(fc), 

where L(/c) is slowly varying. Therefore, (a(k)) can be written as 

a(/0 = C{k)kQ~lL{k) , 

where lim C(fc) = C. 

Consequently, for n sufficiently large, 
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s (C-e) L(k) 

k-
[Xnl 

where e > 0. 
C l e a r l y , 

and 

n<k<[Xn) L^n)
k=n + 1 E^> 

L(k) . L(kfn) = mm 
>-<k<[Xn] L(n^> i<k'<\ L ( n ) 

L(k) L(k'n) 
max T, N = max —— —-

By Lemmas 1 and 2, we have 

lim m m , , = 1 = lim max — 

Therefore, 

(C - E) '-' ^ ^ 

= n + l fc = n + 1 fc= n + 1 

£(n) * 

[An] 

r E a(/0 z 
fe= n + 1 

r i k=n + l 

On the other hand, 

p 

Hence, letting e -> 0, we have 

[An] 1 . p p 

D ^-H ( "o } i f p ^ ° 
fc=n+l I _ ^M 

1 l o g A i f p = 0 

1 [^ ) £ O l ^ J J ,f p j t Q 
l i m 777-v T ^ #(&) n+00 0Oz) Z-/ P 

fe= n + i I C l o g A i f p = 0 

and the converse is proved. 

I am particularly grateful to Professor Ranko Bojanic for his sugges-
tions and comments. 
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A GENERALIZATION OF WYTHOFF's GAME 

V. E. HOGGATT, JR., MARJORIE BICKNELL-JOHNSON, and RICHARD SARSFIELD 
San Jose State University, San Jose, CA 95192 

Wythoff s game is a variation of Nim, a two-pile game in which each 
player removes counters in turn until the winner takes the last counter. The 
safe-pairs generated in the solution of Wythoff's game have many properties 
interesting in themselves, and are related to the canonical Zeckendorf rep-
resentation of an integer using Fibonacci numbers. In Nim, the strategy is 
related to expressing the numbers in each pile in binary notation, or repre-
senting them by powers of 2. Here, the generalized game provides number se-
quences related to the canonical Zeckendorf representation of integers using 
Lucas numbers. 

1. INTRODUCTION: WYTHOFF'S GAME 

WythoffTs game is a two-pile game where each player in turn follows the 
rules: 

(1) At least one counter must be taken; 
(2) Any number of counters may be removed from one pile; 
(3) An equal number of counters may be removed from each pile; 
(4) The winner takes the last counter. 

The strategy is to control the number of counters in the two piles to have a 
safe position, or one in which the other player cannot win. Wythoff devised 
a set of "out of a hat" safe positions 

(1,2), (3,5), (4,7), (6,10), ..., (an,2>n). 

It was reported by W. W. Rouse Ball [1] that 

ci-n - [no,] and bn
 = [no1] = an + n, 

where a is the Golden Section Ratio, a = (1 + /5)/2, and [n] is the greatest 
integer not exceeding n. 

More recently, Nim games have been studied by Whinihan [2] and Schwenk 
[3], who showed that the safe positions were found from the unique Zeckendorf 
representation of an integer using Fibonacci numbers, but did not consider 
properties of the number pairs themselves. Properties of Wythoff pairs have 
been discussed by Horadam [4], Silber [5], [6], and Hoggatt and Hillman [7], 

For completeness, we will list the first forty Wythoff pairs and some 
of their properties that we will generalize. Also, we will denote the Fibo-
nacci numbers by Fn , where Fx = F2 = 1, Fn + 2 - Bn + i + Fn> anc^ t n e Lucas num-
bers by Ln, Ln = Fn_1 + Fn + 1 . (See Table I.) 

Generation of Wythoff pairs: 

I. Begin with a1 = 1. Always take bn - ctn + n, and take ak as the 
smallest integer not yet appearing in the table. 

II. Let B = {bn} and A = {an}. Then A and B are disjoint sets whose 
union is the set of positive integers, and A and B are self-generating. B is 
generated by taking b± = 2 and bn + i =bn +2 if n E B or bn + i =bn+3 if n £ B. 
A is generated by taking a1 = 1 and an + 1 - an + 2 if n E A or an + 1 = an + 1 if 
n € A. 

198 
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TABLE 1 

THE FIRST FORTY WYTHOFF PAIRS 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 10 

CLn 

1 
3 
4 
6 
8 
9 
11 
12 
14 
16 

£n 

2 
5 
7 

10 
13 
15 
18 
20 
23 
26 

n 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

an 

17 
19 
21 
22 
24 
25 
27 
29 
30 
32 

hn 

28 
31 
34 
36 
39 
41 
44 
47 
49 
52 

n 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

CLn 

33 
35 
37 
38 
40 
42 
43 
45 
46 
48 

hn 

54 
57 
60 
62 
65 
68 
70 
73 
75 
78 

n 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

an 

50 
51 
53 
55 
56 
58 
59 
61 
63 
64 

hn 

81 
83 1 
86 
89 
91 
94 
96 
99 
102 
104 

Properties of Wythoff pairs: 

(1 .1 ) 
(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

ak + k = bk 

an + bn = abn 

aa„ + 1 = bn 

an = 1 + S3F3 + 

bn = 2 + 6 ^ + 

a*„ + i ' a«n = 2 

ba„+l - ban = 3 

an = [na] and 

6„F„ + 

5 5̂ 5 + 
and 

and 

hn = 

••- + &kFk , where 6̂  G {0, 

••• + 6mFm9 where 6; G {05 

abn + i ~ abn = 1 

hbn+l ~ bbn = 2 

[na2] 

1} 

1} 

2. GENERALIZED WYTHOFF NUMBERS 

First, we construct a table of numbers which are generalizations of the 
safe Wythoff pair numbers (an,hn) of Section 1. We let An = 1, and take 

Bn = An + dn, where dn + Bk + 1 

(that is, dn + i = dn+l when dn + Bk or dn + 1 = dn+2 when dn = BkJ and d1 = 2) . 
Notice that before, &n = an + n; here, we are removing any integer that is 
expressible by Bk + 1. We let Cn = Bn- 1. To find successive values of An9 
we take An to be the smallest integer not yet used for Ai , B^, or Ci in the 
table. We shall find many applications of these numbers, and also show that 
they are self-generating. In Table 2, we list the first twenty values. 

We next derive some properties of the numbers An, Bn, and Cn. First, 
An, Bn, and Cn can all be expressed in terms of the numbers an and hn of the 
Wythoff pairs from Section 1. Note that A2k is even, and A2k + 1 is odd, an 
obvious corollary of Theorem 2,1, 

Tkzofim 2.7: 

(i) An = 2an - n; 
(ii) Bn = an + 2n = hn + n = aan + 1 + n; 
(ill) + In 1 = hn + n - 1 + n. 
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TABLE 2 

THE FIRST TWENTY GENERALIZED WYTHOFF NUMBERS 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

A-n 

1 
4 
5 
8 
11 
12 
15 
16 
19 
22 

^n 

3 
7 

10 
14 
18 
21 
25 
28 
32 
36 

d„ 

2 
3 
5 
6 
7 
9 
10 
12 
13 
14 

^ n 

2 
6 
9 
13 
17 
20 
24 
27 
31 
35 

n 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

An 

23 
26 
29 
30 
33 
34 
37 
40 
41 
44 

Bn 

39 
43 
47 
50 
54 
57 
61 
65 
68 
72 

dn 

16 
17 
18 
20 
21 
23 
24 
25 
27 
28 

^n 

38 
42 
46 
49 
53 
56 
60 
64 
67 
71 

VHOO{ ol TTieô etn 2.1: First, we prove (Ii) and (iii) . Consider the set of 
integers {1, 2, 3, 7. ., Bn}, which contains n Bs and n Cs, since Cn = Bn - 1, 
and j As, where AA Since A, B, and C are disjoint sets, is the 
sum of the number of 5s, the number of Cs, and the number of As, or, 

Bn = n + n + j = 2n + j, 

Cn = In - 1 + j . 

Note that 

Aan = Cn - 1 = Bn - 2, for n = 1, 2, 3, 4, 5. 

Assume that Aan = Cn - 1, or that the number of As less than Bn is j = an. 

^ a n = ^ n ™" 1 

4an + 1 = Cn + Aan + l 

Aan + 2 = Cn + 1 = Bn * Aan + 1 

Aan + 3 = Cn + 2 

but Aa + 3 = Aa +1, since the ̂ 4s differ by 1 or 3 and they do not differ by 

1; and Cn + 2 = Cn+1 - 1 or Cn + 2 = Cn+i - 2 since the Cs differ by 3 or 4. 

If i4a + 1 = Cn+1 - 1 and an + 1 = an+1, we are through; this occurs only when 

n = bk by (1.6). If n ± bk.} then n = ak. Note that the .4s differ by 1 or 3. 

Since Aa + 3 = Aa + 1, Ab + 3 f Ab + 1, since an ^ £fe for any fe. Thus, 

4,, + 1 i4 £* + i 

Now, i f Aan+1 = CM + 1 - 2 , then 

+ 1 Cn+i ! • 

But , n + 1 = K #„ + 1 , so 

Aan + l + 1 = ^ + 1 ^ v + l ^ a „ + 2 ^ a t l + 1 
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by (1.6), so that again Aa>i + l = Cn + 1 - 1. Thus, by the axiom of mathematical 

induction, j = an, and we have established (ii) and (iii). 
Now, we prove (i). Either Ak + 1 = Ak + 1 or Ak + 1 = Ak + 3. From Table 2, 

= 2a j, - k. When o b s e r v e t h a t Ax = 
k - bj, we h a v e 

Ak. 

= 2a Y - 1 and A2 = 

vl = Ak + 1 

= 2a2 -- 2 . Assume t h a t 

= (2ak - k) + 1 
= 2(ak + 1) - (k + 1) 
= 2ak+1 - (k + 1) 

by (1.6). If M ^j , then & = a^, and we have 

Ak + 1 = Ak + 3 
= (2a& - fc) + 3 
= 2(ak + 2) - (fc + 1) 
= 2ak+1 - (k + 1) 

again by (1.6), establishing (i) by mathematical induction. 

Following immediately from Theorem 2.1, and from its proof, we have 

IhdOKm 2.2: 

( i ) 

(ii) 

(iii) 

(iv) 

( v ) 

IhzoHQjn 2. 3 

pJlOOfi: By 

Abn+i " Abn
 = 1 a n d 

Bbn +i " Bbn = 3 and 

C i n + 1 - Chn = 3 and 

^ a = a n + 2n - 2 

^•a n
 = ^ n — 1 

Aan 

Ba„ 
C«« 

Bn = [na/5] , Cn = [ n a / 5 ] 

w h e r e a = ( 1 + / 5 ) / 2 . 

Theorem 2 . 1 and p r o p e r t y ( 1 . 

+ 1 

+ 1 

+ 1 ~ 

" 1 , 

• 8 ) , 

Aa„ = 3 

Ban = 4 

Ca„ = A 

and A n 2[na] - ft, 

5 n = a n + 2ft = [fta] + 2ft = [ f t (a + 2 ) ] 

= [ft(5 + / 5 ) / 2 ] = [ W T | . 

i4n = 2 a n - ft = 2 [fta] - ft. 

Tkdosim 2.4: 

( i ) 5 m + S n ^ ^ 

( i i ) Cm + Cn + Cj 

(iii) 5 m + Cn 1 Bj 

(iv) Am + Bn + Cj 

VK.00^: ( i i ) was p r o v e d by A. P . H i l l m a n [ 8 ] a s f o l l o w s . L e t Cr =ar + 2v - 1 
and CQ =as + 2s - I. Then 

Cr + Cs = ar + as + 2 ( p + s ) - 2 = C r + S + ( a r + a s - ar + 3 - 1 ) , 
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but ar = [ra] and as = [SOL] and ar + s = [ (r + s)a]. However 

[x] + [y] '- [x + y] = 0 or -1, 

so that 

ar + as - ar+s - 1 = -1 or -2, 
making 

U21 T os = Or+ s — X or Lv + 6S = Cy + s ~ z, 

but members of the sequence {Ck} have differences of 3 or 4 only, so 

Cr + S - 1 ^ Ck, and Cr + s - 2 =£ Ck , for any fc. 

The proof of (i) is similar: 

Bm + Bn = am + 2m + an + 2n 

= am + an + 2(m + n) 

= a m + a n + (Z?m + „ - am + n) + (m + n) 

= (aw + an - am + n) + (bm + n + (m + ri)) 
= (0 or -1) + Bm+n. 

Thus, 
^m "*~ "n ~ &m + n o r -̂ m "* ^n = Bm + n — 1 = C m + n , 

and 
5 m + £ n ^ ̂  , for any j . 

Now, to prove (iii), 

Bm + Cn = (am + 2/??) + (an 4- 2n - 1) 

= am + an + (jn + ri) + (777 + ri) - 1 

= a m + an + (/3m + n - am + n) + (w + n) - 1 

= (am + an - am + n) + (Z?m + n + (m + ri) - ±) 

= (0 or -1) + Cm+n. 
Thus, 

•̂ m ' ^n = ^m+n °^ &m "• ^n = ^m+n ~ 1 = Dm + n — z, 

but consecutive members of 5j differ by 3 or by 4, so 

Bm+n - 2 + Bj, and Bm + Cn + Bj. 

Lastly, to prove (iv), either 

Cj + l - Cj = 3 or Cj + 1 - Cj = 4 , 
and 

&m + fy , Am + Bj , for any j . 
I f Am + Cj and Am + Cj + 1 = S^, then e i t h e r 

^ = Cj - 1 or Am = Cj + 2 = Bj + 1 . 

If A m = Cj - 1, then 

which equals 

Am + b n — Cj — 1 + Dn , 

CJ- + n - 1 ^ Ck or £\- + n - 2 ̂  Cfc , by the proof of (iii). 

If Am = Bj + 1 , then 
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Am + Bn = Bd + 1 + Bn 

which equals either 

Bj + n + 1 = C-+n - 2 + Ck o r Cj+n + l t C k , 

by the proof of (i) . 

The proof of Theorem 2.4 gives us immediately three further statements 
relating An, Bn, and Cn, the first three parts of Theorem 2.5. 

Tkzosidm 2.5: 

( i ) Bm + Bn = Bm + n o r Bm + Bn = Cm + n 

( n ) Cm + Cn = Cm + n — 1 or 6W + 6n — Cm + n — 2 

( i i i ) Bm + Cn = Cm+n ox . Bm + Cn = Cm+n - 1 

( I V ; / l w + An = Am + n o r AOT + An = A m + n - 2 

Am + An = 2am - m + 2 a n - n 
= 2bm - 3m + Ibn - 3n 
= 2bm + 2Z?n - 3(/T? + n) 
= 2Z?w + 2bn ~ 3(bm+n - CLm+n) 
= (2bm + 2bn — 2bm + n) ~ bm + n + 3(3w + n 

= (2bm + 2Z?n ~ 2bm+n) ~ (drn + n + (m + Yl) + 3am + n) 
= (2bm + 2bn - 2bm + n) + 2am + n - (m + n) 
= (0 or -2) + 4w + n, 

so that 
Am "̂  ̂ n = ^-m+n o r ^m "*" ̂ n = ^m+n ~~ *• • 

Finally, we can write some relationships between An, Bn, and Cn when the 
subscripts are the same. 

Tk&oiem 2.6: 

( i ) An + Bn = Ahn 

( i i ) An + Cn = Ban 

( i i i ) An + Bn + Cn = Chn 

( i v ) ^ + Cn = Cbn 

(v) Ban + Bn = Cbn 

VKOOJ: Proof of (i): 

An + Bn = 2an - n + an + 2n 

= 2an + Z?n 

= 2ahn -f (an ~ abn) = 2abn - bn = 4 ^ . 

Proof of (ii): Using (1.1), (1.3), (1.2), and Theorem 2.1, 

An + Cn = 2an - n + an + 2n - 1 

= 2bY} + a„ - n - 1 
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= bn + an - n + aan 

= 2an + aan = Ban 

Proof of (iii): 

An + Bn + Cn = 2an - n + an + 2n + an + 2n - 1 

= an + 3(an + ri) - 1 

= an + 3Z?n - 1 

= (a„ + 2?n) + 2fc„ - 1 

= afcn + 2Z?n - 1 

by (1.2) and Theorem 2.1. 

Note that (iv) and (v) are just combinations of (i) with (iii), and (ii) 
with (iii). 

Notice that there are eighteen possible ways to add two of the As, Bs, 
or Cs to obtain an Ak, Bj , or Ci. Am 4- An = Am+n or Am + An = Am+n - 2, so 
that Am + An. = ̂ fe or iffl + 4 = Bj or Am + An - d for suitable k, j , and i. 
Am + Bn = Ak or Am + Bn = Bj for suitable k and j, but Am + Bn ± C^ for any 
i . Am + Cn = Afr or Am + Cn ~ Bj or Am + Cn = Ci for suitable values of k, J, 
and i as readily found in Table 2. Since Bm + Bn = Bm+n or Bm + Bn = Cm + n, 
solutions exist for Bm + Bn = Bj and Bw + Bn = Ci , but Bm + Bn ^ A^ for any 
k. Since Bm + Cn = Cffl+n or 5m + Cn = Cm + n - 1, solutions exist for Bm + Cn = 
Ci and for Bm + Cn = A^^ but Bm + Cn ^ Bj for any j. Lastly, Cm + Cn = Cm + n 
- 1 or Cm + Cn = Cm+n - 2 , so it is possible to solve Cm + Cn = ̂ 4fe and Cw + 
Cn = Sj, but Cm + Cn f Ci for any i . 

3. LUCAS REPRESENTATIONS OF THE NUMBERS An, B„, AND Cn 

The numbers An, Bnf and Cn can be represented uniquely as sums of Lucas 
numbers Ln, where LQ = 2, Ll = 1, L2 = 3, and Ln + 2 = Bn + i + Ln. Since the 
Lucas numbers 2, 1, 3, 4, 7, 11, . . . , are complete, one could show that {An}, 
{Bn}, and {Cn} cover the positive integers and are disjoint. See [9] and 
[10]. We write A = {An} = {1, 4, 5, 8, 11, .. . } , numbers in the form 

An = 1 + $2L2 + 63L3 + ... + c$mLw, Si E {0, 1} 

in their natural order; and B = {Bn} = {3, 7, 10, 14, 18, ...}, 

Bn = 3 + 63L3 + 6.L, + ... + 6OTLW, 6; E {0, 1} 

in their natural order, and C = {Cn} = {2, 6, 9, 13, 17, ...}, which are num-
bers of the form 

Cn = 2 + 63L3 + 6hLh + -•• + $mLm, Si E {0, 1}. 

The union of An, Bn, and Cn is the set of positive integers, and the sets are 
disjoint. One notes immediately that Bn = Cn + 1 because any choice of 6s 
in the set C can be used in the set B so that, for each Cn, there is an ele-
ment of B which is one greater. Also, each An is one greater than a Bj or 
one less than a Cj. Also,Ans may be successive integers. A viable approach 
is to let all the positive integers representable using 1, 3, 4, 7, ... , in 
Zeckendorf form be classified as having the lowest nonzero binary digit in 
the even place 3 Lucas Zeckendorf | 1 | 0 |, while 4 is in an odd | 1 | 0 | 0 |. This 
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clearly makes A and B distinct sets, since the Zeckendorf representation is 
unique. Set C consists of the numbers which must use a 2, making C distinct 
from either A or B, since the positive integers have a distinct and unique 
representation if no two consecutive Lucas numbers from {2, 1, 3, 4, 7, ...} 
are used and LQ = 2 and L2 = 3 are not to be used together in any representa-
tion. 

C = {2, 6, 9, 13, 17, 20, ... } , are the positive integers that are not 
representable by {l, 3, 4, 7, ...}, the Lucas numbers when L0 = 2 is deleted. 
The sequence {Bn} = {3, 7, 10, 14, ...} occurs in the solution to the Inter-
national Olympiad 1977, problem 2 [11], which states: 

Given a sequence of real numbers such that the sum of seven consec-
utive terms is negative, and the sum of eleven consecutive terms is 
positive, show that the sequence has a finite (less than 17) number 
of terms. A solution with sixteen terms does exist: 

5, -5, -13, 5, 5, 5, -13, 5, 5, -13, 5, 5, 5, -13, 5, 5 

We note that -13 occurs at positions 3, 7, 10, 14, ... . 

We know that every positive integer has a Zeckendorf representation in 
terms of 2, 1, 3, 4, 7, 11, ..., and a second canonical representation such 
that * 

A ~^-B , 

where f* merely advances the subscripts on the Zeckendorf representation of 
A (odd position) to a number from B (even position) . One needs a result on 
lexicographical ordering: If, in comparing the Lucas Zeckendorf representa-
tion of M and N from the higher-ordered binary digits, the place where they 
first differ has a one for M and a zero for N, then M > N. Clearly, under 
f*9 the lexicographical ordering is preserved. 

Now, look at the positive integers, and below them write the number ob-
tained by shifting the Lucas subscripts by one upward: 

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 

f 7 10 8 11 14 12 15 18 21 19 

3 3 - 2 3 3 - 2 3 3 3 - 2 

occurs between n = Ck and n = Ck - 1; all the other differ-
+ 1) - f*(n) = 3. Now, of course, 1 -> 3 so that normal-

ly the difference of the images of two successive integers is 3, but 2 -> 1 
and 1-^3, so that those integers Ck which require a 2 in their representa-
tion always lose 2 in the forward movement of the subscripts. 

Now from the positive integers we remove Bn +1, as this is an unpermit-
ted difference; these numbers 4, 8, 11, 15, 19, ..., are Ajs immediately after 
a Bk. Those Ans remaining in the new set are the second An of each adjacent 
pair. Since Ab +l - Abn = 1, it follows that 

A b n + l + Bn + 1 , 
but rather 

& bn + 1 = Cj ~ 1. 

The numbers Ab = Bm + 1, Aa +1 = Bj + 1 , and other Ans which are of the form 

Bs + 1 are gone. Only Ab +1 = Cj - 1 are left in the set, which is {5, 12, 

/ 
A/ 

Note 
ences 

*(n) 

*(n) 
that 
Af*' 

= 3 

= 

the 
(n) = 

-2 

-2 
f 

1 

OCi 

\n 
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16, 23, 30, ... } , and they are in the set {B n - An} and also in {An}. We now 
wish to look at the fact that each Cn - 2 has been removed whenever Cn - 1 re-
mains in the set. This opens up an interval difference of six in each case. 
For instance, 

^n 3 
1 4 

/ M 1 
\7 J 

5 
1 1 10 

6 = 

1 8 

^ n 10 
1 15 

/ l l \ 
I \ ) 
\ 1 8 / 

12 
I 

21 

13 
1 

19 

difference 6 

Now, without changing anything else,by giving each element of {5, 12,16, 23, 
30, ..., Abn+i, ...} an image which is five smaller. Each such number uses 
a one, 1 = Ll9 in the Zeckendorf representation. Replace this L1 by -L_1. 
Now, regardless of whatever else is present in this Lucas representation, 
formerly 1 =L1 -> Lz = 3, but now 1 = -L_l ->• -2 = -L0, so that the difference 
in images is 5. 

f* 
hn + i — M 

Now, all of the rest of the differences were 3 when the difference in the 
objects was 1. The differences in the images were -2 only when the objects 
were Cn and Cn - 1. Now, with 1, 4, 8, 11, 15, ..., Bn + 1, ..., removed 
(BQ - 0), and each image of the object set {5, 12, 16, 23, 30, ..., Abn + 1 , 
...} replaced by five less, we now find that if the object numbers differ by 
1, their images differ by 3, and if the object numbers differ by two, the 
image numbers differ by one. Thus, if from the object set M > N, then the 
image of M is greater than the image of N under the mapping f of increasing 
the Lucas number subscripts by one. This shows that the mapping from {An} = 

{Bn - An] into {AQ} is such that An * An . Further, under f'\ operating on 
/ * 

the Zeckendorf form, An •»- Bn because of the lexicographic mapping. Clearly, 
/ is not lexicographic over the positive integers but over the set {An} where 
{5, 12, 16, 30, ...} have been put into special canonical form. 

We note that the set {An} is all numbers of the form 

An = 2 + 61L1 + 62L2 + ••• 

in their natural order, where 8i E {0, l}. Since 

{Cn} = {2, 6, 9, 13, 17, ...} 

cannot be made using {l, 3, 4, 7, 11, 18, .. . } , it follows that 

{Cn + 2} = {4, 8, 11, 15, ...} = {Bn + 1} 

cannot be so represented. We have thrown these numbers out of the original 
set of positive integers. What is left is the set so representable. Thus, 
An are the numbers of that form in natural order. The number 1 does not ap-
pear in {An}. Now, if in {An} we replace each Lucas number by one with the 
next higher subscript, then we get all the numbers of the form 
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1 + 6XL2 + 6ZL3 + &3Lk + ... 

in their natural order since we have carefully made the construction so num-
bers of the image set are out of their natural order. Thus, 

/ /* An y A n and A n •*• Bn. 

k. WYTHOFF'S LUCAS GAME 

The Lucas generalization of WythoffTs game is a two-pile game for two 
players with the following rules: 

(1) At least one counter must be taken; 
(2) Any number of counters may be taken from one pile; 
(3) An equal number of counters may be taken from each pile; 
(4) One counter may be taken from the smaller pile, and two 

from the larger pile; 
(5) All counters may be taken if the numbers of counters in 

the two piles differ by one (hence, a win); 
(6) The winner takes the last counter. 

Let H be the pile on the left, and G on the right, so that (Hn, Gn) are 
to be safe pairs. 

HA = A a n GAn = Ban 

EBn
 = Abn

 GBn
 = Bbn 

HCn = Can GCn = Chn 

where (an, bn) is a safe pair for WythoffTs game, and An9 Bn, and Cn are the 
numbers of Section 2. 

Now remember that (HAn ,GAn) and (HBn ,GBn) had all the differences except 
numbers of the form Bn + 1. 

^bn ~ Gan
 = Bn + 1 = A a ^ + 1 . 

The only difference not in {Gn - Hn} is one; hence, Rule 5. The differences 
in the #s are 1, 2, or 3, and the differences in the Gs are 1, 3, or 4. It 
is not difficult to see that the rules change a safe position into an unsafe 
position. 

Next, the problem is to prove that using the rules, an unsafe pair can 
be made into a safe pair. Strategy to win the Wythoff-Lucas game follows. 

Suppose you are left with (c, d) which is an unsafe pair. Without loss 
of generality, take c < d. 

1. If c = Hk and d > Gk9 then choose s so that d - s = Gk. (Rule 2.) 

2. If c = Hk and d < Gk and d - c = A w < kk = Gk - Ck , where km appears in 
the list of differences earlier, then choose s so that 

d - s = c + km - s = c - s + km = Hm + km = Gm. (Rule 3.) 

3. If c = Hk and d < Gk and d - G = A m <. A k but A m does not appear earlier 
in the list of differences, that is, Hm > Hk , then we need some results 
before we can proceed. 
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Lmma 1: Cbn - CUn = Bn + 1 = £ - Hc 

VKOOJ: By Theorem 2 . 1 , 

Cbn - Can = (abn + 2bn - 1) - {aan + 2an - 1) 

= (a„ + &n + 2Z?n - 1) - ( a a n + 1 + 2an - 2) 

= a„ + 3&n - 1 - bn - 2an + 2 

= a n + 2(bn - an) + 1 

= a n + 2n + 1 

= 5„ + 1. 

i w a j _ : £B^ - #Bn = 5 ^ - At 

VKOO^x By Theorem 2.1, 

3bn - Abn = a&n + 2bn - (2abn - bn) 

= 3bn - abn 

= 3bn - (a„ + 2?„) 

= 2Z?n - an 

= 2(an + n) - an 

= an + 2n 

The original list of An = Gn - En was steadily increasing functions of 
n. However, with the insertion of Gc - ECn = ACn = Bn + 1, the next higher 

GCn+l " HCn + l = GBn ~ EBn
 = Bbn ~ Abn

 = Bn 

by Lemma 2. Thus, if Am < A& while Em > Hk , this cannot be the case, except 
when a = Ek - ECn while d = GCn - 1. The proper response is to subtract one 
from c and subtract two from d to finish case 3; we also need Lemma 3, which 
follows from Theorems 2.1 and 2.2: 

Lemma 3 : c - 1 = ECr - 1 = CUn - 1 = Ab ±; 

d - 2 = GCn - 3 = Cbn - 3 = Bbr_ly 

The pair (Hc _l5 £c -i) = 04 & -u 5fc _x) is a safe pair which is obtained by 
using Rule 4. 

4. If o = Gk, then if d > Ek , choose s so that d - s = Hk. (Rule 2.) 

5. If c = Gk and d < Ek, follow the procedures of cases 2 and 3. 

6. If c = d - 1, then take all the counters by Rule 5. 

Since Gk and Ek cover the integers, cases 1-6 give every possible choice of 
o and d9 o f d. If c = d, then take all the counters and hence win, by Rule 
3. 
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Some comment should be made about why each legal play from a safe pair 
results in an unsafe pair. We begin with the safe pair (Hk, Gk) and apply 
each rule. 

(a) If from (Hk, Gk) we subtract s > 0 from either (Rule 2), then since 
(Hk, Gk) are a related pair, changing either one without the other results in 
an unsafe pair. 

(b) If from (Hk, Gk) we subtract s > 0 from each (Rule 3), then the 
difference t\k - Gk - Ek is preserved, but the difference A^ is unique to the 
safe pair; hence, changing Hk and Gk but keeping the difference /Sk the same 
results in an unsafe pair. 

(c) To investigate Rule 4, we need some results on the differences of 
the sequences Hn and Gn separately. 

L&nma 4'> The differences of the Hn sequence are 1, 2, or 3: 

(i) Hc^ +1 - HCn = 2; 

(ii) HBn + 1 - HBn = 1; 

(iii) HAb +1 - EAbtt = 3; 

(iv) EA^+l - HAan = 1. 

PtLOO^'- We refer to Theorem 2.1 and the results of Section 1 repeatedly. 

( i ) HCn + 1 = EBn = Abn and HCn = CUn , so 

HCn + 1 - HCn = Abn - Can = (2abn - bn) - (aan + 2an - 1) 

= (2a + 2b - bn) - bn - 2an + 2 = 2 . 

( i i ) HBn = Abn , so 

HBn + i = HAan + i = Aaan+i = Aaan+2 = Abn + 1 = Abn + 1 , 

and 
HBn + l ~ EBn =" Abn + 1 - Abn = 1. 

(i i i) H,^ = Aa^ and ^ . + 1 = % + 1 =AaK+1 = AaK + l = Aahn + 3 , SO 

HAK + 1 ~ EAbn = 3 ' 

( i v ) HAan + 1 = HCn = Can = CLan + 2dn - 1 

= (bn - 1) + 2an - 1 = abn + an - 2 ; 

EAan = Aaan = 2aaan - aa; = 2(aaan + 1 - 2) - aan 

= 2 a ^ - 4 - (aa„ + 1) + 1 = 2 a ^ - 2?n - 3 

= a^ + (a„ + Z?n) - bn - 3 = ab + an - 3. 

Thus, 

^ a B + i " HAan
 = (abn + ccn - 2) - (abn + an - 3) = 1. 
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We now conclude that the G sequence does not have a difference of two; 
in fact, the differences in the Gs are always 1, 3, or 4. 

Lmmci 5: &k + 1 ~ G
k + 2 and 

(i) Gcn+i - GCn = 1 ; 

(ii) GCn - GCn_± = 3; 

(iii) Gcn+2 ~ Gcn+i = 3; 

(iv) GA^ + 1 - GAK = 4. 

PsiOO^: By construction, the differences An = Bn - An in natural order cover 
all the positive integers except numbers of the form Bn+1, but (Hc , Gc ) = 
(Can , Cin ) is such that ACn = Bn + 1. 

We now cite some obvious results (see Lemmas 1, 2, and 3). 

ACn = Bn + 1 , A C n + 1 = 5 M , Ac x = B„ - 1 ; 

t h e r e f o r e , 

b u t 

A c n + i - Acn = - 1 . A c n - A c „ - i = 2 , and Ac^ + 2 - Ac-n + 1 = 

Am + 1 - Am = 1 , o t h e r w i s e . 

(°cn + i ~ Hcn + 0 ~ (°cn ~ Ecn ) = " ! ; 
t h u s , 

( i ) ^ B + i " GCn = HCn + 1 - HCn - 1 = (2 - 1) = 1 . 

S i n c e #c n - HCn_± = 3 , (Gc - HCn) - (GCn_± - ECn_1) = 2 , m a k i n g 

( i i ) GCn - GCn_1 = HCn - ECn_1 + 2 = 3 . 

N e x t , HBn + 1 - EBn = Hc +2 - Hc +1 = 1 , and ACn + 2 - ^cn + i = 2> s o t h a t 

GCn + 2 " E
Cri+2 ~ (GCn+l ~ ECn + 0 = 2 > 

o r 
Gcn + 2 ~ Gcn + i ~ (HCn + 2 - HCn+1) = 2 , 

so t h a t , f i n a l l y , 

( i i i ) GCn + 2 - GCn+1 = (HCn + 2 - HCn + l) + 2 = 1 + 2 = 3 . 

The f o u r t h c a s e h a s A^ + 1 - A^ = 1 , w h i c h means t h a t 

GAhn + l ~ HAbn + l ~ (&Ab ~ HAb ) = i' 
so t h a t 

m a k i n g 
^ A J n + l ~ &Abn ~ ^Ahn + 1 ~ EAbn ) _ 1 J 

( i v ) GAh + 1 - GAh = (HAh + 1 - AV ) + 1 = 3 + 1 

The final conclusion is that no difference of Gs equals two, concluding 
the proof of Lemma 5. 
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We now can finish case (c), the investigation of Rule 4. The play of 
subtracting one from Hk and two from Gk does leave an unsafe pair. 

(d) If (Hk , Gk) is a safe pair, then the difference between Hk and Gk 
is never one, so Rule 5 will not apply. 

We have found that applying the rules to a safe pair always leads to an 
unsafe pair. 
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A MODIFICATION OF GOKA's BINARY SEQUENCE 
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ABSTRACT 

Goka's binary sequence G = \9i)i=1 5 where gi is a binary has been modi-
fied by replacing the binaries (gi) by matrices of the same order over the 
binaries. We define, formulate, and discuss the properties of the nth inte-
gral from j of G by repeating in succession Melvyn B. Nathanson's formula for 
IjG, the integral from j of G. The integral equation IjG=G has been solved. 
We investigate the behavior of the decimated sequence, submatrix sequence, 
sequence of integrals from j, and complementary sequence of the binary matrix 
sequence (BMS) G in relation to G. An application of the binary sequence has 
been described. 

1. INTRODUCTION 

Goka [1] has introduced the binary sequence G = (g-j-^-, > where g^ = 0 

or 1 and the addition is modulo 2. Nathanson [2] has discussed eventually 
periodic binary sequences. In his paper he has formulated the nth derivative 
of G9 DnG, and the integral from j of G9 I-G. 

In this paper we present a modification of the binary sequence G to the 
binary matrix sequence by replacing the binary gi by a m x n matrix over the 
binaries. All arithmetic of the binaries is done modulo 2, and the addition 
of the binary matrices or binary matrix sequences is done componentwise. Not 
surprisingly, we will find that all the results established in [2] hold good 
for our BMS also. We generalize the integration formula for IjG, where G is 
a BMS, formulate IjG, the nth integral from j of G, and establish results 
illustrating its properties. We study certain interesting properties of the 
decimated sequence of G, the submatrix sequence of G, and the complement of 
G in relation to their parent BMS G. In the final section, we show how to 
apply the novel method of binary sequences to represent any sequence of in-
tegers. Just indicating whether a member is odd or even and using this method 
we are able to determine whether 

(PT1).(PrP).*-0'1' - . « - ! 
are odd or even when p = 2mq, where q is odd and 2m~l < n <_ 2m. 

2. NOTATIONS AND DEFINITIONS 

Vz^sLwutLovi 1 • A binary matrix sequence (BMS) is the infinite sequence 

G = ( ?< ) ; . ! . 
where (g^) are matrices of the same order over the binaries. 

In what follows, we will use the following laws of addition modulo 2: 

(i) 1 + 0 = 0 + 1 = 1 ; 
(ii) 1 + 1 = 0 + 0 = 0 . 

212 
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It is evident that, if k is a nonnegative integer, 

according as fc is odd or even. Addition of the binary matrices and, like-
wise, the BMSs is done componentwise, i.e., if 

Gi = (^rs)5 Gj = fc), Gt + G-j = (<Zrs + brs)-
Similarly, if 

G= (GX-I and H = 

are two BMSs of the same order, then G + H = Ig. 4- ^li)i = ±' 

Ho tactions: 0 , 0 ^ 5 £ 

(i) 0 = a binary matrix in which every entry is 0 and is called 
a binary null matrix. 

(ii) 0 = a binary matrix sequence in which every entry is 0 and 
is called a constant null sequence. 

(iii) g = a binary matrix in which every entry is 1. 
(iv) g = a binary matrix sequence in which every entry is g. 

The following results will be useful. If g^ is a binary matrix and k is 
a nonnegative integer, then 

(i) kg^ = gi or 0 according as k is odd or even. 
(ii) Gi + Gj = 0 means gi = g. . 

VzlAJlAJtJOVl 1: 
(i) If ĝ  and ^ are two binary matrices of the same order with 

g^ + In 1 = g , then each is said to be the complement of the 
other. 

(ii) If G and H are two BMSs of the same order with G + H = g, 
each sequence is said to be the complement of the other. 

We use the notation gi3 G for the complements of gi, G, respectively, 
and to write the complement, we simply change the binaries 0, 1 to 1, 0, re-
spectively. 

/I 1\ /l 0\ 
Example: If g. = 10 1 , g. = 0 0 , then 

v \o 0/ J \i 1/ 

( i) gt + gt = 

( i i ) 3gt 

( i i i ) 8a. = 0 0 = 0 



214 A MODIFICATION OF GOKA'S BINARY SEQUENCE [Oct. 

_ 0 0 
(iv) 'gi = I 1 ,0 

\ l 1 

V^invtion 3: 

( i ) If G = [9i)i = 1 i s a BMS, i t s d e r i v a t i v e DG = ( # ! ) " _ , where 

yt ^ yi + l 

(ii) If (7 is a BMS, its nth derivative is defined recursively by 

DnG = D(Dn~XG). 

Vz^victiovi 4'-
(i) If G = (^)T= is a BMS, the integral from j of {7 is the BMS J ^ 

whose ith term is 

j-i 

^,1 = I J ^ if i < J 
s = i 

0 if t = J 

£ -1 

H$s if ̂  > J 
J = j 

(ii) If G is a BMS, the nth integral from j of G is the BMS I*G de-
fined recursively by I-G = J- (J- ~ (7) . 

(i) If (7 = (9i)i = 1 is a BMS, the sequence of integrals from j of £ 

is defined as J = UJGY = Q, where J?G = G. 

(ii) The truncated sequence of integrals from j up to p is the infi-
nite sequence JT whose nth term is the truncated BMS 

" ( ^ ) ) < • ! • 

Vz^ZyuX-ion 6 •' I f G = \9i)i = i i s a BMS and d i s a p o s i t i v e i n t e g e r , t he dec i -
mated BMS 6^ of G i s de f ined by 

yd _ £c 
^7fed/ /c = l" 

V&fasLYlLtsLoYl 1' G* is called a sequence of submatrices of a BMS G, and is ob-
tained by taking the submatrices of the same location from the binary matri-
ces of G. 

Example: 
(0 1 \ (1 1 \ / 0 1\ / 0 0\ / I 1\ / I 0 

If G = JO 1 , 0 0 , 0 1 , 0 0 , 1 1 , 0 1 
\0 1/ \0 0/ \1 0/ \0 0/ \0 1/ \1 0 

Hd.2=(° °H° °)> (° i i •••; 
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Vo i / ' Vo o/ ' vi o r Vo o/ ' Vo i / ' Vi o/ ' • " ' 

obtained by taking second and third rows of the binary matrices of G. 

V^-lvuXyJOVi S: Eventual property of a BMS. 

A BMS G - \9i)-=1 is said to have an eventual property from j when it 

it true for the BMS (V-)?= .-

SECTION 3 

In this section, we establish certain theorems with regard to the inte-
grals from j of a BMS. 

Tiaeo/iem 1 ' If G = (giJi = 1 is a BMS, its nth integral from j is the BMS ijG 
whose £th term q . is 

s = i ' 

(1.2) 0 if j <. t < j + n 

d.3) z T n - i 1 ) ^ ± f i > j + « 
= J 

Case (1.1): Let i < fj. Then qm , the ith term in J.-6? is 

,7-1 / S S"-l S3 ~ \ 

E E E - E Eik.,.,-
8 = i \s,-rls„.2 = i s2 = i s2=l / 

Upon using 
P in iz ii / . i \ 

E E - E Ei-C'T1)-
£„ = 1 in_! =1 i2 = l ix=l 

we have the ith term as 

E (n -1 +s -i\ 
\ n-l 9°-

Case (1.2): Let J <. i < J + ft and jjfc = (̂ ;,n)i = i- A s 

a = 0, a. = q = 0. q. - q. - Q . = 0 , 
y j , l ? y j , 2 y j + l,2 ^J,3 ^ J + 1 , 3 ^ J + 2 , 3 

and finally, 

gj,n = &j + l,n = $j + 2,n = 3j + n-l,n = ® 
or, in brief, 

9i,n = 0 if J ̂  i < J + ft. 

Case (1.3): Let i> >_ j + ft. Here the formula can be established on par 
with case (1.1) and the proof is therefore left to the reader. 
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is: 

Co/iottaJiy 1 : If G = (gj° is a constant BMS, 

(1.4) (i) DnG = 0 

(ii) InG = (q ) , where q. 

(1-5) ^ n |g if ^ < J 

(1.6) o if j* £ i < j + n 

(1.7) C'n J)^ ±f l ~ J' + n' 
VK.00^'- (1.4) follows immediately from the definition of the operator D, and 
(1.6) is a particular case of (1.2). 

To prove (1.5), consider 

Upon using 

±(n+
n

8) = ±(n+
3
s) = (n+?+1)> 

s=0 s=0 r 

/ n + j - i - 1\ /n + j - i - 1\ 
^.n = V J-i-1 k = 1 n j^-

S i m i l a r l y , we prove ( 1 . 7 ) . 

CofiollaAy 2: 
(i) Lt I-G is eventually null from j. This follows from (1.6). 
(ii) Lt I?G = 0. 

n-+oo J- ~ 

T/xeo/Lem 2: The truncated sequence of integrals Jr from j of a BMS G (̂ 0) up 
to j - 1 has a period 2m, where 2 m - 1 + 1 < j £ 2m + 1. 
Vh.00^1 If I G = Ig. ]" and ĝ  = #. for i < j with p in its lowest form 
then V *'p'7'* z,p 

q. = q. for i, < rj and n = 1, 2, 3, ..., 
u z , n + p ^ ^ , n ^ ? ? ? ? 

and hence it is sufficient to investigate the feasibility of 
9itp = 9i, i < 3-

This will happen when 

which is true when I , 1,1 F '^l, .... [f '^ , J ) are all even. The suitable 
\P-I)' \ p - i r • • " V p - i / 
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value of p = 2mq, where q is odd and m is nonnegative with j <_ 2W + 1. In 
order that p is lowest, we set q = 1, j > 2m~1 + 1, and conclude that JT up 
to j - 1 of J is of period 2m, where 2m~1 + 1 < j <. 2m + 1. 

CofloLtaAy: If a BMS (7 is eventually null from j, the sequence of integrals 
from j of G is of period 2m , where 2 m _ 1 + 1 < j <. 2m + 1. 

ExampZz: Choosing j = 5, consider 

^ = ((o i ) ' (o i ) ' ( I o)' (o i ) ' ( i 1)' (o i ) ' '••) 

'!«-(($ i ) -a ; M ; SMS : ) • • • • • »• Ms ;)••••) 
From our choice of j, 2W = 4 and we find that JT up to 4 of J has a period 4. 

Theorem 3: If £ = (q.)™. is a BMS and I. G = G, then £ = 0 . 

VtlOOJ: If JyG = G9 

(3.1) £ <7e = <?. if i < j , 
s -i 

i-1 
(3.2) g. =0 and J^ 9S = 9i if ^ > J-

e = j 

Upon setting i = j - 2, j - 3, ..., 1 in succession in (3.1), we find that 

gi = 0 9 i = 19 2, . . . , j - 1; 

upon setting i = j + 1, j + 2, ... in (3.2), we have 

gi = o , i = j + l, j + 2, ... . 

Thus G = 0 . 

k. DECIMATED SEQUENCE, COMPLEMENTARY SEQUENCE, 
AND SUBMATRIX SEQUENCE OF A BMS 

T/ieo/iem 4.* If £ is a BMS of eventual period P from j 0 and G* a sequence of 
submatrices of G, then G* is of eventual period p from -£0 where p|P and iQ <_ 
Jo-
PfiOO^: If £ is eventually periodic from j 0 , then £* should also be eventu-
ally periodic from j 0 . As the converse is not true, G* could have eventual 
period p, where p\P, from iQ <L j 0 . 

ExampZe: Consider 

G =[(0), (0), (0), (0), (0), (0 
\\0/ \1/ \1/ \0/ \1/ \0, 

Here G has eventual period 2 from i0 = 3 

G* \o/' \o/3 \o/5 \o/' \oj' • 
obtained by taking first and second rows has eventual period 1 from j 0 = 2. 
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CoSioLtaALJ: If a BMS G has eventual period p from jQ where p is a prime, then 
G* has eventual period p or 1 from i0 <_ j 0 . 

T/ieo/iem 5: If (7 = (g.)T , is a BMS of eventual period p from i0, then its 
\ t / t - ~ i

N o o p r i o i 
decimated sequence Gd = (q \ has eventual period — IT from fcn < ~~r 1+1 
where ~r is the integral part of —r, 

VhJOOJi Consider Gd = (g Y . Here 

^ = 9kd = 9(k+i)d f o r l - l ^ 
if 

(k + Z)d = i + mp, 

where Z, k, m are positive integers. Therefore, Gd is periodic for kd >_ i-0 
if Id = mp; i.e., Z- = mp/d. The lowest form of Z- = p/(p,d). Now, consider 
the case d < i0. The n-tuple (̂  , £72d ' •••> $nd^ > where nd < i Q <_ (n + l)d 
may include a part of the periodic cycle 

\9(n + l)d9 &(n + 2)d> •*•' 3(n + l)d) 
followed by some full^cycles or vice versa. Hence, Gd is of eventual period 

I = , P , from A:n <_ F-^rl + 1. 

TkzoJim 6: I f &" i s t h e complemen t of t h e BMS G, DnG = Dn7J. 

V^iOOJ: As G + ~G = g, DnG + £n"(7 = £ n £ = 0 . H e n c e , £ n G = £ n £ . 

5. AN APPLICATION OF THE BINARY SEQUENCE 

Here we describe the binary sequence method to show that ( ) is odd 
/p+r + l\ V ' 

and l^ ) is alternately odd and even for r = 0, 1, 2, ..., n - 1 when 
p = 2mq and 2m~ < n <_ 2m. Let (a^)"=1 be a sequence of integers, and let 
H = \hi]i = \ be an infinite sequence where hi = a^, if i <_ n, and hi = 0 if 
1, > n. Now we construct the binary sequence £ = lg . )OT_ where cf. = the bi-
nary 1 or 0, according as hi, i.e., a.i, is odd or even. As far as the odd 
or even nature of the numbers is considered, we are fully justified in the 
representation of H by the binary sequence G, because the integers strictly 
obey the laws of addition modulo 2, viz., 

(i) the sum of two odd (or even) numbers is even, i.e., 

1 + 1 = 0 + 0 = 0 , 

(ii) the sum of an odd number and an even number is odd, i.e., 

1 + 0 = 0 + 1 = 1. 

Now we prove the following theorem. 

TkzotLdm 1' If m is a positive integer and p = 2mq, where q is odd, then 

(7.1) (i) ( P * P ) , r = 0, 1, 2 n - 1 are all odd, 

and 
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(7.2) (ii) ( P + ^ + 1 j 5 r = 05 1, 2, ... , n - 1 are alternately 

odd and even, where 2 < n _<_ 2™. 

VtlOO^: We represent the sequence of the natural numbers up to n in reverse 
order in the infinite sequence form 

(7.3) H = [hi)i = i9 where h^ = n + 1 - i if i <_ n 

and hi=0 if i > n . 

Now we represent H by the binary sequence 

G = (101010...101000...) or (010101...01000...) 

according as n is odd or even, where the binary 1 indicates that the corre-
sponding entry h^ in H is odd, the last appearing binary 1 being the nth en-
try in G. 

It is evident that DPG = DPH and IPG = I?H. * In the usual notation 

n 

0 if i > n. 

The corresponding binary sequence In+1G is identical with G if 

(T)-0T)-••• • (£:?) 
are alternately odd and even. 

We recall that DI3- G = G [2]. Therefore, 

DIn + 1G = DIn + 1(In + 1G) = In + lG. 

p 
Now we d i f f e ren t i a t e In+iG and find that 

In+lG = (111...1000...) 

p 
in order that In + 1G = G, the last appearing binary 1 being the nth entry. 
This represents In + 1H = (?z-£,p-i)-t = i , where 

(n-i+p\ 1 
\ n - i ) if i <L n 

l \ r? — 7, / 

f 0 if i > n. 

It follows that (P P j , r = 0, 1, 2, ..., n - 1 are all odd. Similarly, we 
find that \ r / 

In+iG = (00...01000...) 

p -2 /p +2g - 1\ 
representing In + 1H, and we have that (r 1, v = 1, 2, . . . , n - 1 are all 

*Here the definitions I-G and DPG for a BMS are extended to any even-
tually null infinite sequence of numbers. 
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even. This is true when p = 2 q where m is a positive integer and q is odd 

and 2m~ < n <^'2m. Now we conclude that (̂  ) is odd and (L J is al-

ternately odd and even for P = 0, 1, 2, ..., n - 1 where p = 2mq and 2W~ < 

n £. 2 . 

RzmoJik 1: Care must be taken not to apply the results of Theorem 2 directly 
in order to obtain the results of Theorem 5. Similarly, the properties of 
the derivatives and the integrals of a BMS should not be applied directly to 
H in (7.3). 

RzmoJik 1: The authors earnestly hope that the reader will be able to find 
further applications of the binary sequences of BMSs. 
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RESTRICTED MULTIPARTITE COMPOSITIONS 

LEONARD CARLITZ 
Duke University, Durham, North Carolina 27706 

1. INTRODUCTION 

In [1] the writer discussed the number of compositions 

(1.1) n = a1 + a2 + ••• + ak 

in positive (or nonnegative) integers subject to the restriction 

(1.2) a-, + ai + 1 (i = 1, 2, ..., k - 1). 

In [2] he considered the number of compositions (1.1) in nonnegative integers 
such that 

(1.3) ai f ai+1 (mod m) (£ = 1, 2, ..., k - 1), 

where m is a fixed positive integer. 
In the present paper we consider the number of multipartite compositions 

(1.4) ftj = aj± + aj2 + ••• + a^k (j = 1, 2, ..., t) 

in nonnegative a^s subject to 

(1.5). a- f ai+1 {i = 1, 2, ..., k - 1) 

or 

(1.6) ai f ai+1 (mod m) (i = 1, 2, ..., k - 1) 
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where a.t denotes the vector ( a . a . , . .., avi) and m is a fixed positive 
integer. 

Let c(n9k) denote the numb er of solutions of (1.4) and (1.5) and let 
f(n9k) denote the number of solutions of (1.4) and (1.6), where n = (n , n , 
nt). We show in particular that 

(1.7) I > i n i < 2 ••• xl'^cfrMz* 
k 

(-DJg" 

and 

)i+E : -
(1 - xf) 

(1.8) X X 1 ^ 2 ••• <'£/(w,k)^ 

= < 1 £ 
where 

,,-••,it = Q 1 + X^X^ '•• ^ * A' 

(1 - ̂ )(1 - x p -*• (1 - xm
t) 

For simplicity, proofs are given for the case t = 2, but the method ap-
plies to the general case. 

SECTION 2 

To simplify the notation, we consider the case t = 2 of (1.4); however, 
the method applies equally well to the general case. Thus, let c(n9p9k) de-
note the number of solutions of 

( n = a1 + a2 + " ' " + ak 

(2.1) I 
{p = b± + b2 + ••• + bk 

in nonnegative ai9 bi such that 

(2.2) ia^bO + (ai + lsbi + 1) {i = 1, 2, ..., k - 1); 
let c(n,p) denote the corresponding enumerant when k is unrestricted. For 
given nonnegative a, b9 let catb (n, p, k) denote the number of solutions of 
(2.1) and (2.2) with a1 = a, bx = b. 

Clearly 

o(n9p9k) =^2^a,b (n9p9k). 
a,b 

It is convenient to define c(n,p9k) and Ca^ (n9p9k)s k = 0S as tollOWSl 

1 (n = p = 0) 
(2.4) o(n9p90) = 

v0 (otherwise) 
and 
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f 1 (n=p=a=b = 0) 

0 (otherwise). 

It follows at once from the definitions that 

( 2 . 4 ) ' ca>b ( n , p , 0 ) = < 

(2 .5) oa^h (n,p,k) = ] P cr>s (n - a9p - b9k - 1) (k > 1 ) . 
(r,s) * (a,&) 

Note t h a t (2 .5 ) ho lds fo r k = 1 except when n = p = a = £> = 0. 
Genera t ing f u n c t i o n s Caj2? (x9y9k) and $k(x9y9u9v) a r e de f ined by 

(2 .6) Ca>2, (a;,z/,fc) = ] T ^ ( n , p , W ^ " / (k > 0) 
.. n ,p = 0 

and 
(2 .7 ) \(x9y9u9v) = ] T c a > i (x9y9k)uavb (fe >. 0 ) . 

It follows from (2.4) ' that 

1 (a = b = 0) 

Hence, 

(2.8) Cath (x9y90) 
.0 (otherwise) 

and 

(2.9) $0(x9y9u9v) = 1. 

In the next place, by (2.5) and (2.6), we have for k > 1, 

Ca,b &9y9k) = J2 xHyP YJ Cr,s (n ~ a>P ~ b>k ~ X) 
«,p = 0 (r,s) 4 (a,b) * 

= x V E X V | L c r > s («>P.fc - 1) - «»,& (n.p.fe - 1)1 

= x V £ xnz/P{c(n,p,/c - 1) - ^a,& (n9p9k - 1 ) 1 . 
n , p = 0 I > 

(2 .10) £aj2? (x9y9k)' = xaybic(x9y9k - 1) - C a ^ (ar,i/,fe - 1)1 (fc > 1 ) , 
where 

(2 .11) C(x9y9k) = J ( 7 ^ (a?,2/,fe) = J c(n9p9k)xnyp. 
a , b = 0 n , p = 0 

Thus, (2 .10) y i e l d s 
OO 00 

£ Ca>b (.x,y,k)u"vb = C(x,y,k - 1) £ ( ^ ) ° (yy)6 

a, b =0 a,2? = 0 

" £ ^ ,2 , fr^.fc - l)(oou)a(yv)b 

so t h a t , by ( 2 . 7 ) , fo r k > 1, a ' ^ = 0 

(2 .12) §k (x9y9u9v) = JZT^I i - yv\-i(x>y>l>1^ - ®k_1(x9y9xu9yv)-
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I t e r a t i o n g ives 

I -~-§k_2(x9y9l9l) + §k_2(x9y9x2u9y2v) 
1 - x u 1 - y v 

(fc > 2) , 
and g e n e r a l l y 

$k(x9y9u9v) =22~ . : — § k _ . { x 9 y 9 l 9 l ) 
j = i (1 - x3u) (1 - y3v) 

+ (~1)S §k_s(x9y9x8u5y8v) (k > s). 
In particular, for s = k - 1, this becomes 

*pi r-n*7'"1 
(2.13) \{x9y9u9v) = V ^—^ T-HD 0C,Z/,1,1) 

j-i (1 - *Jw)(l - 2̂ 2;) J 

+ (-i)fe-1$i Gcz/^-i^fc-i^). 

We have 

$1(x,y,u,v) = X) E ca,i (n,p,l)x»yPuavb = _ m - v v ) 

and (2.13) becomes 

(2.14) $k(x9y9u9v) = 2 J K~^ — \ (x9y9l9l) (k>l). 
j = i (1 - x°u) (1 - y3v) 

In p a r t i c u l a r , fo r w = V = 1, (2 .14) reduces t o 

k 7 

(2 .15) $k(x9y9l9l) + y ) — ^ . (x , zy , l , l ) = 6. Q . 
j - i ( i - * J ' ) d - yh 

I t fo l lows from (2 .15) t h a t 

(-1) j zJ' 
(2 .16) C(x9y9z) = <1 + X 

1 (1 - x*)(l - 2/J) 

where C(x,y9z) i s de f ined by ( 2 . 1 1 ) , 
Re tu rn ing t o ( 2 . 1 4 ) , we have 

i-iy-1^' 
^$k(x9y9u9v)zk =YJ . " — Y,$k(x,y9l9l)zk

9 
k = l , 7 - 1 . ( 1 - XJU)(1 ~ yJV)k = 0 

and t h e r e f o r e 
y (-pj'-y 

(2 .17) / i , (x9y9u,v)zK = — \ ——:—?—— 
fe=l 1 + N t -U 2 Z . 1 ( l - x J ) ( l - y3) 
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Note that the L.H.S. of (2.16) is 

(2.16)' JT- c(n9p9k)xnyPzk; 
n,p,k = 0 

the L.H.S. of (2.17) is 

( 2 . 1 7 ) ; ]jT caih (n9p9k)xnypuavbzk. 
n,p ,a,b,k = 0 

A l s o , i t can be shown (compare [ 1 , §5]) t h a t 

(2.i8) YJ °(n>p)xnyl 

n,p = 0 

11 _ V 1 x2j~1(l - x) + y^^jl - y) - (xy)2P-1g - xy) 
1 j-i (i - ^"-^d - x2j)a - y^'-^a - y

2n 
for \x\ < A9 \y\ < A9 where A >. -r-. 

SECTION 3 

We shall now discuss the problem of enumerating the multipartite compo-
sitions that satisfy (1.6). We again take t=2. Let f(n9p9k) denote the num-
ber of solutions of 

n = a-, + a2 + • • • + av 
(3.1) 

' P =h + \ + ••• +bk 

in nonnegative asS bs such that 

(3.2) (as,bs) i (as+1,bs+1) (mod m) (s = 1, 2, ..., k - 1). 

Let fi A (nsp,k), for 0 <_ i < m, 0 <L j < m, denote the number of solutions of 
(3.1) and (3.2) that also satisfy 

(3.3) a-L E i , b± E j (mod 777). 

Finally, let /. . (n9p 9k9a9b) denote the number of solutions of (3.1), (3.2), 
and (3.3) with a1 = a, b± = b. Thus fi . (n,p,k,a,b) = 0 unless a = i9 b = j 
(mod 77?) . 

It is convenient to extend the definitions to include the case /c=0. We 
define 

(3.4) f(n,p,0)= Sno&po> fif.(n,p,0) = SiQSjof(n9p90) 
and 
(3.5) f^ (n9p909a9b) = ^ao^bof^j (n,p,0). 

Thus f(n9p90) = 0 u n l e s s n == p = 0, / i s • ( n , p , 0 ) = 0 u n l e s s n = p = i = j = 0 , 
/ . . (n ,p ,0 ,a ,2?) = 0 u n l e s s n = p = i = j = a = b = 0. 

' J I t fo l lows from t h e d e f i n i t i o n t h a t 

(3.6) f(n9p9k) = J2 fu^ri9p9k) 
ij = 0 

/n - 1 
f. . 

> J 
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m -1 n p 

12 L Z ^ ' (n,p,k,a,b) (n> 0, p > 0, fe> 0), 
i,j = 0 a = Q b = 0 

Moreover, we have the recurrence 

OT-l n P 

/ \ } j . (n,p,k,a,b) ] £ ] T 5 Z / ^ ^ (n ,p ,k , a , f c ) 

[fc > 0 , a E i , 1) E j (mod 777) ] . 

i'>j'=Q a = 0 b = 0 

This reduces- to 

(3 .7 ) / . . (n,p,k,a,b) = V f . t . , ( n - a , p - b 9 k - 1) 
777-1 

z , j ' « 0 
( z ' , j ' ) * U , j ) 

[ f c > 0 , a = i , Z ? = j (mod 777) ^ 

Corresponding to the enumerants, we define a number of generating func-
tions : 

Fif3. (x,y,z) = X /\ . (n,p,fc)a;nz/p;3* 
n ,p,k = 0 

Since 

F(x,y,z) = 2^ f(n,p,k)xnyPzk 

n,p,k = 0 

Fitd (x,y,z,a,b) = ^ ft^. (n,p,k,a,b)xnypzk 

n,p,k = 0 

fo,o (̂ 'P'1'̂ *̂ ) = &na&pb [a - b - 0 (mod m)] 

fQ,Q(n,p,0sa,b) = Sna6pbSnQ6p0, 

it follows that 

^0,0 (x,y,z9a,b) = 6 a 0 S£ 0 + xayhz + xaybz / - , F ^ . ( x , y , z ) 
(i,j) ¥ (0,0) 

Summing over a and £>, we get 

(3 .8 ) FQ>0(x,y,z) 

= 1 + ' 

[a - b - 0 (mod /7z) ] . 

L L Fi,j (%>y>z) 
(1 - xm)(l - z/777) (1 - xm)(l - ym) ( i , j )*(o ,o) 

On the o t h e r hand, for (i,j) ^ (0 ,1) and a E i , 2? E j (mod 772), i t fo l lows 
from (3 .7) t h a t 

FitJ.(x,y,z,a,b) = Y, xnyp;jk V f. , ., (n - a , p - 2?, Zc - 1) 
n. .k 

— ry. <Z •: : b * •, 

•̂  .-; -̂  

( i ' . j ' ) * 0 . j ) 

E V̂ U 9y y Z ) 1 

(' ' ' . j " ) * < i , j ) 



226 RESTRICTED MULTIPARTITE COMPOSITIONS [Oct. 

Hence, summing over a and b, we get 

(3 .9 ) F. . (x9y9z) — 2 ^ ^- • (x>y>z) 
(1 - * w ) ( l - yn)U\o') + ii.o) " " 

[ ( i , j ) * ( 0 , 0 ) ] , 
S ince 

2 ^ FVt.,(x,y9z) =F{x9y9z) - F. .{x9y9z)9 

(3 .8) and (3 .9 ) become 
i> J 

l + 
(1 - xm)(l - ym) 

z 

Fo, 0 ( x ' ^ ' 2 ) 

1 
(1 -xm)(l - ym) (1 - xm)(l - ym) 

F(x9y9z) 

and 

1 + xlyd z 
(1 _ xrn)(l _ ym) 

xhjj z 

(1 - s " ) ( l - ym) 
r e s p e c t i v e l y . Hence, 

Fi . (x9y9z) 

F(x9y9z) (i9j) + (0 ,0 ) : 

(I - xm) (1 - um) FQ Q(x9y9z) = 1 + ^ ^ - ^ ~ J U F(x9y9z) 
1 + 

(3 .10) 
(1 - xm)(l - z/w) 

xhj3 z 
K £ , J ) * ( 0 , 0 ) ] . 

^ ? J - (x9y9z) 
(1 - x w ) ( l - ym) F(x9y9z) 

1 + xhj3z 
(1 - * W ) ( 1 - 2/w) 

Summing over the m equations in (3.10), we get 

xhj;] z 

(3.11) 
m-l 

(1 - xm)(l - ym) >F{x,y,z) = 1. 
= " 1 + xlyJs 

(1 - xra)(l - ym) 

For brevity, put 

A 
(i - ̂ )(i - ym) 

so that (3.11) becomes 
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m - 1 i j \ 
(3.12) <jl - £ _^i^-_j>F(^5s) = i. 

i,j=o 1 4- 2^7/JAl 

Let 
m-L 

(3.13) Pm(X) = P/77(A,x,^) = n d + a : V ' * ) ; 
t, j = o 

clearly Pm (A) is a polynomial in A of degree m2. By logarithmic differentia-
tion 

AP'(A) m-l . . 
m

 = ŷ  x y ^ 
mK J i,j = o 1 + xv^\ 

Thus (3 .12) becomes 
pm (*> 

(3 .14) F(x,y,z) = 7T7TT ^ = > 
y m W (1 - xm)(l - ym) 

where 
(3.15) Qm(X) = Pm(X) - Pm'(X). 

For example, for m = 2, 

P2(A) = 1 + (1 + x) (1 + y)X + (5: + y + 2xzy + a:2z/ + xy2)\2 

+ #2/(1 + x ) ( l + y)X3 + x2y2Xh 

§2(X) = 1 - (x + y + 2x2/ + x2z/ + xz/2)A2 

- 2xy(l + x)(l + z/)A3 - 3 A \ 

SECTION h 

As in [2], the limiting case, m = °°  of .f(n,p,fc), is closely related to 
o(n,p,k) . We assume |x| < 1, |z/| < 1, so that 

z 
X = > z (m -> ° °). 

(1 - xm)(l - ym) 

Thus, (3.12) becomes 

(4.1) I1 " Z ~^LyJjL-\FHx,y,z) = 1, 
I i,j = o 1 + xiyJz J 

where 

Now 

F*(x,y,z) = lim F(x,y,z) . 

t,j=o 1 + xzyQz i,j = o s = i 

s = i (1 - xs)(l - ys) 
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Hence, we may r e p l a c e (4 .1 ) by 

(4 .2 ) 5 1 + L ( "D" ~ >F*(x,y,z) = 1. 
J a - i (1 - xs)(l - ys) j 

Comparing (4.2) with (2.16) and (2.16)', it follows at once that 

(4.3) f*(n,p,k) = c(n,p9k), 

where f*(n9p9k) is the limiting case (rn = °°) of f(n9p9k); (4.3) is of course 
to be expected from the definitions. 
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THE RECURRENCE RELATION (r + l)fr + 1 = xfr' + (K - r + l)*2/;..! 

F. P. SAYER 
Department of Engineering Mathematics, Bristol University, England 

1. INTRODUCTION 

In a recent note, in [3], Worster conjectured, on the basis of computer 
calculations, that for each positive integer k there exists an odd polynomial 
Qik-i(x) °f degree 2k - 1 such that, for every zero a of the Bessel function 
J0 (x) 

l2k J„ = T„T (sy\ "|2k Qik-i(x)[JQ(x)] ZKdx = [aJx(a)]2 

'o 
The conjecture was extended and proved in [ 1 ] the extended result being: for 
each positive k there exists an odd polynomial Q(x), with nonnegative integer 
coefficients and of degree k or k - 1 according to whether k is odd or even, 
such that for every zero a of JQ (x) 

(1.1) / Q(x)[JQ (x)]kdx = (k - l)l[oJ1 (a)-]*. 
•'o 

If the factor (k - 1) ! on the right-hand side is omitted, then the coeffi-
cients in Q(x) are no longer integers. In addition, [1] also contained the 
following generalization due to Hammersley: if FQ9 F19 GQ , and G± are four 
functions of x such that 

dF0 dF-L 
G*~te = " F i ' ~dx~ = GiF° ' 

and FQ (a) = GQ (0) = 0 , so t h a t F± (0) = 0 , 

then there exists Q{x) depending only on GQ , G , and K with the property 
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(1 .2 ) (k - l)l[F1(a)]k = f Q(x){F,(x)]kdx. 

As is observed in [1], Worsteds extended conjecture corresponds to the case 
GQ (x) = G1(x) = x. 

Subsequently there has been some interest (see [2]) in the determination 
of the coefficients occurring in the Worster polynomial Q(x). In this paper 
we show that by considering a certain recurrence relation, namely that given 
in the title, the coefficients can be expressed as multiple sums. Also, we 
show how to determine these multiple sums analytically and numerically. To 
obtain the recurrence relation, which is central to the work, we first consi-
der an alternative proof to that given in [1] of Hammersley's generalization 
of Worster's conjecture. 

SECTION 2 

We begin by defining the function $(x) by 

k 

v = 0 

where fQ(x), f1(x), ..., fk(%) is some sequence of functions which, for the 
moment we leave unspecified. Differentiating the expression for <$)(x) 9 and 
omitting the argument x occurring in the various functions, we have 

r = 0 

Since GQF£ = -F1 and F[ = G±FQi we obtain 

* = 2L,yrF0Fl " ~G^F0 Fl + (& " V)fr G1F0 Fl h 

This can be put in the alternative and more convenient form 

k-l 

n - fK+ E ft _ (p + L) f + (fe _ r + i)/ £ WvWk~ 

0 ) r = l{_ 0 

+ </*'+/*_! W*-
We put fQ = (k - 1)1 and choose the functions fl9 f25 • • • » fk

 s o that the co-
efficients of F^Fk~r, r = 0, 1, 2, ..., ?c - 1 vanish. It immediately follows 
that f± = 0, while 

(2.1) (r + l)fp + 1 = ^ 0 { / ; + (fc - P + D/j.-xGi}* * = 1, 2, ..., k - 1. 

The sequence of functions /0 , j ^ , ..., fk is now completely defined, and it 
clearly depends only on k, GQ , and G±. For p _> 2, fr(0) = 0 since G0 (0) = 0 . 

The expression for (J)' reduces to 

(2.2) - «(,' = (̂  + 4 . , ^ ) ^ . 

Integrating (2.2) with respect to x between 0 and a, we obtain, reinserting 
arguments where appropriate, 
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E fp(x)F^(x)Fk
1-r(x) 

• 'O 

+/fc_1G1)F*d*. 

Using the properties of the various functions on the left-hand side of 
this equation, we deduce 

(k - l)lF^(a) = f (f'k + f ^ G ^ d * . 

Hence, the generalization stated in (2.2) follows immediately if we take 

If we define f by putting r - k in (2.1), then 

Omitting the factor (k - 1) ! occurring in (1.1) we see that the determination 
of Q(x) for the Worster problem is achieved by solving 

fa = i . A o 
(2.3) (r + l)fr + 1 = xf; + (k - r + l)x2fr_x, r = 1, 2, 

xQ(x) = (k + Dfk + l 

The following are readi ly deduced: 

., k 

kx 
J 2 2 ! ' J 3 

( 2 . 4 ) f5 = 

ft = 

23fcr2 

5! 

2fcc 
3! ' A 

22/c-r2 r1* 
^ f - + 3fc(fc - 2 ) ^ 

2"fcr2 

6! 

+ {3-4/c(fe - 2) + 2-4fc(fc - 3)}|y 

+ {3^2k(k - 2) + 2-42k(k - 3) + 225k(k - 4)}|y 

+ 3»5/c(fc - 2){k - 4) 6! 

Thus, we can find the first four of the polynomials Q{x) . These correspond 
to k = 2, 3, 4, and 5, respectively. We now proceed to establish a number of 
results concerning the functions fr. From these, we deduce expressions for 
the coefficients of the powers of x in Q(x). 

SECTION 3 

It is first convenient to prove the following results for multiple sums 

(3.1) 

and 

(3.2) 

We have 
-2 n 

n - l n + 1 n-1 n 

E E a
qP = E E a?p 

q=3 p = q + 2 q= 3p=^+2 

n-3 n-1 n+1 

E E E 
^ = 3 p=q + 2 i = p + 2 

n - 2 / n + 1 

n-1 

+ ^ a 

q = 3 

n- 4 n- 2 n 

q, n + 1 

n-3 n-1 
lqpl = L-J 2-J iL, aqpl + 2-< 2-J aqp,n+l< 

q=3 p=q + 2 i=p + 2 q=3 p=q + 2 

E L a^ = XN £ aG 
^ = 3 p=?+2 <7 = 3 

\ ^ J ^?p 
(p=<7 + 2 ) (/7 = 3 q=n-l) \p=q+2 ) q=3 
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When q = n - 1, p can only take the value n+1, so that the above expression 
reduces to 

n-1 n+1 n-2 n - 1 n + 1 n - 1 

XI E ^P ~ an-l ,n+l ~ E a<7,n + l " E E aqp ~ E 
q=3 p = q + 2 <? = 3 <7 = 3 p=q + 2 q=3 

q, n + 1• 

Thus the result given in (3.1) now follows. To prove (3.2) we proceed simi-
larly. 

n-h n-2 n n-h n-2 ^ n + 1 n+1 ] 

E E E aivi-= E 1L )1L • E a^1 
q = 3 p = q + 2 l = p + 2 q =3 p=q+2\ i=p + 2 l=n+l) 

n-h ( n-1 n - l 1 n+1 n-h n - 2 
= E ) X - E ( E a^£ - E E a^'-+i 

q=3 ^ P = q + 2 p=n-l) a=p+2 q=3 p=q+2 
n-h n-1 n+1 n-h n-h n-2 

a LJ jLi LJ a^Pl /-J aq>n-l,n+l J^ jLt^qp.n+l 
q=3 p=q+2 £ = p + 2 q = 3 q = 3 p=q + 2 

since I can only take the value n + 1 when p = n - 1. Continuing, we have 

n-h n-2 n n-3 n-1 n+1 n-h 

2-J L-J L-j aqp-l = Z-y 2-J E ac?Pi ~ an-3,n-l,n+l ~ ^ aq,n-l,n + l 
q=3 p=q+2 i=p+2 q=3 p=q+2 i=p+2 q=3 

n-h n-2 
,Q Q. " E E aqp,n + i 
KD.3) q = 3 p^q+2 

n - 3 n - 1 n + 1 n-3 n-h n-2 
= LJ E E a ^ P £ ~ E aq,n-l,n+l ~ /__j / ^ a<lP,n + l • 

q = 3 p=q + 2 l=p + 2 q = 3 q = 3 p=q + 2 

Using (3.1) with aqp,n+i instead of aqp and n replaced by n - 2 now leads us 
directly to (3.2). The results given in (3.1) and (3.2) can be extended to 
quadruple and higher-tuple sums. Thus, for quadruple sums the analogous re-
sult to (3.3) is 

n - 6 n-h n-2 n 

z z z z 
q=3 p=q+2 £ = P + 2 j = £ + 2 

n-5 n-3 n-1 n+1 n-6 
= 2_j E E E aclPl3 ~ an-5,n-3,n-l,n + l ~ 2-J aR >n-3 ,n - 1 ,n +1 

q=3 p = q + 2 l = p + 2 j = l + 2 c ? ~ 3 

n-h n - 6 n - 6 n - h n - 2 ~ E E aRP,n-l,n+l ~ E E E a?P£>* + 1 • 
c? = 3 p = <7 + 2 q=3 p = q+2 l = p + 2 

If we now apply (3.1) and (3.2) to this equation, we obtain the result for the 
quadruple sum. The general result for p-tuple sums can be written as follows: 

n - 2 p + 3 n - 2 p + 5 n-2p+2i + l n+1 n-2p + 2 n-ip + h n-lp + 2i 

E 1L -- 1L ••• E a^2 •-• qP
 = £ E ••• E 

^ i = 3 ^ 2 = ^ i + 2 <7.£= < ? ; _ ! + 2 < 7 p = < ? p - i + 2 ^ = 3 7 2 = ^ ! + 2 q.-q.^ + Z 
(3.4) 
v y n n - 2 p + 3 n - 2 p + 5 n-1 

' " E a<l1
c(2 '•- QP + ZL/ E " • 2 ^ a ^ < 7 2 , ^ p - i , n + l " 

^ i = 3 ^ 2 = ^ ! + 2 <7p- i = < 7 p - 2 + 2 
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The first of our results concerning the sequence of functions fr is 

(i) fiv* fir+i» where r -> 1, are even polynomials of degree 2r, the least 
power in each being that of x . This can be readily established using 
the recurrence relation in (2.3), the expressions in (2.4), and induc-
tion. Next, we prove: 

(ii) the coefficient of x2 in fr+1 is , , '" t , r = 1, 2, 3, ... . 

From the recurrence relation (2.3), we have that 

f* — "^ -ft _L X \K ~ V) j? 
J r + 2 r + 2 ̂  v +1 v + 2 ^ r 

Hence we see, with the help of (i) , that the term in x2 in fr+2 will 
arise from differentiating the term in x2 in fv+1 and multiplying by 

r + 2 

Assuming the result stated in (ii) is true for a specific r, then we 
have that the coefficient of x2 in fr+2 is 

2\ 
(r + 2) ! " 

Thus, induction with the aid of (2.4) completes the proof. 

(iii) The coefficient of xh in fr+1 is 

From the recurrence relation, we observe that the term in x in flt^.2 
arises from the term in x2 in fr and the differentiation of the term 
in x in fv fx. Assuming that (iii) is true for fixed P, then we have 
with the aid of (ii) that the coefficient of xh in fr+2 is 

-»*' - 2 , 
,r-qnq-3 

(r+2)r!
 + (r + 2 ) \ ^ { k " <? + 1 ) 4 2 

& " " --,-3 

which reduces to 

(r + 2)'Z^(k - ̂7 + D 4 27 . 
' c/ « 3 

Noting the expression for f. in (2.4) we see that induction completes 
our proof. 

(iv) The coefficient of x6 in fr+1 for v >_ 5 is 

(v I n , E ^ q(/c - ̂  + l)p(fc - p + 1)6P"P4 

The recurrence formula shows that to obtain the term in x6 in fr+2 we 
must consider the term in xh in fr and the result of differentiating 
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the term in xG in fr+1. If (iv) holds for a definite r then the coef-
ficient of x6 in fr+2 is seen, with the help of ( i i i ) , to be 

k - v kv~ 
VT~2^^{k ~ ? + 1 ) 4 2 

+
 ( r f 2 ) , E Z ^ -<7 + Dptt -P + De ' -V*"^ 

v ^"^7 = 3 p=q +2 

? = 3 

+ £ E ROi- q + Dp(k - p + l )6 r + 1 - p 4 p - ? - 2 2 
q=3 p=q+2 

q-3 

If we take 

aqp = q(k - q + l)p(fc - p + 1)6P+1 ~P4P " ^ V ~ 3 , 
we find 

^ . r + i = q(k - P ) ( P + l)q(/c - q + 1)4P_1~ V \ 
so that applying (3.1) with r instead of n we have the required coef-

>v + 2 : ficient of xG in f 

TjnhnrE E *<* - * + *>P<* - P + DS^-V^-V-3. 
<7 = 3 p=<7+2 

Induction now completes our proof, 

22" 3 
(v) The coefficient ofx2r±nf , v 2:3, is 

i , 

^ " 
p ! 

When /c is odd, we take (y)' and (-r- - r )! to be generalized factorial 

functions. Use of the recurrence relation (2.3) yields 

n = x ft 2 (k ~ 2r) f 
J 2P+2 2P + 2 j2p+l 2P + 2 J 2 P ' 

Noting (i), we see that it is the term 

x2(k - 2r) 
2v + 2 ̂ 2P 

which gives rise to the power xlr+2 in f2r+2 • Thus if (v) is correct 
for fixed r, then the coefficient of x2li+2 in f2r+2 is 

(2r + 2)rl(~ - rj! (p + 1) !^| - P - l) ! 



234 THE RECURRENCE RELATION ( P + 1 ) / P + 1 = xf£ + (K - r + \)x2fv_1 [Oct. 

Once more induction, with the help of the expression for /6 in (2.4), 
completes our proof. 

(vi) The coefficient of x2t in fr + 1 , 3 £ t <_ — ~ — , P >. 5, ..., is given 
by S(r9t) where * L J 

r-2£ + 4 r-2t+6 r-2t+2i+2 
k 

1 >k f 
qx=3 q2 = qi + 2 q. = q. _ + 2 ? t _ r ? t - 2 + 2 

and 

S(r't) = (P + i)t E E ••• E ••• E a ^ 2 ••• ^t.1(2'^) 
V y ' q =3 q=q, + 2 q=q. +2 <7+_,= ?,_,+2 

, ~ , <. r - Q ^ _ •, ~ v. - i — -

a 
J = 1 J " z 

, 1 ? 2 . . . ,,_,&».*) = ( 2 t ) p - 9 t - i 2 ? ' - 3 n ^ . ( f e - q . + i ) n ( y ) v ^ ' 1 " 2 

From the given expression, it is evident that S(r,t) is a (£- l)-tuple 
sum. It is readily verified that (vi) reduces to (iv) when t = 3. 
Further, some elementary manipulation shows that: 

S(2r - l,p) 
* ! 

V\\\ - P)! 

so that (vi) also agrees with the result in (v). It is perhaps worth 
noting that the qi in this latter case each take just one value, viz. 
qi = 1 + 2i (i = 1, 2, ..., v - 1). To prove (vi) we first show that 
if for fixed p and t the coefficients oi x2t in fr and a:2*-2 in /P_i 
are given, respectively, by S(P,£) and S(r - l,t - 1) then S (r + l,t) 
is the coefficient of x2t In f . Using the recurrence relation (2.3) 
in the form 

f = x f | k - r + 1 oj, 
Jr+2 P + 2

 J r+l p + 2 J r 

we have that the coefficient of x2t in fr + 2 is 

2t S(r,£) + k " ̂  t l Sir - l,t - 1) ^ + 2 ^K, ,u; p + 2 

which is equal to 

(r + 2)l E ••• E ^1^a-^.1fr + 1 ^ + 

(3 .5) v ^ = 3 it-r^t-i*2 

2'E+5 ••• E K<, ••• ^Sr -1>* ~ l)^k - x + 1)(p + 1 } 

? 1 = 3 ^ - 2 = ^ - 3 + 2 

Now 

= 2^~3(p + l)(fc - r -f n Y l V . t k - ?, + 1) 
* — i 

* I I ( 2 j ) ^ - ^ - i " 2 ( 2 t - 2 ) p - 1 - ^ -
J = 2 

= (fc - P + 1 ) ( P + l ) a a a . . . , Q (P - l , t - 1). 
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Hence, using (3.4) with n replaced by v and p by t - 1 we can see that 
(3.5) reduces to S(r + l,t). As already observed, the formula shown 
in (vi) correctly gives the coefficient of x6 in f6, f79 f8, ..., and 
also the coefficients of x8 in fQ, x10 In f1Q> x12 in f12, etc. Hence 
by the result just proved with It = v = 8 (vi) correctly gives the co-
efficient of x8 in /9. Applying the result again with It = r - 1 = 8, 
we see that formula (vi) correctly gives the coefficient of xs in f10 . 
Thus, continuing the process, we prove that formula (vi) is also cor-
rect for the coefficient of x8 in fn> f\2> ••• • ^n e Pr° cess is now 
repeated, starting with It - r - 10. By this means, we successively 
establish the formula for the coefficients of x8, ^r10, x12, etc. 

From (2.3) we have xQ(x) = (k + ^)fji + 1) so that it is now possible to 
deduce a number of results concerning Q(x). These are: 

9fc-i 
the coefficient of x is 

(fc ~ I ) ! ' 
k 7v _ r, rt _ -? 

and 
? = 3 

• 1 

that of x3 is ^ _ 1 } ! X ^ ( A : ~ ? + 1)4*~*2*~3, 

that of x2*'1 (t >_ 3) is the (t - 1)-tuple sum 
k-2t+^ k-2t+6 % 

a - 1 ) i 2 E ••• Z a?i?2 ••• £?t-i(^'t ) 

where 
t-i 

aqq ... q (k,t) = (2t)k-q^2qi-3U q,(k - q, + I) 

x n ( 2 j ) j V i . 
J = 2 

In the next section we show how the multiple sums can be determined and 
find them in certain cases. 

SECTION h 

Referring to the end of the last section we see that the coefficient of 
x3 in Q(x) can be written as 

0k- 3 

s(k) (k - 1)1 

where 

(4.1) S(k) = ^q(k - q + 1)2*"*. 
7 = 3 

We now put 

(4.2) S(k) = kS±(k) - S2(k) 

where 

(4.3) S±(k) = ]T?2 
q = 3 

and 

k-q 
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k 
(4.4) S2(k) = ^q(q - D 2 

7 = 3 

k-q 

These 

(4.5) 
and 
(4.6) 

series have the sums 

S1(k) = 2k - k 

S2(k) = 72fe_1 -

- 2 

k2 3k - 4. 

Hence 

S(k) = ilk - l)2k~1 + k + 4, 

giving the coefficient of ^3 as 

{k
2„ l){ {2k~1(2k - 7) + k + 4}. 

It is perhaps worth noting that this expression vanishes for k = 1 and 2. 
Again referring to the end of Section 3, we see that the coefficient of 

x5 in Q(x) can be written as 
>k-5 2 

TW), where (k - 1 ) ! 
k-2 

7(W = Z S { ^ " ^ ~ ^}{kP ~ P<P - D>3fe"P2 
7 = 3 p = 7 + 2 

P u t t i n g 

(4 .7 ) T(k) = k2T1(k) - kT2(k) + T3(k), 

then k_ 2 fe 

(4 .8 ) ^ ( f c ) = £ £ p q 3 k - p 2 p - ^ 2 

/ c - 2 fc 

(4.9) T2(k) = E Z {?<?(<? " D + ?P<P " l ) } 3 k " p 2 p ^ - 2 , 
7 = 3 p = 7 + 2 

311(1 fc-2 fc 
(4 .10) T3(k) = ^ £ q(<7 - D p ( P " l)3k-p2p-q~2. 

7 = 3 p=q + 2 

With t h e he lp of ( 3 . 1 ) , ( 4 . 3 ) , ( 4 . 4 ) , and (4 .8 ) t o ( 4 . 1 0 ) , we deduce 

Tl(k) = 3T1{k - 1) + kS±(k - 2) 

(4 .11) T2(k) = 3T2(k - 1) + k(k - l)S±(k - 2) + kS2(k - 2) 

T3(k) = 3T3(k - 1) + fc(/c - l)S2(fc - 2 ) . 
Since T1(5) = 15, T2(5) = 90, and T3(5) = 120, these recurrence relations en-
able us, with the help of (4.5) and (4.6), to find T1 (k) , Tz(k) , and T3 (fc) 
numerically, and hence, from (4.7), we can determine T(k) . We can also use 
the recurrence relations to find analytical expressions for the T^ (k),i = 1, 
2, 3. The method is the same in each instance. Therefore, we illustrate it 
by considering T1(k), then stating corresponding results for T2(k) and T$(k). 
The method depends on recognizing that the recurrence relation (4.11) and the 
condition 2^(5) = 15 can be satisfied by taking T1(k) in the form 

(4.12) T^k) = f3(k)3k + f2(k)2k + hW)9 
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where f1(k)9 f2W)> and f3(k) are polynomials in k. It is perhaps worth em-
phasizing that once we have a solution for T1(k) it will be the solution. 
Inspection suggests we write 

(4.13) Tt(k) = aQ3k + (bQ + b1k)2k + e0 + cxk + c2k2. 

From (4.11) and (4.5), we have 

a03k + (b0 + b±k)2k + c0 + exk + o2k2 

= a03k + |(2>0 + bx(k - l))2fe + 3(eQ + ̂ (fc - 1) 

+ e2(k - l))2 + k(2k~2 - k). 

Comparing coefficients, we obtain 

1 3 1 3 3 
^i = " 2 ' ^o = " 2 ' e2 = Y5 Cl = ~29 a n d c° = 2" 

while a0 is indeterminate. To obtain a0 we can proceed in two ways. First, 
we calculate a0 from (4.13) by putting k= 5 and noting that T1(5) = 15. This 
gives aQ = 1/2. Second, we observe that we can regard l\(k) as being defined 
for all k by (4.5), (4.11), and ̂  (5) = 15; thus, determine ^ (0) and so ob-
tain aQ by putting k = 0 in (4.13). This is a somewhat easier procedure to 
carry out computationally than the first. It is readily found that T2 (4) = 
T1(3) = 0, Tx(2) = T1(l) = 1, and T1(0) = 1/2,again giving us a0 = 1/2. So, 

(4.14) ^(fc) = |-3fc - (£ + 3)2fe'1 + |(/<2 + 3 ^ + 3). 

Likewise , we f ind T2(4) = T 2 (3 ) = T 3 (4) = ^ 3 ( 3 ) = 0 , T2(2) = 3 , ^ 2 ( 1 ) = 2 , 
^ ( O ) = 3 / 4 , T3(2) = 2 , ^ 3 ( 1 ) = 1, and T3 (0) = 1 /3 . Assuming a p p r o p r i a t e 
forms fo r T2 (/c) and T3 (k) , we o b t a i n 

? 1 7^^ 97 
(4 .15) T2(k) = ^ 3 k - (2/c2 + 17k + 4 5 ) 2 k ' 2 + k3 + - ~ + ^ + ^ 
and 
(4 .16) T3(k) = i | i 3 f e _ 1 - 7(k 2 + 5k + 12)2f e"2 + ^ - + 2k3 

+ 6/c2 + Ilk + 4 ^ 4 

so that the coefficient of x is 
0fe-7 , 

-yyy {3*_1(6k2 - 63fc + 139) + 2k+1(2k - 7)(k + 6) 

+ 2k2 + Ilk + 39}. 
We note that this last expression vanishes for k = 1, 2,3, and 4. 

We now proceed to find the coefficient of x1 in Q (x) . Since the proce-
dure is similar to that for finding the coefficient of x5

s we merely state 
the essential results. Suffix notation employed in the expression for the 
coefficient of x2t~1 (t _> 3) is not used here; it is sufficient to write the 
coefficient of x' as 

?k-7 

where 
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k-4 k-2 k 

q = 3 p = q + 2 P = P + 2 

r ( r - l ^ ^ - V P - V ' - 2 

Now 

k ^ k ) - k2R2(k) + kR3(k) - i ? , ( k ) . 

i?x(/c) = 4i?1(fc - 1) + kT-^k - 2) 
i?2(k) = 4i?2(k - 1) + k(k - l)T1(k - 2) + kT2(k - 2) 

R3(k) = 4i?3(k - 1) + k(k - l )T 2 (k - 2) + KT3(k - 2) 

^ ( f e ) = 4i?,(k - 1) + k(k - DTg (fe - 2 ) . 
We deduce, with the help of the r e s u l t s for T-(k), 

i?i(0) 1 , i?9(0) ••f, i? 3 (0) 

Again, making appropriate choice of forms, we obtain 

*i(fc) = V ^ — ( k + 4) + 2fc~J(k2 + 5k + 8) 

71* V°> = 
a in 

k3 k2 

6 2 

11 
48 ' 

5k 
6 

i?2(fc) = y 4* - {2k2 + 35^ + 132} + 2*~4{4k3 + 33k2 + 125k + 192} 

R3(k) 

Rh(k) 

1553 4k 
72 

k" 3k3 

2 2 

kjjk2 145k 5_ 
9 9 

4k2 

r} 

27k _ 
4 ^ 

+ 2k~h{2kh + 30k3 + 173k2 

+ 551k + 812} - ~ 3kh 

2 
35k3 57k2 21k - 139 

JL|277 4?, _ 139 3fc-2(fe2 + 7fc + 2 4 ) + 72*-*(k- + 8k3 + 41k2 
432 4 

k*_ _ k^_ _ 8k^ _ 25k3 _ 73k2 
6 2 3 3 4 + 118k + 168) 

947k 
36 

506 
27 

so that the coefficient of x7 is 
,fc-9 

3(k - i): 4
k{2k 42k 2 , 1553k 16277 \ _̂  ^ 

6 36 > + 3k(k + 8) (6k2 - 63k + 139 

+ 32fe_1(2k - 7)(2k2 + 25k + 84) + 2k3 + 27k' 

391k 2024 
3 9 

This expression vanishes when k = 1,2, 3,4, 5, and 6. We could now proceed, 
in a similar manner, to find the coefficient of x and that of higher powers 
in Q(x). It is now evident that the details become increasingly complicated. 
Hence, it is preferable to calculate the coefficient for a given power by 
means of the appropriate recurrence relations. However, using the last of 
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the three results occurring at the end of Section 3, it is possible to de-
duce the coefficient of xk~1 when k is even. The coefficient is 

k L 3(k - 2) 3* 5(fe - 2)(k - 4) 
k - 1\ 2(k - 3) 2 • 4(fc - 3)(& - 5) 

3- 5 - liX - 2)(k - 4)(fe - 6) ) 
2 • 4 • 6(fc - 3)(fc - 5)(k - 7) + " J ' 

the expression within the brackets terminating, since k is even. 
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FIBONACCI RATIO IN A THERMODYNAMICAL CASE 

JEAN-PIERRE GALLINAR 
Departamento de Fisica, Universidad Simon Bolivar, 

Aptdo. 80659, Caracas 108, Venezuela 

Consider the thermodynamics of an infinite chain of alternately spaced 
IE molecules of donors and acceptors (N ->• °°) , and assume there is an average 
of one mobile electron per molecule (as is quite common for some one-dimen-
sional organic crystals [1, 2]). 

® ® ® ® 
FIGURE 1 

Each molecule may contain a maximum of two such electrons and as the 
temperature is raised two electrons may jump onto the same molecule. Because 
electrons repel each other,, it costs an energy UD or UA to put two electrons 
on a molecule type D or type A, respectively5 a common situation is that 

UD » UA. 
Under these conditions, it can cost almost no energy to have sites A doubly 
occupied, while double occupancy of sites D is effectively eliminated. 
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In the grand-canonical ensemble, the partition function Z of the elec-
trons can then be approximated by 

= \N (1) Z = X 

where X = zk sD ; zk and £D being the partition functions "per molecule" of 
type A and D, respectively. In terms of the fugacity [3], z and X can be ob-
tained easily, in fact, 

(2) zk = 1 + 2z + z2 = (1 + z)2 

and 

(3) zD = 1 + 2z. 

The three terms in (2) (in ascending powers of z) correspond to zero occupan-
cy, single occupancy (with spin up or down), and double occupancy (respec-
tively) of sites A. In (3) there is no z term, because double occupancy of 
sites D is effectively eliminated. 

In the grand-canonical ensemble, the positive quantity z is determined 
[3] by fixing the "average" number of particles (in this case, electrons). 
Since we have an average of one electron per site, z will be determined by 
the condition [3] 

(4) 3 § - 2 A . 

Substituting for X in terms of (2) and (3) and simplifying, (4) gives the 
cubic equation 

(5) (z + l)(z2 - z - 1) = 0 

for z. Finally, the positive 

(6) z+ = ^ 

The Fibonacci ratio is the only appropriate physical solution of (5) for the 
fugacity z. From the grand-partition function Z and the numerical value of 
X , 

(7) X = (1 + z)2(l + 2<0 = z7
+9 

the thermodynamics [3] then easily follows. 
In particular, the entropy S that arises from the number of possible 

arrangements of the electrons in the chain is given by 

(8) Y~ = 5N In z , 

where kB is Boltzmann's constant. 
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ON GROUPS GENERATED BY THE SQUARES 

H. S. SUN 
California State University, Fresno, CA 93740 

1. INTRODUCTION 

It was known that the quaternion group and the octic group could not be 
generated by the squares of any group [5, pp. 193-194]. A natural question 
is which groups are generated by the squares of some groups. Clearly, groups 
of odd order and simple groups are generated by their own squares. In this 
paper, we show in a concrete manner that abelian groups are generated by the 
squares of some groups, and we show that every group is contained in the set 
of squares of some group. We give conditions for the dihedral and dicyclic 
groups to be generated by the squares of some groups. Also we show that sev-
eral classes of nonabelian 2-groups cannot be generated by the squares of any 
group. 

2. NOTATIONS AND DEFINITIONS 

Throughout this paper, all groups considered are assumed to be finite. 
For a group (?,we let G2 denote the set of squares, 1(G) the group of inner-
automorphisms, A(G) the group of automorphisms, Z(G) the center, |£| the or-
der of G, G1 the commutator subgroup. For any subset S of G, <£> denotes the 
subgroup generated by S. G is called an ff-group if it is generated by the 
squares of some group L; to be more precise, there is a group L such that KL > 
is isomorphic to G. 

3. CLASSES OF ̂ -GROUPS 

In a group of odd order, every element is a square; therefore, it is an 
^-group. A simple group is also an £-group since it is generated by its own 
squares; for, if the set of squares generates a proper subgroupj it WOUld be 
a normal subgroup with abelian quotient. We next show that an abelian group 
is an -S'-group. 
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Tkzoti&m 3. 11 An abelian group is an g-group. 

Vh£o£} Let G be an abelian group. Then 

G = #! x H2 x ••. x Hn, 

where the #^ are cyclic groups. Let |^| = kt- The permutation group gene-
rated by the n circular permutations 

where the a^- are \G\ distinct symbols, is isomorphic to G. Let L be the 
permutation group generated by the n circular permutations 

(a11a12 ... alki b11b12 ... blki ), 

(a21a22 ... ^2kzb21b22 ... b2ki), — , 

(an la n 2 ... anknbnlbn2 ... inkB)» 
where the bij's are |(?| distinct symbols all different from the a^-'s. Then 
clearly L2 = G, and G is an 5-group. 

Using the same technique, we can prove the following: 

TkflOK&m 3.2: Every group is contained in the set of squares of some group. 
(See also [9].) 

P/LOOfJ: Let G be a group, and let P. be a permutation group on n symbols iso-
morphic to G. We will construct a permutation group L such that P is isomor-
phic to a subgroup in L . 

Let Q be a permutation group isomorphic to P on n symbols distinct from 
those of P. Let i be the isomorphism of P onto Q. If each element x in P is 
multiplied to i{x) in Q, we obtain a group 

R = {xi(x) \x e P} 
isomorphic to P. Clearly, each permutation in R is the square of a permuta-
tion in Zn symbols. Let L be the permutation group generated by the permu-
tations whose squares are in R. Then R C L2. 

Unfortunately, homomorphic images of g-groups need not be ,S-groups. If, 
however, the kernel of the homomorphism is a characteristic subgroup of the 
5-group, then the homomorphic image is also an g-group. To prove this, we 
need the following lemma, which can be proved by straightforward set-inclu-
sion. 

Lemma. 3.1: Let N be a normal subgroup of G which is contained in (G2y. Then 

<(G/N)2> = <G2>/N. 
TkzoK.<im 3. 3: Let G be an 5-group, and let 0 be a homomorphism from £_onto G 
such that the kernel of 0 is a characteristic subgroup of G. Then, G is an 
5-group, 

?KOOJ* Let L be a group such that <L2> = G. Then, the kernel of 0, being a 
characteristic subgroup of G9 is normal in L. By the lemma, 

<(L/kernel 0)2> = <L2>/kernel 0 = ^/kernel 0, 

which is isomorphic to G. Hence, G is an 5-group. 
As corollaries to Theorem 3.3, if G is an S-group, the quotient groups 

of its center, i.e., its group of inner-automorphisms, its Frattini subgroup, 
and its Fitting subgroup, are all 5-groups. 
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Tko,OK.Qjm 3.4: A nilpotent group is an 5-group if and only if its Sylow 2-sub-
group is an 5-group. 

Psiooj: Let G be a nilpotent group. Then G = T x H, where T is a 2-group and 
H is a group of odd order. If T or H is trivial, then the Theorem is evi-
dent. Suppose T is an 5-group, say <F2> = T, letting L = F x H, we have 

<L2> = G. 

Conversely, let G be an 5-group. T is a homomorphic image of G, with 
kernel of the homomorphism being H. Since H is a characteristic subgroup, by 
Theorem 3.3, T is an 5-group. 

4. DIHEDRAL AND DICYCLIC GROUPS 

Tko,OKQjn 4.1: A dihedral group Z?OT of order 2m is an S-gronp if and only if 
the congruence t = -1 (mod 77?) has a solution. 

Vh-OO^i Dm has presentation 

a^ = h 2 = 1, fc"1^ = a " 1 . 
If there were a group £ such that <L2> = Z?m, there would have to be elements 
c in L such that £2 = azb, for some i. For m = 2, Z?m is abelian, hence is an 
5-group. For 777 = 4, ZJOT is not an .S'-group. For m ^ I, 2, 4, <a> is a charac-
teristic subgroup of Dm, hence normal in L. Therefore, 

o~1ac = a*,' 
but 

(aib)~1a(aib) = a"1, 
so 

a"1 = (aib)~1a(^b) = c~1(c~1ac)c = c~1(at)c = at2 . 

t2 = -1 (mod m) must have a solution. 
Conversely, if t2 = -1 (mod m) has a solution £0, we define the group 

L = <(o,dy as follows: 

Then clearly <(L )> is isomorphic to Dm. 
G. A. Miller stated [4, p. 152] that no dicyclic group can be generated 

by the squares of any group. The following theorem gives counterexamples to 
his statement [7]: 

lhQ.OK.Qjn 4.2: A dicyclic group Dim) of order km is an 5-group if and only if 
t2 = -1 (mod 2m) has a solution. 

VK.00^: For m = 2, Dim) is not an 5-group. For m > 2, let Dim) have presen-
tation 

a2ffl = b1* = I, b2 = am, b'xab = a"1. 

If there were a group L such that <L2> = D(m), there would have to be an ele-
ment c in L with c2 = azb for some £ = 0, 1, 2, ..., 2m - 1. <a> is a char-
acteristic subgroup of Dim), hence normal in L. e-1ac = a*, for some t, but 
iaib)~1aiaib) = a"1; therefore, 

a"1 = ( a ^ K W ^ ) = c " 1 ^ " 1 ^ ) ^ = c~1ata = at2. 

Thus, t2 E -1 (mod 2w) must have a solution. 
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Conversely, if t2 - -1 (mod 2m) has a solution tQ, we define the group 
L - (c,dy by 

d4 = olm, chm == d8 = 1, d"1^ = cto. 

Then clearly <L2> is isomorphic to DQn). 

5. 2-GROUPS 

Since a nilpotent group is an £-group if and only if its Sylow 2-subgroup 
is an 5-group, 2-groups are particularly important in the determination of 
S-groups. 

L&mma 5.1: Let G be a 2-group, and let N be a normal subgroup of order 4. 
Then the index of the centralizer of N9 [G:C(N)], is at most 2. 

VKOO^'r Since N is normal, for a in N9 every conjugate of a is also in N. 
The number of conjugates is either 1 or 2, because at least two of the ele-
ments of N are in Z{G). This means that, for every a in N, the index of its 
centralizer, [G:C(a)] 3 is at most 2. If N is cyclic, let a be its generator, 
then (7(a) = C(#) . If N is not cyclic, 

N = <a> x <&>, where |a| = |&| = 2 . 

Let a £ Z(G). If H Z(G)S then C(tf) = C(b), so [£:£(#)] is at most 2. If 
Z? e Z(G) also, then C(« = £.-

lemma 5.2: Let 6* be a 2-group, let iV be an abelian normal subgroup of order 
8 contained in <£2>. If N == <a> x <&X where a is an element of order 4 in 
Z « £ 2 » , then N C Z(<£2» . 

VKOO^i Let M be a subgroup of 217 of order 2 contained in Z(G) . If M is not 
contained in <a>, then 

N = <a,M>CZ(£) H <£2> C Z « £ 2 » . 

If M = <a2>, then b, an element of order 2 in /If, can only be conjugate to b 
and ba2, and the index of C(Z?) is equal to the number of conjugates of b, so 
[G:G(b)] is at most 2. Since C(fc) contains <C2>, Z? is in Z « £ 2 » . 

ThuoK&m 5.1: A nonabelian 2-group with cyclic center is not an £-group. 

VK.OO{: By induction on the order of G; it is true for |&| = 23 [5, pp. 193-
194]. Suppose that (J is a group of lowest order with cyclic center and that 
there exists a 2-group L such that <(L2> = G. Let <e> be a subgroup of order 
2 contained in G DZ(L). Then, by Lemma 3.1, <(£/<£»2> = £/<». Z(C/<^» 
cannot be cyclic if G/<^ay is nonabelian. If G/^oy is abelian, then G/K^cy = 
Z(G/(cy). Since <c)> is contained in Z(G), G/Z(G) is a homomorphic image of 
G/<^cy. G/Z(G) is never cyclic, so G/Kpy is not cyclic. Thus, in any case, 
Z(G/<e>) i s n o t cyclic. 

Let # be the largest elementary abelian 2-group contained in Z (£/<£». 
Since Z (£/<£)>) is not cyclic, l̂ l is at least 4. S7 is a characteristic sub-
group of G/(cy, therefore normal in Lj^py. There exist normal subgroups M, 
N of L/^py of orders 2 and 4, respectively, such that M CJV C E. Let M and 
N be the normal subgroups of L which are the preimages of M and N under the 
natural homorphism of L onto L/<c)>. Then, 

\M\ = 4 , |tf| = 8, and <c> CM CN. 
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By Lemma 5.1, [L:C(M)] is at most 2, which means 

G = <L2> C CQd) , o r M C Z t f ) , 

which is cylcic. Now N is abelian, N C GN C E, which is noncyclic, so N is 
noncyclic; M C N, if M is cyclic, by Lemma 5.2, tf C Z(G), which contradicts 
the assumption that Z(G) is cyclic. 

ThzotKim 5.2: Let £ be a nonabelian 2-group with commutator subgroup of index 
4. Then G is not an £-group. 

Vtooj- Suppose L is a 2-group with <L2> = G9 Gr nontrivial, and [G:Gf] = 4. 
Let N be a normal subgroup of L contained in £', with [G':N] = 2 [3, p. 127]. 
Then L/# is a 2-group such that <(L/N)2> = G/tf, by Lemma 3.1. But, (G/N) ' = 
Gf/N is nontrivial, and the order of G/N, 

[G:N] = [G:G'][G':N] = 8. 

Thus, G/N is a nonabelian group of order 8 which cannot be an £-group. This 
contradiction shows that G is not an ̂ -group. 

Thzoim 5.3'* Let G be a nonabelian 2-group with <£2> cyclic and [£:<£2>] = 
4. Then G is not an 5-group. 

Pswofi: Use induction on the order of G, It is true for \G\ = 23. Assuming 
the theorem for all 2-groups of order less than 2 , let G be a nonabelian 
group of order Zn, and let [£:<£2>] = 4 with <£2> cyclic. Suppose there is 
an L with Kjj )> = G. We consider two cases with \Gr\ = 2 and \Gr\ *> 2. 

Let \Gr\ = 2 . Then every noncentral element has just two conjugates, 
i.e., for every x in G9 [G:C(x)] <_ 2. Hence, 

fl C{x) = Z(G) D <£2>. 

Since [G:Z(G)] >. 4, Z(G) = <£2>. By Theorem 5.1, £ is not an 5-group. 
Now suppose |G"| > 2. Since <£2> is cyclic, let <£2> = <c>. Then |e| = 

2n~2. Let a be the 2n_1th power of <?. Then <a> is a characteristic subgroup 
of order 2 in G, thus normal in L. Now <(£/<a>)2)> = G/<a>. Since \G'\ > 2, 
£' is not contained in <a>, so G/(ay is nonabelian. Moreover, 

[£/<a>:<(£/<a»2>] = [G:<G2>] = 4. 

Therefore, £/<a> is a nonabelian 2-group of order 2n~l with cyclic (̂G/<a)>) 2)> 
of index 4. This contradicts the induction hypothesis. 

Applying Theorems 5.1-5.3, we obtain the following theorems. 

Th(lO)iQjn 5.4'> Let £ be a nonabelian 2-group whose center 

Z(G) = <a> x <£>, where \a\ = 2 n , |fc| = 2 . 

If Z(G) contains exactly one element which is not a square and is not in the 
commutator subgroup, then G is not an /S-group. 

Vft.00^'. Let G be the central element which is neither a square nor a com-
mutator. Then c = b or alb for some i, so Z(G)/<c> = Z(£/<e» is cyclic. 
<<?> is a characteristic subgroup of G. Since Q i G!, £/</?) is nonabelian. 
By Theorem 5.1 G/{c) is not an £-group; by Theorem 3.3 G is not an £-group. 

An example of this is the group of order 16 with presentation ak = bk = 1, 
b'^ab = a"1. Here, a2b2 is a central element which is not in Gr and is not a 
square, so the group is not an ̂ -group [1, p. 146]. 
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Tfieo/iem 5.5: Let £ be a nonabelian 2-group with 

<G2> = <a> x <£>, where \a\ = n, \b\ = 2. 

Suppose (G2y contains exactly one element c which is not a square; also sup-
pose that either c i Gr or \Gr\ > 2, and [G:G!] = 4. G is not an £-group. 

The proof of this theorem is similar to that for Theorem 5.4. An ex-
ample is the group G of order 32 with presentation 

ah = b2 = c2 = d2 = 1, d'^ad = a, 

d~1od = eb, c~xac = a"1, 

where a2 and b are central elements. Here 

G' = <G2> = <a2,b>, 

and the element a2b is not a square. By Theorem 5.5 G is not an 5-group. 
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A PRIMER ON STERN S DIATOMIC SEQUENCE—II 

CHRISTINE GIULI 
University of Santa Clara, Santa Clara, CA 95053 

and 
ROBERT GIULI 

University of California, Santa Cruz, CA 96050 

PART II: SPECIAL PROPERTIES 

In 1929, D. H. Lehmer, at Brown University, presented a summary [1] of 
discovered results concerning Stern's sequence. Also, in July 1967, some ad-
ditional results were reported by D. A. Lind [2]. In order to standardize 
the results, we will define Stern's sequence to be s(i,j) where 

(1) s(i,0) = 1, for i = 0, 1, 2, ... 
(2) s(0,j) = 0, for j = 1, 2, 3, ... 
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(3) s(n92k) = s(n9k)9 for n9k = 1, 2, 3, ... 
(4) s(n,2k + 1) = s(n - 1,/G) + s(n - l,k .+ 1). 

A table follows: 

STERN NUMBER TABLE 

Row 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

2 

0 
0 
1 
2 
2 
4 

•5 

6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

3 

0 
0 
1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 

4 

0 
0 
0 
1 
1 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

5 

0 
0 
0 
2 
5 
8 
11 
14 
17 
20 
23 
26 
29 
32 
35 
38 
41 
44 
47 

6 

0 
0 
0 
1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 

7 

0. 
0 
0 
1 
4 
7 
10 
13 
16 
19 
22 
25 
28 
31 
34 
37 
40 
43 
46 

Cc 

8 

0 
0 
0 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

>lumn 

9 

0 
0 
0 
0 
3 
7 
11 
15 
19 
23 
27 
31 
35 
39 
43 
47 
51 
55 
59 

10 

0 
0 
0 
0 
2 
5 
8 
11 
14 
17 
20 
23 
26 
29 
32 
35 
38 
41 
44 

11 

0 
0 
0 
0 
3 
8 
13 
18 
23 
28 
33 
38 
43 
48 
53 
58 
63 
68 
73 

12 

0 
0 
0 
0 
1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 

13 

0 
0 
0 
0 
2 
7 
12 
17 
22 
27 
32 
37 
42 
47 
52 
57 
62 
67 
72 

14 

0 
0 
0 
0 
1 
4 
7 
10 
13 
16 
19 
22 
25 
28 
31 
34 
37 
40 
43 

15 

0 
0 
0 
0 
1 
5 
9 
13 
17 
21 
25 
29 
33 
37 
41 
45 
49 
53 
57 

16 

0 
0 
0 
0 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

17 

0 
0 
0 
0 
0 
4 
9 
14 
19 
24 
29 
34 
3'9 
44 
49 
54 
59 
64 
69 

18 

0 
0 
0 
0 
0 
3 
7 
11 
15 
19 
23 
27 
31 
35 
39 
43 
47 
51 
55 

The authors will attempt to move quickly through the properties of these 
numbers without proof. 

(1) The number of terms in row n is 2n + 1. 
(2) The sum of all terms in row n is 3n + 1. 
(3) The average value of all terms approaches (3/2)n. 
(4) The table is symmetric: 

s(n,k) = s(n92n + 2 - k) for 2n + 2 - k .> 0. 
(5) In three successive terms a9 b9 c9 (a + a) lb is an integer. 

(See Part I [3], Sections 4 and 11.) 
(6) Given a9 b9 and c again, then b occurs at 

s(n - k9 (a + a - b)/2b). (See [3], Section 4.) 
(7) Any two consecutive terms are relatively prime. 

(See [3], Section 5.) 
(8) Any ordered pair can only appear once in the table. 

(See [3], Section 6.) 
(9) If a l b = (fc, ki> k2» ...» km, 

in line (k + k1 + k2 + • • • + k m + r. 
(See [3], Section 10.) 

(10) The number of times that an element k can appear in the row k 
and all succeeding rows, is Euler's function 0(/c). 

!>„,_!) s then a and b appear together 
i - D . 

l, 
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(11) "p" is a prime if and only if it appears exactly (p - 1) times in 
line (p - 1). 

(12) s(n,r) will appear again at locations s(n + k, 2k(r - 1) + 1) for 
k = 1, 2, 3, ... ,. 

(13) If the sequence r1,r2 occurs in row n, v1 > r2, the smallest ele-
ment in row n + k positioned between P X and r2 is 

s(n + k, 2kr) ='r1 + kr2. 
(14) In any row, there are two equal terms greater than all others in 

the row. 
(15) For Fibonacci followers: 

s(n,r) = Fn + l9 for r = (2n_1 + 2 + {l + (-l)n})/3 - 1, 
and it is the largest element in the row. 

(See [3], p. 65; notation changed to standard form.) 

Not all of the discovered results are considered here, since there are 
remote connections to so many areas of number theory. 
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SUMS OF PRODUCTS: AN EXTENSION 

A. F. HORADAM 
University of East Anglia, Norwich; 
University of New England, Armidale 

The purpose of this note is to extend the results of Berzsenyi [1] and 
Zeilberger [3] on sums of products-by using the generalized sequence 

{Wn(a,b;p,q)} 
described by the author in [2], the notation of which will be assumed. 

Equation (4.18) of [2, p. 173] tells us that 

(1) Wn_rWn+r + t - WnWn + t = eqn~rUr_1Ur+t_r 

Putting n - v = k and summing appropriately, we obtain 

n n n 

k=0 k=0 k=o 

Values t = 1, t .= 0 give, respectively, 
n n n 

<3> E^+2» + i =HWk+^k+r + i+eUr_1Ur^qK 
and 
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k = 0 k=0 fc=0 

If q = -1, then 

(5) \T ak = [l ±f n is even 
K J L^^ \0 if n is odd. 

fc = o 
Using t h e Bine t form fo r J/n and Un9 we f ind a f t e r c a l c u l a t i o n t h a t (3) 

and ( 4 ) , under t h e r e s t r i c t i o n s ( 5 ) , become, r e s p e c t i v e l y , 

_ "Wr+n+l- ^r+l) ~ ^o^r + 1 i f n ± S e V e n 

( 6 > X > A + 2 , + i = i ,/2 _ r.72x 

and 
fe = o f ~ ( ^ p + n + i ~ ^ p ) i f n i s odd, 

-(Wr + nWr + n+i - WrWr + 1) + WQW2r i f n i s even 

k = 0 | ~(^P + n^p + n+l ~ ^ r-i^) l f n l s o d d 

When p = 1, so that J/n = #n (and £/„ = Fn) , (6) and (7) reduce to the 
four formulas given by Berzsenyi [ 1] . That is, BerzsenyiTs four formulas are 
special cases of (1), i.e., of equation (4.18) of [2], 

Zeilberger's theorem [3] then generalizes as follows: 

TkzotKim: If {Zn} and {Wn} are two generalized Fibonacci sequences, in which 
q = -1, then 

Z aaWi = ° 
if and only if 

P(s,03) = J2 
i> j = 0 

vanishes on {(a,a), (a,3)» (3>a), (3>3)} where a,3 are the roots of 

x2 - px - 1 = 0 . 

Zeilberger's example [3[ now refers to 

n 

(8) X Z A : ^ + 2 P + 1 = -(Zr+n + lMr + n + l " Z>r+1Wr+1) + Z0W2p+1. 
k = 0 ^ 

(In both [1] and [3], m is used instead of our p.) 
Verification of the above results involves routine calculation. Diffi-

culties arise when q £ -1. 
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A CONJECTURE IN GAME THEORY 

MURRAY HOCHBERG 
Brooklyn College, Brooklyn, NY 11210 

We consider a team composed of n players, with each member playing the 
same r games, G±9 G2, .•.9 Gr. We assume that each game Gj has two possible 
outcomes, success and failure, and that the probability of success in game 
Gj is equal to p. for each player. We let X^j be equal to one (1) if player 
i has a success in game J and let X^j be equal to zero (0) if player i has a 
failure in game J. We assume throughout this paper that the random variables 
Xij , i = 1, 2, ..., n, j = 1, 2, ..., r are independent. 

Let Sjn denote the total number of successes in the jth game. We define 
the point-value of a team to be 

yn = min Sjn . 
l<,3<^v 

This means that the point-value of a team is equal to the minimum number of 
successes in any particular game. Clearly, 

and 
PiSj„ = m} = (")pj"(l - Ppn~\ rn = 0, 1, 2, . . . , n, 

n-1 

(1) E[Vn] = £feP{Y„ = k] = ] T p { ^ > k} 

k=0 k=0 

n-1 

= X P{Sm > k, S2n > k, ..., Srn > k) 
k = 0 
n - 1 r 

= X UPiSjn > k] 
k=0 J=1 

- 1 

fc = 0 J = 1 m-k + l V " / 

It follows from the definition of ̂ n that the expected point-value for 
a team is an increasing function of n, i.e., 

tf[Yn] < E[Vn+1], n = 1, 2, 3, ... . 

Since a team can add players in order to increase its expected point-value, 
it seems reasonable to define the score to be the expected point-value per 
player. Namely, we denote the score by 
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(2) *„-££ n ZQp^-pp 

Thus, from (1), we obtain 

n - 1 r 
1 "V̂  n \^ l'n\..myi yi-m 

j 
' k = 0 j = 1 m = fc + l v' v 

It is not obvious from (2) how the score varies as the number of players in-
creases. We now prove that Wn is a strictly increasing function of n in the 
special case v = 2 and p1 = p2. We first prove three lemmas, which are also 
of independent interest. 

Lejfnma 1: Let a team be composed of j players, with each member playing the 
same two games, Gx and Gz, Let the probability of success for each player in 
both games 6?1 and G2 be equal and be denoted by p. Let uj - P{Slj- = S2j}* 
for all positive integers j. Then 

r2U 

/

III 

\p + qe"\VdS = uj 

P{Si. = m] = rJp^a - py~m, m = 0 , 1, 2 , . . . , j , i = 1, 2 , 

where q = 1 - p . 

Vnxw£} Using t h e f a c t t h a t 

and t h e independence of t h e random v a r i a b l e s Slj- and S2j-9 we o b t a i n 

(3) W, = E t e ) ] 2 ? 2 ^ 1 - P)2 0 ' "^ ' J = 1. 2> 3' ••• • 
m = 0 

J 
We note that if / is the polynomial f(z) = /Z amzm> then 

m = 0 

fe/"V(^e)l2de = £>£. 
.211 

(4) 

We now apply the binomial expansion and (4) to the function f(z) = (p + qz)c , 
where J is a positive integer. The binomial expansion yields 

W / (3) = (p + <7s) 
m = 0 

and using (3) and (4), we obtain 

E[QPV-"]* 

(5) ^/V*«"i^-to[Q]: -2n «/ r , ..^ 2 
2m 2(j-/n) 

LmmoL 2: Let r = 2, p2 = p2, and u^ = M ^ - = £2,7 }> f o r a 1 1 positive inte-
gers j. Then ŵ . < Mj-_i-

P̂ flO/j: Since 
|p + ̂ B | 2 < 1, for 0 £ 6 <. 2n 

and 

the desired result follows from (5) 

p + <7£ie |2 < 1, for 0 < 6 < 211, 
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S2j}» for all positive integers j and let uQ Lmma 3: Let UJ = P{Sl3-
Let dj = yj + 1 - ^ , Q = 0, 1,~2, . .., and let ^0 = 0. Then 

(6) E[dd].= ujp2 + (1 - ud)p. 

VK.00^1 Clearly, dj can assume only the values 0 and 1 with the following 
probabilities: 

Pidj = 0} = 1 - [u-p1 + (1 - u3-)p]9 . 

P{dj = 1} = u.p1 + (1 - Uj)p. 

Since E[dj] = 0 • P{dj = 0} + 1 • P{dj = 1}, we obtain the desired result. 

TkdQfULm: Let a team be composed of n players, with each member playing the 
same two games, G1 and G2• Let the probability of success for each player in 
both games 6̂  and G2 be equal and be denoted by p. Then 

Wn < Wn+1, n = 1, 2, 3, ... . 

VKOOfc Using the definition of Wn, we obtain 

(7) ^n + ] E 
'̂ n-\ 

n + 1 n n(n + 1) L V ^ + J- n' n 

Us ing dj, as defined in Lemma 3, and noting that ^n = /jdj > (7) reduces to 

Wn = 
1 

n(n + 1) 

Using (6), we obtain 

Wn+1 ~ Wn = 

n — x 

J =0 

J=0 

(2^p2 + (1 - Un)p) " ̂ .C^-P2 + (1 " WjOp) 
J=0 n(n + 1) 

Thus, to prove that Wn < Wn+i, it suffices to show that 

n- 1 

(8) ^(^nP2 + (I" ~ Un)p) -]T (UjP2 + (1 " WJ>P) > °  
J=0 

Proving inequality (8) is equivalent to showing that 

n- 1 
(9) nu 

j = 0 j = 1 

Since (9) follows from Lemma 2, we conclude that 

Wn < Wn+i, n = 1, 2, 3, ... . 

It is the author!s conjecture that in the general case discussed in the 
beginning of this paper (r > 2 and p1 not necessarily equal to p2) that Wn 
is a strictly increasing function of n, too. The above proven theorem and 
some elementary numerical computations suggest the truth of this statement, 
but the author has not been able to supply a complete proof. 
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ABSTRACT 

20059 

The purpose of this paper is to show that a certain automorphism has or-
der six when restricted to compositions considered as plane trees. 

Part I is devoted to the proof of this and in Part II some applications 
are given. In particular, a duality between various Fibonacci families is 
discussed which also yields some interesting new settings for the Fibonacci 
families. Some open questions are mentioned in Part III. 

The author would like to thank both Bertrand Harper and Robert Donaghey 
for helpful conversations. 

PART I 

It is well known that plane trees with n edges are equinumerous with 
binary plane trees with n+ 1 end points. This correspondence was given in a 
paper by DeBruijn and Morselt [1] in 1967. A modification yields an automor-
phism on the set of plane trees. Throughout this paper, plane trees will be 
called trees. 

We illustrate this automorphism, which we will denote A9 as follows: 

, T. 

Straightening out the dotted lines yields another plane tree: 

, A(T). 

A2(T), A3(T)9 is at most 
Since both T and A(T) have the same number of edges it follows that the num-
ber of distinct trees in the sequence T3 A (T), 

c =—l— (2n) 
Ly) - + 1 \n) n 

since there are Cn trees with n edges. 
We give another illustration in Figure 1-1. This particular example is 

not chosen at random; in fact, it illustrates the cycle of six. In general, 
it is extremely difficult, given a tree T9 to predict the order n such that 
An(T) = T. Some work has been done on this problem (see [2]) but the central 
problem remains untouched. This paper represents the first interesting spe-
cial case. 

253 
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A2(T) 

X 

T = A6(T) 

9 9 

A3(T) 

o AS{T) 

Ah(T) 

FIGURE 1-1 

Any composition of a number can easily be represented by a plane tree as 
follows. If n = n1 + n2 + ••• + nk, then the corresponding tree has only the 
root as a branch point and the lengths of the branches from the root, going 
left to right, are n1, n2s ..., nk. For example, 

2 + 2 + 3 + 1^-

ThzotKim: If T represents a composition, then A3 (T) also represents a compo-
sition and AB (T) = T. 

?K00{ We will just trace through the six steps. The illustration is vital 
for following this proof 
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Let T be a composition. Since the only branch point is the root, we see 
that as we are constructing A (T) , all of the edges up from a vertex are ter-
minal except the rightmost. 

Note next that A 1 is defined as is A but from the right. For instance 

9 P 

This shows that this 'terminal-edges-except-for-the-rightmost-edge! condition 
precisely yields the set A(T) where T is a composition. 

Next we have that A*(T) consists of all trees such that all ^dges except 
the leftmost up from a vertex are terminal. 

From here it is not hard to see that A (T) is again a composition. So, 
A (T) must again be a composition and we only need show A (T) = T. 

Let us define A (T) as the dual composition of T. 
S u p p o s e 71 = 71-^+ 7l2 + 

A(T) has 
+nk is the composition that T represents. Then, 

2± edges at the root 

i2 edges at height 2 

nk edges at height k. 

We construct A (T) by first taking a path of length nx starting at the root 
and going up taking the rightmost branch at each node. 

Eliminate these n1 edges and repeat the procedure to get n2. If elimi-
nation disconnects the tree then operate on the upper component first. Con-
tinue this procedure to find paths of lengths n3, nh , ... . 

When computing A3 (T) , these paths each overlap by 1. 
We wish to define a matrix D that will specify the A3 automorphism ex-

actly. We illustrate this before giving the precise definition: 

^<__>n = 2 + 2 + 3.+ l<- DT = \ 

1 1 0 0 0 \ 
0 1 1 0 0 
0 0 1 1 1 
0 0 0 0 1 / 

<- 2 
+ • 2 

<- 3 
«- 1 

A3(T) i s given by t h e column sums read in r e v e r s e , h e r e 2 + 1 + 2 + 2 + 1 . 
Let n = n x + n2 + • • • + nk be a compos i t ion T. Then, Z ^ i s a / c x n - Z c + l 

m a t r i x w i t h 
i - 1 i 

u,7" 

0 o t h e r w i s e . 

Note t h a t 
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'1 1 0 0; 

o i o/6 
D(2 + 1 + 2 + 2 + 1) = | O 1/1 O 

0/6 i i 
( O O O l , 

which is D(T) reflected about the 45°  line passing through the middle of the 
matrix. This situation holds in general. 

Repeating this reflection twice yields the original matrix and thus 

AS(T) = A3(A3(T)) = T, 

concluding the proof of the theorem. 

PART II: SOME APPLICATIONS TO FIBONACCI NUMBERS 

The following results were contained in an exercise in a set of lecture 
notes of R. Stanley. 

The following sets are enumerated by the Fibonacci numbers. 

A. All compositions of n where all parts are >_ 2. 
B. All compositions of n where all parts are equal to 1 or 2. 
C. All compositions of n into odd parts. 

These assertions are all easily verified by induction. We will add the 
following: 

D. All compositions, n = n1 + n2 + ••• + 2̂fe+i where all n2• = 1. 
E. All compositions, n - n-± + n2 + ••• + n2k + i where all rij - 1 for 

k + 1 < j 5 2k. 
F. All compositions, n = n1 + n2 + • • • + nm where n1 >_ n^ for 2 _< j < £, 

(-\)n = (-l)m, and 2n1 + m >_ n + 2. 

Of these, F is perhaps the most interesting. It also seems to be less triv-
ial to prove directly. 

For the sake of brevity, we will ignore A(T) and A2 (T) in this discus-
sion and go directly by way of the matrices from T to A3 (T) leaving A(T) and 
A2(T) to the diligent reader. 

VKopo&AJtLovi 1: A and B are dual Fibonacci families (except for a subscript 
shift). 

Let n = n1 + n2 + • • • + nk where all n >_ 2. Then we obtain 

11.. .1 0 

11...1 

0 '11...1 

11.. 

The column sums are either 1 or 2 with the first and last column sums always 
equal to 1. Obviously the compositions of n with first and last parts equal 
to 1 are bijective with all compositions of ft - 2. Thus, A and B are essen-
tially dual families, one enumerated by {Fn} and the other by {Fn_2}> 
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We next want to consider the dual of family C. We have 

n = nx + n2 + ••• + nk where each nj is odd. 

For instance 

3 + 1 + 5 + 1 + 1 + 7 

The column sums can be larger than 1 only in columns 1, 3, 5, 7, ... . 
This is family D. This time C and D are exact duals and we have proved: 

Vsiopo&Ajtlon 2: C and D are dual Fibonacci families. 

ytlopo&AJtlovi 3: E and F are dual Fibonacci families. 

Since D and E are equinumerous, E is enumerated by the Fibonacci num-
bers. We need only show duality. Again we start by looking at an example: 

l l = n = l + l + 3 + 2 + l + l + l so t h a t k = 3 , 2k + 1 = 7 

' l 1 0 0 0 
0 1 0 0 0 
0 1 1 1 0 
0 0 0 1 1 
0 0 0 0 1 
0 0 0 0 1 
0 0 0 0 1 

The last column sum is at least k + 1, and this must be as large as any 
other column sum because each of n19 n25 . . . , nk + 1 can contribute at most 1 
to each column. 

Note that the matrix D has 2k + 1 rows and n - 2k columns. Thus if the 
dual composition is 

n = n\ + n\ + • • • + n*. 

we have n~. _> k + 1 = — « h 1, or 

PART I I I 

To conclude, we mention some open problems and include some related re-
marks . 
1. For a tree T, what is the smallest positive integer k such that Ak(T) = 

T1 Even such simple questions as what information about T will guaran-
tee that k is even are unsolved. 

2. How many compositions of n with 

n = n1 + n2 + • • • + nk have n1 _> ni for all i? 

A related question would specify also that n and k have the same parity. 
The first few values are shown in the following table. 
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10 

n-k with (-1) 

with (-l)n"k = -1 

1 

1 

i °  

2 

1 

1 

3 

2 

1 

5 

3 

2 

8 

5 

3 

14 

8 

6 

24 

13 

11 

43 

22 

21 

77 

39 

38 

130 

65 

65 

An answer to this question would be of interest in studying partitions. 
If we specify that all end points of a tree be at height 2 then another 
Fibonacci family is obtained. For instance, for n - 6, we obtain the 
following five trees: 

If we specify height 3 instead of height 2, we obtain the Tribonacci 
numbers 1, 1, 1, 2, 4, 7, 13, 24, ... . If we specify height 3 or less 
we obtain the sequence 1, 2, 5, 13, 34, 89, ... = {̂ 2nfn=o • If w e knew 
more about Question 1, we could do more with each of these families. 
Each of these statements translates into statements about permutations 
achievable with push down stacks. See Knuth [4] for definitions and 
explanation. 

How many permutations are achievable with a push down stack that holds 
two elements where each time the stack is empty two elements are put in 
(or the run ends)? The answer is Fn and is equivalent to our first 
remark in this subsection. 
What alterations can we make to get reasonably natural settings for the 
Lucas numbers, the Tribonacci numbers, and the Pell numbers? 

One way to obtain the Lucas numbers is to specify compositions 

n + nk where each rij is odd and n, is 1 or 3. 

The dual of this yields the compositions 

n = n + n2k+1 with all n2 • = 1 and n1n3 ^ 1. 

We have ignored A(T) and A2(T) throughout. However all the interpreta-
tions available for plane trees can be used. See for instance Gardner 
[3] and the references there. As one example, consider elections where 
votes are cast one at a time for candidates P and Q. There are 2n vo-
ters, P never trails Q, and at the end they tie. There are 

^ n 
_J_(2«\ 
n + 1 \n / 

such elections possible. Let us add the condition that the last K votes 
are for Q but that until then the election was almost monotonic in that 
if P's lead was £ votes, his lead would never be less than £ - 1 there-
after, except for the last K votes. This is just the interpretation of 
A(T) in Part I. Thus, we see that there are 2 n _ 1 such elections, since 
an integer n has a total of 2n~1 compositions. 
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PROFILE NUMBERS 

ARNOLD L. ROSENBERG 
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 

ABSTRACT 

We describe a family of numbers that arises in the study of balanced 
search trees and that enjoys several properties similar to those of the bino-
mial coefficients. 

1. INTRODUCTION 

In the course of a recent investigation [4] concerning balanced search 
trees [2, Section 6.2.3], the following combinatorial problem arose. We en-
countered in the investigation a family {TL} of {1L + l)-level binary trees, 
L = 1, 2, ...; the problem was to determine, as a function of L and I e {0, 
1, ..., 2L}, the number of nonleaf nodes at level I of the (2L + 1)-level 
tree TL, (By convention, the root of TL is at level 0, the root's two sons 
are at level 1, and so on.) The numbers solving this problem, which we call 
profile numbers since, fixing L9 the numbers yield the profile of the tree 
TL [3], that is, the number of nodes at each level of TL 9 enjoy a number of 
features that are strikingly similar to properties of binomial coefficients. 
Foremost among these similarities are the generating recurrences and summa-
tion formulas of the two families of numbers. Let us denote by P(n9k), n _> 1 
and k _> 0, the number of nonleaf nodes at level k of the tree Tn , convention-
ally letting P(n,k) = 0 for all k > 2n; and let us denote by C(n9k)9 n >_ 1 
and k _> 0, the binomial coefficient, conventionally letting C(n,k) = 0 for 
k > n. The well-known generating recurrence 

C(n + l9k + 1) = C(n9k + 1) + C(n9k) 9 k >_ 0 

for the binomial coefficients is quite similar to the generating recurrence 

(1) P(n + l9k + 1) = P(n9k) + 2P(n9k - 1), k > 0 

for profile numbers. Further, the simple closed-form solution of the well-
known summation 

Y,C(n9k) = 2n - 1 
Q±k<n 

for binomial coefficients corresponds to the equally simple solution of the 
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summation 

(2) ]T P(nsk) = 3n - 1 
0±k<2n 

for our new family of numbers. Further examples of relations between these 
two families of numbers will manifest themselves in the course of the devel-
opment. As an aid to the reader, we close this introductory section with a 
portion of the triangle of numbers defined by the recurrence (1) with the 
boundary conditions 

(3) 

P(n,0) = 1 
P(1,D = 1 
P(n,l) = 2 
P(l,fc) = 0 

for all n J> 1 

for all n > 1 
for all k > 1 

(4) 

10 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

2. THE NUMBERS P{n,k) 

Our goal in this section is to derive the basic properties of the pro-
file numbers. By describing the tree-oriented origins of the numbers, we 
verify in Subsection A that they do indeed obey recurrence (1) with boundary 
conditions (3). We then proceed in Subsection B to solve recurrence (1), ob-
taining an explicit expression for P (n 9k) in terms of exponentials and bino-
mial coefficients. In Subsection C, we derive the generating recurrences for 
individual rows and columns of the triangular array (4) . These recurrences 
permit us in Subsection D to derive the summation formula (2) for profile 
numbers. Finally, in Subsection E, we use the summation formula to determine 
the so-called internal path length of the trees {TL } , which determination was 
one of the motivations for studying the profile numbers. Our investigation 
will then have gone full circle. 

In what follows, we shall refer often to binomial coefficients. These 
references will be very much facilitated by the convention C(n,i) = 0 when-
ever i < 0 or i > n, which should always be understood. 

1 
1 

1 
2 

3 

2 

1 

2 

4 

7 

8 

4 

1 

2 

-4 

8 

15 

22 

20 

8 

1 

2 

4 

8 

16 

31 

52 

64 

48 

16 

1 

2 

4 

8 

16 

32 

63 

114 

168 

176 

112 

1 

2 

4 

8 

16 

32 

64 
127 

240 

396 

512 

1 

2 

4 

8 

16 

32 

64 

128 

255 

494 

876 

1 

2 

4 

8 

16 

32 

64 

128 

256 

511 

1004 

1 

2 

4 

8 

16 

32 

64 

128 

256 

512 

1023 
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A, The Family {TL} of Trees: The trees TL are specified recursively as fol-
lows. T is the 3-leaf binary tree 

Tx: 

and, for each L >_ 1, the tree TL + 1 is obtained by appending a copy of the 
tree TL to each of the three leaves of Tl9 as in 

The fact that P(n9k) denotes, when k e {0, ..., 2n}, the number of nonleaf 
nodes at level k of the tree Tn renders obvious the validity of recurrence 
(1) and boundary conditions (3) in addition to verifying the reasonableness 
of the convention 

P(n,k) = 0 whenever n _> 1 and k > In. 

B. The Solution of Recurrence (1): 

TfeeoA.em 1: For a l l n > 1 and a l l k 2l 0, 

P(n,k) = 2k'n J^ C(n,i). 
0<_i<2n-k 

The theorem asserts, in particular, that P(n,k) = 2k for all k < n, and 
P(n9k) = 0 for all k > In. 
FfiOO^'. We proceed by induction on n. The case n = 1 being validated by the 
boundary conditions (3), we assume for induction that the theorem holds for 
all n < m, and we consider an arbitrary number P(m,k). 

If k e {0, 1}, then the boundary conditions (3) assure us that 

P(m,k) = 2k = 2k'n • 2n = 2k~n J2 c(n>^> 
0<_i < In -k 

which agrees with the theoremfs assertion. 
If k > 1, then recurrence (1) and the inductive hypothesis yield 

P(m,k) = P(m - l,k - 1) + 2P(m - l,k - 2) 

= lk~m Z °(m ~ 1>V + lk~m lL C{m - 1,J) 
0<.i<2m-k-l 0<_j<2m-k 
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= 2k'mC(jn90) + 2k~m ^T CQn - l , i ) + C(m - l , i - 1) 
O <i<2m-k 

= 2k-m Yl C{m,i), 
Q±i<2m-k 

which agrees with the theorem's assertion. 

Since k was arbitrary, the induction is extended, and the theorem is 
proved. • 

C. The Triangle of Profile Numbers: Yet more of the relation between pro-
file numbers and binomial coefficients is discernible in the recurrences that 
generate individual rows and columns of the triangle (4). 

ThojQJiQm 2: For all n >_ 1 and all k >_ 0, 

(a) P(n9k + 1) = 2P{n9k) - 2k~n+1C(n9k - n + 1) ; 

(b) P(n + l9k) = P(n,k) + 2k~n~1{C(n9k - n) + C(n + l,k - n)}. 

Vh-OO^: Recurrence (1) translates to the three recurrences 

(5) P(n,k) = P(n - l9k - 1) + 2P(n - l,fc - 2). 

(6) P(n9k + 1) = Pin - l9k) + 2P{n - \9k - 1). 

(7) P(n + l9k) = P{n9k - 1) + 2P{n9k - 2). 

Combining (5) and (6) leads, via Theorem 1, to the chain of equalities 

P(n9k + 1) - 2P(n9k) 
= Pin - l9k) - 4P(n - \9k - 2) 

\0<_i<2n-k-2 0.<i<2n-k ) 

= -2k~n + 1{C(n - l , 2n - k - 2) + C(n - l92n - k - 1)} 

= -2k'n + 1C(n9k - n + 1 ) , 
whence part (a) of the theorem. 

Part (b) follows by direct calculation from recurrence (7) and Theorem 1: 

P(n + 1,« - P(n9k) 
= P(n9k - 1) + 2P(n9k - 2) - P(n9k) 

- ok-

{0±i<2n-k + l 0±i<2n-k + 2 0<_i'<2n-k ) 

= 2k~n~1{2C(n,2n - k) + C(n92n - k + 1)} 

= 2k~n~1{C(n9k - n) + C(n + l,fc - n)} . D 

D. The Summation Formula (2): Theorem 2(a) permits easy verification of the 
summation formula for profile numbers. 

ThojoK&tn 3: For all n > 0, ]T P(n,fc) = 3n - 1. 
0 1 k < In 
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Vtiooj* Theorems 1 and 2(a) justify the individual equalities in the follow-
ing chain. 

£ P(n,k) = 1 + J2 p(n>k + !) 
0^k<2n 0^k<2n 

= 1 + 2 ]T (P(n,k) - 2k'nC(n9k - n + 1)). 
Thus, we have 

X) P(".fc) = I] 2"-^(n,j) - 1 
0±k<2n 0^j<_2n-l 

= 2n • (3/2)n - 1 

= 3n - 1. • 

E. The Internal Path Lengths of the Trees Theorems 2(a) and 3 greatly 
facilitate the determination of the -internal path length [1, Section 2.3.4.5] 
I(L) of the tree TL of Section 2A, which is given by 

KL) = J2 kPtf.k). 
0±k<2L 

ThQjOKQJtn 4: For a l l L > 0 , I(L) = ^ L3L - 2 ( 3 L - 1) . 

Vhjooi} I(L) = Yl kP(L,k) = J ] (A: + l)P(L9k + 1) 

where 

= A + 5 + 6' + Z) 

A = 2 XI kP(L,k) = 2J(L); 
0Sk<2L 

B = 2 X p t t ' W = 2 (3L - 1); 

C = - X 2fe-L + 1C(L,k - L + 1) = - 3 L ; 
O^fe <2L 

P = " YJ k2k-L + 1C(L,k - L + 1) 
0^£<2L 

= ~ Z ^ + L " l )2 J 'ca , j ) ' = -5L3L"1 + 3L. 
0 £ J £ L 

Combining terms yields the theorem. • 

We close by remarking that the quantity I(L) can be determined just as 
easily from the recurrence 

I(L) = 31 (L - 1) + | 3L - 4, 

which is derived easily from the form of the trees {TL}. 
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A STUDY OF THE MAXIMAL VALUES IN 

PASCAL'S QUADRINOMIAL TRIANGLE 

CLAUDIA SMITH and VERNER E. HOGGATT, JR. 
San Jose State University, San Jose, CA 95112 

1. INTRODUCTION 

In this paper we search for the generating function of the maximal val-
ues in Pascal's quadrinomial triangle. We challenge the reader to find this 
function as well as a general formula for obtaining all generating functions 
of the (H - L) Ik sequences obtained from partition sums in Pascal's quadri-
nomial triangle. 

Generalized Pascal triangles arise from the multinomial coefficients 
obtained by the expansion of 

(1 + x + x2 + • • • + xJ-1)", j > 2, n > 0, 

where n denotes the row in each triangle. For j = 4, the quadrinomial coef-
ficients produce the following triangle: 

1 
1 1 1 1 
1 2 3 4 3 2 1 
1 3 6 10 12 12 10 6 3 1 

The partition sums are defined by 

where 

M \U - l)n - r~|, 
L k y 

the brackets [ ] denote the greatest integer function. To clarify, we give a 
numerical example. Consider 5(3,4,5,1). This denotes the partition sums in 
the third row of the quadrinomial triangle, in which every fifth element is 
added, beginning with the first column. Thus, 

5(3,4,5,1) = 3 + 10 = 13. 
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(Conventionally, the column of l?s at the far left is the Oth column and the 
top row is the Oth row.) 

In the nth row of the j-nomial triangle, the sum of the elements is j n . 
This is expressed by 

S(nsj9k90) + S(nJ9k9l) + ••• + S(n,j,k,k - 1) = j*. 
Let 

S(nj9k90) = Un + An)/k 

S(n9j9k9l) = Un + Bn)lk . . . 

S(nJ,k,k - 1) = ( j n + Zn)/k. 
Since S(09j9k90) = 1, 

S(09j9k9l) = 0 ... S(09j9k9k - 1) = 0, 

we can solve for AQ9 B0, . .., Z0 to get A0 = k - 1, B0 = -1, ..., Z0 = -1. 
Now a departure table can be formed with AQ9 BQ9 ..., ZQ as the Oth row. 

PascalTs rule of addition is the simplest method for finding the successive 
rows in each departure table. The departure table for six partitions in the 
quadrinomial triangle appears below. 

TABLE 1. SUMS OF SIX PARTITIONS IN THE QUADRINOMIAL TRIANGLE 

5 
2 

-4 
2 

20 

- 1 
2 

-4 
-10 

8 

- 1 
2 
2 

-10 
-10 

- 1 
2 
8 
2 

-16 

- 1 
-4 

2 
8 

-10 

- 1 
-4 
-4 

8 
8 

In particular, the (H - L)Ik sequences defined as the difference of the 
maximum and minimum value sequences in a departure table, divided by k par-
titions will be of prime importance. Table 2 is a table of the (H - L) Ik 
sequences for k = 5 to k - 15 partitions. 

TABLE 2. (H - L)/k SEQUENCES FOR k = 5 TO k = 15 

k = 5 6 7 8 9 10 11 12 13 14 15 

^ 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 

1 3 3 4 ^ 4 4 4 4 4 4 4 

1 6 6 8 10 11 12 12 12 12 12 

1 9 14 24 30 36 39 42 43 44- 44 

1 18 31 56 85 105 125 135 145 149 153 

1 21 70 160 246 340 404 468 503 538 553 

The primary purpose of this paper is to share the progress that has been 
made toward finding a generating function for the maximal values in Pascal's 
quadrinomial triangle. The generating functions for the maximal values in 
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the binomial and trinomial triangles are known. In the February 1979 issue 
of The Fibonacci Quarterly, we showed that the limit of the generating func-
tions for the (H - L) Ik sequences was precisely the generating function for 
the maximal values in the rows of the binomial and trinomial triangles. We 
would like to establish this for the quadrinomial triangle as well. 

2. GENERATING FUNCTIONS OF THE (H - L)Ik SEQUENCES 
IN THE QUADRINOMIAL TRIANGLE 

As k increases, one sees the (H - L)/k sequences obtain more of the val-
ues of the sequence of central (maximal) values in the quadrinomial triangle. 
For k = 14, we observe from Table 2 that the (H - L)/14 sequence contains the 
first five values. We examined all even values of A:, up to k = 52. The 
(H - L)150 sequence has its first 17 values coinciding with the central val-
ues in the quadrinomial triangle. The (H - L)/50 sequence is 

1, 1, 4, 12, 44, 155, 580, 2128, 8092, 30276, 116304, 
440484, 1703636, 6506786, 25288120, 97181760, 379061020, 
1463609338... . 

We observed that k = 3m + 2 has m + 1 of the central values in the quadrino-
mial triangle. 

In an attempt to discover a pattern for predicting all recurrence rela-
tions of the (H - L)Ik sequences, we examined the recurrence relations for 
the even partitions up to k = 48. These equations are displayed in Table 3. 

As the reader can see, the size (both degree and coefficient) of the 
equations grows rapidly. For example, in finding the recurrence equation in 
the case with 48 partitions, we used the first 30 elements in the (H - L)/48 
sequence. The last element has 17 digits, too large for accuracy in most 
computers and calculators; thus, much computation was done by hand using the 
pivotal element method. Even after examining so many cases, we were unable 
to derive a general formula for predicting successive recurrence equations. 
However, we discovered several patterns that enabled us to make accurate con-
jectures about most of the coefficients and the degree of the recurrence 
equation. 

We predict that for N = 8m, 8m + 2, or 8m + 4, the degree of the recur-
rence equation is km. For N = 8m + 6, the degree is km + 2. 

The first coefficient is 1. 
The second coefficient we predict to have the form -N for N _> 8. A dif-

ference of 2 is observed between successive elements in the sequence of all 
second coefficients for even partitions. 

The third coefficient we predict to have the form iN(N- 11) for N >_ U. 
A second difference of 4 is observed between successive elements in the se-
quence of third coefficients for even partitions. We show this below: 

21 40 63 90 121 156 195 238 285 336 391 450 ... 
19 12 23 31 35 39 43 47 51 55 59 . . . 

4 4 4 4 4 4 4 4 4 4... 

The fourth coefficient can be found by making a table of third differ-
ences between successive elements in the sequence of fourth coefficients for 
even partitions. This appears to be valid for N _> 20. The third difference 
is 8. We show this below: 
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TABLE 3. RECURRENCE EQUATIONS FOR (H - L)Ik SEQUENCES FOR 
EVEN PARTITIONS IN THE QUADRINOMIAL TRIANGLE 

N 

4 

6 

8 

10 

12 

14 

16 

18 

20 
22 

24 

26 
28 

30 

32 

34 

36 

38 

40 

42 

44 

46 

48 

x -

x2 

a 4 

xh 

a?4 

a? 6 ' 

x8 

x8 

x8 

x10 

x12 

x12 

x12 

a:14 

x16 

x16 

x16 

x18 

a ? 2 0 

\x20 

\x20 

\x22 

x 2 4 

1 = 0 

- 3 = 0 

- 8x2 + 8 = 

- 10o?2 + 5 

- 12o?2 + 9 

Recurrence Equat ion 

0 

= 0 

= 0 

- 14o?4 + 21o?2 - 7 = 0 

- 16o?6 + 40o?4 - 32o?2 + 8 = 0 

- 18o?6 + 63o?4 - 57o?2 + 9 = 0 

- 20o?6 + 90o?4 - 100a;2 + 25 = 0 
- 22o?8 + 121o?6 - 176o?4 + 88a;2 - 11 = 0 

- 24a;10 + 

- 26a?1 ° + 

- 28a;10 + 

- 30a;12 + 

- 32a;14 + 
+ 8 = 0 

- 34a 1 4 + 
+ 17 = 0 

- 36a 1 4 + 
+ 81 = 0 

- 38a;16 + 
+ 475a:2 -

156a:8 - 296a:6 + 225a4 - 72a:2 + 8 = 0 

195a?8 - 468a?6 + 455a?4 - 169a?2 + 13 = 0 

238a:8 - 700a?6 + 833a?4 - 392a?2 + 49 = 0 

285a? - 1000a? + 1440a: - 903a? + 230a?2 - 15 = 0 

336a?12 - 1376a?10 + 2376a?8 - 1920a:6 + 736a4 - 128a?2 

391a?12 - 1836a?10 + 3757a:8 - 3740a:6 + 1819a:4 - 374a?2 

450a?12 - 2388a:10 + 5715a?8 - 6804a:6 + 4059a:4 - 1080a?2 

613a?14 - 3040a:12 + 8398a1 0 - 11742a:8 + 8512a6 - 3059a:4 

19 = 0 
- 40a;18 + 580o?16 - 3800a;14 + 11970a?12 - 19408a:10 + 16860a;8 

- 7800a:6 + 1825a;4 - 200a:2 + 8 = 0 

- 42a:18 + 
- 17937a:6 

- 44a:18 + 
- 38236a:6 

- 46a:20 + 
- 76912a:8 

- 48a?22 + 
- 147360a? 

651a:16 - 4676a?14 + 16611a1 2 - 30912a?10 + 31647a?8 

+ 5334a?4 - 700a?2 + 21 = 0 
726a?16 - 5676a?14 + 22517a?12 - 47652a?10 + 56628a?8 

+ 14036a?4 - 2420a2 + 121 = 0 
805a:18 - 6808a:16 + 29900a?14 - 71346a?12 + 97198a:10 

+ 34500a6 - 8119a:4 + 851a2 - 23 = 0 

888a:20 - 8080a:18 + 38988a?16 - 104064a:14 + 160888a?12 

io + 79329a8 - 24080a?6 + 3816a:4 - 288a?2 + 8 = 0 
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100 176 296 468 700 1000 1376 1836 2388 ... 
76 120 172 232 300 376 460 552 ... 

44 52 60 68 76 84 92 ... 
8 8 8 8 8 8 ... 

The fifth coefficient can be found by making a table of fourth differ-
ences between successive elements in the sequence of fifth coefficients for 
even partitions. This appears to be valid for N _> 26. The fourth difference 
is 16. See Table 4. 

TABLE 4. PREDICTING 5th, 6th, AND 7th COEFFICIENTS 

455 833 1440 2376 3757 5715 8398 11970 16611 22517 29900 ... 
378 607 936 1381 1958 2683 3572 4641 5906 7383 ... 

229 329 445 577 725 889 1069 1265 1477 ... 
100 116 132 148 164 180 196 212 ... 

16 16 16 16 16 16 16 ... 

1920 3740 6804 11742 19408 30912 47652 71346 104064 ... 
1820 3064 4938 7666 11504 16740 23964 32718 ... 

1244 1874 2728 3838 5236 6954 9024 ... 
630 854 1110 1398 1718 2070 ... 

224 256 288 320 352 ... 
32 32 32 32 ... 

8512 16860 31647 56628 97198 160888 257925 ... 
8348 14787 24981 40570 63690 97037 ... 

6439 10194 15589 23120 33347 ... 
3755 5395 7531 10227 ... 

1640 2136 2696 
496 560 ... 

64 ... 

3. GENERATING FUNCTIONS OF THE (H - L) Ik SEQUENCES 
IN A MULTINOMIAL TRIANGLE 

We challenge the reader to finish this problem: to find the generating 
functions of the (H - L)/k sequences for all k in the quadrinomial triangle. 
Then perhaps we could find the generating function of maximal values in Pas-
cal's quadrinomial triangle., and show that the limits of the (H - L) Ik gene-
rating functions are precisely the generating function of maximal values. 

This problem can be extended to examine the maximal values in Pascal's 
pentanomial triangle and larger multinomial triangles. Again, the pursuer of 
such an adventure will encounter numbers with up to 20 digits, in which the 
accuracy of each digit matters in order to find recurrence equations. 
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THE STUDY OF POSITIVE INTEGERS (a,6) 
SUCH THAT ab + 1 I S A SQUARE 

PETER HEICHELHEIM 
P e a t Marwick and P a r t n e r s f Torontof Ontariof Canada 

1. INTRODUCTION 

A P-set will be defined as a set of positive integers such that if a and 
b are two distinct elements of this set, ab + 1 is a square. 

There are many examples of P-sets such as [2, 12] or [1, 3, 8, 120] and 
even formulas such as 

[n - 1, n + 1, 4n, 4n(4n2 - 1)] 
or 

[77?, n1 - 1 + (m - 1) (n - l ) 2 , n(nm + 2 ) , kmirrm1 - ran + In - l ) 2 

+ 4(rnn2 - run + In - 1)] . 

(See Cross [1].) However, none of these formulas are general. 
More recently, there has been considerable work on P-sets with polyno-

mials (by Jones [2, 3]) and in connection with Fibonacci numbers (by Hoggatt 
and Bergum [4]). 

It is of interest to find out how much these sets can be extended by 
adding new positive integers to the set; for example [2, 12] can be extended 
to [2, 12, 420], A P-set which cannot be extended will be called nonextend-
ible. One purpose of this article is to show that a nonextendlble set must 
have at least four members. Then it will be demonstrated that the number of 
members of a P-set is finite. Finally, it will be shown that certain types 
of five-member P-sets will be impossible. 

2. EXTENDING P-SETS TO FOUR ELEMENTS 

The proof that sets of one or two elements are extendible is very sim-
ple, for [N] can always be extended to [N9 N + 2] and [a, b] can be extended 
to [a, b, a + b + 2x] where x2 = ab + 1. (See Euler [5].) 

Let [a, b9 N] be members of a P-set. Then, 

(1) ab + 1 = x2
5 

(2) aN + 1 = z/2, 

(3) bN + 1 = s2. 
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(4) 

(5) 

(6) 
or 
(7) 

Therefore, 

by2 - az2 = b - a. 

Let ~y = by. Then, 

~y - abz2 = bib - a). 

Let the auxiliary Pell equation of (5) be 

m2 - abn2 = 1 

(x l)nz 

The minimal positive solution of (7) is (x,l)* Hence all the solutions 
of (7) are given by 

fx InJ = (x + vxz mi + Vx* - lni = (x + Vx* - 1) , i = 1, 2, 3, ..., 
and all solutions of (5) are given by 

(8) ~yt + /x2 - \zi = (yQ + /x2 - lz0) (x + /x2 - l)1 , 
i = 0 , 1, 2 , . . . , 

where (yo,Zo) can take only a finite number of values, one of which must be 
(2>,1). (See Nagell [6].) 

There is a one-to-one correspondence between the solutions (y-c^z^) of 
(4) and (^{,2£) of (5) where ~yi = byi because ~y\ = b(b - a + az\) , and hence 

y ^ is always an integer. 

Tk&oKtm 7: Let 

(9) Nv 
y* 

Then 

(10) 

Plooj: 

N,Ni + j + 1 = (m-jN, + n.y^J2 + 1 - n̂ , 

From (8), 

Then 

Hence 

Therefore 

Hence 

Therefore 

Vi + t + Sx2 lZi + ,j = (&i + J* is7-) (m. /^2 - ln^)-

hyi + j = bm-yi + ofcn^. 

y i + j = ^ + a ? v ^ -

Ni + j = -irn2.y\ + 2am-n;jyizi + azn±z\ - 1), using (9). 2 2 

a 
V>irn]y\ + lam^n^z^ + a 2 w ? ^ 1) + 1 

1 
0{m2y^ + lom^n-z-y] + [a2n2-z2- - 1 - m2.]?/? 

2am^n^jziyi - anj[by^ - 2? + a ] + 1 + a 2 ) , 

u s i n g ( 4 ) , 

—Onjyl + lam n-z^l + [a2njz2 - 1 - m2. - abnpy 2]y2 

(continued) 
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- 2am-n.z.y. + abn2- - a2n2- + 1 + a2) 

- 2con^nJ-ziyi + m2-) + 1 - n^ , u s i n g ( 6 ) , 

= ( 7 7 ^ + rijy^z^2 + 1 - n 2 , u s i n g ( 9 ) . 

Tfeeo/Lem 2: The P - s e t [ a , 2?, /1/J can be extended to [ a , 2?, il^ , tfi+1]. 
Ptoo£: Now yi + 1 = TH - ^ + a n ^ > z/^. 

Therefore /l/i + 1 > Ni9 using (9). 

Therefore Ni+1 is positive if /7̂  is positive. 

Also, if N^ is an integer, 2/? E 1 mod a. Now, 

V? = m2y2 + 2am,nv.z. + a2n2z2 

E (aZ? + l)y2 mod a as m1 = x = /ab + 1 

= y2 mod a. 

Therefore N^ + 1 is an integer. 
In fact, it can be shown by induction that if N^ is a positive integer, 

then so must be N^+j. 
Now as (7771,n1) = (a:,l), then 

and therefore [a, b, N^] can be extended to [a, £>, /l̂  , /^ + i]» 
A formula can be developed for N^+± from a, 2?, and N^ ; that is, 

Ni + 1 = a + b + Ni + 2abBi + 2/(ab + I) {aN^ + 1) (M { + 1). 

3. FINITENESS OF P-'SETS 

There are no known P-sets of more than four members. However, it can be 
proved that there are no infinite sets. In fact, given three members of the 
set a, 2?, and o, it can be shown that all other members are bounded, for if 

aN + 1 = x2, M + 1 = y2, oN + 1 = s2, and t = as/a, 

then ate/1/3 + (ab + be + oa)N2 + (a + b + o)N + 1 = t 2 . 
Let # = max{ate, ab + bo + oa, a + b + o]. 

Now, as abcN3 + (ab + bo + oa)N2 + (a + b + £)/!/ + 1 has no squared lin-
ear factor in N, by Baker [7], 

N < exp{(106#)1()6}. 

Until recently there was no way of knowing if a P-set was nonextendible 
if it had four elements. However, in Baker and Davenport [8], it has been 
proved that [1, 3, 8, 120] cannot be extended. In fact, it has been shown 
that [1, 3, 8] can only be extended to [1, 3, 8, 120]. There were calcula-
tions done to prove this that needed the aid of a computer. The method in 
Baker and Davenport [8] would seem workable for checking if there are other 
sets of four which are nonextendible. 
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A recent adaptation of this method was given by Grinstead [9]. 

4. RESTRICTIONS ON EXTENDING FOUR-MEMBER P-SETS 

First it should be noted that Baker and Davenport [8] (from their rela-
tionship (20) and Section 5) seem to indicate that any fifth member of a P-
set that is very large compared to the first four would have to satisfy some 
very unusual conditions* 

The following lemma and theorem give some limitations in the reverse 
direction. 

Lemma: x<a+b If a>0 and b > 0. 

?K.OO^ If x > a + b9 then a2 + ab + b <_ 1, using (1). Therefore, a = 0 or 
b = 0, which is not true. 

ThzoJiQJfn 3: If 2i _> J - 1, then with the exception of J = 1, NiNi + 1+ 1 is not 
a square. (N^ is not equal, to zero, as members of P-sets are defined to be 
positive.) 

VHJOO^I Let L = m-N^ + n-y^z^. Suppose N^N^+- + 1 is a square. Now 

L2 - (L - l)2 = 2P - 1. 

nt - 1 >_ 2L - 1 from (10) if j + 1. 
Then 

Therefore 

( i i ) 1 < i . 

Now 

implies 

and 

by. + Vabz^ = (by0 + vabz0)(mi + vabn^) 

hi = miyo + a n ^ 0 

Let M = x + vx2 - 1. Then it can be shown that 

and 
m = i(MJ" + M'~'j) J 2 

1 (Mj - M~j) . 
2/x2 - 1 

2 

Therefore — = — (MJ - M~j)2. 
„2 

Now 

and 

(xz - 1) 

y. ' >. k^M1 + M'1) + (Ml - M'1) 
% 2 2/x2 - 1 

z- >—~^=r(Mi - M~l) + \(Mi + MH), 
6T~^ ^ ' ' 2 2/x 
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Then 

The re fo re 

yizi > b (M2i -M~2i) + S£- -J(Mi _ " M ^ ) 2 " 
kJx2 - 1 4(a?2 - 1) 

+ y(Mi + M~1)2 + , a (M2i - M~2i) 
4 4 v £ ^ l 

= a + b (M2i - M"2i) +UM2i +M~2i). 

a + b (M2i - M"2i) + - (M2i + M~2i) 
njyizi > S(x2 - 1) 4v42 - 1 

n 2 ~~ 
-y- (Mj - M~j) 

S(x2 - 1) 

(MJ - M~J) 

(as x < a + b from t h e Lemma) 

= M2i + 1 - M- 2 i + 1 + M 2 Vx 2 - 1 - M-^/x2^ 

MJ - M~J 

Now, if i > 0, it can be easily shown that 

M~h% + - J z = < 1 as x > 1. 
/ar 

Therefore 

Hence 

-M"^ + ' 

noyizi 

2 

1 + MzV.rz 

M2i + 1 -
> ii 

MJ -

- 1 - / 1 

A/4-^i 
M~J 

1 > 0 > -AT 

^ 1 if 2i + 1 ̂  j or j - 1 < 2i, 

Thus, Theorem 3 is proved, from (11), as j > 1; therefore, i must be greater 
than zero. 

5. A PARTICULAR RATIONAL FIVE-MEMBER P-SET 
BY EULER CANNOT BE INTEGER 

It will now be shown what will happen if rationals are allowed. Suppose 
the P-set [a, b, o9 d] is extended to 

r -u j 4P + 2p(s + 1)1 
a, b, c, d, ~—-—-

L (S - i)2 -I 
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where a, b, c, and d are positive integers, 

c = 2x + a + b, d = bx(x + a)(x + b), 

p=a + b + c + d, r - abc + abd + aod + &ecZ, 

and s = abed. 

Here, s can have a positive or negative value. This was first given by Euler 
[5]. 

Tk&OfL&m 4i -̂ is never a positive integer. In fact, it is al-
(s - l)2 

ways less than 1. 
The following proof has been considerably shortened due to some sugges-

tions from Professor Jones. 

VKoofa Re-order a, b9 c, and d such that a < b < o < d. If a = 1 and b = 2, 
then ab + 1 = 3, which is not a square. Therefore b _> 3, c >_ 4, and 6? _> 5. 
N ° W 1 1 1 1 13 1 

aba abd aod bod ~ 60 4 " 

Therefore 4p < s. Also, 

I + i + A + i < i + I + I + I<2. 
a b o d 3 4 5 

Therefore abo + a M + aod + bod < labod or r < 2s. 

QQ 4. g(g + 1) 
4r + 2p(s + 1) ̂  b 2 s2 + 175 Hence ^ — < — = 

(e - l)2 (e - l)2 2(s - l)2 

_ 1 + 19 , 9 
2 2(s - 1) (8. _ 1) 2 

< I + T^ + 3̂ 4 aS S > 59 

< 1. 
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ABSORPTION SEQUENCES 

FREDERICK STERN 
San Jose State University, San Jose, CA 95192 

1. INTRODUCTION 

In the classical gamblerfs ruin problem,a gambler beginning with i dol-
lars, either wins or loses one dollar each play. The game ends when he has 
lost all his initial money or has accumulated a(_> i) dollars. The situation 
can also be described as a simple random walk on the integers beginning at 
with absorbing barriers at 0 and a. Let Fa (i ,n) represent the number of dif-
ferent paths of exactly n steps which begin at t (i = 0,1, 2, ...,a) and end 
with absorption at either 0 or a. For fixed values of a and i , Fa(i,n) is a 
sequence of nonnegative integers called an "absorption sequence." In other 
words, Fa(^,n) represents the number of different ways a gambler who begins 
with i dollars can end his play using n one dollar bets. 

2. A RECURRENCE RELATION WITH BOUNDARY CONDITIONS 

Appropriate boundary conditions, suggested by the condition that the 
random walk stops when it first hits either 0 or a are 

Fa(0,0) = Fa(a,0) = 1 

Fa (z,0) = 0, i = 1, 2, ..., a - 1 

Fa (0,n) = Fa (a,n) = 0, n 0. 

A path which begins at 0 < i < a must in one step go to either t - 1 or i+ 1. 
For this reason, we have a recurrence relation for the number of paths: 

Fa (i,n) = Fa (i - I ,n - 1) + Fa (i + l,n - 1) , n > 0, 0 < i < a. 

3. EXAMPLES OF RECURRENCE RELATIONS AND ABSORPTION SEQUENCES 

TABLE 1. F5(i,n) 

5 
4 
3 
2 
1 
0 

0 

1 
0 
0 
0 
0 
1 

1 

0 
1 
0 
0 
1 
0 

2 

0 
0 
1 
1 
0 
0 

3 

0 
1 
1 
1 
1 
0 

4 

0 
1 
2 
2 
1 
0 

5 

0 
2 
3 
3 
2 
0 

6 

0 
3 
5 
5 
3 
0 

7 

0 
5 
8 
8 
5 
0 

8 

0 
8 
13 
13 
8 
0 

9 

0 
13 
21 
21 
13 
0 

10 

0 
21 
34 
34 
21 
0 

11 

0 
34 
55 
55 
34 
0 

12 

0 
55 
89 
89 
55 
0 

The entries in each row are the beginning of an absorption sequence. 
Absorption at 0 or 5. 

275 
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TABLE 2. F9(i,n) 

9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

0 

1 
0 

' 0 
0 
0 
0 
0 
0 
0 
1 

1 

0 
1 
0 
0 
0 
0 
0 
0 
1 
0 

2 

0 
0 
1 
0 
0 
0 
0 
1 
0 
0 

3 

0 
1 
0 
1 
0 
0 
1 
0 
1 
0 

4 

0 
0 
2 
0 
1 
1 
0 
2 
0 
0 

5 

0 
2 
0 
3 
1 
1 
3 
0 
2 
0 

6 

0 
0 
5 
1 
4 
4 
1 
5 
0 
0 

7 

0 
5 
1 
9 
5 
5 
9 
1 
5 
0 

8 

0 
1 
14 
6 
14 
14 
6 
14 
1 
0 

9 

0 
14 
7 
28 
20 
20 
28 
7 
14 
0 

10 

0 
7 

42 
27 
48 
48 
27 
42 
7 
0 

11 

0 
42 
34 
90 
75 
75 
90 
34 
42 
0 

12 

0 
34 
132 
109 
165 
165 
109 
132 
34 
0 

The entries in egch row are the beginning of an absorption seguence. 
Absorption at 0 or 9. 

(a) F3(l,n) = F3(2sn) = ls n > 0. 

(b) F^(l92m) = 0, Fh(l,2m + 1).= 2m, m >_ 0; 

F^(2,2m) = 2m, m > 0, Fh(292m + 1 ) = 0 , w > 0 . 

(c) Let Fn represent the well-known Fibonacci number sequence [1]: 

F F„ + F„ Fx = 1, F2 = 1, 

in general. We have 

F5(l,n + 2) = F5(2,n + 1 ) = Fn (see Table 1) 

F5(l,n) =F5(4,n), F5(2,n) =F5(3,n) 

by symmetry. 

By enumerating, see Table 1, it is easy to show that (assuming a = 5 and 
omitting the subscript) 

F(2,2) = F(253) = 1 

F(29n + 1) = F(l,ri) + F(3,n) (recurrence relation) 

= F(l,n) + F(2,n) (symmetry) 

= F(2,n - 1) + F(2,n) (boundary condition 
for n > 1). 

The sequence F(2,n) thus satisfies the initial conditions and recurrence re-
lation for the Fibonacci numbers. In the case of F3(l,n), the argument is 
similar. 

(d) F6(l,2m) = 0, F6(l92m + 1) = 3m_1, TTZ >. 1, and F6(l,l) = 1; 

FA2,2m) = 3 m"\ ro .> 1, F,(2,2m + 1) = 0; 

F6(3,2m) = 0, F6(392m + 1) = 2 • 3 m"\ m .> 1, and FG(3,1) 0. 
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(e) Let a = 9 and omit the subscript. 

F(l,l) = 1, ni,2) = 0, F(l,3) = 1 
and 

and 

and 

and 

F{l9n) = 3F(l,n - 2) + F(l9n - 3) - 1, n > 3. 

F(2,l) = 0, F(2,2) = 1, ̂ (2,3) = 0 

F(29n) = 3^(2,n - 2) + F(29n - 3) - 1, n > 3. 

F(3,l) = 05 F(3,2) = 0, F(3,3) = 1 

F(39n) = 3F(39n - 2) + F(39n - 3), n > 3. 

F(4,l) = 05 F(4,2) = 0, F(4,3) = 0 

F(4,n) = 3F(4,n - 2) + F(4,n - 3) + 1, n > 3. 

F(9 - i 9n) = F(v9ri) by symmetry. 

By enumeration, see Table 2, the initial conditions can be seen to hold 
as well as the fact that (assuming a = 9 and omitting the subscript) 

F(l,4) = 0, F(2,4) = 2, F(3,4) = 0, and F(4,4) = 1. 

The recurrence relations therefore hold if n = 4 . For an induction argument 
assume they all hold for a general value of n. 

F(l,n + 1) = F(0,n) + F(2,n) = F(29n) 

= 3F(2,n - 2) + £(2,ra - 3) - 1 
(the induction 
hypothesis) 

= 3F(l,n - 1) + F(l9n - 2) - 1 

[for i > 0, F(09i) = 0.] Similarly, 

F(29n + 1) = F(l9n) + F(39n) 

= 3[F(l,n - 2) + F(3,n - 2)] + F(l9n - 3) 

+ F{39n - 3) - 1 (the induction 
hypothesis) , 

= 3F(2,n - 1) + F{29n - 2) - 1. 

In just the same way, it is easy to show that both F(39n + 1) and F(b9n + 1) 
satisfy, respectively, the stated recurrence relation. 

(f) Assume a = 10 and omit the subscript. 

F(l92m) = 0, F(l,l) = 1, F(l,3) = 1, and 
m-l 

F(l92m + 1) = 4F(l,2m - 1) - ]T F(l,2k - 1) - 1, TTZ > 1. 
fc = i 

F(2,2/7? - 1 ) = 0 , w > l , F(292) = 1, ̂ (2,4) = 2, and 

77? - 1 

F(292m + 2) = 4F(2,2w) - ]T F(292k) - 2. 
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F(3,2m) = 0 , m> 0 , F ( 3 , l ) = 0 , F (3 ,3 ) = 1, and 
m - 1 

F(3,2m + 1) = W(3,2m - 1) - ^ F(3,2k - 1) - 1, m > 1. 
fc = i 

F(4,2TT? + 1 ) = 0, m >_ 0 , F ( 4 , 2 ) = 0 , F ( 4 , 4 ) = 1, and 
m - l 

F(h,2m + 2) = 4F(4,2m) - ] T F (4 ,2k ) + 1. 
fc = i 

F(5,2m) = 0 , m >. 0, F ( 5 , l ) = 0, F ( 5 , 3 ) = 0, and 

m-l 
F(592m + 1) = UF(592m - 1) - ^ F ( 5 , 2 ^ c - 1) + 2. 

fc = i 

F1Q(10 - i9n) = F1Q(i,n)9 i = 1, 2, 3, 4, by symmetry. 

In the manner shown in example (e) 5 all of these statements can be veri-
fied easily. Because of their length and repetitive nature, this discussion 
is omitted. 

A referee has noted that if A = (ciij) is the square matrix of order a 
defined by a^- = 1 if j i - J | = 1, i ^ 1, £ ̂  a; a^j = 0 otherwise, then the 
nth column Xn in the array of absorption sequences is given by 

AnXQ = Xn where XQ = (1, 0, 0, ..., 0, l)T. 

This approach, as it has been applied to the related problem of counting 
paths in reflections in glass plates [2], might be used to codify and expand 
many of the current results. The referee has also made a (apparently cor-
rect) conjecture: if p is a prime and a - 2p, then p divides F2 (i 9ri) for 
n > (p + 1) and 0 <. 1 <. 2p. 

4. RESULTS FOR SEQUENCES USING PROBABILISTIC REASONING 

To illustrate what results follow from the connection between absorp-
tion sequences and probability,let us use the Fibonacci number sequence, Fn , 
which appears in example 3(c). Similar results can be found for any absorp-
tion sequence. 

(a) The probability that absorption at one of the boundaries will take place 
is one [2, p. 345]. In the case where zero and five are the boundaries, 
F5(29n) represents the number of paths that begin at two, and end at zero or 
five in n steps. If a "win" or a "loss" is equally likely, then the proba-
bility that the game is over in n steps is 2~nF5 (2,n). Hence, 

£ 2 - " ^ (2,n) = 1 or 22"n*'»-i " U 

n = 2 

(b) The expected duration of play in the equally likely case is given, in 
general, by the formula i(a - i) [2, p. 349]. It is also given in this exam-
ple by 

]Tn2-nF5 (2,n) 
n = 2 

from the definition of expected value. We have then, with a - 5 and i = 2, 
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that for the Fibonacci sequence 

n = 2 

n2~nFv, 6." 

(c) In a formula attributed to Lagrange [2, p. 353] for the equally likely-
case with absorptions at 0 or 5, the probability of ruin (or absorption at 
zero) on the nth step is given as 

u(i9n) 
4 

1 T^ / TTVY*"1 . TTV . l\iv 

"5 Z-r Vcos T ) s=Ln T Sln ~T~ 
i = 1, 2, 3, 4, and ft > 0. 

In this formula, if (ft - i) is odd, u(i9n) = 0, as seems logical in terms of 
the random walk formulation as well as in light of trigonometric identities. 
If (n - %) is even, 

u(i,n) = — / TTV*-1 . TT . ni , / 27T\n_1 . 2TT . 2ni (cos — j sin — s m — — h Icos -r-l s m -r- s m -

Since, furthermore, each path of length n has probability 2~n, the number of 
paths of length n involved is 2nu(i,n). In particular, ifi = 3, n = 2772 + 1, 
then 2 u(392m + 1), which, as shown above, is the Fibonacci number F2m • 
We obtain a trigonometric representation for "one-half" the Fibonacci num-
bers : 

TT . 3TT , s m — s i n -z—h ?) 
777 

2TT 

1, 2 , 3 , 

Srr 
5 J ' 

To use LagrangeTs probability of ruin formula for the rest of the Fibonacci 
numbers, the number of paths that begin at 2 and are absorbed at 0 in 2m 
steps for 777 > 0 is, as indicated above, F(2,2m) or F2m_1. Therefore, we have 

?2m-l Or 
>2m + l 

22mu(2,2777) ?2 

• Z m - l 

71" 
COS T 

2m-l TT . 2TT , 

sm T- sm -=—h cos 
2TT 2 7 7 7 - 1 . 2TT . 4TT 

s m -£- s m ~r~ 

m = 1, 2, 3, 
Using trigonometric identities, these two formulas combine into one new trig-
onometric representation of the Fibonacci numbers. 

F„ 
TT . 3TT , / 2TT 

s m — s i n "T—I- (-cos ~r~ 
2TT . 6TT . n 

s m -=- s m — , n > 0. 
(d) By using the method of images, repeatedly reflecting the path from the 
end points [2, p. 96], it is possible to show that in the random walk begin-
ning at 3 with absorption at 0 or 5, the number of paths that arrive at 1 in 
(n ~ 1) steps hitting neither 0 nor 5 is given by 

ft - 1 \ / ft - 1 N 
ft + 10k + 1 l In + 10k + 3 V 

Is I \ 2 / \ 2 

where the sum extends over the positive and negative integers k with the con-

vention that the "binomial coefficient" I ) is zero whenever x does not equal 
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an integer between 0 and n. (This sum has a finite number of n n-zero terms.) 
With n - 2m + 1, it follows that the number of paths which are absorbed at 0 
in 2m + 1 steps is 

F(3,2m + 1) = F2m = J2 2m 
m + 5k + 1 

2m 
m + 5k + 2 

To obtain the "other half" of the Fibonacci numbers, we count 

2m- 1 F(2,2m), 

the number of paths that begin at 2 and are absorbed at 0 in 2m steps. The 
method of repeated reflections gives us 

2m- 1 E 2m - 1 
m + 5k 

2m - 1 
m + 5k + 1 

the sum extending over all positive and negative integers. 
Two slightly different representations of the Fibonacci numbers can now 

be obtained through use of the easily verified relations 

2m \ _ I 2m \ _ 10k + 3/ 
\m + 5k + 1/ \m + 5fc + 2 

and 

2w + 1 
2m + 1 VT? + 5k + 2 

+ 5k) 
2m - 1 

m + 5k + 1 
5/c + 1/ . 2m 

72 \77Z + 5/C + 1 

where /c is any integer, m is a positive integer, and the conventions for the 
binomial coefficients introduced above continue to apply. By direct substi-
tution, we obtain 

10k + 3 / 2m + 1 
Km + 5k + 2, E 2m + 1 and Fn .,=E 5k + 1 / 2m 

,m + 5& + 1 
fc "" " ~ x "" " "' k 

Finally, by treating the terms with positive k separately from those with 
negative k9 we obtain 

2m 

Fim + i = ~< Yj(5k + 1) 
k = 0 

E < « -2m 
m + 5k + 1 

fe = i 

2m 
m + 5k 

[m - ll [m + 2"I , fm + ll 

with [ ] the greatest integer in x9 and the convention that a sum is zero if 
its lower limit exceeds its upper limit. 
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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn + 2 = Fn+1 + Fn > ^ o = °* F
1

 = 1 
and 

Fn+2 = Fn + 1 + F
n> F0 = ^ 9 L^ = 1 . 

Also, a and b designate the roots (1 + /5)/2 and (1 - /5~)/2, respectively, 
of x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-406 Proposed by Wray G. Brady, Slippery Rock State College, PA. 

Let xn = 4L3n - Ln and find the greatest common divisor of the terms of 
the sequence x19 x2, x3, . . . . 

B-^07 Proposed by Robert M. Giuli, Univ. of California, Santa Cruz, CA. 

Given that 

1 
1 - x - xy ]C X ankxnyk 

n=Q k=Q 

is a double ordinary generating function for ank, determine ank. 

B-408 Proposed by Lawrence Somer, Washington, D.C. 

Let d £ {2, 3, ...} and Gn = Fdn/Fn. Let p be an odd prime and z = zip) 
be the least positive integer n with Fn = 0 (mod p) . For d = 2 and zip) an 
even integer 2k, it was shown in B-386 that 

Fn + 1Gn + k = FnGn+k + 1 (mod p) . 

Establish a generalization for d >_ 2. 

B-409 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 
T pf p = F F L C L L n •Ln1-n + a " 

Must Pn+6r ~ Pn be an integral multiple of Pn + 4z> - P n + 2r f o r a 1 1 n o n~ 
negative integers a and r? 

281 
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B-410 Proposed by M. Wachtel, Zurich, Switzerland. 

Some of the solutions of 

5(x2 + x) + 2 = y2 + y 
in positive integers x and y are: 

(x,y) = (0,1), (1,3), (10,23), (27,61). 

Find a recurrence formula for the xn and yn of a sequence of solutions 
(%n>yn) • Also find lim(^„ + 1/xn) and lim(xn + 2/^n) as n -> °°  in term of 

a = (1 + /5)/2. 

B-411 Proposed by Bart Rice, Crofton, MD. 

Tridiagonal n by n matrices An = (a^-) of the form 

2a (a real) for j = £ 
1 for j = i ± 1 
0 otherwise 

occur in numerical analysis. Let dn - det An. 

(i) Show that {dn} satisfies a second-order homogeneous linear recursion. 
(ii) Find closed-f orm and asymptotic expressions for dn. 
(iii) Derive the combinatorial identity 

[(n-D/2], , 

-̂' \2fc + 1/ s m P 

x > 0, P = tan"1^. 

SOLUTIONS 

Lucky L Uni ts Di gi t 

B-382 Proposed by A. G» Shannon, N.S.W. Inst, of Technology, Australia. 

Prove that Ln has the same last digit (i.e., units digit) for all n in 
the infinite geometric progression 4, 8, 16, 32, ... . 

Uo£(L: Several solvers pointed out that the subscript n was missing from the 

Solution by Lawrence Somer, Washington, D.C. 

I present two solutions, the first of which is more direct. 

ViA&t Sotiltlon: Note that 

L2
n = (an + bn)2 = a2n + h2n + 2(ab)n = L2n + 2(-l)n. 

We now proceed by induction. Lh = 7. Now assume 

L2n = 1 (mod 10), n >_ 2. 

Then 

Lin+1 + 2 ( - l ) 2 n = L2n + 1 + 2 = h\n = 72 = 9 (mod 10 ) . 
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Thus, 
L 2 n + i = 9 - 2 = 7 (mod 10) 

and we are done. 

Second Sotution: Note that the Lucas sequence has a period modulo 10 of 12. 

Now \2 /n = 2 (mod 12) is of the form 4,8, 4,8, ... . But Lh and LQ both end 

in 7. Thus, we are done. 

Also solved by Paul S. Bruckman, Herta T. Freitag, Graham Lord, Bob Prielipp, 
Sahib Singh, Charles W. Trigg, Gregory Wulczyn, and the proposer. 

Reappearance 

B-383 Proposed by Gregory Wulczyn, Bucknell Univ., Lewisburg, PA. 

Solve the difference equation 

Un+2 - 5Un + 1 + 6Un = Fn. 

No£z: Bob Prielipp and Sahib Singh point out that B-383 is a rerun of B-370. 

Solvers in addition to those of B-370 are Ralph Garfield, Lawrence Somer, and 
Gregory Wulczyn. 

A Recursion for F2n or F^n + i 

B-384 Proposed by Gregory Wulczyn, Bucknell Univ., Lewisburg, PA. 

Establish the identity 

Fh = 55 (Fh - Fk ) - 385 (Fh - Fh ) + Fk. 
n + 10 J J U n + 8 Ln + 2J ^^^^n + S n + h} ^ L n ' 

Solution by Sahib Singh, Clarion State College, Clarion, PA. 

It suffices to prove that 

(1) Fh - Fh = 55 (Fh - Fh ) - 385 (Fh - Fh ). 

Factoring the difference of squares, one sees that (1) follows from the two 
formulas: 

(2) (Fn+10 - Fn)/DD = \£n + Q ~ l n + 2)/o - rn + 6 - rn + t+; 

(3) F2 + F2 = S(F2 + F2 ) - 7(F2 + F2 ) . 
K-JJ £ n + 10 n ° ^ L n + 8 n + 2J / u n + 6 r c + 4 y 

Each of (2) and (3) can be established using the Binet formulas, a2 = a + 1, 
ah - 3a + 2, etc., and the corresponding formulas for powers of b. 
Also solved by Paul S. Bruckman and the proposer. 

Counting Some Triangular Numbers 

B-385 Proposed by Herta T. Freitag, Roanoke, VA. 

Let Tn =n(n+ l)/2. For how many positive integers n does one have both 
106 < Tn < 2 • 106 and Tn = 8 (mod 10)? 

Solution by Lawrence Somer, Washington, B.C. 

By inspection, Tn = 8 (mod 10) if and only if 

(1) n E 7 (mod 20) or n ~ 12 (mod 20). 
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Now, 106 < T < 2 • 106 if and only if 

(2) -1/2 + /27000T000.25 < n < -1/2 + /4,000,000. 25 

or 1414 <_ n <^ 1999. There are 58 integers satisfying conditions (1) and (2). 
The answer is thus 58. 

Also solved by Paul S. Bruckman, Sahib Singh, Charles W. Trigg, Gregory Wul-
czyn, and the proposer. 

Elusive Generalization 

B-386 Proposed by Lawrence Somer, Washington, D.C. 

Let p be a prime and let the least positive integer m with Fm E 0 (mod 
p) be an even integer 2k. Prove that 

Fn + lLn + k = FnLn+k+l ( m o d P ) • 

Generalize to other sequences, if possible. 

Solution by Paul S. Bruckman, Concord, CA. 
The following formula may be readily verified from the Binet definitions: 

( ! ) Fn+lLn + k ~ FnLn+k + l = ( _ 1 ) Lk ' 

Since F2k ~ Fk^k = 0 (mod p) and 2k is the least positive integer m such 
that Fm E 0 (mod p), thus Fk $ 0 (mod p), which implies Lk E 0 (mod p). From 
(1), we see that this, in turn, implies 

( 2 ) Fn + lLn+k E FnLn+k+l ( m o d P> • 

The desired generalization to other sequences appears to be elusive. 

EcUXofi'6 no£&'* For one generalization, see B-408, proposed in this issue. 

Also solved by Sahib Singh, Gregory Wulczyn, and the proposer. 

One's Own Infinitude 

B-387 Proposed by George Berzsenyi, Lamar Univ., Beaumont, TX. 

Prove that there are infinitely many ordered triples of positive inte-
gers (x9y,z) such that 

3x2 - y2 - z1 = 1. 

EdJJtoh,'& note.»' An infinite number of solutions were produced with y = z + 2 
by Paul. S. Bruckman, with y = z and with z = 1 by Bob Prielipp, with x = z 
by Sahib Singh, with z e {1, 5, 11, 25} by Gregory Wulczyn, and with (x2,y2, 
32) = (F2n + 2W + 1* F2nW + 1 » FIn + hW + D , where W =f ^F

2n + 1F2n+2F2n+3 > b Y t h e 

proposer. Of these, the following was chosen for publication because of its 
bibliographic and historical references. 
Solution by Bob Prielipp, Univ. Of Wisconsin-Oshkosh, WI. 

We will show that there are infinitely many ordered triples of positive 
integers (x,y,l) such that 

3x2 - y2 - I2 = 1. 

The preceding equation is equivalent to y2 - 3x2 =-2. To assist us in find-
ing all of its solutions, we will employ the following results: 
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(1) If D and N are positive integers, and if D is not a perfect square, 
the equation u2 - Dv2 = -N has a finite number of classes of solutions. If 
(u*9V*) is the fundamental solution of the class K9 we obtain all the solu-
tions (u9V>) of K by the formula 

u + v/D = (u* + v*/D)(S + t/D), 

where (s9t) runs through all solutions of s2 - Dt2 = 1, including (±1,0). 

(2) If p is a prime, and if the equation u2 - £>?;2 = -p is solvable, it 
has one or two classes of solutions, according as the prime p divides 2D or 
not. [See Nagell, Introduction to Number Theory (2nd ed.; New York: Chelsea 
Publishing Company, 1964), pp. 204-208.] 

By (2), there is only one class of solutions of the equation 

y2 _ 3X
2 = -2. 

The fundamental solution is (1,1). The fundamental solution of the equation 
y2 - 3x2 = 1 is (2,1). So, all positive integer solutions of y - 3x = -2 
are given by the formula 

y + x/3 = (1 + /3)(2 + /3 ) n , n = 0, 1, 2, 3, ... . 
Thus, the first six positive integer solutions (y9x) of y2 - 3x2 = -2 are 

(1,1), (5,3), (19,11), (71,41), (265,153), and (989,571). 

The corresponding six positive integer solutions (x9ysz), with z = 1, of the 
equation 3x2 - y2 - z2 = 1 are 

(1,1,1), (3,5,1), (11,19,1), (41,71,1), (153,165,1), and (571,989,1). 

It may be of interest to note that, in his famous Measurement of a Cir-

cle, Archimedes determines that 3-j > i\ > 3yr and in deducing these inequali-

ties he uses -yon > /3~ > 1 . It can be shown that these good approximations 

/o(J IJJ 

to /3 satisfy the equations a2 - 3b2 = 1 and a2 - 3b2 - -2, respectively, so 
that Archimedes knew at least some solutions of these equations. 
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H-302 Proposed by George Berzsenyi, Lamar University, Beaumont, TX 

Let c be a constant and define the sequence <̂ an)> by a0 = 1, ax = 2, and 
an = 2ccn_i + can-2 f° r n >_ 2. Determine the sequence <(bny for which 

n 

fc = 0 

H-303 Proposed by Paul Bruckman, Concord, CA 

If 0 < s < 1, and n is any positive integer, let 

n 

(1) Hn(s) = £ k's, 
and 

(2) 6„(a) = Y^ - Hn(s). 

Prove that lim 0n(s) exists, and find this limit. 
n+00 

H-304 Proposed by V. E. Hoggatt, Jr., San Jose State University, 
San Jose, CA 

(a) Show that there is a unique partition of the positive integers, 
N, into two sets, A1 and A2, such that 

Ax U A2 = n, Ax H A2 = 0, 
and no two distinct elements from the same set add up to a Lucas 
number. 

(b) Show that every positive integer, M, which is not a Lucas number is 
the sum of two distinct elements of the same set. 

H-305 Proposed by Martin Schechter, Swarthmore College, Swarthmore, PA 

For fixed positive integers, m, n, define a Fibonacci-like sequence as 
follows: 

(rnSk_1 + Sk 2 if A: is even 
Sx = 1, S2 = m, Sk = < 

\ n^k-i + ^k-2 if k Is odd. 

286 
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(Note that for m = n = 1, one obtains the Fibonacci numbers.) 

(a) Show the Fibonacci-like property holds that if j divides k then S-
divides Sk and in fact that (Sq9Sr) = S^^ where ( , ) = g.c.d. 

(b) Show that the sequence obtained when 

[m = 1,7-z = 4] and when [m = 19n = 8], 

respectively, have only the element 1 in common. 

H-306 Proposed by V. E. Hoggatt, Jr., San Jose State University, 
San Jose, CA 

(a) Prove that the system S9 

a + b = Fp , b + c = Fq 9 c + a = Fr , 

cannot be solved in positive integers if Fp , Fq , Fr are positive 
Fibonacci numbers. 

(b) Likewise, show that the system T, 

a + b = Fp , b + c = Fq , c + d = Fr , d + e = Fs , e + a = Ft , 

has no solution under the same conditions. 

(c) Show that if Fp is replaced by any positive non-Fibonacci integer, 
then 5 and T have solutions. 

If possible, find necessary and sufficient conditions for the system U9 

a + b = Fp , b + c = Fq , c + d = Fr , d + a = Fs , 

to be solvable in positive integers. 

SOLUTIONS 

Indifferent 

H-276 Proposed by V. E. Hoggatt, Jr., San Jose State University, 
San Jose, CA 

Show that the sequence of Bell numbers, <Bi>i=0 is invariant under re-
peated differencing. 

n / \ 
k = o V 

Solution by Paul S. Bruckman, Concord CA 

The following exponential inversion formula is well known: 

CD rw = it{k)z(k) ±ff gM = i2{i)(-i)n'kf(k)-
k=0 k=0 

Setting g(n) = Bn and f(n) = Bn+1 in (1), we obtain the result: 

(2) Bn = ]T (l)(-Vn'kBk + 1, n=0,l, 2, ... . 
k = 0 
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However, the right member of (2) is precisely A B . Hence, 

(3) t?Bl = Bn, n = 0, 1, 2, ... . 

Also solved by N. Johnson and the proposer. 

OLDER STUMPERS! 

H-25^ Proposed by R. Whitney,, Lock Haven State College, Lock Haven, PA 

Consider the Fibonacci-Pascal-type triangle given below. 

Fi Fi 

F F F 
r 1 r 2 M 

F F F v 
r 1 c 3 n 3 " l 

Fi _ Fn _ F_6 _ F-" _ Fi 
Find a formula for the row sums of this array. 

H-260 Proposed by H. Edgar, San Jose State University, San Jose, CA 

Are there infinitely many subscripts, n9 for which Fn or Ln are prime? 

H-271 Proposed by R. Whitney, Lock Haven State College, Lock Haven, PA 

Define the binary dual, D, as follows: 

D = < t\t = J 7 (at + 2i) ; at e {0, l}; n >_ 0>. 

Let Z? denote the complement of D with respect to the set of positive inte-

gers. Form a sequence, \<Sn\n=i, by arranging D in increasing order. Find a 

formula for 5n• 

(Note: The elements of D result from interchanging + and x in a binary num-
ber. D contains items like 2n • n\ , 3 • 2 ~ n\ , ... .) 


