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ABSTRACT 
Let Ak = {0 = a1 < a2 < ... < ak} and B = {0 = b1 < b2 < ... < bn ...} 

be sets of k integers and infinitely many integers, respectively. Suppose B 
has asymptotic density x t d(B) - x. If, for every integer n _> 0, there is 
at most one representation n - a^ + bj , then we say that Ak has a packing 
complement of density j> x. 

Given Ak and x9 there is no known algorithm for determining whether or 
not B exists. 

We define "regular packing complement" and give an algorithm for deter-
mining if B exists when packing complement is replaced by regular packing 
complement. We exemplify with the case k = 5, i.e.s given A5 and x - 1/10, 
we give an algorithm for determining if A5 has a regular packing complement 
B with density >_ 1/10. We relate this result to the 

Con/ecta/ie: Every A5 has a packing complement of density _> 1/10. Let 

Ak = {0 = a± < a2 < ... < ak} 
and 

B = {0 = b1 < b2 < ... < bn < ...} 
be sets of k integers and infinitely many integers, respectively. If, for 
every integer n >_ 0, n - ai + bj has at most one solution, then we call B a 
packing complement, or p-complement, of Ak. 

Let B(n) denote the counting function of B and define d(B), the density 
of BJ as follows: 

d(B) = lim B(n)/n if this limit exists. 

From now on we consider only those sets B for which the density exists. 
For a given set Ak, we wish to find the p-complement B with maximum den-

sity. More precisely, we define p(Ak) s the packing codensity of Ak, as fol-
lows : 

p(Ak) = sup d(B) where B ranges over all p-complements of Ak. 
B 

Finally, we define p as the "smallest" p-codensity of any Ak, or, more pre-
cisely, 

pk =±nfp(Ak). 

We proved [1] that, for e > 0, 

G) 
l _ < p < 2 ^ 6 ^ + £ 

+ i * - y} 

if k is sufficiently large. 
The first four p are trivial, since we can find sets for which the 

lower bound is attained. Thus, 

A± = {0}, A2 = {0,1}, A3 = {0, 1, 3}, Ah = {0, 1, 4, 6} 
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give 
Pl = 1, p2 = 1/2, p3 = 1/4, ph = 1/7. 

But, 
1 ^ ^ 1 

TT^Ps^To' 
The upper bound is established by As = (0, 1, 2, 6, 9} and the lack of cer-
tainty in the lower bound is caused by the impossibility of finding A5 whose 
difference set takes on all values 1, 2, ..., 10. 

Suppose we have a set Ak, a set B = {b19 b2> ...» bn}, and a number N 
such that a + b = m (mod N) has at most one solution, 

a e Ak9 b e B9 for 0 <. m < N. 

Then the packing codensity of Ak is J> n/ii/. 
If, in the previous paragraph, the p-complement B consists entirely of 

consecutive multiples of M, where (M9N) = 1, i.e., B = {M, 2M9 , nM} (mod 
N) i then we say that Ak has a regular y-complement of density _> n/N. 

As in [2], there is no known algorithm for determining either the pack-
ing codensity of Ak or even whether Ak has a p-complement of density _> X. 

It is the purpose of this note to give an algorithm for answering the 
question: does Ak have a regular p-complement of density _> xl We actually 
give a method for determining whether A5 has a regular p-complement of den-
sity _> 1/10, because of its application to the 

Conje.o£uA&: p5 = 1/10. 

However, the generalization of our result is obvious. 
We adopt the following conventions throughout: 

(1) A5 represents a set of five integers, 

A5 = {0 = ax < a2 < a3 < ah < a5}. 

(2) M and N are positive integers, with M < N9 (M,N) = 1. 
(3) All at are distinct mod N. 
(4) "at and <zj are adjacent mod N" means that for some M the residues 

mod N of at and czj occur in the ordered il/-tuple {M9 2M9 .. . , NM} (mod N) with 
residue mod N of no other element ak between them. We illustrate with 

A5 = {0, 1, 24, 25, 28}, N = 13, M = 5. 

The ordered 13-tuple is 

{5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, 8, 0} 

and since 
{0, 1, 24, 25, 28} E {0, 1, 2, 11, 12} (mod 13), 

we can write 
A5 E {0, 1, 2, 11, 12} (mod 13). 

In the ordered 13-tuple, A5 has the following adjacent pairs: 

{0, 11}, {11, 1}, {1, 12}, {12, 2}, {2, 0}. 

But {11, 12} are not adjacent, because 1 is between them in one sense and 0 
and 2 are between them in the opposite sense. Similarly, 

{1, 2}, {0, 1}, {2, 11}, and {0, 12} 

are nonadjacent pairs. 
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(5) "A5 has a regular p-complement" will mean that it has a regular p-
complement of density J> 1/10. 

Lzmmci 1: Given A5, let ai and a$ be adjacent mod N and write 
di3M E ai ~ as (mod 217). 

Then A5 has a regular p-complement if and only if 

YQ 1 ^J5 ^Ji < 217, 

for all five adjacent pairs i,j. 

Vnjooji Let C = {M, 2M, . .., M } (mod 217) be an ordered 217-tuple. Since a19 
. .., a5 will occur in C in some order as distinct residues mod N9 we assume, 
without loss of generality, that 0 <. a^ < N9 i = 1, ..., 5. Assume that a3-
is to the left of a^ in C. (Zero is to the left of the first ak in C.) Write 

B = <M9 2M, ..., J-M\ (mod N). 

Suppose now that 217/10 < d^j , d$i < 217. Then a3- © £ includes the 217/10 elements 
of C immediately to the right of aj. Thus, while it may include a^9 it will 
not include any element to the right of a^ nor, of course, will it include 
(Zj . Hence, A5 ® B cannot include any element of C more than once. Since C 
is a complete residue system mod N9 B is a p-complement of A5. Conversely, 
if 0 < dij < 217/10 or 0 < dji < 217/10, then 

(a3- © B) H (az- © B) ^ <|) 

and B is not a p-complement of J3. 

Lemma 2: Given i45, consider the congruence 

(1) d̂ -Af = ai - a^ (mod 217) . 

Then A5 has a regular p-complement if and only if there exists a solution of 
(1), with #/10 £ did < 9217/10, for every pair i,j, with 1 <. i9 j <, 5, i + j. 

VKOOfc If A5 has a regular p-complement, then Lemma 1 implies that 

TTT <. <̂-£j s ̂ ji < 217 if a^ and â- are adjacent mod 217. 

This, in turn, implies that 

JL , A j * M. 

Clearly, the inequalities still hold if a^ and aj are not adjacent mod 217. If 
(1) has the required solution for every pair £,j, this implies that adjacent 
a!s, mod 217, are separated by at least (217/10)M, and so, by Lemma 1, A5 has a 
regular p-complement. 

Define kQ by kQM = 1 (mod 217) and write r = kQ/N. Let Z) — = ai - a^. We 
have 

^mria_3: The congruence 

(2) d^-M E a ^ - a^ (mod 217) 

has a solut ion 21//10 <: d^ _< 9217/10 if and only if r s a t i s f i e s one of the in -
equa l i t i e s : 
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1 0 ( f e - l ) + l £ r . 1 0 ( f e - l ) + 9 > f e = 1 ) ^ ^ ^ ^ ^ 

Mpiil 10ID«I 

Vh.00^ Suppose ypr <. dij < jpT. We have d^M = D^j (mod #) • However, s i n c e 

k'0M E 1 (mod N) , we a l s o have 

J)i. kQM = Z)^- (mod 210 > so t h a t 

1 9 . T h e r e f o r e , Dijr - s ( m o d *) where •— <. s £ — 

This i m p l i e s t h a t 

10 (fe - 1) + 1 ^ , „ , . 10 (fc - 1) + 9 
10 - I ^ J I2 - 10 

or 

10(fe - 1) + 1 ^ . 10(fe - 1) + 9 - i * s i, s \n- \ 
—^ L <_ r <_ — fo r some k9 1 <. k <. \Dij \ . 

'l0\Did\ l0\Did\ 
The argument can also be read backwards, so this completes the proof. 

Sine 
interval: 

]10(fe - 1) + 1 10(fe - 1) + 9 

Since each difference D^j determines a set of intervals R^j on the unit 

*u = U 
fc-i 10|7?^| 1 0 | ^ | 

our result can be expressed in the following 

TkdQSi&n: A5 does not have a regular p-complement if and only if 

o ) n Ra = <*> 

VHJOOfaj From Lemma 3 we see that every solution, r = kQ/N9 to the congruence 

dijM E *i ~ *$ (mod N), —< did < JQ 

must lie in Rid. By Lemma 2 we see that for A5 to have a regular p-comple-
ment it is necessary and sufficient that this congruence have a simultaneous 
solution for every pair 1 j< £, J j< 5. Hence, 

n %^ * 
if and only if A has a regular p-complement. 

The application of this theorem to a given A5 Is a tedious procedure 
without a computer. In [2], we stated that a computer search revealed two 
sets Ait, with a4 j< 100, that do not have regular (covering) complements of 
density .<. 1/3. We have no such computer information on the packing algorithm 
but still think it likely that at most a finite number of ̂ .5fs do not have 
regular p-complements. The obvious attempt to prove this is to assume a5 is 
large and that (3) is satisfied. So far, we have failed to find the desired 
contradiction. 
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ADDENDA TO "PYTHAGOREAN TRIPLES CONTAINING 

FIBONACCI NUMBERS: SOLUTIONS FOR Fn
2 ± Fk
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MARJORIE BICKNELL-JOHNSON 
A. C. Wilcox High School, Santa Clara, CA 95051 

In a recent correspondence from J. H. E. Cohn, it was learned that Ljung-
gren [1] has proved that the only square Pell numbers are 0, 1, and 169. 
(This appears as an unsolved problem, H-146, in [2] and as Conjecture 2.3 in 
[3].) Also, if the Fibonacci polynomials {Fn (x)} are defined by 

FQ(x) = 0, Fi(x) = 1, and Fn + 2 (x) = xFn + 1(x) + Fn (x) , 

then the Fibonacci numbers are given by Fn = Fn (1), and the Pell numbers are 
Pn = Fn(2). Cohn [4] has proved that the only perfect squares among the se-
quences {Fn(a)}9 a odd, are 0 and 1, and whenever a = k2, a itself. Certain 
cases are known for a even [5]. 

The cited results of Cohn and Ljunggren mean that Conjectures 2.3,3.2, 
and 4.2 of [3] are true, and that the earlier results can be strengthened as 
follows. 

If (n,k) = 1, there are no solutions in positive integers for 

F%(a) + F£ (a) = K2, n > k > 0, when a is odd and a >_ 3. 
This is the same as stating that no two members of {Fn (a)} can occur as the 
lengths of legs in a primitive Pythagorean triangle, for a odd and a >_ 3. 

When a = 1, for Fibonacci numbers, if 

F2 + F\ = K2
9 n > k > 0, 

then (n9k) = 2, and it is conjectured that there is no solution in positive 
integers. When a = 2, for Pell numbers, P2 + P\ = K2 has the unique solu-
tion n = 4, k = 3, giving the primitive Pythagorean triple 5—12—13. 
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1. INTRODUCTION 

There are three parts to this paper, the link being {wn}, defined below 
in (1.1). In the first, a lacunary recurrence relation is developed for {wn} 
in (2.3) from a multisection of a related series. Then a functional recur-
rence relation for {wn} is investigated in (3.2). Finally, a ̂ -series recur-
rence relation for {wn} is included in (4.5). 

The generalized sequence of numbers {wn} is defined by 

(1.1) wn = pwn_2 - qwn_2 (n >. 2), w0 = a,' w± = b, 

where p,q are arbitrary integers. Various properties of {wn} have been de-
veloped by Horadam in a series of papers [4, 5, 6, 7, and 8]. 

We shall have occasion to use the "fundamental numbers," Un(p9q)9 and 
the "primordial numbers," Vn (p9q), of Lucas [10]. These are defined by 

(1.2) Un(p,q) = wn(0,l;p,q), 

(1.3) Vn(p9q) = wn(2,p;p,q). 

For notational convenience, we shall use 

(1.4) Un(p,q) ~ Un E M n - 1 = (an - 3n)/(a - 6), 

(1.5) Vn(p,q) = Vn = i>„-i = a" + &n, 

where a,3 are the roots of #2 - px + q = 0. 

2. LACUNARY RECURRENCE RELATION 

We define the series w{x) by 

(2.1) w(x) = wx(x) =^2wnxn
9 

n = 0 

the properties of which have been examined by Horadam [4]. 
If r is a primitive mth root of unity, then the /cth w-section of w(x) 

can be defined by 

m 
(2.2) wk(x;m) = m"1 ^ ( P ^ ) P 7 7 7 ' ^ . 

j-i 

It follows that 

wk(x;m) = -(rm-kw(rx) + rm~2kw(r2x) + • • • + ^ - ^ ( A ) ) 

-Submitted ca 1972. 
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-(rm-k(w0 + wxrx + w2r2x2 + • • • ) + rm 2k (wQ + w±r2x + w2rhx2 + • • • ) 

+ . . . + r
m~mk(wQ + wxvmx + w2r2mx2 + • • • ) ) 

j = i j = i 

wQ h w±x ! - • • • + wkxKmrm + 
2s — 1 -p — X 

k 4- ,., ^k + 2m W,tf* + W, l r t X*"1"^ + 

= ! > * + * * * * + * " ( i ) 
J - 0 

j - o 

= i4a*a;k(l - a V ) - 1 + B g M d - 3 V ) ' 1 

= ar*Gi?k - ^ X - m x m ) ( 1 ~ Vmxm + ^ 2 m ) _ 1 . ( i i ) 

Hence, by c a n c e l l i n g t h e common f a c t o r xk and r e p l a c i n g xm by x9 we get from 
t h e l i n e s ( i ) and ( i i ) 

(1 - Vmx + qmx2)Y,wk+.mx^ = wk- qmwk_mx. 
J =0 

We then equate the coefficients of xJ to get the lacunary recurrence relation 
for {wn}: 

< 2 - 3 ) Wk + mJ ~ VmWk + mQ-l) + <F»k + m(j-2) = K " VmW
k.m + < ? X - 2 » , > 6 JO » 

where 6nm is the Kronecker delta: 

6nm = 1 (n = m)9 6nm = 0 (n ̂  m). 

When j is zero, we get the trivial case Wk = Wk. When j is unity, we get 
Wk+m - 7^/< + VmWk-m = °> 

which is equation (3.16) of Horadam [5]. It is of interest to rewrite (2.3) 
as 

(2.4) Wnm = Vnwn(m_1} + qnWn(m.2) (7W Z 2, n > 1) . 

Thus w2n = Fnwn + aqn, 

and w3n = Vnw2n + qnwne 

The recurrence relations (2.3) and (2.4) are called lacunary because there 
are gaps in them. For instance, there are missing numbers between Wn(m-i) anc* 
wnm in (2.4); when m = 2 and n = 35 (2.4) becomes 

and the missing numbers are wh and w5, A general solution of (2.4), in terms 
of wn9 is 
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(2 .5 ) wmn = Um{Vn9-q)wn + aUm.±(Vn9-q)qn. 

The proof follows by induction on m. For m = 2 from (1.1) and (1.2), 

Uz(yn>-q) = Vn and M^>-<?) = 1. 

If we assume (2.5) is true for m = 39 4, ..., r - 1, then from (2.4) 

Wrn ~ VnWn(r-l) + tf ^n(r-2) 

- ^ r - i ( ^ n ^ K + a7n^_2(Fns-^)^" 

+ ^^.2(Fn,-^)wn + a<f[/r_ 3(^,-4)4* 

= (VnVr-iWn9-q) +qnUr_2(Vn,-q))wn 

+ a(VnUr_2(Vn,-q) + qnUr_3(Vn9-q))q\ 

= Ur(Vn9-q)wn + a t / , . ! ^ , - ^ . 

3. FUNCTIONAL RECURRENCE RELATION 

Following Carlitz [1], we define 

(3.1) w*n(x) =w*(x>\) =J2w" + K(kYk' 
k = o 

Then, wj(0) = wn, and 

(3.2) < + 1(*) = £ ^ + * + 1(9A* 

fc = 0 

k = 0 

= pw*(x) - ^ - i G r ) , 
which is a second-order functional recurrence relation. Moreover, we can 
show that the power series in (3.1) converges for a sufficiently small X as 
follows: w*n(x + 1) - <(*) = £>„•*{(* I l) - g ) } 

= AI>»+4 -iK"1 

xk 

^2^Wn + k + 1\ki fe = o x 

A z J * + 1(a?). 

I f we use wn = y4an + £$ , where 

A = — and 5 = r~, 
a - 3 a - 3 
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then we get that 

w n<*> =£{^ng)(aA)fc + B3ng)(3A)H 
k-

= Aan(l + Aa)* + S3n(l + A3)*. 

It follows that 

w*(x + y) = ilan(l + Aa)*+y + S3n(l + A3)* + 2/ 

= J {Aan + k(l + Aa)* + 53(1 + XB^UjQx* 

fc = 0 X ' 

Similarly, we have for E - pab - qa2 - b2
 9 and Ew = 1 + pA + qA2 : 

zj*_1fe)w* + 1(x) - w*n
2(x) 

= {^""Hl + Xa)* + S3n _ 1(l + A3)4<Uan + 1 ( l + Aa)* + £3n + 1 d + A3)*} 
- j,4an(l + Aa)* + S3n(l + A3)*} 

= Z * r 2 ( a n - V + 1 - 2an3n + an + 1 3 n _ 1 ) ( ( l + Aa) (1 + A3))* 

= q^^Ed"2^2 - 2a3 + a2)E* 

which is a generalization of equation (4.3) of Horadam [5]: 

Wn-lWn+l ~ Wn = V"'^-

The same type of approach yields 

^ * + n O + y) + 0> - P^7)<+n-i^ + 2/) = <(*)<(*/) - ̂ ^ G ^ * _i(*/) 

as a generalization of Horadam!s equation (4.1) [5]: 

<™m+n + (* " P?)Ww+n-l = WmWn ~ H - A - l ' 

4. ^-SERIES RECURRENCE RELATION 

q-series are defined by 

(4.1) (<7)„ = (1 - q)(l - q2) ... (1 - qn), (qQ) = 1. 
Arising out of these are the so-called ^-binomial coefficients: 

(4-2) [l] = (<7>„/(<7)* (?)„-*. 



298 SPECIAL RECURRENCE RELATIONS [Dec. 

When q is unity, these reduce to the ordinary binomial coefficients. It also 
follows from (4.1) and (4.2) that 

GO »/a 

(1 - (p/a)") ••• (1 - - (P /a )" -** 1 ) 
(1 - g / a ) ( l - (3 /a ) 2 ) ••• (1 - (B/a)k) 

UQU^ • • • Ufr _ -j_ 

(4.3) (7, rcfc 

Horadam [5] has shown that 

wn+r = Wnur ~ ^r-^n-l' 
Thus 

_ _ fn + 1] _ IZLJ__H 
• l , k L fe J 3/a Cnfe LkJe/a 

which yields 

5. CONCLUSION 

The ^-series analogue of the binomial coefficient was studied by Gauss, 
and later developed by Cayley. Carlitz has used the ̂ -series in numerous 
papers. Fairly clearly, other results for Wn could be obtained with it just 
as other properties of the functional recurrence relation for Wn could be 
readily produced. 

The process of multisection of series is quite an old one, and the in-
terested reader is referred to Riordan [11]. Lehmer [9] discusses lacunary 
recurrence relations. 

Cnk was introduced by Hoggatt [3], who used the symbol C. Curiously 
enough, Gould [2] also used the symbol 'C1 in his generalization of Bernoulli 
and Euler numbers. Gould's C = b/a (a9b the roots of x2 - x - 1 = 0) is re-
lated to HoggattTs C = Cnk when p = -q = 1 by 

(5.1) C - b 11m (Ck+lh+1/Ckk). 
k +° ° ' 

REFERENCES 

1. L. Carlitz. "Some Generalized Fibonacci Identities." The Fibonacci 
Quarterly 8 (1970)^249-254. 

2. H. W. Gould. "Generating Functions for Products of Powers of Fibonacci 
Numbers." The Fibonacci Quarterly 1, No. 2 (1963):1-16. 

3. V. E. Hoggatt, Jr. "Fibonacci Numbers and Generalized Binomial Coeffi-
cients." The Fibonacci Quarterly 5 (1967):383-400. 

4. A. F. Horadam. "Generating Functions for Powers of a Certain Generalized 
Sequence of Numbers/' Duke Math. J. 32 (1965):437-446. 



1979] ON SOME EXTENSIONS OF THE WANG-CARLITZ IDENTITY 299 

5. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of 
Numbers." The Fibonacci Quarterly 3 (1965):161-176, 

6. A. F. Horadam. "Special Properties of the Sequence Wn (a ,b;p9q). " The 
Fibonacci Quarterly 5 (1967):424-434. 

7. A. F. Horadam. "Generalization of Two Theorems of K. SubbaRao." Bull-
etin of the Calcultta Mathematical Society 58 (1968):23-29. 

8. A. F. Horadam. "Tschebyscheff and Other Functions Associated with the 
Sequence {wn(a9b;p9q)}." The Fibonacci Quarterly 1 (1969):14-22. 

9. D. H. Lehmer. "Lacunary Recurrence Formulas for the Numbers of Bernoulli 
and Euler." Annals of Mathematics 36 (1935):637-649. 

10. E. Lucas. Theorie des Nombres. Paris: Gauthier Villars, 1891. 
11. J. Riordan. Combinatorial Identities. New York: Wiley, 1968. 

ON SOME EXTENSIONS OF THE WANG-CARLITZ IDENTITY 

M. E. COHEN and H. SUN 
California State University, Fresno, CA 93740 

ABSTRACT 

Two theorems are presented which generalize a recent Wang [6]-Carlitz 
[1] result. In addition, we also obtain its Abel analogue. The method of 
proof is dependent upon some of our recent work [2]. 

I 

Wang [6] proved the expansion 

ci.u E m . E 
ij>Q 

Recently, Carlitz [1] extended (1.1) to 

a.2) z c n E n (s: °) = (-+": - + ° ) . 
and 2 in this paper treat a number of different generalizations of 
particular, a special case of Theorem 1 gives the new expression: 

Er+1(r + 1\ y^ Yl to + 1) la + tim + im\ 

k = Q\ k ) v..^V_n JAto + 1 + tiJ V in, ) 
id > 0 

- (a + 1) (r + 1) /ar + r + a + tn + n\ 
(a + 1) (p + 1) + tn \ n J ' 

Udf, 
m» 1 

+ 1) 
In + 2r + 1\ 
\ 2r + 1 ) ' 

Theorems 1 
(1.2). In 

(1.3) 

Letting t = 0 in (1.3) yields (1.2). 
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We also present the Abel analogue of (1 .3) : 

n /N V 1 t13 + l\ V n (a) (a + Mm)1*'1 ( a ) ( r + l ) ( a r + r + Inf'1 

k = 0 ix+-'- + ik=n m = l 
id>0 

(1.3) and (1.4) are special cases of a number of classes of functions includ-
ing some well-known orthogonal polynomials. These are considered in the fol-
lowing theorem. 

ThzotiQJM 1: For a,$>l,l\ t complex numbers, r and n nonnegative integers, 
and Q a positive integer 

d-5) til) £ fte^^-er8^) 
k = 0 i1+-y+ik=n m = l 

Ĵ• > o 

where (a)k = T(a + k)/T(a), quotient of gamma functions, 

[n/s] is the greatest integer notation, and 

0^' (x) can assume any of the ten functions: 
, a , g . , 

(1.6) An Or) 
( a ) t n + n i^K-n) (a + tn + ri)Zp (g)£ ,p {(a + stp + sp + ip)/a)xp 

vn + n r~\ 
" rt!(a + l ) t B Z-r p ! (a + 1 + tn)sp+lp($ + l ) t »p_ p 

(1.7) B " ' V ) 

(B)(a)t»+n [ ^ ] ( - n ) s p ( a + t n + n ) £ p ( 3 + £ ' p ) p _ 1 {(a+ s£p + sp+ lp)/a)xl 

= nl(a + i ) t n L pi (a + 1 + t n ) s p + £p 

(1.8) CB
a,B(ar) 

_ (a + An)""1 [ ^ ] < - 1 > 8 P <-«) .p<B>i ' P {a + * S P } * P 

L p-
n'' " o p ! (a + £n) s p (3 + 1 ) ^ 

, a , 3 

P~P 

(1.9) Da
n>*(x) 

( g ) ( a + £ n ) n - i ^ ( - i r p ( - n ) s p ( 3 + £^p)p-1{a + ^ p } * p 

n !
 P = o p! (a + Jm)ep 

(1.10) tf£'efo) 

[n/8](-l)8P (-n) s p ( 3 ) n £ ' - s p r f a + &n)p{a + £n - £sp}; n - sp 

T £ (a + £n)n! Z-^ p!(g + l)nZ'-n-sPi'+sP 

(1.11) Fn
a '6fe) 

(g) ^ 
+ ln)n\ Z- ' 

f ^ ] ( - l ) s p ( - n ) s p ( a + £n)p(3 + i l ' n - £ f s p ) n " s p - 1 { a + te-£sp}^n-^ 
(a + ln)n\ ^ ~̂! 

p = 0 
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(1 .12) Gn> (x) = n , > , ( 1 + a + t p ) £ n ^ ( 3 + 1 ) t 

(3) 
p = 0 

. » (a + tp + £ n ) n _ 1 ( 3 ) w „ { a + tp}xp 

( 1 1 4 ) j a ^ M = I V 1 * p ' 
U , i 4 ; ^ W n! 2 ^ p ! ( 3 + 1) , 

(1 .15) J r a . e , . (3) y (a + tp + £ n ) n " 1 ( g + H'pf1{al + t p } ^ p 

P=O 

VKOOJ o{ ( 7 , 6 ) : From Theorem 4b [ 2 , p . 7 0 8 ] , 

- vn(u)tn+n t w ^ ] ( - w ) s p ( a + t n + ^ ) £ p ( 3 ) £ , p {(a + t s p + sp + Ip)/a)xl 

S w ! ( a + l ) t n 1 * pl(tn + a + l ) a p + £ p (B + D , V p 

( 1 ' 1 6 ) - ( g ) A , p * V p , -
" ( 1 " s ) a Z ^ P ! ( 3 + 1 ) , , 

( 3 ) £ , p ^ p s s p ( l - z)1? 

p=Q 

where v(l - z)t+1 = - s , y (0 ) = 0. 

P ' V M ' ^>VV-V 

Hencej 
• ( 3 P ) P . ^ p s 8 p ( l - z)Zp * / x ( « U w (frOo/ ^ 3 & p (1 

«•») E ( I £•""."•'<•>} - (i - . > " £ pi(
p

Bl. + 1)t 
fe = 0 X 7 ( » - l ) P = 0 ^ / J 6 

(1 .17) may be expressed as 

n = 0 fc = 0 X / i 1 + ••• + i k = n w = 1 n = o 
ij> 0 

Comparing coefficients on both sides gives the required (1.6). 

VKOOJ oj [1.7) : From Theorem 4b [2, p. 708], 

(1.19) {.?/».••'«}" - {<' - .)-t«"'p',-y«-•>"-»('. 
(1.19) is obtained by modifying the arbitrary sequence {ep} to be 

(3 + H'p)p'1. 
Hence 5 

a-2°> t ( U ) X>»cB<*> 
£ = 0 x ' ( n = l 

(i.2i) = era - a ) ^ X ( g r + rP)f" 'f28f (1 ~ a) 
p! 

P = o r 
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(1.22) -Y,vnB™-**ixy 
n = 0 

(1.23) =±»n±(r
k). E hBl;\x), 

n = 0 fc = 0 ' ̂ l+•••+^ k -n m = l ij > 0 

Comparing coefficients gives (1.7). 

The proofs of (1.6) and (1.7) are the procedures adopted in the above 
cases with suitable modifications. We are initially required to establish 
generating functions. 

?KD0{ oj [1.8): Theorem 2b [2, p. 704] will give 

j^ (&),fpxpzsp 

(1.24) 5 > n C „ <*) = exP(a<0;Cp!(g + ̂  f 
n «= 0 p = 0 *-

PA.00^ 0^ ( 7 . 9 ) : Theorem 2b [ 2 , p . 704] y i e l d s 

(1.25) fyjtf'V) = exp(a3)f:-^iAM!^£!5l!. 
n = 0 p = 0 

P/L00^ Qj{ (7.70) : Using Theorem 2d [2, p . 7 0 4 ] , one may o b t a i n 

^ a ^ ( B ) , , p * ^ / S 

(1.26) £>%?'3to) = e x p ( a ^ ) ^ F , 
n = 0 p = o P Jl'p-p 

where w = s 1 / s exp ( - J l s ) . 

Pftp0f{ 0^ 11,11). ' From Theorem 2d [ 2 , p . 7 0 4 ] , 

sP-i^P^P/s 
(1 .27) 2 ^ ^ ^n to) = e x p ( a s ) 2 ^ ^ 

n = 0 p = 0 

P/L00^ 0^ {1.12): I t may be shown t h a t 

" . - (B)£r_ (1 " z)tPXP 

d.28) E ? n C e t o ) - (i - *)aL P ( 3 + i ) g , — » 
n = 0 p T 0

 P * ^ ^ ' p - p 

where £(1 - s ) £ = -z. 

VKaoj o£ (1.13): One may d e r i v e 

a.29) i w c * > = (i - S)°E(e + y 1 : c P . 
n = 0 p = 0 ^" 
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VtiOOk oj [1.14) : The generating function of I„,B(x) i s 

^ « ft °° (g)£ , xpexp(pts) 
(1.30) 5 : « - I » - f l t e ) = e x p ( a Z ) £ p , J + 1 ) , • 

n = 0 p = o ^ " V J I p - p 

VK.OOJ oj (7,15) : I t may be proved that 

(1.31) j^unJ?r\x) « e x p f a s ) ^ 3 + ^ " V e x p f r t e ) . 
n = 0 p = o 

I I 

A second generalization of the Carlitz result given by our equation (1.2) 
i s 

(2.D S I T ) E n(a + *j" + i") 
i j . > 0 

(ap + p + a + l ) t n + n
 n (-n)p (* + l ) p ( - t ) p {(ap + p + a + 1 + tp + p)/(ar + r + a+ 1) } 

n\ (ar+r+a+ 2)tn *-f p\ (ar + r + a + 2 + tn)p 

For t = 0, the polynomial reduces to unity and (1.2) presents itself. 

We also have the Abel analogue of (2.1)s which assumes the form 

** + ! / v _ k 

(2.2) E ( r r ) . 2 n 
(a + *£„)*• 

tj > 0 

= (ar + InT'1 y^ (-&)p(-w)p (r)p{ou? + p} 
n !

 P = o p! (OP + in)p 

Now both (2.1) and (2.2) are particular cases of Theorem 2. 

ThdOtizm 2: For a9^9l,t complex numbers, r and n nonnegative integers, 
k 

(2.3) a. W ? \ £ II *?•*<*> =i?C 

and ^ >° 

where 
a 6 fa).n + n " ( - n ) p ( - t ) P ( 3 ) P 

(2.5) * „ • ( t) = nHa)tn L Q p! (a + tn) P ' 

n - P = o p!(a + £n)P 

P/IOO^ 0^ JhdOKftm 2(a): With the aid of Theorem 4a [2, p . 708], 

(2.7) f X " ' ' < * ) ? • - < 1 - a > ° . 
n - 0 ( 1 + * J S ) B 
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where z/(l - z) = -z. Note the misprint in equation (4.3) [2, p. 709], in 
the definition of Cn (x) . The factor (a + 1 + mn - n)sk + ik should read 

(a + rrm - n)8k+lk. 

Hence 

«••> f (»){£»•'•••'<«>}' -," v £ -
fc = 0 V ' (n-l ) (1 + *S) 

(2.9) =t)l/X1'-B,'+"1<*)-
n = 0 

Comparing c o e f f i c i e n t s and s i m p l i f y i n g g ives ( 2 . 3 ) . 

VhjQOh oj TkdOtim 2 ( b ) : Using Theorem 2a [ 2 , p . 7 0 4 ] , 

(2 .10) V w n S » ' a U ) - e 3 c p ( a a ) 

n=o (1 - £ s ) 3 + 1 

where w = s e x p ( - s i l ) . Thus, 

(1 - Zzfr+r 

Proceeding as in part a gives the required (2.4). 

III. SPECIAL CASES 

It is of interest to note that a number of well-known polynomials form 
special cases of Theorem 1. 

1. Putting x - (1 - 2/)/2, s - 1, £ = 0, £' = 1, one may express An' (x) in 
(1.6) as a Jacobi polynomial of the form 

a \ ) T>aL + tntB-l-a-tn-n, . , (t + 1)2/ 6? „ a + tn, g - 1 - a - tn - n , 
\y) "T ~ -jr. ¥„ \ 

where the Jacobi polynomial is defined in [4, p. 170]. 

2. Letting £ = 0 , £f = 0, s = 1, one may express Bn' (x) from (1.7) as 

(3-2) a + t n + n | ^ (&o + — ^ - ^ L n < & o j , 

where the Laguerre polynomial is defined in [4, p. 188], Hence, one may view 
B® (x) as a generalized Laguerre polynomial. 

3. E% (x) may be viewed as a generalized Laguerre polynomial with the de-
gree of the polynomial incorporated in the argument. In the special case for 
x = l/y9 s = 1, £ ' = 1 , 

<3-3> C 8 (*>-;#£ ay-nL'n&'n[y(a + In)} - ly ^-W n L~n
B -'\y(a + In)] -[y-"i;e-"[y(a + Jto)]]l 
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4. Fn ' (x) may be looked upon as a generalization of the generalized Her-
mite polynomial defined by Gould et al. [5, p. 58, eqn. (6.2)], and others. 
See also [2] for properties of this polynomial. The generalized Hermite is 
defined as 

(3.4) g°{x,l) = Hn>s (x,X) = £ ^ f sk) , • 
k = o 

Letting &' = 0 in (1.11), one obtains 

(3.5) F«'\x) = n H a \ in)\?Hn,s(&>u + in) + lx£Hn>s($x,a + in)]. 

Further, putting & = 0, one obtains a single term on the right-hand side. 
See also [3] for bilinear generating functions and other expansions for the 
generalized Hermite polynomial, 

5. For the special case lf = 1, Gn ' (x) may be expressed as a general poly-
nomial of the type 

( l - * ) - p - n ^ . ,.^ (a + £p),n(3)p(-l)p 

i<To v - o ' 
( 3 , 6 ) n\ Z^(~"3~n )^ Z-, (fc - p)!p!(l + a + tp)£n_n(l + @ + n - k)P ' 

6. ffn ' (x) may be considered as a generalization of a polynomial considered 
by Gould et al. [5], defined in equation (3.2), p. 53. For the special case 
I' = 0, 

(3.7) C*(*> - ̂ ^ E ^ ) f e ( ^ E (ft - p)!p!(a + tp + 1)£ -

Further, for I = 0, #„ 0*0 exp(-3^) gives essentially the polynomial of Gould 

The polynomials considered in this paper appear to possess interesting 
common algebraic properties. One of them is that they all arise from repre-
sentations of the same group. We shall have occasion to discuss group-theo-
retical properties of these polynomials elsewhere. 
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The first and second powers of the golden section ratio, a = (1 + /5)/2, 
can be used to uniquely represent the positive integers in terms of nested 
greatest integer functions, relating the compositions of an integer in terms 
of lTs and 2fs with the numbers generated in WythoffTs game. Earlier, Alladi 
and Hoggatt [1] have shown that there are Fn + 1 compositions of a positive 
integer n in terms of lTs and 2Ts, where Fn is the nth Fibonacci number, gi-
ven by F1 = F2 = 1, Fn + 2

 = Fn + i + &n • Tn e numbers generated in Wythoff * s 
game have been discussed recently in [2, 3, 8] and by Silber [4]. 

Suppose we stack greatest integer functions, using a and a2. 
sent the integers in yet another way: 

to repre-

[a] = [a[a]] = [a[a[a]]] = [a[a[a[a]]]] 

[a2] 

[a[a2]] 

[a[a[a2]]] 

[a2[a2]] 

[a[a[a[a2]]]] 

[a2[a[a2]]] 

[a[a2[a2]]] 

Essentially, we start out with the compositions of an integer in terms of lfs 
and 2Ts. We put in a2 wherever there is a 2, and a wherever there is a one, 
then collapse any strings of afs on the right, since 
we write the compositions of 5 and 6: 

COMPOSITIONS OF 5: 

[a] = 1. For example, 

1 + 1 

1 + 1 

1 + 2 

1 + 1 

2 + 1 

1 + 2 

2 + 1 

2 + 2 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

1 

1 

1 

2 

1 

2 

2 

1 

+ 

+ 

+ 

+ 

+ 

1 + 1 

2 

1 

1 

1 

[a[a[a[a[a]]]]] = [a] = 1 

[a[a[a[a2]]]] = 6 

[a[a2[a[a]]]] = [a[a2]] = 

[a[a[a2[a]]]] = [a[a[a2]] 

[a2[a[a[a]]]] = [a2] = 2 

[a[a2[a2]]] = 8 

[a2[a[a2]]] = 7 

[a2[a2[a]]] = [a2[a2]] = 

306 
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COMPOSITIONS OF 6: 

1 + 1 + 1 + 1 + 1 + 1 
1 + 1 + 1 + 1 + 2 

1 + 1 + 1 + 2 + 1 

1 + 1 + 2 + 1 + 1 

1 + 2 + 1 + 1 + 1 

2 + 1 + 1 + 1 + 1 

1 + 1 + 2 + 2 

1 + 2 + 1 + 2 

2 + 1 + 1 + 2 

1 + 2 + 2 + 1 

2 + 1 + 2 + 1 

2 + 2 + 1 + 1 

2 + 2 + 2 

[a] = 1 

[a[a[a[a[a2]]]]] = 9 

[a[a[a[a2]]]] = 6 

[a[a[a2]]] = 4 

[a[a2]] = 3 

[a2] = 2 

[a[a[a2[a2]]]] = 12 

[a[a2[a[a2]]]] = 11 

[a2[a[a[a2]]]] = 10 

[a[a2[a2]]] = 8 

[a2[a[a2]]] = 7 

[a2[a2]] - 5 

[a2[a2[a2]]] = 13 

Notice that the F6 compositions of 5 gave the representations of the 
tegers 1 through 8, and those of 6, the integers 1 through F7 = 13. We 
to systematize; let us arrange the compositions of 5 and 6 so that the 
resentations using a and a are in natural order. 

COMPOSITIONS OF 5: 
1 + 1 + 1 + 1 + 1 
2 + 1 + 1 + 1 
1 + 2 + 1 + 1 
1 + 1 + 2 + 1 
2 + 2 + 1 
1 + 1 + 1 + 2 
2 + 1 + 2 
1 + 2 + 2 

COMPOSITIONS OF 6: 

1 + 1 + 1 + 1 + 1 + 1 
2 + 1 + 1 + 1 + 1 
1 + 2 + 1 + 1 + 1 
1 + 1 + 2 + 1 + 1 
2 + 2 + 1 + 1 
1 + 1 + 1 + 2 + 1 
2 + 1 + 2 + 1 
1 + 2 + 2 + 1 
1 + 1 + 1 + 1 + 2 
2 + 1 + 1 + 2 
1 + 2 + 1 + 2 
1 + 1 + 2 + 2 
2 + 2 + 2 

REPRESENTATION: 
a] = 1 
a2] = 2 
a[a2]] = 3 
a[a[a2]]] = 4 
a2[a2]] = 5 
a[a[a[a2]]]] = 
a2[a[a2]]] = 7 
a[a2[a2]]] = 8 

REPRESENTATION: 

a] = 1 
a2] = 2 
a[a2]] = 3 
a[a[a2]]] = 4 
a2[a2]] = 5 
a[a[a[a2]]]] = 
a2[a[a2]]] = 7 
a[a2[a2]]] = 8 
a[a[a[a[a2]]]]] 
a2[a[a[a2]]]] = 
a[a2[a[a2]]]] = 
a[a[a2[a2]]]] = 12 
a2[a2[a2]]] = 13 

10 
11 
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Notice that the representations of the first eight integers using the 
compositions of 6 agree with the representations using the compositions of 5. 

ThfLQtKim 1: Any positive integer n can be represented uniquely in terms of 
nested greatest integer functions of a and a2, where the exponents match the 
order of lfs and 2fs in a composition in terms of l?s and 2Ts of an integer 
k9 n <_ Fk + 1 , where any afs appearing to the right of the last appearing a 
are truncated. 

VKOofc Arrange all of the Fk + 1 compositions of k so that when a and a2 are 
inserted in the method described, then the results are in natural order. Do 
the same for the Fk + 2 compositions of (k + 1) in terms of lfs and 2Ts. Notice 
that the representations agree with the first Fk+1 from k. Now, for the com-
positions of k, tack on the right side a2, on the far right of the nested 
greatest integer functions, and suppress all the excess right a's. This 
yields, with the new addition, representation for the numbers 

Fk + l + l> Fk + l + 2> •• • » Fk + l + Fk = Fk+2 ' 
Thus, the process may be continued by mathematical induction. The uniqueness 
also follows as it was part of the inductive hypothesis and carries through. 
Theorem 1 is proved more formally as Theorems 5 and 6 in what follows. 

Next, we write two lemmas. 

Lemma 1: [aFn] = Fn+19 n odd, n > 2; 

[aFn] = Fn + 1 - 1, n even, n >_ 2. 

VK.00JI From Hoggatt [5, p. 34], for 3 = (1 - /5)/2, 

<&n = Fn + 1 - 3"; 

[aFn] = [Fn + 1 - Bn]. 

Since |gn| < 1/2, n >_ 2, if n is odd, then 3" < 0, and [Fn + 1 - gn] = Fn + 1 , 
while if n is even, gn > 0, making [Fn + 1 - 3"] = Fn + 1 - 1. 

Lmma 2: [a2Fn] = Fn + 2, n odd, n >_ 2; 

[a2Fn ] = Fn + 2 - 1, n even, n >_ 2. 

V^ooji S ince aFn = Fn + 1 - 3 " , 

a2Fn = aFn + 1 - a 3 " 

= (Fn + 2 - 3 n + 1) ~ a 3 " 
= Fn+2 - 3 n ( a + 3) 

Then, [a2Fn] = [Fn+2 - 3"] i s c a l c u l a t e d as i n Lemma 1. 

Ldmmci 3 : For a l l i n t e g e r s k _> 2 and n >_ k9 

[akFn] = Fn + k i f n i s odd; 

[akFn] = Fn+k - 1 i f n i s even. 

Vtiooji akF = ak(a" - 3") 
/ 5 

F* + « ~ &"Fk-

3n+k e"+* an+k - 3"+* 
/ 5 / 5 / 5 

ĝ Câ  - B*) 
/ 5 
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Now* |3| Fk < 1 if and only if |g| < l/Fk , which occurs whenever n>_ksk>_29 
since 

Fk ak _ 6k ( - i / 3 ) * - gk ( - D * - e 2 ! c ' 

If & is even, k > 2, 3fc > 0, and 

/5 

1 - B2k 
> 1 

1 /5 

** 1 - B2fc 

Similarly, if k is odd, k >_ 3, Bk < 0, and 

— * — > -1 
-1 - 32k 

f = — ^ — • B* < -B* 
*V -1 - g2* 

Thus, |S| Fk
 < ls and Lemma 2 follows. 

Next, observe the form of Fibonacci numbers written with nested greatest 
integer functions of a and a2: 

F2 = 2 = [a] FG = 8 = [a[a2[a2]]] 

F3 = 2 = [a2] F7 = 13 = [a2[a2[a2]]] 

F, = 3 = [a[a2]] F8 = 21 = [a[a2[a2[a2]]]] 

F5 = 5 = [a2[a2]] F9 = 34 = [a2[a2[a2[a2]]]] 

TkdOKdm 2: F2n+1 = [a2[a2[a2[•••]]]], 

and F2n+2 = [a[a2[a2[a2[ ••• ]]]]], 

both containing n nested a2 factors. 

?HXw£i We have illustrated the theorem for n = 1, 2, ..., 9. Assume that 
Theorem 2 holds for all n <• fc. By Lemma 19 

F2k+2 = [aF2k+1] = [a[a2[a2[a2[ ••• ]]]]] 

for k nested a2 factors; by Lemma 2, 

?2k+3 = [a2^2fe+J = [a2[a2[a2[a2[a2[ ... ]]]]]] 

for (k + 1) nested a2 factors. 
Return once again to the listed compositions of 5 and 6 using lfs and 

2Ts, and let us count the numbers of l!s and 2fs used totally, and the number 
of a's and a2fs appearing in the integers represented. We also add the data 
acquired by listing the compositions of 1, 2, 3, and 4, which appear in the 
tables if the l's on the right are truncated carefully. 
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n 
1 
2 
3 
4 
5 
6 

l's 

1 
2 
5 
10 
20 
38 

2's 

0 
1 
2 
5 
10 
20 

afs 

1 
1 
2 
4 
9 
19 

a2fs 

0 
1 
2 
5 
10 
20 

Suppressed afs 

0 - F3 - 2 
1 = F„ - 2 
3 = F5 - 2 
6 = F6 - 2 
11 = F7 - 2 
19 = Fft - 2 

Define Cn as the nth term in the first Fibonacci convolution [6], [7] 
sequence 1, 2, 5, 10, 20, 38, ..., where 

Cn =Y.FiFn-i 
nLn+1 + 2Fn 

and observe where these numbers appear in our table. Note that Ln is the nth 
Lucas number defined by L± = 1, L2 = 3, and Ln+2 = Ln+i + Ln. 

Tk<LOH,2J(n 2: Write the compositions of n using lfs and 2's, and represent all 
integers less than or equal to Fn + 1 in terms of nested greatest integer func-
tions of a and a as in Theorem 1• Then 

(i) Cn lfs appear; 

(ii) Cn_i 2's appear; 

(iii) Cn_1 a2's appear; 

(iv) Fn+2 ~ 2 afs are truncated; 

(v) (Cn - Fn+2 + 2) aTs appear. 

Vsioofi: Let the table just given form our inductive basis, since (i) through 
(v) hold for n• = 1, 2, 3, 4, 5, 6. Let t(n) and u(n) denote the number of 
times 2 and 1 respectively appear in a count of all such compositions of n. 
Then, by the rules of formation, 

t(n) = t(n - 2) + t{n - 1) + Fn_± 

since we will add a 2 on the right to each composition of in - 2), giving 
tin - 2) 2fs already there, and F1

n_2+1 = Fn_1 new 2fs written, and tin - 1) 
2?s from the compositions of in - 1), each of which will have a 1 added onto 
the right. Since [6] 

Cn = Fn + Cn-l + Cn-2 
has the same recursion relation and tin) has the starting values of the table, 
tin) = Cn-i for positive integers n, establishing (ii). 

Similarly for (i), 

uin) = uin - 1) + Fn + uin - 2) 
since lTs are added on the right to the compositions of in - 1), keeping 
uin - 1) l's already appearing and adding Fn_1+1 = Fn new lfs, and all l's in 
in - 2) will appear, since those compositions have a 2 added on the right. 
We can again establish uin) = Cn by induction. 

Obviously, (ii) and (iii) must have the same count. Since the number of 
afs appearing is the difference of the number of l's used and the number of 
afs truncated, we have (v) immediately if we prove (iv). But the number of 
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n 1 2 
an 1 3 
bn 2 5 

ak+k = bk 

an + bn = abn 

<*an + 1 = *n 
a a n + l ~ a a n = 

ban + l - Kn = 

2 

3 

a n = [na] and 

3 4 
4 6 
7 10 

a n d a-L 
Dn 

and bh Dn 
bn = [na2 

5 
8 

13 

+ i " 

+ i " 

] 

6 
9 

15 

Dn 

K 

1 
11 
18 

= 1 

= 2 

8 
12 
20 

9 
14 
23 

10 
16 
26 

suppressed aTs for k is the number suppressed in the preceding set of compo-
sitions of (k - 1), each of which had a 1 added on the right, plus the number 
of new l's on the right, or, 

Fk + l " 2 + Fk = Fk+2 ~ 2> 

so if the formula holds for 1,2, 3, .. . , fe - 1, then it also holds for k9 
and the number of suppressed afs for n is Fn + 2 - 2 by mathematical induction. 

Now, we go on to the numbers an and bn9 where (an9bn) is a safe-pair in 
Wythoff!s game [2, 4, 8]. We list the first few values for an and bn9 and 
some needed properties: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

We first concentrate on the expressions in (6) for an and bn9 using the 
greatest integer function, and compare to Lemmas 1 and 2. We can write Lem-
ma 4 immediately, by letting n = Fk in (6). 

Lojfnma 4: For all positive integers k9 

aFik = F2k + 1 - l a n d aF2k+l = F2k.+ 2» 

bF2k = F2k+2 - l a n d 6 * 2 k + i = F 2 k + 3 -
Next we show that the integer following Fn is always a member of {an}. 

F̂ LOÔ : Part I: n + 1 is even. Let Fn + 1 = Flk = aF from Lemma 4. Note 
well that F2k_1 £ ibn}9 and by (4) 9

2k 

so that 2""1 + 1 "-1 

a ^ - i + i = a ^ - ! + X = ^ * + ! • 
P a r t I I : n + 1 i s odd. Let 2? - = Fn1^^ = Z?p from Lemma 4 . From 

(3) , we have 2k 1 

since a„ .n - aa = 2 . Thus, 

^k + 1 + 1 = **„_, + 1 = % 2 k., + l = «'„+! 

from F0, = av . This concludes Part II and the theorem. 
ZK ' 2 k - 1 

Th^oKzm Ai aF , , + 1 = bv , , , 
^ n + 2 + 1 ^ n + l + 1 

VH.00^1 P a r t I : n i s even. Let ^w + 2
 = F2k = a F and F2k_± = &F by 

Lemma 4, so that (4) yields 
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From 

makii 

t h i s we 
F2k- : 

ge t 
a«F 

F 2 k -

lg use of ( 3 ) . 

P a r t I I : n 

^2k + l 

i + i 

+ i + l 

i 

bik - 1 

F 2 k - 1 

This conc ludes 

i s odd. 

+ 1 + 1 = 

, L e t FYi 

= aa 
F + 1 

h 1 . 

+ 
+ 1 

P a r t 

1 + 2 = 

+ 1 = 

E2k 

I . 
F2k + 1 ' 

n2k * L 

- 1 + 1 

Using 

» 
Theorem 3 and ( 3 ) , 

which concludes Part II and the proof of the theorem. 

Comm&wU» We have seen that 

Fn + 2 + 1 =
 aFn + 1+i 

from Theorem 3, and 

UFn+l +1 + l = bFn +i 

from Theorem 4. Thus, the sequence of consecutive bj's, 

®Fn +1 » "Fn +2 ' bpn+3 9 . . . , ^F n + 1 » 

and consecutive a7-Ts, 

a F „ + 1 +1 » a F n + 1 +2 ' aFn + i +3 ' ' * * 9 a F „ + 2 » 

cover the sequence 

F 4- 1 F •+• ? F + 1 F 

where, if Fn + 1 = F2fc + i» then bF^_x = F2fc + 1 =
 Fn + 3 > and if Fn + 1 = F2^ , then 

aFn + 2
 = aF2k + i = 2̂fe+2 = Fn + 3- The sequences {#n} and {bn} are such that 

their disjoint union covers the positive integers, and there are Fn_1 of the 
i/s and Fn of the £jfs, or collectively, Fn + 1 all together. The interval 
[Fn + 2 + -1> -̂n + 3] contains precisely i?n + i positive integers. We have shown 
that the union of the two sequences are precisely the integers on this inter-
val. We now are ready to prove Theorem 5 by mathematical induction. 

Tk&QJi&m 5: If a is added onto the right of the specified function for the 
compositions of n properly ordered, then we obtain the integers 

Fn + 2 + 1, Fn + 2 + 2 , ..., Fn + 2 + Fn + 1 = Fn + 3. 
VhJOO^ By our previous discussions, Theorem 5 is true for n - 1, 2, ..., 6. 
Assume it is true for n = k - 1 and n = k. Then, let us add a2 on the left 
to each value of the specified function, making the result be the F, succes-
sive bj f s 

®F, j.1 ' ^F, , + 2 ' • • • ' ^ F » 

and let us add a on the left to each value of the specified function, to ob-
tain the Fk + 1 successive â -'s, 

ap , -j , ap 1 9 ) ...,(2r» • 

These numbers together give the interpretation of compositions of (k+l) 
.3 + 2, ..., pk with a2 on the right, so we. must get Fk + 3 + 1, Fk + 3 + 2, ..., Fk+k* There 

are Fk consecutive bj's and Fk+1 consecutive (Zj's which fit together pre-
cisely to cover the above interval by the discussion preceding Theorem 5, 
giving us a proof by mathematical induction. 
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Tk2.OK.2m 61 The Fn+2 compositions of (n + 1) using lfs and 2fs when put into 
the nested greatest integer function with 1 and 2 the exponents on a can be 
arranged so that the results are the integers 1, 2, . .., Fn + 2 i-n sequence. 

VtlOO^: We have illustrated Theorem 6 for n = 1, 2, . .., 5. Assume that the 
Fn compositions for (n - 1) have been so arranged in the nested greatest in-
teger function representations. By Theorem 5, the results of putting 2 on 
the right of the compositions, or an a2 on the right of each representation, 
yields the numbers Fn + 2 + 1, Fn+2 + 2, ..., JPn+3. The adding of a one to the 
right of compositions of (n + 1) yields a composition of in + 2) but it does 
not change the results of the nested greatest integer representations. Thus 
the list now goes for compositions of (n + 2), the first Fn+2 coming from the 
one added on the right of those for (n + 1) and the Fn+1 more coming from the 
two added on the right of those for n. Thus, by mathematical induction, we 
complete the proof of the theorem for all n _> 1. 

The above proof is constructive, as it yields the proper listing of the 
composition for (n + 2) if we have them for n and for (n + 1). 

Notice the pattern of our representations if we simply record them in a 
different way: 

1 = [a] = a± 

„2 1 2 = [az] = b± 

3 = [a[a2]] = ab 

4 = [a[a[a2]]] = aa^ 

5 = [a2[a2]] = bbl 

6 = [a[a[a[a2]]]] = aa^ 

7 = [a2[a[a2]]] = batl 

8 = [a[a2[a2]]] = a ^ 

In other words, Theorems 3 through 6 and Lemma 4 will allow us to write 
a representation of an integer such that each a in its nested greatest inte-
ger function becomes a subscripted a, and each a2 a subscripted b9 in a con-
tinued subscript form. 

Next, we present a simple scheme for writing the representations of the 
integers in terms of nested greatest integer functions of a and a , as in 
Theorems 1 and 6. We use the difference of the subscripts of Fibonacci num-
bers to obtain the exponents 1 and 2, or the compositions of n in terms of 
l?s and 2!s, by using Fn+1 in the rightmost column. We illustrate for n - 6, 
using F7. Notice that every other column in the table is the subscript dif-
ference of the two adjacent Fibonacci numbers, and compare with the composi-
tions of 6 and the representations of the integers 1, 2, ..., 13 in natural 
order given just before Theorem 1. We use the Fibonacci numbers as place 
holders. One first writes the column of 13 F7fs, which is broken into 8 F6

?s 
and 5 F5

?s. The 8 F6
fs are broken into 5 F5

fs and 3 F^'s, and the 5 F5
fs in-

to 3 Fi/s and 2 F3
fs. The pattern continues in each column, until each F2 is 

broken into F1 and FQ, so ending with F1. In each new column, 1 always re-
places Fn Fn

Ts with Fn_1 Fn_1
1s and Fn_2 Fn_2's. Notice that the next level, 

representing all integers through FQ =21, would be formed by writing 21 F8
fs 

in the right column, and the present array as the top 13 = F7 rows, and the 
array ending in 8 F6

fs now in the top 8 = F6 rows would appear in the bottom 
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eight rows. Notice further that, just as in the proofs of Theorems 1 and 6, 
this scheme puts a 1 on the right of all compositions of (n - 1) and a 2 on 
the right of all compositions of (n - 2). 

SCHEME TO FOKM ARRAY OF COMPOSITIONS OF INTEGERS n < F 7 

n 

n 

n 

n 

n 

n 

n 

n 

n 

n 

n 

n 

n 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Within the array just given, we have used 8 F6's, 5F5's, 6 Fk's, 6F3
fs, 

5 F2
fs, and 8 F^s, where 8 + 5 + 6 + 6 + 5 + 8 = 38 = C6, where again Cn is 

the nth element in the Fibonacci convolution sequence. These coefficients 
appear in the array: 

row sum 

1 
2 
5 
10 
20 
38 

1*V, 2Fn 3F„ 5Fn SFn Cn 

The rows give the number of Fn
?s, Fn_1

}s9 Fn_2
fs, ..., used in the special 

array to write the compositions of n in natural order. Properties of the ar-
ray itself will be considered later. 

Now we turn to the Lucas numbers. We observe 

3 = [a[a2]] 
L3 = 4 = [a[a[az]]] 
L„ - 7 = [a2[a[a2]]] 
L = 11 = [a[a2[a[a2]]]] 

18 [a2[a2[a[a2]]]] 
x 2 [a [a 2 ] 

„2 r„,2 r„,2 r „ , r „ 2 i 
L7 = 29 = [ a [ a z [ ^ [ a [ a 1 ] ] ] ] 

47 = [az [oT [ a b a t o r ] ] ] ] ] 
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Thus, it appears that [aLn] = Ln + 1 if n is odd, and that [a2Ln] = Ln + 2 if n 
is even! Also, we see the form of Lucas numbers, and can compare, them with 
the representation of Fibonacci numbers. We first need a lemma. 

Lmma 5: -1 < 3n/5~ < 1 for n >. 2. 

PfWo£: B2 = (3 - /5)/2, and g2/5 = (3/5" - 5)/2 < .85 < 1. Thus, 

0 < 32"/5 < 32/5 < 1 for n >_ 1. 

I f 0 < B2/5" < 1 , then 0 > g 3 ^ > - 1 , so t h a t 

- 1 < g 2 n + 1 / 5 < 0 fo r n > 1 , 

establishing Lemma 5. 

Ldmmci 6: [aLn] = Ln + 1 for n even, if n > 2; 

[oLn] = Ln + 1 - 1 for n odd, if n >_ 3. 

VhX)0_h} Apply Lemma 5 to the expansion of aLn: 

aLn = a(an + 3M) = an + 1 + 3n + 1 + aBn - Bn + 1 

= ^n + i + 6n(a - B) = Ln + 1 + 3V5. 

Lmma 7** [a2Ln] = £n + 2 if w is even and n >. 2; 

[a2Ln] = £n + 2 - 15 if K is odd and n >_ 1. 
PAxw£_: We apply Lemma 5 to 

a2Ln = a2(a" + Sn) = a"+2 + gn+2 + 6"(a2 - 32) 

= L„+2 + gnA. 
Tk<l0K.2m 1* The Lucas numbers Ln are representable uniquely in terms of nes-
ted greatest integer functions of a and a2 in the forms 

L2n+1 = [a[a2[a2[a2 ... [a[a2]] ... ]]]], 

L2n = [a2[a2[a2... [a[a2]] ... ]]], 

where the number of a2 consecutively is (n - 1), n >. 1. 

P/LOÔ : Theorem 7 has already been illustrated for n = l , 2 , ...,8. A proof 
by mathematical induction follows easily from Lemmas 6 and 7. 

Comparing Theorems 2 and 7, we notice that the representations of Fk and 
Lk + 1 are very similar, with the representation of Lk + 1 duplicating that of Fk 
with [a[a2]] added on the far right. We write 

2 [a2 

Z?n+i= [a[a2[a2 
TkzoKQjn St Fzn + i" tata fa 

2n+ 3" 

2 

2 

F2n+1= [a2[a2[a 

[a2] ...]]] and 

[a2[a[a2]]] ... ]]]; 

, [a2] ...]]] and 

• [a2[a[a2]]] ... ]]], 

where there are n consecutive a2rs. 
Theorem 8, restated, shows that if a 1 and a 2 is added on the right to 

the composition of (k - 1) in terms of l?s and 2fs that gave rise to Fk , one 
obtains Lk+1. If we add a 1 and a 2 on the right of the compositions of n, 
we observe: 
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1: 

2: 

3: 

4: 

1 

_ -_ 

2 

1 

1 

1 

~T~ 
2 

1 

T 
l 

2 

l 

2 

1 

"T" 
2 

~1~ 

1 

2 

"X" 
1 

1 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

[a[a[a2]]] = 4 = ^ + 1 = , 

[a[a[a[a2]]]] = 6 = F5 + 1 

[a2[a[a2]]] = 7 = F5 + 2 

[a[a[a[a[a2]]]]] = 9 = Fe 

[a2[a[a[a2]]]] = 10 = Fs 

[a[a2[a[a2]]]] = 11 = F6 

[a[a[a[a[a[a2]]]]]] = 14 = 

[a2[a[a[a[a2]]]]] = 15 = 

[a[a2[a[a[a2]]]]] = 16 = 

[a[a[a2[a[a2]]]]] = 17 = 

[a2[a2[a[a2]]]] = 18 = 

^3 

= ^ 

+ 1 

+ 2 

+ 3 = L5 

F7 + 1 

F7 + 2 

F7 + 3 

F7 + 4 

F7 + 5 = 

Tk&Qti&m 9: If to the compositions of ft in terms of lTs and 2?s, written in 
the order producing representations of 1, 2, Fn + 1 in terms of nested 
greatest integer functions of a and a in natural order, we add a 1 and a 2 
on the right, then the resulting nested greatest integer functions of a and 
a2 have values 

Fn+3 + 1, Fn+3 + 2, F + F £-

Now, notice that, since the representation giving rise to a Lucas num-
ber in the nested greatest integer representation ends with a 1 and a 2, the 
next representation, taken in natural order, will end in a 2 and a 2. Con-
sider the compositions of ft, where we add two 2Ts on the right: 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

[a[a2[a2]]] = 8 = 

[a[a[a2[a2]]]] = 

[a2[a2[a2]]] = 

[a[a[a[a2[a2]]]]] 

[a2[a[a2[a2]]]] 

[a[a2[a2[a2]]]] 

[a[a[a[a[a2[a2]]] 

[a2[a[a[a2[a2]] 

[a[a2[a[a2[a2]] 

[a[a[a2[a2[a2]] 

[a2[a2[a2[a2] 

Lh + 1 

12 = L, + 1 

13 L5 + 2 

19 = L6 + 1 

20 

21 

L6 + 2 

L6 + 3 = F8 

L7 + 1 30 

31 

32 

33 

34 = L7 + 5 = FQ 

£7 + 2 

L7 + 3 

L7 + 4 

T/ieo/iem 70: If to the compositions of ft in terms of lfs and 2Ts, written in 
the order that produces representations of 1, 2, ..., Fn+1 in natural order 
in terms of nested greatest integer functions of a and a2, we add two 2fs on 
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the right, then the resulting nested greatest integer functions of a and a2 

have the consecutive values 

^n + 3 + Is -̂ rc + 3 + 2, . . . , Ln + 3 + Fn + 1 = Fn+5. 

We are now in a position to count in two different ways all the afs and 
a2 f s appearing in the display of all integers from 1 through Ln simultaneous-
ly. Of the Fn + 1 compositions of n, there are Fn which end in a 1_, and Fn_± 
which end in a 2_. Those ending in a 1_ are the compositions of (n - 1) with 
our _1_ added, while those ending in a 2_ are the compositions of in - 2) with 
our 2_ added. Now, if we add 2_ to each of these Fn + 1 compositions, by Theorem 
5, we get the numbers 

Fn + z +• 1» Fn+1 + 2, ..., Fn + 2 + Fn + 1 = Fn+ 3. 

Of these, there were Fn ending in a _1, which now end in a 1-2 and cover the 
numbers 

and those that end in a 2-2 cover the numbers 

•̂ n + i + 1» £*n + i + 2, ..., Ln + i + Fn + 1 = Fn+3 

when used in the nested greatest integer functions of a and a2 in natural or-
der. We can now count the number of ass and a2fs used to display all the 
representations of the integers from 1 to Ln+1. We count all of those up to 
and including Fn+3 by Theorem 2, and subtract the total a and a2 content of 
the compositions of (n - 2), which is Cn_2 afs and Cn_3 a2?s, and subtract 
2Fn_1 a2's, or, we can count all of those up to and including Fn + 2, and add 
on the Fn a!s and Fn a2ls, and add the number of lfs in the compositions of 
(n - 1), which all become a!s in counting from Fn+2 4- 1 through Fn + 2 + Fn = 
Ln+1. The first method gives us, for the number of a?s, 

(°n + 2 ~ Fn+h + 2 ) " Cn-2-> 
and for the number of a2's, 

^n + 1 ~ ^n + 3 ~ 2Fn _ x . 

The second method gives the number of afs as 

(^n+l " ^n+3 + 2 ) + Cn-2 + Fn > 

which simplifies to 

Cn + 1 + Cn _ x - 2Fn +1 + 2 , 

and the number of a2fs as 

Cn + Cn-2 + Fn> 
finishing a proof of Theorem 11. 

Tho.OH.2m 11«' Write the compositions of (n + 2) using l?s and 2?s, and repre-
sent all integers less than or equal to Ln+i in terms of nested greatest in-
teger functions of a and a2 in natural order as in Theorem 1. Then, 

(i) (C„ + 2 ~ Cn_z - Fn+h + 2) = (Cn + l + C„_x - 2Fn + 1 + 2) 

i s t h e n u m b e r of a ? s a p p e a r i n g , and 

( i i ) (Cn + 1 + Cn.2+ Fn) = (Cn + 1 - Cn_3 - 2^. ,) 

is the number of a2fs appearing. 
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A PRIMER ON STERN'S DIATOMIC SEQUENCE 

CHRISTINE GIULI 
University of Santa Clara, Santa Clara, CA 95053 

and 
ROBERT GIULI 

University of California, Santa Cruz, CA 96050 

PART III: ADDITIONAL RESULTS 

An examination of the sequence yields corollaries to some of the previ-
ously known results. Being fundamentally Fibonacci minded, and at the onset 
not aware of the works of Stern, Eisenstein, Lehmer and Lind, we noticed the 
following results not already mentioned—some may even seem trivial. 

(1) s(n,l) = n 
s ( n , 2 ) = n - l 
s(n,4) = n - 2 

s(n92m) = n - m 

(2) s(n9a2m) = s(n - m9a) 

(3) Another statement of symmetry is a(n,2n" - a) = s(n92 + a) 

(4) sinX'1) = 1 
s(n,2M-2) = 2 

s(n92n"k) = k 
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(5) sin + 

:(N, 

1, 

(-D" 

(-1)" F + nF 

(6) 8(n, 

(7) 

2n~2 + ( - p * - 1 

Fk_± + (N - k + l)Fr 

s(n,2k) + s(n,2k+1) 

= Ln_1 when Ln are Lucas numbers 

s(n,3 * 2fe-1) 

(8) 

(9) 

s(n9K • 

s(n,3 • 

s(n,5 • 

s(n,7 • 

s(n,9 • 

s(n,ll • 

s(n, 13 • 

s(n,15 • 

etc. 

where 777 

2fc-i 

«m - 1 

2m~1 

2 

2 

2 

2 

2 

h 

1 

m-l 

m- 1 

m-l 

s(n,Z • 2k) + 1 

= 2(n 

= 3(n 

= 3(n 

= 4(n 

= 5(n 

= 5(n 

= 4(n 

m) + 1, n > 0 

m) 

ro) 

m) 

m) 

m) 

m) 

1, 

25 

55 

7, 

8, 

7, 

n > 1 
n > 1 

n > 2 

n > 2 

n > 2 

n > 2 

1 2 3 

(10) The table on page 320 is the sequence of combinatorial coefficients 
mod 2. Hoggatt informed us that he suspected the sums of the ris-
ing diagonals were Stern numbers—he was right. 

The formal statement of the problem is that 

]£ V i J mod 2 = S(k + 1,J - 2k) 

yk+l where k = [log2j] and 2K £ j <_ 2' 
The proof is by induction relying essentially on the following theorem. 

Tkz.0H.Qjm: Given the binomial coefficient mod 2, then 

(H •- {2\t") * U2i1) - « 
the right-hand side (after some reduction) may be rewritten as 

(2n)(2n - 2) ... (2n - 2k + 2) (2n - 1)(2n - 3) ... (2n - 2fe + 1) 
(2k)(2k - 2) ... 4 • 2 (2fc - 1) ... 5 • 3 • 1 

The right-hand factor is E 1 mod 2; therefore, this is congruent to 

2k • n(n - 1) ... (n - k + 1) 

fc(fc - 1) ... 2 
which is congruent to 
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STERN NUMBERS VERSUS SUMS OF RISING DIAGONALS OF BINOMIAL NUMBERS MOD 2 

Column 

Row 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 

1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

2 

1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 

3 

1 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 

4 

1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 

5 

1 
0 
1 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 

6 

1 
1 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 

7 

1 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 

8 

1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 

9 

1 
0 
1 
0 
1 
0 
1 
0 
0 
0 

10 

1 
1 
0 
0 
1 
1 
0 
0 
0 

11 

1 
0 
0 
0 
1 
0 
0 
0 

12 

1 
1 
1 
1 
0 
0 
0 

13 

1 
0 
1 
0 
0 
0 

14 

1 
1 
0 
0 
0 

15 

1 
0 
0 
0 

16 

1 
1 
1 

17 18 

1 
0 1 

1 
1 
2 
1 
3 
2 
3 
1 
4 
3 
5 
2 
5 
3 
4 
1 
5 
4 
7 

= S[190] 
= £[2,0] 
= ^[2,1] 
= £[3,0] 
= £[3,1] 
= £[3,2] 
= £[3,3] 
= £[4,0] 
= £[4,1] 
= £[4,2] 
= £[4,3] 
= £[4,4] 
= £[4,5] 
= £[4,6] 
= £[4,7] 
= £[5,0] 
= £[5,1] 
= £[5,2] 
= £[5,3] 

Many thanks go to Dudley [1] and to Hoggatt for sponsoring the authors 
to write this series of articles. At this writing, the authors still do not 
know the general form of 

s[ny(2r + l)2m) 

and suggest that some ambitious reader show the relationship to the Fibonacci 
numbers. 
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1. INTRODUCTION 

In [1], the writer considered the number of compositions 

(1.1) n = a1 + a2 + ••• + ak, 

where the a^ are either nonnegative or strictly positive and in addition 

(1.2) a* * ai+1 {i = 1, 2, ..., k - 1). 

In the present paper, we consider the number of compositions (1.1) in non-
negative a,j that satisfy 

(1.3) ai £ a^+1 (mod m) (i = 1, 2, . .., k - 1), 

where m is a fixed positive integer. 
For n _> 0, k >_ 1, let fm(n,k) denote the number of solutions of (1.1) 

and (1.3) and let 

(1.4) fmM =j£fmM) 
k = l 

denote the corresponding enumerant when the number of parts in (1.1) is un-
restricted. Also, for 0 j£ j < 777, let fm .(n,k) denote the number of solutions 
of (1.1) and (1.3) with ax = j (mod 777). 

For 777 = 2 explicit results are obtained, in particular, 

(1.5) f2,i(n,k) = f + s " X) W = 0, 1), 
where 

(1.6) 8 = \(n- \{k + i) 

and [x] is the greatest integer <_ x. 
For arbitrary m >, 1, we show in particular that 

(1.7, | ; / , < » , ^ v = | S ( • • r ^ > 
where 

and 

n, k = 0 
m-1 

pm u) = n (i + ^ ) 

«m00 = Pm(s) - ^ f ( s ) . 
For additional results, see Section 4 below. 

SECTION 2 

In order to evaluate fm(n,k) 9 we define the following functions. Let 
fm-(n,k), where n >_ 0, k >_1, 0 £ j < 777, denote the number of solutions in 
nonnegative integers of 

(2.1) n = a-L + a2 + ••• + a^, 

321 
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where 

(2.2) at t ai+1 (mod m) {i = 1, 2, ..., k - 1) 

and 

(2.3) a± = j (mod m). 

Also let fm . (n ,k ,a ) denote the number of solutions of (2.1), (2,2), (2.3), 
with ax = a. Thus fm-(n,k9a) = 0 if a ± j (mod w). 

It is convenient to extend the above definitions to include the case 
k = 0. We put 

(2.4) fm(«,0) = 6n0, 

where 6̂ - is the Kronecker delta: 

( i a = J) 

We also define 

(2.5) fm,i(-n,0) = 6/0«n0 

and 

that is, fmtj(n90) = 0 unless n=j=0 and fm - (n909a) = 0 unless n = j = a = 0 . 
It follows from the definitions that 

m-l 

(2.7) /»(«-W=E4,iW) 
m - l n 

= E E 4 i ( n ' w («>o^>o). 
j = 0 a = 0 

Moreover, we have the recurrence 

m- 1 n - a 

/„.,<".*»«> = E E/«.<<« - « ' f e - ^ 
i = 0 Z? = 0 
l*i [k > 0 , a = j (mod m) ] , 

which reduces to 
m - 1 

(2 .8 ) f (n,k,a) = £ / m > i (n - a,k - 1) [fc > 0 , a = j (mod m)]. 
i = o 
i * j 

Corresponding to the various enumerants we define a number of generating 
functions: 

*•*,*(«»!/> = E / . . ^ . ^ v 

n,k = Q 

Fm^^.y.a) = £ 4>(/ (n,k,a)xnyk. 
rc,fc = 0 
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SECTION 3 

We f i r s t d i s c u s s t h e case 777 = 2. The r e c u r r e n c e (2 .8 ) r educes to 

( fi,o(ri,k,2a) = f2il(n - 2a,k - 1) (k > 1 ) , 

( 3 - 1 ) < / 0 ( n , l , 2 a ) = 6 n > 2 a 

( / 2 > 1 (n9k,2a + 1) = f2j0 (n - 2a - l,k - 1) » > 1 ) . 
Hence, 

( F2iQ (x9y92a) = 6a, 0 + * 2 a 17 + * 2 a ^ 2 > x (*,?/) 

( F 2 j j Or,z/,2a + 1) = * 2 a + 12/F2,o Or,?/). 
Summing over a , we ge t 

F 2 j 0 (x9y) = 1 + ^ + 2 F 2 x (x,z/) 
1 - x2 1 - x2 

xy 
F2,1 te>2/) = F 2 ,0 ^»2/) • 

1 - x 2 

1 + _ ^ _ 2 L _ 1 + _ 1 L 
It follows that 

(3 .2 ) F2)0(x,y) = — — , F 2 s l 0 r , z / ) = ^—^ —— 
3 _ ^ 1 _ xy 

( l - * 2 ) 2 ( l - * 2 ) 2 

so t h a t 

(3 .3 ) F2(x,y) = F 2 j 0 (a;,2/) + F 2 > 1 (a;,2/) 
1 + — 2 — 1 + - ^ -

1 - * 2 / \ 1 - x2 

1 s i ! 
(1 - x2)2 

From t h e f i r s t of ( 3 . 2 ) , we ge t 

\ 1- xz)^o(l - x2)2r 

-t'Vti2"*;-1)'*' 
V=0 8=0 X ' 

+ E - v r + 1 E ( 2 p
s

+ s W s 
r = 0 8 - 0 * ' 

(3.4) - 1 (2r+;- V / r + E (2 r; 8 ) * v + i . 
n = 0 V ' n = 0 X ' 

Since r + l8-n r+2s-n 

i t fo l lows from (3 .4 ) t h a t 
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(3.5) f 2 t 0 ( n , k ) = (fc + J ' X ) , 
where ( 

2\ ~ 2~^)) ^ e v e n) 

that is, 

(3.6) s = ± (n- |±(&) 

Similarly, 

|(n - |(fc - 1)) (fc odd), 

+ J^ + i i / 2 r + 2 £ ; ( 2 r + s + x)x2s 

r= 0 s = 0 ^ / 

(3.7) - £ • . ( 2 p
8

+ e ) * y i
+ £ ( 2 r +

s
s + 1),v-2. 

r + 2 s + l = n p + 2 s + l = rc Since 

F2,i <*>*/> = £ fZtl(n9k)x"y*9 
n,k = l 

it follows from (3.7) that 

where 
(3.8) f2tl(n,k) = ( * + * " X ) , 

| / n - y(fc + 1)] (k odd) 

(3.9) e = ifn - [j(fe + 1)1 V 
that is 

Hence, we can combine ,(3.5), (3.6), (3.8), (3.9) in the formula 

(3.10) f2,i(.n,k) = (fe + J " ̂  (i-0, 1), 
where 

(3.11) fl = |(n - [j(fc + i)Jj. 

For z/ = 1, (3.4) reduces to 

n = 0 2s <_n 
so that 

(3.i2) f2>0M = E { ( 2 n " 3 s _ 1 ) + ( 2 n : 3 s ) } -
2s £ n 
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Similarly, (3.7) yields 

*„<..«-2> E {(*: ^+{* * r *•)} • 
n = l r+2s+l = n 

which implies 

(3.i3) / 2 i l ( » ) - E {{2n ~ T -2) + (2n ~ T -')} • 
2s <_n- 1 

We can combine (3.12) and (3.13) in the single formula 

(3-14) f2,i(n)= Z { ( 2 n " 3 V i _ 1 ) + (2W"aS_i)} «-° . D-
2s <_ n - i 

It follows from (3.14) that 

(3.i5) f2M - 2 g J ( 2 n ; 3 s ) + 2(2n - Is -x) + (2n - Is - 2 ) } . 

SECTION k 
For arbitrary m _>. 1, we have, by (2.8), 

fm (n,k,a) = ^2 fm,i (n " a>k " ^ [k > 0, a = j (mod m) ] 
i = 0 

together with z*3 

/ m ? 0 ( n , l , a ) = 6nia [a = 0 (mod m) ] 

/« n (tt,0,a) = 6 n6 n . *> m , 0 v ' ' ' n o a 0 

I t follows that 
m-l 

FmfQ(x,y,a) = 6a>0 + *az/ + * a 2 / X X , ; ^ ' ^ [ a E ° ( m o d m)] 

i = l 

Fm,3(x>y>a>> = xay^2Fm,i (x>y) [i <, j < m; a = d (mod ^ ) ] . 
i = 0 

Summing over a we get 
m - l 

Fm>0fe,z/) = 1 + ^ + y— £ F W ^ ( * , 2 / ) 
1 - ar* 1 - xw i - i 

(4.1) 
j m - 1 

^ (̂*>2/> = * ^ X X , ; ( ^ } (1 - «7 < * > • 
1 - Xm i - 0 

S i n c e * *J" 

w - l 

Z X , *(*»#> = Fm^X^ ™ Fm,j(x>y)> 
i = 0 
i ¥ J 
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(4 .1 ) becomes 

(4.2) 
1 - x' 

l i + —^—\K. o (*.2/> = 1 + —^—_ + — V — Fm (a,y) 
1 - Xm 1 - X" 

(l + c J y W . (x,y) = a J y Fm (ar.j/) . (1 
\ 1 - xa/ 1 - xm 

<0 < m). 

This ±n turn gives 

Fm. 0 <*>2/> " 1 + 1~*u Fm (*,2/> 
1 + 

1 - xm 

Fm,j(x>yy 

xjy 
1 - x" 

1 + _E1^_ 
•F W ' ( J J , 2 / ) ( 1 £ J < 7??). 

1 - xm 

Hence, by adding t o g e t h e r t h e s e e q u a t i o n s , we ge t 

(4.3) 
j - o 

1 - xr 

1 + 
x3y 

1 - xn 

>Fm(x,y) = 1. 

For brevity, put z = y I (1 - xm), so that (4.3) reduces to 

i - i 
(4.4) x"z 

j-0 1 + X(/S 
•Fm(x9y) = 1. 

Put 

(4.5) Pm(3) = Pm(s,ar) = 0 (1 + ̂ J"̂ )< 
j-o 

I t i s well-known t h a t 

j = o L J 

2 3U-DZ3 (4 .6 ) 

where 

(1 - a?w)(l - a?""1) ... (1 - xm'J+1) 

(1 - x)(l - x2) ... (1 - xJ") 

Moreover, it follows from (4.5) that 
8P»<a> y ^ 

[ ? ] • 

Thus (4.4) becomes 
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and therefore 

(A. 7) ^ ( ^ ) = ^ y ( - ^ 
where 

(4 .8 ) C B 0 0 = P B 0 0 - 3Pm'(3) = £ (1 - j ) | " ? l a : ^ " 

1 - x2) 

V. 
3 '• 

For example, fo r m - 2 , (4 .7 ) g ives 

(1 + a ) ( l + ara) (4 .9 ) F2(ar,2/) = 
1 - xz2 

w h i l e , for m = 3 , we ge t 

(4 .10) F3(x,y) = ( ! + « ) ( ! + « « ) ( ! + » » ) ( s . _ 1 _ \ 
1 - (x + x 2 + x 3 ) s 2 - 2ir 3s3 \ 1 - x3 / 

SECTION 5 

A few words may be added about the limiting case m = °°. We take \x\ < 1 
so that xm -* 0 and 

2/ 
1 - icm 

Thus (4 .3 ) becomes 

(5.D K-Z-^-Wi+E f.<»,*>*v} -i. 
I j = 0 1 + XJZ/ 1 I n,fc«l 

On the other hand, the condition 
a-£ £ ai + i (mod w ) (£ = 1, 2, ..., k - 1) 

becomes 

(5.2) at f ai + 1 (i = 1, 2, ..., fc - 1). 
In the notation of [1], the number of solutions in nonnegative integers of 
n = ax + ••• + afe and (5.2) is denoted by o(n,k) and it is proved that 

(5.3) 

Clearly, 

(5.4) £(«,&) = c(n9k). 
To verify that (5.1) and (5.3) are equivalent, we take 

1 - E *Jy. = i - E *jVE<-i>8*aV = i + E E (-uk*dkyk 

j=o 1 + xJzy j=o e=o j=o fe = i 

-x + £ (-1}* T^T • 
fe«l 1 - #* 
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CHEBYSHEV AND FERMAT POLYNOMIALS FOR DIAGONAL FUNCTIONS 

A . F. HORADAM 
University of New England, Armidale, N.S.W., Australia 

INTRODUCTION 

Jaiswal [3] and the author [1] examined rising diagonal functions of 
Chebyshev polynomials of the second and first kinds, respectively. Also, in 
[2], the author investigated rising and descending functions of a wide class 
of sequences satisfying certain criteria. Excluded from consideration in [2] 
were the Chebyshev and Fermat polynomials that did not satisfy the restrict-
ing criteria. 

The object of this paper is to complete the above articles by studying 
descending diagonal functions for the Chebyshev polynomials in Part I, and 
both rising and descending diagonal functions for the Fermat polynomials in 
Part II. 

Chebyshev polynomials Tn (x) of the second kind are defined by 

(1) Tn+2(x) = 2xTn + 1(x) - Tn(x) TQ(x) = 2, T^x) = 2x 
while Chebyshev polynomials [/„ (x) of the first kind are defined by 

(2) Un + 2(x) = 2xUn + 1(x) - Un{x) UQ(x) = 1 , Ux{x) 2x 

(n > 0), 

(n >. 0). 

Often we write x = cos 0 to obtain trigonometrical sequences. 

PART I 

DESCENDING DIAGONAL FUNCTIONS FOR Tn{x) 

From (1), we obtain 

T0(x) = ^ 

Tx(x) 

(3) 
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Descending diagonal functions of x9ai(x) (i = 1, 2, 3, . . . ) s for Tn(x) 
are, from (3) [taking a0(x) = 0], 

(4) 

aY (x) 

az (x) 

a 3 (x) 

ah(x) 

a5(x) 

a 6 (x) 

a7 (x) 

= 
= 
= 
= 
= 
= 
= 

2 
2a: - 2 

4a:2 - 6x + 2 

8x3 - 16a:2 + 10a: - 2 

16a:4 - 40a:3 + 36a:2 - 14a: + 2 

32x5 - 96a:4 + 112a:3 - 64a:2 + 18a: - 2 

64a:6 - 224a:5 + 320a:4 - 240a:3 + 100a;2 22a: + 2 

These yield 

(5) an + 1(x) = (2a: - l)an(x) = (2a: - 2) (2a: - if"3 

DESCENDING DIAGONAL FUNCTIONS FOR Un{x) 

From (2), we obtain 

(n >_ 1) , 

(6) 

Descending d i agona l f u n c t i o n s of x9b^(x) (i = 1 , 2 , 3 , 
a r e , from (6) [ t a k i n g b0(x) = 0 ] , 

bl{x) = 1 

. ) ' , f o r Un(x) 

(7) 

£ ? (a:) = 2a: 

b3(x) 
bk(x) 

kxl 

8a:3 

4a: + 1 = (2a: - l ) 2 

12a:2 + 6x - 1 = (2a: - 1 ) ; 

Z?5Gc) = 16a:4 - 32a:3 + 24a:2 - 8a: + 1 = (2a: - l ) 4 

b6(x) = 32a:5 - 80a:4 + 80a:3 - 40a:2 + 10a: - 1 = (2a: - 1 ) 5 

{ b7(x) = 64a:6 -192a:5 + 240a:4 -160a:3 +60a:2 -12a: + 1 = ( 2 a : - 1 ) ( 
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These yield 

(8) *>„ + !<*> = (2x - DM*> = <2* - D"-
PROPERTIES OF a^x) , bt (x) 

Notice that 

(9) an(x) = bn(x) - bn_±(x) (n >. 2) 

and 
^n (x) &n (a?) 

(10) ^T^y - W ^ T • ( 2* - 1 } ( K > 2 ) 

Write 

(11) 6 = b(x,t) = [1 ~ (2ar - l)t]'1 = Y,bn(x)tn-1; 

oo 

(12) a E aGc,£) = (2* - 2) [1 - (2a - l)t]"1 = ^an(x)tn'z. 
n = 2 

Calculations yield 

(13) 2 * H - < 2 * - l > 1 | - 0 ; 
(14) 2 t | § - - (2a; - 1)-—- + 2(2x - 1)2? = 0. 

at ax 
Also 

(15) (2x - l ) i n ' t e ) - 2(n - D £ n t e ) = 0 , 
(16) (2x - l)a^ + 2(x) - 2(w + l ) a n + 2"(a?) - 2 (2* - ±)bn{x) = 0 , 

where the prime (dash) represents the first derivative w.r.t. x. 
Results (9), (10), and (13)-(16) should be compared with corresponding 

results in [2] for the class of sequences studied there. 

PART I I 

RISING AND DESCENDING DIAGONAL FUNCTIONS FOR FERMAT POLYNOMIALS 

The First Fermat Polynomials (f>M(#); The Second Fermat Polynomials dn(x) 

The sequence {()>„} = {0, 1, 3, 7, 15, ...} for which 

(17') *n + 2 = 3*n + i - 2(|>n cf)0 = 0 , cf), = 1 (n >. 0 ) 

is generalized to the first Fermat polynomial sequence {$n(x)} for which 

(17) ^n + 2 ^ = x *n + i(*) ~ 2(})n(x) c()0(a) = 0, cj^Or) = 1 (n ̂  0 ) . 

Similarly, the sequence {8n} = {2, 3, 5, 9, •..-} for which 

(18') 6n+2 = 3 6 n + 1 - 29n 60 = 2, 6X = 3 (n > 0) 

is generalized to the second Fermat polynomial sequence {Qn(x)} for which 

(18) e n + 2 ^ ) = *en + l(*) - 29n(*) 6 0 (») = 2, 0 x (x) = X (n >. 0) . 

Terms of these sequences are as follows: 
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(19) 

o W = 
xto) = 
2to) = 
3to) = 
,to) = 
5(x) = 

6 (a?) = 

7fe) = 
8to) =-
9 to) = 

0 

3£ 

* 8 

^ > < 
^ > a < r ^ 
- ^ a ? ^ + ^ > < ^ 

^B^C+^2^\ 
^ 0 < V > 4 < 
- 12#5 + > 0 ^ 

- 14a:6 + 60xk 

(20) 

and 

RISING AND DESCENDING DIAGONAL FUNCTIONS FOR <frn(x), 6n to) 

Label the rising and descending diagonal functions 

i?^to), Di(x) for Hn(x)} 

i^'to), Dl(x) for {9„to)}. 

Of course, in this context the primes do not represent derivatives. 
Reading from the listed information in (19) and (20) , 

if 2?! to) = 1, D[{x) = 2, 

(n > 2) 

we have , 
(21) 

(22) 

whence 

Dn(x) = 

0„'(x) = 

(x -

(x -

- 2 ) " - \ 

- h){x - 2)»-2 
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(23) 

n̂ + i W 0„' + i(aO 

Dn(x) 

D'(x) - 4 

Also 

(24) 

Dn(x) x ~ 2 

Dn (x) = X ~ 

Dn(x) - 2Dn_1(x) = D^x), 

(n > 2) 

(w >. 2; a; ̂  2) 

Rising diagonal functions may be tabulated thus: 

i = 

(25) R^x) 

(26) R[(x) 

1 

1 

2 

2 

^ 

# 

3 

x2 

x2 

4 

* 3 - 2 

x 3 - 4 

5 

xh -kx 

xh - 6x 

6 

x5 - 6x2 

x5 - 8x2 

1 

x 6 -Sx3 + 4 

# 6 - 10#3 + 8 

8 

x7 - l O x 4 +12a; 

re7 -Ux1* + 20a? 

with the properties (n > 3), 

(27) 

i?n'Gc) = i?nte) - 2Bn_3(x) 
Rn(x) = xRn„±(x) - 2Rn_3(x) 

Ri(x) = xRl_±(x) - 2R^3(x). 

Calculations of results similar to those in (13)-(16) follow as a mat-
ter of course for both rising and descending diagonal functions, but these 
are left for the curious reader. (A comparison with corresponding results in 
[2] is desirable.) 

However, it is worthwhile to record the generating functions for the 
diagonal functions associated with the two Fermat sequences. These are, for 
Di(x)9 D}(x), R±(x), R[(x) , respectively: 

(28) 

(29) 

(30 

(31) 

£ Dn(x)tn'1 = [1 - Or - 2)*]-1'; 
n=l 

Y^D^ix)^-1 = (x - 4)[1 - (x - 2)t]"1; 
rc = 2 

J^Rn(x)tn-x = [1 - (xt - 2t3)]"1; 
n = l 

00 

Y^K^t"'1 = t1 - 2 t 3 ) [ l - (art - 2t3)Vl. 

It is expected that the results of [1], [2], and [3] will be generalized 
in a subsequent paper. 
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1. The four numbers 1, 3,8, 120 have the property that the product of any 
two of them is one less than a square. This fact was apparently discovered 
by Fermat. As one of the first applications of Baker's method in Diophantine 
approximations, Baker and Davenport [2] showed that there is no fifth posi-
tive integer n, so that 

n + 1 , 3n + 1, 8n + 1, and 120n + 1 

are all squares. It is not known how large a set of positive integers {xl9 
x29 . . . 9 xn] can be found so that all x^Xj + 1 are squares for all 1 <_ i < j 
<_ n. 

A solution attributed to Euler [1] shows that for every triple of inte-
gers xl9 x29 y for which xlx2+l = y1 it is possible to find two further in-
tegers x3, xh expressed as polynomials in xl9 x29 y and a rational number x59 
expressed as a rational function in x19 x29 y; so that x^Xj +1 is the square 
of a rational expression xl9 xl9 y for all 1 <_ i < J £ 5. 

In this note we analyze EulerTs solution from a more abstract algebraic 
point of view. That is, we start from a field k of characteristic ±2 and ad-
join independent transcendentals xl9 x29 ..., xm. We then set XjX. +1 = y%j 
and pose two problems: 

I. Find nonzero elements xl9 xl9 ..., xm9 xm+l9 ..., xn in the ring 
R = k[xl9 ..., xm; y129 ..., yn.un] so that xtx. + 1 = y2..9 and 
yic- e R for 1 <. i < j <_ n. 

II. Find nonzero elements x19 x29 ..., xm9 xm+l9 . . . , xn in the field 
K = k(xl9 ..., xm; yl29 ..., 2/m.lfW) so that x^x. + 1 = y^. ; and 
yi{J- e K for all 1 <. i < J £ w. 

In Section 2 we give a complete solution to Problem I for m = 2, n = 3. 
In Section 3 we give solutions for m - 2, n = 4 which include both Eulerfs 

*Research was supported in part by Grant MCS79-03162 from the National 
Science Foundation. 
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solution and a solution for m = 3, ft = 4 which generalize the solutions men-
tioned above. 

In Section 4 we present a solution for m = 2 or 3, n = 5 of Problem II, 
which again contains Euler!s solution as a special case. Finally, in Section 
5 we apply the results of Section 4 to Problem II for m = 2, n = 3. 

The case char k = 2 leads to trivial solutions, a: = xx - x2 = ••• = xn, 
zv. . = x + 1. 

Many of the ideas in this paper arose from conversations between Straus 
and John H. E. Cohn. 

2. Solutions for xxx3 + 1 = yl3, x2x3 + 1 = y\3 with 

^ ' i / ] •) ' v ? 1 iC [JJ •] j i /OojVfcGitX/p 1 JL J < 

We s e t v/x1x2 + 1 = £/12 and n o t e t h a t t h e s imul t aneous e q u a t i o n s 

^ 1 ^ 3 + 1 = 2/13 
(i) 

a?2a?3 + 1 = 2/23 

l e a d to a P e l l f s e q u a t i o n 

(2) ^i#23 ~ ^2^13 = Xl ~ X2' 

In B[/x~^9/x~2~] we have t h e fundamental u n i t y l2 + Sx~^xT[ wh ich , t o g e t h e r 
w i th t h e t r i v i a l s o l u t i o n •y13 = z/23 = 1 of ( 2 ) , l e a d s to t he i n f i n i t e c l a s s 
of s o l u t i o n s of (2) which we can exp res s as f o l l o w s : 

(3) 2/23/xl + y13Sx2
 = ±(^7 ± /^i)^y 12 + / ^ 1 ^ 2 ) n » n = 0 , ± 1 , ±2, . . . . 

In o t h e r words , 

±y23(n) = —=.{{/xl ± / ^ ~ ) Q/12 + / S T S J ) " + ( / r , +/^2~)(2/1 2 - / a ; 1 a : 2 ) n ] ; 
2/^2 

±2/ (ft) = ——[(1/S7 ± v/x~l)(y12 + / r ^ ) * - ( ^ + /x~l) (y 12 - /a; a ? 2 ) n ] . 
2v^2 

Once yi39y23 are determined, then #3 is determined by (1). 

The cases ft = 1,2 give Euler!s solutions: 

yi3(l) = X1 + 2 / 1 2 , 2/2 3 ( D = ^ 2 + #12 » ^ s d ) = Xl + X2 + 2 # 12 » 

2/1 3(2) = 1 + 2^ x x 2 + 2a?1z/12, z/23 (2) = 1 + 2x1x2 + 2# 2 2 / 1 2 ; 

. J J 3 ( 2 ) = 42/ 1 2 [ l + 2x x x 2 + (a?x + x2)y12], 

The interesting fact is that 

x3(l)x3(2)- + 1 = [3 + kx^x2 + 2(3?! + x2)y12 ] 2 ; 
and i n g e n e r a l 

^ 3 ( n ) ^ 3 ( n + 1) + 1 = [x3(n)y12 + 2/13 (n)z/23 ( f t ) ] 2 . 

The main theorem of this section is the following (see [3] for a similar 
result). 

TkzoKQJfn 1 .' The general solution of (1) and (2) in R is given by (3) . 

We first need two lemmas. 

Lmma 1: If yl3 >y23 e R are solutions of (2), then, for a proper choice of 
the sign of y23 , we have 
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/x2yl3 - VXly2Z 

where J] i s a u n i t of R[/x1x2] . 

frwo£: Wri te y l3 = A + By 12 , z/23 = C + Zty12, where A9B9C9D e k[x1 9x2 ] . Then 
e q u a t i o n (2) y i e l d s 

(4) x2 - xl = x2(A + By12)2 - x1(C + Dy12)2. 

Under t h e homomorphism of R which maps x1 •*• x9 x2 •> x9 we ge t 

z/12 •> / r 2 + L 4 ( x 1 , # 2 ) •> ,4 0 , # ) = i4(#) , e t c . , 

and (4) becomes 

(5) 0 = x[(A + C) + (B + Z % 1 2 ] [ C 4 - C) + (B - D)y 12 ] . 
Thus, one of the factors on the right vanishes and by proper choice of sign, 
we may assume A(x) = C(x), B{x) = D(x), which is the same as saying that 

A(xl9x2) - C(xl9x2) B(xl9x2) - D(x19x2) 
= j-j ^ — ^ ^ 

X2 ~ X i X2 """ X •] 

wi th P,Q e k[x19x2]. Thus, 

* 2 ^ 1 3 - ^ 2 3 ^ ~ ^ ~ / — 
- = i/13 + /x^(/x~ + Sx~)(P + Qyu) \/x2 

= yl3 + ( ^ + / t f ^ X P + % 1 2 ) e i ? [ v ^ 5 7 ] 
and, i f we s e t 

/x~y + Vx~i/ 
n" = = yx3 + (a?! - / ^ 2 ) (P + Qy12) 

Jx~~2 + /x^ 
we ge t ryn = 1. 

L&mma 2: A l l u n i t s n of i ? [ / x 1 ^ 2 ] a r e of t h e form 

n = K Q / 1 2 + / ^ i ^ 2 ) n 5 K e k*> n = °> ±:L> — • 
VKOOI* Write x ^ = s, xx = x9 x2 = s/#, £ = /s + 1. Then, 

i? = k[x9s/x9Vs + 1] C fe[ic,l/x,t] = i?*. 

We now consider the units, r\*9 of i?*[/s"] and show that they are of the form: 

(6) n* = KX (t + /t2 - l ) n , K e k*; m9n e Z. 
Write T)* = A + B/t2 - 1, where i4 and 5 are polynomials in t with coef-

ficients in k[x9l/x] and proceed by induction on deg A as a polynomial in t, 
If deg A = 0, then S = 0 and i is a unit of k[x9l/x]9 that is, rj = Kzm, 

K e k* 9 m e Z. 
Now assume the lemma true for deg A < n and write 

A = antn + an.1t""1+ .-., S = hn_xtn-1 + bn_2tn-2 + ••• . 

Since r\* is a unit, we get that 

n*rf * = A2 - (t2 - 1)B2 

is a unit of k[x9l/x]. So, comparing coefficients of t2n and t2""1, we get: 
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.2 _ u2 
a* bn-l> anan-l ^n-l^n-2 

Thus, 
rf* = r\*(t + / t ^ - 1) = [tA + (t2)B] + (tB ± A)A2 = 1 

= A1 + B1/tr~- 1, 

where A1 = antn + ] + an_±tn + ••• + U 2 - l)(antn_1 + a„.1tn-2 . ..) , so that 
deg Ai < n and rf'c* is of the form (6) by the induction hypothesis. Therefore 
r]* = n**(£t± A 2 - 1) is also of the form (6). 

Now rfc is a unit of R[vt2 - 1] if and only if KX171 is a unit of R; that 
is, if and only if m = 0. 

Theorem 1 now follows directly from Lemmas 1 and 2 if we write 

/x^y 13 + 1^7^23 = K(y^7 ± y/^7^^i2 + ^x\x^}n 

and get 

*2#13 ~ *1#23 == K ' = !• 
so that K = ±1. 

Note that Theorem 1 does not show that, for any two integers x 9 x2 for 
which xYx2 + 1 is a square, all integers x3 for which x^x3 + 1 are squares; 
i = 1, 2; are of the given forms. But these forms are the only ones that can 
be expressed as polynomials in xl9 x29 Vxlx2 + 1 and work for all such tri-
ples . 

As mentioned above, we have the recursion relations 

#13 (w + 1) = x
xy13 (n) + y12y13(n)9 

y23(n + 1) = x2yl3(n) + yl2y23(n)9 

x3(n + 1) = x1 + x2 + x3(n) + 2x1x2x3(n) + 2y 12y 13 ( n ) # 2 3 M , 
and t h e r e f o r e 

(7) x 3 ( n ) x 3 ( n + 1) + 1 = [z / 1 2 # 3 (n) + z/13 (n)y23 (n) ] 2 , 
so that the quadruple xl9x29x3{n) = x39x3(n + 1 ) + ^4 has the property that 
xiXj + 1 is a square for 1 <. i < j <_ 4. 

From [3, Theorem 3], we get the following. 

ThzosiQJfn 1: x3(m)x3(n) + 1 is a square in R if any only if \m - n\ = 1 . 

Note that while the proof in [3] is restricted to a more limited class of 
solutions, the solutions there are obtained by specialization from the solu-
tions presented here. 

3. Solutions for xtxh + 1 = yjh'9 -£ = 1,2,3 with xh9y ih e R = k[x19x29x3, 
#12 '#i3 '#23] w h e r e Ma = ^Xix3 + 1; 1 <. £ < J <. 3. 

The solution (7) using x3=x3(n)9 x^ = xk(n) as polynomials in xl9x2,yl2 
can be generalized as follows. 

lh2.0K.QM 3: For x = xl + x2 + x + 2xlx2x3 + 2z/12<y 13£/o3 » we have 

xtxh + 1 = y\h9 yik = xiy.k + 2/̂ .2/a ; U,j,k} = {1,2,3}. 

Ptioo£j We have 

^ _ 1 = _i + xl(xjxk + 1) + (xixj. + l)(xixk + 1) + 2xiy12y13yZ3 

= x.(xx + x2 + x3 + 2*^*3 + 2y12yl3y23) 
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Note that since the choice of the sign of y.. is arbitrary, we always get 
two conjugate solutions for xh £ R. This corresponds to the choices 

xh = x3(n ± 1) 

in the previous section. 

TTiefl/Lem 4: The v a l u e s xh i n Theorem 3 a r e the only nonzero e lements of R wi th 
x^xk + 1 squa re s in R for i = 1 , 2 , 3 . 

Pfiooj'- Let xh = P(x19x2,x3 9y12 9y13 9y23) E R where , in order to normal ize t h e 
e x p r e s s i o n we assume t h a t P. i s l i n e a r i n the y. . and P ^ 0. By Theorem 2 , we 
have 

P[xiyx2,x3(n),y12 9yl3 (n) 9y23 (w)] = x3(n + 1) 

for each n = 0, ±1, ±2, ... . Without loss of generality we may assume that 
P = x3(n + 1) for infinitely many choices of n. Then the algebraic function 
of #3 

R\Xl ,X2 5^3 ,y l2 >y i3 iJJ23 ' ~ X\ ~ X2 ~ X3 ~~ ^ i ^ 2 ^ 3 ~ y \2.y \3^ 13 

has infinitely many zeros x3 = x3{ri) and hence is identically 0. 
The values xh in Theorem 3 can be characterized in the following symmet-

ric way. 

Lzmmci 3- Let a^; t = 1, 2, 3, 4 be the elementary symmetric functions of xl9 
x29 x39 xh. Then xh is the value given by Theorem 3 if and only; if 

(8) a2 = 4(a2 + ok + 1). 

VK.00^ I f we w r i t e Z1 5 Z 2 , E3 fo r t h e e lementary symmetric f u n c t i o n s of x , , 
x29 x39 then # = £ 1 + 2 £ + 2 Y where 

Hence 
Y = y y y = A 2 + E E + £ + 1. 

J 1 2 ^ 13*7 2 3 3 1 3 2 

Gx = 2(ZX + E3 + Y) 

(9) a2 = E2 + ^ 4 E 1 = Z2 + Z2 + 2 2 ^ 3 + 2 ^ 7 

Thus, 
* ^ 3 = E 1 E 3 + 2 E 3 + 2 E 3 7 -

a2 = 4 [ I 2 + 2 1 ^ 3 + E3 + 2EXJ + 2E 3 J + J 2 ] 

= 4 [ a 2 + a 4 - E2 - Z ^ - Z3 + (x1x2 +l)(xlx3 + l)(xzx3 + 1 ) ] 

= 4 ( a 2 + a4 + 1 ) . 
Conversely, if we solve the quadratic equation (8) for x^9 we get the two 
values in Theorem 3. 

4. Solutions for x^x5 = y\^\ t = 1, 2, 3, 4 with x 9y , e K = /cfol5^2,^3, 
#12 »2/i3 '#23) w h e r e x4 is given by Theorem 3. 

If we use the xh of the previous section and define 

4a3 + 2ax + 2a,a 
(10) x5 = 

(a, - l) 2 

we get the following. 

ThdOKm 5: We have 
tlx2. - o x. - o - l\2 

x{x5 + 1 = ̂  ah - 1 / ; % = 1' 2' 3' 4' 
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Vhoofc The x^ are the roots of the equation 

(11) x) - ox3. + a9x2: - o„x. + a, = 0 . 
v / i 1 ^ 2 % 3 ^ 4 

Hence 

(12) (c^ - l)2(xix5 + 1) = 4a 3 a^ + 2oxxt + 2 0 ^ ^ + ( a 4 - l ) 2 . 

I f we s u b s t i t u t e ha3xi = 4(x^ - oxx3. + a 2 x 2 + a 4 ) from ( 1 1 ) , we ge t 
(13) (oh - l)2(xix5 + 1) = kx\ - ito^l + ko2x\ + 2 0 ^ + 1 ) ^ + (a 4 + 1 ) : 

- (2a:2 - alxi - ah - l ) 2 - ( a 2 - 4a 4 - 4 - 4 a 2 ) # 

= (2x? - a ^ - oh - l ) 2 , 

since the last bracket vanishes by Lemma 3. 
Thus, the famous quadruple 1, 3, 8, 120 can be augmented by 

777480 
x* 

2 

28792 

We conjecture that the quintuple given by Theorem 5 is the only pair of 
quintuples in which xh is a polynomial in xx 9x29x3 \y l2 »2/13 >£/23 anc*

 x5 ^s ra~ 
tional in these quantities. 

Finally, we show that the value x5 given by Theorem 5 is never an inte-
ger when x19x29x3,y129y13,y23 and, hence, xh and y ^ 9 y ^9 y 3l+ are positive 
integers. 

Tk&Qtim 6: If the quantities x19x2,x39yl2 9y 13 9y2s in Theorem 5 are positive 
integers, then 0 < x5 < 1. 

VKOO^1 Since we have already verified the theorem for the case # = 1, x2 = 
3, x3 = 8, we may assume that 

£l = _J_ + _i_ + _L_ <I + ± + _L = I, 
8 24 2 ' 

and the smallest Ej is obtained for the triple 2, 4, 12. Thus, 

(14) 
S i m i l a r l y 
(14) 18 < E 1 < y E 3 . 

^2 1 1 3 
T3

<1+^ + -s<2 
and 
(15) 80 < E2 < | l 3 . 

Next , J = yizU\zH23 s a t i s f i e s ^ = ^ 3 + ^ 1 ^ 3 + £ 2
+ ^ ~ ' s o t n a t from (14) 

and (15) we ge t 

(16) I 3 + 9 < Y < | ( Z 3 + 1 ) . 
Thus, t h e numerator of 1 - x i s 

(17) (a 4 - l ) 2 - 2oxok - 4a3 - 2ax = (a^ - a 1 - l ) 2 - a2 - 4a3 - 4ax 

= (a 4 - ax - l ) 2 - 4(0^ + a2 + 1) 

- 4a3 - 4ax 

= (a 4 - ax - 3 ) 2 - 4a3 - 4a2 - 8 ^ - 8 
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= (2E2 + 2Z37 + EXE3 - 2Z3 - 21 - 2E2 - 3 ) 2 - 8E2E3 - 8E2I 

- 4EXE2 - 4E3 - 8EXE3 - 8 1 ^ - 4E2 - 4E2 - 16E3 - 167 

- 16EX - 8 

> (4E2 4- 30Z3 - 6) 2 - 12E2 - 18E3(E3 + 1) - 3E2 - 4E3 - 4E2 

- 6E3(E3 + 1) - E2 - 6Z3 - 16E3 - 24(E3 + 1) - 8E3 - 8 

= (4E2 + 30E3 - 6) 2 - 44E2 - 82E3 - 32 

> (4E2 + 30E3 - 12)2 > 0. 

Thus, our algebraic method has the result that for every three positive 
integers x19x2,x3 so that xiXj + 1 is a square for 1 <_i <j £ 3 there always 
exists a fourth positive integer (and usually two distinct fourth integers) 
xh so that XiXh + 1; i = 1, 2, 3, is a square. Finally, there always exists 
a fifth rational number, x59 always a proper fraction, so that x.x5 + 1; i -
1, 2, 3, 4 is a square. 

The question of finding more than four positive integers remains open. 

5. Solutions of x^x3 + 1 = y[\% i = 1,2 with xf
39y f

i3 e K = k(x19x29y12). T n e 

field K = k(xl9x29y12) is, of course, the pure transcendental extension k(xl9 
y ). Sections 4 and 5 show that K contains many solutions -xr

9yf. of equa-
tion (1) that are not in R = k[xl9x29y12] and, therefore, are not given in 
Theorem 1. 

For example, we may define a quadruple x19xz9x3 - x3(n), x,^ = x3(n + 1) 
which satisfies Theorem 3 and then define 

X'(n) = *5 = (a - l ) 2 [ 2 Q l + 4a3 + 2°lG"] 

as in (10) to get an infinite sequence of triples x19x2,x3(n) e K which sat-
isfy (1). The triple x19x29x3(n) can be augmented, by Theorem 3, to a quad-
ruple xl9x29x3(n) 9 xr

k(n)9 where xT(n) has the same denominator 

[oh{n) - l)2 = [x1x2x3(n)x3(n + 1) - l]2 

as x3(n). By Theorem 5, this quadruple can be augmented to a quintuple 

xx 9x2 9x'3 {n) 9x'h(n) ,x^(n). 
Once this process is completed we can start anew, beginning with the triples 
X 1 , X o , X Lin) O X . t-G -I , bL p , oC /(n). Each of the triples can be augmented to quadru-
ples and quintuples, etc. In short, the family of solutions of (1) with x39 
y13 '2/23 £ ^ aPPe a r s to be very large, and is quite difficult to characterize 
completely. 
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ABSTRACT 

The value of (j) = (/5~ + l)/2, or 1.61803... is referred to as the Golden 
Ratio or Divine Proportion. Such a ratio is sometimes discovered in nature, 
one instance being the mean between lengths of some organs of the human body. 
Leonardo da Vinci found that the total height of the body and the height from 
the toes to the navel depression are in Golden Ratio. We have confirmed this 
by measuring 207 students at the Pascal Gymnasium in Munster, where the al-
most perfect value of 1.618... was obtained. This value held for both girls 
and boys of similar ages. However, similar measurements of 252 young men at 
Calcutta gave a slightly different value—1.615... . The tallest and short-
est subjects in the German sample differed in body proportions, but no such 
difference was noted among the Indians in the Calcutta sample. 

INTRODUCTION 

Marcus Vitruvius Pollio, Roman architect and author of Be Avehiteetuve 
(c. 25 B.C.), remarked on a similarity between the human body and a perfect 
building: "Nature has designed the human body so that its members are duly 
proportioned to the frame as a whole." He inscribed the human body into a 
circle and a square, the two figures considered images of perfection. Later 
(in 1946) Le Corbusier gave a further dimension to the subject by depicting 
a proportionate human nude (Fig. 1A). In the sketch, he clearly adopted the 
Fibonacci system and Golden Mean to depict the proportion in a good-looking 
human body [7], As shown in the sketch, the figure of a 1.75-meter man with 
his left hand raised is drawn so that the distance from the foot to the navel 
measures 108 cm; from the navel to the top of the head measures 66.5 cm; and 
from the head to the tip of the upraised hand measures 41.5 cm. The ratio 
between 175 (height of man) and 108 is 1.62, as is the ratio between 108 and 
66.5, while the ratio between 66.5 and 41.5 is 1.6. All these means are very 
close to the Golden Ratio, i.e., § = (/5~ + l)/2 = 1.61803... . In order to 
verify this fascinating exposition, we set about taking measurements of boys 
and girls in two remote centers. The experimental subjects showed no visible 
signs of physical deformity. 

MATERIALS AND METHOD 

During the last week of October 1973, a group of 207 students (175 boys 
and 32 girls) at the Pascal Gymnasium in Munster were chosen as subjects for 
measurement. Also, in early 1974, 252 young men (aged 16-32), most of whom 
were students at the Indian Statistical Institute in Calcutta, were measured. 

The following measurements were taken of bare-footed boys and girls who 
were asked to stand erect, but without stretching their bodies abnormally, 

"kThe authors wish to thank the Director of the Pascal Gymnasium in Mun-
ster, W. Germany, for allowing them to record measurements of his pupils and 
Mr. S. K. De, artist at the Indian Statistical Institute in Calcutta^for mak-
ing the drawing. Davis is grateful to the German Academic Exchange Service 
for financial assistance that enabled him to visit Munster in 1973. 
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against a strong, vertically held pole which was marked in centimeters. With' 
the help of a set-square, three measurements were taken: total height; dis-
tance from feet to level of nipples; and distance from feet to navel depres-
sion. The following five values were computed from the above three recorded 
measurements: (A) distance between navel and nipples; (B) distance between 
nipples and top of head; (C) A + B (navel to top of head); (D) distance from 
navel to bottom of feet; and (E) total height of subject. Figure IB illus-
trates these demarcations. No measurement was made of the distance between 
the head and the tip of the upraised hand indicated in Le Corbusier's drawing 
(Fig- 1A)- RESULTS 

The German and Indian data were rearranged, separately, in regular de-
scending order, always keeping the tallest subject as first and the shortest 
subject as last. These data are summarized in Tables 1 and 2. 

TABLE 1. BODY MEASUREMENTS OF GERMAN SCHOOL CHILDREN 

Particulars 

Total, tallest 50 observations 
Total, shortest 50 observations 
Grand total (for 207) 

Grand Mean 
Total, girls only 
Total, boys only 

A 

1127 
1010 
4313 

20.836 
600 
3713 

B 

2136 
1757 
8009 

38.690 
1206 
6803 

C 

3263 
2767 
12322 
59.526 
1806 
10516 

D 

5335 
4354 
19900 
96.135 
2885 
17015 

E 

8618 
7121] 
32222 

155.622 
4691 
27531 

TABLE 2. BODY MEASUREMENTS OF YOUNG MEN FROM CALCUTTA 

Particulars 

Total, tallest 63 observations 
Total, shortest 63 observations 
All men (for 252) 

Grand mean 

A 

1496 
1314 
5645 
22.40 

B 

2729 
2348 
10166 
40.34 

C 

4225 
3662 
15811 
62.74 

D 

6678 
5885 
25239 
100.15 

E 

10903 
9547 
410501 
162.90 

Calculated ratios between A & B , B & C, C & D, and D & E are presented 
in Tables 3 and 4. 

TABLE 3: GERMAN STUDENTS: PROPORTION BETWEEN BODY LENGTHS 

Population 

Tallest 25% (approximately) 
Shortest 25% (approximately) 
Girls only 
Boys only 
All students (207) 

A/B 

0.528 
0.575 
0.498 
0.544 
0.537 

B/C 

0.655 
0.635 
0.668 
0.647 
0.650 

C/D 

0.609 
0.636 
0.626 
0.618 
0.619 

D/E 

0.621 
0.611 
0.615 
0.618 
0.618 

TABLE 4. CALCUTTA YOUNG MEN: PROPORTION BETWEEN BODY LENGTHS 

Population 

Tallest 25% 
Shortest 25% 
All men (252) 

A/B 

0.548 
0.560 
0.555 

B/C 

0.646 
0.641 
0.643 

C/D 

0.633 
0.622 
0.627 

D/E 

0.612 
0.616 
0.615 
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FIGURE 1 

Some differences were found to exist between the proportions of corre-
sponding body lengths of the tallest and the shortest subjects. Statistical 
tests were performed to determine: (1) the extent of the difference; (2) if 
boys and girls differed in body proportions; and (3) if the Germans differed 
structurally from the Indians,. 

STATISTICAL ANALYSIS 

For the set of 207 observations on German boys and girls from different 
age groups, the following statistical hypotheses were tested. 

Let U = A/B, V = B/C, W = C/D, X = D/E and let u, W, w9 cc represent the 
corresponding sample means and the corresponding population means. 

There were 27 boys and 32 girls in the same age group in the German sam-
ple. Based on their measurements, H0: ]iG = \\B was tested. Here 

\iG = ()iuG, \wG, ywG, \ixG) ; \iB = (]iuB, \xvB, \\wB, yxB). 

It is assumed that ([/, V, W, X) N (y, E). The test statistic used was 

^ = - 2 — 5 (1/Wi + 1/Hg) (ZO-M'A-^ZO-ZB). 
which is distributed as an F statistic with 4, n1 + n2 - 5, d.f. 

*G ' <^> %> WG> *G> 5 YB = (VB> V WB9-XB) . 

A = Ax + A2, Ai = sum of squares and products matrix for the ith population, 
i = 1, 2. 
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YG = (.5962, .6300, .6303, .6137) 
7B = (.4883, .6460, .7883, .5769) 

F = 4.49, F.osl ^-50 = 5.70. 

So, H0 is accepted at the 5% level of significance, i.e., there is no signi-
ficant difference between measurements of girls and boys. However, the test 
for H0: \xur = \iu2 gave an insignificant value for the t statistic, which was 
less than 1. 

Again, H0: ]i = \\2 was tested for the 50 tallest and the 50 shortest in-
dividuals, where \xi = (\iui, \ivt, \iwt, \ixi). 

Yl = (.5196, .6417, .5979, .6089) for 50 tallest; 

Y2 = (.5817, .6350, .6368, .6114) for 50 shortest. 

The computed F = 10.1574 and F.Q5; 4.95 = 5.66, F.01; 4.95 = 14.57, so H0 is 
rejected at the 5% level of significance. 

Next, H0« ]Mr = \iu2 was rejected at both the 5% and 1% levels of signi-
ficance because t - -2.93 with 98 d.f. Also, H0: yjj)f = \iw2 was rejected (at 
both levels) because t - -3.3 with 98 d.f. 

For the Indian data, HQ: ur = u2 was tested for the 63 tallest and the 
63 shortest subjects (25% of the total). For this both H0: \iur = \xu2 and H0: 
\lWr = ]1W2 were accepted because the corresponding t statistics were < 1. 

Again for the Indian data we did not find any significant difference be-
tween measurements of the tallest and shortest subjects. This might have been 
due to the short range of heights among the Indian sample. 

Indian Data German Data 

El = 173.38, E2 = 152.95 E1 = 172.36, E2 = 142.42 

H0: ]i^1 = ]AEZ was rejected because t — 5 with 111 d.f.; i.e., the heights of 
the shortest individuals in the Indian sample and those in the German sample 
differed significantly. The variance in mean ages of the two sample groups 
might also be an important reason for the difference. 

DISCUSSION 

The data on German students presented in Tables 1 and"3 confirm La Cor-
busierfs definition of a good-looking human body. 

The Parthenon at Athens is considered one of the most perfect buildings 
ever constructed by man and one that has survived centuries of neglect. The 
secret lies in the fact that the Parthenon was constructed according to the 
principle of Divine Proportion [4]. The width of the building and its height 
are in Golden Sections. Hoggatt [3] has cited further examples in which the 
Golden Section has been used. 

Also, it is now known [see 5] that the Great Pyramid of Giza, Egypt, was 
built in accordance with Divine Proportion; its vertical height and the width 
of any of its sides are in Golden Sections. 

These examples confirm Vitruvius' statement that perfect buildings and 
proportionate human bodies have something in common. 

According to available data, the navel of the human body is a key point 
that divides the entire length of the body into Golden Sections (their ratio 
is the Golden Ratio). This point is also vitally important for the developing 
fetus, since the umbilical cord—the life-line between mother and fetus—is 
connected through the navel. Compared to the position of the navel, the line 
of the nipples is not particularly important, because it does not divide the 
body (above the navel) into Golden Sections. Data from both Germany and In-
dia confirm this fact. 
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There is a close connection between the Golden Ratio and the Fibonacci 
Sequence—1, 1, 2, 3, 5, 8, 13, 21, ... . Each number is obtained by adding 
the two numbers just previous to it. This numerical sequence is named after 
the thirteenth-century Italian mathematician Leonardo Pisano, who discovered 
it while solving a problem on the breeding of rabbits. Ratios of successive 
pairs of some initial numbers give the following values: 

1/1 = 1.000; 1/2 = 0.500; 2/3 = 0.666...; 3/5 = 0.600; 5/8 = 0.625; 
8/13 = 0.615...; 13/21 = 0.619...; 21/34 = 0.617...; 34/55 = 0.618...; 
55/89 = 0.618... . 

Thereafter, the ratio reaches a constant that is almost equivalent to the 
Golden Ratio. Such a ratio has been detected in most plants with alternate 
(spiral) phyllotaxis, because any two consecutive leaves subtend a Fibonacci 
angle approximating 317.5 degrees. Thus, many investigators of phyllotaxis 
identify the involvement of Fibonacci series on foliar arrangement, the most 
recent being Mitchison [6]. 

(please turn to page 384) 

A RECURRENCE RELATION FOR GENERALIZED 
MULTINOMIAL COEFFICIENTS 

A. G. SHANNON 
The New South Wales Institute of Technology, Sydney, Australia 

1. INTRODUCTION 

Gould [2] has defined Fontene-Ward multinomial coefficients by 

{S l, s2,n..., 8 p} = M»,/"«1
,M*.! ••• M*,! 

where {un} is an arbitrary sequence of real or complex numbers such that 

un ± 0 for n •> 1, 

u0 = 0, 

ul = 1, 

and un\ = unun^i ... wl v 

with u0l = 1. 

These are a generalization of ordinary multinomial coefficients for which 
there is a recurrence relation 

v 
\819 . . . , Sr)~f^1\s1 - 6 y , . . . , sr - 6rJ) 

as in Hoggatt and Alexanderson [4]. 
Hoggatt [3] has also studied Fontene-Ward coefficients when r = 2 and 

{un} = {Fn}, the sequence of Fibonacci numbers. We propose to consider the 
case where the un are elements which satisfy a linear homogeneous recurrence 
relation of order p. 
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2. THE COEFFICIENTS 

We consider r basic sequences, |us n j , which satisfy a recurrence rela-
tion of order r: 

r 
^ i = L ( - ^ + \ j ^ L j ^ n >r; U% = Ssn , 1 < n < r, 

3 =1 

where 6sn is the Kronecker delta and the PPJ- are arbitrary integers. We des-
ignate \Ur nj as the fundamental sequence by analogy with Lucas1 second-order 

fundamental sequence \U2 n\ > Since this sequence is used frequently, we let 

K5+,}-K}} 
for convenience of notation. 

Note that the terms "fundamental" and "basic" follow from the nature of 
these sequences as expounded in Jarden [5] and Bell [1], respectively. 

Let M„ denote the square matrix of order r: 

wherein i, refers to the rows and j to the columns. 
v-i 

, (?) ST* (r) (r) 
ImmCLi Un = 2-s Ur-j,r+mun-m-j ' 

j-o 

VK.00^'- It is easily proved by induction that 

M
M =MMMM 11 n L1 m LIn - m> 

and so from equating the elements in the last row and last column we get 
v- 1 

(r) <!•) = y v{r) (r) 
un

 ur,r+n L^ ur -j,r +mur,r +n -r, 3 =0 

= Yu(r). uir) .. 
£-a r - j,r +m n -m - j 
J = 0 

We now define Fibonacci multinomial coefficients by 

' ' 5 ^T'U 

r 

{ . n
 s } = « ? ' «/«£' ••• u 

{b l , . . . , op > u 

r 

such that n = 2^ si 
i = l 

Thus, when r = 2, we have the Fibonacci binomial coefficients 

1*1, S2)u M(2) jM(2) , W(2) ,M(2) , tfilJ' 

We next seek the recurrence relation for these Fibonacci multinomial 
coefficients. 
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3. THE RELATION 
Th&QSLQjm: The recurrence relation for the Fibonacci multinomial coefficients 
is given by 

{fli. • • • • . S*fu~fa\8i - &ljt . . . . sr - 5rj-}M
y'-^+1.2+« 

in which s^ = n - m - i + l 

and m = n(l - 1/r) + -(1 - r). 

Plooj: We note first that 

v v r 
y J s^ = 2^ (n - m - i + 1) = r(n - m + 1) - 2j ̂  

= rn - rm + r - -~r{r + 1) 

= rn 4- — r - yr - rm = n. 

Using the lemma, we have that 

M
( r ) - L ( r ) y ( r ) + ••• +M

(r)c/(r) 1 

un-r\un-mur,r+m T T "n-m-r+1 l,r+mj 

M « ! . . . « « ! 

= 4r-l!wnr) ^ s ^ ! ••• ̂  ! (from the l e m ma) 

= <| s as required. 

k. CONCLUSION 

As an example, suppose r = 2, n ;= 2fc .+ 1; then m = k, s1=k + l , and 
s2 = fc, and the theorem becomes 

(2) , „ ( 2 ) (2) , . ; ( 2 ) 
i 2 ^ + 1 i 2k -^2,fe + 2 2̂?C ' ^ l , f e + 2 
A & iw 7. (2) , 7 , (2 ) , (2) l ? . (2) , 

= U£LI\K)U + ^ + 2^ ^J^. 
This is the same as the equivalent result (F) in Hoggatt [3] (in our nota-
tion) : 
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as it can be readily shown that 

r/(2) - _P ;r/(2) 
ul9k + 2 r22U2,k + l' 

(2) 
The first five values of Uj„ , J = 1, 2, are 

J = 1 

2 

n= 1 

1 

0 

2 

0 

1 

3 

- P ^ 2 2 

P 2 1 

4 

-P P ^ 2 1^22 

p 2 _ p 

5 

_p2 p . p2 r2 1-^22 T ^ 2 2 

p 3 _ Op p 
^ 2 1 *-r 2 1^22 
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GENERALIZED FIBONACCI NUMBERS AS ELEMENTS OF IDEALS 

A. G. SHANNON 
The New South Wales Institute of Technology, Sydney, Australia 

Wyler [3] has looked at the structure of second-order recurrences by 
considering them as elements of a commutative ring with the Lucas recurrence 
as unit element. 

It is possible to supplement Wyler's results and to gain further insight 
into the structure of recurrences by looking at ideals in this commutative 
ring. 

The purpose of this note is to look briefly at the structure of Horadam's 
generalized sequence of numbers [2] defined recursively by 

( l ) 
with w a, w, 

pvn-i - q^n-i (n >- 2) 
b9 and where p 9q are arbitrary integers. 0 ~~ ."-> w i 

DeCarli [1] has examined a similarly generalized sequence over an arbi-
trary ring. It is proposed here to assume that the sequence {wn} of numbers 
are elements of a commutative ring R and to examine {wn} in terms of ideals 
of R. To this end, suppose that p9q are elements of an ideal of R. 

<p>, <^qy are then the ideals generated by p and q9 respectively, and 
(<p>, <^q}j is the sum of the ideals generated by p and q, 
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Tkzotim 1: wn e (<p>, <<?>). 

Vftpo^i a9b £ R, p e <p>, q £ <^> implies pb £ <p>, and -qa £ <g)>. 

.". w2 = pb - qa e <p> + <^>. 

pb e <p> and so pb e R. 

Hence -q(pb) e <<7>. 

w2 £ R9 p £ <p> implies pw2 e <p>. 

w3 = pw2 - qb e <p> + <q>. 

It follows by induction that wn £ <(py + <̂ 7>: that is, 

^n £ «P>, <<?». 

The general term of {wn} can be expressed in terms of 

a = |(p + /(p^ty) and 6 = y(p - /(p2 - 4<?)) 
as follows: 

(2) ww = Acxn + B3n 

where 4 = (b - ag)/(a - 3) and £ = (aa - b) / (a - 3). 
Suppose >4,B are elements of a commutative ring §, and a,3 are elements 

of an ideal of Q. It follows that wn belongs to Q and Is also a member of the 
sum of the ideals generated by a and 3 (from Theorem 1). 

Tfeeo/Lew 2: IS C Q such that £ = <a> © <3> if p2 - 4q ^ 0. 

?Kooj: a1 = 3J* iff p2 - 4<? = 0. Hence, 

<a> H <3> = <0>, 

and the result follows. 
Let {vn} and {un} be two sequences of elements of Q such that 

(3) Vn = p'V'n-i - <7^„_ 2 

(wi th s u i t a b l e i n i t i a l v a l u e s and pr
9qr a r b i t r a r y i n t e g e r s ) and wn i s def ined 

as b e f o r e . 
Define {vm} E {wn} when wn - vm e S fo r sma l l n,m where 

S = < a > © <3> 
as b e f o r e . 

Note t h a t i f a,b,c e S, then ( i ) a-a£.S; ( i i ) a-beS i m p l i e s b-aeS; 
( i i i ) a-b eS and b -c eS imply t h a t a -c eS, 

TkcoK&n 3 : I f vm - wn e <a> © <C3> fo r sma l l n9m9 then 

vm - wn e <a> © <3> for a l l n9m. 

VHOP fa Wn £ S = a © 3 fo r a l l n from Theorem 2. I t i s known t h a t vm £ S 
for m <_ N9 s a y . Now, 

p'vN £ S and qrVN_± £ S. 

Hence, VN+I = PTVN~ Q'^N-I e ^» a n c * t ^ i e r e s u l t f o l l o w s . 



1979] A.GENERALIZATION OF HILTON'S PARTITION OF HORADAM'S SEQUENCES 3̂ 9 

To prove the stronger result that if 

ivm} = {wn} for any n,m9 then {vm} = {wn} for all n,m, 

it would be necessary to replace "small" with "large" in the enunciation of 
Theorem 3. This would require S to be a prime ideal which could be achieved 
by embedding S in a maximal ideal ̂Ua3 which could be proved prime. However, 
this would then require restrictions on pr and q' as it would be easy to show 
that q,VN_1 e S but it would not automatically follow that VN_± e S. 

Another problem that might be worth investigating is to look for commu-
tators for relations like 

P p p i 
wn + i ~ wn ~ wn-i* w n e r e P l s a prime. 

These could be useful in Lie algebras. 
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A GENERALIZATION OF HILTON'S PARTITION 
OF HORADAM'S SEQUENCES 

A . G. SHANNON 
The New South Wales Institute of Technology, Sydney, Australia 

1. INTRODUCTION 

If Prl , Pr2 , ..., Prr are distinct integers for positive r, let 

oo = OJ(PP1 , ... , Prr ) 

be the set of integer sequences 

/ r 7<*>\ /„<*> T7M (r) ) 
\Wsn ) = \Ws0 » Wsl » Ws2 > • • • ] • 

which sa t i s fy the recurrence r e l a t i on of order r9 

(1.1) ^ + 1 . - I ) ( - l ) i ' + 1 ^ C )
+ r - ^ (8 = l - 2 , . . . , r ) , » > 1 . 

J =1 
This is a generalization of of W s n f studied in detail by Horadam [1, 2, 3, 
4, 5]. l ; 

Hilton [6] partitioned Horadam*s sequence into a set F of generalized 
Fibonacci sequences and a set L of generalized Lucas sequences. We extend 
this to show that GO can be partitioned naturally into r sets of generalized 
sequences. 
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(2.1) 

2. NOTATION 

We define r sequences of order r9 \Vsn ( (s = 1, 2, ..., r) by 
r 

(r) ,1-sV^ „(*0 
7Q 

-l-s\~"* (r) „ 

j-i 
sj *V7 

where the a r; are the distinct roots of 

**-£<-Dfc+V 
fc-i 

(2.2) 

and 

d = det £> 

where D is the Vandermonde matrix 

ar2 

*r2 
v-1 r- 1 
rl a 

p-i 
r2 ar 

(r) 
and the A8j are suitable constants that depend on the initial values of the 
sequence: 

K1 e a)(F. rl ' ^r2 ' 5 -^2»r» / ' 

*£2i' ^ - ^ ' ^ S ' c t f ' 
J-l 

r-fc 

j - l k -l 

= £(-l)k+1P2.fc^(nip-fe» a s required. 

3. THE PARTITION OF a)(Prl , . .. , Prr ) 
(r) It follows from (2.1) that we can represent 7^, by 

(r) ^ " T X ^ (*-l, 2, ....*) 
J-l 

so that 

and 7 r n can be pu t i n t he form of any of t h e VQn . For example, when t = 3 , 
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(r) , 3 - r ^ R W n 
Vrn = d 2^B3j arj 

j - l 
has the form of 

(p) = d3-ry (r) n > 

d = i 

We shall now consider the derivation of one sequence from another, so 
that in what follows the results hold for any of the r sequences. Thus there 
are r such partitions. 

(r) 
We say that Wsn is in Fibonacci form when it is represented as in 

r 
(3.1) WJZ =^YlArjalj \d\ * 1 

j = i 

and in Lucas form when it is represented as in 

r 
(3.2) W^ = XX.-a^ \d\ * 1 

j-i 

where the Brj are different constants from the Arj. This is analogous to 
Hilton. To continue the analogy, one can see from (2.1) that there are r 
such forms which correspond to the distinct values of s. When Ws% ^s i-n 

Fibonacci form we may perform an operation ( ') to obtain a number 

w(ry 
wsn 

where 
7W W, sn 2-J Brj arj ' 

j (p) ' ) 

We say (like Hilton) that the sequence W s w f is derived from the sequence 

sWsn ?. Throughout this paper we assume that \d\ is not unity, because when 

d is unity the essential distinction between (3.1) and (3.2) breaks down. 

There would still be r partitions, provided the Asj of Equation (2.1) are 

distinct for all values of s, but the groups of sequences would have the ba-

sic Lucas form. Now 

Us?' = Z Avjart = d[lj[ I t A*ja*j) = dh' sn > 

and so Wgn = a W^n , which corresponds to Hilton's Theorem 1. 

It follows from (3.1) and Jarden [7] that 

Da = dw 

where a = [Arl, Ar2, . . . , Arr] 

and y = [^(or>, *tf \ • • • , < ; ) - 1 ] r -
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So 
i n which 

a = dB~lw 

dD'1 = [dQK] 

i s the matrix with dpK in row p and column K, where 

For v = 2, 

For r = 3, 

d PK (-D I I farm - am) XI a ^ i p +m9n 
m >n 

, D' 

m±p 

a 2 2 - 1 

- a 2 1 1 

where d =• a 2 2 - a 2 x . 

2 2 2 
ot3 j cx32 a 3 3 

a 3 3 a 3 2 ( a 3 3 " 0 t 3 2 ) ' ~ ( a
3 3 + a

3 2 ) ( a
3 3 " a 3 2 > ' ( a

3 3 " a 3 2 ) 

etc. _ 

where d = (a32 - a31)(a33 - a31)(a33 - a 3 2 ) . 

For v - 4, 

4 l 

2 
41 

3 

etc. 
. » - • - § 

d l l - d 1 2 d 1 3 d l f 

etc. 

where d = (a^2 - a ^ X a ^ " ^ ^ { a ^ -a1+2)(al+l+ - a u ) ( a ^ -a1+2)(alflf -a^) 

dll = a . 2 a
l t 3 a ^ ( a . 3 " a . 2 ) ( a ^ ~ a . 2 ) ( a „ - a

4 3 ) 

d 1 2 = - ( a l t 2 a l t 3 + a i + 3 a l f l + + a 1 + l t a 1 + 2 ) ( a I + 3 - a l t 2 ) ( a 1 + 2 + - a I + 2 ) ( a 4 I + - a l f 3 ) 

d 1 3 = ( a 4 2 + a 4 3 + 0 ^ ^ ^ ) ( a 4 3 - a i f 2) ( a 4 4 - a t + 2 ) ( a 4 4 - a1+3) 

d 1 4 " ( a 4 3 - a 1 + 2 ) ( a i t l f - a i t 2 ) ( a I f r l f - o ^ g ) . 

From a = dD" w9 we have 
2f> 

^ P K ^ S , K - 1 a n d Wsn = 2^ Arparp> 
K = 1 P - l 
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so 

(3.3) W%> = £ E ^ p ^ - i 
p = 1 K = l 

which is effectively a generalization of Equations (2) and (3) of Hilton. 
Suppose 

and t h a t 

Since 

\Kn) 

Asn 

dxM 

> and 

= y ( r ) 

sn 

= y^ 

(n = 0, 1, 2, . . . ) . 

(3-4) Y^ = E E < V <*£<-!> from (3.3) 
P - 1 K - l 

and 

r r 
(3 .5 ) = ] T L ^ P K ^ p ^ K - i ^ from ( 3 . 4 ) . 

p = 1 K = l 

(3.5) is a generalization of Theorem 2(i) of Hilton. 
The analogue of Theorem 2(ii) of Hilton can be stated as: 

Vh.00 

i f Us?} e w(P p l , . . . , P ^ ) , ^ I E L ^ P K ^ P ^ - I ' « < r , 
V ' I p K 

then {&#>}• = { * £ > ' } for some { * £ > } e ui(Ppl , . . . , P„) . 

: I f { x s
( ^ | e i o ( P r l , • - . , P H . ) , 

then X^ ' = E E dP< u%xs% -1> f r o m < 3 • 3 ) • 
P < 

if x^ = r 2 E E ^ « r > s
( , l i . « < *, 

P K 

then J s
(
n

r ) ' = | E E dP< « r P ^ K - 1 . n<r, 
P ic 

but f/s(„r) = ± E E ^PK «rp ^ K - 1 > » < r • 
U p K 

So cft^ = fi^} for n < P , 

from which the result follows. 
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k. THEOREMS 

The basic linear relationships between \Xg* ? and jlg„ > are described 
in the following theorem. ^ ' ^ 

TkdOKUm A: The following are equivalent: 

r r 
<4-2) ?£n+m = £ E ^ K ^ P ^ ^ K - I , for all n > 0, 

p = 1 K = l 

(4-3) *£»+* = 4"£ EV«U!»«-P for all n > 0. 
a p = 1 K = 1 

Vh.00^1 For each of (4.2) and (4.3) we need only require that the expression 
is true for v adjacent values of n. 

(4.1) =^(4.2); 

r r 
then I™ = £ E^P^rp^-l* from < 3 ' 3 )-

p = l K = l 

Thus (4.2) is true for n =0. Let t >_ r and assume (4.2) is true for 0 _<n <£. 

*#+•, = 2 > 1 ) ' % * . $ + • , - , . from (1.1), 

r r r . 
= 2 ^ 2 ^ 2-^p><a™p(~1) prj J s , t - j + K - i 
J = l p - 1 K - 1 

= 2 ^ 2^^PKarp2-^ ̂ 1 ^ ^J^.t-j+K-i 
P-1 K-l j=± 

= E E^PK^P^S^ + K-I' a s required. 
P ic 

Similarly, (4.3) follows if we use (3.3) and induction. 

(4.3) =^(4.1); 

s i n c e Xsn) = 71 JLl^dPKa%Y8*K-l> f o r n < r9 
d p K 

it follows from the generalization of Hilton's Theorem 2(.ii) that 

{*£'}-{*£:>}. 
Similarly, it can be shown that (4.2) ==>(4.1). This completes the proof of 
Theorem A. 
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We now describe a partition of 0)(Ppl , ..., Prr) . If 
S w(Prl , . .. , P^) , 

let WQ*' = d2 o)g„ for all n >_ 0 where m >_ 0 is an integer, 
{ u ) « } e w and d2 f «o£> 

for at least one n >_ 0. Then, for |d^| ̂  1, 

if ̂ 2 iSZI^pK^p^M-p for a11 n> 0 £ n < p; 
P K 

if ^2 I ̂ Z-/^pKarp(JL)s,K -i> for at l e a s t o ne ̂ 5 0 £ n < P. 
P K 

In view of Theorem A, if \W^ f is a member of F (or L).9 then any "tail" 
of S Wg% f is also a member of P (or L) , respectively. Note that this parti-

tion of \Wj£ > is not unique, since in terms of (2.1) L corresponds to s = 1 
and F corresponds to s - 2. We could proceed with similar partitions for 
s = 3, ..., 2% but they do not tell us anything essentially new. 

Ikdonam B: \X^\ e F iff {^f £ Lo 

VfWO^} (i) If U ^ H e P, suppose that 

xsn) = <*2W*£? for all n > 0, 

where m > 0 is an integer, and 

\xsn* ( e ^ a n t* ^ 2 I xsn* ^ o r a t l e a s t o n e n >_ 0. 

Clearly d2 fa<£> , or dz I xff or d2 Hx™^. By Theorem A, 

?sn = E E ^ p ^ - 1 for 0 < „ < r. 
P K 

Let yj£} = d 2 ^ ^ for a l l n > 0. 

Then i/£> = £ L ^ P K ^ r p ^ - l ^ 0 < n < P. 
P K 

Since xj$ e F9 d2 \ ̂  X-/̂ PKa"p̂ s,K -1 ror at least one n, 0 £ n < r, 
P K 

Therefore, d2 \y^r' for at least one n, 0 <_ n < p. 
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But it follows from Theorem A that for all n9 0 <_ n < r9 

d2 (r) = y> Yd an i/(r) 
u ^ sn £^ Z-J PK **P Ms, K -1 • 

p K 

Therefore iy^J \ e L, and so {*/s(£}} e L. 

(id) If W ^ } > e L9 suppose that 

*£ = d2myM f o r all n > 0, 

where m >_ 0 is an integer, and 

lz/(r)> e L and d2 |z/(r) for at least one n >_ 0. 

Clearly d2 \ y ^ , or d2 \y& , ..., or d2 j ^ _ r
 B? Theorem A, 

Xsn = ̂ E & P K ^ L I ^ r 0 < n < P. 
u p K 

Let Z^ } = ^2 m*^ } far all n > 0. 

Then *£? - i L E d p K ^ p i / « . , , 0 < n < P . 
" p K 

Since Ljrt\ e L, d2 | £ £ ^K^P^K -I f o r a l l n , 0 < n < r . 

So x $ , # ^ , . . . , # ^ , - 1 are. i n t e g e r s and so <tf£*H e OJ. But 

y*n = LE^pK^p^irK-i f o r a l l n , 0 < n < r , 
' p K 

and since d2 t v » or d2 lw-, , • .. , or d2 t y , it follows that 
i ̂ s 0 i ̂ s l * ^a,r - 1 

app^s,K-i f° r a -̂ least one n, 0 <_ n < r. 
p K 

Therefore stf-Jj f e F, and so S X ^ > e F. This completes the proof of Theorem 

At this point, Hilton considered identities obtained from the binomial 
theorem. The corresponding application of the multinomial theorem to the 
roots arj of the auxiliary equation seems too complicated to pursue, though 
it is possible. 

Another approach is to modify the method of Williams [10]: let 

e = exp(2^Tf/p), where i2 = -1, 
and as before 

v 
d = II (arj- - ark). 

j >k 
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If we let 
r - l 

arj = \ HWS+ld k Z~jk ' (J * 1 , 2 , . . . , 20 , 
fc = 0 

then it is shown in Shannon [9] that 

r-l 

arj l Z-rf wksn+ra b » 
fe = 0 

which seems to be a more useful form than the corresponding multinomial ex-
pression. 
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DEGENERACY OF TRANSFORMED COMPLETE SEQUENCES 
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and 
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Universite Laval, Quebec, Canada 

1. INTRODUCTION 

A sequence S ~ \si\i«i 2 ... °f natural numbers is said to be complete 
(see [4]) if every positive integer can be represented as the sum of distinct 
terms of S. If, furthermore, the sequence is nondecreasing and begins with 
sx = 1, then a necessary and sufficient condition in order that S be complete 
is: 

n 
sn + i 1 1 +Y1 si> for n > 1 (see [2]). 

Note that this condition includes the possibility that some members of S may 
be equal, thus corresponding to a representation in which certain terms may 
be repeated, as has been considered [1]. 

It is shown in [3] that completeness is preserved under certain trans-
formations of 5, an example of which is x -> <(ln #>, where In x is the natural 
logarithm of x and <ln x)> is the smallest integer greater than In x. Two 
complete sequences to which this transformation is applied are the Fibonacci 
sequence and the sequence of prime numbers (with 1 included). 

We will develop here conditions, on S and the transformation considered, 
which guarantee that the transformed sequence is degenerate in the sense that 
it includes all natural numbers (and hence is complete). The above two se-
quences, discussed in [3], satisfy our conditions. 

2. DEGENERACY 

To ensure that a transformed sequence be a sequence of natural numbers, 
as well as complete, we use the following operation: 

Vt^^Ctlon: For x a real number <#> is the smallest integer strictly greater 
than x. 

Lemma: If x, y , and z are real numbers such that 0 <. x - y <. z, then 

0 < <*> - <y> < * + 1. 
VKOOJi By the definition of <•>, 

< » - 1 <_ x < < » and <z/> - 1 <y < <y>, 
hence, z >. x - y > <#> - 1 - <z/>. 
Clearly, x >_ y implies <#> >̂  <#>• 

We now use this property in the proof of our fundamental result. Note 
that the sequence S need not be complete. 

*Partially supported by Grant A4025 of the Conseil National de Recherches 
Canada. 

**Partially supported by Grant 5072 of Laval University. 
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Tfieo/Lem: Let S = {s^L=is 2,... t>e a sequence of natural numbers and let / be 
a real-valued nondecreasing function defined on S such that 

lim fist) = °°. 

If there exists an I such that for all i >_ I, f(s^ + 1) - f{si) <_ 1, then the 
set A = Kf(Si)>\i = 1, 2, . ..} contains {M9 M + 1, .. . } , the set of all in-
tegers greater than M - 1, where M = Kf(sT)y. 

VK.00^ For any i- >_ I, since / is nondecreasing, 

0 < f(si+1) - f(Si) < 1. 
Thus, by the lemma 

0 l</(si + 1)> - <f(Si)> < 2; . 
that is, / 

\ <f(Si)> 
<f(si+1)> = < 

( < / ( s i ) > + 1 . 
But since lim fis^) = °°  the transformed sequence 

{</<«<»}i-1.2,... 
cannot remain eventually constant and so'A "D {M, M + 1, ...}. 

Of particular interest is the case when 0 £ f(Sj) < 1: the set A becomes 
the set IN of all natural numbers. For example, if 

S = {1, 2, 3, 4, 11, 12, 13, ..., n, ...} 

and f = ln9 the transformed sequence is IN. Note that in this example 

s5 = 2.75s4 > e • s^. 

CoKolIxUtij 7» Let 5 = -J s^L =lj 2, ... be a nondecreasing sequence of integers 

with S-, = 1 and lim s„- = °°. If a is a real number > 1 such that s- ,1 £ as , 

for all i >. 1, then: 

{<ln2?si> |i = 1, 2, 3, . . .} =//!/, for all b > a. 

VtiOO^' The conditions of the theorem are met with 

M = <ln2,l> = 1 

and 0 £ ln,s.+1 - l n ^ £ ln^a £ 1, for all £ 21 1. 

Examptt 1»' If a is an integer >. 2 and 

s^ = ^ " 1 for i = 1, 2, ..., 

then clearly {<lnaa^ _1>} = IN. 

Exempts 2: If a = e (so lna becomes the natural logarithm In) and 

S = {1, 2, 3, 5, 7, 11, . . . } , 

the prime numbers with 1 included, the transformed sequence passes through 
all natural numbers. The inequality condition of the corollary is satisfied 
by virtue of Bertrandfs postulate p < 2p , where p is the nth prime [5]. 
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Examptd 3** Again, if a = e but with the sequence S now the sequence of Fico-
nacci numbers, the image is still IN, for 

v (1 + /5) _ , (l - /5 V , (l + /5 , A_ ^ _ 
n̂+1 = 2 * F" + \ 2 / V 2 " 7 ^ eF"B 

Exampte. 4'* Kin L„>|n = 1, 2, ...}= IN where Ln are the Lucas numbers. 

The last three examples in fact satisfy the stronger conditions of: 

CoXoZtd/iy 2: Let 5 = ^ L = 1 2 be a nondecreasing sequence of integers 

starting s £ 2, s9 £ 7, with lim Sv = °°, and satisfying the inequality 

s n + 2 1 sn+i + sn, n :> 1. 

Then {<ln e^>|i = 1, 2, .. . } = IN. 

^LOO£: If sn + 2 £ sn + 1 + sn, then 3 „ + 2 < 2 • s„ + 1 < £ • sn+v 

The theorem guarantees 

{<ln sny\n = 2, ...} = {M, M + 1, ...} 

where A/ = <ln s2> £ <ln 7> = 2. 

And the condition on s1 ensures <̂ ln Sj) = 1. 

Note that Example 2 satisfies the conditions of Corollary 2 since, for 
the primes p. £ p.,, +p.. (See, for example [5, p. 139].) 

CotioUUUiy 3: Let 5 = {s{,}9 'L =. 1, 2, 3, ... be a nondecreasing sequence of 
integers with Sj = 1 and lim s^ = oo. Let a and Z? be two positive integers 

-£-*•<» 

such that s^+2 — asi+i + ^si f° r a H ^ — 1- Then 

{<ln0s^>|i = 1, 2, 3, ...} =/il̂  for all c > a + 2>. 

PsiOO^: Since s^ + 2 £ (a + Z?)s^+1 for all £ _> 1, we have 
0 £ ln<?st+2 - lnes^+1 £ lna(a + i) £ 1. 

Furthermore, M = <lncl> = 1. Hence, all the conditions of the theorem are 
met. 

3. CONCLUDING REMARKS 

As can be found in [3], there exist transformations which do not degen-
erate complete sequences, e.g., the Lucas transformation and the function 

fix) = or, where 0 < a < 1. 

We note that even the quantized logarithmic transformation, x -> <ln x>, does 
not itself produce degeneracy as is shown by a complete sequence that begins 
1, 2, 3, 4, 5, 6, 22, ... . ' 

Another example of an explicit function which sometimes degenerates se-
quences is Jl(x) , the number of primes not exceeding the real number x. It is 
clear that this function degenerates the sequence of primes itself; as would 
the counting function of S, an arbitrary (countable) sequence, degenerate S. 
However, the image of the Fibonacci numbers under II is not IN, since 11(8) = 4 
but 11(13) = 6. 
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All the sequences above are complete (although repetitions must be per-
mitted in Example 1 if a > 2), but the theorem does not assume completeness. 
We conclude with an example of a sequence which is not complete but by an im-
mediate application of Corollary 1 is seen to be transformed into IN under 
f(x) = In x. The sequence in question is s2 = 1, s2 = 2, and for n >_ 3 , 
sn = 5 • 2 . To see that this sequence is not complete, observe that 

5 • 2 - 1, for n >_ 3, 

can never be expressed as the sum of distinct terms of the sequence. 
Finally, we would like to sincerely thank Professor Gerald E. Bergum for 

suggesting many improvements in the content and presentation of this article. 
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FINDING THE GENERAL SOLUTION OF A 
LINEAR DIOPHANTINE EQUATION 

SUSUMU M0RIT0 and HARVEY M. SALKIN* 
Case Western Reserve University, Cleveland, OH 44106 

ABSTRACT 

A new procedure for finding the general solution of a linear diophantine 
equation is given. As a byproduct, the algorithm finds the greatest common 
divisor (gcd) of a set of integers. Related results and discussion concern-
ing existing procedures are also given. 

1. INTRODUCTION 

This note presents an alternative procedure for computing the greatest 
common divisor of a set of n integers al9 aZ9 ..., an, denoted by 

gcd (a19 a29 . . . 9 an), 

"kThe authors would like to express their appreciation to Professor Dong Hoon 
Lee (Department of Mathematics, Case Western Reserve University) for his time 
and helpful discussions. 

Part of this work was supported by the Office of Naval Research under con-
tract number N00014-67-A-0404-0010. 
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and for finding the general solution of a linear diophantine equation in which 
these integers appear as coefficients. A classical procedure for finding 
the gcd of integers is based on the repeated application of the standard 
Euclidean Algorithm for finding the gcd of two integers. More specifically, 
it repeatedly uses the argument: 

gcd (al9 a2, ..., an) = gcd (gcd (a1? a 2 ) , a3, ..., a n). 

A more efficient algorithm, which is related to the procedure presented 
here for computing the gcd was given by Blankinship [1] . Weinstock [2] de-
veloped a procedure for finding a solution of a linear diophantine equation, 
and Bond [3] later showed that the Weinstock Algorithm can be applied repeat-
edly to find the general solution of a linear diophantine equation. 

In this note, we present an alternative approach to finding the general 
solution, and show that the algorithm produces (n - 1) n-dimensional vectors 
with integer components whose integer linear combination generates all solu-
tions which satisfy the linear diophantine equation with the right-hand side 
0. We call a set of these (n - 1) "generating" vectors a generator. It is 
easy to show that the generator is not unique for n >_ 3. In fact, for n _> 3 
there exist infinitely many generators. The proposed algorithm has certain 
desirable characteristics for computer implementation compared to the Bond 
Algorithm. Specifically, the Bond Algorithm generally produces generating 
vectors whose (integer) components are mostly huge numbers (in absolute val-
ues). This often makes computer implementation unwieldy [5]. The approach, 
presented here, was initially suggested by Walter Chase of the Naval Ocean 
Systems Center, San Diego, California, in a slightly different form for solv-
ing the radio frequency intermodulation problem [4], 

For illustrative purposes, we will continuously use the following exam-
ple with n = 3: 

(al9 a29 a3) = (8913, 5677, 4378). 

Or, we are interested in the generator of: 

8913x1 + 5677#2 + 4378#3 = 0. 

It turns out that the Bond Algorithm [3] produces the two generating 
vectors (5677, -8913, 0) and (2219646, 3484888, -1), whereas the procedure 
we propose gives (cf. Section 3) (-57, 17, 94) and (61, -95, -1). 

Three obvious results are given without proof. Throughout this paper, 
we assume that the right-hand side of a linear diophantine equation a0 , if it 
is nonzero, is an integer multiple of d = gcd (a1, a2, • ••> a n ) . This is be-
cause of the well-known result [6] which says that a linear diophantine equa-
tion has a solution if and only if a0 is divisible by d, and if d divides aQ 
there are an infinite number of solutions. 

Lzmma 1.' Consider the following two equations: 

(1) alxl + a2x2 +••• + anxn = 0; 

(2) a1x1 + a2x2
 + •••' + ccnxn = a0. 

Assume that (xF , . .. , xF ) is the generator of (1). Then, all solutions 
x = (x^) of (2) can be expressed in the form 

(3) x = x° + k^p + k2xF + ... + kn_xxF , 
where x° is any solution satisfying (2) and kl9 k29 ..., kn^1 are any inte-
gers . 
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Lmma. 2: If a[ =a1 + l2a2 + £3#3 +•• • • +lnan for some integers £2, £3, , £n, 
then gcd (ax, a2, ..., an) = gcd (a{, a2, ..., an). 
Lemma 3»* If ax + i2a2 + £3a3 + • • • + Znan = 0 for some integers £2 , £3, ... , £n, 
then gcd (ax, a2, . .., an) = gcd (a2, . .., an). 

Notice, for example, Lemma 3 is true because if 

d = gcd (a2, . . . , a„) 
then 

Thus, 

I 2-*^) * d9 for some integers £^(2 <_ £ <. n). 
\i=2 / 

gcd (a2, a2, ..., aw) = gcd (al9 d) = d. 
Finding the general solution of a linear diophantine equation having a 

right-hand side different from zero (say a0 ^ 0) is straightforward, because 
of Lemma 1, if the generator and one solution for (2) is known. The algorithm 
we propose first finds a solution, say xd

9 for the linear diophantine equa-
tion with right-hand side d = gcd (al9 a2, ..., an) as well as the generator. 
Then a solution for (2) can be found as (a0/d)xd. 

2. THE ALGORITHM 

We now present the algorithm to find the general solution of the linear 
diophantine equation (2). The method is based on Lemma 1, namely, it finds 
the generator (xF , xF , ..., ̂ Fn.x ) °f (1) a s well as any one solution x° of 
(2), so that any solution of (2) can be expressed as in (3). A solution x° 
of (2) is found as a by-product of finding the generator. We list the steps: 

Step 0. Set k = 1, b[X) = a19 &2(1) = a2, ..., b„ = an9 and N = n. 

Also let 

x{b[X)) = (1, 0, ...., 0), x(bi1}) = (0, 1, 0, ..., 0), ..., 

xib™) = (o, ..., o, l), 

where x{b) denotes the solution of (2) with right-hand side 
a0 = b. 

Stdp 7. Find i n t e g e r s £ 2 , £ 3 , . . . , &N so t h a t they s a t i s f y 

J , w 

^ 2 

= 
= 

l2bz
m 

£,*,<» 
+ 
+ 

r2> 

^ 3 > 

0 
0 

<_ 
< 

?2 

^ 3 

< 
< 

2>2<*> 

&,<» 

and thus 

^ - 1 = V ^ + V 0 <r„ -&{ < 6iW, 

><*> = £2fc2
(k) + il3&3

(fe) + • . . + &wb™ + b[. 

Step 2 . Find a s o l u t i o n #(&J) for a a: + a2x2 + ••• + anxn = bf as 
f o l l o w s : 

aK&J) = xQ><M) - £2*«>2
( / c )) - l3x(b™) - . . . - ZNx(b^k) ) . 
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Stzp 3. If b[ = 0, x(b[) is one of the generating vectors. Elimi-
nate one variable, i.e., N - N - 1, and set 

b«+1) - i « \ b«+1) = b™ (k+D _ - m 
'1 ~~ u2 

If N = 1, go to Step 4 (termination). If N > 1, increment 
the iteration count (i.e.,k = k + 1) and return to Step 1. 

If b' ± 0, set b\ (k+l) -&£*>, £ 2
( k + 1 ) 

fe- + 1 and return to Step 1. 

St&p 4. 

Ak) h(k+l) = h , 

We now have (n - 1) generating vectors for (1), and b\ 
is the gcd (a2, a2, ..., a n). A solution for (2) can be 
found as 

a0 

fc(*+D 
x(b«+1)) 

,<*) 

a1x1 + #2^2 + 

j« . .o , &2
(fe) ^ o , . . . . . . i A ' 

+ <2nXn 0; 

Stop. 

We now give three results which show the validity of the algorithm. 

TktQKQJfn 1: There is a one-to-one correspondence between the solutions of (4) 
and (5): 

(4) 

(5) 

Here b±K) ^ 0 , b^K) ^ 0 , ...., b^} + 0 correspond to the values obtained for 
bi in the kth. iteration of Step 1, as far as N - n. 

VKOO^' Consider the following two equations corresponding to any two consec-
utive iterations of the algorithm: 

+ b(k) u ^ un Hn 0. 
(*) 

(*),.(*) ,<*>,.<*> (kth i t e r a t i o n ) b^' y\K) + b™y± 

( k + l s t i t e r a t i o n ) (b\ (k) iMk) - -WPW + V + bPy?*1* 
+ &J*).vi*+1) - 0. 

The second equation can be wr i t t en as 

i l
< f c ) i / 1

( k + 1 > + i a
( * ) ( » 2

< k + 1 ) - * 2 y 1
( * + 1 > ) + -

This means 
' (fc) = W(fe+D w (fe) = ^ ( f c + l ) _ 0 y & + V 

y 1 y l > y2 #2 2 " i . ! 

Using vector-matrix no ta t ion , we have 

+ ^ ( y „ ( f c + 1 ) 
^nU \ 

(k+l) 

•2/n 
(*) 

J/n 
(k+l) 

W 
(k+l) 

,(fc) 

(fc+l)> 

#2 

(k+l) 

Ty (k+l) 

Notice that |det T\ (i.e., the absolute value of the determinant of T) - 1. 
We now show inductively on k that there exists a matrix M such that 
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x 2 
Mym 

which satisfies |det M\ = 1. Clearly, for the first iteration, T = M and 

|det T\ = |det M\ = 1. 

Assume that there exists a matrix Mr with |det MT\ = 1 such that x = Mry . 

Substituting y(7c) = 572/(k+1), we get x = MfTy^k+1). As 

| det (MfT) | = |det Af'| x | det T\ = 1. 

Thus, x = My(k+1) where A? = Af'27 and | det M| = 1. 
It is well known (e.g., see [7]) that, if there exists a matrix M such 

that x - My with |det M\ - 1, there is a one-to-one correspondence between 
the solutions x and z/. Thus, the theorem is proved. Q.E.D. 

lk<LOh,QM 2: If (yF , z/̂, , ... , yF ) is the generator of (5) , the correspond-
ing (xp , xF , ...,xF ) is the generator of (4). 

• c l i 7 2 n - 1 

RjLOO_£: Assume that (xF , xF , .. . , xF ) is not the generator of (4). Then 
there exists a solution vector x satisfying (4) such that it cannot be ex-
pressed as an integer linear combination of xF , xp , .. . , Xp . However, 
because of the one-to-one correspondence (Theorem 1) , there exists a unique 
y which corresponds to x (i.e., My = x), and there are integers 3i, $2> •••» 
3M_i such that y = 3 ^ + &2yp + . . . 4- S>.n_1yFn x as (yF , yp , . . . , z/F ) 
is the generator. However, 2 "~1 1 2 

x = My <* ^ ( 3 ^ + 3 ^ + ••• +'Bn.i2/Fn.1 > 

= 3 ^ + 32^F2 + ... + K-IXFH_X > 
and thus a contradiction. Q.E.D. 

Tkzofi&m 3: Assume that £Z = gcd (ax, a2, — , an) = gcd (a2, ..., an) . Then 
the general solution of (6) can be expressed as x = kx° + xf, where k is an 
integer, x° any solution of (7), and xT the general solution of (8). 

(6) aix\ + ^2^2 + •.. + anxn = 0 ; 

(7) aY + a2x2 + ... + anxn = 0; 

(8) a2x2 + ••• + anxn = 0. 

P/L00̂ : Since <i divides ax, we have, for l integer, ax = id, and thus there 
are solutions x2, #3, .. . , #n to (7). This means (6) has solutions when x1 is 
fixed to any integer. Clearly, x° is any such solution to (6) in which xx -
1. Observe that all solutions for (6) can be characterized by fixing xx to 
any integer k and solving (6) in the remaining variables, x^, #3? ...? xn. 
More specifically, for x1 fixed to k, we want all solutions which satisfy 

(6)' a2x2 + ... + anxn = -axk. 
From Lemma 1, however, solutions for (6) f can be expressed as a sum of a 
solution for (6)' and the general solution for (8). Thus, 
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x = kx° + (fcjffj, + k2xF + ... + kn_2xF ) 

is the general solution for (6) for integer, k19 k2, ..., kn_l9 where kx°is 
a solution satisfying (6) f and (xF 9 xp 9 ...9xF ) is the generator of (8) 
with xx = 0. Setting l 2 n'2 

n-2 

i-1 

means that #' is any solution to (8), and hence the result. Q.E.D. 

3. EXAMPLE AND DISCUSSION 

Table 1 lists the computational process for finding the generator (xp , 
xp ) for a 3-variable diophantine equation with the right-hand side equal to 
zero. The two vectors 

and 

form the generator. 
From Theorem 1, there is a one-to-one relationship between (9) and (10): 

(9) 8913a: 2 + 5677x2 + 4378*3 = 0; 

(10) 10z/2 + 5y2 + 3z/3 = 0. 

The relationship is x = My 9 where 

M 

From Theorem 2, the generator (y„ , y p ) of (10), if found, will be translated 
to the generator * 2 

(xF 9 x.F ) = (MyF , Mz/F ) 

of (9). 
Iteration 10 of the algorithm (cf. Table 1) finds a solution 

y = 

for (10), and from Theorem 3, the general solution for (10) can be found as 

fc{-2 J + y \ where y > = ( y 2 J 

is the general solution for (10) with y 1 = 0. Iterations 11 through 13 are 
performed to find the general solution for 

(11) 5y2 + 32/3 = 0. 
It can easily be checked that the general solution for (11) is 

y' = i 

- 3 
- 3 
10 

27 
-10 
-42 

4 \ 1 3 J , 
- 2 5 / 

, |det M\ = 1. 
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Thus, 

(i) md (J) 
form a generator for (10). 

TABLE 1. ALGORITHM COMPUTATIONS 

Iteration 
k 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

b[k) = 

8913 = 
5677 = 
4378 = 
3236 = 
1299 = 
1142 = 
638 = 
157 = 
33 = 
10 = 
5 = 
3 = 
2 = 

l2b™ 

1(5677) 
1(4378) 
1(3236) 
2(1299) 
1(1142) 
1 (638) 
4 (157) 
4 (33) 
3 (10) 
2 (5) 
1 (3) 
1 (2) 
2 (1) 

+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

i ^ 

0(4378) 
0(3236) 
0(1299) 
0(1142) 
0 (638) 
3 (157) 
0 (33) 
2 (10) 
0 (5) 
0 (3) 

+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

K 
8913 
5677 
4378 
3236 
1299 
1142 
638 
157 
33 
10 
5 
3 
0 
2 
1 
0 

*i 

1 
0 
0 
1 
0 
-1 
1 
1 
-5 
-3 
27 
4 

-57 
23 
-19 
61 

x2 

0 
1 
0 
-1 
1 
1 
-3 
0 
4 
-3 
-10 
13 
17 
-23 
36 
-95 

x3 

0 
0 
1 
0 
-1 
1 
2 
-2 
5 
10 
-42 
-25 
94 
-17 
-8 
-1 

In general, whenever the final remainder (i.e., br) of Step 1 in each 
iteration becomes 0, we obtain a vector which is one of the n - 1 generating 
vectors, and the size of problem (i.e., the number of variables) is reduced 
by 1. 

Theorem 3 shows that this elimination of one variable at a time guaran-
tees the generating characteristic. After the problem is reduced, the same 
arguments (i.e., Theorem 1-Theorem 3) will be applied to the reduced problem, 
sequentially. Eventually, a 2-variable problem will be solved which yields 
the (n - l)st or last generating vector, and the process terminates. 

From Lemmas 2 and 3, the last nonzero remainder in the algorithm gives 
the greatest common divisor of a19 a29 ..., an. In the example, detailed in 
Table 1, the last nonzero remainder is 1 and is the gcd of 8913, 5677, and 
4378. To see this, note that 

gcd (8913, 5677, 4378) = gcd (10, 5, 3) 

by Lemma 2 which, in turn, is equal to gcd (5, 3) by Lemma 3, Repeating the 
same argument gives 

gcd (5, 3) = gcd (3, 2) = gcd (2, 1) = gcd (1) = 1, 

or 

gcd (8913, 5677, 4378) = 1. 
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Finally, Table 1 displays a solution for the equation with the right-
hand side equal to 1 = gcd (8913, 5677, 4378). The general solution for the 
equation with the right-hand side a0 can then~be expressed as: 

"•(~i)+,:>Cl)+**(-!)• 
where kl and kz are integers. 

REMARKS 

1. An examination of the algorithm indicates that the divisions in Step 1 
can be made computationally more efficient by using the least absolute remain-
der rather than the positive remainder. Specifically, we find %i (i = 2, ..., 
N) such that \r^\ is minimized (0 <. \ri \ <_ b>') in Step 1, rather than using 
vi , where 0 <_ ri <_ b^. This change allows the proofs of the theorems to go 
through essentially unchanged. 

2. The preceding discussion can be used to show that the Blankinship Also-
rithm [1] for finding the gcd of n integers will also find the general solu-
tion of a linear diophantine equation. Specifically, the algorithm presented 
here can be regarded as a modified Blankinship Algorithm where the modifica-
tion is in selecting the operators (according to Blankinship!s terminology). 
The Blankinship Algorithm, on the other hand, can be regarded as a special 
case of our method where i2 =^3 = ••• = &n_i = 0 in Step 2 of the algorithm 
presented here. 
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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn + 2 = Fn + 1 + F
n> F0 = 0, F: = 1 

and 
Ln + 2 = Ln+1 + Ln-> L0 = 2> Ll = 1-

Also, a and b designate the roots (1 + /5)/2 and (1 - /5)/2, respectively, of 
x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-412 Proposed by Phil Mana, Albuquerque, NM 

Find the "least common multiple of the integers in the infinite set 

{29 - 2, 39 - 3, 49 - 4, ..., n9 - n, ...}. 

B-413 Proposed by Herta T. Freitag, Roanoke, VA 

For every positive integer n, let Un consist of the points j + he 7Tt/3 
in the Argand plane with j e {0, 1, 2, . . . , n} and k £ {0, 1, ..., J*}. Let 
T(n) be the number of equilateral triangles whose vertices are subsets of Un. 
For example, T(±) = 1, T(2) = 5, and TO) = 13. 

a. Obtain a formula for T(n); 
b. Find all n for which T(n) is an integral multiple of 2n + 1. 

B-414 Proposed by Herta T. Freitag, Roanoke, VA 

Let Sn = Ln + 5 + ( ^jLn + 2 ~ ̂  \2/Li ~ llm D e t e r m i n e a 1 1 n i n ^2» 3' 4> 

...} for which Sn is (a) prime; (b) odd. 

B-415 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA 

The circumference of a circle in a fixed plane is partitioned into n arcs 
of equal length. In how many ways can one color these arcs if each arc must 
be red, white, or blue? Colorings which can be rotated into one another should 
be considered to be the same. 

369 
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B-416 Proposed by Gene Jakubowski and V. E. Hoggatt, Jr. 
San Jose State University, San Jose, CA 

Let Fn be defined for all integers (positive, negative, and zero) by 

F0 = 0, F1 = 1, Fn + 2 = Fn + 1 + F„, 
and hence 

Fn = Fn + 2 ~ Fn+1 ' 

Prove that every positive integer m has at least one representation of the form 

N 

m = Z aiFj> 
-N 

with each a^ in {0, 1} and a^ = 0 when j is an integral multiple of 3. 

B-417 Proposed by R. M. Grassl and P. L.Mana 
University of New Mexico, Albuquerque, NM 

Here let [x] be the greatest integer in x. Also, let f(n) be defined by 
f(0) = 1 = fa); /(2) = 2, /(3) = 3, and 

fin) = f(n - 4) + [1 + in/2) + (n2/12)] 

for n e {4, 5, 6, ...}. Do there exist rational numbers a, b9o, d such that 

fin) = [a + bn + on2 + dn3]l 

SOLUTIONS 

Partitioning Squares Near the Diagonals 

B-388 Proposed by Herta T. Freitag, Roanoke, VA 

Let Tn be the triangular number n(n + l)/2. Show that 

Tx + T2 + T3 + ... + Tln_x= l2 + 32 + 52 + ... + (2w - l) 2 

and express these equal sums as a binomial coefficient. 

Solution by Phil Mana, Albuquerque, NM 

It is readily seen that 2\ = 1 = l2 and T2k + T2k+1 = ilk + l) 2 for ̂  = 
1, 2, ... . The displayed equation then follows. Next one notes that 

*.+*, + • • • + * , . . , - (D* a ) * • • • • ( ? ) 

- ( 3 ) • [ ( $ ) - ( 5 ) ] • • - • [ ( * , " ) - f t ) ] 
= (2-3+1)-

Alsp solved by Paul Bracken, Wray G. Brady, Paul S. Bruckman, R. Garfield, 
Hans Klauser (Switzerland), Peter A. Lindstrom, Graham Lord, Ellen R. Miller, 
C. B.A. Peck, Bob Prielipp, A. G. Shannon (Australia) , Sahib Singh, Paul Smith, 
Lawrence Somer, Rolf Sonntag (W. Germany), Gregory Wulczyn, and proposer. 
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Transformed Arithmetic Progression 

B-389 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Find the complete solution, with two arbitrary constants, of the differ-
ence equation 

(n2 + 3n + 3)Un+2 - 2(n2 + n + l)Un+1 + (n2 - n + l)Un = 0. 

Solution by Paul S. Bruckman, Concord, CA 

Let 

(1) Vn = (n2 - n + l)Un. 

Then, Vn + 1 = in2 + n + l)Z7n + 1 , Vn + 2 = (n2 + 3n + 3)Un + 2 , and so 

(2) ^ + 2 " 2K + i + Vn = 0, 
or 
(3) A27n = 0. 

It follows that Vn = an + b, for some constants a and £>. Note that 

V0 = b = U0i and 7X = a + fc = Ux. 

Hence, b = U0 and a = U1 - UQ, which implies 

(#! - 270)n + tf0 
(4) 

w + 1 

Also solved Jby P/ray G. Brady, R. Garfield, C. B. A. Peck, Sahib Singh, Paul 
Smith, and proposer. 

Generating Diagonals of Pascal's Triangle 

B-390 Proposed by V, E. Hoggatt, Jr., San Jose State University, San Jose, CA 

Find, as a rational function of x9 the generating function 

J. Solution by Ralph Garfield, College of Insurance; Graham Lord, Universite 
Laval; and Paul Smith, University of Victoria (independently). 

Gk(x) is well known to be (1 - x)'*'1 . (Consider the Taylor series or 
Newton binomial expansion of this latter function.) 

II. Solution by Wray G. Brady, Slippery Rock State College; Robert M. Giuli, 
University of California, Santa Cruz, and Herta T. Freitag, Roanoke, VA 
(independently). 

First we show the identity Gk(x) = Gk_1(x)/(1 - x) or 

Gk ±(x) = (1 - x)Gk(x). 

a - ™ 0 - (*) + [(*?) - (*)>• [ e n - (krp • ... 
(continued) 
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Now an induction will show Gk(x) - 1/(1 - x)k + 1 since GQ(x) = 1/(1 - x). 

JJJ. Solution by Paul Bracken (Toronto); Phil Mana; and C. B.A. Peck (inde-
pendently) . 

Let Fk (x) = (1 - x)'k"1 . Then one readily sees that 

F0(x) = (1 - x)~l = G0(x), Fk(0) = 1 = Gk(0), 

dFk(x)/dx = (k + l)j?j£ + 1(a;), dGk(x)/dx = (k + l ) ^ + 1(ar). 

Using integration and induction, one establishes that 

£fe(a0 = Ffc (a?) = (1 - ^ ) " f e " 1 for k = 0, 1, 2, ... . 

Also solved by Paul S. Bruckman, A. G. Shannon, Sahib Singh, Gregory Wulczyn, 
and proposer. 

Approximations to Root Five 

B-391 Proposed by M. Wachtel, Zurich, Switzerland 

Some of the solutions of 5x2 + 1 = y2 in positive integers x and y are 
(x,y) = (4,9), (72,161), (1292,2889), (23184,51841), and (416020,930249). Find 
a recurrence formula for the xn and z/„ of a sequence of solutions (xn ,yn) and 
find lim (xn + 1/xn) in terms of a = (1 + /5~)/2. 

n -»-oo 

Solution by Paul S. Bruckman, Concord, California 

The Diophantine equation 

(1) y2 - 5x2 = 1 

is a special case of the general Pell equation: y2 - mx2 = 1, where m is not 
a square. From the theory of the Pell equation, it is known that (1) possess-
es infinitely many solutions, and indeed that all of the solutions (xn9yn) in 
positive integers are given by the relation: 

(2) yn + xn/5 = (y1 + x^5)n , n = 1, 2, 3, ..., 

where (x19y1) is the minimal solution. 

We readily find that (a? ,2/ ) = (4,9). Let A = 9 4- 4 A and 5 = 9 - 4/5". Note 

^that A = (2 + /5) 2 = a6 and 5 = 4"1 = b6. Since z/n -xn/5 =Sn, it follows that 

2/n = Un + 5n)/2 = (a6n + £6n)/2, and 

ajn = -±=(4" - Bn) = a 6
7 , or 

2/J 2 (a - 2>) ' 

O) C»n.2/„> = (i *•<;„. I^en). " = L 2» 3. ••• • 
Since (2 - 4)(s - 5) = s2 - 18s + 1, it follows that xn and yn satisfy 

the common recursion: 



1979] ELEMENTARY PROBLEMS AND SOLUTIONS 373 

(4) zn+2 - 18sn + 1 + zn = 0. 
(A

n+1 _ B
n+1 

Moreover, L - lim (x /xn) = lim I = — 1 = A, since 4 > 1 , 0 < B < 1 , 
i.e., n"°°  n"w \ A " B 

(5) L = a 
Also solved by .Wray G. Brady, C. B.A. Peck, A. G. Shannon, Sahib Singh, Paul 
Smith, and proposer. 

Half-Way Application of {E2 - E - 1)2 

B-392 Proposed by Phil Mana, Albuquerque, NM 

Let Yn = (2 + 3n)Fn + (4 + 5n)Ln. Find constants h and & such that 

Solution by Graham Lord, Universite Laval, Quebec 
Yn+2 - Yn + i - rn = (2 + 3n + 6)Fn + 2 +(4 + 5n + 10)Ln + 2 - (2 +3n + 3)Fn + 1 

- (4 + 5n + 5)Ln + 1 - (2 + 3n)Fn - (4 + 5n)Ln 

= 6 F n + 2 - 3Fn + 1 + 10L n + 2 - 5Ln + 1 = 20Fn + 14Ln. 
Thus 7z = 20 and fc = 14. 

Also solved by Paul Bracken, Paul S. Bruckman, Herta T. Freitag, Ralph Gar-
field, John W. Milsom, C. B.A. Peck, Bob Prielipp, A. G. Shannon, Sahib Singh, 
Paul Smith, Rolf Sonntag, Gregory Wulczyn, and proposer. 

Triangle of Triangular Factorials 

B-393 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA 

Let Tn = (" + 1 ) , P0 = 1, Pn = TXT2 . . . Tn f or n > 0 and |jj] = PnlPkPn_k 

for integers k and n with 0 £ fc £ n. Show that 

fnl 1 /n\/n+l\ 

UJ n - k + l U / U + i r 
Solution by Paul S. Bruckman, Concord, CA 

n n 
Pn = I I Tv = I I &(& + D / 2 = 2 " n n ! ( n + 1) ! There fo re 

fc-i * * - i 

[j] n\(n + l ) !2 f e 2 n " f e 

PfePn-fc 2n£!(£ + 1)1 (n - k)\(n + 1 - k)\ 

(n + 1)1 _ (Mill) 
k\ (n - k)! (fe + 1)! (w + 1 - &)! n - & + 1 " 

Also solved by Herta T. Freitag, Ralph Garfield, Peter A. Lindstrom, C. B.A. 
Peck, Bob Prielipp, A. G. Shannon, Sahib Singh, Paul Smith, Gregory Wulczyn, 
and proposer. 

***** 
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H-307 Proposed by Larry Taylor, Briarwood, NY 

(A) If p = ±1 (mod 10) is prime, x = /B", and a = .7 (mod p) , prove 

that a, a + 1, a + 2, a + 3, and a + 4 have the same quadratic character mod-
ulo p if and only if 11 < p = 1 or 11 (mod 60) and (-2x/p) = 1. 

(B) If p = 1 (mod 60), (2x/p) = 1, and b = ~ 2 ^ J ^ 5 ) (mod p), then b, 

b + 2, b + 3, and b + 4 have the same quadratic character modulo p. Prove 
that (llab/p) = 1 . 

H-3O8 Proposed by Paul Bruckman, Concord, CA 

K ?n(ai' a2> ••" Un) 
Let [a , a , . . . , an] = — — 7 - — r deno te t h e n t h conve r -

gent of t h e i n f i n i t e s imple con t inued f r a c t i o n [al9 a2, . . . ] , n = 1, 2 , . . . . 
A l s o , d e f i n e p 0 = 1, ^ 0 = 0. F u r t h e r , d e f i n e 

(1) Wn>k = p n ( a x , a 2 , . . . , a n ) q f e ( a 1 5 a 2 , . . . , afc) 

- pk ( a x , a 2 , . . . , ^ f e ) ^ n t o 1 5 az* • • •» a ^ ) 

P n ^ " Pk<7n> 0 < fc < n . 
Find a general formula for Wn>^. 

H-309 Proposed by David Singmaster, Polytechnic of the South Bank, London, 
England 

Let f be a permutation of {l, 2, ..., m - 1} such that the terms i+f(i) 
are all distinct (mod m). Characterize and/or enumerate such /. [Each such 
/ gives a decomposition of the m(m + 1) m-nomial coefficients, which are the 
nearest neighbors of a given m-nomial coefficient, into m sets of m + 1 coef-
ficients which have equal products and are congruent by rotation—see Hoggatt 
& Alexanderson, "A Property of Multinomial Coeffieients," The Fibonacci Quar-
terly 9, No. 4 (1971):351-356, 420-421.] 

I have run a simple program to generate and enumerate such /, but can 
see no pattern. The number N of such permutations is given below for m <_ 10. 
The ratio N/(m - 1)! is decreasing steadily leading to the conjecture that it 
converges to 0. 

37A 
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m 2 3 4 5 6 7 8 9 10 

N 1 1 2 3 8 19 64 225 928 

H-310 Proposed by V. E. Hoggatt, Jr. , San Jose State University, San Jose, CA 

Let a = (1 + /5)/25 [na] = an9 and [na2] = bn. Clearly, an + n = bn. 
a) Show that if n = F2m + 1, then an = F2m + 2 and £n = F2m+S. 
b) Show that if n = F2m, then an = F2m + 1 " * anc* ̂ « = ^im + i ~ *• 
e) Show that if n = -̂ 2ms then an = L2m + 1 and 2?n = ^2m + 2' 

d) Show that if n = £ 2 m + l 5 t n e n ^n = ^ 2 ^ + 2 ~ * a n d ^« = ^2m + 3 ~ 1 B 

SOLUTIONS 

EdAJtohslcit Uotzt Starting with this issue, we shall indicate the issue and 
date when each problem was proposed. 

Continue 

H-278 Proposed by V.E. Hoggatt, Jr., San Jose State University, San Jose, CA 
(Vol. 16, No. 1, Feb. 1978) 

Show J— = <3, 1, 1, ..., 1,6) 

n - 1 
(Continued fraction notation, cyclic part under bar.) 

Solution by Gregory Wulczyn, Bucknell University, Lewisburg, PA 
F 

D = -~— = L2 and remainder (-an"2 - |3n~2) 
n 

2 < D < 3 

10 < 5D < 15 

[/5D] = 3. 

(Fn5Fn + 1) = 1 implies (Fn,Fn + 2) = 1. /BF has a unique periodic C.F. expan-
sion with first element 3 and terminal element 6. 

^ + 1 - ^ - F „ 2 = L 2 n + 2 + 2 ( - l ) - 1 - L2n + 2 + (-1)% = (-1)", 

x = ^n + l* 1J = Fn 

is a solution of x2 - 5Dy2 = ±1. 
For the p. and qi convergents formed from the C.F. expansion of v5D to 

terminate with p -L _,, and q -F^^ the middle elements must be (n- 1) ones. 

Also solved by the proposer. 
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A Rare Mixture 

H-279 Proposed by G. Wulczyn, Bucknell University, Lewisburg, PA 
(Vol. 16, No. 1, Feb. 1978) 

Establish the F-L identities: 

(a) ^ n + 6 r ~ ^hr + *•' ^n + hr ~ ™n.+ 2r' * = ^ 2v™i+2> ™6r^hn+ 12r 

(b) ^n+er + 3 + (•k'tr + 2 *~ •*•' ^n+hr+2 ~ ^n + 2r + l^ "" ™n 

— jp p ~p jp 
2r + lr hr + 2 Sr + 3 hn + 12r+B' 

Solution by Paul Bruckman, Concord, CA 

LmmcL 1: L3m - (-l)mLm = 5FmF2m. 

Vtiooji L3m - (-l)mLm = a3m + b3m - (ab)m(am + bm) 

= (am - bm)(a2m -b2m) = 5FmF2m. 

Imma 2: 5(F* - **) = FU_VFU + V(LU_VLU + V - 4 ( - l ) w ) . 

VKooji 25Fh
u = (au -bu)h = ahu + bhu - h(-l)u(a2u + b2u ) + 6 . 

T h e r e f o r e , 

25<y£ - F%) = ahu - ahv + bhu - ^ - 4 ( - l ) * a 2 w + 4 ( - l ) a2 

- 4(- l )Mfc2" + h(-l)vb2v 

= (a2w + 2 y - b2u + 2v)(a2u~2v -b2u~2v) 

- ^(-l)uau + v(au-v - (-Dv-Uav-U) 
- 4 ( - l ) ^ w + y(Zpu"y - ( - l f V ' * ) 

- 5F2u + 2vF2u„2v - 4 ( - l ) * ( a » + y - bu + v)(au~» - bu~v) 
= 5F F - 20(-l)uF F 

J 2U+2V 2U-2V K J ^U + VL U-V 

= 5Fu+vFu-v(Lu+vLu-v " 4 ( - l ) ) , 

which i m p l i e s t h e s t a t e m e n t of t h e lemma. 
Umm±: ( - l ) % n + 1 = (-l)V3m /Fm . 
TMOj: ( - D % m + 1 = (-Dm(L2m + (-If) = (-lf(a2m + amba + b2m) 

I ~3m -u3m l -f7-

= (-l)m<^ = A _ U (-if -22.. 
( a" - 6" j F* 

Now 
^n+3m "" ( ( _ 1 ) L2rn + 1) P n + 2m ~ Fn + m) ~ Fn 

= —F F (L L - 4 C - n n + 3 m y 
5 3 m 1 2n + 3mK 3m 2n+3m *K 1J ' 

- {(-l)mL2m + l)jrFmF2n+3m (LmL2n + 3m - h(-l)n + 2m) 

(app ly ing Lemma 2 t w i c e , w i t h u = n + 3m, v = n and u = n + 2m, v = n + m) 

= 5" F2n + 3m^2n + 3m F3m^3m ~ ( ( " ! ) ^2m + ^)FmLm 
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~ 5 F2n + 3mLZn+3m(F3mL3m ~ ^ _ 1 ^ F3mLm) 

( app ly ing Lemma 3) 

= J F3mFkn + 6m(L3m " ( _ 1 ) L*) 

= FmFZmFBmFhn+6m ^ Lemma ^ ' 

T h e r e f o r e : 

p^ _ ((-l}mL + l)(Fk - Fh )-Fh=FFFF 

S e t t i n g m - 2v and m - 2v + 1 y i e l d s (a) and ( b ) , r e s p e c t i v e l y . 

Also solved by the proposer. 

Mod Ern 

H-280 Proposed by P. Bruckman, Concord, CA (Vol. 16, No. 1, Feb. 1978) 

Prove t h e congruences 

(1) F 3 . 2 „ = 2* + 2 (mod 2 n + 3 ) ; 

(2) L3,zn = 2 + 2 2 " + 2 (mod 2 2 n + 1() , n = 1, 2 , 3 

Solution by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

(1) n = 1, Fe = 8 = 8 (mod 16). 

Since L\k - 5F\k = ± 4 , (L3k,F3k) = 2 , 

2r\F3,2n 9 r > 19 n >_ 1; 

2t\L3.zn i f and only i f t = 1. 
Assume F 3 . 2 n = 2n + 2 (mod 2 3) = 2n + 2 (mod 2n + lf) 

F3.2n+i = F 3 . 2 n L 3 . 2 n E 2n + 3 (mod 2n + I t ) . 

(2) n = 1, L6 = 18 E 2 + 2h (mod 26) , L2
2k = L ^ + 2. 

Assume L3.2»-= 2 + 22 n + 2 (mod 2 2 n + £f) 

L3.2n + i = L2.2« - 2 = 2 + 2 2 n + t> + 2 4 n + If (mod 2 4 n + 5) 

£3.2»+i E 2 + 22 n + lf (mod 2 2 n + 6 ) 9 n > 1. 

Also solved by the proposer, who noted that this is Corollary 6 in "Periodic 
Continued Fraction Representations of Fibonacci-type Irrationals /' by V. E. 
Hoggatt, Jr. & Paul S. Bruckman, in The Fibonacci Quarterly 15, No. 3 (1977): 
225-230. 
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(continued from page 344) 

Fibonacci numbers have assumed great importance since the formation of 
The Fibonacci Association. Some introductory books (e.g., [1] and [8]), and 
popular articles (e.g., [2] and [3]), have brought the Fibonacci concept to 
those who are endowed with a thirst for serious mathematical knowledge. 
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