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ABSTRACT

Let 4 ={0=a, <a, < ... <a} and B={0=0b, <b, < ... <h, ...}
be sets of k integers and infinitely many integers, respectively. Suppose B
has asymptotic density x : d(B) = x. 1If, for every integer 7 > 0, there is
at most one representation n = a; + b;, then we say that 4, has a packing
complement of density > x.

Given 4; and x, there is no known algorithm for determining whether or
not B exists.

We define "regular packing complement' and give an algorithm for deter-
mining if B exists when packing complement is replaced by regular packing
complement. We exemplify with the case k = 5, i.e., given A5 and x = 1/10,
we give an algorithm for determining if A; has a regular packing complement
B with density > 1/10. We relate this result to the

Conjecture: Every Ag has a packing complement of demsity > 1/10. Let
Ay = {0 =qa; <a, < ... < ay}
and
B={0=0by <hy, < ... <bhb,< ...}

be sets of k integers and infinitely many integers, respectively. If, for
every integer n > 0, n = a; + b; has at most one solution, then we call B a
packing complement, or p-complement, of 4.

Let B(n) denote the counting function of B and define d(B), the density
of B, as follows:

d(B) = 1lim B(n)/n if this 1limit exists.
n+o

From now on we consider only those sets B for which the density exists.

For a given set A;,we wish to find the p-complement B with maximum den-
sity. More precisely, we define p(4,), the packing codensity of 4,, as fol-
lows:

p;) = sup d(B) where B ranges over all p-complements of Ay.

Finally, we define p, as the "smallest" p-codensity of any 4,, or, more pre-
cisely,

P, = inf p(4,).
Ay
We proved [1] that, for € > O,

kl <p i2.66...+8
<2)+1 k k?

if k is sufficiently large.

The first four p,  are trivial, since we can find sets for which the
lower bound is attained. Thus,

4, = {0}, 4, = {0,1}, 4, = {0, 1, 3}, 4, = {0, 1, 4, 6}
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give

p, =1, p, =1/2, p, = 1/4, p, = 1/7.
But,

1 1

T3P 270

The upper bound is established by 45 = {0, 1, 2, 6, 9} and the lack of cer-
tainty in the lower bound is caused by the impossibility of finding A5 whose
difference set takes on all values 1, 2, ..., 10.

Suppose we have a set 4y, a set B = {by, by, ..., by}, and a number N
such that ¢ + » = m (mod N) has at most one solution,

aed, beB, for 0<m<JW.

Then the packing codensity of 4; is > n/N.

If, in the previous paragraph, the p-complement B consists entirely of
consecutive multiples of M, where (M,N) =1, i.e., B = {M, 2M, ..., nM} (mod
N), then we say that Ay has a regular p-complement of demsity > n/N.

As in [2], there is no known algorithm for determining either the pack-
ing codensity of Ay or even whether A; has a p-complement of density > x.

It is the purpose of this note to give an algorithm for answering the
question: does 4; have a regular p-complement of density > x? We actually
give a method for determining whether 4; has a regular p-complement of den-
sity > 1/10, because of its application to the

Conjecture: pg = 1/10.

However, the generalization of our result is obvious.
We adopt the following conventions throughout:

(1) As represents a set of five integers,
Ag ={0=a, <a, <a; <a, <agl.
(2) M and NV are positive integers, with ¥ < N, (M,N) = 1.
(3) All a; are distinct mod M.
(4) "a; and a; are adjacent mod N'" means that for some M the residues

mod N of a; and a; occur in the ordered N-tuple {M, 2M, ..., NM} (mod N) with
residue mod NV of no other element a; between them. We illustrate with

Ag = {0, 1, 24, 25, 28}, N = 13, M = 5.
The ordered 13-tuple is
{5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, 8, 0}

and since

{0, 1, 24, 25, 28} {0, 1, 2, 11, 12} (mod 13),

we can write
As = {0, 1, 2, 11, 12} (mod 13).

In the ordered 13-tuple, A, has the following adjacent pairs:
{o, 11}, {11, 1}, {1, 12}, {12, 2}, {2, O}.

But {11, 12} are not adjacent, because 1 is between them in one sense and 0
and 2 are between them in the opposite sense. Similarly,

{1, 2}, {0, 1}, {2, 11}, and {0, 12}

are nonadjacent pairs.
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(5) "4, has a regular p-complement” will mean that it has a regular p-
complement of density > 1/10.
Lemma 1: Given 4., let a, and a; be adjacent mod ¥ and write
d‘LJM = Cl1 - aj (mod N).

Then A; has a regular p-complement if and only if

N
1o < dijs djs < W,
for all five adjacent pairs Z,J.
Proof: Let C = {M, 24, ..., NM} (mod N) be an ordered N-tuple. Since a,,
«» a5 will occur in C in some order as distinct residues mod N, we assume,
without loss of generality, that 0 < a; <V, ¢ =1, ..., 5. Assume that a;
is to the left of a; in C. (Zero is to the left of the first a; in C.) Write
B={M, 2M, ""liOM} (mod N).

Suppose now that N/10 < d;;, d;; < N. Then a; ® B includes the N/10 elements
of ( immediately to the right of ag;. Thus, while it may include a;, it will
not include any element to the right of a; nor, of course, will it include
aj. Hence, A; @ B cannot include any element of ( more than once. Since C
is a complete residue system mod ¥, B is a p-complement of 4;. Conversely,
if 0 < dij < N/10 or 0 < dj; < N/10, then

(a; ®B) N(a; ®B) # ¢
and B is not a p-complement of B.
Lemma 2: Given Ag, consider the congruence
Y dyjM = a; - a; (mod N).

Then A has a regular p-complement if and only if there exists a solution of
(1), with §/10 < diin 9¥/10, for every pair 7,§, with 1 <2, j <5, 7 # 4.

Proof: 1f A, has a regular p-complement, then Lemma 1 implies that

N .4

0= d

.oy dsy < N if g, and a; are adjacent mod N.
ij gt Z g J

This, in turn, implies that
N oN
To = dej» djz 295

Clearly, the inequalities still hold if a; and g; are not adjacent mod N. If
(1) has the required solution for every pair <,j, this implies that adjacent
a's, mod N, are separated by at least (N/10)M, and so, by Lemma 1, 4; has a
regular p-complement.

Define k, by k¥ = 1 (mod V) and write » = kolN. Let D;; =a; - a;. We
have

Lemma 3: The congruence

(2) dgiM = a; - a; (mod N)

has a solution N/10 < d;; < 9N/10 if and only if r satisfies one of the in-
equalities:
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Hﬂ:JLLLSPSH&L;Qii,k=L2,“”lmj,
10D 10D
. il o _ )
Proo4: Suppose 10 S di; < 7o Ve have d;;M = D;; (mod N). However, since

koM = 1 (mod N), we also have
D;; koM = Dy (mod V), so that
d Dijko (mod N).

ij
L

9.
10 =

Therefore, Di;r = & (mod 1) where 1

s <

This implies that

10k = 1) +1 10k = 1) + 9
S T R L7 R s T R
or
10(.k—1)+151,i_1_9&i_ﬂ for some k, 1 < k < |Dy;].
10[D 3| 10[Dy4 |

The argument can also be read backwards, so this completes the proof.
Since each difference D;; determines a set of intervals R;; on the unit
interval: 104
D;;
Pllok -1 +1 10k-1) +9
3 3
k=1 10|D;; | 10D, ]

our result can be expressed in the following

Theorem: Ag does not have a regular p-complement if and only if

(3) N Ry =0

1<i<j<s
Proof: From Lemma 3 we see that every solution, r = k,/N, to the congruence

n 9N
(mod W), 16 i dij S_Ia
must lie in R;;. By Lemma 2 we see that for 4, to have a regular p-comple-
ment it is necessary and sufficient that this congruence have a simultaneous
solution for every pair 1 < %2, J < 5. Hence,

N e+ ¢

1<2<j<5

dLJM = ai - CIJ-

if and only if A_ has a regular p-complement.

The application of this theorem to a given A, is a tedious procedure
without a computer. In [2], we stated that a computer search revealed two
sets Ay, with ay, < 100, that do not have regular (covering) complements of
density < 1/3. We have no such computer information on the packing algorithm
but still think it 1likely that at most a finite number of Ag's do not have
regular p-complements. The obvious attempt to prove this is to assume ag is
large and that (3) is satisfied. So far, we have failed to find the desired
contradiction.
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In a recent correspondence from J. H. E. Cohn, it was learned that Ljung-
gren [1] has proved that the only square Pell numbers are 0, 1, and 169.
(This appears as an unsolved problem, H-146, in [2] and as Conjecture 2.3 in
[3].) Also, if the Fibonacci polynomials {F, ()} are defined by

Folx) =0, Fl(x) =1, and F, ., (x) = 2F,,; (®) + F, (x),

then the Fibonacci numbers are given by F, = F, (1), and the Pell numbers are
P, = F,(2). Cohn [4] has proved that the only perfect squares among the se-
quences {F,(a)}, a odd, are 0 and 1, and whenever a = k?, a itself. Certain
cases are known for a even [5].

The cited results of Cohn and Ljunggren mean that Conjectures 2.3, 3.2,
and 4.2 of [3] are true, and that the earlier results can be strengthened as
follows.

If (n,k) = 1, there are no solutions in positive integers for

F2(a) + F’(a) =K?, n >k > 0, when a is odd and a > 3.

This is the same as stating that no two members of {F,(a)} can occur as the
lengths of legs in a primitive Pythagorean triangle, for g odd and a > 3.
When g = 1, for Fibonacci numbers, if

F! +F: =K*, n>k>0,

then (n,k) = 2, and it is conjectured that there is no solution in positive
integers. When a = 2, for Pell numbers, Ef + Pf = X% has the unique solu-
tion n = 4, k = 3, giving the primitive Pythagorean triple 5—12-13.
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1.  INTRODUCTION

There are three parts to this paper, the link being {w,}, defined below
in (1.1). In the first, a lacunary recurrence relation is developed for {w,}
in (2.3) from a multisection of a related series. Then a functional recur-
rence relation for {w,} is investigated in (3.2). Finally, a g-series recur-
rence relation for {w,} is included in (4.5).

The generalized sequence of numbers {w,} is defined by

(1.1) Wy = PWp-g = QW,_, (B> 2), Wy =a, w, =D,

where p,q are arbitrary integers. Various properties of {w,} have been de-
veloped by Horadam in a series of papers [4, 5, 6, 7, and 8].

We shall have occasion to use the '"fundamental numbers," U,(p,q), and
the "primordial numbers," V, (p,q), of Lucas [10]. These are defined by

(1.2) Up,(psq) = wa(0,15p,9),

1t

(1.3) V,(,q9) = w,(2,p3p,q) .
For notational convenience, we shall use
(1.4) Un(sq) E U = tup1 = (@" - B")/(a - B),

vV, = Up-1=a"* + Bn,

11

(1.5) Vy(p>q)
where o,B are the roots of z? - px + g = O.

2. LACUNARY RECURRENCE RELATION

We define the series w(x) by
(2.1) wx) = wy(x) = anx”,
n=0

the properties of which have been examined by Horadam [4].
If » is a primitive mth root of unity, then the kth m-section of w(x)
can be defined by

m
(2.2) wy (x3m) = m™t Zw(rjx)rm'kj.
=1

It follows that

m=2k

w, (3m) = %(rm‘kw(rx) +r w(r2x) + oo0 + pHMRy (pMz))

*Submitted ca 1972.
294
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=1 - 2,2 -2
—.E(rm k(wo +wre +w,rtxt + o) + " k(w0 +w1r2:x: +w2r'+x2 + e-0)

+ oo P + WM + w,r e + -e )

1 SN & Py & et
= EQJO Zrm gk +wlx21ﬂ”"Jk+J + oea +wkack2rm"Jk+=7k 4 oeen
F=1 J=1

i=1
=7—nl_<w0£n;k————l+wlxr—"—7—(£;l)———£+ e+ w xime™ + >
rk -1 rk-1 -1
= wak t w2
= iwk+jmxk+jm (1)
i-o

=D (A I + B(ge)* M)

§=0
= Jakzk(l - aMx™ "t + BRRLK (1 - p"x™) 1
= xk @, - q"w,_ &™) (1 = V2™ + g ™) . (ii)
Hence, by cancelling the common factor x* and replacing x™ by x, we get from
the lines (i) and (ii)
1 - Vyx + q”’x2);wk+jmxj =w - g, _,%.

We then equate the coefficients of x7 to get the lacunary recurrence relation
for {wx,}:

(2.3) Virng = VnWanGG-n T @ VkamG-0 = @ = oy + d 05,0850
where §,, is the Kronecker delta:
Sym=1 m=m, Cum =0 (n#m.
When j is zero, we get the trivial case w; = wy. When j is unity, we get
Wepy = VpWy + Cmek-m =0,

which is equation (3.16) of Horadam [5]. It is of interest to rewrite (2.3)
as

(2.4) Wym = Vnwn(m_l) + qnwn(m_z) m>2,n21).
Thus W,, = V,w, +aq”,
and Wy, = Vw,, + q'w,.

The recurrence relations (2.3) and (2.4) are called lacunary because there
are gaps in them. For instance, there are missing numbers between Wy,-;) and
Wpm in (2.4); when m = 2 and n = 3, (2.4) becomes
= 3
wg = Vaw, + ag”,

and the missing numbers are w, and w;. A general solution of (2.4), in terms
of w,, is
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(2.5) Wnp = Up Uy s=qQdwp + alp-1 (Vy s=q)q" .
The proof follows by induction on m. For m = 2 from (l.1) and (1.2),
Uy(Vys-q) =V, and Uy (V,,-q) = 1.
If we assume (2.5) is true form = 3, 4, ..., » — 1, then from (2.4)
Won = VaWu-1y) + @ Wn o2y
VoUp o a (W s=@uy + alVyUs_; (Vs ,-q)q"
+ @ Up Uy 5=y + aq"Up_5(Vy 5=9)q "
VU1V 5=q) + U, (V, 5=q) w0y,
+a(VuUp_, (V,5=q) + q"U,_3(V, =) )q"
Up (Ve s=qdwy, + alp_1 (V, 5=q)q"-

3. FUNCTIONAL RECURRENCE RELATION

Following Carlitz [l], we define

(3.1) wE@) = wi,A) = Zw,ﬁk(i)xk.
k=0
Then, wr(0) =w,, and
* = L\ k
(3.2) W, ., (@) = an+k+1<k>>\
k=0

i Py sk - qwn+k+1)<;z>)\k
k=0

pw:t(x) - qw;‘l‘-l(x) s

which is a second-order functional recurrence relation. Moreover, we can
show that the power series in (3.1) converges for a sufficiently small A as

follows:
o) - @)
Aiz"n”(k S
k=1

Agw“kﬂ(i)xk

N 41 () -

wie + 1) - wi(x)

If we use w, = Aa”™ + BBR", where

b - aB and B_aon—b

A=cx—B T a-RB°
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then we get that

o

5 frr(gar + o))

k=0

il

w, (x)

Ao (1 + da)® + BR™(1 + AR)=.

It follows that
wix +y) =Aa"(1 + A)"FY + BB + AB)*HY

= ﬁi:{Aa”+k(l + Aa)® + BR(1 + AB)”}(%)Ak

k=0

Similarly, we have for E = pab - qa® - b*, and E, = 1 + pX + gA%:

wy_ @y, @) - wi? @)

{Au”‘l(l +2a)® +BRTTN + AB)x}{Au”+l(l + x)® + BR™MTI(1 + AB)x}
- {Aa"(l + Aa)*® + BR™(1 + AB)x}

EA"2@" 187 - 208" 4+ o"TIRTTH(( + A) (1 + AR))T

il

~1p -2 2 2
q" Ed*(B* - 208 + o*)E]
= q" EE],
which is a generalization of equation (4.3) of Horadam [5]:
2 _ n-1
-w, =q 'E.

wn—lwn+l

The same type of approach yields
avg, @+ y) + (B - PRy 1 (& + Y) = w (@)W, () - quy,_(Dwy 1Y)
as a generalization of Horadam's equation (4.1) [5]:
Wppn + B = PPWpip -1 = Wply = Gy W1+

L, g-SERIES RECURRENCE RELATION

g-series are defined by
(4.1) (@p = (1L -@ =g «-o (L=g", (g =1

Arising out of these are the so-called g-binomial coefficients:

4.2) 7], - @ /@@



298 SPECIAL RECURRENCE RELATIONS [Dec.
When ¢ is unity, these reduce to the ordinary binomial coefficients. It also
follows from (4.1) and (4.2) that

[”] S CRE €770 NETERN CRE Vi) it
B/a (]- - B/O!«)(l - (B/O{,)z) v (1 — (B/u)k)

Uy _qUy_9g = U, _
oLk(”"k) n-1%n-2 n-k

uoul o s uk—l

Uncnk OLk(n _k)’

Uy oUp-3 = Un-k

(4.3) e = Uglhy o+ Up_q

Horadam [5] has shown that

Wy 4p = Wylp — qQWp Uy, 1.
Thus 5
k(k-n-1 k-
wpoien - [n + l} _ qup 10 n]
Bla B/a

w.
Cn -1,k k an k

n+r =

which yields
- n+1 - n
(4:5) Cpo1,xCrkWn-p = ot an[: k ]B/a Ve T qak(k n)cn'lrk[k]ﬂla Ur-1°

5. CONCLUSION

The g-series analogue of the binomial coefficient was studied by Gauss,
and later developed by Cayley. Carlitz has used the g-series in numerous
papers. Fairly clearly, other results for w, could be obtained with it just
as other properties of the functional recurrence relation for w, could be
readily produced.

The process of multisection of series is quite an old one, and the in-
terested reader is referred to Riordan [11]. Lehmer [9] discusses lacunary
recurrence relations.

Cnk was dintroduced by Hoggatt [3], who used the symbol (. Curiously
enough, Gould [2] also used the symbol 'C' in his generalization of Bernoulli
and Euler numbers. Gould's ¢ = b/a (a,b the roots of > - x - 1 = 0) is re-
lated to Hoggatt's C = Cyx when p = -q = 1 by

G.1 C=bHn Cripxr1/Crid-
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ON SOME EXTENSIONS OF THE WANG-CARLITZ IDENTITY
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ABSTRACT

Two theorems are presented which generalize a recent Wang [6]-Carlitz
[1] result. 1In addition, we also obtain its Abel analogue. The method of
proof is dependent upon some of our recent work [2].

I
Wang [6] proved the expansion
41 . +2r + 1
. n r
(1.1) (" ) e +1)=< )
; k il"";i,fn m=1 n 2r + 1

1j>0

Recently, Carlitz [1] extended (1.1) to

r+1 %k .
r + 1 in Tt a n+ar +r +a
(1.2) IR AL I DRI | [ I )
k=0 iybeerti=n m=1 m
;>0

Theorems 1 and 2 in this paper treat a number of different generalizations of
(1.2). 1In particular, a special case of Theorem 1 gives the new expression:

fony

r

k . .
r+ 1 ___jg;j;}z____<a + tiy + Ty
Z( k > i1+--~z+:ik=n ﬂl (a+ 1+ ti,) T
ij>o

b
o

(1.3)

_ (a+ D@ + 1) ar+r +a+tn+n
T @+ D@E+1) + tn < n )'

Letting £ = 0 in (1.3) yields (1.2).
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We also present the Abel analogue of (1.3):

rtl X . im-
(1.4 Y <Y' Z 1) | D [ @ st!um)
k=0 'Ll+-..+ik=n m=1

1

_ @@+ (r+r+ )"t
n! ' :

;>0

(1.3) and (l.4) are special casesof a number of classes of functions includ-
ing some well-known orthogonal polynomials. These are considered in the fol-
lowing theorem.

Theorem 1: For 0,B,2,%", t complex numbers, » and # nonnegative integers,
and s a positive integer

r k
(1.5) () X HOetfw =6 w
k=0 i1+.i.-'>+oik=n m=1

where (a), =T(a + k)/T(a), quotient of gamma functionms,
[#n/s] is the greatest integer notation, and

6:’6(&:) can assume any of the ten functions:

(1.6) 4Ay" @)
@y LU, (0 + tn + 1)y, (B)gr, {(a + 8tp + sp + 0p)/a}x?

=n!(oc+ l)tnp=0 pt(a +1 +tn)sp+ﬂ,p(6+ l)E,p_p

(1.7) Byf@)
(B) (@4, E1(-1),, (atEtntm), (B + L'p)P " H(a+ stp+ sp+ 4p) /a}x?

= nt@ + 1), ~ pt(@+ 1 + tn)sp+}2,p

(1.8) ¢*f@

(OC + 27’2)”_1 (2l (_l)sp (_n)sp (B)L’p {OL + ,Q/Sp}xp

n!

p=0 pl(a+ P @+ g,
(1.9 0% @)

(B) (o + 0 (n/81(-1)°P (—n)sp ® + 2'29)?_1{06 + ,Q,Sp}xp

n!

p=0 p!(a + an)°P
(1.10) 22 F ()
) 1 8l (F1)°7 (1) 5p (B) g7 = sppr (@ + )P {o + n - Lsp)x™ P
B (a + n)n! — p'(B + l)ng’—n—sp£’+sp

(1.11) F2 P (x)

@) (LD, @+ im)PB+L - L"ep)" T o+ n - pep) TP
(o + nin! ot p!
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(1.12) 6B () = - (@ + tp) y, (B) s,
. o = L
n n! p=op!(l +a+tp),, B+ l)z'p-p
1,yP-Ll,.pP
I R S
" p-o p:ie p Ln-n
o n-1 3
(1.14) rabgy s Lyt ‘f’z) ] i@w{u + tp)w
n.p=o p!(B )Wp-p
n-1 p-1 p
1.1 78R @) = &) Z‘ (o + tp + ) <6p4'r 2'p)°" o + tp)a

Proof of (1.6): From Theorem 4b [2, p. 708],
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® U"(d)tn+n [n/ﬂ(—n)sp(u + tn + n)lp(B)Q,p{(a + tsp + sp + ip)/a}x?

- n! (o + 1)tn ;g% pt(tn + o + l)sp+lp(6 + l)ﬂ,p_p

(1.16) (8) 75 P (1 - 2)*0

= (1 - z)az p! (B + 1)2,p_p

p=0

where v(1 - 2)* 1= -z, v(0) = 0.
Hence,

(Br) ., 272 (1

- g)tp

p=0

(1.17) i(i){iu%j’ﬁ(m}k = Q- z)“’f:
k=0 n=1

(1.17) may be expressed as

(1.18) iu”Z(i’) 2 P = Zv AT ()
n=0 k=0

iyt ti,=n om= l

;>0
Comparing coefficients on both sides gives the required (1.6).

Prood o4 (1.7): TFrom Theorem 4b [2, p. 708],

p!(BY’ + ]‘)l'p—p

w k o p-1_.p,8p Lp k
B+ A - 2)
(1.19) VBB @yy = (1 - 2)° -1p .
{Zl " pzo p!
(1.19) is obtained by modifying the arbitrary sequence {ep} to be
(B + L'p)P ™.
Hence,
r 0 k
(1.20) E(i’) S0P (@)
k=0 n=1
® -1
(1.21) = gr(1 - mor YL )" et (1 - a)"P

p=0 p!
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(1.22)

(1.23)
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I

E UnBzm Br (x)
n=0

©

Soy(E) Y Mo

n=0 k=0 ht-+i=n m=1
;>0

Comparing coefficients gives (1.7).

The proofs of (1.6) and (1.7) are the procedures adopted in the above
cases with suitable modifications. We are initially required to establish
generating functions.

Proof of (1.8): Theorem 2b [2, p. 704] will give

(1.24)

e (B)yr, xP2°F

Euﬂcs"s(x) = exp(ocz)z TR+ D .
L'p-p

n=0

Proog of (1.9): Theorem 2b [2, p. 704] yields

(1.25)

sp

had p-
S und P ) = eXp(OLZ)Z (B4 p)
n=0

Proog of (1.10): Using Theorem 2d [2, p. 704], one may obtain

(1.26)

where w

(B)gr, xPaP/e

Zw E“ B(x) = exp(OLZ)ZW,
p-p

1/s

exp(-L2).

Proog of (1.11): From Theorem 2d [2, p. 704],

o el 1\P-L p_pls
(1.27) anFg,e(x) - exp(uz)z B+ 2 pz)j! x'z

n=0 p=0
Proog of (1.12): It may be shown that

- (B)yr, (1 = 2)Fx?

70,8 L'p

(1.28) Z=:o€ G, @) = (A - 2) Z ptB+ g,y 7’
where £(1 - 2)* = -z,

Prood of (1.13): One may derive

(1.29)

By o - e 5B+ )P e
> ' @) = z)p}_‘,=O %
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Proog of (1.14): The generating function of I;“B(x) is

" = (B ot L Pexp (pt2)
1.30 "I () = ;
( ) Zu n (@) EXP(OLZ);O pr(B + Dy, -~

n=0

Proog of (1.15): 1t may be proved that

o 0 p-l p
(1.31) S uwdif @) = exploz) Y (B + 2'p)" wlexp(pta)
n=0 p=0 p-
11
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A second generalization of the Carlitz result given by our equation (1.2)

is

r+1 % . .
r» + 1 a+ tim + in
(2.1) ( ) II( : )
7;) k il""Z":iwf”m:l m
Z; >0

(artr+a+tl),,,, » (=n),@+1), =t {(ar+r+a+1+tp+p)/(artr+a+1)}

T (ar+r+a+2),, Z

= pllar +r +a+ 2+ tn),

For ¢ = 0, the polynomial reduces to unity and (1.2) presents itself.

We also have the Abel analogue of (2.1), which assumes the form

n+l k(0 + 22,)"
r + 1 m
(2.2) kz:o( k >i1+',2ik=” ml;ll ’Lm!
;>0
_ (or + )"t wsfﬂ (-D)F (-n)p () plar + p}
! 570 p!(or + )P

Now both (2.1) and (2.2) are particular cases of Theorem 2.

Theorem 2: TFor a,B,%,¢ complex numbers, r and n nonnegative integers,

r K
(2.3) a. Z(z) - Z HRZ;B(TJ) =Rar,3r+r—l(t)

k=0 '~-+7,'k=n m=1
and 4 >0
r k
(2.4) b. Z(Z) 3 SO BQ) = s o),
k=0 i+ Fg=n o m=1 "
where vy >0
e (@) 4 n 2 (1), FOIF B,
(2.5) R, () = AT, 24 pT@ F ey
a n (-R)P(-
(2.6) sf( = 222 o
. . .

I
n: oo pl + )’

Proof of Theornem 2(a): With the aid of Theorem 4a [2, p. 708],

= o 1 -3z ¢
(2.7) S ROy = =B
n=0 (l+t2)6+l
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where y (L - z)t+1 = -3, Note the misprint in equation (4.3) [2, p. 709], in

the definition of C, (x). The factor (o + 1 + mn — n) ., 4% should read

(o +m - n) gy axe

Hence
r [ k oar
(2.8) (I’) y”R,‘f’S(t) - Q-2
kz=:0 k nz=:l (1 + tZ)BrHﬂ
(2.9) =

ZnyRsr,Br-rr -l(t).
n=0

Comparing coefficients and simplifying gives (2.3).

Proog of Theorem 2(b): Using Theorem 2a [2, p. 704],

(2.10) S wrisyfy - SRR
n=0 (1 - 2z)f*t

where w = zexp(-2%). Thus,

> o k
(2.11) Z<£>{anss’s(2) - exp (azr) )
k=0 n=1 (1 - ZZ)Brﬂ'

Proceeding as in part a gives the required (2.4).

IIT. SPECIAL CASES

It is of interest to note that a number of well-known polynomials form
special cases of Theorem 1.

1. Puttingx = (1 - y)/2, s =1, & =0, £’ =1, one may express Az’e(x) in
(1.6) as a Jacobi polynomial of the form

a+tn,3—l—a—tn—n(

(o3 |
(3.1 o+ tn +n {E%

where the Jacobi polynomial is defined in [4, p. 170].

y) +

(t + ]-)y i o+tn,B-l-a-tn-n

2. Letting 2 =0, &' =0, s = 1, one may express BS’B(x) from (1.7) as

o a+tn, (¢t + l)xi[]o‘*t”
(3.2) ————————Mmm{f:n By + EE D 4 17 (Bm},

where the Laguerre polynomial is defined in [4,p. 188]. Hence, one may view
Bg’ﬁ(x) as a generalized Laguerre polynomial.

3. Ef’s(x) may be viewed as a generalized Laguerre polynomial with the de-
gree of the polynomial incorporated in the argument. In the special case for
x=1/y, s =1, L' =1,

(3.3 B i@ = S [ay'”z;e‘”[y(oc + )] - Ly %[y"”z;s“”[y(a + san)]:”.
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4. F:’B(x) may be looked upon as a generalization of the generalized Her-
mite polynomial defined by Gould et al. [5, p. 58, eqn. (6.2)], and others.
See also [2] for properties of this polynomial. The generalized Hermite is
defined as

RAET gk -k

(3.4) 6o @) = B, , @) = Y ot
0

k=

Letting £’ = 0 in (1.11), one obtains
a,B _ 1 d

(3.5) F, (x) = m[a[{n,s(ﬁx,ot + n) + Q,xzx—'Hn,s (Bx,a0 + an)] .

Further, putting % = 0, one obtains a single term on the right-hand side.
See also [3] for bilinear generating functions and other expansions for the
generalized Hermite polynomial.

5. For the special case &' =1, Gg’e(x) may be expressed as a general poly-
nomial of the type

n K (o + tp),, (B), (-1)F
1 Ln 14
(3.6) _ﬁ__;('e_”)kxk;)(k - IId +a+ )y, (L +B+n-RKp’

6. H;’B(x) may be considered as a generalization of a polynomial considered

by Gould et al. [5], defined in equation (3.2), p. 53. For the special case
L =0,

-1? (o + t0)on
(3.7 B (@) = E’EL(——Z< 1)% () Z(k — -

Yipt(a + tp + Dyuon

Further, for 2 = 0, Hz (@) exp(-Bx) gives essentially the polynomial of Gould
et al.

The polynomials considered in this paper appear to possess interesting
common algebraic properties. One of them is that they all arise from repre-
sentations of the same group. We shall have occasion to discuss group-theo-
retical properties of these polynomials elsewhere.
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REPRESENTATIONS OF INTEGERS IN TERMS OF GREATEST INTEGER
FUNCTIONS AND THE GOLDEN SECTION RATIO
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and
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Dedicated to agelfess Geonge Polya.

The first and second powers of the golden section ratio, o = (1 + ¥5)/2,
can be used to uniquely represent the positive integers in terms of nested
greatest integer functions, relating the compositions of an integer in terms
of 1's and 2's with the numbers generated in Wythoff's game. Earlier, Alladi
and Hoggatt [1] have shown that there are F,,; compositions of a positive
integer n in terms of 1's and 2's, where F, is the nth Fibonacci number, gi-
ven by F; =F, =1, Fyyp = F,4; +F,. The numbers generated in Wythoff's
game have been discussed recently in [2, 3, 8] and by Silber [4].

Suppose we stack greatest integer functions, using o and a?, to repre-
sent the integers in yet another way:

1 = [a] = [a[al] = [alalal]l]l = [alalafal]]] = ---
= [0?]

= [a[a®]]

= [a[a[a?]]]

[a®[a?]]

= [a[a[ala®]1]]

= [0®[a[a?]]]

= [a[a®[0?]]]

Essentially, we start out with the compositions of an integer in terms of 1's
and 2's. We put in a? wherever there is a 2, and o wherever there is a onme,
then collapse any strings of a's on the right, since [a] = 1. For example,
we write the compositions of 5 and 6:

COMPOSITIONS OF 5:

0o N OB WwN
]

I1+1+1+1+1 [afafalafa]]]]] = [a] =1
1+1+1+42 [ala[ala®]]]1] = 6
14+2+1+1 [a[a®[a[a]]]] = [a[a®]] =3
1+1+2+1 [alala?[a]]]1] = [a[a[a®1]] = 4
2+4141+1 [o®[alalal]]] = [0®] = 2
142+2 [a[a®[a®]]] = 8

241+ 2 [a?[a[a?]]] = 7

24+ 2+1 [0?[a®[a]]] = [@®[0?]] =5

306
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COMPOSITIONS OF 6:

1+1
2

—

+ 4+ + + + +
-

N N = N = = N e e e e
+ 4+ 4+ 4+ + + + + + 4+ 4+ + +
N = N = N N e e
+ + + + + + + + + + + + +
N = N RN - - N O N e e
+ 4+ + + + 4+ + + 4+ + + +
o= = N NN R R RN e
-

[3V]
N

[a] =
[olalala[a?]]]]] =
[alalala?]]]] = 6
lalala?]]] =
[ala®]] =

[0?] =2
lalala®[a®]]1]] = 12
[ala®[ala®]]1]] = 11
[a®[alala®]]]] = 10
[ala?[a®]]] = 8
[0?[a[a?]]] = 7
[a?[a®]] =

[a?[a?[a?]]] = 13

Notice that the F; compositions of 5 gave the representations of the in-
tegers 1 through 8, and those of 6, the integers 1 through F, = 13. We need
to systematize; let us arrange the compositions of 5 and 6 so that the rep-
resentations using o and a? are in natural order.

COMPOSITIONS OF 5:

1+1+1+1+1
2+1+1+1
1+2+1+1
1+1+2+1
2+2+1
1+1+1+2
2+ 1+ 2
1+2+2
COMPOSITIONS OF 6:
1+1+1+1+1+1
2+1+1+1+1
1+2+1+1+1
1+1+2+1+1
2+2+1+1
1+1+1+2+1
2+1+2+1
1+2+2+1
1+1+1+14+2
2+1+1+2
1+2+1+2
1+1+2+2
2+ 2+2

REPRESENTATION:

[a] =

[a®] =
lafa? ]] =
[a[a[a® ]]] =
[a®[a®]] = 5
[a[ [a[a 111
[a? [a[a 1]
[ala?[a?]]

]
]
1

o —
o~

REPRESENTATION:

N
e e N

[a2[afafo

nn—

=

w
—
[\
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Notice that the representations of the first eight integers using the
compositions of 6 agree with the representations using the compositions of 5.

Theorem 1: Any positive integer # can be represented uniquely in terms of
nested greatest integer functions of o and o2, where the exponents match the
order of 1's and 2's in a composition in terms of 1's and 2's of an integer
k, n £ F,,,, where any a's appearing to the right of the last appearing o
are truncated.

Prood: Arrange all of the Fy,, compositions of k so that when o and a? are
inserted in the method described, then the results are in natural order. Do
the same for the Fy,, compositions of (k+ 1) in terms of 1's and 2's. Notice
that the representations agree with the first Fy,; from k. Now, for the com-
positions of k, tack on the right side a?, on the far right of the nested
greatest integer functions, and suppress all the excess right a's. This
yields, with the new addition, representation for the numbers

Fk+1

Thus, the process may be continued by mathematical induction. The uniqueness
also follows as it was part of the inductive hypothesis and carries through.
Theorem 1 is proved more formally as Theorems 5 and 6 in what follows.

Next, we write two lemmas.

+ 1, Fypr + 2, «ouy Fypy +F =Fp,,.

Lemma 1: [oF,] = F,,1, n odd, n > 2;

v [aF,] = F, .,y - 1, n even, n > 2.

Proog: From Hoggatt [5, p. 34], for B = (1 - V5)/2,
OF, = F,,1 = B";

[0F,] = [F,,, - 8"].

Since |B"] < 1/2, n > 2, if 7 is odd, then B"< 0, and [F,y; - B"] = F,y;»
while if n is even, B" > 0, making [F,,, - B"] = F,.; - 1.
Lemma 2: [0®F,] = F,.y, n 0dd, n > 2;
[a®F,] = F,,, - 1, n even, n > 2.
Proof: Since oF, =F,,, - B",
a’F, = oF,,, - of"
- (Fn+2 _ Bn-r-l) _ OLBn
=F,,, - B"(a+ B
=Fuy, - B™.
Then, [a?F,] = [F,,, - B"] is calculated as in Lemma 1.
Lemma 3: TFor all integers k > 2 and n > k,
[0*F,] = F,,, if n is odd;
[aan] =F,,p - 1 if n is even.
P)woé: OLan _ Ol,k(O(,” _ Bn) _ Bn+k . Bn+k _ OLn+k _ Bn+7< _ Bn(OLk _ Bk)
/5 V5 V5 /5 V5
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Now, ]B|an < 1 if and only if !B[" < 1/F, , which occurs whenever n>k,k> 2,

since
1 __ 5 /5 ___ /5*

ak - X (<1/R)% - gF  (<1)F - g%
If k is even, k > 2, Bk > 0, and

_[5_>1
1 - g2k

1 _ __Jii___ . gk > gk

Fk l_BZR

Similarly, if % is odd, k > 3, B¥ < 0, and

._‘/.5___>_1
_1_627(

Lo gk

Fk _1_sz

n
Thus, |B| F, < 1, and Lemma 2 follows.
Next, observe the form of Fibonacci numbers written with nested greatest
integer functions of o and a?:

F, =2 = [a] Fg = 8 = [a[a?[a?]]]

F, =2 = [a?] F, = 13 = [a*[a®[a®]]]

F, = 3 = [a[a?]] Fg = 21 = [a[o?[a®[a?]]]]
Fo =5 = [a?[a?]] Fy = 34 = [a®[0®[0®[0®]]]]

Theorem 2: F, .. = [a®[c?[a®] +-+ 1111,
and Fopyo = lala®[0®[a®[ -+ 11111,
both containing »n nested a? factors.

Proof: We have illustrated the theorem for n =1, 2, ..., 9. Assume that
Theorem 2 holds for all n < k. By Lemma 1,

Foreo = [0F, 1] = lala®[a®[a®[ ++- 11111
for k nested a® factors; by Lemma 2,
Forss = [0%F, 11 = [0®[0?[a®[a® [0 +-+ 11111]

for (k + 1) nested o2 factors.

Return once again to the listed compositions of 5 and 6 using 1's and
2's, and let us count the numbers of 1's and 2's used totally, and the number
of o's and a?'s appearing in the integers represented. We also add the data
acquired by listing the compositions of 1, 2, 3, and 4, which appear in the
tables if the 1's on the right are truncated carefully.



310 REPRESENTATIONS OF INTEGERS [Dec.

n s s a“'s Suppressed a's
1 1 0 1 0 0=F, -2
2 2 1 1 1 1=F, -2
3 5 2 2 2 3=F;, -2
4 10 5 4 5 6 =F, -2
5 20 10 9 10 11 =F, -2
6 38 20 19 20 19 =F, - 2

Define C, as the nth term in the first Fibonacci convolution [6], [7]
sequence 1, 2, 5, 10, 20, 38, ..., where

n nh,,; + 2F,
Co = D FiFy ;= ————
=1

and observe where these numbers appear in our table. Note that L, is the nth
Lucas number defined by L, =1, L, = 3, and L, ., = L,y + L,.

Theonem 2: Write the compositions of » using 1's and 2's, and represent all
integers less than or equal to F,,; in terms of nested greatest integer func-
tions of o and o as in Theorem 1. Then

(i) C, 1's appear;

(ii) C,-1 2's appear;
(iii) ¢,_; a?'s appear;
(iv) F,,, — 2 a's are truncated;

v) (€, -F

ez T 2) a's appear.

Proo4: Let the table just given form our inductive basis, since (i) through
(v) hold forn =1, 2, 3, 4, 5, 6. Let t(n) and u(n) denote the number of
times 2 and 1 respectively appear in a count of all such compositions of n.
Then, by the rules of formation,

tm) =tn -~ 2) +tmn -1) + F,_,

since we will add a 2 on the right to each composition of (n - 2), giving
t(n - 2) 2's already there, and F,_,,; = F,.; new 2's written, and t(n - 1)
2's from the compositions of (n - 1), each of which will have a 1 added onto
the right. Since [6]

Cn = Fn + Cn—l + Cn—z

has the same recursion relation and ¢ (n) has the starting values of the table,
t(n) = C,-, for positive integers n, establishing (ii).
Similarly for (i),

umn) =un - 1) +F, + u(n - 2)

since 1l's are added on the right to the compositions of (n - 1), keeping
u{n — 1) 1's already appearing and adding F, o 141 = F, new 1's, and all 1's in
(n - 2) will appear, since those compositions have a 2 added on the right.
We can again establish u(n) = C, by induction.

Obviously, (ii) and (iii) must have the same count. Since the number of
o's appearing is the difference of the number of 1's used and the number of

o's truncated, we have (v) immediately if we prove (iv). But the number of
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suppressed a's for k is the number suppressed in the preceding set of compo-
sitions of (k - 1), each of which had a 1 added on the right, plus the number
of new 1's on the right, or,

Foyr =2+ F =Fy, - 2,

so if the formula holds for 1, 2, 3, ..., k - 1, then it also holds for %k,
and the number of suppressed a's for n is F,,, — 2 by mathematical induction.

Now, we go on to the numbers a, and b,, where (a,,b,) is a safe-pair in
Wythoff's game [2, 4, 8]. We list the first few values for a, and b,, and
some needed properties:

n 1 2 3 4 5 6 7 8 9 10
an 1 3 4 6 8 9 11 12 14 16
by 2 5 7 10 13 15 18 20 23 26

(1) (Zk + k = bk

(2) 227 + bn = abn

(3) ag, +1 =Dy

(4) Aq, +1 = Qa, = 2 and Ay, 41~ U, = 1

(5) ban+l - ban =3 and bbn+l - bbn =

(6) a, = [na]l and b, = [na?]

We first concentrate on the expressions in (6) for a, and b,, using the
greatest integer function, and compare to Lemmas 1 and 2. We can write Lem-
ma 4 immediately, by letting n = Fj in (6).

Lemma 4: For all positive integers Kk,
= - = F .
Foger = 1 and ap 2k +23

Fp = Fox+r 1 and Pryer = Forsse
Next we show that the integer following F, is always a member of {a,}.

Fox

Theorem 3: Fniq + 1 =ap .

Proof: Part I: =n + 1 is even. Let Fny1 = Fyp = Ar, from Lemma 4. Note
well that F,y_, € {b,}, and by (4),

a -a =1
F +1 Fop_ ?
so that 2k-1 2k-1
o1+l = Py t1l=F, +1
Part II: »n + 1 is odd. Let F =F =h from Lemma 4. From
n+1 2k+1 For -1
(3), we have
b + 1 =qa +1+4+1=¢
Fok-1 aFZk—l ank-z+l
since a; ,; ~ Qq, = 2. Thus,

Foker + 1 = bsz—1 1= Qay Tt = Ary+1

2k -
from F,, = a, . This concludes Part II and the theorem.
2k -1
Theorem 4: ap .y + 1 =Dbp -
Proof: Part I: =n is even. Let F, , =F, = ap . and Fy _, = bsz-; by

Lemma 4, so that (4) yields
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a =q + 1.
Fag-1 *1 Fax -1
From this we get
a +1 =g +1=2p
ap, +1 p +1 Fax-1%1

2k -1

making use of (3). This concludes Part I.

2k -1

Part II: »n is odd. Let F,,, = Fy, ;. Using Theorem 3 and (3),

T Ll=a, +l=bsz

a
For+1 e 1 +1°

which concludes Part II and the proof of the theorem.
Comments: We have seen that

Fpyog 1 =a,

n

s+l
from Theorem 3, and

ap ., +1 T 1= bF,,+l
from Theorem 4. Thus, the sequence of consecutive b;'s,
bF,,+1’ bF,,+2’ bF,,+3 s eees bp

n+l
and consecutive a;'s,

Ay +1 2 P42 2 AR 430 o0 AR oo

cover the sequence

Foup + 1, F,,, +2, F ,+3, ..., F, 5,
where, if F,,1 = Fyy41, then bp, ., = Fypyq1 = Fyys, and if F,.; = F,, , then
ap,,, = Ar,,, = Fax+2 = Fui3. The sequences {a,} and {b,} are such that

their disjoint union covers the positive integers, and there are F,_.; of the
bj's and F, of the a;'s, or collectively, Fn4+1 all together. The interval
[F,,2 + 1, Fy,3] contains precisely F,,; positive integers. We have shown
that the union of the two sequences are precisely the integers on this inter-
val. We now are ready to prove Theorem 5 by mathematical induction.

Theorem 5: 1f a? is added onto the right of the specified function for the
compositions of n properly ordered, then we obtain the integers

Fn+2 +1, Z;’n+2 +2, ..., Fn+2 + Fn+1 = Fn+3‘
Proo4: By our previous discussions, Theorem 5 is true for n = 1, 2, ..., 6.
Assume it is true for w = k - 1 and n = k. Then, let us add a® on the left
to each value of the specified function, making the result be the F, succes-
sive b;'s

J

ka+1 +1°? ka+1 +22 02 ka+1’

and let us add o on the left to each value of the specified function, to ob-
tain the F,,, successive aj's,

aFk+Z +1’ aFk+Z+2’ teee aF’(+3-
These numbers together give the interpretation of compositions of (k + 1)
with 02 on the right, so we must get Fi,, + 1, Fpo oy + 2, ..., F,,. There
are Fj, consecutive b;'s and Fy,; consecutive g;'s which fit together pre-
cisely to cover the above interval by the discussion preceding Theorem 5,

giving us a proof by mathematical induction.
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Theorem 6: The F,,, compositions of (n + 1) using 1's and 2's when put into
the nested greatest integer function with 1 and 2 the exponents on o can be
arranged so that the results are the integers 1, 2, ..., F,,, in sequence.

Proof: We have illustrated Theorem 6 for n = 1, 2, ..., 5. Assume that the
F, compositions for (m - 1) have been so arranged in the nested greatest in-
teger function representations. By Theorem 5, the results of putting 2 on
the right of the compositions, or an o on the right of each representation,
yields the numbers F,, , + 1, F, ., + 2, ..., F,,3. The adding of a one to the
right of compositions of (n + 1) yields a composition of (n + 2) but it does
not change the results of the nested greatest integer representations. Thus
the list now goes for compositions of (n + 2), the first F,,, coming from the
one added on the right of those for (n + 1) and the F,,; more coming from the
two added on the right of those for #n. Thus, by mathematical induction, we
complete the proof of the theorem for all n > 1.

The above proof is constructive, as it yields the proper listing of the
composition for (m + 2) if we have them for »n and for (n + 1).

Notice the pattern of our representations if we simply record them in a
different way:

= [a] = a
= [a®] = b,
= [alo®]] = ap,
[alaf0?]]] = dq,

- [02[02]] = b,

= [a[ala[a®]]1]] = aq,
= [0*[a[a?]]] =
8 = [a[a®[0?]]]

In other words, Theorems 3 through 6 and Lemma 4 will allow us to write
a representation of an integer such that each o in its nested greatest inte-
ger function becomes a subscripted a, and each a? a subscripted b, in a con-
tinued subscript form.

Next, we present a simple scheme for writing the representations of the
integers in terms of nested greatest integer functions of o and a?, as in
Theorems 1 and 6. We use the difference of the subscripts of Fibonacci num-
bers to obtain the exponents 1 and 2, or the compositions of »n in terms of
1's and 2's, by using F,,; in the rightmost column. We illustrate for n = 6,
using F,. Notice that every other column in the table is the subscript dif-
ference of the two adjacent Fibonacci numbers, and compare with the composi-
tions of 6 and the representations of the integers 1, 2, ..., 13 in natural
order given just before Theorem 1. We use the Fibonacci numbers as place
holders. One first writes the column of 13 F;'s, which is broken into 8 F's
and 5 Fg's. The 8 Fg's are broken into 5 Fs's and 3 F,'s, and the 5 Fy's in-
to 3 F,'s and 2 F;'s. The pattern continues in each column, until each F, is
broken into F; and Fy, so ending with F,;. In each new column, 1 always re-
places F, F,'s with F, _, F,_,'s and F,_, F,_,'s. Notice that the next level,
representing all integers through Fy = 21, would be formed by writing 21 Fg's
in the right column, and the present array as the top 13 = F, rows, and the
array ending in 8 F;'s now in the top 8 = F, rows would appear in the bottom
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eight rows. Notice further that, just as in the proofs of Theorems 1 and 6,
this scheme puts a 1 on the right of all compositions of (# - 1) and a 2 on
the right of all compositions of (n - 2).

SCHEME TO FORM ARRAY OF COMPOSITIONS OF INTEGERS n < F

F, 1 F,

1

2
1
1

F, 1 F, 1 F;
F, 1 F, 1 F,
F, 2 F, 1 F,
F, 1 F, 2 F,
F, 2 F, 2 Fq
F, 1 F, 1 F,
F, 2 F, 1 P,
F, 1 F, 2 P,
F, 1 F, 1 F,
F, 2 F, 1 F,
F, 1 F, 2 F,
F, 1 F, 1 F,
F, 2 F

[

1
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Within the array just given, we have used 8 Fg's, 5F;'s, 6 F,'s, 6F;'s,
5F,'s, and 8 Fy's, where 8 + 5+ 6 + 6 + 5 + 8 = 38 = (4, where again C, is

the nth element in the Fibonacci convolution sequence.

appear in the array:

oL WN = =

F,

n

UV N =

lEh-l

N
w

=)}
W

25}—2 35;—3

The rows give the number of F,'s, F,_;'s,
array to write the compositions of » in natural order.
ray itself will be considered later.

Now we -turn to

the Lucas numbers.

[ala®]]

[afafa?]]]

[e®[ala®]]]
[ala?[ala®]]]]
[0?[a®[ala®]1]1]]
lala®[0?[ala?]1]1]1]]

[a?[a?[a?[a[a?]11]1]]

SF;—M

'
Fn—Z S,

We observe

These coefficients

row sum

1
2
5
10
20
38

8F,_5 o+ Cp

3

used in the special
Properties of the ar-
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Thus, it appears that [aL,] = L,.; if n is odd, and that [a’L,] = L,,, if =
is even. Also, we see the form of Lucas numbers, and can compare them with
the representation of Fibonacci numbers. We first need a lemma.

Lemma 5: -1 < B™5 <1 for n > 2.
Proog: B* = (3 - V/5)/2, and B*/5 = (3/5 - 5)/2 < .85 < 1. Thus,
0 < B"/5 <p?/5 <1 for n>1.
If 0 < B%/5 < 1, then 0 > B3%/5 > -1, so that
-1 < g5 <0 for n>1,
establishing Lemma 5.
Lemma 6: [oL,] = L,41 for n even, if n > 2;
[aL,] = L,,, - 1 for n odd, if n > 3.
Proof: Apply Lemma 5 to the expansion of aly:
oL, = ala™ + B") = an*l + g7*1 4 gg" - gntl
Lys1 + B™(a = B) = L,y + B™5.

Lpys4y if n is even and n > 23

Lemma 7: [a?L,]

[a®L,] = L,y = 1, if n is odd and n > 1.
Proof: We apply Lemma 5 to
a’L, = o?(a" + B") = a"*? + "2 4 gT(a? - B?)

= L,., + B"V5.

Theosrem 7: The Lucas numbers L, are representable uniquely in terms of nes-—
ted greatest integer functions of o and a? in the forms

Lopey = [a[a*[a*[a® ... [ala®]] ... 1111,
Ly, = [a?[a?[a?... [ala?]] ... 111,
where the number of o® consecutively is (n - 1), n > 1.

Proof: Theorem 7 has already been illustrated for » = 1, 2, ..., 8. A proof
by mathematical induction follows easily from Lemmas 6 and 7.

Comparing Theorems 2 and 7, we notice that the representations of Fj and
Ly,1 are very similar, with the representation of Lj,, duplicating that of F,
with [a[a®]] added on the far right. We write

Theorem 8:  F, .= [a[o?[a® ... [a®] ... 11] and

Lonss= lafa®[a® ... [0?[ala®]]] ... 111;
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