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In this note we shall develop two "pure" recurrences for determination 
of the functional values qin) and qQ(n)e Accordingly, we recall that for a 
given natural number n, qin) denotes the number of partitions of n into dis-
tinct parts (or, equivalently, the number of partitions of n into odd parts) , 
and qQ(n) denotes the number of partitions of n into distinct odd parts (or, 
equivalently, the number of self-conjugate partitions of ri) . As usual, pin) 
denotes the number of unrestricted partitions of n; and, conventionally, we 
set p(0) •= qiO) = q0(0) = 1, Previous tables of values for qQin) and qin) 
have been constructed on the strength of known tables for pin); for example, 
see [1] and [3]. The recurrences of the following two theorems allow us to 
determine q0in) and qin) without prior knowledge of pin), 

T/ieo/iem 1'> For each nonnegative integer n9 

i-±)m , if n = m(3m ±1) 
(1) £(-1)Hk + 1}/2 • q 0 ( n - fc(fc + l)/2) = 

k=o I 0, otherwise, 

(-l)m, if n = m(3m ±l)/2 

0, otherwise. 

Mk + i)/2 

Th<L0JtQJM 1' For each nonnega t ive i n t e g e r n, 

(2) qin) + 2^(-l)k • qin - k2) = \ 
fc-i { 

In both theorems, summation is extended over all values of the indices 
which yield nonnegative integral arguments of q0 and q. 

Our proofs will depend on the following three identities of Euler and 
Gauss [2, p. 284]: 

o) n d - X*) = i + £ ( - D n t ( 3 n 2 " n ) / 2 + * ( 3 n 2 + n ) / 2 } . 

(4) n u - * 2 n ) = n ( i + ^2n_i) • E(-*) n ( n + 1 ) / 2 -
n-l n=l n=Q 

(5) n u - *»> = n a + ^n) | i + 2 £ ( - D n 

PA.00fi 0^ Tko.OH.2m 7: Replace x by x2 in (3) and eliminate 11(1 - x2n) between 
the resulting identity and (4) to obtain 

£<70<n)a:» • £(-*)"("+1>/2 = 1 + £( - l W x 3 m 2 - m +X 3 m 2 + 

n = 0 n = 0 m = l ^ 

[Recall that 11(1 + xln~l) generates qQ(n).] The complete expansion of the 
left side of the foregoing equation is: 

5>n£(-1) M"+ l ) / 24o(K - Hk+ 1)12). 
n=0 k=0 
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2 RECURRENCES FOR TWO RESTRICTED PARTITION FUNCTIONS Feb. 1980 

Equating coefficients of xn, we obtain the desired conclusion. [Note that 
q0(0) = 1 is consistent with the statement of our theorem.] 

Vtiool ofi Thzotim 2: In view of the fact that 11(1 + xn) generates q(n), iden-
tities (3) and (5) imply 

{jTq(n)xA{l + 2 £(-DV2> = 1 + £(-irL(3m2~m)/2 +^(3-2^)/4 
( n - 0 ) ( » - l ) w - 1 <• > 

or, equiyalently, 

£ > » i ? ( n ) + ^ ( - D k -2^(« - k 2 ) \ = 1 + 2(-l)m/*<3m2-M>/2 +a?(3wa+w)/2l. 
n-0 ( fe-1 ) m-1 ^ / 
Upon equating coefficients of xn, we derive the recurrence. 

REMARKS 

The following table of values for qQ(n)> q(n), and p(n), n - 0(1)25, is 
included to show the relative rates of growth of the three functions. For 
example, qQ(n) grows much more slowly with n than does p(n). So, computing a 
list of values of q0(n) by using "large" p(n) values is much less desirable 
than by use of the recurrence (1). 

TABLE 1 

n 

0 
1 
2 

! ' 3 
1 4 
1 5 
1 6 

7 
8 
9 
10 
11 
12 

qo(n) 

1 
1 
0 
1 
1 
1 
1 
1 
2 
2 
2 
2 
3 

q(n) 

1 
1 
1 
2 
2 
3 
4 
5 
6 
7 
10 
12 
15 

p(n) 

1 
1 
2 
3 
5 
7 
11 
15 
22 
30 
42 
56 
77 

n 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

qo(n) 

3 
3 
4 
5 
5 
5 
6 
7 
8 
8 
9 
11 
12 

q(n) 

18 
22 
27 
32 
38 
46 
54 
64 
76 
89 
104 
122 
142 

p(n) 

101 
135 
176 
231 
297 
385 
490 
627 
792 
1002 
1255 
1575 
1958 
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EXTENSIONS OF A PAPER ON DIAGONAL FUNCTIONS 

A. F. HORADAM 
University of New England, Armidale, N.S.W., Australia 

INTRODUCTION 

Consider the sequences {An(x)} and {Bn(x)} for which 

(1) An + 2 ^ = PxAn+l^ + qAn(x)9 AQ(X) = 0, A^x) 

(2) 

i2te) = 

(3) 

Bn + 2(x) = pxBn+1(x) + qBn(x), 

Then, from (1) and (2), we have 

A0(x) = 0 
AY(x) = ^ 

A 

A3(x) = g 

Ah(x) =Q 

A5(x) 

A&(x) 

A7(x) 

A Ax) 

B0(x) 
= l; 

2, BjGc) = x. 

(4) 

B0te) = ^ 
^ t e ) = p^ 
Bz(x) = ^ 
B3(x) = ^ 
S^te) = £ia 
B5te) = ^ 
s6te) = g > 
s7te) = ^ 
B8(a0 = ^ 

^ + 2 ^ 

^T+^^^r 
^%}^ 
^+^v^i 
><^^ 
-><ly^ 
X 8 p 6 q x 6 

> ^ 
+ 5 P ^ £ 

^ 9 p 3 ? ^ ^ > ^ ^ 
+ l i ^ ^ M ^ T p ^ ^ 
+ 2 0 p ^ 2 ^ > ^ p V ^ ^ ^ 

In this paper we seek to extend and generalize the results of [1], [2], 
[3], [4], and Jaiswal [5]. The results hereunder flow on from those in [2], 
where certain restrictions were imposed on the sequences for the purpose of 
extending the results of Serkland [6], 

DIAGONAL FUNCTIONS FOR An\x) , Bn(x) 

Label the rising and descending diagonal functions of x Ri{x) and D^{x) 
for {An(x)}, and vi (x) and d^(x) for {Bn(x)}. 
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From (3) and (4), we readily obtain 

(5) 

Rx(x) = 1 

i?2 (cc) = px 

R3(x) = p2x2 

Bh(x) = p3x3 + q 

Rs(x) = phxh + 2pqx 

Re(x) = p5x5 + 3p2qx2 

R7(x) = p6x6 + kp3qx3 + q2 

R8(%) = p7x7 + 5phqxh + 3pq2x 

(6) 

rl(x) = 2 

r2(x) = px 

r3 (x) = p2x2 

rh(x) = p3x3 + 2q 

r5(x) = phxk + 3pqx 

rs(x) = p5x5 + kp2qx2 

r7(x) = p6x6 + 5p3qx3 + 2q2 

rQ(x) = p7x7 + 6phqxh + 5pq2x 

with the properties (n > 3) 

(7) 

(8) 

rn{x) = Rn(x) + qRn_3(x) 

Rn(x) = pxRn_1(x) + qRn_3(x) 

rn(x) = xvn(x) + qrn_3(x) 

Further, we have from (3) and (4), after some simplification in (8), 

Dx(x) = 1 

D2 (x) = px + q 

D3(x) = (px + q)2 

Dh(x) = (px + q)3 

D5(x) = (px + q)h 

\. D6(x) = (px + q)5 

and 
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(9) 

dx(x) = 2 

d2 (x) = px + 2q 
d3(x) = (px + 2q)(px + q) 
dh(x) = (px + 2q) (px + q)2 

d5(x) = (px + 2q)(px + q)3 

d6(x) = (px + 2q) (px + q)h 

whence 

(10) 

( ID 

(12) 

g i v i n g 

(13) 

(14) 

(15) 

Dn(x) = 

dn(x) = 

dn(x) = 

Dn + 1M 
Dn(x) 

dn + lW 
Dn(x) 

dn(x) 
T) (ry>\ 

(px + qy-1 

(px + 2q) (px + q)n~2 

Dn(x) + qDn_1(x) 

dn + 1(x) 
= ~~dJxT = px + q 

= px + 2q 

^ ^ (p* + <7 * 0) 

(n >. 1) 

(n >_ 2) 

(n >_ 2) 

GENERATING FUNCTIONS FOR THE DIAGONAL FUNCTIONS 

Generating functions for the descending diagonal functions are found to 
be 

(16) 

(17) 

X^n(x)tn_1 = [1 - (px + q)tVl 

n = l 

JT dn(x)tn-2 = (px + 2q) [1 - (px + q)t] -1 

while those for the rising diagonal functions are 

(18) X^nfeH*"1 = [1 " (pxt + qt3)]"1 

n=l 

(19) ^ ^ W t " " 1 = (1 + q t 3 ) [ l - (part + qt3)Y\ 
n = 2 

SOME PROPERTIES INVOLVING DIFFERENTIAL EQUATIONS 

Limiting ourselves to the types of results studied by Jaiswal [5]9 let 
us write, for conveniences 
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(20) D = D(x,t) = ^2 ^(x)^"1 

n-l 

(21) d = d(x,t) = £ dn(x)tn~\ 

Calculations using (16) and (17) and the notation of (20) and (21) then 
lead to the following differential equations involving the descending dia-
gonal functions: 

(22) piM - (px + <?)!£ = 0 
'U K^ ' vjZx 

(23) p*Jf - (px + q) [£-•»]-» 
(24) (px + q)^Dn(x) = p(n - l)Dn(x) 

(25) (px + q)^ldn + 2(x)] - p(n + l)dn + 2(x) + pq(px + q)Dn(x) = 0. 

Write 

(26) i? = £(*,£) = J^Rn(x)tn-1 

n= 1 

(27) p = r(x9t) = Y\irn(x)tn-1. 
n = 2 

Corresponding differential equations for the rising diagonal functions 
are, by (18), (19), (26), and (27): 

(28) pt|f - (px + 3^2)|f = 0 

(29) ptj| - (px + 3qt2)^ - 3p(r - R) = 0 

(30) px-£Bn + 2(x) + 3^i?n(*) - p(n + l)Rn + 2(x) = 0 

(31) px^rn+2(x) + 3q-^rn(x) - p(n - 2)rn+2(x) - 3pRn+2(x) = 0. 

Explicit formulation of expressions for Rn+i(x) and Pn+i(%) can be ob-
tained by comparison of coefficients of tn in (18) and (19), respectively. 

Computation gives 

(32) *n + x<*>- ^ ( " ^ W ^ V 

t"/3] / 0 ,v [(«-3)/3] / Q o -\ 

(33) rn + 1(x)= £ w-.2^(px)"-3V+ £ i~ <P*>" 

where [n/3] means the in t eg ra l par t of n/3. 

" 3 - 3 i i + l 
4 J 
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SOME SPECIAL CASES 

Contents of the several papers mentioned in the introduction have thus 
been generalized, mutates mutandis. 

If p = 1, q = 1, the results of [2] are obtained, including the special 
cases of the Fibonacci, Lucas, and Petl sequences. 

If p = 2, q- -1, the results of [1] and [4], and of Jaiswal [5], fol-
low for the Chebyshev polynomial sequences. 

Observe that, for the Chebyshev polynomials of the first kind Un(x), it 
is customary (e.g., in [1], [4], and [5]) to define UQ(x) = 1, U1(x) = 2x; 
whereas, from (1), the corresponding generalized forms require 

AQ(x) = 0, At(x) = 1, A2(x) = px9 ... . 

For our purposes, this is unimportant. However, suitable adjustments can be 
made if desired. 

If p = 1, q = -2, the results of [4] for the Fevmat polynomial sequences 
follow. 

THE FERMAT SEQUENCES 

For the record, the following results, which were left to the reader's 
curiosity in [4], are listed (using the symbolism of [4]). 

(34) 

(35) 

(36) 

(37) 

,W , „ J 3D' J „ 

(x - 2 ) ^ ^ = (n - l)Dn(x) 

(x - 2)4-[D< , (»)] - (n + 1 

with corresponding equations for the rising diagonal functions 

(38) * f - ( - - 6t2)f = 0 

(39) t ^ - - (x - 6t2)^- - 30?' - R) = 0 
at ox 

dRn+2(x) dEn(x) 
(40) x ^ 6-~aV~~ " ( n + 1 ) i ? n + 2 ^ ) = ° 

dR^+2(x) dR^(x) 
(41) x ^ 6—d^ " ( n " 2) i?n + 2 ^> " 3i?n + 2(x) 

where the primes in D' (x), R^+2(x) 9 e t c . , do not indicate de r iva t ives , and 
where 
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D' E D'(x,t) = J2 ^(sc)tn'2 

n= 2 
and 

R' = R'(x,t) = YtR'^xH"'1. 
n = 2 

ExpLLc-it fioHmiitcutLon 
Employing the method used to obtain (32) and (33), we calculate 

(42) Rn+1(X) « £ ^-^y-**^ 

in/3] * .v [{n-3)/3} 

(43) R^ + 1(x) = £ n"2^ ̂ "3M-2)^ + £ (n-V2>»-3-3*(-2)^ + 1. 
i-o X t' ;

 i = 0 \ t- / 

CONCLUDING REMARKS 

Undoubtedly, there are many other facets of this work remaining to be 
explored. Suffice it for us to comment here that some basic features of many 
interesting polynomial sequences have been unified. 

Finally, it might be noted that our classification here, in (1) and (2) 
of the sequence, say {Wn(x)}9 for which Wn+2(x) = pxWn+1(x) + qWn , into its 
Fibonacci-type and Lucas-type components (see [2] for the case p = 1, q = 1) 
recalls the article by A. J. W. Hilton entitled "On the Partition of Horadamfs 
Generalized Sequences into Generalized Fibonacci and Lucas Sequences" which 
appeared in this journal, Vol. 12, No. 4 (1974):239-245. 

REFERENCES 

1. A. F. Horadam. "Polynomials Associated with Chebyshev Polynomials of 
the First Kind." The Fibonacci Quarterly, to appear. 

2. A. F. Horadam. "Diagonal Functions." The Fibonacci Quarterly 16, No. 
1 (1978):33-36. 

3. A. F. Horadam. "Generating Identities for Generalized Fibonacci and 
Lucas Triples." The Fibonacci Quarterly, to appear. 

4. A. F. Horadam. "Chebyshev and Fermat Polynomials for Diagonal Func-
tions." The Fibonacci Quarterly 17, No. 4 (1979):328-333. 

5. D. V. Jaiswal. "On Polynomials Related to Tchebichef Polynomials of the 
Second Kind." The Fibonacci Quarterly 12, No. 3 (1974):263-265. 

6. C. Serkland. "Generating Identities for Pell Triples." The Fibonacci 
Quarterly 12, No. 2 (1974):121-128. 

###*# 



FACTORS OF THE BINOMIAL CIRCULANT DETERMINANT 

J. S. FRAME 
Michigan State Universityf East Lansing, MI 4882 3 

1. INTRODUCTION 

Interesting problems and patterns in algebra, number theory, and num-
erical computation have arisen in the attempt to prove or disprove a conjec-
ture known as Fermat*s Last Theorem [7], namely that for odd primes p there 
are no rational integral solutions x9 y, z9 with xyz ^ 0 to the equation 

(1.1) xP + yP + z? = 0. 

Several proofs of special cases involve the prime factors of the deter-
minant Dn of the n x n binomial circulant matrix Bn with (i, j)-entry 

Thus in 1919 Bachmann [1] proved that (1.1) has no solutions prime to p un-
less p 3 \ D 19 and in 1935 Emma Lehmer [6] proved the stronger requirement, 
pP"1 \Dp-i5 mentioning that Dn = 0 iff n = 6k9 and giving the values of Dp_1 
for 3 _< p j< 17. Later, in 1959-60, L. Carlitz published two papers [2, 3] 
concerning the residues of Z}p_i modulo powers of p, including the theorem 
that (1,1) is solvable with xyz + 0 only if Z7p_x = 0 (mod pp + 1 * 3 ) . Our 
methods give, for example when p - 47, the prime factorization 

(1.2) -Z\6 = 3- 4745(139*+4612599lt691lt8292115122347233132178481 • 2796203)3 

Clearly, a nontrivial solution of (1.1) would require that for all 
primes q not dividing xyz we should have 

(1.3) 1 + (y/x)p = (-z/x)p (mod q) . 

For each such prime p and for all primes q = 1 + np not divisors of xyz, we 
should have 

(1.4) (1 + (y/x)p)n = 1 (mod q). 

Thus, all primes q = 1 + np except the finite number that divide xyz must 
divide the corresponding Dn9 which is the resolvent of Vn - 1 and (v + l)n -
vn. 

Our concern in this paper is to characterize and compute the rational 
prime factors of the determinant Dn9 an integer of about 0.1403n2 digits, 
when n $ 0 (mod 6). The 351-digit integer -^50 was found to have 127 prime 
factors, counting multiplicities as high as 24 for the factor 101. 

To factor Dn we first note that its n x n binomial circulant matrix Bn 
is a polynomial in the n x n circulant matrix Pn for the permutation (12 3 
... n) , whose eigenvalues are powers of a primitive nth root of unity, v9 
and that Dn is the product of the eigenvalues of Bn. Thus, as in [5], 

(1.5) Bn = {In + Pn)n - In 

n 
(1.6) Dn = [| ((1 + rk)n - 1), where r = g2^/». 

k = l 

For example, when n = 4, 

9 
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(1.7) 

"0 
0 
0 
1 

1 
0 
0 
0 

0 
1 
0 
0 

0 
0 
1 
0_ 

> B» = 

1 
4 
6 
4 

4 
1 
4 
6 

6 
4 
1 
4 

4" 
6 
4 
1 

= ( J u + p u ) ' 

(1.8) 0, 1) ,, - ((1 + i)h - 1)(0" - 1)((1 - i)h - l)(2* 

Factoring the difference of two nth powers in (1.6) yields 

(1.9) 

T/ieo/iem 1.1 (E. LzhmoA [ 6 ] ) : £>„ = 0 i f and only i f 6 |n 

- 3 • 5 d . 

Dn = n n ( a + **)w -1) = (-Dnn n a - ** - *.*). 
k - 1 j - 1 j - 1 fc - 1 

P/LOOfj: A f a c t o r (1 - p.? - r k ) i n (1 .9) can v a n i s h i f and only i f rk = v~J 9 

and P 6 J ' = 1. 

Henceforth we assume n 1 0 (mod 6). 

Experimental evidence indicates that for n <_ 50, 

(1.10) | l o g 1 0 | Z ? n | - n 2 l o g 1 0 ^ | < 0 . 3 3 , i f n 1 0 (mod 6 ) , 

where £ i s t h e l i m i t as n •> °° of t h e geometr ic mean of t h e n2 f a c t o r s | 1 -
P j - P k | 0 f ( - l ) n _ 1 P n . I f u - V = 0, we have 

(1.11) In G • • • * / 7 ' 

• *- / 7 

-2%u 

In 2 cos - e 

e 2 i y | d u <fo 

- 2 ^ |d<i> m. 

The inner integral vanishes if |2 cos 

(1.12) 

(1.13) 

In G (2/TT) 
/ " 

< 1, and we o b t a i n 

rir/6 
In (2 cos Q)dQ = (2 / TT) / 

Jo 
9 co t 9 dQ 

l o g . n £ = ( 0 . 3 2 3 0 6 5 9 4 7 2 2 . . . ) / l n ( 1 0 ) = 0 . 1 4 0 3 0 5 7 5 8 1 7 . . . . 

Missing factors in the tables were detected by (1.10), and found. 
Our challenge is to assemble the n complex factors of (1.9) into sub-

sets having rational integral products which we call "principal" factors, 
and then factor these positive integers into their rational prime factors. 
We find that (-l)n ~1Dn / (2n - 1) is always a square, that -D2n/3 is a cube, 
and that for odd n the sum Fn_1 + Fn + 1 of two Fibonacci numbers is a double 
factor of Dn, of about 1+ n/5 digits, which is frequently prime. For exam-
ple, Dhl and D53 have respectively as double factors the primes FhB + FkQ = 
6,643,838,879 and F52 + F5h = 119,218,851,371. Tables 1 and 2 list the prime 
factors of Dn other than 2n - 1 for 16 odd values of n. 
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TABLE 1 

FACTORS q^±u) OF dp, WHERE p IS PRIME, 

AND UNDERLINED FACTORS ARE q (-") 

u 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

d13 

9349 

1483 

229 

761 

647 

229 

419 

191 

^2 3 

139 • 461 

47 • 139 

1151 

599 

3313 

472 

472 

2347 

599 

691 

d2S 

59- 19489 

65657 

9803 

592 

24071 

18503 

59- 233 

4931 

18097 

59- 349 

12413 

59i 

592 

dSl 

3010349 

53-1117 

27901 

5953 

20089 

16741 

46439 

38069 

34721 

5953 

25»1489 

25 • 683 

25 • 311 

6263 

^37 

54018521 

1385429 

132313 

149 - 223 

67489 

149-1259 

325379 

223-1481 

172717 

146891 

262553 

149 - 223 

332039 

149*1999 

68821 

223 - 593 

32783 

dm 

370248521 

83 • 77Q81 

833 

101107 

833 

83 • 3691 

988511 

821 • 1559 

1335781 

83 • 6397 

791629 

348911 

83 - 12301 

206477 

1024099 

739 • 1723 

3407 93 

101107 

83 • 1231 

^ 3 

969323029 

431-31907 

952967 

173- 1033 

516689 

173- 6967 

1124107 

745621 

173 - 2337 

2532701 

1549-1721 

1144919 

1999243 

173 • 1033 

431 - 5591 

173-10837 

173-11783 

431 • 3613 

533459 

178021 

dh7 

6643838879 

941 • 67399 

283 - 11939 

549149 

1693 • 2351 

645075L 

1352191 

7145599 

283 - 36943 

1223 • 2663 

10032151 

2069- 5077 

3462961 

1932923 

941 • 8179 

4220977 

5187109 

1129 - 6863 

1754323 

659 - 3761 

549149 

549431 
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TABLE 2 

-(u) FACTORS qK
n
 J OF dn FOR COMPOSITE ODD n 

u 

" 3 ^ 1 
5:p 
2 

3 

-3 

4 
5 
-5 
6 
-6 
7 

-7 

8 

9 
-9 

10 

-10 
11 

-11 
12 

-12 
13 

-13 
14 

-14 
15 

-15 
16 

17 

18 

-18 
19 

Cig 

19 

37 

19 

1 

d 1 5 

271 

31 

31 

24 

22 - 1* 
61 
31 
1 
61 
1 

d2-L 

2269 

211 

379 

43 

7 
43 

463 
1 
43 

547 

1 • 7* 

43 
43 

72 

i25 

101 • 151 

1301 

3851 
1151 
6101 
151 

251 

401 

1151 

5801 

1951 
101 

101 

a2 7 

5779 

811 

487 

919 
109 

433 
163 

163 

2269 

19441 
19927 

1 

757 

109 
109 
271 

"3 3 

176419 

9901 

672 

2971 

67 
463 

331 
3631 
199 

859 

2311 
397 

43* 

1* 
67 - 661 
25411 
1 
67 « 199 
67 

331 

397 
463 
67 

^35 

38851 
71 • 911 

7351 

3361 
2381 
3011 
41* 
29* 
7841 

712 

71 

701 

71 • 281 

712 

71 

421 
5741 

118301 
4271 
911 
2112 

2381 

211 

^39 

157 • 10141 

79 • 859 

22777 

6553 

547 
79- 33 

792 

1249 
157 

79°  33 

1171 
3511 

1249 
3121 

79- 937 
1 
79 •2887 
398581 
1* 
103* 
1171 
13183 
157 

1483 

313- 33 

79 • 33 

157 

*If u2 = 1 (mod n)9 (q(
n
U)qi'U))1/2 replaces q< (u) 

2, PRINCIPAL INTEGRAL FACTORS OF Dn 

For n odd, we extract from Dn in (1.9) the product 1 - 2n of n factors 
with j = k3 the product 1 of the 2 (n - 1) factors with j = n £ k or k = n i1 

j , and the product q^'1' of the n - 1 real factors with j + k = n9 and are 
left with (n - 1) (n - 3) factors whose product ci2 is a perfect square be-
cause of symmetry in j and k. 
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TkojQtim 2 . 7 : For n odd3 we have 

(2 .1) Dn = (2* - Dq^dh 

where ^ " ^ = 4 if 3|ns qn(_l) = 1 if n = ±1 (mod 6), and d„ is a product of 
(n - 1) (n - 3)Ik conjugate complex factor pairs5 namely 

(2 .2) dn = J ] (1 - ^J" - *fc) (1 - v-i - p-fc) , v = e 2 7 r i / n . 
0 < j < & < « - « / 

VtiOOJ- The p roduc t of the (n - 1) r e a l f a c t o r s of (1 .9) w i t h 1 < J < n - 1 
i s 

n - l «_ i _ 

qrC"i) = n (i - ̂ j - ^_j') = n (~^"j')(^j' + o>)(w + oo) 
n J - 1 j - 1 

(2 .3) = 1 • (1 + oan)(l + oTn) = ( a j n / 2 + o ) _ n / 2 ) 2 

= (2 cos 7Tn/3) 2 

where co = e2™ . This is 4 if 3 |n, or 1 if n E ±1 (mod 6) . Of the remain-
ing complex factors with j + k ^ n3 those with j + k > n are the complex 
conjugates of those with j + k < n. Just half the factors of c?2 yield dns 
so we take j < k in (2.2). 

For even dimension 2n we replace -rJ and -pk in (1.9) by sJ' + n and sk + n, 
where s = g™/* and sn = -1. The factor with 3 equal summands is 1 + 1 + 1 
= 3,-and the 3(2n - 1) factors with 2 equal summands have the product 

-((4n - l)/3)3. 

Since 3yfn, we can divide each of the (In - 1) {In - 2) remaining factors by 
the geometric mean of its 3 summands so the new factors have distinct sum-
mands with product 1. 

ThzoKQjfn 2. 2.' For even dimension 2n3 we have 

(2.4) D2n = -3((4n - 1)/3)VL> 
where g2n i s t h e p roduc t of (n - 1)(n - 2 ) / 3 con juga te complex f a c t o r p a i r s 

(2 .5) gln = n \sj + sk + s-J~k\2
s s = e ™ / * . 

0< j<k<n-j/2 

VKOOfc Extracting from £>2n the factors with repeated summands leaves a 
product of (In - 1)(2n - 2) factors with distinct summands 

In 
(2.6) ~9£2 n/(4n - I ) 3 = PI (sj + sk + s^), s*+ f c +* = l , 

j , k , i = l 

i, j s /c distinct. 

We omit the 3(2n - 2) factors with product 1 having i9 j 9 or k = 2n. Sym-
metry in t, j, fc shows that each remaining factor is repeated six times, so 
we call the product g\n9 where in g2n we assume l<_j<k<i< In. Since 
factors with j 4- k + i = kn are the complex conjugates of factors with j + 
k + i = 2n5 we replace i by In - j - k and s^ by s~J~k to obtain (2.5). 

'TkzoKom 2.3; For odd n = 2m + 1 not divisible by 3} ^ = dnhn where hn is 
the product of m(m - 2)/3 factor pairs 
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product 

(2.9) 

Vnooji 

of m 

K 

The 

\{m 

= 

(m 

-

9: 

-

1) factor pa i r s : 

m IQn '" 

Dim -

- n i 
0<j<k<2n-j 

- 2) /3 factor 

1 + sj 

pairs 

+ sk 

in ( 

(2.7) hn = gln/dn = n kJ ' +^* + P - J ' " k | 2 , P = e27ri/n . 
0<j<k<(n-j)/2 

PsiOOfi: The m(m - 2) /3 factor pairs in (2.5) with j and & both even yield 
the factor pairs of hn in (2.7). We next delete the m factor pairs in (2.5) 
for which j or k equals n - j - k9 since sn = -1 and these factors have the 
product 1. In the remaining m(rn - 1) factor pairs having two summands with 
odd exponents, we multiply these two summands by -sn - 1 to create even ex-
ponents, divide the factor by the third summand, set s2 = v, and obtain pre-
cisely the factors of dn in (2.2). 

Note that (2.4) and (2.7) imply that for n = ±1 (mod 6) 

(2.8) ~D2JDn = 3"2(2n + l)3/z6n, if n = ±1 (mod 6). 

ThdOtiam 2.4: For n = 2m not divisible by 6, g2n = gnkn9 where kn is the 

j, /c odd, s 

yield the factor pairs of gn for even n. We obtain the remaining m(m - 1) 
factor pairs for kn in (2.9) by dividing each of the remaining factors of 
g2n by its summand with even exponent. 

If desired, we can remove the [m/2] factor pairs with product 1 in 
(2.9) for which k = n + j. For example, when m = 2, one of the two factor 
pairs in kh = gQlgh can be removed, leaving 

(2.10) kh = g8/gk = |l + s + s3|2 = |l + i/I| 2 = 3, s = e77^4. 

Since gh = #2 = di = 1, we have_£8 = -3(85) 3 • 36 = -37 • 53 • 173. The reduced 
integral factors ~dn of cZn and hn of /zn are products of those complex factors 
of (2.2) or (2.7) in which j, /c, n have no common factor. 

The extended principal factors of dn9 hn, and k2n are products of those 
complex factors of dn9 hn9 or k2n in which the exponent ratios k:j are con-
stant (mod n) . They are rational integers, since they are symmetric func-
tions of roots of unity. In such an extended principal factor q^°''u' , we 
assume u9 f__relatively prime and replace (j9k) by (vj9uj) where 0 < j < n. 
For dn and hn we restrict j to a reduced set of residues (mod n) denoted 
Rn9 in which (j9n) = 1. We define the extended principal factors q(v:u) and 
the principal factors ~q^):u"1 by 

(2.11) q{v:u) = ± n'd - v»o - vuc) > 0, q{u) = ̂ 1:u> =q(u:1> 
J = 1 

(2.12) ^(y : w ) = ± El (1 - r^" - ̂ ' ) > 0, q{u) = a (I:M> = g(w:1> 

where r = e2l]i/n. The corresponding integral factors of kn or 7z„ with com-
plex factors (1 + rvJ + puJ) are denoted by g( y : w ) , etc. Factors of q(v>u) 
for which (j,n) = n// divide <A^:w) for divisors f of. n. 

For calculations with, a calculator that computes cosine functions, the 
following factors are useful. We set 

(2.13) fn
iy;X) = ± II teyj + ̂ } - cxj) > 0, (a?,i/) = 1 

J ef?„ 
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Vtwaji 

(2 .15) 

q(v-.u) __ p j | ]_ _ rvj _ ruj\z 
JE^'n 

= n a + ̂  - ^ 

where cfe = r*c + P - k = 2 cos 2T\k/ns and where i?^ deno tes t h e s e t of <p(n)/2 
r e s i d u e s j e Rn w i t h j < n / 2 . 

ThdOKm 2.5: I f 2a; = (w + y) 5 22/ = u - t>, then 

(2.14) 7n<'s*> =? n
( y : w )

5 7 n
( y ; ^ =?n

(2/;X)
5 nodd. 

n (3 + e - ^ - cuj) 

/^•) = ± II teyj + ^ " Qx^ 

since the product of the Cyj is ±1. Solving for u,V in terms of x9y yields 
the second part of (2.14) 

TkdOKQm 2.6: If n = 2m + 1 is a prime p > 3, then 

(2.16) dp = n^ P
( £ u ) . e = ±1 

u = 2 
where e = 1 If u < ur = 1/u (mod p) or e = -1 if u' < u < p/2. 

VK.00J: The product of the p - 3 integers q ^ for 2 <. u £ p - 2 is dp. 
Since q^u'^ = q(w) if uur = 1 (mod p) , we multiply together one factor from 
each of these pairs to obtain dp. 

For example 

d5 = qi2) = /s(3) = 11; d7 = #>g7
(3> = /<*>/<'> = 29 . 8 

^ i i - f l l ? ^ ? ^ ^ - fi? fi¥ fiV fti" -199- 67-23- 23 
(2.17) 6 

d13 = J! ̂ V = 521 - 131- 79 • 27°  53 
w= 2 

d17 = 3571 • 613 * 409 * 137 -^07 -JU37 - 103. 

The&JiQJn 2.1': If pb is a maximal prime power divisor of q^u' for prime n > u 
> 0, then pb = 1 (mod ri) . 

Vtwofc If p|<7^» there is a smallest field GF(pe) of characteristic p that 
contains a mark ¥ such that r n E 1 ~ ¥ + ¥u (mod p). Raising to pth powers 
we see that ¥pk is a solution for fc = 0, 1, . .., e - 1. Since & factors 1 -
p-j _ -puJ vanish (mod p) 5 e divides b. Since the order of ¥ $ 1 is a factor 
of the prime n, it is n. Hence n divides the order pe - 1 of the multipli-
cative group of GF(pe), which divides ph - 1. , , 

We find, for example, that q?(3) = 23
5 ^ ^ = 33, and 25 divides qK

sl
} 

for w = 12, -13, and 14. Factors of q(u) for primes 19 to 47 are listed in 
Table 1 above. 

When, for composite n ± we have u1 = 1 (mod ri) but w ? ±1 (mod ri) , the 
factors q^u) and q^~u^ of d7̂  are squares without reciprocal mates, so we 
must include only their square roots in dn. Also, dn may include factors 
qiv'-u) where u and v are relatively prime divisors of n. For example, the 
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(ft - 1) (n - 3)/2 = 84 complex factors of d include 4 • 2/2 = 4 from d5 and 
2 • 0/2 = 0 from d39 leaving 40 complex conjugate pairs in d 1 5 . The latter 
include four pairs each from q{t for u = 2, 35 5 9 6, 7, 9, 10, and 12, four 
from ^ i ! > but only two pairs each from ~q[\' = 16 and q-fs

h' = 1. 

(2.18) d 1 5 = 31 • 31• 61 • 1 • 1 • 61 • 31 • 2* • 271 • (24 • 1 ) 1 / 2 . 

The factor q^ ' was found by (2.13) to be 

(2.19) q[f = f^i5) - (/5 + l)2(-/5 + l)2 = 2 \ 

To evaluate the principal factor ~q^'^' for primes p >_ 5, we set 

pP = a) = e2l*i/3 

and obtain 

2 (2.20) ^ 3 ; p ) = n (i - ^pj" - ^3j') = i d - o)jy - 1 | : 

(oo"p - 0)0 (a) - a)2)? + 1 = 3 - a3<p + 1 ) / 2 + 1 

3p . „ 
J £ i ? 3 ) 

where a = (-3/p) = ±1 is the quadratic character of -3 (mod p ) . In particu-
lar, ^ 3 | 5 ) = 3 5 + 3 3 + 1 = 271 (see Table 2 ) , and 

' 15 

(2.21) tf(3;7) = 2269, q{3:ll) = 176419, q (3; 13) = 1 5 7 - 1 0 1 4 1 . 
^21 ^33 ^39 

To compute £ p ± 9 ' , we note that the ninth roots of 0) are r1+3k . Hence, 

(2.22) 

L2 ? 

q { ± 9 ) = ft I 1 - *9 - r±1 + 3k\2 = | ( 1 - a))9 - o ^ 1 ! 2 
2 7 fe = i 

= 3 9 ± 3 5 + 1 = 19684 ± 243. 

3. THE FIBONACCI FACTORS OF dn AND gln 

Several extended principal factors of Dn are expressible as sums or 
ratios of Fibonacci numbers. 

Th&OKOm 3.1: For n odd, the factor q^2' of Dn is given by 

(3-D V{n2)=F2nK =*•„_! +*"B+1 = [T»], T = (/5 + l)/2 

where [ ] denotes the greatest integer function, and Fk denotes the kth Fi-
bonacci number, defined by 

(3.2) FQ = 0, F± = 1, Fk+1 =Fk +Fk_1. 

P100A: The roots of z2 - z - 1 = 0 are T = (/F + 1)/2 and T=-1/T. Fac-
torization of (2.11) for u - 2 and ft odd yields 

(3.3) q{
n
2) = - n (1 - W T ) (1 - W T ) = -(1 - Tn) (1 - Tn) = Tn + Tn = [xn]. 

J' = I 

I t i s known, and can be shown by i n d u c t i o n , t h a t 
(3 .4a) Fk = (Tk - Tf e) / (T - T ) , F /Ffc = Tk +Tk 
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(3.4b) Fk_1 + Fk+1 = (Tk_1 + Tk + 1 - T^"1 - Tk + 1)/(T - T) = Tk + Tk. 

Hence (3.3) and (3.4) imply (3.1). 
The Fibonacci factors [xn] = q^1' for the first 25 -odd numbers n = lOt 

+ a follows with factors underlined which are omitted from 77(2) . 
1 n 

(3.5) 
lot 

d 

1 

3 

5 

7 

9 

0 

1 

22 

11 

29 

i!/ 19 

10 

199 

521 

2}_*_n * 

3591 

9349 

31 

20 

22-_29- 211 

139 • 461 

U. • 101s 151 

2 M 9 • 577 9 

59 • 19489 

30 

3010349 

22° 199* 9901 

i L i ; i i * 71 ° 911 
54018521 

_22-_521 • 7 9 • 859 

40 

370248451 

969323029 

lMi^il,i_3ie 

6643838879 

29 • 599786069 

181 « • 541 

Note that each prime factor of q\^' (not underlined) is congruent to 1 (mod 
n). 

Since dn divides g2n for odd n9 so does F2n/Fn„ 

Tko.on.2m 3,2: The integer g2n is divisible by Fn for even n and by F'2n /Fn 
for odd n, 

VKOOfc The product of the [n/2] - 1 factor pairs in (2.5) for which j + k 
= n and s = -1 is expressible as 

n \SJ - 8-* - 1 1 2 = n <3 -s2j" - s _ 2 j ' ) 
0 < 2 j < n 0 < 2 j < n 

(3.6) = n (T + s 2 i T ) (T + s _ 2 j ^ 
0<2j <n 

= (Tn _ (-Y)n)/(T - (-l)nT) 
where T + T = -fr" = 1. This is Fn for n even, and F2n/Fn for n odd. 

For n = 2ms the factors of (3.6) with j odd have product 
(rm + (-T)m)/(T + (-l)mT) 

which d i v i d e s k2m. This p roduc t i s Fm fo r w odd and F2m/Fm for m even. So 

(3 .7) 3 | V 7 | k 8 , 5 | ^ 1 0 5 13|fe1 I t , 47 | / c 1 6 5 1 2 3 | k 2 0 9 8 9 | k 2 2 . 

Th<LQK.&r\ 3.3°- I f p i s a pr ime > 5 5 then d5 has t h e f a c t o r 

(3 .8) q^h) = 1 + 5Fp(Fp - a ) , a = (p/5) = ± 1 , 57z = 1 (mod p) 

where î p is the pth Fibonacci number and a = ±1 is the quadratic character 
of p (mod 5). 

?H£o£} Taking r = e27ri/5p
5 3 = pP, T"1 = s + z'1, 
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q(5h) = FT ( i - p i - r
5hJ ) = Y\ (r~5hJ - p ( 1 - 5 ^ ' _ i ) 

5 P 3ERSp 0'eR5p 

= f l (1 " (*2j + D P ) = | l - S P T " P | 2 | l - 2 2 P ( - T ) P | 2 

(3 .9) J - i 

= (TP + T - P - 2 P - g-P) (TP + T -P + S 2 P + S - 2 P ) 

= 5Fp (Fp - a) + 1 

-P + T - P = /5Fp9 (z1 + s _ 1 ) ( s 2 + <T2) = - 1 , and 

(sP + 2-P - s 2 p - z'2P)//5 a 
i s 1 i f p = 1 (mod 5) o r - 1 i f p = - 1 (mod 5 ) . The fo l l owing such f a c t o r s 
q^sh' a r e prime except when p = 13 

(3.10) 5p 

5P 

15 

31 

35 

911 

55 

39161 

65 

131 • 2081 

85 

12360031 

95 

87382901 

115 

4106261531 

Similarly, 1811^^ 5 and 21211 \d 1 0 5 . 

k. POWER SUM FORMULAS FOR PRINCIPAL FACTORS OF Dn 

The extended principal factors of q^l~1'dn in (2.2) or the corresponding 
factors q(v;u) of h n in (2.7) may be treated together by defining 

(4.1) (c + 2)q(v :u) = fl \c + rvd + ruJ\ , o = ±1, v 
j = i 

when u9V are integers with (u9v) = 1 and u > \v\ > 0. 

Th&OJLem 4.1: I f zk are t h e m r o o t s of the e q u a t i o n 

(4 .2) zu + zv + Q = 0 , Q = ± 1 , u > \v\ > 0 

where m = u fo r v > 0 or m = u - V fo r v < 0 , then 

2-ni/n 

k I " (4.3) I] k + rVJ + P ^ l = II I1 " 3 
j = 1 fc = 1 

VfWOfc Both s i d e s of (4 .3) e q u a l t h e double product 

n rn 

(4.4) n n H - **|. 
j = l k=l 

When m = 29 the two cases (u,i?) = (1,-1) and (2,1) were involved in com-
puting q^'1^ in (2.3) with zk = -oo, -aj and q^ in (3.3) with zk = -T, -7. 
The factor q^2' of 7zn is 0 if 3\n or 1 otherwise, and may be omitted, since 
3fw. 

The unexpected identities 

(4 .5a) (z5 + z - 1) = Os + s " 1 - l ) s ( s 3 + z2 - 1) 

(4.5b) ( s 5 + z + 1) = (z2 + s + D s f e 2 + z'1 - 1) 
enab l e us to w r i t e 
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(4.6) q ^ = q ( - ^ q ( z : 3 K q { 5 ) = q { 2 ) ^("2) = <7("2), 

so the cubic cases m = 3 in (4.2) yield not only q^3^ and q^3^ but also the 
two pairs of equal integral factors 

q ( 5 ) / (-1) (2:3) a n d (5) = (-2) 

Combining (4.1) and (4.3) for m = 3 yields 

(2 + C ) . < 7 « B - u ) - | i - 8 < r ; u > - « B ( i - s [ v
n \ u J ) \ , 

(4.7) 
6 = Ifek 

where 
m 

(4.8) »„T; = I > * f o r *Z + * * " + * = 0 . 
k=l 

The product 6 = Jlzk is 1 for <?n(3) and q^2:3) and -1 for q^3) or q^~2) . We 
omit the subscript o when o = -1 and omit f when z; = 1. 

Replacement of zk by -l/z^ converts the roots 3^ of s2 + s_1 - 1 = 0 to 
those of z3 + z2 - 1 = 0 5 and replacement of sfe by -zk converts z3 + z + 1 = 0 
to z3 + z - 1 = 0. Hence 

(4.9) si"2) = (-1) s[2
n'3\ si+3> = (-1) (3) 

Thus all six extended principal factors for m = 3 can be computed from the 
values of s^ ' and s^ ' for positive and negative n. 

TkdOfi&n 4.2• The power sums s\^/0
u' satisfy the recurrence relations 

w.io) 4iu:l+4iv:i +«4:;u) - o . 
Vtioofc M u l t i p l y z£ + zk + a = 0 by z% and sum over k. 

Starting with the value m = 3 for n - 0, and the values s„ ' for n = 
±1, we obtain values where v = 2 or 1 as follows: 

n 

o(2:3) 

s(2:3) 

q(3) 

s(3) 

1 

-1 

0 

0 

1 

2 

1 

2 

-2 

1 

3 

2 

3 

3 

4 

4 

-3 

2 

2 

5 

5 

4 

5 

-5 

6 

6 

-2 

5 

1 

10 

7 

-1 

7 

7 

15 

8 

5 

10 

-6 

21 

9 

-7 

12 

-6 

31 

10 

6 

17 

13 

46 

11 

-1 

22 

0 

67 

12 

-6 

29 

-19 

98 

13 

12 

39 

13 

144 

Using (4.7) and (4.9) we can then compute the three extended principal 
factors q}~2)

 9 q^2:3K and q ^ of dn and the factor q ^ of hn or kn/2. We 

use (4.6) to compute the additional factors g'5' and q^5'. We compute 
- ( v : u ) = -3(y-*)n 

"n+ Jn+ 
by r e p l a c i n g -cxj by c^- i n Theorem 2 . 5 . By (4 .6) we w r i t e ~q ' 5 ' = ~q^~2' . 
Then n + 

^ 7 = ( ? 7
( ! ) ) 1 / 3 = 25 ^ 1 1 = ? ( " 2 ) = 2 3 , 

h13 = (? ( ~ ^ ) 1 / 3 = 53 • 3 , (continued) 
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(4.14) 

&i7 = ^ i ( ; 2 ) ? i ( 7 )
+ = l 0 3 - 2 3 9 

K* ' I^WMll)1'9 =191-47.7 

noq = a("2)g(3)g (_3) = 691 • 472 • 829 
23 ^23 ^2 3+^2 3+ 

Similarly, since (2m - l)2 = 1 (mod. km) , the factor of fcn in (2.9) is 
not <?„* but its square root. Using f(y>x) as befores the factors fe„ of 
D2n for 2n < 44 are 

(4.15) 

K 
^ ; 1 ) ) 1 / a 

^ " 2 ) 

^2n+ 

H2n + 

^ 2 K + 

? ( 7 ) 

<7,("7 ) 

^ 

3 

K_ 

i 

17 

17 

*10 

5 

5 

61 

5 

41 

^14 

13 

23 

337 

29 

197 

113 

29 

*16 

47 

97 

449 

193 

97 

353 

257 

^2 0 

41 

281 

241 

881 

41 

281 

41 

The remaining factors of k2Q are 

(4.16) (tf<9>gH>)~(ii)0-(-ii))i/2^(i5)-(-i5) = 32- 31- 11 . 41- 641- 41 

Note that the factors ~q^u^ in (4.15) are congruent to their squares 
(mod 2n) . Factors of /c are 

(4.17) k22 = 67 • 89- 353- 397- 419- 617 • 661 • 1013 • 2113 

2333 • 3257 • 4357 

The complete factorization of Dhh is 

(4.18) Dhh = -3(23- 89- 683)3(5 • 397 • 2113) 3 (d^h^k^) 6. 

5. FINITE BINOMIAL SERIES FOR THE POWER SERIES OF ROOTS 

The two sums s^'bYa anc* s~n bUo ° ^ t^le n t^ an<^ ~ n t n powers of the u roots 
z of the trinomial equation 

(5.2) zu + bzv + be = 0, b2 = e2 = 1, u > v > 0 
can both be expressed as sums of a total of at most 2+ \n\ /v (u~ v) integers 
that involve binomial coefficients. 

Tk2.OH.2m 6.1 ' The sum of the nth powers of the roots zk of (5.1) is 

(5.2a) s{
ryh

U] =Ylj(i.) (-ZOV-*, where ui - vj = n 

(5.2b) = 2J w( \\ - v\. ~_ J {-bY a1' •?', where ui - vj = n. 
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VHP0 j'> If we set wk = -be 9 then Equation (5*1) for zk becomes 

(5.3) w~u = (-bo)-1 = z~k
u(l + z£/c)5 

which can be solved for zk in terms of w^ by applying formula (3.5c) of [4] 5 
replacing the letters X,]i5v5c,q9k±n [4] by Vf = u - v, V 5 -u9 wk, n, 
j, respectively. Thus 

(5.4) zl = V ^ _ Nv \n)lu\wiv+nc-i . 

The sum of the u values of wk
v + n is u(-bcY if jv + n is an integral multi-

ple wl of ii, but is 0 otherwise. We obtain (5.2a) from (5.4) by setting 
jv + n = ui and summing over j subject to this condition and j >_ 0. The 
equivalent form (5.2b) obtained by setting n - wi - vj is clearly a sum of 
int.egers when b2 = c2 = 1. It also serves to assign the value (-1)°V to 
M^\ when i = 0, j = -n/v > 0. 

The conditions j > 0 and (u - v)^/n + V (i - j) / n = 1 in (5.2) imply 

i/n 2. 0s since ( . J vanishes for 0 < i < j . Hence, 0 <_ j £ i <_ n /(u - v) 

for n > 0, and 0 _< j _< j - i _< -n/i? for n < 0. Since successive J!s differ 
in (6.2a) by u, there are at most 1 + n/u(u - v) terms for n > 0 and at most 
1 + \n\/uv for n < 0. Both sums can be computed with at most 2 + \n\/v (u -
v) terms. 

The four sums in (4.11) and corresponding sums when V = 1 or u - 1 and 
u > 3 are expressible in terms of the following 4 simple nonnegative sums: 

(5-5a) ao = l + E -^r^( * > °i = D ^rufei k j 

(5.5b) a2 = 23" f (n _fc
yfe), a3 = £ ' f(n _k y?c) 

n/u<.k<.n/v n/u<_k<_n/v 

where S" and £ ' d e n o t e , r e s p e c t i v e l y , t h e sums over even and odd k, and w = 
V + 1. Note t h a t <J0 - 1, 0 X , a2 , and 0 3 a r e d i v i s i b l e by n when n i s a p r ime . 

Thzotim 5 . 2 : The 16 power sums s^&.V"^ a n d sm',b}l f o r &2 = e 2 = 1, m= ±n, 
a r e e x p r e s s i b l e for n > 0 in terms of t h e 4 b inomia l sums (5.5) as f o l l o w s : 

(5.6a) 4Xl+l) = ("W"^o + (-WWeOi) 

(5.6b) siVb,^ = &" ( a2 - fcWcCT3> • 

(5.6c) s ^ + V = c»(a2 - <3y&a3) 

(5.6d) s . ^ ' o = (-«)K(o0 " c^cr,) 

Vncoj: For n > 0 and w = v + 1, we se t i - j = k, i = n - kv in (5.2a) and 
obtain 

^•'} 8"<t>>° 2-J n - kv\ k J (~b)n-kvck. 
0 <.k <.n/u 
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(5.8) 

Separating the sums for even and odd k9 as in (5. 5a) , yields (5.6a). To ob-
tain (5.6c), we replace V by 1 and u by V + 1, in (5.2a), and apply (5.5b). 
Then set i = k , i - j = n - v k , and separate terms for even and odd k. Re-
placing zk by 1/Zfc interchanges n and -n, b and c9 V and u - V, taking zu + 
bzb + be = 0 into zu + ozu~v + bo = 0, (5.6a) into (5.6d), and (5.6c) into 
(5.6b). 

For n = 7, V = 2, we have 

To obtain the extended principal factors q^~ > ̂  ' ̂  > #« > a n d ̂ i ^ 
related to quartic equations (4.2) or the 6 factors other than q^' and ̂ +

5^ 
of (4.6) related to quintic equations, we apply Theorem 4.2 and express the 
sums Y,{z-zk)n for positive or negative n by (s^ - s2n)/2. For the equation 
zh + zv + o = 0 with v = 1 or 3 and c = ±1, we have (z4 + c) 2 = z2v , so #2n 

satisfies the recurrence 

(5.9) s8+2n + ^OSh+2n + S2n = SZn+2v' 

We omit the details concerning the computation of these 10 extended factors 
—some of which may coincide with the two "quadratic" and six "cubic" factors 
described above. For higher degree than 5, the factors listed in Section 7 
were computed by pocket calculator using (2.5). 

6. THE MULTIPLICITY OF p = 2n + 1 IN Dn 

The multiplicity of factors 23 in d119 59 in d23, 83 in dl+1, etc., as 
seen in Table 1, is clarified by the following theorem. 

Th.2X)JiQJtt\ 6.1: If p = 2n + 1 is prime, then pe divides Dn for some exponent 
e >_ [(n - l)/2]. 

Vtiool* If i" is a primitive root (mod p) , 1 < ~s < 2n9 then ~s2n E 1 (mod p) 
and the even powers s2j = F«7 are quadratic residues which are nth roots of 
unity (mod p) . A principal factor q^°'u' of dn will vanish (mod p) if and 
only if the congruence s2jy + s2ju E 1 (mod p) holds for some j relatively 
prime to n. If (v 9u) = 1, parametric solutions of this congruence are 

(6.1) siv E 2/(7z' + h)9 sJ'u = (hr - h)/(hr + h) where hh' = 1 (mod p) . 

There are 4[ (n - l)/2] admissible values of h, excluding h2 = ±1 or 0, of 
which the four distinct values ±h, ±hr yield the same ordered pair (s2jy , 
s 2 j w ) . Hence, there are [(n - l)/2] distinct ordered pairs of squares with 
sum 1 (mod p) and at least [ (n - l)/2] factors p In Dn. 

Note that the substitution of (h ± l)/(7z + 1) for h interchanges the 
squares s2Jv and s2J'u . If these squares are equal (mod p) , each is 1/2, so 
2 is a quadratic residue of p, p divides 2n - 1, p E ±1 "(mod 8), and [ (n -
l)/2] is odd. For example, 7 divides 23 - 1, 17 divides 28 - 1, 23 divides 
2 1 1 - 1, etc. In any case, [ (n - l)/4] factors p divide dn> For example, 

(6.2) 2 3 2 M 1 1 5 ^5\d23, 599|d29, S310\dhl 

and the inequality e >_ [ (n - l)/2] is exact except for p = 59 where 

[(n - l)/4] = 7 < ell = 9. 
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In this case we have 

1 = 25 + 252 = 15 + 155 E 19 + 198 E 3 + 3"11 E 16"1 + 1613 

(6.3) 
E 9 + 9"2 E 17"1 + 172 (mod 59) 

but three factors qM are 592, for u = 5 and -13 (or 3/2) as well as -2. 

7. SUMMARY 

We list all the principal factors q^11^ of dp for prime p in Table 1, 
defining ur so that uu' = 1 (mod p) , and taking all u from 2 to (p - l)/2, 
except when 0 < wf < w. We then replace qf$u^ by ^p~w on the list, and in-
dicate by underlining that this has been done. However, in computing, we 
take u = -2 instead of (p - l)/2, and u/v = 3/2 instead of u = (3 - p)/2, 
(2 ± p)/3 or 5. Similarly, we can use the "quartic" factors with u/v = -3 
or 4/3 instead of higher degree product formulas requiring more complicated 
calculations. 

To find the prime factors of a large principal factor like 

q^7
3) = 10504313, 

we assume a factorization (1 + 94j) (1 + 94fc) by Theorem 2.6, subtract 1, di-
vide by 94, and get 

(7.1) (1188) (94) + 76 = 94j/c + j + k. 

This implies j + k = 76 + 282/??, and jk = 1188 - 3m for some 777. The only 
prime for j < 1 is 283, which does not divide <7U • Hence j 2l 7, and 

j + k < 1188/7 + 7 < 177, 

so 777 = 0. Thus, j = 22, /c = 54, and 2069 * 5077 is the factorization. 
For odd composite n, both ^ w ' and q^u^ may be listed as in (2.18) if 

u and n have a common factor, so we list them together in (7.3). Factors 
q(3:p) ^n (2.21) must also be included in d3p and factors like (3.8) in d5 . 

Factors of D^n + 2 were given in (2.4), (2.7), and (4.14), whereas those 
of Bhn are obtained from (2.4), (2.9), and (4.15). 
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A NOTE ON TILING RECTANGLES WITH DOMINOES 

RONALD C. READ 
University of Waterloo, Ontario, Canada 

INTRODUCTION 

In how many ways can an m x n chessboard be covered by dominoes, each. 
of which covers two adjacent squares? For general m and n this is the "di-
mer problem" which is known to be difficult (see [2] for details). However, 
when one of the dimensions,, say m, is small, some results can be obtained, 
and will be given in this paper. The method used has some similarities with 
that used for the cell-growth problem in [3], although there are differences. 

1. THE METHOD 

We shall illustrate the general procedure by referring to the case m = 
3. Any covering of a 3 x n rectangle with dominoes can be regarded as hav-
ing been built up, domino by domino, in a standard way, starting at the left-
hand edge of the rectangle. Each domino is placed so that it covers an un-
covered square furthest to the left, and, if there is more than one such 
square, it covers the one nearest the "top" of the board. Thus if the con-
struction of a covering has proceeded as far as the stage shown in Figure 1, 
the next domino must be placed so as to cover the position marked with an 
asterisk. There may be two ways of placing the new domino (as in Figure 1) , 
but there will be only one way if the space below the asterisk is already 
covered. 

In the course of constructing 3 x n rectangles, the figures produced 
will have irregular right-hand ends—their "profiles." We start by listing 
the possible profiles and the ways in which one profile can be converted to 
another by adding an extra domino. This information is given in Figure 2, 
in which the profiles have been labelled A to J. 

Let Ar9 Br9 etc., denote the numbers of ways of obtaining figures end-
ing in profiles A, B, etc., by assembling r dominoes. Then, by reference to 
Figure 2, we obtain the equations: 

Ar+l 
Br+1 
Cv+l 
Dr+1 
Er+1 
Fr+1 
Gr+1 

Hr+1 

^r+1 

= 
= 
= 
= 
= 
= 
= 
= 
= 

Dr 

Av 

K 
Bv 

Br 

cr 
** 
Fr 

Gr 
Since A0 = 1 and all other values are 0 when r = 0, we can use (1.1) 

to calculate these numbers, and in particular Ar, for r - 1, 2, etc. Equa-
tions (1.1) can also be transformed in an obvious way to an equation which 
expresses the vector (Ar + i, Br + 1, ..., Ir + {) as a 9 x 9 matrix times the 
vector (Ar, Br9 ..., Ir) , but this is not very useful. 

2k 
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A better approach is to define generating functions 

A(t) = YlA*tr>etc* 
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Remembering that Ait) will be the only one of these functions having a con-
stant term, we obtain the relations 

+ tF(t) 

(1.2) 

Solving these equations for Ait) we obtain 

(1 - 4£3 + ts)A(t) = 1 

which can be more conveniently expressed as 

Ait) 
Bit) 
Cit) 
Bit) 
E(t) 
Fit) 
Git) 
Hit) 
lit) 

= 1 + Wit) + tEit) 
= tAit) 
= tAit) + tEit) 
= tBit) 
= tBit) + tlit) 
= tat) 
= tEit) 
= tEit) 
= tGit) 

(1.3) (1 - hx + x2)A(x) = 1 x9 

writing Aix) = £ where av 
r = Q 

pie of 3.) 
From (1.3), we find that 

(Clearly Ak = 0 if k is not a multi-

2. RESULTS 

When m = 2, there are two profiles (A and B of Figure 2, with the bot-
tom row omitted) and the corresponding equations are 

A(t) = 1 + tA(t) + tB(t) 

B{t) = tA(t) 

whence A (t) = (1 - t - t 2 ) " 1 . The numbers of tilings are therefore the Fi-
bonacci numbers. 

When m = 4, the profiles are as shown in Figure 3 and by following the 
method of Section 1, we obtain the equations 

A(t) = 1 + tC(t) + tGW) + tH(t) + tl(t) 
B(t) = tAit) i C(t) = tA{t) + tBit) + tKit) 
Dit) = tBit); Fit) = tBit) + tLit) 
Fit) = tCit); Git) = tDit); Hit) = tEit) 
lit) = tFit); Jit) = tEit); Kit) = tlit); Lit) = tJit) 

from which, on solving for Ait), we obtain 

Aix) (1 - x2)/il 5xz x3 + xh) 

and the corresponding recursive formula 

ar_ + 5a„ -1 + ar - 2 ^r _ 3 • 

For 77? > 4, the method becomes tedious by hand, but I found it quite 
easy to write a program (in APL) which would first generate the relations 
between the profiles (as in Figure 2) and then calculate the required num-
bers from the equations analogous to (1.1). In this way, results were 



1980 A NOTE ON TILING RECTANGLES WITH DOMINOES 27 

obtained for m = 5, 6, 7, 8, and 9. They are given in Table 1 below. Note 
that Kasteleyn [1] has given results for m = n = 2, 4, 6, and 8, with which 
the entries in the table agree. 

B C H E F 

_r 

G 

1 
H P 

h 
/ ? 

FIGURE 3 

TABLE 1 

K C \ 
L 

r 

X 
0 
l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

2 

1 
1 
2 
3 
5 
8 

13 
21 
34 
55 
89 

144 
233 
377 
610 
987 

1597 
2584 

3 

1 
0 
3 
0 

11 
0 

41 
0 

153 
0 

571 
0 

2131 
0 

7 953 
0 

29681 
0 

4 

1 
1 
5 

11 
36 
95 

281 
781 

2245 
6336 

10861 
51205 

145601 
413351 

1174500 
3335651 
9475901 

26915305 

5 

1 
0 
8 
0 

95 
0 

1183 
0 

14824 
0 

185921 
0 

2332097 
0 

29253160 
0 

366944287 
0 

6 

1 
1 

13 
41 

281 
1183 
6728 

31529 
167089 
817991 

4213133 
21001799 

106912793 
536948224 

2720246633 
13704300553 
69289288909 

349519610713 

7 

1 
0 

21 
0 

781 
0 

31529 
0 

1292697 
0 

53175517 
0 

2188978117 
0 

90124167441 
0 

3710708201969 
0 

8 

1 
1 

34 
153 

2245 
14824 

167089 
1292697 

12988816 
108435745 

1031151241 
8940739824 

82741005829 
731164253833 

6675498237130 
59554200469113 

540061286536921 
4841110033666048 

9 

1 
0 

55 
0 

6336 
0 

817991 
0 

108435745 
0 

14479521761 
0 

1937528668711 
0 

2594237 66712000 

n \ 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

2 

4181 
6765 

10946 
17711 
28657 
46368 
75025 

121393 
196418 
317811 
514229 
832040 

1346269 

3 

110771 
0 

413403 
0 

1542841 
0 

5757961 
0 

21489003 
0 

80198051 
0 

299303201 

4 

76455961 
217172736 
616891945 

1752296281 
4977472781 

14138673395 
40161441636 

114079985111 
324048393905 
920471087701 

2614631600701 
7426955448000 

21096536145301 

5 

4602858719 
0 

57737128904 
0 

724240365697 
0 

9084693297025 
0 

113956161827912 
0 

1429438110270431 
0 

6 

1765711581057 
8911652846951 

45005025662792 
227191499132401 

1147185247901449 
5791672851807479 

7 

152783289861989 
0 

6290652543875133 
0 
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SOME EXTENSIONS OF WYTHOFF PAIR SEQUENCES 

GERALD E. BERGUM 
South Dakota State University, Brookings, SD 57007 

and 
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San Jose State University, San Jose CA 95192 

In [1] it is shown that if a = then 

(1) [[na]a] = [na] + n - 1 

for all positive integers n. Out first purpose in this paper is to give an 
alternate proof of (1) and also show that (1) holds even if n is negative. 
Next, we prove that the converse of (1) holds even if (1) is true for all 
negative integers. In conclusion, we derive an additional identity using 
the greatest integer function together with the golden ratio, and we dis-
cuss two sets of sequences related to these results. 

First we show 

Thdotim 7: If 6 = — ^ then [ [n6] ] = [n&] + n - 1 for all integers n+ 0. 

Before proving Theorem 1, let us recall a theorem of Skolem and Bang 
which can be found in [2]. 

ThoxiKdm 2> Let e and t be positive real numbers. Denote the set of all 
positive integers by Z and the null set by 0. Let Ny = {[riY]}n = 1 . Then 
Ne H Nt = 0 and Ne U Nt = Z if and only if £ and t are irrational and e"1 + 
t ' 1 = 1. 

VK.00 j 0 j IkdOKQm 1 '• Let us assume that n is positive. Since n& is not an 
integer for any n j= 0, we have [n&] < n6 < [nS] + 1 provided n 4- 0, so that 

(2) [n$]6 < n&2 < ([nS] + 1)6. 

In Theorem 2, let e = 6 and t = 62, then e"1 + t'1 = 1, so that Ns D N6i = 0 
and N6 U N&2 = Z. Because [|>6]6] and [([n6]+ 1)6] are elements of Ns , while 
[nS2] belongs to N~29 we know from (2) that 

(3) l[nS]S] < [n62] < [([n6] + 1)6]. 

Using the well-known fact that [a + b] = [a] + [b] + y where y = 0 or 1, we 
see that [[n&]S + 6]= [[n6]6] + [6] + y = [[n6]6] + 1 + y where y = 0 or 1. 
Since [n62] - [[ftS]6] is an integer, we conclude from (3) that 

(4) [nS2] - [[nS]S] = 1 

and y = 1. Recalling that 62 = 6 + 1, we obtain 

(5) [[n6]5] = [nS] + n - 1 

and the theorem is proved If n > 0. 
Let us now assume that n < 0 and recall that since nS is not an integer 

then [nS] = ~[-nS] - 1. Using this fact together with the results above for 
n > 0, we have 

{[n6]S] = -[-[nS]S] - 1 

= -[([-n6] + 1)6] - 1 

28 
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= -([[-nS]6] + [6]) - 2 

= ~([-n&] - n) - 2 

= -(-[n6] - n) - 1 

= [nS] + n - 1 
and the theorem is proved. 

We now show 

TkdO/im 3: If [[n6]6] = [nS] + n - 1 for all integers n + 0, then 6 = * "t . 

?Jiooj'' Since [ [n6]6] = [n6] + n - 1, we have [nS] + n - 1 £ [n6]5 < [n6] + n. 

Therefore, 1 < - < 1 when n < 0, while 1 < - — < 1 
if n > 0. n - n n- n 

Hence, 

(6) Lim [ n 6 ] l n-+o n 6 - 13 

provided 6 ^ 1 , which is obviously true. 
By definition of the greatest integer., we know that [nS]_<H(5< [nS ] + 1 

for any integer n and any 6 so that 

g _ _ < _t J. <• g if n > 0, while 6 < < 6 - — when n < 0. 
n n — ~~ n n 

In both cases, 

(7) L l m M l = 6. 
n + 0 n 

?2 /5 
Equating (6) and (7) , we see that 6 - 6 - 1 = 0 . If 6 = « and 

n = 1 then [[n6]6] = [-6] = 0, while [nS] + n - 1 = -1. Hence (1) is false. 

Therefore, 6 = « and we are done. 

Another identity which arose while investigating (1) is 

Th&o/im 4: If 6 = l * , then [ [n6]6 + n6 ] = 2 [rc6] + n for all integers n 

and conversely. 

The proof of Theorem 4 is omitted, since it is essentially the same as 
the proof of Theorems 1 and 3, with the only difficulty arising when trying 
to prove the result for n < 0. This difficulty is overcome by using the 
fact that 

1 + /5 
[[nS]S + nS + 6] = [[n6]& + n6] + 1 when n > 0 and 6 = . 

The argument for the validity of the last statement can be found in [3]. 
Let us now illustrate some interesting applications of Theorems 1, 3, 

and 4. To do so we introduce two special sets of sequences. For any inte-
ger n + 0, define {Sm(n)}™ = 1 by 

(8) Sm(n) = Sm_1(n) + Sm_2(n), m > 3, S1 (n) = n, S2(n) = [no], a = l + ^ 

and for any integer n, define {^(n)}~= by 
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(9) S*(n) = S* (n) +S* (n) - l , i w > 3 , 
m m -1 m -2 

S*(n) = n9 S*(n) = [not], a = * + 5 . 

Since (8) is a generalized Fibonacci sequence, it is easy to show that 

(10) Sm(n) = Fm_1[na] + nFm_2, n ^ 0 a n d m > l . 

The terms of {Sm(n))2,1 for 1 _< m <_ 7 and -10 < n £ 10, n ^ 0, are pre-
sented in Table 1. 

TABLE 1 

sj^r<^ 
Siin) 
S2(n) 

S3M 

Sh(n) 

S5M 
S6(n) 

S7(n) 

S m ( n ) \ ^ 

S1(.n) 

S2(n) 

Ss(n) 
Sk(n) 

S5(n) 

Se(n) 

S7(n) 

-10 

-10 

-17 

-27 

-44 

-71 

-115 

-186 

1 

1 

1 

2 

3 

5 

8 

13 

-9 

-9 

-15 

-24 

-39 

-63 

-102 

-165 

2 

2 

3 

5 

8 

13 

21 

31 

-8 

-8 

-13 

-21 

-34 

-55 

-89 

-144 

3 

3 

4 

7 

11 

18 

29 

47 

-7 

-7 

-12 

-19 

-31 

-50 

-81 

-131 

4 

4 

6 

10 

16 

26 

42 

68 

-6 

-6 

-10 

-16 

-26 

-42 

-68 

-110 

5 

5 

8 

13 

21 

34 

55 

89 

-5 

-5 

-9 

-14 

-23 

-37 

-60 

-97 

6 

6 

9 

15 

24 

39 

63 

102 

-4 

-4 

-7 

-11 

-18 

-29 

-47 

-76 

7 

7 

11 

18 

29 

47 

76 

123 

-3 

-3 

-5 

-8 

-13 

-21 

-34 

-55 

8 

8 

12 

20 

32 

52 

84 

136 

-2 

-2 

-4 

-6 

-10 

-16 

-26 

-42 

9 

9 

14 

23 

37 

60 

97 

157 

-1 

-1 

-2 

-3 

-5 

-8 

-13 

-21 

10 

10 

16 

26 

42 

68 

110 

178 

One of the first observations made was that some of the rows appear to 
be subsets of previous rows. A more careful examination implies that for a 
specific n the positive and negative values for a given row are related by 
the Fibonacci numbers. The latter result is stated as Theorem 5, while the 
former is Theorem 6. 

ThdOtim 5: For all integers n £ 0, Sm(n) + Sm(-n) = -Fm_19 m >. 1. 

The proof of Theorem 5 is a direct result of (10) and is thus omitted. 

Th.Z0K.2Jfn 6: For any integer m _> 3 and any integer n + 0, 

Sm(n) = Sm_2(S3(n)). 



1980 SOME EXTENSIONS OF WYTHOFF PAIR SEQUENCES 31 

Vtioofc By d e f i n i t i o n , S1(S3(n)) = S3(n)9 so t h e theorem i s t r u e i f m = 3 . 
By Theorem 4 we have 

Sh(n) =S3(n) + S2(n) = 2[na] +n= [ [na]a + na] 

= S2([na] + n) = S2(S 3 ( n ) ) , 

so that the result is true for m = 4. 

Assuming the theorem true for all positive integers m <_ k where ^ 4 , 
we have 

Sk + 1(n) = Sk(n) + Sk_1{n) =Sk.2{S3{n)) + Sk_3{S3(n)) =Sk_1(S3(n)) 

and the theorem is proved. 

An immediate consequence of Theorem 6 is 

(11) {S1(n)} D{Sh(n)} D{S,(n)} D {SQ(n)} D ... 
and 
(12) {53(n)} D {S5(n)} D {S7(n)} 2 {s9(n)} D ... . 

By the theorem of Skolem and Bang, we have 

{S2{n)rn__x n{53(n)}; = 1 = 0. 

Using this result and Theorem 5, it is easy to see that 

Hence {S2 (n)} H {#3 (n)} = 0 and {5m(n)} H {^^(n)} = 0 for all TW >. 3. That 
is5 no row has any elements in common with the row immediately preceding it. 

We now turn our attention to an investigation of the columns of Table 1. 
To do this, we use C^ to represent the ith column. You will, after extend-
ing the number of columns, see that 

C1 3 C2 D C5 2 CY 3 2 C 3h ... 

C 3 D C7 D C1Q =2 C\7 =2 C123 ... 
and 

^4 3 ^10 3 ^2 6 - ^6 8 =̂  ̂ 17 8 • " * 

Analyzing the subscripts, we are led to conjecture that, for all integers 
n 1 0, 

(13) CSl(n) 3 CS3(n) 3 CS5(n) 3 CS7(n) 2 CS9(n) 3 - - • -

In proving this, we arrived at what we believe is an interesting commutative 
property of this set of sequences. 

Jkzonm 7: If w > 1, then S3 (S2m _x (n) ) = £2m _1(53(n) ) 

P/L00f$: The theorem is obviously true for m = 1 and m = 2. Furthermore, by 
Theorem 6 and the induction hypothesis, we have 

S^S2m+x{n)) =53(S2m.1(53(n))) = S 2m _x{s 3{S 3{n))) = S2m + 1(S3 (n) ) , 

and the theorem is proved. 

Since S2m_x (S3(n)) = S^S^^in)), we have 

(14) S s f o - i W ) =Si(Sa, +iW). 

Furthermore, by Theorems 6 and 7, 

(15) S*(S2m-i(.n)) - fir2(s3(52BI _ ! ( « ) ) ) = S 2 ( S 2 m + 1 ( n ) ) . 
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Together, (14) and (15) tell us that 

for all m > 1. This result proves the validity of (13). 

We now turn our attention to the sequences {S* (n)}™ = 1. The elements 
for the first seven sequences are given for -10 <_ n £ 10 in Table 2. An ex-
amination of this table leads to results that are very similar to those as-
sociated with {Sm(n)}m=i• A number of these proofs are omitted, since they 
are similar to the proofs of their counterpart theorems. 

TABLE 2 

^ \ ^ n 
m N ' \ 

S\(n) 

S*(n) 

S*M 
S*(n) 

S*(n) 

S*(n) 

S*(n) 

Sj'(n) 

S*(n) 

S*(n) 

S*(n) 

S*(n) 

S*(n) 

S*7(n) 

-10 

-10 

-17 

-28 

-46 

-75 

-122 

-198 

0 

0 

0 

-1 

-2 

-4 

-7 

-12 

-9 

-9 

-15 

-25 

-41 

-67 

-109 

-177 

1 

1 

1 

1 

1 

1 

1 

1 

-8 

-8 

-13 

-22 

-36 

-59 

-96 

-156 

2 

2 

3 

4 

6 

9 

14 

22 

-7 

-7 

-12 

-20 

-33 

-54 

-88 

-143 

3 

3 

4 

6 

9 

14 

22 

35 

4 

4 

6 

9 

14 

22 

35 

56 

-6 

-6 

-10 

-17 

-28 

-46 

-75 

•122 

5 

5 

8 

12 

19 

30 

48 

77 

-5 

-5 

-9 

.-15 

-25 

-41 

-67 

-109 

6 

6 

9 

14 

22 

35 

56 

90 

-4 

-4 

-7 

-12 

-20 

-33 

-54 

-88 

7 

7 

11 

17 

27 

43 

69 

111 

-3 

-3 

-5 

-9 

-15 

-25 

-41 

-67 

8 

8 

12 

19 

30 

48 

77 

124 

-2 

-2 

-4 

-7 

-12 

-20 

-33 

-54 

9 

9 

14 

22 

35 

56 

90 

145 

-1 

-1 

-2 

-4 

-7 

-12 

-20 

-33 

10 

10 

16 

25 

40 

64 

103 

166 

Tk<lOK.2m 8: I f 777 i s an i n t e g e r and m _> 1, then 

S*(n) = [na}Fm_1 + nFm_2 - Fm + 1. 

Tko.OK.2Jfn 9: I f 777 i s an i n t e g e r and 777 >. 1, n ^ 0 , then 

5*(n) +S*{-n) = -Fm+2 + 2 . 

Tfoeo/iem 7 0: I f m ^ 2 i s an i n t e g e r and n ^ 0 , then 
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The proof of Theorem 10 is similar to the proof of Theorem 6, except 
that one needs Theorem 1 to show that S%(n) = S*(S*(n)). The rest of the 
proof is omitted. 

An immediate consequence of Theorem 10 is that if we omit the column 
when n = 0, then every row is a subset of every row preceding it. That is, 

(17) {S*(n)} D {S*(n)} D {S*(n)} D.{S*(n)} D {S*(n)} ..., 

provided n ̂  0. 
Using an inductive argument similar to that of Theorem 7, one can show 

Th&OKm 17: If m >_ 1 is an integer and n ± 0, 

s*(s*(n)) = s*(s*(n)). 
Combining Theorems 10 and 11, we have 

(18) S*{S*(.n)) = S*(S*(n)) = S*+1(n) = S*{S*+1W), n j 0, 

and 

(19) S${S*(n)) - S*(s*(S*(n))) = S*(s*(S*(n))) = S$(S*+1(n)), n + 0. 

Together, (18) and (19) yield 

(20) Cli + 1M £ Ckw> 
for all integers m _> 1, n ± 0, where C£ is the ith column of Table 2. 

The next results whose proof we omit, since it is by mathematical in-
duction, establishes a relationship between Table 1 and Table 2. 

Tfieo/ieJTi lit If 777 is an integer, m >_ 1, n + 0, then S*(n) = Sm(n) - Fm + 1. 

Using the fact that S*(n) = S2(n) in Theorem 10 and applying Theorem 
12, we have 

Sm + 1(n) + 1 - Fm + 1 = S*+1(.n) = S*{S*(n)) = Sm(S2(n)) - Fm + 1 
or 

(21) ^ + i>) = Sm(S2W) + Fm_19 n J 0. 
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THE AP0LL0NIUS PROBLEM 

F. R. BAUDERT 
P.O. Box 32335, Glenstantia 0010, South Africa 

On p. 326 of The Fibonacci Quarterly 12, No. 4 (1974), Charles W. Trigg 
gave a formula for the radius of a circle which touches three given circles 
which, in turn, touch each other externally. 

The following is a more general formula: 
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Given triangle ABC with AB = a, BC = 3> CA = y, and circles with 
centres A, B, and C having radii a, b9 and c, respectively. 

Let I = a + b + a; m = b + c + 3; n = a + b - a; p = $ + b - c; 
q = a + b - a; t = b + c - $; u = a + a - b; v = 3 + o ~ b; 
s = (a + 3 + Y)/2. 

Then, if a? is the radius of a circle touching the three given ones: 

4 Or + b)/s(s - y) = /«p (2a: + W (2a: + 777) ± Suv (2x + 7̂) (2a; + t) 

the positive sign being taken if the centre of the required circle falls 
outside angle ABC, and the negative sign if it falls inside angle ABC. 

The formula applies to extevnal contact. If a given circle of radius 
a, say, is to make vntevnoCl contact with the required one, then -a must re-
place +a in the formula. If a given circle of radius a, say, becomes a 
point, put a - 0. 

When the three given circles touch each other externally, 

a = a + b9 $ = b + e, and Y = a + c, 

and the above formula yields the solution mentioned by Trigg, viz. 

x = abc/[2/abo(a + b + o) ± (ab + be + oa)]. 

LETTER TO THE EDITOR 

L. A. G. DRESEL 
The University of Reading, Berks, UK 

Dear Professor Hoggatt, 

In a recent article with Claudia Smith [Fibonacci Quarterly 14 (1976): 
343], you referred to the question whether a prime p and its square p2 can 
have the same rank of apparition in the Fibonacci sequence, and mentioned 
that Wall (1960) had tested primes up to 10,000 and not found any with this 
property. 

I have recently extended this search and found that no prime up to one 
million (1,000,000) has this property. 

My computations in fact test the Lucas sequence for the property 

(1) Lp = 1 (mod p2) p = prime. 

For p > 5, this is easily shown to be a necessary and sufficient condition 
for p and p2 to have the same rank of apparition in the Fibonacci sequence, 
because of the identity 

(2) (Lp - 1)(LP + 1) =• 5Fp_xFp+1. 

So far> I have shown that the congruence (1) does not hold for any prime 
less than one million; I hope to extend the search further at a later date. 

You may wish to publish these results in The Fibonacci Quarterly. 

Yours sincerely, 

[VK I. A. G. Vfitezl] 



SUMMATION OF THE SERIES yn + (y + lT + • • • + xn 

W. G. WALLER and MAHADEV BANERJEE 
Louisiana State University, Baton Rouge, LA 70803 

In 1970, Levy [1] published a number of results concerning the sum of 
the series ln + 2n + -•• 4- xn, which is known to be an n + 1-degree poly-
nomial Pn (x) whenever x is a positive integer. However, there is a natural 
generalization that will also hold for negative integers and zero as well. 
This is given in the following theorem. 

ThuQSiQjn 1: For each positive integer n there is exactly one polynomial such 
that 

J2 kn = Pn(x) - Pn(y) 
k = y + 1 

for all integral values of x and y9 where y < x. 

This theorem also holds for n = 0 if 0°  is interpreted as 1. The proof 
follows easily from two lemmas. 

LQJfnma 1» For each integer value of x _> 0, 

J^kn = Pn(x) - Pn(0). 
k = l 

This is true because Pn (0) = 0 for all n. 

LoMnci !• For each integer value of y < 0, 
o 
]T kn = PB(0) - Pn(y). 

k = y+l 

PK00&: 

i ; kn = £ (-«/>" = <-D"P„(-J/ - 1 ) = -p„Q/>. 
k=y + 1 j=0 

where the last equality follows from Theorem 3 in the paper by Levy. When 
x is a positive integer, Pn (x) is the sum of the series from 1 ton, and when 
x is a negative integer, then -Pn (x) is the sum of the series from x + 1 to 
0. 
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ROOTS OF (H - L ) / 1 5 RECURRENCE EQUATIONS 
IN GENERALIZED PASCAL TRIANGLES 

CLAUDIA SMITH and VERNER E. HOGGATT, JR. 
San Jose State University, San Jose, CA 95192 

1 . INTRODUCTION 

In this paper, we shall examine the roots of recurrence equations for 
(H - L)/15 sequences in Pascal1s binomial, trinomial, quadrinomial, penta-
nomial, hexanomial, and heptanomial tr iangles. 

Recall that the regular Lucas and Fibonacci sequences have the recur-
rence equation 

x2 - x - 1 = 0 , 
with roots 

a = (1 + /5)/2 and g = (1 - /5 ) /2 . 
As the roots of the (H - L)/15 sequences are examined, a and 3 appear fre-
quently. 

Generalized Pascal triangles arise from the multinomial coefficients 
obtained by the expansion of 

(1 + x + x2 + • • • + ^ J ' _ 1 ) n , j .> 2, n _> 0, 

where n denotes the row in each triangle. For J = 6, the hexanomial coef-
ficients give rise to the following triangle: 

1 
1 1 1 1 1 1 
1 2 3 4 5 6 5 4 3 2 1 
1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1 
etc. 

In order to explain the (H - L)/15 sequences, we shall first define 
sums of partition sets in the rows of Pascal triangles. The partition sums 
are defined 

M "~ "" "" r(j - l)n - v 
k 

the brackets denoting the greatest integer function. To clarify, we give a 
numerical example. Consider 5(3,6,15,0). This denotes the partition sums 
in the third row of the hexanomial triangle in which every fifteenth element 
is added, beginning with the zeroth column. The 5(3,6,15,0) = 1 + 3 = 4. 
(Conventionally, the column of l?s at the far left is the zeroth column and 
the top row is the zeroth row.) 

In the nth row of the j-nomial triangle the sum of the elements is j n . 
This is expressed by 

S(n9j9k90) + S(n,j,k,l) + ••• +S(n,j9k,k- 1) = j«. 

S(n9j9k90) = (jn + An)/k 

S(n9j9k9l) = (jn + Bn)/k ... 

S(n9j9k9k - 1) = (jn + Zn)/k. 
Since S(09j9k90) = 1, 

S(0,j,fc,l) = 0 . . . S(09j9k9k - 1) = 0, 

36 
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we can solve for AQ , B0 , ..., Z0 to get A0 - k - 1, B0 = -1, .. . , Z0 = -1. 
Now a departure table can be formed with A0, B0, ..., Z0 as the zeroth 

row. The term departure refers to the quantities, An3 Bn9 ..., Zn that de-
part from the average value jn/k, Pascal's rule of addition is the simple 
method for finding the successive rows in each departure table. The depar-
ture table for 15 partitions in the hexanomial triangle appears below. Each 
row has 15 elements which have been spread out by the computer into 3 rows. 

TABLE 1 

SUMS OF FIFTEEN PARTITIONS IN THE HEXANOMIAL TRIANGLE 

14. 
-1. 
-1. 

9. 
9. 

-6. 

-21. 
54. 

-21. 

-186. 
99. 
99. 

-441. 
-441. 
894. 

2004. 
-3996. 
2004. 

18354. 
-9171. 
-9171. 

-1. 
-1. 
-1. 

9. 
-6. 
-6. 

-6. 
39. 

-36. 

-171. 
159. 
9. 

-711. 
-96. 
804. 

399. 
-3651. 
3249. 

16749. 
-14826. 
-1926. 

-1. 
-1. 
-1. 

9. 
-6. 
-6. 

9. 
24. 

-36. 

-126. 
189. 
-66. 

-846. 
264. 
579. 

-1251. 
-2676. 
3924. 

12249. 
-17901. 

5649. 

-1. 
-1. 
-1. 

9. 
-6. 
-6. 

24. 
9. 

-36. 

-66. 
189. 

-126. 

-846. 
579. 
264. 

-2676. 
-1251. 
3924. 

5649. 
-17901. 
12249. 

-1. 
-1. 
-1. 

9. 
-6. 
-6. 

39. 
-6. 

-36. 

9. 
159. 

-171. 

-711. 
804. 
-96. 

-3651. 
399. 
3249. 

-1926. 
-14826. 
16749. 

The (H - L)115 sequences are obtained from the difference of the maxi-
mum and minimum value sequences in a departure table, divided by 15, where 
15 is the number of partitions. A table of (H - L) 115 sequences follows. 

TABLE 2 

(H - L ) / 1 5 SEQUENCES IN j-NOMIAL TRIANGLES 

_2 

1 
1 
2 
3 
6 
10 
20 
35 
70 

3 

1 
1 
3 
7 
19 
51 
141 
392 
1098 

4 

1 
1 
4 
12 
44 
153 
553 
1960 
7042 

5 

1 
1 
5 
19 
80 
331 
1379 
5740 
23906 

6 

1 
1 
6 
25 
116 
528 
2417 
11053 
50562 

7 

1 
1 
7 
28 
140 
658 
3164 
15106 
72302 

(continued) 
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126 3085 25080 99565 231283 345775 
252 8688 89861 414704 1057967 1654092 
462 24498 320661 1727341 4839483 7911790 
924 69136 1147444 7194890 22137392 37846314 
1716 195209 4098172 29969004 101263708 
3431 551370 124831190 463213542 

2. BINOMIAL TRIANGLE 

The pivotal element method was used to derive the (H - L)/15 recurrence 
equation in the binomial triangle, 

We factor out x - 1 to get 

x6 - 6xh - x3 + 9x2 + 3x - 1 =0, 
which can be written as 

x2(x2 - 3)2 - x(x2 - 3) - 1 = 0. 

Let y = x(x - 3 ) , then the equation above becomes 

y2 - y - i = o, 
with the roots a and 3-

Solve x(x2 - 3) = a and x(x2 - 3) = 3- 3 is the root of the first be-
cause 

m, . „ . ( i ^ ) ( ^ M . 3) . (LVI)(zHM) 
-6 + 4/5 +10 4 + 4/5 1 + /5 

= 8 = —T~ =—J— = a-
a is a root of the second because a (a2 - 3) = 3- We factor out x - 3 from 
the first to get 

x2 + $x + (-3 + 32) = 0, 
and factor out x - a from the second to get 

x2 + m + (-3 + a2) = 0. 

These quadratic equations have roots 

-3 ± Z-332 + 12 j -a ± /-3a2 + 12 
2 a n d 2 * 

Thus the roots of the recurrence equation are 

. -3 ± /-332 + 12 -a ± /-3a2 + 12 

3. TRINOMIAL TRIANGLE 

We derived the (H - L)/15 recurrence equation 

xB ~ 6x5 + 9xh + 5x3 - 15^2 + 5 = 0 . 
We rewrite as 

(x2(x - 3))2 + 5x2(x - 3) + 5 = 0. 
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Let y = x2 (x - 3) , then the equation above becomes 

y2 + 5y + 5 = 0, 
with the roots -/5a and /5g 

Solve x2 fe - 3) = -/5a and x2(x - 3) = /5J3. a is a root of the first, 
since 

a2 (a 

3 is a root of the second, since (32 (3 - 3) = /5$- We factor out x - a from 
the first to get 

x2 + (-3 + a)x + (-3 + a2) = 0, 

and factor out x - 3 from the second to get 

x2 + (-3 + B)a? + (-3 + 32) = 0. 

Since -3 + a = /5$» and -3 + 3 = -/5a, the roots to these quadratic equa-
tions may be simplified to 

-/5g ± V3/5a , /5a ± VVF(-B) 
_ a n c j ^ # 

Thus the roots of the recurrence equation again include a and 3. 

k. QUADRIN0MIAL TRIANGLE 

We derived the (H - L)115 recurrence equation 

xG - x5 - lOc1* + 10x2 + x - 1 = 0 . 

We factor out (x - 1)(x + 1) to get 

xh - x3 - 9x2 - x + 1 = 0. 

Divide through by x2, then let y = x + 1/x* We obtain 

(2 + x2 + l/x2) - (x + l/x) - 11 = 0. 

Then, after substituting y9 the equation above becomes 

y2 - y - 11 = 0 , 
with the roots 

1 ± 3/5" 
2 

Now we solve __ 
. 1 ± 3/5 

x + l/x - 2 * 

Multiply this equation by x to obtain 

The roots of this pair of quadratic equations are found to be 
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1 + 3/5 0 o , 1 - 3/5 
7y = za - p and ~ 

of the recurrence equation are, therefore, 

jgow = 2a - 3 and ~ = 23 - a, thus we may simplify. The roots 

+1 _i 23 - a ± \/3/5(-3) 2a - 3 ± \/3/5a 
2 ' 2 

5. PENTANOMIAL TRIANGLE 

We derived the (H - L)/15 recurrence equation 

x5 - 5xh + 15rr2 - 9 = 0. 
We factor out x + 1 to get 

x4 - 6x3 + 6x2 + 9̂  - 9 = 0. 

Let y = x - 3/2. Then y2 = x - 3x + 9/4 and 

z/1* = x4 - 6x3 + (21/2)x2 - (21 /2)x + 81/16, 

so the recurrence equation may be written 

yk - (15/2)z/2 + (45/16) = 0. 

Letting z = y2 produces a quadratic equation in z with roots 

15. + /225 _ /45\ 
2 - V 4 A16/ _ 15 ± = 6/5 

2 4 
Thus, 

±\/\5 ± 6/5 , 3 ±\/l5 ± 6 A 
2y - a n ( J ^ = t 

We r e w r i t e t h e s e l a s t four r o o t s as f o l l o w s : 

3 ± \ / l 5 + 6/5 3 ± V 3 / 5 a 3 , 3 ± V l 5 - 6/5 3 ±v/3v/5"(-33) 
_ = ana ~ = ^ 

Thus, the five roots to the recurrence equation are the four just above and 
-1. 

6. HEXANOMIAL TRIANGLE 

We derived the (H - L)/15 recurrence equation 

x5 - hxh - 5x3 + 10x2 + 5x - 5 = 0. 

We factor out x + 1 to get 

xh - 5x3 + 10a; - 5 = 0 . 

To use Ferrari's solution of the quartic equation, we must determine a, £>, 
and k such that 

xh - 5x3 + 10a? - 5 + (ax + b) 2 = (x2 - (5/2)x + fc)2. 

The determination of a, &, and k is accomplished by equating the coefficients 
of like powers of x in the equations above. This leads to the relations 

a2 = 2k + 25/4; 2a& + 10 = -5k; b2 - 5 = k2 

which gives rise to the resolvent cubic equation in k: 

8fe3 - 60k + 25 = 0. 
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A root of this cubic equation is k = 5/2. We substitute this value of k in 
the relations above to solve for a and b. We find 

3/5 , -3/5 
a = ~y- and b = -~z—. 

Now we solve an equation in which both members are perfect squares: 

(x2 - (5/2)a? + (5/2))2 = {ax + b)2. 
Therefore3 

x2 - (5/2)# + (5/2) = ax + 2? 
and 

x2 - (5/2)# + (5/2) = -oa? - fc. 

The four roots of the quartic equation can be found by solving these two 
quadratic equations. We substitute the values of a and b in these quadratic 
equations to obtain 

3/5 

and 

Hence 

2 (5 + 3/s\ , 5 + : x -\—T—)x+—T = 0 

3 ^ \ _L. 5 - 3 / 5 n 
x + = 0. 

5 \^ ± J ^ ^ - 4(^2^) 5 ± 3/"± V30 ± 6 A 

/5a2 ± 5 /3V^/a -/5g2 ± / I V Y J / 1 ^ Thus , x = r or x = ^ • 

These four roots together with x = -1 comprise the five roots to the recur-
rence equation. 

7. HEPTANOMIAL TRIANGLE 
We derived the (H - L)/15 recurrence equation 

x7 - 4x6 - 6xs + lOx4 + 5x3 - 6x2 - x + 1 = 0. 

Let y = l/x to obtain 

1 - 4z/ - 6i/2 + 10^3 + 5yh - 6ys - y* + y7 = 0. 

This equation in 2/ i s prec ise ly the recurrence equation of the (H - L)/15 
sequence in the binomial t r i a n g l e . Hence, the roots we are seeking are the 
rec iprocals of the roots that were derived in the binomial t r i a n g l e . These 
rec iprocal roots are 

1 1 / 1/0 33 ±V3/5(-g3) a3 IV^Aa 3 

1, l /a , i/ps 2 5 2 

8. CONCLUSION 

How surprising to see a and 3 appear with such frequency in the roots 
to all the cases with 15 partitions! 

Another unexpected result was the reciprocal relationship that occurred 
between the recurrence equations of the binomial and heptanomial triangles. 
More study into the successive j-nomial triangles could certainly surface 
more interesting results. 
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Tkzosi&n A: cos 12c -6 + / V / 5 ^ 

Vtioofc Consider t he Golden T r i a n g l e : 

l - x 

Therefore T~3 which implies x 
/ 5 - 1 

x = 2 s i n 18° 

»'- - (H^) • ?(H^) 
cos 18° = —^—i/oT 

s i n 1£ / 5 - 1 

cos 12°  = cos 18°  cos 30°  + sin 18°  sin 30°  

:*(£) • ! ( - ! ) . 
We. note this occurs often in the roots. 

REFERENCES 

1. John L. Brown, Jr., & V. E. Hoggatt, Jr. "A Primer for the Fibonacci 
Numbers, Part XVI: The Central Column Sequence." The Fibonacci Quar-
terly 16, No. 1 (1978):41. 

2. Michel Y. Rondeau. "The Generating Functions for the Vertical Columns 
of (N + l)-Nomial Triangles." MasterTs thesis, San Jose State Univer-
sity, San Jose, California, December, 1973. 

3. Claudia R. Smith. "Sums of Partition Sets in the Rows of Generalized 
PascalTs Triangles." Master1s thesis, San Jose State University, San 
Jose, California, May 1978. 

4. Claudia Smith & Verner E. Hoggatt, Jr. "A Study of the Maximal Values 
in Pascal*s Quadrinomial Triangle." The Fibonacci Quarterly 17, No. 3 
(1979):264-268. 

5. Claudia Smith & Verner E. Hoggatt, Jr. "Generating Functions of Cen-
tral Values in Generalized Pascal Triangles." The Fibonacci Quarterly 
17, No. 1 (1979):58. 



A NOTE ON THE MULTIPLICATION OF TWO 
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A Fibonacci-rowed matrix is defined to be a matrix in which each row 
consists of consecutive Fibonacci numbers in increasing order. 

Laderman [1] presented a noncommutative algorithm for multiplying two 
3 x 3 matrices using 23 multiplications. It still needs 18 multiplications 
if Laderman1s algorithm is applied to the product of two 3 x 3 Fibonacci-
rowed matrices. In this short note, an algorithm is developed in which only 
17 multiplications are needed. This algorithm is mainly based on Strassenfs 
result [2] and the fact that the third column of a Fibonacci-rowed matrix 
is equal to the sum of the other two columns. 

Let C = AB be the matrix of the multiplication of two 3 x 3 Fibonacci-
rowed matrices. Define 

I = (alx + a22) (fclx + b22) 
II = a23b11 

III = a11(b12 - b22) 

IV = a22(-Z?11 + b21) 

V = a13b22 

VI = (-a13_ + a21)fc13 

VII = (a12 - a22)b2 3 

Then 

I + IV - V + VII + a13b31 III + V + a13b32 clx + o12 

C = '22 II + IV + a23b31 I + III - II + VI + a23b32 c21 

asAl + ^32^21 + ^33^31 ^31^12 + ^32^22 + ^33^32 ^31 + C 3 2 

There are only 17 multiplications involved in calculating . However, 
18 multiplications are needed if LadermanTs algorithm [1] is applied, namely 

m19 m2, m3, mh, m5, ms, m7, mQ9 m11, m12, 

m13, mlk9 m 1 5 , m1Q9 m17, m13, m2Q9 m22 

(see [1]). In fact, only 18 multiplications are needed if the usual process 
of multiplication is applied. 
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POWERS OF THE PERIOD FUNCTION FOR THE 
SEQUENCE OF FIBONACCI NUMBERS 

T. E. STANLEY 
The City University, London E.C.I, U.K. 

If m is an integer greater than or equal to 2, we write $(m) for the 
length of the period of the sequence of Fibonacci numbers reduced to least 
nonnegative residues modulo 777. The function (J) has been studied quite ex-
tensively (see, for example, [1], [2], and [3]). It is easy to discover 
that for small values of m there exists a positive integer k such that 

4>k(m) = <\>k + 1(m)9 

i.e., that the sequence 

$(m)9 (f> (cf> 0?z)), <f>(<K<f>0")))> ••• 
eventually becomes stationary. The purpose of this note is to prove this 
fact in general. 

We start by observing that it is sufficient to consider m to be of the 
form 2a3 5° for nonnegative integers a, b9 and o. For, if ipQri) denotes the 
rank of apparition of m in the Fibonacci sequence modulo m9 then by Lemma 12 
of [1] , if p ^ 5 is an odd prime we have ijj(p) \ (p ± 1) , while ip(5) = 5. Thus, 
for an odd prime q £ 5 with q >_ p such that q\\\)(p) 9 we have that q\ (p ± 1) , 
which is impossible. Consequently, the primes occurring in the prime decom-
position of ijj(p) are all less than p or, as we shall say, ifj(p) "involves" 
only primes less than p. Now, by a Theorem of Vinson [2], we know that 

(f)(p) = 2^(p) where v = 0, 1, or 2, 

so that <j)(p) also involves only primes less than p. 
Suppose §(rri) = dp$, where p is a prime greater than 5, and d involves 

only primes less than p and 3 ^ 0 . Then using Lemma 14 of [1] and Theorem 
5 of [3] we have that 

[<|>(d), P3_1*(p)] if *(P2) * <J>(p) 

[<K<f), P3"2*(p)] if *(p2) = (Kp) and 3 M 
where square brackets with integers inside denote the lowest common multiple 
of those integers. Now, (J) (d) and cf)(p) involve only primes less than p, so 
that (})2 (jn) = ^1p Y, say, where 0 <_ y < 3 and d± involves only primes less 
than p. Carrying on in this way, we eventually find an integer s such that 
(ps(m) does not involve p and so, continuing, we may find an integer t such 
that (\)t(jn) involves only 2, 3, and 5. Thus 

^(m) = 2a3hh° for some a, b9 o >_ 0. 

This justifies the assertion that we need consider only integers of the 
stated form. 

We now define a sequence {an} by a1 = a - 1, where a > 1, and 0in + 1 = 
max (an - 1, 3) if n >_ 1. Then it is easy to see that {an} eventually takes 
the constant value 3: in fact, ota_3 = 3 if a >_ 5 and a2 = 3 if a < 5. Now 
(j)"(2a) = 2a" • 3, so that if a > 5 we have cf)a"3(2a) = 23 • 3, and if a < 5 we 
have (J)2(2a) = 23 • 3. Thus, we see that there exists an integer u ^_ 2 such 
that (J)"(2a) = 23 • 3 if a > 1. Similarly, if we define the sequence {$„} by 

<f>2(m) 

44 
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3-L = b - 1, where b > 15 and 3n + i = max (£n - 1, 1) if n >_ 1, we have that 
&b_1 = 1 if 2? >. 3, 32 = 1 if b < 33 and that ((̂ (3̂ ) = 23 • 33«. Thus, there 
exists an integer v _> 2 such that (f)y(3b) = 23 - 3 if b > 1. 

Now we note that (̂ (2) = (f)3(3) = 23 • 3 and that c|)3(5c) = 23 • 3°  5C for 
any 0 _> 1 and that (J) (23 • 3 • 5°) = 23 • 3 • 5G holds even for c = 0. Again us-
ing Lemma 14 of [1] we have for a, b > 1 that 

cj)w+y(2a3b) = [$u+v(2a), c()w+y(3fc)] 

= [cj)y(23°  3), cj)w(23 • 3)] 

= 23 ® 35 
so that 

§u+v(2
a3b5°) = [2 3 • 39 23 • 3* 5°] = 23 • 3 s 5C 

s i n c e u + V > 3 . Consequent ly 

(|)w + y + i ( 2 a 3 b 5 e ) = c()w+y(2dZ3b5c3) . 

The remain ing cases a r e when a <. 1 or b <_ 1, and i t i s easy t o check 
t h a t <i>v + 3(2a3h5°) = $v + 2(2a3b5°) i f a < 1 and cf)w + 3 (2a3f o5c) = cj)u+2 (2a3 f c5c) i f 
fc <. 1 . 
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SOME REMARKS ON THE PERIODICITY OF THE SEQUENCE OF 
FIBONACCI NUMBERS—II 

T. E. STANLEY 
The City University, London E.C.I, U.K. 

The F i b o n a c c i sequence {Fn} i s de f ined by 

F0 = 0 , F , = 1, Fn + 1 = Fn + V i (n>l). 

If t is an integer greater than 2 and cj) (£) is the length of the period of 
the sequence reduced to least nonnegative residues modulo t, it was shown in 
[2] that ^(Fm_1 + Fm + 1) = 4m if m is even and <^(Fm_1 + Fm+1) = 2m if m is 
odd. It follows for m > 4 that 

I conjectured in the same paper that if m - k > 3 then 

*&n-k + ** + *) =j(UFm.k) + UFm + k ) ) . 
The object of this note is to show that this conjecture is false and to give 
the correct answer in some special cases. 



46 SOME REMARKS ON THE PERIODICITY OF THE 
SEQUENCE OF FIBONACCI NUMBERS—I I 

Feb. 

That the conjecture is false may be seen by taking m = 12 and ft = 4, 
for example, because in this case 

<t>(FB + F16) = (f)(1008) = 48, 
whereas 

2(<t>(F8) + <fr(F16)) = 96. 

In what follows, we write [x,y] and (x,y) for the lowest common multi-
ple and the greatest common divisor of the integers x and y9 respectively, 
and let x2 denote the largest number e for which 2e\x. Also we define 

Ha = Fa-1 + Fa+l ( a > l ) . 

Th&OKQyn: Suppose t h a t ft and m a r e i n t e g e r s w i t h 3 < k <_ m. Then 

( i ) i f k i s even and (Hw,Fk) = 1, we have 

!

2[k9m] i f 777 i s even and ft2
 < ^2 

4[ft,7??] o t h e r w i s e , 

( i i ) i f & i s odd and {Ek9Fm) = 1, we have 

* ( ^ - f e + ^ W = 4[ft,77?]. 
The proof of t h i s r e q u i r e s t h e f a c t t h a t i f n - a$ and ( a ,3 ) = 1» then 

c()(n) = [(()(a), (f)(3)] » e s s e n t i a l l y proved i n Theorem 2 of [ 3 ] . Now i t i s w e l l 
known t h a t 

Fm + k Fk+iFm + FkFm_19 

HkFm i f ft i s even 

Fm_k - (-1) (Fk_1Fm - FkFm_1) 

Fm + k 
so t h a t 

Fm-k + Fm + k 
)EmFk i f k i s odd. 

Consequently, if k is even and (Hk,Fm) = 1, then 

S [ 4ft, 277?] i f 77? i s even 

[4ft,4T??] i f 7?? i s odd, 
using results proved in[l] and [2]. Similarly, if k is odd and (Hm9Fk) = 1, 
we have that / 

l [4777,4ft] i f 777 i s even 

I [2777,4ft] i f 77? i s odd. 

The r e s u l t now fol lows by n o t i n g t h a t i f ft and m a r e even then [4ft,2?7?] equa l s 
2 [ft,777] or 4 [ft,77?] depending on whether ft2 < 77?2 or ft2 J> m2, r e s p e c t i v e l y ; i f 
ft i s even and m i s odd then [4ft,47?7] = 4[ft,7??], and i f ft and 77? a r e bo th odd 
then [4ft,2777] = 4[ft,777]. 

The c a s e s not covered by t h e Theorem a r e when ft j< 3 . The case ft = 1 
was d e a l t w i t h i n [ 2 ] . When ft = 2 , we have FOT_2 + Fm+2 = 3Fm. Now 3|FW i f 
and only i f 4|777, from which we see t h a t i f (3,FOT) = 1 and m > 3 then 

S 4777 i f 77? i s even 

8777 i f 777 i s O d d . 
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When k = 3, then Fm _ 3 + Fm + 3 = 2Hm, Now 2\Hm if and only if 3\m, Thus, if 
(2,Hm) = 1 we have that 

\12m if m is even 
$(Fm + 3 + Fm_3) =^ 

I 6m If m is odd. 
Finally, it may be worthwhile commenting on the conditions of the form 

(Ha,Fb) = 1 which have been necessary for our computations. (Ha,Fb) > 1 is 
not a rare phenomenon because, for instance, given a it is easy to determine 
an infinite number of values of b for which Ha\Fb, In fact, as we now show, 
Ha\Fb if and only if b is a positive integral multiple of 2a, For, Ha\Fla 
because F2a = FaHa. Thus, Ha\F2aa for any positive integer c. Actually, 2a 
is the least suffix b for which Ha\Fb, as shown by the proof of Theorem B in 
[2], Let B denote the set of all positive integers b for which Ha\Fb. Then 
B is nonempty, and if b19b2 e B since 

Fb1 + b2
 = Fbx + iFb2

 + Fbx
Fbz-i 

we see that bY + b2 , b1 - b2 £ B. This means that B consists of all multi-
ples of some least element which, as already pointed out, is 2a (see Theorem 
6 in Chapter I of [4]). 
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MUTUALLY COUNTING SEQUENCES 

STEVEN KAHAN 
Queens College, Flushing, NY 11367 

ABSTRACT 

Let n and m be positive integers with n <_m. Let A be the sequence of 
n nonnegative integers a(0) , a(l) , . .., a{n - 1), and let B be the sequence 
of m nonnegative integers M O ) , Ml) » . ••> b(m - 1), where a(i) is the mul-
tiplicity of i in B and Mj) is the multiplicity of j in A, We prove that 
for n > 7, there are exactly 3 ways to generate such pairs of sequences. 

Let n and m be positive integers with n <_m. Let A be the sequence of 
n nonnegative integers a (0) , a (I) , ..., a(n - 1), and let B be the sequence 
of 77? nonnegative integers M O ) , M l ) * ••>> b(m - 1), where a(i) is the mul-
tiplicity of i in B and Mj) is the multiplicity of j in A. Then A and 5 
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i - 4) 

0 = 1 

0 = 1: 

i - 4) 

a(n -

b(jn -

= 1, 

9 

9 

= 1, 

4) = 

4) = 

1, 

1, 

are said to form a pair of mutually counting sequences. Observe at the out-
set that 

n - l rn-1 

S(A) = X^aOO =7W and S (B) = ][] Mj) = n-
i = 0 J = 0 

In this paper, we prove the following result: 

Tkw?i2M: For n > 7, a pair of mutually counting sequences A and 5 can be 
formed in exactly 3 ways: 

(I) a(0) = 7?? - 3, ail) = a(3) = a(n 
a(£) = 0 for all remaining i; 
M O ) = n - 4, M l ) = 3, b(m -
Mj) = 0 for all remaining j. 

(II) a(0) =7?7-4, a(D = 3, a(n -
a(i) = 0 for all remaining i% 
MO) = n - 3, M l ) = M3) = MTTZ 
M j ) = 0 for all remaining j. 

(Ill) a(0) =7??-4, a(l) = 2, a(2) = 
a(i) = 0 for all remaining i; 
fc(0) = n - 4, Z?(1) = 2, 2?(2) = 
^(j) = 0 for all remaining j . 

VftjQofc Let A and 5 be a pair of mutually counting sequences. Then clearly, 
b(m - 2) + MTT? - 1) £ 1- Suppose that b(m - 1) = 1. Then m - 1 has multi-
plicity 1 in A 9 and since £04) = 77?, one of the remaining entries of A must 
be 1, while the other n - 2 entries are 0. Therefore, 

M O ) - n - 2, M l ) = Mff? - 1) = 15 and /3(j) = 0 for all remaining j , 

which implies that a(l) = 2, a contradiction. Now suppose that b(m - 2) = 1 . 
Then 77? - 2 has multiplicity 1 in 4. Again, from 504) = 77?, we may conclude 
that either (i) one of the remaining entries of A is 2 and the other n - 2 
entries are 0 or (ii) two of the remaining entries of A are 1 and the other 
n - 3 entries are 0. In (i), we get 

MO) = n - 2, M2) = MTT? - 2) = 1, 

while (ii) yields 

M O ) = n - 3, M l ) = 2, M m - 2) = 1. 

In both instances it follows from S(B) = n that the remaining 77? - 3 entries 
of 5 are 0. But this implies that a(0) = m - 3, a contradiction. Thus, we 
may conclude that the initial inequality must be strict, which immediately 
gives b(m - 2) = b(m - 1) = 0 . By an analogous argument, it follows that 
a(n - 2) = a(n - 1) = 0 as well. 

Note next that b(m - 3) _< 1. If equality holds, then 777-3 has multi-
plicity 1 in A, and since S(A) = TT?, the sum of the remaining entries of A 
must be 3. Three possibilities exist for these remaining entries: (i) one 
is 3 and the other n - 2 are 0; (ii) one is 2, another is 1, and the other 
n - 3 are 0; (iii) three are 1 and the other n - 4 are 0. In (i), we have 
M 0 ) = n - 2, contradicting a(n - 2) = 0 ; in (ii) , we have 

M0 ) = n - 3, Ml) = M2) = MTTZ - 3) = 1, 

and Mj) = 0 for all remaining J, 
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implying that a(0) = m - 4, a contradiction; from (iii), we obtain 

M O ) = n - 4, M D = 3, b(m - 3) = 1, 

and Mj) = 0 for all remaining j, 

which implies that 

a(0) = m - 3, a(l) = a(3) = a{n - 4) = 1, 

and a(i) = 0 for all remaining i . 

That is s if b{m - 3) = 1, we get a pair of mutually counting sequences of 
type (I). Similarly, observe that a(n - 3) <_ 1. If we assume that a(n - 3) 
= 19 then the same kind of procedure as above will produce a pair of mutu-
ally counting sequences of type (II). In what follows, therefore, we will 
assume without loss of generality that a(n - 3) = b{m - 3) = 0 . 

Now note that b (m - 4) L̂ 1 [only when n = m = 8 is it possible for 
b(jn - 4) = 2, and a simple calculation leads to a quick contradiction]. If 
b(m - 4) = 1, thenm - 4 has multiplicity 1 in A9 so that the sum of the re-
maining entries of A must be 4. There are five possibilities here for these 
remaining entries: (i) one is 4 and the other n - 2 are 0; (ii) one is 3, 
another is 1, and the other n - 3 are 0; (iii) two are 2 and the other n - 3 
are 0; (iv) four are 1 and the other n - 5 are 0; and (v) two are 1, another 
is 2, and the other n - 4 are 0. In (i), we have b(0) = n - 2, contradict-
ing a(n - 2) = 0; in (ii) and (iii), we get b(0) =n - 3, which contradicts 
a(n - 3) = 0; in (iv) , we find M0) = n - 5, Ml) = 4, and Mj) = 0 for all 
remaining j, which implies that a(0) - m - 3, again a contradiction; finally 
in (v), we have fc(0) = n - 4, Ml) = 2, M 2 ) = 1, and M j ) = 0 for all re-
maining j. This yields 

a(0) =77z-4, a(l) = 2, a(2) = 1, ain - 4) = 1, 

and a (£) = 0 for all remaining i. 

That is, under the stated hypotheses, we have produced a pair of mutually 
counting sequences of type (III). 

It remains to show that if b (jn - 4) =0, then no other pair of mutually 
counting sequences can be constructed. This result is easily verified for 
n = 8 and n = 9, so for n > 0 we will now assume that another such pair ex-
ists and will deduce an eventual contradiction. 

If Mj) = 0 for all j >. [777/2], then the multiplicity of 0 in B is at 
least 777 - [777/2] , i.e. , a(0) >. m - [m/2] _> [777/2]. But this implies that some 
integer j _> [m/2] appears in A, contradicting the initial assumption. Thus 
b(j*) > 0 for at least one integer j* _> [777/2], where j * < m - 4. If 3i and 
j£ are distinct integers with this property, then both appear at least once 
in A, so that 777 = S(A) _> j'J + j % > 2 [777/2]. If 777 is even, then we obtain 
777 >777, which is an obvious contradiction; if m is odd, then 2 [777/2] =777-1, 
which gives j£ + j£ = S(A) . It then follows that all remaining entries of 
A must be 0,soZ?(0) = n - 2. But this contradicts a(n - 2) = 0. Therefore, 

3 unique. 
Next, it is apparent that b(j*) = 1 or 2. If b(j*) = 2 , then we easily 

conclude that j* = [777/2] , from which it follows that 7?7 = S (A) >_ 2j*=2[m/2]. 
This again leads to contradictory statements whether m is odd or even? so we 
may assert that b(j*) = 1. 

Suppose that a CO = j * for some i > 2. Then since the multiplicity of 
i In B is j* and the multiplicity of 1 in B is at least 1 [since Mj*) = 1]» 
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it follows that n = S(B) j> if* + 1 > 2[m/2} + 1 _> 777, a contradiction. If 
a (2) = J*, then 2 has multiplicity J* in 5, and since b (0) >. 3, we get n j> 
2j* + 3 > m9 again a contradiction. Suppose next that a(l) = j * . Since 
Mi) = 0 for all j >. [TTZ/2], j + j * 3 it follows that a(0) >_ m - [ml2] - 1. 
Therefore, 

m = S(A) >_ a(0) + a(l) _> w - [ml2] - 1 + j* >. m - 1, 

which implies that either one of the remaining entries of A is 1 and all 
others are 0 or all remaining entries of A are 0. So the multiplicity of 0 
in A is either n - 3 or n - 2, implying that either b(n - 3) or bin - 2) is 
nonzero, both contradictions. Hence, a(0) = j*. 

Now consider the case in which j * = [ml2], Then b(j) = 0 for all j > 
[777/2], accounting for m -- [ml2] - 1 entries of 0 in B, Since a(0) = j * = 
[w/2], the number of remaining zero entries of B, denoted by P, is given by 

v = [ml2] - (m - [777/2] - 1) = 2[TTZ/2] - 77? + 1 . 

I f 77? i s o d d , t h e n v = 0 , s o i n p a r t i c u l a r , b{[m_l2] - k) 9 k = 1 , 2 , 3 a r e a l l 
n o n z e r o . T h i s means t h a t i n a d d i t i o n t o [777/2], t h e i n t e g e r s [777/2] - k, k = 
1 , 2 , 3 a l l a p p e a r a t l e a s t o n c e i n A. Then 

777 = S(A) >_ 4[777/2] - 6 = 2777 - 8 , 

which yields m <_ 8, a contradiction. If 777 is even, then v - 1, so only one 
of the remaining entries of B is 0. Then at least three of the four entries 
b([777/2] - k) , fc = 1, 2, 3, 4 are nonzero, which implies that in addition to 
[777/2], at least three of the integers between [777/2] - 4 and [777/2] - 1 appear 
at least once in A. Then 

777 = 5 0 4 ) > [777/2] + ([777/2] - 2) + ([777/2] - 3) + ( [ w / 2 ] - 4 ) , 
i . e . , 

777 >_ 4[777/2] - 9 = 2777 - 9 . 

But this implies that 777 _< 9, a contradiction. We conclude that j * > [777/2]. 
At this point, we may improve our results concerning the zero entries 

of B. For, suppose that b(j) £ 0 for some j >_ m - j * - 1, j ^ ' j * . Then, j 
and j* both have multiplicity at least 1 in A, so that 

777 = S(A) >_ j + j * >_ m - 1. 

Therefore, either one of the remaining entries of A is 1 and the other n - 3 
entries are 0, or each of the n - 2 remaining entries of A is 0. Then the 
multiplicity of 0 in A is either n - 3 or n - 2, implying that either b(0) = 
n - 3 or b(0) = n - 2. But this means that either ain - 3) or a(n - 2) is 
nonzero, both contradictions. So, b(j) = 0 for all j _> 777 - j * - 1, j ̂  j *9 
which accounts for precisely j* entries of 0 in B. Since a (0) = j * 9 it fol-
lows that all remaining entries of B must be nonzero. In particular, b(rn -
j* - 2), b(rn - j * - 3), and b(l) are all nonzero, which means that in addi-
tion to j * 9 the integers m - j * - 29 m - j * - 39 and 1 all appear in A, So 

777 = S(A) >_ (777 - j * - 2) + (77? - j * - 3) + j * + 1 = 2777 - j* - 4, 

which implies that j * _> 777 - 4, the desired contradiction. Consequently, the 
assumption that another pair of mutually counting sequences can be generated 
must be false, and the theorem is proved. 

It is left to the interested reader to generate the mutually counting 
sequences that exist for n <_ 1. 



MULTISECTION OF THE FIBONACCI CONVOLUTION ARRAY 
AND GENERALIZED LUCAS SEQUENCE 

VERNER E. HOGGATT, JR., AND MARJORIE BlCKNELL-JOHNSON 
San Jose State University, San Jose, CA 95192 

1 INTRODUCTION 

The general problem of multisecting a general sequence rapidly becomes 
very complicated. In this paper we multisect the convolutions of the Fibo-
nacci sequence and certain generalized Lucas sequences. 

When we 777-sect a sequences we write a generating function for every mth 
term of the sequence. To illustrate, we recall [1], [2], 

( i . i ) Z^ rrik + 2 

+ (-l)rFm_rx 

k = o 1 - Lmx + (-l)mx2 

which w - s e c t s t h e F i b o n a c c i sequence {Fn}, where 

1, Fn+1 ?n + * , „ - i ! 

and where Lm is the mth term of the Lucas sequence {Ln}, 

2, L1 - 1, Ln+1 E*n + &* 

For later comparison, it is well known that the Fibonacci and Lucas 
sequences enjoy the Binet forms 

(1.2) 

where a and 

F„ = a" - and 

are the roots of x 

1 + /5 

Ln =un + 

1 = 05 

1 - /5 
2 , 2 

Also, the generating functions for Fn and Ln are 

(1.3) EF«*n' 2 - x = £^n-l - X - X n = 0 1 - X - X*" n = 0 

The Fibonacci convolution array, written in rectangular form, is 

1 
1 
2 
3 
5 
8 

1 
2 
5 
10 
20 
38 

1 
3 
9 
22 
51 
111 

1 
4 
14 
40 
105 
256 

1 
5 
20 
65 
190 
511 

where each column is the convolution of the succeeding column with the Fi-
bonacci sequence. The convolution sequence {on} of two sequences {an} and 
{bn} is formed by 

n 

k'l 

51 
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Also, it is known that the generating functions of successive convolu-
tions of the Fibonacce sequence are given by (1 - x - x2)~ - 1, k = 0, 1, 2, 
..., where k = 0 gives the Fibonacci sequence itself. 

2. MULTISECTION OF THE FIBONACCI CONVOLUTION ARRAY 

We now proceed to multisect the Fibonacci convolution array. Recalling 
(1.1), we let 

Fr + (-1) F; x Fr + (-1) F*_TX 
a = — Q* = 

Clearly, 

Thus, 

Lkx + (-1) x2 1 - Lkxk + (-l)kx2k 

k-i 

r =0 

fc-1 

E G>r 

Yl<-Fr + (-lfFk_rx1<)xI- = Qk(x), 

W h e r e r = °  1 - Lkx* + (-Dkx2k 

Qk(x) 
1 

To multisect the general convolution sequence for the Fibonacci numbers, 
let us work on column s, where s = 1 is the Fibonacci sequence itself. Then 

Qfa) 
1 - L^x* + (-l)kx2k 

Now there are k separate /c-sectors. The coefficients of the numerator poly-
nomial of the jth generator are given by every kth coefficient of Qk(x), 
beginning with 1 _< j j< k, while the denominator is (l - Lkxk + (-l)kx2kY . 

It is now simple to see how to multisect the columns of Pascal1s tri-
angle (see [2]) by taking 

'(x) (l - xkY 
\l - x J • 

We can even multisect the negative powers, which in the Fibonacci case is 
just a finite polynomial (1 - x - x ) s from which we take every fcth coeffi-
cient. 

3. THE TRIBONACCI AND HIGHER CONVOLUTION ARRAYS 

Define the Tribonacci numbers {Tn} by 

(3.1) T0 = 0, Tx = T2 = 1, r„+3 = Tn+2 + Tn+1 + Tn. 

The Tribonacci convolution triangle, with the Tribonacci numbers appearing 
in the leftmost column, is 

1 
1 
2 
4 
7 

1 
2 
5 

12 
26 

1 
3 
9 

25 
63 

1 
4 

14 
44 

135 

1 
5 

20 
70 

. . . . . . 
(continued) 
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13 56 153 ... 
24 

Since 

(3.2) *- - = X>n*», 
I - X - X ~ X n = 0 

the generating functions for the Tribonacci convolution sequences are given 
successively by 

[x/(l - x - x2 - x3)]k+1
3 k = 0S 1, 23 ..., 

where k = 0 gives the Tribonacci sequence itself. 
Let 

Sk = ak + 3fe + Yfe 

where as 35 and y are the roots of x3 - x2 - x - 1 = 0. Then the multisect-
ing generating functions are obtained from 

1 — t>«X "T D_-,X — X 
(3.3) Qk(x) = : : , 

1 - X - X - X 

where the coefficients of Qk(x) used are 

^ l 9 T2> T3> ' e ' 9 Tk > (Tk + l " ST<) » • • • » (Tk+8 ~ SkTs^ > T-k-i> T-k 5 " ° ' s ^ - 2 -
The coefficients of the numerator polynomial of the Jth generator are given 
by every kth. coefficient of Qk (x) 9 beginning with 1 £ j _< k> while the de-
nominator is (1 - Skxk + S.kx^ - x^)s. 

From the auxiliary polynomial x - x - a? - 1 = 0, 

m = 2L EL_ + Yrp £ L_ + ^ = I L̂_ + oT 
1n rv - R ^ Y^n-l R _ v ^ ^ n - 1 v - n. P n " X 

or 
qn - 3n

 | 3n - Y? 
a - 3 3 - y ' y - a 

Y« 
Y 

y " 

-
-

-

or 
a 

a n 

(3.4) ^ . j ^ ___^|_ + 

Also 9 
n _nn n-1 _ gn-i n - 2 _ gn-2 

/OS) T = ^ + Y — - + Y - + • • • + Y n. 
U ' ^ i« a - 3 Y a - 3 Y a - 3 Y 

For the Quadranacci numbers {Qn} defined by 
(3.6) Q0 = o5 QX = e2 = i , Q3 = 29 en+4 = Qn+3 + cn + 2 + Qn+1 + Qn 
we get s i m i l a r r e s u l t s . I f we l e t a5 3* y9 and 6 be the r o o t s of x^ ~ x3 -
x2 - x - 1 = 0 , t hen 

(3.7) 0 | t , ° - _ | - + Y
a

 a_l - + . . . + y n + SQn_im 

In multisecting the Quadranacci convolution array, 

, (1 - a^)(l - 3k^)(l - y^fe)(l - Skxk) 
Uk{x) (1 - ouc)(l - Bar) (1 - yx) (1 - 6#) 

where £k(x) is the numerator polynomial from which the generating functions 
can be derived for multisecting the Quadranacci convolution sequences. 
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We can derive the following from (3.7): 

(3.8) 6Qn - 3Qn^ - Qn_2 - i _ | . + B_JL + I_|_ 

+ $n ~ an + 3n - $n
 + an - Y n 

6 - a 3 - 6 a - y " 

4. GENERALIZED FIBONACCI AND LUCAS NUMBERS 

Start with 
171 r 

fix) = fl ix - o^); 
i-l 

then if 

/(a?) = x" - x7""1 - ̂ m"2 - ... - 1, 

in particular, then 

J_ . f(S\x) n 1 
si fix) l l ix - aii)ix - a*2) . . . ix - aie) 

1 <_ i\ < i2 < i-3 < • • • < is <. m 
over all subscripts restrained above. 

If s - m9 then we get, after some effort, 

(4.1) - = Z ^ n > 
1 - x - x2 - - • - - xm »-o 

where F£ are the generalized Fibonacci numbers of the preceding section. 
If s = 772, we get the corresponding Lucas numbers 

sf„- c£ + a* + ••• + oC. 

But, for those 1 < s < m we get other generalized Fibonacci sequences with 
some interesting properties studies by Chow [3]. We note two quick theorems. 

TknoKzm 4.1: 

Let m 
fix) = J] (X ~ CX;), 777 >_ 2. 

Then {^n} = {m, 1, 3, 7, 15, 32, . . . } f or 777 terms. That is, 

^£0 = 777, ̂  = 21 - 1, y?2 = 22 - 1, ..., s£a = 2s - 1, ..., S * ^ 2W - 1. 

After 77? terms, the recurrence takes over. In fact, <£m is the first 
term yielded by the recurrence. Further, 

ThojQfiQm 4.2: The generating function for {^n} is 

(4 2) ^ " ̂  "" 1^ 2 " ̂  " 2^ 3 " '" ~ gW = V £̂ #n 
1 - # - X2 - ... - # m n«0 

Using the observation that 

Gmix) + x * £m + 10r) 
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For (m + 1) terms 9 one can then get an inductive proof for the starting val-
ues theorem. Of course, one has a starting values theorem for the regular 
generalized Fibonacci numbers in generalized Pascal triangles, and these are 
1, 1, 2, 2Z, 2^9 . .., until we reach the full length of the recurrence. 
great interest, of course, are those of the form 

Of 

kx 

which starts off k, k - 1. 
rence takes over. 

For s = 2, 

1 - x - x 

2k - 1, .. , which now double u n t i l t h e r e c u r -

l_. f ( 2 ) (*) 
2! f(x) a - y 

~2 

ytt 

where the Tm are the triangular numbers. 
If one attempts to multisect the generalized Fibonacci numbers, one 

needs, of course, the generalized Lucas numbers in the recurrence relation. 
Recapping our results so far, we list each auxiliary polynomial: 

Fibonacci aK + 3* 

Lvx + (-1)* 

3 Tribonacci Sk = ak + + y' 

Skxz + S_kx 

m = 4 Quadranacci Sk = ak + (3k + Y k + 5 k 

X — D -, X i T^Uj, O 2^1^_ ) X D_T,X "T 1 

What is involved, then, are the elementary symmetric functions for the ori-
ginal polynomial but for the kth powers of the roots. 

5. GENERALIZED LUCAS NUMBERS AND SYMMETRIC FUNCTIONS 
OF kl\i POWERS 

If 

has roots a19 a2. 

(5 .1) 

xm + c1xm'1 + o0xm~2 + 

, am, and Sk 

i-iy 
kl 

s, l 

>k-l 

x 2 

0 

2 

+ Gm = 0 

+ a* then 

k - 1 

which stems from t h e system of e q u a t i o n s 
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S± + c, 

(5.2) S2 + o1S1 + 2o2 

S3 + C1S2 + ^2^1 + ^^3 

5^ + o1S3 + o2S2 + o3S1 + koh 

which are NewtonTs Identities as given by Conkwright [4], 
If you look at these equations, you have four unknowns c19 c2, c3, and 

ok if Sl9 S2, S3, and S^ are given. Thus, you can treat this as a nonhomo-
geneous system and hence solve for o19 o2, c3, or ch, but strangely enough, 
while working, this does not yield the clever expression first given. 

Consider instead 

a0S1 + c± = 0 

o0S2 + o1S1 + 2o2 = 0 

CQS3 + o1S2 + c2S1 - -3e3 

where o 1. Solve the system for o0 by Cramer*s rule: 

1° l 

p sx 

|-3<?3 S2 

\S, 1 

\s2 sx 

P 3 S2 

(-D3 
3 ~ 3! 

0 

2 

5 i 

0 

2 

S i 

* i 
5 2 

s3 

1 

S i 

s2 

S i 

s2 

s3 

0 

2 

S i 

-V.o 

1 

S i 

s2 

0 | 

2 

sj 

From (5.1) one can sequentially find o19 o2 , . . . , ok given S1, S2 , ..., 
5^, but this soon becomes untractable in practice. 

However, we can make a new representation of the generalized Lucas se-
quences by using the set of equations (5.2) to derive 

(5.3) ** = (-D" 

1*1 

2o0 

3c* 

koh - f c - l 

0 
1 

?k-2 

0 
0 
1 

0 
0 
0 

We rewrite (5.2) as 
(1)0! + S1 

(l)2o2 + S1o1 + S2 

(l)3e3 + Ŝ e,, + 52^x + S3 

(1)4^ + 5,1c3 + S2£2 + £ c + £ 
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Here9 again, we have a known variable (1) which we solve for using Cramer's 
rule for the nonhomogeneous set of equations, as 

0 

0 

0 

1 

1 = 
1*1 

2c2 

3c c 

4<J L 

1 lc1 

2o2 

3c 3 
4c 

(-1) 
2c2 

3c3 

Considering where these problems came from, if c1 = c2 = -1, ck = 0 for k > 
2, then Sk = Lk, the familiar Lucas numbers, which are then given by a tri-
diagonal continuant, 

Lk = (-1)* 

-1 
-2 

0 
0 

1 
-1 
-1 

0 

0 
1 

-1 
-1 

0 
0 
1 

-1 

0 
0 
0 
1 

0 
0 
0 
0 

0 
0 
0 
0 

0 0 0 0 "1 

while the generalized Lucas sequence related to the Tribonacci numbers is 
given by the quadradiagonal continuant, 

<-n* 

-1 
-2 
-3 

0 
0 

0 

1 
-1 
-1 
-1 

0 

. . . 
0 

0 
1 

-1 
-1 
-1 

0 

0 
0 
1 

-1 
-1 

-1 
0 
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SOME RESTRICTED MULTIPLE SUMS 

LEONARD CARLITZ 
Duke University, Durham, NC 27706 

1 . INTRODUCTION 

Let a , b be p o s i t i v e i n t e g e r s , (a9b) = 1. Consider t he sum 
a- l b-1 

(1.1) S = ] T xhr + as = ^ YLxbr + a8' 
br+a8<ab r=0 s = 0 

br + as < ab 
We w i l l show t h a t 

(1 .2) . 1 - X ab 

(1 - xa) (1 - xh) 1 - x 

As an a p p l i c a t i o n of ( 1 . 2 ) , l e t Bn(x) denote t he B e r n o u l l i po lynomia l 
of degree n de f ined by 

ez - 1 »-o 

Then we have 

X X (*>;£• Bn = 5n(o). 

(1 .3 ) X ] 5 n ( ^ + - + f ) = (B(aZ?) + a £ S ( x ) ) n - (aB + 2?B(aaO)n, 
, br + ae< ab 

where 

(uB(*) + ^ 5 ( z / ) ) n = J2(l)ukVn-kBk(x)Bn,k(y). 
£«ox ' 

We a l s o e v a l u a t e t h e sum 

(1.4) ^ (x + br + as)n 

br+as < ab 

in terms of Bernoulli polynomials; see (3.8) below. 
Let a, b9 G be positive integers such that (b,o) = (c9a) = (a,b) = 1. 

The sum (1.1) suggests the consideration of the sums 

o — y %bor + cas + abt 
bor + oas + abt< aba and 

g — y %ber+ cas + abt 
bcr + cas + abt< laba 

where 0 <. r < a, 0 <. s < b9 0 <_ t < o. We are unable to evaluate S1 and S2 
separately. However, we show that 
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n _ rraba\2 lab 

(1 .5 ) xaboS +S U X } x 
2 (1 - Xb°) (1 - xGa) ( 1 - Xab) 1 - X 

For a p p l i c a t i o n s t o t r i p l e sums analogous to (1 .3) and (1 .4) see ( 5 . 5 ) , 
( 5 . 6 ) , and (5 .7) below. 

We remark t h a t t h e case x=0 of (1 .3) i s i m p l i c i t i n t h e proof of The-
orem 1 of [ 1 ] . 

2 . PROOF OF (1 .2) 

We have 
a-l a - l H>(a-r)/a] 

s = X xbr+as = Ylxbr ]C xas = 12xbr J2 xas-
br + as<ab r = 0 as<b(a-r) r = 0 s = 0 

S ince 
[b(a - r) la] = b - [br/a] - 1, 

it follows that 

a~l i __ „ab-a[br/a] i __ Tab Tab aJL^ t 

(2.1) S =J]^brL^-^ = l-I-E J]xb*-«U*'«K 
r - 0 1 - Xa ( 1 - Xa)(l - Xh) 1 - Xar=0 

C l e a r l y t h e exponent 

(2 .2) br - a[br/a] (r = 0 , 1, . . . , a - 1) 

is the remainder obtained in dividing br by a. Since (a,b) = 1, it follows 
that the numbers (2.2) are a permutation of 0, 1, ..., a - 1. Hence, (2.1) 
becomes 

1 - rrab cr.ab 1 _ ^a 

s (1 - xa) (1 - xh) 1 - xa 1 - x 
so that 

i _ ™.ab rvr. ab 
(2.3) S L X 

(1 - xa) (1 - xb) 1 - x 

This proves (1.2). Note that the complementary sum 

a-l b-1 

(2 .4 ) ~S = ^ X I ^ r + as 

s a t i s f i e s 
r = o s = o 

br + a s > afc 

c JL -c _ 1 " Xab 1 ~ ^ a f o 
u ~r O — i 

1 - ;ua 1 - xb 

Hence, by ( 2 . 3 ) , 

(2 5) 5 = xab - xab(l " x<2h) 

I - x (I - xa)(l - xb) 

3. SOME APPLICATIONS 

In (1 .1) and ( 1 . 2 ) , r e p l a c e x by ezlab: 

(3.1) ^ e{br + ae)z/ab &Z ez - I 

br + as<ab e z / a b - 1 (es'a - l)(ez/b - 1 ) 
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M u l t i p l y i n g by z2exz/(ez - 1) 5 we get 

2 
( 3 . 2 ) ^ \ ^ e{bv+as)z/ab + xz 

& — 1 br+ as <ab 

(ez - l)(ez/ab - 1) (ez/a - 1) (ez/b - 1) 
Since 

ez - 1 n-o 
(3 .2 ) becomes 

«ES E ».(* + ! •§ ) 3 V* + 1)« 
n-o'- ir + aa<at ' " ' (gs - 1) (e*/ai - 1 ) (ez/a - I) {ez'b - 1 ) 

(3.3) = ab ]T Bj (x)Bk(.db)*3 fffi* 

j , fc - 0 

Equating coefficients of sn, we get 

<* s Bite)Bt"^:<f»'. 

o.4) „ ^ Bn-i(* + J + f ) - <«»,"*E(/!)<',w""':B.-*<-e'iJ«faB 

& r + a s < a i & • ° 

- (ab)1-nYi(l)akbn-kBn.k(ax)Bk. 
fc-0 

This can be w r i t t e n more compactly i n the form 

(3 .5) niabV1 ^ Bn^(x + f + f) = ^{^ab) + aZ?5(a;))n - (aB + Z?5(a^))n , 
br + as < ab 

where i t i s unders tood t h a t 

(uB(x) + y5(2y))n = ^(l)ukVn-kBk(x)Bn_k(y) . 
k = o 

Alternatively, (3.3) can be replaced by 

^ \ ^ r> / I N D / t, ^z°'(z/ab)k i v * D , ND ( s /a ) J ' (z/b)k 
ah La B^{l)Bk{abx)—;.,., - - a£ 2 ^ Bd(ax)Bk

K . | f e | . 
j , k - o J ' j , * - o ^ * 

Hences we now get 

(3 .6 ) niab)"1'1 J^ 5 n - i ( ^ + § + f) = ( 5 ( a t e > + afcB(l) ) n - (aB + M ( a ^ ) ) n . 
frr + as < ab 
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Note that comparison of (3.6) with (3.5) gives 

(3.7) (B(ab) + abB(x))n = (B(abx) + abB(l))n , 

which indeed holds for arbitrary a, b. We also recall that 

Bn(l) = Bn, (n ̂  1); 5,(1) = Bx + 1 = ±. 

For n = 1, s i n c e 5 = ~ y and 

i r 
z: i -L ? * - £(> - [£]) 

ab - ~{a - 1)(2? - 1 ) , ((a,fc) = l ) : 

(3 .5) r educes to 

a£ - j(a - 1) ( i - 1) = (B(ab) + a&BGc)) f - (aB + Z?B(aar)) f 

lab - y ) + a2?(x - y j + -r-a - 2?(ax - -r-J, 

which is correct. 
In place of (3.2) we now take 

{br + as)z + xz _ Z g _ Z \e - I ) & 

br + as<ab ez - 1 {eaZ - 1) (ebz - 1) 

x\ (az)J (bz)k 
- £>„(* + ab)£- iabr1^ (B,(b) - B,)Bfc(§) . 

n = 0 j,k = 0 

I t fo l lows t h a t 

(3 .8 ) n{n - l)ab ^ (a: + bv + a s ) n " 2 

br + as < ab 

= nabBn_i{x + ab) - £ ( J J ) an'kbk(Bn. k(b) - Bn.k)Bk(f) . 
k = 0 

2 1 
For example, fo r n = 2 , s i n c e 5 (x) = x - x + -7-, we have 

2aZ?(a£ - \{a - 1) (b - l)\ = 2ab(x + ab - j \ - a2 (b2 - b) - 2 a W | - j \ 9 

which i s c o r r e c t . 
Note t h a t , fo r b = 1, (3 .8 ) becomes 

n(n - Da^ix + v)n-2 = naBn_x(x + a) - £ ( j ) an-"(Bn_ k(l) - Bn_k)Bk{x). 
r=0 k = 0 

Since 1 -. 
Bn(l) = Bn9 (n ± 1); Bx (1) = y , B1 = - y , 

we get 
a - 1 

n(n - l ) a ^ ( a ; + a)n~2 = na(Bn_1(x + a) - ^ ^ ( a ) ) , 
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that is, the familiar formula (replacing n - 1 by n) 
a-l 

*»-l _ 1 £ (* + a)"'1 = J^n (x + a) - Bn (x) }. 
r = 0 

Similarly, for b = 1, (3.5) reduces to 
a-l i v 

(3.9) nan'1^2Bn-i(x + §) = (5(a) + a5(^))n - (a£+£(oxc))n. 

We recall [2, p. 21] that 
a-l . 

(3.10) Bn_1(ax) = a n " 2 ^^-iU + | ) . 

Comparison of (3.10) with (3.9) yields 

(3.11) (5(a) + aS0c))n - (aB + B(ax))n = n a S ^ t o ) . 

To give a direct proof of (3.11), let Rn denote the left-hand side of 
(3.11). Then, 

n-0 n-0 k «0 n = 0 k=0 

-,axz ryc-az aze"*« zeaz az zeu 

eaz- 1 e* - 1 eas - 1 ez - 1 

^XX^)fr> 
e2 - 1 «-o 

and (3.11) follows at once. 

4. PROOF OF (1.5) 

Put 

(4.1) ^ = £ 

and 
( 4 . 2 ) 5 2 = X ) a - f c a r + o a e + a W . 

bar + aas + abt < zabc 

I t i s unders tood t h a t i n a l l such sums 

(4 .3 ) 0 <. P < a , 0 <_ s < b9 0 £ t < c. 

As for 5 ,
1 , we have 

Si = X) xc ( £ r + as) ^ X<2W 

£ a . 0 ( i r + a 8 ) i ^ _ a ; a 4 ( , ! - [ o ( i r + a s ) / a i J ) 
2>2> + a s < a2? 1 - x 

*ab 
(L L\ = — V * „a(br+as) ^1 \ T * x

R(a(br+ab)/ab) 
1 _ r^ab LJ

 X I ^ab t Z^ 
br+a8< ab 
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where R(m/ab) denotes the remainder obtained in dividing 77? by ab. It 
be convenient to put 

U = {u\u = c(bv + as) 5 bv + as < ab} 

V = {v | v = c (bv + as) 9 bv + as > ab}. 
Thus (4.4) becomes 

nab (4.5) s = — - — y ^ - — — y ^ " 

Next pu t 

/ab) 

1 - Xa UEU I - Xab ueu 

Sf
2 = Z a? 

&<2r + aas + abt < 2abe 
br + aa> ab 

c(br+a8) + abt 

art _ \ ^ o(br + a.8)+abt 
2 

bar + oas&abt < laba 
br+ as > ab 

so t h a t S2 = £2' + S%. C l e a r l y 
c - l 

bt 
2 

S2 = X ^(Z?r + aS)X^a 
i>25 + a s < a i t = 0 

1 - X aba 
(4.6) = i-=-£ Yxu 

1 - # a * UEU 

The e v a l u a t i o n of 5 " i s l e s s s imp le . We have 2 

— abt S2 = X ) xa(br+as> J2 x<lht = J2x X 
bv -

ar 
& r + a s > a f c t< 2c - -^(br + as) VEV t<2a- (v/ab) 

XVl - ^ a i 5 ( 2 c - | > / a £ ] ) 

1 - Xah 

(4.7) = Y*v ~ — Yx^v 2a£e 
/ a £ ) 

i - ^ r r ^ i - xah^v 
I t fo l lows from (4 .5) and (4 .7) t h a t 

„aba 
xah°s, + s" = -^-^—y xu + — - — y ^y 

1 - ^ a 2 ? « e [ / 1 - XabvzV 

x2aho 

ab 
)y^ xR(u/ab) + rxi?(y/al))( 

Since 

1 - 2J a * fue l / 

\ ^ xR(u/ab) + ̂  xR(v/ab) = S^ xt =
 i ~ X 

ueU VEV t= 0 1 - # 
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we get 

(4.8) xahQSl + S'l = ^ — — £ V + LJXV~ • 
1 - xah ueU 1 - xah vev I - x 

Hence, by (4 .6) and ( 4 . 8 ) , we have 

/ rai(J 1 - rabc\*-^ 1 „ ~2aba 

xabaS1 + SI + S'l = [— + i lYV + Yxv -
\l - xab I _ xab l ^ v l _ xab^y 1 _ x 

Y^°°u + J2xV x2abo 

1 - Xah { ueb vev ) 1 - X 

a -1 b -1 9ahr> 

1 - Xah r = 0 8 - 0 I - X 

aba i ~.aba ^aba 1 - XaDO 1 - XabQ X 

T h e r e f o r e , 

(4 .9) xabQSl + S2 

I ~ xab I - xhQ I - xa0 I - x 

(1 - xaba)2 x2aha 

(1 - xbo)(l - xaa)(l - xab) 1 - x 

5. SOME RESTRICTED TRIPLE SUMS 
I t fo l lows from (4 .9) w i t h x r e p l a c e d by ezlahc t h a t 

(5.D *• yy« + y y . = (1 -g 2 ) 2 ^ — 
<ffi • oTi (1 - ez/a)(l - ez'b){\ - ez'a) 1 - ez'abo 

where fo r b r e v i t y we pu t 

(5.2) a = - + |- + - . 
a b o 

M u l t i p l y i n g b o t h s i d e s of (5 .1 ) by z3exz/(ez - l ) 2 , we get 

y ^ e ( * + a+i) + _A \ ^ e(x + 3 - ' a) 
(ez - l ) 2 6 T i (ez - l)zo<2 

(5 .3) Z e 

(ez - l)2(ez/aba - 1) (ez/a)(ez/b - 1) (ez/a - 1) 

In o r d e r t o o b t a i n a compact r e s u l t we make use of N o r l u n d ' s d e f i n i t i o n 
of B e r n o u l l i numbers of h ighe r o r d e r [2 , Chapter 6 ] . Let u)19 co2, . . . , b)k 
deno te pa rame te r s and d e f i n e t h e po lynomia l Bn(x\udl9 . . . , Udk) by means of 

o)1o)2 . . . ukzkex* » „ 
(5.4) : = 5 > n

( }(*K> . . . , oo,)^-. 
( e t t l * - l){e^z - 1) . . . ( ^ * 3 - 1) n = o n ! 
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With this notation, (5.3) becomes 

s£slzBrfe + CT + i i i . i) + £B(2>(X + a | i , D1 
n = o ( c r < l o< 2 ) 

= abcJ2~{B^3)(x + 2|l, 1, (ate)"1) - S,<3) (^a"1, 2T1, cT1)!, 

Hence, equating coefficients of z , we get 

(5.5) n\ J2B^2_\(X + a + l|l, 1) + XX^i(x + a i l 9 ̂ f 
[o< l a< 2 ) 

= atejsn
(3) (x + 2|l, 1, (aba)-1) - B <3) (aria'1, b'1, e " 1 ) ! . 

Similarly, it follows from (5.1) that 

(5.6) n(n - 1) (w - 2 W £ (x + a + l ) n " 3 + ]T (# + a ) n " 4 
(a<l a<2 ) 

= n(n - l)(ate)-n + 1 S n - 2 ( a ^ ^ + 2>) " A * B « <^la > & > ̂ ) > 

where Â . is the familiar difference operator: 

A*/(a) = /(a: + 2) - 2/(ar + 1) + f W . 

Fina l ly , mult iplying both sides of (5.1) by z3exs/(eB - 1) , we get 

<5-7) n^n ~ XH J2B
n-2(x + ° + 1} + X! Vz(* + a ) ( 

( a < 1 a < 2 ) 

= naboB^\ (x + 2 | l , ( a t e ) - 1 ) - n a t e A ^ 3 ^ | a _ 1 , 2T1, £ _ 1 ) . 
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SOME REMARKS ON THE BELL NUMBERS 

LEONARD CARLITZ 
Duke University, Durham, NC 27706 

1. The Bell numbers An can be defined by means of the generating function, 

n = 0 

This is equivalent to 

a.2) K+I - £,{i) A*-

Another familiar representation is 

n 
(1.3) An = J^S(n9k)9 

k = 0 

where S(n9k) denotes a Stirling number of the second kind [3, Ch. 2], 
The definition (1.1) suggests putting 

d.4) e
a ( e I-1 } -I>„(a)f]r; 

n = 0 

An(a) is called the single-variable Bell -polynomial. It satisfies the rela-
tions 

(1.5) An + 1(a) =at/(l)Ak(a) 

and 
n 

(1.6) An(a) = ]T akS(n,k). 
fc = 0 

(We have used An and An{a) to denote the Bell numbers and polynomials rather 
than Bn and Bn(a) to avoid possible confusion with Bernoulli numbers and 
polynomials [2, Gh. 2].) 

Cohn, Ever, Menger, and Hooper [1] have introduced a scheme to facili-
tate the computation of the An. See also [5] for a variant of the method. 
Consider the following array, which is taken from [1]. 

n >v 

0 
1 
2 
3 
4 
5 
6 

0 

1 
2 
5 
15 
52 
203 
877 

1 

1 
3 
10 
37 
151 
674 
3263 

2 

2 
7 
27 
114 
523 
2589 

3 

5 
20 
87 
409 
2066 

4 

15 
67 
322 
1657 

5 

52 
255 
1335 

6 

203 
1080 

66 
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The Anjk are defined by means of the recurrence 

C1'7) An + l,k = An,k + An,k + 1 (« > 0) 
together with AQQ = 1, AQ1 = 1. It follows that 

The definition of An(a) suggests that we define the polynomial An>k(a) 
by means of 

(1.9) An+i,k^ = An,k(a) + A n i k + 1(a) (n >_ 0) 
together with 

AQ0(a) = 1, AQ1(a) = a. 

We then have 

(1.10) A0tk(0) =Ak(a)9 aAHi0(a) = A n + 1(a) . 

For a = 1, (1.10) evidently reduces to (1.8). 

(2.D Fn(z) - X>n,?<§r 
and 

2. Put 

(2.2) F(xsS) = X ) F n ( s ) ^ = E An,k*g£. 
n = 0 n,k = 0 

It follows from (2.1) and the recurrence (1.7) that 

(2.3) Fn + 1(z) = Fn(z) + F'(z). 

It is convenient to write (2.3) in the operational form 

(2.4) ^, + ife) = d +0JF„(2) (D, = ^§). 

Iteration leads to 

(2.5) Fn(z) = (1 + D3)nFQ(z) (n>0). 

Since, by (1.1) and (1.8), FQ(z) = e ^ ' 1 , we get 

(2.6) FQ(z) = (1 + D3)neeZ~K 

Incidentally, (2.5) is equivalent to 

(2-7) Antk = E ( 2 ) ^ + * • E ^ ) ^ - * -

The inverse of (2.7) may be noted: 

(2.8) An + k = Y.(-l)n-ih\Aj,k. 
j = 0 \ ' 

Making use of (2.5), we are led to a definition of AHfk for negative n. 
Replacing n by -n, (2.5) becomes 

(1 + DsfF_n(z) = FQ(z). 
Thus, if we put 
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(2.9) 

we have 

(2.10) 

F_„(Z) = £>-n,*fr. 
k = n 

toy- + fc At (k = 0, 1, 2, . . . ) , 

It can be verified that (2.10) is satisfied by 

k-n k-n 

Indeed, it is enough to take 

*-.*+ w + 1 = X>nf+ • • >*-»-*+ k"f Viyf+ J - %„„,„ 
j - 0 

k-n + 1 

J - O 

so t h a t 

(2.12) ^-n,k + ^-n,£ + i = A.n + ltk 

and (2.10) follows by Induction on n. 
Note that by (2.9) 

(2.13) A.n,k =0 (0 <k < n). 

The following table of values of A-ny\ i s computed by means of (2.12) 
and (2.13). 

Put 

6 
5 
4 
3 
2 
1 

o 

\/'k 

0 
0 
0 
0 
0 
0 
1 

0 

0 
0 
0 
0 
0 
1 
1 

1 

0 
• 0 

0 
0 
1 
0 
2 

2 

0 
0 
0 
1 

-1 
2 
5 

3 

0 
0 
1 

-2 
3 
3 

52 

4 

0 
1 

-3 
5 
0 
49 
203 

5 

1 
-4 
8 

-5 
49 
154 
877 

6 

-5 
12 

-13 
54 
105 
723 
4140 

7 

A-n,n= 1 (n = 0, 1, 2, . . . ) , 

Clearly, 

(2.14) 

Put 
k 

n = 0 & = 0 * n = 0 

Then, since by (2.12), 

(1 + Dz)F.n (a) = F_ (3) (n > 0) , 
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we have 
(1 + DS)G = xG + F1(z); 

that is 5 
D G + (-x)G = F1(z) = (1 + e 2 ) ^ 2 " 1 , 

This differential equation has the solution 

(2.15) ea'x)zG = / e(1~x) (1 + e^e**'1 dt + * (a;) , 
Jo 

where (j) (x) is independent of s. 
For s = 0 , (2.15) reduces to 

G(x90) = <|)(a;). 
By (2.15) 

G(x90) = A = 1 
ands therefore 

(2.16) G(x,z) = g ^ 1 " * ) 2 f e^~x)t (1 + e * ) ^ ' " 1 ^ + e-(1"x)2. 
Jo 

In the next place, by (2.2) and (2.5), 

- xn(l + Dz)n 

F^x^ = Z ~ n\ F*(Z) = eX(1 + D2)Fo^' 
n = 0 

Since 
exD*FQ(z) = FQ(x + 2 ) , 

we get 

(2.17) F O c s ) = e * F 0 ( a ; + 3 ) = e^e6**2 " 1 . 

It follows from (2.5) that 

(2.18) e3Ffe9s) = exF(z,x) , 

which is equivalent to 

Using (2.7), it is easy to give a direct proof of (2.10). 

3. The results of §2 are easily carried over to the polynomial^ 

z± 

(3.2) F(x,z\a) = Y^Fn^\a^' 
rz-0 

It follows from (1.9) and (3.1) that 

(3 .3) F
n+i^\a) = ( 1 + ^z)Fn{z\a), 

so that 

(3 .4) Fn(z\a) = (1 +Dz)nF0(z\a) = (1 + Dz)nea(e* ' x> 

Thus, 

(3.1) Fnfe|a) = 2>k(a)f£. 
fc-0 

and 
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(3.5) Anyk{a) = J2^AJ+k(a). 
As in §2, we find that °~ 

(3.6) F(x9z\a) = exFQ(x + z\a), 

so that 

(3 .7 ) ezF(x9z\a) = exF{z9x\d) 9 

which i s e q u i v a l e n t t o 

m^-toy. j,k 

By (1.4), 

fc = o 
Thus (3.6) becomes 

(3.9) F(x9z\a) = e'e"****'-1). 

Differentiation with respect to a yields 

E 4U ( « ) ^ = <e* + " - 1) £ 4»,* (a)gf̂  
n,k = 0 n,k = 0 

and therefore 

(3-io> <*<«> = E E ( ? ) ( J K ,•(*>• 
i = o j = 0 X ' w ' 
£ + J < n + k 

Similarly, differentiation with respect to z gives 

E X^ Z "t—̂  X^Z 

An,k + i(a)^r%r = <*ex + y 2^ A*>^a)^Tk\> 
n,k = 0 ' n,k = 0 so that 

n k 
— — i isi \ i is \ 

z). 
i = 0 j • 0 

(3.1D 4»,* + i(a> ^ E l f f l ^ i W 
Comparing (3 .11) w i t h ( 3 . 1 0 ) , we ge t 

(3 .12) 4 , H I W = o ^ n > f e ( a ) + i 4 ^ f f c ( a ) . 
Differentiation of (3.9) with respect to x leads again to (1.9). 

k. It follows from (1.3) and (2.7) that 

k+ i 

(4.D An.*-t{l)A* + <-£(l)liS<k + i-fi 
i = o ^ / -z: = o N / j = o 

Since 

it follows from (4.1) that 



1980 SOME REMARKS ON THE BELL NUMBERS 

Zc + n 

W-2) An<k = g S(n,k,j), 
where 

(A.3) s(n,k,3) = j r ic -D" 7 ' " *(j)*fc (* + Dn. 

Clearly, S(0,k,j) = S(k,j). 
In the next p lace , by (4.1) or (4 .3 ) , we have 

w.A) E ^'^ffe^SV^-1) • 

(e* + y _ 1 ) M 

Dif ferent ia t ion with 

k,n = 0 
+ I . J : 

respect to x 

> * + # . 

e^ 

g ives 

0/ 

.-.. (: 

ey 

- D! 

•,x+y e (ex+v - 1) 
(J - D ! v ' (J " 1) 

so tha t 

(4.5) S(n,£ + l , j ) = S(n9k9j - 1) + jS(n9k9j)9 

general izing the familiar formula 

s(k + i,j) =s(fc,j - l) +js(k,j). 
Differentiation of (4.4) with respect to x gives 

k,n = 0 J' W i ; * 

and3 therefore 

(4.6) Sin + l,fc,j) =S(n,k9j) +S(n9k + 1 J ) . 
This r e su l t can be expressed in the form 

(4.7) knS(ri9k9j) =S(n9k + l , j ) , 

where An is the partial difference operator. We can also view (4.6) 
analog of (1.7) for S(k9n9j)a 

Since 5(09k9j) =S(k9j)9 iteration of (4.6) yields 

(4.8) S(n9k9j) = ^h)s(k + i9j). 

We r e c a l l that 
k 

xk = ^S(k9j)x(x " ^ • " • (^ - J + D -

Hence, i t follows from (4.8) tha t 

n + k 
(4.9) Gc + l ) n ^ k = ^S(n9k9j)x(x - 1) . . . fe - j + 1). 

j=o 

Replacing x by -# , (4.9) becomes 
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n + k 
(4.10) (x - l)nxk = J^ (-l)n + k-jS(rt,k,j)x(x + 1) ... (a? + j - 1). 

j-o 
5. To get a combinatorial interpretation of AHtk9 we recall [4] that Ak is 
equal to the number of partitions of a set of cardinality n. It is helpful 
to sketch the proof of this result. 

Let Ak denote the number-of partitions of the set Sk = {l, 2, . .., k}, 
k = 1> 2, 3, ..., and put ̂  = 1. Then Ak + 1 satisfies 

(3-D ^ + 1 = £ ( J ) v 
since the-right member enumerates the number of partitions of the set Sk+1, 
as the element H 1 is in a block with 0, 1, 2, . .., k additional elements. 
Hence, by (1.2) , 

Ak = Ak (k = 0 , 1, 2, . . . ) . 

For An k we have the following combinatorial interpretation. 

Tk2.0K.Qjm 1: Put 5 = {1, 2, . .. 5 n}, Ẑ7 = {n + 1, n + 2, . . . , n + k}. Then, 
4n>^ is equal to the number of partitions of all sets R U T as R runs through 
the subsets (the null set included) of S. 

The proof is similar to the proof of (5.1), but makes use of (2.7), 
that is 

(5.2) A. ,?.(;)"*' n'k ~ fto\J) d + k' 
It suffices to observe that the right-hand side of (5.2) enumerates the par-
titions of all sets obtained as union of T and the various subsets of S. 

For n = 0, it is clear that (5.2) gives Ak; for k = 0, we get An+1. 
The Stirling number S(k,j) is equal to the number of partitions of the 

set 1, 2, ..., k into j nonempty sets. The result for S(n,k,j) that cor-
responds to Theorem 1 is the following. 

ThtQKom 2: Put S = {1, 2, ..., n}, T = {n + 1, n + 2, ..., n + k}. Then, 
S(n9k,j) is equal to the number of partitions into j blocks of all sets 
R U T as R runs through the subsets (the null set included) of S, 

The proof is similar to the proof of Theorem 1, but makes use of (4.8), 
that is, 

(5.3) S(n,k9j) = V (^)sik + i9j). 
i = 0 N ' 
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SOME LACUNARY RECURRENCE RELATIONS 

A. G. SHANNON 
The New South Wales Institute of Technology, Sydney, Australia 

and 

Oxford University, Linacre College, England 

1. INTRODUCTION 

Kirkpatrick [4] has discussed aspects of linear recurrence relations 
which skip terms in a Fibonacci context. Such recurrence relations are 
called "lacunary" because there are gaps in them where they skip terms. In 
the same issue of this journal, Berzsenyi [1] posed a problem, a solution of 
which is also a lacunary recurrence relation. These are two instances of a 
not infrequent occurrence. 

We consider here some lacunary recurrence relations associated with 
sequences {w^} , the elements of which satisfy the linear homogeneous re-
currence relation of order v\ 

w^ i^-iy'Xf^-V ">r, 
w i t h s u i t a b l e i n i t i a l c o n d i t i o n s 5 where t h e Ppj a r e a r b i t r a r y i n t e g e r s . The 
sequence 9 {v^}9 w i t h i n i t i a l c o n d i t i o n s given by 

0 n < 0 , 
vnr) = I r 

E â - 0 <>n < v 
J =1 

is called the "primordial" sequence, because when v - 2, it becomes the pri-
mordial sequence of Lucas [6]. The arj- are the roots, assumed distinct, of 
the auxiliary equation 

v 

J-1 

We need an arithmetical function 6(m9s) defined by 

( 1 if m\s, 
S(jn9s) = < 

(O if m\s. 

We also need s(r9m9j)9 the symmetric functions of the ari, i = 1, 2, ..., p, 
taken J at a time, as in Macmahon [5]: 

s(r9m9j) = E a ^ a ^ ... a^. , 

in which the sum is over a distinct cycle of a ^ taken j at a time and where 
we set s(r9m90) = 1. 
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For example, 
s ( 3 , m , l ) = a 3 1 + a™2 + a^3 , 

s (3,777,2) = fe31a32)w + ( a 3 2 a 3 3 ) m + ( a 3 3 a 3 1 ) w , 

s (3,77?,3) = ( a 3 1 a 3 2 a 3 3 ) m ; 

s(r,m$l) = v^r) , 

s G ? , l , j ) = PPJ. 

S(P ,7T7,P) = Pr™. 

2. PRIMORDIAL SEQUENCE 

Lemma 1: For /n > 0 , 

" = o y-i // y-o J 

^ i ; E C D / B = E E ^ r v 
n = o n = 0 i = l 

i - l «-0 i = l 

= f > ^ A d - a>)/I l( l - â -x) 
r T V 

= _ _ „ j *1 z*3 *k 

A d - <^) 

s(r,777,l) - 2s (r ,m,2)x + 3s (r ,m,3);r2 - *•• 
r 

/ , (~l) Js (r,m,j)xJ' 

because each aP^s i = 1, 2, . . . , 0 <_ ?* moves through j posi t ions in a com-
p le te cycle. 

Examples of the lemma when v - 2 are obtained by comparing the coeffi-
c ients of xn in 

CO oo P + l 

J2 (-l)ns(r,m,n)xnJ^v(^1)mxi = ] T j s (r,777,j) (-x)* _ 1 

n = 0 £ = 0 ' j = l 

x° : on the l e f t , s (2,777,0)z;^2) = z;^2) = right-hand s ide ; 
x1: on the l e f t , - s ( 2 > , l ) t ^ 2 ) + s (2 sm,0)v^) = a|^ + a2f - (afx + a,f2)2 

— ~ ^ \ ^ 2 1 2 2 ^ ' 

= -2s(2,77z,.2) 
= right-hand side. 
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We note that 

[ (r + 2) / (j + 2) ] = 0 for j > r > 0 
and 

r > [ (r + 2) / (j + 2) ] for 0 £ j < r if r > 2, 

where [•] represents the greatest integer function. 

Tfieo/iem 1: The lacunary recurrence relation for v^' for v >_ 2 is given by 

min(r, j) 

n = 0 

= ( - l ) J ( j + 1)S(P ,77Z,J + 1) 1 - 6 r9[(r + 2 ) / ( j + 2 ) ] for p o s i t i v e j . 

VK.00 ^: We have from t h e lemma t h a t 
oo r +1 

] T (- l ) ns(r ,m,n)a; n53t ; (^1 ) ; na ; i = ^ js(r9m9j) (-x)J " 1 

n = 0 i = 0 j - i 

which can be rearranged to give 

oo j r 

E Sc-D^dsm.n)!;/.10 _^ *J' = T ] (j + Dfi(r^,j + 1) (-x)j . 
J=0n=0 j-o 

On equating coefficients of x3, we get 

J j i °  if J > *S 

n = 0 (j-n + l)ra 
(-DJ (J + l)s(p,tf?,j + 1 ) if 0 < J < P. 

But 

( 0 for j > r 
(l - 6(r,[(p + 2)/(j + 2)]))= ^ 

( 1 for 0 < j < P , P > 2, 

and 0 < n < v in s(v9m9n) from which we get the required result when v > 2, 
as we exclude negative subscripts for V^ . 

We next discuss the case for r = 2. 
When J is unity, we get 

s(p5^,0)z;(2,) - s(r,m,l)viJ>) = 2s(p,m,2) 
277? "' 

which can be reorganized as 

V 

When v = 2, this becomes 

^ ~ (^ ) 2 + 2s(2»,m,2) = 0. 

which is in agreement with Equation (3.16) of Horadam [2]. 
Similarly, when j = 2, we find that for arbitrary r, 

s(r9m9Q)v^} - s(r9m9l)v^ + s(r9m92)v^ = 3s(r,m,4) 

v™ - v™ *£> + S(r,m,2)y« = 3a(r,m,4) , 
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which, when v = 2, becomes 

y(2) _ T;( 2V ( 2 ) + P % ( 2 ) = 0 

and this also agrees with Equation (3.16) of Horadam if we put n = 2m and 
wm = vm there. Thus, the theorem also applies when v = 2 if J _> 1. If 
j were zero, and p = 2, since 6(2,[4/2]) = 1, the theorem would reduce to 

s(r9m9Q)v^2) = 0, 

which is false. 

CoAollaxy 1: vj£ = £ (-lf + 1 s(r,m,n)yJ . 
n = 1 

VKOOfe Put J = /c - 1 > 2> in the theorem and we get 

,(r) 

n = 0 

which gives 

E<-1>Bfi^»m.")y(?-»)BI = ° 

V 

Y(-l)n + 1s(r9m9n)v^ s - „. . Z-̂  v 7 ' (k-n)m km 
n = l 

(r) _ ^(p) 

A particular case of the corollary occurs when m = 1, namely 

tt = l 

r 
= V C-l)n+1P z;(l,) 

n = l 

as we would expect. 
The recurrence relation in Theorem 1 has gaps; for instance, there are 

missing numbers between V;. . and vy) . When j = 777 = 2, the lacunary re-
currence relation becomes 

v[r) - s(r929l)v^ + s(r9292)v{
2
r) -s(r9293)v^ 

3s(p,2,3)(l - 8(r9[(r + 2)/4])), 

and the numbers v^' , V 3 9 and V$ are missing. For further discussion of 

lations can be used to develop formulas for V^ . 
lacunary recurrence relations, see Lehmer [5]. The lacunary recurrence re-

/elop formulas for v^' . 

3. GENERALIZED SEQUENCE 

In this section we consider the, more generalized sequence {wn }. 

r 
ThzofiQM 2: w<£> =• J](-l)J'+18(r.*,«7)wt(5_rf), n > r. 

d -1 Vnoofc Put 

in which the ̂  will be determined by the initial values of fcP7* }. 
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j - i VK C) j = i i - i 

j - 1 i - 1 J, fc - 1 i - 1 
J i1 fc r 

+ ... + (-l)r + 1(4i42 ... a*r)XXa*>?-

J * fc J * k • 

r 

E , tn-2t t t , ^ a r i a r j a r k + ••• 
i,j, k=l 

tn , ( r ) 
a™ = w ; 

J - l 
as required. 

When t 
= Fn 5 the nth Fibonacci 

When t = v = 29 we have s(2,2,1) = 3 and s (2,2,2) = 1, so that if z/n2) 

L in J r2n-2 2n - 4 5 

which result has been used by Rebman [8] and Hilton [2] in their combina-
torial studies. There9 too, the result 

n = H^l)k'lF2aj2a2 .-• F2ak 
Y(n) 

was useful. 
[y (n) indicates summation over all compositions (^ , .. . , ak) of n, the 

number of components being variable.] The lacunary generalization of this 
result can be expressed as 

ThlOKOm 3: W^r) = X (~1)k"1^ta)1 ••• Wta}
k' in which 

Y(n) 

where 

^n
(r) = ^ ( - D i + 1{8(r,t,j) + ftjWj.n. « > P, 

J-l 
J 

, _ , , _ , . , . , „ (P) 

m - l 

That the theorem generalizes the result can be seen if we let v = 2, 
£ = 1, and ic^2) = Fn again. Then, as before, 

and 
F2n = 3F, 

V (2) 

j'-i 

= {-8(2,2,2) + \}W<1\ - {8(2,2,2) + ?22}f/n(: 
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= {8(2,2,1) - 8(2,2 O ) ^ } ^ - {s(2,2,2) - 8(2,2,1) + s (2,2,0)F„ }fi£>2 

= (3 - 1 ) ^ - (1 - 3 + 3)W^\ = W?\ - WV2; 
i . e . , W ' - n as in the r e s u l t . 

To prove Theorem 3, we need the following lemmas. 
Lemma 3. 1: W(x) = w(x)/(l + w(x)) , where 

W(x) =Y.Wn)xn and w(x) =Y,wtnxn' 

?H£0£: w(x) = £ W^xn 

ti'i 

- ± - (-±»£**)k 
fc-1 \ n - l / 

00 

= w(ar)/(l + w(aO). 

r 

r 

fete) = /(*)&?(#), 

and J'"° 

where J '"1 

then 
J 

ftJ = E ^ 1 ^ ^ ' * ? - 772) 

P^0££: If &(#) = f(x)w(x), 
then 

tffeO = f(x)w(x)/(f(x) + f(x)w(x)) =h(x)/(f(x) +h(x)), 
so that 

Now 

h(x) = (/(ar) + 7z (*))*/(*). 

oo 2» 

m - 1 j - 0 . 

= E(E(-i)r"J'+^fr,t;j -"OaffW 
j - 1 \ m - 1 / 

+ 12 (It (-Dras(r,t,r - m)w
w \ ^ 

j-1 \ m - 0 ('7 + m V 
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j-1 \m-l / 

from Theorem 2. The result follows when the coefficients of x are equated. 
Thus, 

f{x) + h(x) = ^(-DP"J'{s(p5t5j) + fc^}^' + 1. 

Ma) = (/(a?) + fe(aD)w(a:), 

And sxnce 

Theorem 3 follows. 
Shannon and Horadam[10] have looked at the development of second-order 

lacunary recurrence relations by using the process of multisection of series. 
The same approach could be used here. Riordan [9] treats the process in 
more detail. 
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ANOTHER PROOF THAT <f>(Fn ) = 0 MOD 4 FOR ALL n > 4 

VERNER E. HOGGATT, JR., and HUGH EDGAR 
San Jose State University, San Jose, CA 95192 

1. INTRODUCTION AND DISCUSSION 

The problem, as originally proposed by Douglas Lind [1], was as fol-
lows : 

If Fn is the nth Fibonacci number, then show that 

<j)(FM) = 0 (mod 4), n > 4, where cf)(n) is Eulerfs <j)-function. 

An incomplete solution due to JohnL. Brown, Jr. , appeared in [2], The prob-
lem resurfaced in Problem E 2581, proposed by Clark Kimberling [3], An ex-
tremely elegant solution was given by Peter Montgomery [4]. 

The main object of this note is to provide another solution to the or-
iginal problem cited and some generalizations [5]. However, before giving 
our solution, we cannot resist redocumenting Montgomery*s simple and beauti-
ful solution: 

Consider the set H = {-Fn_l9 -1, +1, Fn_1}. The first observation is 
that the elements of this set are pairwise incongruent modulo Fn. Only four 
of the (j\ incongruences to be checked are distinct, and three of these four 
are trivialities. The most interesting of these is Fn_1 f -Fn_i (mod Fn), 
which can easily be done by showing that Fn < 2Fn_± < 2Fn so that Fn\2Fn_1 
is impossible. Second, since (Fn, Fn_1) = 1, the set H is a subset of (Z/ 
FnZ)*9 the multiplicative group (under multiplication modulo Fn) of units of 
the ring Z/FnZ (see S. Lang [6]). Finally, since F*_1 - F Fn = (-1)", it 
follows that H is closed under multiplication and hence (being finite) is a 
subgroup of (Z/FnZ)*. However, the order of (Z/FnZ)* is $(Fn) 9 and the or-
der of subgroup H is 4, so that the conclusion follows from Lagrange1s The-
orem: "The order of a subgroup of a finite group divides the order of the 
group." The basic ideas of Montgomery7s proof have been extended to gener-
alized Fibonacci numbers satisfying un+1un_± - u^ - ±1 in [5], 

2. ANOTHER PROOF 

Our proof breaks up into two parts. The first part characterizes those 
positive integers m for which k\§(jn). The second part shows that Fn + rns 
whenever n > 4. cj)(l) = (f)(2) = 1, and 2\<\>(m) for all positive integers m >_ 3, 
so that the first part of our proof amounts to characterizing those positive 
integers m for which 2 || <t>(m) [i.e., 2|cf>(m) but 22 \ $Qn)]. If the canonical 
decomposition of m is 

m = pllp^ ... p ^ , 
then 

<|>(ra) = p * 1 " ^ ^ " 1 ... Vgg~1(p1 - D(p2 ~ 1) ... (pg - 1), 

where 2 j< p < p < .. . < p and p , p , . .. , p are primes. 

If p1 = 2, then m = 2*1 p*2 ... p ^ , and 

Mm) = 2ei"1p2^-1p33"1 ••• P^_1(2 - D(p2 - D(p3 - 1) ... (pg - 1). 
This requirement forces 1 £ e1 < 2. If ex = 2, then g = 1 is forced and m 
must be 4. If e = 1, then 

80 
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<|>(m) =p^-1p33' 1 ••• Pp'1(p2 ~ D(P3 - 1) •.. (Pg - 1) 

so that g = 2 is forced, and w = 2pe for some odd prime p and some positive 
integer e. Furthermore, p E 3 (mod 4) must obtain. If p1 > 2, we must have 
£7 = 1 so that m = pe,where the conditions on p and e are precisely as above. 
Summarizing, we have shown that k\ §(jri) if and only if m = 1, 2, 4pe, or 2pe, 
where p is any prime satisfying p E 3 (mod 4) and e is any positive integer. 

If now suffices to prove that Fn ^ 1, 2, 4pe, or 2pe whenever n > 4, 
where p is a prime such that p E 3 (mod 4) and e is a positive integer. 

C<%6.& 7 *' Fn = p E 3 (mod 4) , p a prime, is impossible if n > 4. 

If n is even, then n _> 6 and Fn = F2k = FkLk, where k >_ 3. Since Ffe > 
1 and Lk > 1 whenever fe 2: 3, it follows that Fn is composite. 

If n is odd, then Fn = F2k + 1 = F^ + F^ + 1 £ 3 (mod 4). 

Ca4e 2: F̂  = 2p with p E 3 (mod 4) and p a prime is impossible. 

If n > 4, F6 = 8 is not of the prescribed form. If n is even and n >_ 8, 
then Fn =F2kLk = 2p is impossible since fc >_ 4 forces Fk > 2 and Lk > 2. If 
n is odd, then Fn = 2p = F2k+1 = ̂ 6r + 3 because 2|Fn if and only if 3|n. 
Hence, F2r+1\F6r+3 = 2p since 2P + 1|6P + 3. F9 = 34 = 2 • 17, but 17 $ 3 
(mod 4). Otherwise, 2 < F2r+1 < FSr+s and F2r+1 ^ p by Case 1, and so Case 
2 is complete. 

CcX4£ 3«* Fn = pe with p E 3 (mod 4) and p a prime is impossible. 

If n > 4, then we may assume that the positive integer e is greater 
than one, because of Case 1. If n is even, then Fn - F2k = FkLk with (Fk , 
Lk) = 1 or 2, a contradiction. If n is odd, then Fn = F2k + i and 2k + 1 E 3 
(mod 6), since we cannot tolerate 2\Fn. Hence, 2/c + 1 E ±1 (mod 6) must 
obtain, which forces Fn E 1 (mod 4), and so 2\e, However, the only Fibo-
nacci squares are F1 = F2 = 1 and F12 = 144, and so Case 3 is complete. 

C&6e 4: Fn = 2pe with p E 3 (mod 4), p a prime, is impossible. 

By Case 2, we can assume e > 1. Since 2|Fn, we must have 3|n, and so 
Fn = Fsk = 2Pe- If 2|^» t h e n 6 l n ' a n d hence 8 = F6|Fn, a contradiction, so 
k = 2r + 1, and F2r + 1|F6 r + 3 = F3k = Fn = 2pe E 2 (mod 4). FZr + 1± 2, once 
p > 1. F2r+1 ^ p, by Case 1; F2r+1 f 2p, by Case 2; and F2r + 1 + p* for any 
integer t such that 0 £ t £ e, by Case 3; so F2r+1 = 2ps is forced for some 
positive integer s < P. Let r be the least subscript for which F2r+1 is of 
this form. Since 2|F2r+1, ̂ 2r + 1 = F 6 n + 3 f o r s o m e suitable positive integer 
n. Thus, F2r + 1 = F6n + 3 = 2pS and F2n + 1\Fen+s = 2p*. But now F2n+1 = 2p* 
for suitable positive integral t is forced, contradicting the minimal nature 
of subscript P. The proof of Case 4, and with it the solution to the origi-
nal problem, is complete. 
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LETTER TO THE EDITOR 

DAVID L. RUSSELL 
University of Southern California, University Park, Los Angeles, CA 90007 

Dear Professor Hoggatt: 

. . . In response to your request for me to point out the errors in 
your article "A Note on the Summation of Squares," The Fibonacci Quarterly 
15, No. 4 (1977):367-369, . . . I have enclosed a xerox copy of your paper 
with corrections marked. The substantive errors occur in the top two equa-
tions of p. 369, where an incorrect sign and some minor errors result in an 
incorrect denominator for the RHS. As an example, consider the case p = 1, 
q - 2, n = 4; your formula evaluates to 0, which is clearly incorrect: 

P0 = 0, Px = 1, P2 = 1, P3 = 3, Ph = 5, P5 = 11, P6 = 21; 
SPsPk ~ (pt ~ 1) = (8)(11)(5) - 440 = 0. 

Only if the denominator is also zero does a numerator of zero make sense. 

Sincerely yours, 
[Devoid I. RuAbolZ] 

CORRECTIONS TO "A NOTE ON THE SUMMATION OF SQUARES" 
BY VERNER E. H0GGATT, JR. 

The following corrections to the above article were noted by Prof. David L. 
Russell. 

Page 368: The equation on line 19, qn~1P2
pi = cf'~lp\ + ^npipo» should be: 

q«P2P1 = qnP\ + q^P^o 

The equation on line 27, P?+ 2 = P2Pj+1 + q2P2 + 2pqPjPj + 1, should 
be: 

Pl+2 =p2Pf+1+q2Pf + 2pqP.Pj+1 

In the partial equation on line 32 (last line) the = sign should 
be a - (minus) sign. 

Page 369: Lines 1-11 should read: 

P P + KP-^-iP2 + P2 - 1 - P2P2 ] 
rc+2 n + 1 2pq n+2 n+1 ^ n + lJ 
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Z^ 2
 Pn + 2Pn+l ~ PPn+l + a

2pQ
q)[Pn*2 + Pn+1^ ~ P*> ~ H 

J-i " (2p2q + p2 + q2 - 1 - qp2 - q3 + q) /2pq 
Testing p = 1, q - 1, 

*2 

E^2 IF F - IF 
~ ^n+l^n' 

For q = 1 only, 
n ^PPn + 2Pn+l ^p Pn + 1 Pn+2Pn+l - n + 1 -^n + l ^ n 

i = l 2P2 

so that 

Thus, 

P.z 

n 
X>< = Pn+A/p-

•£ = 1 

p\}qPn+2Pn + l ~ 2PqP2
n + 1 + ( 1 ~ ? ) [P n

2
+ 2 + (1 - P 2 ) ^ + 1 - 1]] 

(<? + D ( p 2 - (q - D 2 ) 

P [ V (Pn + A) + ( 1 " ? ) [ ^ + 2 + (1 - P2)P» + 1 - 1]] 

(<7 + l)(p2 - 0? - l)2) 

According to Prof. Russell, this last equation can also be written as 

Z 

E<? 
d-i 

2pq2Pn+1Pn + (1 - q)[P2
+2 + (1 - p 2 )P 2

+ l - 1] 

(q + Dip2 ~ (q - I ) 2 ) 

'2pqP„Pn+1 + (1 " ?)?n + 1 + <72U " ? ) # 

(<7 + Dip2 - (q - D 2 ) Jo 
, 2 D 2 s i n c e P 2

+ 2 = p2P2
+1 + 2pqPnPn+1 + q*P$. 

The author is grateful to Prof. Russell for the above corrections. 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN 

University of New Mexico, Albuquerque, NM 87131 

Send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to 
PROFESSOR A. P. HILLMAN, 709 Solano Dr., S.E., Albuquerque, NM 87108. Each 
solution or problem should be on a separate sheet (or sheets). Preference 
will be given to those typed with double spacing in the format used below. 
Solutions should be received within four months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn + 2 = Fn+1 + Fn ' ^ 0 = °> Fl = 1 

and 
Ln + 2 = Ln + 1 + Ln> L0 = 2 > Ll = 1 ' 

Also a and b designate the roots (1 + /5) /2 and (1 - /B) /2, respectively, of 
x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B— 418 Proposed by Herta T. Freitag, Roanoke, VA 

Prove or disprove that n15 - n3 is an integral multiple of 215 - 23 for 
all integers n. 

B— 419 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

For i- in {1, 2, 33 4}9 establish a congruence 

FnI>Sk+i E ainLnF5k + i (mod 5 > 

with each a^ in {1, 2S 3S 4}. 

B-420 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Let 

g(n9 k) = Fh
n + 10k + Fh

n - (Lkk + 1) (F* + 8k + F*+2k) + Lhk(F^+Sk + # + l f f c ) . 

Can one express g(n, k) in the form LvFQFtFuFv with each of r, s9 t , u, and 
V linear in n and kl 

B-421 Proposed by V.E. Hoggatt, Jr. , San Jose State University, San Jose, CA 

Let {un} be defined by the recursion un + 3 = un + 2 + un and the initial 
conditions u1 = 1, u2 = 2, and u3 = 3. Prove that every positive integer N 
has a unique representation 

n 
N = y^ °iui> w i t n °n

 = 1» each c^ £ {0, l } , 
i = i 

c c = 0 = <?. a,-. o i f 1 < i < n - 2 . 

84 
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B-^22 Proposed by V. E. Hoggatt, Jr. , San Jose State University, San Jose, CA 

With representations as in B-4219 let 

n m 
N = *E°iui>N +1 = T,diui-

Show that m >_n and that if m = n then dk > ok for the largest k with 

°k * dk° 

B-423 Proposed by Jeffery Shallit, Palo Alto, CA 

Here let Fn be denoted by F(n). Evaluate the infinite product 

i + 1-
F(27^1 - 1) 

I+iX1+n)(1+raj)--ni 
SOLUTIONS 

Note by Paul S. Bruckman, Concord, CA: 

There is an omission in the published solution to B-371 (Feb* 197 9S p. 
91). The set of residues (mod 60) should include 55 and consists of 24 ele-
ments. 

Triple Products and Binomial Coefficients 

B-39^ Proposed by Phil Mana, Albuquerque, NM 

Let P(x) = x(x - 1)(x - 2)16. Simplify the following expression: 

P(x + y + z) - P(y + z) ~ P(x + z) - P(x + y) + P(x) + P(y) + PCs). 

I. Solution by C. B. A. Peck, State College, PA 

Let G(xs ys z) denote the given expression., Clearly9 

£(0S y9 z) = G(x, 03 z) = G(x9 y9 0) = 0. 

Since the total degree of G in x9 y, z is at most 3S this means that 

G = kxyz9 with k constant. 

Then £(1, 1, 1) = 1 implies that k = 1 and G = xyz, 

II. Generalization by L. Carlitz, Duke University, Durham, NC 

We shall prove the following more general result. Let 

f(x) = aQxn + a^x71'1 + ... + an 

be an arbitrary polynomial of degree _£ n and put 

n — n \*^]_ s ^ 2 ' . o o S Xn) 

= f(x1 + x2 + ••• + xn) - Y,f(xx + ... + x„_1) 

+ Sf (xx + • • • + xn_2) - . . . + (-l)V(O) , 
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where the first sum is over all sums of n - 1 of the Xj, the second over all 
sums of n - 2 of the Xj , etc. Then 

(*) Sn = aQn\x1x2 ••• xn. 

Vtioofc Put 

S(n9k\x1, ...9 xk) = (x1 + " - + xk)n - ^(x1 + ••• + xk_1)n 

+ Z(x1 + - • - + xk_1)n - • • •, 

where the summations have the same meaning as in the definition of Sn9 except 
that we now have k indeterminates. 

It follows from the definition that 

(**) J^S(n9k;x19 ..., xk)* 
n = 0 

= g(ar l + .-+xk)z __ ̂ (arx + ... +xk_1)z + {xt + ... + *fc_2)s 

= (e*1* - l)(e*23 - 1) ••• (ex*s - 1). 

Hence, comparing coefficients of zn, we get 

( 0 (0 < n < k) 
S(n9k;x19 ..., xk) = < 

( A:!̂ x • • • #£ {n = k) 

The assertion (*) is an immediate consequence. 

For n = 3, a = -r-, (*) reduces to the required result. 

Rema/lk: For ^ = ••• = xk = 1, i t i s c l e a r t h a t (**) reduces t o 

J^S(n9k;l9 . . . , l)f^- = (e* - l)k . 
Hence, 

where 

n! 

S(n9k;l9 ..., 1) = klS(n9k)9 

j-o 

a Stirling number of the second kind. 

Also solved by Mangho Ahuja, Paul S, Bruckman, Herta T. Freitag, Graham Lord, 
John W. Milsom, Charles B, Shields, Sahib Singh, Gregory Wulczyn, and the 
proposer. 

Reciprocals of Golden Powers 

B-395 Proposed by V. E„ Hoggatt, Jr. , San Jose State University, San Jose, CA 

Let o = (/J- l)/2. For n = 1, 2, ..., prove that 

l/Fn+z < c« < 1/Fn+1. 
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Solution by Sahib Singh, Clarion State College, Clarion, PA 

Since c = —5 it suffices to show that Fn+2 > an > Fn+1° Consider 
a 

n + 2 -n + 2 
Fn + 2 - an = a

 a __ \ CL«(CL + b) = b2Fn. 

Similarly, an - Fn+1 = -bFn . 
Since b is negative, the conclusion follows. 

Also solved by Mangho Ahuja, Clyde A. Bridger, Paul S* Bruckman, Herta r. 
Freitag, Graham Lord, C. B. A. Peck, Bob Prielipp, E. D. Robinson, Charles B. 
Shields, Lawrence Somer, and the proposer* 

Multi pies of Ten 

B-396 Based on the solution to B-371 by Paul S. Bruckman, Concord, CA 

Let Gn = Fn(Fn + 1)(Fn + 2)(Fn + 3)/24. Prove that 60 is the smallest 
positive integer Vfl such that lti|£n implies 10|Gn + W2. 

Solution by Paul S. Bruckman, Concord, CA 

In B-371, it was shown that 10|(2n iff n = r (mod 60), where v is any of 
24 possible given residues (mod 60). Thus, 

n = v (mod 60) <^> 101 Gn => 101 Gn <^> n + m ~ r (mod 60) , 

or, equivalently, 

n = v (mod 60) =* n + m = v (mod 60) => 777 = 0 (mod 60) => 60 777. 

Clearly, the smallest 777 with this property Is m = 60, since any multiple of 
60 (including 60 itself) has the property. See note after B-423. 

Also solved by C. B. A. Peck, Sahib Singh, Lawrence Somer, <£ Gregory Wulczyn. 

Semi-Closed Form 

B-397 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Find a closed form for the sum 

2s 

Wotd- The proposer intended t to be odd but t h i s condi t ion was inadver ten t -
ly omitted by the elementary problems e d i t o r . The so lu t ion which follows 
gives a closed form for t even and for t odd. 

Solution by Paul S. Bruckman, Concord, CA 

Let 

2 s , n , t 2Li\1z)n + kt 

Then *"° 

v = n\ 

6 /2s\ | a2n + 27<t _ 2 ( _ l ) n + ** + fc2n + 2 k * i 
7< = oN ' (continued) 
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{a2n(l + a2t)2s - 2 ( - l ) "{ l + (-1)*}2 8 +b2n(l +b2t)2s}, 5 
or 

(1) 6 2 S ) n > t = Ua2n+2Bt (a* + a-*)2B + b2n + 2st tf>* + Z r * ) 2 s 

_ 2 2 . + i(_1)»(l±JlIli)} 

We may distinguish two cases, in order to further simplify (1): 

e2s ,n ,2* = ±{(a2n+l*su + b2n + hsu)(a2u + b2u)2s - ( - l ) n 2 2 s + 1 } , 
o r 

( 2 ) ®2s , n, 2w = 5 " t t 2 n + itsw^2w "~ ^ " ^ 2 )> 

a l s o 
fl - _L/^2w + 2s(2w + l ) i -L2n+28(2u+l)\ s„2u+l -i2u + l\2s 
° 2 s , n, 2w + l ~ 5 V a "*" ^ M a ^ ; ' 

o r 
( 3 ) ® 2 s , n , 2 w + l = ^ ^ 2 n + 2s(2w + l ) - ^ 2 w + l ° 

Also solved for t odd by the proposer. 

The Added Ingredient 

B-398 Proposed by Herta T. Freitag, Roanoke, VA 

Is there an integer K such that 

n 

J-l 

is an integral multiple of n for all positive integers n? 

Solution by Bob Prielipp, University of Wisconsln-Oshkosh, WI 

According to (17) on. p. 215 of the October 1965 issue of this journal, 

n 

£>2F, = (n2 + 2)Fn + 2 - (2n - 3)Fn + 3 - 8. 
fe-o 

Since F n + 6 = 3 F n + 3 + 2Fn + 2 , i t fo l lows t h a t 
n 

8 " Fn+6 + L < ^ " "K.+ 2 " 2 F . + 3> 
,7 = 1 

where n is an arbitrary positive integer. 

Also solved by Paul S. Bruckman, Sahib Singh, Gregory Wulczyn, and the pro-
poser. 
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Not Quite Tribonacci 

B-399 Proposed by V. E. Hoggatt, Jr. , San Jose State University, San Jose , CA 

Let fix) = u1 + u2x + u3x2 + 0 .. and gix) = v1 + V2x + V3x2 + • • • where 
W l = U2 = !» ^3 = 2> Mn+3 = Un+2 + Un+1 + Wn, and ^ n + 3 = Vn+Z + ^ + x + Vn. 
Find initial values-V19 V2S and z;3 so that eg^x> = fix), 
I. No such series exists. 

Demonstration by Jonathan Weitsman, College Station, TX 

The equation e9^ = fix) leads to 1^ = 0, V2 = 1, V 3 = 3/2, and ̂  = 
7/3. These values contradict the given recursion for the y's. 

II. Correction and solution by Paul S. Bruckman, Concord, CA 

There is an error in the statement of the problem. One correct reword-
ing would be to replace "gix)" where it f^ivst occurs by "grix)". 

Note that un = Tn + Z9 where .CZ\x)n-o = (0, 0, .1, 1, 2, 4, 7, 13, 24, ...) 
is the Tribonacci sequence; also fix) = (1 - x - x2 - x3)'1, the well-known 
generating function for the Tribonacci numbers. 

Since the Vn's satisfy the same recursion, it follows that 

gf ix) = pix)fix) , 
where p is some quadratic polynomial. But, if we are to have 

fix) = exp(gG»)) , 

then gix) = log(/(#)), and g1 ix) = ffix)/fix)* Hence, 

pix) = ffix)/fix) ^-j^illfix)) = - ^ d - x - x2 -x3) = 1 + 2x + 3x2
B 

Therefore, 

gf ix) = • and gix) = o - l o g ( l - x - x2 - x3) , 
_1_ """ v O ""• tA_/ *"" *Xj 

for some c o n s t a n t c . Since giO) = l o g ( / ( 0 ) ) = l o g l = 0 = o - log 1 = o - 0 = 
c , t h u s gOO = - l o g ( l - x - x2 - x 3 ) . 

Now g'ix) = pix) fix) = (1 + 2x + 3 x 2 ) ^ T n + 2 ^ n ; hence , 
rc = 0 

g'(x) = l> B + 2 *" + 2]Tri+1*" + 3f>„x« 
n = 0 « = 1 n = 2 

n = 0 n = 0 

which i m p l i e s i ; n + 1 = ^ n + 2 + 2Tn+1 + 3Tn, n = 0 , 1, 2 , . . . . Thus, vx = I + 
0 + 0 = 1; V2 = 1 + 2 + 0 = 3; and ^ 3 = 2 + 2 + 3 = 7. The f i r s t few terms 
of t h e s e r i e s fo r gix) are as f o l l o w s : 

#(a?) = - l o g ( l - X - X - x ) = — + - y + - y - + —^— + -j— + - £ — + • •• . 

##### 
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PROBLEMS 

H-311 Proposed by Paul Bruckman, Cor cord, CA 

Let a and b be relatively prime positive integers such that ab is not a 
perfect square. Let 6Q = Vb/a have the continued fraction expansion 

L u 2 9 U2 9 ii-^9 ...J, 

with convergents pn/qn (n = 1, 2, . . . ) ; also, define p 0 = l , q0=09 p =0. 
The process of finding the sequence (un)n=i may be described by the recur-
sions: 

/ab + rn 

(1) 6n = un + 1 + 1/0 = -, , 
un 

where r0 = 0, d0 = a, 0 < 0n < 1, 

rn and dn are positive integers, n ~ 1, 2, ... . 
Prove: 

(2) rn = (-l)"-1(apnpn_i - bqnqn_x); 

(3) dn = (-l)"(ap2 - bq2), n = 0, 1, 2, ... . 

H-̂ 312 Proposed by L. Carlitz, Duke University, Durham, NC 

Let m9 P, and s be nonnegative integers. Show that 

(*) J](-l) , 7 + r \ r ) \ s ) ( m _ j)[(m - k)\(j + jc - m)\ =(-1>m \r)6rs> 

where 

1 (r = s) 

0 ( r t s). 

90 
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SOLUTSONS 

Who's Who? 

H-281 Proposed by V. E. Hoggatt, Jr., San Jose State Univ., San Jose, CA 
(Vol. 16, No. 2, April 1978) 

Consider the matrix equation: 

A 1 oV (An 
(a) 1 1 1 I = ( Z?n En Gn 1 (n > 1). 

Identify An, Bn9 Cn, ..., Jn. 

Consider the matrix equation: 

1 
1 

0 

1 

1 

1 

°V 
A-1 / 

/ ^ n 

= ( Dn 

\Bn 

Bn 

En 

I„ 

c, 
G, 
J, 

0 

1 

0 

1 

0 

1 

°\ 
A-0 / 

MJ 
•U 

W 

*»' 
^ 
I ' 

c„' 
G; 

J ; 
(b) 1 0 1 = ID' El G' (n > 1) 

Identify A'n, B<n, C'n, ..., «TB\ 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh 

(a) Let 

A x oi 
>i = ( 1 1 1 

From the symmetry and other properties of A, it follows that A has the 
form 

Hence, An is determined when the 1st row of An is known; also if the 1st row 
of A0' is (x,y,z), then the 1st row of A3' + 1 will be (x + y,x + y + z 9y + z) . 

For the first five odd positive integers, we have the following entries 
in the 1st row: 

Left-hand 
uk + 

r 4 
21 

120 
697 

Entry 
1 

Middle Entry 
vk 

1 
5 

29 
169 
985 

Right- hand 
uk 

0" 
3 

20 
119 
696 

Entry 
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We observe that in each case 

u\ + (uk + I) 2 = v2
k, 

so (uk,uk + 1?^) is a (primitive) Pythagorean triple. It is known that Py-
thagorean triples of the type indicated above are given by 

uk+i = ^uk ~ uk-i + ^ where u1 - 0 and u2 = 3 
and 

vk+i = ^Vk ~ vk-i where v^ = 1 and V2 = 5. 
[See Osborne, "A Problem in Number Theory," Amer.' Math. Monthly (May 1914): 
148-150.] 

It follows that 

_ (2 + /2)(3 + 2/2)fe"1 - (2 - /2)(3 - 2/2")fe"1 1 
ttfc._ _ _ - - , 

and fc-1,-2, 3, ... . 

_ (1 + /2)Q + 2/2) k"1 - (1 - /2)(3 - 2/2)fe-1 

2/? 
fc = 1, 2, 3, ... . 

[See Example 3-5, pp. 66-67, of Liu, Introduction to Combinatorial Mathema-
tics (New York: McGraw-Hill Book Company, 1968), for the procedure used to 
obtain the above formulas.] 

Therefore, for n >_ 1, If n = 2k - 1, then 

• An = uk + 1 Bn = vk Cn V uk 

Dn = vk En = 2uk + 1 Gn = vk 

Hn = uk In = vk Jn = uk + 1 

while, if n = 2k, then 

An = uk + vk + 1 Bn = uk + vk + 1 Cn = uk + vk 

Dn = 2uk + vk + 1 En = 2wk. + '2z;k + 1 Grt = 2 f̂e + vk.+ 1 

Hn = uk + vk In - 2uk + vk + ± Jn = uk + vk + 1 

It is interesting to note that, for n even, the entry in the upper right-hand 
corner of An is the subscript of a triangular number that is a perfect square. 

[Recall that t l = l2, tQ = 62, th3 = 352, t288 = 2042, t1681 =11892, t9800 = 

6930 2 , e t c . ] 

(b) Let 

»-i /° h 
U 

1 

0 

1 

0 

1 
0 

From the symmetry and other properties of 5, it follows that: 
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and 

D2k- l 

o2k 

, K - 1, 2 , 3 , • • • : 

, k = 1, 2, 3, ... 

This can easily be verified in each of the two cases indicated above using 
induction and the fact that 

1 
0 

1 

0 
2 

0 

1 
0 

1 

[Just multiply B2k~l by B2 and multiply B2k by B2. 

Therefore, for n >. 1, if n = 2k - 1, then 

K = o 
D'n - 2k-x 

H' = 0 

B' = 2 " _ i 

K = o 
I^ = 2*" 1 

^ = 0 
G„' = 2k-1 

JJ = 0 

while, if n = 2/c, then 

^ = 2 * " 1 

^ - o 
BJ = 2 ' ( - 1 

B„' = 0 

E'n = 2 * " 1 

I' = 0 

C„' = 2 " - 1 

G„' = 0 

JJ = a^1 

Also solved by P. Bruckman, G. Wulczyn, R. Giuli, and P. Russell. 

Speedy Series 

H-282 Proposed by H. W. Gould and W. E. Greig, West Virginia University 
(Vol. 16, No. 2, April 1978) 

Prove 
^2n 

Z-f „hn _ n 2 ^ 2k n
 5 

n = l ^ _ a - fc = l u ~" -1 

fc odd 

where a = (1 + /5~)/2, and determine which series converges the faster. 

Solution by Robert M. Giuli, San Jose State University, San Jose, CA 

The equivalence of the two relations is easily established algebraically 
if ahn ^ 1, and disregarding convergence, 
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a(2»)(2r+l) 

n = 1 r«0 n=1 r=0 

Or if k = lr + 1 (k = 1, 3, 5, ...) and a2n + 1, 

«-i a"» - 1 r £ i Y l - a2k Y a2k - 1 

To show "speed" of convergence, the relation may be rewritten as 

00 00 

y 1—.v—i— 
~ i a2n _ a .2» ; f r i a ^ - 2 _ x 

where /c = In - 1. The series whose terms decrease in magnitude the fastest 
will converge the fastest (noting that all terms are positive for a =1.618). 
For n = 1, 2, 3, . .., we conjecture then that 

i- > i — or that a2n - a'2n < a"*"2 - 1, 
a2n - a~2n ahn-2 - 1 

which is easily established, by induction, to be true for n = 2, 3, 4, ... . 
Therefore, the right-hand side series of odd terms converges the fastest. 

Also solved by L. Carlitz, P. Bruckman, and E. Robinson. 

Close Ranks! 

H-283 Proposed by D. Beverage, San Diego Evening College, San Diego, CA 
(Vol. 16, No. 2, April 1978) 

Define f(n) as follows: 

/«=£(*;sxr *-.>. fe = o 

Express f(n) in closed form. 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh 

We shall show that f(n) = 1. Since f(0) = 1, to complete our proof, it 
suffices to show that f(n + 1) - fin) .= 0 for n = 0, 1, 2, ... . Now,, 

k = 0 fe=0 

-a+i2)(fr*,+£[("iit*)(jr*'-(":'Xin 

- (vxr-1-
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Let 

fe = o 
and 

s,=E[e"„;v*xr*'-M2";;*xr-1] 
fe = 0 

a* 

Claim: 

We have , 

• iVi) - (2Z)W 
=[(„2

+"^(2„")-c)](r 
• L2:M" 

so the desired result holds when j = 0. Assume that 
Kln-t i en — u 1 / JL v ^m 

Then •.«-.*(^)(r-(4,-.'-i)(r'"1 

•K+-it)(ir,"1-(2"-ri)(ir*"1 

•[(2".-+vi)*(2"-nt-i)'-(2"-ri)](r-1 

• CY+Y1)®' 
, 2n-t -1 

The claimed result now follows. 
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F i n a l l y , 

f* + »-fOO-...i+(:Z)(i)""-("n)(l:Y 

• ar - (ir • 0. 
An interesting corollary to the result of this problem is that 

NOTE: It is also true that 

fin + D- f(n) =sn - ( ^ X ! ) " =0 

by the usual conventions employed with binomial coefficients because 

n < n + 1. 

Also solved by L. Carlitz, W. Moser, P. Bruckman, and P. Russell. 

Late Acknowledgments 

H-278 Also solved by J. Shallit. 

H-279 Also solved by G. Lord. 

H-280 Also solved by G. Lord, L, Carlitz, and B. Priellpp. 


