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Let p be a fixed integer greater than 1 and define u, for all integers
7 by

(1) Uy = 0, uy =1, Upgy = Plhyyy F Une

Then Uys Uys +.. 18 an increasing sequence of integers with u; = 1 and hence
a function g(n) is well defined for all n in ¥ = {0, 1, 2, ...} by
(2) g(0) = 0, oln) = Uspy T o(n - uy) for Uy SN < Uy
Let s = (p +~Vp2 + 4)/2 and S, = [ns], where [x] denotes the greatest inte-
ger in x.

It is shown below that the spectral sequence {S5,} and the shift func-
tion 0(n) are related by the equation

(3) Sy =u, +on -~ 1)
and that {S,} has the self-generating property that

% p if n is not in 4 = {5, S,, S5 «..};
-8, =

29
(4) Sn+1

p+ 1 dif n is in 4.
Also investigated are representations of positive integers in terms of {u,},

partitions of Zt = {1, 2, ... } into several sequences related to o(n)or S,,
the function counting the number of integers in AN{l, 2,..., n}, and prop-

erties of "triangles' of entries {Z] defined, for certain fixed x, by
[ﬂ = ] - [ke] - [ = K)x] for k = 0, 1, ..., 7.

Most of the results presented here are analogous to those given in the
authors' paper [4] in which the role of the present u, is played by k. sat-—
isfying

1 .
hy =277 for 1 K2 Sdy Byyy v hy, =h e R .
The Fibonacci numbers F,.; are the case of the %, with d=2. The Fibonacci
numbers could also be dealt with here by allowing p to equal 1; then the se-
quence ;s Uy, ... must be replaced by u,, uy; ... in defining a(n).
For a bibliography on spectra of numbers, see [3].

1. PROPERTIES OF u,

Here we state the properties of the u, used below. Proofs are omitted
since they are well known or easily derived, ox both. Let », = un+l/un for
n in Z%.
Lemma 1:

(a) For every k in Z*, there is exactly ome J in 2t with u, < k < Uy -

J
(b) 7y <r; <rs < o < g < aon < re <r, <7,

57
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2 — (_1\" .
(c) Uppq = Uy, = (-1)" for all n in Z.

@ r, -r, ., = D"/ (uu,,,) for n in Z*+.

(e) ged (uy,s u,y ;) =1 for all n in Z.
(£) wuy, =pQuy,_y +u,,_, + - +u) for n in Z*.

= o o 0 . +
(8) Uy =Py, _, *u, _, + +u,) +u, for n in ZF.

2. RATIONAL APPROXIMATION

Let x be a positive irrational number. Then, we define a Farey quadru-
ple for x to be an ordered quadruple (a, b, ¢, d) of positive integers, such
that be - ad = 1 and a/b < x < ¢/d.

The following result slightly extends some material from the theory of
Farey sequences. (See [5] for background.)

Lemma 2: Let (a, b, ¢, d) be a Farey quadruple for & and let k be a positive
integer less than b + d. Then:

(a) There is no integer % such that a/b < h/k < ce/d.

(b) [kx] = [kal/b].

(¢) If dfk, [ke] = [ke/d].

(d) 1I1f k = de with e in {1, 2, ..., b = 1}, [kx] = [ke/d] - 1.

The proofs are left to the reader.
We note that parts (b) and (c) of Lemma 1 tell us that

and (4, , u

2m om=-1° Yom+1? u2m)
are Farey quadruples for s whenever mis a positive integer. This is extended
in the following result.

Lemma 3: Let p e {2, 3, ...}, s = (p + Vp*> + 4)/2, u be as in (1), and m €
Z%. Then each of

WUoptgs Upptrs Uppyrs Uop)

(, 1, 1 + kp, k) for k =1, 2, ..., p;
(Uom + Kigpprs Uppoy F Kidgps Uppiys Upy) for k=0, 1, «ovy p3

+ ku + ku ) for k =0, 1, ..., p;

(Uppmyos Upmirs Yopin om+2° Yom 2m+1

is a Farey quadruple for s.

Proog: Let (a, b, ¢, d) represent one of these quadruples. The property
be —ad =1

is easily verified using Lemma 1(c). The property
alb < s < e/d

can be shown using Lemma 1(b) and the fact that

a.a + c c

22T 2 ¢

b b+d d

whenever b and d are positive and a/b < c¢/d.

3. SPECTRA

Let [x] denote the greatest integer in x, that is, the integer such that
[x] <2 < [x] + 1. The sequence [x], [2x], [3x], ... is called the spectrum
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of x. It is a well-known result [1] that if y is an irrational number greater
than 1 and (1/x)+ (1/y) = 1 then the spectra {[nx]} and {[ny]} partition the
positive integers Zt.

Let p be in {2, 3, 4, ...}, s = @+ /p* +4)/2, x =s-p+ 1, and y =
s + 1. Also let S, = [ns], X, = [nx], and Y, = [ny]. It is easily seen that
y is irrational, y > 1, and (1/x)+ (1/y) = 1; hence the spectra {X,}and {7,}
partition Z*. It is also clear that ¥, = X, + np and that each of X, and Y,
is an increasing function of n. It follows that {X,} and {Y,} may be self-
generated using the following algorithm.

X1 =1, Yl =1+ p, Xy for k > 1 is the smallest positive integer
(5)
X

Y X Y

29 v A g k—l}’ and 'Yk =Xk+kp.

not in the set {X,, Y,, X,,

Then {S,} is easily obtained from S, =Y, - n =X, + n(p - 1). It is shown
below that {S,} can be self-generated from the initial condition Sl =p and
the difference property (4) above.
The following result gives symmetry properties of finite segments [x],
., [ex] of a spectrum for the cases in which e¢ is the b or d of a Farey
quadruple (a, b, ¢, d) for x.

Lemma 4: TLet (a, b, ¢, d) be a Farey quadruple for x. Then:

(a) [bx] [kxe]l] + [(Bb - K)x] + 1 for k =1, 2, ..., b - 1;
(b) [dx] = [kx] + [(d - k)x] for k =0, 1, ..., d.

Proof of (a): We have [bx] = a from Lemma 2(b). Let 0 < k <b, j=5b -k,
h = [kx], and 7 = [jx]. Since x is irrational, h< kx and so hA/k < x. This,
x <ecl/d, k <b, and Lemma 2(a) imply that A/k < a/b. Similarly, Z/j < a/b.
Since (A + 2)/(k + J) is in the closed interval with endpoints h/k and 2/, we
have (A + 2)/(k + §) < a/b. As kK + g = b, this means that & + © < a or [kx]
+ [Jx] < [bx]. Then the desired result follows from the fact that, for all
real y and 2,

(6) [y + 2] - [y] - [2] e {0, 1}.

Proof of (b): Lemma 2(d) tells us that [dx] = ¢ - 1. We only need consider
the Kk with 0 < k < d. Let j =d - k, [kx]l=h, and [jxl=%. Then h + 1 > kx
and so (W + 1)/k > x. This, = > a/b, k < d, and Lemma 2(a) then imply that
(h + 1)/k > e¢/d. Similarly, (£ + 1)/J > e/d, and hence (A + 1 + 2 + 1)/(k +
J) >e¢/d. As k+ J =d, one has h + 7 + 2 > ¢, which implies

[kx] + [(d - K)x] + 1 > [dx].

Again, the desired result follows from (6).

L4, THE SHIFT PROPERTY

When convenient, S, = [#s] will also be denoted by S(n). Also, we re-
call that o(n) is defined in (2) and u; is defined in (1).
i1 +S(7’L - ,uj).
Proof: Let (a, b, ¢, d) be the Farey quadruple (U,,»> Usm—1s Upmyls Uop) fOT

§. Then Lemma 2(b) tells us that S(n) = [ns] = [nr,,_;] for 0 < n < Upp_q +

Theorem 1: If u; <n < u; + Uiy and § € 2T, then S(n) = u

Uy * Hence ( )
: u u + n - u U
_ _ 2m—=1"2m 2m=1 2my _
(7) S() = [nuy, /uy,—;] = [ o :|- om TS0 = uy,0)
for Uppey <N < Uy o Fu, .
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Next we use the Farey quadruple (u
find, from Lemma 2(c) and (d), that

om+2? Yomar® Yomers u2m) for s and we

S(n) = [nr,,] if 0 <n < wu, +u, , and u, [n,
Sm) = [nr, 1 -1 if n = ku, with k in {1, 2, ..., Uppgr = 1}.
Using these facts, one can verify that
(8) S(M) =ty qpy + 5 = uy,) for u,, <n <wu, +u, 4.

The desired result follows from (7) when j is odd and from (8) when j is even.
Theorem 2: S5, = u, + o(n - 1) for n in Z*.

Proog: Since S, =p =u, and 0(0) = 0, the result holds for n = 1. Then a
strong induction establishes it for all positive integers »n using the conse-
quence

S(n) = Ujty + S(n - uj) for u; <n §_Mj+l

of Theorem 1 and the consequence

on - 1) = Uus + o(n -1 - uj) for u. <n < u;

+1 J

+1
of the definition (2).

5. SEQUENCES OF COEFFICIENTS

Let V be the set of all sequences E = [e,, €,, ...] with each e¢; in {0,
1, ..., p}l, with an 7, such that e; = 0 for ¢ > 7y, and with e¢; = p implying
that both © > 1 and e,_, = 0. For such %, the sum

e1lyyy T eylyy, teju, gt

is actually a finite sum which we denote by £ < U,. Also, we let E < U stand
for E + U,.
Lemma 4: If E and E' are in Vand F « U = E' « U, then E = E'.

This is shown using parts (f) and (g) of Lemma 1.
Theorem 3: The sequences of V form a sequence E,, B\, E .. such that
E, «U=m.

Proof: The only E in V with E « U = 0 is [0,0, ...], which we denote by E,.
Now we assume that X > 0, and that there is a unique E, in V with E, * U =m

1° 2’

form=0,1, ..., k = 1. ByLemma 1(a), Uj <k < uj4q, for some J in Z*t. Let
h =k - u;; then we can let [e;;,€y,s -..] be the unique E;, in V with &, - U
= k. Then let ex; = 1+ €nis Cri = Cng for 7 # j, and E, = [ekl, Chgs woe]e
Since

ki <ujp, =pu; +u;_y < (p+ Duy,

one sees that e;; < p and that if ¢;; = p, then j > 1 and ¢; ;_; = 0. Thus,
Ey is in V. Clearly,

Ey ~U=E, «U+u; =h+u; ==k
Finally, there is no other F in V with £ ¢« U = k by Lemma 4.

The case with p = 2 of Theorem 3 was shown in [2].
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6. PARTITIONING V

We now partition V into subsets Vis Vys V3 and use these subsets to in-
dicate the relationship of E,+; to E,. Let E = [e;, e,, ...] be in V; then,
Eis in V, if e; =p - 1, E is in V,if ¢; = 0 and e, = p, and F is in V, if
e, <p~-1and e, <p. Since ¢; > 0 implies ¢, < p, one sees that each F of
V is in one and only one of the V .

Lemma 5: Let E, = [el, €,5 ».-] and E 4. = [fl, fz’ ...]. Then:

(a) 1If E, is in V,, let j be the smallest positive integer such that
€541 < Pp; then f; =0 for ¢ < 2j, f,;=1+e,;, and f; = ¢e; for
T > 24.

(b) 1If E, is in V,, let h be the smallest positive integer such that

@,, <p; then f; =0 for 1 <72 <2h -2, fo_, =1+e,,_,, and
f; = ey for 7 > 2h.

(¢) If Epis din V,, f; =1+ e, and f; = e; for 7 > 1.

Proog: 1If we let F = [f,, fys +«-]1 with the f; as in (a), (b), and (c), it
is easily seen that F is in V and F =« U =1+ E, « U =1 + m. This and Theo-
rem 3 establish the present result.

e U, - E, *U,. Then:

n

Lemma 6: Let A,(m) =E, .
(a) A,(m) = u, + u,,, if E, is in V,.
(b)Y A, (m) =u

Proof: These statements are easily verified using the parts of Lemma 5.

1 if E, is in V2 or Vs'

7. POWERS OF o

Let E, = [€p1s €p2s -.-]1 and let h be the largest ¢ with ep; # 0, then
one can use the definition of 0 in (2) to show that
a(m) = a(e, Uy + - +eu) =e u, v+ +e u, = -U.

Hence, there is no contradiction in defining ¢” for all integers n to be the
function from N to Z given by

(9 o"(m) =E, - U, = Cpilpry T @polh,gn +oe
Also let a, be the function from Z% to Z defined by
(10) a,(k) = u,q +0"(k - 1).

We note that a,(k) = k, that a,(k) = S, and that, for fixed k, the a,(k)
satisfy the same recurrence as the u,, i.e.,

A2 (k) = pan+1(k) + an(k)-
We also let 4, be the image set of a,, i.e.,

4, = {a,(k) : ke Z¥}.

Lemma 7: For n in {1, 2}, 4, = {2 + 1 : E; ¢ V, }.
Proof: Using (10) and (9), one sees that

(11 a,(m+ 1) = (1 +e, Du + e

n+1 m2un+2 te

maun+3 + ...

As m takes on all values in N, F, = [p -1, €1 emz,...] ranges through all
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the E} in V; and G, = [0, p, e,15 €455 -..] ranges through all the E, in V,.
It follows from (11), Lemma 5, and the recursion in (1) that if F, = E; then

J+1l=E_ , «U=a(m+1)
and, similarly, that if G, = E, then
h+1l=E_, *U=a,@m+1).

These facts establish the lemma.
8. SELF-GENERATING SEQUENCES

Clearly, a,(1) = u,,,- This, and the following result, provide an easy
self-generating rule for obtaining the sequence {a;(k)} and a similar easy
rule for using {a;(k)} to obtain any {a,(k)}.

Theorem 4: For n in Z and J in 2%, a,(j + 1) - a,(j) equals u, + u, ., if J
is in 4, = {al(k) : ke 2%} and equals u,,, otherwise.

Proof: Lemma 7 tells us that 4; = {Jj : E,_,€ V,}. Also,

ay(J + 1) - a,(d) =0"(g) -0"(J - 1) =E; U, =E;_| * Uy

Hence, the desired result follows from Lemma 6.

Theonem 5: The number of integers in A NA{L, 2, ..., m} is a_,(m + 1).

Proof: Let A_,(2) = a_,(Z + 1) - a_;(¢). Clearly,

(12) a_y(m+ 1) =a_; (1) + A, (1) +A_;(2) + - +A_,(m.

Now a_, (1) = u, + o"(0) = 04+ 0 = 0. Also, Theorem &4 tells us that A_l(i) =

U, = 0 when 7 is not in 4, and A_,(¢) = u, + u_;, = 1 when © is in 4,. Thus,

the sum on the right side of (12) is the number of ¢ that are in both {1, 2,
., m} and A,, as desired.

9. PARTITIONING 2%

We saw in Lemma 7 that 4, = {2 + 1 : E; € V,} for n in {1, 2}. Let B =
{g+1: Ej € Vgl. Since Vis V,5 V; is a partitioning of V = {Eo’ E, et
it follows that 4,, 4,, B is a partitioning of Z* = {1, 2, ...}.

For k =1, 2, ..., p - 1, we let

b, (n) = al(n) +k-p=k+on-1)

and let

B, = {by(m) : ne 2%}
It is easily seen that

By =1{m : e, =k, ey, <pl for 1 <k<p
and that B;, B,5 ..., Bp_1 is a partitioning of B. Hence, the sequences
b, m}, b,m}s oovs b, (M)}, {a, )}, {a, ()}

partition the positive integers.

10. SPECTRUM TRIANGLES
Let x be irrational and greater than 1 and let [Z} denote [nx] - [nk] -

[(n = k)x] for integers n and k with 0 < k < n. It now follows from (6) that
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[Z] is always in {0, 1}. The fact that [g] =0 = [Z] and the symmetry prop-

erty [Z] = [n ? k] are obvious. Part (c) of the following result implies

other symmetries for certain finite subtriangles of the infinite triangle of

values of [Z].

Theorem 6: Let (a, b, ¢, d) be a Farey quadruple for z. Then:

(a) [2 =1 for 0 < k < b.

(b) [;{Z 0 for 0 < k < d.

(c) [d_i+t}=[i]for0§tisid.

Proof: Parts (a) and (b) are a restatement of Lemma 4. For (c) we use Lem-
ma 4(b), or the present part (b), to see that

[de]l = [(s = B)x] + [(d - 8 + B)x] = [sx] + [(d - 8)x].
Hence [(d - s + t)x] - [(d - s)x] = [sx] - [(s - t)x], and so

1]

[d—i+t]=[(d-s+t)x]—[tx]—[(d—s)x]

[ea] - [tal - [(s - ta] = 3]
as desired.
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LOCAL PERMUTATION POLYNOMIALS OVER Z,

GARY L. MULLEN
The Pennsylvania State University, Sharon, PA 16146

1. INTRODUCTION

If p is a prime, let Zp denote the integers modulo p and Z%¥ the set of
nonzero elements of Zp. It is well known that every function from Zp x Zp
into Z, can be represented as a polynomial of degree <p in each variable. We
say that a polynomial f(x,, x,) with coefficients in Zp is a Zocal permuta-
tion polynomial over Zp if f(x,, a) and f(b, x,) are permutations in 2, and
x, for all a, b € Zp.

In Section 2, we obtain a set of necessary and sufficient conditions on
the coefficients of a polynomial f(x,, x,) over Zp, p an odd prime, in order
that f(x,, x,) be a local permutation polynomial. Clearly the number of lo-
cal permutation polynomials over Zp equals the number of Latin squares of
order p. Thus, the number of Latin squares of order p equals the number of
sets of coefficients satisfying the set of conditions given in Section 2.
Finally, in Section 3, we use our theory to show that there are twelve local
permutation polynomials over Z which are given by

Flrys x,) = a0, +ag,x, +a,
where a;9 = 1 or 2, ag; =1 or 2, and qyy = 0, 1, or 2.

2. A NECESSARY AND SUFFICIENT CONDITION

Clearly, the only local permutation polynomials over Z, are x; + x, and
x, + £, + 1 so that we may assume p to be an odd prime. We will make use of
the following well-known formula

p-1
(2.1) Ejk = {
m=1

Suppose

0 if Kk # 0 (mod p - 1),

-1 if K =0 (mod p - 1).

p-1 p-1
Floys @) = 3 D, anyin]
m=0 n=0
is a local permutation polynomial. Let f(¢, j) = k;; for 0 <<, j <p - 1.
Since no permutation over Z, can have degree p - 1, we have

Ay, p-1 = 0,

(cn) p-1

D K'a, ,_, =0, k=1, ..., p- L

m=1

Suppose 7 = 0 so that
PO, 9 = agy +agd + o0 +ay , J7T =Ky
Let kéj = koj - koo for j =1,...,p - 1. The set {kéj} = Zg and, moreover,
Gord + Gppd® + oo g,y =KL for § =1, ..., p - L.

Raising each of the p - 1 equations to the kth power, summing by columns and

104
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using (2.1), we obtain

i X 0 if k = 2, R -2
@ S K 4
To1! eve Lo p_q! 01 0,p-1 e

P l1if k=p -1
where the sum is over all (p - 1)-tuples (iOl, cees io,p—l) with
(@) 0 < 2,5 «uus io,p—l <k,
(b) Loy + oee + iy, =k
() 24, + 205, + oo + (p - l)io’p_1 =0 (mod p - 1).

If £ > 0 is fixed, consider

" p-1 p-1

(2.2) O P D D N e L i I T
m=0 n=1

so that {k};}=2%. For each k = 2,..., p = 1 raise each of the p - 1 equa-
tions in (2.2) to the kth power, sum by columns, and use (2.1) to obtain

(€3) Z[]I]__.__=

3 1
m=0n=1 Tmn :

imn'z I
p-1p-1 klagmi™" { 0if k=2, ..., p -2
1lifk=p -1
for each 2 =1, ..., p - 1, where the sum is over all (p2 - p)-tuples

(Zggs eovs Tums oves ip_l’p_l)
which satisfy

(d) 0 < ipy <Kk,

p-1 p-1
(e) 2 Zimn =k,
m=0 n=1
p-1 p-1 p-1
(£) D iy ¥ 29 iy + vor t (0= 1) D imp-1 =0 (mod p - 1).
m=0 m=0 m=0

A further word of explanation about the sum in (C3) may be helpful at
this time. Conditions (d) and (e) arise because of the multinomial coeffi-
cients, while (f) determines which terms appear in the given condition.
Moreover, the Xm appearing in (C3) is understood to mean the sum, counting
multiplicities, of all the first subscripts of the a,,'s which appear in a
given term. Finally, we note that condition (C3) actually involves a total
of (p - 1)(p - 2) conditions.

If we now fix j and proceed as above, we obtain another set of necessary
conditions. For brevity, we simply state these as

Ayoq,9 = 0,

(c1") o1
n

2 Ky,

n=1

n
o
s
=
0
.
:
3
I
-
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When j = 0, we have

0 if k
k! i io-
2" z — g Ty eee @0 =
/Llo. ees L H 0 p 5 0 lifk

2, iy p -2

p-1
where the sum is over all (p - l)-tuples (2,45 «..» ip—l o) with
(a’) O f-ilo’ e ip—l,o <k,

') Tyt eee ip—l,o =k,

(e¢") zZ. + 2i20 + -0+ (p - 1)ip 0 (mod p - 1).

1

10 -1,0
When j =1, ..., p - 1, we obtain

-1 P-— k'a""’n 0 if k
LD II1 =

1]

2, veusp =2

=0 mn! 1 if k

p-1

where the sum is over all (p? - p)-tuples (Z3g5 «++s Tmns ++vs Lp_1,,-1) that
satisfy

@ 02 ip, <Kk,

p-1 p-1
e D D imm =k
m=1 n=0
p-1

p- p-1 .
(£) D iin+ 29 dgy + oot @ - 1) 4y, =0 (mod p - 1).
m=0 n=0 n=0

We now proceed to show that if the coefficients of a polynomial f(x,, x,)
satisfy the above conditioms, then f(x,, %,) is a local permutation polyno-
mial. Suppose the coefficients of f(x,, x ) satlsfy (c1), (c2), (€3), (C1N,
(C2'"), and (C3'). For each fixed 7, let t;; = f(Z, J) - f(Z, 0) for j =1,
«e.» p - 1. The above conditions imply that for fixed ¢ =0, 1, ..., p -1
the t-j satisfy

2

p-1 0 if k
(2.3) thj =
i=1

1, ..., p -2,

-1 if k

1]

p - 1.
Let V be the matrix
i1 e t%p_l

2 2
Zyp=1

Using (2.3), we see that
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-1 0. 0 0
0O 0.. 0 -1
0 0 -1 0

det (V%) = det(V)det(V) = det e - 41,

0O -1... 0 O
Since det(V) is the Van der Monde determinant, we have, for fixed <,
det(V) = I (t;; - £t42) # 0
>k
so that the ¢;; for Jg=1, ..., p - 1 are distinct. Hence,

F(, 0) and £(i, §) = t,; + F(i, 0) for j =1, ..., p - 1

constitute all of Zp.
A similar argument shows that if for each fixed g,

=f, ) - £, §) for 2 =1, ..., p -1,

then
f(os j) andf(i: j)=sij+f(os j) fori=l, 0--sp_1
run through the elements of Z,. Hence, we have

Theorem 1: If f(x,, x,) is a polynomial over Zp, p an odd prime, then f is
a local permutation polynomial over Zp if and only if the coefficients of f
satisfy (Cl), (C2), (C3), (cl1'), (C2"), and (C37).

Coroflary 2: The number of Latin squares of order p an odd prime equals the
number of sets of coefficients {a,,} satisfying the above conditions.

We note from condition (Cl) that Ay, p-1 = al = eee =y poy =0,
since the determinant of the coefficient matrix in (Cl) is the Van der Monde
determinant. Similarly, (Cl') implies that a a,
= 0. We further note that we have a total of 2p(p - 1) COndlthHS so that,

in general, the conditions are not independent.

3. ILLUSTRATIONS

As a simple illustration of the above theory, we determine all local
permutation polynomials over Z;. If

2 2
flzys z,) = Z Z A T3E 5
m=0 n=0

then the set of necessary and sufficient conditions becomes

(2.4) Ayy, = Gyy =Qyy = Ay =y, =0,
2 2 _ 2 2 _
(2.5) Ay T Ay, = a3, T A, L,
2 2 _ 2 2 _
(2.6) ayy, tay, *2a5,a,, =a, ta, taaa, =1
2.7) a? +ad® +a .a,. =a®> +d*> +a a. . =1.
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Using (2.4) and (2.5), we see that a,, = 1 or 2 and a;, =1 or 2. From
(2.6) and (2.7), we have a,; = 0. Since q;, is arbitrary, we see that there
are a total of twelve local permutation polynomials over Z,, given by

Fl@ys ) = ayg®y + ag12, + agys

where a,, = 1 or 2, a3, =1 or 2, and a;, = 0, 1, or 2,

IR

GENERALIZED CYCLOTOMIC POLYNOMIALS., FIBONACCI CYCLOTOMIC
POLYNOMIALS, AND LUCAS CYCLOTOMIC POLYNOMIALS®

CLARK KIMBERLING
University of Evansville, Evansville, IN 47702

1. INTRODUCTION AND MAIN THEOREM

In [6], Hoggatt and Long ask what polynomials in I[x ] are divisors of
the Fibonacci polynomials, which are defined by the recursion

Folx) =0, Fi(x) =1, Fy(x) =xF,_ (@) +F _ (x) for n > 2.

In this paper, we answer this question in terms of cyclotomic polynomials.
We prove that each Fibonacci polynomial F, (x), for »n > 2, has one and only
one irreducible factor which is not a factor of any Fy (x) for any positive k
less than n. We call this irreducible factor the nth Fibonacci cyclotomic
polynomial and denote it F,{(x).

The method applied to F,'s to produce &F,'s applies naturally to the more
general polynomials %,(x, y, 2) which were introduced in [7] and are defined
just below. Accordingly, in Section 2, we shall apply the method at this more
general level rather than directly to the F,'s. The polynomials C,(x, y, )
so obtained from the £,(x, y, 8)s we call generalized cyclotomic polynomials.
Special cases of the (,'s are the ordinary cyclotomic polynomials C, {x, 1, 0),
the Fibonacci cyclotomic polynomials F, already mentioned, and a sequence

Lo(x) = Cplx, 0, 1)

which we call the Lucas cyclotomic polynomials. Section 3 is devoted to the
F's and Section 4 to the ¥,'s. In Sections 3,4, and 5, we determine all the
irreducible factors of the Fibonacci polynomials, the modified Lucas polyno-
mials defined in [7] as %,(x, 0, 1), and the Lucas polynomials.

In Section 6, we transform the generalized Fibonacci and Lucas polyno-
mials into sequences U, (x, z) and V, (¢, z) having the same divisibility prop-
erties as the F,'s and L, s, respectively. The ccefficients of these poly-
nomials are all binomial coefficients, in accord with the identity

28U, (x, 8) + V,(x, 2) = (x + 2)".
The polynomials %,(x, y, %) may be defined as follows:
L,(x, 38) - 0,(y, =)

L xs ¥y, B8) = Z =y for n > 0,

*Supported by a University of Evansville Alumni Research Fellowship.
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where L, (x, 2) is the nth generalized Lucas polynomial, defined by the recur-
sion

Ly(x, 8) =2, Ly(x, 8) =x, L (x, 38) =«L,_,(x, ) + 2L, _,(x, ) for n > 2.

The two special cases of particular interest are the generalized Fibonacci
polynomials, namely

x + V2 + bz x - Vx? + 4z
(l) /Q/n 2 3 2 s 0 3

and the generalized modified Lucas polynomials, namely Rn(x, 0, 2). Other
special cases, to be treated briefly in Section 5, are the Chebyshev polyno-
mials of the first and second kinds.

Following the method of Hoggatt and Bicknell in [5], we now determine
the roots of the polynomials %,(x, y, ). The first theorem is basic to all
subsequent developments in this paper.

Theorem 1: For m > 2, the roots of ,(x, y, 2) are
(2) 2/z sinh (sinh™'y/2/z + 2kmi/n), where k =1, 2, ..., n - 1.

Proof: We have (x - y),(x, y, 28) = tz + t: - (tz + tZ), where

x + /x> + 4z z - /x? + 4z Q+‘/z2+4z _H_‘/312+43
t, =% t, =5 ——— t, = s T, = .
2 2 2 3 2 b 2
Let = 2/z sinh u, so that v&® + 4z = 2/ cosh u, and
t, = Vze* and t, = ~Vze .
Let y = 2/z sinh v, so that vy + 4z = 2/z cosh v, and
t, =v/ze” and t, =-/ze ".
Then

n n
ZZ[QT’LM + (_1)716—?’“4.] _ 22[67112 + (_l)ne—nv]
n
222 (sinh nu - sinh nw) for odd n,
n

222 (cosh nu - cosh nv) for even n.

(= Y nlx, y, 2)

Dividing by x - y = 2/2(sinh u - sinh v), we find

n-1 .
~7% sinh nu - sinh nv
sinh ¥ - sinh v

for odd =,

Q’n(x, ys Z) =
n-1
7 cosh nu - cosh nv

sinh u - sinh v

for even n.

Now suppose # is odd. Then &,(x, ¥, &) = 0 when
sinh nu = sinh nv and sinh u # sinh v;

i.e., when nu = nv + 2kni and k is not an integral multiple of n. Thus,
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L,(x, y, 8) = 0 when u =v + 2kni/n for k = 1, 2, ..., n - 1.

For even n we similarly reach the same result. Substitution for u and v now
completes the proof.

2. GENERALIZED CYCLOTOMIC POLYNOMIALS

Following the treatment of cyclotomic polynomials in Nagell [9, p. 158],
for n 2 2 let p;, p,5 ..., p, be the distinct prime factors of n; let

T, = s

and for 1 < k < r, let
I, = Hg”/l’i.pﬁ"'?
the product extending over all the k indices ¢; which satisfy the conditions

T

1 <2, <2, <eer <4y < p.
Lemma 2 : Let C,(x, y, 8) =1, and for n > 2, let

T,0, ...
(3) Cp(x, y, 8) = ﬁ‘l—ﬁa—‘—

The number of factors %4 in the numerator equals the number of factors %4 in
the denominator.

Proo4: First consider the number of %4's in the numerator: for 0<j< [r/2]

there are (P

. )] of the qu's in II, ., so that the number we seek is
2g 24

[r/2]
> (35)
; 23)°
(r-1)/2] FE I
.. r .
Similarly, we count Z . ) factors %4 in the denominator. That these
= 27+ 1
two sums are equal for any r > 1 follows from the identity

Z(-l)k@) =(-1"=o0.
k=0

Let us recall now some facts about cyclotomic polynomials (e.g., [9]):
In case %, = x" - 1, the quotient C, in (3) defines, for m > 2, the nth cy-
clotomic polynomial, which is irreducible over the ring of integers. (The
first cyclotomic polynomial is defined to be x - 1). Thus, for n > 1, the
roots of the nth cyclotomic polynomial are the primitive nth roots of unity:
e?kmt/" yhere (k, m) = 1. Writing ¢(n) for Euler's phi-function, the nth cy-
clotomic polynomial therefore has degree ¢(n).

Referring to (2), let us call the root

2/z sinh(sinh™y/2/z + 2kmi/n)
a primitive nth root of L,(x, y, 3) if (k, n) = L.

Theorem 2: TFor n > 2, the quotient C,(x, y, 3) in (3) is a polynomial with
integer coefficients, having degree ¢(n) in x. Moreover, forwn > 2, C,(x,
1, 0) is the nth cyclotomic polynomial.
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Proog: Suppose n > 2. By Lemma 2, if the quotient in (3) is formed with the
polynomials (x - 1)%,(x, 1, 0) in the products I, instead of &,(x, 1, 0),
then the result is C,(x, 1, 0). But

(x - 1)2,(x, 1, 0) = 2" - 1,

so that C,(x, 1, 0) is the nth cyclotomic polynomial, which has degree ¢(n)
in x.

It remalins to be proved that C,(x, ¥y, 8) is a polynomial for m>2; i.e.,
that the polynomial D = ILII, ... divides the polynomial NV = I[|TI, ... over the
ring of integers. Since this is the case for (x, 1, 0), each linear factor
x - r of D is a factor of N and must occur at least as many times in ¥ as in
D. But each such » is an nth root of unity, » = e?*"™/" for some k and #n. So
in the general case (x, y, &), each linear factor x - ZVE—sinh(sinh_ly/Z/E_+
2kmi/n) of D occurs at least as many times in N as in D. Thus, D divides N.
Since all the coefficients of ¥ and D have only integer coefficients, the
same must be true of the quotient C,(x, y, %), by the division algorithm for
polynomials in x over the ring I[y, 2] of bivariate polynomials with integer
coefficients.

Theorem 3: For n > 2,

C (x, y, 8) = [l I[x - 2/z sinh(sinh™'y/2vz + 2kni/n)].

(k,m)=1
0L ksn

Proof: This is an obvious comsequence of the one-to-one correspondence be-
tween roots of (,(x, y, 2) and roots of the nth cyclotomic polynomial

oz, 1, 00 = I (¢ - gZki/ny
(k,n)=1
0<kzn
Theonem 4: TFor n > 1,

Lz, y, 8) = %I Cylms Ys 2)
d|n

Proof: First, &, (x, y, 3) =C (x, y, 8) = 1. Now suppose n > 2. Then

Cilx, ys 3) = (& -7 oo (&= Pyiq))s

where the r;'s range through the roots 2/z sinh(sinh™Yy/2/z + 2kwi/n) of
f4(x, y, 8) for which (k, d) = 1. Each root of £,(x, y, 8) is a primitive
dth root of one and only one C;(x, y, 2) where d|n. Thus each linear factor
of %,(x, y, 2) occurs in one and only one Cy(x, ¥, 3).

Lemma 5: For n > 1, the polynomial C,(x, y, 0) is irreducible over the ring
of integers.
Proof: The statement is clearly true for n = 1. For n > 2, suppose

Cn(x9 Ys O)

dx, yiglx, y).
Then
C,(x, 1, 0)

1

dx, gz, 1).

Since the cyclotomic polynomial C,(x, 1, 0) is irreducible, one of the poly~-
nomials d(x, 1) and q(x, 1) must be the constant 1 polynomial. Without any
loss, we may suppose this one to be d(x, 1) and thus have
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dlz, y) =1+ (y - De(x, y)
for some polynomial e(x, y). Then
Cplx, y, 0) = glx, y) + (y - Delx, yglx, y).
Now g(x, y) includes the term x ?(*) | which cannot appear in
(y - De(x, gz, y).
Therefore, e(x, y) = 0, so that d(x, y) = 1.
Theorem 5: For n > 1, the polynomial C(,(x, y, 2) is irreducible over the
ring of integers.

Proof: Suppose

Cn(x, Y Z) d(.’L’, Y Z)q(x’ Ys Z).

Then
C,(x, y, 0) = d(x, y, 0)qx, y, 0).

By Lemma 5, one of the polynomials d(x, y, 0) and q(x, y, 0) is the constant
1 polynomial. Consequently, as in the proof of Lemma 5, we have

d(z, y, 8) =1 + ze(x, y, 2)
for some polynomial e(x, y, 2). Then
Cpx, ¥y, 8) =qg(x, y, 38) + 3e(x, ¥y, 3)g(x, Yy, 3).
Now q(x, y, &) includes the term 2 %(n), which cannot appear in
ze(x, y, 23)qlx, y, 3).
Therefore, e(x, y, 2) = 0, so that d(x, y, 2) = 1.

TABLE 1

Generalized Cyclotomic Polynomials C, = Ch(x, Yy, z)

=
]
—

=x+y

N

xy + y? + 3z

w
]
8

=

+
= 2% + y® + 4z
+ 2% + 2%y® + xy® + Yyt + 5z (2? + xy + y?) + 537

w

o

Yoyt + 4z (x® +oy?) + 4z°
¢+ x%y® + y® + 3z(2x" + 2%y + ay® + 2y")

QQQQQQQQQ
I

x
x

=2x% - xy + y® + 3z
x
x

©

+ 92%(z® + wy + y?) + 3z°
Cio = (@ +y*)/(x +y) + 52> + y®)/(x + y) + 537
Cip = x* - x%y? + y* + 2z + y?) + z?

Abbreviating C,(x, y, 0) as ¢,, we note that

C,=c,+32,C, =c, +4z, C, =c, +33, Cy =c, + bze, + 4z?,
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_ 2 _ 2
. ClO =cy, t 52@6 + 5z°, Cl2 =c, t ZZ:CL+ + z2°,
an

= 2 3
Cg = cqg *338(cg + cy,) +93%°¢, + 33°.
One wonders if all the coefficients of powers of 3 are linear combinations of
c:'s.
2

3. THE CASE z = 0: FIBONACCI CYCLOTOMIC POLYNOMIALS

Here we will determine the irreducible factors of the generalized Fibo-
nacci polynomials. 1In Section 1, the (not generalized) irreducible factors
were named the Fibonacci cyclotomic polynomials and denoted F,(x). Here,
however, we shall deal with the natural generalization: the generalized Fi-
bonacci cyclotomic polynomials, denoted F,(x, y). Theorem 6 will show that

(% + Ve? + 4y x - V2P 4 by 0>
2 ’ 2 ’

Flx, y) =0y

forn > 1,

and Corollary 7 will show that the F,(x)'s can be expressed as linear combi-
nations of generalized (unmodified) Lucas polynomials.

Theorem 6: TFor n > 1, let F,(x, y) be the nth generalized Fibonacci polyno-

mial. Then
c (% + Ve + b4y x - YxP + by >
d 2 5 2 s L4

F,(x, y) = Il

d|n

Moreover, the polynomials Cy

(% + Ve + by x - V2% + 4y 6), as polynomials
2 ’ 2 ’

in x and y, are irreducible over the ring of integers.

/.2 _ 2
Proof: Write s = z:—i-——%——i"—éﬂ-and t = EL———E%—QE—EZ. By (1) and Theorem 4,

Fo(x, y) = L,(s, t, 0) = [ll C;(s, t, 0).
din

To see that the C;'s are irreducible as polynomials in x and y, suppose

Cq(s, t, 0) =p(x, yIqlx, y).

Then, since x = s + ¢t and y = -st, we have C;(s, t, 0) written as a product
of two polynomials each in s and ¢. By Lemma 5, one of these polynomials is
a constant polynomial, namely 1, since C; is monic. Thus, either plx, y) =1

or gq(x, y) = 1, as desired.

Theorem 7: For k > 1, let L,(x, y) be the kth generalized (unmodified) Lucas
polynomial. For n > 3, the nth generalized Fibonacci cyclotomic polynomial
is given by

¢ (n)/2 ¢(n) _

i
T, y) = D, 8y % Ly (xs Y)s
i=0

§

where 6¢(nﬂ2 = 1 and the numers §

0> Oq5 Cps evns 6Qgﬂ_l are integers.
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Proof: Suppose m > 3. With s and ¢ as in the proof of Theorem 6,

I (x, y) =C, (s, t, 0) =¢t*M(C (s/t, 1, 0),
where
C,(u, 1, 0) = utt) 4 a¢(n)_lu¢(”)'l + e tautl

is the nth cyclotomic polynomial. Thus, (,(s, £, 0) has the form

gtm 4 a¢(m)uls¢(”)-lt + osee 4+ alst¢(")_l + et

Since C, (s, t, 0) is symmetric in s and ¢, this polynomial is expressible as

$(n)
$(n)-2 ¢(n)-2 e 2
gb(n) 4 poln) 4 a¢(n)_lst<s g + £\ > + + a¢(n)(st)
z
Recalling st = -y and the Binet formula [, (x, y) = s* + t* [in particular,

Lo(x, y) = 2], we conclude that

5 -7 L _* T
Wxs y) = T F T Ay ¥

o) T Foqny -180 () -2

as desired.

Cornollarny 7: Only for the purpose of facilitating the statement of this cor-
rolary, suppose L;{(x, y) =1 (instead of 2). Then for n > 1, the nth Fibonacci
cyclotomic polynomial ¥, (x) is an integral linear combination of Lucas poly-
nomials L, (x).

Proo4: The proposition is easily verified for n = 0, 1, 2. For = > 3, put
y = 1 in Theorem 7.

To illustrate Corollary 7, we write out, in Table 2, several Fibonacci
cyclotomic polynomials ¥, =9, (x, 1) in terms of the Lucas polynomials L, =
Lp{x, 1). Recall that the F,'s are the irreducible divisors of the Fibonacci
polynomials, in accord with the identity

Fn = H gd'
dln

TABLE 2

Fibonacci Cyclotomic Polynomials

degree 0: T, =1

degree 1: &, =x =L,

degree 2: F, = x? + 1 = L, -1
F, =z +2=1I,
T, =x> +3 =1L, +1

degree 4: F, =z + 32® + 1 = L,-1L, +1
Fg =" + b’ + 2 =1,
Fig =" + 52 +5=L,+L, +1
F, =z +4x® +1 =1, -1

o
N
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TABLE 2 (continued)

i

degree 6: ¥, = x°® + 5x* + 60> +1 =L, - L, +L, -1
Fy =x® + 6" + 9> +1 =1, -1
Fpy, =a® + Tx* + lha® + 7 =L+ L, +L, +1
Fg = x° + 62" + 92> + 4 = Lg + 1
degree 8: ¥, = x® + 9z° + 26z + 242> + 1 =L, + L, - L, - 1
Fe = x® + 82° + 20z + l6x® + 2 = L,
Fo = + 82°% + 19x% + 122> +1 =L, -1, +1
Fy, = x° + 82° + 20z + l6x® + 1 =L, -
Foog =x° + 72° + lba* + 8> + 1 =Ly - L, +L, - 1
degree >8: Fy, =L,y - Lg + Ly - L, +L, -1
F32 = Lis
F33 = Lyg + Lyg = Loy = Lyy +Lg +Lg - L, -1
F36 = L1y, = 1
Fyo = Lig - Lg + 1
Fyp =Ly, —Lyp +Lg = Ly, + 1
Fys = Lyy +Lyg —Lg - 1
Fug = L1 - 1
Fso =Ly + Ly + 1
Fros = Lug = Iye + Lyy + Lyg = Lgg + 205y = Ly + Lyy + Ly,
=Lyt Lyg = Lyg +Lyg = Lyy —Lg =Ly -1

Note in particular the coefficient of L,, in the polynomial T ;5.
Two reminders (e.g., [9]) about the cyclotomic polynomials C,(u, 1, 0) =
®, (u) which are helpful in computing F,'s are the following:
D (uP) /0, (u) 5
o, (wP).

(i) If p is a prime and p}/n, then ©,, (u)

(ii) If p is a prime and p] n, then ®,p (1)

As an example, we compute F,; as follows:

w3+t + 1

<I>qs(u) = le(us) @3(u15)/®3(u3) =

wt +ut+1
= 2% — 21 4 15 12 4 9 3y
so that
Fys@s y) =C (s, T, 0)

= 824 _ 321t3 + slStS _ s12t12 + SQtlS _ SstZl + t24

= 82" 4 2%~ (s£)% (s} + £18) + (s1)7(s® + t°) - (st)P?
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fl

L,, + y3L18 - ygLG - y** (Theorem 7),

L,

Fys (@ 1) 2y

+ Ly - Lo -1 (Corollary 7).

Since for highly composite values of n the cyclotomic polynomials tend
to be complicated ([1], [3], (4], [111, [12]), the same is true for the cor-
responding Fibonacci cyclotomic polynomials.

In Theorem 12 of [6], Hoggatt and Long find an upper bound for the num-
ber N(m) of polynomials of degree 2m that divide some Fibonacci polynomial.
If we restrict N(m) to irreducible polynomials, then WN(m) is the number of
solutions »n to the equation ¢(n) = 2m. For example, N(720) = 72. That is,
there are 72 distinct Fibonacci cyclotomic polynomials F, having degree 1440.
See [10].

Still restricting N(m) to irreducible polynomials, we ask if N(m) = 0
for any m. The answer is yes. C. L. Klee proved in [8] that ¢(n) = 2m has
no solution n if m has no divisor d > 1 for which 2d+ 1 is a prime. For ex-—
ample, no I, has degree 1l4.

L. THE CASE y = 0: LUCAS CYCLOTOMIC POLYNOMIALS

Our main objective in this section is to determine the irreducible fac-
tors of the generalized modified Lucas polynomials %,(x, 0, 3). First, how-
ever, we wish to justify the names Lucas cyclotomic polynomials and general-
ized Lucas cyclotomic polynomials for the sequences

c, (@, 0, 1) and C,(x, 0, 3),

since these sequences are determined by (3) from the generalized modified
Lucas sequence %,(x, 0, z) and not the generalized Lucas sequence [,(x, 2).
The justification is this: that, by Theorem 1, the quotient (3) defines
polynomials analogous to cyclotomic polynomials in the former case, but does
not generally define polynomials at all if the L,'s are substituted for the
2,'s. (Nevertheless, the irreducible factors of the L,'s will be easily de-
termined otherwise in Section 5.)

In Section 1, the (not generalized) Lucas analogue of the Fibonacci cy-
clotomic polynomials were named Lucas cyclotomic polynomials and denoted by
d,(x). Here however, we shall deal with the natural generalization, the gen-
eralized Lucas cyclotomic polynomials, denoted ¥,(x, z) and defined by

92”(90, z) = Cy(x, 0, 2).

By Theorem 3 and the identity sinh Zu = % sin u, the roots of ¢,(x, 3)
are
2¢V/z sin 2kn/n, (k, n) =1, L <k <n- L.

The roots of F,(x, 2) are 27/z cos kn/n for 1 < k <»n - 1, as proved in
[5] and [6], and consequently, the roots of F,(x, 3) are

2iVz cos kn/n, (k, n) =1, 1 <k <n - 1.

In order to reconcile roots of the ¥, ,(x, 2)'s with those of the F,(x, 2)'s
let
Q, =1k : (k, n)

for k € ¢,, we have

1 and 1 <k<n-1}

U

cos(n - 4k)m/2n.

sin 2km/n
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As k ranges through the set @,, it is natural to expect the numbers n - 4k to
range through residue sets modulo various divisors or multiples of n. Such
expectations are fulfilled in the next theorem.

Theonem §: Except for L (x, 2) =1 and 4, (x, 3) = 2% + 4z, the nth general-
ized Lucas cyclotomic polynomial ¢ ,(x, 2) can be expressed in terms of the
generalized Fibonacci cyclotomic polynomials as follows:

,, (€, 2) for odd n, n # 1,

Fp(x, 8) for n

2g, g odd,
(x, 38) =

Fi(x, 8) for m = 4g, q odd, q # 1,

‘J;tq(x, z) forn = 2t+lq, q odd, t > 2.

Case 1. Suppose 7 is odd and n # 1. Then

|n - 4k|m
(v - 4K _ COS"—Z—n— for 4k < 3m,
cos o T
cos Gn = 4k for 4k > 3nm.
2n
Let
A= {|n-4k| : keq, and 4k < 3n},
B = {57 - 4k : k € @, and 4k > 3n},
and
Q@ =AUB.

It suffices to show that §=&,, and that each element of &, appears only once
in forming the set §. This will be shown in four steps:

(i) A N B is empty;

(ii) @ consists of ¢(2n) elements;
(iii) If j € g, then 1 < J < 2n - 1;

(iv) If j e ¢, then (j, 2n) = 1.

To verify (i), suppose n - 4k, = 5n - 4k, where 4k, < 37 and 4k, > 3n.
Then k, - kl = n, contrary to the inequalities

1<k, <m-1 and 1 <k, <n-1.

If |n - 4ky| = 4k, - n = 5n - 4k,, then 2(k, + k,) = 3n, contrary to our as-
sumption that » is odd. :

For (ii), we know from (i) that distinct k's in ¢, provide distinct ele-
ments in §. Furthermore, every element Xk in &, does yield an element of 4 or
B, since 4k = 3n is impossible for odd n. Thus, ¢ consists of the same number
of elements as §,, which is ¢(n). Since n is odd, we have ¢(n) = o(2n).

To verify (iii), first suppose 4k < 3n. If n - 4k > 0, then 1 <n - 4k
since n is an odd positive integer and, clearly, n - 4k < 2n-1;1if n - 4k<0,
then, similarly, 1 < 4k - n, and 4k - n < 2n - 1 since 4k < 3n. Now suppose
4k > 3n. Then 5n - 4k < 2n - 1, and also 1 < 51" - 4k, since k < n.
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For (iv), if dl(n-4k)|and d]Zn, then d must be odd since n- 4k is odd.
Consequently, dln. But then d|4k, so that d]k. Since (k, n) =1, we conclude
that (n- 4k, 2n) = 1. The same clearly holds for 4k-# and 5n- 4k.

Case 2. Suppose n = 2q, q odd. Then

lg - 2k|m
cos ——— for 2k < 3q,

n
cos (n - 4Ky _

2n
cos iéQLi%jygll for 2k > 3q.

Here, the numbers ]q - Zk] and 5 - 2k, as stipulated, range through the set
@, as k ranges through the set §,. The proof is so similar to that in Case 1
that we omit it here.

Case 3. Suppose n = 4g, g odd, g # 1. Let
A=1{ke@q,: k<gl,B={kegq,:q<k<2l,
c=1{keq,:2g<k<3q},D=A{keq,: 3q <Kk}
Each k in @, in odd, so that (¢ - k)/2 is an integer, and
(g - k)/2|n
cos B —
cos (71 _2n4k)ﬂ -
cos [(5 -;lk)/Z]'lT fOI‘kSCUD.

for k € 4 U B,

We first claim that as k ranges through the set AUC, the numbers |(g-k)/2|
and (5q - k)/2, as stipulated, range through the set Qg+ This claim is veri-
fied as in the four steps in Case 1. Starting with

A% = {|(@ - K)/2| : ke A} and C* = {(5¢ - k)/2 : k € C},

only step (ii) calls for anything new: To see that A*J C* comsists of ¢(q)
elements [granted from step (i) that distinct k's lead to distinct elements
in AU BUC UD], we note that the number of k's in @, is

b(4g) = 6(4)d(g) = 29(q)

and precisely half of these lie in A* U ¢* since, as is easily checked, the
sets 4, B, C, D are in one-to-one correspondence with one another:

A~+B : k2 -k,
A~C: k2 +k,
C+D: k~>6q - k.

Thus, the roots of ¢,(x, 2) found for k ¢ 4 UC are the roots of Sﬁ(x, z2).
That the same is true for kK ¢ B UD will now be proved. Since

B={29 -k : kedA},

- -k
cos Sﬁ—ifﬁklﬂ i k e B} = {cos lﬁg————zlzlj : ke A}.
n q

Since D = {6g - k : k ¢ C}, we have

we have
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{cos n - 4K)m _247()“ t ke D} = {cos LGq - k) /21w t ke C}.
n q

Thus the roots of ¢,(x, z) for k € B UD are the roots of Fqlx, 2). We con-
clude that ¢, (x, 2) = F(x, ).

Case 4. Suppose n = 2t+lq, g odd, ¢ > 2. Define sets 4, B, C, D as in
Case 3, and have the following one-to-one correspondences:

A>B: k2% -k,
A~C: k2% +k,
C>D: k=3« 2% - k.

Now
12 -k
2tq

co for k € A U B,

(n - 4k)m _
cos 5, - s
os (5 = 2"""g = K)T

th

for k € C U D.

Cc

We claim that as k ranges through the set 4 U (', the numbers |2%7'g - k| and
(5- Zt’lq - k), as stipulated, range through the set @,t4- The four steps in
Case 3 easily verify this claim. We omit the verification, except to note
that for step (ii) we have ¢ (2%%'q) =2¢(2%), so that ¢(2%q) roots are found
for k € A U C.

As in Case 3, we have

{cos.m_-_em:keBUD}={COSL@-_4m,k5AUC}.
2n 2n

Therefore, ¢,(x, 2) =‘J§t , and Theorem 8 is proved.
Theorem 8 and Theorem 4 enable us to factor the polynomials &,(x, 0, 2)
completely in terms of irreducible factors. For example,

/Q;Go(x, 0, Z) n Cd(x’ 0’ Z)

d|eo
IT ¢, 2
d|eo

ddLdLLLL £ L L L L

15273555767 10512515520530%60
2
@(z® + 42) (F3FF T, Fr T3 "

Recalling that F,, = F,9,5F%F F Ty, that alg (x, 0, 2) = Ly, - 22°°, and
that 22 + 4z is the discriminant D(x, 2) of t% - xt - 2, we Trewrite L,, as
follows:

I

]

Lgo(x, 3) = D(x, z)F%O(x, z) + 2230,

Putting x = 2 = 1, we find an identity L60==5F§0 + 2 involving the thirtieth
Fibonacci number and the sixtieth Lucas number. These considerations lead to
the following theorems and corollary.
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Theonem 9a: Suppose m = 2%q, g odd, ¢ > 2. Then
(4) L, (x, 2) = (* + 43)F (x, z) + 23"

P/L()Oé-' Rom = %fl%gz(e‘eq cee gzﬂlgqungq vee E&Pzt-é-lq

w(@® + 4BFT e TG GG T e Ty

x(x® + 4z)F2[x?,
and (4) follows immediately.

Theorem 9b: If m is odd, then
— 2
(5) Ly, (xy 8) = 23" = Li(z, 3).

Proof: The proof of this known identity is so similar to that of Theorem 9a
that we omit it here.

Conollany 9: For k > 0, let F, and L, be the kth Fibonacci and Lucas num-
bers. If m = th, g odd, £ > 2, then

L, = 5F; + 2.
2m
If m is odd, then
_ r2
Ly, =Li+2

Proof: Put © =z =1 in (4) and (5).

5. THE IRREDUCIBLE FACTORS OF THE LUCAS POLYNOMIALS

Hoggatt and Bicknell prove in [5] that for n > 1 the roots of the nth
Lucas polynomial 7,(x, 1) are

Qk + D

M :k=0,l,...,7’l—l.

27 cos
The methods of Section 4 could be used to compare these roots with those of
the Fibonacci cyclotomic polynomials. However, we choose a different way,
which depends on the well-known identity F, = L,7, .

Theorem 10: For m > 1, write »n = th, where ¢ > 0 and g is odd. The nth
generalized Lucas polynomial I,(x, 2) is a product of (irreducible) Fibonacci
cyclotomic polynomials:

L,(x, 2) = [l TFpeery (@, 2).
Proof: dla
2n d|2n
L =—==" =[] 9
" Fy I1 g, dlan. a

aln
Now

1

{d : d|2n and dfn} = {2 *'d : d|n and d is odd},

so that the conditions d|2n, dJn are replaceable by the condition 2°%'d|2n,
i.e., d|q.
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Example: L F1FF s Fs T FoT10F12F15F2 0% F5 0T 0T 0T 120
60 g'l_c‘;’Z(J:3g:L+C‘;C5(3‘(5 E;'rl Ogl Zgl SC‘}‘Z OgS OgG 0

= 9%9;49;09120.

Corollary 10: TFor even m > 2, L,(x, z) is irreducible if and only if »n = 2%
for some k > 1.

Proc4: Suppose n = 2% for some k > 1. Then by Theorem 10, we have L, =%,,,
which is irreducible by Theorem 6. If n is even but not a power of 2, then
by Theorem 10, ¥,, is a proper divisor of I,(z, 2).

In [2], Bergum and Hoggatt prove Corollary 10 using Eisenstein's Crite-
rion.

We conclude this section by noting that the divisibility properties that
are already established for the polynomials #,, L,, and &L, in terms of the
irreducible polynomials F, now carry over to divisibility properties of
Chebyshev polynomials of the first and second kinds.

It is well known that the nth Chebyshev polynomial of the first kind is

T, (@) = 31,2, 1), n =0, 1,

Accordingly, the factorization of T, (x) in terms of factors which are irre-
ducible over the ring of integers is given by Theorem 10.
Let us define modified Chebyshev polynomials of the first kind by

%Z}(x) for odd n,

”tn (-73) =
é—[Tn(x) - (-1)%] for even n > 0.

Then we have £, (x) = %-KW(Zx, 0, -1), so that the divisibility properties of

the £,'s are the same as those of the 4,'s. In particular, the irreducible
factors are given by Theorem 8. Moreover, many of the results proved in [7]
[e.g., concerning greatest common divisors, (Lms £4) = L(m,n)] carry over to
similar results for the modified Chebyshev polynomials.

It is well known that the nth Chebyshev polynomial of the second kind is

U, (@) = E@+1(2x, -1), m=0,1, ... .
Accordingly, the factorization of U,(x) in terms of irreducible factors is
given by Theorem 6.

Finally, note that the roots of the Chebyshev and modified Chebyshev
polynomials, and also the roots of their irreducible factors, are easily ob-
tained from Theorem 1 and Theorem 3.

6. TRANSFORMED FIBONACC! AND LUCAS POLYNOMIALS
For any integers (or indeterminants) a, b, ¢, where a # 0 # ¢, let

U, (x, 2) = F,(ax, bx® + ez,

vV, (x, 2)

-%Ln(ax, bx? + cz2),
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and W,(x, 8) = &p(ax, 0, bx®> + cz?).
Then the quotients (3) are clearly polynomials for each of the sequences
U,(x, 2) and W,(x, 3),

since this is true for the sequences F, and {,. Similarly, the divisibility
properties of the KJS follow from those of the L,'s, as given in [2] and Sec-
tion 5.

One of the most attractive special cases is (a, b, ¢) = (2, -1, 1). We
tabulate the first few U, s and V,'s in this case. Then we tabulate the first
few W,'s and the first few tramsformed Fibonacci cyclotomic polynomials; i.e.,
the quotients (3) formed from the U,'s. These, we shall show, are irreduci-
ble except for a constant multiple; hence, they are the irreducible factors
not only of the U,'s, but also of the V,'s and the W,'s. After the tables,
we shall return to arbitrary a, b, ¢ satisfying a®> + 4b = 0 and find roots,
Binet forms, etc.

TABLE 3

Transformed Generalized Fibonacci Polynomials U, = F, (2x, z? - x?)
and Transformed Generalized Lucas Polynomials V, = éLn(Zx, z? - x2)

n U, Vn

1 1 x

2 2x xz? + z°

3 3x% + z° 23 + 3xz?

4 4x® + bxa? x* + 6x?z® + 2"

5  5z* + 10x%z% + z* x° + 1023z% + Sxz*

6 6x° + 20x32% + 6xz" x® + 15x"2% + 15x%2" + z°

7 7z® + 35z%z% + 21x%z" + 2° z” + 20x°2% + 35x%2" + 7xz®

One immediately detects Pascal's triangle lurking within Table 3. We
shall soon ascertain that 23U, + V, = (x + 2)" for n 2 1.

TABLE 4 TABLE 5
Transformed Generalized Modified Transformed Generalized Fibonacci
Lucas Polynomials Cyclotomic Polynomials
W, = %n(2x, 0, z> - x?) Up = Fp(2x, 22 - x2)
W, =1 Q, =1
W, = 2x U, = 2x
Wy = o + 327 U, = 3x* + a°
W, = 8xz’ U, = 2z° + 23°
N 4 2,2 Y N Y 2,2 Y
We = 2" + 10x°2° + 5z Us = 5z + 10x72° + =
W = 20° + 122°2% + 18zz" U, = x® + 337
W, = x® + 21x*2® + 352%2" + 72° Uy = 22" + 1203 + 23%
Wg = 32x°z% + 64x3z" + 32x5° Uy y = x* + 10z%z% + 53"

= % + l4x?z? + 2"
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Lemma 11: Suppose n is an odd positive integer > 3. Then

n-1 n- n-1
7 2 7

cos? A _ 2177, [ cos? Gk + Dm _ n2* ", and [] sin? 2K _
k=1 n k=0 n k=1 n

Suppose n is an even positive integer > 4. Then

n-2 n-2
2 k 2

T - .2 2km -
Il cos? =— =#n2*"" and J] sin® &= = n227",
k=1 n k=1 n

Suppose n is an even positive integer > 2. Then

n

2 (Zk + l)TT - Zl_n.

-2
2

cos
e 2n

k

Proog: For odd n > 3, we have

et km
kn 27 cos ol F,(0) =1,
=1
so that n-1
-1 2 2 kT
2" [] cos® — = 1.
k=1 n

For even n > 4, let G, (x) = %Fn (). Then G,(0) =n/2, and

n-1
l’l(x—% cos %—T->=9c I (x—Zi cos %>=xGn(m),

k=1 1<k<n-1
so that k#ni2
I 27 cos km _ G,(0) =n/2,
1<kgn-1 n
and k#n/2

n-1

2
on-2 I cos? kT n/2.
k=1 n

123

n2t ",

Proofs of the other four formulas follow from similar considerations of I,(0)

and 2,(0, 0, 1).

Theonem 11: Suppose a®* + 4b = 0. Then, for n > 3, the roots of the polyno-
mials U, (x, 2), V,(x, 2), and W,(x, 3) are given by the following factoriza-

tions.

n-1

2
(czz - bx?tan? ﬁ) for odd n > 3,

7
k=1
Uy (x, 8) =

n-2
2

7 :

nax cz? - bx?tan? EE for even n > 4.

2 ko1 n -
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n-3
2
ll—az—x- I l:czz— bx?tan® —(—2%1—)”—] for odd n > 3,
k=0
Vn (.CC, g) = n-2
2
I [0212 - bx*tan® L&z—}l)ﬂil for even n > 2.
k=0
n-1
2
n [1 [c,zz— bx?cot? —zﬁﬂJ for odd n > 3,
k=1
Wn(x’ Z) =
n-2
n?ax 2 o .o 2km
4 I |c3" - bx"cot = for even n > 4.
k=1
n-1
Proog: U, (x, ) = F, (ax, bx* + cz?) = [] (ax - 2¢/bx® + cz? cos %)
k=1

If nis odd and > 3, then the n - 1 roots of U, (x, 2) occur in conjugate
pairs, so that

n-1

Il [azxz + 4(bx® + cz%)cos? %T—T-:l

U, (x, )

2
=11 (—4bx2s1n2 %T—r- + 4ez?cos? 7—:})

by Lemma 11.

If n is even and > 4, then the n - 2 roots of U,(x, 2) remaining after
the root 0 is excluded occur in conjugate pairs, and we find as above that

n-2

2
U,(x, 8) = n—zﬁ (czz - bx?tan? M)
k=1 1

With the help of Lemma 11, the remaining four factorizations are proved in
the same way.

Lemma 12: Suppose a?> + 4b = 0. TFor n > 3, the transformed generalized Fi-
bonacci cyclotomic polynomial U, (x, 3) = F,(ax, bxz? + cz?) is given by
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I <cz2 - bx?tan? 7;-”) for odd n > 3,

U, (x, B8) =
2 2, 2 km
—_— I ez” - bx“tan P for even n > 4.
1<k<(n-2)/2
(k,m) =1
Proog: This is an obvious consequence of Theorem 11 and the fact that the
roots of F,(x, 3) are

Zi/z_cosi—:%—, (k,n) =1, 1 <k<n-1.

Theosem 12: Suppose a, b, ¢ are integers and a® + 4b=0. Except for an in-
teger multiple, for #n > 1, the polynomial Q, (x, 2) is irreducible over the
ring of integers.

Proof: The proposition is clearly true for m = 1 and n = 2. Suppose, for
n > 3, that U,(x, 8) =p(x, 3)q(x, ). By Lemma 12 and the irreducibility
(since -b > 0) of the factors

km
cz? - bx’tan? o

over the real number field, p(x, 2) has the form P(x, 2%) and g(x, 2) has the
form @(x, z2). Thus, putting » = ax and § = bx? + c¢z?, we find

2 2 2 2
_ ofr as - br r a‘s - br
gn(rs 3) —P<Cl’ azc >Q<Cl, azc )-

Since F,(r, s) is irreducible, one of the polynomials P and § must be constant.
But then p(x, 2) or g(x, 3) is constant, as desired,

Theornem 13: Suppose (a, b, ¢) =(2,-1, 1). The Binet formulas for the poly-
nomials U,, V,, and W, are as follows:

(x + 2)" - (x - a)"

Un(x9 Z) = Zz
@+ 3" + (x - )"

Vn(x5 Z) = 2

1

Evn (z, 2) for odd n,
Wn(ac, Z) = 2 2 /2

13 - no_ - n
(x + )" + (& ZZ):c 2(z x”) for even 7.
r + /P2 + 4s v - /P + hs

Proof: Let t, = , Ty = , tg=Vs, t, = -/s. Putting

2 2

p=2x and s=2%-x%, the desired formulas follow immediately from the Binet
formulas " .
ty b

T, - &,

F (v, s)

L (r, 8) =t + !
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ty o+ ty - th -t

0 = .
bn (25 0, 8) ty ¥, —ty -ty
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GEOMETRIC RECURRENCE RELATION

LEONARD E. FULLER '
Kansas State University, Manhattan KA 66502

1. INTRODUCTION

In a previous paper [l1], we considered r, s sequences {U;} and obtained
explicit formulations for the general term in powers of » and 8. We noted 2
special sequences {Gk} and {My}. These are sequences that specialize to the
Fibonacci and Lucas sequences where r = g = 1.

In this paper, we propose to consider the relationship between r,s re-
currence relations and geometric sequences. We give a necessary and suffi-
cient condition on r and s for the recurrence relation to be geometric. We
conclude the section by showing how to write any geometric sequence as an 7,
S8 recurrence relation.

In the final section, we briefly consider a special Fibonacci sequence.
We give an explicit formulation for its general term. We are then able to
note when it is a geometric sequence.
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2. GEOMETRIC », s SEQUENCES

In the previous paper [1] we considered the special r,s relations {G;}
and {M,} which were characterized by the initial values Gy, =0, Gy =1, My =
2, and M, = r. We further specialize r and s so that the characteristic equa-
tion of the sequence has a multiple root A. We then have r = 2)\ and s = -)\2.
It can be readily verified that the expression for the general terms are

G, = kA1 and M, = 2.

Note that the My sequence is geometric with ratio of A and first term
of My = 2. But the other sequence is not geometric. We shall develop the
general conditions for which these two results are special cases.

Before going to the main theorem, we will make a few observations. Con-

sider the general term of the r,s sequence {Uj}:
U, =rU,_y +8U,_,; U,, U, arbitrary.

If s = 0, this would be a geometric sequence starting with U,;. Further, if
the initial values were such that U, = rU;, the sequence would be geometric
with U, as the first term.

If r = 0, we have two geometric sequences with ratio s. One of these is
the even indexed U, with U, as initial value. The other geometric sequence
is the odd indexed U, with U, as starting value.

We shall call these two cases the trivial cases. In other words, an r,
s relation for which rs = 0 is trivially geometric.

There is a whole class of r, s sequences that are geometric only in this
trivial case. These are the sequences, for which U; = 0, for in this case

U, =rU, + 8U, =rU,,

U, =2U, + 8U; = (»* + s)U;.

Now this is geometric only if r?>+ s=r?. But this can only happen for s = 0.

Included in this class is the {G;} sequence.
We shall assume in the rest of this section that Uy, r, and s are all
nonzero. We are ready to state and prove our theorem.

Theornem 2.1: The r,s sequence {U;} is geometric if and only if

+ U
r 5 € - ﬁi’ where e = #/r? + 4s.
0
For convenience, we shall denote the ratio as m so that r + e = 2m or
r =2m - e. We find that
e? - p? g2 - (2m - e)?

s = 3 = % =m(e - m).

We also need the result that

rm+ s = 2m® - me + me - m*> = m>.

From the expression for U, and the assumption that U; = mlU,, we have

U, = vU, + 8U, = r(mUy) + sUy = (zm + 8)Uy = m*Uy = mU,.
Assume that U, =mlU,_, for k = 2, ..., 7 - 1. TFor
U =vU,_, +8U;_, =r@mU;_,) +s8U;_, = (xm + s)U;_, = szi-z =mU;_ 1.

Hence, the sequence is geometric with U; as first term and ratio of m.
Conversely, assume {U;} is geometric with ratio m so that U, =mU,_, for
all k. Since
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Up =rUy_y ¥ 8U,_, = (xm + 8)Up _,,
and, by assumption,
U

= mU = m@mUy_,) = m*Uy_,,

k k-1
it follows that rm + ¢ = m®>. This means that m is a solution of the equation
. ; r e r + e
z? - rx - 8 = 0. The roots of this equation are 5> SO M = 5. Fur-

U
ther, U, = mU, so ﬁl = m. But these are the given equivalent conditions.

In the proof, it was not necessary that r and s be integers. The results
are then valid for a more general recurrence relation. In the corollary that
follows, we note how any geometric sequence can be expressed as an r,s rela—
tion.

Coroflary 2.1: The geometric sequence Uy = at® can be represented as the r,
s sequence with Uy = a, U, =at, r = 2t - X, s = tA - £ for any A.
By the choice of Uy and U,, we have U, = tU,. Also,

e? = 1% + 4s = 4E? — LEX 4+ A% 4 4EA - 4E2 = A2,

so that
r+e 2t - A+ A _
2 2 -

t.
Hence, by the theorem, this r, s sequence is geometric.

3. A SPECIAL TRIBONACCI SEQUENCE

There is a special Tribonacci sequence that is geometric under some con—
ditions. It can be verified that the sequence

r, =»T,  +8l,_, - rsl,_4; Ty, T;, I, arbitrary

has for a solution
k
2k-25 . 4 k+1m .
Torsn = 24 r 78(T, - sTy) + s Tys
Jj=0

k
=N p2k+1-25.4 _ k+1
Tores = 2 r s (T2 STO) + s T,
F=0

The roots of the characteristic equation of the sequence are r, #/s. In case
T, - eTy =0, we see that the even-indexed terms form a geometric sequence
with ratio s and initial value T;,. Note that the condition imposed has T, =
sT;. - The odd-indexed terms also form a geometric sequence with ratio s and
initial value T;.

We have another important special case to be noted. If T, =T, =0, we
do not need to differentiate between even- and odd-indexed terms. We have for
solution

ial

= m-2-2444
T, =) r 9T,
=0

if I', =1, we have represented the restricted partitions of m - 2 as a sum of
(m-2-27) 1's and (j) 2's.
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REPRESENTATIONS FOR r, s RECURRENCE RELATIONS

LEONARD E. FULLER
Kansas State University, Manhattan KA 66502

1. STATEMENT OF THE PROBLEM

Recently, Buschman [1], Horadam [2], and Waddill [3] considered proper-
ties of the recurrence relation

Uy =vUy_q + 8Up_,

where r, s are nonnegative integers. Buschman and Horadam gave representa-
tions for U in powers of » and e = (r* + 48)12. In this paper we give them
in powers of r and s. We write the X, of Waddill as Gy. It is a generaliza-
tion of the Fibonacci sequence. We also consider a sequence {Mk} that is a
generalization of the Lucas sequence.

For the {Gy} and {¥,} sequences, we obtain two representations for their
general terms. From this, we move to a representation for the general term
of the basic sequence. A computer program has been written that gives this
term for specified values of the parameters.

In this paper we use some standard notation. We start by defining

2

e? = r? + 4s,
where ¢ could be irrational. We also need to define
o= (r+e)/2 and B =(r - e)/2.
In other words, o and B are solutions of the quadratic equation
2% - rx - s = 0.

We can easily show that o + B =r, o - B = e, and af = -s.

2. GENERALIZATIONS OF THE FIBONACCI AND LUCAS SEQUENCES

Using the o and B given in the first section, we can define two special
r,8 sequences. These are given by

k _ pk
Gk=°‘—e—6(e¢0), M, = ok + k.

It is easy to verify that
Gy =0,G, =1,G, =r, G, =r> +8, G, =1r° + 2rs;

My =2, M, =v, M, =r® + 28, M; = > + 3rs,

N

M, =r* + 4r’s + 2s 3

and that they satisfy the basic r,s recurrence relation; i.e.,
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G, = rG, + sG, M, = rM, + sM,
Gg =rG, + G, M, =rM, + sM,
G, = rG, + 8G, M, =rM; + sl,

In the next theorem, we prove that these two sequences are indeed »r, s
sequences.

Theonem 1: The sequences {Gj} and {¥;} are r, s sequences.

The proofs for both utilize mathematical induction. We have already in-
dicated the validity of the theorem for k = 2, 3, and 4. We assume the terms
satisfy the r,s relation for k =2, 3, ..., Z - 1. We form

RS s

i-1 _ gi-1
e

rG, . + sG, (o + B)2

-1 -2 e

B of - Bi + Oci_lB _ OcBi_l _ Oﬁi_lB + OLBi_l
e

Ol.i—Bi

= z

This is G; by definition, so this sequence is an r, s sequence.
For the second part, we once more assume that the terms satisfy the r, s
relation for Xk = 2, ..., 7 - 1. We form this time

PM;_, + sM;_, = (o + B) (ot~ + BTL) + (-aB) (ai-2 + B72)

1

of + B + ol 1B + apftt - of 1R - ap’”

ot + pt.

This is M by definition, so this too is an r,s sequence.

We obtain the Fibonacci and Lucas sequences from these two by letting
r» =5 = 1. This can be readily verified.

In the next two theorems we give a more explicit formulation for G, and
M, that can be easily programmed for a computer.

Theonem 2: For the sequence {G.},

-1
[ 2
I o
Gy = EE: ( J J)Pk'l'stJ, k> 03 G, = 0.
j=0
We shall prove this by induction. We first note that this formulation
for k = 1, 2, 3, 4 gives the same results as the previous one.

Gy = (8)1”30 =1

G, = (é r=r

Gy = (CZ))P2 + (1)3 =r® +s

G, = (S):ﬁ3 + (i)ze = r® + 2rs
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We assume that the result is valid for Kk =1, ..., 7 - 1. We now show
that rG; _; + sG;_, does give the expression for G,. Consider then

[iz;?]i—z—j- . Eia}i_:;_-. o

i-2 1":4:6( g >Y‘1_2_2‘78‘7+8‘;)( 3 '7)2’"”'3'2-7&7

E_gi‘Z—j i-1-24 .4 [12§|
SRR
J

j=0 Jg=0

s
N
+
[va)
N
]
W

It

(i - 3 - j)ri—3—2j8j+1_

We now introduce a standard change that we use in several proofs. We first
remove the first term of the first summation; then we shift the index of the

second summation by replacing J by § - 1. This gives the same exponents for
r and s in both summations. We then have

If 7 is even, the upper limits of both summations are equal, so we can
combine them into the single summation:

2 N
SR Y (G R I (e )}'
5

= pi-1 4 :E: (i - ; - j)ri‘l’zjsj.
=1

We see that the summand is r%-! for j = 0. We include that term in the sum-
mation and obtain the desired expression for G;.

If 7 is odd, then the upper limit on the second summation is one larger

than that on the first. We break _off the last term on the second summation
and combine the two summands. This gives

: E%é]i—Z—j t -2 =N\ ,
S R BETeD S
£

=ity <i "L j)ri‘l-zisj + g@-n/z,
J

. , ;- . -1
We see that the summand gives r®-! for ¢ = 0 and s®~V/2 for ¢ = [ 3 J. We
combine these terms into the summation and we have the expression for G;.
Hence, in any case, we do obtain the desired formula for Gi’ so it must
be valid for all terms of the sequence.

In passing, we might note that for the Fibonacci sequence we have
73
k-1-3j
Fk=Z\ p ),k>O;F0=O.

j=0
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In the next theorem for the {M;}, we need the following property of bi-
nomial coefficients:

i—l(i—l-j -2 f(i-1-4 i(i—j)
N S E— . +";_—""_T - = I3 L]
-1~y J 7 -1=- Jg -1 T - g J

This can be readily verified using factorials.

Theorem 3: For the sequence {M.},
2
4]

k_ (k-
N R E I R
j=0

The proof is by induction, so we first note that it is valid for k£ =1,

2, 3.
1L (1 =G u-25.5 2 L(1) 1.0 o .
.( J )r 89 =q\gj s r;

- J 2~27ad = E
g >r s 5

"j 3-2jJ'=_3_
- )uaades -3

M

1

I
e
—

I

(XY

XY
i
(=)

SE
I
™M~
N
I
LY
-rs

<,
n
(=]

I
!
™M
w
Hw
Y
™

<,
]
(=]

We assume that the formula is valid for ¥ =2, 3,...,7 - 1 and show it
is valid for ¥ . The proof 1is similar to that of Theorem 2 except that we
have an extra term for the case 7 is even.

We start with the basic

;- 1
B

7 -1 =1 =g\ ;_0: =
M, 4 + 8M,_, = f_~——‘—“7< . )rl‘ZJsJ
[ -2 J;”P_I_J J
)
[ 2] -2 (i -2~
- - - 12227 od+1
+ 2: A J( J -1 ) s .

Jj=0

Once more we break off the first term in the first summation and shift the
second summation index to give

p) E%%] =1 (i -1=9\ ;055 [ ] T =2 i -1 -G\ ;25 s
Al e e

If © is odd, the two summations have the same upper limit; thus, we can
combine them using the property of binomial coefficients given before the
theorem. This gives, for the summation,
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Finally, note that the summand is r? for j = 0. We combine into a single sum
that is the formula for M;.

In case 7 is even, the second summation has an extra term of 2s%/2. 1If
we separate it from the summation, we can combine the two summations to get

2 . , .

rt + Z -—2—‘<7/ - J)I’i"zjsj + ZSi/z.
v IN g
The summand is r% for j = 0 and 28*? for j = /2, so we can combine these
and obtain the expression for M;. Hence, in either case, the formula is
valid for all integers k.

This theorem gives, for the general term of the Lucas sequence,

LI
Lk:JZ%k—j< 7)o -

3. THE FORMULATION FOR U

In this section, we first prove a basic result for {Uk}. It is compar-—
able to the result in Waddill's paper for K, = G,.

Theorem 4: The general term of {U;} can be expressed as
Uk = Ut+j = GjUt+1 + Gj_lsUt.
Once more the proof is by induction. For j = 2, we have

Uppg = GoUpyy + Gi8U, = vUgyq + 8Uzs
which is true for all ¢. Assume that the expression is true for J§ = 2, ...,
7 - 1. Then, since U,,; is an r, s sequence,

Upps = PUtsi-1 ¥ 8Upgoz = 2(GiqUpyq + Gy_p8U) + 8(Gi_pUpyy + Gy _380;)

(G, _+8G; _DUpyq + (G, _, +8G;_3)sUy = GUpyr + Gy (U

Hence, the result is true for § = 7 and so is true for all integers.
We can now give a formulation for U, in terms of its initial values U,
and U;. This is given in the next theorem.

Theorem 5: The general term of the r,s sequence {Uz} is given by

- d :
J k - g

C1l2i
rk Igd.

5] K - 5\ % - 200, + gr,
55

Jj=0

In Theorem 4, we take ¢t = 0, so j = k, and we have
Up = GUy + Gy _18Ug-
Substituting the result of Theorem 2 for G,, G;_;»
[ k-2
£ k)

U = Z (k - 1. - j)r,k—l—stle + Z

<k - % - J)rk‘z‘zjsj(on).
i=0 dJ J

j=0
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Once more we break off the first term of the first summation and shift the
index of the second summation to give

&= . (3]
rk-ly 4 Z (k - ; - J)Tk~l—2ijUl +
i=1

e

ANt

Again, we consider the two cases where kX is odd or even. For k odd, the two
upper indices are equal, so we can combine the two summations to obtain

4]

K
2 . .

rk-1y, +Z (k - ; - J)Ul + (k ; E I J)rUO]rk'l‘zJ'sj.
i1

It can be verified that the summand can be written so that we have
k

3]

_ k-1 o

U, = r*ty, +§_{

H

i=0

pk-1-2j57

(k _ J) (k - Zj)Ul + jl"UO
J k-4

Z’k_l_zjsj

k . .
2 (k _ j\ (k - 25)U, '+ Jgru,
=\ J ) k=

For k even, we break off the last term in the second summation and have

54 .

- k-1-4 k-1-=-4g C1o24 4 k
Pk 1U1+Z< . >U1+< i i/ pk-1 2J8J+s/2U0

i1 J !
B4 (k - 2)U. + jrU
2 . - 24 Jr :
= rk-ly + (k s J) = Opk-1-2jg5 4 gkl2y
4 J k-4 0
J=1
we note that the summand gives rk“lUl for 4 = 0 and sk/zUo for j = k/2. Thus
we can write, for the general k,
5] Nk = 2))U. + jrU
k- 4\ - 0 k-1-24.;
U, = . / %= 7 r Jgd .
—\ J
It can be verified that by letting U, =¥, =» and U, = M, =2, we ob-

tain the expression for X; given in Theorem 3.
We can obtain an expression for {U,} in terms of {¥;}. This is shown in
the next theorem.
Theorem 6: The {Uy} is given by
MM, + sMM. MM, |+ sMM,

Uy = Uy, = U, + )
J 2 2 t+g 2 2 t
M1+3M0 Ml+sM0

We can obtain this result from Theorem 4 by determining G; and Gj_l in
terms of {M;}. TFor this, we start with
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Mj_y = G_\My + G _, 8y = rG

,8M, o1 + 28G;

Jj-2°

Since G; = rG;_,+ sG;_z, it follows that 2sG;_, = 2G; - 2rG;_;. We sub-
stitute this into the expression for Mj_l, and also write the expression for
M; to give the two equatiomns:

= 2G; - rG;_ 13

M; = rG; + 28G;_;.

J-1

The solutions for G; and G,_; are

. ri; + ZSMJ._1 Mle + sMyM;
7 2 B 2 2
r“+ 4s My + sM;
and
B 2M; - rM;_ 2(1"1\4‘7._l +sMJ-_2) —er_l MlMJ._l+31\401‘4(7._2
G?'l - 2 B 2 - 2 2
r° + 4s r° + 4s M+ sM0

Substituting the results in the expression for U; of Theorem 4 gives the
required expression for this theorem.

The formulation for U; given in Theorem 5 has been programmed by Robert
C. Fitzgerald. He is a senior in Computer Science. We can generate the U
for specified values of », s, U; and U,.

Special cases of this result for ¢ = 0 and other particular values of r
and s will be considered in a future paper.
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THORO'S CONJECTURE AND ALLIED DIVISIBILITY PROPERTY
OF LUCAS NUMBERS

SAHIB SINGH
Clarion State College, Clarion, PA 16214

In [3], Thoro made a conjecture that for any prime p = 3 (mod 4), the
congruence F,,,; = 0 (mod p) is not solvable where F,,,, is an arbitrary Fi-
bonacci number of odd index. The conjecture has already been proved. In
what follows, we give a different proof of this and discuss another problem
that arose during this investigation.

=F2+F?

Proog: If possible, let the above congruence be true: since F 1

(see [1], p. 56), we get
(1) F? + FZ,1 =0 (mod p)

2n+1

Under this hypothesis, it follows that p divides neither F, nor Fn+1. This
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is justified because if, on the contrary, p divides F,, then (1) would enable
us to conclude that p divides F,,;, forcing us to the invalid result that p
divides (¥, , F,,,) or p divides 1. Hence,

F? = -F%,, (mod p).

Using Legendre symbol, it means that

—F3+1 <_1)
— =1 or |—/—)=1.
p P

This is not valid, since the prime p is = 3 (mod 4). The required con-
clusion is now immediate.

Further analysis in regard to divisibility property possessed by Lucas
numbers yielded the following theorem.

Theorem: 1If L,, is an arbitrary Lucas number of even index, then there always
exists a prime p = 3 (mod 4) which satisfies the congruence L,, = 0 (mod p).

Proog: Using the result Fp,,; =1, 2, 5 (mod 8) of [3] and the fact that
Loy = Fop_1 + Fy,uyq (see [1], p. 56), we obtain L,, = 2, 3, 4, 6, 7 (mod 8).
This means that L,, # 1 (mod 4). Since the case of L, being even arises
only when 3|n, we conclude that Lg,., = 3 (mod 4). This means that Lenio
always contains at least one prime factor p with p = 3 (mod 4). 1In fact, in
this case, either this Lucas number is prime of this type or it will contain
an odd number of prime factors of this type. For discussionof the case [

6k °
we first observe that all the members of the family Lg; can be obtained from
Lomen+3) DY choosing suitable values of m and n, wherem =1, 2, 3, ... and
n=20,1, 2, ... . Now, using the fact that

Ly|Ly iff s = (2k - )¢
(see [1], p. 40), we get
L

2" Lz”(6n+3)'

Since (2™, 3) = 1, by previous discussion, there always exists a prime p = 3
(mod 4) such that p|L,», which implies that P|Lym(gn+3) and the proof is com-
plete. It is easy to verify that 3|Lg, 7|Ly,, 3|Li4» 47|L,, and so on. For

a strong result, namely 2 - 3k[L2_3k, refer to [2].

Cornollary: Ly, contains an even number of prime factors p where p = 3 (mod
4).

Proof: From the well-known identities (see [1], p. 56), we have

2 2 2
Ly, =F,_, +2F, +F, .,
which yields
= p2 2 2
Dop = Fanoy ¥ 205, F FL 00
Since F,, is even whereas F,, , and F,,,, are odd, we have F3, ; = 1 (mod 8),

F§n+1 =1 (mod 8), and 2F§n = 0 (mod 8). Therefore, Ly, = 2 (mod 8)or.Len =
2(4a + 1) for a suitable o.

From the above theorem, we have the existence of at least one prime
p = 3 (mod 4) such that plLGn. We conclude that L., must have an even number
of such factors for justifying the odd factor (4o + 1) stated above.
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A CLASS OF SOLUTIONS OF THE EQUATION o(n) = 2n +t

NEVILLE ROBBINS
Bernard M. Baruch College, New York, NY 10010

INTRODUCTION
Let the nondeficient natural number n satisfy
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