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Let p be a fixed integer greater than 1 and define un for all integers 
n by 

(1) . uQ = 05 w1 = 1, un+2 = pun + 1 + un» 

Then ul9 u2, • . . is an increasing sequence of integers with u± = 1 and hence 
a function o(n) is well defined for all n in N = {09 1, 25 **»} by 

(2) a(0) = 0S o(n) = w.+1 + a(n - ẑ -) for u^ <_n < Uj+1. 

Let s = (p + /p2 + 4)/2 and 5n = [ns]9 where [x] denotes the greatest inte-
ger in x» 

It is shown below that the spectral sequence {Sn } and the shift func-
tion o(n) are related by the equation 

(3) Sn = u2 + o(n - 1) 
and that {Sn} has the self-generating property that 

p if n is not in A = {S19 S2$ S39 . . . } ; 
(4) 5 n + 1 - S„ _ 

p + 1 if n is in A, 
Also investigated are representations of positive integers in terms of {un}9 

partitions of Z+ = {1, 29 »„» } into several sequences related to o(ji)ox Sn9 

the function counting the number of integers in AD{19 29 * „ » 3 n} s and prop-
erties of "triangles" of entries -, defined, for certain .fixed x9 by 

[nx] - [kx] - [(n - k)x] for k = 0S 1, 

Most of the results presented here are analogous to those given in the 
authors1 paper [4] in which the role of the present un is played by hn sat-
isfying 

hi = 2 ^ 1 for 1 < i < d9 hn+d + hn = hn + 1 + •-. + V d - i -

The Fibonacci numbers Fw+1 are the case of the hn with d=2» The Fibonacci 
numbers could also be dealt with here by allowing p to equal 1; then the se-
quence u19 u2$ «** must be replaced by ii2, u3§ ... in defining o(n). 

For a bibliography on spectra of numberss see [3]. 

1. PROPERTIES OF un 

Here we state the properties of the un used below* Proofs are omitted 
since they are well known or easily derived, or both. Let rn = un+1/un for 
n in Z+* 

Lemma 1: 
(a) For every k in Z+s there is exactly one j in Z+ with u • <_ k < u- + 1. 
(b) r1 < P 3 < P 5 < . . . < s < • 
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(c) u1,n - u u 10 = (~l)n for all n in Z. 
v ' n+l n n+2 x ' 
W ) ^ " ̂ n+i = (~Dn/Kun+1) for n in Z+. 
(e) gcd (un, un+1) = 1 for all n in Z. 

(f) u2n = p(w2w-i + u2n„3 + ••• + w1) for n in Z+. 

(g) ^ 2 n „ x = P(^2n-2 + "2n-i> + ••• + «2) + ̂  for n in Z+. 

2. RATIONAL APPROXIMATION 

Let x be a positive irrational number. Then9 we define a Favey quadru-
ple for x to be an ordered quadruple (a9 Z?9 c9 d) of positive integers9 such 
that bo - ad = 1 and a/2? < # < old. 

The following result slightly extends some material from the theory of 
Farey sequences. (See [5] for background.) 

Lemmci 1: Let (a9 £>, c9 d) be a Farey quadruple for x and let k be a positive 
integer less than b + d. Then: 

(a) There is no integer h such that alb < h/k < c/d. 
(b) [kx] = [ka/b]. 
(c) I f d\k, [kx] = [ko/d]. 
(d) I f fc = de w i t h e i n [ 1 9 29 . . . 9 b - 1 } , [far] = [fo?/d] - 1. 

The proofs are left to the reader. 

We note that parts (b) and (c) of Lemma 1 tell us that 

<M2m+2> « 2 m + l ' M2m + 1> W 2 M ) a n d K * ' Um-1> U2m + X' UlJ 

axe Farey quadruples for s whenever m is a positive integer. This is extended 
in the following result. 

Lmmci 3'- Let p £ {2, 3, .. . } , s = (p + /p2 + 4)/2, w be as in (1), and m e 
Z+. Then each of 

(p9 1, 1 + kps k) for k = 1, 29 ...9 p; 

(u 2 m + A:u2m + 1 9 u2 m„_x + k u 2 m 9 M2m + 1 , u 2 m ) for k = 09 1, . . . . p ; 

< W 2 m + 2 » M 2 m + 1 ' W 2 m + 1 + ^ 2 m + 2 * M2m + ^ 2 m + 1 > f °r k = °> X» °°" ?'* 
is a Farey quadruple for s. 

VKOO^i Let (a9 £9 e9 d) represent one of these quadruples. The property 

be - ad = 1 

is easily verified using Lemma 1(c). The property 

alb < s < old 
can be shown using Lemma 1(b) and the fact that 

a_ < a + o £ 
b b + d d 

whenever b and d are positive and a lb < old. 

3. SPECTRA 

Let [x] denote the greatest integer in x9 that is9 the integer such that 
[x] <_ x < [x] + 1. The sequence [x] , [2x], [3a;], ... is called the spectrum 
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of x. It is a well-known result [1] that if y is an irrational number greater 
than 1 and (l/x) + (1/z/) = 1 then the spectra {[nx]} and {[ny]} partition the 
positive integers Z+B 

Let p be in {29 3, 4, . ..}, s = (p + /p2 + 4)/2, x = s - p + 1, and z/ = 
s + 1. Also let Sn = [ns], Xn = [nx] , and Jn = [ra/]. It is easily seen that 
y is irrationals y > ls and (l/#)+(l/z/) = 1; hence the spectra {Xn}and{Jn} 
partition Z+* It is also clear that Yn - Xn + np and that each of Xn and Yn 
is an increasing function of n. It follows that {Xn} and {Yn} may be self-
generated using the following algorithm* 

X1 - 1 9 Y1 - 1 + p, Xk for /c > 1 is the smallest positive integer 
(5) 

not in the set {X±, 71, X£, Y2, ...9Xk_l9 ^ _ X K a n d yfe = xk + kP-

Then {5n} is easily obtained from Sn = Yn - n = Xn + n(p - 1). It is shown 
below that {Sn} can be self-generated from the initial condition S = p and 
the difference property (4) above, 

The following result gives symmetry properties of finite segments [x] s 
. . . , [ex] of a spectrum for the cases in which e is the b or d of a Farey 
quadruple (a, £>, c, a7) for x, 

Lojfnma 4' Let (a, b5 c3 d) be a Farey quadruple for a;* Then: 

(a) [bx] = [fee] + [(& - fc)ar] + 1 for fc =. 1, 2, .. . , b - 1; 
(b) [dx] = [kx] + [(d - k)x] for k = 0, 1, ..., d. 
Vn.oo{ oj [a) i We have [bx] = a from Lemma 2(b). Let 0 < k < b5 j = b - k9 
h = [kx] , and i - [jx]. Since a? is irrational.* h < kx and so 7z/fc < x. This, 
x < c/a7, k < b5 and Lemma 2(a) imply that /z/fc < alb. Similarly, ilj < a/2?. 
Since (/z + i) / (k + j) is in the closed interval with endpoints h/k and i/j, we 
have (/z + i) I (k + j) < a lb. As k + j = b3 this means that 7z + i < a or [fee] 
+ [jx] < [bx]. Then the desired result follows from the fact that9 for all 
real y and z, 

(6) [y + z] - [y] - [z] e {0, 1}S 

P/L00^ 0^ (6) : Lemma 2(d) t e l l s us t h a t [dx] = c - 1. We only need c o n s i d e r 
t h e k w i t h 0 < k < d. Let j = d - k5 [kx] = h5 and [jx] = i . Then /z + 1 > fee 
and so (/z + I) Ik > x. T h i s , x > a/2?, k < d9 and Lemma 2(a) then imply t h a t 
(h + l)lk > old. S i m i l a r l y , ( i + l ) / j > c?/d, and hence (h + 1 + i + 1)/(fe + 
j ) > c /d \ As k + j = d7, one has 7z + i + 2 > c?s which i m p l i e s 

[kx] + [(a7 - /c)ar] + 1 > [ d s ] . 

Again, the desired result follows from (6). 

4. THE SHIFT PROPERTY 

When convenient, Sn = [ns] will also be denoted by 5(n). Also, we re-
call that o(n) is defined in (2) and Uj is defined in (1)0 
lkQ.0K.Qm 1: If Uj < n < u-j + u. + 1 and j e Z+

S then ̂ (n) = uj. + 1 + S(n - w^-). 

VKOOJ* Let (a5 Z?9 c9 d) be the Farey quadruple (u2m, u2m_i9 ^2m + î  ̂ 2m) f o r 

So Then Lemma 2(b) tells us that Sin) = [ns] = [np2m_1] for 0 < n < u2m_1 4 
Hence 

+ (n - ^2m-l)U2 
(7) 5(n) = [nu^/u^.J = 

f ° r U2m-1 < n < U2m-1 + U
2 

u2m + S{n 
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Next we use the Farey quadruple (u2m+2, u
2m+i' uz +i5 U2 ^ ^or s anc^ w e 

find, from Lemma 2(c) and (d), that 

S(n) = [nr2m] if 0 < n < u2m + w2w + 1 and u2m\n, 

S(n) = [nr2m] - 1 if n = kulm with ?c in {1, 2, ..., w - 1}. 

Using these facts, one can verify that 

(8) S(n) = u2m + 1 + S(n - u2m) for u2m < n < u2m + u2m + 1 « 

The desired result follows from (7) when j is odd and from (8) when j is even. 

= u2 + o(n — 1) for n in Z+* 

Vhxroi} Since S± = p = u2 and a(0) = 0, the result holds for n = 1. Then a 
strong induction establishes it for all positive integers n using the conse-
quence 

S(n) = u
3- + i + $(n ~ Uj) for Uj < n <_ u^+1 

of Theorem 1 and the consequence 

o(n - 1) = u.M1 + a(n - 1 - u.-) for UJ < n < u... 

of the definition (2)„ 

5. SEQUENCES OF COEFFICIENTS 

Let 7 be the set of all sequences E = [el5 e2$ **«] with each e^ in {0, 
1, „ . . , p}, with an t0 such that e^ = 0 for i > i0, and with e^ = p implying 
that both i > 1 and ei_1 = 0. For such S7, the sum 

g l M n + l + e2Uri + 2 + 23
Wn+3 + ° ° ° 

is actually a finite sum which we denote by E • Un* Also, we let E • U stand 
for E • U0. 

Lmmci 4: If # and 5" are in 7 and E ° U = Ef • [/, then E = Ef» 

This is shown using parts (f) and (g) of Lemma 1* 

Th<L0KQm 3'* The sequences of 7 form a sequence EQ 9 E±5 E25 » » « such that 

Em • U = m. 

VHJQ0£} The only E in 7 with tf • U = 0 is [0, 0, , . . ] , which we denote by EQ. 
Now we assume that k > 0, and that there is a unique Em in 7 with Em * U = m 
for w = 0, 1, ..., k - 1. By Lemma 1(a), UJ <_ k < UJ + 1 for some J in Z+„ Let 
h = k - Uji then we can let [ 6 ^ , 6 ^ , . ••] be t;he unique 5^ in 7 with 5^ * £/ 
= h. Then let efej. = 1 + ehJ , £ ^ = e ^ for £ ̂  j, and ̂  = [ekl, ek2, ...]. 
Since 

^ < uj+i = Puj + uj-± < (P + DWJ» 

one sees that g^- £ p and that if ekj- = p9 then j > 1 and £k!t/-i = 0. Thus, 
Eji is in 7. Clearly, 

Ek 9 U = Eh * U + ud = h + Uj = k. 
Finally, there is no other E in 7 with E * U = k by Lemma 4* 

The case with p = 2 of Theorem 3 was shown in [2]. 
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6* PARTITIONING 7 

We now partition 7 into subsets V1, 72, 73 and use these subsets to in-
dicate the relationship of Em+1 to £'m. Let E = [els e2S . ..] be in 7; then, 
^ is in 7-L if ex = p - 1, # is in V2 if e1 = 0 and e2 = p5 and S7 is in 73 if 
ex < p - 1 and e2 < p, Since £-,_ > 0 implies e2 < p9 one sees that each E of 
7 is in one and only one of the 7 . 

Lemma 5: Let -^ = [e^ e2, ...] and S,w + 1 = [f±s fz, . . . ] . Then: 

(a) If tf m is in 7X , let j be the smallest positive integer such that 
e2j+i < P* therl /i = °  f o r ^ < 2J* fig = 1 + e2. , and fi = ei for 
i > 2j. 

(b) If Em is in 72, let In be the smallest positive integer such that 
ezh < P5 then fi=0 for 1 1 i 1 2/i - 2, fih-i = 1 + e2/2-i9 anc^ 
/^ = e^ for i 2. 2?z. 

(c) If Em Is in F3, f1 = 1 + e1 and j^ = e^ for i > 1. 

_R̂ 00j[: If we let F = [/1S /2, .,.] with the fi as in (a), (b) , and (c), it 
Is easily seen that F Is in 7 and F*U=l+Em»U=l+m. This and Theo-
rem 3 establish the present result. 

lemma. 6: Let An(m) = Em+1 * Un - Em • Un« Then: 

(a) An(m) = un + wn+ 1 if #w is in V1. 

(b) An(/7z) = un + 1 if #m is in 72 or 73. 

P/iOO^z These statements are easily verified using the parts of Lemma 5. 

7* POWERS OF a 

Let Em = [eml9 em29 ...] and let h be the largest i with emi f 09 then 
one can use the definition of a in (2) to show that 

a(772) = o{emlu1 + --• + ewfcM?i) = emlu2 + ••• + ewf c^+ 1 = ̂  * ^V 

Hence, there is no contradiction in defining on for all integers n to be the 
function from N to Z given by 

(9) a"(TTZ) = ̂  • Un = emlun+1 + em2un+2 + -•- . 

Also let an be the function from Z+ to Z defined by 

(10) aM(fc) = un+1 + an(k - 1). 

We note that a0 (k) = ks that ax(/c) = Sk5 and that, for fixed k9 the an(&) 
satisfy the same recurrence as the uns i.e,s 

an+2ik) = pan+1(k) + an(k). 
We also let ̂ n be the image set of ans i.e.s 

An = {an(k) : k e Z+}. 

Lojnma 7: For n i n { 1 , 2 } s ^ n = {i + 1 : 5^ e 7^} e 

VH.00^* Using (10) and ( 9 ) , one sees t h a t 

(11) an{m + 1) = (1 + eml)un + 1 .+ em2un+2 + em3un+3 + . . . . 

As 772 t a k e s on a l l v a l u e s i n N$ Fm = [p - 1, &ml* £m2» • • • ] ranges through a l l 
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the E- in V1 and Gm = [0, p, eml9 eml9 ...] ranges through all the 5^ in 72. 
It follows from (11), Lemma 5, and the recursion in (1) that if Fm = Ej then 

j + 1 = Ej + 1 • Z7 = a1(77Z + 1) 

and, similarly, that if £m = ̂  then 

h + 1 = i^+1 • Z7 = a2(7W + 1). 

These facts establish the lemma. 

8. SELF-GENERATING SEQUENCES 

Clearly, an(l) = un+1. This, and the following result, provide an easy 
self-generating rule for obtaining the sequence {a^QC)} and a similar easy 
rule for using {a1(k)j to obtain any ian(k)}. 

Tkzofiem 4: For n in Z and j in Z+, an(j + 1) - an(j) equals un + ^n + 1 if J 
is in A± = {^(fc) : k e Z+} and equals un+1 otherwise. 

VtiOQfc Lemma 7 tells us that A± = {j : E._±e V±}. Also, 

anU + 1) - aB(j) = anU) - a"(j - 1) = ̂  • 27n - ^J.„1 • Un. 
Hence, the desired result follows from Lemma 6. 

IkdOKom 5: The number of integers in A f] {1, 2, ..., m} is a_1(m + 1) . 

VhJQQJ: Let A_x(i) = a_x(i + 1) - a^1(i). Clearly, 

(12) a_!(7W + 1) = a_x(l) + A„x(l) + A_x(2) + ••• + A_1(/n). 

Now a_x(l) = u0 + a"1(0) = 0 + 0 = 0. Also, Theorem 4 tells us that A_1(i) = 
uQ = 0 when £ is not in A1 and A_1(i) = u0 + u_1 = 1 when £ is in 4 r Thus, 
the sum on the right side of (12) is the number of £ that are in both {1, 2, 
. .., m] and A19 as desired. 

9. PARTITIONING Z+ 

We saw in Lemma 7 that An = {£ + 1 : E^ e Vn} for ft in {1, 2}. Let B = 
{j + 1 : 5̂ . e F3}. Since V1, 72, F3 is a partitioning of 7 = {#0, fi^, . ..}, 
it follows that A19 A2$ B is a partitioning of Z+ = {1, 2, ...}. 

For k = 19 2, .,., p - 1, we let 

&k(n) = a1(n) + k - p = k + a (ft - 1) 
and let 

5k = {bk(n) i n e Z+}B 
It is easily seen that 

Bk = {m i eml = k5 em2 < p} for 1 <. k < p 
and that B19 B29 ..., B x is a partitioning of B. Hence, the sequences 

{b^n)}, {b2(n)} {2>p_!<«)}, ia^n)}, {a2(n)} 
partition the positive integers. 

10. SPECTRUM TRIANGLES 

Let x be irrational and greater than 1 and let , denote [nx] - [nk] -

[(n - k)x] for integers n and k with 0 £ /c £ ft. It now follows from (6) that 
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L is always in {0, 1}. The fact that ^ = 0 = and the symmetry prop-

erty L = I - are obvious. Part (c) of the following result implies 

other symmetries for certain finite subtriangles of the infinite triangle of 

values of , . 

TkdQtim 6: Let (a, bs c9 d) be a Farey quadruple for x» Then: 

(a) 

(b) 

(c) 

b 
k 
'd 

d - s 
t 

1 for 0 < k < b. 

0 for 0 < fc < d. 

< s < d. + *].[;] f „ . < , 
VK.00£: Parts (a) and (b) are a restatement of Lemma 4. For (c) we use Lem-
ma 4(b)9 or the present part (b)s to see that 

[dx] = [(s - t)x] + [(d - s + t)x] = [sx] + [(d - s)x], 

Hence [(d - s + t)x] - [(d - s)x] = [sx] - [ (s ~- t)x] 9 and so 

P " S
t
 + *] = [W - s + t)x] - [to] - [W - s)x] 

= [SX] - [tx] - [ (8 - t ) x ] = M 

as d e s i r e d * 
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LOCAL PERMUTATION POLYNOMIALS OVER Zp 

GARY L. MULLEN 
The Pennsylvania State University, Sharon, PA 16146 

1. INTRODUCTION 

If p is a prime5 let Zp denote the integers modulo p and Z£ the set of 
nonzero elements of Zp« It is well known that every function from Zp x Zp 
into Zp can be represented as a polynomial of degree <p in each variable. We 
say that a polynomial f(x1$ x2) with coefficients in Zp is a local permuta-
tion polynomial over Zp if f(xls a) and /(£>, x2) are permutations in xx and 
x2 for all a9 b e Zp. 

In Section 29 we obtain a set of necessary and sufficient conditions on 
the coefficients of a polynomial f(xls x2) over Zp9 p an odd prime, in order 
that f(x13 x2) be a local permutation polynomial. Clearly the number of lo-
cal permutation polynomials over Zp equals the number of Latin squares of 
order p. Thuss the number of Latin squares of order p equals the number of 
sets of coefficients satisfying the set of conditions given in Section 2. 
Finally9 in Section 3S we use our theory to show that there are twelve local 
permutation polynomials over Z which are given by 

f(xis x2) = a1Qx1 + aQ1x2 + aQQ 

where a10 = 1 or 2S a01 = 1 or 2S and a00 = 0S 13 or 2* 

2, A NECESSARY AND SUFFICIENT CONDITION 

Clearly, the only local permutation polynomials over Z2 are x± + x2 and 
x± + x2 + 1 so that we may assume p to be an odd prime. We will make use of 
the following well-known formula 

P-i ( 0 if k $ 0 (mod p - 1), 
(2.1) £j* = I 

m = i (-1 If & = 0 (mod p - 1). 

Suppose 
P-i p-i 

w = 0 n = 0 

is a local permutation polynomial. Let /(£, j) = /c^ for 0 _< is i <_p - 1. 
Since no permutation over Zp can have degree p - 1, we have 

(CI) 

ao,P-i = °* 
p-i 

I>X,P-i = 0, fe = 1, .. 
WJ = 1 

Suppose i = 0 so that 

/ ( O , j ) = a 0 0 + a 0 1 j + ••• + a 0 s p „ 1 j p " " 1 = /cQj.. 

Let k[. = kQj- - kQQ fo r j = 1, . . . , p - 1. The s e t {kr
Qj. } = Zp and5 moreover , 

a01J + a 0 2 j 2 + ••• + aQiV_1f"1 = fc^. for j = 1, . .., p - 1. 

Raising each of the p - 1 equations to the kth power, summing by columns and 

104 
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u s i n g ( 2 . 1 ) 9 we o b t a i n 

<C2) E - — — t rs" • 
^ 0 1 * e e ° ^ 0 , p - l ' 

0 , p - 1 

0 if fc = 25 . .., p - 2 

1 if k = p - 1 

where the sum is over all (p - 1)-tuples (i01s ..., iQ -:L) with 

(a) 0 < iQ1, .... ̂ p ^ < fe, 

(b) i01 + -.. + io.p.! = ^ 

(c) i 0 1 + 2 i 0 2 + °«* + (p - i K 0 s P - i E ° ( m o d P " D -

I f i > 0 i s f i x e d , c o n s i d e r 
P - i p - i 

(2 .2 ) / ( £ , j ) - kiQ = ] T ^ <zmnWW = ^ . » J = 1, . . . , p ~ 1, 
m=0 n = 1 

so that ik'^j} = Z*. For each /c = 2, ..., p - 1 raise each of the p - 1 equa-
tions in (2.2) to the kth power, sum by columns9 and use (2.1) to obtain 

P-iP-i kla^;ilm (0 if k = 25 . .., p - 2 P-ip-i k\a™n
ni m ( 

(C3) E n n -T-T— = \ 1 if k = p - 1 

for each £ = 1, . .., p - 1, where the sum is over all (p2 - p)-tuples 

A ^ o i 3 •••» ^mn» • • • s ^p-l, p — 1 ' 

which satisfy 

(d) 0 < i m n < ks 

P - i p - i 

(e) E E ^ = /Cs 
m=0 n - l 
p - 1 p - 1 p - 1 

(f> XXl + 2X^2 + ••• + (P " D^^.P-1 E ° ( m ° d P " 1)e 
m = 0 m = 0 777 = 0 

A further word of explanation about the sum in (C3) may be helpful at 
this time. Conditions (d) and (e) arise because of the multinomial coeffi-
cients , while (f) determines which terms appear in the given condition. 
Moreover, the Zm appearing in (C3) is understood to mean the sum, counting 
multiplicities, of all the first subscripts of the amn*s which appear in a 
given term. Finally, we note that condition (C3) actually involves a total 
of (p - 1)(p - 2) conditions. 

If we now fix j and proceed as above, we obtain another set of necessary 
conditions. For brevity, we simply state these as 

a
P-i5 0 = °* 

(CIO I p.x 
X ^ s - i ^ = 0, & = 1, . . . . P - 1 . 
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When j = 0, we have 

(C2') 
1 I 
^10 • 

-a'2'10 ... a Z p ~ l ' ° !uio p-i, o 

0 if fc = 2 9 ..., p 

1 if fc = p - 1 "P - I , o • 

where the sum is over all (p - 1)-tuples (i10» •••> ^p-i Q ) with 

(af) 0 < i 1 Q , ..., , p „ l j 0 

(bf) i10 + 

(cf) i10 + 2i2Q + ... + (p - l)ip.1>0 = 0 (mod p - 1). 

+ ^p-1, 0 = ^ 9 

When j = 1, 

*- PAX P^ fc!<0'En 

(C30 x n n —f-— 

15 we obtain 

0 if k = 2, 

1 if fc = p - 1 

. 9 1>j) , .̂ •p-l,p-l ) that where the sum is over all (p2 - p)-tuples (i10, 
satisfy 

( d ' ) 0 < i m n < f c 5 

p - i p - i 

m = 1 n = 0 
p - 1 p - 1 p - 1 

( f f > £ ^ l n + 2 I ^ 2 n + • • • + (P - D ^ V l . n E ° ( m ° d P " 1 } ' 
m=0 n = 0 n = 0 

We now proceed to show that if the coefficients of a polynomial f(x19 x2) 
satisfy the above conditions, then f(x19 x2) is a local permutation polyno-
mial. Suppose the coefficients of f(x19 x2) satisfy (CI), (C2), (C3), (CI'), 
(C2f), and (C3f). For each fixed i, let t ^ = f{i9 j) - f(i9 0) for j = 1, 
. .., p - 1. The above conditions imply that for fixed i = 0, 1, ..., p - 1 
the £•. satisfy 

(2.3) 
p-i 0 if fc = 1, . . . , p - 2, 

-1 if k = p - 1. 

Let 7 be the matrix 

^ii ••• ^itp-i 

tp~2 ... *r2 

-z-1 %, p - 1 

Using (2.3), we see that 
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det(72) = det(F)det(7) = det 

-1 0 
0 0 
0 0 

0 
0 
1 

0 
-1 

0 
±1. 

0 -1 . .. 0 Oj 

Since det(7) is the Van der Monde determinant, we have, for fixed i, 

det(7) = II <tij ~ tik) * 0 

so that the t^ for j = 1, S9e, p - 1 are distinct. Hence* 

/(£, 0) and /(i, j) = t^. + /(£, 0) for j = 1, ..., p - 1 

constitute all of Zp, 
A similar argument shows that if for each fixed j, 

sij = f&9 0) ~ /(0, j) for i = 1, . . . , p - 1, 
then 

/(0, J) and /(i, j) = sid + /(0, j) for £ = 1, ..., p - 1 

run through the elements of Zpa Hence, we have 

Tk&QfiQjrn 1» If f(xl9 x2) is a polynomial over Zps p an odd prime, then / is 
a local permutation polynomial over Zp if and only if the coefficients of / 
satisfy (CI), (C2) , (C3) , (Clf), (C2f)s and (C3f). 

CoKolZcUtij 1: The number of Latin squares of order p an odd prime equals the 
number of sets of coefficients {ccmn} satisfying the above conditions. 

ap-i,v-i ° 9 We note from condition (CI) that &0sp-i = ai v-i ~ ° ' ' 
since the determinant of the coefficient matrix in (CI) is the Van der Monde 
determinant. Similarly, (CIr) implies that ^ p „ l s 0 ~

 a
p-± 1 = ••• = a

p_ l sp_ x 

= 0. We further note that we have a total of 2p(p - 1) conditions so that, 
in generals the conditions are not independent, 

3* ILLUSTRATIONS 

As a simple illustration of the above theory, we determine all local 
permutation polynomials over Z3« If 

/<*!• *2> = E iamn^1x2 
m = 0 n = 0 

then the set of necessary and sufficient conditions becomes 

(2-4> 

(2-5) a\, + a*, = a2
 n + a*n = 1, 

(2.6) 

(2.7) at, + at, + an,a,, = at „ + at, + a,„a,, = 1 

a21 = a20 - 0, 

<i + ali + 2 aoi an = aio + aii + 2 aioan = 2> 

aoi + aii + a oi a n = aio + aii + a io an 
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Using (2.4) and (2.5)9 we see that a01 = 1 or 2 and a10 = 1 or 2. From 
(2.6) and (2.7), we have a11 = 0. Since a00 is arbitrary, we see that there 
are a total of twelve local permutation polynomials over Z3, given by 

where a10 = 1 or 2, a01 = 1 or 2, and aQQ = 09 1, or 2. 

GENERALIZED CYCLOTOMIC POLYNOMIALS^ FIBONACCI CYCLOTOMIC 
POLYNOMIALS., AND LUCAS CYCLOTOMIC POLYNOMIALS* 

CLARK KiMBERLSNG 
University of Evansville, Evansville, IN 47702 

U INTRODUCTION AND MAIN THEOREM 

In [6] s Hoggatt and Long ask what polynomials in I[x ] are divisors of 
the Fibonacci polynomials9 which are defined by the recursion 

FQ(x) = 0, F±(x) = 1, Fn(x) = xFnm±(x) + Fn^{x) for n >_ 2e 
In this paper, we answer this question in terms of cyclotomic polynomials. 
We prove that each Fibonacci polynomial Fn (x) , for n _> 2., has one and only 
one irreducible factor which is not a factor of any Fk (x) for any positive k 
less than n. We call this irreducible factor the nth Fibonacci cyclotomic 
polynomial and denote it ^fn(x) . 

The method applied to Fn* s to produce 9V s applies naturally to the more 
general polynomials Zn(xs y9 z) which were introduced in [7] and are defined 
just below. Accordingly,, in Section 2S we shall apply the method at this more 
general level rather than directly to the Fn

fs. The polynomials Cn(x9 y3 z) 
so obtained from the ln(x9 y9 s)fs we call generalized cyclotomic -polynomials, 
Special cases of the C^s are the ordinary cyclotomic polynomials Cn(x9 1, 0), 
the Fibonacci cyclotomic polynomials 9^ already mentioned, and a sequence 

&£„(*) = Cn(x9 0, 1) 

which we call the Lucas cyclotomic polynomials. Section 3 is devoted to the 
^n

fs and Section 4 to the S£Mfs. In Sections 39 49 and 59 we determine all the 
irreducible factors of the Fibonacci polynomials9 the modified Lucas polyno-
mials defined in [7] as ln(x9 0, 1)9 and the Lucas polynomials. 

In Section 69 we transform the generalized Fibonacci and Lucas polyno-
mials into sequences Un(x9 z) and Vn (xs z) having the same divisibility prop-
erties as the Fn*s and Ln*s9 respectively. The coefficients of these poly-
nomials are all binomial coefficients, in accord with the Identity 

zlln(x5 z) + Vn(x9 z) = (x + z)n . 

The polynomials &n(x5 y9 z) may be defined as follows^ 

Ln(x9 z) - Ln(ys z) 
in(x9 y9z)= — — for n >_ 0S 

Supported by a University of Evansville Alumni Research Fellowship. 
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where Ln(xs z) is the nth generalized Lucas polynomial, defined by the recur-
sion 

LQ(x9 z) = 2S L±(xs z) = x, Ln(x5 z) = xLn_1(x9 z) + zLn_2(x9 z) for n >_ 2. 

The two special cases of particular interest are the generalized Fibonacci 
polynomials, namely 

(1) L (X + VX2 + kZ X - YX2 + kz \ 

2 s 2 9 °/s 
and the generalized modified Lucas polynomialss namely Zn(x9 09 z). Other 
special cases, to be treated briefly in Section 5S are. the Chebyshev polyno-
mials of the first and second kinds. 

Following the method of Hoggatt and Bicknell in [5], we now determine 
the roots of the polynomials in(xs y, z) . The first theorem is basic to all 
subsequent developments in this paper. 

Tk&QX&n 1: For n > 2, the roots of in(xs y5 z) are 

(2) l/z sinh (sinh"12//2v/i" + 2kni/n) , where fc = 19 2, eB.9 n - I, 

Vh-OOJi We have (x - y)in(x9 ys z) = t\ + t\ - (£" + t"), where 

_ x + ^ 2 + 4a , _ # - v42 + 4s , z/ + /u2 + 4s , _• y - //2 + 4s 
t i ™ 2 5 ^ 2 " 2 * 3 2 9 *+ 2 

Let x = 2i/5" sinh u9 so that A 2 + 4s = 2i/5" cosh us and 

t\ = /zeu and t-z = -/ze'u. 

Let z/ = 2i/i" sinh i?9 so that Vy2 + 4s = 2/i" cosh y9 and 

t = vrzev and t 4 = -Jze~v. 
Then 

(a? - z/Hn(*, 2/, 2) = A ^ n w + (-l)n£-n w] - A e n t f + (-l)ne-nv] 
n_ 

2s2(sinh nu - sinh no) for odd ns 

_n 
2s2(cosh nu - cosh no) for even n. 

Dividing by x - u = 2y/s~(sinh u - sinh i?), we find 

n-l . , . , 

~~~smh nu - sinh no c , , 
is — — —— , for odd n9 
J smh u - sinh V 

)Ln{xs y$ z) ^ 
I "2~cosh nu - cosh nu _ 
Iz — r-; for even n. 

sinh u - sinh v 
Now suppose n is odd* Then ln{x3 y3 z) = 0 when 

sinh nu = sinh no and sinh u £ sinh y; 

i.e. s when nu = no + 2/ciri and /c is not an integral multiple of n„ Thuss 
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in(x9 y5 z) - 0 when u - v + 2/ori/n for k = 1,' 2 , * . . , n - 1. 

For even n we similarly reach the same result. Substitution for u and V now 
completes the proof. 

2. GENERALIZED CYCL0T0MIC POLYNOMIALS 

Following the treatment of cyclotomic polynomials in Nagell [9, p. 158] , 
for n _> 2 let p±s p2, ..., pr be the distinct prime factors of n; let 

and for 1 <_ fc <_ P, let 

n0 = iy 

Jl^ - ii)Cn/p p ... P 

the product extending over all the k indices ij which satisfy the conditions 

1 £ ̂ x
 < ^2

 < ' * " < H — V' 
L&nma 1 : Let C±(x9 y9 z) = 1, and fo r n > 25 l e t 

n0n2 . . . 
(3) Cn(x9 y9 z) ILII 1 " 3 

The number of factors iq in the numerator equals the number of factors iq in 
the denominator. 

P/L00̂ » First consider the number of £qfs in the numerator: for 0^j<_[r/2] 

there are ( .) of the &aTs in Jlnj; 9 so that the number we seek is 

[r/2] 

S («)• [(r-l)/2l 

Similarly, we count ^ (o'+i) factors ilg in the denominator. That these 

two sums are equal for any v ^_ 1 follows from the identity 

E<-D*(£) - ^ - D ^ =°-
k = o x ; 

Let us recall now some facts about cyclotomic polynomials (e.g., [9]): 
In case ln - xn - 1, the quotient Cn in (3) defines, for n .>. 2, the nth cy-
clotomic polynomial, which is irreducible over the ring of integers. (The 
first cyclotomic polynomial is defined to be x - 1). Thus, for n >_ 1, the 
roots of the nth cyclotomic polynomial are the primitive nth roots of unity: 
e2kvt/n w h e r e (k, n) = 1. Writing cf>(n) for Eulerfs phi-function, the nth cy-
clotomic polynomial therefore has degree <J>(n). 

Referring to (2), let us call the root 
2/z sinh(sinh~12//2/i" + Ikni/ri) 

a primitive nth root of in(x9 y9 z) if (k9 ri) = 1. 
ThdOKQjn 1: For n >_ 2, the quotient Cn(x9 y9 z) in (3) is a polynomial with 
integer coefficients, having degree $(n) in x. Moreover, for n J> 2, Cn(x9 
1, 0) is the nth cyclotomic polynomial. 
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Plooj: Suppose n _> 2. By Lemma 2, if the quotient in (3) is formed with the 
polynomials (x - l)in(x9 1,0) in the products IIfe instead of ln(x9 1,0), 
then the result is Cn(x9 1, 0). But 

(x - l)in(x9 1, 0) = xn - 1, 

so that Cn(xs 1, 0) is the nth cyclotomic polynomial, which has degree (j)(n) 
in x. 

It remains to be proved that Cn(x9y9 z) is a polynomial for nj^2; i.e., 
that the polynomial D = Jl1Ti3 . . . divides the polynomial N = II0II2 . . . over the 
ring of integers. Since this is the case for (x9 1, 0), each linear factor 
x - v of D is a factor of N and must occur at least as many times in N as in 
D. But each such r is an nth root of unity, r - e2k^rfn for some k and n. So 
in the general case (x9 y9 z) , each linear factor x - 2/z sinh(sinh~1z//2/s"+ 
2ki\i/n) of D occurs at least as many times in N as in 5. Thus, D divides N. 
Since all the coefficients of N and D have only integer coefficients, the 
same must be true of the quotient Cn(x9 ys z), by the division algorithm for 
polynomials in x over the ring I[y 9 z] of bivariate polynomials with integer 
coefficients. 

Tfeeo/iem 3: For n >. 2, 

Cn(x, ys z) = O [x - 2 ^ sinh(sinh"1z//2v/i" + 2/ori/n)]. 
(k,n) = l 
0£k£n 

VK.00^' This is an obvious consequence of the one-to-one correspondence be-
tween roots of Cn(x9 y9 z) and roots of the nth cyclotomic polynomial 

Cn(x9 1, 0) = n (* - e2M?n). 
(k,n)-l 
Q±k±n 

Thzokom 4: For n _> 1, 

Zn(x9 y9 z) = l\Cd(x9 y9 z). 
d\n 

PfiOO^: First, £1(x, y9 z) = C1(x9 y9 z) = 1. Now suppose n >- 2. Then 

<^(x, z/, z) = (x - r1) ... (x - r$(d))> 

where the P^!S range through the roots l/z sinh(sinh""1z//2v/i" + 2krni/n) of 
ld(x9 y9 z) for which (k9 d) = 1. Each root of &„(#, y9 z) is a primitive 
dth root of one and only one Cd(x9 y9 z) where d\n. Thus each linear factor 
of in(x9 y9 z) occurs in one and only one Cd(x9 y9 s). 

Lemma 5 »' For n >_ 1, the polynomial Cn(x9 y9 0) is irreducible over the ring 
of integers. 

?HX)0jh} T n e statement is clearly true for n = 1. For n _> 2, suppose 

Cn(x9 y9 0) = d(x9 y)q{x9 y). 
Then 

Cn(x, 1,0)= d(x, l)^(x, 1). 

Since the cyclotomic polynomial Cn(x9 1, 0) is irreducible, one of the poly-
nomials d{x9 1) and q(x9 1) must be the constant 1 polynomial. Without any 
loss, we may suppose this one to be d('x9 1) and thus have 
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d(x9 y) = 1 + (y - i)e(xs y) 

for some polynomial e(x9 y). Then 

Cn(x9 ys 0) = q(x9 y) + (y - l)e(x9 y)q(x9 y). 

Now q(x9 y) includes the term x^^n' 5 which cannot appear in 

(y - l)e(x9 y)q(x9 y). 

Therefore, e(x9 y) = 09 so that d(x9 y) = 1. 

Tko.QK.2m 5- For n _> 19 the polynomial Cn(x9 y9 s) is irreducible over the 
ring of integers« 

Vnooj'. Suppose 
Cn(xs y9 z) = d(x9 y9 z)q(x9 ys z). 

Then 
Cn(x9 y9 0) = d(x9 y9 0)q(x9 y9 0 ) . 

By Lemma 5, one of the polynomials d(x9 y9 0) and q(x9 y9 0) is the constant 
1 polynomial. Consequently9 as in the proof of Lemma 59 we have 

d(x9 y9 z) = 1 + ze(x9 y9 z) 

for some polynomial e(x9 y9 z). Then 

Cn(x9 y9 z) = q(x9 y9 z) + ze(x9 y9 z)q(x9 y9 z). 

Now q(x9 y9 z) includes the term x$(n) 9 which cannot appear in 

ze(x9 y9 z)q(x9 y9 z). 

There fo re 9 e(x9 y9 z) = 0 , so t h a t d(x9 y9 z) = 1. 

TABLE 1 

Generalized Cyclotomic Polynomials Cn = Cn(x, y, z) 

C1 = 1 

C2 = x + y 

C3 = x2 + xy + y2 + 3s 

Ch = x2 + y2 + 4s 

C5 = xh + o3z/ + x2z/2 + xzy3 + yh + 5s (ic2 + ocy + y2) + 5 s 2 

C6 = < # 2 - a ? / + z/2 + 3s 

C8 = ^ + z/1* + 4s O 2 + y2) + 4 s 2 

Cg = xe + x3z/3 + z/6 + 3s (2xh + o3zy + xzy3 + 2yh) 

+ 9 s 2 ( o 2 + xy + y2) + 3 s 3 

C1Q = (x5 + z / ) / 0 r + y) + 5 s ( o 3 + z / 3 ) / 0 + zy) 4- 5 s 2 

^12 = x** " ^ 2 2/ 2 + 2/1* + 2s (x2 + z/2) + s 2 

A b b r e v i a t i n g Cn(x9 y9 0) as c n 9 we n o t e t h a t 

C3 = o3 + 3z9 Ch = oh + 4 s , C6 = o6 + 3z9 CQ = oQ + tee^ + 4 s 2 , 
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and 
C9 = os + 3z(c5 + c12) + 9s2e3 + 3s3. 

One wonders if all the coefficients of powers of z are linear combinations of 

3. THE CASE z = 0: FIBONACCI CYCL0T0MIC POLYNOMIALS 

Here we will determine the irreducible factors of the generalized Fibo-
nacci polynomials. In Section 1, the (not generalized) irreducible factors 
were named the Fibonacci cyclotomic polynomials and denoted ^n{x). Here, 
however, we shall deal with the natural generalization: the generalized Fi-
bonacci cyclotomic polynomials, denoted <$n(x9 y) . Theorem 6 will show that 

S„C*. y) - g , ( a + / g
2
2 + 4 y . * ~ /a22 + 4*. o) for n > 1, 

and Corollary 7 will show that the ^n{x)^s can be expressed as linear combi-
nations of generalized (unmodified) Lucas polynomials. 

TkzotiQjn 6«' For n ^_ 1, let Fn(x5 y) be the nth generalized Fibonacci polyno-
mial. Then 

M*. J/) = n cix + /a
2
2 + hK x - 7 f+ % o). 

d\n \ / 

. _, „ , ̂  + /a;2 + 4ty # - v^c2 + 4ty ~\ 3 as polynomials Moreovers the polynomials LA tJ-9 — u-9 0 1 

in x and y 9 are irreducible over the ring of integers. 

x + vx2 + 4z/ , x - A 2 + ky Vnjooji Wr i t e s = -j ^ and t = T J — • B^ ^ a n d T n e o r e m 4 , 

Fn(a;, z/) = £ n (s 3 t, 0) = II Q ( s , £, 0 ) . 

d\n 

To see that the Q f s are irreducible as polynomials in x and z/, suppose 
Cd(s9 t9 0) = p(xs y)q(x9 y). 

Then5 since # = s + t and 2/ = -s£, we have Cd(s9 t9 0) written as a product 
of two polynomials each in s and t . By Lemma 5 5 one of these polynomials is 
a constant polynomial 9 namely 1, since Cd is monic. Thus, either p(x9 y) = 1 
or q(x9 y) = 19 as desired. 

lkdOK.QJ(\ 7- For k >_ 1 s let Lk(x9 y) be the kth generalized (unmodified) Lucas 
polynomial. For n >. 35 the nth generalized Fibonacci cyclotomic polynomial 
is given by 

4>{n)/2 ^(n)_ . 

where 6,, w 2 = 1 and the numers 6 Q S &l9 &25 . .., ($£(n_)_1 are integers. 



1H CYCLOTOMIC POLYNOMIALS [April 

VKOO^I Suppose n >_ 3. With s and t as in the proof of Theorem 6, 

Vn(x9 y) = Cn(s, t , 0) = t*Wcn(s/t9 1, 0) 9 

where 

>(«)-! 
w ^ " ) " 1 + + a w + 1 Cn(u5 1, 0) = u 

is the nth cyclotomic polynomial. Thus, Cn(s9 t9 0) has the form 

* ( « ) - i t + s*(n) + a *(«) -l*- + a1st*{n)-1 + t H n ) 

Since Cn(s9 t9 0) is symmetric in s and t, this polynomial is expressible as 

,*(») + t' >(«) + a<f>(«) -1^1 + a0 ( n ) (st) *0(*) 
2 

Recalling st = -2/ and the Binet formula Lk(x9 y) = sk + tfe [in particular, 
L (#, <y) = 2 ] , we conclude that 

0(n) *(«) 

^nG*. 2/) = ̂ ( n ) ~ ^ 0(n)-l^(n)-2 + + (-D b{n) y V 
as desired. 

CoKolLcUtij 7» Only for the purpose of facilitating the statement of this cor-
rolary, suppose LQ(x9 y) = 1 (instead of 2). Then for n >_ 1, the nth Fibonacci 
cyclotomic polynomial ^n(x) is an integral linear combination of Lucas poly-
nomials Ln(x). 

VKOOfc The proposition is easily verified for n = 0, 1, 2. For n 2. 3, put 
z/ = 1 in Theorem 7. 

To illustrate Corollary 7, we write out, in Table 2, several Fibonacci 
cyclotomic polynomials 9° n = cFn(a:, 1) in terms of the Lucas polynomials Ln = 
Ln(x9 1) . Recall that the ̂ n's are the irreducible divisors of the Fibonacci 
polynomials, in accord with the identity 

F„ 
din 

degree 0 

degree 1 

degree 2 

^ 2 

TABLE 2 

Fibonacci Cyclotomic Polynomials 

1 

X = Li -I 

x2 + 1 = L2 - 1 

x2 + 2 = L0 

degree 4: &5 L,. 

10 

sr 12 

x2 + 3 = L2 + 1 

xh + 3a:2 + 1 

x4 + 4a;2 + 2 

x1* + 5x2 + 5 

x1* + kx1 + 1 

L2 + 1 

L4 + L2 + 1 
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TABLE 2 (continued) 

degree 6: 9 7 = x6 + 5a:4 + 6x2 + 1 = L6 - Lh + L2 - 1 

9 g = a:6 + 6a:4 + 9a:2 + 1 = Ls - 1 

9 l l f = ^ + 7 ^ + 14^2 + 7 = L6 + Lh + L2 + 1 

9^8 = a:6 + 6a:4 + 9a:2 + 4 = L6 + 1 

degree 8: 9 1 5 = a:8 + 9a:6 + 26a:4 + 24a:2 + 1 = LQ + L6 - L2 - 1 

gr i 6 = a:8 + 8a:6 + 20a:4 + 16a:2 + 2 = LQ 

<920 = a:8 + 8a:6 + 19a:4 + 12a:2 + 1 = LQ - L^ + 1 

9 2 4 = a:8 + 8a:6 + 20a:4 + 16a:2 + 1 = L 8 - 1 

9 3 0 = a:8 + 7a:6 + 14a:4 + 8a?2 + 1 = L 8 - L6 + L 2 - 1 

d e g r e e > 8 : g f u = L 1 0 - LQ + L 6 - L^ + L 2 - 1 

^32 ~ ^16 

^33 = L 2 0 + ^18 " Llh " ^12 + ^8 + ^6 "" L 2 " l 

^3 6 =-^12 ~ 1 

^ 0 = ^16 ~ LQ + 1 

^ 2 = ^12 " ^10 + L 6 " ^ + 1 

^45 = L2h + L 1 8 _ L 6 ~ 1 

^ 4 8 = ^16 ~ *" 

^50 = ^20 + ^10 + * 

^105 = L 4 8 " L 4 6 + L 4 4 + L 3 8 " ^36 + 2L 3 4 " L 3 2 + ^ 3 0 + L 2 4 

- L22 + L20 - L1Q + L16 - L11+ - LQ - Lh - 1 

Note in particular the coefficient of L3h in the polynomial 9105. 

Two reminders (e.g., [9]) about the cyclotomic polynomials Cn(us 1, 0) 
$M (u) which are helpful in computing 9V s are the following J 

(i) If p is a prime and p )( ns then $„p (u) = §n(up) /$„ (u) ; 

(ii) If p is a prime and p | n9 then $np (w) = <3>n(up). 

As an example, we compute 9^5 as follows 

$45^) = ^is(^3) = ®3(u15)/$3(u6) 
-,,30 , 15 , i 

3\ - ^ ^,,15W^ ^,3^ =U ±_U ±_± 

u& + u3 + 1 

so that 
^5(o:5 z/) = C^5(s5 t9 0) 

u21 + u15 - u12 + u9 - u3 + 1, 

s3t21 + £24 

?24 + t24 - (st)3(s18 + t18) + (st)9(s6 + t6) - (st): 
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= L2h + y3L1& - y3L6 - y12 (Theorem 7), 

^5(x9 1) = L24 + L18 - L6 - 1 (Corollary 7). 

Since for highly composite values of n the cyclotomic polynomials tend 
to be complicated ([1], [3], [4], [11], [12]), the same is true for the cor-
responding Fibonacci cyclotomic polynomials. 

In Theorem 12 of [6], Hoggatt and Long find an upper bound for the num-
ber NQn) of polynomials of degree 2m that divide some Fibonacci polynomial. 
If we restrict NQn) to irreducible polynomials, then NQn) is the number of 
solutions n to the equation (j)(n) = 2m. For example, N(720) = 72. That is, 
there are 72 distinct Fibonacci cyclotomic polynomials cTn having degree 1440. 
See [10]. 

Still restricting NQn) to irreducible polynomials, we ask if NQn) = 0 
for any m. The answer is yes. C. L. Klee proved in [8] that §Qri) = 2wz has 
no solution n if m has no divisor d > 1 for which 2d + 1 is a prime. For ex-
ample, no 9^ has degree 14. 

4. THE CASE y = 0: LUCAS CYCLOTOMIC POLYNOMIALS 

Our main objective in this section is to determine the irreducible fac-
tors of the generalized modified Lucas polynomials in(x9 0, z). First, how-
ever, we wish to justify the names Lucas cyclotomic polynomials and general-
ised Lucas cyclotomic polynomials for the sequences 

Cn (x, 0, 1) and Cn(x9 0, z) , 

since these sequences are determined by (3) from the generalized modified 
Lucas sequence ln(x, 0, z) and not the generalized Lucas sequence Ln(x9 z). 
The justification is this: that, by Theorem 1, the quotient (3) defines 
polynomials analogous to cyclotomic polynomials in the former case, but does 
not generally define polynomials at all if the Ln

%s are substituted for the 
&n

fs. (Nevertheless, the irreducible factors of the Ln
fs will be easily de-

termined otherwise in Section 5.) 
In Section 1, the (not generalized) Lucas analogue of the Fibonacci cy-

clotomic polynomials were named Lucas cyclotomic polynomials and denoted by 
$£n(x). Here however., we shall deal with the natural generalization, the gen-
eralized Lucas cyclotomic polynomials, denoted ^.n(xs z) and defined by 

$£n(x9 z) = Cn{x9 0, z) . 

By Theorem 3 and t h e i d e n t i t y s i n h iu = i s i n u9 t h e r o o t s of $£n(x9 z) 
a r e 

2i/z s i n 2/ar/n, (k9 n) = 1, 1 £ fc _< n - 1. 

The roots of Fn(x9 z) are 2i/z cos ku/n for 1 £ fc £ n - 1, as proved in 
[5] and [6], and consequently, the roots of ^n(x9 z) are 

2i/z cos kJi/n9 (k9 n ) = l , l £ / c £ n - l . 

In order to reconcile roots of the %£n(x9 z)%s with those of the ̂ ( x, s)fs 
let 

Qn = {k : Qk9 n) = 1 and 1 £ k £ n - l}. 

for k £ Qn9 we have 

s i n 2/cir/n = cos (n - 4k)Tr/2n. 
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As k ranges through the set Qn5 it is natural to expect the numbers n - kk to 
range through residue sets modulo various divisors or multiples of n. Such 
expectations are fulfilled in the next theorem,, 

Tk^QKom 8: Except for ^1(x9 z) = I and ^h(x5 z) = x2 + 4s, the nth general-
ized Lucas cyclotomic polynomial ££„(#, z) can be expressed in terms of the 
generalized Fibonacci cyclotomic polynomials as follows: 

3Ln\Xs Z) 

9"2n (x9 z) for odd n5 n ^ 1, 

Qnix, z) for n = 2q5 q odd, 

^2(x, z) for n = 4q, q odd9 q ^ 1, 

9^* (̂5 s) for n = 2t+1q, q odd, £ j> 2. 

Co6e 1. Suppose n is odd and n ^ 1. Then 

\n - 4/CITT 

Let 

(n- - 4/C)TT J 

2™ " J 
A = {|n - 4/c| 
B = {5n - 4/c 

L U b " • " ̂  " " " JLUJL H-ft. ^ ->U 

(5n - 4/c) IT c / 7 ^ o 
cos r fo r 4/c > 3n 

2n 

: k e Qn and 4/c < 3 n } , 

: /c e Qn and 4/c > 3 n } , 
and 

A U B» 

It suffices to show that Q=Q2n
 a n d that each element of Q2n appears only once 

in forming the set Q« This will be shown in four steps: 

(i) A H B is empty; 
(ii) Q consists of <j>(2n) elements; 
(iii) If j e 6, then 1 < j < 2n - 1; 
(iv) If j e Q5 then (j\ 2n) = 1. 

To verify (i) , suppose n - kkx = 5n - 4/c2 where hk1 < 3n and 4/c2 > 3n. 
Then k2 - /^ = n, contrary to the inequalities 

1 <_k ^n - 1 and 1 <_ k2 <_ n - 1. 

If |n - 4/cJ = 4/^ - n = 5n™ 4/c2, then 2(k1 + /c2) = 3n, contrary to our as-
sumption that n is odd„ 

For (ii), we know from (i) that distinct /cfs in Qn provide distinct ele-
ments in Q. Furthermore 9 every element k in Qn does yield an element of A or 
B9 since kk = 3n is impossible for odd n. Thus, Q consists of the same number 
of elements as Qn> which Is cf>(n). Since n is odd, we have (j)(n) = cj)(2n). 

To verify (iii), first suppose 4/c < 3n« If n - 4/c > 0, then 1 ̂  n - 4/c 
since n is an odd positive Integer and, clearly, n - 4/c <• 2n - 1; if n - 4/c < 0, 
then, similarly, 1 <_ 4/c - n, and 4/c - n <_ 2n - 1 since 4/c < 3n. Now suppose 
4/c > 3n» Then 5n - 4/c <_ 2n - 1, and also 1 < 5n' - 4/c, since k < n« 
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For (iv) , if d\ (ft - 4ft)|and d\2n9 then d must be odd since ft- kk is odd. 
Consequently, d\n. But then d\kk9 so that d|fc. Since {k9 ft) = 1, we conclude 
that (ft-4ft, 2ft) = 1. The same clearly holds for 4ft - ft and 5ft-4ft. 

Co6e 2. Suppose n = 2q9 q odd. Then 

|? - 2ft |TT 
c o s f o r 2fe < 3<?, 

(n - 4ft)TT ! 
c o s 

(5ff - 2ft)ir - 07 ^ Q f c o s _̂ __̂  £_ for 2/c > 3q. 
ft ^ 

Here, the numbers \q - 2k\ and 5q - 2k, as stipulated, range through the set 
Qn as k ranges through the set Qn. The proof is so similar to that in Case 1 
that we omit it here. 

Ca4& 3. Suppose ft = kq9 q odd, q £ 1. Let 

4 = U £ £ n : ft < q}> B = {k e Qn : ? < ft < 2^}, 

C = {k e Qn i 2q < ft < 3q}, £ = {ft £ fi„ : 3q < ft}. 

Each ft in Qn in odd, so that (q - ft)/2 is an integer, and 

(q - &)/2|TT 
for / c s i U 5 5 

(ft - 4ft) TT _ J ? 

™ [(5^7 - k)/2]u 
2ft 

for ft e C U £. 

We first claim that as k ranges through the set AUG* the numbers | (q-k)/2\ 
and (5q~k)/29 as stipulated, range through the set Qq. This claim is veri-
fied as in the four steps in Case 1. Starting with 

A* = {|(q - ft)/2| : k £ A} and C* = {(5q - k)/2 : k £ C}, 
only step (ii) calls for anything new: To see that A*U G* consists of $(q) 
elements [granted from step (i) that distinct ftfs lead to distinct elements 
±n A U B U C U D] 9 we note that the number of ft*s in Qn is 

<K4?) = *(4)<K?) = 2<|>(?), 

and precisely half of these lie in A * U G* since, as is easily checked, the 
sets A9 B9 G, D are in one-to-one correspondence with one another: 

A ->• B : k -> 2q - ft, 
A + C : k + 2q + k, 
G -> D : k ->• 6q - k. 

Thus, the roots of ^n(x9 s) found for ft £ A U G are the roots of ^q{x9 z). 
That the same is true for k e B U D will now be proved. Since 

B = {2q - k i k e A}9 
we have 

(ft - 4ft) TT 7 J j U? - k)/2\lt 
c o s d _ . ̂  £ g ^ = <;cos _ : ft £ ,4 

Since Z> = {6q - k : k e G}9 we have 
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(ft - 4k)ir 7 n ( ) [(5a - fe)/2]Tr 7 c o s ^ £ _ . fc e j ) \ = < c o s ^ ——— j fc e 

Thus t h e r o o t s of $£n(x9 z) fo r k e B U D a r e t h e r o o t s of ^fq(x» z) * We con-
c lude t h a t &£„(#, z) = g^Oc, s ) . 

Co^e jL Suppose n = 2 t + 1 ^ 9 7̂ odd9 £ .> 2 . Define s e t s As Bs Cs D as i n 
Case 3 , and have t h e fo l l owing o n e - t o - o n e co r r e spondences : 

A •+ B : k + 2*q - k9 
A -> C : k -> 2tq + fe, 
C -> £ : Zc •> 3 • 2tq - L 

Now 
k\i\ 

—— f o r / c e i U 5 5 

(ft - 4A:)TT 
COS - — 

2n 

2*1 

cos (5 • 2*'V - k)* for he CUD. 
2 \ 

We claim that as k ranges through the set A U C5 the numbers \2t~1q - k\ and 
(5 • 2t"1q - k) 9 as stipulateds range through the set S2t^. The four steps in 
Case 3 easily verify this claim. We omit the verification, except to note 
that for step (ii) we have §(2t+1q) = 2$(2tq) , so that ^(2tq) roots are found 
for k e A U C*. 

As in Case 39 we have 

(ft - 4/C)TT 7 D l i n ( ) (ft - 4̂ C)TT 7 . , , n cos - 2 : feeBU^ = <cos -z — : AC £ .4 U C 

Therefore9 ^n(x9 g) =zC32
tq s and Theorem 8 is proved. 

Theorem 8 and Theorem 4 enable us to factor the polynomials Zn(x9 09 z) 
completely in terms of irreducible factors. For example9 

£ 6 0 ( x 9 09 z) = I I Cd(x, 09 z) 
d|60 

= n ^(*» 3) 
d|60 

= * ( * 2 + 4S)(g3g;5g:6griog: i5gr30)2. 

Recalling that F30 = ̂ ^ ^ ^ I O ^ I S ^ O > t h a t ^ e o ^ ' ° s s ) = Leo " 2z3° > a n d 

that 2J2 + 4s is the discriminant £(#, z) of t2 - xt - zs we rewrite L6Q as 
follows: 

L6Q(x9 z) = D(x9 z)F2
30(xs z) + 2s30. 

Putting x = z = 1, we find an identity L60 = 5F2
0 + 2 involving the thirtieth 

Fibonacci number and the sixtieth Lucas number. These considerations lead to 
the following theorems and corollary. 
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Tke.QJim 9 OH Suppose m = 2tq9 q odd, t > 2. Then 

(4) L2m&> s) = (̂ 2 + 4s)*£(*» z) + 2sw. 

- *(*2 + 43)g^ ... s ^ g ^ s ^ ••• ^ 

= x ( x 2 + kz)F2/x2, 

and (4) fo l lows immedia te ly . 

Tkzotim 9b: I f 777 i s odd 5 then 

(5) L2m(X> 3> " 2 ^ = L5U*» 2)e 

Vh.00^: The proof of this known identity is so similar to that of Theorem 9a 
that we omit it here. 

Co/iotlaAy 9: For k > 05 l e t Ffe and Lfe be t h e k t h F i b o n a c c i and Lucas num-
b e r s . I f m = 2tq9 q odd, t J> 2 , then 

I f m i s odd5 then 
L2m =L2

m + 2. 
Pfioofi: Put # = z = 1 in (4) and ( 5 ) . 

5. THE IRREDUCIBLE FACTORS OF THE LUCAS POLYNOMIALS 

Hoggatt and Bicknell prove in [5] that for n >_ 1 the roots of the nth 
Lucas polynomial Ln(xs 1) are 

2i cos — , k = 0, 1, ..., n - 1. 
In 

The methods of Section 4 could be used to compare these roots with those of 
the Fibonacci cyclotomic polynomials. However, we choose a different way, 
which depends on the well-known identity F2n= LnFn . 

lh<L0K<m 10: For n >_ 1, write n = 2 ^ , where t > 0 and q is odd. The nth 
generalized Lucas polynomial Ln(xs z) is a product of (irreducible) Fibonacci 
cyclotomic polynomials: 

Ln(x, z) = n^**1^ ^ ^* 

« ~ P ~ n ~ M <*" 
r " 11 g: d\2n. 

d\n d d\n 
Now 

{d i d\2n and d|n} = {2 + 1d : d\n and d is odd}, 

so that the conditions d\2n9 d\ n are replaceable by the condition 2 +1d|2n, 
i.e., d\q. 
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ExmP1^ ^i^^^^^gs^o^^^s^o^^o^o^o^i^ 
6 0 

^ 1^2^3 ̂ V^5^6 "̂ 1 0^1 2^1 5^2 0^3 0 ̂ 6 0 

^ S ^ ^ O ^ O * 

CoKotioJiij 10: For even n >_ 29 Ln(x9 z) is irreducible if and only if n = 2k 

for some fc >_ 1. 

Vnjooji Suppose n = 2k for some k >_ 1. Then by Theorem 10, we have Ln = 9:2n , 
which is irreducible by Theorem 6. If n is even but not a power of 2, then 
by Theorem 10s SF2n is a proper divisor of Ln(x9 z) . 

In [2]3 Bergum and Hoggatt prove Corollary 10 using Eisensteinfs Crite-
rion. 

We conclude this section by noting that the divisibility properties that 
are already established for the polynomials Fn9 Ln9 and l n in terms of the 
irreducible polynomials cFn now carry over to divisibility properties of 
Chebyshev polynomials of the first and second kinds. 

It is well known that the nth Chebyshev polynomial of the first kind is 

Tn(x) = \LU{2X9 -1), n = 0, 1, ... . 

Accordingly, the factorization of Tn(x) in terms of factors which are irre-
ducible over the ring of integers is given by Theorem 10. 

Let us define modified Chebyshev polynomials of the first kind by 

— Ty, (x) for odd n, 
x 

£n(x) = t 
^\Tn(x) - (-l)fl for even n > 0. 

Then we have tn(x) = — ln(2x9 0, -1), so that the divisibility properties of 

the tn s are the same as those of the £w
fs. In particular, the irreducible 

factors are given by Theorem 8. Moreover, many of the results proved in [7] 
[e.g., concerning greatest common divisors, (&ms &«) = &(m,n)] carry over to 
similar results for the modified Chebyshev polynomials. 

It is well known that the nth Chebyshev polynomial of the second kind is 

Un(x) = Fn + 1(2x, -1), n = 0, 1, ... . 

Accordingly, the factorization of Un(x) in terms of irreducible factors is 
given by Theorem 6. 

Finally, note that the roots of the Chebyshev and modified Chebyshev 
polynomials, and also the roots of their irreducible factors, are easily ob-
tained from Theorem 1 and Theorem 3. 

6. TRANSFORMED FIBONACCI AND LUCAS POLYNOMIALS 

For any integers (or indeterminants) a, b9 e9 where a ̂  0 + o9 let 

Un(x9 z) = Fn(ax9 bx2 + oz2), 

Vn(x9 z) = -jLn(ax9 bx2 + ez2), 
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and Wn(x> s ) = ^n{ax9 0 , bx2 + cz2). 
Then the quotients (3) are clearly polynomials for each of the sequences 

Un(x, z) and Wn(x9 z), 

since this is true for the sequences Fn and £n. Similarly, the divisibility 
properties of the 7n? s follow from those of the L„*s, as given in [2] and Sec-
tion 5. 

One of the most attractive special cases is (a, b9 o) = (2, -1, 1). We 
tabulate the first few [/„' s and 7„' s in this case. Then we tabulate the first 
few Wn s and the first few transformed Fibonacci cyclotomic polynomials; i.e., 
the quotients (3) formed from the £/n?s. These, we shall show, are irreduci-
ble except for a constant multiple; hence, they are the irreducible factors 
not only of the £/n!s, but also of the Vn' s and the Wn's, After the tables, 
we shall return to arbitrary a, b9 e satisfying 
Binet forms, etc. 

+ kb - 0 and find roots, 

TABLE 3 

Transformed Generalized Fibonacci Polynomials Un = Fn (2x, z2 - x2 ) 

and Transformed Generalized Lucas Polynomials Vn -Ln(2xr z2 

n 

1 

2 

3 

4 

5 

6 

7 

1 

2x 

3x2 + z2 

hx3 kxz^ 

5x* + 10xzsz + z* 

6x5 + 20x3z2 + 6xz** 

7xe + 35x*z2 + 2lx2zh + z6 

xs + 3xz2 

;5 + 10x3z2 + 5xzh 

x2) 

z1 + 20x5s2 + 35x3z* + 7xz6 

One immediately detects Pascal!s triangle lurking within Table 3. We 
shall soon ascertain that zUn + Vn = {x + z)n for n ̂  1. 

TABLE 4 TABLE 5 

Transformed Generalized Modified 
Lucas Polynomials 

Wn = 

= 1 
= 2x 

W* 

WK 

in(2x, 0, Z x2) 

x2 + 3z2 

W„ = 8xz2 

= xh + I0x2z2 + 5zh 

= 2x5 + 12x3s2 + lte4 

= ̂ r6 + 21^s2 + 35x2zh + 7s6 

= 32x5s2 + 6hx3zh + 32^3 6 

Transformed Generalized Fibonacci 
Cyclotomic Polynomials 

clin = Vn(2x, z2 x2) 

1 
2x 
3x2 + z2 

2x2 + 2s2 

5x 
~2 

2 ^ 2 + 10XZSZ + 3 
xz + 33' 
2xH + 12x 2 s 2 + 2z* 

xh + 14x 2 s 2 
+ 5zH 

+ z* 
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Lomma. 11: Suppose n is an odd positive integer >_ 3. Then 

% cos2 M = 2 l - , ^ " c o s 2 Vk^DjL . n2l-K) and "f s l n 2 M , _.n2l-B> 

Suppose n i s an even p o s i t i v e i n t e g e r >_ 4 . Then 
re-2 re-2 

fl cos2 ^ = n21"n and fj sin2 ̂  = n 22"\ 
k = l n k=l n 

Suppose n is an even positive integer _> 2. Then 

n-l 

I I cos = z 

P/L00_£: For odd n _> 35 we have 

II 2i cos f^ = Fn(0) = 1, 

so that n- l 

2«-i r T c o s 2 — I-
fc-i n 

For even n >. 4, let Gn (#) = -Fn(a;). Then Gn(0) = n/29 and 

I"! (# - 2£ cos — ) = x n [x - 2i cos — J = xGAx) 
n - l 
] 

so t h a t 

and 

f l 2£ cos — = Gn(0) = n / 2 , 
l < f c < n - l n 

2 - kn_ 
n 

2 n c° s — =n/2-
Proofs of the other four formulas follow from similar considerations of Ln(0) 
and £n(05 0, 1). 

ThdOKom 11: Suppose a2 + 42? = 0, Then, for n >: 3, the roots of the polyno-
mials Un(x9 z), Vn(x, s), and Wn(x9 z) are given by the following factoriza-
tions. 

n-l 

I I {oz2 - bx2tan2 ~f\ fo r odd n > 3 , 

Un (x, z) 

n ^ 2 - te2tan2 M ) 
n - 2 

9 1 B ,^~ ~~ „™ _ , fo r even n >_ 4 . 
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nax 
2 

n - 3 
2 

n 
fe = 0 

oz2- to2tan2 ^K 

Vn(x, z) 

ri U 
k = 0 L 

2 - to2tan2 - ^ 

5J J fo 

+ 1)TT1 
>n J 

r odd n _>_ 3 9 

n - 1 
2 

w n 
k = l 

oz2- bx2cot2 2/orl 
n J 

Wn(x, z) 

n C3 ~ to COt [] 

for even n > 2 . 

fo r odd n >_ 3 9 

fo r even n _> 4 . 

VnjQOJi Un(x, z) = Fn (ox9 to2 + oz2) = H | ax 
k-

n-1 / 
2 i / t o 2 + c s 2 cos : ^ ] . 

I f n i s odd and _> 3 , then t h e n - 1 r o o t s of Un (x9 s ) occur i n con juga te 
p a i r s , so t h a t 

n - 1 

M ^ > s) = n i"a2x2 + 4(te2 + ^ 2 > c o s 2 —1 
k = 1L ^J 
n-1 

- II (-4te2sin2 ̂  + 4C3
2cos2 M ) 

n-1 

n(. 
fe = l 

oz2 - to2tan2 — J n / 

by Lemma 11. 

If n is even and >_ 49 then the n - 2 roots of Un(xs z) remaining after 
the root 0 is excluded occur in conjugate pairs, and we find as above that 

Un{x, z) 
k = lx 

oz - bx'tan kfr\ 
n y 

With the help of Lemma 11, the remaining four factorizations are proved in 
the same way. 

Lemma. 12: Suppose a2 + kb = 0. For n >_ 39 the transformed generalized Fi-
bonacci cyclotomic polynomial Qi^x, z) = ^n(axs bx2 + oz2) is given by 
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PI \ ^ 2 - to2tan2 —J fo r odd n > 3 , 
" - D / 2 

= 1 

n U - te2tan2 M) 

0( n (x , 3) ~ 
1 YlCtX 

~2~ II l ^ ™ ^^t a n^ ~ ) f o r e v e n n >_k. 
l£k£(n-2) /2^ 

(k ,n) - l 
P 1̂0Q »̂ This i s an obvious consequence of Theorem 11 and t h e f a c t t h a t t h e 
r o o t s of <x^n(x5 z) a r e 

2i/z cos — , (ks n) = ls I < k < n - I, n ~ — 

TkdOtiQjm I2: Suppose a, b5 a are integers and a2 + 4£ = 0„ Except for an in-
teger multiple, for n _> 1 s the polynomial cKn(xs z) is irreducible over the 
ring of integers. 

PsiOO^t The proposition is clearly true for n = 1 and n = 2. Suppose, for 
n _> 3, that Qin0£, s) = p(x, s)̂ (a;, a). By Lemma 12 and the irreducibility 
(since -b > 0) of the factors 

2 T_ 2 2 kl\ 
cz - bx tan — n 

over the real number field, p(xs z) has the form P(x5 z2)andq(x9 z) has the 
form Q(xs z2) . Thus, putting v = ccx and s = bx2 + CB 2

5 we find 

( r_ g2s - br2\Q lr_ a2s - br2\ 
as a2o ) \a' a2a ) ' 

Since ?n(p, s) is irreducible, one of the polynomials P and Q must be constant. 
But then p(xs z) or q(x5 z) is constant, as desired. 

Tk&Qfiom 13* Suppose (a, bs a) = (2,-1, 1). The Binet formulas for the poly-
nomials Un, Vn5 and Wn are as follows: 

M * . « ) - ° c + ' ) ,
2; ( a ;"8 )" 

-Fn(x, 2) for odd n, 

(* + 3)n + (x - g) w - 2(s2 - x2) n/2 . 
_v i_ >s j . b 1 for even n. 

2x 

p ^ . . L e t t i . y + /y
2
2 + 4 s , t2 = * - /P22 + 4 S, t3 = v^, t, - Vi". Putting 

p = 2x and s = s 2-^ 2, the desired formulas follow immediately from the Binet 
formulas 

Fn(r, s) = x _ 2, 

Ln(r, s) = tl + t\ 
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£n(r, 0, s) = , _ . 
^1 ^2 ^3 ^ 
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GEOMETRIC RECURRENCE RELATION 

LEONARD E. FULLER 
Kansas State University, Manhattan KA 66502 

1. INTRODUCTION 

In a previous paper [1], we considered p, s sequences {Uy} and obtained 
explicit formulations for the general term in powers of r and s. We noted 2 
special sequences iGy) and {Mk}. These are sequences that specialize to the 
Fibonacci and Lucas sequences where r = s = 1. 

In this paper, we propose to consider the relationship between r,s re-
currence relations and geometric sequences. We give a necessary and suffi-
cient condition on r and s for the recurrence relation to be geometric. We 
conclude the section by showing how to write any geometric sequence as an r, 
s recurrence relation. 

In the final section, we briefly consider a special Fibonacci sequence. 
We give an explicit formulation for its general term. We are then able to 
note when it is a geometric sequence. 
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2. GEOMETRIC r,s SEQUENCES 

In the previous paper [1] we considered the special rss relations {Gk} 
and {Mk} which were characterized by the initial values GQ = 0, G± = 1, MQ = 
2, and M1 = P. We further specialize r and s so that the characteristic equa-
tion of the sequence has a multiple root A. We then have p = 2 A and s = -A2. 
It can be readily verified that the expression for the general terms are 

Gk = k^'1 and Mk = 2Xk . 

Note that the Mk sequence is geometric with ratio of A and first term 
of M0 = 2 . But the other sequence is not geometric. We shall develop the 
general conditions for which these two results are special cases. 

Before going to the main theorem, we will make a few observations. Con-
sider the general term of the P, s sequence {Uk}i 

un = rUn-i + sUn-il Uo> Ui arbitrary. 

If s = 0, this would be a geometric sequence starting with U1> Furthers if 
the initial values were such that U1 = rUQ, the sequence would be geometric 
with UQ as the first term. 

If P = 0, we have two geometric sequences with ratio s. One of these is 
the even indexed Uk with UQ as initial value. The other geometric sequence 
is the odd indexed Uk with U± as starting value. 

We shall call these two cases the trivial cases. In other words, an p, 
s relation for which PS = 0 is trivially geometric. 

There is a whole class of P,S sequences that are geometric only in this 
trivial case. These are the sequences, for which UQ = 0, for in this case 

U2 = rU1 + sU0 = rU19 

Us = rU2 + sU1 = (P2 + s)U1. 

Now this is geometric only if r2 + s = r 2. But this can only happen for s = 0. 
Included in this class is the {Gk} sequence. 

We shall assume in the rest of this section that UQ, P, and s are all 
nonzero. We are ready to state and prove our theorem. 

IhojQKm IA .' The p, s sequence {Uk} is geometric if and only if 

v + e U± . . /~2 ; / 
— - — = — , where e = ±Yr + 4s. 

Z U Q 

For convenience, we shall denote the ratio as m so that r + e = 2m or 
v - 2m - e. We find that 

e2 - r2 e2 - {2m - e)2 , . 
4 4 

We also need the result that 

vm + s = 2m2 - me + me - m2 = m2. 

From the expression for U2 and the assumption that U1 = mU0, we have 
U2 = rU1 + sUQ = r(mUQ) + sUQ = {vm + s)UQ = m2U0 = mU±. 

Assume t h a t Uk = mUk_1 fo r k = 2 , . . . , i - l . For 

Ui = rUi_1 + sUi_2 = r(mUi_2) + sUi_2 = (rm + s)Ui_2 = m2Ui_2 = mUi_1> 

Hence, the sequence is geometric with.UQ as first term and ratio of m. 
Conversely, assume {Uk} is geometric with ratio m so that Uk =mUk_1 for 

all k. Since 
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uk = rlIk-i + sUk-i = (wn + s)Uk_29 

and, by assumpt ion , 

Uk = mUk-l = m(mUk-2) = mlUk-2> 

it follows that vm + s = m2. This means that m is a solution of the equation 
9 2* i £2 2s "f" & 

x - vx - s = 0. The roots of this equation are — ~ — , so m = — - — . Fur-
ther, Ux = mUQ so JJ— = m. But these are the given equivalent conditions. 

In the proof, it was not necessary that r and s be integers. The results 
are then valid for a more general recurrence relation. In the corollary that 
follows, we note how any geometric sequence can be expressed as an r9s rela-
tion. 

CotiolZoJiy 2.1 '• The geometric sequence Uk = atk can be represented as the r, 
s sequence with UQ = a, U1 = at, r = 2t - A, s = t \ - t2 for any A. 

By the choice of UQ and U1, we have U1 = tU0. Also, 

e2 = v2 + 4s = kt2 - kt\ + A2 + kt\ - 4t2 = A2, 
so that 

v + e _ It - A + A _ 
2 " 2 " ̂  

Hence, by the theorem, this r, s sequence is geometric. 

3. A SPECIAL TRIBONACCI SEQUENCE 

There is a special Tribonacci sequence that is geometric under some con-
ditions. It can be verified that the sequence 

Tn = rTn_1 + sTn_2 - rsTn_3; TQ, T±, T2 arbitrary 

has for a solution 
k 

J-0 

J-0 

The roots of the characteristic equation of the sequence are p, ±fs. In case 
2^ - sTQ = 0 , we see that the even-indexed terms form a geometric sequence 
with ratio s and initial value TQ. Note that the condition imposed has T2 = 
sT0. The odd-indexed terms also form a geometric sequence with ratio s and 
initial value T±. 

We have another important special case to be noted. If T0 = T± = 0 , we 
do not need to differentiate between even-and odd-indexed terms. We have for 
solution 

M 
3=0 

if T2 = 1, we have represented the restricted partitions of m - 2 as a sum of 
Qn - 2 - 2j) lfs and (j) 2fs. 
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1. STATEMENT OF THE PROBLEM 

Recently5 Buschman [1], Horadam [2], and Waddill [3] considered proper-
ties of the recurrence relation 

V*. m rUk-i + sUk_2 
where rs s are nonnegative integers. Buschman and Horadam gave representa-
tions for Uk in powers of r and e = (r2 + 4s)1 . In this paper we give them 
in powers of r and s. We write the Kn of Waddill as Gk, It is a generaliza-
tion of the Fibonacci sequence. We also consider a sequence {Mk} that is a 
generalization of the Lucas sequence. 

For the {Gk} and {Mk} sequences9 we obtain two representations for their 
general terms. From this9 we move to a representation for the general term 
of the basic sequence. A computer program has been written that gives this 
term for specified values of the parameters. 

In this paper we use some standard notation. We start by defining 

e
2 = p2 + 4ss 

where e could be irrational. We also need to define 

a = (P + e)/2 and 3 = (r - e)/2. 

In other words, a and 3 are solutions of the quadratic equation 

We can easily show that a + $ = r 5 a - $ = e 9 and a(3 = -s. 

2. GENERALIZATIONS OF THE FIBONACCI AND LUCAS SEQUENCES 

Using the a and 3 given in the first section9 we can define two special 
p5 s sequences. These are given by 

= ak - 3 (g + 0 ) M = ak + 3ke 

It is easy to verify that 

G0 = 0, (?x = 1, G2 = P 9 Gs = r2 + s9 Gk = rs + 2rs; 

M0 = 2S M1 = z>s M2 = r2 + 2ss M3 = r3 + 3rs, 

Mh = vh + 4r2s + 2s2; 

and that they satisfy the basic r9s recurrence relation; i.e.9 
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G2 = rG1 + sG0 M2 = rM1 + sMQ 

Gs = vG2 + sG1 M3 = rM2 + sM1 

Gh = rGs + sG2 Mh = rM3 + sM2 

In the next theorem, we prove that these two sequences are indeed r, s 
sequences. 

TkdQ/izm 1t The sequences {Gk} and {Mk} are r9 s sequences. 

The proofs for both utilize mathematical induction. We have already in-
dicated the validity of the theorem for k = 2, 3, and 4. We assume the terms 
satisfy the r,s relation for k = 2S 3, ...s i - 1. We form 

rG._, + sG,_9 = (a + 3)- — ^ + (~a$f 
e e 

This is Gi by definitions so this sequence is an r9 s sequence. 
For the second part9 we once more assume that the terms satisfy the r9 s 

relation for k = 2, . . . 9 i, - 1. We form this time 

rMi_1 + sMi_2 = (a + S ) ( a i _ 1 + B^"1) + ( - a g ) ( a ^ - 2 + 3 i _ 2 ) 

- a* + B̂  + a1-1^ + a^-1 - a i _ 1 B - atf"1 

= a* + B i . 

This is Af by definitions so this too is an r, s sequence. 
We obtain the Fibonacci and Lucas sequences from these two by letting 

r = s = 1. This can be readily verified. 
In the next two theorems we give a more explicit formulation for Gk and 

Mk that can be easily programmed for a computer. 

Tkzotum 2 : For t h e sequence {Gk}, 

** ~ E " • " V ' 1 ' 2 ^ ' fc > 0; C0 « 0. 
j - o x J ' 

We shall prove this by induction. We first note that this formulation 
for k - 13 29 3, 4 gives the same results as the previous one. 

G, = (X)r°s°  = 1 

= (j) r = v 
ff3 = ( o ) - 2 + 0 S = r 2 + S 
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We 
it rGi 

^ i - i 

assume t h a t t h e r e s u l t i s v a l i d 
_1 + sGi_2 does g ive t h e express 

+ 8Gt. -gr-i 
• 2 f - ; -

j = o \ J 

- d\ri-2 

• c 7 V - i -

for 
3 ion 

- 2 j s , 

2 j s j 

fe = 1, . . . , £ - 1. We 
for Gi , Consider then 

Ml 
1 + * E C 

- E C " 
j = o \ 

- 3 
J 

3 -
J 

0\Ti-3-

3\ri-3-23 

now show 

2 j s j 

s*+1. 

We now introduce a standard change that we use in several proofs. We first 
remove the first term of the first summation; then we shift the index of the 
second summation by replacing j by J - 1* This gives the same exponents for 
v and s in both summations. We then have 

'1-2j'sJ'+ ]C t " . 1 JVi-i"2«7'sj'. 
If £ is even, the upper limits of both summations are equal9 so we can 

combine them into the single summation: 

J - 1 \ 

-*-1 + E 

V - 2 -
J 

^ - 1 
J 

J\pi-1 

r,i-\- 2j oj 

" 2 ^ \ 

We see that the summand is r'1'1 for j - 0. We include that term in the sum-
mation and obtain the desired expression for Gi . 

If £ is odd, then the upper limit on the second summation is one larger 
than that on the first. We break^ff the last term on the second summation 
and combine the two summands. This gives 

M 
r i - l + 

M 
•^-^OsQ + S(^-D/2 

20 Q3 + SV-D/2 . 

We see that the summand gives r1'1 for £ = 0 and s^ 1)/2 for i = — -z— . We 

combine these terms into the summation and we have the expression for Gi. 
Hence, in any case, we do obtain the desired formula for G^ , so it must 

be valid for all terms of the sequence. 
In passings we might note that for the Fibonacci sequence we have 

aft-:-., 
,?.f-}-')- k > 0; Fn 0. 
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In the next theorem for the {Mk}, we need the following property of bi-
nomial coefficients: 

- 1 - A J / i - 1 - j \ j - 1 / i - j \ j / 

This can be readily verified using factorials. 

Th&OKm 3: For the sequence {A^}9 

[« 
«* E - " — f ;• J ) ' k - ^ . * > 0; «0 - 2. 

The proof is by induction, so we first note that it is valid for k = 19 
2, 3. 

2 
J 
1 

M3 =} J 0 ,( , J )p3-2JSJ = -±( ̂  j P3 + ̂ .( * ) p 2 = P3 + 3p2, 

We assume that the formula is valid for k = 2, 3, .,.,, i - 1 and show it 
is valid for M . The proof is similar to that of Theorem 2 except that we 
have an extra term for the case i is even. 

We start with the basic 

M • , /• , A 

M 

Once more we break off the first term in the first summation and shift the 
second summation index to give 

M [t] 
ri + y . * - i .ft - i - JV-2,-S,- + y , * - 2 .ft -. i - APi-2j8i. 

f?iv - l - A ^ ) fa-i, - i - a\ a - i } 
If % is odd5 the two summations have the same upper limit; thus, we can 

combine them using the property of binomial coefficients given before the 
theorem. This gives, for the summation, 

v% + 
j = Ikr^VY-*"'-
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Finally 9 note that the summand is v1 for j = 0» We combine into a single sum 
that is the formula for Mi. 

In case i, is even9 the second summation has an extra term of Is*1*^ * If 
we separate it from the summation, we can combine the two summations to get 

m . , A 
/rl ^ - 0 \ J / 

The summand is r*- for J = 0 and 2s for j = i/29 so we can combine these 
and obtain the expression for M± . Hence9 in either case, the formula is 
valid for all integers k* 

This theorem gives, for the general term of the Lucas sequences 

[fl 
^ = E ^ r f y),K>o-,La-2. 

3. THE FORMULATION FOR Uk 

In this sections we first prove a basic result for {Uk}« It is compar-
able to the result in Waddillfs paper for Kn = Gn« 

Th.flOh.Qjn 4« The general term of {Uk} can be expressed as 

Uk = Ut + j = G i y * + i + Gj-isUf 
Once more the proof is by induction* For j = 29 we have 

which is true for all t . Assume that the expression is true for j = 29 ,.., 
£ - 1. Then9 since Ut+i is an r 9 s sequence9 

Ut + i = i-Z/t + i-i + sUt + i . 2 = r ^ . ^ + i + Gi_28Ut) + e(Gi._2Ut + 1 + ̂ .3s^) 

= ( r ^ + s ^ . z ^ + i + (i»̂ _2 + 6^.3)s^ = 6^* + 1 + ̂ . x ^ . 

Hence9 the result is true for J = £ and so is true for all integers. 
We can now give a formulation for Uk in terms of its initial values UQ 

and Ula This is given in the next theorem., 

TkwK.m 5*' The general term of the rss sequence {Uk} is given by 

[f] /fc _ . ^ - 2 J ) , 1 + ^ V - i _ 2 ^ 
^=Z( 

i = o * •> 

In Theorem 49 we take £ = 0, so j = ks and we have 

Uk = £7^1 + Gk_lSU0* 

Substituting the result of Theorem 2 for Gk, ̂ _ P 

[¥] [¥] 
y* 
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Once more we break off the first term of the first summation and shift the 
index of the second summation to give 

M„. , , [I] 
, f c - x + E (k~y 5y- i - y^ i+E f,- _ ij> k~2JsJ'Un 

Again, we consider the two cases where k is odd or even. For k odd, the two 
upper indices are equal, so we can combine the two summations to obtain 

ra -*•'». + E {"')'')". + (* j i: ')•«.]'»-'• 
It can be verified that the summand can be written so that we have 

(k _ .v(Zc - 2j)U1 + jrU0 

* - 3 
,k-l-2jsj 

[I] 
se; 0 

(k - 2j)U± + jrU0 

For k even, we break off the last term in the second summation and have 

**-•»,•£ ( l T t . + Ci- i1 r y , .k-l-2JSJ + gk/2^ 

M L"T"J / 7 A (fc - 2j)tf + j r t f 

' k - ^ + E ( V ) jiT7 V — , v + 
sk / 2 t /„ . 

we n o t e t h a t t h e summand g ives rk'1U1 fo r j = 0 and s /2U0 fo r j = fe/2. Thus 
we can w r i t e , fo r t h e g e n e r a l k, 

J = 0 

(A: - 2 j ) i / 1 + j W 0 

fe - Q 
'»k-1'2383 'SJ . 

It can be verified that by letting U1 = M± - r and UQ = MQ = 2 , we ob-
tain the expression for Mk given in Theorem 3* 

We can obtain an expression for {Uk} in terms of {Mk}. This is shown in 
the next theorem. 

ThQ.on.om 6» The {Uk} is given by 

MlMj +eM0M..1 

M\ + sM\ 
Jt + 3 

M\ + sM2
Q 

We can obtain this result from Theorem 4 by determining G> and G.x in 
terms of {Mj,}. For this, we start with 
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MJ-i = ^ - A + %_2eM0 = vG._x + 2sGj_2e 

Since Gj = rGj_± + sGj_2* i t follows that 2sGj_2 = 2&j - 2r£J-_1. We sub-
s t i tu te this into the expression for M._19 and also write the expression for 
Mi to give the two equations: 

The solutions for Gi and Gi_1 

and 

G, 

vM. + 2sM._± M±M. +sM0MJ.„1 

G. = _ = 
r2 + 4s M\ + sM2 

2Md - rMJ_1 2(rMj._1 + sM^2) - rM._1 M1MJ._1 + sMQM 
0 J -2 

J - 1 ~ — ~ 

r2 + 4s r2 + 4s Af* + sM;J 
I o 

Substituting the results in the expression for Uk of Theorem 4 gives the 
required expression for this theorem. 

The formulation for Uk given in Theorem 5 has been programmed by Robert 
C. Fitzgerald. He is a senior in Computer Science. We can generate the Uk 
for specified values of r, s9 UL and U0 , 

Special cases of this result for e = 0 and other particular values of r 
and s will be considered in a future paper, 
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THORO'S CONJECTURE AND ALLIED DIVISIBILITY PROPERTY 
OF LUCAS NUMBERS 

SAHIB SINGH 
Clarion State College, Clarion, PA 16214 

In [3], Thoro made a conjecture that for any prime p = 3 (mod 4), the 
congruence F2n+1 E 0 (mod p) is not solvable where F2n + 1 is an arbitrary Fi-
bonacci number of odd index. The conjecture has already been proved. In 
what follows5 we give a different proof of this and discuss another problem 
that arose during this investigation. 

VK.OO{I If possible,, let the above congruence be true: since F2n + 1 = F„ + Fn + 1 
(see [1]9 p. 56)s we get 

(1) Fn + Fn+1 E 0 (mod p) 

Under this hypothesis9 it follows that p divides neither F„ nor F „. This 
L '<• n + x 
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is justified because if, on the contrary, p divides Fn , then (1) would enable 
us to conclude that p divides Fn+i9 forcing us to the invalid result that p 
divides (Fn , Fn + 1) or p divides 1. Hence, 

Fn = ~Fn+l < m o d P>« 

Using Legendre symbol, it means that 

1-1 I 

1 or 

-F' n + l 

(?)-• 
This is not valid, since the prime p is E 3 (mod 4). The required con-

clusion is now immediate. 
Further analysis in regard to divisibility property possessed by Lucas 

numbers yielded the following theorem. 

lh(L0K<tf1\: If L2n is an arbitrary Lucas number of even index, then there always 
exists a prime p = 3 (mod 4) which satisfies the congruence L2n = 0 (mod p). 

VKQOJ: Using the result F2n + 1 = 1, 2, 5 (mod 8) of [3] and the fact that 
£<2n = Fin-i + Fin+i (see [1], p. 56), we obtain L2n = 2, 3, 4, 6, 7 (mod 8). 
This means that £2n ^ ^ (m°d 4). Since the case of L2n being even arises 
only when 3|n, we conclude that LGn±2 = 3 (mod 4). This means that £ 6 n ± 2 

always contains at least one prime factor p with p E 3 (mod 4). In fact, in 
this case, either this Lucas number is prime of this type or it will contain 
an odd number of prime factors of this type. For discussion of the case Lsk , 
we first observe that all the members of the family L6k can be obtained from 
^2m(6n+3) ky choosing suitable values of m and n, wherem = 1, 2, 3, ... and 
n = 0, 1, 2, ... . Now, using the fact that 

Lt\La iff s = (2k - l)t 

(see [1], p. 40), we get 

L2m \L2m(Gn + 3)' 

Since (2m, 3) = 1, by previous discussion, there always exists a prime p E 3 
(mod 4) such that p\L2m , which implies that p|-̂ 2m(6n + 3) anc^ t^ie Pro° f is com-
plete. It is easy to verify that 3|L6, 71̂ 3̂ 2, 3|i18, 47|L24 and so on. For 
a strong result, namely 2 • 3k|L2.3k , refer to [2]. 

CoKoZZoAiji L6n contains an even number of prime factors p where p E 3 (mod 
4). 

VKOO^ From the well-known identities (see [1], p. 56), we have 

which yields 

2 2 9 
L = F + 2F + F 

£c = F* n + 2F* + F* . 6n 3n- 1 3n 3n + l 
Since F3n is even whereas F3n_1 and F3n + 1 are odd, we have ^3 n_! = 1 (mod 8), 
F* , = 1 (mod 8), and 2F^ E 0 (mod 8). Therefore, L, = 2 (mod 8) or Lc = 

Oft T X Ĵ 2 or! IQYI 

2(4a + 1) for a suitable a. 
From the above theorem, we have the existence of at least one prime 

p E 3 (mod 4) such that p\L6n. We conclude that L6n must have an even number 
of such factors for justifying the odd factor (4a + 1) stated above. 
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A CLASS OF SOLUTIONS OF THE EQUATION a-(n) = 2n + t 

NEVILLE ROBBINS 
Bernard M. Baruch College, New York, NY 10010 

INTRODUCTION 

Let the nondeficient natural number n satisfy 

(1) f(n) = t, 

where f(n) = a (ft) - 2n, and t is a given nonnegative integer. Clearly, (1) 
is equivalent to 

(1*) 0(n) = In + t . 

Vzj-LviUtiovi 1 • m is acceptable with respect ton if m is a nondef icient pro-
per divisor of n . 

Vz&sLviUxon 1«' n is primitive if no number is acceptable with respect to n; 
otherwise, n is nonprimitive. 

RomcOtk 1»' Primitive nondef icient numbers were defined by L. E. Dickson [3], 
p. 413. 

If t = 0 in (1), then n is called perfect. It is known that when n is 
perfect: 

(a) if n is even, then n = 2 p (2 - 1 ) where 2P - 1 is prime 
(Euclid-Euler); 

(b) if n is odd, then n has at least 8 distinct prime factors 
[4] and exceeds 1050 [5]; 

(c) n is primitive. 

If t = 1 in (1), then n is called quasiperfect [2]. It is known that if 
n is quasiperfect, then: 

(a) n is odd and primitive [2]; 
(b) n has at least 6 distinct prime factors and exceeds 1030 [6]. 

On the other hand, for t = 3, by inspection we obtain the nonprimitive 
solution n = 18. This suggests that nonprimitive solutions of (1), when they 
exist, are more easily obtained than primitive ones. 

In this article, we shall determine the set of all nonprimitive solu-
tions of (1) for each t such that 2 <. t <_ 100. Theorem 1 states that Table 5 
contains all such solutions for the given range of values of t. 
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V&^AJlLtLovi 3» For given nonnegative t, let Sit) denote the set of all non-
primitive solutions of (1). 

Pomerance [7] showed that Sit) is finite unless there exists k such that 
t = oik) = 2k. 
RomoJik 2i In this case, a subset of Sit) consists of all numbers kq where q 
is prime and ik9 q) = 1. If also k is even, so that t = 2P(2P- 1) and 2P - 1 
is prime, then it is easily verified that 22p - 1(2p- 1) and 2P~1(2P- l)3 also 
belong to Sit). 

Lojfnma 1: If m is acceptable with respect to n9 then f(m) < fin). 

VKOO^I By [7], Lemma 5, we have aim) Im < a in) In. Therefore, 

(o(m) - 2m)Im < (a in) - 2n)/n, 
i.e., f(m)/m < fin)In. Now, 

f(m) >_ 0 =» f(m) In < fim) lm => f(jn) In < f(n) In ^ f(m) < fin) . 
V&fisLyivtiovi 4> m is maximal with respect to n if m is the largest number that 
is acceptable with respect to n. 

Lomma 2: If n is nonprimitive and m is maximal with respect to n9 then there 
exists a prime, p, such that n = mp. 

?H,00j' Let p be a prime which divides n/m9 i.e., mp divides n. Now mp > m9 
so that, by hypothesis and Lemma 1, we have 

f(mp) > f(m) > 0. 
Since m is maximal with respect to n, mp is not a proper divisor of n. Thus, 
mp = n. 
CoXoiZoJty 2.1: m is maximal with respect to n if and only if m = n/p9 where 
p is the least prime such that nip is an integer which is acceptable with re-
spect to n. 

VK.00^'. The proof follows directly from Lemma 2. 

CotiottcUiy 2.2« If n/2 is a nondeficient integer, then n/2 is maximal with 
respect to n. 

VKQO{. The proof follows directly from Corollary 2.1. 

In order to construct Table 5, we first determine all nonprimitive n 
such that f(n) <_ 100. Assume, furthermore, that n - mp where p is prime and 
m is maximal with respect to n. The need for the latter condition will be 
justified below. 

Ca6e 1. Suppose (jn9 p) = 1. Then 

fin) = f(mp) = a imp) - 2mp = (p + l)aO?) - 2mp = pfim) + aim). 
Thus, 2m <_ aim) <_ fin) £ 100, so that m <_ 50. Now, 

fim) >_ 0 ^m e {6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48}. 

Suppose that m = 2 3 a > 6, where a, b, and c are natural numbers and (6, e) 
= 1. Then n = 2a3bop9 with (6c, p) = 1. If c = 1, then a > 1 or b > 1. If 
a > 1, then 2a_13fcp is acceptable with respect to n9 so that 2a_13^p < 2a3Z\ 
which implies p < 2, an impossibility. Similarly, b > 1 implies p < 3. If 
a > l9 then 2a3bp is acceptable with respect to n9 so that 2a3^p < 2a33e, and 
P < e. Now, 
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(6c, p) = l=>p>_5=>c>_6. 

But 6c<_m^50=^c<_8. Thus, 

(65 c) = 1 =»c = 7 ̂ m = 42=^ fin) = lip + 96 _> 156, 

contradicting the hypothesis. Likewise, m = 40 => fin) = lOp + 90 _> 120. If 
m = 6 and p _> 5, then f(6p) =12. By Corollary 2.1, it is easily verified 
that 6 is maximal with respect to 6p. If 772 = 28 and (14, p) = 1, then f(28p) = 
56. If p < 11, then 14p Is maximal with respect to 28p; if p 2. 11, then 28 
is maximal with respect to 28p. If m = 20 and (10, p) = 1, then/(20p) = 42 + 2p. 
As above, 20 is maximal with respect to 20p if and only if p _> 11. Also, 

fin) = /(20p) £ 100 =»p <. 29. 

For each m e {6, 28, 20}, and for each prime p such that m is maximal 
with respect to n = mp, and fin) £ 100, we list 777, p, n, and fin) in Table 1. 

TABLE 1 

m 
6 
28 
20 
20 
20 
20 
20 
20 

P 
^ 5 

_> 11 
11 
13 
17 
19 
23 
29 

n 
6p 
28p 
220 , 
260 
340 
380 
460 
580 

J W 
12 
56 
64 
68 
76 
80 
88 
100 

Co6e 2. Suppose p d i v i d e s /??. Let m = pf ep, n = pk+1r5 where (p, r ) = 1. 
Now, 

fim) = aim) - 2m = o(pkr) - 2pkr = o(pk)o(r) - 2p^r 
= (pk + o(pk~1))o(r) - 2pkr = pk(o(r) - 2v) + o(pk-1)o(r)e 

Similarly, 
f(n) = pk+1ioir) - 2v) + oipk)oir). 

T h e r e f o r e , 

/ ( n ) - / (w) = (p f e + 1 - pk)(oir) - 2v) + pkoir) = pk(poir) - (p - l ) 2 r ) . 

Now, 
fin) = t ^ 0 < fin) - fim) = d <t. 

Therefore, the solutions of (1) may be found among the solutions of 

(2) fin) - fim) = d, where d <. 100. 

Let hip, k, r) = pk(poir) - (p - l)2r). Then (2) is equivalent to 

(3) hip, k, r) = d9 

with the restriction that 

(4) fipkT) >_Q. 
Furthermore, (4) implies 

(5) r > 2, 
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since f(pk) < 0 for all primes p and all exponents k. Henceforth we consider 
(3). 
Vd^-LvuJtLovi 5« Let g(r) = o(r) - rs where r is a natural number. 
Lemma 3: If 
(6) h(29 k9 r) = d, where v is odd5 
then d = 0 (mod 4). All solutions of (6) for d <_ 100 are given in Table 2. 

TABLE 2 

d 

4 
8 
8 
8 
8 
12 
16 
16 
16 
16 
16 
16 
16 
20 
24 
24 
28 
32 
32 
32 
32 
32 
32 
32 
32 
32 
32 
32 
32 
32 
36 
40 
40 
44 
48 
48 
48 
52 
52 
56 
56 
60 

k 
1 
1 
2 
2 
2 
1 
1 
2 
3 
3 
3 
3 
3 
1 
1 
2 
1 
1 
2 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
1 
1 
2 
1 
1 
2 
3 
1 
1 
1 
2 
1 

ffO) 
1 
2 
1 
1 
1 
3 
4 
2 
1 
1 
1 
1 
1 
5 
6 
3 
7 
8 
4 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
9 
10 
5 
11 
12 
6 
3 
13 
13 
14 
7 
15 

V 

3 
•k 

3 
5 
7 
* 
9 
* 
3 
5 
7 
11 
13 

•k 

25 
* 
•k 

49 
9 
* 
3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
15 
* 
k 

21 
121 
25 
* 
27 
35 
169 
* 
33 

s 
+ 
* 
+ 
+ 
+ 
* 
+ 
* 
+ 
+ 
+ 
+ 
+ 
k 

-
k 
k 

-
+ 
k 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
k 
k 

+ 
-
+ 
k 

+ 
+ 
-
k 

+ 

n 
12 

k 

24 
40 
56 
* 
36 

k 

48 
80 
112 
176 
208 

k 

k 

k 

k 

k 

72 
* 
96 
160 
224 
352 
416 
544 
608 
736 
928 
992 
60 

k 
k 

84 
* 

200 
k 

108 
140 

k 
k 

132 

fin) 
4 
k 

12 
10 
8 
k 

19 
k 

28 
26 
24 
20 
18 

k 

k 

k 

k 

k 

51 
k 

60 
58 
56 
52 
50 
46 
44 
40 
34 
32 
48 

k 

k 

56 
k 

65 
k 

64 
56 

k 

k 

72 

d 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
68 
68 
72 
72 
76 
76 
80 
80 
80 
84 
84 
88 
88 
92 
92 
96 
96 
96 
96 
100 
100 
100 

k 
1 
2 
3 
4 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
1 
1 
1 
2 
1 
1 
1 
2 
3 
1 
1 
1 
2 
1 
1 
1 
2 
3 
4 
1 
1 
1 

ffO) 
16 
8 
4 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
17 
17 
18 
9 
19 
19 
20 
10 
5 
21 
21 
22 
11 
23 
23 
24 
12 
6 
3 
25 
25 
25 

V 

k 

49 
9 
k 

3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 
53 
59 
61 
39 
55 
289 
15 
65 
77 
361 

k 
k 

51 
91 

k 

21 
57 
85 
529 
121 
25 
* 
95 
119 
143 

s 
k 

+ 
+ 
k 

+ 
+ 
+ 
+ 
+ 
+ 
+• 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
-
_ 
+ 
-
„ 

-
k 

k 

+ 
-
k 

+ 
+ 
-
-
-
+ 
k 

-
_. 
_ 

n 
k 

392 
144 

k 

192 
320 
448 
704 
832 
1088 
1216 
1472 
1856 
1984 
2368 
2824 
2952 
3008 
3392 
3776 
3904 
156 
* 
* 

120 
k 

k 

k 

k 

k 

204 
k 
k 

168 
228 

k 

k 
k 

400 
k 
k 

k 

k 

fin) 
k 

71 
115 

k 

124 
122 
120 
116 
114 
110 
108 
104 
98 
96 
90 
86 
84 
80 
74 
68 
66 
80 

k 

k 

120 
k 

k 

k 

k 

k 

96 
k 

k 

144 
104 

k 
k 

k 

161 
k 
k 

k 

k 
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fc(2, ks P ) = 2k(2o(r) - 2v) = 2k + 1g(r) = d; k ^ l ^ d E 0 (mod 4). 

To solve (6) for d <_ 100, we proceed as follows. For each d such that d = 0 
(mod 4) 3 and for each k such that d = 0 (mod2fe+1), we compute g(r) = 2~ik + 1)d. 
Next, we list the corresponding odd values of p, if any, using [1], Table 6.1. 
If no such P exists, then there is no solution of (6) corresponding to the 
chosen values of d and k. In this case, the p column and all columns to its 
right contain asterisks. For each possible p, we compute f(2kr) and list its 
sign, s, considering 0 to be positive. If f(2kr) < 0, then there is no solu-
tions and the last two columns contain asterisks. If f(2kr) _> 09 then we 
have obtained a solution of (6), and n - 2k+1r corresponds to a solution of 
(2). In this case, we list n and f(n)« If g(r) = 1, then v is prime and (4) 
implies v <. 2k - 1. In this case, we list only such p. 

Lojnma 4- If 

(7) pa(r) - (p - 1)2P = v, 

where p is an odd prime, (p, P ) = 1, and (4) holds, then we must have: 

(8) o(r) = pv + (p - l)2u; 

(9) . P = (p + l)i>/2 + pw; 

(10) (p, y) = 1; 

(11) p £ va(pk)/2. 

VKQOh1 Solving (7) for o(v) and 2P in terms of p and i?, one has 

(8*) o(r) = pv + (p + l)u; 

(9*) 2p = (p + l)y + pw. 

(9*) ̂ W is even. Setting itf = 2u9 one obtains (8) and (9). (10) follows di-
rectly from the hypothesis. (11) is derived from (4) as follows: 

f(pkr) _> o =*> o(pk)o(r) _> 2pkr =^ po(pk)o(r) >_ 2pk+1r; 

(7) =>po(pk)o(r) - (p - l)a(pfe)2p = vo(pk). 

Therefore9 

2p/c + iP _ (pfc + i - 1)2P <. vo(pk) =» 2P £ vo(pk) =» P £ vo(pk)/2. 

CotLollaAy 4.1: if 

(12) 7z(p, Zc, P) = pJ's, 

where p is an odd prime, s 2. 1, and (p, s) = 1, then k = j . 

PfiOO^: By hypothesis, (7) holds with y = pJ'"ks. Now (10) implies j - /c = 0, 
i.e., fc = j. 

Lemma 5«* If 

(13) fc(p, fc, r) = q5 

where q is an odd prime, then k = 1, and for some integer, a5 we have 

p = q = 2a - 19 r =- 2a"1. 

Vtioofc p d i v i d e s q^p = q* Hypothes i s and C o r o l l a r y 4 .1 => fc = 1. Thus, 
(13) r educes t o (7) w i th V = 1. From ( 1 1 ) , we have p £ (p + l ) / 2 , so t h a t 
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u <. 0 in (9). But (5) and (9) => u >_ (3 - p)/2p. Therefore, u = 0, i.e., 
q(r) = p, P = (p + l)/2. a(r) = p=^p = s^-i for some prime, s, and some 
integer a _> 2. Now, 

sa-l + sa-2 + ... + s + 1 = a(sa-l) = a( p) = p = 2*» - 1 = 2s a " 1 - 1. 

Therefore, 2 divides s, i.e., s = 2. Thus, p = 2a _ 1, p = 2 a - l . 

Lomma 6: For any j, the unique solution of 

(14) h(p9 k, P) = 3j 

is: p = 3 , k = j, P = 2. 

Pswoj: Clearly, p = 3, /c = j, and (14) reduces to 3a(p) - 4P = 1. (8) and 
(9) => P = 2+ 3w, a(p) = 3+ 4u =* a(r) is odd => r = 2a&2 with a .> 0 and b odd. 
Furthermore, (3, P ) = 1 =*> (6, 2>) = 1. P = 2 (mod 3) => 2ab2 = 2 (mod 3) =» 
2a = 2 (mod 3) =*> a >. 1 => P is even => a(p) /p Z 3/2 => 2a(p) ̂ 3 =̂  6 + 8w >. 6 + 
9w =̂  w <. 0 =» P <. 2. By (5) , r = 2. 

Lemma 7: For no j does 

(15) h(p9 k9 P ) = 5J' 

have a s o l u t i o n . 
VtlOOl* I f a s o l u t i o n e x i s t s , then p = 5 , k = J , and (15) reduces to 5a(p) -
8 P = 1, so t h a t p = 3 + 5 u , CT(P) = 5+Su9 and p = 2a&2 w i t h a A 0 and (10, Z?) 
= 1. Now p E 3 (mod 5) =» 2aZ>2 E 3 (mod 5) => 2a E 2 or 3 (mod 5) => a = 2c+ 1. 
But a ( 2 2 c + 1 ) E 0 (mod 3 ) . Thus, 

a (p ) E 0 (mod 3) =» w E 2 (mod 3) =» p = 1 (mod 3) 
^ 2

2 c + 1 £ 2 E 1 (mod 3) =>b2 E 2 (mod 3 ) , 

an impossibility. 

Lojfnma 8'- If 

(16) fe(p, k, P ) = ̂ ', 

where q is an odd prime, j 2 2, and ^J' :< 100, then k = j and either 

(i) p = 3, P = 2, 2 <. j < 4; or 

(ii) p = 7, P = 4, j = 2. 

<?2 £ <7J°  1 100 =» ̂7 <. 10 =» (7 e {3, 5, 7}. 

If <7 = 3, then 3J £ 100 =» j £ 4, and the solutions of (16) are given by Lem-
ma 6. Lemma 7 => q ^ 5. If q = 7, then 7J £ 100 => j = 2 , and (16) reduces to 
lo(P) - 12P = 1. Therefore, by Lemma 4, we have 

o(r) = 7 + 12w, P = 4 + 7u9 r <_ 28. 

By inspection, we must have p = 4. 

Combining the results of Lemmas 5 and 8, we list all solutions of 

(17) Hp9 k9 P) = qJ9 

with q an odd prime and q3'' <_ 100, in Table 3. For each qJ 9 we list p, k9 P, 
as well as the m9 n of the corresponding solution of (2), and fin). It is 
easily verified that in each case m is maximal with respect to n. 
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TABLE 3 

q p 

3 3 
7 7 
9 3 
27 3 
31 31 
49 7 
81 3 

odd prime 

k 
1 
1 
2 
3 
1 
2 
4 

q does 

p 

2 
4 
2 
2 
16 
4 
2 

777 

6 
28 
18 
54 
496 
196 
162 

n 
18 
196 
54 
162 

15736 
1372 
486 

fin) 
3 
7 
12 
39 
31 
56 
120 

(18) hip, k, r) = lq 
have a solution. 

PMOOfc If a solution exists, then by hypothesis, Lemma 3, and Corollary 4.1, 
we have p ^ 2, p = q, and fc = 1. Thus, (18) reduces to (7) with V = 2, and 
we have o(r) = 2p + (p - l)2u, P = p + 1 4- pu9 r <_ p + 1. Now, (5) =^ u = 0, 
v = p + 1, G ( P ) = 2p. Let r = 2a/3 with a _> 1 and b odd. Then, 

a(p) = a(2a)a(/3) = 2p, so that o(b) = 2, 

an impossibility. 

Pe^Ki^tom 6: If 0 <. a <. 3, let 
Ca = {p : 2 _< p <_ 100, and o(r) = a (mod 4)}. 

By inspection, we have 

C0 = {3, 6, 7, 11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30, 31, 
33, 35, 38, 39, 42, 43, 44, 46, 47, 48, 51, 54, 55, 56, 57, 59, 
60, 62, 63, 65, 66, 67, 69, 70, 71, 75, 76, 77, 78, 79, 83, 84, 
85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99}; 

C± = {9, 49, 50, 81, 100}; 

C2 = {5, 10, 13, 17, 20, 26, 29, 34, 37, 40, 41, 45, 52, 53, 58, 61, 
68, 73, 74, 80, 82, 89, 90, 97}; 

C3 = {2, 4, 8, 16, 18, 25, 32, 36, 64, 72, 98}. 

Lemma 10: In (3), if v = qb, where q is prime, then q = 2 and v e C3. 

PJW0&: (4) implies 

{p/(p - l))(q/(q - D ) > o(pkr)/pkr >. 2 => q < 2(p - l)/(p - 2). 

If p = 3, then q < 4 => q= 2, since (p, P) = 1. If p >. 5, then q < 8/3 =» q= 2. 
a(2&) = 2b + 1 - 1 = 3 (mod 4) => r e Cs. 
Lemma 11'- All solutions of (3) such that p is odd, d <_ 100, d + qJ\ where q 
is an odd prime, are given in Table 4. 

PM00_£_: T O obtain the desired solutions of (3), we proceed as follows: for 
each d ^ 2qs ^ qJ's for each odd prime p such that pkV = d, (p, v) = 1, we 
list p, k9 V, If p exists such that (7) holds, we must have: 

(i) v ±v_= [vo(pk) /2]; 

(ii) p = y(p + l)/2 (mod p) ; 
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(iii) r £ Ca , where pv E a (mod 4); 

(iv) v is not a power of a prime unless r 2b and 

For convenience, we list r_9 rp [the least positive residue (mod p) of v (p + l)/2] , 
and a. If no a? exists satisfying the above conditions, then (3) has no solu-
tion corresponding to that particular choice of p, d. In this case, the r 
column and all remaining columns contain asterisks. For each r which does 
satisfy the conditions, we compute and list w = po(r) - (p - l)2r. Ifw^v, 
then we have no solution, and the remaining columns contain asterisks. If 
W = V, we have a solution. We list the values m and n of the corresponding 
solution of (2). Finally, we test m for maximality with respect to n using 
Corollaries 2.1 and 2.2. If the test is positive, the max column says yes 
and the final column lists f(n); otherwise, the max column says no and the 
final column contains an asterisk. 

d 

12 
15 
15 
18 
20 
21 
21 
24 
28 
30 
30 
33 
33 
35 
35 
36 
39 
39 
40 
42 
42 
44 
45 
45 
45 
45 
48 
50 
51 
51 
51 
51 
52 
52 
54 

p k v 

3 1 
3 J 
5 ] 
3 : 
5 ] 
3 ] 
7 ] 
3 ] 
7 J 
3 ] 
5 J 
3 ] 
11 J 
5 ] 
7 ] 
3 : 
3 1 
13 ] 
5 ] 
3 ] 
7 ] 
11 ] 
3 : 
3 ; 
3 
5 ] 
3 J 
5 : 
3 ] 
3 ] 
3 J 
17 ] 
13 J 
13 J 
3 : 

L 4 
L 5 
L 3 
I 2 
I 4 
L 7 
L 3 
L 8 
L 4 
L 1 0 
L 6 
L 11 
L 3 
L 7 
L 5 
I 4 
L 13 
L 3 
L 8 
L 14 
L 6 
L 4 
I 5 
I 5 
I 5 
L 9 
L 16 
I 2 
L 17 
L 17 
L 17 
L 3 
L 4 

4 
I 2 

V 

8 
10 
9 
13 
12 
14 
12 
16 
16 
20 
18 
22 
18 
21 
20 
26 
26 
21 
24 
28 
24 
24 
32 
32 
32 
27 
32 
31 
34 
34 
34 
27 
28 
28 
40 

V 
p 

2 
1 
4 
1 
2 
2 
5 
1 
2 
2 
3 
1 
7 
1 
6 
2 
2 
8 
4 
1 
3 
2 
1 
1 
1 
2 
2 
1 
1 
1 
1 
10 
2 
2 
1 

TABLE 4 

a 

0 
3 
3 
2 
0 
1 
1 
0 
0 
2 
2 
1 
1 
3 
3 
0 
3 
3 
0 
2 
2 
0 
3 
3 
3 
1 
0 
2 
3 
3 
3 
3 
0 
0 
2 

r 

k 

4 
4 
10 
12 
9 
9 
* 
* 
20 
18 

•k 

k 

16 
* 
14 
8 
8 
14 
10 
10 
24 
4 
16 
25 
* 
14 
26 
4 
16 
25 
* 
15 
28 
10 

w 

k 

5 
3 
14 
44 
3 

-17 
k 

k 

46 
51 

k 
JU 

27 
k 

129 
13 
3 
8 
14 
6 

180 
5 
29 
-7 

k 

16 
2 
5 
29 
-7 

k 

-48 
56 
14 

m 

k 

12 
20 
* 
k 

k 

k 

k 

k 

k 
k 

k 

k 

k 

k 
k 

24 
104 
70 
30 
70 

k 

36 
* 
* 
* 
42 
650 

k 
k 

k 

k 

k 
k 
k 

n 

k 

36 
100 

k 

k 

k 

k 

k 
k 

k 

k 
k 

k 

k 

k 
k 

72 
1352 
350 
90 
490 
* 

108 
k 

k 
k 

126 
3250 

k 

k 

k 

k 

k 
k 
k 

max 

* 
no 
yes 
* 
* 
k 

k 

k 

k 

k 
k 
k 

k 

k 

k 
k 

no 
yes 
yes 
yes 
yes 

k 

no 
k 

k 
k 

yes 
yes 

k 
k 

k 

k 

k 
k 
k 

fin) 

k 

k 

17 
* 
k 

k 
k 

k 

k 

k 

k 

k 

k 

k 

k 
k 

k 

41 
44 
54 
46 

k 
k 

k 

k 
k 

60 
52 
* 
k 

k 

k 

k 
k 
k 
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d p k v v_ v a v w m n max fin) 

54 
54 
55 
55 
55 
56 
57 
57 
60 
60 
63 
63 
65 
65 
66 
66 
66 
68 
69 
69 
70 
70 
70 
72 
72 
72 
75 
75 
75 
76 
77 
77 
78 
78 
78 
78 
78 
80 
80 
80 
80 
84 
84 
84 
85 
85 
87 
87 
87 
87 
88 

3 
3 
5 
5 

11 
7 
3 

19 
3 
5 
3 
7 
5 
13 
3 
3 

11 
17 
3 

23 
5 
7 
7 
3 
3 
3 
3 
3 
5 
19 
7 

11 
3 
3 
3 
3 
13 
5 
5 
5 
5 
3 
7 
7 
5 

17 
3 
3 
3 

29 
11 

3 
3 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

2 
2 
11 
11 
5 
8 

19 
3 

20 
12 
7 
9 

13 
5 

22 
22 
6 
4 

23 
3 
14 
10 
10 
8 
8 
8 

25 
25 
3 
4 
11 
7 

26 
26 
26 
26 
6 
16 
16 
16 
16 
28 
12 
12 
17 
5 

29 
29 
29 
3 
8 

40 
40 
33 
33 
30 
32 
38 
30 
40 
36 
45 
36 
39 
35 
44 
44 
36 
36 
46 
36 
42 
40 
40 
52 
52 
52 
50 
50 
46 
40 
44 
42 
52 
52 
52 
52 
42 
48 
48 
48 
48 
56 
48 
48 
51 
45 
58 
58 
58 
45 
48 

1 
1 
3 
3 
8 
4 
2 
11 
1 
1 
2 
1 
4 
9 
2 
2 
3 
2 
1 

13 
2 
5 
5 
1 
1 
1 
2 
2 
4 
2 
2 
9 
1 
1 
1 
1 
3 
3 
3 
3 
3 
2 
6 
6 
1 

11 
1 
1 
1 

16 
4 

2 
2 
1 
1 
1 
0 
1 
1 
0 
0 
1 
3 
1 
1 
2 
2 
2 
0 
1 
1 
2 
2 
2 
0 
0 
0 
3 
3 
3 
0 
1 
1 
2 
2 
2 
2 
2 
0 
0 
0 
0 
0 
0 
0 
1 
1 
3 
3 
3 
3 
0 

34 
40 
8 

18 
8 
•k 

k 

k 

22 
6 
k 

8 
k 

9 
20 
26 

k 

k 

k 

k 

k 

26 
40 
22 
28 
46 
8 

32 
4 
21 
9 
9 
10 
34 
40 
52 

k 

28 
33 
38 
48 
38 
6 

27 
k 

k 

4 
16 
25 
16 
15 

26 
110 
11 
51 
5 
k 

k 

k 

20 
12 

k 

9 
k 

-47 
46 
22 

k 

k 

k 
k 

k 

-18 
150 
20 
56 
32 
13 
61 
3 

-148 
-17 
-37 
14 
26 
110 
86 

k 

56 
-24 
-4 
296 
28 
12 

-44 
k 

k 

5 
29 
-7 
3 

-36 

k 
k 

40 
k 

88 
k 

k 

k 

66 
30 

k 

56 
k 

k 

k 

78 
k 

k 

k 
k 

k 

k 

k 

k 
k 

k 

k 

k 

100 
* 
k 

k 
k 

102 
k 

k 

k 

k 

k 
k 
JU 

114 
42 

k 

k 

k 

k 

48 
k 

474 
k 

k 
k 

200 
k 

968 
* 
* 
k 

198 
150 

k 

392 
k 

k 

k 

234 
k 

k 

k 
k 

k 

k 

k 

k 

k 
k 

k 
k 

500 
k 

k 

k 
k 

306 
k 
k 
k 

k 

k 
k 

k 

342 
294 

k 

k 

k 

k 

144 
k 

13456 
k 

k 
k 

no 
k 

yes 
k 

k 

k 

yes 
yes 

k 

no 
* 
k 

k 

yes 
k 

k 
k 

k 

k 
k 

k 

k 
k 
k 

k 

k 

yes 
k 

k 

k 
k 

yes 
k 
k 

k 

k 
-u 

k 

k 

yes 
yes 

k 

k 

k 

k 

no 
k 

yes 
k 

k 
k 
k 

k 

59 
k 
k 

k 

72 
72 

k 

k 
k 

k 

k 

78 
* 
* 
* 
* 
k 

k 

k 

k 
k 
k 

k 

k 

92 
k 

k 

k 
k 

90 
k 

k 

k 

k 

k 

k 

k 

96 
96 
* 
k 

k 

k 

* 
k 

89 
k 
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fin) 

88 
90 
90 
90 
91 
91 
92 
93 
93 
95 
95 
96 
96 
96 
96 
98 
99 
99 
100 
100 
100 
100 
100 
100 

11 
3 
3 
5 
7 
13 
23 
3 
31 
5 
19 
3 
3 
3 
3 
7 
3 
11 
5 
5 
5 
5 
5 
5 

1 
2 
2 

2 
2 
1 
2 
2 
2 
2 
2 
2 

8 
10 
10 
18 
13 
7 
4 
31 
3 
19 
5 
32 
32 
32 
32 
2 
11 
9 
4 
4 
4 
4 
4 
4 

48 
65 
65 
54 
52 
49 
48 
62 
48 
57 
50 
64 
64 
64 
64 
57 
71 
54 
62 
62 
62 
62 
62 
62 

4 
2 
2 
4 
3 
10 
2 
2 
17 
2 
12 

2 
10 
2 
2 
2 
2 
2 
2 

0 
2 
2 
2 
3 
3 
0 
1 
1 
3 
3 
0 
0 
0 
0 
2 
1 
3 
0 
0 
0 
0 
0 
0 

48 
20 
26 
* 
•k 

36 
48 
50 
* 
32 

•k 

22 
28 
46 
55 
* 
50 
32 
12 
22 
27 
42 
57 
62 

404 
46 
22 

k 

k 

319 
80 
79 
* 
59 

•k 

20 
56 
32 
-4 

k 

79 
53 
44 
4 

-16 
144 
-76 
-6 

k 

k 

k 

k 

k 

k 

k 

k 

k 

k 
k 

k 

k 

138 
k 

k 

k 

k 

k 

550 
k 

k 

k 

k 

k 

k 

k 

k 

k 

k 
k 

k 

k 

k 

k 

k 

k 

414 
* 
k 

k 

k 

k 

2750 
k 

k 

k 

k 

k 

k 

k 

k 

k 

k 

k 

k 

k 

k 

k 

k 

k 

yes 
k 

k 

k 

k 

k 

yes 
k 

k 

k 

k 

k 

k 

k 

k 

k 

k 

k 

k 

k 

k 

k 

k 

k 

108 
* 
k 

k 

k 

k 

116 
* 
k 

k 

k 

Combining the results of Tables 1, 2, 3, and 49 we form Table 5. For 
each t such that 2 <_ t <_ 100 and S(t) is nonempty, we list the members of 
S(t). If S(t) is empty, then t does not appear as an entry. The requirement 
that the solutions listed in Tables 1, 2, 3, and 4 satisfy a maximality con-
dition assures that distinct entries from these tables yield distinct corre-
sponding entries in Table 5. Therefore, we have proved: 

Tkzoh.2m 1: All solutions of (1) such that n is nonprimitive and 2 <_ t <_ 100 
are given in Table 5. 

t 

3 
4 
7 
8 
10 
12 
17 
18 
19 
20 
24 
26 

S(t) 

18 
12 
196 
56 
40 
24,54, 6p* 
100 
208 
36 
176 
112 
80 

t 

28 
31 
32 
34 
39 
40 
41 
44 
46 
48 
50 
51 

S(t) 

48 
15736 
992 
928 
162 
736 
1352 
350, 608 
490, 544 
60 
416 
72 

t 

52 
54 
56 
58 
59 
60 
64 
65 
66 
68 
71 
72 

TABLE 5 

S(t) 

352, 3250 
90 
224, 1372, 
160 
968 
96, 126 
108, 220 
200 
3904 
260, 3776 
392 
132,150, 

28p** 

198 

t 

74 
76 
78 
80 
84 
86 
88 
89 
90 
92 
96 
98 
100 

S(t) 

3392 
340 
234 
156, 380, 3008 
2952 
2824 
460 
13456 
306, 2368 
500 
204, 294, 342, 1984 
1856 
580 

p prime, (6, p) = 1 kk :p prime, (14, p) = 1 
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WEIGHTED STIRLING NUMBERS OF THE FIRST AND SECOND KIND—I 

L. Carlitz 
Duke University, Durham, N.C. 27706 

1. INTRODUCTION 

The Stirling numbers of the first and second kind can be defined by 

(x)n = x(x + 1) • • • (x + n - 1) = 2^ si (n> k^x 

and fc « o 
n 

(1.2) xn = J2 S(n> k^x(x - ! ) • • • (x - k + I), 
k = 0 

respectively. 
It is well known that S1(ns k) is the number of permutations of 

Zn = {1, 2, ..., n] 
with k cycles and that S(n9 k) is the number of partitions of the set Zn into 
k blocks [1, Ch. 5], [2, Ch. 4]. These combinatorial interpretations suggest 
the following extensions. 

Let n, fc be positive integers, n >_ k9 and let k19 k2, . . . , k be non-
negative integers such that 

( k = k± + k2 + ••• + kn 

(1.3) \ 
I n = k± + 2k2 + ••• + nkn. 

We define 5(n, k9 X) , 5x(n, k, X) , where X is a parameter, in the following 
way. 

(1.4) S(n, ks X) = E E ( M + k2X2 + ... + kn\n), 
where the inner summation is over all partitions of Zn into k1 blocks of car-
dinality 1, k2 blocks of cardinality 2, ..., kn blocks of cardinality n; the 
outer summation is over all k19 k2S ..., kn satisfying (1.3). 
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(1.5) 5x(n, k9 A) =EE\^ 1 ( A) 1 + * 2 — + ••• + K (n __ 1}!^ 

where the inner summation is over all permutations of Zn with k1 cycles of 
length 1, kz cycles of length 2, ..., kn cycles of length n; the outer sum-
mation is over all k19 k29 . .., kn satisfying (1.3). 

We now put 

( S(n9 k9 A) = \;~S (n, ks A) 
(1.6) { *_ 

[^(n, k9 X) = -S1 (n, k9 A). 

It is evident from (1.4) and (1.5) that 

(1.7) S(n, k9 1) = S(n9 k) , Sx(n9 k9 1) = S1(n9 k). 

Indeed we shall show that if X is an integer, then S(n9 k9 X) and5,1(n, k9 X) 
are also integers. More precisely, we show that, for arbitrary A, 

(1.8) S(n9 k9 A) = J2 V<).S(n9 j + k - 1)(J), 
J-l 

n-k + 1 

(1.9) ~S1(n9 k9 A) = T (n.)(X).S(n - j , k - 1). 

/ri w y J 

We obtain recurrences and generating functions for both S(n9 k9 A) and 
S1(n9 k9 A). Simpler results hold for the functions 

( R(n9 k9 A) = £(n, fc + 1, A) + S(n9 k) 
(1.10) < 

li?1(w, k9 A) = 5x(n, fc + 1, A) + 5x(n, k). 

For example, we have the recurrences 

( R(n + 1, k9 A) = R(n9 k - 1, A) + (&+A)i?(n, fc, A) 
(1.11) { 

{ R1(n + 1, k9 A) = tf^n, k - 1, A) + (n+ A)i?x(n, fc, A) 
and the orthogonality relations 

n 

(1.12) £*(n, «7» A> °  (-D^'^W, fc, A) 
j = o 

(1 (n = k) 
= E (-Dn"J :̂L(n9 j, A)i?(j, fc, A) = { 
j=o ( 0 (n ̂  k). 

For A=0 and A=l, (1.11) and (1.12) reduce to familiar formulas for S(n9 k) 
and S1(n9 k). 
_ The definitions (1.4) and (1.5) furnish combinatorial interpretations of 
S(n9 k9 A) and S1(n9 k9 A) when A is arbitrary. For A a nonnegative integer, 
the recurrences (1.11) suggest combinatorial interpretations for R(n9 k9 A) 
and R1(n9 k9 A) that generalize the interpretation of S(n9 k) and S1(n9 k) 
described above. For the statement of the generalized interpretations, see 
Section 7 below. 
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2. THE FUNCTION S(n, k, X) 
Let ns k be positive integers9 n >_ k5 and k1, k2 , . . .., fc„ nonnegative 

such that 

( k = Z^ + fc2 + ••• + kn 
(2.1) I 

{ n = k1 + 2/c2 + • • • + nfcn. 
Put 

(2.2) £(n; fc19 k2, ..., kn; X) = Y.(kiX + M * + " 9 + ^n*"). 

where the summation is over all partitions of Zn = ls 29 ...9 n into /c1 
blocks of cardinality 19 k2 blocks of cardinality 29 . ..9 kn blocks of cardi-
nality n. Then we have (compare [2, p. 75]): 

- -- I/i1^2 ••• 

y^y*2 

n = l " klSk2S... !' 2* 

n= l k x , fe2,. • • 1 ! 2 ! . . » x 2 

(y±Xx y2X2x2 \ ( ^ x z/2#2 | 
= V"rr + —2r"+ •••/ e x p | ir + T r + ' - ' j -

For y1 - y2 = 8«°  = y 5 the extreme right member becomes 

y(eXx - 1) exp {y(ex - 1 )} . 
Hencej, we get the generating function 

(2-3) Z ^ > k9
 X ) f f ^ = y(&XX " 1} e x P { 2/< e * " 1 ) } ' 

Recall that 

(2.4) E ^ n * W fr^ k = e x pt2 / (e* - i ) } . 
n,k 

Thus, the right-hand side of (2.3) is equal to 

and therefore , 

(2.5) 

m = l 

n -I 

~S(n, ks X) = ^ 

n,k 

m-1 

Note that, for A = 1, (2.3) reduces to 

X) = E U K 5 ( n " m' fe " 1} 

£ S(n, ?c, DfjrJ/* " y(e ~ D exp{z/(e* - D> = 2 / ^ exp { y (e* - 1)} 

- £ & ? ( « . fc)f^i/*, by (2 .4) . 
n,k 
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Thus, we again get 

S(n, k, 1) = kS(n9 k). 

By (1.2), 
m 

xm - x > o * . J ' ) J ' ! 0 ) 
Thus, (2.5) becomes 

^ 

S(n, k, X) - £ (l)S(n ~ m' k ~ D&O". ^'!(i) 
m » 1 j = 1 

n-k+1 n 
E j : (^)x;_(^)5(« 5 j ) 5 ( W - m > fe - 1 ) . 
J = 1 m = j 

The inner sum is equal to 

(J' + k. ~ l^S{n, 3 + k - 1 ) , 
so t h a t 

n - fc + 1 
S(n, fc, A) = J ^'!())(J + 5 1 ) 5 ( n ' J' + * " 1} 

-k + i 

Y, W)6s{n9 j + k - i ) Q ) . 

(2 .6 ) J 

Hence, 
n-fc + 1 

( 2 .7 ) S(n9 fc, A) = ^ ( n , fc, A) = £ (fc + 1 ) ^ ^ ^ , j + fc - 1 ) Q ) . 

Thus, for A an integer, 5(n, A:, A) is an integer. For example, we have 

S(n9 fc, 1) = S(n9 k) 

S(n9 ks 2) = 2S(n9 fc) + (fc + l)S(n9 k + 1) 

S(n9 k9 3) = 35(n, fc) + 3(fc + 1)S(«, fc + 2) . 

It follows readily from (2.7) that 

(2.8) 
n-k + 1 

m 

£(-D*(j)s<n, fc, X - t) 

-k + l _ 

£ <fc + D ^ S f r , j + fc - 1)Q _ " j , (m >. 1). 

This result holds for all X. However, if X is a positive integer, then 

(2.9) X ) <-!)*( l)s(n, fc, X - *) = (fc + Dx.^Cn, X + fc - 1), 
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and 
x + i A - f JL / \ 

X) (-D*(X + l)S{n, k, X - t) 

0/ - fc 

(2 .10) 
n-k + 1 

88 ]C. (-l/"A"U + D^.i^Cn, j + fc - 1). 
j - A + l 

3. THE FUNCTION R(n, k9 X) 

It is convenient to define 

(3.1) R(n9 k9 X) = ~S(n9 k + 1, X) + S(n, k) . 

Thus, (2.5) implies 

(3.2) i?(«, k9 X) = ̂ ( ^ ^ ( n - ms k) , 

while (2.7) gives 

(3.3) 2?(n, k, X) = £ (& + Dj5(n, J + k) ( K. . 
j-o V J / 

Multiplying (3.2) by kM^l and summing over k9 we get 

n / \ n / \ n~m 

Y,k\(l)R(n, k, X) = Er)rX)5(n - m, k)y(y - 1) •• 
fc = 0 V * m-0\m/ k-Q 

= t(n
mYmyn-m-

m = 0 x ' 

Hence, 

(3.A) £ fcl(jQi?(n, fc, X) = 0/ + X ) \ 

It follows from (3.4) that 

(3.5) £ § f i > ( ? W > k> x> - e*<i/+X)> 

rc = 0 - k=Q X 

To o b t a i n a r e c u r r e n c e for i?(«, fc, X), t a k e 

£k\(l\(R(n + 1, fc, X) - Xi?(n, fc, X)) = (y + X)n + 1 - X(y + X) 

= i/(i/ + X ) n . 
Since 

it is clear that (3.4) gives 

R(n + 1, k9 X) - XR(n9 k9 X) = kR(n9 k9 X) + R(n9 k - 1, X), 
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that is 

(3.6) R(n + 1, k, A) = (X + k)R(n, k, A) + i?(n, k - 1, X). 

An equivalent result is 

(3.7) 5(n + 1, k + 1, X) = (X + k)~S(n, k + 1, X) + ~S(n, k, X) + S(n, k). 

To get an explicit formula for R(n, k, X) we recall that 
k 

S(n, k) 4E(-1)'"J(^'"-
* j = 0 " 

Thus, by (3.2), 

«<».*. »-]Jr"f(:)»-E<-«"-'(J)^ 
m - 0 j - 0 

For n - /c < mr <_ n, the inner sum vanishes, so that 

k 

*<*•*• »-&t®r&•''•'(JV" 
m - 0 j - 0 

?rE<-i>k-'(J)E(;;)w-. 
J « 0 f/l = U 

Thus, 

(3.8) i?(n, fc, X) =TTE(-D'c"-,'(?)a + J)" =yrA,:Xn. 
K. ̂. = 0 \j 

It follows from (3.8) that 

(3.9) £i?(n, fc, X)j£ = ̂ -e^(e2 - 1)" 

n- k 

in agreement with previous results. Also, since 

i - * / 7 x i k (-Dk~J'(k) 

~k 

(1 - As)(l - (A + l)s) ... (1 - (A + fc)s) ' 

we have 

(3.10) J > ( n , fc, X)a» = (1 _ Xz){l _ (X + ifz) ... (l - (X + k)z) • 

We also note that (3.9) implies the "addition theorem": 

(3.11) i?(n, j + k, X + ii) = (J + M E f " ) ^ ' 3, W(n - m, k, y). 
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By the recurrence (3.6) together with i?(0, 0, X ) = 1, or by means 
(3.8), we have 

(3.12) R(n9 0, X) = Xn, R(n9 n, X) = 1. 

Moreover9 if we put 

:n =Z1 ̂ (n' k, \)(x - \)(x - \ - I) ••• (x - X - k + 1); 

then 

xn 

k = 0 

R(n + 1, k, X) = (X + Zc)i?(w, Zc, X) + R(n9 k - 1, X) , 

so that i?(n, Zc, X) = i?(n, /c, X ) . Thus9 we have 

n 

(3.13) yn = X^ ( n > k, X)Q/ - X)(z/ - X - 1) •-• (y - X - k + 1) , 
£ = 0 

o r , r e p l a c i n g y by -z/9 

re 

(3.14) yn = X ( - D n " ^ ( ^ 9 k, X)(i/ + X)k. 
fc = o 

This, of course, is equivalent to (3.4). 
It is clear from (3.8) or (3.13) that 

(3.15) R(n9 k9 0) = S(n9 k). 

For X = 1, since £(n, k9 1) = kS(n9 k), then by (3.1) 

R(ns k9 1) = (fc + l)S(n9 k + 1) + S(n, Zc), 

so that 

(3.16) i?(n, Zc, 1) = S(n + 1, k + 1). 

The function 
re 

(3.17) 5(n, X) = J^R(n9 k9 X) 
k = o 

evidently reduces, for X = 0, to the Bell number [1, p. 210] 

re 

B(n) = J^ 5(n' k)°  
k = 0 

A few formulas may be noted. It follows from (3.2) that 

(3.18) B(n9 X) = V ("UmB(n - m) 
m = 0 \ ' 

Also, by (3.9), we have 
CO 

(3.19) ] T B ( n , X)f^ = ex* exp(es - 1) , 
n\ 

re = 0 

which, indeed, is implied by (3.18), 
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Differentiation of (3.19) gives 

5 ^ B(n + 1, X ) ^ = XeXz exp(s3 - 1) + e(A+1)0 exp(e3 - 1) . 
n = 0 n * 

Hence , 

(3.20) 5(n + 1, X) = XB(n, A) + B(n, X + 1) 
n 

= B(n, X) + £ (J)B(m, X). 
m = 0 

Iteration of the first half of (3.20) gives 
m 

(3.21) B{n + m, X) = £ T T ^ • Bin, X + j), 

as can be proved by induction on m. Incidentally, by (3.8) 9 (3.21) can be 
written in the form 

m 

(3.22) B(n + m3 X) = £ i?(w, J, X)B(w, X + j). 

To anticipate the first result in Section 6, the inverse of (3.22) is 
m 

(3.23) B(n, X + m) = £ (-lf~J\ fa, J, X)5(n + J, X) , 
j-o 

where R1im, j , X) i s defined by (5 .1 ) . 

Returning to (3 .9 ) , note that 

5 > ( n , fc, X + l ) g - = ^ - e a + 1 ) z ( s z - 1)* 
n = A: 

= ^j-eXa(e* - l)k + 1 +^jeXziez - l)k, 

which implies 

(3.24) Rin, k, X + 1) = ik + l)i?(n, fe + 1, X) + i?(n, fc, X). 
More generally, since 

m 

j-o V J / 

we get 

(3.25) i?(n, fc, X + m) = £ ("|) (fc + l)jR(.n, k + j , X). 



1980] WEIGHTED STIRLING NUMBERS OF THE FIRST AND SECOND KIND—I 155 

We may also write (3.24) in the form 

(3.26) Axi?(n5 k3 X) = (Zc + l)i?(n, k + 1, A), 

where Ax is the finite difference operator. Iteration of (3.26) gives 

(3.27) Â i?(n5 k, X) = (k + l)mi?(n, k + m, X). 

4. THE FUNCTION 5x(n, fc, X) 

Corresponding to (2.2)9 we define 

(4.1) iS'1(n; ̂ 1$ k2, ... s kn; X) = k1(X)1 + k2-^— + ••• + few , _ ^ , , 

where the inner summation is over all permutations of Zn, 

n = k1 + 2A:2 + • • •. + nfcn, 

with fcx cycles of length 1, fc2 cycles of length 2, . .., fcn cycles of length 
n. Then (compare [2, p. 68]) 5 we have 

rC , . , K , 

/ J ~r 2-J Si(n'> k19k2, * > -*kn;X)^ 
n-l ' k1,k2,--- 1 

^ 1 ^ 2 

«fc ! . . . . K 2 . ... 

' 5 - X . M W ' • * • — • - • ^-g^iyil,'. ,'••.. ..4 M k'.k^l ... n ) 1 2 

i(X)l (X)2 2 (X)3 3 I j 1 2 1 3 I 
= 1^ryix + i r ^ +-i!-y3x + ---j e x p ^ i x + IJ/2

X + ^ 3 x + •••;• 
For j/1 = J/2 = ••• j/» the extreme right member becomes 

j/((l - x)'A - 1)(1 - a)"". 

Hence, we get 

(4.2) £ S.(n, k, \)^-yk = y((l - x)~A - 1)(1 - atf"", 
n, k 

where 

(4.3) 'S1(n9 ks X) = X>1(n; fc19 k2, .... Zcn;A), 

and the summation on the right is over all nonnegative /c1, k2, . - . , kn satis-
fying n = k± + 2k2 + ••• + n/cn. 

Since (see [2, p. 71]), 

(4.4) Esi<w> wfry" • u - *>"*• 

i t follows from (4.2) that 

E^(^ k + i, x)fii/* = E ^ n * w)fr(^ + 2 / > w - ^ 
n,k ' n,k 

„ m - 1 n 

= E^->SE(^ m -V=Ef>E (£)xm-Sl(n,m). & = 0 n, fc " " m=fc + l 
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Therefore, 

(4.5) S1(n9 k + 1, X) = X \ t F5i(«» J + k) . 

In the next place, it also follows from (4.2) that 

X ^ C n , k + 1, A ) f ^ = ((1 - xyx - 1)(1 - ar)"* 
M i fe 

Equating coefficients, we get 

n-k 

- E<x>»,fr2>i(«. fe>f? 
m - 1 n,k 

•yk 

S^n, k + 1, A) = X ) Q (A)m5x(n - m, fc) 
777 = 1 

m- 1 

Thus, 

(4.7) ^ ( n , & + 1, X) = ̂ ( n , k + 1, X) 

X - ~ - ( M - 1) ••• (n - m + 1)5,(n - /TZ, •&) . 
m- 1 

It follows at once from (4.7) that, for X integral, S1(n9 k. + 1, X) is als 
integral. 

It is evident from (4.1) and (4.3) that 

(4.8) 'S±(n9 k9 1) = nS-^n, k). 

Thus, for example, (4.5) and (4.6) yield 

n-k / • , TA 

(4.9) V [3 . ̂ ( n , j + fc) - ̂ ( n , fc + 1), 
j=i V J 7 

and 
n-k 

(4.10) ]T w(n - 1) ••• (n - m + 1)5-^ - m> k) = nS1(n9 k + 1), 
m = l 

respectively. 

5. THE FUNCTION ^ ( n , &, X) 
We define the function R (n9 k9 X) by means of 

(5.1) R1(n9 k9 X) = ~S±(n9 k + 1, X) + S1(n9 k) . 

Then, by (4.5), 
n-k i . v 

(5.2) i?x(n, fc, X) = £ T * )^i (". c7 + fc). 
j-o x J ' 
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and by (4.6) , 
n-k 

(5.3) i?x(ns k, X) = ]T lQ) (X)mS1(n - ms k) 
m « 0 

= 2 ^ ~^!™ n ( n • X) ' °  °  (w - m + 1)51 (n - m9 k) , 
m -0 

It is also evident from (4.2) and (4.4) that 

(5.4) £ * ! ( « , fe» *)flT2/k = d ~ * ) " A " 1 ' . 

n,fe 

Differentiation of (5.4) with respect to x gives 

X > ! ^ + 1, fc, X)^ = (X + z/)(l - a ) " * " * " 1 , 

n, k 

so that 

(1 - *)]>>, (n+ 1, fc, A)gl/* = (A + 2/)IX(n' fe' * > & *' 
n, k ' n,k 

Equating coefficients, we get 

R1(n + 1, k, X) = nR1(n9 ks X) = XR1(n, k9 X) + R1(ns k = 1, X), 
that is, 

(5.5) Rj^in + 1, k, X) = (X + n ^ C w , fc, X) + R1(n9 Zc - 1, X ) . 

It follows at once from (5.5) and i?1(09 0, X) = 1 that 

(5.6) R1(n5 0, X) = (X) n, R1(n, nX) = 1. 

Also9 taking y = 1 in (5.4), we get 
n 

(5.7) J2Ri(n* k> X) = (X + l)n. 
k = o 

More generally, we have 

(5.8) X X ( n * k> X^yk = ( x + # > * • 
fe = o 

Clearly, (5.5) is implied by (5.8). 
It is clear from (5.4) that 

(5.9) R±(ns k5 0) = ̂ ( n , fc). 

For X = 1, we have, by (4.8) and (5.1), 

(5.10) R1(ns k5 1) = S1(n + 1, k + 1). 
These formulas may be compared with (3.15) and (3.16). 

In view of (5.10), (5.2) and (5.3) reduce to 

(5.11) S^n + 1 , H 1 ) - X r 5 fc)5i(n, j + fc), 
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and 
n -k 

(5.12) S1(n + 1, k + 1) = Yln(n " x) "" (n ~ ™ + O^Cn - m9 k). 
m = 0 

It is not difficult to give direct proofs of (5.11) and (5.12). 
Returning to (5.4), note that 

(i - *)2X<n' k» x + l)^yk = (1 - xyX'y -
n, k 

This g ives 
(5.13) i?!(n, fe, X) = R1(n9 k9 X + 1) - ̂ ( n - 1, Zc, X + 1), 

and generally, 
m 

(5 .14) / ? ! (« , k9 X) = ^ ( - l ) J ' ( ^ ) n ( n - 1) • •• ( n - j + l ) i ? x ( n - j , fc, \ + m)\ 

The i n v e r s e of (5 .14) i s 
n 

(5.15) R1(n9 k9 X + wz) = XI H ) Wj^ i (« - J . ^, ^)-
j - o V J / 

We may w r i t e (5 .13) i n t h e form 

(5 .16) Axi?!(n, fc, X) = ni?x(n - 1, k9 X + 1 ) . 

I t e r a t i o n g ives 

( 5 . 1 7 ) A™i?1(n, Zc, X) = n ( n - 1) • • • (n - 772 + l ) ^ x ( n - m, /c, X + 777) . 

6. ORTHOGONALITY RELATIONS 

Comparing (5.8) with (3.14), we have immediately the orthogonality re-
lations 

(6.1) £(-l)n"ki?(n, k9 X)R1(k9 j, X) 
7< = 0 
n 

= X)^x(n, fc, X) • (-l)k-JR(k9 j, X) = 6nfJ.f 
fc = 0 

the Kronecker delta. 
It is of some interest to give a proof of (6.1) making use of (3.2) and 

(5.2). We have 
n 
£<-l)""*i?<n, k, VR^k, j , A) 
fc-0 

= E < - n B - * E C S ) ^ " -m' fe)E(J' * *)*'5i<*.fe + * > 
fc = 0 w?-0 ' t-0 ^ 

n n- Q . . n - m 

m = 0 £ =0 * ' fe=o 
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The inner sum is equal to 1 if n - m = j + t9 and vanishes otherwise. Thus, 
we have 

X 
•-0 

so that 
"-'t <->"(:)("}") - *-'S(-""'tX") -«••*• 

(6-2) £(-l)n"*i?(n, fc, A)i? <fc, j, A) = 6n , . 
fc = o 

As for the second half of (6. 1 ) , we have 

n 

X X ( n , k9 X) • (-l)*-*l?(fc, j, X) 
fc = o 

n n-kI v \-A 

= E E( £ V^oi, * + fe) • (-D*-* E u ) w * -"» J) 
fc-0 * = 0 V ' m-o V ' 

- E £(fc)**-V». *> • <-"k-'E(*K-"SCm. J> 

£ Ec-D'-^'-S^n. t)50n. ^E(-l)*"*(^(i) 
J- _ rv ,« _ -.' Z, = n \ / \ / 
t=Q m=Q k=0 

n n 

- E E ( - 1 > t ~ i x * ~ m V n > *>s<m' J>6*.™ 

n 

* -J 

This 9 together with ( 6 . 2 ) , completes the proof of (6.1). 
The proof of (6.2) above suggests a more general result. As in the above 

proof, we have 

k = 0 m=0 t=0 

- E <-D*t)(M ; n ) ^ " - ' 

-E(-i)n-"(^)(j)x»-v-J 

-(j)E(-D—(j:^A-v-rf 
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and therefore, 

(6.3) Y,(-l)n-kR(n, k, \)R1(k, J, y) = (̂ )i 
fc = 0 

For y = X, (6.3) reduces to (6.2). 
In the next place 

n 

E V " > k> vi) • i-Dk-JR(.k, j , A) 
k = 0 

t t(t)^'\^ « • l-»k~i£(Z)*-msO». o) 

yt-feXZc-'" 
'J y ' k = m 

t = 0 m = j 

Let U(n9 j) denote this sum. Then, 

j - 0 V / f c - O m - O V ' j = 0 V / 

n t * , 

= E EHnIPi( n' £)(X-y)*~m^ 

£ (-D^^n, t)(* + X - y)' 
t = 0 

(-l)n(x + X - y)(x+X- y- 1) ••• (ai+X-y-n+1). 

Replacing x by -x9 this becomes 
n 

(6.4) £*/(«, <?)(x)j = fe " X + y)n. 
« 7 = °  

Since 

i«0 V / 
it follows from (6.4) that 

U(n, 3) = (J) (y " *)„-,•• 
Therefore, we have 

n . . 

(6.5) X X ^ ' *» ̂  " (-Dk'dR(k9 j, X) = (") (y - X) .. 



1980] WEIGHTED STIRLING NUMBERS OF THE FIRST AND SECOND KIND—I 161 

This result may be compared with (6.3). If we define matrices 

M = [(-l)n~kR(n9 k, X)] (n, k = 0, 1, 2, . . . ) , 
and 

M1 = [R1(n9 k9 y)] (n, k = 05 1, 2, . . . ) , 

then (6.3) and (6.5) become 

(6.3)' MM1 = 
and 
(6.5) ' M±M = 

respectively. 

7. COMBINATORIAL INTERPRETATION OF R(n, k, X) ANDi?1(n, k, X) 

Let X be a nonnegative integer and let Bl9 B2, . .., B^ denote X open 
boxes. Let P(n, k9 X) denote the number of partitions of Zn = {1, 2, . .., n} 
into k blocks with the understanding that an arbitrary number of the elements 
of Zn may be placed in any number (possibly none) of the boxes. For brevity, 
we shall call these "X-partitions." Clearly, 

(7.1) P(n, k9 0) = S(n9 k). 

To evaluate P(n, 0, X), we place x± elements of Zn in B , x in B„, . . ., 
xx in B-^ . Thus, 

P(n,0,X) = T] — T^ r. 
a:1+ a;2+ • • • +xx

 L z A 

Hence, 

(7 .2 ) P ( n , 09 X) = Xn. 

A l s o , c l e a r l y , 

( 7 . 3 ) P ( 0 , k9 X) = 6 0 t k . 
To get a recurrence for P(n9k9 X), we consider the effect of adding the 

element n+ 1 to a X-partition of Zn into k blocks. The added element may be 
placed in any of the blocks or any of the boxes without changing the value of 
k. On the other hand, if it constitutes an additional block, then of course 
the number of blocks becomes k+\. Thus, we have 

(7.4) P(n + 1, k9 X) = (X + k)P(n9 k9 X) + P(n9 k - 1, X). 

Since 
P(0, k9 X) = P(0, k9 X) = 60)k, 

comparison of (7.4) with (3.6) gives 

(7.5) P{n9 k9 X) = R(n9 k9 X). 

Hence, R(n9 k9 X) is equal to the number of X-partitions of Zn into 
k blocks. 

Turning next to R (n, k9 X), again let Bl9 Bl9 . . . , B\ denote X open 
boxes. Let P1(n, k9 X) denote the number of permutations of Zn with k cycles 
with the understanding that an arbitrary number of the elements of Zn may be 
placed in any number (possibly none) of the boxes and then permuted in all 
possible ways in each box. For brevity, we call these "X-permutations." 

{£)tt-y>-k 

U ) (M - A)n.kJ, 
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Clearly, 

(7.6) P1(n, k, 0) = S±(n9 k). 

To evaluate P(n, 0, A), note that P(l, 0, A) = A and 

P(n + 1, 0, X) = (A +.n)P(n, 0, A), 

since the element n + 1 may occupy any one of the n + A positions. Thus, 

(7.7) Px(n, 0, A) = (A)n. 

Also clearly, 

(7.8) P^O, k9 A) = 60fk. 

A recurrence for P1(n, k, X) is obtained using the method of proof of 
(7.4); however, there are now X+n possible positions for the element n + 1. 
Thus, we get 

(7.9) P1(n + 1, k9 A) = (A + n)P1(n, k, A) + P1(n9 k - 1, A). 

Comparison of (7.9) with (5.5) gives 

(7.10) P±(n, k9 A) = R±(n9 k, A). 

Hence, R1(n9 k9 A) is equal to the number of X-permutations of Zn with k 
cycles. 

We remark that (7.5) can also be proved using (3.2) and that (7.10) can 
be proved using (5.3). 

Finally* we note that the generalized Bell number defined by (3.17), 

n 

B(n, A) -J^R(n9 k9 A), 
k = o 

is equal to the total number of X-partitions of Zn. 
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We define the simple set of polynomials $n(x) to be quasi-orthogonal if 

fib 

(<(>«» <f>fc) •£ w (x) cj)n (x) (j) k (x) dx 
An 
Bn 
Cn 
0 

if k = n - 1 
if k = n 
if k = n + 1 
otherwise. 

We shall require An and Cn to be nonvanishing. It is to be noted that the 
$n(x) may or may not be orthogonal over some other combination of range [a, b] 
and weighting function w(x). Consider, for example, if the range is [-1, 1], 
w(x) = 1 + x9 and §n(x) = Pn (x) 9 the Legendre Polynomial, 

£ (1 + x)Pn (x)Pm(x)dx 

In 
{In - l)(2n + 1) 
2 

In + 1 

2(n + 1) 
(2n + l)(2n + 3) 

0 

if m = n 

if m = n 

If m = n -

otherwise 

Here, Pn is quasi-orthogonal, but, of course, if w(x) = 1, Pn is also ortho-
gonal. 

However, the simple set 

j\>n = {In + l)Pn + Pn_.! 

is quasi-orthogonal, but it is not orthogonal with respect to any range and 
weighting function. This is easily illustrated by noting that: 

* * a ' = " ^ + 7^3 + 
403 

^ 2 
133 

9r4 4 5r 3 15(45)^2 ( 4 5 ) * i 
281 

90(45) ̂o 

Since the \\)n do not satisfy a three-term recursion formula, they, by the con-
verse of Favard?s Theorem, are not an orthogonal set, no matter what w(x) or 
[a, b] is selected. Favard!s Theorem and converse are as follows. 

T/ieo/iem: If the tyn(x) are a set of simple polynomials which satisfy a three-
term recursion formula, x\\)n = anipn + 1 + bn^>n + entyn_l9 then the i(;n are ortho-
gonal with respect to some weighting function w(x) and some range [a, b] if 
the integration be considered in the Stieltjes sense. 

Conv&tt>£: If the tyn are a simple set of polynomials orthogonal with respect 
to a weighting function w(x) and some range [a, b] , then the i(̂  satisfy the 
three-term recursion formula: 

For quasi-orthogonal polynomials, the following property will be satis-
fied: 

163 
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Tko.OX2Jfn.' If Rn(x) is a set of simple quasi-orthogonal polynomials over [a, b] 
with respect to w(x) , then the necessary and sufficient condition that Rn(x) 
also be orthogonal over some range [c, d] with respect to some weighting func-
tion W1(x) is given by the expression: 

n 
XRn-l = S GkRk> U ~ 2> 

fe-0 

CQ + 0 if n = 2 and CQ = 0 if n > 3. 

VKOO^I The quasi-orthogonal character of Rn leads at once to the set of 
equations: 

(%Rn-l> Rn + 0 = Cn(Rns R
n+0 

(xRn_19 Rn) = Cn_1(Rn_1, Rn) + Cn(Rn9 Rn) 

K-l' Rn-l) = C n - 2 ^ n - 2 » ^n -1) + ^n -1 ̂ n -1 9 ^n-l) + ^ (E > Rn-0 

W n - 1 ' Rn-2' ~ ^n-3^Rn-3s Rn-2' + ^n-2^Rn-2s Rn-2> + ^n-l^w-1' Rn-2' 

(xRn_13 Rn_3) = ^-i+C^n-tts ^ n - 3 ^ + ^n-3^Rn-39 Rn-3^ + ^n-2^Rn-2'> Rn-3^ 

0 = ^ - 5 ( ^ . 5 , ^n-i+) + ^ n - J ^ - 4 ' ^n-4) + ^ - 3 ^ - 3 ' ^n-it) 

0 = C0(R0, R±) + C1(R1, R±) + C2(i?29 i?x) 

0 = C0(RQS R0) + C1(R19 i?0). 

The zero terms on the right occur, since 

( n-2 v 

k = 0 I 
and 

(i?n-i> ̂ ) = 0 f o r k < n - 3. 

We begin at the bottom of the chain and observe that if C0 = 0, C1 is also 0. 
Then the penultimate equation yields C2 = 0. Continuing9 

c70 = 4 = ••• = Cn_3 = 0 . 

To show Cn_2 ^ 0J note that when Cn_2
 = 0» t n e fifth equation of the chain 

requires: 

( n-2 v 

Rn-1> J2akRk) = ̂»-2^»-l> ^n-z)' 
£ = 0 / 

Now, ak_2 ̂  0, since from the equation 

n-2 

fc = 0 

we see that ccn_2 = T , where ^„_3 is the coefficient of xn~3 and hn_2 is 
^n- 2 

the coefficient of xn~2±nRn_2. Since the i?n are a simple set of polynomials, 
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these cannot vanish. Therefore9 

So 5 CQ = 0 implies 

Hence, by Favardfs Theorem, these Rn must be an orthogonal set with respect 
to some weighting function w1(x) and some range [o9 d] if the integral be 
considered a Stieltjes integrals 

If C0 i1 0S the Rn do not satisfy a three-term recursion formula (unless 
n = 2) and by applying the contrapositive of the converse, we see that the Rn 
cannot be an orthogonal set with respect to any weighting function and range. 
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The natural number of the form 

In + 1\ 1 / , 1N 
tn = V 2 ) = I n ( n )s 

where n is a natural number, is referred to as the nth triangular number. 
The aim of this work is to give solutions of some equations and systems of 
equations in triangular numbers. 

1. THE EQUATION ttx + tty = tta 

It is well known that the equation 

(1) tx + ty = tz 

has infinitely many solutions In triangular numbers txs ty9 and t z . For ex-
ample s it follows immediately from the formula: 

(2) *(2n + l)fc + t^tnk + n= Wl)Hn* 

We can ask whether there exists a solution of the equation: 

The answer to this question is positive9 because there exist two solutions: 

tt„+ tt??= tts3 and **,„, + t t l l , = tt2ie. 
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The problem of finding all the solutions to equation (1) above will be 
solved in a subsequent paper. 

2. TRIPLES OF TRIANGULAR NUMBERS, THE SUMS OR DIFFERENCES 
OF ANY TWO OF WHICH ARE ALSO TRIANGULAR NUMBERS 

The system of three equations: 

t x ^~ ^ y — U U9 

(4) tx + tz = tV9 

ty + 2tz — tq , 

has infinitely many solutions in triangular numbers tx> ty9 tZ9 tU9 tv , and 
tq. This theorem can be proved by insertion of the following formulas into 
equations (4): 

x = n, y = j(tn - 3), z = tn - 1, 
(5) l 3 

u = -^(tn + 1), v = tn, <7 = -2"(tn - 1), 

where n is a natural number of the form 4/c + 1 or 4fc + 2 for natural k. 
In particular, putting n = 14, we have: 

# = 14, z/ = 51, z = 104, 

w = 53, y = 105, <? = 156. 

Since tq - tz = t15S - t10k = t l l s = tW9 we obtain a solution of the system of 
equations: 

tx + ty ~ tU9
 iri t n e numbers: t l h + t51 = t53, 

(D) x̂ + ^3 = ^y> ^14~^^'104 = : ^ ; 1 0 5 S 

ty + t z = £ w, t 5 1 + £10if = ^116* 

We see that there exists a triple of triangular numbers whose sums in pairs 
are also triangular numbers. The problem of whether there exist three dif-
ferent triangular numbers, the sum of any two of which is a triangular number 
was formulated by W. Sierpinski [1]. 

ThdOtiQJMi Suppose that x > y > z; then each of the systems of equations: 

tx *~ ty = tU9 

(7.1) tx + tM - t v , 

ty ~> t z — tw I 

tx "•" ty = tu , 
(7.2) tx + tz - tv9 

ty - tz = tW9 where x + w9 y + V; 

tx "F ty == tu , 

(7.3) tx - t , = t v , 

ty + tz =-- tw, where x £ w, y f v; 
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(7.4) 

(7.5) 

£ x 

~£x 

ty 

£ x 

*x 

h 
~tx 

-
+ 
+ 

-
-
+ 

-

*v 
U 
tz 

ty 
tz 

tz 

ty 

= 
= 
= 

= 
= 
= 

= 

^Us 

VV s 

t^W9 

^U 5 

U v s 

~^W 5 

til 9 

where x ± w9 z ± u; 

where x ^ w 9 y ^ v 9 z ^ u ; 

(7.6) tx + tz - tv9 

ty - tz = ty9 where x + W 9 y + V9 

(7.7) 

£x 

£x 

^ 

^x 

^x 

** 

+ 
~ 
-

-
-
-

*V 

tz 

tz 

ty 
tz 

t* 

= 
= 
= 

= 
= 
= 

t-U 3 

^ 5 

^ W ) 

^U S 

ty s 

ty)} 

(7.8) 

= tw, where x ^ w 9 y ^ v 9 z ^ u ; 

has infinitely many solutions in triangular numbers tX9ty9 tZ9tU9 tV9andtw. 

Vfuoofc We prove even more. Each of the following systems of equations has 
infinitely many solutions in natural numbers x and y. 

"̂  16x +2 + ^ 1 2 x + 2 = ^20x + 3 ' 

( 8 . 1 ) ^16x4-2 + ^\9x + 2 = t y , 

^ 1 2 x + 2 "*" ^ 9cc + 2 = ^ 1 5 x + 3 ' 

^ 1 6 x + 2 + ^ 1 3 x + 2 = ty9 

( 8 . 2 ) ^ 1 6 x + 2 + ^ 1 2 x 4 2 = ^ 2 0 x + 3 5 

^ 1 3 x 4 2 ~ ^ 1 2 x + 2 = t b x l 

^ 1 6 x 4 2 + ^ 1 2 x 4 2 = ^20x + 3 5 

( 8 . 3 ) ^ 1 6 x 4 2 ~ ^ 9 x 4 2 = t y , 

^ 1 2 x 4 2 + ^ 9 x 4 2 = "^15x + 3 ' 

^ 1 5 x + 3 " ^12x + 2 = ^9x + 2» ^ 1 3x + 2 ~ ^ 1 2 x 4 2 = ^ 5 x ' 

( 8 . 4 ) ^ 1 5 x 4 3 + t5x = ty9 Or t13x + 2 + ^9x + 2 = ^ y , 

^ 1 2 x 4 2 + t5x - "^ i 3 a . + 25 ^12x + 2 + ^9x + 2 = ^ 1 5 x 4 3 ' 
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(8.5) ^ 1 5 r c + 3 

^ 1 2 x + 2 + 

^ 1 2 a : + 2 ^ 9a; + 2 

13a ; + 2 » 

(8.6) 
^ 1 6 t f + 2 ~ "^13ar + 2 = ^ # » 

" ^ 1 6 i c + 2 + ^ 1 2 a : + 2 ~ ^ 2 0 a M 

^13£C + 2 ~ ^ 1 2 a r + 2 = ^ 5 a : » 

(8.7) 
^52#+2 + ^ 3 9a; + 2 

' 3 6 t f + 2 

^ 6 5a:+3 » 

(8.8) 
^15:r+ 3 

h5a; + 3 

ty , 

' 9 X + 2 ' 

t c 

The systems of equations (8.1)-(8.8) are, respectively, equivalent to 

the following equations, for which there exist initial solutions given below: 

(9 .1 ) 

(9 .2 ) 

(9 .3 ) 

( 9 . 4 ) 

(9 .5 ) 

(9 .6 ) 

( 9 .7 ) 

(9 .8 ) 

337a;z + 125a; - yl 

425a;2 + 145a; - y2 

175a;2 + 35a; - y2 

250a:2 + 110a; - y2 

200a;2 + 100a?'- y2 

Six2 + 15a; - y2 

1408a;2 + 80a; - y2 

56x2 + 40a; - y2 

y 

y 

y 

y 

y 

y 

y 

y 

-
= 

= 

= 

= 

= 

= 
= 

- 1 2 , 
- 1 2 , 

o, 
- 1 2 , 

- 1 2 , 

0 , 

o, 
- 6 , 

0 , 

0 , 

o, 
0, 

o, 

Uo = 3 

y0
 = 3 

Uo = 0 

Z/o = 3 

2/o = 3 

o> yQ o 
0, z/0 = 0 

0, y0 = 2 

From the theory Of Pell's equation (also referred to as Fermat's equa-
tion), it follows that if, simultaneously, k and m are natural numbers, 1, n9 
and q are integers, then the product k • m is not a square, and if there ex-
ists an initial solution of the equation, 

(10) kx2 + lx - my2 - ny = q9 

in integers x0 and y0, where lxQ + T T ] + lyQ + -y-J f 0, then equation (10) 

has infinitely many solutions in natural numbers x and y .• Applying this to 
equations (9.1)-(9.8) we prove that all the systems of equations (8.1)-(8.8) 
have infinitely many solutions in natural numbers x and y. This theorem is 
thus proved. 
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Some years ago, A. Schinzel found the following proof for the statement 
that there exist infinitely many triples of different triangular numbers for 
which the sum of any two is a triangular number [private communication from 
A. Schinzel]. 

SckLnzeZ1A ?K.00{ [unpubtl^k^d) : It is well known that the equation 

x2 - 424z/2 = 1 

has infinitely many solutions, where x E 1 (mod 106) [in every solution, we 
have ±x = 1 (mod 106)]. Putting 

25 
k = 5y - Y Q ^ ( ^ - 1) - 1, 

1 = |(x - 1) - 50y + 2, 

we find 

^5fc + 4 + ^12fc+9 = h3fe+10' 

^9fc+6 + ^ 1 2 k + 9 = ^ 1 5 k + l l * 

3. SYSTEMS OF EQUATIONS INCLUDING THE ALGEBRAIC SUM 
AND THE PRODUCT OF TRIANGULAR NUMBERS 

W. Sierpinski [1] has asked whether there exists a pair of triangular 
numbers such that the sum and the product of these numbers are triangular 
numbers. We have found some such systems of equations for which there exist 
one or two solutions in triangular numbers, e.g.: 

1. ~tx ~~ ty — t u s V x "• ty ty j txty — tw , 

(This solution was found by K. Szymiczek [2].) 

2. tx "F ty = tU9 txty = tv s \tx ' *-)~by — tUJ 

^9 + ^ 1 3 = ^16' ^9^13 = ^ 9 0 ' ^ 9 + ^ ^ 1 3 = ^91' 

3. £# "" ̂ y = tu, txty = ty, tx/ty — 1 = tWJ 

^21 ~ ̂ 6 = ^ 2 0 s ^21^6 = ^98' ^21'^6 ~ 1 = t^ . 

4. tx ~ ty = t^, t# + t3 = tu, 

txty = tyj txtz ~ ty5 

^21 ~ ̂ 6 = h 0 ' ^21 + ^35 = S i ' 

^21^6 = ^ 9 8 s ^21^35 = ^539 s 

^63 ~ ^38 = h o ' ^63 + ^219 = ^228' 

^63^38 = ^17285 ^63^219 = ^9855°  

5. tx + tz ~ tq, ty - tz = tu, 

(ID 

(12) 

(13) 

(14) 

and 

(continued) 
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5. continued 

^29^69 ^14i+9» ^168^69 ^ 8 2 8 0 * 

6. For the system of equations, 

(16) tx + ty — ~tus txty ~ tv , 

there exists also the solution: 

^505 + ^531 = ^73 3 > ^50 5^531 = ^189980' 

The author wishes to thank Professor Dr. Andrzej Schinzel for his valu-
able hints and remarks. 
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1. INTRODUCTION 

In an earlier paper [1] we considered solutions to a system of equations: 

x^xj + 1 = yld ; 1 <_ i < j £ n. 

In this note we look at the generalized problems: 

(1.1) x^Xj + a = y\. , a + 0. 

In Section 2 we apply the results of [1] to the solutions of (1.1). In 
Section 3 we consider the following problem: Find n x 2 matrices 

I ax a2 ... an\ 

\&1 ^2 • •• hn / 

so that a^b- ± ajb-c = ±1 for all 1 £ i < j £ n. In Section 4 we apply the 
results of Section 3 to get two-parameter families of solutions of (1.1), 
linear in a, for n = 4. 

*This author's research was supported in part by National Science Foun-
dation Grant No. MCS 77-01780. 
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2. SOLUTIONS 

Solutions of 

xix3 + a = y\ - i = 1, 2, 

where 
x3, yi3 e R = /c[a?l5 x2, /x~x~T~a] 

and fc is a field of characteristic^ 2; x , a: algebraically independent over 

We saw in [1] that for a = 1 the general solution could be represented 
by 

(2.1) Vrx7y23 + Sx~y13 = ±(/S~ ± /^~)(z/12 + ^ T ^ ) * ; n = 0, ±1, ±2, ... . 

where y12 = /x1x2 + a. We arrived at (2.1) by solving the Pellfs equation, 

which arises from the elimination of x3 between the two equations (1.1). For 
general a, equation (2.2) becomes 

(2.3) Xl#23 " Xlh'13 = a ^ l " X 2 ) B 

If a is a square in 2?, say a = b2
 9 then the solution of (2.3) is entirely 

analogous to (2.1). 

Tfieô em [2,4): If a = b2
 5 then the general solution of (2.3) in R is given 

by , 
27 + /xjx\ \n 
J12 1 / 1 / 1 N I x 2 1 2 ! 

/xiyi3 + ^22/13 = ±M>^i ± / ^ 2 ) l ^ I ; n = 05 ± 1 , ±2, . . . . 

VKOO^'o We just take the general solution (2.1) for the case a - 1 and rename 
Xi by x^/b and 2/.. by y .. /& to get the solution for a = 2?2. 

In case a is not a square in k9 we can use Theorem 2.4 to give the gen-
eral solution in the extended ring R* = k*[x19 Xl, 2/12] where k* = k(/a) . The 
solutions in i? are therefore given by the following. 

lk.dOK.QM (2.5) : If a is not a square in fc, then the general solution of (2.3) 
in R is given by 

ix~y23 + v/S~z/13 = ±{/x~l ± i /aQ(z/ 1 2 ± /a?1a?2)2n + 1 a " n ; n = 0, 1, 2 , . . . . 

For example, if k = 0 and a is an integer, then either a = ±1 or the 
only solution with integral coefficients is 

(2.6) x3 = x± + x2 + 2z/12, 2/i3 = ̂  + ylz. 

Following [1], we see that in case a = b2 we can find 

^i+9 }j ihf £- -^l — ^ L ^ i s ^ 2 ' ^ 3 ' J/l2 ' ^ 1 3 ' 2/ 2 3 J 

so t h a t £ ^ 4 + a = 2/? . Namely, 
a: • ,*„# . , 2 /3 .2^13^2 J r 2 w 3 ^ 1 2 ^ 1 3 ^ 2 3 

(2 .7 ) x, = ar1 + ^r0 + x0 + 2 + 2 
4 1 2 3 a a 

If a is not a square, then there is no xh element in R± so that x^xh + a are 
squares in R for i = 1, 2, 3. 
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The construction in [1] for an x5 e K = k(x19 x2, x3, y12, 2/i3» 2/23) s o 

that x^x5 + a = y\5\ i = 1*2,3, 4 can be extended in case a - b2 but not if 
a is not a square in k. 

3. ON REAL n x 2 MATRICES SATISFYING a^. ± a ^ = ±1 

If we first consider the case where all the 2 x 2 determinants are ±1, 
then it is clear that we must have n _< 3, since for n = 4 the 6 determinants 
A^• satisfy the identity 

^12^34 + ^3 1^2 4 + ^23^14 = °  

which makes it impossible that all A^ are odd integers. Of course, there 
are many solutions for n = 3, for example 

0 ° ')• 
\o 1 1/ There is no restriction on the size of the matrix if we require only 

that the permanents of the 2 x 2 submatrices are ±1. In fact, given any a, b 
so that lab = ±1, then the matrix 

a1 = a2 + .. • + an = a; b1 = • • • = bn = b 

obviously has all permanents ±1. 
If we call a matrix admissible when it satisfies a^bj ± a^bi = ±1 for 

all 1 j£ i < j _<. n, then admissibility is preserved under the following oper-
ations. 

(i) Change of sign of any element. 
(ii) Interchange of the two rows and permutations of columns. 
(iii) Multiplication of one row by any nonzero constant and 

division of the other row by the same constant. 

We therefore normalize to consider only matrices with nonnegative entries 
and without repeated columns. We call such matrices permissible. 

L&nma (3,1) : A permissible matrix with an entry 0 has no more than three 
columns. 

VKOOJ' We normalize the matrix so that a± = 1, b± = 0. Then 

b2 = ••- = bn = I* 

Thus, if we order the columns by a2 i a3 £ ••• <_ an, we get a3- ± a^ = 1 for 
2 <_ i < j <_ n. If n > 3, this leaves only the possibilities 

a3 = 1 - a2, ah = 1 + a2. 

But then, ah + a3 = 2 and ah - a3 = 2a2 = 1 leads to a2 = a3 = 1/2. Thus, 
n <_ 3. 

We then assume that all entries are positive, and normalize to the form 

(I a2 ... an\ 
Kb b2 . . . bn) with 1 _£ a2 £ • • • _£. ay 

Then b^ = 1 + bai or |1 - ba^ | . 

C<X6e 1. b2 = 1 4- ba2. From the equations 

a2 11 ± ba^ I ± (1 + ba2)a^ = ±1s 

we get three possibilitiest 
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a 2 ( l + ba^) - ai(l + ba2) = - 1 , ai = a2 + 1 

a 2 + 1 
a 2 ( l - fca^) - a ^ ( l + 2?a2) = - 1 , a^ = Y + ^ 

a 2 + 1 
a2(bai - 1) + a ^ ( l + 2?a2) = 1, a^ = ~ — . 

Thus, n _< 49 and for n = 4 we have 

a2 + 1 I - b + ba2 
b> = ^3 i + 2£>a2

s 3 1 4- 2ba2
 s 

a 4 = a 2 + 1, 2?4 = 1 + 2? + 2?a2. 

The e q u a t i o n a3b^ ± CL^b3 = ±1 becomes 

(a2 + 1 ) [ ( 1 + b + 2?a2) ± '(1 - 2? + 2?a2)] = 1 + 22?a2, 
and hence , 

2 (a 2 + 1 ) (1 + ba2) = 1 + 22?a29 

which i s i m p o s s i b l e 3 or 

2£(a 2 + 1) = 1 + 2Z?a2s b = 1/2. 
But then a3 = 1, 2?3 = 1/2 which is not permissible* Thus ?i £ 3 in this case. 

Ccu>& 1. b2 = 1 - 2?a2. We get the possibilities: 

a2 ± 1 

(3.1) 

a2(l + fca^) - (1 - Z?a2)a^ = ±1, ai - l ^ 
a2 - 1 

a2(l - &ai) + (1 - Z?a2)a^ = 1, ai = - ^ — — 

a2(l - Z?â ) - (1 - ba2)cLi = -1, a^ = a2 + 1 

a2(ba,i - 1) + (1 - ba2)a^ = 19 a^ = a2 + 1 

a2 ± 1 
a2{bai - 1) - (1 - ba2)at = ±1, a{ = - ^ — — 

So the possible coices of a^s i=3 s 43 . .., depend on the magnitude of ba2 

(i) For ba2 < 1/2, we get the possibilities. 

a 2 - 1 1 - b - ba2 

aA 1 - 2ba2
3 % 1 - 22?a2

 5 

a2 + 1 I + b - ba2 
(3 .2 ) a . » — — r — 2^ = * 1 - 2ba2

 % 1 - 22?a2
 5 

a i = a 2 + l s 2^ = 1 - 2? - 2?a2. 

( i i ) For 1/2 = ba2, we get only one p o s s i b i l i t y 

a^ = a 2 + 1, bi = 1 - 2? - 2?a2. 
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(iii) For 1/2 < ba < 1, we get the possibilities: 

a2 - 1 |1 - b - ba2 \ 
a = _ ^ £ 

22?a2 - V % 2ba2 - 1 

a2 + I 1 + b - ba2 

( 3 , 2 )' a i = 2ba2 - T ^ = 2ba2 - 1 

a^ = a2 + 1, 2?̂  = |l - b - ba2\. 

The first and third lines in (3.2) lead to 

(1 - b - ba2)[(a2 + 1) ± (a2 - 1)] = 1 - 2ba2; 

that is, either 

2 a 2 ( l - b - ba2) = 1 - 22?a2 or 2 a 2 ( l - ba2) = 1, 

which i s i m p o s s i b l e , s i n c e a 2 > 1 and 1 - 2?a2 > 1/2; or 

2(1 - b - ba2) = 1 - 2£a2 or b = 1/2, 

which violates the condition ba2 < 1/2. 
The second and third lines in (3.2) lead to 

(a 2 + 1 ) [1 + b - ba2 ± (1 - 2? - 2>a2)] = 1 - 2ba2; 

t h a t i s , e i t h e r 
a 2 + 1 x 

2 ( a 2 + 1 ) (1 - ba2) = 1 - 22>a2 or a, = x _ ^ - 2 ( 1 . ^ < L 
c o n t r a r y to h y p o t h e s i s , or 

(3 .3 ) 22?(a2 + 1) = 1 - 22?a2 

1 
2(2a2 + 1) 

which yields the 4 x 2 matrix 

/o A\ / 1 a a + 1 2a + 1 

l 1 3a + 2 3a + 1 3 
\4a + 2 4a + 2 4a + 2 2 / 

where the parameter, a, is chosen _> 1. 
The first and second lines of (3.2) lead to 

(a2 + 1 ) (1 - 2? - 2>a2) ± (a2 - 1) (1 + 2? - 2?a2) = ± ( i - 2 £ a 2 ) 2 

which gives 

(22? + l)(22?a2 - 2a2 + 1) = 0 or 2(1 - 2ba2) = (1 - 22?a2)2. 

The first violates 22?a2 < 1, and the second violates 22?a2 > 0. Thus, (3.4) 
is the only matrix with n > 3 for Case 2(i). 

The second and third lines of (3.2)r lead to 

(a2 + i)[ 1 + b - ba2 ± (1 - b - ba2)] = 2ba2 - 1. 

Thus, either ? 

2(a2 + 1)(1 - baz) = 2ba2 - 1, b = * + g ) , 
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2b(a2 + 1) = 2ba2 - 1, 

which is impossible. 
The first case leads to the matrix 

1 a a + I a + 2 
(3e4, ) s 2a + 3 1 a + 3 3 

2a{a + 2) 2a(a + 2) 2a(a + 2) 2a 

This is the same as the matrix (3.4) in case 0 < a <_ 1, after we renormalize 
by replacing a by 1/a, multiplying the first row by a and the second row by 
1/a and interchanging the first two columns. 

The first and third lines of (3.2) lead to 

|l - b - ba2\[(a2 + 1) ± (a2 - 1)] = 2ba2 - 1, 

both of which lead to 

|1 - b - ba2 | , 
a- " 2ba2 - 1 ^ I < l 5 

contrary to hypothesis. 
To consider the first and third lines we first note that the conditions 

1 - b - ba2 < 0, that is, 
b > 1/(1 + a2) 

and 
ai = (a2 - l)/(2ba2 - 1) >_ a2 >_ 1 

and i n c o m p a t i b l e . Thuss we ge t 

(a 2 + 1 ) (1 - 2? - Z?a2) ± (a2 - 1 ) (1 + b - ba2) = (2ba2 - l ) 2 , 

which leads either to 

2a2(l - ba2) - 2b = (2£a2 - l) 2 , 
and hence, 1 

2(1 - b - ba2) <_ {2ba2 - l)2 , ai <_ j ; 

or to ab2 = -y. Both cases are excluded. 

Thus (3.4) is the only normalized 4 x 2 matrix in Case 2. 

Cctt>£ 3. b2 = £a2 - 1. In this case, bi = bai - 1 for all i and the pos-
sibilities reduce to: 

a2(bai - 1) - ai{ba2 - 1) = 1, a^ = a2 + 1, 

<3-5) a2 + 1 
aAbai - 1) + ai(ba2 - 1) = 1, a^ = 

and 

The two lines of (3.5) lead to 

(a2 + l)[(fca2 + Z? - 1) ± (-fca2 + b + 1)] = 2£a2 - 1. 
The resulting equations are 2b(a£ + 1) = 22?a£ - 1, which is impossible, 

2a2 + 1 
& = 

2a2 
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which makes 
a2 + 1 

a3 = 2ba2 - 1 = a2' 
To sum up. 

Th^OKOm (3.6)»' There are no 5 x 2 permissible real matrices, and there is a 
one-parameter family of normalized permissible 4 x 2 matrices, given by (3.4). 

We have limited the discussion to real matrices in order to reduce the 
number of cases. However, the family of permissible matrices (3.4) is valid 
for all fields of characteristic ^ 2 or 3, as long as we exclude the values 
a = 0, -1/3, -1/2, -2/3, and -1. 

4. PARAMETRIC SOLUTIONS OF (1.1) WITH THE USE OF ADMISSIBLE MATRICES 

( a1 ... ay 
] then for any a, the 

b± .. 

xi = a\a - b\; i = 1, 2, .. 

satisfy (1.1) with yi. = a^a^a ± b^bj, 

VK.00^ For 1 _< £ < j _< n, we have 

(4.2) x.x. + a = (a2-a - b2-)(aja - b2-) + a 

= aja^a2 + (1 - a\b) - a)b\)a2 + b\b). 

Now, s i n c e ci^b- ± cc-b^ = ± 1 , we have 
1 " ^ " < ^ l = ±2aiadhihj' 

S u b s t i t u t i n g in ( 4 . 2 ) , we ge t 

xixJ- + a = a^aja2 ± la^a^b^b^a + Z??&? = (a^a^a ± b^bj)2. 
In view of (3.4), we get a two-parameter family of 4 x 2 admissible ma-

trices, 

s st s(t + 1) s(2t + 1)N 

1 3 + 2 3 + 1 3 
2s(2t + 1) 2s(2t + 1) 2s(2t + 1) Is 

which yield a corresponding three-parameter solution, 

xi = xi{s9 t9 a), yid = yid(s, t, a), 

of (1.1), which is linear in a. In general, x3 and xh are algebraic, but not 
rational, functions of x± and x2> 
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6. ZERO-ONE SEQUENCE ONCE MORE 

1. Let f{m9n9 P , S ) denote the number of zero-one sequences of length m+ni 

(1.1) a = (a15 a2, ..., am+n) (a = 0 or 1) 

with m zeros, n ones, v occurrences of (00), and s occurrences of (11). It is 
proved in [1] that 

(1.2) f(m9 n9 r9 s) -

0 

(jn - r = n - s) 

(m - v - n - s : 

(otherwise). 

1) 

The proof in [1] makes use of generating functions; we shall now give a 
combinatorial proof of (1.2). 

Arrange the m zeros and n ones in the following way. We first place mQ 
zeros on the extreme left, then n1 ones, m1 zeros, n2 ones, n2 zeros, . . . , nk 
ones, m-^ zeros, where k is some nonnegative integer, 

+ mv + nk9 

(1.3) 

and 

(1.4) 

where 

w0 >_ 0, m >_ 0, m >_ 1 (1 <_ i < k) 

n± >_ 0 (1 <. i <_ k) 

k 
= ]P(^-l) + 6 + 6'=m-k-l + 

i =0 
k 

= ^2 (nt - 1) = n - k9 

6 = 
1 (m0 = 0) 

(1.5) 
I 0 (rnQ > 0) , 

( 1 (mk = 0) 

\0 (mk> 0)., 

It follows from (1.3) and (1.4) that 

(1.6) r - s = m - n + 6 + & f - l . 

It is now convenient to consider four cases: 

(i) m0 = rnk = 0; (ii) mQ = 0, mk > 0; 

(iii) rn0 > 0, mk = 0; (iv) m0 > 0, mk > 0. 

177 
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The number of solutions of 

a = x± + ••• + xk, xi > 0 (i = 1, ...9 k) 

is equal to (- _ J. 

Thus, the number of solutions 

(mQ9 m19 . . ., mk; n19 .. . , nk) 

of (1.3) is equal to: 

(i) 

(ii) 

(iii) 

(iv) 

( ; : 90s -" ! ) • ( " ; l )("; ') 

(": i)(z : ! ) • ("; ' ) ("; : ) 

( " ; % : ! ) • ( " ; ' ) ( " . " ' ) 

(m - v 1) 

s) 

(m - p = n - s) 

(tf?-P=ft-S + l). 

The first part of (1.2) is implied by (ii) together with (iii), the sec-
ond part by (i) and (iv). The last part of (1.2) is equivalent to the state-
ment that k cannot exist satisfying both parts of (1.4). 

This evidently completes the proof of (1.2). 

2. The above proof is applicable to a much more general problem. Let 

(2.1) r= (P19 r29 P3, . . . ) , s= (s1i s2, s3, ...) 

be two sequences of nonnegat:ive integers. We again consider zero-one sequences 
of length m + n with m zeros and n ones. Let f(r9 s) denote the number of such 
sequences, where T1 = m9 s1 = n, with v^ blocks of zeros of length i, and Si 
blocks of ones of length i for i = 2, 3, 4,... . Thus, v1 can be thought of 
as the number of blocks of zeros of length one and s1 the number of blocks of 
length one. 

As in §1, we envisage an arbitrary sequence o as broken into a block of 
zeros (possibly vacuous) , a block of ones, a block of zeros, and so on. How-
ever, we shall now enumerate the blocks by their cardinality. If k denotes 
the number of blocks of ones, then the number of blocks of zeros is either 
k - l 9 k 9 o r k + l . Hence, we have the following relations, 

r± = k[ + 2k[ + 3fc3' + • • • 

(2.2) 
k[ + Zk[ + 3k^ + 

K + 2K + 3K + 
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and 

(2.3) 

s1 = k± + 2k2 + 3k3 + 

k2 + 2k3 + 3kh + 

s3 = ^3 4- 2£^ + 3k5 + 

together with 

(2.4) 
k[ + k[ + k3f + 

& = /cx + k2 + fc3 + 

where k f = k - l , k , ork+l. 
The fc^ denote the multiplicity of blocks of zeros of length £, and the 

ki denote the multiplicity of blocks of ones of length £. Thus, the first 
of (2.2) enumerates the number of blocks of zeros of length one, that is, the 
total number of zeros. The second of (2.2) enumerates the number of blocks 
of zeros of length two, and so on. Similar remarks apply to (2.3) for the 
blocks of ones. 

It is easily verified that (2.2) is equivalent to the system of equa-
tions 

(2.5) 

while (2.3) is equivalent to 

(2.6) 

K 
V r 

n 

\ kl 

k2 

= 

= 

= 

= 

= 

r i 

r2 

vz 

s i 

s2 

-

-

-

-

-

2v2 + P 3 

2r3 + vh 

2vh + p5 

2s2 + s3 

2s3 + Slf 

k3 - s3 2sh + s5 

Thus, the ri and si must satisfy the following conditions, but are otherwise 
unrestricted. 

(2.7) 
Pi ~ 2 r i + l + *i+2 1 0 

Si - 2si + 1 + si + 2 > 0 
a = i , 2, 3, . . . ) , 

It follows from (2.5), (2.6), and (2.4) that 

(2.8) 
kr = P 1 - P 2 

k = sx - s2 
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Clearly, 

(2.9) f(rs s) k'l kl 
k[lkf

2lk3V ... k1lk2lksl ... 

In terms of v. and s.s this becomes 

(2.10) f(r, s) = 
(r1 - rz)! 

(P1 - 2P 2 + P 3)!(P 2 - 2P 3 + vh)\ 

(sx - 2s2 + s3)!(s2 - 2s3 + sh)\ 

3. For applications, it is convenient to use generating functions. By the 
multinomial theorem, we have 

(3.1) / , - £i xklxkzxk* 
*1+fc2+k9+----fc k1lk2lk3l . . . i 2 3 

kl (x± + x2 + x3 + • • -)k , 

where it is assumed that the series x± + x2 + x3 + ••• is absolutely conver-
gent. By (2.6)s the left-hand side of (3.1) is equal to 

kl 
(Sl - 2s2 + s3)l(s1 - 2s2 + s3)l ... 

XS1 '282+83x8i-283 + 8k 

kl 

8l~82=k 

( s L - 2s2 + s3)!(s2 - 2 s 3 i o^ 

Hence, i f we t a k e 

x2 = yxy2 

xs = y\y\y* 

^ = y\y\y\yh 

+ Su)! . . . 1 1 2 ^ 1 2 3 ' 

(3.1) becomes 

(3.2) (y± + y\y2 + y\y\y3 + . . . ) f e 

kl y"! ys2ys3 
( s , - 2s2 + s3)l(s2 - 2s3 + s^)l . . f i ^2^3 ( 
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As a first application of (3.2) , we take y3 = y = y = •»• = 1. Then5 
the left-hand side of (4.2) reduces to 

0/x + y\y2 + y\y\ + • • • ) " = yk
xa - y ^ r " 

8 = 0 X ' 

*x-a2-k N 2 ' 
in agreement with (1.2). 

If we take y3 = y4 = ••• = 05 we get 

(y,+ y\yz)k - vlZi^t 
s = 0 

= E (8i;2
8z>»-

Thus, in this case, we have 

0.3) nr,.) - ( r i ; / 2 ) ( 8 i ; 2
8 2 ) . 

where r± - r2 = k \ s1 - s2 = k, while 

P 3 = ^ = ... = os s3 = s4 = .. • = 0. 

That iss (3.3) furnishes the enumerant when all blocks are of length one or 
two. 

4. In (3.2) s we now take 

(4.1) yh = y5 = y6 = ••- = 1. 

Then3 the left-hand side of (3.2) becomes 

(2/x + y\y2
 + y\y\y* + 2/J2/I2/3 + 8-s ) / c 

= ^ij1 + 2/iM1 + 2/1^2^3 + 2/1^2^3 + " * > } 

= z/Mi + 1 
1 ( 1 ™ 2 / ! 2 / 2 2 / 3 

t =0 s = 0 ' 

3 1 ' S 2 5 S 3 X 3 / N 3 / 

bl7V*277«3 
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Hence, we have 

nr. ., - £ : ;;)(-.„; •)(;;: : : x - . ; ' ) . 
where r1 - r2 = kr, s1 - s2 = /c. 

Thus (4.2) furnishes the enumerant by blocks of length 1, 2, and 3. 
If, instead of (4.1), we take 

(4 .3 ) z/4 = y5 = ys = • • • = 0, 

we have 

(y _l_ ^ + 7737V2y ^ = V ^ J yt1+2tz+t3yt2 + 2t3yt3 

t 1 + t 2+t3=fe 1 # 2 # 3 * 

_ V ^ _ Si S2 S3 

Li (S - 2s2 + s 3 ) ! ( s 2 - 2s3)ls3\
y± y*y* 

s1 - s2 = k 

so that 
( P X - r 2 ) ! 

(4.4) / ( f , • ) 
( P X - 2r 2 + P 3 ) ! ( P 2 - 2 P 3 ) ! P 3 ! 

(si ~ s 2 > ! 

(S]L - 2s 2 + s 3 ) ! ( s 2 - 2 s 3 ) ! s 3 ! ' 

the enumerant when all blocks are of length 1, 2, or 3. 

5. The general cases corresponding to (4.2) and (4.4) are now readily ob-
tained. Let p be a fixed positive integer, and take 

(5.1) y = y = ... = 1. 

Then we have 

( yp'1yp'2 ... y ^ 
(5.2) <y1+y2y + - • • + yp'2yp'3 • • • y +-7 — 
K |^l #1^2 ^1 ^2 ^p-2 1 - Z/^2 ... 2/ 

2 ( t i s t2> •••> V i ^ * 1 ^ *1 ,, *2 

2 

Q = n \ ' 

where 

(tx + t2 • + .-• + tp_i)! 
(t 1 , t 2 5 ... j £p - 1) tiltz! ... tp.i! 

and 
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K = t± + 2 t 2 + . . . + (p - 1)* 

ti. = ^2 + 2 t 3 + . . . + (p - 2)t? 

p • 

P-2 

P-2 

V - i 

t + 2± 
P - 2 P - 1 

" p - l " 

Put 

I t fo l lows t h a t 

£/ + s = si (1 <_ i < p ) 9 s = sp 

(5.3) 

^P - I s p - 1 

^p - 2 ^P - 2 

% - 3 ~ S p - 3 

p ~ 1 ~*~ SP 

2Sp-2 + S P - 1 

* 1 " S l " 2 S 2 + S 3 -

Hence, t h e c o e f f i c i e n t of ySlySl . . . i/Sp i n (5 .2 ) i s equa l t o 

(5-A) {tx, t 2 , . . . , V i > ( 8 p _ 8 " * ) • 

where tl9 t 2 , ..., tp_x are given by (5.3), 
The enumerant f(r9 s) is therefore equal to (5.4) times the co 

ing factor containing the vi . 
Corresponding to 

(5 .5 ) 

we have 

(5 .6 ) 

where now 

y i = y p - 2 o, 

(y± + y\y2 + ••• + y{y p „ p - i 
2 yPy 

J^ ( t l 9 tz, . . . , tp)y3
1
1ys

2 1P > 

t x + 2t2 + 3t3 + + p t , 

t + It + 3* + . . . + (p - 1)*F 

V i + 2 t P p - i 

= Sv 
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This gives 

(5.7) 

tp - Sp 

tv-\ SP-I 

tp-2 ~ Sp-2 

V s " Sp-3 

2s„ 

l s
v - i + Sp 

2Sp-2 + Sp-1 

t1 - f l l 2s2 + s3. 

Hence9 the coefficient of y^y^2 ... ypp is the multinomial coefficient 
(t±9 t 2 , . .., £p) , with the ti determined by (5.7). The enumerant f(r9 s) is 
the product of this coefficient times the corresponding factor containing the 

6. Some curious combinatorial identities are implied by the above results. 
To illustrate with a simple case, we return to §3. It follows from (3.1) 
that, for s1 > s2, we have 

(6.1) 

where 

t, 

£<*!. v v •.•> = (Si
s;1)' 

s i - 2si+i + s i + 2 & = L 2> 3> • • •> , 

and the summation is over all s3, s^, s5, ... . 
Similarly, from the proof of (4.2), we have, for 

(6.2) 

where 

E < V , . «..->-(:; ::;)(•».;'). 
£,' = Sv 2si+1 + si+2 (i = 1, 2, 3, . . . ) , 

and the summation is over all s4, s5, s6, ... . 
The general case implied by (5.2) and (5.4) is readily stated. We have 

(6.3) £ ( * i . tz, t3, . . . ) = (t l S t 2 , . . . , V i ^ ' V *), 
where 

ti = s^ - 2 s i + 1 + s i + 2 ( i = 1, 2, 3, . . . ) 

î = ~^i \ i = 1, . . . , p - 2 ) , t p _ 1 = Sp _ 1 - Sp, 

and the summation on the left of (6.3) is over all s x, s 2» sp+39 •"• * 
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There are various other possibilities; for example, taking y = 1 in 
(3.2)„ However, we leave this for another occasion. 

REFERENCE 

1. L. Carlitz. "Fibonacci Notes: 5. Zero-One Sequences Again." The Fi-
bonacci Quarterly 15 (1977):49-56. 
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DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy Fn + 2 = Fn + 1 + Fn , 
FQ = 0, F-L = 1 and Ln + 2 = Ln + 1 + Ln, L0 = 2, L1 = 1. Also a and b designate 
the roots (1 + /5~) /2 and (1 - /5)/2, respectively, of x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-424 Proposed by Richard M. Grassl, University of New Mexico 

/52\ 
Of the I J possible 5-card poker hands, how many form a: 

(i) full house? 
(ii) flush? 
(iii) straight? 

B-425 Proposed by Richard M. Grassl, University of New Mexico 

Let k and n be positive integers with k < n and let S consist of all k-
tuples X = (x-, , ) with each Xj an integer and 

I <_ x± < x2 < • • - < xk ^ n. 

For j = 1, 2, ...9k9 find the average value Xj of X\j over all X in S* 

B-426 Proposed by Herta T. Freitag, Roanoke, VA 

Is (FnFn+3)2 + (2Fn+1Fn+2)2 a perfect square for all positive integers n9 
i.e., are there integers cn such that (FnFn + 39 2Fn+1Fn+2 , cn) is always a 
Pythagorean triple? 

B-427 Proposed by Phil Mana, Albuquerque, NM 

Establish a closed form fc -|>C)(V)-
B-428 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

For odd positive integers w9 establish a closed form for 
2 s + l 

£ 
fc = 0 

P1 f2S + l) F2 

186 
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B-429 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 
Is the function 

K + ̂ r + Fn ~ (Lir + L,p - 1) (F* + Br + Fl + 2r) + (L12r - LBr + 2) (^ + G + F^,) 

independent of nl Here n and v are integers. 

SOLUTIONS 

Multiples of Some Triangular Numbers 

B-400 Proposed by Herta T. Freitag, Roanoke, VA 

Let Tn be the nth triangular number n(n + l)/2. For which positive in-
tegers n is T2 + T2 + T2 + .. - + T2 an integral multiple of Tnl 

Solution by C. C. Thompson, Roanoke, VA 
n 

Let S = 2^ ^ s where n is a positive integer; then S is an integral mul-
fc-i 

tiple of Tn iff n = 1, 75 13 (mod 15). To see this., use the formulas for sums 
of powers of the first n positive integers (or the method of differences) and 
a bit of manipulative algebra to get 

S = Tn • (3n3+ 12n2 + 13rc + 2)/30. 

From this, the sum S is an integral multiple of Tn iff 

f(n) = 3n3 + I2n2 + 13n + 2 = 0 (mod 2 • 3 • 5). 

Now f(n) E n 3 + n = n ( n + l ) 2 = 0 (mod 2) is satisfied by any positive inte-
ger; f{ri) = n + 2 E 0 (mod 3) has n E 1 (mod 3) as its only solution; f(n) E 
(3n + 2)(n2 + 1) E 0 (mod 5) has n E 1, 29 3 (mod 5) as solutions. From this, 
/(n) E 0 (mod 30) has the solutions n E 157, 13 (mod 15). 

Also solved Jby Paul 5". Bruckman, Edilio A. Escalona Fernandez, Bob Prielipp, 
Sahib Singh, M. Wachtel (Switzerland) , Jonathan Weitsman, Gregory Wulczyn, and 
the proposer. 

Change of Pace for F.Q. 

B-401 Proposed by Gary L. Mullen, Pennsylvania State University 

Show that lim[(n!)2n/(n2)!] = 0 . 

Solution by Edilio A. Escalona Fernandez, Caracas, Venezuela 

Let!s call Rn = (n!)
2n/(n2)!, and Tn = Ln(Rn). Then9 

Tn = 2nLn(nl) - Ln((n2)l), 

so that by applying the formula Ln(n!) = nLn(ri) - n + 0(Ln(n))5 we have 

yw = _n2 + 2n0(Ln(n)) + 0(Ln(w)) = -n2 + 0(nLn(n))5 

and this means that Tn -> -oo as n -> °o; hence, by continuity of expOs): 

exp(Tn) = i?„ -> 0 as n + °°. 

Also solved by Paul S. Bruckman, M. Wachtel (Switzerland), Jonathan Weitsman, 
Gregory Wulczyn, and the proposer. 
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Pythagorean Triple 

B-402 Proposed by Gregory Wulczyn, Bucknell University,.Lewisburg, PA 

Show that (LnLn+39 2Ln+1Ln+2s 5F2n+3) is a Pythagorean triple. 

Solution by Sahib Singh, Clarion College, Clarion, PA 

Let A = Ln+2s B = Ln+l3 then 

A - B = (£ n + 2 "~ ^n + l) (Bn + 2 + £n + i) = ^n^n + 3® 

A + 5 = Ln + 2 + Ln + 1 = 5(F n + 2 + Fn + 1 ) = 5 F 2 n + 3. 

Thus, the given triple is A2 ~ B2, 2AB, ̂ 42 + £2, which is Pythagorean. 

Also solved by Paul S. Bruckman, HertaT. FreitagF Graham Lord, John Wo Milsom, 
Bob Prielipp, and the proposer. 

Lucas Congruence 

B-403 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Let m = 5 n . Show that L 2 m E -2 (mod 5 m 2 ) . 

Solution by Graham Lord, Universite Laval, Quebec-
Bob Prielipp, University of Wisconsin-Oshkosh; and 
Sahib Singh, Clarion College, Clarion, Pa (independently) 

It is known that m\Fm . [See B-2489 vol. 11 (1973):553.] Hence, 

(5m2)|(5F2). 

Since m is odd, we also have L2m = 5F% - 2, and it follows that 

L2m = -2 (mod 5m2). 

Also solved by Paul S. Bruckman, Lawrence Somer, and the proposer. 

Golden Approximations 

B-kQk Proposed by Phil Mana, Albuquerque, NM 

Let x be a positive irrational number. Let a, b9 o5 and d be positive 
integers with alb < x < old. If alb < v < x9 with r rational, implies that 
the denominator of v exceeds b5 we call a lb a good lower approximation (GLA) 
for x. If x < r < olds with r rational. Implies that the denominator of r 
exceeds ds old is a good upper approximation (GUA) for x. Find all the GLAs 
and all the GUAs for (1 + /5)/2. 

Solution by Paul S. Bruckman, Concord, CA 

Let 

(1) xn = F2n/F2n_l9 yn = F2n + 1/F2nS n = 1, 2 , 3 , . . . ; 

l e t 

(2) X = (tfn)n-l» Y = Q/»)n-l-

It is well known that X and Y provide the convergents for the continued frac-
tion of a, and moreover? 
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(3) 1 = x± < x2 < • •• < xn < -•- a -•• < z/n < • .. < z/2 < 2/x = 2. 

Let L and [/ denote the set of GLAs and GUAs, respectively, for a* We will 
prove that 

(4) L = X, U = I. 

We will use the following result, readily proved by applying the Binet defi-
nitions: 

VK.00^ 0^ (4) : Given any positive integer n, and any rational r = u/v 9 such 
that # n < r <L xn+l5 then, # M + 1 - ̂ n _> r - xn > 0, i.e. , 

F F F 
2n + 2 2n u 2n 

— — _ _ — > __ _ > o 
F F — v F 
L 2n + l L 2n- 1 u L 2n- 1 

=> v (F F - F F ) > F (uF - vF ) > 0. 
u y 2n + 2r2n~l r2nr2n + lJ — r 2n+ 1 K 2n - 1 un2nJ U * 

B u t , s i n c e u/v > ^ln/F2n_13
 t^iUS u^2n-i ~ vFm — ^> u s i n g ( 5 ) , t h i s i m p l i e s 

S i n c e ^ 7
2 n _ 1 < ^ 2 n + l 5 t h u s i? > F2n_1* w ^ c n i m p l i e s t h a t xn £. L» H e n c e , 

(7) I Q , 
Conversely, suppose r = u/veL. Then, for some n, xn < r <_ xn + l3 which 

again implies (6), as above. Assume that r < xn+1« Then, by definition of L, 
V < F 2 n + 1 , which contradicts (6). It follows that r = oon+1 => r e X. Hence, 

,(8) L C I , 

Combining (7) and (8) implies L = X. Proceeding in a totally analogous 
manner, we may likewise prove that U = Y« 

Also solved by Sahib Singh, Gregory Wulczyn, and the proposer. 

Good Rational Approximations 

B-I4O5 Proposed by Phil Mana, Albuquerque, NM 

Prove that for every positive irrational x5 the GLAs and GUAs for x (as 
defined in B-404) can be put together to form one sequence {pn/q } with 

v ,a - p q , = ±1 for all n « 

Solution by the proposer. 

Let p = [x], the greatest integer in x« Clearly p is a GLA and p + 1 is 
a GUAo So we let p ± = p, q± = 1 = q2 , and p 2 = p + 1. Then we assume induc-
tively that p n and qn have been defined for n = 1, 2, *os, k. Let s be the 
largest such n for which pn/qn is a GLA and t be the largest such n for which 
pn lqn is a GUA; then define p n + 1 = p s + p t and q n + 1 = qs + qt « This defines 
pn and q n for all positive integers n and we let r =pn/qn. It follows from 
the theory of Farey sequences [see Ivan Niven & Herbert S„ Zuckerman, An In-
troduction to the Theory of Numbers (New York: Wiley, I960), pp. 128-133) 
that the p„ give us all the GLAs and GUAs and that p q - v Q = ±1. 

Also solved by Paul 5. Bruckman and Sahib Singh. 
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PROBLEMS PROPOSED IN THIS ISSUE 

H-313 Proposed by V.E. Hoggatt, Jr. , San Jose State University, San Jose, CA 

A. Show that the Fibonacci numbers partition the Fibonacci numbers. 
B. Show that the Lucas numbers partition the Fibonacci numbers. 

(See "Additive Partitions I," FQJ, April 1977, p. 166.) 
H-31^ Proposed by P. Bruckman, Concord, CA 

Given x0 £ (-1, 0), define the sequence S = (xn)n = Q as follows: 

(1) xn + 1 = 1 + (-l)Vl + xn9 n = 05 1, 2, ... . 

Find the limit point(s) of S, if any exist. 

H-315 Proposed by D.P. Laurie, National Research Institute for Mathematical 
Sciences, Pretoria, South Africa 

Let the polynomial P be given by 

PCs) = zn + an_1zn~1 + an_2zn~2 + ••• + a±z + a 
0 

and let z19 z2, . .., zn be distinct complex numbers. The following iteration 
scheme for factorizing P has been suggested by Kerner [1]: 

%i = %i n ; i = 1, 25 ..., n. 

E (3* - Zj ) 
J-l 
d + i 

n n 

Prove that if £ zi = -an_19 then also J^ zi = -an_1. 

REFERENCE 

1. I. Kerner. "Ein Gesamtschrittverfahren zur Berechnung der Nullstellen 
von Polynomen." Numer. Math. 8 (1966):290-294. 

H-316 Proposed by B. R. Myers, University of British Columbia, Vancouver, 
Canada 

The enumerator of compositions with exactly k parts is (x + x2 + •••)fc» 
so that 

190 
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(1) [W(x)]k = (w±x + w2x2 + . • - ) * 

is then the enumerator of weighted k-part compositions. After Hoggatt & Lind 
("Compositions and Fibonacci Numbers/' The Fibonacci Quarterly 7 (1969):253-
266), the number of weighted compositions of n can be expressed in the form9 

(2) Cn(w) = £ wax -•- v>ak (n > 0)9 
T(n) 

where w = {wls w29 . ..} and where the sum is over all compositions ax +* • • 4-
ak of n (k variable). In particular (ibid.), 

(3) £ ai ••• ak = F2n^> 1)» 
Y(n) 

where Fk (p s q) is the /cth number in the Fibonacci sequence 

MP* ?) = P (>P) 
(4) F2(p5 4) = q (>p) 

^n+2(ps ?) = Fn+1(p,'q) + ̂ „(p} ?) (« 1 1). 
Show that 

(5) £ ( a i ± l ) a , . . . a k = 2 [ F 2 n ± 1 ( l , 1) - 1] 

and, hences t h a t 

(6) Jl(a1 - l ) a x . . . ak + ] £ a± . . . afe = F £ n ( l s 1 -f 2m) - 2m (m ̂  0 ) . 
Y(n) Y(n) 

SOLUTIONS 

Umbral - a 

H-285 Proposed by G. Wulczyn, Bucknell Universityf Lewisburg, PA 
(A generalization of R. G. Buschman's H-18) 
(Vol. 16, No. 2, April 1978) 

Show that 

(a) t(l)FvkLnr.rk = 2nFrnor (F* + L')n = (2**)» . 
k = 0v K ' 

Solution by L. Carlitzf Duke University, Durham, NC 
Much more can be proved readily. Let C(n, k) , 0±k±n3 be numbers that 

satisfy the symmetry condition: 

C(n, k) = C(n5 n - k) (0<.fc<.n). 

Let as b be arbitrary, and define 

p = h = a + D . 
n a - b n 

Then 

& = 0 # ^ & *=o 

= —^-i:C(n, kHa'n - brn) + — l — r ' t c i n , k){arkbrn-pk - apn-pkbPk). 
a — DJ, = 0 a ~ pk^Q 
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Since 

E c ( n , k)arn'rkbrk = E C ( n , n - k)a^brn~rk = E C(n, k)arkbrn-rk
9 

fc=0 fe-0 fc«0 

it follows that 

£ c ( n , k){arkbrn"rk - (1™'*%**) = 0. 
fc = Q 

There fore 

(*) E ^ C n , k)FpkLrn_rk = Fp„ E c ( n , fc). 
fc = 0 ^ = 0 

For example, i f C(n, /c) = ( , ) , we ge t 

E y-jifFTkLrn-rk = 2 ^ « ' 

w h i l e , i f C(n, fc) = ( , J , we have 

To take a less obvious example, let An^ denote the Eulerian number de-
fined by 

00 An(x) n 

2 knXk = ; An(x) = L ^n fc** (« > 1). 
*•<> (! _ #)«+! fc-i 

I t i s w e l l known t h a t 

K,k = ^n,n-fc (1 £ ^ £ W ) 
and 

n 

fc-1 
Take 

C(n, Zc) = 4 n + 1 > k + 1 (0 <_ fc <. n ) , 
so t h a t 

C(n, Zc) = C(n9 n - k) (0 <. k <. n ) . 

It follows that 

n 

JlQ
An + l,k + l FrkLrn-rk = ( « + O ^ r n -

Also solved i»y P. Bruckman, J. Vogrel, and the proposer. 
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E-281, also solved by J. Shall i t . 
H-283, also solved by A. Shannon, A. Phlllppou, and P. Yff. 
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