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1 . INTRODUCTION 

A fcth-order divisibility sequence is introduced in Hall [3] as a sequence 
of rational integers uQ , uls u2, ...9un9 . . . satisfying a linear recurrence 
relation 

(1) un + k = a1un+k_1 + • • • • + aku-n9 

where the afs are rational integers, and um divides un whenever m divides n9 

for all positive integers m and n. 
Some examples follow: 09 1, 2, 4, 8, .'. . is a first-order divisibility 

sequence, while 0, 1, 2, 3S 4, ... is a second-order divisibility sequence. 
Another second-order divisibility sequence is the Fibonacci sequence 

09 1, 1, 2, 39 59 89 ..., 

whole recurrence relation is 

un + 2 = un + l "*" un • 

If this recurrence relation is generalized to 

un + 2 = xun+l "*" yuns 

where x and y are indeterminates, the sequence resulting from the initial 
terms u0 = 0 and u± = 1 is the sequence of Fibonacci polynomials. Like the 
numerical Fibonacci sequence, these polynomials satisfy the divisibility 
property um\un (in the ring I[x9 y] of polynomials in x and y with integer 
coefficients) whenever m\n. Unlike the Fibonacci numbers, however, the poly-
nomial is irreducible (in I[xs y]) whenever the index m is irreducible in I. 
Thus9 the divisibility properties of the more general sequence differ from 
those of the numerical sequence. 

This example and others lead us to extend the coverage of the term feth-
order divisibility sequence to include sequences for which any number of the 
a1s in (1) and any number of the initial terms uQ9 ul9 ..., uk_1 are indeter-
minates. The resulting sequence may then be a sequence of integers, but it 
may, instead, be a sequence of polynomials in-one or more indeterminates x±, 
..., Xp, In this case, our discussion of divisibility properties refers to 
arithmetic in the ring I[xl9 ..., xp]. 

When a divisibility sequence is to be discussed without reference to its 
recurrence order, we call it a linear divisibility sequence. Thus, a dis-
tinction is made between the sequences at hand and nonlinear divisibility 
sequences, such as the elliptic divisibility sequences studied by Ward [7], 
[8]. 

The only known linear divisibility sequences are resultant sequences and 
their divisors, as defined below. Our purpose in this paper is to discuss 
generating functions of such sequences. Suppose 

Ht) = II (t ~ xj and Y(t) = ft (* - y<) 
^-i ' j-i. J 

are polynomials with integer coefficients; here, any number of the roots Xi 
and y. may be indeterminates. A resultant sequence {un}, n = 09 1, ..., is 
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a sequence of the form 

q p X? ~ y" 

(2) un = n n i-—r • 
Thus, u„ = Rn/Rl9 where Rn = Rn(X, Y) is the resultant of the polynomials 

Hit - x$) and IlU-2/7). 
i = i j = i J 

A divisor of a resultant sequence {un} is a linear divisibility sequence {vn}, 
n = 0, 1, . .., such that vn\un for n = 1, 2, ... . 

Ward proved in [5] that every resultant sequence is a linear divisibility 
sequence, and conjectured repeatedly that every linear divisibility sequence 
is a divisor of a resultant sequence. No proof of this conjecture seems to be 
known or imminent, even in the case that all the roots are indeterminates! 

Before continuing directly toward an investigation of generating func-
tions, we pose another problem, closely related to Wardfs conjecture. For 
(not necessarily distinct) algebraic integers % and £, let F be the smallest 
normal field containing both £ and £. Define 

o) Vn = n €
g z f > » = °> i> •••> 

the product being taken over all automotphisms S of F. Then the terms vn are 
rational integers and the sequence {vn} a linear divisibility sequence. We 
call this the linear divisibility sequence belonging to g, £. Suppose now 
that {un} is a numerical resultant sequence and that {fn} is a divisor of {un}. 
Suppose, further, that un = vn - 1 and {yn} has no divisors of its own.except 
(0, 1, 1, ...) and {vn}o Must {vn} be a linear divisibility sequence belong-
ing to some pair of algebraic integers appearing in (2)? 

2. RECIPROCAL POLYNOMIALS 

Suppose A ̂  0. A polynomial 

H(t) = h0 + h^ +' • • • + h2kt2k 

of even degree 2/c is.an /[--reciprocal polynomial of the first kind if 

Kk-q = Ak'qhq
 f o r q = 0, 1, ..., k, 

and an ̂ -reciprocal polynomial of the second kind if 

hlk.q = -Ak'qhq for q = 0, 1, ..., fc. 
In both cases, the roots of H(t) occur in pairs whose product is A; converse-
ly, any polynomial with this property is an ̂ -reciprocal polynomial. A dis-
cussion may be found in Burnside and Panton [2, pp. 63-64]. 

Suppose 
2k 2k 

f = /(*> = Z f * t l and 9 = gW = E 9* tJ> 
j--o J 

and write 

f 9J* ~ fa$e f o r max{a> g} ^ 2?c 
[a, 6] = < 

I 0 otherwise. 
Clearly [g, a] = -[a, B]. 
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Lemma 1g: Suppose 

0 £ a <_ 2k and 0 <_ B <_-2k. 

If / and g are ̂ -reciprocal polynomials of the first kind9 then 

[ a , B] = Aa+*-2k[2k - a , 2fe - B ] . 

Z^M; > . B] = gJz - fa9z 
Sk + qlk+q' ~ •'k + q^k + q' 

= 4 ' a Aq'f , - Aqf Aq'g, 
*k-q Jk-q' k-q ak-q' 

= Aq+q'[k - q, k - q'] 
= Aa + R-2k[2k - a , 2/c - 3 ] . 

Th.ZOH.ejn la: Suppose 

*•(*> = /o + A * +-••• + Afc*2" 
and 

Git) = g0 + 9lt + • • • + <72fct2fc 

are polynomials of degree Ik > 0* Let 

ff(t) = F(t)G'(t) -G(t)F'\t) = hQ +hxt +--•.+ \k_Jhk-'1. 
Suppose F(t) and £(£) are ̂ .-reciprocal polynomials of the first kind: 

f^q
mA"fk-q

 and ** +<- 4V, ^ q = 0, 1 , k. 
Then h2k-i = ^hk-i ~ ®> anc* ̂ (^) i-s a n ^--reciprocal polynomial of the second 
kind: 

Kk-l+q^^Kk-l-q' 1 -° » X> •••• 2 f e" !' 

S(t) 

4k-1 J 

= X t J 'E ( i + 1)[i + ls '̂ - i ]-
4k-1 J 

J » 0 i = 0 

Thus9 for q = 09 19 . .., 2k - 19 we find9 after some simplification 

s 

h2k-l-q = S ( 2 ^ " ̂  " 2i>[2^ " 4 - *» i ^ 
£ = Q 

where 
s = (2k - <? - 2)/2 for even 4 and (2k -.4 - l)/2 for odd q. 

On the other hand9 
2k 

h2k-l+q = L ( ^ + 2k " i ) [ ^ + 2 f e • " i s i ] 

i = 0 

2k 
= ]£ (? + 2fc - £)[<? + 2k - £, '£]. 

^ = q 
(continued) 
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2k -q 
= X (2k ™ i ) [ l k ~ ts q + i] 

s 
- £ ( 2 f c - ? - 2i)[2k - i , q + i] 

s 

= -Aq^{2k - q - 2i)[2k - q - i9 i]9 

by Lemma l a , bu t t h i s equa l s ~A hxk-i-q* a s d e s i r e d . In p a r t i c u l a r s fo r q = 

0 , we f ind fo2fc-i ~ ""^2fc-i> s o t h a t ^2k - i = ®0 That hhk_± = 0 fo l lows d i r e c t l y 

from t h e d e f i n i t i o n of H(t). 

Lmma 1b: Suppose 0 <. a <_ Ik and 0 £ g £ 2fc„ Suppose / and g s a t i s f y 

9* + * -A<ifk-q
 f o r * = ~k> • • - °> • • - *" Then 

[ a , 3] = - 4 a + 3"2*[2fc - a , 2k - g ] . 

~ ^k-i-q^k + q' -tk + q^k + q' 

^A (fk-q9k-q'~ $k-qfk-q^ 
= -4° + e - 2 * [2 fc - a , 2fe'- g ] , 

ThdOHm 1b°- Suppose F(t) 9 G(t) , and # ( t ) a r e as in Theorem l a , but t h a t fo r 
some 4̂ ^ 0 , 

$k + q = ^ 4 - ? f o r ( ? = -fc, . . . , 0 5 . . . S L 
Then hiik_1 = 0, and H(t) i s an ^ - r e c i p r o c a l polynomial of t h e f i r s t k i n d : ' 

h2k-l+q = ^Kk-l-q f ° r ? = 0 , 1, . . . , 2/C - 1 . 
PJiOOJ: The proof is so similar to that of Theorem la that it is omitted. 

3. GENERATING FUNCTIONS 

Suppose m >_ I and x13h .«., xmS i/ls ...,i/m are (not necessarily distinct) 
indeterminates* Write 

m 

X(t) = n e t - *<) = tm - X^""-1 + ... + (-l)X' 
i-l 

i - 1 

v. y• y • y ••• v 

Then ft (x. - 2/P = X. 
i- 1 .('-SX'-S)-K) 

= Xm(l -- 0l + a2 - ••• + (-DmoJ 
(continued) 
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, xm + xm°2 + ••• + *A-i - U ^ + ... + xmam)s odd m 
(4) 

Jm + Xm02 + ... + Xmam - {Xm01 + ... + Xmom_J, even m. 
The right side of (4) consists of 2ffl terms of the form 

±y. y . .. . zy. x. .. . x . . 

Let P be the set of those terms having positive coefficient (i.e., an even 
number of z/fs) and N the set of those having negative coefficient. In the 
set P U N9 define a mapping 

(f>(zy. iy. . . . y. x. « „ „ x- ) = y. . . . v. x- x* . . . X; . 

If 772 is odd9 (j) is a one-to-one correspondence between P and #;. if 777 Is even3 
cj) defines a one-to-one correspondence between P and P9 and also between N and 
#. For each element z of P U N9 we have s<J>(s) = XmY m» 

At this point9 we Introduce some more notation. Write 

x = ( a ? 1 , - . . . , x m ) , z/ = (z/1, . . . , ym), ^ = (X^QQ , X^o^, . . . , Xmam), 

m 

/7. n ^ * 2/) = E (xi " ^P5 n = 0 9 1 , « « . s 
i = l 

(5) 7 n ( x 5 y) = y [ */„(*» z/) + Un(x9 -2/)] = ^ Y n , 
r e p 

(6) gB(ar, y) = | [ ^ ( x , y) - U ( i , -y ) ] = £ <$*• 
Y e 7\7 

We index the yfs and 6fs in any order, as 

yls Y2S . .., y2k and 619 62S 9S89 62ks 

where 2k = 2m"1
B 

Tfieo/Lein 2: The sequence {wn} defined by 

Un m x? - y? 
u« = ^ = E ^ - r y : ^ * > i; * - o, 1, .-.., 

J- i = 1 ^ J% 

is a 2m-order linear divisibility sequence with generating function 
tH(t) (7) j^y^m. _ i ^ i 

F(t)G(t)s 

where F(t)G(t) is an XmYm-reciprocal polynomial of the first kind9 lying in 
I[A9 t] with degree 2m in t, and H(t) is an XOTIm-reciprocal polynomial of the 
first or second kind9 depending on whether 777 is even or odds lying in I[J, t] 
with degree 2m - 2 in t . 

Pfi00{$°* Equation (5) shows that the sum 

Y£P 

is a binary symmetric function (as in Bocher [1, p„ 255]) of the pairs 

i^is y\)9 ..<><>§ \£Cm?> ym)9 
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namely Xmo0, Xma19 . .., Xm°m9 Since these (ordinary) homogeneous power sums 
sn of the y's thus lie in I [A] , the (ordinary) elementary symmetric functions 
of the yfs also lie in I [A]. The same is true for the elementary symmetric 
functions of the <5's. Therefore, the polynomials 

2k 2k 
(8) F(t) = Hi! - y.t) and G{t) = J\ (1 - 6^) 

i-l 'J-.l 

lie in I[A9 t]. * ' 
Suppose 77? is even. Then .F(t) is an XmYm-reciprocal polynomial of the 

first kind, since each ŷ  is accompanied in F(t) by CKY^) ~ ̂ m^Yt"1* The same 
is true for G(t). On the other hand, if w is odd, then each yi in F(£) equals 
ZmJm())(6t7') = XmYmy^1 for some 6̂- in G(t) , and conversely for each 6̂  in G(t). 
Thus, F(t) and £(£) are related as in Theorem lb. In both cases, even m and 
odd m9 the product F(t)G{t) is therefore an XmYm-reciprocal polynomial of the 
first kind. 

Since {($n{x9 y)} and {Qn(x9 y)} are sequences of power sums, we have 

n=0 n - 0 n = 0 v ' v ; 

and (7) follows. Theorems la and lb now apply to the polynomial 

Hit) = v £ y)[F(t)G'(t) - G(t)F'(t)]9 

and the proof of Theorem 2 is finished. 
In Theorem 2, the coefficients of the polynomials H(t) and F(t)G(t) lie 

in J[u4]; that is, they themselves are polynomials in the indeterminates XmoQ9 
Xmo19 ..., Xmom = Ym. Of special interest is the possibility that these co-
efficients lie, a fortiori9 in the ring 

J* = I[XX, .... Xm, Jj. TJ 

[or a suitable modification of this ring, as in Theorem 2a below; just so that 
the coefficients in question are polynomials in the coefficients of the un-
derlying polynomials X{t) and Y(t)]. If repetition of x^ s and y^s is 
allowed, then all these coefficients can possibly lie in I*. We investigate 
two such cases in the next section: resultant sequences and certain divisors 
of resultant sequences which we call Vandermonde sequences. Under the addi-
tional hypothesis Xm= Ym = 1, we are able to prove another symmetric property 
of H(t) and F{t)G{t)i as functions of (X19 ..., Xm_19 Y19 ..., Ym_1)9 each of 
their coefficients remains unaltered under the substitution 

%i ->xm-i> ¥* + Ym-i> i = I, .-.,rn ~ I. 

k. RESULTANT SEQUENCES AND VANDERMONDE SEQUENCES 

Th(L0K2m l&: Suppose p _> 1, q >_ 1, and p + q >_ 3. Suppose 

Q P xn — y ^ 

(2) un = n n 7T—-^, n = o, i , ..., 
where 

P 
(9) x(t).= n ( ^ - x o = *p- ^i^"1 + x2tp~z - . . . + (-i)pzp, 
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(10) Y(t) = U (t - y.) = tq - Y^-1 + Y2tq~2 - . .. + (-1)*Y 
J = l d 

and 

T* = J[J19 ..., Jp, J19 ..,, j^]. 

Then, {un} is a 2 -order linear divisibility sequence with generating func-
tion 

Gf(t) Fr(t) 
G(t) F(t) 

tE{t) 
F(t)G(t)> 

where 

*i = n n c ^ - y,) 
j'=l i = l 

J 3 ' 

is the resultant of X(t) and Y(t), F(t)G(t) is an XpYq-reciprocal polynomial 

of the first kind5 lying in I*[t] with degree 2pq in t9 and H(t) is an XpYq-

reciprocal polynomial of the first or second kind, depending on whether p is 
even or odd, lying in I*[t] with degree 2pq - 2 in t. 

Vn.00^1 Put w = pq9 ak = xi for ig - q + I <_k <_ iq9 i = 1, ..., p, and 3& = 
Uj for /c = £q + j;,£ = 0, 1, ..., p - 1; j = 1, ..., <?, Then, Theorem 2 ap-
plies, where the pairs (xk9 yk) of Theorem 2 are the pairs (ak, (3k) of the 
present discussion. All that remains to be seen is that the coefficients of 
#(t)and F(t)G(t) lie in J* and that the dependence of H(t) for first or sec-
ond kind reciprocity rests on the parity of p alone. 

For the latter, we refer to the proof of Theorem 2\ Equation (5) shows 
that for even p, each ŷ  occurs in F(t) along with (j)(ŷ ) = XpY^yT1. This makes 

F(t) an XpJ^-reciprocal polynomial of the first kind, and similarly for G(t). 

For odd p, we find F(t) and G(t) related as in Theorem lb, and the argument 
is finished as in the proof of Theorem 2* 

Equation (5) also shows that the sum 

y eP 

is symmetric in x1, . . . , xp and symmetric in y19 . . . , yq9 since Qn(x9 y) 9 where 
Or, y) = (ax, ..., ams gx, ..., @OT)> is a sum of two resultants, each symmet-
ric In x19 ...9xp and symmetric in yl9 ..., yq. Thus, sn is a polynomial in 
the elementary symmetric functions of x1, ..., a?p and of yl9 . .., z/̂ , namely, 
the coefficients Jx, ..., Xp and Jx, ..., Yq. Each sn therefore lies in J*, 
so that the elementary symmetric functions of the y!s also lie in J*. The 
same is true for the elementary symmetric functions of the Sfs. Therefore, 
F(t)9 G(t)s and H(t) all lie in !*[£]. 

Tk2.0H.Qm 3a.: Suppose the generating function 1?(+\Q(+\ i n Theorem 2a is writ-
ten out as 

t(h0 + hxt + ... + hkk_2thk-2) 
(11) , 

w0 + w1t + • • • + whkthk 
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where k ->VR-2 Then t h e c o e f f i c i e n t s hi and Wj,9 r egarded as f u n c t i o n s of 

(12) 

, Yg , where Xn 1, sa t i s fy 

hA\, X P-I> , X,, 1, 1, I, < ? - ! » 

(13) 

h^(l, X15 . . . , I p _ 1 5 1, 1, J 1 , . . 

i = 0S 1 , 

w t d » * p - i > 

^ ( 1 , Xx, . Xp-1> 1' 1 » ^ I ' 

. . , ? ! , 1) 

. . . 4k - 2, 

. , Ix, 1) 

V.i> D» 
0, 1 , . . . , 4k. 

?H£o£- Wri te x = OKJ , . . . , xp) and y = (y13 . . . , z/p)> and c o n s i d e r t h e e f f e c t 
of t h e o p e r a t i o n of r e c i p r o c a t i o n , 

x, , % 1, 2 , and j / ^ . -*- j / T 1 , j = 1, 2 , 

on the sequence {un(x, y)} and its generating function. The series belonging 
to this sequence is transformed into 

(14) r9VP Jp%^[0 + t' + u2(x, y)t" + u(x, y)t'3 + • • • • ] , 

where t' = t/XplF, and we may write its generating function as 

(15) 
t(h' + hit + + h hk-2 thk~2) 

U0' + w{t + r + **k + w'kt 
where the hj and wj are functions of Xn, 9 Xp , -^0 » • • • 5 -i<7 To solve for 
the hi and W/, note that reciprocation transforms the polynomials (9) and (10) 
into 

(-1)* -[Z0 - Jxt + X2t2 + (-l)PJptp] 

and 

Therefore 

(16) 

and 

(17) w! = w. 

(-!)' 
* 1 

• s 

• 5 

t + 

Xo 

V 
xo 
XP' 

**r 
^ 

v 
*< 

v 

+ (-l)qYqtq]. 

5 7 » > = 0,1, 

/ Z p Z p - 1 J 0 J<7 J o \ 

\Xp* Xp Xp
9 Yq ' YqJ 0, 1, 

. , kk 

., hk. 

If we replace t by t r = t/XpY% in (11) and multiply the resulting rational 
^ v P function by ZpJ^9 the series expansion is (14). Thus, (11), as modified, 

equals (15). Since the degrees of the denominators are equal and wr
Q=WQ = 1, 

we equate denominators and we equate numerators. This gives equal coeffi-
cients: hr. - h^ and wl = w^. Equations (16) and (17) now complete the proof 
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of a more general set of equations than we set out to prove. Clearlys for 

these equations reduce to (12) and (13). 

Tfoeo/ieJfl 2b: For p J> 39 suppose 

where 

(9) 

and 

p 

n (* 
i = l 

Un = 
1< 

" *i) 

n 

= t p - zxtp 

a;'.' 

-1 + 

n = 

x2tp 

0 

- 2 

0, 1 

+ ( - 1 ) % , 

I* = I{X1, ' s Xz 

Then {un} is a p! -order linear divisibility sequence with generating function 

where 
Vx\_G{t) 

Vx = 

Fit) _ 
tH(t) 

Fit)Git) 

I ] O ; - Xj), 
1 -̂  i < J -IP 

F(t)G(t) is an Xp "^"-reciprocal polynomial of the first kind, lying in T*[£] 

with degree p! in t, and H(t) is an X^^-reciprocal polynomial of the first 

kind, lying in I*[t] with degree p! - 2 in t. 

PfiOO^'* As is well known, V^ is the Vandermonde determinant: 

,P-i, ,P-i ,p-i 

1 

* ! 

4 

1 
X 2 

^ 

. . . 1 
. . Xp 

x2 

. . Xp = ( - i ) k £ * i l * 2 2 . 7» ^P . . vOp , 

where~{i19 i 2 , ..., ip} = {0, 1, . .., p - 1} = £ and 

(0 if a is an even permutation of 3 
K = < 

( 1 if a is an odd permutation of 3. 

Half of tnese p! summands have ka = 0 and the other half, /ca = 1. If p > 3, 
with k0.= 0 is matched 

P-i. 

then p!/2 is even, and each summand z = x^x^2 . .. 

with a summand X*~1z~1
9 also with ka = 0; if s has /ca = 1, so has Xp M 

The situation is much the same as in the proof of Theorem 2, with one essen-
tial difference. Here, the functions Xpa0, Xpals ..., Xpap, where for each 
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i it is understood that y. is the x- appearing with x^ in the product 

3' 
i<3 

are not symmetric in x , ..,9xp. This is a consequence of the fact that V 
is not symmetric in x±9 . .. 5 xp [unlike the discriminant 7^ of X(t) ]. We may 
proceed by dealing directly with the symmetric quotients 

x7! - x7} 

rather than the asymmetric products J\(x? - xn.) i put 
1* 3 

^n(^) = 2-[W„(̂ ) + Un(-X)] 
and 

9n0*0 = ̂ n t e ) ~ un(-^)]« 

The proof for p > 3 now follows that of Theorems 2 and 2a so closely that we 
omit further details. 

Consider now the case p = 3: for z with ka = 0, we have X^z'1 with &a = 1, 
and conversely. The polynomials 

F(t) = (1 - **a?2£)(l - ̂ t ) ( l - ^ 3 £ ) 
and 

G(£) = (1 - x\x^t)(l - ar^tOQ - x2x\t) 

are not covered by Theorems la and b9 since they are of odd degree. Although 
these theorems can easily be extended to odd-degree polynomials9 we choose to 
defer the case p = 3 to the third example in Section 5, where the generating 
function tH(t) /F(t)G(t) is fully displayed. 

Tk<lOK.Qm 3b: Suppose the generating function tH(t) /F(t)G(t) in Theorem 2b is 
written out as 

t(h0 + h±t + ••• + hk_2tk-2) 

w0 + wxt + ••• + wktk 

where k = p!. Then the coefficients h^ and w^9 regarded as functions of X , 
...9 Xp (where XQ = 1) satisfy 

(12.') 7^(1, Xp_lS ..., Jl9 1) = ^(1, Xl5 ..., Zp.l5 .1), 

i = 0, 1, ...9 k - 2, 
and 
( 1 3 ' ) 1 ^ ( 1 , J p _ l 5 . . . 9 J l 9 1) = ^ ( 1 , J l 5 . . . 9 Z p _ l 9 1 ) , 

i = 0 , 1, . . . , L 
PsiOO^: The proof is so similar to that of Theorem 3a that we omit it here. 

4. REDUCTION OF RECURRENCE ORDER 

The definition of kth-order divisibility sequence in terms of (1) does 
not preclude a given kth-order sequence from being a jth-order sequence for 
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some j < k.. However9 a linear recurrence sequence must be of some least re-
currence order9 and so the following questions arise: 

1. When are the recurrence orders of the sequences of §3, as reported, 
already least possible? 

2. When the recurrence order is reducible to a least value k9 so that 
the generating function tH(£) /'F'(£)G(£) is reducible to a quotient 
th(t)/f(t)g(t) whose denominator is a polynomial of degree k, then 
what symmetric properties remain with this reduced generating func-
tion? 

Clearly, the least recurrence order of a sequence is k if and only if the 
polynomials h(t) and f(t)g(t) have no common linear factor. 

First, we consider the possibilities for common linear factors in case 
all the x^s and y. f s are, as in §3, indeterminates. We can then use this 
information in case some or all of the x^s and y .! s are algebraic integers. 

Vo&&tbJJUjtL<L& jon. induction oj gmeAcuting 
^gyidtlom Xyi Thzotiomk 2, 2a, and 2 b ~ 

1. H(t) has no linear factors in common with F(i)£(t). 
2. F(t) and G(t) have a common linear factor. 
3. F(t) or G(t) has a repeated linear factor. 
4. H(t) has a linear factor in common with F(t)G(t) which is neither a 

common linear factor of F(t) and G(t) nor a repeated linear factor 
of F(t) or G(t). 

For the general sequences of Theorem 2 and the Vandermonde sequences of 
Theorem 2b, the second and third,possibilities clearly do not occur, since we 
are dealing with distinct inteterminates. We conjecture that the fourth pos-
sibility does not occur for these sequences or for the resultant sequences, 
either. 

For the resultant sequences of Theorem 2a, the second possibility still 
cannot occur, for, appealing to a's and 3*s as in the proof of Theorem 2a, 
the linear divisors of F(t) are all of the form 1 - BAt where B. is a product 
of an even number of 3fs, hence has even weight in the z/-indeterminates; on 
the other hand, the linear divisors of G(t) all involve odd weights in the y-
indeterminates. 

However, for resultant sequences, the third possibility does occur. It 
would be difficult to obtain a general classification of occurrences of re-
peated linear factors within F(t) or G(t), but to acquire some knowledge of 
such occurrence, we put p = q = 4 and seek repeated linear factors: as in 
the proof of Theorem 2a, we have 

2/i = Bi = 35 = 39 = 313. 
y2 = B2 = 36 = 3 1 0 = B m 
2/3 = 33 = 37 = 3 n = 315 

yh = 3̂  = 38 = 3 i 2 = 3i 6 

The linear factor 1 - y±y2x\x\x\x\t occurs both as 

and as 

To account for such repetitions, consider the 4 x 4 rectangular array: 

x± 
x2 

X3 

xh 

= <*i 

= a 5 

= a9 

= a13 

= a2 
= a6 

= a10 

= a14 

= a3 
= a7 

= alx 

= ais 

= a, 

= a, 

= a-

= a-

1 - g136a2a3alta5a7 ... a16t 

1 - e ^ a ^ a ^ ... a16t. 
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X, 

x2 

X3 

X ̂  

yi 

i 

5 

9 

13 

y2 

2 

6 

10 

14 

2/3 
3 

7 

11 

15 

yh 

4 

8 

12 

16 

The sub-array involving 1, 29 59 6 corresponds in an obvious way to the equa-
tions BxBg '= 3235 and ô otg = a2ot5°  Any such occurrence of 3^3j = 3^3/, and 
a^a^ = a£a^9 where i $ ls corresponds to a repeated linear factor of F(t) 
with z/-weight 2. The array contains 36 rectangular sub-arrays, each corre-
sponding to a repeated linear factor. A momentfs reflection now indicates 
that there are many more than 36 repeated linear factors of G(t) having y-
weight 39 and so on. Since Ff(t) and F(t) have a common linear factor when-
ever F(t) has a repeated linear factor [or the same for G? (t) and £(t)], and 
since 

E(t) = [F(t)£'(t) - G(t)Ff(t)]/RlS 

we conclude that the order of recurrence 2pq reported in Theorem 2a can be 
reduced considerably* 

Since H(t) and F(t)G(t) are P-reciprocal polynomials for some Ps each 
linear factor 1 - rt of H(t) occurs with 1 - Pr"1t9 and the same pairing oc-
curs in P(t)£(t). For the remainder of this section, we restrict our atten-
tion to all the sequences considered in §3 except the Vandermonde sequence in 
the special case p = 3 . Therefore9 in the cases under consideration not only 
the degree of the denominators but also that of the numerators of each gen-
erating function9 before any possible reductions, is an even positive integer. 
Accordinglys in the case 1 - rt = 1 - Pr~xt? this factor occurs an even number 
of times. This remains true in the cases under consideration if any number 
of the symbols x1$ ...,• y19 ... represent algebraic integers rather than in-
determinates. We summarize and extend these considerations in the following 
two theorems. 

JhojOtim 4 OH For the sequences {un} of Theorem 29 Theorem 2a9 and Theorem 2b 
(except for p = 3) , wherein any number of the x^*s and y^s may be algebraic 
integers, the least recurrence order k is an even positive integer. The gen-
erating function th(t)/f'(t)g(t), where H(t) and F(t)G(t) are P-reciprocal 
polynomialss reduces9 by cancellation of common linear factors9 to a rational 
function th(t)/f(t)g(t), where h(t)\H(t), f(t)|F(t), and g(t)\G(t). Moreover, 
f(t)g(t) is a P-reciprocal polynomial with degree k in t, and h(t) is a P-
reciprocal polynomial with degree k - 2 in t. The coefficients of these two 
polynomials lie in I[^A] for the general sequences of Theorem 2, and in J* for 
the resultant and Vandermonde sequences of Theorems 2a and 2b. 

VKOOfc All these claims follow easily from the cited theorems, together with 
the fact that each linear factor 1 - rt of H(t) cancels along with another 
factor9 1 - Pr~1t. After all such pairs cancels the remaining linear factors 
of h(t) and of f(t)g(t) still occur in pairs of the form 1 - rt, 1 - Pr~1ts 

so that we still have P-reciprocal polynomials. 

Thzonoyn 4b°> The symmetry property for coefficients indicated by (12) s (13) 9 
(12f)s and (13f) hold for the coefficients of the reduced polynomials h(t) 
and f(t)g(t) of Theorem 4a.• 



1980] GENERATING FUNCTIONS OF LINEAR DIVISIBILITY SEQUENCES 205 

Vttooj* The proof is so similar to that of Theorem 3a that we omit it here. 

5'. EXAMPLES 

Example 1; First, we write out the polynomials F(t) 9 G(t), and H(t) which 
appear in the generating function of the resultant sequence obtained from 

X(t) = (t - x±)(t - x2)(t - x3) = t3 - at2 + bt - o and Y(t) = t - d: 

F(t) = 1 « (s + ad2)t + d2(ae + bd2)t2 - c<i4(& + d2)£3 + o2d6t\ 

G{t) = 1 - d{b + d2)t + d2(ac + M 2 ) t 2 - ^ ( c + ad2)t3 + c2d6t\ 

#(£) = 1 - d2(ao + 3cd + M 2 ) t 2 + 2cd3(c + bd + ad2 + d3)t3 

- cd5(a<? + 3cd + bd2)th + o3dHs. 

In accord with Theorems 2a and 3a, H(t) is a cd3-reciprocal polynomial 
of the first kind, and a and b are interchangeable within each of the coeffi-
cients in case c-d~\. Similar observations hold for the product F(t)G(t)» 

If o = d= 1 and a = bs then the resultant R = o + ad2 - {bd + d3) of X(t) 
and Y(t) vanishes, and F(t) = G(t) has the root 1 in common with H(t) . In this 
case, the expression 

(*« - ln)(x" - l")(ln - ln) 

~~Jx~- l)(a?2 - 1)(1 - 1) 

formally equals 

(xl - l)(x% - 1) 

H (X-t - 1)(X2 - 1) 

which generates a sequence of recurrence order less than 8. Nevertheless, 
this sequence is formally generated by tH(t) /'F(t)G(t). 

Putting -a = Z> = £ = d=l, we obtain an 8th-»order divisibility sequences 

0, 1, 2, 1, 8, 11, 14, 34, 64, 109, 242, eaa . 

Example. 2'« Here we examine a divisor of a resultant sequence. Suppose 

F(t) = (t - ̂ x)(t - x2) = t2 ~ at ~ b 
and 

£(£) ••= (t - z/^Ct - z/2) = t2 - ct - d. 
Let 

4 n = (-l)n(2?w + dn) and A2 = (a2 + 42?) (a2 + 4d) , 
and let _ 

Ln = xl + x», £„ = z/« + z/» 

Each of the latter four expressions is a polynomial in a and £ or c? and d* 
The polynomials Ln = Ln(a,b) and Tj^c^d) are often called Lucas polynomials, 
and the polynomials Fn = Fn(asb) and Fn = Fn(c9d) are the Fibonacci polyno-
mials mentioned In §1. 

The resultant Rn(Fs G) of the polynomials Fn(t) = (t - x*) (t - x*) and 
Gn(t) = it - y")(t - y2) can be written as 
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Rn{a, b, c, d) = ~{LnLn - 2An + /\FnFn)(LnLn - 2An - hFnFn), 

s i n c e 
LnLn - 2An + txFnFn = -2(arJ - yn

2) (x» - y\) 
and _ _ 

K^n ~ 24n " WnFn = "2(^1 " J/J)^" " J/J). 

Thus, if (a2 + Ab)(c2 + 4<i) is a perfect square, the sequence with nth term 

L1L1 - 2A± + AF1F1 

is a divisor of the resultant sequence 

{un} = {Rn/R1}. 

Writing D = x1y1 + x y s we find that the quotient 

(18) , 1 - bdt2 ' 

1 + (b + d - D)t + (2bd - bD - dD)t2 + bd(b + d - D)t3 + b2d2th 

is a generating function for the sequence {vn}. 
If we put D - x 9 - b - d = y 9 and - M = s9 then the sequence {vn} is the 

same as the sequence {ln(xy y9 z)} discussed in detail in [4]. This is a 4th-
order divisibility sequence (for which 4 is the least possible order)9 and as 
a polynomial in x9 we find for n 2. 2 the following factorization in terms of 
linear factors: 

n-l 
ln(x, 2a9 - a 2 - 32) = 11 (^ - 2a cos 2Jcn/n - 23 s i n 2/cir/n) . 

fc = o 
It seems likely that every 4th-order divisibility sequence with u0 = 0 and 
u1 = 1 is generated by (18) for some choice of bs d, and D. We point out that 
3rd-order divisibility sequences are characterized in Hall [3]. 

ExampZ,d 3: Here we examine a Vandermonde sequence. Let 

X(t) = (t - a)(t - 3)(t - Y) = t3 - 4t2 + Bt - C. 

The Vandermonde sequence whose nth term is 

(19) — g- • *- - -^ *-, n = 0, 1, ..., 
v a - 3 a - Y 3 - Y 
has a g e n e r a t i n g f u n c t i o n 

t [ l + 2Cfr + g(3C7 - AB)t2 ,+ 2c73t3 + CH1*] 

1+ ( 3 C - 4 B ) £ + [S 3 + L?a 3 ~ 5 ^ S + 6 0 ] t 2 + 6 ' [ 5 ( 2 5 2 - A 2 5 ) + L?(76 r +2 i 3 - 6AB)]t3 

+ C2[B3 + C(A3 - 5AB+ 6C)]th + Ch (3C~AB)t5 + C6t6 

The f i r s t s i x terms a r e as f o l l o w s : 
u0 = 0, ux = 1, u2 = AB - C, u3 = A2B2 - £ 3 - CA3 

uh = C3 + 243C2 - 5,4BL?2 + 2B3C + 3^2S2C - 2Alf£C + A3B3 - 2A54 

u 5 = -Ch + A3t73 + 8ABC3 + B3C2 + A ^ C 2 - 15,42B2C2 - 3A2B5 - 3A5B2C 
+ ABhC + 8A3S3C + ASC2 + ^ S 4 + S 6 . 
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For C = 1, note that all the terms of the sequence are symmetric in A and B9 
in accord with Theorem 3b. 

As a special case, put A3 = x, B = Q9 and C = (7. The generating func-
tion is then 

t(C2t2 + Ct + I)2 

(C2t2 + Ct + l)3 + Ca?(C£ + l)2t2 

and it is easily seen that the numerator and denominator have a common root 
if and only if x = 09 in which case the sequence degenerates to a Fibonacci 
sequence. Thus9 except for x = 0, this Vandermonde sequence is of recurrence 
order 6 and not of any lesser order. 

For A3=x9B = 0$C=ls the first nine terms are? 

uQ = 0, u1 = ls u2 = -1, u3 = -a;, u^ = 2x + 1, u5 = x2 + # - 19 

u6 = -3#2 - &r9 w7 = -x3 - x2 + 9x + 1, u8 = 4x3 + 18#2 + 6a: - 1. 

It is not difficult to prove that the nth term 

un = un(x) 
of this sequence factors as follows! 

un(x) = ( _ i ) n + 1 H [ - t o C o s 2 Zrrr/n - (4 cos 2 4TTM - l ) 3 ] . 
fc = i 

We conjecture that un(x) is irreducible in J[#] if and only if n is a prime 
positive integer. 

Finally, we list some terms of the numerical 6th-order divisibility se-
quence {un(-l)} and remark that 

\un(-l) | <_ Fn (= the nth Fibonacci number), 

for 1 <. n £ 100 and perhaps for all positive integers n. 

0, 1, -1, 1, -1,-1, 5, -8, 7, 1, -19, 43, -55, 27, 64, -211, 343, -307, -85, 911, 

u2Q = -1919 = -19 • 101, u22 = -989 = -43 • 23 

u2S = -3151 = -23 • 137, w25 = -15049 = -101 • 149 

u27 = 5671 =53 • 107, u5h = -989617855 = 174505u2?. 
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LOCAL PERMUTATION POLYNOMIALS IN THREE VARIABLES OVER Zp 

GARY L. MULLEN 
The Pennsylvania State University, Sharon, PA 16146 

1. INTRODUCTION 

If p is a prime, let Zp denote the integers modulo p and Z* the set of 
nonzero elements of Zp. It is well known that every function from Zp x Zp x Zp 
into Zp can be represented as a polynomial of degree < p in each variable. 
We say that a polynomial f(x19 x29 x3) with coefficients in Zp is a local 
permutation polynomial in three variables over Zp if f(x19a9 b) 9 f{c9x29 d) , 
and f(e9f9 x$) are permutations in x±9 x2, and x3, respectively, for all a, 
b9 c9 d9 e 9 f e Zp. A general theory of local permutation polynomials in n 
variables will be discussed In a subsequent paper. 

In an earlier paper [2], we considered polynomials in two variables over 
Zp and found necessary and sufficient conditions on the coefficients of a 
polynomial in order that it represents a local permutation polynomial in two 
variables over Zp. The number of Latin squares of order p wds thus equal to 
the number of sets of coefficients satisfying the conditions given in [2]. 
In this paper, we consider polynomials in three variables over Zp and again 
determine necessary and sufficient conditions on the coefficients of a poly-
nomial in order that it represents a local permutation polynomial in three 
variables over Zp. 

As in [1], a Latin cube of order n is defined as an n x n x n cube con-
sisting of n rows, n columns, and n levels in which the numbers 0, 1, ..., 
n - 1 are entered so that each number occurs exactly once in each row, col-
umn, and level. Clearly the number of Latin cubes of order p equals the num-
ber of local permutation polynomials in three variables over Zp. We say that 
a Latin cube is reduced if row one, column one, and level one are in the form 
0, 1, ..., n - 1. The number of reduced Latin cubes of order p will equal 
the number of sets of coefficients satisfying the set of conditions given in 
Section 2. 

In Section 3, we use our theory to show that there is only one reduced 
local permutation polynomial in three variables over Z3 and, thus, there is 
precisely one reduced Latin cube of order three. 

2. A NECESSARY AND SUFFICIENT CONDITION 

Clearly, the only local permutation polynomials in three variables over 
Zp are x1 + x2 + x3 and x1 + x2 .+ x3 +.1, so that we may assume p to be an 
odd prime. We will make use of the following well-known formula: 
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(2'l) X>'* 
p-i ( 0 If k i 0 (mod p - 1) 
y^jk = < 
j-i (-1 if H 0 (mod p - 1). 

Suppose p-i p-i p-i 

j(kX19 X2 s X3J = / ^ / ^ ^ , awnr^ia:'2^'3 
m = 0 « = 0 ^=0 

is a local permutation polynomial over Zpe We assume that f(x1, #2, # ) is 
in reduced form so that for t = 0, 1, ...-, p - 1 we have 

f(t9 09 0) = /(0, £, 0) = /(0, 0, t) = t. 

Thus, the corresponding Latin cube is reduced so that row one, column one, 
and level one are in the form 0,1, ..., p - 1. If we write out the above 
equations and use the fact that the coefficient matrix is the Vandermonde 
matrix whose determinant is nonzero, we have the condition 

( 0 if t = 0, 2, 3, ..., p - 1 
(C1> atoo = aoto = aoot = ) 

{ 1 if t = 1. 
It is well known that no permutation over Zp can have degree p - 1. By-

considering the polynomials f(09n9x3) for n = 0 , 1, ..., p - l , one can show 
that tf0,w,p-i = 0 f° r n = 0> I? . .., p - 1. Proceeding in a similar manner, 
we find that 

ao, t,p-i = a t,o, p-i = °  v 
(C2) ^0,p-i,t = «t,P-i,o = 0 ^ for t = 0, 1, .... p - 1. 

aP-i, t,o = ap-i, o,t = °  
Let 

p-i p-i p-i 

/(£, J, #3) = J^ L L amnr^m0n^h for 1 < i, J < p - 1 

and consider the coefficient of asf"1. Using the fact that no permutation 
over Zp can have degree p - 1, we see that 

P-i p-i 

(C3) Z E^n,p-/in = 0' for l < i , J < P " I-
m=0 n=0 

Similarly, one can show that 
P-i p-i 

(C4) X) I] \ P . i s ^ V = 0, for 1 <. i, k £ p - 1. 
and nm° r = 0 

P-i P-i 
(C5) Z X aP-i,«,r^'nfen = 0, for 1 < j, A: 1 p - 1. 

n=0 r=0 

We note that the above conditions correspond to conditions (CI) and (CIf) of 
[2]. 

Let f(i9 j, k) = £(£, j, k) for ()<.£, j, 7< £ p - 1. Suppose i = 0 so 
that 

/(0, i, k) = £ £ <wAr. 
n=0 r=0 

Let £'(0, j, &) = /(0, J, fc) - £(0, 0, 0). Fix j and write out the p - 1 
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equations for k = l9 ...»p - 1. For fixed j, {£'(0, j, k)} runs through the 
elements of ZjJ. If we raise each of the equations to the £th power, sum by 
columns using (2.1), we obtain for each j = 1, . . . , p - l , 

P-ip-il\ai°n*;jZ>> (0 if £ = 2, .... p - 2 

(ce) E n n /" , = 
r-ln-0 "Onr ' ( 1 if £ = p - 19 

where the sum is over all i0nr such that 
(2 .2 ) 0 < i0nr < £ 

P - i p - i 

(2-3> E E^Onr = * 
2* • 1 n - 0 
P - l p - l 

(2"4> E E ^ 0 „ r = ° ( m°dP ~ 1}' 
r •» 1 n * 0 

In the condition (C6) , T,n is understood to mean the sum, counting mul-
tiplicities, of all second subscripts of the aQnv*s which appear in a given 
term. 

Similarly, if we fix k and write out the p-l equations for j = 1, ..., 
p - l , raise each equation to the £th power, sum by columns using (2.1), we 
obtain for each /c = 1, ,.., p - l , 

P-IP-I l l a l ^ k l r (0 if £ = 2, ..., p - 2 

<C 7> E n n - r V - { 
n-l 2.-0 ^Onr ' ( 1 if £ = p - 1 , 

where the sum is over all ̂ 0nr such that 

( 2 . 5 ) 0 < i 0 n r < l 
P-l P - I 

(2-6) E E^onr = * 
n = 1 r = 0 
p - l p - l 

(2-7> E Ytni0nr E ° (m°d P " D-
n = 1 r = 0 

We observe that we can obtain the condition (C7) from the condition (C6) 
as follows. In (C6), (2.2), (2.3), and (2.4) , let n = r, r = n, and j = k. 
After making these substitutions, replace the subscripts Opn by Onr to ob-
tain (C7). 

Along the same line, let j = 0 and £'(i, 0, k)=f(i, 0, fc) - £(0, 0, 0) . 
If -£ is fixed, then for each i = 1, ..., p - 1, we obtain 

(C8) E n n — — — - < 
*-l m = 0 % 0 r ' ( 1 if £ = p - 1 , 

where the sum is over all i n such that 
mOr 

(2.8) 0 < i m n < £ 
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p - i p - i 

r = 1 m = 0 

p - 1 p - 1 

2» = 1 m=0 

If j = 0 and /c is fixed, then for each k=l9 ..., p - 1 we obtain a set 
of conditions (C9) which can be obtained from the condition (C8) as follows. 
In (C8), (2.8), (2.9), and (2.10), let m = r, r = TW, and £ = k. After mak-
ing these substitutions, replace the subscripts rOm by mOr to obtain (C9). 

Finally, if k = 0, then for i = l , ..., p - 1, we obtain . 

P-iP-iila^i^ (0 if £ = 2, ..., p - 2 

(cio) I n n n = l m = o ^ n 0 ! [i i f £ = p - 15 

where t h e sum i s over a l l imn0 such t h a t 

( 2 - iD o < i m n 0 < a 
p - 1 p - 1 

(2-12) E XX»o = * 
n = 1 m = 0 

p - 1 p - 1 

(2.13) 5] En^«o E ° (mod P - 1 ) . 
n = 1 w = 0 

If k=09 then for J= 1, . . . , p - 1 we obtain a set of conditions (Cll) 
which can be obtained from (C10) as follows. In (C10), (2.11), (2.12), and 
(2.13), let m = n9 n = m, and i = j. After making these substitutions, re-
place the subscripts nmO by rnnO to obtain (Cll). 

Thus, we have six sets of conditions involving coefficients where at 
least one subscript on the coefficient is zero. These conditions correspond 
to the conditions (C2) and (C2f) of [2]. 

We will now consider the general case where ijk > 0. Let f(i9 J, k) = 
l(i9 j, k) and suppose $Lr(i9 j, k) = f(i9 j 9 k) - £(i, J, 0) for fixed i and 
j. The set {lf(i9 j, k)} for k=l9 ...,p - 1 constitutes all of Z*. Rais-
ing each of the equations to the £th power, summing by columns using (2.1), 
we obtain for each \ <_ i, 9 j <_ p - 1, 

(ci2) £ n n n — - • — s — - < 
r-l /n-o rc = 0 ^ " ' ( l if £ = p - 1, 

where the sum is over all imnv such that 
(2.14) 0 ± imnr < £ 

p-1 p-1 -p-1 

r = l m =0 n = 0 
p-1 p-1 p-1 

(2'16) Z E 2>W.= 0 (™od p - 1). 
p = l m = 0 rc = 0 
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Fixing £ and k and proceeding as above for each 1 <. £, k <_ p - 1, we 
obtain a set of conditions (C13) which can be obtained from (C12) as follows. 
In (C12), (2.14), (2.15), and (2.16), let n = r9 v = n, and j = fc. After 
making these substitutions, replace the subscripts mrn by mnr to obtain (C13) . 

Finally, fixing j and k and proceeding as above, for each 1 £ j, k <_ 
p - 1, we obtain a set of conditions (C14) which can be obtained from (C12) 
as follows. In (C12), (2.14), (2.15), and (2.16), let m = r9 r = m9 and 
£ = k. After making these substitutions, replace subscripts vnm by rnnv to 
obtain (C14). 

We observe that the conditions (C12), (C13), and (C14) correspond to 
the conditions (C3) and (C3f) of [2]„ We note that the set of conditions 
(CI), . .., (C14) actually involves a total -of 

9p + 3(p - I)2 + 6(p - l)(p - 2) + 3(p - l)2(p - 2) = 3p3 - 3p2 + 9 

conditions. Further, it should be noted that some of the above conditions 
may be simplified by making substitutions from (CI) and (C2). However, we 
will not make these substitutions at the present time. 

We now proceed to show that, if the coefficients of a polynomial f(x19 
x29 x3) satisfy the above conditions, then f(x1$ x29 x3) Is a local permu-
tation polynomial over Zp. Suppose the coefficients of f(x19 x29 x3) sat-
isfy the conditions (CI), . .., (C14) . For each fixed 0 <_ £, J <_ p - 1, let 
tijk = f(^9 Js k) - /(£, J, 0) for k = l9 . .., p - 1. The above conditions 
imply that for fixed £ and j the t̂ -fc satisfy 

P-i ( 0 if I = 1, ..., p - 2 

*-i (-1 if I = p - 1. 

Let 17 be the matrix 

^tji 

LP-2 

£, J,P "I 

tr:z . . . t p-2 

Using (2.17), we see that 

det (V2) = det (V) det (7*) = det 

-I 0 ... 0 0 
0 0 ... 0 -1 
0 0 ... -1 0 ±1. 

_0 -1 ... 0 OJ 

Since det (V) is the Vandermonde determinant, we have for fixed £ and j, 

det m - n (* 
k,> k 

i-oK tijkj * 0. 

so that the t̂ -fc are distinct for k = 1, . .., p - 1. Hence, for fixed £ and 
j\ f(£9 J, 0) and /(£, j, Zc) = t^-* + /(£, j, 0) for fc = 1, .. ., p - 1 con-
stitute all of Zp. 

If 0 <_ £, fc <. p - 1 are fixed, let s ^ = f(i9 j, fc) - /(£, 0, k) for 
j = 1, . .., p - 1. Proceeding as above, f{i3 0, k) and /(£, J, /c) = s^jk + 
/(£, 0, k) are distinct for j = 1, ..., p - 1 and thus constitute all of Zp. 
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Similarly, if 0±j9 fc<.p-l are fixed, let u^.k = f(is j , k)-f(Q9 j , fc) 
for i = l s . . . , p - l . Hence, /(0, j , &) and /(•£, j , fc) = u ^ + f(0, j 5 fc) 
are distinct for i = 1, . .., p - 1 and thus constitute all of Zp» 

We have now proven the following. 

Tkz.OH.rn 1: If f(oc19 x2s x3) is a polynomial over Zp s p an odd prime, then 
f is a reduced local permutation polynomial over Zp if and only if the coef-
ficients of / satisfy (CI), . .., (C14). 

CottolZaJiy 1: The number of reduced Latin cubes of order p an odd prime 
equals the number of sets of coefficients iamnr} satisfying the above condi-
tions. 

3. ILLUSTRATIONS 

As a simple illustration of the above theory, we determine all reduced 
local permutation polynomials in three variables over Z3. Let 

2 2 2 

*' 1 9 ^2 s ^ 3 ^ ~~ / j / j / CLmn-pX^X2^C% * 
w = 0 n = 0 r = 0 

The corresponding Latin cube will be in reduced form, so that row one, col-
umn one, and level one are in the form 0, 1, and 2. From (CI), we see that 

aooo = °  

(.JcZ; ^ioo ~ ̂ oio = aooi = •'• 

^2 00 = ^0 2 0 = ^0 0 2 = ". 

From (C2), we see that 

^012 = ^102 ~ ^021 = ^120 = ^210 = ^2 0 1 = ^ 
(3.3) 

a 0 22 a 2 0 2 a 0 2 2 a 2 20 a 2 0 2 a 2 20 U e 

We have thus uniquely determined 16 coefficients from the conditions (CI) 
and (C2). 

From (C3), we obtain, after some simplification, 

aH2 + a i 2 2 + a 2 12 + a 2 2 2 = ^ 

(3.4) ^ a H 2 + a i 2 2 + ^ a212 + a 2 2 2 ~ ^ 

^-Ct, "i T o "• <£*CA, T O O "" ^ , o i o ^ , 9 9 9 "™" 

Z122 + ^ a212 

s o t n a t u-i i n ci-ioo cto-in Ctooo VJ • 

From (C4), we obtain, after some simplification, 

a121 + a 2 2 1 = 0 

(3.5) ^ 1 2 1 + ^ 2 2 1 = ^ 

2a 1 2 1 + a 2 2 1 = 0 

19 1 £UL rs r) -, Uj 

so that czlzl = cc221 = 0. Using (C5), after some simplification, we see that 
a0-, -i = 0. 

From (C6), with j = 1, we have, after some simplification, 

o o i a o n (3 .6 ) a2
001 + az

011 + 2 a 0 0 1 a 0 1 1 = 1 
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If j = 2 in (C6) , we obtain 

(3.7) a2
001 + a2

011 + aQQ1aQ11 = 1. 

Using (3.6) and (3.7) along with the fact that a001 = 1, we see that #01 1 = 0. 

Since all the variables in (C7) have already been uniquely determined, 
we proceed to (C8), where we obtain 

c2 - ~2 

and 
(3.9) a 2 , + 2 + a a = i, 

(3.8) a2
0Q1 + a101 + 2a001a101 = 1 

(3.10) a2
010 + a^10 + 2a010a110 = 1 

*10 1 ^001^101 

so that a101 = 0. 
From (C10), we obtain 

and 
(3.11) a2

010 + allQ + a010a110 = 1, 

so that a110 - 0. 
From (C12) , we obtain, after simplification, 

(3.12) al±1 + 2allx = 0 
and 
(3.13) a2

11 + a1±1 = 0, 

so that a111 = 0. 
We have now uniquely determined all 27 coefficients in (3.1). Thus, 

J 1^1) *&2. 9 *^3' = *̂ 1 *̂ 2 ^3 

is the only reduced local permutation polynomial in three variables over Z3 

and, hence, there is precisely one reduced Latin cube of order three. If we 
list the cube in terms of the three Latin squares of order three which form 
its different levels, we can list the only reduced Latin cube of order three 
as 

012 120 201 
120 201 012 
201 012 120. 
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SOME COMBINATORIAL IDENTITIES 

M0RDECHAI LEWIN 
Israel Institute of Technology, Haifa 

In this paper, we wish to derive some combinatorial identities (partly 
known, partly apparently new) by combining well-known recurrence relations 
with known forms for characteristic polynomials of paths and cycles (i.e., 
of their adjacency matrices). We also obtain some extensions of known re-
sults. 
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Define PQ = 1, P± = x. For n > 1, define 

(1) Pn = Pn(x) = x P ^ - P, n - 2 • 

This recurrence relation has been investigated by Liebestruth [5] (see also 
[2, v. I, p. 402]). The formula for Pn is given as 

(2) Pn -£<-!>*(";;*)*"- 2fe 

for every nonnegative integer n. 
The following Fibonacci polynomial is treated in [8]. 

F0(x) = 05 F1(x) = 1, Pn (x) = xFn_1{x) + Fn_2(x) 

(see also [4]). The polynomial Pn is hence essentially a Fibonacci polyno-
mial. As such (2) appears as a problem in [7]. The connection between the 
polynomial Pn and Fn is easily seen to be 

(3) Pn(x) = inFn + 1(-ix)s 

where i is the imaginary unit. 
By postulating P_1 = 09 and in general 

W P-n = -Pn-2 
for all positive integers ns Pn turns out to be a polynomial for every in-
teger n. It is easy to check that both (1) and (4) are valid for all inte-
gral n. 

Using (1) and the induction principle s we can show thats for n J> 05 we 
have 

< 5 > *n~Y,(n~k
1)Pn-2k-

Let t be any positive integer. Writing x = P1, (1) may be written as 

(6) P1Pt =Pt + 1 +Pt-1. 

Now let t be any positive integer >_ 2. It is easily checked that 

(7) P2Pt = Pt + 2 + Pt +Pt-2-
We shall now show that (6) and (7) are special cases of the general formula 
expressed by 

ThzoK-QM 7 •* For any nonnegative integers s and t we have 
s 

s Ft = Z»J t + s - 2k ' 
k = 0 

We first prove Theorem 1 for the case 0 <. s <. t . For s = 05 1, 2, the 
theorem is already established. Let it hold for all 0 <_ s' < s and for all 
t >. sr. Consider s, t such that 2 < s <_ t . Using (1) 3 we have 

PsFt - (xPs _ i. - Ps _2)Ft = xPs_1Pt - Ps _ 2Pt 

s - 1 s-2 

X2mJPS + t-l-2k " Z-# Ps+t-2-2k 
k=0 k = 0 

2_~r ° ~ o - z s 
2mJ

Ps + t-2k + 2^ ^s+t-2-2k " 2^j ^s + t-2-2k ~ / J ^s + t 
k=0 k=0 k=0 k=0 
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This proves the theorem for 0 <_ s <^ t , 
The right-hand side of Theorem 1 appears at first sight not to be sym-

metric with respect to s and t . We show it to be symmetric. We first prove 
the simple 

Lmma 1: n 
EPn-2k = 0. 
k = l 

VKOO^* Take the terms in pairs symmetric with respect to their positions in 
the series. We then have 

[n/2] 

Lmj~Pn-2k~ 2-rf (Pn-2j + ? ( n - 2 j ) - 2 ^ = °' 

which proves the lemma. 
Now let s > t . Put n = s - t and apply Lemma 1. Then 

k = l 

Equality (8) together with that part of Theorem 1 already proved yield 

t t s -t 

^s^t = 2 s ^ s + t-2k = 2^^s + t-2k + / A Ps -t-2k 
k = 0 k = 0 k = l 

t s s 
= 2-d Ps + t-2k + 2-J Ps-t-2(k-t) = L^t Ps+ t -2k ' 

k=0 k-t+1 k=0 

which proves the theorem for all nonnegative integers s and t. 
The following are some special cases of Theorem 1. 

<9> Pn=T,P2k> 
k = 0 

n 

(1Q) PnPn+l = L P 2 f c + l -k = 0 

Both (9) and (10) appear in [2, p. 403]. 
We now have 

ThdOKom 2: Let m and n be arbitrary integers. Then 

P2 - P P = P2 . 
n n~ m n + m m -1 

V/toofi: CO££ 7. 0 <_ 7?? £ n. By us ing Theorem 1 for s = n - m, t = n + m, we 
ge t 

^ ^ Pn-mPn + m 2^P2(n-k) Z^ P2k ' 
k = 0 k = m 

Putting m = 0 in (11) yields (9). Subtracting (11) from (9) yields 
m-l 

P2 - P P = V"* P 
n ^n-m n + m L-d 2k' 

k = m 
Using (9) again we obtain Theorem 2. This settles Case 1. 
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C&6£ 2. 0 <_ n < m. 

SubctUZ 2.1.—n + 1 > m - 1. S ince n + 1 <. m, i t fo l lows t h a t m - 1 = 
n . Then n - 7?7 = - 1 , and t h e theorem h o l d s . 

Subc<U& 2.2,—n + 1 <. 77? - 1. Then, u s i n g ( 4 ) , we may w r i t e 
p2 + p p - p 2 _ p p 

= p2 - p p - pi-
rn-1 m - l - ( n + l ) 7 w - l + ( n + l ) n * 

The last equality follows by applying Case 1 to n + 1 and m - 1. This com-
pletes Case 2. 

The remaining cases are settled by applying similar arguments. 

CoKollaAy 7: For all integral n9 we have 

P2 - P P =1 
rn rn-lrn+l L ° 

VK.00JI Put 777 = 1 in Theorem 2. 
W r i t i n g (1) aga in we have xPn = Pn + 1 + Pn-1> Thens 

X Pn = X {Pn + 1 + Pn _ x) = ^n + 2 -+ 2P„ + Pn _ 2 . 

By induction, it is easy to show that for all positive integers r we have 

xvP„ 
Then, 

P.P* •?0
(-1)'(%<7)a:"2'Pt 

q=Q V ^ ' ! 7< = 0 X / 

(12) 
_ \^ / i\q (s - q\ \ ^ Is - 2q\T 

t + s-2(q+k) 

Now let q + k = m be constant. Equating corresponding terms of Theorem 1 
and (12) we obtain, after replacing s by n, 

Tfi£0/L£J7l 3' Let 777, n be nonnegative integers such that m ^ n. Then, 

min (777, n - m) 

t <-»t;k)(r-?) = '-k = Q 

CofioZZa/iy 2: For any nonnega t ive i n t e g e r n 9 we have 

j£o fc!((n - k ) ! ) 2 

P^LOO£: Put n = 277? in Theorem 3 and replace 777 by n. 
For nonnegative n, the polynomial Pn(x) is known to be the characteris-

tic polynomial of a simple path of length n (number of vertices in the path) 
[l,.p. 75]. 

Let Cn (x) be the characteristic polynomial of an n-cycle. In [6, p. 
159], the following close relationship between Cn(x) and Pn(x) is given 
for n _> 3: 
(13> Cn = C„(X) = Pn - PM.2 - 2. 

Using (4), we may write (13) as 
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(14) Cn = Pn + P_n - 2. 

In a regular graph G, the order of regularity v is an eigenvalue of G. 
Therefore, we have Gn(2) = 0. Using (13), we obtain 

(15) Pn(2) = Pn_2(2) + 2 

for n > 3. Since PQ(2) = 1, P1(2) = 2, P2(2) = 3, it follows that for n > 0 
we have 

(16) Pn(2) = n + 1. 

This is a result in [3, 1.72]. 
Using (14), it is easily checked that both (15) and (16) are valid for 

all integral n. 
Using the known expression for Pn, [6], we obtain 

Fn = £( - !>*(" I k)*n'2k =.fl (̂  - 2 cos(TTj/(n + 1 ) ) ) 
(17) 

[n/2] 
= ar* f l Or2 - 4 cos2(TTj/(n + 1 ) ) ) , 

J - l 

where h = n - 2[n/2], [ 8 ] . 
For positive n, (16) and (17) together imply 

n 
(18) 2 n n (1 - cos(TTj7(n + 1 ) ) ) = n + 1. 

j = i 

Taking the factors of the left-hand side in pairs, we get 

IkdOKOM 4: Let n be an integer > 1. Then, 

[n/2] , 
f l sin(TT^/(n + 1)) = (n + 1)* 2 ~ n / 2 . 

fc = i 

Theorem 4 and the left-hand side of (17) together yield 

(19) fl sin2(^/(r/. + 1)) = (n + 1)2"2 = £ ( - { ) (" fc )• 

Put x - 0 in (17) and let n be even and positive. 
Put n = 2m. We then have 

m 
Pn(0) = (-l)m = (-l)m2nJJ cos2 (vk/(n + 1)), 

fe-1 

yielding 
m 

IkdOKm 5: J] cos(nk/(2m + 1)) = 2~m. 
fc-r 

Now put x = 2i. It then follows from (1.7) that 

2 V £ 4 " * ( " * *) = 2"ri (* - cos(Trj7(« + 1))). 

Again taking the factors in pairs and cancelling out, we get 
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/ V\ [n/2] 

<20> Z l 5 r r = 11 (1 + cos2(7Tj7(n + 1 ) ) ) . 

By s e t t i n g re = i i n (17) , we ge t 

p n W = ^ Z ( n ^ ) = ft ^ " 2 cos(Trj/(n + 1 ) ) ) . 

Taking t h e f a c t o r s i n p a i r s y i e l d s 

(21) X ( n
 fe ) = f l (1 + 4 cos2(TTj7(n + 1 ) ) ) . 

Using (3)5 it follows that 

(22) Pn (i) = {BFH11(1) = £*/ lS 

where fn is the nth term of the Fibonacci sequence 

/„ = o , fx = i, f2 = i, /„ =/„., +fn_2. 
Combining (21) and (22), we get 

[n/2] 
(23) / = f l (1 + 4 cos2(7Tj/(n + 1 ) ) ) . 

J = I 

Theorem 1 and (22) together yield, for s <_ t, 

fe = o 

A considerable number of identities and results on Fibonacci numbers may be 
derived from repeatedly using (24). 

Let (?)„ be the J-graph mentioned in [6, p. 162] and let Yn = Yn(x) be 
its characteristic polynomial. It follows from [6] that 

(25) In =x(Pn_x - Pn_3) «P„ - P„_„. 

We then have 

Yn (2) = PB<2) - P „ . „ ( 2 ) = 4 . 
Using t h e e x p r e s s i o n for Yn in [ 6 ] , we ge t 

n - l 
(26) Y„ = xfl(x - 2 COS(TT(2J - l ) / 2 ( n - 1 ) ) ) . 

J - I 

Combining (25) and (26), we get, after setting x = 2, 

t(n-l)/2] 
2 n I I (1 ~ COS 2 (TT(2J - l ) / 2 ( n - 1 ) ) ) = 4 . 

W r i t i n g n i n s t e a d of n - 1, we get 

[n/2] 
I I (1 - COS 2 (TT(2J - l ) / 2 n ) ) = 2 1 " * , 

J = I 
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and f i n a l l y , 
[n/2] 

(27) n sin(TT(2j - l ) / 2 n ) = 2 " i ( n " l } . 
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ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS 

V* E. HOGGATT, JR. 
San Jose State University, San Jose, CA 95192 

1. INTRODUCTION 

In July 19763 David L. Silverman (now deceased) discovered the follow-
ing theorem. 

Tho.OH.2m 1' There exist sets A and B whose disjoint union is the set of 
positive integers so that no two distinct elements of either set have a Fi-
bonacci number for their sum. Such a partition of the positive integers is 
unique. 

Detailed studies by Alladi, Erdos, and Hoggatt [1] and, most recently, 
by Evans [7] further broaden the area. 

The Fibonacci numbers are specified as F1 = 1, F2 = 1, and, for all 
integral n, Fn + 2 = Fn + 1 + Fn . 

LmmCL'* F3m is even, and FSm + 1 and F3m+2
 a r e odd. 

The proof of the lemma is very straightforward. 
Let us start to make such a partition into sets A and B. Now, 1 and 2 

cannot be in the same set9 since 1 = F2 and 2 = F3 add up to 3 = Fh. Also9 
3 and 2 cannot be in the same set9 because 2 + 3 = 5 = Fg. 

A = {1, 3, 69 8, 99 11, . . . } ; 

B = {29 4, 59 79 10, 12, 13, ...}. 

If we were to proceed, we would find that there is but one choice for 
each integer. We also note, from Fn + 2 = ̂ n + 1

 + Fn * that F2 belongs in set 
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A9 and F2n+1 belongs in set B for all n >_ 1. Thuss all the positive Fibo-
nacci numbers Fm (m > 1) have their positions uniquely determined. 

VKOOJ ofi Tk.dQK.QM 1: The earlier discussion establishes the inductive basis. 

Inductive. AA&umptLon: All the positive integers in {1, 2, 39 ..., Fk} 
have their places in sets A and B determined subject to the constraint 
that no two distinct members of either set have any Fibonacci number as 
their sum. 

Note that Fk„1-i and Fk + i must lie in opposite sets5 and this yields 
a unique placement of the integers x9 Fk < x < Fk + 1 . By the inductive hy-
pothesis , no two integers x and y lying in the interval 1 <_ xs y <_ Fk which 
are in the same set add up to a Fibonacci number; thus9 we have constructed 
and extended sets A and B so that this goes to Fk+1> except we now must show 
that no x5 y such that 

F*-i < x < Fk and Fk < y < Fk + 1 

can lie in the same set and have a Fibonacci number for their sum. Actually, 
such x and y yield 

Fk+i < x + y < Fk+2» 
and there is no Fibonacci number in that intervale We now determine whether 
x and y both lying between Fk and Fk+1 can be in the same set and add up to 
a Fibonacci number. Let 

x = Fk + i and y = Fk + J , 0 < i, j < Fk _ 1, 

so that 
2Fk < x + y < 2Fk+1 

2Fk < 2Fk +i +3 < 2Fk + 1. 

The only Fibonacci number in that interval is Fk + l5 and thus i + j = Fk_1. 
From the fact that Fk + i and Fk_1 - i lie in opposite sets and Fk + j 

and Fk_1-j lie in opposite sets9 then if Fk + i and Fk + J were in the same 
sets so would be Fk^± - i and Fk^1 - j,but if i + J = Fk_1$ then the sum of 
Ô c-i ~ "O and (Fk-i ~ J°) i s ^k-iJ which violates the inductive hypothesis. 
Thus, no two distinct positive integers x and y9 xsy <_ ̂ + 1 , lie in the same 
set and sum to a Fibonacci number. 

By the principle of mathematical induction, we have shown the existence 
and uniqueness of the additive partition of the positive integers into two 
sets such that no two distinct members of the same set add up to a Fibonacci 
number. This concludes the proof of the theorem. 

ThdJOKOm 2° For every positive integer N not equal to a Fibonacci number, 
there exist two distinct Fibonacci numbers Fm and Fn such that the system 

a + b = N 
b + c = Fm 
a + c - Fn 

has solutions with as b5 and c positive integers, 

_ N + F" " F« * - N + ^ " Fn = Fn + Fn - N 
a _ _ - 9 b _ 2 , 0 2 

Comm&wU: The sum of Fm + Fn + # is even. The numbers 217, Fn , and Fm must 
satisfy the triangle inequalities 



222 ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS [ O c t , 

tf + Fn > Fm . 
* + Fm > Fn , 

F + F > # . 

Vh.00^1 The proof will be presented for six cases. Recall that F3m is even 
a n d ^3m+i with F3m + 2 are odd. 

CoAe 7: tf even, F3 k < # < F3/, + 1 . 

F 3 f c - 1 + F 3 f e + . l > N 

F3k+1 + N > F 3 f c - 1 

F 3 k - 1 + / ^ > F 3 k + 1 

Co6e 2: tf odd, F _ < 27 < F. 3k xv x 3 k + l * 

^ k + 1 + ^ > F3k 

F3k
 + N > F3k+l 

F3k+1 + F3k > N 

Co4fc 3 : 21/ even, F3k_1 < N < F, 
3k 

F3k+l + N > F3k-1 

F3k-1 + N > F3k+1 

F3k+1 + F3k-1 > N 

CcU>t 4: N odd, F3k_1 < N < F3k. 

F3k-1 + ^ > F3k 

F3k + N > F3k-1 

F3k + F3k-1 > N 

Cdie. 5 : 217 even, F^., < N < F 3 J c + l " L 3k+ 2' 

F 3 k + 1 + N > F3k+2 

F 3 f c + 2 + N > P3k-1 

F3k+2 + F3k > N 

Cain 6: N odd, F,y., < N < F 3J:+1 " x 3fc + 2" 

F3k
 + N > F3k + 2 

F3k+2 + N > F3k 

F3k+2 +F3k > N 

From the direct theorem, a and a lie in opposite sets and b and o lie 
in opposite sets; hence, a and b lie in the same set. 
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CoSioLta/iy 1: In each of the six cases above, it is a fact that 

a - b = Fm - Fn , 

which is always a Fibonacci number (Sarsfield [5]). 

Co/LOttaAy li F2m and F2n never add to a Fibonacci number, nor do F2m + 1 and 
F2n + 1 for n 4 m 4 0. 

2. EXTENSIONS OF PARTITION RESULTS 

In this section9 we shall use Zeckendorffs theorem to prove and extend 
the results cited in [3]. 

ZeckendorfTs theorem states that every positive integer has a unique 
representation using distinct Fibonacci numbers F29 F39 ..., Fn , ..., if no 
two consecutive Fibonacci numbers are to be used in the representation* 

ThtOfiQin 1: The Fibonacci numbers additively partition the Fibonacci numbers 
uniquely. 
Vtiooji Since Fm + Fn = Fp if and only if p=m + 2=n + l9 m9 n > l9by 
Zeckendorffs theorem, let set A1 contain F2n + 1 and set A2 contain FZn+Z9 
n >_ 1. No two distinct members of A1 and no two distinct members of A2 can 
sum to a Fibonacci number by Zeckendorffs theorem. 

ThdOKom 2: The Lucas numbers additively partition the Lucas numbers unique-
ly. 

VHJOO^I Similar to the proof of Theorem 1, since the Lucas numbers enjoy a 
Zeckendorf theorem (see Hoggatt [6])e 

Thzofiem 3*> The Lucas numbers additively partition the Fibonacci numbers 
uniquely. 

VsUcuAAlon: Let A1 = { 1 , 5 5 89 34 , -55, . . . } 

= {F29 F59 Fs 9 F 9 s F 1 Q S . . . .} 

= \F25 F^n+ls ^itn+2 J"n = l» 
and A2 = {F3, Fh, F l t n + 3 S F 4 n + lt } ^ = 1 . 

The proof is omitted, 

ThdOKOm 4' The union of the Fibonacci numbers and Lucas numbers additively 
partition the Fibonacci numbers uniquely into three sets—A19 A29 and A3— 
such that no two distinct members of the same set sum to a Lucas number and 
no two distinct members of the same set sum to a Fibonacci number. 

Vtwo fa From Ln = Fn + 1 + Fn.l5 we see that Zeckendorf fs theorem guarantees 
a unique representation for each Ln in terms of Fibonacci numbers. 

Let A1 contain F3n_ls A2 contain F3n, and A3 contain F3n+1 for n > I. 
No two consecutive Fibonacci numbers can belong to the same set because they 
would sum to a Fibonacci number, and no two alternating subscripted Fibonacci 
numbers can belong to the same set because they would sum to a Lucas number; 
therefores the above partitioning must obtain. 

Tk&Q/iem 5: The union of the sequences {Fi + Fi + j}^=2s J = l»2, ...9 k9 par-
titions the Fibonacci numbers uniquely into k sets so that no two members of 
the same set add up to a member of the union sequences. 
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ThzoJiom 6: The sequence {5Fn} uniquely p a r t i t i o n s the Lucas numbers. 
VLbCUAAlon: Let A1 = {2 , Lhn_19 Lhn}™=19 and 

A2 = {1, 3, Lhn + 1 , ^itn+2^n=l* 
The proof is omitted. 

There are clearly many more results which could be stated but we now 
now leave Fibonacci and Lucas numbers and go to the Tribonacci numbers 

T l = ? 2 = L T 3 = 2 ' • • • > Tn+3 = Tn+2 + T n + 1 + Tn , ( » > D . 

3. TRIBONACCI ADDITIVE PARTITION OF THE POSITIVE INTEGERS 

Let 
2\ - T2 = 1, T3 = 2, 

ana ™ — T7 4- T7 4- T 
-Ln-h3 x n + 2 T •'n+l T i n 

for all n >_ 1. Below, we shall show that the set {3, Tn}~= 2
 = ̂  induces an 

additive partition of the positive integers uniquely into two sets A1 and A2 
such that no two distinct members of,A1 and no two distinct members of A2 
add up to a member of R9 and, further, every n t R can be so represented. 

Since Tn+3 = Tn + 2 + Tn+1 + Tn9 it is clear that Tn + 2 and Tn + 1 + Tn are 
in opposite sets, and so say•72 = 1 is in set A1 and T3 = 2 is in A2 since 
we wish to avoid 3. Now, T3 + Th must also be in A2 since T2 + T3 + Tk = T5. 
Thus, T3n + 1 and T3n + 2 are in A± and T3n is in 42, T3n.1 + T3n and2T3n + 1 + T3n 
are in ̂ 42 and T3n + 1 + T3n + 2 is in A ^ This is easily established by induc-
tion. 

I f T3n+1 + T3n + 2 i s i n ^ 1 > t h e n ^3^2 + 3 a n d T 3n a r e i n ^ 2 ' S i n c e T 3h _ ± + 
573n a n d ^ S n + l + T 3n a r e i n ^ 2 > t h e n T 3 n - 2 a n d T 3 n + 1 w i t h T 3 n - 1 a n d T 3 n + 2 a r e 

all in A±. This places all the Tribonacci numbers. 
Since T3n+1 is in A19 then T3n + 2 + T3n + 3 is in A2. Thus, since T3 n + 2 

is in A19 then ^3n + 3 + ?3n + li is in A29 and T3n + 5 is in A±. This completes 
the induction. 

Now that all the Tribonacci numbers are placed in sets 4i and A2, we 
place the positive integers in sets A1 and i42 . 

It is clear that (Tn - i) and £ are in opposite sets, except when i -
Tn/2. From Tn + h = Tn + 3 + Tn+2 + 2,n + 1, we get 

-^n + k + ™n ~ ™n + 3 + \-̂ n + 2 +-^n + l + -*n ' = 2-£ „ + 3 • 

Thus, generally, 

Since ^4n_i and ^4n are even, and ̂ i^-n and Thn + 2 are odd, we get two 
different sets. T^n/2 and T^n+h/2 must lie in opposite sets because their 
sum is T^n + 3. Also, Thn_1/2 and T1+n + 3/2 must lie in opposite sets because 
their sum is Thn+2. Tj2 = 2 is in set A29 and ̂ 8/2 = 22 is in Ax. Thus, 
./Z78n/2 is in A2, and T8n + l^/2 is in 4X. T3/2 = 1 is i n ^ , and T7/2 = 12 is 
in'i4.2; thus, TQn + 3/2 is ±n-A19 and TQn + 7/2 is in ̂ 2. So, by induction, the 
placement for all integers % - Tnj2 is complete. 

The use of 3 in set R forced us to put 1 in A1 and 2 in A2 as an ini-
tial choice. Now, all Tn and Tn/2 have been placed. Since (Tn - i) and i 
are in opposite sets except when £ = Tn/29 we can specify the unique place-
ment of the other positive integers. 
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This establishes the uniqueness of the bisection. Each Tn , each Tn + 
Tn+19 and each Tn/2 an integer is uniquely placed. 

Next, consider n i R, n + Tn + 57n + 1- Then 

a + b = n 
b + Q = Te 

Q + a = Tt 

i s s o l v a b l e p rov ided t h a t (n + Ts + Tt) i s even and 

Ts + Tt - n > 0 

Ts + n - Tt > 0 

Tt + n - T8 •> 0 

Lemma: For every ntR and n £ Tn + Tn + 1 t h e r e e x i s t two T r i b o n a c c i numbers 
!FS and Tt such t h a t Ts + Tt + n i s even, and 

Ts + Tt - n > 0 

Ts + n - Tt > 0 

Tt + n - Ts > 0 

VKOOJ: There are several cases. Let Tt < n < Tt + 1 where Tt and Tt + 1 are 
both even; then, if n is even, we are in business. If n is odd, then 

Tt <n < Tt+1 < Tt+2 

where Tt and Tt + 1 are even and Tt + 2
 i s odd, and n ^ Tt-i + y t ) then either 

51t_1, n, Tt or Tt + 19 n, Tt+ 2 will do the job.. 
Next, let Tt < n < Tt + 1 where Tt is odd and Tt + 1 is even. If n is odd, 

we are in business. If n is even, Tt + l9 n, Tt + 2 or Tt , n, ̂ t-i will do the 
job except when n = Tt _ x + Tt. 

Finally, let Tt < n < Tt+1 where Tt and Tt+1 are odd. If n is even, we 
are in business; if n is odd, then n, Tt + l s Tt+2 or Tt_l9 ns Tt will do the 
job except when n =* Tt + Tt+i. 

Thus, if n ̂  TY and n ^ Tt + Tt_x, the system of equations 

a + b • 

is solvable in positive integers. Note that o and a cannot be in the same 
set, nor can b and c be in the same set. Therefore, a and b are in the same 
set, so that n is so representable. 

We now show that n = Tt + Tt_1 are representable in the same side on 
which they appear as the sum of two integers, and take the cases for 

Earlier we noted that T3n + i and T3n + 2 are in A1 and T3n + 1 + T3n + 2 is in Al9 

so that T3n + 1 + T3n + 2 is representable as the sum of two elements. We now 
look at 6 = 5 + 1. 

As we said, T3n + 1 + T3n + l9 T3n+T3n + ls T3n + h + T3n + 5, and T3n + ,3 4- T3n + k 
lie in i2- Look at 

•^3n + 5 + ^3n + 4 ^3rc + 4 + ™ 3 n + 3 ' ™ 3n + 5 ™ 3n + 3 * 
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This is in set A2, because T3n + 3 is in A±. Thus, since (T3n + h + T3n + 3) and 
(̂ 3n + 5 "" ̂ 3n + 3^ a r e ̂ o t n i n ̂ » ^ 3 n + 5 + ̂ 3n + ̂  ̂ a s a representation as the sum 
of two elements from set A2„ 

Next, consider 

T3n + *+ + ™3n + 3 " ^ 3 n + l + ^3rc ' 

^ 3 n + 4 + "^3n+3 + ™3n + 2 ~ (™3n + 2 + ™3n + l + -^3n ' 

-1 3n + 5 2 3 n + 3 s 

which we have seen to lie in A2, so that 

'^3n+5 ~ 3n + 3^ + ^ 3n + 1 3n ' = ^ 3n + k + -^3n+3 

is the sum of two integers from A2, since both are in A2. This completes 
the proof. 

If n £ Tm or n =fi Ts + Ts + 1 , then n has a representation as the sum of 
two elements from the same set. If n = Ts + Ts + 1 , then if n = T3m + 1 + T3m + 2 , 
both T3m+1 and T3m + 2 appear in A19 and n has a representation as the sum of 
two elements from A, . If n = T~m.0 + 2V ...q or n = 2V + S1,^, , then each 

1 3m + 2 3 m + 3 3m 3 7 7 7 + 1 ' 

has a sum of two elements from A2. 
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THE NUMBER OF MORE OR LESS "REGULAR" PERMUTATIONS 

G. KREWERAS 
Institut de Statistique, Paris, France 

Let us call Sm+1 the set of all permutations of the integers {1,2,..., 
m + 1}. Any permutation a from Sm + 1 may be decomposed into b blocks Bl9B2> 
..., Bh defined by the following property: each block consists of integers 
increasing unit by unit, and no longer block has the same property. 

Example.: m = 8, a = 314562897; there are b = 6 blocks: 

B1 = 3, B2 = 1, B3 = 456, Bh = 2, B5 = 89, B& = 7. 

The lengths of the blocks form a ̂ -composition q of m + 1 (see [1]); in the 
above example, q - (1, 1, 33) 1, 2, 1). 
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If a(£) is the ith integer in a, a(£) and a(i + 1) belong to the same 
block iff a(i + 1) = a(i) + 1; let us call the number of V s satisfying this 
condition the regularity z» of a. Obviously b + v = m + 19 so that b and r 
are equivalent descriptive parameters of a. The greatest possible regular-
ity is v = m; it occurs iff a is the identical permutation. The smallest 
possible regularity is r = 0; it occurs iff q = (1, 1, 1, . .., 1); we shall 
call the corresponding permutations "irregular permutations," and look for 
their number. More generally, we shall call U(m5 r) the subset of Sm+1 con-
sisting of the permutations of regularity r9 and u(m9 r) the cardinality of 
U(ms r). We know already that u(m9 m) = 1 and that 

777 

r = 0 

Setting u(rn5 0) = u , we shall first show that 

(2) u(m9 r) = (™)um_r. 
Let us start from a permutation a of regularity P, i.e., of b = 77? - v + 1 

blocks. Besides their order of appearance in a, there is an "order of in-
creasing values" of the blocks; in that order9 the smallest block in the 
above example is 1 (=B2) s then comes 2 (=Bh) s then 3 (=B]_) 5 then 456 (=B3) 9 
then 7 (=56)9 and finally, 89 (=S5). If we relabel the blocks according to 
their place in the latter order, and if we list them by order of appearance 
in a, we obtain a permutation p of {1, 2, ..., b}; in the above example, 
p = (314265). 

Necessarily, this permutation p is an irregular one, since, if it had 
two consecutive integers at two consecutive places, it would mean that the 
corresponding blocks in a could be merged into a single block, which is con-
tradictory with the definition of the "blocks." 

Let us start now from the pair (p, q), where p is any irregular permu-
tation of {1, 2, ..., m-p+l} and q is any (m - r+ 1) -compos it ion of 77? + 1: 

p = (p19 p 2, . .., p b ) s 

q = (?!> q2> ••• v ? * ) -
If p. = p(i) = 1, transform p by replacing p. by a block (123 ... q^)% 

if p(j) = 29 replace p. by a block (qi+l9 ^ + 2, ..., qi + qS) , and so on, 
until p is finally transformed into a permutation a of {1, 29 ...,772+1}. 

This procedure defines in fact a (1 - 1)-correspondence between the set 
U(m9 r) and the set of pairs (p, q) consisting of an irregular permutation 
p of {1, 2, ..., m-P+1} and a (m - v+ 1)-composition q of m + 1. Since it 

is well known that the number of u-compositions of v is ( .. J, we can con-
elude that , • 

U(7??9 P) = U J 

which proves (2). 
Inverting (1) after replacement of u(m9 r) by its expression (2), we 

obtain 

r> = n ^ 
(m+l - r) ! 

^ — • \ I* / 

which may be written 
(3) M m = Aml!. 
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This enables us to calculate um for moderate values of 777: 

^ = 0 1 2 3 4 5 6 sea 

um = 1 1 3 11 53 309 2119 

For larger values of m9 it is convenient to use recursion formulas with 
positive terms only9 which will be connected with a closer investigation of 
irregular permutations. 

If we start from one of the um permutations belonging to U(m9 0) s say 
a9 and if we delete 7??+ 1 in a, the remaining permutation 3 of {l, 29 ee*9 m} 
may be irregular or not9 and, in fact, will be of regularity either 0 or 1. 
Conversely9 the whole set U(m9 0) can be reconstructed by the reinsertion of 
integer 777 + 1 either at some suitable place of an irregular permutation 3 or 
at the only suitable place of a permutation 3 of regularity 1. 

If 3 is irregular9 there are m + 1 conceivable places for insertion of 
integer 777 + 1, but one and only one of them, namely the place immediatel)?-
after integer 77?s is not suitable* The number of corresponding possibilities 
is thus mum_1. 

If 3 is of regularity 19 the number of possibilities for 3 is given by 
formula (2) , substituting m - 1 for 77? and 1 for v9 which yields (m - l)um_2; 
integer 777 + 1 must then be inserted between the only two consecutive inte-
gers of 3-

Finally9 

(4) um = mum„1 + (TTZ - l)wm.2» 

which provides an easier calculation of the sequence. 
A numerical table of u(m9 r) is readily formed from the knowledge of um 

and formula (2): 

r = 0 1 2 3 4 

0 
1 
2 
3 
4 

1 
1 
3 

11 
55 

1 
2 
9 

44 

1 
3 

18 
1 
4 1 

The following properties are easy to verify: 

(1°) Column p= 1 consists of the "rencontres" numbers (see [2])e The numbers 
of columns 0 and 1 appear in [3]', but without reference to their enu-
merative meaning. 

(2°) The Blissard generating function [2] of column 09 

y(x) ^ L ^TTTT5 

m = 0 

satisfies the differential equation 

yf (1 - x) = z/(l + x) 9 

since (4) may be written 

Elementary integration yields 
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(3°) The Blissard generating function yr of column r is given by use of (2): 

I r ) Um-rm\ r ? LjUm~v (m _ p \ , » 
m \ / m \ • / 

so t h a t 
2/r = e _ a r ( l - a?)"2*2*/*'!. 

+ 00 

(4°) The sum ] T z/r i s ( l - x ) ~ 2 = 1 + 2x + 3x2 + • • • , which confi rms t h a t t h e 
r = 0 

coefficient of xm/ml is (m + 1)!. 

(5°) According to (3), the ratio um/(m +1)1 is equal to 

1 " \l)m + 1 + \ 2 / (m + l)m " *** + ^ ^ \P) (m + 1)* + ° e°  

As 777 increases, with fixed p, the general term of this sum tends toward 
(-1)P/2,I; it follows that the sum itself tends toward e~l , which is the 
limiting proportion of irregular permutations. 

(6°) Using (2), it appears that 

u(m$ r) =
 um-r ^ m - r + I 

(m + 1)! " (m - r + 1)! rl(m + 1) " 

As' m increasess the second member tends toward e~1/rl* The latter re-
sult means that9 if a permutation is chosen at random in Sm+1 and if m 
increases, the limiting probability distribution of its regularity is 
a Poisson distribution with mean 1. 
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STAR POLYGONS, PASCAL'S TRIANGLE, AND FIBONACCI NUMBERS 

AARON B. BUDGOR 
Lawrence Livermore Laboratory, UaCe/ Livermore, CA 94550 

In recent years, there has been some flurry of excitement over the re-
lationship between the complexity of a graph, i.e., the number of distinct 
spanning trees in a graph, and the Fibonacci and Lucas numbers [1, 2]. In 
this note, I shall demonstrate a relationships, although incomplete, between 
the Fibonacci numbers and the star polygons. My hope is to spur further 
research into the connection between nonplanar graphs and their enumeration 
from number theory. 
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The star n-polygon i ,j, one of the simplest of these nonplanar graphs, 

is constructed by placing n points equidistantly on the perimeter of a cir-
cle and then connecting every <ith point such that 

njd is relatively prime and n 4 n - d £ 1. 

The last condition effectively removes the class of all regular polygons. 
The group structure of such polygons is clear; it is related to the par-

tition of unity in which this partition is prime. Therefore, it does not 

come as any surprise that a symmetry relation for the star n-polygon < , V is 

This fact was brought to my attention by Ms Dianne Olvera. 
It then intrigued me to discern whether the symbolic symmetry exhibited 

by (1) could be generated by a somewhat similar number-theoretic symmetry, 
that produced by Pascal1s triangle; row-wise, the combinatorial symmetry 

U)-(y^) 
exists. 

At first glance, the similarity between (1) and (2) appears to be only 
cosmetic, since there are absolutely no restrictions on the values of the 
positive integers y and 3 as long as y >• $• Secondly, there seems to be no 
numerical congruence between (1) and (2). 

On the other hand, if one were to examine the Fibonacci numbers Fn gen-
erated by summing entries along the diagonals of Pascal's triangle, an algo-
rithm can be constructed that will produce all the possible star n-polygons 
excluding a sparse set. The procedure is as follows. 

AZgpSivthm: The symmetry relation j ,> = < ,> for star n-polygons results 

from partitioning any number or sum of numbers in the sum of some Fibonacci 
sequence equalling n around its relatively prime divisors. 

Examptz 1 ** The star pentagons (pentagrams) < j = | > are generated by sum-

ming the Fibonacci numbers F3 + F = 5. Since its prime divisors are 2 and 

3, respectively, partitioning 5 around 2 yields the star pentagon < 9 ? = < >. 

Examptz 2: The star heptagons < _ j- = { 9 | and <«| = \,f are generated by sum-
ming the Fibonacci numbers Fx + F2 + ^3 + Fh = 1 + 1 + 2 + 3 ' = 7. Partitioning 
the sum around 3 produces \ _ > = <, k The reader can quickly convince him-
self or herself that partitions around various alternative sums of this se-
quence which are relatively prime to 7 do not generate any other possibili-
ties. 

Examptd 3: Star nonagons are obtainable by summing the sequences 

and 
^ + ^ + F5 = 1 + 3 + 5 = 9 

F1 + F2 + F3 + F5 = 1 + 1 + 2 + 5 
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The former yields, upon partitioning around the sum F± + Fk , the star nona-

gons |^| = |5|9 while the latter yields, upon partitioning around the sum 

F1 + F2 + F3 or around F39 the previous star nonagon or i \ = j 1. 

I have examined all the possible star nonagons for all n inclusive of 

21. When n = 13 and 21, this algorithm breaks down and will not produce< , >, 
(21\ (21) 
\,j> and JIQI- For larger values of n, other discrepancies will appear (n 
need not be a Fibonacci number) , but always much fewer in number than the 
star n-gons that are generated. 

It therefore appears that the Fibonacci sequence on its own cannot ex-
haustively generate all star n-gons. The basic reason for this nonisomorphism 
is that the Fibonacci numbers are related to the combinatorics of spanning 
trees, the combinatorics of planar graphs, not of nonplanar graphs. 
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A CONVERGENCE PROOF ABOUT AN INTEGRAL SEQUENCE 

MASAJi YAMADA 
Ibaraki University, Naka-Narusawa, Hitachi, Japan 

ABSTRACT 

The major theorem proven in this paper is that every positive integer 
necessarily converges to 1 by a finite number of iterations of the process 
such that, if an odd number is given, multiply by 3 and add 1; if an even 
number if given, divide by 2. 

The first step is to show an infinite sequence generated by that itera-
tive process is recursive. For the sake of that object, an integral vari-
able x with (£ + 1) bits is decomposed into (£ + 1) variables a0, a19 ..., 
a%9 each of which is a binary variable. Then, Pth iteration, starting from 
x9 has a correspondence with a fixed polynomial of aQ, ..., a9 , say 

fr(aQ9 ..., az)9 

no matter what value x takes. Since the number of distinct fr
 fs is finite 

in the sense of normalization, the common fr must appear after some itera-
tions. In the circumstances, the sequence must be recursive. 

The second step is to show that a recursive segment in that sequence is 
(1, 2) or (2, 1). For that object, the subsequences with length 3 of that 
segment are classified into twelve types concerned with the middle elements 
modulo 12. The connectability in the segment with length 5 or larger, and 
the constancy of the values at the head of each segment, specify the types 
of subsequences, found impossible, as well as with lengths 1, 3, and 4. The 
only possible segment is that with length 2, like (1, 2) or (2, 1). 
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1, INTRODUCTION 

An iterative process illustrated in Figure 1 is conjectured to neces-
sarily converge to 1 with a finite number of iterations whenever its initial 
value is a positive integer. It seems, however, that no proof is yet found 
(see [1]). 

set x 

< x:even > 
yesj 
x - l x 

10 1 r 

x*(3x+1) 

stop j 

It is the main object to prove the truth of this conjecture. 
By preliminary considerations, we easily find: 
1. This iterative process is always feasible and not stopped without 

a reason before it attains 1. 
2. If we eliminate the stopping operation after we gain 1, the se-

quence will be followed by a recursive sequence such as (4, 2, 1, 4, 2, 1, 

3. Since (3x + 1) yields as an even number for odd x, then twice run-
ning on the odd side path would not occur in succession. 

2. NOTATIONS AND DEFINITIONS; STATEMENT OF THE PROBLEM 

I is a fixed number, I e Z+. 
at, i = 0, 1, 2, ..., I are binary (integral) variables in the range of 

[0, 1] and a0 + ax + ••e + a% + 0. 
x is a variable such that x = 2lan 

)i+i^ + a0 
{F(ad a-i • * #je,)K o r {F(cc)}9 for short, is a set of F(a0, a19 

a£)fs, the polynomials with integral coefficients about a0 
including a polynomial with 0th order. 

*AMS (MOS) Subject Classifications (1970). Primary 10A35,10L99,68A40. 
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F]i(aQ, a1$ . .., a £ ) , or Fy (a) , is an element of {F(a)} composed of the 
the terms about the combinations of I, aQ, . ..9 az, as: 

Fu (a) = c + e0a0 + oxa^ + ••• + Q^a^aY + ••• + oQ1 ...^a^ ... a£, 

where o, oQ, ..., cQ1 ... l e {09 1}. 

PC-?7(a)] is a binary function about some F(a) whose value is assigned as 
1 or 0 according to the parity (odd or even) of the values of F(a). 

AF(a) is the transformation of F(a) , where 

AF(a) = hF(a) + [F(a) + h]P[F(a)]. 

Then, we can embed the original problem into the following: 

Let Z be artitrarily given. Let xQ be an arbitrary number, where 

xQ e {1, 2, 35 ..., 2Z + 1 - 1}. 
Then, 

(i) every x r , v - 1, 2, 3, . . . is a positive integer,, where 

x = h(3xr_1 + 1) for odd xr_1; xv = k%r_1 for even xr_l9 

and 
(ii) an infinite sequence (xQ, x±, . . . ) — referred to as the S-sequence 

—has a recursive segment (19 2). 

3. PROCEDURES OF THE PROOF 

The process of the proof is roughly classified into two stages: 
1. A sequence S:(x , x , ...) must necessarily have a subsequence with 

periodicity. 
2. This periodical subsequence must necessarily have a recursive seg-

ment as (1, 2). 

k. PROOF OF PERIODICITY 

LoynmCi 1 ' Let a* 9 i = 05 19 . . . 5 I be some fixed numbers, 
% 

a* e {0, 1} and a* + a* 4- - - - + a\ + 0. 

If ai = a*, then x = xQ, where 

x0 = 2*a* + 2 £ " V + ... + a* and x0 e {1, 25 ..., 2 £ + 1 - 1}. 

Converselys let xQ be a fixed number, 

x0 e {1, 2, .... 2 £ + 1 - 1}. 

If x - xQ, then ai = a£9 i = 0, 19 ...,ft, where 

• a* e. {09 I}'with a* + • •• + a* + 0. 

F/LOÔ : Obvious. 

COHJOUXUUJ 1-7: a^ = aV and P(a^) = a^ 9 i = 09 1, . . . , I , for v e Z + . 

Vtioofc It is obvious, since the statement does hold for arbitrary values a^ 
of a^, i = 0, 1, ..., I. 

lemma 2: {Fy (a)} C {F(a)} . 

{Fu(a)} is a finite set with 2 elements, where K = 2l+1. 
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{Fy(a)} is an ordered set with y = 2K"1o + 2K~2cQ + — + coi ••-l' 

Psioofi: It is obvious, since K is the total number of the coefficients 

O» On9 C-y9 . . . , C n i , , , o , 

that is, 

.•(':')*(';') — -(i:D-''-1-
CoKoltcUtij 2-1: There exists some F (a) for each F(a) , F(a) e {F(a)} , which 
satisfies 

Fy(a) = F{o) (mod 2). 

PKOOfa Obvious from the definition and Corollary 1-1. 

Lemma 3: P[F(a)] e {F(a)}. 

Ptiooj: Let a = a* be s imul taneous e q u a t i o n s ai=ah9 % = 0 , 1, . . . , £ , where 
each a* i s a f ixed number w i th v a l u e 1 or 0 . 

Let Fv(a) = F(a) (mod 2) for an arbitrarily given F(a) from Corollary 
2-1. Then, it holds for the following congruence with fixed y: 

Fu (a*) = F(a*) (mod 2) for any values a* e a. 

Then, the following equalities must be satisfied: 

1 - (_!)'„<«*> = 1 _ (_!)*(«*> 
= [l - (-l)][l + (-1) + (-1)2 + ••• + (-l)^*)"1] 
= 2, if F(a*) is odd, 
= 0, if F(a*) is even. 

Hence, 
2P[F(a*)l = 1 - (-l)Fn<a*> . 

Now, since F (a) is congruent to such a polynomial as 

Fu (a) = a + a0a0 + a1a1 + •• • + a01a0a1 + •• • (mod 2), 
where 

a, a0 ... e {0, 1} and a = o9 a0 = oQ ... (mod 2), 
we obtain 

(_l)Ma*) = (_1)0t + a0a^ + a1a*+... 

= (-l)a(-l)a«<(-l)° ia? x ... 

= (-l)a[l - 2P(a0a*)][l - 2P(axa*)] x ... . 
Since 

P(a0a*) = a0a*, P(axa*) = 04a*, ..., 
then 

(_1)M«*> = (~i)a(i - 2a0a*)(l - 2axa*) x ..., 
so that 

2P[F(a*)] = 1 - (-l)a(l - 2aQa*)(l - 204a*) x ... . 

If we expand the righthand side as a polynomial of a*9 a*, ..., then we 
would find that every coefficient is an even number. 

Hence, we obtain the result that P[F(a*)] can be described as a fixed 
polynomial of a*, a*, .. . , af with integral coefficients for any values ct* 
of CC9 which is nothing but the statement of the present lemma. 

Co-KoUjOJty 3-1: 

P[F(a)] = P[F(a)v] = {P[F(a)]}P = hP{F(a) + P[F(a)]}9 fo r V v , p e Z + . 

PfLOofi: Obvious. 
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Lemma. 4y Let Ar + 1x = A(Arx) , if Avx e {F(a)}9 where r e {Z+, 0}. Then, 

Avx e {F(a)} for every v. 
VKOOJi When v = 0. 

Obviously, x e {F(a)} from the definition. 

When r >i I. 
Suppose Ar-1x e {F(a)} and P(Ar~1x) e {F(a)} for some r. Let F(a) = 

Ar'1x for some F(a) e {F(a)}. Then we obtain from the definition, 

Arx = %F(a) + [F(a) + h]P[F(a)]. 

Since F(a) = P[F(a)] (mod 2) for every value of a, then we obtain 

h[F(a) +P{F(a)}] e {F(a)} and ^ e {P(a)L 

By virtue of the last lemma9 we also obtain 

P(Arx) e {F(a)}. 

Hence, we induce that if 

Ar~1x e {F(a)} and P(Ar'1x) e {F(a)}9 
then 

ATx e {F(a)} and P(Arx) e {F(a)L 

Consequently, by the use of mathematical induction, we can justify the 
statement, since it is the truth for r = 0. 

Lemma 5: Ar + 1x = %Arx + (ATx 4- %)P(Arx) 9 r = 0 , 1, 2 , . . . , p/here 

4 r + 1 x = A(Arx). 

YhJOofc Obvious from t h e l a s t lemma. 

Lemma 6' Suppose that x and a have one-to-one correspondence in the way of 
Lemma 1. Then, there exists a function fr (a) e {Fy(a)} which satisfies for 
any values of x: 

Arx E fr (a) (mod 2) , 

where r e {Z + , 0}. 
Ynjoofc Lemma 4 shows that Avx yields a polynomial of a0, a15 . .., a% with 
integral coefficients. 

Since a} = ai9 for •£, V from Corollary 1-1, we can normalize Avx in 
the following way: 

ATx = 3 + 30a0 + • • • + B0i ... £aoai • • • a*> 
where 3, (30 ... e Z. Here, the number of terms reduces to 2 or less. 

The equation yields a congruence, modulo 2, such that Avx. is congruent 
to a polynomial of a0, a±, . . . , a£ with coefficients 1, which is nothing but 
an element of the set {Fy(a)}. 
Lemma 7- (i) Let y be some fixed number, where 2/ e {1, 2, ..., (2 -1)}, 
then Avy i 0 (mod 3) for v ^ I* where l ! = £ + 1. 

(ii) Let zy e Z+ and y i 0 (mod 3) . Then, Â z/ i 0 (mod 3) for r ^ 1. 

(iii) Let y± , y2 e Z + <â d let z/x ^ 0 (mod 3) and z/2 ^ °  (mod 3) . Jf 
z/1 E 2/2 (mod 4), then ̂ 1 E yk/2 ^ 0 (mod 6). 
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PflOOJ: (i) Suppose Ary is a multiple of 3 for some nonnegative integer p. 
Then9 every Ar'1y9 Ar ~~2y $ . . .» y must be an even number^ because an odd num-
ber causes a number not divisible by 3 at the next step. Hence9 2r • 3|z/. 
Since ̂  < 2£ 9 3, then Ary is not a multiple of 3 for p _>. &* contradicting 
the hypothesis. 

(ii) Obvious, because 3\y does not cause 31^. 
(iii) If we construct a sequence (y19 Ayis A1y1) or (y2, Ay2> A2y2) » 

the sequence yields one of four types9 according as the increasement or de-
creasement of values, illustrated as followss 

6m+2 
9/77+8 

4m+2 

3/T?+2 

4/77+1 
2/77+1 

4/77+4 

3m+l 
4m+3 

2/77+2 

/77+I 

Fig.2 
From the propositions we find that (2/ , Ay 9 A2y ) and (y , AT/ , A2y ) belong 
to a common type. 

On the other hand, a sequence (z/1 , ̂ 2/1 , A2y1) or (z/2 , Ay2 , A2i/2) can be 
classified about the middle element modulo 6 as follows. 

12w+2 12/77+8 
6/77+6 

® 
M 

3/77+1 4/77+3 

Fig. 3 
Since 3|^ and since 3\Ay^ from(ii), where i = 1, 23 the types (6/7? + 3) and 
6/7? would not occur. Then9 the types of Figure 2 have one-to-one correspon-
dence with the types of Figure 3. Hence9 the statement is justified. 

Lejnmci 8: Suppose that x and a have one-to-one correspondence in the way of 
Lemma 1. Suppose that ATx = fr (a) (mod 2) for some fr (a) e {Fy (a)} at each 
v e {09 1, 29 . ..}. Suppose that there exist some positive integers s and 
t larger than or equal to is for which fs{d) = ft (a). Thens 

Asx Atx 

VKOOJi Let x8 = Asx\, 
range of x and let a* 

= x0 

a* 
and x 

for every value of x. 
A x\x=Xn for some fixed value xn •• x 0 

in the 

as in Lemma 1. respondence with x0 , as in Lemma 1. Suppose xt 
xs < xt . We obtain9 from the propositions9 

xs - fsfo ) + (an even number), 
%t = ft(a*) + (an °dd number) , 

a^ or a*9 for short, have a one-to-one cor-
^ #t, for a while s and let 
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which reduce to 

xt = f(a*) + 2T9 

where / ( a * ) = fs (a*) = / t (a*) and S < T. That i s , xs = #* (mod 2 ) . More-
over s s i n c e ss t ^ £, we f ind 3 | ^ s and 3|iCt f^om t h e l a s t lemma. 

F i r s t , l e t us d e a l w i th 2Asx and 2Atx. S ince Asx, i4*a: e { F ( a ) } , then 
2 4 s x , 2A*ff e { F ( a ) } ; b e s i d e s P(Z4 s x) = P{2Atx) = Q. T h e r e f o r e , A (2Asx) and 
A (24*2?) can be d e f i n e d . Since 

A(2ASX)\X = XQ = A(2xs) = a;s 

a s w e l l as 
A(2Atx)\x=>r = 4 ( 2 a t ) = xt9 

and since 2a:s E 2xt (mod 4) with 3J^csxt, we obtain, from the last lemma, 

A(2xs) E A(2xt) (mod 6), so that 2JS E xt (mod 3). 

That is, S = T (mod 3). 
Now let us again deal with Asx and Atx» Let y = ^(2JTS + xt) . Then. 

z/1 = /(a*) + 25 + V!T "" £) • 
Hence, z/ is an integer with P(?/1) = P[/(#*)]» and xs < 2/1 < xt. 

Let y2 = H(jx8 + 2xt) . Then, we obtain analogously 

i/2 = /(a*) + 2^ + %(5 - T) and i/2 e Z \ P(z/2) = P[/(a*)], ̂ s < y2 < x t . 

(i) When z/1 ̂  z/2 (mod 3) : 
There exists y1 or yz not a multiple of 3, so that at least one of 

Ay and Ay is not divisible by 3. 
(ii) When y1 E y2 (mod 3): 

Then, 
25 + \(T - S) E 2^ + %(5 - 20 (mod 3), 

which reduces to T E 5 (mod 9). 
On the other hand, we can calculate as follows: 

Ayx - Axs = h(T - S){1 - 2Ptf(a*)]}. 

Thus, Ay± E iirs (mod 3). Since Axs is not divisible by 3 for 3\x89 then 

Ay f 0 (mod 3). 

Consequently, we can always find a number yi 9 i = 1 or 2, which satisfies 

( 2/. = f(a*) + (an even number), 

( ^ 2 0 (mod 3). 

Next let us replace a pair (xs , #t) with another pair (xs , y^) and re-
peat the calculations above. Then, we would obtain, analogously, some num-
ber y! which satisfies 

( y• = f(a*) + (an even number), 

< Ay I i 0 (mod 3), and 

\ xs < y[ < hi • 
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Since this procedure can be continued infinitely, we obtain an infinite se-
quence of numbers y. , y!^9 y!!9 . .., which satisfies 

xs < ••• < y" < y! < yi < xt. 
It is impossible in reality, because all of yi9 y!9 ..., are integers. 

Hence, we must conclude that xs = xt , contradicting the hypothesis in this 
proof. 

ThzoKQm 1: An infinite sequence, Si(xQ9 x±9 x2, . . . ) , ^xQ £ Z+, xr = ArxQ9 
is a recursive sequence. 

VK.00^1 Lemmas 6 and 2 show that an upper limit of the number of the distinct 
/p(a)Ts is the total number of elements of the finite set {Fu (a)} like 2K. 
That is, the number of the distinct fr (a)fs is finite. 

On the other hand, since a sequence (x0 , x1, ...) is infinite, there 
exists at least one pair (xs , xt) which satisfies fs (a) = ft (a) along with 
s9 t ̂  £. For that reason, we obtain from the preceding lemmas 

*̂ s ~ ^ t * 

Then, x3 +1 = xt + 19 x8 + 2 = ̂ t + 2 s — > so that the sequence is recursive. In 
addition, the length of a recursive segment is limited within the number of 
the distinct /r(a)fs, like 2K. 

[NOTE: This theorem may be extended to the case of xQ e Z", by slight 
modifications.] 

5. PROOF ABOUT THE LENGTH OF A PERIOD 

Lemma 9: Suppose that S:(xQ, x±, ..., xg + 1, ..., xt, .. .) , where 

xr = î Ttfla..̂  for xQ e {1, 2, ..., 2£ + 1 - 1} 

is an infinite sequence with recursive segment Sp :(xs+1, ..., x t ) . 

(i) Let Mj , j £ {lj 2, 3, 4} he the total number of elements in an Sp 
with value congruent to j modulo 4. Then9 M1 = M2. 

(ii) Let Nk9 k £ {l, 2, ..., 12} he the total number of elements in an 
Sp with value congruent to k modulo 12. Then, 

N1 = N2 and N3 = N5 = N6 = N7 = N8 = Ns = N10 = N12 = 0 . 

?MOo£: (i) If we construct sequences £/3's0rr, Ax\x=Xr9 A2X\X=XT) for each 
element xv of an 5P , the number of U3s is equal to the total number of ele-
ments of an Sp 9 that is, M1 + M2 + M3 + MM . Besides, every U3 is a subse-
quence of S. As we saw In Lemma 7, Z73's are classified into four-types like 
Figure 2. It is easily recognized that the number of each type coincides 
with Mi , Ml9 M39 and M^, respectively. 

On the other hand, concerning the middle elements, U3s can be classi-
fied into six-types modulo 6 as illustrated in Figure 3. In this place, we 
should like to omit 6??? + 3 and 6772, since these would not appear as a recur-
sive element. Then, we can also recognize that the number of each type co-
incides with M2, M19 0, Mh, M3, and 0, respectively. 

Hence, we obtain the following contrast. 

M1i total number of type (4TT? + 1) = total number of type (67?? + 2 ) , 
M2 : total number of type (Urn + 2) = total number of type (67?? + 1) , 
M3 : total number of type {km + 3) = total number of type (6??? + 5), 
Mi total number of type (4??? + 4) = total number of type (6T?? + 4). 
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Then, we can calculate the total number of the odd types in two ways: one 
is based on the types modulo 4 and the other is based on the types modulo 6. 
The result is M± + M3 M2 + M3 . Hence, M1 Mn 

(ii) Let us subdivide the types of the above table modulo 12. For in-
stance, the type (4m 4-1) is subdivided into the types (12m 4- 1), (12m + 5), 
and (12m + 9). Then, we can reconstruct the above table as follows: 

M1i total number of types 
(12m + 1) 
(12m + 5) 
(12m + 9) 

M2: total number of types 
(12m + 2) 
(12m + 6) 
(12m + 10) 

M3: total number of types 
(12m + 3) 
(12m + 7) 
(12m + 11) 

Mi): total number of types 
(12m + 4) 
(12m + 8) 
(12m + 12) 

total number of types 
(12m + 2) 
(12m + 8) 

total number of types 
(12m + 1) 
(12m + 7) 

total number of types 
(12m + 5) 
(12m + 11) 

total number of types 
(12m + 4) 
(12m 4- 10) 

If we omit the types with a multiple of 3 for the reason stated, 
late in two ways, we obtain the following relations: 

and calcu-

M, N± +N5 N2 + N8 

M3 = *ii N5 +N11X Mu N, +NQ 

vio - N± + N79 

Besides, we obtain, from (i), 

Then, they reduce to the following relations: 

M, M0 

N« Na Nl = N2> N3 

Lemma 10: Suppose that 

U : \X Q , ^ T S • • • / 5 ^ 0 C- l l j ^-3 

ff, Na = Na 

( 2 l 

"10 N12 = 0 . 

L) I 9 Xr — A X\x=xn 

is an infinite sequence with recursive segment Sp i(xs+1, ..., xt). Let p be 
the length of an irreducible Sp. Then p £ 1, 3, 4. 

VK.00{: Since each element of SP shows the value increasing or decreasing, 
according as the preceder is odd or even, then possible Sp must necessarily 
involve an odd element as well as an even element. 

Now, let us assume, without loss of generality, that the first element 
of Sp is an odd number. Here p £ 1, for if not, a segment would cause the 
value to increase. Hence, the cases to be examined are those for p = 3 and 
p = 4. 

Let xs+1 = 2 i ? + l . Since xs + 1 £ Z + , then R e {Z + , 0 } . Moreover, we ob -
t a i n xs + 2 ~ 3R+2. 

( i ) When p = 3 : 
The cases examined are classified into four types according to the 

parities of xs+2 and xs+^e Then, we can calculate x8+h as a function of R. 
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Since xs+1 = x 
a criterion for the existence of 

The result is as follows: 

and Re {Z+, 0} must be simultaneously satisfied, we have 
a recursive segment. 

XS +2 

odd 
odd 
even 
even 

xs + 3 

odd 
even 
odd 
even 

xs+h 

(27R + 23)Ik 
(9R + 7)/4 
(9R + 8)/4 
(31? + 2)/4 

2?s + l — xs + h 

19R + 22 = 0 
1? + 3 = 0 
R + 4 = 0 
51? + 2 = 0 

1? £ {Z + , 0}? 

no 
no 
no 
no 

Hence, any recursive segment with length 3 does not exist. 
(ii) When p = 4: 

Analogously, we examine the simultaneous compliance of 

s + 4 ^ xs+2 and R e {Z + , 0}. J s+l 

Xs+2 
odd 
odd 
odd 
even 
odd 
*even 
even 
even 

x s + 3 
odd 
odd 
even 
odd 
even 
odd 
even 
even 

x 
odd 
even 
odd 
odd 
even 
even 
odd 
even 

xs + 5 

(811? + 73)/8 
(271? + 23)/8 
(271? + 25)/8 
(271? + 28)/8 
(91? + 7)/8 
(91? + 8)/8 
(91? + 10)/8 
(31? + 2)/8 

x X a + 1 
R + 1 

111? + 15 
111? + 17 
111? + 

71? + 

R z {Z+ , 0}? 

131? + 

20 
1 
R 

1R 
6 

no 
no 
no 
no 
no 
yes 
no 
no 

In the above table, the asterisk marks the case of xs + 3 = ^(31?+2). Since 
xs+1 £ xs+3 is required for an irreducible segment, then R £ 0, which con-
tradicts xs+1 = xs + 5. 

After all, there exists no irreducible Sp with p = 4. 

Tk&Q/i&n 2: Suppose that 

Siix, . . • ) , X Q £ \ 1 , Z , (2 i + i 1)}, xr = Arx\ 

Then, an irreducible segment of recursion9 Sp is is a recursive sequence. 
(1, 2) or (2, 1). 

Vtwok1 Since p, the length of an Sp , is not equal to 1,3 or 4, as we saw, 
then the bases to be examined are limited to those of p ̂ > 5 and p = 2. 

(i) When p J> 5: 
If we construct sequences U^s:(xr9 Ax\ , A2x\x=xr , A3x\ x= , ) 

for each element xv of an Sp, the number of U^s is equal to the total num-
ber of elements of an Sp. Besides, every Uh is a subsequence of S. As in 
Lemma 8, U^s can be classified into 12-types about the second elements mod-
ulo 12 as follows. 
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12w+l 

v 
12m+7 

Fig.A 
Since each number of type (12m + k), k e {l, 2, ...9 12} coincides to 

the Nk stated in Lemma 8', the types (12m + k) , fe=3, 5, 6, 7, 8, 9, 10, 12 
do not exist, in reality. 

Now, let us construct Z75's:(#r, i4x|a: = a;r5 . .., ̂ 4^1* = ̂  )• Since every 
Uh is a subsequence of S and since p ̂  5, then any Z75 involves at least one 
combination of two U^s such that the second, third, and fourth elements of 
the first Uh overlap to the first, second, and third elements of the second 
UhS respectively. 

Hence, we obtain the possible combinations: 
N1 + Nz; N2 -> N±i Nh + Nh; N±1 + N±1. 

Since each of the latter two would not cause a recursive segment, the for-
mer two only may exist. Consequently, successive elements of SP show the 
alternative increasing or decreasing of values, if it exists. In general, 
however, a sequence like (odd, even, odd, even, odd, ...) causes a decrease 
of value in the global sense, except the sequence (1, 2, 1, 2, 1, . . . ) . 

Hence, it is impossible to construct SP with p ̂  5. 

(ii) When p = 2: 
Obviously, the only Sp:(l9 2) exists, if the first element is odd. 

ThtOKem 3'* There exists an infinite sequence (xQ9 x±9 ...) generated by a 
recursion formula: 

xr+1 = hOxr + 1), if xv is odd; xr+1. = hxr> if %r is even, 

where x0 is arbitrarily given in Z . 
This sequence necessarily has an element with value 1 in a finite posi-

tion less than or equal to M = 2K+ l9 K= 2Z + 1 from the top of the sequence, 
where K > xQ . 

VKOO^1 Obvious from Theorems 1 and 2. 

Complement'' An infinite sequence (x0, x1, ...) with the recursion formula 
like Theorem 3 starting from an arbitrary x0 in Z" is a recursive sequence. 

VKOol} Left to the reader. 

® 
12w+ll 

12^+12 

® 



2kl WEIGHTED STIRLING NUMBERS OF THE FIRST AND SECOND KIND—II [Oct. 

6. CONCLUSION 

We have proven a number-theoretical problem about a sequence, which is 
a computer-oriented type, but cannot be solved by any computer approach. 
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1. INTRODUCTION 

The Stirling numbers of the first and second kind can be defined by 

(1.1) (x)n = x(x + 1) ••• (x + n - 1) =]T 5x(n, k)xk
9 

j k = 0 

and 
n 

(1.2) xn = ]T S(n9 k)x .(x - 1) ••• (x - k + 1) , 
k = o 

respectively. In [6], the writer has defined Weighted Stirling numbers of 
the first and second kind, S1(n9 k9 A) and S(n9 k9 A ) , by making use of cer-
tain combinatorial properties of S1(n9 k) and S(n9 k) . Numerous properties 
of the generalized quantities were obtained. 

The results are somewhat simpler for the related functions: 

( R1(n9 k9 A) =~S1{n9 k + 1, X) + S1(n9 k) 
(1.3) I 

{ R(n9 k9 X) = S(n9 k + 1, A) + S(n9 k). 
In particular, the latter satisfy the recurrences, 

R1(n9 ks X) = R1(n9 k - 1, X) + (n + A)i?x(n, fc, A) 
(1.4) 

i?(n, fe, A) = R(n9 k - 1, A) + (k + A)i?(n, fc, A), 
and the orthogonality relations 

n 
£/?(n, 3, A) • (-iy'kR1(.j, k, X) 

£ {~})n-'R1{n, 3, X)RU, k, A) = {J (" J §. 
j =0 

We have also the generating functions 

(1.5) 

d.6) £ J T E ^ I ^ ' k> x)yk = ( 1 - xy \-y 

ni 
n = 0 li = 0 
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(1.7) Yl f l & f a ' k> ^ k = eXxexp{2/(e* - 1)} , 
n=0 n'k-0 

and the explicit formula 

(1-8) R(n, k, A) = ^ r E (-Dk"J'(5)w + * ) " • 

Moreover, corresponding to (1.1) and (1.2), we have 

n 

(1-9) (X + z/)n = £i? (n, k> \)yk 
7< = 0 

and 
n 

(1-10) yn = £(-l)n"*i?(n,.fc, X)(z/ + \)k. 
k = 0 

It is well known that the numbers S1(n9 n-k)9 S(n5 n-k) are polyno-
mials in n of degree 2k, In [4] it is proved that 

Sx(.n, n - k) = £ > <fc, J)(n +/fe X) 
i -1 x ' 

v=±B(k,dn+ik-i\ 
3-1 X ' 

(1.11) < j=± (k>l)9 

S(n9 n 
3 

where B1(k9 j)s B(k9 j) are independent of n9 and 

(1.12) B^k, J) = S(k9 k - j + 1), (1 <. J <. fc). 
The representations (1.11) are applied in [4] to give new proofs of the 

known relations 

S(n, n-k) - £(£ * ")(£ I J)M* + t, t) 

Sxln.n-K) =ib(k
k
+_i)(k

klty(k + t, t). 
(1.13) \ 

For references to (1.13), see [2], [7]. 
One of the principal objectives of the present paper is to generalize 

(1.11). The generalized functions R1(n9 n - k9 \)9R(n9n-k9 X) are also 
polynomials in n of degree 2k. We show that 

R^n, n - k9 X) = X X (k, J\ X >( n
2 V) 

3 = 0 ^ ' 
k / p\ 

R{n9 n - k9 X) = X B ^ ' ̂» X)l 2k J 
j - o ^ ' 

(1.14) < 

3 •• 

where B1{k9 J, X), B(fc, j, X) are independent of n9 and 

(1.15) B1(k9 j 9 X) = B(k9 k - j, 1 - X), (0 <_ j < k). 
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As an application of (1.14) and (1.15), it is proved that 

k 
i lis JL <*, J_ 1 \ / Z> — ™ _ 1 \ 

A) 

(1-16) , 

*(„. n - k, X) = £ (* +
k 1 % ')(* I I "t >x(^ + *.*.! 

^ ( n , n - fc, X) = X ) (̂  t " t L)(* fe + I X)R(-k + t , t , 1 - \ ) . 
t -o ^ ' v ' 

For X = 1, (1.16) reduces to (1.13) with n replaced by n + 1; for X = 0, we 
apparently get new results. 

In the next place, we show that 

(/?(«, n - k, X) = (l)B(
k-n+k)(X) 

(1.17) < 

(/?(«, n - t W = f " J " ̂ " ^ ( l - X), 
(7c) 

where Bk (X) is the Bernoulli polynomial of higher order defined by [89 Ch. 
6]: 

IX'̂ fH^p"-
We remark that (1.17) can be used to give a simple proof of (1.16). 

For the special case of Stirling numbers, see [2], 
It is easily verified that9 for X = 0 and 1, (1.17) reduces to well-

known representations [8, Ch. 6] of S(n9 n - k) and S1(ns n - k). 
In view of the formulas (for notation and references see [3]), 

fc-i 

(1.18) \ \ 

i t i s of i n t e r e s t to define coeff ic ients Rf(ksj$ X) and R^(ksjs X) by means 

R(n9 n - fe, A) = | > f ( k s J , ^)(2fcW- j ) 

^ ( n , n - k9 X) - ^ ^ ( f c , j , X) (^2k\ ^j. 
(1.19) ^ \ = ° 

j - o 

Each coefficient Is a polynomial in X of degree 2k and has properties 
generalizing those of Sf(k9 j) and S*(ks j). 

Finally (§9)9 we derive a number of relations similar to (1.16), con-
necting the various functions defined above. For example, we have 

(1.20) \ *l° 
k, X) =t(-Dk-\n

k
+

+{)R>V<, RAn, n - k, X) = V (-1)""-7 " T i-W'(k, k - j, 1 - X) 

R{n, n - k , X) = ]T (-l)*"^ * ^'(fc, fe - J, 1 - A) 
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and 
/ A / _ +\ 

X) R[(n9 k9 X) = £ (^Wfe _ tV ? ( n 9 t s * " 
(1.21) < V 

In the proofss we make use of the relations (1.15). 

2. REPRESENTATIONS OF R(n, n - k9 \) 

As a special case of a more general result proved in [5] , if f(x) is an 
arbitrary polynomial of degree <m9 then there is a unique representation in 
the form 

m-l / , «\ 

(2.D /(*> = £ > , m
3 \ 

J = 0 X ' 

where the a are independent of x» Thuss since R(ns n - k9 X) is a polyno-
mial in n of degree 2k 9 we may put9 for k _> ls 

(2.2) R(n9 n - fc, X) = ̂ S(?c} j\ M* zk)> 

where the coefficients 5(fc9 j, X) are independent of n, 
By (1.4)5 we have9 for k > 1, 

(2.3) R(n + 1, n - k + 1, X) = (n - & + 1 + X)i?(n, n - fc + 1, X) 

+ R(n9 n - k9 X) . 
Thus, (2 .2 ) y i e l d s 

2k , . \ 2k-2 

J - 0 

Since 

we get 

£>(fc, j , X) 2 V- J l ) = <« - * + 1 + *> 2>(fc - 1, J, X)g, _ J
2 ) . 

. 1 - 0 ^ ' J - 0 ^ ' 

n - fe + 1 + X = (n + j - 2k + 2) + (fe - j - 1 + X), 

J 

+ 

I t fo l lows t h a t 
(2 .4 ) S(k 9 j 9 A) = (k + j-\)B(k-l9 j 9 X)+ (k-j+\)B(k- 1, j - 1 , X). 

We shall now compute the first few values of B(k9j5 X). To begin with 
we have the following values of R(n9 n - k9 X). Clearly, R(n9 n9 X) = 1. 
Then, by (2.3), with k = 1, we have 

R(n + 1, n9 X) - R(n9 n - \9 X) = n + X. 
It follows that 

(2.5) i?(n, w - 1, X) (»)+„». 
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Next, taking k = 2 in (2.3), 
R(n + 1, n - 1, X) - R(n9 n - 2, X) 

we find that 

(2.6) R(n9 n - 2, X) 

(n - 1 + X)i?(n, n - 1, X) , 

'(fl+GHG)**®*'- <«̂ >-
A little computation gives the following table of values: 

Bik, j, A) 

> < 

0 

1 

2 

3 

0 

1 

1 - X 

(1 - X) 2 

(1 - X) 3 

1 

X 

1 + 3X - 2X2 

8 + 7X - 12X2 + 3X3 

2 

X2 

1 + 4X + 6X2 - 3X3 

3 

X3 

The last line was computed by using the recurrence (2.4). 
Note that the sum of the entries in each row above is independent of X. 

This is in fact true generally. By (2.2), this is equivalent to saying that 
the coefficient of the highest power of X in R(n9 n - k9 X) is independent 
of X. To prove this, put 

R(n, n - k9 X) = a n2k + a'n2^"1 + ••• . 
Then 

R(n + 1, n - k + 1, X) - R(n9 n - k9 X) 

= ak((n + l)2k - n2k) + afe'((n + l) 2 * " 1 - n 2 ^ 1 ) + ... 

= 2kakn2k'1 + ... . 

Thus, by (2.3), 2ka. 

Therefore, 

(2.7) 

zk_1. Since ax = %, we get 

^ 1 = 1 
y- 2k(2k - 2) ... 2 2kkl 

Y,B{k9 j, X) 
j=o 

(2k) \ 
2kk\ 

1.3.5 ... (2k - 1). 

This can also be proved by induction using (2.4). 
However, the significant result implied by the table together with the 

recurrence (2.4) is that 
(2.8) B(k9 J, X) = 0, (j > k). 
Hence, (2.2) reduces to 

(2.9) R(n9 n - k9 X) = £ B(k9 j, A)(n ~t J ) . 

It follows from (2.9) that the polynomial R(n9 n - k9 X) vanishes for 
0 < n < k. 
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Incidentally, we have anticipated (2.9) in the upper limit of summation 
in (2.7). 

3. REPRESENTATION OF R1 (n, n - k, X) 

Since R (n9 n - k9 \) is a polynomial in n of degree 7k, we may put, 
for k _> 1, 

(3.1) R^n9 n - k9 X) = X X ^ > J. X)\2k)9 

where B1(k9 j, X) is independent of n. 
By (1.4) we have, for k > 1, 

(3 .2 ) ^ ( n + l , n - k + 1 , X) = (n + X)i?x(n, n-k+l9 X) + i ? x (n , n - f c , A) . 
Thus, by ( 3 . 1 ) , we ge t 

2k . . x 2fe-2 

j - 0 x ' j - 0 
I ^ f t . J. ^ U f c - l - (« + ** £ * ! < * - !» J ' X> 2" - 2 
-1 = n \ ' j - 0 \ / 

+ 

It follows that 

(3.3) B^k9 J, X) = (j + l-X^O:- 1, j, X) 
+ (2k-j- l + X)B1(k- 1, j - 1, X). 

As in the previous section, we shall compute the first few values of 
B1(k» j\ X). 

To begin with, we have R1(n9 n, X) = 1. Then by (3.2), with k = 1, we 
have 

R1(n + 15 n9 X) - R1(n, n - 1, X) = n + X, 
so that 

(3 .4 ) fl^n, n - 1, X) = ( 2 ) + n ' 
Next , t a k i n g fc = 2 in ( 3 . 2 ) , 

i? r (n + 1, n - 1, A) - i?!(w, n - 2 , X) = (n + X)i?x(n, n - 1, X). 

I t fo l lows t h a t 

(3.5) Vn.»-2.X)-.3(j)+2(5)+{3(»)+(;)}x+(;)xS 
(n>2). 

A little computation gives the following table of values: 
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B1(k9 j, X) 

\ 

0 

1 

2 

3 

0 

1 

1 - X 

(1 - X)2 

(1 - X)3 

1 

X 

2 + X - 2X2 

8 - 7X - 3X2 + 3X3 

2 

a)2 

6 + 8X - 3X2 - 3X3 

3 

<*>3 

Exactly as above, we find that 

(3.6) YjB^k, j, X) ="^§7= 1-3.4 ... (2k - 1). 

This can also be proved by induction using (3.3). Moreover, 

(3.7) B1(k9 j, X) = 0, (j > k), 
so that (3.1) becomes 

(3.8) R1(n9 n - k, X) = J^B^k, 3 * vl? 2k^\ 

Thus, the polynomial RY(n9 n - k, X) vanishes for 0 <_n < k. 

k. RELATION OF B1(k, j , X) TO B(k, j , X) 

In (2.4) replace j by k - j and we get 
(4.1) B(k9 k - j, X) = (2k - Q - \)B(k - 1, k - j, X) 

+ (j + \)B(k - 1, k - j - 1, X). 
Put _ 

B(k9 j , X) = B(k - j, X ) . 

Then (4.1) becomes 

(4.2) B(k9 j, X) = (2k - j - X)B(k - 1, j - 1, X) 
+ (j + \)B(k - 1, j, X). 

Comparison of (4.2) with (3.3) gives 

3i.(fc> J, A) = B(k, J, 1 - X), 
and therefore 

(4.3) B1(k9 j, X) = B(k9 k - j, 1 - X). 
In particular, 

Bx(k9 0, X) = B(k9 k9 1 - X) = (1 - X)k 

^(k, k9 X) = 5(k, 0, 1 - X) = (X)k. 
We recall that 

(4.5) R(n9,k9 0) = 5(n, k) , R(n9 k, 1) = 5(n + 1, k + 1) 

(4.4) 
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and 

(4.6) R1(n9 k9 0) = S1(n, k) 9 R1(n9 k, 1) = S1(n + 1, k + 1) . 

In (2.9), take X = 0. Then, by (1.11) and (4.5) with k replaced by n - k9 

| > * . J. o)(n
2v') - i > * - ^(n +

2 i_ x)-
It follows that 

(4.7) B(fc, j, 0) = B(k, j + 1), (0 < j < k); B(k, k, 0) = 0. 
Similarly, taking X = 1 in (2.9), we get 

k k 

j-o x ' J-I x ' 
Thus 

(4.8) £(k, j, 1) = B(k9 j) s ( l < i < k); B(k, 0, 1) = 0. 

Next, take X = 0 in (3.8), and we get 

j-o x ' .j-i x ' 
This gives 

(4.9), B^k, j, 0) = B1(k9 j + 1), (0 £ j < k); ̂ (k, k, 0) = 0. 

Similarly, we find that 

(4.10) B^k9 J, 1) = B1(ks j), (1 <. j <. k); ̂ (k, 0, 1) = 0. 

It is easily verified that (4.9) and (4.10) are in agreement with (4.4). 
Moreover, for X = 0, (4.3) reduces to 

B1(k, j, 0) = B(k9 k - j, 1); 

by (4.8) and (4.9), this becomes 

B1(k9 j + 1) = B(k9 k - j), 

which is correct. For X = 1, (4.3) reduces to 

B1(k9 J, 1) = B(k5 k - j, 0); 

by (4.7) and (4.10), this becomes 

B1(k9 j) = B(k9 k - j + 1) 

as expected. 

5. THE COEFFICIENTS B(k, j , X); B1(k, J, X) 

It is evident from the recurrences (2.4) and (3.3) that £(k, J, X) and 
B1(k9 j, X) are polynomials of degree <k in X with integral coefficients. 
Moreover, they are related by (4.3). Put 

k 

(5.D fka9 x) = Y.B(k> o> X^J' 
3 = 0 

and 
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k 

(5.2) / l f c (X, x) = £ B i ( k > 3> *>*'• 
j - o 

By (4 .3 ) , we have 
(5-3) / l f k (X, x) -x%(l - X, £). 

By (2.7) and (3 .6 ) , 

In the next place, by (2 .4 ) , (5.1) becomes 
k 

fk (X, a?) = £ { ( f c + J - X)B(fe - 1, J , X) 

+ (& - J + X)B(fe - 1, J - 1, X)}a;'. 
Since 

]£(fc + J - X)B(fc - 1, j , X)ar* = (fc - X +a;Z?)/k-1(X, a;) 
and 

k fc-l 

£ ( f e - J + X)B(fe - 1, j - 1 , X)a?* = x^Qc - j - 1 + X)B(fc - 1, j , X)a:' 
j = o j = o 

= a?(fc - 1 + X - xD)fk_1(X9 x)9 

where D = dldx9 i t follows that 
(5.5) /fc(X, x) = {k - X+ (k - 1 + X)a? + x(l - x)B}fk^{\9 x). 

The corresponding formula for f k(\9 x) i s 
(5.6) flfk (X, a?) = {1 - X + (2fc - 2 + X)a? + a;(l - ^ P } ^ ^ . x ( X , a ? ) . 

Let E denote the familiar operator defined by Ef{n) = f(n + 1). Then, 
by (2.9) and (5.1), we have 

(5.7) R(n9 n - k, X) = /fc(X, E)(%\ 
Similarly, by (3.8) and (5.2), 

(5.8) R^n9 n - k, X) = /lffc(X, #)(j)-

Thus, the recurrence 

R(n + 1, n - k + 1, X) - R(n9 n - k, \) = (X+-n-k+l)R(n9 n - k + 1, X) 
becomes 

A<*- ^(V/)-A^»"B>(2
Bfc) -<* + » - * + DA. i» . ^(2few- 2)-

Since 

we have 

/?2 + 1\ / n \ _ ( n \ 
\ 2k ) \2k) " \2k - l)9 

(5.9) fk{\9 E)(2k
n_ ^ = (X +n - k+ D/fc.^X, *)(2kn_ 2 ) . 

Applying the finite difference operator Zl we get 

(5.10) 4 ( A , ̂ ( ^ l i ) = (X + n-fe+2)4.1(X, *)(2fel 3 ) + / ^ (A, *)(2fen_ 2 ) 
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Similarly, the recurrence 

i?x(n + 1, n - k + l s X) - R±(ns n - ks X) = (X + n)Rln, n - k + 1, X) 

y ie lds 

(5.11) / l k ( X , E)(2k
n_ : ) = (X + n ) / l f k _ 1 t t , ^)(2fe

n_ 2) 
and 

(5.12) fitka, E)[2k
n_ U (X + n -f D / ^ ^ t t , ^ ) L n _ 3 ) 

Ji,k-i\2k - 2} 

6. AN APPLICATION 

We shall prove the following two formulas: 

(6.1) R(n, n - k , 1 - X) = £ ( V - V ) ( \ ~ + V ) f l i < f e + *• '*» A> ' 
and 

(6.2) fl^n, n - ft, 1 - X) = X ( \ + - V (̂ fc + V ) * ( / c + * ' *9 X ) ' 

Note that the coefficients on the right of (6.1) and (6.2) are the same. 
To begin with, we invert (2.9) and (3.8). It follows from (2.9) that 

2>(n, n - k, \)xn-* = £><*, j , \)xk-J £ ("2VV"2* + ' 

>̂" = n m = n \ ' 

so that 

j = 0 m = 0 

J = 0 

^B(fe, k - j, X)^' = (1 - ̂ ) 2 k + 1 X i ? ( n s n " ̂ ' ^ ) * n " * 
j - 0 n = & 

= L(-iW2VVE *<* + *•*> 
«i_n \ ^ + _ n 

It follows that 
(6.3) B(fc, k - j, X) = ̂ ( -^'"'(T^tV^ + ts *» X)' 

S i m i l a r l y , 

(6.4) BAk - fc - j , X) 
* - o ^ c ' 

By (2 .9 ) , (4 .3 ) , and (6 .4 ) , we have 
k 

B(n, n - ks 1 - X) - X V ^ fe " ^> A>(n2fc J ) 
j - o v / 

•t("2V)i<-1)"t?-+t1h« + t-4 
J = 0 x /fO X ' 



252 
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k k 

L 
j = t 

[Oct. 

t - o j = t 
equal to 

E(^ev)(»M-')"("2r)E^ 
The inner sum is equal to 
k-t k -1 (~2k - 1) . (n + t + 1). (-fc + t) . 

(n + t\ 
3^2 

t _ 2£ + l)d (-fc + ty. 

-2k - 1, n + t + 1, -Zc + t" 

The F i s Saalschiltzian [ 1 , p . 9] 9 and we find9 a f te r some manipulat ion tha t 

E n . /2 fe + l \ / n + £ + j \ __/fc + n + l\/fc - n - l\ 
. = 0

("1 } V j A 2k ) = { k ~ t ) \ k + t ) ' 

es Thus9 (6.5) becomes 

R(n9 n 

This proves (6.1). The proof of (6*2) is exactly the same. 

7. BERNOULLI POLYNOMIALS OF HIGHER ORDER 

Norlund [9, Ch. 6] defined the Bernoulli function of order z by means 
of 

(7.1) 

3<*V It follows from (7.1) that Bn (A) is a polynomial of degree n in each of the 
parameters s9 A. 

Consider 

(7.2) 
and 
(7.3) 

It follows from (7.2) that 

Kn, n - k , A) = (^B(-" + «(X) 

(n, « - fc, A) = (fe " £ ' i y ^ n + 1 ) ( l - A). 

E oo.. *. x # - E(n * k><-(A)^ - &£**>(*>£. 
Hences by (7.1)9 we have 

(7.4) ^fi(nj, « J = i(e»-l)V». 
n = k 

Comparison of (7.4) with (1.7) gives Q(n, ks X) = R(n9 k9 X) , so that 

(7.5) i?(w, n - k9 X) = ^)5("n + f c )(A). 
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Next, by (7.3), 

" -1j n = k 

n = k x 

n=k ' n=k 

UK 

kl 
It is known [8, p. 134] that 

tn 

U + V) "1-LOgU + V)) = 2^-r-
n = k 

Thus, 

(i + w-Hiogd + *»* = E oTTTyrerw • 

k = 0 n = k fc = 0 * " X x Ai/ 

= (1 - u ) " A ( l - M ) " * . 

T h e r e f o r e , Q (n , fc9 X) = R1(n9 k9 X), so t h a t 

(7 .6 ) ^ ( n , n - fc, X) = (^ " * " ^ " ^ ( l - A). 

For X = 0, (7.5) reduces to 

S(n, n-k) = [l)Bi-n+k); 
for X = 1, we get 

sin + i. „ - * + i) = (^r^CD = (̂)(i -Z^TTT^TK^-" 

For X = ls (7.6) reduces to 

5 l(„ + i, n-fc + 1) = ( f e - ^ ~ ^ B ^ " ; 

for X = 0, we get 

*i<».»-«-(*'r1)(i-£K° = f r K ' 
Thus, in all four special cases, (7.5) and (7.6) are in agreement with 

the corresponding formulas for S(n9 n - k) and S (n9 n - k). 

8. THE FUNCTIONS 2?'(n, k, A) AND ^'(n, fc, X) 

We may put 

(8.1) R(n5 n - fc, A) = £i?'(fc, j, *)(2fe
W_ j) 

and 

(8.2) fl^n, n - fe, X) -][>'(&, j, X)(2feW_ ^ . 
j-o 
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The upper limit of summation is justified by (2.9) and (3.8). 
Using the recurrence (2.3), we get 

R(n + 1, n - k + 1, X) - R(n9 n - k9 X) 
fc-i . , 

= (n - k + 1 + A)]p?'(fc - 1, j , X)Lfe J1. _ A 
k-l 
— ' n 

\2k - j 

Since 

= £ ( 2 Z c - 3 - l)R'(k - 1, J , X)(2 f e _ " . _ ^ 

fe-i , > 
+ £(fc ~ J - 1 + )R'(k - 1, 3, )y2k J1. _ \ . 

R(n + 1, n - k + 1, X) - R(n, n - k9 X) 
we get 

(8 .3 ) 2?'(fc, j , X) = (2k- j - l)R'(k- 1, j , X)+ (fc- j + X)i?'(fe- 1, j - 1, X), 

For k = 0 , (8 .1 ) g ives 

(8 .4 ) i ? ' ( 0 , 09 X) = 1, i ? ' ( 0 , j , X) = 0 , ( j > 0 ) . 

The following values are easily computed using the recurrence (8.3). 

R'(k, j, X) 

K N ^ 

0 

i 

2 

3 

4 

0 

1 

1 

3 

15 

105 

1 

X 

1 + 3X 

10 + 15X 

105 + 105X 

2 

X2 

1 + 4X + 6X2 

25 + 60X + 45X2 

3 

X3 

1 + 5X + 10X2 + 4X3 

4 

Xh 

(8.5) 
and 
(8.6) 
Also, 

(8.7) 

It is easily proved, using (8.3), that 

Rf(k9 0, X) = 1.3.5 ... {Ik - 1) 

Rf(k9 k9 X) = X\ 

|](-l)JVO:s j, X) = (1 - X)k < 

Moreover, it is clear that Rf(k9 j, X) is a polynomial in X of degree 

To invert (8.1), multiply both sides by (-1) f J 
Changing the notation slightly, we get * ' 

and sum over n. 

(8.8) R'(k, k - j , x) = x)<-i>i+*(£ + i)R(k + *• *> x>-
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Turning next to (8.2) and employing (3.2), we get 

R1(n + 1, n - k + 1, X) - R1(ns n - k9 X) 

fc-l 

= (n + \)J2R{(k ~ 1. 3> W[2k -"a - 2) 

k"1 

= X ^ - 3 ~ DRlik - l, j\ \)[2k _n. _ A 

+ ]£ (2fe - J - 2 + X)R[(k - 1, j, X)(^ _*. _ 2 j . 

I t follows that 
(8 .9 ) R[(k9 j , \)=(2k-j-l)Rf(k-l5 j , X) + (2fe- j - l+A)i?1

f ( /c- 1, j - 1 , X ) , 
For fc = 0 , we have 

(8 .10) R±(fl9 0 , X) = 1, Rl(0, j \ X) = 0 , ( j > 0 ) . 

The following values are readily computed by means of (8.9) and (8.10). 

N\ 
0 

1 

2 

3 

4 

0 

1 

1 

3 

15 

105 

1 

X 

2 + 3X 

20 + 15X 

210 + 105X 

RIOt, J Y X ) 

2 

(X)2 

6 + 14X + 6X2 

130 + 165X + 45X2 

3 

< * > 3 

24 + 70X + 50X2 + 10X3 

4 

an 
We have 

(8.11) 
and 
(8.12) 
Also 

(8.13) 

R{(k, 0, X) = 1.3.5 ... (2k - 1) 

R((ks k9 X) = (X)fc. 

k 
^ ( - D ^ t f c , j\ X) = (1 - X) k. 
J - 0 

Clearly9 R[(k, j, X) is a polynomial in X of degree j. 
Parallel to (8.8), we have 

(8.14) R{(k> k - j , X) = Yl ("DJ' + t f t + jK(fc + Y *> A). 
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9. ADDITIONAL RELATIONS 

(Compare [3, 4].) By (8.14) and (3.1), we have 

R[{k9 k - j, X) = £(-l)*(k \ ^R^k + j - t, j - t, X) 

0 • / , A & 

8=0 t= 0 / X / = 0 t = 0 

It can be verified that the inner sum is equal to ( - .1. Thus, 

k / \ 
(9.1) R[(k, j , X) = X ! u F i ( / c > s> * ) • 

Similarly, 

(9.2) i?'(fc, fe - j, « = £ •(- f . W , s, X). 

The inverse formulas are 

(9.3) Bx(k, t , X) = £(-D r f~*(jW(fe, J' X ) 

and ^"* 

(9.4) B(k, t, X) - Y,(-l)i'tll\R'0i, J\ X). 
j - * 

In t h e nex t p l a c e , by (9 .4 ) and ( 3 . 1 ) , 

R^n, n - k, X) = X B i ^ ' * ' X >("2fe*) = Z 5 ( f c > * - * . ! - x > ( " 2fe * ) 
t = o x / t = 0 V / 

-£*<*.*. i - x ) ( » + £ - y 
£ = 0 x / 

j » 0 £ = 0 \ / \ / 

The inner sum is equal to (-l)"7) \, and therefore 

V 2k - 3 I 

(9.5) Rx(.n, n - k, X) = £ ( - l ) * ' ^ * jV?'(fc. * - J. 1 - X). 
S i m i l a r l y , y -

(9.6) i?(n, n - k, X) = £(-Dfc"Jf^ + ffii^9 k " J'5 X " X) : 

The inverse formulas are less simple. We find that 
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(9.7) R{(n, k, A) = Y^{~l)n-'Cn{k, j)R(n + j , g, 1 - X) 
and j-o 

(9.8) R'(n, k, X) = £(-Dn"J^n(^5 J)^i(w + j, j, 1 - X), 

where 
j-o 

It does not seem possible to simplify Cn(k9 j) . 
We omit the proof of (9.7) and (9.8). 
Finally9 we state the pair 

(9.10) R{(ns k, X) = £ ( - D * ( £ Z f}Rf(ri9 t , 1 - X) , 

k . _ i 

(9.11) ;?'<n, fe, X) = £ ( - l ) * ( £ ._ J W ( n , *, 1 - X). 

The proof is like the proof of (8.8) and (8.14). 
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A THEOREM CONCERNING HEPTAGONAL NUMBERS 

HARVEY J. HIND IN 
Polymathic Associates, 5 Kinsella St., Dix Hills, NY 11746 

In this paper, we show that there are an infinite number of heptagonal 
numbers which are, at the same time, the sums and differences of distinct 
heptagonal numbers. Similar results have been found for triangular numbers 
[1] and pentagonal numbers [2]. 

The heptagonal numbers are given by hn - n(5n - 3)/2, n = 1,2, 3, ..., 
where hn - hn_1 = 5n - 4«, Heptagonal numbers are represented geometrically 
by regular heptagons homothetic with respect to one of the vertices and con-
taining 2, 3, 4, ..., n points at equal distances along each side. The sum 
of all the points for a given n yields hn. Both Dickson [3] and LeVeque [4] 
provide reviews concerning heptagonal and related figurate numbers. 

Our analysis starts with the observation from a table of hn values [5] 
that 

h17 = he + h165 h58 = hl:L + h5?9 and \ l h = hl6 + fc123. 

Note that each of these equations is of the form hm = h5k+1 + hm_^, 
Since h5k_1 = (125k2 + 35k + 2)/2, setting 

hm - hm_x = 5m - 4 = h5k+1 = (125k2 + 35k + 2)/2, 
we have 

m = (125k2 + 35k + 10)/10. 
An induction proof shows that m is an integer for all integers k. This leads 
us to: 

TWdonom 1: For any integer k J> 1, 

^ 1 2 5 f c 2 + 3 5 k 10 = "5k+l + "125k2 + 3 5k ' 
10 10 

Now consider the subset of heptagonal numbers in Theorem 1 which yields 

(*} h , = In 4- In 
V ' 125(5fe)2 + 35 (5k) +10 5 (5k) +1 125(5k)2 + 35 (5k) ' 

10 10 

The LHS of (*) is equal to 

(**) (9765625k4 + 1093750k3 + 74375k2 + 2450k + 40)/40. 

But suppose that hs - h3_1 = 5s - 4 = (**) , so that we have 

s = (9765625k4 + 1093750k3 + 74375k2 + 2450k + 200) /200. 

An induction proof shows that s is an integer for all positive integers k. 
Therefore, we have our major result, 

Tkzo/i&n 2: For any integer k J> 1, 

and 

^ 3 1 2 5 k 2 + 1 7 5 k + 1 0 25k+l + 3 1 2 5 k 2 + 1 7 5 k 

h •= h 
3 1 2 5 k 2 + 1 7 5 k + 1 0 ^ 9 7 6 5 62 5 / ; "+ 1 0 9 3 7 5 0 k 3 + 7 4 3 7 5k2 + 2 4 5 0k+ 2 0 0 

h 
9 76 56 2 5kk + 1 0 9 3 7 5 Ok3 + 7 * t 3 7 5 k 2 + 2 4 5 0 k ' 

258 
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Since these results hold for all integers k J> ls we see that there are 
an infinite number of heptagonal numbers which are, at the same time9 the 
sums and differences of distinct heptagonal numbers. Q.E.D. 

For k = 1, 2, and 39 respectively9 Theorem 2 yields 

^331 = ^ 2 6 + ^ 3 3 0 = ^ 5 4 6 8 2 ~ ^ 5 . ^ 6 8 1 » 

^ 1 2 8 6 = " 5 1 + ^ 1 2 8 5 = ^ 8 2 6 5 1 3 ~ ^ 8 2 6 5 1 2 * 

^ 2 8 6 6 = ™7 6 + ^ 2 8 6 5 = \ l 0 6 1 1 9 " \ 106118° 

Verification is straightforward, if tedious. The list may be contin-
ued as desired. 

Triangular, pentagonals and heptagonal numbers all have the property 
exemplified by Theorem 2 for heptagonal numbers. Therefore, the question 
naturally arises as to whether either nonagonal or any or all other "odd 
number of sides" figurate numbers have the property. This conjecture is 
under investigation. 

REFERENCES 

1. W. Sierpinski. "Un theoreme sur les nombres triangulaires." Elemente 
der Mathematik, Bank 23, Nr. 2 (Marz 1968), pp. 31-32. 

2. R. T. Hansen. "Arithmetic of Pentagonal Numbers." The Fibonacci Quar-
terly 8, No. 1 (1970):83-87. 

3. L. E. Dickson. History of the Theory of Numbers. Vol. II, Chapter 1. 
Chelsea, N.Y.: 1971. 

4. W. J. LeVeque. Reviews in Number Theory. Providence, R.I.: American 
Mathematical Society, 1974. (Various locations.) 

5. Bro. A. Brousseau. "Polygonal Numbers." Pp. 126-129 in Number Theory 
Tables. San Jose, Calif.: The Fibonacci Association, 1973. 

AN ALTERNATE REPRESENTATION FOR CESAR0#S 
FIBONACCI-LUCAS IDENTITY 

HARVEY J. HIND IN 
Polymathic Associates, 5 Kinsella St., Dix Hills, NY 11746 

E. Cesarofs symbolic Fibonacci-Lucas identity (2u+l)n=u3n allows us, 
after the binomial expansion has been performed, to use the powers as either 
Fibonacci or Lucas subscripts and obtain useful identities [1]. These have 
appeared many times in the literature, and most recently have been the sub̂ -
ject of a problem [2]. 

Use of the identity enables us to provide a finite sum for F3n (or L3n) 
which is a linear combination of terms from F0 (or L0) to Fn (or Ln) inclu-
sive. For example, we may derive 

4L2 + 4L-L + L0 = L6 

or, with algebraic effort, we obtain 

16F^ + 32FS + 24F2 + SF1 + FQ = F1Z. 

In this note, I show that 
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is entirely equivalent to the Cesaro identity where F3n may be replaced by 
L3n . This is of inherent interest and allows the direct determination of 
the multiplying coefficients for the finite sum without requiring a bino-
mial expansion. For example, we may write, by inspection of (1), that 

(2) 
**> - 2S(lh+ 2 7 ( ? h + 2 6(6>e + zs(l)?s + ^(lh 

To derive or "discover" (1), constructs starting with n = 0, a Pascal 
triangle form of the coefficient multipliers of the LHS of the Cesaro iden-
tity. This is shown in Figure la. 

1 n = 0 
2 2 n = 1 

4 4 1 n = 2 
8 12 6 1 n = 3 

16 32 24 8 1 n = 4 
32 80 80 40 10 1 n = 5 

Fig. la. Coefficient Multiplier Array for LHS 
of Cesaro Identity 

Note that this array may be written in the form shown in Figure lb. 

1 (1) n • = 0 
2 (1) 1 (1) n = 1 

4 (1) 2 (2) 1 (1) n = 2 
8 (1) 4 (3) 2 (3) 1 (1) w = 3 

16 (1) 8 (4) 4 (6) 2 (4) 1 (1) n = 4 
32 (1) 16 (5) 8 (10) 4 (10) 2 (5) 1 (1) w = 5 

Fig. lb. Alternate Coefficient Multiplier Array for LHS 
of Cesaro Identity 

It may be seen that Figure lb is the usual Pascal array with power of 2 
multipliers. Indeed the Pth term In the nth row, where O^r^ri is given by 

2n~rl j. It follows directly that we may multiply each coefficient in 

row n by its corresponding Fibonacci or Lucas term, sum them, and set the 
result equal to the appropriate RHS of the Cesaro identity to obtain 

^C2" \n - v)Fw ' F3 

for the Fibonacci case. Q.E.D. 
This result, which clearly holds for Lucas numbers also, has not been 

noted previously as the equivalent of the Cesaro Identity. The discovery 
method of derivation used here is particularly satisfying. 
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We may note in passing that the row sum in Figure lb is given by 

<3> £ 2-*(n ? J - 3». 
r = 0 

Also9 the right-rising diagonal generates the series 1, 29 5S 12, 29, 
70s ••• given by Rn = 2Rn_1 + Rn_25 and the left-rising diagonal yields 1, 
1, 3, 59 11, 21, „. . given by Ln = Ln_1 + 2Ln_2* Other properties of the 
array may be found by the reader, 
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ON THE MATRIX APPROACH TO FIBONACCI NUMBERS 
AND THE FIBONACCI PSEUDOPRIMES 

JACK M. POLL IN 
United States Military Academy, West Point, NY 

AND 
I.J. SCHOENBERG 

Mathematics Research Centerf University of Wisconsin-Madison, WI 53706 

INTRODUCTION 

We consider sequences (xn) of integers satisfying for all n the recur-
rence relation 

X _,, = X„ + X . . (1) 
n + 1 n n -1 v ' 

The xn are uniquely defined if we prescribe the elements of the "initial 
vector" (x0$ X-L) . On choosing (x0, x±) = (09 1), we obtain the Fibonacci 
numbers xn = Fn 9 while the choise (xQ9 x^ = (2, 1) gives the Lucas numbers 

In [3], V. E. Hoggatt, Jr., and Marjorie Bicknell discuss the following 
conjecture of K* W. Leonard (unpublished). 

CoYljfLCtiXJld 1 • We have the congruence 

Ln = 1 (mod n) 9 (n > 1) (2) 

if and only if n is a prime number. 
Among the many interesting results of [3], we single out the following; 

Tfeeo/iew 1: The "if" part of Conjecture 1 is correct; i.e., 

Lp = 1 (mod p) 9 where p is a prime. (3) 

Tho.Oh.Qm 2: The "only if" part of Conjecture 1 is wrong, as shown by the 
congruence _ f ___. //N 

L705 = 1 (mod 705), (4) 
while 705 = 3 * 5 * 47 is composite. 

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. 
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We are grateful to D. H. Lehmer for an informative letter [4] in which 
he expresses familiarity with these results; also, that composite numbers 
that satisfy (2) are called Fibonacci pseudoprimes, which we abbreviate F. 
Psps. In [3], the authors report, on the basis of computer results, that 
beyond 705 the next F. Psps are 

2465, 2737, 3745, 4181. (5) 

Conjecture 1 was communicated to one of us several years ago by Richard 
S. Field, of Los Angeles. We became aware of the paper [3] only recently. 
Before this, in November 1976, George Logothetis,a graduate student in Com-
puter Science in Madison, using Professor George Collins' SAC 2 program, 
found for us not only the five F. Psps already mentioned, but also two new 
ones: 

5777, 6721, (6) 

He also found that these seven numbers are the only F. Psps that are ^9161. 
In the present paper we do the following: 
1. Present a proof of Theorem 1 that uses from elementary number the-

ory only Euclidfs lemma. 
2. Give a second proof of Theorem 2, and establish 

Thdonm 3: £2^65 =
 l (mod 2 4 6 5) • 

These numerical results are here derived by the matrix approach as de-
scribed in [2, Ch. 11]. In [3, p. 211], Theorem 2 is proved in a few lines 
by showing that the sequence Ln mod 705 has the period 704. Since Lx = 1, 
the relation (4) follows. In §3 we describe this method of periods and show 
that while it proved Theorem 2, it did not work to establish Theorem 3. In 
[4], D. H. Lehmer stated that 

2737 = 7 • 17 • 23 is a Fibonacci pseudoprime, (7) 

and that the method of periods will apply. This we verify. 
3. Show, in §5, that the matrix approach allows us to develop ab ini-

tio some of the basic properties of Fibonacci numbers as presented 
in [1, §10.14], As we assume no previous knowledge of Fibonacci 
numbers, this paper may serve as an introduction to these numbers. 

4. The failure of the "only if" part of Conjecture 1 suggests a search 
for classes of composite numbers n which are not Fibonacci pseudo-
primes. In §6 we state some modest results in this direction which 
suggested the following: 

Conj£cXuA& It If n > 1, then 

Ln ? 1 (mod n 2 ) . (8) 

Again George Logothetis showed (8) to hold for n <, 7611. Some further 
striking results obtained in the course of this computation are described 
at the end of the paper. 

1. A PROOF OF THEOREM 1 

Observe that the Lucas numbers Ln are explicitly given by 

(l + /5 V , (l - /5 V £ _ „ ^ 
n = V 2 / I 2 / n' (1" ^ 

because (l±/5)/2 are the roots of the characteristic equation x2 - x - 1 = 0 
of (1); hence, the right side of (1.1) satisfies (1), while it assumes the 
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same initial values as Ln for n- 0 and n= 1. Now let n = p be a prime > 2. 
Expanding the binomials and cancelling the irrational terms, we find that 

I I - T I W " ' " ' \ P - l)> " '"2 

Applying the binomial expansion of (l+l)p in the numerator of the last 
term, we obtain 

The left side is an integer, while the right side is of the form pa/b9 where 
p does not divide bs and therefore, (p, b) = 1. By Euclidfs lemma, we con-
clude that b divides a, which proves (3). 

2. THE MATRIX APPROACH AND A PROOF OF THEOREM 2 

We replace the relation (1) by the vector recurrence relation 

(Xn \ , (0 l\/^-i\ (2.1) 

to which is it visibly equivalent. Writing 

* - ( ! ! ) • ( 2 - 2> 
and iterating (2.1), we obtain 

\xn + l/ V'l/ 
(2.3) 

This brings to bear on our problem the powerful tool of matrix multiplica-
tion. To prove Theorem 2, it suffices to work modulo 705. We observe that 
(2.3) implies 

( j W \ = A70*!?) (mod 705), (2.4) 

and that we are to determine the matrix A70k (mod 705). This is readily 
done with a hand calculator if we use the binary representation of 704: 

704 = 64 + 128 + 512 = 26 + 27 + 29. (2.5) 

By successively squaring matrices, and working mod 705 throughout, we find 
A2k (mod 705) for k - 1, 2, ..., 9, and, in particular, 

,26 - /142 423\ A27 - /283 141\ ,29 - /424 564\ ( A 7 r v n 

. A = V423 5 6 s M = ll41 4 2 4 > ^ = 1564 283 )> ( m o d 7 0 5 )' 

Multiplying these matrices together, mod 705, we find, by (2.5), that 

A70"=-(H23 565) <•»*"«• 
Now (2.4) shows that 

(J;::)5 (in S ) ( D = ( J ;OMD <-»»•. <»•» 
Therefore, L7Q5 = 1 (mod 705), and Theorem 2 is established. 
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A few remarks on these matrix operations are in order. Observe that A 
is a symmetric matrix, i.e., AT - A. We also know that the product BC of 
two symmetric matrices that commute {BC- CB), is also symmetric. Since any 
two powers Am and An clearly commute, it follows that all powers Am are 
symmetric. This means that in multiplying two powers of A, we need to com-
pute only one of the two elements off the main diagonal. 

The matrix multiplications performed above require the following impor-
tant check against errors. Passing to determinants, from \A\ = -1, we con-
clude that \Am\ = (-1) . Since all the above exponents m are even, we see 
that |^m| = 1, and, of course, \Am\ = 1 (mod 705). The check is to verify 
that after each matrix multiplication, the resulting product M satisfies 

|Af| = 1 (mod 705). 

3. ON THE HOGGATT-BICKNELL PROOF OF THEOREM 2 

In order to make this paper self-sufficient, we establish the known 
lemmas below. Let k be given, k > 1, and let us denote by (Ln9 mod k) the 
sequence (Ln) of Lucas numbers reduced mod k. 

Loynmci 1: The sequence {Ln9 mod k) is periodic. 

Vh-Ool* Clearly, {Ln, mod k) is periodic if and only if for some v and s we 

(xp9 xr + 1) = (xg9 xs + 1) (mod k)9 v < s. 

It follows that there is no periodicity if and only if 

for every pair {r9 s), such that r < s 
we have (xp , xp + 1)i ? (a?a 5 #8 + 1) (mod k) . 

But this is obviously impossible, as there are only k2 distinct pairs (u, v) 
(mod k) available. 

The Hoggatt-Bicknell proof of Theorem 2 is based on the following suf-
ficient conditions for (Ln, mod k) to have the period m, 

L&fnmCL 2: If the following conditions are satisfied, 

t 
k = 0 ai9 (ai9a.) = 1 if i + j , (3.1) 

Ai is a period of (Ln9 mod a^)9 (3.2) 

Ai \m for all i9 (3.3) 

then 

m is a period of (Ln9 mod k). (3.4) 

VKOOJi By (3.2), Ln + i4.= Ln (mod a^) for all n. By (3.3), if follows that 

Ln+m = Ln (mod a^) for all n, and all i , (3.5) 

because a multiple of a period is also a period. Now (3.1) and (3.5) imply 
that Ln+m = Ln (mod k) for all n9 which proves (3.4). 

Lemma 2 applied nicely to the case of k = 705= 3*5-47, for (3.1) holds 
with t - 3, a1 = 3, a2 = 5, a3 = 47. Simple direct calculations with Ln show 
that (3.2) is satisfied with A1 = 8, A2 = 4, A3 = 32. Also (3.3) holds for 
m - 704, because 8, 4, and 32 are all divisors of 704. By Lemma 2, we con-
clude that Ln+7Qh = Ln (mod 705) for all n. In particular for n = 1 we ob-
tain L7Q5 E 1 (mod 705), which proves Theorem 2. For n = 0 we also obtain 
that L704 E L0 = 2 (mod 705), which we already know from (2.7). 



1980] ON THE MATRIX APPROACH TO FIBONACCI NUMBERS 265 

This method will not allow us to prove Theorem 3. Indeed9 the relation 
(4.3) below shows that m.- 2464 is not a period of (Ln 9 mod 2465). 

k. A PROOF OF THEOREM 3 

By (2.3) we are to determine 

A21*6* (mod 2465). (4.1) 

From 2464 = 32 + 128 + 256 + 2048 = 25 + 27 + 28 + 2 1 X
9 we obtain 

A2™* = A2* • A2? » A2* • A 2 " . (4.2) 

By successive squaring of matrices mod 2465, we find that 

,25 = / 379 1714V A27 _ /1393 1886N 
" V.1714 2093/9 " V1886 814/9 

,28 - / 495 1482\ 2 n _ /1858 1221\ 
^ = (l482 1977/' A = V1221 614/' (m o d 2 4 6 5 )• 

Multiplying these together9 we find by (4.2) that 

246lf = /117 783\ 
~ \783 900Is 

and finally, by (2.3) 

(£:::) = ( £ s)(?)-a^)-=(10.17) <-««»• «•>> 
Thus, ̂ 2465 = 1 (mod 2465)9 which proves Theorem 3. 

The information that L2464 = 1017 (mod 2465) shows that m = 2464 is not 
a period of (Lk 9 mod 2465) , and this is the reason why the method of §3 would 
not work. 

Similarly, we can work out on a hand-calculator, such as SR-51A, the 
matrix An~1 (mod ri) for any n < 105. Indeed, all matrix multiplications, 
mod n9 are feasible, because all numbers that we encounter are < 1010, the 
capacity of the calculator. 

In [4]9 D. H. Lehmer pointed out that the second number of (5), namely 
2737 = 7.17.23 is a Fibonacci pseudoprime, and that Lemma 2 applies to show 
it. This is easily verified: Lemma 2 applies to k = 2737 with 

t = 3, ax = 7, a2 = 17, a3 = 23, A1 = 16, A2 = 36, A3 = 48, and m = 2736. 

Therefore, 2737 is a period of (Ln3 mod 2737) and it follows that L2736 E 2, 
L2737 = 1 (mod 2737). Therefore9 (7) is established. 

5. FURTHER APPLICATIONS OF THE MATRIX APPROACH 

Out applications in §2 and §4 were mainly computational. We now wish 
to show how the matrix A allows us to develop ab initio some of the best 
known properties of the Fibonacci numbers. 

Let us make the relation (2.3) or 

more explicit by writing 

where it becomes 

Xn \ _ nl XQ 

'n + lj Xr, -r x 

an bn 

AnrQ) (5.1) 

(5.2) lan bn\ 
\Cn dn) 
(%nX0 "*" &nXl o (5 3} 



266 ON THE MATRIX APPROACH TO FIBONACCI NUMBERS [Oct. 

This easily generalizes to 
xn + k = anxk + ®nxk+la (5 .4 ) 

Xn + k+l = °nXk + ^nxk+l 
Indeed , by ( 5 . 1 ) , 

(Xn+k \ = An+k/xQ\ m An . Ak/X\ m An/Xk \ 

\xn+k + l/ \ x l / \ x l / \xk + l/ 

aga in by ( 5 . 1 ) . This and (5 .2 ) show t h a t (5 .4 ) h o l d s . We o b t a i n xn = Fn i f 
we choose xQ = FQ = 0 and x1 - F1 = 1, and (5 .3 ) shows t h a t 

Fn = bn 
F = d ' 
rn+l un 

(5.5) 

Applying (5.4) to xn = Fn and k = 1, and observing that F1 = 1, F2 = 1, we 
obtain 

Fn + 1 = an + bn 
£n+2 = Gn ^n' 

These relations and (5.5) show that 

(^"n n+1 n n~ 1 

°n ~ ^n + 2 "~ ^n+1 = n 

We have thus shown that 

^ =(Frx F
F

n ) • (5.6) 
See also [2, Theorem II]. 

Our previous remark that \An\ = (-l)n shows that 

Fn+iFn-i ~ FZ
n = ("!)". (5-7) 

which is a known relation derived in the same way in [2, Theorem III]. From 
(5.6), we also see that the elements of all the matrices of §2 and §4 are 
appropriate Fibonacci numbers reduced by the moduli 705 and 2465, respec-
tively. 

Let us derive the known property that 

Fn divides Fnr if v > 0. (5.8) 

From (5.4) and (5.6), we obtain for xn = Fn the relation 

'*•»•* ) JFn-l Fn \(Fk \ (5.9) 

V^n + k + l/ \Fn Fn + 1)\Fk + 1 ) ' 

Replacing n and k by nv and n, respectively, we obtain 

Fn(r+X) 

*n(r+l) +1 

F 

) 
) 

1) 

1*nr- 1 

~ \F 

= F F nr- 1 n 

^ nr \( n 

nr+ l / \ n+1, 

+ F F 
n v n + 1 

whence 

This shows that if Fn divides Fnr , then Fn also divides Fntr + 1\» which proves 
(5.8) by induction, since (5.8) is obvious if r = 1. 

As a further example, let us establish the known property: 

If fa, n) = d9 then (Fm , Fn ) = Fd . (5.10) 

Since d divides m and also n, it follows from (5.8) that 

Fd d i v i d e s Fm and a l s o Fn . (5 .11) 
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It remains to show that Fd is the greatest common divi r of Fm and Fn . 
Let v and s be such that d = mv + ns. From (5.9)9 on replacing n and k by 
mv and ns, respectivelys we obtain 

/^+«a \ = /Fmr-l Fmv \/Fna \ 
\Fmr + n8 +1 / V-^mr ^mr + 1 / \ F n e 4-1 / 

This shows in particular that Fd = Fmr + ns can be written as 

Fd = Fmv-lFns + Fmr>Fns+l' (5.12) 

By (5.8) 9 any divisor 6 of Fm and of Fn also divides Fmp and Fn8 9 and by 
(5.12) that 6 also divides i^ . Therefore9 Fd is the greatest common divisor 
of Fm9 Fn9 and (5.10) is established. 

A last example concerns the Lucas numbers. Let us show that 

£» + i£»-i -
 Ll = (-D" + 1 * 5. (5.13) 

From (5.1) and (5.6)9 we have 

Un+j'Ur1 £+i)u/-

Again for xn = Ln , but from (5.4) with Zc = -1, we get that 

(H-^--1 J" XI) 
V^n / \Fn *n+lA 2' 

because L_x = -ls LQ = 2. The last two relations combined give 

\Ln Ln + 1) \Fn Fn+J\2 I/" 

Passing to determinants and using (5.7), we obtain (5.13). 

6. SOME COMPOSITE NUMBERS THAT ARE NOT FIBONACCI PSEUDOPRIMES 

We have defined a number n as a Fibonacci pseudoprime (F. Psps) if it 
is composite and satisfies Ln = 1 (mod n). F. Psps are rare; We have seen 
that there are only seven F. Psps ;< 9161. It would seem of interest to ex-
hibit some composite n which are not F. Psps. A modest beginning in this 
direction are the following results. 

Tk&OKQM 4i The numbers 
2k

5 (k > 1) (6.1) 

are not Fibonacci pseudoprim.es. Actually 

L2k = 2k - 1 (mod 2*). (6.2) 

ThdOKQjm 5: If p is an odd prime such that 

Lp t I (mod p2)s (6.3) 
then 

Lpk $ 1 (mod pk) for k > 1, (6.4) 

hence pk is not a Fibonacci pseudoprime. 
For brevity5 we omit proofs which might be given elsewhere. We rather 

discuss the assumption (6.3). 
Computer computations made by George Logothetis (Nov. 1976) show that 

Ln f 1 (mod n2) if 2 £ n 4 7611, (6.5) 

whether n is prime or composite. He computed the remainder rn3 hence 
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Ln = rn (mod n2) 9 0 £ rn < n2
9 (6.6) 

for all n such that 2 <̂  n :< 7611, with the following results. 
1. The remainders rn = 0 and rn = 1 were never found. This result led 

us to formulate Conjecture 2 of our Introduction. 
2. The value rn = 2 appeared only If n ~ 0 (mod 24). 

F0r n = 24/c9 he found that rn = 2 precisely for the following 100 
values o^ fe: 

1 
14 
32 
55 
84 

2 
15 
36 
56 
90 

3 
16 
40 
57 
92 

4 
18 
42 
60 
96 

5 
20 
45 
64 
98 

6 
24 
46 
70 
100 

8 
25 
48 
72 
102 

9 
27 
50 
75 
108 

10 
28 
51 
80 
110 

12 
30 
54 
81 
112 

114 120 125 126 128 135 138 140 144 150 
153 155 160 162 165 168 171 180 182 184 
188 192 195 200 204 205 210 215 220 224 
225 228 230 240 243 250 252 255 256 270 
275 276 280 285 288 294 300 305 306 310 

This Is remarkable numerical evidence. From generally large values9 the re-
mainder rn in (6.6) drops down to rn - 2 for n = 24fc and values of k as 
listed. We also mention that the last Lucas number9 L761l9has 1591 digits. 

From the identity Lhn - 2 = 5(F2n)2 [2, Identity I16> p. 59] , it fol-
lows that L2hk - 2 - 5(F12 k)2. Therefore, L2hk - 2' = 0 [mod (24fc)2] if and 
only if 

F12k = 0 (mod 24fc). (6.7) 

From the computer results above, we see that (6.7) holds for the 100 values 
of k listed above, and does not hold for the other values of 

k £ [7611/24] = 317. 
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FREE GROUP AND FIBONACCI SEQUENCE 

G. WALTHER 
Institut fur Didaktik der Mathematik, Postfach 380, W. Germany 

Let J be a nonempty set X = {x^\i e J} where J is a suitable index set 
and J"1 another set in one-to-one correspondence with X. A word of length 
n in the elements of X U X'1 is an ordered set of n elements (n^O) each of 
X U X'1. 

A word of length n will be written as x^\ . .. x£ where each sign s^ is 
i or -1. With "1" we denote the unique word of length 0. The product of 
two words is defined as follows. Let a be an arbitrary word la = al : a. 
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Let a and b be words of positive lengths m and n; IBe.5 
a = xfi . . . xfm and b = xf1

 e e a x * n
 3 

then 
ab : = x^ * „ * xi^xjl

1 *°® ^ n
B 

and the length of the product is m + n* 
If we define the relation "adjacent" between wordss which-turns out to 

be an equivalence relation^ and the product [a][b] : = [ab] of equivalence 
classes [a] and [b] of words a and b$ we get the free group F(X) over the 
generating set J„ 

A word in Z U I"1 is reduced if it has the form 

x.si 0 o e x?m and xfk + 1 + x~.8k for ^ = 15 2, . . ., m - 1. 

Two elements^ #f*and x fJ eX U X"1^ will be called an inverse couple of ele-
ments if 

x^xp = 1 or xfixf* = 1. 
Now we are in the position to formulate our problem. 
Let a = a1 . . - an be a word of length n with a^ e X {J X'1 for 1 <. i <_ n. 

What is the maximum number of ways in which it could be reduced 
a. to different, words of length g (n _> g)1 
b„ to different words? 
c. to words of length gl 

Th^o^tomi Let Agns Bnfi and Cgn be the numbers mentioned above* Then we get 

<*> A g n 

+ n 
if g and n have the same parity and g <_ n 

otherwise 

6) Bn = Bn_1 + B„_2, B0 - Bx = 1 

Y) £ 
-

1 
0 

fi:J) 1 for g = n -

for g ~ n 
o t h e r w i s e 

71 
- It and 0 <_ t < j 

#n 

Corollary: Expression of Bn as a sum of binomial coefficients. 

With the convention ylj = 1, (n J = 0 2 for n < m, 

we get the well-known relation 

*•- (0) * ( " ; ' ) + ( " 12) + - -
To prove the theorem^ we use a known procedure to construct the reduced word 
for a = ax * ®« an* 

Let w0 : = 1 and 1^ 1 = ax, and let ̂  be found for 1 '<_ i < n* 
i) If Wi does not end in a^+l9 then wi + 1 : = W^a^. 
ii) If z^ does end in a^+i> t n e n w£+i : = 2;? where z^ = zai\\« 

In a somehow "inverse" sense, we can get a survey over the. reduction process 
by means of a tree. 

Take the word a = a1a2a-iahas for example? 
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• a1a2a3a^a5 
.a±a2a3 
" QL-iCZnCLr 

-a1aka5 

It is evident9 from the cancellation process, that Agn = Cgn = 0 iff ̂  and n 
have different parity. 

a) As cancellation diminishes the length of a word by 2, it is clears from 
rules (i) and (ii) that 

Agn = Ag, „-2 + ^ - 1 , n-1 f ° r n -> 2' 
with the additional conditions i4̂ n = 0 iff g and n have different parity, 
AQn = 1, i4^ = 1 for 0 < g £ n, ̂ .̂ n = 0 for g > n. 

The transformation £> ̂£ 

^ o 

4 for 0 <_ k .£ £, £• • = 1 for i >. 0, k,2i-k 

if i is even 
if i is odd, u and Z)^ = 0 for k > i9 together with its inverse transformation, 

Apq = Dp+q 9 
2 P 

yields the fundamental binomial relation 

D ik 

with solution D. ik' (i) 
Di-k,k + Di-i,k-i f o r i> k >1, 

Translating this result, we get Agn 

g + n 
2 

n- I n - i n a„ be 3) For n = 0, 1,2, the proposition is true. Let a = c 
a word of length n - 2. Then we distinguish two cases: 

1. CLiOLn ̂  1 f ° r ^<: n (i*e., <̂t is the last "letter" of a word of max-
imum length n - 1 ) . By the induction hypothesis, the maximum number of 
different words to which a word of length n - 1 can be reduced is Bn_1. The 
Bn_1 different words w1, . . . , UB consequently lead to 5n - 1 different words 
w1an9 ... 9 %„-i an • 

2. a^a„ = 1. I.e., a^, an is an inverse couple for i < n; therefore, 
the length of words under consideration is reduced by 2. Consequently, we 
have a contribution of Bn_2 to the amount of Bn , ' 

y) For illustration consider the word w =a1a2a3aha5 which could be reduced 
to al9 for example, in exactly two ways: 

a2, a3 and a2» &5 are two inverse couples; 
£3 and a4, are two inverse couples (cf. the tree above), 

The cancellation process yields the following special relations: 

CK 0 for m > n; Cmm = 1; Cmn = 0 for m9 n, with different parity; 

C On 
Cl, n-1 f o r n >_ 1. 

A simple induction argument shows that Cn_2jn 1 for n > 2. 
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We get all possible reduced words wf from w = a ... ccn_1an_1an of length 
n - 2 either extending all n - 2 words 

w" = #7- ... # . 

(ix < ̂ 2 < ... < in_2 and x^ e {a19 ..., a„_2}) 

with an9 i.e., uf = w"an or from the single word a1 *.. a .. In the latter 
case, ̂ n_lS £n is the only inverse couple of w. 

Besides the special relations for Cmn , we have the general relation 

<*> C»n =q»+i.„-i + ^.-i.„-1 form, « > 1. 

Let Z?^ : = Ck i + k for £9 fc _> 09 respectivelys COTn = En_mtTn fo r n >_ m and 
n9 772 _> 0 . From C0n = C l f M_x fo l lows E^ 0 = Ei_2> ± for t >. 2. 

From (*)s we get 

(**) ff« - f f f .k-! + ^ . 2 , * + i for i > 2, fc > 1. 
Considering Cn_2f n = n - 1 for n 1 2 , we have S7^ = 1 + k. 

Next we express Eik by ^ _ 2 k for £ _> 2; (**) yields 
fe + i 

p - 1 

An iteration procedure and Elk - 1 + k leads to the following "monstrous" 
expressions 

%2t k = S " ' " £ S O + 1) for £ _> 29 ki >_ 0. 

RmaSik'- Since Cwn = 0 for m, n with different parity9 we have Eik = 0 for £ 
an odd number. 

We prove by induction that 

(kt 1 + It - 1\ / ^ t _ ! + 2t - 1> 

*•••'-•( " * H *., '-ti2-
For t = 2, we have 

* i + 1 ( ^ + 4 ) ^ + 1) (k1 + 3)(k1 + 2) 
E2,kl = E (r + D = 2 = 2 

r = 1 
^ + 3\ / ^ + 3 

2 / \ 0 
To show 

(k+ + It + 1\ /fc + + 2t + 1 fe,., + 2* - 1\ /fet.1.+ 2t - 1 

J 2 ( * + l ) , Zcc ' 

we need the following 

i«- Ecr)-(°jit2)-o:!)-

t + 1 / \ £ - 1 
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Ptiooj ol the, Lomma: On the one hand 

on the other hand 
j + i 

E n «+ « =TTT X> + ^ > -
fc-1 i-0 

Combining these two identities yields 

From M + 1 v e+n-j+2. v c - j + 1 

follows, with (***), the assertion. 
Now we continue the proof of the theorem. With the aid of the lemma, 

kt+i 

£ 
fet.i + 2* - i \ /fct_! + 2t - r 

t / \ t - 2 

r;:;i)-t:1)-( 
^ + It + 1\ /Zct + 2t + 1\ 

fct + 2t + r 

t - 1 

/ it \ 

V - iy 

E 
\ t + 1 / \ t - 1 

To prove the corollary, we use 

2(t+i), kt 

B, n L^i ^9n 

g <.n £(T)-o+c:»+ 

CO • ( " : ' ) 

2 
is defined, because g and n have the same parity. 
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DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy Fn + 2 =Fn + i + Fn 9 
F0 = 0 , F1 = 1 and Ln + 2

 = Ln + i + ^ J ^ O = 25 L1 = I. Also a and b designate 
the roots (1 + /5)/2 and (1 - /5)/2, respectively, of x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-430 Proposed by M. Wachtel, H. Klauser, and E. Schmutz, Zurich^ Switz. 

For every positive integer as prove that 

(a2 + a - I) (a2 4- 3a + 1) + 1 

is a product m(m + 1) of two consecutive integers,, 

B-431 Proposed by V. E. Hoggatt, Jr., San Jose State University, 
San Jose, CA. 

For which fixed ordered pairs (hs k) of integers does 

Fn(Ln+h " Fn + h) ~ Fn+i,^Ln + k " Fn + k) 
for all integers n? 

B-^32 Proposed by V. E. Hoggatt, Jr., San Jose State University, 
San Jose, CA. 

Let G„ = F„F2
 Q - F 3 . Prove that the terms of the sequence 

GQ9 GI9 G2, ... 
alternate in sign, 

B-433 Proposed by J. F. Peters and R. P1 etcher, St. John1s University, 
Collegeville, MN. 

For each positive integer n9 let qn and rn be the integers with 

n = 3qn + vn and 0 <_ vn < 3. 

Let {T(n)} be defined by 

T(0) = 1, T(l) = 39 T(2) = 49 and T(n) = hqn + T(rn) for n > 3. 

Show that there exist integers a9 b9 c such that 

m/ N fan + £1 
5P<"> - L — 5 — J * 

where [x] denotes the greatest integer in x. 

273 
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B-**3*t Proposed by Herta T. Freitag, Roanoke, VA. 

For which positive integers n9 if any, is 

L3n-(-l)nLn 
a perfect square? 

B-^35 Proposed by M. Wachtel, H. Klauser, and E. Schmutz, Zurich, Switz. 

For every positive integer a, prove that no integral divisor of 

a2 + a - 1 

is congruent to 3 or 7, modulo 10. 

SOLUTIONS 

F!rst Term as GCD 

B-406 Proposed by Wray G. Brady, Slippery Rock State College, PA. 

Let xn = 4L3n - L\ and find the greatest common divisor of the terms 
of the sequence xx , x2, #3, ... . 

Solution by Paul S. Bruckman, Concord, CA. 

*n = Ln^L3n/Ln - L2) = Ln\ka2n - 4<a6)n + kb2n - a2n - 2(ab)n - b2n] 

= 3Ln[a2n - 2(ab)n + &2n]= 3Ln(an - bn)2 = 15LnF2, 
or 

xn = 15FnF2n, n = 1, 2, 3, ... . 

Note that a?! = 15F1F2 = 15. Hence, a^l^n, n = 1, 2, 3 It fol-
lows that the greatest common divisor of {xn} is x-^ = 15. 

Also solved by Herta T. Freitag, John W. Milsom, Bob Prielipp, E. Schmutz, 
A.G. Shannon, Sahib Singh, Lawrence Somer, M.Wachtel, Gregory Wulczyn, and 
the proposer. 

Generator of Pascal Triangle 

B-407 Proposed by Robert M. Giuli, University of California, Santa Cruz, CA. 

Given that 
°°  °°  

E JL ankxnyl 
1 - x - xy 

10 n = 0 k = 0 

is a double ordinary generating function for ank; determine ank. 

Solution by Paul S. Bruckman, Concord, CA. 

(1 - x -xy)-± = (1 - x(l + z/))-i = ]T*n(l + 2/>n = 1Lxnib(k) 
n=0 n=0 k=0^ ' 

oo n i \ 

-EE(J)*" 

2/* 

The binomial coefficient ( r, ) is defined to be zero for k > n. Hence, 
we may extend the second sum above over all nonnegative k, i.e., 

[1 -x-xy)-i = I ) E(fe)x"y 
n=0 & = oX ' 
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T l m S' (n\ 
a<nk = I £ l» (n* k = °* 1» 2, • • • ' ) . 

Also solved 2?y W. O. J. Moser, A. G. Shannon, Sahib Singh, and the proposer. 

Proposal Tabled 

B-408 No solutions received. 

Exact Divisor 

B-409 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 

Let Pn = FnFn + a. Must Pn + Br - Pn be an integral multiple of 

V - ~P 
J- n + hr J~n + 2r 

for all nonnegative integers a and p? 

Solution by Sahib Singh, Clarion State College, Clarion, PA. 

Yes. Using 

we see that divisibility of 

P - P bv P - P 
n + 6r n -̂  n+hr n + 2r 

is equivalent to divisibility of 
L 2n+12r + a ^2n+a ^ y ^ 2 n + 8 r + a 2n + t+r + a' ' 

The result follows immediatly by seeing that 

^2n+12r+a ~ ^2n + a = ^2h + 8r + a " ^2n+>r + a^^M-r + *) °  

Also solved by Paul S. Bruckman, Bob Prielipp, and the proposer. 

Golden Limit 

B-410 Proposed by M. Wachtel, Zurich, Switz. 

Some of the solutions of 

5(x2 + x) + 2 = y2 + y 
in positive integers x and y are: 

(xs y) = (0, 1), (1, 3), (10,- 23), (27s 61). 

Find a recurrence formula for the xn and yn of a sequence of solutions 
(in, 2/n) • Also find l±m(xn + 1/xn) and lim(# 27#n)- as n -> °°  in terms of a = 
( i + ; / 5 ) / 2 . 
Solution by Paul S. Bruckman, Concord, CA. 

Multiplying the given Diophantine equation throughout by 49 completing 
the square9 and simplifying yields: 

(1) Y2 - 5X2 = 45 

where 
(2) X = 2x + 1, J = 2z/ + 1. 

The solutions of (1) in positive integers are known to be 
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However, due to (2), X and Y must also be odd. By inspection of the 
first few values (mod 3) of the Fibonacci and Lucas sequences, it is appar-
ent that these values are even if and only if their subscripts are multiples 
of 3. Hence, we must have m ~ ±1 (mod 3) in (3), Distinguishing between 
these cases, we obtain two distinct sets of solutions; 

(5) a £ 2 ) . *J2>> = <%+*. i>*,+X.o-' 
In terms of the original problem, this yields the following distinct solu-
tion sequences: 

(6) (atf>, y^) -{W6n + 2 - ».Mhn + 2 ~ D};.05 

(7) (*<2). J/i2)) - { ^ e » + * " D . ̂ e „ + , - D}:.O-
It is apparent from the fact that the successive indices of the Fibo-

nacci and Lucas sequences in (6) and (7) "increase by sixes," that we are 
interested in the second-order equation for a6, which must be the same for 
bs . Since a6 = 8a+5 and a12 = 144a+89 (special cases of av = aFr + Fr_1)* 
it is evident that a and b satisfy the common equation: 

(8) s12 - 18s6 + 1 = 0. 
Let 

(9) D n «-3n.+ 2 - 18*n + 1 + sn, where zn ='*<*> or z/<*>, fc » 1 or 2. 

We see from (6) and (7) that Dn = %(-l + 1 8 - 1 ) [using (8)], or 

(10) Dn = 8, n = 0, 1, 2, ... . 

This is a recursion for the x„ and t/„ , as required. 
A homogeneous recursion may be obtained by noting simply that 

This is equivalent to the following third-order recursion: 

(ID sn + 3 - 19sn + 2 + 19aB. + 1 - aB - 0, n = .0, 1, 2, ... . 

It is evident from (6) and (7) that 

and 
(13) lim x™zlx™ = lira y$Jy™ = a12 <fc = 1 or 2). 

n-»-oo n-)-oo n 

Also solved by the proposer. 

Trldlagonal Determinants 

B—411 Proposed by Bart Rice, Crofton, MD. 

Tridiagonal n by n matrices An = (a^-) of the form 

2a (a real) for 3 = i 
1 for 3 = i ± 1 

, 0 otherwise 

occur in numerical analysis. Let dn - det An . 

(i) Show that {d„} satisfies a second-order homogeneous linear recur-
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(ii) Find closed-form and asymptotic expressions for dn. 
(iii) Derive the combinatorial idantity 

-D./2] i v [<n-l)72] 

Solution by Paul S. Bruckman, Concord, CA„ 

We see that 

( i ) 

'2a 
1 
0 
0 
0 
0 

1 
2a 
1 
0 
0 
0 

0 
1 
2a 
1 
0 
0 

0 
0 
1 
2a 
1 
0 

0 
0 
0 
1 
2a 
1 

Taking determinants along the first row9 we find that dn = 2adn_1 - det Bn , 
where 

#1 1 0 0 ..-. 0^ 

B„ - i ? I ^n»2 

^0 ^ //(«-l) x(n-l) 

Taking the determinant of 5n along its first columns we see easily that det 
B = dn_2* Hence, we have the following recursions 

(3) dn+2 - 2adn+1 + dn = 09 n = 1, 29 35 ... . 

Note also the initial values of the recursions 

(4) dx = 2a9 d2 = 4a2 - 1. 

The characteristic polynomial of (3) is 

(b) p(x) = x2 - 2ax + 1, 

which has the zeros 

(6) u = a + /a2 - 1, y = a - /a2 - 1. 

It follows that dn is of the form pun + at?n9 for some constants pand q 
which are determined from the initial conditions. Note that 

uv = 1, u + v - 2a. 
We then find 

(7) d - ~ ~ ^ — ^ « = 1 5 2 5 3 5 ... . 

The behavior of dn as n •> °°  depends on the magnitude of as and we distin-
guish several cases . 

Co6e J: 0 <. |a| < 1. 

Let a = cos 9* Then M = e%Q, i? = e~* e , and so 

(8) <fn = s i n ( n +' l ) 6 / s i n 9. 
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In this case, the sequence (dn) is dense in 

(-esc 6, esc 0) = (-(1 - a2Yh
9 (1 - a2)'*) 

and oscillates within this interval without lending itself to approximation 
by an asymptotic expression. 

Co6e II: a = -1. 

Then u = V = -1. Since 

n 

k = 0 
thus 

k = 0 v 

Clearly, dn oscillates between these two values only, in this case. 

C(Ud llli a = 1. 

Here u = V = 1. Hence, 

n . n 
d» = X wn"V = £ 1 = n + 1. 

k=o fe=o 

Therefore, for this case, dn ^ n as n ->• °°. 

Co6e !(/: a < -l. 

Then y < -1 < u < 0, which implies un •> 0 as n -> °°. Hence 

,7 a ^ + 1 

Co6£ I/: a > l. 
n + l 

Then 0 < t; < 1 < u5 which implies yn + 0 and dn ^ ~ as n V«>. 
u - v 

To prove the given combinatorial identity, note that 

h(u - y ) ^ . , = h(u» - vn) = %E(^)an-fe(a2 - 1)***(1- (-1)*) 

t^(tt-l)] 

= L 2 ; + ,K a " 1 ( a 2 - i ) l t H 
k = 0 X ' 

tH(n-l)] / \fc 

In (9), let x = a 2 - 1, supposing Case I above, so that we can have x > 0. 
Then, since p = tan"1^ is in (0, %TT) , 

v = tan'Md - a2)V2/|a|} = cos^M |a|}. 

Also, sin 3? = (1 - a1)"2. Using the notation of Case I, v = 0 if a > 0 and 
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v = IT - 0 if a < 0. In either case, sin 9 = sin r. Thus, using (8), 

( sin nr/sin p, if a > 0; 
£?„_! = sin n0/sin 0 = < 

( (-1)""1 sin np/sin r9 if a < 0. 

Also, a2 = (1 + tf)"1, which implies that 

(1 + a:)"^""1', a > 0; 

•"(- ly^a + a?)-^'-", a < o. 
In either case, it follows from (9) that 

ih(n-i)} 

(1 + aO-HO-D ^ (2^n+ ij(~x)fe = s i n ^ / s i n ^> 

which is equivalent to the desired identity. 

Also solved by the proposer. 
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H-317 Proposed by Lawrence Somer, Washington, D.C. 

Let {Gn}™=o D e any generalized Fibonacci sequence such that 
Gn + 2 = Gn + 1 + Gn> (Go » Gl) = 1 ' 

and {£n} is not a translation of the Fibonacci sequence. Show that there ex-
ists at least one prime p such that both 

Gn + Gn+1 = Gn + 2 (mod p) 
and 

Gn+1 = rGn (mod p) 

for a fixed v t 0 (mod p) and for all n >_ 0. 

H-318 Proposed by James Propp, Harvard College, Cambridge, Mass. 

Define the sequence operator M so that for any infinite sequence {u^}9 

M(un) = M(un) - ^ M ( M i ) p 
i\n 

where is the Mbbius function. Let the "Mbbinacci Sequence" S be defined 
so that S = I and 

Sn = M(Sn) + M(M(Sn))9 for n > 1. 

Find a formula for Sn in terms of the prime factorization of n. 

H-319 Proposed by Verner E. Hoggatt, Jr., San Jose State University, 
San Jose, CA. 

If Fn < x < Fn+1 < y < Fn+2> t n e n x + y Is never a Fibonacci number. 

* 2 Corrected Problem Proposals* 

H-294 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 

c 2z> + l 

F 
n 4r + 2 
-^6z>+3 

* &r + h 

F\0r+5 

^&r+ 3 

~ " l 2 p + 6 

F 
c 1 8 r + 9 

~ ™ 2 4 r + 1 2 

- ^ 3 0 r + 1 5 

^ 1 0 P + 5 

^ 2 O r + 1 0 

F 

- ^ O r + 2 0 

-^50r + 25 

^ l * f r + 7 

-F2Qr+lh 

F 
c h 2 r + 2 1 

~ ^ 5 6 r + 2 8 

F 
c 7 Or+ 3 5 

^ 1 8 r + 9 

™ 3 6 r + 1 8 

F Shr+27 

^ 7 2 r + 3 6 

^ 9 0 r + 4 5 

? • 

280 



Oct. 1980 ADVANCED PROBLEMS AND SOLUTIONS 281 

H-295 Proposed by G. Wulczyn, Bucknell University, Lewisburg, PA. 

Establish the identities: 

(a) Fk^k+Gr+3 Fk+8r + hFk + 2r + 1 = (~^' F 2r + 1^2r + l^k + hr + 2 » 

( b ) FkFk+Gr " Fk+8rFk + 2r = ( m l ) ^F\vL2vLk + hr ' 

SOLUTIONS 

One or Five 

H-285 Proposed by V. E. Hoggatt, Jr., San Jose State University, 
San Jose, CA. (Vol. 16, No. 5, October 1978) 

Consider two sequences {Hn}™=1 and {Gn}„=1 such that 

(c) #n+ 2 = Hn+1 + Hn ( n > l ) , and 
(d) #n+ 1 + ̂ ^ = sGn (n > 1), 

where s is independent of n. 

Show s = 1 or s = 5. 

Solution by Lawrence Somer, Washington, D.C. 

The following examples from the Fibonacci and Lucas sequences show that 
s may actually attain both values of 1 and 5: 

Fn-i +Fn+i = ! • £ „ . i»-i + £« + i = 5F». 
We are also evidently assuming that s is nonnegative0 Otherwise, let 

{Hn} = {-Fn} and {Gn} = {Ln}. 

Then #n m l + #n+ 1 = (-l)Gn- Similarly, if 

{Hn} = {-Lj and {£n} = {Fn} 9 

then fl^ + Hn + 1 = (-5)Gn. 
Now suppose that s M or 5. Since (Hn9 Hn+1) = 1 and (Gn9 Gn+1) = 1, 

clearly s ̂  0. I claim that the period (mod s) of {Hn} divides 4. This 
follows, since H1 + H3 = 0 (mod s) and H3 + F5 = 0 (mod s) together imply 
that Hi = #5 (mod s) . Similarly, #2 E #6 (mod s) . • 

Now, #! + #3. = 0 (mod s) and E1 + #2 = #3 (mod s) imply that #2 = -2FX 
(mod s) . Thus, using the recursion relation for {Hn}, the first five terms 
of {Hn} (mod s) are 

H19 H2 = - 2 ^ , #3 = -fiT1, Hh = -3H1, and #5 = - 4 ^ . 

Thus, - 4 ^ = ̂  or 5H1 = 0 (mod s) . If (5, s) = 1, then 5H1 = 0 (mod s) 
implies that ̂  E 0 (mod s). But then #2 E -2FX E 0 (mod s) and (Fx9 #2) ̂  
1. Hence, s > 5 and (5, s) = 5 . However, then 5H1 E 0 (mod s) implies that 
(s/5)|(#ls s). But then since H2'= -2FX (mods) and a fortiori #2 = - 2 ^ = 0 
(mod's/5), (s/5)|#2 also. Therefore, (s/5)|(#19 H2) and (Hl9 H2) + 1 as we 
assumed. Thus, s = 1 or 5. 

Also solved by P. Bruckman and G. Lord. 

Power Mod 

H-286 Proposed by P. Bruckman _, Concord, CA. 
(Vol. 16, No. 5, October 1978) 

Prove the following congruences: 
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(1) F5n = 5" (mod 5 n + 3 ) ; 

(2) F5n = L5n+i (mod 5 2 n + 1 ) , n = 0 , 1, 2 , . . . . 
Solution by the proposer. 

VK.OO{ ofa (7) : We w i l l use t h e fo l lowing i d e n t i t y , 
(3) F5m=25F5

m+25(-l)mFl+5Fm,m = 0 , l , 2 , . . . . 

Let S be the set of nonnegative integers n for which (1) holds. Since F5 = 5, 
clearly leg. Even more obviously, F1 = 1 = 5°  , so 0 e S. Suppose keSs and 
let m - 5k. Then, for some integer a, Fm = m(l + 125a). Hence, by (3), 

F- = 52ms(l + 53a)5 - 52m3 (1 + 53a)3 + 5m(l + 53a) 5m 

(mod 54?77) , i . e . , 

= 52m5 - 52m3 + 5772 (mod 5 ^ ) , 

5m But 52|TT?2, assuming k i s p o s i t i v e . Hence, 5^7771527773152m5. Thus, F5m = 5m 

F5k + 1 = 5k + 1 (mod 5k + 4 ) . 

Therefore, fc £ S => (& + 1) e £. The result of (1) now follows by induction. 

Vsioofi ol (2) : We will use the following identities, 

<4> ^sm-^m ~ 5(~1)*L3 + 5LW, 

(5) L2 = 5F2 +4(-l-r, " = ° " ' " 

Let 77Z = 5n. Then L5m - Lm = (L3 + Lm) (£2 + 4) = 5F„2 (L3 + Lw) . But, by (1), 
m\Fm , which implies 5m2 | 5F,2 . Therefore, L5m E LOT (mod 5m2), i.e., 

L5„ + i E L5n (mod 52n + 1 ) , 
which proves (2). 

More Identities 

H-288 Proposed by G. Wulczyn, Bucknell University, Lewisburg, PA. 
(Vol. 16, No. 5r October 1978) 

Establish the identities: 
(a\ jp 7-2 _ p j - 2 = / i \ H l r 3 -n T 
\cxj ^k^k + Br+S rk+8r + kljk + 2r + l v ' u2v + l r 2r + l^k + kr + 2 9 

(b) FkLk + Qr - Fk+QrLk + 2r = (-1) L2rF2rLk + hr ' 
Solution by the Proposer 

' a ' FkLk+6r + 3 " Fk+8r + hLk + 2r+l 

= - ^ { ( a * - e k ) [ a 2 k + 1 2 r + 6 + 32fc + 1 ^ + 6 + 2 ( - l ) * + 1 ] 
5 _ ( a

f e + 8 r + 4 - efc + 8 r t f ) [ a 2 k . + « « . + 2 + B 2 k + ^ + 2 + 2 ( - l ) * + 1 ] } 

= i z l 2 ^ i { a f c - ^ - . 2 ( a i 6 i . + 8 _ 2 a 1 2 r + 6 + 2 a 4 r + 2 - 1) 

_ pfc-i+r-2/pi6r+8 _ 2g 1 2 p + 6 -j- 28tt2' + 2 - 1)T 

• 1 ) * H 

/5 
(~1)k+1{ak+hr+2(a2r+1 + e 2 r + 1 ) 3 ( a 2 r + 1 - 3 2 r + 1 ) 

+ e" + ̂ ' + 2 ( a 2 r + 1 + g2r + 1 ) 3 ( a 2 r + 1 - 3 2 r + 1 ) } 
( _ 1 \ k + l r 3 TTT T-
v ' ^ 2 r + l r 2r> + lnk + kr + 2 ' 
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^ FkLk+Gr " Fk+QrLk+2r 

- Fk^L2k + i2r + 2 < - l ) * ] - Fk+8r[L2k + hr + 2 ( - l ) * ] 

- - ^ ^ ^ f a ^ ^ C a 1 ^ + 2 a 1 2 p ~ 2 a t f p - 1) - B*- 1 " ( B 1 6 r + 2B122' - 2 B ^ - 1)} 
/5" 

. ( " " 1 ) k + 1 [ a f c - ^ ( a ^ - 1) (ahr + 1 ) 3 - B*-1" ( B ^ - 1) ( B ^ + 1 ) 3 } 
/I" 

= { ~ 1 ^ + 1 { a ? c + I t r ( a 2 y - B 2 r ) ( a 2 r + B 2 r ) 3 + B*+" r (a 2 " - B 2 r ) ( a 2 P + B 2 " ) 3 } 

Also solved by P. Bruckman. 

Series Consideration 

H-289 Proposed by L. Carlitz, Duke University, Durham, N.C. 
(Vol, 16, No. 5, October 1978) 

Put the multinomial coefficient 
(m + m + ; • • + mk) ! 

(m,, m2, ...-, m,) - V m 2 , . „ . V 

Show that 

(*) J^ (r>s9t)(m-2r9n-2s9p-2t) 
r + s + t = X 

I] (-2)* + J' + *(^<7» k9 u)(m-j-k9 n-k-i9 p - i - j) (m + n + p .> 2\). 

Solution by Paul Bruckman, Concord, CA. 

Let 

(1) A(?779 n9 p) = £ ( P 9 s9 t)(m - 2v9 n - 2s, p - 2t) 9 
r + s + i = A 

(2) B(m9.n9 p) = ' ]T) (-2f + J*k(i9j9k9u)(m~j-k9n-k-i9p-i-j)* 
i+j+k+u=\ 

A l s o , l e t 

(3) >(# , i/, s) =, ' ] £ ^fa* w* p)xmynzP9 
m+n + p >_2\ 

(4) G'Gc, 2 / , . s ) = ] T B(?ws n9 p)xmynzP9 

m+n +p>.2\ 

assuming X is fixed. It will suffice to show that F and G are identical func-
tionss for then the desired result would follow by comparing coefficients* 
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Now 

F(x9 ys z) = ^2 (z?, s3 t) ^ (m - 2r9 n - 2s9 p - 2t)xmynzp 

, r + s + t = A m+n +p >_2X 

X (p9 s9 t ) ^ (m *" 2p* n - 2s, p - 2t)xmynzp 

r + s + t - X m>.2rin>.2s, p>_2t 

= 5 3 (r> s ' *)a;2 ry2 s22* 5 3 On, n, p)xmynzp. 
r + s + t » X m, n , p ^ O 

Now 
/ ^ (m9 n9 p)xmynzp = ^ 2 ^ (m» n* p)xmynzp 

m,n9p>.o k = 0 m + n + p=k 
00 

= ^ fe + 1/ + S)^ = (1 - X - 2/ ™ S) - 1 . 
k = 0 

Hence 9 

F{x, y9z) = ( l - x - y - z)'1 ^ (r9 s9 t)x2ry2s z2t
 s 

2>+S + £ = A 

or 
(5). F(x9 2/, z) = (x2 + z/2 + z2)x(l - x - y - z)'1. 

Also9 

G(x> y* z) = Z ("2)i + ̂  + fc(i, j , fc, M) 
i+j+k+u=\ 

/ ^ ( m - j - k 9 n - k - i 9 p - i - j)xmynzp» 
m+n + p>_2\ 

The c o n d i t i o n m + n + p _> 2 \ i s e q u i v a l e n t t o 

(m - J - k) + (n - fc - i) + (p - i - j ) >. 2 (A - £ - j - k) = 2u. 
Hence 9 

°(x> 2/ 3) = 5 3 (-2)i + d + k(i9 j , k9 u).x*+kyk + izi + 3 
i+j+k+u=\ 

' 23 (m. «. P)xmynzp 

m +n +p >_2u 

= £ (-2)i+j+ktt, 3, k, u)xO+Y+iz{+d 

i+a+k+u=\ 

' £ H (m' "• p)xmynzp 

h = 2u m + n+ p = h 

X) (-2)* + J' + *(£,j\:fc., u)x3'+kyk + izi + j]T (x + y+z)h 

i+j+k+u=\ h =2u 

= (1 - a:' - y - s)"1 ]j£ (-2)i + ^ 
£+j+fe+u=A 

8 (£, j , k9 u)x3' + kyk + izi+Hx + y + z)2u 
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= (1 - x - y - s)" 1 Y, (-2i/3)* (-2xz)3 (-2xy)k (x + y + z)2u(i, j , k, u) 

= (1 - x - y - z)'1{-2yz - 2xs - 2;n/ + (x + z/ + s)2}A 

= (1 - a; - 2/ - s ) " 1 ^ 2 + z/2 + s 2 ) A = F(x 9 z/5 z) , Q8E,De -. 

Also solved by the proposer. 

Identical 

H-290 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 
(Vol. 16, No. 6, December 1978) 

Show that 

(a) F F2 - F3 = (-l)k'¥1F2 (F - IF V 

(b) F, F2 - F3 ' = C-l)k+1F2 (F + 2F ) 

Solution by the proposer. 

( a ) FkFk+Sr+3 ~ FLhr + 2 

= -^(ak ~$k)la2k+2r + G +$2k + 2r + G -h2(-~i)k}~ [a 3 k + 22, + 6 - B3fc + 2l, + 6 .+ 3 ( - l ) k + 1 ] } 
5v5 

= ( - 1 ) * { a " ( a 1 2 r + 6 - a a * ' * 2 - 2) - B*(B 1 2 * + 6 - 3gI , r + 2 - 2 )} 
5/5 

- ( - 1 ) ^ [ a " ( a " r + 2 + l)2(ahr + 2 - 2) - 3 k (B* ' + 2 + l ) ( a * ' + 2 - 2 )} 

= ( - 1 ) * [a" + ity + 2 ( a 2 r + 1 - g 2 r + 1 ) 2 (a l t r + 2 - 2) - g k + ^ + 2 ( a
2 r + 1 - (32r + 1 ) 2 ( B * ' + 2 - 2 )} 

5v 5 

= ( - l ) k + 1 F 2 (F - 2F ) . • 
2r + l fc+8r+4 k+**r + 2 

( b ) FkFk+er * Fk + hr 

:+12r. + 

_ [a3fe+12r _.g3k+12r + 3 ( J l ) * + l ( a * + ̂ - _ gk + I f r)B 

= (""1 )^-+ 1{afe(a1 2 r - 3 a ^ + 2) - 3 k (3 1 2 2 3 - 3 3 ^ + 2 ) } 
5/5 

= , ( ~ 1 ) ' ^ 1 { a f c ( a ' , r - l ) 2 ( a 1 , r + 2) - 3*((3I,r - lMB"2" + 2 ) } 
5/5^ 

= - ^ ^ { a * + ^ ( a 2 j - - g 2 r ) 2 ( a ^ + 2) - 6 * + ^ (a21" - B ^ ) 2 ( B ^ + 2 )} 

Also solved by P. Bruckman. 

= - ^ { ( a f c - 3k) [a2 f c + 1 2 r . + 3 2 * + 1 2 r + 2 ( - l ) ' : + 1 ] 
5/5 
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Square Your Cubes 

H-291 Proposed by George Berzsenyi, Lamar University, Beaumont, TX. 
(Vol. 16, No. 6, December 1978) 

Prove that there are infinitely many squares which are differences of 
consecutive cubes. 

Solution by Bob Prielipp, University of Wi sconsin-Oshkosh, WI. 

Clearly9 it suffices to show that the equation (x + I ) 3 - x3 = y 2 has 
infinitely many solutions (x, y) where x and y are positive integers. But 
the preceding equation is equivalent to (2y)2 - 3(2a? 4- l ) 2 = 1. Hence, we 
need only determine the solutions of the Pellfs equation u2 - 3v2 = 1 in 
positive integers u9 V such that u is even and V is odd. Its least solution 
in positive integers is u 0 = 2, vQ = 1. Thus, all of its positive integer 
solutions are contained in the infinite sequence (uk9 Vk) 9 k = 1, 2 9 ...9 
where 

ufe + 1 = 2uk + 3vk and Vk 1 = uk + 2vk* k = 05 1, 2, ... . 

[The preceding is an immediate consequence of the following result which is 
generally established as part of the theory involving Pellfs equation: All 
of the solutions of the equation u2 - Dv2 = 1 in positive integers are con-
tained in the infinite sequence 

( U Q 9 VQ)9(ul9 v1)9 (u2, v2), 
where (u0s v0) is the least positive integer solution and (uk, Vk) is defined 
inductively by uk+1 = uQuk + DvQvk, vk+1 = v0uk +uQVk, k = 1, 25 — .] 

It is easily seen thats if uk is even and Vk is odd9 then uk+1 is odd 
and Vk+1 is even. Also9 if uk is odd and Vk is even, then uk+1 is even and 
y.+1 is odd. This implies that all of the solutions of the equation 

u2 - 3v2 = 1 

in positive integers u 9 V with u even and V odd are \ulk , v2k) where k = 09 

1, 29 ... . Therefore9 the equation (x + 1 ) 3 - x3 = y 2 has infinitely many 
positive integer solutions. 

Also solved by H. Klauserr P. Bruckman, E. Starke, L. Somer, G. Wulczyn, W„ 
Brady, S» Singh, G. Chainbus\, and the proposer. 

Get the Point 

H-292 Proposed by F* S. Cater and J. Daily, Portland State University, 
Portland, OR. (Vol. 16, No. 6, December 1978). 

Find all real numbers r e (09 1) for which there exists a one-to-one 
function fr mapping (09 1) onto (09 1) such that 

(1) fr and f'1 are infinitely many times differentiable on (09 1) 9 and 

(2) the sequence of functions 

J T s Jv Jv 9 J v Jv Jr 9 Jy? J -p Jx> Jp 9 • • <• 

converges pointwise to r on (0, 1 ) . 

Solution by the proposers. 

Let q denote the golden ratio %(-l +./5), let f(x) = 1 - (1 - x2)2 and 
g(x) = f(x) - x. Then f(q) - q = g(q) = P by inspection and grr(x) - -\2x2 4- 4 
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changes sign once in (0,1), from positive to negative. Since ^(0) = g(l) = 
09 it follows that g(x) < 0 for 0 < x< q and g(x) > 0 for q < x < 1. Also 
/ and f'1 are evidently increasing on (0S 1), so for any xe (0, q)9 

x < rHx) < Xf'1 ° f1)^) < if'1 o f-i o / - i ) (a?) < . . . < q , 

and for xe (q9 1) , 

x > rHxy > e r 1 o r1) («) > (r1 ° r 1 ° r 1 ) (*) > • • •' > 4* 
In either case, this sequence converges to some point we (0, 1). Since f'1 

is continuous at w9 /_1 (w) = w.' But q is the only fixed point of / and of 
f'1 in (0, 1), so w = q. Thus, 

r1* f^of-K r1 of-1 of-\ ... 
converges pointwise to q on (0, 1) . Also, 

f'Hx) = (1 - (1 - xt>f\ 
so / and f'1 are both infinitely many times differentiable on (0, 1). More 
generally, put t = (log q) / (log r) . Then, fr (x) = (.f"1^))^ satisfies (1) 
and (2). Thus, all numbers re (0, 1) satisfy the requirements of the prob-
lem. 

RomcUi\l» Functions similar to fT given here were studies by R. I. Jewett, in 
"A Variation on the Weierstrass Theorem," PAMS 14 (1963);690. 

The Old Hermite 

H-293 Proposed by Leonard Carl itz, Duke University, Durham, N.C. 
(Vol. 16, No. 6, December 1978) 

It is known that the Hermite polynomials {Hn(x)}nssQ defined by 

n = 0 

satisfy the relation 

l£Bn + k(x)%- = e**'-**nk(x - * ) , <fc = 0, 1, 2, . . . . ) . 
n = 0 n' 

Show that, conversely, if a set of polynomials {fn(x)}™=0 satisfy 

(i) L/»+k(«)f7-E/»(«)fr-A<"-»)» (fe = °> !• 2> •••>» 
n = 0 w = 0 

where /0 (a:) = 1, /x (#) = 2xs then 

/„(*) = #„(*), (n = 0, 1, 2, . . . ) . 

Solution by Paul F. Byrd, San Jose State University, San Jose, CA. 

Let 

(1) G{X, z) = X> ,» f r , 
n = 0 

£(*, 0) = fQ(x) = 1, f-six) = 2x 
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denote the generating function for the set of polynomials {/„(#)}. Then the 
given relation can be written as 

(2) Z 4 + k t o ) S r = G(x> z)fk(x - *>. (& = 0, 1, 2, . . . > . 
n = 0 

Multiplying this by uk/kl and summing yields 

znuk 

. .. . .. ,n\V\ 
fc=0 n=0 k=0 

Now with the use of Cauchyfs product rule, the lefthand side of (3) becomes 

znuk \T * r N V* «n"k"k 

fc = 0 n=0 n = 0 k=0 

(2 + UY 

<3> E E /„+*<*>S£ -G -̂ s > E ^ - *>*f 

(4) E E £+*<*>;$£= E /»<*> E fe!(n -ul)\ 

= E/Bfa> n! = ff(x's + M)-
But the righthand side of (3) is clearly equal to G(x, z)G(x - z9u). Thus, 
from (3) and (4), we have the functional equation 

(5) G(x9 z + u) = G(xs z)G(x - z9 u) 

whose unique solution is 

(6) G(x9 z) = elxz~z\ (for any value of u) . 

But, this is precisely the same well-known generating function for the Her-
mite polynomials Hn(x). Hence, 

(7) *2"-'t-Zfnl*>£-
n = 0 

and it follows from TaylorTs theorem that 

<•> ft«---[^'-,-,,]..1 
with fQ (x) = 1 = #0 (x), f1 (x) = 2x = H1 (x) . 

Also solved by P. Bruckman, T. Shannon, and the proposer, 

(-l)"e«2 • -^-(e*») = ff (x)', 


