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June 269 1921-August 11,1980 

Founding Editor, &e Fibonacci Quarterly 

With the end of summer came the end of the life of our editor, whom many 
of us loved and respected deeply. His passing has left a void that may never 
be filled for those who knew him either as a man or as a researcher. 

Dr. Hoggattfs life was marked by dedication to the study of the properties 
of the Fibonacci sequence. His production and creativity were astounding. 
He wrote more than 150 research papers, which have appeared in numerous pres-
tigious mathematics journals. He wrote a book on Fibonacci numbers, and was 
the editor of three other books. In addition, he was commissioned to write an 
article on Fibonacci numbers for the Encyclopaedia Britannica. 

He guided 38 masterfs theses and one master's project, co-authored papers 
with some of the outstanding mathematicians of the world, was an enthusiastic 
conference speaker for mathematical societies several times each year, and the 
organizer of approximately 25 Fibonacci research conferences in the San Fran-
cisco Bay Area. 

Dr. Hoggatt, Brother Alfred Brousseau, and I. Dale Ruggles founded The 
Fibonacci Association, and in 1963 he and Brother Alfred started The Fibonacci 
Quarterly, of which Dr. Hoggatt had been the general editor for 18 years. 

Dr. Hoggatt received his M.A. under Dr. Howard Eves, and his Ph.D. under 
Dr. Charles C. Clark at Oregon State University. For the past 27 years, he had 
taught in the Mathematics Department at San Jose State University. 

Even with as many as fifteen research projects going on at the same time, 
teaching full time, editing the Quarterly, and helping his wife, Herta, raise 
their family, Dr. Hoggatt always found the time to encourage his students and 
discuss their problems. He always had a ready smile and a quick witty pun. 

We loved him and shall miss him. 

MatLjosbLe. B^ckmLt-Jokmon 
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GENERALIZED FIBONACCI NUMBERS 

ANNE SUVA 
University of Santa Clara, Santa Clara, CA 95053 

VERNER E. HOGGATT, JR. 
San Jose State University, San Jose, CA 95192 

The sequence of generalized Fibonacci numbers is composed of terms de-
rived from Pascal's triangle. The nth term of the sequence, Uns is equal to 
_-u 4= ' n' *. • n + P ~ 1 r *.i. *- (n - (i - l)p - l\ - . , 
the sum from ^ = 0 to % = —̂= of the terms I . r J, which 

p + 1 \ ^ /' 
represent binomial coefficients. 

In the left-justified form of Pascal's triangle, un equals the sum of 

( Yi + V — 1\ 
^ 1 term and the terms taken successively p units up and 1 unit 

over. For p = 09 this generates the powers of 2. For p = 19 the resulting 
sequence is the Fibonacci numbers. 

The sequence for p = k9 any given constant, begins as follows: 
u0 Ul U2 ••• Uk Uk+1 Uk+2 uk+3 ••• 

1 1 2 . . . k k+l k+2 k+k ... 

The rest of the sequence can be generated using the recursion formula 
Un = Un-1 + ^n-k-1 ' 

There are four important properties related to representations of inte-
gers which apply to the generalized Fibonacci sequence. 

1. Completeness—Every positive integer N can be expressed as a sum of 
distinct un terms: 

N= a1u1 + a2u2 + a3u3 + ••• + a<mum, a^ e {0, 1}. 
2. Zeckendorf Form-—Every positive integer N has a unique representa-

tion using a minimal number of un terms a^a^ + J- = 0 for 1 <_ j <_ k. 
3. Second Canonical Form—In this form, any positive integer M which 

contains u1 = 1 In its representation has this u1 replaced by uQ = 1. This 
form is also unique for each positive integer. 

4. Lexicographic Ordering—Both the Zeckendorf and Second Canonical 
forms of representations are lexicographic orderings meaning that, when com-
paring two numbers M and N9 M > N iff M has the larger coefficient for ui9 
where u^ is the first summand for which the representations of M arid N dif-
fer, going from highest to lowest. 

The set of positive integers can be partitioned into k+l sets, using 
representations in terms of generalized Fibonacci numbers. Since the se-
quence of generalized Fibonacci numbers is complete with respect to the pos-
itive integers, each positive integer N is the sum of distinct un terms. 
The partitions are made according to the subscript on the smallest un term 
used in the Zeckendorf representation of an integer. If the subscript is 
congruent to i modulo (k+ 1), then that integer is an element of the set Ai. 
Every integer is an element of one and only one set A^ for \^i<_k+ 1. The 
notation Ai(ji) denotes the nth element of the set Ai9 when the elements are 
listed in natural order. 

A Art) = R + 
um(k+i)+i9 wbere R denotes the representation of N minus the 

smallest summand. 
can be rewritten using the recursion formula: 

un = un_1 + un_k_19 

lm(k + l) + i = Um(k + I)+i-l + Um(k +1) +i-(k +1) = Um(k+l) + i - l + u(m -l)(k + 1) + i 

= Um(k+l)+i-l + U(m-l)(k+l) + i - l + U(m-2Kk+l) + i 
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Thus, ̂ (n) - U
m(k + D + i "*" ̂  c a n ^ e rewritten 

^i(n) = u^ + Rf
9 1<. i <. k + 1. 

i?' is the rest of the representation of i{(n)s so 

^(n) = ui + ai + 1ui + 1 + ai+2ui+2 + oti + 3Mi + 3 + ••• + amun. 
There are two mappings which are useful in discovering properties of 

the partitioned integers. The first is /, which advances by 1 the subscripts 
on the summands of N when N is written in Second Canonical form. The second 
mapping is f*9 which performs the same function as / on N when N is written 
in Zeckendorf form. 

Ai{n) = ui + ai + 1ui + 1 + ai+2ui+2 +--- + anun. 

AiM - ^ ui + 1 + ai+1ui+2 + ai + 2ui + 3 +••• + anun + 1 = Ai + 1(n) . 

By lexicographic ordering, Ai(n) is mapped by f onto the nth element of Ai + 1 , 
2 <_ i <. k. 

A-^iri) = uQ + a2u2 + &3u3 +'*' + ô Mp, in Second Canonical form. 

A1 (n) — ^ w1 + a2w3 + a3wlf + • • • + awMw+1, 

which is an element of A1. 

4k+1(w) = uk + 1 + a.k + 2uk + 2 +-•• + amum. 

A k + l ^ ^~*Uk+2 + ak + 2Uk + 3 + e " ' + a»M»,+ l-

By the recursion formula, wn = «„_! + un_k_19 uk + 2 = wfc+1 + u1. 

^ + i<>0 ~ ^ Mi + Mk + i + ak + 2wfe + 2 +""• + amww+1, 
which is an element of A±> 

Since A^ 9 A 2 3 »•«$ ^-k + 1 
cover the positive integers, we have that every 

integer n is mapped by f onto the set (^U A3 U Ak U . . . U Ak + 1) . By lexi-
cographic ordering, n is mapped onto the nth element of this set. Call this 
set E1. Then n -£-± H1 (n) . 

An element of the set H1 is mapped forward onto 
(A1 U Ah \J A5 U ... U Ak + 1)9 

since each set except A± and Ak + 1 map forward one set and these two map onto 
A1. Call this second set H2 : n -L± E1(ri) -J~+ E2(n) 

In general, 
E^n) = (A1 U Ai + 2 U Ai + 3 U ... U Ak+1)(n) and H^W-*-+ Hi + 1(n) 

for 1 <. i <_ k - 2. For i = k - 2, 

Ek.2W) - ^ Ek_^{n) = U x U ^ + 1 ) ( n ) . J^-i (w) -̂ -> ̂  (n) . 

n - U ^(w) - ^ #2(n) -*->• E3(n) -*->...-£-> Ek_1(n) - ^ A1(n) . 

Now u s i n g the / * mapping, 

A-L (n) = wx + a 2 u 2 + • • • + amum >- u 2 + a 2 u 3 + • • - + dmum+1 = ^ 2 ( n ) . 
In g e n e r a l , 

Ai{n) = Ui + ai + 1ui + 1 + - - + amum-r-y Ai + 1 (n) 

^ + 1 0 0 = wi + 1 + ai + 1ui + 2 + • - . + amum+1, fo r l < i < L 
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f* and f are the same mappings except when applied to elements of A 1 S the 
only elements whose Second Canonical and Zeckendorf forms are different. 

(1) n-1^ H1(n)-L^ #2(n)-^- ^ Hk_1(n)-1^ A^n)11* A2in) - ^ . . . ^ Ak + 1(n) . 

The mappings can be used to identify a further relationship between the 
Ei and Ai sets. By (1) above, n is mapped by k successive applications of / 
onto A,(n). Denote this 

n > A (n) . 

n = a1u1 + a2u2 + • • • + amum • u1 + a2uk + 2 + • • • + amuk + m = A1(n). 

A^n) - ^ u2 + a2ufe + 3 + - . . + amuk + m+1 = 4 2 ( n ) . 

n + A^ri) = (u1 .+ w1) + a 2 ( u 2 + wfc + 2 ) + • •• + am(um + uk + m ) . 
Using the recursion formula, 

Mn =w„-i + wn-*-i> ^ i W + n = w2 + a2ufc+3 + ••• + amuk + m+1 = 42(n). 

By similar proofs, any element plus its image k steps forward in the 
scheme described in (1) equals the element one step further in scheme (1). 

(2) A1(n) + n = A2(n), 

Ai{n) + Bi_1{n) =*Ai+1(n) for 2 <_i <_k. 

Here is an example of the representations, partitions, and mappings for 
k = 3. 

The sequence of un
fs for k = 3 begins as follows: 

1 1 2 3 4 5 7 10 ... 

1 = uQ - ^ M l = 1 = ̂ ( 1 ) 

2 = u2 -->• u3 = 3 = #x(2) 

3 = w3 - ^ i^ = 4 = ̂ ( 3 ) 

4 = uh -J~^ u5 = 5 = ̂ ( 4 ) 

5 = uQ + w4 —̂ -> u± '+ u5 = 1 + 5 = 6 = H1 (5) 

6 = u0 + u5 -^-> w1 + w6 = 1 + 7 = 8 = Fx(6) 

7 = u2 + u5 -£-* u3 + u6 = 3 + 7 = 10 = H1(7) 

8 = u0 + w6 -£•»• w1 + w7 = 1 + 10 = 11 = ̂ ( 8 ) 

9 == w2 + w6 - ^ u3 + u7 = 3 + 10 = 13 = ̂ ( 9 ) 

10 = u3 + w6 -£-»• uh + u7 = 4 + 10 = 14 = F1(10) 

The other mappings described in scheme (1) are derived in a similar man-
ner. The array for k - 3 from 1 <. n <_ 10 follows: 

43(n) ^(n) 

3 4 
10 14 
13 18 
17 23 
22 30 
29 40 
36 50 

n 

1 
2 
3 
4 
5 
6 
7 

^(n) 

1 
3 
4 
5 
6 
8 
10 

H2 (n) 

1 
4 
5 
6 
8 
11 
1.4 

M W ) 
i 
5 
6 
8 
11 
15 
19 

A20 
2 
1 
9 
12 
16 
21 
26 
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n H1(n) H2(n) A1(n) A2(n) A3(n) Ah(n) 

8 11 15 20 28 39 54 
9 13 18 24 33 46 64 
10 14 19 25 35 49 68 

Examining this array, it is soon apparent that the differences between 
successive elements in a given set depend on which set the subscript belongs 
to. Thus9 it is necessary to add another layer of subscripts to discuss these 
differences. We want to find a general description for 

AjUiW + 1) ~ AjUiOt)). 
Denote this difference, M ^ f i ^ n ) ) , as hg(j 9 i) . 

The simplest case to start with is hg(l9 2)., The first step is to notice 
that by applying lexicographic ordering to mapping scheme (1), we can see that 
that number of integers N £ H1(n) must equal the number of elements of A± that 
are <_A2 (n) . The same idea applies to any two pairs of numbers an equal num-
ber of sets apart in the mapping scheme. 

Since the number of integers N <_ H1(n) = E± (n), we have that #A± elements 
<_A2(n) = # (n) . Thus, the largest A element <_ A 2(n) is A1 (H1 (n)) . 

A2(n) = u2 + a3w3 + •• •-. + umum. 
Since u2 = 2, 

A2(n) - 1 = 1 + a3u3 + ••• + amum = u1 + a3u3 + ••• + amum e A±. 

Since we are dealing with integers, the closest two elements can be is 1 apart. 
Thus A2(n) - 1 is the largest element less than A29 and since we know it is an 
element of A19 it must be i41(^1(n)). 

A1(H1(n)) + 1 = A2(n). 

The set E1 excludes A2 elements, so A± (A2 (ft) ) cannot equal any A1(H1) ele-
ment. A1(A2(n)) + 1 i A2. 

A An) = u1 + a2u2 + ••• + anun« 
Since u1 = 1, 

A1(n) + 1 = 2 + a2u2 + ••• + anun. 

We know that A1(A2(n)) + 1 does not belong to A2» Adding 1 to A 1(A2(n)) must 
change the representation so that u2 is not used,, Since in the Zeckendorf form 
and the Second Canonical form we are dealing with you cannot have terms in the 
representation closer than k subscripts apart, Al{A2{n)) + 1 cannot be an ele-
ment of A39 Ah, ...9Ak+1. By process of elimination, A1(A2(n)) + 1 is an ele-
ment of Ai> By lexicographic ordering, it must be the next element after the 
A2(n)th element. 
(3) Agr(l, 2) = 1. 

Next we want to find A^(l, i) for 3 <_ i <_ k. We know from mapping scheme 
(1) that n —£->• H1(n), Therefore, Ai(n) -£->• H1(Ai(n))a But we also know from 
the mapping scheme that Ai(n) -l^Ai + 1(n) for 2 <_ i £ k9 since f and f* are the 
same mappings for these elements. Thus, 

(4) H1(Ai(n)) = Ai+1(n), 2 <i ±k. 

By lexicographic ordering and mapping scheme (1)5 i\A^ elements £ A^^{n) = 
#n!s <_ H1(n) = H1(n) . 

^i + i(n) = ui + i + ai + 2Ui + 2 + • • r • + o.mun. 
ui + i = i + I for 0<_ z <_ k9 so Ai + 1(n) - 1 = i + ai + 1 + •• • + amum e ̂  . 

^ 
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We know that there are #x (n) elements of A^ £i4^ + 1(n). Therefore, the 
largest ̂  <_ A^ + 1 (n) ±s Ai{E1(ji)) . We know that A^ + 1 (n) - 1 e At , and that 
this is the closest any 2 integers can get. Therefore, 

(5) Ai(H1(n)) + 1 = ^ + 1(n), for I <i <k. 
Equation (5) can be generalized further. By lexicographic ordering and 

mapping scheme (1) , Mi elements £ Ai+ j(n) = #n's £ Hj (n) =FJ- (n) , for l±i<_k\ 
l<j<k-l; 1 < £ + J < / C + 1 . Thus the Fj-(n)th element of Ai is the largest one 

wi + J- = £ + J for l £ i + J£^ + 1, so 

Ai + d{n) - J = ̂  + ai+j + iui+j+i + • • • + a A . 

£ = ui for 1£ £ £ & + ! , so 

At+j(n) - j e A^. 

By mapping scheme (1), the closest any 2 elements of A^ andA^ + j can be is j 
units apart, so Ai + J-(n) - j is the largest A^ element <_ A^ + J-(n) . Thus, 

(6) 4 i f e ( n ) ) + j =Ai + j(n) fo r l £ i £ f c ; l £ j £ f c - l ; 1<_^ + j <_fe+ 1. 

^ O M ^ i - i <">))'+ ! - ^ U j n ) ) + 1, by (4) , 
^ ( f f iUM(n))) +• 1 -A2(Ai_1(n)) b y ( 5 ) . 

T h U S (a) ^ ( ^ W ) + 1 = ^ 2 U i _ 1 ( n ) ) . 
^ 2 ( ^ 3 ^ ) ) + i - 3 = ^ _ x ( n ) by ( 6 ) . 

# ; _ 3 = ( ^ U ^ . i U Ai_1\J Ai U ••• LUfe + 1 ) by d e f i n i t i o n of ̂  ( see p . 291 ) . 
Thus Ai_1(n) e Hi_3, and A2{Ai_1(n)) + i - 3 e Air.-L9 say Ai^{t) . 

i 4 2 ( F i . 2 ( w ) ) + i - 2 = i^ (w) by ( 6 ) . 

Hi-2 = (^i U ̂ ^ U • • • U ;4fc + i ) by d e f i n i t i o n of Hi. Thus Ai.1(n) i Hi-2> a n d 

i 4 2 U * - i ( w ) ) + i - 2 i A€. 
A2(Ai,1(n)) + i - 2 = Ai_1(t) + 1 i A.. 

Ai,1(t) = ut_Y + a ^ + . . . + amum. 
Adding 1 to this particular A$_x element must change the representation so 
that a Ui is not used. Since, in Zeckendorf and Second Canonical form, no two 
summands can have subscripts closer than k units apart, Ai_1(t) + 1 cannot use 
any summands from u2 9 us 9 ... up to uk+1. This means that ̂ 4^_1(t) + 1 $ A2, 
A3, ... up to Ak + 1 . The-only remaining set is A±. 

From (a) above, A1(AiM) + 1 = A2(Ai_1(n)) . A2(Ai_1(n)) +i - 2 e A1, 
and this must be the next Ax element after A1(Ai(n)) by lexicographic order-
ing. Therefore 

(7) &g(l9 -i) = I - 1 for 3 £ £ £ fc. 

The next case we will examine is hg(\9 1). Since n • •• Fx (n) , from map-
ping scheme (1) , 

•^(w) -J~h H1(A1M). 
From (1), we also know that 

A1(n) - ^ A2fyi). 

The only difference betweem the two mappings is that f maps u0 = 1 onto w = 1, 
while jf* maps u ' = 1 onto w = 2. Therefore, we know that 

^1U1(n)) + 1 = A2(n). 
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But we also know that A1{H1(n)) '+ 1 = A2(n) by (5). Thus 

(8) A1{H1(n)) = H1(A1(n)). 

By (4), ̂ (^(n)) = Ai + 1(n) for 2 <. i <_ k. H1(Ak+1(n)) is the only por-
tion of the H1 set not identified as a particular A i . #,_' = (^ U'i43 U A+ U . .. 
U i4k + 1 ) . ^3 , A4 , . . . , A k + 1 are taken by ̂  (Ai(n)) for 2 ^ £•< fc, and A± (#x (n)) 
is taken by H1(A1(n)). Since the elements of each set i { do not overlap, 
H1{Ak + 1(n)) must be an element of the only remaining portion of H : A (A2) . 
By lexicographic ordering, it must be the nth. 

(9) ^(4+1W) = A1(A2(n)) . 

MMM"))) + 1 =^2(4W) by (5) 
= ̂ (^(^(n))) + 1 by (8). 

Ai (#i (4 + i (n)) ) + 1 = 4 2 Ufc + 1 (n)) by (5) 
= A1(A1(A2(n))) + 1 by (9). 

(A1 U Ak + 1) = Hk-i* so the first line of each of the above two equations 
defines A2(Hk_1(n)). 

(H1 U A2) = all the integers; thus, the second line of each of the above 
two equations defines Ai(Ai(n)) + 1. 

Thus A2(Hk_1(n)) = A1(A1(n)) + 1 . 

A2(Hk 1(n)) +k- 1 = Ak + 1(n) by (6). 
So 

A1{A1(n)) + k = Ak + 1(n). 

Ak + 1M = uk + 1 + afc + 2Wfc + 2 + ••• + amwm. 

4 + i 00 + 1 = ^ + uk+1 + ak + zuk + z + •-- + cnmum9 

since 1 and k + 1 are k units apart, making the combination of u and uk + 1 
acceptable under Zeckendorf form. 

Ak+1(n) 4- 1 £ A l 9 since it has a uY in its representation. Thus 

A1(A1(n)) + k + 1 e 41 9 

and this must be the next A^ by lexicographic ordering. 

(10) A#(l, 1) = fc + 1. 

Finally, we examine A#(l, k + 1). ^i(^_i(n)) + (k - 1) = ̂ ( n ) by (6). 
Ak + 1(n) e Hk_19 so A1(Ak + 1(n)) + k - l e Ak. 

A1{A1(n)) + fc = A2(f//,_1(n)) + fc - 1 = Ak + 1(n) from the preceding argument 
for A^(l, 1 ) . 

A1(Ak + 1(n)) + k-t Ak + l9 since ̂  and A k + 1 are disjoint sets. 
A1(Ak + 1(n)) + k = ̂ fe(t) + 1. Since this ,4fe(t) + 1 is not an element of 

Ak+19 ±t can only be an A 1 element from the restrictions imposed by Zeckendorf 
f orm, 

A1(Ak+1(n)) + k e A l 9 and it must be the next A 1 by lexicographic order-
ing. 
(11) A#(i, k + 1) = k. 

Combining equations (3), (7), (10), and (11), we have that 

A#(l, 1) = k + 1, 
A^(l, i) = i - 1, for 2 <_ i <_ fe + 1. 

Since ul = 1 for l £ ^ ^ & + 1? we can restate this as 

A#(l, 1) = uk+19 

A#(l, i) = wi_1.' 
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Now we will use mathematical induction to prove what hg(js i) is equal 
t o . 

(12) *fc+j> I n d u c t i o n H y p o t h e s i s : A ^ ( j 5 1) 
A # ( j , i) = w7:+J_2s fo r 2 <_ i <_ k + 1, 

These differences apply for 1 •<_ j <_ k + 1. 
Equations (3), (7), (10) ,and (11) prove that the induction hypothesis is 

true for j = 1, establishing an induction basis. 
Assume 

(13) Ag(m, i) , for 2 £ i £ k + 1. 
(a) Am^{Ai{n)) = AjH^A^n))) + 1 by (5). 

AjE-^AiM)) + 1 = Am(Ai + 1(n)) + 1 by (4). 

Am(Ai+1(n)) + ui+„ 

(b) 

Am(Ai + 1(n) + 1) by assumption (13), for 1 <_ i <_ k. 

Ai + 1(n) + 1 e Hx for 1 <_i <_k. 

Since Am{H1(n)) + 1 = i4„ + 1(n) by (5), i4„,Ui + 1(n) + 1) + 1 e 4m + I 

Am(H1(Ai(n))) + 1 -i4m+1(4i(n)) from (13a) 
= Am{Ai+1(n)) + 1. 

Thus 

Thus 

and by (5) , 

4i, + i(M"» = ̂ »Ut +!<")).+ 1-
4n+i<M">) +ui+ m-1 Am{Ai + 1(n)) + M ^ . - L + 1 

4 m U i + 1(w) + 1) + 1 by (13). 

^ m U , + 1(n) + 1 ) + 1 e ^ + 1 by 13b), 

H + m-1 ' 

This must be the next A 9 so 
m+i 

A#0w + 1, i ) = ui + (777 + 1) - 2 

Thus f a r , assuming Ag(m9 i) = ui+m_2 has impl ied t h a t 
Ag(m + 19 i ) = ^ + ( W + I ) - 2 J for 2 <_ i <_ k. 

By mathematical induction, hypothesis (12) holds true for 2 <_ i <_ k. 
Assume 

(14) hg(m9 k + 1) *k+m-l and A#(tfz, 1) = ufe+OT. 

4n + iUfc+i ( w >) a ^ ( f f i ( 4 + i W ) ) + x b y (5> 
= ^ U x U 2 ( n ) ) ) + 1 by ( 9 ) . 

AjA^A^n))) + u , + w = i m ( ^ U 2 W ) + 1) by (14) 
= Am(A1(A2(n) + 1)) by ( 3 ) . 

AjA^n)) + 1 e H19 so ^ ( ^ (4 2 (n ) + l ) ) + 1 e J4W + 1 by ( 5 ) . 
P u t t i n g t h e l a s t few s t a t e m e n t s t o g e t h e r , 

4n + iUfc + i ( n ) ) + Wfc + OT e Am + 1. 
This must be the next Am+1 element by lexicographic ordering. 

Kg{m9 k + 1) = uk + m „ 1 implies hg{m + 1 , ^ + 1 ) = uk + m = ukHm^).^. 
Since Ag(j9 k + 1) = uk+j_1 was proved true for j = 1 in (11), and assum-

ing this statement true for j = m implies that it holds for j = m + 1, then, 
by mathematical induction Ag(j9 k + 1) 
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For the final case, we want to prove that Lg{m9 1) - <^k + m 

kgijn + 1 , 1 ) = wk+m+1-

An + i^iC")) = ^ i U i W ) ) + Iby (5) = Am(A1(H1(n))) + 1 by (8), : 
Am(A1(H1(n))) + uk + m = Am(A1(H1(n)) + l) by (14) = An(A2W) by (5), 

i4mU2(n)) + um = 4mU2(n) + 1) by (13). 

Since ̂ (^(n)) + 1 = 4m+1(n) by (5), and A2(n) + 1 e HlS then 

Am(A2(n) 4- 1) + 1 £ Am+1. 
Combining the above statements, 

Am + i ^ W ) + ^ + m + um e Am+1. 
This must be the next Am+1 element by lexicographic ordering. 

hg{m + 1, 1) = uk + m + um. 

By t h e r e c u r s i o n formula , un = un^ + un_k_is uk + m + um = M ^ . ^ , so 

A^OTZ + 1, 1) = uk + m + 1 . 

By mathematical induction, hypothesis (12) has been proved true. 

A#(j\ i) = ui + J-_29 2 <_ i <. fc + 1, 
Ag(j, 1) = uk+j 9 

for 1 £ j <_ fc + 1. 
Arrays for k = 1, 2, and 4 follow to help illustrate the difference for-

mula A^(i, j). The array for /c = 3 can be found on pages 291-292 above. 

k = 1: The sequence of un
?s generated for /c = 1 in Fibonacci numbers is; 

UQ 

1 

Wo 

1 

u l 

1 

Ml 

1 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

u2 

2 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

w2 
2 

H^n) 

1 
3 
4 
5 
7 
9 
10 
12 
13 
14 

u3 

3 

^3 

3 

i 

w^ 

5 

^(n 

1 
3 
4 
6 
8 
9 
11 
12 
14 
16 

uh 

4 

A1(n 

1 
4 
5 
7 
10 
13 
14 
17 
18 
20 

u5 

8 

) 

u5 

6 

) 

u6 w7 

13 21 

A2(n) 

2 
5 
7 
10 
13 
15 
18 
20 
23 
26 

us u7 . 

9 13 . 

A2(n) 

2 
6 
8 
11 
15 
19 
21 
25 
27 
30 

uQ 

34 

A3(n) 

3 
9 
12 
16 
22 
28 
31 
37 
40 
44 
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k = 4: 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

u0 
1 

#i(n) 

1 
3 
4 
5 
6 
7 
9 
11 
12 
14 

ux 

1 
#2(n) 

1 
4 
5 
6 
7 
9 
12 
15 
16 
19 

iin L/t q 

2 3 
H3(n) 

1 
5 
6 
7 
9 
12 
16 
20 
21 
25 

uh u5 

4 5 
A^n) 

1 
6 
7 
9 
12 
16 
21 
26 
27 
32 

w6 
6 

42'(n) 

2 
8 
10 
13 
17 
22 
28 
34 
36 
42 

IA. -j LA, Q 

8 11 
A3(n) 

3 
11 
14 
18 
23 
29 
37 
45 
48 
56 

u9 ... 
15 ... 

Ah{n) 

4 
15 
19 
24 
30 
38 
49 
60 
64 
75 

A5(n 

5 
20 
25 
31 
39 
50 
65 
80 
85 
100 

Another question suggested by these arrays is: How many elements of a set 
Aj are less than a given n? To find the answer, we need a function that in-
crements only when it passes an Aj element. This function turns out to be the 
third difference of terms in successive Aj sets. 
(15) #A/s < n = S(j\ n) = Ak+5_d(n) - 3 ^ + w ( n ) + 3Ak+3_d(n) - Ak + 2^.(n)\ 

Vhoofc First j we need to define the sets Ak + 29 ̂  + 3, and Ak+h and show that 
their properties are consistent with those of 4 p i2, ...» ̂ fc+i-

f̂e-f-i(n) " ^ ^ i K + i ^ ) ' ^y maPPing scheme (1). 

^ U H 1 W ) =i41U2(n)) by equation (9). 

4fc + i(w) -£1>i41U2Cw)) -^-*42U2(n)) - ^ ^ ( ^ ( n ) ) , usin§ (1) 

with the subscript A2(n) instead of n. 
'i41(n) is mapped onto f̂e + 1(n) by k applications of /*. 

A1(n) = u± + a2u2 + •• • + amum > uk^1 + a2uk + 2 + • • • + amuk+m = Ak + 1(n). 

Ak + i^ " ^ uk+i + <VW + ' " + a A + ,+ i = Mi + u
k + i + a 2 ^ + 3

 + * 8 ' 

i41(n) = u1 +.a2w2 + ••• + afflum 

4fc+1(n) = ufe + 1 + a2wfc + 2 + ••• + amuk + m 

A^n) + Ak + 1(n) = wx + wfc + 1 + a2 (w2 + uk + 2) + -•• + am(um + ufc+w) 

= ui + w*-+1 + a2wfc + 3 + " " + a Mfc + w +i» 
by the recursion formula. 

^(w) + i4fc + i(w) = 4!(42(n)) . Relabel A1(A2(n)) as Ak+2(n). 
Since A2(n) and Ak+2(n) are also k applications of f* apart in the map-

ping scheme9 A2(n) + Ak+2(n) = A2(A2(n)) by the recursion formula, since 

Ak + 2(n) - ^ A2{A2(n)) . 
Re labe l A2(A2(n)) =Ak+3(n). 

S i m i l a r l y , A3(n) + Ak+3(n) = A3(A2(n)) = Ak + li(n). 

A#(fc + 2 , i ) = Ag(ls i) + A^(fc + 1, i) = u ^ + uk+i^ = Hfc + *, 
f o r 2 < i < / c + 1. 

A#(fc + 2 , 1) = A#( l , 1) + Ag{k + 1 , 1 ) = uk + 1 + u2k + 1 = u2fe + 29 

This r e s u l t i s c o n s i s t e n t w i th formula (12) above. 

Ag(k + 3 , i) = A#(2, £) + Ag(k + 2 , i ) = u + uk^i = w^ + i + 1 fo r 2 <i ±k+l. 
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Ag(k + 3 , 1) = A#(29 1) + Ag(k + 2 , 1) = uk + 2 + u2k+2 = u2k + 3. 
Ag(k + 49 i) = A#(39 i ) + A#(k + 3 9 i) = ui + 1+uk + i+1 =uk + i + 2 f o r 2<_i^k + 1. 
A#(k + 49 1) = A#(39 1) + Ag(k + 3 , 1) = uk + 3 + u2k+3 = u 2 f e + l f . 
Thus, equa t i on (12) can be extended t o cover 1 <_ j £ k + 4s 

A ^ ( j , i) = ui + j _ 2 9 2 <_ i <_k + 19 

Ag(j9 1) = uk+j. 

Now f u n c t i o n (15) i s de f ined for a l l v a l u e s of j and i . 

SU> n) = / M / s < n = Ak + 5_d(n) - Mk + ^d(n) + Mk+3-d(n) - Ak + 2-j(n) by ( 1 5 ) . 

To prove t h a t S(j9 ri) i nc rements only when p a s s i n g an Ad e l emen t , look a t 

S(j9 n + 1) - S(j9 ri) = A 5 ( j , n) . 

AS( j , n) = uk + 3_d+i- 3uk + 2 „ d + i + 3uk + 1_j+i~ uk_d+i fo r 2 <_ i £ fc + 1. 

AS(j9 ri) = (uk + 3_j + i - wfe + 2 - J . + ^) - 2(uk + 2_j + i - f̂e + i - j + ^) 

+ (w?c + 1_J- + i - uk_j + i)0 

Using the recursion formula, AS(j9 ri) reduces to 

u2_j+i- 2Ul_j + i-^ u.d+i = (u2 + i_3. - u1 + i_d) - (M1 + i_d - Ui.j). 
Looking at the series of un

fs, we find that the only time this function 
= 1 is when i = j, so AS(j9 ri) = (u2 - u±) - (u1 - u0) = 1 - 0 = 1. 

This happens because u^ = % for 1 £ - £ £ & + 1, and because, by the recur-
sion formula, U-i = 1 for -k < -i £ 0. Any other successive difference of 3 
consecutive u^ terms equals 1 - 1 = 0 for i > j or 0 - 0 = 0 for i < j. 

Thus, S(j» ri) increments 1 iff n e Aj for 2 <_ i <_k + 1. Since i = 1 
has a distinct difference, that case has to be proved separately. 

A5(j, n) = u2k + 5_d - 3u2k + h_j + 3w2/, + 3_J- - u2k + 2_d 

= (U2k + 5-j " U2k+h-j^ " 2(u2fc + Lf_J- + U2k + 3-3' 

+ (U2k + 3-j ~ U2k + 2-j) 

= uk + h_c- - 2uk + 3_j + uk + 2_j 

= (uk + h_3. - uk + 3_j) - (uk + 3._3. - uk + 2_j) 

= U3_j - M2_j. 

= 0 except for J = 1, when it equals 1. 

Thus, £(j9 n) increments 1 for i = 1 only when j also = 1. 
The function £(j, n) has been proved to be accurate to within a constant 

by examining A5(j, ri). If a constant were present at the end of the function, 
it would cancel out in the incrementation process. To find out the value of 
the constant, it is necessary to check S(j9 1) for 1 £ j £ ?c + 1. 

^(1) = 1, A2(l) = 2, ..., Ak + 1(l) = k• + 1, 

^(4,(1)) = Ak + 2(l) = i41(2) = k + 2, 

^ 2 U 2 ( D ) = Afc + 3(1) = i2(2) = • fe + 4, 

i43(i42(l)) = 4 + tfd) = ̂ 3(2) = k + 7. 

These values were derived from the difference formula (12) above. 

5(1, 1) = Ak+h(l) - 3Ak+3(l) + 3Ak+2(l) ~ Ak+1(l) 

= (k + 7) - 3(k + 4) + 3(fc + 2) - (fc + 1) = 0, 
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5 ( 2 , 1 ) = Ak + 3(l) . - 3Ak + 2 ( l ) + 3Ak + 1(l) - Ak{\) 

= (fc + 4) - 3(fc + 2) + 3(k + I ) - Zc = 1, 

5 ( 3 , 1) = 4 + 2 ( D - 34fc + 1 ( l ) + 3 4 f c ( l ) - ^ ^ ( l ) 
= (k 4- 2) - 3(fc + 1) + 3(fc) - (fc - 1) = 0 , 

Sti, 1) - V s - , - 3 ( 1 H + W
( 1 ) + 3 ^ + 3 . / l ) - ^ + 2- / ! ) 

= (fc + 5 - j ) - (k + 4 - j ) + (fe + 3 - j ) - (& + 2. - j ) 

= 0 fo r 4 £ j £ Zc + 1. 

F i n a l l y , 5 ( 1 , n) ~ Ak+h(n) -3Ak + 3(n) + 3Ak+2(n) - Ak + 1(n) , 

5 ( 2 , n) = Ak + 3(n) - 3Ak + 2(n) + 34fc + 1(w) - Ak(n) - 1, 

SO", w) = Ak + 5.j(n) - 3 4 + w (n ) + 3^ + 3 „ j . (n) - Ak + Zr.J9 

for 3 £ j £ fe + 1. 

REFERENCE 
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A NOTE ON TAKE-AWAY GAMES* 

ROBERT J . EPP AND THOMAS S. FERGUSON 
Department of Mathematics, UCLA, Los Angeles, CA 90024 

1 . SUMMARY 

Schwenk [1] considers take-away games where the players alternately re-
move a positive number of counters from a single pile, the player removing the 
last counter being the winner. On his initial move, the player moving first 
can remove at most a given number m of counters. On each subsequent move, a 
player can remove at most f(ri) counters, where n is the number of counters re-
moved by his opponent on the preceding move. In [1], Schwenk solves the case 
when f(n) is nondecreasing and f(n)>_n. This solution is extended to the case 
when f(n) is nondecreasing and /(!)_> 1» 

2. THE WINNING REPRESENTATION 

Let f(n) >1 be a nondecreasing function defining a take-away game. If a 
player whose turn it is to move is confronted with a pile of n _> 1 counters, 
let L(n) be the minimal number of counters he must remove in order to assure 
a win. Let L(0) = °°e Note that L(n) <_ n for n >_ 1 and that equality might 
hold. Note also that removing k counters from a pile of n is a winning strat-
egy if and only if f(k) < L(n - k). 

ThtQKom 2.1: Suppose f(k) < L(n - k); then k = L(n) if and only if L(k) = k. 

VKOO^1 Suppose that L(k) < k. By removing L(k) counters from a pile of 
counters, a player can then guarantee he will eventually remove the last of 
the first k counters, and that he will do this by removing £ < k counters. 
His opponent will than face a pile of. n - k counters and be able to remove at 

^Research partially supported by NSF Grant MCS 72-04591. 
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most /(£) £ f(k) < L(n-k) counters9 implying the opponent cannot win. Thus, 
removing L(k)<k counters is a winning strategy and k can be minimal winning, 
i.e., L(n) = k9 only if L(k) = k. 

Conversely, if L(k) = k and a player removes fewer than k counters, his 
opponent can eventually remove the last of the first k counters. Since the 
opponent will do this by removing I < k counters, and since 

fW <f(k) < L(n - k)s 

we see that the opponent can win. Thus, if L(k) =k9 then k is minimal winning 
and L(n) = k. 

The integers H such that L(H) = H form an increasing, possibly finite se-
quence Hj- satisfying the following theorems. 

n 
Tkto^m 2.2: If N = V HJ and if f(#, ) < HJ for i < n - 1, then 

dm^J Jh <> di tli + l 
^ = 1 

L(N) = HJr 
VKOO^i The theorem is true by definition when n = 1. Suppose the theorem is 
t r u e for n and 

w + l 
N =Y,\> fUJ{) < ffi<+1 , i < n . 

i = l 

Then f(Hj ) < Hj = L(N - HJ ) . But s i n c e L(Hdi) = Hj , Theorem 2 .1 g ives 

comple t ing t he p roof . 

Tfieo/LgJTt 2 . 3 : Any p o s i t i v e i n t e g e r N can be w r i t t e n un ique ly a s 

i = ± 

VKOoh*. Let HJ = L(tf) and define 

Ei. - L(N - £ 5 4 ) u n t i l E ^ =N-
\ k-l / i - i 

f{Hh) < L(N - £ HJk - HA = L\N - £ ff, \ = ^ i + 1 for i < n - 1. 

Uniqueness follows easily from Theorem 2.2 and a simple induction. 
The winning strategy for the game is now clear. Represent the number of 

counters N as 
n 

N = Y]H- with f(Hj ) < HJ for i < n - 1, 
% = 1 

and remove HJ counters. 
d i 

3. CALCULATION OF THE Hi
ls 

To complete the picture, we have the following theorem on the calcula-
tion of the Hi ?s. 
IhdOKom 3.1: H1 = 1 and if f(Hj) >. H-, then ̂ . + 1 = ̂  + #£ , where 

#£ = min{#J/(#,-) >F,}. 

If f(Hj) < Hj, the sequence H± is finite and #j is the final term. 
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VK-OO^i H1 = 1 is obvious. If f(Mj) >. Ej9 define Hj + Ez as in the statement 
of the theorem. We must show that L(Ej + Ez) = E3- + Ez, and to do this, we 
show that 

f(k) >. L (Hd + Ez - k) for 1 <_ k < Hd + Ez . 

First, if Hz < k < Eg- + Ez> then k - Ez < Ed , and so 

f(k) >_ f(k - Ez) >_ L(Hd - (k - #£)) = L(^- + F £ - fc). 

If fc = #£, then 

f(k) = jf(ffA) .> /^ = L(Mj) = £ % + Ez - k). 
If 1 <. fc < #£, then f(k) >_ L(EZ - k) . But 

n 
Ez - k = ̂  ^ with / (#.,•. ) < ̂ i + i f or i <_ n - 1, and L(EZ - k) = ̂  -

. - £ = 1 
As a result, 

n 
HJ +Ei -k = E ^ + ^ . 

i = l 
and since #£ is the smallest Ei with f(Ei) >_ Ej , it follows that f(Ejn) < Ej . 
Therefore, Theorem 2.2 gives L(Ed + Ez - k) = Ej± = L(#£ - Zc) <_ /(&)." 

We have just shown that L O ^ + E z) = #j + Ez . To show that Eg- + Ez is 
indeed the next term in the. E^ sequence, we need only show that 

L(Hd + k) < Ed + k for 1 <_ k < Hz. 
But such a fc can be r e p r e s e n t e d as 

n 
k = ^2'Hd w i th / ( F j . ) < EJi + i f o r i <. n - 1, 

i = l 

and s i n c e Ej < Ez , we have / ( F j ) < F ^ . Hence, 

L(Ej + fc) = l / f > ^ + ^ = ^ <Ed +k 

by Theorem 2.2, and we have shown that Ej+1 = Ej + Ez. 
Suppose now that f(Ej) < Ej9- any positive integer JV can be written as 

N = k + tfz#-- where ks m > 0 are integers and 0 < k < E • . But we can represent 
k as 

re 

^ = X ) R3- w h e r e /(^jf ) < Hj. for i £ n - 1, 
i = i 

and since f(E3- ) £ f(Ej) < E- , the representation 
n 

N = S ^- , + Hi+ HJ + • • • + ffi 
t = l 

and Theorem 2.2 tells us that L(N) = ̂ ^ < Ej . Thus, F. is the largest Ei and 
the theorem is proved. 

It may be noted that take-away games with the last player losing may be 
played with the same strategy but regarding the pile as having one less coun-
ter than is actually the case. 
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ASSOCIATED STIRLING NUMBERS 

F. T. HOWARD 
Wake Forest University, Winston-Salem, NC 27109 

1. INTRODUCTION 

For v >_ 0, define the integers sr (n, /<) and Sr(n, k) by means of 

(i-^ (io§(i -xyi - 1Lxii*t= ( E ^ Y 
= k* / J s r ( n 9 k)xn/nl, 

n = (r + l)k 

( V \ k J oo v ^ oo 

^=0 / \j=r + l / n = (r + l)k 

We will call sr(ns k) the r-associated Stirling number of the first kind9 and 
Sr(n, k) the r-associated Stirling number of the second kind. The terminol-
ogy and notation are suggested by Comtet [69 pp. 2219 257]. When v - 09 we 
have s0(n, k) = (~l)n+ks(ns k) , where s (n, k) is the Stirling number of the 
first kind, and SQ(ns k) = S(ns k) is the Stirling number of the second kind. 
(In ComtetTs notation this is true when P = 1.) If we define the polynomials 
sr n(y) and SryTl(y) by means of 

(1.3) exph/ ]T X3'IQ\ - J2 srsn(y)xn/nl9 

(1.4) exV(y J x*/jl) = YJSr>n(y)xn/nl9 

it follows immediately that 

[ n / r + l] 
(1.5) s r , n ^ ) = S Mn* j)#J'* 
a n d [ n / r + 1] 
(1.6) ^ P , » 0 / ) = X ^ ( n > ^ J " » 

Since the r-associated Stirling numbers of the second kind have appeared 
in two recent papers [7] and [9]9 it may be of interest to examine their com-
binatorial significance, their history5 and their basic properties* We do this 
in §2, §39 and §4 for both the numbers of the first and second kind. Another 
purpose of this paper is to show how all the results of two recently published 
articles concerned with Stirling and Bell numbers, [7] and [16] can be gen-
eralized by the use of '(1.2), (1.4), and (1.6). This is done in §5 and §6. To 
the writer's knowledge, the p-associated Stirling numbers of the first kind 
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have not been studied before. Since most of their properties and formulas are 
analogous to those of the numbers of the second kind, it seems appropriate to 
include them in this paper,. 

2. COMBINATORIAL SIGNIFICANCE 

Let a19 a2» ̂ 35 •'•• be any strictly increasing sequence of positive inte-
gers* It-follows from [12, Ch. 4] that the numbers t(n9 k) and T(n9 k) defined 
by means of 

(2.1) (yx^IaX =klJ2t(n> ^"/n!» 
and V ^ 1 ' n l ° 
(2.2) / ^xa*Kad)\\k = klJ^Tin, k)xn/nl 

have the following combinatorial interpretation: t(n9 k) is the number of per-
mutations of 1, 2, ..., n having exactly k cycles such that the number of ele-
ments in each cycle is equal to one of the a^\ T(n9 k) is the number of set 
partitions of 1, 2, ..., ft consisting of exactly k blocks (subsets) such that 
the number of elements in each block is equal to one of the a^ . Furthermores 
if we define tn(y) and Tn (y) by means of 

•(2.3) expfz/^a^VajA = J tn(y)xn/nl, 
and 

(2.4) ex4yJ2x<2k/(a^1) ~%Tn(y)xnln\> 

it follows that 
n 

(2.5) tn(y) = £ * ( n , 3)yJ, 
and 

n 
(2 .6 ) Tn(y) = ̂ f ( n 5 j)yJ\ 

j - o 

Thus tn(l) is the number of permutations of 1, 2, ..., ft such that the number 
of elements in each cycle is equal to one of the a^9 and Tn(l) is the number 
of set partitions of 1, 2, . .., ft such that the number of elements in each 
block is equal to one of the a^. 

As Riordan [12, p. 74] points out, the presence or absence of cycles (or 
blocks) of various lengths can easily be included in the generating functions 
(2.1) and (2.2) , though the mathematics required to obtain numerical results 
may be very elaborate. There are many examples in the problems of {12, pp. 
80-89]. Other interesting examples can be found in [1] and [3]. 

It is clear, then, that the r-associated Stirling numbers have the fol-
lowing interpretations: 

The number sr.(n9 k) is equal to the number of permutations of 1, 2, . .., 
ft having exactly k cycles such that each cycle has at least r+ 1 elements. It 
is understood that in any cycle the smallest element is written first. The 
number sPjn(l) is equal to the number of permutations of 1, 2, .. ., n such that 
each cycle has at least r+ 1 elements. If we give a permutation with exactly 
j cycles a "weight" of yJ9 then sr}U(y) is the sum of the weights of all the 
permutations of 1, 2, ...» ft such that each cycle has at least r-h 1 elements. 

The number Sr(n9 k) is equal to the number of set partitions of 1, 2, . .., 
n consisting of exactly k blocks such that each block contains at least r + 1 
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The numb sr Sr n(l) is equal to the number of set partitions of 1, 2, , e ,s H 
such that each block has at least r + 1 elements. If we give a set partition 
with exactly j blocks a weight of yj\ then STi n (y) is the sum of the weights 
of all the set partitions of 1, 2, ..., n such that each block has at least 
v + 1 elements. 

3. HISTORY OF THE p-ASSOCIATED STIRLING NUMBERS 

The Stirling numbers of the first kind3 s(ns k), and of the second kind, 
S{n3 k)s were evidently first introduced in 1730 by James Stirling '[13, pp. 8, 
II], They are usually defined in the following way. 

n 

(3.1) (x)n = x(x - 1) . .. ^ r ~ n 4 * 1 ^ = 5 J s ^ n s j)̂ J"s 
J = 0 

n 
(3.2) xn = £ s ( n , o){x).. 

j=o 

It is not the purpose of this paper to review the history or well-known prop-
erties of the Stirling numbers; there are many good references, including [69 
Ch. 5], [10, Ch. 4], and [12, pp. 32-38 and Ch. 4]. We are using the notation 
of Riordan [12] for the Stirling numbers of the first and second kind. 

The numbers s^n, k) and S1(n5 k) were introduced in 1933-34 by Jordan 
[11] and Ward [17]- Using different notations, these authors defined ^(n, j) 
and ^(n, j) by means of 

k / \ 
(3.3) s(n, n - k) = (-1)* J^si (2k " *' k ' ^ U f c * - j ) s 

j = o \ J / 

(3.4) S(n, n - k) = J^S^lk - j, k - j ) ^ " . ^ 

The purpose of these definitions was to prove that s(n, n - fc)and£(n, n ~ k) 
are both polynomials in n of degree 2k, and also to show how s(n, n - &) and 
5(n, n - k) can be written as linear combinations of binomial coefficients. 
Formulas (3.3) and (3.4) can also be useful in determining s(ns n - k) and 
S(ns n•- k) when n is large and k is small. The generating functions (1.1) 
and (1.2) were not given in [ 11 ] or [ 17] . This approach to s1(n9 k) and S1(n9 k) 
is also discussed in [11, Ch. 4]. In [12, Ch. 4], the generating functions are 
given, and the combinatorial interpretations are thoroughly discussed. It is 
also shown that 

i+k, (3.5) (-l)n + *e(n, k) = ̂  [ ,)s1(n - j , k - j) . 

k k , v 

(3.6) S(n, k) = X)Q) 5i ( n " J° s fe ' n)s 

(3.7) si(w + 1, k) = nsj^in, k) + ns1(n ~ l5 k - 1), 

(3.8) 5x(w + 1, k) = kS1(ns k) + nS^n - 1, fc - 1). 
Applications for s1(n, k) and /S,1(n, fc) have been found; see [1], [4], and [5], 
for example. A good discussion of these numbers can also be found in [2], 

The p-associated Stirling number of the second kind, for arbitrary z>, was 
apparently first defined and used by Tate and Goen [15] in 1958. They made 
the following definition: 
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_ (-D*1 (K)A 

( 3 - 9 ) G ^ fe> = t -Df c" 'Zf c i , fc2 i . . . kr + 2>AlQ' 
where 

r 
A = A ( / c l 9 . . . , kr + 2) =n - Y*iki + 2> 

i - 0 

e - e a l 9 ..., kr+2) = n W)ki+z , 
i-0 • 

and the sum is over all ?c1, fc2 , ..., kr + 2 such that kx + k2 + ••• + kr + 2 = k9 
and 0 <_ /cz. <_ fc. For p = 0, (3.9) reduces to the familiar formula for S(n, k) : 

k . 

(3.10) G0(n9 k) = ^ r B " 1 ) k " J ' ( f ) ^ = 5 ( n' fe>' . 
j - o 

Now by induction we can show that Gr{n9 k) = Sr(n9 k) . It is true for p - 0; 
assume it is true for a fixed p. Then, by (1.2), we have 

' k 
X) kls

r + 1(n> W^rn/n! = I ]T ^ ' / j ! - ^ + 1 / ( P + 1) ! 
n = (r + 2)k V - r + 1 

£ = 0 \ j - r +1 / 

" Z £ (J)(-l>*"*[(r + D U ^ ^ K m D - ^ O n , i)ar"H 

By using (3.9) to rewrite Gr(rn9 i) and then comparing coefficients of xn
9 we 

have Gr + 1(n9 k) = 5r + 1(n, fe) . For example, we have 

(3.11) Sx(n, fc) = ^ r E ( - 1 ) ' ( j ) ^ ( m ) ( n ) ' " ( k " J')n"ra-

A formula equivalent to (3.11) was also proved by Carlitz [2], 
The r-associated Stirling numbers of the second kind have appeared in 

problems in [6, pp. 221-222] and [12, p. 102], Recently, Enneking and Ahuja 
[7] have used these numbers to extend earlier results of Uppuluri and Carpen-
ter [16] concerning the Bell numbers. In another recent paper the writer [9] 
has shown the relationship of Sr(n9 k) to the numbers Ar,n defined by 

(3.12) (x*M)( JV/j!) ^YfAVtnxn/nl. 
y-r / « = o 

The relationship is 
n 

(3.13) 4 r > n = J^ (-"rl^ j\n\Sr(n + rj9 j ) / in + PJ) !. 
j - i 

The number AliH is the nth Bernoulli number. 
Evidently, the P-associated Stirling numbers of.the first kind have not 

been studied, though they do appear in a problem in [6, pp. 256-257]. 

4. BASIC FORMULAS 

In [7] and [9] formulas for Sr(n9 k) and the polynomials defined by (1.4) 
and (1.6) were derived. The notation for Sv{n9 k) is dr(n9 k) in [7] and 
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b(r; ns k) in [9]. In this section we are concerned mainly with the analogous 
formulas for the r-associated numbers of the first kind. The following form-
ulas have been proved: 

(4 .1 ) Sr(n + 1, k) = kSr(n5 k) = Qsr(n - rs k - 1) , 
w i t h Sr(09 0) = 1, 

.. ukr 
(4-2) s*<n-»-Zm&j 

the sum over all compositions (ordered partitions) ul+u2+ • e ' + uk - n9 each 

(4.3) Srn(y) -f n':(iVyi (~€ S , .&), 
i = Q v / 

(4-*> 5,.1>nQ/) = L " ; f a ! - " p | ) V ^ . n - ^ ) . 

i = o * v y ' 

(4.5) ^ ( n , fe) - E •y-Kn2':)W) I gj(" ' J>' * " J'}' 
j =0 

W.6) Sr(n, fc) = E j - | ( w . ^ ) t
 sr-i(n ~ 3*, k - j) ,. 

<4-7) ^,n+i^) =/E(J)^,i(2/)-
It should be noted that there are misprints in formulas (5.14) and (5.16) of 
[9]3 which correspond to (4.7) and (4.4), respectively, in this paper. Also, 
in the table following (5.11) in [9], the value of g(69 2) is 10, not 0. We 
also note that the Tate-Goen formula (3.9) can be proved inductively by means 
of (4.6). 

We now look at the analogous formulas for sr(n, k) . First, we have the 
recurrence 

(4.8) sr(n + 1, k) = nsr(ns k) + (n)rsr(n - r, k - 1 ) , 

where in) T = n(n - 1) .. . (n - v + 1) and sp(Q9 0) = 1, sr(n9 0) = 0 if n + 0. 
We shall use a combinatorial argument to prove (4.8). In the permutations of 
n + 1 elements which have k cycles, each cycle containing at least v + 1 ele-
ments, enumerated by sr(n + 1, k), element n 4- 1 is in some p + 1 cycle or it 
is not. If it is not, it is inserted into one of the k cycles of n elements 
enumerated by sr(n9 k) , and this can be done in n ways. If it is, there are 
( ] ways to choose the other r elements of the v + 1 cycle, and since the 
smallest element must be first, there are r.\ ways the elements can be arranged 
in the cycle. Note that rl (^J = (ji)v . There are then n - r elements left to 
be arranged in k - 1 cycles. 

By comparing coefficients of xn on both sides of (1.1), we have 

(4.9) s(n5 k) = klu1u2 .,.. uk 

where the sum is over all compositions wx +.uz + «« » + uk = n9 each ui _> v + 1. 
This generalizes the formula for s(ns k) given in [10., p. 146, formula (5)]. 

Formulas analogous to (4.3)-(4.7) can be derived. From (1.3), we have 
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^srjn(2/)j;M/n! = expf y ^ ^ J7j') e*P(-yxr7r) 
« = 0 \ j* - r / 

n = 0 ' j- - o 

Comparing coefficients of a?", we have 

when fr(0) = 1 and for J > 0, 

(4.11) /p(rj) = (PJ)!/P(2P)(3P) ... (jV), 

that is, fv (rj) is the same as (PJ)! with every pth term divided out. With a 
similar argument, we have 

[n/r] 

(4-12) **-i.»<2/> " E L ' k W ^ ^ ^ - . j f e ) . 
j-o w / 

It follows from (1.5), (4.10), and (4.12) that 

k 
(4.13) sr(n9 k) = £ (~iy(")fr(^sr-i(n - rj9 k - j) ; 
and 

k . . 

(4.14) ^^(n, k) = ZXpj)J^( p j' ) S p ( n " PJ'5 fe " j)s j-o 

Equation (4.14) generalizes (3.5) and shows how to write sr_1(n9 k) as a linear 
combination of binomial coefficients. In fact it is not difficult to see from 
(4.14) and (4.5) that, for k > 0 and fixed v9 

(4.15) rmsr__1(rm + k9 m) = (rm + k) (rm + k - 1) ... mRk(m), 
and 
(4.16) (rl)mSr_1(rm + k9 m) = (rm + k) (rm + k - 1) ... mQk(m)9 

where R^(m) and Qk(m) are polynomials in 777 of degree k - 1. By differentiat-
ing (1.3) with respect to x and comparing coefficients of xn

9 we have 

n - r 

(4.17) s?)M + 1(i/) =^E( n )^ s^^ (^ )-
i = o 

If we define the numbers dT n by means of 

(4.18) (tf'/rM £>J'/j) = J2dr>nx\ 

then it follows from [9, formulas 4.11 and 4.12] that 

n 
(4.19) dP>n = £ (-DJ [/r Otf) (« + rj)„ ] "^p (« + iy, J) , 

•7 = 1 

(4.20) d ^ = J (-D'(} + })[/, W)(n + r ^ n ] " ^ , . ! ^ + itf, j). 
J = 1 ^ ' 

When r = 1 in (4.16), we have 
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(4 .21) -a?[ ln( l - x ) ] " 1 = £ dx x™9 
n = 0 

so t h a t dlt n = (-l)nbn3 where bn i s t h e B e r n o u l l i number of t h e second k ind 
[10 , pp . 265 -287] . Thus, by (4 .17) and ( 4 , 1 8 ) , we have 

n 

(4*22) bn = £ ( - l ) n + * [ ( n + AJ'Xfr + J> «?>» 

(4-23) bn = E ( - D * Q + } ) [ ( « + j O J ^ s C n + j , j ) . 

I t can a l s o be proved [ see 10, p . 267] t h a t 

n 
(4 .24) n!fcn = ] £ s ( w , fc)/(fc + 1 ) . 

fc = o 

We can compare formulas (4.22) ,. (4.23), and (4.24) to similar formulas involv-
ing the ordinary Bernoulli numbers and the Stirling numbers of the second kind 
[10, pp. 182, 219, and 599]. 

5. GENERALIZATION OF THE PAPER BY UPPULURI AND CARPENTER 

In [16] Uppuluri and Carpenter defined a sequence CQ , C. , C2 ... by means 
of 

(5.1) exp(l - ex) =^CdxJ/j\9 
j-o 

and they derived some formulas involving the C- and Bell numbers B19 B2, ..., 
defined by 

n 

In this section, we show how all the results of [16] can be extended by using 
(1.4) and (1.6). In Propositions 5.1-5.10, which correspond to Propositions 
1-10 in [16], we use the notation 

(5-3) S^n{y) = S„(y), 
so clearly Bn - Sn(l) and Cn = Sn(-l). We omit any proof which is obvious or 
which is analogous to the corresponding proof in [16]. 

00 

PAO position 5.1: sk(y) = ^"y^ymmk/ml» & = 0 , 1, 2 , . . . . 
m - 0 

VnopohiJlixm 5.2: Equat ion (1 .6 ) of t h i s pape r . 

Vflopo&AJxon 5.3: Equat ion (4 .7 ) of t h i s p a p e r . 
n 

VsiopotUlon 5.4: tfs^y) = £ ( - l ) n " 3 7 *.)Sd + 1(y) = ySn(y). 

Using P r o p o s i t i o n 5.4 and S±(y) = y, we can compute S2(y)5 . . . , Sn(y) f o r 
9 

^2(2/) = S1(y) + AS1(y) = 2/ + y2, 

small values of n. For example, AS^z/) = yS1(y) = y2
 s so 

and 
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£3Q/> =S2(y) +kS2(y) = S2(y) + A 2 ^ (y) + A ^ (y) 

= (y + y2) + (y1 + z / 3 ) + z/2 = y + 3y2 + yK 

i-y) = 0 , n = 1, 2 , . . . , and S0 (y) = 1. 
n / \ 

PJtapo^HUan 5 . 5 : £ ( ^ | S k Q / ) S n _ , 

n / \ 
?Hoipo*MM)vi 5 . 6 : £ ( ^ ) ^ - ( - 1 / ) 5 ' n + 1 - J - Q / ) = 2/» n = 0 9 1 , 2 , 

j - o ^ ' 

PKopoA£&L(m 5 . 7 : Same as P r o p o s i t i o n 5 . 6 . 

PsiopoAAjtion 5. St Let a^ = Si{y) III . Then 

(a) Sn<-2/> = (™Dnn! 

(-Dnn!^n, 

0 
ao 
a, 

0 
0 

an . . . 

0 
0 

0 

(b) ( - iVX(-y) =n<Y,(-Vkgn-k-iSk+1(y)/(k + i ) i . 
fc = 0 

Vsiopo&jjLLon 5 . 9 : 

sB+1(-*) = (-D' 

y 

y 

y 

I 

2/ 
22/ 

0 
1 

2/ 

0 . 
0 . 

1 . 

. . 0 

. . 0 

.. o 

(S) tt)» \nr 
In Proposition 5.9, the element in the £th row, jth column, for j <̂  

Tnopoiitixiyi 5.10: 

L(-y) = ( -D ' 

2/ 
y 

y/2 

1 
2/ 
y 

0 
2 
2/ 

0 . 
0 . 
3 . 

. . 0 

.. o 

. . 0 

y/nl yj(n- 1) ! 2//0! 

In Proposition 5.10, the element in the ith row, jth column,, for J <_ £, is 
yld - j)!. 

The proof of Proposition 10 in [16] is not given. A reference is given 
to a formula of Ginsburg [8] for the Bell numbers, but unfortunately Ginsburg's 
proof is obscure. Proposition 5.10 is easily proved, however, by multiplying 
the k + 1st row of the determinant in Proposition 5.9 by l/kl and the k + 1st 
column by k\ (k = 1, 2, ..., n). 

The motivation given in [16] for studying the numbers Cj defined by (5.1) 
is the following: Define B^k^ by 
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(5.3) Bn<*> -J^j+Stn, j). 
Then J'= x 

5n( 1 ) = £ n + 1 ~ Bn9 
Bn2 = 5 n + 2 - 2Bn+1, 

and these equations lead to a search for a general expression for 5^) ±n 
of the Bell numbers 5 , 5 n+i9 * e ' 5 Bn + k° It: i s sta-ted9 though not ac 
proved, that 

We now generalize this result by defining s£® (y) by 

(5.5) 

and showing that 

(5.6) 

For example9 

s„w(y) -2J^ £ 
J = I 

S^(y) = 5n+1(y) - ySn(j/), 

S{
n
2) (y) = 5n + 2(j/) - 2ySn + 1(y) + (y2 - y)Sn(y). 

To prove (5.6), we start with (1,4) with r = 0. Differentiating n 
with respect to x9 we have 

00 

(5.7) D(n)exVy(e*~ 1) = £ Sn+j(y)x<Vj! . 
j - o 

Now consider the numbers q(m) (2/) defined by 

(5.8) (exp 2/(1 - e*))Z)(n) exp 2/(0* - 1) = ]T q^} (y)xm/ml. 
m = 0 

It follows from (1.4), (5.7), and (5.8) that 

k 

^k)W =t*sA^sn+k-j(y)(j)-
j-0 

Now we show by induction that 

(5.9) q^k)(y) = S<tkHy). 
For n = 1, we have, from (5.8), 

ye* =Y,q(m)(y)xm/ml, 
m = 0 

SO 

q <*> (y) = y = S™ (y). 
Assume (5.9) holds for a fixed n, and also assume 

n 
D(n) exp z/(e* - 1) = (exp z/(e* - 1)) ]T exiS(n9 i)yi. 
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Then we have 

n 
(5.10) £(n+1)exp y(ex- 1) = (exp y(e*~ l))^exi{iS{n% i) + S(n9 i - l))y* 

i = \ 
n+l 

= (exp y(ex~ l))^\xiS{n + 1, i)yl. 
i = l 

Multiplying both sides of (5.10) by exp z/(l - ex) and comparing coefficients 
of x, we see that q^\\{y) = S^\(y) . 

6. GENERALIZATION OF THE PAPER BY ENNEKING AND AHUJA 

In [7] Enneking and Ahuja defined a generalized Bell number by 

n 
(6.1) Br(n) = J^Sr(ns j) , 

j=o 

and they were able to generalize some of the formulas in [16]. Note that 

Br(n) = £>,„(1). 

By considering SriU(y)s we can extend each of the twelve properties in [7]; 
Properties 6.1-6.12 in this paper correspond to Properties 1-12 in [7]. We 
omit any proof which is obvious or is analogous to the corresponding proof in 
[7]. 

Vfiop&vty 6 A 

Equat ion (1 .4 ) of t h i s pape r . 

Equat ion (4 .7 ) of t h i s p a p e r . 

VtlopeAty 6.3: Equat ion (4 .3 ) of t h i s p a p e r . 

VKopQXtvf 6At SliH(y) = e~yY^ym(rn ~ y)n/ml. 
m = 0 

VKOO^1 We have , from ( 1 . 4 ) , 

J^Slin(y)xn/nl = e'Ve'vyexpiye*) = e'v( ^{-y)ixi/i ! j | Y^ymexm/ml 
n = 0 ' \ i = 0 / V = 0 

CO °° 

7fl=0 n=0 

and Property 6.4 is proved when we compare coefficients of ̂ n. 
For Property 6.5, we need the following definition of Hr(x)i 

(6.2) exp y(ex - 1 - x - •-• - xr/rl) = (exp y(ex - l))#P0u), 

where 

(6.3) Hr(x) =Yjhr,i(y)xi/il9 P_> 1. 
i = 0 

Throughout the remainder of this paper we will also continue to use the nota-
tion of (5.3). 
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Ptwp&vty 6.5: Sr^n{y) = J ) ( * ) hr, i(y)Sn_i(y) , where 

K, n + l(2/> = -yY^\V\h*> n-j(y)> K, n W = ° f o r P -> ° * ^ r , 0 <2/> = * • 
j - o W 

To generalize (5,5)3 we make the following definition: 

(6.4) S^n{y) =YjmkSr(.n, m)ym. 
m = l 

k / \ 

PsiopeAty 6.7: S^Hy) = ^ > ( i / ) - i / £ ( J ) S™ (y). 
3-0 \ J / 

Now we want to generalize (5.6); that iss we want to express S^ n (y) in 
terms of the Sr n (y) . For example^ 

s^n(y) =sr,n+1(y) - ( ; ) ^ , . n - , ( 2 / ) . 

<2)»(*> - *,. n+2(2/) - » [ ( * : l ) + ( ; ) ] * , n+1_,.&> + H n ; P ) ( ; ) ^ , n - 2 ^ ) 

Ptopesuty 6.8: S^n(y) = ̂  5Z a-ij (rZs fe> ̂ n ^ - i - j ^ ) ' w h e r e 

i - 0 J = 0 

an_n(w, fc9 r ) = 1, ai<7-(n5 /c, 2?) = 0 i f j = 0 and i > 0S 

r 
m = k - i + j 

and 

a . , ( R 1 ) : + l ] r ) = a i j ( n l l , l c 1 r ) - j h £ a . + m _ , _ 1 ; ^ (n - r, m, r ) . 
\ / m=k - i + .1" 

When p = 0S we have 

(6.5) E a i j ( n s fe» 0 ) = (iW~^)s 

independent of n fo r £ = 1, 29 . . . 9 fc. L e t t i n g v = 0 in P r o p e r t y 6 . 8 3 l e t t i n g 
i = fe + 19 and summing on j , we have 

m = 0 x ' 

which ag ree s wi th P r o p o s i t i o n 5 . 3 . 
Now l e t 

(6.6) W^Uy) = Y,U)kST{n9 j)yi. 
j = . o 

We shall use the notation W0
{ „(z/) = W^k)(y). 

TMf**** 6.9: Wi^(y) = Wp
W

n + 1 (y) - W^n(y)-tyy(**<* «>,(*> +W<?H_r<y)). 
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PJiopeAtq 6.10: w^ + 1Ky) = W^\(y) - (fc + y)W?} (y) - ykW^'1^ (y). 

fa 

VAopoAty 6.11: W™Xy.) = £ a ? ( f c , * ' 2/>Sn + *-f(2/> » 
£ = 0 

where the w(/c, i , z/) s a t i s f y w(/c, 0 , y) = 1 and 

w(fe + 1, i , 2/) = w(k9 i9 y) - (k +• y)w(k, i - 1, z/) - z/fcw(fe - 1, i - 25 z/). 

For example, 

^ ( y ) = 5 n + 1 ( 2 / ) - y s „ ( y ) , 
w{

n
2)(y) - £'K+2(2/) - (21/ + D5M+1(y) + y25„(i/). 

It is noted in [7], without proof, that for y = 1 the w(k9 £, z/) are the 
coefficients of a special case of the Poisson-Charlier polynomials Pn(x) [14, 
p. 34]'.. These polynomials can be defined by 

k 
(6.7) Pk(x) =Y,p(k9 i9 u)xk'\ 

i~o 

(6.8) p(k9 i9 u) = £ (-Dd())u*'~ks0c - j\ k - i). 
j-o V J / 

(This definition is slightly different from the one given by Szego [14]«) We 
now show that when u = y, 

(6.9) w(fe, is y) = ykp(k9 i9 y). 
We prove (6.9) by showing that ykp(k9 i s y) satisfies the same recurrence 

as w(k9 i9 y) . For convenience, in the proof we use the notation p(k9 i) = 
ykp(k9 i9 y) . Then we have p(k9 0) = 1 and 

p(k + 1, i) = Y,(-l)4k "t * W + 1 - j, fc + 1 - i)y 
j - o V d I 

3 

[s(k-j9 k- i) - (fc- j)s(k- j9k + 1 *• £)]z/ 

= p(k, i) - £ (-1)^(5) s(fc - j, fc + 1 - i)z/J'+1 

Replac ing f . J b y ( . ) - ( . _ - ) , we have 

p(fc + 15 i) = p(fc, i ) - z/p(fc, i ~ 1) - fcp(fc, i - 1) - z/fcp(fc - 1, i - 2 ) , 
This completes the proof of (6.9). 

(k) 
Now we want to express WPt n (y) in terms of the Sr . (y). For example 

^l(y) = srtn+1(y) - (n
r)ysr,n.r(y), 

+ \r)y ~r jy2sr, n-irty')-

0 
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* i 
Vtwywty 6.12: w«>(y) = £ ^ ^ ( n , fc, 2>)Sr „ + f c _ w , ( j / - ) , 

i-0 j-0 

where the Z>„ (w, fc, r) satisfy b0 0 (n, k, r) = 1, ifc.(n, fc, r) = 0 for j = 09 
. .., k - 1, and J 

i^. (n, fc + 1, r) = £ - (n + 1, fc, r) - ^ . ^ .(n3 ks r) 

- ^)2/[fci-ifj-i(w - **» fe, ̂ ) + ^ i - 2 , j - i ( n " r> k ~ l s p ) ] e 
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THE DIVISIBILITY PROPERTIES OF PRIMARY LUCAS RECURRENCES 
WITH RESPECT TO PRIMES 

LAWRENCE SOMER 
U.S. Dept. of Agriculture, FSQS, Washington, D.C. 20250 

1. INTRODUCTION 

In this paper we will extend the results of D. D. Wall [12], John Vinson 
[11]9 D. W. Robinson [9], and John H. Halton [3] concerning the divisibility 
properties of the Fibonacci sequence to the general Lucas sequence 

(r» _ r » ) /( r i _ p 2 ) . 

In particular, we will improve their theorems for the Fibonacci sequence. 
Their results are inconclusive for those primes for which 

(5/p) = (™l/p) = 1, 

where (x/p) is the Legendre symbol for the quadratic character of x with re-
spect to the prime p. We will obtain sharper results in these cases. 

Let 

(T) un + 2 = aun + 1 + bun9 

where uQS ul9 a, and b are integers, be an integral second-order linear recur-
rence. The integers a and b will be called the parameters of the recurrence. 
If u0 = 0 and u1 = 1, such a recurrence will be called a primary recurrence 
(PR) and will be denoted by u(a9 b). Associated with PR u(a9 b) is its char-
acteristic polynomial 

x2 - ax - b = 0 

with roots r1 and v2 where r± 4- v2 = a and rxr2 = -b. Let 

D = a2 + kb = (r1 - r 2 ) 2 

be the discriminant of the characteristic polynomial. If D £ 0S then, by the 
Binet formula 

(2) un = (r? - vn
1)I(r1 - r2) . 

One other type of sequence will be of interest; the Lucas sequence v(a9 b) in 
which 

(3) vn+2 = avn+1 + bvn9 v0 = 2, Vl = a. 

As is well known, the Lucas sequence is given by the Binet formula 

(4) vn = vl + r». 
To c o n t i n u e , we need t h e fo l lowing d e f i n i t i o n s which a r e modeled a f t e r 

t h e n o t a t i o n of Hal ton [3] . The l e t t e r p w i l l always denote a r a t i o n a l p r ime . 

Vd^nAJtton I : v ( a , b9 p) i s t h e numeric of t h e PR u(a9 b) modulo p . I t i s 
the number of n o n r e p e a t i n g terms modulo p . 

Vt^AJbitiovi 2°> ] i (a , b9 p) i s t he pe r i od of t h e PR u(a9 b) modulo p . I t i s t h e 
l e a s t p o s i t i v e i n t e g e r k such t h a t 

un+k = Un (mod p) 
is true for all n >_ v(a, b9 p) . 

Clearly, if v(a9 bs p) = 0, 
uM(aibfP)E ° a n d wn(a,&,P)+iE 1 ( m o d p ) . 

316 
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VdjlvuXlon 3: a (a, b9 p) is the restricted period of the PR u(a9 b) modulo p. 
It is the least positive integer k such that 

un+k =' sun (mod P) 
for all n >_ v(a9 b9 p) and some nonzero residue s. Then s = s(a9 bs p) is 
called the multiplier of the PR u(a, 2?) . If uk = 0 (mod p) f or k >. v(a9 b9 p) 9 
we say that s(a, b9 p) - 0 by convention. 

VzjLvujtion 4: 3(a9 b9 p) is called the exponent of the multiplier s(a5 b9 p) 
modulo p. It is clearly equal to 

]i(a9 b9 p)/a(a9 bs p) . 

V^jhujtiovi 5: In the PR u(a9 b) the rank of apparition of p is the least posi-
tive integer, if it exists, such that uk E 0 (mod p) . 

We will restrict our attention chiefly to the PR's u(a9 b) s because, as 
we shall see, if b £ 05 then for these sequences the rank of apparition of p 
exists. By [10], primary recurrences are essentially the only recurrences hav-
ing this property. 

2. PRELIMINARY RESULTS 

The following well-known properties of Lucas sequences will be necessary 
for our future proofs. Proofs of these results can be found in the papers of 
Lucas [8] or Carmichael [2]. 

(5) In the PR u(a9 b) suppose that b f 0 (mod p) and that p ^ 2, 
Then 

Up-(D/p) = ° (m o d P) • 
( 6 ) um + n = bumun-l + unum+l' 

(7) ul - un_lUn + 1 = (~b)n~\ n>l. 

(8) v2
n - Du2

n = M-b)n . 

(9) M2n = M B . 

(10) If pf&P, then p is a divisor of the Lucas sequence v(a9 b) If 
and only if a(a9 bs p) = 0 (mod 2) for the PR u(a9 b) . Then 
the rank of apparition of p in t>(a9 b) is (l/2)a(as b9 p) . 

The following two lemmas will determine the possible numerics v(a9 b9 p) 
for the PR u(a9 b) modulo p. 

U M M _ J _ : in the PR u(a, b) if b 2 0 (mod p) , then v(a, b9 p) = 0 and a(a5 Z?9 p) 
is also the rank of apparition of p. Also, if uk = 0 (mod p ) , then 

a(a9 2?9 p) |fc. 
Further 

a(a9 &9 p) |p - (Dip). 
P/L00^: Since there are only p 2 possible pairs of consecutive terms (unS un+1) 
(mod p ) 9 some pair must repeat. Suppose that the pair (uk* uk+1) is the first 
such pair to repeat modulo p and that k + 0. Let 77? = y(a3 b, p) . Then,, 

M k + m
 E M k a n d w k + l + m E Mfc + 1 ( m o d P > -

However9 by the recurrence relation (1), 

buk_1 = f̂e + i - cn-^. 
Since b i 0 (mod p ) , 

Mfe-i = (Mfe + i ~ #ufe)/& (mod P) • 
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Hence9 the pair (uk_19 uk) repeats modulo p which is a contradiction if k^Q. 
Thus, the pair (w0, ux) = (0, 1) repeats modulo p. Hence, the numeric is 0 
modulo p and the PR u(a9 b) is purely periodic modulo p. 

Now, let n - a(a9 b9 p). As in the above argument, (u , u ) is the first 
pair (uk, uk+1) such that 

Uk+n E SUk a n d Uk+l+n E SUk + l ( m o d P> 

for some residue s (mod p). The assertion that a (a, £>, p)|k now follows from 
the fact that the PR u(a9 b) is purely periodic modulo p, The rest of the 
lemma follows from (5). 

Lemma li In the PR u(a, b), assume that b = 0 (mod p). 
(i) If a $ 0 (mod p), then v(a, b 9 p) = 1 and un E a""1 (mod p), n > 1. 
(ii) If a = 0 (mod p) s then v(a, Z?, p) = 2 and un E 0 (mod p) , n _> 2. 

?/L00̂ » This follows by simple verification. 

3. RESULTS FOR SPECIAL CASES 

For certain special classes of PRTs, we can easily determine ]x{a9 b9 p), 
a(a, Z?, p) , and s(a, Z>, p) . Of course, if y(a, Z?, p) and a(a, 2?, p) are known 
exactly, B(a, Z>, p) is immediately determined. Theorems 1-4 will discuss these 
cases. The proofs follow by induction and direct verification. 

Tk&OK&n 7»' In the PR u(a, b) , suppose that b = 0. 
(i) If a ̂  0 (mod p) , then un = an-1

9 n _> 1. 
Further, 

v(a, Z?, p) = 1, a (a, Z?, p) = 1, y(a, Z?, p) = ordp(a), and a (a, Z?, p) . = a 

for all primes p, where ordp(rc) denotes the exponent of x modulo p. 
(ii) If a = 0 (mod p), then un - 0, n > 2 , 

v(a, 2?, p) = 2, a (a, b9 p) = 1, y(a, Z?9 p) = 1, and s(a9 2?, p) = 0. 

ThzoKQJM 2: In the PR w(a, Z?) let a = 0 and b i 0 (mod p) . Then 

u2n = 0 and "uZn+1 = b , n >_ 0. 
Further, 

v(a, fc, p) = 0, a(a, b9 p) = 2, ]i(a, b9 p) = 2 ordP(Z?), and s(a, Z?, p) = b. 

ThdOKom 3' In the PR u(as b) suppose that Z?=0, a ? 0 (mod p) , and b f 0 (mod 
p). Then 

wn - n(a/2)n_1, n >. 0. 
Further 

a(a, Z?, p) = p, y(a, b9 p) ^ p ordp(a/2), and s(a, Z?, p) = a/2. 

Thzotiem 4: In the PR u(a, b) suppose that r1/r2 is a root of unity. Let k be 
the order of the root of unity. Let £,k be a primitive /cth root of unity. 

(i) If k = 1, then a == 271/, b=-N9 D = 0, P 1 = 71/, r2 = 217, and. r1/r2 = 1. 
Theorem 3 characterizes the terms of this sequence. 

(ii) If k = 2, then a = 0, b = 71/, £> = 471/, rx = //!/, r2 = Wff9 and r17r2 = 
-1. Theorem 2 characterizes the terms of this sequence. 

(iii) If k = 3, a = 71/, b =-N2
9 D = -371/2, P 1 = ~ C 3 ^ r2 = -£*JV, and 2̂ /2?,, -

(iv) If Zc = 4, a = 271/, Z? = -271/2, 7} = -471/2, r1 = (1 + t)717, 2y= (1 - £)#, 
and r1/r2 = -i where £ - i/̂ T. 

(v) I f /c = 6, a = 371/, b = -371/2, 0 = -37172, v1 = - ^ 3 / 3 , r2 = i^ | ( /3)A^, 
and r1/r2 = ^ 6 . 
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Moreover, if k _> 29 then 

a(a, b5 p) = k9 \x(a9 b, p) = k ordp(s), 
and 

s(a9 bs p) = s = sgn(a*) (-(-*) k/2) (mod p) , 

where sgn(#) denotes the sign of x. Furthermore, if n = qk + P 9 0• >_ p _>_ fc9 and 
fe _> 3 9 then 

un = squr = (-D̂ iV̂ w,.. 

In Theorem 49 note that fc = 19 29 39 4, or 6 are the only possibilities 
for k since these are the only orders of roots of unity that satisfy a quadra-
tic polynomial over the rationals. 

Just as we treated the divisibility properties of certain special recur-
rences with respect to a general prime9 we now consider the special case of the 
prime 2 in the following theorem. We have already handled the cases where b E 
0 or a E 0 (mod 2) in Theorems 1 and 2. 

ThzoKWi 5: Consider the PR u(a5 b). Suppose that l\ab. Then v(a, b9 2) = 09 

]i(a9 b9 2) = 39 a (a, 2?9 2) = 39 and s(a9 bs 2) = 1. The reduced recurrence 
modulo 2 is then 

(0, 1, 1, 09 1, 1, ...) (mod 2). 

k. GENERAL RESULTS 

From this point on9 p will always denote an odd prime unless otherwise .spe-
cified. Theorem 6 gives criteria for determining \i(a9 b9 p) , a(a9 b9 p) , and 
s(a9 b9 p) for the general PR w(a, b) . For the rest of the paper, Pf will de-
note the square-free part of the discriminant Ds and K will denote the algebraic 
number field Q(/DT) 9 where Q as usual stands for the rationals. 

ThdOtim 6: In the PR u(a9 b) s suppose that p\bD. Let P be a prime ideal in 
Z dividing p. If (P/p) = 19 we will identify P with p. 

(i) y(a9 2?9 p) is the least common multiple of the exponents of r1 and 
P2 modulo P. 

(ii) a(a9 b9 p) is the exponent of r1/r2 modulo P. If (D/p) = -1, then 
a(a9 2?9 p) is also the least positive integer n such that 2»1 is congruent to a 
rational integer modulo P. 

(iii) If k = a(a9 &9 p ) , then s(a9 b9 p) = r£ (mod P)„ 

VK.00{* Let i? denote the integers of X. Since & f 0 (mod p) 9 neither vx nor 
P2 E 0 (mod p) . Since R/P is a field of p or p 2 elements 9 2,1/i,2 is well-defined 
modulo P. Further, since D = (PX - P 2 ) 2 t 0 (mod P) , un = (2^ - P * ) / ^ " T2^ 
is also well-defined modulo P. 

(i) Let n = y(a, &, p ) . Then 

un = (P* - r p / C ^ - P 2 ) E 0 (mod p) E 0 (mod P) 
and 

wn + i = 1 (mod p) E 1 (mod ^) • 

Thus, p" E p2n (mod P) . Hence, 

un+ 1 - (P*+1 - r ^ 1 ) / ^ - P 2) E ( P ^ ) - r ^ ) ) / ^ - r2) = P* = 1 (mod P) 
Thus, p* E p£ E 1 (mod P) . Conversely, if v\ E p2k E 1 (mod P) for some posi-
tive integer k9 then it follows that u E 0 and w- E 1 (mod p) . Assertion 
(i) now follows. 

(ii) Now let n = a(a, &, p) . Then un = (r" - P2)/(P;L - P 2 ) E 0 (mod P) . 
This occurs only if p" E p^ (mod P) . Dividing through by P2, we obtain 

(Vr,,)" E 1 (mod P). 

Hence9 a(a9 b9 p) is the exponent of r1/r2 modulo P. 
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F u r t h e r , i f {Dip) = - 1 , then 

a O p = rP = P 2 (mod P) and G ( I ^ ) = ( r p n = r^ (mod P) , 

where a is the Frob.enius automorphism of R/P» This follows, since P 1 and P 2 

are both roots of the irreducible polynomial modulo P9 x2 - ax ~ b* Thus, if 
ri E r2 (mo& P) s w e obtain 

(r^P = r» E i»» (mod P) . 

Let Zp denote the finite field of p elements. Now, 

RIP = Zplv^]. 
In Zpfv/P1"], the only solutions of the equation xp - x = 0 are those in Zp by 
Fermat!s theorem. Assertion (ii) now follows. 

(iii) Let k = a(a, b9 p) . Then 
Mfc+1 E s^a* & * p) (mod p) E s(a, 2?, p) (mod P) . 

By the proof of (ii), v\ E vi (mod P). Thus, 

Wfc + i = (*i+1 ~ ^2+1)/(^i - *2> E (̂ i(̂ i) - r>*(r2))/(r1 - r2) 

E i3^ E s(as £>, p) (mod P) . 
The proof is now complete. 

Theorem 6, while definitive, is impractical for actually computing 

\i(a9 b9 p), a (a, b9 p), and s(a9 b9 p) . 

We will develop more practical methods of determining these numbers, although 
our results will not be as complete. The most easily applied of our methods 
will use the quadratic character modulo p and pertain to certain special classes 
of PR?s. For sharper results, we will also utilize the less convenient 2n - ic 
characters modulo p. 

A good theory of the divisibility properties of the PR u(a9 b) with re-
spect to p should give limitations for the restricted period modulo p. Given 
the restricted period, one should then be able to determine exactly the expo-
nent of the multiplier modulo p and, consequently, the period modulo p. Fur-
ther, we should be able to specify the multiplier modulo p. This will be our 
program from here on. As a first step toward fulfilling this project, we now 
present Theorems 7 and 8. Theorem 7 is due to Wyler [14] and, in most cases, 
determines \i(a9 b9 p) when a(a, b9 p) and ordp(-b) are known. Theorem 8 is 
the author's application of Wyler?s Theorem 7. 

Tfeeo/tem 7' Consider the PR u(a9 b). Suppose b f 0 (mod p). Let h = ordp(-b). 
Suppose h=2°hf

9 where hf is an odd integer. Let k = a(a9 b9 p) = 2dk\ where 
kf is an odd integer. Let H be the least common multiple of h and k, 

(i) \i(a9 b9 p) = H or 2H; g(a, b9 p) = Elk or 2H/k. 
(ii) If c £ d9 then \i(a9 b9 p) = 2H. If o = d > 0, then ]i(a9 b9 p) = E. 

This theorem is complete in the sense that ±fo-d=09 then \i(a9 b9 p) 
may be either H or 2H. For example, look at the PR w(3, -1). For all primes 
p, h = ordp(l) = 1 = 2° (1). 

If p = 13, then k = a(3, -1, 13) = 7 = 2°  (7). Further, H = [1, 7] = 7. 
By inspection, y(3, -1, 13) = 14 = 2H. 

If p = 29, then fc - a(3, -1, 29) = 7. As before, E = 1. But now we have 
y(3, -1, 29) = 7 = #. 

ThdOKem 8: Let p be an odd prime. Consider the PR u(a9 b), where b f 0 (mod 
p) . Let 7z = ordp(-£). Suppose h = 2Ghf

 9 where hf is an odd integer. Let 
k = a (a 5 &, p) = 2 ^ f , where fc? is an odd integer. Let E^ [hs k], where |>, z/] 
is the least common multiple of x and 2/. Let s = s(a9 b9 p) . 
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(i) s2 E (-£)* (mod p). 
(ii) If c = d = 0 and n(as b9 p) = H9 then s E (-b)ik + h)/2 (mod p) . 
(iii) If c = d = 0 and y(a, &, p) = 2ff, then s E -(-b)<k+h>n (mod p) . 
(iv) If e = d > 0, then s E ~(-b)k/2 (mod p). 
(v) If d > c, then S E -(-fc)*'2 (mod p). 
(vi) If c > d9 then s E ±p5 where v2 E (-b)fe (mod p) and 0£p£(p- l)/2. 

Further, both possibilities do in fact occur. 
Vrtooji 

(i) This follows immediately from (7), letting n - k. 
(ii) Let c = d = 0 and assume that \i(a5 b9 p) = H. Then, 

ordp(s) = 3(a, b9 p) = Elk = [h9 k]/k. 
Further, by (i) , 

s2 E (~b)k (mod p). 
Thus, 

s = (^)(fc+W/2 o r s E _(_b)tk+h)/i ( m o d p ) e 

In general, it is easy to see that if p is a positive Integer, 

ordp(-£)P = [h9 r]/r. 
Therefore, 

ordp((-i)(*+w/2) = [h9 (k + h)/2]/((k + fe)/2). 

Suppose ^ = (7?, k) . Let h ^ gm and k = gn9 where (m, n) = 1. Then, 

[h9 (k + 7z)/2]/((& + fc)/2) = [̂ m, (̂/72 + n)/2]/(g(m + n)/2) 

= g[m9 (m + n)/2]/(g(m + n)/2). 

Clearly, (m, m + ri) = 1 and, a fortiori, (m9 (m + n)/2) = 1. Hence, 

#[>, (?7Z + n)/2]/(g(m + n)/2) = (^(m + n)/2)/(g(m + w)/2) = TW. 
But, 

[Tz, /c]/fc = [grrzj gn] /(gn) = gmn/(gn) = m-. 
Thus, 

ordp((-20(k + h)/2) = ordp(s) = m* 
However, since 777 is odd, 

ordp(-(-i)(* + *)/2) = 2rc. 

Thus, s E (-b)ik+h)/z (mod p). 
(iii)-(v) The proofs of these assertions are similar to that of (ii). In 

calculating ordp(s) for (iv) and (v), we make use of Wyler's Theorem 7. 
(vi) To see that both possibilities actually occur, consider s(l, 1, 13) 

and s(l,l, 17). 
Now, a(l, 1, 13) = 7 and ord (-1) = 2, so o > d. By inspection, we see 

t h a t s(l, 1, 13) E 8 > (13 - l)/2 = 6 (mod 13). 

Also, a(l, 1, 17) = 9 and ord (-1) = 2. Hence, o > d* However, we now 
find that 

s(l, 1, 17) E 4 £ (17 - l)/2 = 8 (mod 17), 
and we are done. 

Unfortunately, Theorems 7 and 8 depend on knowing the highest power of 2 
dividing a (a, b9 p) and ordp(-Z?) to determine |3(a5 b3 p) and ]l(as bs p). Olir 
project will be to find classes of PRfs (excluding the special cases already 
treated) in which for almost all primes p the exponent of the multiplier mod-
ulo p, $(a9 by p) , can be determined by knowing the residue class modulo 777 to 
which a(a, bs p) belongs for some fixed positive integer mB In addition, we 
would like a set of conditions, preferably involving the quadratic character 
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modulo p, for determining a (a, b9 p) modulo m without explicitly computing 
a (a, b9 p). 

By Theorem 7, these conditions can be satisfied if either 
(i) ordp(-b)\m for a fixed positive integer m and for almost all primes 

p* or 
(ii) 2H/a(a9 b9 p) \m for a fixed positive integer m and for almost all 

primes p» 
Now, condition (i) can be satisfied for almost all p iff b - ±1. Thus, 

we will consider the PR's u(a9 1) and u(a9 -1) . If b = 1, then ordp(-2?) = 2 
for all odd primes p and, by Theorem 7, H = a(a9 1, p) or # = 2a(a, 1, p) . 
Hence, (3 (a, 1, p)|4 and 3 (a, 1, p) is largely determined if a(a, 1, p) is known 
modulo 4. Similarly, if b = -1, then $(a9 -1, p) is largely determined if 
a(a, -1, p) is known modulo 2. 

By Theorems 6 and 7, # = [ordp(p1/p2), ordp(-&)] . Hence, condition (ii) 
can be satisfied if 

(11) V\IV2 = ±^« 

Since P 1 P 2 = -£, equation (11) is equivalent to requiring that 

(12) ri/p2 = ^ i ^ -
Solvings we see that v\ = 1 or P2 = -1. But, if r2

 = ~1» then r2 = ±i and 
r1 = +i. However, this case is already treated by Theorem 4(ii). If v\ •= 1, 
then r2 •= ±1. If r2 = 1, then by Theorem 6 we see that $(a9 b, p) = 1 always 
no matter what a(a9 b9 p) is. If r2 = -1, then Theorem 6 and a little analy-
sis shows that &(a9 b, p) 12 and depends upon the residue class of a (a, b9 p) 
modulo 2. Note that if r2 = 1, then 

(13) PX = -b/v2 = -2? and a = z^ + v2 = -b + 1. 

If P 2 = -1, then 

(14) P 1 = b and a = Z? - 1. 

Hence, we will also investigate the divisibility properties of the PR's 

u(-b + 1, b) and u(b - 1, b). 

From our preceding discussion, it will be very helpful if we can find 
conditions to determine a (a, b9 p) modulo 4. The following two lemmas and two 
theorems determine the residue class of a(a, b9 p) modulo 4 for a general PR 
u(a9 b). 

Lemma 3: Let p be an odd prime. Consider the PRw(a, b) . Suppose that p|&D. 
(i) If a (a, 2?, p) = 1 (mod 2, then (-b/p) = 1. 
(ii) If a(a, £, p) = 2 (mod 4), then (bD/p) = 1. 
(iii) If a(a, b, p) = 0 (mod 4), then (bD/p) = (-b/p). 

?H,00l' Firstly, note that by (8), 

(15) v\ - Du2
n = 4(-£)n. 

(i) Let fc = a(a9 b9 p) = 1 (mod 2). By (15), 
v\ = k(-b)k (mod p). 

Since k E 1 (mod 2)3 this is possible only if (-b/p) = 1 . 
(ii) Let 2k = a(a, fc, p) . Then k = 1 (mod 2) . By (10), ̂  E 0 (mod p) . 

Then by (15), 
-Du\ = 4(-2>)* (mod p). 

If (-b/p) = 1, then clearly, (-B/p) = I. If (-b/p) = -1, then (-£/p) = -1, 
since k = 1 (mod 2). In both cases, (bD/p) - 1. 
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(iii) Let 2k = a(a5 2?s p). Then k = 0 (mod 2). By (10), v, = 0 (mod p) . 
Then by (15), 

-Du\ = 4 (-2?)* (mod p) . 

Since'fc = 0 (mod 2) , (-£>/p) = 1 in all cases. It follows that (bD/p) = (-b/p). 

TkdQtiom 9» Let p be an odd prime. Consider the PR u(a9 b) . Suppose p\bD« 
(i) If (-2?/p) = 1 and (bD/p) = -1, then a(a, 2?, p) = 1 (mod 2). 
(ii) If (-b/p) = -1 and (2?£>/p) = 1, then a(a, b, p) = 2 (mod 4). 
(iii) If (-2?/p) = (bD/p) = -1, then a (a, 2?, p) = 0 (mod 4). 

FA.00^: This follows immediately from Lemma 3. 
As we can see from Theorem 9, the only doubtful case occurs when 

(-b/p) = (bD/p) = 1. 

Lemma 4 and Theorem 10 give a new criterion for determining the restricted 
period in some instances when (-b/p) = (bD/p) = 1. 

Lemma 4: Let p be an odd prime. Consider the PR u(a9 b). Suppose pf2?£> and 
a(a, 2?, p) = 1 (mod 2). Then (-b/p) = 1. Let r2 = -fc, where 0^p£(p- l)/2. 
Then 

(16) (-22? + ar/p) = 1 or (-22? - ar/p) = 1, 

where (-22? + ar/p) denotes the Legendre symbol. 

VK.001: By Lemma 3 ( i ) , we know t h a t (-b/p) = 1. Le t fc = a ( a , 2?, p) . By ( 6 ) , 

wk = ^ f t - D / 2 + M0k+D/2 ~ ° ( m o d P ) e 

Hence, 
M0k+l)/2 E " H - D / 2 ( m ° d P ) e 

Thus, 
wa+D/2 E ±^(k-D/2 (mod P)« 

Suppose that ^(k+1)/2 =
 ru(k-i)/2 (mod P̂  • T n e n 

U(fe+3)/2 - a W(fe+l)/2 + ^U(k-l)/2 ~ aI>U(k-l)/2 +®U(k-l)/2 
E ( a r + b)u{k_1)/2 (mod p) . 

Now, by ( 7 ) , 
U(k+l)/2 ~ U(k-l)/2U(k+3)/2 = ~bU(k-l)/2 " ( a P + ^U(k-1) /2 

= ( ^ - 2&)u<2*-i>/2 = ( - 2 ? ) ( k ~ 1 ) / 2 

= rk~1 (mod p ) . 

Since k - 1 i s even, t h i s i m p l i e s t h a t (-22? - ar/p) = 1. 
Now suppose t h a t w(k + 1 ) / 2 = -^u^~i)/2 ( m o d P ) • Cont inu ing a s b e f o r e , we 

o b t a i n 
(-22? + ar)ufk_1)/2 = P k _ 1 (mod p) . 

This similarly implies that (-22? + ar/p) = 1 and we are done. 
In our statement of Lemma 4, note that 

(-22? + or) (-2b - ar) = bb. 

IkiLOKom 10: Consider the PR u(as 2?). Let p be an odd prime. Suppose p\bD 
axid (-b/p) = 1. Let r be as in Lemma 4. 

(i) If (-b/p)= (bD/p) = 1 and (-22? + ar/p) = (-22? - ar/p) = -1, then, 
a (a, 2?, p) = 0 or 2 (mod 4). 

(ii) If (-b/p) = (bD/p) = (-22? + ar/p) = (-22? - ar/p) = 1, then a(a,2?, p) 
can be congruent to 0, 1, 2, or 3 (mod 4). 

VKOO^I This follows immediately from Lemma 4. ' 
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The following examples in Table 1 from the Fibonacci sequence show the 
completeness of Theorem 10. For the Fibonacci sequence, 

a = b = 1, D = 5, bD = 5, -2b + ar = -2 + i9 and -2b - ar = -2 - i. 

TABLE1 1 

Examples from the Fibonacci Sequence in Which (-b/p) = bD/p) = 1 
and a(a, b, p) Takes on All Possible Values Modulo 4 

p (-b/p) (bD/p) (-2b + ar/p) (-2b - ar/p) a(l9 1, p) (mod 4) 

29 1 ] 
41 1 1 
61 1 1 

421 1 ] 
809 1 ] 

1601 1 ] 

L - 1 - 1 
L - 1 ~1 
L 1 1 
L 1 1 
L 1 1 
L 1 1 

2 
0 
3 
1 
2 
0 

By Theorems 9 and 109 we are so far unable to determine whether the re-
stricted period modulo p is even or odd only when 

(-b/p) = (bD/p) = (-2b + ar/p) = (-2b - ar/p) = 1. 

The next theorem will settle this case. We will use the notation [x/p]n to 
denote the 2n - ic character of x modulo p. 

Th&OKom 11» Let p be an odd prime and suppose that p - (D/p) = 2kq9 where q 
is an odd integer. Consider the PR u(a9 b) and suppose that p\bD. Let P be 
a prime ideal in K = Q(/D). Then a(a9 b9 p) E 1 (mod 2) if and only if 

r\q = (-b)q (mod P). 

If (D/p) = 1, then a(a, b, p) = 1 (mod 2) if and only if 

[*i/p]*-i E <-*>)* (mod P)-
P/l00̂ »' This is proved by Morgan Ward [13] for the Fibonacci sequence in which 
case b = 1. Our proof will be an immediate generalization of Ward's. 

First we note that uk = 0 (mod p) if and only if 

rf E (-b)k (mod P). 
This follows from the fact that 

uk = r^(r\ - r*)/(r^(r1 - r2)) = (r*k - (r^r^) I(rk(rl - r2)) 
= (r\k - (-b)k)l(rk(r^ - r2)). 

The result now follows easily. 
Assume that a(a9 b„ p) E 1 (mod 2). Then, up-(D/p) E 0 (mod p) by (5). 

Further, by (6) it follows that um\un if m\n. Thus, uq E 0 (mod p) since any 
odd divisor of p - (D/p) must divide q. Thus, by our result earlier in this 
proof, 

r\q E (-b)q (mod P). 

Conversely, if r\q E 0 (mod P), then u^ E 0 (mod p) by the same result. 
It thus follows that a(as b9 p) E 1 (mod 2). The last remark in the theorem 
follows from the definition of {r1./p']k_ . 

We will generalize the previous theorem in Theorem 12, which will deter-
mine when a(a3 b, p) E 2m (mod 2m+1). First, we will have to prove the fol-
lowing lemma. 
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Lemma 5: Consider the PR u(as b) . Let p be an odd prime. Suppose that p)[bD. 
Let k = p - (P/p) . Then 

pJw^/2 iff (-2>/p) = 1-

^W0£: This was first proved by D.H. Lehmer [4]. Backstrom [1] also gives a 
proof, 

Tk&QfiQjfn Mi Consider the PR u(a5 b) . Let p be an odd prime and suppose that. 
p - {B/p) = 2kqs where q is an odd integer. Suppose p\bV. Let P be a prime 
ideal in Z dividing p. 

(i) If (-b/p) = -1, then a(a, &9 p) = 2* (mod 2^+ 1). 
(ii) If (-b/p) = 1, then a(a9 i, p) = 2m (mod 2/7?+1)9 where 0 < m < fc,if 

and only if 
rlm + lq = (-fc)2"^ (mod P ) . 

bu t 
r f * 2 (-2>)2""1<7 (mod P ) . 

( i i i ) I f ( -b /p ) = (P/p) = 1, then a ( a , £>, p) = 2m (mod 2m + 1 ) , where 0 < 
77? < fc,if and only i f 

I>l/P]*.m-1 E (™^>2^ (mod p ) , 
but 

[^l/Plfc-m * (^) 2 m _ l £ ? (mod p ) . 

(i) This follows from Lemma 5, which implies that 

a(a, b9 p)\(p - (D/p))/2e 

(ii) First, m < ks since by Lemma 59 

a(a9 bs p)\(p - (Dip))12. 

Further, a(a9 b9 p) E 2m (mod 2m+1) if and only if p\u2mq9 but p\u2m-i • N o w 

apply the arguments of the preceding theorem. Theorem 11. 
(iii) This follows from the definition of the 2n - io character modulo p 

and part (ii). 
Note, however, that the criteria of Theorems 11 and 12 are not really 

simpler than direct verification that p is a divisor of some specified term of 
{un}. For example, in Theorem 11, we can show that a(a9 bs p) E 1 (mod 2), if 
we can show that p\uq9 where q is the largest odd integer dividing p - (D/p). 
This is equivalent to the criterion of Theorem 11. In the next section, we 
will assume that b= ±1. In this case, the criteria of Theorems 11 and 12 will 
be easier to apply. 

5. THE SPECIAL CASE b = ±1 

In this section we will obtain more complete results than those of Theo-
rems 7 and 8 for those particular PR?s for which b = ±1. We will first treat 
the case in which b = 1 in the following theorems. 

Th&0KW\ 13: Consider the PR u(a9 1). Let p be an odd prime. Suppose that 
(D/p) # 0 . If (-1/p) = 1, let i E /=T, where 0 £ i <_ (p - l)/2. 

(i) 3(a9 1, p) = 1, 2, or 4; s(a9 1, p) = 1, -1, or ±i (mod p). 
(ii) 3(a9 1, p) = 1 iff a(a5 1, p) = 2 (mod 4) and ]i(a, 1, p) = 2 (mod 

4). 
(iii) 3(a9 1, p) = 2 iff a(a, 1, p) E 0 (mod 4) and \x(a3 1, p) E 0 (mod 

8). 
(iv) 3(a9 1, p) = 4 iff a(as 1, p) E 1 (mod 2) and u(a9 1, p) E 4 (mod 

8). 
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(v) If (-1/p) = -1 and (a2 + 4/p) = 1, then a(a, 19 p) = 2 (mod 4), 
•3(a» 15 p) = 1, and y(a, 1, p) E 2 (mod 4). 

(vi) If (-1/p) = -1 and (a2 + 4/p) = -1, then a (a, 1, p) = 0 (mod 4), 
3(a9 1, p) = 2, and y(a, 1, p) = 0 (mod 8). 

(vii) If (-1/p) = 1 and (a2 + 4/p) = -1, then a(a9 19 p) = 1 (mod 2), 
3(a9 19 p) = 4, and y(a9 1, p) = 4 (mod 8). 

(viii) If (-1/p) = (a2 + 4/p) = 1 and (-2 + ai/p) = (-2 - ai/p) = -1, 
then a(a, 1, p) = 0 or 2 (mod 4) and 3(&9 19 p) = 1 or 2. 

(ix) If (-1/p) = (a2 + 4/p) = 1 and p = 5 (mod 8) 9 then a(a,.l, p) 2 0 
(mod 4) and 3(a9 1, p W 2. 

VK.OOJ: 
(i) Apply Theorem 7. Since -& = -l, ordp(-£>) = 2; hence, # = a(a9 19 p) 

or 5 = 2a(a9 1, p) . Since 3(a5 15 p) = H/a(a9 19 p) or 3(a9 1, p) = 2H/a(a, 19 p) , 
3(a9 1, p) = 1, 29 or 4. 

(ii)-(iv) These follow from Theorem 7. 
(v)-(vii) These follow from Theorem 9. 

(viii) This follows from Theorem 10. 
(ix) Suppose p = 5 (mod 8). Then I claim that a(a9 19 p) f 0 (mod 4), 

and, consequently, $(a9 1, p) ̂  2. Let k = a(a9 19 p) 9 then by part (iii) of 
this theorem, 

2k = y(a, 1, p) = 0 (mod 8). 

Since (a2 + 4/p)= (D/p) = 1, 2k\p - 1 by Theorem 6(i). But then p = 1 (mod 8) , 
which contradicts the fact that p = 5 (mod 8). 

Tk&0ti2m 14: Consider the PR u(a9 1). Let p be an odd prime such that (-1/p) 
= (D/p) = 1. Let p- 1 = 2kq9 where g is an odd integer. Let e=.(a0 + c0/DT)/2 
be the fundamental unit in Z = ̂ K/D7) , where Df is the square-free part of D. 
Let "e = -1/e. Consider further the PR u(a0 , 1). 

(i) tf(e) = -1» 2-i = em» and r2 = -e"m = (e)m
 9 where m = 1 <mod 2) and 

r. and P 2 correspond to the PR u(a9 1). 
(ii) a(a, 19 p)|a(a0, 1, p). 
(iii) Either a(a9 1, p) = a(a0, 1, p) = 1 (mod 2) or a(a9 1, p) = a(a09 1, p) 

(mod 4) . 
(iv) If [e/p]k_1 =-l9 then a(a9 1, p) = 1 (mod 2), $(as- 1, p) = 49 and 

y(a9 19 p) E 4 (mod 8). 
(v) If [e/p]fe-i= 1, then a (a 9 1, p) = 2 (mod 4)9 g.(a, 1, p) - 1, and 

\x(a9 19 p) = 2 (mod 4). 
(vi) If [e/p]fc.2^l, then a(a9 1, p) = 0 (mod 4), 3(a, 1, p) = 29 and 

y(a9 1, p) = 0 (mod 8). 

Vtiooji 
(i) Since N(r^ = P X P 2 = -1, it follows that N(e) = -19 r1 = eOT9 and 

P 2 = -e~m = (~e)m
9 where m = 1 (mod 2). 

(ii) First, we will see that e and "g" are roots of the characteristic 
polynomial 

xz - a^ 
associated with the PR u(aQ9 1). Let 

r{ = (aQ + /a* + 4)/2 and v[ = (a0 - /aJ + 4)/2 
be the roots of the characteristic polynomial. By definition of the fundamen-
tal unit e, it is easily seen that 

a2 - D'c2
Q «-4-

Hence, / a
2 + 4 = C Q / ^ . Thus, 

e = (a0 + cQ/D1)/2 = px
f and e" = (a0 - O0/DT)/2 
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Now, by Theorem 6(ii), a(aQS 1, p) is the exponent of e/e = -e2 modulo p. 
Similarly9 a(a9 1, p) is the exponent of r1/r2 = (~e2)m modulo p. It is now 
easy to see that 

(17) a(a9 19 p) = a(aQS 19 p)/(ms a(aQS 1, p)). 

Clearly, a(a5 1, p)|a(aQ9 U p ) . 
(iii) Since m is odd, it is easy to see from (17) that (iii) holds. 
(iv) By definition5 

[e/plfc.! = e^-1^2"'1 = e2* = -1 = (-1)* (mod p) . 

By Theorem 119 it now follows that a(aQS 1, p) E 1 (mod 2). By part (iii), 

a(a, 1, p) = a(a0, 1, p) = 1 (mod 2). 

The result now follows by Theorem 13(iv). 
(v) and (vi) The proofs of these parts are similar to that of part (iv). 

The advantage of Theorem 14 is that it gives results for the infinite 
number of PRTs u(a9 1) 9 for which the discriminants D all have the same square-
free part Df

9 by analyzing only one PR u(aQ9 1). When the 2n - ic characters 
modulo p in Theorem 14 are merely the quadratic characters, computations are 
considerably easier. Further9 when Df is a prime, we can make use of several 
identities to calculate the quadratic characters. The following theorem dis-
cusses this in more detail. 

ThojOJtem 15: Consider the PR u(as 1). Suppose that Df
 9 the square-free part 

of D, is an odd prime. Let p be an odd prime. Suppose that 

(~l/p) = (-1/Z?') = (p/Df) = (Dflp) = 1-

Let ex = (a1 + c1v/DT)/2 be t he fundamental u n i t i n K = Qi/D7) . 
Le t e2 = (a2 + o2/p)/2 be t h e fundamental u n i t i n Q(/p). 
Let Df - m\ + kn\ and p = m\ + kn\. 
Let 6X = (m-L + v /5T) /2 and 62 = &w2 + / p ) / 2 . 
Let £ = /=T. 

(i) (e1/p) = (6!/?) = (m1 + 2n1£/p) = (ax + 2i/p) = (m1n2 - m2n1/p) 

= (e2/^f) = (62/2f) = (77z2 + 2n2i/Df) = (a2 + 2£/Z?') 

= (77z1n2 - m2n1/DT) . 

(ii) If (e^/p) = 1 and p E 5 (mod 8), then 

a(a9 1, p) E 2 (mod 4), g(a, 1, p) = 1, and \i(as 1, p) E 2 (mod 4). 

(iii) If (e1/p) = -1 and p E 5 (mod 8), then 

a(as 1, p) E 1 (mod 2), 3(a9 1, p) = 49 and \i(as 1, p) E 4 (mod 8). 

(iv) If (e1/p) = -1 and p E 1 (mod 8), then 

a(a, 1, p) E 0 (mod 4), $(a, 1, p) = 29 and y(a, 1, p) E 0 (mod 8). 

(v) If (e^/p) = 1 and p E 9 (mod 16), then 

a(a, 1, p) 2 0 (mod 4), 3(a9 1, p) ̂  2, and y(a, 1, p) 2 0 (mod 8). 

(i) This is proved by Emma Lehmer in [6]. 
(ii) This follows from Theorem 14(v). 
(iii) This follows from Theorem 14(iv). 
(iv) and (v) These follow from Theorem 14(iv)-(vi). 
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In the case of the Fibonacci sequence, a = b = 1 and D = £'_= 5, which is 
a prime. Further, the fundamental unit of Q(/5) is e5 = (1 + /5)/2, and 5 can 
be partitioned as 

5 = I2 + 4(1)2. 

With these facts, we can easily apply the criteria of Theorem 15 to the Fibo-
nacci sequence. Wherever possible, we prefer to use the criteria of Theorems 
13 and 15, since these involve only quadratic characters rather than the higher-
order 2 - io characters used in Theorem 14. Theorems 13 and 15 suffice to de-
termine a(l, 1, p) (mod 4) and, consequently, 3(15 1, p) for all odd primes p < 
1,000 except p = 89, 401, 521, 761, 769, and 809. Further, we know from Theo-
rem 15(v) that none of 3(1, 1, 89), 3(1, 1, 521), $(1, 1, 761), or 3(1, 1, 809) 
are equal to 2. 

There are additional rules to determine (e5/p) in addition to those of 
Theorem 15. These are given by Emma Lehmer [5], [6], and [7]. Suppose that 
p = 1 (mod 4) and (5/p) = 1. Then the prime p can be represented as 

(18) p == m2 + n2, 

where m E 1 (mod 4) and 5\m or 5|n. Another quadratic partition of p is 

(19) p = o2 + 5d2. 
Further, if we express the fundamental unit of Q(/p) as ( f + ^ ) / 2 , then either 
5\f or 5\g. We then have the following criteria for determining (e5/p)i 

(20) (e5/p) = 1 iff p = 1 (mod 20) and n E 0 (mod 5), or 
p E 9 (mod 20) and m E 0 (mod 5). 

(21) (e5/p) = (-1)<*. 

(22) (e5/p) = 1 iff / E 0 (mod 5). 

Now, suppose that p and q are both odd primes and that (-1/p) = (~l/q) = 
(p/q) = (q/p) = 1. Let eq be the fundamental unit of Q( p). Emma Lehmer [7] 
has given an analogous rule to that of equation (21) to determine (eq/p) in 
terms of the representability of p or 2p by the form 

c2 + qd2 

in the cases q = 13, 17, 37,41, 73, 97, 113, 137, 193, 313, 337, 457, and 577. 
These results are applicable to Theorem 15 when Df = q. 

We now treat the PR?s for which b = -1 and \a\ _> 3. The PRfs u(a9 -1) 
for which \a\ <_ 2 are treated in Theorem 4. 

JhdQftom 16: Consider the PR u(a9 -1). Let p be an odd prime. Suppose pJ(D. 
(i) 3(a, -1, p) =,1 or 2; s(a, -1, p) E 1 or -1 (mod p) . 
(ii) If a(a, -1, p) E 0 (mod 2), then 3(a, -1, p) = 2 and |j(a5 -1, p) 

E 0 (mod 4) . 
(iii) If a(a, -1, p) E 1 (mod 2), then 3(#* -1, p) may be 1 or 2, and 

\i(a, -1, p) may be congruent to 1 (mod 2) or 2 (mod 4). 
(iv) If (2 - alp) = (2 + a/p) = -lg then 

a(as -1, p) E 0 (mod 2), g(a, -1, p) = 2, and y(a, -1, p) E 0 (mod 4). 

(v) If (2 - alp) = 1 and (2 + alp) = -1, then 

a(as -1, p) E 1 (mod 2), 3(a, -1, p) = 2, and y(a9 -1, p) E 2 (mod 4). 

(vi) If (2 - a/p) = -1 and (2 + alp) = 1 , then 

a(as -1, p) E 1 (mod 2), 3(a, -1, p) = 1, and y(a, -1, p) E 1 (mod 2). 
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Vnxw£t 
( i ) By Theorem 7, 

g(as -1, p) = #/a(a9 -1, p) or 3(a9 -1, p) = 2#/a(a9 -1, p). 

Since -£> = 1, ordp(-Z?) = 1, and H = a(as -1, p) . Thus, (3 (a, -1, p) = 1 or 2. 
(ii) and (iii) These follow from Theorem 7 and the comment following 

Theorem 7. 
(iv) This follows from part (ii) and Theorem 10(i). 
(v) and (vi) First notice that in both cases, 

(4 - a2/p) = -1 = (bD/p). 
Thus9 by Theorem 9(i), a(as -1,'p) E 1 (mod 2). Nows let k = a(a, -1, p) E 1 
(mod 2). Then9 by (6), 

(23) uk = »4„ l ) / 2 + 4 + D/2 E °  <mod P)-
Hences 

U(fe+l)/2 E ^ - D / 2 ( m ° d P)« 
F i r s t 9 suppose t h a t u,k + 1}j2 = un<_1)/2 (m°d p) • Then, 

M(k + 3 ) / 2 = " M ( k - i ) / 2 +au(k + i)/2 E ( a " 1>M(?c + i ) / 2 ( m o d p ) . 
Then, by ( 7 ) 9 

,2 
U, (k + l ) / 2 ~ W(fc + 3 ) / 2 * U(k-l)l2 - U(k + l)/2 ^ l^U(k + l)/2 

E (2 - a ) z $ + 1 ) / 2 = l**" 1 ) ' 2 E 1 (mod p ) . 
Thus, w(

2
fc + l ) / 2 E 1/(2 - a ) (mod p) , and (2 - a / p ) = 1. Now, by ( 6 ) , 

Uk + 1 = ~U(k + l)/2 - U(k~l)l2 + U ( f e + l ) / 2 VW(fc + 3 ) / 2 ' 
E -M(2k + l)/2 + to - D 4 + 1) /2 = (« " 2>4-M) /2 
E (a - 2 ) / ( 2 - a ) = - 1 (mod p ) . 

Thus, i f a ( a , - 1 , p) E 1 (mod 2) and (̂fc + 1 ) / 2
 E u(k-i)/2 ( m o d P) * t hen , 

(2 - a/p) = 1 and 3 t o , - 1 , p) = 2 . 

Now, suppose t h a t W/fe + 1 w 2 E -U/k_1)/2 (mod p) . Then, 
M(k + 3 ) / 2 = " M ( / c - l ) / 2 + a M ( k + l ) / 2 E (̂  + l)% + 1y/2 ^ ° d P ) » 

F u r t h e r , 
u(k + l)/2 ~ u(k-l)/2 m w(k + 3 ) / 2 E to + 2)w(

2
fe + l ) / 2 E l ^ " 1 ) / 2 = 1 ( m o d p ) . 

Then, ufk + l)/2 = 1/(2 + a) (mod p) , and (2 + a/p) = 1. Now, 
Uk + 1 = " W ( f c + l ) / 2 ° W ( f c - l ) / 2 + U(k+l)/2 " U(k + 3)/2 E ( ^ + 2>W(fc + l ) / 2 

E (a + 2 ) / ( a + 2) E 1 (mod p ) . 

Hence, i f ( a , - 1 , p) = 1 (mod 2) and w ( f c + 1 ) / 2 = "W(fc_i)/2 ( m o d P) > t h e n , 
(2 + a / p ) = 1 and 6 ( a , - 1 , p) = 1. 

Parts (v) and (vi) now follow immediately. 

Th&QKQJM 17: Consider the PR u(a5 -1) 9 where \a\ > 3. Let p be an odd prime 
¥u^h that (4 - a2/p) = (2 - a/p) = (2 + a/p) = 1. " Let e = (a0 + cQ/DT)/2 be 
the fundamental unit of Qi/D7) . Suppose #(e) = ~1» Consider the PR u(aQ9 1). 
Suppose a(a03 1» p) = 2ka, where a E 1 (mod 2). 

(i) r1 = (a + /D)/2 = zm , where m = 2cd\ e j> 1, and d = 1 (mod 2). 
(ii) a(a, -1, p)|a(a0, 1, p). 
(iii) If k = o5 then (a, -1, p) E 1 (mod 2) and 
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s(a, -1, p) - s(aQ9 1, p) (mod p). 

Further, 
3(^9 -1» p) = 1 if a(a0, 1., p) = 2 (mod 4). 

Moreover, 
6(a* -1, p) = 2 if a(aQ9 1, p) E 0 (mod 4). 

(iv) If k > o9 then a(a, -1, p) = 0 (mod 2) and 3(a, -1, p) = 2. 
(v) If fc < e9 then a(a, -1, p) = 1 (mod 2). If fc = 0 and <? = 1, then 

3(a, -1, p) = 2. If o + 1 and fc < o9 then 3 (a, -1, p) = 1. 

Pst£0£: 
( i) Since /17(e) = - 1 , where e i s the fundamental u n i t , and 

NCrJ = P X P 2 = -& = 1, 
it follows that v. = em where 77? is even. 

(ii) Just as in the proof of Theorem 14(ii), we see that e and ~e are 
the roots of the characteristic polynomial of the PR u(aQ9 1) • Again, just as 
in equation (17) of the proof of Theorem 14(ii), it follows that 

(24) a(as -1, p) = a(a0, 1, p)/(m9 a(a0, 1, p)). 

Clearly, a(a9 -1, p)|a(a0<p 19 p). 
(iii) Since m and a(a0, 1, p) are both even and divisible by the same 

power of 2, it follows from equation (24) that a(a9 -1, p) = 1 (mod 2). Since 
a(a0, 15 p) = 0 (mod 2), it. follows from Theorem 13 that s(aQ9 1, p) E ±1 (mod 
p). Now, by Theorem 6(iii), 

(25) s(aQi 1, p) = e«(flo,i,p)E ± 1 (mod p ) . 

Also, by Theorem 6(iii), 
(26) s(a9 -1, p) E (2,i)a(a,-l,P) = (ew)a(a0,l,P)/U,a(a0,i,p))(mod p ) # 

The last congruence follows by equation (24) in the proof of part (ii). How-
ever, since the same power of 2 divides both m and a(aQ9 1, p) , it follows that 

777/(77?, a(a0, 1, p))= r, 

where p E 1 (mod 2). Hence, 

e(a, -1, p) E [e«<«o.i.P>]* = [s(ao, 1, p ) ] ' = (±i)' 

E ±1 E s(a0, 1, p) (mod p). 

Since s(a, -1, p) = s(a0, 1, p), $(a9 -i, p) = 3(a0, 1, p). If a(a0, 1, p).E 
2 (mod 4), then B(a0, 1, p) = 1 by Theorem 13(ii). Consequently, 3(a, -1, p) 
= 1. If a(a0, 1, p) E 0 (mod 4), then 3(a0* 1, p) = 2 = 3(a, -1, p) by Theo-
rem 13(iii). 

(iv) If k > o9 it follows from equation (24) that a(a, -1, p) E 0. (mod 
2). The result now follows from Theorem 16(11). 

(v) If k < c» it follows from equation (24) that a(a, -1, p) E 1 (mod 
2). By (25) and (26), 

(27) S(a> -1, p) E [ea(«o.l,p)]«/(w.o(«o.l,p))B 

If &=0 and £•= 1, then £a(a° '1'P) E ±/=T (mod p) and a(a0, 1, p) = 4 by Theorem 
13(iv). Further, 

777/(777., a(a05 15 p)) E 2 (mod 4), 

since k = 0 and c = 1. Thus5 by (27), 

s(a9 -1, p) E (±/=T)2 E -1 (mod p), 

and hence 3(&9 -1, p) = 2» 



1980] THE DIVISIBILITY PROPERTIES OF PRIMARY LUCAS RECURRENCES 331 

Now, suppose c + \ and k < c. If k = 0, then c _> 2 and 

41777/(77?, a ( a 0 , 1, p ) ) . 
Then, a g a i n , e ^ o . ' i , P) = +/TT (moc| p ) , and by ( 2 7 ) , 

e(a, -1, p) = [e-^o.!.?)]"/^^^,!.?)) = (±/rjy = x (mod p ) . 
T h u s , g ( a , - 1 , p ) = 1 . I f fc + 0 and & < c, t h e n , 

2 J ???/ (777 s a ( a 0 , 1, p ) ) . 
F u r t h e r , by Theorem 13 and Theorem 6 ( i i i ) 9 

£ a ( a 0 , l , p ) E ± 1 ( m o d p ) e 

Thus, by ( 2 7 ) , 

s(a, -1, p) = [e«(«o.i.p)]'«/(̂ a(«o.i,P» = (ii)^ = 1 (modp). 

Therefore, $(aQ9 1, p)= 1, and we are done. 

Note that in Theorem 17 we obtain results for the infinite number of PR's 
u(a9 -1) which have the same square-free part of the discriminant Dr by con-
sidering only one PR u(aQ9 1). Since b = 1 for this PR, we are able to make 
use of Theorems 13-15. Further, note that in Theorem 17 we are able to calcu-
late the exponent k for which a(a0, 1, p) E 2k (mod 2k+1) by Theorem 12. In 
Theorem 18, we will consider the remaining case where 717(e) = 1. 

TkoAXOm IS: Consider the PR u(a9 -1). Let p be an odd prime such that 

(4 - a2/p) = (2 - alp) = (2 + alp) = 1. 

Let e = (a0 + c0/DT)/2 be the fundamental of Qi/D7). Suppose that N(e) = 1. 
Consider the PR u(a0 , -1). Suppose that a(a0, -1, p) = 2feq, where q E 1 (mod 
2). 

(i) 2»! = (a + /D)/2 = em, where m = 2ad9 a >_ 0, and d = 1 (mod 2). 
(ii) a(a, -1, p)|a(a0s -1, p) . 
(iii) If k = o and fc > 1 , then a(a9 -1, p) = 1 (mod 2) and 6(a, -1, p) = 

2. 
(iv) If fc = Q = 0, then a(a, -1, p) = 1 (mod 2). If 

s(a0, -1, p) = e2kq = 1 (mod p), 

then 3(a, -1, p) = 1; otherwise, 3 (a, -1, p) = 2. 
(v) If k > <5, then a (a, -1, p) E 0 (mod 2) and g(a, -1, p) = 2. 
(vi) If k < c9 then a(as -1, p) E 1 (mod 2) and g(a,. -l3 p) = 1. 

(i) This follows since i7(2»1) •= ̂ -^ = 1 and e is the fundamental unit 
of Qi/D7). 

(ii) It is easy to see that £ and e are the roots of the characteristic 
polynomial 

x2 - aQx + 1 = 0 

of the PR u(aQ9 -1). The rest of the proof follows as in the proofs of Theo-
rem 14(ii) and Theorem 17(ii). 

(iii) Just as in the proof of Theorem 17(ii), it follows that 

(28) a(a, -1, p) •= a(a03 -1., p)/(m* a(aQ9 -13 p)). 
Since k = c, it follows that a(a, -1, p) E l (mod 2). Since a(a0, -1, p) E 0 
(mod 2), it follows from Theorem 13(ii) that 3(a0, -1, p) •= 2 and s(a0$ -1, p) 
E -1 (mod p). By (25) and (26), it follows that 
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(29) s(a9 -1, p) = s(aQ9 -1, p) ""<w'a<«o. i. P» 

= -lw^"'0<«o. LP)) = _i (mod p), 

since k = c. Thus, 3(a, -1, p) = 2. 
(iv) It follows just as in the proof of part (iii) that a(a, -1, p) = 1 

(mod 2). By (29), 

s(a9 -1, p) = s(a0, -1, p ) " ^ ^ 1 ' ^ . 

Since k = a and s(a0, -1, p) E ±1 (mod p) by Theorem 16, it follows that 

s(aQ9 -1, p) = s(aQ9 -1, p) (mod p). 

The rest follows from Theorem 6(iii). 
(v) If k > o, it follows from (28) that a (a, -1, p) = 0 (mod 2). It 

now follows from Theorem 16(ii) that $(a9 -1, p) = 2. 
(vi) If k < o9 it follows from (28) that a (a, -1, p) E 1 (mod 2). By 

(29), 
s(a9 -1, p) = 8(a0, -1, p)w/<».°<«o.i,P>>. 

Since k< o9 ml(m9 a(a0, -1, p)) E 0 (mod 2) . Since s(aQ9 -1, p) E ±1 (mod p) , 
it now follows that 

s(a9 -1, p) E (±1)2 E 1 (mod p). 
Thus, 3(a, -1, p) = 1. 

In Theorem 18, we are again able to calculate the exponent k for which 
a(aQ, -1, p) E 2k (mod 2k + 1) by Theorem 12. Theorem 18 just reduces the prob-
lem of finding the restricted period modulo p of a PR u(a9 -1) for which b = 
-1 to that of considering another PR u(aQ, -1) for which also b - -1. However, 
since PX = em, |a0| £ |a|, and it is easier to work with the PR u(aQ9 -1) in-
stead of the PR u(a9 -1). 

6. THE SPECIAL CASE r2 = ±1 

In this section, we will conclude our paper by considering those-. PR's for 
which one of the characteristic roots is ±1. Theorems 19 and 20 will treat 
these cases. 

ThdQtim 19: Consider the PR u(-b + 1, b) 9 where b + 0 and b + 1. Then vx = 
-b9 r2 = 19 and D = (b •+ 1)2.» Let p be an odd prime such that b i 0 and 2? i -1 
(mod p). If (-2>/p) = 1, let: p2 E -2? (mod p), where 0 < r < (p - l)/2. 

(i) a (-2? + 1, b9 p) = ordp(-2>).. 
(ii) $(-b + 1, b9 p) = 1 always; s(-£> + 13 2?, p) E 1 (mod p) always. 
(iii) If (-b/p) = ~1 and p E 3 (mod 4), then 

a(-i + 1, b9 p) = y(-2> + 1, b9 p) E 2 (mod 4). 

(iv) If (-b/p) = -1 and p E 1 (mod 4), then 

a(-2? + 1, b, p) = y(-2> + 1, b9 p) E 0 (mod 4). 

(v) If (-2>/p) = 1 and p E 3 (mod 4) , then 

a(~b + 1, b, p) = y(-2> + 1, 2?, p) E 1 (mod 2). 

(vi) If (-b/p) = 1, p E 1 (mod 4), and 

(-22? + (1 - b)r/p) = (-2b - (1 - b)v/p) = -1, 

then a (-2? + 1, b9 p) is congruent to 0 or 2 modulo 4. 
(vii) Suppose that p- 1 = 2*^, where ̂  E 1 (mod 2). If (-b/p) = -1, then 

a(-b + 1, b9 p) E 2* (mod 2k + 1 ) . If (-2>/p) = 1, then a(-b + 1, 2>, p) E 2m 

(mod 2 m + 1 ) , where 0 < m < k iff 
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l-b/p]k_m = 1 (mod p), but l-b/p]k_m + 1 = -1 (mod p) . 
Further9 

a(-b + 1, 6 , p) = 1 (mod 2) i f f [-fc/p]fe = 1 (mod p ) . 

(i) and (ii) Since a=-2?+l, it easily follows that vx--b and r2 = 1. 
By Theorem 6(ii)9 it follows that 

y (-2? + 1, 2?, p) = ordp(p1/p2) = ordp(-2?). 
Further, by Theorem 6(i), 

(-2? + 1, 2?9 p) = [ordp(-2?)9 ordp(l)] = ordp(-2?) . 
The results now follow. 

(iii)-(vi) These follow from Theorems 9 and 10. 
(vii) This follows from Theorem 12 and Theorem 11. 

ThzoXem 20: Consider the PR u(b - 1, &), where b + 0 and b + -1. Then PX = 2>, 
P 2 = -1, and D = (b + I)2. Let p be an odd prime such that b £ 0 and b £ ~\ 
(mod p). Suppose p = 2kq, where & = 1 (mod 2). If (-2?/p) = 19 let r2 E -2? 
(mod p), where 0 < P < (p - l)/2. 

(i) a(2? - 1, 2?, p) = ordp(-fc). 
(ii) 6(2? - 1, 2>, p) = 1 or 2; s(b - 1, 2?9 p) = ±1 (mod p) . 
(iii) If a(b - 1, 2?9 p) = 1 (mod 2), then 6(2? - 1, 2? 5 p) = 2. 

If a (2? - 1, 2?, p) = 0 (mod 2), then 6(2? - 1, b, p) = 1. 
(iv) If (-2?/p) = ~1 and p = 3 (mod 4), then 

a(2? - 1, 2>, p) = y(2? - 1, 2?9 p) = 2 (mod 4). 

(v) If (-2?/p) = -1 and p = 1 (mod 4), then 

a(2? - 1, bs p) = y(2? - 1, bs p) = 0 (mod 4). 

(vi) If (-2>/p) = 1 and p = 3 (mod 4), then 

a (2? - 1, 2?9 p) = 1 (mod 2) and y(2? - 1, 2?, p) = 2 (mod 4). 

Hence, if p = 3 (mod 4), then ]i(b - 1, 2?5 p) = 2 (mod 4). 
(vii) If (-2?/p) = 1, p = 1 (mod 4)9 and 

(-22? + (2? - l)r/p) = (-22? - (2? - l)r/p) = -1, 

then a (2? - 1, 2?5 p) i s congruent t o 0 or 2 (mod 4 ) . 
( v i i i ) I f (-b/p) = - 1 , then a(2? - 1, bs p) = 2k (mod 2k + 1) . 

I f (-2?/p) = 1, then a(2> - 1, 2?5 p) = 2m (mod 2m + 1) , where 0 < tfz < k 

± f f I -^P l fc -m E X ( m o d P ) s b u t [-&/p]fc-« + i E - 1 ( m o d P)' 
F u r t h e r , a(2? - 1, 2>, p) = 1 (mod 2) i f f [-2?/p]fc = 1 (mod p) . 

( i ) - ( i i i ) I f a = 2? - 1, i t fo l lows t h a t r± = b and r2 = - 1 . Now, by 
Theorem 6 ( i ) , y ( f t _ ^ ^ p ) = [ o r d p ( 6 ) j o r d p ( _ 1 ) ] e 

I f ordp(2?) = 0 (mod 4 ) , then ordp(2?) = ordp(-2?) = y(2? - 1, 2?s p) . 
I f ordP(2?) = 2 (mod 4 ) , then ordp(-2?) = 1 (mod 2 ) . 

Thus, 
ordp(2?) = ]i(b - 1, b/p) = 2 • ordp(-2?). 

I f ordp(2?) = 1 (mod 2 ) , then ordp(-2?) = 2 (mod 4 ) . 
Hence, 

ordp(-2?) = 2 . ordp(2?) = y(2> - 1, 2?3 p ) . 
Now, by Theorem 6 ( i i ) 9 

a(2? - 1, 2?, p) = o r d p ( p 1 / p 2 ) = ordp(-2?) . 
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Thus, by our above argument, if a(b - 1, b9 p) = 0 (mod 2), then 

a(b - 1, b9 p) = \i(b - 1, b9 p) s and £>(b - l9 b9 p) = 1. 

If a(b -.1, i., p) = 1 (mod 2), then 

y(i - 1, b, p) = 2a (i - 19 b9 p) 9 and g(fc - 1, b9 p) = 2. 

The results of parts (i)-(iii) now follows. 
(iv)-(vii) These follow from Theorems 9 and 10. 

(viii) This follows from Theorems 11 and 12. 
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MIXING PROPERTIES OF MIXED CHEBYSHEV POLYNOMIALS 
CLARK KIMBERLING 

University of Evansville, Evansville, Indiana 47702 

The Chebyshev polynomials of the first kind9 de f ined r e c u r s i v e l y by 

tQ(x) = 1, t1(x) = xs tn(x) = 2xtn_1(x) - tn_2(x) f o r n - 29 3 9 . . . 9 

or equivalently9 by 
tn(x) ~ cos(n cos"1 x) for n •= 0, 1, ..., 

commute with one another under composition; that is 

tm(tn(x)) = tn(tm(x)). 
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In [1]9 Adler and Rivlin use this well-known fact to prove that in an appro-
priate measure-theoretic setting the mappings t19 t2s . • • are measure-preserv-
ing and the sequence {t13 t2, . ..} is strongly mixing. In another settings 
Johnson and Sklar [2] obtain related results. The purpose of the present note 
is to establish results analogous to those in [1] for sequences involving not 
only tn

fs but also the Chebyshev polynomials of the second kind; these are de-
fined recursively by 

u0 (x) = 1, u1 Or) = 2x5 un(x) = 2xun_1 (x) = un_2(x) for n = 2,3, . .., 

or equivalentlys by 

s i n [ ( n + Q c o s " 1 x] un(x) 
yr 

fo r n = 09 1', 

Concerning compositions of Chebyshev polynomials of both kinds9 we have 
the following lemma from [3]9 where a trigonometric proof may be found. 

Lomn\a 1 ** Let {tQ9 t19 . ..} and {u0 » ul9 . ..} be the sequences of Chebyshev 
polynomials of the first and second kinds, respectively. Put u_1(x) = 0 and 
define 

un(x) = un(x)/l - x2 for n = 0, 1,- ... . 

Then for nonnegative m and n9 

( i ) 
(2) 

(3) 

(A) 

£?77 \Mn) 

um(un) = 

Um(tn) 
JH 

,m-l 

Umn+n-l9 

for even 772 

for odd 77? s 

(-l)2t(m + i)(n + i) for even m 

(-1) 2 - for odd m. 

We introduce some notation; 

I = the closed interval [-19 1] 
If = the closed interval [03 TT] 
<B = the family of Borel subsets of I 

c6/ = the family of Borel subsets of If 

X = Legesgue measure on <5 
\ r ~ Lebesgue measure on <§f 

Let y be the measure defined on Q by the Lebesgue integral 

y(B) - ' & 1 f A 
B £ 

Rivlin [4] proves that each tn for n>_ 1 preserves the measure y; that is, the 
inverse mapping t"1, which is an n-valued mapping (except at ±1) from Jf onto 
J9 satisfies 

y(t^(5)) = y(B), B e <£. 

Using the same method of proof9 we establish the following lemma. 

Lemma Ion Let un = u „(#)/! - x2 for n = 09 19 ... For odd ns the mapping 
un preserves the measure y on 
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Pfioofi: Let § be the one-to-one measurable mapping of I onto Ir defined by 

(j)0r) = 9 = cos"1 x9 

and put vn = ̂ (̂ nCcf)"1)) . Then, for odd n and 

(2k + _1)TT < 0 < (2k + 3)T^ k 

2(n + 1 ) - - 2(n + 1) 0, 1, 1, 
we find 

*»<e> 

-(n + 1)6 + 2 ' 0 < 
- - 2(w + 1) 

/ . n Q 2fe + 1 7 (n + 1)0 —« ^ e v e n ̂  

•(n + 1)6 + % -7T, odd fc 

/ . . n . x 2n + 3 (2n + 1)TT .(n + 1 ) 0 + _ _ _ T r f _ ^ _ ^ < TT. 

An open sub interval of [0, TT/2] or [TT/2, TT] having length £ is the image under 
Vn of n + 1 subintervals of J' (on the horizontal axis in Figure I) in case n 
is odd9 where each of these subintervals has length £/(n+l). It follows that 
the mapping vn preserves the measure Xf. Now, if -1 <_ a < b < 1, then 

Ja VI - X1 A. 

*(a) 

so that ]i(B) = ~Xf((})(5)) for 5 e Consequently (omitting parentheses). 

Miu^iB)) =h<{$Un1B) =h>m;1<i>-\ 

vAQ) 

h'{v-nHB) =h'($B) =\l{B). 

vh(Q) 

Fig. 1. V~ preserves Af on [0, TfJ. Fig. 2. vh preserves X? on Or 
4l\ 

For even n, the result is not so simple, since in this case Vn fails to 
preserve Xf on all of If. However, one may prove the following lemma with an 
argument similar to that just given. 

un(x)/l Lemma It Let un(x) x for n 0S 1, ... . For even ns the map-
ping un preserves the restriction of the measure y to the family of Borel sets 

of the closed interval cos"1 — n + I9 (See Figure 2„) 
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Turning now to orthogonality of Chebyshev polynomials of both kinds, let 
L2(I9 <B, y) denote the set of square y-integrable functions / which are y-
measurable on ̂ : 

/ . 

i 

f2(x)d\±(x) < 
-l 

-2, For f and g in L (I, <8, y) , let </, gy denote the inner product 

2 f1 

/ f(x)g(x) ^ , „ .-.* x.c)dy(a0» 

1/2 and let ||/|| denote the norm </, f> 

Lemma. 3» Let {tos tx 5 . ..} and {u0, ux, . ..} be the sequences of Chebyshev 
polynomials of the first and second kinds, respectively. Put 

un(x) = un(x)Vl - x2 for n = 0, 1, ... . 

Then for nonnegative m and n9 

m £ n 
(5) <tm9 tny = | 1 m = n ^ 0 

m = n = 0 li 
(6) <Um* Un> = ( 1 m = n (? 

1 0 m + n odd 
4&7Z + 1) 

— m + n even 
TrfOw + I ) 2 - n2] 

VftOO^' Equa t ions (5) and (6) a r e w e l l known. Proof of (7) fo l lows from 

/ s i n ( > + 1)6 cos nQ dQ = ~ [s±n(m + 1 - n)6 + s±n(m + 1 + n)Q]d09 

where cos 6 = x. 
Lemma 3 shows that the sequences 

< —t0 , tl9 t2 , . . . > and {u0 , u19 uz, . . .} 

are orthonormal over I9 a well-known fact. It is well known, a fortiori, that 
these are complete orthonormal sets in the space L2(I, <B, y); i.e., for each 
/ in L2(I, <£, y) and e > 0, there exists a finite linear combination 

n 

& = 0 

such that \\ f - sn \\ < e [and similarly for the uk(x)'s]. 
Now let {Fn} = {FQ9 F19 F29 ...} denote the sequence 

_1> Q , W]_5 ^ 2 3 M j J 

and let {Gn} = {£0, G1, £2, . ..} denote the sequence 

1^0 s 1 ' ^ 2 S 3 9 • • •J • 

These are orthonormal sequences by Lemma 3. For / in L2 (19 ®-9 y) 3 we define 
the F-Chebyshev series for y to be the series 
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fe«0 

where the coefficients f0, f19 ... are given by fk = </, ^ > - Similarly, the 
G-Chebyshev 'series for given g in L2(T, <B:, y) is defined by 

00 

£ = o 

where #fe = <^9 c7fe> for fc = 0, 1, ... . 

Lemma 4? If n is an odd positive integer and e > 09 then there exists a sum 
of the form 

m 

fc-0 
such that <-e. If n is an even nonnegative integer and e > 0, 
then there exists a sum of the form 

m 
S m ^ = £^ a2k^2k 

k - 0 

such that || zln - sm|| < e.. 

VK.00^' Suppose that n is an odd positive integer. It suffices9 by the Riesz-
Fischer Theorem (see [5], p. 127) to show that the sequence T2k + 1 = <tn, u . > 
satisfies 

l2k+l 
k = 0 

This is clearly the case, since, by (7), 

= 8̂  k + 1 
71 [(2k + 2)2 - n2] 

Similarly, for even nonnegative n and T2k= <^un, t2fc>, we have 

4 n + 1 

' * (n + I)2 - 4£2 

Th<L0K<m 1' The orthonormal sequences {Fn} and {c7n} for n = 0, 1, ... are com-
plete in L2(I, <89 y). 

F/100̂ : We deal first with {Fn}. Suppose f e L2 (I, <£, y) and e > 0. Since 

j"T^0' t19 t2, ..A 

is a complete orthonormal sequence in L2(J, <£, y), we choose odd m and numbers 
a0, al9 ...9 am satisfying 

f - £ a ^ 
fc = 0 

< e/2. 

By Lemma 49 there exist sums sk = okJu1 + ok3u3 + ••• + ok uq such that 

|| aktk - aksk\\ < e/m for k = 19 39 5, 

Let Q = max{^k : fc = 19 3, 59 ... 9 m) and put 

,, m. 
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\ Q + 1 
if Q is odd 
if Q is even. 

Put o kP 
0 for q < p <_ q9 k = 1, 35 5, . .. , m. Next, let 

*1 -

aidU + a3^3j- + 

0 

+ amCmo 

Then, 

11/- (Mo + Z ? i% + 

for j = 1, 3, 5, 

for even j < m 

for even j > m. 

+ bqtiq)\\ <\\ f •- £0t0- a1t1-b2t2-a3t3~ ... -amtj|. 

+ ||a1t1 - ̂ ( c ^ +••• + 0^)11 

+ ||a3£3 - a3(c31u1 +••• + c3quq)\\ +••• 

+ \Wmtm - am{omZu1 +... + cm<7wq)|| < e. 

This proves completeness of the sequence {Fn}. The proof for {£n} is quite 
similar. 

We wish to use all the foregoing results to prove that the sequences of 
mappings {F^"1}, {Gn1} » and {zZ^1}, when applied to any B in <£, increasingly 
homogenize or mix B throughout J. This vague description is made precise for 
a y-preserving sequence of mappings {x„} by the notion that {xn} is a strongly 
mixing sequence with respect to y if 

lfey[(T^)nB]-H^5I (8) 

for all A and B in <£. 

ThojOtiom 2 : The sequence of mappings {F-L , F 2 , . . . } i s s t r o n g l y mixing in 
L2 ( J , <=B, y) w i t h r e s p e c t t o t h e measure y . 

VHJOO^I TO e s t a b l i s h ( 8 ) , i t s u f f i c e s t o prove 

(9) l i m < / ( F n ) , ^ > = Y < / 5 1><<7, 1> 

for all / and g in L2(I, <£» y)» since (9) is merely a restatement of (8) in 
case / is the characteristic function of A and g is the characteristic func-
tion of B. [That is5 f(x) = 1 for x e A and f(x) = 0 for x i A% similarly for 
g and 5.] First, assume / and g are terms of the sequence {F0 3 F19 — } . Then 
for some j >_ 0 and k >_ 0, with n >_ 1, Lemmas 1 and 3 show that 

<f(Fn), g>-<FAFH), Fky 

<t0//2, Fky 
( - l ) ^ < t . n + . , v 

j even, n even, j £ 0 

J = 0 

j even, n odd, j ̂  0 

j odd, n even 

(-1) 2 <udn + d + n9 Fk> o odd, n odd 

1 0 + k = jn, j even,. n even 
/2 0 = j = fc 
(-1)̂ /2 fc = (j + !)„, 

(-D 2 
0 

J even, n odd 

k = (j + l)n + j, j odd, n odd 
otherwise 
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Thus, 
llm<f(Fn), g> = 0 for j > 05 

and in this case (9) clearly holds. If j = 0, then (9) is satisfied by 

<f&n)> 9> = 1 f° r all n > I. 
We have shown so far that (9) holds if f and g are both terms of the sequence 
{FQ, Fx 9 ...}. We continue now as in Rivlin [4, p. 171]: Suppose / and g are 
any functions in L2(I9 <£, y) and let e > 0. By Theorem 1, there exist finite 
linear combinations u and v of the mappings Fn such that 

(10) || f - u\\< e2 and || g - v\\ < e2 . 
We w r i t e 

C = <f(Fn), g> - | < f , !><g9 1> 
= Kf(Fn) - u ( F „ ) , # - y> + O , / ( F n ) - u(Fn)> + <u(Fn) , <? - y>] + 

[<K(*V), ^>-^<u9 O O , 1>] + [|<w, lX*>, l>--|<f, \><g, 1>1 

Since Fn is measure perserving5 

II / ( F » ) - w(F n ) | | = || / - u | | and || u(Fn)\\ = || u || . 
(See, for example, [4, p. 169].) Thus, the Schwarz inequality with (10) shows 
that |J"| < je for some constant j > 0. For large enough n, \K\ < e since the 
theorem is already proved for u and v. Now 

L = i[</ - u, l><g - v9 1> -<#, 1></ - u, 1> - </, lX<7 - t>, 1>], 

so that |L| < k for some constant & > 0, again by the Schwarz inequality and 
(10). Thus \c\ < (l + j + £)e for large enough n, and this proves the theorem. 

Is the sequence {(?1} G2> •..} strongly mixing, too? This question is 
presumptuous, since "strongly mixing" has been defined only for measure-pre-
serving (on J) mappings. However, while no single Gn is measure-preserving on 
all of X, Lemma 2b shows Gn to be measure-preserving on 

-i nir ,1 
cos ^TT' 1\' 

and since strongly mixing involves lim, we are led to the following defim-
. . n-»-oo 

tion: 
A sequence of mappings {Tn}, not necessarily measure-preserving on J, 
is limit-strongly mixing if (8) holds for all / and g in L2(J, <B, y). 

One may now prove the following two theorems, using Lemma 2b and a modifica-
tion of the proof of Theorem 2. 

Tkeo/iem 3: The sequence {G1, G2 , . . .} is limit-strongly mixing in L2 (J, <£, y) 
with respect to the measure y. 

TkeAOQJM 4: The sequence {w^, zl2 , . ..} is limit-strongly mixing in L2(J, <5, y) 
with respect to the measure y. 

Finally, we note that the mapping Fn9 for n >_ 1, is strongly mixing and, 
therefore, ergodic in the sense given in [4, p. 169]. In the limiting sense 
of Theorems 3 and 4 above, the same properties hold for the mappings Gn andHn 
for n > 1. 
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ON THE CONVERGENCE OF ITERATED EXPONENTIATION—I 

MICHAEL CREUTZ and R. M. STERNHEIMER* 
Brookhaven National Laboratory, Upton, NY 11973 

We have investigated the properties of the function f(x) = xx* with an 
infinite number of #fs in the region 0 < x< e1/e. We have also defined a class 
of funct ions Fn (#?) which are a generalization of f(x^ , and which exhibit the 
property of "dual convergences" i.e.9 convergence to different values of Fn(x) 
as n -> °o9 depending upon whether n is even or odd. 

An elementary exercise is to find a positive x satisfying 

(1) xx*' = 2 

when an infinite number of exponentiations is understood [1], [2], The stan-
dard solution is to note that the exponent of the first x must be 2, and thus 
x = /2. Indeed, the sequence fn defined by 

(2) u -1 
f , = 2/ n / 2 
Jn+ 1 

does converge to 2 as n goes to infinity. Now consider the problem 

(3) x*'" =|. 

By analogy9 one might assume that 

X = \3/ = "27 

is the solution; however, this is too naive because the sequence /„• defined by 

fo - l 

w f =(±)fn 
Jn+1 \27/ 

does not converge. 
The purpose of this article is to discuss some criteria for convergence 

of sequences of the form 
*This article was authored under contract EY-76-C-02-0016 with the U.S. 

Department of Energy. Accordingly, the U.S. Government retains a nonexclusive, 
royalty-free license to publish or reproduce the published form of this arti-
cle, or allow others to do so, for U.S. Government purposes. 
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(5) fn - gf* 
where g^ is some given sequence of positive numbers. Applying these criteria 
to the case where gi - x for all i, we will show convergence of the resulting 
sequence for x in the range 

( * ) • • & 
where e is the base of the natural logarithm. For x larger than e e, the se-
quence fn diverges to infinity, while for x in the range (0, e"e) the even and 
odd sequences f2n and f2n + \ both converge, but to different values. This 
property of "dual convergence" occurs for many starting sequences g., some of 
which we will discuss briefly. 

Before proceedings we should comment on the order in which the exponen-
tiations of equation (5) are to be carried out. Rather than insert cumbersome 
parenthesess we will understand throughout this paper that this expression is 
to be evaluated "from the top down." More precisely gn-i is taken to the gnth 
power, gn~2 ^s taken to the resulting power, and so on. The only other simple 
specification of the ordering of the exponentiations is "from the bottom up," 
but this merely reduces to g raised to the product of the remaining <7Ts. 

It is convenient at this point to introduce a shorthand notation for ex-
pression of the form in equation (5). We thus write for m J> n, 

(6) 9,- 9 

A simple recursive definition of this quantity is 

(7) 
*J 

9n> 

e x p ] u - * + i ^ J " l o g < 7 » } * m>n 

We now prove two theorems on the convergence of these sequences. 

The.QSiQJ(n 1: If there exists a positive integer i such that for all j _> i we 

have 1 <_ g. < ee
9 then the sequence £7 9- converges as n -> °°. 

•3 j = 1 J 

PJiOOJ-: When n > i, we have 

(8) 
j-i 

9, = 0, 

(M 

consequently, we need only prove the theorem when all g. lie in the range 

D. 4 In this case, g g. is easily shown to be a monotonic increasing 
j-i n-i 

function of any g.. This, in turn, implies S g. > '£, g. I i.e., we have an 

increasing sequence. However., the sequence is also bounded because 
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,M , l V - w 
Now9 by an elementary theorem [3], any bounded and monotonia sequence is con-
vergent . 

ThdOh.Qy(\ 2: If there exists a positive integer i such that for all j > i we 
have 0 < g. <^ 1, then the even and odd sequences 

2n 2n + l 
3 tf. and 3 Q-

j = i j = i 

are both convergent as n -*• °°. 

VK.00^1 Again9 we need only prove the theorem when all g. are in the range 
[0, 1], Also, we need only consider the even sequence because the odd sequence 
is merely g1 raised to an even sequence. Now for x and y in the range [0, 1] 
the quantity xy is a monotonic decreasing function of y. Using this induc-
tively on f2n, we find f2nis a monotonic decreasing function of g2n . If we 
now replace g2n with 

Sin* 
'2n- " 

'2n 

. + 2 > 

92 
^2tt+l 

we can conclude that 

(10) fln + 1 < f 2 n -
However, f2n is always bounded below by zero. Thus, we again have a monotonic 
bounded sequence which must converge. 

With the help of these theorems we now return to the case g^ = x inde-
pendent of i. We state the result as a theorem. 

Tkzofi&n 3: For positive x9 

[(*)•••*]• 
Vtioofc For x in the interval 

E x converges as n -* °°  iff x lies in the interval 
i 

1, ee L Theorem. 1 immediately implies conver-
gence. For x larger than ee the sequence cannot converge because, if it did, 
it would converge to a solution / of the equation (see [4]) 

(11) xf - f = o. 
A 

Whenever x > ee
s the lefthand side of this equation is strictly positive for 

all real f and the equation has no solution. The curves of x versus f as ob-
tained (see [2]) from equation (11) for f < e are shown in Figures 1 and 2, 
which pertain to x > 1 and x < 1s respectively. 

When x < 1 Theorem 2 applies and we have convergence of the even and odd 
sequences. Both these sequences must converge to solutions / of the equation 
(12) xxf - f = 0. 

We will now show that, for (— J <_ x < 1 , this equation has only one solution 

and therefore the even and odd sequences converge to the same number. Take 
the derivative of the lefthand side of equation (12) with respect to f9 

(13) ~(xxf - f) = log2x° x?» xxf - I . 
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f (x) 
Fig. 1. The variable x as a function of f(x), with f(x) defined by (11) , 

for values of f(x) in the region 1 < f(x) < e. The dashed part of 
the curve to the right of f(x) = e is not meaningful. 

Fig. 2. The variable x as a function of fix) , with f(x) defined by (11) 
for values of f(x) in the region 0 < f(x) < 1. 
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Keeping x < 1 and maximizing the righthand side of (13) over f we obtain 

(14) j[f(xXf - /) <. -J log a? - 1. 

If the righthand side of this inequality is negative, i.e., when 

(15) 1 > x > (-X , 

then the quantity xx - f is a monotonic decreasing function of / and can only 
vanish at one point. This value of / is the number to which both the even and 
odd sequences must converge. 

n / 1 V 
Finally we show by contradiction that g x cannot converge for x < (—) <• 

Assume it does converge to some number / which must satisfy (11). Define the 
sequence en by 

(16) ^n = fn ~ f-
In the proof of Theorem 2 we showed the even and odd sequences are both mono-
tonic, and thus En cannot vanish for finite n. The relation between £n+1 and 
En i s f+r 
(17) en + 1 = * ' + e » -;f. 
Expanding in powers or >-̂  and using equation (11) gives 

(18) e„+1 = zn log f + ©(e*). 

Consequently the sequence cannot converge if |log f\ > 1 which corresponds to 
x < l ~ ) * This completes the proof of Theorem 3. 

We now return to the case of general g- in equation (5). The above dis-
cussion of g- = x shows that under the conditions of Theorem 2, the limits of 
the even and odd sequences are not in general equal. The special role played 

by (—) impels us to conjecture that the simple convergence of Theorem 1 may 

["/ i \e il 
but we have no proof of this. be extended for g. in the range (*)' • °k 

Note that neither Theorem 1 nor 2 needs any assumption of the existence of a 
limit for g.; this suggests it might be amusing to study g. alternately inside 
and outside the above region. 

In an informal report [5], we have studied several sequences where g. goes 
to zero as j goes to infinity. In general upon iterated exponentiation these 
give rise to dual convergent sequences in the sense of Theorem 2, the even and 
odd sequences both converging to different numbers. As a particular example 

x n 

take g. = —~, and consider g g. as a function of x. In Figure 3, we have 
3 J j=i J 

plotted this function versus x for n = 10 and 11. Increasing n further makes 
no visually discernible difference between the curves; even n essentially re-
produce the n = 10 curve and odd n the n - 11 curve. Note the crossing points 
at x = 1 and 4 where one of the g. is one and therefore the sequence converges 
after a finite number of steps. 

In [5] we have also considered the sequence resulting from g. = jx. Here 
n 

g. goes to infinity as j does; nonetheless, the resulting g g. converges as 
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long as x is less than one. The amusing function resulting is piecewise con-

tinuous with discontinuities at x = •=- where k is any positive integer. Three 

£ 1 1 
different values for « (xj) are obtained by taking x = 77 and re = 77± e in the 

limit of vanishing e, 

Fig. 3. The function Fn(x) = £J (x/j2) for n = 10 and n = 11, showing 

the dual convergence of Fn (x). We note the "crossing points" 
at x = 1 and x = 4, where the two functions are equal. 

ACKNOWLEDGMENTS 

One of us (R. M. S.) wishes to thank Dr. J. F. Herbst, Mr. B.A. Martin., and 
Dr. M. C. Takats for helpful discussions. He is particularly indebted to the 
late Dr. Hartland Snyder for a stimulating discussion concerning the function 
f(x) in I960. 



1980] THE NUMBER OF PERMUTATIONS WITH A GIVEN NUMBER OF SEQUENCES 3^7 

HotQJ After completing this paper9 we became aware of a similar calculation 
by Perry B. Wilson, in which some of the present results have been obtained 
(Stanford Linear Accelarator Report PEP-232, February 1977). We wish to thank 
Dr. S. Krinsky for calling our attention to this report. 

REFERENCES 

1. M. Gardner. Scientific American 228 (1973):105. This article is based 
in part on unpublished work of Dr. A.'-V.. Grosse. 

2. R. M. Sternheimer. "On a Set of Non-Associative Functions of a Single 
Positive Real Variable." Brookhaven Informal Report PD-128; BNL-23081 
(June 1977). 

3. T. M. Apostol. Calculus. Vol. Is p. 417. New York-. Blaisdell, 1961. 
4. Hartland S. Snyder. Private communication to R. M. S., 1960. 
5. M. Creutz & R. M. Sternheimer. "On a Class of Non-Associative Functions 

of a Single Positive Real Variable." Brookhaven Informal Report PD-130; 
BNL-23308 (September 1977). 

THE NUMBER OF PERMUTATIONS WITH A GIVEN NUMBER OF SEQUENCES 

L. CARL1TZ 
Duke University, Durham, N.C. 27706 

1. Let P(n9 s) denote the number of permutations of Zn = {1, 2, ..., n} 
with s ascending or descending sequences. For example, the permutation 24315 
has the ascending sequences 24, 15 and the descending sequence 431; the per-
mutation 613254 has ascending sequences 13, 25 and descending sequences 61, 
32, 54. Andre proved that P(n9 s) satisfies the recurrence 

(1.1) P(n+1, s) = sP(n5 s) + 2P(n, s - 1) + (n- s+ l)P(w, s - 2) , 

where P(0, s) = P(l, s) = (50>s ; for proof see Netto [3, pp. 105-112]. 
Using (1.1), the writer [1] obtained the generating function 

n=0 s=0 \ ' 

However, an explicit formula for P(n, s) was not found. 
In the present note, we obtain an explicit result, namely 

P(2n - 1, In - 8 - 2) =. ]£ (-l)n^2^ + 2(2j - 1) !*„,/fnf ̂  , 

n 

P(2n, In - s - 1) = Y. (-l)n"'2--7' + 1(2j)!ZK> < 7.M„)< 7.> e, 

• £:<-»*Ct % - *> 
t-0 
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2. Put y = esc2*. Then it is easily verified that (D = d/dx) 

By = -2 csc2# cot x 

B2y - -4 esc2# + 6 csc4* 

D3y = 8 csc2# cot # - 24 csc4# cot a? 

Bhy = 16 csc2x - 120 csc^x + 120 csc6#. 

Generally, we can put 

(2.1) B2n'2y = ]T (-l)n-J'anjJ.csc2^ (n > 1) . 
J = I 

Differentiation of (2.1) gives 

n 

v 1 " ' ^ = Z! (""1)n"J + 1 • #an.^ csc2j'̂  cot x 

j = i 

D2ny = ] T ( - l ) n - ^ a M > t 7 . { 4 j 2 c s c 2 ^ c o t 2 * + 2j c s c ^ ' + 2 r f 
j = i 

n 
= ^ ( » l ) n - t 7 ' a n j J . { 2 j ( 2 j + l)csc2t7" + 2 * - 4 j 2 c s c 2 ^ } . 

j - 1 

Comparing this with 

3-1 

we get the recurrence 

(2.2) an+lt 3 = (2j - l)(2j - 2)ant._1 + ^'2anyj (n ^ 1). 

I t fo l lows e a s i l y from (2 .2) t h a t aWjJ- i s d i v i s i b l e by (2j - 1 ) ! . Thuss 
i f we put 

(2 .3 ) an%j = ( 2 j - l)lbn>j9 

(2 .2 ) becomes 

(2-4) bn + 1>. = &„,,_!+ VzKti (n > 1). 
Now put 

(2-5) ' bH,j = 2 2 " - ^ T > J > J . , 
so t h a t (2 .4 ) r educes to 

( 2 - 6 ) Kn + lij =Kn^_1+ j2Kny. (ri>l). 
The Z„ • are evidently positive integers. Table 1 was obtained by means 

of (2.6). 
The numbers KHtj are called the divided central differences of zero [2], 

[5]. They are related to the Kn^ of [2] by 

(2.7) Zn> • = Zn + 1> ̂ . 

In the notation of divided central differences^ we have 

(2.8) Kre = 62802r/(2s)!, 

where 
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Table 1 

n N. 

1 

2 

3 

4 

5 

2 

1 

5 

21 

85 

3 

1 

30 

501 

4 

1 

46 

5 

1 

Thus, 

(2.9) K 

which is equivalent to 

(2.10) £ Zr>s -gjj = ̂ ( e d / a . . e-a/2,«)- (s > 1}. 

Substituting from (2.3) and (2.5) in (2.1), we get 

(2.11) D2n~2csc2x = £ (-l)n '̂22n-̂ '(2j - 1) \Kn>j esc2J'x (n > 1) . 
j = i 

Differentiation gives 

n 
(2.12) Z^^csc 2 * = -^(-l)n"J'22"-^(2j)!Zn)J.csc^'(() cot cf> (n >_ 1) . 

j-i 

3. Returning to the generating function (1.2) 5 we take x = cos 2cJ) 
replace s by 2s. Thus, the lefthand side becomes 

]T(sin 2cj))"n~ ̂ P ( n + 1, s)cosn-s2cj). 
n=0 ' s=0 

The r i g h t - h a n d s i d e i s equa l t o 
1 - cos 2(j) / s i n 2$ + s i n 2g \ 2

 = sin2(j) / c o s ( s - (j))\ . 
1 + cos 2(j) \ c o s 2(J) - cos 2 s / cos2(|) \ s i n ( s -<(>)/ 

Hence, we have 
oo W 

^ ( s i n 2 ( J ) ) " n ^ - f^ -^P(n + 1 , s)cosn"s2(f) = tan2(() c o s 2 ( s - $) . 

Replac ing $ by -(j), t h i s becomes 
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• w 2 n z n ^ 
(3 .1 ) l ] ( " D n ( s i n 2 * ) " n ^ f - Z l p ( n + !» s)cos*-s2<f) 

n = 0 =o 

= tan2(J) c s c 2 ( s + <)>)- tan2c(). 

By Taylor's theorem, 

Hence, (3.1) yields 
n ni 

n = 0 

( - l ) " 2 " ( s i n 2<J , ) - n y)p(n + 1 , s)cos"-s2<}> = tan2<J) - ^ - csc2c|>, 

(3 .2 ) ] T P ( n + 1, s)cos"-s2(J> = ( -1 )" sinn+2<}> cos"" 2 . ) )—csc 2 ( j ) (n > 1) . 

so t h a t 

dn 
t\ri -i- i , s ; c o s " "zcp = v - i ; s i n " ~cp cos ~q> 

8 = 0 

Replac ing n by 2n - 2 and making use of ( 2 . 1 1 ) , we ge t 
2n-2 

(3 .3 ) ] T P(2n - 1, s ) cos 2 n " s " 2 2 ( i ) 
8 =0 

sin2wcf) c o s 2 n - ^ g ( - l ) n - ^ 2 2 n - 2 ^ ( 2 j - l)!ZM j J .csc2^( |) (n > 1) 

S i m i l a r l y , by ( 2 . 1 2 ) , 
2 n - l 

(3 .4 ) ^ P (2n , s ) cos 2 n - s - 1 2 ( j ) 
a = 0 

= sin2n<J> c o s 2 " " 4 * ^ ( - l ) J ' 2 2 n - 2 ^ ( 2 j ) ! Z n , t 7 . c s c 2 ^ ( ! ) ( n > l ) . 
J - I 

We have , fo r 1 <. j <_ n , 

22""2-'' s i t i 2 " " 2 ^ cos2""** = 2-J' + 2 ( l - cos 2<J>)*--''(1 + cos 2<f,)"-2 

n - j n - 2 

r = 0 *=0 \ / \ / 

For p + t = 2 n - s - 2 , comparison with (3.3) gives 

P(2n _ lf s) = £(-»»-'l-' + HV - I)!?.., • "f (-!)'(" ; % n_V-a- 2 )-
J - 1 2 » - 0 N / X ' 

Replac ing s by 2n - s - 2 , we have 
n 

( 3 .5 ) P(2n - 1, In - s - 2) = £ (-l)n~J2'*+1(2j - l)lKn,j 
3 = 1 

n-J 

t <-»'(" r%-l)-
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The corresponding result for P(2ns In - s - 1) is 

n 

(3.6) p(2n, 2n - e - 1) - £ (-1)"" V + 1 (2j) !XB> ., 
J " 1 

r = 0 x ' x ' 

This completes the proof of the following theorem. 

T/ieoA.em: Let n > 1. The number of permutations of Zn with a given number of 
sequences is determined by 

n 
Pttn - I, 2n - s - 2) = )T (_i)»-*2-'+2 (2j - 1) !*„,.,»„, ̂  , 

(3.7) 

where 

n 

P(2n5 2w - s - 1) =5Z(-l)n"J"2^ + 1(2j)!Zn^ilfnf^ar 

j-i 

2J 
(3-8) «„., = — ^ £(-!)' (2/)(j- - t)2" 
and 

t =0 

4. It follows from the definition that, for n > 1, P(n, 1) = 2. In the 
first of (3.7), take s = In - 3. Then, by (3.9), 

E <-»'(" -J)LvP
2. ,)• M 

n, j , 2 n - 3 
2> = 0 

so that 2 n - r - 3 £ n - 2 , n - 1 <̂  r and j = 0 or 1. Since Kn 0 = 0, Kn 1 = 
!» M*. i, 2n-3 = (-1)""^ we get 

P(2n - 1, 1) = (-l)n"12 - (-l)*"1 = 2. 

Similarly, by the second of (3.7), P(2n, 1) = 2. 
A permutation of Zn with n - 1 ascents and descents is either an up-down 

or a down-up permutation. Since the number of up-down permutations is equal 
to the number of down-up permutations, we have 

(4.1) P(n9 n - 1) = U(n) (n >_ 2), 
where A(n) is the number of up-down permutations of Zn. Hence, in applying 
(3.7) to this case it is only necessary to take s = 0. By equation (3.9), we 
have M . = 0-. Thus (3.7) implies 

n 

A{2n - 1) = X ) (-l)"-J'2-->, + 1(2j - 1)!X„ . 

(4.2) 

Attn) = }T (-l)n-32-"(23')lKnii. 

Andre [3] proved that 
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2^A(2n ~ X) (2n - 1)! = tanaT 
(4.3) "=1 

,2n 

TjA{ln) Tibr= sec x-
On the other hand, in the notation of Norlund [4, Ch. 2], 

„2n- 1 
tan ̂  = Z (-Vn°2n-i Tin - l)i 

rc = 1 

sec x = X! (-^"^nT^JT' 
where 

c»-i - ^ - 2")IT. 

and Bn9 Cn are the Bernouli and Euler numbers, respectively. Thus, by (4.3), 

^2„-i - ( - 1 ) " ^ - ! = (-1)"22«(1 - 2 2 * ) ^ 
(4.4) l n 

A(2n) = (-l)"E2n. 

Therefore, by (4.2) and (4.4), 

22«(1 - 2 2 " ) ^ - = j^(-iy2-J+H2j - l)!fniJ. 
J = 1 

E2n = £(-1)^2^(2,7)!^. 
J = l 

The representation (4.5) may be compared with the following formula in 

v + l 

(2r+l)B2r = J^i-iyHis - \)l)2s-% + l9g. 
s = l 

We remark that it is proved in [1] that 

s 

(4.8) P(n, n - s) = £ f8j (n)A(n + s - j) ( l < s < n ) , 
j = i 

where the fQ. (n) are polynomials in n that satisfy fsl(n) = 1 and 

sfs+1)J.(n) = fs>.(n + 1) - (w - s + l)fe.ltJ_2M - 2fs> ,-. 1 («) . 

Thus, it would be of interest to evaluate the f3j(n). 
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FOUR COMPOSITION IDENTITIES FOR CHEBYSHEV POLYNOMIALS 

CLARK KIMBERLING* 
University of Evansville, Evansville f IN 47702 

1. INTRODUCTION 

Let { t n G r ) } n = 0 be t h e sequence of Chebyshev po lynomia ls def ined by 
t0(x) = 1, t1 (x) = x9 tn(x) = 2xtn_1(x) - tn_2(x) f o r n J> 2 . 

These are often called Chebyshev polynomials of the first kind to distinguish 
them from Chebyshev polynomials of the second kinds which are defined by 

u0(x) = 1, u1{x) = 2x9 un(x) = 2xun_1(x) - un_2(x) for n _> 2. 

It is well known that any two Chebyshev polynomials of the first kind commute 
under composition. Explicitly, 

tm(tn(x)) = tn{tm{x)) - tmn(x) for nonnegative m and n. 

Similar identities involving Chebyshev polynomials of the second kind are not 
well known. This paper offers three such identities, one for each of the ex-
pressions um(un(x))5 tm(un(x))9 and um(tn(x)), where um(x) = um(x)/l - x2\ 

Literature relating to the identity tm(tn) = tn(tm) shows that this com-
mutativity9 also called permutability9 iss among polynomials with coefficients 
in a field of characteristic 0S a distinctive property of Chebyshev polynomi-
als of the first kind. For example9 Bertram [1] shows that if p is a polyno-
mial of degree m>_l which is permutable with some tn for n>_29 then p = ±tm. 
Another theorem (e.g., Kuczma [55 pp. 215-218] and Rivlin [65 pp. 160-164]) 
characterizes the sequence {tn} as the only nontrivial semipermutable chain 
(up to equivalence, as described below). Sections 3 and 4 of this paper deal 
with analogous results for the functions un« 

We deal with the Chebyshev polynomials in slightly altered form. Assume 
throughout that all numbers, including coefficients of all polynomials, lie in 
a field of characteristic 0. With this in mind, the nonmonic polynomials tn 
and un are altered as follows: define 

T0(x9 y) = 2, T1(x9 y) = x, Tn(x9 y) = xTn_1(x9 y) - yTn_2(x, y) for n _> 2; 

U0(x9 y) = 0, U1(x9 y) = 1, Un(x9 y) = xUn_1(x9 y) - yUn_2(x9 y) for n >_ 2. 
In the sequel, the polynomials Tn are regarded as Chebyshev polynomials of the 
first kind, and the polynomials Un are regarded as Chebyshev polynomials of 
the second kind. The connections with the polynomials tn and un are simply 

Tn(x9 1) = 2tn(x/2) for n >_ 0 and Un(x9 1) = un_1(x/2) for n >_ 1. 

All the results obtained below for {Tn} and {Un} carry over, as in Corollary 
1, to {tn} and {un}. We also wish to carry over some results to certain poly-
nomials of number-theoretic interest, namely the generalized Lucas polynomials 
Ln(x9 y) and generalized Fibonacci polynomials Fn(xs y)5 discussed in [4] and 
elsewhere. For these, we have 

Tn(x9 y) = Ln(x9 -y) and Un(x9 y) = Fn(x9 -y). 

2. THE FOUR IDENTITIES 

Consistent with the modification un(x) of un(x) already mentioned, we in-
troduce a modification of Un(x3 y): 

Un(x9 y) = Un(x9 y)vhy - x2 for n >_ 0. 

Supported by a University of Evansville Alumni Research Fellowship. 
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Although Un is not a polynomial for n >_ 1, it is convenient to say that 
Un(x9 y) has degree n in x. [The polynomial Un(x9 y) has degree n - 1 in a?.] 
Generally, a function P(x, y)/S(x, y) , where POrr, z/) and 50K, 2/) are polyno-
mials of degrees n and 2k, respectively, in x9 is regarded as a function of 
degree n + k in ̂ . 

VzJAJUjtlovit Suppose P(x9 y) and Q(x9 y) are functions of degrees m and n, re-
spectively, in x. The composite function P °  Q is defined by 

P o 50c, i/) = P[Q(x9 y)9 yn]. 

ThzoKzm 1: Suppose m and n axe. nonnega t ive i n t e g e r s . Then 

(1) Tm o Tn(x9 y) = Tmn(x9 y) 

(2) tfw o Tn(x9 y) = # „ „ ( * , y) 
( (~l)m/2Tmn(x9 y) for even m 

(3) TOT o Un(x9 y) = { 
{ (-lYm-1)/2umn(x9 y) fo r odd m 

( (-l)im-2)/2Umn(x9 y) f o r even w 
(4) Um o tfn(a-, z/) = ^ 

( ( - l )0»^>/ 2 T w n (a r , z/) fo r odd m. 

Pft£0&_: I t i s easy t o e s t a b l i s h (as i n [4 ] ) t h a t 
Tm(x9 y) = 2ym/2cos(m cos~1x/2/y) 

and 

so t h a t 

Then 

Um(x9 y) = (4z/ - x2)~1/2 2ymns±n(m cos'1-x12/y) 9 

Um(x> y) = 2.ym/2s±n(m cos~1x/2jy). 

Tmn(x> 2/)-

^ « ( ^ 2/). 

T„ o Tn(x9 y) = 2 ^ / 2 c o s [ m c o s " 1 ^ " ^ ( n cos^x/lSy) 
L 2z/*/2 

S i m i l a r l y , 

77 m / \ o mn/2 . -1 2z/ cos(n cos'1 x12/u) 
Um o Tn(x9 y) = 2ymn/As±n\m cos L - ^ — ^; 

Next , L ^ ^ 

Tm o Un(x9 y) = 2zymn/2cos[m c o s " 1 s i n ( n c o s " V/2i/z7) ] 

= 22/mn/2cos[m(7T/2 - n coS-1^/2v^") ] 

= 2ymn/2[cos WIT/2 cos(mn cos-1x/2/y) 

+ s i n WTT/2 s±n(mn cos~1x/2/y) ] , 

and from t h i s , (3) c l e a r l y f o l l o w s . F i n a l l y , 

Z7OT © Un(x9 y) •= 2ymn/2s±n[m c o s " 1 s i n ( n cos~1x/2/y) ] 

= 22/m n / 2sin[m(iT/2 - n cos^x^Jy)] 

= 2z/77?n /2[sin mn/2 cos(mn cos~1x/2/y) 

- cos irn\/2 s±n(mn cos~1x/2/y) ] , 

and t h i s p roves ( 4 ) . 

CohjoltoJivj 1: Let { t n } n = o and {wn}n=o he t h e sequences of ( u n a l t e r e d ) Cheby-
shev polynomia ls of the f i r s t and second k i n d s , r e s p e c t i v e l y . Put u_1(x) E 0 
and un(x) = w n ( ^ ) / l - ru2 for n j> 0 . Then fo r nonnega t ive m and n , 
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(10 *»(*„(*>) = *„„(*) 
(2') um(tn(x)) = umn+n_x(x) 

( (-1)m tmn+m(x) f o r even m 
(3') *„(£„<*» = \ , w _ 

( (_1)0»-W/2M (X) f o r o d d „ 
mn+m-1 

( (-1) m/2^(m + i)(n + l)(̂ ) fo*" even 77?' 
(4 0 *„(£„<*)) = ̂  

( (-l)^~1^2Umn+m+n(x) for Odd 772. 

VtLOOJ: These identities come directly from Theorem 1 via the transformations 

tn{x) = —Tn(2x9 1) and un(x) = ^Un + 1(2x9 1) for n >_ 0. 

We turn now to the problem of expressing (l)-(4) in terms of generalized 
Lucas and Fibonacci polynomials. Corresponding to the functions Un (x9 y) we 
d e f i n e _ 

Fn(x9 y) = Fn(x9 y)/x2 + ky fo r n >_ 09 

noting that this equals iUn(x9 -y). Two lemmas are helpful. 

Lmma 2a: For 0 <_ m £ n9 

(5) £*(#» y)£n(x> y) - ~Fm(x> y)Fn(x9 y) = 2(-y)mLn_m(x9 y) . 
VfttiOjhj I t i s w e l l known and e a s i l y shown by i n d u c t i o n t h a t 

L n ( # , y) = a n + 3 n and Fn(a?, 2/) = a n - 3 n
s 

where a + 3 = os and a 3 = -y• The desired identity now follows immediately. 

lemma 2 b: For 777 _> 09 

^(-wc, -2/) = imLm(x9 y) and Fm(£>?, -y) = imFm(^9 2/). 

VtiOO^: This is easily seen by induction, using the recurrence relation 

Hm(x9 y) = xHm_1(xs y) + yHm_2(x9 y) 

satisfied by both {Lm} and {Fm} for 777 .> 2. 
From (1) and the relation Tn(x9 -y) = Ln(x9 y) comes 

Tm[Ln(^9 y)9 (~l)nyn] = Lmn(x9 y)9 
so that 
( l a ) Lm o L n f e 9 z/) = Lmn(a;, 2/) fo r odd n . 
But , for even n5 , -, r . 

(6) L* - a m _ 2 LrV + ^ - ^ " V 1 - ••• + ( - D U J ^ ^ U J - W * . 2/>. 
where t he a t ' s a r e c o e f f i c i e n t s in t h e polynomial r _ r n 

Tm(*, y) = * m - a m _ 2 ^ " 2 2 / + am_hxm'hy - . . . + (-1) L 2 J a £ * V 2 J ; 
h e r e , l = 0 i f 777 i s even and 1 = 1 i f m i s odd ( see Lemma 2e) . Adding 

2a nLm-2yn + 2a c L m ' V n + ••• 
m-2 n & m-6 n J 

to bo th s i d e s of (6) g i v e s 
( l b ) Lm o Ln(x, y) = £„,„(*, y) + 2 ( a m _ 2 ^ - 2 i / : + a^L^y3n + • • • + a , L n V » ) 
for even n9 where 
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0 if m - 2 mod 4 
1 if m = 3 mod 4 S A 2 if m = 0 mod 4 and t . ip4^] +1. 
3 if m E 1 mod 4 

Now from (2) and t h e r e l a t i o n Un(x9 -y) = -iFn(x9 y) comes 

iUm[Ln(x9 y)9 ( - l ) n 7 / n ] = F m n f e , z/), 
so t h a t 
(2a) fm ° Ln(x9 y) = FMM(a:, y) f o r odd n . 
But fo r even n9 

Fmn(x> 2/> = ^Um[Ln{x9 y)9 yn] 
= Fm[Ln(x9 y)9 -yn] 

= /L2
n - t*ynFm[Ln(x9 y)9 -y»] 

= Jn(x9y)Fm[Ln(x9y)9 -yn]9 
by Lemma 2a. Thus9 

O) fmn (z, y) = in {x, ^fc- 1 - K-rf-'y + KsK'5y2n 

.... + (.nmlXvm-}, 
where the Zfy's. a r e t h e c o e f f i c i e n t s of t h e polynomial fm-il 

Fa(x, y) = x™-1 + bm_3xm-3y + bm_5xm-5y2 + ••• + blxtj-~ri ; 
h e r e , £ = 0 i f m i s even and £ = 1 i f m i s odd ( see Lemma 2 e ) . Adding 

• 8 * 2Fn(x, y)(bm_sLm
n-*y" +bm.1Lm

n-1yin + • • • ) 
to both sides of (7) gives 

Fn(x9y)Fm o Ln(x, y) =Ymn(x9y) + 2jn(x9 y)(bm_3Lm
n-3yn + bm.7Lm

n'7y3n + • • • ) • 

For n > 0 , we d i v i d e b o t h s i d e s by Fn (x9 y) and have 

(2b) Fm o Ln(x, y) = | ^ + 2 ( ^ 3 C V +bm.7Lm
n-7y3n 

+ ••• + bsL*ytn) fo r even n > 09 
where 

0 i f 777 E 3 mod 4 
1 i f 77? E 0 mod 4 
2 i f 77? E 1 mod 4 
3 i f 777 E 2 mod 4 

I d e n t i t y (3) l e a d s to 

a n d t m 2p-ZJ] + 1. 

_ (-1) Lmn(x, y) fo r even 777 
(8) Tm[-iFn(x9 y)9 (~l)nyn] = \ m±i _ 

(-1) 2 iFmn(x9 y) fo r odd 777. 
For even n _> 0, we apply Lemma 2b to find, without difficulty, that 

• ~ \ -p _. J iwn f ° r even n and even 777 
^ a ; m °  n \ lmn for even n and odd w. 
For odd n, suppose first that 777 is odd also. Then (8) with Lemma 2a gives 

Lm[Fn(x9 y)9 -yn] =Fmn{x9 y) . 
As in the derivation of (lb), we add 

2(am_2F;-v +am„6Frv" + •••) 
to both sides. This gives 
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(3b) Lm o Fn(x, y) = Fmn(x, y) + 2(am^F^2yn + * . ^ " V * 

+ ... + a3~F*ytn) for odd n and odd m, 
where the ak

%s9 ss and t are the same as for (lb). 
Continuing with odd n, suppose now that m is even. Using (8) and Lemma 

2as we find 

(3c) Lm o Fn(x, y) = Lmn(x, y) + 2{an_^yn + am.6F^y3n 

+ •-• + asF^ytn) for odd n and even m, 
where the ak's5 ss and t are the same as for (lb). 

Identity (4) leads to 
k 2 _ (-1) iFmn(x, y) for even m 

(9) Un[-iFn(x, y)9 (~l)nyn] = { m^i 
(-1) 2 Lmn(x9 y) for odd m. 

whence, 

,, N — — ( FOTM for even n and even m 
(4a) m̂ °  Fn= i r for even n and odd m, 

For odd n5 suppose first that 777 is odd also. Then (9) and Lemmas 2a and 2b 
applys and we find 

£„»(*» 2/> " M M * . y ) , -y*] = / F * - 4y"Fm[Fn(x, y ) , -y»] 

= L„(X, yxFr1 - K-tK^y" + Ks*r*yln - • • • ) . 
At t h i s p o i n t , we add 2L„(a;, y) (bm_3~F%~3yn + bm-7~F™~7y3" + • • • ) t o b o t h s i d e s 
and then d i v i d e bo th s i d e s by Ln(x, y), g e t t i n g 

_ Lmn(x> J/) _ _ 
(4b) Fm o Fn(x, y) = Ln(x^ y) + 2 ( f o m _ 3 F r V + K.7F^7y3n 

+ • • • + bsFsytn) fo r odd n and odd m, 

where the bk
%s> s, and t are the same as for (2b). 

Continuing with odd n9 suppose now that 777 is even. With the method which 
is now familiar9 we find 

pn(x> y) _fl tn 
+ . . . + bsFny ) f o r odd 777 and even 77?9 

where the bk's9 s9 and t are the same as for (2b). 

Table 1. Examples of Composites Involving Generalized 
Lucas and Fibonacci Polynomials 

From (lb) and (2b), for even n > Oi 

?2 °  Ln= FinlFn 

Fh o Ln= F,n/Fn + kLny* 

^5 ° ^rT L5n + l0Lnyn ^5 ° Ln-FsjFn + 6L*2/» 

^6 ° ^ = ^6n + l2Lnyn + V * ^6 ° ^iT W ^ n + 8 ^ n 

L7 o L n = L ? n + 14L„5f + 14Ln 2 /
3 n F 7 o L n = F7n/Fn + I Q ^ Z / " + 2z/3* 

(4c) Fm o Fn (« , y) = ""Y, " ' + 2{bm^Fm
n'"yn + bn.7F^7y3n 

L2 - £„= I 2 n + 
£ 3 ° L « = £ S » + 

i * ° Ln = Lkn + 

kyn 

(>Lny" 

8L2
ny" 
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Table 1—continued 

From (3b) and ( 3 c ) , fo r odd n >_ 1: 

L3 ° Fn = Fjn + ^nyn £2 ° £n = L2n + Ml" 
L5 °F„ = F5n + 10F„V Lk °.F„ = Lhn + 8%y« 

L7 ° Fn = F 7 n + 14F„V + 14FnV £s ° *V, - L6n + 12F„V + V 

^9 ° ?n = ^9„ + 1 8 ^ V + 6 0 ^ V LB ' Fn " i8n + 1 ^ " + 32FnV* 

From (4b) and ( 4 c ) , fo r odd n > 1: 

*"l ° £» = l F2 ° £„ =^2n/ £ n 
? , ' ? » = £ s „ / £ « + 2y" F„ o yB = f ^ / £ „ + 4F„y" 

^5 ° F» = L5jLn + Gflyn F6 - pn = F6 n/L„ + 8F„V 

*7 ° *n = ^ A + ^ n V + 2y3« ? , « ? „ = Fe„/Ln + l2F*yn + 8Fny3n 

F9 o pn = L 9 n / L n + uptyn + 20p2y3n ? i Q o fn =F10n/Ln + 1 6 F ^ " + 4Wny*» 

For m _> 0, define r 

" ' • . ( * > . « • ( : ) - • + ( : ) - - % • • • • • ( [ ^ , ) « v | f l " 
^ ( * » 2/) = Fm(^5 -2 / ) , 

where £ = 0 for even ffz and £ = 1 for odd m. 

Lemma 2c : Suppose m and ft a r e nonnega t ive i n t e g e r s . Then 
Vm ° L*(x9 y) for even n 

Wm ° L*(x9 y) fo r odd n9 

Wm ° L*(x9 y) f o r even m and even n 

Vm ° L*(x9 y) fo r even m and odd n9 

fifm ° F*(x9 y) fo r odd 777 and even n 

and 

£*(#» y) = 

O * . 2/) = 
Fm °  F^{x9 2/) for odd m and odd n; 

in these formulas, after expansions on the__right sides, each symbol of the 
form L( (or F[) is to be changes to Lj (or Fj). (This "symbolic substitution" 
is discussed in Hoggatt and Lind [3]-) 

VtW0_£_l These are direct results of writing 

Zn(x> y) = a" + 3 n and Jn(x, y) = an - Bn 

and app ly ing t h e b inomia l formula , where a + 3 •= x and a|3 •= -2/. 
Lejnma 2d*' Suppose m and n a r e nonnega t ive i n t e g e r s . Then 

Tm ° Ln(x9 y) f o r even n 
^ n ( ^ 2/) = 

and 
L^ ° Ln(x9 y) fo r odd n 

Fmn(X* 2/) ( m̂ ° -^nte." 2/) f o r e v e n n > ° 

Fw ° £ „ ( # , 2/) fo r odd n . Fn («5 2/) 
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Vfiooj*- Near (la) and (2a) these two are already proved. (They are restated 
here for later convenience and as inverse formulas for the formulas in Lemma 
2c. Tables of coefficients for these two formulas are found in Brousseau [2, 
pp. 145-150].) 

Lojmma 2e: For m >_ 0, 

P m Im - J 
3 J-0 ;: - > 

-"-Zjyj yJ with p 
7??/2 fo r even m 
(m - l ) / 2 for odd m 

where t h e summand on the r i g h t equa l s 22/£>,by d e f i n i t i o n s in case j = p = 777/2. 
Also 

'.<.. »>-£„m xm-2i-\yj w ± t h ^ / (m - 2) 
I On - 1) 

2) /2 for even 777 
/2 for odd 777 • 

Vtwofc These well-known formulas are easily proved by induction. 

The composite functions in Table 1 can also be expressed as linear combi-
nations of terms of the form Ljnyk or Fjnyk» To obtain such expressions, one 
may use Table 1 with substitutions from Lemma 2c9 or one may use Binet forms 
(e.g., Fn ~ an - 3n) and binomial expansions. These methods give the follow-
ing results. 

For even n3 the coefficients cm_2. in the expression 

Lm ° Ln = °mLmn + °m -2L(m - 2 ) n 2 / " + * ' ' + °m - 2pL(m -2p)n 2/ pn 

where p is as in Lemma 2e and for temporary convenience L0 - 1 (instead of 2): 

Table 2 

m = 2 
3 . 
4 
5 
6 
7 
8 
9 
10 

Gm 

1 
1 
1 
1 
1 
1 
1 
1 
1 

°m-2 

4 
6 
8 
10 
12 
14 
16 
18 
20 

m - h 

16 
30 
48 
70 
96 
126 
160 

°m~B 

76 
154 
272 
438 
660 

Cm-8 

384 
810 
1520 

°m-10 

2004 

Formulas o. 

k°*0 

m-2j 

2k\ k 
t\/m - 2k\ 

for 0 <_ j <_ p s where the 
summand on the right = 2, 
by definition, in case 

k = m/2 
(which occurs in cm.2pfor 
even 777) • 

For even n3 the coefficients c m-23 -1 
in the expression 

°  Ln = em-lhm-l)n + Cm - 3L(m - 3)»2/ " + + (3. m- 2c7~l (m- 2? -l)n y' 

where (7 is as in Lemma 2e and for temporary convenience L0 = 1 (instead of 2): 
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Table 3 

m = 2 
3 
4 
5 
6 
7 
8 
9 
10 

°m-l. 

1 
1 
1 
1 
1 
1 
1 
1 
1 

m - 3 

3 
5 
7 
9 
11 
13 
15 
17 

'^m-5 

13 
25 
41 
61 
85 
113 

Gm-7 

63 
129 
231 
377 

°m-9 

321 
681 

Formula: o. m-2j-1 

4^ (m - k - \\(m - 2k - 1\ 
A A k A J - k ) k = 0 

for 0 < j < q 

For odd n 2 19 the coe f f i c i en t s cm_2j i n t n e expression 

omLmn + cm.2L{m_2)nyn + • - • + em_2vL{rn-2V)nyvn f o r even TT? ̂  0 

C / M
 + ^ -2^(m-2)n2/ n + " • ' + °m - 2p *<> - 2p) n2/P" f ° r odd m >_ 1 

are precisely the same as in Table 2. Similarly, for odd n >_ 1, the coeffi-
cients e . in the expression 

(c F, x + e ~F. N vn + • • * + e ~F, s Vqn for even m > 2 
— _ J m-l (m-l)n m-3 (m-Sjn*7 m-2q-\ {m-2q -l)nu — 

lC
m-lL(m-l)n +

 Cm-3L(m-3)riyn + • • • + ^m-2q ~ l^{m - 2q ~ l) nh^ f Or odd 772^ 1 . 

are p rec i se ly the same as in Table 3 . 
Now l e t us r e c a l l ( l a ) , (2a ) , (3a ) , and (4a) : For odd n _> 1, 

o L„ and Lm o Lv 

for even n _> 0, 

Lmn for even ??? _>_ 0 __ _ 
° F„ =< and Fm o Fyi 

Lmn for odd ?TZ _> 1. 

These four identities lead to identities for products of composites. For ex-
ample, suppose s and a are odd positive integers and t and T are even nonneg-
ative integers. Then 

Fs o p t = Lst and Fa °  FT - LaT . 

By identity (5) in [4], LstL0T = Lst + CTT + Lst _ CTT. Therefore, 

(Fs °  Ft)(F0 °  FT) = Lst + aT + L8t_aT. 

Ten identities are obtainable in this way. To facilitate listing them, we 
make certain abbreviations. The identity just derived appears below in (10) 
as _ 

(F8 O Ft)(F0 o FT) = L$ + L\,9 oeoe, 

where the designation "oeoe" means "for odd s, even t, odd a, even T0" 

Table 4. Product-Composition Identities 

Notation: s, i, a, T are nonnegative integers and st _> err. 
Also, $ = st + err and \> = st - ax as in the example above. 

LH + L\>, oeoe (11) (" F& + F\>, oeoo 
= } p J J>> oeee ? „ ? f 0 } = ) F% - F^ oeeo 

F* + F^, eeoe s * °  T 1 Li + L\,, eeoo 
L* - L^, eeee ' L* - L\>, eeeo 

(10) 

(Fs o Ft)(F0 o pT) 
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(12) 

@e °  ̂ t)(La °  ̂ T) 

(14) 

(Ls ° Ft)(LQ o FT) 

(16) 

(Fs o Lt)(Fo o L T ) 

(18) 

(Fe o Lt)(La o LT) 

Table 4 .—continued 

(13) i^ - F^, oeoe 
L| + L^s oeee 
L_| - L\>, eeoe 
Ftf + F^ s eeee 

y ~ ̂ bs oeoe 
Fi + FL, oeee 
F^ - F^, eeoe 
L& + L^j eeee 

Ljjj + L^, 0000 
and eooo 

L% 

(15) 

L^, ooeo 
and eoeo 

(17) 

Lt)(L0 

F$ - F\ s OOOO 
and eooo 

+ FL s ooeo 
and eoeo 

(19) 

(L8 o £t)(£0 

0 £T) 

£T) 

*"T> 

£T) 

H - L\>> 

F\,> 

oeoo 
oeeo 
eeoo 
eeeo 

pts 
n 
H 4 
H 
F$ 

H 
H 

-
+ 

+ 

-

+ 

-

+ 

*v» 
L\)> 

and 

and 

L\,, 
and 

and 

oeoo 
oeeo 
eeoo 
eeeo 

oooe 
eooe 
ooee 
eoee 

0000 
eooo 
ooeo 
eoeo 

3. FUNCTIONS COMMUTING WITH U (x) 

Bertram [1] proves that, except for a possible factor -1, the only non-
constant polynomials that are permutable (i.e., commute) with nonlinear Cheby-
shev polynomials (of the first kind) are Chebyshev polynomials (of the first 
kind). Here we obtain analogous results for Chebyshev polynomials of the sec-
ond kind. The same arguments give further analogous results for composites 
involving one Chebyshev polynomial of each kind. 

_There is no real loss in disregarding the symbol y in Tn(x5 y) , Un(xs y) , 
and Un(xs y) in th^s section. Accordingly, we write Tn(x) for Tn{x1) 1), Un(x) 
for Un(xs 1), and Un(x) for 7Jn(x5 1). Following the notation and arguments in 
Bertram, if P and Q are functions, the substitution of Q{x) for x in P(x) is 
denoted either by P{Q(x)) or P(Q). Ordinary multiplication of functions is 
given by juxtaposition, as in /4 - x2Un(x), or by brackets* as in A[Pr]J and 
(4 - %2)[Un(x)] 3 in order to avoid confusion with the composition (i.e., sub-
stitution) operation. 

Proofs in this section are abbreviated or omitted, but the interested 
reader with[l] at hand should have no trouble writing out the proofs in full. 
One must of course bear in mind the transformations already given between Tn , 
Uns and tn3 un* 

Lgynma 3cit Suppose P(x) satisfies the following differential equation for some 
positive integer ni 

(4 - x2)lPf(x)]2 = n2[4 - P2'fo)]. (20) 

If ~P(x) is of the form /4 - x2P(x) 3 where p(x) is a polynomial^ then 

P(x) = ±Un(x). [That is, f{x) = ±Un(x) «] 

Lemma 3b: Suppose A(x), a polynomial of degree j _> 0, and Q(x) = A - X2Q(x),. 
where Q(x) is a polynomial of degree n- 1 _> 1, satisfy the differential equa-
tion 

(21) {A(x)[Qf(x)]J}2 = [^(GGc))]2. 

if p(x) = A" — x P(x), where P(x) is a polynomial of degree m- 1 > 0, is per-
mutable with QGc), then P(x) satisfies the same differential equation with n 
replaced by m. 



362 FOUR COMPOSITION IDENTITIES TOR CHEBYSHEV POLYNOMIALS [Dec. 

P/lOOJ: Let __ _ 
G = {A[PfV}2 - [m'A(P)]2

s 

and suppose G 1 0. The highest degree term of both {A\PfY}2 and |>J4(P)]2 

( - l ) ^ " ^ ^ 2 ^ , 

so that the degree d of G is strictly less than 2JTT7. We next prove that G i 0 
also implies <f = 2jm. Using (21), the commutativity, and the chain rule, 

n2*G(Q) = n2HA(Q)[Pf(Q)V}2 - m2j'n2<? [A(P(Q))'] 2 

= A 2 [Q fl 2J [Pf(Q) ] 2J - m2j' [A (P) ] 2 [Qf(P) ] 2* 

= [Qf(P)l2j{A2[P>l2j' - m2^'U(P)]2} = [G'G 5)] 2^. 

Equating degrees gives nd = <i + 2j(n~ 1)777 9 so that d = 2JTT? since n + 1. This 
contradiction shows that £ E 0, as desired. 

ThuofiQJfn 3: Let {Z7n}n = 0 be the sequence of (altered) Chebyshev polynomials of 
the second kind. Suppose P is a polynomial of degree m - 1 _> 0 such that the 
functions /—— 

Un(x) = /4 - ̂ 2[/n(x) and P(x) = A - ̂ r2P(x) 

are permutable for some positive integer n. Then P — [/OT if n is odd, and P = 
±J/m if n is even. 

P/100̂ : First suppose n = 1. If m = 1 also, then the desired result is easily 
obtained. If m > 19 then the method of proof of Theorem 6 below shows that 
P = ±Um. Now suppose n > 1. By Lemma 3a, ±Un are the only polynomials Y of 
degree n - 1 _> 1 which satisfy the differential equation 

^ A2iY'-\h = n4U(Y)]2
9 

where Y(x) = /4 - ic2Jfa) and ,4(x) = 4 - a?2 . But the hypothesis that Un(P) = 
P(Un) for n _> 1, together with Lemma 3b implies that P satisfies this differ-
ential equation with n replaced by m. Thus9 taking square roots, 

(4 - x2)(p'(x)]2 = n2[4 - P2(x)] or -n2[4 - P2(x)]. 

The latter leads to m2 + nl = 0, which is impossible. Therefore, Lemma 3a ap-
plies, and P = ±Um* If n is odd, then Z7n is an even function, and P = Um% if 
n is even, then Un is an odd function, and P = ±Um. 

Identities (2) and (3) show that Um and Tn sometimes commute. Theorems 
4 and 5 below tell precisely when this happens and also answer the following 
questions: What polynomials Q commute with a given Uml What functions of the 
form /4 - x2P(x) commute with a given Tn for n > 2? The proofs, which are 
omitted, follow closely the arguments already used in this section. 

Tkex)Ji2Jfn 4: Suppose Q(x) Is a polynomial of degree m >_ 2 and Q(x) commutes with 
~Un(x) for some n >_ 1. Then 77? E 1 mod 4 and §(#) = Tm(x) . Moreover, if 

Q(Un(x)) = -Un(Q(x)) for some n >_ 1, 

then m E 3 mod 4 and P(#) •= ̂ m te) . 

ThuoflQJM 5: Suppose P(x) is a polynomial of degree 77? - 1 > 0 and 

P(x) = A - x2P(x)." 
If P(#) commutes with Tn(x) for some n >_23 then 777 E 1 mod 4 and PGc) •= Um (x) . 
Moreover, if P(T„ (#)) E ™27„(p(^)) for some n >_ 2, then 777 E 3 mod 4 and P(#) = 
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k. SEMIPERMUTABLE CHAINS 

Two functions f(x) and g(x) are defined in Kuczma [5, p. 215] to be semi-
permutable if there exists a function 

,f N Kx + L 
such that Mx + N 

(22) f(g(x)) = $[g(f(x))]. 
Two functions f(x) and y(ra) are equivalent if there exists a function 

(23) $(x) = p# + s, where r fi 0, 
such that 

4)"1 [/(*(«))] = v{x). 
LommCL 6a: Suppose <$>(x) and $(a?) are as just described and that (22) holds. 
Then the functions 

Fix) = (J)"1 [/((f) (̂ ))] and G(a) = cfT1 te(<f>(a0) ] 

are semipermutable. 

FVL0O£.' For Y(a?) = "7 *:, where 4 = £ - sM9 B = L - sN9 C = 2>M, and P = 2W, 
; L>X T 1/ 

we have 
^(GG*?)) = (J)"1 o f o g o <j>(x) = (f)'1 o $ o £ o / o (j)(x) 

= Y o (J)"1 o ̂ 0 / 0 (j)(x) = Y[(7(F(a:))], 

where the symbol °  indicates composition. 
Suppose T is a sequence of positive integers and 

P = ipn(x)} and D == {dn(x)} 
are sequences of functions indexed by T. We define P to be an SP chain under 
D if every pair of functions in the set 

ipn(x)dn(x) : n e T] 

are semiparmutab le . This d e f i n i t i o n g e n e r a l i z e s t h a t fo r SP c h a i n s given in 
[ 5 ] , which i s o b t a i n a b l e from t h e p r e s e n t d e f i n i t i o n i n t h e case dn(x) E 1 fo r 
a l l p o s i t i v e i n t e g e r s n. 

I f P = {pn(x)}nET i s an SP cha in under P = {dn(x)}neT and Q = {qn(x)}neT 
i s an SP cha in under E = {en(x)}neT9 then P and Q are equivalent i f t h e r e e x -
i s t s (J)Or) as in (23) such t h a t 

cf)"1 [pn((|)(^) )dn(cf)(^))] = qn(x)en(x) f o r a l l n i n T. 

CoSiO&LaSiy to Lomma 6at Suppose {un(x)} i s an SP cha in under {dn(x)} and $(x) = 
vx + s , where 2» ^ 0 . Wr i t e 

* ' 1 [ p n ( * t o ) ) ^ n ( * t o ) ) ] as ( 7 n ( x ) e n t o ) . 
[This is always possible, since we may choose en(%) = 1 for all n in T.] Then 
lqn(x)} is an SP chain under {en(x)}. 

If T is the sequence of odd positive integers, and pn(x) is a polynomial 
of degree n - 1 for each n in 1% and P is an SP chain under P., then P is an 
even SP chain under D. Similarly, if V is the sequence of even positive inte-
gers, and pn(x) is a polynomial of degree n - 1 for each n in F, and P is an 
SP chain under P, then P is an odd SP chain under P. In particular, we define 
a Chebyshev even chain by 

|pn(a0| = Un(x) and dn(x) = A - x2 for n = 1, 3, 5, . ...; 

and a Chebyshev odd chain by the same symbols, for n - 2, 43 6, ... . 
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Finally, if r is the sequence of all the positive integers, and Pn(x) is 
a polynomial of degree n - I for each n in T9 and P is an SP chain under D9 
then P is a complete SP chain under D. 

Lemma, 6b; Suppose a, a, and e are nonzero, g2 ^ 4ay, FOr) = e/ax2 + 3# + y, 

and G(x) - Vox1 + $x + y(ax2 + bx + c) . If F(x) and £(x) are semipermutable, 
then F{x) and £(#) are equivalent [with the same § in (23)], respectively, to 
the functions 

U1(x) = A •- x2 and a3Us(x) = a3(x2 - l)/4 - #2, where a2 = 1. 

(24) [^(Gte))]'2 = e 2[a 2aV + (2a2a£ + aga2)^5 + (a2£2 + 2a2ae 

+ 2a6afc + aya 2 ) ^ +.(2a2ie + a3£2 + 2a3ae + 2aya£>)#3 

+ (a2<?2 + 2a$bc + ayZ?2 + 2ayae)x2 + (a3<?2 + 2a$be)x 

+ (aye2 + y) + 3(a#2 + bx + c)/oac2 + 3x + y], 
and 

(25) [KG(F(x)) + L]2 = Z ^ a V e 6 * 6 + 3a3$a2e6x5 

+ a2a^5(3a + 2ab)xh/ax2 + 3^ + y + ••• 

+ 2ZL( ) + L2, 

where the expression indicated parenthetically after 2KL contains no nonzero 
constant multiple of xh/ax2 + $x + y. 

In (22), suppose M ̂  0,» Then, squaring both sides of (22) and writing 

[MG(F(x)) + N]2[F(G(x))]2 = [KG(F(x)) + L ] 2 , 

the left side contains for its highest degree term a multiple of x12
9 whereas 

the highest degree term on the right side is K2aha2eBxG . Therefore, M = 0, 
and there is no loss in assuming that §(x) is simply Kx + L. 

Equating coefficients of Xs and x5 in (24) and (25) gives K2a2eh - 1 and 
ab = $a. The assumption 32 £ 4ay keeps /ax2 + $x + y from being a polynomial, 
and this implies that the coefficient (a23<22 + 2a3ab)e5 in (25) equals 0; to-
gether with ab = 3# arld a # 0, this means 3 = b = 0 . Thus, 

(26) [F(G(x))]2 = £2[a2a2*6 + (2a2ae + aya2)xh 

+ (a2<?2 + 2ayac)x2 + aye2 + y] 
and 

(27) [Z£(Fte))+L]2 = X2[a2g2x2 + y(ae2 + 1) J [a2a2ehxh + 2aae2 (yae2 + o)x2 

+ (yae2 + e)2] + 2KL/a2e2x2 + y(ae2 + 1)(aae2^2 + yae2 + o) + L2 . 

Again comparing coefficients, we see that either L - 0 or /a2e2x2+ y(ae2+ I) 
is a polynomial. The latter implies ae2 - -1, which, by comparison of odd 
powers of x, leads to L - 0„ 

Multiplying out the right side of (27) and again comparing coefficients 
with (26), we find 

(28) ya(2ae2 + 1) + 2ae(l - ae2) = 0, 

(29) a2oeh(ao + 2ya) - (yae2 + e) (3ayae2 + ae + 2yd) = 0, 

(30) e2(l - ae2 + a3e6) - a2e6 + yae2(ae2 + I)(yae2 + 2c) = 0. 

Evaluating (26) and (27) at x2 = -y/a and equating them gives e2 = K2o2
s so 

that c2 = a2g2. We now rewrite (28), (29), and (30) with q = ya and ae = 5e, 
where 6 = 1: 
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(31) 2c3e - 26c?2 - 26ce2q - qe = 0, 

(32) Sc5e2 + (2qe3 - 8)c3 - kq8c2e2 - (3Sqe3 + 2)qce - 2q2e3 = 0, 

(33) a3e(e2 - 1) + 8c2 (1 - e4) + qe2(c?e + 8)(^e2 + 2c?) = 0 . 

If 26ee + 1 = 09 no q satisfies both (32) and (33). Therefore, 2&ce + 1 £ 09 

and in this case we find 
= 2c2(ce - 6) 

q e(28ce + 1 ) 

from (31) and substitute into (32) to obtain c2e2 = 1. For 6 = 1, we find 
from c2e2 = 1 that ce = -1, since if ce = 1 then q = 0, contrary to y / 0 ^ a. 
Simplifying the expression for q gives yae = he2. Also, from as = 6c? comes 
as2 = -1. Similarly for 6 = -1, we determine ce - 1, yae =-4c?2, and a£2 = -l. 

Now for (f)(rc) = e/yir/2, it is easy to verify that 

^[Fi^ix))] = A - x2 

and, using the fact yae = 46, that 

Finally, it is easy to check directly that these two functions are semipermut-
able if and only if e2 - ±1, and this completes the proof. 

_1[£((|)G*0)] = ^2{x2 - 1>A~ 
:heck directly that these t^ 
= ±1, and this completes tt 

Tho.oh.Qjfn 6: Every even SP chain under a constant sequence of the form 

dn(x) = /ax2 + $x 4- y 

is equivalent to a Chebyshev even chain {anUn(x)}, a2 = 1, n = 1, 3, 5, ... . 

Psioofi: Suppose {yl9 2/392/53 ...} is an even SP chain under d(x) = dn (x) as 
above. Let ~yn (x) - yn (x)d(x) . By Lemma 6b, we may assume that d(x) - /4 - x2 . 
Since every even polynomial yn(x) of degree n - 1 is a linear combination of 
even U^ Or)Ts up to degree n - 1, we write 

m 

yn(x) = ccj]n(x) +J2 h~Ui(xS>> n > m >_ l9 
i = l 

where b^ = 0 for even i. Suppose bm ^ 0. Then 

(34) [^(^(a))]2 = (4 -y2
n(x)) 

and 

(35) [KyiyAx)) + L ] 2 = X 

( m _ r m — 12 ) 

• _ W __ __ I 2 

i = l J 
" _ _ m _ __ "I 

i = i J 
+ 2ZL 

The highest degree term on the right side of (34) is a2x2n , while that on the 
right side of (35) is (-l)n-1K2a2x2n . Thus, K2 = l,_so subtracting (35) from 
(34) and using Lemma 2a [rewritten as Tm{x)Tn{x) + Um(x)Un(x) = 2Tn„m(x) for 
0 £ m < n], 



366 FOUR COMPOSITION IDENTITIES FOR CHEBYSHEV POLYNOMIALS [Dec. 

777 

0 = ly^yjx))!2.- iKy^ix)) + L]2 = -a2I72(x) - 2 a n X > ^ (x)tf. (x) 

r m -|2 ( m r m I2) 

- 2ZL aMTn(x) + X X 2\ (x) - L2 
L i -1 J 

777 

i = i 

""|[Ê t̂o)l +T Ji^te)l2> - 2ZLL^(X) + 2>^<*)1 

- L2 + 4. 

Thus, 

(36) 0 = -4a2 - 4a; 

2ZL 

m r m -. 

£ = 1 L ^"1 l<.i<j<.m J 

UiV^ +£^to)| ^(a» - L2 + 4. 

If L ^ 0» the right side of (36) is a polynomial of degree n. Therefore, L = 
0. If bm £ 0, the right side of (36) is a polynomial of degree n - 1, again a 
contradiction. Therefore, 772 = 0, so that 

~yn(x) = aj]n(x) for n > 1, 

and (36) shows that a2 = 1 for n > 1. 

Lemma lei'- Suppose a, a, and £ are nonzero, 32 # 4ay, 

F(x) = (ere + f)/ax2 + 3x + y and £(x) = (ax3 + to2 + ex + d)/ax2 + $x + y . 

I f F(x) and £(x) a r e semipermutab le , then F(x) and £(x) a r e e q u i v a l e n t [wi th 
the same (J) in (23 ) ] , r e s p e c t i v e l y , t o t h e f u n c t i o n s 

U2(x) = x / 4 - x2 and ahUh(x) = a 4 ( x 3 - 2x ) /4 - x2, where a2. = 1. 

VKOO^I Wr i te 4 = / a x 2 + 3x + y and B = ax 3 + 2?x2 + ox + d9 so t h a t 

F(x) = (ex 4- / ) 4 and £(x) = BA. 

Direct computations show 

(37) [F(G(x))]2 = ae2^(x) + (a/2 + 23e/ + ye2)£2(x) 

+ [e(2af + 3 e ) £ 2 ( x ) + f(&f + 2ye)]&4 
and 

(38) [KG(F(x)) + L ] 2 = Z 2 [ « 8 F 8 ( x ) + Q7F7 (x) + ••• + e x F (x ) + « 0 ] 

+ 2KLG(F(x)) + L 2 , 
where 

S7 = a(2aZ? + (3a), # 8 = aa , 
Q6 = 2aae + a£ 2 + 23a£> + y a 2 , Qs = 2aad + 2abe + 23ae + &b2 + 2ya&, 
Qh = 2afcd + a e 2 + 23a<i + 2$be + 2yae + yb2

 9 
Q3 = 2aed + 2gZ>d + 0c2 + 2yad + 2ybo 9 Q2 = ad2 + 2Bed + lybd + y e 2 , 
gx = d(^d + 2 y e ) , § 0 = yd2. 
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Comparing coefficients of x16 in (37) and (38) gives a2 = K2a2eG . In (38) 
only the expression K2a(2ab + $a)F7 (x) comtains a nonzero multiple of x13A9 
and (37) contains no such term. Specifically, (38) contains the term 

K2a3ae7(2ab + $a)x13A. 

The condition $2 + 4ay keeps A from being a polynomial, and since K2a3ae7 ± 0, 
comparison with terms in (37) gives 

(39) 3a = -lab. 

In (37) only the expression e(2af + $e)G2(x)BA contains a nonzero multi-
ple of x11A3 and (38) contains no such term. Writing this expression as 

e(2af + $e)(aa2x8 + *».)(ax3 + ---M, 

we f ind by comparison wi th (37) t h a t 

(40) 3e = -2otf\ 

Since A i s no t a po lynomia l , t h e e x p r e s s i o n 

(41) JaA2(ex + f)2 + y + 3,4[£F2(x) + a7 + (aF2 (ar) + <?) (ea? + f)A] 

for £(F0r)) in (38) cannot be of the form R(x) + Q(x)A for any polynomials R(x) 
and Q(x) unless perhaps 3 = 0 . Thus9 for 3 ^ 0 , the expression (41) is lin-
early independent of the other terms in (38) and all those in (37), so that 
L = 0. On the other hand9 if 3 = 0 , then b = f = 0 by (39) and (40). Then 
(37) shows [F(G(x))] to be a polynomial, and (41) reduces to 

/aA2e2x2+ y[d + (ae2A2x2 + e)ex/ax2 + y] . 

For this to be a polynomial requires y = 0, contrary to 32 4" 4ay. Consequent-
ly, for 3 = 0, we still have L = 0. 

Equation (40) shows that no multiple of xpA occurs in [F(G)]2 for any 
p > 3. Since only Q5F5(x) in (38) contains such a multiple for p = 9, we have 
Q5 = 0. Because of this and the fact that Q3F3(x) alone in (38) contains a 
multiple of x5A, we have $3 = 0. This leaves (38) with no multiple of x3A9 so 
that the coefficient of x3A in (37), namely f($f + 2ye) , must equal 0. If 
f-+ 0, then eliminating e from 3/ + 2ye = 0 and 3e + 2af = 0 gives 32 = 4ay, 
which is forbidden. Therefore, / = 0. By (40) and (39), 3 = ^ = 0 also. 

For x0 a root of ax2 + $x + y9 
F[G(x0)] = F(0) = /7/ = 0 and G[F(x0)] = G(0) = /yd; 

since L = 0, we have /yd = 0. The condition 32 ^ 4ay implies y + 0. We sum-
marize our findings: 

(42) 3 = 0, b = 0, / = 0, d = 0, L = 0, Q5 = 0, £3 = 0, 9X = 0. 

These enable us to simplify (37) and (38) as follows: 

(43) [F(G(x))]2 = a3ahe2x1B + 2a
2a3e2(2ac + ya)xlh 

+ aa2e2(6a2c2 + 8ayae + y2a2)x12 

'+ 2aaoe2(5ayao + 2y2a2 + 2a2c2 + ayao)x10 

+ ae2(6y2a2c2 + 8ayac3 + a2c4 + ya2)^8 

+ ye2(bayae3 +. 2a2c2 + 2aac + ya2)^6 

+ y££2(ay£3 + 2ya + ao)xh + y2o2e2x2i 
(44) X2[£(Ffe))]2 = K2{a5a2e8x16 + 4atfa2yeVlt + a3£6(6y2a2e2 

+ 2aao + ya2)x12 + a2ye6 (4y2a2s2 +• 6aac + 3ya2)x1Q 

+ ae4 (ylfa2eLf + 6ay2ace2 + 3y3a2e2 + a2<?2..+ 2ayao)xQ 

+ yeh(2ay2ace2 + y3a2e2 + 2a2o2 + bayac)x6 

+ y££2(ay££2 + 2y2a£2 + ao)xh + y2c2e2^2}. 
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Comparing coefficients of x16
 9 x14, . ..9 x2, in order9 gives 

(45) a2 = a2e6 [because of (52) below] 

(46) lac = ya 

(47) I3a2c2 = e 4 ( 3 Y 2 a 2 e 2 + laao) 

(48) -.•'.llaao = e1* ( y 3 a 2 e 2 + 6 a 2 £ 2 ) 

(49) 41a 2 a 4 + 2aa<? - y 4 a V + 24a2yc2e t f + 5 a 2 e 2 e 2 

(50) 5a<32 + 2a = 4ayceIf + 5ac<22 

(51) a c 3 + 2a = 5ac?e2 

(52) Z2 = 1. 

Subtracting (51) from (50) gives 

(53) o1 = ye\ 

Eliminating a from (46) and (47) gives 

(54) 13c2 = ye\3ye2 + 1) . 

Eliminating c2 from (53) and (54) gives 

(55) yez = 4. 

With (45), (53)9 and (55) in mind9 we now discern four possibilities for 
given a and ei 

(56) a = ~ae3 and c = -2e 

(57) a = ae3 and o = ~2e 

(58) a = -ae3 and a = 2e 

(59) a = ae3 and c = 2e. 

For (56)9 we have 

F(x) = Xv^ - ae5x2 and £(#) = e 1 (ax3 + ox)vh - ae5x2 . 

For c()(x) = x/vae5 we find that cf)"1 [F(c|) (a?)) ] = 57/4 - x2 and9 using the assump-
tion c - -2g9 that 

cf)""1 [£(*<»)] = (e~6x3 - 2a?)A - *?2 . 

It is easily checked directly that these two functions are semipermutable iff 
eG = 1. 

Direct checking for semipermutability further shows that (57) gives F and 
G respectively equivalent _to U2 anc[ Uh9 while (58) and (59) give functions 
respectively equivalent to U2 and -f/4 as desired. 

JhojOHQM 7' Every odd SP chain under a constant sequence of the form 

dn(x) = vox2 + $x + y 
is equivalent to a Chebyshev odd chain {anUn(x)}, a2 = 19 n = 2s 4, 63 ... . 

Vtwofc Suppose {y2, Hh% ...} is an odd SP chain under d(x) = dn(x) as above. 
Let yn(x) = yn (x)d(x) . By Lemma 7a9 we may assume that d(#) = /4 - a?2. Since 
every odd polynomial 2/n (a;) of degree n - 1 is a linear combination of odd 
U^ (x) T s up to degree n - 1, we write 

.27„.0*0 = anf/„(x) + ̂  biUi(x)^ n > m >. 1, 
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where 2\ = 0 for odd i . The rest of the proof follows that of Theorem 6 
exac t ly. 

TkzoKom St Suppose d(x) = /ax2 + $x + y where a + 0 and (32 + 4ay. There ex-
ists no complete SP chain under D. 

VHJOO^I Referring to the definitions given just before Lemma 6b, if such a 
chain {p1(x), p2(x) , . . .} exists, then the chain {p1 (x) , p3(#), . . .} is an even 
SP chain. The proof of Lemma 6b shows that we may assume §(x) = Kx + L in 
(22) and a = -1 and (3 = 0. Thus, we write 

:p1(x) = av-x2 + y and ~p2(x) = (2?# + <?)/-a:2 + y 

where as b3 and y are nonzero. Writing out the assumption 

lpx(pz(x))l2 = [ifpjp^x)) + I]2, 
we find the term 2K2a3bcx2v-x2 + y on the right side and all other terms in 
this equation linearly independent of this term,. Thus c = 09 so that 

[p1 (p2(x))]2 = a2b2xh - ya2b2x2 + ya2. 

It is easily checked that L = 0, so that 

[Kp2(p1(x)) + L] 2 = -a'4£2X2x4 + ya2£>2X2(2a2 - l)x2 

+ Z2y2a2Z?2(l - a 2). 

Comparison of coefficients of xh gives a2K2 - -1, which along with comparison 
of coefficients of x2 implies K2 = -1. But this leads to a contradiction 
since comparison of constant terms gives 1 = yb2 (K2 + 1). 
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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 "= Fn+1 + F n > ^0 = ° » Fl = 1 a n d Ln + 2 = Ln+1 + Ln> L0 = 2» Ll = l• 

Also9 a and 2? designate the roots (1 + /5)/2 and (1 - /5)/2, respectively9 of 
x2 - x - 1. = 0. 

PROBLEMS PROPOSED SN THIS ISSUE 

B-436 Proposed by Sahib Singh, Clarion State College, Clarion, PA. 

Find an appropriate expression for the nth term of the following sequence 
and also find the sum of the first n terms: 

4, 29 10, 20, 58s 146, 388, 1010, .... 

B-437 Proposed by G. Iommi Amunategui, Universidad Catolica de Valparaiso, 
Valparaiso, Chile. 

Let [m9 n] = rnnQn + n)/2 for positive integers m and n. Show that: 
(a) [m + 1, n][m9 n + 2][m + 2, n + 1] = [m, n + 1][m + 2, n][m + 1, n + 2]. 

m 

(b) ]£|> + 1 - k, k] = m(m + l)2(w + 2)/12. 
fc-i 

(We note that part (a) is the Hoggatt-Hansell "Star of David" property for the 
[m9 n].) 

B-438 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 

Let n and w be integers with W odd. Prove or disprove the proposed iden-
tity 

Fn+2w n + w ~ ^w^n + w^n-w "*" ^n-w^n- 2w ~ ^3w ~" ^w'^n' 

B-^39 Proposed by A. P. Hillman, University of New Mexico, Albuquerque, NM. 

Can the proposed identity of B-438 be proved by mere verification for a 
finite set of ordered pairs (n, w)1 If so3 how few pairs suffice? 

B-440 Proposed by Jeffrey Shall i t , University of California, Berkeley, CA. 

(a) Let n - x2 + z/2s with x and y integers not both zero. Prove that 
there is a nonnegative integer k such that n = 2k (mod 2 ). 

(b) If n = 2fe(mod 2^ + 2) , must n be a sum of two squares? 

B-khl Proposed by Jeffrey Shallit, University of California, Berkeley, CA. 

A base-2? palindrome is a positive integer whose base-2? representation 
reads the same forward and backward. Prove that the sum of the reciprocals of 
all hase~b palindromes converges for any given integer b _> 2. 

370 
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SOLUTIONS 

GCD Not LCM 

B-412 Proposed by Phil Maria, Albuquerque, NM. 

Find the least common multiple of the integers in the infinite set 

{29 - 2, 39 - 35 49 - 4, ..., n9 - n, ...}. 

Solution by Sahib Singh, Clarion College, Clarion, PA. 

The least common multiple is infinite because every positive integer n is 
to be its factor. If we want the greatest common divisor of the members of 
the set, we note that 

n9 - n = n(n - 1) (n + 1) (n2 + 1) (nh + 1) = (n5 - n) {nh + 1) . 

Since n(n - 1)(n + 1) = 0 (mod 6) and n5 - n E 0 (mod 5), we conclude that 

n9 - n E 0 (mod 30) for n = 2, 35 ... . 

By examining the first two terms of the set, we see that the greatest common 
divisor is 30. 

Also solved by Paul. S. Bruckman, Lawrence Somer, and the proposer. 

Counting Equilateral Triangles 

B-413 Proposed by Herta T. Freitag, Roanoke, VA. 

For every positive integer n, let Un consist of the points j + fce2lT 3 in 
the Argand plane with 

Q e {0, 1, 2, ..., n} and k e {09 1,...., j}. 

Let T(n) be the number of equilateral triangles whose vertices are subsets of 
Un. For example, T(l) = 1, T{2) = 55 and f(3) = 13. 

(a) Obtain a formula for T(n). 
(b) Find all n for which T(ri) is an integral multiple of 2n + 1. 

Solution by W.O. J. Moser, McGill University, Montreal, P.Q., Canada. 

For the problem as given, T(3) is 15 and not. 13 as stated in the problem. 
The difference may be accounted for by the triangles {[2, 2], [1, 0], [3, 1]} 
and {[1, 1], [2, 0], [3, 2]}, where [j, k] denotes J + keZlti/s . The proposer 
probably meant to count only the triangles with a side parallel to the real 
axis. The intended problem is the same as Problem 889, Math. Mag. 47 (1974), 
solution ibid. 47 (1974):289-91, where other references are given. 

Using the following well-known result one can count various sets of ver-
tices forming equilateral triangles in Unt 

LOMncii Let 777 and r be integers, m >_ 0, r >_ 1. The number of ordered p-tuples 
(ax, o.., ar) of nonnegative integers ai satisfying a1 + - - - + ar = m is 

(m + v - 1\ 
V v - 1 /" 

Triples of the form 

{[</» k]9 [j - i9 k]9 [j9,k + i']}9 {[j, k]9 [j, k - i}9 [j + i9 k]}, 

{[j + i9 k]9 [j, k + i ] , [j - i9 k - i]}s 

{[J - i* k]9 [j, k - i]9 [j + i* k + i]} 

all form equilateral triangles. 
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with 
even, 

e» = 0 for n 

T(n) 

even and 

Let As(n) for s = 1, 2, 3, 4 denote the numbers of triples in U of these 
forms in the order listed. Geometrically, one sees easily that A3(n) = A^(n). 

Since [j, k] eUn if and only if j and k are integers with 0 <_ k <. j <_ w, 
A1(n) is the number of ordered triples (i, j, fc) of nonnegative integers sat-
isfying 1 ̂  t and fc + i, <_ j £ n. Letting x - i - 1, z/ = fe, z = j - i - k9 and 
w = n - j, we see that ̂ 4_(n) is the set of ordered quadruples (#, y9 z, w) of 

/n + 2\ nonnegative integers with x + y + z + W - n - 1; hence, i4x(n) = ( ~ J by the 

lemma. Other types of triangles may be enumerated similarly. 
The answer for the intended problem is 

[n(2n + l)(w + 2) - 9n]/8, 

) n = 1 for n odd. Hence, (2n + l)\T(ri) iff w is 

Also solved by Paul S. Bruckman and the proposer. 

B-4l*t Proposed by Herta T. Freltag, Roanoke, VA. 

Let 

i - 2 

Determine a l l n i n {2 , 3 , 4 , . . . } fo r which 5 n i s (a) p r ime; (b) odd. 

Solution by Paul S. Bruckman, Concord, CA. 

Note t h a t 

^Sn = Sn + l ~ Sn = Ln+h + ( 2 )Ln+3 ~ \ 2 / ^ n + 2 " \ 2 )^+l 

= ^ n + tf + \ \ 2 ) " \ 2 / j ^ n + 2 = L " + ̂  + n^n + 3 

= (n.+ l)Ln+If - nLn + 3. 

Hence, £n = nLn + 3 + c, for some constant c. Now 
52 = L? + Lh - L2 - 11 = 29 + 7 - 3 - 11 = 22; 

but also, 

S2 = 2L5 + o = 2 • 11 + c = 22 •+ c. 
Hence, e = 0. Therefore, 

(1) Sn = nLn+3, n = 2, 3, 4, ... . 
Clearly, since n and Ln + 3 are each integers greater than 1 (for n >_ 2), 

Sn is never prime. In order for Sn to be odd, both n and Ln+3 must b̂ e odd. 
Now Ln is even iff 3 In, as is readily seen by inspection of the first few val-
ues (mod 2) of the Lucas sequence. Hence, Ln + 3 is odd iff 3/fn. It follows 
that Sn is odd iff n E ±1 (mod 6). 

Also solved by Bob Prielipp, Sahib Singh, and the proposer. 

PROPOSALS TABLED 

No solutions to problem B-415 were received. The problem was restated by 
the Elementary Problems Editor in a form not equivalent to the original prob-
lem. 

No solutions to problem B-416 were received. 
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Not a Bracket Function 

B-417 Proposed by R. M. Grassl and P. L. Mana, University of New Mexico, 
Albuquerque, NM 

Here let [x] be the greatest integer in x, Also, let f(n) be defined by 

f(0) = 1 = /(I), f(2) = 2, ,f(3) = 3, 
and 

f(n) = f(n - 4) + [1 + (n/2) + (n2/12)] for n e {4, 5, 6, ...,}. 

Do there exist rational numbers a, b9 cs and d such that 

f(n) = [a + bn+ on1 + Jn3]? 

Solution by Paul S« Bruckman, Concord, CA« 

We first prove the following: 

(1) f(12n) = 12n3 + 15n2 + 6n + 1, n = 0,1, 2, ... . 

Let S denote the set of all nonnegative integers n for which (1) is true. 
Since /(0) = 1, it is clear that 0 e Se Now f(l2n + 12) - f(l2n) 

= J^ (f(l2n + 4k + 4) - f ( 1 2 n + 4fe)) = 5 3 ( l + 6n + 2fc + 2 + | i | ( 3 n + fe+ 1) : 

= ] T (3 + 6 n + 2k + [ - j ^ n 2 + 6n(k + 1) + (k + D 2 } ] ) 

= ̂ { ( 3 + 6n + 2k + 12n2 + Sn(k + 1)H + [4/3] + [16/3] + 12 

2 

= 1 + 5 + 12 +23 {3 + 14n + 12n2 + (8 n + 2>^} 
fc = 0 

= 3(12n2 +.14n + 3) + 3(8n + 2) + 18, or 

(2) f(l2(n + 1)) - /(12w) = 36n2 + 66n + 33. 

Suppose n e S. Then 

/(l2(w + 1)) = 12n3 + 15n2 + 6n + 1 + 36n2 + 66n + 33 

= 12n3 + 51n2 + 72n + 34 

= 12(n + I)3 + 15(n + l)2 + 6(n + 1) + 1. 

Hence, n e S => (n + 1) e S. By induction, (1) is proved. 
Now, suppose that for all n >. 0, 

(3) /(n) = [a + bn + on2 + <in3] 

for some rational a, fc, c, and d independent of n. Then 

/(n) = a + bn + en2 + in3 + ens 

where en = 0(n) as n •+ °°. In particular, substituting 12n for fit 

(4) /(12w) = a + 122?n + 144cm2 + 1728c?n3 + e12n. 

By comparison of (1) and (4), it follows that 122? = 6, 144c? = 15, 1728c? = 12, 
i.e., 
(5) b == 1/2 = 72/144, c = 15/144, d = 1/144. 
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Hence, 
,c\ j?f \ n3 + 15n2 + 72n , A 1 o 
(6) f(n) = — y^ + a|, n = 0, 1, 2, 

Note that 

/(5) = /(I) + [1 + 5/2 + 25/12] = 1 + 1 + [55/12] = 6, 
and 

/(9) - /(5) + [1 + 9/2 + 81/12] = 6 + 1 + [45/4] = 18. 

Setting n - 0 in (6) yields: 
/(0) = 1 = [a]; 

however, setting n = 9 in (6) yields: 

f(9) = 18 = [18 + a], 

which implies [a] = 0. This contradiction establishes that the supposition in 
(3) is false. 

Also solved by the proposers. 
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PROBLEMS PROPOSED IN THIS ISSUE 
H-320 Proposed by Paul S. Bruckman, Concord, CA„ 

Let 

Alsos let 

5 00 
n = l 

's Re(s) > 1, the Riemann Zeta function* 

Show that 

H» - Ls k * 
k=l 

1, 2g 39 ...» the harmonic sequence. 

Hn 

n = l n 

H~321 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 

Establish the identity 

+ (L2Qr + L16r + Lhr + 3)(Fn+10p + Fn + I f r) 

(L9 L20r + L12r + 2L8r D(F. 4- Fb n+8r n+Gr-

3 

n 
i = 1 

40(-l)»JI*1^ 

SOLUTIONS 
A Dawn 

H~29^ Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA, 
(Vol, 16, No. 6, December 1978) 

Evaluate Fc-

6r 4-3 

1 Or+ 5 

18P+9 

24r-f-12 

30r+15 

2 Or+10 

302» + 15 

5 Or + 2 5 

Fl 

-F 

•42P4-21 

• 18r + 9 

36r +16 

5^ + 27 

7 2r +3 6 

9 Or + 4 5 

375 



376 ADVANCED PROBLEMS AND SOLUTIONS [Dec. 

Solution by the proposer. 

After simplification., 

A = p P P P P 
2 r + l 62*4-3 10r+5 U r + 7 1 8 r + 9 

1 

^ 2 r + 1 

^hr + 2 

l O r + 5 1 4 r + 7 

J2 O r + 1 0 J 2 8 r + 14 xv3 62»+18 

J 4 2 r + 2 1 ^ 5 ^ + 2 7 

J 5 6 r + 28 ^ 7 2 r + 3 6 

^ 2 r + 1 ^ 6 r + 3 ^ 1 0 r + 5 ^ 1 4 r + 7 ^ 1 8 r + 9 ^ 6 r +3 + ^ 2 r + 1 ) v ^ i Or 4-5 " ^ 2 r + l ) 

( - ^ 1 ^ P + 7 + ^ 2 r + 1 ^ ^ 1 8 r + 9 ~ ^ 2 r + 1 ' (-^1 Or+ 5 + ^6r. + 3 ' ^ 1 4r + 7 "" ^ G r + s ) 

^ 1 8 r + 9 "*" ^ 6 r + 3^ ^ l ^ r +7 + -^1 Or + 5 ' v ^ l 8 r + 9 ~ ^1 Or +5 ' ^ 1 8r + 9 + - ^ 1 4 r + 7 ^ 

-,4 7̂ 4 zp3 7̂ 3 p 2 P 2 
L̂" 4 r + 2 6r + 3 8r+«+ 1 0 r + 5 

ZIO-CJS-C^ jpl* 7J73 X73 

c l 0 7 p 5 r /H 77H w o 773 r ; z 77Z 77 r? 
2 r + l 4 r + 2 6r + 3 8r+«+ 1 0 r + 5 1 2 r + 6 1 4 r + 7 1 6 r + 8 1 8 r + 9 

= 51 UF,,F; ,F , F? Fi Ft Ft Fa F0 , s where w = 2p + 1. 
W 2w 3w hw 5w 6zJ 7w 8y 9 w ' 

More Identities 

H-295 Proposed by G. Wulczyn, Bucknell University, Lewisburg, PA. 
(Vol. 17, No. 1, February 1979) 

and 

Establish the identities 

( a ) FkFk + Br+3 ~ Fk + Qr + ̂ Fk+2r+l = ^ _ 1 ) 
k + 1 ^ 3 

2 r + 1 2r +1 k + hr+2 

^ FkFk+Sr " Fk+BrFk + Zr ~ ( " ^ F 2 r L 2 r Lk + hr * 

Solution by the proposer. 
( n ' \ 7? /T7^ __ 77 7p2 
k ; fc fc+6r+3 fc + 8 r + 4 fc + 2i» + l 

7='{(a* - g f e ) [a 2 k + 1 2 r + 6 + 6^ + i 2 r + 6 + 2 ( - l )* ] 
5/5 

(-D^+1 

5/5 

(a £ + 8 r + 4 nfe + 8 r + 4 \ r 2 /c+ ' + r+2 , g2?c + 4 r + 2 + 2 (-1)*]} 

{a^-^^Ca16234-8 - 2a 
ok- hr - 2 / r t i 6 r + 8 , o 

^ + 2 + 2ax 

122- + 6 23 
(-1) fc+i 

5/5 

( -D f e + 1 

5/5 

v f c - 4 r - 2 ,- t r + 2 (a" l ) ( a ^ + 2 + l ) ; 

1) 

" r + 2 _ 1 } | 

3 fe-M-r-2 /n l +r + 2 - i ) ( ^ r + 2 + i ) 3 } 

,&-'+*• - 2 ^ , 2 r + l ,^2v + 1 ( a 2 + ^r+1)(o.^^1)i(a 2r + l \ 3 / „ 2 r + l 

+ 6fc+"r + 2 (a 2 r + 1 + B2 r + 1)(a2 2 , + 1 - g 2 r + 1 ) 3 } 

i 2 r + l \ 3 

_ / i \ fe + 1 7 7 3 7- 7-
V J . ; n 2r+l±J2r+lLjk+lir +2' 

( b ) ^ c ^ + s r ™ Fk + 8rFk+2r 

-±= {(a^ - B*)[a
2* + 12* + 62fe+12^ + 2(- l) f e + 1] 

5/5 *• 
- (a^82" - $k + 8n[a2k+fyr + S2k + 2r + 2 ( - l ) k + 1 ] } 
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5/5 
{ak+l*r(a1Gr- 2 a 1 2 P + 2 a h T - 1) - 3 ^ ^ ( 3 1 ^ _ ^ 1 2 r + 2 ^ P __ 1 } j 

(-1) ^P~{ak-hr{ahv - l)3(a^ + l) - 3 ^ r (34r - D 3 ^ + 1)} 

(-1> fc + i 

5/5 
{ak + lfP(a225 - 322V(a22' + 32p) + $k+hr (a2r - 322,)3(a2r + 32p)} 

Also solved by P. Bruckman. 

Bracket Your Answer 

H-296 Proposed by C. Kimberling, University of Evansville, Evansville, IN. 
(Vol. 17, No. 1, February 1979) 

Suppose x and y are positive real numbers. Find the least positive in-
teger n for which 

Ln + 7/J Ln J 
where [2] denotes the greatest integer less than or equal to z. 

Partial solution by the proposer. 

Solution {OK. tkn Spe.cA.al COAQ. y = 1: 

hjf+i)2 \2 
« • _I\IU . o 1 x i f m2 < x < m2 + m - I 

Let m = [/r ] and A ' 
1 + /(??? + I)2 -re if???2 + 7?? <̂  a: <_ T??2 + 2TT? 

Then the least positive integer n satisfying J, = — is given by 

_ { m ~ 1 + A if .4 is an integer 
n ( ft? + L4] otherwise. 

Vhmi} First suppose m2 £ 2? <_ 7?72 +7?? - 1, where m = [/r] . Let £ = # - 7??2 . 
Then writing k - n - m gives 

x x m2 + L , k2 + L 
__ = = = ^ _ fc -f —7—3 
n 77? + fc 777 + fc 7 7 Z + / C 

Similarly 
x 7 n (fe + I ) 2 + L 

rn =m ~k ~l + m + k + i • 
(k + 1) 2 + L The least k satisfying - — , 7 , 1 > 1 is easily found to satisfy 

J & 77? + k + 1 — 

Thus, for 
W(-•*)'-• 

- y + V(/77 + y) - # if this is an integer 

y + ./(TTZ + yj - x otherwise 

we find that Zc < y + <J\m + ~\ - a? = I + vfe - L + i, so that 
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[k - -0) < n - L + 7- and —-y- > 1. 
\ 2/ 4 m + k 

Consequently s I-—I =777 - k- Furthermore, If 

(k + I)2 + L 2 

777 + k + 1 -

then •— > m ~ k +.1» contrary to -—r < — < m - k. This shows that 
1 •+ n — J n + 1 n 

<fe + I ) 2 + L 2 
m + Zc + 1 . 

so t h a t 1 + n m - k. 

If nf < n9 then fo r n = m + k? we have kr < k; by d e f i n i t i o n of fc t h i s 
i m p l i e s 

(k f + I ) 2 + L 
m + fcf + 1 

so t h a t 
< 1 

x - , , L (&' + _ l ) z + L , 
1 + nr m + kf + I < m 

x 1 
_1 + n f J 

x k!2 + L f x ~\ 
On the other hand, —r = m - k' + Trr"* so that —r > m - kf« This shows 

that n is indeed the least positive integer for which — — - \ = — . 

In + lj L^J 
Now suppose m2 + m <_ x <_ m2 +2???, where again m = [/x] . Let 

L - x - rn2 - m and k - n - m. 

An argument analogous to that above shows that the least k for which 
r x 1 _ r x 1 
|_m + fcj " L??7 + Zc + l j 

i s given by 
( vim + I)2 - x if this is an integer 

( 1 + [/(TTZ + l)2 - x J otherwise. 
The solution stated above now follows from /c = n - m. 

hto£&: It appears likely that for any y3 at least for any positive integer y, 
the solution can be written in the form [x/j] + 1, where j is an integer,, 

Also solved by C. B. A. Peck. 

The Limit 

H-297 Proposed by V.E. Hoggatt, Jr... , San Jose State University, San Jose, CA„ 
(Vol. 17, No. lf February 1979) 

Let PQ = P1 = 1, Pn(X) = P B - I a) - XPn_2(X). Show 

ltoPn.1(X)/Pn(X) = (1 - A - 4X)/2X = X X + i * n ' 
~J"° ° n = 0 

where Cn is the nth Catalan number. Note that the coefficients of Pn (X) lie 
along the rising diagonals of Pascalfs triangle with alternating signs. 

Solution by Paul S. Bruckman, Concord, CA« 
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The characteristic polynomial of the Pn
fs is x2 - x + X = (x - u) (x - v) 9 

where 
u = u(X) = |(1 + /l - 4X)9 v = u(X) = |(1 - /l - 4X). 

It follows readily from the initial conditions that 

Pn(X) = (2^n+1 - vn+1)/(u - i;), n « 09 1, 29 ... . 

Although it is not stated in the problem, we assume that |X| < l/49 to 
avoid possible problems of convergence. Being acquainted to some degree with 
the proposer of the problem9 it is nearly safe to say that he did not intend 
the problem to involve a rigorous treatment with X ranging over all admissible 
valuess but rather a formal result valid for "nice" values of X. Moreover, we 
assume X is real. 

Let rn = Pn.1(X)/Pw(X), and f(X) = u(X)/v(X). Since uv = X9 
f(X) = u2/X = (u - X)/X = u(X)/X - 1. 

Also 

P (X) = (Mn _ Vn)/(un + l „ y» + l) = ("/v)" ~ * - ^ " * . 

:>r some constant c. 

y{(M/y)"+1 - 1} v(fn+1 - 1) 

If we consider the graph of /9 we see that the graph has asymptotes at 
X = 0 and at / = -1; however, the latter asymptote is approached only as X -*-
-°o9 and we exclude this possibility9 by hypothesis. If X > 09 clearly u > v. 
If X < 09 then u > 19 V < 09 and / < -1. It follows that9 if |X| < l/49 then 
l/l > i. 

Hence9 v - lim p exists and 

r = 1/vF = l/u = v/X = —~~ 2\~ " 

Now9 by t h e b inomia l theorem, 

(1 - 4X)" 1 / 2 - E ( - 1 „ / 2 ) ( - 4 A ) » (Provided |X| < 1/4) = £ P V . 

I n t e g r a t i n g w i t h r e s p e c t t o X9 we see t h a t 

- ( 2 n ) 
( -1 /2 ) (1 - 4A) 1 / 2 = a + £ ^ f X " + 1 3 for 

( " ) 
Setting X = 09 we find that c = -1/2. Also9 observe that Cn + 1 = n + ±> the 
(n + l)th Catalan number. Therefore, 

Also solved by the proposer. n™° 
The Big Six 

H-298 Proposed by L. Kuipers, Mollens, Valais, Switzerland. 
(Vol. 17, No. 1, February 1979) 

Prove : 
( i ) F°n+1 - 3F*+1Fn+ 5F3

n + 1F* - 3Fn + 1F5
n - F6

n = ( - 1 ) " , n = 0 , 1, . . . ; 

(±±) Fl+B - 14F*+ 5 - 9 0 F n \ , + 350F« + , - 90F*+ 2 - 14F*+ 1 + F„G 

= ( - l ) n 8 0 , n = 0 , 1, . . . ; 

(iii) F6 - 13F6 + 4LF6 - 41F6 + 13F6 - Fe 

= -40 +|(1 + (-1)")80 (mod 144). 
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Solution by L. Carlitz, Duke University, Durham, NC. 
(i) Let P(x, y) = a?6 - 3x5y + 5x3y3 - 3xy5 - yG. It is easily veri-

fied that P(y + z, y) = -P(y9 z) . 
In this identity, take y = Fn, z = Fn_1> This gives 

P(Fn+1> Fn) = ~P(Fn, Fn^) in = 1, 2, 3, . . . ) . 
Thus, 

P(Fn+1, Fn) = (-l)nP(Fl5 F0) = (-1)"P(1, 0). 

Since P(l, 0) = 1, we get 
P^n+i' *"») " H ) " (n = 0, 1, 2, . . . ) , 

as asserted. 
(ii) Put 

ffc(x) -£.Fn*+1a:» (fc = 0, 1, 2, . . . ) . 
H » 0 

It has been proved (L. Carlitz, "Generating Functions for Powers of Certain 
Sequences of Numbers," Duke Math. Journal 29 (1962):521-537; see also Riordan, 
"Generating Functions for Powers of Fibonacci Numbers," Duke Math. Journal 29 
(1962):5-12) that „ , N 

Uk (x) 

W h e r e *+1 F F . . . F 

p=0 1 2 ••' r 

and 
fc-i 

Z/kfo) = Xi^j x t 7 ' (k = l » 2> 3> •••> 
j - o 

can be computed recursively by means of 

For fc = 6, we find that 
' 6 

and 
06(ar) = 1 - 13a: - 104a;2 + 260a:3 + 260a:4 - 104a:5 - 13a:6 + x7 

U6(x) = 1 - 12a; - 53a:2 + 53a:3 + 12a:4 - x5. 
Moreover, it can be verified that 

DB(x) = (1 + a;)( l - 14a: - 90a:2 + 350a:3 - 90a:4 - 14a:5 + a;6) 
and 

Thus, t a k i n g k = 6 in ( * ) , we have 
U6(x) = (1 + x)(l - 13a: - 40a:2 4- 93a:3 - 81a:4) + 80a:5 

^ c
 ue <*> 

(1 - 14a: - 90a:2 + 350a:3 - 90a:4 - 14a:5 + a ? 6 ) ^ , ^ n + i ^ n = TTf— 
n - 0 

= 1 - 13a: - 40a:2 + 93a:3 - 81a:4 + ~ -
1 + x 

00 

= 1 - 13a: - 40a:2 + 93a:3 - 81a:4 + S0^(-l)nxn + 5. 

n = 0 

Comparing c o e f f i c i e n t s of arn + 5 , we ge t 

F n \ 6 - 14Fn
6

+5 - 90P„6
+lt + 350F„6

+3 - 90*;% 2 - 14F„6
+1 + F* 

= ( -1)"80 (n = 0 , 1, 2 , . . . ) • 
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( i i i ) We have 

1 - 14a; - 90a;2 + 350a;3 - 90a?1* - 14a;5 + a?6 

= (1 - a?)(l - 13a; + 41a;2 - 41a;3 + 13a;4 - a?5) (mod 144) 9 
so t h a t 

Ds(x) E (1 - a? 2 ) ( l - 13a? + 41a?2 - 41a;3 + 13a?4 - a?5) (mod 144). 

It follows that 
Us(x) 

(1 - 13a? + 41a;2 - 41a?3 + 13a;4 - x5)^F^+1xn = J-~T 
n = 0 

_ 1 - 11a; - 64a?2 - 11a;3 + x* 
1 + a? 

/ , f ) r h 
E l - 12a? - 52a?2 + 41a;3 - ~ - (mod 144) . 

1 + a? 
Comparing coefficients of a?n + 5, we get 

n + 6 L'Jrn+5 HL£n + k ^±rn+3 J - J i 7 rc+2 n + 1 

E (-l)n40 (mod 144) (n = 0, 1, 2, . . . ) . 

Also solved by P. Bruckman, G, Wulczyn, D. Zeitlin, and the proposer. 
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