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NEWTON'S METHOD AND RATIOS OF FIBONACCI NUMBERS 

JOHN G I L L 
Electrical Engineering Dept., Stanford University, Stanford, CA 94305 

GARY M I L L E R 
Massachusetts Institute of Technology, Cambridge, MA 02139 

ABSTRACT 
The sequence {Fn + 1/Fn} of ratios of consecutive Fibonacci numbers conver-

ges to the golden mean <p = %(1 + /5) , the positive root of x2 - x - 1 = 0. 
Newton1 s method for the equation x2 - x - 1 = 0 with initial approximation 1 
produces the subsequence {F2n+1/F2n} of Fibonacci ratios. The secant method 
for this equation with initial approximations 1 and 2 produces the subsequence 
{Fp +1/FF }. These results generalize to quadratic equations with roots of un-
equal magnitudes, 

It is well known that the ratios of successive Fibonacci numbers converge 
to the golden mean. We recall that the Fibonacci numbers {Fn} are defined 
by the recurrence Fn = Fn_1 + Fn_2 with F0 = 0 and F1 =. 1.* The golden mean9 
<p= %(1 + /5) « 1.618, is. the positive solution of the equation x2 - x - 1 = 0. 

The ratios {Fn+i/Fn} °f consecutive Fibonacci numbers are a sequence of 
rational numbers converging to <p- li-nearly; that is, the number of digits of 
Fn+1/Fn which agree with <p is approximately a linear function of n, In fact, 
there are constants a, 3 > 0 and e < 1 such that aen < |.FM + 1/Fn - <p\ < ge», 

We can obtain sequences of rational numbers converging more rapidly to <p 
by using procedures of numerical analysis for approximating solutions of the 
equation x2 - x - 1 = 0 . Two common methods for solving an equation f{x) = 0 
numerically are Newton*s method and the secant method (regula fals-i) [1, 3]. 
Each method generates a sequence {xn} converging to a solution of f(x) = 0. 
For Newton1s method, 

(1) xn = NEWTON(a^.j) = xH_± - j r ^ y 

The secant method is obtained from Newton's method by replacing f'(xn_1) by a 
difference quotient: 

/<*n-l>(*»-l-*„-2> 
Xn = SECANTfe^. xn_2) = *„., - /(x?j_i) _ /(aii_2) 

rc-2^ v n-l' n-1*' v n-2' 

/(^n-l) ~ AXn-2^ 
[The first expression for SECANT (#n _ x , a:n _ 2) is more useful for numerical cal-
culations, while the second expression reveals the symmetric roles of xn_1 and 
xn„2,] The familiar geometric interpretations of Newtonfs method and the se-
cant method are given in Figure 1. 

Newtonfs method requires an initial approximation x0; the secant method 
requires two approximations xQ and x±« If the initial values are sufficiently 
close to a solution 5 of f(%) = 0* then the sequences {xn} defined by either 
method converge to £. Suppose that f'(Q f 0; that is, £ is a simple zero of 
/. Then, the convergence of Newton1s method is quadratic [1]: the number of 
correct digits of xn is about twice that of x , since \xn - £ | ^ a\xn_1 - E,\ 

*For future reference, we note the first few Fibonacci numbers: 0f 1, 1, 
2, 3f 5f 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597. 

1 



2 NEWTON'S METHOD AND RATIOS OF FIBONACCI NUMBERS [Feb. 

for some a > 0. Similarly, the order of convergence of the secant method 
is v? % 1.618. since ou#« for some a > 0 [3]. 

^*»-i>+ 
f r ( x ) 
J K n-lJ 

/<*»-2H-

/<*»-!>- slope 

•̂ n -2 

n-l ^n ^n-l *~n-2 

(a J Newton's method (b) Secant method 

Fig. 1. Geometric interpretations of Newton's method and secant method 

Both these methods applied to the equation x2 x - 1 0 yield sequences 
converging to <P more rapidly than {Fn+ /Fn}. For this equation, we calculate 
easily that 

+ 1 + 1 
(3) NEWTON(xn_1) 

2x„ 1 
and SECANT ( x n _ l s xn_2) 

.1 + x
n-2 1 

For initial approximations to <P, it is natural to choose Fibonacci ratios. 
For example, with xQ = 1, Newton's method produces the sequence, 

1, 2/1, 5/3, 34/21, 1597/987, ..., 

which we recognize (see note on page 1) as a subsequence of Fibonacci ratios. 
From a few more sample calculations [e.g., 

NEWTON(3/2) = 13/8 or NEWTON(8/5) = 89/55] 

NEWTON (F^/F) F IF , 
2n+l' 2n 

1 is defined by xn = 
is quadratic, since 

we infer the identityi 

(4) 

The sequence {xn} generated by Newton*s method with xQ = 
F2„ -IF . Now it is obvious that the convergence of \xn} 
there are constants a, £ > 0 and e < 1 such that ae2n < \xn - *P\ < $szn. 

We can similarly apply the secant method with Fibonacci ratios as initial 
approximations. From examples such as 

SECANT(1, 2) = 3/2, SECANT(2, 3/2) = 8/5, and SECANT(3/2, 8/5) = 34/21, 

we infer the general rule: 

(5) SECANT (Fm + 1 /Fm, Fn+1/Fn) = Fm + n + 1/Fm+n . 

In particular, if x1 = 1 and x2 ~ 2, then the sequence {x n] generated by the 
secant method is given by xn = FF +1/FF . Since Fn is asymptotic to <pn//59 
there are constants a, @ > 0 and e < 1 such that ae*n< \xn - <?\ < £>£*", which 
dramatically illustrates that the order of convergence of the secant method 
is *f. 

Equations (4) and (5) are interesting because they imply that the sequences 
of rational approximations to (p produced by Newton's method and by the secant 
method are simple subsequences of Fibonacci ratios. 
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We now verify (4) and (5), In fact, these identities are valid in general 
for any sequence {un} defined by a second-order linear difference equation 
with uQ = 0 and u± = 1, provided the sequence iun+1/un} is convergent. 

Lemma i Let {un} be defined by aun + bun_± + oun^2 = 0 with u0 = 0 and uL = 1. 
Then aum+1un+1 - cwmwM - aww+ n + 1 for all m, n ̂  0* 

Vhjoo^i By induction on n. For n - Q, the lemma holds for all m since 
aum+lul " cumuo = aum+le 

Now assume that for n - 1 the lemma is true for all m» Then 

aUm+lUn+l " °UmU = ( ^ n " CUn-l^Um+I + ^ + 2 + hum + JUn 

~ au
m+2Un ™ cum+lun-l 

aU (m +i) + (w - 1) +1 
= a \ + n + l ' D 

The lemma g e n e r a l i z e s t h e F i b o n a c c i i d e n t i t y [ 2 ] : 
p p + p p - p 
J-m + l^n + l ^ LmJ-n J-m + n+i* 

Suppose that ax2 + bx + a has distinct zeros X± and A2, Any sequence {un} 
satisfying the recurrence aun + bun_x + oun_2 = 0 is of the form 

u n = k ^ l + /c2A*s 
where k1 and ?C2 a r e constants determined by the initial values u0 and uim If 
|Ai| > l^2| an<^ '̂ 1 ̂  ®» then wn is asymptotic to /C-LA-L, and so {un+1/un} con-
verges linearly to XL. We now show that if u0 = 0 and w3 = 1, then Newtonfs 
method and the secant method, starting with ratios from {un+1/un}9 generate 
subsequences of {un+1/un}. 

Th2.0H.em: Let {un} be defined by aun + bun „x + cun _2 = 0 with u0 = 0 and uL = 1. 
If the characteristic polynomial f(x) = ax2 + bx + c has zeros XL and A2 with 
I X-j_ J > I X2 I s then: 

(i) un + 0 for all n > 0; 

(ii) lim un+1/un = Ax; 

(iii) NEWTON(un+1/un) = uZn+1/uZn; 

(iv) SECANT(um+1/um, un+1/un) = u 

(i) It is easily verified that un = /c(A" - An
2), where fc = ±a/Sb2 - 4ac. 

(The sign of /c depends on the signs of a and 2?.) Since |AX| > |A2|, if n > 0, 
then I Ai| > |X"| and, therefore, un £ 0, 

(Ii) We note, as an aside, that the sequence {un+1/un} satisfies the 
first-order recurrence xn = ~(bxn_1 + o)/axn_1. To verify (ii): 

u HX"+I - xr1) 1 - ( \ A )M+I 

——- = — — = A , — Y A as n > » , since A,/A2| < 1. 
Un ka\ - xn

2) i - (x^x.r 
(Iii) For the equation ax2 + bx + c = 0, Newtonfs method and the secant 

method are given by 

(6) NEWTON(x ) =-—U- -T- and SECANT(x , x ) = 
"-1 lax + b J n-is n-27 a(# + a? ) + b° 

n-1 n-1 n-2 
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Therefore, NEWTON(#n_x) = SECANT(a?„_x , xn_1)9 and so (iii) follows from-(iv). 
Note that this identity holds for any polynomial equation f(x) = 0 . 

(iv) By (6),. 

SECANT(um+1/um9 un+1/un) 
a(um+1/um)(un+1/un) - a 

a(um+1/um + M n + l /"«) 
aUm+lUn+l ~ SUmu 

aUm+lun + 
aU*+lUn+l 

au
m

u„+l + 
~ CM

m
M* 

+ 

n 

b 

bumun 

Remcmki* t 

aum+n+1/aum+n (by the lemma) 

Um+n+l'Um+n9 D 

1. The theorem does not generalize to polynomials of degree higher than 2. 
2. Not only do the ratios of the consecutive Fibonacci numbers converge to 

ip9 they are the "best" rational approximation to #>; i.eM if n > 1, 0 < F <_ Fn 
and P/F + Fn + 1/Fn9 then \Fn + 1/Fn-<p\ < \P/F-<P\ by [4]. Since Newton's method 
and the secant method produce subsequences of Fibonacci ratios, they also pro-
duce the best rational approximation to <p, 
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A CHARACTERIZATION OF THE FUNDAMENTAL SOLUTIONS TO 
PELL'S EQUATION u2 - Dv2 = C 

M. J . DeLEON 
Florida Atlantic University, Boca Raton, FL 33432 

Due to a confusion originating with Euler, the diophantine equation 

(1) u2 - Dv2 = C9 

where M s a positive integer that is not a perfect square and C is a nonzero 
integer, is usually called Pell1's equation. In a previous article [1, Theorem 
2], the following theorem was proved. 

TkdOKOm I: Let x1 + y 1/D be the fundamental solution to x2 - Dy2 = 1. If k = 
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0/i)7(^i- 1) and if uQ + v0/B is a fundamental solution to u2 - Dv2 = -#9 where 
tf > 0, then y0 = \v0\ >_ k\u0\ . If k = (Dy1)/(x1~ 1) and if u0 + i>ô 0 is a fun-
damental solution to u2 - Dv2 = tf, where 21/ > 1, then u0 = |w0 | >. k\v0\. 

In Theorem 49 we shall prove the converse of this result. In the sequel, 
the definition of a fundamental solution to Eq. (1) given in [1] will be used. 
This definition differs from the one in [2, pe 205] only when v0 < 0. In this 
case, if the fundamental solution given in [1] is denoted by uQ + V0/D9 then 
the one given by the definition in [2] would be -(u0 + v0/D). We shall need to 
recall Remark A of [1] and to add to the three statements of this remark the 
statement: 

(iv) If C <_ 1 and -uQ + VQ/D is in K then uQ _> 0. If C _> 1 and uQ - VQ/D 
is in K then vQ >_ Q. 

Alsos we shall need the following result (see [19 Theorem 5]). 

Tk2.QH.Qm 2'- If u + v/D is a solution in nonnegative integers to the diophantine 
equation u2 - Dv2 - Cs where C ̂  19 then there exists a nonnegative integer n 
such that u + v/D = (u0 4- v0/D)(x1 + y1/B)n where u0 + vQ/D is the fundamental 
solution to the class of solutions of u2 - Dv2 = C to which u + v/5 belongs and 
xx + y1i/D is the fundamental solution to J:2 - % 2 = 1. 

We now need to prove a lemma and a simple consequence of this lemma. 

Lemma 3*' Let u0 + y0/zJ be a fundamental solution to a class of solutions to 
u2 - Dy2 = C. If, for n _> 1, we let wn + yn/D = (u0 + tf0i/D) (#i + yxfDY 9 then 
un > 0 and vn > 0 for n >_ 1. 

Vn.oo^i Since 

wx + t^/D = (u0 + ^o/^XXi + y^/D) = (u0X! + Dv^y-i) + (u0y1 + VQX^T/D, 

we have that ux = u^xx + Bv{^y1 and ^ = z^^ + vQx1. 
We now begin an induction proof of Lemma 3. First, suppose u\ - Dv0 = C9 

where C < 0. This implies, by Remark A [1], V0 > 0„ Hence uQ >_ 0 implies ux > 
"o#i — uo .> 0 a n d ^i > yo > 0. Thus suppose u0 < 0. By Theorem 1, 

V* - ^~=~1 = Dyx 

Whence, ux = u0xx + Ẑ 02/i >_ ~^o > °  a n d yi = uo£/i + yo^i — yo > 0e Therefore, 
for C < 0, ux > 0 and i;x > 0. 

Next, suppose u\ - ~Dv\ = C5 where C > 0. This implies u0 > 0. Thus VQ >_ 0 
implies ux > u0 > 0 and yx > y0 ^ 0. Thus suppose vQ < 0. Hence C > 19 so by 
Theorem 1, 

U°  -^"i - 1 " " 2/i " 
Whence, ux _> w0 > 0 and v1 >_ -V0 > 09 This completes the proof of Lemma 3 for 
n = 1. 

Since 

(2) (un + 1 + i>n + 1^5) = (un + vn/D)(x1 + i/^) 

= (unx1 + ^2/i) + (a?!^ + y±un)fD, 

the assumption wn > 0 and vn > 0 implies un + 1 > 0 and yn+1 > 0. 

Co/ioZta/iy: With u0, U09 un9 and yn defined as in Lemma 3, we have un + 1 > un and 
y«+i > ^ f o r n > 0 . 

Vfiool* i n t n e proof of Lemma 3, it was shown that v± 2L VQ and that, in ad-
dition, for u0 > 0 or C > 0 we actually have v1 > V0 . For the case u0 < 0 and 
(7 < 0, it follows from the proof of Lemma 3 that v± = VQ implies u± = -u0. So 
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~uQ + V0/D = U-L + vX/D belongs to the same class of solutions to u2 - Dv2 = C 
as uQ +'v0/D. Since we are assuming u0 < 0, this contradicts (iv) of Remark A 
[1]. Hence, even in this case, v1 > V0 . In a similar manner, it is seen that 
we always have u1 > uQ. Since.wn > 0 and vn > 0 for n >_ 1, (2) implies that 
un+i > un a n d vn+1 > vn forn > 1. 

TkdQltm 4; If u + y/D is a solution in nonnegative integers to u2 - Dv2 = -N, 
where # _> 1» and if v>_ku9 where k = (^1)/(^1- 1) s then u + y/D is the funda-
mental solution of a class of solutions to u2 - Dv2 =-N. If u + yi/5" is a solu-
tion in nonnegative integers to u2 - Dv2 = N, where N > 1, and If u >_ kv5 where 
fc = (Dy1)/(x1- 1) 9 then u + y/D is the fundamental solution of a class of solu-
tions to u2 ~ Dv2 - N. 

Vftooj- By Theorem 2, u + y/D = (u0_+ u0/D) (̂ x + yx/D)n = un + i^/D, where 
n is a nonnegative integer and uQ + y0/^ is a fundamental solution to u2 - Dy2 

= ±21/. We shall prove u + v/D = u0 + U0i/D. So assume n _> 1. Then we have 

Thus W n - 1 = Xlun - Dy1vn and ^ _ x = -y±un + xxvn. 
First, suppose u + v/D is a solution to u2 - Dv2 = -N. We know that 

v = vy, > ku-y, -

Hence 
Vn-l = "2/iW„ + ̂ n = (xl ~ l)Vn ~ 2/'l̂  n + Un .> ̂ n • 

But by the corollary to Lemma 3, Vn_± < vn for n > 1. Thus n = 0 and the proof 
is complete for the case u2 - Dv2 = -N. 

Now, suppose u + y/Z? is a solution to u2 - Dv2 = N. We know that 

u n >_ fcur 
% A 

(Please turn to page 92) 

STRUCTURAL ISSUES FOR HYPERPERFECT NUMBERS 

DANS EL Mi NOLI 
Bell Laboratories, Holmdel, NH 07733 

ABSTRACT 

An integer m is said to be n-hyperperfect if m = 1 + n[o(m) -m- 1] . These 
numbers are a natural extension of the perfect numbers, and as such share re-
markably similar properties. In this paper we investigate sufficient forms for 
hyperperfect numbers. 

1. IMTROVUCTWN 

Integers having "some type of perfection" have received considerable atten-
tion in the past few years. The most well-known cases are: perfect numbers 
( U K [1.2], [13], [14], [15]); multiperf ect numbers ([1]) ; quasiperf ect numbers 
([2]); almost perfect numbers ([3], [4], [5]); semiperfect numbers ([16], [17]); 
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and unitary perfect numbers ([11]) . The related issue of amicable, unitary 
amicable, quasiamicable, and sociable numbers ([8], [10], [11], [9]5 [6], [7]) 
has also been investigated extensively. 

The intent of these variations of the classical definition appears to have 
been the desire to obtain a set of numbers, of nontrivial cardinality, whose 
elements have properties resembling those, of the perfect case. However, none 
of the existing definitions generates a rich theory and a solution set having 
structural character emulating the perfect numbers; either such sets are empty, 
or their euclidean distance from zero is greater than some very large number, 
or no particularly unique prime decomposition form for the set elements can be 
shown to exist. 

This is in contrast with the abundance (cardinally speaking) and the crys-
talized form of the n-hyperperfect numbers (n-HP) first introduced in [18]. 
These numbers are a natural extension of the perfect case, and, as such, share 
remarkably similar properties, as described below. 

In this paper we investigate sufficient forms for the hyperperfect numbers. 
The necessity of these forms, though highly corroborated by empirical evidence, 
remains to be established for many cases. 

2. BASIC THEORY 

a. m is n-HP iff m =• I + n[o(m) - m - 1], m and n positive integers. 

b. Mn = {m\rn is n~HP}„ 

c . Let m = p*lpa 1 ^u2 . , . p^i e e o p^o p? be n-HP and be in c a n o n i c a l form 

(Pi < P 2 < ••• < Pj < Pj + i>-
Then p(m) = { p 1 , p 2 , . . . s p . 19 p.} are t he r o o t s of m [ i f m = p 1 , 
p ( m ) . = 0 ] . ' 

d. d1(m) = \p(m)\ = j 9 d2(jn) = k» 
e - nMh,L = im\m i s ^-HP, d^ijn) = h9 d2(m) = L } . 
Note that for n = 1 the perfect numbers are recaptured. Clearly one has 

M„ UA, A , I UnMhtl 
h = 2 

U VnMh.L 
h=l L=2 

a. If m e Un
Mo,L w e s a ^ t h a t m i s a Sublinear HP 0 

L 

b. If m e nM 1 we say that m is a Linear HP. 

c. If 772 e U nMh we say that m is a Superlinear HP. 
h = 2 

d. If m e Q U nMh L w e s a y t t i a t m i s a Nonlinear HP, 
h=l L=2 

It has already been shown [18] that 

?JLOpoA<ition 1: There are no Sublinear n-HPs. 

Table 1 below shows the n-HP numbers less than 1,500,000. In each case, m 
is a Linear HP. We thus give an exhaustive theory for Linear HPs. Superlinear 
and Nonlinear results will be presented elsewhere; however, it appears that the 
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only n-HP are Linear n-HP, 
be impossible. 

In fact, several nonlinear forms have been shown to 

Table 1. n-HP up to 1,500,000, n j> 2 

n 

2 
6 
3 
12 
18 
18 
12 
2 
30 
11 
6 
2 
60 
48 
19 
132 
132 
10 
192 

m 

21 
301 
325 
697 

1,333 
1,909 
2,041 
2,133 
3,901 
10,693 
16,513 
19,521 
24,601 
26,977 
51,301 
96,361 

130,153 
159,841 
163,201 

Prime 
Decomposition 

for 

3 
7 

52 

17 
31 
23 
13 
33 

47 
172 

72 

34 

73 
53 

292 

173 
157 
ll2 

293 

X 
X 

X 
X 

X 
X 
X 
X 

X 
X 
X 

X 
X 
X 
X 
X 
X 

X 
X 

m 

7 
43 
13 
41 
43 
83 
157 
79 
83 
37 
337 
241 
337 
509 
61 
557 
829 
1321 
557 

n 

2 
31 
168 
108 
66 
35 
252 
18 
132 
342 
366 
390 
168 
348 
282 
498 
540 
546 
59 

1 
1 
1 
1 
1 
1 
1 
1 

m 

176,661 
214,273 
250,321 
275,833 
296,341 
306,181 
389,593 
486,877 
495,529 
524,413 
808,861 
,005,421 
,005,649 
,055,833 
,063,141 
,232,053 
,284,121 
,403,221 
,433,701 

Pr Lme 
Decomposition 

j 

35 

472 

193 
133 
67 

532 

317 
79 
137 
499 
463 
479 
1.73 
401 
307 
691 
829 
787 
892 

Eor m 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 
X 

X 
X 

727 
97 
1297 
2441 
4423 
109 
1229 
6163 
3617 
1087 
1747 
2099 
5813 
2633 
3463 
1783 
1549 
1783 
181 

3. LINEAR THEORY 
The fo l lowing b a s i c theorem of L inea r n-HP g ives a s u f f i c i e n t form fo r a 

h y p e r p e r f e c t number. 

Th&otim 1: m i s a L inea r n-HP i f and only i f 

np 
C t x + l (n - l ) p i - 1 

pa^+1 - (n + Dpi1 + n 

V^iOOJ* (->) m i s a L inea r n-HP, i f m - p^p2; then 

o(m) 
a, + l , 

Pi ~ 1 
— ( 1 + P 2 ) . 

But m n-HP implies that (n + l)m = (1 - n) + no(m). Substituting for aim) and 
solving for p2, we obtain the desired result. Note that p2 must be a prime. 

(«-) if m = p^1 • 
np^ - (n - l)p1 - 1 

p^1+ - (n + l)p"1 + n 

where the second term is prime, then 
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a i + 1 

Pi ™ l 

o(m) = - — — — 
P l - 1 

a-, + 1 , 
wp^ - (n - l ) p 1 - 1 

1 + 
p a i x - (n + l ) p a i + n 

from which one s ee s t h a t t h e c o n d i t i o n for a Linear* n-HP i s s a t i s f i e d . Q.E.D. 
We say t h a t n i s c o nv o l u t i on a r y i f n + 1 i s prime p . 

CosiolZaJiy 1: If n i s c o n v o l u t i o n a r y , a s u f f i c i e n t form fo r m = p * p 2 t o be 
L inea r n-HP i s t h a t fo r some a 1 , p = (n + l ) a i - n i s a p r ime . In t h i s c a s e , 

m = (n + i f 1 * 1 [ (n + l ) a i - n ] . 

CofiollcUiy 11 If m = p±p2 i s a L inea r n-HP, then 

np\ - (n - l ) p 1 - 1 
P2 = — 

p\ - (n + l )p1 + n 

We would expect these n-HPs to be the most abundant, since they have the sim-
plest structure. This appears to be so, as indicated by Table 1. 

ZoKoULcUty 3: If m = p1p2 is a Linear n-HP with p1 = n + 1, then p2 - n2 + n + 
1, so that 

7w = (n + 1) (n2 + n + 1). 

In view of these corollaries, the following issues are of capital importance 
for cardinality considerations of Linear n-HP. 

a. We say that (n + l)a - n, a = 1, 2, 3, . .., is a Legitimate Mersenne 
sequence rooted on n (n-LMS)9 If n + 1 is a prime. 

b. Given an n-LMS, we say that in + l)a -n is an nth-order Mersenne prime 
(n-MP), if (n + l)a - n is prime. 

A 1-LMS is the well-known sequence 2'a - 1. 

QILQJ>&LOVI 7. Does there exist an n-MP for each n? 

QlLQAtAjOyi 2. Do there exist infinitely many n-MP for each n? 

Question 3. Are there infinitely many primes of the form n2 -{- n + 1, where 
n + 1 is prime? 

Extensive computer searches (not documented here) seem to indicate that the 
answer to these questions is affirmative. 

Tfieo/iem 2: If m is a Linear n-HP, then n + 1 <_ px £ In - 1 if n > 1 and px <_ 2 
if n = 1. 

?n.00ji It can be shown that if 772 is n-HP and J|T?I, then j > n. Thus, for a 
Linear n-HP, p > n; equivalently, px >. n + 1. Now, since 

np*1- (n - 1) - l/p1 I 
i 

we let 

then, 

(p1 - n - l)p^x+ n 

p1 = n + 1 + y; 

np*1- (n - 1) - 1/Pl 
^ = P i _ ^_^ _ 

UP!1 ,. + n 
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(Note: ]i = 0 implies p = n + 1 < 2n.) Since we want the second factor of this 
expression larger than ls we must have ]i < n or n < p± <_ 2n, from which we get 
n + 1 1 Pi 1 2n - 1 if n > 1, for primality, and 1 < p± £ 2 if n - 1. Q.E.D. 

Observe that the upper bound is necessary for a Linear n-HP9 but not for a 
general n-HP. 

Co/tollaAy 41 m is a Linear 1-HP iff it is of the form m = 2t"1(2t - 1). 

VHJQQ^I From Theorem 25 p1 = 2. Now we can apply Corollary 1 to obtain the 
necessary part of this result. The sufficiency part follows from the defini-
tion. 

4. BOUNVS FOR LWEAR n-WV 

We now establish important bounds for Linear n-HP. 

Vh.opa6iZi.OVi 11 Let m be Linear n-HP. Consider p2 = F(a) . 
cally increasing on a. 

VKOOki Omitted. 

Vhopo&ijLLovi 3: 

lim p9 
01-+OO 

npn 
px + n + 1 

p = n + 1 

The p2 is monotoni-

This follows directly from Theorem 1 and Corollary 1. 
obtain 

VKopokAjtlOYl 4: 
np^ (n - l)p npi 

v\ (n + l)p1 + n 

Using Proposition 2S we 

p + n + 1 

+ n + 1 < p <° °  Pi n + 1 

Using these propositions,, we have essentially proved the following impor-
tant theorem. 

T/i&Ô em 3: Given n9 n + 1 <, p <. 2n - 19 if n is not convolutionary, then there 
can be at most finitely many n-HP of the form m - Pilp2» 

Table 2 and Table 3 show the allowable values for p1, given n9 along with 
the bounds for p . We can now obtain results similar to those of Corollary 4. 

CoKolZaAy 5t If 772 is Linear 2-HP, then it can only be of the form 

3*-i(3* _ 2 ) . 

CoKottaAif 6- a) I f m i s L i n e a r 3-HP9 then i t must be of t h e form 

Co/iollaALj 1% 

;-l3 11 

5*"1 + 3 

b) There is exactly one Linear 3-HP (see Tables 2 and 3). 

Ci) There are no Linear 4-HP rooted on 7 (see Tables 2 and 3). 
b) There are Linear 4-HP rooted on 5. For example9 

5 \ 5 4 m = 5 ' O ' - 4) 

There a r e no L inea r 5-HP. 

5 4 (3121) , 

Cosiollcuiy St 

CotLOlloAy 9: There a r e no L i n e a r 7-HP. 



1981] STRUCTURAL ISSUES FOR HYPERPERFECT NUMBERS 11 

n 

2 
3 
4 
5 
6 
7 
8 
9 

10 

a 

i 

1 
2 
3 
4 
5 
6 
7 
8 

a 
7 — 

4-
1 
2 
3 
4 
5 
6 
7 
8 

Table 2 . Allowable Values 

3 ( 7 , ») 
5 ( 8 , 15) 
5 ( 2 1 , 00) 
7 (18 , 35) 
7 ( 4 3 , 00) 

11(19, 26) 
11(29, 44) 
11(50, 99) 
11(111 , °°) 

TaMe 3 . 

P] 

n = 3 

8 
13 
14.56 
14.91 
14.98 
14.99 
14.999 
14.999 

n = 7 

19.50 
25 
25„60 
25.66 
25.666 
25.6666 
25.66666 

P 2 

L 

Pi_ 

n 
29 
42 
43 
43 
43 
43 
43 
43 

of p x and Bounds 

Allowable Roots 

7 ( 9 , 14) 

11(13 , 17) 
13(15 , 19) 
13 (21 , 26) 
13(29, 39) 
13(43 , 65) 

as a Functi 

5 

n - 4 
21 
121 
621 
3121 
15621 
78121 
390621 
1953121 

= 11 

= 8 n 

.66 50 

.28 91 

.83 98 

.98 98 
,99 98 
.999 98 
,9999 98 
.99999 98 

17(19, 22) 
17(24, 29) 

.on of p., n, and 

= 

4< 
2< 
9 
9 
9 
9 
9 

Pi " 

n = 4 

9.66 
13.23 
13,88 
13.98 
13.99 
13.999 
13.9999 
13.99999 

9 

3 
9 
99 
999 
9999 

Pi = 

n = 7 

15.33 
17.95 
18.18 
18.19 
18.199 
18.1999 
18.19999 

on p2 

19(21 , 24) 

a 

7 

n = 5 

18 
31.22 
34.41 
34.91 
34.98 
34.99 
34.999 
34.9999 

= 13 

n = 8 

21 
25.56 
25.96 
25.997 
25.9997 
25.99998 

Further bounds are derived below. We have already given one such bound? 

np1 

2 — p - n - 1 
p, - n + 2 

pi = n + 3 

p = n + 4 

for n nonconvolutionary 

p < nz + 2n 
. n(n + 3) 

^2— 2 

r> < n ( n + 4> 
y2 - 3 



12 STRUCTURAL ISSUES FOR HYPERPERFECT NUMBERS [Feb. 

T h e r e f o r e , 

Vh.opo&AjLLovi 5: Let n be noneorivolut±onary. If m i s L inea r n-HP, then 

p2 <. n2 + In. 
More generally, 

?n.opo^AJtiovi 6: Let <2n = p - rc, where p i s t he f i r s t prime l a r g e r than n . Then 

n(n + d n ) 2 - (n - I) (n + d) - I n(n + dw) 
. — _ _ £ p <. —3——\—» 

(n + <2n)2 <_ (n + l ) ( n + d n ) + n 2 a * 

which is valid for dn _> 1. 

Vn.opo6Ajtiovi 7: Let 77z be Linear n-HP, n nonconvolutionary. Then p2 _> 2n + 1. 

Vtiool* (From the previous general bound on p2, we see that this statement 
is also true for convolutionary n.) The proof involves looking at the expres-
sion for p2 , given that p1 = n + £, 2 <_ i <_ ri - 1. Suppose p = n + 2. Since 
77? is Linear n-HP, we have 

^2 np^ - (n - l)pi - 1 

c1 

But p = n + 2, so that 

p2
± - (n + l)px + 1 

> n ( n + 2^2 " (n " l)(n + 2) - 1 = (n + I)3
 = (n + l)2

 = n2 + In + 1 
^ / . o \ 2 / i i \ / . o \ . 2 (?2 + 1) 2 2 

(n + 2)z - (n + 1) {n + 2) + n K J 

However, n2 > 2n (n > 2) , so that for this case p2 J> 2n or p2 J> 2n + 1. Simi-
lar arguments hold for p = n + 3 , n + 4, ... . We show the case p = 2n - 1. We 
have 

> ??(2n - l)2 - in - l)(2n - 1) - 1 = 2n3 - 3n2 + 2n - 1 
2 (2n - l)2 - in + l)(2n - 1) + n n2 - In + 1 

o , i _, 2n - 2 
= In + 1 + . 

(Note t h a t n + 1.) T h e r e f o r e , a g a i n , p ^ 2n + 1. Q.E.D. 

Pfiopo&AXioyi St I f 772 = p Q l p i s a L inea r n-HP, n n o n c o n v o l u t i o n a r y , then 

l o g 

a i — 

n 2 p 
— + (n - l ) p + 1 
- n - 1 / f r i 

log p x 

Vh.00^1 We have shown that p tends monotonically to e = (nP1)/(P1 - w - 1) 
as a ->- °°. Let ef be the greatest integer smaller than e. Setting 

npa
±

l+1 - (n - l ) P l - 1 

P i 1 ( ? ! - " - ! ) + 
and solving for a , we obtain 
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log 
ne! + (n - l)p1 + 1 

np1 - ef(pi 1) 

However, 
ner + (n - l)p1 + 1 

np1 - er(p1 - n - 1) 

log px 

< n -y + (n - l)pi +. 1, 

and, in fact, the equality holds in many cases. The result follows. Q.E.D. 
The following statement summarizes the bounds for a linear n-HP: 

n + 1 <_p <_ 2n - I; 

(if p = n 4- 1, then n2 + n + 1 <_ p < °°, 

;if px > n + 1, then In + 1 •<. p2 <. n2 + 2n; 

log 

if p1 > n + 1, then ax < 

n2p. 

^1 
+ (n - l)p + 1 

log p-ĵ  

Notwithstanding the fact that no Superlinear and Nonlinear n-HP have been ob-
served, we can still derive sufficient forms for these numbers (if they exist). 
It may be shown that 

PsLOpo&sLtlon 9: m = p\x p^_ . .. P^-t'l P- i s a Superlinear n-HP if and only if 

nUpl' I) + (1 - n)II(p. - 1) 

(n + l)n(p^ - l)IIp"i - nll(pa*" 

3. CONCLUSION 

1) 

Theorem 1 and Proposition 9 guarantee that, if an integer has a specific 
prime decomposition, then it is n-HP. However, no n-HP with these forms was 
observed in the search up to 1,500,000. One reason for such an unavailability 
could be the fact that the search was limited. The last term required by these 
theorems is a fraction or even involves a radical; hence, to ask that this ex-
pression turn out to be an integer and, moreover, a prime, is a strong demand. 
Possibly, very rare combinations of primes could generate the required condi-
tions. It has been shown that indeed some forms are impossible. 

The other explanation is that there are only Linear n-HP, and thus Theorem 
1 is necessary and sufficient for a number to be n-HP, just as in the regular 
perfect number case. Such a statement would have a critical impact on the gen-
eralized perfect number problem. In fact, in view of the corollaries presented 
above, there would be no n-HP for various values of n, 

Computer time (PDP 11/70) for Table 1 was over ten hours. 
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ON RECIPROCAL SERIES RELATED TO FIBONACCI NUMBERS 
WITH SUBSCRIPTS IN ARITHMETIC PROGRESSION 

ROBERT P. BACKSTR0M 
Australians Atomic Energy Commission, Sutherland, NSW 2232 

1. 1MTR0VUCT10M 

Recently, interest has been shown in summing infinite series of reciprocals 
of Fibonacci numbers [1], [2], and [3]. As V. E, Hoggatt, Jr., and Marjorie 
Bicknell state [2]: "It is not easy, in general, to derive the sum of a series 
whose terms are reciprocals of Fibonacci numbers such that the subscripts are 
terms of geometric progressions." It seems even more difficult if the subscripts 
are in arithmetic progression. To take a very simple example, to my knowledge 
the series 

(i.D E f 
has not been evaluated in closed form, although Brother U. Alfred has derived 
formulas connecting it with other highly convergent series [4]. 

In this note, we develop formulas for closely related series of the form 

(1.2) 
0 Fan + b + C 
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for certain values of a, bs and ca Examples include the following: 

E p Tl = ^5/2, 
0 2n+l x 

T — i 

ip 1 

0 2n+l i J 

= 3/5/8, 

= 7/5/58 

(1.3) 

E F ^ 5 = 5/5/22, 
0 2 n + l J 

In fact9 much more than this is true. Each of these series may be further 
broken down into a remarkable set of symmetric series illustrated by the fol-
lowing examples: 

00 00 

Zy—hn-3= ( / F + 2)/58' EF—1—rn= {/5~2)/58s 
0 r 1 4 n + l T • L J 0 1 4 n + 1 3 r 1 J 

00 00 

^ F L
T - r l = (/5 + 5/3)/58, £ ^ L _ ^ = ( / s _ 5/3)758, 

0 l f n + 3 i J 0 l ' t n + l l 

( l .A) 

EF * + 13 - (̂ 5 + D/58, E g * + 13 " ( / J - 1 ) / 5 8 ' 
0 1 4 n + 5 ^ X J 0 Un+9 X J 

V ^,B+7
 + 13 /J/58. 

It will be noted that the sum of the series in (1.4) agrees with that given 
in (1.3)-—namely, 7/5~/58—-since the rational terms cancel out in pairs. Also, 
the reader will have noticed the use of c = 1, 2, 5, and 13 in these examples. 
They are, of course, the Fibonacci numbers with odd subscripts. Unfortunately, 
the methods of this note do not apply to values of o which are Fibonacci num-
bers with even subscripts. 

2. MAIN RESULTS 

The main results of this note are summarized in three theorems: Theorem I 
provides a formulation of series of the form (1.3); Theorem II gives finer re-
sults where the sums are broken down into individual series similar to those in 
(1.4); Theorem III reveals even more detailed information in the form of expli-
cit formulas for the partial sums of series in Theorem II. 

In the following discussion, it will be assumed that K represents an odd 
integer and that t is an integer in the range -(K- l)/2 to (K- l)/2 inclusive. 

Tk&gti&m I: 

0 2n-M T rK 
Th&osiem 11: 

S(K> V = E p TT- = (/5 " 5Ft/Lt)/2LK t even, 
0 *(2n + l)K + 2t + *K 

= (/5 - Lt/Ft)/2LK t odd. 
T/ieo/tem I I I : 

SN(K> *) = L v~——T~W~ = hr™ ~T~I/2LK N even* t e v e n (a> 
0 j C ( 2 n + l ) X + 2 t ~t" n K y(N+l)K + t u t / 

(continued) 
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' 5F(N+I)K+t Lt . 
-j-— - ~)I2LK N even, t odd; (b) 

' (N + l)K+t 

K {N + l)K+t 

/2LK N odd, t even; (c) 

N odd, t odd. (d) 

3 . ELEMENTARY RESULTS 

We s h a l l adopt t h e u s u a l F i b o n a c c i and Lucas number d e f i n i t i o n s : 

Fn+2 = Fn+1 + Fn w i th FQ = 0 and F± = 1; 
Ln+2 = Ln+1 + Ln W i t h ^ 0 = 2 a n d L l = l a 

We shall also employ the well-known Binet forms: 

Fn = (an - 3n)//5 and Ln = an + 3n 

where a = (1 + /5)/2 and 3 = (1 - /5)/2. Other elementary results which will 
be required include a3 = -1 and F2a = FaLa« 

4. VROGT OF MAIW RESULTS 

To prove Theorems I, II, and III, it will be sufficient to prove Theorem III 
together with several short lemmas that establish the connection with Theorems 
I and II. 

Ln ^n r -
LommcL It l im — = l im ~ — = / 5 . 
-— n •+*>£„ n-+co Ln 

Vtuoofc From t h e Bine t forms, we have 

The second p a r t fo l lows immedia te ly , s i n c e 5//5~ = /fT. 
r r 

Lmma It ~ = --^^-^ 
— ^ ^~t 

VHJOO^' Again using the Binet forms, we have 

. b ± = -VMa"* + 3"*) ̂  -/^((-l)^ + (-l)*a*) 
F-* (or* - 3~*) ((-1)*3*- (-l)*a*) 

^ -/5(3* + a*) = /Sfa* + 3') „ L ^ Q e E > D s 

(3* - a*) (a* - 3*) Ft 

Theorem II may therefore be deduced from Theorem III and Lemma 1 and taking 
the limits as N approaches infinity. Summation of the results of Theorem II 
over the K values of t ranging from -(K - l)/2 to (K - l)/2 inclusive implies 
the truth of Theorem I, since the rational terms cancel out in pairs (as guar-
anteed by Lemma 2). 

Before proceeding to the proof of Theorem III, we will need the results of 
the following four lemmas. 
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Lw«na 3 : Fa + 2b + Fa = Fa + b» Lb fo r b even. 

Vhjoofa: S ince & i s even , (a$)b = + 1 . 

RHS = {aa + b - $a + b)(ab + e b ) / / 5 

- (a a + 2 f c + a a + * « B * - 3 a + z?° ab - 3 a + 2*)/v/5~ 

= ( a a + 2 b - $a+2b + (a3)*(a« - 3 a ) ) / / 5 

= ^ + 2fc + ^ a = M S , 

ig2™Lj£: F2a + £ + Fb = Fa ° ̂ a.+ Z> f o r * Odd. 
P/iooj: Since a i s odd, (a3) a = - 1 . 

RHS = (aa - $a)(aa + b + &a + b)//5 

= (a 2 a + Zj + aa • 3 a + f e - 3 a • a a + z? - B2 a + 6)//5 
= (a2a+b - $2a + b - (aS>)a(ab - B * ) ) / / 5 

Lemma 5; La * Lh - 5Fa • F& = 2La_£ for b even. 

P/iOO^: Since 2? i s even, ( a3 ) b = + 1 . 

LHS = (aa + e a ) ( a b + 3b) - ( a a - $a)(ab - 3*) 

= a a + £> + a a • g* + 3 a - a * + 3 a + Z ? - aa + b + a a • 3* + 3 a - a* - ga + fc 

= ( a 3 ) b ( a a ~ i ) + 3 a ~ * + aa~b + $a~b) 

= 2 ( a a - k + 3a"^) = 2La_& = RHS. 

Lmma 61 La • F& - Fa » Lb = 2Fa_^ fo r 2? odd. 

VKoo^i Since 2? i s odd, (aft)* = - 1 . 

LHS = ( ( a a + 3 a ) ( a & - g*) - ( a a - &a)(ab + &b))//5 

= (aa + b ~ aa * &b + 3 a « afc - 3 a + f o - a a + 2? - a a • 3^ + 3 a • ab + 3 a + Z , ) / / 5 

= - ( a e ) b ( a a - b - &a~b + aa" f c - g a - 6 ) / / 5 

= 2(aa~& - 3a~&)//5 - 2Fa_b = RHS. 

We shall prove part (a) of Theorem III in full and leave the details of 
parts (b) , (c), and (d) to the reader, since they follow exactly the same pat-
tern. In the discussion that follows, we will assume both N and t to be even. 

We shall proceed by induction on N. 

N ~ 0 : We must prove t h a t 

i -tL<+* ^ V -
FK+2t +FK \FK+t I t ) ' " * 

Using Lemma 3 wi th a = K and b = t g ives F-K + 2t + FK = 

1 i
 LK + t * Lt ' 

-Liio — j-j T ana IVIID OE7 

Using Lemma 5 w i t h a - K + t and b = t g ives LK + t»Lt 

FR + t * L t . Hence 

~ 5FK + t ' F t = 2LK- Hence 
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Assuming that Theorem III (a) is true for N = M (where M is even) , we must 
prove it true for N = M + 2. Hence, the sum of the two extra terms on the LHS 
corresponding to N = M + 1 and N = M + 2 must equal the difference in the RHS 
formulas for N = M + 2 and N = M. Therefore, we must prove that 

1 i__ (L(M + 3)K + t 5 ^ M , fL(M + i)K + t 5 ^ \ 7 

^(2M + 3)X + 2£ + ^X (̂2M + 5)X + 2t; + ^ Z \^A/ + 3)£+£ Lt f K y(M + l)K + t L t ) * 

To simplify the following algebra, we introduce the odd integer P, where 

P = (M + l)K + £. 

This means that we must now prove that 

1 
F2P + K + ^ ^2P 

1 _(L?+2K Lp\ 
TIT ~ IF " " T~r *• 

+ 3K ^ rK VP + 2K £P J 
Using Lemma 4 with a = P and b = K gives 

F 4- F — F * T, 
r 2P + K ^ £K £P ^P + K' 

Using Lemma 3 with a = K and b = P + K gives 

F2P + 3# + Z = FP + 2K ' ^P + Kl 

LHS p r p 

= X 

F cp 

1 
• 7", ^ P + z 

and Z? 

, 1 
Px, 
r P + 2Z 

LP+K 

= P g ives 
FP + 2K + ^P : 

P • 7"/ 
r £ UP + K 

nP +K 

P+2K * P 

' Fp + 2K 

- P 
X P + 2 £ 

= E7 

Pp -

" ^ 

P 

^P + 2Z 

* p • 

P+K> 

, F s 
r p + 2is: 

+ Fp 

P p + Z * Fp + 2K 

LHS 

^ 2Fp + 2 X . F p . £ x 

Using Lemma 6 with a = P + 2Z and b - P gives 

L P + 2 Z * ^P " FP+2K # L P = ^ 2 Z = 2 F# ' L*5 

2 F L ^ * - ^ _ 
RHS - -j= ~TF . T ~ ~p . j? ~ ^HS • 

P + 2K P K rP + 2K £P 

5. EXTENSION TO LUCAS NUMBERS 

Similar results may be obtained by substituting Lucas numbers for the Fibo-
nacci numbers in (1.2). In this case, however, even subscripts are required. 
Examples equivalent to those in (1.3) include the following: 

^ £ ^ = ( 2 ^ + 1 ) / 1 ° £ 7 —Vv= (4/5 + 5/3)/30 
n L,„ + 3 v " 4 - £,„ + 7 

(5.1) 
V* 1 (6/5 + 2)/80 > T - V T T " C8^" + 15/7)/210 T L 2 n + 18 Y L 2 n + *7 
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These series may also be broken down into sub series similar to those in 
(1*4). For example: 

E l — V ^ = (/5 + 2)/80 
0 L12n + 18 

( 5 . 2 ) 
E Z ~TTs= (S5 + 5/3)/80 . £ z

 l-TT^ = (/5 - 5/3)/80 

E L VlS = ( A + 1)/8° £ L Sn8 - ( A " 1 ) /8° 

- /5 /80 
"o^ ^ 1 2 n + 6 + -^ 

Notice that, in this case, the rational terms occur in pairs except for the 
first series. This explains the presence of the residual rational terms in 
(5,1) above, 

The following three theorems (IV-V) summarize the above results* They are 
given without proof, since the methods required exactly parallel those of Sec-
tion 4. In these theorems. We assume that K is an even integer and that t is 
an integer in the range -K/2 to K/2 - 1 inclusive. 

ThdOKim 11/: 

T(K) = y ^ T ~-r- = K/5/10FK + l / 2 L | / 2 K/2 even, 
o L 2 n + LK K / z 

?2 = K/5/lOFK + l /10F* / 2 A72 odd. 

TkQ^oK.Qm (/: 

T(Z, t ) 

T'fieo/iem l/I: 

0 iv(2n + l )Z + 2t ^ ^ 

= ( /5 - L , / F t ; 

0 ^(In + DK+lt ^K 

= [ _ _ _ _ „ j / 1 0 F 
\L(N + l)K+t Lt J 

= ( * — Y-)noFx 
\r(N + l)K + t £tj 

h_ A TAMTALIZIMG PROBLEM 

t even , 

£ odd. 

If we let K = 0 in Theorem V or VI, we find that they give divergent series. 
However, if we formally substitute K = 0 into Theorem IV (without,* as yet* any 
mathematical justification), we find that the LHS is finite, namely: 

(6.1) Y ~?—V-T = *64452 17830 67274 44209 92731 19038 
0 

(to 30 decimal places). The RHS, however, contains the indeterminate form K/FR . 
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If we take the liberty of defining a Fibonacci function such as 

f(x) = (a* - (~l)*or*)//5 

= (ax - (cos TO + i sin i\x)a~x) //5 

= ((ax - cos TJX- a~x) - i sin TO • a"x)l/5 

and differentiate with respect to xs the real part becomes: 

Re[/f (x) ] = (In a • ax + TT sin TO • a~x + cos TO • In a • a~x) //5 
and 

Re[/f(0)] = (In a • 1 +TT • 0 • 1 + 1 • In a • l)//5 = 2 In a//5. 

Substituting this value into the RHS of Theorem IV gives: 

(6.2) 1/(4 In a) + 1/8 - .64452 17303 08756 88440 03306 51529 

(to 30 decimal places). The difference between the values in (6.1) and (6.2) 
is obvious, but can any reader resolve this most tantalizing problem? 

7. CONCLUSIONS 

In this note, we have established explicit formulas for a number of series 
of the form 

(7-D E7™—r^ and Y, -L , + Q 
0 ran + b + G o ^ a n + 2> ^ 

for certain values of a, 2?, and c positive. Similar results apply for c nega-
tive, but because of the possibility of a zero denominator, the series must be-
gin with the term in which an + b>K. This leads to less elegant formulas, such 
as the following: 

\^ 1 

(7.2) 

L-4 W 
0 6n + 5 

(5 - /5)/8 

(3 " Z5)/8 £ ^ _ J _ = (5/2 - /5)/8. 
0 6n+7 

Summing these three series gives 

(7.3) £ ^ — L — = (21/2 - 3/5)/8s 
2n+ 5 

where the symmetric form of (1.4) appears to have been lost. Similar results 
may be obtained using the Lucas numbers in (7.1). We leave the reader to in-
vestigate these formulas and to determine the true value of the series: 

(7.4) 
^ Ln + 2 ' 
0 2n 
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ON THE EQUATION a{m)ar{n) = (m + n)2 

MASAO KISHORE 
The University of Toledo,, Toledo, OH 43606 

1. A pair of positive integers m and n are called amicable if 

o(m)a{ri) = (772 + n)z and o(m) = cr(n). 

Although over a thousand pairs of amicable numbers are known, no pairs of rela-
tively prime amicable numbers are known. Some necessary conditions for exist-
ence of such numbers are given in [1] 9 [2], and [3]• 

In this paper9 we show that some of the conditions are also necessary for 
the existence of T?7 and n satisfying 

(1) o(m)o(n) = (77? + n ) 2 , 
and 
(2) (772, U) = 1. 

In particular we prove 

Tfceo/Lem: If 772 and n satisfy (1) and (2) 9 rnn is divisible by at least twenty-two 
distinct primes. 

QoK.oti<Vtij (Hag+A [3]): The product of relatively prime amicable numbers are di-
visible by twenty-two distinct primes. 

I. Throughout this paper, let m and n be positive integers satisfying (1) 
and (2) s and let 

V 
mn = n p"* 

i = l 
where p 1 < ••• < p a r e pr imes and t h e a^fs are positive integers. Since a is 
multiplicative, 

V 
I I a ( p ? 0 = o(mn) = (m + n)2. 

i = i z 

If k and a are positive integers, p is a prime and if p a \ k and p a + 1j[k9 then we 
write p a | |&. ud(k) denotes the number of distinct prime factors of k. 

Lmma 1: o(rnn)/mn > 4. 

P/LOOfj: By (1) and (2) 

o(mn) = (m + n) 2
 = ^ + (m - n)2

 > ^ n E D. 
rnn mn rnn 

Lojfnma 2: I f ^ i s a p r ime , q|/72rz. and i f p a | |77zn, q | a ( p a ) . 

P/LO0$: Suppose q i s a p r ime , q|7m, pa||7?2n, and g | a ( p a ) . Since 

a ( p a ) I (772 + n ) 2 , 
q|772 4- ft. Then q\m and q\n5 c o n t r a d i c t i n g ( 2 ) . Q.E.D. 
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Lemma 3 : I f W ( M ) <_ 2 1 , 2\mn* 

P/LOOfj: Suppose 
r 

mn = 11 P-^ s P <. 21, and 3 <. p . 
i = ± z 1 

If q. i s t he i t h p r ime , we have , by Lemma 1, 

mn / ^ p ? i l=\pi - 1 -~/i2^ - 1 
Since ^ 

PI q-Kq. - 1) < 4 if r <_ 20, r = 21. 
Then ^ = 2 * "* 

(3) 3 • 5 • 7 • 11 • 13 • 17 • 19 • 23 • 29 • 31 • 37 -41 • 43 • 47 • 53 • 59 • 6l|wn 
and 
(4) p 2 1 £ 113 
because 

17 <7. 22 q . 21 t7 . -, 0 7 

n-—^-r n —^-T <4 and n —^-r T ¥ <4-
Suppose p d | |tf?n and p ^ 3 , 7, 3 1 . Then p <. 113 and p E - 1 ( g ) fo r some prime 

3 <. q <_ 37 . If d i s odd, then 1 + p | a ( p ^ ) , and we have q\o(pd) and q\mn9 con-

t r a d i c t i n g Lemma 2 . Hence, c? i s even , and mn = 3 a 7 3 1 e e 2 , where 

( e , 2 • 3 • 7 • 31) = 1. 

Since 
21 
I ! o(p?n = (772 + n ) 2 

i = l ^ 

is even and oip?*) is odd if a^ is even, at least one of a, Z?, or c is odd. 
Suppose at least two of them are odd. Then 

32\oOa)o(7b)o(3l°)o(e2) = (m+n)2, 

or 8|/?? + n. Hence, m = -n(8), or mn = -n2 E -1(8). If a is even, then b and c 
are odd and mn - 3alh?>la e2 E 1(8), while, if a is odd, then mn E ±3(8), a con-
tradiction in both cases. Hence, only one of a, 1), or c is odd. 

Suppose a is odd and b and o are even. Then 

m = 3a/2 E 3(8) 
and 

n = g2 E 1(8) [or W E 1(8) and n = 3(8)]. 
Hence, m = 3 + Sh and n = 1 + 8i, for some 7z and £, and we have 

a(3a)a(/V) = (m + n ) 2 = (3 + Sh + 1 + 8i)2 E 0(16), 

or 16|a(3a). Since 

a(3a) = (1 + 3)(1 + 32 + 34 + ... + 3*'1), 

4|1 + 32 + 34 + ••- + 3a-x, or a E 7(8). Then 

a(3a) = (1 + 3)(1 + 32)(1 + 3i*)(l + 38 + ... + 3 a~ 7 ), 

or 5|a(3a) contradicting Lemma 2. Suppose b is odd and a and a are even. Then 
m E 7(8) and n E 1(8) [or m E 1(8) and n = 7(8)], (m + n ) 2 E 0(64), 64|a(7&), 
b E 7(8), l+72|a(7i)), or 5ja(7fc), a contradiction. Suppose c is odd and a and 
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b a r e even. Then 6 4 | a ( 3 1 e ) 9 o E 3 ( 4 ) , 1. + 3 1 2 | a ( 3 1 c ) 9 or 1 3 | a ( 3 1 c ) 9 a c o n t r a -
d i c t i o n . Since we get a c o n t r a d i c t i o n in every c a s e 9 

l\mn i f od(mn) <_ 2 1 . Q.E.D. 
Lmma 4: k\mn. 

?h.oo^i Suppose 
r 

mn = 2^ I I P-a" ' w i th a > 1. 
Since 

o(mn) = (2a + 1 - 1) n o(pa<) = (w + n ) 2 

i = 2 ^ 

is odds a^ is even, and we have 

m = 2ab2 and n = a2 [or /?? = c2 and n = 2abz]. 

Suppose a is even. Then w = d2
9 and 2a + 1 - 1 has a prime factor q E 3(4). Since 

<7|TTZ + n, c2 E -d2 (q) . Since (q9 do) = 1 by Lemma 29 (-d2/q) = 19 where (e/q) 
is the Legendre symbol. However, 

(-d2/q) = (-1A?) = (-1)"5"' = -1, 

a contradiction. Hence, a is odd. 
Suppose a >_ 3 is odd. Then 

777 = 2Z?2 and n = a2 [or m = o2 and n = 22?2] , 
and 2a + 1 - 1 has a prime f a c t o r q E 5 or 7 ( 8 ) . S ince q|m + n and (q9 2bo) = 1, 
c 2 E -2b2(q), or {-2b21q) = 1. However, 

9 - 1 ? 2 - 1 
(-22>2/4) = ( -2 /^ ) = (-l/q)(2/q) = (-1) 2 (-1) 8 = - 1 , 

a contradiction, Hence9 a = 1. Q.E.D. 

Lojnma Si If 2|?7?n9 uQnn) >_ 22. 

V?WOh} Suppose 

77?n = 2 J"] P** a n d * <. 21. 
i«2 t' 

Since 

3lla(p/0 = (m + n)2 

t = 2 t 

is odd, 3)[mn9 by Lemma 29 and so 5 £ p̂  , ai is even, and 3|cr(p?«0 for some j. 
Then, as in Lemma 39 we have v = 21, (3) and (4). We can also show that p20 <. 83. 
Suppose pa\\mns p >_ 59 q is a prime, and q|a(pa). Then, by Lemma 2, ql(mn9 and 
by (3), <? > 61; moreover, since q\m + n, 

m = 2b2 and n = c2 [or m = a2 and n = 2£2] , 

we have c2 E -2b2(q) $ or (-2b2/q) = 1, and so ^ E 1 or 3(8). Hence, if 

(5) 5 £ <7 £ 61, or q E 5 or 7(8), 

<7|a(pa). 
In [3] Hagis showed that if 3|a(pa) then o(pa) is divisible by a prime q 

satisfying (5), except when p = 31, 73, 97, or 103, in which case o(pa) is di-
visible by s = 331, 1801, 3169, or 3571, respectively. Since 

3 Yloipf') = (m + n ) 2 , s2 

i-2 i = 2 
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However, Hagis also showed that, if tb\\mns t 4- p and s\o(th), then o(tb) is 
divisible by a prime q satisfying (5). Hence9 s2 \o(pa). Then o(pa) is divis-
ible by a prime q = 5564773* 13925333, 570421, or 985597, respectively, satis-
fying (5), a contradiction. Hence, v > 21. Q.E.D.. 

Lemmas 3 and 5 prove our Theorem. 
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A SPECIAL mTH-ORDER RECURRENCE RELATION 

LEONARD E. FULLER 
Kansas State University, Manhattan KA 66506 

7. 1NTR0VUCT10N 

In this paper, we consider wth-order recurrence relations whose character-
istic equation has only one distinct root. We express the solution for the re-
lation in powers of the single root. The proof for the solution depends upon a 
special property of factorial polynomials that is given in the first lemma. We 
conclude the paper by noting the simple form of the result for m >_ 2, 3. 

2. A SPECIAL mTH~0RVER RECURRENCE RELATION 

In this section, we shall consider an tfzth-order recurrence relation whose 
characteristic equation has only one distinct root A. It is of the form 

J = 1 

with initial values T0, . .., 57m_1. 
Before we can prove the solution for this relation, we must establish two 

lemmas. The first lemma gives a useful property of the factorial polynomials. 
With the second lemma, we obtain an evaluation for more general polynomials. 
These are actually elements in the vector space Vm of all polynomials in j of 
degree less than m. This vector space has a basis that consists of the con-
stant -PQ = 1 and the monic factorial polynomials in j: 

dpw = jj il
w)l = U ™ °>0 / - D • • • U - fa - D ) ; *>•= i . . . . . m - i . 

We will make use of the fact that the zeros of these polynomials are the inte-
gers 0, ..., w - 1. We are now ready to state and prove the first lemma. 

Lemma 2.7: For any integers ms w where 0 <, w < m9 

t <-»'(. '_ ,)A - o. 
We first of all observe that for w = 0 the factorial polynomials are just 

the constant 1. For the summation, we then have: 
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m 

E (-i)' '(mv) = < i - i ) ^ o . 
j-o 

If 0 < w the polynomial jPw = 0 for j = 0 5 ..., w - 1. Hence in the given 
summation, we can omit the zero terms and start the summation at j = w. This 
gives 

£<M,.-,)A-£<-<-,)*• 
We change our summation variable to t by letting j = w + t. Then,, we have for 
the summation; 

m~w Vr-nw +*/r OT \ P - r n" V f n* ml (w + t)\ 
L/< l) \m - w - t)w+t^ k l) ffQ

{ L) (m - w - t)\(w + t)\ t\ 
When we multiply the numerator and denominator by (m - w)!9 we have the form: 

« m ~ W / 8 

(-1} ur^yr^-^L -w-t) = (~1} (m-w)i(1 -1} = °> 
which is the result we set out to prove. 

In the next lemma, we use the above result to prove a property of general 
polynomials f(j) £ Vm. 

. Lemma 1.2: For any polynomial /(j) £ Vms 

m • / 

E c - ^ ' U - j ) ^ = ^(0)-
j -1 

We shall first prove that 

which is the comparable result for f(J) to that of jPw in Lemma 2.1, 
Since f(j) £ ¥m, there exist constants ow such that 

m-l 

J 
w = 0 

Using this expression for jf(j) $ we have 
m-l 

'f«.i;(-')'(,:,)A-i;=.M-o 
j = 0 ° j - 0 

m - l 77? , m - l 

w = 0 j = 0 

by Lemma 2„1. 
We now break off the first term in the summation to obtain 

(>°) -E <-D'-1 - > - ) = °> 
, j = i 

so that 

j = i 

which is the desired conclusion. 
We shall apply this result to polynomials in Vm of the form 

(m + i - j\(u - 1 + £ - j) = (m + i - j) • • • (i + 1 - j) 
\ /7z - w A w - 1 / W~- w)!(u - l)TTw + i"1"^* 
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The zeros of these polynomials are the integers from £ + 1 to m + i with u + £ 
omitted. We are now ready to prove our major result. 

Thuo/iem 2.3: The wth-order recurrence relation 
m . 

T , . . . , T arbitrary, has for its solution: 

^ ^+k-i:(-i)-i(r«)(tt«-tfcK+v.. 
w ~ 1 

Before going to the proof by induction, we need to show that (2) is valid 
for -m<_k< 0. In other words, it reduces to the arbitrary value. To show this 
we first write (2) as a polynomial in k: 

M-i (m + k) --- (1 + k) ^u+kr 

w = l 
m - u" 

The integer fc is negative, so we let k = -s. The polynomial in s now becomes 

(rn - 8) ... (i - g) 
(m - u)l(u - 1)1(u ~ s) 

which has for zeros the integers from 1 to m with u omitted. This means that 
in the summation for a fixed k=-s9 all terms are zero except when u = s. The 
summand reduces to 

(-D'^Qn-a) ••• 1(-1) ••• ( l - s ) ? 0 m _ (-i)'-iQn-8)n-l)B-1{8- 1)! ?0 
(m - s)!(s - 1)! m"s (m - s)!(s - 1)! m's 

— T7 = T7 

— . J - m - s J-m + ku 

This is the result we said is true. 
To prove the theorem by induction on k9 we first show that it is valid for 

k = 0. For this, we take n = m in (1), so we have the relation 

j = 1 
For fc = 0 in (2) , we have the solution 

'. = tH)-'(,M(;:!).>.-.. 
u = 1 

These two results are equal for u = j. 
We assume that the solution (2) is valid for ?C = 0,...,£-19 and we shall 

show it is true for k - % and, hence, for all k. 
We have for (1) when n = TW'+ £, 

j -1 
Substituting the solution (2) for Tm + i „ - 9 we have 

J " 1 \M - 1 / 

• £ (-D-'̂ -x-.E (-D'-{. ! jt: t: T - i : r o-
The inside summation involves a polynomial /(j) £ Vm so we can apply Lemma 2.2. 
Evaluating /(0) gives, for the summation: 
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m - V c i \ " - i i " + im (m + i\(u - 1 + i\ Tm + i ~ L,^~l> X T-Am - uK u - 1 ) 
Interchanging the order of factors in the summand gives (2) for k = i» 

3, SPECIAL CASES 
I t may be helpful to consider the form of the problem for m = 2, 3, For 

m = 2, the relation is 
Tn = 2X2'„_1 - \2Tn_2 

and the solution is 
T2 + k = (2 + k)X1 + ^ - (1 + /c)X2 + ^ 0 . 

For 777 = 3s the relation is 

and the solution is 
Tn ~ 3XTn-l " 3 A Tn-2 + X Tn-3* 

,̂ + k = (3 1 V ^ " (3 I "X1 t ̂ "^ + (2 2 V * ^ 
_ (3 4-fe)(2+fe)?1+k.7 (34-/0(1 + ̂ 2 + ^ , (2+fe)(l+/c)?3 + ? ̂

n 

For other small values of m, the solutions can be written out quite readily. 
The form of the solution suggests a couple of other ways to write it. For in-
stance 

T2+k = (2 + fc)(l + fe) 
A l + fc X 2 + ?: 

2 + k °  
2/2 + fe^A1** m X2 + * 1 
\ 2 /[l + fc x 2 + k °J 

and 
(3 + fc)(2 + ?C)(1 + k) 

• 3 + k 

1 + k 
~Tn 

2X 1 + k 
"2\ + X 

3 + k 
-T 1 + k 2 2 + k 1 3 + fe o 

2+fe / o\ "\ 3 + k /3 + k\\(2\ \1 + « (2\ X" + K (2\ \*™ 
A 3 / K 2 / 1 + fe 2 " U / 2 + fe 2 VO/3 + fei( 

These two forms, when applied to the general case, give a solution of the form 

•*-m + l 
(m + k) ••• (1 + k) 

On - 1)! 

u + k 

1*0 1)W U - u)u + /cTm"w 
u + fc 

-»r:*)E(-i>-'(::i)ihTEV* 
These two forms may be more suitable than the first form of the solution, 

Other forms could also be obtained. 
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ABSTRACT 

Let G denote a plane multigraph that is obtained from a maximal outerplane 
graph by adding a collection of multiedges. We associate with each such G an 
M-tree (a tree in which some vertices are designated as type M), and we observe 
that many such graphs can be associated with the same A/-tree. Formulas for 
counting spanning trees are given and are used to generate some Fibonacci iden-
tities. The path Pn is shown to be the tree on n vertices whose associated 
graph has the maximum number of spanning trees, and a class of trees on n ver-
tices whose associated graph yields the minimum is conjectured. 

I. INTRODUCTION 

The occurrence of Fibonacci numbers in spanning tree counts has been noted 
by many authors ([5], [6], [7]s [8], [9], and [10]). In particular, the labeled 
fan on n + 2 vertices has F2n+2 spanning trees, where Fn denotes the nth Fibo-
nacci number. The fan is actually a special case of the class of maximal out-
erplane graphs. In [11] it is shown that any labeled maximal outerplane graph 
on n + 2 vertices with exactly two vertices of degree 2 also has F2n+2 spanning 
trees. In [1] the unifying concept of the "associated tree of a maximal outer-
plane graph" is presented; it is shown that Fibonacci numbers occur naturally 
in the count of spanning trees of these graphs and depend upon the structure of 
the associated trees. 

The purpose of this paper is to extend the idea of the associated tree to 
maximal outerplane graphs with multiple edges, to give formulas for counting 
spanning trees, and to generate Fibonacci identities. In the final section, 
bounds are given on the number of spanning trees of any maximal outerplane 
graph on n + 2 vertices. 

The associated tree I7 of a maximal outerplane graph G is simply the "inner 
dual" of G; that is, 7 is the graph formed by constructing the usual dual G* 
and deleting the vertex in the infinite region of G. In [2] it is shown that 
all labeled maximal outerplane graphs that have the same associated tree have 
the satoe number of labeled spanning trees. When multiple edges are allowed in 
the maximal outerplane graph, the above construction can be carried out, but 
vertices of degree 1 or 2 in 7 can result from either vertices of degree 2 or 3 
in G*. 

To avoid this ambiguity., we shall adopt the following convention in con-
structing T: place a vertex of "type i?" in any interior region of G bounded by 

*This work was supported in part by an Institutional Research Grant from 
the University of Wisconsin-La Crosse. 

fThis work was supported in part by the U.S. Energy Research and Develop-
ment Administration (ERDA) under Contract No. AT(29-1)-789. The publisher of 
this article acknowledges the U.S. Government's right to retain a nonexclusive, 
royalty-free license in and to any copyright covering this paper. 
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three edges and a vertex of "type M?! in any interior region by a pair of multi-
edges. We shall call a tree that contains any vertices of type M an M-tree. 
Figure 1 gives examples of some graphs with their associated trees and M-trees 
in which circles denote vertices of type MB 

(a) (b) (c) 
Fig. 1. Some graphs with associated trees and M~trees 

If T is a tree (respectively, an M-tree) 5 G(T) will denote a maximal outer-
plane graph (respectively, a multigraph) associated with T. Note that there 
may be many nonisomorphic graphs (or multigraphs) associated with T9 but that 
each has the same number of labeled spanning trees (STs) „ Consequently;, we can 
let ST G(T) denote this number. We emphasize that we are considering the edges 
of G(T) to be labeled. For example, for the graph GY in Figure 2, there are 12 
labeled spanning trees: four containing el5four containing £25 and four that do 
not contain ex or e2. 

Fig. 2. A labeled multigraph G1 

It will be convenient to have a notation for some useful M-trees. As usual, 
Pn will denote the path with n vertices. Let Pn(t) denote the M-tree obtained 
from Pn by adjoining a path of i vertices of type M at an endpoint of Pn . A 
path Pn to which is attached a path of i type M vertices at one end and a path 
of j such vertices at the other end will be denoted P£q'>0\ The M-tree consist-
ing of P„(1) with Pm adjoined at the type M vertex will be denoted P^m • T n e M~ 
tree constructed by adjoining a path of i vertices of type M at the (n + l)st 
vertex of Pn + m+1 will be denoted P^\ . Figure 3 shows P3(2\ PJ2)1\ P^s* a n d 
p ( 2 ) 

0>„« )̂-—-— -̂--—-0- -Q Q—--—Q-.—-$.—^^_-_™»0-™--»™™^ 

(a) P < 2 ) (b) P 3
( 2 ' X ) 

fr——*fr———-(3 •—<g} ^. ~ ® #—— -̂-—»^—' 0- ®°——^—~~0~-~-^ 

rcj P2
(
;
0)

3 w P ^ 

Fig» 3 , Some M-trees 
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2. TREE COUNTS MP FIBONACCI WENT1T1ES 

As mentioned in the previous sections it is known that 

ST G(Pn) = FZn+2. (2,1) 

It is also known that Fibonacci numbers give the count of spanning trees of 
maximal outerplane graphs associated with the M-trees P^(1) and P(1? 1^ ; namely s 

ST G(Pn(1).) = F2n + 3 (2.2) 

and ST G(P^^) = P2n + , . (2.3) 

Counting the spanning trees of a graph G is often done with a basic reduc-
tion formula which sums those that contain a given edge e of G and those that 
do not (as in [39 p. 33]): 

ST G = ST G'e+ ST(G - {e})9 ..(2.4) 

where G°e denotes the graph obtained by identifying the end vertices of es and 
removing the self-loops. This reduction performed on G(Pn) at an edge contain-
ing a vertex of degree 2 demonstrates the basic Fibonacci equation 

Fn -*•„-! +Pn-2- (2-5) 
Repeated applications of the reduction (2,4) will give recurrences leading to 
several well-known identities. For example, 

ST G(Pn) = ST G(Pn^) + ST G(P£\) = ST G(Pn_2) + ST G(P^\) + ST G(P™X) 

= ST G(PX) + ST G(P^1}) + ST £(P2(1) ) + a•• + ST G(P^l\) 9 

which, from (2,2) gives 

F = P + P + • • • + P (2.6) 
2n+2 1 3 2n+l V^-"/ s i n c e ST G{P±) = 3 = F\ + F0>» 

The corresponding identity for the odd Fibonacci numbers 
F2n+s = 1 + ^ 2 + ^ + ••• + ^ 2 B + 2 (2.7) 

follows from a similar recurrence developed by applying (2.4) to a multiple edge 
of £(Pn

(1)). 
As another example, consider the recurrence obtained by starting again with 

G(Pn) and alternating use of (2.4) on the resulting graphs of G{Pk) and G{P^ )i 

ST G(Pn) = ST G!(Pn_1) + ST G{P^t\) = ST ̂ (Pn.x) + ST G{P^l\) + ST 6^(Pn_1) 

= ST G(Pn_i) + ST G(P^\) + ST 6^(Pn_2) + ST G{P^\) 

= ST G(PB.1) + ST G{P™2) + ST G(Pn_2) + ST ̂ ( P ^ ) + ... 

+ ST ̂ ( P ^ ) + ST G(P±) + ST ̂ ( P ^ ). 

Since ST 6r(P1(1) ) = P5 = P3 + P2 + F± + 1, this reduction yields the identity 

The parallel identity 
c In T r 2 w-l T T i2 T rx T i, 

r 2 n + 3 r 2 n + l ^ x 2n ^ -r r 2 -r r x -r l 

can be o b t a i n e d by beg inn ing w i t h £(Pn
( 1 ) ) , and we then have t h e g e n e r a l i d e n -

t i t y 
Fn = Fn-2 + Fn-3 + °°" + ^1 + 1 • C2«8> 

Other spanning tree counts that we shall find useful later can be obtained 
readily from (2.1)9 (2.2), and the reduction formula (2.4) applied at the ap-
propriate edge: 

ST G(Ph
(0l) = F2h + 2k+2 + F2h + 1F2k+1 ( 2 .9 ) 
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a n d ST G(Ph
U)

k) - F2h + 2k + , + j(F2h + 2k + 2 + F2h + 1F2k+1). (2 .10) 
Each of these counts has been discovered by other means [5]. 

3. FURTHER TREE COUNTING FORMULAS AMD VlBONACCl IDENTITIES 

A second reduction formula for counting spanning trees is useful for any 
2-connected graph G with cut-set {us .v}. Let G = H U K9 where H O K = {u9 v} 
and each of H and K has at least one vertex other than u or v. [Any edge (u9 v) 
may be arbitrarily assigned either to H or to K.] Then 

ST G = [ST tf][ST Z«(u5 V)} + [ST Z][ST ff-(w} v)]9 (3.1) 

where K°(u9 v) means graph G with vertices u and z; identified. To see this, we 
observe that a spanning tree of G contains exactly one path between u and V. 
Since G is 2-connected, we may first count all the ways that this path lies en-
tirely in H and add the ways that it lies entirely in K, 

If this formula is applied to the maximal outerplane graph whose associated 
tree is the path Ph+k> we have 

ST G(Ph + k) = [ST G(Ph)][ST G(P^\)] + [ST G(Pk_1)][ST G(P^\)]9 

or u s ing (2 .1 ) and (2 .2 ) , we o b t a i n 
F = F F + F F (3 .2 ) 
L2h+2k+2 r 2h+2r 2k + l 2k 2ft + 1 9 v ' 

which appears in. [8]. A similar application on G(P^k) and use of (2.1), (2.1), 
and (2.3) gives 

F2h+2k+3 ~ F2h+2F2k+2 +^2ft+1^2fc+l8 (3.J) 

Combining (3.2) and (3.3) will produce the general identity 

Fn - V A - , - +FJFn-j-l> l < J < n " ! ' ( 3 ' 4 ) 

The next i d e n t i t y w i l l be ob ta ined by coun t ing the spanning t r e e s of a graph 
G(T) in two ways. Let S be the t r e e formed by j o i n i n g p a t h s of l e n g t h s J , h9 
and k to a v e r t e x w ( see F i g , 4) . The f i r s t computat ion of ST G(S) i s ob ta ined 
by app ly ing (3 .1 ) t o S = H U K9 where H = G(Ph U {w} U Pk), and us ing (2 .9 ) t o 
get 

ST G(S) = F2h + 2k^F2j + 1 + F2.[F2hJh2k + 2 + F2h + 1F2k+1] . (3 .5 ) 

8 • ——^_—# 
#2 2/l 

Figr. 4 . The t r e e 5 
The second count i s ob t a ined by a p p l y i n g the r e d u c t i o n formula (2 .4 ) succes -
s i v e l y to the e x t e r i o r edges of G(S) a s s o c i a t e d wi th v e r t i c e s Zj , z. _ 1 9 . . . , z1 
and u s i n g (2 .10) t o ge t 

ST ff(5) = F2h + 2k+hF2. + [F2?i + 2k + lt + K F 2 , + 2 , + 2 + ̂  + 1^2fc + 1 )^ y . 2 

+ ^ 2 f c + 2fc + * + 2(F2h + 2k+2 + F2h+lF2k + l^F2j-« + • * • 

+ ^ 2 h + 2 k ^ + ^ - l^F2H + 2U+2 + F2H+lF2K^F2 

+ [̂ 2ft + 2fc+4 + J(F2h+2k + 2 + ^2ft+1^2/£+lJ * *• ' 
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C o l l e c t i n g terms and us ing i d e n t i t y (2 .7 ) we have 

ST G(S) - F2h+2k+^F2j+i + 

r-l 
2j - 2r + 3 [*»• 2k+ 2 r 2h + lL 2k «]• 

Equating (3.5) and (3.6) produces the identity 

F 2j J ErF 
2 J - 2P 

(3.6) 

(3.7) 

A corresponding formula for odd Fibonacci numbers can be obtained by start-
ing with the multi-tree consisting of tree S with a vertex of type M attached 
at Z1: 

F . 
^ 2,7 4-1 

1 LrF 
2 j -2r+ 1 *. (3.8) 

The identity (3.8) appears in [9], but we think that (3.7) may be new. 

4. BOUNVS OH ST G[Tn) 

The reduction formula (3.1) can also be used to derive a formula for "mov-
ing a branch path" in an associated tree T. Let w be a vertex of degree 3 in 
T with subtrees Tl9 Ph$ and Pk attached as in Figure 5(a). Let Tr be the tree 
with path Pk "moved" as in Figure 5(b). Then the following formula holds 

ST G(T') = ST G(T) + S T ^ C ^ ) - (u, v)]F2hF2k, (4.1) 

where (u5v) is the edge in G(T) separating vertices z and wa To see this9 ap-
ply the reduction (3.1) to G(T) and G(Tr) with subgraphs 

H = G(Ph U {w} U Pk) and K = G(T±) = (w, y) . 

• 77 * • • 

T 

V .' 
• <Z/ % ^2 2/l 

i/2 2/2 

(a) Tree T (b) Tree Tl 

Fig. 5 

For the graph G(T) we have 

ST G(T) - F2hJ,2k+ltST[G(T1) - (us v) ] . (w, y) 

+ S T ^ C Z y - (u9 i ; ) ] [ F 2 h + 2 f c + 2 +F2h + 1F2k+1]9 

where we have used ( 2 . 9 ) . For t h e graph G(T') we have 

ST G(T') = Fzh+2k+LiST[G(T1) - (« , v)] • (u , y) 

+ STtGCT,) - (w, W ) ] F 2 h + 2 k t 3 . 

S u b t r a c t i n g t h e s e e q u a t i o n s g ive s us 

ST ~G{T') - ST G{T) = S T f C ^ ) - {u, v)][F2h+2k+1 - F2h+1F2h+1] 

= STtGCT,) - (w, t>)]V 2 J c 

by (3.4). 
As a corollary to (4.1) we have an upper bound on ST G(T): if Tn is a tree 

with maximum degree of a vertex equal to three, then ST G(Tn) < ST G(Pn)• 
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To form a class of trees Un whose associated maximal outerplane graph has 
the minimum number of spanning trees, it seems reasonable that Un should be as 
nfar!! from Pn as possible. We conjecture that the trees Un have the form given 
in Table 1. 

Table 1 

10 

11 

12 

tf„ ST G(Un) ST G(Pn) = Fln^ 

21 

54 

141 

360 

939 

2,394 

6,237 

15,876 

41,391 

105,462 

3 

8 

21 

55 

144 

377 

987 

2,584 

6,765 

17,711 

46,368 

121,393 

The construction of the Un can be described as follows. Let the vertex of 
U1 be labeled v1. To form Un + 1 from Un for n >_ 2, join a vertex vn+1 of degree 
1 to Un so that vn+1 is adjacent to vi9 where i is the smallest possible index 
subject to the requirement that all vertices of Un+1 have degree 3 or less. 

The values for ST G(Un) in Table 1 were computed using the fact that if U* 
is the dual of G(Un) 9 then ST G(Un) = ST U*. By standard tree counting methods 

ST u* = datiAfA}) = \ai6\9 

where Af is the reduced incidence matrix of U%. By labeling the vertices and 
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edges of U* consecutively from left to right and bottom to top, all the a^j are 
zero except that 

Ciii 2i + l 
For example3 with n = 6, 

U* is 

a •. = 3 9 a, o = a 
M 12 21 

1 

a2i + l, i = l j a i , 2i+2 

and ST £/* = 

3 

1 

1 

1 

t2i + 2, ̂  
1. 

1 1 1 0 0 

3 0 0 1 1 

0 3 0 0 0 

0 0 3 0 0 

0 1 0 0 

0 0 0 

0 
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A NEW ANGLE ON THE GEOMETRY OF THE FIBONACCI NUMBERS 

DUANE W. DeTEMPLE 
Washington State University, Pullman, WA 99164 

The "angle" we have in mind is a gnomon, a planar region that has the gen-
eral shape of a carpenterfs square. At the time of Pythagoras, a carpenterfs 
square was in fact called a gnomon. The term came from Babylonia, where it 
originally referred to the vertically placed bar that cast the shadow on a sun-
dial. The ancient Greeks also inherited a large body of algebra from the Baby-
lonians, which they proceeded to recast into geometric terms. The gnomon became 
a recurrent figure in the Greek geometric algebra. 

There are several reasons why Babylonian algebra was not adopted as it was, 
principally the discovery of irrationals: an irrational was acceptable to the 
Greeks as a length but not as a number. A secondary reason but, nevertheless, 
one of significance, was the Greek "delight in the tangible and visible" [2], 

In this note we shall attempt to make the numbers F± = 1, F2 ~ 1» F3 = 2, ... 
in the Fibonacci sequence "tangible and visible" by representing each Fm with a 
gnomon. These figures will enable us geometrically to derive or interpret many 
of the standard identities for the Fibonacci numbers. The ideas work equally 
well for the Lucas numbers and other generalized Fibonacci number sequences. 

The gnomons we shall associate with the Fibonacci numbers are depicted in 
Figure 1. The angular shape that represents the mth Fibonacci number will be 
called the Fm-gnomon. In particular, "observe" the FQ = 0-gnomon! 

F, m 
F3 rx i 

F, 

F7 
d 

13 
. ^ i , — ! 

F9 

34 

' 2n 

1" F n - , 

rn 

F n \ 

F n~ ( 

1 ! 
1 F i 

^"n+i 

F n 

F 
s 2H4-! 

F n 

F n - S 

_ _ __ , 
—, 

I 
1 

' " n + j 

F n+i 

Fig. 1 

35 
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The dashed lines in the lowermost gnomons indicate how the Fm- and Fm + 1-
gnomons can be combined to form the Fm + 2-gnomon. This geometrically illustrates 
the basic recursion relation 

The left-hand column of Figure 1 shows rather strikingly that the evenly 
indexed Fibonacci numbers are differences of squares of Fibonacci numbers. In-
deed 

F0 2.n 
F«\i ~ Fn-i> n > l . 

Equally obvious from the right-hand column i s the iden t i ty 
F2n + 1 = Fn\l + Fn> n > 0 . 

Several other i d e n t i t i e s can be read off eas i ly i 
r 2 n + l r n - l r n + l T rnrn + 29 n — L * 

F = F F — F F n > \ • 
r 2 n + l rn + 2rn + l rn£n-l> n — L ' 

F - = Fn-lFn + FnFn + 1> n > l . In 

Since L„ L n + 1 + Fn„1 is the nth Lucas number, it follows from (6) that 

(2) 

(3) 

w 
(5) 

(6) 

(7) Fm = LnFn, n > 1. 
The gnomons in the left-hand column of Figure 1 can be superimposed in the 

manner shown in Figure 2(a). This shows how the F2n-gnomon can be decomposed 
into "triple" gnomons of area F2- - F2.i-2> J = 15 ..., n. From identity (1), 
we already know F? ~ ~ = F 

• 2 3 - 1 r2j 

F1 + F3 

2 j - 2 » «7 
F 2> _2 , and so 

+ F 2n-l Fzn9 n > 1. (8) 

In a similar manner (note the shaded unit square "hole") we see from Figure 
2(b) that 

F2 + Fk + + F, Fn 1, n > 1. (9) 

1 2 5 13 34 f | 3 8 21 55 

fa; 
Fig.2 

(b) 

We have noted that the Fm + 2 - gnomon can be dissected into an Fm+1- and Fm -
gnomon. The larger of these can, in turn, be dissected into an Fm- and Fm„1-
gnomon, and the larger of these can then be dissected into an Fm„1- and Fm_2-
gnomon. Continuing this process dissects the original Fm+2-gnomon into a spiral 
that consists of the Fj -gnomons, j= 1, .. ., m9 together with an additional unit 
square (shown black), as illustrated in Figure 3. The separation of the gno-
mons into quadrants is rather unexpected. 

From Figure 39* we conclude that 

F1 + F2 + + F F - 1, m >. 0. (10) 
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Geometrically, we see that the first m Fibonacci gnomons can be combined with 
an additional unit square to form the Fm+2-gnomon, It is interesting to check 
this out successively for the special cases m = 09 1, 2, ... . 

The spiral pattern gives rise to additional identities. For example, by 
adding the areas of the gnomons in the first quadrant, we find 

F1 + F5 + + F„ F F n > 1 
L 2n-l 2n 9 u — x • 

The same procedure for the other three quadrants yields: 

Fz + F6 + ••• 
F3 + F7 + ••• 

Fh + FB + 

+ Fu = F?n, n >l; 

kn-l 

+ F - F 
ZnL 2n+ 1' 
2 1, n > 1. 

(11) 

(12) 

(13) 

(14) 

The gnomons in the first quadrant are each a sum of two squares. (Some ad-
ditional horizontal segments can be imagined in Figure 3*) We see that 

F* + Fl + + F = F F 
T n 2n-l r 2n-lL 2n • 

n > 1. 

Similarly9 the third quadrant demonstrates 

F l + F2 + + F2n = F2nF2n+l> * > *• 

(15) 

(16) 

Of course9 identities (15) and (16) are more commonly written simultaneously in 
the form 

F l + F2 + + Fm = F
m

Fm + i> m > !' (17) 

Next, consider the F2n_1 by FZn + 1 rectangle that the spiral covers in the 
right half-plane. Evidently, the area of this rectangle is one unit more than 
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the area of the F2n by F2n square covered by the spiral in the third quadrant. 
Thus 

F2»-i^2„ + i
 =FL + 1. n > l . (18) 

An analogous consideration of the F0 by F2 _ rectangle covered by the spiral 
in the left half-plane shows 

F F 
In 2n+2 2n + l 1» n >, .1. (19) 

The black square at the center of the spiral plays an interesting role in the 
geometric derivation of these relations. 

The geometric approach used above can be extended easily to deal with gen-
eralized Fibonacci sequences T1 = p, T2 = q, T3 = p+q, T^ - p+2qs . .., where 
p and q are positive integers. The Tm-gnomons can be taken as shown in Figure 
4 (however, it should be mentioned that other gnomon shapes can be adopted, and 
will do just as well). 

TM Fn '2rn-i 

FM 

T n 

Hn+i 1 

T n - 1 

1 
T 

— n 
! 
1 
1 

F 1 

Fig. 4 

From Figure 4, it is clear that 

Tm+2 = Tm + 1 + Tm, m > 1; 

•̂  2n = J-n-l^n + ^n^n + l» n — -1- »• 

(20) 

(21) 

(22) 

As before, a spiral pattern can be obtained readily. Figure 5 shows the spi-
ral that corresponds to the Lucas sequence L1 
where p = 1 and q = 3. 

1, L2 = 3, L3 = 4, L4 7, 

«~2n-s 

r2n-i 

L^o-2. 

IB 

2 3 

*>)-! 

3 

4 

II 

Tj 
7 

7© 

4 7 

Fig. 5 
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It is clear from Figure 5 that 

L± + L2 + . . . + Lm = Lm+Z - 3,m>l. (23) 

For the generalized sequence, one would find 

T± + T2 + ... + Tm = Tm+2 - qs m > 1. (24) 

Beginning with a qx 1 (black) rectangle, one can use identity (24) successively 
for m - 1, 29 ... to generate Tm-gnomons. A variety of identities for gener-
alized Fibonacci numbers can be observed and discovered by mimicking the proce-
dures followed earlier. 

It seems appropriate to conclude with a remark of Brother Alfred Brousseau: 
"It appears that there is a considerable wealth of enrichment and discovery 
material in the general area of Fibonacci numbers as related to geometry" [1]. 
Additional geometry of Fibonacci numbers can be found in Bro. Alfredfs article. 
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FIBONACCI AND LUCAS CUBES 
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1. INTRODUCTION 

The Fibonacci numbers are defined by the well-known recursion formulas 

F = 0 F = ] F = F 4- F 

and the Lucas numbers by 

^ 0 = 2 ' L l = *» Ln = Ln-l + Ln-2' 

J. H. E. Cohn [2] determined the Fibonacci and Lucas numbers that are perfect 
squares. R. Finkelstein and H. London [3] gave a rather complicated determina-
tion of the cubes in the Fibonacci and Lucas sequences. Diophantine equations 
whose solutions must be Fibonacci and Lucas cubes occur in C. L. Siegel!s proof 
[7] of H. M. Stark*s result that there are exactly nine complex quadratic fields 
of class number one. This paper presents a simple determination of all Fibo-
nacci numbers Fn of the form 2a3 X3 and all Lucas numbers Ln of the form 2a X3. 

2. PRELIMINARY REDUCTIONS 

From the recursion formulas defining the Fibonacci and Lucas numbers, it is 
easily verified by induction that the sequence of residues of Fn and Ln (mod p) 
are periodics and in particular that 

2\Fn iff 3|w , (1) 

2\Ln iff 3|n (2) 

3\Fn iff 4|n (3) 
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5F2 - T 2 

F 

4Fq 
3n 

4LQ 
3n 

= 

= 

= 
= 

4( 

Fn 
F 

^n 

- 1 ) " + 1 

L« 

(5Fn + 
(15F„2 + 

3Z£) 

•L2
n) 

3\Ln iff n = 2 (mod 4) (4) 

5j£„ (5) 
l\Ln iff n = 4 (mod 8) (6) 

TJC •• 1 "+ /5 , ~ 1 - /5 . . n ., >J=.. , , . , 
If e 0 = — ^ " a n d £o = r — , it is also easily verified by induction that: 

Ln + Fn/5 i 
c- — —1 w L scn ~£"n\ T — cn 4- ~Fn 

From t h e s e fo rmulas , t he fo l lowing i d e n t i t i e s a r e e a s i l y d e r i v e d : 

(7) 

(8) 

(9) 

(10) 
Further, from (1), (2), and (7), we find that 

[ 2. if-3|n 
(*V,. Ln) = (11) 

| 1 otherwise 

Finally, since Fn - (-1) F„n and Ln- (-l)nL_n9 it suffices to consider the case 
n > 0 in what follows. 

The identity (7) is the basis of a reduction of the determination of Fibo-
nacci or Lucas cubes (or, more generally, Fibonacci and Lucas Pth powers) to 
solving particular Diophantine equations. It turns out that this identity ac-
tually characterizes Fibonacci and Lucas numbers, in the sense that (L2n , # ) 
for n > 0 is the complete set of positive solutions to the Diophantine equation 
X2 - 5J2 = 4, and (£2n+i> ^2n + 1) for n>_ 0 is the complete set of positive solu-
tions to the Diophantine equation X2 - 5Y2 = -4. From these facts, it follows 
that the positive Fibonacci cubes are exactly those positive J3 for which X2 -
5J6 = ±4 is solvable in integers, and the positive Lucas cubes are those posi-
tive X3 for which X6 - 5JZ = ±4 is solvable in integers. For our purposes, it 
suffices to know only that (7) holds, so that the Fibonacci and Lucas cubes are 
a subset of the solutions of these Diophantine equations. 

We now show that the addition formulas (8)-(10) can be used to relate Fibo-
nacci numbers of the form 2a3 X3 to those of the form J3, and Lucas numbers of 
the form 2aX3 to those of the form J3. 

lemma f: (i) If Fln is of the form 2a3bX3 , so is Fn . 
(ii) If F3n is of the form 2 a 3 ¥ s so is Fn . 
(iii) If L3n is of the form 2aX3 , so is.L„. 

P/£O0j[: (i) follows from (8) and (11). (ii) follows from (9) and (11), where 
we note that (Fn, 3L2)\l2. Finally, (iii) follows from (10), (11), and (5), 
noting that (Ln, 15^)|12. 

Lemma 2: (i) If Fn = 2a3bX3 and n = 2c3d/c with (6, k) = 1, then 2^ = Z3. 
(ii) If Ln = 2aX3 and n = 3̂ fe with (3, fc) = 1, then Lk = Z3. 

VtiOO^i For (i) , note that Fk is of the form 2a3 J3 by repeated application 
of Lemma 1, while (Fk , 6) = 1 by (1) and (3), so Fk - Z . (ii) has a similar 
proof using (2). 

RemflAfe: The preceding two lemmas are both valid in the more general case where 
"cube" is replaced by "Pth power" throughout, using the same proofs. 

\ 
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3. MAIM RESULTS 
Tk&Q/i&n 1: The only Fn with (n, 6) = 1 that are cubes are F1 = 1 and F 

V-HJOO^: Let Fn = Z3 and note that (n, 6) 

i * - — - -1 
1 and (1) and (7) yield 

Setting X = 5Z2 and Y 

5Z6 - 4 = L2 

5Ln yields 

X3 -

and (2, Z) = 1. 

100 

(12) 

(13) 

and (2) and (4) require (7, 6) = 1. We examine (13) over the ring of integers 
of Q(^/T0). It has been shown (see [6] and [8]) that this ring has unique fac-
torization that its members are exactly those (1/3) (A + B^TO + C^TOO) where 
A, Bs and C are integers with A^BEC (mod 3) , and that the units in this ring 
are of the form ±eK where e = (1/3)(23 + 11NK10 + S^TOO). Equation (13) fac-
tors as 

(X - ̂ 100) (X2 + \Tl00X + lG^TO) = J2. (14) 
Write 

na2
s (15) 

-3/KJ0 and X2 + \/Too" + lO^To, Then 

X - V100 = 

where n in square free and divides both X 

n (J
2 + ̂  100Z + IQ^lO) - (X + 2 30 V 10. 

Since (I, 3) = 1, (n, 3) = 1, and n|l0/T0. Now (/TO)3 = 2 ' 5 and (2, 5) = 1, 
so by unique factorization we can find A and $ such that \KTo~ = A$, 5 = A3eK

9 
Now Y = 5Ln and (2, Z<n) = 1 by (2), so 

Hence Til A1*. But 5|X3 so A3|X, and hence 

and 2 ,le-K Then n 10V10 

(14) shows that ($, J 

^ 

J Since r] is square free, rj must be a unit. By absorbing squares 
of units into a, we need only consider n = ±1 and n = ±e in (15)< 

Cd6d l! X - Let a (1/3) (A + BViQ + CVlOQ) . 
sentation of integers in this form is unique. 

X = ±~(AZ + 2QBC) 

0 - ±™(Z4B + IOC2) 

1 = ±~(BZ + 2AC) 

Since repre-

(16) 

(17) 

(18) 

Equation (17) shows B \ 5C2. Squaring (18) and multiplying both sides by 3 -5, 
we see that B divides each term on the right side so S|34 * 5. For each of the 
twenty values of B satisfying B\3h • 55 we can solve (17) and (18) for A and C9 
and verify the only integer solutions (A9 5, C) are (-5, 1, 1) and (5, -1, -1) 
when rj = 1, and (0, ±3, 0) when n = -1. Evaluating X by (16) we find that the 
first two solutions yield Z = ±1 in (12), and thus Fx = 1 and F_± = -1, while 
the third solution is extraneous to (13). 

Co6e It X Proceed ing a s in Case 1, we o b t a i n 

X = ±-~{23A2 + 11052 + 500C2 + 100,45 + 22MC + 460SC) 

0 = ±~j{llA2 + 5052 + 230C2 + 46A5 + 10QAC + 230SC) 

-1 - ±~{5A2 + 23S2 + HOC2 + 22AB + MAC + 1003(7) 

(19) 

(20) 

(21) 

From (20) 2\A SO that 2\X in (19), and such solutions are extraneous to (12), 
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RmciAk'- It can be shown (see [1] and [3]) that the complete set of solutions 
(X, I) to (13) is (5, ±5), (10, ±30), and (34, ±198). 

ThtLQtiQjtn 2: The set of Fibonacci numbers Fn with n > 0 of the form 2a3^X3 is 
F± = 1, F2 = 1, F3 = 2, F4 = 3, F6 = 8, and F12 = 144. 

VKOOJ: Let Fn = 2a3hX3 with ft = 2c3dfc and (fc, 6) = 1. By Lemma 2, Fk = Z3 

and by Theorem 1, & = 1. If c >. 3, repeated application of Lemma l(ii) would 
show F8 = 21 is of the form 2a3^X3, which is false. If d >. 2, repeated appli-
cation of Lemma l(i) would show Fs - 34 is of the form 2a3z?X3, which is false. 
The values 0 <. o <_ 2 and 0 <_ d <. 1 give the stated solutions. 

IhtLQtim 3: The equation L2n = X3 has no solutions. 

VtiOQJi Suppose L2n = X3. Then (7) yields 

5F2
2
n + 4 = Xs . 

All solutions to this equation (mod 7) require 7JX. Then (6) shows 4|2n hence 
3|F„ by (2), so J6 E 4 (mod 9), which is impossible. 

The.on.QJfn 4' The equation Ln = X3 with (ft, 6) = 1 has only the solutions Ẑ 1 = 1 
and L_x = -1. 

^Wo£: Suppose Ln = J3 with (ft, 6) = 1. Then (2) and (7) yield 

5F2 - 4 = X6 and (6, J) = 1. (22) 

We examine (22) over the ring of integers of Q(/5). It is known that this ring 
has unique factorization, that these integers are of the general form 

|(A + B/S) 

with A E B (mod 2), and that the units are of the form ±£̂ "9 where 

e0 = |(1 + /5). 
Now (22) gives 

(/5Fn + 2)(/5Fn - 2) = Z3, 
where Z = J2. Then 

/5Fn + 2 = na3, 

where n divides both /5Fn + 2 and /5Fn - 2. Then we have n 14. But (2, Z) = 1, 
so (2, /5Fn + 2) = 1 and n is a unit. By absorbing cubes of units, we need to 
consider only n = 1, e0, and e^1. 

Co6e 1: 2 + F /5 = a3. Let a = (1/2) (A + B/~5) . Substituting this yields 
the equations 1 

2 = ~A (A2 + 155z) 

5 (3A2 + 5£2). (23) 

Then (23) shows t h a t A\l6 and \B\ <_ 1, from which A = 1 and £ = ±1 a r e t he only 
s o l u t i o n s , y i e l d i n g Fn = ±1 and, f i n a l l y , L1 = 1 and L_x = - 1 . 

Ca6£ 2: 2 + Fn/5 = e 0 a 3 . Le t a = (1 /2) (A + S/5) w i th 4 E S (mod 2 ) , which 
y i e l d s 

2 = ~ ( A 3 -I- 15A2B + 15^52 + 25B3) 

and 
^ W 3 + 3A2S + 15AB2 + 5 5 3 ) . 
16 N 
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Then 
4(2 - Fn) = BOA2 + 5B2) = 4 (mod 8 ) , 

because 2\Fn s i n c e (n9 6) = 1. This congruence has no s o l u t i o n s wi th A = B 
(mod 2 ) . 

Co6_e_3: 2 + Fn/5 = e j ^ a 3 . Not ing e " 1 = (1 /2) ( 1 - / 5 ) , we argue a s in Case 
2 s u s i n g i n s t e a d 

4(2 + Fn) = -BOA1 + 5B2) = 4 (mod 8 ) , 
which has no solutions with A E B (mod 2). 

Tke.on.QJfn 5: The set of Lucas numbers Ln with n > 0 of the form 2aX3 are £x = 1 
and L3 = 4 . 

PJWO&: Let Ln = 2aJ3 with n = 3ak and (fe, 3) = 1. By Lemma 29 Lk = J3 so 
by Theorems 3 and 4, /c = 1. If £ 2. 2, then Lemma 2(ii) would show L3 = 76 was 
of the form 2aX3

 s which is false. 

Rmctfik: The set of Lucas numbers of the form 2a3&J3 leads to consideration of 
the equation X3 = Y2 + .18. The only solutions to this equation are (3, ±3), 
but the available proofs (see [l]and [3]) are complicated. General methods fox-
solving the equation X3 = Y2 + K for fixed K are given in [1], [4], and [5]. 
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THE NUMBER OF STATES IN A CLASS OF SERIAL QUEUEING SYSTEMS 

MICHAEL J. MAGAZINE* 
University of Waterloo, Waterloo, Ontario, Canada 

ABSTRACT 

It is shown that the number of states in a class of serial production or 
service systems with N servers is the (27V - l)st Fibonacci number. This has 
proved useful in designing efficient systems. 

*This research was supported by National Research Council Grant No. A4142. 
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In studying queueing systems in series, it is useful to know precisely the 
number of different states that might occur. In particular, in [1], this num-
ber is crucial in determining approximate solutions to the allocation of a fixed 
resource to the individual servers or for scheduling servers with variable ser-
ving times. For a particular class of these problems, this number possesses an 
interesting property. 

The system can be described in general as follows: 

N (single-server) service facilities (usually corresponding to N work 
stations of a production line) are arranged in series. Customers com-
pleting service at station i proceed to station i+ 1 and commence ser-
vice there if it is free, or join a queue if the server is busy. The 
limitation on space restricts the number who can wait before station i 
to be Wj_ . If service is completed at station i and the waiting space 
before station t+1 is full, then the customer completing service can-
not advance and station i becomes "blocked." Any station that is idle 
is said to be "starved." Station 1 cannot be starved, as a customer is 
always ready for processing (raw materials) and station N can never be 
blocked. Customers are not permitted to renege (see Figure 1). 

INPUT 

SERVER 1 O O SERVER 2 • O ' - O O SERVERS 

Fig. 1 

The design problem is to consider how to divide the work among the N sta-
tions (or, equivalently, to determine the order of service) to maximize, among 
other objectives, the rate at which customers leave the system. The problem is 
complicated by having operation times that are not deterministic and are given 
only by a random variable. This optimization involves inverting a stochastic 
matrix whose dimension is the number of states in the system. Our problem here 
is to determine the number of possible states. 

Without loss of generality, we can assume that W^ = 0, i = 2, 3, . .. , N9 
that is, there is no waiting space before each server. This is done by assum-
ing each waiting space is another service station with 0 service time. Hence, 
each station can be busy (state 1) , all but station 1 can be starved (state 0), 
and all but station N can be blocked (state b) . An /l/-tuple of l!s, 0's, and b1 s 
represents a state of the system. Obviously, not all combinations are allowed, 
for instance, a "2?" must be followed by a "2?" or a "1." 

TkzoJiom: Let SN be the number of states when N servers are in series. Then 
^N = F2N -1 * 

VKOO^i When N = 2, the only possible states are (1, 1), (1, 0), (£>, 1) and 
S2 = F3 = 3. Assume that Sk = F2k-1* All possible states, when N = k + 1, can 
be generated from the Sk states as follows: catenate a "1" to the right of each 
of the Sk states [corresponding to the (?c+l)st server being busy]; catenate a 
"0"to the right of each of the Sk states; and, for each state with a "1" in the 
kth position, change this to a "2?" and. add a "1" in the (fc+l)st position. The 
states with the "1" in the kth position had been similarly generated from the 
Sk_1 states. This leads to the recursive relationship 

fc-i 
Sk + 1 = Sk +Sk + {Sk_1 + . . . + 5 l + 1) = 2F2fc -1 + X > 2 J - - i +^o 2k+l * 

j - 1 
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This result has been most useful in developing numerical procedures for 
calculating or approximating the probabilities that a server is busy, which is 
used in finding efficient designs for this class of production systems. 
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THE DETERMINATION OF ALL DECADIC KAPREKAR CONSTANTS 
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Babson College, Wellesley, MA 02157 

0. 1NTR0VUCT10M 

Choose a to be any r-digit integer expressed in base 10 with not all digits 
equal. Let ar be the integer formed by arranging these digits in descending 
order5 and let afl be the integer formed by arranging these digits in ascending 
order. Define T(a) = ar - a!!« When r = 3, repeated applications of T to any 
starting value a will always lead to 495, which is self-producing under T,that 
is5 T(495) = 495. Any r-digit integer exhibiting the properties that 495 ex-
hibits in the 3-digit case will be called a "Kaprekar constant." It is well 
known (see [2]) that 6174 is such a Kaprekar constant in the 4-digit case. 

In this paper we concern ourselves only with self-producing integers. Af-
ter developing some general results which hold for any base g9 we then charac-
terize all decadic self-producing integers. From this it follows that the only 
p-digit Kaprekar constants are those given above for r = 3 and 4. 

1. THE VIGITS OF T[a) 
Let r = 2n + 6, where 

6 = I* r odd 

I 0 r even. 
Let a be an r-digit g-ad±c integer of the form 

a = ^r-i^'1 + ar-29T~2 + ••• + CI-L̂  + a0 (1.1) 
with 

g > ar_i >. ar_2 >. • • • >. ax >. a09 ar_1 > a0. 
Let af be the corresponding reflected integer 

af = a^"-1 + a^"2 + • • • + ar_2g + ar_1. (1.2) 

The operation T(a) = a - af will give rise to a new p-digit integer (permitting 
leading zeros) whose digits can be arranged in descending and ascending order 
as in (1.1) and (1.2). Define 

d-n-i + l = ar-i " ai-l5 ^ = 1S 29 •••» n- (1.3) 
Thus associated with the integer a given in (1.1) is the n-tuple of differences 
D = (dn9 dn_l9 ..., dx) with g > dn >_ dn_1 J> ••• >. dx. Note that T(a) depends 
entirely upon the values of these differences. The digits of T(a) are given by 
the following9 viz.3 
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5 = 0 and d1 + 0 (1.4a) 

ml . . . dz • d± - I g - d1 - 1 g - dz - 1 . . . g - dn_1 - 1 g - dn 

6 - 0 and dx = d2 = •• • = dj_1 = 09 a^ ^ Os I < j <_ n (1.4b) 

2(j - 1) terms 

* » - ! • 

d » - l ' 

. . . d . + 1 ^ - l £ - l . . . £ - l £ - d^ •- l . . . ^ - ^ „ x -

6 = 1 and d 1 ^ 0 

. . d2 dx - 1 g - 1 # - dx - 1 # - d2 - 1 . . . # - dn_± 

6 = 1 and d1 = d2 = • •• = dj_± = 05 dj £ 0, 1 < j <. n 

2 ( j - 1) + 1 terms 

1 

- 1 

# " <4 
(1 ,4c ) 

# " ^n 

(1 .4d) 

dn dn-1 ... dj+ x ^ - 1 # - 1 ... g - 1 g - dd - I . . . g - dn_1 - I- g - dn 

Differences Dr = .(d„, d^„.13 . ••» d-[) can now be assigned to the integers T(a) 
as in (1.3). We say that (dnS dn_±s . .., 6^) is mapped to (d^, dnf„l9 ..., ^ ) 
under T. 

2. PROPERTIES Of OME-CyCLES 

We shall focus attention on the determination of. all a such that T(a) - a. 
Such integers are said to generate a one-cycle a, This is equivalent to find-
ing all n-tuples (dn9 dn„ls . .., dj) that are mapped to themselves under T. 

Thzosiem 2.1: Suppose (<fn, dn_19 . .., 3^) represents a one-cycle with d^ f 09 

J >_ 1, and dk = 0 for k < j . Further suppose that dn f dj. Then 

(i) <in + dj = g if 6 = 1 or if 5 = 0 and j > 1, 
or 

(ii) |dw + 2d1 = g 
I or if 6 = 0 and j = 1 
|dn = g - ls d1 = 1 

V/WOJ: (i) Since either j > 1 or 6 = 1, (1,4a) does not apply. Thus the 
largest digit in T{a) is g - 1. The smallest digit could be one of three: 

Therefores 

<*»' = 

tdj - 1 

I g - dn 

[ g - dn - ] 

( g - dj 
ldn - 1 
\ dn 

i f 

i f 

L i f 

i f 

i f 

i f 

dg 

dj 

dj 

dj 

dg 

dj 

+ dn 

+ dn 

+ dn 

+ dn 

+ d„ 
+ dn 

-
_ 

-
_ 

1 < # 

i >. g, 
1 .> #» 

1 < g 
1 >. 9* 

1 >.<7* 

dn 

dn 

dn 

dn 

+ dn.± 

= <*«-! 

^ d „ - ! 

- < * » - ! 
Since dn = d£, if dj + dn - 1 < g^ then dM + dj = gm ~Lf d3- + dn - I >_ g9 then 
since d^ = dn ^ dn - 19 it must be that dn = (in_x. This condition restricts 
the second largest digit to be either dn or g - 1, and the second smallest to 
be g - dn if dn + dn„2 or g - dn - 1 if dn = dn.2. Since d^± = dn-\ = d„ ^ #* 
we must have d„ = dn„2» Continuing in this fashion^ one finds that dn = dj9 
which contradicts the hypothesis. Thus dn + dj = g. 

(ii) Suppose first that dn > g - d± - 1, then dn is the largest 
digit in (1.4a). Then 
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[ dn - d1 + 1 if d1 + dn - 1 < g 

2dn - g If d± + dn - I >_ g, dn + dn_1 

2dn - # + 1 if d1 + dn - 1 >_ gs dn = dn_1. 

If dx + dn - 1 < g and g < d± + dn + 19 then # = di + dn. Since d„ = dn9 one 
must have d± = 1 and dn = ̂  - 1. If d± -h dn - I >_ g s then d„ = dn_± as shown 

This cannot occur in a one-cycle in (i). Hence dn = dn_i = d-i = G 
d-, . Thus9 if dn > unless g = 2t in which case dn 

dn = g - 1 and dx = 1. 
Now suppose that dn <_ g - d1 - 1, Then the largest digit in (1.4a) is 

d-L - 1 and the smallest is d\ - 1. Hence 

dn = dn' = (£ - d1 - 1) - (dx - 1) = # - 2d± 

and dn + 2dx = g. 

Tkao/ieyn 2.1' If D = (dns d„_l9 . .., dx) represents a one-cycle with dn = 
= d̂  ̂  09 j _> 15 and dfc = 0 for /c < J9 then d„ = ••• = dj = g/2. Further, 

(i) if g 4- 29 then r E Q (mod 3) and g E 0 (mod 2). In particular 

r/3 terms r/6 terms 

1, 

(|5 | s . . . , ~9 0S 09 . . . , 0 j when r = 0 (mod 2) 

p/3 terms (r~3)/6 terms 

(f. ., f9 Q9 0S •.. » ) when r = 1 (mod 2) 

( i i) if # = 2, then every n-tuple D is a one-cycle. 
P/tOOfj: (i) If # > 29 then j > 1 from (1.4). From (1.4b) and (1.4d), any 

n-tuple (k5 k, . . . , k, 0, 0S . . . , 0) will give rise to.a successor with digits 

(n - j) terms 2 ( j - l ) + 6 terms (.n - j) terms 

k k k k 1 - 1 . . . g - 1 g - k - l . . . g - k - l g - k. 
Clearly the largest digit is g - 1. The smallest is either k - 1, forcing k 
g/2s or g - k - 19 forcing k - (g - k) = k9 which is impossible. Hence 

CXy. — U-y, _ "I — 

Consider 
a terms 

d3 

{n - a) terms 

2" 

D = ( f s Is e"s Is ° 3 ° 5 e"9 ° )9 a = n ~ J° + 1-
The digits of the successor of D are 

(a- 1) terms 2(n-a) + 6 terms (a-1) terms 

2 2 
£ £ 

" 2 2 
# 1 ... g - 1 | £ 

2 1 
r 

(2.1) 

Ordering the digits of (2.1) in descending order, one obtains 

2 (n - a) + 6 terms a terms a terms 
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Differences equal to g/2 will be generated by the pairs (g - 1, g/2 - I), and 
differences will be generated by the pairs (g/2s g/2). Hence9 if D is a one-
cycle, then 2(n - a) + 6 = a9 that is9 r - 2n + 6 = 3a. In addition9 

~ if r E 0 (mod 2) o 

-~-^ if P = 1 (mod 2) . o 

(ii) If g ~ 29 then the. digits of the successor of D ordered in 
descending order, from (2.2), are 

2(?-£-a) + 6 terms a terms a terms 

1 1 ... 1 1 ... i 0 ... 0. (2.3) 

Clearly the first a succeeding differences in (2.3) are equal to 1 and the re-
maining (n- a) differences are equal to 0. Therefores a is a one-cycle for all 
1 £ a £ n. 
Vz^inAjtlon 2.7: For i - 09 1, . „ . , g - 1, let £J be the number of entries in 
~(dn, a^TT^""^"^ ^i) that equal i, and let ĉ  be the number of digits of T(a) 
that equal i. 

For example, if g = 10, 6 - 0S and D = (9, 99 75 79 3S 1, 09 0), then 

A / n ~" fclj R "~" *J $ AJ n °~ •*-• g Ay r ~™ Ay r — ™ h ~" * - '5 Ay q ~~ J - s Ay o ' ^ 9 ^ T ~ •*• J a n CI Ay n ~"~ £. 

From (1.4)s the d i g i t s of £>f are 
9 9 7 7 3 0 9 9 9 9 8 6 2 2 0 1 

giving r i s e to the d i g i t counters 
c3 = 69 c8 = 1, c37 = 2S <?6 = 1, o5 ~ c^ = 09 c3 = 1, <??_ = 2, c1 = 1, and c0 = 2 

Using the results of Section ls we now obtain the following corollary. 

Coxotta/iy 2.1: If dn + dj = gs where dj is the smallest nonzero entry in 

D = (d„, dn-1, ..., d x ) , 

then ag-i = ^g-i + 2^o + ^ 
ci = ^t"^-^~-z:~i ^ = 19 2 9 . . . 9 g - 2 

VK0Q{\* This result follows directly from (1.4). 

3. THE VETERMJMATION OF ALL VECAVK QME-CVCLES 

If one fixes g = 10, then each one-cycle D - (dn, dn_19 ..., <i2» ^i) falls 
into one of four classes. These classes can be described using the difference 
counters £^, i = 0S 1, 29 . .., <y - 1 introduced in Definition 2.1. The follow-
ing conditions on the difference counters must hold for D = (dn, dn_19 . .., d^) 
to be in a given class. 

ClaAA A: £8 = £6 = Ĵ  = &2 = 2£,0 + 6 
7 = 5 == 1 

£9 = 0 iff Zx = 0 
£0 s £x s or 6 is nonzero 

Cl(UA B: £9 = £x = 0 
£7 = 2^o - £8 

£6 = ^ 8 ^ 0 

4 
6 
a 

= 
== 
E 

£2 
0 
0 

= £0 

(mod 

+ 
2) 

£R 
? 
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and 

ClciAA 

ClCLAA 

TkdOKom 3, 

_C: 

V: 

L ! : 

9 = 0 = 0 _ — 1 
A/g A, 3 X/Q ^ 

6 2 = 

£,• = 09 i i 2, 3 3 < 
6 = 0 

£5 = 2£0 + 6 
£^ = 05 i + 05 5 
£0 or 6 i s nonzero 

Let (dn9 dn_l9 . . . 

^8 

>, <ii) be a decadic one-cycle with dn + dj = 10 
and £0 = j - 1. Suppose that dj ^ 5 and either j ^ 1 or 6 ^ 0. Then (d^9 dn_19 
..., 6?x) is in either Glass A or Class B. 

VKOO^I We wish to determine the. difference counters l i 3 i = 05 1 S 2 S . .., 
£7-1. To do this, we shall explore the various ways these differences can be 
computed from the digits in a self-producing integer. From Corollary 2919 

c3 = £9 + 2£0 + 5 

ci - £; + lo^i i = 1, 2, ..., 8 

e0 = £g 

Cer ta in ly . , £9 = minCeg, Co) = OQ „ s i n c e a d i f f e r e n c e of 9 can only be ob ta ined 
from t h e d i g i t s 9 and Q„ Hence 

£8 = min(2£0 + 6S o^) = min(2£0 + 69 £-,_ + £ 8 ) 

(2£ 0 + 6 £i ^ 0 
(3 .1 ) 

£1 = 0 
Thus the value of £8 depends on whether £x is zero or nonzero. If £x ^ 09 then 
there are fewer 9?s than lfs remaining and hence there will be as many differ-
ences of 8 as there are 9?s remaining. If £]_ = 05 then there are fewer lfs in 
the self-producing integer than remaining 9?s9 and there will be as many dif-
ferences of 8 as there are l?s. This technique of evaluating the difference 
counters is used throughout this section. 

Suppose first that £x ^ 0. Note that if i± + 0S dj = 1, and hence dn = 9. 
Then we have 

£9 = £9 + 0 
£8 - 2£0 + 6 (3.2) 

and £6 = min(2£0 + 6S £2 + £ 7 ) . 

Now i f £2 + £7 < 2£0 + 6S then one f i n d s e i t h e r 

l2 + £7 

™ li. "*~" Ay n* "T" AJ O 

9 = 9 4 - 0 _ 0 
A-q A/q r / v c A/o 

( 3 . 3 ) 

£6 = £2 + £7 
£5 = £3 + lb 
lh = £8 - (&2 + «-7 + «-3 + * 6 ) (3 .4 ) 
£3 = £7 + «,2 
£ 2 ~ £3 

and £-, = min(£ ? + £ 7 S £R - £? - Zn) 
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Equations (3.3) imply that £6 = £8 or £2 + £7 = 2£0 + 69 which is a contradic-
tion. Equations (3.4) imply that £x = 0, again a contradiction. Thus we must 
have 2£0 + 6 <_ £2 + £7 . Continuing in like fashion, 

£6 = 2£0 + S 
£5 = £2 + £7 - (2£0 + 6) 
*\ = 2£0 + 6 
*3 = ^3 (3.5) 
£2 = 2£0 + 5 
&1 ^5 

£0 

\ ~ 5 

Equations (3.5) together with equations (3.2) determine the relations given in 
Class A with £x and £9 nonzero. 

Suppose now that £x = 0. From (3.1)9 

£8 = ̂ 8 
£7 = min(2£0 + 6 - £8, £2 + £ 7), or 

+ 6 - £8 £2 + 0 
(3.6) 

£7 

We first consider the case where £2 f 0. From (3.1) and (3.6) it is clear that 

(3.7) 

If £9 < £ft, then 

£9 = 0 
£ 8 = £ 3 
£7 = 2£0 + 6 - £8 
£6 = min(£8, £2) 

9 = 9 
XJ r ~ X/ p — A/ Q 

£4 = £2 + £7 (3 .8 ) 
XJ Q "— X/ Q T ^ c """* ft *""" 7 

X / o ~™ J v q ~~ ^ A / Q "T* 0 

or 
£6 = £2 

• ^ *•% " " " ^ ft *""" 9 

A/ j . ""~ A/ o "T" Xj q "• ^ £ "~* ^ ft \ --' • -^ / 

XJ q ™" Z X / n i " U ™ A/ q """ A/ r 

XJ r\ —" X/ /* *T" X/ q "™~ X/ o I X*/ q 

or 
£6 = £2 
Xj c — X/ q "T" X/ r 

X / £ , * ~ X > Q " — X / Q — " X / q - - X / c ^ J « 1 U ^ 

X* q ~~ X/ •-? \ XJ n 

X/ Q —• XJ q i X/ r 

In (3.8), £5 = -£7 = 0, so £2 = £8. In (3.9), £3 = 0, which implies £2 = &8« 
In (3.10), £2 = 0, so all three circumstances lead to a contradiction. Hence, 
it must be that £8 <. £2, and, therefore, in (3.7) one finds £6 = £8. In this 
case, there are two possible values for £4 , viz., £4 = £6 + min(£7, £3). 

If li, = £6 + £7s then 

£6 = £8 £2 = £6 = £6 + £5 

£5 = £2 - £8 £x = £5 

£4 = £6 + £7 ^ £6 _ S (3"U) 
£3 - £3 - £7 £Q - -« 
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This implies that £5 = £7 = 09 £8 = £6 = lh = £2 = 2£0 + 6, so (3.11) falls into 
Class A with i± = 0, ' Otherwise, 

£ 6 = £ 8 £ 2 - £ 3 + &6 
^5 = ^2 - A8 £1 - 0 
^ = ^6 + A3 . ^ £ , + £ 5 - 5 l j 

Av 3 A/ y "" A/ o X / Q ~ ~ — — " ~———- ——— 

Equations (3.12) fall into Class B. 
It can easily be checked that there exist no one-cycles with dn = 7 and 

dj = 3 or a7n = 6 and d- = 4 . This completes the proof of the theorem. 

ThQXJtiom 3 At Let D = (dn, dn_19 <>.«, d ) be a decadic one-cycle with dn = 9, 
d± = 1 and 5 = 0„ Then 

£7 - £5 = £x + 0 • 
)6g — Jog ~ X.. ̂  — X/2 = ^0 = 9 

and this one-cycle falls into Class A* 

Vnoofc This results immediately from Corollary 2.1, since £0 = 6 = 0 . 

TkzoKQjm 3*3°° Let Z) = (dn, dn„19 ..., dx) be a decadic one-cycle with dn + 2d-L 
= 10 and 6 = 0 , Then 

£6 - £ 2 = 1 
£i '= G9 i + 2, 3, 6; 

hence, this one-cycle will fall into Class C, 

fJiOO^t If d± - 1, one obtains the following system of inconsistent equa-
tions: 

£8 - 1 
£7 = £]. - 1 
£6 = 1 
£5 = £7 + £2 

£ 4 = 0 

If dx = 2, then 
-3 ~ ^3 "*" ^6 ™ £3 + 1 

£6 - 1 
£5 = £2 

lh = 0 
£3 - £3 
*2 = 1 

which falls into Class C. It can easily be checked that d1 = 3 implies that 
£3 = £3 - 1, so the proof is complete. 

Since Class D consists of all the remaining one-cycles, namely, those with 
d3- = 5 from Theorem 3.1, this completes the classification of all dedadic one-
cycles. 

4, THE VETERMWATION OF KAPREKAR CONSTANTS 

An r-digit Kaprekar constant Is an r-digit, self -producing integer such that 
repeated iterations of T applied to any starting value a will always lead to 
this integer. Utilizing the results of Section 3, one can now show that only 
for r = 3 and v = 4 does such an Integer exist* 

lojnma, 4*1'. For v = In with n >_ 3, there exist at least two distinct one-cycles. 

Vh.00^i If v = 6S then one finds the one cycles 

Dx = (65 35 2) and 

If v = 2n9 n _> 4, then two distinct one-cycles are 
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D \ £6 = £2 = 1; £3 = n - 2; l i = 0, i £ 2, 3, 6 

D2 : £7 = £5 = £x = 1; £9 = n - 3; £,£ = 0, i + 1, 5, 7, 9. 

Lemma. 4 *1°* For r = 2n + 1 with n _> 7, there exist at least two distinct one-
cycles . 

Vh.00^1 If n = 7S then one finds the. one-cycles: 

£>! = (8, 6, 4, 33 39 3, 2) and D2 = (5, 5, 5, 5, 5, 09 0). 

If p = In + 1, n > 8, then two distinct one-cycles are: 

LJ -\ * X/ Q "™" X/ *y """" Xy r* *™ A/ j- "™" X/ 1, ""*" X/ ̂  "™" A.' -1 "™" J_ & A/ Q "*~ At- "™ / « A/ q ",™~ X/ ̂  *"""* \J 

Dz: £8 - £6 = £4 = £2 = I; £3 = n - 4; £9 = £7 = £5 = £1 = £0 = 0. 
Lemma 4,3: If r = 2, 53 79 9, 11, or 13, then there does not exist a Kaprekar 
constant. 

VKOO^I When r = 2S 5, and 7 there are no one-cycles. When r = 9 there are 
two distinct one-cycles: 

£•!_ - (5, 5, 5, 0) and D?_ = (8, 65 4, 2). 

If p = 11 the only one-cycle is ̂  = (8, 6, 4, 3, 2), but there is also a cycle 
of length four, viz., 

(8, 8, 4, 3, 2) -* (8, 63 5, 4, 2) -> (8, 6, 4, 2, 1) -*• (9, 6, 6, 4, 2). 

If r = 13 the only one-cycle Is Z^ = (8, 6, 4, 39 3, 2),.but there is also a cycle 
of length two, viz., 

(8, 7, 3, 3, 2, 1) + (9, 6, 6, 5, 4, 3). 

Tkcotiom 4.1'* The only decadic Kaprekar constants are 495 and 6174. 

?K,00{\** This follows from Lemmas 4.1-4.3. 
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THE DECIMAL EXPANSION OF 1/39 AND RELATED RESULTS 

CALVIN T s LONG 
Washington State University, Pullman, WA 99164 

One of t h e more b i z a r r e and unexpected r e s u l t s conce rn ing the F i b o n a c c i 
sequence i s the f a c t t h a t 

~ = -0112358 
8 9 13 

21 
3 4 (1) 

55 u ; 

89 
144 

233 
00 F- -. 

i - i 1 0 r 

where Fi denotes the i t h Fibonacci number. The r e s u l t fo l lows immediately from 
B i n e t ' s formula, as do the equations 

8 y iTi 10* 

and - -Tfrzr = Y^ r . (4) 
109 £rf (,10)* 

where L^ deno tes t h e i t h Lucas numbers. I t i s i n t e r e s t i n g t h a t a l l t h e s e r e -
s u l t s can be ob t a ined from the fo l lowing unusua l i d e n t i t y , which i s e a s i l y 
proved by mathemat ica l i n d u c t i o n , 

ThdQtim 1: Let as bs os ds and B be i n t e g e r s . Let {yn} be t h e sequence def ined 
by t h e r e c u r r e n c e ]iQ = os \i± = d9 ]in + 2 = &Un + i + ^Un f o r a H n _> 2 . Let ?TZ and 
21/ be i n t e g e r s def ined by the e q u a t i o n s 

B2 = m + Ba + 2? and tf = cm + dB + i c . 

for all n > 0. Also, N = 0 (mod 5). 

?two fa The result is clearly true for n = 09 since it then reduces to the 
equation 

N' = cm + dB + be 

of the hypotheses. Assume that 

fe + i 

i = l 
Then 

Zc + i 

BkN = m E s / c + 1 " ^ i ~ i + s^+i + ^ * 

•£ = 1 

53 
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fc + i 
= mXX+2"^i~i + ( m + Ba + b^k+i + Bh^k 

/< + 2 

= ̂ B ^ 2 ' ^ . ! + B(avk + 1 + bvk) + bvk+1 
i » 1 
k + 2 

This completes the induction. Finally, to see that 217 = 0 (mod 5 ) , we have only 
to note that 

N - cm + dB + be - c(B2 - Ba - b) + dB + 2?c = c?52 - ca5 + dB E 0 (mod 5) . 

Now, it is well known that the terms of the sequence defined in Theorem 1 
are given by 

Thus it follows from (5) that 

JL 
Bm 

n + i y . B\i + 2?y„ co y. . 

ui ^ n + 1 Z*̂  mBn+1
 iml 

(7) 

provided that the remainder term tends to 0 as n tends to infinity, and a suf-
ficient condition for this is that 

a + /aF + kb 
IB 

< 1 and 
a - /a2 + kb 

IB < 1. 

Thus we. have proved the following theorem, 

Tk&Qfi&n li If a9b9 a9ds m9N9 and B a r e i n t e g e r s , w i th m and N a s def ined above 
and i f 

a + / a 2 + 4fc 
25 < 1 and / o 2 + 4Z? 

25 < 1 , 
then 

Bm = E B1 (8) 

Of c o u r s e , e q u a t i o n s ( l ) - ( 4 ) a l l fo l low from (8) by p a r t i c u l a r c h o i c e s of 
a , bs es and d. To o b t a i n ( 2 ) , fo r example, we s e t e ~ 2 s a ~ b = d - l 9 and 
B = 10. I t then fo l lows t h a t 

m = B2 - 5a - b = 100 - 10 - 1 = 89 
tf - cm + dB + bo = 178 + 10 + 2 = 190 

and 19 190 N L i - i 
89 10 • 89 Bm as c l a imed . 

£ = 1 1(P 

To o b t a i n ( 3 ) , we s e t c = 0 5 a = Z? = d = l , and B = - 1 0 . Then 

m = # 2 _ 5 a _ h = ioo + 10 - 1 = 1093 

. N=cm+dB+bc= - 1 0 , 
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Finally, we note that interesting results can be obtained by setting B equal 
to a power of 10. For examples if B = 10ft for some integer h9 c = 0S and a. = 
b = d = 1, 

and (8) reduces to 

m = I0lh - 10* - 1, tf = 10\ 

1 ^ n l - \ 

10 2 / I - 10* - 1 i - i 10 
= E-3i- (9) 

For successive values of h this gives 

w"S%f 
as we already know9 

F • 

9899 At IO21-

000101020305081321. 
(11) 

1 A ^ i - i -E 998999 ^ i l 0 3 i ( 1 2 ) 

= .000001001002003005008013..., 

and so on. In case B = (-10) for successive values of h9 o = 0S and a - b ~ d ~ 
1, we obtain 

lfe = E ^ (13) 

E 5 ^ > (i« 10099 / ^ (-100) 

1 = ŷ  ^-1 QCN 

1000999 ^ i (-1000)** 

and so on. Other fractions corresponding to (2) and (3) above are. 
II 199 1999 
89s 9899s 998999' '-' 

and 
21 201 2001 1099 10099s 1000999s '* * " 



A ROOT PROPERTY OF A PS I-TYPE EQUATION 

FUR 10 ALBERT! 
University of Illinois, Chicago, IL 60680 

1. 1HTR0VUCT10N 

By counting the number of roots between the asymptotes of the graph of 

(1) y = fix) - l/x + I/O + 1) + -.. + I/O + k - 1) 
- II(x + k) - •••• - l/(x + 2k) 

we find that /(#) possesses zeros which are all negative except for one, say 
rs and this positive v has the interesting property that 

[r] - k2, 
where the brackets denote the greatest integer function. 

2. THE POSITIVE WOT 
The existence of v is obtained by direct calculation. 

Tfoeo/ieiT? 1: /(a:) = 0 possesses a pos i t ive root r , and [r] = k2. 

Y m k k-x i k i ^ i i 
(2) /(a;) - 2 ^ x + • - 2L, x + 0 ~ J = 2-, 7F+~ / ) (a? + fc + J) ~ x + Ik' 

Q - 0 J "• ° J ~ 0 

Similarly, we remove the first term from the second summation and combine 
the series parts to get 

O) /(*) = 2^ 7S~T~JT(X~+ & + l"T7T " FTT 9 

Now, if we multiply equation (2) by x + 2&, and equation (3) by -(a? + k) 
and add the two resulting equations, we get, after replacing x by k1 + h9 the 
result 
(4) kf(k2 + h) = Y l • (1 - h ) t f - (h + j)fe - ft (ft + j) ^ 

i = o ^ 2 + H i (fc2 + k + h + j)(k2 + k + h + 1 + j) 
We now see at once that f(k2) > 0 and f(k2 + 1 ) < 0, since k is positive, and 
Theorem 1 is proved. 

3.. THE NUMBER OV ROOTS 

The function f(x) given in (1) is defined for k - 1, 2, 3, ... . 

ThzoJiem 2» /(#) ~ 0 possesses exactly 2k - 1 negative roots and exactly one 
positive root. 

Vn,oo{.' As x ->• 0", /.(#) -> ~°°, and as a: -> ~1+, /(#) -> +°°; therefore, f(x) = 0 
for some x in -1 < a; < 0. Similarly for the other asymptotes, and we get 

(5) -J + 1 < x < -j + 2, Q = 2, 3, 4, ..., k, 

implies the existence of a root in each such interval. 
The branch of the curve between -k and -k + 1 is skipped for the moment. 
Continuing, we find as above that (5) implies roots for 

j - k + 2, k 4- 3, ..., 2k + 1. 

Thus, fix) possesses at least 2k - 1 negative roots, 

56 
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Now we combine the fractions in the expression for f(x) to get 

(6) f(x) = P(x)/[x(x + 1 ) .... (x + 2/0] 

and observe that these negative roots are also zeros of P(x) 9 since the factors 
in the denominator of (6) cannot be zero at these values of x. But the degree 
of P(x) is 2k, Therefore, P(x) possesses one more zero, and this is then the 
r obtained in Section 2. Q.E.D. 

R&na/lki The branch of the curve, skipped in the above argument, then does not 
cut the #-axis at all. 

4, THE PS I FUhlCTIOhl 

The psi functions denoted by V(x) , is defined by some authors [2, p. 241] 
by means of 

(7) A _ 1 ( | ) = Y<*) + C> 

where C is an arbitrary periodic function. This is the analog for defining 
In (a?) in the elementary calculus by means of 

/ •%dx = In (a:) + c. 

We employ (7) to obtain 

f(x) = 2y(x +:fe) - y(x) ~~ y(x + 2k + 1). 

This provides us with an iteration method for the calculation of r, starting 
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RECOGNITION ALGORITHMS FOR FIBONACCI NUMBERS 
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University of Santa Clara, Santa Clara, CA 95053 

A FORTRAN, BASIC, or ALGOL program to generate Fibonacci numbers is not 
unfamiliar to many mathematicians. A Turing machine or a Markov algorithm to 
recognize Fibonacci numbers is, however, considerably more abstruse. 

A Turing machine, an abstract mathematical system which can simulate many 
of the operations of computers, is named after A.M. Turing who first described 
such a machine in [2]„ It consists of three main parts: (1) a finite set of 
states or modes; (2) a tape of infinite length with tape reader; (3) a set of 
instructions or rules* The tape reader can read only one character at a time, 
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and, given the machine state and tape symbol, each instruction gives us infor-
mation consisting of three parts; (1) the character to be written on the tape, 
(2) the direction in which the tape reader is to move; (3) the new state the 
machine is to be in. 

A Turing machine can be described by either a diagram or a table. An ex-
ample of a Turing machine that adds two numbers is shown in Fig. 1. The fig-
ure shows both the table form and the diagram form of this Turing machine. 

Charac te r 

1 

b 

$ 

S t a t e A 

1 R A 

1 R A 

\ $ L B 

B 

t H a l t 

Fig. 1 

Let us now consider the tape shown in (1) 

(1) 1 1 b 1 1 1 # 

two represented by two ones, a blank space represented by b9 a three shown by 
three ones, and the <r which will mean the end of the information. The Turing 
machine shown in Fig. 1, when started in State A at the leftmost character of 
the tape in (1) will produce the following tape which shows a five, the sum 
of two and three. 

(2) ' 1 1 1 1 1 * £ 

The above table is read in the following way. The first row represents 
the states that the machine can be in, and the first column shows the charac-
ters that the machine can read. Let us, for example, look at the entry under 
State A and Character b. That entry, 1 R A9 like every entry, save one, con-
sists of three parts. The first part of the entry, 1, means change the char-
acter that is being read, b in this case, to a 1; the i?, the second part of 
of the entry, means move one space to the right on the tape; and the A9 the 
third part of the entry, says that the machine is to be in State A before 
reading the next character. Thus, if the machine is in State A and sees /f, 
the table says that it changes the <f to V3 moves left one place, and goes into 
State B. 

The above diagram, which is equivalent to the table, can be most easily 
explained by considering only a portion of it. The states of the 

Fig. 2 
machine are shown on the outside of the circles; the direction of the move is 
shown inside the next circle; and the character change is shown along the line 

This tape shows a 
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connecting the circles. Thus, Fig. 2 says that a machine in State A and see-
ing £, changes $ to <f, moves left one place, and goes into State B. 

The Turing machine diagram which appears in Fig, 3 exhibits a machine 
which will halt only when presented with a string of consecutive ones, whose 
length is a Fibonacci number. If the total number of consecutive ones is not 
a Fibonacci number, the machine will loop endlessly. A basic assumption is 
that the string of ones is bounded on each side by at least one zero. 

Halt 

< ( L ) ^ (R) 

© \L (*PI 

V ® T 
0 \* © 

&>' X©^0o,®( 

Fig. 3 

The machine depicted examines the string of ones5 starting at the left 
end 31 and repeatedly builds larger and larger Fibonacci numbers within this 
string= It keeps track of its place, and of previously constructed Fibonacci 
numbers, by slowly changing the ones to a series of dollar signs and cent signs 
as it moves through the string of ones. Each time the machine reaches the 
states labeled B in Fig* 3, the segment of the tape which has been examined 
has been changed to a string of dollar signs with the exception of a cent sign 
in the Fn place (which is the place immediately to the left of the tape digit 
being read while in State B), and a second cent sign in the F . place. 

After the machine finishes constructing a Fibonacci number within the 
string of ones, that is, each time it reaches State B, it checks to see If the 
next digit on the tape is zero or not. If so, the number of ones in the ori-
ginal string is a Fibonacci number and the machine halts. If, however, the 
next digit is a. one, the machine attempts to build the next larger Fibonacci 
number within the string of ones (and, at this point, dollar and cent signs). 
If it encounters a zero on the tape before completing the construction of this 
next Fibonacci number, the machine goes into an endless loop* Thus, it halts 
only when the original number of consecutive ones Is a Fibonacci number. 
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As an example, suppose the initial input string was ...001111111100... . 
By the time the Turing machine reaches State B, the string would be changed to 
.. «00$$£$<flll00... with the first cent sign replacing the third "1" (3 being a 
Fibonacci number) and the second cent sign replacing the fifth f,ll?(5 being the 
next Fibonacci number), and the "tape reader" would be "reading" the first re-
maining "1" in the string9 as indicated. The next time around the major loop 
the string would be changed to .. .00$$$$(r$$ir00.. . (the first cent sign replac-
ing the fifth "1," and the second cent sign replacing the eighth "1" in the 
original string). Since the tape reader now reads a zero, the Turing machine 
moves to the Halt state and stops. 

A Markov algorithm provides an alternate but equivalent approach to hav-
ing a recognition algorithm for Fibonacci numbers. A Markov algorithm, like 
the Turing machine, operates on a string of elements over a given alphabet 
and consists of a sequence of rules which specify operations on the given 
string. Each rule ends with a number indicating the number of the next rule 
to be executed. If that rule is inapplicable, then the next rule in order is 
taken. The algorithm starts with rule number zero and each rule is applied 
to the leftmost occurrence of the element in the string. A rule ending with a 
period indicates a terminating rule, after which the algorithm is completed. 

The Markov algorithm given below operates in a manner similar to the Tur-
ing machine given above. Both the Markov algorithm and the Turing machine 
generate Fibonacci numbers inside the given string of l's and check to see if 
the constructed string and the given string are equal. 

MARKOV ALGORITHM TO RECOGNIZE FIBONACCI NUMBERS 

first 1 converted to a 

first a changed to 39 next available 1 to a 

nothing changed and Markov algorithm stops 

repeated step, afs to deltas 

gamma inserted at beginning of string 

gamma shifted right one through $'s 

delete gamma 

repeated step3 deltas to $fs 

dummy step—if rule 7 is nonapplicable, do nothing 
and skip to rule 3 

change next available 1 to an a 

delete gamma 

change first a back to a 1 

nothing changed and Markov algorithm stops 

repeated step, a's to lfs 

does nothing, endless loop which occurs if original 
string is NOT a Fibonacci number 

Lambda is the null symbol. Thus, rules 2 and 12 say "do nothing and stop." 
Rule 4 says to insert a gamma at the beginning of the string, and rule 6 says 
to delete the first gamma. 

This Markov algorithm works as follows: it converts a given string of 
l?s into a string of 3?s and afs that represent F?: and Fi + 1 within the string 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
12 

13 

14 

1 
a] 

A 

a 

A 

-> a, 1 

. -*• 3a, 3 

- > • 

-> 

-> 

A. 

5, 3 

Y, 5 

Y3 •>• By, 9 

Y 
6 

A 

1 

Y 
a 
A 
a 

1 

-> 

-> 

-> 

- » • 

- » • 

- > • 

-> 

-> 

-> 

A, 7 

3, 7 

A, 3 

a, 5 

A, 11 

1, 13 

A. 

1, 13 

1, 14 
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of l's. At the end of a loop, the afs are changed to deltas and more lfs are 
changed into afs to correspond to the number of $fs which begin the string,, 
The deltas are then changed to (3!s. Thus, after one loop, the number of a's 
has changed from Fi to f i + 1 , and the number of (B?s has changed from Fi + 1 to 

If there are no more lfs to be changed at the end of a loop, the Markov algo-
rithm stops at rule 12, indicating that the original string of lfs was a Fibo-
nacci number. If, however, the string was not a Fibonacci number, the Markov 
algorithm jumps out of the loop in midstream of changing l's to afs and goes 
into an endless loop at rule 14 after changing the a?s back to l?s. 
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ON SOME CONJECTURES.OF GOULD ON THE PARITIES 
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In studying the parities of the binomial coefficients, Gould [ 1] noted sev-
eral interesting relationships about the signs of the sequence of numbers 

< - n ( 8 ) , ( - D ( ? ) , . . . . ( - i ) ( 5 ) . 
Further interesting relationships may be discovered by converting each such 
sequence to a binary number, f(29 n), by 

& = o z 

and then comparing the numbers of the sequence f(2s 0 ) , f{29 1 ) , jf(2, 2) , . .. . 
The following conjectures were then proposed by Gould« 

ConjeatoAe 1: f(2s 2m - 1) - 22m - l. 

ConjucLtuAd 2: f(29 2 ) = 22m + 1. 

Conj'tctuAd 3; f(x9 In + 1) - (x + l)f(x9 In). 

We will prove these conjectures and present some related results. 
The following lemma provides a convenient recursive scheme for generating 

the sequence of numbers f(x9 0), f(x9 1) , .. . . We use the notation (.)* to 
denote the representation of a number to the base x. 
Lemma 7: The sequence f(x9 n) may be defined by f(x9 0) = 1, and if 

f{x, n - 1) = (an-1, ..., a0)x 

for n > 0, then 
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n - 1 
fix, n) = xn + 1 + E ^ l a * - afe„J . (2) 

fc = i 
VK.OO^I It follows directly from (1) that. 

/(#, n) - xn + 1 + Vx*-—-A^L__e 
fc-i 

By the well-known recursion for binomial coefficients, 

« ) - ( V ) •(;;:!)• 
so that 

/ n- 1\ / n- 1\ 

(_ 1}(2) = (+i if ( - D ( fc -' = c - i ) ^ - ^ 
| -1 otherwise. 

.Therefore, 
1 _ (~i) ^k^ 

—j-—~"~ = 1^^ - &k-i\ f o r n - 1 >_ k >_ 1. 

2m~ 1 
Tfeeo/iem 7: / (# , 2m - 1) = ]T #*. 

fe-0 
VKOa fa The theorem is clearly satisfied for m = 1. Assume that 

2 m - 1 

fix, 2m - 1) = E #*• = (a2m_l9 . .., aQ) x, 

where ak = 1 fo r 2m - 1 >. £c > 0 . By Lemma 1, 

fix, 2m) = x2mf(x9 0) + fix, 0 ) , 
We may apply (2) to both parts of f i x , 2m) independently for 2m - 1 times, and 
then add the results to obtain 

f{x3 2m + 2m - I) = x2mf(x9 2m - 1) + / ( # , 2OT - 1). 
By the induction hypothesis, 

2—1 im ~ 1 2 ( m + 1 ) - i 2m~ x 2 ( m +_1} - i 
X fc fix, 2m+i ~ i) = xim E xk + E **= E xk + E xk "-"• E 

k = Q & = 0 fc = 2 m • fe = 0 £ = 0 

CoKoWviy 1 (Conj&ctuAd I) : f(2s 2m - 1) = 22m - l . 
CoKoUxUiy 2: /(a;, 2m) - a?2" + 1. 

VKOOfa Apply (2) to the r e su l t of Theorem 1. 
COKQZZQJUJ 3 (COVLJ<LCAUA<L 2 ) ; / ( 2 , 2m) '= 22M + 1. 

Let Lin) denote 2^~°82^3 where \jj\ denotes the integer par t of y. Examin-
ing each number f(x9 ri) as a number to the base x, the following s t r ik ing sym-
metry may be noticed: the sequence of the l eas t s igni f icant Lin) d i g i t s of 
fix, n ) , i s equal to the sequence of the next most s igni f icant L(n) d i g i t s of 
f(x9 n) 5which i s also equal to the sequence of the l ea s t most s igni f icant L(n) 
d i g i t s of f(x9 n-L(n)). The following lemma, which i s based on t h i s symmetry 
provides another recursive scheme for generating the sequence fix, 0 ) , fix, 1) , 

Lemma li For n > 0, fix, n) mod(xL(w>) fix, n) fix, n - Lin)) . 
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Vtiooj- We distinguish between the two cases of whether or not there exists 
an integer m such that n = 2m. If n = 2m for some integer m, then from Corol-
lary 2 it follows that fix, ri) = xn + 1 and 

fix, ri) mod Orn) = 1 = fix, n) 
. xn . 

Furthermore, since Lin) = n, it follows that fix, n - Lin)) = fix9 0) = 1, and 
the lemma is established for this case. 

For the case n ^ Lin), it follows from Corollary 2 that 

fix, Lin)) = xtMfix, 0) + fix, 0) . 

Applying (2) to fix, Lin)) for n - Lin) times9wemay treat the two parts inde-
pendently and 

fix, ri) = xL(<n^fix, n - Lin)) + fix, n - Lin)). 
Consequently, 

fix, ri) modOKL<w>) fix, ri) 
L xL ( n ) 

= fix, n - Lin)), 

We are now in a position to prove Conjecture 3. 

TkzotiQjn 1 [Conje.ctuA& 3): fix, In + 1) = (x + I) fix, 2n). 
VK.OO^I Since x + 1 = (1, 1)^, the theorem will follow from elementary rules 

of multiplication in the base x if we can prove that when fix, 2ri) is expressed 
in the base x, no pair of consecutive digits are l?s. We will prove this prop-
erty by induction. This is certainly true for fix, 0) = (!)#. For arbitrary 
n > 0, let 

fix, In) = ia2L(2n)_l5 .... a0)x. 
By Lemma 2s each half of this number is equal to fix, 2n - L(2n)) which, by the 
induction hypothesis, does not have two consecutive l?s when expressed in the 
base x. It remains to be shown that aT/n s , = 0 . But, by Lemma 2, 

L(2n)-1 J 

aL(2n)-l = a2L(2n)-l9 

and <22L(2n)-i cannot be equal to 1 because fix, 2ri) < x2L^2n^ ~1. 
We conclude with a final observation on the sequence of numbers fix, ri) . 

Examining the 2m x 2m binary matrix in which the entry a^ is the jth digit of 
fix, i - 1), we note that the matrix is symmetric about its major diagonal. 
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SOLUTIONS FOR GENERAL RECURRENCE RELATIONS 
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1. STATEMENT 0¥ THE PROBLEM 

In a recent article [1], the author obtained representations for the solu-
tions of certain r9s. recurrence relations. In this paper we shall give repre-
sentations for the solutions of general recurrence relations. In Section 4 we 
shall show that the results in[l] are a special case of the results of Sections 
2 and 3 of this paper. 

We first of all characterize all decompositions of an integer n9 restricted 
to the first m positive integers. We define a multinomial from this that sat-
isfies an mth-order recurrence relation with special initial conditions. Next 
the set of m positive integers is restricted to a subset A containing m9 and 
a second multinomial that satisfies a recurrence relation with special initial 
conditions is defined. 

In Section 3, we obtain solutions for comparable recurrence relations with 
general initial conditions. The final result gives us a solution for the gen-
eral recurrence relations 

Hp = raiHp_ai + •-• +ratHp_at; HQ , ..., E^at arbitrary. 

2, BASIC m£h-0RVER RECURRENCE RELATIONS 

One of the classic concepts in the theory of numbers is that of partitions 
of the positive integers. One of the subcases considered is for the component 
integers to be the set of integers from 1 torn, In this case we denote the set 
of all partitions of n as P(n;m). The number of elements in this set is Pm (n) . 
A given partition can be characterized by a set of integers k{. That is, 

n = 1/C-L + ... + mkm. 

The integers k^ are referred to as the frequency of £ in the given partitions. 
We refer to this given partition as p(k9n; m) . 

For a given p(k9n; m) 9 we can represent n as a sum of integers from 1 to m 
i n (k.L + ••• +km)l 

k\ ... km\ 

ways. Each such representation is called a "decomposition of n" (some authors 
call them "compositions"). We denote this expression as dm(k,n). It is the 
number of decompositions of the partition p(k, n; m) . 

This expression has a property that we shall find useful: 

(kx + ••• + k„)\ (fcj. + ••• + km - 1)! m 

kx\ . . . km\ kx\ . . . km\ Bml 

2-. J, i 
{k±+ ... +k„- l)\ 

k±< ... (ks - 1)1 ... km\ (2.1) 

Symbolically we have 

dm(k9n) = 2^dw(/c(s), n - s), 

64 
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where dm(k(s) 9 n - s) = 0 if ks = 0, Otherwise., it is the number of decomposi-
tions for the partition of n - s where all the k^ are the same as for the k 
partition of n except that ks is reduced byl. 

We use this number of decompositions to define a multinomial, We then show 
that it is the solution for a special recurrence relatione Let 

Un = E dm^, nKl ••• *„*-, 
Pimm) 

that is9 we sum over all partitions of n9 a multinomial in P p . .., rm whose 
coefficients are the number of decompositions of the given partition. We can 
now prove our first theorem. 

Tho^oKQjn 2.1: The multinomial Un satisfies the recurrence relation 

- 0, - u, 

By a p p l y i n g p r o p e r t y (1) t o t h e d e f i n i t i o n of Un9 we have 

Un = ^ dm{k, n ) r « 
P(n;m) 

K 

P ( n ; m ) 8 - 1 

8 « 1 P ( n ~ . 0 ; m) 

m 

Or*' fc@-l » ^ m 

We have used the fact that decreasing the frequency of s by 1 gives the re-
stricted partitions of n - s. If s has a frequency of 0 for a given partition, 
then the corresponding term in the summation on s is 0* 

For n < m$ the frequencies for the integers n + 1 to m would all be zero, 
Hence the summation can be terminated at n, However, if we choose U„x = . . • = 
U, = 0S then we do not need any restriction. This gives m - 1 initial condi-
tions. For the mth ones we shall choose U0 = 1. This is logical9 since all 
factorials are 0! and all exponents of the ri are 0. This would give a value 
of 1. Hence the Un does satisfy the prescribed recurrence relation. 

What we have just proved for the case of the restricted partitions of n can 
be specialized for a proper subset A = {a1, . .., a^} of the integers from 1 to 
m9 For convenience., we assume m is in A. The set of all partitions of n re-
stricted to the set A we label P(n; A). The number of elements in this set is 
PA (n) . A given partition can be characterized by a set of frequencies k^s so 
that 

n - axkai + -•• + adkar 

We refer to this given partition as p(k9n; a). 
For each such partition, we can represent n as a sum of integers in A in 

(,?>): 

ways. We denote this number as dA(k9ri)9 that is*, there are this many decompo-
sitions of the given partition, restricted to 1 We can define the following 
multinomial 
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Vn = £ dA{k, n)Il*V**-
P(n;j4) c?e^ 

We then have the following theorem. 

TkwtiQjn 2.2: The multinomial Fn satisfies the recurrence relation 

V* = 2 > , 7 t _ e ; V0 = 1, F., = ... = Vl.m- 0. 
s eA 

This theorem is a special, case of Theorem 2.1. First of all, the restric-
tion to the set A means that the frequencies k^ = 0 if £ e A. This means that 
for each partition of n there is no s corresponding to each such £ in the solu-
tion. Hence s is summed only on A, Furthermore, since the corresponding ri is 
always to the zero power, we drop these v^ in the multinomial. The number of 
initial conditions is dependent only on the largest integer in As which is as-
sumed to be m. 

3. GENERAL RECURRENCE RELATIONS 

Using the results of the last section, we can obtain solutions for recur-
rence relations with arbitrary initial conditions. We shall consider two cases 
that are comparable to those in the last section. Our solutions will involve 
the Un and Vn , respectively. 

Th<LOtiQjr\ 3. 7: The solution for the recurrence relation 

m 
Gt a E r « ( ? * - « ; Go> '••» Gi-m arbitrary, (3.1) 

is given by 
m m 

Gn = E HWn-iGj-,,- (3-2) 
3 - 1 q - 3 

For n = 1 in (3.2) the Z/n_j- = U<£-.j is zero except for j = 1. In this case 
UQ = 1. The double summation reduces to 

^ ' E ^ W 
which is (3.1) for t = 1 and q ~ 2„ 

For n = 2 in (3.2) the tf2-j = °  f o r J > 2» W e t h e n n a v e 

q=l q=2 

From the previous section, we have that UQ = 1 and £/ = P 1 . Also, by (3.1) 
the first sum is G1. Hence we have 

m m 
G2 = ̂ 1 + E P ^ 2 - ^ = HrqG2-q> 

q=2 q-1 

which is (3.1) for t = 2 and s = q. 
We assume that (3.2) is a valid solution for n - 1, . . . , £ - 1. For t ~ i 

in (3.1), 

£; = I>a^-a-

We have assumed solutions for all the Gi_s in this summation. Hence on substi-
tution into this expression, we obtain 
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P s 2*i 2LfrqUi-8-jGj-q 

m m / m \ 

J = l <?«,/ \ 8 - l / 
m m 

Z ^ 2«tf ^ ^ - J ^V ™ q * 

At the last step we use the fact that Un satisfies a recurrence relation. This 
final result is (3,2) for n ~ i. 

We are now ready to present the solution to a general recurrence relation. 
We assume that set A has the properties of the last section. 

Th&Q/iQJfi 392°* The s o l u t i o n fo r t h e r e c u r r e n c e r e l a t i o n 

Ht = YLroEt'8l HQ* •••» # i - m a r b i t r a r y , ( 3 .3 ) 
s zA 

i s given by 

qeA j=i 

This theorem follows from Theorem 3«IS just as Theorem 2„2 followed from 
Theorem 2.1, For conveniences we have interchanged the order of summations in 
the solution so that it is easier to adapt to the restriction on q. 

4. SOME SPECIAL CASES 

In this section we shall consider some special cases of the results of Sec-
tions 2 and 3. They are for both the Un and Gn relations for m = 2. 

The restricted partitions of n for m = 2 would be. of the form n = k1 + 2k2* 
The summation over all such partitions can be represented by a summation on 
j when j = k2. Then k^ = n - 2j, and the summation is from 0 to [n/2]. The num-
ber of decompositions for a given partition would be given by 

d (k n) = (Ji^JLlJH = (n - a\ 
dz{k> n) (n - 2j)!j! V 3 r 

The solution for Un in this case is 

' 2 ' 

For the more general Gn relation we have 

j = i q~3 

= ( ^ n - i + r 2 « /„ . 2 )G 0 + r 2 t f » - i G - i - UnG0 + r ^ n - i ^ - i ' 

S u b s t i t u t i n g in t he s o l u t i o n for Un and Un^j5 

We change the second index of summation by replacing j + 1 by j 9 as follows:. 
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^ - E (n} jyrj^0 +
{±\n.: jyr1-2^-!-

J - 0 j ' - i 

The author gave representations for some special recurrence relations in a 
previous paper [1], We shall now show that these were particular cases of the 
Un and Gn relations for m. = 2. 

The first relation presented was a generalized Fibonacci sequence, 

Gk - r G ^ +sGk„z; GQ = 0, G± = 1, 

which has the solution 

1 K -

j-o x J f 

We observe that both our indexing and the constants of the relations are dif-
ferent, To reconcile them, we replace n by k - 1, v1 by rs and P 2 by s in the 
Un solution. This gives us the desired result, 

As a special case, when r = s = 1 we have the Fibonacci sequence. The gen-
eral term would be given by , , 

h - E (*" •" J')> 
J-0 

which is the number of decompositions of k - 1 restricted to 1 and 2. 
Another sequence presented in[l] is the generalized Lucas sequence Mk9 for 

which 
Mk = ritffc-3. + sMfc.2; W0 = 2, tfx = r. 

To obtain the solution we specialize the Gn for m = 2. We replace n by k - 1, 
i^ by P, P 2 by s', £0 by r, and G-:L by 2. We have 

We. observe that the powers of r and s in both sums are the same. Hence we 
combine them into a single sum. It can be verified that this yields 

[ f ] 
«. - i Th(k; J>-"« k-2j aj 

which is the solution given in [1]. 
The third relation discussed in [1] is 

Uk = rUk_2. + sUk-2> ^i» ô arbitrary. 
We can identify this with our <2n relation if we let n - k - 1, r1 .= i5, r2 

s, £0
 = U13 and c^ = £/0. This gives 

tH1]., . .. Hi 
^ E (k-y 3y-^s% + E (k - i_-x sy-*e%. 

Applying some algebra to combine the two sum yields the following solution: 
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J - 0 X J / 

_ . (k - 2j)U1 + jrUQ 
r k ~ l - 2 j s j ^ 

This can also be verified directly. 
In a future paper we shall show that there are generating functions for the 

four recurrence relations given in this paper. These can also be used for the 
special cases of this section. We can use them to generate with a computer as 
many terms in a given recurrence relation as desired. 
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nacci Quarterly 18 (1980) :129-135 . 

ON GENERATING FUNCTIONS AND DOUBLE SERIES EXPANSIONS 
M. E. COHEN and H. S. SUN 

California State Universityf Fresno, CA 93740 

1. IHTROVUCTIOH 
Recently, Weiss et at. [9] gave a direct proof of a result due to Narayana 

[8] and Kreweras [6]: 

E E 
(p+ s - l\(r + s - I 

r + s - 1 -urvs= \[l-u- V- (1- 2(u+V) + (U-V)2)1'2] ( 1 - 1 ) 
P=l 8=1 

A special case of Theorem la of this paper is a five-parameter generalization 
of (1.1): 

E n ukvp (a + gk + k + hp\/$ + gek + hep + p\ 

,. n ~„ (a + 1 + gk + hp) \ k A p / k=o p=o 

= (1 + g)a+1(i + y) 
(a + 1) 

3 + 1 

- F 
2 1 

1, 1 + f 

.(a + 1 + h)/h 

P 
e - ac 9 

(1.2) 

where 
y 

(1 + s)?+1(l + yY (l + s)ha +y) hc + 1 

See Luke [7, Sec. 6.10] for a discussion of Pade approximation for the hyper-
geometric function on the right-hand side of (1.2). Letting 

•I, c = 1, a -2, and g = -2 g = »i, Ti 

in (1.2) and some manipulation will give (1.1). 
Equation (1.2) also appears to be an extension of the important equation 

(6.1) of Gould [5], to which it reduces for z = 0. 
An interesting simplification of (1.2) is the case. 3 = ®*c + c - 1, giving: 

V* Y* ukvP (a + 0* + k + hp\/ac + c - 1 + gck + hep + p\ 
1^ 2-rn (a + 1 + gk + hp) \ k A p ) fc = 0 P = 0 

(1 + g)a + 1(l + .V)C 
(1 + a) (1-3) 
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The importance of these types of expansions is the connection with Jacobi poly-
nomials. Now, Carlitz [1] gave the important generating function 

T,TrT^P"a''1)(x}rn = 2ad - r + R)'\ ( 1 .4 ) 
w = 0 

7-n9 n + a + 3 + 1, 
where 

R = (1 - 2xv + v2)112 and Pn
(a>6) (*) = ( a + U\1F1 

1 - x 
a + 1 j 

A special case of Theorem la in this paper gives 

ME=n(a + T + l+an + bn + n)"n K J K } 

1, {(l + a)(l + x) - ob}/(l + a + b)9 

M - 0 

qrTTiya - *>a+T+1a -2 / rV i (a + x + 1) 
>(a+T + a + i + 2 ) / ( a + fc+l), 

Na + b + 1 

where z/ and s a r e de f ined by 

(1 - w)/2 = 3(1 - z / ) / [ i / ( l - s ) ] , 

and | g | < 1, \y\ < 1, | s | < 1. 

By letting a = b = 0 and a = -1, (1.5) reduces to (1.4). See [3] for another 
generalization of (1.4), and some discussion regarding its importance. 

A special case of interest occurs for x = (ob - a - 1)/(1 + a ) , giving: 

(a + T + 1 + an + 2?n + n) 
.pn<cr+an,T + 2 m ) ( w ) 

(1 - g ) g + T + 1 ( l - ^ / ) - g 

a + T + 1 (1 .6 ) 

Equation (1.5) is also a three-parameter extension of another equation of Car-
litz [1, Eq. 8]. Letting a - 0 in (1.5) gives equation (1) of Cohen [4], 

A special case of Theorem lb of this paper yields the expression: 

E V* ukvP (a + 3^ + k + ^P\( 3 + Q°k + ̂ P + P\ 
,._« ™"1 (3 + 1 + #C/C + ^ p ) \ fc A P / /c-0 p = 0 

where 

(1 + 3)a+1(l + z/)B+1 

(B + 1) 2*1 

1 + ac 

+ 1 + go 
go 

-, y = 

,. 1, 

2/ 

(1.7) 

(1 + Z)k{l + 2/)^c + 1 (1 + g)^ + 1(l + 2/)^ 

The analogous expression for the Jacobi polynomial takes the form 

j(o -¥an, T + i n ) 

n = 0 a + an + n) n (w) (1 .8 ) 

a - i ( l _ a ) ^ " + i ( i - z / ) - V i 
"1, (1 + T ) ( 1 + a) - aZ?/(l + a ) , 

_(a + a + l ) / a , 

L e t t i n g T = - 1 , a = £> = 0 , the C a r l i t z formula given by our equa t ion (1 .4 ) 
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presents itself. Also9 letting b = 0 in (1.8). gives essentially a main result 
in [2s Eq. (1.1)]. [The variables y and z are defined in (1.5).] 

The statement and proof of Theorem 1 follow in the next section. 

2. STATEMENT AND PROOF Of THEOREM 1 

Tk&QfiQjn 1: For as bs cs as and 3 complex numbers and £s £f
9 and j nonnegative 

integers: 

£ E 
rkrP/a + ak + k + bp\($ + ack + bap + p \ 
^A k ) \ y ) 

= ( 1 - s ) a + i l + 1 ( l - z / ) B + 1 x 

£f £ + j r 

L, Z^ (a + j > + a?c+ £ + 1) \ r / \ k ) 2 1 
r = 0 £ = 0 

fa 

"1, 1 - e - c - c~ • jcr, 

.(a + 1 + jr + ak + b + £) lb s 

( 2 . 1 ) 

Z^ Z»̂  

rkcp(oi + ak ~h k + bp\($ + aefc + 2?cp + p \ 
g ] > 2 \ fe A P j 

_ — / n , 7 , , , . , n / ( B + 1 + J I + ack + tep + j £ f ) / j \ 
k = o p = o ( 3 + ack + &c?p + £ + 1) I , f ^ d d J 

= (1 „ yf^^(l - S)« + 1 x 

£' £ + jV 

Zw Z^ (R + £ + l + f7> + £cp) \ v I\ v 12 1 
r =0 p = 0 

where 

' 1 , ( c - 3 - l + ac- jr- l)/c, 

_(£+ 3 + 1 + jr+bcp)/(ac), 

(°) ,_ , —rr-, and zy and z a r e def ined through 
n\T(a - n + 1) J 

( 2 . 2 ) 

5i 
- s -3L "» ?2 = T 

( 1 - z)b(l - y)ba^ (1 - z)a + 1(l ~ y)° 

\y\ < l9 | s | < 1, | g 1 | < 1, and | £2 | < 1. 

CofioiZaJiy 1a: Reduct ion of Theorem l a for t he J a c o b i polynomial g i v e s : 
00 r n -

\ ^ s» p (a + an, T + bn) / 

n = o(a + i + 1 + £ + an + &n + n) (• a + x + 1 + £ + an + M + n + j 
J 

}(w) 

^ ^ ( - ^ ( l - ;3)A + J ' - * + ° + T + l ( 1 - 2 / ) - cr ( - iL ' ) r ( -A "~ .7*0* 
= ^ o ^ o ~ ~ ~ ^Sp!£TT(£ + jr + (1 + a T l ? ) / c + a "+ T + 1) X 

1, 
(1 + a) (1 + £ + T + jr) - ob 

I + a + b 

£ + j > + ( l + a + fc)fo + a + T + a + f c + 2 
(2.3) 

\y\ < 1. N| < l5and |5| < 19 where (a + l)n/w! = (a + nY and z/ and s are de-
fined in (1.5). V n I 
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CofiolZaAy 1b: Reduction of Theorem lb for the.Jacobi polynomial gives: 

V ^ ^ -njo + an, x+ bn) 

n-o (Q + n ( l + a) - l)\— \ ~ ^ j £ , 

(1 - g) c + T + 1 

(w) 

J 

£ ' ! 
L a - 2 / ) " ° + £ E E 

P = 0 p = 0 p ! p ! ( a + p ( l + a) - £ - j r ) 

2 * 1 

i (1 •+ a) (1 + T + & + j> ) - M a - £ - J P ) 
i s (1 + a) 

a + (1 + a:)p - £ - j > + a + 1 
(1 + a) 

where z/ and s a r e def ined in ( 1 . 5 ) , 

Vtiooj 0^ ThdOh.QJ(n 1a: Now c o n s i d e r the e x p r e s s i o n 

(2,4) 

Y Y—^-lx^a-^0'0)1' &n[xao + na~tDm{a-xao)n(l-xba)nz®+m}]dF (2 .5 ) 
n « 0 m « 0 «̂ 0 

where F E x c
9 D = — , 6 = ^ j 

71 "771 ' 
n * 0 m*G **«Q 

* Dm[(l~- xaa)n {I- xhG)mx®-¥m]dF ( 2 . 6 ) a e - IS -, m 

where (a)m = T(a + m)/r(a), quotient of gamma functions. Equation (2.6) is 
deduced from (2.5) by expanding (1 - x°J)gf and integrating the resulting equa-
tion by parts n times. Equation (2.6) mays in turn, by"reduced to 

znym^ (~£f)p (-£ - J » n i-n)k (-w)p (0 + 1 +. ack + bcp)m 

JLJ n\m\ LJ 
n™0 m^O r=0 

rlklpl (£ + 1 + jr + a + ak + 2?p) (2.7) 

The evaluation is achieved through a further integration by parts m times, ex-
pansions of (1 - xao)n and (1 - xha)m, and subsequent integration. By applying 
the double series transform to (2.7), one obtains 

* ; - • - « ( - s ) f e ( - 2 / ) P ^ z / m ( - £ 0 r ( - £ - 3*+ k)n{~l- ar)k (g + l + p + bcp + ack)n 

iL?:3 zL* JLJ JL** Z~* 
r=>0 rc « Q m = 0 & = 0 p = 0 

nlmlklplrl (£ + a + 1 + j r + ak + bp) 

V * + j r » ( ~ s ) k ( - z / ) p ( - £ ' ) 2 , ( - £ - j r ) k r ( g + l + p + bep + ack)(l- z)l + ^-k 

E E E ™—• — — — — — — — — — 
p-o fe«op-op!/c!p!r(3+l + ack+bcp) (£ + a + 1 + jr+ ak + bp) (1 - y) 

(2 .8 ) 

fi+l + p-ffecp + a<?fe 

(2.9) 

We now return to our original expression (2.5) and proceed with its evalu-
ation through a modified approach. Consider the operator and its expansion: 

6n[xac-¥nc-^Dm{(l - xac)n(l - xbo)nxt+m}] 

m n (-n) (-m) T(& + m + 1 + ack + bap)T(a 4- w + 1 + a?c + bp) 

k\plT($ + 1 + acfe + bop)T(a + 1 + ak + fcp)- (2.10) 
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With the aid of (2.10), (2.5) may be reduced to give: 

- - znym P * i-n)k (-m)pT(g> + m + 1 + ack + bcp)T(a + n + 1 + ak + bp) 

n=o i^onlml'i^ok^o ^ipir(e + r + ac?c~+ fep)r(a^nrir^FTTpy ~~~ 

x . £f!T[(a + afe + Ẑp + £ + l)/j] 
(j)T[(a -f afc + bp + £ + 1 + j£' + J)/J] * U-i-U 

Using the double series transformation and reducing the subsequent series over 
n and m gives: 

V y^ (-a)*(-*/)Pr(g + l + ack + bcp + p)T(a + 1 + ak+k + bp)T[(a-¥ ak + bp + £+ l)/j]£M 

^ofe = o k ! p ! ( l - < 0 a + 1*ak + k + i p ( l ^ ^ 

0')T[(a + a£c + bp + £ + 1 + j£' + j)/j] (2.12) 

Now equating the expressions (2.9) and (2.12) together with some simple trans-
formations yields the required Theorem la. 

VKOOI °i TkzoJigm 1b: The procedure adopted is similar to that for Theorem 
la. The modified integral is 

0 0 °° n m /*•"• 

X .YJTLMX I Xi + &+1-ao-°a - XJ)V Sn[xao*na-®Dm{(l -XaG)n(l - xbo)mx^m}]dF^ 
n = 0 m = 0 " JQ 

where the previous definitions are in effect. The details of the proof follow 
the proof of Theorem la to give expression (2.2)„ 
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AN EQUIVALENT FORM OF BENFORD'S LAW 

JAMES V. PETERS 
C. W. Post Center of L.I, University, Greenvale, NY 11548 

Benfordfs law s t a t e s that the probabi l i ty of a pos i t ive integer having 1st 
d ig i t d i s given by 

Pr(j = d) = l o g 1 0 ( l + lid). (1) 
In terms of the cumulative probability distribution, (1) is restated as 

Pr(j < d) = log10d. 

This result was first noted by Benford [1] in 1938 and has since been extended 
to counting bases other than 10 as well as to certain subsets, called Benford 
sequences, of the positive integers. Geometric progressions or, more generally, 
integer solutions of finite difference equations are examples of Benford se-
quences that have received considerable attention in the literature, e.g. , [2]. 
This interest is due, in part, to the fact that the Fibonacci and Lucas numbers 
are obtained as solutions of the finite difference equation 

Xn+2 ~ Xn+1 + Xn• 

We refer the reader to [3] for an extensive bibliography concerning this and 
other aspects of the Ist-digit problem. 

Since the consideration of varying counting bases will be of concern to us 
here, we introduce the following notation. We write P?(j < d)b for the proba-
bility of j < d when numbers are represented as digits in base b _> 2. In this 
notation, Benford!s law states that 

Pr(j < d)b = ±ogbd, for d < b. (2) 

The purpose of this paper is to establish that, for the set of positive inte-
gers, (2) Is equivalent to the following "monotonicity statement": 

If b ± b \ then Pr(j < d)b _> Pr(j < d)b, . 

While this statement still makes sense for b < d <_ b \ we confine our attention 
to d <_ b» In so doing, it follows immediately that the monotonicity statement 
is implied by Benford*s law as given in (2). 

To reverse the above implication for the positive integers, we need two 
lemmas. Both of these results could be established via the functional equation 

Pr(j < a) + Pr(j < o) = Pr(j < ao), 

which is valid whenever the positive integers a and o as well as their product 
divide b. Instead of this approach, we present arguments based on a counting 
machine that randomly generates numbers in varying counting bases. The idea is 
as follows. It is clear that in binary (b = 2) the 1st digit must be 1. Con-
sequently, if we represent numbers in oct 1 (b = 8) where each digit is denoted 
by a string of three binary symbols, then the 1st digit is determined by simply 
ascertaining the length of the binary representation modulo 3. Since the pos-
sible lengths (mod 3) of the binary representation of a randomly chosen number 
are equally likely, we obtain some probabilities. More generally, we have the 
following. 

L&nma 1: Let msn _> 0, a > 2 denote integers. If randomly chosen positive in-
tegers are represented in base b = an, then 

Pr(j < am) = m/ns m <_n. (3) 

7k 
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VKQQfa We denote by b1bz ... bk the random number as represented in base 
b. Thus, 0 <_ bt < b for i = 1, 2, . . . , /c and b1 + 0. Rewrite each £^ as a1{ 

a2^ ... ani$ where the a^!s represent digits in base a. This yields a string 
of nA: digits each of which is less than a. Removing the 0 digits occurring at 
the beginning of this, we obtain the base a representation of the random num-
ber . Suppose this base a representation contains x digits. We solve the con-
gruence relation x = y (mod n) where 0 <_ 2/ < n. If y = 0, the 1st digit j (in 
base b) satisfies a71"1 <_ j < an = b. For any other value of y9 the 1st digit 
satisfies ay~x <_ j < ay. Since each value of y is equally likely, we obtain 

PvW1 <_ j < ay) = Pv{an~x < j < an) = l/n. (4) 

Equation (3) follows immediately from (4). This completes the proof* 
By a simple variation of the combinatoric argument used in the proof of 

Lemma 1, we next obtain a result that permits the comparison of the distribu-
tion of the 1st digit with respect to two different bases. 

Lemma. 2: Using the notation introduced above, we have 

Pr(j < d)b = mPr(j < d)b„ • 

VK.00fi t A random number represented by k digits in base bm is rewritten as 
a string of km digits in base b. As in Lemma 1, we delete all consecutive ze-
ros from the left-hand side of the km digits. This yields a base b representa-
tion of the number. For j < d9 in base b9 there are m equally likely possible 
values for the position of j in the base bm representation. Since the position 
of j is independent of its value, we conclude that the probability of j < d in 
base bm is l/rn times the corresponding probability in base b. This is equiva-
lent to the statement of Lemma 2 and completes the proof, 

To deduce Benfordfs law from the lemmas, we proceed as follows. According 
to Lemma 2, 

Pr(j < d)b = mPr(j < d)bm . (5) 

The monotonicity statement and Lemma 1 yield the inequality 

\ = PrU < d)d„ > PrU < d)b. > PrU < d ) ^ t l = ^ ^ (6) 

whenever 
dn<bm<dn+1. (7) 

By the euclidean algorithm, (7) is always satisfied by some n >_ 0 for any given 
values of b > d > 1 and m > 0, Combining (5) and (6), we obtain 

m III — , . -7N III 

— > Pr(j < d). > - — r - o 
n ~ b — n + 1 

Now let m->°°  and choose n so as to maintain the validity of (7). Taking loga-
rithms in (7), this implies that 

—-—- < log,, a < —. n + 1 — ^b — n 

To show t h a t rn/n-> logbd a s /77->°°9 we simply n o t e t h a t 

__ _ ____̂  = __( — \ < __ i o g , d - * 0 . 
n n + \ n\n + 1/ ~ n ^b 

This establishes (2). 
The proofs presented here rely heavily upon properties of the set of posi-

tive integers which are not shared by other Benford sequences. As such, it is 
worth commenting on the more general situation. By definition, any Benford se-
quence satisfies (2) and, as noted above, this implies the monotonicity state-
ment. The lemmas are also valid although the proofs given above are not. To 
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give a more interesting example, consider the geometric progression {ak} which 
constitutes a Benford sequence in base b if and only if a ^ bvlq (p, q integers). 
Setting a - 3 and br = 9, we obtain a subset of the positive integers which is 
not a Benford sequence. Moreover, Pr(j < 4)9 = 1 for the geometric progression 
{3^}. Since {3k} is a Benford sequence in base b = 8, we may apply Lemma 1 with 
a = 2,77Z = 2, n = 3to yield Pr{j < 4)8 = 2/3. A comparison of the above prob-
abilities for b = 8 and bf = 9 shows that the monotonicity statement is false 
for this example. 
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A NEW TYPE MAGIC LATIN 3-CUBE OF ORDER TEN 

JOSEPH ARKSN 
197 Old Nyack Turnpike, Spring Valley, NY 10977 

K. SINGH 
University of New Brunswick, Fredericton, N*B. E3B 5A3, Canada 

A Latin 3-cube of order n is an n x n x n cube (n rows, n columns, and n 
files) in which the numbers 09 1, 2, ..., n - 1 are entered so that each number 
occurs exactly once in each row, column, and file. A magic Latin 3-cube of or-
der n is an arrangement of n3 integers in three orthogonal Latin 3-cubes, each 
of order n (where every ordered triple 000, 001, ..., n-1, n-1, n-1 occurs) 
such that the sum of the entries in every row, every column, and every file, in 
each of the four major diagonals (diameters) and in each of the n1 broken major 
diagonals is the same; namely, hn(n3 + 1 ) . We shall list the cubes in terms of 
n squares of order n that form its different levels from the top square 0 down 
through (inclusively) square 1, square 2, ..., square n - 1 . We define a bro-
ken major diagonal as a path (route) which begins in square 0 and goes through 
the n different levels (square 0, square 1, ..., square n - 1) of the cube and 
passes through precisely one cell in each of the n squares in such a way that 
no two cells the broken major diagonal traverses are ever in the same file. 

The sum of the entries in the n cells that make up a broken major diagonal 
equals hn(n3 + 1 ) . A complete system consists of n2 broken major diagonals, 
where each broken major diagonal emanates from a cell in square 0, and thus the 
n2 broken major diagonals traverse each of the n3 cells of the cube in n2 dis-
tinct routes. The cube is initially constructed as a Latin 3-cube in which the 
numbers are expressed in the scale of n (0, 1, 2, ..., n - 1). However, after 
adding 1 throughout and converting the numbers to base 10, we have the n3 num-
bers 1, 2, . .., ns where the sum of the entries in every row, every column, 
and every file in each of the four major diagonals, and in each of the n2 bro-
ken major diagonals is the same; namely, hn(n3 + 1). 

In this paper, for the first time in mathematics, we construct a magic La-
tin 3-cube of order ten. In this case, the sum of the numbers in every row, 
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every column, and every file in each of the four major diagonals, and in each 
of the 102 broken major diagonals is the same; namely, %(10)(103 + 1) = 5QG5« 

In Chart 1 we list (by columns) the coordinates of the cells through which 
10 broken major diagonals pass. It should be noted that the first digit of the 
coordinates denotes the row3 the second digit the column, and at the right side 
of each row is the square number in which each cell is to be found. Each one of 
the 10 broken major diagonals is found under one of the 10 columns, that is, In 
Chart 1 we find listed by columns 10 broken major diagonals, where each column 
denotes one broken major diagonal,, For example, under column 0, we find the 
coordinates 00, 99, 55, 66, 11, 88, 77, 22, 44, and 33. These cells determine 
one broken major diagonal. After adding 1 to each number found in the corre-
sponding 10 cells in the 10 squares, we get 

764+373+791 + 588+707+026+445+340+612+359 - ̂ (10) (103 + 1) = 5005. 

Now, in order to find the remaining 90 broken major diagonals that emanate 
from square 0, we must construct nine more charts to get Chart 1, Chart 2, . .« , 
Chart J. We need only show (as an example) how to construct Chart 2 from Chart 
1 and the Key Chart, since the remaining eight charts (Chart 2, ..., Chart X) 
are constructed in exactly the same way, 

In the Key Chart under column I are the numbers In the same order that are 
found in Chart 1 under column 0« 

In Chart 1, we define the rows as follows: 

a (00) row = 00 16 29 35 42 53 64 71 87 98 square 0 
a (99) row = 99 41 62 56 84 75 23 10 08 37 square 1 

a (33) row - 33 28 45 04 79 86 90 57 61 12 square 9 

Thus, in the Key Chart we have under column I a (0.0) row, a (99) row,...*, and 
a (33) row, which is, of course, a restatement in a shorter form of the entire 
Chart 1. 

Now, in the Key Chart, each number under column II which is identical to a 
number under column I (in the Key Chart) represents the identical row found In 
Chart 1. Therefore, Chart 2 is written as: 

(11) row: 11 89 76 27 58 94 32 03 40 65 square 0 
(33) row: 33 28 45 04 79 86 90 57 61 12 square 1 

(99) row: 99 41 62 56 84 75 23 10 08 37 square 9 

Then the columns of Chart 2 give 10 more broken major diagonals, 
We can find the remaining eight charts—Chart 3, Chart 4, . .., Chart J—in 

exactly the same way as Chart 2, using the Key Chart In conjunction with Chart 
1. (The charts are presented on the following pages.) 

It should be noted here that Chart 1 is constructed by superposing two or-
thogonal Latin squares of order ten. Now, since it is impossible to superpose 
two Latin squares of order n when n = 2 or 6, we may state that this type of 
magic Latin 3-cube is impossible for order 2 and for order 6. 

In the near future, we shall present a more comprehensive general paper In 
which we consider the general order km + 2 and the powers of prime numbers. 
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CEAB.T 1 

0 1 2 3 4 5 6 7 8 9 

00 16 29 35 42 53 64 71 87 98 square 0 
,99 41 62 56 84 75 23 10 08 37 square 1 
55 97 38 19 60 02 81 24 73 . 46 = square 2 
66 50 93 82 07" 21 15 48 39 74 square 3 
11 89 76 27 58 94 32 03 40 65 square 4 
88 72 01 43 95 67 59 36 14 20 square 5 
77 34 80 68 13 49 06 92 25 51 square 6 
22 05 " 54 70 31 18 47 69 96 83 square 7 
44 63 17 91 26 30 78 85 52 09 square 8 
33 28 45 04 " 79 86 90 57 61 12 square 9 

KEY CHART FOR 100 BROKEN MAJOR DIAGONALS 

I II III IV V VI VII VIII IX X 

00 

99 

55 

66 

11 

88 

77 

22 

44 

33 

11 

33 

22 

44 

00 

55 

88 

66 

77 

99 

22 

88 

33 

77 

99 

11 

66 

44 

00 

55 

33 

44 

00 

55 

77 

66 

99 

88 

22 

11 

44 

22 

77 

00 

66 

99 

11 

55 

33 

88 

55 

00 

11 

88 

44 

33 

22 

99 

66 

77 

66 

77 

88 

99 

33 

22 

55 

00 

11 

44 

77 

55 

99 

1.1 

22 

44 

00 

33 

88 

66 

88 

11 

66 

33 

55 

00 

44 

77 

99 

22 

99 

66 

44 

22 

88 

77 

33 

11 

55 

00 

square 0 

square 1 

square 2 

square 3 

square 4 

square 5 

square 6 

square 7 

square 8 

square 9 

MAGIC LATIN 3-CUBE OF ORDER TEN 

Square Number 0 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0 

763 
279 
897 
140 
932 
328 
554 
415 
686 
001 

1 

886 
963 
340 
454 
228 
697 
032 
779 
501 
115 

2 

540 
097 
463 
901 
754 
132 
286 
828 
315 
679 

3 

979 
654 
201 
063 
815 
740 
128 
532 
497 
386 

4 

015 
832 
579 
628 
163 
486 
701 
397 
254 
940 

5 

428 
301 
632 
715 
086 
563 
997 
240 
179 
854 

6 

601 
728 
154 
879 
597 
21.5 
363 
986 
040 
432 

7 

354 
186 
915 
297 
401 
079 
840 
663 
732 
528 

8 

232 
440 
028 
586 
379 
954 
615 
101 
863 
797 

9 

197 
515 
786 
332 
640 
801 
479 
054 
928 
263 
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Square Number 1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0 

472 
385 
100 
564 
059 
816 
221 
693 
938 
747 

1 

138 
072 
864 
621 
316 
900 
759 
485 
247 
593 

2 

264 
700 
672 
047 
421 
559 
338 
116 
893 
985 

3 

085 
921 
347 
772 
193 
464 
516 
259 
600 
838 

4 

793 
159 
285 
916 
572 
638 
447 
800 
321 
064 

5 

616 
847 
959 
493 
738 
272 
000 
364 
585 
121 

6 

947 
416 
521 
185 
200 
393 
872 
038 
764 
659 

7 

821 
538 
093 
300 
647 
785 
164 
972 
459 
216 

8 

359 
664 
716 
238 
885 
021 
993 
547 
172 
400 

9 

500 
293 
438 
859 
964 
147 
685 
721 
016 
372 

Square Number 2 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0 

190 
413 
952 
071 
346 
665 
737 
508 
224 
889 

1 

924 
390 
671 
537 
465 
252 
846 
113 
789 
008 

2 

771 
852 
590 
389 
137 
046 
424 
965 
608 
213 

3 

313 
237 
489 
890 
908 
171 
065 
746 
552 
624 

4 

808 
946 
713 
265 
090 
524 
189 
652 
437 
371 

5 

565 
689 
246 
108 
824 
790 
352 
471 
013 
937 

6 

289 
165 
037 
913 
752 
408 
690 
324 
781 
546 

7 

637 
024 
308 
452 
589 
813 
971 
290 
146 
765 

8 

446 
571 
865 
724 
613 
337 
208 
089 
990 
152 

9 

052 
708 
124 
646 
271 
989 
513 
837 
365 
490 

Square Number 3 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0 

987 
131 
266 
323 
418 
502 
875 
049 
750 
694 

1 

250 
487 
523 
075 
102 
766 
618 
931 
894 
349 

2 

823 
666 
087 
494 
975 
318 
150 
202 
549 
731 

3 

431 
775 
194 
687 
249 
923 
302 
818 
066 
550 

4 

649 
218 
831 
702 
387 
050 
994 
566 
175 
423 

5 

002 
594 
718 
949 
650 
887 
466 
123 
331 
275 

6 

794 
902 
375 
231 
866 
149 
587 
450 
623 
018 

7 

575 
350 
449 
166 
094 
631 
223 
787 
918 
802 

8 

118 
023 
602 
850 
531 
475 
749 
394 
287 
966 

9 

366 
849 
950 
518 
723 
294 
031 
675 
402 
187 
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Square Number 4 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0 

606 
827 
578 
255 
783 
199 
362 
934 
041 
410 

1 

541 
706 
115 
962 
899 
078 
483 
627 
310 
234 

2 

355 
478 
906 
710 
662 
283 
841 
599 
134 
027 

3 

727 
062 
810 
406 
534 
655 
299 
383 
978 
141 

4 

434 
583 
327 
099 
206 
94.1 
610 
178 
862 
755 

5 

999 
110 
083 
634 
441 
306 
778 
855 
227 
562 

6 

010 
699 
262 
527 
378 
834 
106 
741 
455 
983 

7 

162 
241 
734 
878 
910 
427 
555 
006 
683 
399 

8 

883 
955 
499 
341 
127 
762 
034 
210 
506 
678 

9 

278 
334 
641 
183 
055 
510 
927 
462 
799 
806 

Square Number 5 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0 

525 
642 
014 
788 
891 
930 
403 
257 
369 
176 

1. 

069 
825 
988 
203 
630 
314 
191 
542 
476 
757 

2 

488 
114 
225 
786-
503 
791 
669 
030 
957 
342 

3 

842 
303 
676 
125 
057 
588 
730 
491 
214 
969 

4 

157 
091 
442 
330 
725 
269 
576 
914 
603 
888 

5 

230 
976 
391 
557 
169 
425 
814 
688 
742 
003 

6 

376 
530 
703 
042 
414 
657 
925 
869 
188 
291 

7 

903 
769 
857 
614 
276 
142 
088 
325 
591 
430 

8 

691 
288 
130 
469 
942 
803 
357 
776 
025 
514 

9 

714 
457 
569 
991 
388 
076 
242 
103 
830 
625 

Square Number 6 

0 
•1 

2 
3 
4 
5 
6 
7 
8 
9 

0 

044 
598 
329 
836 
605 
277 
180 
761 
412 
953 

1 

312 
644 
236 
780 
577 
429 
905 
098 
153 
861 

2 

136 
929 
744 
653 
080 
805 
512 
377 
261 
498 

3 

698 
480 
553 
944 
361 
036 
877 
105 
729 
212 

4 

961 
305 
198 
477 
844 
712 
053 
229 
580 
636 

5 

111 
253 
405 
061 
912 
144 
629 
536 
989 
380 

6 

453 
077 
880 
398 
129 
561 
244 
612 
936 
705 

7 

280 
812 
661 
529 
753 
998 
336 
444 
005 
177 

8 

505 
736 
977 
112 
298 
680 
461 
853 
344 
029 

9 

829 
161 
012 
205 
436 
353 
798 
980 
677 
544 
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Square Number 7 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0 

239 
904 
745 
417 
120 
051 
696 
382 
873 
568 

1 

773 
139 
017 
396 
951 
845 
520 
204 
668 
482 

2 

617 
545 
339 
168 
296 
420 
973 
751 
082 
804 

3 

104 
986 
968 
539 
782 
217 
451 
620 
345 
073 

4 

582 
720 
604 
851 
439 
373 
268 
045 
996 
117 

5 

351 
068 
820 
282 
573 
639 
145 
917 
404 
796 

6 

868 
251 
496 
704 
645 
982 
039 
173 
517 
320 

7 

096 
473 
182 
945 
368 
504 
717 
839 
220 
651 

8 

920 
317 
551 
673 
004 
196 
882 
468 
739 
245 

9 

445 
682 
273 
020 
817 
768 
304 
596 
151 
939 

Square Number 8 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0 

311 
056 
433 
609 
567 
784 
948 
870 
195 
222 

1 

495 
511 
709 
848 
084 
133 
267 
356 
922 
670 

2 

909 
233 
811 
522 
348 
667 
095 
484 
770 
156 

3 

556 
148 
022 
211 
470 
309 
684 
967 
833 
795 

4 

270 
467 
956 
184 
611 
895 
322 
733 
048 
509 

5 ' 

884 
722 
167 
370 
295 
911 
533 
009 
656 
448 

6 

122 
384 
648 
456 
933 
070 
711 
595 
209 
867 

7 

748 
695 
570 
033 
822 
256 
409 
111 
367 
984 

8 

067 
809 
284 
995 
756 
548 
170 
622 
411 
333 

9 

633 
970 
395 
767 
109 
422 
856 
248 
584 
on 

Square Number 9 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0 

858 
760 
681 
992 
274 
443 
019 
126 
507 
335 

1 

607 
258 
492 
119 
743 
581 
374 
860 
035 
926 

2 

092 
381 
158 
235 
819 
974 
707 
643 
426 
560 

3 

260 
519 
735 
358 
626 
892 
943 
074 
181 
407 

4 

326 
674 
060 
543 
958 
107 
835 
481 
719 
292 

5 

143 
435 
574 
826 
307 
058 
281 
792 
960 
619 

6 

535 
843 
919 
660 
081 
726 
458 
207 
392 
174 

7 

419 
907 
226 
781 
135 
360 
692 
558 
874 
043 

8 

774 
192 
343 
007 
460 
219 
526 
935 
658 
881 

9 

981 
026 
807 
474 
592 
635 
160 
319 
243 
758 
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COMPLEX FIBONACCI NUMBERS 

C. J. HARMAN 
Mitchell College of Advanced Education, Bathurst N.S.W. 2795, Australia 

1. INTRODUCTION 

In this note9 a new approach is taken toward the significant extension of 
Fibonacci numbers into the complex plane. Two differing methods for defining 
such numbers have been considered previously by Horadam [4] and Berzsenyi [2]. 
It will be seen that the new numbers include Horadam1s as a special case, and 
that they have a symmetry condition which is not satisfied by the numbers con-
sidered by Berzsenyi. 

The latter defined a set of complex numbers at the Gaussian integers, such 
that the characteristic Fibonacci recurrence relation is satisfied at any hori-
zontal triple of adjacent points. The numbers to be defined here will have the 
symmetric condition that the Fibonacci recurrence occurs on any horizontal or 
vertical triple of adjacent points. 

Certain recurrence equations satisfied by the new numbers are outlined, and 
using them, some interesting new Fibonacci identities are readily obtained. 
Finally, it is shown that the numbers generalize in a natural manner to higher 
dimensions. 

2. THE COMPLEX FIBONACCI NUMBERS 

The numbers, to be denoted by G(n9 m), will be defined at the set of Gaus-
sian integers (ji9 m) = n + im9 where n e TL and m e 7L . By direct analogy with 
the classical Fibonacci recurrence 

F«+2 =Fn+l + P n , F0 = 0, F, = 1, (2.1) 

the numbers G(n9 rri) will be required to satisfy the following two-dimensional 
recurrence 

Gin + 2, rri) = Gin + 1, rri) + G(n9 rri), (2.2) 

G(n9 m + 2) = (?(n, m + 1) + G(n9 rri) 9 (2.3) 

where £(0, 0) = 0, G(l9 0) = 1, G(Q9 1) = i9 G(l9 1) = 1 + '£. (2.4) 

The conditions (2.2), (2.3), and (2.4) are sufficient to specify the unique 
value of Gin9 rri) at each point (n, rri) in the plane, and the actual value of 
G(n9 rri) will now be obtained. 

From (2.2), the case m = 0 gives 

Gin + 2, 0) - Gin + 1, 0) + G(n9 0); Gi09 0) = 0, G(l, 0) = 1 
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and hence that 

G(n9 0) = Fn9 (2.5) 

the classical Fibonacci sequence. 
The case 772 = 1 gives the recurrence 

G(n + 2, 1) = G(n + 1, 1) + G(n9 1); G(0, 1) - i9 G(l, 1) = 1 + i9 

which is an example of the well-known generalized Fibonacci sequence considered 
by Horadam [3] that satisfies 

G(n5 1) = ^ . ^ ( 0 , 1) +FnG(l9 1). 

By substitution 

G(n9 1) = iFn^ + (1 + i)Fn = Fn + i(Fn^1 + Fn) s 

and so by (2.1) 

G(n3 1) - F„ + iFn+1. (2.6) 

Recurrence (2*3) together with initial values (2.5) and (2„6) specify an-
other generalized Fibonacci sequence, so that 

G(n, m) = Fn_±G{n9 0) + FwG(n, 1) 

- F m „ r F n + Fm(Fn + ^Fn + 1 ) - (Frrt + 1 + Fm)Fn + iFmFn + 19 

and so by (2.1) the complex Fibonacci numbers G(n^ rn) are given by 

G(n5 m) = FnFm„x + iFn+1Fm. (2.7) 

It can be noted at once that along the horizontal axis G(ns 0) = Fn , and 
that on the vertical axis G(0S m) = iFm . Also, the special case n ~ \ corre-
sponds to the complex numbers considered by Horadam [4]. 

3. RECURRENCE EQUATIONS AMD IDENTITIES 
Combining (2.2) and (2.3), it follows that 

G(n + 2, m + 2) - G(n + 1, m + 1) + G(n + 1, 772) + G(n, ?7z + l)+.G(n, m ) , (3.1) 

which is an interesting two-dimensional version of the Fibonacci recurrence 
relation and gives the growth-characteristic of the numbers in a diagonal di-
rections any complex Fibonacci number G(n9 m) is the sum of the four previous 
numbers at the vertices of a square diagonally below and to the left of that 
numberfs position on the Gaussian lattice, 

From (2.7) and (2.1), it follows that 

Gin + 1., m + 1) = Fn+1Fn+2 + iFn + 2Fn + 1 

= ̂ A + l d + « + F*Fn + l + ^ U ^ n * 
and so by (2.7) agains the following recurrence equation is obtained: 

G{n + 1, rn + 1) = (1 + i)Fn+1Fm+1 + Gin, m). (3.2) 

By repetition of equation (3.2), it follows that 

G{n + 2, 772 + 2) = (1 + i)(Fn + 2Fm + 2 + Fn + 1Fm + 1) + £(n, m) , (3.3) 

and by repeated application of (3.2) and (3.3) the following even and odd cases 
result; 

2k 

Gin + 2k, m + 2/c) = (1 + i)^F«+jFm + j + ^fa, m ) * ( 3 s 4 ) 

j-l 
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2k + i 
G(n + 2k + 1, m + 2k + 1) = (1 + i ) £ ^ - f - j ^ + j + £(w> n> • ( 3 - 5 ) 

j - i 

From ( 3 . 4 ) , ' 2k 

E ^ + i F m + J. - (1 + D^iGin -h 2k, m + 2k) - £ ( n , m)]9 
j m i 

and so by (2 . 7 ) , 

E F >F * - i n _ 7y\ r s7 P - W T? + 7*/? /? - 7F P i 
« + J w+J 2 ^ L n+2k m+2k + l r « r m + l ^ r n + 2 k + l m+2k n + l r m J s 

j - 1 

and, equating real and imaginary parts 

Fn + 2kFm-¥2k + l "" ^n + 2k + 1 "m + 2k + ^ n + l^w ^n Fm + 1 ~ ® » ( 3 . 6 ) 

and 
2k 

2^ ^n + jFm+j ~o^-Fn + 2k m + 2k + l ~ nFm±l + Fn+2k+lFm+2k ~ "n+l^m'-l* ( 3 . 7 ) 

S u b s t i t u t i o n fo r ' •f7n + 2fc^m+2k+i from (3 .6 ) i n t o (3 .7 ) g i v e s 
2k 

2~J *n+jFm+j ~ ^ri + 2k+l^m + 2k ~ ^n+lFma ( 3 « o ) 
J - l 

Similarly,, for the odd case, 

2k + l 

Z ^ '•'n + j^m + j = *fn+2k+2*m+2k+l ~ *n*m + im ( 3 . 9 ) 

I d e n t i t i e s (3 .8 ) and (3 .9 ) uni fy and g e n e r a l i z e c e r t a i n i d e n t i t i e s of Berz -
seny i [1] and p rov ide i n t e r e s t i n g examples as s p e c i a l c a s e s . For example, n = 
m = 0 y i e l d s t he well-known i d e n t i t y : 

P 2 + F 2 + ••• + F 2 = F F 
r 1 r 2 T r t f ^ tf + 1 * 

From (3.8), the case m = 0, n = 1 gives 

r 1 r 2 T r 2 r 3 -r ^ r 2 k r 2k + 1 r 2k r 2k + 2 s 

and from ( 3 . 9 ) , n = 0 , 77? = 1 g ives t h e i d e n t i t y 

F F + F F + " • • + F , F , = F 2 , 
x - ^ 2 -1 £ 2 £ 3 r n r x 2 k + l X 2 k + 2 z 2 fc+2" 

Many other interesting identities can be specified in this way by suitable 
choice of parameters. For example, equation (3.8) with m ~ 0, n = 2 gives 

F 1 F 3 + F2Fh + * " + i ? 2 k F 2 k + 2 = = F 2 k F 2 k + 3 s 

and fo r 777 = 2 , n ™ 0 , equa t ion (3 .9 ) g ives 

x l x 3 x 2X 4 x 2fe + i i 2k+ 3 x 2k+2x 2k+ 3 * 

Identity (3.6) has the following counterpart for the case 2k + 1: 

Fn+2k + lFm + 2k + 2 " Fn + 2k + 2Fm + 2k + l FmFn + l " Fm + lFn> (3.10) 

and t o g e t h e r (3 .6 ) and (3 .10) c o n s t i t u t e a g e n e r a l i z a t i o n of some well-known 
c l a s s i c a l i d e n t i t i e s . For example, i f n = 1, m = 0 , they g ive 

/7 E7 - S j 2 = C _ n ^ 717 > I 

As another example, equations (3.6) and (3.10) with n = 1 and 777 = -2 yield 
the identity 

^ V - A + l ™ FN-2FN + 2 = 2(~1) • 
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and 

where 
£ (0 5 0 , 0) 
G(09 0 , 1) 

G(i + 2 , m, n) 

G(ls m + 2 , n) 

G(l9 m, n + 2) 

= ( 0 , 0 , 0 ) ; G( 

= ( 0 , 0 , " l ) ; G( 

4, HIGHER DIMENSIONS 
The above development of complex Fibonacci numbers naturally extends to 

higher dimensions and, in order to illustrate, the three-dimensional case will 
be outlined. 

The number £(£, m, n) will be required to satisfy 

G(Z + 1, ms n) + G(is m, n), (4.1) 

G(ls m + 1, n) + £(£, m5 n), (4.2) 

G(£, 7W, n + 1) + £(£, m9 n) , (4.3) 

0, 0); c7(l, 05 0) = (1, 05 0); £(0, 1, 0) = (0, 1, 0); 

0,"l); G(l, 1, 0) = (1, 1, 0); £(1, 0, 1) = (1, 0, 1); 

G(l, 1, 1) = (1, 1, 1). 

Thus9 G has a Fibonacci recurrence in each of the three coordinate directions. 
Each of (4.1), (4.2), and (4.3) is a generalized Fibonacci sequence; thus, 

from (4.1), 

G(l9 0, 0) = Vi ( 0' ° s 0) + M 1 ' °> °) (4° 4> 
and from (4.1) again, 

G(i5 1, 0) = ^ ^ ( 0 , 1, 0) +F£(1, 1, 0). (4.5) 

From (4.2), it follows that 

C7(£, m5 0) - ̂ . ^ U , 0, 0) +.FmG(i, 1, 0). (4.6) 

From (4.1) again 

C7(£, 0, 1) = ^ ^ ( 0 , 09 1) + F£(1, 0, 1), (4.7) 

and £(£, 1, 1) = V i ( 0 » 1, 1) +F£(1, 1, 1). (4.8) 

Equation (4.2) then gives 

C7(£, m, 1) = Fm_x(7(£9 0, 1) + FmG{l, 1, 1), (4,9) 

and from (4.3), 

£(£, m5 n) =Fn_xc7(£, m, 0) + FnG(is m5 1). (4.10) 

Combining equations (4.4)-(4.10), and using the classical Fibonacci recurrence 
to reduce the expressions obtained, one finally gets 

G{1, m, n) = (FtFm+1Fn + 1 , Fl + xFmFn+1, Fl + 1Fm + 1Fn), 

which is the three-dimensional version of Fibonacci numbers. This form readily 
generalizes to higher dimensions in the obvious fashion. 

It is interesting to note that if (4.1), (4.2), and (4.3) are combined di-
rectly, then it follows that the value of £(£ + 2 , m + 2, n + 2) is given by 
the sum of the values of G at the eight vertices of the cube diagonally below 
that point—a generalization of (3.1). 

The structure provided by the complex Fibonacci numbers was seen in Section 
3 to result in some interesting classical identities involving products. It is 
conjectured that the above three-dimensional numbers may lead to identities 
involving triple products. 
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DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy 

F = F + p w = 0 F = ] 

and -̂ n + 2 = ^n + 1 + ^ n » ̂ o = ^s L1 - 1-

Also9 a and b designate the roots (1 + /5)/2 and (1 - /5)/2, respectively, of 
x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-442 Proposed by P. L. Mana, Albuquerque, NM 
The identity 

2 cos2G = 1 + cos(26) 

leads to the identity 
8 cos^G = 3 + 4 cos(26) + cos(46)9 

Are there corresponding identities on Lucas numbers? 

B-4^3 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

For all integers n and w with w odds establish the following 

Ln + 2wLn + w " 2LwLn + wLn-w ' Ln-wLn-2w = Ln^L3w " 2 L ^ ) • 

B-kkk Proposed by Herta T. Freitag, Roanoke, VA 

In base 10, the palindromes (that is, numbers reading the same forward or 
backward) 12321 and 112232211 are converted into new palindromes using 

99[103 + 9(12321)] = 11077011, 
99[105 + 9(112232211)] = 100008800001, 

Generalize on these to obtain a method or methods for converting certain palin-
dromes in a general base b to other palindromes in base b. 

B~kk5 Proposed by Wray G. Brady, Slippery Rock State College, PA 

Show that 
5F2n+2 + 2L2n + 5F2n-2 = L2n+2 + l0F2n + L2n-2 

and find a simpler form for these equal expressions. 

B-446 Proposed by Jerry M. Metzger, University of N. Dakota, Grand Forks, ND 

It is familiar that a positive integer n is divisible by 3 if and only if 
the sum of its digits is divisible by 3. The same is true for 9* For 27, this 

87 
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is false since, for example, 27 divides 1 + 8 + 9 + 9 but does not divide 1899. 
However, 27|1998. 

Prove that 27 divides the sum of the digits of n if and only if 27 divides 
one of the integers formed by permuting the digits of n, 

B-4^7 Based on the previous proposal by Jerry M. Metzger. 

Is there an analogue of B-446 in base 5? 

SOLUTIONS 

Consequence of the Euler-Fermat Theorem 

B-418 Proposed by Herta T. Freitag, Roanoke, VA 

Prove or disprove that n15 - n3 is an integral multiple of 215 - 23 for all 
integers n, 

Solution by Lawrence Somer, Washington, D.C. 

The assertion is correct. First, note that 

«15 - n3 = n3(n12 - 1 ) . 
Further, 

215 - 23 = 23(26 - 1)(26 + 1) = 8(9)(7)(5)(13). 

By Eulerfs generalization of Fermat?s theorem, 

aHn) = 1 (mod n) 

if (a, ri) - 1, where <j> is Euler's totient function. It follows that a ^ W ) = 1 
(mod d) for integral k. Now 

(f)(8) = 4, (f)(9) = 6, (f)(7) = 6, (f)(5) - 4, and <f>(13) = 12. 

Thus, it follows in each instance that if (n, d) = 1, where d = 8, 9, 7, 5, or 
13, then n12 - 1 = 0 (mod d), since cj)(<i) | 12 for each d. Further, if (ns d) ^ 1 
for d = 8, 9, 7, 5, or 13, then 6?|n3, since ̂ |p3 for some prime p. Since (8, 9, 
7, 5, 13) = 1, it now follows that 

n3(n12 - 1) = 0 (mod 8-9-7-5-13). 

Thus, 215 - 23 divides n15 - n3. 
Also solved by Paul S. Bruckman, Duane A. Cooper, M.-J. DeLeon, Robert M. Giuli, 
Bob Prielipp, C* B. Shields, Sahib Singh, Gregory Wulczyn, and the proposer. 

NOTE: DeLeon generalized to show that for ke {2,3, 4}9 2^(212 - 1) divides 
nk(ni2 „ |) for a^i positive integers n. 

Symmetric Congruence 

B-419 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 
For i in {1, 2, 3, 4}, establish a congruence 

Fn^Sk + i E ainLn^Sk + i (mod 5> 
with each a^ in {1, 2, 3, 4}. 

Solution by Sahib Singh, Clarion State College, Clarion, PA 
We know that nLn = Fn (mod 5). (See the solution to Problem B-368 in the 

December 1978 issue.) Thus 

Fn = nLn (mod 5), (1) 

and (5k + i)L5k + i ~ Fsk + i (mod 5) o r L5k + i E ^~lp5k^z (mod 5) • (2) 
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M u l t i p l y (1) and (2) t o ge t 
Fn^sk+i = (i)'1nLnF5k+i (mod 5 ) . 

Thus, ai = (i)"1 where (i)"1 is the multiplicative inverse of i in Z5« There-
fores ax - 13 a2 = 3, a3 = 29 and ah - 4. 

Also solved by Paul S. Bruckman, M. J. DeLeon, Bob Prielipp, and the proposer. 

Finding Fibonacci Factors 

B-420 Proposed by Gregory Wulczyn, Bucknell University, Lewlsburg, PA 

Let 

Can one e x p r e s s gin, k) in the form LvF8FtFuFv w i t h each of r9 s , t9 u5 and i? 
l i n e a r in n and k? 

Solution by Bob Prielipp, University of Wlsconsin-Oshkosh, WI 

The answer to t he q u e s t i o n s t a t e d above i s " y e s , " 
On pp . 376-377 of the December 1979 i s s u e ( see s o l u t i o n to Problem H-279) 

Pau l Bruckman e s t a b l i s h e d t h a t 

Fn+Gk " (Lhk + ^ ^ n + i t f c ~~Fn + 2k^ ~Fn = F 2kF kkF 6kF kn + 12k ' 

S u b s t i t u t i n g n + 4?c fo r n y i e l d s 

Fn+lQk " ( ^ f c + l ) (™n+8fc " Fn+Gk' ~ Fn + ̂ k F2kF^kFGkFkn + 28ft B 

Thus, g(n, k) = 

F2kF^k &kFhn + 28k " 2k kk &k kn+12k 

F-2k **k &k ^ {hn+ 20k) +8/C ~ ^ (4n+20fe ) -8 / c J 
F2kFhkFekF8k^hn + 20k 9 

because Fs + t - F8_£ = Ft^s 9 t even ( see p . 115 of t he A p r i l 1975 i s s u e of t h i s 
j o u r n a l ) . 

Also solved by Paul S. Bruckman and the proposer. 

Unique Representation 

B-421 Proposed by V.E. Hoggatt, Jr., San Jose State University, San Jose, CA 

Let {un} he defined by the recursion un+3 = un+2 + un and the initial con-
ditions U-L = ls u2 = 25 and u3 = 3. Prove that every positive integer N has a 
unique representation 

n 

with c?„ = 1, each ct e {0S l}9 cioi + 1 = 0 = ^<2i+2 if 1 £ i £ n - 2. 

Solution by Paul S. Bruckman, Concord, CA 

We first observe that the condition uoioi + 1 = 0 = £ ^ + 2 for 1 £ £ £ n - 2" 
should be replaced by 

cic<f + i = °  f o r 1 £ > £ n ~ 1 a n d °404A.') = °  f o r l £ ^ £ n " ~ 2 « (!) 
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Let U - (wn)«-i' ^e call a representation (N)v E onon_1 ... <?.,_ of N a U-
navy representation of N if 

n 

with the o^s satisfying the given conditions, as modified by (1). It is not 
assumed a priori that such a representation is necessarily unique. In any U-
nary representation of 217, any two consecutive "l!s" appearing must be separated 
by at least two zeros. Without the modification given in (1), the representa-
tions are certainly not unique; examples: 

(3)y = 100 = 11 and (ll)j, = 11001 = 100010, 

ignoring (1) and substituting the given condition of the published problem. 
We require a pair of preliminary lemmas. 

Lemma 1: 
m r-

/2un-3k-i = u ~ l> (n = 2 > 3 > 4» • • •) » where m = ^ — . 
fc-0 L J J 

VnoQ^1 Using the recursion satisfied by the un
fs9 

(2) 

" ' JM in in nr x 

2 ^ Un-3k-l = La (Un-3k Un- 3k - 3 V = 2 ^ Wn- 3£ " 2 ^ Wn-3k = U « M n - 3 m - 3 * 
& = 0 k~Q k=0 fe«l 

Note that n - 3m - 3 = -1, 0, or 1 for all n. We may extend the sequence U to 
nonpositive indices k of uk by using the initial values and the recursion sat-
isfied by the elements of U; we then obtain: 

This establishes the lemma,, 

Lemma 2: If (un)v = omcm_1 . . . c 1 9 then m ~ n and c^ = -6M^ (Kronecker d e l t a ) . 

VKJOOfo By d e f i n i t i o n , 

1 and un = V ] ^ i ^ i 
i « i 

Since wn 2. ̂ J thus m <_n« On the other hand, since any two consecutive "l?s" 
in a [/-nary representation are separated by at least two zeros, it follows that 

Un <• JlUm-3k ' Where h = [^T^]-
£ = 0 

Substituting n = m + 1 in Lemma 1, it follows that un <_ um + 1 - 1, or un < um + 1 . 
Since um <_ un < um + ls it follows that m = n. Hence cn = 1, from which it fol-
lows that the remaining c^ 's vanish. Q.E„D. 

Now, define S to be the set of all positive integers N that have a unique 
[/-nary representation. We will find it convenient to extend S to include the 
number zero. Note that zero certainly satisfies all the conditions of M[/-nary-
ness," except for cn = 1; for this exceptional element of S only, we waive this 
condition. Note that uk = k e S9 fc = 1, 2, 3, 4. 

We seek to establish that S consists of all nonnegative integerss and our 
proof is by induction on k, Assume that K £ Ss 0 <_ K < uk9 where k >_ 4. In 
particular, M e S9 where 0 <_ M < uk_2. Then Q4)u = cror_1 ... o19 for some r, 
where cr = 1. Since M < uk_2$ thus v <_ k - 3; otherwise, v >_ k - 2, which im-
plies M _> uk_2$ a contradiction. Let 
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N = M + uk. (3) 
Then 

k 
N = Y^ °iui> with ok = 1, ̂  = G, if p < i < L 

i = l 

Since v <_ k- 3, we see that the foregoing expression yields a [/-nary represen-
tation of N9 namely (N)v = c^ck_1 aa» (3X, though not necessarily unique. Sup-
pose that (N)v = dtdt_1 • .... d± is another [/-nary representation of N = M + uk» 
Then (since M z S) di - ci9 1 <_ i £ r. Moreover, Uj< = N - M has a unique [/-nary 
representations by Lemma 2; hence, t = k9 which implies that N e S. 

Since 0 <_ M < uk_2* thus uk <_ N < uk_z + uk = uk+1. The inductive step is: 

5 D {0, 1, 2, , .., w^- l } ^ n { O s 1, 2, . .., ufe + 1 - 1}. 

By induction, S consists of all nonnegative integers- Q*E.D. 

Also solved by Sahib Singh and the proposer. 

Lexicographic Ordering of Coefficients 

B-422 Proposed by V.E. Hoggatt, Jr., San Jose State University, San Jose, CA 

With representations as in B-421, let 

n m 
N = E ciui>N + 1 = Ed*M*-

Show that m J> n and that if m = n then d^> c^ for the largest k with ĉ  £ dk. 

Solution by Paul S. Bruckmanf Concord, CA 

We refer to the notation and solution of B-421 above. Given 

( A % = ^n°n~l • • • Gi and '(/I/ + 1)^ = &m
dm-x • • • ^1"» 

which we now know are the unique [/-nary representations of JV and i!7 + 1, respec-
tively. 

Since un <_ N < un + 1 and um £ N + 1 <-wm + 1, thus um - un + 1 < 1 < um + 1 - un» 
Now Mm + 1 > un + 1 > un ^ m + 1 > ns since [/ is an increasing sequence. On the 
other hands um < un + 1 + 1 £ wn + 2 =^w < n + 2. Hence, 

7̂ = n o r m = n + l . (1) 

Note that (1) is somewhat stronger than the desired result: m J> n„ 
Now, suppose m = n, and let /c be the largest integer i such that c?̂  # di . 

Then ci =" dis k < i <_ n. Hence, 

n n 

E ^ = E dtMi-
ml. • - 4 - • 1 • i = k + l ^ = fc + 1 
T h i s , m t u r n , i m p l i e s 

n n 
N - E ciui =» + i - 1 - E d*M*» 

£ = fe + 1 i = k + l 
k k 1 + £^M* = E^;°  

•t = i ^ = i 

Suppose ek = 1, dk = 0. Then the left member of (2) is _> 1 + uk. On the 
other hand, the right member of (2) is 

£ 
£ = Q 
E Mk-i-3i = uk - 1, where p - ^ — ^ — J , 



92 ELEMENTARY PROBLEMS AND SOLUTIONS Feb. 1981 

using the properties of the [/-nary representation and Lemma 1 of the solution 
to B-421. This contradiction establishes the only remaining possibility, i.e., 
ck - 0, d^ - 1. This establishes the desired result. 

Also solved by Sahih Singh and the proposer. 

Telescoping Infinite Product 

B-423 Proposed by Jeffery ShallIt, Palo Alto, CA 

Here let Fn be denoted by F(n). Evaluate the infinite product 

( '•*X>+£X'*^)--A 1 + l 

F(2n + 1 - 1) 

Solution by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Let Ln also be written as L(n) and An = 1 + [1/F(2*+1 - 1)]. It is easily 
seen (for example, from the Binet formulas) that 

L(2)L(4)L(8) ... L(2n) == F(2n + 1) and 1 + F(2n + 1 - 1) = F(2n - l)L(2n) . 

Hence, An == F(2n - l)L(2n)/F(2n + 1 - 1) and 

f[ A = lim ̂ (D^(3)^(7)F(15) ••• F(2* - 1)L(2)L(4)L(8) ••- L(2n) 

*-i n n ^ F(3)F(7)F(15) •-- F(2n + 1 - 1) 

= lim_z(^o_9 
n""°  F(2n + 1 - 1) 

and the desired limit is a = (1 + /5)/2. 

Also solved by Paul S. Bruckman, Bob Prielipp, and the proposer. 

(Continued from page 6) 

Hence 
Un-1 = XlUn " ̂ l^n = (*i ~ X)Un ~ %i^« + Wn >- Un • 

Thus ft = 0. 
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PROBLEMS PROPOSED IN THIS ISSUE 

H-322 Proposed by Andreas N« Philippou, American Univ. of Beirut, Lebanon 

For each fixed integer k J> 2S define the ^-Fibonacci sequence f£ by 

the 
(a) 
(b) 

(c) 

/<*> « 0, / f > = 1, and 

m | / r
( : l + • • • + f 0

(fc) if 2 < n< k 
fn ~ \ C \ + ••• +/„<_*>* if n > fc+ 1. 

following: 
f(k) _ o n - 2 

f(k) < 2 n ~ 2 

f^(fa)/2n) 

if 2 < n < /c + 1; 
if n >_ k + 2; 

= 2k'K 

H-323 Proposed by Paul Bruckman, Concord, CA 
Let (xn)™ and Q/„)Q be two sequences satisfying the common recurrence 

p(E)zn = 0S (1) 

where p i s a monic polynomial of degree 2 and E = 1 + A i s t h e u n i t r i g h t - s h i f t 
o p e r a t o r of f i n i t e d i f f e r e n c e t h e o r y . Show t h a t 

x
nyn + i " xn + iyn

 = ( P ( ° ) ) n ( ^ 0 ^ i - *i2/o)» n = 0 , 1, 2 , . . . . (2) 
G e n e r a l i z e t o t h e ca se where p i s of degree e >, 1. 

H-324 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

E s t a b l i s h t h e i d e n t i t y 

A E Flhr(Fn
7
+lhr + F7

n) - lF10rAFn
s
+hl,.Fn + Fn + Ht,F6

n) 

+ 2 1 F 6 r ( F n
5

+ l ( r F 2 + Fn\kl,F5J - 3 5 F 2 r ( ^ + 1 | , F B
3 + F „ 3

+ l f , ^ ) 

= F ^ F 
hr 7n+lh' 

H~325 Proposed by Leonard Carlitz, Duke University, Durham, NC 

For arbitrary a, b put 

j+k-m 9 3 
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Show that 

YJ Sm(a$ h)Sn(es d) « Sp (a + a9 b + d) 
m + n ** p 

J2 (.-!)" Sm (a, b)Sn(a, d) = Sp(a - d, b - a). 

(1) 

(2) 
m + n ** p 

H™326 Proposed by Larry Taylor, Briarwood, NY 

(A) If p E 7 or 31 (mod 36) is prime and (p - l)/6 is also prime9 prove 
that 32(1 ± /^3) is a primitive root of p. 

(B) If p = 13 or 61 (mod 72) is prime and (p - 1)/12 is also prime,, prove 
that 32 (/-T) ± /3) is a primitive root of pD 

For examples 

11 = /^3 (mod 31), 12 and 21 are primitive roots of 31; 

11 = /-T (mod 61), 8 E /J (mod 61), 59 and 35 are primitive roots of 61, 

SOLUTIONS 

Vandermonde 

H-299 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 
(Vol. 17, No, 2, April 1979) 

(A) 

Evaluate A 

6P 

(B) 

Evaluate D 

(G) 

Evaluate D. 

F 

F 

F 

F 
E 3 Or 

3 6 P 

F 

F 
£ 7 OP 

J2 8r +14 

J36r +18 

J4 2r+2 1 

J 5 4 P + 2 7 

LQr 

Llhv 

-724j' +12 

J72P +3 6 

in La LC J 7 2 P 

Solution by the proposer 
(A) Taking out the common column factors 

r 2p s ^ 6p S -̂  l Or S 1 *+r 5 3I1.GL r -̂  £ 

and simplifyIngs we obtain: 
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A = F F F F F 
2rL Gr 10v Ikr 18r 

^ 2 P ^ 6 P ^ 1 0 P ^ 1 4 P ^ 1 8 P 

1 

J\2v 

J 1 8 P 

1 0 P 

J2Qr 

- ' S O P 

u2hv 

^ 2 P ) ^ 1 

» 1 

L2r) (Llh L2r^ &18r "" L2v) 

- ^ 6 r , ) ( i l t f p ~ ^ 6 p ) ( L 1 8 P ~ L 6 r ) 

^ l * t p "" ^ 1 0 P ) ^ 1 8 P * L 1 0 p ) 

^ 1 8 P ~ ^ 1 4 P ) 

= S Z*7 T*7 TP TP TP TP * TP TP ^ TP ^ TP^ TP^ TP TP 
"* z 2 P r 6 P r 1 0 P r 1 4 p r 1 8 P r 2 P r 4 P r 6 P r 8 P r l Q P r 1 2 P £ l ' 4 P £ 1 6 P 

= c: E7 5 jp ^ p1*- rr 3 p 3 n 2 7^2 77 p 
J r 2 p r 4 P r 6 P r 8 P r 1 0 p r 1 2 p r l ^ P 1 6 p 1 8 P e 

(B) The solution is as follows? 

( 1 ) ^ 6 P + 3 + - ^ 2 P + 1 ~ " ^ \ P + 2 * 2 r + l 

(2) L12r + 6 +L^v+2 = 5F8r + lt Fl^r_h2 

( 3 ) ^ 1 8 2 , + 9 + - ^ 6 P 4 - 3 = - ^ 1 2 P + 6 ^ 6 P + 3 

W ^ 2 4 P + 1 2 + ^ 8 P + 4 

( 5 ) ^ 1 4 2 , + 7 ^ 6 P + 3 

( 6 ) L2 8 r + 1 4 - • / - y i2p + e 

(7) L 

- ^ 1 6 P 4 - 8 1 8 r + 4 

4-2P + 2 1 - ^ 1 8 p + 9 

(1) divides (2) , (3) , (4) , 

, . ( 8 ) - ^ 5 6 p + 2 7 ^ 2 4 P + 1 2 

. . (5) divides (6) , (7) , (8) 

J r 10P-I- 5 S r + 2 

= ^ 2 0 r + 1 0 - ^ 8 r + 4 

= ^ 3 0 P + 1 5 " l 2 P + 6 
__ c jp jp 

•J£ 4 0 P + 2 0 " 1 6 P + 8 

" = ^ 6 r + 3 + ^ 2 P + 1 ^ ^ 1 0 P + 5 "" ^ 2 r + P ^ U r + 7 + ^ 2 P + 1 ' ^ 1 8 P + 9 ~ • ^ r + l ' 

( • ^ 1 0 r + 5 + ^ 6 r + 3 ^ ^ m r + 7 " ^ 6 P 4- 3 ' v ^ l 8 P + 9 + ^ 6 P + 3 ) 

ffur+7 + ^ 1 0 P + 5 ) ( - ^ 1 8 r + 9 "" ^ l O P + 5 ) 

v k l 8 r + 9 + ^ 1 4 P + 7 ^ 

= 5 i o p * 
2 P + 1 l+P + 2 i 6 P + 3^ 8P + 41" 1 O P + 5 1 2 P - f 6 i 1 4 P + 7 16P-S-8 • 

(C) The solution is as follows: 

( 1 ) ^ r ( 4 t + 2 ) ~ - ^ p ( 4 8 + 2 ) ~ ^ r ( 2 s + 2 t + 2 ) - ^ r ( 2 t - 2 8 ) 

( 2 ) -kpkC+t + 2) ^ ( ^ 8 + 2 ) 5Frk{28 + 2 * +2)Frk(2t - 28) 

(3) 

(4) 

Since (3) divides (4) , (1) divides (2) . Checking for proper degree and sign* 
the sum of the subscripts in the main diagonals we have 

D1 = (L6r - L2r) (L1Qr - L2r) (L^p ~ L2r)wi8P " -^2r) 

( ^ 1 0 P ~ - ^ 6 P ) ( - ^ 1 M - P ~ - ^ 6 P ) ( ^ 1 8 P ~ - ^ 6 P ) 

^ I h r ~ ^ 1 0 P ) w i 8 r ~ - ^ l O r ) 

(£ 1 8 P .) 
or D, 5 1\)jpl+jpHjpdjpdjp2 jp 2 jp jp 

c 2rrhv£ 6 P ^ 8 P - ^ 1 0 r f 1 2 P ^ 1 >4p ̂  1 6 P • 

Sum Difference 

H~301 Proposed by V. E. Hoggatt,Jr*, San Jose State University, San Jose, CA 
(Vol. 17, No. 2, April 1979) 



96 ADVANCED PROBLEMS AND SOLUTIONS Feb. 1981 

Let A0s A 1 S A z 9 . . ., An9 . . . be a sequence such that the nth differences are 
zero (that is, the diagonal sequence terminates). Show that, if 

A(x) - Y,Atx\ 
then 

A(x) = 1/(1 - x)D(x/(l - x))9 

where 

D(x) = Y^dtxK 

Solution by Paul Bruckman, Concord, CA 

It is assumed that the d^s9 which are not explicitly defined, are in fact, 
defined as d^ = AM 0 . Then, 

* ' •£ =* 0 £ = 0 ft — U 

^ = 0 * = 0 ^ = 0 fe=^ 

fc.» 0 £ = 0 fe = 0 i = 0 

= X>*(1 + A)*yl0 = £ x ^ ^ 0 
fc = 0 fc = Q 

= ̂  ^ k ='il(a;). Q,E8D. 

IAM0 
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