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PERFECT MAGIC CUBES OF ORDER 4 m 

BRIAN ALSPACH and KATHERINE HEINR1CH 
Simon Fraser University, Burnaby, B . C . , Canada V5A 1S6 

ABSTRACT 

It has long been known that there exists a perfect magic cube of order n 
where n £ 3, 59 75 2m, and km with m odd and m >_ 1. That they do not exist for 
orders 2, 3, and 4 is not difficult to show. Recently, several authors have 
constructed perfect magic cubes of order 7. We shall give a method for con-
structing perfect magic cubes of orders n - km with m odd and m _> 7. 

?. INTRODUCTION 

A magic square of order n is an nx n arrangement of the integers 1,2, . „., 
n2 so that the sum of the integers in every row, column and the two main diag-
onals is n(n2+ 1)12% the magic sum. Magic squares of orders 5 and 6 are shown 
in Figure 1. 
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It is a well-known and long established fact that there exists a magic square 
of every order n, n ^ 2. For details of these constructions, the reader is re-
ferred to W. S. Andrews [2], Maurice Kraitchik [13], and W. W. Rouse Ball [6]. 

We can extend the concept of magic squares into three dimensions. A magic 
cube of order n is an nxnxn arrangement of the integers 1,2, ..., n3 so that 
the sum of the integers in every row, column, file and space diagonal (of which 
there are four) is n(n3 + I)/2i the magic sum. A magic cube of order 3 is ex-
hibited in Figure 2. 

10 26 6 23 3 16 9 13 20 
24 1 17 7 14 21 11 27 4 
8 15 19 12 25 5 22 2 18 

Fig. 2 

Magic cubes can be constructed for every order n, n ^ 2 (see W. S. Andrews [2]). 
A perfect magpie cube of order n is a magic cube of order n with the additional 
property that the sum of the integers in the main diagonals of every layer par-
allel to a face of the cube is also n(n3 + l)/2. In 1939 Barkley Rosser and 
R. J. Walker [15] showed that there exists a perfect magic cube of order n, 
n ^ 3, 5, 7, 2m, or 4m, m odd. In fact, they constructed diabolic magic cubes 
of order n and showed that they exist only when n £ 3, 5, 7, 2m, or 4m, m odd. 
A diabolic (or pandiagonal) magic cube of order n is a magic cube of order n in 
which the sum of the integers in every diagonal, both broken and unbroken, is 
n(n3 + l)/2. Clearly, a diabolic magic cube is also a perfect magic cube. We 
shall prove that there do not exist perfect magic cubes of orders 3 and 4. 
These proofs are due to Lewis Myers, Jr. [9] and Richard Schroeppel [9]. Per-
fect magic cubes of order 7 are known to have been constructed by lanP, Howard, 
Richard Schroeppel, Ernst G. Straus, and Bayard E. Wynne. In this paper, we 
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98 PERFECT MAGIC CUBES OF ORDER km [April 

shall present a construction for perfect magic cubes of orders n = km9 m odd, 
m _> 7, leaving only the orders n = 5, 12, 20, and 2m for m odd to be resolved. 
We remark here that Schroeppel has shown that if a perfect magic cube of order 
5 exists, then its center must be 63. 

2. VETW1T10NS avid CONSTRUCTIONS 
As far as possible, the definitions will be in accord with those given in 

J. Denes and A. D. Keedwell [7]. 
An nxnxn three-dimensional matrix comprising n files, each having n rows 

and n columns, is called a cubic array of order n. We shall write this array 
as A = (a^-fe), i, j, k e {1, 2, ..., n} where dijk is the element in the ith row, 
jth column, and kth. file of the array. When we write a^ + 2% j + s, k + t we mean for 
the indices i + r9 j + s, and k + t to be calculated modulo n on the residues 
J- , ^ 9 . . a , fL a 

The set of n elements {cii + i, jtk> & = 1, 2, ..., n} constitutes a column; 
{ai^ + ix* £ = 1, 2, ... , n} constitutes a row; {&£,j k + si: & = 19 2, ..., n} 
constitutes a file; and {a^ + £t j + £> fe. & = 1, 2, ..., n}, {ai + l^^ k + Si i I = 1, 
2, ..., n}, {̂ i,J- + £,k+£: • & = l', 2,'..., n} and {ai + £, J. + £s fc + £: £*=' 1, 2, ..., n] 
constitute the diagonals. Note that a diagonal is either broken or unbroken; 
being unbroken if all n of its elements lie on a straight line. The unbroken 
diagonals consist of the main diagonals, of which there are two in every layer 
parallel to a face of the cube, and the four space diagonals. 

We shall distinguish three types of layers in a cube. There are those with 
fixed row, fixed column, or fixed file. The first we shall call the CF-layers, 
the ith. CF-layer consisting of the n2 elements {a^ki 1 £ j', k <_ n}. The sec-
one are the RF-layers in which the jth RF-layer consists of the n2 elements 
{a j k : 1 <. i9 k <_ n}. And finally, the RC-layers, the kth consisting of the 
elements {a^k . 1 <_ i9 j <_ n}. 

A cubic array of order n is called a Latin cube of order n if it has n dis-
tinct elements each repeated n2 times and so arranged that in each layer paral-
lel to a face of the cube all n distinct elements appear, and each is repeated 
exactly n times in that layer. In the case when each layer parallel to.a face 
of the cube is a Latin square, we have what is called a permutation cube of 
order n. From this point on, we shall be concerned only with Latin cubes (and 
permutation cubes) based on the integers 1, 2, ..., n* 

Three Latin cubes of order n, A = {a^k) 9 B = (bijk)9
 ai*d C = {o^k)9 are 

said to be orthogonal if among the n3 ordered 3-tuples of elements (ai{J-k9 b^k9 
eijk) every distinct ordered 3-tuple involving the integers 1, 2, ...,n occurs 
exactly once. Should A9BS and C be orthogonal permutation cubes, they are said 
to form a variational cube. We shall write D = (di;]-k) where d^k - (a^-k9 b^k9 
°ijk) t o ^e t n e cube obtaineid on superimposing the Latin cubes A9 B9 and 'C and 
will denote it by D = 04, B9 C) . 

A cubic array of order n in which each of the integers 1, 2, ..., n3 occurs 
exactly once and in which the sum of the integers in every row, column, file, 
and unbroken diagonal is n{n3 + l)/2 is called a perfect magic cube. 

We shall give two methods for constructing perfect magic cubes. These 
methods form the basis on which the perfect magic cubes of order n- hm9 m odd, 
77? J> 7, of Section 3 will be constructed. 

ComtmidtlOYl ?** Let A = (a^-fc), B = (bijk)9 and C = (ci;jk) be three orthogonal 
Latin cubes of order n with the property that in each cube the sum of the inte-
gers in every row, column, file, and unbroken diagonal is n(n+ l)/2. Then the 
cube E = (eijk) where eijk = n2(aijk - 1) + n(bijk - 1) + (cijk - 1) + 1 is a per-
fect magic cube of order n. This is verified by checking that each of the in-
tegers 1,2, ..., n3 appears in E and that the sum of the integers in every row, 
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column, file, and unbroken diagonal isn(n3+l)/2. It is clear that each of 
19 29 „.., n3 appears exactly once in E. We shall show that the sum of the in-
tegers in any row of E is n(n3 + l)/2. The remaining sums can be checked in a 
similar manner. 

n n 

n n n n 

~n2Y,ai.j+i.k +nY,b*.d+*>*- + L^i^.fc - E(n2 + n ) 
£ - 1 • £ - 1 . £ - 1 £ = 1 

= (n2 + n + l)(n(n + l)/2) -n(n2 + n) 

= n(n3 + l)/2. 

CoviA&LULCLtLon 2: Let A = (a^k) and 5 = fciok) be perfect magic cubes of orders 
tfz and n , respectively. Replace b^k in 5 by the cube C - (crst) where er8t -
CLvst + m3 @ijk ~ 1) • This results in a perfect magic cube E - (e ^-k) of order 
ra?3. Each of the integers 

1, 2, . . . 5 7773 , IT!3• + 1 , 7H 3 + 2 , . . . , 2T773 , 

(n3 - l)m3 + 1, (n3 - l V +2-, ..., n3m3 

appears exactly once in E\ As in the first construction, we shall show that 
the row sum in E is nm((nm)3 + l)/2; the remaining sums are similarly verified. 

nm_ m n 

• SL = 1 £ = 1 I = 1 • 

= wn(rn3 + l)/2 + w4 (n (n3 + l)/2 -- n) 

= nm((nm)3 + l)/2. 

It will be seen in Theorem 3.6 that it is not necessary that A and B should 
both be perfect magic cubes in order for E to be a perfect magic cube. 

3. VERFECT MAGIC CUBES 
The first result is stated without proof and is due to Barkley Rosser and 

R. J. Walker [15]. 

ThzoKom 3.1: There exists a perfect magic cube of order n provided n £ 3,5, 7, 
2m, or km for m odd.a 

The following three theorems are the only known nonexistence results for 
perfect magic cubes. For the first, the proof is trivial. The proof of the 
second theorem is that of Lewis Myers, Jr. (see [9]) and of the third is that 
of Richard Schroeppel (also see [9]). 

Tk&QJiem 3.2: There is no perfect magic cube of order 2.a 

ThdOKom 3.3: There is no perfect magic cube of order 3. 

V*WOfa Let A = (a^k) be a perfect magic cube of order 3; the magic sum is 
42. The following equations must all hold: 

allk + a22k + a33k = al3k + azzk + a3ik = al2k + a22k + a32k = ^ 

and allk + alzk + a13k = a31k + a3zk + a33k = 42. 

But together these imply that a2 , = 14 for k = 1, 2, and 3, a contradiction.• 
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Tk&OKQjn 3,4: There is no perfect magic cube of order 4. 

VK.OO^: Let A = ( a ^ ) be a perfect magic cube of order 4; the magic sum is 
130. 

First, we shall show that in any layer of such a cube the sum of the four 
corner elements is 130. Consider the kth RC-layer. The following equations 
must hold in A: 

allk + a12k + a13k + alhk = allk + a22k + a33fc + ahhk 

= allk + a21k + a31k + ahlk = 130, 

alhk + aZ3k + a32k + ahlk = a1Zffc + a2hk + a3htk + ahhtk 

These imply that 
flflk + ^ 2 f c + ^3fe + a^k = 1 3 0 -

and as 

then 

2fan* + ai4fe + a4ifc + a^fe> + E jLaHk = 6 ' 1 3 0 

E X > ^ = 4 - 1 3 0 > 
ailk + *H>* + a41fe + * W • 1 3 0 -

Since the same argument holds for any type of layer in the cube, we have that 
the sum of the four corner elements in any layer is 130. A similar argument 
shows that cz111 + a111( •+ ahhl + ahhh = 130. Thus we have 

<*iiv+ a i if + "mi* + a i . i = ai**i + amn + a ^ h
 + %m 

= ^ 1 1 1 ^ 1 1 4 - ^if Xf tf ' ^ 4 . 4 1 " J - J ^ ' j 

from which it follows that 

aill + aHH + ̂ 144 + a!4l + 2 K * 4 + Sin) = 260' 
and hence a^^ + ahhl = 65, Similarly, we can show that alhl + ahhl = 65. Com-
bining these two results, we have alhl - ahhh9 a contradiction.• 

Using an argument similar to that of Theorem 3.4 Schroeppel has shown that 
if there exists a perfect magic cube of order 5 its center is 63. 

For some time it was not generally known whether or not there existed a 
perfect magic cube of order 1 but when, in 1976, Martin Gardner [9] asked for 
such a cube, it appeared that they had been constructed without difficulty by 
many authors including Schroeppel, Ian P. Howard, Ernst G. Straus, and Bayard 
E. Wynne [17]. 

Tk<L0h.£m 3,5: There exists a perfect magic cube of order 7. 

VK.00^: We shall construct a variational cube of order 7 from which a per-
fect magic cube of order 7 can be obtained via Construction 1. Let the three 
cubes forming the variational cube be A9 B9 and C; the first RC-layer of each 
being shown in Figure 3. Complete A9 B9 and C using the defining relations 

a i , j , fc + i = aiok + L> bt,j,k + l = bidk + 1 
a n d %d.k + l = CM + 2> 
where the addition is modulo 7 on the residues 1, 2, ..., 7. Now, in A and B9 
exchange the integers 4 and 7 throughout each cube. The variational cube of 
order 7 now has the properties required by Construction 1 and so we can con-
struct a perfect magic cube of order 7. This can easily be checked.• 
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Fig. 3 
We shall now proceed to the main theorem. 

T/ieo-fcem 3.6: There exists a perfect magic cube of. order km for m odd and m_> 7. 

VK.OO^I We know that there exists a perfect magic cube of order m,m odd and 
m_> 7. This follows from Theorems 3.1 and 3,5. Since there does not exist a 
perfect magic cube of order 4 (Theorem 3.4), we cannot simply appeal to Con-
struction 2 and obtain the desired perfect magic cubes. However, we can use 
Construction 2 and by a suitable arrangement of cubes of order 4 obtain a per-
fect magic cube of order 4m. The construction is as follows. 

Let A = ( a ^ ) be a perfect magic cube of order m9 m odd and m J> 7. Let 
5 = (fc^k) be a cubic array of order m in which each fc^-fc is some cubic array 
Z^k of order 4 whose entries are ordered 3-tuples from the integers 1, 2,3, 4 
with every such 3-tuple appearing exactly once. The D^^ are to be chosen in 
such a way that in the cubic array B the componentwise sum of the integers in 
every row, column, file, and unbroken diagonal is (10m, 10???, 10m). It is now a 
simple matter to produce a perfect magic cube of order 4 . In D^k replace the 
3-tuple (r, s, t) by the integer 

(16(P - 1) + 4(s - 1) + (t - 1) + 1) + 64(a^ - 1). 

The cubic array E = (ê -fc) of order 4m so constructed is, by considering Con-
structions 1 and 2, a perfect magic cube. 

It remains then to determine the order 4 cubic arrays ##&. 
Consider the four Latin cubes Xl9 X29 X3, and X^ as shown in Figure 4 where 

from left to right we have the first to the fourth RC-layers. It is not dif-
ficult to check that X1, J2, and X3 are orthogonal, as are Il5 Xl9 and X4. We 
shall write X^ for the Latin cube X± in which the integers 1 and 4 have been 
exchanged as have 2 and 3. Also (X19 X2, Z 3 ) f means that the cubic array (Xl9 
Xl9 X3) has been rotated forward through 90°  so that RC-layers have become CF-
layers, CF-layers have become RC-layers, and the roles of rows and files have 
interchanged in RF-layers. 
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J i t : 3 3 2 2 1 1 4 4 4 4 1 1 2 2 3 3 
2 2 3 3 4 4 1 1 1 1 4 4 3 3 2 2 
1 1 4 4 3 3 2 2 2 2 3 3 4 4 1 1 
4 4 1 1 2 2 3 3 3 3 2 2 1 1 4 4 

Fig. 4 
We can now define the cubic arrays B i.k . 

V m + l m + l = ®m m + l m + l = & itl,m = DU9mtm = ^ 1 ' ^ 2 ' X3) '» % = 2 , . 3 , , . . , 777 - 1 
* 2 ' 2 2 ' 2 

^ 1 , 1, m = ^ 1 , m,m = ^ 1 , 1 , 1 = ^ 1 , m, 1 = ^ 1 ' X2* ^ 3 ) 

^ 2 , 2 , m - 1 = ^ 2 , m - 1 , m - 1 = ^ 2 ' ^ 3 ' ^ P 

^ 2 , 2, 2 = ^ 2 , m - 1 , 2 = (X2> Xh> X0 

" 3 , a , m - 2 = J ^ 3 , m - 2 , m - 2 = V^3 » ^ 1 ' ^ 2 ^ 

^ 3 , 3 , 3 = ^ 3 , m - 2 , 3 = ( ^ 3 » ^ 1 » ^ 2 ) 

Di,m + 1- i , i ~ D i9m-+l-i, m + l - i = ^ . i . m + l - i = ®i,iti = t ^ l ' ^ 2 » ^ 3 ) » 

t = 4 , 5 , 772 + 3 

Ui,m + l - i , i ^ itm + l-iim + l - i "iti9m + l - i "it i, i ^ 1 ' ^ 2 » ^ 3 ^ » 

m + 5 772+7 
772. 

In every CF-layer of B, except for the second and third, replace the remaining 
b^'ji in each unbroken diagonal by either 

*V* - <*1» X2> J3> ° r D i ^ = <*?» J?> Jt) 
so that in each diagonal there are (77? - l)/2 arrays (X19 X29 X3) and (772 - l)/2 
arrays (X\9 X*, X^). In the second and third layers do the same but here there 
are to be only (777 - . 3) /2 of each type of array as already three arrays in each 
diagonal are determined. All remaining b^k are to be replaced by 

Dijk = (Xl» X2> X3^ ' 

We must now (verify that in this cubic array the componentwise sum of the 
integers in every row9 column, file, and unbroken diagonal is (IO772, 10772, IO777). 

Since the sum of the integers in every row, column, and file of X^ and J*, 
£ = 1, 2, 3, 4, is 10, then in B the componentwise sum of the integers in every 
row, column, and file is (IO777, IOTT?, 10m). Also, as the sum of the integers in 
every unbroken diagonal in the RC-layers and RF-layers of X^ and X^, i - 1, 2, 
3, 4, is 10, and as (X19 X29 X3)f does not occur on any of these unbroken diag-
onals in B9 then the componentwise sum of the integers in these unbroken diag-
onals of B is (IO772, IO77?, IO777) . So we now have only to check the sums on the 
unbroken diagonals of the CF-layers and the sums on the four space diagonals 
of B. 

The unbroken diagonals in the CF-layers of B are D^ll9 Bi2l9 •••» ^imm anc* 
Dimi> Di,m-it z> — • > Diim» ^ = l> 2,..., 772. Let us write Sr(D^k ) for the com-
ponentwise sum of the integers in the relevant diagonal in the pth CF-layer of 
^ijk • ^e want to show that 

m m 
][X (Z?̂ .) = ^Sr(Ditm + 1 . . d t d ) = (10772, 10777, 10772), V = 1, 2 , 3, 4. 

j-1 J-l 
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If i + 2S 3, then 

m 

5 X ( 0 W ) =EL^±srax1, x2, x3)) + !"-i-Lsr«x*9 x*9 x*))+sP«x19x29xsy) 
j - i 

7 7 7 — 1 7?? — 1 

•(8, 4, 12) + 1(129 16, 8) + (10, 10, 10) when r = 1 

(12, 4, 8) + m ~ 1(8, 16, 12) + (10, 10, 10) when v = 2 

(12, 16, 12) + m ~ 1 (8, 4, 8) + (10, 10, 10) when r = 3 

(8, 16, 8) + m ~ 1(12, 4, 12) + (10, 10, 10) when r = 4 

77? 

77? 

777 

2 
_ 
2 
-
2 
-

1 

1 

i 

Also, 

(10777 , 10777, 10777) . 

X X ( £ 2 ^ ) = 2 L ^ ^ ((*!> J 2 , * 3 » + ^ ^ ( ( * ? 9 *?* X*3))+SP«X29 X,, Xx)) 
J - l 

+ 5 r ( (Z*, J 3 , J*)) + 5 , ( ( Z l f X29 J 3 ) f ) 

^-=-^-(8, 4, 12) + ^=-^-(12, 16, 8) + (4, 8, 8) + (16, 12, 12) 
+ (10, 10, 10) when r = 1 
+ (4, 12, 12) + (16, 8, 8) 

+ (10, 10, 10) when r = 2 
+ (16, 8, 12) + (4, 12, 8) 

+ (10, 10, 10) when r = 3 
+ (16, 12, 8) + (4, 8, 12) 

+ (10, 10, 10) when r = 4 

2 _ 3 - ( 1 2 , 4, 8) + ^ ~ ^ ( 8 9 16, 12) + (4, 12, 12) + (16, 8, 8) 

2 - y l ( i 2 , 16, 12) + 2 L _ 2 ( 8 , 4, 8) + (16, 8, 12) + (4, 12, 8) 

^ - y - ^ ( 8 , 16, 8) +2L^_3( i2 , 4, 12) + (16, 12, 8) + (4, 8, 12) 

(IO777, IO777, l O m ) 
and 

777 - 3 r 7 7 7 — 3 ^ ( U 1 $ x29 x3)) + ~ - ^ 2 , ( ( z t 5 *?. x*))'+52.(u3, x15 x2)) 

+ s„(a*, x*5 xp) +s2 >(a1 , *2, x3)o 
+ (12, 8, 4) + (8, 12, 1( 
+ (10, 10, 10) when r = 1 
+ (8, 12, 4) + (12, 8, 16) 
+ (10, 10, 10) when r = 2 

'+ (12, 12, 16) + (8, 8, 4) 
+ (10, 10, 10) when r = 3 
+ (8, 8, 16) + (12, 12, 4) 
+ (10, 10,. 10) when r = 4 

~^-(S9 4, 12) +^L=-^(12, 16, 8) + (12, 8, 4) + (8, 12, 16) 

2 - y ^ ( 1 2 , 4, 8) + 2 L _ 3 ( 8 , 16, 12) + (8, 12, 4) + (12, 8, 16) 

2 - ^ ( 1 2 , 16, 12) + 2 L _ 3 ( 8 , 4, 8) + (12, 12, 16) + (8, 8, 4) 

^ - 3 - ^ ( 8 , 16, 8) + ^ — - 1 ( 1 2 , 4, 12) + (8, 8, 16) + (12, 12, 4) 

(10777 , 10772, 10 /77 ) , 
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Similarly, one can check that 

m 

HSr(Vi,m+l-j,j) = (10W, 10/72, 10/72) 

and so the componentwise sum of the integers in the unbroken diagonals in the 
CF-layers of B is (10/77, 10/72, 10/72). 

The four space diagonals of B axe 

Diii> l = X» 2' •••» m' ^ . m + i-i,*' i = 1. 2, ..., TTZ; 

^w+l-£,t,£» "̂  = ^ » 2> •'•» m> ^m + l-i,m+l-i, i* ^ = 1» 2, ..., 772. 
Write SiDtjk) to be the sum of the integers in the relevant space diagonal of 
D1 J j, . We want to show that 

m m m m 

t = 1 £=* 1 •£ = 1 i=l 

= (10777, 10777, 10/72). 

Consider each of the space diagonals in turn. 

m 

Y,s<Pm) = sax1, x2, x3)) + sax2, xk, xx)) + sax3, xlt xz)) 
+ <n-^-s«x1, x2, x3)) +?L^-s«x*, x*, x*3)) 

= ( 6 , 10, 14) + (10 , 14, 6) + (14 , 6 , 10) + m ~ 3 ( 6 , 10, 14) 

+ 2 - ^ ( 1 4 , 10, 6) 
= (10m, 10m, 10m) 

Y,s(Pi,m + i-i,i) - S({Xlt X2, X 3 ) ) + S«X2, X„, Z x ) ) + 5 ( ( Z 3 , Xlt X2)) 

+ 2 - Z _ 3 S f ( ( j 1 , j 2 > j 3 ) ) ^ . ^ ^ - ^ ( ( j * , j * , j * ) ) 

= (14 , 10, 6) + (10 , 6 , 14) + ( 6 , 14, 10) + 2 L-=-5-(14, 10, 6) 

+ ^ - ^ • ( 6 , 1 0 , 1 4 ) 
= (10m, 10m, 10m) 

m 

T,s^Di.r,+i-i,m+i.i) = s«xlt x2, x3)) + saxf, x3, x?)) + scat, J*, x%» 
+ ~^-S{{X1, X2, Z 3 ) ) + ^ - A s ( ( X * , X*, X*)) 

= (14 , 10, 14) + (10 , 14, 6) + ( 6 , 6 , 10) + m ~ 3 ( 1 4 , 10, 14) 

+ 2 - = - ^ ( 6 , 10, 6) 
= (10m, 10m, 10m) 
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m 

i-1 

= (6, 10, 6) + (10, 6, 14) + (14,-14, 10) + —-^-(6, 10, 6) 

+ 24^(14, 10, 14) 
= (10m, 10m, 10m). 

Thus we have found a way of arranging order 4 cubic arrays, in which each 
of the ordered 3-tuples on 1, 2, 3, 4 appears exactly once, in an order m cubic 
array B so that in B the componentwise sum of the integers in every row, col-
umn, file, and unbroken diagonal is (10ms 10ms 10m). Therefore, as previously 
stated, we can construct a perfect magic cube of order 4m for m odd and m >. 7,D 

4. EKTEHSIOMS AW fROBLEMS 
We know now that there exists a perfect magic cube of order n provided n f 

3, 4, 5, 12, 20, 2m, for m odd, and that they do not exist when n = 2, 3, or 4. 
So the question remaining is whether or not there exist perfect magic cubes of 
orders n = 5, 12, 20, and 2ms f or m odd and m >_ 3. It seems probable that such 
cubes of orders 12 and 20 can be constructed along the lines of Theorem 3.6 us-
ing cubic arrays of orders 3 and 5 that are close to being perfect magic cubes 
and arranging in them order 4 cubic arrays composed from X^ and X% 9 i - 1, 2, 
3, 4, as before. It may also be possible that by arranging order 2 cubic arrays 
in order m cubic arrays, m odd and m _> 7, one can obtain perfect magic cubes of 
order 2m. As for order 5, all we know is that if there is a perfect magic cube 
of order 5 its center is 63. 

A more recent problem in the study of magic cubes is that of extending them 
into k dimensions. For details on this problem and the related problem of con-
structing variational cubes in k dimensions, the reader is referred to [1], [3], 
[4], [5], [7], [8], [12], and [16]. 
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GENERATING FUNCTIONS FOR RECURRENCE RELATIONS 
LEONARD E. FULLER 

Kansas State University, Manhattan, KA 66506 

1. 1NTR0VUCTJ0N 
t • 

In a previous paper [3] the author gave explicit solutions for four recur-
rence relations. The first was a basic relation with special initial condi-
tions. The solution was shown to be related to the decompositions of the integer; 
n relative to the first m positive integers. The second basic relation then 
restricted the first so that the solution was related to the decomposition of 
n relative to a subset of the first m positive integers. Then the initial con-
ditions for both were extended to any arbitrary values. 

In the next section we shall give the generating functions for all four of 
these cases, starting with the initial condition of highest index. We also 
note the form of the function for arbitrary indices for the initial conditions. 
Finally, we give a second function that generates all the initial conditions. 

In Section 3 we give a simple example of the fourth kind of relation. We 
determine the first few terms of this relation and then compute its generating 
function. Then we consider relations given in [1] and [2] and determine their 
generating functions. 

2. THE BASIC GENERATING FUNCTION 
We shall consider a recurrence relation defined by 

m 
Gt = JlrsGt-sl Gi-m>'--» Go a r b i t r a r y . 

8-1 

For notation, we shall refer to its generating function as Rm(G;x). The first 
term generated will be G0. Later, we shall give a second function that will 
start with G1_m. 

Tke.0A.2Jfn 2.1» The generating function for the recurrence relation Gn is as fol-
lows: 

R„(G; x) = L + £ £ *,<?„_.*» )(l.- E * . * ' ) 1 -

To prove that this does generate Gn, we set this equal to /~J Gnxn and then 
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multiply by the factor with the negative exponent. This gives 
m - 1 m oo m <*> 

Go + E £ *.<?»-.*" = £ Gs*s - £ £rEGn*s+n. 
n = l s = n + l rc = 0 s = l n = 0 

In the last summation, we replace n by n - s and transpose it to the left side 
so that 

m - 1 m m QQ OO 
G o + £ £ rsGn_sx" + £ £rsGn.8x» = £<?„*». 

n = 1 s • n + 1 B - 1 n = s n = 0 

We now break the second sum at n = m and then interchange the orders of summa-
tion. We have 

m-1 m _m_ n_ oo m 

£ 2>, 
n = 1 s « n + l 

rn - x m m n oo m oo 
Go + £ £ r.G„-.*B + £ £ r 8 G „ . ^ n + £ £ r 8 G n _ s * " = £ GBx». 

Note that for the first sum, if n = ms there would be no second sum, so we can 
combine the first three summations to give 

Go + £ X>. <?»-.*" = £cnx". 
n-1 a - 1 « = 0 

It remains only to observe that the inner sum on the left is just Gn , so we have 
the desired result. 

We now specialize this result for the Un relation. 

CoMolZaAif 2.2: The generating function for the relation 

m 

is given by 

Rn(U; x) = h - Y,rex°j . 

In Theorem 2.1 the double summation of the numerator is zero since all in-
itial conditions involved are zero. The other initial condition is 1, so the 
first factor is 1. 

An Implication of this result is that the generating function for Gn is ob-
tained from that of Un by multiplication by a polynomial of degree m - 1. 

In [3] we generalized both the Un and the Gn relations to the Vn and the Hn 
relations. This was accomplished by taking a subset A of the integers from 1 
to 772, including 772, The solutions then were obtained by replacing vt with 0 if 
i £ A. We shall do that for their generating functions. 

CoKotlaXy 2.3: The generating function for the relation 

8 eA 
is given by 

RA(V; x) = Yl - £ rex*\ 

This follows directly from Corollary 2.2 by replacing vi with 0 If i £ A. 
The most general recurrence relation is the Hn* Its generating function is 

given in the next corollary. 

CotiolZaAy 2.4: The recurrence relation 
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H* = E 2 * ^ * - * 5 Hi-*9 "> H° a r b i t r a r y » 
± S 8 i V e n b y a £ / - i \/ v i 

RA(H; x) = [H0 + £ £ vsEn_sxn (l - J^ r8xA , 
\ seA> n-1 / \ seX / 

where i4 ' is A with 1 deleted if 1 e 4; otherwise .4' = A, 
For the proof of this* we first need to interchange the order of summation 

in the numerator of the function of Theorem 2.1. Then we replace ri with 0 for 
i + A. 

The theorem together with the three corollaries start generating the given 
relation with the initial condition of highest order. In all our cases, this 
was the one with index 0. We can modify the notation to obtain a generating 
function with any indices for the initial conditions. 

TktOKOm 2.5: The recurrence relation 

m 
Gt =lLrsGt-s'> Gi + p> •••> Gm + P arbitrary, 

s = l 

has for its generating function 

2/n + l + p m \ / m 
G.+pXm + P+ E E *e<tn-*n ( l - X > . * ' 

n - w + l + p s - n - m + 1 / \ s=l 

This reduces to Theorem 2.1 when p = -m9 as can be verified. 
The only change we have for the Un and Vn relations is to have as the num-

erator Um + pxm+p and Vm + pxm + p, respectively. The change for the Hn relation is 
given in the next corollary. 

Co/LOttaAif 2.6: The recurrence relation 

Ht = E
 r8Ht-a'> Hi-P> •••' Hm + P arbitrary, 

seA 

has fo r i t s g e n e r a t i n g func t i on 

( m+p+8-1 \ / . 

^ + P * m + P + E E r.B„-ax»)[l -'£rex>y1. 
k s e A ' n = m + p + l / \ s eA / 

Once more, this reduces to the result of Corollary 2.4 for p - ~m. 
If it were desired to generate all the initial conditions, the generating 

function is given in the next: theorem. 
TkdOh.QJ(r\ 2.7: A generating function for the relation 

m 
Gt = E p a ^ - S ; Gi + P> • • • » Gm + P a r b i t r a r y , 

u s = 1 

xs given by / m+P m+p n-l-p \ / m \ - i 

22GnXn-Y, E r*Gn s*n" 1 - E P ^ S ' 
\ n - . l + p n = 2 + p e - 1 / \ s « 1 J 

oo 

If we s e t t h i s equa l t o ^ J £ n # n and c l e a r t he n e g a t i v e exponent , we hayc 
n = 1 + p . . . 

m + P m + P n - l ~ p oo m oo 

E ^^n - E E ^ - ^ = E Gn*n - E E ^G**"*8-
n = l + p w = 2 + p a - 1 n = 1 + p e - l n - l + p 
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To simplify this expression, we use the first term on the left to reduce 
the first term on the right. We transpose the second sum on the right. Fur-
ther, we change the summation on n by replacing n by n - s, and then break the 
sum at n - m + p. This gives 

(w m + P m+p n-l+p \ m » « 

E E rA-s*n - E E r
8<*.-8*n) + E E ^Gn.sx" = £ <?„*». 

s-ln = l + s + p n = 2+p s -1 J s = l n»m + l+p n = m + l + p 
If s = 77Z in the first sum, we would have no second sum; thus we need sum 

only to m - 1. It can be verified that these two summations are the same. Fi-
nally, interchanging the summation on the last term on the left will give the 
right side from the definition of the Gn relation. 

For the Un and Vn relations, this gives the same generating function we had 
before. 

3. EXAMPLES Of THE GENERATING FUNCTIONS 
A simple example of an Hn relation will illustrate the results of the last 

section. Let A = {2, 5} so m = 5 and Ht = r2Ht_2 + i3
5Ht_5 with H_liS #_3, H_2, 

H_19 H0 all arbitrary. It can be readily verified that the application of the 
definition of the relation yields, for the first seven terms, 

H1 = v2R_i + r5H^ 

E2 = r2E0 + r5H.3 
H3 = r\E_x + r2rsH^ + r5ff_2 

Hk = r2#0 + r2r5H_5 + r5E_x 

H5 = v\E_x + r*r5H_„ + r2r5H.2 + r5H„ 

S6 = rlH0 + r|r5ff.3 + Tr^H^ + rffl.,, 

ff7 = r^S.j. + rf^^U + r2r5S-2 + 2r2r550 + r|S_3. 

The generating function is given by 

(fl0 + r2E^x + rs(fl_hx + E_3x'2+ E_2x3 + ff.1£c'*))(l - v2x2 - r^x5)'1. 

For t h e co r r e spond ing Vn r e l a t i o n , we have 
Vx = 0 , V2 = r2, V3 = 0 , Vh = r\, V5 = rs, 7g = v\, V? = 2 r 2 r 5 . 

The g e n e r a t i n g f u n c t i o n t h a t g ive s a l l t h e i n i t i a l c o n d i t i o n s has fo r i t s num-
e r a t o r 

E_hx~h + H_3x~3 + (H_2 - v2E_h)x-2 + (#_! - i ^ t f ^ )*"" 1 + (ff0 - P 2 # _ 2 ) . 

We shall list the five relations given in [2] and the one in [1, p. 4], and 
note their generating functions below them. 

1. Gk = rGk_i + sGk_2; G0 = 0, Gx = I 
x(l - rx - sx2)'1 = x + vx2 + ( r 2 + s)x3 . . . 

x(l - x - x2)'1 = x + ;c2 + 2x3 + 3x4 + 5x5 + &c6 ' + ' • • • 

(This i s t h e famous F i b o n a c c i s equence . ) 

3 . Mk = vMk_1 + sMk_2; M0 = 2 , ^ = p 

(ras + 2s# 2 ) (1 - P # - sx2)'1 = P + (p 2 •+ 2s)x2 + • • • 

or (2 - P X ) ( 1 - PX - s t f 2 ) ' 1 = 2 + P # + ( P 2 + 2 s ) ^ 2 + • • • 
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4. Lk - Lk_± + Lk-2l L0 = 2, L1 = 1 

Or + 2o?2)(l - x - x 2 ) " 1 = x + 3x2 + 4x3 + 7 ^ + 

or (2 - x)(l - x - a;2)"1 = 2 + a: + 3x2 + 4a?3 + 7x4 + '••• 

(This is the Lucas sequence.) 

5. Uk = rUk_1 + sUk„2\ U0; U-L arbitrary 

(J/jff + £/0s#2)(l - ra - s^2)"1 = £7-̂  + (^ + sUQ)x2 + ••• 

or (£/0 + (U1 - i/0)̂ )(l - 2W - sx2)'1 = [/0 + U±x + (rU1 + s£/Q)x2 + ••• 

6. Tn = p^.3. + sTn_2 - rsTn_3; TQ9 T±s T2 arbitrary 

(T2x2 + (sT1 - rsTQ)x3 - rsT^) (1 - rx - s#2 + rsx3)'1 

= T2x2 + (vT2 + s ^ - PS^Q)^3 + ••• 

or (T0 + (Si -rT0)x + (T2 - r ^ - sT0)x2)(l - rx - sx2 + P 2 X 3 ) - 1 

= T0 + T±x + T2x2 + (rT2 + sTx - r TQ)x3 + •••• 

From the solutions given in [2] and [1], it can be verified that we obtain 
the terms generated above. 

The generating function given in Section 2 can be used to generate terms of 
any given recurrence relation. With specified values for the Ti and the ini-
tial conditions, the problem becomes a division of one polynomial by another. 
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THE RESIDUES OF n* MODULO p 

LAWRENCE SOMER 
U.S. Department of Agriculture, FSQS, Washington, D.C. 20250 

SUMMARY 

In this paper we investigate the residues of nn (mod p) , where 1 <. n .<. p - 1 
and p is an odd prime. We find new upper bounds for the number of distinct 
residues of nn (mod p) that can occur. We also give lower bounds for the num-
ber of quadratic nonresidues and primitive roots modulo p that do not appear 
among the residues of nn (mod p). Further, we prove that given any arbitrarily 
large positive integer M, there exist sets of primes {p^ } and {o-}9 both with 
positive density in the set of primes, such that the congruences 

xx = 1 (mod p^), 1 <. x <_ pi - 1 (1) 

and 
xx = -1 (mod q.), 1 < x <_ q. - 1 (2) 

both have at least M solutions. 



1981] THE RESIDUES OF nn MODULO p 111 

7. INTRODUCTION 
Roger Crocker [4] and [5] first examined the residues of nn modulo p. It 

is clear that if n 2. 15 then the sequence {nn} reduced modulo p is periodic 
with a period of p(p - 1). This follows from the facts that (p - 1, p) =? 1 and 
that if 

n1 = n2 (mod p) and n1 = n2 (mod p - 1) , 
then 

n*1 = n*2 (mod p) . 

The following theorem shows that every residue appears among the residues of nn 

modulo p, where 1 <_ n <^ p(p .- 1), and counts the number of times a particular 
residue occurs. 

Tfoeo/iem 1: Consider the residues of nn modulo p, where 1 <_ n <_ p(p - 1). Then 
the residue 0 appears p - 1 times. If p ^ 0 (mod p) and the exponent of r mod-
ulo p is <i9 then the number of times the residue v appears is 

X *(^f)((p ~ DJd'). (3) 
d|d'|P-i 

Vft-00{' FirstS it is clear that the residue 0 appears p. - 1 times. Now con-
sider any fixed nonzero residue n. It is raised to the various powers n + kp9 
where 0 <_-k <_ p - 2. These powers form a complete residue system modulo p - 1. 
Thus n is raised to each power ms where 1 £_ m <_ p - .1. Now9 the congruence 

nx •= P (mod p) (4) 
is solvable for & if and only if 

(p - 1, Iijd n)|(p -.1, Ind r), (5) 

where Ind a is the index of a (mod p) with respect to a fixed primitive root. 
This can occur only if 

V - 1 • 

(p - 1, Ind n) (p - 19 Ind v) 
but -

(p - 19 Ind p) 

is the exponent of v (mod p) and 

• -P - 1 _ ^, 

(6) 

(p - 1, Ind 20 

is the exponent of n (mod p). Thus congruence (4) has solutions if and only if 
d divides d \ It is evident that the number of solutions to (4) is then 

(P -• 1/d'). 

However, there are exactly §(df) residues belonging to the expondnt dr (mod p). 
The theorem now follows. 

From here on, we restrict n so that 1 <_ n <. p - 1. Then not every nonzero 
residue of p can appear among the residues of nn (mod p). This follows from 
the fact that the residue 1 appears at least twice, since 

I1 = 1 and (p - i f ' 1 = 1 (mod p) . 

We shall now address ourselves to determining how many and what types of resi-
dues modulo p can appear among the residues of nn (mod p) , where l<.w<_p-l.-
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2. A MEW UPPER BOUW ¥OR THE MUMBER OF VISTWCT RESIVUES OF n" 
Let A(p) be the number of distinct residues of nn (mod p) , 1 £ n <. p - 1. 

Roger Crocker [5] showed that 

/(p-ny/2 £i4(p) £'p - 4. 
We obtain a much better upper bound for A{p) in the following theorem. 

Tk&QJiQJtn 21 Let p be an odd prime. Let A(p) be the number of distinct residues 
of nn (mod p) , where 1 <_ n £ p - 1« Then 

A(p) < 3p/4 +C1(e)p1/2 + e 

where e is any positive real number and (̂ (e) is a constant depending solely on 

To establish Theorem 2 we shall estimate the number N(p) of quadratic non-
residues not appearing among the residues of nn (mod p) , where l'<_ n <_'p - 1. 
We will in fact show that 

N(p) > p/4 + C2(e)p1/2 + e (7) 

where e is any positive real number and C2(e) is a constant dependent only on 
£. It is easily seen that Theorem 2 then immediately follows. 

The only way that nn, 1 <_ n <_ p - 1, can be a quadratic nonresidue is if n 
is odd. However, if n is odd and n is a quadratic residue, then nn is not a 
quadratic nonresidue of p. Let N1(p) be the number of odd quadratic residues 
modulo p. Then 

tf(p) 2l^i(P). (3) 

since the number of odd integers in the interval (0S p) and the number of quad-
ratic nonresidues are both equal to (p - l)/2. We refine inequality (8) by the 
following lemma. 

Lemma It Let p be an odd prime. Let 1 £ n. <_ p - 1. Let N±(p) be the number of 
integers in the interval (G, p) for which n is an odd quadratic residue modulo 
P-
(i) At least N1(p) quadratic nonresidues do not appear among the residues of 

n.n (mod p). 
(ii) If p > 5 and p E 5 (mod 8) or p > 7 and p E 7 (mod 8), then at least 

N±(p) + 1 quadratic nonresidues (mod p) do not appear. 

PK.00^' The proof of (i) follows from our discussion preceding the lemma. 
To prove (ii) , first assume p = 5 (mod 8). Then (p + l)/2 and p - 2 are both 
odd quadratic nonresidues. Now, using Euler's criterion 

((p + l)/2)(p+1)/2 = iCP + W/z/^P+W/z E 1/(2)2(P-1)/2 = -1/2 (mod p) . (9) 
Also 

(p - 2)P"2 = (-2)P"1/(-2) s -1/2 (mod p). (10) 

Thus the quadratic nonres idues ((p + l)/2)(p + 1)/2 and (p - 2 ) p ' 2 are identical. 
Now nn can be a quadratic nonresidue only if n is already a quadratic nonresi-
due (in fact odd) and two such residues repeat. Thus, by part (i) , at least 
N (p) + 1 residues do not appear among {nn} modulo p, where 1 •< n <_ p - 1. 

Now suppose p E 7 (mod 8). Then (3p - l)/4 and p .- 2 are both odd quad-
ratic nonresidues modulo p. Further, 

((3p - l)/4)(3 p-1 ) A = ~l/4(3p-1)/l* = _i/2(3P-1)/2 

E _ I / 2 3 « P - 1 > / 2 > + 1 E - 1 / 2 (mod p ) . (11) 
Again , 

(p - 2 ) p " 2 E -1/2 (mod p). (12) 
The result now follows as before. 



1981] THE RESIDUES OF nn MODULO p 113 

According to Lemma 1,. we now need a determination of Nx (p) to establish an 
upper bound for A(p). Lemmas 2, 39 and 4 will provide this information. 

Lemma 2: If p = 1 (mod 4), then N± (p) = (p - l)./4. 

V&QQfa Let r be a quadratic nonresidue modulo p. Then p-p is also a quad-
ratic nonresidue. But exactly one of p and p - r is odd. Hence exactly half of 
the (p - l)/2 quadratic nonresidues of p are odd and Nx(p) = (p - l)/4. 

L^ma_3_t if p E 7 (mod 8) , then ^ (p) = (p - 1 - 2h(-p)) /4, where 7z(-p) is the 
class number of the algebraic number field Q(/^p). 

PJiOOfc It is known (see [3]) that 
ft(_p) = 7 - T, 

where 7 and T denote the number of quadratic residues and quadratic nonresidues 
in the interval (0, p/2) , respectively. To evaluate V - Ts we will make use of 
the sum of Legendre symbols 

S = E (w/p) -
0<n<p/2 

We partition S in two different ways as 

S = S± + S2 = S' + S", (13) 
where 

Si = E ^/p)> 52 - E (n/p) 
0 < n < p / 4 p / 4 < n < p / 2 

5' = E <"/p>. 5" = E («/p>-
0<n<p/2 0 < n < p / 2 

n even n odd 
It is known (see [2]) that S2 = 0. Then 

5 = S' + 5" = (2/p) £ (j/p) + S" = (D^i + S" = S1 + S2. (14) 
0<j<p/h 

Hence 5" = S2 = 0. 
Now let V0 and T0 denote the number of odd quadratic residues and nonresi-

dues in (09 p/2), respectively. Let Ve and Te be the number of even quadratic 
residues and nonresidues in (0, p/2), respectively. Inspection shows that 

V0 + TQ = (p + l)/4 and Fe + Te = (p - 3)/4. 

Since 5" = 0, 
F0 = T0 = (p + l)/8. (15) 

Further5 
fc(_p) = 7 _ T = (70 - TQ) + (7e - Te) = Ve - Te. (16) 

Also , 
(p - 3)/4 = Ve + Te. (17) 

Solving (16) and (17) for Te, we obtain 
Te = (p - 3 - 4fe(-p))/8. 

F ina l ly , 
^ i (p) = l̂ o + Te = (p - 1 - 2fc(-p))M, 

since the number of odd quadratic residues in (p/2, p) equals the number of 
even quadratic nonresidues in (0, p/2). 
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lemma 4: If p = 3 (mod 8), then N1(p) = (p - 1 + 6/z(-p))/4. 

PfLQOJ-: We shall use the same notation as in the proof of Lemma 3. By [3] , 

fc(-p) = 1/3(7- T). 
As in the proof of Lemma 3, we now evaluate the sum of Legendre symbols S. 

S = S' + S" = (2/p) ^ (j7p) + 5" = (-1)^ + 5" = S± + S2. (18) 
0 < 3 < P/4 

However, it is known (see [2]) that S± = 0. Hence, £2 = £" = S and 5X ='S \ 
Examination shows that 

7e + Te = (p - 3)/4 and 70 + TQ = (p + l)/4. 
Since £" = 0, 

7e = Te = (p - 3)/8. (19) 
Thus, 

fc(-p) = (1/3) (7 -T) = (1/3) [(70 ~ T0) + (7e - ̂ e)] = d/3) (70 - TQ) (20) 
and 

(p + l)/4 = 70 + ^oe 

Solving (20) and (21) for 7 0 , we obtain 
70 = (12/z(-p) + p + D / 8 . 

Hence 
^ i (p) = V0 + Te = (p - 1 + 6ft(-p))/4. 

We utilize our results of Lemmas 1-4 in estimating N(p) in the following 
theorem. 

Tke.OH.ejfn 3»* Let p be an odd prime. Let N(p) be the number of quadratic nonresi-
dues not appearing among the residues nn, where I <_ n <_ p - 1. 

(i) 21/(p) >. (p - l)/4 if p = 1 (mod 8 ) . 
(ii) N(p) >_ (p + 3)/4 if p > 5 and p = 5 (mod -8). 

(iii) N(p) >. (p - 1 +-6fe(-p))./4 if p = 3 (mod 8 ) . 
(iv) N(p) >_ (p + 3 - 2fc(-p)>/4 if p > 7 and p E 7 (mod 8 ) . 

VAOO^i This follows from Lemmas 1-4. 

We are now ready for the proof of our main theorem. 

Vnooj 0j Tke.Qtiem 2: By S iege l ' s theorem [1 ] , 
fc(-p) < C2(e)p1/2 + e 

where e is a positive real number and C2(e) is a constant dependent solely on 
e. Note that 

Mp) <P - 1 - tf(p). 
The theorem now follows from Theorem 3. 

3. PRIMITIVE ROOTS NOT APPEARING AMONG THE.RESIDUES OF nn 

In Section 2 we determined lower bounds for the number of quadratic non-
residues not appearing among the residues of nn modulo p. In this section we 
determine lower bounds for the number of primitive roots (mod p). that do not 
appear among the residues of nn (mod p) , where 1 <. n <_ p - 1.. Crocker [4] has 
shown that nn can be congruent to a primitive root (mod p) only If (n, p - 1) = 
1, where 1 £ n <_ p - 1. Using this criterion, we shall prove Theorem 4. 

Tke^OAem 4'- Let p be an odd prime. Let 1 <_ n <_ p - 1. 
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(i) At least one primitive root does not appear among the residues of nn (mod 
P). 

(ii) If p = 1 (mod 8) or p = 3 (mod 8) and p > 3, then at least three primi-
tive roots do not appear among the residues of nn (mod p). 

VKOO^ oj [i] : Note that l1 is not congruent to a primitive root (mod p). 
Now5 nn can be congruent to a primitive root (mod p) only if (n, p - 1) = 1. 
Certainly (1, p - 1) = la Hence at least one primitive root does not appear 
among the residues of nn (mod p) , since nn can be a primitive root only if n 
already is. 

VK.OOJ O{ [Li] : Suppose p E 1 (mod 8). Then ((p + l)/2, p - I) = 1. But 

((p + l)/2)(p + 1)/2 E 1/2 (mod. p). (22) 

However, (2_1/p) = 1. Thus ((p + l)/2)(p+1)/2 is not congruent to a primitive 
root (mod p). Also, (p - 2, p - 1) = 1 and 

(p _ 2 ) p " 2 =-1/2 (mod p). (23) 

Again, ((-2)-1/p) = 1 and (p - 2 ) p " 2 is not congruent to a primitive root (mod 
p) . Hence at least three primitive roots do not appear. 

Now suppose p E 3 (mod 8). As before, (p - 2, p - 1.) = 1, and (p - 2) p ~ 2 

is not congruent to a primitive root (mod p) . Further, ((p + 1) /4, p - 1) = 1 
and 

((p + l)/4)(p + 1)/lt = -1/2 (mod p ) v (24) 

However, ((-2)_1/p) = 1 and consequently ((p + l)/4)(p + 1)/4 is not congruent to 
a primitive root (mod p). Thus at least three primitive roots do not appear 
among the residues of nn (mod p) if p E 3 (mod 8) and p > 3. 

4. THE NUMBER OV TIMES THE RESWUES 1 AW ~l APPEAR 

Theorems 5 and 6 in this section will show that there is no upper bound for 
the number of times that the residues 1 or -1 can appear among the residues of 
nn (mod p), I <_ n <_ p - 1, where p is allowed to vary among all the primes. 

ThzoKQJfn 5» Let M be any positive integer. Let {p^} be the set of primes such 
that 

xx E 1 (mod p^), (25) 

where 1 <_ x £ p. - 1, has at least M solutions. Then {pi } has positive density 
in the set of primes. 

Vtiook1 Let N = M - 1. Let p E 1 (mod 2^) be a prime. Suppose that 2 is a 
2wth power (mod p) . Then, if 0 <_ k <_ 2V - 1, 2fe is a 2kth power (mod p) .. Fur-
ther, if 0 <_ k £ N - 1, (p - l)/2fe is an even integer. Now, if x is a dth power 
(mod p) and p E 1 (mod d), then 

x(P-D/d = ! ( m o d p ) s 
Hence, if 0 <_ k <_ N - 1, 

((p - 1)/2>)CP-1)/2' E (-l)(P-i)/2fc/(2fc)^-1)/2;c E 1/1 E 1 (mod p). (26) 

Thus we now have M solutions to congruence (25); namely, 1 and (p - 1) /2k for 
0 <_ k <_ N - 1. 

We now show that the set of primes pi such that pi E 1 (mod 2^) and 2 is a 
2^th power (mod p) indeed has positive density t in the set of primes. Let £ 
be a primitive 2^th root of unity. Let L be the algebraic number field 

«(21/2\ O. 
Let p E 1 (mod 2^) be a rational prime. Suppose that 2 is a 2^th power (mod p) . 
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By Rummer's theorem, this occurs if and only if, in the field L9 p splits com-
pletely in each of the subfields Q(l,k • 21/2") , where 1 <. k <_ 2N. Let P be a 
prime ideal of L dividing the principal ideal (p) . Let Zp be the decomposition 

field of P. Then Zp D Q(t,k • 21/2#) for l < f c < 2 , since p splits completely 

in each of these subfields,. Hence Zp D Q(£,9 21'2 ) = L9 the compositum of the 

subfields Q(t,k • 21 ), where 1 <. k <_ 2N. Let DP be the decomposition group of 
P. Then Dp = <1> for all prime ideals P dividing (p) . Thus, by the Tchebotarev 
density theorem, the density 

t = l/[L:Q] = i/22iV-2 = l/22M-lt > 0. (27) 

TkzoKQjn 6: Let M be any positive integer. Let {p.} be the set of primes such 
that the congruence 

xx =• -1 (mod p^), (28) 

where 1 <̂  x j£ p. - 1, has at least M solutions. Then {p. } has positive density 
in the set of primes. 

VnjQO^i Let N = M. - 1. Let'p be a prime and suppose that p = 1 (mod 2 • 3^) 
and p E 7 (mod 8). Suppose further that both 2 and 3 are (2 • 3^)th powers (mod 
p). Note that if p = 7 (mod 8), (2/p) = 1, and it is possible that 2 is a 
(2 • 3*)th power (mod p) . Then, if 1 <. k <_ N, 2 • 3k is a (2 • 3fe)th power (mod 
p). Moreover, if 1 <. k < N* (p - l)/(2 • 3fe) is an odd integer. Hence, if 1 < 

((p - l)/(2. 3*))<p-1)/(2'3fc> = (-l)CP-D/C2-3») / ( 2 . 3 )(P-D/(2-3fc) 

E -1/1 E-l (mod p). (29) 

Thus we now have M solutions to congruence (28). 
I now claim that the set of primes {p^} such that pi = 1 (mod 2 • 3 ) , pi = 

7 (mod 8), and both 2 and 3 are (2* 3^)th powers (mod pi) has positive density 
w in the set of primes. Let £ be a primitive (4 • 3^)th root of unity. Let L 
be the algebraic number field 

<?<?, . 21/<2-3'> , 32/<2-3">). 

Suppose that p is a rational prime and that p = 1 (mod 2 • .3̂ ) and p = 7 (mod 8). 
Assume that both 2 and 3 are (2 • 3^)th powers (mod p) . Then, by Kummerfs theo-
rem, p splits completely in each of the subfields 

,e(S2k • 21/<2'3")) and Q^2k ' 3l/t2's,>), 

where 1. <. fc <_ 2 • 3^. Hence p splits completely in 

x = e ( ?
2 , 2 1 ( 2 - 3 J > , 3 X < 2 - 3 J r > ) , 

the compositum of these subfields. Let P be a prime ideal in L dividing (p). 
Then, if ZP is the decomposition field of P, ZP D K. Furthermore, since p•=• 7 
(mod 8), (-l/p) = -l, and p does not split in the subfield §(/-T) of L. Conse-
quently, Zp J) S(/^T). Let a be the automorphism of Gal (L/Q) such that 

a(e) = -c, (30) 

a(21/C2"3*> ) = 21/(2*3iV) , 

and aO 1 " 2 ' 3 ' * ) = 3
1 / ( 2 ' 3">. 

Then <G> is the subgroup of Gal (L/Q) fixing X. It follows that the decomposi-
tion group Dp = <(a>for all prime ideals P dividing (p). By the Tchebotarev 
density theorem, the density 
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u = l/[LiQ] = 1/(8 • 33N-1) = 1/(8 • 33M~4) > 0. (31) 

5. COMCLUVlhlG REMARK 

Further problems concerning the residues of nn (mod p) , where 1 <. n <_ p- 1, 
are obtaining better upper and lower bounds for the number of distinct residues 
appearing among {nn} and determing estimates for the number of times that 
residues other than ±1 may occur. 
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A GENERALIZATION OF A PROBLEM OF STOLARSKY 

MARY E. GBUR 
Texas A&M University, College Station, TX 77843 

For fixed positive integer k _> 1 s we set 

Tl7l k + A1 + 4 
ak = [k] = ^ s 

a real number with completely periodic continued fraction expansion and period 
of length one. For all integers n _> 1, we use fk(n) to denote the nearest in-
teger to nak. 

Using this notation, we define an array (bit
}-) as follows. The first row 

has 
b£\ = 1 and bl)) = / (&i^-i). for all j > 2. 

After inductively setting fc^^tobe the smallest integer that has not occurred 
in a previous row, we define the remainder of the ith row by 

*>u) =fk0>£)-J> for all j > 2. 
K. Stolarsky [4] developed this array for k• = 1, showed that each positive 

integer occurs exactly once in the array, and proved that any three consecutive 
entries of each row satisfy the Fibonacci recursion. The latter result can be 
viewed as a generalization of a result of V. E. Hoggatt, Jr. [3, Theorem III]. 
In Theorem 1, we prove an analogous result for general k. 

Th<L0HQjn 1 •* Each positive integer occurs exactly once in the array (blk\). More-
over, the rows of the array satisfy 

fr*(,*j + 2 = fc&£*}+i + b£], for all i, j :> 1. 

VK.00^1 By construction, each positive integer occurs at least once. For 
m 4- n we have \{n - m)ak\ > 1 and so fk{m) £ fk{n). Since the first column en-
try is the smallest in any row, every positive integer occurs exactly once. 
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Since 
fkQ>£)+i) /*(/*<*><"». 

it suffices to show that fk(fk(m)) = kfk(m) + m, for all m >_ 1. For any m >_ l9 
fk (m) = mak + v for some \v\ <_ 1/2. Hence 

1 p 
(a*. - k)fv (m) = —-(wa^ + P) = m + — , where 

K ak
 K ak 

2ak 2* 

This implies that fk(fk(rn)) = kfk(m) + m9 completing the proof. 

For all integers £ _> 1, we set 

For k = 1, Stolarsky [4] considered the sequence { i ^ } of differences and asked 
whether or not the sequence was a subset of the union of the first and second 
columns of (b^j), The following theorem shows that, for k > 2, no analogous 
result can hold. 

Thdon.Qjm 2: For k _>. 2, every positive integer occurs at least k - 1 times in the 
sequence of differences. For k = 1, D is a difference if and only if Z> occurs 
twice in the sequence {f± (n) - n]. 

VhJOO^i Fix fe >. 1. If we append the difference b \ \ to the beginning of the 
ith row of the array, this new augmented array contains (with the same multi-
plicity) all the elements of the sequence with general term fk(n) - kn; that is, 
the nearest integer to n(ak - k). 

Since ak - k < l/k9 every positive integer must occur at least k times in 
the sequence {fk(n) - kn}. On the other hand, in Theorem 1 we showed that the 
unaugmented array contains each positive integer exactly once. Therefore, for 
k >_ 2, every positive integer occurs at least k - 1 times in {b^k\}. 

From ax - 1 > 1/2, we know that any integer can occur at most twice in the 
sequence {f± (n) - n}. Then, since {b£}\} is the modification of {f± (n) - n} 
obtained by deleting one copy of the set of positive integers, D is a differ-
ence for k = 1 if and only if D occurs twice in {f1 (n) - n]. 

J. C. Butcher [l]andM. D. Hendy [2] have independently proved Stolarsky*s 
conjecture and also have shown that the sequence of differences, for k = 1, is 
exactly the union of the first and second columns. In the remainder of this 
note we give another proof of these facts. 

The following is an extension of Lemma 1 in [1]. 

Lomma 1: For any positive integers i9 k9 j + 1, 

-• \UUd Uk Ui, j + 1 
2< ' ' *** 

VkOOJi By definition of b£k\9 the left inequality holds for J = 0 
since b!^\ is the nearest integer of b^ak9 we have 

lal 
Also, 

-, (k) 
hi,Qak t, 1 b(k) - bK. (k) 1 bik) 

u i, 2 
<*>, br t 5 1 2 ' 

proving the right inequality for j = 0. 
From the recursion formula to Theorem 1 we obtain 

M) >(*> 
dak ~ Kj + i a k (b i, j + 2 a k ° i , j+l) • 

Therefore, the lemma follows by induction from our verification for j 0. 
We henceforth only consider k = 1. Therefore, we suppress the index k and 

— - i r — for the remainder of this paper. let a = a± = 
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VtJAJlUtiovi' Let D he a positive integer. We call D early if either D = b i t l or 
D - biy2 for some i _> 1. D is called late if D = bit • for some i > 1, J _> 3. 

The following corollary is a consequence of Lemma 1 and Theorem 1. 

CofiolZaJiy: Let D be a positive integer. Then Z? is early if and only if 

min ID - na I > -r—; 

£> is late if and only if 

mini/? - na| < TT~J 

where each minimum is taken over the set of integers. 

VKOO^I By Theorem 1 there exist i9 j _> 1 for which D = bifJ- . By definitions 
bit3- + 1 is the nearest integer to £>a. Therefore, from Lemma 19 

< \bit *a - i7- j . , I = minima - n\ < . (1) 

Since £ is an integer, 

minima - n\ = m±n\D(a - 1) - n\ = — minlz? - na\ . 
a 

Hence, (1) implies that 
1 ^ • In I < m m \D - na\ 

la*'1 n 2a*'-2 

completing the proof. 

LQJMICI 2: For any three (two) consecutive integers, at most two (at least one) 
are differences. Also, if both N ± 1 are not differences, then both N - 2 and 
N - 3 are differences. 

Vtioofai First, we suppose that the three consecutive integers N9 N ± 1 are 
differences. Then by Theorem 2 there exists an integer b for which 

that is s 

h 
a + 

1 
I > N 

L 

— 

+ 
i 

_5_ 

and b + 5 + ~ < N + 2; a 2 

which contradicts a < 5/3. Since a > 3/2, the alternative statement follows 
similarly from Theorem 3. 

By the alternative statements, if neither N ± 1 is a difference, then both 
N and N - 2 are differences. Therefore, if N - 3 were to occur only once we 
would contradict a > 8/5. 

Tk&QSi&n 3: D is a difference if and only if D is early. 

VtWO-fa'* We suppose, on the contrary, that there exists a smallest integer D 
for which the theorem fails. 

First, we assume that D is early but not a difference. By Lemma 2, D - 1 
must be a difference and, by our assumption on Ds is therefore early. Let na 
be the smallest multiple of a greater than D - 1. Since both D - 1 and D are 
early and a = 1 + 1/a, the corollary implies that 

D - 1 + -L- < na < D - - k (2) 
2a 2a 

Hence 
|(0 - 2) - <n - l)a| < -L, 
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and so, by the corollary, D - 2 is late. From our assumption on D9 we thus 
obtain that D - 2 is not a difference. Because neither D nor D - 2 is a dif-
ference^ by Lemma 2 both D - 3 and Z7 — 4 are differences; thus J9 - 3 and Z? - 4 
are early, and (2) implies that 

* _ 4 + £ < (» - 2)a < Z> - 3 - i . 

Combining t h i s w i t h (2) and s u c c e s s i v e l y m a n i p u l a t i n g , we o b t a i n 

P + | a - ~ = P » 4 + 2 a + - ^ - < n a < P - ^ - = ^ - ^ + 4 s 2 2 2a 2a 2 2 

na + j ~~ j < D < na - yz + j , 

n + 1 _ _ . w + _ _ _ < _ < n _ _ + _ . w + _ a _ 7 . (3) 

On the other hand, by Theorem 2 there exists an integer b for which 

— + -r- < D - 2 and + 17 > Z? + 1; 
*.t.*..' a 2 a 2 ' 
that iss 

£ - Z ) + | a < Z ? a - Z } = | < Z > - £ + 5--|. 
Comparing this with (3), we have 

n + l - ~ < i - Z ? + - 5 - | and n + | a - 7 > 2 ? - Z ) + | a ; 

that is, the integer b - d satisfies 

n - 4 < b - D < n - -7 + 2a < n - 3, 
a contradiction. 

Therefore, D is a late difference. By the corollary there exists an inte-
ger n for which 1 

\na - D\ < -̂ -. 
Hence 

|(n - l)a - (0 - 1)| > ^ 

and, by the corollary, D - 1 is early and so is a difference. Since D - 1 and 
Z? are both differences, Lemma 2 implies that D - 2 cannot be a difference and 
so is late. Therefore, 

\(n - l)a - (D - 2)| < ± . 

Combining this with the previous inequality 

\na -D\ <±, 
we have 

•±- < na < D - 2 + -^- + a. 2a 2a 
We manipulate this to get the following two sets of inequalities: 

n - 4 + | a < - < n + l - - | , (4) 
and 

z ? _ 4 + . J _ < 0 - . A - - 2 a < (n - 2)a < £ - 2 + ~~ - a = £ - 3 - -^-. 2a 2a 2a 2a 
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The latter implies that both D - 3 and D - 4 are early and so, by assumptions 
are differences. Therefore, by Theorem 2 there exists an integer b for which 

that is j 
— + 7T > D - 4 and ~h — < D + 1; 
a 2 a 2 5 

2>-£ + 8 - # < - < 2 > - Z ? + | a . 2 a " " 2U 

Comparing this with (4), we obtain 

n - 8 < n - 4 - 2 a < Z ? - £ < n - 7, 

which is contrary to the fact that b - D and n are integers. 
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INITIAL DIGITS IN NUMBER THEORY 

J. KNOPFMACHER 
University of the Witwatersrand, Johannesburg, 2001, South Africa 

JNTR0VUCT10N 

It has been observed empirically by various authors (cf. Raimi [5] and his 
references) that the numbers in "random" tables of physical or other data tend 
to begin with low digits more frequently than one might on first consideration 
expect. In facts in place of the plausible-looking frequency of l/99 it is 
found that for the numbers with first significant digit equal to 

a e {1, 2S ...9 9} 

in any particular table the observed proportion is often approximately equal to 

»M-log 

A variety of explanations have been put forward for this surprising phenomenon. 
Although more general cases have also been considered, most people might 

agree that it should suffice to consider only sets of positive integers, since 
empirical data are normally listed in terms of finite lists of numbers with 
finite decimal expansions (for which the signs or positions of decimal points 
are immaterial here). On accepting this simplification, the common tendency 
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would probably then be to seek an explanation in terms of the concept of natu-
ral density of a set T of positive integers, i.e., 

i i m ^ y i . 
n<_x, nzT 

Unfortunately, this density simply does not exist for the immediately relevant 
set N(a) of all positive integers beginning with the digit a as above, and this 
fact seems to have led both to a search for alternative explanations and to a 
certain amount of controversy as to what should actually constitute a satisfac-
tory "explanation." Ignoring the latter difficulty for the moment (regarding 
which some further comments are offered in Section 3 below), the situation may 
be summarized by noting that various explanations have been suggested in terms 
of extensions of the density concepts that do exist and take tne experimentally 
observed value of log10(1+ 1/a) for the set N(a); the most general and convin-
cing of such approaches is perhaps that of Cohen [1]. 

The main purpose of this note is to add to these explanations by showing 
that the same type of initial-digit phenomenon occurs in a variety of number-
theoretical situations. A notable investigation of this phenomenon of specific 
number-theoretical interest is that of Whitney [7] regarging the set P of all 
prime numbers. Whitney employs perhaps the most commonly used extension of 
the density concept, logarithmic (or Dirichlet) density, and this will also be 
used below. His discussion uses a corollary of one of the deeper forms of the 
Prime Number Theorem. 

Here, using only elementary methods, it will be shown that, for quite a 
wide class of sets T of positive integers possessing a natural density, the 
subset T(a) = TDN(a) has the relative logarithmic density log10(l+l/a) in T. 
More generally, for quite a wide class of arithmetical functions, /, the loga-
rithmic average value of / over all positive integers compared with that over 
N(a) is shown to be weighted in the ratio l:log10(1+ 1/a). In the actual dis-
cussion below, 10 is replaced by an arbitrary base q _> 2, and a is replaced by 
an arbitrary initial sequence a±, a2, ..., ar of digits a^e {0, 1, ..., q - 1} 
with a± £ 0. 

1. LOGARITHMIC AVERAGES kW VEHS1TIES 
In order to cover a variety of specific examples of arithmetical functions 

and sets of positive integers in a fairly wide setting, first consider any 
fixed integers q >. 2 and 

A = a ^ ' 1 + a2qr~2 + ••• + ar, 
with ai e {0, 1, ..., q - 1} and ax + 0. Let N(A) denote the set of all posi-
tive integers whose canonical a-adic expansions begin with the sequence of di-
gits a19 a2, .*., aP. We first wish to present the following theorem. 

ThoptiOKn 1. / >' Let / denote a nonnegative, real-valued function of the positive 
integers such that 

^2 fW> = Bx6 + 0 O n ) as x -> oo, 
n <_x 

where B, 6, and n are constants with 0 < 6, r\ < 6. Then 

i ^ d b £ nn)n's = SB lo^(l +1)' 
Before proving Theorem 1.1, we need the following lemma. 
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Lowing 1.1: Under the hypothesis of Theorem 1.1, there exists a constant Y = Yf 
such that 

Z2 f(n)n~6 = 55 log x + y + OO6"1"1) as x -> °°. 

P/LOO_£.* This lemma is actually a special case of a result discussed in [3, 
p. 86]. However9 for the reader's convenience, we outline a direct proof here. 

Let 
pw = E/(n>« 

n <_x 
Then by partial summation (cf. [.2, Theorem 421]) , one obtains 

J^f(n)n'6 = F(x)x'6 + 6 I F(t)t~6"1dt 

= [Bx* + Q(x^)]x-s + 6 I [Bt6 + Qit^U^^dt 

= B + 65 log x + I (a?) + 0(xn-6) 9 
where 

= j - off t^-6'1dt\ = J - oo^-6), 
for some constant I. The lemma follows, with Y = 5 + T. 

Vtiooi o-fa ThdOKom 1.1: In. order to deduce Theorem 1.1,. first consider 

xm = (A + l)^ m. 

By Lemma 1.2 (us ing t h e convent ion t h a t Aq° - 1 be r e p l a c e d by 1 i f A = 1) , we 
have 

= V { 5 B log ^ + 1 ^ t - 1
 + 0(g«<n-«))l. 

/To ( Aq* - 1 j 

E f W r « = 65 £log ^ t ! > t ? t r ' + 0(1) 

f x iog( l + T) + ^gf1 " J 

Thus 

65 

-Io4-^)P0(1) 
= (rc + 1)65 l o g ( l + j ) + 0 ( 1 ) , 

s i n c e ( fo r o _> 1) , 

,?1
i4-^h?>-,>-o(i>-

Now l e t xm_1 <_ x <. xm. Then log x - t f z log q as m9 x •+ °°, and [ fo r #(n).> 0] , 

E ^(n) - E ^(n) ~ E ; ^(n)° 
n < a ; m . 1 , n e f f U ) n < a ; , n e J ? U ) n<arf f l ,netf(i4) 
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The asymptotic formula implies that 

l i m * 53 f(n)n-S m 6B log( l + l/A) m / l \ 
* — log x n£xf?zN(A)

J log 4 **\ A)9 

and Theorem 1.1 i s proved. 
We say that a function / o f pos i t ive integers has mean-value ( respect ively , 

logarithmic mean-value) a over a set T of pos i t ive integers if and only if 

x*°° n^x, neT 

I respectively9 a = lim - — — /J ^ I. 
\ a r — l o g 00n^n£T n J 

It is shown by Wintner [8, p. 52] that the existence of the logarithmic mean-
value over a set T follows from that of the mean-value over T and the values 
are equal. The converse is false. Applying Theorem 1.1, we have 

CotlolLaJtij 1.3: Let / denote a nonnegative, real-valued function that possesses 
the mean-value B Over all positive integers in the strong sense that there ex-
ists a constant r\ < 1 such that 

/3 f(n) - Bx + 0(^n) as x ->• °°. 
n <_x 

Then / possesses the logarithmic mean-value B log^Q + l/A) over N(A). 
A subset S of a set T of positive integers is said to have the relative 

togavitlnmio density"A in T if and only if 

If the function / of Corollary 1.3 is replaced by the characteristic function 
of the set T in the set N of all natural numbers, we obtain 

CoKotLcVUj 1..4: Let T denote a set of positive integers having natural density 
B in the strong sense that there exists a constant T) < 1 such that 

53 1 = Bx + OO:11) as x -> °°. 

Then the set I7(4) = TO/!/(A) has the relative logarithmic density log^(l + l/A) 
in T. 

2. APPLICATIONS TO SPECIFIC SETS AMV FUNCTIONS 

In addition to the set N of all natural numbers, the following natural ex-
amples of sets T satisfying the hypothesis and hence the conclusion of Corol-
lary 1.4 may be noted: 

(2.1) Let TmjT denote the arithmetical progression 

r9 r + m9 r + 2/7?, (0 <_ r < m). 
Then clearly 

E 1 = E 1 = r^-1-^! = " + 0(1) as^->^. 
n<_x, ne.TmtP r + km±x a 

(2.2) Given any integer k _> 2, let #rfc, denote the set of all k-fvee positive 
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integers, i.e., integers not divisible by any kth power rk f 1. (Thus N[2] is 
the familiar set of all square-free numbers.) Then it is known (see, e.g. , [3, 
p. 108]) that 

Y, i -rm + 0 (~1 A ) a s x ^ ~ > 
n<x,n£N,k, ^K^J 

w h e r e l*J 

« = 1 

(2.3) Let Tmyrtk = Tmtr H N[k]9 where TmtV and N^ are the sets defined above. 
If 77?, r are coprime, it is known (see, e.g., [4, p. 112]) that as x -> °°, 

n<x9neTmtPtk ^ ^ ^ pr ime p\m 

where £(&) is as before. 
Many naturally occurring arithmetical functions / satisfy the hypothesis 

and hence the conclusion of Corollary 1.3. Out of examples of such functions 
treated in books, we mention only two: 

(2.4) Let r(n) denote the number of lattice points (a, b) such that a2 + b2 = 
n. Then (see, e.g., [2, Theorem 339]), 

2^ r(n) = T\X + 0(x1/2) as x ->. °°. 

(2.5) Let a(n) denote the total number of nonisomorphic abelian groups of fi-
nite order n. A theorem of Erdos and Szekeres (see, e.g., [3, p. 117]) states 
that 

]T a(n) = x n 5(&) + 0(x1/2) asx-> «. 
fc=2 

Next we mention a few examples of concrete arithmetical functions / satis-
fying the slightly more general hypothesis of Theorem 1.1: 

(2.6) The Euler function 

<f>(w) = X .1 
?±n(rs n) * 1 

has the property that 

E 3x2 
cf)(n) = —— + 0(# log x) • as x -* °° 

n<_x 

(see, e . g . , [2, Theorem 330]). 
(2.7) The divisor-sum function 

a<n) = ]£d 

has the property that 

y^ a(n) = Ŷ -Tr2^2 + 0(# log x) as #'->«> 
n <.# 

(cf. [2, Theorem 324]). 

(2.8) Given any positive integer k9 let TmiI> denote the set of all kth powers 
of numbers in the arithmetical progression TmtV of (2.1). Then, 

£ i= £ i =±*1/,: + o(i), 
n <.*, neT^r n±xllk, nzTmtr 
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by (2.1). Thus Theorem 1.1 applies to the characteristic function of the set 
Tk in N. 

Finally, it may be remarked that the applicability of Theorem 1.1 carries 
over to the restrictions to Tmjr of arithmetical functions of the above kinds, 
when m, r are coprime. (For preliminary theorems that make such applications 
possible, see, e.g., [3, Ch. 9], [4, Ch. II], and Smith [6].) 

3. "SCIENTIFIC" VERSUS MATHEMATICAL EXPLANATIONS 
In [5] Raimi expresses some reservations about purely mathematical explana-

tions of the initial-digit phenomenon in numerical tables of empirical data and 
calls for a more "scientific" discussion (e.g., in terms of statistical distri-
bution functions). However, in this direction, general agreement does not seem 
to have been reached or even to be imminent. By way of contrast, even if it is 
theoretically correct to have done so, one might query whether such a problem 
would ever have been seriously raised in practice If it had not been for the 
nonexistence of certain desired natural densities. 

For, suppose that a detailed examination of "random" tables of numerical 
data was found to show that, in most cases, approximately 1/10.of the numbers 
considered end in a particular digit b e {0, 1, ..., 9}, or approximately 10 
of them end in a particular sequence of digits b± , 2?2, . .. , 2? e {0, 1, . .. , 9} . 
In view of the elementary example (2.1) above, surely very few people would be 
surprised by this or be led to call seriously for a "scientific" explanation, 
even though it is theoretically as legitimate to do so here as in the original 
problem. 

Although the nonexistence of natural densities does on first consideration 
seem to lend an element of confusion to the initial-digit problem, the preced-
ing remarks suggest that (unless overwhelming experimental evidence* warrants 
otherwise) it is perhaps nevertheless adequate for most purposes to accept an 
explanation in terms of one or more reasonable mathematical substitutes for 
natural density. In showing the quite widespread nature of this phenomenon in 
number theory, the earlier theorem and various mathematical examples perhaps 
lend further weight to this suggestion. After all, what can be scientifically 
interesting about the purely numerological properties of a list of street ad-
dresses, or areas of rivers, and so on? 
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*The status of Raimi's anomalous population data PP (n) [5, p. 522] is dif-
ficult to evaluate without further investigationf but his anomalous data V(n) 
do not seem surprising if one remembers that telephone numbers normally have 
favoured initial digits. 
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FIBONACCI NUMBERS AND STOPPING TIMES 

ROBERT CHEN and ALAN ZAME 
University of Miami, Coral Gables, FL 33124 

For each integer k i_ 29 let {ans^} and {bn,k} be two sequences of integers 
defined by aUyk = 0 for all n = 1, .. ., k - 1, ak} k = 1 s and 

k 

for all n >. k; b1 k = Q5 and 

W-l 
£w,fc = an,k + 2 aJ,kbn-j,k 

for all n >. 2. 
Let {Jn} be the fair coin-tossing sequence9 iBe09 

P(Yd = 0 ) = | = PCJy = 1) 

fo r a l l g = 19 29 » e e s and I1, Y2 , . . . a r e independen t . With r e s p e c t t o t h e s e -
quence {In} 9 for each i n t e g e r ^ 2 . 1 , l e t {i?n, k} and {iyn,?<} be two sequences of 
s t o p p i n g t imes de f ined by 

Rlik (Il9 Y2S . . . ) = inf {m|Ym - . . . = Yw. f c + 1 = 0 } s 

= °° i f no such m e x i s t s 9 and for a l l n >_ 2S 

#n,fctf i> y 2 ' • • • ) = i n f irn\m>Rn_1}k + k and JOT = . , . .= Im_k+1 = 0 } 9 

= °° i f no such m e x i s t s ; Nlik = Rlt k and tfw>k = Rn,k - Rn-i,k f o r a 1 1 n — 2 s 

In t h i s n o t e j we s h a l l prove t h e fo l lowing i n t e r e s t i n g theorems . 

ThzotiQjm 1: For each i n t e g e r k >_ 2S 

an i?c = 2nP(Nlik = n) and fcn>.k = 2nP(Rmik = n for some i n t e g e r m >.. 1) . 

Tk&Qfim 2: For each i n t e g e r /c >. 2 , 

^ n , k = 2&n-i,fc + 1 or 26 n _ 1 > f c - 1 or 2&n_is k 

a c c o r d i n g a s n = m/c or ???& + 1 or w/c + j fo r some i n t e g e r s m >_ 1 and g = 25 3 3 

IkdOKOM 3 : For each i n t e g e r fe _> 2S l e t 

00 

n - 1 then 

&nfc,* = ^ + 2fe - 2}/ufc and 2>„* + J-ffc - 2 ' - 1 { 2 " * + L - 2} /y k 

fo r a l l n >. 1 and j = 1, 2 , . . . . , k - 1. 
We s t a r t w i t h t h e fo l lowing e lementary lemmas * 

Lomma 1: For each i n t e g e r k > 1, l e t 

$ k ( t ) = E(tNlsk) i f ff(|*|tf1>fc) < °°; 
then 

M«- (DVJ1- t(iy} *« all -1***1. 
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VKOO^I For k = 1, it is well known that 

>>«>-(!)/{-(!)} 
for all t in [-1,1], For k ^ 2, it is easy to see that Nltk =N1 ^.i + 2, where 
Z is a random variable such that 

P(Z - 1) = P(Z - 1 +^ l j k ) « | 
and Z is independent of N± •k_1^ Hence 

for all -2 < £ < 2. Therefore, for each integer k _> 19 

for all -1 <. £ <. 1. 
LeME^.' For each integer k >. 2, let 

»-(*)/('-£(*)) 
ff*<*> = X > V * 

for all £ such that 

E i * r « » . k < » } 
then n-i 

Gk(t) = $k(2£) for all- ~ < t < ~ and k >. 2. 

VKOO^I Since an$ k = 0 for all n - 1, 2, ..., ?c - 1, &kj & = 1» and 

k 
a*> k = Z^an-«?^ 

for all n > k9 ' JS=1 

Therefore, n = * i=1 n = * ^ i=1 

for all fc->. 2 and all t such that ' ^ J's=1 

Xi*r a »'* < 
n-l 

Since a„s k <. 2n for all w .> 1 and all k _> 2, £k(£) exists for all - y < ^ v 
By Lemma 1, we have 

Gfc(£) = M2^) for a 1 1 £ in the interval (-\.9 -~J and all k >. 2. 

For each integer k _> 1, let w0,k = 1» anc* £° r a H n — 1» le t 

wWj £•= P{Rmtk = n for some integer ft? J> 1} 

and fnk~ P{Ni,k - nl • Since {Jn} is a sequence of i.i.d. random variables, 
and M0>£ = 1, it is easy to see that 

n 
Un,k ^ ] C fj,kUn~j,k f o r a 1 1 n — * a n ^ a 1 ^ ^' ~ * ° 

Hence we have the following theorem. 
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IkwKQM V i For each i n t e g e r k >. 29 2nunik = 2nP{Rmtk = n fo r some i n t e g e r m >. 

1} = bHtk and 2 n / n ^ = 2nP{Nl9 k = n} = a n ,k for a l l n > 1. 

Let A = { (&?.,_ 9 w.2, . . . , wn) I'w^ = 0 or 1 fo r a l l £ - 19 29. . . , 9 n and Wj = 1 + 
wj + i = '••• = wn = 0 fo r some j = n - J7c and some i n t e g e r J" _> 1 } . 

Le t 5 = {(!>!, y 2 9 . 0 9 9 ^ n - i ) k i = ° o r * f o r a 1 1 ^ = l 9 2 9 e . e 9 n - l and 
^ j - i = ^ ^ vj ^ *"* = vn-\ = 0 f o r some g •= n - Jk fo r some i n t e g e r J _> 1 } . 
l^na_^_> For each integer fe >. 29 

2 n u ^ = 2nwn„ljk + 1 or 2 X „ 1 > k - 1 or 2nun„ls fc 

according as ri = mk or mk + 1 or ?7?fc + j for some integers -77? _> 1 and g = 2S 3, 
..., Zc - 1. 

P/LOÔ » By the definition of {.Mn,fe}, for each integer /c _> 29 

2nun,k ~ the number of elements in i4 
and 

2n"1un_l9k = the number of elements in 5. 

(i) If n = mk for some integer m >_ 19 then (09 7^, ̂ 29 ,.89 yn-i) a n d (*» ^i» 
y2» • ••» ^n-i) are in ̂  if (i?ls y2s . . - 9 #n-i) is in B,..and (0S 0S . . . 9 0) 9 n-
tuple9 is also in A even (09 09 .. e 9 0), ' (n - l)-tuple9 is not in B* Hence the 
number of elements in A >_ 2 « the number of elements in B + 1. Since each ele-
ment (wls W29 .88S Wn) in A such that Wj £ Wj + 1 for some 1 £ g •<_ n - 1 is a form 
of (09 #19 t>29 ,e.9 Vn__1) or a form of (19 i^ , -i>2 , ..., Vn_1) for some element 
(̂ i» ^2' •••5 ̂ n-i) in ^- Hence the number of elements in i <. 2 • the number of 
elements in B. + 1. Therefore,' the number of elements in ̂4 = 2 s the number of 
elements in B + 1„ 
(ii) If n = mk + 1 for some integer m >. 1, then (09 vl9 v2s 0999 i?n_x) and (1, 

Vl9 VZ9 ••«» ^n-l.) a r e i n ^ i f (^i, y2J • • • »• y n - l ) i s i n 5 a n d y j ^ y j + l f o r 

some 1 <_ g <_ n- 2 and (19 09 0S . .. 9 0) , n-tuple9 is also in A [(0, 09 ... , 0) 9 
(n - l)-tuple9 is in B]. Hence the number of elements in A _> 2 e the number of 
elements in 5 -. 1, Since each element '(Wi» wi* •••» ^n) in ̂  such that Wj ^ 
Wj'+i for some 2 £ j < _ n - l is a form of (09 yl9 v2s »»»9 ^n~i) o r a form of 
(15 V-l9 Vl9 ...5 ^n-i) f° r some element (vl9 V2* ...» ŵ-i-) in -B. Hence the 
number of elements in A <_ 2» the number of elements in 5 - L Therefore, the 
number of elements in A = 2 * the number of elements in B - 1. 
(iii) If n = mk + J for some integers m •> 1 and 2 <_ g ±k- l9 then (0S z;x 9 i ? 2 , 
. . . 5 ^n-l) a n c i ( 1 » y i » ^ 2 » ' " ' Vn-l) a r e i n ^ i f a n ( i o nly if (^is 2̂» • ' 9 » y n - l ) 
is in B8 Therefore, the number of elements in A - 2 •' the number of elements in 
B. 

By (i)9 (ii)9 and (iii), the proof of Lemma 3 is now complete, 

JhwK.m 1': For each integer k 2. 2S 

bn,k =-2in_lfk + 1 or 2bn_lsk - 1 or 2bn_lik 

according as n = mk or mk + 1 or mk + j for some integers ??z _> 1 and g - 29 39 

„.. 9 fe - 1. 

?H.oo^i By Theorem 1 ' and Lemma 3. 

For each integer k >. 1» let 
00 00 

n - 1 n = 1 

By Theorem 1f 9 
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Since 
fc-i 

j - o 

\ik = ^ n2~naHik fo r each i n t e g e r k >_ 2* 
n - l 

( 1 \ fc AC — 1 / 1 \ 7 

l ) " S ^ - i f . f t d ) for a l l n > ?: and J: > 1, 

J - 0 

By the Renewal Theorem (see [1, p. 330])9 we have 

fc-i 
(|)k = {Wx.k)}"1 J ( ^ ) J - for all k > 1. 

Hence ^"°  

H* -*{*!.*> = f y B , k =E«2-"an>, = ! > ' = 2 ^ - 2. 
n «1 n = 1 j-1 

Tk&OK&n V i For each integer k >. 2, let 
00 

uk
 = E n 2 " n a ^ f e = 2*+1 - 2 ; 

n - l then 
imk.* = (2"* + 2 k - 2} /y k and bmk + Jt k = 2 ' " 1 { 2 " * + 1 - 2} /u* 

for a l l i n t e g e r s 777 _> 1 and j' >= 1, 2 , ' . . . , ?C - 1. 

Vh.oo^i By the d e f i n i t i o n of {/3n,7<}5 &7<, k = 1- Hence, by Theorem 2 f
9 Theo-

rem 3 ' h o l d s when m= 1. Suppose t h a t Theorem 3 ' h o l d s fo r m = 1, 2 , . . . , M - 1 
and j = I, 2 , . . . 9 k - 1, where M i s an i n t e g e r _> 2 . Now, l e t m = Af9 t h e n , by 
Theorem 2 ' , 

&**,* = ^ f c - i . f c + ' 1 = 2 ^ 1 { 2 ( w " 1 ) k + 1 - 2 } / y , + 1 = (2Mk - 2* + 2k + 1 - 2)/U* 
= (2 M k + 2 k - 2 ) /y f c , 

s i n c e yk = 2 k + 1 - 2 . 

W . k = 26nfc;k - 1 - (2M" + 1 + 2 " + 1 " *>/V* - 1 - ( 2 ^ + 1 - 2 ) /y f c . ' 

&**+j.fc = Z ^ W i , k = 2 ^ - 1 ( 2 ^ + 1 - 2 ) / U k 9 f o r a l l j - 2 , 3 , . . . . fe - 1. 
Hence Theorem 3 ' h o l d s fo r m = M and j = 1, 2 , . . . 9 fc - 1. T h e r e f o r e , Theorem 
3 ' ho lds for a l l m >. 1 and j = 1, 29 , fe - 1. 
doKoltaJty to ThdOh&n 3' »* For each i n t e g e r b 2 , 

Wmk,fc - yfc1 {1 + 2"w7c + k - 2-mk + 1} = (2k + 1 - 2 ) ' " H i + .2"m* + * - 2 ~ ^ * 1 } 
and 

c+j-, k = Pk 

for all integers 777 _> 1 and j = 19 29 . . . 9 k - 1 
Wmfc+j.fc = y,"1 {1 - 2""* - (2k + 1 - 2) "Hi - 2"**] 
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A NON-FIBONACCI SEARCH PLAN WITH FIBONACCI-LIKE RESULTS 
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ABSTRACT 

This article describes a nondeterministic search plan, hereinafter called 
the mid-point technique. While not optimal in the minimax sense, the plan of-
fers several possible advantages over the Fibonacci technique. Further, the 
expected value of the reduction ratio at each stage is identical to the reduc-
tion ratio achieved by the minimax optimal Fibonacci method. 

IMTROVUCTWhl 

Search techniques often use the minimax criterion as the assumed measure 
of effectiveness. As a result of Kiefer?s pioneering work [4] demonstrating 
the minimax optimality of the Fibonacci search technique, a number of authors 
have focused attention on this particular search method. See, for instance, 
[1], [3], [5], [6], [7], and [8]. 

Unfortunately, in the authors1 opinions, there are three disadvantages as-
sociated with the Fibonacci technique. First, the plan requires that the final 
reduction ratio be specified prior to beginning the search. Second, the Fibo-
nacci search is one of the more complex unimodal sequential search techniques 
available, and this complexity may cause some potential users to avoid the Fi-
bonacci technique in favor of a simpler method such as the dichotomous search 
or the golden section search [6]. Finally, if there is an upper bound on the 
number of experiments permitted, it may be impossible to achieve the required 
reduction ratio, i.e., the Fibonacci method does not provide the user with the 
option to gamble. 

On a more fundamental level, the minimax criterion of optimality itself is 
open to challenge. The extremely pessimistic and jaundiced view of nature in-
herent within the minimax criterion may not represent a desirable framework 
from which to view the search procedure. While possibly valid for cases of 
warfare or for investors with extreme risk aversion, the minimax assumption of 
a malevolent opponent capable of altering the probabilities inherent within any 
gamble should be looked at with some skepticism. Murphy fs Law notwithstanding, 
it is not reasonable to assume that all gambles taken by the searcher will 
necessarily be losing ones. 

ASSUMPTIONS Of THE MIP-POIOT TECHMldliE 
The mid-point technique utilizes five assumptions. The first four are read-

ily recognizable as being common ones often employed in search procedures. The 
fifth represents a significant departure from the minimax optimal Fibonacci 
method. 

1. The response variable (y) is a function of the independent variable (x) 
and has a maximum (2/*) at x. = x*. The purpose of the search is to determine or 
approximate the value of x*. 

2. The function is unimodal; that is, given two experiments x1 and x2 with 
X]_ ^ X2 , let their outcomes by y1 and y2s respectively. Then x2 < x* implies 
y1 < y2 and x1 > x* implies yx > yz. 

3. The minimum separation distance (e) between experiments is negligible. 
4. The original interval of uncertainty for x can be scaled to [0, 1], 
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5. A priori, any given interval of finite length is assumed to have the 
same probability of containing x* as any other interval of the same length 
(where both intervals lie within the remaining interval of uncertainty). 

MECHANICS OF THE UTD-POINT TECHNIQUE 

The first experiment, x1, is placed at the center of the interval, and the 
second experiment, x2 * is placed at £ (the minimum possible separation) to the 
right of x±. If y1 > y2, the interval [x2, 1] is dropped from further consid-
eration. If y2 > yl9 the interval [0, x1] is discarded. Under the assumptions 
of unimodality and negligible separation distance, this will necessarily reduce 
the interval of uncertainty to one-half of its original length. The third ex-
periment, xS9 is then placed at the center of the remaining interval. The 
third experiment will either halve the interval of uncertainty or reduce it by 
e (the distance between x± and x2). Under assumption 5, each of these mutually 
exclusive and exhaustive events is assumed to occur with probability 0.5. In 
the former case, the fourth experiment is again placed at the center of the re-
maining interval of uncertainty with the outcome of xh determining whether or 
not the remaining interval is significantly reduced. For the latter case (x3 
having negligible effect on the reduction ratio), xh is placed a distance of e 
from x3, and the fourth experiment necessarily reduces the interval of uncer-
tainty to one-half its pervious length. 

Figure 1 represents two of the six possible sets of experimental outcomes 
leading to a reduction ratio of 4. 

CASE I CASE I 

EXPT. 1 
X, 

EXPT 2 / / / / / / / / / / / / / i o xtx: 

Y,<Y2 j x ^ x ' ^ i 
R = 2 

S///////////A 

VY 2 ;x 1 <xk i 
R = 2 

EXPT. 3 4Y///////A 
x,x, 

V////A S/////////A& 
A-iAo 

R = 4 
Y 3 >Y 2 ;X a <X '<1 

R = 2 

EXPT. 4 //////////M '/&A 
XiX2 X3X4 1 

Fig. 1 

Y 4 - Y 3 ; X 2 - X < X 4 

R = 4 

This search procedure continues until either a satisfactory reduction ratio 
has been attained or until the maximum number of experiments permitted has been 
run. 
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HOVELING THE mV-VOINT SEARCH TECHNIQUE 
Each experiment of the mid-point technique results in exactly one of two 

possible outcomes: (1) the remaining interval of uncertainty is significantly 
reduced (by half), or (2) the interval of uncertainty is not significantly re-
duced. Clearly x1 (by itself) has no effect, while the result of x2 necessar-
ily reduced the original interval by half. For n _> 3, if xn is placed in the 
center of the remaining interval, it will significantly reduce the interval 
(with probability 0.5) or it will fail to do so (also with probability 0.5). 
If, however, xn is placed a distance e from xn__19 it will significantly reduce 
the interval (with probability 1) or will fail to do so (with probability 0). 

It is thus natural to describe each experimental outcome as resulting in 
either a "success" (a significant reduction of the interval of uncertainty) or 
a "failure" (no significant reduction achieved). Further, the probabilities 
for achieving success or failure on each experimental trial depend exclusively 
on where the experiment is placed (either in the center of the remaining inter-
val, or a distance e from the last experiment) , where placement depends upon 
the information derived from the previous experiment. 

This suggests the use of a Markov chain to model the process (see Figure 
2) . Transition to State 0 represents a success in the terminology described 
above, while a transition to State 1 represents a failure. 

"p 4 
i o 

\l + q 1 + q) 
Fig. 2 

The first two transitions of the chain are deterministic. The first experi-
ment results in the occurrence of State 1 and the second experiment results in 
State 0 with a probability of 1. In this particular application, p = q = 0.5. 
States 0 and 1 form an irreducible recurrent set. The process of interest is 
the return times to State 0, which clearly forms a renewal process. 

In terms of the mid-point technique, each transition of the Markov chain 
represents one experiment. The result of the first experiment necessarily re-
sults in a failure, that is, the chain making the transition to State 1 (with 
probability 1). Since the second experiment is placed at a distance e from x19 
the result of x2 is necessarily a success, that is, the chain making the tran-
sition from State 1 to State 0 (also with probability 1). This first visit to 
State 0 is called the first renewal, and the first visit and all subsequent re-
turns to State 0 result in a halving of the remaining interval of uncertainty. 
Equivalently, each time the chain undergoes a renewal, the reduction ratio is 
effectively doubled. 

Obtaining the probability mass function for the number of renewals in a 
fixed number of transitions is a relatively straightforward matter (see Appen-
dix) . From this mass function, the exact probability for the number of renew-
als can be computed. If the random variable Nn represents the number of visits 
to State 0 after n transitions of the chain, then the reduction ratio Rn after 
n transitions (experiments) is simply expressed as Rn = 2 ". Since the proba-
bility mass function for Nn has been completely specified, this also specifies 
the mass function for the various values that the random variable Rn takes. 
From this, the expected value of Rn immediately follows. 

Table 1 lists the expected value of the reduction ratio after n transitions 
or experiments, for values of n ranging from one to ten. Readers of this jour-
nal will immediately recognize the Fibonacci sequence. 
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Table 1 

Number of Number of Equivalent Probability Expected Value 
Experiments Renewals Reduction Ratio of Occurrence of Reduction Ratio 

1 

1 

2 

3 

5 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

0 

0 

1 

1 
2 

2 
3 

2 
3 
4 

3 
4 
5 

3 
4 
5 
6 

4 
5 
6 
7 

4 
5 
6 
7 
8 

5 
6 
7 
8 
9 

1 

1 

2 

2 
4 

4 
8 

4 
8 
16 

8 
16 
32 

8 
16 
32 
64 

16 
32 
64 
128 

16 
32 
64 
128 
256 

32 
64 
128 
256 
512 

1.0 

1.0 

1.0 

0.5 
0.5 

0.75 
0.25 

0.25 
0.625 
0.125 

0.500 
0.4375 
0.0625 

0.125 
0.5625 
0.28125 
0.03125 

0.3125 
0.500 
0.171875 
0.015625 

0.0625 
0.4375 
0.390625 
0.1015625 
0.0078125 

0.1875 
0.46875 
0.28125 
0.05859375 
0.00390625 

13 

21 

34 

55 

89 

ADVANTAGES Of THE MW-FOWT TECHNIQUE 

1. When a search point, x^9 falls sufficiently close to x* 9 the subsequent 
experiments, xi + k9 will all be successes with consequent rapid convergence. As 
an extreme example, the case where ̂  is located at the center of the original 
interval of uncertainty can be considered. In this case, x* will lie in the 
interval [xl9 x2]. For x2 and all subsequent experiments, the interval of un-
certainty will be halved. 

2. In many situations involving a direct search, the marginal cost of addi-
tional experiments is constant, while the marginal value of information rapidly 
decreases with the time required to obtain the information. The expected profit 
of the search under these circumstances may be larger when using the mid-point 
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technique than when using the Fibonacci method. For example, if a reduction 
ratio of at least 30 is required and if the cost of placing experiments is $10 
per experiment while revenues are [100 - O.ln2], the Fibonacci search requires 
9 experiments and gives a profit of $1*90. The mid-point technique has an ex-
pected profit of $13.50 and requires 6 to 10 experiments. 

3. If the desired reduction ratio must be accomplished within a specified 
number of search points, the Fibonacci search may be incapable of meeting the 
requirement. Under this circumstance, a rational choice is to gamble and the 
mid-point technique does allow gambling, although it does not insure a winning 
gamble. 

4. The mid-point technique is easier to use than the Fibonacci search. 
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APPENDIX 

The first two transitions of the Markov chain are strictly deterministic. 
The chain goes to State 1 and then to State 0 (all with probability 1). There-
fore, for the purposes of this analysis, we can ignore the first two transi-
tions and take State 0 (our renewal state) as the initial state of the chain. 
Diagrammatically, the chain appears as in Figure 2. 

Let N(t) be the number of renewals in [0, t] where t represents time, and 
let 772 be the number of transitions that occur in this interval. If each tran-
sition is assumed to require one time unit, then 772 is the integer part of t . 
We are interested in the probability distribution for the number of renewals in 
a finite number of transitions, i.e., P{N(t) = k] for the various values of k. 
Counting the initial state of the chain as a renewal, the total number of re-
newals is clearly equal to one plus the number of returns to State 0. 

Let /(•) be the probability mass function of inter-renewal times. Then 
/(I) = p and f(2) = q. 

Let fk(k + n) be the probability of obtaining the fcth return, the (k + l)th 
renewal, on the (k + n)th transition for n = 0, 1,...... k. Note that fk is the 
fc-fold convolution of /('•)• A little algebra quickly reveals that 

/ (&•+ n) = (k\ pk-nqn f o r n = 0, 1, ', fe. 
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For purposes of algebraic simplicity, let m = k + n. Then 

where fk(m) is the probability of obtaining the kth return on the mth transi-
tion. Similarly, 

fk-Hm) =(m
k_~kl l)p2k-m-zqm-k+1; m = k - 1, k, ..., Ik - 2. 

***(*) - £/*<w); m = k, k+ I, ..., 2k. 
m<.t 

Note that Fk is the probability of obtaining the kth return, the (k + l)th re-
newal, at or prior to time t, where the maximum value of m is the largest inte-
ger less than or equal to t. It follows immediately that 

Fk(t) = P{N(t) >_ k + 1}. 
Similarly, 

F*"1^) = ̂ /k"1(/7z) = P{N(t) >. k}a 
m<_t 

With Fk and F completely specified as above, and using 

P{N(t) = k} = Fk'1(kt) - Ffe(t) 

(see [2, Ch. 9]), the distribution of N'(t) can be determined. 
Algebraic manipulation and simplification results in the following: 

P{N(t) = k} = F k - 1 ( t ) Ffe(t) 

0; 
fr - 1 

P ; 

t < k - l 
fc - l <. £ < fe 

1-S(B.Jptt'V-1; 

< Ik 

0: 

2k - 2 <t < 2k 

t > 2k 

where [t] is the integer part of t. 
A short computer program was written in FORTRAN to calculate these proba-

bilities as well as the mean, variance, standard deviation, and skew for the 
number of renewals and its equivalent reduction ratio. The number of transi-
tions was varied from one to twenty in increments of one. The program was com-
piled and executed under WATFIV and run on an AMDAHL 470/V6 computer in well 
under 0.5 seconds. Copies of this program are available on request. 
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CONGRUENCES FOR BELL AND TANGENT NUMBERS 

IRA GESSEL 
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7. INTRODUCTION 

The Bell numbers Bn defined by 

i>S = ̂  
n - 0 n ' 

and the tangent numbers Tn defined by 

J2 Tn^ - tan x 

are of considerable importance in combinatorics 9 and possess interesting number-
theoretic properties. In this paper we show that for each positive integer n9 

there exist integers a0, ax» B.«9 <zn_1 and b19 b2S .«, ., bn_1 such that for all 
??? _> 0 9 

Bm + n + an-A+n-l + • " + a05m E °  < m o d w !> 

^d Tm+n + V A + n - i + ... + ^ w + 1 E 0 (mod (n - l)!n!). 

Moreover, the moduli in these congruences are best possible. The method 
can be applied to many other integer sequences defined by exponential generat-
ing functionss and we use it to obtain congruences for the derangement numbers 
and the numbers defined by the generating functions ex^x2^2 and (2 - e*)"1* 

2. THE METHOV 
A Hurwitz series [5] is a formal power series of the form 

E xn 

an n!9 
n-0 

where the an are integers. We will use without further comment the fact that 
Hurwitz series are closed under multiplication, and that if / and g are Hurwitz 
series and g(0) ~ 0, then the composition fog is a Hurwitz series. In parti-
culars gk/k\ is a Hurwitz series for any nonnegative integer k. We will work 
with Hurwitz series in two variables, that is9 series of the form 

v^ xm yn 

Z. amnm\ nl9 

m, n-Q 

where the amn are integers. The properties of these series that we will need 
follow from those for Hurwitz series in one variable. 

The exact procedure we follow will vary from series to series 9 but the gen-
eral outline is as follows: The /cth derivative of the Hurwitz series 

n ™ 0 * n = 0 

Our goal is to find some linear combination with integral coefficients of 

f(x), f'(x), ..., /(»><«) 



138 CONGRUENCES FOR BELL AND TANGENT NUMBERS [April 

all of whose coefficients are divisible by n! (or in some cases a larger num-
ber). To do this we use Taylor's theorem 

fix +y)= £ f«Hx)^. 
k = 0 

We then make the substitution y = g{z) and multiply by some series h(z) to get 

Hz)f[x + g(z)] = J f«\x)h(z)^ff^. 
fe = o 

win 
If n(z) and g(z) are chosen appropriately, the coefficient of — zn on the 

xm zn 
left will be integral. Then the coefficient of —: r on the right is divisible 

ml n\ & 

by nl 9 and we obtain the desired congruence. 

3. BELL A/UMBERS 
We define the exponential polynomials §n(t) by 

Thus 

<(>n(l)=5n and (f)n(t) = J^Sin, k)tk, 
k = 0 

where S(n9 k) is the Stirling number of the second kind. We will obtain a con-
gruence for the exponential polynomials that for t = 1 reduces to the desired 
Bell number congruence. 

We set 

/to) - ^ - ^ - £ • „ ( * > £ ? . 
n = 0 " • 

Then 

f(x + z/) = exp [ £ ( e x + ̂ - 1) ] = exp [t(ex - 1) + t ( < ^ - l).e«] 

= fix) exp [£ (e* - l)ex]. 

Now set z/ = log(l + z) . We then have 

J /(*>(a0[lo8(fc1, + a)]* = /<*)*"«". 
k = o 

Multiplying both sides by e~tz , we obtain 

i * 

fc = 0 " n-0 

Now define polynomials #Wffc(£) by 

8 . t . [ H a ^ ) ] ^ ^ ^ ^ , ( 2 ) 
n = fc 

[Note that Dntn (£) = 1.] Then the left side of (1) is 

E / ^ w & n ^ w ^ E frS-E f̂c(«*„+*(«. (3) 
k = 0 n = 0 m,n = 0 fc = 0 
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Since 

' '"V"'- !>•*>£• 
n = k 

where s(n9 k) is the Stirling number of the first kind9 we have the explicit 
formula 

0„,k(*) = £("!)'(}) s(n - j , k)t3'. (4) 
Since 

we have 

m • 0 j = 0 

hence the right side of (1) is 

oo m 

E ^ n t n E f i ) ^ -«?» w)M*>. (5> 
Equating coefficients of —: r- in (3) and (5) we have 

Pfiopo&AJtLovi V: For a l l m9 n >_ 09 

n m 

fc = 0 j - 6 w / 

where 

Now l e t Dni k = £ M , f c ( l ) . S e t t i n g t = 1 in P r o p o s i t i o n 1, we o b t a i n 

Vfioposition 2:. For m, n >.. 0 , 

where 

n w 

^ = E ( " 1 ) J ' G ) s ( n " J's /c)e 
J-0 

A recurrence for the numbers Dn-t £ is easily obtained. From (2), we have 

n = fc 
hence 

V n 2" _ a [ l Q R ( l + 8 ) ] * 
n = k 

D(U> *) = E Dn,kUk^ = ^~S(1 + 3 ) w . (7) 
From ( 7 ) j we o b t a i n 

— 7 n! 
n >.k 

t hus 

j^D(us z) = -0-*( l + 3)w + we"a(l + zT"1, 

(1 + Z)Y-D(U9 Z) = - (1 + z)D(u9 z) + w£(us s) 

(u - 1 - z)D(u9' z). (8) 
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Equating coefficients of uk—- in (8)s we have 

with D0i 
of Dn%k: 

^n + ly k 

1 and D. 
'n,k-l (n + l)Dn,k YiD. n-1, k for n9 k >_ 0S 

n, k = 0 for k > n or k < '0. Here are the first few values 

Table 1 

n 

0 
1 
2 
3 
4 
5 
6 
7 

fc 0 

-1 

-1 

-1 

-1 

1 

1 
_3 
8 

-24 
89 

-415 
2372 

2 

1 
-6 
29 

-145 
814 

-5243 

3 

1 
-10 
75 

-545 
4179 

4 

1 
-15 
160 

-1575 

5 

1 
-21 
301 

6 

1 
-28 

7 

1 

Thus the first few instances of (6) yield 

Bm + 2 + Bn+\ + Bm E 0 (mod 2) 

5 w + 3 + 23m+1 - 5 r a = 0 (mod 6) 

Bm+h - 10Bw+3 + 5Bm+2 + 5 = 0 (mod 24). 

If we set 

then from (7) we have k = 0 

where (w)^ = u(u - 1) ... (u - j + 1) . It can be shown that for prime p, Dn(u) 
satisfies the congruence Dn + P(u) = (up - w - l)Dn(u) (mod p) . In particular, 
Dp(u) = up - u - 1 (mod p) 9 and we recover Touchardfs congruence [8] 

5„+ P = Bn + Bn+1 (mod p). 

Touchard later [9] 'found the congruence 

B2p - 2Bp+1 - 23p + p + 5 = 0 (mod p 2 ) , 
which is a special case of 

Bn + 2p - ^ n + p+l " 2 ^ n + P +
 Bn + 2 + 2£„ + 1 + (p + 1)5 = 0 (mod p 2 ) , 

but these congruences do not seem to follow from Proposition 2. 
We now show that in a certain sense the congruence obtained from Proposi-

tion 2 cannot be improved. 

VKO^OhXXion. 3: Let A09 A19 A2, . 
..., an be integers such that 

. be a sequence of integers and let aQ,. a13 

2 ^ a ^ ™ + f c = | / i / 
fc = Q 

i f 0 <_ m < n 
i f m = n 

Let &o, 2?3., • • • s bn be i n t e g e r s such t h a t /"] f̂c-̂ m + fc i s d i v i s i b l e by R fo r a l l 
m > 0 . Then i? d i v i d e s 2?w#. fc = o 
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Vnoofc Let 

Since 

R divides S. But 

s = I ^ V * + J" 
i, 3 = 0 

n 

s =£>; i = Q 
n 

• 2 > 
J - 0 

n 1 

E V W J - 0 
n 

J2 aiAi+i 
i = 0 

= 

CotiolZa/iy: If for some integers bQ9 b19 . .., £„_19 we have 

5m+„ + V A + » - i + ••• + V m = 0 (mod R) for all m > 0, 
then i? divides n\ . 

VKOOji Since 5(n, fc) = 0 if n < Zc and £.(n, n) = 1, the right side of (6) is 
zero for 0 <_ m < n and n\ for m = n. Thus Proposition 3 applies, with bn = 1. 

For other Bell number congruences to composite module, see Barsky [1] and 
Radoux [7]. 

4.- TANGENT NUMBERS 

We have 

/ . \ tan x + tan y _ , \^ 2 ^ n-i ,_ „ 
tan Or + y) = ^— = tan a: + > sec x tan x tanny. 

^ 1 - tan x tan y JL*I J 

u n = i 
Now set 2/ = arctan z. Then 

00 

tan(# + arctan z) - tan x + \ ^ s " sec2# tax?l~1x9 (9) 
and by Taylor's theorem, 

/ . N \T* m (arctan z)k ',-,rx\ 
tan Or + arctan 2) = 2^ tanKK)x- r y - — — , (10) fe = o 
7^ 

where tannic = — - tan x. 
dxk 

Now let us define integers T(ny k) and t{n9 k) by 

^ - £ > < » . * > f ? and (arctan «)* = g > ( w , fe)g, 
« = fc ' * w = fc 

Tables of T(n9 k) and £(n, k) can be found in Comtet [3, pp. 259-260]. Note 
that 

d tan^rc _ _ 2 tan^"1^ 
sec ah dx k\ * {k - l ) ! 9 

so 
^r~^ Xm 

sec2x tan""1^ = (n - 1) ! 2 ^ T^m + *» n)^]" f o r n - *• 
Then from (9) and (10), we have 

E §-^it(n,k)Tm + k= tan x +^ £ |->n! (n - 1) lTQn + .1, n) . 
m,n = 0 'k = 0 m -1 n-0 * 

Then by equating coefficients of —: r we have 

P/lopoAition 4: For m J> 0S n •> 1, 
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Y^t(ns k)Tm + k = n\(n - l)\T(m + 1, n). (11) 
fc-0 

From Proposition 4, we obtain the congruence 

n 
£ * ( « , 'ft)Tw + fc = 0 (mod n! (n - 1)!). 
fc = o 

The first few instances are 

Tm+2 E 0 (mod 2) 

^ + 3 " 2Tm + l = °  (^d 12) 
Tm + , - 8!Tw + 2 E 0 (mod 144) 

Tm + 5 - 20Tn + 3 + 24^ + 1 E 0 (mod 2880) 

Tn + S - bOTm + h + 184^ + 2 = 0 (mod 86400). 

Note that the right side of (11) is zero for m < n - 1 and n\\n - 1)! for 
m = n - 1, Proposition 3 does not apply directly, but if we observe that 

t(n, 0) = 0 for n > 0, 

and w r i t e T£ fo r ^ n + 1 » then (11) becomes 
n - 1 
] £ t ( n , k + 1 ) ^ + ^ = n ! ( n - l )!T(m + 1, n ) , 
fe = o 

to which Proposition 3 applies: if for some integers b±s b2, . . . , bn-1» we have 
Tm+n + V A + n - 1 + * " + hlTm + l = 0 (™d i?) for a l l 77| > 0, 

then i? divides n\ (n - 1) ! . 
Proposition 3 does not preclude the possibility that a better congruence 

may hold with m _> M replacing m >_ 0, for some M. In fact, this is the case, 
since the tangent numbers are eventually divisible by large powers of 2; more 
precisely, x tan x/2 is a Hurwitz series with odd coefficients (the Genocchi 
numbers). 

5-. OTHER NUMBERS 
We give here congruences for other sequences of combinatorial interest, 

omitting some of the details of their derivation. 
The numbers gn defined by 

E ^ - S f - " - ^ ' 1 

count "preferential arrangements" or ordered partitions of a set. They have 
been studied by Touchard [8], Gross [4], and others. 

If we set G(x) = (2 - ex) _1, then 

2 n ( i - e-yy 

) (2 -

Substituting y - -log(l - z) in (12), we have 

^ o (2 - e J ) n + 1 

2ns" G[x - log(l - s)] = (1 - z)T — . (13) 
* = o (2 - e * ) n + 1 
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Proceed ing a s b e f o r e , we o b t a i n from (13) t h e congruence 

n 

Y,c(>n' k)3m + k E 0-faod 2 n - : L n ! ) , m >_ 0 s (14) 
k = o 

where c(n, k) = \s(n5 k) | is the unsigned Stirling number of the first kind, 

£"-<-'-""V"'-n = 0 
The first few instances of (14) are 

9m+2 + ^m+l E °  (mod 4> 

&i + 3 + 30m + 2 + 20m + 1 = 0 (mod 24) 

<7m + , + S.gn + S + ll<jm + 2 + 6<?m + 1 = 0 (mod 192), 
The derangement numbers din) may be defined by 

e~x 

/n! 1 - # 

n = 0 

It will be convenient to consider the more general numbers d(n9 s) defined by 
00 n -x 

Da(x) = Y^ d(n9 s)—r = — . 

fa, n! (i - * ) 8 

Then 
Dg (x+y) = — ^ ^ = S - * y j,»(M + S - ^ ^ . (15) 

(1 - x)s [1 - y/(l ~ x)]8 „^o V « ^ ( l - x ) " + 8 

Multiplying both sides of (15) by ey and equating coefficients, we obtain 

]£(3J)d(m + *:. s) = nl( n + ®•" l)d(.m, n + s ) . (16) 
k = 0 

In-particular, we find from (16) that for prime p, 

d(m + p, s) + d(tfz, s) = 0 (mod p ) . 

The numbers t defined by 
* x2 

t,-—r- = e n n ! 
M = 0 

w - L *4? - -
have been studied by Chowla, Herstein, and Moore [2], Moser and Wyman [6], and 
others, and count partitions of a set into blocks of size one and two. We have 
T(x + y) = T(x)T(y)ex+y; hence 

T{y)~1T{x + y) = T(x)ex+K (17) 

L e t oo y1 

n - 0 
Then from (17) we o b t a i n 

W(y) = ^ w n ^ = Tiy)-1 = e 2 . 
n = 0 

E(*K*****-nI (»)*»-•• as) 
)!c-0 

where we take tn = 0 for n < 0» We note that (18) satisfies the hypothesis of 
Proposition 3, so we obtain here a best possible congruence. 
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The numbers Wn have been studied by Moser and Wyman [6]... From the differ-
ential equation Wf(y) = -(1 + y)W(y) 9 we obtain the recurrence 

from which the wn are easily computed. The first few instances of (18) are 

tm + 2 "" 2tm + 1 = 21 ̂  Ĵ m -2 

-3 

*m + , - 4tm + 3 + 8tm + 1 - ltn = 24(J) *„,_„. 

A natural question is: To what series does this method apply? In other 
words, we want to characterize those Hurwitz series f{x) for which there exist 
Hurwitz series h(z) and g(z)'9 with k(Q) = 19 g(Q) = 05and^f(0) = 19 such that 
for all m% n >_ 05 the coefficient of (xm/ml)zn in h(z)f[x + g(z)] is integral. 
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A QUADRATIC PROPERTY OF CERTAIN LINEARLY RECURRENT SEQUENCES 

JULIO R. BAST .IDA and M. J . DeLEON 
Florida Atlantic Universityf Boca Raton, FL 33431 

In [1] one of t h e a u t h o r s proved t h e fo l lowing r e s u l t . 

Let u be a r e a l number such t h a t u > 1 9 and l e t {xn}n^o £>e a sequence 
of nonnega t ive r e a l numbers such t h a t 

XnJhl = UXn + AuZ - 1) Ĉ n " xl) + (̂i ~ U^o'y 
for every n J> 0, Then 

Xn+2 ™ ^UXn+l ~ Xn 

for every n 2. 0; and, in particular9 if u» x Q 9 x ± axe integers3 then 
xn is an integer for every n >_ 0. 
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In this note we shall show that, under certain conditions, the preceding 
result admits a converse. 

We begin with the following general preliminary proposition. 

?h.opO£>4Jtlovi' Let R be a commutative ring with unit element; let t9 u e R9 and 
define a polynomial / e R[X9 Y] by 

f(X9 Y) = tX2 - 2uXY + J2. 

I f {i3
n}n>0 i s a sequence of elements, of R such t h a t 

^n + 2 " ^ n + l " trn 
for every n >_Q9 then 

f(rn5 rn+1) = *n;fOv *i> 
for every n J> 0e 

Vnpo^* We shall prove this result by induction. The conclusion holds iden-
tically for n - 0, Assume now that it holds for some n 'J> 0. Then 

• / V p
n - M s Vn + 2^ ~ uVn + l "" 2 w 2 > n +1 P n + 2 + P n + 2 

= t P n + l " 2 w P n + l ( 2 M 2 , n + l " tpn) + (2^n + l ~ ^ n ) * 

- £ ( t p 2 - 2urnrn + 1 + P 2
 + 1 ) 

= tf(rn9 p n + 1 ) 
- ttnf(rQ9 rj 

which shows that the conclusion also holds for n + 1. IS 

This proposition can be applied in some familiar particular cases: 
If we take 

R = Q9 t = -1, u = 1/2, 

we find that the Fibonacci and Lucas sequences satisfy 

F« + l - Fn + 1F« ~ Fn = ("I)" 

for every n 2: 0-
And if we take 

R = Z, t = -1, u = 1, 

we also find that the Pell sequence satisfies 

P2 -IP P - P2 = (-l)n 

for every n J> 0. 
We are now in a position to state and prove our result. 

Tk&QSiem: Let t9 u he real numbers such that 
t2 = 1 and w > max(£, 0), 

and let {xn}n^Q be a sequence of real numbers such that 

x1 >.max(wic0, (t/u)xQS 0) 
and satisfying 

rn + 2 " 2wCn+l tX* 

for every n _> 0. We then have: 

(1) w^n + i >: max(txn, 0) for every n _> 0; and 
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(ii) asn + 1 = uxn + /{u2 - t)(xl - tnx2) + tn{x1 - ux0)2 for every n J> 0. 

VKOO^i We shall prove (i) by induction. Our assumptions clearly imply that 
the stated inequality holds when n - 0. Now suppose that uxn + 1 >_ max(txn9 0) 
for some n >_ 0. As the given conditions on t9 u imply that u > 0 and u2 > t9 
we first deduce that xn + 1 _> 0, and then that 

^ n + 2 = u(2uxn+1 - txn) 

= u2xn + 1 + u(uxn+1 - fccn) >. w2^n + 1 _> max(£a;n+1, 0), 
as required, 

Since x± - uxQ >_ 0, it is clear that, in order to prove (ii), we need only 
consider the case where n > 0. In view of the proposition, we have 

tx^_1 - 2uxn„1xn + x„ = tn~1(tx2 - 2uxQx1 + x2). 

Since t2 = 1, we also have 

x n-1 2tuxn^1xn + te„ = tn(txl - 2tucQx1 + #*) , 
and hence 

~2tz^n_1xn + ar^_1 - -&c2 + t**1^2 - 2tnz^r0aj1 + tnx\% 
i t then follows that 

\UXy^ ~~ ~0Xy^ _-\j = : ui ^ ^ ~" AuUXj^ _,-^^X 7% T XYI„2_ 

= w 2 ^ - t ^ 2 + £n'+1a?J + £wa?2 - 2 t n z^ 0 i c 1 . 

- (U2 - t)(X2 - tM^2) + t:"^ - UXQ)2» 

By virtue of (i) , we now conclude that 

= Z£Cn + (WXC„ - ̂ n „ x ) 

= uxn + /(uxn - txn_1)2 

= uxn + / o ? - t)(x2 - tnx\) + tn(xx - ua;0)2, 

which is what was needed. Hi 

Applying this theorem to the three special sequences considered above, we 
obtain the following formulas for every n >_ 0: 

*"„ + , -• h(Fn + J&l + 4(-i)«) 

Ln + 1 = h(Ln + hh\ + 20(-l)" + 1) 

PM+1 « Pn + /2Pn2 + (-1)". 

These formulas, of course, can also be derived directly from the quadratic 
equalities established previously. 
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THE DETERMINATION OF CERTAIN FIELDS OF INVARIANTS 

JULIO R. BAST I DA 
Florida Atlantic University, Boca Raton, FL 33431 

It is often difficult to determine Galois groups and their fields of invar-
iants by elementary methods„ The objective of this note is to illustrate how 
some basic considerations on fields and polynomials can be used to determine 
the fields of invariants of certain groups of field automorphisms. 

We shall be concerned with a field K and the field K(X) of rational func-
tions in one variable. The Galois group of X(X) over K will be denoted by 

Gal(Z(X)/X); 

for every subgroup Y of Gal(j£(X)/Z) 9 the field of invariants of T will be de-
noted by 

Inv(D. 

For each u e K - {0}, let pw denote the Z-automorphism of K(X) such that 
X -*- uX; and for each u e K9 let T U denote the Z-automorphism of K(X) such that 
X ->• u + X. 

Now we are in a position to state and prove the following assertions, 

A. If M is an infinite subgroup of the multiplicative group of nonzero el-
ements of K9 then the mapping u -> pM from M to Gal(X(X)/X) is an infective group 
homomorphism, and K is the field of invariants of its image. 

B. If A is an infinite subgroup of the additive group of X9 then the map-
ping u -> Tu from A to Gal(K(X) /K) is an injective group homomorphism, and K is 
the field of invariants of its image. 

A quick proof of these assertions can be obtained from the following two 
results: (1) K(X) is a finite algebraic extension of each of its subfields 
properly containing K; and (2) Artinfs theorem on the field of invariants of 
a finite group of field automorphisms. These results are discussed in [19 p. 
158] and [29 p. 69] 9 respectively. We shall now prove A and B by using only 
very elementary properties of polynomials. 

In the discussion that follows9 we shall consider an element J of K(X) not 
belonging to K9 and write it in the form Y= f(X) lg(X) 9 where f(X) and g(X) are 
relatively prime polynomials in K[X] . Put m = deg(/(X)) and n = deg(#(X)); then 
write 

m n 

fw = E^j i and ^ x > = HbJXJ> 
i=0 3 -0 

where a0 9 a19 .. . 9 am9 bQ9 bl9 . .. 9 bn £ K and am + 0 + bn. 

Vtiooj oj A: If u9 V e M, then (uv)X = u(vX) 9 whence p u v = pupy . It fol-
lows that the mapping u -> pu from Af to Gal(X(X)/iO is a group homomorphism. Its 
injectivity is evident: indeed9 if u e A and pu is the identity mapping on 
K(X) , then X = pu (X) = uX9 which implies that w = 1. 

Let T denote the image of this homomorphism. We shall now prove that the 
condition Y e Inv(T) leads to a contradiction. 

Now assume that Ye Inv(T). Then, for every u £ M, we have Y = pw (J) 9 which 
means that 

f(X)/g(X) = PM(jfO))/pu (#(*)) = f(uX)/g(uX)9 

and9 hence, f(X)g(uX) = f(uX)g(X) ; since /(X) and g{X) are relatively prime in 
K[X] 9 and since 

deg(/(X)) = m = deg(/(uX)) 
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and deg(#(Z)) = n = deg(#(uZ)), 
it now follows that 

f(uX) = umf(X) and g(uX) = ung(X) 9 

which means that um~iai = ai for 0 <^ i <_m and un~J'bj = Z?j' for 0 .<_ j <_ n. 
If 0 <_ i < m and a ^ 0, then um~i = I for every u e M; hence, every element 

of M is an (m - i)th root of unity in K. As M is infinite, this is impossible. 
Similarly, the conditions 0 £ j < n and bj £ 0 imply an absurd conclusion. We 
conclude that a^ = 0 = 2?.- for 0 _<_ i < m and 0 <_ j < n. 

Consequently, we have /(Z) = amXm and #(Z) = bnXn. If we put c = amlbn
 a n d 

r = m - n9 then e e X - {0} and Y = <3Xr; since J i K9 we see that p f 0. For 
every w e M9 we now have 

<?ZP = Y = pM(Y) = c(uX)r = c^Z25, 

which implies that uv - 1. Thus, every element of M is an |r|th root of unity 
in X. This contradicts the infiniteness of M9 and completes the proof of A. 

Vh.00^ ofi B: If u9 V e A, then 

(w + z;) + Z = u + (v + Z), 

which implies that TM + V = T M T V . Thus the mapping u -> xw from i4 to Gal(X(Z)/iQ 
is a group homomorphism. To verify that it is infective, note that IfueA 
and TU is the identity mapping on X(Z) , then Z = TU (Z) = w + Z, whence u = 0. 

Let A denote the image of this homomorphism. Assume, by way of contradic-
tion, that Y e Inv(A). For each u e A9 we have Y = TU (J), which implies that 

f(X)/g(X) = Tu(f(X))/Tu(g(X)) = f(u + X)/g(u + Z), 

and hence 
f(X)g(u + Z) = /(u + X)g(X); 

taking into account that f(X) and g(X) are relatively prime in K[X] , and that 

deg(/(Z)) = m = deg(/(u + Z)) 

and deg(#(Z)) = n = deg(#(u + Z)), 
we conclude that 

f(w + Z) = f(X) and #(u + Z) = <?(Z) . 

It now follows that f(u) = f(0) = a0 and g(u) = #(0) = Z?0 for every M e 4. 
This means that every element of A is a root of the polynomials f(X) - a0 and 
g(X) - bQ9 which is incompatible with the assumption that M is infinite. This 
completes the proof of 8. 
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FIBONACCI NUMBER IDENTITIES FROM ALGEBRAIC UNITS 

CONSTANTINE KLIORYS 
Pennsylvania State University, Sharon, PA 16146 

1. IHTROVUCTlOhl 

In several recent papers L. Bernstein [1], [2] introduced a method of oper-
ating with units in cubic algebraic number fields to obtain combinatorial iden-
tities. In this paper we construct kth degree (k J> 2) algebraic fields with 
the special property that certain units have Fibonacci numbers for coefficients. 
By operating with these units we will obtain our main result, ah infinite class 
of identities for the Fibonacci numbers. The main result is given in Theorem 1 
and illustrated in Figure 1. 

2. MAIM RESULT 

Tkton.2m I: For each posotive integer k let Ak be a (2k - 1) x (2k - 1) determi-
nant 9 Ak = det(a^)9 see Figure 19 where a^ is given by 

(-l)n+1Fn+2 if i = j and j < k 

(-1)% + 1 + (-Dn + 1Fn+2 if i = j and j > k 

(~Dn^n + 1 if i = J ~ k and i < k 
or i = j + k and i > k 

0 otherwise 

(k > 1), 

For k = 1s we define A1 to be the middle entry in Figure 1, i.e., 

Then, for all k >_ 1, we have Fn 

- n + l * 

i-ir+lFn+2 o 

Ak = 0 

( - i ) X + i 

0 (-l)"F„+i °  

(-l)"+1F„+2 

0 (-DnFn + 1+(-Dn + 1Fn + 2 0 

0 

o 

0 (-l)"fn+i 0 n+l-r 
0 (-D"F„ + i + (-D"T +̂2 

Fig. 1 (2k - 1) x f2& - i; Determinant 
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VK.OO^i Throughout the entire ensuing discussion, k will be a fixed positive 
integer. Consider the following 2k recursion formulas with the accompanying 2k 
initial conditions. For each fixed j, j = 0, 1, ..., 2k - 1, let 

a An •+ 2k) = a An + k) + a,, (ft) (ft > 0) (1) 
«/ *7 «/ 

and 
. N ) 1 if n = j /0% 

a An) = < " (2) 0 otherwise. 

In particular, for k = j = 1, we obtain 

^(n + 2) = ̂ (ft + 1) + aL(n) (ft _> 0) 
and 

ax(0) = 0, ax(l) = 1, 

that is, {a1(n)}n=1 is the Fibonacci sequence. In general, one can verify that 
for any fixed k and any j, j = 0, 1, •.., 2fc - 1, the nonzero terms of the se-
quence {dj (ft)}™=± are the Fibonacci numbers. More precisely, from (1) and (2) 
one can obtain the equations: 

aj(k - 1 + fen) = 0 if j 7* 2& - 1 or 7c - 1 

ak_±(k - 1 + kn) = 2 ^ (3) 

a2fc-l<fe ~ * + ^) = Fn-
Now consider the algebraic number field Q(w) where W2k = 1 + U^. We claim 

that the nonnegative powers of w are given by the equation 

wn = a0(ft) + a^iyi)w + ••• + a2^_ 1 (n)^2^"1, (4) 

where the a^ (ft) , 0 <_ j <_ 2k - 1, satisfy (1) and (2). From (4) we obtain 

wn+1 ^ a2k_1(n) + aQ(n)w + a1(n)w2 +••. + (ak_±(n) + a2k^(n))wk 

+ ... + a2k_2(n)w2k'K (5) 

Comparison of the coefficients in (4) and (5) yields the following 2k equations: 

a0 (ft + 1) = 0 • aQ (ft) + 0 * ax (ft) + • • • + 1 e a2k_ x (ft) 

a1 (ft + 1) = 1 * aQ (n) + 0 * a (ft) + • • • + 0 °  a (ft) 

a2 (n + 1) = 0 * a0 (n) + 1 • a± (ft) + • • • + 0 • a2k _ 1 (ft) 

: : : ( 6 ) 

ak(n + 1) = 0 • a0 (ft) + 0 • ax (ft) + • ..• + 1 • afc_1 (ft) + - •. + i . a2k_x (ft) 

2 f c - l (ft + 1) = 0 • a0(ft) +0-^(72) + ... + 1 • a2k_2(n) + 0- a2fc.1< 

This system of equations can be written more simply in matrix form as follows. 
Let C he the coefficient matrix of the a.(ft). Explicitly, C = (c^-) Is a (2&) 
by (2fc) matrix, where 

= 1 

= 1 

= 1 if I = 1 + j 

= 0 otherwise. 

Let Tn denote the following column matrix: 

Gl, 2k 

°k+l,2k 

°H 
°id 
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a,(n) 

hk-i™ 

(n j> 0) (7) 

The system (6) can now be wr i t ten as 

More general ly, if I denotes the iden t i ty matrix, then 
Tn = ITn 

(8) 

n + 2k = C2kT, 

The characteristic equation of C is found to be 

det(C - XI) = X2k - Xk - 1 0. (9) 

The Hamilton-Cayley theorem states that every square matrix satisfies its char-
acteristic equation. Hence, 

and from (8) 

From (7) and (10) we have 

C 

(C2k -

™n + 2k 

2k Ch I = 0 

I)Tn = 09 

+ n + k + ^n s (10) 

^.(n + 2fc) = a^ (n + k) + a^ (n) § j = 0S ...... 2fc - 1. 

Thus (1) of our claim is established. The initial conditions for (10) can be 
obtained from (4) and are given by the 2k column matrices 

where 
T • 

*ii -

( t i x ) , J = 05 1, ..., 2k - 1, 

; = 0 , 1 , . . . . , 2fc - 1 . 1 if i = j 
0 otherwise 

From (?) we have that ti± - ai{n). Hence9 ai{n) = 1 if and only if i - j 
and (2) is established, thus completing the proof of our claim. 

(11) 

n, 

From w(w 2k-i W k-l ) = 19 we see that 
,-1 ,2fc-l W J" = IcT 

If we denote the negative powers of w by 

,fc-i 

w 2>n (n) + &, (n)u + + fc^.^ 2 / c - l (n .> 0) , (12) 

then by calculations analogous to those used for the coefficients of the posi-
tive powers of w5 we obtain the following results. The coefficients satisfy 
the recursion formulas, 

bd (n + 2k) = bj (n) - bd (n + k), jv = 0, 1, ...., 2fe - 1. 

The initial conditions that are not zero are given by 
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b0(0) = 1 
b00O - - 1 

bjik - j ) = - 1 -/ = i • 9 fc - 1 
fy(2& - j ) = 2 J i s Z ' • ' " K i j (13) 

^ J ( J ) = l J = k9 

The result analogous to (3) is given by 

b±(k - 1 + fen) = (-l)n + 1Fn + 2 

bk+1(k ~ 1 + fen) = (~Dn^ + 1 (14) 
ij (fc - 1 + few) = 0, if j M or /c + 1. 

If we employ (4), (12), and (14), then omitting the argument (k - 1 + kn) from 
the <Zj and bj , we can write 

i _ wk-l + knw-(k-l + kn) 

= (a0 + axw + • • • + a ^ . ^ 2 * ' 1 ) ^ + *f c + 1wk + 1 ) . 
M u l t i p l y i n g out t h e r i g h t - h a n d s i d e and comparing c o e f f i c i e n t s , we o b t a i n t h e 
2/c e q u a t i o n s : 

S c - A + l + a 2 ? c - l ^ l + b
k + 1) = X 

a A + ak + lbk+l = ° 

a k - 2 ^ 1 + ^2k~2bk+l = ° 

ak-2hk + l + a2*c-2 A + fyc + l ) = °-
We will consider the a0, ..... , <̂ 2fc-i as tne unknowns and solve for cc2k_1 by Cra-
mer ?s rule. If we denote the coefficient matrix by D and use (3) and (14) to 
replace bls bk + l9 and a2k^19 then Cramer's rule yields 

&k p = + 1— 
n ~ det D 

We will complete the proof of the theorem by showing that det D = ±1. 
The norm of e = b^W + bk + 1Wk + 1 is given by the determinant of the matrix 

whose entries are the coefficients of w$9 j = 0, „.., 2k - 1, in the following 
equations: 

e = hiw + bk+iwk+1 

,2 , h -,.fc+2 ew = b^b) + bk + 1w]< 

ewk'1 = bk+1 + (b± + bk+1)wk (continued) 
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ew* = bk + 1w + (b1 + bk+1)wk+1 (15) 

ew2k~x = 6r + £ k + 1 + (j^ + 2ifc + 1)w*. 

The norm of £ is ±1 since e = w~ik~1 + kn) and io> is a unit. We observe, however, 
that D is just the transpose of the matrix from which the norm of e was calcu-
lated. Hence5 det D = ±1, and our theorem is proved,, 

As a concluding note we remark that, if k = 2, then the theorem yields—• 
with the appropriate choice of the plus/minus signs—the identity 

Fn - (-l)" + 1Fn
3
+2 + 2(-irFn + lFn\z + (-1)"+1F„3+1. (16) 

This can also be verified as follows: Replace Fn 2 hj Fn + Fn + 1 in (16) and 
simplify to obtain 

F2 - F F - F 2 = (-l}71 (17^ 

Finallys compare (17) with the known [6, p. 57] identity 

r n - l r n + l r n \ L' 

to complete the verification of (16). 
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POINTS AT MUTUAL INTEGRAL DISTANCES IN Sn 

B. GLEIJESES 
Istituto di Matematica Applicata, Via Belzonir 7 135100 Padovaf Italy 

In radio-astronomy circles, it is sometimes jokingly speculated whether it 
is possible to place infinitely many in-phase, nonaligned antennas in a plane 
(say, vertical dipoles in a horizontal plane). Geometrically, this means plac-
ing infinitely many nonaligned points in R2, with integral pairwise distances; 
and naturally the mathematician wants to generalize to R3 and i?n. In R there 
is still a physical meaning for acoustic radiators, but not for electromagnetic 
radiators, since none exists with a spherical symmetry radiation pattern (for 
more serious questions on antenna configurations, see.-[2]). 

A slightly different problem is that of placing a receiving antenna in a 
point P, where it receives in phase from transmitting antennas placed in non-
aligned coplanar points Alt AZ9 .•• (in phase with each other); geometrically, 



154 POINTS AT MUTUAL INTEGRAL DISTANCES IN Sn [April 

this means that the distances A^Aj are integral, and that all the differences 
PAi-PAj are also integral. We shall prove that the first question has a nega-
tive answer, and that only finitely many Ffs satisfy the second condition. 

Our proof of these facts,' set out in Paragraph 1, is only the first step in 
an inductive demonstration (given in Sections 1 to 4) of the following 

TkzOH.Qjn' In a Euclidean space of dimension n _> 2 there exist only finite sets 
of noncollinear points all of whose mutual distances are integers. 

If in all the reasoning used in Paragraphs 1-4 to prove the theorem, one 
requires that m be a positive real number rather than a positive integer, then 
one obtains the following result. 

TktOKQjm (hAJs) « If one places n + 1 antennas in phase at the vertices of a non-
degenerate (n+ l)-hedron in a Euclidean space • of dimension n >_ 2, then the set 
of points of the space from which the signals are received in phase is a finite 
set. 

RojmcUik: Two antennas are in phase if their distance is a multiple of the wave-
length; a point P receives in phase from two antennas A and B if the differ-
ences AP-BP is a multiple of the wavelength. 

The last section describes two methods (one due to Euler) to construct sys-
tems of points in the plane with integral mutual distances. 

By PQ we denote, as usual, the distance between the points P and Q. The 
phrase "points at integral distance" will be abbreviated to "points at ID." 

7. Let 0 and A be two points of the plane having distance OA = a, an integer. 
We show that the points of the plane for which OP and AP are both integers must 
all lie on a distinct hyperbolas (one of which is degenerate). As our coordi-
nate system, we take the orthogonal axes with 0 as origin and the line through 
0 and A as #-axis. Let P be a point at ID from 0 and from A9 assume P ^ 09 A9 
and set OP - m > 0, AP = m - k with m and k integers. 

Note that by the triangle inequality we have AP £ OA + OP and OP <_ OA + AP, 
which imply that -a <_k <^a. It is immediate that P lies on the hyperbola dk 
with foci at 0 and A defined by the equation 

(a2 - k2){x - a/2)2 - k2y2 = (k2/4)(a2 - k2); (1) 

its center is Af = (a/2, 0), and its axes are the lines y = 0 and x - all. It 
intersects the rc-axis at the points with abscissas x = a/2 ± k/2. We conclude 
that any point that has integral distance from both 0 and A must lie on one of 
the hyperbolas GL19 a2 * • • • » da* 

Note that for k = 0 and k = ±a, 
Eq. (1) defines a degenerate parab-
ola, and that there are a+ 1 curves 
in all. However, all of the curves 
will be hyperbolas, exactly a in 
number, if we take (x- a/2)y = 0 as 
(%a. See Figure 1. 

Now let B be a point at distance 
OB = b from 0 and noncollinear with 
0 and A. Repeating the discussion 
above for A we find that the points 
at integral distance from 0 and from 
B all must lie on b hyperbolas (B19 
82s . ..J.CBJ,. All these hyperbolas 
have as center the midpoint Bf of 
the segment OB and as axes the line Fig. 1 
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through 0 and B and the line through Bf perpendicular to it. Hence it is clear 
that none of these hyperbolas coincides with any di9 since they have different 
sets of axes. The possible points at integral distance from 09 A9 and B are 
found in the union with respect to i and j of the a^n©j-9 and hence are in num-
ber at most kab. 

2. We now give the proof of the theorem stated in the introduction for the 
case of a space of dimension 3, since the proof still has an intuitive geomet-
ric meaning that sheds light on the more general situation. 

Let J be a set of points in the space that are noncollinear and mutually 
at ID. We wish to show that X has finite cardinality. 

If the points of X all lie in a plane, we are already done. Otherwise, X 
contains four noncoplanar points 09 A9 B9 and C. We set OA = a, OB = b9 and 
OC ~ a. We fix an orthogonal coordinate system having origin at 09 the line OA 
as x-axis, and the plane determined by OAB as xy plane. With an argument sim-
ilar to that used in the case of the plane, one sees immediately that the points 
P at ID from 0 and A9 and thus in particular the points of the set X9 must all 
lie on the a + 1 quadrics SAt k defined by the equations 

SAiki (a2 - k2)(x - a/2)2 - k2y2 - k2z2 = (k2/4)(a2 - k2), k = 0, 1, ..., a. 

If 0 < k < a, the quadric SAt k is an elliptic hyperboloid of revolution around 
the line OA; the point A? (midpoint of the segment OA) is its center, and each 
plane of the pencil through OA is a plane of symmetry; among these there is the 
xy plane. For k = 0 the quadric £4,0 is the plane x = a/2 (counted twice), and 
for k = a the real points of SAta are the real points of the line that passes 
through 0 and A, 

The points at ID from 0 and B are all to be found on the b + 1 quadrics 
SBih with h = 09 1, . .. , &. For 0 < h < b9 the quadric SBt ^ Is an elliptic hy-
perboloid of revolution around the line OB; its center is at S' (the midpoint 
of the segment OB), and it has as planes of symmetry all the planes of the pen-
cil through the axis of revolution, among which there is the xy plane. For h = 
0 the quadric SBi0 is a double plane; for h = b the real points of SBtb are the 
real points on the axis of revolution. 

By analogy, the points at ID from 0 and C are found on e + I quadrics SCi l 
with I = 0, 1, ..., c. For 0 < I < o9 the quadrics SCi £ are elliptic hyperbo-
loids of revolution around the line OC9 and they certainly do not have the xy 
plane as a. plane of symmetry. For I = 0 the quadric SCi 0 is the plane through 
Cf (midpoint of the segment OC) which is orthogonal to the line OC9 this plane 
being counted twice. For I = c the real points of the quadric SCi Q are the 
points of the line OC. 

Since the points of X are at ID from A9 B9 C9 and 09 we have 

X CU(SAikC\ SBihn SCiZ) for k = 0, ..., a; h = 0, ..., b; I = 0, ..., o. 

Now if one of the three quadrics that appear in SAt k C) S Bt hC\ Sc^ is degenerate 
(k = 0, a, or h = 0, b9 or I = 0, c), it is clear that the real points of the 
intersection either are finitely many or lie in a plane. Therefore, the points 
of X contained in the intersection are finitely many. If none of those quad-
rics is degenerate, let yk h be the real intersection of SAfk with SBih$ with 
k and h fixed. 

In view of the facts that the SAtk and SBi h are real quadrics, that there 
are no real lines contained in them, and that we are considering only the real 
points of the intersection, there are only two possible cases to discuss: 

a. yk h has real points and is irreducible. 
b. y , splits into two nondegenerate conies with real points. 

In case b, a conic being a plane curve, we see that there can be only a finite 
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number of points of the set X which lie on Yfc, &^ ̂ c,& for every £. In case <x, 
if we show that yk h cannot lie entirely on any SCt £, then yk hOSc,i is a fi-
nite set of points for each £, and that will complete our proof. 

So suppose that ykt h is irreducible. Since SQ, I is not symmetric with re-
spect to the xy plane, we can write its equation in the form 

(ax +'g>y + 6)z + F(x,.y, z2) = 0, with a, (3, 6 not all 0. 

A simple calculation shows that the pairs of points symmetric with respect to 
the xy plane and which lie on the quadric are either in the xy plane itself or 
in the plane ax + $y + 6 = 0 . Since yk h is symmetric with respect to the xy 
plane, were it contained entirely in Sc ^ it would have to be contained in one 
of the two planes just mentioned. But, a quadric does not contain irreducible 
plane quartic curves. 

3. In Rn the proof is similar and is based on induction on the dimension n of 
the space. Here we give only a sketch of the demonstration. 

Let I be a set of points in Rn that are all mutually at ID. 

a. It is evident that the points that have integral distance from a point 
0 and from another point P are located on a finite number (equal to OP + 1 ) of 
quadrics SPtk with k = 0, 1, ... , OP. The quadrics SPtk for 0 < k < OP are hy-
perboloids: for k = 0 the real points of £P> 0 span an Rn~1; fork = OP the real 
points of SPy ov are the points of the line passing through 0 and P. 

b. If I does not contain n + 1 independent points, it follows that XCRn~l 

and the induction holds. Otherwise, let 0, P±9 ... , Pn be n + 1 independent 
points of J. We fix a cartesian coordinate system with origin at 0 and the 
first n - 1 coordinate axes in the i?n_1 determined by <9, P , .. ., P _ . 

C. From a it follows that the points of X are contained in the union (with 
respect to the k^) of the intersection (with respect to i-) of the quadrics 
Sp k obtained from the pairs of points 0P1, 0P2, ..., 0Pn . We can write 

n I OPi-i \ ( the points of X that come from the intersections in] 
"̂•£ fl I U ^P ic u \ which a quadric is degenerate, that is, for k^ = 0, > 

i-i\ki-i " 7 {opt. ) 
If an SP.tk. is degenerate, it is immediate that the intersection either con-
sists of a finite set of points or is contained in an i?""1, so that its contri-
bution to the cardinality of J is a finite number of points. 

d. We consider the real intersection of n - 1 nondegenerate quadrics 

n-l 

11 Sp.,k- w i t n & = (&i» •••* fcn-i) fixed. 

This is either a finite set of points or else is a curve yk of order 2n with 
real points and symmetric with respect to the hyperplane xn = 0, since all the 
quadrics that appear in the intersection possess this symmetry. 

£. We intersect the curve yk with a quadric SPntkn (kn = 1 , ..., 0Pn - 1). 
This last quadric is certainly not symmetric with respect to the hyperplane 
xn = 0. 

£. If yfe is irreducible, it cannot lie entirely on any SPnt kn (the proof 
is analogous to the case n ~ 3). Hence, the real intersection is a finite set 
of points. If yk is reducible and y, C\SPntkn is not a finite set, then an ir-
reducible component Yk °^ the curve yk lies in SPn> knS and the order of y^ is 
less than the order of yk. 
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g. If no point of X lies on y^, the proof is finished. Otherwise, let 
Pn+1 be a point of X lying on the curve y&. In this case, it is required that 
the other points of X also be at integral distance from Pn+1, and, hence, that 
they lie in the intersection of y. with the OP,., + 1 quadrics Sv 1 (&„.-, = 
0 1 np \ ^n + i>kn+l n+.i 

We can immediately exclude the case in which the quadrics are degenerate 
(see c) . Now, either the real intersection y, D Sp t k is a finite set of 
points for every kn+1 = 1, ..., 0Pn+1 - 1, in which" case the proof is already 
completed, or the real intersection of y, with a quadric is a curve whose order 
is lower than that of y, . 

By repeating the procedure outlined in g, we shall surely stop after a fi-
nite number of steps, because we find that the real intersection either is a 
finite set of points, or it contains no points of J, or it is a curve of order 
at most n - 1. In this last case it is known that the curve must lie in a sub-
space of dimension at most n - 1, and, hence, in particular, ICi?""1, 

4. We now give another demonstration of the result of Paragraph 1, which does 
not, however, give any idea of how the possible points must be distributed in 
the plane. 

Given a triangle OAB in the plane, we fix a system of coordinates as in 
Paragraph 1. Let OA = a, OB = b9 and OC = c, and let <p = angle AOB. We wish 
to find the points of the plane at integral distance from the vertices of the 
triangle. Let P be such a point, and set OP = m9 AP = m - k9 and BP = m - h9 
with m a positive integer and h, k integers. By the triangle inequality (see 
Paragraph 1), we have \k\ <. a, \h\ <_ bs and, hence, if we denote the integral 
part of a by a and the integral part of b by (35we see that k can take only the 
values 0, ±1, ..., ±a, and In only the values 0, ±1, ..., ±(3. The coordinates 
xs y of P are solutions of the system of equations: 

/ x2 + y1 = m2 

) (x - a ) 2 + y2 = (jn - k)2 (2) 

[ (x - b cos <p)2 + (y - b sin v?)2 = (m - h)2 . 

Substituting m2 in place of x2+y2 in each of the last two equations one finds 

a2 ~ k2 , fan 
x = — H 

2a a 
b2 - h2 hm ___ cos <p x 

y ~ 2b sin <p b sin *p sin <P 
which shows that for every integral triple (k9 h3 m) there is a point (x9 y). 
Now, the first equation of (2) gives a second-degree, nonidentical equation in 
m9 whose coefficients are functions of h9 k9 a9 b9 cos <P9 sin <P. (If a, b9 and 
AB are integers, cos <P is rational and m is an integral solution of a diophan-
tine equation.) Since as k and h vary one obtains (2a+1) (2(3+1) such equa-
tions, we find at most'2(2a + 1) (2g+ 1) integral values for m and a like number 
of points at ID from the vertices of the triangle. 

The generalization to Rn is analogous. Hence, we may state the following 

ThdOfiQJM: Given an n + 1-hedron in Rn with vertices C, P19 P29 .. . , Pn , then 
there are at most 

2 ft-(2a* + 1) 
i = l 

points of Rn that have integral distance from the vertices of the n+ 1-hedron; 
here a^ is the integral part of OP^ . 
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5. At this point, it is natural to ask if for any given integer n there is a 
configuration of n points of the plane that are mutually at ID. The answer is 
affirmative, and here we give a first method to construct such configurations. 

Euler gave a construction (recorded, naturally, by Dickson) of polygons 
having sides, chords, and area all rational numbers, inscribed in a circle of 
radius J? = 1: one selects n "Heron angles" a±, a2, ..., an9 that is, angles 
with rational sine and cosine, whose sum is less than T\, and then, having fixed 
a point P0 on the circumference of the circle with center at 0 and radius R = 1, 
one places P1 on the circumference in a way such that PQOPJ^ = 2ax; then P2 so 
that P10P2 = 2a2; and so on. It is evident that the sides are P0-̂ i ~ %R sin a^, 
. .. , Pi_^1Pi - 2R sin ai9 . .. , PnPQ = 2R sin(ax + a2 + • • • + an) , that the chords 
are P^Pj = 2i? sin(ai + 1 +••• + aj) for i < j, and that the area is 

A = (R/2) (P0P1 cos ax + P1P2 cos a2 + • •• + PnPQ cos a M + 1 ) ; 

here an+I = 7T--(a1 +••• + an) is obviously a Heron angle. By the addition for-
mula for the sine and the cosine, all sides and chords are rational numbers, 
and so is the area. 

Set ti = tan(a^/2) = pi/qi with pi , qt relatively prime integers. Then 

sin ai = 2piqi/{p2
i + q\) and cos a. = (q\ - p2) I\p\ + <?2). 

Hence, it is clear that It suffices to take a circle with radius 

i-l ^ 

in order to obtain a similar polygon with sides and chords all integral numbers. 
Let us see how it is possible to "improve" on the construction of Euler. 

Let PQP1 .. . Pn be a polygon, with rational sides and chords, inscribed in a 
circumference with center 0 and radius R9 not necessarily rational. Set 

Pi_1OPi = 2a; (i = 1, ..., n). 
Since the angle Pi_1Pi+1Pi = ai9a^ is an angle of the rational-sided triangle 
Pi-iPiPi+il hence, cos a^ is rational, and also 

tan2(ai/2) = (1 - cos ai)/(l + cos a^) 

is a rational number, for i = 1, 2, ..., n (here Pn+1 = P 0 ) . Set 

tan(ai/2) = (p./q.^d1/2 

with ^ a positive square-free integer and pi , ̂  integers for each £. Since 
P^^-JPl is rational, we must have i? = o^d^f2 with e^ rational (i = 1, .. ., n) . 
But then d1 = d2 = ••• = dn = d* In conclusion, we must have 

tan(ai/2) = (pi/qi)d1,z and i? = <?^1/2 

with.o rational. 
Conversely, consider a circle of radius R = od1, with c rational and <i.a 

square-free integer; it is then possible to inscribe in it a polygon PQ ... Pn , 
for any given n, with rational sides and chords. To achieve this, just select 
angles a^ such that 

a± + • ' • + an < 7T and tan(a^/2) = (pi/qi)d1'2 {pi , <^ integers), 

and recall that 

P^- = 2P sin(a^ + 1 + ... + a^) for i < j. 

Hence, we have established the following theorem. 
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ThdOKOm* A necessary and sufficient condition in order that a circle of radius 
R may circumscribe a polygon with rational sides and chords is that R = ad1^2

9 

with a rational and d a square-free positive integer. The area of the polygon 
is rational if and only if d = 1. 

6. Another method ("the kite") for constructing a configuration of 2n + 3 non-
collinear points mutually at ID9 with n fixed in advances is the following. 
One selects n Pythagorean triples x^ 
the equation x + y 

Vi 
Let 

H* that is9 integral solutions to 

a = tl Xi> bj yj n xi» °j 
i + 3 

iUxi 

For each i9 we have a2 + b\ = c\ . Fix a point 0 in the plane9 and let A he. a. 
point at distance a from 0* 

One can place n points P1 9 .„., Pn on the line 
through 0 perpendicular to 0A9 with P^ at distance 
hi from (9. Let Af be the point symmetric to A with 
respect to 0 and let §x 9 ., ., <3n be the points sym-
metric to P 1 ? ...9 Pn (see Figure 2) . The points 
09 As P19 ,.\9Pn9At

9Q19 ..., Qn are 2n + 3 non-
collinear points of the plane mutually at ID, and 
more precisely, 

AQ; = AfP; = A% AP, 

OP; = OQ; bi9 OA = 0Af = a. Fig. 

Rmo/ikz It is not necessary that the angle P̂ <9A be a right angle. It must., 
however, be an angle *P with cos <p = p/q e Q. Then one has sin v = d1/2/q with 
d a positive integer. Let 09 A9 and P be as in Figure 3S a9 b9 c axe. integral 
solutions of the equation 

s2. (4) x2 + y2 

Set 
X - x cos *P 

Y = x sin ̂  

Z = s 

Equation (4) becomes 

and then 

2/-
so that 

2xy cos ^ 

x = J/sin * = Iq/d1/2 

y = Y cos Wsin * - X = Ip/d1/2 

z = Z 

X2 + I2 = Ẑ  (5) 

J = /z2 - k2d 

I = 2/zM1/2 

Z = ft2 + k2d 

are the solutions of (5) as h and k range over Z (the ring of integers); hence, 

x = Ihkq 

y = 2/zkp - (h2 

z = h2 + k2d 

k2d) 

are integral solutions of (4), as h and k range over Z. 
Having selected n solutions of (4) , by picking n pairs 
(h9k)9 the kite method outlined at the beginning of this 
section supplies n + 2 noncollinear points mutually at 
ID (see Figure 3). 
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MEANS., CIRCLES, RIGHT TRIANGLES, AND THE FIBONACCI RATIO 

ROBERT SCHOEN 
University of Illinois,- Urhana IL 61801 

In looking for a convenient way to graph the arithmetic mean (AM) , the geo-
metric mean (GM), and the harmonic mean (HM) of two positive numbers, I came 
across a connection between Keplerfs "two great treasures" of geometry, the 
Pythagorean Theorem and the Golden Ratio, as well as several attractive geomet-
ric patterns. 

Let us take a and b as the two positive numbers to be averaged and let 

The three means are defined as 

AM (a, b) = 

GM(a, £) = 

HM(a, b) = 

a + b = k. 

a + b 
2 

Jab 
lab 

a + b 

k 
2 

2ab 
k * 

(1) 

(2) 

(3) 

(4) 

To graph the three means, recall that a perpendicular line from a point on 
a circle to a diameter of the circle is the mean proportional (i.e., geometric 
mean) of the two segments of the diameter created by the line. In Figure 1, 
diameter AB, of length k9 is composed of line segment AD = a and line segment 
DB = b. The perpendicular DE is the geometric mean. When 0 is the center of 
the circle, the AM is equal to any radius, e.g., AO and OB. To find the har-
monic mean, we proceed in the following manner. Construct a perpendicular to 
the diameter at the center 0 of height equal to DE9 say line OP,. Next, con-
struct the perpendicular bisector of AP that meets diameter AB at C. Let Q be 
the center of a circle passing through A9 B9 and point C on AB. Since OP is 
the geometric mean of AO and OC 9 we have OC - lab Ik9 and thus the desired HM is 
line segment OC. 

AD_ 
AB 

Q 0 

Fig. 1 Constructing the Arithmetic, Geometric, and Harmonic Means 
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Now,- what if points D and C in Figure 1 were the same point? The graph is 
shown in Figure 2, and it can be seen that 

2 k 

Replacing b by k - a and solving for a in terms of k9 we have 

1 + /5 7 -* - * * 

and 

24>2 

(5) 

(6) 

(7) 

where <J) = %(1 4- /5) is the Golden Ratio, The difference between a and b is 
k/c()e In Figure 2, the AM remains hk9 but 

HM = k 

and 

GM 

In right triangle POC, 

Yc1 

2(j) (8) 

-&! + £ ! 
4(f)2 4<() 

,.2 (<1> + 1 ) a k! 
4<(>2 4 

AM2, 

(9) 

(10) 

since (J)2 — <J> — 1 == 0. Hence, PC is equal to the AM and right triangle POC has 
sides whose lengths can be expressed in terms of the Golden Ratio. 

AC_ 
AB 

Fig. 2 The Arithmetic/ Geometric, and Harmonic Means of Fibonacci 
Related Numbers Forming a Right Triangle 

Since AM is larger than HM and GM, the AM must be the hypotenuse of a right 
triangle whose sides are AM, HM, and GM* Using the Pythagorean Theorem for 
that right triangle, we have AM2 = HM2 + GM2 or 

fa + b\2 ka2b2 (a + by = 4az, 

V 2 ' (a + by 
+ ah. (11) 

Clearing of fractions and solving for a in terms of b% we obtain 

a = bA + 4/5. 
But 9 + 4/5 = (2 + /5) 2 = ((J)3)2, hence 

a = b<$>3» (12) 
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Therefore9 the arithmetic9 harmonic, and geometric means of positive numbers a 
and b can form the sides of a right triangle if and only if a - b(p3. When b = 
1, the hypotenuse of that right triangle is (J)29 and the legs are (J)3^2 and <j). 
Sequences of such triangles and a discussion of their relationships to Fibonacci 
sequences can be found in [1]. 

Expanding upon Figure 2, using the same values for a and b (i.e., from Eqs. 
(6) and (7)]s we have the elegant picture of Figure 3. The diameters of both 
inner circles lie on AB and are of length a = AM + HM = \§k« Line segment FC 
is twice the harmonic mean (or fc/<|>) s PR is twice the geometric mean, and FPS FR9 
CPS and CR are equal to the arithmetic mean. The ratio of the area of each in-
ner circle to the area of the outer circle is cj)2/4. The ratio of the area of 
the overlap between the two inner circles to the area of each inner circle is 
[2w/i\ + 4/TT(})if*5] 9 while the ratio of the area of the overlap to the area of the 
outer circle is [k?cj)2/27r - 1 /ircj)2*5], where tan W = 2(j)lo59 with w measured in ra-
dians. While those latter ratios are a bit complex, the image of Figure 3 re-
mains one of unity and harmony. 

Fig. 3 A Harmonious Blending of Means 

REFERENCE 

1. Joseph L. Ercolano. "A Geometric Treatment of Some of the Algebraic Prop-
erties of the Golden Section.11 The Fibonacci Quarterly 11 (1973):204-208. 



1981] 163 

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS—111 
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1. IMTROVUCTIOM 
The simple continued fraction expansions of rational multiples of quadratic 

surds of the form [q, b] and [a, b9 o] where the notation is that of Hardy and 
Wright [1, Ch. 10] were studied in some detail in the first two papers [2] and 
[3] in this series. Of course, for a - b - c - 1, the results concerned the 
golden ratio, (1 + /J)/2, and the Fibonacci and Lucas numbers since, as is well 
known, (1 + /5)/2 = [1] and the nth convergent to this fraction is Fn + 1/Fn 
where Fn denotes the nth Fibonacci number. 

In this paper, we consider the simple continued fraction expansions of 
powers of the surd £ = [#] and of some related surds. We also consider the 
special case (1 + /5)/2= [1] since statements can be made about this surd that 
are not true in the more general case. 

2. mELmiHARV CONSIDERATIONS 
Let a be a positive integer and let the integral sequences 

ifn}n>o and ign}n^o 
be defined as follows: 

/„ = 0, A = 1, fn = afn.x + fn-z, n > 2, (1) 
and 

Go = 2> 0 i = a> 9n = a9n-l + ^ n - 2 ' U >• 2' ( 2 ) 

These difference equations are easily solved to give 

fn = ^ ^ * n > 0 , (3) 
/a2 + 4 

and 

gn = C +Xn, n>0, (4) 
where 

5 = (a+/a2 + 4)/2 and 1 = (a-/a* + 4)/2 
are the two irrational roots of the equation 

x2 - ax - 1 = 0. (5) 

Of course, these results are entirely analogous to those for the Fibonacci 
and Lucas sequences, {Fn} and {Ln}, and many of the Fibonacci and Lucas results 
translate immediately into corresponding results for {/„} and {gn}. For exam-
ple, if we solve (3) and (4) for /„ and gn in terms of ^n and ~fn, we obtain 

9n + fJ^ + 4 

r= 9 w and 

A l s o , s i n c e 

gn - fj<? + 4 
F = o - • <7> 

_ q + / q 2 + 4 q - / q 2 + 4 _ q 2 - (q 2 + 4) _ 
^ " 2 2 4 

i t fo l lows t h a t 
22 - («2 + 4)f„2 

(_!)» = ETXn = 7. (8) 
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and also that 

(9) 

We exhibit the first few terms of {/„}and {g„} in the following table and note 
that both sequences are strictly increasing for n >_ 2. 

n 

fn 

9n 

0 

0 

2 

1 

1 

a 

2 

a 

a2 + 2 

3 

a2 + 1 

a3 + 3a 

4 

a3 + 2a 

ah + 4a2 + 2 

5 

ah + 3a2 + 1 

a5 + 5a3 + 5a 

The following lemmas, of some interest in their own right, will prove use-
ful in obtaining the main results. 

Lemma 1: For n > 1, 

[a] [fZn/a2 + A] = g2n - 1, 
(bJ [ /2»Va 2 + 4] = g-^.!. 

Vftooj oj (a): By (8), 

(a2 + 4)/2
n = <?L - 4 > <72

n - 2g2n + 1 

since 2g2n - 1 > 4 for n > 1. Therefore, 

A>2 + * >.?2» - ! 
for n > 1. On the other hand 

so that 
•9 In > g\n - 4 = (a2 + 4 ) / 2

n , 

#2n > f2n^ + * 
for all n. But (10) and (11) together imply that 

(10) 

(11) 

1 [ / • 2 > 2 + 4] = ^2„ 
for n > 1 as claimed. 

V/L00J OJ (fc>): Again by (8), 

so that 

Also, for n > 19 

/ 2 n - l ^ 2 + 4 = Mn-1 +4 0 2 » - : 

so that 
^2»- i + L ) 2 - <&-i + 292n-i +• 1 > d n - i + 4 = (a2 + 4 ) / 2

n _ 1 

2n.x + 1 > / 2 „ V « 2 + «• 

(12) 

(13) 

Thus, from (12) and (13), 

f / ^ . / a 2 + 4] - ff^., 
and the proof is complete. 
Lemma !•• For n > 1, 

(a) [<72„/a2 + 4] = (a2 + 4) / 2„ , 

(t>) [^2„-i^2 + *I - ( ^ + 4 ) / 2 »- i " 1-
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PttOOJ: The argument here is quite similar to that for Lemma 1 and is thus 
omitted. 

3. THE GENERAL CASE 

The first two theorems give the simple continued fraction expansions Of E,n 

and ?n» 
ThtoKom 3: For n >. 1, 

lb) ^ - [*2ll - i . i . ^ - 2 ] . 
Vtiaofji S ince i t i s w e l l known t h a t '[g2n_1] conve rges , we may s e t 

X " [ ? 2 n - l ] " ? 2 » - l + £ ' 
Thus, 

^ " x32n-i - 1 = 0 
and hence, using (8) and (6), 

g 2 n - l + / g L - l + A g 2 H - l + ^ 2 n - l / g 2 + 4
 r 2 n . x 

2 2 
and this proves (a). Also, set 

y = [ i , ff2'„ - 2] = i + , 2 - n / ^ 
y 2 n ^ 

so t h a t 
y2(92n - 2 ) - y ^ 2 „ - 2) - 1 = 0 . 

Then, 
92n - 2 + A g 2 n - 2 ) 2 + 4 ( g 2 „ -~5) g2n - 2 + / g * n - 4 

^ " 2 (g 2 n - 2) = 2(g2n - 2) 
and, aga in u s i n g (8) and ( 6 ) , 

! 2(?2» " 2 ) 
[g 2 n - 1 , 1, g2n - 2] = gln - 1 + - = g2n - 1 + 

g„ - z + / g ; ^ <7, " 2 + A 
^ + ^ I~4 ~ + f / a 2 + 4 
y 2 n s 2 n y 2 n J 2n C2" 

as c l a imed . 

Tk&otiQjn 4: For n_> 1, 

(fa)- I2* = [0, g2n - 1, i, g'2n - 2]. 

P>L00_£: From (9) we have immediately that 

T2" - __L_ o«/l -F2"-l = ; and ¥ 
r'2n rln-1 

Since ^2n = [#2n - ls 1, #2n - 2] from the preceding theorem, it follows that 
X2n = [0, g2n - 1, 1, g2n - 2] as claimed. We also have from the preceding 
theorem that 

5 2 - 1 = [«72'„-i] 
so that 1 

- ~ = [0. ?2».ll-
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But it is well known that if a is real, a = [a0, a1 , a2, ... .] and a± > 1, then 
-a = [~(a0 + 1),• 1, ax - 1, a2, . . . ] . Thus, it follows that 

~2w-l _. 1 
2n_1 L -9 -9 »2n-l *' ^2n-l J t"1' 1. ̂ . , " 1» #9 

and the proof is complete. 
Recall that two real numbers a and 3 are said to be equivalent if there 

exist integers A9 B% C9 and D such that \AD - BC\ = 1 and 
A$ + B 

a C$ + D' 

We indicate this equivalency by writing a ~ |3» Recall too that a - 3 if and 
only if the simple continued fraction expansions of a and $ are identical from 
some point on. With this in mind we state the following corollary, which fol-
lows immediately from the two preceding theorems. 

Cosiotla/Ly 5: If n is any positive integer, then ?n ~ \n« 

Noting the form of the surds 

gn +fn/a* + 4 gn - fn/a2 + 4 
E;" 2 a n d £ " 2 ' 

it seemed reasonable also to investigate the simple continued fraction expan-
sions of surds of the form 

a$m ± LJa2 + 4 af ± g /a2 + 4 

and so on. It turned out to be impossible to give explicit general expansions 
of these surds valid for all a, m9 and n, but it was possible to obtain the 
following more modest results. 

TkaoKQJfn 6** Let a be as above and let m9 n, and r be positive integers with 
m = v E 0 (mod 3) or mr % 0 (mod 3) if a is odd. Also, let {un} be either of 
the sequences {fn} or { n̂} and similarly for {vn} and {^n}. Then 

aum + u n 

~ 2 ' ' 2 
and ^ „ _ _ _ 

aum + wn/a2 + 4 ay r - wn/a2 + 4 

FVLOO£: We f i r s t n o t e t h a t , i f a i s odd, /„ = ^ n E 0 (mod 2) i f n = 0 (mod 
3) and / „ E j n E 1 (mod 2) i f n ? 0 (mod 3 ) . Thus um ± vT E 0 (mod 2) i f and 
only i f 77Z E p E 0 (mod 3) or tfzr ^ 0 (mod 3 ) . To show t h e f i r s t e q u i v a l e n c e , 
l e t A = 19 B = a(um - vr)/2.9 C = 0 , and D = 1. Then B i s an i n t e g e r , s i n c e 
e i t h e r a or um - vr i s d i v i s i b l e by 2 by t h e above. Moreover, 

A < 

a • 

a y r + wnva2 + 4 
..1 p 

2 ' ^ 
a y r + wn/a2 + 4 

. _ ^ + n 

a^j. + wnva2 + 4 a (u m - y r ) 
+ 

a^P + wn/a2 + 4 

aum 4- wJa1 + 4 
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and this shows the first equivalence claimed, since \AD - BC\ = 1. Since the 
proof of the second equivalence is the same, it is omitted here. 

Co/ioZLany 7*' If m and n are positive integers9 then the surds in the following 
two sets are equivalent: 

af„ + gja2 + 4 af„ - gja2 + 4 

and 
lb) 

2. » 2 

agm + aJa2 + 4^ agm - gja2 + 4^ 
_ __ _ _ 

agm + fja2 + 4 a ^ - fJdTVl. 

2 9 2 

PtLOOfi: The first of the above equivalences follows immediately from the 
second equivalence in Theorem 6 by setting v = m9 um = fm$ and w„ = gn and the 
others are obtained similarly6 

ThzoKm Si Let a be as above and let m > 0 and n > 2 denote integers. Also9 
let x = a/m + (a2 + 4)/n and z/ = agm + (a2 •+ 4)/„ . Then 

a 4 + ̂ n ^ 2 + 4 . . • a^m + gja2 + 4 
2 = Cao » a i ' • • • > a^] arld —f- — = [*o » ̂ i» °  9 a * a*>] 

where the vector (ax , a2 9 * . . s a2,_1)- i s symmetric and 

av = 2a0 - afm = 2fc0 - a#w. 
Also 

where 

«/w + (^2 + *)/« - £ 
-y— and fc0 

^ m
 + (a1 + 4)/„ - e y - c 

i = 0 i f n E a; = 0 (mod 2) , 
b = 1 if x = 1 (mod 2) , 
& = 2 if n - i E x E 0 (mod 2) 3 
a = 0 if n = z / E 0 (mod 2) , 
c = 1 If y = 1 (mod 2) , and 
c = 2 if n - 1 E z/ E 0 (mod 2) . 

Pfiooj: Let v = (afm + gn/a2 + 4 ) /2 . Then9 by Lemma 29 

V w + \gJaF^~k\ 
a0 = [v] 

z/w + gja2 + 4 

fa/m + (a2 + 4)/n" 

ra/OT + (a2 + 4)/„ - r 

n even, n > 2 

» n odd9 n > 2 

afm + (a2 + 4)/„ - & 

where i t i s c lear that 
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2? = O i f n = i r = 0 (mod 2 ) , 
b = 1 i f x = 1 (mod 2 ) 9 and 
i = 2 i f n - l = a = 0 (mod 2 ) . 

Thus a0 is as claimed. Moreovers 0 < v - aQ < 1, so if we set vr = l/(v - a Q ) , 
it follows that 

V, > 1. (14) 
Taking conjugates, we have that 

1 -2 vx = — — = = — - ± — .— _ _ _ = _ _ _ _ _ ±—^^= ( 1 5 ) 
afm - gja1 + 4 afm + (a 2 + 4)fn - 2? (a 2 +• 4 ) / n - & + # n / a 2 + 4 
_ . - _ _ _ _ . 

and i t i s c l e a r t h a t 

- 1 < Vx < 09 (16) 
since a and n are both positive. But (14) and (16) together show that v± is 
reduced and so, by [49 p» 101]s for example9 has a purely periodic simple con-
tinued fraction expansion [a19 a2, . ..9 dr]. Thus 

v = __ = [aQj V i] = [aQ9 a19 a2, ..., a,]. (17) 

On the other hand, again by [49 p. 93], 

- J - = [ a r , a p „ 1 5 . . . 9 a j . (18) 
But then 1 

x (a2 + 4 ) / n - fi + gja1 + 4 
_ . _ . _ _ _ _ _ 

^ - + gn&~T^ afm + fn (a2 + 4) - b 2afm 

2 ' 2 2 
= .v + a0 - afm = [2a0 - a / - , a 1 5 a 2 , . . . , a r ] . 

Comparing (18) and (19) 9 we immediately have t h a t 2a0 - afm 
a 2 = av-?> •••» a P - i = a i e This completes t h e proof for V. The proof fo r y =? 
(a<7m + gni/az + 4 ) / 2 i s s i m i l a r and i s o m i t t e d . 

The fo l lowing theorem i s s i m i l a r t o Theorem 8 and i s s t a t e d w i t h o u t p roof . 

Tk&OfL&m 9? Let a be as above and l e t m > 0 and n > 2 denote i n t e g e r s . A l s o , 
l e t x = afm + gn and z/ - a#m + gn. Then 

*/* + / n ^ T T e e a^m + f n / a 2 + 4 
— — = [cQ9 Q19 . . . 9 or] a n d - — ^ = t^o» c i » •*••» ^ 

where t h e v e c t o r ( ^ 9 c 2 9 . , . , <2r-i) i s symmetric and 

<?- = 2oQ - a/m = 2^0 - ag m . 
Also 

a f + q - 2? -, aqm + q„ - c 
Jm yn x - b j m n y - C 

<?Q = • 2~~— = 2 ° = 2 = —2~~~ 
where 

i) = 0 i f n - 1 E x E 0 (mod 2) s 
b = 1 i f x = 1 (mod 2 ) , 
1? = 2 i f n E i E 0 (mod 2 ) , 
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c = 0 i f n - 1 = 1/ = 0 (mod 2 ) , 
Q = 1 i f y = 1 (mod 2 ) 9 and 
£ = 2 i f n E 2 / E O (mod 2 ) . 

Th&OH&m 10'- Let m9 n, and a denote positive integers and let {un} and {vn} be 
as in Theorem 6. Also9 let 

aum + vnva2 + 4 
2~ ~ = tao5 ^i9 a*e> ^ s 

(a.) If a1 > 1-, then 

aum - vn/a2 + 4 
2 = ^~ao + a M^ - 1» 1, a^ - 1, a2, ..., ar9 ax] 

(fa) If ax = 1, then 

aum - vn/a2 + 4 
2 — ~ = [-̂o + aUm ™ U a2 + 19 a39 ..., ars a2 9 d 1]. 

Vtiool 0& [a] i Let ri = (awm + vnVa2 + 4)/2. Then by hypothesis, 

n = [aQ9 d19 ...9 aP] 
and 

But then 

= [a29 ..., arS a1], 

n - a 0 •«• 

[-a0 + auOT - 19 19 ax - 19 a2, ...9 ap9 dx] 

= -a0 + awm - 1 + 
1 

1 + 
1 + 

n - a0 

= aum - n 

coin Un/a2 + 4 

as claimed. 

P/LOÔ  o^ (fa)-' If ax = 19 the above analysis still holds except that ax - 1 
= 09 so that we no longer have a simple continued fraction. But then9 we im-
mediately have that 

aum - vnva2 + 4 
— ~2 ™~ = [~ao + aum - ls 19 09 d29 ... , ar, ax] 

= [~a0 + aum - 19 1, 09 a29 d39 ..., ar9 a±9 a2] 

= [-a0 + aum - 1, a2 + 1, a39 ..., ap9 al9 a£] 

and the proof is complete. 

Interestingly, it appears that the integer v in the above results is always 
even but we have not been able to show this. Also, while it first seemed that 
v was bounded for all a9 ms and n9 this now appears not to be the case. For 
example9 if a = 4 and we consider the related surd, fm + gn^59 ? is sometimes 
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quite large and appears to grow with n without bound. On the other hand9 if 
a = 2 9 and we consider the related surds 9 f m + 9n^2 and gm + gnJl9 it can no 
doubt be shown that r equals 2 or 4 according as n is even or odd, and that for 
fm + fn^- an^ 9m + fn^s r ecLU8L^-s 1 or 2 as n is odd or even. 

4. SPECIAL RESULTS WHEN a = 1 
Of course, all the preceding theorems hold when a = 1, in which case 

5 = (1 + /5)/2, fn = Fns and gn = Ln 

for all n. On the other hand, in this special case, far more specific results 
can be obtained as the following theorems show. Note especially that through-
out the remainder of the paper we use 77? and k to denote a positive integer and 
a nonnegative integer, respectively. 

Tknon.Qm 11: If 3\m and n = 2 + 6k or 4 + 6/c, or if 3 

and 

Fm + Ln/5 

Lm + L„/5 

S7 KW 
2 » Ln s -JJ-n 

£ w + 5FW 
, r n , Jrn 

m and n - 6 + 6/c, then 

VKOO^i It is immediate from the hypotheses and Theorem 8 that 

and that 

Let 

Fm + £„/5 

Lm + Ln/5 

Fm + 5F„ 
2 5 ai5 

Lw + 5Fn 

-, a, 

., ar 

, CL-p 

Then 
w + 1 

n 5F„ + x 
x2 + 5Fnrr - 5 = 0, 

and, since x is clearly positive and 5F2 + 4 = Lj is a special case of (8), 

-5*L + /l5F2 + 20 -5F„ + L„/5 
a: 

But then, 
_ . 77 5 77 

2 » ^ J J i n 

Fm + 5F„ -5F + L„/T F + £„/5 
+ 

and similarly, 
Lm + 5F„ 

_, rn , 3 r n 

Lm + L„/5 

as claimed. 
The/)Jim 11: I f 3|77? and n = 5 + 6/c or 7 + 6/c, or i f 31777 and n = 3 + 6/c, then 

and 

^ + ^V5 

Lm + LM/5 

Fm + 

I'm + 

5£n -
2 

5Fn -

- 2 

- 2 

j 15 -Fn - 2 , 1, 5Fn 

, 1, F„ - 2 , 1, 5i?n - 2 
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1M9A: A g a i n it is immediate from the hypotheses and Theorem 8 that 

Fm + L n / 5 
s ££-i 9 o . o 9 Q,r 

and t h a t 
K +W.^ K + 5Fn - 2 

y U - . J ' • • 9 ^ 3 ? 

Then, since n is odd, we have from Theorem 3 of [2] that 

x = [ 1 , Fn - 2 , 1, 5Fn - 2] 
L„ + Ln/5 

K^ + 1-
Thus9 

>M + 5Fn - 2 
- 9 1 9 r ^ Z s l 9 3 r n Z 

Fm 

Fm 

Fm 

^m 

+ 

+ 

+ 

+ 

-"- n 

2 

5F -

2 
5Fn -

2 

L n / 5 

2 

2 

2 

+ X 

n n " n ^ n + l 
+ - — • • • • 

~5Fn + Ln/5 + 2 

S i m i l a r l y 9 

Lm + 5Fn - 2 . 
~9 —9 1 J ^n - 2 s 19 5Fn - 2 

Lm + Ln/5 

and t h e proof i s comple te . 
IhdOKm 7 3 : If 3|m and n = 6 + 6/c or 9 +. 6/c, or i f ?>\m and n = 4 + 6fe, 5 + 6k9 
7 + 6&9 or 8 + 6ks then 

Fm + Ln/5 
= [aQS d15 s. . s aP] and 

Lm + Lj5 
= [ b Q 9 dl9 ..., a r] 

with a0 = (FOT-+ 5Fn - l)/29 b0 = (Lm + 5Fn - l)/29 aP = 5Fn - 1, and where the 
vector (a19 . e . 9 a^.^ is symmetric* 

Vtioofc This is an immediate consequence of Theorem 8. 

The only surds of the form (Fm + Ln/5)/2 and (Lm + Ln/5)/2 not treated by 
the above theorems are when 3\m and n = 1 or 3, and when 3Jm and n = 1 or 2. 
For these cases, the results are as follows * 

(a) If 3\m, then 

Fm + 2 ^ / 5 
2 

£m + £ / 5 

2 
Fffl + L3/5 

2 

^ + 1 . 
1 

O 9 -JL 

r̂  
£« + 1 . 

1 
2 ' X 

5 

9 

fc + 7 . 
1 

O • » •»• 9 34. 
-

1. 7.1 
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and 

(b) If 3\m, then 

£m + V 5 Lm + 7 
-, 1, 34, 1, 7 

and 

TktoKem 75: 

Fm + V 5 

Lm + Ll/5 

Fm + L2/5 

Lm + L2V5 

Fm + 2 

X 

X 

X 

2 

+ 

2 

+ 

2 
+ 

2 

6 

6 

, 8 , 2 

, 8 , 2 

, 2 , 1, 4 , 1, 2 , 6 

, 2 , 1, 4 , 1, 2 , 6 

(a) If 3|m and n = 4 + 6 / c o r n = 8 + 6k, or i f 3|m and n = 6 + 6/c, then 

-, 1, Fn - 1, 5F„, Fn\ 

and 

Fm 

Lm 

- Ln/5 
2 

- Ln/5 

Fm " 

X • 

" Fn • 

2 

- F -

- 2 

- 2 
9 1 s £ n 1 s - ^ r c 9 ^n 

(6) I f 3Jtfz and n = 5 + 6k or 7 + 6fc, or i f 3|m and n = 9 + 6k, then 

and 

Fm - Ln/5 

Lm - Ln/5 

Fm ~ 5Fn 
-, F„ - 1, 1, 5Fn - 2 , 1, Fn - 2 

Lm - 5Fn 
- F - \ 1 5F - 2 1 F - 2 

(c) Let (Fm + L n / 5 ) / 2 = [ a 0 , a x , . . . , a r ] a s i s always t h e ca se from Theorem 8. 
I f 3|77? and n = 6 + 6k, or i f 31777 and n = 4 + 6k or 8 + 6fc9 then 

and 

*"» - Ln/5 

Lm ~ L„/5 

5Fn - 1 
-, a2 + 1, d 3 , . . . , a r , a x , a2 

2 » a 2 + 1» a 3 ' • • • ' a r ' a i ' a2 

And i f 3\m and n = 9 + 6fe, or i f 3\m and n = 5 + 6/c or 7 + 6fe, then 
\Fm - 5Fn - 1 

g , 1, a1 - 1, a 2 , . . . . ap, a^ 
Fm ~ Ln/5 

and Lm - Ln/5 
-9 1, ax - 1, a 2 , . . . . . . ap 5 ax 

The p r eced ing theorem omits t h e c a s e s when n = 1, 2 , or 3 . These c a s e s a r e 
t r e a t e d in t h e fo l lowing r e s u l t , which i s a l s o s t a t e d w i t h o u t p roof . 

TkdOKQm 16: 

(a) I f 3|?775 t h e n 
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and 

(fa) If 3\m9 then 

and 

Fm ~ L^/5 

K 

Fm 

Lm 

Fm 

Lm 

2 

- Z^/5 
2 

-L2/5 
2 

- L2/5 
2 

-L/5 
2 

-L3/5 

m 
2 

m 
2 

"p _ 

2 

m 
2 

m 
2 

\ ~ 

3 

3 

7 

7 
3 

9 
5 

9 
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-, 2, 1 

* -1 
-, 2, 1 

-, 69 1, 51 

7 # T 
-, 69 i, 5 

-, 35, 1, 79 1, 34 

173 

Fm 

Lm 

F 

^m 

Fm 

Lm 

- Z^/5 
2 

2 
- L/5 

2 
- L /5 

2 
2 

- L 3 / 5 
2 

- L / 5 

^ 

i» 

* • * . 

_ 
2 
-

2 
-

4 

4 

8 

, 35, 1, 7, 1, 34 

, 1-, 75 2, 8 

, 1, 7, 29 8 

, 1, 1, 1, 4, 1, 29 6, 2 

-, 1,. 1, 1, 49 1, 29 69 2 

10 
-, 1, 1, 89 2 

£« - 1 0 
-, 1, 1, 89 2 

We close with two theorems which give the expansions for (Fm ± Fn/5)/2 and 
(L ± Fn/5)/2 for all positive integers m and n. Again, these theorems are 
stated without proof. 

Thuonm 17 
[a] If 3Jm and n = 1 + 6k or 5 + 6&, or if 3|w and n = 3 + 6k, then 

1 ^m + Fn/5 

and 
Lm + F„/5 

Fm + Ln 

K + L„ 
"s E*n 

(fa) If 3Jm and n = 2 + 6k or 4 + 6fc9 or if 3|w and n = 6 + 6k, then 
L/?2 ' "-n ' 

and 

^ + ^n ~ 2 
"s 1 5 - ^ n ~ 2 
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K + ?n^ Lm + Ln ~ 2 

-, 1, L n - 2 

(c) Let (Fm + F n / 5 ) / 2 = [ a 0 , % , . . . , a ] . I f 3|m and n = 3 + 6k or 6 •+ 6/c, 
or i f 3 b and n = 2 + 6/c, 4 + 6/c, 5 + 6/c, or 7 + 6/c, then 

and 

F + F /5 

Lm + F„S5 

Fm+Ln-
2 

X + K -

- I 

- i 
9 a L , . . . , a r _ 1 , Ln - 1 

and the vector (a±, ..., a
r-0 i-s symmetric. 

(d) If 3|w2, then 

and 

Ihdonm 1S 

Fm + ^ 
2 

2 

F + 2 

2 

\ + 2 

2 

-, 8, 2 

, 8, 2 

(a.) If 3|tfz and n = 5 + 6k or 7 + -6/c, or i f 3\m and n = 3 + 6/c, then 

F - F /5 

and 
i m - FnS5 

Fm 

Lm 

~ 

" 

Ln 

2 

^n 

-

-

2 

2 
5 1 , L n - 1 , L „ 

(6) If 3|TW. and n = 2 + 6/c or 4 + 6/c, or i f 3|m and n = 6 + 6/c,- then 

-, Ln - 1, 1, Ln - 2 

and 

^m 

i » 

- ^ n / 5 
2 

- F / 5 
n 

*» 

i m 

" £ » 
2 

- ^ n 

(c) Le t 

and l e t 
(Fm + F n / 5 ) / 2 = [ a 0 , a x , . . . , dr] 

(Lm + L n / 5 ) / 2 - [b0, a 2 , . . . , a p ] . 

I f 3|m and n = 3 + 6/c, or i f 3|m and n = 5 + 6k o r 7 + 6k, then 

and 

4, 

Lm 

~ Ln/5 

2 [a 0 - av - 1, a 2 + 1, d 3 , . . . , a , a x , a2] 

2 [b0 - a r - 1, a 2 + 1, a 3 , , a p , a x , a 2 ] . 

I f 3|m- and rc = 6 + 6/c or i f 3|m and n = 4- + 6/c or 8 + 6/c, then 

^ " ^ 
= [a 0 - a r - 1, 1, 1, a 2 , . . . , a P 9 a 1 ] 

and 
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Lm - LJS 
[b0 - ar - 1, 1, 1, a? ar» a x ]. 

(d) If 3|m, then 

and 

If 3 7W 9 then 

and 

L 

F 

m 

Fm - F x / 5 Fm -

2 " I 2 

Lm - ^ / S 

2 
£« -

2 

- ^ / S Fm - F 2 / 5 

2 2 

- ^ / S Fm - F/5 

2 2 

3 
5 Z , 1 

3 
9 i 

9 z9 1 

>m " ^ 
2 

X -* 
2 
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BENFORD'S LAW FOR FIBONACCI AND LUCAS NUMBERS 

LAWRENCE C. WASHINGTON 
University of Maryland, College Park, MD 20742 

Benfordfs law states that the probability that a random decimal begins (on 
the left) with the digit p is log10(p + l)/p. Recent computations by J, Wlod-
arski [3] and W. G. Brady [1] show that the Fibonacci and Lucas numbers tend to 
obey both this law and its natural extension: the probability that a random 
decimal in base b begins with p is log^(p + l)/p. By using the fact that the 
terms of the Fibonacci and Lucas sequences have exponential growth, we prove 
the following result. 

TkzoKem: The Fibonacci and Lucas numbers obey the extended Benford's law. More 
precisely, let b J> 2 and let p satisfy 1 <_ p <_ b - 1. Let AP(N) be the number 
of Fibonacci (or Lucas) numbers Fn (or Ln) with n <_ N and whose first digit in 
base b is p. Then 

±Apm -iogi(2-±^). 
VKQOfc We give the proof for the Fibonacci sequence. The proof for the 

Lucas sequence is similar. 
Throughout the proof, log will mean logfc8 Also, <as> = x - [x] will denote 

the fractional part of x« 
Let a •= Jg(l + /5) , so Fn = (an - (~a)~n)//5". We first need the following: 

Lemnat The sequence {<(n log oc>}^=1 is uniformly distributed mod 1. 

lim 
N + °° 
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Recall that a sequence {an} of real numbers satisfying 0.• _< an < 1 is uni-
formly distributed mod 1 if for every pair of numbers o9 d with 0 < o < d <_ 1 
we have 

lim —(number of an with n <_ N and o <_ an < d) = • d - c. 

In other words, the fraction of an in the interval [a9 d) is d - o, 
Since no power of a is an integer it is easy to see that log a is irrational 

(otherwise hmln - a, so an = bm
s which is integral). In fact., log a is tran-

scendental, but we shall not need this rather deep fact. 
A famous theorem of Weyl [2] states the following: If 3 is irrational, then 

the sequence {<Cn3>} is uniformly distributed mod 1. Letting 3 = log a, we ob-
tain the lemma. 

We now continue with the proof of the theorem. Let e > 0 be small. Let p 
satisfy 1 £ p <_ h - 1. With the above notation, let 

e = log /S + log p + e, d = log /5- + log(p + 1 ) - e. 

Then [a, d) is an interval of length log(̂ - J - 2e. Therefore, the fraction 

of n such that <n log a> lies in [e9 d) is logl^—•—) - 2e. For uniformity of 

exposition, we have used the convention that all intervals are considered mod 
1, so an interval such as [0.7, 1.2) is to be considered as the union of the 
two intervals [0.7, 1) and [0, 0.2). This technicality occurs only when d is 
greater than 1 and we leave it to the reader to check that our argument may be 
extended to cover this case. In particular, the interval [c, d) may be broken 
into two parts and each part may be treated separately. 

Let m - [n log a] = integer part of n log a. If 

log /S + log p + z <_ <JL log a> = n log a - m, 
then 

phmb£ < aw//5. 

If n, hence m9 is sufficiently large, then 

an - (-a)~n _ „ pbm < pbmpe - 1 < /5" 
since pe > 1 and |a~n| < 1. Similarly, if <ji log a> < d and n is large, then 

Fn < (p + l)bm. 
But these last two inequalities simply state that Fn in base b begins with the 
digit p. Therefore, we have shown that if n is large and <ji log a)> lies in 
[Q9 d) then Fn begins with p. Therefore, the fraction of n such that Fn begins 
with x> is at least , -

(E±A\ _ 2E. -m Since e> 0 was arbitrary, we find that this fraction is at least log(p + l)/p. 
However, this is true for each p, and 

logdJ+log^+.-.+log^.)-!. 

Therefore, the fraction with first digit p can be no ,larger than log(p + I)/pi 
otherwise, these fractions would have sum greater than 1. Thus, the answer is 
exactly log(p + l)/p and the proof of the theorem is complete. 

Finally, we will mention one technicality that we have ignored in the above 

proof. Since we do not know a priori that lim jrAp(N) exists, it is slightly 
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inaccurate to discuss the fraction of F with first digit p.. However, what we 

proved was that lim inf —AP(N) 2.1ogf2- -J. By the remark at the end of the 

proof9 it is then easy to see. that it is impossible to have lim sup jjAp(N) 

greater than logf-2——J for any p. Therefore9 lim sup = lim inf and the limit 
exists. \ tr / 
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A SIMPLE DERIVATION OF A FORMULA FOR E^r 

RASUL A. KHAN 
Case Western Reserve University, Cleveland, OH 44106 

The formula for 
n 
2^ k {r and n being positive integers) 
fc-i 

is known (see Barnard & Child [1] and Jordan [2]). However9 most undergraduate 
texts in algebra and calculus give these formulas only for r = 15 29 and 3. 
Perhaps the reason is that the known formula for general integral r is a hit 
involved and requires some background in the theory of polynomials and Bernoulli 
numbers. In this note we give a very simple derivation of this formula and no 
background beyond the knowledge of binomial theorem (integral power) and some 
elementary facts from calculus are needed. Consequently9 the author hopes that 
the general formula can be exposed to undergraduates at some proper level. 

Let 

where r = 0, L, ..-., n = 1, 2, **.9 and note that SQ(n) = n. In order to find 
a formula for. JSL(ft), we use the following identity: For any integer k we have 

fk X'dx = ~-y(?Cr + 1 - (fc - 1)"+1) 

TI t{r yy-iy+z'dkj 
r 

3 

where a. (r) = (-l) r + 2 ^ ' / p t l \ /(r + 1). Hence, 
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fe = i 

2 ^ I xrdx = / xrdx = ^ a^ ( P ) ^ - ( n ) , 
and 

Since a P ( r ) = l s i t fo l lows from (1) t h a t 

(2) M n ) - i h r j - E V r W n ) . 

The numbers a,j (r) can be easily evaluated. Here we list some of the a7-(p)?s: 

a0(D = -» 

a0(2) =|, ax(2) = -l 

1 3 
a0(3) = --j, a1(3) = 1, a2(3) = - j 

a 0 ( 4 ) = | s a x ( 4 ) = - 1 , a 2 ( 4 ) = 29 a 3 (4) = -2 

a 0 ( 5 ) = - p a x ( 5 ) = 1, a 2 (5) = - - j , a 3 ( 5 ) = 3 ~ ' a** ( 6 ) = " "2 

a 0 ( 6 ) = y s a 1 ( 6 ) = - 1 , a 2 ( 6 ) = 3 9 a 3 ( 6 ) = - 5 , ah (6) = 5 , a 5 ( 6 ) = - 3 , e t c . 

Using (2) we o b t a i n 

^ i ( n ) - X + 1 ~ 2 ~ " 

c r \ n3 (n n(n +• 1 ) \ _ n (n + 1) (2n + 1) S2 (W) - -y- - ^ - — ^ J - - —- -

a , \ n* I n , n(n + 1) 3 n(w + l)(2n + 1) \ /n(n + 1)\2 
S9(n) . _ . ^ _ + 2 ~ " 2 — j = [ 2 ) ' 

Continuing in this fashion we obtain 

Sh(n) =n(n + 1)(2n + 1)(3n2 + 3n - l)/30 

S5(n) = n2(n + l)2(2n2 + 2n - 1)/12 

£6 (n) = n(n + 1) (2n +. 1) (3n4 + 6n3 - 3n - 1) /42. 

However9 such evaluations get messy with higher values of r. An integral for-
mula for Sr(n) is known (cf. Barnard & Child [1]), but its evaluation depends 
on Bernoulli numbers. We derive this formula from (2) with an advantage that 
the required Bernoulli numbers satisfy a simple recurrence relation in terms of 
aj(r) which is a by-product of our derivation. 

Treating n as a continuous variable and differentiating (2) with respect to 
n we have 

v-l 
(3) Si{n) = n* - J^ad(r)S!(n)9 

dSj(n) J' = 0 

where S! (n) = 5 . 
J dn 



1981] A SIMPLE DERIVATION OF A FORMULA FOR J^k* 179 
fc-l 

Since Sj (n) - Sj(n - 1) = n\ one obtains 

SJ(n) -jn*-1 + Sl(n - 1) = . . . 

= i n i _ 1 + j ( n - l)^'1 + . ••• + j l*7'-1 + £ . ' ( 0 ) . 

Clearly 9 Sj (0) is the coefficient of n in Sj (n) 9 and writing 5. = S'(0)5 where 
BQ = 1 and SQ(n) = n, we obtain J 

n 

(4) sy(n) = JE^'"1 + Bi -3'Sj.^n) + B. . 

From (3) and (4) we obtain 

v-l v-1 

3 - 0 J - 0 

It is easy to verify that 

j ̂ .(r) =paJ._1(p - 1), 
and hence 

v-l r-l 

j = i j - o 

<5> - 4 ? " £ V * " 1)fi* (n)l " S a* (P)'̂' 
L j-o J j-o 

Thus it follows from (2) and (5) that 

(6) £;(n) =rSr^(n) + Br5 

where 
r- 1 

(7) Br = - E a j ( r ) B j ' 5o = 1-

The relation (6) immediately leads to 
(8) £r(n) = r JSr_1(n)dn + nBr. 
The numbers Br (r = 0, ls . „.) are Bernoulli numbers and can be generated from 
(7)5 and starting with S0(n) = n one obtains Sr(n) from (8) for any desired P. 
Note that the relation (7) for Bernoulli numbers is a by-product of our deriva-
tion of (8) from (2). Consequently, no background in the theory of polynomials 
and Bernoulli numbers is needed to arrive at (8), Moreover, (7) and (8) together 
make it possible to evaluate Sr(n) for any r9 or one can use (8) to get an ex-
plicit expression for Sr(n) (see Barnard & Child [1]). 

To illustrate the preceding9 from the list of ag- (r) and (7) we easily ob-
tain 

Bo = r> Bi = 2"' 52 = "6' Bs = °'» Bh =""309 B5 = °> Be = "42' " " 

and since SQ(n) = n9. it follows from (8) that 

/
7l 71 71 

n dn + -j = — + Y* 

J \ 2 2/ 6 3 
1 + 21 + 21, etc. 
3 2 6 
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Finally, we note the following interesting fact. Since 

a0(r) = i^i-j-
and 

S0(n) = n, 

it follows from (2) that 

Sv(n) = S1(n)Pv_1(n)9 

where Pr_1(n) is a polynomial in n of degree r - 1. 
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A NOTE ON THE POLYGONAL NUMBERS 

SHIRO ANDO 
Hosei University, Koganei-shi, 184 Japan 

1. WTROVUCTWN 

Polygonal numbers of o rde r k (k = 3, 4 , 5 , . . . ) a r e t h e numbers 

(1) Pnik =\[{k - 2)n2 - (k - 4)n] (n = 1, 2, 3 , . . . ) . 

If k = 4, they are reduced to the square numbers. It is clear that there 
are an infinite number of square numbers which are at a time the sum and dif-
ference and the product of such numbers, from the identity 

(4w2 + l)2 = (4tfz)2 + (4/7?2 - l)2 

= (8?^ + 4w2 + l)2 - (8m1* + 4w2)2, 

and since there are an infinite number of composite numbers of the form 4m2 + 1 
(for example, ±fm= 5j + 1, km1 + 1 is divisible by 5). 

Sierpinski [1] proved that there are an infinite number of triangular num-
bers (k = 3) which are at a time the sum and the difference and the product of 
such numbers. 

For k = 5, Hansen [2] proved that there are an infinite number of Pn,5 that 
can be expressed as the sum and the difference of such numbers. 

O'Donnell [3] proved a similar result for k = 6, and conjectured that there 
will be a similar result for the general case. 

In this paper it will be shown that their method of proof is valid for the 
general case, proving the following theorem. 

T/ieo/iem: Let a and b be given i n t e g e r s such t h a t a ^ 0 and a = b (mod 2) , and 
l e t 

(2) An = \(an2 + bn) (n = 1, 2, 3 , . . . ) . 
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There are an infinite number of An
fs which can be expressed as the sum and the 

difference of the numbers of the same type. 

2. PROOF OF THE THEOREM 

If a < 0, we obtain a set of integers whose elements are the negatives of 
the elements in the set obtained by using -a and -b instead of a and b. Hence 
we can assume a > 0 in the following. 

Let 

(3) Bn = An - An_r = \[a(2nv - r 2 ) + br] , 

where n and r are positive integers5 n > r9 and r is odd unless a is even. 

Lemma 1.' For 

(4) ?TZ = ars + r9 

where s is a positive integer such that 

(5) a2s + 2a > ~-9 

the equation 

(6) Am = Bn = A n - A n _ v 

is satisfied by the integer 

(7) n = ^s[r(a2s + 2a) + b] + p. 

P̂ tOOj}-: Solving 

j[ar2(as + I ) 2 + to(as + 1)] = -~[a(2nr - r 2 ) + 2>r] 

for n9 we have (7). 
For any integer c, <?2 E a (mod 2), so that 

s[r(a2s + 2a) + 2?] = pa2s2 + 2avs + &s E ras + as 

= (p + l)as = 0 (mod 2), 

by the conditions f or r and a, which ensures that n is an integer, and the lemma 
is proved. 

For m and n of Lemma 1, 

(8) An = Am + A ^ . 

In order to find a number of this type which is equal to some Bp, let s = 
art, for any positive integer t such that 

(9) a3r2t + b >_ 0. 
Then (5) is satisfied and from (A) and (7) we have 

(10) m = a2r2t + r9 

(11) n = aru + Pj 

where 

(12) u = |-£[r(a3r£ + 2a) + £] 

is an integer such that u _>. s by the condition (9) . 
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From Lemma 1, using u in place of s, for the integer 

(13) p = -^u[r(a2u + la) + b] + r9 

we have An = Bp. This equation, together with equation (8), provides the fol-
lowing lemma, from which we can easily establish the theorem. 

Loinma. 2: Let a, r9 and t be positive integers, where r is odd unless a is even 
and the condition (9) is satisfied. Then, m9 n9 u9 and p, which are given by 
(10), (11), (12), and (13), respectively, are also positive integers, and 

An - Am + An_r = Ap - Ap-r. 

3. THE CASE 0¥ POLYGONAL NUMBERS 

The result for the polygonal numbers of order k is given for 

a = k - 2, b = -(fc - 4) 
in Lemma 2. In this case, condition (9) is always satisfied for any positive 
integer t . 

Example 1: For v = 1, we have 

* n , fc = ^ m , /c "*" ^ n - 1,. fc = * p , ft ~ Pp - i , £ » 

where 
m• = (fc - 2)2t + 1, 

and n - < f c - 2 ) M + l, 

p = -|w[(fe - 2)2u + k] + 1 

for 

w = \t\{k - 2)H + k]. 

Let Tn, §W9 Pn, Hn9 and 5n denote PUt % for k - 39 4, 59 6, and 7, respec-
tively. Then we have 

\(t2 + 3t)+l Tt+1 + Tj(t2+3t) Tp Tp-1'-

where p = ̂ (t1* + 6t'6 + I5t2 + 18t) + 1, 

®st2 +kt+i " ®ht +1 + ^8t2 +*** ~ ^p " ^p-i5 

where p = 3211* + 32t3 + 16t2 + 4£ + 1, 

? | ( 8 1 t 2 4- 1 5 t ) + l = ^ 9 t +1 + ^ j ( 8 1.t2+1.5-*)' ^p ? p - l 9 

where p - ~(6561t4 + 2430t3 + 495t2 + 50t) + 1, 

Hl-28t2 +12t + 1 ^ 1 6 * + 1 + ^12 8t2 + 12t Hp ^p-19 

where p = 8192£4 + 1536t3 + 168t2 + St + 1, 

^f-(6 2 5 t 2 +3 5 £ ) + l = ^ 2 5 £ + l + ^ f ( 6 2 5£ 2 + 3 5£) = ^ p ^ p - 1 : 

where p = ̂ (390625^^ + 43750t3 + 2975t2 +• 98t) + 1. 
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Example. 2: For the case r = 3, t = 1, we have 

m = 9(k - 2).2 + 39 

n = 3(k - 2)u + 3, 
and 

p = ju[3(k - 2)2u + 5k - 8] + 3, 

1/^7,3 c ,7^2 

where 

u = y(9k" - 54&2 + 113k - 80), 

For k = 6, it gives 

3591 147 3588 2148916 2148913 

which is not covered by Theorem 2 of 0TDonnell [3], 
The generalized relation in Lemma 2, however, does not yield all such rela-

tions. For instance, the relation 

#2 5 = #10 + #2 3 = #3 0 7 ~ #306 

cannot be deduced from our Lemma 2. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 
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Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS 
to PROFESSOR A. P. HILLMAN, 709 Solano Dr., S.E., Albuquerque, NM 87108, Each 
solution or problem should be on a separate sheet (or sheets)... Preference will 
be given to those typed with double spacing in the format used below. Solutions 
should be received within four months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy 
Fn+2 = Fn + 1 +Fn, F^= 0, Fx = I 

and 
Ln + 2 = Ln + 1 + Ln9 LQ = 2, L1 - 1. 

Also, a and b designate the roots (1 + /5)/2 and (1 - /5)/2, respectively, of 
x2 - # - 1 = 0 . 

PROBLEMS PROPOSED IN THIS ISSUE 

B-448 Proposed by Herta T. Freitag, Roanoke, VA 

Prove that, for all positive integers t, 

it 

5i + l Si E * „ + i £
M = ° (*°d5>-

= i 

B-449 Proposed by Herta T. Freitag, Roanoke, VA 

Prove that, for all positive integers t9 

E C - D ^ s i + i ^ = 0 (mod 7). 
i - 1 

B-450 Proposed by Lawrence Somer, Washington, D.C. 

Let the sequence {Hn}^mQ be defined by Hn = F2n + F2n+2-

(a) Show that 5 is a quadratic residue modulo Hn for n J> 0. 
(b) Does Hn satisfy a recursion relation of the form Hn + 2 =

 c^n + i + dHn, 
with o and d constants? If so, what is the relation? 

B-451 Proposed by Keats A. Pullen, Jr., Kingsville, MD 

Let kPm9 and p be positive integers with p an odd prime. Show that in base 
2p the units digit of ̂ fcCP-D+i ^s t h e same as the units digit of m. 
B-452 Proposed by P. L. Mana, Albuquerque, NM 

Let oQ .+ e^x + e2x2 + • • • be the Maclaurin expansion for [1 - ax)(1 - bx)]~1, 
where a ± b. Find the rational function whose Maclaurin expansion is 

c\ + o\x + o\x2 + • • • 

and use this to obtain the generating functions for F2 and L2. 
B-453 Proposed by Paul S. Bruckman, Concord, CA 

Solve in integers r, s, £ with 0 <_ v < s < t the Fifibonacci Diophantine 
equation 
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and the analogous Lulucas equation in which each F is replaced by an L. 

SOLUTIONS 

Counting Hands 

B-424 Proposed by. Richard M. Grassl, University of New Mexico, Albuquerque, NM 

Of the (. _ 1 possible 5-card poker hands, how many form at 

(i) full house? 
(ii) flush? 
(iii) straight? 

Solution by Paul S. Bruckman, Concord, CA 

(i) The two denominations represented in a full house may be chosen in 

2( 9 J ways, the coefficient "2" reflecting the fact that the three-of-a-kind 

may appear in either of two ways. The individual cards for these denominations 

can be chosen in (olio) ways. Thus, the total number of possible full houses 

.(?)($)-'.'£• is 2( 

(ii) The suit represented in a flush may be chosen in 4 ways, and the 5 
/13\ cards of the flush in that suit may be chosen in , ways. Hence, the total 
^ ' /13\ 

number of possible flushes (including "straight flushes") is 41 ,. J = 5,148. 
(iii) With the ace being either high or low, there are 10 different ways 

to choose the denominations appearing in a straight. With each of these ways, 
there are 45 choices for the individual cards. Thus, the total number of pos-
sible straights (including "straight flushes") is 10 ° 45 = 10,240. 

NOTE: Since the total number of possible straight flushes is.10 • 4 = 40, the 
answers to (ii) and (iii) above excluding straight flushes would be reduced by 
40, and so would equal 5,108 and 10,200, respectively. 

Also solved by John W. Milsom, Bob Prielipp, Charles B. Shields, Lawrence Somer, 
Gregory Wulczyn, and the proposer. 

Average In a Fixed Rank 

B-425 Proposed by Richard M. Grassl, University of New Mexico, Albuquerque, NM 

Let k and n be positive integers with k < n, and let S consist of all k-
tuples X = (x-, , ) with each Xj an integer and 

1 <_ x± < x2 < * • e < xk <_ n. 
For j = 1, 2, ..., ks find the average value ~x~j of Xj over all X in So 

Solution by Graham Lord, Universite Laval, Quebec, Canada 

The number of fc-tuples X in which Xj = m is ( .. " jL _ . J .• [Choose the j - 1 

smaller integers from among the first m- 1 natural numbers and the k- j larger 
ones from among m+ls ..., n.] Evidently the total number of fc-tuples, 

n-k + j 

E lm- l\/n- m\ 
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is simply the number of /c-subsets from {1, 2, ..., n], that is I j, )• Hence, 

HX-G- 0(-)}/Q 
j.n-\£! + 1/m+l-l\/n+l- ( m + l ) \ ) / / n \ 

_ J(n+1) 
" fc + 1 • 

Also solved by Paul S. Bruckman and the proposer. 

Fibonacci Pythagorean Triples 

B-426 Proposed by Herta T. Frietag, Roanoke, VA 

Is (FnFn+3)2 + (2^ n+i^n+2)2 a Perfect square for all positive integers n9 
i.e., are there integers cn such that (FnFn + 3, 2Fn+1Fn+2, on) is always a Py-
thagorean triple? 

Solution by Bob Prielipp, University of Wi sconsin-Oshkosh, WI 

The answer to the question posed above is "yes" and cn = F2n+3. To estab-
lish this result, we observe that 

FnFn + Z = \Fn +2 - Fn + 1) (Fn + 2 + -c n + 1) ~ ^n + 2 "" -̂ n + 1 
so 

(F F > . ) 2 + (2F F ) 2 = (F2 - F2 ) 2 + 4 F 2 F2 

\J-nLnJt?>' ' V^^n + 1 « + 2' v n+2 ^n + l' n + 2 n + 1 
— (J? ?• -L. jp 2- \ 2 _ 77 2 

^rn+2 n + 1' r 2 n + 3 * 
[The last equality follows from the fact that F^ + 1 + F2 = - 2̂n + i f o r e a c n non-
negative integer n.] 
Also solved by Paul S. Bruckman, M. J. DeLeon, A* F. Horadam, Graham Lord, John W. 
Milsom, A.G. Shannon, Charles B. Shields, Sahib Singh, Lawrence Somer, M. Wach-
tel, Gregory Wulczyn, and the proposer. 

NOTE: Each of Horadam and Shannon pointed out that both B-402 and B-426 are 
special cases of general equation (2.2)' in A. F. Horadam: "Special Properties 
of the Sequence W (a, b.9 p, q).9" The Fibonacci Quarterly 5 (1967) :425. 

Closed Form, Ingeniously 

B-*t27 Proposed by Phil Mama, Albuquerque, NM 

Establish a closed form for 2 ^ ̂ (o)i Q )• 

Solution by Graham Lord, Universite Laval, Quebec, Canada 

" 3 • E f 3 ^ 3 k) ~ (" 6 X) (continued) 
k = 2 
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Q In + 2\ In + 1\ 3n - 1 /n + 1\ 

NOTE: As shown in my solution to B-4259 V*( ¥ , J counts the number of sub-

sets of a + 2? + 1 elements chosen from a set of n+ 1 elements: this latter sum 

equals (a + & i l)' 
Also solved by Paul S. Bruckman, Bob Prlelipp, Sahib Singh, Gregory Wulczyn, and 
the proposer. 

Closed Form, Industriously 

B-i+28 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

For odd positive integers W9 establish a closed form for 

2 8 + 1 /Or* J- 1\ ECV1)^* 
Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

S i n c e F- = (a«? - bj)/Y5 [ w h e r e a = (1 + / 5 ) ' / 2 a n d b = (1 - / 5 ) / 2 ] , 

= | [ a 2 n ( l + a 2 w ) 2 s + 1 - 2 ( - l ) n ( l + ( - i ) u ) 2 s + 1 

+ £ 2 n ( l + b2w)2s+1] (by t h e B i n o m i a l Theorem) 

= | [ a 2 n ( l + a 2 w ) 2 s + 1 + b2n(l + Z P 2 W ) 2 S + 1 ] 

( b e c a u s e w i s odd) 
= ^ [ a 2 » + ( 2 8 + l ) W ( a - W + a W ) 2 8 + l + f c 2 » + ( 2 e + l > W ( Z ? - w + f e ^ 2 8 + 

= jLra2n+(2s + i)w / w __ 2?w)2 s + 1 + 2? 2 n + ( 2 s + 1 ) u (£>w - aw)2s + 11 

_ i f C^72w'! '^2s + 1 ^ w - i^2n + (28 + l ) w w w _ fow\28+l-t 

J 2n + (2s + 1 ) " ' 
2 s + l 

w" w 

Also solved by Paul S, Bruckman, A. G. Shannon, and the proposer, 

Yes, When Boiled Down 

B-^29 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Is the function 

Fn\lOr + Fn ~ (Lsr + hr ~ D < C 8 , + C z r ) + ^ 1 2 , " LZ, + V(Fn + eP + C * » ) 

independent of n? Here n and r are integers. 

Solution by Paul S. Bruckman, Concord, CA and 
Sahib Singh, Clarion State College, Clarion, PA, independently 
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Yes. It boils down to 

or to 
l2(L12r - 2LQr - Lhv + 4 ) / 2 5 . 

(The steps were deleted by the Elementary Problems editor.) 

Also solved by Bob Prielipp and the proposer. 

***** 
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H-327 Proposed by James F. Peters, St. John's University, Collegeville, MN 

The sequence 

1,3,4,6,8,9,11,12,14,16,17,19,21,22,24,25,27,29,30,32,34,35, ... 

was introduced by D. E. Thoro [Advanced Problem H-12, The Fibonacci Quarterly 1 
(1963):54]. Dubbed "A curious sequence," the following is a slightly modified 
version of the defining relation for this sequence suggested by the Editor {The 
Fibonacci Quarterly 1 (1963):50): 

If 
T0 = 1, T± = 3, T2 = 4, T3 = 6, Th = 8, T5 = 9, T& = 11, T? = 12, 

then 
TQm + k = 13m + Tk9 where k >_ 0, m = 1, 2, 3, ... . 

Assume 
F0 = 1 , ^ = 1, Fn + 1 = Fn +Fn_1 

and 
^0 = 2 s Ll = l> Ln + l = Ln + L

n-1 

and verify the following identities: 

(1) 

(2) 

(3) 

TF 2 = Fn + 1 - 2 , where n >. 6 . 

For example, 

\-z = r 6 = 11 = F 7 -
T = T - \ 9 = F •LF7 -2 ^ n Ly L 8 

e t c . 

\ - 2 - TFn_2-i = Fn> where w l 6. 
TF-2 = Fn + 1 - 2 + Ln-12> w h e r e n > 1 5 ' 

• 2 

- 2 

H-328 Proposed by Verner E. Hoggatt, Jr. 

Let 0 be a positive irrational number such that 1/9 + 1/0J+1 = 1 (j ̂  1 an 
integer) Further, let 

[«6], Bn = [ndj+1l9 and Cn = [nd*]. 

Prove: (a) An + 1 - 5n 

= 2 

=1 Qn ± Ck for any & > 0) 

(a) 

(b) 

Ac.+ 

AC„+1 

^m + 1 

An 
1 = 

~ AC 
~ A-m 
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(c) Bn - n is the number of Ajrs less than Bn. 

H-329 Proposed by Leonard Carlitz, Duke University, Durham, NC 

Show that, for s and t nonnegative integers, 

u ; e ^kl\s)\t) \ kl(s - k)\(t - k)\ ' 

More generally, show that 

(2) * ? H \ a At) = ? « r - * ) m \ *c ) 
and 

(3) ^EfeKJV t j = T, snt-k)i( k J -

SOLUTIONS 

Determi ned 

H-302 Proposed by George Berzsenyi, Lamar University, Beaumont, TX 
(Vol. 17, No. 3, October 1979) 

Let c be a constant and define the sequence <an)> by a0 = 1, ax = 2, and aM 

^an-i + can-2 ^or n — "̂ Determine the sequence (bny for which 

*-£(*>*' 
Solution by the proposer. 

n / \ 
The equation an = /^ \T"Pk determines the sequence <(£>n> uniquely as it is 

fc = o W 

easily seen by letting n = 0, 1, 2, ... in succession and solving the resulting 
equalities recursively for b ,b , b , ... . The first few values are thus found 
to be 

bQ = 1, Z?1 = 1, ib2 = <? + l,i3 = c + 1, 2^ = (G + l)2, ... . 

We will prove that the sequence <(£>n> defined by b2n =b2n+1 - (c + l)n satisfies 
the given equation and envoke its unicity to solve the problem. 

The generating functions A(x) and B(x) for the sequences <an> and <2?n>, re-
spectively, are easily shown to be 

A(x) = — and B(x) = 1 + X _ > 
1 

Therefore, utilizing Hoggattfs approach [The Fibonacci Quarterly 9 (1971):122], 
one finds 

1 + X 

„.„ fc.0v/ n,o 1 -(7—j) - e (r^) 

V, 
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implying the desired relationship between the sequences <an> and <Z>n>. 

Also solved by P. Bruckman, P. Byrd, D. Russell, and A* Shannon. 

Zeta 

H-303 Proposed by Paul Bruckman, Concord, CA 
(Vol. 17, No. 3, October 1979) 

If 0 < s < 1, and n is any positive integer9 let 

(1) Hn(s) = X > - * 5 

and 

(2) B„Ce) = Y~^ " H«(s)* 
Prove that lim 6w(s) exists, and find this limit, 

tt-*oo 

Solution by the proposer. 

The following is Formula 23.2.9 in Handbook of Mathematical Functions, ed. 
by M. Abramowitz and I. A. Stegun. Ninth Printing* (Washington, B.C.: National 
Bureau of Standards, Nov. 1970 [with corrections])s p. 807s 

£(s) = L k~8 + (0 - D"1^1"8 - e/" 2 J&Ufc, w = 1,2, .....; s * 1, 
fc-i ^ ^8 + 1 Re(s) > 0, 

(3) 

where £ is the Riemann zeta function. If we let 

* 00 

(4) • j„(a) = / ^ J ^ l ^ , 

we see that formula (3) reduces to 

(5) -£(*) = 6n(s) + sJn(s). 

Note from (4) that In (s) > 0. Moreover, 

r , N . f°° dx 1 

Hence, lim sln(s) = lim n~8 = 0. We thus see from (5) that 

(6) lim Qn(s) = -C(e). 
n->oo 

Since £(s) is defined for 0 < s < 1, this is the solution to the problem. 

Like Fibonacci-11ke Sum 

H-305 Proposed by Martin Schechter, Swarthmore College, Swarthmore, PA 
(Vol. 17, No. 3, October 1979) 

For fixed positive integers m and n, define a Fibonacci-like sequence as 
follows: / 

I mSk_1 + Sk_2 if k is even, 
S± = 1, S2 = m, Sk = < 

I nSk_1 + Sk_2 if fc is odd. 

(Note that for m = n = 1, one obtains the Fibonacci numbers.) 
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(a) Show the Fibonacci-like property holds that if j divides k then Sj di-
vides Sk and in fact that (Sq9 Sr) = S, . where ( , ) = g.c.d. 

(b) Show that the sequences obtained 

when [m = 1, n = 4] and when [m = 1, n = 8], 

respectively, have only the element 1 in common. 

Partial solution by the proposer. 

(a) It is convenient first to define a sequence of polynomials {Sfe}", where 
Qk is a polynomial of k commuting variables, as follows: 

QQ = 1, ei(a1) = a1$ 

and 
Qk(a19 ...... ak) = akQk„1(a1> ...» ak-0 + Qk-i(ai> •••» ak-i^ -
It is easy to show by induction that for j = 1, ...,/c-l, §k has the 
expansion: 

Qk(al9 ...,. ak) = Qc<al9 .... ad)Qk_j(aj+l9 ..... afc) 

- fy.^a,. ..., V i ^ - i - i ^ + 2' .... afc). 

Note that 5fc = Qk_1(m9 n9 m9 n, ...) 

fc - 1 

Associated to 57< is the sequence 3^, which is obtained by interchanging 
the roles of m and n. The sequences 5^ and Sk are easily shown to sat-
isfy the relations: 

Sk - S^ if k is odd, 

nSk - Tn8k if k is even. 

Note that if j is odd, 5j = (mn + !)#;•_ 2 + nSg-za 

It follows from this equation, by induction, that if j' is odd, then 
(Sj, n) = 1. It is also clear that for any j, (Ŝ -, S3- + 1) = 1. 

Using the above polynomials, we may readily establish: 

Sk = 
sj + isk-3

m + sjSk-j-i i f 3 i s e v e n > 

SJ + lSk-3 + SjSk-3-l i f <?" 1 S ° d d ° 
An easy i n d u c t i o n argument now shows t h a t j\k i m p l i e s Sj\Sk. 

F i n a l l y , an i n d i r e c t argument u s ing i n d u c t i o n shows t h a t 

(Sq , Sr) = 5 ^ r ) . 

LdtC Acknowledgment: H-281 so lved Jby J . Shall it-9 H-283 so lved Jby J . La Grange. 
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