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HAIL TO THEE, BLITHE SPIRIT!

HOWARD EVES
University of Maine

It was in the mid-1940s that I left the Department of Applied Mathematics
at Syracuse University in New York State to chair a small Department of Mathe-
matics at the College of Puget Sound! in Tacoma, Washington. Among my first
teaching assigmments at the new location was a beginning class in college alge-
bra and trigonometry. At the first meeting of this class I noticed, among the
twenty-some assembled students, a bright-looking and somewhat roundish fellow
who paid rapt attention to the introductory lecture.

As time passed -I learned that the young fellow was named Verner Hoggatt,
fresh from a hitch in the army and possessed of an unusual aptitude and appe-
tite for mathematics. Right from the start there was little doubt in my mind
that in Vern I had found the mathematics instructor's dream—a potential future
mathematician. He so enjoyed discussing things mathematical that we soon came
to devote late afternoons, and occasional evenings, to rambling around parts of
Tacoma, whilst talking on mathematical matters. On these rambles I brought up
things that I thought would particularly capture Vern's imagination and that
were reasonably within his purview of mathematics at the time.

Since Vern seemed to possess a particular predilection and intuitive feel-
ing for numbers and their beautiful properties, I started with the subject of
Pythagorean triples, a topic that he found fascinating. I recall an evening,
shortly after this initial discussion, when I thought I would test Vern's abil-
ity to apply newly acquired knowledge. I had been reading through Volume I of
Jakob Bernoulli's Opera of 1744, and had come upon the alluring little problem:
"Titius gave his friend, Sempronius, a triangular field of which the sides, in
perticas, were 50, 50, and 80, in exchange for a field of which the sides were
50, 50, and 60. I call this a fair exchange." I proposed to Vern that, in view
of the origin of this problem, we call two noncongruent isosceles triangles a
pair of Bernoullian triangles if the two triangles have integral sides, common
legs, and common areas. I invited Vern to determine how we might obtain pairs
of Bernoullian triangles. He immediately saw how such a pair can be'obtained
from any given Pythagorean triangle, by first putting together two copies of
the Pythagorean triangle with their shorter legs coinciding and then with their
longer legs coinciding. He pointed out that from his construction, the bases
of such a Bernoullian pair are even, whence the common area is an integer, so
that these Bernoullian triangles are Heronian.

On another ramble I mentioned the problem of cutting off in a cornmer of a
room the largest possible area by a two-part folding screen. I had scarcely
finished stating the problem when Vern came to a halt, his right arm at the
same time coming up to a horizontal position, with an extended forefinger.
"There's the answer," he said. I followed his pointing finger, and there, at
the end of the block along which we were walking, was an octagonal stop sign.

There was a popular game at the time that was, for amusement, engaging many
mathematicians across the country. It had originated in a problem in The Amer-
ican Mathematical Monthly. The game was to express each of the numbers from 1
through 100 in terms of precisely four 9s, along with accepted mathematical
symbols of operation. For example

1=9/9+9-19=299/99 = (9/9)°%°,

Now the University of Puget Sound.
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194 HAIL TO THEE, BLITHE SPIRIT! [Aug.

2=9/9+9/9=.9+.9+9-9,
3=VV/W9+ 9 -9 = (VY99)/9.

The next day Vern showed me his successful list. In this list were the expres-
sions

67 = (L9 + .97 +./9 = (9 + .97 + /9,
68 = V9i(/91/91 - V9i),
70 = (9 - .99 - /i = (.9 + .9 + /91,

where the inverted exclamation point, i, indicates subfactorial.? For all the
other numbers from 1 through 100, Vern had been able to avoid both exponents
and subfactorials, and so he now tried to do the same with 67, 68, and 70, this
time coming up with

67 =/917(9 x 9) + 9,
68 = (Y91)!/9 - /9! - /91,
70 = (9 + .9) (/9! + .9).

It would take too much space to pursue further the many many things we dis-
cussed in our Tacoma rambles, but, before passing on to later events, I should
point out Vern's delightful wit and sense of humor. I'll give only one example.
The time arrived in class when I was to introduce the concept of mathematical
induction. Among some preliminary examples, I gave the following. '"Suppose
there is a shelf of 100 books and we are told that if one of the books is red
then the book just to its right is also red. We are allowed to peek through a
a vertical slit, and discover that the sixth book from the left is red. What
can we conclude?" Vern's hand shot up, and upon acknowledging him, he asked,
"Are they all good books?" Not realizing the trap I was walking into, I agreed
that we could regard all the books as good ones. "Then," replied Vern, "all
the books are red." '"Why?" I asked, somewhat startled. '"'Because all good
books are read," he replied, with a twinkle in his eye.

It turned out that I stayed only the one academic year at the College of
Puget Sound, for I received an attractive offer from Professor Milne of Oregon
State College® to join his mathematics staff there. The hardest thing about
the move was my leave-taking of Vern. We had a last ramble, and I left for
Oregon. ‘

I hadn't been at Oregon State very long when, tomy great joy and pleasure,
at the start of a school year I found Vern sitting in a couple of my classes.
He had decided to follow me to Oregon. We soon inaugurated what became known
as our '"oscillatory rambles." Frequently, after our suppers, one of us would
call at the home of the other (we lived across the town of Corvallis from one
another), and we would set out for the home of the caller. Of course, by the
time we reached that home, we were in the middle of an interesting mathematical
discussion, and so returned to the other's home, only to find that a new topic
had taken over which needed further time to conclude. In this way, until the
close of a discussion happened to coincide with the reaching of one of our
homes, or simply because of the lateness of the hour, we spent the evening in
oscillation.

Our discussions now were more advanced than during our Tacoma rambles. I
recall that one of our earliest discussions concerned what we called well-defined

ni = nt[l - 1/1Y + 1/20 = 1/30 + =+« + (-1)"n!].

$Now Oregon State University.
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Euclidean constructions. Suppose one considers a point of intersection of two
loci as Zll-defined if the two loci intersect at the point in an angle less
than some given small angle 8, that a straight line is <ll-defined if the dis-
tance between the two points that determine it is less than some given small
distance d, and that a circle is <ll-defined if its radius is less than d;
otherwise, the construction will be said to be well-defined. We proved that
any Euclidean construction can be accomplished by a well-defined one. This
later comnstituted our first jointly published paper (in The Mathematics Teach-
er). Another paper (published in The American Mathematical Monthly) that arose
in our rambles, and an expansion of which became Vern's master's thesis, con-
cerned the derivation of hyperbolic trigonometry from the Poincaré model. We
researched on many topics, such as Schick's theorem, nonrigid polyhedra, new
matrix products, vector operations as matrices, a quantitative aspect of linear
independence of vectors, trihedral curves, Rouquet curves, and a large number
of other topics in the field of differential geometry.

We did not forego our former interest in recreational mathematics. The
number game of the Tacoma days had now evolved into what seemed a much more
difficult one, namely, to express the numbers from 1 through 100 by arithmetic
expressions that involve each of the ten digits 0,1, ..., 9 once and only once.
This game was completely and brilliantly solved when Vern discovered that, for
any nonnegative integer 7,

log(0+1+2+3+4)/S{lOg//---/(—6+7+B)9} s
where there are 7 square roots in the second logarithmic base. Notice that the
ten digits appear in their natural order, and that, by prefixing a minus sign
if desired, Vern had shown that any integer, positive, zero, or negative, can
be represented in the required fashion."

A little event that proved very important in Vern's life took place during
our Oregon association. When I was first invited to address the undergraduate
mathematics club at Oregon State, I chanced to choose for my topic, "From rab-
bits to sunflowers," a talk on the famous Fibonacci sequence of numbers. Vern,
of course, attended my address, and it reawakened in him his first great mathe-
matical interest, the love of numbers and their endless fascinating properties.
For weeks after the talk, Vern played assiduously with the beguiling Fibonacci
numbers. The pursuit of these and associated numbers became, in time, Vern's
major mathematical activity, and led to his eventual founding of The Fibonacct
Quarterly, devoted chiefly to the study of such numbers. During his subsequent
long and outstanding tenure at San Jose State University, Vern directed an
enormous number of master's theses in this area, and put out an amazing number
of attractive papers in the field, solo or jointly with one or another of his
students. He became the authority on Fibonacci and related numbers.

After several years at Oregon State College, I returned east, but Vern con-
tinued to inundate me with copies of his beautiful findings. When I wrote my
Mathematical Circles Squared (Prindle, Weber & Schmidt, 1972), I dedicated the
volume

To VERNER E. HOGGATT, IJR.
who, overn the years, has sent me more
mathematical goodies than anyone else

*Another entertaining number game that we played was that of expressing as
many of the successive positive integers as possible in terms of not more than
three m's, along with accepted symbols of operation.
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The great geographical distance between us prevented us from seeing one
another very often. I did, on my way to lecturing in Hawaii, stop off to see
Vern, and I spent a few days with him a couple of years later when I lectured
along the California coast. He once visited me at the University of Maine,
when, representing his university, he came as a delegate to a national meeting
of Phi Kappa Phi (an academic honorary that was founded at the University of
Maine). For almost four decades I had the enormous pleasure of Vern's friend-
ship, and bore the flattering title, generously bestowed upon me by him, of his
"mathematical mentor."

In mathematics, Vern was a skylark, and I regret, far more than I can pos-
sibly express, the sad fact that we now no longer will hear further songs by
him. But, oh, on the other hand, how privileged I have been; I heard the sky-
lark when he first started to sing.

Hail to thee, bLithe Spinit!
Bind thou nevern went,
That gnom Heaven, on nearn i,
Pourest thy full heart
In profuse sthains of unpremeditated art.

3 HH

DIAGONAL SUMS IN THE HARMONIC TRIANGLE

MARJORIE BICKNELL-JOHNSON
A. C. Wilcox High School, Santa Clara CA 95051

Dedicated to the memory of my colleague and griend, Vernern Hoggatt
Leibniz's harmonic triangle is related to reciprocals of the elements of
Pascal's triangle, and was developed in summing infinite series by a telescop-
ing process as discussed by Kneale [1] and Price [2], among others. Here, we

find row sums and rising diagonal sums for the harmonic triangle.

1. PROPERTIES OF THE HARMONIC TRIANGLE

The harmonic triangle of Leibniz

1L 1 1 1 1 1
1 2 3 4 5 6 7
1 11 11
2 12 20 30 42
S S O |
3 12 30 60 105
101 1 1
4 20 60 140
101 L
5 30 105
1
6

is formed by taking successive differences of terms of the harmonic series.



1981] DIAGONAL SUMS IN THE HARMONIC TRIANGLE 197

After the first row, each entry is the difference of the two elements immedi-
ately above it, as well as being the sum of the infinite series formed by the
entries in the row below and to the right. Also, each element is the sum of
the element to its right and the element below it in the array. For example,
for 1/6 circled above, 1/2 - 1/3 = 1/6, and :

1 _ 1 1 1 1

512730 "6 T 105

2

1 1 1 1 1 1 1 1
(6“1z)+(ﬁ“z‘6>+(%-aﬁ)+(ﬁ-4—z)+'
Notice that each row has the first element in the row above it as its sum.

Each rising diagonal contains elements which are 1/# times the reciprocal
of the similarly placed elements in Pascal's triangle

+ e

]

1 1 1 1 1 1 1
1 2 3 4 5 6
1 3 6 10 15 ...
1 4 10 20
1 5 15
1 6

In contrast to the harmonic triangle, each element in any row after the first
is the sum of all terms in the row above it and to the left, while it is also
the difference of the two terms in the row beneath it, and the sum of the ele-
ment to its left and the element above it.

Since the nth row in the harmonic triangle has sum 1/(n - 1), if we multi-
ply the row by n, we can immediately write the sum of the reciprocals of ele-
ments found in the columns of Pascal's triangle written in left-justified form

as
n =~ (i\t
n—1=z<n> s> 1, (1.1)

=N

or we can begiﬂ by summing after X terms, as

n+1 n+ K\
L (1 8

i1=n+1

: -1
(14

As a corollary, we can easily sum the reciprocals of the triangular numbers
T =mn(n+ 1)/2 by taking n» = 2 in (1.1), or we could simply multiply the sec-
ond row of the harmonic triangle by 2.

2. ROW SUMS OF THE HARMONIC TRIANGLE

We rewrite the harmonic triangle in left-justified form as

1/1
1/2 1/2
1/3 1/6 1/3

1/4 1/12 1/12 1/4
1/5 1/20 1/30 1/20 1/5
1/6 1/30 1/60 1/60 1/30 1/6

.
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We number the rows and columns to begin with zero. Then the element in the Zth
row and nth column is

1/[(i+ 1)(;)} n=0,1,2, ..., i =0, 1, 2,

The row sums are 1, 1, 5/6, 2/3, 8/15, 13/30, 151/420, ..., which sequence is
the convolution of the harmonic sequence 1, 1/2, 1/3, ..., 1/n, ..., and the
sequence 1, 1/2, 1/4, 1/8, ..., 1/2", ..., which can be derived [3] as follows.

Let G,(x) be the generating function for the elements in the nth column of
the harmonic triangle written in left-justified form. Then

Gy(x) = In[1/(1 -a)] =1 +x/2+x*/3+ -+ +x™/(n+1) + - (2.1)
and generally,
G;+1(x) = (x - 1)G,(x) +x2*/(n + 1). (2.2)
Consider the display
Gy (@) = Gy ()
Gi@) = (x - DGy(x) +1
G,(x) = (x - 1)Gy(x) + x/2
Gn+l(x) = (x - )G, (x) +x"/(n + 1)

Let S be the infinite sum of the column generators, and sum vertically:
S = (x - 1) + 2G,(x).

Solving for S, we have
5 =G, @)/ - x/2) = (1n[1/(1 - x)]> . (ﬁ)

the product of the generating functions for the harmonic sequence and for the
sequence of powers of 1/2. Thus, the row sums are the convolution between the
harmonic sequence <1/n :=1 and the sequence 1/2”}:=0.

What we have found is

©

1 <~ (n2\Y'\ .,  In[1/( - x)]
Z(m‘f,?;o(k) )“ =T i-a;m 2-3)

n=0
_1_(71)_1_L (2.4)

We can also write the generating function S*(x) for the sums of elements
appearing on the successive rising diagonals formed by beginning in the left-
most column and proceeding up p elements and right one element throughout the
array:

G, (x) + xPGO(xp+l)
S*(x) = (2.5)
1 + 2P - xP*t

By way of comparison, the Fibonacci numbers with negative subscripts are gen-
erated by
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©

— L -, (2.6)

1 +x-22 no1

To contrast with the harmonic triangle, we write Pascal's triangle in left-
justified form, and number the rows and columns to begin with zero:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Then the generating function for the nth column is G,(x) = x"/(1-x)"*Y, which
has been used to write the diagonal sums for Pascal's triangle [4], [7]. We
recall the numbers u(n;p,q) of Harris and Styles [5], [6], formed as the sum of
the element in the leftmost column and nth row and the elements obtained by
taking steps p units up and ¢ units right throughout the array. These numbers
are generated by [4], [7],

© _ g-1
}:u(n;p,q)x -—d-n »,p+tqg>21,q2>0. (2.7)
- (1 - x)q _ Pt

Also, the row sums of Pascal's triangle are given by 2" = u(n;0,1), while the
Fibonacci numbers are the sums on the rising diagonals, or, u(n;l,l) = F,. If
we extend u(n;p,q) to negative subscripts [3], we have

©

- =Y uC-nsp, D, (2.8)

1+ xP - £P*? n=0

which has a form similar to (2.5) and becomes (2.6) when p = 1.
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SOME GENERALIZATIONS OF A BINOMIAL IDENTITY
CONJECTURED BY HOGGATT

L. CARLITZ
Duke University, Durham NC 27706

To the memony of Vernern Hoggatt

1. INTRODUCTION

In November 1979 Hoggatt sent me the following conjectured identity. Put

__ 1 m-r\yynm-»r-1 .
Smr'_"—'r+1<z= )( ’ ) (n>2r+1; r>0). (1.1)
Then
r-1 n-1
Sparn = Sy n +;?:’ S5 kS jtipexr 220+ 157> 1), (1.2)
=0 j=1

I was able to send him a proof of (l.2) that made use of various properties of
special functions.

In this note we first sketch this proof. Next, using a different method,
we obtain some generalizations of (1.2). 1In particular, if we put

p __1 m-r\\In-r-p .
S"’”_r+l(r>< ; ) (n > 20 +p; »>0), (1.3)
where p is a nonnegative integer, we show that
P+ @ S e L@
@ + @Sn) 7= DSt @Snpr F DAY, D, 55 e Sntiamann (1.4)
Jj=0 8=0
(®>0,q>0,r>0)
and
(P+9) @ e
@+ D8, = @+ DS P, 3= 88, 5 i s (1.5)
Jj=0 8=0

>0, ¢g>0, »>0).

We remark that (1.4) is implied by (1.5).
The special case p =1, g = 0, of (1.5) may be noted:

n - p\2 n-2 r-1 j - s\2
&+ 15, , =( ) ) +3 Z( ) R (1.6)
Jj=0 s=0

For additional results, see (7.7) and (7.8) below.

Remark: The close relationship between the identities of this paper and ultra-
spherical polynomials suggests that even more general identities can be found
that are related to the general Jacobi polynomials. This is indeed the case;
however, we leave this for another paper.

SECTION 2
Put

o

e U (PRl D iyt

n=2r+1 n=2r+1
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It follows that

x2r+1
(l -x) 2r+1

where ¢,(x) is a polynomial in x. To get an explicit formula for ¢,(x), re-
write (2.2) in the form

fp @) = ¢, (x), (2.2)

x2r+l¢r(x) = (1 _ x)2r+lfr(x).

1 rile=(n +r\(n +r + 1\ _,
9, (@) = ;-;*T(l - x)? +15§%( ” >( ” >x

2r+1 ©
1 if2r + 1\ s +r\/fn+2r+1
r+ 1 D ( J )x E:( r )( r )xn

Thus

i=0 n=0
1o g2+ N\[fm -G +r\fm-F+r+1
=r+12”m2(_1)a< J >< " )( - ) 2.3)
m=0 Jj=0
j<m

Since the product
m-g+r\(m-g+r+1
r r
is of degree 2r in j, it follows that the inner sum in (2.3) vanishes for
m> 2r + 1.
Thus we need only consider m < 2r. Hence the sum is equal to

<n + r)<m +r + l) 55 (=2r = 1); (=m) ; (=m = 1)
r r ey’ Jt(-m - p)j(_m - 7 - 1)j’

(@); = ala + 1) ... (a+J - 1.
Applying Saalschitz' theorem [1, p. 87], we get
maeym e+ T Dp (4D, r+lfr\(r-1
( r )( r (-m - r), (r + 2), “m+ 1\m m )°

We have, therefore,

S 1 [r\r - 1\.n
0@ =Y ()0 )em ez (2.4)

m=0

where

For » = 0, it is clear that
Py (x) = 1. (2.5)
In hypergeometric notation, (2.4) becomes
$,(x) = ,F [-r + 1, -r; 1; x]. (2.6)
On the other hand [1, p. 254, Eq. (2)],

If we put
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this becomes
R S npa,(l+y
L - - 15 25 yl= P 1(1 -Y) P, 1-y)
Thus, by (2.6),
_ 1 _ roa,nfl +tx
bpp1 @) =570 - 2P, (—1 — ) (2.7
We have also the generating function [1, p. 271, Eq. (6)]
SPM D (et = 2207 (A + £+ ) (A - £+ )71,
where n=o
= (1 - 2zt + tH)Y2,
Thus
(l+t+p)(1 -t+p)=2( -xt+p),
so that
PV ()" = 207H(L - at + p) L. (2.8)
n=0
It can be verified that if
1l -xt+p
¢ = t
then
o _ ot -1
dt p(l - xt + p)°
Comparison with (2.8) gives
- 1 (1, 1) n+l _ 2 1l -xt -p
Zn+lp @7 = Z . (2.9)
n=0 X

Now replace x by (1 + 2)/(1 - x) and replace t by (1 - x)z. The result is

f: L -arpmv(LlE x)z" _l-(Q+®a-/1-20+x)z+ (1 - x)2z
nrl -z 2x2°

Thus, by (2.7), we get

© _ 2,2
2: ¢r+1(x)3r _1l-0A+xz - /1 - 2(; +x)z+ (1 - x)°z i (2.10)
r=0 220z

SECTION 3

We now rewrite the identity (1.2) in terms of the polynomial o, (x). To be-
gin with, (1.2) can be replaced by

r-1n- r-1

Sn+1,P=n,r+EZ knJlrkl+ZSn1kSOPkl
k=0

=Sn,r+ n1r1+z Zs,knJlrkl

=0 j=1

Then multiplying both sides by x"*! and summing over n we get
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2: Sn+l’rx”+ = 2: S, px™ + 22 E: Sn’r_lm"
n=2r+1 n=2r+1 n=2r
r-1 o w
+ac2§: Z S; gz’ Z S k&
k=0 j=2k+1 n=2r-2k-1
In view of (2.1), this becomes
2 =y
A -a)f, @) =z°f, @) +x*Y f @), @.
Hence by (2.2) we get L k=0
.
9, (@) = (1 - )¢, ;@ +xY 6, @0, , @ @=1). (3.1)
k=0

For example, we have
b, @ =1, ¢p,(@ =1+, ¢,@) =1+ 3z +2”, ¢p,() =1+ 6x + 6% + 2°

in agreement with (2.4).
Next put

©

Fo=Fx, 2) = 3. 0,(x)z";

=0
then it is easily verified that (3.1) gives
F=1+ (1 - x)aF + xaF?. (3.2)
The solution of (3.2) such that F(x, 0) = 1 is

1-(l-x)z-/1-2(1L+x)z + (1L - x)2z?

F= 2xz
Since
F-1 -
=20 (@aT,
we get r=0
ﬁi ¢ (£)z" = 1 - (L +x)z - /1 - 2(1 + )z + (1 - x)zzz. (3.3)
ot r+1l 9052

Comparison of (3.3) with (2.10) evidently completes the proof of the desired
result.

SECTION 4

To generalize the above, we take

S(p) - 1 (n - r)(n -r - p) 4.1)

n,r r + 1 r r
and
p
@ = 2 St 4.2)
n=2r+p

where p is a fixed nonnegative integer. Clearly
2r+p :
x )
£ @ = —E—— P, (4.3)
(l _ x)2P+1

where ¢(P)(x) is a polynomial x. It is evident that
r
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Sup = S0 fo@ = FP @, ¢, = ¢ @).
Exactly as in the proof of (2.4) we find that
() (r + p)! r-p k
¢, @) = (r + D! E(m+ Dp m zt (P27 (4.4)
and .
P (r + p)! (=D" <r)p—r+m-1> ,
9,7 = (Hl),mg(mﬂ)p . M " (> 7). (4.5)
In hypergeometric notation, both (4.4) and (4.5) become
+p)!
¢1§P)(x) = (.zf’r+ l)zp! Fl-r + p, -r; p + 1; x]. (4.6)
Note that ¢(p)(x) is of degree r - p for p < r and of degree r for p > r.

Since [1l, p. 254, Eq. (2)]

@+ 1) (x + 1\

(p,p) - e Lx =1
B @) = = \2>F[”’ i p’ZD“Ll’ac+1:|’
it follows that
(P, P) _rt (p,p) (1l + x
¢r+p(x) @ + l) (1 - x)" P, (1 — ac) 4.7
SECTION 5

We shall now obtain a generating function for Sff)r in the following way.

We have
© o © 2r 210+p p
a7 (m - P>(7’L -r - p>xmyn = XY
Z=: % .z r g 220 1 -t a-yrt
yP((1 - 2)(1 - y) - z’y?z)"*

yP(l + xy - x%y?z - (x + y)) .

Replacing x by xy‘l, we have

er - i (m - r)(n - i - p)xmyn—m = yP(l +x - 22z - (@y~t +y))?

r
m= 2r~ n=2r+p

o -1 k
=yP(l+x-a’2)t Yy (g~ +y)
k=0 (1 + 2 - x2z)*

= (1 +x - x?2)7° i <'j Z k)

J k=0 (1 +x - 2%z

xjyk—.ﬂp

j+k "
)

Since we want only the terms on the right that are free of y, we take j=k+p.
Thus

o

S n-r n-r-p)n_ _z_p-lw(2k+p\ x
2 x" = (1 +x - x°2) .
rgo n=z;+p( )< r kz=:0 k /(1 + x - xzz)Zk
Since [1, p. 70, Ex. 10]

p
- 2k+p)k [p+1p+2 ] -1/2 2
zk = Fl=~——7-, s p+ 13 4z = (1 - 42) s
Z( k 2 2 1 + (1_42)1/2

k+p
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it follows easily that

o o P - - 14
DD M A e ma) ISR (5.1)
r=0 n=2r+p
where
R =R(x, ) = ((1 - 2% - 2(1L + x)z + g2)/2, (5.2)
Since

it is easily verified that

Hence (5.1) yields

p - = (P) - - p
9_0p_+ Y oarel 30 5 pnerr .;_<_‘___~__1 + @ - R) @ > 0). (5.3)
r=0 n=2r+p

In the next place, by (4.2) and (4.3),

(P) - - x?
Z S‘ﬂ’rxn 2r = er-r(p) (x) = q);P) (x).
n=2r+p (1 - x)2r+l
Thus (5.3) becomes
r+1
1+ pz:———jL—————-¢£p)(x) =

I'=O(1 _ x)2r+1

1 +x -2 -R\P
2 °

Replacing z by (1 - x)2z, we get
. 1+x—(1—x)23—(1—x)HOP
1 +p( - x);g%¢§p)(x)zr+ = 5 > (®>0), (5.4)

where

R, = (1 - 2(1L +x)z - (1 - x)2z*)Y2, (5.5)

For p = 1, (5.4) reduces to
- L+ - (1 -a)’z- (1 - 2R,
r+l _
1+ @A - x)péo¢r(x)z = 5 . (5.6)

It is easily verified that (5.6) is in agreement with (3.3).
Returning to (5.1), we have

- » 27 _1{1 +x -z - RV
pIEERE @ - R( = ) :
so that
- . L[+ Q- )’z - (1 - 2)R\?P
;0@ D¢, @a" = 5= o ®20. (.7

Note that (5.7) holds for p > O.
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SECTION 6
As an immediate consequence of (5.4), we have
{1 + p(l - x)zq)ép) @)z 1 + g1 - x)Z(bé“ (x)z”l}
8§=0 t=0
=1+ @@+ - sc)ZdJip“”(x)z“l.
r=0
Comparison of coefficients of z"*! yields the convolution formula
o+ P @) = pdp @) + g7 (@)
- (6.1)
+pg(l - 2) Y 0@ %) @ (>0, qg>0).
8=0
Similarly, by (5.4) and (5.7),
(r+ DOF V@) = (»+ DL (@)
(6.2)
r-1
+p1 -2 Y- P @ ) @ (>0, g20).

s=0

In the next place, it is evident from (5.4) and (5.6) that

oo o P
1+ p(l - x)ch;p)(x)z“l ={1 + (1 - x)Zd)r(x)z”“} (p >0). (6.3)

r=0 r=0

For p =g =1, (6.1) reduces to

r-1
257 @ = 2, + -2 T, @0, , @.
8§=0

However, by (3.1), we have

r-1
o, @) = (1 -2, (@ +x ¢, @, ,_; @).

=0
It follows that

20 P (@) = (1 + 2)¢, (= = (1 - 2%, _ (x) (r>0). (6.4)

This formula can be generalized by means of the easily proved identity

()8 =GR H (RDCTET) - =GR e
Multiplying both sides of (6.5) by 2™ and summing over m, we get
200 + DFFT@ = e+ DA+ P @) - @+ p)a’f ) @)
and therefore
2z + Dap, P () = (2 + DA+ 00 @) - (r+p) 1 - ) F)(x). (6.6)
For example, for p = 2, we get
G+ Dz (@) = 2+ DA+ 2%, @ - @r+3)A +2)0 - 2%, , @
+ (r+ 2 - ), @ (> 1). (6.7)
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Repeated application of (6.6) leads to a result of the form

p
Q2)PPPD (x) = 2: (-Dc(p,r, )(1 + )P7°(1 - &)*y,__ (@) (r>0). (6.8)

s=0
where

P @) = 2+ DD @, v (@) = (2 + 1)1 (x)

and the coefficients c¢(p, r, s) are independent of x.
SECTION 7

We shall now state the binomial identities implied by (6.1) and (6.2). 1In
terms of f;p)(x), (6.1) and (6.2) become

P + Q)fl,,(p+Q)(x) = prf'(P)(x) + gz c-(Q)(x)

(7.1)
r-1
+ g Y P @ @ @ >0,q>0)
and =0
(r+ DFP*D@) = (» + DFD @)
(7.2)

r-1 .
+pY - @LD @ @>0,q20),

s=0

respectively. Using (4.2) and equating coefficients of x”, we obtain the fol-
lowing identities.

() (»
@ + q)8, (p+q) - psn—q,r + qsn_)p’r
n-2r-1 (7.3)
(P) q)
+PQEEJ,S nej-2,p-s -1 (p >0, g >0)
and j=08=0
@+ 15 P = (» + 15D
Sk (P) o (D 7.4
+pzz(r—s)s SVLJ—er]_ (>0, g>0).
=0 s=0

In particular, since

(o)zﬂ—f'z
(r + 1)S (P)

it is evident that, for g = 0, (7.4) reduces to

e+ s = ("7 ip S E(J-S) 507 rnea > O

J=0 s=0

The special case, p = 1, was stated in the Introduction.
A second pair of identities is also implied by (6.1) and (6.2). Put

() _ (r +p)! r\fr-py___1 (r+p\fr-p
Tom = (r + 1)t(m + 1)p<?ﬂ>( m ) Tr o+ l(m + p)( m )' (7.5)

Then by (4.4) we have

9@ =3 rfBxm (p 2 0). (7.6)

m=Q
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Note that, by (4.4) and (4.5), (7.6) holds for all nonnegative p. Substituting
from (7.6) in (6.1) and (6.2) and evaluating coefficients of x™, we obtain the
following two identities.

(p+q p
@ + P = pr i)+ qr %) +qu ZT“” S

§=0 =0
- = (P (D o
_pqzz Ts—lmgl (» >0, g >0),
s=0 j=0
r-1 m
(r+ DT = (2 + 1)1’!,“7,”’ +p Y Y (- S)Ts(pJ)Tp(qs)-l m-g
s=0 j=0
i (7.8)
“PZ Z(P—S)T(p)f(qs)—lm J-1 > 0.

§=0 j=0

In particular, for g = 0, (7.8) reduces to

@+ 08 = (1) - Z( AR

8=0 g=0
8 (
- pz Z(J) Tr—ps)—l,m-j-l (» > 0).

We remark that (6.1) is implied by (6.2). To see this, multiply both sides
of (6.2) by g, interchange p and g, and then add corresponding sides of the two
equations. Similarly, it can be verified that (7.3) is implied by (7.4) and
(7.7) is implied by (7.8).
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SOME EXTREMAL PROBLEMS ON DIVISIBILITY PROPERTIES OF
SEQUENCES OF INTEGERS

PAUL ERDOS
University of California, Los Angeles CA 90024

Dedicated to the memony of my g§riend Vern Hoggatt

A sequence of integers A={a, < a, <-*- < a, < n} is said to have property
P,(n) if no a; divides the product of » other a's. Property P(n) means that no
a; divides the product of the other a's. A sequence has property @(n) if the
products a;a; are all distinct.

Many decades ago I proved the following theorems [2]:

Let A have property Py (i.e., no a; divides any other). Then

max K = [n ; l].

The proof is easy.
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Let 4 have property P, then [n(n) is the number of primes not exceeding 7]
(1) m(n) + clnzﬁ(log n)"? < max k < n(n) + ¢,n?*(log n)~2.

The ¢'s will denote positive absolute constants not necessarily the same at
each occurrence. We will write P, instead of P,(n) if there is no danger of
confusion.

Probably there is a ¢ for which

(2) max k = m(n) + (¢ + 0(1))n?*(log n) =2

but I could never prove (2).
Assume next that 4 has property ¢. Then

(3) m(n) + c3ny”(log 7)™ < max k < () + cuny”(log n) 23,
Here too I conjectured

(4) max k = 1(n) + (¢ + 0(1))n¥"(log n) 2.

I could never prove (4), which seems more difficult than (2).

In this note I consider slightly different problems. Denote by S, the set
of positive integers not exceeding n. Observe that S, can be decomposed into

1+ [izz Z] sets having property P,. To see this, let S consist of the inte-
log n

n n . .
— | <a<l |———|. — .
gers [21] a~—[2¢—1] The powers of 2 show that 1 + [log 2] is best possible
Denote by f,(n) the smallest integer for which S, can be decomposed as the
union of f,(n) sets having property P, and g(n) is the smallest integer for
which S, can be decomposed into g(n) sets having property &. We just observed

- log n

fl(n) 1+ [Egg—z]. We prove

Theorem 1:

I nl/z 12

(5) c m < fZ (VL) < 2.
13 1/2

< <
(6) ° Tog 7 gn) < 2n*'?,

The upper bound in (5) and (6) follows immediately from the fact that
mf(m+i)m+<,) if 1<i, <2, <m,

Now we prove the lower bound in (5). The proof will be similar to the proof
in [2]. Let S' be the integers of the form

7 pu, U < %HUQ, a2 < p o< 212
Clearly
n
1] > .
(&) 1501 > e 1o
Now let a; < a, < --- < g, be a subset of S,) which satisfies property P,.
We prove that then
1/2 1/2
n n 1/2
< = < .
(9) K 7 + c Tog 7 7

(8) and (9) clearly complete the proof of (5).
Thus we only have to prove (9). Put a;=p;u; where p, and u; satisfy (7).
Now make correspond to the set a; < :-- < a; a bipartite graph where the white
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vertices are the u's and whose black vertices are the primes p,. To a; = p;u;
corresponds the edge joining p, and u;. This graph clearly cannot contain a
path of length three. To see this, observe that if a, = p,u;, a, = u;p,, and
a, = p,U, is a path of length three then az{alag, which is impossible. A bi-
partite graph which contains no path of length three is a forest and hence it
is well known and easy to see that the number of its edges is less than the
number of its vertices. This proves (9) and completes the proof of (5).

By a more judicious choice of the black and white vertices the lower bound
of (5) can be improved considerably. A well known and fairly deep theorem of
mine states that the number of integers m < n of the forms u ° v, where both u
and v are not exceeding ni? ig greater than

n 0 =1 - 1 + log log 2
(1og n)a+€’ log 2

for n > ny(e), and that this choice of o is the best possible [3]. This imme-
diately gives, by our method,

7,Z]_/Z

Fa(@m) >

a+e’

(log n)

We do not pursue this further, since we cannot at present decide whether

£, = 0?)

is true. The following extremal problem, which I believe is new, is of inter-
est in this connection: Let 1 < a; < *++ < g, <mand 1 < by < ++- < b, < n be
two sequences of integers. Denote by 1 < u; < -++ < 1, < n the integers not
exceeding n of the form a;b;. Put

h(V[) = max m,

where the maximum is extended over all possible choices of the a's and b's.
Our proof immediately gives f,(n) > h(n). 1 can prove

SV
hn) < — for some B > O.
(log n)
It would be interesting if it would turn out that for some B < a,
1/2
h(n) > —2——.
(log n)B

The upper bound of (6) is obvious, thus to complete the proof of Theorem 1
we only have to prove the lower bound in (6). The proof will again be similar
to that of [2]. Let S]] be the integers of the form

(10) pu < n, u <

%—nlﬁ, n? < p < 2m?P,

Clearly (by the prime number theorem or a more elementary theorem)

en
log n’

(11) lsi] >

Now let a; < *++ < a; be a subset of S]] having property ¢ (i.e., all the
products a;a; are distinct). We prove

2/3

2/3
(12) k<n + ¢ Tos 7"

(11) and (12) clearly give the lower bound of (6); thus to complete the proof
of our Theorem we only have to prove (12). Consider a bipartite graph whose



19811 SOME EXTREMAL PROBLEMS ON DIVISIBILITY PROPERTIES OF
SEQUENCES OF INTEGERS 211

23 < p < 22 and whose black vertices are the

white vertices are the primes »n
integers
L 13
< = .
U 57

To each a =pu, we make correspond the edge joining p to u#. This graph cannot
contain a (C,, i.e., a circuit of size four. To see this, observe that if Py
p,» 4;, and u, are the vertices of this C, then p,u,, p,u,, p,u;, and p,u, are
all members of our sequence and

bathy © Py, = Pitt, ° Pyt
or the products g;a; are not all distinct, which is impossible.

Now let v; be the valency (or degree) of p, n** < p; < 2n**) . We now es-
timate k, the number of the edges of our graph, as follows: The p; 's withv; =1
contribute to k at most

2/3
n
log n°

s <¢

Now let p,, ..., p, be the primes whose valency v; is greater than 1. Observe

that .
B

r
Ui 2 L o3
< —
(13) 2 ( 2) = 2 = g"
=1
V.,
[%nlla] is the number of u's. If p. is joined to v; u's, form the <2L> pairs
of u's joined to p,. Now, if (13) would not hold, then by the box principle
there would be two p's joined to the same two u's, i.e., our graph would con-
tain a C,, which is impossible. Thus (13) is proved.
From (13) we immediately have
r 2/3

n 2/3
z . < .
(14) i=lv1, min(U.; - 1) =
(14) clearly implies (12) and hence the proof of our Theorem is complete.

I expect g(n) < 7#A3*€) put have not even been able to prove g(n) = onM?y.

Recall that f,.(n) dis the smallest integer for which S, can be decomposed
into f,(n) sets having property P,. We have

Theonem 2: TFor every € > O,

1 1
1-%-¢ 1-1
n T < fam) <epn 7

The proof of Theorem 2 is similar to that of Theorem 1 and will not be given
here. Perhaps

-1
fn(m) = O(n 1").
Finally, denote by F(n) the smallest integer for which S, can be decomposed
into F(n) sets {4;}, 1 < 2 < F(n), having property P.
Using certain results of de Bruijn [1], I can prove that for a certain ab-
solute constant ¢

(15) F(n) = n exp ((—c + 0(1)) (log 7 log log n)l/2>.

We do not give the proof of (15) here.

Now I discuss some related results and conjectures. Let a; < a, <---< a;
be the largest subset of 5, for which the sums a; +a; are all distinct. Turan
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and I proved that [4]

max K = (1 + O(I)nl/2
and we in fact conjectured
(16) max k = n*2 + 0(1).

(16) is probably deep, and I offer $500 for a proof or disproof.
I conjectured more than 15 years ago that if b, < --+ < b, is any sequence
of integers then there always is a subsequence

b, < e+ <b,,s>(1+ o(l))n*?,

iy ie
so that all the sums bih + b;;, are distinct. Komlds, Sulyok and Szemerédi [5]
proved a much more general theorem from which they deduced a slightly weaker
form of my conjecture, namely s > en*’? for some ¢ < 1. Denote by m(n) the lar-
gest integer so that for every set of n integers b; < +++ < b, one can find a
subsequence of m(n) terms so that the sum of any two terms of the subsequence
are distinct. Perhaps m(n) is assumed for § .

Recently I conjectured that if b; < b, < +++ < b, is any sequence of n in-
tegers, one can always select a subsequence b;, < «++ < Db; , s> (1 + 0(1))711/2
so that the product of any two b;'s is distinct. Straus observed that with
s > ¢n*? this follows from the Komlos, Sulyok and Szemerédi theorem by a method
which he often used. One can change the multiplicative problem to an additive
one by taking logarithms and then, by using Hamel bases, one can easily deduce
s > en'”? from the theorem of Komlds, Sulyok and Szemeréddi.

Let 1 < a; < +-+ < g < n be any sequence of k integers, not exceeding n.
Denote by F(k, n) the largest integer so that there always is a subsequence of
the a's having F(k, n) terms and property P,. It is easy to see that

k

(17) F(k, n) Zm

and the powers of 2 show that (17) in general is best possible. It is not dif-
ficult to see that if k > ¢n then F(k, n) > g(e)n and the best value of g(e)
would be easy to determine although I have not done so. It is further easy to
see that g(¢)/e » 0 if ¢ +~ 0. If k < n'"%, then (17) gives the correct order
of magnitude except for a constant factor ¢ , and in general the determination
of F(k, n) is not difficult.

Many further questions of this type could be asked. For example, denote by
Fz(k, n) the largest integer so that our sequence always has a subsequence of
Fz(k, n) terms having property P,. F,(k, n) seems to be more difficult to han-
dle than F(Kk, n). It is easy to see that

F,(k, n) > k(2n¥?)7%,

but perhaps this can be improved and quite possibly for every ¢ > 0
F,(cn, n) /nt? > w,
The following question seems of some interest to me: Let

1 <a; <+ <ay <nm.
What is the smallest value of k that forces the existence of three (or s) a's,
so that the product of every two is a multiple of the others? 1In particular,
is it true that if k> ocn there always are three a's so that the product of any
two is a multiple of the third? At the moment I cannot answer this question,
but perhaps I overlooked a trivial argument.

To end our paper, we state one more question: What is the smallest k = k,
for which Fz(k, n) > 3? In other words: Determine or estimate the smallest
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k =k, for which for every 1 < a; < +++ < g < n there are three a's, a;, a, ,
a;, so that the product of two is not a multiple of the third. I have no sat-
isfactory answer, but perhaps again I overlooked a trivial argument.

On the other hand, I can get a reasonably satisfactory answer to a slightly
modified question.

is a multiple of all the others. Then (exp z = e%)

Theorem 3: Let 1 < a; < +++ < aq, <n be such that the product of every two a's

(18) max K = exp((l + 0(1))log 2 % log n(log log n)—l).

We only outline the proof of Theorem 3. Let 2, 3, cees B, be the primes not

exceeding (1 - E)%-log n. Let the a's be the integers of the form

8
(19) uflp,
i=1"°
where u runs through the integers that are the product of [g/2] or fewer of the

p's. From the prime number theorem, we easily obtain that all the a's are not
exceeding n. To see this, observe that by the prime number theorem

Mo - exp((l +o(1)) [ - e)% log n)
i=1 °

s l+o(1)
u<<l'[ pi>2 < exp((l + o(1))~1°—§—”).
i=1

Further, by the prime number theorem,

and

s > (1 - f—:)z log n(log log n) ™%,
3

and the number of u's is not less than 2°7!, which proves the lower bound in
(18).

Now we outline the proof of the upper bound of (18). Let p;, ..., p, be
the prime factors of

k
Ilai.
=1

Since a;a; is a multiple of all the other a's, all but one of the a's, say atd),
are multiples of p,, 1 < j < s. Disregarding these ati's, we assume that all
the a's are multiples of all the p;'s. By the same argument we can assume that
for every p; there is an a; so that every a; divides p; with an exponent %, ;,
aj <2z, ; < 20;. From this and the prime number theorem we obtain by a simple
computation, the details of which I suppress, the upper bound in (18).
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HOMMAGE A ARCHIMEDE

LESTER H. LANGE
San Jose State University, San Jose CA 95192

Vernen Hoggatt and T werne griends and colleagues forn twenty yearns. He was
a pernson with special properties who studied mathematical obfects with special
properties. In addition to his Lncomparable knowledge of all things Fibonaccl
was his nemankable stonehouse of appreciation for geometrical matterns of all
kinds. I'm glad that he very much Liked my "1:2:3" nesult connected with Fig-
we 1, below; he gave me severnal of the neferences which appear in the brief,
annotated bibliography. 04 counse, he Liked the fact that his old §riend

22 -x-1=0

had motivated my pleasant Little discoverny; and he, tfoo, did not at all hesi-
tate to show his students some simple things that opened up interesting, broader
and Longer, avenues forn them to pursue in the Literature and in thein private
studies. Those o4 you who arne teacherns are invited to show these few paraghraphs
to yourn students. In some ways, the best way Lo remember a friend 4s to try to
emulate him. So, in that spinit, 1 offern this Leiswiely Litile essay.

In the central Quad at San Jose State University, across from the landmark
Tower, there now stands a seven foot bronze abstract sculpture, Hommage a Ar-
chimeéde, which provides an already pleasant place with an additional pleasant
intellectual sweep. This handsome bronze tribute to Archimedes, made possible
by contributions from friends of the School of Science of the University, in-
corporates several noteworthy scientific and artistic design ideas which are
dealt with below.

For nearly two decades I had entertained the hope of placing some abstract
sculpture on campus that would involve the Archimedes-related design in Figure
1. This hope was known to Kathleen Cohen, Chairman of our Art Department, who
introduced me to Robert J. Knight, a sculptor who was spending some time last
year on our campus.

—

Fig. 1

Knowing that I did not want some heroic-bearded-Russian-heavy-General-type
figure, the sculptor cooperatively modified one of his existing graceful ab-
stract models to accommodate that Archimedean design, the only element of the
whole piece which will make any immediate sense to a knowledgeable observer.
Concerning the sculpture as a whole, I can only offer this quotation from a
page in an Art Department brochure: "It is an exploration of the figurative
formula and displacement of space as it relates to the human form."
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There are many who think of Archimedes (287-212 B.C.) as the greatest intel-
lect of antiquity. He is always listed among the top four or five mathemati-
cians who have ever lived. In his time, and even much later, mathematicians
were natural philosophers, natural scientists, if you please. Only in times
much closer to our own do we find a greater scientific abstraction and conse-
quent apparent separation of many mathematicians from other parts of the quest
to understand nature. I do not know if Archimedes ever studied botany, say,
but the existence of his significant interest and work in dimportant areas of
science other than pure mathematics is well documented. He wrote numerous mas-
terpieces—on optics, hydrostatics, theoretical mechanics, astronomy, and math-
ematics, for example. It is true that, although he was surely a very good en-
gineer, he did not regard very highly his own dramatic mechanical contrivances.

As indicated by his wishes regarding what should appear on his gravestone,
Archimedes did most highly value a figure something like Figure 2, which refers
to some beautiful geometry connected with his fundamental work as a primary and

5

45

Fig. 2

impeccable forerunner of those who much later established modern integral cal-
culus. (The Roman statesman Cicero wrote about and restored the Archimedes
gravestone when it was rediscovered long after Archimedes had died.) That fig-
ure, a square with an inscribed circle, refers to this result of his: If the
figure is rotated in space about that central vertical axis, the resulting
sphere and cylinder have wvolumes which are as 2 is to 3; and their surface
areas are also as 2: 3. Archimedes, having discovered and appreciated much
beautiful geometry, would certainly have understood what Edna St. Vincent Mil-
lay was saying (years later): '"Euclid alone has looked on Beauty bare."

Democritus, who lived before Archimedes, knew the following result about
Figure 3: The volumes of the cone and cylinder which are generated when the
triangle and rectangle are rotated as indicated are as 1: 3.

Over the years, some calculus students have been told to consider Figure &
—which involves a square, not just any rectangle—and to use (modern) elemen-
tary calculus tools to find this beautiful result:

(o) Cone : Sphere : Cylinder = 1: 2: 3.
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<[>

Fig. 4

<[>

Fig. 3

Some years after my teacher, George Pdlya, had shown me that result, I read
about the researches in aesthetics conducted by Gustav Theodor Fechner (in Ger-
many), whose experimental results in 1876—Ilater confirmed in varying degrees
by others—indicated that 75.6 percent (!) of his popular observers of rectan-
gles found that rectangle to be most pleasant whose proportions are about 8: 5,
as in Figure 1. The "about 8 : 5" refers to what Renaissance writers referred
to as the "divine proportion," the '"golden mean" or "golden section'" of Greek
geometers, used by da Vinci and others, by Salvador Dali in our time, and still
making its appearance in some contemporary design. (The fagade of the ancient
Parthenon, if one includes the face of the roof, fits into such a rectangle.
Dali's "Last Supper" painting has exactly these proportions.)

Now 8 + 5 = 1,60, while the "golden mean'" is actually

(1 +/5) + 2 =1.6180339...,

a number which solves the equation x®~x-1 = 0 and is well known to Fibonacci
people. This equation arises when geometers divide a line segment in "extreme
and mean ratio"; i.e., so that its length is divided into parts of length x and
1 such that (x + 1)/x = x/1.

Figure 5 shows how easily we can construct a rectangle which possesses that

"most pleasant shape.'" We simply start with a square, ABCD, and locate M, the
midpoint of its base. With the length MC from M to an opposite corner ( as a
radius, we locate the point P on the extension of 4B shown. The sides of the

resulting big rectangle APQD have lengths which are as 1 + V5 is to 2.

Well, after having read about conclusions such as Fechner's, it once (quite
long ago now) occurred to me to draw what I have here shown as Figure 1, in-
volving that most pleasant rectangular shape, and to calculate the volumes of
revolution generated by spinning this figure about its vertical bisecting axis.
This can very quickly be done with the powerful elementary tools of calculus
which have been bequeathed to us. I was then privileged to encounter the fol-
lowing beautiful result about these volumes:

(B) Cone : Ellipsoid : Cylinder = 1:2: 3.

(If the cone holds one liter, then the ellipsoid holds two liters, and the cy-
lindrical can will hold precisely 3 liters.)
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I don't think Archimedes knew this theorem. I am sure he would have treas-—
ured it. And if he had not been killed by a Roman soldier while he was absorbed
in studying some circles in his home (in Syracuse, in southern Sicily, during
the second Punic war), he might well have observed it and recorded it at a later
time.

[Here are the calculations which yield the result (B). We refer to Figure
1, where we let the radius of revolution be », and the height of the cylinder
be 4. Then

(BASE area) x (height)
3

and, of course, the volume of the CYLINDER, mr®h, is exactly three times this
number.,
The volume of an ellipsoid with minor axes of length a, b, and ¢, is

(4/3)mabe.
Our ELLIPSOID from Figure 1 thus has volume equal to
(4/3)T(x) () (W/2) = (2/3)mr*h.

Putting all of this together, we have this relation among the three volumes of
revolution: :

CONE volume = = mr?h/3,

CONE : ELLIPSOID : CYLINDER = 1/3:2/3:3/3 =1:2: 3.

These calculations show that, actually, this beautiful result (B) holds for any
encompassing rectangular shape—not just one with divine proportions. Further-
more, it should be recorded here that this result, once we have guessed it, is
directly derivable from (a) by an application of the powerful (modern) theory
of "affine transformations.']

It is this result (B), then, which is built into the sculpture now in our
Quad, installed as a tribute back over the ages to Archimedes. (The rectangle
in our San Jose State sculpture is about 1.5 feet across, by the way, and the
number associated with its proportions is about 1.61, which is, we think, close
enough for anybody riding by on a horse!)

Finally, one of the speakers at the January 19, 1981 dedication ceremonies
was Professor Gerald Alexanderson (a friend of Dr. Hoggatt's and mine, and
Chairman of the Mathematics Department at the nearby University of Santa Clara),



218 HOMMAGE A ARCHIMEDE [Aug.

who spoke on behalf of Dr. Dorothy Bernstein, President of The Mathematical
Association of America. Here are a few excerpts from his remarks about 'this
powerful piece of sculpture honoring Archimedes."

"As one who has spent much time and money trying to locate and visit mathe-
matical shrines, often in the form of statuary and monuments to mathematicians,
I am particularly happy to be here today. Let us review what some of those
monuments are. There's the statue of Simon Stevin in Bruges. (For those whose
history of science is a little rusty: he gave us decimals.) Then there are
those great cenotaphs for the Bernoullis in the Peterskirche in Basel, with
wonderful ladies in marble doing geometry with golden compasses. Of course,
the best part of a wvisit to the Peterskirche is that one walks up the Euler-
strasse to get there. There's the Gauss-Weber monument in G&ttingen. Actual-
ly, I think they're shown doing physics, but never mind. Gauss was certainly
a mathematician. (They are discussing their invention of the telegraph.) And
a favorite of many is Roubiliac's statue of Newton outside the chapel at Trin-
ity College, Cambridge. But the best of all is the romantic, heroic statue of
Abel in the Royal Park in Oslo. He is shown standing erect, head thrown back,
with hair caught in the wind, and he's standing on two vanquished figures, ob-
viously beaten in battle. One is the elliptic function and the other is the
fifth-degree polynomial equation. Actually, I cannot tell which is which, be-
cause they're not terribly good likenesses.

"Now right here in San Jose we have a monument to Archimedes. I am grate-
ful. When the urge comes on to visit a mathematical monument, it will be much
more convenient (and cheaper) to make a pilgrimage to San Jose, than to Syra-
cuse."
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THE UBIQUITOUS RATIONAL SEQUENCE

DAVID A. KLARNER
Technological University Eindhoven, The Netherlands

DEDICATION

Vern Hoggatt has been the inspiration of many papers that have appeared in
this jowwnal. He shared his enthusiasm and cwilosity about mathematics with a
notable generosity. His students, griends, and pen pals were enwriched by the
problems he posed and often helped to solve. My own interest in sequences was
gheatly ingluenced by the cornrnespondence we starnted when 1 was a graduate stu-
dent at the University of Albernta. Some of my inst paperns wiitten at that
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Ltime wene solutions to neseanch problems he posed. To this day, rational se-
quences permeate my research wornk. 1t seems appropriote to present my own view
0f Zhe theory of finite differences which has evolved over the yearns. This
paper will be useful fon the beginnern, zthe sont of person Vern Hoggatt helped
50 much, and it should have some novelty gorn otherns as well. In it, I hope to
show how rational sequences Lt into some parts of mathematics—A~Linearn algebra
and elementarny caleulus in porticular. The exposition will be brief with plenty
04 gaps to be §illed in by the neader.

1. RATIONAL SEQUENCES

What is a rational sequence? A mapping f from & = {0, 1, 2, ...} into a
field § is rational if and only if there exist elements ¢;, ..., ¢, € § with
e, # 0, and there exists 7 € IV with kK < & such that

(1 FO) =c fn=1) + s 4o f(n -k  (ell, h<n).

Sometimes a rational sequence 1is said to satisfy a linear homogeneous differ-
ence equation with constant coefficients. This long phrase is usually short-
ened to '"difference equation" or '"linear recurrence." We refer to (1) as the
difference equation form, meaning it is one way of presenting a rational se-
quence. The term "rational' is short, and it describes a characteristic feature
of such sequences. Namely, the generating function of f is rational (the quo-
tient of two polynomials); in fact, the generating function is

£0) + {Ff(1) - clf(O)}z + e+ {fR) - - - ckf(h - k)}z”

2) Y fezn =
n=0

- _ eee = k
1 c, 3 c 3

We refer to (2) as the generating function form of the definition of f. For
example, the difference equation form of the Fibonacci sequence is

Fy=0,F =1,and F, =F,_  +F, , for all n > 2.

n-1 n-2

This is equivalent to the generating function form

(3) AL R A—
n=0

2
1l -23-23

Perhaps it should be emphasized that (2) and (3) have purely algebraic in-
terpretations. We are merely using the formal sum as a convenient notation for
a sequence. For example, (3) only means that the Cauchy product of the se-
quences (1,-1,-1,0,0, ...) and (¥,,F,,F,, ...) is equal to (0,1, 0,0, ...).
In terms of formal power series, this means

(4 1-z- 22)2:5;2” = z.
n=0

We are not concerned with the fact that the power series on the left-hand side
in (3) represents the rational function on the right-hand side for certain values
of z. Such a discussion would have to be given to justify putting z = %-in (3)
to conclude : : T
DN SRR S
2 4 2"
but this is not the sort of application we have in mind. The algebraic basis
can be found in [1], for example.

Rational sequences may be recognized as such in other ways than by the dif-
ference equation or rational generating function. Next most important after

(5)
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these 1is the exponential form. To get to the heart of the matter, suppose
P(2)/Q(2) is the generating function of the rational sequence f with P, @ poly-
nomials over F such that @(0) = 1, and P, @ have no common zeroes. (That is,
P/Q is a '"reduced fraction.'") Also, there is no loss in generality to assume
P has degree less than that of . (Otherwise, write P/ =R + S/Q where R, S
are polynomials with the degree of S less than that of §.) Also, it can be
supposed that the =zeroes of @ are elements of § (otherwise, just extend § by
these zeroes). Suppose the distinct zeroes of § are 1/6,, ..., 1/6, [615 «ces
0 # 0 because §(0) = 1], and let d; denote the multiplicity of 1/0; for Z = 1,

.» t. Then Q(z) = (1 - el,z)d1 eee (1 - Stz)df, and it can be shown that there
exist polynomials P;, ..., P, over § with the degree of P, less than d; for
27 =1, ..., t such that

P, (%) P, (2)

Dz) _ o
=) (1~ g (1 - 8,2)%
Rather than give an explicit formula for the coefficients of F; (3),we will just

show how to compute them. To do this, it is enough to consider the case 7 = 1.
Start with

(6)

t Pi ()
(7 Po(a) + (1 - 8,07 — - P() ,
LI PO L D DI
=2

and differentiate d; - 1 times with respect to z to obtain d, equations involv-

ing the various derivatives of the polynomial P, (z). Thenput z = 1/6; in each
of these equations to get
t
7 _ nd) _ —dg . _
@® iR @Y, D{P(Z)iz_:z(l 0,2) } . (G =0, ..oy dy - 1),
- 2=1/0,

where D denotes the differential with respect to 2. (All of this can be done
in an algebraic manner by introducing a formal operation on sequences; calculus
is not actually required.) Note that by putting z = 1/0; in the jth differen-
tial equation, all of the terms involving P,, ..., P, have a factor (1 - 612),
so these terms drop out of the computation. This gives rise to a linear system
of d, equations in the d; coefficients of P,. This system can be solved be-
cause the matrix of the system is upper triangular and has a nonzero diagonal.
Once we have P;, ..., P, in (6), we can develop each of the ¢ rational func-
tions on the right into a power series using the binomial theorem. In fact,
the full force of the binomial theorem is not needed. One only needs

1 —(n+d-1
(9) S B ( )z”,
(1 - = nz:ﬂ d-1

and this can be established by induction on d. Thus, if

P(z) =p, +pg+ -+ pd_lzaml,

then
P, (2)

el + PR p + di - 2 n
(10) =E‘{Po(n 250 ) +E£(n de - 1 > : "'}6;3

(1 -206.2 n=0

. . n+d-1
for 2 =1, ..., t. Since ( d-1

the coefficient of 2" in the right member of (10) has the form ﬂi(n)ef, where

is a polynomial in #» with degree d - 1,
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m;(n) is a polynomial in #n whose degree is d;- 1. Summing over %, we can con-
clude that

(11) fn)y =m, (6] + -+ + 1, ()0,  (ne ),

where 1/6;, ..., 1/6; are the distinct zeroes of §(2) with multiplicities d,,
..., d¢, respectively, and m;, ..., Ty are polynomials over F where 7T; has de-
gree less than d; for ¢ = 1, ..., t. We call (11) the exponential form for the
rational sequence f. We derived the exponential form from the rational form,
but it is important to note that given any one of the forms (1), (2), or (11),
the other two can be derived from it.

Continuing the example dealing with the Fibonacci sequence, note that 1 -
z - 22 has zeroes 1/0, 1/B where a = (1 + v5)/2, B = (L - /5)/2. Hence

1-2z-23%=(@1-0a - B2),
and using the method outlined above, we find

- 3 az Bz >~ o - B”
(12) n;)Fnz” - = - -3 2n.

1 -3z - 32 1 - az l—Bz_n=ooc—B

Thus, the Fibonacci sequence has the exponential form
_ O(,n - Bn

(13) F, =58 (nem,

where o = (1 +/5)/2, B = (1 - /5)/2.

There is still another useful presentation of a rational sequence called
the matrix form. Let

1 0 0 0 f()

0 1 0 0

0 0 1 ol , _|fe+D e,
Cx-1  Cx-2 k-3 C1 fn+k-1)

where M is a k x kK matrix having [c¢z, ..., ¢;] as its bottom row and the
(k = 1) x(k = 1) identity matrix as the minor of the (k, l)-entry. It is easy
to verify that Mv, = v,,; for all nell, and hence that M™v = v, for all nel.
Since M" can be computed in about log » matrix multiplications, it follows that
f() can be computed in 0(logn) basic steps instead of the 0(n) steps one might
guess. Note that the eigenvalues of M are 6,, ..., 8; with multiplicities dy,
..., di, respectively, because the characteristic polynomial of M is

det(M - zI) = (-2)%Q(1/z) = (-D)*(z* - clzk'l - er = Cy).

(This can be shown by a simple induction proof on k.)
In the case of the Fibonacci sequence, we have

0 1 7,
(15) M = , Uy = (nem.

11 Fois

Hence

o 17*[o]l~F,
(16) :l (n em.
1 1 1 Fas

The difference equation

-k
(17) Ly = Cqa,_y + oo+ ckx"
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with ¢y, «.., ¢y € §, ¢, # 0, has order k. The order of a rational sequence is
the minimum order of all difference equations it satisfies. A rational sequence
f of order k satisfies a unique difference equation of order k. [The unique-

ness depends on the standard form given in (17); after all, nothing is changed
by multiplying through (17) with a nonzero element of %.] In general, a rational
sequence of order k satisfies as many difference equations of order kX + d as
there are polynomials £ over F with degree d and R(0) = 1. To see that the
difference equation of lowest order satisfied by f is unique, suppose for the
moment there are two. Say f satisfies (1) and

(18) ) =bfn - 1) + -+« + b f(n - k) (h <n).

Taking the difference of equations (1) and (18) leads to a new difference equa-
tion with order less than k satisfied by f if b # ¢ for some 7 with 1 < 7 < k.
So k cannot be the order of f as was assumed. If f has order kX and (17) is the
unique difference equation of order k satisfied by f (this is called the mini-
mal equation), then the generating function of f has the form (2). Let P and §
denote the numerator and denominator, respectively, in the right member of (2),
and note that €(0) = 1, and P and € have no common zeroes. (Otherwise, g would
satisfy a difference equation of order X - 1.) We call the rational function
P/Q the canonical generating function of f, and note that it is unique. For
each polynomial R with degree d over § with R(0) =1, we have P/Q = PR/QR, so f
satisfies a difference equation of order kX + d with coefficients equal to the
coefficients of @QR. All difference equations of order k+ d satisfied by f are
obtained in this way, because each difference equation of order k + d satisfied
by f gives rise to polynomials U, V over § with V(0) = 1 such that P/Q = U/V.
But this means PR = U and QR = V with R a polynomial over § with degree d and
R(0) = 1. We conclude this discussion of the order of a sequence by observing
that the order of f can be deduced from its exponential form by adding ¢ to the
sum of the degrees of Mys eoes My

2. SITUATIONS IN WHICH RATIONAL SEQUENCES ARISE

Sometimes rational sequences are formed in terms of other rational sequences.
For example, if f, g are rational sequences over the field § and a, b e §, then
we can form a new sequence kA = af + bg defined by

(19) h(n) = af(n) + bgn) (nem.

Let F, G, H denote the generating functions of ¥, G, H, respectively, then H =
aF + bG. This means that H is a rational function because F and G are, so h is
a rational sequence. It is easy to check that the set of all rational sequences
over § forms a subspace of the vector space of all sequences over F. Further-
more, the sequences which satisfy equation (17) form a k-dimensional subspace.
If 8;, ..., 0 denote the zeroes of 2k - c§'1 —~ ++s = ¢y with multiplicities

dl, ..., dy, respectively, it is easy to check that each of the sequences

(n98:n e W) for all j e W and ¢ = 1, ..., t

satisfies (17). Using the exponential form for any sequence f which satisfies
(17), it follows that the kX sequences

(20) (n70l:n e W) 0<g<d,i=1, ..., t

form a basis for the vector space of all sequences which satisfy (17). That
this actually is a basis depends heavily on the proof that every solution of
(17) has the exponential form given in (11).

There are ways other than forming linear combinations to build new rational
sequences from those on hand. For example, consider the Cauchy product f x g
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or the termwise product f + g defined, respectively,

(21) Fxgm =Y, f)gln - i)  (nem,
i=0
(22) f =9 = f(n)gn) (nem.

Let n = f x g, and let F, G, H denote the generating functions of f, g, h, re-
spectively. Then H = FG, and H is a rational function if the same is true of
F and G. Hence, i is a rational sequence if f and g are. To see that f « g is
rational whenever f and g are, use the exponential form of f and g. It is fair-
ly easy to check that the product of two exponential forms is again an exponen-—

tial form, so this approach gives a proof. The generating function of f * g
can be given in terms of 7 and ¢ by means of a contour integral as was shown in
[2]. The fact that the termwise product of two rational sequences is again

rational seems to be due to Vaidyanathaswamy [10].
The termwise product can be used to produce all sorts of unexpected results.
For example, since the Fibonacci sequence is rational, it follows that

(Fnj: n e )

is rational for all j € P. The minimal equation for the jth powers of the Fi-
bonacci sequence were given in [9]. Also, the sequence p defined by p(n) = n
(n € V) satisfies

p(n) =2p(n - 1) - pn - 2), 2 <n,

so pj = (nj: n € N) is rational for all j§ € P. Hence, the linear combination
q=a, +ap+---+ aﬁpj is also rational, and so is g < f for any rational f.
For example, again using the Fibonacci sequence,

(nZE; -n+2:n ¢l

is rational. A little subtler use of the termwise product involves periodic
sequences. Suppose 8 is a sequence such that s(n) = s(n - m) for all n > h for
some h, m € Ny that is, s is eventually periodic and has period m. By defini-
tion, s satisfies a difference equation, so s is rational. In particular, let
a, me N with 0 < m, and define s(n) = 1 whenever a < n, n = a (mod m), and
s(n) = 0 otherwise. Since s is eventually periodic, s < f is rational whenever
f is; furthermore, the generating function of s + f has the form z%P(27)/Q(z™)
with P, ¢ polynomials over § and Q(0) = 1. Hence, the sequence g defined by
gn) = f(mm + a) for all n € N has P(2)/Q(z) as its generating function, so g

is rational. For example, the subsequence (F,, F,, Fi,, ...) = (Fy, ., :n €M)
of the Fibonacci sequence is rational (the difference equation is
x, = 1llx, , +a,_,, 2<mn).

Interwoven rational sequences are alsc rational. More precisely, suppose f,
are rational sequences, and define f by

cees Fuon
(23) fn) = f,(n) [where n = » (mod m), n € IV].

Let F, Fy, ..., F,_, denote the generating functions of fs fo’ cees fmoys TE-
spectively, then

(24) F(z) = Fo(2™) + aF, (3™ + --+ + 8" 'F,_, (3™).

Since Fy, ..., Fn_, are rational functions, so is Fj therefore, f is a rational

sequence.

Sometimes a finite set of sequences is defined by means of some initial
conditions and a finite set of difference equations. It turns out that each of
the sequences is rational in this case. This can be formulated more precisely
as follows: Let f,, ..., f, be sequences, and suppose for each 7, 1 < < <m,
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there exists h; € N, together with finite sets S,
C;;, corresponding to each j € S such that

(25) £, =3 Y e fin-9 el hy<n)

k=1 JesS;,

.y S, cmw and constants

12 im

for 2 =1, ..., m. Also, suppose f;(n) is given for all n with n < h, for 7 =
1, ..., m, and suppose that this boundary condition together with the system
(25) gives an unambiguous algorithm to compute the sequences f;, ..., f,. Then
each of fl, «ees fiy 1s rational. To see this, convert the system (25) to a
system of linear equations in the generating functions Fis «vos Fy. The coef-
ficients in this system are polynomials in z over the field %. This system can
be solved using Cramer's Rule to deduce that each of Fl, ..., F is a rational
function. In fact, F; has the form Pi/Q where ¢ is the determinant of the sys-
tem, and P; is a polynomial computed in a similar fashion.

A particular case of the foregoing situation involves matrices. Suppose
M = [cy;] is an m x m matrix over the field %, and let v,=[f,(0), ..., fm(O)]T
(where T denotes the transpose operator). Define v, for all n € IV by Un+1==Mvn'
This is equivalent to the system of difference equations

(26) f;(n + 1) = cilfl(n) + oot £ () (n e m)
for 2 =1, ..., m. In terms of generating functions, this becomes
(27) MF = v,

where F = [Fy, ..., F;] . The determinant of this system is the characteristic
polynomial of M; that is, det(¥ - zI). This gives information about the denom-

inator polynomials in the generating functions F,, ..., F,. This observation
can be taken a little further to deduce the Cayley-Hamilton Theorem as was done
in [3].

One might get the impression that the rational sequence f; (defined in the
previous paragraph) has order m, and that the minimal equation is given by the
characteristic polynomial of M. But this is not always the case, and then Kry-
lov's method may be useful. (See [11].) The idea here is to look for a linear
dependency among the vectors MOUD, Mlvo,..., Mkv0 for k = 1,2, ... . Once one
has ¢, ..., ¢; € § for some minimal k such that

(28) e My + -ee + oMy = M-y,
multiply through (28) with M” to deduce that fl satisfies

(29) Coly, F Oy, T o T T, T Ty (nem.

3. SOME APPLICATIONS

This section gives brief descriptions of some recent results obtained by
the author which involve rational functions. We start with domino tilings of
rectangles with fixed width [4]. The idea here is based on an old, well-known
observation about the number of paths of fixed length in a directed graph. Let
v={1, ..., m}, let EC V x V, and let M = [e;;] be an m x m matrix defined by
e;; =1 if (¢, j) € E and e;; = 0 otherwise. Elements of V are vertices, ele-
ments of E are directed edges, and M is the matrix of the directed graph (V, E).
A sequence (v, ..., V) is a path of length k in (V, E) just when (v;_,, v;) €
E for ¢ =1, ..., K. It is well known that the number of paths (v,, ..., V)
of length k in (V, E) with v, = 7 and v, = J is the (£, j)-entry in M%.  Sup-
pose we are only interested in paths which begin and end with vertex 1. Then
let ¢ (k) denote the first column of M* for all k € IV, and observe that Me (¥) =
¢®*D for all k € . We want the top element c ¥’ of ¢ ) for all k € IV, so
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the method outlined in the last paragraphs of Section 2 can be applied. 1In
particular, it follows that (cI§ :k € V) is rational, and Krylov's method can
be used to find a difference equation. Now let us see how this applies to
domino tilings. Let ¢(m,n) denote the number of tilings of an m X »n rectangle
with dominoces for all m, n € V. We fix the width m and concentrate on the com-
putation of the sequence (t(m, n) :n € V). To do this, we create a graph whose
vertices are cross~sections of tilings, and two cross-sections form a directed
edge in the graph just when one can immediately follow the other in some tiling.
A cross-section is a grid line parallel to the end of width m which cuts across
some dominoes and passes others. Cross-—sections can be encoded as binary se-
quences: 1 denotes a cut domino, and O denotes a crack between. For example,
the 5 x 6 tiling shown in Figure 1 is encoded by the columns of the 0-1 matrix
shown to its right. If we make the all-zero cross~section vertex 1, the m x n
domino tilings correspond one-to-one with paths of length »n beginning and end-
ing at vertex 1. More details can be found in [4].

t ; ST
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| R
N

i
1 | |

-
t :
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s i i

Fig. 1. A 5 x 6 domino tiling with its binary cross-section encoding

Now we give an example illustrating how a rational sequence can arise in a
system of difference equations. Let 4 denote a finite set called an alphabet,
and let A* denote the set of all finite sequences of elements of 4. Such se-
quences are called words, and in particular A denotes the empty word. Let F
denote a finite subset of A* and let A*/F denote the set of all elements of 4%
which do not have any elements of F as subwords. Elements of A% belonging to
A*[F are called good and others are called bad. Let w denote a weight function
defined on A% such that w(w) = w@w@) for all u, v € A*. Suppose further
that for each u € A*/F the sum

Gy = Z w(uv)

(uv € A*/F)
is also a weight. The problem is to compute

=6, = 2, ww.
(ued¥F)
It was shown in [5] that G is a rational function in the weights of elements of
A. This follows from two equations:

(30) ¢ =wl) + Y. Ga,
and aed
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(31) ¢, = w(u){G - }:Gv},

where the sum in the right member of (31) is over all basic words uv with v €
A*[F. A word is basic if it is bad but no proper initial subword is bad. Note
that if uw is good, and uv is basic, then v is not longer than n where n + 1 is
the length of the longest word in F. (A terminal subword of uv is an element
of F and must overlap u.) Together (30) and (31) give rise to a linear system
involving G, for all good words u not longer than n. A procedure may be fol-
lowed to keep this system small. First, write down (30). Then in subsequent
stages write down expressions for those (G, which have appeared on the right
side of earlier expressions obtained from (31). Since the length of u is bounded
by n, this procedure terminates leaving us with a system linear in certain G,,
u e A¥/F. We may conclude from the general argument given in Section 2 that G,
is rational in the weights w(a), a € 4; in particular, this is true of G.

The result just described was used in [5] to treat a special case of the
following unsolved problem. Let a;(x) = my;x + a; be an affine function defined
on the integers with m;, a; € W, m; > 1, for © = 1, ..., k. Let <{4)> denote the
semigroup generated by 4 = {a;, ..., 03} under composition of functions. Note
that an element o e {4) has the form a(x) = mx + a with m a product of the num-
bers Mys eees M. Let piyoees 123 denotg the dis_tinct prime divisors c_)f Mys «oes
my, and for each a € <4> with a(x) = Pt e pyre + a, let w(@) =z ... x2p.
It is easy to check that w(aB) = w(@w(B) for all a, B & <A> where oB(x) =

a(R(x)). 1Is it true that
2w

ue <A
is a rational function? This problem has been solved when m; = m® for some
e;» meZ, =1, ..., k; the case when e, = ... = ¢, =1 is treated in [6],

and the systems of difference equations play an important role.

We conclude with an example which illustrates a frequently used formula
from combinatorics. Let A denote a finite alphabet, let A* denote the set of
words over A, and let w denote a weight function on 4* which satisfies w(uv) =
w)w@) for all u, v € A*. Then

1
(32) wu) = ——————.
12;* 1 - Y wa

aecl

Thus, rational functions arise. For example, this simple formula together
with the inclusion-exclusion formula were used in [7] and [8] to show that the
sequence of forms assumed by growing crystals is rational. more precisely, let
H, D € Z¥ be finite sets, and consider the sequence of crystals

H, H+ D, H+ D + D,

formed by starting with the initial hub H, and adding increments equal to D in
subsequent stages. Such a sequence is indicated in Figure 2 with k = 2, H =

{0, 00}, p = {(0, 0), (1, 0), (0O, 1)}.

9 9 9

Fig. 2. A growing crystal
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Give an element 7 = (Zy, ..., 23) € z* weight w(Z) = xf‘ . xf* and define
the weight w(S) of S C Z¥ to be the sum of the weights of the elements of S.
The main result is that

(33) wH) +wH + D)z +wH +D + D)z% + -

is a rational function in x,, ..., ; and 3. A consequence of this is that the

sequence of volumes (|H|, ‘H + D‘, |H + D + D|,...) forms a rational sequence.
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ON THE PROBABILITY THAT n AND Q(n) ARE RELATIVELY PRIME

KR 1SHNASWAM| ALLADI
The University of Michigan, Ann Arbor MI 48109

To the memony of V. E. Hoggatt Jn.—my Zeacher and friend

It is a well-known result due to Chebychev that if »n and m are randomly
chosen positive integers, then (n, m) = 1 with probability 6/m*. It is the
purpose of this note to show that if 2(n) is the number of prime factors of n
counted with multiplicity, then the probability that (n, Q2(n)) =1 is also 6/m>.
Thus, as far as common factors are concerned, {i(n) behaves randomly with respect
to n.

Results of this type for fairly general additive functions have been proved
by Hall [2],and in [1] and [3] he looks closely at the situation regarding the
special additive function g(n), the sum of the distinct prime factors of 7.
Hall's results do not apply to either Q(n) or w(n), the number of distinct prime
factors of 7, and so our result is of interest. Our proof, which is of an
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analytic nature, proceeds along classical lines, and so must surely be known to
specialists in the field. 1In any case, it never seems to have been stated in
the literature and so we felt it was worthwhile to prove it,particularly since
it is interesting when viewed in the context of several celebrated results on
the distribution of Q(n) (see [5]) such as those of Hardy-Ramanujan and Erdos-
Kac. By a slight modification of our proof, the same result can be established
for w(n); we have concentrated on 2(n) for the sake of simplicity. Throughout,
implicit constants are absolute unless otherwise indicated and p always denotes
a prime number.

Theornem: Let

Q) = 3, 1

Then l<n<zx, (n, Q(n)) =1
Qlx) = —*—+ 0(x(logloglog =)~ s, (loglogloglog x) ™ 1).

To prove the theorem, we need a few auxiliary results.
Lemma 1: Let x > 20, and k be a positive integer such that
k < {loglog x/logloglog x=}*/°.

Then for all integers J,

1 =2 4 0(x expi-(loglog x)¥3}).

X

1<n<lzx
Q(n)=J (mod k)
Proof: Let z be a complex number with |z|=1. Then it follows from a re-
sult due to Selberg [6] that

S, = 3 s o ARE 1 ), M
l1<n<a (log x)~* | (log )27

where A(2) is analytic for Izl < 2. Note that

Z Z 82171,({2(71) JI/k

1<n< <n .’E

-1

Y et s (@), (2)

=1

S (x)

?t‘

XY=

where
p = exp{2mi/k}.

From (1) we deduce that the largest term on the right of (2) arises out of the
root of unity with largest real part. Since 5, (x) = [x], the largest integer
< x, we get from (2)

1 = % + 0(x(Llog x) 3R -1y, 3)
1<nlx
Q)= g “(mod k)
Lemma 1 follows from (3) with a little computation.

Lemma 2: Let x > 20 and k be a positive integer satisfying
% 3
§_§-loglog x.

Then for all integers j, we have
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1
Q(n)

Proog: We may assume that j > 1. We rewrite the sum in the lemma as

Y1 = Y S o1+ S, (4)

l<n<zx VZJ (mod k) l<n<x 1<n<z
Qn)=J (mod k) 0<v< (3/2)loglog & Q(n)=V Q2(n) > (3/2)loglog x
where 0 < 0 < 1.
To estimate the first term on the right of (4) we use the following result
due to Sathe and Selberg (see [6]):

V-1
1 =20 <-§'(logl‘o%\)xz l)‘) for 1 < v _<_% loglog x.
l<n<z, Qn)=v og x ;
So, the term is
= (loglog x)"
<< - B
log x rrZ:O m! : (5)
m=zg (mod k)
Set y = loglog x. So the sum in (5) is
x 1 e x 1
& = —— << e = uy
log x &k E wd -1 log x Kk Ze > (6)

wk=1 wk=1

where w ranges over all Xth roots of unity and w = u + Zv.
First, we assume that

{loglog x/logloglog =}*® < k _<_% loglog x.

k-1
Z ey = Z exp{(cos 2—2&)9} = E + 2 =5 +5,. (7)
wk= 1 L=0 L< k2 or KPR <p < k- k¥

K-k <a<k

Clearly
5, < 2k*Pe¥ << kB« log x. (8)

To estimate 5,, write

exp {(cos —2—}1—&)]/} = eV exp{((cos —2—2&) - l)y} (9)

and observe that

218 1
—‘{(COS —k—) - l} >> Zm. (10)
From (7), (9), and (10) we deduce that
5, << K** 1log x. (11)

If we combine (6), (7), (8), and (11), we see that the first term on the right
of (4) is << x/kY® if

{loglog x/logloglog z}*® < k i%— loglog x. (12)

The last term in (4) is easily bounded by appealing to the following theo-
rem of Turan (see [4, pp. 356-358]):
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2: {Qn) —-loglog x2}? << x loglog x. (13)
1<n<x

That is, if N(x) is the number of n < x for which
2n) > 5 loglog =,

then (13) shows that

N(xz) + (loglog x)? << x loglog x,
whence
N(x) << x/loglog x << z/k*®. (14)

Thus, we have established Lemma 2, for k satisfying (12). On the other hand,
if k < {loglog x/logloglog xz}*?, then Lemma 2 follows from Lemma 1.

Proo§ of the Theorem: For n > 0, define

k(n, n) = n p and Nn = I'l p.
p<n, pln, 2m) p<n
Then
Q) = 2, 1 +60’ o1 (15)
l<n<z 1<n<ax
k(n,ny =1 ap>n, p|n, 2n))

=S8, + 5,, respectively,

where -1 < 6" < 0. But

=Y Yud = );u(d) 1
1<n<z d|k(n,n) d|Ny d|tni,n{§(:)) (16)
= 2 u@ Yoo
d|, 1<m<z/d

Q(m) = <(d) (mod d)
In (15) we will choose n such that the integers d in (16) satisfy

dx< {(loglog %) /logloglog(%) }1/3 .

The Prime Number Theorem (see [4, p. 9]) shows that

n l-logloglog x (17)

B

is a permissible choice.
With this choice of n in (16), Lemma 1 shows that

5. = T w@{ %+ 0 (T1oereg =)
d|m, (18)
d 1
- %% n ) (logf;g x 3%'3>'
First n
u(d) TGN 1\ _6 1
%:Nn dg':n <d§d2> 2 * O(n) ) (19)

Also
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E%: n(1+l)<< log n. (20)
d|n, psn p
From (17), (18), (19), and (20), we see that
6x X
S. ==+ 0(=). 2
3 2 (n) (21)

To estimate Sq, we note that

15, ] < 21 + 8 2 1 (22)

1<n<x l<n<x
Ip>n, p<(3/2)loglog = Ip > (3/2)loglog x
pl(n, Q@) pl(n, Q@)

=S5 + 5, respectively,

where 0 < 6" < 1. Lemma 2 shows that

5s < 3 o1 o< 3 S (23)
n<p< (3/2)loglog x m< x/p p>n p
Q(m) = -1 (mod p)
From the Prime Number Theorem and (23), we deduce that
5, << —llsx— (24)
n~" log n
With regard to S;, note that
x
S, < 1 << (25)
6 1 Z(_,c loglog x

<n
Q(n) > (3/2)loglog x

by the use of (14).
Finally, by combining (15), (21), (22), (24), and (25), we arrive at

) 6 x
Qx) = _T—T_z_ + 0 (m). (26)

The theorem follows from (26) and (17).

Remasks: With a little more care, our theorem can be improved to
Qx) = é§-+ 0. (x(logloglog x) Y2 *%),
m

where € > 0 is arbitrarily small.
If n > 0 is a randomly chosen square-free integer, and m a randomly chosen
positive integer, then (n, m) = 1 with probability

¢ = n( -—;l—>
r p°+p

By suitably modifying the proof of our theorem, we can show that if »n is square
free, then (n, Q(n)) = 1 with probability ¢. Thus, Q(n) behaves randomly with
respect to 7, even in the square-free case.
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