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HAIL TO THEE, BLITHE SPIRIT! 

HOWARD EVES 
University of Maine 

It was in the mid-1940s that I left the Department of Applied Mathematics 
at Syracuse University in New York State to chair a small Department of Mathe-
matics at the College of Puget Sound1 in Tacoma, Washington, Among my first 
teaching assignments at the new location was a beginning class in college alge-
bra and trigonometry. At the first meeting of this class I noticed, among the 
twenty-some assembled students, a bright-looking and somewhat roundish fellow 
who paid rapt attention to the introductory lecture. 

As time passed I learned that the young fellow was named Verner Hoggatt, 
fresh from a hitch in the army and possessed of an unusual aptitude and appe-
tite for mathematics. Right from the start there was little doubt in my mind 
that in Vern I had found the mathematics instructor's dream—a potential future 
mathematician. He so enjoyed discussing things mathematical that we soon came 
to devote late afternoons, and occasional evenings, to rambling around parts of 
Tacoma, whilst talking on mathematical matters. On these rambles I brought up 
things that I thought would particularly capture Vern's imagination and that 
were reasonably within his purview of mathematics at the time. 

Since Vern seemed to possess a particular predilection and intuitive feel-
ing for numbers and their beautiful properties, I started with the subject of 
Pythagorean triples, a topic that he found fascinating. I recall an evening, 
shortly after this initial discussion, when I thought I would test Vernfs abil-
ity to apply newly acquired knowledge. I had been reading through Volume I of 
Jakob Bernoulli1s Opera of 1744, and had come upon the alluring little problem: 
"Titius gave his friend, Sempronius, a triangular field of which the sides, in 
perticas, were 50, 50, and 80, in exchange for a field of which the sides were 
50, 50, and 60. I call this a fair exchange." I proposed to Vern that, in view 
of the origin of this problem, we call two noncongruent isosceles triangles a 
pair of Bernoullian triangles if the two triangles have integral sides, common 
legs, and common areas. I invited Vern to determine how we might obtain pairs 
of Bernoullian triangles. He immediately saw how such a pair can be obtained 
from any given Pythagorean triangle, by first putting together two copies of 
the Pythagorean triangle with their shorter legs coinciding and then with their 
longer legs coinciding. He pointed out that from his construction, the bases 
of such a Bernoullian pair are even, whence the common area is an integer, so 
that these Bernoullian triangles are Heronian. 

On another ramble I mentioned the problem of cutting off in a corner of a 
room the largest possible area by a two-part folding screen. I had scarcely 
finished stating the problem when Vern came to a halt, his right arm at the 
same time coming up to a horizontal position, with an extended forefinger. 
"There's the answer," he said. I followed his pointing finger, and there, at 
the end of the block along which we were walking, was an octagonal stop sign. 

There was a popular game at the time that was, for amusement, engaging many 
mathematicians across the country. It had originated in a problem in The Amer-
ican Mathematical Monthly. The game was to express each of the numbers from 1 
through 100 in terms of precisely four 9s, along with accepted mathematical 
symbols of operation. For example 

1 = 9/9 + 9 - 9 = 99/99 = (9/9)9/9
5 

Now the University of Puget Sound* 
193 
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2 = 9/9 + 9/9 = .9 + .9 + 9 - 9, 

3 = \//9/9 + 9 - 9 = (/9/9/9)/9. 

The next day Vern showed me his successful list. In this list were the expres-
sions 

67 = (.9 + . 9 ) ^ ! + /9 = (/9 + . 9 ) ^ + /9, 

68= /9i(/9!/9"! - /9i), 

70 = (9 - .9)9 - /9i = (.9 + .9) / § ! + /9! , 

where the inverted exclamation point, I, indicates subfactorial.2 For all the 
other numbers from 1 through 100, Vern had been able to avoid both exponents 
and subfactorials3 and so he now tried to do the same with 67, 68, and 70, this 
time coming up with 

67 = /9!/(9 x 9) + 9S 

68 = (/9!)!/9 - /9! - /9! , 

70 = (9 + .9)(/9! + .9). 

It would take too much space to pursue further the many many things we dis-
cussed in our Tacoma rambles, but, before passing on to later events, I should 
point out Vernfs delightful wit and sense of humor. 1*11 give only one example. 
The time arrived in class when I was to introduce the concept of mathematical 
induction. Among some preliminary examples, I gave the following. "Suppose 
there is a shelf of 100 books and we are told that if one of the books is red 
then the book just to its right is also red. We are allowed to peek through a 
a vertical slit, and discover that the sixth book from the left is red. What 
can we conclude?" Vern!s hand shot up, and upon acknowledging him, he asked, 
"Are they all good books?" Not realizing the trap I was walking into, I agreed 
that we could regard all the books as good ones. "Then," replied Vern, "all 
the books are red." "Why?" I asked, somewhat startled. "Because all good 
books are read," he replied, with a twinkle in his eye. 

It turned out that I stayed only the one academic year at the College of 
Puget Sound, for I received an attractive offer from Professor Milne of Oregon 
State College3 to join his mathematics staff there. The hardest thing about 
the move was my leave-taking of Vern. We had a last ramble, and I left for 
Oregon. 

I hadn!t been at Oregon State very long when, to my great joy and pleasure, 
at the start of a school year I found Vern sitting in a couple of my classes. 
He had decided to follow me to Oregon. We soon inaugurated what became known 
as our "oscillatory rambles." Frequently, after our suppers, one of us would 
call at the home of the other (we lived across the town of Corvallis from one 
another), and we would set out for the home of the caller. Of course, by the 
time we reached that home, we were in the middle of an interesting mathematical 
discussion, and so returned to the other?s home, only to find that a new topic 
had taken over which needed further time to conclude. In this way., until the 
close of a discussion happened to coincide with the reaching of one of our 
homes, or simply because of the lateness of the hour, we spent the evening in 
oscillation. 

Our discussions now were more advanced than during our Tacoma rambles. I 
recall that one of our earliest discussions concerned what we called well-defined 

2nl = n![l - 1/1! + 1/2! - 1/3! + ••• + (-l)Mn!]. 
3Now Oregon State University. 



1981] HAIL TO THEE? BLITHE SPIRITS 195 

Euclidean constructions. Suppose one considers a point of intersection of two 
loci as ill--defined if the two loci intersect at the point in an angle less 
than some given small angle 6S that a straight line is ill-defined if the dis-
tance between the two points that determine it is less than some given small 
distance d9 and that a circle is ill-defined if its radius is less than d; 
otherwise, the construction will be said to be well-defined. We proved that 
any Euclidean construction can be accomplished by a well-defined one. This 
later constituted our first jointly published paper (in The Mathematics Teach-
er). Another paper (published in The American Mathematical Monthly) that arose 
in our rambles, and an expansion of which became Vernfs masterfs thesis, con-
cerned the derivation of hyperbolic trigonometry from the Poincare model, We 
researched on many topics, such as Schick1s theorem, nonrigid polyhedra, new 
matrix products, vector operations as matrices9 a quantitative aspect of linear 
independence of vectors, trihedral curves, Rouquet curves, and a large number 
of other topics in the field of differential geometry. 

We did not forego our former interest in recreational mathematics. The 
number game of the Tacoma days had now evolved into what seemed a much more 
difficult one, namely, to express the numbers from 1 through 100 by arithmetic 
expressions that involve each of the ten digits 0, 1, . .., 9 once and only once. 
This game was completely and brilliantly solved when Vern discovered that, for 
any nonnegative integer n, 

lo§(0 + l + 2 + 3 + 4) /5r0§//... /C-6+7+8)9} = U> 
where there are n square roots in the second logarithmic base. Notice that the 
ten digits appear in their natural order, and that, by prefixing a minus sign 
if desired, Vern had shown that any integer, positive, zero, or negatives can 
be represented in the required fashion.4 

A little event that proved very important in Vernfs life took place during 
our Oregon association. When I was first invited to address the undergraduate 
mathematics club at Oregon State, I chanced to choose for my topic, "From rab-
bits to sunflowers,na talk on the famous Fibonacci sequence of numbers. Vern, 
of course, attended my address, and it reawakened in him his first great mathe-
matical interest, the love of numbers and their endless fascinating properties. 
For weeks after the talk, Vern played assiduously with the beguiling Fibonacci 
numbers. The pursuit of these and associated numbers became, in time, Vern?s 
major mathematical activity, and led to his eventual founding of The Fibonacci 
Quarterly, devoted chiefly to the study of such numbers. During his subsequent 
long and outstanding tenure at San Jose State University, Vern directed an 
enormous number of master!s theses in this area, and put out an amazing number 
of attractive papers in the field, solo or jointly with one or another of his 
students. He became the authority on Fibonacci and related numbers. 

After several years at Oregon State College, I returned east, but Vern con-
tinued to inundate me with copies of his beautiful findings. When I wrote my 
Mathematical Circles Squared (Prindle, Weber & Schmidt, 1972), I dedicated the 
volume 

To l/ERMER E. HOGGATT, JR. 
wko? ovQA tht y^a/iAy kcu> &znt me moKd 
mathdmatldcit goodie than anyone. e£6e. 

4Another entertaining number game that we played was that of expressing as 
many of the successive positive integers as possible in terms of not more than 
three IT'S, along with accepted symbols of operation. 
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The great geographical distance between us prevented us from seeing one 
another very often. I did, on my way to lecturing in Hawaii, stop off to see 
Vern, and I spent a few days with him a couple of years later when I lectured 
along the California coast. He once visited me at the University of Maine, 
when, representing his university, he came as a delegate to a national meeting 
of Phi Kappa Phi (an academic honorary that was founded at the University of 
Maine). For almost four decades I had the enormous pleasure of VernTs friend-
ship, and bore the flattering title, generously bestowed upon me by him, of his 
"mathematical mentor." 

In mathematics, Vern was a skylark, and I regret, far more than I can pos-
sibly express, the sad fact that we now no longer will hear further songs by 
him. But, oh, on the other hand, how privileged I have been; I heard the sky-
lark when he first started to sing. 

HaJJL to tkdd, bLutkd SpvUAl 
Btnd tkou n&ve/i wejvt, 

Tkcut ^nom H&civm, on ndcin AX, 
PouneAt thy fauJUL kzcuvt 

In pKofaiuz AtnatnA o& unpnmzdUtatzd anX. 
#•*•«•-a-a-

DIAGONAL SUMS IN THE HARMONIC TRIANGLE 

MARJORIE BICKNELL-JOHNSON 
A. C. Wilcox High School, Santa Clara CA 95051 

V&dtccitzd to thd memony oi my coll&cigu<i and fanXmd, 1/eAneA Hoggatt 

Leibniz*s harmonic triangle is related to reciprocals of the elements of 
PascalTs triangle, and was developed in summing infinite series by a telescop-
ing process as discussed by Kneale [1] and Price [2], among others. Here, we 
find row sums and rising diagonal sums for the harmonic triangle. 

1. PROPERTIES OF THE HARMONIC TRIANGLE 

The harmonic triangle of Leibniz 

I I I 1 I I I 
1 2 3 4 5 6 7 

1 rT^\ J- JL _L J_ 
2 \ 6 y 12 20 30 42 

1 J_ J_ J_ _J__ 
3 12 30 60 105 

I J_ _L _L_ 
4 20 60 140 
I _L _!_ 
5 30 105 

6 

is formed by taking successive differences of terms of the harmonic series. 
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After the first row, each entry is the difference of the two elements immedi-
ately above it, as well as being the sum of the infinite series formed by the 
entries in the row below and to the right. Also, each element is the sum of 
the element to its right and the element below it in the array. For example, 
for 1/6 circled above, 1/2 - 1/3 = 1/6, and 

I = _L + _i_ + _l_ + __L_ + ... 
6 12 30 60 105 

= /! „ i_U M . 1\ + M . ±\ + /!_ _ ±\ + ... 
\ 6 1 2 / \ 1 2 2 0 / \ 2 0 30/ \30 4 2 / 

Notice that each row has the first element in the row above it as its sum. 
Each rising diagonal contains elements which are 1/n times the reciprocal 

of the similarly placed elements in Pascal1s triangle 

1 1 1 1 1 1 1 ... 

1 3 6 10 15 .. 

1 4 10 20 ... 

1 5 15 ... 

1 6 ... 

In contrast to the harmonic triangle, each element in any row after the first 
is the sum of all terms in the row above it and to the left, while it is also 
the difference of the two terms in the row beneath it, and the sum of the ele-
ment to its left and the element above it. 

Since the nth row in the harmonic triangle has sum l/(n - 1), if we multi-
ply the row by n, we can immediately write the sum of the reciprocals of ele-
ments found in the columns of Pascalfs triangle written in left-justified form 
as 

^T-t(i)"'-»>'- «•» 
i = n x ' 

or we can begin by summing a f t e r k t e r m s , as 

n + 1 In + kV1 ^ li + kY1 ,, 0. 
~n— * 1 n ) = L U + lj (1'2) 

x ' i=n+lN ' 
As a corollary, we can easily sum the reciprocals of the triangular numbers 
T = n(n + l)/2 by taking n = 2 in (1.1), or we could simply multiply the sec-
ond row of the harmonic triangle by 2. 

2. ROW SUMS OF THE HARMONIC TRIANGLE 

harmonic triangle in 

1/1 
1/2 1/2 
1/3 1/6 
1/4 1/12 
1/5 1/20 
1/6 1/30 

1/3 
1/12 
1/30 
1/60 

left-justified fori 

1/4 
1/20 1/5 
1/60 1/30 1, 
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We number the rows and columns to begin with zero. Then the element in the ith 
row and nth column is 

1/ »*o 05 1, 2, ..., i = 09 1, 2, 

The row sums are 1, 1, 5/6,. 2/3, 8/15, 13/30, 151/420, ..., which sequence is 
the convolution of the harmonic sequence 1, 1/2, 1/3, . .., 1/n, ..., and the 
sequence 1, 1/2, 1/4, 1/8, ..., l/2n, ..., which can be derived [3] as follows. 

Let Gn(x) be the generating function for the elements in the nth column of 
the harmonic triangle written in left-justified form. Then 

GQ(x) = ln[l/(l - x)] = 1 + x/2 + x2/3 + ••- + xn/(n + 1) + .. . (2.1) 

and generally, 

Gn + 1(x) = (.x - l)Gn(x) + xnKn + 1). (2.2) 

Consider t he d i s p l a y 

GQ(x) = GQ(x) 

G±(x) = (x - l)G0(x) + 1 

G2(x) = (x - l)G1(x) + x/2 

Gn + 1(x) = (x - l)Gn(x) + xn/(n + 1) 

Let 5 be the infinite sum of the column generators, and sum vertically: 

S = (x - l)S + 2GQ(x). 

Solving for S9 we have 

S G0(x)/(l - x/2) = (ln[l/(l - x)]) • (x _ 1
x / 2 ) 5 

the product of the generating functions for the harmonic sequence and for the 
sequence of powers of 1/2. Thus, the row sums are the convolution between the 
harmonic sequence {lMfn = i an<^ the. sequence < 1/2 f~ = 0. 

What we have found is 

V / 1 TfA'^rn - ln[l/(l ~ *)] (2 v 

kV^kw ) l~xl2 ' 
^ S w = S ^ ~ r ' ^ r r (2'4) 

We can also write the generating function S* (x) for the sums of elements 
appearing on the successive rising diagonals formed by beginning in the left-
most column and proceeding up p elements and right one element throughout the 
array: 

GQ(x) + xpGQ(xp+1) 
S*(x) = (2.5) 

„p + i 

By way of comparison, the Fibonacci numbers with negative subscripts are gen-
erated by 
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l --E*'-*""1- (2.6) 
1 + X - X n-1 

To contrast with the harmonic triangle, we write Pascalfs triangle in left-
justified form, and number the rows and columns to begin with zero: 

1 
2 1 
3 3 1 
4 6 4 1 
5 10 10 5 1 

Then the generating function for the nth column is Gn{x) = xn/ (1 - x)n + 1, which 
has been used to write the diagonal sums for Pascalfs triangle [4], [7]. We 
recall the numbers u(n;p9q) of Harris and Styles [5], [6], formed as the sum of 
the element in the leftmost column and nth row and the elements obtained by 
taking steps p units up and q units right throughout the array. These numbers 
are generated by [4], [7], 

V u(n;p9q)x = (I ~ X) , p + q > 1, q > 0. (2.7) 

H (i - xf - x*+q 

Also, the row sums of Pascalfs triangle are given by 2n = u(n;0,l), while the 
Fibonacci numbers are the sums on the rising diagonals, or, u(n;l,l) = Fn . If 
we extend u(n;p9q) to negative subscripts [3], we have 

= Y\u(-n;p9l)xn
9 (2.8) 

which has a form similar to (2.5) and becomes (2.6) when p = 1. 
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SOME GENERALIZATIONS OF A BINOMIAL IDENTITY 

CONJECTURED BY HOGGATT 

L. CARLITZ 
Duke University, Durham NC 27706 

To tkz memosuj o^ VoAneA Hoggcutt 

1. INTRODUCTION 

In November 1979 Hoggatt sent me the following conjectured identity. Put 

^ . - F T T C ^ T " ' " 1 ) <»*2z.+ l;r>0). (1.1) 
Then 

5» + i,1.=5».1.+'E E^.^n-rf-i,,-*-! (">2r + l; r > 1). (1.2) 

I was able to send him a proof of (1.2) that made use of various properties of 
special functions. 

In this note we first sketch this proof. Next, using a different method, 
we obtain some generalizations of (1.2). In particular, if we put 

< , = TilC I T ~ r ' P) (n>2r + P;r> 0), (1.3) 

where p is a nonnegative integer, we show that 

(p + q^+rq)= PS»(-P>.,+ qS<Vp.r + pqj: l f O " U , - . - i ^ 
J = 0 8 = 0 

(p > 0 , q > 0 , r > 0) 
and 

n - 2 r - l 

(r + 1)5^;°= (r + l)S™r + p £ E <r " " ^ . . ^ - i - a . * - . - i (1.5) 
J = 0 S = 0 

(p > 0 , <7 >_ 0, r > 0 ) . 

We remark that (1.4) is implied by (1.5). 
The special case p = 1, q = 0, of (1.5) may be noted: 

<* + !>*.., • (n;r)2 +"f E (J'; I V i . , , , , d.6) 
\ / j = 0 s = 0 x ' 

For additional results,, see (7.7) and (7.8) below. 

RemcUtk: The close relationship between the identities of this paper and ultra-
spherical polynomials suggests that even more general identities can be found 
that are related to the general Jacobi polynomials. This is indeed the case; 
however, we leave this for another paper. 

SECTION 2 

Put 

w-TTT E C;T~rV= E *..,*-. (2.D 
n » 2 r + 1 n = 2r + l 
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It follows that 

fv(x) = ^ ^ <$>r(x), (2.2) 
(1 - x)2r + 1 

where §r(x) is a polynomial in x. To get an explicit formula for typ(x) 9 re-
write (2.2) in the form 

x2 r + H , W = (1 - x)2r + 1fP(x). 
Thus 

^^=FTT(i-^2r+i£(nD(n+r v 
n = o\ I \ I 

- FTT t*" ̂ ''-"T/ ')(" " i * T " 3 * " + ')• <2-3) 
Since the p roduc t 

Im - j + v\lm - j + r + 1\ 

is of degree 2v in j s it follows that the inner sum in (2.3) vanishes for 

777 _> 2V + 1 . 

Thus we need only consider m <_ 2r. Hence the sum is equal to 

/ , w , , i\ m (™2P - 1 ) . (~m) . ( -m - 1 ) . Im + r\lm + r + 1\ y * J J J_ 
\ v )\ v ) 4 * j ! (-m - v). (-m - v - 1)^ 9 

where 

(a) j = a (a + 1) . . . (a + j - 1 ) . 

Applying Saalschutz? theorem [1, p. 8 7 ] , we get 

+ v + 1\ ( " P + 1 } - (~m + P + ^ •777 + r\lm + r + 1 \ _ _ _ _ _ ^ _ _ _ =
 p + l I T\(v " 1 \ 

( r ) \ r ) (-m - r ) m ( r + 2)m m + l \ w / \ m / " 
o r e , 

-<*>-sdh^XV)*- (ril)- (2-A) 
We haves therefore, 

For p = 0, it is clear that 

(fro to) = 1. (2.5) 

In hypergeometric notation, (2.4) becomes 

cj^to) = 2 V - p + x» "p5 i; * ] • (2.6) 
On the other hand [1, p. 254, Eq. (2)], 

(2)n fe + l\n „ f . „ X - I 
-n - 1; 2; "."•"w-^H^W- ff + 1. 

If we put 
- x " ^ - 1 + .V 
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this becomes 

2Fl{-n, -n - 1; 2; i , ] - ^ 1 - *>»P». " ( f t * ) . 

Thus, by (2.6), 

• , + 1 W F T T < 1 - ^ ( I , 1 , ( T 4 7 ) - < 2 - 7 > 
We have also the generating function [1, p. 271, Eq. (6)] 

_ > „ ( 1 , 1 ) ( x ) t " = 2 2 p" 1 ( l + * + p K ^ l - t + p ) " 1 , 
n = 0 

where 
p = (1 - 2xt + t 2 ) 1 / 2 . 

Thus 
(1 + t + p ) ( l - £ + p) = 2(1 - art + p ) , 

so tha t 
f > ( l l , 1 ) O H " = 2p"1(l - art + p ) " 1 . (2.8) 
rc = 0 

It can be verified that if 
<£> = 

) 

1 - xt 
t 

x2 -

+ 

1 

p 
3 

then 
__ 
dt p(l - art + p) * 

Comparison with (2.8) gives 

£ JTTT1'-1,1)<ar>*"+1 ^ - T ^ T 1 " ? ~P- (2.9) 

Now replace x by (I + x) / (I - x) and replace t by (1 - rc)^. The result is 

V 1
 (1 _. ̂ p ( i , i)/l + x\n _ 1 - (1 + x)z - A - 2(1 + x)z + (1 - ar)2g2^ 

n = o n + 1 n \1 - a?/ 2xz2 

Thus, by (2.7), we get 

1 - (1 + x)z - A - 2(1 + x)z + (1 - a?) 2„2 £ *r + 1(xU> = i ~ (1 +X)Z ~Vl ~ ^l +X)3+ U ~X) Z . (2.10) 
3? = 0 _£C3 

SECTION 3 

We now rewrite the identity (1.2) in terms of the polynomial <j> (x) . To be-
gin with, (1.2) can be replaced by 

_» - 1 n - 2 p - l 

&n + l , r = ^ntv + 2l_< .2L* ^j , k ^n - j - 1 , r - fe - 1 + Z-f^n-l, k^O.r-fe-i 
fc « 0 «7 - 1 & = 0 

& = 0 j = l 

Then multiplying both sides by xn+1 and summing over n we get 
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= 2r + l n = 2 p + l n = 2r 
V - 1 00 ^ 

E E s , , ^ £ 5B)r.k.ia:». 
fc=0 j = 2 k + l n = 2 r - 2 f e - l 

+ X2 

In view of (2.1), this becomes 

(1 - x)fr(x) = x2fr_x(x) +x2Y,fk(x)fT_k_1(x). 
Hence by (2.2) we get 

r-l 
<j>r(tf) = (1 - X)^r_1(x) + X^kteWr-k-lW (P ̂  1)e ^3o1) 

fe = 0 

For example, we have 

c()1(x) = 1, <J>2(a;) = 1 + xs <j>3(#) = 1 + 3x + x2, <$>h(x) = 1 + 6x + 6x2 + x3 

in agreement with (2.4). 
Next put 

F = F(x5 z) = £((>,,(*) 

then it is easily verified that (3.1) gives 

p = o 

F = 1 + (1 - x)sF + ̂ F 2 . (3.2) 

The solution of (3.2) such that F(xs 0) = 1 is 

p = 1 - (1 - x)z - A ~ 2(1 + x)z + (1 - x)2z2 

2xz 

£ <|> 1(a?)sr, 

Since 
F - 1 

we get 
£ $r + 1(x)3* = l _ r _ ( l + x ) a - / l - 2 ( 1 + * ) * + (1 -x)2*L. (3.3) 

p = o ZXZ 

Comparison of (3.3) with (2.10) evidently completes the proof of the desired 
result. 

SECTION h 

To generalize the above, we take 

« - F r r ( n ; T " r ' p ) ^ 
and 

4(P)(-) = t S<»x«. (4.2) 
n=2r+p 

where p is a fixed nonnegative integer. Clearly 

f^(x) = x2F + P c^-V), (4.3) 
(1 - a;)21""1 

where §^P)(x) is a polynomial x. It is evident that 
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and 

Exactly as in the proof of (2.4) we find that 

cw-&^fzfTirfD7(:)(';')*- <̂ "» '«•« 

In hypergeometric notation, both (4.4) and (4.5) become 

• , ( P ) ( J : ) = ( p r + + l ) ! p ! ff[~2' + P' ~r' P + 1; * ] • (*-6) 
( P) 

> t h a t (j)r (#) i s of degree r - p fo r p <_ r and of degree r fo r p > r . 
Since [ 1 , p . 254, Eq. (2 ) ] 

•K,^--i^457«--)^"-"(Hf)- <*•" 
SECTION 5 

(p) 
We shall now obtain a generating function for 5n r in the following way. 

We have 

it follows that 

r = 0 m - 2 r n = 2r + p \ / \ / r = 0 ( 1 

a . 2 r y 2 r + P a P 

a : ) " ' - ^ ! -y)-"1 

= y P ( ( l - a : ) ( l - y) - x2y2zV1 

= z / p ( l + xy - x2yzz - {x + z / ) ) " 1 . 
Rep lac ing x by ax/"1 , we have 

j y £ £ f ^ r)(W ~ I ~ p)x«y»-» = yP(l + x - x2z - {xy'1 + y))"1 

fc=o (1 + x - x2s)* 

= (i + .• - ^s)
 1 E i ^ ) 2 ,+fc-

j,fe = o (1 + # - ars) 

Since we want only the terms on the right that are free of y9 we take j=k±p. 
Thus 

x > i r ; r)(n -1 - py - a + - - *a-)-p-1 E ( 2 \ + p ) — 
r = 0 n = 2r+p\ / \ / fc = o ^ • ' ( 1 + 
Since [ 1 , p . 70, Ex. 10] 

• p \ 

• > ( . + 

i 2 

U + a -

^ + P 

# - x2z)lk 

Y 
• 4 s ) 1 / 2 ( ' 
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it follows easily that 

£ « ' £ <r+l)ffU"-2* -U1+* I *-*)*• (P>0), (5.1) 
where 

R = i?(a:, s) = ((1 - x1 - 2(1 + x)z + s2) 1 / 2. (5.2) 

Since 
dR _ g - 1 - X 
Bs i? 

it is easily verified that 

3 /l + a? - z - RV p(l + x - z - R\P 
dz\ 2 ) R\ 2 ) * 

Hence (5.1) yields 

In the next place, by (4.2) and (4.3), 

« 2r + p 

Thus (5.3) becomes 
««2r+p (1 - x)2r+1 

ill 1 

~0 (1 - #) 

Replac ing 2 by (1 - x)2z9 we ge t 

i , V^ % A < P ) , N / l + 

(I + X - (1 - X)2Z - (1 - ^)i? \ p 

1 + p ( l - a ) ] [> p
( P > ( X ) ^ + 1 = I ^ ) (P > °) • ( 5 ' 4 > 

where 

i?0 = (1 - 2(1 + x)z - (1 - x)2s2)1/2. (5.5) 

For p = 1, (5.4) reduces to 

1 + x - (1 - a;)22 - (1 - x)RQ 

1 + ^ - ^EM*)*1^1 = ^ • (5-6) 

v = 0 
It is easily verified that (5.6) is in agreement with (3.3). 

Returning to (5.1), we have 

r=0 (1 - x) x ' 
tiat 
- / I + x - (1 - x ) 2 s - (1 - a»i?oy> 
£ (r +. l )^/ ' (x)sr = ±-y Tx J ( p > 0 ) . (5.7) 

so that 

r = 0 

Note t h a t (5 .7 ) ho lds fo r p >. 0 . 
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SECTION 6 

As an immediate consequence of ( 5 . 4 ) , we have 

jl + p(l -*) |>iP ) (*)3
s + 1Ul + q(l - x)f^^t"^x)zi + 1\ 

= 1 + (p +q){l - x ) £ < ^ p + ? ) ( * ) 3
r + 1 . 

r = 0 

Comparison of coefficients of zr+1 yields the convolution formula 

(p + q)$(/+q)(x) = p<^p)(a) + q$?\x) 

+ P^1 - X^^sP)(X^r-s-l^ (P > 0, ? > 0). 
8 = 0 

Similarly, by (5.4) and (5.7), 

O + l)^(
r
P + q)(x) = (r + l ) ^ ^ ) 

(6.2) 
v - 1 

+ P(1 " a?) L ( P " s)*iP )Wi(-V-iW (p > 0, <? >. 0). 
s = 0 

In the next place, it is evident from (5.4) and (5.6) that 

,<„, 
r = 0 I, r = 0 

For p = q = I, (6.1) reduces to 

1 + p ( l - x ) £ ( J > ; p ) C r ) S
r + 1 - ^ 1 + (1 - x ) ^ < t . r ( a ; ) s r + 1 V (p > 0) . (6 .3 ) 

24>l2) (x) = 24>r(x) + (1 - x)Y,$BteMr-a-1<.x). 
s = 0 

However, by ( 3 . 1 ) , we have 

r-l 
<t>P(x) = (1 - •x)$r_1(x) + x^^s(x)(^r_s_1(x) . 

s = 0 
It follows that 

2x^2)(x) = (1 + x)<frp(x) - (1 - a ? ) 2 ^ ^ ) (P > 0). (6.4) 

This formula can be generalized by means of the easily proved identity 

o r r 1 ) -(x;")*(";')(••?•') -^ l iX" ;? ; 1 ) - «•» 
Multiplying both sides of (6.5) by 3Jm and summing over m9 we get 

2(r + l)fr(p + 1)(x) = (r + 1)(1 + ar)/,(p)(a;) - (r + p)x2fp
lp^x) 

and therefore 

2(r + 1)̂ ())2J(P + 1)(^) = (p + 1)(1 + x)c^p)Gr) - (r + p)(l - tf)2^^*). (6.6) 

For example, for p = 2, we get 

4(P + l)x2(p(
r
3) (x) = (r + 1)(1 + x)2(f)r(x) - (2r + 3) (1 + a?) (1 - a O 2 * ^ (*) 

+ (r + 2)(1 - a O ^ ^ G z ) (r > 1). (6.7) 
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Repeated application of (6,6) leads to a result of the form 

v 
(2x)pi|// + 1) (x) = Y, (-1)S^(P,P5 e)(l + x)p-s(l - x)2sipr_s(x) (p > 0). (6.8) 
. s = 0 

where 
4>(p)(x) = (r + l)l<S>iP)(x), ipr(x) = (r + 1> !*,<«> 

and the coefficients c(p9v5 s) are independent of x. 

SECTION 7 

We shall now state the binomial identities implied by (6.1) and (6.2). In 
terms of f^{x)3 (6.1) and (6.2) become 

(P + q)fr
(P + q)(x) = pxqfr

(p)(x) + qx%<q>(x) 
(7.1) 

V- 1 
+ Wx2Hfs(P)^fr-s-i&) (p > 05 q > 0) 

s = 0 

(r + l)fp(p + q)fe) = (r + l)f«Hx) 
v- 1 

+ ? Z ( p " s)/a(P>^>^iV-i^> (p > 05 q >: 0)5 
s = 0 

respectively. Using (4.2) and equating coefficients of xn
s we obtain the fol-

lowing identities. 

<p+q)Sn%+V =PS^q>r+qS^Pir 
x ( 7 .3 ) 

^ " f l C C , - . - ! (P>0, ,>0) 
and •'' = o e = 0 

( r + l ) 5 ( p + , ) = ( r + 1)S( < 7 ) 

2 p - i ( 7 - 4 ) 

+ P E X > " ^ .W-j -z . , - . - ! (P > 0, ? > 0). 
In particulars since 

r + »s™ =(n;r)\ ( 

it is evident that, for q = 09 (7.4) reduces to 

<* - ! < ? = ( n ; T + p"f E f ; S ) 2 ^- , P . S - 1 (p > o)-
J = 0 S = 0 

The special case, p = 1, was stated in the Introduction. 
A second pair of identities is also implied by (6.1) and (6.2). Put 

T (P) 

Then by (4.4) we have 

JJL±P)±__(r \(r ~ p\ 1 (r + p\(r - p\ ,- ,, 
+ 1)1 (m + 1)P \m ) \ m ) r + l\m + p)\ m )° y/ J 

/??= 0 
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Note that, by (4.4) and (4.5), (7.6) holds for all normegative p. Substituting 
from (7.6) in (6.1) and (6.2)'and evaluating coefficients of xm, we obtain the 
following two identities. 

(P + <7<P;?) = pT™ + qT«l + pq £ Z^^-V-i. m-J 
s=0 j=0 

r - l m-l 

~ P<?£ E ^ V - V - i , „-,•-! (P > 0, q > 0), 
s = 0 j = 0 

r - 1 • m 

( r + 1)Tiw> . ( r + 1 ) r w + p ^ ^ ( r _ s)T^T«i_i>m_. 
s = 0 j = 0 

r - 1 m - l 

- p V Y (r - s)T}p)Tiq)
 1 . n (p > 0). 

In particular, for q = 0, (7.8) reduces to 
r-1 m 

(7.7) 

(7.8) 

r-l m-l 

Z-^ L-d\n) r - s - l , m - j - l 
s=0 J= 0 ^ / 

r-l m-l 

P E Emc.' - i . , , - ,^ (p>°>-
J = 

We remark that (6.1) is implied by (6.2). To see this, multiply both sides 
of (6.2) by q9 interchange p and q, and then add corresponding sides of the two 
equations. Similarly, it can be verified that (7.3) is implied by (7.4) and 
(7.7) is implied by (7.8). 
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SOME EXTREMAL PROBLEMS ON D I V I S I B I L I T Y PROPERTIES OF 
SEQUENCES OF INTEGERS 

PAUL ERD0S 
University of California, Los Angeles CA 90024 

Vzdiccutzd to tkd mmotiy o^ my fi/uLmd VoAn HoggcUt 

A sequence of integers A = {a1 < a2 < • • • < ak <^ n] is said to have property 
Pr (n) if no a^ divides the product of v other a's. Property P(ji) means that no 
at divides the product of the other aTs. A sequence has property Q(n) if the 
products a^aj are all distinct. 

Many decades ago I proved the following theorems [2]: 

Let A have property P1 (i.e., no a^ divides any other). Then 

7 \ n + ll 
max K = — y — • 

The proof is easy. 
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Let A have property P2 then [ir(n) is the number of primes not exceeding n] 

(1) 7i(n) + c-Ltt^Clbg n)~2 < max /c <_ ir(n) + <32n2/3(log n ) ~ 2 . 

The cfs will denote positive absolute constants not necessarily the same at 
each occurrence. We will write Pr instead of Pr (n) if there is no danger of 
confusion. 

Probably there is a c for which 

(2) max k = ir(n) + (c + 0(1) )n2/3 (log n ) ~ 2 

but I could never prove (2). 
Assume next that A has property Q. Then 

(3) 7T(n) + c 3 n 3 / 4 ( l o g n ) " 3 / 2 < max k < i\(n) + c^n3 / I f ( log n)"2/\ 

Here too I c o n j e c t u r e d 

(4) max k = TT(n) + (c + 0(1) )n3/ l*(log n ) ~ 3 / 2 . 

I could never prove (4), which seems more difficult than (2). 

In this note I consider slightly different problems. Denote by Sn the set 
of positive integers not exceeding n. Observe that Sn can be decomposed into 

lloe; Yi\ 1 + \--.—&—y sets having property P1. To see this, let S consist of the inte-

[ Yl~\ r VI "I iloS Yl\ 

— - \ < a< —:—r . The powers of 2 show that 1 + \-~ 
2\J " L ^ J Llo£ 

>g 2. 
is best possible. 

Denote by fr (n) the smallest integer for which Sn can be decomposed as the 
union of fr(n) sets having property Pv and gin) is the smallest integer for 
which Sn can be decomposed into gin) sets having property Q. We just observed 

fAn) = 1 + I-—^-r- . We prove J 1 Llog 2J 

T/xeo/tem 1 : 
— ' 1/2 

(5) C l J _ < / 2 ( n ) < 2^2. 
1/3 

(6) c - ~ ^ < g(n) < 2n112. 

The upper bound in (5) and (6) follows immediately from the fact that 

m\ (m + ix) (m + i2) if I ± i1 <_ i2- < m1/2. 

Now we prove the lower bound in (5). The proof will be similar to the proof 
in [2]. Let S' be the integers of the form 

(7) pu, u < yn1/2
5 n1/2 < p < 2nl/2. 

Clearly 

(8) \S'] > c 
log n 

< ak be a subset of S^ which satisfies property P2. 
We prove that then 

1/2 1/2 

(9) k<ILL+0Jll^<n^. 
J 2 log n 

(8) and (9) clearly complete the proof of (5). 
Thus we only have to prove (9). Put ai = Pi^i where p i and ui satisfy (7), 

< ak a bipartite graph where the white 
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vertices are the u's and whose black vertices are the primes p. . To a^ = p-u-
corresponds the edge joining pi and u^. This graph clearly cannot contain a 
path of length three. To see this, observe that if a1 = p±uis a2 = u1p2, and 
a3 = p2u2 is a path of length three then a2\a1a35 which is impossible. A bi-
partite graph which contains no path of length three is a forest and hence it 
is well known and easy to see that the number of its edges is less than the 
number of its vertices. This proves (9) and completes the proof of (5). 

By a more judicious choice of the black and white vertices the lower bound 
of (5) can be improved considerably. A well known and fairly deep theorem of 
mine states that the number of integers m < n of the forms u * V9 where both u 
and v are not exceeding n1'2 is greater than 

ft 1 1 + log log 2 
— , a = 1 - -—-(log ri) B 

for n > nQ(e), and that this choice of a is the best possible [3]. This imme-
diately gives9 by our methods 

f2(n) > 
„l/2 

(log ft) 

We do not pursue this further, since we cannot at present decide whether 

f2(n) = 0(n1/2) 

is true. The following extremal problem, which I believe is new, is of inter-
est in this connection: Let 1 <_ a1 < • • • < ar £ ft and 1 <_ b± < - ° - < bs <_ n be 
two sequences of integers. Denote by 1 _<_ u± < • e a < ut <_ n the integers not 
exceeding n of the form a^bj* Put 

h(n) t 
v + sy 

where the maximum is extended over all possible choices of the a?s and Z?fs. 
Our proof immediately gives f2(n) >_ h(n) . I can prove 

n1/2 

h(n) < r- for some 3 > 0. 
(log ny 

It would be interesting if it would turn out that for some 3 < a, 

h{n) > — ^ — — . 
(log n)6 

The upper bound of (6) is obvious, thus to complete the proof of Theorem 1 
we only have to prove the lower bound in (6). The proof will again be similar 
to that of [2]. Let S% be the integers of the form 

(10) pu < n , u < \\nll\ n2/3 < p < 2ft2/3. 

Clearly (by the prime number theorem or a more elementary theorem) 

on 
(ID \S"\ > log n" 

Now l e t a1 < - 8 e < ak be a subse t of S% having p r o p e r t y Q ( i . e . , a l l t he 
p r o d u c t s ai<2j a r e d i s t i n c t ) . We prove 

(12) k < n2/3 + c ~± . 
log ft 

(11) and (12) clearly give the lower bound of (6); thus to complete the proof 
of our Theorem we only have to prove (12). Consider a bipartite graph whose 
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white vertices are the primes n2/3 < p < 2n2/3 and whose black vertices are the 
integers 

u < \n112. 

To each a -pu, we make correspond the edge joining p to u. This graph cannot 
contain a Ch9 i,eos a circuit of size four* To see this9 observe that if p , 
p25 ul9 and u2 are the vertices of this Ch then p1w1, px^2, P2

U\> an(* ?2U2 a r e 

all members of our sequence and 

PlWl ' ?2W2 = PlU2 S P2W1» 
or the products ata^ are not all distinct, which is impossible. 

Now let Vi be the valency (or degree) of pi (n2/3 < pi < 2n2/3) . We now es-
timate k9 the number of the edges of our graphs as follows: The p.fs with v^ = 1 
contribute to k at most 

n2'3 

S < C -r— . 

log n 

Now let p , . .., p be the primes whose valency v^ is greater than 1.. Observe 

Z tG>([n1,,])^»2" 
—n 1 ' 3 \ is the number of u?s„ If p. is joined to v^ ufs5 form the ( J] pairs 
of ufs joined to p. . Nows if (13) would not hold5 then by the box principle 
there would be two p's joined to the same two u'ss ieea9 our graph would con-
tain a C.9 which is impossible* Thus (13) is proved* 

From (13) we immediately have 

min(z;̂  - 1) (14) £ Vi < . ,n~" ,s < n2/3 

i = l 

(14) clearly implies (12) and hence the proof of our Theorem is complete. 

I expect g(n) < n(1/3 + e) but have not even been able to prove giri) = o(n1/2). 

Recall that fr(n) is the smallest integer for which Sn can be decomposed 
into frin) sets having property Pv . We have 

Th&otim 2: For every e > 09 

n v < fp(n) < ovn r 

The proof of Theorem 2 is similar to that of Theorem 1 and will not be given 
here. Perhaps 

fr(n) = o ( n 1 " ) e 

Finally, denote by F(n) the smallest integer for which Sn can be decomposed 
into F(n) sets {A^ , 1 <_ i <_ F (n) 3 having property P. 

Using certain results of de Bruijn [1], I can prove that for a certain ab-
solute constant c 

(15) F(n) = n exp {(-o + 0(1)) (log n log log n)1/2V 

We do not give the proof of (15) here. 

Now I discuss some related results and conjectures. Let a1 < a2 < • a " < cck 
be the largest subset of Sn for which the sums ai + a • are all distinct. Turan 
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and I proved that [4] 

max k = (1 + o(l)n1/2 

and we in fact conjectured 

(16) max k = n1'2 + (9(1). 

(16) is probably deep, and I offer $500 for a proof or disproof. 
I conjectured more than 15 years ago that if b1 < • ••• < bn is any sequence 

of integers then there always is a subsequence 

bix < '" < his , s >_ (1 + o(l))nll2
9 

so that all the sums bi- + bi- are distinct. Komlos, Sulyok and Szemeredi [5] 
proved a much more general theorem from which they deduced a slightly weaker 
form of my conjecture, namely s > on112 for some o < 1. Denote by m(n) the lar-
gest integer so that for every set of n integers b± < ••• < bn one can find a 
subsequence of m(n) terms so that the sum of any two terms of the subsequence 
are distinct. Perhaps m(n) is assumed for S . 

Recently I conjectured that if b1 < b2 < • •• < bn is any sequence of n in-
tegers, one can always select a subsequence bi1 < ••• < bia9 s > (1 + o(l))n112 

so that the product of any two b^1 s is distinct. Straus observed that with 
s > on1'2 this follows from the Komlos, Sulyok and Szemeredi theorem by a method 
which he often used. One can change the multiplicative problem to an additive 
one by taking logarithms and then, by using Hamel bases, one can easily deduce 
s > on from the theorem of Komlos, Sulyok and Szemeredi. 

Let 1 <. a1 < ••• < ak <_ n be any sequence of k integers, not exceeding n. 
Denote by F(k9 n) the largest integer so that there always is a subsequence of 
the afs having F(k9 ri) terms and property P1. It is easy to see that 

(17) F(k, n) _> k 

1 + log n 
and the powers of 2 show that (17) in general is best possible. It is not dif-
ficult to see that if k >_ on then F(k9 n) >_ g(c)n and the best value of g{c) 
would be easy to determine although I have not done so. It is further easy to 
see that g(o)/c •+ 0 if c -»• 0. If k < n1~e

9 then (17) gives the correct order 
of magnitude except for a constant factor a , and in general the determination 
of F(k9 n) is not difficult. 

Many further questions of this type could be asked. For example, denote by 
F2(k9 n) the largest integer so that our sequence always has a subsequence of 
F2(k9 n) terms having property P2. F2(k9 n) seems to be more difficult to han-
dle than F(k9 n). It is easy to see that 

F2(k9 n) > ^(2n1/2)"1, 

but perhaps this can be improved and quite possibly for every o > 0 

F2 (on, n) /n1/2 -* °°. 

The following question seems of some interest to me: Let 

1 <. a1 < • • • < ak <_ n. 

What is the smallest value of k that forces the existence of three (or s) afs, 
so that the product of every two is a multiple of the others? In particular, 
is it true that if k> on there always are three a's so that the product of any 
two is a multiple of the third? At the moment I cannot answer this question, 
but perhaps I overlooked a trivial argument. 

To end our paper, we state one more question: What is the smallest k = kn 
for which F2(k9 n) >_ 3? In other words: Determine or estimate the smallest 
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k = kn for which for every 1 <. a1 < • • • < ak <. n there are three a's, aix, d^ 9 
aiz so that the product of two is not a multiple of the third. I have no sat-
isfactory answer, but perhaps again I overlooked a trivial argument. 

On the other hand, I can get a reasonably satisfactory answer to a slightly 
modified question. 

ThtQJtQjn 3: Let I <_ a± < ••• < ak <_ n be such that the product of every two a?s 
is a multiple of all the others. Then (exp z - ez) 

(18) max k = expf(1 + o(l))log 2 • — log n(log log ri) _ 1 ) . 

We only outline the proof of Theorem 3. Let 2, 3, ..., p be the primes not 
2 

exceeding (1 - e)— log n. Let the afs be the integers of the form 

(19) uf\p 
i-i ^ 

where u runs through the integers that are the product of [s/2] or fewer of the 
pfs. From the prime number theorem, we easily obtain that all the afs are not 
exceeding n. To see this, observe that by the prime number theorem 

and 

n P. = exp(d + 0(1)) (l - e ) | log n\ 

M < ( l l p V + 0 ( 1 ) < exp((l + 0(i))i2SJLj. 

Further, by the prime number theorem, 

s > (1 - e)-j log n(log log n ) " 1 , 

and the number of u?s is not less than 2s"1, which proves the lower bound in 
(18). 

Now we outline the proof of the upper bound of (18). Let p1, . . . , ps be 
the prime factors of 

k 

i = l 
Since a^aj is a multiple of all the other afs, all but one of the a's, say a(J), 
are multiples of p. , 1 <_ J: ^_ s. Disregarding these a(j)!s, we assume that all 
the axs are multiples of all the Pj!s. By the same argument we can assume that 
for every p^ there is an a^ so that every ai divides p̂  with an exponent xit j, 
°̂ j 5L xi, Q S. 2aj. From this and the prime number theorem we obtain by a simple 
computation, the details of which I suppress, the upper bound in (18). 
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HOMMAGE A ARCHIMEDE 

LESTER H. LANGE 
San Jose State University, San Jose CA 95192 

\Jerner Hoggotl and I were {nlends and colleagues {or twenty years. He was 
a person with special properties who studied mathematical objects with special 
properties. In addition to his Incomparable knowledge. o{ all things Fibonacci 
was his remarkable storehouse o{ appn.ccljxtl.on {on. geometrical matters o{ all 
kinds. I'm glad that he very muck Liked my "7 :2 :3" result connected with. fig-
ure 1, below; he gave me several o{ the re{erences which appear In the bnle{, 
annotated bibliography. 0{ course, he liked the {act thai hit, old {rlend 

x2 - x - 1 = 0 

had motivated my pleasant little discovery; and he9 too, did not out all hesi-
tate to show his students some simple things that opened up Interesting, broaden 
and long en, avenues {on. them to pursue In the literature and In thelA pnlvute 
studies. Those o{ you who are teachers are Invlled to show these {ew paragraphs 
to your students. In some ways, the best way to remember a {riend Is to try to 
emulate him. So, In that spirit, I o{{er this leisurely little essay. 

In the central Quad at San Jose State University, across from the landmark 
Towerj there now stands a seven foot bronze abstract sculpture, Eommage a Av-
ohimede, which provides an already pleasant place with an additional pleasant 
intellectual sweep. This handsome bronze tribute to Archimedes, made possible 
by contributions from friends of the School of Science of the University, in-
corporates several noteworthy scientific and artistic design ideas which are 
dealt with below, 

For nearly two decades I had entertained the hope of placing some abstract 
sculpture on campus that would involve the Archimedes-related design in Figure 
1. This hope was known to Kathleen Cohen, Chairman of our Art Department, who 
introduced me to Robert J. BInight, a sculptor who was spending some time last 
year on our campus. 

Fig. 1 

Knowing that I did not. want some heroic-bearded-Russian-heavy-General-type 
figure, the sculptor cooperatively modified one of his existing graceful ab-
stract models to accommodate that Archimedean design, the only element of the 
whole piece which will make any immediate sense to a knowledgeable observer. 
Concerning the sculpture as a whole, I can only offer this quotation from a 
page in an Art Department brochures "It is an exploration of the figurative 
formula and displacement of space as it relates to the human form/1 
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There are many who think of Archimedes (287-212 B.C.) as the greatest intel-
lect of antiquity. He is always listed among the top four or five mathemati-
cians who have ever lived. In his time, and even much later, mathematicians 
were natural philosophers, natural scientists, if you please. Only in times 
much closer to our own do we find a greater scientific abstraction and conse-
quent apparent separation of many mathematicians from other parts of the quest 
to understand nature, I do not know if Archimedes ever studied botany, say, 
but the existence of his significant interest and work in important areas of 
science other than pure mathematics is well documented. He wrote numerous mas-
terpieces—on optics, hydrostatics, theoretical mechanics, astronomy, and math-
ematics, for example. It is true that, although he was surely a very good en-
gineer, he did not regard very highly his own dramatic mechanical contrivances. 

As indicated by his wishes regarding what should appear on his gravestone, 
Archimedes did most highly value a figure something like Figure 2, which refers 
to some beautiful geometry connected with his fundamental work as a primary and 

Fig. 2 

impeccable forerunner of those who much later established modern integral cal-
culus. (The Roman statesman Cicero wrote about and restored the Archimedes 
gravestone when it was rediscovered long after Archimedes had died.) That fig-
ure, a square with an inscribed circle, refers to this result of his: If the 
figure is rotated in space about that central vertical axis, the resulting 
sphere and cylinder have volumes which are as 2 is to 3; and their surface 
areas are also as 2: 3. Archimedes, having discovered and appreciated much 
beautiful geometry, would certainly have understood what Edna St. Vincent Mil-
lay was saying (years later): "Euclid alone has looked on Beauty bare." 

Democritus, who lived before Archimedes, knew the following result about 
Figure 3: The volumes of the cone and cylinder which are generated when the 
triangle and rectangle are rotated as indicated are as 1:3. 

Over the years, some calculus students have been told to consider Figure 4 
—which involves a square, not just any rectangle—and to use (modern) elemen-
tary calculus tools to find this beautiful result: 

(a) Cone : Sphere : Cylinder = 1 : 2 : 3 . 
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Fig. 4 
Fig. 3 

Some years after my teacher, George Poly a, had shown me that result, I read 
about the researches in aesthetics conducted by Gustav Theodor Fechner (in Ger-
many) , whose experimental results in 1876—-later confirmed in varying degrees 
by others—indicated that 75.6 percent (!) of his popular observers of rectan-
gles found that rectangle to be most pleasant whose proportions are about 8:5, 
as in Figure 1. The "about 8 : 5" refers to what Renaissance writers referred 
to as the "divine proportion," the "golden mean" or "golden section" of Greek 
geometers, used by da Vinci and others, by Salvador Dali in our time, and still 
making its appearance in some contemporary design. (The facade of the ancient 
Parthenon, if one includes the face of the roof, fits into such a rectangle. 
Dali's "Last Supper" painting has exactly these proportions.) 

Now 8 v 5 = 1.60, while the "golden mean" is actually 

(1 + /5) v 2 = 1.6180339..., 

a number which solves the equation x2 - x - 1 = 0 and is well known to Fibonacci 
people. This equation arises when geometers divide a line segment in "extreme 
and mean ratio"; i.e., so that its length is divided into parts of length x and 
1 such that (x + 1)/x = x/1. 

Figure 5 shows how easily we can construct a rectangle which possesses that 
"most pleasant shape." We simply start with a square, ABCD, and locate M9 the 
midpoint of its base. With the length MC from M to an opposite corner C as a 
radius, we locate the point P on the extension of AB shown. The sides of the 
resulting big rectangle APQD have lengths which are as 1 is to I. 

Well, after having read about conclusions such as Fechner's, it once (quite 
long ago now) occurred to me to draw what I have here shown as Figure 1, in-
volving that most pleasant rectangular shape, and to calculate the volumes of 
revolution generated by spinning this figure about its vertical bisecting axis. 
This can very quickly be done with the powerful elementary tools of calculus 
which have been bequeathed to us. I was then privileged to encounter the fol-
lowing beautiful result about these volumes: ~ 

(3) Cone : Ellipsoid : Cylinder = 1:2:3. 

(If the cone holds one liter, then the ellipsoid holds two liters, and the cy-
lindrical can will hold precisely 3 liters.) 



1981] HOMMAGE A ARCHiMEDE 217 

Fig. 5 

I don?t think Archimedes knew this theorem. I am sure he would have treas-
ured it. And if he had not been killed by a Roman soldier while he was absorbed 
in studying some circles in his home (in Syracuse, in southern Sicily, during 
the second Punic war) , he might well have observed it and recorded it at a later 
time. 

[Here are the calculations which yield the result (3). We refer to Figure 
1, where we let the radius of revolution be p, and the height of the cylinder 
be h. Then 

n m T r ., (BASE area) x (height) 2l /0 CONE volume = — — s_^_ = TTI3 ft/3, 

and, of course, the volume of the CYLINDER, i\r2h9 is exactly three times this 
number. 

The volume of an ellipsoid with minor axes of length a, b, and c, is 

(4/3)Tra2?e. 

Our ELLIPSOID from Figure 1 thus has volume equal to 

(4/3)7T(r)(2?)(7z/2) = (2/3)iTP2h. 

Putting all of this together, we have this relation among the three volumes of 
revolution. 

CONE : ELLIPSOID : CYLINDER 1/3 : 2/3 : 3/3 = 1 : 2 : 3. 

These calculations show that, actually, this beautiful result ((B) holds for any 
encompassing rectangular shape—not just one with divine proportions. Further-
more, it should be recorded here that this result, once we have guessed it, is 
directly derivable from (a) by an application of the powerful (modern) theory 
of "affine transformations.ff] 

It is this result (g) , then, which is built into the sculpture now in our 
Quad, installed as a tribute back over the ages to Archimedes. (The rectangle 
in our San Jose State sculpture is about 1.5 feet across, by the way, and the 
number associated with its proportions is about 1.61, which is, we think, close 
enough for anybody riding by on a horse!) 

Finally, one of the speakers at the Januar}r 19, 1981 dedication ceremonies 
was Professor Gerald Alexanderson (a friend of Dr. Hoggatt!s and mine, and 
Chairman of the Mathematics Department at the nearby University of Santa Clara), 
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who spoke on behalf of Dr. Dorothy Bernstein, President of The Mathematical 
Association of America. Here are a few excerpts from his remarks about "this 
powerful piece of sculpture honoring Archimedes." 

"As one who has spent much time and money trying to locate and visit mathe-
matical shrines, often in the form of statuary and monuments to mathematicians, 
I am particularly happy to be here today. Let us review what some of those 
monuments are. ThereTs the statue of Simon Stevin in Bruges. (For those whose 
history of science is a little rusty: he gave us decimals.) Then there are 
those great cenotaphs for the Bernoullis in the Peterskirche in Basel, with 
wonderful ladies in marble doing geometry with golden compasses. Of course, 
the best part of a visit to the Peterskirche is that one walks up the Euler-
strasse to get there. There?s the Gauss-Weber monument in Gottingen. Actual-
ly, I think they're shown doing physics, but never mind. Gauss was certainly 
a mathematician. (They are discussing their invention of the telegraph.) And 
a favorite of many is Roubiliac's statue of Newton outside the chapel at Trin-
ity College, Cambridge. But the best of all is the romantic, heroic statue of 
Abel in the Royal Park in Oslo. He is shown standing erect, head thrown back, 
with hair caught in the wind, and hefs standing on two vanquished figures, ob-
viously beaten in battle. One is the elliptic function and the other is the 
fifth-degree polynomial equation. Actually, I cannot tell which is which, be-
cause they're not terribly good likenesses. 

"Now right here in San Jose we have a monument to Archimedes. I am grate-
ful. When the urge comes on to visit a mathematical monument, it will be much 
more convenient (and cheaper) to make a pilgrimage to San Jose, than to Syra-
cuse." 
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THE UBIQUITOUS RATIONAL SEQUENCE 

DAVSD A. KLARNER 
Technological University Eindhoven, The Netherlands 

VEV1CAT10H 

Voxn Hoggott k<n been tkd In^pixotLon oi many papoJiM that kavd appdo/idd m 
tkih jouuinat. He hkaXdd kt& dntkuAta&m and ciwlo&tty about mathmatldh with a 
notable. gmoAo&tty, Wlh AtuddntA? intdnd&f and pm poJU ixsojtd dWvidkdd by tkd 
pfioblem6 kd po&dd and o^ttn kdlpdd to&olvz. My own tntoAd6t In 6dqudnc.d6 w<x6 
gtidotly tn^bxdnddd by tkd coHAdbponddncd u;e ktarctdd wkdn I \Xiou> a graduate. 6ta~ 
ddnt at tkd UntvoAAtty oi klbwta* Some o& my f^iAht papoAA wtuttdn at tkat 
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time. weste. Aolution* to h.ej>exvic.h pnoblomb he. po&ed. To thiA day, national 4e-
que.nc.eA pe.nme.ate. my n.ej>e.anch mnk. It £>e.emh appn.opni.ate. to pn.eAe.nt my own view 
o{ the. the.on.y o{ finite. di{{eJie.nceA which haA evolve.d oveA the. ye.anA. ThiA 
pcipojt will be. u6e.{ul {on the. be.ginneA, the. AonX o{ pennon \IeAn Hoggatt heZpe.d 
60 muck, and i t should have home. novelty ion. othe.nA cu> weZl. In i t , I hope, to 
Ahow how stationed Ae.que.nceA {it into home. pantA o{ mathematics—Itncan. algcbn.a 
and elementary calculus in panticulan.. The. exposition will be bntefi with plenty 
o{ gaps to be filled in by the. leaden. 

1 . RATIONAL SEQUENCES 

What i s a r a t iona l sequence? A • mapping / from IN - {0, 1, 2, . . . } into a 
f ie ld £F i s rat-tonal if and only if there ex i s t elements c19 . . . , c k e $ with 
ck •£ 0, and there ex i s t s In e N with k <. h such that 

(1) f{n) = c±f(n - 1) + - . + ckf(n - k) (n e N, h < n). 
Sometimes a rational sequence is said to satisfy a linear homogeneous differ-
ence equation with constant coefficients. This long phrase is usually short-
ened to "difference equation" or "linear recurrence." We refer to (1) as the 
difference equation form, meaning it is one way of presenting a rational se-
quence. The term "rational" is short, and it describes a characteristic feature 
of such sequences. Namely, the generating function of f is rational (the quo-
tient of two polynomials); in fact, the generating function is 

(2) £/<n)3» = 
/(0) + {/(l) - ̂ /(O)}a + ••• + {f(h) - ••• - akf(h - k)}z* 

n = v J. — i^-i /o — - • • — {_.. <>•-

We refer to (2) as the generating function form of the definition of f. For 
example, the difference equation form of the Fibonacci sequence is 

FQ = 0, F1 = 1, and Fn = Fn_1 + Fn_2 for all n _> 2. 

This is equivalent to the generating function form 

(3) I>n*w =" 1-
n=0 I - Z - Z 

Perhaps it should be emphasized that (2) and (3) have purely algebraic in-
terpretations. We are merely using the formal sum as a convenient notation for 
a sequence. For example, (3) only means that the Cauchy product of the se-
quences (1,-1,-1,0,0, . . .) and (F0 , F± , F2 , . . .) is equal to (0,1,0,0,...). 
In terms of formal power series, this means 

(4) (1 - z - z2)f^Fnzn = z. 
n = 0 

We are not concerned with the fact that the power series on the left-hand side 
in (3) represents the rational function on the right-hand side for certain values 
of z. Such a discussion would have to be given to justify putting z - h. in (3) 
to conclude 

F F F 
f + f + . . . + # + . . . . 2 i 

but this is not the sort of application we have in mind. The algebraic basis 
can be found in [1], for example. 

Rational sequences may be recognized as such in other ways than by the dif-
ference equation or rational generating function. Next most important after 
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these is the exponential form. To get to the heart of the matter, suppose 
P(z)/Q(z) is the generating function of the rational sequence / with P, Q poly-
nomials over $ such that $(0) = 1, and P, Q have no common zeroes. (That is, 
P/Q is a "reduced fraction.") Also, there is no loss in generality to assume 
P has degree less than that of Q. (Otherwise, write P/Q = R + S/Q where R9 S 
are polynomials with the degree of S less than that of Q.) Also, it can be 
supposed that the zeroes of Q are elements of OF (otherwise, just extend $ by 
these zeroes). Suppose the distinct zeroes of Q are 1/6-L , ..., 1/01 [619 ...9 
Qt ± 0 because Q(Q) = l],and let di denote the multiplicity of 1/0^ for i = 1, 
..., t . Then Q(z) = (1 - G ^ ) ^ ••• (1 - §tz)dt, and it can be shown that there 
exist polynomials Px, . . . , Pt over JF with the degree of Pi less than di for 
i, = 15 . . . , t such that 

(6) £ i £ i = _ _ _ + . . . + . 
y u ; (i - e l Z ) d l (i - etz)dt 

Rather than give an explicit formula for the coefficients of Pi (z) , we will just 
show how to compute them. To do this, it is enough to consider the case i = 1. 
Start with 

d 4^ Fi(Z) P(z) 
(7) P±(Z) + (i - e l S ) d l £ — ^ ^ , 

*-2(i - e<3)d' £ ( i - e ^ ) d i 

^ = 2 

and d i f f e r en t i a t e d1 - 1 times with respect to z to obtain dY equations involv-
ing the various der ivat ives of the polynomial P1(z). Then put z = 1/0! in each 
of these equations to get 
(8) Dd{PiM}aml/e = 0 J > ( 3 ) £ ( 1 - ^2^~di\ (j = 0, . . . , ^ - 1), 

1 ( i = 2 )z=l/Q1 

where D denotes the differential with respect to z. (All of this can be done 
in an algebraic manner by introducing a formal operation on sequences; calculus 
is not actually required.) Note that by putting z = 1/0X in the jth differen-
tial equation, all of the terms involving P2, ..., Pt have a factor (1 - Q1z), 
so these terms drop out of the computation. This gives rise to a linear system 
of d± equations in the d± coefficients of P1. This system can be solved be-
cause the matrix of the system is upper triangular and has a nonzero diagonal. 
Once we have P19 . . . , Pt in (6), we can develop each of the t rational func-
tions on the right into a power series using the binomial theorem. In fact, 
the full force of the binomial theorem is not needed. One only needs 

(1 - zf * = o\ d L I 
and this can be established by induction on d. Thus, if 

then 

(10) 
P,; (2) 

( 

'0 • f l " • ' f d i - 1 * 

CJ^J v* ( (n + di - l\ ,Vi (n + di - 2\ , \an n 

r r e ~ r = £ M *<-i ) + M * - I ) + - - j ^ 
(n + d - l\ 

for i = 1, ..., t . Since [ i is a polynomial in n with degree d - 1, 
the coefficient of zn in the right member of (10) has the form ir^n)©^, where 
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i\l (n) is a polynomial in n whose degree is di 
elude that 

1. Summing over i, we can con-

l/0£ are the distinct zeroes of Q(z) with multiplicities d±, 
, T\t are polynomials over 3" where 7T̂  has de-

(11) f{n) = TT1(n)01 + ••• + TTt(n)0tn (n £ tf), 

where 1/61S 
. .., d^s respectively9 and T\19 
gree less than di for i = 1, . .., t . We call (11) the exponential form for the 
rational sequence /. We derived the exponential form from the rational form, 
but it is important to note that given any one of the forms (1), (2), or (11), 
the other two can be derived from it, 

Continuing the example dealing with the Fibonacci sequence, note that 1 -
z - z2 has zeroes 1/a, 1/3 where a = (1 + /5)/2, 3 = (1. ~ /5~)/2. Hence 

1 - z - z2 = (1 - as)(l ~ 3s), 

and using the method outlined above, we find 

z _ az __ 3s \^ a" " 3" „ n 

=o L - z - z~ i - az 
(12) ZX I - z - z 1 - as 1 - 3s n = o ot - 3 

Thus, the Fibonacci sequence has the exponential form 

an - 6n 
(13) Fn =SL

rrf- (n e N), 

where a = (1 + /5)/2, 3 = (1 - /5)/2. 
There is still another useful presentation of a rational sequence called 

the matrix form. Let 

[b I o o ... o~] f/(n) 
0 0 1 0 ... 0 
10 0 0 1 ... 0 I \f(n + 1) (14) M 

' f e - 1 "k-3 

Vn = 

f(n+k- 1) 

(H e N), 

where M is a k x k matrix having [ek, cx] as its bottom row and the 
(k - 1) x (k ~ I) identity matrix as the minor of the (/c, 1)-entry. It is easy 
to verify that Mvn = vn+1 for all nzN, and hence that MnvQ = Vn for all ne&, 
Since Mn can be computed in about log n matrix multiplications, it follows that 
f(n) can be computed in 0(logn) basic steps instead of the 0(n) steps one might 
guess. Note that the eigenvalues of M are 61, ..., Qt with multiplicities d19 
..., d-t* respectivelys because the characteristic polynomial of M is 

det(M - zl) = (~zfQ(l/z) = (~l)k(z} »k-i ck)-
(This can be shown by a simple induction proof on k.) 

In the case of the Fibonacci sequence, we have 

(15) 

Hence 

(16) 

M = 
0 

L F n + 1 J 

1 l 

(n e N), 

(n e N). 

The difference equation 

(17) 
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with o19 ...., ck e JF, ck 4- 0, has order k. The order of a rational sequence is 
the minimum order of all difference equations it satisfies. A rational sequence 
f of order k satisfies a unique difference equation of order k, [The unique-
ness depends on the standard form given in (17); after all, nothing is changed 
by multiplying through (17) with a nonzero element of £F.] In general, a rational 
sequence of order k satisfies as many difference equations of order k + d as 
there are polynomials R over fF with degree d and i?(0) = 1. To see. that the 
difference equation of lowest order satisfied by f is unique, suppose for the 
moment there are two. Say / satisfies (1) and 

(18) f{n) = bjin - 1) + • • • + bkf(n - k) (h < n). 

Taking the difference of equations (1) and (18) leads to a new difference equa-
tion with order less than k satisfied by f If b 4 o for some £ with 1 <_ £ <_ fc. 
So k cannot be the order of f as was assumed. If f has order k and (17) is the 
unique difference equation of order k satisfied by / (this is called the mini-
mal equation), then the generating function of / has the form (2). Let P and Q 
denote the numerator and denominator, respectively, in the right member of (2), 
and note that 6(0) = 1, and P and Q have no common zeroes. (Otherwise, g would 
satisfy a difference equation of order k - 1.) We call the rational function 
P/Q the canonical generating function of f9 and note that it is unique. For 
each polynomial R with degree d over fF with R(0) = 1, we have P/Q = PR/QR9 so / 
satisfies a difference equation of order k + d with coefficients equal to the 
coefficients of QRm All difference equations of order k + d satisfied by / are 
obtained in this way, because each difference equation of order k + d satisfied 
by / gives rise to polynomials U9 V over's with 7(0) = 1 such that P/Q = U/V. 
But this means PR = U and QR = V with R a polynomial over £F with degree d and 
i?(0) = 1. We conclude this discussion of the order of a sequence by observing 
that the order of / can be deduced from its exponential form by adding t to the 
sum of the degrees of i\1 s . . . , i\t. 

2. SITUATIONS IN WHICH RATIONAL SEQUENCES ARISE 

Sometimes rational sequences are formed in terms of other rational sequences. 
For examples if/, g are rational sequences over the field JF and a9 b e J, then 
we can form a new sequence In - af + bg defined by 

(19) h(n) = af(n) + bg(n) (n e N). 

Let Fs G5 H denote the generating functions of Fs G9 H9 respectively, then H = 
aF + bG. This means that H is a rational function because F and G are, so h is 
a rational sequence. It is easy to check that the set of all rational sequences 
over JF forms a subspace of the vector space of all sequences over ?. Further-
mores the sequences which satisfy equation (17) form a k~dimensional subspace. 
If 01, ..., 0t denote the zeroes of zk - c\~x -• • •• - ck with multiplicities 
d 9 ...s dt 3 respectively, it is easy to check that each of the sequences 

(ttJ'e": n e /N) for all j e IN and £ = 1, . .., t 

satisfies (17) . Using the exponential form for any sequence f which satisfies 
(17)s it follows that the k sequences 

(20) (nJ'01 m z IN) 0 _< j < d 9 i = 1, . . . , t 

form a basis for the vector space of all sequences which satisfy (17) . That 
this actually is a basis depends heavily on the proof that every solution of 
(17) has the exponential form given in (11). 

There are ways other than forming linear combinations to build new rational 
sequences from those on hand. For example, consider the Cauchy product f x g 
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or the termwise product / • g defined, respectively, 
n 

(21) {f x g)(n) = S/(i)^(n - i) (n e N), 
i = o 

(22) (f * ̂ )(n) = f(n)g(n) (n e ff). ' 

Let h = f x g9 and let F, £» # denote the generating functions of /, gs h9 re-
spectively•'. Then H = FG9 and H Is a rational function if the same is true of 
F and G. Hence, h is a rational sequence if / and g are. To see that / • g is 
rational whenever / and ̂  are, use the exponential form of / and ga It is fair-
ly easy to check that the product of two exponential forms is again an exponen-
tial form, so this approach gives a proof. The generating function of f • g 
can be given in terms of F and G by means of a contour integral as was shown in 
[2], The fact that the termwise product of two rational sequences is again 
rational seems to be due to Vaidyanathaswamy [10]. 

The termwise product can be used to produce all sorts of unexpected results. 
For example, since the Fibonacci sequence is rational, it follows that 

(p/: n e IN) 

is rational for all j e P. The minimal equation for the jth powers of the Fi-
bonacci sequence were given in [9], Also, the sequence p defined by p(n) = n 
in e IN) satisfies 

pin) == 2p(n - 1) - pin - 2), 2 .<. n, 

so pj = in3 i n e IN) is rational for all j e P. Hence, the linear combination 
q = aQ + OL-J) + ' •• + a-pJ is also rational, and so is g • / for any rational f. 
For example, again using the Fibonacci sequence, 

(n2Fn - n + 2 : n e IN) 

is rational. A little subtler use of the termwise product involves periodic 
sequences. Suppose s is a sequence such that s(ri) = s(n - m) for all n >_ h for 
some h9 m e IN; that is, s is eventually periodic and has period m. By defini-
tion, s satisfies a difference equation, so s is rational. In particular, let 
a, m e IN with 0 < m9 and define s(n) = 1 whenever a <_n9 n E a (mod m) , and 
s(n) = 0 otherwise. Since s is eventually periodic,s • f Is rational whenever 
/ is; furthermore, the generating function of s • f has the form zaP(zm)/Q(zm) 
with P, Q polynomials over S7 and Q(Q) = 1. Hence, the sequence g defined by 
gin) = firrm + a) for all n z IN has P(z) /Q(z) as its generating function, so g 
is rational. For example, the subsequence (F2, F?9 F'129 •••) = (̂ 5n+2 : n e ^ 
of the Fibonacci sequence is rational (the difference equation is 

Xn = l l x
n - l + Xn-2> 2 £ n). 

Interwoven rational sequencers are also rational. More precisely, suppose fQ9 

•••» fm-i a r e rati° nal sequences, and define / by 

(23) fin) = fr(n) [where n E r (mod m), n e tit] . 

Let F9 FQ9 . .., Fm_1 denote the generating functions of f9 fQ9 . .., fm_±9 re-
spectively, then 

(24) F(z) = P0(^) + 3^(3w) + ... + zm'1Fm_1(zm)' 
Since FQ9 ..., Pw_x are rational functions, so is F; therefore, / is a rational 
sequence. 

Sometimes a finite set of sequences is defined by means of some initial 
conditions and a finite set of difference equations. It turns out that each of 
the sequences is rational in this case. This can be formulated more precisely 
as follows: Let f19 ...9f be sequences, and suppose for each i, \ <_% <_m9 
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there exists hi e N9 together with finite sets S. , ..., S. c N and constants 
ci-k corresponding to each j e Sik such that 

m 

(25) f. (n) = £ X) e y k /* <" - 3) (n e B, ht < n) 
k = 1 j eSilt 

for £ = 1, ...,772. Also, suppose fiin) is given for all n with n <_ht for £ = 
1, ..., ffl, and suppose that this boundary condition together with the system 
(25) gives an unambiguous algorithm to compute the sequences fis . . . , fm . Then 
each of / , ..., /m is rational. To see this, convert the system (25) to a 
system of linear equations in the generating functions F^9 . .., Fm. The coef-
ficients in this system are polynomials in z over the field 3, This system can 
be solved using CramerTs Rule to deduce that each of F±, ..., Fm is a rational 
function. In fact, Fi has the form Fi /Q where Q is the determinant of the sys-
tem, and P̂  is a polynomial computed in a similar fashion. 

A particular case of the foregoing situation involves matrices. Suppose 
M = [eij] is an m x m matrix over the field $, and let vQ= [/̂  (0) , ..., fm(0)]T 

(where T denotes the transpose operator). Define vn for all n e IN by i;n+1=Mt;n. 
This is equivalent to the system of difference equations 

(26) f.(n + 1) = oilf1(n) + ... + oinfm(n) (n e ff) 

for £ = 1, ...,?72. In terms of generating functions, this becomes 

(27) MF = u0 

where F = [i^ , . .., Fm] . The determinant of this system is the characteristic 
polynomial of M; that is, det(M - zl) . This gives information about the denom-
inator polynomials in the generating functions F±, ..., Fm . This observation 
can be taken a little further to deduce the Cayley-Hamilton Theorem as was done 
in [3]. 

One might get the impression that the rational sequence f1 (defined in the 
previous paragraph) has order m, and that the minimal equation is given by the 
characteristic polynomial of M. But this is not always the case, and then Kry-
lovfs method may be useful. (See [11].) The idea here is to look for a linear 
dependency among the vectors M°VQ, M1vQS . . . , Mkv Q for fc = 1,2, ... . Once one 
has o 9 . . . s ck e <F for some minimal k such that 

(28) cQM°vQ + ... + okMkv0 = Mk+1vQ9 

multiply through (28) with Mn to deduce that f satisfies 

(29) cQxn + c1xn+1 + ... + ckxn+k = xn+k+1 (n e N). 

3. SOME APPLICATIONS 

This section gives brief descriptions of some recent results obtained by 
the author which involve rational functions. We start with domino tilings of 
rectangles with fixed width [4]. The idea here is based on an old, well-known 
observation about the number of paths of fixed length in a directed graph. Let 
7 = {1, ...,772}, let E C 7 x 7, and let M = [e ^ ] be an m x m matrix defined by 
e^ = 1 if (£, j) £ E and e^ = 0 otherwise. Elements of 7 are vertices, ele-
ments of S7 are directed edges, and M is the matrix of the directed graph (7, E) . 
A sequence (i>0, ..., uk) is a -path of length k in (7, #) just when (vi_1» V^) e 
E for £ = 1, ...,&. It is well known that the number of paths (v Q 9 ...9 £>£.) 
of length k in (7, S7) with vQ = £ and z;̂  = j is the (£, j)-entry in Mfe. Sup-
pose we are only interested in paths which begin and end with vertex 1. Then 
let c( k ) denote the first column of Mk for all k £ IN, and observe that Mc (fe) = 
0(k + i) f o r a l l £ £ ̂  W e w a n t t h e t 0 p- ei e m e n t c <£> 0f c (7°  for all k £ IN, so 
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the method outlined in the last paragraphs of Section 2 can be applied. In 
particulars it follows that (cj^ % k z IN) is rational, and Krylov?s method can 
be used to find a difference equation. Now let us see how this applies to 
domino tilings* Let t(m9n) denote the number of tilings of an m x n rectangle 
with dominoes for all m9 n e IF. We fix the width m and concentrate on the com-
putation of the sequence (t(m9 n) : n e IN). To do this3 we create a graph whose 
vertices are cross-sections of tilings, and two cross-sections form a directed 
edge in the graph just when one can immediately follow the other in some tiling. 
A cross-section is a grid line parallel to the end of width m which cuts across 
some dominoes and passes others,, Cross-sections can be encoded as binary se-
quences: 1 denotes a cut domino, and 0 denotes a crack between. For examples 
the 5 x 6 tiling shown in Figure 1 is encoded by the columns of the 0-1 matrix 
shox̂ n to its right. If we make the all-zero cross-section vertex 15 the m x n 
domino tilings correspond one-to-one with paths of length n beginning and end-
ing at vertex 1. More details can be found in [4]. 
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Fig. A 5 x 6 domino tiling with its binary cross-section encoding 

Now we give an example illustrating how a rational sequence can arise in a 
system of difference equations. Let A denote a finite set called an alphabet* 
and let A* denote the set of all finite sequences of elements of A» Such se-
quences are called words9 and in particular A denotes the empty word. Let F 
denote a finite subset of A* and let A*/F denote the set of all elements of A* 
which do not have any elements of F as subwords. Elements of A* belonging to 
A*/F are called good and others are called bad. Let w denote a weight function 
defined on A* such that w(nv) = w(u)w(v) for all u5 v e A** Suppose further 
that for each u e A*/F the sum 

is also a weight,, 
(uv E A*/F) 

The problem is to compute 

G GA = X w(u). 
(ueA*/F) 

It was shown in [5] that G is a rational function in the weights of elements of 
A. This follows from two equations: 

(30) 

and 

G - w(A) + Y,Gas 
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(3D Gu -w{u)^G - JXJ, 
where the sum in the right member of (31) is over all basic words uv with v e 
A* IF. A word is basic if it is bad but no proper initial subword is bad. Note 
that if u'is good9 and uv is basic, then v is not longer than n where n + 1 is 
the length of the longest word in F. (A terminal subword of uv is an element 
of F and must overlap u.) Together (30) and (31) give rise to a linear system 
involving Gu for all good words u not longer than n. A procedure may be fol-
lowed to keep this system small* First, write down (30). Then in subsequent 
stages write down expressions for those Gu which have appeared on the right 
side of earlier expressions obtained from (31) . Since the length of u is bounded 
by n9 this procedure terminates leaving us with a system linear in certain Gus 
u e A IF. We may conclude from the general argument given in Section 2 that Gu 
is rational in the weights w(a) s a z A; in particulars this is true of G. 

The result just described was used in [5] to treat a special case of the 
following unsolved problem. Let a^(x) = m^x + a^ be an affine function defined 
on the integers with W{5 ai e IN 9 mi > 1, for i = l9 S8e, k. Let <A> denote the 
semigroup generated by A = {ax9 . .., ak] under composition of functions. Note 
that an element ae <v0 has the form a(x) = mx + a with m a product of the num-
bers m1, . . . s mk . Let p19 . . . , p, denote the distinct prime divisors of m1, . . . , 
mk, and for each a e <A> with a(x) = p^1 . .. Vyl

hx + a* l e t w(a) = ^ I 1 oas xhh • 
It is easy to check that u(a(3) = w(a)w($) for all a, 3 £ <^> where a3(#) = 
ot(3G*0)« Is it true that 

we<A> 

is a rational function? This problem has been solved when m^ = m&i for some 
ei , m e Z5 i = l9 . . . 9 k; the case when ^ = •'•• = ek = 1 is treated in [6], 
and the systems of difference equations play an important role. 

We conclude with an example which illustrates a frequently used formula 
from combinatorics. Let A denote a finite alphabets let A* denote the set of 
words over A9 and let w denote a weight function on A* which satisfies w(uv) = 
w(u)w(v) for all u9 v e A*. Then 

(32) 5>00 = Ẑ  
ueA* 1 — 2L̂  W(a) 

a e A 

Thus, rational functions arise. For example, this simple formula together 
with the inclusion-exclusion formula were used in [7] and [8] to show that the 
sequence of forms assumed by growing crystals is rational, more precisely, let 
H9 D e Zk be finite sets, and consider the sequence of crystals 

H9 H + D9 H + D + D9 . . . 

formed by starting with the initial hub H9 and adding increments equal to D in 
subsequent stages. Such a sequence is indicated in Figure 2 with k = 2, H = 
{(0, 0)}, D = {(0, 0), (1, 0), (0, 1)}. r——i 

Fig. 2. A growing crystal 
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Give an element i = (i19 . .., ik) e I> weight w(i) = x^1 ... x£k and define 
the weight w(S) of S C Zk to be the sum of the weights of the elements of S. 
The main result is that 

(33) w(H) + w(H + D)z + W(H + D + £);s2 +• - . . 

is a rational function in x-{ , ...,#£ and s. • A consequence of this is that the 
sequence of volumes (|#| , |# + Z?| , |# + Z) + Z)|,..,) forms a rational sequence. 
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ON THE PROBABILITY THAT n AND ft{n) ARE RELATIVELY PRIME 

KRISHNASWAMI ALLAD1 
The University of Michigan, Ann Arbor MI 48109 

To tk(i m&nofiy o^ V. E. Hoggcutt Jn.—my tdcio}i&i and ^timd 

It is a well-known result due to Chebychev that if n and m are randomly 
chosen positive integers, then (n, m) - 1 with probability 6/TT2. It is the 
purpose of this note to show that if 9,(n) is the number of prime factors of n 
counted with multiplicity, then the probability that (n, Q(n)) = 1 is also 6/TT2. 
Thus, as far as common factors are concerned, Q(n) behaves randomly with respect 
to n. 

Results of this type for fairly general additive functions have been proved 
by Hall [2], and in [1] and [3] he looks closely at the situation regarding the 
special additive function g(n), the sum of the distinct prime factors of n. 
Hall's results do not apply to either Q,(n) or o)(n) , the number of distinct prime 
factors of n, and so our result is of interest. Our proof, which is of an 
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analytic nature, proceeds along classical lines, and so must surely be known to 
specialists in the field. In any case, it never seems to have been stated in 
the literature and so we felt it was worthwhile to prove it particularly since 
it is interesting when viewed in the context of several celebrated results on 
the distribution of Q(n) (see [5]) such as those of Hardy-Ramanujan and Erdos-
Kac. By a slight modification of our proof, the same result can be established 
for 0)(n) ; we have concentrated on Q,(n) for the sake of simplicity. Throughout, 
implicit constants are absolute unless otherwise indicated and p always denotes 
a prime number. 

Tho.on.zm:. Let 

Then \<_n±x, (n, ft(n)) = l 

Q(x) = ^r + O ^ U o g l o g l o g x)~l13 • ( l o g l o g l o g l o g x)'1). 
7T 

To prove the theorem, we need a few auxiliary results. 

Lojnmci 1: Let x > 20, and k be a positive integer such that 

k <_ {loglog x/logloglog x}113. 

Then for all integers j, 

L l = f + 0(x exp{-(loglog x)1/3}). 
l<Ln±x K 

ft(n) = J (mod k) 
YKQOfc Let z be a complex number with |s| = 1. Then it follows from a re-

sult due to Selberg [6] that 

Sz(x) - T a « W , - *(«>* + o ( — ^ V (1) 
i<n<* (logx)1"2 \\(log x)2'z\ J 

where A(z) i s a n a l y t i c for \z\ < 2 . Note t h a t 

Kn<x ^ l<n<x l"l Q(n) Ej (mod fe) 

where 
1 ^ " * 8 Va)» (2) 

£= 1 

p = exp{2Tfi//c}. 

From (1) we deduce that the largest term on the right of (2) arises out of the 
root of unity with largest real part. Since S1(x) = [x], the largest integer 
<̂  x9 we get from (2) 

\±n<_x k 
1 = J + 0(a?(log x)cosWk)-1)- (3) 

fl(n) ^3 Imod k) 

Lemma 1 follows from (3) with a little computation. 

Lemma 2: Let x > 20 and Zc be a positive integer satisfying 
3 

k £ J l°gl°g x-

Then for all integers J, we have 
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£ 1 «-iL 
l±n<_x ^1/3 

ft(») = J (mod fc) 

Vswoj: We may assume that j ̂  1. We rewrite the sum in the lemma as 

E i - E E i + e E i . w 
l<_n<_x v = j (mod fc) l_<n£a: l £ n < x 

tt(n) = j (mod fc) 0< v £ (3 /2 ) log log a: ft(n)=v fl(n) > (3 /2 ) log log x 
where 0 < 9 < 1. 

To estimate the first term on the right of (4) we use the following result 
due to Sathe and Selberg (see [6]): 

So, the term is 

E - A / ̂ (loglog x)v 1 \ 3 ., -

o * = °{T^f^r^iji f o r l^v^ii°giog^» 

« x V^ (loglog a;) 

m = j (mod k) 

__ V (loglog a;) rss 
X ^ 772! k ̂  

Set y = loglog ar, So the sum in (5) is 

x H5i<<i^,rE8"*- (6) 
log x k f" wi'1 log x k . t 

wK = 1 u* = 1 

where ZJ ranges over all /cth roots of unity and w = u + iv. 
First9 we assume that 

{loglog tf/logloglog x}lf3 <. k <_ y loglog ̂ a Lxugxug ^/xugxugiug *u/ <? V <f 

Then 

E «"" = E «P{(COS f^ / } = E + # E - Sx + S2. (7) 
a>*- l £ = 0 *V ** ' > £<7<2/3 or fe2/3<JKk-fc2/3 

k-kz/3<$L<k 
C l e a r l y 

^ £ 2k2/3e2/ « fc2/3 • l og x.- (8) 

To e s t i m a t e 5 2 , w r i t e 

exp<Mcos -^~)y\ = £ y exp j / / c o s - ~ - j - ljz/i (9) 

and observe that 

-{(»•¥)->}»£• 
From (7)9 (9), and (10) we deduce that 

S2 « k2/3 log x. (11) 

If we combine (6)9 (7)s (8)9 and (11), we see that the first term on the right 
of (4) is << x/k1/3 if 

o 

{loglog x/logloglog x}113 £ k £ -j loglog x. (12) 

The last term in (4) is easily bounded by appealing to the following theo-
rem of Turan (see [49 pp. 356-358]): 
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YJ iti(n) - loglog x}2 « x loglog x. (13) 

That is 9 if N(x) is the number of n <_ x for which 

3 tt(n) > -j loglog #,. 

then (13) shows that 

N(x) • (loglog x)2 « x loglog x9 
whence 

Nix) « ic/loglog x « x/k1/3. (14) 

Thus9 we have established Lemma 2S for k satisfying (12) „ On the other hand, 
if k <_ {loglog x/logloglog x}1, then Lemma 2 follows from Lemma 1. 

VHJOOI oj thd Tkzokem: For n- > 0, define 

k(n9 n) = Ftp and ^n = n P-
p£ils p|(«. fi(n)) P in 

Then 

Kn<x l±n±x 

k(n,r)J= 1 3P> n, p | ( n s fi(n)) 

= /S3 + Sh , r e s p e c t i v e l y 9 

where - 1 £ 0 ' < 0 . But 

5 3 
\<_n<x d\k(.n,r\) d$n l<n<x . . 

d|iVn l<.»!<.a?/d 
ft(m) = -fi(d) (mod d) 

In (15) we will choose T] such that the integers d in (16) satisfy 
U/3 

d < {(loglog I)/logloglog(|)j> . 

The Prime Number Theorem (see [4, p. 9]) shows that 

ri = -^ logloglog x (17) 

is a permissible choice. 
With this choice of r\ in (16) s Lemma 1 shows that 

First 

d\N, 

Also 

dl^n (18) 

= x 12 ~ir + ° (logiog x E d r 
d\Nn

 a \ d\Nn I 
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d\Nn 

From (17), (18), (19), and (20), we see that 

6x 

TA= n (I +£) « log n. (20) 
d\N„ PinV P/ 

, we see that 

53=5+ 0(f)- (21) 

(22) 

To estimate S^, we note that 

Kl < E i +e" E i 
1 <_n <_ar 1 £ ^ £ # 

3P > n» p <_ (3 /2 ) log log x 3P> ( 3 /2 ) log log x 
P\(n, tt(n)) p\(n, ft(w)) 

= ^5 + S69 r e s p e c t i v e l y , 
where 0 £ 0" £ 1. Lemma 2 shows t h a t 

ss< E E i « £ -SJ- (23) 
n< P £ (3 /2 ) log log a? m£a:/p p > n p 

ft(m) = -1 (mod p) 
From the Prime Number Theorem and (23), we deduce that 

Ss « - ~ (24) 
n1/3 log n 

With regard to Ss, note that 

Ĝ ̂  J2 1 « 1 T (25) 
fl(n) > (3/2)loglog a? 

by t h e use of ( 1 4 ) . 
F i n a l l y , by combining ( 1 5 ) , ( 2 1 ) , ( 2 2 ) , ( 2 4 ) , and ( 2 5 ) , we a r r i v e a t 

Q(x) = -p + 0 I — t - ). (26) 
W / 3 log n ) ' 

The theorem fo l lows from (26) and ( 1 7 ) . 

R&Y\(Vik6.' With a l i t t l e more c a r e , our theorem can be improved t o 

Q(x) = ̂ f + 0 e ( x ( l o g l o g l o g x)~1/2+e), 
TT 

where e > 0 is arbitrarily small. 
If n > 0 is a randomly chosen square-free integer, and m a randomly chosen 

positive integer, then (n, m) = 1 with probability 

o = n(i-
p \ p2 + p 

By suitably modifying the proof of our theorem, we can show that if n is square 
free, then (n, Q(n)) - 1 with probability o. Thus, ft(n) behaves randomly with 
respect to n9 even in the square-free case. 
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PROPORTIONAL ALLOCATION IN INTEGERS 

A. P. HILLMAN 
University of New Mexico, Albuquerque NM 87131 

Vd&ldattd to tka memory o& \J2xv1 Hoggatt 

The U.S. Constitution mandates that "Representatives shall be apportioned 
among the several states according to their respective numbers. . . . The num-
ber of representatives shall not exceed one for every thirty thousand, but each 
state shall have at least one representative." Implementation is left to Con-
gress. 

Controversy arose over the first reapportionment. Congress passed a bill 
based on a method supported by Alexander Hamilton. President George Washington 
used his first veto to quash this bill, and an apportionment using Thomas Jef-
ferson^ method of "greatest divisors" was adopted. This matter is still con-
troversial. Analyses, reviews of the history, and proposed solutions are con-
tained in the papers [3], [4], and [5] in the American Mathematical Monthly. 

The purpose of this paper is to cast new light on various methods of pro-
portional allocation in natural numbers by moving away from the application to 
reapportionment of the House of Representatives after a census and instead con-
sidering the application to division of delegate positions among presidential 
candidates based on a primary in some district. 

1. THE MATHEMATICAL PROBLEM 

Let N = {09 1, 2, ...} and let W consist of all vectors V = (v19 ..., Vn) 
with components v^ in N and dimension n > 2. Let the size of such a V be 

\V\ = v1 + ... + vn. 

An allocation method is a function .F from Nx W into W such that 

F(s, V) = S = (sl5 ..., sn) with |s| = s. 

We will sometimes also write F(s, V) as F(s; vl9 ..., Vn). S = F(s9 V) should 
be the vector in W with size s and the same dimension as V which in some sense 
is most nearly proportional to V. 

A property common to all methods discussed below is the fairness property 
that 

si >. Sj whenever Vi > V- . (1) 

Note that s^ > SJ can occur with v^ = VA since the requirement that each s^ be 
an integer may necessitate use of tie-breaking (e.g., when all v- are equal and 
s/n is not an integer). 
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2. TYPES OF APPLICATIONS 

For reapportionment of the U.S. House of Representatives, at present n=50, 
s=435, the Vi are the populations of the states (say in the 1980 census), and 
s^ is the number of seats in the House to be alloted by the method to the ith 
state. Proportional allocation could also be used to divide congressional com-
mittee positions among the parties or to allot Faculty Senate positions to the 
various colleges of a university. 

We want to get away from the relatively fixed nature of the dimension n and 
the constitutional requirement that each Si _> 1 in the reapportionment of the 
House problem and therefore, in the main, will use language and examples appro-
priate for the application to presidential primaries. 

3. TWO EXTREME METHODS 

The "plurality takes all" method P has 

P(s; v19 ..., vn) = (al9 ..., sn) 

with sk - s if vk is the largest of the v^ and Si = 0 for all other i. This 
method is used in elections in which s = 1, e.g., elections for mayor or gover-
nor. It is also used in allocating the total electoral vote of a state based 
on the vote for president in general elections. This method is certainly not 
one of "proportional" allocation. 

Perhaps at the other extreme is the "leveling" method 

L(s; v19 ..., vn) = (s19 ..., sn) 
in which the s^ are as nearly equal as possible. That is, if s = qn + r with 
q and r integers such that 0 <_ r < ns then s^ - q + 1 for the r values of i with 
the largest components Vi and &i - q for the other values of i. This is the 
method used to allocate the 100 seats in the U.S. Senate among the 50 states. 
It too is not a method of proportional allocation. 

4. ONE PERSON, ONE EFFECTIVE VOTE 

We find it helpful to preface our discussion of proportional allocation 
with the consideration of a proportional representation election to choose 
people for a city council, or a school board, or to represent the electorate in 
some other way. As a means of achieving proportional representation it is de-
cided to give each voter only one vote; the s candidates with the highest votes 
will be declared elected. 

Each voter has a favorite candidate but a vote for the favorite may be a 
wasted vote because that candidate is so strong as not to need the vote in or-
der to- be elected, or is too weak to be in contention. If enough electors 
change their votes in fear of such wastage, the results may be a serious dis-
tortion of their wishes and may involve an even greater wasting of votes. 

But there are methods which provide near optimum effectiveness for the to-
tal vote. They involve a preferential ballot on which each voter places the 
number 1 next to the voterfs first choice, 2 next to the second choice, etc. 
Then, a very sophisticated system is used to transfer a vote when necessary to 
the highest indicated choice who has not yet been declared elected or been 
eliminated due to lack of support. Such a method is used to select members of 
the Nominating Committee of the American Mathematical Society (see [6]) and to 
elect members of the Irish Parliament (see [2]). 

The following arithmetical question arises in such single vote, multiposi-
tion elections: If there are v voters and s positions to be filled, what is the 
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smallest integer q such that q votes counted for a candidate will guarantee 
election under all possibilities for the other ballots? Clearly, the answer is 
the smallest q such that (s + l)q > v or 

q = [{v + l)/(s + 1)], where [x] is the greatest integer in x* (2) 

If Americans in general were more educated politically and mathematically9 such 
a method might be used to elect delegates to presidential nominating conven-
tions . Then an elector could number choices based on whatever criteria were 
considered most important, such as the presidential candidate backed, major 
issues, or confidence in a specific candidate for delegate. 

At bestj our primaries allow electors to express one choice for president. 
What "one person, one vote19 mechanism could we use to assign each vote to a 
candidate for delegate to make best use of the only information we have, that 
is, the number x>i of votes for presidential candidate C^ ? If the Vi people 
voting for Ci knew that they could maximize the number of delegates allocated 
to Ci by dividing into s^ equal-sized subsets with each subset voting for a 
different delegate candidate pledged to C^, the only information we have indi-
cates that they would do so. The result would be the allocation of the Jeffer-
son method, which we discuss in the next section. 

5. JEFFERSON'S GREATEST DIVISOR METHOD 

In a given primary, let there be n presidential candidates C^ , let x>i be 
the number of votes for C^, and let s be the total number of delegate seats (in 
a given political party) at stake in that primary. Suppose that the presiden-
tial candidates have submitted disjoint lists of preferred candidates for dele-
gate positions with the names on each list ranked in order of preference. 

Now let us fix i and consider each individual vote for C^ as a single 
transferable vote which is to be assigned to one of the delegate candidates on 
the Ci list, with the assignment process designed to maximize the number s^ of 
people on this list winning delegate seats. Below we show inductively that the 
following algorithm performs this optimal assignment and determines all the s^. 

From the ns ordered pairs (£, j) with 1 <_ i <_ n and 1 <. j <_ s, choose the 
s ordered pairs for which v^/j is largest. This may require a tie-breaking 
scheme (as is true of all allocation methods). Then the allocation sa to can-
didate Ca is the number of (i, j) with i = a among these s chosen pairs. 

6. FIRST EXAMPLE 

Here let n = 4 and the votes for four presidential candidates C^ in a given 
primary be given by the vector 

(v19 v2, v35 vh) = V = (3110, 2630, 2620, 1640). 

The necessary calculations and ordering for the Jefferson method J of allocat-
ing a total of s delegate positions among the four contending campaign organi-
zations is shown for 1 <_ s <. 22 in the following tables 

Ci Co C, c^ 
v = 
V/2 
v/3 
vlk 
v/5 
v/6 
v/7 
v/S 

vote received (1) 
(5) 
(8) 
(12) 
(15) 
(19) 
(20) 

3110 
1550 
1036+ 
777+ 
622 
518+ 
444+ 
388+ 

(2) 
(6) 
(9) 
(13) 
(17) 
(21) 

2630 
1315 
876+ 
657+ 
526 
438+ 

(3) 
(7) 
(10) 
(14) 
(18) 
(22) 

2620 
1310 
873+ 
655 
524 
436+ 

(4) 
(11) 
(16) 

1640 
820 
546+ 
410 
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The position indicators in parentheses before various quotients v^/j show the 
positions of these quotients when all quotients for all candidates are merged 
together in decreasing order. The number s^ of delegate seats to be alloted to 
presidential candidate C^ is the number of position indicators from the range 
1, 2, . .., s which appear in the column for C^. For example, when s = 20, the 
allotment to C2 is s = 5 since the five position numbers 2, 6, 9, 13, 17 from 
the range 1, 2, ..., 20 appear prior to quotients V2/j in the C2 column. The 
complete allocations for s = 20, 21, and 22 are 

J (20, V) = (7, 5, 5, 3), 
J(21, V) = (7, 6, 5, 3), 
J(22, V) = (7, 6, 6, 3). 

This example helps us in discussing the rationale for the method J. Let 
the total number of delegate seats to be alloted be 21. Think of 20 of the 21 
spots as having already been alloted with the distribution 

J(20, V) = (7, 5, 5, 3) 

and ask to whom the 21st spot should be given. Clearly, 6*3 is not entitled to 
a 6th spot before Cz obtains a 6th spot. To see if C\ should get an 8th, or Cz 
a 6th, or Ci+ a 4th, one looks at the largest quotient among ẑ i/8, 2̂ 2/6, and 
1^/4. The 21st spot goes to Cz on this basis. The result is the same as what 
would happen if we considered each vote for Ci as a single transferable ballot 
which should be assigned so as to maximize the number of delegates pledged to 
6*2- Then the 2630 votes for Cz could be assigned in six batches of at least 
438 for delegate candidates pledged to Cz and it would be impossible to assign 
the votes for the other presidential candidates in batches of at least 438 to 
more than 7 people pledged to C.i, 5 to C3, and 3 to Ci+. 

Now, let us alter the above example by introducing new presidential candi-
dates C5, Ce, ..., Cn (some of whom may be mythical write-in names) with votes 
V59 ...9Vn. We keep the total number of spots at s = 20, and note that the 
20th largest V^/j among the original candidates C\, Ci, C3, Ci+ is 444+. Hence 
the allocation will be (7, 53( 5, 3, 0, 0, ..., 0) unless some new v^ is at least 
445. Thus the method J has a built-in mechanism for distinguishing "real can-
didates" from "ego-trippers" and recipients of small batches of write-in votes 
deliberately wasted as a form of protest. 

"U HAMILTON'S ROUNDING METHOD 

Let us continue to use the votes vector V- (3110, 2630, 2620, 1640) of our 
example above. Let the number s of delegate positions available be 20. Hamil-
ton's reasoning was similar to the following: 

The "ideal" allocation of 20 positions in exact proportion to the V^ , but 
dropping the requirement of allocating in whole numbers, would be 

C\ C2 Cz ^h 
6.22 5.26 5.24 3.28 

If we have to change these to whole numbers, then clearly C\ is entitled to at 
least 6, Cz and Cs are entitled to at least 5, and C4 to at least 3. That dis-
poses of 19 of the 20 positions. Who should get the 20th? Hamilton Vs method 
H, also called the Vinton Method, would give it to Ci+ on the ground that his 
"ideal" allotment has the largest fractional remainder. (In Europe, this method 
is called the "greatest remainders" method.) 

We note that the Hamilton allotment #(20, 7) = (6,5, 5,4), while the Jef-
ferson allotment is c7(20, V) = (7,5, 5,3). Before we decide on which is "more 
nearly proportional," let us use the same votes vector V = (3110, 2630, 2620, 
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1640) but change from s = 20 to s = 22. Then the "ideal" decimal allocation 
becomes 

Oi b2 O3 O4 
6.842 5.786 5.764 3.608 

and the Hamilton allotment #(22, V) is (7, 6, 6, 3). The surprise is that add-
ing two new positions9 while keeping the votes the same, results in Ch losing 
one spot and each of the others gaining one. This phenomenon using the method 
H is called the "Alabama Paradox" and was first noticed when the Census Office 
chief clerks C. W. Seaton, showed that the apportionment under H of seats to 
Alabama in the House after the 1880 census would decrease from 8 to 7 if the 
House size were increased from 299 to 300 (with the same population figures). 

Balinski and Young [3, p. 705] quote Seaton, after discovering the paradox, 
as writing that "Such a result as this is to me conclusive proof that the pro-
cess employed in obtaining it is defective. . . . [The] result of my study of 
this question is the strong conviction that an entirely different process should 
be employed" and also quote [3, p. 704] Representative John C. Ball of Colorado 
as saying that "This atrocity which [mathematicians] have elected to call a 
1 paradox1 . . . this freak [which] presents a mathematical impossibility." 

Since Seaton!s observation, Hamiltonfs method has not been used for reap-
portionment of the House. However, it is perhaps the most widely used method 
in elections. The 1980 delegate selection rules of one of our major political 
parties required that "this atrocity" be used. 

Since the Jefferson method J allocates spots one by one as s increases, it 
is trivial to show that the Alabama Paradox cannot occur under J. (No paren-
thetic position number is erased when s increases by one.) 

8. OTHER QUOTA METHODS 

The discovery of the Alabama Paradox inspired a number of mathematicians 
to seek quota methods which are "house monotone," that is, quota methods which 
do not allow this particular type of paradox. These variations on H maintain 
the insistence that the "ideal" decimal allotments can be changed only through 
rounding up or down but they use other criteria than size of the decimal re-
mainder to decide on which way to round. Such "quota" methods are described 
and justified in [3], [4], and [5]. One should note that these papers deal only 
with the application to reapportionment of the House. For this application, 
the mathematicians of the National Academy of Sciences are available and could 
use sophisticated mathematics such as that of [5]. 

Our contention is that, at least in applications to primaries, all quota 
methods exhibit other anomalies, and that the criticisms of Jeffersonfs method 
are not very relevant. For additional ammunition to bolster these assertions, 
we consider new examples. 

9. A NEW PARADOX 

For the remaining examples, we fix the number of delegate spots at s = 20 
and vary the number n of presidential candidates. Using the same votes vector 
V = (3110, 2630, 2620, 1640) as above, one finds that a sophisticated quota 
method Q, such as those in [3], [4], and [5], has in effect been forced to agree 
with the allotment (7, 5, 5, 3) of the Jefferson method to avoid the Alabama 
Paradox. Now we introduce five new presidential candidates C$, ..., C3 with C9 

a write-in candidate (my favorite is Kermit the Frog). Let the new votes vec-
tor be V = (3110, 2630, 2620, 1640, 99, 97, 86, 84, 1). 

Under the Jefferson method, the 20th quotient remains at 444+. Hence those 
VI which are less than 445 do not influence the results and the allocation is 
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(79 5, 5S 3, 09 05 09 09 0) • However no quota method Q can give the same re-
sult. The reason is that the one vote "wasted" on C$ has reduced the "ideal" 
decimal allotment for C\ below 6 and9 thus9 all quota (i.e., rounding) methods 
bar C1 from having more than 6 delegates. This means that, under Qs one of the 
367 people who voted for C5, . ... , C9 took a delegate spot away from C1 and gave 
it to C2 or Cii. In this example., the write-in for C3 is the vote that forced 
this anomaly. 

The present author feels that such an effect is also "an atrocity" and is 
still paradoxical. Jefferson?s method avoids this anomaly since under J a vote 
can take a spot away from C^ only by adding a spot for the candidate C-j for 
whom the vote was cast. 

Altering Q9 as long as it remains a quota method, can only make us change 
our example. No quota method is immune to this anomaly. 

10. INTERNAL CONSISTENCY 

Let F be an allocation method, V = (vl9 . .., Vn), and 

S = F(ss V) = (sls . . . 9 8n). 

Let A be any proper subset of {1, 2, . .., n}, sr be the sum of the s^ for i in 
A9 and V! and Sf be the vectors resulting from the deletions of the components 
Vj of V and Sj of Ss respectively9 for all j not in A. If under all such sit-
uations we have F(sr

s Vf) = Sr
9 we say that the method F is internally consis-

tent. The discussion in the previous section indicates why no quota method can 
be internally consistent. 

The Jefferson method J is easily seen to be internally consistent. So is 
the Huntington "Method of Equal Proportions," which is the one used in recent 
reapportionments of the House. This method E is the variation on J in which 
the quotients V^/j are replaced by the functions <^//j (j - 1) . Note that this 
function is infinite for j = 1 and is finite for J > 1. Hence in the applica-
tion to apportionment of the House, one could interpret E as requiring that 
each state must be given one seat in the House before any state can receive two 
seats. Since this Is required by the U.S. Constitution, E is a method that has 
this mandated bias toward states with very small populations and gradually de-
creases this bias as the population grows. References [3], [4], and [5] take 
the position that an acceptable apportionment method must be a quota method; 
they therefore reject J and E and all methods which we call internally consis-
tent. Neither of these references mentions the fact that E "naturally" satis-
fies the constitutional requirement that each state must have at least one 
Representative, Despite this naturalness in using E for apportionment of the 
House, it seems to be an absurdity to use E in a presidential preference pri-
mary since single write-ins for enough names to make n >_ s would force all al-
locations Si to be in {0, 1}. 

Balinski and Young [3, p. 709] ask^ "Why choose one stability criterion 
rather than another? Why one rank-index than another? Why one divisor crite-
rion than another." Later on the same page they quote a Feb. 7, 1929, report of 
the National Academy of Sciences "signed by lions of the mathematical communi-
ty, G. A. Bliss, E. W. Brown, L. P. Eisenhart, and Raymond Pearl" as containing 
the statement that "Mathematically there is no reason for choosing between 
them." The word "them" refers to a number of methods which are internally con-
sistent. 

In the application to presidential primaries, one reason for choosing J 
over other methods if that J achieves the same results as the "single transfer-
able ballot" method if.one considers each vote for a presidential candidate C^ 
to be a ballot marked with perfect strategy solely for delegate candidates 
pledged to C. 
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IK DIVIDE AND CONQUER 

The Hamilton method (and other quota methods) may allow a group to round an 
"ideal" allotment of 4.2 into 7 by the group breaking up into seven equal sub-
groups , each with an "ideal" allotment of 0.6. Thus, quota methods can reward 
fragmentation and seem especially inappropriate in selecting just one person 
to lead a political party (and perhaps the nation). Under Jefferson1s method, 
no group can gain by dividing into subsets and no collection of groups can lose 
by uniting into one larger group. 

When J was originally proposed for reapportionments it was criticized for 
not being biased toward small states. The criticism by mathematicians, such as 
in [3], [4], and [5], is that it is not a quota (i.e., rounding) method. 

12. UNDERLYING CAUSES OF ANOMALIES 

Why does the Hamilton method allow the "Alabama Paradox" and why are the 
other, more sophisticated quota methods subject to regarding a vote for Z as a 
vote for Y and/or a vote against X? Basically, the trouble with all quota 
methods is that they mix the multiplicative operation with addition and sub-
traction o For example, they allow 0.1 to be rounded up to 1 but do not allow 
8.99 to be "rounded" to 10. Thus, they allow the actual allotment to be ten 
times the "ideal" for one candidate while not allowing it to be 1.2 times the 
"ideal" for another. The characteristic feature of quota methods is the insis-
tence that there be no integer strictly between the actual and the "ideal" al-
lotment. Thus, there is a bound of 1 on this difference, although there is no 
bound on the corresponding ratio. A method that claims to give "most propor-
tional" results should give more importance to the ratio than to the differ-
ence. 

This author also feels that quota methods (for primaries) are wrong in in-
sisting that Vi be at least |7|/s to guarantee at least one delegate for C^. 
The discussion of "single transferable ballot" methods (Section 4 above) indi-
cates that this should be [(\v\ + l)/(s + 1)] instead of |F|/S. Also, quota 
methods ignore the fact that many votes in a primary may unavoidably be just 
wasted votes. Using these wasted votes to determine "ideal" allotments allows 
a vote cast for Z to have the effect of a vote against X and/or a vote for J. 
A minimal step in the right direction would be to delete the Vi for candidates 
who receive zero allocations from the total vote size \V\ in determining the 
"ideal" allotment. (This might entail iteration of some process.) 

13- THE REAL LIFE EXPERIENCE 

The 1980 delegate selection rules of one of our major parties for the 
national presidential nominating convention required that the "paradoxical 
atrocity" H be used. However, the paradoxes illustrated above could not occur 
because these rules also stated that candidates who received less than 15 per-
cent of the vote in some primary were not eligible for delegate allocations. 
In reaction to the "plurality takes all" procedures of previous years, these 
rules also said that no candidate who received less than 90 percent of the to-
tal vote could be alloted all the delegate positions at stake in a given pri-
mary. If there were three candidates and their percentages of the total vote 
were 75, 14, and 11 percent, then any allocation under this patched up version 
of H would contradict some provision of these rules. So patches were added 
onto the patches described above. Contradictions were being discovered and 
patches added until all the delegates were selected and the Issue became moot. 
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The Jefferson method is much simpler to use and would have achieved more or 
less the same overall result. At least one state recognizes the Jefferson 
method in its presidential primary act. 
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oust good fi/Limd, V<Vtn Hoggatt, a man and a matkojmattdlan ofa high quatlty. 

1. INTRODUCTION 

In Horadam, Loh, and Shannon [5], a generalized Fibonacci-type sequence 
{An(x)} was defined by 

AQ(x) = 0, A±(x) = 1, A2(x) = 1, A3(x) = x + 1, and 

An(x) = xAn_2(x) - An_h{x) (n>4). 

The notion of a proper divisor was there extended as follows: 

Vo.{iAjnJJU.Ovi: For any sequence {Un}, n _> 1, where Un £. 7L or Un(x) e Z (x) , the 
pvopev divisov wn is the quantity implicitly defined, for n >_ 1, by w1 = U± and 
wn = max{di d\Un9 g.c.d. (d, wm) = 1 for every m < n}. 

It was then shown that 

(1.2) An(x) = 11 wd(x) 
d\n 

and 

(1.3) wn{x) = I! (Ad{x))vln/d) 

d\n 
where ]i(n/d) are Mobius functions. 

( i . i ) 
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Elsewhere [8], Shannon, Horadam, and Loh have proved (with n replaced by 
In) that 

(1.4) Ahntx) = nff (~iy'(2n - / - V*- 2 ' - 1 . 
j-o x J ' 

The background to this paper is that the authors were shown (Wilson [9]s 
[10]) several numerical results relating to the sets of numbers in Table 2, and 
asked to establish a theoretical basis for these results. In the process, some 
useful further properties of (1.4) were developed. 

A particular aim of this investigation is to use the generalized Fibonacci-
type sequence to show that any integer n> 0 can be expressed as the product of 
(mostly) irrational numbers in an infinite number of ways according to a speci-
fic pattern. 

Besides expressing our appreciation of the stimulation provided by Wilson 
([9], [10]), we wish to register our thanks to A. Hartman and R. B. Eggleton [4] 
for their valuable comments, and to Professor G. E. Andrews, University of Penn-
sylvania, for the Hancock reference [3]. 

2. FACTORS, PROPER DIVISORS, AND TRIGONOMETRY 

From (1.4) we observe that 

(2.1) d e § \ — j = 2n - 2 

so that . , N 
(2-2) ~~x =°  
has n - 1 squares of roots 

2 2 2 

ax, a2, ..., an_1„ 

For notational convenience write 
(2.3) gi = a2. i = 1, 2, ..., n - 1. 

Since the constant term in (2.2) is (-l)n_1n, we have, from the theory of 
equations, that 

n-l 
(2.4) n = n Bi 

i = I 

and also, with J = 1 in the left-hand side of (2.2) that 

n- 1 
(2.5) In - 2 = £ 3,. 

t = l 

Thus, to find the factors of any integer n, we seek the n - 1 $•£ of (2.2), 
which by (1.2) can be obtained from the proper divisors of Ahn(x)/x. The first 
few of the Ahn(x)/x are listed in Table 1 along with their factors and proper 
divisors. 

For example, from Table 1, [5], and (1.2), A2o(x) has as its factors 

w2Q(x) = x1* - 5x2 + 5, w1Q(x) = x2 - x - 1, w5(x) = x2 + x - 1, 

wh(x) = 1, w2(x) = 1, and w±(x) = 1 

divisors, the ( 

deg. Wn(x) = h$(ri) 

trivially. 
In the search for proper divisors, the (provable) result 



242 IRRATIONAL SEQUENCE-GENERATED FACTORS OF INTEGERS [Aug. 

TABLE 1. Factors and Proper Divisors of Ahn (x)/x for n = 2, 3, -.., 12 

n 

2 

3 

4 
5 

6 

7 

8 

9 

10 

11 

12 

Ahn (x)/x 

x2 - 2 

xh - kx2 + 3 

xs - 6a:4 + 10a;2 - 4 

x8 - Sx6 + 21a;4 - 20a;2 + 5 

x 1 0 - 10a;8 + 36a;6 - 56a:4 + 35a;2 - 6 

a;12 - 12a;1 ° + 55a:8 - 70a:6 + 126a;4 

- 56a?2 + 7 

a:14 - 14a;12 + 78a;10 - 220a;8 

+ 330a;6 - 252a;4 + 84a;2 - 8 

x16 - 16a;14 + 105a;12 - 364a;10 

+ 715a;8 - 792a?6 + 462a;4 

- 120a;2 + 9 

x18 - 18a;16 + 136a;14 - 560a;12 

+ 1365a;10 - 2002a;8 + 1716a;6 

- 792a;4 + 165a;2 - 10 

a;20 - 20a;18 + 171a;16 - 816a;14 

+ 2380a;12 - 4368a;10 + 5005a;8 

- 3432a;6 + 1287a;4 - 220a;2 + 11 

x22 - 22a;20 + 210a;18 - 1140a;16 

+ 3876a;14 - 8568a;12 

.+ 12376a;10 - 11440a;8 + 6435a;6 

- 2002a;4 + 286a;2 - 12 

whn (x) 

x2 - 2 

x2 - 3 

a;4 - 4a;2 + 2 

a;4 - 5a;2 + 5 

a;4 - 4a;2 + 1 

x6 - 7a;4 + 14a;2 - 7 

x8 - 8a;6 + 20a;4 

- 16a;2 + 2 

x6 - 6a;4 + 9x2 - 3 

x8 - 8x6 + 19a;4 

- 12a;2 + 1 

x10 - lix8 + 44a;6 

- 77a;4 + 55a;2 

- 11 

x8 - 8a;6 + 20a;4 

- 16a;2 + 1 

Other f a c t o r ( s ) 

Ah (x)/x 

A6(x) 

AQ (x)/x 

A i o (JK) 

wQ (X) 9 A12 (x)/x 

Alh(x) 

1 6 \"^J l*E 

w12(x) • A1Q(x) 

wQ(x) • A20 (x)/x 

A22\%) 

w16(x)°A2h(x)/x 
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TABLE 2. List of Factors for n = 2, 3, .. 
from Wilson [9] 

14 (9 decimal places) 

2. a 2.000000000 

3. a 3.000000000 
b 1.000000000 

4. a 3.414213562 
b 2.000000000 
c 0.585786437 

5. a 3.618033989 
b 2.618033989 
c 1.381966010 
d 0.381966010 

6. a 3.732050807 
b 3.000000000 
c 2.000000000 
d 1.000000000 
e 0.267949192 

7. a 3.801937736 
b 3.246979612 
c 2.445041864 
d 1.554958135 
e 0.753020387 
f 0.198062263 

8. a 3.847759064 
b 3.414213562 
c 2.765366862 
d 2.000000000 
e 1.234633137 
f 0.585786437 
g 0.152240935 

10. 

11. 

12. 

a 3.879385241 
b 3.532088884 
c 3.000000000 
d 2.347296348 
e 1.652703651 
f 1.000000000 
g 0.467911115 
h 0.120614758 
a 
b 
c 
d 
e 
f 
8 
h 
i 

a 
b 
c 
d 
e 
f 
g 
h 
i 
J 
a 
b 
c 
d 
e 

3, 
3, 
3, 
2. 
2. 
1. 
0, 
0, 
0, 

3. 
3, 
3, 
2, 
2, 
1. 
1, 
0, 
0, 
0, 

3, 
3, 
3, 
3, 
2, 

.902113033 

.618033989 

.175570503 

.618033989 

.000000000 

.381966010 
,824429496 
.381966010 
.097886966 

.918985948 

.682507069 

.309721461 

.830830027 

.284629680 

.715370319 

.169169972 

.690278538 

.317492930 

.081014051 

.931851652 

.732050807 

.414213562 
,000000000 
.517638088 

f 2.000000000 
g 1.482361911 
h 1.000000000 
i 0.585786437 
j 0.267949192 
k 0.068148347 

13. a 3.941883635 
b 3.770912051 
c 3.497021494 
d 3.136129492 
e 2.709209771 
f 2.241073362 
g 1.758926637 
h 1.290790228 
i 0.863870507 
j 0.502978505 
k 0.229087948 
1 0.058116364 

14. a 3.949855824 
b 3.801937736 
c 3.563662962 
d 3.246979612 
e 2.867767476 
f 2.445041864 
g 2.000000000 
h 1.554958135 
i 1.132232523 
j 0.753020387 
k 0.436337037 
1 0.198062263 
m 0.050144175 
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where cj)(n) is Euler's (f)-function, is useful. E.g., deg. w20(x) = 4 = ^(20). 
From (1.2) and (2.3), 

n J> 2, since wh(x) = a; 
d|4n 

n-l 

(2.6) 

whence 

A (x) 
X = n wd(x) 

d\kn 

= n V - % ) 

Ah (x) 
= II Hz(0) n >. 2 

* = 0 d|4n 

(2.7) = (-l)*"1 n Bj f r o m (2-6) 
n- 1 

J = l 

= (-l)n_1n from (2.4), 

Consider, as an example, the case n = 5, i.e., 

A20(x) 
= h h • 

x = 0 j = 1 

from (2.7). Then the factors of 5 are given by the 3i of 

xh - 5x2 + 5 = (x2 - Js(5 + /5))(x2 - ̂ (5 - /5)) = ̂ 2Q(x) 

= (x2 - 3.618033989)(x2 - 1.381966010) 

= (x2 - 3X)(^2 - 33) 
and 

(x2 - x - 1)(x2 + x - 1) = xh - 3x2 + 1 = u10(x)w5(x) 

= (x2 - 3s(3 + /5))(x2 - %(3 - /5)) 

= (x2 - 2.618033989)(x2 - 0.381966010) 

(x2 - $,)(x2 - 3J, 
that is, 

M 1 H 2 H 3 H 4 

where the subscript labelling of the irrational 3*s has been chosen to corre-
spond to the decreasing order of magnitude given by Wilson [9], and where 
numerical calculations have been computed by pocket calculator to nine decimal 
places. 

Our 3^ have a simple trigonometrical expression. From [8] and (1.4), 

(2.8) A2n(2x) == £/„_!(#) n > 2, [/0 = 1 

where Un(x) is the Chebyshev polynomial of the second kind (Magnus, Oberhettin-
ger, and Soni [7]). That is5> 

A^ (2x) U0 ,(x) 
hnK ' 2n-l v J 

(2.9) = n > 1. 
x x — 

Solving 
(2.10) Un(cos 6) = S l n ( n +

Q
1 ) 6 = 0 

for 0 gives 
sin 0 

^ y <fc = 0 , 1 , 2, . . . , n), 
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Therefore, the n - 1 3^ of (2.2) are simply 

(2.11) 3; = 4 c o s 2 g (i = 1, 2, ..., n - 1). 

Of course, (2.4) with the 3̂  given by (2.11), is a known result (see, e.g., 
Durell and Robson [1]). 

In the example following (2.7), where n = 5, we have 

n / 2 TT 0 ' , 2 TT D . 2 3TT D , 2 2lT 
3X = 4 cos yjj, 32 = 4 cos j 9 33 = 4 cosz -j^-, 34 = 4 cos' -y. 

Wilson?s a, &, c, ... in Table 2 are 31, 329 33s ... • 
Clearly, from (2.11), 

(2.12) 3; + 3n-i = 4. 

Polynomials i42n_1(ic) satisfy the identity previously established in [5], 
namely, 

(2.13) A2n+1(x) = A2n+2(x) + A2n(x)9 

so the polynomials An(x) for n odd are the sum of two consecutive Chebyshev 
polynomials. 

Moreover, 

(2.14) A2n + l ^ = £.<*> 
in the notation of Hancock [3], about which further comments will be made later. 

3. GENERATION OF IRRATIONAL FACTORS OF INTEGERS 

One of our main results is Theorem 1 (below) relating to the system of 
equations satisfied by the 3^ (= ot|) . 

Lomma 1 '• 
-2 

j-o 
(3 . 
in 

(3 . 

• 1) 
which 

.2) 
1 if 2|n, 

6(2, n) 
10 if 2Jn. 

P/LOOJ: Equat ion (1 .72) of Gould [2] s t a t e s t h a t 

i(-Dk(n-k
k)2 

i> = n \ ' 

* " ^\on-2/c = n + K 

k = 0 

Algebraic manipulation of this equation yields 

n- 1 
= V (-1)0 (2n ~ i ~ 1]22n-2^1 

E(-DJ'(2n"/" Vn-2'-2 

2n 
j-o 

n-1 

J-O 

{-l)n-Ln + " - i^ , _u y^ (-i)<7'(2n " / " 1 > J2 2 n " 2 t 7 ' " 2
3 

that is, 
j-o 

2 
2n - j - l\ j2n- 2j-2 n+ (-1)»« = £ (-lW2n "J " X)2 
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whence 
n-l 

n (2, ») -.E'- 1)^ 2""/' 1) 2 

since n + (-l)nn = 2nS(2, n). 

A, (x) 
Tke.OH.QJfn 1: The n - 1 a2 of = 0 satisfy the system of equations 

x 
„ 2 ™ 2 

(3.3) 

cq - a:; + ••• + (-1) a^„x = 2 

aj - a* + ••• + (-1) ah
n_x = 23 

a2n"2 - a2n~2 + ••• + (-l)na^"2 = 22n"3. 

2 ?H£o£: T o solve (2.2), consider the n - 1 a| (i = 1, 2, .. . , n - 1). Then 

0 = E (~D'~%,K)/a; 
i = l 

= "E E V l ) * ^ - 1 ^ " " / " V 2 "" 2 ^ 2 from (1.4) 

= i f iV l )*^- 1 ^* " ' "" L)af "2^ + 1> 

= E E V D ^ - 1 ^ 7 " > r 2 ( i + 1 ) + E(-Di + n-2L ! > ? 

- 1 <-i>'(2n "/ " M E V 1 ) * " 1 ^ ' 2 ^ ^ - ^<2> w> by <3-2> 

- • i f (-1)J(2W " '' ' M l ^ - D * - 1 ^ - 2 ^ + 1) - E 2 (-D J ' ( 2 n " ? " l ) 2 ^-2j-3 
by Lemma 1 

from which it follows that, x̂ ith a slight variation in the set of values of j, 

EVl)1-1^"-2' = 22*-2'--1 g = 1, 2, .... „ - 1, 
t = l 

which is the system of equations (3.3). 

Itliut/tcution oj ThdOfim 1: Theorem 1 t e l l s us t h a t t h e r e a r e 2 3^ of 

A12(x) 

which satisfy (3.3) when n = 3, i.e., $i - 32
 = 25 3X - 32

 = 23
3 namely, 

^ J 2
 = 1 = ̂  cos 3"-(3.4) 3X = 3 = 4 cos2 £, 32 = 1 = 4 cos2 ̂ . 

42 1 t (a0 
A l s o , t h e r e a r e 5 3^ of = 0 which s a t i s f y (3 .3 ) when n - 6 , i . e . , 

E ( - l ) * - 1 ^ - 22'"1 3 = 1. 2 ' •••' 5 ' 
i = l 
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namely, 

( B = 3.732050807 = 2 + /J = 4 cos2 -—-, 39 = 3.QQ0000QQQ, 
(3.5) \ lZ 

(g3 = 2.000000000, 34 = 1.000000000, 35 = 0.267949192 = 2 - / 3 , 

as can be seen in the entry for n = 6 in Table 2. 

i436Gc) 
Similarly, there are 8 <^i of = 0 which satisfy (3.3) when n = 9, 

^ ( - D ' - ' e / - 22*"1 j = 1, 2, 

namely, 

\ = 3.8793385241 = 4 cos2 ~^3 32 = 3.532088884, 33 = 3.000000000, 

(3.6) { 34 = 2.347296348, 35 = 1.652703651, 36 = 1.000000000, 

37 = 0.467911115, 38 = 0.120614758, 

as can be seen in the entry for n = 9 in Table 2. 
From (3.4), (3.5), and (3.6), we observe that 

3 = 3X32 n = 3 

- B1B2B„e5- n = 6 

= 3,3,3,353,33 n = 9 
(and so on). Notice that every (B̂ ? for which 3|i, does not occur in the prod-
ucts. This is the gist of (3.9). (Other combinations are possible, e.g., 

3 2 3 , 

Me 
Ws 

n = 6 
n = 9 

n = 12 
and so on.) 

Elementary trigonometry with (2.6) and (2.11) may be used to show that 

(3.7) Ahn{x)/x + (~l)n{̂ n((4 - x2y))/x = 0 

where, by the second term in (3.7) is meant the expression for Ahn{x)/x when x2 

is replaced by 4 - x2. 
If (3.7) is treated from a combinatorial number theory point of view, we 

have, on using (1.4) and the binomial expansion for (4 - x 2 ) n _ 1 " J and then con-
sidering the coefficient of x2n~2~2p

3 the result 

0.8) | > i ) ^ < p - ; > (2" " / "') (» - 1 - *) - (2« " / - P) 

for every p <_ n ~ 1. 
This identity is very similar to result (3.44) in Gould [2]. 
The next (known) result is important for Table 2i 

n-l 
(3.9) II 3- = r r\n9 BJ. + 1 < g. (j = 1, . .., n - 2). 

£ = 1 

k - l fc-1 
To prove (3.9), divide (2.4) by 0 3 W = l\ &*. = k where B* = 4 cos2 ~ and 

% = 1 ^ = 1 
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n = rks i.e., r\n, i.e., v\ln. E.g., n = 8 in Table 2 gives 

7 
2 = FI &i = 3i333537 with 2 = 3236 = 34. 

i = i 
2{i 

Refer also to the Illustration of Theorem 1 on page 244 above. 
From (3.9), and, earlier, (3.4), (3.5), and (3.6), it is clear that the se-

quence (1.1) shows how any integer (>0) may be expressed as a product of (most-
ly) irrational numbers in an infinite number of ways, in accordance with a pat-
tern of generation. 

4. MISCELLANEOUS RESULTS 

Results (4.1)-(4.5), which are stated without proof, may be derived from 
/ (1.2) and (2.11) 

(4.1) 
A (x) \ A2n^ ' Bhn^ " n o d d 

hn 

An (x) 
In v J 

Bu„ (*) hn 

where Bhn(x) = Whn (x) x (some product of proper divisors depending on the fac-
tors of ri) . 

Some particular instances of (4.1) are shown in Table 1. 
Consider again the transformation x2 ->• 4 - x2. This has the following ef-

in reverse order (and conversely), so 

f ec t s : 
n odd 
(4 .2 ) 

(4 .3 ) 

n dv&n 

(4.4) 

A2n(x) —Bhn(x) 

A (x) A (x) 
in v J inx ' 

X X 

(4.5) Bhn{x) ++ Bhn{x). 

_ Previously, in (2.14), we mentioned the connection between our ̂ 2n+i(x) and 
fn(x) in Hancock [3]. It is instructive to compare in detail our treatment, 
where the motivation originated from combinatorial and number theoretic consid-
erations, with Hancock's approach to somewhat similar material through cyclo-
tomy and trigonometry. 

However, to conserve space, we merely indicate without justification some 
comparisons of interest as well as some fresh properties of An{x). Familiarity 
with Hancock's notation is assumed. 

Observe, firstly that our 

A0 (x)9 A, _,0(x), B,,n ^.(x)9 and xB,,n Ax) + 2 
lnx / 9 4n + 2 v / s 4(2n + l) v / 5 h(ln + l) 

a r e , r e s p e c t i v e ^ , Hancock 's 
An-iW> * 2 n ^ > » $ 2 n ^ ) > a n d ^ + 1 ^ ' 

F u r t h e r , we n o t e t h a t 
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n + 2(x) -A2n(x) = fn(x) = (-lffn(-x) 

(A.6) <; A2n(x) = k{fn_xtx) +fn_1(x)) 
n 

E t (x) = An fx) - 1 
k = 1 

while some fresh results are 

(4.7) { A2n(2) = n 

A2n+1(2) =n+ 1. 

5. CONCLUDING COMMENTS 

Newtonfs iteration can be used to solve the system of equations (3«3). Al-
ternatively 9 the problem may be approached through the theory of recurring se-
quences. 

Using the notation of Jarden [6], we may consider equation (2.2), with x 
replaced by vy9 as the auxiliary equation of the homogeneous linear recurrence 
relation of order n - 1: 

where 

(5.2) w^-u = n £ 1
( - i ) i - i e -

is the general term of the recurring sequence {w)^ 1-) } defined by (5.1) with 
the initial conditions (3.3). Thus, when n - 3, (2.2) becomes 

xh - kx1 + 3 = 0 
which can be rewritten as 

y2 - ty + 3 = 0 
i.e., the auxiliary equation for (5.1) in the form 

WW = 4w(2) _ 3u(2) 
m m-l m-2 

Initial conditions are 

Wl2) = &1 " ^ 2 = 2 

and 
WW = g2 _ 32 . 23. 

Finally, it is worth noting that the theoretical foundations for the ideas 
implicit in [9] and [10] have by no means been fully exploited. 
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A HISTORY OF THE FIBONACCI Q-MATRIX 
AND A HIGHER-DIMENSIONAL PROBLEM 

H. W. GOULD 
West Virginia University, Morgantown, WV 26506 

To tko, momotuj o{ V&sin&i E. Hoggatt, IK. 

One of the most popular and recurrent recent methods for the study of the 
Fibonacci sequence is to define the so-called Fibonacci ^-matrix 

(1) 

so that 

(2) Qn n+l 

where Fn + 1 - Fn + Fn_l9 with F1 = 1, F0 = 0 . 
Theorems may then be cited from linear algebra so as to give speedy proofs 

of Fibonacci formulas. Write \ A \ for the determinant of a matrix A. Then it 
is well known that \AB\ = \ A \ • |5|, and in general \An\ = \A\n . The Fibonacci 
^-matrix method then gives at once the famous formula 

(3) Fn+lFn-l ~ Fn = ("I)"' 
which was first given by Robert Simson in 1753. Formula (3) is the basis for 
the well-known geometrical paradox attributed to Lewis Carroll in which a unit 
of area mysteriously appears or disappears upon dissecting a suitable square 
and reassembling into a rectangle. 

Where did this ^-matrix method originate? The object of the present paper 
is to give a tentative answer to this question, and present a reasonably com-
plete bibliography of papers bearing on the use of such a matrix for the study 
of Fibonacci numbers. An unsolved problem is included. 

The phrase "^-matrix" seems to have originated in the master!s thesis of 
Charles King [10]. At least. Basin and Hoggatt [16] cite this source, and from 
then on the idea caught on like wildfire among Fibonacci enthusiasts. Numerous 
papers have appeared in our Fibonacci Quarterly authored by Hoggatt and/or his 
students and other collaborators where the ^-matrix method became a central 
tool in the analysis of Fibonacci properties. Vern Hoggatt carried on a far-
ranging correspondence in which he jotted down ideas and made innumerable sug-
gestions for further research. For example, his letters to me make up a foot-
high stack of paper very nearly, representing creative thinking going on for 20 



1981] A HISTORY OF THE FIBONACCI S-MATRIX 
AND A HIGHER-DIMENSIONAL PROBLEM 251 

years. His contagious enthusiasm for research and the properties of numbers 
infected all whom he met or wrote to, and it seems to me. that Vern must have 
been a major force for popularizing the ^-matrix method. Vern wrote me many 
letters9 beginning in 1962, about using the ^-matrix method to study the Fibo-
nacci polynomials and other related systems. He was very modest about claiming 
any credit for ideas and would often outline some method to me and then say 
"but this is probably pretty well known to you.11. Sometimes it was; more often 
not. 

However9 an early place that the Fibonacci matrix seems to appear in the 
form we know it is in an abstract by Joel Brenner [6], which I shall quote in 
detail for its historic significance: 

"The n-th power of the matrix [ 

V ° 
un + l 

U„ U n-1 
la-b -ab 

where un is Fibonacci's number. More generally, the n-th power of I 
is \ 1 0 , 

-abUy, 

~abun_±j 

an - bn 
where un = — - — T — is Lucas1 number. From these facts it is easy to deduce a 

part of the general theory of these numbers. 
"The sequences un - A1un_1 +•-• + Avun_T have properties some of which are 

quickly obtained from the study of a matrix of dimension r which generalizes 
the matrices above." 

In copying the abstract I have corrected several misprints. Vern and I 
used to discuss the history of the ^-matrix, and he published a fbelated ack-
nowledgement1 in our Quarterly [28] which appears as a note that was never 
listed in the volume index and thus has remained hard to locate. I shall quote 
the acknowledgement here in full: 

"The first use of the ^-matrix to generate the Fibonacci numbers appears 
in an abstract of a paper by Professor J. L. Brenner by the title 'Lucas1 

Matrix.' This abstract appeared in the March, 1951 American Mathematical Mon-
thly on pages 221 and 222. The basic exploitation of the ^-matrix appeared in 
1960 in the San Jose State College Master's thesis of Charles H. King with the 
title 'Some Further Properties of the Fibonacci Numbers.' Further utilization 
of the ^-matrix appears in the Fibonacci Primer sequence parts I-V." 

To show that there was an active undercurrent of Fibonacci matrix activity 
around 1949-51, I wish next to quote an abstract by David DeVol [5] which ap-
pears, curiously, in the issue just preceding that in which Brenner's abstract 
turns up: 

"Defining Fibonacci sequences by the property un + 1 = un+ Un„lft several re-
lations between the terms are easily obtained by the manipulation of two-by-two 
matrices whose elements are terms of the sequence. The speaker concluded by 
pointing out a geometric connection between the Fibonacci sequences and the 
sequences of polygonal numbers." 
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Besides this there was a paper by J. Sutherland Frame [4] in 1949 that used 
matrices to study continued fractions, and the matrix 

Mi 
1 0 

appears, but no mention is ever made of the Fibonacci numbers per se. Matrix 
analysis of continued fractions is an old story also. 

Rosenbaum [8] uses the matrix 

- c : : 
to get an explicit formula for Fn , but does not consider Rn. 

Miles [9] uses the matrix. 
I J n Jn+1 

An =1 
V w + 1 Jn + 2' 

but does not consider it as a power of a matrix. 
Waddillfs doctoral thesis [12] uses the matrix (i:) 

and also uses the third-order extensions. His later papers [26], [41] exploit 
the matrix further. 

A remarkable insight is gained by examination of the well-known book of 
Schwerdtfeger [11]. On pages 104-105 he discusses Fibonacci polynomials and 
matrix methods due to Jacobsthal [ 1]. Schwerdtfeger uses a German gothic B for 
the matrix involved. Changing the lettering slightly we can summarize part of 
what Schwerdtfeger says as follows. Let 

- c /»<*> 

/ „ - 1 0 > 

0 / 

K-!<» 
bfn.2(b) 

Then 

(4) Bn 

where the Fibonacci polynomials are defined by fn + 1(%) = fn 0*0 +
 xfn- x ix) » with 

f0(x) = 1 and f_1{x) = 0. Explicitly 

*,<*>- E (n-ky-
L e t 0<k<n/2 

(a b\ 
H = [ I, t = a + d = t r a c e 5s 0 . 

V dl 
Then there exists a matrix T such that THT'1 = qB. In fact 

<o d 

\0 a + 
Finally 
(5 ) Bn = qnT-1BnT, 



1981] A HISTORY OF THE FIBONACCI «-MATRIX 
AND A HIGHER-DIMENSIONAL PROBLEM 253 

where b = -(ad - bc)/t2. This is an interesting result, since it shows how to 
express the n-th power of a 2 by 2 matrix in terms of powers of the "Q" matrix 
of a Fibonacci polynomial. 

The only other reference I have noted in our Quarterly which cited Jacobs-
thai was the paper by Paul Byrd [14] in the very first issue of our journal. 
None cites Schwerdtfeger. 

But the concept of a Fibonacci polynomial antedates Jacobsthal by a good 
many years. In fact, as Byrd [14] notes, a kind of Fibonacci polynomial was 
introduced as early as 1883 by E. Catalan, however, we shall not discuss this 
here. It is not entirely clear when in the pages of histroy a matrix was first 
used for such work. 

Robinson [15] gives an extended discussion of matrix methods, citing many 
references, such as Bell [2], Ward [3], Brenner [7], and Rosenbaum [8]. He 
writes the matrix as 

, . r » 
\ i i/ 

and has . 
/Un-1 Un Un = j 
\un un+i 

He calls U the Fibonacci matrix. Contrast this with Brenner who calls his ma-
trix the Lucas matrix. I have not been able to ascertain whether Edouard Lucas 
himself used the matrix method. 

Brennan [20] writes 

1 l) --(' : ;) 

a o/ \i o o/ 
and higher-order extensions. But in [21] he writes 

'0 1> 

and cites Basin and Hoggatt. 
A novel application to group theory is afforded by the paper of White [22] 

who uses 
/I 1\ /I V 

A = and B 
\0 1/ V 0, 

to generate GL(29 Z) . See also Gale [27]. 
Bicknell finds the square root of the Q matrix [23], and goes on to frac-

tional powers. 
Lind [25] exhibits two matrices 

\ o i / \ I o 
such that R2 = S3 = J, hence R and S are of finite order. However, 

RS = Q = ( L and (RS)n = Qn 

which is easily seen never to equal J, so that RS is of infinite order. This 
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does not happen in an abelian group, of course, where the product of two ele-
ments of finite order must again be of finite order. 

Ivie [31] considers a general ^-matrix. He defines and uses the v by v 
matrix 

1 
1 
1 

,1 

1—
1 

0 
0 

. , 
0 

0 
1 
0 

. . 
0 

1 

. 

. . . 

. . . 

. . . 
0 

• • 

0 
0 
0 
0 
0 

which is well known as associated with higher-order linear recursions. 
Serkland [33], in his master's thesis, uses a matrix analogous to Q in his 

study of the Pell sequence, which is therefore just a variant of the same con-
sideration. See also a detailed report on this by Bicknell [37]. Here, of 
course, 

f2 1\ . /Pn+i P-
M = i I and Mn 

1 0/ \Pn Py 

where the Pell sequence is defined by 

Pn = lPn_1 +r n . 2 , P1 = 1, P2 = 2. 

The Pell sequence is again studied by Ercolano [43]. 
Hoggatt and Bicknell-Johnson [42] use what have been called Morgan-Voyce 

polynomials bn9 Bn and they find the following. Let 

i \ /y i> 
L B = i 

,1 0/ \1 0/ 
Then 

(6) (ABf =1 
\yBn^1(xy) bn_1(xy) 

Pollin and Schoenberg [45] turn the S-matrix upside down in the form 

\ i i/ 
and use An in their study of the converse of the congruence p = prime implies 
Lp = 1 (mod p), where Lp is the Lucas number. 

Our bibliography does not summarize all of the literature, but does give a 
good idea of what has been done with the ^-matrix and its extensions. 

Now we wish to close with some remarks about problems that remain unsolved. 
These problems involve higher-dimensional determinants and matrices. 

In my paper [19], I studied an operator I called a Turan operator, defined 
by 

(7) Tf = Txf(x) = TXiCLsbf(x) = f(x + a) fix + b) - f{x)f{x + a + b) . 

It is easy to show that 

(8) Tx sin x - Tx cos x = sin a sin b9 

and, as an extension of (3), it is possible to prove that 

(9) TnFn = Fn + aFn + b - FnFn + a + b = (-l?FaFb, 

so that (3) occurs when a - 1 and b - -1. 
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My paper obtained extensions of this formula by exploring some possible 
extensions of determinants to three and four dimensions. Thus it was found 
that 

^ ' n + a ^ n + b^n + c ~~ ^n n + a^n + b + a n^ n + b^ n + a + o ~ FnFn+QFn + a + b 

= {~Dn{FaFbFn + 0 - FcFaFn+b + FbFaFn + a ) 9 

with further reductions, and yet the trouble is that there is no unique way to 
go about defining higher-dimensional determinants. 

Since it is possible to prove (9) by means of skillful manipulations with a 
two-dimensional S-matrix, one naturally desires to extend the idea to (10) and 
related formulas using a three-dimensional ^-matrix. Again, there seems to be 
difficulty in defining three-dimensional matrices. It would be necessary to 
see how to extend the property mentioned at the outset of this paper, 

(11) \A • B\ = \A\ • \B\ 

for square two-dimensional matrices. How can this be extended* if indeed at 
all3 to three-dimensional matrices'! We leave this unsolved problem for the 
reader, 

If Vern Hoggatt had worked on this problem we might have a solution already. 
Such was the enthusiasm he had for the ^-matrix, but he never got around to ex-
ploring this higher-dimensional direction. 
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SOME DIVISIBILITY PROPERTIES OF PASCAL'S TRIANGLE 

CALVIN T. LONG 
Washington State University, Pullman, WA 99163 

ThU> pcvpojt AJ> d&dtaot&d to th&mmofiy o^ FSIO^ZAAOSI I/. E. Hoggott, 3n.., 
u)ho&i happy &ntkuu>-icu>m Ion, mothmatA,cA hcu> bojin an tnApAJvcutlon to oJUL 
who knew him and \tihoh<i \hjjmdt>hlp hah tnonmotuly zwhichzd the. LiveJ> o^ 
40 many, including, In pa/uticulcui, tkn ptieA&nt author. 

1. INTRODUCTION 

Let p denote a prime and let m9 n, h9 k9 and a denote integers with 

0 <_ k <_ n, 1 <_ h <_ n9 m >. 1> and a > 1. 

Let An>?c denote the triangle of entries 

run + m - 1' 

km 

/run + m - 1\ 

\ km + m - 1 / 

from Pascal's triangle. And let Vn h denote the triangle of entries from Pas-
cal's triangle indicated by 

/ nm \ / run \ 

\hm - m + 1/ \hm - 1/ 

Iran + m - 2\ 

\ few - 1 / 

For m = p a , we showed in [2] that all elements of Pascal's triangle not con-
tained in some A n j k (i.e., those contained in some V n j h ) are congruent to 0 
modulo p, that, modulo p, there are precisely p distinct triangles Anj/c, and 
that these triangles can be put in one-to-one correspondence with the residues 
0, 1, 2, . . . , p - l i n such a way that the triangle of triangles 



258 SOME DIVISIBILITY PROPERTIES.OF PASCAL'S TRIANGLE [Aug. 

V o 
Ai,o A l f l 

^ 2 , 0 ^ 2 , 1 ^2, 2 

is "isomorphic" to the original Pascal triangle in the sense that 

^n,k + ^n,k+l = ^n+l,k+l 
where the addition is elementwise modulo p. We also showed that if D is the 
greatest common divisor of the three corner elements of V n > 1 and d is the great-
est common divisor of all the elements of Vn , , then d = p and D = p a if m = p a 

and d = 1 and D = m for all other integers m >_ 2. In the present paper we ob-
tain, form = p 2 , a result similar to the first result for Anj/C and5 for m = p a , 
we extend the second result to Vn> h for I ±h <_n. Finally, we obtain a number 
of interesting properties of the p-index triangle of Pascalfs triangle, which 

is simply the triangle of numbers -, that indicate the exponent e to which a 

given prime p divides I T , ) ; i.e., such that p e ( -, ) and p e +1 / I y 1 . 

2. THE ITERATED TRIANGLE MODULO p 2 

To extend the first result mentioned above to p 2 , we set a = 23 where 3 2. 1 
is an integer. Thus, the A n >^ are equilateral triangles with p 2 S elements per 
side. Furthermore, we say that two such triangles are equivalent provided that 
their top p rows are identical, and it is clear that this is an equivalence re-
lation in the technical sense. Let 6w,k denote the class of all triangles 
equivalent to An>^. Then, again, we claim that there exist precisely p 2 equiv-
alence classes of triangles, and that there exists a one-to-one correspondence 
between tt 
lar array 
between these classes and the residues 0, 1, ..., p 2 - 1 such that the triangu-

K 
6 0,0 

° 2, 1 ° 2, 2 

is "isomorphic" to the original Pascal triangle in the sense that 

&n, k + ®n,k+l = *n+l,k+l 
where the addition is defined by the elementwise addition modulo p 2 of the top 
p rows of any two representatives of &ntk anc* &n,k + ia ^11 of this follows from 
Theorem 5 below, but first we need several lemmas. The first is well known 
(see, for example, [1, problem 16, p. 57]). 

Lemma 7: Let p be a prime and let n and k be integers with 0 <. k <_ n. Then 

a) if and only if e is the number of carries made in adding k to n - k in base p. 
Equivalently,e is the number of carries made in subtracting k from n in base p* 

L&nma 2: Let p be a prime and let k9 h, and a be integers with k >_ 1, a > 1, 
and 0 < / i < kpa. If p\h, then 

(k?a) = 0 (mod pa), 
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ytiooji Since p\h, the units digit in the base p representation of h is not 
zero. Thus, it is clear that the subtraction of h from kpa in base p requires 
a carries and the result follows from Lemma 1. 

We note in passing that the converse of Lemma 2 is false since, for example, 

(X26) = 0 (mod 4) 

and yet 2|2. 

lemma 3: Let p be a prime and let k$ h9 a, and 3 be integers with 3 ill* a= 23, 
and 0 < h < k. Then 

( E M S ) <-*,«>. yhp0 

Vnjooji In [4], J. H. Smith proves that 

( S H J ) <-""•'>• 
Thus, the result claimed follows immediately by induction. 

lemma 4'- Let p be a prime and let ks h9 r9 s, a, and 3 be integers with 

0 <_h <_k9 0 <_ s £ r < p, $ >. 1, and a = 23. 
Then 

( & : : ) ' - & ) ( ' . ) < * * * > > • 

FfiOO&t This is an immediate consequence of Lemma 3 and the fact that, by 

Lemma 2, the p - 1 coefficients on either side of I ̂  g I must all be congruent 
to 0 modulo p2. 

Thzotim 5: Let p be a prime and let a, 3? k9 and n be integers with 3 >. 19 ot = 
23» and 0 £ /c £ n. Then the first p rows of An fc modulo p2 are 

«)(° o) 

Also, 
^n,k + ^n,fc + l ° n + l, fc + 1 

where 6njk and this addition are defined above» 

V>W0fa The elements in the first p rows of hn,k are the binomial coeffi-
cients 

and, by Lemma 4, 

This gives the first assertion of the theorem and implies the second since 

(np® + r\ I np£ + v \ - ln\lv\ I n \(r\ 
U P 6 + s) \(k + i)pe + s/ ~ U ; U ; \k + i / U ; 
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Of. course, the fact that every entry in PascalTs triangle not contained in 
An>fc for m = pa = p26 is congruent to zero modulo p follows immediately from 
Theorem 1 of [2] with a = 23. One might have guessed that all these elements 
were in fact congruent to zero modulo p2,but this is easily seen not to be the 

case. In particular, ( _ J is not contained in any hn ^ for p = 2 and a = 2, and 

0 t (2) E 2 (mod 4>-

3. SOME GREATEST COMMON DIVISOR PROPERTIES 

Recall that for integers m9n9 and h with 1 <_ m and 1 <_ h <_ n, Vn h denotes 
the triangle of binomial coefficients 

/ run \ I run \ 
\hm -772 + 1 / ' \7Z77Z - 1 / 

/n77Z +777 - 2 \ 
V hm - 1 /' 

that d denotes the greatest common divisor of all the coefficients of Vn>^, and 
that D denotes the greatest common divisor of the corner coefficients. In [2], 
we completely determined d and D for Vn 1 and we extend those results in this 
section. The increased generality, however, makes for somewhat weaker results 
as seen in the following theorems. 

Th<lOK.em 6: Let d, D, and Vnj h be as above where m = pa with p a prime and a a 

positive integer. If pe ||n, then pe+1 \\d and pe + a||Z). 

VK.00^: We first prove that pe+a\\D. The upper left coefficient in Vn h is 

npa 

\{h - l)pa + 1/ 

Since pe \\n, npa = Npe + a where pj/1/. Also, the units digit in the base p repre-
sentation of (h - l)p + 1 is 1 and this clearly implies that e + a carries are 
required in subtracting (h - l)pa + 1 for npa in base p. Thus, p e + a||L. The 
upper right coefficient in Vn> ̂  is 

( npa 

hpa - 1 
Since p\hpa - 1, the units digit in the base p representation of hpa - 1 is not 
0 and again e + a carries are required in subtracting hpa - 1 from npa in base 
p. Thus, pe + a||i?. Finally, the bottom coefficient of V^j?2 is 

/(n + l)pa - 2 
B = 

\ hpa - 1 
Here, 

(n + l)pa - 2 = npa + pa - 2 

= Npe+a+ (p - i ) p a _ 1 + . . . + (p - i ) p + (p - 2 ) , 

/zpa - 1 = (h - l)pa + pa - 1 

= (h - l)pa + (p - l)pa_1 + -.. + (p - l)p + (p - 1), 
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and, s i n c e p - 2 < p - l 5 i t fo l lows t h a t t h e s u b t r a c t i o n of hpa - 1 from (ft + 
l ) p a - 2 n e c e s s i t a t e s e + a c a r r i e s . Thus, p e + a | | B and i t fo l lows t h a t pe+a\\D 
as c l a imed . 

To show t h a t pe+1 | | J , i t s u f f i c e s t o show t h a t pe+1 d i v i d e s each element i n 
t h e top row of V n > h and t h a t pe+1 e x a c t l y d i v i d e s one of t h e s e e l e m e n t s . The 
e lements in t h e top row of Vn h a r e 

npa \ 
L l < s < p a - l . 

\hpa - p a + s / 
Again npa = Npe + a where pj[N. Since 1 <_ s <. pa + 1, the base p representation of 
s must contain at least one nonzero digit in some position prior to the a-th. 
Thus, the subtraction of hpa - pa+ s from npa requires carries from the (e + a) 
column of the base p representation of npa and these must be at least e + 1 in 
number. Thus, pe + 1 divides every element in the top row of Vn h . Now consider 
the element 

( npa 

hpa - pa + pa_ 1 

Again, since npa - Npe + a as above, the carrying in the subtraction of (h- l)pa + 
p a _ 1 from npa is precisely from the e + a column to the a- 1 column for a total 
of exactly e+1 carries. Therefore, p e + 1 \\M and pe + 1 \\d as claimed. 

Note that for p = 3 and a = 2, V4 2 is such that 

d = 16,182 = 2 • 32 - 29 • 31 and D = 48,546 = 3d 

and this suggests that Theorem 6 might be considerably strengthened. However, 
d = 3 and £ = 32 in V4 5 x. Also, if n = /i = 1, p is a prime, and a is a positive 
integer, then d = p and Z? = pa by Theorem 2 of [2]. Thus, in a sense, Theorem 
6 is best possible for prime powers. 

In case m is composite but not a prime power, our best result is as follows. 

Tk&QJiQJM 7'- Let d, D9 and Vw ^ be as above with m composite and not a prime 
power. Then m\D. 

VKOOI'. Let pa ||T7Z SO that m - Mpa .and p|Af. Then the argument of Theorem 6 
can be repeated exactly to thow that pa\D. Thus, if 

m = fl Pa* 
i = l ^ 

is the canonical representation of m9 it follows that pa+ \D for each i and hence 
that m|Z> as claimed. 

Several examples suffice to show that Theorem 7 is also, in a sense, best 
possible. Consider the triangles Vn>^ with m = 6. That d is not necessarily 
equal to 1 even when 6](n is shown by V5j2 where d = 870. Also, the fact that 
m\n does not necessarily increase the power of m that divides d and D is shown 
by V6 x where d = 3 so that 6/fd and by Vg 2 where 6\D but 62'][D. 

4. THE p-INDEX TRIANGLE 

For a given prime p, let denote the exponent of the highest power of p 

that divides ( , I . The triangle of entries , 0 £ k <. ft, is called the p-7^ 

_7<_ 
index triangle of Pascalfs triangle and seems to have been studied first by 
K. R. McLean [3]. Quite apart from their attractiveness as kind of mathematical 
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art, the p-index triangles exhibit interesting patterns that reveal additional 
structure in Pascalfs triangle. Some of the more interesting of these proper-
ties are detailed in the following theorems„ 

IkdOKQM 8: Let p be a prime, then 

= 0 for \ <_m < p and 0 <_ k £ mpa - 1. mpa - 1 
k 

VKOOJI Since 0 £ k £ mpa - 1 and 1 £ m < p, 
a 

* = £ \vl 
i = 0 

with 0 <_ki < p for all i and fca < tfz. But 
a-l 

mpa - 1 = (m - l)pa + J] (p - l)pie 
i = 0 

Thuss there are no carries in subtracting k from mp° - I in base p and 

= 0 

as claimed. 
[ mp^ - 1 

k 

Tho.OK.2m 9: Let p be a prime, then ? I> 1 for I <. k < pa. Of course, 

[si - m - °-
Since 1 £ & < pa, 

a-l 

i =0 

with 0 £ ?ĉ  < p for all i and ki £ 0 for at least one :£. Therefore, there is 
at least one carry in subtracting k from pa and the result follows. 

ThdOKom 10: Let p be a prime and let m and n be positive integers with 1 £ 
m < p and 1 £ n < p. Then 

mp06 + np 
k 

Vnxjoi} Note t h a t 

0 f o r rpa <_ k <_ rpa + np° 1 , 0 £ P £ 777 

mpa + np° 

1 fo r p p a • + np0"'1 £ fc £ ( P + l ) p a
9 0 £ p < m* 

1 - wpa + (w - l ) p a - 1 + ] T (P ~ 1)P*-

Thus, if 0 £ & £ ?7?pa + np0-"1 - 1, the only time a carry will be required in sub-
tracting k from mpa + np®'1 - 1 in base p is when & has a digit /ca_1 > n in the 
a - l position. But this occurs precisely when 

np0-"1 <_ k < pa, or pa + np0"1 <_ k < 2pa, or 

or (m - l)pa + np0'1 <_ k < mp° as claimed. 

As in Pascal?s triangle modulo ps the p-index triangle naturally decomposes 
into an array of interesting subtriangles. Thus, we have the following re-
sults. 
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Th&Qti&n 17» Let p be a prime and let a >_ 1 be an integer. For integers n and 
k with 0 £ k <_ n, let Tnj^ denote the subtriangle of entries from the p-index 
triangle indicated by 

npa' 

kpa 

\n + l)pa - 1 

kpa 

in + l)pa - 1 

l(k + l)pa - Ij 

to mean that is added to Then, Tn^ k = . + ̂ 0, 0 w n e r e this is understood 

each element of TQ Q . 

VKOOfc Note that T0 0 is the triangle of entries 

I V L 0 <. s <. r < pa. 
Similarly, Tn ^ is the triangle of entries 

K::g .o i .<r< P . . 
Since s _£ r, the number of carries required in subtracting kpa + s from npa + r 
is just the number required in subtracting k from n plus those required in sub-
tracting s from r* That is 

np :::]• [1} * [:] 
Thus, T. n, k m + TQ 0 as claimed, 

CoK.otlciK.Lj 7 2: Consider the infinite array of triangles Tn>k, 0 <_ k <_ n, as in 
Theorem 11. The array consisting of the top vertex element of each of these 
triangles is just the original p-index triangle. Thus, the p-index triangle 
contains a p-index triangle which contains a p-index triangle, and so on with-
out end. 

k < 
Vftoo^i The triangle of top elements of Tn^k is the triangle L a L 
n. But, by Theorem 11, ' L P J 

0 < 

and the result follows. 
[ npa' 

kpa _ 
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FIBONACCI INDUCED GROUPS AND THEIR HIERARCHIES 

KAREL D.E BOUVERE 
University of Santa Clara, Santa Clara CA 95053 

Hot. only WOA the late ?^o{esson. Hoggatt a dedicated teacher and a pn.oLi{ic 
scholaA, he was OIMO a {ine colleague and a meltable co-wonkoA* In the summer 
o{ 1980 w<i met o{ten9 both o{ us betng involved in Santa ClaAa's Undergraduate 
Research V anticipation program in mathematics. I showed him a rough dra{t o{ 
the, {m ideas expressed tn this paper, andf while he was encouraging me to pre-
pare it {OK. The Fibonacci Quarterly, at the same time he allied me urgently to 
make it: readable {on. a great vaAlety o{ readers, "our reader" as he called them 
not without a{{ection, In trying to comply with his request, I discovered that 
the paper became more than the communication o{ some results; it began to tell 
the story o{ how they were obtained, {/torn simple well-known beginnings, th/tough 
some redundant complications, toward a simple ending. Hay the e{{ort be a stone 
in the monument to the memory o{ Vr9 i/erner E. Hoggatt, Jr. 

1. INTRODUCTION 

Sequences of integers give rise to algebraic structures and sequence hier-
archies in various ways, some trivially, others by more sophisticated methods. 
A glance at a trivial example may help to grasp readily the subject matter of 
this paper. 

Let N be the set of positive integers, Z the set of all integers. The func-
tion si N -> Z, somehow defined, constitutes the sequence s19 s2, s3, ..., where 
the arguments are written as subscripts. For every z e Z, a function tzi N ->• Z 
can be defined by tz (n) = zsn9 thus constituting the sequence 

^ 3 1 = SS19 t z l - ZS2$ tg3 ~ ZS3, ... . 

Let Zt ~ {tz: z e Z}. On Zt one defines addition and multiplication by 

ta
 + t'b = ^a+b a n d tath = tab' 

These definitions are not arbitrary or ad hoc; they amount to the usual point-
wise addition and multiplication of functions, e.g., 

(£<z + tb)(n) = ta{n) + tb(n) = tan + tbn = asn + bsn 

= (a + b)sn = t{a + b)n = ta + b(n)a 

The result is an algebraic structure 

(Zt , +, •, tQ9 t1) 

where tQ and t1 are. additive and multiplicative identities, respectively; £0 is 
the sequence with all terms 0 and t1 is s. This algebraic structure is clearly 
isomorphic to (Z, + , % G, 1) , the familiar integral domain of the integers, by 
<J): Z -> Zt with (J)(s) = tZ9 thus being itself an integral domain. 

The integral domain Zt is a trivial example of an algebraic structure in-
duced by the sequence s. As to the hierarchy involved, let the function Si N ->• Zt 
be defined by S(ji) = £S(W) . The result is a sequence S with 

a sequence of sequences, such that each term of S is the element of Zt that has 
the corresponding term of s as index; as a sequence, S is completely patterned 
after s. One could call S the second level of a hierarchy of which s is the 
first and lowest level. Starting with the sequence S one arrives in a similar 
way at the third level. For every y 9z £ Z, let ytz be the function ytzi N -*- Zt 
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with (ytz)(n) = tyz(n). For every y e Z5 let Ty : N -> Zt with 2^ (n) = ySns (= 
yts(n) = tys(n))* Further, let ZT = {Ty : y e Z}. On ZT one defines addition 
and multiplication pointwise, thus obtaining ZT as an integral domain. The 
function §>i N -> ZT with §(n) = TS(n) constitutes the sequence 

&i = Ts(i) s ^2 = T s ( z ) '•> ' • • 9 

the third level in the hierarchy. This construction can be repeated indefi-
nitely,, 

As a concrete example of the above one could take any sequence of integers, 
but in this context one can as well take the Fibonacci sequence fiN-+Z with 
fi = l> fi = l > a n d s f o r n > 2* fn

 = fn-i + fn-z9 yielding t h e well-known se-
quence 

fx = 1, f2 = 1, /3 = 2, fh = 3 , f5 = 5, /6 = 8 , ... . 

For every z £ Z9 a function g : N ~^ Z can be defined by # (n) = s/ , thus con-
stituting the sequence 

Let Zg = {g2: 2 e Z } . On Z^ one defines ga + gh = ga+b and # a ^ = gab. The 
result is the integral domain (Zg , + , ®, ̂ 0 5 #-,_), isomorphic with the integral 
domain of the integers, induced by the sequence f. Let F: N -*• Zg be defined by 
F(n) = g* tn) . This yields the sequence F with terms 

Fi = 9i> F2 = 9i> Fs = $2* F^ = 9*> Fs = 9s> Fe = ^8* ••• • 
It should be noticed that again, for n > 2, Fn ~ Fn_1 + Fn_ 2» The sequence F 
could be called a Fibonacci sequence of Fibonacci sequences, the second level 
of a hierarchy of which / is the first and lowest level. Continuing, for every 
y9z e Z, let ygz be the function ygzi N -> Z^ with (ygz)(n) = gyz(n)5 (= yzfn). 
For every 3 £ Z, let Gz be the function Gz : 217 •> Z^ with £(n) = sFn , (= zg^^n>) -
Gzf(n))' Let ZG = {£s: 2 £ Z}. Again introducing pointwise addition and mul-
tiplication on ZGs one obtains ZG as an integral domain* Let $1 N -+ ZG with 
$(n) = Gf(n)* then ff constitutes the sequence 

*l - G l» *2 = Gl> *3 = G2> 5* ' G3> *5 = G5> *6 = G8> ••'> 

the third level of the infinite hierarchy. The sequence is a. Fibonacci sequence 
of Fibonacci sequences of Fibonacci sequences. 

2. GENERATION OF A HIERARCHY OF GROUPS 

One way of generalizing the Fibonacci sequence consists in extending its 
domain from N to Z. In this section let / denote the function /: Z -*- Z defined 
by f0 = 0, fL = 1, and fn = fn_2 + fn„1? or, fn_2 = fn - fn_13 where the argu-
ments are again written as subscripts. Clearly, f\N9 the restriction of / to 
N9 yields the original Fibonacci sequence. The set of values {fn : n e Z} can 
be pictured as an extension to the left of the original sequence: 

• ••» J_5 ~ ->s J-1+ = ~~>s j_3 = 2, JT_2 = ~f» J-l = J-9 

f, =° > A = !• ^ " !» A = 2> A = 3, /5 = 5 
The restriction f\N is nearly infective, spoiled only at the very beginning 

by f1 ~ fx" The extended / is only half as nice due to the identities formu-
lated in Lemma 1. 

L&nma 1: If n e I U {0} is even, then /"_„ = -fn , 

if n e N is odd, then / = /_ . 
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Bcu>£ 4-te.p.—Trivially f_Q = fQ = 0 = -jf0 and obviously /^ = 1 = 4f_1. 

Induction kttp.—For m > 1, let it be assumed that the lemma holds for 
all k e N such that k < m. By definition, 

J-m ~~ *>-m + 2 ~ J-m+1 ~ J~-(m-2) ~~ •'-(m-1)" 

If 777 is even, then /?i - 2 is even and m - 1 is odd, and hence, by the induction 
hypothesis, 

f = -f ~ f = -if + f ) = -f . 
J - m J m-2 J m - 1 KJ m-2 J m - r */w* 

If m is odd, then m - 2 is odd, m - 1 is even, and the induction hypothesis 
yields 

J -m J m- 2 ^ J m - 1 ' J m - 2 J m-1 J rn 
The next lemma is an extension of a well-known lemma. The proof is extended 

to all the integers. 
Lemma li For every n e Z, let Dn be the determinant of the matrix 

If n is even, then Dn = 1; if n is odd, then Z?„ = -1. 

F/tOO^i Obviously D_1 = -~l, DQ = 1, and Z^ = -1. Moreover, for every m e Z, 

0„ 
f f 

4 */W7 + 1 

f f + f 

J m-1 J m-l J m-2 

Jm ^ m Jm -1 

0 + 
/ f 
Jm-1 Jm 

f f 

f + f f 
J m-3 J m-2 J m-2 

f + f f 
J m-2 J m-l J m-i 

J m-3 J~m-2 

J~m- 2 J m- 1 

+ 0 = D 

Hence, if n is even, h\n\ applications of the rule Dm = Dm_2, upward or down-
ward, according to whether n is negative or positive, respectively, yield Dn -
DQ = 1. And if n is odd, h.(.\n\ - 1) applications of the rule, upward or down-
ward, yield Dn - D_1 = -1 or Dn - D± = -1. 

As is well known, the invertible 2 x 2 matrices with real entries have de-

(l °\ 
terminants ^ 0 and form a group under matrix multiplication with s J as 

'd ±\ \0 1/ 
D D \ (a h \ 

identity and | J as the inverse of I J, where D is the determinant 
-o_ a I \o dj 

xD D / 
fa b\ X /0 1\ 

of ( j. Let q = j J and let (qy be the cyclic subgroup generated by q. 
\c dj \1 1/ Lemma. 3: The cyclic group <(qy is of infinite order and for every n e Z, 
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( * n - 1 •*n \ 

f r )• 
?JiOO&'- [a] For n e N U {0} by straightforward induction. 

°̂ 1/ Vo A/' 

Next, for m £ N, If q 

qm+i = ^ 

(b) For n < 0, let n = -m. Then m e N and by (a) above, 

q"if f } 
\J m J m+ 1/ 

If ft? is even, then D - \ and 
7^ = /7 - W 

y - m J-m+1/ y n J~n + lf 

by Lemmas 1 and 2 . S i m i l a r l y , i f 777 i s odd, then Dm = - 1 and 

\fm ~Jm-ll V-777 f-m+1/ \fn ^n + lJ 

qn + q° , since fn ^ ft 

c) The infinite order of <q)> is now obvious; for every n > 0S 

0 " 

Since <̂ )> is a cyclic group of infinite order, qm = qn if and only if m = n. 
The function s: Z -> <q̂ > with s(n) = qn is bijective. Moreover, 

s(n + m) = qn + m = qn • qm = s(n) • sOrc). 

Hence, the multiplicative group <q> is isomorphic to (Z, +) , the additive group 
of the integers. Since the elements of <q> are 2 x 2 matrices, they can be 
added by the usual matrix addition, but <qy is not closed under that addition, 
However, the following lemma holds, 

LeJnma. 4.' For every n e Z, qn = qn~2 + qn_1, where + is the usual matrix addi-
tion. 

( Jn-l Jn \ l^n-3 ^n-2 ^n-l •'n-lX 

•"n •'n + l/ Vn-2 ^ n - 1 •'n ^ n - 1 / 

= /4-s 4 - A / f » - 2 »̂-A = ?B_2 + (?n.1_ 
V n - 2 •'n-l/ Vn-1 •'n / 
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The function s can be seen as a two-sided sequence with sn = qn for every 
n e 2, with sn ̂  sm for all n9m e Z such that n £ m9 and with sn - sn_2 + sn_l9 
Moreover, the elements of the sequence form an abelian group under multiplica-
tion. 

Once s is established, one may as well dispense with the matrices. For 
every n e Z, sn is uniquely determined by the ordered triple (fn_19 fn, fn+i)> 
and conversely. Let T be the set of all ordered triples of consecutive members 
of the sequence f: Z •> Z as defined above, ordered from left to right. Let 
ti <^> -»• T with t(qn) = (fn ± , fn , / n + 1 ) . Let "multiplication" be defined on 
7 by 

(J~m-ls J~m9 Jm+l'^fn-19 ?n s • ' n + l ' ~~ ^ w + n - l ' Jm + n9 ^m + n + 1^ ' 

Then 

*<<7V> = * « + n ) = ( 4 + n-l> 4 + n> 4 + n + l) 

Thus, t establishes an isomorphism between <^qy and T. Putting F - ts, the 
composition of s and t9 one obtains Fi Z -+ T with JFW = (/n_15 /„ » /w + i)- Since 
both s and t are isomorphisms, so is F9 and (T, •) is a multiplicative group 
isomorphic to the additive group of the integers. Moreover, using the familiar 
addition for ordered triples of numbers, 

(a, b9 c) + (a', b'9 cr) = (a + a', b + b!, c + e'), 

one obtains, as in Lemma 4, Fn - Fn_2
 + ^n-i' Summarizing these results, one 

obtains the following lemma. 

Lmma 5: Let'/: Z -> Z with /0 = 0, /x = 1, and fn = /n_2 + /n_x. Let 

21- {(/n_l5 /„, / n + 1 ) : n £ Z}, 

and let F: Z + T with Fn = (/n-1, /n , / n + 1 ) . Let FnFw = Fn + OT and let 

•^n + *m ~ (fn-1 ^m-19 J~n-J~m9 fn + 1 fm+l'* 
Then F is a bijective function constituting a two-sided sequence with terms 
Fn9n e Z, and the property Fn = -Fn_2 + Fn-i* Moreover, the terms of F form an 
abelian group under multiplication, isomorphic to the additive group of the 
integers. 

The group (T, •) may be called a Fibonacci induced group. The sequences / 
and F form the first and second levels of an infinite hierarchy. Next, one may 
consider the set of all ordered triples of consecutive members of the sequence 
F: Z -> T9 ordered from left to right, say 3 = {(Fn-1, Fn9 Fn + 1) : n e Z}. Let 
ff: Z -* 3 with 5n = (Fn_l9 Fn, Fn + 1). Further, let £F„JFm = 5n + m and 

K m v rc - 1 m- Is n m 9 n + 1 m + 1' 

Although 3 is not closed under addition, one still has (fn = 3rn_2 + &n-i» because 

*n = (^.x, Fn9 Fn + 1) = (Fn_3 + Fn_29 Fn_2 + Fn_±9 Fyl_1 + Fn) 
= ^ n - 3 9 ^n - 2 > Fn-l) + ^ n - 2 9 ^n - 1 9 ^n ) = ^n - 2 + ^n -1 " 

The terms of 3 again form an abelian group under multiplication, isomorphic to 
the additive group of the integers. The identity element is SQ = (F_l9 FQ9 F±) 
and the inverse of $n is $_n- Associativity and commutativity are inherited 
from the integers that serve as indices. 



1981] FIBONACCI INDUCED GROUPS AND THEIR HIERARCHIES 269 

3. CONCLUSION: FROM TRIPLES TO ^-TUPLES 

The previous section resulted in groups of triples and their hierarchy. 
The group operation was induced by the multiplication of 2 x 2 matrices. Dis-
carding the matrices, one can define this operation as well on ordered ^-tuples 
(q e N, q > 1) of consecutive terms of the extended, two-sided Fibonacci se-
quence, with the ordering from left to right. 

The ordered pairs are the first to be considered. Again let fiZ+Z with 
fo = °> fl = 1» a n d fn

 = fn-2 + fn-1- L e t P = * Cfn - 1 » fn ) : n £ Z > > t h e s e t o f 

all ordered pairs of consecutive terms of f9 ordered from left to right. Let 
F ( 2 ) be the function F ( 2 ) 1 Z -± P with F„(2) = (f , , f ) . 

L&nma 6: The function F ( 2 ) is bijective. 

VJiOOJ: The set {F^2) 1 n e Z} is partitioned into the sets 

A = {F^2) : n < 0}, 

£ = {^0(2) , ̂ ( 2 ) } = {(1, 0 ) , (0, 1)}, 

and C = {F^2) : n > 1} . 

The three sets are disjoint, because: (i) every pair in A contains a negative 
number (Lemma 1), no pair in 5 or C contains a negative number; (ii) every pair 
in B contains 0, no pair in C contains 0. Moreover, if m ^ n, then F^2 r ^n 5 
in B9 trivially; in C9 because the second coordinates of the pairs form the set 
"t/n • n > 1} a n d f ° r n > 1 the Fibonacci numbers are all different; in A 9 be-
cause the absolute values of the first coordinates of the pairs form the set 
{fn'. n > 1}, and hence are all different. Thus F is injective. Obviously, 
F ( 2 ) is also surjective, and therefore bijective. 

On {F^2): n e Z}, let multiplication be defined by F^2)F^2) = F^\\ and let 
addition be the usual addition of ordered pairs, 

Clearly, the set is closed under multiplication but not under addition. How-
ever, F}2) = Fn(2)2 + Fn(2)x because 

^n = \Jn-l' ^n^ = ^ n - 3 «^n-25 •> n - 2 •'n-1' " ^ n - 3 5 ^n-l' ^n-25 ^n-!' 

n- 2 n-i* 
The terms of F ( 2 ) form an abelian group under multiplication, with 

^o 2 ) = (/-!> /„> = ̂  °> 
as identity element and F_(2) as the inverse of F^2) . Associativity and commu-
tativity are again inherited from the addition of the integers that serve as 
indices. 

Passing to ordered g-tuples, let q be a fixed positive integer > 1. Let 
Q = tCfn-i, fn> •••> /« + ̂ -2>: n £ Z ^ the set of all ordered q-tuples of con-
secutive terms of f9 ordered from left to right,. Further, let F{q) 1 Z -> Q with 
jpW = (fn_l9 ..., fn + q-2)> (the choice of indices is for the sake of the pre-
vious ordered triples). 

Lzmma 7: For every q e N - {l}, the function Fiq) is bijective. 

VKOOh'- Obviously, F(q) is surjective. The proof that Fiq) is injective is 
by straightforward induction on q. 

Bcu>£ &£&p.—Given by Lemma 6. 

Induction Atcp.—Assume that the lemma holds for m9 i.e., all ordered m-
tuples of consecutive terms of / are different. Then clearly all ordered 
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(m + 1)-tuples are different also, since 

\J~n-l9 Jn9 ' ' * 9 Jn + m-i) " l V n - 1 ' .• • • » Jn + m _ 2 ^ s J~ri + m-l) 

and ordered pairs with different first coordinates are different. 
On {F(

n
q) in e Z], let multiplication be defined by F^q) F^q) 

addition be the usual addition of ordered ^-tuples 
F^ll and l e t m + n 

F, (<?) + F, (?) 
^m-± ->n-l9 ' • • » Jm+q-2 Jn+q-2'' 

Again, there i s closure under mul t ip l ica t ion , but not under addi t ion . S t i l l 
'?(<?) Fiql + F n-2 : because 

,(<?) 

= W n - 3 » J n-29 

r n - 2 ^ r n - 1 ' 

f ") 
9 J n + q - 2 ' 

rf + f f + f > 
V J n - 3 J n - 2 ' • • • » Jn+q-^ Jn+q-3J 

5 Jn + q-1*' + ' ^ « - 2 » Jw - 1 » • • • > Jn + q- 3' 

The terms of F^) form an abelian group under multiplication with 
, (?) 

(j -i » J n ' • • • 9 J a -2' ^ 0 ^ 1 ' Jfl' • • « s j c ? _ 2 ^ 

as identity element and F}q) as the inverse of F„ . Associativity and commu-
tativity are again inherited from the integers. All this results in a general-
ization of Lemma 5. 

ThdQtKW 1: Let fiZ + Z with fQ = 0, f± = 1, and fn = /n 2 + fn . For any 
fixed <? e tf - {l}, let 

and let F (q) : Z •* 
= ^4-l> 4 ' .'••» /« + <7-2>: n £ Z> 

Further, let i^Fn = 

^ + F„ 

with 
p(?) = 

n 

Fm + n and 
V J n _ l » J n 9 •••» Jn + q-2'm 

(L 
Then F (?) 

• 1 + *̂ n - 1 ' -̂ m + £i ' - I m + q- 2 + f n + q- 2 ) . 
is a bijective function constituting a two-sided sequence with terms 

F{
n
q) , n e Z,and the property Fn(t?)= F^q_\ + i^!^. Moreover, the terms of F(q) form 

an abelian group under multiplication. 

The hierarchy is now more complicated. Again calling f the first level, 
one obtains a second level which contains an infinity of sequences F (?) 
for every q e N - {1}. Each F^q>) in its turn contributes infinitely many se-
quences $(Q>r)9 q9r £ N - {1}, to the third level of the hierarchy, where the 
terms of 3r(̂ »r) consist of ordered r-tuples (from left to right) of consecutive 
terms of F'Q) . This construction can be repeated indefinitely. One can pic-
ture the hierarchy as a partial ordering, as follows: 

1st level 

2nd level 

3rd level 

One may avoid running out of letter types by noticing that the level number is 
one more than the number of coordinates in the tuples that form the super-
scripts. This way one can use capital letters for all levels, e. g., F(c?> r> 3 > 
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refers to a sequence of the fourth level, whose terms consist of ordered s-
tuples of consecutive terms of F^q' p); this F((?>r)in its turn is a sequence of 
the third level, whose terms consist of ordered r-tuples of consecutive terms 
of F^q>> ; and F(c?) is a sequence of the second level whose terms consist of or-
dered ^-tuples of consecutive terms of /. 

The hierarchy results in a generalization of Theorem 1. 

Tfieo/iem li Let f:Z + Z with /Q = 0, Ĵ  = 1, and fn = fn_2 + fn_1. For every 
m e N, let q± , .. . , qm e N - {1} . Let 

Z ( ^ > = { ( / n _ l 5 fn9 .... fn + q i _ 2 ) : n e Z}, 
the set of all ordered q1-tuples of consecutive terms of /. Let F x i Z •+ Z 
with 

Further, let 

^ <•>- {(C\ '-i>. F?1 ,-i>..... c^-q-i))-- - - 4 • 
uples of consecutive terms 

with y . 
p(<7l» ••••<7m) = n ( ? l » •••»<7m-l) r,C?l» •••»<7m-l) T ^ l ' • • • » < 7 m - i ) \ 
r n \ r«-l 5 r n 5 e ' * 9 rn + qm-2 ) ' 

Then F * m constitutes a two-sided sequence with terms Fn *' m , n e Z, 
and the property 

£ n ^ «-2 n-1 

Moreovers the terms of F *' *""' m form an abelian group under the multiplica-
tion 

the set of a l l ordered qm-tuples of consecutive terms of F lf ™-i)a L e t 

EXPLORING AN ALGORITHM 
DMITRI THORO a n d HUGH EDGAR 

San Jose State University, San Jose CA 95192 

V&diccutzd to thz mmoiy ok oiut dzoA {^/timd and cottojcLQuz, \loAn 

1. INTRODUCTION 

We start with a simple algorithm for generating pairs L (left column) and R 
(right column) of Fibonacci numbers. In a slightly modified version we wish to 
investigate the ratios L/R as the number of iterations n -*- °°. This, it turns 
outs involves (ancient) history, geometry, number theory, linear algebra, nu-
merical analysis, etc.! 

2. THE BASIC ALGORITHMS 

Let us consider a "computer project11 (appropriate for the first assignment 
in an Introduction to Programming course): 
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Given a suitable positive integer N9 write a program which generates 
the sum of the first N Fibonacci numbers with even subscripts. 

Of course one can generate F2i and form a cumulative sum. A more imagina-
tive student, however, might use the following algorithm. 

klQOKJXhm I: 

(a) Input N 
(b) L + 1, R +- 0 
(c) L-+- L + R9 R +- L + R, N + N - 1 
(d) If N £ 0, go to step (c); else output L + R - 1 and stop. 

["«-" means "is replaced by."] 

Thus in BASIC PLUS we would write 

10 INPUT N 

20 L = 1 \ R = 0 

30 '•' L = L + R \ R = L + R\ N = N - 1 

kO IF N<>0 THEN 30 ELSE PRINT A + B - 1 

999 END 

Or, on the TI 59 Programmable Calculator, we could enter N, press A9 and 
execute: 

LBL A ST0 00 1 ST0 01 0 ST0 02 

LBL B RCL 02 SUM 01 RCL 01 SUM 02 
DSZ 0 B RCL 01 + RCL 02 - 1 = R/S 

[Here LBL, STO, RCL, SUM, DSZ,andR/S are codes for label, store, recall, sum, 
decrement-and-skip-on-zero, and run-stop, respectively. In particular, N is 
placed in memory location 00 and, after each pair of consecutive Fibonacci num-
bers is generated, the contents of loc. 00 is decreased by 1; if the result ^ 
0, we repeat by going back to "LBL B".] 

The reader is invited to guess (or determine) the values of N for which our 
output doesn't exceed the 10 digits which are displayed on the TI 59. 

If we started with L = R = 1, then the pairs L9R would have ratios L/R ap-
proaching the golden mean (1 + /5)/2. Given a pair L9R let us now generate the 
next pair by slightly modifying the preceding algorithm. 

klQQHJXhm 11: Given N (N > 0) 

(a) L + 1, R -*- 1 
(b) T «- L + NR9 R «- L + R9 L •*- T 
(c) Repeat step (b) if desired; else output L/R. 

We wish to investigate the ratios L/R as the number of iterations n -*- °°. 

3. PRELIMINARY OBSERVATIONS 

Algorithm II can be described by the equations 

Lk+1 = Lk + NRk 

Rk+i = Lk + Rk, k = 0, 1, 29 ...9 

where LQ9 RQ9 and N > 0 are given real numbers. We will use the matrix form 

Lk\ / l N 
= A\ I where A < 

Rk + i/ V?k/ M 1 
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Two examples are: 

^ 0 «2?0 = 

1 
3 
7 

41 

1, N = 

(2) 
1 
2 
5 

29 

2 *o = *o = 

1 
4 

10 
28 

1, N = 3 

(3) 
1 
2 
6 

16 

The ratios L/R in each_row are, indeed, the oonvevgents of the continued frac-
tion expansions of /2 and /J, respectively. (The reader is invited to try 
LQ = RQ = 1, N = 7.) Will this ever happen again? 

4. AN ATTEMPT TO ACCELERATE CONVERGENCE 

After consideration of additional examples, it becomes evident that for 
large N the values L /R •> SN slowly. This suggests that we might be able to 
accelerate convergence by applying the algorithm to l/N and then taking the re-
ciprocal of the final approximation. 

Unfortunately, this doesn?t help. E.g., for LQ = RQ = 1, N = 5, we get 
ratios 1, 3, 2, 7/3, 11/5, 9/4, ..., while IV = 1/5 yields ratios 1, 3/5, 1/2, 
7/15, 5/11, 9/20, ... . 

In general, 
R2k(l/N) = l/R2k(N) and R2k+1(l/N) =R2k+1(N)/N. 

Thus, i f Ri(N) -> i/N9 then 

R2k(l/N) -> 1//N and R2k + 1(l/N) •> v /̂ZV = 1A//V; 

i . e . , R^(l/N) -> 1///S/" a s i -> °° and, moreover , convergence i s " a t t h e same r a t e . " 
As we w i l l l a t e r s e e , i t i s t h e s i z e of t h e r a t i o 

k o o l - 1 1 - ^ 1 
1 + i/jfif 

which determines the rate of convergence; the smaller the ratio, the faster the 
convergence! Since \g(l/T)\ = \g(T)\ the above idea is fruitless. Put another 
way, the closer IF is to 1, rather than 0, the faster the convergence. 

5. A MATRIX PROOF 

(a) We start with the characteristic polynomial 

f(X) = det(A - AJ) = X1 - 2X + 1 - N 

associated with the matrix yi 

Solving f(X) = 0 we get eigenvalues Ax = 1 + '/N and X2 = 1 - /N. 

(b) Applying the division algorithm to the polynomials X and f(X) (in the 
Euclidean domain R[X] of polynomials with real coefficients) yields 

Xk = (X2 - 2X + 1 - N)g(X) + r(X) 

where r(A) = Bx + 32A. 
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(c) Setting A = Xl9X2 we get 
Ai = &i + e2Ax and A* = Bx + 32A2. 

When solved simultaneously, one finds 

3X = (X2X* - A1X^)/(A2 - Xx) and 32 = (X* - A^)/(A2 - X,). 

(d) Invoking the Cayley-Hamilton theorem produces Ak = 3XJ + 324 (where I 
is, as usual, the 2 x 2 identity matrix). 

(e) Our original matrix equation can easily be written in the form 

Ak[ I, k = 1, 2, 3 

Using (c)9 (d)9 and a little algebra, we get 
fLk\ / ( 3 i + 3 2 ) ^ 0 + 32A% 

2 0 V M 1 H 2 ' 0 

h [ 37 + ^ + m° 
Bk I Hi 

L° + l e 7 + ^ o 
A2 - A1(A2/A1)k 

However, 3 /g = »• -X2 as fc -> °°  (since |X I > |X I). Thus 
(X2/A1)&-1 

Consider 

Lk /NLQ + NRQ 
^ = /W as k ->• °°. 

** L0 + >̂ i?0 

6. SOME ACCIDENTS 

i/NL + 21/i? 

L + T/NR 

(a) Illegal Cancellation 1.1: "Erasing" the first term in the numerator 
and denominator of Q yields Q = NR/(/NR) = /N. 

(b) Illegal Cancellation 1.2: "Erasing" the second term in the numerator 
and denominator yields Q - \^NL/L = /N. 

(c) Illegal Simplification 1.3: Setting L - R = 1, we get 

Q = (v¥ + 210/(1 + /N) = /N. 
(d) Of course, even without multiplying numerator and denominator of Q by 

L - /NR9 

\L + (N//N)R ) 

Moreover, (sL + tR) / (L + si?) = s implies sL + ti? = sL + s2i? or s = /t; thus in 
one sense our accidents are unique! 
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7. ANOTHER MODIFICATION 

Instead of considering the ratios Lk/Rk, suppose we now look at Lk+1/Lk. 
E.g., when N = 2 we get L6/L5 = 239/99 * 2.41414. Thus, in general, one might 
guess Lk + 1/Lk ->l+yNask-*co. Not only is this the case in general, but in 
numerical analysis consideration of "ratios of corresponding components" yields 
the so-called Power Method for computing the numerically largest eigenvalue of 
a matrix. 

To see the essential notions, let T be a 2 x 2 matrix with eigenvalues 

l*il > l*2l > °  
and linearly independent eigenvectors xx, x2. If V is an arbitrary vector, 
then suppose 

As before, define V(m ) = AY0"-1*, m = 1, 2, ... . This yields 

V(0) = o1x1 + o2x2, where c1 ± 0. 

VK } = cnX x + c„X x = X le x + e ( # -
(since Ax^ = Xx^) with the second term •> 0 as m -»- °°. Thus if y(m) x X̂ c]_ f , J , 
then the ratio of, say, first components 

X' m + i 

-, in 

X1c?1a 

approximates X1; moreover, [ h) is a corresponding eigenvector. 

In actual practice this version of the Power Method is usually improved by 
an appropriate scaling (such as normalization) to avoid overflow. Modifications 
for the case of a symmetric matrix and deflation techniques (for approximating 
nondominant eigenvalues) are discussed in [1J. 

8. CONCLUSION 

It is somewhat amusing that for many years one of the authors asked students 
to investigate Algorithm II without being aware that its probable origins go 
back some nineteen centuries. An interesting discussion of its relationship to 
Pell's Equation as well as to the geometry of the ancient Greeks may be found 
in [3]. 

We leave the reader with at least two possible excursions. Suppose N is a 
positive (nonsquare) integer with continued fraction convergents Pk/qk [2]. 

(a) If Lk/Rk = pk/qk for k = 0 and 1, what can you say about Nl 

(b) If the equation in (a) holds for k = 0, 1, and 2, what can be said 
about 21/? (E.g., it holds when N = 7.) 
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AN IMPLICIT TRIANGLE OF NUMBERS 

DAVE LOGOTHETTI 
University of Santa Clara, Santa Clara CA 95053 

Sketch reprinted from California Mathematics 5(2) , October, 1980. 

To Voxn Hoggattt whole common AenAe, plain language, and 
energetic enthiutaAm brought real mathematics into the 

Lives ol div&tte people throughout the would. 

This elementary note introduces a new triangle of numbers that is implicitly 
defined in PascalTs Triangle. It shares many properties with Pascal's Triangle, 
including the generation of Fibonacci numbers. It differs from Pascalfs Tri-
angle in that it is not symmetrical (and therefore is not a special case of the 
Fontene-Ward Triangle [I]). When I asked Vern Hoggatt—who seemed to know ev-
erything there is to know about Pascalfs Triangle—about the Implicit Triangle, 
he surprised me by replying that he did not know of either the triangle or any 
of its properties. Therefore, the following may add to our readers1 list of 
"Neat Little Facts about Integers." 

The question that led to the discovery of the Implicit Triangle is: "How 
do we get the squares out of Pascalfs Triangle?" One fairly well-known way is 
to note that 

0 + 1 = 1, 1 + 3 = 4, 3 + 6 = 9, ..., (" 2 X) + (2) = "*' 

This can be generalized using Eulerian numbers, so that 

0 + 4(0) + 1 = 1, 0 + 4(1) + 4 = 8 , 1 + 4(4) + 10 = 27, ..., 

( » ) + 4 ( » ^ ) + ( " 3 2 ) - » - « ) + i i ( " t 1 ) + i i r i 2 ) + ( " : 3 ) - » ' -
etc. See [2], for example. But there is another way to get the squares out of 
Pascal's Triangle, and this is not so well known: 

( ? ) ' ( S M I ) • ( ; ) - • • ( ! ) • ( ; )•«) *u)-«• 
( j ) + a ) * ( ? ) * a ) - ' . - . ( " : , ) + ( " 2 V ( T ) + ( " ) - - ' -
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These squares are generated by adding rhombuses of entries from Pascal1s 
Triangle. By adding other rhombuses, we generate our new triangle: 

0 — 1 - - 1 — 1 
•/ 2 / 1 / 0 / 

0 — 1 — 0 - 0 0 
/ 2 / 3 / 1 / 0 / 

0—-1 1 0 0 — 0 
/ 2 / 5 / 4 / 1 / 0 / 

0 — 1-—2 1 0 — 0 — 0 
/ 2 / 7 / 9 / 5 / 1 / 0 / 

0 1 3 _ 3 _ i o — 0 — 0 
/ 2 / 9 / 1 6 / 1 4 / 6 / 1 / 0 / 

0 -1 — 4 — 6—4 1—0 — 0 — 0 
/ 2 / l l / 2 5 / 3 0 / 2 0 / 7 / 1 / 0 / 

0 I _ 5 _ I O — 1 0 — 5 1—0 0 0 
/ 1 / 1 3 /36 /55 /55 / 27 / 8 / 1 / 0 / 

0 1—- 6—15 — 20—15 6 — 1 — 0 — 0 — 0 
/ 2 / 1 5 / 4 9 / 9 1 / 1 0 5 / 7 7 / 3 5 / 9 / 1 / 0 / 

0—-1 7—21—35—35—21 7 1 — 0-—0—0 
/ 2 / 1 7 / 6 4 / l 4 0 / l 9 6 / l 8 2 / l l 2 / 4 4 / l 0 / 1 / 0 / 
0 — r — 8 - 2 8 — 5 6 — 7 0 — 5 6 — 2 8 8 — 1 — 0 — 0 — 0 

/ 2 / 19/81/204/336/378/294/156/54/11 / 1 / 0 / 
0 — r — 9 — 36—84-126-126—84 — 36 — 9 — 1 — 0 — 0 0 

Suppressing the entries from Pascal's Triangle, we get the (almost) triangular 
array: 

2 1 

2 3 1 

2 5 4 1 

2 7 9 5 1 

2 9 16 14 6 1 

2 11 25 30 20 7 1 

2 13 36 55 50 27 8 1 

2 15 49 91 105 77 35 9 1 

2 17 64 140 196 182 112 44 10 1 

2 19 81 204 336 378 294 156 54 11 1 

This Implicit Triangle has the generating formula 

where J(n, k) is the Implicit Triangle entry in the nth row, kth diagonal, 

n = 1, 2, 3, ..., Zc = 0, 1, 2, 3, ... . 

(The zeroth row is missing from this new triangle.) 
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Although it lacks the symmetry of Pascalfs Triangle, the Implicit Triangle 
shares many of its properties. 

Tkzonem 1: I(n - 1, k - 1) + I(n - 1, k) = I(n9 k). 

Psioofi:- This version of Pascalfs Identity follows from that identity in 
Pascal's Triangle. 

™-i.>'-»+*<»-i.»-{'l:l)*ti:l)*(i:l) + (r-3 
+ e: ?M\-VC:: D+ (V) 

-(Z:a*'(Z:iHi;:;MV) 
-(£:?)• ( V M S :;)•("*-') 
= T(n, Zc). 

This is not really surprising, since the Implicit entries are linear combina-
tions of Pascal entries, and these linear combinations carry along the proper-
ties of Pascal's Triangle. 

Tko.on.2m 2 {"ChAAJi>£m(U Stocking Tke.on.em")'* 
k+r 

Y, ifa, k) = i(k + v + 1, k + i). 
n = k 

Tke.onem 3 ["Hockey Stick Tke.on.em") ° 
k = n 

I(n9 P ) = £ ( - l ) k " 2 , " 1 J (n + 1, k). 
k = r + l 

Tkconejn 4 ["Ftboncicct UumbeJi. Tke.on.ejm"): 

£ I(n - k, k) =Fn+2. 
k = 0 

(°°  exploits the fact that proceeding up a diagonal we eventually get all O's.) 

Tkconem 5 (" Attcnncuting Row Sam Tkconem"): 

n + 1 

£(-l)*J(n, k) = 0, n = 2, 3, 4, ... . 
k = o 

Vnoo^k*- All of these theorems follow from the fact that the Implicit en-
tries are linear combinations of the Pascal entries. 

And then there are properties different from, but analogous to, properties 
of Pascal's Triangle. For examples, 

Tkconem 6 {"Luc<u Hambcn Tkconem"); 

]T l(n - ks n + 1 - Ik) = Lk+1. 
k = 0 
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Thtohm 7 ["Row Sam Tkzotim"): 

J^I(n9 k) = 2n"1(3). 
k = o 

Vtioofa. Both of t h e s e theorems may be proved j u s t a s t h e i r ana logues a r e 
proved for P a s c a l ' s T r i a n g l e . Theorem 7 may be proved very e a s i l y w i t h t he a i d 
of Theorem 8. 

ThdOKOm S ["Co&&&sL(U.2.nt Tkzotiejfn")'• I(n9 k) i s t he c o e f f i c i e n t of xn~k i n t h e 
expans ion of (2x + 1) (as + l ) n _ 1

e 

VK.OO^i From the identity 

we can see that the Implicit Triangle is formed from the binomial coefficients 
of two overlapping Pascal Triangles: 

«-» = U)+(V)-
The theorem then follows from the fact that 

(2a? + l)(x + l) n ~ 1 = x(x + l ) n _ 1 + (x + l)n. 

We are now in a position to look at a Generalized Implicit Triangle: 

a 1 

a (a + 1) 1 

a (2a + 1) (a + 2) 1 

a (3a + 1) (3a + 3) (a + 3) 1 

a (4a + 1) (6a + 4) (4a + 6) (a + 4) 1 

a (5a + 1) (10a + 5) (10a + 10) (5a + 10) (a + 5) 1 

Here the generating identity is 

G(n9 k) = G(n - 1, k - 1) + G(n - 1, k) 9 G(n9 0) = a9 G(rc, n) = 1; 

for a = 1, this is just Pascalfs Identity. 

IkdoK^m 9 (" Generalized dodijldloiit Thejotiom")'- G(n9 k) is the coefficient of 
xn~k in the expansion of (ax + 1) (x + I)""1. 

P/LOÔ : The Generalized Implicit Triangle is again just the overlap of Pas-
cal flT7frTangle and Pascal's Triangle with every entry multiplied by a - 1. The 
theorem follows from the identity 

(ax + l)(x + I)"1-1 = (x + l)n+ (a - l)x(x + l ) n - 1 . 

Since each entry of the Generalized Implicit Triangle is a linear combina-
tion of entries from Pascal's Triangle9 those foregoing theorems whose proofs 
were based on linear combinations will hold in the general cases with appropri-
ate modifications; for example5 the row sums will be of the form 2n~ (a + 1). 
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Had Vern Hoggatt been able to coauthor this article he would no doubt have 
found many more results. Perhaps our readers will celebrate his memory by 
looking for further results themselves. 
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FRACTIONAL PARTS (nr - s), ALMOST ARITHMETIC SEQUENCES, 

AND FIBONACCI NUMBERS 

CLARK KIMBERLING 
University of Evansville, Evansville IN 47702 

To tkd mmosiy o{ \Zznn HoQQeutt, wiAk gsicutvtude, and adbruAxutxon. 

Except where noted otherwise, sequences ian}, {bn}, and {cn} are understood 
to satisfy the following requirements, as stated for {an}i 

(i) the indexing set {n} is the set of all integers; 
(ii) an is an integer for every n; 
(iii) {an} is a strictly increasing sequence; 
(iv) the least positive term of {an} is a±. 

We call {an} almost arithmetic if there exist real numbers u and B such that 

(1) \an - un\ < B 

for all n, and we write an ^ un if (1) holds for some B and all n, 
Suppose r is any irrational number and s is any real number. Put 

cm = [mr - s] = the greatest integer less than or equal to mr - s, 

and let b be any nonzero integer. It is easy to check that cm + b - cm = [br], 
if (mr - s) < (-br), and = [br] + 1, otherwise. 

Let an be the nth term of the sequence of all m satisfying cm+b~ cm= [br]. 
In the following examples, r = (1 + /~5)/2, the golden mean, and s - 1/2. 

Selected values of m and cm arei 
-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 
-9, -7, -6, -4, -3,-1, 1, 2, 4, 5, 7, 9,10,12,14, 15, 17, 18, 20, 22, 23, 25. 

When b = 1 we have [br] = 1, and selected values of n and an are: 

-1, 0, 1, 2, 3, 4, 5, 6 
-4, -2, 1, 3, 6, 9, 11, 14. 

When b = 2 we have [2?r] = 3, and selected values of n and an are: 

-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 
-5, -4, -3, -2, 0, _1_, 2., _3, 5_9 6, 81, 9, 10, 11, 13_, 14. 

Note here the presence of Fibonacci numbers among the an. Methods given in 
this note can be used to confirm that the Fibonacci sequence is a subsequence 
of {an} in the present case. 
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When i = -2 we have [br] = -4, and selected values of n and an are: 

0S 1, 29 39 4 
-4, 1, 69 9, 14 

The main purpose of this note is to give an elementary and constructive 
method of proving, in general, that the jump-sequence {a n] is almost arithmetic 
To accomplish this9 we must solve the inequality (mr - s) < (-br) for m. The 
method of solution, when applied to the case r = (1 + /5)/29 leads to a number 
of identities involving Fibonacci numbers, Lucas numbers, and the greatest in-
teger function. 

Lmma 1: Suppose an ^ un9 where u > 1. Let {a*} be the complement of {an}9 

that is, the sequence of integers not in {an} 9 indexed according to requirements 
i-iv. Then 

a* ^ rn. 
n u - 1 

Lommci 2: Suppose an ^ un and bn *\> vn* Then the composite on - ban satisfies 
on ^ uvn. 
Lmma. 3: Suppose an ^ un and bn "° vn9 where a^+ bk for all j and k, Let {cn} 
be the union of {an} and {£>n}. Then 

/I , IV 1 

n \u vj 
Proofs of the three lemmas found in [7] for positive n can be extended 

readily to the case of all integers n. 

Th&OtlQJ(n'> Suppose r is an irrational number, s a real number, and b a nonzero 
integer. Let {an} be the sequence of integers m satisfying (mr - s) <. (br). 
Then an ^ n/ (br). 

Vsioofc First, we note that mr - s can be an integer for at most one value 
of nT9 and that whether the sequence {an} is almost arithmetic does not depend 
on whether it contains such an m. Accordingly, we shall assume that all frac-
tional parts which occur in this proof are positive. Also without loss we as-
sume that 0 < r < 1. 

Suppose b >_ 1, and let p = [br] . If 

(2) (mr - s) £ (br) 9 
then for k = [mr - s], the integer m must lie in the interval 

4 
Ik + s k + s , _ Pi 
\ r s r r J 

Conversely, any m in such an interval satisfies (2) with k = [mr - s]. 
Now let q = [(br)/r]9 the greatest integer £ satisfying £ - 2? + —• < 0. 

Th6n lk + S) > - b + •£ 

for all integers /c, so that for q >_ 1 and £ = 1, 2, ..., q, the integers 

(3) mk = [^"£] + ̂  ^ = °> ±1. ±2> ••-. 
satisfy (2). Each of these sequences imk] is almost arithmetic with slope 1/r. 

If q = 0 then some interval J^ contains no integer. In this case the solu-
tions of (2) are the integers + 1 for which (—-—1 J> 1 - b + -:. If 

\k + si r 
q >_ 1, then the integers — + q + 1, where 
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(4) (K±e)hq+1.b+E.; 

are solutions of (2), along with the solutions given in (3), and by definition 

( k + s\ — 1 are 
t ic tcn e q u x v c i x c u u LU ' 

[/< + s i r/c + s i — + i an(j + q + i a r e aimost arithmetic 

if the sequence of k satisfying (5) is so. By Lemma 1 this is indeed the case 
if the complementary sequence, consisting of all integers k satisfying 

H*) < (?) 
is almost arithmetic. Except for at most one k9 this inequality is equivalent 
to 
(6) (krf - s') 1 (prr)9 
where rr = {IIT) and sr = -~s/r. 

As (6) is of the same form as (2) , we note that with a finite number of ap-
plications of the process from (2) to (6) the integer p decreases to 0, since 
initially 0 <_ p <_ b - 1. When p = 0, the number on the right-hand side of (4) 
is 1, indicating that there are no further values of k to be found. By forming 
the union of the (pairwise disjoint) solution sequences which have been found, 
we get an almost arithmetic sequence, by Lemma 3. 

Suppose now b <_ -1. Then the integers m satisfying (-mr + s) <_ (~br) form 
an almost arithmetic sequence. Thus, by Lemma 1,those integers m satisfying 
(-mr + s) > (-br) = 1 - (br), or equivalently, (mr - s) = 1 - (-mr + s) < (br), 
form an almost arithmetic sequence. 

We have finished proving that {an} is almost arithmetic. It remains to see 
that the number u in (1) is l/(br). 

[k + si If b = 1, then the an are the numbers — + 1, k = 0, ±1, ±2, ..., as 

already proved, and hence an ^ nl(r). For an induction hypothesis, suppose, 
for b >_ 2, that for all d <_ b ~ 1 the sequence {on} of solutions m of 

(7) (mr1 + sf) < (drf) 

satisfies on ^ n/(dr')s for any given positive irrational rr and real sr. Let 
{bn} be the sequence of solutions of (7) where rf = (l/r) , sr = -s/r, and 
d = p = [br] <_b - 1. 

Let ib*} be the complement of {bn}9 so that 

b* ^ - (p(llr)) 1 - (p/r)> 
by Lemma 2. There are no other solutions if q = 0, and if q >_ 1, the remaining 
solutions are simply 

fk,i = FHKl + is ^ = 05 ±15 ±2, ...; i = 1, 2, <?» 

as already proved. Since /., . ̂  /c/r for £ = 1, 2, ..., ̂ , we have, by Lemma 3, 
for q >_ li 

dy, ^ qr + r - r(p/r) [(br)/r]r + r - r([br]/r) 

= TT^)/P]P + 2» - r(-(br)/r) = n/ (2?P)" 



1981] FRACTIONAL PARTS (nr ~ s), ALMOST ARITHMETIC SEQUENCES, 
AND FIBONACCI NUMBERS 

In case q = 0, we find similarly an <\> 
r - r(p/r) n/ (br). 

Finally9 suppose b <_ -1. The integers m satisfying (-mr + s) > (-br) form 
a sequence {on} satisfying cn ^ nl(-br) » For the complement {an} = {c*}s we 
have an ^ n/ (2?r) , by Lemma 1. 

CofioLtaAif 1 t Suppose r is an irrational number and s is a real number. Sup-
pose a and b axe. nonzero integers such that (ar) < (br) . Let {an} be the se-
quence of integers m satisfying (ar) < (mr - s) <_ (2?r) . Then 

n (br) - (ar) * 
VtiOO^i Let {fn} and {hn} be the solution sequences of the inequalities 

(mr - s) £ (ar) and (mr - s) <_ (fô ) , respectively. The sequence {an} is, in 
the terminology of [7], the relative complement of {fn} in {hn}. Applying the 
method used in [7]s we conclude that 

n (£r) - (ar)' 

Fraenkel, Mushkin, and Tassa [3] have obtained results indicated in their 
titles "Determination of [nd] by Its Sequence of Differences." The theorem in 
this present note supplements those results. We may ask, for example, for a 
sequence {cn} whose consecutive differences are all l!s and 2!s9 determined by 
the rule cn + 1 - cn = I for exactly those n of the form [m0 - <j)], where 0 and (j) 
are given. The question leads to the following corollary, 

CoftoLtcUiy 2°- Suppose 0 is a positive irrational number and (f is a real number. 
Let h = [6], and let {en} be the sequence determined by cn+1 - on = h for ex-
actly those n of the form [md - <j)] and = h + 1 otherwise. Then 

[n + rih - n/9 - c|)/0], 0 S ± 1, ± 2 S 

Vnoofai We have cn + 1 - cn - h for exactly those n satisfying (nr - s) < (-r), 
where r = 1 + h - 1/0 and s = (j)/0. These n are the integers of the form 
[m/(-p) - s/(-r)]s but this is [mG - (()] . 

The method of proof of the theorem readily shows that for any irrational r 
and any real s 5 the sequences given by 

(8) [ n + i 
(r) and 

(-*) 

are complementary (except that one term, and only ones can be common to the two 
sequences9 as when n = s = 0 ) . This fact is a generalization of the well-known 
result by Beatty [1], obtained here by putting s = 0 and restricting the se-
quences to positive integers and r to the unit interval. 

Corresponding to (8), the jump-sequence {an} of indexes m such that [mr + 

r~YI + £>""] 
r - s] - [mr ~ s] = [r] is given by m = ~7TT~ + lj a n d t h e complementary jumps 

Tyi S~\ 
of size [r] + 1 occur at m of the form ~ r p r ~ + !• 

Explicit results for b = 2 and only positive terms are also easy to state, 
in two cases: If (r) < 1/2, then the three sequences 

n + s 
. (/•> J s 

n + 8 
. (*0 _ + 1, 1 

\n - sl(-r\ 
I (-i/(-*0) 

+ 1 - s 

( _p ) 

are complementary, and if (r) > 1/2, then the sequences 
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(9) L ( •r)\' [n(-r)S\ + U 

\n + s/(r)~| 
L (-!/(*•)) J + 1 + s 

(r) 
are complementary. 

For (r) < 1/2, the jump-sequence of m such that [mr + 2r - s] - [mr - s] = 
I Yh — S ~\ (~n — S~"I 

[2i>] is given by the union of the sequences —?—r- + 1 and -7 . + 2, and 

jumps of size [2r] + 1 occur at integers m = \ , . 4- 1, where k has the form 

\n - s/(-rQ1 
L (-i/(p)) J + x-

It is of historical interest that Hecke [4] first proved the theorem of this 
note in the case s = 0. That (br) must equal (j>) for some integer j in order 
for {cm} to be an almost arithmetic sequence, for the case s = 0, was proved by 
Kesten [6]. 

Taking p in (9) to be (1 + /5)/2 leads to a number of identifies involving 
Fibonacci numbers. For example, with s = 0, the three sequences in (9) may be 
written f r l n -| 

In 1 r 2w 1 I L/5 - lj 
' J- 5 (9') 

.3 - v^. 3 - A 

+ 2 

/J- 1 
It is easy to prove that the first two of these sequences contain all the Fibo-
nacci numbers. In fact, the method of Bergum [2] can be used to show that 

for odd n > 1 
" 2Fn 1 
_3 - ^ J 
r 2Fn 1 
L3 - / 5 _ 

+ 1 for even n 

and 
2F„ 

/5 - 1 
+ 2 

/5 - 1 

Fn + 3 + 1 for odd n _> 1 

F 1 for even n ̂  0. 

REFERENCES 

1. S. Beatty. Problem 3173. Amer. Math. Monthly 33 (1926):159. Solutions, 
ibid. 34 (1927):159. 

2. G. E. Bergum, Sr. Problem B-367 (Solution by G. Berzsenyi). The Fibonacci 
Quarterly 16 (1978):564. 

3. A. S. Fraenkel, M. Mushkin, & U. Tassa. "Determination of [nQ] by Its Se-
quence of Differences." Canad. Math. Bull. 21, No. 4 (1978):441-446. 

4. E. Hecke. "Analytische Funktionen und die Verteilung von Zahlen mod. eins." 
Abh. Math. Semin. Hamburg Univ. 1 (1922):54-76. 

5. V. E. Hoggatt, Jr., & A. P. Hillman. "Recursive, Spectral, and Self-gener-
ating Sequences." The Fibonacci Quarterly 18 (1980):97-103. 

6. H. Kesten. "On a Conjecture of Erdos and Sziisz Related to Uniform Distri-
bution Mod 1." Acta Arith. XII (1966):193-212. 

7. C. Kimberling. "Almost Arithmetic Sequences and Complementary Systems." 
To appear in The Fibonacci Quarterly. 



1981] 285 

ON THE "QX + 1 PROBLEM/' Q ODD 

RAY STEINER 
Bowling Green State University, Bowling Green OH 43403 

Vz&Ldot&d to th<i mmofiy oj$ I/. E. Hoggatt 

INTRODUCTION 

In a previous paper [3] we studied the function 

( (3n + l)/2 n odd > 1 
f(n) = < n/2 n even 

( 1 n = 1 

and showed that there are no nontrivial circuits for this function which are 
cycles. In the present paper we shall consider the analogous problem for 

C (qn + l)/2 n odd > 1, q odd 
h(n) = < n/2 n even 

( 1 n = 1 

for q- 5 and 7 and shall find all circuits which are cycles for these functions. 

1- THE CASE Q = 5 

T <=>t-

' (5n + l)/2 n odd > 1 
fin) - \ n/2 n even 

1 n = 1 
Tho.OK.Qm 1: Let v2irn) be the highest power of 2 dividing m, m e Z and let n be 
an odd integer > 1. Then, n < f(n) < ••• < fk(n), and fk+1(n) < ffe(n), where 
k = v2(3n + 1). 

?K00l- Let n0 = % , n = f'l(n), i > 1. Suppose 7^, n2, . .., ^ j _ x are all 
odd. Then _ , , 0 

5n0 + 1 = 2nx 
5n1 + 1 = 2n2 

By simple recursion, we get 
5^j-i + 1 = 2nj 

2jn, = 5Jn + — 
3 

Thus 

(1) 2(3nd + 1) = 5J'(3n + 1) 

If j < v2(3n + 1), then nj is odd and we may extend the increasing sequence. 
If j = v2(3n + 1), then n3- is even. The result follows. 

Following [2], let us write n—k-> m —^-> n*, where £ = V2(m) 9 n* = tf7/2£, 
Zc = y2(3w + 1) and m is given by 2k (3m + 1) = 5k(3n + 1). 

If we let A be the set of positive odd integers and define T:A -*- A by (Tn) 
= n*, the map from n to n* is called a circuit. Our goal is to prove that 

13 - ^ 208 - ^ 13 and 1 - ^ 8 - ^ 1 

are the only circuits which are cycles under F. We shall accomplish this by 
reducing our problem to aDiophantine equation and then using a result of Baker 
[1] to solve the equation. 

TkdOKom 2: There exists n such that T(n) = n only if there are positive inte-
gers k9 &, and h satisfying 
(2) (2k+£ - 5k)h = 2* - 1. 
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Vnmi} Suppose T(n) == n. Then 2k(3m + 1) = 5k(3n + 1) and 2ln = m. I f we 
w r i t e 

3m + 1 = 5̂ ft 
3n + 1 = 2*ft 

We get 
(2fe + 1 - 5k)h = 2£ - 1 

as required. 
We note that the converse of this theorem is false: k = 1, £ = 2S ft = 1 

yields a solution of (2), but this solution does not yield integer values of m 
and n. 

Tk&QSiQJM 3: The only solutions of equation (2) in positive integers are 

k 
k 
k 

= 
= 
= 

1, 
2 , 
3 , 

£ 
£ 
£ 

= 
= 
= 

2, 
3 , 
2 , 

ft 
ft 
ft 

= 
= 
= 

1 
1 
1 

VKOO^I We reduce (2) to an inequality in the linear forms of algebraic 
numbers and then apply the following theorem of Baker [l,p. 45]: Theorem 3. If 
a15- .... , an9 n _> 2, are nonzero algebraic numbers with degrees and heights at 
most d(>h) and 4(>_4) respectively, and if rational integers b19 . . ., bn exist 
with absolute values at most B such that 

0 < \b1 In ax + ••• + bn In an\ < -e~6B, 

where 0 < 6 < 1 and the logarithms have their principal values, then 

B < ( 4 n 2 6 " 1 ^ log A)i2n + 1)2 . 

Returning to (2) we find that the only solutions for k < 4 are 

k = 1, £ = 2, ft = 1 
k = 2, £ = 3, ft = 1 
fc = 3, £ = 4, ft = 5. 

Thus k >. 4 and (2) yields 
(3) 0 < 2fc + * - 5 k <. 2* - 1. 

Dividing both sides of (3) by 2k + i and using the fact that 

1 . . 2k 
> In for k >_ 1, 

2k - 1 2* - 1 
we get 

(4) 0 < | (k + £) In 2 - k In 5| < 9 and hence 
2k - 1 

0 < £ n 5 
£ " log2 2 

fc In 2(2fe - 1) 

Since In 2(2fe - 1) > 2k for & _> 4, we see that if & _> 4, £/& must be a conver-
gent in the continued fraction expansion of log2(5/2). With the aid of a com-
puter, we find that the first 7 convergents of this continued fraction are 

_1 4 37 78 292 .850 5293 
1' 3s 28' 59' 146' 643' 4004' 

and it is easily verified that if k > 4, none of these convergents satisfy (4). 
Thus we may assume k > 4004. 

Now we derive a loxvTer bound for the partial quotients in the continued 
fraction expansion of log (5/2), using the following theorem of Legendre. 
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Th&Qtim 4: Let 0 be a real number, pn/qn a convergent in the continued frac-
tion expansion of 8, and an the corresponding partial quotient. Then 

which yields 
(an+1 + 2)qn2 

En 

(an + 1 4- 2)k2 

Thus, since k > 4004, 
k In 2(2fc - 1) 

)«t0 0'f 

an+l > In 2 2 > 
4004 

In 2 - 2 > 102750. 

Thus, any further solution of (4) corresponds to an extremely large partial quo-
tient in the continued fraction expansion of 6* Finally, we derive an upper 
bound for k. To this end, we note that if k > 4004, we have i/k < 1.33, so 

l + k < 2.33k and 2k - 1 > e -a 023 ik > e -°  o l U + k). 

Thus (4) becomes 

0 < | Qi + l)±n 2 - k In 51 

where B = I + k. 
Now we apply Theorem 3, with n = 2, d = 

-.0 0 IB 

= I + k < (4" 10d In 5 ) 2 5 < (IO2'41 

2 

A = 

103 

k-1 

4, .001, and get 

io2-41 - i o 2 1 ) 2 5 < io 2 0 1 . 

Thus k < IO201 also. With the aid of a computer and a multiple precision pack-
age designed by Ellison, we computed log2(5/2) to 1200 decimal places and then 
computed the continued fraction expansion of log2(5/2) until qn exceeded IO201. 
The largest partial quotient is found to be 5393, so (2) has no solutions in 
positive integers other than (1, 2, 1),(2, 3, 1), and (3, 4, 5). Thus the only 
circuits which are cycles under / are 1 —̂ -»- 8 — ^ 1 and 13 - 3 »• 208 —̂ -* 13. 

[Note: n = 17 also gives rise to a cycle under /. But this cycle results 
from a double circuit: 17 - ^ 108 - ^ 27 and 27 - ^ 68 -2-+ 17.] 

It would be of great interest to know if any n other than 17 and 27 gives 
rise to a cycle under / which is the result of a multiple circuit. 

\ I . THE CASE 

For n e Z+, let 

gin) = 

In + 1 
2 

n/2 
1 

n odd, n > 1 

n even 
n = 1 

as in Case I. Then we can prove the following theorem. 

TkzofiQjn 5: Let v2(rn) be t he h i g h e s t power of 2 d i v i d i n g m9 m e Z and l e t n be 
an odd i n t e g e r > 1. Then n < g(n) < • • • < gk(n) and gk+1(n) < gk(n), where 
7c = v2(5n + 1 ) . 

Also, the equation corresponding to (1) is 

2J'(5n7- + 1) = 7J'(5n + 1). (5) u3 

where = vAm).9 nk = m/2l9 k = v2(5n + 1), and Now we write n -JL-> m —il->-
2k(5m + 1) = 7fc(5n + 1). 

Again, if we let A be the set of positive odd integers and define TiA -> A 
by T(n) = n*, the map from n to n* is called a circuit. Our goal is to prove: 
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The,QSiem 6: The only positive odd integer n such that Tin) = n is n - 1. 

VK.00^' AS in Case I, we reduce this problem to solving 

(6) (2k + £ - 7 )h = 2l - 1 

where k9 £, and h axe. positive integers. We shall show that the only solutions 
of (6) in positive integers are 

k = 1, £ = 2, h = 3 and & = 2, £ = 4, /z = 1. 

First, Ifk <_ 4, we find that the only solutions of (6) are the ones stated 
in the theorem and that only the first gives rise to a cyclic circuit, namely, 
1 •-!+ 4 -2-> 1. 

So /c _> 4, and as in Case I, we find that 

(7) 0 < 2k + i - 7k < 2l - 1, 

(8) 0 < \{k + £)ln 2 - fc In l\ < —± 
1 ' ok _ i 

and 
(9) 0 < 

£ - 7 
k ~ log^ I 

1 

k In 2(2* - 1) 
Since In 2(2 - 1) > 2k for k > 4, £/& must be a convergent in the contin-

ued fraction expansion of log2(7/2). 
Again, we find that the first 7 convergents of log2(7/2) are 

M _ 9 47 _197 1032 4325 
1' "l9 5' 26' 109' 571 ' 2393* 

Of these, 9/5 does not furnish a solution of (6) and the remainder do not sat-
isfy (9). Thus k > 2393. Further, by Theorem 4, we get 

22 3 9 3 - 1 In 2 1 0
1 5 0 0. 

an+i 2393 . 

Finally, we note that if k > 2393, we have Z/k < 1.81. So£+^<2.81^c and 
2* - 1 > e'00281k > e'001ii + kK Thus 0 < \(k + £)ln 2 - k In 71 < e~'QQ1\ where 
.J5 = £ + k. Again, by Theorem 3, with n = 2 , ^ = 4,^4 = 4, 6 = .001, 

B = £ + k < (44 • 103 • 44 In 7 ) 2 5 < 10203. 

With the aid of EllisonTs package, we computed log2(7/2) to 1200 decimal 
places and then computed the continued fraction expansion of log2(7/2) until q 
exceeded 10203. The largest partial quotient is found to be 197, so (6) has 
only the solutions stated in the theorem and the only circuit which is a cycle 
under q is 

1 _ U 4_2_^ 1. 
In a subsequent paper to be published in this journal, we shall study the 

general case for this problem and present the tables generated during the com-
putation of log2(5/2) and log2(7/2) for the two cases presented here. 
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