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ORTHOGONAL LATIN SYSTEMS
JOSEPH ARKIN
197 0l1d Nyack Turnpike, Spring Valley, NY

E. G. STRAUS*
University of California, Los Angeles, CA 90024

Dedicated Zo the memory of our friend Vern E. Hoggatt

I. INTRODUCTION

A Latin square of order n can be interpreted as a multiplication table for
a binary operation on »n objects 0, 1, ..., # - 1 with both a right and a left
cancellation law. That is, if we denote the operation by *, then

ax b=axc=>b=c
b a=cxa=b=c.

(1.1)

In a completely analogous manner, a Latin k-cube of order n is a k-ary
operation on # objects with a cancellation law in every position. That is, for
the operation ( ).,

(1.2) @y voes Guoqs Dy Guiqs eens Q) = (@ys wunes Qpqs Cy Quyrs wees Oy
implies b = ¢ for all choices of Z =1, 2, ..., kK and all choices of
{ars vvvs @si1s aze1s oo axt {0, 1, ..., m = 1},

We permit l-cubes which are just permutations of {0, 1, ..., n - 1}.
Two Latin squares are orthogonal if the simultaneous equations

(1.3) x*xy=a, &xoys=~>~
have a unique solution x,y for every pair a, b. A set of Latin squares is or-
thogonal if every pair of squares in the set is orthogonal.

In an analogous manner, a Kk-tuple of Latin k-cubes is orthogonal if the

simultaneous equations
(@5 Tys vevs XTy)y = ay

(1.4) (x]_, xZ’ DI xk)z =a2
(xl, Lys oo xk)k = a,
have a unique solution ., ..., X3 for all choices of a,, ..., Q;.
q 1 k 1 k

A set of Latin k-cubes is orthogonal if every Kk-tuple of the set is orthog-
onal.

In earlier papers, [1] and [2], we showed that the existence of a pair of
orthogonal Latin squares can be used for the construction of a quadruple of
orthogonal Latin cubes (3-cubes) and for the construction of orthogonal k-tuples
of Latin k-cubes for every kK > 3. 1In this note, we examine in greater detail
what sets of orthogonal Latin k-cubes can be constructed by composition from
cubes of lower dimensions.

*Research of this author was supported in part by NSF Grant MCS79-03162.
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11. COMPOSITION OF LATIN CUBES

Let C = (ays ...5 az) be a Latin s-cube and let C; = (b b

be Latin k;-cubes ¢ =1, 2, ..., s. Then
C* = (Cys Cpy vevy Cg)

is a Latin k-cube, where k = k; + k, + +++ + k,.

To see this we need only check that the cancellation law (1.2) holds. Now
let all the entries be fixed except for the entry b;; in the jth place of C;.
Since C is a Latin cube it follows that, if the values of C* are equal for two
different entries of b;; then the values of (; must be equal for those two en-
tries. This contradicts the fact that C; is a Latin cube.

This composition, while algebraically convenient, is not intuitive and we
refer the reader to [1] where we explicitly constructed a quadruple of 3-cubes
starting from a pair of orthogonal Latin squares of order 3. In the present
notation, starting from a # b and a ° b as orthogonal Latin squares, we con-
structed the quadruples

212 Y423 0 biki)i

(@ xb) xc, (a@a*b) oc, (@aeoh) xc, (ae°h)oc
or, equivalently,
ax (bxec), ax (boc), ao (b xc), ac° (bo°ce)

as orthogonal quadruples of cubes.
Similarly, if ( )1, «.+s ()i denote an orthogonal set of Latin k-cubes,
then

@ps vves )y @ TGiys @y vvvs Qpdy © Qpigs wees (Ags wevs )y © G iqs
(a;s «ves ak)i * Qg

is an orthogonal (k + 1)-tuple of Latin (kX + l)-cubes for any < € {1, ..., k}.
To see this, consider the system of equations

(xl, S xk)ijk+l=ajs 1ij_<_k
(@ys wees Xp)y % Lpyy = Qg
Then the two simultaneous equations
(@ys eees Ty © Tpyq = Ags (@ys eees Ty % Tpyq = Gy

have a unique solution (wl, cees Xy); and Once x,,, is determined, the

equations

k+1°

(@ys wvws Xp)j © Xy = Q5

determine (x,, ..., Zz); for all Jj=1, «e., 2 -1, 71+ 1, ..., k. Now by the
orthogonality of the k-cubes the values of Zys «ees Ty are determined.

Since pairs of orthogonal Latin squares exist for all orders n # 2,6, it
follows that there exist orthogonal k-tuples of Latin k-cubes for all k provided
the order n is different from 2 or 6. It is obvious that there are no orthog-
onal k-tuples of Latin k-cubes of order 2 for any kK > 2. For order n = 6 and
dimension X > 2, neither the existence nor the nonexistence of orthogonal k-
tuples of k-cubes is known. It is therefore worth mentioning the following
conditional fact.

Theonem I1-1: If there exists a k-tuple of orthogonal Latin k-cubes of order =
then there exists an 2-tuple of orthogonal Latin f%-cubes of order n for every
2=1+stk-1), s =0, 1, 2,

Pnooﬁ: By induction on s. The statement is obvious for s = 0. So assume
the statement true for £ and let ( )&, eees ( ): denote the orthogonal k-cubes
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and let ( )f, T )% denote the orthogonal %-cubes. Then we construct the
following set of Latin (2 + k - 1l)-cubes.

L+k-1 [ k
@ys eoes Qyypo1 ) (Q@ys eees @pd)ys Tpars eoes Oy up_ 1)1

L+k-1 %
(@ps «ves Agir-1)s (@ys wves @g)is Apays oees ax+k-1)§

L4+k-1 _ L k
@ps vves @yipiidi = (@5 eves @)y Tuns vees Ayiga )y
L+k-1 _ L k
(al, cees a2+k_1)k+l = ((a]_’ ceey ag)zs a2+1s eoey a!,+k—l)l
L+k-1 _ L k
@rs vves Ggpadive - = (@s eees @p)3s Gpyys eves Ggug1)]

L+k-1 _ L k
@ps oeos al+k_1)£+k_1 = ((@ys oves glys Ayyqs woes Ayip_1)7-

From the orthogonality of ( )t, cees ( ): it follows that the equations

L+k-1 _ . . _
£+k—1)i = ag r=1,

(xls ceesy &L ...,k

. )
determine (X1, ...y X£p)1s Lyp1a eoos Lyyp_1+ ONCE Xgyq, ouey Tyyp_1 are deter-
mined, then the equations

L+ k-1 ] 1
5

@5 vees Bpppadiey 0 = Gxays J 0= cees A -1

. L2 . .
determine (Xy, ..., xz)j+1- Now, by the orthogonality of ( )%, T )i, this
determines Zys eees Xy

I11. ORTHOGONAL (k + 1)-TUPLES OF LATIN k-CUBES

The above construction yielded a set of 4 orthogonal 3-cubes constructed
with the help of a pair or orthogonal Latin squares a o b and a * b. It is
natural to ask whether analogous constructions exist for higher dimensions. At
the moment we have only succeeded in doing this for dimensions 4 and 5.

Theorem I111-1: The 4-cubes
(abcd); = (a o b) o (¢ o d)
(abed)? = (@ o b) % (c o d)
(abed)i = (@ % b) o (c % d)
(abcd)ﬁ = (ax b) x (¢ % d)
(abed)} = (@ o b) o (c % d)
form an orthogonal set.
Proofi: We need to show that the equations
(eyzw)? = a;
determine x, Yy, 2, w when © runs through any four of the five values. Consider
first the case 7 = 1, 2, 3, 4. Then the first two equations determine x o y,
2 o w and the next two equations determine x % y, 2 * w. Nowx °© y and x % Y
determine ¥,y and 3 ° w, g * w determine 3z, w.
Now assume that one of the first four values of 7 is omitted. By symmetry
we may assume 7 # 4. Then the first two equations still determine & o Y, 2 o w.

Once x o y is determined, the last equation determines z % w and once z % w is
determined, the third equation determines x % y. The rest is as before.
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Theonem I11-2: Let ( ):, (’);, ( ): denote an orthogonal set of 3-cubes. Then
the 5-cubes

(abede); = (abe)? o (d o e)
(abede)$ = (abe)? x (d ° e)
(abcde)g = (abc)g o (d % e)
(abede); = (abe)l % (d = e)
(abede) ® (abc)g o (d o e)

5
(abede)? = (abe)] ° (d * e)

form an orthogonal set.
Proof: Consider the set of equations
(xyauv),; = a;

where 7 runs through five of the six values. If < # 5 or 6 then the first two
equations determine (xyz)i and # o v and the second two equations determine
(xyz)g and ¥ ®* v. Thus, u,v are determined and, therefore, the last equation
determines (xy2)3 and thus x,y, z are determined.

If 7 omits one of the first four values, we may assume by symmetry < # 4.
Then the first two equations determine (myz)i, and # o v. Now Z = 5 determines
(xyz)g and thereby < = 6 determines u % v. Finally, Z = 3 determines (xyz)z,
and thus x,Yy, 3,u, v are determined.

Applying these results to the lowest order, n = 3, we get the surprising
result that there exists a 3 x 3 x 3 cube with 4-digit entries to the base 3,
so that each digit runs through the values 0,1, 2 on every line parallel to an
edge of the cube and so that each triple from 000 to 222 occurs exactly once in
every position as a subtriple of a quadruple. Similarly, there exists a 3 X 3
X 3 X 3 cube with 5-digit entries, and all quadruples from 0000 to 2222 occur
exactly once in every position as subquadruples of the quintuples. Finally,
there exists a 3 x 3 x 3 x 3 x 3 cube with 6-digit entries, every digit running
through 0, 1, 2 on every line parallel to an edge and every quintuple occurring
exactly once in every position as a subquintuple.

There does not appear to exist an obvious extension of Theorems III-1 and
III-2 to dimensions greater than 5.

It is possible to use the case n=3 to show that the existence of two or-
thogonal Latin squares of order n does not imply the existence of more than 4
orthogonal 3-cubes or 5 orghogonal 4-cubes of order n.

Theorem I11-3: There do not exist 5 orthogonal 3-cubes of order 3.

Proof: Since relabelling the entries in the cube affects neither Latinity
nor orthogonality, we may assume that (£00); = < for all the 3-cubes ( )i+ So
the entries (010); are all 1 or 2. 1If there are 5 orthogonal 3-cubes, then no
3 of them can have the same entry in the position (010)5, since these triples
occur already in the positions (iOO)j. But in 5 entries 1 or 2, there must be
three equal ones.

Theonem I1I-4: There do not exist 6 orthogonal 4-cubes of order 3.

Proof: As before, assume (200); =%, j=1,..., 6. Since all entries (010);
are either lor 2 and no four of them are equal, we may assume that the entries
are 111222 as § =1, ..., 6. Hence, the entries (020); are 222111 in the same
order. Now the entries (001); and (002); must also be three 1's and three 2's
and cannot agree with 111222 or 222111 in four positions. But the agreement is
always in an even number of positions, and if the agreement with 111222 is in
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2k positions, then the agreement with 222111 is in 6 - 2k positions and one of
these numbers is at least 4.

REFERENCES
1. Joseph Arkin & E. G. Straus. 'Latin k-Cubes." The Fibonacci Quarterly 12
(1974):288-92.

2. Joseph Arkin, Verner E. Hoggatt, Jr., & E. G. Straus. '"Systems of Magic
Latin k-Cubes." Canadian J. Math. 28 (1976):261-70.
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ON THE “QX + 1 PROBLEM,” @ oDD—II

RAY STEINER
Bowling Green State University, Bowling Green, OH 43403

In [1] we studied the functions

(57 +1)/2 n odd > 1
fn) = { n/2 n even
1 n =1
and
(7n +1)/2 nodd >1
g(n) = { n/2 n even
1 n =1

and proved:
1. The only nontrivial circuit of f which is a cycle is

13 2 208 > 13.
2. The function g has no nontrivial circuits which are cycles.

In this note, we consider briefly the general case for this problem and
present the tables generated for the computation of log,(5/2) and log,(7/2) for
the two cases presented in [1].

Let

(gn+1)/2 »n odd, n > 1, g odd
h(n) = < n/2 n even
1 n=1
Then, as in [1], we have

Theorem 1: Let v,(m) be the highest power of 2 dividing m, m € Z, and let »n be
an odd integer > 1, then

n < h(n) < -+ < W), and B (n) < h(n),

where k = v,((q - 2)n + 1).
Also, the equation corresponding to Eq. (1) in [1] is

) 29((qg - 2)ng + 1) = qi((qg - 2)n + 1).

Again, we write ) .
n —m —— n*

where & = v,(m), n* =m/2*, k = v,((¢ - 2)n + 1) and
2k((g - 2)m + 1) = qgk((q - 2)n + 1)

and obtain our usual definition of a circuit.
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Finally, we can prove

Theorem 2: There exists n such that T(n)
gers Kk, %, h satisfying
(2) @kt - gbn = 2% - 1.

It would be of great interest to determine those g for which solutions of
(2) give rise to a cyclic circuit under k. At present the only g known to do

this is ¢ = 5. As for those ¢ which give rise to multiple circuit cycles, the
only one known besides g = 5 is g = 181, which has two double circuit cycles:

27 2+ 2444 2> 611
611 —+ 55296 1+ 27

]

n only if there are positive inte-

and
35 1> 3168 —2— 99

99 -1+ 8160 —2 35,
TABLES
TABLE 1. Logzg to 1200 Decimal Places

1.132192809488736234787031942948939017586483139302458061205475639581
59347766086252158501397433593701550996573717102502518268240969842635
26888275302772998655393851951352657505568643017609190024891666941433
37401190312418737510971586646754017918965580673583077968843272588327
49925224489023835599764173941379280097727566863554779014867450578458
84780271042254560972234657956955415370191576411717792471651350023921
12714733936144072339721157485100709498789165888083132219480679329823
23259311950671399507837003367342480706635275008406917626386253546880
15368621618418860858994835381321499893027044179207865922601822965371
57536723966069511648683684662385850848606299054269946927911627320613
40064467048476340704373523367422128308967036457909216772190902142196
21424574446585245359484488154834592514295409373539065494486327792984
24251591181131163298125769450198157503792185538487820355160197378277
28888175987433286607271239382520221333280525512488274344488424531654
65061241489182286793252664292811659922851627345081860071446839558804
63312127926400363120145773688790404827105286520335948153247807074832
71259033628297699910288168104041975037355862380492549967208621677548
1010883457989804214485844199738212065312511525

, , 5
TABLE 2. The Continued Fraction Expansion of long

1 3 9 2 2 4 6 2 1 1 3
1 18 1 6 1 2 1 1 4 1
42 6 1 4 2 3 1 2 6 1
3 4 1 8 1 4 1 2 2 7
1 4 1 1 3 3 1 3 1 1
7 6 1 5 10 2 2 1 8 1
2 16 24 1 6 1 8 1 1 5
1 1 1 1 1 2 1 1 3 7
1 1 10 3 2 1 3 1 3 1
2 1 3 11 1 1 1 5 1 5
3 3 2 2 4 7 1 4 1 1
2 7 1 3 3 2 32 1 119 1
2 1 8 17 4 16 1 5 6 13
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TABLE 2—Continued

2 1 2 1 5393 1 1 2 1 2
3 3 10 2 1 2 1 1 7 32
1 6 1 5 1 8 6 1 2 3
17 1 1 1 4 1 2 12 1 27
2 1 2 3 2 1 1 7 4 9
10 1 4 1 5 6 2 3 2 3
9 1 1 1 2 237 1 2 1 15
1 1 17 1 1 1 2 3 2 6
1 2 2 1 5 1 1 1 1 1
2 1 5 1 23 5 1 1 1 1
9 2 3 1 14 2 1 1 16 2
1 1 1 2 1 1 8 1 1 3
1 1 2 3 33 1 1 2 1 2
3 3 2 5 12 1 13 1 11 23
1 2 5 2 3 2 10 4 3 4
1 1 1 6 4 1 8 5 1 1
10 6 29 1 3 4 9 1 24 1
3 8 38 3 1 1 1 1 6 2
1 3 1 10 1 1 5 1 1 1
1 1 1 6 3 3 3 9 1 3
3 1 1 1 7 1 2 1 8 1
1 16 1 2 1 1 5 1 4 2
1 228 2 13 2 1 1 9 5 1
28 1 4 1 1 4 3 1 2 1
3 3 1 1 2 2 3 1 4 4
5 2 11 2 1 1 2 1 3 6
7 6 2 1 78 1 8 28 15 1
1 1 1 2 1 2 172 2 3 1
1 1 6 1 105 4 23 -

TABLE 3. Logzg-to 1200 Decimal Places

1.180735492205760410744196931723183080864102662596614078367729172407
03208488621929864978609991702107851073605018893255730459733550189744
35783948545697421659367034036223711232893039172839880533054596558987
42842044049863242710660517715603594755455847742935680180016993525932
50632889709207655100521356641486039729352404730419795633055279942802
67077276110778204971932513254550267027235235681504586808823722107156
62259311528345703426110256015571456055227154958021504336696505010023
34988294495656908806896861271221799915017038085074366218220796188044
13300641248483810021757003214687292291654022734173979996398717392556
21657012062442265868128541719793524331738795293960080126504099080050
86143891504372773197711929325509449755438097944662727688654466455056
66144962718917439479811201832195534767729368027362015384968426483404
28194862620856744723428655525118561153949628390912550087758014235589
14221613005965234270525279790176286862630931786330372331743548294140
06377868059095886491534576253156671578606520583005556279536710386799
55857731719085677755305180653144090746707963928688620808186866798569
85299653671553315728082138583329807569231547710021897097214157437559
6833249986877724904346722049673575206749869960
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BINARY WORDS WITH MINIMAL AUTOCORRELATION AT OFFSET ONE

BART F. RICE and ROBERT WARD
Department of Defense, Washington D.C. 20755

In various communications problems, it has been found to be advantageous
to make use of binary words with the property that at offset one they have au-
correlation value as small in magnitude as possible. The purpose of this paper
is to derive the means and variances for the autocorrelations of these words
at all possible offsets. The derivations are combinatorial in nature, and sev-
eral new combinatorial identities are obtained.

1. AUTOCORRELATIONS AT VARIQUS OFFSETS

We consider two methods of autocorrelating binary words. The cyclic auto-
correlation at offset d is defined to be the number of agreements minus the
number of disagreements between the original word and a cyclic shift of itself
by d places. If the word is v = (Vy, Uy, ...5 U _1), and if subscripts are re-
duced modulo L, then this autocorrelation is given by

L-1
(1.1) 1 (2) - E (_l)vi+v¢+d_
=0

The truncated autocorrelation at offset d is the number of agreements mi-
nus the number of disagreements between the last L-d bits of the original word
and a right cyclic shift of the word by d places. The formula for this auto-
correlation is

I-d-1

(1.2) T;(ﬁ) - E (_1)vi+vi+d_
i=0

Note that T,(v) = T;(y) + Tf_d(g). By symmetry, T;() = T;_4z(v). Thus,
for d > L/2, we can compute FE(14), E(Tg), and E(T;) from their wvalues with
d < L/2. E(1%?) needs special treatment. Therefore, unless stated otherwise,
we assume d < L/2.

" Our principal result is

Theonem 1.1: Let L be a positive integer, and let v range over the binary IL-
tuples with minimal cyclic autocorrelation at offset 1. Then, for 1<d< [L/2],

e (/5 ezo e
S DI SR
0 | e ()5 5=
e (GGRE/(E) v e

If L = 2 (mod 4) and d is odd, and if we restrict v to range over those binary
L-tuples satisfying T,(v) = 2¢, ¢ = *1, then

“E(Ty) = 2¢(d + 1)(-1)@-D/2 ((d i/i)/z)/@)_

Also,
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2

= 2[(—1)d(L -2 + 1)<L£2>/<§d> + 1], if L= 0 (mod 4);

, evia -y -2 v 2 - 2a - 1)<(L ke

EG®) =1 753 i +0@ + D),
L ( 2d )

if L is odd;
o Z L('l)d(L'Zd*l)(Lz —4dL+ZL-8d-4)<LC/ZZ>/(fd) +I% + 20 + 4],
£ L= 2 (mod 4).

If v ranges over the binary L-tuples with minimal truncated autocorrela-
tions at offset 1, then, for 1 < d £ [L/2],

' d
B = (¥ (LD g - (HE ;/é)m)/(L 2

If [ is even and v is constrained to range over the binary L-tuples satisfying
¥() = ¢, ¢ = %1, then

B(t%) = cd(-)I ¢ - ) <(L[c_i/2/2>/<L - 1)_

Also,
1 d 3 2 2
(L+2)(L+4)[(_1) (L - 2d + 1)(L° - 2dL* + 4L° - 8dL - 4d - 2)
L/2 L 3 2 2
(d)/(2d)+L - dL* + 4L —4dL+2L+2],
E’(ng) - if L is even;
1 d 3 2 2
(L+1)(L+3)[:(—1) L(L° - 2dL* + 3L° - 4dL + L + 2d + 1)
((L + 1)/2)/<L + 1>+L3 - dr?+25% - 2dL - L+ 3d|,
d 2d
if L is odd.
If d >L/2,
1 [ 4 (@ +2)/2 L +2
Tl (R 1) (=20 + 2d 1)( e )/(Z(L : d))
+ % - dr? + 4% - 4dL+2L+2:\, if L is even;
E(Th?) = _
1 d4107 _ (L+1)/2/ I +1
T+ D@+ | A 1)( L-d ) 2L - d))
+ 0% -dr®* + 21 - 2d0 - L + 3d], if I is odd.
2. MINIMIZING AUTOCORRELATION AT OFFSET ONE
Suppose v = (vo, Vys eees uL_l). If we change one bit, say v;, to obtain
D= (Ugs sees L - Vys ++es Ur_1), then Td(ﬁ) = Tz() or T;(v) * 4, because the

'sign of the two terms, (-1)Y:*?:i+¢ and (-1)?i-¢+?:, in the sum T; (v) have been
changed. Since any binary L-tuple may be obtained from any other by changing
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k < L bits, one at a time, it follows that

T,(® = L (mod 4).
A similar argument shows
T:;(H) =L -d (mod 2).

Now, if [ is odd, the sum (l1.1) contains an odd number of terms; thus,
|Td(g)| > 1. 1In particular, l’El (2)[ > 1. The sum (1.2) contains an even num-
ber of terms if d = 1, so T*i(y_) may be 0. If L = 2 (mod 4), then lTl(v)l > 2,
|[t¥(@)] > 1. If L =0 (mod 4), T,(») can be 0, while |t¥(@)| > 1. =~

Let a; =v; @ v;,, ("@ " denotes addition modulo 2), 0 < ¢ <L - 1, and

let g = (ao, Ags eons aL_l).. It follows that

L-1
w@ =Y a; =0 (mod 2),
i=0

so that ar_, is not independent of a3, @y, ..., G;r_p. Also, given v, and qg,
Qys =++3 Q;_,s the vector v is completely determined by the relation
max(j, r) -1

v, =0, + E a; (mod 2).

, . = min (4
In particular, t=min(g, )

d

Ui +U,’:+d EZ ai+k—l (mod 2),
k=1

d
L-1 Daiek-a

so that

L@ =9, (-1 ,
=0
L-d-1 Zai+k—1
@) = P, (-1
=0

The case d = 1 reduces to
I-1 I-1
,@ =c =Y (D% =L -2) a,
i=0 1=0

(L - e)/2;

L)

that is, a has density (L - ¢)/2. This allows us to count the number N(c) of
vectors v with Tl(g) =3

¢ (mod 4);

1l

2((L _La)/z) if L

0 otherwise.

The factor 2 before the binomial coefficient ((Z} _Lc)/2> appears because both

v and z (the mod 2 complement of v) give rise to the same vector ga. Likewise,

L-2 L-2
DT =L -1 =23 a,,
=0 =0

L-2
E:(zi = (L ~-c-1)/2.

i=0

@ = ¢
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Now, g has density w(a) = (I —¢ - 1)/2 + a;_,» and, since w(a) is even,
(L-c+1)/2 if (L - ¢ - 1)/2 is odd;

w(a) @ =-ec-D/2+ -1 = (L -c=-1)/2 if (L - e - 1)/2 is even;
L -c -1
-9 2 ! - z[é_:;éi;t_l
2 4 :

Therefore, the number NV*(c) of vectors v satisfying TT(B) = ¢ is given by

2(2[(1; - cL+ 1)/4]) if L =c+ 1 (mod 2)
N*(c) = -

0 otherwise.

3. THE DISTRIBUTION OF THE CYCLIC AUTOCORRELATIONS T4

We now derive the quantities E(T;(v)) (&: = expected value) and E(Td ))
when v is restricted to the set

S(e) = {v: 1,(v) =ecl.

Various identities used in the derivation may be found in the Appendix with
their proofs. We assume throughout that the binary vectors v have length L,
and that L = ¢ (mod 4). Of special interest, of course, are the cases lcl < 2,
corresponding to vectors with minimal autocorrelation at offset 1. Therefore,
we assume that ]c[ is minimal.

We have shown that, in studying the quantities T,(v) with lTl(v)l least
possible, we may restrict our attention to the set of vectors

R={_a_=(a0, A Zat-(L—c)/2}

7

where
0 if L = 0 (mod 4)
o = 1 if L = 1 (mod 4)
=7 ) %2 4if L = 2 (mod 4)
-1 if L = 3 (mod 4).

Note that |R| = ((L _Lc)/z). Let

j+k -

ZE(D“J ZZ(”()(L—LJ/ZJ)

QERJ Jj=0 r=0

L -d
LZ( D ( )(L -c)/2 - p)’
since, for any g, 0 < j <L -1, (i)((l} _Lc;/czi B r) is the number of d-tuples

(Ajs eves a; G4d- ;) of density ». To obtain E(T4z), we must divide U(d, L) by ]RI
We now proceed to determine the quantities U(d, L) for 1 < d < L/2.

Case 1: ¢ =0, L = 0 (mod 4)
We make use of Identity 1 (Appendix) to write

v(d, L) = L(-1)¥2 (Li—éll—)i)(fi%)(/:jjz)/@)

Uu(d, L)
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Case 2: ¢ =1, L =1 (mod 4)
Identity 2 (Appendix) gives us

0@, D) = L1 (“aa™) e iyr2)/(3):

Case 3: ¢ =-1, I, =3 (mod 4)
We reverse the order of summation to obtain

2‘ (¢ )((L RN Z( -1 ( N 5/ - o)

the same sum we considered in Case 2, except for the factor (—l)d. Therefore,

Ui, 1) = D EHE (%d?zi))((l; —Ll)/Z)/(Z)'

Case 4: ¢ =2, L = 2 (mod 4)
Identity 3 (Appendix) yields

o) () @A+ DY - 2dCDY
(2[c?/2]) .

Case 5: e = -2, L[ = 2 (mod &)
Again, reversing the order of summation in the sum of Case 4 yields

ud, L) =

[d+n/21( L L/2
-1 (L/z)([d/z]) [E/D A+ (DD - 2d¢-1)¢]
L L+ 1
(2[d/2])

Combining the results of Cases 1-5 gives E(T;) in Theorem 2.1. We now
proceed with the computation of E(Td) Let

5(d, D) =Y T3().

acekR

u(d, L) =

Then z: q-1
L-1 z: i+k
5, ) =Y }: (-1)* E( 1)#o
a€R j=0
d-1
Eai+k+ai+k

L-1L-1
D IDICHLE

a€R j=0 1=0
q-1

L-1 L-1
=Y 2 LD

aeR j=0 1=0

Aivk T Ti+j4k

d-1

L~-1%d-1 z:a,;+k + Ak L-d Zaj+k+ai“.7'+k
-1 X L D + 3, (R
QER j= i=d
L-1 Zaj+k+ai+j+k

+ 3 (-
i=L-d+1
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This decomposition of the innermost summation is made to facilitate the summing
of the expressions involved. We change the order of summation in each of the
three triple sums so that, in each case, the innermost sum is over all a € R.
Then, for each 7 and j, we group together all those vectors g satisfying

d-1
r= 2: (aj+k ® Tipjeid -
k=0
If 0 <7 <d-1, then the number of vectors a € R satisfying this condition is
(Z’L)( L-27 - L ((L - c)/Z)((L + c)/Z)/(L)
r I\ -¢e)/2 - r) ((L - c)/2> r 20-1r 22) °

Analogous results hold when d < © < L -dand L -d+ 1 <7 <L - 1. Thus, we

have
s, L) = Lf{di \ZL— (_l)r((L _Lc)/z)((L _PC)/Z)((Lzz-cl)ﬂm)/(zLﬁ:)

j=0{zZ=0r=0

L

VE R (o ) /()

i=d r=0

. Lil ZLi:Zi (—l)r((L _Lc)/2)<(L —rC)/2>

i=L-d+1 r=0
(2 )

The summand is independent of Jj, so

s 1y - L((L _Lc)/z){‘i\:j [jv_:o (_m((/: -pc)/2><(Lzz_c;/2>:l/<;7i>

i=o

+ (L - 2d+ 1)[22(_1)r<@ -rc)/2)<(L2£_c;/2):, / (2Ld>

o B[S e @202 ()
i=L-d+1 r=0

As above, we divide our calculation into five cases.

Case 1: e =0, L =0 (mod 4)
Applying Identity 6 (Appendix), we obtain

s(d, L) = L(sz){z (-1)¢ (Liz)/(ZL’L) + (L - 2d + l)(-l)d(LC/ZZ)/(zLd)
* L)::l (_1)L—i(LL-{21)/<2L : 27,)}

i=L-d+1

(continued)
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_ L L+1 d-1({L/2 + 1 L+ 2
_L<L/2){L+2[(l) ( d )/( 2d )+1]
_ _\afL/2 L
+ (@ - 2d + 1)(=1) (d)/(2d>

+£i§[( 1y (L/2d+ 1)/(1:222) P 1)]}

by Identity 4 (Appendix). Thus,

S5, L) =1L (L/Z){( DI@ - 2d + 1)(L/2)/(2d) + 1}/(/3 +2).

Case 2: ¢ =1, L =1 (mod 4)
Applying Identity 7 (Appendix), we obtain

9@ 1) =g 1)/2>{Z( e (C7R2)/ () + @ -2 pe
L-1

(¢ _dl)m)/(zLd)* PG -t (U /(ZL - Z’L)}

i=L-d+1

)
2 o) R0 (22 /057 + ]

+ (L - 2d + 1) (-1)4 ( - 1)/2 // %1)

2
P 5 vl

by Tdentity 5 (Appendix). Hence,

5, L) = ((L _Ll)/z){(—l)d([’ - 2d)[L? + (~2d + 2)L - 2d - 1] ((L‘dl)/z)/(Lz‘dl)
+ L(L + 1)}/(L+ 3).

Case 3: ¢ =-1, L = 3 (mod 4)

Reversing the order of summation on » in all three sums reduces this to
the previous case.

Case 4: ¢ =2, L = 2 (mod 4)
Apply Identity 8 (Appendix) to obtain

s =1, 0 ) { A SOHCOVIARES W CARR VIEA
+ (L - 2d + 1) (- 1)d(L/2)/(2d) -2 - 2d+ (- (L/Z_ 1 )/(fd)

+ ): (-1 1( L/zl)/(zz; - 2$) 2 Z (-1 1(2/27/_ i)/( 7,)}

=L-d+1 =L-d+1

(continued)
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= L(L/zL— 1) {é_i_% ('l)d_l(L/szr 1)/(L 2 2) +1o- 2<f(1324(rL2)+_——(L_13743)
. B—l)d"l{(L +2)d - 1}(L/zd+ 1)//(1}252) - 1]
+ @ - 2d + 1)(-1)d(L22)//(éé) - 2@ - 2d + 1)(-1)d(Lé2_‘11)//(§2)
s E[eo () /() - v+ o] - e )

[t ma (e /(729 -

using Identities 4 and 9 (Appendix). Therefore,

5@, 1) = (5,02 ) {EDAE - 20+ D@+ (=4 + 200 - 82 - 4)

) (Lc/iz)/(zLd) + L%+ 2L + 4} /(L + 4).

Case 5: ¢ =-=2, L = 2 (mod 4)
Reversing the order on summation on » in all three sums reduces this to
the previous case.

Combining the results of cases 1-5 gives E(Tj) in Theorem 1.1.

L. THE DISTRIBUTION OF THE TRUNCATED AUTOCORRELATION T%

We now derive the quantities E(T;(g)) and E(T?z(g)) when v is restricted
to the set
5*(@) = {v: 1*¥@) =c}.

Various identities used in this derivation may be found in the Appendix, with
their proofs. We again assume that the binary vectors v have length L, but now
L =Z ¢+ 1(mod2). Of special interest, of course, are the cases Iclli 1, cor-
responding to vectors with minimal autocorrelation at offset 1. Again, we as-
sume that |c| is minimal.

We have shown that, in studying the quantities T;(g) with |Tf(2)l least
possible, we may restrict our attention to the set of vectors

L-2
R* = {g.= (@gs Ays ooy Ap_1): 2:<1i = (L -c - l)/2},
i=0

where
c={ 0 if I is odd,
+*1 if L is even.
Note that
Xl _ L -1
|&*] = ((L -c - 1)/2)‘
Let
d-1
L-d-1 LI
UKd, L) = Y, 3y, (-1FT
aeR* j=0

d)( L-d-1

Since there are (r (L-c-1)/2-1r

) d-tuples (@, «++5 Qj,.4q-1) of demsity r,

we have
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L-d-1 d
ofd L -d-1
U*(d, L) 2;, 2 D (r)((L -d-1/2 - r>

j=0 7=0
@ - d)é(_l)r@)(@ -Le--dlg/; - P>

@ - d) (1)l 1;;-_1_&((1: C_Z/;)/z)((LL——li/z)/(L y 1)

if ¢ = 0, by Identity 1;

=1 @ - @) (-1) L9 <[Efz N 3%])((;—_2;/2)/(2[(5 N 11)/2]>

if ¢ = 1, by Identity 2;

td+n/21( & -2)/2 L -1 L -1
@ = DD <[(d + 1)/2])(@ - 2)/2)/(2[(02 + 1)/21>
if ¢ =-1, by Identity 2.

To obtain E(t%) of Theorem 1.1, we divide U*(d, L) by |R*|, and combine the
cases ¢ = *1, to obtain

B(%) = (2 l‘t‘z(__l)i@ - d)(“L ;/;)/2]>/<L - 1>.

We now proceed with the computation of E(Tff). Let

d-1
L-d-1 L-d-J-1 3 a;, +a,,,,,

2 Y e

aeR* j=0 i=-j

We split this sum into three parts, depending on the degree of overlap of the
two d-tuples (aj, e aj+d_1) and (ai+j, e ai+j+d-1): complete, partial,

or none.
d-i-1 22

L1 0 L-d-1 d-1 L- »
§%(d, L) = <(L -c - 1)/2>{Z E b 2;1 i=0 ;0(-1)

=0 j=0

) ((L "o 1)/2)(@ z;_—rl)ﬂ)/(L v 1)
. ZL;Z;:I Lili (_1)1”((5 - - 1)/2)((1; ‘o -—Pl)/Z)/<L2—dl>}.

We now consider three cases, depending on the value of c:
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0, L odd. Applying Identity 6 (Appendix), we obtain,

(g oo v s a-oeo(E 07 4
off 2 A (07 /)
(gt avae o Fewr (00 (5

|
e B (/)
)

Case 1: ¢

s*d, L)

i=1

+(L—2d+1)(L—2d)(1)(L_l)/z/( )}

- ((LL—_1§/2>{ -d+ 2 - )L = li( 1y~ 1<(L+1)/2>/<L2+ 1>_1/L]

[ -1)4"Ydr+d-1)

- E - DT + D@ + 3)

(/08 -

+ (L - 2d + D@ - 2d) (1) ((L —dl)/2>/<L Z_d 1>}

by Identities 4 and 9. Therefore,

§5d, ) = 5 l)l(L 5 ((LL__I;/ZH(—l)dL[LS + (3 - 2d)L% + (1 - 4d)L

+ 1+ zd)]((L +d1)/2>/<’32+d 1) + L%+ 2- L%+ (-1- 2d)L+ (3d)]}.

Case 2: ¢ =1, L even. Applying Identity 7 (Appendix), we obtain,
d-1
s, 1) = (" oy HE - d+235@ - d - 9)(-1)° (L‘Z.)”) (L ‘.1>
((L - 2)/2> .Z:l ( Z / 27
L -2d + 1 a (@ -2)/2 L -1
+ 2( 2 )('1) ( d )/( 2d )}
L -1 L +1 1+ 2)/2 L -2
) ((L - 2)/2){ d+ 20 -dim 2[('1)d l( d )/( 2d )

- U@+ 1)] - gna T 4)>[(—1)d‘1(dL +2d - 1)

@ HAD/C DI+ @ -2d+ DG - Zd)(_l)d<(L—dz)/2)/(L2—d 1)}

sing Identities 5 and 10. Consequently,
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5, 1) = 5 z)l(L y <(LL_‘2;/2>{(-1)4(L - 2d + DIL® + (4 - 2d)I?

+ (=8I + (-2 - Ad)](Léz)/(fd) + L% + (4 - DI*+ (2 - 4L+ 2]}.

Case 3: ¢ = -1, L even. Reversing the order of summation on r in both sums re-—
duces this to the previous case.

Combining the results of Cases 1-3 gives E(Tﬁz)for<d.s L/2 in Theorem 1.1.
The case when d > L/2 is similarly handled, with the result:

I -1 0 L-d-1 L-d-1L-d=-1-1 2i ,
5*(d, L) = ((L_c _ 1)/2> PIEDIRE D IEEDY Z:o(—l)

=0 Jj=0 i=1 7=0

(e D)@ e - D) (i 1)}

Once again we consider three cases, depending on the value of c:

Case 1t ¢ =0, [ odd. Applying Identity 6, we obtain

(6Dl -ee2 o -a-nw ()05

S*(d, L)

i=1

= ((LL:l%/Z){L - d+20-df i - [(_I)L—d-l
.((LL+_1ZZ/2)/(ZZ:L+_ 1d)) _ 1/L]

- T 1?@: 5 [(-1)L‘d'1{(1: + D@ -4d) -1}

((LL+_1ZZ/2)/(2€L+_ 1d)> _ 1]}

using Identities 5 and 9. This yields
* _( L -1 L-dor - (L+1)/2)/<L+1>
s*d, 1) = <(L ) 1)/2){(—1) 21.(-2L + 2d 1)( B 2%

+ L%+ (2 - DL + (-1 - 2d)L + Bd}/(L + 1) + 3).

Case 2: ¢ =1, L even. Applying Identity 7, we obtain

L-d-1
* _ L -1 _ 1N E _ _.(L—Z)/Z L -1
S(d,L)—((L_Z)m){L d+2i§(1) @ -d 7,)( ; )/( o )}
_ L-1 L+1 g1 (L + 2)/2 (L+2
- ((L - 2)/2){]3 md* 20 - dpy 2[(‘”L 1( L-d )/ 2(D - d))
- 1/ + 1)] - @ i(g)’lei 2 [(—1)L‘d'1{(L + 2)(L - d) - 1}

(continued)
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(2 bat %) - l]}

using Identities 6 and 10. As a result,
1

- L - -d (L + 2)/2 L+ 2
s*(d, 1) = ((L _ 2)/2){(—1)L 2(L + 1)(-2L + 2d - 1)( P )//(2(L - d))
+ L% + (4 - )I* + (2 - 4d)L + 2}//(L + 2)@ + 4).

Case 3: ¢ = -1, L even. Reversing the order of summation on r reduces this to
the previous case.

Combining the results of Cases1-3 gives E(ng)for'd > L/2 in Theorem 1.1.
5. VARIANCES

The variances of T; and T; may be obtained from the above results by no-
ting that the variance o? of any statistic x is given by
o(x) = E(x®) - E(x)?.
These numbers are tabulated along with E(T;), etc., in Table 1.

TABLE 1. Expected Values for Selected Values of L

L d E(ty) E(12) E(T}) E(t%?) o2 o*?

4 1 .00000 .00000 .00000 1.00000 .00000  1.00000
4 2 -1.33333 5.33333 -.66667 1.33333  3.55556 .88889
4 3 .00000 .00000 .00000 1.00000 .00000  1.00000
5 1 1.00000 1.00000 .00000 .00000 .00000 .00000
5 2 -1.00000 5.00000  -1.00000 3.66667  4.00000  2.66667
5 3 -1.00000 5.00000 .00000 1.33333  4.00000  1.33333
5 4 1.00000 1.00000 1.00000 1.00000 .00000 .00000
6 1 .00000 4.00000 .00000 1.00000  4.00000  1.00000
6 2 ~.40000 4.00000 -.80000 4.00000  3.84000  3.36000
6 3 .00000  10.40000 .00000 2.60000  10.40000  2.60000
6 4 ~.40000 4.00000 .40000 1.60000  3.84000  1.44000
6 5 .00000 4.00000 .00000 1.00000  4.00000  1.00000
7 1 -1.00000 1.00000 .00000 .00000 .00000 .00000
7 2 -1.00000 7.40000  -1.00000 5.80000  6.40000  4.80000
7 3 .60000 4.20000 .00000 1.60000  3.84000  1.60000
7 4 .60000 4.20000 .60000 2.60000  3.84000  2.24000
7 5  -1.00000 7.40000 .00000 1.60000  6.40000  1.60000
7 6  -1.00000 1.00000  -1.00000 1.00000 .00000 .00000
8 1 .00000 .00000 .00000 1.00000 .00000  1.00000
8 2 -1.14286 9.14286 -.85714 6.28571  7.83673  5.55102
8 3 .00000 3.65714 .00000 3.51429  3.65714  3.51429
8 4 .68571  12.80000 .34286 3.20000 12.32980  3.08245
8 5 .00000 3.65714 .00000 2.60000  3.65714  2.60000
8 6  -1.14286 9.14286 -.28571 1.71429  7.83673  1.63265
8 7 .00000 .00000 .00000 1.00000 .00000  1.00000

(continued)
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TABLE 1 (continued)

L d E(t3) E(t}) E(1¥) E(T%?) o? o*2

9 1 1.00000 1.00000 .00000 .00000 .00000 .00000
9 2 -1.00000 9.57143 -1.00000 7.85714 8.57143 6.85714
9 3 -.42857 6.14286 .00000 3.54286 5.95918 3.54286
9 4 .42857 9.00000 -.42857 5.80000 8.81633 5.61633
9 5 .42857 9.00000 .00000 3.20000 8.81633 3.20000
9 6 -.42857 6.14286 .42857 2.60000 5.95918 2.41633
9 7 -1.00000 9.57143 .00000 1.71429 8.57143 1.71429
9 8 1.00000 1.00000 1.00000 1.00000 .00000 .00000
16 1 .00000 .00000 .00000 1.00000 .00000 1.00000
16 2 -1.06667 17.06667 -.93333 14.66667 15.92889 13.79556
16 3 .00000 13.12821 .00000 10.96923 13.12821 10.96923
16 4 .24615 14.91841 .18462 11.10676 14.85782 11.07268
16 5 .00000 13.52603 .00000 9.61414 13.52603 9.61414
16 6 -.11189 15.31624 -.06993 9.25128 15.30372 9.24639
16 7 .00000 11.37778 .00000 7.75556 11.37778 7.75556
16 8 .08702 28.44444 .04351 7.11111 28.43687 7.10922
16 9 .00000 11.37778 .00000 6.33333 11.37778 6.33333
16 10 -.11189 15.31624 -.04196 5.42222 15.30372 5.42046
16 11 .00000 13.52603 .00000 4.54188 13.52603 4.54188
16 12 .24615 14.91841 .06154 3.64755 14.85782 3.64377
16 13 .00000 13.12821 .00000 2.76410 13.12821 2.76410
16 14 -1.06667 17.06667 -.13333 1.86667 15.92889 1.84889
16 15 .00000 .00000 .00000 1.00000 .00000 1.00000

APPENDIX

In this section we give identities used in the proof of Theoreml.l. Some
are merely stated, and others, previously unknown to the authors, are proved.

Tdentity 1:

Tdentity 2:

Identity 3:

k}fﬂ(—l%(ﬁ)(?_‘ﬁ) - (1)
Nk
kz:,o( D

20+ 2 - n

g(‘”k(z}( x - k

Identity 4:

/2] { 2 + 2\(x + 1
_ -1 ( x + 1 )([n/Z]) L L@+ DI+ <D - 2n(-1)"]
- 2x+2> 2(x + 2)
2[n/2]
2x 20 + 2

> e0H(E) (5) -

2c+ 1 -n

x -k

) = (-1) /2 (

nf2 1 + (—1)”( x )(

n/2

[n/2]

)/ (%)

eI/

2n + 2

)+ e/

x )(Zx + 1>/ (Zx + 1)

22 + 2

)



310 B INARY WORDS WITH MINIMAL AUTOCORRELATION AT OFFSET ONE [Oct.

Identity 5:
o) (o) - Rl (G D Gr )+ eos 3 7) (5]

Identity 6:

A

. | Z( DY (E)e T R) = D™ (7))
Z‘ 1 ( )5 %) = eor[(3) - (2 )] = o[ -2, 7))
S (w 21)7 (%)

2(2x¢ + 1)
T Qx)(2x + 2) (2% + &)

{( D2 + ID(n + 1) - l]

S+ <o

+ (-1)%[2a(z + 1) - 1](°c
Identity 10:
Sos) (4 )
= = +zf)4£2330 T 6){( D@ + e+ ) - 1(5 1) (50 1 3)
)

+ (-D%[2ax + 2) - 1](x Z i /(szz 4>}

Proog of Identity 1: See [1, 3.58].
Proof of Identity 2: Let

o = B IS

- g-w[@)(?:s) INEET T - GG )
- B EET) - R et L)
(

k=0
o2 1+ GDP(,5,)(5) 1(%) - £+ 1) by Tdencity 1.
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m

Flx, 2m) = Y [f(x, 2k) = f(z, 2k - 2)] + f(z, 0)
k=1

- "2(?)2”’:(—1)7(_1( a_c )/(Zkzg—c 2) + (Zxx+ 1)

= (-1 < )(Zxaj l)/ (2 2; l) by Identity 4.

Thus
2x+1>/(2x+1>
x 2m - 1

F@ 2m- 1) = (om0

Fo, my = (DA (S NN (F ) .

Proof of Identity 3: Let

e = 3 (2
S et () G E S - (G )E D)
S e () - S g )

e (pEr )
)-

- 260 ™ () () (R

g(x, n + 1) by Identity 2.

g, 2m) =Y gz, 2k) - gla, 2k - 2)] + g(z, 0)
k=1

ca= e () s o) ()

2 ER et (G Y - e o)

2z + 3 f . m_l(x + 2) <2x + 4) } .
t5r T a4 {( 1) / + 1| by Identities4 and>5.

g, m) = (-D"@ - 2m+ D(FFH(EF 2)/ (2”2; ")2(2x -+ 3)
Thus
g, am - 1) = D" ren - D(EFNEFD) () - me s

and
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gy m) = (-1) 2 {{z + 1111+ D" = 21 H(ZEFE)(E A L) (3 Z)Z(x +2)

z + 1 \[n/21) ' \2[n/2)
Q.E.D.
Prood o4 Identity 4: |
g(—l)k@)/(g) - :(—1)“”22”/@”)] kia(k -x1/2> by [1, Z.55]
- —(—1)””2”/(?)] "x++1{2> - (ax'+1{2)] by [1, 1.48]
- [z ) [ev e (E 2 A 1)/ G D)

_(—1)“'“12'“'2(?: f)(x;’ %)/(2”2;’ 2)] by [1, 2.55]

EHEI)/ED D o5/ (20

Q.E.D.

Proof of Tdentity 5:
Seo)/( ) - S )/ ()

R G/ E e 1))

by Identity 4.

Proof of Identity 6: See [1, 3.32].

Proof .of Identity 7: Apply [1, 3.31] withy =« + L.
Prood o4 Identity 8: Apply [1, 3.31] withy =x + 2.
Proof o4 Identity 9:

- k(e = 1\ /(22) _ 2n + 1 < n+ 1) /(20 + 2\ 1< k() /(22
;L;(’l) <k.— 1)/<2k) T T ;("1)k(k + 1>/<2k + 2)‘ 2 k=a('1) (k)/(2k>
2¢ + 1 2¢ + 3 n x + 2 20 + 4
T T '2x+4[( D +1(n+2>/<2n+4>

+ (_”a(x 2 1) /(2.’:02;- 2)] by Identity 4

(continued)
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- 2(2x + 1) n +1 2 + 2
T 2x(2x + 2) (2x + &) {(‘1) [2(n + D@+ 1) - “(2 + 1>/(2;C + 2)

+ (D@ + ) - (T /(0 2)} Q.E.D.

a 2a

Proog of Identity 10:

S en(z)/ (%)

n x 20 + 2
(x + 1) };1(‘1)’((;( _ 1)/( 2k )

T (2 +22)?2£ + 6){“1)"[2(ﬂ + Dz +2) - 1]

Gid/Gia)

SR

+ (-1 [2a( + 2) - 11 )} by Identity 9

Q.E.D.
REFERENCE

1. Henry W. Gould. Combinatorial Identities. Rev. ed. Morgantown, West Vir-
ginia, 1972.
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FIBONACCI CUBATURE

WILLIAM SQUIRE
West Virginia University, Morgantown, WV 26506

Korobov [1] developed procedures for integration over an N-dimensional
cube which are referred to in the literature [2, 3, 4] as number-theoretical
methods or the method of optimal coefficients. These methods involve summation
over a lattice of nodes defined by a single index instead of N nested summa-
tions. For the two-dimensional case, a particularly simple form involving the
Fibonacci numbers is obtained. Designating the Nth Fibonacci number by F,
k/Fy by a3, and {F,_,x;} by y,, where { } denotes the fractional part, the cu-
bature rule is

1,1 Fy
1
[ [5@ v asty = £ 5 5. M
0o V-1
The summation can also be taken as running from 0 to F; - 1, which replaces a

node 1,0 by 0,0 while leaving the rest unchanged. This cubature rule was
also given by Zaremba [5].

The investigators have been interested primarily in the higher-dimensional
cases and very little has been published on the two-dimensional case. An exam-
ination of the nodes for the two-dimensional case suggested an interesting con-
jecture about their symmetry properties and a modification which improves the
accuracy significantly.
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Conjecture: 1If x;, y, is a node for 1 <k < F, - 1 and if IV is (Odd ), then
ronjecatiie - even

<Zk’ ; - xk) is also a node.
k? Yk

Perhaps a reader can supply a proof.

One would expect the nodes of an efficient cubature rule to be symmetric
about the center of the square so as to give identical results for f(x, y),
fl, 1 -y), f(1 - %, ¥y), and f(1 -2, 1 - y). This suggests modifying (1) to

Fi
. £, 0 + £0, 1) + 3 Flays yp) + Flags 1= y)
_ k=1
/Ojff(m, y) dedy = 2@, 7 1) . (2)

Essentially, we have completed the square on the nodes. Some preliminary cal-
culations® indicated that this gain in accuracy more than compensated for doub-
ling the number of function evaluations.

The performance of the method is reasonably good, although it is not com-
petitive with a high-order-product Gauss rule using a comparable number of
nodes. It might be a useful alternative for use on programmable hand calcula-
tors which do not have the memory to store tables of weights and nodes and
where the use of only one loop in the algorithm is a significant advantage.

I also plan to investigate the effect of the symmetrization in higher-
dimensional calculations, but in such cases the number of nodes increases very
rapidly with the dimensionality.
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*1 am indebted to Mr. Robert Harper, a graduate student in the Department
of Chemical Engineering for programming the procedure on a T159.
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ON A PROBLEM OF §. J. BEZUSZKA AND M., J. KENNEY ON
CYCLIC DIFFERENCE OF PAIRS OF INTEGERS

S. P. MOHANTY
Indian Institute of Technology, Kanpur-208016, India

Begin with four nonnegative integers, for example, g, b, ¢, and d. Take
cyclic difference of pairs of integers (the smaller integer from the larger),
where the fourth difference is always the difference between the last integer
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d and the first integer a. Repeat this process on the differences. If we start
with 8, 3, 5, 6 and follow the procedure described above, then the process ter-
minates in the sixth row with all zeros. Now we have the following problem due
to S. J. Bezuszka and M. J. Kenney [1].

Probfem: 1Is there a selection procedure that will yield sets of four starting
integers which terminate with all zeros on the 7th row, the 8th row, ..., the
nth row?

Bezuszka and Kenney are of the opinion that the solution to this problem
is an interesting application of Tribonacci numbers.

First we note the following easy facts, which we shall use later.

1. If we start with a set of four nonnegative integers—a, b, ¢, d—that
terminates with all zeros on the <th row, then the set of four integers a + x,
b+x, ¢c+x, d+ x, where & is a positive integer, also terminates with all
zeros on the <th row.

2. The set of four nonnegative integers a, b, ¢, d gives the same number
of rows as the set na, nb, nc, nd, where n is a positive integer.

3. The set x - a, x - b, x - c, x - d yields the same number of rows as
a, b, ¢, d, provided none of *x - a, x - b, *x - ¢, £ - d is a negative integer.
Again, the set x - a, x - b, x - ¢, & - d yields the same number of rows as a,
b, ¢, d. We can take the integer x big enough to make each of x - a, & - b,
x - ¢, and £ - d nonnegative.

4. 1If in place of a, b, ¢, d any cyclic or reverse cyclic order of a, b,
¢, d is taken as the set of four starting numbers, we again get the same num-
ber of rows. For example, 0, 0, a, b being the reverse cycleof 0, 0, b, a will
terminate in the same number of steps.

From the above, it is clear that any set of four nonnegative integers a,
b, ¢, d can be replaced by the set 0, u, v, w, which yields the same number of
rows as a, b, ¢, d.

Let a, bs ¢, d be the four starting numbers. Denote a,, by, ¢;, d; as r,;
Ays bys ¢yy dy as g3 ...3and 4y, By, Cy, Dy as Ry3 A,, By, Cps D, as Ry5 o
For example

Ay Bé’ Cys Dy
a, , C, d
ays bys e1s dy

e o o o o

Suppose we are given four nonnegative integers a, b, ¢, d. Is it always possi-
ble to find R,? That is, can we find four nonnegative integers ¢, u, v, w that
will yield a, b, ¢, d in the second row?

If we start with four nonnegative integers ¢, u, v, w as our first row,
where t+u+v+w is either odd or even, and get a, b, ¢, d in the second row,
then it is easy to see that a+b+c+d is always even. So a, b, ¢, d with an
odd total can never be the second row of any set of four nonnegative integers
t, U, U, Ww. Hence, R, is not possible if a+b+c+d is odd. Again, R; is not
possible if a, b, ¢, d are such that a and b are odd (even) and ¢ and d are
even (odd), for then, if Rz exists, Rz will have three odd and one even or one
odd and three even, thereby making A, + B, + C; + D; odd and R, impossible.

If the four starting numbers are a, b, ¢, d and R, exists for this set of
numbers, then after a little calculation it can be seen that we must have one
of the following situations:

(i) a=b+c+d v) a+b=c+d
(ii) b=a+c+d (vi) a+e=>b+d
(iii) e=a+ b+ d (viil) a+d=>b+c¢c
(iv) d=a+b+ec
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Hence, if we are given g, b, ¢, d where none of the above seven cases holds,
then R, is impossible.

Since any set of four nonnegative integers ¢, u, v, w can be replaced by
0, a, b, ¢ (¢ > a) without changing the number of steps, from now on, we take
0, a, b, ¢ (¢ > a) as our starting numbers.

In case the four starting numbers are 0, a, b, ¢ (¢ > a), then R, is pos-
sible if either b = ¢ + aor ¢ =a + b. If we have 0, a, a+c, ¢, we can take
kR, as )

(i) a, a, 0, a + ¢ (iii) a+c¢, a+ ¢, ¢, a + 2¢ or
(ii) e, e, a+e¢, O (iv) a+c¢, a+c, 2a +¢, a

If we have 0, a, b, a+b, we can take R, as

(1) 0, 0, a, a+b (iii) a, a, 2a, 2a + b or
(ii) a+b, a+b, b, 0 (iv) b, b, a+ b, a + 2b

The two sets of four starting numbers a,, b,, ¢;, d;anda,, b,, ¢,, d, are said
to be complements of each other if a; +a, =by + b, =¢; +¢, =d; +d,. 1If
two sets of four starting numbers are complements of each other, they terminate
on the same number of rows. Now a, a, 0, a + ¢ and ¢, ¢, a + ¢, 0 are comple-
ments of each other and 0, 0, a, a+ b and a + b, a + b, b, 0 are complements
of each other.

Theorem 1: If the set of four nonnegative integers 0, a, b, ¢, where ¢ > a + b
terminates in k steps, then the set of four integers 0, ¢ - b, 2¢-b, 4c-b-a
terminates in kK + 3 steps.

Proof: Let the four starting numbers be 0, ¢ - b, 2¢ - b, 4c - b - a. They are
clearly nonnegative. Then we have

0, e -Db, 2¢ - b, 4e - b - a
c ~-b, ' C, 2¢ - b, be - b - a
b, e - a, 2¢ - b, 3¢ - a

ec-a~-b,e+a-b,ec+b-a, 3¢ —a->b

The fourth row can be rewritten as x, 2a+x, 2b+x, 2c+x where x =¢ - a - b,
a nonnegative integer. Now, the four starting integers x, 2a+x, 2b+x, 2c¢+x
will take the same number of steps as 0, 2a, 2b, 2¢ for termination. Again,
0, 2a, 2b, 2¢ will yield the same number of steps as 0, a, b, ¢. Thus the set
0, ¢ -b, 2¢ - b, 4 - b - a needs three steps more than 0, a, b, ¢ for termi-
nation. Hence, the theorem is proved.

Since e - b -a > (¢ - b) + (2¢ - b) - 3¢ - 2b, taking 0, ¢ - b, 2¢ - b,
4o - b - a as 0, a,, by, ¢,, where ¢; > a; + b;, we can get four nonnegative
integers 0, ¢; - b1, 267 - by, and 4c¢; - by - a; which will yield three steps
more than 0, ¢ - b, 2¢ - b, 4c - b - a. We can continue this process n times
to get 3n steps more than the number of steps given by <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>