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ORTHOGONAL LATIN SYSTEMS 

JOSEPH ARKIN 
197 Old Nyack Turnpike, Spring Valley, NY 

E . G. STRAUS* 
University of California, Los Angeles, CA 90024 

V^dLcotzd to tkz momoKij oh OUA {nJumd. \)vm E. Hoggcutt 

I. INTRODUCTION 

A Latin square of order n can be interpreted as a multiplication table for 
a binary operation on n objects 09 1, . .., n - 1 with both a right and a left 
cancellation law. That is, if we denote the operation by *, then 

/-, t \ a ' k b - a - k o ^ b ^ o 
b*a=c*a=>b=ce 

In a completely analogous manner, a Latin k-oube of order n is a k-ary 
operation on n objects with a cancellation law in every position. That is9 for 
the operation ( )^ 5 

(1.2) (a15 ..., ai_1, b, ai + 1 , .... ak)^ = (ax, ..., ai_19 c, ai+1, ..., a k ) ^ 

implies b - o for all choices of i = 1, 2, . .., fc and all choices of 

{al9 ...9 a^_ls ai + l9 ..., ak} C {09 1, ...., n - 1} . 

We permit 1-cubes which are just permutations of {0, 1, . .., n - l} . 
Two Latin squares are orthogonal if the simultaneous equations 

(1.3) x -k y = a9 x o y = b 

have a unique solution xsy for every pair a9 b. A set of Latin squares is or-
thogonal if every pair of squares in the set is orthogonal. 

In an analogous manner, a k-tuple of Latin k-oubes is orthogonal if the 
simultaneous equations 

\X ̂  9 X 2 5 . . . 9 *̂  fc ' 1 "~ 1 

(1.4) ^ i 9 x29 °°" xy)i = ai 

\x, 9 ^ 2 ' oo.9 x ' k ) k — ak 

have a unique solution x19 ..., #k for all choices of ax 9 ..., afe . 
A set o/ Latin k-oubes is orthogonal if every /c-tuple of the set is orthog-

onal. 
In earlier papers, [1] and [2]9 we showed that the existence of a pair of 

orthogonal Latin squares can be used for the construction of a quadruple of 
orthogonal Latin cubes (3-cubes) and for the construction of orthogonal fc-tuples 
of Latin k-cubes for every k >_ 3. In this note, we examine in greater detail 
what sets of orthogonal Latin /c-cubes can be constructed by composition from 
cubes of lower dimensions. 

^Research of this author was supported in part by NSF Grant MCS79-03162, 
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II. COMPOSITION-OF LATIN CUBES 

Let C = (a-i s . . ., as) be a Latin s-cube and let C. = (b ., 5 Z?.0, ..., 2?.̂  ). 
be Latin fc^-cubes £ = 1, 29 ..., s. Then 

C = (6 ]_ J ^2» • • • 5 ^S / 

is a Latin /c-cube, where fe = kx + fc2 + ••• + fce. 
To see this we need only check that the cancellation law (1.2) holds. Now 

let all the entries be fixed except for the entry bij in the jth place of C^ . 
Since C is a Latin cube it follows that, if the values of C* are equal for two 
different entries of bij then the values of C^ must be equal for those two en-
tries. This contradicts the fact that C^ is a Latin cube. 

This composition, while algebraically convenient9 is not intuitive and we 
refer the reader to [1] where we explicitly constructed a quadruple of 3-cubes 
starting from a pair of orthogonal Latin squares of order 3. In the present 
notation, starting from a * b and a ° b as orthogonal Latin squares, we con-
structed the quadruples 

(a * b) * c9 (a * b) o c, (a © b) * o, (a ° b) ° a 
or, equivalently, 

a * (b * o), a * (b °  o.) 9 a o (2? * a), a ° (b ° o) 
as orthogonal quadruples of cubes. 

Similarly, if ( ) 1 , ...» ( )^ denote an orthogonal set of Latin /c-cubes, 
then 

(a15 ..., ak)± o ak + 1, (a,, ..., afe)2 °  afc + 1, ..., (ax, ..., ak)k ° a k + 1 , 

(ax, ..., afe), * afc+1 

is an orthogonal (k +•1)-tuple of Latin (/c + 1)-cubes for any i e {l, ..., /c}. 
To see this, consider the s}fstem of equations 

(xl9 .. ., xk). o ̂ k + 1 = aj-, 1 £ j £ /c 

0rl9 ..., xk)i -k xk + 1 = ak + 1-
Then the two simultaneous equations 

(x19 ..., a:^)^ °  xk + 1 = â -, (#]_, ..., xk)i -k xk + 1 = afe + 1 

have a unique solution (a^, ..., xk)i and #fe + 1. Once %k + 1 is determined, the 
equations 

(x1$ . .., a ^ o xk + 1 = a^ 

determine (̂ 1, ..., xk)j for all J = 1, ..., i - 1, i + 1 , ..., k. Now by the 
orthogonality of the /c-cubes the values of x , . . ., rcfe are determined. 

Since pairs of orthogonal Latin squares exist for all orders n ^ 2,6, it 
follows that there exist orthogonal ^-tuples of Latin /c-cubes for all k provided 
the order n is different from 2 or 6. It is obvious that there are no orthog-
onal /c-tuples of Latin /c-cubes of order 2 for any k _> 2. For order n = 6 and 
dimension k > 2, neither the existence nor the nonexistence of orthogonal k-
tuples of /c-cubes is known. It is therefore worth mentioning the following 
conditional fact. 

ThdOHOxn II-?.* If there exists a /c-tuple of orthogonal Latin /c-cubes of order n 
then there exists an £-tuple of orthogonal Latin £-cubes of order n for every 
% = 1 + s(k - 1), 8 = 0, 1, 2, .... . 

Vh.00^1 By induction on s. The statement is obvious for s = 0. So assume 
the statement true for £ and let ( ) 1 9 ..., ( ), denote the orthogonal /c-cubes 
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and let ( . ) * , ..., ( ) \ denote the orthogonal £~cubes. Then we construct the 
following set of Latin (£ + k - l)-cubes. 

( a x » . • • • » ^£ + fe>i)i = ( ( ^ i » • • • s <ZfL)l * a £ + l 9 • • ' • » a£+fe-l)l 

(ax , . • . . , as,+ fe-i)2 = ( ( a i » • • • » a J l ) i s a H l » • • • » a i + k-1^2 

(a 1, ..., ^ J l + ^ _ 1 ) £ + k_1 ((fli> ° »9» a£)£» S + i 5 • •8 9 a£+k-i)i# 

From the orthogonality of ( ) 1 $ — , ( ) it follows that the equations 

(x±s ..., x
l + k,1)i = ail £ = 19 .... ̂  

£ 
de te rmine ( ^ , . . . , # £ ) 1 9 #£ + ia • • - » ^ + ̂ _ i • 0 n c e x £ + l 5 e s o , #£+fc_i a r e d e t e r -
mined, then t h e e q u a t i o n s 

(a:1 9 . . . , x
Sj + k.1)k+-j = ak + jl Q = 1» . . . » & - 1 

determine (a^ , • ••»#fc)j + i- Now, by the orthogonality of ( ) l 9 . .., ( ) z , this 
determines x , ..., a?r 

111. ORTHOGONAL (fe + 1)-TUPLES OF LATIN fc-CUBES 

The above construction yielded a set of 4 orthogonal 3-cubes constructed 
with the help of a pair or orthogonal Latin squares a o b and a % b* It is 
natural to ask whether analogous constructions exist for higher dimensions. At 
the moment we have only succeeded in doing this for dimensions 4 and 5. 

Thzotim Ul-1: The 4-cubes 

(abcd)\ = (a o b) o (a o d) 

(abod)\ = (a o b) * (c o d) 

(abcd)\ = (a * b) o (c * J) 

(afo?d)[J = (a * b) * (<? * d) 
(abed) 5 = (a °  2?) °  (<? * d) 

form an orthogonal set. 

VftOO^t We need to show that the equations 

(ajz/sw)̂  = at 

determine x,y9 z9w when £ runs through any four of the five values. Consider 
first the case £ = 1, 2, 39 4. Then the first two equations determine x °  y9 
z o w and the next two equations determine x * y 9 z * w. Now x ° y and x *• y 
determine x9y and z ° w9 z * w determine s,ii?. 

Now assume that one of the first four values of £ is omitted. By symmetry 
we may assume £^4. Then the first two equations still determine x o y9 z o w. 
Once ̂  o 2/ is determined, the last equation determines z * W and once z * W is 
determined, the third equation determines x * y« The rest is as before. 



292 ORTHOGONAL LATIN SYSTEMS [Oct . 

Tk&o/iOJfn 111-2: Le t ( ) * , ( ' ) * , ( )3
3 denote an o r t h o g o n a l s e t of 3 - cubes . Then 

t h e 5-cubes 
(abode)^ = (abo)\ o (doe) 

(abode)I = (abo)I * (d ° e) 

(atecie)^ = (abo) I o (^ * e) 

(abode)* = (abo)I * (c? * 0) 

o 3 

(a2?c?cie)g = (abo)3 ° (^ * e) 

form an o r t h o g o n a l s e t . 
VK.00^1 Consider the set of equations 

(xyzuv)i = a^ 

where £ runs through five of the six values. If i ^ 5 or 6 then the first two 
equations determine (xyz)^ and u o v and the second two equations determine 
(xyz)\ and u * V. Thus9 u9V are determined and, therefore, the last equation 
determines (xyz)\ and thus x9y9 z axe determined. 

If £ omits one of the first four values, we may assume by symmetry £ ^ 4. 
Then the first two equations determine (xyz)^9 and u °  V. Now £ = 5 determines 
(xyz)3

3 and thereby £ = 6 determines u * v. Finally, £ - 3 determines (xyz)\9 
and thus #,2/, s,w, i? are determined. 

Applying these results to the lowest order, n = 3, we get the surprising 
result that there exists a 3 x 3 x 3 cube with 4-digit entries to the base 3, 
so that each digit runs through the values 0, 1, 2 on every line parallel to an 
edge of the cube and so that each triple from 000 to 222 occurs exactly once in 
every position as a subtriple of a quadruple. Similarly, there exists a 3 x 3 
x 3 x 3 cube with 5-digit entries, and all quadruples from 0000 to 2222 occur 
exactly once in every position as subquadruples of the quintuples. Finally, 
there exists a 3 x 3 x 3 x 3 x 3 cube with 6-digit entries, every digit running 
through 0, 1, 2 on every line parallel to an edge and every quintuple occurring 
exactly once in every position as a subquintuple. 

There does not appear to exist an obvious extension of Theorems III-l and 
III-2 to dimensions greater than 5. 

It is possible to use the case n = 3 to show that the existence of two or-
thogonal Latin squares of order n does not imply the existence of more than 4 
orthogonal 3-cubes or 5 orghogonal 4-cubes of order n. 

ThdOKOm 111-3' There do not exist 5 orthogonal 3-cubes of order 3. 

VtiOO^i Since relabelling the entries in the cube affects neither Latinity 
nor orthogonality, we may assume that (£00)̂ - = £ for all the 3-cubes ( )J- . So 
the entries (010)j are all 1 or 2. If there are 5 orthogonal 3-cubes, then no 
3 of them can have the same entry in the position (010)^, since these triples 
occur already in the positions (£00)•. But in 5 entries 1 or 2, there must be 
three equal ones. 

Th<LO>iQJtn 111-4: There do not exist 6 orthogonal 4-cubes of order 3. 

VK.00^: AS before, assume (£00)^ = £, J=l, ..., 6. Since all entries (010)^ 
are either 1 or 2 and no four of them are equal, we may assume that the entries 
are 111222 as J = 1, ..., 6. Hence, the entries (020)^ are 222111 in the same 
order. Now the entries (001)̂ - and (002)^ must also be three l's and three 2fs 
and cannot agree with 111222 or 222111 in four positions. But the agreement is 
always in an even number of positions, and if the agreement with 111222 is in 
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2k positions, then the agreement with 222111 is in 6 - 2k positions and one of 
these numbers is at least 4. 

REFERENCES 

1. Joseph Arkin & E. G. Straus. "Latin &-Cubes." The Fibonacci Quarterly 12 
(1974):288-92. 

2* Joseph Arkin, Verner E. Hoggatt, Jr., & E. G. Straus. "Systems of Magic 
Latin k-Cubes." Canadian J. Math. 28 (1976):261-70. 

ON THE "QX+ 1 PROBLEM/1 Q ODD— II 

RAY STE1NER 
Bowling Green State University, Bowling Green, OH 43403 

In [1] we studied the functions 

I (5n + l)/2 n odd > 1 
f(n) = <! n/2 n even 

I 1 n - 1 
and 

( {In + l)/2 n odd > 1 
g(n) = < n/2 n even 

( 1 n == 1 
and proved: 

1. The only nontrivial circuit of / which is a cycle is 
13 - ^ 208 -^ 13. 

2. The function g has no nontrivial circuits which are cycles. 
In this note, we consider briefly the general case for this problem and 

present the tables generated for the computation of log2(5/2) and log2(7/2) for 
the two cases presented in [1]. 

Let 
C (qn+l)/2 n odd, n > 1, q odd 

h(n) = < n/2 n even 
( 1 n = 1 

Then, as in [1], we have 

Th<lOh.m 1: Let V2(m) be the highest power of 2 dividing m9 m e Z, and let n be 
an odd integer > 1, then 

n < h(n) < ...... < hk(n), and hk+1(n) < h(n), 

where k = v2((q - 2)n + 1 ) . 
A l s o , t h e e q u a t i o n co r r e spond ing t o Eq. (1) in [1] i s 

(1) 2J\(q - 2 )n j + 1) = qHiq - 2)n + 1 ) . 

Again, we write 
n — y m - ^ n* 

where £ = V2(m)9 n* = w/2£, k = v2((q - 2)n + 1) and 

2fe((q - 2)m + 1) = qHiq - 2)n + 1) 

and obtain our usual definition of a circuit. 
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Finally, we can prove 

Tk&OA.zm 2: There exists n such that T(ji) = n only if there are positive inte-
gers k9 1 9 h satisfying 
(2) ( 2 k + i - qk)h = 2£ - 1. 

It would be of great interest to determine those q for which solutions of 
(2) give rise to a cyclic circuit under In. At present the only q known to do 
this is q = 5. As for those q which give rise to multiple circuit cycles, the 
only one known besides q = 5 is q = 181, which has two double circuit cycles: 

and 

27 2444 
11-

35 

99-

I 

I 

l 

•>• 5 5 2 9 6 

+ 3168 

* 8160 

TABLES 

611 
• 27 

+ 99 
* 35. 

TABLE 1. Log2— to 1200 Decimal Places 

1.132192809488736234787031942948939017586483139302458061205475639581 
59347766086252158501397433593701550996573717102502518268240969842635 
26888275302772998655393851951352657505568643017609190024891666941433 
37401190312418737510971586646754017918965580673583077968843272588327 
49925224489023835599764173941379280097727566863554779014867450578458 
84780271042254560972234657956955415370191576411717792471651350023921 
12714733936144072339721157485100709498789165888083132219480679329823 
23259311950671399507837003367342480706635275008406917626386253546880 
15368621618418860858994835381321499893027044179207865922601822965371 
57536723966069511648683684662385850848606299054269946927911627320613 
40064467048476340704373523367422128308967036457909216772190902142196 
21424574446585245359484488154834592514295409373539065494486327792984 
24251591181131163298125769450198157503792185538487820355160197378277 
28888175987433286607271239382520221333280525512488274344488424531654 
65061241489182286793252664292811659922851627345081860071446839558804 
63312127926400363120145773688790404827105286520335948153247807074832 
71259033628297699910288168104041975037355862380492549967208621677548 
1010883457989804214485844199738212065312511525 

TABLE 2. 

3 
1 

42 
3 
- 1 
7 
2 
1 
1 
2 
3 
2 
2 

The 

9 
18 
6 
4 
4 
6 
16 
1 
1 
1 
3 
7 
1 

Continued Fraction 

2 

24 
1 
10 
3 
2 
1 
8 

2 
6 
4 
8 
1 
5 
1 
1 
3 
11 
2 
3 
17 

4 
1 
2 
1 
3 
10 
6 
1 
2 
1 
4 
3 
4 

Expansion 

6 
2 
3 
4 
3 
2 
1 
2 
1 
1 
7 
2 
16 

2 
1 
1 
1 
1 
2 
8 
1 
3 
1 
1 

32 
1 

of 

1 
1 
2 
2 
3 
1 
1 
1 
1 
5 
4 
1 
5 

log2l 

1 
4 
6 
2 
1 
8 
1 
3 
3 
1 
1 

119 
6 

3 
1 
1 
7 
1 
1 
5 
7 
1 
5 
1 
1 
13 
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TABLE 2—Continued 

2 
3 
1 
17 
2 
10 
9 
1 
1 
2 
9 
1 
1 
3 
1 
1 
10 
3 
1 
1 
3 
1 
1 

28 
3 
5 
7 
1 
1 

1 
3 
6 
1 
1 
1 
1 
1 
2 
1 
2 
1 
1 
3 
2 
1 
6 
8 
3 
1 
1 
16 

228 
1 
3 
2 
6 
1 
1 

2 
10 
1 
1 
2 
4 
1 
17 
2 
5 
3 
1 
2 
2 
5 
1 

29 
38 
1 
1 
1 
1 
2 
4 
1 
11 
2 
1 
6 

1 
2 
5 
1 
3 
1 
1 
1 
1 
1 
1 
2 
3 
5 
2 
6 
1 
3 
10 
6 
1 
2 
13 
1 
1 
2 
1 
2 
1 

5393 
1 
1 
4 
2 
5 
2 
1 
5 
23 
14 
1 

33 
12 
3 
4 
3 
1 
1 
3 
7 
1 
2 
1 
2 
1 
78 
1 

105 

1 
2 
8 
1 
1 
6 

237 
1 
1 
5 
2 
1 
1 
1 
2 
1 
4 
1 
1 
3 
1 
1 
1 
4 
2 
1 
1 
2 
4 

1 
1 
6 
2 
1 
2 
1 
2 
1 
1 
1 
8 
1 
13 
10 
8 
9 
1 
5 
3 
2 
5 
1 
3 
3 
2 
8 

172 
23 

2 
1 
1 
12 
7 
3 
2 
3 
1 
1 
1 
1 
2 
1 
4 
5 
1 
1 
1 
9 
1 
1 
9 
1 
1 
1 

28 
2 

— 

1 
7 
2 
1 
4 
2 
1 
2 
1 
1 
16 
1 
1 
11 
3 
1 

24 
6 
1 
1 
8 
4 
5 
2 
4 
3 
15 
3 

2 
32 
3 
27 
9 
3 
15 
6 
1 
1 
2 
3 
2 
23 
4 
1 
1 
2 
1 
3 
1 
2 
1 
1 
4 
6 
1 
1 

TABLE 3 . L°9i~^ t o 1200 Decimal Places 

1.180735492205760410744196931723183080864102662596614078367729172407 
03208488621929864978609991702107851073605018893255730459733550189744 
35783948545697421659367034036223711232893039172839880533054596558987 
42842044049863242710660517715603594755455847742935680180016993525932 
50632889709207655100521356641486039729352404730419795633055279942802 
67077276110778204971932513254550267027235235681504586808823722107156 
62259311528345703426110256015571456055227154958021504336696505010023 
34988294495656908806896861271221799915017038085074366218220796188044 
13300641248483810021757003214687292291654022734173979996398717392556 
21657012062442265868128541719793524331738795293960080126504099080050 
86143891504372773197711929325509449755438097944662727688654466455056 
66144962718917439479811201832195534767729368027362015384968426483404 
28194862620856744723428655525118561153949628390912550087758014235589 
14221613005965234270525279790176286862630931786330372331743548294140 
06377868059095886491534576253156671578606520583005556279536710386799 
55857731719085677755305180653144090746707963928688620808186866798569 
85299653671553315728082138583329807569231547710021897097214157437559 
6833249986877724904346722049673575206749869960 
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TABLE 4. 

1 
8 
6 
5 
1 

59 
1 

24 
3 
1 
2 
1 
4 
6 
2 
1 
1 
2 
3 
2 
3 
2 
7 
1 
1 
7 
3 
1 
1 
2 
1 
2 
3 
1 

29 
1 

42 
1 
1 
4 
1 
1 
13 

4 
1 
2 
1 
1 
1 
1 

20 
1 
1 
4 
1 
2 
1 
7 
1 
6 
1 
2 
3 
2 
1 
7 
2 
1 
2 
11 
3 
1 
3 
13 
1 
1 
1 
6 

•2 

2 
3 
1 
1 
2 
1 

— 

The < 

5' 
1 
3 
10 
1 
11 
2 
1 
1 
7 
4 
1 
1 
3 
2 
1 

44 
1 
2 
2 
1 
6 
9 
1 
1 
3 
2 
1 
1 
8 
1 
1 
2 
6 
1 
15 
2 
2 
5 
4 
1 
1 

Continued Fraction 

4 
2 
1 
1 
6 
13 
1 
1 
2 
3 
1 
1 
3 
1 
1 

20 
1 

59 
2 
14 
10 
3 
1 
3 
2 
9 
1 
1 
19 
3 
4 
1 
1 
4 
1 
2 
1 
1 
5 
2 
1 
4 

5 
1 
1 
4 
5 
11 
14 
1 
2 
1 
1 
1 
2 
4 
3 
1 
3 
2 
1 
1 
1 
1 
1 
1 
1 
2 
2 
4 
10 
3 
1 
4 
1 
1 

44 
2 
1 
4 
1 
1 
1 
1 

4 
31 
197 
4 
1 
1 
1 
1 
1 
1 
3 
1 
3 
1 

163 
21 
1 
2 
1 
2 
1 
4 
5 
4 
1 
4 
1 
1 
7 
26 
7 
2 
4 
3 
16 
3 
2 
1 
8 
1 
4 
1 

Expansion of 

1 
10 
1 
1 
5 
85 
2 
3 
40 
2 
1 
2 
2 
1 
1 
1 
1 
18 
1 
1 
1 
3 
1 
1 
1 
10 
5 
1 
1 
2 
3 
1 
4 
1 
8 
2 
56 
7 
1 
4 
2 
1 

29 
1 
4 
3 
1 
1 
5 
1 

53 
1 
6 
3 
3 
1 
6 
1 
1 
1 
1 
1 
1 
4 
11 
4 
1 
4 
3 
1 
1 
1 
7 
1 
7 
1 
3 
4 
1 
1 

31 
2 
3 
67 

7 
l o 9 r22 

1 
2 
5 
14 
1 
5 
1 
1 
3 
1 
7 
1 

68 
5 
2 
6 
91 
5 
12 
3 
5 
1 
1 
1 
1 
1 
2 
3 
2 
12 
1 
1 
8 
1 
2 
•1 

1 
5 
1 
4 
4 
5 

4 
2 
5 
3 
3 
1 
4 
2 
1 
8 
1 
4 
1 
2 
2 
1 
3 
6 
1 
1 
2 
1 
3 
2 
1 
1 
7 
2 
1 
1 
1 
1 
4 
1 
5 
1 
1 
2 
2 
1 
1 
1 
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BINARY WORDS WITH MINIMAL AUTOCORRELATION AT OFFSET ONE 

BART F. RICE and ROBERT WARD 
Department of Defense, Washington D.C. 20755 

In various communications problems, it has been found to be advantageous 
to make use of binary words with the property that at offset one they have au-
correlation value as small in magnitude as possible. The purpose of this paper 
is to derive the means and variances for the autocorrelations of these words 
at all possible offsets. The derivations are combinatorial in nature, and sev-
eral new combinatorial identities are obtained. 

1. AUTOCORRELATIONS AT VARIOUS OFFSETS 

We consider two methods of autocorrelating binary words. The cyclic auto-
correlation at offset d is defined to be the number of agreements minus the 
number of disagreements between the original word and a cyclic shift of itself 
by d places. If the word is v_ = (vQ9 V19 . .., VL_1)9 and if subscripts are re-
duced modulo L9 then this autocorrelation is given by 

( i . i ) ^ ( « ) - ^ ( - l ) ' " * ' " * ' 

The truncated autocorrelation at offset d is the number of agreements mi-
nus the number of disagreements between the last L - d bits of the original word 
and a right cyclic shift of the word by d places. The formula for this auto-
correlation is 

L-d-l 

(1.2) T*(£) - X) (-DVi+Vi + d-
i =0 

Note tha t i d(v) = T*(£) + T£_d(y). By symmetry, id(v) = TL„d(iO. Thus, 
for d > L/29 we can compute E(jd)9 E(id)9 and # ( T * ) from the i r values with 
d <. L/2. Z?(T*2) needs special treatment. Therefore, unless s ta ted otherwise, 
we assume d <_ L/2. 

Our pr inc ipa l r e su l t i s 
ThtOH.2J(n 1.7: Let L be a pos i t ive in teger , and l e t v_ range over the binary L-
tuples with minimal cycl ic autocorrela t ion a t offset 1. Then, for l<Ld<.[L/2]9 

0 ( ^ > 

K-»-K)/©. L\~2. ) ( - x ; \dll, 

«-">(iJ4=ui>-')*,(5{,2)/(5> 

L E 0 (mod 4) 

L E I (mod 4) 

L = 2 (mod 4) 

L = 3 (mod 4) 

If L = 2 (mod 4) and d i s odd, and if we r e s t r i c t v_ to range over those binary 
L-tuples sa t i s fy ing T1(y) = 2e, c = ±1, then 

S(xd) = 2 C ( d + l ) ( - l ) < - - ^ ( ( , ^ ) / 2 ) / Q . 
Also, 
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#(T2) 

L2 

L + 2 

1 
L + 3 

1 
L + 4 

+ 1 

(-!)<*(£• - 2d)(L2 - 2dL + 2L - 2d 

if L = 0 (mod 4); 

(V) 
i L + L(L + (.L + 1) , 

if L is odd; 

(-l)̂ (L- 2d+l)(L2 -hdL+2L-M-^'A/^\ + L2 + 2L + 4 , 

if L = 2 (mod 4). 

If v_ ranges over the binary L-tuples with minimal truncated autocorrela-
tions at offset 1, then, for 1 <. d <_ [L/2]9 

^(T5) = (-D d/2 ( i^ 2 1 )*-*(<%»'«) / ( V ) -
If L is even and v_ is constrained to range over the binary L-tuples satisfying 
T*(z;) = c, c = ±1, then 

ff(T*) = G*(-l)[d/'2] 

A l s o , 
"-*W2)/(V)-

E{xf) = 

1 
(L + 2)(L + 4) (-!)<*(£ - 2d + 1)(L3 - 2dL2 + 4L2 - 8dL - 4d - 2) 

d / / \ 2 d ) + £ 3 - dL2 + 4L2 - 4dL + 2L + 2 , 

a + D a + 3>"[( 

i f L i s even; 

( - i r L ( L 3 - 2d£2 + 3L2 - 4dL + L + 2d + 1) 

((L V ) / 2 ) / C 2 V ) + L3 -d&2 + 2Zi2-2dL.L+3d], 
if L is odd. 

If d > L/2, 

mf) = 
a 

+ L3 - dL2 + 4£2 - kdL + 2L + 2 , if L is even; 

(L + !)(£ + 3) 

+ L3 - dL2 + 2L2 - 2dL - L + 3d, if L is odd. 

2. MINIMIZING AUTOCORRELATION AT OFFSET ONE 

Suppose v = (vQ, v1$ ..., vLm.]) • If we change one bit, say v^9 to obtain 
V_ = (yQ9 ... ,~1 - vi9 .'.., ̂ L-I)» t h e n Td(S) = Td(^.) o r Td(^.) ± 4, because the 
sign of the two terms, (-l)Vi + Vi + d and (-l)Vi~d + v* , in the sum Td (v) have been 
changed. Since any binary L-tuple may be obtained from any other by changing 
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k <_ L bits, one at a time, it follows that 
Td(v) = L (mod 4). 

THV) = L - d (mod 2), 
a — 

A similar argument shows 

Now, if L is odd, the sum (1,1) contains an odd number of terms; thus, 
|T^(IO| _> 1. In particular, |Tx (̂ ) | _> 1. The sum (1.2) contains an even num-
ber of terms if d = 1, so T\{V) may be 0. If L = 2 (mod 4), then |TL(J;)| _> 2, 
\T*(V)\ >_!. If L = 0 (mod 4), T1(v) can be 0, while |T?(£)| >. 1. 

Let at = Vi © Vi + 1 (" © " denotes addition modulo 2), 0 <. i ±L - 1, and 
let a_ ~ (aQ, a , ..., CLL_1) . It follows that 

L-l 

w(a) = ]T ai ~ °  (mod 2>» 
i = 0 

so that cc is not independent of a0 , ax , ..., aL_2. Also, given i?r and a0 , 
ax , ..., aL_29 the vector t; is completely determined by the relation 

max(j, p) - 1 

E 
In particular, *" 

Vj = vr + X a { (mod 2 ) , 

vi + ^ + < * E E a*+fe-i (m°d 2) , 
so t h a t fc = i 

L - d - 1 2 a ' i + fc"1 

T?(^> - E (-1)*"1 
i - 0 

The c a s e d = 1 r educes t o 
L-l L-l 

E (-D" - * - 2E* 
i = 0 £ =0 

TI(^> = * = E (-1)ai = L - 2Ea*> 
L- 1 

£a* - (L -c)/2; 
i = 0 

that is, a_ has density (L - c)/2. This allows us to count the number N(o) of 
vectors v with T (v) = c: 

fl(<?) = { 
(2(tt-^)/2) " ̂ ^ ( m ° d 4 ) ; 

0 otherwise. 

The factor 2 before the binomial coefficient ( ,,- _ ̂ wo) appears because both 

V and z; (the mod 2 complement of v) give rise to the same vector a_. Likewise, 

T ^ > m° = E ( - 1 ) a ' = L - l - 2 E a ^ 
]£a* - (L - c - l)/2. 
i*0 
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Now, £? has density w(a) = (L - c - l)/2 + #£_•,» and5 since w(a) is even, 

w(a) = (L - <? - l)/2 + a. 
x-1 

{ (L - c + l)/2 if (L - e - l)/2 is odd; 
| (L - a - l)/2 if (L - c - l)/2 is even; 

+ 1 

* 
L - c + 1" 

Therefore, the number N*(a) of vectors ̂  satisfying T*(v) = c is given by 

J 2\2[(L - c + l)/4]/ if L E e + 1 (mod 2) 

0 otherwise. 
N*(c) 

THE DISTRIBUTION OF THE CYCLIC AUTOCORRELATIONS Td 

We now derive the quantities E(Td(v)) (E: = expected value) and #(T?C^)) 
when v_ is restricted to the set 

{v_i T1(V) = a}. 

Various identities used in the derivation may be found in the Appendix with 
their proofs. We assume throughout that the binary vectors V_ have length L, 
and that L = o (mod 4). Of special interest, of course, are the cases \o\ <^ 2, 
corresponding to vectors with minimal autocorrelation at offset 1. Therefore, 
we assume that \o\ is minimal. 

We have shown that, in studying the quantities xd (v) with jf ̂  Ĉ£.) | least 
possible, we may restrict our attention to the set of vectors 

where 

R =<a = (a0, 
L-l 

E 
£ = o 

x ): 2>i = (L -
 c ) l 2 \ > 

0 if L = 0 (mod 4) 
1 if I E 1 (mod 4) 

±2 if L = 2 (mod 4) 
-1 if L E 3 (mod 4). 

No te that |tf| = ((L _ L
a ) / 2 ) . Let 

d 

z/w, D = 22 L (~1)fc=1 
aei? j = 0 

= E £<-i>'(*)(, 
j = 0 r-0 

(L - c)/2 - W 

• i f : (-D'(?)( (£ - c)/2 » ) • 

since, for any j, 0 j< j <_ L - (?)( L - d 
(L - c)/2 1 i s t h e number of <i- tuples 

(<2j, . . . , ^J- + ^_1) of d e n s i t y r . To o b t a i n E(id) , we must d i v i d e U(d9 L) by |i?| 
We now proceed t o de te rmine t h e q u a n t i t i e s U(d9 L) f o r 1 <. <i <_ L / 2 . 

Co&.& 7: e = 0 , L E 0 (mod 4) 
We make use of Identity 1 (Appendix) to write 

,«.a.«-.,«.(i±iiH)(«»)(IJ2)/(S> 
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Co6e 2: o = 1, L .= 1 (mod 4) 
Identity 2 (Appendix) gives us 

« A O =, ( - i ) - . ( " ->«) ( ( i . ' 1 ) / 2 ) / (5 ) . 
C<Ud 3: c = -1, L = 3 (mod 4) 

We r e v e r s e t h e o rde r of summation to o b t a i n 

±<M1)L Swl - r) • t <">'~(X -\~J - ,)• 
the same sum we considered in Case 29 except for the factor (-l)d. Therefore, 

m, «.«.„—«- (<-;>)((i /1)/2)/(j> 
Coae. 4: c = 2, I E 2 (mod 4) 

Identity 3 (Appendix) yields 
,_ [d/2]/ L \( L/l \ 

lUA n - U/2A[d/2]j [(£/2)(l + (-l)d) - 2d(-l)d] U(d, L) - -r—- r ^ T 1 . 

\2[d/2]/ 

CaiZ 5: c = -2, £ = 2 (mod 4) 
Again, reversing the order of summation in the sum of Case 4 yields 

, n [ ( d + i ) / 2 ] / L \( L/2 \ 
mj n _ 2 _ \L/2)\[d/2]} [(L/2) (.1 + (-l)d) - 2d(-l)d] 

\2[d/2]j 

Combining t h e r e s u l t s of Cases 1-5 g ives E(T^) in Theorem 2 . 1 . We now 
proceed w i t h t h e computat ion of E(T%) . Let 

5 t f , L) = £ T j O i ) . 

Then 
a ei? 

d-l d-l 
L~1 Z*,aj + kL-1 J2ai + k 

s(d>L) = E E w*0 E*-1)*-
a e i ? j = 0 i = 0 

L-i L-i y 

•E E E (-D-
a e i ? j • 0 £ = 0 

a j + fe + a i + k 

L - 1 L - 1 V ^ 7 + 

•E £ E ( - D 
a. e i? J = 0 £ = 0 

d - l 

„ nr .. + ^ i 

k~=0 

L - l W - 1 SaJ' + fc + ai + 3 + * L-d J2ai + k + ai + J + h 

* E E i Et-1)*-0 + £(-Dk-° 
d - l 

+ E ("1)fc" 
i - L - d + l 
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This decomposition of the innermost summation is made to facilitate the summing 
of the expressions involved. We change the order of summation in each of the 
three triple sums so that, in each case, the innermost sum is over all a_ e R. 
Then, for each £ and j, we group together all those vectors a satisfying 

d-l 

fc = 0 

If 0 <_ £ <.d-l9 then the number of vectors a_ e R satisfying this condition is 

(2i\( L-U \ / L \KL - c)/2\((L + c)/2\/(L\ 
\r)\(L - o)/2 - r) \{L-c)/2j\ r ) \ 2i-r J / \2i)' 

Analogous results hold when d <_ £ <_L - d and L - d + 1 •<_£<. £ - 1. Thus, we 
have 

L-l (d-l 2i 

Xl'<-»VL.>«Xttv>") 
/ (L+e)/2 \/( L \\ 
\2L - 2£ - v)l \2L - 2i) \. 

*L-d + l r = 0 

The summand is independent of j, so 

d-l 

i=Q 

+ (L - 2d + 1) 

£(-«•(« V,/2)(Vr)/(A) 
2» = 0 

2d 

L - l 

+ E 
i»L-d+ 1 

r = 0 

lL-2i 

f <-.,'(« v" 2 )^- 2 ) / (&) 
fv^f-'lU^y/u^) r =0 

As above, we divide our calculation into five cases. 

Ca6e 1: a = 0, L = 0 (mod 4) 
Applying Identity 6 (Appendix), we obtain 

'd-l 

i = o 

• E (-')-t^.)/UtM)| 
i=L-d+l J 

(continued) 
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L\Lli)) ZTTT 

+ (I-2d+i)(-i)f«)/(2y 

+ 1 

L + 1 
L I 2 

by Identity 4 (Appendix). Thus5 

'c-^T'VW)-''*•» 
S(d. O - 1»(^2){(-D"(i - M + l)(^2)/(^) + l} /tt 4- 2) 

Co6e 2: c = 1,LE 1 (mod 4) 
Applying Identity 7 (Appendix), we obtain 

^ = L-d+ 1 ' 1 

•1(a-L»«)jm[<-""'(t'V)/2)/fi3)*'] 

L + 2 
L + 3 

by Identity 5 (Appendix). Hence, 

[(-.)-' («V>'V(-2y)-l/(i + 2,]} 
S(d, L) = ((L _L1)/2){(-l)^(L - 2d)[L2 + (-2d + 2)L - 2d - 1] ((L j ^ 2 ) / ^ / ) 

+ L(L + !)>/(£ + 3). 

C<U(L 3: c = - l 5 L E 3 (mod 4) 
Reversing the order of summation on v in all three sums reduces this to 

the previous case. 

Ccu>£ 4i c = 2, L = 2 (mod 4) 
Apply Identity 8 (Appendix) to obtain 

««.«- 4/21..){i>»tf )/(y - 'g<-<?-v)/&) 
+ (i - U + l ) ( - l )"(^2) / (^) - 2» - M + 0(-l)^ff_-1

l)/(2
i
< i) 

(continued) 
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- 'U- i){m <-»'-f'v vei2) •«- <*$&&?) 
.^••w.i^Df'vvci')- '] 
•m[<-»'-f'Y l)/(Li2) -^*•>] - inliMdU) 
• [(-»'-(« ̂ w-ur/v^i2)-'] 

using Identities 4 and 9 (Appendix). Therefore, 

£(d, L) = (L/2L- 1)|(-l)d(L - 2d + 1)(L2 + [-4d + 2]L - 8d - 4) 

Co6e 5: e = -2, L = 2 (mod 4) 
Reversing the order on summation on r in all three sums reduces this to 

the previous case. 

Combining the results of cases 1-5 gives E(T^) in Theorem 1.1. 

k. THE DISTRIBUTION OF THE TRUNCATED AUTOCORRELATION xg 

We now derive the quantities E(T*(V)) and E(T*2(V)) when v_ is restricted 
to the set 

S*(c) = {v_: T*(V) = a}. 

Various identities used in this derivation may be found in the Appendix, with 
their proofs. We again assume that the binary vectors v_ have length L, but now 
L = c + 1 (mod 2) . Of special interest, of course, are the cases |c| £ 1, cor-
responding to vectors with minimal autocorrelation at offset 1. Again, we as-
sume that \o\ is minimal. 

We have shown that, in studying the quantities T?(I?) with |T*(V)| least 
possible, we may restrict our attention to the set of vectors 

( L'2 \ 
K* = <a = (a0, a19 ..., a L - 1 ) : ]T at = (L - c - l)/2>, 

where ^ 

0 if L is odd, 

Note that 
o — 

±1 if L is even. 

V(L - o - l)/2/' 
Let 

d- 1 

aei?* j =0 

Since there are (r)((L „ ~ _ ^) / 2 - v) ^~ t uP l e s (aj ' " ' ad+d-i) o f density r, 

we have 
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L-d-l d 

E E 
j = O r = 0 

305 

* « • « - T &<-<)(»-V-V/i -,) 

if c = 0 , by Identity 1; 

(L - ̂ )(-DCd/23 ([(i + i)/2])((L - 2)/2)/(2[(d + l)/2]) 

i f o = 1, by I d e n t i t y 2 ; 

Q- _ ^ / n I W + i ) / 2 ] / (^ - 2 ) / 2 \ / L - 1 \ / / L - 1 \ 
CL * n ^ \[W + D / 2 ] A a - 2)/2)/\2[(d + l ) /2] j 

i f c = - 1 , by I d e n t i t y 2 . 

To o b t a i n E ' ( T J ) of Theorem 1 . 1 , we d i v i d e U*(d9 L) by | i ? * | , and combine t h e 
c a s e s o = ± 1 , t o o b t a i n 

We now proceed w i t h t he computa t ion of E(i*d). Let 

a e f l * d-i d-i 
L-d-l Y^a;j + k L-d-l J2ai + k 

= E E (-1)t"° E (-i)"° 
aeR* j = o i = 0 

L-d-l L-d-l T]aj+k + ai + k 

£ . £ E(-D' 
a e f? * j = 0 •£ = 0 

d - i 

= E E E (-1)"0 
a e i ? * j = 0 i = -j 

We s p l i t t h i s sum i n t o t h r e e p a r t s , depending on t h e degree of o v e r l a p of t he 
two d - t u p l e s (jcLd 9 . . . , ccj. + d_1) and ( a i + j . , . . . , ai + j+d_1)i comple t e , p a r t i a l , 
or none . 

S*(d9 L) 
0 L-d-l d-1 L-d-i-1 2i 

L - d - l L - d - i - 1 2d 

•»£ E S<-ofV1)T»-V,")/ri1) 
We now consider three cases, depending on the value of a: 
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S*(d 

Ccu>& 1» c = 0 , L odd. Applying I d e n t i t y 6 (Appendix) , we o b t a i n , 

. *> - {J_~'l2) {* - *> + 2 E> - < - *><-»<(* V ) / 2 ) / {L H *) 

-«-»%^r{(Li-T)/(\-i
1) 

+ a - 2 d + i,(C-2i,(-i)^-^)/fii) 

((£ - D / 2 / 

• ( £ - 1 ) 

L - d + 2{L - d)r , . 
L T I 

2 
( - i ) a - 1 ( d £ + d - 1) (L - D ( £ + l ) ( i + 3) 

((iV,/2)/f2
+/) 

+ (L-2d* Dtt - 2 d ) ( - i y ( a V > ' 2 ) / ( i 2 d 1 ) } 
by Identities 4 and 9. Therefore, 

S*<d> L) " (L + l)1a + 3)((/-"1)
1/2){(-l)^^3 + O - 2d)L2 + (1 - 4d)£ 

+ (1 + 2d)]((£ + / ) / 2 ) / f 2V) + [ i 3 + ( 2 - d ) £ 2 + ( - l - 2 d ) £ + ( 3 d ) ] j > . 
C<X6e 2? <? = 1, L even . Applying I d e n t i t y 7 (Appendix) , we o b t a i n , 

»*«• « • (</--2!/a)f " ^ * \£> " * " «<-»' (C - ?" ) / N l) 

+ f -?+')<-1''(°V"2)/(I2il) 
•\(L - 2)/2J 

- 1/CL + 1) 

L - d + 2(L - d) L + 1 
L + 2 .!><-(<= V > ' * ) / ( V ) 

- (L + 2)/(L + ! ) ] • + (L - 2d + 1)(L - 2d) ( -1)4 ( ( L ~ j ° / 2 ) / ( L
 2 j *)> 

sing Identities 5 and 10, Consequently, 
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**W' L) = (L + 2)\L + 4 T ( ( L V 2 )
1
/ 2 ) { ( - - ^ ^ " 2d + 1)[L3 + (4 - 2d)L2 

+ (~8d)L + (-2 - W ) ] ( ^ 2 ) / ( ^ ) + t^3 + (4 - ̂ )L2+ (2 - 4d)L+2]|. 

Co^e 3.' c = -1, L even. Reversing the order of summation on r in both sums re-
duces this to the previous case, 

Combining the results of Cases 1-3 gives #(T* 2) ford <. L/2 in Theorem 1.1. 
The case when d > L/2 is similarly handled, with the result: 

S*«, D = ( L -
(L - c 

- \ I 0 L-d-l L-d-1 L-d-i-1 2i 

\)/2 £ E i ^ E £ L(-Dr 

( « - r . > « ) ( t t + 2 / _ - ] i , / I ) / ( i - . ) 
2^ - p 

Once again we consider three cases, depending on the value of oi 

Ccu>2. ? •* c = 0, L odd. Applying Identity 69 we obtain 

**«• *> - U - :>/2)f -d + 2 i t ; ^ - * - *><-»'f V) / 2)/(L
2;') 

U - D/2/ L - d + 2(L-dh A_J(_1)£-d-i 

(L (-D L-d-i {(I + 1)(L - d) - 1} + !)(! + 3)[_v 

using Identities 5 and 9. This yields 

«*" « - («VI)
l
/2){<-»'-'*<-» + M " "(V-'D/Uty 

+ L3 4- (2 - ^)L2 + (-1 - 2d)L + 3 d l / ( L + 1)(L + 3 ) . 

C<X6e 2: c = 19 L even . Applying I d e n t i t y 7, we o b t a i n 

S*(d, L) 

l / ( £ + 1) 

(continued) 
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using Identities 6 and 10. As a results 

+ £3 + (4 - d)L2 + (2 - kd)L + 2 /(L + 2) (L + 4) . 

Ccu>& 3» c• = -1, L even. Reversing the order of summation on r reduces this to 
the previous case. 

Combining the results of Cases 1-3 gives E(T^2) ford > L/2 in Theorem 1.1. 

5. VARIANCES 

The variances of Td and Td may be obtained from the above results by no-
ting that the variance a2 of any statistic x is given by 

02(x) = E(x2) - E(x)2. 
These numbers are tabulated along with E(id)9 etc., in Table 1. 

TABLE 2. Expected Values for Selected Values of L 

L 

4 
4 
4 

5 
5 
5 
5 

6 
6 
6 
6 
6 

7 
7 
7 
7 
7 
7 

8 
8 
8 
8 
8 
8 
8 

d 

1 
2 
3 

1 
2 
3 
4 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 
7 

^ d > 

.00000 
-1.33333 

.00000 

1.00000 
-1.00000 
-1.00000 
1.00000 

.00000 
-.40000 
.00000 

-.40000 
.00000 

-1.00000 
-1.00000 

.60000 

.60000 
-1.00000 
-1.00000 

.00000 
-1.14286 

.00000 

.68571 

.00000 
-1.14286 

.00000 

^ D 
.00000 

5.33333 
.00000 

1.00000 
5.00000 
5.00000 
1.00000 

4.00000 
4.00000 
10.40000 
4.00000 
4.00000 

1.00000 
7.40000 
4.20000 
4.20000 
7.40000 
1.00000 

.00000 
9.14286 
3.65714 
12.80000 
3.65714 
9.14286 
.00000 

*<T*> 

.00000 
-.66667 
.00000 

.00000 
-1.00000 

.00000 
1.00000 

.00000 
-.80000 
.00000 
.40000 
.00000 

.00000 
-1.00000 

.00000 

.60000 

.00000 
-1.00000 

.00000 
-.85714 
.00000 
.34286 
.00000 

-.28571 
.00000 

£(T*/) 

1.00000 
1.33333 
1.00000 

.00000 
3.66667 
1.33333 
1.00000 

1.00000 
4.00000 
2.60000 
1.60000 
1.00000 

.00000 
5.80000 
1.60000 
2.60000 
1.60000 
1.00000 

1.00000 
6.28571 
3.51429 
3.20000 
2.60000 
1.71429 
1.00000 

a2 

.00000 
3.55556 
.00000 

.00000 
4.00000 
4.00000 
.00000 

4.00000 
3.84000 
10.40000 
3.84000 
4.00000 

.00000 
6.40000 
3.84000 
3.84000 
6.40000 
.00000 

.00000 
7.83673 
3.65714 
12.32980 
3.65714 
7.83673 
.00000 

a*2 

1.00000 
.88889 

1.00000 

.00000 
2.66667 
1.33333 
.00000 

1.00000 
3.36000 
2.60000 
1.44000 
1.00000 

.00000 
4.80000 
1.60000 
2.24000 
1.60000 
.00000 

1.00000 
5.55102 
3.51429 
3.08245 
2.60000 
1.63265 
1.00000 

(continued) 
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TABLE 1 (continued) 

L 

9 
9 
9 
9 
9 
9 
9 
9 

16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 

d 

1 
2 
3 
4 
5 
6 
7 
8 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

E(Td) 

1.00000 
-1.00000 
-.42857 
.42857 
.42857 

-.42857 
-1.00000 
1.00000 

.00000 
-1.06667 

.00000 

.24615 

.00000 
-.11189 
.00000 
.08702 
.00000 

-.11189 
.00000 
.24615 
.00000 

-1.06667 
.00000 

E<Td> 

1.00000 
9.57143 
6.14286 
9.00000 
9.00000 
6.14286 
9.57143 
1.00000 

.00000 
17.06667 
13.12821 
14.91841 
13.52603 
15.31624 
11.37778 
28.44444 
11.37778 
15.31624 
13.52603 
14.91841 
13.12821 
17.06667 

.00000 

E(T*) 

.00000 
-1.00000 

.00000 
-.42857 
.00000 
.42857 
.00000 

1.00000 

.00000 
-.93333 
.00000 
.18462 
.00000 

-.06993 
.00000 
.04351 
.00000 

-.04196 
.00000 
.06154 
.00000 

-.13333 
.00000 

APPENDIX 

E(T*2) 

.00000 
7.85714 
3.54286 
5.80000 
3.20000 
2.60000 
1.71429 
1.00000 

1.00000 
14.66667 
10.96923 
11.10676 
9.61414 
9.25128 
7.75556 
7.11111 
6.33333 
5.42222 
4.54188 
3.64755 
2.76410 
1.86667 
1.00000 

a2 

.00000 
8.57143 
5.95918 
8.81633 
8.81633 
5.95918 
8.57143 
.00000 

.00000 
15.92889 
13.12821 
14.85782 
13.52603 
15.30372 
11.37778 
28.43687 
11.37778 
15.30372 
13.52603 
14.85782 
13.12821 
15.92889 

.00000 

a*2 

.00000 
6.85714 
3.54286 
5.61633 
3.20000 
2.41633 
1.71429 
.00000 

1.00000 
13.79556 
10.96923 
11.07268 
9.61414 
9.24639 
7.75556 
7.10922 
6.33333 
5.42046 
4.54188 
3.64377 
2.76410 
1.84889 
1.00000 

In this section we give identities used in the proof of Theorem 1.1. Some 
are merely stated, and others, previously unknown to the authors, are proved. 

Identity 1: 

t ^ X - " * ) • <-»"'2 li4±H,/2)(?)'(?) 
k = 0 

Identity 2: 

t«-""(*)(i";.1*n) • (-»,",2, U ] ) r ; ^c:') 
k = o 

Identity 3: 

k = 0 
. . [n/2] ( 2x + 2\(x + 1\ 

. V* + 1 A [ n / 2 ] / e [(a? + 1)(1 + ( - l ) n ) - 2 n ( - l ) n ] 
(2x + 2 \ ' 2(x + 2) 
\2[n/2]) 

Identity 4: 

t «-•)*(;)/ (g) • t * i [ < - < : i)' (£ : i)+«-»•(•:')' (%:2)] 
k = a 
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Identity 5 : 

i>»i«)'(%;') • £**[<-< :? ) /£ :*) • «-»•(": 2)> (nr)] 
k = a •- -" 
Identtty 6 : 

fc = 0 

Identity 7: 

t ' - ^ a x r J)-<->>'""'([„721) 
Identity Si 

fc = 0 

r^txr . 2 * ) - <-»-[c) - („! o] - <-»•[("::) - 4 - o] fe = o 

Identity 9 •• 

fe = a 

2(%c 

• ( . ! > • [ * ( . + . ) - . 1 ( - : i ) / ( * ,
2 : 1 ) } 

Identity 10 ••• 

fc = a 

• <-»-I*.C- + 2) - l l (- ^ ^ / ( ^ *)} . 

VtWOJ oj Identity 1: See [ 1 , 3 .58] . 
VKOOJ oj Identity 2: Let 

V1 ( A<\ln\l2x - n\ , (n + l\( 2x - n \ ( n \( 2x - n \ 
~ L,^-y> \\k)\x - k ) + \k + l / U - 1 - k) \k + i)\x-i-k) 

k = 0 

= (-1)"'2 [1 + ( -D"]( n / 2 ) (S : ) / ( ^ ) - f<*» n + X> ^ " e n t i t y 1 



311 1981] BINARY WORDS WITH MINIMAL AUTOCORRELATION AT OFFSET ONE 

m 
f(x, 2m) = ] T [fix, 2k) - fix, 2k - 2)] + f(x, 0) 

fc-i 

=#»M(t-i)'(1M,(!':') 

Thus 

«..*-«-(-i)-t.!1)r;i)'(S!i) 

P/LOÔS ô  Identity 3: Let 

»c.») - t ( - ' )*ax 2 r « + - 2 *") 
fc = o 
V /> -nk tn\(2x + 1 - w\ , /n + l\/2a: + 1 - n \ / n -\/2a; + 1 - n\ 

~ Z ^ i ; U A a: - k I + \k + lA* - 1 - k / ~ U + l j U - 1 - k) 
k = o 

£ < - » " a ) e v - \ - " ) - s <-»*(" * ' ) ( * + i : ?+,}) 
x - k ) 

- 2<-» [-/2] G ^ X 2 * ; M 2 * ; ' ) - *<*•n +» ^ "-̂ 2-
777 

(*, 2ro) = £ [#(*, 2k) - #0rs 2k - 2) ] + #0r9 0) 
= i 

*r.+ I t <-»•(• I ') ' (%*2) - s«-')"(j)/ ( \+ ' ) 
|_fe = l fe = o 

• {*;2) 

fe = o fc = o 

+ E C - D ' G J X 2 * * 1 ' " ' 
fc = 0 

fc«l 

+ 2£ 
2OJ ±|{<-i,~f ;*) ,(*;«)•'} by I d e n t i t i e s 4 and 5. 

Thus 

and 

g(x, 2m) = (-l)»C* - 2m + 1)(^+
+

2
4).(X J * ) / ( % J V * : - 2« + 3) 

*C*. 2* - 1) - <-!.)-(2* - 1 ) ( ^ ; 2
4 ) C ! 2 ) / ( £ ! 5)2(2. - 2, + 5) 
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Q.E.D. 
Vnooj oj Identity 4: 

- [^•'"/(^[(V^2) - (V+1!2)] 

by [ 1 , Z.55] 

by ( 1 , 1.48] 

= [<-l)*22*/(^)l x -nry-2x-2l 

2a? + 1 
2a? + 2 

/2a? + 2\(x + l \ / /2a ; + 2 \ 
\x + 1 )\n + 1 / / \2n + 2 / 

{-"-"'-"-(^. 'X"1) /^2)] TU. ..551 

( ; : : ) A * : 2 ) + < - ' > t : ' ) / ( " : 2 ) 
Q.E.D. 

P^oo^ pf{ Identity 5: 

- i m h t n : ;)/(£: *)• <-->t:2)/(2*2:4) 
by I d e n t i t y 4 . 

Vtiooj oj Identity 6: See [ 1 , 3 . 3 2 ] , 

Psioo&.oj Identity 7: Apply [ 1 , 3 .31] w i t h y = x + 1. 

P^LOO^ c^ Identity St Apply [ 1 , 3 .31] w i t h y = a? + 2 . 

P^LOC^ c^ Identity 9: 

£<-»'(?: i)/(S) • ̂  ^.W)'6+0/(S: 2KS-»*(I)/(£) 
n n + i/a? + 2\l(2x + 4 \ 

; \ n + 2)1 \2n + 4 / 

fc = a 

2a; + 1 2a: + 3 
2* 2a? + 4 

+ (-1) l + 1(x + 2 \ //2a? + 4 \ 
\ a + l / / \ 2 a + 2 / 

2a? + 1 
2a? 2a? + 2 

+<-< r)/(2^2) 

_ n » / a ? + 1 \ / /2a? + 2 \ 
; \n + 1)/ \2n + 2 / 

by I d e n t i t y 4 

( con t inued) 
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2(2a; 

+ i-Da[2a(x + 1) - ! ] ( * + 1)/(2X
2+ 2)} Q ' E - D -

Vfwoj oh'Identity 1Q--

E<-')'^)/(^ ') - »+ » £ <-»'(* - ,)/{"* 2) 
7' = " k = a 

(2*+ A)T£rrTj{{-iri2(n + 1)(* + 2) - 1 ] 

fe = <2 fe= a 

2ic 

/a + 2\ /(2x + 4\ 
\n + \) ' \2n + 2/ 

+ (-l)a[2a(* + 2) - 1](* + 2)/{^2a 4)} by I d e n t i t y 9 

Q.E.D. 
REFERENCE 

1. Henry W. Gould. Combinatorial Identities. Rev. ed. Morgantown, West Vir-
ginia, 1972. 

FIBONACCI CUBATURE 

WILL SAM SQUIRE 
West Virginia University, Morgantown, WV 26506 

Korobov [1] developed procedures for integration over an 2V-dimensional 
cube which are referred to in the literature [2, 3, 4] as number-theoretical 
methods or the method of optimal coefficients. These methods involve summation 
over a lattice of nodes defined by a single index instead of N nested summa-
tions. For the two-dimensional case, a particularly simple form involving the 
Fibonacci numbers is obtained. Designating the Nth Fibonacci number by FN9 
k/FN by xk, and iFN_1xk} by y k , where { } denotes the fractional part, the cu-
bature rule is 

f1 f1 1 F"< 
I I f(xs y) dxdy = y~Y(f(.xk> y k ) ' (D 

Jo Jo *N jfTi 
The summation can also be taken as running from 0 to FN - 1, which replaces a 
node 1,0 by 0, 0 while leaving the rest unchanged. This cubature rule was 
also given by Zaremba [5]. 

The investigators have been interested primarily in the higher-dimensional 
cases and very little has been published on the two-dimensional case. An exam-
ination of the nodes for the two-dimensional case suggested an interesting con-
jecture about their symmetry properties and a modification which improves the 
accuracy significantly. 
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Conj2.cXuA£'- If xv9 yv is a node f or 1 < k < F„ - 1 and if N Is ( ° d d ) , then 
K K — — N \ e v e n / 

( y*-' k) is also a node. 

Perhaps a reader can supply a proof. 

One would expect the nodes of an efficient cubature rule to be symmetric 
about the center of the square so as to give identical results for f(x, y), 
f(x9 1 - y), /(!•- x9 y)9 and /(l -a?, 1 - #) . This suggests modifying (1) to 

If 
Jo JQ 

F< 
-pro. m + -F(O. n + ' f(0, 0) + /(0, 1) + £ j?-(a:fc, i/fc) + j(^, 1 - yk) 

f(x,y)dxdy = 2(/ + x) — (2) 

Essentially, we have completed the square on the nodes. Some preliminary cal-
culations* indicated that this gain in accuracy more than compensated for doub-
ling the number of function evaluations. 

The performance of the method is reasonably good, although it is not com-
petitive with a high-order-product Gauss rule using a comparable number of 
nodes. It might be a useful alternative for use on programmable hand calcula-
tors which do not have the memory to store tables of weights and nodes and 
where the use of only one loop in the algorithm is a significant advantage. 

I also plan to investigate the effect of the symmetrization in higher-
dimensional calculations, but in such cases the number of nodes increases very 
rapidly with the dimensionality. 

REFERENCES 

1. N. M. Korobov. "On Certain Number-Theoretic Methods for Approximate Compu-
tations of Multiple Integrals." Uspehi Mat. Nauk 14 (1959):227-30. 

2. A. I. Saltykov. "Table for Evaluating Multiple Integrals by the Method of 
Optimal Coefficients." USSR Comput. Math. Math. Phys. 3 (1963):235-42. 

3. A. H. Stroud. Approximate Calculation of Multiple Integrals. Chapter 6. 
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1971. 

4. K. Zakrzewska, J. Deidek, & N. Mazarewica. "A Numerical Calculation of 
Multidimensional Integrals." Computer Phys. Comm. 14 (1978):299-309. 

5. S. K. Zaremba. "Good Lattice Points, Discrepancy, and Numerical Integra-
tion." Ann. Mat. Pura. Appl. 73 (1966):293-317. 

*I am indebted to Mr. Robert Harper, a graduate student in the Department 
of Chemical Engineering for programming the procedure on a T159. 

***** 

ON A PROBLEM OF S. J. BEZUSZKA AND M. J. KENNEY ON 
CYCLIC DIFFERENCE OF PAIRS OF INTEGERS 

S. P. MOHANTY 
Indian Institute of Technology, Kanpur-208016, India 

Begin with four nonnegative integers, for example, a9 b9 o9 and d. Take 
cyclic difference of pairs of integers (the smaller integer from the larger), 
where the fourth difference is always the difference between the last integer 
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d and the first integer a. Repeat this process on the differences. If we start 
with 8, 3, 5, 6 and follow the procedure described above, then the process ter-
minates in the sixth row with all zeros. Now we have the following problem due 
to S. J. Bezuszka and M. J. Kenney [1], 

VJiohZom'' Is there a selection procedure that will yield sets of four starting 
integers which terminate with all zeros on the 7th row, the 8th row9 . .., the 
nth row? 

Bezuszka and Kenney are of the opinion that the solution to this problem 
is an interesting application of Tribonacci numbers. 

First we note the following easy facts, which we shall use later. 
1. If we start with a set of four nonnegative integers-—a, b9 Q9 d—that 

terminates with all zeros on the ith row, then the set of four integers a + x9 
b + x9 o + x9 d + x, where x is a positive integer, also terminates with all 
zeros on the ith row. 

2. The set of four nonnegative integers a, b9 o9 d gives the same number 
of rows as the set na9 rib9 nc9 nd9 where n is a positive integer. 

3. The set a? - a, x - b9 x - c9 x - d yields the same number of rows as 
a, b9 c9 d9 provided none of x - a, x - b9 x - o9 x - d is a negative integer. 
Again, the set x - a9 x - b, x - c, x - d yields the same number of rows as a, 
b9 o9 d. We can take the integer x big enough to make each of x - a, x - b9 
x - o9 and x - d nonnegative. 

4. If in place of a9 b, c, d any cyclic or reverse cyclic order of a, b9 
o9 d is taken as the set of four starting numbers, we again get the same num-
ber of rows. For example, 0, 0, a, b being the reverse cycle of 0, 0, b9 a will 
terminate in the same number of steps. 

From the above, it is clear that any set of four nonnegative integers a, 
b9 o9 d can be replaced by the set 0, u, v9 w9 which yields the same number of 
rows as a9 b9 o9 d* 

Let a, b9 c9 d he the four starting numbers. Denote a19 b19 c19 dx as v2% 
a29 b29 o2, d2 as r3; ..-.; and A19 B19 C19 D^ as R2; A2, B2, C2, D2 as i?3 ; ... . 
For example 

^ » #i s C19 D± 

a, S, c9 d 
a19 b19 a19 dx 

Suppose we are given four nonnegative integers a, b9 o9 d* Is it always possi-
ble to find i?2? That is, can we find four nonnegative integers t, u9 V9 W that 
will yield a, b9 o9 d in the second row? 

If we start with four nonnegative integers t9 u9 V9 W as our first row, 
where t+u+ v + w is either odd or even, and get a, b9 o9 d in the second row, 
then it is easy to see that a + 2? + e + d is always even. So a, b9 o9 d with an 
odd total can never be the second row of any set of four nonnegative integers 
t9 u9 V9 W« Hence, R2 is not possible if a + b + c + d is odd. Again, Z?3 is not 
possible if a, bs o9 d are such that a and b are odd (even) and o and d are 
even (odd) , for then, if i?2 exists, R2 will have three odd and one even or one 
odd and three even, thereby making Ax + B\ + C± + Dx odd and i?3 impossible. 

If the four starting numbers are a, b9 o9 d and R2 exists for this set of 
numbers, then after a little calculation it can be seen that we must have one 
of the following situations: 

(i) a = b + o + d (v) a + b = c + d 
(ii) b = a + a + d (vi) a + o = b + d 
(iii) c = a + b + d (vii) a + d = b + o 
(iv) d = a + b + c 
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Hence, if we are given a, b9 c, d where none of the above seven cases holds, 
then i?2 is impossible. 

Since any set of four nonnegative integers t9 u9 v9 w can be replaced by 
0, a, b9 c (c _> a) without changing the number of steps, from now on, we take 
0, a, b9 c (c _> a) as our starting numbers. 

In case the four starting numbers are 0, a9 b9 c (c >_ a) , then R2 is pos-
sible if either b = a + a or c = a + b. If we have 0, a, a+e, o9 we can take 
R2 as 

(i) a, a, 0, a + c (iii) 
(ii) o9 o9 a + o9 0 (iv) 

If we have 0, a, 2?, a + 2?, we can take R2 as 

(i) 0, 0, a, a + b (iii) 
(ii) a + 2?, a + 2?, fc, 0 (iv) 

The two sets of four starting numbers a19 b19 
to be complements of each other if a± + a2 = 

a + a9 a + c9 o9 a + 2c or 
a + e , a + c9 2a + c, a 

a, a, 2a, 2a + b or 
2?, 2?, a + & , a + 22? 

cls <ix and a2 5 2?2, c2, d2are.sa±6. 
b\ +b2 = cx + c2 = d± + d2. If 

two sets of four starting numbers are complements of each other, they terminate 
on the same number of rows. Now a, a, 0, a + c and o9 o9 a + c9 0 are comple-
ments of each other and 0, 0, a, a + b and a + b, a + b9 b, 0 are complements 
of each other. 

TkdQfizm 1 •' If the set of four nonnegative integers 0, a, b9 c9 where e >_ a + b 
terminates in k steps, then the set of four integers 0, a - b9 2o-b9 kc-b-a 
terminates in k + 3 steps. 

VK.00^' Let the four starting numbers beO, c - b9 2c - b9 kc - b - a. They are 
clearly nonnegative. Then we have 

0, c - b9 2c - b9 kc - b 
b9 c9 2c - b9 kc - b 
b9 c - a, 2c - b9 3c - a 
b9 c + a - b* c + b -a, 3c -a 

- a 
- a 

- b 
The fourth row can be rewritten as x, 2a + x9 2b-\-x9 2c+ x where x = c - a - b9 
a nonnegative integer. Now, the four starting integers x9 2a + x9 2b + x9 2c+ x 
will take the same number of steps as 0, 2a, 2b, 2c for termination. Again, 
0, 2a, 2b, 2c will yield the same number of steps as 0, a, b9 c. Thus the set 
0, c - b9 2c - £>, 4 c - Z ? - a needs three steps more than 0, a, b9 c for termi-
nation. Hence, the theorem is proved. 

Since Ac - b - a >_ (c - b) + (2c - 2?) - 3c - 22?, taking 0, c - 2?, 2c - b9 
be - b - a as 0, als bl9 cl9 where ox >_ax + bl9 we can get four nonnegative 
integers 0, c1 - b\, 2cx - 2?ls and 4ci - &i - a\ which will yield three steps 
more than 0, c - b9 2c - b9 he - b - a. We can continue this process n times 
to get 3n steps more than the number of steps given by 0, a, b9 c. 

If we have 0, a, b9 c9 where o < a + b but greater than each of a and b9 
then we consider the reverse cycle of its complement c, c - a, c - Z?, 0, that 
is, 0,c-2?, c - a , c. Now Theorem 1 can be applied to 0, c - b9 c - a , c for 
c > (c - b) + (c - a) . 

TkdOK.2J(n 2: If the set of four nonnegative integers 0, a, 0, 2?, where b > a, 
terminates in & steps, then the set of four integers 0, a + 2?, a + 2b9 a + 42? 
terminates in & + 3 steps. If a > £, we can take 0, 2b9 32?, a + 42?. 

Vfiooj'* The proof is easy and is left to the reader. 

Since a + 42? > (a + 2?) 4- (a + 22?) for b > a, we can apply Theorem 1 to the 
new set. Hence, if we start with 0, a, 0, 2?, 2? > a, which terminates on the 5th 
row, we get two different sets of four starting numbers, one from Theorem 1 and 
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the other from Theorem 2, each of which terminates on the 8th row. They are 
given by 0, 2?, 22?, kb - a and 0, a+2?, a + 22?, a + 42?. Their reversed comple-
ments, given by 0, 2b - a, 3b - a, kb - a and 0, 2b, 3b, 42? + a will also ter-
minate on the 8th row. 

Since 0, a, 0, b and 0S a + x9 x9 b + 2x (2? > a) have the same number of 
steps, we get another set 09 b + xs 2b + 3x9 kb - a + 6x9 by Theorem 1, which 
also terminates on the 8th row. Again, 0, 2>, 2b, kb - a and 0, b + x9 2b + x9 
kb - a + 2x have the same number of steps. 

We give examples of some sets of four integers that terminate on the 3rd, 
4th, 5th, 6th, and 7th row. We have not included their complements in our list. 

1. 0, 0, 0, a (a > 0) five rows 

2. 0, 0, a, a (a > 0) four rows 
0, 0, a, a + 2?; 0, 0, a + xs a + b + 2x (0 < b <_ a) five rows 
0, 0, a, 2a + x (x 0); 0, 0, a, na + x (n >_ 3) — ...... seven rows 

3. 0, a, 0, a (a > 0); 0, a, 2a, a (a > 0) three rows 
0, a, a + x9 x (x ^ a); 0, a + x9 x9 a + 2x (x > 0); 
0, a + x, a, 2a + x (a > 0) four rows 
0, a, a, 2a + x (x > 0); 0, a, a, 2a -as (x £ a) five rows 
0, a, 0, b (a ^ 2?, not both zero); 
0, a + x9 x9 b + 2x (b ^ a, not both zero) 
0, a + x , a, a + 2# five rows 

4. 0, a , a + x s 2a + x% 0, # , a + # , a + 2x (a,a: > 0) s ix rows 
0, a, 2a, 5a (a > 0 ) ; 0, 3a, 4a, 5a (a > 0) . . . . s ix rows 
0, a + x9 2a + x9 3a + x (a £ 09 x > 2a); 
0, a - x9 2a - x9 3a - x (a <. x < a) s ix rows 
0, a , a 4- x9 a + x {x >_ a > 0) five rows 
0, a, a + x9 a + x (x < a); 0, 3a, 5a, 4a (a > 0) seven rows 

The above list contains many sets of four nonnegative integers 0, a, b9 o 
where o >_ a + b. Hence, Theorem 1 can be applied to any of these sets to get 
three rows more than the particular set of four numbers has. For example, 

(i) 0, a, 0, a -»- 0, a, 2a, 3a -*• 0, a, 4a, 9a •> ... can be continued 
n - 1 times to get 3n steps. 

(ii) 0, 0, a9 a (a > 0) •* 0, 0, a, 3a •> 0, 2a, 5a, 11a->• ... can be con-
tinued n - 1 times to get 3n + 1 steps. 

(iii) 0, 0, 0, a (a > 0) -> 0, a, 2a, 4a -»• 0, 2a, 6a, 13a-*• ... can be con-
tinued n - 1 times to get 3n + 2 steps. 

Hence, we have a selection procedure that will yield sets of four start-
ing numbers that will terminate with all zeros on the nth row, n = 6,7,8,... . 

Below we note some interesting facts: 

1. 0, a, a9 a (a > 0); 0, a, a, a +• x {x £ a); 0, a, a + x9 a {x £ a); 
and 0, a, a + x9 a + x {x _> a > 0) have five rows. 

2. 0, 2?, 22?, 42? - a (2?>0)and0, b+x9 2b + x9 kb+2x have eight steps. 

3. 0, x9 a + x9 a + b + 2x gives three steps more than 0, 0, a, a + b 
(0 < b <_ a9 x > a). 
0, 1, 1 + a, 1 + a + a2 (a > 2) gives three steps more than 1,0, a, 
a + 1. • 

We know that 0, s, 0, s (s ̂  0) terminates on the 3rd row. We can write 
s = b - a in many ways. Then 0, b - a, 22? + 2x, 3b ± a + kx gives three steps 
more than 0, 2? - a, 0, b - a. Similarly, 0, m9 2m - £, 5m - 3£ + # gives three 
steps more than s9 0, s, 2s, where s = m - I. Again, 0, a, 2a, 5a and 0, 3a, 
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4a, 5a gives three steps more than a, 0, a, 2a. Hences we can have many sets 
of four numbers of the form 0, a, b9 c having the same number of steps. 

However, we can tell the number of steps of the reduced set 0, a, b9 c in 
the following cases: 

0, 0, 0, a (a > 0) five rows; 0, 0, a, a (a > 0) four rows; 
0, 0, a, b (a < b <_ 2a) f ive rows; 0, 0, a, 2a + x (x > 0) seven rows; 
0, 0, a, na + x (n _> 3) seven rows; 0, a, 0, a (a > 0) three rows; 
0, a, 0, b (a ̂  b) five rows; 0, a, £, c (b-a + c, a = c > 0) three rows; 
Q9 a, b, c (b ~ a + e, a ± a) four rows; 
0, a9 b, c (c = a + &, a = b > 0) four rows; 
0, a, &, c (<? = a + &, a < b) six rows; and 
0, a, b9 c (c = a + b, a > b) four rows. 
From the above, it is clear that the only case which presents difficulty 

in deciding the number of steps without actual calculation is 
0, a, b, c (aba £ 0, b ^ a + c 9 o £ a + b), 

where we can assume a < o. 
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ASYMPTOTIC BEHAVIOR OF LINEAR RECURRENCES 

JOHN R. BURKE and WILLIAM A . WEBB 
Washington State University, Pullman, WA 99164 

In g e n e r a l , i t i s d i f f i c u l t t o p r e d i c t a t a g lance t h e u l t i m a t e behav io r 
of a l i n e a r r e c u r r e n c e sequence . For example, i n some problems where t h e s e -
quence r e p r e s e n t s t h e v a l u e of a p h y s i c a l q u a n t i t y a t v a r i o u s t i m e s , we might 
want t o know i f t h e sequence i s always p o s i t i v e , or a t l e a s t p o s i t i v e from some 
p o i n t on. 

Consider t he two sequences : 
w0 - 3 , w1 = 3 . 0 1 , w2 = 3.0201 

and 
wn + 3 = 3.0lwn + 2 - 3 .02^ n + 1 + l.01wn fo r n _> 0 ; 

v0 = 3 , i?1 = 3 . 0 1 , v2 = 3.0201 
and 

Vn+3 = 3yn+2 " 3«01yn+l + l-01^n for n > 0, 

The sequence {wn} is always positive, but the sequence {vn} is infinitely often 
positive and infinitely often negative. This last fact is not obvious from 
looking at the first few terms of {vn} since the first negative term is v7B5. 
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Clearly, the behavior of a recurrence sequence depends on the roots of its 
characteristic polynomial. We will prove some results which make this depen-
dence precise. 

Let 

(1) un = a1un_1 + a2un_z + ••• + akun_k9 a^ e R9 1 <_ i £ k9 

denote a fcth-order l inear recurrence with corresponding cha rac t e r i s t i c polyno-
mial 

p{x) = xk - a1xfe_1 - . . . - ak. 
For simplicity we shall assume p(x) has distinct roots (although possibly 

complex). All the results stated here carry through in the case that p(x) has 
multiple roots and we invite the interested reader to verify such cases in or-
der to obtain a more complete understanding. 

The terms of the sequence {un}^=0 defined by (1) can be expressed in terms 
of the roots of p(x) by use of the Binet formula as follows: 

(2) u„ = ^ ^ r." + £ (eaia» + caia?) = 2 > , ^ + £ **&(<>«<<*") 
£ = 1 i = s+l i = l i=s +1 

where ri , 1 <_ i, <_ s, denote the real roots of p(x) and a^, s + 1 <_ i <_ t denote 
the roots with nonzero imaginary parts. It is assumed cVi and oai are nonzero. 

We are now ready to determine under what conditions the tail of the se-
quence {un}n=sQ will contain only positive terms. We begin with a definition. 

Vz^iyujUjDYi' A sequence {un}n = o is said to be asymptotically positive (denoted 
a.p.) if there exists N e Z such that for all n _> N we have un > 0. 

We first prove a lemma that will shed light on the effects of a complex 
root of p(x) on the behavior of the sequence {un}n=0. 

Lmma 1: If 0 ? 0 mod IT, then the sequence {cos(A 4- ̂ 9)}~=09 A,0 £ R9 has in-
tinitely many positive and infinitely many negative terms. 

VHjQOfa1 Ca&Q, 1.—6 is a rational multiple of 2TT. Then there exist integers s 

and t,(s,£) = 15 such that — 2TT = 0. Since 0 ^ 0 mod Tr, we have t >_ 3. Observ-
ing that 

cos (A' + nQ) = Re{ei(x+nd)}9 

we turn our attention to the points {et(A + n d ) } n = 1 in (P. The image points in € 
2 

differ in argument by at most -=-7T radians for any two neighboring points. Thus 

there is always at least one point in each of the half planes Re{s} > 0 and 
Re{z} < 0. Since cos(A + nQ) is periodic with period t, and in every t consec-
utive terms there must be at least one positive and one negative term, the lem-
ma holds. 

Ccu>& 2.—0 is an irrational multiple of 2TT. The sequence {A + nQ}n=0 
is dense mod 2TT. (Indeed, it is uniformly distributed mod 2TT [2].) As the co-
sine is continuous, the image of {A + n0}~=o under the cosine is dense in [-1, 
1], This completes the proof. 

We are now ready to state and prove the main result. 

Tfeeô tem 1 •' Let un be a fcth-order linear recurrence as in (1) whose character-
istic polynomial p(x) has distinct roots. Let T be a root of p(x) such that 
|r| > |y| where y is any other root of p(x) with the exception of y = T when T 
is not real. 

If T > 0 and o > 0, then {un}™=0 is a.p., and {un}™=0 has infinitely many 
negative terms otherwise. 
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Pfiooj: From ( 2 ) , we have 

s t 
un = X X ; ^ + X 2Re(caia») 

i = l i = 8 +1 

o r , assuming T e ^?, and l e t t i n g o = aT, 

(3) u n - e r n ( l + 0 ( 1 ) ) . 

It is clear from (3) that T > 0, o > 0, will insure that {un}^=0 is a.p. and 
that c < 0 or T < 0 will produce infinitely many negative terms. 

If T is not real, we obtain from (3) by use of Euler's formula 

(4) un = \o\ |r|n(cos(arg c + n arg D)(l + 0(1)). 

From Lemma 1, we conclude that {un} has infinitely many negative terms. 

The examples at the beginning of the article serve as a simple illustra-
tion. The sequence {wn} has as its Binet formula wn = ln + ln + (1.01)" ,• which 
is clearly positive for all n >_ 0. However, the roots associated with iun} are 
1, 1 ± /^l/lO. Thus the root called T in Theorem 1 is 1 + /^T/10 which is not 
real. Therefore {un} has infinitely many positive and infinitely many negative 
terms. 

We now discuss the case of p(x) having s distinct roots of greatest mag-
nitude |r|. Again appealing to the Binet formula, we have 

(5) un = |r|M{c1 + (-l)/(n)o2 + o3 cos(A3 + n03) + ••• 

+ oQ cos(Xs + nQs) + o(l)} , ot e IR. 

By letting f(n) = n or n + 1 we may assume a2 >. 0. Also, as the cosine is 
an even periodic function, cos(X + n0) = -cos((X + IT) + n0). Thus when neces-
sary, we may replace cos(X^ + n0^) by cos((A^ + TT) + n0^) and thereby allow us 
to assume o^ >_09 3 <. i <_ s. 

Thzosiem 2: Let un be as in (5). If o1 - o2 - • • • - os > 0, then {un)n = o i s 

a.p. 

VKOO^I Let n > 0 be such that 
s 

Cl - ll°i > Tl > °' 
We have 

wn = |r|n(Cl + (-l)/(n)c?2 + ^3 cos(X3 + n03) + ... + c3(cos(Xs + nd8) + #(n)) 
where #(n) is o(l) . Choose N so large that for n > N9 \g(n)\ < rj/2. Then for 
n > N, 

un = l r | n t e i + ( ~ l ) / ( n ) o2 + cs cos(X3 + n 0 3 ) + . . . + c3 cos(X3 + n 0 3 ) 
+ gM) >. |r|n(n - n/2) - |r|n(n/2) > o. 

Thus { u n } ^ = 0 i s a . p . 

It may be noted that Theorem 2 is the best possible in the following 
sense: Let 

_I + -I 
We have 

un = ^i(l)M + c2(-l)n + ^3 (~ T ) where <?3 {-j) i s ^C 1)-

If we choose o1 = £2 = 1, then cx - c2 = 0. As every other term of un is neg-
tive, {un}n = o is not a.p. Thus the condition o^ - o2 -••• - c3 > 0 may not in 
general be relaxed. 
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However9 upon examining specific cases, it is often possible to improve 
Theorem 2. For example, if 0^ is a rational multiple of 2TT, then 

{cos(Xi + ndi)}n~o 
is periodic. Letting 

ai = | m H c o s ( A ^ + nQi^i=o\ 
we may use, in Theorem 2, the condition 

c1 - c2 - • ... - aici - ... - cs > 0. 

Thus it is evident how improvements of Theorem 2 can be made when more is known 
about the roots of the characteristic polynomial. 

We now consider the special case of second-order linear recurrences which 
are completely characterized by the following theorem. 

TkzofiQjn 3- Le t un = cain_1 + bun_2, asb e R9 be a s econd-o rde r l i n e a r r e c u r -
r e n c e . Le t 

_ a + <S _ a - <S 

be the roots of p(x) = x2 - ax - £ where 6 = /a2 + 42?. {w„}~=0 is a.p. if and 
only if 6 £ R and either 

(i) a = 0, u0 > 0, ux > 0 
or 

(ii) a > 09 2wx > (a - 6)u0 

where uQ, ux are the initial values. 

P/10O$: C(X6e 7.—Suppose that 6 is not real. Since a2 = a^, Theorem 1 applies 
with r = a-L } 0. Thus {un}n = o is not a.p. 

Cctt>£ 2.—a < 0. The root of largest absolute value is a2, and a2 < 0. 
By Theorem 1, iun}™=0 has infinitely many negative terms. 

Ccu>& 3.—a = 0. The recurrence becomes un = bun_2 and the roots of p(x) 
are ±6/2. From the Binet formula, we have 

M" - c i ( ! ) n + c*{-if= ( ! ) n ( c i + (-i)"c2)-
If suffices to show o1 + c2 > 0 and ex - o2 > 0. u0 = o1 + c2 so we must have 

u0 > 0. wx = y(<31 - c2) so that ̂ -ux = e1 - c2 > 0. As T > 0 we have w1 > 0. 

CcU>& 4.—a > 0. The largest root in absolute value is al5 and ax > 0. 
From Theorem 1 it suffices to show o1 > 0. Using Cramer's Rule, we have 

u± - u0a2 

Since ax - a2 > 0, we require that wx - u0a2 > 0 or 2ux > uQ(a - 6). 
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ANOMALIES IN HIGHER-ORDER CONJUGATE QUATERNIONS: 
A CLARIFICATION 

A. L. IAKIN 
University of New England, Armidale, Australia 

1. INTRODUCTION 

_In a previous paper [3], brief mention was made of the conjugate quater-
nion Pn of the quaternion Pn . Following the definitions given by Horadam [2], 
Iyer [ 6 ], and Swamy [7], we have 

(1) Pn = Wn + iWn + 1 + jWn + 2 + kWn + 3s 

and consequently, its conjugate Pn is given by 

(2) P„ = Wn - iWn + 1 - jWn + 2 - kWn + 3 

where 
i2 = j 2 = k2 = -1, ij = -ji = &, 

j/c = -kj = i, fei = -£fc = j. 

In [3], !Fn was defined to be a quaternion with quaternion components Pn + r 
(p = 0, 1, 25 3), that is, 

(3) Tn - Pn -V z-Pn + i + QPn + 2 + kPn + 39 

and the conjugate of Tn was defined as 

(4) Tn - Pn - 1-Pn + 1 - jPn + 2 " ̂ n + 3 

which, with (1), yields 

(5) r„ = J?„ + i^n+2 + Wn + h + Wn + 6. 

Here the matter of conjugate quaternions was laid to rest without investigating 
further the inconsistency that had arisen, namely, the fact that the conjugate 
for the quaternion Tn [defined in (4) analogously to the standard conjugate 
quaternion form (2)] was a scalar (5) and not a quaternion as normally defined. 
This inconsistency, however, made attempts to derive expressions for conjugate 
quaternions of higher order similar to those of higher-order quaternions estab-
lished in [4] and [5], rather difficult. The change in notation from that used 
in [3] to the operator notation adopted in [4] and [5], added further complica-
tions. Given that QWn = Pn and Q2Wn

 E Tn9 the introduction of this operator 
notation created a whole new set of possible conjugates for each of the higher-
order quaternions. For example, for quaternions with quaternion components 
(quaternions of order 2), we could apparently define the conjugate of ti2Wn in 
several ways, viz. (6)-(9): 

(6) titiWn = Wn + -itiWn + 1 + jWn + 2 + kttWn+3; 
(7) QWn = Wn - iWn + 1 - jWn + 2 - kWn + 3; 

(8) TPwn = Mn - iWn + 1 - jWn+2 - kWn + 3; 
(9) Q2W = W» - W - W - W - 2iW - 2i'W - 2kW 

It is clear that the difficulties which have arisen are due, in part, to 
the choice of the defining notation. It is the purpose of this paper to rede-
fine higher-order conjugate quaternions using the more descriptive nomenclature 
provided by the operator notation as outlined in [4] . We are thus concerned 
with determining the unique conjugate of a general higher-order quaternion. 
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2. SECOND-ORDER CONJUGATE QUATERNIONS 

We begin by defining the conjugate of Wn as UWn (E Pn, c.f. (6) in [3])s 
where 

(10) Wn = Wn - iWn + 1 - jWn + 2 - kWn+3. 

Consider (6) and (7) above. If we expand these expressions using (10) and (1) 
with Wn - Pn9 respectively, we find that 

(11) QQWn = QQWn = Wn + Wn + 2 + Wn + h + Wn + 69 

which is the same as (5). Since the right-hand ĵ ide c>f (5) and_(ll) are inde-
pendent of the quaternion vectors i9 j, and k9 Q.QWn9 QWn9 and Tn are not qua-
ternions and9 therefore, cannot be defined as the conjugate of Q,2Wn (= Tn) . We 
emphasize that Tn9 as defined by (4), 9(a) of [3], is not the conjugate of Tn. 

Since the expanded expression for Q,2Wn (= Tn9 c.f. 8(a) in [3]) is 

(12) Q2Wn = Wn - Wn + 2 - Wn + h - Wn + S + 2iW11± + 2jVn + 2 + 2kWn + 39 

it follows that the conjugate of 9,2Wn must be Q2Wn as given by (9) . If we now 
take (8) and expand the right-hand side, we see that it is identical to_ the 
right-hand side of (9), so that the conjugate of 9,2Wn can also be denoted Q,2Wn* 

By taking the product of fi Wn and il2Wn9 we obtain 

(13) a2wnT!2wn = w2 + w2
n+2 + w2

+h •+ w2
+6 

+ 4fi£ + 1 + W2
 + 2 + 4fi£ + 3 

- 2WnWn + 2 - 2WnWn + l¥ - 2WnWn + B 

and we observe that the right-hand side of this equation is a scalar. Thus 
Q2Wn preserves the basic property of a conjugate quaternion. _ 

We note in passing that as Pn = Wn9 the conjugate quaternion Tn should 
have been defined as [c.f. (8)], 

3. THE GENERAL CASE 

In Section 2 above, the conjugate £l2Wn of Q2Wn was determined by expanding 
the quaternion Q2Wn and conjugating in the usual way. It was established that 
Q2Wn =TrWn. We now seek, to prove that this relationship is generally true, 
i.e., for any integer X, QxWn = Q,xWn. 

First, we need to derive a Binet form for the generalized conjugate qua-
ternion of arbitrary order. 

As in [5], we introduce the extended Binet form for the generalized qua-
ternion of order A; 

(15) ttxWn = Aanax - £en£A (A9B constants) 

where a and $ are defined as in Horadam [1] and 

1 a, ~ 1. + ia + ja2 + ka3 

J3 = 1.+ ig + j'62 + ^6 3. 

We now define the conjugates a and J3_ so that 

I a, = 1 - ia - ja2 - ka3 

£ « 1 - iB - j'32 - k g 3 . 
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Substituting the Binet forms, as given by (1.6) in Horadam [1], for the 
terms on the right-hand side of (10), we obtain 

Wn - Aan - B&n - i(Aan + 1 - B$n+1) - j(Aan+2 - B$n+1) - k(Aan+3 - Bgn+3) 

= Aan(l - £a - ja2 - to3) - B$n(l - ig - j(32 - k$3), 

i.e., 

(18) ftj/n = Aana - B3nI5 

which i s t he B i n e t form for t h e con juga t e q u a t e r n i o n Wn, This r e s u l t can 
e a s i l y be g e n e r a l i z e d by i n d u c t i o n , so t h a t , fo r X an i n t e g e r , 

(19) QxWn = Aan~ax - B&n][x. 

Lemma,: For some i n t e g e r A, 

cxx = ax and ] | x = (3 x . 

VtiOO^i We will prove only the result for the quaternion ot, as the proof of the 
result for J3 is identical* From (16) above, it follows that 

*2 = (1 + id + ja2 + /ca3)2 

(20) { = 1 - a2 - a4 - a6 + 2£a + 2ja2 + 2to3 

= 2a - (1 + a2 + a1* + a 6 ) . 

Letting 

we have 

(22) a2 = 2a - Sa. 

Hence, on multiplying both sides of this equation by ex, we obtain 

a3 = 2a2 - a5a, 

which, by (22) becomes 

a,3 = (4 - 5a)a - 2£a. 

If we continue this process,a pattern is discernible from which we derive 
a general expression for aA given by 

(21) Sa = 1 + a2 + a4 + a6, 

(23) a* - f ] T (X ' I " P)2x-1-2^(5ar(-iy 

[—] ) 
£ ( A "'" p )2 x ' 2 - 2 p (^^(- i )^k 9 

fx - i"I £ , . - x - i 
where — « — refers to the integer part of — ~ — • 

From equations (20) and (22), it is evident that 

(24) a,2 = 2a - Sa. 

Since Sa is a scalar, and the only quaternion in the right-hand side of 

(23) is a, it follows that the conjugate ax must be 
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(25) ax = 

[—] 
± (X"'"2,)2A-2'2^a)-(-l)45a. 

We now employ the same procedure as we used above to obtain a general ex-
pression for a,x [c.f. (23)] to secure a similar result for aX 

From (17) it ensues that 

a2 = (1 - ia - ja2 - /ca3)2 

= 1 - a2 - a1* - a6 - 2ia - 2ja2 - 2ka3, 

i.e. , 

(26) a2 = 2a - Sa, 

and we note that this equation is identical to (24). Multiplying both sides of 
(26) by ex gives us 

a3 = 2c*2 - a£a, 

which, by ( 2 6 ) , y i e l d s 

ex3 = (4 - £ a ) a - 2Sa. 

It is obvious from the emerging pattern that, by repeated multiplication of both 
sides by ex and subsequent substitution for (X2 by the right-hand side of (26) , 
the expression derived for cxx will be precisely (25). Hence, oTx = otx. Simi-
larly, it can be shown that J[x = _3X. 

Tfeeô em: For X an integer, __ 
QXW = QXW . 

VKOQ^1 Taking the conjugate of both sides of (15) gives us 

ttxWn = Aoina} - B&n$_x 

= Aan~aJ - B$n~$} 
= Aan~ax - 5 3 n F A (Lemma) 

= axwn [c.f. (19)] 
as desired. 

We have thus established that the conjugate for a generalized quaternion 
of order X can be determined by taking X operations on the conjugate quaternion 
operator Q. This provides us with a rather simple method of finding the con-
jugate of a higher-order quaternion. _ 

Finally, let us again consider the conjugate quaternion Wn. It readily 
follows from (10) that 

Wn = 2Wn - Wn - iWn+1 - jWn + 1 - kWn + 3, 
i.e., _ 

Wn = 2Wn - QWn. 

This equation relates the conjugate quaternion QWn to the quaternion QWn, 
If we rewrite (27) as 

QWn = (2 - Q)Wn. 

it is possible to manipulate the operators in the ensuing fashion: 
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Q 2 ^ = (2 - tt)2Wn = (4 - 4Q + Q2)Wn = Wn - kWn + ft2Fn. 

This result can be verified d.irectly through substitution by (1), (9) , and (12), 
recalling that Pn = QWn and tt2Wn - Q2Wn. Once again, by induction on A, i t is 
easily shown that 

(28) TixWn = (2 - Q)xWn. 

It remains open to conjecture whether an examination of various permuta-
tions of the operators Q and Q9 together with the operator A (defined in [4]) 
and its conjugate A, will lead to further interesting relationships for higher-
order quaternions. 
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ON THE CONVERGENCE OF ITERATED EXPONENTIATION—11* 

MICHAEL CREUTZ and R. M. STERNHE1MER 
Brookhaven National Laboratory, Upton, NY 11973 

In a previous paper [1], we have discussed the properties of the function 
fix) defined as: 

X 

(1) /(x) = x*x 

and a generalization of f(x)9 namely [2, 3], 

(2) Fn(x) -g^x)9*™ = E gA*). 
3 = 1 J 

where the g^ix) are functions of a positive real variable x9 and the symbol H 
is used to denote the iterated exponentiation [4]. For both (1) and (2), the 
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royalty-free license to publish or reproduce the published form of this article, 
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ordering of the exponentiations is important; here and throughout this paper, 
we mean a bracketing order "from the top down" e.g., for (2), gn_1 raised to 
the power gn , followed by gn_2 raised to the resulting power, all the way down 
to glm It was shown in [1] that / converges as the number of x1 s in (1) in-
creases for x from e~e = 0.065988.., to e1/e = 1.444668... . For x > e1/e

9 f is 
divergent, and for x < e~e , the function / is "dual convergent," i.e., it con-
verges to two different values according as the number of x1 s [ovn in (2)] is 
even or odd. If the number of x%s is even, one obtains a curve of f(x) which 
increases from 1/e at x = e~e to / = 1 at'a; = 0, and if the number of ̂ Ts is 
odd, one obtains a second curve of f(x) which decreases from the unique value 
f(e~e) = l/e = 0.36788 to f(0) = 0 at x = 0. Typical values of the limiting 
f(x) in the region 0 < x < e~e are: /(0.02) s 0.03146 (odd number n of x1 s) 
and /(0.02) = 0.88419 (even n); also /(0.04) = 0.08960 (odd n), 0.74945 (even 
n); /(0.06) = 0.21690 (odd n) , 0.54323 (even n), The property of dual conver-
gence has been shown in [1] and [3] to be a general property of the function 
Fn(x) of (2), when g^{x) is a decreasing function of J for fixed x9 e.g., the 
function g. (x) = x/j2, for which Fn(x) is shown in Fig. 3 of [1], 

In the present paper we consider a particularly simple generalization of 
the function f(x), namely the function F(x9 y) defined as: 

.*» 

(3) F(x9 y) = X**' 

where an infinite number of exponentiations is understood, and x is at the 
bottom of the "ladder." Thus, F(x9 y) corresponds to the limit of Fn(x) as 
n -> °°  in (2), where gd (x) = x for j = odd, and g3-(,x) = y for j = even. Both 
x and y are assumed to be positive (real) quantities. Depending upon the 
values of x and y9 F(x9 y) can be monoconvergent, dual convergent, or diver-
gent. For the special case x = y, F(x9 x) = f(x) of (1), which is monoconver-
gent in the range e~e < x < e1/e, as discussed above. Also, we have F(x9 1) = 
x9 F(l, y) = 1; F(x9 0) = 1, F(09 y) = 0, for finite x and y. We now consider 
the case where x > 1. We also expand the definition of F(x9 y) to include the 
function 

(4) F(y9 x) = F'(x9 y) = y*"' 
where y is at the bottom of the "ladder." 

By enlarging the definition of F(x9 y) to include the function F (y, x) , 
we obtain the following three convergence possibilities: 

7. VliaZ conVQJig&nce.9 when F(x9 y) converges to a well-defined value re-
gardless of whether the number of x1 s in the "ladder" is even or odd. In this 
case F(y9 x) also converges to a well-defined value. Because of the total of 
two values involved [F(y9 x)^F(x9 y)~\ 9 We have called this possibility "dual 
convergence." 

1, QuadJiLconvQJig&nc£9 when F(x, y) converges to tu)o well-defined values 
depending upon whether the number of x's in the "ladder" is even or odd. In 
this case F(y, x) also converges to two well-defined values, again depending 
upon whether the number of ̂ 'sand^'s in the "ladder" is even or odd. Because 
of the total of four values of the functions F(x9 y) and F(y9 x) , we have 
called this possibility "quadriconvergence. " However, it should be realized 
that the quadriconvergence corresponds to the dual convergence of both F(xs y) 
and F(y9 x) in the sense defined in [1] and [3], 

3. VA\)QJIQQJI(LZ9 in which case both F(x9 y) and F(y9 x) diverge as the 
number of #Ts and T/'S in (3) and (4) is increased indefinitely. In Figs. 1 
and 3 and in Table 1, we have abbreviated dual convergence as D.C., quadri-
convergence as Q.C., and divergence as Div. 
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Fig. 1. The curve of the limiting y value ylim as a function of x for x > 1, 
such that for y > y 1±m , the function F(x, y) is divergent and for y <_ y , 
F(x, y) is dual convergent, i.e., it converges to two values F]L and F2 de-
pending upon whether x or y is at the bottom of the "ladder" in (3) and (4) . 
The point x = e1/e = 1*444668, for which y1^= x has been marked on the ab-
scissa axis. 

1 lim 

Fig. 2. The functions Gx = xy and G2 = F plotted vs F. The two curves of G1 
pertain to x=1.3, y=1.5, and x=1.3, y = 1.6525, respectively. The curve 
of G1(1.3, 1.5) intersects the 45° line G2= F at the two points Fa) = 1.679 
and FV = 4.184, whose significance is explained in the text. The curve of 
G1(l.3, 1.6525) is tangent to the G2 = F line at F = 2.304. Note that 1.6525 
is the value of y1±m pertaining to x = 1.3. 
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Table 1. A listing of the values of F' (x, y) for several illustrative choices 
of x and y. The third column indicates whether the function F(x,y) is dual 
convergent or quadriconvergent. For dual convergence, the two values of F± 
and F2 are listed, which correspond to F of (3) and FT of (4) , with x at the 
bottom of the "ladder" and y at the bottom of the "ladder/' respectively. 
Thus we have F1 = xFl and F2 = yFK For the cases of quadriconvergence, four 
values Flf F2, F3, and Fh are listed, where the relations between the Fi are 
given by (23) . The last column of the table lists the value of y1±m for the 
x value considered. For 0<x<l, y1±m defines the boundary between the re-
gions of dual convergence and quadriconvergence (see Fig. 3). For x > 1, £/,. 
defines the boundary between the dual convergence region and the region where 
F(x, y) is divergent (see Fig. 1) . 

X 

0.2 
0.2 
0.2 
0.4 
0.4 
0.4 
0.7 
0.7 
0.7 
0.9 
0.9 
0.9 

1.05 
1.10 
1.20 
1.30 
1.40 

y 

60 
150 

109000 
20 
30 

1,000 
10 
25 

1,000 
15 
30 

19000 

3.80 
2.40 
1.80 
1.50 
1.46 

Conv. 

D.C. 
Q.C. 
Q.C. 
D.C. 
Q.C. 
Q.C. 
D.C. 
Q.C. 
Q.C. 
D.C. 
Q.C. 
Q.C. 

D.C. 
D.C. 
D.C. 
D.C. 
D.C. 

Fi 

0.09398 
0.14901 
0.19988 
0.19414 
0.31046 
0.40000 
0.40447 
0.65509 
0.70000 
0.59224 
0.82743 
0.90000 

1.3379 
1.3732 
1.5914 
1.6792 
2.1154 

F 
C 2 

1.4693 
2.1099 
6.3028 
1.7889 
2.8747 
15.849 
2.5379 
8.2371 

125.89 
4.9719 
16.681 

501.19 

5.9658 
3.3274 
2.5482 
1.9756 
2.2267 

0, 
3, 

0, 
4, 

0, 
3, 

0, 
1, 

^3 

.03352 

.93 xl0~5 

.07179 

.93 xlO"7 

.05297 

.16 xlO""20 

.17248 

.167x 10~23 

F, 

1.1829 
1.00036 

1.2766 
1.0000 

1.1859 
1.0000 

1.7979 
1.0000 

^lim 

107.0 
107.0 
107.0 
24.02 
24.02 
24.02 
15.16 
15.16 
15.16 
21.55 
21.55 
21.55 

4.1232 
2.7497 
1.9514 
1.6527 
1.4940 

In this connection, it should be pointed out that for x £ y, if there is 
convergence, the minimum number of values obtained is two, namely F and Fr, 
and we have the following obvious relations: 

*F'(x,y) 
(5) 

(6) 

The curve of y1±m vs x 

F(x, y) 
Fr(x9 y) 
for x > 1 

y 
F(x,y) e 

is shown in Fig. 1, where yiim is the 
limiting value of y for convergence. This curve was obtained from the follow-
ing equation derivable directly from (3): 

(7) Fix, y) = x^'-'K 
To obtain y1±m as a function of x9 the following procedure was employed using 
a Hewlett-Packard calculator. Consider the plane (F9 G), with F along the ab-
scissa and G along the ordinate. For a given value of x and a trial value of 
y9 the curve £ = xyF was plotted as a function of F. This is an increasing 
function of F9 since x > 1 and y > 1. Thus, for F = 0, yF = 1, G1 = x9 and 
the curve is concave upward as F is increased to positive values. The inter-
section of this upward curve with the straight line G2 = F is then searched 
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for. If y is too large and, hence, if xy is too large, the curve Gx will not 
intersect the 45°  line G2 = F (which starts at zero for F = 0) . Thus, this 
value of y will be larger than y 1±m » and the function F(x, y) diverges, and 
of course also Fr(x9y). If y is made appreciably smaller, the curve of G± will 
rise more slowly and will generally intersect the 45°  line G2 = F at two values 
of F, It can be shown that the lower value of F gives the correct^ as obtained 
by continued exponentiation, and the corresponding value of Fr is given by 

Fr = y F . 
Finally, for a certain intermediate value of y9 the curve xy vs F will be just 
tangent to the 45°  line G2 = F. This value of y is the limiting value y lim , 
which we have plotted in Fig. 1 as a function of x. An illustration of the 
possible relationships In the G vs F plane is shown in Fig. 2, for the case 
x = 1.3, for which y1±m = 1.6525. Thus, Fig. 2 shows that the derivative of G± 
at the tangent point must be +1. Thus: 

m = +1. dF 

This condition, together with the equation 

(9) xyF=F9 

can be used to d e r i v e e q u a t i o n s fo r x and y9 given t h e assumed v a l u e of F. We 
o b t a i n , from ( 8 ) , 

(10) ~^xyF= -^ exp{log ar[exp(F l o g y ) ] } = F ^ K l o g x [exp(F log y)]} = + 1 , 

whence: 

(11) - = log x ^[exp(F log y)1 = log # log y exp(F log y) . 

But from (9) , we find 

(12) F = xyF= xexP(F1°gz/> = exp[log x exp(F log y)], 

so that 

(13) log F = log x exp(F log y). 

Upon dividing (11) by (13), we obtain 

(14) FT^T=l o g y' 
which gives 

(15) y = expd/F log F). 
In order to obtain the corresponding equation for x, we note that from (12) 

and (15), 

(16) log F = logxyF = log x exp(l/log F) , 

which gives: 

(17) log x = log F exp(-l/log F), 

(18) x = exp[log F exp(-l/log F)] = exp[log F/exp(l/log F)]. 

For the case where one of the quantities, say x, is less than 1, but where 
y can be large, and still keeping y > 1, we have a somewhat different situa-
tion. In this case, the function G± = xyF is a decreasing function of F9 start-
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ing at G1 = x for F = 0 and going down to xy (< x) at F = 1. Thus, the curve 
of Gx vs F will always intersect the 45°  line G2 = F at a value of F < 1. It 
can then be shown that the functions F and Ff must be quadriconvergent if the 
negative slope dxyF/dF at xyF= F is algebraically smaller than -1. Thus, the 
limiting curve of ylim vs x which separates the regions of dual and quadricon-
vergence is obtained from the following pair of equations: 

dxyF, (19) dF 

(20) F. 

Thus, if the slope < -1, we will have quadriconvergence, whereas for 

(dxyF/dF^ > -1, we will have dual convergence. 

Now we note that (19) and (20) are remarkably similar to (8) and (9), the 
only difference being the change of sign in (19) as compared to (8). We thus 
obtain the following equations for x and y for the limiting curve (i.e., y = 
y lim ) • 
(21) x = exp[ logF exp(l / log F)]9 

(22) y = exp(-l /F log F) . 

By means of these equations, we have obtained the plot of y vs x of Fig. 3. 

~i r 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
x 

Fig. 3. The curve of log1Qy1±m as a function of x for 0<x< 1. For y <_ y l±m f 
the function F(x, y) is dual convergent, i.e. , it converges to two values Fx 
and F2f depending on whether x or y is at the bottom of the "ladder" in (3) 
and (4). For y > y , F(x, y) is quadriconvergent, i.e., it converges to 
two values each for both x and y at the bottom of the "ladder" in (3) and 
(4); thus, it converges to four values altogether [see (23) and (24)]. The 
dashed horizontal line log10y - log1Q(ee) - log1Q15.15421 is tangent to the 
curve at the point x = e~1/e = 0.692201. 
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By letting F' - z/Fvary from F' = 1 to large Ff, we cover the range x = 0 
to x = 1. (Note that z/ > 1 is assumed.) The regions of dual convergence and 
quadriconvergence are indicated as D.C. and Q.C., respectively. We note that 
regardless of x in the range 0 to 1 the functions F and Fr will each converge 
to a single value, provided that y < ee = 15.154. The line y - ee is marked 
as a dashed line and the curve of y vs x is tangent to this line at the point 
x = e~^e = 0.6922. This value of x is just the reciprocal of the value xT = 
e1/e which is the limit of convergence of the function f(x) = F(x9 x) which has 
been discussed in [1] - [3], We also note that the minimum value of z/lim for 
x < 1, namely 2/llm= &e, is just the reciprocal of the value x = e~e = 0.065988, 
below which the function f(x) becomes dual convergent, as has been shown in [1] . 
The value of f(x = e~e) is l/e. The curve of y1±m vs x is asymptotic to the 
vertical lines x = 0 and x = 1 in Fig. 3. 

Values of the functions F{x9y) and Fr(x9y) have been calculated by means 
of iterated exponentiation on a Hewlett-Packard calculator. We have considered 
a large number of combinations {x9 y) , both on the limiting curve (x9 y lim ) 
where the convergence is slow and away from the limiting curve (x9 £/lim) where 
the convergence is much faster. (The computing program was designed to carry 
out up to 1600 exponentiations, if necessary.) A few typical values exhibit-
ing both dual and quadriconvergence have been tabulated in Table 1. For the 
readerTs convenience, we have listed the value of y1±m pertaining to the x value 
in each entry. Also, the notation D.C. or Q.C. has been included. 

For the case of quadriconvergence, we have listed in Table 1 four values 
denoted by F1, F2, F3, and Fh. In order to make the identification of the F± 
(i = 1 - 4) with the functions F{x9 y) and Fr(x, y) introduced above in (3) 
and (4), we note that we have the following relations: 

(23) yF* = F2, xF> = F3, yF* = F^ XF, = F^9 

so that we can write 

(24) F1 =Fa, F2 = FJ, F3 - Fb , Fh = * - . 

Both Fx and F3 are functions of the type F with x at the bottom of the 
"ladder" [see.(3)], and they are therefore denoted by Fa and Fb 9 respectively. 
Similarly, F2 and Fh are functions of the type F' with y at the bottom of the 
"ladder" [see (4)], and they are therefore denoted by FJ and F£, respectively. 
In view of (23) and (24), we see that the quadriconvergence for y > y (and 
x < 1) is actually the analog of the dual convergence observed in [1] and [3] 
for functions of one variable (x) only, since the functions Fa and Fh which 
have the same definition take on two different values, and similarly for Fr 

and FJ. b 
For the case of dual convergence of F(x9y) and Fr(x9y) which occurs when 

y <_ y lim , the two functions F1 and F2 of Table 1 can be simply identified as 
F± = F and F2 = F' of (3) and (4). 

In Table 1, we have included a few cases with y very large (for x < 1), 
namely, y = 10,000 for x = 0.2 and y = 1,000 for x = 0.4, 0.7, and 0.9. The 
reason is that, in the limiting case, of large y, the following equations hold 
to a very high accuracy, as is shown by the entries in Table 1: 

(25) F± - x, F2 * y * 9 F3 « 0, F^ - 1. 
The above equations can be derived very simply by noting that starting with a 
value F1 = x9 we have F2 - yx, and if yx is large enough, F3 = x^yX^ will be 
very small (i.e., * 0) for x < 1, and hence, F^ = y° = 1, and the next value 
to be denoted by F5 is: F5 * x1 = x, i.e., F has the value assumed above for 
F19 so that the four equations of (25) are mutually consistent, provided that 
yx » 1, so that x^^ * 0. 
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Before leaving this discussion of the functions / and F,we wish to point 
out an interesting property. First, considering the function F at the tangency 
point x = e~1/e (see Fig. 3), for the two values of F at x = e"1/e = 0.692200, 
y = ee = 15.1542, we find Ff(x, y) = es and F(x9 y) = xF'= l/e. Furthermore, 
for the function f(x) at the point a; = e~e = 0.065988, we find the single value 
/(re = e~e) = l/e9 whereas at the other extreme of the region of convergence, 
namely, x = e1/e , we find f(x) - e* Thus, the six quantities 

e9 1/e, e11* , e~1,e , ee, and e"e 

are directly involved in the results obtained for the functions f (x) and F(x9 y) 
at certain special points x and y, 

Finally we will consider a generalization of the functions f(x) andF(x9 y) 
to be denoted fN(x) and FN(xs y) 9 respectively. We first define fN(x) by the 
equation 

(26) fg (x) = xx* 
where N is an arbitrary positive quantity, and we are interested in the limit 
of an infinite number of x's in the "ladder." Again, the bracketing order is 
as usual "from the top down." Now for N = x9 we find fx(x) = fix) as before. 
It can be shown that for x > 1, if N is too large, the function fN(&) diverges 
even though x lies in the range Kx< e1/e for which the simpler function f(x) 
converges. In order to obtain the limitation on N9 we consider the plane of 
G vs f as shown in Fig. 4. The line G2 = f is the 45°  straight line in this 
figure. In addition, we have plotted the function G1(x) = x? for two differ-
ent values of x9 namely, x= 1.35 and x = e1/e= 1.444668. For x = elle , G± (x). is 
just tangent to the straight line G2 = / at / = e. However, for x = 1.35, 
G-,(x) intersects the line Gz = f at two values of /, namely, f ^ = 1.6318 and 
^2) = 5.934. xhe value f ^ corresponds to the simple function f(x = 1.35). 
We now note that in the region of /, 1.6318 < f < 5.934, we have 1.35 < /, as 
shown by Fig. 4. It is therefore easy to show that if N <_ 5.934, the function 
fN(x) of (26) converges simply to the value f(x=l.35) = 1.6318. On the other 
hand, for N > 5.934, we have 1.35^ > N9 so that as we go down the "ladder" of 
(26), progressively larger results are obtained and the function j^(1.35) di-
verges in this case even though /(1.35) converges, since x < elle. The value 
/ (2), which is the limiting value for N9 corresponds to the dashed part of the 
curve of x vs f(x) in Fig. 1 of [1], which we had labeled at that time as "not 
meaningful" for the function f(x). As can be seen from this figure, f^2^ (x) 
increases rapidly with decreasing x until it becomes infinite as X-+1. Typi-
cal values of f^1^ (x), as obtained from the equations 

(27) xf = f 
(28) l og x = log / / / , 
a r e as f o l l o w s : 

^(2) (1 .4 ) = 4 . 4 i s / ( 2 ) ( 1 . 3 ) = 7 . 8 6 , jT<2>(1.2) = 14 .77 , / ^ 2 ) ( 1 . 1 5 ) = 2 2 . 1 7 , 

/ < 2 ) ( 1 . 1 ) = 3 8 . 2 , f ( 2 ) ( 1 . 0 5 ) = 9 2 . 9 5 . 

Thus, for x = 1.19 we have 

(29) / (1.1) = / W (1.1) = 1.112, for N <_ 38.2, 

while J^(l.l) diverges for N > 38.2. 
It can be easily shown that for x < 1, we have fN(x) = f(x)9 regardless 

of the (positive) value of N9 and, correspondingly, the curve of x vs f(x) in 
Fig. 2 of [1] does not have a second branch similar to that of Fig. 1. 

We now define the function FN(x9 y) as follows: 
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(30) FN(x9 y) = x» 

We will examine this function first for the case that both x and y are larger 
than 1. We assume that x <_ y. The situation is then very similar to that for 
fN(x), As an illustration,, we consider the case where x = 1.3, and consider 
the plane Gi vs F, where G2 = F (45°  straight line) and G± = xyF = 1.3*'.- For 
y = 2/llm = 1.6525, we are at the border between the regions of dual conver-
gence and divergence in Fig. 1. Correspondingly, the curve of £, = 1.31,6S25F 

is just tangent to the line G2 = F at the point F = 2.304 (see Fig. 2). Now 
consider the curve G1 = 1.31-5f, which has two points of intersection F(1) and 
F<2> with the line G2 = F. We have: 

F(1) = 1.679, F(2> = 4.184. 

For F(1) < F < F(2), we find that 6^(1.3, 1.5) = 1.31,5? < F. Therefore, it can 
be concluded in the same manner as for fN(x) that j^(1.3, 1.5) converges to the 
value F(1.3, 1.5) for N <_ 4.184, while for N > 4.184, F (1.3, 1.5) diverges. 
Thus, for (x9 y) with y< y1±m, the roots of the equation 

(31) xyF- F = 0, 

de te rmine bo th t he v a l u e of F ( = F ( 1 ) ) and of ^max» such t h a t fo r N <_ Nmax , t he 
modif ied f u n c t i o n FN(x9y) converges to t h e v a l u e of F(x9y). Here Nmax = F ( 2 ) . 
Of c o u r s e , fo r y = y 1±m , we have F(1) = F^2> ( p o i n t of tangency) , and Nmayi = 
^ ( D = ^ ( 2 ) . As an example, fo r x = 1 .3 , y = 1.6525, t h e tangency occur s a t 
F = 2.304 in F i g . 4 , and we have convergence of F ( 1 . 3 , 1.6525) t o t h e v a l u e 
F = 2 . 3 0 4 , p rov ided t h a t N <_ 2 . 304 . 

9 

8 

7 

6 

5 

4 

3 

2 

I 

°0 1 2 3 4 5 6 7 8 9 10 II 12 
f 

Fig. 4. The functions G1 = x? and G2 = f plotted vs f. The two curves of G1 
pertain to the x values x = 1.35 and x = e1/e = 1.444668. The curve of 
G1(1.35) intersects the 45° line G2 = f at the two points f(1) = 1.6318 and 
^(2) = 5.934, whose significance is explained in the text. The curve of 
G1(e1/e) is tangent to the G2 = f line at f = e (see [1]). 

When either x or y < 1 (or both x and y < 1), it is easily shown that the 
function FN(x9 y) = F(x9 y), regardless of the value of N. Thus, assume that 

6,(x) = xf 
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X < 1, but y > 1. Then, if N is arbitrarily large, yN will be still larger, 
i.e., yN = Nr where N' > N. The next step in the calculation of F(x9 y) in-
volves raising x to the power Nf. For Nf very large, we find xN' ~ 0, followed 
by y° = 1, and x1 - x. This proves that FN(x9 y) = F(x9 y) regardless of the 
value of N. Note that for N very small, we have yN ~1, followed by xyN^x1 = xs 
independently of N. 

The preceding argument involving FN can also be used to prove the follow-
ing theorem, when a similar function H of more than two variables is involved. 
Here we assume that M s a function of the type of F of Eqs. (2) and (3)... As 
an example, we define H(x9 y9 z) as follows: 

(32) H(x9 ys z) = x** 

where x9 y9 z are arbitrary positive quantities. It can be easily shown that 
if one of the three numbers x9 ys or z is <_ 1, then H(x9y9 z) will not diverge 
(although it may converge to two values for any given value of x9 2/, or z at 
the bottom of the ladder, by virtue of the property of dual convergence intro-
duced in [1] and [3]). To prove the theorem, we assume that x <L 1, but y and 
z > 1. At the top of the ladder, we obtain x^yZ\ where yz may be arbitrarily 

large. We will write yz = M. Now xM- 0 for x < 1 and large M. The next step 

calls for the calculation of zxM ~ z° = 1, followed by yz° = y9 and so on. It 
is easily seen that the sequence H(x9 y9 z) will never diverge provided that 
x9 y9 or z is. ̂  1. For the case where x9 y9 z are all larger than 1, but do 
not exceed e1/e

9 we may use the result of [1] to prove that 

H(x9 y9 z) £ f(e1/e) = e9 

and thus H(x9 y9 z) is convergent. On the other hand, if at least one of the 
triplet x9 y9 z is larger than e1te

9 say x > elle
9 whereas the other two lie in 

the range 1 < (y, z) < e1/e
9 then H(xs y9 z) will converge or diverge depending 

on the values of x9 y9 z relative to e1/e, in the same manner as for F(x9 y) 
(see Fig. 1). 

REFERENCES 

1. M. Creutz & R. M. Sternheimer, "On the Convergence of Iterated Exponentia-
tion—I. " The Fibonacci Quarterly 18 (1980):341-47. 

2. R, M. Sternheimer. "On a Set of Non-Associative Functions of a Single 
Positive Real Variable." Brookhaven Informal Report PD-128; BNL-23081 (June 
1977). 

3. M. Creutz & R. M. Sternheimer. "On a Class of Non-Associative Functions of 
a Single Positive Real Variable." Brookhaven Informal Report PD-130; BNL-
23308 (September 1977). 

4. The function f(x) has also been considered by Perry B. Wilson, Stanford 
Linear Accelerator Report PEP-232 (February 1977), and by A. V. Grosse, 
quoted by M. Gardner, Scientific American 228 (May 1973):105. 



336 [Oct. 

SUMMATION OF SECOND-ORDER RECURRENCE TERMS 
AND THEIR SQUARES* 

DAVID L. RUSSELL 
Bell Laboratories, Holmdel, NJ 07733 

Consider the l inear recurrence sequence {Rn} defined by Rn - pRn_± + Q^n-i 
for a l l n , where p and q are r e a l . I n i t i a l conditions for any two consecutive 
terms completely define the sequence. We are in te res ted in finding sums of the 
form 

Y, Ri and X Ri 
for a rb i t r a ry values of p and q. 

lkn.OK.Qjn 1: 

H Ri = \TTT^ T^R" + * » + i > " " , • If P + q - 1 t 0. (1) 

E Ri m T T T ^ K +n(qRt
 +-ffx))Lx.1» 

x±i±y L^ jn x 

x<.t<.t/ L J 

if p + q - 1 = 0, 4 + 1 + 0. (2) 

if p + 4 - 1 = 09 q + 1 = 0. (3) 

The solution to the recurrence relation is determined by the roots of the 
characteristic equation x2 - px - q = 0 and by the initial conditions. 

If the two roots a and 3 of the characteristic equation are distinct and 
different from 1, then the solution of the recurrence is Rn = aan + b&n

 9 where 
a and b are constants determined by the initial conditions. The sum may be 
calculated easily from the formula for the sum of a geometric series and from 
the equation 

(a - l)(q + a) = (p + q - l)a. (4) 

If a is a double root of the characteristic equation and a ̂  1, then the 
solution of the recurrence is Rn =aan +bnan, where again a and b are constants 
determined by the initial constants. Multiplying (4) by an/(a - 1), and taking 
the derivative with respect to a gives the following equation: 

<pw-i + in + l)a" = < P + ? - 1)[nf_+[: <*+1>a"l; (5) 

the appropriate summation formula can be simplified with (5) to give (1). 
Equations (2) and (3) apply to the degenerate cases where the roots of the 

characteristic equation are (p - 1, 1) and (1, 1), respectively. The corre-
sponding summations have nongeometric terms in them and simplify to different 
forms. 

The results of Theorem 1 are well known, particularly equation (1) (see, 
for example, [2] and [3]). Often, however, the need for separate proofs for 
the cases of a double root and a root equal to 1 is not recognized. In the 
special case that p = q = 1, equation (1) applies, and we have, as simple cor-
ollaries, formulas for the summation of Fibonacci and Lucas numbers: 

*This work was performed In part while the author was with the Computer Sci-
ence Department of the University of Southern California in Los Angeles. 
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Z Fi = Fn+2 " L L Li - £n+ 2 " 3-
l < t < n 1 ±i±n 

In Theorem 1 t h e r e s u l t s depend on t h e r o o t s of t h e c h a r a c t e r i s t i c e q u a t i o n . 
I f we c o n s i d e r t h e sum of t h e squares of t h e r e c u r r e n c e t e r m s , t h e r e s u l t s de -
pend on t h e p o s s i b l e v a l u e s for t he products of two r o o t s . 

Thzotim 2: Let {Rn} s a t i s f y 

and l e t {Sn} s a t i s f y 

for a l l n and a l l r e a l p , q. 

Rn = P*„_! + <7*„_2 

HRisi 
x±i±y 

V d - ^ n ^ n + P ^ n ^ n + i + P ^ n + A + d - ^ n + A + l" 
( q + l ) ( p + q - l ) ( p - q + l ) 

i f q + W 0 s p + q - l O , p - q + W O . 

n = y 

(6) 

2>^ 
# £ i £ y 

-i?n£n - - ^ (bSn + dRn) + M n 
n = z / 

where fc = (qi?0 + i?i) / (q + 1) , d = (qS0 + S1) / (q + 1) , 

Z>*5* -
x<%±y 

-Ry,Sn 

qA - 1 
- ( - l ) n ( f c£ n + di?n) + M n 

n = z/ 

n = a? - 1 

where b = (qR0 - Rx) / (q + I) , d = (qS0 - Sx)Kq + 1 ) , 
i f q + l ^ O , p + q - 1 ^ 0 , p - q + 1 = 0 . 

(7) 

(8) 

ZBiSi 
x<.i<.y 

RQSQ + ^ 1 ^ 1 
-n + 

i?050 - R1S1 (-l)n 

£. t. ^ \n = x -1 

± f q + l ± 0 , p + q - l = 0 , p - q + l = 0 . 

(9) 

x<i±y 

1 
(a2 - 1) ' a 2 - 1 

-+ (be + ad)n + M-
1 - a 2 W 

n = y 

where a = h(p + (p2 - 4)"2)9 and 
a = (a/?! - i?0) 5 
2? = a(ai?0 - i ? x ) , 
a = (a^x - £ 0 ) » 
d = a ( a £ 0 - 5X) , 

i f q + l = O s p + ( | - W 0 , p - q + W O -

(10) 

E R.S. 
x±i±y 

RQS0 + %( i? l S l - fl.xg.,)"^^ 1 } 

" + ( H l . f l o ) ( 5 l . 5 p ) » f i L ± ^ L J L l i 
i f q + 1 = 0 , p + g - 1 = 0 , p - g + 1 ^ 0 . 

(11) 
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+ ( i ? 1 + i ? 0 ) ( 5 1 + g o ) W ( W + 1 > 6
( 2 w + 1) 

if (7 + 1 = 0, p + q - l £ 0 9 p - q + l = 0. 

n(n + 1) 
(12) 

n = y 

n = x -1 

Vtioofc The key relation, analogous to (4), is the following, where a and 3 are 
roots of x2 - px - q = 0, ag ± 1, a2 ̂  1, g2 ̂  1: 

an + l g n + l _ q 2 ( l _ ^ ) a ^ n + p q a n g n + l + p^n+lgn + ( 1 , ^g^lg"*! 

ag - 1 (q + l)(p - q + l)(p + q - 1) ' (i J ; 

This is proved by considering the following equation (recall that a2 - pa + q 
and g2 = pg + <?) : 

(ag - 1)[<72(1 - q) + pqg + pqa + (1 - <?)ag] 
= a g q 2 ( l - < 7 ) + a g 2 p ^ + a2gp<? + a 2 g 2 ( l - ( ? ) - q2(I - q) - p^g - pqa - ( 1 - <?)ag 
= a$q2(l-q) + a (pg + q)pq + (pa + ^ )gp^ + (pa + q) (pg + q) (1 - q) 

- q 2 ( l - ^ ) - p^g - pqa.~ ( l - q ) a e (14) 
= a g [ < 7 2 ( l ~ q ) + p2<? + p2<? + p 2 ( l - < ? ) - ( 1 - ? ) ] 
= a g [ p 2 ( q + l ) - (q2-i)(q~D] 
= ag(<? + l ) ( p + q - l ) ( p - q + 1) . 
Now ag - 1 i s p o s s i b l e i f and only i f (1) p + q - 1 = 0 ( t h e r o o t s a r e p - 1 

and 1 ) ; (2) p - <? + 1 = 0 ( t h e r o o t s a r e p + 1 and - 1 ) ; o r (3) q + 1 = 0 ( t h e 
r o o t s a r e r e c i p r o c a l s ) . Thus we can d i v i d e b o t h s i d e s of (14) by 

(ag - l)(q + l ) ( p + q - 1 ) (p - q + 1 ) ; 
multiplying by angn gives (13). 

In the remainder of the proof, we use a and g to represent roots of 

x2 - px - q = 0, 

we use a, b9 cs d to represent constants determined by initial conditions of 
the recurrences, and we let 

A = (q + l)(p + q - l)(p - q + 1). 
If omitted, the limits of summation are understood to be x and y ; the right-hand 
sides are to be evaluated at n = y and n = x - 1. 

Suppose that a ̂  g. Then the solutions to the recurrences are 

Rn = aan + b$n and Sn = ean + dS>n. 

t^RiSi = A£(aa^ + Z?6 i ) (ca i + dp) 
= AZ(aca2i + ada1^ + boa11 ' 

A aca2n + 2 ^ a d ( a g ) n + 1 _̂ fcg(ag)' ^ = A —-— + r •+ 
1 ag - 1 ag - 1 gz - 1 

Since q + i ̂  0, p + ? - 1 + 0, and p - q + 1 f 0, we know that a2 + 1, g2 + 1, 
and ag ̂  1. Equation (13) can thus be applied to each term individually; when 
terms are collected the desired result is obtained: 

b£RiSi = q2(l - q)[acanan + adan$n + bcan$n + 
+ pq[acanan+1 + adan$n + 1 + bcan$n+1 + Mg ng n + 1 ] 
+ pq[acan + 1an + adan + 1$n + bcan + 1$n + Mg n + 1 g n] 
+ (1 - q)[aoan+1an+1 + a^an+1gn+1 + Z?^an+1gn+1 + Mg n + 1 g n + 1] 

= <7 (1 - q)RnSn + pqRnSn+i + pq^n+i^n + 
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If a is a double root of x2 - px - q = 09 then the sum takes the following 
form: 

bin i; Si = AZCac^ + biai)(aai + dia1) (15) 

- AZ(aca2i + adiu2i + baia2i + bdi2a2i). 
By taking various derivatives of (13), it is easy to show that the following 
expressions hold: 

AEio^B* = q2(l - q)nan$n+pq(n + l)an3n+1 + pqnan + 1$n + (1 - (7) (n + l)an+13n + 1 

= q2(l - q)nangn + p<7nan6n+1 + p^(n + l)an + 1g n + (1 - q) (n + l)an + 1 (3 n + 1
 s 

AZi2aiBi = q2(l - <?)n2an3n + pqn(n 4- l)an3n+1 + -pqnfr-+ l)an + 1 3 n 

+ (1 - <?)(n + l)2an+1pn+1. 

Substitution into (15) and simplification complete the proof of (6). 

Equations (7-12) apply in various degenerate cases where the product of some 
two roots of the characteristic equation is 19 and there is a nongeometric term 
in the corresponding summation: 

• in equation (7) the roots are (a, 1)s a f 1, -1; 
® in equation (8) the roots are (a, -1), a £ 1, -1; 
• in equation (9) the roots are (1, -1); 
• in equation (.10) the roots are (a, a" 1); 
• in equation (11) the roots are (1,1); 
• in equation (12) the roots are (-1, -1). 
The results of Theorem 2 correct and complete the discussion of Hoggatt[l]„ 

Note that if q = 1 and p ̂  0 the following special cases are derived (see also 
Russell [5]): 

x<_i<_y 

E Risi = 
±i±y 

"Rn + *„ + 1" 
P 

2p 

n=y 

s 
n = x - 1 

Nothing in the derivations has precluded the possibility that q = 0. In this 
case the recurrences are first-order recurrences and the solutions are readily 
seen to reduce to the appropriate sums. 

The method of this paper can be extended to other sums involving products 
of terms from recurrence sequences. The "most pleasing" sums derived are those 
that can be expressed as linear combinations of terms "similar" to the summand, 
without multiplications by functions of n. Such sums, as in equations (1) and 
(6), have been called standard sums in [4], where they are more precisely de-
fined. It seems clear from the proofs of Theorems 1 and 2 that such standard 
sums do not exist if there is a set of values {a^|a^ is a root of the charac-
teristic equation of the ith recurrence sequence in the product being summed} 
such that Ilâ  = 1. When such a standard sum does exist9 it can be found di-
rectly , without knowing the roots of the characteristic equations, by the method 
described in [4]. The "key formulas" (4) and (13). were, in fact, first found 
in this way. 

The sums found are, of course, not unique. For instance, using the rela-
tion 

Rn+zSn + 2 - P2*n + lSn+i + PVRn+lSn + PVEnSn+l + l ^ n * 
equation (6) can also be written as follows: 
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Z Risi = 
x<.%<_y 

'pq2(R S ^ + R S ) + (1 - q)[R 0S AO + (1 - p2)R ± 15 ' 
r^ x n n+l n+1 ny K ^' L n+Z n+2 s r / n + l n + l 

(1 - q)(p + q - l)(p - q + 1) 

~-y 

n = x -1 

if q + 1 1 .0, p + <? - 1 ̂  0, p - q + 1 i 0. (16) 

In closing, we note that the expressions of this paper can be used to de-
rive some identities among recurrence terms. As an example consider YH^Si with 
Rl and Si identical sequences., i?0 = S0 = 0, i?L = S± = 1, p = 1, <? = 2 + e, and 
limits of summation 0 £ t <_ n. As e -̂  0, the sum approaches a well-defined 
value, and thus the right-hand side of (16) must also have a finite limit. Since 
the denominator goes to 0, so must the numerator. We conclude that the follow-
ing must be true: 

[ 8 i ? ^ + l - Rh' + 2jy = _1 = SRnRn + l " Rl+2 + 1 = 0 
or 

SRnRn + 1 = (Rn + 2 + l)(i?n + 2 - 1) 

if p = 1, q = 2, i?Q = 0, i?x = 1. 
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ITERATING THE PRODUCT OF SHIFTED DIGITS 

SAMUEL S. WAGSTAFF, JR. 
Northern Illinois University, DeKalh, IL 60115 

1. INTRODUCTION 

Let t be a fixed nonnegative integer. For positive integers n written in 
decimal as 

n =t,di ' 1Qi> 
i = 0 

with 0 < d . < 9 and d v > 0, we define 

ft(n) = .[] (* + <*,). 
i = 0 

Also define fQ (0) = 0. Erdos and Kiss [1] have asked about the behavior of the 
sequence of iterates n, ft(n)9 ft (ft (n)) 9. .. . They noted that ,/\(12Q) = 120. 
For t = 0, every such sequence eventually reaches a one-digit number. Sloane 
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[2] has considered this case. For t = 1, we prove that the sequence of iter-
ates from any starting point n remains bounded, and we list the two possible 
cycles. For t _> 109 it is clear that ft (n) > n for every n so that the sequence 
always tends to infinity. We discuss the cases 2 <. t <_ 9 and present numerical 
evidence and a heuristic argument which conclude that every sequence remains 
bounded when t j£ 6 3 while virtually every sequence tends to infinity for t >_1. 
In Table 1 we give the known cycles in which these sequences may be trapped 
when 0 <_ t £ 6. See also [3] for the case t = 0. 

TABLE 1. Some Data on the Cycles of ft for 0 £ t <_ 6 

t 

0 

1 

2 

3 

4 

5 

Least Term 
of Cycle 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

2 
18 

6 
9 
12 
24 
35 
56 

24 
648 

96 
112 
120 
315 
1280 
2688 
4752 
7744 
15840 
24960 
57915 

50 
210 
450 
780 
1500 

Cycle 
Length 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

9 
1 

3 
2 
1 
1 
1 
1 

10 
2 

5 
16 
1 
1 
2 
3 
1 
1 
2 
1 
1 

1 
1 
1 
1 
1 

First Start 
Leading to it 

10 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
18 

2 
1 
12 
16 
35 
56 

1 
134 

1 
37 
29 
135 
589 
1289 
1157 
4477 
4779 
10489 
15579 

50 
57 
3 

158 
4 

# of Starts <. 100000 
Leading to it 

82402 
5 

3213 
15 

894 
607 
6843 

15 
597i 
35 

92043 
7957 

9927 
6 

29105 
60105 

2 
811 

47955 
52045 

6793 
70677 

20 
6 

4798 
6971 
90 
185 

9992 
378 
90 

1 
6 

222 
10 

35726 

(continued) 
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TABLE 1 (continued) 

t 

5 

6 

Least Term 
of Cycle 

1600 
3920 
16500 
16800 
32760 
91728 

1293600 

90 
840 

4320 
9360 
51744 
59400 
60480 
917280 
2419200 

533744640 
1556755200 

139089000960 

Cycle 
Length 

3 
1 
1 
4 
4 
1 
1 

1 
1 
1 
2 
5 
1 
1 
1 
1 

62 
21 
85 

2. THE 

First Start 
Leading to it 

CASE 

228 
22 

1339 
1 

368 
11899 
38899 

34 
4 
3 
35 
18 

7899 
6 

7777 
26778 

38 
1 
5 

t •=• 1 

# of Starts £ 100000 
Leading to it 

7058 
91 
146 

4927 
51483 
300 
30 

3 
40 
329 
550 
2626 
300 
3300 
493 
12 

10968 
25484 
5895 

This is the only nontrivial case in which we can prove that every sequence 
of iterates is bounded. 

Th2.OK.2mt Let n be a positive integer. Then f1(n) = n if and only if n = 18. 
Also fx(n) > n if and only if n = d • 10* - 1, where k >_ 0 and 2 £ d <L 10. In 
In the latter cases f1 (n) = n + 1. Iteration of /1 from a positive starting 
number eventually leads either to the fixed point 18 or to the cycle (2,3, 4, 
5, 6, 7, 8, 9, 10). 

Vtioofc If n = d • 10* - 1 with 2 <_ d <_ 10, then the digits of n are d - 1 and 
k nines. Thus f1(n) = d • 10k = n + 1. Now suppose k >_ I and n has /c + 1 di-
gits, but n is not of the form d.• 10* - 1. Then the low-order k digits are 
not all nines. Write 

n £<** 10* 
i'O 

and let J be the greatest subscript such that J < k and dj- < 9. Then 

(1) Uin) $ (dk + l)(dj + 1)10A 
- dk • 10* + d7- • 10*"1 + (1 + dk(di 9))10 k-i 

Now dj - 9 £ -1 and d^ >̂  1. Hence the last term of (1) is nonpositive, and it 
vanishes if and only if d^ = 1 and dj = 8. Hence f1(n) < n if either dy. > 1 or 
dj < 8. If dk = 1 and dj = 8 and j < k - 1, then also /x (n) < n. Otherwise, 
either n = 18 [and ^(18) = 18] or n has at least three digits, the first two 
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of which are 18. If any lower-order digit were nonzero, the inequality in (1) 
would be strict and give f^n) < n. Finally, if n = 1800...0, clearly 

f-^in) = (1 + 1)(8 + 1) = 18 < n. 

The last statement of the theorem follows easily from the earlier ones by in-
duction on n. For n > 18, either f1(n) < n or f1(f1(n)) < n. 

3- THE CASES t = 2 THROUGH 6 

These five cases are alike in that there is compelling evidence that all 
the sequences are bounded, but we cannot prove it. In Table 1 we gave some data 
on the known cycles of / for 0 <_ t <_ 6. Table 2 lists the cycles of length > 
1. For t <L 5, every starting number up to 100000 eventually reaches one of 
these cycles. For t = 6, the same is true up to 50000. 

TABLE 2. Cycles of at Least Two Terms 
t Cycle 

1 (2F 3F 4» 5» 6f 7» 8r 9r 10) 

2 (6? 8? 10) 
2 (9? 11) 

3 (24? 35? 48? ??y 100? 36* 54? 56? 72? 50) 
3 (648? 693) 

4 (96? 130? 140? 160? 200) 
4 (112? 150? 180? 240? 192? 390? 364? 560? 360? 280? 288? 864? 

960? 520? 216? 300) 
4 (1280? 1440) 
4 (2688? 8640? 3840) 
4 (15840? 17280) 

5 (1600? 1650? 3300) 
5 (16800? 21450? 18900? 27300) 
5 (32760? 36960? 67760? 87120) 

6 (9360? 9720) 
6 (51744? 100100? 63504? 71280? 61152) 
6 (533744640? 833976000? 573168960? 1634592960? 10777536000? 

23678246592? 199264665600? 1034643456000? 1163973888000? 
5504714691840? 6992425440000? 2463436800000? 1015831756800? 
2466927695232? 20495794176000? 36428071680000? 
14379662868480? 279604555776000? 654872648601600? 
703005740236800? 94421561794560? 119870150400000? 
28834219814400? 41821194240000? 5974456320000? 
2642035968000? 2483144294400? 3048192000000? 296284262400? 
445906944000? 384912000000? 49380710400? 22289904000? 
20901888000? 17923368960? 160487308800? 349505694720? 
1100848320000? 322620641280? 187280916480? 906125875200? 
383584481280? 1150082841600? 920066273280? 391283343360? 
499979692800? 4776408000000? 794794291200? 919900800000? 
92588832000? 56330588160? 69709102848? 138692736000? 
385169541120? 451818259200? 401616230400? 65840947200? 
62270208000? 8695185408? 25101014400? 3911846400? 
4000752000) 
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TABLE 2 (continued) 
Cyc le 
(1556755200. 4604535936. 12702096000* 8151736320. 
4576860288. 27122135040. 11623772160. 28848089088. 
325275955200. 473609410560. 420323904000. 60466176000. 
24455208960. 70253568000. 24659002368. 68976230400. 
61138022400. 10241925120. 10431590400. 9430344000. 
1574640000) 
(139089000960. 277766496000. 984031027200. 142655385600. 
486857226240. 1239869030400. 2222131968000. 983224811520. 
438126796800. 998587699200. 4903778880000. 4868115033600. 
2661620290560. 2648687247360. 19781546803200. 
38445626419200. 48283361280000. 15485790781440. 
106051785840000. 84580378122240. 45565186867200. 
118144020234240. 47795650560000. 37781114342400. 
18931558464000. 40663643328000. 18284971622400. 
41422897152000. 16273281024000. 6390961274880. 
14978815488000. 87214615488000? 39869538508800. 
219583673971200. 642591184435200. 309818234880000. 
203251004006400. 14898865766400. 256304176128000. 
105450861035520. 112464019261440. 119489126400000. 
80655160320000. 5736063320064. 3112798740480. 6310519488000. 
2218016908800. 2007417323520. 1165698293760. 16476697036800. 
100144080691200. 32262064128000. 6742112993280. 
6657251328000. 2761808265216. 7290429898752. 37777259520000. 
38697020144640. 42796615680000. 37661021798400. 
38944920268800. 92177326080000. 13352544092160. 
19916886528000. 82805964595200? 97371445248000. 
42499416960000. 35271936000000. 5447397795840. 
45218873700000. 14279804098560. 91537205760000. 
14425516385280. 53013342412800. 7604629401600. 
2445520896000. 2529128448000. 2503581696000. 2390026383360. 
2742745743360. 9020284416000. 877879296000. 2009063347200. 
943272345600. 480370176000) 

Some cycles may by reached from only f i n i t e l y many s t a r t i ng numbers. For 
example, i t i s easy to see tha t fs(n) = 50 only when n = 50. The cycle (9, 11) 
for f2 may be reached only from the odd numbers below 12. Only 35 and 53 lead 
to the fixed point 35 of f?m. I t i s a ten-minute exercise to discover a l l twenty 
s t a r t i ng numbers which lead to the fixed point 120 of fi+. The fixed point 90 
for f6 may be reached only from the s t a r t i n g numbers 34, 43, and 90. 

Given a cycle , what i s the asymptotic density of the set of s t a r t i n g num-
bers which lead to i t ? We cannot answer t h i s question even for the two cycles 
for t = 1. Some relevant numerical data i s shown in the l a s t column of Table 
1. Since the d ig i t 0 occurs in almost a l l numbers, the answer to the question 
i s c lear in case t = 0. 

h. THE CASES t = 7 THROUGH 9 

The s t a r t i ng number 5 leads to the fixed point 31746120037632000 of f7. We 
found no other cycles in these three cases . Every sequence with s t a r t i n g num-
ber up to 1000 r i s e s above 101If. Every sequence s t a r t i ng below 17 (except 5 
and 12 for f7) r i s e s above 10 3 0 0 . These observations, together with the heur-
i s t i c argument below, suggest tha t nearly every sequence diverges to i n f i n i t y . 
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When 7 <_ t <_ 9, it usually happens that ft (n) > n. The least n with ft(ri) 
1 n is 700, 9000, 90000000, for t = 7, 8, 9, respectively. 

The sequences show a strong tendency to merge. We conjecture that there is 
a finite number of sequences such that every sequence merges with one of them. 

5- THE HEURISTIC ARGUMENT 

Let t be a fixed positive integer. Consider a positive number n of k di-
gits, where k is large. For 0 £ d £ 9 and most n, about k/10 of the digits will 
be d. Thus 

A (n) * ft W + *>k/1°  = <P*)* . where p, = ( ft (d + *)) 1/10 . 

This means that ft(n) will have about k 8 log10pt digits. From Table 3, it is 
clear that this implies that ft (n) < n for most large n when l<_t<_5, and that 
ft(n) > n for most large n when 6 <_ t <_ 9. 

It is tempting to apply the same reasoning to the subsequent terms of the 
sequence. Note, however, that ft(n) cannot be just any number. About one-fifth 
of the digits of n are = ~t (mod 5) and about half of them have the same parity 
as t. Hence the highest power of 10 that divides ft(n) is usually about 10 , 
so that ft(n)- will have many more zero digits than other numbers of comparable 
size. It is plausible that, after several iterations, the fraction of digits 
which are low-order zeros will stabilize. Furthermore, it is likely that the 
significant digits will take on the ten possible values with equal frequency. 
Suppose we reach a number m of k digits. Assume there are constants a9b9 s, 
which depend on t but not on m or fe, so that (i) m has about ak low-order ze-
ros, (ii) each of the ten digits occurs about bk times as a significant digit 
of m9 and (iii) ft(m) has about sk digits, of which approximately ask are low-
order zeros. Then a + 10b = 1 and 

(2) ask * min(ord2(/t(m)) 9 ord5(ft (m))), 

where ordp(it?) denotes the ordinal of w at the prime p. By hypotheses (i) and 
(ii), we have 

ft(m) * (0 + t)ak + hk(l + t)bk ... (9 + t)bk = (tair*)k, 
where 

*t = n w +1) . 
d = 0 

Since sk « log1Qft(m) 9 we f i n d 

(3) s * a l o g 1 0 £ + b l o g 1 0 i r t . 

When t = 5 , e q u a t i o n (2) becomes 

ask « mln(8bk, ak + 2bk) 

because 8 = ord27T5. Hence as « 8b5 so 

and u ~ 8 + 10s ~ 8 + 10s ' 
Substitution in (3) gives a quadratic equation in s whose positive root is shown 
in Table 3, together with a and 2?. 

If 1 £ t £ 9 and t + 5, then (2) becomes 

ask * m±a(gak + hbk9 bk + bk)9 

where g >_ 0 and h >_ 7. Hence as « 2b, and we find 

a * n 1!^ and b x TVToS-
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Using (3) produces a quadratic equation in s whose positive root is given in 
Table 3. 

TABLE 3. Values of pt and s for 1 <_ t <_ 9 

Pt 

4 . 5 
5 .8 
6 .9 
8.0 
9.0 

10.086 
11.1 
12.2 
13.2 

lo8ioPt 

0.66 
0.76 
0.84 
0.90 
0.96 
1.0037 
1.05 
1.08 
1.12 

a 

0.30 
0.23 
0.21 
0.19 
0.49 
0.17 
0.16 
0.16 
0.15 

b 

0.070 
0.077 
0.079 
0.081 
0.051 
0.083 
0.084 
0.084 
0.085 

s 

0.46 
0.65 
0.76 
0.84 
0.83 
0.965 
1.013 
1.06 
1.09 

We may defend the third hypothesis this way: If we had assumed that ft(jn) 
had about the same number of digits as m9 i.e., that s = 1, and followed the 
remainder of the argument above, we would have concluded that the sequence forms 
an approximate geometric progression, which is the essence of (iii). There is 
no other simple assumption for the change in the number of digits from one term 
to the next. 

The few sequences we studied with 7 <_.£<_ 9 behaved roughly in accordance 
with the three hypotheses and the data in Table 3. 

In summary, for most large n, ft(n) will have many fewer digits than n for 
1 £ t <_ 5, about 0.37% more digits when t = 6, and substantially more digits 
f° r 7 £ £ £ 9. However, after several iterations, when we reach a number m9 
say, it will usually happen that ft (m) has many fewer digits than m for 1 <_ t 
<^ 6 and many more digits for 1 <_ t <_ 9, Thus if we iterate ft, the sequence 
almost certainly will diverge swiftly to infinity for 7 <_ t <_ 9, but remain 
bounded for 1 <_ t <_ 6. 

Numbers in the image of ft not only are divisible by a high power of 10, 
but all their prime factors are below 10 + t . How this property affects the 
distribution of digits in such numbers is unclear. There are only 0(logrx) of 
them up to x, where r is the number of primes up to 9 + t . 

Let 1 j£ t <^ 6, and suppose that iteration of ft from any starting number 
does lead to a cycle. How many iterations will be required to reach the cycle? 
The above heuristic argument predicts that about 

(log10log10n)/(~log10s) + 0(1) 

iterations will be needed, which is very swift convergence indeed. In the case 
t = 0, Sloane [2] has conjectured that a one-digit number will be reached in a 
bounded number of iterations. The sequence for t = 6 starting at n = 5 does 
not enter the 85-term cycle until the 121st iterate. 

The author thanks P. Erdos for suggesting the problem and A. Odlyzko for 
supplying reference [2]. He is grateful to the computer centers of the Univer-
sity of Illinois and Northern Illinois University for providing the computer 
time used in this project. 
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ON MAXIMIZING FUNCTIONS BY FIBONACCI SEARCH 

REFAEL HASSIN 
Department of Statistics, Tel Aviv University, Tel Aviv 69978 

1. INTRODUCTION 

The search for a local maximum of a function f(x) involves a sequence of 
function evaluations, i.e.s observations of the value of f(x) for a fixed value 
of x. A sequential search scheme allows us to evaluate the function at differ-
ent points, one after the other, using information from earlier evaluations to 
decide where to locate the next ones. At each stage, the smallest interval in 
which a maximum point of the function is known to lie is called the interval of 
uncertainty, 

Most of the theoretical search procedures terminate the search when either 
the interval of uncertainty is reduced to a specific size or two successive 
estimates of the maximum are closer than some predetermined value. However, an 
additional termination rule which surprisingly has not received much attention 
by theorists exists in most practical search codes, namely the number of func-
tion evaluations cannot exceed a predetermined number, which we denote by .N. 

A well-known procedure designed for a fixed number of function evaluations 
is the so-called Fibonacci search method. This method can be applied whenever 
the function is unimodal and the initial interval of undertainty is finite. In 
this paper, we propose a two-stage procedure which can be used whenever these 
requirements do not hold. In the first stage, the procedure tries to bracket 
the maximum point in a finite interval, and in the second it reduces this in-
terval using the Fibonacci search method or a variation of it developed by 
Witzgall. 

2. THE BRACKETING ALGORITHM 

A function / is unimodal on [a9b] if there exists a <_ x <. b such that f(x) 
is strictly increasing for a <_ x < ~x and strictly decreasing for x < x <_ b. It 
has been shown (Avriel and Wilde [2], Kiefer [6]) that the Fibonacci search 
method guarantees the smallest final interval of uncertainty among all methods 
requiring a fixed number of function evaluations. This method and its varia-
tions (Avriel and Wilde [3],Beamer and Wilde [4] , Kiefer [6], Oliver and Wilde 
[7], Witzgall [10]) use the following idea: 

Suppose y and z are two points in [a9b] such that y < z9 and f is unimodal, 
then 

f(y) < f(z) implies y ±~x_<_b9 
f(y) > f(%) implies a <_ x <_ z9 and 
f(y) = / 0 0 i m p l i e s y ± x ± z . 

Thus the property of unimodality makes it possible to obtain, after examin-
ing f(y) and f(z)9 a smaller new interval of uncertainty. When it cannot be 
said in advance that / is unimodel, a similar idea can be used. 

Suppose that f(x1)9 f(x2)9 and f(x3) are known such that 

(1) xx < x2 < x3 and f(x2) >̂ max{/(xx), /(x3)}, 
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then a local maximum of / exists somewhere between xx and xs. Evaluation of 
the function at a new point xk in the interval (x19 xs) will reduce the inter-
val of uncertainty and form a new set of three points x{9 x29 xs

f satisfying 
equation (1): 

Suppose x1 < x^ < x2 , then if f(xh) _> f(x2) let x{ = x19 x2 = x^9 x3 - x2» 
and if f(xk) < f(x2) let x[ - xh9 x2 = x2, and #3 = x3. Similarly for x2 < xh 
< x39 if f(x^) > f(x2) then let x[ = x29 x[ = xk9 x3 = x39 and if f(x^) < f(x2) 
tinen xeu x-\ — x-\ 9 x2

 == x29 x3
 = Xu • 

When applying quadratic approximation methods, the new point xk is chosen 
as the maximum point of a quadratic function which approximates /. The assump-
tion behind this method is that / is nearly quadratic, at least in the neigh-
borhood of its maximum. However, when the number of function evaluations is 
fixed in advance, this method may terminate with an interval of uncertainty 
which is long relative to the initial one. 

The quadratic approximation algorithm of Davies, Swann, and Campey [5] in-
cludes a subroutine that finds three equally spaced points satisfying equation 
(1). A more general method developed by Rosenbrock [8] can serve as a prepar-
atory step for a quadratic approximation algorithm (Avriel [1]). 

We now describe the search for points satisfying equation (1) in a general 
form that allows further development of our algorithm. The input data includes 
the function /, the number of evaluations N, and a set of positive numbers a^, 
i = 3, ..., N. 

Bnajck&ting AlgofLvtkm: 
Stzp 1. Evaluate f at two distinct points. Denote these points by x± and 

x2 so that fix-^) £ f{x2). S e t k = 3. 

Stup 2. Evaluate f at xk = xk_1 + ^•}i{xli,1 - xk_2) . 
If f(xk) j£ fixk-i.)i stop. (A local maximum exists between xk_2 and 
xk.) 
If f(xk) > f{xk_x)9 set k + k + 1. 

Stdp 3. If k = N + 1, stop. (The search failed to bracket a local maxi-
mum. ) 
If k <. N9 return to Step 2. 

If the algorithm terminates in Step 2, then the function was evaluated 
k <_ N times and a local maximum was bracketed between x^_2 and xk. The inter-
val of uncertainty may now be further reduced by evaluating the function at 
N - k new points xk + 19 ..., xN. Notice that there is already one point, xk_19 
in the interval of uncertainty, for which / is known. 

3. REDUCTION OF THE INTERVAL OF UNCERTAINTY 

In this section, we propose and analyze alternatives for selecting the in-
crement multipliers ak . Let F 0 = F± - 1 and Fn = Fn_2 + 4-i> n = 2, 3, ..., 
denote the Fibonacci numbers. If either 

FN _k 
(2) X]<_1 = Xk_2 + — " -(Xk ~ Xk_2) 

LN-k+1 
or 

•^N -k 
(3) xk_1 = xk - - ~(xk " xk-i^ 

then xk_x is one of the two first evaluations in a Fibonacci search with N - k 
+ 1 evaluations, on the interval bounded by xk_2 and xk., In this case, xk + l9 
..., xN can be chosen as the next points in this Fibonacci search. This choice 
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guarantees the smallest final interval of uncertainty among all other methods 
requiring N - k additional evaluations. 

If both (2) and (3) do not holds the next points can be chosen according to 
Witzgall's algorithm [10]. This algorithm guarantees the smallest final inter-
val of uncertainty in a fixed number of function evaluations when, for some 
reason, the first evaluation took place at some argument other than the two 
optimal ones. 

We now show how to choose the increment multipliers a^9 i = 3,...,/lf-l, 
so that equations (2) or (3), according to our preference, will hold when the 
bracketing algorithm terminates after k < N evaluations. 

Equation (2) implies that 

Fpj _ k 

xk-i " xk-z = "p [ (xk " xk-i^ + (xk-i " Xk-2^ 

o r 

FN-k + i xk ~ xk-i 
= + 1 = ou + 1. 

*N-k xk-i ~ xk-2 

Denote the value of a^ which satisfies the above equation by ajj,1 , then 

(4) <*<" - % * ^ - 1 = % ^ < 1 . 

Equation (2) holds for k < N if and only if ak = a^,1) . 
Similarly, equation (3) implies that 

FN-k 
(Xk ^ _ x ) + (xk-l Xk-2^ F N-k + l 

or 
FN-k+l _ Xk- l "" xk-2 _ J _ 

FN_k
 xk ~ xk-l ak 

(2 ) 
Denote the value of ak which satisfies this equation by a^ , then 

(5) a ( 2 ) = - ^ - = - ^ - > 1 
Olk ' rN-k-l 

Equation (3) holds for k < N if and only if ak = a [ 2 ) . 
Let dk = |tffc-tffc-i | * /c = 1, . .., N9 denote the search increments, then 

(6) d2 = \x2 - x± | and 
dk = akdk-i = ak ' ak-i a3|a?2 - a j , fc = 3, ..., fl. 

Denote the search increments by d[1) and d(
k
2) when a^1} and a[2) are chosen, 

respectively, for k = 2, ..., N - 1. Then equations (4) and (6) yield 

Q )
 FN-k-l FN-k FN->+ . | F N - k - l \ „ „ I 

dl1} = -= y — • • • * e *— • F2 - xi I = — \x2 - x± I, 
*N-k ^N-k + 1 *ff-3 rN-3 

k = 2, ...,/!/- 1. 

If the bracketing algorithm terminates after k < N evaluations, then the 
maximum is located in an interval of length 

I I ,(1) , M ) FN-k-l+FN-k> , FN-k + l. , 

K " ^ - 2 I = d\1} + d k ^ i = TT— \xz - a j = la?2 - a j . "fc k~1 FN-
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This interval is further searched by a Fibonacci search with N - k -f- 1 evalua-
tions (including the one in xk_±) which reduces its length by a factor (FN_k + 1 ) ~ 1 . 
Consequently, the length of the final interval is 

FN-3 

independent of k. This length is satisfactorily small in comparison with 

1*2 - XlI 
F 

N-Z 

which can be achieved by 717 — 2 evaluations if / is known to be unimodal with a 
maximum between xx and xz« 

Suppose, however, that the bracketing algorithm terminates after N evalua-
tions without bracketing a local maximum. The total size of the searched in-
terval is 

N-i \x2 - x± | F 

fc=2 • N-3 

I + 

In fact, when N is large, this sum approaches (1 + x) \x2 - x1| where x = 1.618 
satisfies x2 = 1 + x. The cost of obtaining a small final interval in case of 
success is in searching a relatively small interval and thus increasing the 
chances that the bracketing algorithm will fail. 

This default can be overcome by using ak
2>> rather than a^ . In this case, 

FN -3 FN-k + l FN-3 , 

W \X2 

FN-3 

~ Xl 1 ~ J? \X2 ~ Xl 1 
r N - k - l 

k = 2 , -...,'N - 1 . 

i(2) 
k FN-k-l FN-k 

The sequence dk increases with k so that a larger interval is scanned, 
and it is less likely that the bracketing algorithm will fail. In practice, 
some of the last increments dk* may be replaced by smaller increments, possi-
bly by d(

k
1) . 

4. SUMMARY 

We suggest a two-stage search procedure for maximizing functions by a fixed 
number of evaluations. The first stage is a quite standard bracketing subrou-
tine and the second is either the regular Fibonacci search or the modified 
method of Witzgall. During the first stage, the kth evaluation is at the point 
xk calculated from xk = %k_1 + aj<(xj<_-1 ~ xk-z^' We suggest three alternatives: 

A. Let ak = a^1? <_ 1. In case of success, proceed by Fibonacci search to 
obtain a small final interval. 

B. Let ak = a^2) > 1. In case of success, proceed by Fibonacci search. 

The chances for success are better than in case A, but the final inter-
val is longer. 

C. Let ak > 0 be arbitrary and proceed by WitzgallTs method. 

We note that different alternatives may be chosen for different values of k. 
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2,3 SEQUENCE AS BINARY MIXTURE 

DONALD J. MINTZ 
Exxon Research and Engineering Company, Linden, NJ 07036 

The integer sequence formed by multiplying integral powers of the numbers 
2 and 3 can be viewed as a binary sequence. The numbers 2 and 3 are the com-
ponent factors of this binary. This paper explores the combination of these 
components to form the properties of the integers in the binary. Properties 
considered are: value, ordinality (position in the sequence), and exponents of 
the factors of each integer in the binary sequence. 

Questions related to the properties of integer sequences with irregular 
nth differences are notoriously hard to answer [1]. The integers in the 2,3 
sequence produce irregular nth differences. These integers can be related to 
the graphs constructed in the study of 2,3 trees [2, 3]. It is shown in this 
paper that the ordinality property of the integers in the 2,3 sequence can be 
derived from the irrational number log 3/log 2. This number also finds appli-
cation in the derivation of a discontinuous spatial pattern found in the study 
of fractal dimension [4]. 

In Table 1, the first fifty-one numbers in the 2,3 sequence are listed ac-
cording to their ordinality with respect to value. Since the 2,3 sequence con-
sists of numbers which are integral multiples of the factors 2 and 3, it is 
convenient to plot the information in Table 1 in the form of a two-dimensional 
lattice, as shown in Figure 1. In this figure, the horizontal axis represents 
integral powers of 2 and the vertical axis represents integral powers of 3. 
The ordinality of each number is printed next to its corresponding lattice 
point. For example, the number 2592 = 2534 and 0rd(253Lf) = 50; therefore, at 
the coordinates 25, 34, the number "50" is printed. 
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TABLE 1. Valuef Cardinality, and Factors of the First 
Fifty-one Numbers in the 2,3 Sequence 

Value 

1 
2 
3 
4 
6 
8 
9 

12 
16 
18 
24 
27 
32 
36 
48 
54 
64 
72 
81 
96 

108 
128 
144 
162 
192 
216 

Ordinali ty 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Factors 

2°3° 
2 i 3 o 

2 ° 3 1 

223° 
2X3X 

23 3° 
2 °3 2 

2 2 3 x 

243° 
2 X 3 2 

2 3 3 x 

2 °3 3 

253° 
2 2 3 2 

2 4 3 x 

2 1 3 3 

263° 
2 3 3 2 

2°3l+ 

2 5 3 i 

2 2 3 3 

173° 
2i>32 

2 1 3 4 

2 6 3 1 

2 3 3 3 

Value 

243 
256 
288 
324 
384 
432 
486 
512 
576 
648 
729 
768 
864 
972 

1024 
1152 
1296 
1458 
1536 
1728 
1944 
2048 
2187 
2304 
2592 

O r d i n a l i t y 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

F a c t o r s 

2 ° 3 5 

283° 
2 5 3 2 

2 2 3 4 

2 7 3 x 

2 4 3 3 

2 i 3 5 

293° 
2 6 3 2 

233'+ 

2 °3 6 

2 8 3 i 

2 5 3 3 

2 2 3 5 

2 1 0 3° 
2 7 3 2 

2*3h 

2 1 3 6 

2 9 3 x 

2 6 3 3 

2 3 3 5 

2 1 1 3° 
2 ° 3 7 

2 8 3 2 

253'* 

48 
0 

o36 

26 
O 

18 

* 11 
O 

6 
O 

2 
O 

o° 

56 
O 

43 
O 

32 
O 

23 
O 

15 
O 

9 
O 

4 
O 

o1 

65 
O 

51 
O 

39 
O 

29 
O 

20 
O 

13 
O 

7 
O 

o3 

74 
O 

59 
O 

46 
O 

35 
O 

25 
O 

17 
O 

10 
o 

5 
0 

o84 

68 
O 

54 
O 

42 
O 

31 
O 

22 
O 

14 
O 

8 
O 

95 
O 

78 
O 

63 
O 

50 

38 
O 

28 
O 

19 
O 

12 

106 
O 

88 
O 

72 
O 

58 
O 

45 
O 

34 
O 

24 
O 

16 
O 

118 
O 

99 
O 

82 
O 

67 
O 

53 
O 

41 
O 

30 
O 

21 
O 

131 
O 

111 
0 

93 
O 

77 
O 

62 
O 

49 
O 

37 
O 

27 
O 

144 
O 

123 
O 

104 
O 

87 
O 

71 
O 

57 
O 

44 
O 

33 
O 

158 
O 

136 
O 

116 
O 

98 
O 

81 
O 

66 
O 

52 
O 

40 
O 

172 
O 

149 
O 

128 
O 

109 
O 

91 
O 

75 
O 

60 
O 

47 
0 

2° 21 22 23 24 2S 26 2? 2 8 29 21 0
 2

11 

FIGURE 1 
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We shall now develop a theorem that will condense the information in Fig-
ure 1. 

IkdOKm 1: Ord(2a3*) = ab + Ord(2a3° ) + Ord(2° 3£). 

This theorem states that the ordinality of any point in the 253 lattice 
can be determined from the exponents of the coordinates of the point, and a 
knowledge of the ordinalities of the projections of the point onto the hori-
zontal and vertical baselines. For example, in the case of the number 253lt, 
this theorem takes the form 

Ord(253tf) = (5) (4) + Ord(253° ) + Ord(2° 3lf). 
50 = 20 + 1 2 + 18 

Point 50 and its projections onto the horizontal and vertical baselines (i.e., 
points 12 and 189 respectively) can be seen in Figure las the blacked-in points. 

Since an ordinality of 50 means there are fifty points of lower value, and 
hence, lower ordinality in the lattice, it will be useful to examine in detail 
the locations of these points. In Figure 2, the three polygons enclose all the 
points with ordinalities less than 50. 

Ord [2a3b] = ab + Ord[2a3°] + Ord[2°3b] 

Ord[2534] = 20+ 12 + 18 = 50 

FIGURE 2 

VolljQOVll 

I. Those points with a < 5 and b < 4 (since both a and b are smaller in 
these points than in point 50, the ordinalities of these points must be 
less than 50). 

II. Those points with ordinalities less than 50, with a < 5 and b _> 4. 

III. Those points with ordinalities less than 50, with b < 4 and a >_ 5. 

Since ordinality is determined with respect to value, the fifty points in poly-
gons I, II, and III must represent numbers whose values are less than 2 3 . 

The reason that the ordinality of point 12 is exactly equal to the number 
of lattice points in polygon II can be seen from Figures 3 and 4, with the help 
of the following discussion. By the definition of "ordinality 12" and the fact 
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that point 12 lies on the horizontal baseline, there must be twelve points of 
lower value west and northwest of point 12 (since there are no points south of 
the horizontal baseline, and all points north, northeast, or east are larger). 
But the relative values of all points in the 2,3 lattice are related to each 
other according to relative position. For example, take any lattice point, the 
point directly above it is three times greater in value, the point directly be-
low it is one-third as great in value, the point directly to the right is twice 
as large in value, and the point directly to the left is half as large in value. 
If we normalize the value of point 12 to the relative value 1, the relative 
value of all points west and northwest that are lower in value can be seen in 
Figure 4. This relative value relationship holds for the points west and north-
west of point 12 in exactly the same way that it holds for the points west and 
northwest of point 50, since the relative values of all points are related to 
each other according to their relative position to each other. Thus, the ordi-
nality of point 12 is identical to the number of points in polygon II and the 
ordinality of point 18 is identical to the number of points in polygon III 
(this can be seen with the help of Figures 5 and 6 ) . 

To the west and northwest of point 12 there are twelve points of 
lower value. And to the west and northwest of point 50 there are 
twelve points of lower value. 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

FIGURE 3 

27/32 

9/32 9/16 

3/32 3/16 N 3 / 8 3/4 
o o o-—ov 

Number of fractions in column 

1/32 1/16 1/8 1/4 N 1 / 2 1 
o o- o o o © 
t t t t • 
4 3 2 2 1 

FIGURE 4 
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To the south and southeast of point 18 there are eighteen points 
of lower value. And to the south and southeast of point 50 there 
are eighteen points of lower value. 

FIGURE 5 

Number of fractions in row ' f 

2-^1/3 2 /3 
O - 0 , 

4-*- 1/9 2 /9 N 4 / 9 8/9 
o o o— 

5-*- 1/27 2/27 4/27 8 / 2 7 N 16/27 
O O O O CL 

7-*-1/81 2/81 4 / 8 1 " 8/81 16/81 32/81 64/81 
o-—o-—-o-—o o o o 

FIGURE 6 

If the baseline ordinalities could be computed without recourse to any 
knowledge of non-baseline ordinalities9 a considerable computational effort 
could be saved. A theorem that will allow us to compute baseline ordinalities 
directly will now be developed. However, before this new theorem is presented, 
it will be necessary to expand our nomenclature. 

Up to this point, we have been concerned with only one sequence, the 2,3 
sequence. All ordinalities were of 2,3 sequence numbers with respect to the 
2,3 sequence. However, it is possible to conceive of ordinalities (with respect 
to the 2,3 sequence) of numbers that are not in this sequence. Take the number 
5 as an example. In .Table 1, we see that the 2,3 sequence skips from value 4 
to value 6. The question "What is the ordinality of 5 with respect to the 2,3 
sequence?" is written as: Qrd(5) 2 3 = ? Please note that the subscripts 2, 3 
are written outside of the parentheses, whereas when we previously wrote 
Ord(253lf) there were no subscripts. We could have written 0rd(2534) 2 3 but in 
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order to make the notation more compact, the reference sequence will be speci-
fied only when it is different from the enclosed factors or when an ambiguity 
exists. The convention is also adopted that when the ordinality of a number 
that is not in a sequence is to be determined with respect to the sequence, the 
ordinality of the next highest number in the sequence (with respect to the num-
ber whose ordinality is to be determined) is the ordinality chosen. For exam-
ple, 

Ord(5)2j3 = 0rd(6)2s3 = Ord(2131) = 4 

The ordinality of 5 
with respect to the 
2,3 sequence. 

The next highest number 
in the 2,3 sequence is 
6. That is, 5 "rounds 
up" to 6 in the 2,3 se-
quence. 

And the ordinality of 6 
in the 2,3 sequence is 
4, as found in Table 1. 

But, 0rd(4)2j3 = Ord(2z3u) - 3. 

No round up, since the number 4 is found in the 2,3 sequence. 

Instead of rounding up in the binary 2,3 sequence, as the example above 
illustrates, we shall be concerned with rounding up between the two unary se-
quences: the 2 sequence and the 3 sequence. Thus, from Table 2, we learn that 

0rd(2° \ _ a n-*-̂ /ol\ ._ i n^AfoZ^ 

Ord(25) 

0rd(3lf) 

0, Ord(21)3 

4, Ord(3° )2 

7. 

1, Ord(2z)3 = 2, Ord(23)3 = 2, 0rd(24)3 = 3, 

0, 0rd(31)2 = 2, 0rd(32)2 = 4, Ord(33)2 = 5, 

TABLE 2 

Value 

1 
2 

4 
8 

16 

32 
64 

128 

2 Sequence 

Ordinality 

0 
1 

2 
3 

4 

5 
6 

7 

Factors 

2°  
21 

22 

23 

2" 
2 5 

26 

27 

Value 

1 

3 

9 

27 

81 

3 Sequence 

Ordinality 

0 

1 

2 

3 

4 

Factors 

3°  

31 

32 

33 

3" 

With this nomenclature in mind, we can proceed to the next theorem. 

Tkdotim 2: Ord(2a3° ) =^0Td(2k): 
fe = o 

This theorem states that the ordinality of any point on the horizontal 
baseline of the 2,3 lattice can be determined from a knowledge of the ordinal-
ity of terms in the 3 sequence. And since the ordinality of any term in the 3 
sequence is simply its exponent (as can be seen from Table 2) , the determina-
tion of baseline ordinalities is straightforward. 
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For example9 in the case of the number 253° , this theorem takes the form 

5 

0rd(253° ) = ^ O r d ( 2 k ) 3 . 
k = o 

12 = 0 + 1 + 2 + 2 + 3 + 4 

Table 3 should help clarify this result. 

TABLE 3 

"Rounded Up" to the 
Next Highest Number 

k = 2k = in the 3 Sequence Ord(2k)3 = 

0 1 -* 1 = 3°  0 
1 2 - * - 3 = 31 1 
2 4 -> 9 = 32 2 
3 8 -* 9 = 32 2 
4 16 -> 27 = 33 3 
5 32 -> 81 = 34 __4 

Total = 12 

The origin of this result can also be seen in Figure 4. If we list the 
number of fractions in each column to the left of the blacked-in point, we ob-
tain (going right to left)9 ls 2, 2, 39 4. Since each fraction in these col-
umns is less than one and consists of a numerator that is a power of 3 and a 
denominator that is a power of 29 the question "What is the highest power of 3 
in the numerator, for a given power of 2 in the denominator, consistent with a 
fraction less than one?" can be seen to be related to the question 

Ord(2k)3 = ? 

For example, let k = 5, then, as previously developed, Ord(25)3 = 4. But the 
highest power of 3 in the numerator consistent with 32 in the denominator, and 
a fraction whose overall value is less than one, is 3. That is, 

3 V 2 5 > 1 > 33/25
9 or 34 > 2 > 33. 

Counting 27/32 and the three fractions beneath it in the leftmost column of 
Figure 4 gives 

1 + 3 = 4 fractions: 27/32, 9/32, 3/32, 1/32. 

Thus we see that a numerator power of 3 gives four fractions, since the frac-
tion with the numerator 3°  must be counted. Therefore, "rounding up" counts 
this zero exponent term. 

The next theorem applies to the vertical baseline. 

b 
ThQ.on.rn 3: Ord(2° 3&) = ]Tord(3 k ) 2 . 

fc = o 

This theorem states that the ordinality of any point on the vertical base-
line of the 2,3 lattice can be determined from a knowledge of the ordinality of 
terms in the 2 sequence. And since the ordinality of any term in the 2 sequence 
is simply its exponent (as can be seen from Table 2 ) , the determination of these 
ordinalities is straightforward. 
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For example, in the case of the number 2° 3\ this theorem takes the form 

4 

Ord^S*) = ]£ord(3k)2. 
fc = o 

18 = 0 + 2 + 4 + 5 + 7 

Table 4 should help clarify this result. 

TABLE 4 

"Rounded Up" to the 
Next Highest Number 

k = 3k = in the 2 Sequence Ord(3k)2 = 

0 1 -* 1 = 2°  0 
1 3 -> 4 = 22 2 
2 9 •* 16 = 21* 4 
3 27 -> 32 = 25 5 
4 81 •> 128 = 27 __7 

Total = 18 

The origin of this result can be seen in Figure 6. If we list the number 
of fractions in each row beneath the blacked-in point in Figure 6, we obtain 
(from top to bottom) 2, 4S 5, 7. Since each fraction in these rows is less 
than one and consists of a numerator that is a power of 2 and a denominator 
that is a power of 3, the question "What is the highest power of 2 in the nu-
merator, for a given power of 3 in the denominator, consistent with a fraction 
less than one?" can be seen to be related to the question 

0rd(3k)2 = ? 

For example, let k = 4, then, as previously developed, Ord(3lf)2 = 7. But the 
highest power of 2 in the numerator consistent with 81 in the denominator, and 
a fraction whose overall value is less than one, is 6. That is, 

2713\ > 1 > 26/34, or 27 > 3** > 26. 

Counting 64/81 and the six fractions to its left, in the southmost row of Fig-
ure 6 gives 

1 + 6 = 7 fractions: 64/81, 32/81, 16/81, 8/81, 4/81, 2/81, 1/81. 

Thus we see that a numerator power of 6 gives seven fractions, since the frac-
tion with numerator 2°  must be counted. Therefore "rounding up" counts this 
zero exponent term. 

The combination of Theorems 1-3 gives Theorem 4. 

a b 
TkdOKQjPf{ 41 , Qrd(2a3h) = ab + ^ O r d ( 2 k ) 3 + ] T o r d ( 3 k ) 2 . 

k=0 k=0 

This is the mathematical equivalent of describing a binary mixture in terms of 
its pure components. 

Evaluating Ord(25)3 has been shown to be equivalent to finding the inte-
gral power of 3 (i.e., 3^) such that 

3k+i > 25 > 3fe. 
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The ordinality was then shown to be one more than k (i.e., ordinality= k 4- 1) , 
since the fraction with zero power in the numerator had to be counted. This 
problem can be simplified to a linear problem if the logarithms of the terms 
involved are used. For example, take the above problem. If 25 > 3k, then 

5 log 2 > k log 3 or k < 5 log 2/log 3. 

The term on the right of the last inequality must have an integral and a non-
integral part (since log 2 and log 3 are independent irrationals). To five 
places5 5 log 2/log 3=3.15465. Since 3k + 1 was constrained to be greater than 
25, we can write 

(k + l)log 3 > 5 log 2. 

Also9 since k was specified to be an integer, we evaluate k as the integral part 
of 5 log 2/log 3. Therefore, 1 + integral part of 5 log 2/log 3 is the same as 
the round up of 5 log 2/log 3 to the next positive integer. Since this is also 
k + 1, and k + 1 is equal to the ordinality, we can write Theorem 5. 

Th2.on.rn 5: Ord(2k)3 = Ord(k log 2/log 3) x . 

The subscript 1 in Theorem 5 represents a round up process that rounds up to 
the next highest integer (i.e.. We call the sequence of positive integers the 
1 sequence. In this sequence, the ordinality of an integer is defined to be 
its value). 

Evaluating 0rd(3 ) 2 has been shown to be equivalent to finding the inte-
gral power of 2 (i.e., 2^) such that 

2k+i > 3h > 2kB 

The ordinality was then shown to be one more than k (i.e., ordinality= k + 1), 
since the fraction with zero power in the numerator had to be counted. This 
problem can be simplified to a linear problem if the logarithms of the terms 
involved are used. For example, take the above problem. If 3^ > 2k, then 

4 log 3 > k log 2 or k < 4 log 3/log 2. 

The term on the right of the last inequality must have an integral and non-
integral part (since log 2 and log 3 are independent irrationals). To five 
places, 4 log 3/log 2=6.33985. Since 2k+1 was constrained to be greater than 
34, we can write 

(k + l)log 2 > 4 log 3. 

Also, since k was specified to be an integer, we evaluate k as the integral part 
of 4 log 3/log 2. Therefore, 1 + integral part of 4 log 3/log 2 is the same as 
the round up of 4 log 3/log 2 to the next positive integer. Since this is also 
k + 1, and k + 1 is equal to the ordinality, we can write Theorem 6. 

ThQjotiQJtn 61 0 r d ( 3 k ) 2 = 0rd(7< log 3 / l o g 2 ) 1 . 
The combination of Theorems 4-6 gives Theorem 7. 

Th">**» 7: <*d(2"3»> - ab + | > d ( l o g 3; i q g 2 ) x + go
0 r d(l0g 2/log 3 ) ^ 

The lattice for the 2,3 sequence is not unique to numbers of the form 2a3^, 
a, b integers, a >. 0, b >_ 0. Instead, it represents the ordinality sequence of 
all numbers of the form 

(2x)a (3x)b, a, b Integers, a > 0 , b >_ 0, x > 0. 

2a3fc is seen as the special case in which x = 1. However, the right side of 
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Theorem 7 applies to the ordinality of any number in the 2^,3* sequence, since 

0rd«2-)-(3-)*)2.iS. - ab + £ 0r< 3? 2) 
k=0 & & 1 

h / k 
+ E 0 r d U i o g 2 / ^ l o g 3 ) 1 -

And since the #*s cancel,, we obtain the terms on the right side of the equals 
sign in Theorem 7. 

Therefore, all sequences with component terms of the form (2x)a (3x)b have 
in common the fact that their lattice representations are identical. If a lat-
tice does not uniquely specify a sequence, is there anything that it does spe-
cify uniquely? The answer lies in Theorem 7. From this theorem, we see that 
the number log 3/log 2 (and its reciprocal) are uniquely specified by the lat-
tice representation of the 2^,3* sequence. Therefore, to generate the lattice 
associated with any real number N9 we generalize the results of Theorem 7, to 
give 

ThaoKm 8: Ord(a, b) = ab + X)ord(~) + J2 0rd(l7ii/) ' 

In Theorem 8, Ord(a,&) is defined as the ordinality of the point at coordinates 
a, b. Since Theorem 8 is derived from Theorem 1, we can combine the two theo-
rems to obtain 

IkdOKm 9: Ord(a, b) = ab + Ord(a, 0) + Ord(0, b) . 
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IDENTITIES FOR CERTAIN PARTITION FUNCTIONS 

AND THEIR DIFFERENCES* 

ROBERT D. GIRSE 
Idaho State University, Pocatello, ID 83209 

J. INTRODUCTION 

If i _> 0 and n >_ 1, let <?f (n) (q?(n)) denote the number of partitions of 
into an even (odd) number of parts, where each, part occurs at most % times; 
<?!(0) = 1 (?f(0) = 0 ) . If i > 0 and n > 0, let A*(w) = q|(n) - q?(n). 

We note that for i _> 0 and n > 0, qf(n) + q?(n) = pi (n) , where pi (n) de-
notes the number of partitions of n where each part occurs at most i times. 

The purpose of this paper is to give identities for qfin), q9(n)9 and A^(n). 
The function A^(n) has been studied by Hickerson [3] and [4], and by Alder and 
Muwafi [!]. They have given formulas to determine A^(n), for i > 1, in terms 
of certain restricted partition functions. The case £ = 1 is a well known re-
sult due to Euler [2, p. 285], Another result of this type, the Sylvester-Euler 
theorem [5, p. 264], states 

(1) A(n) = (-l)nS(n), 

where A(n) is the difference function with the restriction on the number of 
times a part may occur removed, and Q(n) is the number of partitions of n into 
distinct odd parts. 

Here we first obtain identities for A^(n), some of which are recursive. We 
then find several identities for q\(yi) and q%(yi) which also give us some new 
results for A^(n). Our identities not only demonstrate relationships between 
these functions and other partition functions, but many of them are also useful 
computationally. 

We will make use of the following partition functions in addition to those 
already defined. For n > 1: 

(i) p(n) (q(n)) denotes the number of (distinct) partitions of n. 

(ii) p mmm% ar.b (n) (qa±i ... 9ar;b(n)) denotes the number of (distinct) par-
titions of n into parts = aj (mod b) , 1 <_ j <_ v. 

(iii) §fc(n) denotes the number of partitions of n into distinct odd mul-
tiples of k. 

(iv) qi(n); pj;2 (n) denote, respectively, the number of partitions of n 
into distinct parts and even parts, where no part is divisible by i. 

By convention, when n = 0, each of these partition functions assumes the value 
1. 

We let [x] denote the greatest integer function and JJ denote the sum over 
r 

all nonnegative r such that the summands are defined. Finally, we let m be an 
integer >_ 1 unless otherwise specified. 

The material in this paper is part of the author's doctoral dissertation, 
written under the direction of Professor L. M. Chawla at Kansas State Univer-
sity. 
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2. IDENTITIES FOR THE DIFFERENCE FUNCTION 

We will base our proofs in this section on the generating function of A^, 
which is given by 

V ^ A / x n n 1 + (-1)V" + 1)J' 
(2) L, A;( n)* = 11 — — - — - — — — 

rc = 0 J = l 1 + X J 

n 
TkdOKQjn 1: (i) A2m(n) = £ A(r)q0. 2w + 1(n - r), 

r - 0 

(ii) A ^ . ^ n ) = £ (-l)rA(n - (3r2 ± r)m). 
V 

VKoo{i Since 

(3) £ A(n);u* = ft ~ 
n = 0 j = l 1 + X

J' 

and 
(4) J ^ Q . a ( n ) x ^ = ft d + * a J ) . 
we have 

" " 1 4 - « . ( 2 m + l ) j oo -, oo 

E ^ w ^ ^ n 1 ^ — — = n —^-nd+^(2m+1),?) 
n = 0 J = l 1 + X0' j = l l + X

JJ = 1 
oo oo 

^A(n)x"^q 0 ; 2 m + l ( n ) x " 
n=0 n = 0 

n = 0\21 = 0 / 

and equating coefficients proves (i). On the other hand, 

* £ • 00 1 _ «.2mj 00 1 00 

' •« = 0 j = 1 1 + x J « 7 - l l + a ? J J = l 

Now Euler's Pentagonal Number Theorem [2, p. 284] states 

(5) ft (1 - xa3) = £ (-l)rx^3r2 + r)a. 
j = 1 r = - oo 

Thus 9 

n = 0 rc=0 r = 0 

* £(E(-l)rA(n - Or2 ± r)m)\xn
9 

n=0\ r ] 

and equating coefficients gives (ii). 

Using the Sylvester-Euler identity (1) for A in Theorem 1 yields the fol-
lowing result. 
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n 
CotwlloAJj U ( i ) A2 m(n) = £ {-iy.Q(p)q0. 2 m + 1 ( n - r), 

r = 0 

' ( l i ) A ^ . ^ n ) = ( - I ) " ! ) ( - l ) r « (n - (3r2 ± r)m). 
P 

Tfr&o/igm 2: ( i ) A ^ . ^ n ) - J ] A ^ . i ^ q - , , . 2 B ( n - r ) , 
P = 0 

( i i ) Al(m + 1 ( n ) = £ ( - D r A 2 m ( n - %(3r2 ± r ) (2m + 1 ) ) , 
P 

where (ii) also holds for m = 0. 
VKOOJi From (2) we have 

1 - x^ EViW^" = n . __ 
n = o i = i l+a;*1 j-i 1 + x° J = 1 

Thus, applying (2) and (4), 

00 OO OO 

n = 0 n = 0 n = o 

and (i) follows. Now 

~ «> i _ '/y.(*tm+2)j oo -, , (2m + l)j oo ^ n N . 

£ \m+1wxn = n •L-̂ —— = n LjLJ£—— n c i - *<2m+1)j 
n = 0 J-l 1 + XJ J-l 1 + XJ J-l 

= £ A2m <«)*»£ ( - i )^*(^2 * r)(2m+i> 
w = 0 P = 0 

from (2) and (5), and (ii) follows immediately. 

Thzotim 3: 
^ 0 ; 2m + l ' 

(-l)r if n = (3r2±r)m for r = 0,1,2, 

[0 otherwise, 

) 

(n) fo r i = 2m, 

^ A i ( n ) q ( n - r ) = 

p = 0 

P/100^: Using (2) and (4) we have 

J^ Ai(n)xnf^q(n)xn = f[ (1 + ( - l ) ^ u + 1 ) i 

fo r i = 2m - 1. 

) . 
Thus, 

X 4 S &i(^q(n - r)\xn 

J - l 

n = 0 \ P = 0 

n°° ( 1 .+ x ( 2 m + 1 ) J ' ) = V * (n)a:n fo r i = 2m, 
J = I 

J ] ( i - x
2mJ) = Y, ( - l ) 2 , a r ( 3 2 , a ± r ) w fo r i = 2m - 1, 

j »• l p = o 

From (4) and (5). Equating coefficients, the theorem is proved. 

Thdoum 4 : 

J2 &iWpA* - r) 
^\2{n) fo r i = 2m, 

^ ( - l ) P p 2 m
2 ( n - ( 3 r 2 ± r)m) for i = 2m - 1. 
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VKOQfc The generating function of p. is given by 

00 

(6) E M n > * n = n 1 - x(i + 1)j 

.. _ j - i i - x J 

and so u s i n g t h i s and ( 2 ) : 

E M ^ n E M n ) * n = n — ( i - *( t+ l ) j >. 
« = 0 n = 0 j - 1 1 - x

2j' 
Now i f £ = 2m, 

J^ I JL \ °° 1 , « . ( 2771+1) 
E EA2m(r)p2 m(" - * o ) « w - n , . (i -* ( 2 m + i ) *<) 
n = 0 \ r = 0 / J = l 1 - tf2j 

ao T 2(2777 + l ) j 

- n1-11^—:— 
3 = 1 l - # 2 J 

-n —^—E^rr^*-
J >1 1 - X2J n = 0 

L ikewi se , i f £ = 2m - 1, 2m + lJfj 

n=0\r=0 / j = i 1 - x 3 

= Y,PZo™2Wxnt,(-1fx^*±r)m 

n=0 r = 0 

= E ( E C-D'p^^w - (3r2 ± r)m))*», 
n = 0 V r ' ' 

where we use (5) to obtain the second equation. Thus the theorem is proved. 

CokollcUiLj 2: If n is odd, 
n 
^A{(p)p{ (n - r) = 0. 

VKOO^i F i r s t we n o t e t h a t b o t h P o ? 2 2 ( n ) = ° a n d PoTiW = ° f o r n E 1 ( m o d 2 ) > 
and s i n c e n - (3 r 2 ± r)m = n (mod 2) t h e c o r o l l a r y fo l lows from Theorem 4 . 

ThojQJiom 5: For n >_ 1, 
n 

( i ) E A 2 m ( r ) ( ?
2 m + 1 ( n - r ) = 0 , 

P = 0 
re 

< " • > E ^ - l W P o . 1 , 3 2 m - i ; 2 n i < n " r ) - 0 . 

P^LOO£: From (2) we have 

,3 
E Ai(^nn — 1 + g " w

 = x> 
n = 0 j-1 1 + ( - 1 ) 2 ' X U + 1 ) J 

where 
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fi 1+,X'- - II (1 + *') = £ q2m+Hn)x«, 
and 2m + 1^' 

n x + xJ. - n 
M l - a;2m>> J' = 1 (1 - aj2"^)(l - a:2'-1) 

n 
J' = O (l. - a;2m','+1)(l - a;2™^3) ••• (1 - x2ms' + ( 2 m' 1 )) (1 - a:2nj' + 2 m ) 

00 

= 2-f Po,l»3, ..., 2m-l; 2m(n'X s 

rc = 0 

and so the theorem follows. 

3. IDENTITIES FOR THE DEFINING PARTITION FUNCTIONS 

We will base the proofs in this section on the generating functions of q! 
and q°9 which we construct in the following two lemmas. 

1 + x ( 2 m + 1 > ^ / ^ , ,sr+lx(2m+mr+iy oo 1 4. ~.(2"1 + D j / » ' 

i « ?•• CD s ^ ^ ' - n 1 1 1 — : — ( E * - 1 ) 
n=0 j - 1 1 - X3 \r-0 

r = 0 / 

(ii) £ ?2°m(n)x" = 0 ^ ^ _ (£<_ i ) V 2 ' " + 1 >" _ £ ( _ 1 ) V A 
n = 0 J = l 1 - X J Yr> = 0 r = 0 / 

Vtioofc F i r s t we r e c a l l t h a t p^ (w) = q%{ri) + q?(n). Thus, u s i n g t h e d e f i n i t i o n 
of A^(n ) , we have 2q?(n) = p . ( n ) + A^(n) . Hence 

rc = 0 n = 0 rc=0 

and s o , from (2) and ( 6 ) , we have 

~ oo -, (2m + l ) j ao 1 , (2m + l)j 
2T,<nJn^n = n LJLJ£—— + n LjL£—— 

n = o j - 1 1 - a; •? J - 1 1 + a;J 

» i . „ (2m+l) j / „ , _ (2m + l ) j oo i _ „ j ' \ 
. n i±£ n i—^ _ + n -±—— . 

/ - i i _ x i \ / - i i + j t ^ ' W i = i i + * ' / 
Now 

n ^—— = E <-i>i,*ap> 
J = l 1 + ^ a J ' P = - -

which is a special case of Jacobifs identity [2, p. 283]. Using this result 
twice yields, 

2 £&„<»>*" - ft 1+a(2"+.1>J( t <-l)'*(2"+1>"+ E <-Dr*") 
rc = 0 J = l l _ ^ J \ r = - o o p = -oo / 

- fi 1+a < 2"+,1"(2 + 2 £(-1)** <*»«>" + 2 £(_1)VA 
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from which (i) follows immediately. To prove (ii) , we note that 

q°Jn) = p2m(n) - q*m(n), 
and so 
00 00 00 

Y,q°m(n)xn = £ pZm(n)x» - £ <72em(n)x" 
n=Q n=0 n=0 

= ^ l - a »"•+»•* _ ̂  1 + a ; ( ^ D i / ^ ( 1)r+lj,f2w+1^+1;, 

j'-i 1 - arJ' i'l 1 - x J V^-o 

2̂  = 0 / 
00 i _j_ «.(2m + l ) j / oo i „ ( 2 m + l)j » ' , %, = F l X + x I [-[ X " x _ V" (_1\2' + la.(2m + l)(p + l)2 

J-l 1 - ̂  \j = U + ^ 2 m + 1 ^ r = 0 

P =0 / 
00 1 I r~ (.2171+1) j / 00 00 

= f j i l i .— ( £ (_1)ra.(2»i+i)i.« _ ^(.D-j-ia^D^ 
J = 1 1 - X J \ r = - oo P =! 

- £ (-l)'a'2V 
r =0 / 

Simplifying the right-hand side of this equation yields (ii), and so the lemma 
is proved. 

Using the same method of proof as in Lemma 1, with several minor altera-
tions, proves the following result. 

L&nma 2: (i) E <?2Vi^n = n 1-=^-T E (-D^r2). 
n = 0 j=l I - xJ \r=o I 

(") E<&,-ifr>*n-.n J E H ) I X ( V ^ / -. v P ( P 

J = l 1 - a r \r.-0 

+ 1 ) 2 \ 

We now give identities for <?? and <7°, and then combine these results to ob-
tain formulas for A^. First note that in Lemma 1, using (4)9 

<7' = 1 1 - xJ «= 0 n = o 

and in Lemma 2, from (6), 

1 - x 2m 3 

= E P ^ ^ W ^ -n _ 
J s i 1 - a;*7 n = 0 

Thus, using these two results, the following two theorems follow directly from 
the lemmas. 

(i) qLM 

t/k] 

E?oV2m + l<W ~ ̂  E(-1>P+1(P^ - (2m + ̂ ^ + D2) 
fc«0 
n 

E P ( " " k) E (-1)P+1^o;2m + i<'c " (2m + D(r + I)2) 
fc = 0 r = o ' , 
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(i i) q°2An) 

[/k] 

5>o;2,n + i<* " fe> E C - D ' t e f t ~ Om + 1)P 2 ) - p(k - r 2 ) ) , 
k = 0 

i/k) 

ft = 0 r = 0 •» 9 
-• < ? o ; 2 w + i ^ - p ) > > 

where p(n) = 0 and qn o (n) = 0 for n < 0. 
' 0 ; 2m +1 

[ /*] 
Tfeeoftem 7: (i) ?•„_!(«) = 21 WPim-ifr " p 2 > ' 

P = 0 

( i i ) ^ _ l ( n ) - £ ( - D ^ V ^ . x ^ - r 2 > . 

Using the results of Theorems 6 and 7 and the definition of Â  proves the 
following corollary. 

CoK.ollaA.lJ 3: 
[/*] 

X X ^ + i ( n ~ fc>(P<fc> + 2 ^ (-l)'p(Zc - P 2 ) 

fe=0 \ p = l / 
[•n] 

( i i ) A ^ . ^ n ) - p2n^n) + 2 £ (~^rP2m-i^ - ^ 2 ) . 
r = 1 

CotoJWaJiy 4: A(n) = p(n) + 2 ^ (-l)pp(n - r 2 ) . 
r = l 

P̂ i00{j» This follows from the results of Theorem l(i) and Corollary 3(i). 
Multiplying both sides of the generating functions in Lemma 1 by 

n (i - *j')> 
J=I 

and using (5), yields the following identi t ies. 

The.oh.Qjn 8: 

[St] 

(i) E C - D ^ V ^ - ^3k2 ± k» = E ( " D ^ ^ o ; 2W + i ( n " <2 w + ^ + 1 ) 2 > 
k P = 0 / . 2 \ \ 

[/*] " < ? 0 ; 2 m + l < n " r »• 
( i i ) £(-l)k<7°m(w - Js(3/C2 ± fc)) = £.(-l)p(<70. 2 m + 1 (" - (2m + l ) r 2 ) 

r = o 
< 7 o ; 2 m + l ( n " r » • 

where q0. 2m+i(n) = 0 when n < 0. 

CofjoZlafiy 5: 

[/!»] 
E(-DkA2 m(n - %(3fc2 ± k)) = q0; 2m+1(n) + 2 £ ( -1)^ 0 ; 2ffl+1(n - z>2). 

k P = i 

Th&otim 9: 

[v^ l 
<*> E (-1)n" r^(2 , ' )«2W +i(» - *> = E (-1)P+1(P(^ - (2m + 1 ) ( P + l)2) 

r = 0 - p(n - 2^)), 
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(ii) E(-Dn"r<72° m(r)e2ra+1(n - r) = £ (-l)r(p(n - (2m + l)r2) - p(n - r2)), 
r = 0 p = 0 

where p(n) = 0 when n < 0. 

P̂ .00̂ ** This follows from Lemma 1 if we multiply the generating functions on 
both sides by 

fi r—-r - f i d - a r^ 1 ^" 1 ' ) = £ (-l)"e2m + 1 (n )*» . 
J = 1 1 + X J J " 1 " = 0 

n 1^1 
lk<LQK<m 10: ( i ) ]T ^ L - l ( p ) P o ; 2 m ( n " P ) = E (-O'pfa ~ p2> » 

r = 0 ' ^=0 
n 1&] 

( i i ) E ^°m-i ( r )Po;2i„( w " V) = E ("Dr + 1P(n - P 2 ) . 

pVt£o£: Here we multiply the generating functions of Lemma 2 by 

1 
(7) n-J = 1 1 - X n = 0 

S P o ^ ^ ^ 

= A(n). 

on both sidess and the theorem follows. 

i(^n'^2m(r)Q2m + 1(n -r) 
p = o 

EA2m»l(^)Po;2m(n " *) 
r = 0 

VK.00^'* Using the results of Theorems 9 and 10, we have 

n 
E(-l)n"%m(r)e2m + 1(n _ r ) 
p = o 
n 

[v^l 
(n) + 2 £(-irP(n - P 2 ) , 

and so this result follows from Corollary 4. 

Th&ofizm 11: 

( (-l)n if n = t2 

for * = 0, 1/2, .... 
0 otherwise, 

n I (-l)n if n = t 2 , 
(ii) 5>0;2;n(n ~ fe> ̂ ( - D ^ V i ^ - ̂ (3p2 **))={ for * = 1, 2, .... 

k = o r I 0 otherwise. 

VKOO^t These identities follow from Lemma 2 if we multiply both sides of the 
generating functions by 

1 - xJ 

n M l - x imj 

and use (5) and (7). 
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CotiolZcviy 1i 

£ = 0 r 

1 if n = 0 

(-l)n2 if n = t2 

for £ = 1, 2, 

0 otherwise. 
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FIBONACCI AND LUCAS NUMBERS OF THE FORMS w2 - 1 j w3 ± 1 

NEVILLE ROBBINS 
Bernard M. Baruch College, New York, NY 10010 

INTRODUCTION 

Let Fn and Ln denote the nth Fibonacci and Lucas numbers, respectively. All 
such numbers of the forms w2, w3, W2 + 1 have been determined by J. H. E. Cohn 
[2], H. London and R. Finkelstein [8] , R. Finkelstein [4] and [5], J. C. Lagarias 
and D. P. Weisser [7], R. Steiner [10], and H. C. Williams [11]. In this arti-
cle, we find all Fibonacci and Lucas nubmers of the forms W2 - 1, W3 ± 1. 

PRELIMINARIES 

(1) 
(2) 
(3) 
(A) 
(5) 
(6) 
(7) 

(8) 
(9) 

(10) 
(11) 

(12) 
(13) 
(14) 

Ln = w -*- n = 1 or 3 
Ln = Iw1 -> n = 0 or ±6 
L„ = w3 -> n = ±1 
L„ = 2w3 -*• n = 0 
Ln = Aw3 -*- n = ±3 
L-n — (—1) Ln 

{Fn , Fn-0 = (Ln> Ln-0 
3\Fn i f f 4 | n 
L2n = Li - 2 ( - l ) K 

^2n + l ~ ^n^n+l ~ (~1) 
I f Or, y) = 1 and xy - w 
and uv = W. 
Fiintl ~ F2n±1^2n ~ 1 
Fi*n

 = F2n- 1^2n+l ~ 1 
FHn-2 = F2n-2L2n " l 

then x = un
9 y = vn

9 with (u, y) = 1 



370 FIBONACCI AND LUCAS NUMBERS OF THE FORMS w2 - 1, W3 ± 1 [Oct. 

(15) Fhn±1 - F2nL2n±i + 1 
(16) Fkn = F2n + 1L 2 n_ x + 1 
(17) ^ n _ 2 = F2n„2L2n + 1 
(18) Lm+n =* ^m_x^n

 + ^ L n + l 
(19) The Diophantine equation y -D - # , with £/ >_ 0, has precisely the solu-

tions: (-1, 0), (0, 1), (2, 3) if D = 1; (1, 2) if D = 3; (1, 0) if D = 
-1; no solution if Z? = -3. 

RmciKkA: (1) and (2) are Theorems 1 and 2 in [2], (3) is Theorem 4 in [8], 
modified by (6). (4) and (5) follow from Theorem 5 in [7]. (6) through (11) 
are elementary and/or well known. (12) through (17) appear in Theorem 1 of [3]. 
(18) is a special case of 1.6, p. 62 in [1]. (19) is excerpted from the tables 
on pp. 74-75 of [6]. 

THE MAIN THEOREMS 

ThdQtim 7: (Fm, Lm±n)\Ln. 

VrLOOJi By (6), it suffices to show that (Fm 9 Lm + n)\Ln. Let d = (Fm 9 Lm + n) . 
(18) -> d\Fm_xLn% (7) -> d\Ln. 

CoKollQJiy 1: (Fm, Lm±2) = 1 or 3. 

VKOO^' Let n = 2 in Theorem 1. 

COHJOUJOJUI 2: (F2n±l9 L2nT1) = 1* 

PW£0_£: (8) -> 3J F2n± 1. The conclusion now follows from Corollary 1. 

Lmma 1: Let (Ẑ  , Lj) = 1 and F̂  Lj = wk £ 0. Then fe = 2 implies j = 1 or 3; 
k = 3 implies j = ±1. 

P̂ iOÔ : Hypothesis and (11) imply 2^ = uk, Lj = Vk. The conclusion follows 
from (1) and (3). 

Consider the following equations: 

(i) Fm = wk - 1 

(ii) Fw = a* + 1 

(iii) Lm = wk - 1 

(iv) L„ = Wfe + 1 

For given fe, a solution is a pair: (/?z, w). If \w\ <_ 19 we say the solution is 
trivial. 

Lojfnma 2: The trivial solutions of (i) through (iv) are as follows: 

(i) (0, 1), (-2, 0) for all k; (0, ±1) for k even. 
(ii) (±1, 0), (2, 0), (±3, 1) for all k; (0, -1) for k odd. 
(iii) (-1, 0) for all k. 
(iv) (0, 1), (1, 0) for all k. 

Vtiooji Obvious. 

Tfeeo/Lem 2: I f k • = 2 , t h e n o n t r i v i a l s o l u t i o n s of ( i ) a r e ( 4 , 2) and ( 6 , 3 ) . 

?X00J: Ccu>& 7.—Let m = 4n ± 1. Hypothes i s and (12) -> F2n±1L2n = W2 ^ 0. 
Theorem 1 -> ( F 2 w ± 1 , ^2«) = *• Lemma 1 -*• 2n = 1 or 3 , an i m p o s s i -
b i l i t y . 

C<X6e 2.— Let m = 4n. Hypothes i s and (13) -> F 2 n _ 1 L 2 n + i = W2 ^ 0 . 
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Co6£ 2. — continued 
Corollary 2 and (11) -*• L2n_1 = V2. 
Now (1) -^2n+ 1 = 1 or 3 ̂ n = 0 or 1. 
Hypothes i s •+m£0-*n£Q-*n= 1 -+ m 4 ••> w 2. 
Co6e 3 .—Let 777 = kn ~ 2 . Hypothes i s and (14) -*• F2nL2n_2 = w2 + 0 . 
Let d = (F2n s ^2n-2.)° I f d = 1, we have a c o n t r a d i c t i o n , a s i n Case 1. 
I f d * 1, then C o r o l l a r y 1 ->• d = 3 . Hence, {F2v /3 ) (L2n_ 2 / 3 ) = ( w / 3 ) 2 . 
Now (11) ->• F 2 n = 3u2

9 £ 2 n _ 2 = 3 ^ 2 . But F2 
s u i t of R. S t e i n e r [10 , p p . 2 0 8 - 1 0 ] . 
Hypothes i s ->m£-2-+n£Q-+n = 2 

3 t r 

ThdOHm 3.* I f fe 

Thuotiom 4.° 

Th&otidm 5: 

PKQOJI 

In 

m = 6 -*• 'i*? = 3 . 

3, then (i) has no nontrivial solution. 

0 or 2 by a r e -

Vtiook- CcttQ. 1.—Let 772 = hn ± 1. As in t h e proof of Theorem 2 , Case 1, we 
have Lemma 1 -* 2n = ± 1 , an i m p o s s i b i l i t y . 

Ccu>& 2 .—Let m 
, 3 

^ 2 n + l = ^ • 
Hypothesis 
sibility. 

4n. As in the proof of Theorem 2, Case 2, we have 
Now (3) -> 2n + 1 = ±1 -*• n'= 0 or -1. 
n £ 0 n -1 -* /7Z = -4 -* F_. = -3 = w3 - 1, an impos-

Co6e 3.—Let 777 = kn - 2. As in the proof of Theorem 2, Case 3, we 
have F2nL2n_2=w3 + 0, (F2n , £2n_2) = 3, so F2n = 3u3, L2n„2 = 3^3 

Now Theorem 2 of [7]->n = 2-*7?7 = 6-*JF6 
bility. 

If k = 3, then (ii) has no nontrivial solution. 

1, an imposs i -

VnoO^i Ccu>& I .—Le t 777 = 4n ± 1. Hypothes i s and (15) -> F2nL2 w3 + 0. 
Theorem 1 and Lemma 1 -*- In ± 1 = ±1 -»• n = 0 or ±1 ̂  777 = ±1, ±3, ±5. 
But F±5 = 5 4- w3 + 1. Therefore, m - ±1, ±3 (trivial solutions). 

Co6e 2.—Let m = 4n. Hypothesis and (16) -* F2n + 1L2n_1 = ZJ3 ̂  0, 
n ^ 0. 

2n 1 = ±l->n 1- 4 + F , u Theorem 1 and Lemma 1 -
an i m p o s s i b i l i t y . 
Co6e 3.—Let tfz = 4n + 2 . Hypothes i s and (17) -*- F2nL2n + 2 = 
As in t h e proof of Theorem 3 , Case 3 , we have F2n = 3 u 3 , £ 2 n + 2 
an imposs ib i l i ty . 
If k = 2, then the nontrivial solutions of (iii) are (±2, ±2). 

Ccu>d 1.—Let 77? = 4 n . 

+ 1 , 

3 * 0 . 
3z;3 

Hypothes i s and (9) ^ 
L2n '+ w = ±1 •> w = 0 
Ca6£ 2 .—Let m = 4n + 2 

-2 

r 2 
J2?l ^ 2 n " 2 1 wz = 1 -> £0 

± 1 , an i m p o s s i b i l i t y . 

Lln+1 + 2 = W 2 - 1 + W 2 - L2„+1 Hypothesis and (9) -*-
± 1 , W = ±2 777 = ±2. 
Co6e 3 .—Let 777 = 4n + 1. Hypothes i s and (10) 

u 2 , L 
= w 

2n + l 

2 

2n+i " y 2 » c o n t r a d i c t i n g ( 1 ) . 
1. Hypothes is and (10) + L 2 n L 2 n _ 1 + 2 = W2 

; 2 . We have : 

(7) and (11) -> L2n 

COAZ 4.— Let 7?7 = 4n 

(9) and (10) -> {L2 - 2 ( - l ) n } { L n L n _ , + ( - l ) n } + 2 

L 3 L n . x + ( - l ) n L 2 - 2 ( - l ) % L n _ 1 = W2. 

Let Mn = L2Ln_1 +X-Dn.(Ln - 2Ln_1) . Now, LnMn = w 2 . Let p be an 
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Co6e 3.—contLnu2d 
odd prime such tha t pe\\Ln. (7) -> p )(Mn -+ pe\\w2 -»• 2 | e . Therefore, 
we must have Ln = u2 or 2w2. 
(1) and (2) -> n = 0, 1, 35 or ±6 -*• m = - 1 , 3 , 11, 23, - 25 . By d i -
rec t computation of each corresponding Lm, we obtain a con t rad ic -
t ion unless 77? = —1 ( t r i v i a l s o l u t i o n ) . 

Tfeeô &ffl 61 If k = 39 then ( i i i ) has the unique n o n t r i v i a l so lut ion (4, 2 ) . 

Vtioojt Co6e_J_. —Let 777 = 4n. 
Hypothesis and (9) -> L2n - 2 = w3 

Now (19) -* L2n = 0, 1, or 3 •> L2n 

Co4£ 2.—Let m = 4n + 2. 

1 ^ 2 n 
3 -*• In 

- 1 = wd. 
2 - * 772 = 4 "> W 

£ 2„ + i + 2 = W3 1 - ^ 2 „ + i + 3 Hypothesis and (9) -
cont rad ic t ing (19). 

CcUjd 3.—Let 777 = 4n + 1. Hypothesis and (10) •> LlnL2 
. = , . ,3 

(7) and (11) -*• L2 
= , , 3 t> , cont rad ic t ing (3 ) . 2n "• » ^ 2 n + l 

C&6£ 4.—Let 7?7 = 4n - 1. As in the proof of Theorem 5, Case 4, we 
have LnMn =: w3. If p is an odd prime such that pe\\Ln 9 then p \ Mn9 

so that pe||7J3 -> 3\e. Therefore, Ln = u3, 2u3, or 4u3. 

But (3), (4), and (5) •*• n = 0, ±1, or ±3 -* 77? = -1, 3, -5, 11, or -13. 
By direct computation of each corresponding Lm9 we obtain a contra-
diction unless 777 = -1 (trivial solution) . 

Thdon.QM 7: If k = 3, then (iv) has no nontrivial solution. 

Vtiooji Ccu>& 1 .—Let 777 = 4n. 
Hypothesis and (9) •> L2^ 
(19) -> L2n = 2, w. = 1 -A 

Ca6e_2_. —Let 77? = 4n + 2. 
Hypothesis and (9) -> £2 n + 1 + 2 

2 = w3 + 1 + L2. 3 = wd 

(19) •> L2n + 1 = 0 , w 

Cctt>& 3 . — L e t 77/ = 4 n 
L 

0 (trivial solution) 

+ 1 •+ L'n + 1 + 1 
1, an imposs ib i l i ty . 

Hypothesis and (10) "*" Lon^? 

^2n^2n + l " ^ 
We have: 

(7) and (11) •> L2n = u , £ 2 n _ ! = ^ » cont rad ic t ing (3), 

Ca6e 4.—Let 7?? = 4n + 1. Hypothesis and (10) 
(9) and (10) -> {.L2 - 2(-l)*}{LnLn + 1 - (-1)"} - 2 = t^ 

Let MM = L 2 ! ^ - (-Dn(Ln + 2Ln + 1). Now, LnMn = W3. As in the 
0, ±1, or ±3. Therefore, 777 = 1, 

we 

-JnXJn + 1 
proof of Theorem 6, Case 4, n 
-3, 5, -11, 13. By direct computation of each corresponding Lm9 
obtain a contradiction unless 777 = 1 (trivial solution) . 

RmcUik'* Cases 1 and 2 could also be disposed of by appeal to Theorem 13 in [9], 

SUMMARY OF RESULTS 

Fm 

Fm 

Fm 

Lm 
Lm 

1 -> w = 0 , ± 1 , ± 2 5 

w3 - 1 -> w = 0 , 1 
w3 + 1 -> w = - 1 , 0 , 1 
w 2 - 1 -> a = 0, ±2 
w3 - 1 •> w = 0, 2 
w3 + 1 -> TJ = 0, 1 

w ±3 
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THE ANDREWS FORMULA FOR FIBONACCI NUMBERS 

MICHAEL D. HIRSCHH0RN 
University of New South Wales, Sydney, Australia 

?. George E. Andrews [1] gave the following formulas for the Fibonacci 
numbers Fn (F1 = F2 = 1, Fn+2 = Fn + F

n+1) in terms of binomial coefficients 

(1.1) Fn = E C " 1 ) ' (» - 1; [(n - 1 - 5j)/2])5 

(1.2) Fn = £(-l)J* (n; [ (n - 1 - 5j)/2]). 
3 

Hansraj Gupta [2] has pointed out that (1.1) and (1.2) can be written, re-
spectively, as 

(1.3a) F2m + 1 = S(2m, m) - S(2m, m - 2), 

(1.3b) F2m+2 = £(2w + 1, m) - S(2m + 1, ffl - 2) 

and 

(1.4a) Fim+i = s(2m + x> w ) ~ s(2m + 1 . ^ - 1 ) 

(1.4b) Fim+2 = s(2m + 29 m) - S(2m + 1, m - 1), 

where S(n9 k) = E(n; j), the sum being taken over those j congruent to k modulo 
5, and has given inductive proofs of (1.3) and (1.4). 



374 THE ANDREWS FORMULA FOR FIBONACCI NUMBERS [Oct. 

The object of this note is to obtain (1.3) and (1.4) by first finding 
S{n9 k) explicitly in terms of such familiar numbers as 

a -i(l + /5)9 6 =~(1 - /5). 

2. We beg in by n o t i n g t h a t 

(2 .1 ) (1 + x)n = Z(n; j)x{. 

I f we pu t x = 1, co, oo2, oo3, GO4 i n t o ( 2 . 1 ) in t u r n (where co = e 5 ) , add t h e r e -
s u l t i n g s e r i e s , and d i v i d e by 5 , we o b t a i n 

(2 .2a ) S(n9 0) = ~ ( 2 n + (1 + oo)n + (1 + ou2)n + (1 + oo3)n + (1 + a)1*)"). 

In s i m i l a r f a s h i o n , 

(2 .2b) $(n, 1) = | ( 2 n + 03^(1 + oj)n + oo3(l + co2)n + oo2(l + oo3)n + o)(l + ^)n)9 

(2 .2c ) s ( n , 2) = ^ ( 2 n + OJ 3 (1 + o))n + a)(l + oo2)n + a/* (1 + u)3)n + OJ 2 (1 + a)1*)"). 

(2 .2d) 5 ( n , 3) = - | ( 2 n + oo2(l + oj)n + u/*(l + oo2)n + a>(l + u)3)n + OJ 3 (1 + a ) 4 ) " ) , 

(2 .2e ) ^ ( n , . 4) = j(2n + a)(l + w)n + oa2(l + oa2)n + oa3(l + u)3)n + ay>(l + a)1*)"). 
2TTJ TTJ TTJ 

Now, l + a ) = l + e 5 = 2 cos — • e 5 = ae 5 , and s i m i l a r l y , 
2iTi 

1 + OJ2 = - B e 5 , 
21TJ 

1 + a)3 = - frf. 5 , 

1 + 03^= ae 5 , 

so (2 .2a ) becomes 

(2 .3a ) S(n9 0) = j ( 2 n + a n e n i r i / 5 + ( - g ) n e 2 n ™ / 5 + ( - . @ n
e - 2 n i r i / 5 + a n e " n 7 r i / 5 ) 

= - | ( 2 n + 2an cos niT/5 + 2 ( - 3 ) n cos 2rar/5) . 

In s i m i l a r f a s h i o n , 

(2 .3b) 5 ( n , 1) = ~ ( 2 n + 2aw cos (n - 2 ) I T / 5 + 2 ( - 3 ) n cos(2n - 4 ) T T / 5 ) , 

( 2 .3c ) 5 ( n , 2) = j ( 2 n + 2an cos (n - 4)TT/5 + 2 ( - $ ) n cos(2n + 2 ) T T / 5 ) , 

(2 .3d) £ ( n , 3) = ~ ( 2 n + 2a n cos (n + 4)TT/5 + 2 ( - 3 ) n cos(2n - 2 ) i r / 5 ) , 

(2 .3e ) £ ( n , 4) = - | ( 2 n + 2a n cos (n + 2)TT/5 + 2(-(3)n cos(2n + 4 ) T T / 5 ) . 

It follows that, for every fc, 

(2 .4 ) sin, k) = y ( 2 n + 2 a " cos (n - 2&)TT/5 + 2 ( - 3 ) n cos(2n - 4fc)ir/5) . 
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3. Now we are in a position to prove (1.3) and (1.4). We have 

S(2m, m) = j(22m + 2a2m + 232 m), 

S(2m9 m - 2) = ±(l2m + 2a2m cos ^ + 2g2m cos ^ V 
so 

S(2m, m) - S^m, m - 2) = j a 2 m ( l - cos ^ ) + | g 2 m ( l - cos ^fj 

= -j=(a2m+1 - 3 2 m + 1 ) 
v5 

= F 
r2m+l9 

which is (1.3a). The derivations of (1.3b) and (1.4) from (2.4) are similar, 
and are omitted. 
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SOME CONSTRAINTS ON FERMAT'S LAST THEOREM 

J. H. CLARKE and A. G. SHANNON 
The New South Wales Institute of Technology, Sydney, Australia 2007 

1. INTRODUCTION 

The proof of "Fermatfs Last Theorem," namely that there are no nontrivial 
integer solutions of xn + yn - zn

s where n is an integer greater than 2, is 
well known for the cases n - 3 and 4. We propose to look at some constraints 
on the values of x, y9 and z, if they exist, when n = p, an odd prime. The 
history of the extension of the bounds on is interesting and illuminating 
[3], as is the development of the theory of ideals from Kummer!s attempt to 
verify Fermat's result for all primes [2]. 

2. CONSTRAINT ON z 

It can be readily established that there is no loss of generality in as-
suming that 0 < x < y < z, Since x f y9 z - y >_ 1 and z - x >_ 2. Following 
Guillotte [4], we consider (x/z)1 + (y/z)'1 = 1 + ei9 where eQ = 19 ep = 0, and 
e^z (05 1) for 1 <_ i <_ p. Summing over i from 0 to p, Guillotte further showed 
that 

P 

1/(1 - xlz) + 1 / ( 1 - ylz) > p + 1 + Yuei> 
from which we o b t a i n 

z(l/(z - x) + l / ( s - y)) > p + 2 . 
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Since z(l/(z - x) + l/(z - y)) <_ z(h + 1) ; 

3z/2 2. z/(z - x) + z/(z - y) > p + 2. 
Hence 

z > 2(p + 2)/3. 

Thus, if solutions in integers exist for the case when p = 7, we must have 
s > 6. 

3. CONSTRAINT ON a; 

Now let hx + y = g. Since z - y >. 1, a? >1 1/̂ - It n a s been shown in [1] 
that h < 21/p - 1, and so 

x > l/(21/p - 1). 

Hence, if integer solutions exist for p = 7, we know that xc > 9.607. Since 
z >_ x + 2, we know for p - 1 that s >_ 11.607, which is better than the bound 
found in Section 2. 

k. CONSTRAINT ON y 

Since l/x < 21/p - 1, we have 1 + p/x < 2. Hence, x > p. For the case 
p = 7 we have that, if solutions exist, then x > 7, which is not an improvement 
on the result in Section 3. However, from [1], z ->• y + 1 as p -»• °°, and thus if 
solutions in integers exist for very large values of p, then very large values 
of x and y are involved. We note also, since 

2l/P =t(^n2Y^-> 
that 

21/p - 1 < In 2/(p - In 2), 

which with the results from Sections 2 and 3 gives 

y > p/ln 2. 

When p = 7, this yields x > 9.099 compared with x > 9.607 from Section 3. How-
ever, asp increases, the inequalities become closer, and the simpler y > p/ln 2 
is adequate, y > 1.442695 is also "sharper" than x > p. 

Zeitlin [6] proved that no integer solutions exist for x + ny <_ nz. We 
note that for n = 7, x> 9.607, y> 10.099, z >_ 11.607 as above, x + ny > 80.300 
and nz _>_ 81.249. Perisastri [5] showed that in our notation 

/2x > Sy(l + l/(2p In 2p)). 

For p = 7 and x9 y, z a s above , /lx = 13.586 and fy(l + l / ( 2 p In 2p)) = 3 .264 . 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A, P, HILLMAN 

University of New Mexico, Albuquerque, NM 87131 

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS 
to PROFESSOR A. P. HILLMAN, 709 Solano Dr., S.E., Albuquerque, NM 87108. Each 
solution or problem should be on a separate sheet (or sheets). Preference will 
be given to those typed with double spacing in the format used below. Solutions 
should be received within four months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 - Fn+i + Fn, Fo = 0, Fi = 1 
and Ln+z ~ Ln+i + Ln, Lo = 2, L\ = 1. 

Also a and b designate the roots (1 + /5)/2 and (1 - /5")/2, respectively, of 
x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-45^ Proposed by Charles W. Trigg, San Diego, CA 

In the square array of the nine nonzero digits 

6 7 5 
2 1 3 
9 4 8 

the sum of the four digits in each 2-by-2 corner array is 16. Rearrange the 
nine digits so that the sum of the digits in each such corner array is seven 
times the central digit. 

B-455 Proposed by Herta T. Freitag, Roanoke, VA 

Let 

m 
Sm =Y*Fi + lLm-i a n d Tm = lOSm/(m + 2 ) . 

Prove that Tm is a sum of two Lucas numbers for m = 0 , 1, 2, ... . 

B-^56 Proposed by Albert A. Mullin, Huntsville, AL 

It is well known that any two consecutive Fibonacci numbers are coprime 
(i.e., their gcd is 1). Prove or disproves Two distinct Fibonacci numbers are 
coprime if each of them is the product of two distinct primes. 

B-*t57 Proposed by Herta T. Freitag, Roanoke, VA 

Prove or disprove that there exists a positive integer b such that the Py-
thagorean type relationship (5F„)2 + b2 = (L^)2 (mod 5m2) holds for all m and 
n with m\Fn . 

B-458 Proposed by H. Klauser, Zurich, Switzerland 

Let Tn be the triangular number n{n + l)/2. For which positive integers k 
do there exist positive integers n such that Tn+k - Tn is a prime? 
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B-^59 Proposed by E. E. McDonnell, Palo Alto, CA, and 
J. O. Shall i t , Berkeley, CA 

Let g be a primitive root of the odd prime p. For 1 <_ i <_ p - 1, let a^ 
be the integer in S = {0, 1, ..., p - 2} with gat E i (mod p) . Show that 

Cl ^ ~~ ^ ^ s ^ 3 "~ < ^ 2 ' • • • » p - 1 ~" p - 2 

(differences taken mod p - 1 to be in S), is a permutation of 1, 2, ..., p - 2. 

SOLUTIONS 

Double a Triangular Number 

B-430 Proposed by M. Wachtel, H. Klauser, and E. Schmutz, Zurich, Switzerland 

For every positive integer a, prove that 

(a2 + a - I) (a2 + 2a + 1) + 1 
is a product m (pi + 1) of two consecutive integers. 

Solution by Frank Higgins, Naperville, IL 

Noting that 

(a2 + a - I) (a2 + 3a + 1) + 1 = (a2 + 2a - l)(a2 + 2a), 

the assertion follows with m the integer a2 + 2a - 1. 

Also solved by J. Annul is, Paul S. Bruckman, D. K. Chang, M. J. DeLeon, Charles 
G. Fain, Herta T. Freitag, Robert Girse, Graham Lord, John W. Milsom, F. D. Par-
ker, Bob Prielipp, A.G. Shannon, Charles B. Shields, Sahib Singh, Lawrence Somer 
and the proposers. 

Making it an Identity 

B-431 Proposed by Verner E. Hoggatt, Jr., San Jose, CA 

For which fixed ordered pairs (h9 k) of integers does 

Fn(Ln + h'~ Fn + h) = F
n + 4 (̂  n + k " Fn + k^ 

for all integers n? 

Solution by Paul S. Bruckman, Concord, CA 

For any integer rn9 

L%- F2
m = {Ln - Fm)(Lm + Fm) = (Fm+1 + Fm_x - Fm)(Fm + 1 + Fm_x + Fm) 

-IF • 2F = UF F 

Hence, the desired identity is equivalent to: 

(*•' FnFn + h + lFn + h-l ~ Fn + i*Fn + k+lFn + k - 1 » 

which i s to hold for some p a i r (h9 k) of i n t e g e r s and for a l l n. In p a r t i c u -
l a r , (1) must hold for n = 0 and n = - 4 , which y i e l d s : 

FhFk+iFk-i = Fr-i*Fh-3Fh-5 = °-

Since the only term of the Fibonacci sequence that vanishes is F0, we must have 
h e {3, 5} and k e {-1, l}, i.e., 

ft* k) e {(3, -1), (5, -1), (5, 1), (3, 1)}. 

Checking out these possibilities, one finds that the unique solution is 

(ft, k) = (3, 1). 
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Also solved by M. D. Agrawal, M. J. DeLeon, Herta T. Freitag, Frank Hlgglns, 
John W. Mllsom, A. G. Shannon, Charles B. Shields, Sahib Singh, M. Wachtel and 
the proposer. 

Alternating Signs 

B-432 Proposed by Verner E. Hoggatt, Jr., San Jose, CA 

Let 
G = F F2 - F3 

n n n + 3 rn+2' 

Prove that the terms of the sequence GQi G±s G2S ... alternate in sign. 

Solution by F. D. Parker, St. Lawrence University, Canton, NY 

G = F F2 - F3 = F (2F + F ) 2 - (F + F ) 3 

= F3 + 4F2F + 4F2 F - F3 - 3F2F - 3F F2 - F3 

_ r72 7J7 » T7 r?2 _ 7^3 

= F (F F - F2 ) = C-l)nF 

Also solved by M. D. Agrawal, Stephan Andres, Paul S. Bruckman, L. Carlltz, M. 
J. DeLeon, Herta T. Freitag, Frank Hlgglns, Graham Lord, Bob Prlellpp, A. G. 
Shannon, Sahib Singh, Lawrence Somer and the proposer. 

Alternate Definition of a Sequence 

B-433 Proposed by J. F. Peters and R. P1 etcher, St. John's University, 
Col1egevllie, MN 

For each positive integer n, let qn and rn be the integers with 

n = 3qn + rn and 0 j£ rn < 3. 

Let {T(n)} be defined by 

T(0) = 1, T(l) = 39 T(2) = 49 and T(n) = 4qn + T(rn)9 for n >_ 3. 

Show that there exist integers a9 h» c such that 

m/ v fan + b~\ 

™ - [—r-y 
where [x] denotes the greatest integer in x. 
Solution by Sahib Singh, Clarion State College, Clarion, PA 

The given arithmetic function T(n) can be defined as 

T(3t) = 4i + 1; T(3t + 1) = 4t + 3; T(3t + 2) = 4t + 4 

or, equivalently9 
T{n) = [(4n + 5)/3]. 

Hence, a = 4 9 2? = 5 9 and o = 3. 
Also solved 2?y Paul S. Bruckman, M. J. DeLeon, Herta T. Freitag, Frank Hlgglns, 
H. Klauser, Graham Lord, A. G. Shannon and the proposers. 

Never a Square 

B-434 Proposed by Herta T. Freitag, Roanoke, VA 

For which positive integers ns if any9 is L3n - (-1) Ln a perfect square? 

Solution by A. G. Shannon, New South Wales Institute of Technology, 
Sydney, Australia 
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^3n " (-D% = a3n + b3n - (ab)n(a" + bn) - 5LnF2
n, 

which would be a perfect square if and only if 5|Ln;but this is impossible for 
all n. 

Also solved by Paul S. Bruckman, Frank Higgins, J. W. Milsom, F. D. Parker, Bob 
Prielippf Sahib Singh, Lawrence Somer, M. Wachtel and the proposer. 

Restricted Divisors of a Quadratic 

B-435 Proposed by M. Wachtel, H. Klauser, and E. Schmutz, Zurich, Switzerland 

For every positive integer a, prove that no integral divisor of a2 + a - 1 
is congruent to 3 or 7 modulo 10. 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

We begin by observing that since a2 + a - 1 is odd, each of its divisors 
must be odd. Suppose there is a divisor d of a1 + a - 1 which is congruent to 
3 or 7 modulo 10. Then d must have at least one prime divisor p which is con-
gruent to 3 or 7 modulo 10. (If this were not the case, the only primes that 
could be divisors of d would be 5, primes congruent to 1 modulo 10, and primes 
congruent to 9 modulo 10. But then d would have to be congruent to 1, 5, or 9 
modulo 10.) It follows that a2 + a - 1 = 0 (mod p). Hence, 4a2 + 4a = 4 (mod 
p) so (2a + I)2 E 5 (mod p). Thus, 5 is a quadratic residue modulo p. 

Let q be an odd prime such that (a, 5) = 1. Then, by the Law of Quadratic 
Reciprocity, ,_ , . 

\q.) = \5) and 

( ! ) -

(j\ = -1 if q = 2 (mod 5), 

(~) « -1 if ? = 3 (mod 5). 

Hence, 5 is a quadratic nonresidue of all odd primes which are congruent to 2 
or 3 modulo 5, so 5 is a quadratic nonresidue of every prime congruent to 3 or 
7 modulo 10. 

This contradiction tells us that no divisor of a2 + a - 1 is congruent to 
3 or 7 modulo 10. 

Also solved by Paul S. Bruckman, M. J. DeLeon, A. G. Shannon, Sahib Singh, and 
Lawrence Somer. 
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PROBLEMS PROPOSED IN THIS ISSUE 

H-330 Proposed by Verner E. Hoggatt, Jr., San Jose State Univ., San Jose CA 

If 0 is a positive irrational number and 1/6 + 1/83 = 1, 

An = [n9], Bn = [n03], Cn = [n02]5 

then prove or disprove: 

An + Bn + Cn - CBn . 

H-331 Proposed by Andreas N. Philippou, American Univ. of Beirut, Lebanon 

For each fixed integer k >_ 29 define the k-Fibonacci sequence {/„ Jn=o by 

f<k) = 0, f<" = 1, and 

U> _ [fn-l+ ••• +foW i f 2 < » < k, 

Letting a = [(1 + /5)/2], show: 

(a) /<*> > an'2 if n >_ 3; 
(b) {/(fe))n = 2 nas Schnirelmann density 0, 

H-332 Proposed by David Zeitlin, Minneapolis, MN 

Let a = (1 + /5)/2. Let [x] denote the greatest integer function. Show 
that after k iterations (k >_ 1) 9 we obtain the identity 

[a^ + 2 [ a ^ + 2[a^+2[.••]]]] = f(2p + 1K2fc + 1)^2p + 1. <P = 0, 1, . . . ) • 

Rem<Vik&: The special case p = 0 appears as line 1 in Theorem 2., p. 309S in the 
paper by Hoggatt and Bicknell-Johnson, The Fibonacci Quarterly 17(4):306-318. 
For k = 29 the above identity gives 

L U L U J J n 5(2p + l) /£ZP+1 <+(2p+l) 2(2p+l) 
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SOLUTIONS 

Con-Vergent 

H-308 Proposed by Paul S. Bruckman, Corcord, CA 
(Vol. 17, No. 4, Dec, 1979) 

Let 
p p (a . a . ... 9 a„) 

[an , a„, ..., an] = — = — 7 r-
1 2 nJ qn qn(al9 a2, ...9 an) 

denote the nth convergent of the infinite simple continued fraction 

[ax, a2, . . . ] , n = 1, 2, ... . 

Also, define pQ = 1, q = 0. Further, define 

(1) ^n,k = Pn(<V a2, ..., an)qfc(ax, a2, ..., ak) 

- p f e (a 1 5 a 2 , . . . , ak)qn(al9 a 2 , . . . , a n ) 

= p q, -p1q90<k<n. 

Find a g e n e r a l formula fo r Wntk. 

Solution by the proposer. 

R e c a l l t h a t t he p ' s and q n
f s s a t i s f y t h e b a s i c r e c u r s i o n 

(2) rn + 1 = an + 1rn + rn_19 n « 1, 2 

Also-, the following relations are either obvious or well known: 

(3) Wn9n = 0; 

(*) tf„,n-i = ( - 1 ) " ' n > ! ; 

(5) tfn,n.2 = (-Dn"1an, n > 2. 

[See Niven and Zuckerman* An Introduction to the Theory of Numbers9 3rd ed. 
(New York: Wiley, 1972), Theorem 7.5, for a proof of (4) and (5).] 

We show, by strong induction, that 

<6> "».k = <-1>k+1P„-k-l K + 2> fl* + 3' ••-. "»>• 
Let 5 denote the set of positive integers n such that (6) holds for 0 <_ k < n. 
Setting n = 1 in (4) yields W± 0 = -1 = (-l)0+1p0; hence, 1 e S. Suppose that 
for some integer m >_ 2, 1, 2, .. ., 772 e S. By (4) and (5), we have: 

(7) Wm+1,m = (-l)m+1 = (-l)m + 1p 0, and Wm + i,m-i = (-D\tl. °r 

Also, if 0 < fe£m - 2, 

W'm + l . k - P » + l < ? k - Pfc<?m + i • <am + lP„ + Pm-l><7k ~ P k ( a » + l<7m + ? » - l > 

= am+i(PB«?fc " P k ^ ) + P r a „ A " P , ^ . , = am + 1»m, k + < V 1 ( k 

[u s ing (1) and ( 2 ) ] . Hence, by t h e i n d u c t i v e h y p o t h e s i s and ( 2 ) , 
&m + l , f c =: C"1) am+lPw~-fe-l(a7< + 2 9 • • •» arc) + ( _ 1 ) Pm-fc-2(afe + 2» • • •» a m - l ) 

= ^ ^ V * ^ . ••-. «m + i)-r m - 7< 
Thus, u s i n g (7) and ( 8 ) , 
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<9> ^ + i. k " (-1)*+1P„-kK + 2 a m + 1 ) , 0 < f e < m , 

which is equivalent to the statement (jn + 1) e S. Hence9 

1, 2, . . . , w i £ 5 ^ ( m + 1 ) e 5 . 

By induction9 (6) is proved. 

Fibonacci and Lucas Are the Greatest Integers 

H-310 Proposed by Verner E. Hoggatt, Jr., San Jose State Univ., San Jose, CA 
(Vol. 17, No. 4, Dec, 1979) 

Let a = (1 + v/5)/29 [na] = an9 and [na2] = bn. Clearly an + n = bn. 

(a) Show that if n = F2m+1, then an = F2m + 2 and £n = F2m + 3. 

(b) Show that if n = F 2m, then an = F2m + 1 - 1 and bn = F2m + 2 - 1. 

(c) Show that if n = L2m , then an = L2m + i a n d ̂ n = L 2 m + 2 -
(d) Show that if n = £2 m + 1, then an = L2m + 2 - 1 and bn = L2m + 3 - 1. 

Solution by Paul S. Bruckman, Corcord, CA 

We begin by noting that 

F - OF = 4={an+1 - 3n+1 - a(an - 3n)} 
n + l n /5 

= 4=(an + 1 - 3n + 1 - an + 1 - 3n-x) 

= - 3 n / / 5 ( 3 - a ) , 
or 
(1) 3 n = ^ , - aF„ . 
v y M rc+1 n 

A l s o , aln - Ln+l = a ( a " + 3") - ( a " + 1 + 3 n + 1 ) = -PB(B - a ) , or 
(2) e V 5 = a £ „ - Ln+l. 

Since - 1 < 3 < 0 , t h u s 0 < 3 2 n £ 1 and - 1 < 3 2 n + 1 < 0 (n _> 0 ) . Hence, u s -
ing (1) 

0 < F2n+1 ~ aF2n ± 1 a n d ~l < F2n+2 " *F2n+l < °5 

note that equality is attained above if and only if n = 0. Therefore, 

F2n + 1 - l i « F 2 n < F2n + 1 and F2n + 2 < aF2n+1 < F 2n + 2 + 1 (n > 0). 

It follows that 

(3) [aF2n] -F2n+1 - 1, and 

(4) [oP2„ + i] =
 F2n + 2 <« >.0). 

Now (3) i m p l i e s [ a 2 F 2 „ ] = [ (1 + a ) F 2 „ ] = F'2n + [aF2n] = F2n + F2n + l~ 1, or 

(5) [ « 2 F 2 J - F 2 n + 2 - 1. 
A l s o , [a2F2n+1] - F 2 n + 1 + [aF2n+1] = F2n+1 + F2n+2, or 

(6) [a2^2n + J = F2n + 3-
Note that (4) and (6) are equivalent to (a) of the original problem; also, 

(3) and (5) are equivalent to (b) of the original problem. 
In order to prove (c) and (d) s we proceed similarly, using the result in 

(2). We need only observe that |3n/5*| < 1 for n >_2. The desired results then 
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follow, as before, for all values of n except for possibly n - 0; however, a 
quick inspection shows that the results also hold for n = 0, i.e., 
(7) [aL2n] = L2n + 1, [aL2n+1] = L2n+2 - 1, 

which imply the other two results. 

Commtnt by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

Sharp-eyed readers will find that this problem can be solved easily by us-
ing the following four lemmas established in the article "Representations of 
Integers in Terms of Greatest Integer Functions and the Golden Section Ratio" 
by Hoggatt and Bicknell-Johnson [The Fibonacci Quarterly 17(4):306-318]. 

Lemma 1 (p. 308): [dFn] = F
n+1> n odd, n >_ 2; 

[aFn] = Fn + 1 - 1, w even, n >. 2. 

Lemma 2 (p. 308) : [a2Fn ] = Fn + 2, n odd, n >_ 2; 

[a2Fn] = Fn + 2 - 1, n even, n j> 2. 

Lemma 6 (p. 315) : [aLn] = Ln + 1 for n even, if n _> 2; 

[aLn] = £n + 1 - 1 for n odd, if n >_ 3. 

Lefflma 7 (p. 375) : [a2Ln] = Ln + 2 if n is even and n _> 2; 

[a2Ln] = £n + 2 - 1 if ft is odd and n _> 1. 

Also solved by Bob Prielipp, G, Wulczyn, and the proposers. 

CORRECTIONS 

1. The problem solved in Vol. 18, No. 2, April 1980 is H-284 not H-285. 

2. H-315 as it appeared in Vol. 18, No. 2, April 1980 had several misprints in 
it. A corrected version is given below. 

H-315 Proposed by D. P. Laurie, National Research Institute for Mathematical 
Sciences, Pretoria, South Africa 

Let the polynomial P be given by 

POO = zn + an_1zn~1 + an_2zn~2 + ... + a±z + aQ 

and let zls z2, ..., zn be distinct complex numbers. The following iteration 
scheme for factorizing P has been suggested by Kerner [1]: 

, u -
n 
Il(Zi ~ 3j) 

J - l 
*** 
then also 2_, ̂ i = 

i - 1 
Reference 

- J - J ^ - J 

" a n - l -Prove that if £_.zi - ™^n_1» 
J = I 

1. I. Kerner. "Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von 
Polynomen." Numer. Math. 8 (1966):290-94. 
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