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A GENERALIZED EXTENSION OF SOME FIBONACCI-LUCAS IDENTITIES 
TO PRIMITIVE UNIT IDENTITIES 

GREGORY WULCZYN 
Bucknell University, Lewisburg, PA 17837 

This paper originated from an attempt to extend many of the elementary Fibo-
nacci-Lucas identities, whose subscripts had a common odd or even difference to, 
first9 other Type I real quadratic fields and, then, to the other three types of 
real quadratic field fundamental units. For example, the Edouard Lucas identity 
^3JL-, + &!! - Fl i - F„ becomes, in the Type I real quadratic field, 

[/Si- a = 39 y ^ F 3 + i + 39F3 _ ps^ m (5)(195)F3ne 

This suggests the Type I extension identity F„+i + L ^ - Fn-i = F1F2F3n and the 
Type I generalization: F%+2r+i .+ ^ir+i^n - Fn-ir-i = F2r+1Fkr+ i^in • T n e Ezekiel 
Ginsburg identity F „ + 2 - 3F^ + Fn-2 - 3F3n becomes, in the Type I real quadratic 
f i e ld , 

(/61)Fn
3

+2 - 1523Fn
3 + F 3 . 2 = (195) (296985)F3n. 

This suggests the Type I iden t i ty extension F„+2 ~ LiF\ + Fn-i = F2Fi*Fsn and the 
Type I genera l iza t ion: F3

+ 2r - L2rFn + ^n-2r = F2rFkrF$n. 
The transformation from these Type I i d e n t i t i e s to Type I I I i d e n t i t i e s can be 

represented as 
(I) Fn *-+ ( I I I ) 2Fn or (I) Ln ++ ( I I I ) 2Ln. 

The transformation from Type I to Type II and Type III to Type IV for identities 
in which there is a common even subscript difference 2v can be represented as 

(I, III) F2r +-> (II, IV) Fr9 L 2 r «-* L r , Fn+2* *+ Fn+r* and L n + 2 p «-• L n + r . 

I. Type, I primitive units are given by 

a = 2 — " 9 ̂  = 2 s a^ = ' " (modul°  8 ) * 

a 2 - &2£> = - 4 , a and 2? a r e odd. 

{s + >£f. i i i ^ f . P< . i(c,. - 6"), „ . . . - • r. 
Fn and L M are also given by the finite difference sequences: 

Fn + 2 - ̂ n + l + *». *1 = *>» F2 = a&; 

L n + 2 = aL n + 1 + Zrn, Lx = a, L 2 = a + 2. 

11 • Type. II primitive units are given by 

a . SL±£&t p _ i l M , a 3 - l, D = 5 (modulo 8), 

a 2 _ fc2D = 4s a 2 _ fo2D ^ _^ a and £ are odd. 

(iL± f^J - —2 -, Fn = ̂ (a» - 3n)9 Ln = a* + 

F„ and £ n are also given by the finite difference sequences: 

385 



386 A GENERALIZED EXTENSION OF SOME FIBONACCI-LUCAS IDENTITIES [Dec. 

Fn + 2 = ^ n + 1 - Fn> F! = *>9 F, = ab; 

Ln + 2 = aLn+l ~ Ln> L± = a9 L2 = a - 2. 

1 1 1 • T{/pe III primitive units are given by 

a = a + £/D9 B = a - &/D, ag = -1, a2 - b/D = -1. 

(a + b/Df - Ln + F n v ^ , Fn = ~{an - 3 n ) , L n = | ( a » + Bn) -

Fn and Ln are also given by the finite difference sequences: 

Fn+2 = 2aFn+1 + Fn, F± = b9 F2 = lab; 

Ln+2 = 2aLn+1 + Ln9 L± = a9 L2 = 2a2 + 1. 

^ ' T̂ /pe 11/ primitive units are given by 

a = a •+ 2?/D, 3 = a - &/D, ag = 1, a2 - b2D = 1, a2 - b2D £ -1. 

(a + 2v£)n = Ln + Fn/D\ Fn = ~ ~ ( a n - 3n), L„ = y(an•+ 6n). 

Fn and Ln are also given by the finite difference sequences: 

Fn+2 = 2*Fn+l ~ ^ , ^ = £ , ^ 2 = 2 a Z ? 5 
£ n + 2 = 2oLn+1 - Ln9 L1 = a9 L2 = 2a2 - 1. 

1. (a) Fibonacci-Lucas identity used: Fn + Ln - 2F 
(b) Type I extension: aFn + bLn = 2Fn+1 
(c) Generalizations: 

Types I & I I LmFn + FwLn = 2Fm + n 

Types I I I & IV LnFn.+ F^Ln = F w + n 

*^B 
F L 
*- num 
FmK 
FnLm 

-
-
-
-

LmFrt 

FmLn 

LmFn 

FmLn 

= 
= 
= 
= 

2(-ir+x., 
Wn-m 

V x / L n-m 

F n-m 

2. (a) F ibonacc i -Lucas i d e n t i t y used : Ln - Fn = 2Fn_ 
(b) Type I e x t e n s i o n : bLn - aFn = 2F n _ x 
(c) Generalizations: 

Type I 

Type II 

Type III 

Type IV 

3. (a) Fibonacci-Lucas identity used: Fn+s + F%- = 2(F2+2 + Fn + i) 
(b) Type I extension: b(F2

n + 3 + F2) = F3(F2
n + 2 + F2

 + 1) 
(c) Generalizations: 

Types I & III F2r_1(!Fn+^m_1 + Fn) = Fhm_1 (Fn + 2m + r_1 + Fn+2m_r) 
F Ir-l^n + km-l + ^n ) = F hm-l^n+2m + v-1 + ^ + 2 ^ - ^ 

Types II & IV F2r_ x (F*+hm_ 1 - Fn2) = F ^ . ^ F ^ ^ ^ - F2
n+2m_r) 

"Zr-l^n+'-tm-l "" ^ n> ~ Fh m- 1 ^n + 2 m + r- 1 ~ Ln + 2m_v) 
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4. (a) Fibonacci-Lucas identity used: 

F ~F , + F F = 2(F F 4- F F ^ 
Ln + 3J-n+k T r n r n + l ^ , v c n + 2 r n + 3 T n + l r n + 2' 

(b) Type I e x t e n s i o n : 

^^n+3Fn+k + ™n™n + l ' = ^ 3 ^ n + 2^n + 3 + ^n+l^n + 2^ 

(c) Generalizations: 

Types I & III 

•̂  2 r - 1 ^ n+ km-1 n+ km n*n+l' ~ km- 1 ^ n + 2rn + r- 1 ̂ n+2m+ r n + 2 m - K n + 2 w - r + P 

2 r - l ' n + ta-1 n + ^m ttn+l' = km-1^ n + 2m + r>-1 n+2m+r n + 2m- r^n+ 2m- r + 1' 

Types I I & IV 

2r-l^ n+km-1 n+km n n + 1 ' km-1^ n+2m+r-l n+2m+r n+2m-r n+2m-r+1^ 
F2r-l^n+km-l^n+km ~ ^n^n+l' = Fkm- 1 ^n + 2m + r- l^n + 2m+ r " n+ 2 m - r ^ n + 2m- P + 1 ' 

5 . (a) F ibonacc i -Lucas i d e n t i t y used : F2m + F% = 2FmFm+1 
(b) Type I e x t e n s i o n : £F2 m + aF*m = 2 i ^ F w + 1 
(c) Generalizations: 

Type I FrF2m + LrF* = 2FmFm+r 

DFrF2m + LvLl = 2LmLm+r 

T 7 P e I I ^ 2 r a +LvFl = 2FmFm + p 

D ^ 2 m + LrL2
n = 2£mLm + r 

l yPe " I FrFla + 2LPF* = 2FmFm + r 

DFrF2a
 + 2 L ^ - = 2 L ^ m + r 

Type IV FrF2m + 2LrF2
m = 2FmFm+r 

DFrF
2m

 + 1L*Ll = lLmL^r 

6. (a) F ibonacc i -Lucas i d e n t i t y used : F2m ~~ ^m ~ 2-FmFm-i 
(b) Type I e x t e n s i o n : bF\m - aF* = 2FWFW_1 
(c) Generalizations: 

Type I FrF2m - LrFl = 2{-XY^Fm Fm_ r 

^FrF2m ~ LrL2
m = ~2LmLm_r 

Type I I I FrF2m - 2LrFl = 2(-l)*+ 1FmFm_T 

DFrF2m - 2LrLl = 2{-lV+1LmLm_r 

Type IV FrF2m - !LTFl = -2FmFm_r 

DFrF2m - 2LvL2
m = ~2LmLm.r 

7. (a) F ibonacc i -Lucas i d e n t i t y used : L\ - F% = 4 F n _ 1 F n + 1 
(b) Type I e x t e n s i o n : b2L* - a2F% = 4 F n _ 1 F n + 1 
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(c) General izat ions: 
Types I & I I I 

Fill - LlFl = H-iy+1Fn + rFn-r> I ; <-l '>'+ 13, + , * „ - , . I " 
^FlFl - LlLl - ^ ( " D r + 1 L n + r V r 9 I ; <-l)1,+1Ln+,Lll_1., I I I 

Types I I & IV 
FrFn - LrFn = ~bFn+rFn_r, II; -^n+^n,1.f IV 

8. (a) Fibonacci-Lucas identity used: ^2n^2n+2 " $F2n+i ~ 1 
(b) Type I extension: L2nL2n+2 - #F|n+1

 = ̂ 2 

(c) General izat ions: 
AH Types L2nL2n+2r - DF2

2n + r = L* 

^2n+r ~ DF2nF2n+2r = ^ * 

9. (a) Fibonacci-Lucas identity used: 

p = p p p +FFF-F^F^F^ 
(b) Type I extension: 

GO rr+m+n = J. m + i^ n + i^ r+i + ^m^n^r "" ̂  m-1^ n-l^r-1 

(c) General izat ions: 
T y P e 1 Fm+2t+lFn+2t+lFr+2t+ 1 + ^ 2 i + A n *» " Fm-2t-lFn-2t-1Fr-2t-1 

**J)&et+3 + ^ t + l ' ^ m + n+r = ^2£ + l ^ \ t + 2̂ m + n + r 

•^m+2t+l^n + 2 t+ l^ r+2t -H ^ ^2t+l^m^n^r "~ ^m- 2t - l^n-2t- l^r- 2t- 1 

~ (L$t+3 + £J2t+l)£'m+n+r = &F2t+lFkt+ 2Fm+n+ r 

Fm+2tFn + 2tFr+2t ~ L2tFmFnFr + Fm-2tFn-2tFr-2t = p (^6 t ~ ^2* )^m + « + r 

^m+2t^n + 2 t^r+2t " ^It^m^n^r + ^m-2t^n-2t^r-2t = (-^6t ~ ^2* )£/*+«+r 

= ^F
2t

Fm^m+n+r 

^m + t^n + t^r+t " LtLmLnLr + Lm-tLn-tLr-t = ^ 3 * " ^ t ^ w + n + r 

Type I I I ^m+2*+l n+2*+l^r+2*+l + ^ 2 t + l " m n ̂  " *w- 2t- l*n- 2£- l * r - 2t- 1 

= "2D 6 t + 3 + ^2t+l '^m+n+r ~ ^2t + l^ tH- 2^m+n+ r 

^m+2t+l^n+2t+l^r+2t+l + '2 t+ l^m^n^r ~ "m-2t-l^n-2t-l"*-2t-1 

= "2"(^6t+3 + -^2t+l)^/w + n+r = ^F2t+ lFht+ 2^m + n + r 

Fm+2tFn + ZtFr+2t ~~ 2L2tFmFnFr + Fm-2tFn-2tFr- 2t = 2 £ ^ 6 t " L2t>>Fm + n+r 

~ F2t Fht Fm + n+r 

^m + 2t^n + 2t^r+2t " 2L2tLmLnLr + Lm^ 2tLn_ 2t Lr_ 2t = "J^6t " ^2t)Fm + n+r 
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II2U1 F
m+tFn+tFr+t - ^ A F n F r + ^ n - t V * " ^ * ~ h K + n + r 

Lm + tLn + tLr+t " 2LtL
m

LnLr + Lm-tLn-tLv-t " ~2^L 3t " ^ t^/n+n+r 

10. (a) F ibonacc i -Lucas i d e n t i t y used ; 
pi + F2 + Fz = 2(F 2 - F F ) 

(b) Type I e x t e n s i o n : 

(c) G e n e r a l i z a t i o n s ; 
T yP e I Fn+2r+l + L2r+lFn + Fn-2r-l = 2(^n + 2r+l ~ ^2r+l/n-2r- lFn•) 

^n + 2r+l + ^2r+l^n * ^n -2 r - l = 2(Ln + 2 r + l "" ^2r + l^n- 2r- l^n) 

F 2 + L2 F 2 + F 2 = 2(F 2 + L F F ) 
n + 2r T u2v n T £n-2v ^^Ln+2r ^ u2vL n- 2rL n ' 

Ln+2r + ^22>^n + ^n-2r = 2 ^ n + 2r + L2rLn- 2rLn) 

Type I I F 2
+ r + £ 2 F 2 + F 2 _ r = 2(F2

+„ + LrFnFn„r) 

L\+v + L r L n + Ln-r = 2 ^n+r + LrLnLn-r) 

Type I I I ^n+2r+l + ^Zr+lFn + ^ n - 2 r - l = 2Wn+2r+l " 2L2r+ l^n-2r- l^n) 

^n+2r+l + **L2r+iLn + £ n - 2 r - l = 2(-^n+2r+l ~ 2Zr2r+ i £ n - 2 r - l^n) 

F n + 2 r + kL2vFn + Fn_2r = 2 ( F n + 2 r + 2L2rFn_2rFn) 

£Jn + 2r + **L2rLn + Ln_2r = 2(Ln + 2r, + 2L2 rLn_2 2 ,Ln) 

Type IV F 2
+ r + 4L2F2 + ^ - r = 2 ( F 2

+ r + 2 L r F n F n _ r ) 
L n + r + 4LrLn + Ln_2, = 2(Ln + r + 2LrLnLn_r) 

1 1 . (a) F ibonacc i -Lucas i d e n t i t y used ; 
Fn+2 = ^n + ^n+1 + 3FnFn+lFn+2 

(b) Type I e x t e n s i o n ; 

P3
n + 2 = K+ ^FUi + 3oF„Fn+1Fn+2 

(c) Generalizations: 

Type I Fl + 2r+l = F*n-2r-l + l̂Ul̂  + 3 L 2r + l^ ^n + 2r + l^»-2p-l 

•̂ n + 2r+l = ^n-2r-l "*" ^2r+l^n + 3L 2 r + 1L £n+2r+l^n-2r-1 

F n + 2 t = L2tFn - Fn.2t - 3 L 2 t F n _ 2 t F n F „ + 2 t 

^n + 2£ = ^2t^n ~ ^n-2t ~ 3L2tLn- 2t^n^n+2t 

Type I I Fn
3

+2, = L3Fn
3 - Fn

3_ r - 3L r F n F n _„F M + r 

^n+r = LrLn ~ L n - r *" ^LrLnLn-rLn + r 

Type I I I ^ + 2 r + 1 = ^ - 2 , - 1 + 8 L L + i F n + 6 L 2 p + 1 F n F n + 2 r + 1 F n . 2 r . 1 

Ln+2r+l ~ £n-2r-l + 8 L 2 r + 1 L n + 6L2 p + 1IynLn + 22,+ 1Ln_ 2 r _ x 

^n+2t = &L2tFn - F n _ 2 t - 6L2tFn_2tFnFn + 2t 

Ln + 2t = 8^2t:^n ~Ln-2t " ^L2tLn^2tLnLn + 2t 
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2 

Tvr>e IV F3 = SL3F3 - F3 - 6L F F F 

£3
n + r = 8LrLl " L\~v " 6LrLnLn-rLn+r 

12. (a) Fibonacci-Lucas identity used: 

K+l + Fn + *•»-! = 2[F„2
+1 - F ^ ^ ] 2 

(b) Type I extension: 

(c) Generalizations: 

T y P e T ^ n + 2 r + l + ^ 2 r + A + ^ n - 2 r - l = 2lFn+2r+l ~ ^ 2 r + l^n "̂ 'n - 2 r - 1 J 

•^n + 2p+l + ^ 2 p + l ^ n + ^n-Zr-1 = 2l^n+Zr+l ~ ^2r+ l^n^n - 2v- 1 J 

rc + 2£ T ^ 2 * n T r n - 2 £ z L r n + 2 t T Lj2trnr n - It J 

^n+2t + ^2t^n + ^n-Zt = 2 [ ^ n + 2t + ^ 2 t ^ n ^ n - 2 t ] 

Type II # + P + L ^ + Fn
4_p = 2[Fn

2
+r + L ^ ^ . J 2 

^n + r + ^ p ^ + -^n-p = 2^n+r + ^r^n^n-ri 

Type I I I £7
n+22>+l + 1 6 i 2 r + l ^ n + Fn-2r-l = 2 [ ^ n + 2 r + l ~ 2 ^ 2 P + l ^ n ^ n - 2r - 1 ] 

^rc+2p+l + 1 6 ^2r+l" C 'n + ^ n - 2 r - l = 2^-Ln + 2r+l " 2 ^ 2 r + A ^ n - 2 r - J 

^n + 2t + 1 6 ^2£ F rc + ^ n - 2 t = 2lFn+Zt + 2 i 2 t ^n ^ n - 2 t ] 

^n+2£ + ^ ^ 2 t ^ n + Ln-2t = 2[Ln+Zt + 2LltLnLn_lt] 

Type IV # + 2 . + 16LX + ^ - r - 2[** + 2..+ 2LpFnFn„r]2 

^ n + P + 16LrLl + £ L P = 2^-Ll+r + 2LrLnLn-r^2 

13. (a) Fibonacci-Lucas identity used: 

Fn+1 ~ Fn ~~ Fn-1 = 5^n Fn- lFn +1 (^n+1 ~ Fn-lFn) 

(b) Type I extension: 

Fl + l ~ & Fn ™ Fn-1 = 5aFnFn-lFn + l(Fn+l " ^ n - l ^ n ) 

(c) Generalizations: 

Type I 
•^n+2r+l ~ ^ 2 r + l ^ n " Fn-Zr-1 = ^ 2 p + A ^ n ~ 2 r - A + 2 r + l ft+2p+l " ^Zr + lF

n
Fn - Zv - 1) 

•^n + 2 r + l " -^2 r+ l^n " ^n-Zr-1 = ^ 2 r + l&n^n- Zv - l ^n + 2 r + l (^n+ 2r + 1 "" ^2r+ lLnLn _ 2 l ) 

^ZtFn " ^ n + 2 t ~ Fn-Zt = ^ 2tF
n
F n-2tFn+Zt (Fn + Zt + ^2tFnF n-2t) 

^2t^n ~ ^n+2t ~ ^n~2t ~ ^zt^n^n-2t^n + 2t (^n + Zt + ^ Z t ^ n ^ n-Zt) 

Type I I Lr
5Fn

5 - Fn
5

+ p - ^ _ r a 5LrFnFn_ Fn + JJ(F2
+p + LrF,Fn_p) 

^ r ^ n ~ Ln+r ~ ^ n-r = ^r^n^n- ^n+r(Ln+r + ^r^n^ n- r) ' 

Type III 

7T5 _ 3 2 T / 5 7^5 - F 5 = 10T/ F F 7J7 CF2 - IT, F F } 
Ln+2r+l ^^Zr+Y- n Ln-2v-\ xyj-u2r+ \L n n- 2v- 1L n+ 2r+ 1 v L n+ 2r+ 1 z'1J2r+ 1 n n- 2r- 1' 
^n + Zr+1 " ^ 2 "^2p+l^n "" ^ n - 2 r - l ~ ^ ^ 2 r + l^n^n - Zv - l^n + Zr+ 1 ̂ n + 2r+ 1 "" 2 j^2r+ l^n^n - Zr- 1' 
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Type IV 

32L5 F5 - F5 - F5 = IOL F F F (F2 + IT, F F *\ 
2 t n rn + 2t £ n-lt LKJLj2trnrn- 2tr n + 2t ^n + 2t + LLj 2t n n - it ' 

32L2tLn - Ln + 2t ~ Ln-2t ~ lQ£/2tLn£J
n-2t£'n + 2t (^n+2t + 2^2t LnLn _lt) 

32L5
rF* - F5

n + T - F5
n_r = lOLrFnFn_rFn + r(F*+r + 2LrFnFn_r) 

^2LrL
n " L

n+r> " Ln-r = l0LrL
n

Ln- rLn + r(L n+ r + 2Lr^nLn_r) 

14. (a) Fibonacci-Lucas identity used: L\ = 2Fn-i + F\ + 6Fn+i^n-i 
(b) Type I e x t e n s i o n : £>3L3 = 2F 3 _ 1 + a3F3 + 6F2

i + 1 F n _ 1 
(c) G e n e r a l i z a t i o n s : 

T y P e I F2r+lLn = 2Fn-2r-l + LZr+lFn + 6 ^ n + 2 r + 1 F n-2v- 1 

•^ ^Zr+l^n = 2 L n _ 2 r - l + ^2r+l^n + 6 L n + 2 r + l ^ n - 2 r - 1 
F2r^n = £J2rFn ~ 2Fn-2r ~ ^n+2r^n-2r 

D FZrFn = L2r£Jn ~" 2^n-2r ~ 6 L n + 2 r ^ n - 2 r 

TvDe I I F3L = L3F - 2F - 6F F 

D FrFn = LpLn - 2 £ n _ r - 6 ^ n + pLn-p 

Type I I I 4 F 3
r + 1 L 3 = F 3 _ 2 , - i + ^3

2r+1F3 + 3 ^ + 2 r + 1 F n . 2 r _ x 

A/?73 r 3 = 4r,3 F3 - F3 - ^p 2 /? 
t i . 2r±J n ^±J2vJ-n •Ln-2r ~>I- n+ 2V1- n - Zv 
4 £ F2rFn = ^ 2 r ^ n ~ ^n-Zr " 3 L n + 2 2 , L n _ 2 p 

Type IV 4Fr3L3 = 4L3Fn3 - F3_r - 3F*+rFn_r 

kD FvFn = 4LpLn - Ln_r - 3Ln + 2,L„_r 

Concluding Rma/ilu 

Following the suggestions of the referee and the editor, the proofs of the 14 
identity sets have been omitted. They are tedious and do involve complicated, al-
beit fairly elementary, calculations. For some readers, the proofs would involve 
the use of composition algebras which are not developed in the article and which 
may not be well known. 

The author has completed a supplementary paper giving, with indicated proof, 
the Type I, Type II, Type III, and Type IV composition algebras. After each com-
position albegra the corresponding identities using that algebra have been stated 
and proved. Copies of this paper may be obtained by request from the author. 

A FORMULA FOR TRIBONACCI NUMBERS 

CARL P. MCCARTY 
LaSalle College, Philadelphia, PA 19141 

In a recent paper [2], Scott, Delaney, and Hoggatt discussed the Tribonacci 
numbers Tn defined by 

TQ = 1, T± = 1, T2 = 2 and Tn = Tn_x + Tn-i + Tn_3, for n >_ 3, 
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and found its generating function, which is written here in terms of the complex 
variable g, to be 

(1) /(*) - — — - — - £ Tnz». 
1 - z - z2 - z3 "=0 

In this brief note, a formula for Tn is found by means of an analytic method sim-
ilar to that used by Hagis [1]. 

Observe that 

(2) z3 + z2 + z - 1 = (a - r)(z - s)(z - "s), 

where r - .5436890127, 
8 = -.7718445064 + 1.115142580£, 

\s\ = 1.356203066, 
and 

\r - s\ = 1.724578573; 

thus f(z) is meromorphic with simple poles at the points z = r9 z = s9 and z = IF, 
all of which lie within an annulus centered at the origin with inner radius of .5 
and outer radius of 2. 

By the Cauchy integral theorem, 

r -./(n)(0) =
 l f /<«> dz IU J 2TT£ # sn+i 

1*1 -.5 
and by the Cauchy residue theorem, 

Ivi J z„-i (3) ^ l i j ^ - ^ ^ ^ ^ 
1*1-* 

where R J> 2 and i?x, i?25 and i?3 are the residues of f(z)/zn+1 at the poles r9 s9 
and s, respectively. 

In particular, since f(z) = -l/((z - r)(z - s)(s - IF)), 

(4) i?, = lim (a - r)f(z)/zn+1 = -l/((r - s) (r - s")rn+1) 
js + r 

= -l/(|r - sl2!'^ 1), 

(5) • B2 = lim (z - s)f(z)/zn+1 = -l/((s - r) (a - s)sra+1), 
and 
(6) i?3 = lim (s - ~s)f(z)/zn+1 = -l/((s - r)(s - s)¥n+1) = i?2 

Along the circle \z\ = R >. 2 we have 

hence 

1 / / ( a ) dz 

z3 + s 2 + z - l l | U | 3 - I s 2 + 2 - ill i?3 - R2 - i? - 1 

(7) 1 f /(g) d 
2TT£ J n + i i r 2 

1 * 1 - / ? 
i? (i?3 - i?2 - i? - 1) 

Now, i f R i s t aken a r b i t r a r i l y l a r g e , then from (3) and (7.) i t fo l lows t h a t 

(8) Tn = -(R1 + R2 + i ? 3 ) . 
One final estimate is needed to obtain the desired formula. From (5) we have 

for n > 0, 
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\E2\ = - A _ _ = _ ± : < ,26/|s|n+1 < .2, 

\s - r\\s - J\\s\n+1 2\s - r\\lm s\\s\n+1 

which along with (8) and (6) implies 
Tn + i?1 = -Rz - i?3S 

so 
\Tn +R1\ = \R2 +R3\ <2\R2\ < . 4 ; 

hence 
Tn - .4 < - ^ < Tn + .4 

o r , e q u i v a l e n t l y 9 
Tn < -R1 + A < Tn + 1. 

Substituting the value of R1 from (4) into (9) we may rewrite (9) in terms of the 
greatest integer function and obtain the desired formula: 

J — — + . 4 
\r - s\2rn+1 
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POLYNOMIALS ASSOCIATED WITH GEGENBAUER POLYNOMIALS 

A. F. HORADAM 
University of New England, Armidale, N.S.W., Australia 

S. PETHE 
University of Malaya, Kuala Lumpur 22-11, Malaysia 

1. INTRODUCTION 

Chebyshev polynomials Tn(x) of the first kind and Un(x) of the second kind are, 
respectively, defined as follows: 

Tn{x) = cos (n c o s " 1 ^ ) (\x\ £ 1 ) , 

Un(x) . B l n K n + D c o s - ^ r ( | x U l ) . 
s i n ( c o s ~1x) 

In 1974 Jaiswal [6] investigated polynomials pn(x) related to Un(x). In 1977 
Horadam [5] obtained similar results for polynomials qn(x) , associated with Tn (x) . 
The polynomials pn(x) and qn(x) axe. defined as follows: 

(x) = 2xpn_1(x) - pn_3(x) in j> 3) with 
(1) 

.p0(tf) = 0, p1(x) = 1, p2(x) = 2x 
and 

rq (,x) = 2xqn ±(x) - qn_3(x) (n >. 3) with 
(2) 

qQ(%) - 0, q (x) = 2, q2(x) 2x. 
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Chebyshev!s polynomials of both kinds are special cases of Gegenbauer polynomials 
([1], [2], [3], [8], [9]) Cl(x) (X > -h, \x\ £ 1) defined by 

Cl(x) = 1, Cjfe) = 2Xx9 

with the recurrence relation 

nClix) = 2(X + n - l)xC^_1(x) - (2X + n - 2)C*_2(x)9 n > 2. 

Polynomials C„(x) are related to Tn(x) and Un(x) by the relations 

a n d *»<*> = 2 ^ — ^ ^ 

Un(x) = Cl(x). 

In Jaiswal [6] and Horadam [5], it was established that x = 1 in (1) and (2) 
yields simple relationships with the Fibonacci numbers Fn defined by 

FQ = 0, i^ = 1, and Fn = F n_1 + Fn_2 (n >_ 2) , 
namely, 

Pn(D = Fn + 2 - 1 
(3) 

qn(l) = 2Fn. 
These results prompt the thought that some generalized Fibonacci connection might 
exist for C„(x). 

In the following sections, we define the polynomials p£(x) related to C„(x), 
determine their generating function, investigate a few properties, and exhibit the 
connection between these polynomials and Fibonacci numbers. 

2. THE POLYNOMIALS px{x) 

Letting 

(X)0 = 1 and (X)n = X(X + 1) ... (X + n - 1), n = 1, 2, ..., 

we find that the first few Gegenbauer polynomials are 

(X )2 
(4) CX

Q(x) = 1, Cfe) = 2Xx9 C\(x) = -j^-ilx)2 - X. 

Listing the polynomials of (4) horizontally and taking sums along the rising 
diagonals, we get the resulting polynomials denoted by px(x). The first few poly-
nomials px(x) are given by 

(A)2 (X)3 

(5) P i W = 1, p\(x) = 2Xx9 p](x) =-JT-(2X)2, p\(x) = -^-(2*) 3 - X. 

We define px(x) = 0. 

3. GENERATING FUNCTION 

ThdQtim 1: The generating function Gx(x9 t) of px(x) i s given by 

°X(X> V = ] £ pX(x)tn~l = (1 - 2xt + t 3 ) ' A . 
n = l 

VKOOJ: Putting 2a: = zy in (4) we obtain the following figure. 
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3 

4 
Rows 

Columns 

Ay 

(A),' 

>'2\ 

a) 
-y2 - x 
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a>4 

IT 

4! "2/ 

( X ) 2 • / ' 

(X)3' (X)2 

y2 s 2! * S 2! 

75Tr ?~Wr X~iTy 
5 ,5 I,,3 

FIGURE 1 

It is clear from Figure 1 that the generating function for the feth column is 

(-Dk(X) 
r - ^ i - *J/)"(A+fc)-

Since pA(x) are obtained by summing along the rising diagonals of Figure 1, the 
row-adjusted generating function for the kth column becomes 

My) = -
Since 

k\ 

(-l)k(̂ )„ / +3 

(1 - tyy<-x + kh 3k 

the generating function of pxGc) is given by 

(6) Gx{x, *) - £ pHx)^-1 = (1 - 2fcc + t3)" L 3 \ - A 

Expanding the right-hand side of (6), we obtain 

(7) 
[ » / 3 ] ( - l ) * ( X ) „ _ 2 k 

P«\iW = E ( M - 2fc)l ( fc ) ( 2 a : ) 
t-3fc 

fe = 0 
Observe from (1), (5), (6), and (7) that pHx) = p (ff), n = 0, 1, 
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4. RECURRENCE RELATION 

TheXJtiem 2: The recurrence r e l a t i on i s given by 

(8) px(x) = (2x)(A + n - 2)_> ,_x 3A + « - 4 
x / r n v / ft - 1 n-1 P* , <*> „•_ l P»-a.<*>» . ( » i 3 ) . 

Vnooji From (7), the &th term on the right-hand side of (8) is 

( x)k(A +n - 2) (X>»-2-2^ 

(-1) 

n - 1 (n 

fc-i(3X + n - 4) 

2 - 2k) 

(A) 

r(*-2
fe-2*)(2a:r- 3&-1 

n-"t-2(S;-

n - 1 (n 

After simplification, this becomes 

2(fc - D ) 
i) /n - 4 - 2 ( f e - 1) 

k - 1 )(2*)"" 3k- 1 

(-Dk(X) n-l-2fc (2a?) 
n-3fc- 1 

fc!(w --1 - 3ft)! 

which is the ftth term on the left-hand side of (8). 

Ordinary Fibonacci numbers Fn are expressible in two equivalent forms: 

(a) 
(9) 

Fn - F
n-1 + Fn-2 

F = IF n-1 <B). 

Observe that expression (8) in Theorem 2 is of the form (3) in p x ( x ) . An attempt 
to obtain the recurrence relation in the corresponding form (a), namely, 

p*(x) = Ap^^(x) "+ Bp^_2(x)9 

where A and B axe. functions of A, leads to an intractable cubic. Perhaps the form 
(8) that follows the patterns of the forms for p (x) and q (x) is the best avail-
able. 

The following recurrence relation involving the derivatives of p x ( x ) is easily 
proved. 

ThdOKom 3: 
(10) 2x(p^+2(x))f - 3(p*(a»)' = 2(n + l)p*+2(x). 
Equation (10) corresponds to the similar results satisfied by p (x) and q n ( x ) . 

5. THE POLYNOMIALS S n ( x ) 

Define 

(11) 

^o^) = °> Site) = 3» a n d 

S„(x) = 5n(x) = (n - 1) lim 
X + 0 

rn-ii 

p»(tf) 

TZLzJ:] 
- V ( - P * ( n - , l ) / n - 2ft - 1\ n-i-3k 
~ JL n - 2k - 1 \ ft ly 

k - 0 

(z/ = 2 # ) , n >_ 2 . 
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From (5) and (11) we obtain 

\s2(x) = 2x9 Ss(x) = (2x)2> Sk(x) = (2x)3 - 3, 
(12) | 

[S5(x) = (2x)h - Mix), S6(x) - (2a?)5 - 5(2x)2 

Using (7) and (11) and following the argument of Theorem 2, we have 

TkzpKQm 4: Sn(x) = 2xSn_1(x) - Sn_3(x) (n >. 3). 

We readily observe the similarity of the form for Sn (x) in Theorem 4 with the 
forms for pn(x) and qn(x) in (1) and (2). •' 

Letting A = 1 in (7), using (11), and comparing kth terms, we have 

ThzoKom St Sn(x) = pn(x) - 2pn_3(x) (n >_ 3). 

ThdQKQm 6: Sn(x) = 2qn(x) ~ pn (x) (n >. 0) . 
VKOOJi From Horadam [5, Eq. 6], 

pn<*0 = qnte) +"p n . 3 ( a ) ' ( i ) 
Therefore, 

Sn(x) = pn(#) - 2{pn{x) - ̂ n(a?)) from Theorem 5 and (i) 
= 2qn(x) - pn(a?)," 

which proves the Theorem. 

Letting x = 1, we have by (3) 
Sn(l) = 2^(1) - pn(l) - 2Fn - F„.x + 1. 

Using the known generating functions for pn(x) and qn(x) given in [6] and [5], re-
spectively, we can readily deduce the generating function for Sn(x) from Theorem 
6. 

Theorem 2 is valid for all x. Hence Theorem 4 also follows from Theorem 2 on 
dividing throughout by A and letting A •*• 0. 

6. THE POLYNOMIALS q*[x) 

Instead of examining px(x) as obtained in (7), suppose one investigates the 
rising diagonal functions q*(x) of 

Q Gc) 
(13) n lim —^ (n >. 1). 

X-»-0 A 

An explicit formulation of qx(x) is 

where 

(15) (X);.2k - X(X)B.2k. 
Writing 

(16) r£(x) - p*+1Gc) - <7*GG) 
and using (7) and (14), we obtain 

(ir> ' rHx) =y 1 ( - 1 ) f e ( r l ~n + k)(X)' y " - 3 k 
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Results similar to those obtained for p„(x) may be obtained for q*(x). At this 
stage, it is not certain just how useful a study of q^(x) and r„(x) might be. 
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ENUMERATION OF PERMUTATIONS BY SEQUENCES—II 

L. CARLITZ 
Duke University, Durham, NC 27706 

1. Andre [1] discussed the enumeration of permutations by number of sequences; 
his results are reproduced in Netto's book [5, pp. 105-12]. Let P(n9 s) denote 
the number of permutations of Zn = {1, 2, ..., n} with s ascending or descending 
sequences. It is convenient to put 

(1.1) P(0, s) = P(l, s) = 60>s. 

Andre proved that P(n9 s) satisfies 

(1.2) P(n + 1, s) = sP(n9 s) + 2P(n, s - 1) + (n - s + l)P(n, s - 2), 

(n >. 1). 

The following generating function for P(n9 s) was obtained in [2]: 

(1.3) £ ( 1 - x*y»'**lTp(n + l , 8)xn- = l ^ J g / / l - * 2 +_sinJL\2
> 

*-** n!^r t 1 + x\ x - cos z J 

However, an explicit formula for P(n, s) was not found. 
In the present note, we shall show how an explicit formula for P(n9 s) can be 

obtained. We show first that the polynomial 

(1.4) p (x) = £ Pin + 1, x)(-x)n-s 

satisfies 

(1.5) p2B(ar) = -£_(1 - x)n-i\2 j^(-l)n+kA2n + lykTn.k+1(x) - 42„+1,„+1 
1 I k-i 
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and 

(1.6) p2B..l(ar) >-L_(l -«)B-2E1(-l)k-1(>l2B.k +A2n,k+1)Tn_k(x)., 
Z k = 0 

where the A n y k are the Eulerian numbers [3], [7, p. 240] defined by 

z \r A .JU. \ - x 

and Tn(x) is the Chebychev polynomial of the first kind defined by [6, p. 301] 

(1 .8 ) Tn(x) = c o s n<$>9 x = cos<J>. 

Making use of (1.5) and (1.6), explicit formulas for P(n9 s) are obtained. For 
the final results, see (3.7), (3.8), and (4.2), (4.3). 

2. In (1.3) take x = -cos (j), so that 

/o i \ \ ^ / • AN-" ^ n V* -nt . i \ / isn~s 1 + cos (b / s i n d> 4- s i n s \ (2 .1 ) > ( s m (b) — > P(n + 1, s ) ( - c o s <b) = -= ±\ j ~ - ..• 
n o n o c o s ^ \ c o s 4> + c o s zl s = 0 

We have 

(s m (f> 4- s m s \ ,_ 2 J-/ • A\ J— = t a n z — (z + d>) cos $ + cos 2 / ° Y 
l/'o J_ AN 1 - COs(g + ([)) 

1 + cos(s + cj)) .* 
Hence, if we put 

(2.2) ( B l n ! ! s l n * 1 = E / ^cos ^ 
v / \cos (j) + cos zf n = 0

 n Y n! 
it is clear that 
/o ON ^ / IN dn 1 - COS (J) 

(2.3) f (cos <J>) - r.n 1 + COS ( 
aq) 

To evaluate this derivative, write 

1 - cos $ I e^% - l\ , 4 
1 + cos y i 0 ^ + w e*i + x (e*t + 1)S 

Then 

1 d 1 - cos (t) _ £e** 2ie^ i 3i _,_ 2i 
4 d$ X + cos * (e** + l) 2 (e<* + l) 3 e** + 1 (e^ + l) 2 ( e ^ + l) 3 

and 

1 d2 1- cos (j) = i2 7i2 12i2 __ 6i2 

4 A» 2 1 + C O S * e** + 1 ( e ^ + l ) 2 (e** + l ) 3 (e** + 1 ) * ' 
The g e n e r a l formula i s 

n 1 <T~2 1 - cos (j) . n - 2 y ( _ r ) f e - i ( ^ - l ) ! 5 ( n , fe) 

where £(«, k) is the Stirling number of the second kind [7, Ch. 2]: 

_1_ 

(2.4) (-l)"ii* -cos 9 . ^ - ^ ( - l ) " - 1 ^ - i ; !^n > K), ( n > 2 ) , 

Es(«. *);£ = rr(̂ 2 - D*. 
n = k 
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The proof of (2.4) by induction is simple. The derivative of the right-hand 
side is equal to 

fc-i (e** + l ) k + 1 fe-i [(«•* + l)k (e*t + l ) k + 1 | 

" ^ w " 1 E < " 1 ) k (fe""1)! {(*S(n, fc)+-£(n, fc- 1)}. 
. *-i ( e ^ + l ) k 

Since feSfa, &) + £(n, /c- 1) = S(n-¥l9 k) , this evidently completes the induction. 

We may rewrite (2.4) in the following form: 

(2 
4 ^ „ _ 2 1+cos <j) ( e#i + 1 )» kV 1 

In the next place, we require the identity 

(2.6) ^ ( - l ) * - 1 ^ - l)!S(n, k)(x+l)"-k - £ (-1)- k_1^„.lika:k. <n >. 1), 
fc-1 fc-0 

where An_1>k i s the Eulerian number defined by (1 .7 ) . 
To prove (2 .6 ) , take 

Eff £ (-D""1^ ~ DiS(n, fc)(* + I)"" 
"" ~ " * fc - 1 

,zn(x + l ) n 

>\ri>9 A . . 
fc^l n - k 

- S^fc." (* + i>"*(**(*+ 1 )- n* 
fc.-i 

= l o gV1 + ^ + i ] = l o g * + i ' 

Differentiating with respect to s9 we get 

On the other hand, by (1.7), £<-i>"fir £<-i>**...*** l + x 

Hence, 

£(~l)*-l(fc - l)!S(n, *)<*+ 1)"-* = E ^ 1 ) " " " " 1 ^ - ! , ^ ' 
fc-1 k - 0 

3. By (2.5) and (2*6) we have, on replacing n by n + 2, 

I d 1 - COS 0 ( - 1 ) " V * , iNn-fc + l , k0 i 
4 * 1 + COS * - 0 , + . » - 2 ^ ( U *•» + ! . * ' ' 
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since An+1 0 = 0. Moreover, since [3] 

(3-1) An+1<k = An+1>n_k+2 (l<k<n+l), 

we have 

4 ^ » i + cos • - 2("1> 2S-n A n + ^ (eH + i)n+2 

. n+1 kn-2fc+2)*i , n „ -i(n-2fc+2)*i 

-i<-*)" £<-D k + X + l .^ , „/ ^ * +2 • 
Therefore, in view of (2.3), we get 

n + l £<n-2fc+2)<K , . „ - \(n - 2k + 2)<K 

(3.2) fn(cos •) =• 2(-i)"£(-l)^X + 1>,f , ( 1 w + 2 

&-1 (2 COS y(J)J 

It is convenient to consider n even and n odd separately, so that 
2n+ 1 

(3.3) /2„(cos W - -\-n £ (-l)»***M2ll + 1 i f c£2-i!LzJL±i2 
22 fc-i (cos •£<> j 

and , 
2n s i n ~(2n - 2k + 1)(() 

o i i n - j . , — - " > . k ' , . 2 1 
^ fc-i (cos cp) 

By (1.3), (1.4), and (2.2), 

PB(COS 4>) = } t cos t S±nn<|) ^ ( c o s +> 
(3.5) , , 

= 2" cosn+2 ±<j> sin""2 j<|> /„(cos <J>) . 

In particular 

p2n(cos $) = 22« cos2n + 2 |c|> sin2""2 |<}> f2„(cos <f>), 

so that, by (3.3), 
2 n + l 

(3.6) p2n(cos <p) = - ^ - ( 1 - cos (p)""1 • £ (- 1 )"+ f c + l 4
2 B + i , k

c 0 8<n " fc + 13 
2 k = l 

Using (3.1) and (.18), (3.6) gives 

(3-7) p2nM - - ^ ( 1 - * ) * 
2 

This proves (1.5). 

2L^(~~l^n A2n + ltkTn-k + l ^ + A2n + l,n + l 
Zc-1 

Next, replacing n by 2n - 1 in (3.5), we get 

p ^ C c o s •) = 2 2 ^ 1 cos 2 n + 1 } * sin2*"3 |<|> / ^ ^ ( c o s (f)) 

= 8 in 2 n - 3 U E ("1)n + ^ 2 n 5 k S i n \^ln ~ 2k+ *>< 
fc-l 

(continued) 
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= | sin2"-14 ^^(-Dn + kA2n k{cos(n --fc)<|> - cos(n - fc + l)(f>} 

2n 

= __ i_ ( 1 _ c o s M " " 2 ^ ! ) ' " * ^ , + 42n.fc + 1>cos(n-fc)<|> 

= —^-(1 - cos c())? 

Finally, therefore, by (1.8), 

fc = i 

n - l n - 1 1 

• E t - l ) n + kW2Bi.fc +42.n.fc + i)co8(n - m +A2nn\. 
fc = o J 

(3-8) P2„^(x) ~ d - ^ " ^ [ E C - D - ^ a ^ , , +4 ^ W + V , } . 

4. We recall that 

• 2 j 

- 2 - ' * " 4- I £ ( -1) ' | ( " " f " > W " « , <„ > 1). 
' 0<2j<_n <J \ J / 

Ihus (3.7) becomes 

~ E ( - ) 2 - E ^ + 1 , , E (-i)4(n"^J' + 1) 
(n - k - j \ l / n - 1\2„-fc-2j + i _ 1 _ S. / n - 1 V__x2»-s 
V J - l /IV * / • 2""1 2 n t l ' " + 1 ^ - \2n - s){ x) 

1 ^ s=n+1 

Comparison with (1.4) gives 

(4.2) P(2n + 1. P) - - ^ X X ^ , , E (-DJ'(r " " • J' + ') 
^ & = ; 1 s = n + /c + 2 j ' - t - l l > t7 • / 

+ / n - * - A l / " " l\2n-fe-2j+l + _ W « ~ 1\ 

Similarly, it follows from (3.8) that 

w-i 
(4.3) P(2n, a) = - L - £ M + 4 ) E (-1)' 

2 fc = 0 ^n, « + l s = n + fc + 2j-t-l 

{(n-yj)+(n-y-i-%n-*y-
_J_( n - 2 \ 

k-2j 
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5. For numerical checks of the above results, it is probably easier to use (3.7) 
and (3.8) rather than the explicit formulas (4.2) and (4.3). 

It is convenient to recall the following tables for P(n9 s) and An k , respec-
tively: 

TABLE 1 

\v S 

n \. 

1 

2 

3 

4 

5 

6 

7 

0 

1 

1 

2 

2 

2 

2 

2 

2 

2 

4 

12 

28 

60 

124 

3 

10 

58 

236 

836 

4 

32 

300 

1852 

5 

122 

1682 

6 

544 

TABLE 2 

1 

2 

3 

4 

5 

6 

7 

2 

1 

4 

11 

26 

57 

120 

3 

1 

11 

66 

302 

1191 

4 

1 

26 

302 

2416 

5 

1 

57 

1191 

6 

1 

120 

7 

1 

We f i r s t take (3.7) with n = 2. Then 

P l t t e ) - | ( 1 - x ){2^ 5 j l T 2 (x) - 24^2^(3?) + ^ 5 , 3 } 

= |(1 - ̂ r){2(2^2 - 1) + 52# + 66} 

= 2x3 - 28tf2 + 58;£ - 32. 
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Taking n = 3 in (3.7), we get 

ps(x) -|(1 - x)2{-2A7AT3(x) + 2A7aT2(x) - U^ T^x)-+ A^} 

= -|(1 - a;)2{-2(4a;3 - 3x) + 2 • 120(2a;2 - 1) - 2 • 1191a; + 2416} 

= (1 - a;)2(544 - 1188a; + 120a;2 - 2a?3) 
= 544 - 1682a; + 1852a;2 - 836a;3 + 124a;1* - 2a;5. 

Next, taking n = 2 in (3 .8 ) , we get 

fc = 0 

= AhaT2(x). - Wlfjl + 4 ^ )T1(a;) + ^4>2 

= (2a;2 - 1) - 12a; + 11 
= 2a;2 - 12a? + 10. 

Similar ly, taking n = 3 in (3 .8 ) , we get 

E ( - D 3 + kW6tfc +A6>k + 1)Ts_k(x) +AB>3\ [k = o J 

= | ( 1 - a;){-A6jl T3(x) + G46sl + A6>2 )T2(x) - (Asa + A6t3 )T±(x) + A6t3] 

p5(x) = y U - a;) 

= |(1 - a;){-(4a;3 - 3a;) + 58(2a;2 - 1) - 359a; + 302} 

= 2xh - 60a;3 4- 236a;2 - 300a; + 122. 

Another partial check is furnished by taking x = -1 in (3.7) and (3.8). Since 
Tn(-l) = cos rm = (-l)n, it is easily verified that (3.7) and (3.8) reduce to 

n 2n+l 

Pin (-1) = 2 E W2B+1. k + A2n+lw n + 1 ) = ^ 42 n + 1_ fc = (2n + 1) ! 
fc-1 fc-1 

and 
n - 1 2n 

P 2 B - 1 < - 1 > - E ^ . k + 4 2 „ , ^ + l ) + 42n,K = Y,A2n,k = (2"> ! > 
fc = 0 fc = l 

respectively. 
On the other hand, for x = 1, it is evident from (3.7) and (3.8) that 

(5.1) p (1) = 0 (n > 4). 
L n 

Moreover, since Tn(l) = 1, it follows from (3.7) and (3.1) that 

p ( w + 1 ) 'm = r-nn-l(n ~ 1)! \i "T(-i)n+k+1A +A 1 
2 [ *-i J 

2 fc-i 

By (1.7), we have 
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»-i fc-i e2z + 1 n=o 

in the notation of Norlund [5, p. 27]. Hence 

<*.2> pri,<i>-i2FiiLw 
For example 

p̂ '(l) = 3704 - 5016 + 1488 - 40 = 136; 

since C7 = 272, this is in agreement with (5.2). 
As for p _1(^r), it follows from (3.8) that 

p £ : > = (-i>"-,i5^{i:(-i)"+*w2I1.k + ̂ ,,+1) + **,.,.} 
(n -

2" ^ [ fc-1 fc«l 

0 n - 2 Z ^ ^ 1 ) ^ 2 n , fc» 
2 fc-l 

= (w - 2) 1 

so that 

(5.3) PzVA'd) = ° (« > 2). 

p<-_i)(1) = ( . D - ^ i l l f "f (-i)-*kw2lI>k + *,,,. k+1> 
2 I fc = o 

p 
By ( 1 . 8 ) , 

mt, N n s i n neb , . * 
W ) - . , y (a: = cos <(,), s i n 

2 which g ives T n ' ( l ) = n . Thus 

z fe = o 
Af te r some m a n i p u l a t i o n , we ge t 

(5 .4 ) P 2 » " " ( 1 ) = ^ n - ^ ' E ( - D ' : " 1 ( 2 " - 2?C + l ) 4 2 „ , k 

2n 
2 fc-1 

(n - 1)1 2n 

9 n - 2 
2 fc-1 

Making use of (1.7), it can be proved that 

(5.5) (1 - x)A^(x) = An + 1(x) - (n + l)acAn(ar), 
where 

fe = 1 
Hence 

2^n(-l) - ̂ 2n + i(-l) + (2w + l)A2n(-i) - C2n + 1, 

where C2n+1 has the same meaning as above. Thus (5.4) reduces to 
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(5.6) p("_1)(i) - ( w ~ 1 ) ! e , ,. 

For example, 

p'̂ Cl) = 24 - 360 + 472 = 136, 

in agreement with (5.6). 
(Please turn to page 465.) 
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HOW TO FIND THE "GOLDEN NUMBER" WITHOUT REALLY TRYING 

ROGER FISCHLER 
Carleton University, Ottawa, Canada K155B6 

". .. . I WAJbh , . . to potnt out that the, aae ol thu qold<in A&ction . . . 
hcu> appaxtntly bu/a>t out -into a &uddm and d&voAtattng dLuzaAz whtch hah 
&hou)n no AtgnA o& stopping .. . .f? [2, p. 521] 

Most of the papers involving claims concerning the "golden number" deal with 
distinct items such as paintings, basing their assertions on measurements of these 
individual objects. As an example, we may cite the article by Hedian [13]. How-
ever measurements, no matter how accurate, cannot be used to reconstruct the ori-
ginal system of proportions used to design an object, for many systems may give 
rise to approximately the same set of numbers; see [6, 7] for an example of this. 
The only valid way of determining the system of proportions used by an artist is 
by means of documentation. A detailed investigation of three cases [8, 9, 10, 11] 
for which it had been claimed in the literature that the artist in question had 
used the "golden number" showed that these assertions were without any foundation 
whatsoever. 

There is, however, another class of papers that seeks to convince the reader 
via statistical data applied to a whole class of related objects. The earliest 
examples of these are Zeising's morphological works, e.g., [17]- More recently 
we have Duckworth's book [5] on Vergil's Aeneid and a series of papers by Benja-
field and his coauthors involving such things as interpersonal relationships (see 
e.g. [1], which gives a partial listing of some of these papers). 

Mathematically we may approach the question in the following way. Suppose we 
have a certain length which is split into two parts, the larger being M and the 
smaller m. If the length is divided according to the golden section, then it does 
not matter which of the quantities, m/M or M/(M + m), we use, for they are equal. 
But now suppose we have a collection of lengths and we are trying to determine 
statistically if the data are consistent with a partition according to the golden 
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section. Authors invariably use Ml (M + m), but we may reasonably ask which of the 
two we should really use or whether or not it matters. 

Our starting point is a remark by Dalzell in his review of Duckworth's book: 
"But Professor Duckworth always uses the more complex ratio Ml (M + m), which he 
describes as 'slightly more accurate.1 Just the reverse is true. In the rela-
tively few instances when the quotient is exactly .618 then m/M= Ml (M + m) and it 
does not matter which ratio is used. But in all other cases the more complex ra-
tio is less sensitive to deviations from the perfect figure of .618" [4]. 

Let us designate m/M by x9 then M/(M + m) becomes 1/(1 + x) . The golden num-
ber is $ = (1 + /5)/2, and we let <p = 1/$. We then have 

ValzoZt'A Thdotizm: For all x in [0, 1]; 11/(1 + x) - <p\ <. \x - <p\ . 

Why should this result be true? Intuitively, we might reason that in writing 
1/(1 + x) we are starting to form the continued fraction expansion of <p. We shall 
see later that in a sense our intuition is correct, but that there are limits to 
its validity. As a direct proof via continued fractions seems difficult, we use 
a roundabout approach. 

Lommcii Let f be dif ferentiable on [a, b] with \f'\ <_ M. If a is a root of f(x)-x 
(i.e., a fixed point of f), then \f(x) - a\ <_ M\x - a\ on [a9b]e 

VHjQOfc Mean value theorem. 

CoHjottoJiy: Dalzellfs theorem. 

Alternatively, we can obtain the estimate \f(x) - f(y)\ <. [1/(1 + a)2]|x - y\ 
with f(x) = 1/(1 + x) , 0 j<. a <_ xs z/, by simple computation. This shows directly 
that / is a contraction operator with fixed point <p. In particular, when we re-
strict ourselves to an interval bounded away from 0, we see that the distortion 
caused by using M/Qd+m) instead of m/M is larger than that indicated by Dalzell!s 
theorem. 

CoKollaAy: On the interval [a, 1] where a = Jl - 1 = .414..., 

(1 + x) - <P s 1| I 

Note in fact that as x ranges from .5 to .75, 1/(1 + x) only ranges from .667 
to .571. 
CotiolZcUiyi For x c l o s e to <ps 

11/(1 + x) - <p\ * (<p2)\x - <P\ (<P2 = 1 - <p = . 3 8 1 . . . ) . 

Because of its independent interest we now make a slight digression into con-
tinued fractions. We restrict ourselves to the unit interval and therefore write 
[0, a19 a2, ...] for l/(ax + l/a2 + • • • ) • 

Tk<LQK<m* Let a £ [0, 1] have a periodic continued fraction expansion of the form 

a = [0, ax, a , ..., a^]. Then for any number x in [0, 1], 

| [0, als a2, ..., ak9 x] - a| <. \x - a| . 

Vnoofc Define / by f(x) = [al9 al9 ..., ak9 x], then, by the periodicity, 

Ax + B 
/(a) = a. Furthermore, f(x) = -̂ —~r~fj> where the coefficients are integers which 
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do not depend on x and satisfy \AD - BC\ = 1 (A/C and B/D are, respectively, the 
(k - l)st and kth convergents to a; see [12, Th. 175] and [15, Th. 7.3]). From 
this we obtain |/f(#)| = 11 \ {Cx-\~ D) \2 < 1 on [0, 1], The proof is concluded by use 
of the lemma. 

CoKollaAy: Dalzell's theorem. 

Vh£Oi} > = [0, 1, 1, 1, . . . ] ; [0, 1, X] = 1/(1 + x). 

RojmoJik' This theorem justifies our earlier intuitive remark as to why Dalzell's 
theorem should hold; however, our intuition will lead us into difficulties unless 
we stop at the end of a period. Indeed, if a = [0, ̂ , ..., bk] and j < k9 then 
for x = a, x - a is zero, whereas [0, bl9 ..., bj, x] - x is not zero. 

RemcUik* The above approach can be used to place some results involving continued 
fractions in the domain of attraction of fixed points and contraction operators, 
but we shall not pursue this path here. 

RemaAk: It is known that every periodic continued fraction is a quadratic surd, 
i.e., an irrational root of a quadratic equation with integral coefficients, and 
conversely ([10, Ths. 176, 177] and [15, Th. 7.19]). In the case of a =<p, the 
corresponding equation ±s x2 + x - 1 or x = 1/(1 + x). One would thus be tempted 
to treat the general periodic case as follows: Suppose a satisfies Ax2 + Bx = C. 
We rewrite this as x = f(x) ~ C/(Ax + B), and would like to conclude that 

\f(x) - a| <. \x - a| 

as above. However, we run into difficulty because we no longer have a control on 
/ ' • 

Let us now turn our attention to the statistical aspects. We denote random 
variables by capital letters, expectation by E9 variance by a2, and standard devi-
ation by SD. We restrict ourselves to distributions with continuous densities 
concentrated on the unit interval. By the second corollary above (p. 407) and the 
Mean value theorem for integrals, we have immediately— 

Tko.OXem: If I is a random variable taking values in a small interval near , then 
the ratios PX = \E(X) - <p\/\E(I) - <p\ and r2 = SD(J)/SD(J) are both near $2. 

Now consider a general "aesthetic" situation involving lengths of various 
sizes. We should not be surprised that, rather than being controlled by some mys-
tical numerical force, our ratios m/M occur randomly. Furthermore, in situations 
such as the lengths of sections in a poem, there will be a tendency to avoid the 
two extremes of complete asymmetry and equality, i.e., we can expect values rela-
tively far away from 0 and bounded away from 1. 

Thus we are led to consider the situation where X is uniformly distributed on 
a subinterval [a, b] of the unit interval. In this case, E(X) = (a 4- b)/2 and 
a2(J) = (b -a)2111 [14, pp. 74, 101, 111] and straightforward calculations [14, 
p. 78] now show that the distribution functions of I = 1/(1 + X) assigns weight 
{lie - l/d)/(b - a) to a subinterval [e9 d] of [1/(1 + b), 1/(1 -f a)]. Further-
more, 

E^ = ( r b ) ' ln(fri) and *2(J) = (i + a'd + b)~ [W-
Note that if [c9 d] is contained in [1/(1+2?), 1/(1+ a)] and also in [a, b] 

then the distribution function of y assigns l/od times more weight to [o9 d] than 
does the unifrom distribution on [a, b]. Under these conditions, if [o9 d] is a 
small subinterval about 1/$, then this ratio is approximately $2 = 2.618, i.e., 
for a large sample over two and one-half times as many values of the transformed 
data as of the untransformed values will lie in the interval. Also note that the 
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weight assigned by the distribution of Y to an interval [c9 d] depends only on 
the length of the interval [a, b] and not on the actual values of the endpoints. 

In fact, numerical computation shows that even for large intervals relatively 
far away from 0 and bounded away from 1 the ratios r1 and r2 as well as the prob-
ability .ratios will not be too far from 2.6. To illustrate this situation, let us 
suppose that our ratios are uniformly distributed on [.45, .70] so that the aver-
age value is .575 and the standard deviation .072. For a large sample, only 16% 
of the values will fall in the sub interval [.60, .64]. If we now transform the 
data, the mean is .636 and the standard deviation only .029. This means that for 
a sample size of 20 or so it is almost sure that the mean will lie in the interval 
[.607, .665]. Furthermore, for a large sample, 42% of the actual values of l/(l+#) 
will lie in our subinterval [.60, .64]. If we look at [.59, .65], then the prob-
abilities are 24% and 62%. 

Finally, to support our claim that the various seemingly impressive results in 
the literature are really due to an invalid transformation of data from a more or 
less uniform distribution, we mention two case studies. 

The first is due to Shiffman and Bobko [16] who considered linear portionings 
and concluded that a uniform distribution of preferences was indeed the most like-
ly hypothesis. 

The other, a study on Duckworth1s data, was done by the present author in con-
nection with a historical study [3] of the numerical treatment of $ by Hero of 
Alexandria who lived soon after Vergil. If we consider the first hundred entries 
in Duckworth1s Table I, then the range of the m/M values is from 4/7 = .571 (four 
times) to 2/3 = .667 (twelve times). If this range is split up into five equal 
parts, then the five subintervals contain 10, 25, 33, 15, and 17 values, respec-
tively. When we look at the actual values, we note that the Fibonacci ratios 3/5, 
5/8, and 13/21 appear 15, 16, and 2 times, respectively. In other words, 2/3 of 
the ratios are not Fibonacci approximations to the "golden number." If we compute 
means and standard deviations, then for the m/M ratios we obtain the values .621 
and .025 as opposed to the values .616 and .010 for the M/(M + m) ratios, which 
only range from .600 to .637. It is interesting to note that if Vergil had used 
the end values 4/7 and 2/3 fifty times each, then the average would have been 

2V7 3/ 21' 

which is a good Fibonacci approximation to <p. This only proves once more how de-
ceiving averages can be. A similar study of the sixteen values in Duckworth's 
Table IV—the main divisions—reveals that not a single Fibonacci ratio appears. 
The m/M values range from .594 to .663 with a mean of .625 and standard deviation 
of .021 as opposed to values of .615 and .008 for the M/(M + m) values. 
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EXTENDED BINET FORMS FOR GENERALIZED QUATERNIONS OF HIGHER ORDER 

A. L. IAKIN 
University of New England, Armidale, Australia 

In a prior article [4], the concept of a higher-order quaternion was estab-
lished and some identities for these quaternions were then obtained. In this 
paper we introduce a "Binet form" for generalized quaternions and then proceed to 
develop expressions for extended Binet forms for generalized quaternions of high-
er order. The extended Binet formulas make possible an approach for generating 
results which differs from that used in [4]. 

We recall from Horadam [1] the Binet form for the sequence Wn(a9 b; p, q), 
viz. , 

Wn = Aan - SBn 

where 
W0 = a, W1 = b 

. b - a$ ' b - aa 
A — 7T-9 D — 7T-

a - 3 a - 3 

and where a and 3 are the roots of the quadratic equation 

xz - px + q = 0. 

We define the vectors a, and _3 such that 
a = 1 + ia + ja2 + to3 and 3 = 1 + i& + J*32 + k$3, 
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where i9 j 9 k are the quaternion vectors as given in Horadam [2]. 
Now, as in [4]9 we introduce the operator Qi 

Wn = Wn + iWn + 1 + jWn + 2 + kWn + 3 

- Aa" - S 3 n + i(Aan+1 - B$n+1) + jG4an + 2 - 5 g n + 2 ) + « i a n + 3 - S 3 n + 3 ) 
= ,4a n ( l + i a + j a 2 + to3) - £ 3 n ( l + i 3 + j ' 3 2 + k$3) 

Therefores 

(1) Wn = Aana - £3n(3. 

This is the Binet formula for the generalized quaternion of order one. Con-
sider 

AWn = Wn + iqWn_1 + J^ n _ 2 + kq3Wn_3 

= Aa" - 53n + iqiAa"-1 - B3n_1) 4- jqHAa"'2 - B3n"2) + fo^CAa*'3 '- B&n~3) 

= Aan(l + iqa-1 + j q 2 a " 2 + fo?3a"3) - S 3 n ( l + i ^ 3 _ 1 + j q 2 3 ~ 2 + kq3&~3) 
but 

a3 = q 
i.e. 9 a = qfi'1 and 3 = got"1; hence, 

bHn = Aan(l + i3 + J*32 + &33) - B3n(l + ia + ja2 + to3). 

Therefore9 

(2) Afc/n = Aan_3 ~ 53na. 

Thus we see that the quaternion formed by the A operator, that proved so use-
ful in [3] and [4], has a Binet form which is a simple permutation of result (1) 
above. 

We now examine quaternions of order X (for X an integer) and prove by induc-
tion that 

(3) QxWn = Aanax - S3"3_A. 

?h.OO^i When X = 1, the result is true because 

Q1Wn = Wn = ̂ xna - #3n_3* 

Assume that the result is true for X = m3 i.e., 

QmWn = Aana™ - B3n3_m. 

Now, for X = m + 1, 

ttm + 1Wn = QmWn + i f i . X + l + «^X + 2 + ^ X + 3 
= W - 53n3.m + iWan + 1a m - Bgn+1jH + <?Wan+2am - B3n+2jf) 

+ W ^ a " + V - B3n+3jf) 

= Aan(l + ia + ja2 + to3)oT - £3n(l + i3 + j'32 + k33)J>m 

= Aanaam - 53n_3_^ 

= ̂ anam+1 - B3n_3m+1. 

Since the result is true for X = 1 and also true for X = m + 1 whenever the 
result holds for X = m, it follows from the principle of induction that the result 
is true for all integral X. Similarly, it can be shown that 

(4) ^Wn = Aan^ - B&nax, 
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Since 

and 
QAWn = Wn + iAJ/n + 1 + j'Atfn + 2 + MWn+3 

AWn = Wn + iqWn_1 + jq2QWn_2 + kq3Wn_3, 

we secure, using equations (2) and (1), respectively, 

(5) QAWn = 4ana3_ - S3n_3a 

(6) ' AfiJ/„ = Aan$a - B&na& 

If we let X = 2 in equations (3) and (4) and also use equations (5) and (6), 
we can derive the six permutations for quaternions of order 3 involving both Q, and 
A operators, namely 

(7) Q2AJ*V = Aana2l - B3nJ>2a 
(8) A2QWn = Aa^a - 5g*a2 _3 

(9) QA2Wn = Aana§_2 - £an_3a2 

(10) Ati2Wn = ia*J3a2 - B$na$_2 

(11) QA£Wn = 4a«aj3 a - £3*3 a JS 

(12) AQAJ/n = 4anj3a_3 - £3na_3 a 

We now pause to i n v e s t i g a t e t he e f f e c t s of o p e r a t o r s Q* and A* on t h e Bine t 
forms. Note from [4] t h a t 

and 
Q*AWn = AWn + AWn + 1 • i + AWn + 2 • J + q3^n + 3 * * = A W * 

A*WW W n + qfi^.! • i + <7 W n _ 2 • J + q3Wn_3 • fc = QAWn 

and thus the operators Q* and A* provide no new results for quaternions of order 
2. Since equations (7) to (12) and equations (3) and (4) for X = 3 provide every 
possible triad of combination of ot and J3, it is unlikely that quaternions of order 
3 involving the starred operators will produce any Binet form distinct from those 
given. A close inspection of the modus operandi of Q* and A* verifies that this 
is indeed the case. For example, it is easily calculated that 

ft*&Wn = Aan&a2 - SBnaj32 

which is the same expression as that for AQ2Wn. 
We can generalize these statements to say that the operators Q* and A* yield 

no results that cannot be obtained solely by manipulating the operators 0, and A. 
From equations (3) and (4), it can be readily shown that, for y an integer, 

AAft*Vn = Aan^xa^ - B3naA_3^ (13) 

(14) ) X A y AuWn = Aanax_3y Bn3xay 

The pattern between the higher-order quaternions and their related Binet forms 
being clearly established, we deduce, for integral Xi> i = ls ...» 777, the ensuing 
extended Binet formulas of finite order: 

(15) 

(16) 

(17) 

(18) 

Xx A X 2 ftAlA •) A m QAmWn - AanaAie> nnAiRAs aXm - 2nftA 3 A l a A 

QX*AX2 . . . AA"Wn - 4a n a X l j3 A 2 . 

. QXmWn = Aane>xiax> . . . aA* - B$naxi$x* AAlftA2 

AXlftA2 . . . kXmWn = ^ a n B A l a A 2 3; B 3 n a A l 3 A 2 • 

aAm 

n A m 

a Xrr, 
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From equations (2.6) and (2,7) of Horadam [1], we derive the following Binet 
formulas: 

(19) QxUn = [an+1aA - Bn+1(3A]/<i 

(20) AxUn = [an+1JBx - 6 n + 1 a A ] / ^ 

(21) QxVn = a*aA + 6n_gA 

(22) AA7n - a*J3A + (3naA 

We now use the extended Binet formulas to es tab l i sh some i d e n t i t i e s . As an 
example, consider a simple general izat ion of equation (28) in [ 4 ] : ' 

S7AFP^X = (apaA + erj3A) (ia"a^ - B$nfP) 

= 4a»+ra*+n - 53n+2,_BA + y + a r B r aa n - p By - 5en-paxj3y) 
Therefore, 
(23) QxVrQuWn « ftX+lVn+r + ^AXQ*Vn_P 

This, in turn, can eas i ly be further extended to provide a most generalized for-
mula, v i z . , 
(24) QXlAx* . . . ^X m7r^y iAy 2 . . . QV»Wn 

= ftXlAXz . . . QX">+^Ay2 . . . Q^mWn+r + qpAXlax> . . . AXm^yiAy2 . . . SlVmWn_r 

I t i s obvious to the reader that other similar general izat ions of the r e s u l t s 
in [4] can be procured by th i s method. 

We now look at an equation not contained in [3] or [4 ] . Consider 

QXV„ + dttxU„ A " /anaX + 3n3x + anax - Bn3x 

(anaA)m = amna 
n - i \ i i •» -> 

2 

Thus 2 

(25) 

This is a De Moivre type identity for higher-order quaternions. 
Thus we see that the extended Binet formulas not only permit direct verifica-

tion of the identities contained in [3] and [4], and extensions of these as we 
have shown, but also facilitate the attainment of new results. 
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A COMPLETE CHARACTERIZATION OF THE DECIMAL FRACTIONS 
THAT CAN BE REPRESENTED AS 2lO~Hi + 1) Fai , WHERE 

Fai IS THE aiTH FIBONACCI NUMBER 

RICHARD H. HUDSON* 
University of South Carolina, Columbia, SC 29208 

C. F . HINANS 
1106 Courtleigh Drive, Akron, OH 44313 

1. INTRODUCTION 

In 1953 Fenton S t a n c l i f f [2] noted (wi thout proof) t h a t 

E10"( i + 1 ) F . = — 

where Fi denotes the ith Fibonacci number. Until recently this expansion was re-
garded as an anomalous numerical curiosity, possibly related to the fact that 89 
is a Fibonacci number (see Remark in[2])9 but not generalizing to other fractions 
in an obvious manner. 

Recently, the second of us showed that the sums E10~(t' + 1)Fa^ approximate 1/71, 
2/59, and 3/31 for a = 2, 3, and 4, respectively. Moreover, Winans showed that 
the sums nO'2(i+1)Fai approximate 1/9899, 1/9701, 2/9599, and 3/9301 for a = 1, 2, 
3, and 4, respectively. 

In this paper, we completely characterize all decimal fractions that can be 
approximated by sums of the type 

j-(T,lO-kli + »Fa{), a> 1, k> 1. 

In particular, all such fractions must be of the form 

(1.1) * 

(1.2) 

102" - 10* • 

t h e form 

102* - 3 (10 k ) 

- 1 

+ 1 

1 

10 M 

• I0k 

' (a- l ) /2 \ 

/ (a + lV2 \ 

when a is even [Lj denotes the jth Lucas number and the denominators in (1.1) and 
(1.2) are assumed to be positive]. 

Recalling that the ith term of the Fibonacci sequence is given by 

(1.3) F, " 7 ^ - 2 — j - ( - 2 - j -

1 / " \ 
it is straightforward to prove that the sums — I 2^10 ^Fai I converge to the 

During the writing of this article, this author was at Carleton University, 
Ottawa, Canada, and wishes to acknowledge with gratitude support under National 
Research Council of Canada Grant A-7233, 
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fractions indicated in (1.1) and (1.2) provided that ((1 + /5)/2)a < 10fe. For ex-
ample, we have ((1 + /5)/2)2 = (3 + /5)/2 and (3 + /f)/2 < 10. Hence, appealing 
to the formula for the sum of a convergent geometric series, we have 

i 10i + 1 10/5\1 - (3 + /5")/20 1 - (3 - /5)/20 

2/5/17 + /5 17 - /5"\ 1 
284 284 / 71 

The surprising fact, indeed the fact that motivates the writing of this paper, 
is that the fractions given by (1.1) and (1.2) are completely determined by values 
in the Lucas sequence, totally independent of any consideration regarding Fibonacci 
numbers. The manner in which this dependence on Lucas numbers arises seems to us 
thoroughly remarkable. 

2. THE SUMS nO-k(i+1)Fai, k = 1 

Co6e 7: a = 1. 

Using Table 1 (see Section 6 below), we have 

60 

(2.1) X)l(T(i + 1)^ 
= .0112359550561797752808988764044943820224719101123296681836230. 

It is easily verified that 1/89 repeats with period 44 and that 

(2.2) -̂ r = .01123595505617977528089887640449438202247191011235... 

60 m • , 

The approximation ^10~ ( t + 1 )^ ^ T T is accurate only to 49 places, solely be-
i = l 

cause we have used only the first 60 Fibonacci numbers. A good ballpark estimate 

s 

of the accuracy of the approximation ^ 10~k^ + 1^Fai ^ &- may be obtained by looking 
i = l 

Sit the number of zeros preceding the first nonzero entry in the expansion 

(2.3) _ ^ _ = . 0 0 0 . . . a „ . a „ + 1 . . . a z 

an is the first nonzero entry and i = k(s + 1). 
Thus, e.g., 

F 
(2.4) — — = .000...1548008755920 

1061 

The number of zeros preceding an above is 48, so that the 49-place accuracy found 
is to be expected. 

Co6fc,2: a = 2. 

Look at every second Fibonacci number; then, using Table 1, we have 
25 

(2.5) Jll0~ii + 1)F2i = -01408450704225347648922085 
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Now, 

(2.6) •— = .0140845070422535... 

Note that 
F 

(2.7) — — - .000...12586269025 
1026 

where the number of zeros preceding an = 1 is 15. 

Co6e 3: a = 3. 

Looking at every third Fibonacci number, we have 

16 

(2 .8 ) ] £ 1 0 ~ ( i + 1 > F 3 ; " .03389826975294276 
Moreover, 
(2 .9 ) ~ = . 0 3 3 8 9 8 3 . . . 

The six place accuracy is to be expected in light of the fact that 

(2.10) —11- = .00000004807526976 

Co6e 4: a = 4. 

1017 

Looking at every fourth Fibonacci number up to F1QQ9 we have 

(2.11) ]£l0-(i + 1 ) F^ = .09676657589472715467557065 
i = l 

Now 

(2.12) ~- - .096774... 

F 
10 0 

has only five zeros preceding its first nonzero entry: 1026 
The convergence of (2.11) is very slow, as can be seen by the fact that 

;C( 

F. 
(2.13) -ill. .00000354224638179261842845 

1026 

C<ue, 5: a >. 5. 

Consider ZlO~ii + 1)F5i . The sum i s of t h e form 

(2 .14) 
+ 
+ 
+ 
+ 

.05 

.055 

.0610 

.06765 

Clearly this sum does not converge at all and, a fortiori, T,l0~^% + 1^Fai does not 
converge for any a >_ 5. 

Summa/iy oj Section 2: 

(2.15) E l 0 " ( i + 1)F, - ^ a E 10"(i + 1 )F2 i *A-
i-1 o y t -1 ' L 
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(2.16) £io-<**i*3< . £ . £ 1 0 - ( ^ , ^ 
n 

(2.17) E 1 0 ~ ( i + 1>*W ^ a s n ^ i f a > 5 
i = I 

THE SUMS E10" k ( i + 1 ) F a i , k = 2 

If a = 10, the sum E10"2(i + 1)Fat: is of the form 

(3.1) .0055 
+ .006765 
+ .00832040 
+ .0102334155 
+ 

and this clearly does not converge. There are, consequently, exactly nine frac-
tions with four-digit denominators that are approximated by sums of the type 

£ l(T2« + »Fof . 
i = l 

n 
Henceforth, for brevity, we denote ^ lQ~w + 1)Fai by Sai(k). Then, for a = 1, 

i = i 

2, . „., 9, we have, respectively, Sai(2) * 1/9899, 1/9701, 2/9599, 3/9301, 5/8899, 
8/8201, 13/7099, 21/5301, and 34/2399. 

We indicate the computation for Shi (2), leaving the reader to check the re-

12 

maining values. To compute 2 J 10~2 Fh ., we must perform the addition: 
i-l 

(3.2) .0003 
.000021 
.00000144 

987 
6765 
46368 
317811 
2178309 
14930352 
102334155 
701408733 
4807526976 

.00032254596279969541950276 
Now 

(3.3) -r-̂ rr = .000322545962799698... 
y Jul 

Notice that the approximation is considerably more accurate for small n than the 
analogous approximation given by (2.11). Of course, this is because, from the 
point of rapidity of convergence (or lack thereof), Shi(l) is more closely analo-
gous to 58^(2)—each represents the largest value of a for which convergence is 
possible for the respective value of k« 

The reader may well wonder how we arrived at fractions such as 21/5301 and 
34/2399, since S8i (2) and S$i (2) converge so slowly that it is not obvious what 
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fractions they are approximating,. The values for Sai(2), ot = 1, . .., 6, were ob-
tained from empirical evidence. The pattern for the numerators is obvious. After 
looking at the denominators for some time, the first of us noted (with some aston-
ishment) the following pattern governing the first two digits of the denominators: 

98 -
97 -
95 -
93 -
88 -

95 = 3 
93 = 4 
88 = 7 
82 = 11 
70 = 18 

Subsequent empirical evidence revealed what poetic justice required, namely that 
the eighth and ninth denominators must be 5301 and 2301, for 

(3.5) 82 - 53 = 29 and 70 - 23 = 47 

The indicated differences are, of course, precisely the Lucas numbers beginning 
with L2 = 3. Notice that entirely apart from any numerical values for the Fibo-
nacci numbers, the existence of a value for S10i(2) is outlawed by the above pat-
tern. For the first two digits of the denominator of such a fraction would be (on 
the basis of the pattern) 53 - 76 < 0, presumably an absurdity. 

Naturally, the real value of recognizing the pattern is that values can easily 
be given for Sai (k) for every k and every a for which it is possible that these 
sums converge. Moreover, values of a for which convergence is an obvious impos-
sibility (because terms in the sum are increasing) , and the denominators of the 
fractions which these sums approximate for the remaining a, may be determined by 
consideration of the Lucas numbers alone. 

We may proceed at once to the general case, but for the sake of illustration 
we briefly sketch the case k = 3 employing the newly discovered pattern. 

4. THE SUMS nO'Hi + 3)Fai , k = 3 

In analogy to the earlier cases it is not difficult to obtain and empirically 
check that 1/998999 and 1/997001 are fractions that are approximated by S^(3) and 
Sli{3)i respectively. 

Now, using Table 2 (see Section 6 below), 

(4.1) 998 - 3 = 995, 997 - 4 = 993, 995 - 7 = 988, 993 - 11 = 982, 
988 - 18 = 970, 982 - 29 = 953, 970 - 47 = 923, 953 - 76 = 877, 
923 - 123 = 800, 877 - 199 = 678, 800 - 322 =478, 
678 - 521 = 157, and 478 - 843 < 0 

Therefore, we expect that Sai (3) is meaningful if a <_ 14 and if the fourteen 
fractions corresponding to these a*s are precisely: 

(4 2) _!_ _ I _ -J 1_ 5 
KH J 998999' 997001' 995999' 993001' 988999' 

8 13 21 34 55 
982001' 970999' 9530019 923999' 877001' 

89 144 233 377 
800999' 678001' 478999' 157001 

We leave for the reader the aesthetic satisfaction of checking that a= 15 is, 
indeed, the smallest value of a such that the terms of Sai(3) are not decreasing. 

Example.: i 
Consider ]T 10"3( i + 1 ) F 9 i 

i = l 
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This sums as follows: 

(4.3) .000034 
.000002584 
.000000196418 

14930352 
1134903170 
86267571272 
6557470319842 

.000036796576080211591842 
On the other hand, the ninth fraction in (4.2) is 

(4.4) "92H99 = •00° 03679657... 

5. THE GENERAL CASE 

All that has gone before can be summarized succinctly as follows. The total-
ity of decimal fractions that can be approximated by sums of the form 

are given by 

(5.1) 

£l(Tw+1).Fai, a>l, k > 1, 

(o-n/2 
1 0

2 k - i o k - 1 - io f e | 2 ^ L2j 

when a is odd and the denominator is positive9 and by 

Fa 
(5.2) 

/(a-2)/2 \ 

102* - 3(10") + 1 - 10M £ L2J+1\ 

when a is even and the denominator is positive. 

Rema/ik: The appearance of Fa in the numerator of the above fractions is not es-
sential to the analysis. One can just as well look at sums of the form 

These approximate fractions identical with those in (5.1) and (5.2), except that 
their numerators are always 1. These fractions are determined, then, only by Lucas 
numbers with no reference at all to the Fibonacci sequence. 

Example 1 »* Let k = 4. The smallest positive value of the denominators in (5.1), 
( 5' 2 ) ± S /(19-D/2 X 

108 .- 104 - 1 - 1(W X) L2j) = 6509999. 

This means that there are exactly nineteen fractions arising in the case k = 4 and 
,, «* ,,* ̂  4184 
vD«J' ^lsi^J ^ 6509999' 
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although it will be necessary to sum a large number of terms to get a good approxi-
mation (or even to get an approximation that remotely resembles 4184/6509999). 
However, if one looks at the nineteenth fraction arising when k = 5, one obtains 

(5.4) 4184 
9065099999 

On the other hand, X)lO~5(i + 1 ) F 1 9 i equals 

0000004612... 

5 

(5.5) .0000004181 
+ .000000039088169 

365435296162 
3416454622906707 
31940414634990093395 

.000000461216107838545660793395 

which restores one's faith in (5.3) with much less pain than employing direct com-
putation. 

Example. 2: Let k = 8 and let a == 32 so that (5.2) must be used. From Table 1, we 
have 

(5.6) .0000000002178309 
+ .000000000010610209857723 

.00000000000051680678854858312532 

.00000000022895791664627158312532 

On the other hand, from (5.2) and Tables 1 and 2 we have that the thirty-
second fraction arising when k = 8 is: 

(5.7) 2178309 2178309 

1016 - 3(108) + 1 -• 108( Y,L2J- + 1 

9512915300000001 

= .0000000002289. 

a good approximation considering that only three Fibonacci numbers (F32, F6^9 and 
F96) are used in (5.6). 

6. TABLES OF FIBONACCI AND LUCAS NUMBERS 

* 1 

*v ^3 
*\ 
^5 
^6 

*7 
F* 
*9 

^10 

* 1 I 
F12 

* i * 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 

?i* 
^15 
^ 6 
F17 
^18 
^19 
F 2 0 

**21 
•^2 2 
FZZ 
F2k 

^ 2 5 

^2 6 

377 
610 
987 
1597 
2584 
4184 
6765 
10946 
17711 
28657 
46368 
75025 
121393 

TABLE 

*2 7 
F 
r 2 8 F r 29 
F 3 0 
F 
r 3 1 F n 3 2 
F r 3 3 

^3*f 

^ 3 5 

^ 3 6 

^ 3 7 

•^3 8 

^ 3 9 

1 

196418 
317811 
514229 
832040 
1346269 
2178309 
3524578 
5702889 
9227465 
14930352 
24157817 
39088169 
63245986 

hi 

if 8 
7 

50 

102334155 
165580141 
267914296 
433494437 
701408733 
1134903170 
1836311903 
2971215073 
4807526976 
7778742049 
12586269025 
20365011074 
32951280099 
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TABLE 1 (continued) 

F53 
F5* 
Fss 
Fss 
F57 
F5B 
^5 9 
^6 0 
F*l 
F&2 
F&3 
Fei* 
Fes 
Fee 
Fs7 
Fee 
F6S 
F70 
F71 
F72 
F73 
Fm 
F75 
F7e 

53316291173 
86267571272 
139583862445 
225851433717 
365435296162 
591286729879 
956722026041 
548008755920 
2504730781961 
4052739537881 
6557470319842 
10610209857723 
17167680177565 
27777890035288 
44945570212853 
72723460248141 
117669030460994 
190392490709135 
308061521170129 
498454011879264 
806515533049393 
1304969454928657 
2111485077978050 
3416454622906707 

TABLE 2 

Li 
Li 
£3 
Ln 
L5 
Le 
L7 
LB 
Ls 
£10 

1 
3 
4 
7 
11 
18 
29 
47 
76 
123 

Lu 
£12 
£13 
km 
L15 
Lis 
Li 7 
LIB 
LIS 
L20 

199 
322 
521 
843 
1364 
2207 
3571 
5778 
9349 
15127 

L21 
L22 
L23 
L2k 
L25 
L26 
L27 
L2B 
L2S 
L30 

24476 
39603 
64079 
103682 
167761 
271443 
439204 
710647 
1149851 
1860498 
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L35 
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L37 
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I. INTRODUCTION 

With the aid of group theory, Weisner [10] derived the Bilinear generating 
function for the ultraspherical polynomial: 

n\tn 

/2a)
 Cn (C0S X)Cn(c08 y) 

(1 .1 ) 
{1 - It cos (a; + y) + t2Va

 2F± 
kt sin x sin y a,a; 

.2a; 1 - It cosfe + y) + t 

See [5] for definition and properties. (1.1) had also been proved by Meixner [6], 
Ossicini [7], and Watson [8], and was recently investigated by Carlitz [2], [3]. 
(1-1) is seen to be a special case of Theorem 1 in this paper, as are the formulas 
(1.2), (1.4), and (1.5), which appear to be new. Note that the expressions given 
below are generating functions for the ultraspherical polynomial of type Cx (x). 
See Cohen [4] for the single Jacobi polynomial. 

n4^0 (2M + 2£ + l)n° n W^n + iW) 

= 2£ + 1 r (u + i + i) v. cu [f 
V(u)T(2u + l)[t2{x2 - l)]U + H l [l 

(1.2) 

ff [Wt2 

\\2x2t2 

2(2/ - * t ) 2 

- 2#2/t - t 2 + 1 + pj 

- 2xz/£ - t2 + 1 + p 

2t2(x2 - 1) 

i] 

il 

i where p = [(1 - 2#z/£ + tz)z - 4t'(l - x2)(l - y2)V, \t\ < 1, \xt/y\ < 1, £ is a 

nonnegative integer, and Z)w is the Gegenbauer function defined by Watson [9, 
p. 129] as 

(1 .3 ) K(z) T(u)T(2u + £)<T u + 2"£9 u + y £ + -y; 1 

u + £ + 1; s 2 2 * + x r ( u + £ + 1) 

A s p e c i a l case of (1 .2 ) i s deduced for x = 0, z/ = cos cf>, and £ s u i t a b l y modi f ied : 

tn(2n + £ ) ! E »-o 22nn\(v + £ + l ) n 

( 1 , 4 ) _ £!T(z; + £ + 1 ) 2 * + 1 

C2
v
n + i (cos *) 

^ 0 

T(t;)r(2z; + £ ) t y + i £ 

where a = (1 - 2 t cos(2(j)) + t 2 ) * , and | t | < 1. 

f 2 cos2(j) 1*1 n J f 1 + t + gl*' 
l l + t + aj J^[l It J_ 
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*X + i(cos 9)CB"+1(cos cf>) 

L 
(1.5) 

= (cos <() - t cos e r 1 - 2 ^ ! - ^n)"1 (i - 5)w+i(i - n ) w + 1 

where \t cos 8/cos (j) | < I, \t\ < 1, 

5 = {1 - It cos 0 cos <j> + t2 

- [(1 - It cos(0 -<)>) + t2)(l - 2t cos(0 + <())+ t2)]*}/2 sin2*, and 

n = {1 - It cos 0 cos (J) + t2 

- [(1 - 2t cos(0 - cf>) + t2)(l - 2t cos(0 + (j)) + £2)]*}/2t2 sin20. 

Theorem 2 yields the new finite expansions 

(-l)ntr 

»-o (2t;)n(l - 2A - 2v)z.n 

(1-6) 0| ,„2 _ !N}£ 

< (ar)C*:r£(2/) 

&!Qr - 1)' 

2z(v)A2v), -c 
f 2(2 / -^t ) 2 1*1 c , jf 2 ( ^ - x t ) 2 1*1 
\2y2 - 2xyt + t2 - 1+ pj J [J22/2 " 2xyt+ t2 - 1 - pj J 

where p is defined in equation (1.2). 
Equation (1.6) may also be expressed as 

tt»0 

(1.7) "(y y2 4- 1 + 2xy ftf + tf2 - p '1*1 y ["[z/f2+ 1 + 2xy rt' + t t 2 + p '1*1 
(i>)£(2z0* * 

where p' = { (y ' 2 - 1 + 2xy rtf + £' 2 ) 2 + 4t'2(l - ̂ c2)}*. 
A special case of (1.6) is the relation 

tn [1/2] 

E -
n-o2

2n{2v)l_ln{l - £ - z;)nn! 

(1.8) 

~Cl-2n(COS *) 

£!t j£. 

2£(z;)£(2z;), 

,2* if 2* li f 2 cos2(j) F ^ f 2 cos2(l) V 
\l + t + aj Mil + t - a J 

where a is defined in equation (1.4). 
Equation (1.8) is deduced from (1.6) by putting x = 09 and rearranging the 

parameters. Also, if y = 1 in (1.6)s one obtains a known expression [55 p. 2279 
last formula]. 

SECTION II 

TkdQtlQJM 7: For u and v a rb i t r a ry complex numbers and £ a nonnegative integer9 

tn(n + £)! „v 
£ W>^C« MCZ+l<y) 
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(2.1) - {2u)l(yxtY |(2u+£)a|(2u+£+l);t; + |5u + |;t2(^2 l], ** l 

(y - xt) 2 (y - xt) 2 

where \xt/y\ < 19 \t\ < 1, and Fh denotes the fourth type of Appell!s [1, p. 14] 
hypergeometric function of two variables defined by 

F^la.b; o,d;x1,y1] = ^ • ,. , ( , (d) x^ x *2 
2 * 

VhJOO^i The l e f t - h a n d s i d e of (2 .1 ) may be expressed as 

~ <2M)n + £ * n a ? V + *(n + X) 
2 * 1 

1 
2 n ' - 2 n + 2 ; x 2 - 1 

(2.2) 
v + -; 

- | ( n + £ ) , - | ( n + £ ) + ! ; ^ 2 _ x 

u + y ; 2/ 

= E 
n = 0 

(2.3) 

(2u)n + J i t V # n + * ( n + X) 
F 2 r i 

2X 1 

• T n , - 2 ^ + 2 ; * 2 - 1 
1 1 . 1 

y + 1; 
•2u -In- 2SL 

u + - k n + £ ) , w + ~ ( n + £) + ~; 

U + -rfl 
V £ 

EE 
fc=0 p - 0 

t2fa2 - 1) 

V 
J/2 - 1 

L V 
P(2 M ) £ (2u + « 2 p + 2 j .(« + X + 2k) 

(2.4) 

E 
n = 0 

(xt/y)n(2u + & + 2k + 2p)n 

n\ 

From (2 .2 ) t o (2 .3 ) we have used t h e Kummer t r a n s f o r m a t i o n . Going from (2 .3 ) t o 
(2 .4 ) e n t a i l s t h e use of t h e f o l l o w i n g : 

(2.5) 2"(-R(-7«4), = <̂ WT 
(2 .6 ) 
and 

= [n/2] 

£ E /<"• fc>" E E -f(M + 2 k > f e ) 
n = 0 fe = 0 n - 0 fe = 0 

( 2 .7 ) (2M)B+je + 2 t ( 2 M + n + A + 2 f c ) 2 p = ( 2 M ) £ (2w+ £ ) 2 p + 2* (2w + £+ 2p+ 2k)n 

Now 
» (xt/y)n (2u + I + 2k + 2p)n 

(2 .8 ) 2 1 — [1 - a r t / i / ] - 2 " - * - 2 * - 2 * . 
n! 

Hence, (2.4) reduces to 
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(y -xty2u-H2u)l £) £ t2(x2 1) 

(2.9) 
k = o p = oL (y - xt) J 

(.V2 - 1) 

Xy - xty 

fe,p,(v+i)fc(«.+ i ) p 

By definition, (2.9) is the right-hand side of Theorem 1. 

TkzOKQm 2: For u and t> arbitrary complex numbers and i a nonnegative integer, 

n 

(2 .10) 
SaSfc^i(^;-^) 

(.V - xt)" 
11 

1 
z9 

• - £ + - ; z; + - , w + - j ; " 1) .V2 - 1 
(2/ + xt)2 

PJlOOJ: The l e f t - h a n d s i d e of (2 .10) i s pu t i n t h e form 
(z/ - xty 

\n rnMn..i-n 

(2.11) 

1 -n, 1 _,_ 1 n + 
2' ;cz - 1 

y + 25 

F 

1 
(&- n)s 4 « - *> + | ; 2̂ 

w + -j; 2/ 

Following a procedure analogous to that in the proof of Theorem 1, with appropri-
ate changes, (2.11) is simplified to yield the right-hand side of (2.10). 
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ALMOST ARITHMETIC SEQUENCES AND COMPLEMENTARY SYSTEMS 

CLARK KIMBERLING 
University of Evansville, Evansville, IN 47702 

What about the sequence 3, 6, 9, 12, 15, ... ? If this is simply the arithmetic 
sequence {3n}, then its study would be essentially that of the positive integers. 
However, suppose the nth term is [ (3 + l//29~)n], or perhaps [(4 - 5//57)n] , where 
[x] means the greatest integer <. x. In these sequences, 15 is followed by 19 ra-
ther than 18. Such almost arithmetic sequences have many interesting properties 
which have been discovered only in recent years. Of special interest are comple-
mentary systems of such sequences. 

The adjective "complementary" means that every positive integer occurs exactly 
once in exactly one of a given set of sequences. Consider, for example, the three 
sequences 

(1) 1, 4, 6, 8, 10, 13, ...; 2, 5, 9, 12, 16, ...; 3, 7, 11, 14, ...; 

which can be accounted for as follows: If the positive integers that are squares, 
twice squares, or thrice squares are all arranged in increasing order, we find at 
the beginning 

(2) 1, 2, 3, 4, 8, 9, 12, 16, 18, 25, 27, 32, 36. 

Each of these numbers occupies a position in the arrangement. In particular, the 
squares 1, 4, 9, 16, 25, 36, ... occupy positions numbered 1, 4, 6, 8, 10, 13, ..., 
the first sequence in (1). This line of reasoning can be extended to show that 
the three sequences in (1) are given, respectively, by the formulas 

<"> » + [M+ [*]•lnrn *'+ W ]• <** *W]+-
The three sequences in (1) may be compared with the sequences 

1, 4, 7, 10, 13, 16, ...; 2, 5, 8, 11, 14, ...; 3, 6, 9, 12, ...; 

which form a complementary system of arithmetic sequences given by 3n + 1, 3n + 2, 
and 3n + 3. Each has a common difference, or slope, equal to 3. Similarly, the 
sequences in (1) have slopes s = 1 + 1//? + l//3~, /2s, and /3s, as shown by for-
mulas (1')- Here the similarity ends, however. Writing an = 3n + 1, we call to 
mind the very simple recurrence relation an+1 - an = 3. On the other hand, writ-
ing bn = n + [n//2] + [n//3], we find bn + 1 - bn £ s for all n. Instead, bn+1 - bn 
takes values 1, 2, and 3, depending on n. Moreover, CLn + 1 - an = 6 for all n, 
whereas bn+2 - bn takes values 4, 5, and 6. 

We are now in a position to state the purpose of this note: first, to intro-
duce a definition of "almost "arithmetic" that covers sequences as in (l),and then 
to present some theorems about almost arithmetic sequences and complementary sys-
tems . 

One more thought before defining the general almost arithmetic sequence {an} 
is that there should be a real number u such that an must stay close to the arith-
metic sequence nu. Specifically, an - nu should stay bounded as n goes through 
the positive integers, and this could be used as the defining property for "almost 
arithmetic" sequences. However, this property depends on the existence of a real 
number u, and since the an are positive Integers, a definition which refers only 
to positive integers is much to be preferred. From such a definition, we should 
be able to determine the number u. The following definition meets these require-
ments. 



1981] ALMOST ARITHMETIC SEQUENCES AND COMPLEMENTARY SYSTEMS 427 

Suppose I <_ k are nonnegative integers and {an} is a strictly increasing se-
quence of positive integers satisfying 

(3) 0 <L am + n - am - an + t <_ fe, for all m9 n > 1, 

The sequence {an} is almost arithmetic* or, more specifically, (fe, I)-arithmetic. 

It is fairly easy to check that for any positive real numbers a19 a2, . . . , afe 
and 3i5 625 •••» 3/, the sequence with nth term 

(4) an = {a1n} + [a2n] + ••• + [afen] 

is (fe, 0)-arithmetic, and the sequence with nth term 

(5) an = [axn + g j + [a2n + 02] + •- + [afen + gfe] 

is (fef, £.)-arithmetic for some £ and some fcf >_ fe. 
For example9 the sequence {3n} is (0, 0)-arithmetic; {3n+ 1} is (0, 1)-arith-

metic, and {n + [n//2~] + [n//3~]} is (2, 0)-arithmetic. 
As we shall soon see, there are many almost arithmetic sequences {an} for 

which no formula in closed form for an is known. Nevertheless, our first theorem 
will show that every almost arithmetic sequence {an} must have a slope u3 and an 
must stay close to nu, 
Thzotiem 1 »• If {an} is a (fe, £.)-arithmetic sequence, then the number u = lim — , 
hereinafter referred to as the slope of {an}, exists, and 

(6) an <_ nu + t <_ an + fe, for n = 1, 2, ... . 

P/LOO£: Let e > 0, and let AZ be so large that 

(I k - l \ 
i^9 777 J 

< e. 

for any n > m9 we have n = qm + r where q = [n/m] and 0 <_ r < m. By (3), 

am - I < an - an_m < am - I + fe 
and 

£ < aw_m - an.2ffl < CLm - I + fe 

and finally am - I £ a„_(<7-1)m - ar <. aOT - £. + fe. 
Adding these: 

q(am - 1) £ an - ar <_ q(am -I + fe). 
Now adding ar - qam and dividing by n yields 

^ _ _ ^ < ^ _ <¥hn_ < q_ , _ n Or_ 
n n — n n — n n ' 

When this is added to the easily verified 

n — n m — 9 

one obtains 
ar - am ar - am l ar - am - Iq an am q(k -I) + ax e < < < — - — < 

n n m — n — n m — n 

fe - L ar &r 
< + — < £ + — . 

m n n 
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As n -»• °° we see that ft <_ e, so that \—k as a Cauchy sequence, converges. 
n m 

Now as a first step in an induction argument, 

an - I < a2n - an<an - l + k. 
Assume for arbitrary j > 3 that 

U ~ 2) (an - £ ) < . ^(j-i)n- an <• U ' 2) (an - I + fe) . 

Adding this with an - £ <. a^n ~ a(j-i)n -̂ an - £ + fe gives 

(j - D(an - £) <L aJn - aM <. (j - l)(an - I + • fe), 

which concludes the induction argument. This set of inequalities is equivalent to 

0an- U - Dl <. a>jn < jan + U - D(fe - £) -. 
Dividing by jn, 

— Qu — n n Q 
an _ Ĵ  
n n 

Since lim —:— = u, we have 
j-*°°  Jn 

3 -
0 

an 
n 

±i 

_ i 
n n — — n wv 

and (6) follows. 

Theorem 1 should be compared with similar results in Polya and Szego [7, pp. 
23-24]. 

Note the contrast between the defining inequality (3) and Theorem 1. The for-
mer is entirely combinatorial, whereas the notion of slope is analytic. Specifi-
cally, when I is the least integer such that 

am+n - °>m " an + X >. 0, for all m9 n >, 1, 
and if fe is the least integer such that 

am+n -• ̂ m - an + •£ <. fe, for all m9 n _> 1, 
then k counts the extent to which the sequence {an -£} deviates from the rule 

that is, from being an arithmetic sequence. On the other hand, the slope u gives 
the average growth rate of {an}. With this analytic notion in mind, we may pre-
dict that if {an} has slope u and {bn} slope i?, then the composite sequences iabr) 
and {ban} will have slope uv. Or, if the given sequences are disjoint, we can com-
bine them in increasing order, thus getting a sequence with slope (w""1 +. v'1)~1

9 
the harmonic mean of u and v. Then returning to a combinatorial attitude, we may 
ask about the bounding numbers fe and I. for these new sequences. Our first theorem 
of the sort just suggested shows how to make almost arithmetic sequences from a 
given real u 2. 1. 

TkzofLQjn 2: If u >. 1 is a real number and {an} is an increasing sequence of posi-
tive integers satisfying 0 < _ n u - a n + £ < . f e for 0 <. I <_ fe and for n = 1, 2, ..., 
then {an} is a (3fe, fe + £)-arithmetic sequence with slope u. 

VKOOfji Subtracting 0. <. (m+n)u - am+n + L <_k from 0 <. mu - am + £ <_ fe gives 
-fe••<. <2/n + n - am - nw £ fe. This implies nu <. am+n - am + k <_nu + 2k. Bounds for 
nu come from 0 <_ nu - an + I £ fe, namely an - I <_nu <_ an - £ + fe . Thus 

• <*n - £ <. am + n - a m + k < _ a n - l + 3'fe, 
or equivalently, 

0 <. aw + n - aw - an + I + k'<. 3fe, 
as required. 
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As an example, let an ~ 2ft if ft is prime and 2ft + 1 otherwise. Then fe = I = 1 
in Theorem 2, and {an} is a (3, 2)-arithmetic sequence. Actually, {an} is also a 
(2, 2)-arithmetic sequence, which is saying more. This example shows that the fe 
and I in Theorem 2 need not be the least values for which (3) holds. This same 
observation holds for the theorems that follow. 

Consider next an = 10ft + 2 and bn = 10 + 5 for ft=0, 1, 2,.... We combine 
these to form the sequence {cn} given by 2, 5, 12, 15, 22, 25, ..., and ask if this 
is an almost arithmetic sequence. If so, what numbers fe, t describe the maximal 
spread which cn has away from 5ft? The question leads to the following theorem 
about disjoint unions of almost arithmetic sequences. 

TkzoKom 3; Suppose {an} is a (fe, t)-arithmetic sequence and {bn) is a (fe', •£')-
arithmetic sequence, disjoint from {an} in the sense that bn £ <xm for all m and 
ft. Let {en} be the union of {an) and {bn}> Then {on) is a (3C, £)-arithmetic se-
quence for some JC and £ (given in the proof). If {an) has slope u and {&«} has 
slope v, then {cn} has slope (W1 + i?"*1)"1. 

Pfiooj: Let ft be a positive integer. 

C&6e J. Suppose <?n = a^ for some #. Let # = Nu/v. By Theorem 1, 

OT - fe + £ £ aN £ xv + £ and iv - fe' + £' £ fc* £ it; + £', i = 1, 2 

The inequality iv + t* £ xv. - fe + £ shows that bi <. aN whenever 

i <.'ar + ( £ - £ ' - fe)A>. 

Similarly, 2?i >. aN for 
£ >. x + (£ - £•' + fef)/y. 

Thus, the number of bi which are £ aN i s x + 6, where 

(£ - £r - fe)/y < 6 < ( £ - £ ' + fe')M 
so that 

ft = (Vat £ a#) + 0bi ± aN) = N + Nu/v + 6. 
Multiplying by w = uv/(u + f) gives Wu = (ft - <5)w. Now, subs t i tu t ing t h i s and 
a# = cn into #u - fe + £ £ % £ Ww + £, we obtain 

(ft - 6)W - fe + £ £ On .< (ft - 6)W + lB 

COM2. 2. Suppose c n = &ff for some N. As in Case 1, there ex i s t s 6 ' 
sa t i s fy ing (£ ' - I - fe')/w <. 6 f <. (£ ' - I + fe)/w such that 

(ft - 5')w - fef + V £ c?n £ (ft - 6')tf + £ ' . 

To accommodate both cases, let 

- Sw 
- 6'w, 

and then let 

_ f JB" if £" i s an integer , f „, 
£ ~ { [ £ " ] + 1 otherwise a n d X [X J* 

Now nw+£r £ cn £ ftW+3C', so tha t 0 £ nw-on + 3Cf £ 3Cf - £ f . By Theorem 2, {cn} 
i s (JC, £ ) - a r i t hme t i c , where X = 3(3Cf - £ ' ) and £ = 2JCf - £ f . 

The theorem j u s t proved has an in t e res t ing appl icat ion to complementary sys-
tems, as follows. 
Thzoim 4: Suppose ialn}9 {a2 nK • . . * { a n J are almost ar i thmetic sequences tha t 

&in 
comprise a complementary system. Let Ui = lim — — for ̂  = 1, 2, ...,772. Then 

n-*-oo ft 
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PfLOO^: As members of a complementary system, ia
ln} and {a2n} are disjoint. 

By Theorem 3, their union is an almost arithmetic sequence with slope W satisfy-
ing l/w = l/u1 + l/u2. Assume for arbitrary k <_ m - 1 that the union 

ialn} u{a2n} u ... u {akn} 

is almost arithmetic with slope u satisfying 1/u = l/u1 + ••• + 1/u^. Theorem 3 
applies. By mathematical induction on k, we have l/v = 1/U-L + ••• + l/um9 where 
V is the slope of the union of all the given sequences, that is, 1. 

In case m ~ 2, the identity 
m 

i = £ Uui 
i = l 

is the subject of the famous Beatty Problem [1] of 1926. An extensive bibliography 
on results stemming from Beattyfs Problem and other research on sequences of the 
form {[un]} is given in Stolarsky [8]; the interested reader should also consult 
Fraenkel, Mushkin, and Tassa [3]. A generalization of Beatty?s Problem by Skolem 
[7] is that sequences {[un]} and {[vn]} 9 where u and V are positive irrationals, 
are disjoint if and only if a/u + b/v = 1 for some integers a and h. Skolem1 s 
generalization suggests a still more general question, which we state here hoping 
that an answer will someday by found: What criteria exist for disjointness of two 
sequences of the form (4), for k >_ 2? 

We turn next to composites of almost arithmetic sequences. 

TkdOKom 5: Composites of almost arithmetic sequences are almost arithmetic. Spe-
cifically, if {an} is (fe, £)-arithmetic with slope u and {bn} is (fe', t^-arith-
metic with slope v9 then the sequence {on} defined by on = ba„ is (bi + £?&_i + 3fc' 
- 2tr, bi + fc')-arithmetic with slope uv. (Here b0 = 0.) 

PfLOOJ: We must show that 

(7) 0 <om+n - cm - cn +bt + fe' 
and 
(8) om+n - om - an + bt + k' <_bt - bk-i + 3fe' - 2l>. 
Now 

0 < bam+an - bam - b an + V b y ( 3 ) 

1 bam + n+ i - bam - ban + V s i n c e am + an <. a m + n + £ 
^ &am + n +bt + fe' - £ ' ) • - Z?am - £a„ + £ ' by ( 3 ) . 

Th i s p roves ( 7 ) . To prove ( 8 ) , 

bam + n ~ bam - ban + b t + k' < bam + an + k + l ' b am - ban + b t + fe ' 

<. bam + an + £ f e - £ + fe' - £ ' - Z?am - &a„ + 2? £ + fe f 

< bam + ^aM + fe' - £ ' + 2>fe-£ + k' - V 

- ^am - &a„ + &£ + fe' 
= Z?t 4- 2?fe_̂  + 3fe' - 2£', 

as required. 

For slopes we have an ^ un and bn ^ vn, where the symbol ̂  abbreviates the re-
lationship indicated in (6). Consequently, ban ^ van ^ vun. 

To illustrate Theorem 5,letan= [/in] and bn = [/3n]. Each provides a (1, 0)-
arithmetic sequence. The composite ban = [/!f[/2n]] has slope /6~ and is (4, 1)-
arithmetic. The same is true for abn = [/2~[/3n]]. 



1981] ALMOST ARITHMETIC SEQUENCES AND COMPLEMENTARY SYSTEMS 431 

TkdOKm 61 The complement of a (fe, £)-arithmetic sequence {an} having slope u> 1 
f[3(u + fe)l fu+2fe - £-|\ . ̂  . • . , , 

1 S a \L u - 1—_r u - 1 J-arithmetic sequence wxth slope u/(u- 1). 

VKOO£} The complement of {an} is the increasing sequence {a%} of all positive 
integers missing from {an}. By (6) we can write 

an - nu + 6, where £ - fe £ 6 = S(n) £ Z. 

Then the inequality at < an can be expressed as i < (a* - 6)/w, and the greatest 
such i is [(a* - 6)/u]. Now a* = n + / (a§), where /(#) is the number of terms at 
satisfying a^ < x. Thus a* = n + [(a* - 6)/w], and 

n + (a* - &)/u - 1 1 a* £ n + (a* - 6)/w. 
This readily leads to 

& <_ un - (u - I)a* £ u + 6, 
so that 

0 £ T- - a* + r- < — -9 
U - 1 n U - 1 — U - 1 

and we conclude, by the method of proof of Theorem 2, that {a*} is an almost arith-
metic sequence of the required sort. 

Theorem_6 shows, for example, that the set of all positive integers not of 
the form [/7n+/J] + [/Tn-/3] = an forms an almost arithmetic sequence. Suppose 
that, given a sequence such as {an}, we remove a subsequence which is almost arith-
metic, for example {a[/jn]}, Will the remaining terms of {an} still form an almost 
arithmetic sequence? We call such remaining terms the relative complement (of 
{a[/yn]} in {an})s and have the following strengthening of Theorem 6. 

Th^OKQjn 7» The relative complement of an almost arithmetic subsequence of an al-
most arithmetic sequence is almost arithmetic. 

VKOO^- Suppose {ani } is an almost arithmetic subsequence of an almost arith-
metic sequence {an}. By Theorem 1, there exist positive real u and v and nonnega-
tive integers L, k9 £', fe' such that 

(9) an. £ ntu + I £ an. + fe, I £ fe, i = 1, 2, 
and 
(10) ani £ iv + V £ ani + fe', V £ fe', i = 1, 2, ... . 

Dividing by u in (9) and (10) leads to 

I fe ani .v V ani fe' I kf aWi tV if an 
— < V— H < — 

u u — u — u u — u u — " u u so that 
n / • V -, V±k~ I , fe + fe' 
— u u ~ u 

Thus, by Theorem 2, the sequence {m} is almost arithmetic. By Theorem 7, the 
complementary sequence {n*}, consisting of all positive integers which are not 
terms of {n^}, is almost arithmetic. By Theorem 6, the sequence {anj}, which con-
sists of all the an

% s missing from {ani}, is almost arithmetic, as was to be 
proved. 

CotiottaJiy to the, VKOO^ O{ lhe,QKQX(\ It Suppose {ani} is an almost arithmetic 
subsequence of an almost arithmetic sequence {an}• Then the sequence {ni} is al-
most arithmetic. 
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We now return to the complementary system 

(1) 1, 4, 6, 8, 10, 13, ...; 2, 5, 9, 12, 16, ...; 3, 7, 11, 14, ... . 

Writing these sequences as {an} 9 {bn}9 {on}9 we list all the positive integers as 
follows: 

^ 1 » ^ 1 J ^ 1 J ^ 2 9 *^2» ^3» ^2» ^if J ^3» ^5> ^3J ••• • 

Removing all the Ci leaves 
(1") al9 bl9 a2$ b2, a3, a^9 b$9 a5 
Now let. {an} ®.{<2n} and {bn} ® {cn} represent, respectively, the number of the 
position of an and bn in (1")» counting from the left. These two sequences form 
a complementary system of almost arithmetic sequences. In fact, for comparison 
with formulas (lf), one may easily check that 

{an}@{on} = f n + [ ^ ] } : = {1> 3> 5> 6» 8> 10> n > 13> 15> 17» 18> 20> -••> 
(fcn) ©{<?«} - {n + [/2n] = {2, 4, 7, 9, 12, 14, 16, 19, 21, .. . } . 

We define ® in general as follows: For disjoint strictly increasing sequences 
{an} and {on} of positive integers, let {dn} be the sequence obtained by writing 
all the ai and a* in increasing order and then removing all the o^ . Then 

ian}®{on} 
is the sequence whose nth term is the position of an in the sequence {dn}. 

Even if {an} and {on} are not disjoint, we define a second operation © as fol-
lows: Construct a sequence {en} by putting on at position <?n for all n and filling 
all the remaining positions with the ai and a^ written in increasing order. Then 

ian} © {cn} 
is the sequence whose nth term is the position of an in the sequence {en}» 

One relationship between ® and © is indicated by the identity 

{{an}Q{on}) ®{cn} - {an}. 
Also, 

{{an}Q{cn})Q{on} - {a»} 
in case {an} and {on} are disjoint. 

Both operations ® and © can be used on any given complementary system of se-
quences {aln}9 {a2n}9 ..., {amn}9 m J> 2, to produce new complementary systems whose 
sequences remain almost arithmetic in case the original sequences were so, as we 
shall see in Theorems 8 and 9. Specifically, 

{aln}®{amn}9 ..., {am_lin} ® {amn} 
is a complementary system of m - 1 sequences, and for any strictly increasing se-
quence {on} of positive integers, the collection 

ialn} © {on}9 ..., {amn} © {cn}9 

together with {cn} itself, is a complementary system of m + 1 sequences. 
What about slopes and formulas for the nth terms of sequences arising from © 

and © ? We have the following two theorems. 
Th&QKQm St Suppose {an} and {bn} are disjoint almost arithemtic sequences hav-
ing slopes u and v9 respectively. Let on = bn + n - 1, then 

{an} ® {bn} = {2an © e*} 
is an almost arithmetic sequence having slope u - u/v. 
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PKqo£t Let (ltbi<.ri) denote the number of bt that are <. n. Using the formula 
CF(n) = n + p(ri) on p. 457 of Lambek and Moser [6], we find 

n + 0bi £ n) = nth positive integer not 
in the sequence {bn + n - 1}, 

so that 
(#2?i £ an) = -an + anth term of the complement of {bn + n - 1}, 

whence the nth term of {an} ® {bn}9 which is clearly an - (#&£ £ a n ) , must equal 
Since {cn} is almost arithmetic with slope y + 1, {<?*} is almost arith-

metic with slope 1+1/t?, by Theorem 6. Then {otn} is almost arithmetic with slope 
u(l+l/t>)9 by Theorem 5. Thus, {2an - o% } is almost arithmetic with slope 2u -
u(l + 1/v). 

Tk&QSiQm 9; Suppose {an} and {bn} are almost arithmetic sequences having slopes u 
and v, respectively. Then 

{a„} 0 {*>»} = {&*,} 
is an almost arithmetic sequence with slope uv/(v- 1). 

Vh.QO{< By definition, the nth term of {an} © {bn} is the anth positive inte-
ger not one of the bit as claimed. As a composite of a complement, this is an 
almost arithmetic sequence with slope uv/(v - 1), much as in the proof of Theorem 
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SUMS OF THE INVERSES OF BINOMIAL COEFFICIENTS 

ANDREW M. ROCKETT 
C. W. Post Center of Long Island University, Greenvalef NY 11548 

In this note, we discuss several sums of inverses of binomial coefficients. 
We evaluate these sums by application of a fundamental recurrence relation in much 
the same manner as sums of binomial coefficients may be treated. As an applica-
tion, certain iterated integrals of the logarithm are evaluated. 
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Let n >_ k be positive integers. One of the basic recurrence relations of bi-
nomial coefficients 

. ^ . x - , v* k)lk\ 
i s t h a t \ / v 

\k) ~ (n - k] 

( Z ) - ( " ; ' ) • G : i) 
coe For the inverse of the binomial coefficient, 

-1 _ (n - k)\k\ 

we observe that 

U) = m—:—(*-.<n-fe» 
= ((n ,- l)-(fe - l))!(fe - 1 ) ! . _ ((n- (fe - l))(n-fe)!(fe - D ! . ( n - k ) 

n\ n\ ( n - (/c- 1)) 
and so 
r*>> /M"1 = /n - M " 1 (n - fr) / n \~x 

K } \kl U - 1/ (n - fc + 1) U - 1/ ' 
This relation is studied from a different viewpoint in [5, Ch. 1, Prob. 5]. For a 
similar sum formula not to be discussed here, see [4, n. 21], 

Using mathematical induction on n and the identity (*), we find 

In + m\ 1
 1 _ n \^ (n + M~ 

\ m I n + l£4\k - I) 

for any two positive integers n and m (for the corresponding relation for binomial 
coefficients, see [2, p. 200]). 

n \ -1 
ThojOKOM 7: Let Jn = ̂  ( - 1 . Then Jn satisfies the recursion relation 

j = n + 1 
in 2n "-1 

and 

" " 2 « + 1 .=i fe ' 

This corrects a slight error in [3], 

VhJ00{ by Induction on n» For n = 1, we have Jx = 2 from the definition and 
from the formula. We now show that the formula for n + 1 follows from the formula 
for n and the relation (*). 

i.~-'±evr-rvr*t(*v)~l-
n + 1 / i i \ - l / . 1 \ - l n + 1 

f(nV • " J 1 + £ 
k = 0 fe = 1 

Applying (*) to each term of the sum, we have 
n + 1 

I = 1 +
n y / / n y1 __ ( n + 1) - k / n + l)'1) 

n+i ^ L, \\k - l! (n + 1 - k) + 1 \k - 1/ / 

= i + j -V - n " fe ln + M"1 

z-r (n + i ) _ ^v fe ; • 
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Since 
n - k = 1 1 

(n + 1) - k (n + 1) - k3 

we may rewrite our last expression as two sums: 

1
n+i i + i « L*\ u J ^ ^ (n + I) - k\ k ) 

so that 

fc = 0 A:=0 

2 + In Jn+1 + n + ]_Jn 

±n+l 2(W + 1) * 

and the recursion relation is established. Applying the induction hypothesis for 
In yields 

I = n + 2 /w + l y * 1 2^ \ + n + 2 2 n + 2
 = (n + 1) + 1 ( n + i ^ + 1 ^L = n + 2 In + l y * 1 2^ \ n + 2 2 n + : 

«+i 2(n + l ) l 2
n + 1 ^ i ^ / 2 n + 2 n + 

a s r e q u i r e d . 

Tfieo/LC^ 2: For * .> 2 , £ (W £ k ) 
-l 

fc / n - 1 
fc = 0 

P̂ iOÔ  bt/ Induction: For n = 2, the sum is 

and the terms pairwise cancel. For n > 2, we observe that 

V^ In + k \ _ 1 /n + O r 1 _,_ v (n + / c \ " 1 i , V (^ + (^ + D V 1 

g 0 l fc ) - V o ) \ % l k ) = l + h [ -fc + i- ' ' 
Applying (*) to each term of the sums we have 

E("tr--£(("tr-^rr<ri>)"1)-
Assuming Y] y , ) = _ and hence is finite, we obtain 

n ^ Kn + 1) + k)'1 _ 1 

fe = o 

n • * * - o 

completing our proof. 

Tfieo/iem 3: F o r n > l , l e t Jn = £ ( - l ) k ( n £ ) . Then Jn s a t i s f i e s t h e r e c u r -
s ion r e l a t i o n k=° 

and 

^n+l =Hr^n ~ 1) 

J„-f(2-ln(2)-jJ ^ ) -
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Vtwoj by Induction: For n = 1, we have J1 = ln(2). For n > 1, we follow the 
method of proof of Theorem 1. 

A -HtHftv!;")" 

«:-0 fe-0 

- 1 -J» +irtTJ»+i 

and the recursion relation follows. Thus 

J 

As an application of these last two results, we use them and a theorem of Abel 
(see [1]) to evaluate an iterated integral of the logarithmic function. 

Let f0(x) = (1 - x)'1 and, for n > 09 let 

Jo 
Recall that integration by parts gives the formula 

/ 
xn+1 xn + 1 

xn In Or) dx = —~—r-ln(x) for n >_ 0. 
M + 1 (n+l)2 

Since f±(x) = -ln(l - x) , we see that 

-f 
Jo 

f2(x) = / - ln(l - t)dt = (1 - x) ln(l - x) - (1 - a:) + 1 
'o 

and by induction on n we find 

(n - 1)! fn W = J"-1)nt(1 " x)n_1 ln(1 " *> + ̂(n) * (1 " a:)n"1 + £ B<n> ^ " xk 
k = 0 

for n _> 2 and # in the open interval (-1, 1). Here A(n) is given by ̂ 4(1) = 0 and 
for n >. 2, 

4(w) = -:^-r^(n - 1) + , ̂ " v , ) n - l\ (n - 1)!/ 

and #(n, ft) is given by B(n, 0) = -A(n) for n > 1, while for n > 2 and ft J> 1 , 

B(ns ft) = |-B(n - 1, ft - 1). 
Notice that repeated application of this last relation gives 

B(n, ft) = ih~B(n - ft, 0) for ft <. n - 2, 
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and so 

Since 
" 1 -V- (-I)*-1' 

we see that each #(n9 0) may be regarded as a binomial sum. 
On the other hand, 

fQ(x) - (1 - x)-1 - £** 
fc = 0 

and term by term integration of this power series gives 

fn Or) = x n ^ (fe + i) . ... . (fe +-n) " 

For n 2 2, this series converges at a; = ±1 and is uniformly convergent on the 
closed interval [-1, 1]* By Abel's theorem for power series, the values of our 
functions at the endpoints of the interval of convergence are given by the power 
series 

-, • + t \ _ V 1 „ X V tn + k\'1 = -L n 

±im xnKX) iL (fc + l) ..... (fc + n) ~ n! ̂ o \ k I n\* n - V 

by out Theorem 2, while our Theorem 3 gives 

Urn f M - f n » V ^ ( - 1 ) " f » , ^ ( n + feV1 ( - D " r • 
lim fB (x) - (-1) p k <fc + n ) - n! 2- ( 1 ) V k > n \ J n 
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TILING THE PLANE WITH INCONGRUENT REGULAR POLYGONS 

HANS HERDA 
Boston State College, Boston, MA 02115 

Professor Michael Edelstein asked me how to tile the Euclidean plane with 
squares of integer side lengths all of which are incongruent. The question can be 
answered in a way that involves a perfect squared square and a geometric applica-
tion of the Fibonacci numbers. 

A perfect squared square is a square of integer side length which is tiled 
with more than one (but finitely many) component squares of integer side lengths 
all of which are incongruent. For more information, see the survey articles [3] 
and [5]. A perfect squared square is simple if it contains no proper subrectangle 
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formed from more than one component square; otherwise it is compound. It is known 
([3], p. 884) that a compound perfect squared square must have at least 22 compo-
nents. Duijvestijn*s simple perfect squared square [2] (see Fig. 1) thus has the 
least possible number of components (21). 

5 0 

2 9 

4 

33 

25 

35 

15 

9 r 

17 

7 

16 

37 

27 

8 

II 

6 

18 

19 

2 4 

4 2 

FIGURE 1 

The Fibonacci numbers are defined recursively by f1 - 1, f2 = 1, and 

(*) fn+2=fn+fn+l ( » > ! ) • 
They are used in connection with the tiling shown in Figure 2. Its nucleus is a 
21 component Duijvestijn square, indicated by diagonal hatching, having side length 
s = fi " s = 112, as in Figure 1. 
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FIGURE 2 

On top of this square we tile a one-component square s of side length f2 * s = 
s = 112, forming an overall rectangle of dimensions 2s by s. On the left side of 
this rectangle (the longer edge) we tile a square 2s of side length /3 * s = 2s = 
224, forming an overall rectangle of dimensions 3s by 2s. We now proceed counter-
clockwise as shown, each time tiling a square fns onto the required longer edge 
of the last overall rectangle of dimensions fns by fn_1s, forming a new overall 
rectangle of dimensions fn+1s by fns—this follows from (*). The tiling can con-
tinue indefinitely in this way at each stage, because fns = fn_1s + fn_i+s + /n_3s 
[this is used for n _> 5 and also follows from (*)]. A closely related Fibonacci 
tiling for a single quadrant of the plane (but beginning with two congruent 
squares) occurs in [1, p. 305, Fig. 3]. 
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If we consider the center of the nuclear hatched square as the origin, 09 of 
the plane, it is clear that the tiling eventual^ covers an arbitrary disc centered 
at 0 and thus covers the whole plane. Finally, note that all the component squares 
used in the tiling have integer side lengths and are incongruent. 

The tiling described above may be called static, since the tiles remain fixed 
where placed, and the outward growth occurs at the periphery. It is also inter-
esting to consider a dynamic tiling. Start with a Duijvestijn square. Its small-
est component has side length 2. Enlarge it by a factor of 56. The smallest com-
ponent in the resulting square has side length 112. Replace it by a Duijvestijn 
square. Now enlarge the whole configuration again by a factor of 56. Repeat this 
process indefinitely, thus obtaining the tiling., Here no tile remains fixed, out-
ward growth occurs everywhere, and it is impossible to write down a sequence of 
side lengths of squares used in the tiling. 

The three-dimensional version of this tiling problem (due to D. F. Daykin) is 
still unsolved: Can 3-space be filled with cubes, all with integer side lengths, 
no two cubes being the same size? ([4], p. 11). 

The plane can also be tiled with incongruent regular triangles and a single 
regular hexagon, all having integer side lengths. 

Begin with regular hexagon I (see Fig. 3) and tile regular triangles with side 
lengths 1, 2, 3, 4, and 5 counterclockwise around it as shown. Now tile a regular 
triangle with side length 7 along the sixth side of the hexagon. This counter-
clockwise tiling can be continued indefinitely to cover the plane. The recursion 
formula for the side lengths of the triangles is 

si = i for 1 <_ i <_ 5, s6 = 7, si = si_1 + s^_5 for i J> 7. 
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FIGURE 3 
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A NEW DEFINITION OF DIVISION IN RINGS OF QUOTIENTS 

OF EUCLIDEAN RINGS 

M. W. BUNDER 
The University of Wollongong, Wollongong, N.S.W. 2500, Australia 

INTRODUCTION 

It is known that notions such as that of divisibility and greatest common di-
visor can be defined in any Euclidean ring. Such notions can be defined similarly 
in the corresponding ring of quotients, and there these notions, in general, become 
trivial. In this paper, we show that minor alterations to some of these defini-
tions lead to many interesting results concerning divisibility and greatest common 
divisors as well as primes and congruences. In each case these results generalize 
ones that hold in the original ring. 

The set of integers Z, the set of finite polynomials P[x] over a field, and 
the set of complex numbers Z[i], with integer real and imaginary parts, form Eu-
clidean rings. The results we obtain on rings of quotients then apply to rational 
numbers, quotients of polynomials, and complex numbers with real and imaginary 
parts which are rationals (or square roots of rationals, depending on the defini-
tion) . 

QUOTIENTS OF EUCLIDEAN RINGS 

Throughout this paper, R will denote a Euclidean ring with unity, as defined 
in [1]. The norm function associated with R will be denoted by g, and the set of 
divisors of zero in R by 0. If g, in addition to its two commonly accepted prop-
erties, also satisfies 

g(ab) = g(a)g(b) for all a9 b9 ab e R - {0}, 
then R will be called a Euclidean"*" ring. 

In R9 we use the standard definitions, as found in [1], for divides, greatest 
common divisor, mutually prime, unit, prime, congruence modulo c9 and .£• 

The ring of quotients of R9 as defined in [1], will be denoted here by Rr and 
the elements of Rr by (a, b) where b i d . The zero of Rr will be denoted by (0, 1) 
and the unity by (1, 1). 

If R is a Euclidean domain, so that 0 = {0}, then it is obvious that for 
(c9 d) £ (0, 1) we have 

(a, b) = (ad9 be) •• (c, d) + (0, 1) 

so that with norm function gf given by 

g'(as b) = g'd, 1) = <7(D> 

Rr is a Euclidean ring. 
If 0 is larger than {0} it may not be possible to define a gr on Rf which ex-

tends g. 
Since the division algorithm given above is a trivial one, we now give defini-

tions that will lead to a nontrivial division algorithm which applies to any ring 
of quotients of a Euclidean* ring. 

V<L{inXjtlovi /*' (a) (a, b) < (c9 d) if g(a)g(d) < g(c)g(b)9 
(b) (a, b) <_ (a9 d) if (a, b) < (c9 d) or (a, b) = (c9 d). 

The symbol < can easily be shown to be irreflexive, asymmetric, and transitive, 
while the symbol <_ is a partial ordering of Rr. 
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VdjlviiXlovi 2: If (a, ft) + (0, 1), we say that (a, ft) divides (c, d), that is, 
(a, ft)|(c, d), 

if there Is a q e R such that (c, d) = (a, l)(a, ft); in other words, if ad|fte. 

Note that the q in Definition 2 is unique if a £ 0 and that this definition is 
a generalization of division as defined in R. We can now prove 

ThtOKOm It If a, ft, c, d are elements of a Euclidean"1" ring R9 and (a, b)\(cs d) , 
then (a, ft) < (c, d) or ^(a)^(d) = g(b)g(c). 

Vtioofc If (a5 b)\(o9 d), then for some q e R9 

qad = be. 

When a ( a ) = 1, we have g(a)g(d) = g(b)g(c); o t h e r w i s e g(b)g(c) > g(a)g(d)9 so 
t h e theorem h o l d s . We can d e f i n e u n i t s and pr imes i n Rr j u s t a s we d id i n R. 

VtLJhiLtLovi 3: ( a , b) i s a u n i t i f fo r some (o9 d) e Rr
9 

( a , ft) • <<?, d) = ( 1 , 1 ) . 

V^LyiAjtion 4' (a9 b) i s a prime i f i t i s no t a u n i t and i f 

(a, ft) = (s, d) • (e, /) 

implies that (c, d) or (e, f) is a unit. 

If a i 0, we have (a, ft) • (fts a) = (15 1)9 so (a, ft) is a unit and hence not 
a prime. 

If a e 0 and (a, ft) • (c, d) = (19 1), then bdar = 09 where aar - 0. Now, as 
ft £ 09 daf = 0, and so d e 09 which is impossible. Hence we have: 

IkdOKOM 2: a £ 0 if and only if (a9 ft) is not a unit. 

Suppose a e 0 and a = a-ĵ tf̂ , with a19 a2 e 0S then 

(a, ft) = (a19 ft) * (a2a3, 1), 

where (a19 ft) and (a2<339 1) are not units, so (a, ft) is not prime. 
If a e 0 and a = a-La29 where ax e 0 is prime, a2 t 0, and 

(a, ft) = (o9 d) • (e, f), with a, ft, c, d, e, and / mutually prime, 

then a1a2df = oeb. When a1\o9 e\a2df9 so that e t 0 and (e, /) is a unit. 
Similarly, if a1\e9 (c9 d) is a unit. Hence in this case (a, ft) is prime. 
We have therefore proved 

Thzonm 3' If a e 09 then (as ft), where a and ft are mutually prime, is prime if 
and only if a = a1a29 where a± e 0 is prime in i? and a2 i 0. 

In addition to the above, we can prove the following version of the fundamen-
tal theorem of arithmetic, which connects primes in R with elements of Rr. 

Th&OKtm 4'< If a and ft are unequal elements of R9 then (a, ft) can be expressed as 

(u, 1) • (p19 1) • (p2S 1) ... (pk, 1) 8 (1, ax) • (1, q2) ... (1, qm)9 

where p±9 p2, ..., pk , a1, tf2, ..., tfOT are primes of i? and u is a unit of i?. This 
representation is unique except for the order of the factors. (In the case where 
a and ft are units, k - m = 0.) 

Pfioofa: Let (a9 ft) = (a19 b±) where a± and b1 are mutually prime. 

Any non-unit can be represented uniquely as a unit times a product of primes 
of R (see [2]). For a unit this holds as well, but the number of primes is zero. 
Thus 
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where p±9 p29 . . . , p 9 q19 q2, . . . 9 qm are primes and u± and u2 are units. 

Then 

(al9 fe1) = (wlS u2) • (px, 1) • (p2, 1) ... (pfe9 1) • (1, ax) • (1, q2) ... (1, ^ ) . 

If u2V = 1 and w = uxv, this becomes 

(a, 2?) = (u, 1) • (Pl, 1) • (p2, 1) ... (pfc, 1) • (1, q±) • (1, a2) ... (1, qm). 

We now state the new division algorithm. 

Thtotim 5: If i? is a Euclidean+ ring and (a, 2?), (c9 d) ^ (0, 1), then there is 
a q e R and (i% s) e R1 such that 

(a, 2?) = (<?, 1) • (c9 d) + (r, s), 

where (r, s) < (c9 d) or (p9 s) = (0, 1). 

Vnoofc Since be £ 0 and ad £ 09 there exist q9 r e R such that 

ad = qeb + v 

with P = 0 or g(r) < g(eb). 
Thus 

(a, b) = (qob + r, id) = ((7, 1) • (<?9 d) + (r, id). 

If r = 0, then (r, id) = (0, 1). If r ^ 0, then g(r)g(d) < g(e)g(bd). 

Letting s - bd9 we have 

(a, i) == (a, 1) • (c, d) + (r9 s) 

where (r, s) = (0, 1) or (p, s) < (e9 d). 

We will show later that this algorithm allows us to find a greatest common 
divisor of (a, i) and (e9 d) as defined below. 

Vz^i-ViLtiovi Si (e9 f) is a g.c.d. of (a9 i) and (c9 d) if 

(e. /)|(<z, b)9 (e9 f)\(c9 d) 9 and (£, j)|(a, b) 
and 

(£5 j)|(<3» d) implies (£, j)\(e9 f). 
In R9 if dx and d2 are both g.c.d.s of a and i, then g(d±) = g(d2). Similarly 

here, if (e19 f±) and (e29 f2) are g.c.d.s of (a, i) and (c, d)9 we have 

Gteifz) = ^(e2/i). 
The following theorem relates g.c.d.s in i? with g.c.d.s in it". 

ThdOKQJfn 6: If £ is a g.c.d. of a and c and j is a g.c.d. of i and d, then (ij9 bd) 
is a g.c.d. of (a9 i) and (c9 d). 

Vtiook1 We can assume without loss of generality that a and i and <2 and d are 
mutually prime. 

Let i be a g.c.d. of a and c? and j be a g.c.d. of i and d and a = ia± and d = 
jd-j^ 9 then 

(ij, id) • (axdX9 1) = (ad, id) = (a9 i), 
so 

(£j, bd) I(a, i). 
Similarly, 

(ij, bd) I O, d). 
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If (r, s)\(as b) and (r, s)\(c9 d), where again we assume that r and s are 
mutually prime, we have, for some t9 u e R9 

trb = sa and uvd = so. 

Thus r\a and r|e so v\i9 and 2? | s and d|s so bd\js. Therefore, 

rbd\ijs and (r, s)| (ij, 2?d) . 

Thus (ij9 2?d) is a g.c.d. of (a, 2?) and (c, d). 

CoHjottcUiyi If the only units of i? are 1 and -1, then any two g.c.d.s of two ele-
ments of Rf are equal or are additive inverses of each other, 

Several other standard theorems on g.c.d.s and divisibility hold in R'l 

TkdQfi&n 7: If (e, /) and (ef, /') are g.c.d.s of (a, b) and (<?, d) , where e t Q9 
then there is a unit u of R such that (e, /) = (u, 1) • (<gfs / ' ) . 

Vfwofc Assuming that e and / and e1 and /' are mutually prime, we have 

(e9 f)\(e'9 ff) and {e\ fr)\(e9 f). 

Thus, for some m9 n e R9 eff = me ff and eff = ne/f. Therefore, 

ee'ff'd - 77?n) = 0. 

Since e i Q9 ef i Q9 and w and n are units of i?, the theorem holds. 

ThQ.OH.em 8: If (e9 f) is a g.c.d. of (a, 2?) and (c, d) , there exist m9 n e R such 
that ™" 

(e, /) = (m, l)(a, 2?) + (n, l)(e, d). 

P/lOÔ » In the notation of the proof of Theorem 6, (ij, 2?d) is a g.c.d. of 
(aa b) and (c, d) , where i is a g.c.d. of a and c and j is a g.c.d. of 2? and d. 

Then ij will be a g.c.d. of ad and bo. Hence, by a property for R9 there are 
elements k and h of R such that 

ij = kad + Tzfrc. 
Thus 

(ij, bd) = (̂cad + fete, bd) = (Zc, 1) (a, b) + (ft, l)(c, d). 
If (es f) is any g.c.d. of (a, 2?) and (o9 d), then 

(e9 /) = (̂ 5 l)(ijs bd), for some t e R9 
= (/??, l)(a, 2?) + (n, l)(c, d), 

where m = tk and n = th. 
IkdOKOM 91 Any g.c.d. of (a, 2?) • (c, d) and (as W • (e, f) can be written as 
(a, 2?) times a g.c.d. of (o9 d) and (e9 f) . 

P/100̂ : Any g.c.d. of (a, 2?) • (c, d) and (a, 2?) 8 (e, /) will, by Theorems 6 
and 7, take the form (ukh9 bdbf), where fc is a g.c.d. of ao and ae, ft is a g.c.d. 
of bd and bf9 and u is a unit. 

Then k = ai and ft = bj9 where i is a g.c.d. of c and e, and J is a g.c.d. of 
/ and d. Thus 

(ukhs bdbf) = (uabij9 bdbf) = (a, 2?) • (wij, a7/), 

which is the form required by the theorem. 

JhdOKQm 10: If (a, 2?)= (a, 1).(<2, d) + (P, s), then any g.c.d. of (a, b) and (o, d) 
is a g.c.d. of (c, d) and (p, s) . 

VKOOJi Similar to that for J?. 
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Theorem 10 and part of the proof of Theorem 5 give us a technique for finding 
the g.c.d.s of two elements of Rf where R is Euclidean*. 

Given (a, b) and (c, d) in i?', we have, by the proof of Theorem 5, q9 r e R 
such that 

(a, b) = (q9 1) • (a, d) + (r9 bd), 
where g(r) < g(bc) or r = 0. 

Now if v £ 0, as cb ± 09 there are ̂  and 2^ in R such that 

cZ? = qxv + r±, 
where #(2^) < ^(P) or ^ = 0. 

Therefore, 
obd = q^d + î d 

and so 
(o9 d) - (ql9 1) • (r, M ) + (rl9 bd) 9 

where gir^ < g(v) or ̂  = 0. 
Again5 if r1 £ 09 we can obtain q29 r2 e R such that 

(r, bd) = (q2, 1)(PIS 6d) + (r2, ta), 

where ^(P 2) < ^(^I) o r r2 ~ 0, etc. 
As each g(r^ is a positive integer, this process terminates, and for some rk 

we have 
(rk_29 bd) = (qk9 l)(rk_19 bd) + (rk, bd) 

and 
(rk_19 bd) = (qk+1, l)(*k» bd). 

Then (rfc 9 fed) and (pfe_1} M ) have (rk, M ) as a g.c.d. and this, by repeated 
use of Theorem 9, can be seen to be a g.c.d. of (a, 2?) and (c9 d). 

If a, fc £ 0, the g.c.d. is9 by Theorem 7, unique except for a factor (u, 1), 
where u is a unit of i?. 

Using our unique representation of elements of Rr given by Theorem 4 and writ-
ing all factors of the form (p , 1) and (1, q) for both (a, b) and (c9 d), using 
zero exponents where necessary, it is clear that any g.c.d. of 

(M, i ) ( P l , Df*(p2 , i)*2 . . . (p. , D i c ( p e + 1 , i ) i e t i . . . ( P / , n ^ u v ^ ' U , ?2)^» 
. . . ( 1 , <7m)J"(l> <?m+1)J'"+1 . . . ( 1 . ? , ) '» 

and 
(v, l ) ( P l , l ) r ' (p 2 , l)r> . . . ( p e , D r e ( p e + 1 , D ' " 1 . . . (pf, 1)*'<1, ^ " ' d . < ? / 2 

... (1, ?m)s"(l, ? w + 1 ) s " - ••• (1, <7*>", 

where all powers are integers _> 0, is 

(w, l)(Pl, l)*1 (p2, D*2 ... (p/5 1)*'<1, ̂ " ' ( l , <72)"2 ... (1» qg)"e , 
where £k = min(i£, rfe)' and w^ = max(jk, s^) and w is an arbitrary unit of R. 

If a g.c.d. of (a, 2?) and (o9 d) is (1, 1), it follows that (a, 2?) = (e9 1) 
and (e, d) = (/, 1) for some e, f £ R which are mutually prime. 

The following definition extends the notion of mutually prime elements of R to 
i?\ 

V&&ylvuJxon 6* If a and b as well as c and d are mutually prime and a and & are 
not both zero, then (a, b) and (<?, d) are mutually prime if (1, bd) is a g.c.d. of 
(a, £>) and (c, d). 

Tfoe ̂pecxal c&6e whoAz b = d = 1 conjonm^ to tht ddjuuXLon joK R 
The property: 

If x\yz and a: and y are. mutually prime, then x\z9 
which holds in R for y9 z t 0, fails in Rr. 
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For example, if R = Z, 314 * -r in Rf (= Q) and 3 and 4 are mutually prime, but 

The following seems to be the most general replacement for the above that we 
can prove. 

TkdQtim 111 if (a, b)\{c9 d) • (e, /) , where (a, 2?) and {o9 d) as well as / and o 
axe. mutually prime, then (a, b) \ (e, f). 

VtlOOfa Assume that a and b, o and d, f and o and e and / are mutually prime 
and that (a, fc) | (a, d) • (e, / ) . Then ad/1tee. 

Now, if (a, 2?) and {o9 d) are mutually prime, so are a and a. Therefore, a\e 
and /|fc, and hence af\be. 

We define congruence in Rf as follows. 

VzilviiXlon 7: (a, 2?) E {C9 d) mod (e, / ) , if (e, f)\{(a, b) - {o9 d)}. 

Alternatively, (a, 2?) = {e9 d) mod (e, f), if 2?de|(ad.f - 2xrf). Congruence 
mod (e, /) is clearly an equivalence relation over Rr. 

The equivalence class of {o9 d), mod {e9 f), will consist of all elements of 
the form {of + dke9 df)9 it will include elements of the form {h9 1) only if d\f. 

From our division algorithm, 

(a, fc) = (a, l)(e, /) + (r, s), 

it follows that (a, 2?) and the remainder {r9 s) upon division by {e9 f) are in the 
same equivalence class, mod {e9 f). Also, all the elements in the equivalence 
class of (a, b) mod {e9 f)9 will have common g.c.d.s with (a, 2?) and (e, f). 

Each equivalence class, mod {e9 f)9 can therefore be uniquely determined by a 
particular divisor (it?, t) of (e, f); the elements of the class will all be of the 
form {kw9 t). 

If all remainders (r, s) obtained upon division by (e, f) in a particular Rr 

are unique, the set of all such remainders can be said to form a set of least resi-
dues mod {e9 f). If when such remainders are not unique they always form a "posi-
tive" and "negative" pair, the positive remainders can be said to be least posi-
tive residues mod (e, f), 

The usual elementary theorems about residues can be summed up as follows. 

ThdOKom 72: if (a, b) = (e, d) mod {e, f)9 (a', 2>') = (<?', d') mod {e9 f)9 ... 
and cj) is any polynomial in several variables with integer coefficients, then 

• ((a, b), (a', 6 f ) , ...) = 4>(fo, d), (<?', d')9 ...) mod (e, / ) . 
The following cancellation theorem: 

If d is a g.c.d. of e and c, e t Q9 and ae = 2?e mod a, then a = b mod ̂ p 

which holds in i?, fails in i?f. For example, in Zf, the set of rationals 

2j • 4 E 2| • } mod 3y, 
but 

4 2 y mod 11. 
We can prove the following more restricted generalization of the above theorem 

for R. 
ThdOKOm 13: If a and b9 a and d, e and / and k and 7z are mutually prime pairs of 
elements of R9 k i Q9 m is a g.c.d of k and e9 n a g.c.d. of / and /z, e = e ^ , 
fc = ̂ m , and / = /xn, where k± is mutually prime to b and d, and if 

{k9 h) • (a, fc) E (fe, fc) • {c9 d) mod (e, / ) , 
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then 
(a, b) = (o9 d) mod (e±9 / 1 ) . 

PJWOj: If the conditions of the theorem hold, then 

bhde](ad - bc)kf. 

Letting h = hxn9 we have m9 n t 9 and bh1de1\ (ad - bo)k1f1. Then, as e±bd and k1 
are mutually prime and k1 t 0, 

M^x | (aJ - ba)f1 
and so 

(a, b) = (c, d) mod (ex, j^). 

Under the conditions of the theorem, we can also obtain, from the proof: 

(a, b) = (o9 d) mod (eh9 kf) 
and 

(a9 b) = (o9 d) mod (e1h19 k^^. 

We now consider the solution of the linear congruence 

(a, b) « (x9 y) = (c, d) mod (e, f). 

Clearly if a £ ®9 (x9 y) = (Z?c, ad) + (teb9 fa) is a solution for every t e R. It 
is therefore of more interest to find solutions with y = 1. 

Conditions for the existence of such solutions are given in the next theorem. 

Tk&Ofiem 14«* (i) If i is a g.c.d. of a and e and j is a g.c.d. of b and / and 

(1) (a, fc) • (x9 1) = (e, d) mod (e9 f)9 

has a solution, then (ij, 2?/) | (a9 d) . 

(ii) If b = b±j and e = ex£, the solution is unique mod b1e1. 

?KO0£} (i) If (1) has a solution, (a, &), (o9 d) and (e, / ) , by our earlier 
work on the division algorithm, clearly have a common g.c.d. Thus, if i and j are 
defined as in the theorem, (ij, 2?/) | (e, d). 

(ii) If we have a solution to (1), we also have a solution to 

(2) dfax = bcf mod bed. 

Let a = a1i, e = ^ i , 2? = b:ij9 and / = fxj. Assume that a and b9 e and / and 
o and d are mutually prime. Since (2) has a solution, di\bxof so that i|c and 
d\bj. 

Let c = o^i and /cd = ^ x / , t hen (2) becomes 
f^i-^x = kox mod-Z?!^!. 

If also f1a1xr = kcx mod Z^^, we have 

f1a1(x - xT) = 0 mod &xei-

Since / - j ^ and b1e1 are mutually prime, 

x = x' mod b1e1. 

Thus the solution x is unique mod b1e1. 

Co/iotta/iy- If (k9 h) is a g.c.d. of (a, b) and (e, f)9 then 

(a, 2?) • (x9 1) = (a, d) mod (e9 f)9 

if and only if (k, h)\(o9 d). 

VtiOOJ: By the fact that (fc, h)\(ij9 bf) and (ij, &/) | (fc» /z) in the notation 
of the above proof. 
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In the case where the ring i? is Z, the set of integers, we can determine the 

total number of different solutions mod (e, f) 9 or 4. 

This number of solutions will be the smallest positive integer n such that 

(nb1e1, 1) E 0 mod (e, f), 
i.e., such that e\nb.e^f. 

Now, as we can assume that e and / and a and b are mutually prime, this reduces 
to i\n, so the smallest n is t. 

Thus in the ring of integers, the number of noncongruent solutions mod (e, f) 
of (1) is i. 

Take, as an example, 
5 — 5 5 

15jcrC = -g- mod 20 32". 

Clearly, g.c.d. (l5-̂ -5 20^-j = yfg- J-, and we can obtain x = -89 as a solution to 

4(15.39 + 5)x = 26.5 mod (60.52 + 15). 

Now b± comes to 3 and e1 to 209, so the simplest noncongruent positive integer 
_5_ 
52 3 
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A RECURSION-TYPE FORMULA FOR SOME PARTITIONS 

AMIN A. MUWAFI 
The American University of Beirut, Beirut, Lebanon 

If -pin) denotes the number of unrestricted partitions of n, the following re-
currence formula, known as Euler's identity, permits the computation of p(n) if 
p(k) is already known for k < n. 

(1) p(n) = p(n- l)+p(n- 2) -p(n- 5) -p(n- 7) + p(n- 12) + p(n- 15)—++ ••• 

£(-l)' + 1p(n -|(3j 2 + j)), 

where the sum extends over all integers j, except j - 0, for which the arguments 
of the partition function are nonnegative, 

Hickerson[l] gave a recursion-type formula for q(n), the number of partitions 
of n into distinct parts, in terms of p(k) for k <_n9 as follows, 

(2) q{n) = ]T (-DJ'p(n - (3j2 + j)), 
j.-00 

where the sum extends over all integersj for which the arguments of the partition 
function are nonnegative. 

Alder and Muwafi [2] gave a recursion-type formula for pr(0, k - r, 27c + a; n) , 
the number of partitions of n into parts t 0, ±(k - r) mod 2k + a9 where 0 £ r £ 
k - 1. 
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(3) p'(0, k - v, 2k + a; n) - ± (-l)'p(n - {lk + a ^ \ {lr + a)A 

where the sum extends over all integers j for which the arguments of the partition 
function are nonnegative. Letting k = a = 1 and r> = 0, formula (3) reduces to Eu-
lerfs identity; and letting k = a = 2 and p = 0, formula (3) reduces to Hickerson1s 
formula (2) . 

Ewell [3] gave two recurrence formulas for q(2l) and q(2i + 1) for nonnegative 
integers £ in a slightly different, but equivalent, form to that in formula (2). 

This paper presents a recursion-type formula for p*(n), the number of parti-
tions of n into parts not divisible by k9 where k is some given integer J> 1. It 
is shown that formulas (1) and (2) are special cases of formula (4) below. 

Tko.OH.QM' If n >. 0, k _> ls and p|? (n) is the number of partitions of n into parts 
not divisible by k* where p£(0) = 1, then 

(4) 
-f s - OO \ ' 

where the sum extends over all integers j for which the arguments of the partition 
function are nonnegative. 

Vfwofc The generating function for p*(n) is given by 

n (i - **o 
w = o J"j (1 - X17') ^ = o j-i 

By Eulerfs product formula, we have 

" kjOj + l) 

n -ci - xkn = £ (~1)J* 2 

Hence '^ 1 ^ ~ c ° 
]Tp*(n)^n = ] P p ( r ) ^ 2 ] (-1)^ 2 

...'•• n = 0 ' 2» = 0 J = - °°  

n = 0 
2T 

Equating coefficients on both sides of this equation, and noticing that J = 0 when 
n = 0, we get the required result in (4). 

CoHjoJULcUiy 1: If in Eq. (4) we let k = 1, then p*(n) = 0, so that Eq. (4) becomes 

from which Eq. (1) follows by moving the term corresponding to j = 0 to the left-
hand side. Thus Eq. (1) becomes a special case of the theorem. 

CofiolZcUiy 2: If in Eq. (4) we let k = 2, then p*(n) denotes the number of parti-
tions of n into parts not divisible by 2, and hence it is equal to the number of 
partitions of n into odd or distinct parts. Thus p*'(k) = q(n) , and Eq. (4) reduces 
to (2). Hence Eq. (2) is a special case of the theorem. 
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PRIMITIVE PYTHAGOREAN TRIPLES AND THE INFINITUDE OF PRIMES 

DELANO P. WEGENER 
Central Michigan University, Mt. Pleasant, MI 48859 

A primitive Pythagorean triple is a triple of natural numbers (x»'y9 z) such 
that x2 + y2 = z2 and (x9 y) = 1. It is well known [1, pp. 4-6] that all primi-
tive Pythagorean triples are given, without duplication, by 

x = 2mn, y = m2 - n2, z = m2 + n2
9 

where m and n are relatively prime natural numbers which are of opposite parity 
and satisfy m > n. Conversely, if m. and n are relatively prime natural numbers 
which are of opposite parity and m > n9 then the above formulas yield a primitive 
Pythagorean triple. In this note I will refer to 77? and n as the generators of the 
triple (x9 y9 z) and I will refer to x and y as the legs of the triple. 

A study of the sums of the legs of primitive Pythagorean triples leads to the 
following interesting variation of Euclid1s famous proof that there are^nfinitely 
many primes. 

Suppose there is a largest prime, say p. . Let 77? be the product of this finite 
list of primes and let n = 1. Then (rn9 n) = 1, m > n, and they are of opposite 
parity. Thus m and n generate a primitive Pythagorean triple according to the 
above formulas. If x 4- y is prime, it follows from 

x + y = 2mn + m2 - n2 = 2(2 • 3 • ••• • pk) + (2 • 3 • •• • • pk)2 - 1 > p2 

that x + y is a prime greater than p . If x 4- y is composite, it must have a prime 
divisor greater than p. . This last statement follows from the fact that every 
prime q<.Vk divides m and hence divides x. If q divides x + y, then it divides 
y9 which contradicts the fact that (x9 y, 2) is a primitive Pythagorean triple. 
Thus the assumption that p is the largest prime is false. 

By noting that 

y - x = (2 • 3 • ••• . pk)2.- 1 - 2(2 • 3 • ••• • pk) 

= 2(2 - 3 • • •• • pk)(3 • •-• • pk - 1) - 1 > pfc> 

a similar proof can be constructed by using the difference of the legs of the 
primitive Pythagorean triple (x, y9 z) * 

The following lemma will be useful in proving that there are infinitely many 
primes of the form St ± 1.. 
Lommai If {x9 y9 z) is a primitive Pythagorean triple and p is a prime divisor of 
x + y or \x - y\ , then p is of the form St ± 1. 

?KOOJ* Suppose p divides x + y or |x - y\ * Note that this implies 

(x, p) = (y9 p)-= 1> and x =. ±2/ (mod p) 

so that 
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2x2 = x2 '+ y2 - z2 (mod p) . 

By definition, x2 is a quadratic residue of p. The above congruence implies 2x2 

is also a quadratic residue of p. If p were of the form 8t ± 3, then 2 would be a 
quadratic nonresidue of p and since x2 is a quadratic residue of p, 2#2 would be a 
quadratic nonresidue of p, a contradiction. Thus p must be of the form St ± 1. 

Now, if we assume that there is a finite number of primes of the form St ± 1, 
and if we let m be the product of these primes, then we obtain a contradiction by 
imitating the above proof that there are infinitely many primes. 
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AN APPLICATION OF PELL'S EQUATION 

DELANO P. WEGENER 
Central Michigan University, Mt. Pleasant, MI 48859 

The following problem solution is a good classroom presentation or exercise 
following a discussion of Pellfs equation. 

Statement of the Problem 

Find all natural numbers a and b such that 

a (a + 1) = h2 
2 ° ' 

An alternate statement of the problem is to ask for all triangular numbers which 
are squares. 

Solution of the Problem 

a(a+ 1) = b 2 ^ a 2 + a = 2 b 2 ^ a 2 + a _ 2b2 = Q ^ a = -l ±/l + 8 & 2 ^ 3 

an odd integer t such that t2 - 2(2b)2 = 1. 

This is Pell*s equation with fundamental solution [1, p. 197] t - 3 and 2b = 2 
or, equivalently, t = 3 and b = 1. Note that t = 3 implies 

-1 ± 3 
a = 2 » 

but, according to the following theorem, we may discard a = -2. Also note that t 
is odd. 

TkZQtiQJfn 1: If D is a natural number that is not a perfect square, the Diophantine 
equation x2 - Dy2 = 1 has infinitely many solutions x9 y. 

All solutions with positive x and y are. obtained by the formula 

xn + yn/D = (x1 + y±/D)n , 
where x1 9 y± is the fundamental solution of x2 - Dy2 = 1 and where n runs through 
all natural numbers. 
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A comparison of (xn + yjl) (3 + 2/2) and \\ Z\(Xn) shows that all solutions 
of t2 - 2(2ft)2 = 1 are obtained by XA J / ^ n' 

V2 3/\22>J \2bn+1) 

and hence all solutions of a^a = £>2 are obtained from an = - ~ , bn = —j~» 

Note that tn is odd for all n so an is an integer. 

CENTRAL FACTORIAL NUMBERS AND RELATED EXPANSIONS 

Ch. A. CHARALAMBIDES 
University. of Athens, Athens, Greece 

1. INTRODUCTION 

The central factorials have been introduced and studied by Stephensen; prop-
erties and applications of these factorials have been discussed among others and 
by Jordan [3], Riordan [5], and recently by Roman and Rota [4], 

For positive integer m9 

x[m>b] = x(x + ~mb - b)(x + ±mb - 2b\ -.. (x - ~m£> + b\ 

defines the generalized central factorial of degree m and increment b. This defi-
nition can be extended to any integer m as follows: 

x['m'b] = x2/xlm+2,b] , m a positive integer. 

The usual central factorial (b = 1) will be denoted by x[m^. Note that these fac-
torials are called "Stephensen polynomials" by some authors. 

Carlitz and Riordan [1] and Riordan [5, p. 213] studied the connection constants 
of the sequences x^m^ and xn

9 that is, the"central factorial numbers t{m9 ri) and 
T(m3 ri): 

m m 

n = 0 ^=0 

these numbers also appeared in the paper of Comtet [2], In this paper we discuss 
some properties of the connection constants of the sequences x^m'd] and x^-n'h^9 h ^ 
g9 of generalized central factorials, that is, the numbers K(jn9 n, s): 

m 

x[m'g] = Jl gmKnK(m9 n9 s)x[n> h\ s = h/g. 
rc = 0 

2. EXPANSIONS OF CENTRAL FACTORIALS 

The central difference operator with increment a, denoted by Sa , is defined by 

&af(x) = f(x + a/2) - f(x - a/2) 
Note that 

E* - E^ =^"iAas (2.1) 
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where Ea and Aa denote the displacement and difference operators with increment a9 
respectively. Therefore, 

&a-t(-l)k(l)E^-k (2.2) 

When the increment a = 1, we write 61 = 6, E1 = E9 and Ax = A. 
The central factorial of degree m and increment b, denoted by x^m'b\ is defined 

by 

x 
Note t h a t 

[*»&] = x(x + i/zfe - b)(x + 4??2? - 22?) • • • (x - ~mb + 2?). 

:(*+^m& - i ) ^ , * , (2.3) 
where 

(yh,b = yty - b)(y - 2b) ••• (y - mb + b) 
is the falling factorial of degree m and increment b. 

It is not difficult to verify that 

J.m-2, b] 

Using the relation 

and, by (2.3), we get 

x[m,b] — 

(y 

x2 - {hn.- l\2b2\x{n 

> „ 1 
>-*<*> (y + mb)mjb> 

x2 

.̂fm + 2 , 6 ] 

(2.4) 

(2.5) 

(2.6) 

When the increment b = 1, we write 

xlm'1]= x^r, (z/)mjl = (y)m. 
Note also that 

(&x)[m] = bmx^m-h\ h = lib. (2.7) 
From formula (2.8) (see Riordan [5, p. 147]), 

-• -1 * t ~c +»6-"i >• = | ,rrs( a v y - • -«-«>«-. «•» 
with a = bx9 3 = 1/2, u - E9 v == (S7 - 1)2? ~* = 6, we get the symbolic formula 

Since [£,fca(8s)[ral ] s . 0 = (ax)[m] , s = alb, we obtain 

(ox)1"" - L ^ W " ' 1 ! • (te)["]. 
n » o Ln • J a? - 0 

Denoting the number in brackets by 

Z(m, n, s) = r^r6"(Sar)[m]l , (2.9) 

we have 
m 

{ax)[m] = £#(772, n, s)(bx)[n] , s = a/2?. (2.10) 

n = 0 

Using (2.7), (2.10) may be rewritten in the form 
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xim39] = E g"h'nK(m9 n9 s)x^^\ s = h/g. 
Note also that 

K(m9 n9 s) 
1 \n~[mtb] 

.nib 
-&aXl , s = a/b. 

(2.11) 

(2.12) 

From the definition (2.9), we may deduce an explicit expression for the num-
bers K(m9 n9 s). Indeed, from the symbolic formula (2.2) with a = 19 and since 

we get 

(2.13) 

A recurrence relation for the numbers K(jn, n, s) , useful for tabulation pur-
poses, may be obtained from (2.10) and (2.4) as follows: 

1 + 2 

Hence 

... T t / \ m 
(.sk)[m+z] = ^ I ( ™ + 2, n, s)x[n] = (s2x2 - V ) £jf(m, n, s)x^ 

m r i i 
- £ x ( m , n. 8) a2a:[" + 2, + i(8zn2 - m2)x^U. 

n=0 L ^ J 

Jf(m + 2, n, s) = 7-(s2n2 - m2)K(m, n, s) + s2K(rn, n - 2, s). (2.14) 

The initial conditions are 
Z(09 09 s) = 1, X(Q, n9 s) = 09 n > 09 K(m9 09 s) = 09 m > 0. 

Moreover, 
K(2ms In + 1, s) = 0, Z(2w + 1, 2n, s) = 0. 

From the recurrence relation and the initial conditions, it follows thatt 
If s is an integer,. the numbers 

s'2nK(2rn9 2n9 s) and ^m'n8'2n-1K(2m + 1, In + 1, s) 

are positive integers and9 moreover, 

If s is a negative integer, the numbers 
K(2m9 2ns s) = 0, m < n, m > n\s\9 

K(2m + 1 , 2n + 1, s) = 0, m < n, 2m + 1 > (2n + l)|s|. 

Other properties of these numbers will be discussed in the next section. 
We now proceed to determine the coefficients A{n9 m9 s) in the expansion 

xi~m] =Y1 A(n> m> s)(sx)[-nl a 

Since x [-m + 2] [x2 - \rny x^"mK we get 

n-n- 2 

]T 4(n, ̂ - 2 , s)(sx)["n] = L 2 - ~-m2) Y*A(n9 m9 s)(sx)['n] 

\ / n = m 

= f>(n, m, s)rs-2(sa;)t-n+2J + -ks" V - m2) (sx)1""']. 
« = m L J 



454 CENTRAL FACTORIAL NUMBERS AND RELATED EXPANSIONS [Dec. 

Hence 

A(n + 2, m, s) = -r(s m - n )A(n9 m9 s) + s A(n9 m - 2, s) 
with 

A(09 0, s) = 1, A(09 m9 s) = 0, > 0. 
Comparing this recurrence with (2.14), we conclude that 

xi~m] = JlK(n> ™9 s)(sx)^n1 , (2.15) 

which may be written in the form 

(bx)["m] = J^K(n, m9 s)(ox)["n] (2.16) 
n = m 

or 
^["^3 = ]C gnh~mR(<n> m> s)x[-n>h\ s = hlg. (2.17) 

« = m 

3. SOME PROPERTIES OF THE CENTRAL FACTORIAL NUMBERS 

Some other properties of the numbers Kim* n9 s ) 9 defined by (2.9) or, equiva-
lently, by (2.12), will be discussed in this section. 

From (2.10) we may easily get the relation 

m 

Y,K(m, k, a/b)K(k, n9 bid) = Smn9 (3.1) 
k = n 

where 6 m n denotes the Kronecker delta. This relation implies the pairs of inverse 
relation 

m m 

am = 22 K(m9 n9 alb)bn9 bm = ^K(m» n9 b/a)an9 
n - 0 n = 0 

°n = ^K(m9 n9 alb)dm9 dn = ^ K(m9 n9 b/a)cm. 
m = n m = n 

For the central factorial numbers 

t(m9 n) ~rDnxA and T(m9 n) = [^V"! 
n\ J* = o Ln! J; 

we have (see Riordan [ 5 , p . 2 1 3 ] ) 

m_ 

rc = 0 

xm = ]T !Ffe9 n)^t n l . (3.3) 
rc = 0 

Expanding (sa:)^^ into powers of x by means of (3.2) and then the powers into cen-
tral factorials by means of (3.3), we obtain 

m m k 

(sx)[m] = J2skt(m9 k)xk = £ Y, skt(m> k)T(k, n)x^1 
k = 0 k=0 n=0 

or 
m m 

(sx)[m] = Y, lLskt(m> ^ ( k , n)x^nK 
n - 0 fc = n 
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which, in virtue of (2.10) with b = 1, a = s, gives 

K(m9 n9 s) = ]T skt(m9 k)T(k9 ft); 
k = n 

similarly, it can be shown that 
m 

t(m9 n) = s~nY^ K(m9 k9 s)t(k9 n) 
i k = n 

and 
m 

T{m, n) = s"m£ T(jn, k)K(k, n, s). 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Since lim s'm (sx)[m] = xm, we get, from (2.9), 
s->- + » 

lim s-mK(m9 n9 s) =W6nxm"] = T(m9 n). 
s-^±oo \_n\ Jx = o 

From (2.12) with b = 1, a - s9 and noting that lim s~1Ss = D9 we deduce 

(3.8) 

Turning to the generating function, we find, on using (2.13) and (2.8), with 

a = -zsn - sk9 3 = -y5 v = y9 (u - l)u~* = y9 

s-+- 0 

lim s~nK(m9 n9 s) = M^Z)Vl = t(m9 ft). 

that 

m - 0 

fc = 0 

oo —sn - s/c / -Tzsn - sk + -an - l\ 

i + E^-— 2 2 k m - 1 

- V ( M
S / 2 - w"s/2) , (w - l)w 

ft! 

-1/2 

and 

Therefore, 

Putting u - ew and s = r to avoid mistakes in the hyperbolic formulas, we get 

Gn(yi r) =^-[2 sinh (|w)J 

y = 2 sinh (-~-w J. 

0„<J/; r) = ̂ j-[2 sinhjr sinh"1 (|z/)}J. 

= ̂ [ 2 sinh [r logQ-y + | / y 2 + 4)]]". (3.9) 

The corresponding generating functions for the Carlitz-Riordan central fac-
torial numbers may be obtained as 

±tim, nyQ = ±\l s i n h - ( ^ ) ] " 

t n r n , n ) | f = ^ [ 2 s i a h ( i y ) ] " . 

Using formulas (3.10), (3.11), and (3.9), and since 

6a" = [2 sinh (^ao)]" , anDn = [2 sinh"1 ( | 6 a ) ] " , C = [2 sinh [r sinh"1 (|<5j)}J, 

(3.10) 

(3.11) 
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we get 

m*. ' ' - *-< ml 
m=0 m=0 

Finally, let 
ml 

m = 0 

Qm(.z; s) = £ (sx)[m> 
a;* 0 

and put m 0 
n ( \ 2s + 1 V* w>n>s (g + n)! 
>"U; S) ~ 2 £<02n + 1 (* - w)! 

Then 
(sartl2fl|J - To X(x + n ~ 1 ) ! c T f l ^ m ] 

n-o ^ - n ; . ^ 
and by ( 2 . 1 0 ) , 

e w > n , s = *(2m, 2n, e). 
A similar expression may be obtained for Q {z\ s) . 

REFERENCES 

1. L. Carlitz & J. Riordan. "The Divided Central Differences of Zero." Canad. 
J. Math. 15 (1963):94-1G0. 

2. L. Comtet. "Nombres de Stirling generaux et fonctions symetriques." C. i?. 
Acad. So. Paris, Serie A 275 (1972):747-50. 

3. C. Jordan, Calculus of Finite Differences. New York: Chelsea, 1960. 
4. S. M. Roman & G.-C. Rota* "The Umbral Calculus." Advances in Mathematics 27 

(1978):95-188. 
5. J. Riordan. Combinatorial Identities. New York: Wiley, 1968. 

ON THE FIBONACCI NUMBERS MINUS ONE 

G. GELDENHUYS 
University of Stellenbosch, Stellenbosch 7600, Republic of South Africa 

Let A be t h e n X n m a t r i x w i th e lements def ined by 

dtf = - 1 i f i = J - 1; 1 + y i f i = j ; -y i f £ = J + 2 ; 
and 0 otherwise. If n _> 3 and y is a positive number, then ̂ 4 is a special case of 
a matrix that was shown in [1] to be useful in the design of two-up, one-down ideal 
cascades for uranium enrichment. The purpose of this paper is to derive certain 
properties of the determinant Dn of A and to point out its relation to the Fibo-
nacci numbers. 

Expansion of the determinant of A according to its first column leads to the 
recurrence relation 

(1) D1 = 1 + y, D2 = (1 - y ) 2 , and Dn = (1 + y)0n_i - V^„.3 for n >_ 3. 
For convenience, set DQ = 1. 

By using standard techniques for generating functions, it can be shown that 
the generating function D(x) for {Dn} (with positive radius of convergence) is 

(2) D(x) - [1 - (1 + \i)x + MX3]'1 = J2 J2(-Dd(^)^(l +y)*-V 



1981] ON THE FIBONACCI NUMBERS MINUS ONE 457 

Therefore, an exp l i c i t expression for D„ i s 
[n/3] 

(3) Z>„- £ ( - ^ ( " - ^ J y f c d + P ) n-3fc 

where [n/3] denotes the integral part of n/3. 
Adding the recurrence relations (1) for n = 3, 4, 55 . .., m leads, on simpli-

fications to the alternative recurrence relation 

<4> An - ^ . ! - ^,_2 - l.for m > 3. 

The homogeneous equation corresponding to (4) has the linearly independent solu-
tions 

'y + /y2 + 4uV - ,. /y - /]i 
0mM - ̂  ' ̂  ^ J , ^(y) - ( J i ^ f i ^ ) m

5 for all m > 3S 

and a particular solution of (4) is 

f 1/(1 - 2y) if y * 1/2, 

I 2w/3 if y = 1/2. 

Hence, the general solution of (4) is of the form 

<5> Dm - ^ + ^ + Pm for m >: 3, 

where c?x and c2 are constants that can be determined from (1). 
In the special case when y = 1, let km denote the determinant of the matrix A. 

Then (3), (4), and (5), respectively, become 

[n/3] 

k = o ^ ' 

and 
1 

Am - r -
/5 

/ l + / 5 \ w + 3 __ / l - / 5 \ w + ; 
1, TW >. 3. 

It is clear that the members of the sequence {AOT} are the Fibonacci numbers minus 
one [2] and that the results for y ^ 1 generalize those for y = 1. 
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EDITOR'S NOTE: 

Selecting the names of those individuals who were asked to submit manuscripts 
for the Memorial Issue was not an easy task on the part of the Board of Directors 
and Herta Hoggatt. Vern knew and worked with so many of you that it would have 
been impossible to ask all of you. As the editor, I apologize for any oversights. 
Furthermore, Mrs. Herta Hoggatt and family wish to express their sincere apprecia-
tion to all of those authors who contributed to the Memorial Issue. 

—Gerald E. Berqum 
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PASCAL'S TRIANGLE MODULO 

CALVIN T. LONG 
Washington State University, Pullman, WA 99164 

1. INTRODUCTION 

In "Mathematical Games" in the December 1966 issue of Scientific American, 
Martin Gardner made the following statement regarding Pascalfs triangle: "Almost 
anyone can study the triangle and discover more properties, but it is unlikely 
that they will be new, for what is said here only scratches the surface of a vast 
literature." But, of course, many new results have been discovered since 1966 and 
we present some here that were even suggested by Gardner's article, although the 
more immediate stimulation was the recent brief article by S. H. L. Kung [3] con-
cerning the parity of entries in Pascal's triangle. 

2. THE ITERATED TRIANGLE 

Consider Pascal*s triangle with its entries reduced to their least nonnegative 
residues modulo p, where p denotes a prime. Let k9 n, and m be integers with 0 <_ 
k <_ n and 1 <_m9 and let Anjfc denote the triangle of entries 

lnpm\ 
• \kpm) . 

Inpm + pm - l\ lnpm + pm - l\ 
\ kpm ) " " • " \kpm + pm - 1/ 

For fixed m, we claim that all those elements not contained in one of these 
triangles are zeros, that there are precisely p distinct triangles An,fe» and that 
these triangles are in one-to-one correspondence with the residues 0, 1, 2, ..., 
p - 1 in such a way that the triangle of triangles 

Ao,o 
Ai,o Ai,i 

A2,0 A2,l A2,2 

is "isomorphic" to the original Pascal triangle. In particular, we claim that 
there is an element-wise addition of the triangles hn,k which satisfies the equa-
tion A . . 

&n,k + &n,k + l ~ An + l.fc + 1 

where the addit ion i s modulo p . 
If we repeatedly i t e r a t e t h i s process by mapping the t r i ang les hn,k onto the 

residues i t follows tha t , modulo p , Pasca l ' s t r i ang le i s a t r i ang le that contains 
a Pascal t r i ang le of t r i a n g l e s , that in turn contains a Pascal t r i ang le of t r i a n -
g les , . . . , ad infinitum. For example, l e t m = 1 and consider Pasca l ' s t r i a n g l e , 
modulo 2. -

1 1 
1 0 1 

1 1 1 1 
1 0 0 0 1 

1 1 0 0 1 1 
1 0 1 0 1 0 1 

1 1 1 1 1 1 1 1 
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If we actually draw triangles around the An>k defined above, we obtain the follow-
ing array: 

And is we suppress the triangles with a single zero (with the points pointed down-
ward) and make the substitution indicated by the one-to-one correspondence 

0 ++ 1 

we obtain 
1 

1 1 
1 0 1 

1 1 1 1 

which is simply the original Pascal triangle modulo 2. Also, using element-wise 
addition modulo 2, we note that 

and similarly for the other "digit" sums. 
Iterating a second time (or, equivalently, taking m = 2) amounts to partition-

ing the original triangle as follows: 

This time, suppressing the inverted triangles of zeros and making the replacement 
indicated by the correspondence 
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we obtain 
1 

1 1 
1 0 1 

which is again the original Pascal triangle modulo 2. Also, again adding element-
wise modulo 2, we have 

as required by the Pascal recurrence. 
These results are summarized for any prime p in the following theorem. 

Th&QJiQJM 1: Let p be a prime and let An, k be defined as above for 0 <. k <_ n and 
1 <_m. Then Ansfe is the triangle 

(SXS) 
( X ) 0(1) 

(n\(pm - 1\ (n\fpm•- 1\ 
UA o / ' • • \k)[pm - i/ 

with all the products reduced modulo p and 

An,/< + ^n,k + l = An + 1,H1 

where the addition is element-wise addition modulo p. Finally, every element in 
Pascal's triangle and not in one of the An,k is congruent to zero modulo p. 

VKQOfc The elements of Anjk are the binomial coefficients 

( & : : ) • » ^ - < p - . 
and, by Lucas' theorem for binomial coefficients [1], [5, p. 230], 

This gives the first assertion of the theorem and also implies the second, since 

(npm + r\ ( npm + r \ _ /n\/2»\ / n \/r\ 
\kpm + s/ \(k + l)pm + s/ " \k)\s) \k + l/W 

• (i: DO 

Finally, the entries of Pascal's triangle not included in any of the An>k form 
triangles S}n>k of the form shown below. 
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( nVm \ ( nVm \ 
\kpm + 1/ ' ' ' e 8 \kpm + pm - 1/ 

lnpm + pm - 2 \ 
\/cpffl + pOT - 1/ 

w i t h t h e e lements reduced modulo p . Thus, every element i n VHtk i s of t h e form 

< s .<. p 

and, aga in from Lucas1 theorem, 

/np- + r\ 

torem, 

since p < s. This completes the proof. 

3. A GREATEST COMMON DIVISION PROPERTY 

In this section, we need the following remarkable lemma [4, p. 57, Prob. 16] 
which is readily derived from Lucas? theorem. Note that by pf\\n we mean that pf\n 
and pf+1\n. 

Lemma: Let p be a prime and let n and k be integers with 0 <L k <_ n. If P^llliw » 
then / is the number of carries one makes when adding k to n - k in base p. 

We now prove an interesting greatest common divisor property for the binomial 
coefficients in the triangular array 

(T) c : j 
m - ••(:•:{) 

/277Z - 2 \ 

\m - 1 / 
which we denote by Vw. 

Th<LOH.QJtr\ 2: Let p be a prime, let <f be the greatest common divisor of all elements 
in Vm, and let D denote the greatest common divisor of the three corner elements 

(TM.:i).-"C--i2)' 
Then, (i) d = D = p if m = p 9 

(ii) d = p and D = p if ??? = pa, where a > 1 is an integer, and 
(iii) d = 1 and D - m for all other integers w > 2. 

PJWOp (i) Since (^ = (P^ = p and d|Z?|(^), it suffices to show that p Id-

Consider an arbitrary element 

(p;v < . £ : £ p - 2 , k + l < . ? z < _ p 
of Vp. By Lucas ' formula 
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since k < h. Thus, p|<2|Z?. On the other hand, p||( a-i)» since the only carry you 

make in adding pa~1 to pa - p01*"1 = (p - l)pa_1 is just 1. This implies that d\p9 

since k < h. Thus, p divides every element of Vp and so p\d as required. 

(ii) Here the elements of VpQ are the form 

{pCL h k ) 9 °  - k - p - 2 > k + l ± h . < _ p - 1 

and, again by Lucasf theorem, 

e v *) = ( ? ) = • <-»>• 
: hand, p\\(K-i\ , 
l)pa~1 is just 1. 

and hence that d - p. Furthermore, 

since 
a-l 

P°  " 1 = S (P " ̂ ^ 
' £ - 0 ' 

so that you carry precisely a times when adding pa - 1 to pa - 1 in base p. 
Therefore, D ~ pa as claimed. 

(iii) In this case, m is not a. prime power. Since 

we have that D\m. Thus, to show that D - m9 it suffices to show that m\D. This 

will clearly be the case if we show that ml _ ) and for this it suffices to 
show that • 

(2m - 2\ - ̂  . ̂  

where 

m = n p.°" 

is the canonical representation of m. Let m - kp 9 where k is an integer and p\k. 
Since 

a-l 

kpa - 1 = (k - l)pa + pa -' l = (fc - l)pa + ]T (p - l)p , 

it is clear that the number of carries made in adding kpa - 1 to kpa - 1 in base 
p is at least a. Therefore, 

and the result follows. 

We now show that d = 1. Since 

(2kpa - 2\ 
\?cpa - 1 / 

i t suffices to show that 
. / m \ 

1 < i < r. 
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If we fix i-9. we may write m = hp\l with h > 1 and (h, pt) = 1. The question will 
then be settled if we show that there are no carries when adding p?* to m - p ?7: = 
(h - l)pioti in base p. Since the only nonzero digit in the representation of^p?* 
to base p^is the 1 that multiplies p?s we need consider only the digit that mul-
tiplies pfi in the base pi representation of (h - l)p?*. Indeed, it is clear that 
we have a carry if and only if h- 1 = qpi + {pt - 1) for some integer q. But this 
is so if and only if h= (q+l)pi9 and this contradicts the fact that (h9 p.) = 1. 
Thus, ^ 

for 1 <. i <_ r9 and the proof is complete. 
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ON THE NUMBER OF FIBONACCI PARTITIONS OF A SET 

HELMUT PRQDINGER 
Institut fur Mathematische Logik und Formale Sprachen, 1040 Wien, Austria 

1. PARTITIONS OF n IN FIBONACCI SETS 

Let n: = {1, 2, ..., n]« It is well known [1] that the number of sets A C n9 
with 

(1) i , j e A, i f j implies \i - j | _> 29 
is the Fibonacci number Fn+1. (FQ = F1 = I, Fn + 2 = Fn+1 + Fn.) 

A set A C n with the property (1) will be called a Fibonacci set. 
A partition of n is a family of disjoint (nonempty) subsets of ~n whose union 

is "ft. The number of partitions of n Is Bn9 the nth Bell number [2], 
In this section the number Cn °f partitions of ~n in Fibonacci subsets will be 

considered. There exists an interesting connection with Bn. 
ThtOKOm It Cn = Bn_1. 

Vnooj* This will be proved by arguments analogous to Rotafs in [2]. First, 
the number of functions f : n •+ U (JJ has u elements) with f(i) ^ f{i + 1) for all 
i is determined: for f(l) there are u possibilities; for f(2) there are u - 1 pos-
sibilities; for /(3) there are u- 1 possibilities, and so on. The desired number 
of functions is u(u - l)""1. 

These functions are partitioned with respect to their kernels. (Note that ex-
actly those kernels appear which are Fibonacci sets!) 

(2) 23(w)»(TT) = " (" " 1)" X. 
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the sum is extended over all kernels TF, and N(T\) denotes the number of distinct 
subsets of TT. 

Now let L be the functional defined by (u)n -> 1 for all n. Then, from (2), 

(3) £(.E(w),(ir)) - On - L{u(u - l)""1). 

In [2] it is proved that L(u • p(u - 1)) = L(p(u)) holds for all polynomials p. 
With p(u) = unml

f 

Cn - L(u(u - l)""1) = Liu"1'1) = Bn - 1. 

(The last equality is the essential result of [2].) 

At this time it is legitimate to ask of a natural bisection <P from the parti-
tions of n to the Fibonacci partitions of n + 1. <p and cp'1 are given by the fol-
lowing algorithms (due to F. J. Urbanek). 

Algotiitfan jo/t <p: 
A?. n + 1 is adjoined to the given partition in a new class. 
A2. Do Step A3 for all classes except the one of n + 1. 
A3. Run through the class in decreasing order. If with the considered number 

i, i + I is also in the same class, give i in the class of n + 1. 

Example.: 1 2 3 5 | 4 6 7J8 9 - > 1 2 3 5 | 4 6 7 | 8 9 | l 0 - * 1 3 5 | 4 6 7 | 8 9 | 2 10 
-> 1 3 514 7 J 8 912 6 10 •* 1 3 514 7J9|2 6 8 10. 

klQonJJthm joh. 9"1: The number n + 1 is erased; the other numbers in this class 
are to be distributed: If i + 1 has its place and i is to be distributed, give i 
in the class of £ + 1. 

Example.: 138 | 24 | 6 | 579 -> 1378J 241 56. 

It is not difficult to see that <p and <P~1 are inverse and that only <P~1 pre-
serves the partial order of partitions (with respect to refinement). 

2. A GENERALIZATION: ^-FIBONACCI SETS 

A d-Fibonacci set A C n has the property 

(4) £, j e As i $ j implies \i - j \ _> d. 

Let Cn(d) be the number of d-Fibonacci partitions, (Cn(2) = Cn, C^1) = B„.) 

lke.on.em 2: c „ d ) = Bn + 1_ d. 

VKOO^: First the number of functions f t n -* U with 

|{/(i), f(i + l)s ..., f(i + d ~ l)}\ = d for all i 
is considered. By the same argument as in Section 1, this number is 

W ^ i u - d + l)" + 1-d. 
Again 

(5) r < " ) J ( 1 0 - <">d-i(M - d + D n + 1 " d . 

where the summation ranges over all d-Fibonacci partitions of n. Applying the 
functional L on (5) yields 

(6) C(
n
d = L({u)d^(M - fc + l)n + W ) . 

As in [2], 

(7) L{(u)d_lP(u - d + 1)) = L{p(u)) 
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holds for all polynomials p. With p(u) = un 1'd it follows from (6) and (7) that 

C™ = L((u)d^(u - d + I)"""*) = L(un+1"<*) = BB + W . 

It is possible to construct a bijection <p from the partitions of n to the d-
Fibonacci partitions of n + d - 1 in a way similar to that given in the previous 
section; however, this is more complicated to describe and therefore is omitted. 

3., A GENERALIZATION OF THE FIBONACCI NUMBERS 

The fact that Fn + 1 is the number of Fibonacci subsets of n can be seen as the 
starting point to define the numbers F„ (s e N): 

Fn + 1 is defined to be the number of (Al9 . ... , As) with Ai C n and A± n Aj + 0 
for i ^ j. The recurrence 

can be established as follows : 

First, Fn+i c a n ke expressed as the number of functions 

/: n -* {e, a19 ... , as} 

with f(i) = /(£ + 1) = <Zj is impossible. If f(n) = e, the contribution to Fn + 1 
is F^s) , If /(n) = a^, the contribution is F„(s) minus the number of functions 

/: n - 1 -> {e, a , ..., as} 

with /(w - 1) = at-. Taken all together, 

(8) F<°+> = F„(s) + a ^ " - *<!\ + F„<f> - + . - . ] . 

Also 

(9) F£2 = *£> + a l F ^ i - F<»> + F<!> - + • • • ] . 

Adding (8) and (9) gives the r e s u l t . An exp l i c i t expression i s 

F!8) - ~± 
A sz + 4 2 
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DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy 

Fn+2 = Fn+1 + Fn> F0 m ° . *"l = 1 
and 

^n + 2 ~ ^n+1 + ^ n ' F0 = 2 , £-,_ = 1 . 

Also, a and b designate the roots (1 + /5~)/2 and (1 - /5)/2, respectively, of 

PROBLEMS PROPOSED IN THIS ISSUE 

B-460 Proposed by Larry Taylor, Rego Park, NY 

For all integers j, k9 n, prove that 

FkFn + j "FjFn+k = -(-1) Fk-jFn' 

B-461 Proposed by Larry Taylor, Rego Park, NY 

For all integers J, k9 n, prove or disprove that 

FkLn + j ™ FjLn+k = (_1) Fk-jLn' 

B-462 Proposed by Herta T. Freitag, Roanoke, VA 

Let L(n) denote Ln and Tn = n(n + l)/2. Prove or disprove: 

L(n) = (-1)T«- [L(Tn_1)L(Tn) - L(n2)]. 

B-463 Proposed by Herta T. Freitag, Roanoke, VA 

Using the notations of B-462, prove or disprove: 

L(n) E (-l)21""1 L(n2) (mod 5). 

B-464 Proposed by Gregory Wulcyzn, Bucknell University, Lewisburg, PA 

Let n and w be integers with w odd. Prove or disprove: 

Fn+2wFn + w " ^LwFn + wFn-w ~ Fn-wFn-2w = ^F3w " ^Fw^Fn • 

B-465 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

For positive integers n and k9 prove or disprove: 

F2k + F6k + F10k + • " + F ( 4 n - 2 ) f c F2nk 

L2k + LGk + L10k + • " + Lihn-2)k L 2nk 
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SOLUTIONS 

Sequence Identified and Summed 

B-436 Proposed by Sahib Singh, Clarion State College, Clarion, PA 

Find an appropriate expression for the nth term of the following sequence and 
also find the sum of the first n terms % 

4, 2, 10, 20, 589 146, 388, 1001, ... . 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

The general term d^ of the above sequence is given by 

dk = Fl + L|, k = 0, 1, 2, ... . 

Let S be the sum of its first n terms. Then 

n - 1 n - 1 

S = 2*# Fk + 2-r ̂ k = Fn~lFn + Ln-l^n + 2 

fc = 0 &=0 

[see (I3) and (Ilf) on p. 55 of Fibonacci and Lucas Numbers by V. E. Hoggatt, Jr.] 

Also solved by Wray G. Brady, Lars Brodin, Paul S. Bruckman, Scott St. Michel and 
James F. Peters, A. G. Shannon, Charles B. Shields, M. Wachtel and E. Schmutz and 
H. Klauser, Gregory Wulczyn, and the proposer. 

Hoggatt-Hansell Property 

B-437 Proposed by G. Iommi Amunategui, Universidad Catolica de Valparaiso, Chile 

Let [m9 n] = mn(m + n)/2 for positive integers m and n. Show that: 

(a) [m + 1, n][m9 n + 2] [m + 2, n + 1] = [777, n + l][m + 2, n] [777 + 1, n + .2]. 

(b) ]T [TW + 1 - k9 fc] = m(m + 1)20? + 2)/12. 
fc-1 

(We note that part a is the Hoggatt-Hansell "Star of David" property for the 
[m9 n].) 

Solution by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

(a) [m + 1, n][m9 n + 2] [m + 2, n + 1] = |m(m + 1) (TTZ + 2) (77? + n + 1) 

(772 + n + 2) (m + n + 3 ) 

= [77?, n +. 1][777 + 2 , n ] [777 + 1 , n + 2 ] . 

m 1 m 

(b) V [TW + 1 - /c, k] = 4 ( ^ + i) X) fe^ + ! - fe> 
fc-1 z fc-1 

7 7 7 + 1 
2 

(77? + 1)777(777 + 1 ) 777(777 + 1 ) (277? + 1 ) 
2 

= 2&4ti2i[3» + 3 - to - 1] - m(m + *>> + 2) 

Also solved by Wray G. Brady, Paul S. Bruckman, D. K. Chang, Herta T. Freitag, 
Northern State College Problems Group, Bob Prielipp, A. G. Shannon, Sahib Singh, 
Lawrence Somer, Jonathan Weitzman, and the proposer. 
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Problem Editor's Error 

B-438 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Let n and w be integers with w odd. Prove or disprove the proposed identity 

F F - IT, F F + F F = (L - 2L }F2 

Solution by Paul S. Bruckman, Concord, CA 

The identity indicated in B-438 is false. To see this, we only need to set 
n = 0, w = 1 in the left member of the proposed identity, which yields, for this 
expression, 

F2Fi - 2LiV.i + F-iF-2 == 1 • 1 - 2 • 1 • 1 • 1 + 1(-1) = 1 - 2 - 1 = -2; 

however, in the right member, we obtain (L3 - 2L1)F2 = 0^-2. This also disposes 
of B-439. 

Disproofs were also given by Herta T. Freitag, Bob Prielipp, Sahib Singh, and the 
cited proposer. For the proposer's version, see B-464 above. 

Companion Problem 

B-439 Proposed by A. P. Hillman, University of New Mexico, Albuquerque, NM 

Can the proposed identity of B-438 be proved by mere verification for a finite 
set of ordered pairs (n, w)l If so, how few pairs suffice? 

Solution by Paul S. Bruckman contained in his solution to B-438. 

Converse Does Not Hold 

B-440 Proposed by Jeffrey Shallit, University of California, Berkeley, CA 

(a) Let n = x2 + y2
 9 with x and y integers not both zero. Prove that there 

is a nonnegative integer k such that n = 2k (mod 2 + 2 ) . 

(b) If n = 2k (mod 2 k + 2 ) , must n be a sum of squares? 

Solution by Paul S. Bruckman, Concord, CA 

It is a well-known result of number theory that any positive integer n is rep-
resentable as the sum of two squares if and only if its prime factorization only 
contains even powers (possibly zero) of primes congruent to 3 (mod 4). In this 
case, the odd portion of n (n itself, if odd) must be congruent to 1 (mod 4). 
Thus, n = 2fe(4s + 1) = s • 2k + 2 + 2k, or n = 2k (mod 2k+2). This proves part (a) 
of the problem, where the desired integer k is simply the greatest power of 2 in 
the prime factorization of n. 

If n = 21 • 2k (k _> 0), then n - 2k • 3 • 7, which cannot be a sum of two 
squares, because of the result quoted above. Nevertheless, 

n = 2*(3 • 22 + 1) E 2k (mod 2k+2). 

Hence, the answer to part (b) of the problem is negative. In general, if n con-
tains an even number of odd powers of primes congruent to 3 (mod 4) in its prime 
factorization, it will satisfy the given congruence, but cannot be expressed as 
the sum of two squares. 

Also solved by D. K. Chang, AT. J. DeLeon, Herta T. Freitag, H. Klauser, Bob Prie-
lipp, Sahib Singh, Lawrence Somer, Gregory Wulczyn, and the proposer. 
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Sum of Base-2? Palindrome Reciprocals 

B-441 Proposed by Jeffrey Shallit, University of California, Berkeley, CA 

A base-2? palindrome is a positive integer whose base-b representation reads 
the same forward and backward. Prove that the sum of the reciprocals of all base-
b palindromes converges for any given integer b _> 2. 

Solution by H. Klauser, Zurich, Switzerland 

Among the 2n-digit numbers9 there are (b - l)^""1 palindromes. A lower bound 
for them is 2?2n_1 and the sum of their reciprocals is 

S2n < (6 - iW^b1-1" = (b - 1)ZT\ 
There are (b - l)bn palindromes with In + 1 digits9 a lower bound is b n , and the 
sum of their reciprocals is 

It follows that the sum S of the reciprocals of all palindromes is less than 
00 

lib - 1)2>~"« 2. 

Also solved by Wray G. Brady, Paul 5. Bruckman, Lawrence Somer, Jonathan Weitzman, 
and the proposer. 
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Edited by 
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Haven, PA 17745, This department especially welcomes problems believed to be 
new or extending old results. Proposers should submit solutions or other in-
formation that will assist the editor. Preference will be given to solutions 
that are submitted on separate, signed sheets within two months after publica-
tion of the problems* 

PROBLEMS PROPOSED IN THIS ISSUE 

H-333 Proposed by Paul S. Bruckman, Concord CA 

The following problem was suggested by Problem 307 of 536 Puzzles & Curi-
ous Problems, by Ernest Dudeney, edited by Martin Gardner (New York: Charles 
Scribnerfs Sons, 1967). 

Leonardo and the pig he wishes to catch 
are at points A and B9 respectively, one 
unit apart (which we may consider some 
convenient distance, e.g., 100 yards). 
The pig runs straight for the gateway at 
the origin, at uniform speed. Leonardo, 
on the other hand, goes directly toward 
the pig at all times, also at a uniform 
speed, thus taking a curved course. What 
must be the ratio r of Leonardofs speed 
to the pig's, so that Leonardo may catch 
the pig just as they both reach the gate? 

H-334 Proposed by Lawrence Somer, Washington, D.C. 

Let the Fibonacci-like sequence {Hn}n=0 be defined by the relation 

Hn + 2
 = aHn+1 + bHn> 

where a and b are integers, (a, b) = 1, and HQ = 0, H1 = 1. Show that if p is 
an odd prime such that -b is a quadratic nonresidue of p, then pj#2n+i f o r anY 
n _> 0. (This is a generalization of Problem B-224, which appeared in the Dec. 
1971 issue of The Fibonacci Quarterly. 

m rn *~x 
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SOLUTIONS 

Convergents 

H-311 Proposed by Paul S. Bruckman, Concord, CA 
(Vol. 18, No. 1, February 1980) 

Let a and b be relatively prime positive integers such that ab is not a per-
fect square. Let 0Q = /b/a have the continued fraction expansion 

[li-^ 9 U2 9 ^3 3 • • • J» 

with convergents pn/qn (n = 1, 2, . . . ) ; also, define p0 = 19 qQ = 0, and p = 0. 
The process of finding the sequence (un)n«i may be described by the recursions: 

/ab + r„ 
(1) 6n = un + 1 + 1/0M + 1 = -j , where r0 = 0, d0 = a, 0 < 6n < 1, 

vn and a'n are positive integers, n = 1, 29 ... . 

Prove: 

(2) *n = ( - l ) " - 1 ^ ? ^ - ^ „ ? B _ 1 ) ; 

(3) dn = (-l)n(ap„2 - bq2
n), n - 0, 1, 2, ... . 

Solution by the proposer 

VHPO^1 Let 5 denote the set of nonnegative integers n for which (2) and (3) 
both hold. Note that 

aP0P-! ~ ̂ o^-i = a* 1° 0 - b- 0 = 0 = rQ 
and 

(-1) °  (ap2
Q - bq\) = a ° l - £ « 0 = a = d'0; 

hence, 0 e 5. Suppose m e S. Then 

/afc + Pm /a2? - (-l)m (ap p - bq q ) 

dm (-ir ( < - ^,2) 
v^F - (-I)" (apm Pm_1 - bqmqm_Y + ap2um+l - bq2

mum + 1) 

' _ (-map* -bql) 

_ <-l)m(ap* -2><7S> 
/aZp - ( - D ^ p ^ - 6 q m ^ + 1 ) 

; t h e r e f o r e , dm + 1 
(-l)m(ap2 - bq2

m) 

= ( - l ) m ( a p * - & * * ) 
vS& + (-l)m (ap p - bq q ) 

ab - (ap , np - bq ^^q ) 2 

However, a& - (apm + 1pm - bqm+1qm)2 

= ab - (ap2 - bq2)(ap2
m + 1 - bq2

m+l) - ab(.pm + 1qm - qm + 1pmY 

~(ap2 - bq2
m)(ap2

m+1 - bq2
m+l), 

p q - q p = (-l)r s i n c e 
v m + 1 
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Thus, using the inductive hypothesis, 

_Sdb+ (-ir(apm+1pm -bqm+1qj 

9m+1 = (-Dm+1(ap^+1 - bql+1) 

which is the assertion of (2) and (3) for n = m + 1. Hence, m e S =^ (jn 4- 1) e S. 
By induction, (2) and (3) hold for all n. 

Sum Series 

H-312 Proposed by L. Carlitzif Duke University, Durham, NC 
(Vol. 18, No. 1, February 1980) 

Let m, r, s be nonnegative integers. Show that 

r*\ V ( i^+k-r-s(A(k\ ml _ - ( IY"-* lm\k 
K } 4-* K~l) \r)\s)(m - j)! (m - k) ! (j + k - m) I " l " U V W • 

where 6rs = ( Q ( p ̂  g ) _ 

Solution by Paul S. Bruckman, Concord, CA 

Make the following definition: 

(1) 9(r, e,m) = £ (-l)J' + *-'-e(j)(*) ... .., (m - j)!(m - ?c)!(j + fe - m)! ' 

It may be noted, by symmetry, that 

(2) 0(p, s, m) = 6(s, P, w). 

Making the substitution j + k = u9 we then obtain: 

6<r, 8, m) = V <-l)"-'-"(J')(M " j)7 .,,., , m ! ^ - ^ 
x *-* \r/\ s I (m - j) ! (m + j - w) ! (w - m) ! 

• E <-»""-©("; J)G)L ? J 
J," 

(substituting 
m + j - u for u) = E<-D"-(j)G)E<-i>"'-"fr)Gf«) 

-<-»"""Ew)'(")(i)2:«-»-(,-;-J(f) , . th 
j " u x (using the 

/ v / -v / i \ / '-\ "negative 
j w M coefficient 

relationship). 
Now employing the Vandermonde convolution formula, we find that 

o) •<'.'.*>-<-»'E<-»'("X2Xi ; : ; ' ) • 
Since 0(2% s, m) = 0(s, 2\ TTZ) , we may without loss of generality assume P_>S. 

In (3), note that s <_ r <_ j <_m. Since j - s - 1 < m - s, the binomial coeffi-
cient ( ) vanishes whenever j - s - l > 0 . Ifj = s+1, ( ) = <5we; 

X m - s I \ m - s / 

however, s - m implies j = s9 a contradiction, which implies that ( 1 = 0 

whenever j > s. The only remaining possibility is j = s, which implies r = s = j. 
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Hence, all terms in (3) vanish except if p = s, in which case (3) reduces to the 
single term obtained by setting j = r = s. In this exceptional case9 

Hence, if r _> s9 

W 60s s, m) = (-l)"-'(;)6„. 

Clearly, this expression is also true if r £ s, by use of (2). Q.E.D. 

Also solved by the proposer. 

Form Part i t ions! 

H-313 Proposed by V.E. Eoggatt, Jr. , San Jose State University, San Jose, CA 
(Vol. 18, No. 2, April 1980) 

(A) Show that the Fibonacci numbers partition the Fibonacci numbers. 
(B) Show that the Lucas numbers partition the Fibonacci numbers. 

Solution by Paul Bruckman, Concord, CA 

The following definition (paraphrased) is recalled from the source indicated 
in the statement of the problem. 

V^iniXyJOVl* If U and V are subsets of the natural numbers, U is said to partition 
V into the subsets V1 and V2 if there exist subsets V± and V2 of V with the fol-
lowing properties: 

(1) V± n V2 - 0; 
(2) 7X U V2 = 7; 
(3) x9y e Vt with x < y (i = 1 or 2) => (x + y) t U. 
We also say that U partitions V uniquely into the subsets V1 and V2 if it parti-
tions V into the subsets V1 and V2» and if such subsets are uniquely determined. 

We will have recourse to the following theorem (see [1]): 

ThdOtLQW. If P, ss and t are integers with 2 <. r < s,. £ _> 0, all Diophantine solu-
tions (p, s, £) of the equations indicated below are as follows: 

(4) Fr + F3 = Ft <$=> (r, e9 t) = (P, r + 1, r + 2); 

(5) Pr + Ps = Lt <^> ( r , s s £) = ( P , P + 2 , r + 1) OP (2 , 3 , 2 ) . 

ftfrooj} ô { A? Set 

u = 7 = F = ( F n ) ; , 2 5 7 , = P l = ( F 2 „ ) ; = 1 , 72 = p 2 = ( p 2 n + i r = 1 . 
Clearly, P and P2 satisfy (1) and (2), since P is a strictly increasing sequence. 
Suppose x9 y, e Pi 9 x < y (i = 1 or 2) , and Or + 2/) e P. Then there exist unique 
integers P, s9 t9 with 2 <_ p < s and £ _> 4 (since Ft _> P2 + P3 = P 4 ) 5 such that 
a? = Fr9 y = F3 , and # + 1/ = Ft . Since x and z/ are in the same set P1 or P2, thus 
s - P _> 2, This, however, contradicts (4), which implies that s - r = 1. Thus, 
the supposed condition is impossible, and its negation must be true, i.e., (3), 
with the sets as designated. Hence, P partitions P into the subsets P and P . 

To show uniqueness, suppose that P partitions P into the subsets P3 and,P4, 
which are distinct from P± and P2. Then, there exists an integer u _> 2 such that 
^w' ^w + i £ ^ (̂  ~ 3 or 4). This, however, would imply Fu + P^+i = P^ + 2 £ F» con-
tradicting (3) and the supposition. Therefore, P partitions P uniquely into the 
subsets Px and P2. Q.E.D. 
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Vnooh ofi B: Set 

U = L = (Ln)„=o> V = F9 7X = «x = {Fn:n .> 25 n = 1 or 2 (mod 4)}, 

V2 = S2 = {Fn in _> 3, n = 0 or 3 (mod 4)}. 

Clearly, §x and §2 satisfy (1) and (2). Suppose x9 y e Qi9 x < y (i = 1 or 2), 
and (x + y) e L. Then there exist unique integers r, s9 t with 2 <_ r < s and 
t J> 2 (since Lt _> F^ = 3, as before, and L is an increasing sequence, after the 
first term), such that x - Frs y = Fs 9 and as+2/ = Lf A moment's reflection shows 
that, since x and y are in the same set Q1 or $2, thus s - r = 1 or 3. Since 1 = 
F2 e Q± and 2 = F3 e Q29 we must not include the solution (2, 3, 2) of (5). How-
ever, for the other solutions of (5), s - r = 2, which also excludes those solu-
tions. Thus, the supposed condition is impossible, which implies (3), with the 
sets as designated. Hence, L partitions F into the subsets Q1 and Q2. 

To show uniqueness, suppose that L partitions F into the subsets Q3 and Q^9 
which are distinct from Q1 and Q2. It is readily seen that, in this case, there 
exists an integer u _> 2 such that Fu9 Fu+2 e Q-c (t = 3or 4). This, however, would 
imply Fu + Fu+2 = Lu+1 e L9 contradicting (3) and the supposition. Therefore, L 
partitions F uniquely into the subsets Q± and Q2. Q.E.D. 

Rê gAg.ncg.« [1] Private correspondence with Professor Verner E. Hoggatt, Jr. (June 
1980), in which allusion is made to Fibonacci and Lucas Numbers by V. E. Hoggatt, 
Jr. (The Fibonacci Association, 1969), p. 74, and to Problem E 1424 in The Ameri-
can Mathematical Monthly proposed by V. E. Hoggatt, Jr. The Theorem follows from 
Zeckendorf's Theorem. 

Also solved by the proposer. 

It's the Limit 

H-314 Proposed by Paul S. Bruckman, Concord, CA 
(Vol. 18, No. 2, April 1980) 

Given xQ e (-1, 0), define the sequence S = (xn)n=0 as follows: 

(1) xn + 1 = 1 + (-l)Vl + xn9 n = 0, 1, 2, ... . 

Find the limit point(s) of 5, if any. 

Solution by the proposer 

We will show that S has precisely two limit points and that 

(2) x2n -> B and x2n+1 -> a, 

where a and 3 are the Fibonacci constants. We first prove, by induction, that 

(3) -1 < x2n < 0, 1 < x2n+1 < 2, n = 0, 1, 2, ... . 

Let T denote the set of nonnegative integers n satisfying (3). Note that (1) im-
plies: 

(4) X2n+1 = ! + /I + ^2n* ^2n+2 = 1 - /l + X2n+1> n = 0, 1, 2, ... . 

Thus, since -1 < x0 < 0, we have: 1 < x1 < 2. Hence, 0 e T. Assuming k e T9 by 
(4) we have: 

1 - /3 < x2k+2 < 1 - /2=*-l < xzk+z < 0 = * 1 < x2k+3 < 2; 

i.e., k e T ==> {k + 1) e T. By induction, (3) is proved. Now define 

(5) an = x2n + 1 - a, bn = oo2n - 6, n = 0, 1, 2, ... . 

Then, using (4), we obtain: 
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|3 + / I + x2n | = |3 + / e 2 + b~n = a""111 - (1 + a 2 b n ) ^ | 

a"11-a2Z?n | \bn\a 

|l + (1 + a2bn)*\ |i + (i + a2bn)*\ 

Howeverj using (3) and (5), 

-3 2 - -1 - 3 < bn < -0. 
Hence, 

0 < 1'+ a2bn < 1 + a = a2 and 1 < |l + (1 + a2bn)*\ < a. 
Therefore, 

(6) \an\ < a\bn\ * 
Also, 

\bn\ = |a - /I + x2n_1\ = |a - /a2 + an_1\ = a|l - (1 + 32an_ 1) l 5| 

a|-32£v, , I a"1 |a„ , I 

|1 + (1 + ^ a n ^ r \ |1 + (1 + B2an- i>* 
Again u s i n g (3) and ( 5 ) , we have 

B < a „ - i < 3 2 ; 
hence 

1 + 3 3 < 1 + 3 2 a n _ x < 1 + 3 \ 
or 

23 2 < 1 + 3 2 a n - 1 < 33 2 = > 1 + / 2 a " 1 < - | l + (1 + $1an_1)*\. 
Thus, 

l^nl < 
I n - 1 I 

a + /2 
since a + /l > 3, thus 

(7) |fcn| < 3 

It follows from (6) and (7) that 

K l < flan-ll < '6lan-ll a n d l̂ n| < fl^n-ll < ^ I V l ! (n = l> 2> 3> •'•>• 

Note that 
-1 - 3 < x0 - 3 < -3 =» -1 < -3 2 < b0 < a 1 < 1 = ^ |i01 < 1; 

also, 
1 - a < ̂  - a < 2 - a = ^ 3 < a 0 <' 02 = » |a01 < 1. 

Therefore, by an easy induction, \an\ < (..6)n and \bn\ < (.6)", which implies 

\an\ ->• 0 and |&n| -*- 0 
and hence 

an -> 0 and 2?„ -> 0. 

This, in turn, implies (2). 

Wo^e-* The condition xQ e (-1, 0) is sufficient but not necessary for the stated 
result to follow. It is only necessary that xQ e [-1, 3 ] . 
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Factor 

H-315 Proposed by D. P. Laurie, National Research Institute for Mathematical 
Sciences, Pretoria, South Africa (Vol. 18, No. 2, April 1980) 

Let the polynomial P be given by 

P(z) = zn + a ^zn'x + a„ 0zn~2 + ••• + a.g + an 
N X n-l n - 2 1 0 

and let z19 z29 ...» sn be distinct complex numbers. The following iteration 
scheme for factorizing P has been suggested by Kerner [1]: 

%i ~ %i — ^ 9 I* = *• 9 *-9 • • • 9 ?2 • 

n (^ - ^o 
3 -1 

n ^ n. 
Prove that if ]|P s^ = -#„_19 then also Y^ zi = -an_lt 

i=i i=i 

Re^gAence« [1] I. Kerner. "Ê in Gesamtschrittverfahren zur Berechnung der Null-
stellen von Polynomen." Nwner. Math. 8 (1966):290-94. 

Solution by the proposer 

Let 

R(z) = P(z) - ft (« " »i). 
i -1 

n 
since Y^ JŜ  = - a n l , i?(s) is a polynomial of degree n - 2. We have 

n n * P(2i) ^ n R(%i) 

2L*i - Es* -'£— = Es* -E — • 
II (zi - z0) lHzi - zj) 

3 - 1 J • 1 
j * £ j * £ 

The second sum on the right is equal to the nth divided difference of R at the 
points z19 z2» ..., zn (see Davis [1], p. 40), and thus zero9 since R is only of 
degree n - 2. 

Re^eAence*' [1] P. Davis. Interpolation and Approximation. Blaisdell, 1963. 

Also solved by Paul S. Bruckman. 
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