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A GENERALIZED EXTENSION OF SOME FIBONACCI-LUCAS IDENTITIES
TO PRIMITIVE UNIT IDENTITIES

GREGORY WULCZYN
Bucknell University, Lewisburg, PA 17837

This paper originated from an attempt to extend many of the elementary Fibo-
nacci-Lucas identities, whose subscripts had a common odd or even difference to,
first, other Type I real quadratic fields and, then, to the other three types of
real quadratic field fundamental units. For example, the Edouard Lucas identity

F:+1 + Ff - F:_l = F, becomes, in the Type I real quadratic field,
(/61; a = ML)FLI + 39F3 — F3_, = (5)(195)F,,.

This suggests the Type I extension identity F,, + L.F3 - Fi_, = F1F,F3, and the
Type I generalization: F3+2r+1 + L2p+1F2 - Fi-zr-l = Fop+1Fup+ 2F3,. The Ezekiel
Ginsburg identity F2+2 - 3F3 + F3_, = 3F;, becomes, in the Type I real quadratic
fields

(/61)F2,, - 1523F% + F2_, = (195)(296985)F,,.

This suggests the Type I identity extension Fivs = LoFS + F3_, = FyFyF3, and the
Type I generalization: Fliop - LopF3 + F3_9n = ForFurFay.
The transformation from these Type I identities to Type III identities can be
represented as
(1) F, <> (II1I) 2F, or (1) L, < (I1II) 2L,.
The transformation from Type I to Type II and Type III to Type IV for identities
in which there is a common even subscript difference 2r can be represented as

(I! III) F21ﬂ > (II! IV) FP! I’Zr g Lr': Fn+2r - Fn+r9 and Ln+2r - Ln+r"

I. Type I primitive units are given by

o =2 +2b/5’ g =2 'zb/ﬁ; oB = -1, D = 5 (modulo 8),

a? - b?D = -4, a and b are odd.

(a+b/l—?-)n=L"+F"‘/5

L n_ gn - n
2 2 . F; = /E(G B )9 Ln a” + B”.
F, and L, are also given by the finite difference sequences:
Fn+2=aFn+l+Fn’ F1=b9 F2=ab;

Lypso = alLp4y + Ln9 L, = a, L, = a? + 2.

II. Type I1 primitive units are given by

1, D = 5 (modulo 8),

B = aB
a? - b2D = 4, a®> - b?D # -4, a and b are odd.

(a+b/5n Ln+Fn‘/ﬁ
2 >= 2

_a+ b/D a - b/D
2 E] 2 L]

L
/D

s F, = —=(a” - 8", L, =a™ + B".

F, and L, are also given by the finite difference sequences:

385



386 A GENERALIZED EXTENSION OF SOME FIBONACCI-LUCAS IDENTITIES

wep =aF,, - F,, F, =Db, F, = ab;

= — _ 2
n+2 aLn+l -L,, Ll = 4a, Lz =a” - 2.

n+1l

L

III. Type 111 primitive units are given by

a=a+bD, B=a-b/D, 0B = -1, a® - b¥D = -1.
L
2/D

F, and L, are also given by the finite difference sequences:
Foyp =2aF, . +F,, Fy = b, F, = 2ab;
L,,,=2al, ., +1L, L =a,L,=2"+1.

(a+ D)' =L, +F,/D, F, =

n+2 n+ 1 2

IV. Type IV primitive units are given by
a=a+bmD, B=a-b/D, 0B =1, a®> - b?D

(a + /D) =1, + F,/D, F, = Eéﬁxu” - 8", Ly =-%(u" + 8").

F, and L, are also given by the finite difference sequences:
F = 2aF - F,, F, = b, F, = 2ab;
L,,, =2aL,,, = L,, I, =a, L, = 2a® - 1.

n+l
n+l n?

1. (a) Fibonacci-Lucas identity used: F, + L, = 2F

n+1l
(b) Type I extension: aF, + bL, = 2F, .,
(c) Generalizations:
Types I & II L,F, + F,L, = 2k,
Types III & IV L.F, + F,L, =F, .
2. (a) Fibonacci-Lucas identity used: L, - F, = 2F

(b) Type I extemsion: DL, - aF, = 2F
(c) Generalizations:

n-1

Type I E,L, = L,F, = 2(-1)"*'F,
Type II F,L, - F,L, = 2F,_,.
Type III F,L, = L,F, = (-1)"*'F,_,
Type IV F,L, - F,L, = F,__

3. (a) Fibonacci-Lucas identity used: F%+3 + Fﬁ = 2(F§+2 + F2,1)

(b) Type I extension: b(FZ,, + F2) = F,(F2,, + F2,))
(c) Generalizations:

Types I & IIT  Fop y(Friupo1 + F2) = Fupo1 (Fiigmir-1 + Fivom_ p)
F2r—l(Li+4m—l + Li) = Fum—l(Lﬁ+2m+r-1 + L5+2m—r)

2 2y - 2 2
Types II & IV Fzr—l Fn+um—1 - ) = Fum-l(Fn+zm+r-1 - Fn+2m-r)

L2p~1(L5+um-1 - L%) = Fhm—l(L5+2m+r—1 - Li+2m—r)

(% - 8", L, = 5" + 8.

1, a® - %D # -1.

[Dec.
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4, (a) Fibonacci-Lucas identity used:
Fn+3Fn+l+ + FnFn+1 = 2(F71+2Fn+3 + Fn+1Fn+2)
(b) Type I extension:
B(Fy gF iy + FF ) = Fy(Fy o F g + FpiFryy)
(¢) Generalizations:
Types I & III
F2r—1(Fn+'+m—1Fn+l+m + FnFn+1) = ka—l(Fn+2m+r—1Fn+2m+r + n+2m-an+2m-r+1)
F2r-1(Ln+4m—an+km + LnLn+1) = um—l(Ln+2m+r—l n+2m+r + Ln+2m—an+2m—r+1)
Types II & IV
Fzr—l(Fn+'+m-1Fn+um - FnFn+1) = ka—l(Fn+2m+r—1Fn-i:2m+r - n+2m—an+2m—r+1)
FZr—l(Ln+‘+m—1Ln+‘+m - LVLLn+1) = Fhm—l(Ln+2m+r-1Ln+2m+r - Lﬂ+2m—r[’n+2m—r+1)

5. (a) Fibonacci-Lucas identity used: F,, + F2 = 2F, F,.1
(b) Type I extension: bF,, + aF3, = 2F,F,.,
(¢) Generalizations:
2 -
Type I F,F,, + L,F* = 2E.F .
2 o
DF,F,, + LL% = 2L L .
Type II FF, +IL,F:=2FF .
2 o
DF,F, + L,L% =2L L .,
Type III F,F, + 2L,F} = 2FF
DF,F, + 2L,L; = 2L,L,,,
Type IV F.F,, *+ 2L, F% = 2FF ..
2 o
DF,F, + 2L,L2% = 2,Dy.,
6. (a) Fibonacci-Lucas identity used: F,, - F> = 2F,F,_;
(b) Type I extension: bF, = aF? = 2F,F, .,
{(c) Generalizations:
Iype I B Py = L = 26D"EE, |
DFI‘FZM - LPLIi = 2(_1)P+1LmLm—1ﬂ
2 = -
Type 1T FF, - L,L%=-2LL
2 _
DF,F, = L,L2 = 2L L .
Type III F,F, = 2L,F2 = 2(-1)""'E,F,
1
DF,F, - 2r,L2 = 2(-1)"*'L, L, _,
Type IV F,F,, - 2L,F% = -2F,F
DF,F, = 2L,L% = -2L,L, .,
7. (a) Fibonacci-Lucas identity used: L} - F? = 4F, .F .,
(b) Type I extension: b2L2 - q2F2 = 4F _.F, . .
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(c) Generalizations:
Types I & III
272 202 _ +1 . +1
Fan - Ll‘Fn - 4(_1)P Fn+an-r’ I’ (_1)1‘ Fn+an—r’ III
D?*F?F? - LZLZ = 4(-1)"**L, L, ., I; (-1)"*'L, L, ., III
Types II & IV
2502 202 _ .
Fan - L.F, = —4Fn+an_r, II; 'Fn+pFn—r’ IV
20252 272 _ .
D Fan - Lan - _I*Ln+an-r’ II; _Ln+r~Ln-r’ v
8. (a) Fibonacci-Lucas identity used: UL,,L5,45 — 5F3,4,1 = 1
(b) Type I extension: L,,L,,,, — DF%,,, = a?
(c) Generalizations:
All Types LonLonsar ~ DF%er =L}
2 2
Lyner = DFypFopinn = L
9. (a) Fibonacci-Lucas identity used:
Fr+m+n = Fm+1Fn+lFr+1 + FanFr - Fm—an-lFI'-l
(b) Type I extension:
2
ab Fosmin = FpaFpyiFrpy + aBpB By = Fo (Fy (Foy
(¢) Generalizations:
Iype T FrvorerFnsoesarFranesr Y Dopid By By = Frpy 1 Fy 5y aFrpiy
1
= 5etus t Lase)niner = ForerFurs oF niner
Lpsoterlnezt+1lrv2e+1r + Logs1lplyLy = Lm-2t-1Ln-2t-1Lr-2¢-1
= (Letss + Lots1)lmansr = DFotr1Fuss 2Fnene r
1
FrvotFraotFrane = Lot F Fy + Fy gt Fy 91 Froge = E(Lst = Lo )Epinsn
Lm+2th+2tLr+2t - LZthLan + Lm-Zth-ZtLI'-Zt = (LGt = LZt)Lm+n+r
=DFy Py Lpsnsr
1 v
Iype IT BviForelosy — L B F, + Fp (Fy (F. , = E(Lat = L) Frinsn
Lys¢Lpsslpyy = DL DL, + Ly Ly Ly = (Lyy = L) Dpipsy
Type IIT  F,ipivrFnsoesrFraoser ¥ 2Ly i B B F = Fy oy 2Fn_pi 1Fr 2en
1
= _ZE(sta * Loer 1) pinsr = Forw1FusaoFniner
LpsotsrbneorsrFranesr T+ 2L2t+1LanI’r - Lm—Zt-an-Zt—lLr-Zt-l

1
= 'Z'(Lst+3 + Loss1)lminsr = DFopi1Futs 2lminsr

1

FuvorFrigeForoe = 20g B B E, + Fp_ g By peFrpy = '2—5(Lst = Lot ) Fminyn

l;thlotFm+n+r
LpsotLns2elpras = 2024 LpLlyLy, + Ln_2¢ln-2¢ln-2s = f(Lst - th)Fm+n+r
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Type IV

10.

Type I

Type II

Type III

Type IV

11.

Type I

Type IT

Type III

A GENERALIZED EXTENSION OF SOME FIBONACCI-LUCAS IDENTITIES

1
Fm+tFn+tFr+t - ZLtFanFr' + Fm-tFn—tFr-t = ?[)'(L.Bt - Lt)Fm+n+r

1

LpytLnselpes = 20, 0,0,L, + L, L, L, , = E{Lat = L) lpynsn
(a) Fibonacci-Lucas identity used:
2 2 2 _ 2
Fn+1 + F" + Fn—l - 2<Fn+1 - FnF

(b) Type I extension:

2 22 2
Fn+l +aFn +Fn-l

(c) Generalizations:
72

n+2r+1

2 2 2 2 — 2
Fn+2r + LZan + Fn—Zr - 2(Fn+21r' + LZan-szn)
2 2 2 2 — 2
Ln+2r + LZan + Ln-Zr - Z(Ln+2r + LZan—Zan)
F2, .+ LXZF? +F2 , = 2(F%,, + L,F,F, )
L2, + L2122 + L2 , =22, , + LD, )
F2, ey + 403, F2 + F2 51 = 2(FRiore1 = 2Lope1Fuoar 1Fy)

L2

F2,, + 4L2F? + F2_, = 2(F2,, + 2L, F,F, )
L2,p + 40202 + L%, = 2(L%,, + 20,0,L,_)

(a) Fibonacci-Lucas identity used:

= 3
F:+2 - F: +Fa T 3F%Fn+1Fn+2
(b) Type I extension:
F:+2 = F: + aSF:+1 + 3aFnFn+1Fn+2

(c) Generalizations:

3 _ 3 3 3
Frvoper = Fruoopo1 F LopsdFy + 3LgpiaF FryprsrFao2p1

3 _ 73 3 3
Lysor+r = Lucopo1 + LopsrLn + 3Lopial Lyyorsrlnoor-n

3 _ 73 n3 3
Frooy = LoyFy = Fuos = 3Lt Fn-2tFpFrsoe

n+2t = L3,L3 - L% 5 = 3LatLn-2¢LnLnsat

)
w
|

P, =L3F3 - F} , - 3L,F,F, ,Fpi,
3 353 3
Lysr= L,L, =L, , - 3LPLnLn-an+r’
3 - 3 3 3
Fn+2r+1 - Fn—Zr—l + 8L21r-+1FrL + 6L2r+1FnFn+2r+1

3 _ 3 3 3
Lhsopsr = Dncopoy ¥ 8Lop01Lhn + 6Lp,1lnlyinpr1ln-2n-1

Fi+2t = SL;tFS - Fi-zt = 6Ly Fy 9t FyFpios

3 3 3 3
Lyyor = 8Ly Ly = Ly_py — LD P T T

n-l)
2(Fi4y - aFyFy_y)

2 2 2 2
t LypiaFy ¥ Fyppy = 2(Fys2p41 = Lops1Fnoop-1Fn)

2 2 2 2 = 2
Ln+2r+1 + L2r+1Ln + Ln-zr—l - 2(Ln+2:¢ﬂ+1 - L2r+1Ln—2r-1Ln)

2 ome1r ¥ 4L5 DS + L3 0n 1 = 2(L34204+1 = 2L2ps1lno2r-1Ly)
F:+2r + 4L§rFr% + Fi-Zr = 2(F3+2r + 2L0,,F 50 Fy)
Li+2r + 4L§,.L: + LEL—ZZ- = Z(Li+2r + ZLern-Zan)

389
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Type IV

12.

Type I

Type IT1

Type III

Type IV

13.

Type 1

5
Fn+2r+l
L

5
n+2r+1

Type I1

Type I1I
5

Fn+2r+1

LS

n+2r+1

A GENERALIZED EXTENSION OF SOME FIBONACCI-LUCAS IDENTITIES [Dec.
3 _ 35,3 3
F},, = 8L3F% - F3 - 6L, F.F __F,,,
3 _ 3r3 3
3., =803} - 1% -6 L L.,
(a) Fibonacci-Lucas identity used:
F:+1 + F: + Fi—l = 2[F3+1 - EZFn-l]z
(b) Type I extension:
F2+1 + auF: + Fi—l = 2[F2,, - aF,F, ,]?
(c) Generalizations:
b2 + L JF+ = 2[F2 - L, EF 12
n+2r+1 2r+1-n n-2r-1 n+2r+1 2r+1tp " n-2r-1
b n 4 2
L:+2r+1 + L2r+an + Ln-Zr-l = 2[[’w,+21n+1 - L2r+anLn—2r-1]2
F:+2t + L;tF: + F:-zt = 2[F2+2t + LZtFnFn—Zt]2
Lpyroy + LZtL; + Ly py = 2[L540s + LoyLyLy_ 5. 17
F‘::'f‘r + L;Fu + F":L—P = Z[F?f‘f'l’ + LI'FTLFTZ—Y’]Z
" bt " 2 2
LY, .+ DALY + 1% = 2[1%, 4 LL,0,_,]
Frvoper * 1605, 1 Fn + Fh 5,1 = 2[F5i0p1 = 2Lppe1FyFy 50117
L N " 4 _ 2
Ln+2r+1 + 16L2P+1Ln + Ln-zr—l = Z[Ln+2r+1 - 2L2r+anLn—2r—l]2
Fpooe + 1603, Fy + Fh_p, = 2[FZ,,, + 20, F,F, 5, 1°
L:+2t + 16LgtL; + L3 5y = 2[L%.,s + 2Ly 0,05 517

Fio. + 16LIF} + F)_,
A [N N
L%, + 16LLY + L

n-r

(a) Fibonacci-Lucas
Fpyy - Fy = F3

(b) Type I extension
5 55,5 5

F>pp - a’F, - F}

Generalizations:

(c)

=5
=5

5 5

- L2r+an

5 5

- L2r+1Ln
5 5 5

LZtFn - Flios

5 5
LZth -

5

- Fn—Zr—l
5

- Ln-zr—l
5

- Fn-zt

5 5
Lyvoe = Ly_oy

5
- Fn—r

-8

n-r

- Fs

n+r

-5

n+r

575
LF?
L)L}

- FS

5 5
32L2r+1Fn n-2r-1

32L§p+1Li - Lz-zr-l =

+ 2L,F F

2
r n'n_r]

+ 20,L,L, .17

Z[F%+r
2[1?

n+r

It

identity used:
5EiFn—an+l(F§+1

-1 - Fn—an)

2
n+l

-1 50F,Fy _1F, .1 (F - aFf, _1F,)

2
L2r+IE%Fn—ZT—an+2r+l(Fn+2r+l - L2r+1FnFn—2r—l)

Lop+1Dnln-2r-1Lns2p+1 @hs2re1r = Lops1lnln-2 1)
= 5Lyt F, F oy 0sFneos (Fhvoe + Loy F F o 0t)
= 5Lo5LnlupeLpsos (Dhune + LogLul uoot)
5L11Fn F?’l— Fn"‘P(Fi"'I’ + LPFHFVL—Z')
50,LpL . Ly (T%sp+ L0, L. )

2
10L2r+1E;Fn—2r-1Fn+2r+1(Fn+2r+l_ 2L2r+1E%E%-2r-1)

10L2r+1LnLn-2r-1Ln+2r+l(L§+2r+l_ 2L21ﬂ+1Z’nLn—21ﬂ—1)
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5 5 _ 5 @5 - , 2
320, B = Fuigy =~ Foupy =100, B F, 0 F,i0e Frioe + 205, B Fy o)

5 -5
32L,,L, - Lpsot = Lp_oe = 10Lo4LyLy 9pLnags (Dhans + 2053 Lplin e )

Type IV
32L3FY - Fy,, - Fy_, = 10L,F,F __F,, (F2,  + 20,F.F, )

rn"n-r n-n-r
32000y - LD, , - L), = 10L,L,L, L, .(L2,, + 20,L,L,_.)

n+r n-n-r

14, (a) Fibonacci-Lucas identity used: Li = 2P 1 + FZ + 6F§+1Fn_1
(b) Type I extension: b3L3 = 2F3 | + aF% + 6F2,,F,
(¢c) Generalizations:

3 3 _
Iype T FypiaDy = 2F) 50y + L3 Fy + 6Fh 0pi1F 0 0p 1

D3F}, 1 F2 =203 5, 1 + L3,i1L3 + 603400410 n-0r-1
F3,L3 = L3,F} = 2F% 5, = 6Fp400Fy_ 20

D3F3,F) = L3.L5 = 2L% 5, = 6Li400ln-2n

Type II  F3L% = L3F} - 2F% - 6F%, . F,_,
3m3p3 3r3 3 2
D3fiFY = 1303 - 213 - 6L7,.L,_,

T e I1I 4F2r+1Li = FS—Zr—l + 4L2r+1Fs + 3F%+2r+1Fn-2r—l
4D3F3 o1 FY = Ly pp 1 + 403,105 + 302 0mi1Dn 201

3 3 _ 3 3 3
4FZan - 4L2r5% - Fn-zr - 3F§+2an—2r
4D3F;rFZ = 4LgrL2 - Li—ZP - 3L%+2an-2r

Type IV 4F3L% = 4r3F? - P, - 3F?, .F, _,
4D3FIFY = 4030% - 0¥, - 30,0, .

n-r

Concluding Remasks

Following the suggestions of the referee and the editor, the proofs of the 14
identity sets have been omitted. They are tedious and do involve complicated, al-
beit fairly elementary, calculations. For some readers, the proofs would involve
the use of composition algebras which are not developed in the article and which
may not be well known.

The author has completed a supplementary paper giving, with indicated proof,
the Type I, Type I1II, Type III, and Type IV composition algebras. After each com-
position albegra the corresponding identities using that algebra have been stated
and proved. Copies of this paper may be obtained by request from the author.

Fed ¥

A FORMULA FOR TRIBONACCI NUMBERS

CARL P. McCARTY
LaSalle College, Philadelphia, PA 19141

In a recent paper [2], Scott, Delaney, and Hoggatt discussed the Tribomnacci
numbers T, defined by
Ty=1,Ty =1, T, =2 and T, =1Ty.1 +Typ.o +Ty_3, forn > 3,



392 A FORMULA FOR TRIBONACCI NUMBERS [Dec.

and found its generating function, which is written here in terms of the complex
variable z, to be

1 o«
(1 f@z) = = Z T, a".
1 -3=-23%2-3" n=o
In this brief note, a formula for T, is found by means of an analytic method sim-
ilar to that used by Hagis [1].
Observe that

(2) 2 +224+4z2-1=(2-1v)(z-28)(z-739),
where » = .5436890127,
s = -.7718445064 + 1.1151425807,
|s| = 1.356203066,
and
|» - 8] = 1.724578573;

thus f(2) is meromorphic with simple poles at the points 2 = r, 2 = g, and 2 = &,
all of which lie within an annulus centered at the origin with inner radius of .5
and outer radius of 2.

By the Cauchy integral theorem,

p L@ 1 f(z) dz
a T o2mg ’
lz] = .5

n n! gntl

and by the Cauchy residue theorem,

3) Tﬁﬁfm—wlwzwa),
bl:R gntl

where R > 2 and R,, R,, and R, are the residues of f(z)/z2"** at the poles r, s,
and s, respectively.
In particular, since f(2) = -1/((z - »)(z - 8)(z - 3)),

(4) R, = lim (3

Z2+r

= —1/('1’ - 3|2Pn+l),

n+1)

r)f(2) /2" = -1/ ((r

s)(r - 9)r

(5) "R, = lim (z - 8)f(2)/z"*" = -1/((e - r) (s - B)a"*P),
and z+s
© Ry = lim (z - B)f(2)/z"" = -1/(G - )& - &)F"™) = R,.
Along the circle |z| = R > 2 we have
Ir| = 1 < 1 B ) ’
[z3+z2+z—1| |[z|3_|22+3_1” R -R2 -R-1
hence
1 f(z) d= 1
@) L < -
2mt Sl RGB -R2-R-1)

lz|=r
Now, if R is taken arbitrarily large, then from (3) and (7) it follows that

(8) T, = -(R, + R, + Ry).

One final estimate is needed to obtain the desired formula. From (5) we have
for n > 0,
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|, | = - — = L ~ < .26/|s|"*t < .2,
ls - »[s - 5l|s|*™*  2|s - »[|In s||s|"**

which along with (8) and (6) implies

Tn + Rl = —RZ - R3,
so
|T, + R,| = |R, + R,| < 2|R,| < .4;

hence

T, = 4 <-R <T,+ .4
or, equivalently,

T, < =R, + .4<7T, +1.
Substituting the value of R; from (4) into (9) we may rewrite (9) in terms of the
greatest integer function and obtain the desired formula:

nool— 1y
|p - |20+t
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POLYNOMIALS ASSOCIATED WITH GEGENBAUER POLYNOMIALS
A. F. HORADAM

University of New England, Armidale, N.S.W., Australia‘
S. PETHE

University of Malaya, Kuala Lumpur 22-11, Malaysia

1. INTRODUCTION

Chebyshev polynomials T, (x) of the first kind and U, (x) of the second kind are,
respectively, defined as follows:

T, (x)

cos(n cos™'x) (||

|A

1),

1).

sin[(n + 1)cos tx]
1

U, (x) = (]|

A

sin(cos "*x)

In 1974 Jaiswal [6] investigated polynomials p, (x) related to Up(x). In 1977
Horadam [5] obtained similar results for polynomials g,{(x), associated with T, (x).
The polynomials p, (x) and q,(x) are defined as follows:

{pg(x) = 2p ,_1(x) = pnog(x) (n > 3) with
(1)
po(x) = 0, pl(x) =1, pz(x) = 2x
and
( ) J[qn(x) = zxq'ﬂ-l(x) - Qn-g(x) (n _Z. 3) With
2

‘qo(w) = Os ql(x> = 2’ qz(x) = Zx.
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Chebyshev's polynomials of both kinds are special cases of Gegenbauer polynomials
([11, [21, [31, [8], [91) Cp(x) (A > %, |x| < 1) defined by

Ca(e) =1, Ci(x) = 2z,
with the recurrence relation

nCQ(m) =2(A+n - l)xCJ_l(x) - 22X+ n - 2)03_2(x), n > 2.

Polynomials Cs(x) are related to T,(x) and U,(x) by the relations

C) (@)

T, () =% Lim —; (n>1)

and
U,(x) = Ci(x).

In Jaiswal [6] and Horadam [5], it was established that & = 1 in (1) and (2)
yields simple relationships with the Fibonacci numbers F, defined by

F,=0,F =1, and F, =F,  +F,_, n>2),
namely,
pn(l) = Fn+2 -1
(3)
q,(1) = 2F,.

These results prompt the thought that some generalized Fibonacci connection might
exist for Cé(x).

In the following sections, we define the polynomials pi(m) related to Cz(x),
determine their generating function, investigate a few properties, and exhibit the
connection between these polynomials and Fibonacci numbers.

2. THE POLYNOMIALS p(x)

Letting
M)y =1 and M, =22+ ... A+n-1,n=1, 2, ...,
we find that the first few Gegenbauer polynomials are

M)

(4) Ch@ = 1, Crw) = D, O} @) = —7-(22)2 - A

Listing the polynomials of (4) horizontally and taking sums along the rising
diagonals, we get the resulting polynomials denoted by p}(x). The first few poly-
nomials pi(m) are given by

A 3 A ™, 2 A ok 3
(5) p1(@) =1, p3(x) = 2Ax, p3(x) = —7—(20)%, pu(@) = —7—(20)° - A

We define pé(m) = 0.
3. GENERATING FUNCTION

Theonem 1: The generating function G'(x, t) of pﬁ(x) is given by

M, ) = 9, pr@ ™t = (1 - 2mt + )7,
n=1

Proog: Putting 2x = y in (4) we obtain the following figure.
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FIGURE 1

It is clear from Figure 1 that the generating function for the kth column is

[CISLICN!
__T’f_(l = y) A0,

Since p, Mx) are obtained by summing along the rising diagonals of Figure 1, the
row—adjusted generating function for the kth column becomes

\ -D* ),
R = ____(1 - gy) ORI

Since .
= (=DM 3 k
Zh(y) E A k<1fty>(l—ty)'*=(l—ty+t3)“*,

k=

the generating function of pJ(x) is given by
(6) GMa, ) =3, pr@tt Tt = (1 - 2t + )7
n=1

Expanding the right-hand side of (6), we obtain

[n/3] (—l)k(Un-zk - 2k -
. n+1(x) ;W(n ) )(Z:C)n 3%

Observe from (1), (5), (6), and (7) that pl(x) =p (), n =0, 1, ...
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4. RECURRENCE RELATION

Theorem 2: The recurrence relation is given by

(Zx)(:’; t ’;ll ~2) pr:‘-l (=) n -

+ -
- -3-’1——”—1—429,,‘_3 (@), (n23).

(®) pM) =

Proog: From (7), the kth term on the right-hand side of (8) is

\) : :
k(A +n-2) n-2-2k [y - 2 - 2k n-3k-
-1 n-1 n -2 - 2k)!'\ k )(Zx) et

yk-1.(3A + 1 = 4) Myoy20-1) - b-2(k-1)
n-1 n -4 -2k - 1))\ k-1

After simplification, this becomes

- (-1

)(Zm)n—sk-l.

(DX, (2) 7732
k!(n - 1 - 3k)! °

which is the kth term on the left-hand side of (8).
Ordinary Fibonacci numbers F, are expressible in two equivalent forms:
{F; =F +F,_, ... (o)

F o=2F,_  -F, 4 ... (B).

n n

9

Observe that expression (8) in Theorem 2 is of the form (B) in pi(x). An attempt
to obtain the recurrence relation in the corresponding form (0), namely,

pMx) = Ap)_y(x) + Bp), (@),

where 4 and B are functions of A, leads to an intractable cubic. Perhaps the form
(8) that follows the patterns of the forms for pn(x) and qn(x) is the best avail-
able.

The following recurrence relation involving the derivatives of p:(x)is easily
proved.

Theonem 3:
(10) 20(pl,, @) - 3(p2 (@) = 2(n + 1)p),,(@).
Equation (10) corresponds to the similar results satisfied by p, (x) and g, (x).

5. THE POLYNOMIALS S, (x)

Define
[ S,(x) = 0, S;(x) = 3, and

[Pi () ]
Sp(x) = (n - 1) lim X
A=+0

25

k=0

S:(x)
1D 1

DX - 1) (n - 2k = 1\ n-1-3k
n —‘iiTT‘T‘( k )y" ’

(y = 2x), n > 2.
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From (5) and (11) we obtain

az S,(x) = 2x, S3(x) = (20)%, S,(x) = (22)° - 3,
Ss(x) = (2x)* - 4(2x), Sg(x) = (2x)° - 5(2x)2, ... .

Using (7) and (11) and following the argument of Theorem 2, we have
Theorem 4: S, (x) = 2xS,_,(x) - 8,_;(x) (n 2 3).

We readily observe the similarity of the form for S, (x) in Theorem 4 with the
forms for p,(x) and q,(x) in (1) and (2).
Letting A = 1 in (7), using (11), and comparing kth terms, we have

Theorem 5: S, (x) = p, @ - 2p,_ 4(x) n > 3).
Theorem 6: S, (x) = 2q,(x) - p, (x) (n > 0).

Proo4: From Horadam [5, Eq. 6],

p, @) = q,(x) +p, ;) (1)
Therefore,
S,(x) =p, () - 2(p,(x) - q,(x)) from Theorem 5 and (i)

= 2q,(x) - p,(x),
which proves the Theorem.
Letting x = 1, we have by (3)
5,(1) = 2q,(1) -p, (1) = 2F, - F, , + 1.
Using the known generating functions for p, (x) and q,(x) given in [6] and [5], re-
spectively, we can readily deduce the generating function for S,(x) from Theorem
6. '

Theorem 2 is valid for all x. Hence Theorem 4 also follows from Theorem 2 on
dividing throughout by A and letting A -+ O.

6. THE POLYNOMIALS g} (x)

Instead of examining pi(x) as obtained in (7), suppose one investigates the
rising diagonal functions qé(x) of

el (x)
(13) n lim (n>1.
) A=0
An explicit formulation of qé(x) is
n31 (-1 n - RN,
n-2k (n = 2K\ n_3k =
(14) M) = y (y = 2x),
T ;Z:o (n - 2K) ! " %)
where
(15) M) 0 = AN o
Writing
(16) rMx) = p),, @ - ¢l(x)
and using (7) and (l4), we obtain
- [n/3] _ k -1 _
an Py = Y SO HE Ry Ly

k=0
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Results similar to those obtained for pz(x) may be obtained for qﬁ(m). At this
stage, it is not certain just how useful a study of qz(x) and ri(x) might be.
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ENUMERATION OF PERMUTATIONS BY SEQUENCES—II

L. CARLITZ
Duke University, Durham, NC 27706

1. André [1] discussed the enumeration of permutations by number of sequences;
his results are reproduced in Netto's book [5, pp. 105-12]. Let P(n, s) denote
the number of permutations of Z, = {1, 2, ..., n} with & ascending or descending
sequences. It is convenient to put

(1.1) P(0, s) = P(1, 8) = &, ,.
André proved that P(n, 8) satisfies
(1.2) P(n+ 1, 8) = sP(n, 8) + 2P(n, s - 1) + n - s + 1)P(n, s - 2),

(n>1).
The following generating function for P(n, s) was obtained in [2]:
S 1 - 2(/1 - 2% + sin z)z

n
_ 2y-n/2 3" n-2 =
(1.3) 20 - x?) n!;g%P(” +1, s)x l1+x\ - cos z

s=0

However, an explicit formula for P(n, s) was not found.
In the present note, we shall show how an explicit formula for P(n, s) can be
obtained. We show first that the polynomial

n

(1.4) p, () =2 Pn+ 1, 2)(-a)"*
satisfies =0

n
(1.5) Pan () ='E%TT(1 - x)n_l{z 2:('1)n+kA2n+1,k1%-k+1(x) - A2n+1,n+1}
k=1
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and

1 Lo B}
(1.6) Pona @ = amgl = @ DI Uy # Ay )T )

where the 4, ; are the Eulerian numbers [3], [7, p. 240] defined by
(1.7) ii E;. 55 An,kxk=‘“—“l_:“£“'_'
n=0 """ k=0 1 - ze®(7®)
and T,(x) is the Chebychev polynomial of the first kind defined by [6, p. 301]
(1.8) T,(x) = cos ndp, x = cos ¢.

Making use of (1.5) and (1.6), explicit formulas for P(n, 8) are obtained. For
the final results, see (3.7), (3.8), and (4.2), (4.3).

2. In (l1.3) take x = -cos ¢, so that

o . . 2
(2.1) E (sin q))_nz EP(” + 1, 8)(-cos ¢)n s _ 1 + cos d>/51n ¢ + sin z) .
=0

Ke 1 - cos ¢p\cos ¢ + cos z
We have

(sin ¢ + sin z)2 = tan? _(z + ) = L= cos(z + ¢)

cos ¢ + cos z 1 + cos(z + ¢)°

Hence, if we put

. . 2 il n
(2.2) <s1n + sin z) - 2: f;(cos ¢)§T’

cos ¢ + cos 2z =

it is clear that

d"” 1 - cos
(2.3) fn (cos ¢) = 'Cg';' I+ cos ¢°

To evaluate this derivative, write

_l—cosd):eq’i—lz:l_ 4 + 4
1 + cos ¢ e+ 1 ed + 1 (et + 1)2
Then
1dl-cos¢__ de®™ _26e* i 37 + 27
blap LTS O (et L )2 (¥4 )P et 4l (¥ 4+ 1P (e¥ + D)3
and
1 d® l-cos ¢ _ _ % 74* Lo 12d? 672
dq)z 1+ cos q) e¢i + 1 (e¢7,' + 1)2 (ed)z + 1)3 (e¢i + 1)'-0

The general formula is

n1d"? 1 -cos ¢ _ in-2 k-1(k - 1)15(n, k)
@8 D T T cos 8 T Zf D eIt

where S(n, k) is the Stirling number of the second kind [7, Ch. 2]:

Y 5, BEL = gr(e® - D,
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The proof of (2.4) by induction is simple. The derivative of the right-hand
side is equal to

in-1 E( 1y* k! 5(n, ket - grl 2( -1 {k S(n, k) _ k! S(n, k) ]

k=1 (e?? + 1)k*1 = (ebi + 1)k (edt + 1)k
n+l
R Ne 1)"—-5—"——-1—2——{<k3(n, ) +S(n, k- DY
k=1 (ef? + 1)F

Since kS(n, k) + S(n, k-1) = S(n+1, k), this evidently completes the induction.

We may rewrite (2.4) in the following form:

_1_ dn—2 1l-cos q) _ (—l)n’l‘-n-z z _ k-1 ['YA n-k
(2.5) 7 o ? TTeos§ = ey g;l( DR Lk-1)150m, DE®+1D)"%, &> 2).

In the next place, we require the identity

n n-1
(2.6) kEI<—1>’<-1<k - DS, K@+ D" = kZ (D", gwk, (2 1),
- =0
where 4, _, ;, is the Eulerian number defined by (1.7).
To prove (2.6), take

©

Z 2( DXk - 1)15m, k) (x + )"k

Z( Dk - D + )Y S, k)i—(ﬁi—lK

n=k
=§,_:<1

a(x+1) 2(x+1)
e -1 x+ e
log<1+ =7 1 )—log = 51 .

)kt -k
S——(x + 1) (e - 1)E

Differentiating with respect to z, we get

a(x+1)
YA (n E( DRIk - D15, k) (@ + Dk = EEL)e - ltc

ne=w x + e?@*D 1 + ge-2@+®

On the other hand, by (1.7),

P f}(~1)"An,kxk= Lt

n=0 k=0 1 + ze ?0+®
Hence,

n n-1
Y DE KR - DSk, R (@ + DR = 3D, ok
k=1 ' k=0

3. By (2.5) and (2.6) we have, on replacing n by n + 2,

1l d 1 -~cost¢ 0" oy n-k+1 k¢
4d¢ 1+cos¢_(e¢1+1) Z(l) A ke s
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since An+1m = 0. Moreover, since [3]
3.1 Aprr,x = Ansin-k+2 1<k<n+ 1),
we have

n _ n+l (n-k+2)¢7 _1yn ke
de™ k=1 (e +1)"*2

t(n-2k+2)4

+ (_l)ne_é(n—ziwz)cpi

(et + o-3oi)n*2

1 n+1l )
- NG +1
= 5(=2) ’?:1<—1) Aprrr

Therefore, in view of (2.3), we get

Ln-2k+2)¢z -l(n-2k+2)¢3

. nn+1 e + (_1)?16
(3.2) f,(cos ¢) = 2(-0)" Y (-1)**14 o 7
= ’ (2 cos-§¢)

n+2

It is convenient to consider »n even and »n odd separately, so that

2n+1
(3.3) Fancos 0) = == 3 (-pyrrriry, o cosln kA 1O
22" = 1 (os 20)

and 2

1 2n . sin %(Zn -2k + )¢
(3.4) Fan_1(cos ¢) = zzn—lg;l("l) Ay = T

By (1.3), (1.4), and (2.2),

3.5 p, (cos ) = %—%}%%2—% sin"¢ f, (cos ¢)
3.5

2" cos”+2-%¢ sin"'z-%¢ f,(cos ¢).
In particular

p,,(cos ¢) = 227 cosZ"+2-%¢ sinzn‘z-%¢ f,,(cos ¢),
so that, by (3;3),
n+1

(1 - cos ¢)n—1 . (__1)n+k+1A
k=1

1
2n—1

Using (3.1) and (.18), (3.6) gives

(3.6) p,,(cos 9) = cos(n - k + 1)o.

2n+1, k

l _ n
(3.7) p,, &) = 2n—1(1 - x)" 1{22:(—1)”+k+1A2n+1,k1;_k+1(x) + A2n+Ln+1}'
k=1

This proves (1.5).
Next, replacing » by 2n - 1 in (3.5), we get

P,,.,(cos ¢) = 22”‘1coszn+1-%¢ sinzn"3-%¢ fan-,(cos ¢)

1]

2n
sinZ”‘3-%¢ 2: 04)n+kA2n,ksin %(ZH -2k + 1)¢
k=1

(continued)
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2n
-;— sin2"" " %cbZ(—]L)”J'kAM o lcos(n = k)p - cos(n - k + 1)¢}
k=1 ’

1 L &
= a1 - cos 9)F 23 1" Uy, , + Ay, peq)cos(n - KO
k=1
1 n-2 n‘,-l n+k
= E;j;(l - cos ¢) ) (-1) Ay, 0 T A5, xe1)cos(n - )G + Agpint -
k=0

Finally, therefore, by (1.8),

1 I =
(3'8) pZVL-l(x) = 2n-2(1 - CC) Z{kz% (—1) +k(A2n,k + AZn,k+1)Tn—k(x) + AZn,n}'

4. We recall that

wn nweg (50 (e

0<25<n

2n-lgn +% , (-1)=7'ﬁ.(” -
; 7

2T e, iz,

In

<2j<mn

Thus (3.7) becomes

n-1 n
@ = g0 (1L e {0 P, T end
t=0 k=1

2§ <n-k+1

n-k-g+1 -k-J n-k-23
.[< jJ )+<nj— IJ)](ZJC) fraie +A2n+l,n+l}

1 N2n-s % -k -+
R MU V) (PR

s=n+k+2j-t-1

n - k - J n - 1‘ n-k-24+1 1 2 n-1 o2n-8
+( J -1 )} t }2 Lt 2n—1A2n+1,n+l Z (Zn - (=) :

Comparison with (1.4) gives

1 j -k-4+1
(4.2) P(2n + 1, 8) = zﬂ-l;z,-'l‘q“”»k ) (-DJ{(H - J )

s=n+k+2j-t-1 J

n-k =9\l = Non-x-25+1 1 (n -1
+( Jg -1 )} t )2 +2n—1 29 - A2n+l,n+l'

Similarly, it follows from (3.8) that

n -

1

n

> Y

s=n+k+2j-t-1

FEENE

1 n -2
+ 271—2(2” - g -1 ‘42?’!,71'

(4.3)  P(2n, 8) =

2n, k+1

1
— (4,,, T4
k=0
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5. For numerical checks of the above results, it is probably easier to use (3.7)
and (3.8) rather than the explicit formulas (4.2) and (4.3).
It is convenient to recall the following tables for P(n, s) and A, »s respec—

tively:
TABLE 1
I 0 1 2 3 4 5 6
1 1
2 2
3 2 4
4 2 12 10
5 2 28 58 32
6 2 60 236 300 122
7 2 124 836 1852 1682 544
TABLE 2
" k 1 2 3 4 5 6 7
1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1191 2416 1191 120 1
We first take (3.7) with n = 2. Then

p,(x) =

F( - @) {2, T, @) - 2, T, @) +4g,)

%(1 - 2){2(22% - 1) + 52¢ + 66}

223 - 28x2 + 58z - 32.
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Taking » = 3 in (3.7), we get

Next, taking n

1
p () = 7(1 - x)z{-2A7J_T3(x) +24,,T,(x) - 24, , T (2) + Azu}

[Dec.

=-%(1 - @) 2{-2(4x® - 3m) + 2 + 120(22% - 1) - 2 - 1191z + 2416}

= (1 - 2)2(544 - 1188x + 120x2 - 2x°%)
= 544 - 1682x + 1852x% - 836x° + 124x" - 2x5.

2 in (3.8), we get

1
x
];) -1 (Au,vk A )T, @)+ Au,z

=4, T,@ - @4, +4,,)@ +4,,
(2x? ~ 1) ~ 12 + 11
222 - 12¢ + 10.

P, ()

Similarly, taking » = 3 in (3.8), we get

Th(

and

res

.

Mor

By

2
1 ,
pslx) = 7(1 - %) { E ('l)“k“As,k +Ag )Ty (@) + Ae,a}
k=0

1 .
=51 - ) {-Ag 1 T3(x) + (Ag,1 + A2 )T (x) = (Agp + Ag,3 )Ty () + Ag,3}
= %(1 - x){~(42® - 3x) + 58(2x% -~ 1) - 359 + 302}
= 2% - 602® + 236> - 300z + 122.

Another partial check is furnished by taking x = -1 in (3.7) and (3.8).

Since

-1) = cos nm = (-1)", it is easily verified that (3.7) and (3.8) reduce to
n m+1
Py, (-1) = 27;(A2n+1,k tArni1, ne1) = kz_:l Apper, = (2n+ DI
n-1 ) 2n
Pon1(71) = k2=:0 o T A2 141 4000 = ;Azn,k = (m)!,
pectively.

On the other hand, for & = 1, it is evident from (3.7) and (3.8) that
1) p (1) =0 (n>4).

eover, since 7, (1) =1, it follows from (3.7) and (3.1) that

(n+1 -1(n =~ 1) . k
pz-: ’ 1 = (_1)” ' 2”—1 {2 Z(—l)n+ +1A2n+1, k + A2n+l, n+l
k=1

n+1
(n - 1)1 g
pn-1 27.41 (-1) Apnsr, ke

(1.7), we have
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0 n o
i D, = — =Y ¢ 2
' +nz=:1n! 7;1( D 4k ezz 2 G, "nl

n=0

in the notation of Norlund [5, p. 27]. Hence

- !
(.2) p;: P = £25§7%1;65n+1'

For example
pg(l) = 3704 - 5016 + 1488 - 40 = 136;

since C, = 272, this is in agreement with (5.2).
As for pZn_l(m), it follows from (3.8) that

- - 1 =
PO = il {Z< R N

= o 2 [ E( ISk lA i T z (_1)kA2n—k+1 + (—1)",42","}
k=1

2712
_(n - 2)' & k-1
2 Z( 1) A2n Kk’
so that

(5.3) (1) =0 (n > 2).

Next, we have

2n1
By (1-8),
T)(x) = n sin ng (x = cos ¢),

sin ¢

which gives T,)(1) = n?. Thus

2n 1 2n, k

After some manipulation, we get

8 -1
(5.4) P00 (1) = i”—z——-)-— 2( D120 = 2k + DAy
2n
- ;—i)! 2 ('l)kkAzmk'
2 k=1

Making use of (1.7), it can be proved that
(5.5) (1 - 24l =4 (@) - (n+ Dxd,(x),

where

n+l

L@ =) Ay ak (n>1).
k=1

Hence

243,(-1) = Appi1(-1) + (2n + DAz, (-1) = Cony1s

where (,,., has the same meaning as above. Thus (5.4) reduces to

(1) = (-1)*" 2%‘—1)—3{ ):( n**a@,, +A2n,k+1>}T,{-k(1>-

(H _ l)' n-1 '
PR = IR B DR - K2y, Ay, )
k=0

405
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(n-1) _(n = 1)!
(5.6) p2n_1(l) _'_—EZTT__02n+1'

For example,

py(l) = 24 - 360 + 472 = 136,

in agreement with (5.6).

(Please turn to page 465.)
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HOW TO FIND THE “GOLDEN NUMBER"” WITHOUT REALLY TRYING

ROGER FISCHLER
Carleton University, Ottawa, Canada K155B6

"o T wish . . . o point out that the use of the golden section . . .
has apparently bwwst out into a sudden and devastating disease which has
shown no signs of stopping . . " [2, p. 521]

Most of the papers involving claims concerning the '"golden number" deal with
distinct items such as paintings, basing their assertions on measurements of these
individual objects. As an example, we may cite the article by Hedian [13]. How-
ever measurements, no matter how accurate, cannot be used to reconstruct the ori-
ginal system of proportions used to design an object, for many systems may give
rise to approximately the same set of numbers; see [6, 7] for an example of this.
The only valid way of determining the system of proportions used by an artist is
by means of documentation. A detailed investigation of three cases [8, 9,10, 11]
for which it had been claimed in the literature that the artist in question had
used the "golden number" showed that these assertions were without any foundation
whatsoever.

There is, however, another class of papers that seeks to convince the reader
via statistical data applied to a whole class of related objects. The earliest
examples of these are Zeising's morphological works, e.g., [17]. More recently
we have Duckworth's book [5] on Vergil's Aeneid and a series of papers by Benja-
field and his coauthors involving such things as interpersonal relationships (see
e.g. [1], which gives a partial listing of some of these papers).

Mathematically we may approach the question in the following way. Suppose we
have a certain length which is split into two parts, the larger being M and the
smaller m. If the length is divided according to the golden section, then it does
not matter which of the quantities, m/M or M/(M + m), we use, for they are equal.
But now suppose we have a collection of lengths and we are trying to determine
statistically if the data are consistent with a partition according to the golden
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section. Authors invariably use M/(¥ + m), but we may reasonably ask which of the
two we should really use or whether or not it matters.

Our starting point is a remark by Dalzell in his review of Duckworth's book:
"But Professor Duckworth always uses the more complex ratio M/(M + m), which he
describes as 'slightly more accurate.' Just the reverse is true. In the rela-
tively few instances when the quotient is exactly .618 then m/M=M/(M + m) and it
does not matter which ratio is used. But in all other cases the more complex ra-
tio is less sensitive to deviations from the perfect figure of .618" [4].

Let us designate m/M by x, then M/(M + m) becomes 1/(1 + x). The golden num-
ber is ® = (1 + V/5)/2, and we let ¢ = 1/®. We then have

Dalzell's Theorem: For all x in [0, 1]; |[1/(1 + ) - ¢| < |z - ¢].

Why should this result be true? Intuitively, we might reason that in writing
1/(1 + x) we are starting to form the continued fraction expansion of ¢. We shall
see later that in a sense our intuition is correct, but that there are limits to
its validity. As a direct proof via continued fractions seems difficult, we use
a roundabout approach.

Lemma: Let f be differentiable on [a, b] with ]f’l < M. If o is a root of f(x)==x
(i.e., a fixed point of f), then |f(x) - a| < M|z - a| on [a, D].

Proof§: Mean value theorem.
Coroflarny: Dalzell's theorem.

Alternatively, we can obtain the estimate ]f(x) - f(y)l < [1/(1 + a)z]lx - y]
with f(x) = 1/(1 +x), 0 L a < x, y, by simple computation. This shows directly
that f is a contraction operator with fixed point ¢. 1In particular, when we re-
strict ourselves to an interval bounded away from O, we see that the distortion
caused by using M/(M+m) instead of m/M is larger than that indicated by Dalzell's
theorem.

Conollary: On the interval [a, 1] where a = V2 - 1 = 414...,

<3le - ol

1
l(l +x) ¢
Note in fact that as & ranges from .5 to .75, 1/(1 + x) only ranges from .667
to .571.
Corollary: For x close to ¢,

[1/(1 + ) - o] ~ (@) ]|z - o] ®%2=1-¢ = .381...).

Because of its independent interest we now make a slight digression into con-
tinued fractions. We restrict ourselves to the unit interval and therefore write
[0, a;, azs ...] for 1/(a, + 1/a, + *+*).

Theornem: Let o € [0, 1] have a periodic continued fraction expansion of the form

a = [0, a, Ays wnes ax]. Then for any number x in [0, 1],

|10, a1, ays vees ags ] - al < |z - af.

Proof: Define f by f(x) = [a;, aps ..., ai, x], then, by the periodicity,

Ax + B

f(o) = a. Furthermore, f(x) = o + D’

where the coefficients are integers which
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do not depend on x and satisfy [AD - BC| =1 (4/C and B/D are, respectively, the
(k - 1)st and kth convergents to o; see [12, Th. 175] and [15, Th. 7.3]). From
this we obtain |f'(z)| = 1/|(Cx+D)|? < 1 on [0,1]. The proof is concluded by use
of the lemma.

Conollarny: Dalzell's theorem.
Proog: ¢ = [0, 1, 1, 1, ...1; [0, 1, x] = 1/(1 + x).

Remark: This theorem justifies our earlier intuitive remark as to why Dalzell's
theorem should hold; however, our intuition will lead us into difficulties unless
we stop at the end of a period. 1Indeed, if o = [0, b;, ..., bx] and § < k, then
for x = a, x - o is zero, whereas [0, b, ..., b;, £] - x is not zero.

Remask: The above approach can be used to place some results involving continued
fractions in the domain of attraction of fixed points and contraction operators,
but we shall not pursue this path here.

Remark: 1t is known that every periodic continued fraction is a quadratic surd,
i.e., an irrational root of a quadratic equation with integral coefficients, and
conversely ([10, Ths. 176, 177] and [15, Th. 7.19]). In the case of o = ¢, the
corresponding equation is 2+ x=1o0rx=1/(1l +x). One would thus be tempted
to treat the general periodic case as follows: Suppose o satisfies Ax? + Bx = C.
We rewrite this as x = f(x) = C/(4x + B), and would like to conclude that

|f@) - o] < |z - a
as above. However, we run into difficulty because we no longer have a control on
r'.

Let us now turn our attention to the statistical aspects. We denote random
variables by capital letters, expectation by E, variance by 0%, and standard devi-
ation by SD. We restrict ourselves to distributions with continuous densities
concentrated on the unit interval. By the second corollary above (p. 407) and the
Mean value theorem for integrals, we have immediately—

Theorem: 1If X is a random variable taking values in a small interval near , then
the ratios r, = |E(X) - ¢]/[E(Y) - ¢| and r, = SD(X)/SD(Y) are both near 32,

Now consider a general '"aesthetic" situation involving lengths of various
sizes. We should not be surprised that, rather than being controlled by some mys-
tical numerical force, our ratios m/M occur randomly. Furthermore, in situations
such as the lengths of sections in a poem, there will be a tendency to avoid the
two extremes of complete asymmetry and equality, i.e., we can expect values rela-
tively far away from 0 and bounded away from 1.

Thus we are led to consider the situation where X is uniformly distributed on
a subinterval [a, b] of the unit interval. In this case, E(X) = (a + b)/2 and
o%(X) = (b - a)?/12 [14, pp. 74, 101, 111] and straightforward calculations [14,
p. 78] now show that the distribution functions of ¥ = 1/(l + X) assigns weight
(/e - 1/d)/(b - a) to a subinterval [e¢, d] of [1/(1 + b), 1/(1 + a)]. Further-
more,

1 1+b 1
E(Y) = (b - a) ’ ln(l ¥ a) and  0*(7) = A+ +Db [E(D)]%.

Note that if [e¢, d] is contained in [1/(1 + b), 1/(1 + a)] and also in [a, b]
then the distribution function of y assigns 1/cd times more weight to [¢, d] than
does the unifrom distribution on [a, b]. Under these conditions, if [e, d] is a
small subinterval about 1/®, then this ratio is approximately &2 = 2.618, i.e.,
for a large sample over two and one-half times as many values of the transformed
data as of the untransformed values will lie in the interval. Also note that the
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weight assigned by the distribution of Y to an interval [e, d] depends only on
the length of the interval [a, b] and not on the actual values of the endpoints.

In fact, numerical computation shows that even for large intervals relatively
far away from 0 and bounded away from 1 the ratios r, and r, as well as the prob-
ability ratios will not be too far from 2.6. To illustrate this situation, let us
suppose that our ratios are uniformly distributed on [.45, .70] so that the aver-
age value is .575 and the standard deviation .072. For a large sample, only 16%
of the values will fall in the subinterval [.60, .64]. If we now transform the
data, the mean is .636 and the standard deviation only .029. This means that for
a sample size of 20 or so it is:almost sure that the mean will lie in the interval
[.607, .665]. Furthermore, for a large sample, 42% of the actual values of 1/(l+ x)
will lie in our subinterval [.60, .64]. If we look at [.59, .65], then the prob-
abilities are 247 and 627.

Finally, to support our claim that the various seemingly impressive results in
the literature are really due to an invalid transformation of data from a more or
less uniform distribution, we mention two case studies.

The first is due to Shiffman and Bobko [16] who considered linear portionings
and concluded that a uniform distribution of preferences was indeed the most like-
ly hypothesis.

The other, a study on Duckworth's data, was done by the present author in con-
nection with a historical study [3] of the numerical treatment of & by Hero of
Alexandria who lived soon after Vergil. If we consider. the first hundred entries
in Duckworth's Table I, then the range of the m/M values is from 4/7 = .571 (four
times) to 2/3 = .667 (twelve times). If this range is split up into five equal
parts, then the five subintervals contain 10, 25, 33, 15, and 17 values, respec-
tively. When we look at the actual values, we note that the Fibonacci ratios 3/5,
5/8, and 13/21 appear 15, 16, and 2 times, respectively. In other words, 2/3 of
the ‘ratios are not Fibonacci approximations to the '"golden number.'" If we compute
means and standard deviations, then for the m/M ratios we obtain the values .621
and .025 as opposed to the values .616 and .010 for the M/(M + m) ratios, which
only range from .600 to .637. It is interesting to note that if Vergil had used
the end values 4/7 and 2/3 fifty times each, then the average would have been

1/4 , 2 13
17 +3) = 2
which is a good Fibonacci approximation to ¢. This only proves once more how de-
ceiving averages can be. .A similar study of the sixteen values in Duckworth's
Table IV—the main divisions—reveals that not a single Fibonacci ratio appears.
The m/M values range from .594 to .663 with a mean of .625 and standard deviation
of .021 as opposed to values of .615 and .008 for the M/(M + m) values.
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EXTENDED BINET FORMS FOR GENERALIZED QUATERNIONS OF HIGHER ORDER
A. L. IAKIN

University of New England, Armidale, Australia

In a prior article [4], the concept of a higher-order quaternion was estab-
lished and some identities for these quaternions were then obtained. 1In this
paper we introduce a "Binet form" for generalized quaternions and then proceed to
develop expressions for extended Binet forms for generalized quaternions of high-
er order. The extended Binet formulas make possible an approach for generating
results which differs from that used in [4].

We recall from Horadam [1] the Binet form for the sequence W,(a, b; p, q),
viz.,

W, = Aa" - BR"
where
W0=a, W1=b
_ b - aB _ b - aa
4=5= g B=5" B

and where o and B are the roots of the quadratic equation
x? - px + q = 0.
We define the vectors g and B such that

a=1+za+ja® + ka® and B =1+ 2B + JB® + kB®,
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where 7, j, k are the quaternion vectors as given in Horadam [2].
Now, as in [4], we introduce the operator (:

Wy = Wy + W, + IWnso + KWyyg
Ao - BBn + i(Aa”+1 - B8n+l) + j(Adn+2 - BBn+2) + k(Aa”+3 - Bsn+3)
Ao (1 + Zo + jo? + ka®) - BR™(L + ZB + jBZ + kB?)

Therefore,
(1 W, = Ao"o - BR"B.
This is the Binet formula for the generalized quaternion of order one. Con-
sider
D, = Wo + LqW | + Jq°W,_, + kq®W,_,
dam - BR™ + iq(4a”"t - BR" L) + jg2(40” "% - BR""2) + kg®(4o" "% - BR"?)
Aot (1 + 2qo™t + jqP0? + kqPa"?) - BRM(1 + igB™' + jq®B7% + kqg*R7?)

]

but
aB = g
i.e., o = gB™! and B = gu™'; hence,
My = Ao™(L + B + gB* + kB®) - BR"(L + <o + jo® + ka®).
Therefore,
(2) AW, = Aa"B - BB"a.

Thus we see that the quaternion formed by the A operator, that proved so use-
ful in [3] and [4], has a Binet form which is a simple permutation of result (1)
above.

We now examine quaternions of order A (for A an integer) and prove by induc-
tion that

(3) o'W, = Aara? - BR"B1.
Proog: When A = 1, the result is true because
QYW, = QW, = Ao"a - BB"B.
Assume that the result is true for A =m, i.e.,
Q"W, = Aarom - BR"B".

m+ 1,

QW, + Q"W + JUW, e, + KW,

Aaﬁg” - Beﬁgm + i(Aa”+%gm - BBn+{§m) + j(Au”+%gm _ BB”+2§m)
+ k(Au"+3gf _ BBn+§§m)

Ao(1 + io + ja? + kad)am - BB™(L + 2B + jB% + kB®)B"

Aa”o.am - BB"BB"

= Adn@m+l _ BBan+l.

Now, for A

+1
iy,

Since the result is true for A = 1 and also true for A = m + 1 whenever the
result holds for X = m, it follows from the principle of induction that the result
is true for all integral A. Similarly, it can be shown that

4) AW, = Aa"g* - BB,
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Since

QbW = AWy + TAW, | + AW, ., + kAW, 4

n

and MWy = QW + QW + Jq*W,_, + kq®W,_,,
we secure, using equations (2) and (1), respectively,

(5) QMW, = Aa"o.B - BR"Bo

(6) MW, = Aa"Ba - BR"aB

If we let A = 2 in equations (3) and (4) and also use equations (5) and (6),
we can derive the six permutations for quaternions of order 3 involving both Q and
A operators, namely

N Q20W, = Ao"o®B - BR"B%0
(8) A*QW, = Aa"B%a - BR 0’ B
9 QA*W, = Aa"aB? - Ba"Ba?
(10) MW, = AotBo® - BR"opR?
(11) QAQW, = Aoro.Bo - BB"Ba B
(12) MW, = Aa"Bo B - BR"aB o

We now pause to investigate the effects of operators 0* and A* on the Binet
forms. Note from [4] that

QAW = Dy + AWy * T+ DWpyy = J + q30W,05 = Kk = AW
and

D*QW, = QW + W, L+ qXW,_, + F + qW,_, + k = QOW,

and thus the operators Q* and A* provide no new results for quaternions of order
2. Since equations (7) to (12) and equations (3) and (4) for A = 3 provide every
possible triad of combination of o and B, it is unlikely that quaternions of order
3 involving the starred operators will produce any Binet form distinct from those
given. A close inspection of the modus operandi of Q* and A* verifies that this
is indeed the case. For example, it is easily calculated that

Q*aQw, = Aoa"Ba’ - BB"a B’
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