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A PROPERTY OF FIBONACCI NUMBERS

R. L. GRAHAM
Bell Telephone Laboratories, Inc., Murray Hill, N. J.

1. INTRODUCTION

Let A = (ay,aq,---) denote a (possibly finite) sequence of integers. We
shall let P(A) denote the set of all integers of the form gl €1 where S
is 0 or 1., If all sufficiently large integers belong to P(A) then A is said
to be complete, For example, if F = (Fy,F,y,---), where Fn is the nth Fib-
onacci number, i.e., F; =0, F;y =1 and Fn+2 = Fn+1 + Fn for n=0, then
F is complete (cf. [1]). More generally, it can be easily shown that F satis-
fies the following conditions:
(A) If any one term is removed from F then the resulting sequence is
complete.
(B) If any two terms are removed from F then the resulting sequence is
not complete. -
(A simple proof of (A) is givenin [1]; (B) will be proved in Section 2.)
In this paper it will be shown that a "slight' modification of F produces
a rather startling change in the additive properties of F. In particular, the
sequence S which has Fn - (—1)n as its nth term has the following remarkable
properties:
(C) Ifanyfinite subsequence is deleted from S thenthe resulting sequence
is complete.
(D) If any infinite subsequence is deleted from S then the resulting se-

quence is not complete.

2. THE MAIN RESULTS

We first prove (B). Suppose Fr and FS are removed from F to form

F* (where r < s). We show by induction that F -1 ¢ P(F*) for k =

s+2k+1
0,1,2,---. We first note that the sum of all terms of F* which do not exceed
FS+1 -1 is just
s-1 5-1
- = - - = - - < F -
k__z_le Fr il (Fk+2 Fk+1) Fr Fs+1 1 Fr Fs+1 !

1



2 A PROPERTY OF FIBONACCI NUMBERS [Feb.

and hence Fs+1 -1 ¢ P(F*), Now assume that F -1 e# P(F*) for some

s+2t+1

t = 0 and consider the integer F 1. The sum of all terms of F*

s+2t+3
which are less than Fs+2t+2 is just
s+2t+1

& B m Ty = Fappg =1 - Fp = Fg < Foppg -1
Thus, in order to have Fs+2t+3 - 1 ¢ P(F*) we must have Fs+2t+3 - 1=
Fs+2t+2 + m, where m e P(F*), But m = Fs+2t+3 - Fs+2t+2 -1 = Fs+2t+1
-~ 1 which does not belong to P(¥*) by assumption. Hence Fs+21;+3 -14¢
P(F*) and proof of (B) is completed.

We now proceed to the main result of the paper.

Theorem: Let 8§ = (s4,8y,--+) be the sequence of integers defined by
s, = Fn— (—l)n. Then 8 satisfies (C) and (D).

Proof: The proof of (D) will be givenfirst. Let the infinite subsequence
8; <8 <sy < e be deleted from S and denote the remaining sequence by
3
S*, In order to prove (D) it suffices to show that

8. -1 ¢ P(S*) for n = 4

i +1
n
We first note that

8, + 8, = 8yt 8y = 2
L 1z '

Therefore, we have (cf. Eq. (1))

j#il’i2

Hence, to represent s; .1 -1 in P(S*) we must use some term of $* which
exceeds Sip-1 (since by above, the sum of all terms of S* not exceeding
Sip-1 is less than Sip+l = 1 for n= 4), Since i, is missing from 8*, then
the smallest term of S* which exceeds Sin—l is Sin+1 (which, of course, is
greater than Sin+1 - 1), Thus
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S; 41 -1 § P(S*) for n = 4
n
and (D) is proved,
To prove (C), let k >4 and let S' denote the sequence (sk, Skr1?
Spepor ). For non-negative integers w and x, P(S') is said to have no gaps

of length greaterthan w beyond x provided there do not exist w+ 1 consecu-

tive integers exceeding x which do not belong to P(S'). The proof of (C) is
now a consequence of the following two lemmas,

Lemma 1: There exists v such that P(S') has no gaps of length greater
than v beyond Sy -

Lemma 2: If w > 0 and P(S') has no gaps of length greater than w
beyond Sy then there exists i such that P(S') has no gaps of length greater
than w - 1 beyond s, .

Indeed, by Lemma 1 and repeated application of Lemma 2 it follows that
there exists j such that P(S') has no gaps of length greater than 0 beyond
Sj . Thatis, S' is complete, which proves (C).

Proof of Lemma 1: First note that

_ 2n 2n+1 _ _ _
Son T Sont1 T Fop - D Fop g - 1) = For " Fonr1 = Fonea ™
Sonea T 1+
Similarly,
L .2n+l 2n+2
Son+1 © Sopre = Foner ~ D) * Foneg = 1)
= Font1 T Fonrg = Foneg = Somz — 1 -

Also, we have

(Sy+8y+-ents = (Fi+1)+ (Fy= 1)+ -+ (F - 1))
n n
= ZFj—t—en = Z (Fj+2—Fj+1) + €
=1 =1
(1)
= Fp -1+ &

- €
n+2 n

—
Il
1]

where
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0 for n even
En 11 for n odd

Thus

n

N - - + = .
Z sJ 842 = Smt1 ~ n T Sm-1 for n m
=1

Now, let h > k+ 1 andlet

P' = P((sy,8y,15° 8y ={Pi:Pasrer .0 )

where p] < p; < +++ < p;l. Let
_ max _
= jer=n-1 Ppeg " Pp) -
Then
h>k+1> 5==m>sh2 Sk+1+2
=Sy S T h T G T L
‘ - = -
=Spt2 T Sht1 — Skl T Ch T kel

1=
o

=51 = Sm2 T Ske1 T T Ckr1 T

[
[
[y

Since

max  tnt -
l=r=n-1 ((pi-ﬂ * sh+1) (pr * Sh+1)) v

then in

PH

P((Sk""’sh’sh+l))
P (g essy)) N (@ + 8pg s a0 € P ((oeeusy)))

{p'iyapéra' °0 ;:;_l} ]

"
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< pY< oeee < p;, , We have

max 17" 71 <<
i=r=n-1 @Pps; ~Pp) =V .

Similarly, since

then in

h>k+1>5=$sh+zs Sj

AU 4 (NP B A0 SR Ut

where p'l" < p'z" < eee < p;l',', , we have

max

-p") =v, etc.
1=r=n"-1 r

e
(Priq

By continuing in this way, Lemma 1 is proved,

The proof of Lemma 2 is a consequence of the following two results:

(@)

(b)

For any r = 0 there exists t such that m > t implies all the
integers

SptV¥e V= 0,£1, £2,¢° ,+(r - 1)
belong to P(8").
There exists r' such that for all sufficiently large h', P(S') has
no gaps of length greater than w - 1 between Spr t r' and Spre1 ~
r' (i,e., there do not exist w consecutive integers exceeding Spr

+ r' andless than s - r' which are missing from P(S') ).

h'+1

Therefore, for s; sufficiently large, P(S') has no gaps of length greater

than w -

1 beyond S;» which proves Lemma 2,

Proof of (a): Choose p such that

2]
v
=

2p - 3 = k and 2p-2

and choose n such that

nzszp_2+p and n=r+k
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Then
n 2n-2m-4 n n-m-1 2n-2m-4
Z Soi-1" z 8 = Z Si-1 ~ Z S2i-1 " 2 %
i=n-m j=2p-3 i=1 i=1 j=2p~-3
n n-m-1 2n-2m-4
=n+ZF2i_1—n+m+1- Z in_1+ z sj
i=1 i=1 j=2p-3

=m+1+F, -F

on ~ Yon-2m-2 ¥ Sp-am-2t 0 " Sp97 0

2p-2
SZH—(szp_z-m—l),for 0=m=n-p-1 ,

Since 2p - 3 = k, then all the summands used on the left-hand side are in S',
Hence, all the integers

s2n-(s2p_2—m—1), 0=m=n-p-~-1

belong to P(S'). Since n =

Therefore, all the integers

s2n—(s2p_2—m-l), 0 = ms= szp_z—l §
belong to P(S'), i.e., all the integers
- m!' = = -
Sop = M', 0 m' = szp_2 1.

But S2p—2 =r, so that we finally see that all the integers

szn-m', 0=m'=r-1,

belong to P(S').

To obtain sums which exceed So,» DOte that for 1 = m = n - k wehave
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n n n-m
S2j-1 " Son-zm T E S2j-1 ~ z S2j-1 * S2n-2m
j=n-m+1 =1 j=1
=ot Fyy - @-m - Py om ¥ Son_om
= m + F2n -1
= m+ s,
Since the sums
n
z S2j—]_ * Sy om for m =1,2,...,n - k
j=n-m+1

are all elements of P(S8'), andsince n - k =r, then all the integers

S, +m, l=m=r ,

2n

belong to P(S'). ‘
Arguments almost identical to this show that for all sufficiently large n,
all the integers

Sont1 +m, m=0,xl,--¢,x(r-1) ,
belong to P(S'). This proves (a).

Proof of (b): We first give a definition. Let A = (a,a,,--- ,an) be a

finite sequence of integers. The point of symmeiry of P(A) is defined to be
n

the number %Z é’k' The reason for this terminology arises from the fact

k=1
that if P(A) is consideredas a subsét of the real line, then P(A) is symmetric
n

about the point -21- Z . For we have
k=1

n
p = Z €8, € PA)y= }: (1-¢€a, = Z 2, - P € P(A)
k:l k:]_ k=1

=]
=]

and the points p and 2, - p are certainly equidistant from %-‘Z ay.
=1

7t
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Now note that if r is sufficiently large then

Sy > 3 > —Sk+1+ 3,
Spr1 " 5% 7 ST 2
Sp P = Spg <81
Spr2 T Sl T Sk S Spma T S T Sker 0
and
- < € . €
Spez T Sw1 C e TG T St
Therefore
T
1 -1
2‘22 85 = 5 na " S1ny ~ 5 T Ga) < Spug
j=k
and
1 (s - 8 - € 4+ € y > s
2 Tr+2 k+1 r kt+1 h

for all sufficiently large r. In other words, for all sufficiently large r, the

point of symmetry of P((sk,- XN Sr)) lies between Sy and s By hypothe~

r+1°
sis no gaps of length greater than w occur in P(8') beyond Sp. Since h > k

> 4 implies

Sp< Sme1 < Spa < 07T s

then no gaps of length greater than w can occur in P((sk,-' .. ,sr)) between

sp and s (For if they did, then they would remain in P(8') since s

r+1° r+1
< B9 <0t ,) But
r
S > 3
r+1 2 J
j=k
T
and -;— Z( Sj is the point of symmetry of P((sk, oo ’Sr))' Therefore,
j:
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and by symmetry no gaps of length greater than w occur in P((sk,o .- ’Sr))
between

r

Z{sj - S and Z sj -8y -

1= ]=k

Thus, no gaps of length greater than w occur between Sy and

I
Z Si "5 = Sp+2 7 Sk T “h Y ki1 " Sn

j=k
provided that r is sufficiently large. Now consider P((Sk’ "ttaSlg )). Since
Spr1 * Spr2 T Spag (_1)1‘+1
then Sl + Spio +p and S 43 + p are elements of P((sk, et 8.a )} which

differ by 1 whenever p is an element of P((sk,n 58, )). Hence, since in

P((sk,-- 98, )) there are no gaps of length greater than w between Sh and
I

Z sj - Sy then in P((sk, <o ’Sr+3)) there are no gaps of greater length than

=k
w - 1 between

v ,
syt Sh+3 and Z Sj -8yt Spig -
=k :

Similarly, consider P((sk, a8y )). Since

_ r+2
Sprg T Sprg T Spg T D)

and there are no gaps in P((sk,- a8l )) of length greater than w between
r+l

Sh and z sj = Sp» then there are no gaps in P((sk,-- . ’Sr+4)) of length
=k
greater than w - 1 between r+1
Sp + Spia and Z sJ. - Syt Sy
=k
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s + (_1)r+q and there are

In general, for q > 0 since »sr+q'+ S prge1 = Sr+q+2

no gaps in P((sk, cee ’Sr+q~1)) of length greater than w between. Sh and
r+q-1
_E S: = Sp» then there are no gaps in P((sk,~ . ’sr+q+2)) oflength greater
j=k r+q-1
than w - 1 between s, * Sr+q+2 and jik S, -8yt Sr+q+2' But
r+q-1
Z 5 7 Sn * Spig-2 T Sreqrl T Ske1 T “rtgrt T %1 " Sh T Sprq+2
j=k _ _\ratl _ B
= Spigrs t 1) Ske1 T Sh T Crvgrr T Sk

= Sr+g+3 ~ Sk+1 T Sh T 2

Therefore, if we let

r' +sh+2

= Skl T B ‘
then for all sufficiently large z, there are no gaps in P((Sk’ ca ,sZ)) of length

greater than w - 1 between s, + r' and S,01 " r' (since the preceding argu-

+1
ment is valid for q > 0 and all sufficiently large r). This completesthe proof
of (b) and the theorem.,

3. CONCLUDING REMARKS

Examples of sequences of positive integers which satisfy both (C)and (D)
are rather elusive. It Would'be intéresting to know if there exists such a se-
quence, say T = (ti,t9,--:), which is essentially different from S, e.g.,
such that

lim ‘nr1 + 1+ N5
n—co tn 2

The author wishes to express his gratitude to the referee for several sug-

gestions which made the paper considerably more readable,

REFERENCE

1. J. L. Brown, "On Complete Sequences of Integers,'" Amer., Math., Monthly,
68 (1961) pp. 557 —560. '




ON SQUARE LUGCAS NUMBERS

BROTHER U. ALFRED
St. Mary’s College, California

Among the first dozen members of the Lucas sequence (1,3,4,7, 11, 18,
«++) there aretwo squares, Ly = 1 and Ly = 4, Arethere any other squares
in the Lucas sequence?

Since the period of the Lucas sequence modulo 8 is 12, it follows that

L12k+)\ = L‘)\ (mod 8), so that all possible residues are represented in the fol-
lowing table.
X L12k+)\ (mod 8)
0 2
1 1
2 3
3 4
4 7
5 3
6 2
7 5
8 7
9 4
10 3
11 7
It follows that the only Lucas numbers which may be squares are L12k+)\ with

A = 1,3 or 9, since the other residues modulo 8 are quadratic non-residues
of 8.

From the general relation

ZLat+b = 5Fan + LaLb

it follows if t = 2", r =1, that ,

2Ly op = 5F Fop + Ly Ty

= . 2 _
5F, F L, + L, (L - 2)
so that
ZL)\+2t = —2L>\ (mod Lt)
But (Lt,Z) = 1. Hence
Lypop = "Ly (mod Ly)

We can use this relation to advantage by writing
11
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Lioen 2 Dheamt
where m isoddand t = Zr, r =1,
Then
Lyvomt = Mooy @04 L)
=Ly iom-gy (™od Ly)
- m
= (-1)" L, (mod L)
For =1,
= — 1 ¢ = of
Ligesy = “Lt = -1(modL), t=2", r=1
But
*
<—:~1—> = -1, since L, = 3 (mod 4)
Lt t
Therefore I"12k+1 may not be a perfect square except for L; = 1. Sim-
ilarly, L can be shown to be ruled out by entirely the same argument

12k+3
except for Lg = 4

Finally,
o 2
Liokrg = Lgprs [Diges + 01

The 6 in the bracket may be either 3 or 1. But since only Lucas num-

e . - 9
bers L4k+2 are divisible by 3, it follows that L4k+3 and L4k+3

relatively prime. Therefore, if L12k+9 is to be a perfect square, both fac-

+3 are

tors must be such. It is clear that L4k+3 is not a perfect square forv k=1
or 2, For other values, k equals either 3k', 3k'+ 1 or 3k'+ 2 with k' =1,

But this gives us Lucas numbers L and L respect-

12k+3° T2k 12k+11
ively and it has already been shown that these cannot be squares.

Thus the only squares in the Lucas sequence are L; = 1 and Lg = 4,

* Legendre's symbol,




LATTICE PATHS AND FIBONACCI NUMBERS

ROBERT E. GREENWOOD

University of Texas

L, -Moser and W. Zayachkowski [1] considered lattice paths from (0, 0)
to (m,n) where the possible moves were of three types: (i) horizontal moves
from (x,y) to (x+1,y); (ii) vertical moves from (x,y) to (x,y + 1), and (iii)
diagonal moves from (x,y) to (x+ 1,y + 1). A special case of some interest
arises when m = n,

Consider now a much more restricted set of paths. Require: (a) that the
path be symmetric about the line x+y =n, (b) that prior to arriving or touch-
ing the aboveline that one use only horizontal and diagonal moves (and symmetry
after now requires that vertical and diagonal moves be used to arrive at (n,n)),
and (c) that all of the paths be ""below' or on the line y = x (also required by
the previous conditions).

_ For small values of n one can enumerate the possible paths., Thus for
n = 1, one need only consider the three points (0,0),(1,0) and (1,1), and
there are two paths as pictured in Fig. 1. For n = 2, there will be three
paths. For n = 3 there will be five paths, See Figs. 2 and 3, respectively.

This suggests that the collection of path numbers may be closely related
to the Fibonacci sequence, with appropriate renumbering to bring the two se-
quences into step. Thus, letting h(n) be the number of paths for (0,0), (n,n)

n | 123
nm)| 2 3 5

Also, beginm‘hg at (0,0), there are only two initial moves, to (1,0) and to

case, one has the tabulation

(1,1). Due to symmetry imposed by requirement (a) the last move in the path
is also determined so that one has the choices schematically portrayed in Fig. 4.
The two path schemes depicted in Fig. 4 are mutually exclusive andcollective-
ly they exhaust all of the allowable paths satisfy‘ng conditions (a), (b) and (c).’
Hence, h(n) = h(n - 1) + h(n - 2) for n= 3,4,..- . Thus the sequence of path
numbers is a Fibonacci sequence with appropriate relabelling and identification
of h(0) and h(-1) as unity.

13
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It is also possible to '"count' the paths so as to have
n+1-k

h(n) = Z
i=0 k

but the grouping of paths with summation index k seems slightly artificial and
lends little or nothing to the general theory.

VA

Figure 1 (two cases) Figure 2 (three cases)

Figure 3 (five cases, smaller scale)

(m,n) $; /1 p(n,n)
@-1,n-1) ://Iﬂl(n, n-1) (n—l,n—l)///nAi/:
! /
/

/ |(n’ n- 1)
/
/

//
(1,1) ~
/
e /

)

|

i

(n_l,l). | .(nsl) // (1’1—1,1

0,0 : L//f(lJl-)-—-——.J.(n’,l)
°c 21,0 @-1,00 ,¢®@0 (4 0)¢ e(1,0) m-1,00 ®(m,0)

There are h(n - 1) paths from (1, 0) There are h(n - 2) paths from (1,1)
to (n,n - 1) inside dashed triangle. to (n - 1, n - 1) insided dashed
triangle.
Figure 4
REFERENCE

1. L. Moser and W. Zayachkowski, '"Lattice Paths with Diagonal Steps,"
Scripta Mathematica, Vol. XXVI, No. 3, pp. 223—229,




A NOTE ON FIBONACCI NUMBERS

L. CARLITZ

Duke University, Durham, N. C.

We shall employ the notation

u = 0, uy =1, Wep = un+un_1 =1 ,
Vo = 2, vy = 1, el = Vot Voo n =1)
Thus
n n
_a -8B _.n n
(1) U‘n_a-B’Vn Q+B ’
where
S R R L Y T T
2 2
The first few values of w, v follow.
n 112} 34| 5 6 7 8 9 10 11 12
0|11 5 8 13| 21| 34 55 89 144
v 1| 3| 4] 74 11| 18] 29| 47| 76| 123 | 199| 322
It follows easily from the definition of (1) that
(2) W = W e Y T e g n=k=1) ,
(3) Vo T W e Ve T Yok ket m=k=1)

(4)
(5)
(6)

It is an'immediate consequence of (1) that
uklumk ’
Vie| Yomic

k| Vem-1)k

*Supported in part by National Science Foundation Grant G16485,

15
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where m and k are arbitrary positive integers. If is perhaps not sofamiliar

that, conversely,

(4)7 uklun == n = mk k>2) ,
(5" ukl u ==>n = 2mk k >1) ,
(6)’ vkl v, =—>n = 2m - Dk (k> 1)

These results can be proved rapidly by means of (1) and some simple re-

sults about algebraic numbers. If we put
(7) n=mk+r 0=r <k ,

then
so that

If uk’ w it therefore follows that u Bmkur. Since B is a unit of the field

R(N5), uklur, which requires r = 0. This proves (4)'.

Similarly if

n==2mk+r (0=r <2k) ,

then

2mk
Uy = @Yt A Uy

Hence if v lu, it follows that V| Uy If then r > 0 we must have r > k
and the identity
r-k
o - B)ur =a V- ’Bvr—k

gives Vie | ek which is impossible., The proof of (6)! is similar,
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If we prefer, we can prove (4)', (5)', (6)' without reference to algebraic
numbers, For example if ukl W then (2) implies W | Wy g1 Since u
and u,_q are relatively prime we have Wl e Continuing in this way we
get | s where r is defined by (7). The proof is now completed as above,
In the same way we can prove (5)' and (6)'.

In view of the relation
(8) u,_ = uv
it is natural to ask for the general solution of the equation
9) w, = U Ve (m>2,k>1) .

It is easily verified, using (1), that (9) can be replaced by

- k =
(10) W= upe (-1) Uk (m = k)
or
1) w o= u ., - (1% & >m)
n m+k k-m
Now the equation
12) u, = ug+tu (s>t >1)

is satisfied only when r - 1 = s = t+ 1. Indeedif 1 <t < s -1, then

us+u<u +u = u

t s s-1 s+1 ’

so that (12) is impossible; if t = s - 1, then clearly r =s+1.  t=1 in
(12) we have the additional solution r = 4, s = 3.

Returning to (10) and (11) we first dispose of the case m - k = 1. For
k even (10) will be satisfied only if m + k = 3, which implies k = 1; for k
odd we get n =2, m+k =3 or n=3, m+ k = 4, whichis impossible.

Equation (11) with k - m = 1 is disposed of in the same way.
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We may therefore assume in (10) and (11) that Im—k' > 1, Then if k is
even, it is evident from the remark concerning (12) that (10) is impossible, If
k is odd, we have

u u + u

m+k ~ 'n m-k °*
sothat k= 1, m = n, As for (11), if m is odd we get

. = u + 1
n m+k k-m °?

which is impossible, However, if m is even, we get

u = u_ +u

m%k n k-m °

sothat m + k =n+ 1 = k - m + 2; this requires m = 1, k = n,
This completes the proof of
Theorem 1, The equation-.

u = u.v

n inVk (m>2, k >1)

has only the solutions n = 2m = 2k,
The last part of the above proof suggests consideration of the equation
(13) u = k >1) .

Since (13) is equivalent to

it follows at once that the only solution of (13)is n = 4, k = 2,

The equation
(14) W, =V m=k>1),

is equivalent to

il

(15) u \% k‘+ (—1)kv

‘ n m+ m-k

If k is evenitis clear that n > m+k; indeed since Vinik = Uttt T Ymeke1

we must have n > m + k + 1. Then (15) implies
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u v

mtk+2 = mik+l * Yrntk-1 + m-k ?

which simplifies to

(16) Ymtk-2 = Vm-k

If m =k, (16) holds onlywhen m = 2; however this does notlead to asolution

of (14). ¥ m > k, (16) may be written as

u u

m+k-2 = Ymolke1 * m-k-1 < Y%m-k °*

which holds only when m = 4, k = 2,
If k is odd, (15) becomes

an ’ woF V=Y

If m = k this reduces to

n = Ugirr T Yo o

which implies 2k-1 =3, k=2, If m = k+ 1 (17) gives

n = Uopyg T Ugg o

which is clearly impossible, For m > k+ 1 we get

Ukl um%k—l = Uy F zum—-k :

sothat n< m+ k+ 1. Since

u + 2u < u

m-k mtktl T Ymetk-1 .

we must have n = m+ k+ 1. Hence (17) becomes

Ym-k = Ymik-1
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as we have seen above, this implies
m-k=2 m+k-1=4 ,

so that we do not get a solution,
We may state
Theorem 2, The equation

= vV (m=k >1)

k
has the unique solution n = 8, m = 4, k = 2,

It is clear from (4)' that the equation
(18) wo= cu k >2),

where c is a fixed integer >1 is solvable only when k|n. Moreover the num-
ber of solutions is finife, Indeed (18) implies
. = Uy =WV, € = Vo

moreover if n = rk then for fixed k, r is uniquely determined by (18).
This observation suggests two questions: For what values of ¢ is (18)
solvable and, secondly, can the number of solutions exceed one? In connection

with the first question consider the equation

(19) o= 2uk k > 2)
Since for n > 3
Zun_2 < wo= 211][1 9 + W s < 2un_1 ’
we get
U2 < Uge < Upp -

which is clearly impossible, Similarly, since for n > 4
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3u <u, = 3un_ + 2un_ < 3u
it follows that the equation
(20) u, = Suk k > 2)

has no solution,

Let us consider the equation

(21) wo=uou (m=k> 2)

We take

= u u_ + u u
n n-m+l m n-m m-1 °*°

so that

u . < u < u u
n-m+l m n n-m+2 m °?

provided n > m, Then clearly (21) is impossible,
For the equation

(22) vy = WV (m>2,k >1) ,
we use

Yn T umvn-m+1 + Ym-1Vn-m °
Then

u_v < V. < u_v
m n-m+l1 n m n-m+2 °?

so that (22) is impossible.
This proves
Theorem 3, Each of the equations (21), (22) possesses no solutions,
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Consider next the equation

(23) Vo = ViVk m=k >1) .
This is equivalent to
(24) V.=V + (—l)kv

n m+k m-k

For k even, (24) is obviously impossible. For k odd we may write

A =V _ +V
m+k n m-k °*

which requires m+k=n+1=m-k+ 2, sothat k = 1, This proves
Theorem 4. The equation (23) possesses no solutions,

The remaining type of equation is

(25) Vo= upu m=k >2)

This is equivalent to

k
(26) Y = Vit D Vo

Clearly n < m+ k., Then since

v = 5 + 3v

m+k Vintk-4 m+k-5 °

(26) implies

_ k
(27) 5Vn - 5Vm+k—4 * 3Vnr1+k—5 + (1) Vm-k

Consequently n = m + k - 3, while the right member of (27) is less than

av + 4v < bv

m+k-4 m+k-5 m+k-3

This evidently proves
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Theorem 5. The equation (25) possesses no sollitioh.

Next we discuss the equations

2 2 _ 42 <
(28) u ot unk— ue (0 <m =n) |,
(29) Vni+Vé=Vﬁ (0 =m =n)

We shall require the following

Lemma. The following inequalities hold.

u
n+1 3

(30) o = B = 2) ,
n
n+1 3

(31) v B n = 3)

for n = 2, we have

The proof of (31) is exactly the same.
Returning to (28) it is evident that

2

u 2
n

2
< uk < :Zu]{l .
so that

Y < Yk < U‘n"’f2

Then k > n and by the lemma

3
We = W =g

Since N2 < 3/2, we have a contradiction. The same arg‘uinent applies to (29).

The lemma requires that n = 2 or 3 but there is of courseno difficulty about
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the excluded values, This proves

Theorem 6. Each of the equations (28), (29), possesses no solutions,

More generally, each of the equations

T
wotw o= (0 <m=n) ,
v +VII;=V£ (0=m=n) ,

where r = 2 has no solutions.

Remark. The impossibility of (29) can also be inferred rapidly from the
easily proved fact that no i is divisible by 5. Indeed since

of =g =1 (modnB) ,
it follows that
n+5 n+5 1, n n 1
Voes = @+ B =5 +8) =5V, (mod \5) ,

so that Vors Evm(mod'sfé). Moreover none of vy, vy, vs, v, is divisible by 5.

The mixed equation
(32) vn§+v]§ = uﬁ (0 =m =n)
has the obvious solution m = 2, n = 3, k = 5; the equation

2 2
(33) wo vy
has the solution m = 4, n= 3, k = 5,

Clearly (32) implies

v, < U

u K < vn\/—z

This inequality is not sufficiently sharp to show that (32) has no solutions al-

though it does suffice for the equation

r r T
+ =
Vm Vn Uk
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with r sufficiently large.

However (32) is equivalent to

(34) v, + (-1)™2

2m

+ v,

n, _ 1
nt D72 = 2

If m+n =1 (mod 2), this reduces to

Vom ~

{Voy - -1)%21

1 k
Von T 5 {Vek - 1) 2}

There is no loss in generality in assuming k = 5. Then since

Vok T Va4 T Vok-5 o

we get
_ 1 _ .k
Vom * Von = Vakea T 5 13Vges ~ 172 .
Since m < n and
1 k
5 1%Vops - 12} < Vo 5
we must have 2n = 2k - 4 and
=3 082 = 6y, . + 3v - (1¥2
Vom T gpes - 12 = 6V g 2%-8

It is therefore necessary that 2m = 2k - 6 and we get

5V2m

i

which simplifies to

Hence m = 2, k=5, n

Next if m = n (mod 2)

6v

+ 3v +

2m-1 2m-2

A%

,» (3

2m-4

= (-1)™2

4) reduces to

-n-z ,

3 (a solution of (22)).

25
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n, _ 1 _ .k
Vo T Vo + (F1) 4 = 5{V2k (-1~ 2}

and as above we get

m , _ 1 K
(35) v Vot -1y 4 = Voka T 5 {3V2k_5 (-1~ 2} .

2m

It is necessary that 2n = 2k - 4, so that (35) reduces to

_ k
(36) 5V2m + (1) 20 = 3V2k—5 - (-1)" 2

Clearly 2m =2k -6, If 2m < 2k - 6 we get

m

- 1)¥2 = sy + (-1)t20

ok-5 2k-7

or

+ 2v = ()20 + (12

v 2k-8

2k-6

which is not possible. Thus 2m = 2k - 6 and (36) becomes

sv. + (-1)™20 = 3v 2

2m om+1 T D)

This reduces to

which is satisfied by m = 5. Then k = 8, n = 6 but this does not lead to a
solution of (32).
This completes the proof of

Theorem 7. The equation
Vni+v§ = uﬁ (0 =m = n)

has the unique solution m = 2, n = 3, k = 5,

The equation
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2 2 —
37) wet v, = (m > 0)

g

can be treated in a less tedious manner. Suppose first that vy S U Then (37)

implies
w? < u? < 2u?
m k m

and as we have seen above this is impossible. Next let U <V If k>n+2
then

2 = ;2 _ 2 - 2 2
U = Y3 (2un+1 * un) 2(un+1 * un—l) * 2un+1 * 2un+1un—2
+u? - u? > 2v?
n n-1 n

so that (37) is certainly not satisfied. Since k > n + 1 it follows that k = n + 2.
Thus (37) becomes

_ 2 2
= n—l)

2 - v2 = 2
(38) u a2~ Vo 3(un u

as is easily verified. If m > n+ 2 then

2 = @2

u
m n+2

= (2u_ + u
n

2 2 _ 42
n—l) > 3(un un—l) ’

contradicting (38). Since for n > 3

9
2 _ g2 _y? = 2 _ g2 242 - gy
3(u1rl un_l) us 2un Sun_1 > Uy 3un_1 > 0

it follows that m > n. Thus m = n+ 1 and (38) becomes

2 - 2 _ g2
Uner 7 3(un un—l)

This implies w ot 4= 3, n =3, which leads to the solution n = 3, m = 4,

-1
k = 5 of (37). As for the excluded values n = 1, 2 it is obvious that they do
not furnish a solution. This proves

Theorem 8. The equation
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has the unique solution m = 4, n = 3, k = 5.

The Fibonacci Association invites Educational Institutions to apply
for Academic Membership in the Association. The minimum sub-
scription fee is $25 annually. (Academic Members will receive two

copies of each issue and will have their nameslisted inthe Journal.)

REQUEST

The Fibonacci Bibliographical Research Center desires that any reader
finding a Fibonacci reference, send a card giving the reference and abrief de-

scription of the contents. Please forward all such information to:

Fibonacci Bibliographical Research Center,
Mathematics Department,
San Jose State College,
San Jose, California

NOTICE TO ALL SUBSCRIBERS!!!

Please notify the Managing Editor AT ONCE of any address change. The Post
Office Department, rather than forwarding magazines mailed third class, sends
them directly to the dead-letter office. Unless the addressee specifically re-
quests the Fibonacci Quarterly be forwarded at first class rates to the new ad-
dress, he will not receive it. (This will usually cost about 30 cents for first-
class postage.) If possible, please notify us AT LEAST THREE WEEKS PRIOR
to publication dates: February 15, April 15, October 15, and December 15.

RENEW YOUR SUBSCRIPTION!!!




SOME MEW FIBONACG! IDENTITIES

VERNER E. HOGGATT, JR. and MARJORIE BICKNELL

San Jose State College, San Jose, California

In this paper, some new Fibonacci and Lucas identities are generated by
matrix methods.

The matrix

O
— N

satisfies the matrix equation
RS - 2R -2R +1 =0
Multiplying by R" yields
n+3 n+2 n+l n

(1 R - 2R - 2R + R =0

It has been shown by Brennan [1] and appears in an earlier article [ 2]

and as Elementary Problem B-16 in this quarterly that

2 2
Fn—l Fn—lFm Fn
no_ o 2 ;
) RO =1 2F F ¢ Fher ~ Foaafn 2Fnfue ’
2 2
Fn FnFn+1 Fn+1

where F is the nth Fibonacci number.

By the definition of matrix addition, corresponding elements of Rn+3,
Rn+2, Rn+1 and R" must satisfy the recursion formula given in Equation (1).
That is, for example,

29
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2 _ om?  _ o 2 -
Fn+3 2Fn_|_2 2Fn+1 + Fn 0
and
FrsTnia ~ 2P Fn+3 - 2R i Tt FpFhg =0

Returning again to
R -2R”-2R+1 =0 ,
this equation can be rewritten as
R+I¥ = R+ 3R2+ 3R+ I =5R(R+1I)

In general, by induction, it can be shown that

2n+1

(3) RP R + 1) = 5"R™PR + 1

Equating the elements in the first row and third column of the above matrices,

by means of Equation (2), we obtain

RS 2n+1 n
2 =
) Z ; Fi+p =9 F2(n+p)+1

: i
i=0

It is not difficult to show that the Lucas numbers and members of the

Fibonacci sequence have the relationship
L2 - 5F2 = (-1)"4
n n :

Since also

Zn:rl 2n+1 .
Z )P =0,
i=0 '
we can derive the following sum of squares of Lucas numbers,
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2n+l on + 1
L =5y
i i+p 2(mt+p)+l  °?

i=0
by substitution of the preceding two identities in Equation (4).
Upon multiplying Equation (3) on the right by (R + I), we obtain

2n+2

) RPR + 1) = 5"R™P (R + 1?

Then, using the expression for Rr" given in Equation (2) and the identity

L = Feer ™ Pl
we find that
F2n—1 F2n F2n+1 1 0
n+1 n _ :
@+ RN R+ = | 2F, 8F, | 2P, ., 0 2
F2n+1 F2n+2 F2n+3 y o1z
L2n ] L2n+l L2n+2
=\ 2Lone1 2Lopig 2lones
Lont2  Lanes Lonta

Finally, by equating the elements in the first row and third column of the ma-

trices of Equation (5), we derive the two identities

2n+2 on + 2 .
2 =
z Fiop = % Do)
i=0 i
and
22 on 4+ 2
2 =50
. i+p 2(n+p)

i=0 L
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By similar steps, by equating the elements appearing in the first row and
second column of the matrices of Equations (3) and (5), we can write the addi-

tional identities,
2n+1

2n+1 n
i Fi—1+p Fi+p =5 F2(n+p)
i=0

and

202 o+ 2 .
Z o Fitep Fiep = % Domipp

i=0 !
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1. From the unpublished notes of Terry Brennan,
2, Marjorie Bicknell and Verner E, Hoggatt, Jr., "Fibonacci Matrices and
Lambda Functions," The Fibonacci Quarterly, 1 (1963), April, pp. 47—52,
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PRIMES WHICH ARE FACTORS OF ALL
FIBOWAGCI SEQUEMNGCES

BROTHER U. ALFRED
St. Mary’s College, California

In studying the Fibonacci and Lucas sequences, one of the striking dif-
ferences observed is the fact that ALL primes are factors of some positive
term of the Fibonacci sequence while for the Lucas sequence many primes are
excludedas factors, This difference raises some interesting questions regard-
ing Fibonacci sequences in general,

(1) For a given Fibonacci sequence, how do we find which primes are factors
and which are non-factors of its terms?

(2) Are there certain primes which are factors of all Fibonacci sequences?

It is this latter question which will be given attention in this paper.

We are considering Fibonacci sequences in which there is a series of
positive terms with successive terms relatively prime to each other. For any
sequence we can find two consecutive terms a =0, b > 0, a < b, and take

these as

fn = a, fi = b N
the defining relation for the sequence being

f =fn+fn_ o = 2)

n+1 1’

The particular sequence with a = 0 and b = 1 is known as the Fibonacci se-
quence and will have its terms designated by ¥, = 0, F; = 1, and so on.

Theorem: The only Fibonacci sequence having all primes as factors of
some of its positive terms is the sequence with a = 0 and b = 1,

Proof: Since zero is an element of the sequence, the fact that all primes
divide some positive terms of the sequence follows from the periodicity of the
series relative to any given modulus,

To prove the converse, we note that each sequence is characterized by a

quantity D = b? - a(a + b). For if fn is the nth term of the sequence,

t =F b+ F_ .a
n-1 n-

n 2

33
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Then
2 _ = 2
fn fn—lfn+1 (Fn_lb + Fn_za) (Fn_zb + Fn—Sa)(Fnb + Fn_la)
which equals
2 (2 _ _ 2(F2 -
b (Fn—l Fn-z Fn) * ab(Fn—-l Fn-2 Fn Fn—3) ta (Fn—2 Fn—3 Fn—l)

or
-1)" (0 - ab - a?)

so that the values are successively +D and -D.

Now D is equal to 1 in the case of the sequence 0,1,1,2,3,--+ and in
no other Fibonacci sequences, For if a is kept fixed, the quantity b( - a) -
a’? increases with b. Therefore its minimum value is found for b = a + 1,
But then b(b - a) - a? becomes a+ 1 -a? Nowif a = 0,1o0r 2, |a+ 1- a2|
"= 1 and we have the Fibonacci sequence, If a =3, |a+ 1 -a?| =5,

Thus, apart from the Fibonacci sequence properly so-called, D > 1,
Furthermore, D must be odd if a and b are relatively prime. Hence if

fn = 0 modulo some prime factor p of D, we would then have

fn—l fn+1 = 0 (mod p)
from the relation
2 _ = (-nB
fn fn—l fn+1 (-1)" D
so that either fn—l or fn+1 = 0 (mod p). Thus two successive terms of the

series would be divisible by p and consequently all terms would be divisible

by p which would lead to the conclusion that p | (a,b), contrary to hypothesis,
Therefore, the only Fibonacci sequence having all primes as divisors

one or the other of its terms is the one Fibonacci sequence with a zero element,

namely: 0,1,1,2,3,5,8,13,°°*
CONGRUENTIAL FIBONACCI SEQUENCES

For a given prime modulus, such as eleven, there are eleven possible

residues modulo 11: 0,1,2,3,++,10. These may be arranged in ordered pairs
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repetitions being allowed in 112 or 121 ways. Each such pair of residues can
be made the starting point of a congruential Fibonacci sequence modulo 11,
though of course various pairs will give rise to the same sequence. Tﬁe one
pair that needs to be excluded as trivial is 0 - 0 since all the terms of the se-
quence would then be 0 and we have assumed throughout that no two successive
terms have a common factor. Hence there are 120 possible sequence pairs., A

complete listing of these congruential sequences modulo 11 is displayed below.

(A) 1 1 2 3 5 8 2 10 1 0
(B) 2 2 4 6 10 5 4 9 2 0
(©) 3 3 6 9 4 2 6 8 3 0
(D) 4 4 8 1 9 10 8 7 4 0
(E) 5 5 10 4 3 7 10 6 5 0
(F) 6 6 17 8 4 1 5 6 0
@) 7 7 3 10 2 1 3 4 7 0
(H) 8 8 5 2 7 9 5 3 8 0
M 9 9 7 5 1 6 7 2 9 0
) 10 10 9 8 6 3 9 1 10 0
(K) 1 8 9 6 4 10 3 2 5 7
(L) 1 4 5 9 3

(M) 2 8 10 7 6

That all possible sequence-pairs are covered is shown in the following table

where the number in the column at the left is the first term of the pair and the

number in the row at the top is the second.
0 2 3 4 5

fu—
(=}

© ® =N o O, oh W N Ao
o = T Q" HE Y QW B> M
oo O R A~ H QP> B o
QWP =2 mOORE>»W
AR QO Qo ImE QP Q@ Q
H o= UOR B U QW o
Wi o= EE >R Y H
H R o 21 M W QQ= 9
EHUQHWQm’m"‘jQQ
g« o Umn g R o>
Yo R D QP Wy =g @
U 2 HEHERQP o N

j—y
o
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We shall now consider various categories so as to cover all primes,

(A) p=2
If either a or b is even, 21is a factor of terms of the series; if both

are odd, then a + b = 0 (mod 2). Thus, 2 is afactor of all Fibonacci sequences.

B) p=35
Since 5 is not a factor of terms of the Lucas series, it cannot be a divi-

sor of all Fibonacci sequences.,

(C) p=10x+ 1
For p of the form 10 x +£1, the period h(p) for any Fibonacci sequence
is a divisor of p - 1. Since there are p? - 1 sequence pairs of residues, the

number of congruential sequences modulo p would have to be

>p2-1
l—

or p+ 1

But since there are only p - 1 residues other than zero, sequence iriples
a-0-a can only be p - 1 innumber. Thus there cannot be one per sequence,

Hence no prime of the form 10 x £ 1 canbe a divisor ofall Fibonacci sequences,

(D) p=10x+3
For p of the form 10 x+ 3, the situation is as follows:
(1) The period is a factor of 2p + 2,
(2) 2p + 2 is divisible by 4.
(8) The period contains all power of 2 found in 2p + 2.
(4) The period is the same as the period of the Fibonacci sequence, F . [1]
Accordingly, if the period is less than 2p + 2, it will also be less than
p - 1 and hence as before there will not be enough sequence pairs with zeros
to cover all the sequences. Thus a necessary condition is that the period be
2p + 2 if a prime is to be found as a factor of all Fibonacci sequences,
Two cases may be distinguished: (a) The case in which the period h(p)
= 22 (2r + 1); (b) The case in which the period h{p) = 2™ (2r + 1), m = 3,
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(a) h(p) = 2%@r + 1)

In this instance, if a sequence has a zero at k, it will also have zeros
at k/4, k/2, and 3k/4 orfour zeros per sequence. The number of sequences
is

pP-1 _p-1
2p+ 2 2

To provide 4 zeros per sequence there would have to be

g%—l—) = 2(p - 1) zeros,

whereas there are only p - 1.

®) k=2"@r + 1), m= 3.

For a period of this form, if there is a zero at k, there will also be a

zero at k/2, but not at k/4 or 3k/4. The number of zeros required for

(p - 1)/2 sequences would be
2p - 1)/2=p -1 ,
which isthe exactnumber available, Thus the primes which divide all Fibonacci

sequences are primes of the form 10 x+ 3 for which 2p + 2 is equal to Zm(2r

+ 1), m = 3. In other words,

lii

p +3 (mod 10)

221 9r + 1) =1 or p = -1 (mod 4)

b
These congruences lead to the solution p = 3,7 (mod 20).
CONCLUSION
The primes which are factors of all Fibonacci sequences are:

(1) The prime 2
(2) Primes of the form 20k + 3,7, having a period 2p + 2.
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LIST OF PRIMES WHICH DIVIDE
ALL FIBONACCI SEQUENCES (p < 3000)

2 383 787 1327 1783 2383

443 823 1367 1787 2423
7 463 827 1423 1847 2467
23 467 863 1447 1867 2503
43 487 883 1487 1907 2543
67 503 887 1543 1987 2647
83 523 907 1567 2003 2683
103 547 983 1583 2063 2707
127 587 1063 1607 - 2083 2767
163 607 1123 1627 2087 2803
167 643 1163 1663 - 2143 2843
223 647 1187 1667 2203 2887
227 683 - 1283 1723 2243 2903.
283 7217 1303 1747 2287 2927
367 2347 2963

REFERENCE

1. D. D. Wall, "Fibonacci Series Modulo m,' The American Mathematical

Monthly, June-dJuly, 1960, p. 529,

SOME CORRECTIONS TO VOLUME 1, NO, 4

Pages 45—46: D = 31 should read (2,7), (3,8).

There was an omission in the Table of "D's" as follows:

D D
305 (1,18) (16, 33) 361 (8,25) (9, 26)
311 (5,21) (11,27) 379  (1,20) (18,37)
319 (2,19) (7,23) (9,25) (15,32) 389 (5,23) (13,31)
331 (3,20) (14, 31) 395  (2,21) (17, 36)

341 (1,19) (4,21) (13, 30) (17, 35)
349 (5,22) (12,29)
355 (6,23) (11,28)
359 (7,24) (10,27)



A FIBONACCI TEST FOR CONVERGENCE

J. H. JORDAN
Washington State University, Pullman, Wash.

Let g(n) be a non-increasing positive function defined on the positive in-
[Se]

tegers. There are many available tests to determine whether or not Z g(n)
n=1
converges. It is the purpose of this paper to exhibit a test for convergence

which utilizes the Fibonacci numbers.

THE FIBONACCI TEST

0 [5e]
Z g(n) converges if and only if Z fng(fn) converges, where fn is
n=1 n=1

the nth Fibonacci number,

o0
Proof: Assume X g(n) converges.

n=1
3 80 = 1t8()
2 (=) + g@)} = 1 fyg(t)
1{e@ + g@) + g + g6)} = 5 fg ()
1{g() + g@) + g6) + g6) + g0 + g®)} = 1 f,g ;)
g, ,+ 1+ oo + @6 )} =1 e

0
The sum of all terms on the left side of this array is X g(n). The sum of all

terms on the right side of the array is n=1

(]

o]

1N 1\

2 Z fn—lg(fn) = 712 I"ng<fn)
n=2

n=2

[}
Since the left side dominates the right side X fng(fn) converges.
0 n=1
Assume that = g(n) diverges.
n=1
39
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1l

fog (f1) z(1)
f3g (£2) g(1) + g@)
figf) = g@) + 2@) + g(4)

%

fo8€) =g )+ -+ ,-1)

The sum of all terms on the right side of this array is 2 5 g(m). The sum of
0 n:L,o
all terms on the left side of this array is 3 fn+1g(fn) =23 fng(fn). Since
00 0 n=1 n=
> g(n) diverges sodoes 3 £ g(f ).
n°'n
n=1 n=1

FURTHER REMARKS

It should be noticed that this result can be generalized to the following:

Theorem: If 1 =¢, = [H- a* J* where a > 1 and H is a fixed posi-

(o] 0
tive constant then 3 g(n) converges if and only if = ckg(ck) converges.
n=1 k=1

The proof is quite similar,
It seems unlikely that this Fibonacci test for convergence will ever be-
come widely used. To designate some of its useful qualities the following re-

sults are exhibited.

2] L]

Corollary 1: X n? converges or diverges as X n_llnan does, a < 0,
Proof: Let I{Fée the golden ratio, i.e., T 22%1 + Nb5)/2 and notice that
f£.1= [rn/'\/—s ]*. Now ;1 n® converges or diverges as Ozjl n®1n’r  does.
But n®In?r = (In " Ya &iich is approximately (In 5 fn_ln)—‘r’l., So %01 n?1nr
converges or diverges as ;1 (InN5 fn )'gl does, Now .
n=
o0 oo
Z nvs £ ) = Z fn-fgl nv5 £ )
n=1 n=1

and appealing to the Fibonacci test this converges or diverges as

*1x] is greatest integer in x.
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O

—

Z/ nt (n N5
n=1
does, which is essentially the desired result.
This corollary tells us for example that since the harmonic series di-
oo
verges then 2 nlinn diverges and since I n 1€ converges then

n=2 n=1
0

) nnl(ln n)_l—e converges,

n=2 S

Corollary 2: ‘2 n ~ ln n converges or diverges as
n=2

z (nln n)"1 (n In n)®
n=3
does. 3
The proof is quite similar.
Corollary j: j = 3,4,5,--- are likewise provable.
The Fibonacci test is an effective substitute for the integral test in each
of these corollaries.
Consider the following example that is handled easily by the Fibonacci

a .
test. Let gm) = fm for fm <n = fm,where a < 0, Thus

-1

O
Zg(n)z1a+2a+334—5a+5a+8a+8a+83+13a+--v
n=1

Applying the Fibonacci test one obtains

N N a+l < e e
zfng(fn) = /., fl'l - z | ;/5 2
n=1 n=1 n=1
o0
which converges or diverges as 3 (rn+1 )a+1 = (ra'+1 )n+1’ but this is a
n=1 n=1

. . . a+l
geometric progression and converges provided 1 < 1 or when a < -1,




EXPLORING FIBONACCI RESIDUES

BROTHER U. ALFRED
St. Mary®’s College, California

Mathematicians have developed a simple and powerful method of relating
numbers to each other from the standpoint of division, They say that two num-
bers a and b are congruent to each other modulo m when the difference a
- b is divisible by m. It can be readily shown that this is equivalent to the
statement that on dividing a and b by m, they will both give the same ''re-
mainder" — which the mathematician calls the least positive residue,

What remainder is obtained when we divided one Fibonacci number by
another? The remainder could of course be zero, but as is well known, zero
is one of the Fibonacci numbers. Do we always obtain a Fibonacci number for
the least positive residue? If not, will we obtain a Fibonacci number if we al-
low the use of either the least positive or the least negative residue?

This is the general line of investigation. In cases in which Fibonacci
numbers are the result, the investigator should seek to find some type of reg-
ularity and thus formulate a mathematical theorem, Once this has been done
a proof is a desideratum,

Just to start the process let us find a fewleast positive and least negative
residues. Using F,(6765) as the dividend and various Fibonacci numbers as

divisors, we find that

6765 = 33 (mod 34) 6765 = 8 (mod 233) 6765 = 843 (mod 987)
6765 = 0 (mod 55) 6765 = 356 (mod 377) 6765 = 377 (mod 1597)
6765 = 141 (mod 144) 6765 = 55 (mod 610)

It seems that in some cases the least positive residue is a Fibonacci number
whereas in others apparently it is not. In the latter, we go to theleast negative
residue, we apparently get Fibonacci numbers in these cases as well. Thus
6765 = -21 (mod 377); 6765 = -144 (mod 987).

Those making discoveries in regard to this problem are encouraged to
send their findings to Brother U, Alfred, St. Mary's College, Calif., by July
31st so that they may be published in the October, 1964, issue of the Quarterly.




TRANSCENDENTAL NUMBERS
BASED ON THE FIBONACC! SEQUENCE

DONALD KNUTH
California Institute of Technology, Pasadena, California

A well-known theorem due to Liouville states that if £ is an irrational

algebraic number of degree n, then the equation

1
n+e
q

<

1) |- 2

has only finitely many solutions for integers p,q, given any € > 0. There-

fore, an irrational number &, for which

<3

@) I%—E
a4 4

has solutions for arbitrarily large t, must be transcendental, Numbers of
this type have been called Liouville numbers.

In 1955, Roth published his celebrated improvement of Liouville's theorem,
replacing "n" by "2" in equation (1). Let us call an irrational number £,

for which

p 1
3) | : 'E’ < q2+e

his infinitely many solutions for some € > 0, a Roth number. Roth numbers
are also transcendental, and they include many more numbers than the Liouville
numbers.

Let b be an integer greater than 1. Then we define £ b to be the con-

tinued fraction

@ T Rt 4, L
1 bFZ—}-... .

Theorem: §b is a Roth number, hence & b is transcendental,
43
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Proof: From the elementary theory of continued fractions, it is well

known that if b, / 9, is the nth convergent to éb’ then

T

n

== <1/q_q
q, n

n+l

(5) | éb -

. B _ . Fy L Fn N
In this case, g, =1, gy = b™ % and ey = b q, + A1 We can there-

fore easily verify by induction that

Fn+i1
(6) q = 2p—3t
n b -1 ’
F / Fp+ ¥
In particular, as n-—~«= we have qn+1/qn — b n+2,/b o+l p Bt o= [(b-
1)qrl ]qu where ¢ = .618 --- is the golden ratio. Therefore for large n we

have approximately

and this completes the proof of the theorem,

Remarks. It can be easily shown that the set of Roth numbers is of measure
© -

zero, but it is uncountable., For example, the number n§1 b Cn, where {cn}

is a strictly increasing sequence of positive integers, is a Roth number if

11g1__%})1p (cn+l/cn ) > 2, anditis a Liouville number if this lim sup is in-

finite, In terms of continued fractions, the number

is a Roth number if and only if

lim sup (log an/ logq ) > 0

n—©

where q, are the denominators as in the proof of the above theorem.,
The rapid convergence of (4) allows us to evaluate éb easily with high

precision, e.g.,
£y = ,70980 34448 61291 + .-
£ = ,76859 75625 93155 ¢ -
Reference to this article on p, 52,




STRENGTHENED INEQUALITIES
FOR FIBOMACCHI AND LUCAS MUMBERS

DOV JARDEN
Jerusalem, israel
In a paper entitled "On the Greatest Primitive Divisors of Fibonacci and
Lucas Numbers" (henceforth referred to as P), published in The Fibonacci
Quarterly, Volume 1, Number 3, pages 15 — 20, I have proved for the Fib-

onacei numbers F11 and the Lucas numbers Ln the following inequalities:

1 2 < >
(4) o> Thp (n=2, x 2 1)
9
(5) F 1 > 5P x = 1)
2 ; 9 s
(4% Lnx+1 > LnX n >2 x = 1)

The aim of this note is to strengthen (4), {5), and (4*) as follows:

(A) F .12 nFnX @m=2 x=1)
i) e

(B) Lo, > % @m=2x=1
ne! n

For the proof of (A), (B) we shall use the well-known formulae

1 -n
© F, =5 {07}
1 ++~5 3 nt2 . n+l n
a2 -n @= S5 > 5.0 T =ata
o L, = "+ (-1
as well as the following inequalities:
1.6 o =
(E) N 27 >n (@ 3)
1 n .
(F) 5 > F @= 2
G 6.0 e
(G) E o L, = 2)
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Proof of (E) (by induction). (E) is equivalent to

s 75

(E") 62
(E') is validfor n = 3. If (E') is valid for n, then:

6-2%1 — g.20 v 6.2 > N5+ NGB >TNE+ W5 = Whm+ 1) .

Proof of (F), (G) (by induction on n and n + 1).
(F) is valid for n = 2,3, since

+1+N/'"5 3+N5 _ 3+N4

et = 1+a =1 5 = 5 > 5 >2 = 2F, ,
a3=a+a2=1+2“[5+3+2“/5=2+«/’5>2+~/4=4=2F3.
i
n
o >2Fn,
n+1
o >2Fn+1’
then also:
n+2 _ n n+1 _
o = a +« > 2(Fn+Fn+1)—2Fn+2

(G) may be proven analogously, noting that, by arguments employedin the
proof of (F), (G) is valid for n = 2,3, since

wile
IS
(2]
v
oo
I
w
i}
-
DN

Q

w0
v

[S2]f=p)

S
A\
>

Il
sl

o

Proof of (A).
(1) For n = 2 we have, by (C):
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ol '\/__‘t_) {012x+1 _ a_2x+1} _ %E_) {012X+1 B a_2X+1} . %{az}&l _a_2X+1} S

2, ox+l X+l 2 0 ox+l Xty _ 1, x  ox.|2
5{a -2-¢a )} =5{e -2+qg7? }—Z{Ug(ozz —a2§=2F§X.
(2) For n = 3 we have, by arguments employed in the proof of (F),
2 3
P ) L I I

o nXtl
7

> 1 .

Hence, by (C), (E):

1
_ 1 x+1 n __px+l 1 x+l o B
an+1 =35 {a® - (-1) « 1> N {ozn - =
1 .6l _ 1 6 ,n @f_‘f)“ -
N5 T N5 T 2 nx

Proof of (B). For n = 2 we have (o -1)/(n - 1) = L2,

+1=205t=@- l)X—l, whence: n* -1 = (n- 1), Hence, by (D), (G), and
noting that (by arguments employed in the proof of (A), part (2)) —a/“nX+1 > .1
we have:

na_nx+1 > anx+l B a_nx+1 N anX+1 _% S

oL _ _é_ oL % @ > é @) = %1 (% )n—l >

a(n—l)x(anx)n.—l = on-1 (anx)n—l . (_g)n—l(anx )n-l _

(Qanx)nd > Ln—l
5 nX

Remark. In proving the inequalities (A), (B), I was assisted by my son,
Moshe, who also noted that (B) cannot be strengthened, analogously to (A), to:

L > L™ Indeed, for n = 4, x = 1, we have: L, = 2207 < 2401 = 74
4
= Ly,
It may also easily be seen, by (C), (D), that
(H) lim Fpxtl -«
X—0 0
nF

nX
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(1 lim Mxtl
) T

nX

which shows that, for any given n = 2, there exists an X such that, for any

n n-1
x > X, FnX+1 > nI‘nX . Lnx+1 > Lnx .

By means of (A), (B), and employing the same reasoning as in the proof
of (3), (3% in P, we have, for the greatest primitive divisors FI'l of Fn and

L;l of Ln , the following generalized inequalities:

-1 ,

() FI'JX+1 > pFEX (p—aprime £ 5, p =2, x = 1)
- ' 4

(K) sX+1 5% x=1)

(L) L;Xﬂ > = 1)

SOME CORRECTIONS TC VOLUME 1, NO. 3

Page 16: In Equation (4*), replace n =2 by n > 2,
The last line should read:

...for any positive integer n =2, n > 2, respectively.

Page 17: Online 6, add > to read:

_1+N5  1+N4 _ 3
T2 T2 T2

Line 8, Equation (7), should be corrected to read:




ADVANCED PROBLEMS AND SOLUTIONS

Edited by VERNER E. HOGGATT, JR.

San Jose State College, San Jose, California

Send all communications concerning Advanced Problems and Solutions to
Verner E. Hoggatt, Jr., Mathematics Department, San Jose State College, San
Jose, California, This department especially welcomes problems believed to
be new or extending old results. Proposers should submit solutions or other
information that will assist the editor. To facilitate their consideration, solu-
tions should be submitted on separate signed sheets within two months after

publication of the problems.

H-29 Proposed by Brother U. Alfred, St. Mary’s College, California.

Find the value of a satisfying the relation
o™+ (n + a)x1 = (n+ 2a)n

in the limit as n approaches infinity,

H-30 Proposed by J. A. H. Hunter, Toronto, Ontario, Canada

Find all non-zero integral solutions to the two Diophantine equations,

(2) X2+ XY + X - Y2
(b) X? - XY - X - Y2

noo
o O

H-31 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California

Prove the following:
Theorem: Let a,b,c,d be integers satisfying a > 0, d > 0 and ad -
bec = 1, andletthe roots of 2 - A - 1 = @ be the fixed points of
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Then it is necessary and sufficient for all integral n # 0, that a = F2n+1’

_ . th _. . :
b=c¢= F2n’ and d = an—l’ where Fn is the n™ Fibonacci number, (Fy
=1, Fo =1 and Fn+2 = Fn+1 + Fn for all integral n.)

H-32 Proposed by R. L. Grabam, Bell Telephone Laboratories, Murray Hill, N. J.

Prove the following:
Given a positive integer n, if there exist m line segments Li having

lengths 2 1=a =n, for all 1 = i = m, such that no three L; can be

th

2

used to form a non-degenerate triangle then Fm = n, where Fm is the m

Fibonacci number,

H-33 Proposed by Malcolm Tallman, Brooklyn, N. Y.

If a Lucas number is a prime number and its subscriptis composite, then

the subscript must be of the form 2m, m = 2,
SOLUTIONS

A TOUGH PROBLEM
H-1 Proposed by H. W, Gould, West Virginia University, Morgantown, W. Va.
Find a formulafor the nth non-Fibonacci number, thatis, for the sequence
4,6,7,9,10,11,12,14,15,16,17,18,19,20,22,23,- -+, (See paper by L. Moser
and J. Lambek, American Mathematical Monthly, vol. 61 (1954), pp, 454-458.)

A paper by the proposer will soon appear in the Fibonacci Quarterly,

which will discuss this problem,

A WORLD-FAMOUS PROBLEM

H-2 Proposed by L. Moser and L. Carlitz, University of Alberta, Edmonton, Alberta,
and Duke University, Durham, N. C.

Resolve the conjecture: There are no Fibonacci numbers which are in-
tegral squares except 0,1, and 144,
See "Lucas Squares," by Brother U. Alfred in this issue. A discussion

by J. H. E. Cohn on Fibonacci Squares will be in the next issue.
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AN UNSOLVED PROBLEM

H-15 Proposed by Malcolm H. Tallman, Brooklyn, N. Y.

Do there exist integers N;, N,, and N; for which the following expres-

sions cannot equal other Fibonacci numbers?

(i) F - F2F - F3 m,n = Ny ,
n n - m m

ii 3 2 2 >

(ii) Fn + FnFm + FnFm m,n = Ny ,

(iii) F2 - 3F3 m,n = Ny
n m

No discussion of any kind has been received on this problem.

AN INSPIRING PROBLEM

H-17 Proposed by Brother U, Alfred, St. Mary’s College, California
n

Sum 3
S en,
k=1

(Editorial Comment: There will be three different approaches to the solution

of the general case of the above problem which will appear soon in the Fibonacci
Quarterly. )

‘Solution by Joseph Erbacher and John Allen Fuchs, University of Santa Clara, Calif.

8 .
Let IL(E) = (E2-E - 1)* = iE aiE1 where E is thelinear operator such

. 0
that E'F, = F

Then L(E)k3Fk = 0, (This follows from a result of James

k k+i®
A, Jeske, "Linear Recurrence Relations — Part I," Fibonacci Quarterly, April,
n
i B Z 3 i z = =
1963, p. 72, Equation (4.8).) %,et S K21 ka. Since iZo0 & 1, S

$as=%0 % ©F ra S[PF - @+iPF ] }= R+ T, where R
i=0 =o' k=i+1 =1 )
is the first double summation and T is the second double summation, Revers-

n 8
ing the order of summation in R, wehave R = X X a.(i+ k) F'+k‘ Since
8 8 . k=1 i=0 !
i 3 - 13 - 3p = ; =
2 ai(1 + k) Fi+k izo aiE ke Fk L(E)k Pk 0, it follows that R = 0 and

S = T. Using the relation Fn+ + Fn in T, one can transform the

2= Foug

. . _ 3 — _an? =

solution into the form S = 50+ (n° + 6n 12)Fn+2 + (-3n I—: 9n 19)Fn+3.

Generalizing on the above technique one sees that = kak = u(n)Fm_2
k=1
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+ v(n)Fn+3+ Apg where u and v are polynomials in n of degree p and Ap

is a constant independent of n. It can be shown that the coefficients of u and
v may be found by solving the 2p + 2 equations obtained by letting n take on

any 2p + 2 consecutive values.
Also solved by Zvi Dresner and Marjorie Bicknell

A CLASSICAL SOLUTION

H-16 Proposed by H. W. Gould, West Virginia University, Morgantown, W. Va.

) . . . nx? _n, -x?

Define the ordinary Hermite polynomials by Hn. = (-1 D (e 7 )
(e}
o n

i) > H x/2)5 =1
i n Il! ?

Show that: n=0

(o]
ol &

(i) /, Hn(X/z)EFn =0 ,
n=0
o0
S‘ X0 -x2

(iii) /) H (x/2) ﬁTLn =2e .
n=0

where Fn and Ln are the nth Fibonacci and nth Lucas numbers, respectively,

0 n _ 9
We recall that Z Hn(t) -ﬁ—, = eZtX X For t = % this reduces to
. n n=0
ZH (5)& = 1.
n=0 O 2/ NE o0 n
= - —o )2
Put a=l—%’£§, ﬁ:"]:—gf—é. Then (@ -8) Z Hn<-§r>§—,——Fn=e(a )Xt
oB=AHx* = 0 since o -of = f- % = -1 n=0
Similarly, n
' —o?)x2 322 -x2
Z Hn<§)%—Ln=e(aa)X +e(5 B)x = 2e X .
n=0

See also the solution in the last issue by Zvi Dresner,

Reference continued from page 44,
1. K.F. Roth, '"Rational Approximations to Algebraic Numbers, " Mathematika
2 (1955) pp. 1 - 20, p. 168.



BEGINNERS' CORNER

Edited by DMITRI THORO

San Jose State College, San Jose, California

THE EUCLIDEAN ALGORITHM I
1. INTRODUCTION

Consider the problem of finding the greatest common divisor of 34and 144,
The factorizations 34 =2 - 17, 144 = 2%. 32 make this atrivial problem. How-
ever, this approach is discouraging when one deals with, say, "long" Fibonacci
numbers. Fortunately in Prop. 2 of Book VII, Euclid gave an elegant algorithm,

As usual, we shall designate the g.c.d. of s and t by (s,t).
2. THE ALGORITHM

The algorithm may be defined by the following flow chart, A —B means
A replaces B, i.e., set B = the current value of A,

M represents the remainder in the division of K by L.

Start

(L,d) =L —>|

Flow Chart for Computing the G. C. D of Positive Integers I and J
53
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For I =13 and J = 8, the successive values of K, L, and M are:

[y
o w oo w [N
oo o o |
orRNwo |2

The last value of L is the desired g.c.d. In the following computation, (10946,

2584) = the last non-zero remainder.

4
2584{10946
10336 4
610]2584
2440 4
144[610
576 4
34144
136 4

834

w

o | RO
ol ®©

| -

In this discussion we shall emphasize computational considerations.
There are, however, numerous "theoretical' applications of the Euclidean Al-
gorithm. As LeVeque [1] expresses it, "...it is the cornerstone of multipli-

cative number theory.' For a related theorem see Glenn Michael [2], this

issue.

3. A FORTRAN PROGRAM

With an occasional glance at our flow chart, it is easy to decipher the fol-
lowing Fortran program, (Fortran is a problem-oriented language commonly
used in conversing with electronic digital computers. )

(i) A =B means A is replaced by B.

(ii) The READ and PUNCH statements refer to card input/output,

(iii) In this context, N = K/L is an instruction to set N equal to [K/L] ,
i.e., the greatest integer not exceeding K/L (sometimes called an integer or
fixed point quotient), Thus if K = 13 and L = 3, N will equal 4. '

(iv) The symbol for multiplication is an asterisk,
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(v) A "conditional transfer' is achieved by using an IF statement: if M
= 0, go to statement 3 for the next instruction; otherwise go to statement 4,

(vi) The FORMAT and END statements are technical requirements (which
may be ignored).

READ 10, I, J
10 FORMAT (315)

K =1
L=4d
2N = K/L

M=K-LxN
IF (M) 3, 3, 4
4K = L
L =M
GO TO 2
3 PUNCH 10, I, J, L
END

4. Length of the Algoﬁthm

A natural question arises: What is the '"length" of this algorithm? I e.,
if s and t are given, how many divisions are required to compute (s,t) via
the Euclidean Algorithm?

Let us designate this number by N(s,t). For convenience we may assume
s =t. Thus for n > 1, N{n+ 1,n) = 2; the first division yields the remainder
1, whereas the second results in a zero remainder — signifying termination of
the algorithm. (As a byproduct we see that any two consecutive integers are
relatively prime. )

In Part II we shall see how Fibonacci numbers (F, = F, =1, Fi+1 = Fi
+ Fi~1) were used by Lamé to establish a remarkable result, Additional prop-

erties of N({s,t) are suggested in the following exercises.
5, EXERCISES

E1l. Note that the Euclidean Algorithm applied to the positive integers s

and t may be described by the equations
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s = tg; + ry, 0=r; <s
t = 1qy + 1y, 0 =1y <1y
Ty = Tq + T, 0 =713 <1y

rn—z - rn—lqn+rn’ n n-1
Tner = Ty 10

Explain why we must reach a remainder (rn+l) which is zero in a finite num-
ber of steps. Hint: Look at the inequalities,

E2, In E1, show that (s,t) = r (the last non-zero remainder). Hint:
Use repeated applications of Problem 1.3 [3].

E3. (a) Verify that M = K- L * N is the remainder in the division rep-
resented by statement 2 (N = K/L) of the Fortran program.,

(b) Can the Fortran programbe used to compute (I,J) when I = J?

E4. Prove thatif n =3, then N(n,3) = 1, 2, or 3.

E5. Suppose that n > 5 is chosen at random, Find the probability that
N(@,5) > 2.

E6. Prove thatfor n > 3, N@m+ 3,n) = 2, 3, or 4.

E7. For what values of n is 3 = N(2n - 5,n) = 6?

E8. Express (Fn+1,

E9. Investigatethe following conjecture: If a SFK, then N(n,a) = K- 1.

Fn) as a function of n,

Can n be any positive integer?
E10. Investigate the following conjecture: Let F = 2 be any Fibonacci

number. Then max Nmn,F)=1+ max (n, F-1).
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A NEW PROOF FOR AM OLD PROPERTY*

GLEN MICHAEL
Washington State University, Pullman, Wash.

1. INTRODUCTION

The following theorem is certainly well known,

Theorem: If m and n are positive integers, then (F_ , F ) = F .
—_— m n (m,n)
For example, proofs can be found in [1, pp. 30-32] and [2, pp. 148-149]. In

this paper we give an alternative proof which is believed to be new.

2. PRELIMINARY RESULTS

In additionto elementary divisibility properties of integers, the proof de-
pends on the following lemmas which may be found in [1, pp. 10, 30 and 29].

Lemma 1: For n = 0,

Fm+n = Fm—an+ Fan+1

Lemma 2: For any n, (Fn’ Fn+1) = 1.

Lemma 3: For n # 0, Fn\ an.

3. PROOF OF THE THEOREM

For m =1, n =1, we show that (Fm, F Let

n) = F(m, n)’

¢ = (m,n)

Then ¢ | m, ¢! n and, by Lemma 3, F, | F, and F_ l F,. Thus, F_ is
a common divisor of Fm and Fn and it follows that Fcl d where d = (Fm,

Fn)' Also, since ¢ = (m,n), there exist integers a and b such that

¢ = am + bn

*This paper stems from a talk prepared under the guidance of Professor C. T.
Long for presentation to the Washington State University Mathematics Club.
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Since ¢ =m and m and n are positive, either a =0 or b = 0. Suppose
a =0 andset k = -a, Then

bn = ¢ + km
and, by Lemma 1,

(1) F, =TF =F ,F,__ + F

bn c+km c-1 " km c ka+1

Now d 'Fn, d l F and, by Lemma 3, F ‘ F,, and Fm' Flm Therefore,

d|F,,d ’ka and it follows from (1) that d | Fimsg For But (F - o)
= 1 since d ‘ F, and by Lemma 2, (¥, ., F|_ . .) = 1. Therefore, d , F..

But, as seen above, Fc t d. Hence, since both are positive,
(Fm’Fn) =d= Fc = F(m,n)

and the proof is complete,

REFERENCES

1. N. N, Vorob'ev, Fibonacci Numbers, Blaisdell Publishing Company, New
York and London, 1961. '

2. G. H., Hardy and E, M. Wright, The Theory of Numbers, Oxford University
Press, London, 1954, ‘

SOME CORRECTIONS TO VOLUME 1, NO. 3

Page 19: On the third line from the bottom, put in > for = to read

| 65+ gy s,
Page 24: Line 5 should read, instead of "aw + 28 = 0,"
ag + 2b = 0 .

Page 30: On line 4, change "ei" to "el" .

On line 18, change "unit" to "limit, "



A PRIMER FOR THE FIBONAGCI NUMBERS — PART V

VERNER E. HOGGATT, JR. and I. D. RUGGLES

San Jose State College, San Jose, California

CORRECTION

Read the last displayed equation, on page 67 of Part 1V, as

F A _ \ 2n+1
Tan {Tan"1 D gt N5 -1 1} = (-1t <“f—52“1>

Fn+ 1 2

1. INTRODUCTION

In Section 8 of Part IV, we discussed an alternating series. This time
we shall lay down some brief foundations of sequences and infinite series. This
leads to some very interesting results in this issue and to the broad topic of
generating functions in the next issue and to continued fractions in the issue

after that. Many Fibonacci numbers shall appear.
2, SEQUENCES

Definition: An ordered set of numbers a;,a,,as, - ,an; -+ is called an

infinite sequence of numbers. If there arebut a finite number of the a's, a,a,,

LN then it is a finite sequence of nun;bers. »

A sequence of real numbers {an}n:1 is said to have a real number, a,
as a limit (written 1111_13100 a, = a) if for every positive real number €, |an - aj <
€ for all but a finite number of the members of the sequence {an}. If the se-
quence {an} has a limit, this limit is unique and the sequence is said to con-
verge to this limit. If the sequence {an} fails to approach a limit, then the

sequence is said to diverge. We now give examples of each kind.

_ _ . lim _
fa =1, {an} = 1,1,1,--- converges since __a = I
If a = 1/n, {an} = 1,1/2,1/3,---,1/n,--- converges to zero.
Ifa = 1", {an} = 1,-1,+1,-1,+1,--- diverges by oscillation. That

is, it does not approach any limit.
If a = n, {an} = 1,2,3,--- diverges to plus infinity.
59



60 A PRIMER ON THE FIBONACCI SEQUENCE — PART V [Feb.

1 2
then {an} =gt

Some limit theorems for sequences are the following:

Finally if a = n%—l’ converges to one,

If {a } and {b_ } are two sequences of real numbers withlimits a and

b, respectively, then

lim _

rlxi@w(a -b )= a-b
n n

Il

lim
n— (c an) ca, any real c

lim
n—~% a_ b_ = ab
n n

lim _
ne (an/bn) = a/b, b+ 0

3. BOUNDED MONOTONE SEQUENCES

The sequence {an} is said to be bounded if there exists a positive num-
ber, K, such that N <K forall n=1, I a1 = 2o for n =1, the

sequence {an} is said to be a monotone increasing sequence; if 2, 2an+1

for n =1, the sequence is monotone decreasing sequence. If a sequence is

such that it is either monotone increasing or monotone decreasing it will be

called a monotone sequence.
The following useful and important theorem is stated without proof:

Theorem 1: A bounded monotone sequence converges.
n . .
As an example, consider the sequence {(1+ 1/n) }, this sequence is

monotone increasing and bounded above by 3. The limit of this sequence is

well known, We will use Theorem 1 in the material to come,

4, ANOTHER IMPORTANT THEOREM

The following sufficient conditions for the convergence of an alternating

series are given below.

Theorem 2: If, for the sequence {sn },

1. 8§, >0,
2. (8 s -1 > (8

n+1 -
01~ 5o 0 Spe )Y > 0, for n =2,
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lim
3. (Sm - Sn+1) = 0,

n o«

then the sequence {Sn} converges to a limit, S, suchthat 0 < S < 8,.

5. AN EXAMPLE OF AN APPLICATION OF THEOREM 2

For the following example a limit is known to exist by the application of
Theorem 2 of Section 4.

Let ?ln = Fn / Fn+1, where {Fn} is the Filbonacci sequence, then Sn_
-8, = (1" /(F F mm

By Theorem 2 above, S exists,
n n— o n

1

n+l1 )-
To find the limit, consider

which in terms of {8 } is 1/8_ =1+8_ ..
n n n-1
to infinity be S, then nlgncosn =n1H*nooSn~l =S > 0. Applying the limit

Let the limit of Sn as n tends

theorems of Section 2, it follows that S satisfies

- 1 2 -
S—1+SorS+S—1——O

Thus 8 > 0 is given by

N5 -1
2

s =

the positive root of the quadratic equation S + 8 - 1 = 90,

6. INFINITE SERIES

If we add together the members of a sequence {an }, we get the infinite

series a;+ag+--- +a +... ., Wenow get another sequence from this in-
finite series, 1
Define a sequence {Sn} in the following way. Let 8; =a;= Z a5, Sy
2 n i=1
=a;+ta = X a, - oringeneral S =a;+a,+t---ta = X a. This is

. n
i=1 i=1
called the sequence of partial sums of the infinite series. The infinite series
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can also be denoted by
A=a1+az+33+"’+an+'“ =Zai

If the sequence { S,} converges to a limit, S, then the infinite series,

A, 1is said to converge and converge to the limit S; otherwise series A is

said to diverge.

7. SPECIAL RESULTS CONCERNING SERIES

1. If an infinite series A = a;+as+--- + a,+ -+ converges, then
lim s s . R
n—ea_ = 0, This is immediate since a_ =85 -8 .
n n n n-1
2. From Section 3 above, an infinite series of positive terms converges
if the partial sums are bounded above since the partial sums form a monotone
increasing sequence,

3. For the alternating series

=a ,n =1; hma =0

o]

n+1 > 1.
Z (-1) a, such that a > 0, n =1; 2041 0’ N
n=1

then by Section 4, above, the infinite series converges; in the theorem

n
S = Z(-l)J a, .
n j
=1

An example of an alternating series was seen in Part IV, Section 8, of

this Primer.

8. FIBONACCI NUMBERS, LUCAS NUMBERS AND 1
It is well known and easily verified that
I

4

Also one can verify

-11 _ -11 -
I—Tan 2+Tan

1

_ 1
= Tan 3
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L g 11 11
i Tan} 1 Tan 2+Tan 5+Tan 8
or
o _ -11 -11 -1 1 -11
i Tan 3TTan 5+Tan 7+Tan 3

We note Fibonacci and Lucas numbers here, surely. We shall here easily ex-
tend these results in several ways. ' '
In this section we shall use several new identities which areleft as exer-
cises for the reader and will be marked with an asterisk.
*Lemma 1: L, L -1 = 5F? This is really a special case ofa

2n 2n+2 2n+1°
generalization of B-22, p. 76, Oct., 1963, Fibonacci Quarterly.

. 2 = _1)2
Lemma 2: Ln LG + 2(-1)
Lemma 3: L2 - 5F2 = 4(-1)"
—_— n n
n
* . = -
Lemma 4: Ln Lm_1 L2n+1 + (-1)

We now discuss

Theorem 3: If tany = 1/Ln, then

11 11
Tan (¥, + ¢ y = 1/F or Tan - =Tan = ——
2n 2n+2 2n+1 F2n+1 L2n
+ Tan" L T 1
2n+2 -
Proof:
Tan'(p. + 4 ) = Lon " Lonig 1
2n - T2n+2 Lonlonta =1 Fonr
since
= - = 5 F2 :
Lopyg + Loy = 5Fgpyy and Lo Lopip -1 =5F000

by Lemma 1 above,

Theorem 4: If tan Gn =1 /Fn , then Tan (02n - 92n+2) = 1/F2n+1’

or
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Tan™! 7 L _ papt Fl - Tan™1 7 1
2n+1 2n 2n+2
Proof:
Tan (0, -0, ) = Fontz ~ Bon - 1
2n 2n+2 FZnF2n+2 +1 F2n+1
since
_ - 2
Fontg ~Fon = Fopq  80d Fy F F

onton+2 " Fopey = 1)

From Theorem 4,

M M
> Tan™! Fl = ? <Tan—1 FL - Tant Fl
— 2n+1 ~ 2n 2n+2
n=1 n=1
-l 1 -1
= Tan 7 Tan 7
2
Since 1M man~1 L -9 by continuity of Tan 'x at x
Moo F
. 2M+2
write

Theorem 5:

=1 2n+1

This is the celebrated result of D, H. Lehmer, Nov. 1936, American Mathe-

2n+1

2M+2

[Feb,

=0 we may

matical Monthly, p. 632, Problem 3801,

We note in passing that the partial sums

M
S = Z Tan™! = Tanl L - Tanl 1
M F F F
=1 2n+1 2

are all bounded above by Tan-ll =1I/4 and SM is monotone. Thus Theorem

1 can be applied. From Theorem 3,

M
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so that

1
F2n+1

M
Tan + Tanﬁl —]3l = Zz Tan ' <1 4 Tan’!

=

=}
il
-
7
et

The limit on the left tends to Tan 11 + Tan—ll/ 3 = Tan 12 and the right-hand
side tends to this same limit and since Tan 1 /L2M+2 —0, then

Theorem 6:

© —_

Z Tan ! X = Tan™! V5 - 1 = Lol

L 2 2
2n
n=1

Compare with Theorem 5 in Part IV,

We shall continue this interesting discussion in the next issue.

CORRECTIONS FOR VOLUME 1, NO. 2

Page 45: In the tenth line up from the bottom, the subscripts on the Fibonacci

numbers should be reversed.
Page 47: Replace ""Lamda" by "Lambda' in the title,

Page 52: Inline 6, replace (Rn) with )\(Rn).
In line 12, the author's name is Jekuthiel Ginsburg.

Page 55: In problem H-18, part a, replace = by =

a b : a b
Page 57: In E2, replace 3°d with (a,a-) .

Page 58: Add three dots after the 4 on the last line,

Page 60: The title "Letters to the Editor' was omitted from Fibonacci Formu-
las, and, in that article, the ""Correct Formula' due to the late Jekuthiel
. . 3 _
Ginsburg is F%+2 -3F) + F 5, = 3Fg, .
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CORRECTIONS FOR VOLUME 1, NO, 2

Page 68: The right side of identity xix should read

1 ; -
2 (Fn+1 FnFn—l D,

and in identity xx, the subscript n-1 should be n-i.

The correct page number in reference 1 is 98,
Page 75: Insert three dots after $2, in line 15,

Page 80: In the last line, replace pN by p |N and p@2- 3 5-- "p,) by
p l 2-3- 5...pn)_

Page 81: Replace Tn + 1 by Tn+1 in the left side of the first displayed

equation,
Page 86: In B-12, Ln+1 = (ars)’ ag, = i = N-1 instead of zero,

Page 87: Change the equations in problem B-16 to read

0 1
R=| 0 2
1 1

2 2

R" = :%-1 F F2 —Fr;lFri«* 2F FFn

n-1"n n+1 n-1"n n n+l

F F et Fli1

See also solution in this issue,

Page 88: See the last written line for notational error due to exclamation

point punctuation.



ON THE GENERAL TERM OF A RECURSIVE SEQUENCE

FRANCIS D. PARKER
University of Alaska, College, Alaska

INTRODUCTION

It is often comforting and useful to obtain a specific formula for the gene-
ral term of a recursive sequence, This paper reviews the Fibonacci and Lucas
sequences, then presents a more general method which requires the solution
of a set of linear equations. The solution may be effected by finding the inverse

of a Vandermonde matrix, and a description of this inverse is included.

THE SPECIAL CASE

As is well known, the Fibonacci sequence is completely defined by the
difference equation F(n) - F(n- 1) - F(n - 2) = 0 and the initial conditions
F(0) = 0 and F(1) = 1, If we seek a solution of the difference equation of the

n-1_ n-2 0, or x*-x-1= 0. This

form F(n) = xn, we obtain x" -
has two solutions; x; = (1 +~5)/2 and x, = (1 -N5)/2. Now, the theory of
homogeneous linear difference equations assures us that the most general solu-
tion is F(n) = clxril + czx;1 , where c; and c, are arbitrary constants. (The
reader who encounters this result for the first time can verify it by substitu-
tion; the theory parallels quite nicely the theory of linear differential equations. )

The initial conditions give us two linear equations,

ci+tcyg =0

1) CiXy + C9Xg = 1

The solutions are ¢; = 1/ V5 and cy = -1/N 5, and we obtain the well-known
formula F(n) = 1/N5(x; - xp).

The Lucas series is obtained from the same difference equation with dif-
ferent initial conditions. In this case, F(0) = 2, F(1) =. 1, and equations (1)

become
cy+ cy = 2

CiXy + ¢2X2 =1 .
67
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Then the general term of the Lucas sequence is

n . =
L) = [1 Exf5] . [1 —2\/5:|

From these formulas it is possible to prove such identities as L(n) - F(n) =
2F(n - 1) and L(n) + F(n) = 2F(n + 1).

THE GENERAL CASE

We might: solve all equations of the form of equations (1) by writing them

in matrix form

1 17 e F(0)
@) =
Xy X9 Coy F(1)

and then find the inverse of the first matrix, so that

-1
¢y 1 1 F(0)

Cy Xy Xg F(1)

The matrix

X4 X9

is a simple case of a Vandermonde matrix, and the determination of the con-
stants is possible if the matrix can be inverted, Fortunately it can be easily
inverted, even if the order exceeds two. ‘

Let us suppose that a recursion relation gives birth to a linear homogen-

ous difference equation with constant coefficients, say,

F@) +a; Fm-1) + --- a, F(n - k) = 0, and that F(0) = by, F(1) = by, -,
Fk-1) = b_;.
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If we seek again a solution of the form F(n) = xn, then we are led to the

equation

3) f(x)=xk+-aixk-1+--°+ak= 0 .

Then assuming that the roots of (3), =x,xp,-* s X are all different*, the
theory of difference equations assures us that F(n) = ¢, xliq + ¢y x? +oeee

CkXII;' The subsequent equations corresponding to (1), but written in matrix

form are
o1 1 1 T [ey] oy ]
X1 X2 e Xk 02 [ bl
(4) _
k-1 k-1 k-1 Cy bk—l
L X1 X2 Xk 1 - - it -
or VkC = B.

Now the polynomial f{x) = f(x)/(x - x;) has k coefficients, and more-
over f(x;) = fy(xg) = =-- = fi(xk) = 0. Consequently if we form a row vector,
(written in reverse order) of these coefficients, then this row vector will be
orthogonal to every column of Vk except the first. ‘We need now only a nor-
malizing factor, sothat the scalar product of this row vector with thefirst col-
umn of Vk is unity. Investigation shows that this scalar product (before nor-
malizing) is f;(x;) = f'(xy), the first derivative of f(x) at x = x;. Moreover,
the fact that f'(x;) =xl—i>mx1 xf—(xxl
by synthetic division,

makes this scalar product easy to calculate

This procedure is now continued; the coefficients of f,(x)/f'(x;) provide
us with the second row of Vl—{l, and in general the coefficients of fi(x)/ f'(xi)
. .th -1
provide the i~ row of Vk .
Aparticular example makes the procedure clear. Suppose the recurrence

relation is

*When there are multiple roots, the matrix takes a different form; the inverse
for this case is not presented here.



70 ON THE GENERAL TERMS OF A RECURSIVE SEQUENCE [Feb.

F(n) - 3F@m - 1) - 5F(n - 2) + 15F(n - 3) + 4F(n - 4) - 12F(n - 5)
= 0,
and the initial conditions are

FO)=1, F1)=1, F2) =1, F@3) =2
F(4) = 3.

The difference equation yields the poiynomial
x5 - 3x4 - 5x% + 158+ 4x - 12 = 0,

whose roots are [-2, -1, 1, 2, 3] The coefficients of f;(x) are easily found

by synthetic division, the normalizing factor by repeated synthetic division.

-2]11-8-5+15+4-12
-2+10-10-10+ 12

-—2|1-5+5+5—6 0

-2+ 14 - 38+ 66

1-7+19-33+60

The vector (-6, 5, 5, -5, 1) is orthogonal to all the columns of V; except the

first, the normalizing factor is 1/60, and the first row of V;I is

(;1 11 -1 _1_)
10° 12* 12° 12° 60

Synthetic division may be continued for the other roots until we obtain the de-
sired inverse.

L1 1 1 1 1]

10 12 12 12 60

1 _2 1 1 1

-1 2 3 24 6 24

VvV =

: , 2.1 1 1
3 12 6 12

o1 1 7 1 _ 1

2 12 12 12 12

1 1 1
| 10 % 78 0 37
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Multiplying equation (4) on the left by vgl, we have

o] L 1 11 1707 L]
1 10 12 12 12 60 20
. 1.2 1 1 _ 1|, |L
2 2 3 24 6 24 12
= 2 7 1 1 -
sl=11 3 3 & 1|7 ?
. 1.1 7 1 _ 1]}, 1
4 2 12 12 12 12 12
1 1 1 1
c — 0 -z 0 =113 A
|75 L10 8 40 | || | 20]
Hence the general term is given by
1 n 1 n n 1 n 1 n
Fn) = - 35 (-2) + 35 (1) + 1) - 753 @) + 355 3y .

CORRECTIONS FOR VOLUME 1, NO. 2

Page 4: Equation (2.8) should read

i
j=o

Page 23: The fifth line up from the bottom should read:

S o]

(?) FEPTRT Ry o Z A x"FPLP
n nn

_pP
(a-b) §

e0* (7)

foTe

n=0

Dy=0,D;=x+y, Dy=(x+y)? .

Page 30: In Line 10, replace m(un+1 -1) by m ’ (um_1 -1)

Page 33: The = signs in lines 10 and 11 should be replaced by = signs.

Page 37: The first line of the title should end in a lower case "m. "
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ELEMENTARY PROBLEMS AKD SOLUTIONS

Edited by A. P. HILLMAN

University of Santa Clara, Santa Clara, California

Send all communications regarding Elementary Problems and Solutions to
Professor A. P, Hillman, Mathematics Department, University of Santa Clara,
Santa Clara, California. We welcome any problems believed to be new in the
area of recurrent sequences as well as new approaches to existing problems.
The proposer should submit his problem with solution in legible form, prefer-
ably typed in double spacing, with name(s) and address of the proposer clearly
indicated.

Solutions to problems listed below should be submitted within two months

of publication,

B-30 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, Calif.

Find the millionth term of the sequence a, given that

= = = - =
ay 1, a, 1, and PN a1 " % for n 1.

B-31 Proposed by Douglas Lind, Falls Church, Virginia

If n is even, show that the sum of 2n consecutive Fibonacci numbers is
divisible by Fn'
B-32 Proposed by Charles R. Wall, Texas Christian University, Ft. Worth, Texas.

Show that nLn = Fn (mod 5).

B-33 Proposed by John A. Fuchs, University of Santa Clara, Santa Clara, California

Let u_,v_,---,w_ be sequences each satisfying the second order re-
n’ n’ 1] n y

currence formula

Ynr2 T Fppr * hyn @ =1,

where g and h are constants, Let a, b, ---, ¢ be constants, Show that
72
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au_ + bv._+ - +cw = 0
n n n

is true for all positive integral values of n ifitis truefor n =1 and n = 2,
B-34 Proposed by G. L. Alexanderson, University. of Santa Clara, Santa Clara, California
Let u and v be any two sequences satisfying the second order recur-
rence formula
= +
Yni2 T e hyn
where g and h are constants, Showthat the sequence of products W= uv

n n
satisfies a third-order recurrence formula

Yn+3 = 42 * byn+1 * n
and find a, b, and ¢ as functions of g and h,

B-35 Proposed by J. L. Brown, Jr., Pennsylvania State University, University Park, Pa.

Prove that
r-1
5 (1) n -
k=1

for r an odd positive integer and generalize.
B-36 Proposed by Roseanna Torretto, University of Santa Clara, Santa Clara, California

The sequence 1,2,5,12,29,70,--- 1is defined by ¢y = 1, ¢y = 2, and
Cig = 20n+1 te, for all n = 1, Prove that Com 18 QN integral multiple of
29 for all positive integers m.

B-37. Proposed by Brother U. Alfred, St. Mary’s College, California

Given a line with a point of origin O and four positive positions A,B,C,
and D with respect to O. If the line segments OA,0B,0C, and OD corres-
pond respectively tofour consecutive Fibonacci numbers Fn’ Fn 41 Fn+2’ Fn+3’
determine for which set(s) of Fibonacci numbers the points A,B,C, and D

are in simple harmonic ratio, i.e.,

AB AD

BCc pc - 1
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SOLUTIONS
DIFFERENCES MADE INTO PRODUCTS
B-17 Proposed by Charles R. Wall, Ft. Worth, Texas

If m is an integer, prove that

Foram+a = Fn = Lomer Fniomer

where Fp and Lp are the pth Fibonacci and Lucas numbers, respectively,

Solution by 1. D. Ruggles, San Jose State College, San Jose, California

In "Some Fibonacci Results Using Fibonacci-Type Sequences,!' Fibonacci
Quarterly, Vol. 1, No, 2, p. 77, it is shown that

!
i
!
]

L F, for p odd.
atp ~ T q-p p g TP

If g=n+2m+1 and p = 2m + 1, then this becomes the desired formula.
Also solved by Douglas Lind, Falls Church, Virginia, and the proposer.

A TRIGONOMETRIC SUM

B-18 Proposed by J. L. Brown, Jr., Pennsylvania State University, State College, Pennsylvania.

Show that
n-1
_ on-1 k n-k-1w .k m
F,o=2 z (-1)" cos 5 sin” 15 for n =0.
k=0

(It should be "for n = 1" instead of "for n = 0.")
Solution by the proposer

It is well known (e.g., I. J. Schwatt, "An Introduction to the Operations
with Series, ' Chelsea Pub. Co., p. 177) that

cos T = 1+nN5
5 4
T _ N5 -1
cCoOsS -~ ——

10 4
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Therefore,
= 1ENS N5 = 2 cos &
2~ “°%%7F
_1- N5 _ LT
b = 5 -2 sin 75
and
n cos" I - —1)11 sin™ T
_a -b _ ,n-1 5 10
F = = 2
n -b 0s = + sin —~
CoS 5 10
cos" T - sin® (- =% -l
n-1 5 10 n-1 n-k-1w . k L
=2 = 2 cos = sin (— —
cos ¥ - sin (— 1) B 10
5 10 k=0
n-1
_on-1 k n-k-1m .k ™
=2 Z (-1) " cos 5 Sin™ 75
k=0

as stated. We have made use of the algebraic identity

n n n-1
X -y _ z Xn—k-lyk
X -y

k=0

Also solved by Charles R. Wall, Texas Christian University, who pointed out that the identity'
does not hold for n=o.

A TELESCOPING SUM

B-19 Proposed by L. Carlitz, Duke University, Durbam, N.C.

0 [2e]

Show that z -—~—2i—-— + Z——Zl—— =
n=1 Fn Fn+2 Fn+3 n=1 Fn Fn+an+3

D[ =

Solution by Jobn H. Avila, University of Maryland, College, Park Maryland

Our solution is similar to that by Francis D. Parker for B-9. Let a =

am) = F, b = Fopp €= Fn+2, and d = Fn+3. Then a+b=c, b+c =4d

and the left side of the desired formula is

bl
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=} o) ~
5 (&) (2 )
et aczd ab%d el abc?d  ab’cd

o0

AN (E_:_%+ £1_‘£_>
n—:i abc?d  abZed
cO

AN
ok

_ ( i1 1 1 )
abed be2d ab%  abed

S 1
L ( ab%c bc2d> )

n=1

The last sum is the telescoping series

11 N\ {1 1\, ...
F,FLF, TF,FiF, | \ F,FiF, F3F,Fs

whose sum is

1 1 1
F,FoF, 1-12-2 2

Also solved by the proposer.

SUMMING GENERALIZED FIBONACCI NUMBERS

B-20 Proposed by Louis G. Brokling, Redwood City, Californiq

Generalize the well-known identities,

(i) F1+F2+F3+---+Fn=Fn+2—1
(ii) Ly + Lo+ Lg + <. +Ln= Ln+2-3

[Feb.
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Solution by Charles R. Wall, Texas Christian University, Fi. Worth, Texas

If H, =4, Hy =P, and Hn+ =H +Hn, then Hn: pFn+an

2 n+1 -1
so that

n n-1
P) Fyta ) Ty = B(F,-1+a(F,, -1
i=1 i=0

Nl
T
I

Y
I
[y

=pF o an+1 -+t =H ,-P+aq =H ,-H

This identity is also obtained from Horadam's "A Generalized Fibonacci Se-
quence, " American Mathematical Monthly, Vol. 68 (1961), p. 456.

Also solved by Fein Grayson, Lockheed Missiles and Space Company,
Sunnyvale California and the proposer.

EVENS AND ODDS

B-21 Proposed By L. Carlitz, Duke University, Durham, N. C.

If

n n

1 2 2
un=§[(x+1) +(x—1)]

show that
2n 2 2 2
= uw?
Uit w o+ 277 uyuy w1 -

Solution 'Zy Robert Means, University of Michigan

n
Let Let v, = x+ 1)2 - u. Then uy; = x, vp =1 andfor n=1 uy and

v, are the terms of even and of odd degree respectively in (x + 1)21.1. Now
2 2 2

= = +
wo + Vil (un + vn) w + 2umvn Vi
even and of odd degree respectively we have for n =0,

and equating sums of terms of

(@) un+1

®) Vn+1

2 2
uw + v
n n

2u .
n'n
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—- = 2 = oo =

R;zpeated use of (b) leads to Vo Zun_l Vo-1 2 U1 %-2Vn-2

270 U ottt UV, Since vy =1, the desired result is obtained by substi-

tuting the last expression for vy in (a).

Also solved by Charles R. Wall, Texas Christian University and the proposer

LUCAS ANALOGUES

B-22 Proposed by Brother U. Alfred, St. Mary’s College, California

Prove the Fibonacci identity

- w2 2
FoxFoxt = Fripr = Fipor

and find the analogous Lucas identity.

(Editor's Note: The Fibonacci identity here is proved by I, D. Ruggles in
"Some Fibonacci Results Using Fibonacci-Type Sequences,'" this Quarterly,
Vol, 1, Issue 2, p. 77.) Proofs were submitted by Douglas Lind, Falls Church,
Virginia; V. E, Hoggatt, Jr., San Jose State College; and Charles R, Wall,
Texas Christian University, Ft. Worth, Texas. Lind and Hoggatt gave

_ 12 2 _ 4 13K-d
Lok Toj = Dy * Ly — 40D

as the analogous Lucas identity and Wall gave it as

_ 2 2 — 2 2
LokCo; = Tij + 5Fhj = 5Fh + T

Proofs of these are left to the readers.

TELESCOPfNG PRODUCTS AND SUMS

B-23 Proposed by S. L. Basin, Sylvania Electronic Systems, Mt. View, Calif.

Prove the identities

n Fi1
(i) F = 1 (1 + o= >
R = Fj
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n
F — i
.s n+l _ (=1)
(ii) N/ o
n = ivi-1
lower limits mis-
0 printed in problem
— i statement
(i) 1eNs gy G
2 F.F.
£ iTi-1
i=2

Solution by J. L. 3rown, Jr., Pennsylvania State University, State College, Pa.

o F - Foe1Fo " Fy rﬁ Fisg _ Ir;Fi+ Fiy _ E (1+Fi_1>
ol PR F = B B i=1 Fy
(id) T (Ten Fn>+ o -Fn‘1>+ (Fs-F2>+1
Fn Fn Fn—l Fn—1 Fn-z F, Fy
n n _ 9
AP R ) TS T W TR S 15 G S
) B Fig FiFig
i=2 i=2
2 i
=1+ 7 —F(_—;E:L)— 9
d - i ] -
i=9 ii-1
using the well-known identity,
_F2 = (et
FippFig - Ff = (D

. F T
.. . L. lim "n+t1 _ 1+NWN5
(iii) In (ii) take the limit as n— « and recall that n—e F_ = 5

- Also solved by Dermott A. Breault, Sylvania—ARL, Waltham, Mass. ; Douglas Lind, Falls Church, Va;
Charles R. Wall, Texas Christian University, Ft. Worth, Texas; and the proposer

A CORRECTED SOLUTION

B-4 Proposed by S. L. Basin, Sylvania Electronic Systems, Mt. View, California,
and Vladimir lvanoff, San Carlos, California

n
Show that Z (n) F. = F
i i 2n
i=0

Generalize.
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(Readers: Can you find the errors in the previously published solution?)

Solution by Joseph Erbacher, University of Santa Clara, Santa Clara, Calif., and J. L. Brown, Jr.,
Pennsylvania State University, State College, Pennsylvania

Using the Binet formula,

@2 - ey _ @+ a)®al - @+ P D

F2n+j - a-b a-b
since
a? = a+1, b®=b+1 Whena=1-j§ﬂ, b=l————2—§/—§,
we have
n n n P 2.
F _ 1 \ (n) S S(n)bﬂj B S (n) 2ty
2n+j a-b |/, \i YIRS T/ Vi a-b
i=0 i=0 i=0
n
AR
VR i+j
i=0

If j = 0, we have the original problem. The identity also holds, with arbitrary

j, for Lucas numbers since L, = F + F_ .
n n-1

CORRECTION TO VOLUME 1, NO, 1

See Vol. 1, No. 2, p. 46 for correction to last two references on page 42.



