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•A PftOPEBTY OF FIBONACCI LUMBERS 

R. L. GRAHAM 
Bel l Telephone Laboratories, Inc., Murray H i l l , N. J. 

1. INTRODUCTION 

Let A - (alsar,s- • •) denote a (possibly finite) sequence of in tegers . We 
oo 

shall le t P(A) denote the se t of all in tegers of the form 2 e, a, where e, 
k=l K K K 

i s 0 or 1. If all sufficiently l a rge in tege r s belong to P(A) then A i s sa id 
^° ^ e complete . Fo r example , if F = ( F l s F 2 , - • • ) , where F i s the n F i b -
onacci number , i. e. , F n = 0, F1 = 1 and F = F , _, + F for n ^ 0. then 

' u J 1 n+2 n+1 n ? 

F i s complete (cf. [1] ). More general ly9 i t can be eas i ly shown that F s a t i s -

fies the following condit ions: 

(A) If any one t e r m i s r emoved from F then the resu l t ing sequence i s 

complete . 

(B) If any two t e r m s a r e r emoved from F then the resu l t ing sequence i s 

not complete . 
(A s imple proof of (A) i s given in [l] ; (B) will be proved in Section 2 . ) 

In this paper i t will be shown that a "s l igh t" modification of F produces 

a r a t h e r s ta r t l ing change in the additive p rope r t i e s of F . In pa r t i cu la r , the 

sequence S which has F - (-1) as i t s n t e r m has the following r e m a r k a b l e 

p r o p e r t i e s : 

(C) If any finite subsequence is deleted from S then the resu l t ing sequence 

i s complete . 

(D) If any infinite subsequence i s deleted from S then the resul t ing s e -

quence is not complete . 

2. THE MAIN RESULTS 

We f i r s t prove (B). Suppose F and F a r e removed from F to form 

F* (where r < s ) . We show by induction that F ^ i " l $ P(F*) for k = 

0 , 1 , 2 , • • • . We f i r s t note that the sum of all t e r m s of F* which do not exceed 

F s + 1 - 1 i s jus t 

S^\ - F r = }] <Fk+2 " Fk+1> - F r = F s + 1 " 1 ~ F r * F s + 1 " X 
k=l k=l 
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and hence F - 1 ^ P(F*)„ Now assume that F - 1 <j: P(F*) for some 
t ^ 0 and consider the integer F , ? . „ - 1. The sum of all terms of F* 
which are less than F + 2 t + 9 i s J118^ 

s+2t+l 

I 
k=l 

F, ~ F - F = F - 1 - F - F < F - 1 
k r s s+2t+3 x r s s+2t+3 x 

Thus, in order to have F , ? t + o - 1 e P(F*) we must have F +« t +o - 1 = 
F s + 2t + 2 + m ' w h e r e m e P " F * ) " B u t m = F s + 2 t + 3 " F s + 2 t + 2 " ^ = F s + 2 t + l 
- 1 which does not belong to P(F*) by assumption. Hence F 9, Q - 1 ^ 
P(F*) and proof of (B) is completed. 

We now proceed to the main result of the paper. 
Theorem: Let S = (sl9s2f--a) be the sequence of integers defined by 

s = F - (- l)n . Then S satisfies (C) and (D). 
Proof: The proof of (D) will be given first. Let the infinite subsequence 

s. < s. < s. < . . . be deleted from S and denote the remaining sequence by li h h 
S*. In order to prove (D) it suffices to show that 

s. 
i n 

3. - 1 <f P(S*) for n > 4 

We first note that 

s. + s. > Sj + s2 = 2 . 
it i 2 

Therefore, we have (cf. Eq. (1) ) 

i - 1 
n 

s. < s. ., - s. - s. < s. , - - 2 e 

. , J V1 ** ^ V1 

3=1 

Hence, to represent ŝ  +j_ - 1 in P(S*) we must use some term of S* which 
exceeds ŝ  _i (since by above, the sum of all terms of S* not exceeding 
S| - i is less than Si +]_ - 1 for n > 4). Since Si is missingfrom S*5 then 
the smallest term of S* which exceeds s. ., is s. , 1 (whichfl of course, is 

i n - l i n + l 
greater than s. t 1 -.1). Thus 

1 n + 1 
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s. + 1 - 1 f P(S*) for n ^ 4 
n 

and (D) i s proved,, 

To prove (C)f l e t k > 4 and l e t Sf denote the sequence ( s , , s, , 
sk+2* ° * * ^ F o r n o n * " n e S a t i v e i n t ege r s w and x, P(Sf) i s sa id to have no gaps 

of length g r e a t e r than w beyond x provided the re do not exis t w + 1 consecu-

t ive in t ege r s exceeding x which do not belong to P(Sf). The proof of (C) i s 

now a consequence of the following two l e m m a s . 

L e m m a 1: The re ex is t s v such that P(Sf) has no gaps of length g r e a t e r 

than v beyond s, . 

L e m m a 2: If w > 0 and P(S!) has no gaps of length g r e a t e r than w 

beyond s, then the re ex is t s i such that P(Sf) has no gaps of length g r e a t e r 

than w - 1 beyond s. . 

Indeed, by L e m m a 1 and repea ted application of Lemma 2 i t follows that 

t h e r e ex i s t s j such that P(S!) has no gaps of length g r e a t e r than 0 beyond 

s . . That i s , Sf i s comple te , which p roves (C)8 

Proof of L e m m a 1: F i r s t note that 

^ + * W i = F 9 „ - ( - D 2 n + F , ^ - ( - l ) 2 n + 1 = F_ + F . + 1 = F 5 

S 2n + 2 + h 

Simi la r ly , 
_, , ' 2n+l , _• , 1v2n+2 

S 2 n + 1 + s 2 n + 2 = F 2 n + 1 " ™ + F2n+2 " ^ 

= "P + F = F = s - 1 
2n+l 2n+2 2n+3 2n+3 

Also , we have 
• S l + S 2 + . . s + S n = ( F l + 1) + ( F 2 - l ) + -•- + ( F n - ( - l ) n ) 

= ) F . + e = > (F. ^ - F . n ) + € 
L J n L 3+2 3+1 n 

(1) 

where 

j= i 3=1 

= F l 0 - 1 + € n+2 n 

Sn+2 €n 
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0 for n even 

Thus 
i i 

i - i -

n 1 1 for n odd 

s , o - s M - e + e .. for n > m n+2 m+1 n m-1 

Now. let h > k + 1 and let 

P ' = P ( ( s k , s k + l f . - - f s h ) ) = { p i , P 2 , - - - , P ^ } 

where pj < pj < • • • < p.1 . Let 

max , . , x 
V = brai-l (pi+l " PP ' 

Then 

h > k + 1 > 5 = * » s h s s k + 1 + 2 

- ^ S h - s k + i + eh " V i + x 

M*'sh+2 " V l ~ sk+l + eh " ek+l 

*sh+l ~ sh+2 " sk+l " eh + ek+l 

h 

Since 

iS i k+i + v i > - < p ; + sh+i>) = v 

then in 

p" = P ( < V - ' V W ) 
= p ( ( s k J . . . , S h ) ) W { q + s h + 1 : q € P \^%... , s h ) ) } 

= {Pi , .p i , . -" ,P^} . 
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where p" < pT
2
T< ••• < p"f , we have 

Similarly, since 
h+1 

h > k+ 1 > 5=^>sUl0 ^ y s. 

then in 

p-» = p ( (v—.v2>) ={p;M»pr'-"'Pn'-> 
where p m < p m < • • • < pTt» $ we have 

i 2 n?! * 

• r + 1 r max (p"» - p"J ) < v9 etc. 
l< r<n n ~ l 

By continuing in this way9 Lemma 1 is proved. 
The proof of Lemma 2 is a consequence of the following two results: 
(a) For any r ^ 0 there exists t such that m > t implies all the 

integers 
s m + y9 y = 0S±19 ± 2 , - - - , ± ( r - 1) 

belong to P(Sf). 
(b) There exists rf such that for all sufficiently large h!

? P(Sf) has 
no gaps of length greater than w - 1 between s, , + rf and s, f+- -
r? (L e. , there do not exist w consecutive integers exceeding s, ? 

+ r ! and less than s, , - - rf which are missing from P(S!) ). 
Therefore, for s. sufficiently large f P(Sf) has no gaps of length greater 

than w - 1 beyond s., which proves Lemma 2„ 
Proof of (a): Choose p such that 

2p - 3 ^ k and S 2 D - 2 ~ T 

and choose n such that 

n ^ s2p„.2
 + P a n d n > r + k 
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Then 
n 2n-2m~4 n n-m-1 2n»2m-4 

I S2i-1+ J S r l S2i-1 " 1 S2i-1 + I Sj 
i=n-m j=2p-3 i=l i=l j=2p~3 

n n-m»l 2n-2m~4 

= n + I F 2 i - l " n + m + 1 " £ F2i-1+ J Sj 
i=l 1=1 j=2p-3 

. = m + 1 + F 2 n - F 2 n _ 2 m ^ + s 2 ^ 2 m _ 2 + 0 - s2 p_2- 0 

= s 2 n - (s2 - m - 1), for 0 ^ m < n - p - 1 . 

Since 2p - 3 ^ k, then all the summands used on the left-hand side are in S\ 
Hence, all the integers 

S2n - ( s2p-2 " m " X)> ° " m " n - p "" X • 

belong to P(Sf). Since n ^ s 2 9 + pf then 

n - p - 1 > s 2 p _ 2 - 1 . 

Therefore, all the integers 

S 2 n " ( s2p-2 " m " X) . ° * m ~ B 2 p - 2 - 1 

belong to P(Sf), i. e. 9 all the integers 

s 2 n - m ' , o s m ' s s 2 p _ 2 • - ! . . 

But s 2 ~ ^ r , so that we finally see that all the integers 

s2n ~ m ? ' ° ~ m f ' ~ r " X * 

belong to P(Sf). 
To obtain sums which exceed s 2 , note that for 1 < m ^ n - k we have 
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II II 11-111. 

2, S2j-1 + S2n-2m = / , S2j-1 " £ S2j-1 
n-m. 

2n~2m 
j=n-m+l j=l j=l 

= n + F0 - (n - m) - F0 0 + s0 0 2 n • . ; 2n-2m 2n-2m 

= m + F0 - 1 2xi 
= m + s~ 

2n Since the sums 
n 

I S2M + S2n-2m f o r m = 1 » 2 » " - » n - k 

j=n~m+l 

are all elements of P(Sf), and since n - k > r, then all the integers 

s 2 n + m§ 1 < m < r , 

belong to P(S?). 

Arguments almost identical to this show that for all sufficiently large n, 

all the integers 

S2n+1 + m» m = °>±V ••'»*(*- 1) ,' 

belong to P(Sf). This proves (a). 

Proof of (b): We first give a definition. Let A = (al9a2g-**9a ) be a 

finite sequence of integers. The point of symmetry of P(A) is defined to be 
n 

the number — y a,. The reason for this terminology arises from the fact 

k=l 
that if P(A) is consideredas a subset of the real line^ then" P(A) is symmetric 

n 

about the point •=• / a, . For we have 

k=l 

n n n 
P = 1 £kak e P(A)^> ^ (1 - ^k)ak = £ ak - p € P(A) 

k=l k=l k=l 
n n 

and the points p and \ a^-.p are certainly equidistant from i \ ak. 
P 4 M 
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Now note that if r I s sufficiently l a r g e then 

s . > 3 > - s , , - + 3 . r - 1 k+1 ' 

s , i - s > - s , _,. + 2 9 r+1 r k+1 ' 

S + 1 - S, , - < S , - - 1 . 
r k+1 r+1 ' 

S r+2 " s r + l " s k + l < s r + l + €r ~ €k+l 
and 

Therefore 

r+2 k+1 r+1 r k+1 

r 

2 Z Sj = 2 
and 

2 L "i ~ 2 ' ( s r + 2 " V l " €r + €t o - l ) < Sr+1 
j=k 

2 ( 8 r + 2 - V l - e r + V l > > Sh 

for all sufficiently l a r g e r . In o ther words f for all sufficiently l a r g e r9 the 

point of s y m m e t r y of P ( ( s , s ° ° » , s )) l i e s between s, and s - . By hypothe-

s i s no gaps of length g r e a t e r than w occur in P(S?) beyond s , . Since h > k 

> 4 Impl ies 

h h+1 h+2 

then no gaps of length g r e a t e r than w can occur in P ( ( s ] ? ° * e , s )) between 
K. r 

s, and s ... (For if they did, then they would remain in P(S') s ince s 1 

< sr+2 < • • • . ) But 

V l > 2 
j=k 

T_ 
1 and — ) s . i s the point of s y m m e t r y of P((s, ,• • • , s )). The re fo re , 
£ /^ j K r 

JL 

j=k j=k 
s . - s Li < 0 j r+1 2 
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and by symmetry no gaps of length greater than w occur in P((s, , •• - , s )) 
between 

> s. - s , - and 7 s. - s, . 
A 3 r + 1 Li 3 h 

Thus, no gaps of length greater than w occur between s, and 

j=k 
s h " Sr+2 " Sk+1 ~ €h + €k+l " Sh 

provided that r is sufficiently large, Now consider P((s, f • ° • , s )). Since 

r+1 
r+1 r+2 r+3 ' 

then s - + s „ + p and s „ + p are elements of P((s, , . •. , s „ )) which 
differ by 1 whenever . p is an element of P ( ( s , s — ? s ))„ Hence, since in 

K r 
P((sk9 • • • , s )) there are no gaps of length greater than w between s, and 

r 
? s. - s, , then in P((sk, • • • , s . «)) there are no gaps of greater length than 

j=k 
w - 1 between 

I. s h + s r + 3 a*d I s - s h + s r + 3 . 

Similarly, consider P((s^s •# • s s * ))8 Since 

s r+2 + s r + 3 = Sr+4 + ^ ^ 

and there are no gaps in P((sk„ • • • , s )) of length greater than w between 
r+1 

s, and V s . - s,s then there are no gaps in P((s, , • • • 9s .)) of length 
j=k 

greater than w - 1 between r.f i 
sh + Bi+4 a n d ^ Sj " Sh + Sr+4 • 

j=k 
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In gene ra l , for q > 0 s ince S. .+ s r + q + 1 = s r + q + 2 + (-1) H and the re a r e 
no gaps in P ( ( s k , - . . , s _1 )) of length g r e a t e r than w between s^ and 
r+q -1 

2 s . - sU J then the re a r e no gaps in P((s1 , - - - , s 9 )) of length g r e a t e r 
j=k J h r+q -1 k T+q+Z 

than w - 1 between s h + s r + q + 2 and S s j ~ s h + Vq+2' B u t 

r + q - 1 

Sj " S h + S r+q -2 ' " S r+q+ l Sk+1 V q + 1 + '"*k+l S h + Sr+G+2 
j : = k - s + r - n r + q + 1 - s - s - e + e 

~ Sr+q+3 + ( 1 } Sk+1 S h r+q+1 + k+1 

The re fo re , if we le t 

Sr+q+3 " Sk+1 S h 2 

" Sk+1 + S h + 2 

then for all sufficiently l a r g e z, there a r e no gaps in P((s, , • • • , s z ) ) of length 

g r e a t e r than w - 1 between s + rf and s - r r (since the preceding a r g u -
z z+x 

ment i s valid for q > 0 and all sufficiently l a r g e r ) . This completes the proof 

of (b) and the theo rem. 
3. CONCLUDING REMARKS 

Examples of sequences of posi t ive in t ege r s which satisfy both (C)and(D) 

a r e r a t h e r e lus ive . It would be in te res t ing to know if t he re ex is t s such a s e -

quence, say T = ( t i , t 2 , ' - ' ) » which i s essent ia l ly different f rom S^ e . g . , 

such that 

l im *n+l , 1 + A/5 
n—oo t 2 

n 

The author wishes to express Ms grat i tude to the r e f e r ee for severa l s u g -
gest ions which made the paper considerably m o r e readab le . 
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m SQUARE LUCAS NUMBERS 

B R O T H E R U. A L F R E D 
St. Mary*s C o l l e g e , C a l i f o r n i a 

Among the first dozen members of the Lucas sequence (1,3,4,7, 11, 18, 
• ••) there are two squares, Lt = 1 and L3 = 4. Are there any other square® 
in the Lucas sequence? 

Since the period of the Lucas sequence modulo 8 is 12, it follows that 
L.19, = L (mod 8), so that all possible residues are represented in the fol-
lowing table. 

X L 1 2 k + X ( m ° d 8 ) 

0 2 
1 1 
2 3 
3 4 
4 7 
5 3 
6 2 
7 5 
8 7 
9 4 

10 3 
11 7 

It follows that the only Lucas numbers which may be squares are L ' 2 , with 
X = 1,3 or 9, since the other residues modulo 8 are quadratic non-residues 
of 8. 

From the general relation 
2 L a + b = 5FzFb+LzH 

it follows if t = 2 r , r ^ 1, that 
2 L X , 2 t = 5 F X F 2 t + L X L 2 t 

so that 

But (Lt ,2) = 1. Hence 

• 5 F A F t L t + L X ( L t - 2 > 

2LX+2t B "2 LX ( m ° d L t > 

LX+2t s - L ^ m o d ^ ) 

We can use this relation to advantage by writing 
11 
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L12k+X a S LX+2mt 
r 

where m i s odd and t = 2 , r — 1. 
Then 

LX+2mt "~LX+2(m-l)t ( m ° d V 
S+LX+2(m-2)t ( m o d V 

( ~ l ) m K (mod L,) 
X i 

For X = 1, 

But 

L12k+1 S " L l " ~ 1 ( m ° d L t ) ? * = ^ r - X 

Y—) = - 1 , s ince L ^ 3 (mod 4) 

Therefore L.. ~, 1 may not be a perfec t square except for L^ = !„ S im-

i l a r ly , L - ? , o can be shown to be ru led out by ent i re ly the s ame a rgument 

except for L3 = 4, 

Final ly , 

L12k+9 = L4k+3 fL4k+3 + °1 

The 6 in the b racke t may be e i ther 3 or 1. But s ince only Lucas n u m -
b e r s L,7 0 a r e divisible by 3 , it follows that L . , _ and ~L2

A, ,' + 3 a r e 
4k+2 J 9 4k+3 4k+3 

re la t ively p r i m e . Therefore , if L-j2k+9 is-to be a perfec t s q u a r e , both f ac -

to r s mus t be such. It i s c l ea r that L ^ . o i s n o t a perfect squa re for k = 1 

o r 2. For other va lues , k equals e i ther 3.kT, 3kf + 1 or 3k' + 2 with kf ^ 1 . 

But this gives us Lucas numbers L-.^,? n , L ? , , and L i o u F + l 1 r e s p e c t -

ively and i t has a l ready been shown that these cannot be s q u a r e s . 
Thus the only squa re s in the Lucas sequence a r e L,1 = 1 and L3 = 4. 

c Legendre f s symbol. 



LATTICE PATHS MB FIBONACCI HyfVfBEflS 

ROBERT E. GREENWOOD 
U n i v e r s i t y of T e x a s 

L. • Moser and W. Zayachkowski [1] considered lattice paths from (0,0) 
to (m9n) where the possible moves were of three types: (i) horizontal moves 
from (x,y) to ( x + l , y ) ; (ii) vertical moves from (x,y) to ( x , y + l ) , and (iii) 
diagonal moves from (x,y) to (x + l ,y + 1). A special case of some interest 
arises when m = n. 

Consider now a much more restricted set of paths. Require: (a) that the 
path be symmetric about the line x + y = n, (b) that prior to arriving or touch-
ing the above line that one use only horizontal and diagonal moves (and symmetry 
after now requires that vertical and diagonal moves be used to arrive at .(n,n)), 
and (c) that all of the paths be "below" or on the line y = x (also required by 
the previous conditions). 

For small values of n one can enumerate the possible paths. Thus for 
n = 1, one need only consider the three points (0,0), (1,0) and (1,1), and 
there are two paths as pictured in Fig. 1. For n =• 2, there will be three 
paths. For n = 3 there will be five paths. See Figs. 2 and 3, respectively. 

This suggests that the collection of path numbers may be closely related 
to the Fibonacci sequence, with appropriate renumbering to bring the two se-
quences into step. Thuss letting h(n) be the number of paths for (0,0), (n,n) 
case, one has the tabulation 

n 
h(n) 

1 2 3 
2 3 5 

Also, beginning at (0,0), there are only two initial moves9 to .(1,0) and to 
(1,1). Due to symmetry imposed by requirement (a) the last move in the path 
is also determined so that one has the choices schematically portrayed in Fig. 4. 
The two path schemes depicted in Fig. 4 are mutually exclusive and collective-
ly they exhaust all of the allowable paths satisfying conditions (a), (b) and (c)." 
Hence, h(n) = h(n - 1) + h(n - 2) for n = 3?49« • • . Thus the sequence of path 
numbers is a Fibonacci sequence with appropriate relabelling and identification 
of h(0) and h(-l) as unity. 

13 
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It is also possible to "count" the paths so as to have 

/n + 1 - k^ 
h(n) = ^ 

* 0 v j 

but the grouping of paths with summation index k seems slightly artificial and 
lends little or nothing to the general theory 

/ J 
Figure 1 (two cases) 

•—•-
Figure 2 (three cases) 

JB • • • J§T © • • / * /*~~^ # • • • 
•r • • • • - # © • • — # - # • «r • # © » ® a • 

Figures (five cases, smaller scale) 

(0,0) 

t 

(n - l , n 
(n,n) 

- 1 ) . / 
/ / / / / 

•j 

•iyVa.: 
/ 

4(i,o) (n - ! , ( ) ) • J 

'Vfti.n) 
(n, n - 1) 

' (n , l ) 

( n - l , n - 1)/ <, Z 
(n .n - J ) 

/ 

> ( n ' 0 ) ( 0 , 0 ) / • ( 1 , 0 ) (n-1,0)* • (n s 0) 

There are h(n - 1) paths from (1,0) There are h(n - 2) paths from (1,1) 
to (n,n - 1) inside dashed triangle. to (n - 1, n - 1) insided dashed 

triangle. 

Figure 4 
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A NOTE ON FIBONACCI NUMBERS 

L . C A R L I T Z 
D u k e U n i v e r s i t y , D u r h a m , N . C . 

We shall employ the notation 

ufl = 0S u< = 1, u , _. = it + u ., (n > 1) 

n+1 ' n ' *n- l v0 = 2, V l = 1, v n + 1 = v„ + v - (n => 1) . 

Thus 

(1) 
n ,>n 

a - B n , nn 
n or - /3 * • n p 

where 

1 + *s/5 „ 
^ = — r , /3 

1 - \/5 a + jS = 1, orjS = - 1 

The f i r s t few values of u , v follow. 

n 

u n 
V 
n 

0 

0 

2 

1 

1 

1 

2 

1 

3 

3 

2 

4 

4 

3 

7 

5 

5 

11 

6 

8 

18 

7 

13 

29 

8 

21 

47 

9 

34 

76 

10 

55 

123 

11 

89 

199 

12 

144 

322 ! 

It follows easi ly from the definition of (1) that 

(2) 

(3) 

u = u . , n u, + u , u, , (n > k > 1) , 
n n-k+1 k n-k k-1 v ' ' 

v = u , •, n v, + u , v, . (n > k > 1) 
n n-k+1 k n-k k-1 ' 

(4) 

(5) 

(6) 

It i s an immedia te consequence of (1) that 

k mk 5 

v k u 2mk ' 

V k | v ( 2 m - l ) k ' 
* Supported in part by National Science Foundation Grant G16485. 

15 
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where m and k are arbitrary positive integers. It is perhaps not so familiar 
that, conversely5 

(4)' u k | un = * > n = mk (k > 2) , 

(5)! ukJ un = = > n = 2mk (k > 1) , 

(6)? • v, I v = ^ > n = (2m - l)k (k > 1) . 
K i n 

These results can be proved rapidly by means of (1) and some simple re-
sults about algebraic numbers. If we put 

(7) n = mk + r (0 < r < k) 9 

then 

so that 

n nn r . mk nmk, , n mk, r nr. 
a - p = a (a - (3 ) + ft (a - ft ) 9 

r , ^mk u = a u T + B u n mk ^ r 

If u, j u it therefore follows that u, p u . Since ft is a unit of the field 
R(N/5), Ujlu , which requires r = 0. This proves (4)!. 

Similarly if 

n = 2mk + r (0 < r < 2k) , 

then 
r „2mk u = a u0 , + R u n 2mk H r 

Hence if v. j u it follows that v, I u . If then r > 0 we must have r > k 
and the identity 

(a - /3)ur = a0' v k - P\_k 

gives v, I v , , . which is Impossible. The proof of (6)? is similar. 
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If we prefer, we can prove (4)f, (5)f, (6)f without reference to algebraic 
numbers. For example if u , | u , then (2) implies u, I u , u. Since u, 
and u, are relatively prime we have u, I u , . Continuing in this way we 
get u, I u , where r is defined by (7). The proof is now completed as above, 
In the same way we can prove (5)* and (6)f. 

In view of the relation 

(8) u0 = u v 
% ' 2n n n 

it is natural to ask for the general solution of the equation 

(9) un = u m v k (m > 2, k > 1) . 

It is easily verified, using (1), that (9) can be replaced by 

<10> u n = U m + k + (-^Sn-k <m £ k> 
or 

(ID un = u m + k - ( - l ) kuk_m (k > m) . 

Now the equation 

(12) u r = ug + ut (s > t > 1) 

is satisfied only when r - 1 = s = t + 1. Indeed if 1 < t < s - 1, then 

u + u , < u + u 1 = u l 1 . 
s t s s-1 s+1 ' 

so that (12) is impossible; if t = s - 1, then clearly r = s + 1. If t = 1 in 
(12) we have the additional solution r = 4, s = 3. 

Returning to (10) and (11) we first dispose of the case m - k = 1. For 
k even (10) will be satisfied only if m + k = 3, which implies k = 1; for k 
odd we get n = 2 , m + k = 3 or n = 3 , m + k = 4, which is impossible. 
Equation (11) with k - m = 1 is disposed of in the same way. 
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We may therefore a s s u m e in (10) and (11) that jm—k| > 1. Then if k i s 
•even, i t i s evident f rom the r e m a r k concerning (12) that (10) i s impossible. If 
,k i s oddt we have-

U ,-, = U +• U r. . 
m+k n m - k 

so that k = 1, m = ne As for ( l l ) f if m i s odd we get 

u = u ,, + u, § 
n m+k k - m * 

which i s impossible,, However9 if m i s evens we get 

' u , , - u + u, „ 
m+k n k - m ' 

so that m + k = • n + 1 = k - m + 2; this r e q u i r e s m = 1, k = n, 
This completes the proof of 
Theorem 1, - The equation. 

u =. u v, (m > 29 k > 1) 
n m k x 9 f 

has only the solutions n = 2m = 2k. 

The l a s t p a r t of the above proof suggests considerat ion of the equation 

(13) u n = v k (k > 1) . 

Since (13) i s equivalent to 

u = u, ,- + ut n 
n k+1 k~l 

i t follows at once that the only solution of (13) i s n = 4, k '= 2. 

The equation 

(14) un = v m v k (m =>k > 1) , 

i s equivalent to 

(15) u = v , + (-1) v , 
x } ™ m+k v ; m - k 
If k i s even it is c lea r that n > m + k; indeed s ince %^+k = Um+k+l + U m + k - l 
we mus t have n > m + k + 1. Then (15) impl ies 
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Um+k+2 - Um+k+l + u m+k~l + V m - k 

which simplif ies to 

(16) u ,, o < v , 
v ' m+k-2 m - k 

If m = ks (16) holds only when m = 2; however this does not lead to a solution 

of (14). If m > k, (16) may be wri t ten as 

U l l o < U , . - + 1 1 1 . 1 < U , f 

m+k-2 m~k+l m - k - 1 m - k s 

which holds only when m = 4? k = 2. 

If k i s odd? (15) becomes 

(17) u + v - t = v ,, 
x f n m - k m+k 

If m = k th is r educes to 

u + 2 = u0 1 ' + u n l . , n 2k+l 2k-1 9 

which Implies 2k - 1 = 3 , k = 2„ If m = k + 1 (17) g ives ' 

u n + 1 . . ! = . u 2 k + 2 + U2k'. •• 

which Is c lea r ly impossible* F o r m > k + 1 we get 

1 1 , 1 . 1 + U ^ 1 1 - U ™ + 2 U 1 9 

m+k+1 m+k-1 n m - k 

so that n < m + k + 1. Since 

u m+k + 2 u m - k < u m+k+l + u m+k~l f 

we mus t have n = m + k + 1. Hence (17) becomes 

m - k u m + k - l 
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as we have seen above, this implies 

m -i k = 2, m + k - 1 = 4 , 

so that we do not get a solution. 
We may state 
Theorem 2. The equation 

u = v v, (m ^ k > 1) 
n m k x ' 

has the unique solution n = 8, m = 4, k - 2. 
It is clear from (4)f that the equation 

(18) un = cuk (k > 2) , 

where c is a fixed integer >1 is solvable only when k| n. Moreover the num-
ber of solutions is finite. Indeed (18) implies 

cu, ^ u01 > u, v, . c ^ v, ; 
k 2k k k ' k ' 

moreover if n = rk then for fixed k, r is uniquely determined by (18). 
This observation suggests two questions: For what values of c is (18) 

solvable and, secondly, can the number of solutions exceed one? In connection 
with the first question consider the equation 

(19) un = 2uk (k > 2) . 

Since for n > 3 

we get 

2u 0 < u .• = 2u 0 + u 0 < 2u . , n-2 n n-2 n-3 n-1 9 

u 0 < u, < u -n-2 k n-1 

which is clearly impossible. Similarly, since for n > 4 
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3 u n-3 < Un = 3 u n-3 + 2 u n -4 < 3 un-2 

it follows that the equation 

(20) un = 3uk (k > 2) 

has no solution. 
Let us consider the equation 

(21) u = u u, (m > k > 2) 
x } n m k * ; 

We take 

u = u , - u + u u -n n-m+1 m n-m m-1 

so that 

u , - u < u < u , 0 u , n-m+1 m n n-m+2 m * 

provided n > mQ Then clearly (21) is impossible, 
For the equation 

(22) v n = u m v k (m > 29 k > 1) , 

we use 

v = u v , - + u - v n m n-m+1 m-1 n-m 

Then 

u m V m + l < vn K u m v n -m + 2 • 

so that (22) is impossible. 
This proves 
Theorem 3. Each of the equations (21), (22) possesses no solutions. 
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Consider next the equation 

(23) . v = v v, (m > k > 1) . " v ' n m k ' 

This i s equivalent to 

(24) v = v M + ( - l ) k v , 
v ; n m+k l ; m - k 

F o r k even, (24) i s obviously imposs ib le . F o r k odd we may wr i te 

v = v + v , . 
m+k n m - k ' 

which r e q u i r e s m + k = n + l = m - k + 2 9 so that k = 1. This p roves 

Theorem 4a The equation (23) p o s s e s s e s no solut ions. 

The remain ing type of equation i s 

(25) v = u u, (m > k > 2) . x ' n m k x ' 

This i s equivalent to 

(26) 5v = v ^ + (~ l ) k v , . K ; n m+k v ' m - k 

Clearly n < m + k. Then since 

v m + k = 5 v m+k-4 + 3 v m + k - 5 * 

(26) impl ies 

(27) 5v = 5v J_1 A + 3v _,_, . + ( - l ) k v , 
^ ; n m+k-4 m+k-5 v ' m-k 

Consequently n > m + k - 3, while the r ight m e m b e r of (27) Is l e s s than 

5 v m + k - 4 + 4 V m+k-5 < 5 v m + k - 3 ' 

This evidently p roves 
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Theorem 5. The equation (25) p o s s e s s e s no solution. 

Next we d i scuss the equations 

(28) u 2 + u 2 = u 2 (0 < m -= n) 
' m n k • ' 

(29) v 2 + v 2 = v 2 (0 ^ m < n) 
v ' m n k . ; 

We shall r e q u i r e the following 

Lemma, The following inequali t ies hold. 

(30) - ^ > | ( n s 2) 
n 

(31) ^ £ | (D > 3) 
n 

Proof. Since u < 2u • - for n > 29 we have n n~l * • 

V i ; un-r 3 
n n 

The proof of (31) i s exactly the s ame . 
Returning to (28) i t i s evident that 

u 2 < u,2 < 2u2 , n k n ' 

so that 

u < u, < u *J~2 . n k n 

Then k > n and by the l e m m a 

3 
u , >• u ,.,. • > •— u . k n+1 " 2 • n 

Since *f2 < 3 /2 , we have a contradict ion. The same argument applies to (29). 

The l e m m a r e q u i r e s that n > 2 or 3 but the re i s of cou r se no difficulty about 
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the excluded values. This proves 
Theorem 6. Each of the equations (28), (29), possesses no solutions. 

More generally, each of the equations 

r r r u + u = u, (0 < m < n) 9 m n k v ' > 

v + v = v, (0 ^ m < n) , m n k x ' 9 

where r ^ 2 has no solutions. 
Remark. The impossibility of (29) can also be inferred rapidly from the 

easily proved fact that no v is divisible by 5. Indeed since 

a5 = /35 = | (mod's/5) , 

it follows that 

n+5 , nn+5 _ 1 , n , Jti. 1 . ,' /=. 
V-5 = a + P 2{a & ) = 2 Vn ( m ° d ^5) ' 

so that v _ ^ v (mod^5). Moreover none of v0, vls v3, v4 is divisible by 5. 
The mixed equation 

(32) v 2 + v 2 = u2 (0 < m < n) x ' m n k v ; 

has the obvious solution m = 2, n = 3, k = 5; the equation 

(33) u m + vn = uk { m > 0 ) 

has the solution m = 4f n = 3 , k = 5 . 
Clearly (32) implies 

v < \x, < v N/2 n k n 

This inequality is not sufficiently sharp to show that (32) has no solutions al-
though it does suffice for the equation 

r r r 
V x + v = Ui 

m n k 
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with r sufficiently l a rge . 

However (32) i s equivalent to 

<34> V + (-V™2 + v2n + ^ 2 = i <v2k " (" 1 ) k 2 > • 

If m + n EE 1 (mod 2), th is r educes to 

V2m = V2n = I iV2k " ^ 2 } • 

There is no loss in general i ty in assuming k > 5. Then since 

V2k = 5 v 2 k - 4 + 3 v 2 k - 5 ' 

we get 

v 0
 + v o = VO1 A + | { 3 v 0 1 _ - ( - l ) k 2 | . 2m 2n 2k-4 5 L 2k-5 ; j 

Since m < n and 

| { 3 v 2 k - 5 - ( " 1 > k 2 } < V 2k-5 • 

we mus t have 2n = 2k - 4 and 

5 v 2 m = 3 v 2 k - 5 " ( ~ 1 > k 2 = 6 v 2 k - 7 + 3 v 2 k - 8 " ^ 2 • 

It i s there fore n e c e s s a r y that 2m = 2k - 6 and we get 

5v0 = 6v0 , + 3vQ 0 + ( - l ) m 2 , 2m 2 m - l 2m-2 ' * 

which simplif ies to 

Hence m = 2s k = 5 9 n = 3 (a solution of (22)). 

Next if m = n (mod 2), (34) r educes to 
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v 0 + v 0 + ( - l ) n 4 = | {v01 - ( - l ) k 2 | 2m 2n K ; 5 l 2k v ; J 

and as above we get 

<35> v 2 m + V2n + ^ 4 = V 2k-4 + I i3v2k-5 " ^ 2> 

It Is n e c e s s a r y that 2n = 2k - 4, so that (35) reduces to 

(36) 5 v 2 m + ( - l ) m 2 0 = 3 v 2 k _ 5 - ( - l ) k 2 . 

Clearly 2m < 2k - 6. If 2m < 2k - 6 we get 

3 v 2 k - 5 " { - ^ 2 * 5 V 2 k - 7 + ^ m 2 ° -

'2k-6 2k-

which Is not poss ib le . Thus 2m = 2k - 6 and (36) becomes 

5v0 + ( - l ) m 20 = 3v0 n + ( - l ) m 2 . 2m v ; 2m+l K ' 

This r educes to 

v 0 . = (-1) 18 , 
2 m - 4 ' • ' • 

which i s sat isf ied by m = 5. Then k = 8, n = 6 but this does not lead to a 

solution of (32). 
This completes the proof of 

Theorem 7. The equation 

v l + v^ = u / (0 < m < n) m n k x ' 

has the unique solution m = 2, n = 3, k = 5. 

The equation 
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(37) u 2 + v 2 = u 2 (m > 0) 
m n k v ; 

can be t r ea t ed in a l e s s tedious manner . Suppose f i r s t that v < u . Then (37) 
vr n m \ ; 

impl ies 

u 2 < u,2 < 2u 2 
m k m 

and as we have seen above this i s imposs ib le . Next let u < v . If k > n + 2 

then 

u 2 > u 2 „ = (2u , - + u )2 = 2(u , - + u 1 ) 2 + 2 u 2
i 1 + 2 u M u . k n+3 v n+1 n7 x n+1 n - l ; n+1 n+1 n -2 

+ u 2 - u2 ., > 2v 2 
n n - 1 n ' 

so that (37) i s cer ta inly not satisfied. Since k > n + 1 it follows that k = n + 2. 

Thus (37) becomes 

(38) u 2 = u2
 0 - v 2 - 3 (u 2 - u2

 n ) 
v ; m n+2 n. n n - 1 ' 

as i s easi ly verified. If m > n + 2 then 

u 2 > u2 = (2u + u n )2 > 3 (u2 - u2
 1 ) , m n+2 v n n - 1 ; v n n - 1 ; J 

contradic t ing (38). Since for n > 3 

3(u2 - u2 , ) - u 2 = 2u2 - 3u2 , > | u 2
 1 - 3u2 > 0 Vn n - l ; n n n - 1 2 n - 1 n - 1 

i t follows that m > n. Thus m = n + 1 and (38) becomes 

u2 , = 3(u2 - u2 , ) . n+1 x n n - 1 ; 

This impl ies u + u - = 3, n = 35 which leads to the solution n = . 3 , m = 4. ^ n n - 1 ' ' ? J 

k = 5 of (37). As for the excluded values n = 1, 2 i t i s obvious that they do 

not furnish a solution. This p roves 

Theorem 8. The equation 



28 A NOTE ON FIBONACCI NUMBERS [Feb. 1964] 

u 2 + v 2 = u 2 (m > 0) m .n k x ; 

has the unique solution m = 4, n = 3 , k = 5 . 
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scr ip t ion fee is $25 annually. (Academic Members will r ece ive two 

copies of each i s sue and will have their names l i s ted in the Journal . ) 

REQUEST 

The Fibonacci Bibliographical Resea rch Center d e s i r e s that any r e a d e r 

finding a Fibonacci r e f e r e n c e , send a c a r d giving the r e fe rence and ab r i e f d e -

scr ip t ion of the contents . P l ease forward all such information to: 

Fibonacci Bibliographical R e s e a r c h Center , 
Mathematics Depar tment , 
San Jose State College, 

San Jose 9 California 

NOTICE TO ALL SUBSCRIBERS!!! 

P l ea se notify the Managing Editor AT ONCE of any add res s change. The Pos t 

Office Depar tment , r a t h e r than forwarding magazines mai led th i rd c l a s s , sends 

them direct ly to the dead- le t t e r office. Unless the add re s see specifically r e -

ques ts the Fibonacci Quar te r ly be forwarded at f i r s t c l a s s r a t e s to the new ad-

d r e s s , he will not r ece ive it. (This will usually cos t about 30 cents for f i r s t -

c l a s s postage.) If poss ib le , p lease notify us AT LEAST THREE WEEKS PRIOR 

to publication dates : Feb rua ry 15, April 15, October 15, and December 15. 

RENEW YOUR SUBSCRIPTION!!! 



SOME HEW FIBONACCI IBEPfTITiES 

R = I 0 1 2 

V E R N E R E. H O G G A T T , J R . and M A R J O R I E B I C K N E L L 
San J o s e State C o l l e g e , San J o s e , C a l i f o r n i a 

In this pape r , some new Fibonacci and Lucas ident i t ies a r e genera ted by 

m a t r i x methods. 

The m a t r i x 

0 0 1 

V i i i 

sat is f ies the ma t r i x equation 

R3 - 2R2 - 2R + I = 0 . 

n Multiplying by R yie lds 

(1) R n + 3 - 2 R n + 2 - 2 R n + 1 + R n = 0 

It has been shown by Brennan [1 ] and appears in an e a r l i e r a r t i c le [ 2] 

and as E lementa ry P rob l em B-16 in this quar te r ly that 

F 2 F - F F2 

n - 1 n - 1 n n 
(2) R n = ( 2F F , F* - F - F 2F F ± 1 
w « n n - 1 n+1 n - 1 n n n+1 

F 2 F F ^ F 2 

• n n n+1 n+1 

where F is the n Fibonacci number , n n+3 By the definition of ma t r ix addition^ cor responding e lements of R , 

R , R and R mus t satisfy the r e c u r s i o n formula given in Equation (1). 
That i s s for example , 

29 
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F 2 - 2 F 2
J Q - 2F 2 + F 2 = 0 

n+3 n+2 n+1 n 

and 

F F - 2 F F - 2F F + F F = 0 
n+3 n+4 n+2 n+3 n+1 * n+2 n n+1 u ' 

Returning again to 

R3 - 2R9 ~ 2R + I = 0 , 

this equation can be rewr i t t en as 

(R + I)3 = R3 + 3R2 + 3R + I = 5R (R + I ) . 

In genera l , by induc t ion i t can be shown that 

(3) R P ( R + I ) 2 n + 1 = 5 n R n + P ( R + I ) . 

Equating the e lements in the f i r s t row and th i rd column of the above m a t r i c e s , 

by means of Equation (2), we obtain 

2n+l / 0 , ., \ 
V"* / 2n + 1 \ 

(4) I t
 Fi+p=5nF2(n+P)+l 

i=0 x / 

It i s not difficult to show that the Lucas numbers and m e m b e r s of the 
Fibonacci sequence have the re la t ionship 

L2 - 5F2 = ( - l ) n 4 . n n v ; 

Since a lso 

2 n ^ / 2 n + l \ . + 

we can der ive the following sum of squa re s of Lucas n u m b e r s , 
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2n+l / o . \ 
2 -&+1 " 

L I+p 5 F2(n+p)+l » 
i=0 

by substi tution of the preceding two ident i t ies in Equation (4). 

Upon multiplying Equation (3) on the r ight by (R + I), we obtain 

(5) RP(R + l ) 2 n + 2 = 5 n R n + P ( R + I ) 2 . 

Then, using the express ion for R given in Equation (2) and the identity 

L k = F k - i + F k + i 

we find that 

F 2 n - 1 F 2 n 

( R n + 1
 + Rn)(R+I) = ( 2 F 2 n 2 F 2 n + 1 2 F 2 n + 2 

F 2n+1 . F2n+2 F 2n+3 

L 2 n L 2n+1 L2n+2 

2 L 2 n + l 2 L 2n+2 2 L 2 n + 3 

L2n+2 L 2n+3 L 2n+4 

Finally8 by equating the e lements in the f i r s t row and th i rd column of the 

t r i c e s of Equation (5)9 we derive the two identi t ies 

2 n + 2 ' 2 n + 2 

i=0 v i / 

and 
2n+2 

, . L i+p - 5 L2(n+p) 
i=0 
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By s i m i l a r s t eps , by equaling the e lements appear ing in the f i r s t row and 

second column of the m a t r i c e s of Equations (3) and (5), we can wr i te the add i -

tional ident i t ies 9 

2 n + 1 ' 2 n + l \ 
F F = 5 n F 

i - l+p i+p 2(n+p) i C 
i=0 x 

and 

2 1 1 + 2 ' 2 n + 2 . 
= S n T 

i+p 2(n+p)+l 

^ / 2 n + 2 \ 
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TWO CORRECTIONS, VOL, 1, NO. 4 

Page 73: In proposal B-26, the l a s t equation should r ead 

B (x) = (x + 1) B -(x) + b -(x) nv ' v ' n-V f n - l v ; 

Page 74: In proposal B-27, the l ine for cos n<£ should r e a d 

N 

c o s n 0 = Pn(x) = y A . n x n + 2 " 2 j ( N = [ ( n + 2 ) / 2 ] 

pi 

RENEW YOUR SUBSCRIPTION!!! 



PRIMES WHICH ARE FACTORS OF ALL 
FIBONACCI SEQUENCES 

B R O T H E R U. A L F R E D 
St. M a r y ' s C o l l e g e , C a l i f o r n i a 

In studying the Fibonacci and Lucas sequences, one of the striking dif-
ferences observed is the fact that ALL primes are factors of some positive 
term of the Fibonacci sequence while for the Lucas sequence many primes are 
excluded as factors e This difference raises some Interesting questions regard-
ing Fibonacci sequences in general. 
(1) For a given Fibonacci sequence, how do we find which primes are factors 

and which are non-factors of Its terms? 
(2) Are there certain primes which are factors of all Fibonacci sequences? 
It Is this latter question which will be given attention in this paper, 

We are considering Fibonacci sequences in which there is a series of 
positive terms with successive terms relatively prime to each other. For any 
sequence we can find two consecutive terms a — G9 b > 0, a < b, and take 
these as 

f0 = a9 fj = b , 

the defining relation for the sequence being 

f ^ = f + f , , (n ^ 2) . n+1 n n-1 s ; 

The particular sequence with a = 0 and b = 1 is known as the Fibonacci se -
quence and will have its terms designated by F0 = 09 Ft = 1, and so on. 

Theorem: The only Fibonacci sequence having all primes as factors of 
some of Its positive terms is the sequence with a = 0 and b = 1. 

Proof: Since zero Is an element of the sequence, the fact that all primes 
divide some positive terms of the sequence follows from the periodicity of the 
series relative to any given modulus. 

To prove the converse, we note that each sequence is characterized by a 
th quantity D = b2 - a (a + b). For if f is the n term of the sequence, 

f - F ,b + F 0a . n n-1 n-2 
33 
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Then 
f2 - f f L 1 = (F , b + F 0 a ) 2 - (F 0 b + F c a ) (F b + F ,a) n n-1 n+1 l n-1 n-2 ' v n-2 n-3 ;v n n-1 ' 

which equals 

b2 (F2 - F 0 F ) + ab(F , F 0 - F F Q ) + a2 (F2 - F Q F , ) v n-1 n-2 n ; n-1 n-2 n n - 3 ; v n-2 n-3 n - 1 ' 
or 

(~l)n (b2 - ab - a2) 

so that the values are successively +D and -D. 
Now D is equal to 1 in the case of the sequence 0 ,1 ,1 ,2 ,3 , • • • and in 

no other Fibonacci sequences. For if a is kept fixed, the quantity b(b - a) -
a2 increases with b0 Therefore its minimum value is found for b = a + 10 

But then b(b - a) - a2 becomes a + 1 - a2
0 Now if a = 0,1 or 2, [a + 1 - a2| 

= 1 and we have the Fibonacci sequence. If a ^ 3, | a + l - a 2 | ^ 5 . 
Thus, apart from the Fibonacci sequence properly so-called, D > 1. 

Furthermore, D must be odd if a and b are relatively prime. Hence if 
f = 0 modulo some prime factor p of D, we would then have 

f n- l f n + l s ° <m o d P> 

from the relation 

fn " f n - l f n + l = ^ ^ D 

so that either f 1 or f - = 0 (mod p)„ Thus two successive terms of the 

series would be divisible by p and consequently all terms would be divisible 
by p which would lead to the conclusion that p | (a,b), contrary to hypothesis, 

Therefore, the only Fibonacci sequence having all primes as divisors 
one or the other of its terms is the one Fibonacci sequence with a zero element, 
namely: 0 ,1 ,1 ,2 ,3 , 5f 8,13, •• • . 

CONGRUENTIAL FIBONACCI SEQUENCES 

For a given prime modulus, such as eleven, there are eleven possible 
residues modulo 11: 0,1,2, 3, • • • , 10. These may be arranged in ordered pairs 
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repetitions being allowed in l l 2 or 121 ways. Each such pair of residues can 
be made the starting point of a congruential Fibonacci sequence modulo 11, 
though of course various pairs will give r ise to the same sequence. The one 
pair that needs to be excluded as trivial is 0 - 0 since all the terms of the s e -
quence would then be 0 and we have assumed throughout that no two successive 
terms have a common factor. Hence there are 120 possible sequence pairs. A 
complete listing of these congruential sequences modulo 11 is displayed below. 
(A) 

(B) 

(C) 

(D) 

(E) 

(F) 

(G) 

(H) 

(I) 

(J) 
(K) 

(L) 
(M) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 

1 

2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

8 

4 

8 

2 

4 

6 

8 

10 

1 

3 

5 

7 

9 

9 

5 

10 

3 

6 

9 

1 

4 

7 

10 

2 

5 

8 

6 

9 

7 

5 

10 

4 

9 

3 

8 

2 

7 

1 

6 

4 

3 

6 

8 

5 

2 

10 

7 

4 

1 

9 

6 

3 

10 

2 

4 

6 

8 

10 

1 

3 

5 

7 

9 

3 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

2 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

5 

That all possible sequence-pairs are covered is shown in the following table 
where the number in the column at the left is the first term of the pair and the 
number in the row at the top is the second. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 
10 

0 

X 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

1 

A 

A 

G 

L 

F 

I 

F 

K 

D 

J 
A 

2 

B 

A 

B 

K 

C 

H 

M 

I 

A 

B 

G 

3 

C 

G 

A 

C 

E 

H 

J 

G 

C 

L 

K 

4 

D 

L 

B 

G 

D 

B 

K 

D 

F 

C 
E 

5 

E 

F 

K 

A 

L 

E 

E 

I 

H 

H 

B 

6 

F 

I 

C 

C 

B 

F 

F 

M 

J 

K 

E 

7 

G 

F 

H . 

E 

G 

K 

I 

G 

D 

I 

M 

8 

H 

K 

M 

H 

D 

A 

C 

F 

H 

J 

D 

9 

I 

D 

I 

J 

B 

L 

C 

H 

K 

I 

J 

10 

J 

J 

A 

G 

K 

E 

B 

E 

M 

D 

J 
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We shall now cons ider va r ious ca tegor ies so as to cover all p r i m e s . 

(A) p = 2 

If e i ther a or b i s even^ 2 i s a factor of t e r m s of the s e r i e s ; If both 

a r e odd9 then a + b = 0 (mod 2), Thus, 2 Is a factor of all Fibonacci sequences," 

(B) p_ 

Since 5 Is not a factor of t e r m s of the Lucas s e r i e s , It cannot be a d iv i -

so r of all Fibonacci sequences . 

(C) p = lOx + 1 
Fo r p of the form 1 0 x ± l , the per iod h(p) for any Fibonacci sequence 

i s a divisor of p - 1. Since the re a r e p2 - 1 sequence p a i r s of r e s i d u e s , the 

number of congruential sequences modulo p would have to be 

p2 - 1 or p + 1 

But s ince t he re a r e only p - 1 r e s idues other than z e r o , sequence t r i p l e s 

a-0~a can only be p - 1 in number , Thus t h e r e cannot be one pe r sequence. 

Hence no p r i m e of the form 10 x ±. 1 c a n b e a divisor of all Fibonacci sequences . 

(D) p •= 10 x ± 3 

F o r p of the form 10 x + 3, the s i tuat ion Is a s follows: 

(1) The per iod is a factor of 2p + 2. 

(2) 2p + 2 i s divisible by 4* 

(3) The per iod contains all power of 2 found in 2p + 2. 

(4) The per iod is the same as the per iod of the Fibonacci sequence , F . [ 1 ] 

Accordingly9 if the per iod Is l e s s than 2p + 29 i t will a lso be l e s s than 

p - 1 and hence a s before t he r e will not be enough sequence p a i r s with z e r o s 

to cover all the sequences . Thus a n e c e s s a r y condition Is that the per iod be 

2p + 2 if a p r i m e Is to be found as a factor of all Fibonacci sequences , 

Two c a s e s may be dist inguished: (a) The case in which the per iod h(p) 

= 22 (2r + 1); (b) The c a s e i n which the per iod h(p) = 2A (2r + 1), m ^ 3. 
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(a) h(p) = 22(2r + 1) 

In this instance, if a sequence has a ze ro at k, i t will a lso have z e r o s 

a t k / 4 , k /2 g and 3k/4 or four ze ros pe r sequence. The number of sequences 

is 

P2" - 1 = P - 1 
2p + 2 2 

To provide 4 ze ros pe r sequence the re would have to be 

^ E " - " " ^ = 2(P " x ) z e r o s , 

whereas the re a r e only p - 1. 

m 
(b) k = 2 (2r +"1), m ^ 3. 

F o r a per iod of this form, if t he re is a zero at k, t he r e will a lso be a 

z e ro at k /2 9 but not at k / 4 or 3k/4. The number of ze ros r equ i red for 

(p - l ) / 2 sequences would be 

2 ( p ' - l ) / 2 . = p - ; 1 , 

which i s the exact number avai lable . Thus the p r i m e s which divide all Fibonacci 
m 

sequences a r e p r i m e s of the form 10 x ± 3 for which 2p + 2 i s equal to 2 (2r 
+ 1), m > 3. In other words , 

p = +3 (mod 10) 

p = 2m~1 (2r + 1) - 1 or p s= - l (mod 4) 

These congruences lead to the solution p = 3,7 (mod 20). 

CONCLUSION 

The p r i m e s which a r e factors of all Fibonacci sequences a r e : 

(1) The p r i m e 2 

(2) P r i m e s of the form 20k + 3 ,7 , having a per iod 2p + 2„ 
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LIST OF PRIMES WHICH DIVIDE 
ALL FIBONACCI SEQUENCES (p < 3000) 

2 

3 

7 

23 

43 

67 

83 

103 

127 

163 

167 

223 

227 

283 

367 

383 

443 

463 

467 

487 

503 

523 

547 

587 

607 

643 

647 

683 

727 

787 

823 

827 

863 

883 

887 

907 

983 

1063 

1123 

1163 

1187 

1283 

1303 

1327 

1367 

1423 

1447 

1487 

1543 

1567 

1583 

1607 

1627 

1663 

1667 

1723 

1747 

1783 

1787 

1847 

1867 

1907 

1987 

2003 

2063 

2083 

2087 

2143 

2203 

2243 

2287 

2347 

2383 

2423 

2467 

2503 

2543 

2647 

2683 

2707 

2767 

2803 

2843 

2887 

2903 

2927 

2963 
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SOME CORRECTIONS TO VOLUME 19 NO. 4 

Pages 4 5 - 4 6 : D = 31 should r e a d (2 ,7) , (3>8). 

There was an omiss ion in the Table of n D f s " as follows: 

D D 

305 (1,18) (16,33) 361 (8,25) (9,26) 
311 (5,21) (11,27) 379 (1,20) (18,37) 
319 (2,19) (7,23) (9,25) (15,32) 389 (5,23) (13,31) 
331 (3,20) (14,31) 395 (2,21) (17,36) 
341 (1,19) (4,21) (13, 30) (17, 35) 
349 (5,22) (12,29) 
355 (6,23) (11,28) 
359 (7,24) (10,27) 



A FIBONACCI TEST FOR CONVERGENCE 

J . H. J O R D A N 
W a s h i n g t o n State U n i v e r s i t y , P u l l m a n , Wash . 

Let g(n) be a non-increasing positive function defined on the positive in-
OO 

tegers. There are many available tests to determine whether or not 2 g(n) 
n=l 

converges. It is the purpose of this paper to exhibit a test for convergence 
which utilizes the Fibonacci numbers. 

THE FIBONACCI TEST 
oo oo 

2 g(n) converges if and only if 2 f g(f ) converges, where f is 
n=l n=l 

the nth Fibonacci number. 
OO 

Proof: Assume 2 g(n) converges. 
n=l 

| g(l) = | f i g ( f 2 ) 

| { g ( l ) + g(2)} - | f 2 g ( f 3 ) 

\ {g(2) + g(3) + g(4) + g(5)} - \ f3g(f4) 

\ (g(3) + g(4) + g(5) + g(6) + g(7) + g(8)} ^ \ f4g(f5) 

The sum of all terms on the left side of this array is 2 g(n). The sum of all 
terms on the right side of the array is 

l ^ f n - l ^ f a > £ l Z f n^ f n> 
n=2 n=2 

Since the left side dominates the right side 2 f g(f ) converges. 
°o n = l 

Assume that 2 g(n) diverges. 
n=l 

39 
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f2g (f i) 
hs <f2) 
fdg (f3) 

fn+A> 

= K(l) 
^ g(l) + g(2) 
S g(2) + g(3) + g(4) 

> g ( fQ) + . . . + g(fn n+2 " « 

The sum of all terms on the right side of this array is 2 2 g(n). The sum of 
00 n==X00 

all. terms on the left side of this array is 2 f +1g(f ) — 2 2 ^ gtf )• Since 
n=l ' n=l 

2 g(n) diverges so does 2 f g(f ) 
n=l n=l 

FURTHER REMARKS 

It should be noticed that this result can be generalized to the following: 
k 

Theorem: If 1 :- c, = [H • a ]* where a > 1 and H is a fixed posi-
00 00 

tive constant then 2 g(n) converges If and only if 2 c, g(c, ) converges. 
n=l k=l 

The proof is quite similar, 
It seems unlikely that this Fibonacci test for convergence will ever be-

come widely used. To designate some of Its useful qualities the following r e -
sults are exhibited* 

a — l a 
Corollary 1: 2 n converges or diverges as 2 n In n doess a < 0S 

n=l n=2 
Proof: Let r be the golden ratio, i.e. 9 r = (1 + 4b)/2 and notice that 

00 00 

f 1 = [r /N/S]* . NOW 2 n^ converges or diverges as 2 n I n r does. 
n = l n = l 00 

But n In r = (In r )a which Is approximately (In \l5 f _- )a«, So 2 n In r 
00 n = l 

converges or diverges as 2 (in\/5 f ) ' does. Now 
n=l 

> (ln\/5 f )a = Y f • f""1 (In 45 f f 
n=l n=l 

and appealing to the Fibonacci test this converges or diverges as 
*~f~x ] isTgreatest integer in x. 
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oo 

^ i T 1 (In N/5n)a 

n=l 

does,, which i s essent ia l ly the des i r ed resu l t . 

This coro l la ry te l ls us for example that s ince the harmonic s e r i e s gli-
OO OO 

- 1 - 1 - e 
ve rges then 2 n In n d iverges and s ince 2 n converges then 

n=2 n = l 
2 n (In n) converges , 

n=2 co -
Corol lary 2.: 2 n In n converges or d iverges as 

n=2 

y (n In n) (In In n 

n=3 

does. 
The proof i s quite s im i l a r . 

Corol la ry j : j = 3, 4, 5, • • • a r e l ikewise provable . 

The Fibonacci t e s t i s an effective subst i tute for the in tegra l t e s t in each 

of these co ro l l a r i e s . 

Consider the following example that i s handled easi ly by the Fibonacci 
a t es t . Let g(n) = f for f -, < n < f . where a < 0. Thus & w m m - 1 m9 

g(n) = l a + 2 a + 3 a + 5 a +• 5 a + 8 a + 8 a + 8 a + 1 3 a + • • » 

n=l 

Applying the Fibonacci t e s t one obtains 

l (a+1) 

l w - Z r - M 
n=l n=l n=l 

n+1 
r 

i . i T / n+1,a+1 . a+1 .n+1 , , , , . . 
which converges o r d iverges as 2 (r ) = 2 ( r ) $ out this is a 

n=l n=l 
a+1 geometric progression and converges provided r < 1 or when a < -1. 



EXPlOStSHa FIBOS^AGCI HESIDUES 

BROTHER U. ALFRED 
St. Mary's College, Cal i fornia 

Mathematicians have developed a simple and powerful method of delating 
numbers to each other from the standpoint of division,, They say that two num-
bers a and b are congruent to each other modulo m when the difference a 
- b is divisible by m. It can be readily shown that this is equivalent to the 
statement that on dividing a and b by m, they will both give the same " r e -
mainder" — which the mathematician calls the least positive residue, 

What remainder is obtained when we divided one Fibonacci number by 
another? The remainder could of course be zero, but as is well known, zero 
is one of the Fibonacci numbers. Do we always obtain a Fibonacci number for 
the least positive residue? If not, will we obtain a Fibonacci number if we al -
low the use of either the least positive or the least negative residue? 

This is the general line of investigation. In cases in which Fibonacci 
numbers are the result, the investigator should seek to find some type of reg-
ularity and thus formulate a mathematical theorem. Once this has been done 
a proof is a desideratum,, 

Just to start the process let us find a few least positive and least negative 
residues. Using F20(6765) as the dividend and various Fibonacci numbers as 
divisors, we find that 

6765 = 33 (mod 34) 6765 = 8 (mod 233) 6765 = 843 (mod 987) 
6765 s 0 (mod 55) 6765 = 356 (mod 377) 6765 = 377 (mod 1597) 
6765 = 141 (mod 144) 6765 = 55 (mod 610) 

It seems that in some cases the least positive residue is a Fibonacci number 
whereas in others apparently it is not. In the latter, we go to the least negative 
residue, we apparently get Fibonacci numbers in these cases as well. Thus 
6765 = -21 (mod 377); 6765 = -144 (mod 987). 

Those making discoveries in regard to this problem are encouraged to 
send their findings to Brother U. Alfred, St. Mary!s College, Calif., by July 
31st so that they may be published in the October, 1964, issue of the Quarterly. 

42 



TRANSCEHDESITAL HUMBEKS 
BASED OH THE FIBONACCI SEQUENCE 

DONALD KNUTH 
Cal i fornia Insti tute of Technology, Pasadena, Cali fornia 

A well-known theorem due to Liouville states that if £ is an irrational 
algebraic number of degree n, then the equation 

(1) S - R 
q n+e 

has only finitely many solutions for integers p,q, given any e > 0. There-
fore, an irrational number £, for which 

(2) 
q 

has solutions for arbitrarily large t, must be transcendental. Numbers of 
this type have been called Liouville numbers. 

In 1955, Roth published his celebrated improvement of Liouvillefs theorem, 
replacing "nM by "2" in equation (1). Let us call an irrational number £, 
for which 

(3) 2+e q 

his infinitely many solutions for some € > 0, a Roth number. Roth numbers 
are also transcendental, and they include many more numbers than the Liouville 
numbers. 

Let b be an integer greater than 1. Then we define ^, to be the con-
tinued fraction 

(4) ,b""'' + ?r-£ + 
Theorem: £, is a Roth number, hence i|, is transcendental. 

43 
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Proof: F r o m the e lementary theory of continued fractions, it is well 

known that if p / q is the n convergent to •£,, then *n m fe h$ 

(5) 
P 

n -i / 
—- < i / q q . -i 
q *n Ti-i-1 
m i F ^ n 

In this case , q0 = 1, q t = b °f and q = b ' q + q . We can t h e r e -

fore easi ly verify by induction that 
K F n + i _ i 

(6) q. n b - 1 

F n + 2 / F n + i F n 
In p a r t i c u l a r , as n -*• <*> we have q , - , / q -* b / b = b . ~ [(b -

f 
have approximately 

l ) q y where <p = .618 • • • i s the golden ra t io . Therefore for l a rge n we 

2+cf) 
n 

and this comple tes the proof of the theorem, 
R e m a r k s , It can be easi ly shown that the se t of Roth numbers i s of m e a s u r e 

z e r o , but i t is uncountable. F o r example , the number 2 . b n» where {c } 
F * n=l L nJ 

i s a s t r i c t ly inc reas ing sequence of posi t ive i n t ege r s , i s a Roth number if-
l im sup (c - / c ) > 2, and it is a Liouville number if this l im sup is i n -n->oo^ v n+1/ n ; ^ 
finite. In t e r m s of continued f rac t ions , the number 

J, i 
a1 + ™ , 1 

1 a 2 a* + 

i s a Roth number if and only if 

l im sup (log aiV/ log q n ) > 0 

where q a r e the denominators as in the proof of the above theorem. 

The rap id convergence of (4) allows us to evaluate £, easi ly with high 

p rec i s ion , e. g„ , 
£2 = .70980 34448 61291 • • • 
^3 = ,76859 75625 93155 • • • 

Reference to this a r t i c l e on p9 520 



STRENGTHENED INEQUALITIES 
FOR FIBONACCI AND LUC1S NUMBERS 

DOV JARDEN 
J e r u s a l e m , I s r a e l 

In a pape r enti t led "On the Grea t e s t P r imi t i ve Div isors of Fibonacci and 

Lucas N u m b e r s " (henceforth r e f e r r e d to as P ) , published In The Fibonacci 

Quar t e r ly , Volume 1, Number 3g pages 15 — 209 I have proved for the F i b -

onacci number s F . and the Lucas number s L the following inequal i t ies : 

(4) F • > F 2
 ( n > 2 , x ^ 1) 

(5) F5x+]_ > 5 F ^ (x * 1) 

( 4 1 L > L2 (n > 2S x > 1) 
n x + i n x 

The aim of this note i s to strengthen (4), (5), and (4*) as follows: 

(A) F x + 1 > n F n
x (n > 2, x > 1) 

(B) L > L11"1 (n > 2S x > 1) 
n A » X n A 

F o r the proof of (A), (B) we shall use the well-known formulae 

, _ . _ 1 r n / 1 x n "ii-i 
( C^ F n = ^ 5 & " ^ Q' > 

1 + N/5 3 n+2 n+1 , n 
a = .—77—-— > 77 5 a' = or + a 

(D) L = a + (-1) a 

as well as the following inequalities: 

(E) ^"f-2"1 > n (n £ 3> 
(F) | ffn > F n (n > 2) 

(G) f » n > L n (n 2 2) 

45 
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Proof of (E) (by induction). (E) is equivalent to 

(E?) 6 • 2 n > 7nfsf5 

(Ef) i s valid for n = 3. If (Ef) i s valid for n, then: 

6 • 2 n + 1 = 6 • 2 n + 6 • 2 n > 7iW5 + 7nNT5 > 7nNfs + 7^5 = 7^5(n + 1) . 

Proof of (F), (G) (by induction on n and n + 1), 

(F) i s valid for n = 2 , 3 , s ince 

^3 = a + a 2 = IJL^S + 3_^5 = 2 + ^ 5 > 2 + V4 = 4 = 2 F 8 . 

If 

« " > 2 F n • 

a > 2 F n + l • 

then a l so : 

n+2 n , n+1 0 . _, , _ v 0 _, 
a = a + « > 2 ( F n + F ^ ) = 2 F n + 2 

(G) may be proven analogously, noting that , by a rguments employed in the 

proof of (F), (G) i s valid for n = 2 , 3 , s ince 

2 6 3 + N/~4 Q T 

* y 5 ' ~2— = 3 = L2 . 

f a* > § - 4 > 4 = L3 . 

Proof of (A). 

(1) Fo r n = 2 we have , by (C): 
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„ 1 r 2X +1 „ - 2 x + 1 i ^ 5 r 2 x + 1 - 2 x + 1 i 2 r 2 X + 1 - 2 X + 1 T 
F

2x+1 = V5 t a " a > = T {a " a > > 5 ^ _ a > > 

*X+1)} = | { ^ x + 1 - 2 + c-2X+1} = 2 [ ^ ( ^ _ c v - 2 x ^ 2
 = 2 F 2 x lKx + 1-(2 

(2) For n ^ 3 we have, by arguments employed in the proof of (F), 

a n X + 1 => a** = ( a 3 / > 43 > 7 , 
i. e e , 

- T - > i . 

Hence, by (C), (E): 

V i - ^ x + 1 - <-i>n«-nX+1> > A f ^ 1 - ^ } = 
- i - . f ^ x + 1 = - i . f . 2 n ^ ) n >nFn

x . 
"5T " V — 1 "5C—? 

Proof of (B). For n ^ 2 we have (n - l)/(n - 1) = n + n + • • • 
+ 1 ^ n*"1 ^ (n - l ) * " 1 , whence: n x - 1 ^ (n - l ) x . Hence, by (D), (G), and 

x+1 1 
noting that (by arguments employed in the proof of (A), part (2)) -a~n > - „• 
we have: 

T nx+l , / 1xn _nx+l . nx+l -nx+1 . nX+1 1 ̂  
nx+i / 

nx+l 1 nx+l 2 . nx.n . 1 , nx.n nx-l / nx\n~l -, 

a(n-l)x(anx)nrl ^ n - l ^ n - l . > Q p n - l ^ n - 1 = 

\ 5 / nx 

Remark. In proving the inequalities (A), (B), I was assisted by my son, 
Moshe9 who also noted that (B) cannot be strengthened, analogously to (A), to: 
L , > L n . Indeed, for n = 4, x = 1, we have: L 2 = 2207 < 2401 = 74 

nx+l n x 4 

= 4 

(H) 

It may also easily be seen, by (C), (D), that 

lim Fnx+1 
x-̂ -oo n n F 

nx 
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l im L nx+1 

which shows that , for any given n ^ 2, t he re ex is t s an X such that , for any 

x > X, F > n F n , L > L 1 1 ; 1 . 
n x + i n x n x + i n x 

By means of (A), (B), and employing the s a m e reasoning as in the proof 

of (3),5 (3*) in P , we have, for the g rea t e s t p r imi t ive d iv isors F? of F and 

L! of L , the following genera l ized Inequal i t ies: 

(J) F* > pF9'1 ( p — a p r i m e + 5, p ^ 2, x > 1) 
pX-f-i p X 

(K) F^+ 1 > Fjx ( x ^ l ) 

(L) L ?
x + 1 > L P ~ 2 (p — a p r i m e , p > 2, x ^ 1) . 

P p" 

SOME CORRECTIONS TO VOLUME 1, NO. 3 

Page 18: In Equation (4*), r ep lace n > 2 by n > 2, 

The l a s t l ine should read: 

. . . for any posi t ive in teger n > 2, n > 2, respec t ive ly . 

Page 17: On l ine 6, add > to read : 

1 + /\/5 1 + »f4: = 3 
a 2 " > 2 " 2 

Line 8, Equation (7), should be c o r r e c t e d to read : 

3 
a y 2 

On Line 11 , add = to r ead : 

P = 1 - ^ 5 y 1 - N / 4 = 1 
^ ' 2 " 2 ""2 



ADVANCED PROBLEMS AND SOLOTI0NS 

E d i t e d by V E R N E R E. H O G G A T T , J R . 
San J o s e Sta te C o l l e g e , San J o s e , C a l i f o r n i a 

Send all communications concerning Advanced Problems and Solutions to 
Verner E. Hoggatt, Jr . , Mathematics Department, San Jose State College, San 
Jose, California, This department especially welcomes problems believed to 
be new or extending old results. Proposers should submit solutions or other 
information that will assist the editor. To facilitate their consideration, solu-
tions should be submitted on separate signed sheets within two months after 
publication of the problems. 

H~29 Proposed by Brother U. Alfred, St. Mary's College, California. 

Find the value of a satisfying the relation 

n11 + (n + a)n = (n + 2a)n 

in the limit as n approaches infinity. 

H - 3 0 Proposed by J. A. H. Hunter, Toronto, Ontario, Canada 

Find all non-zero integral solutions to the two Diophantine equations, 

(a) X2 + XY + X - Y2 = 0 
(b) X2 - XY - X - Y2 = 0 

H - 3 1 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California 

Prove the following: 
Theorem: Let a ,b ,c 9 d be integers satisfying a > 0$ d > 0 and ad -

be = 1, and let the roots of \2 - X - 1 = 0 be the fixed points of 

w = ^44 
cz + d 
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Then it is necessary and sufficient for all integral n * 0, that a = F 9 , 
th b = c = F 2 , and d = F 2 - , where F is the n Fibonacci number. (Ft 

= 1, Fo = 1 and F l 0 = F f 1 + F for all integral n.) 
* c n+z n+l n 

H - 3 2 Proposed by R. L. Graham, Bell Telephone Laboratories, Murray Hill, N. J, 

Prove the following: 
Given a positive integer n, if there exist m line segments L. having 

lengths a. , 1 < a. ^ n9 for all 1 ^ i ^ ms such that no three L. can be 
l th 

used to form a non-degenerate triangle then F ^ n5 where F is the m 
Fibonacci number. 

H - 3 3 Proposed by Malcolm Tallman, Brooklyn, N. Y. 

If a Lucas number is a prime number and its subscript is composite, then 
the subscript must be of the form 2 , m ^ 2ffl 

SOLUTIONS 

A TOUGH PROBLEM 

H - l Proposed by H. W. Gould, West Virginia University, Morgantown, W. Va. 

Find a formula for the n non-Fibonacci number, that i s , for the sequence 
4, 6,7, 9 ,10,11,12,14,15,16,17,18,19,20,22,23,••• . (See paper by L, Moser 
and J. Lambek, American Mathematical Monthly 9 voL 61 (1954), pp. 454-458.) 

A paper by the proposer will soon appear in the Fibonacci Quarterly, 
which will discuss this problem. 

A WORLD-FAMOUS PROBLEM 

H - 2 Proposed by L. Moser and L. Carlitz, University of Alberta, Edmonton, Alberta, 
arid Duke University, Durham, N.C. 

Resolve the conjecture: There are no Fibonacci numbers which are in-
tegral squares except 0 ,1 , and 144. 

See nLucas Squares/1 by Brother U. Alfred in this issue. A discussion 
by J. H. E. Cohn on Fibonacci Squares will be in the next issue. 
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AN UNSOLVED PROBLEM 

H - 1 5 Proposed by Malcolm H. Tallman, Brooklyn, N. Y. 

Do the re exis t i n t ege r s Nl 5 N2? and N3 for which the following e x p r e s -
s ions cannot equal other Fibonacci n u m b e r s ? 

(i) F 3 - F 2 F - F 3 m , n > N1 , 
x ' n n m m ' l * 
<U> F n + F n F m + F n F m m > n * N2 . 
(iii) F 2 - 3 F 3 m ? n > No . 

No discuss ion of any kind has been rece ived on this p rob lem. 

AN INSPIRING PROBLEM 

H - 1 7 Proposed by Brother U. Alfred, St. Mary's College, California 
11 

Sum I t 5 Fk 
k=l 

(Editorial Comment: There will be th ree different approaches to the solution 

of the genera l ca se of the above p rob lem which will appear soon in the Fibonacci 

Q u a r t e r l y . ) 

'Solution by Joseph Erbacher and John Allen Fuchs, University of Santa Clara, Calif. 

Let L(E) = (E2 - E - I ) 4 = . 5 0
a - E where E i s the l inea r opera to r such 

that E x F k = F k .. Then L(E)k 3 F k = 0. (This follows from a r e s u l t of J a m e s 

A. Jeske P "Linear Recu r r ence Relat ions - P a r t I, f f Fibonacci Quar te r ly , April* 
n 8 

1963, p . 72, Equation (4.8).) Let S = ^ k3Fk« Since . ^ a. = 1 , S = 

1 a.S = I (a. nzl k 3 F k + a . l
z [j3F - (n + j)3 F , ]) = R + T9 where R 

i=0 l i = 0 ^ 1 k = i + l K j= l J n j J 
i s the f i r s t double summat ion and T i s the second double summat ion. R e v e r s -

n 8 
ing the o r d e r of summat ion in Rs we have R = 2 2 a.(i + k)3 F . , ,•• Since 
8 8 k = l i = 0 
2 a.(i + k)3F = 2 a .E x k 3 F k = L(E)k 3 F k = 0S it follows that R = 0 and 

i=0 i=0 
S = T. Using the re la t ion F , n = F ,., + F in T, one can t r ans fo rm the 

& n+2 n+1 n s 

solution into the form S = 50 + (n3 + 6n = 12)F + 2 + (-3n2 + 9n = 1'9)F «. 
General iz ing on the above technique one s ee s that 2 k Fk = u(n)F 

k=l n + Z 
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+ v(n)F + A 9 where u and v a r e polynomials in n of degree p and A 

is a constant independent of n. It can be shown that the coefficients of u and 

v may be found by solving the 2p + 2 equations obtained by let t ing n take on 

any 2p + 2 consecutive va lues . 

Also solved by Zvi Dresner and Marjorie Bicknell 

A CLASSICAL SOLUTION 

H - 1 6 Proposed by H. W. Gould, West Virginia University, Morgantown, W. Va. 

n x n ~~ x Define the ord inary Hermi te polynomials by H = (-1) e D (e )e 

oo 

(i) ^ H n ( x / 2 ) ST = X ' 
Show that: 

OO 

y- n 
(ii) ) H (x /2 )^ T -F = 0 , 

n=0 

(iii) ^ H n ( x / 2 ) ^ L ^ 2 e " X ' 

n=0 

n 

n! n 

where F and L a r e the n Fibonacci and n Lucas n u m b e r s , respec t ive ly . 

We reca l l that 2 H ( t ) -7- = e x x . F o r t = 77 this r educes to r, rv ; nj 2 n=0 
00 n 

2H (I — = 1. 
n\ 2 I n! ^ 

n ~ TI 4. 1 + ^ 5 0 1 - \T5 ™, . m Z „ fx\xn _, (a-ar2)x2 

Put a = —o 9 P = — o — . Then (a - B) 2 H 77 —r~F = e 

2 s p 2 x ^ ' n \ 2 / n ! n 
(/3=j32)x2 = 0 s ince a - a2 = p - /32 = - 1 . 

S imi la r ly , 
S H (f )^L = e ( ^ V + e(^V = 2 e -x2 

n \ 2 / n! n 
n=0 

See a lso the solution in the l a s t i s sue by Zvi Dre sne r . 

Reference continued from page 44. 

1. K. F . Roth, "Rational Approximations to Algebraic N u m b e r s / ' Mathematika 

2 (1955) pp. 1 - 20, p6 188. 



BEGli iEHS5 CORNER 

E d i t e d by D M I T R i T H O R O 
San J o s e State C o l l e g e , San J o s e , C a l i f o r n i a 

THE EUCLIDEAN ALGORITHM I 
1. INTRODUCTION 

Consider the problem of finding the greatest common divisor of 34 and 144. 
The factorizations 34 = 2 • 17, 144 = 24 • 32 make this a trivial problem. How-
ever , this approach Is discouraging when one deals with, say., "long" Fibonacci 
numbers. Fortunately in Prop, 2 of Book VII, Euclid gave an elegant algorithm. 
As usual, we shall designate the g. c, d. of s and t by (s,t). 

2. THE ALGORITHM 

The algorithm may be defined by the following flow chart. A ^ B means 
A replaces B, i. ee , set B = the current value of A. 

M represents the remainder in the division of K by L. 

M—L 

->' 

I — K 
J — L 

W 
K —L 

3z: 
L— K 

/ " ~ " ^ ^ ^ \ Y e s 
M = o? \ > (I,J) = L ->f Stop j 

Flow Chart for Computing the G. C. D of Positive Integers I and J 
53 
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F o r I = 13 and J = 8, the success ive values of K, L, and M a r e : 

K L M 

13 8 5 
8 5 3 
5 3 2 
3 2 1 
2 1 0 

The l a s t value of L is the des i r ed g.c.d. In the following computation, (10946, 

2584) = the l a s t non-ze ro r e m a i n d e r . 

4 
2584)10946 

10336 4 
610|2584 

2440 4 
" 144(610 

576 4 
34J144 

136 4 
8|34 

3 2 4 
2 | 8 " 

8. 
0 

In this d iscuss ion we shall emphas ize computational cons idera t ions . 

There a r e , however, numerous " theoret ical ! t applications of the Euclidean Al -

gor i thm. As LeVeque [1] e x p r e s s e s i t , f ? . . . i t i s the co rne r s tone of mul t ip l i -

cat ive number t h e o r y . " Fo r a r e l a t ed theo rem see Glenn Michael [ 2 ] , this 

i s sue . 

3. A FORTRAN PROGRAM 

With an occasional glance at our flow cha r t , it is easy to decipher the fol-
lowing F o r t r a n p r o g r a m . (For t r an is a p rob lem-or i en ted language commonly 
used in convers ing with e lec t ronic digital c o m p u t e r s . ) 

(i) A = B means A i s r ep laced by B„ 
(ii) The READ and PUNCH s ta tements r e f e r to c a r d input/output. 

(iii) In this context, N = K/L is an ins t ruct ion to se t N equal to [K/L] , 

i. e. , the g r ea t e s t Integer not exceeding K/L (somet imes cal led an in teger or 

fixed point quotient). Thus if K = 13 and L = 3, N will equal 4. 
(iv) The symbol for mult ipl icat ion is an a s t e r i sk . 
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(v) A "conditional transfer'1 is achieved by using an IF statement: if M 
< 0, go to statement 3 for the next instruction; otherwise go to statement 4. 

(vi) The FORMAT and END statements are technical requirements (which 
may be ignored). 

READ 10, I, J 
10 FORMAT (315) 

K = I 
L = J 

2 N = K/L 
M = K - L * N 

IF (M) 3, 3, 4 
4 K - L 
L = M 
GO TO 2 

3 PUNCH 10, I, J, L 
END 

4. Length of the Algorithm 

A natural question arises: What is the "length" of this algorithm? I. e. , 
if s and t are given, how many divisions are required to compute (s,t) via 
the Euclidean Algorithm? 

Let us designate this number by N(s,t). For convenience we may assume 
s > t. Thus for n > 1, N(n + l ,n) = 2; the first division yields the remainder 
1, whereas the second results in a zero remainder — signifying termination of 
the algorithm. (As a byproduct we see that any two consecutive integers are 
relatively prime.) 

In Part II we shall see how Fibonacci numbers (Fi = F? =1 , F., 1 = F. 
1 L i + i i 

+ F. .,) were used by Lame" to establish a remarkable result. Additional prop-
erties of N(s,t) are suggested in the following exercises. 

5. EXERCISES 

El . Note that the Euclidean Algorithm applied to the positive integers s 
and t may be described by the equations 
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8 = 1%+ r l 9 0 2= xt < s 
t = r t q 2 + r 2 s 0 < r2 < r j 

r i = ^ + r3» 0 < r 3 < r2 

r 0
 = r , q + r . 0 ^ r < r -n-2 n - l T i nJ n n - 1 

r . = r q , n + 0 n - 1 n T I + 1 

Explain why we mus t r each a r ema inde r (r - ) which i s ze ro In a finite num-

b e r of s t eps . Hint: Look at the inequal i t ies . 

E2. In E l , show that (s , t ) = r (the l a s t non-ze ro remainder), , Hint: 

Use repea ted applications of P rob lem 1.3 [3] , 

E3. (a) Verify that M = K - L * N i s the r e m a i n d e r in the division r e p -

r e sen t ed by s ta tement 2 (N = K/L) of the F o r t r a n p r o g r a m . 
(b) Can the F o r t r a n p r o g r a m be used to compute (I, J) when I < J ? 

E4. P r o v e that if n ^ 3 , then N(n, 3) = 1, 2, or 3. 

E5. Suppose that n > 5 i s chosen at random. Find the probabil i ty that 

N(n,5) > 2. 

E6. P rove that for n > 3 , N(n + 3,n) = 25 3 , or 4. 

E7. Fo r what values of n i s 3 < N(2n - 5,n) ^ 6? 

E88 Exp re s s (F .., F ) as a function of n. 

E9. Investigate the following conjecture: If a - F K , then N(n,a) < K - 1. 

Can n be any posi t ive in t ege r? 

E10. Investigate the following conjecture: Let F ^ 2 be any Fibonacci 

number . Then max N(n, F) = 1 + max (n, F - 1). 

REFERENCES 

1. Will iam J. LeVeque, Topics in Number Theory , Addison-Wesley, Reading, 

Mass . , 1 9 5 6 , Vol. I, Chap. 2. 

2. Glenn Michael , "A New Proof for an Old Proper ty , ! T Fibonacci Quar t e r ly , 

Vol. 25 No. 1, Feb. 1964, p . 57 . 

3. D. E. Thoro? "Divisibility I , " Fibonacci Quar t e r ly , Vol. 1, No. 1, Feb . 1963, 

p. 51. 



A HEW PROOF FOB M OLD PROPERTY* 

G L E N M I C H A E L 
W a s h i n g t o n State U n i v e r s i t y , P u l l m a n , Wash . 

1. INTRODUCTION 

The following theorem is cer ta in ly well known. 

Theorem: If m and n a r e posi t ive i n t e g e r s , then (F . F ) = F , .f & J \ m » n / ( m , n ) 
F o r example , proofs can be found in [ 1 , pp. 30—32] and [2, pp. 148—149]. In 

this paper we give an a l ternat ive proof which i s bel ieved to be new. 

2. PRELIMINARY RESULTS 

In addition to e lementa ry divisibili ty p rope r t i e s of i n t e g e r s , the proof d e -

pends on the following l e m m a s which may be found in [1 , pp. 10, 30 and 29] . 

L e m m a 1: Fo r n ^ 0, 

Y = F F + F F 
m+n m - 1 n m n+1 * 

L e m m a 2: F o r any n, ( F n , F n + 1 ) = 1. •• 

L e m m a 3: F o r n =1= 0, F n J F m n . 

3. PROOF OF THE THEOREM 

For m > 1, n > 1, we show that ( F m , F n ) = F Let 

c = (m,n) 

Then e l m , c I n and, by Lemma 3, F I F and F | Fn« Thus , F i s 

a common divisor of F and F and it follows that F I d where d = (F , 
i n xi L/ i i n 

F ). Also, s ince c = (m,n) , t he re exis t in tegers a and B such that 

c = am + bn 

*This paper s t e m s from a talk p r e p a r e d under the guidance of P ro fe s so r C. T. 
Long for p resen ta t ion to the Washington State Universi ty Mathematics Club. 
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Since c ^ m and m and n are positivef either a < 0 or b < 0o Suppose 
a ^ 0 and set k = -a0 Then 

bn = c + km 

and, by Lemma 1, 

m F = F = F F + F F 
x ' bn c+km c-1 km c km+1 * 

Now d l F 9 d | F and. by Lemma 3, F IF , and F I F / . Therefore, i n9 I m ' . ' n I bn mj km ' 
d I Fbn> d I F km ^ " f 0 l l 0 W S f r o m ( ^ t h a t d I F km + 1 F C B u t ( d ' F km + 1 >' 
= 1 since d j F, and by Lemma 2, (F, , F, 1 ) = 1. Therefore, d I F . 
But, as seen above, F j d. Hence, since both are positive, 

(F , F ) = d = F = F , 
\ m* n . c (ni,n) 

and the proof is complete. 

REFERENCES 

1. N. N. VorobTev, Fibonacci Numbers, Blaisdell Publishing Company, New 
York and London, 1961.. 

2. G. H. Hardy and E. M. Wright, The Theory of Numbers, Oxford University 
Press , London, 1954. 

SOME CORRECTIONS TO VOLUME 1, NO. 3 

Page 19: On the third line from the bottom, put in > for = to read 

(5 + /3nX+1) >. 
Page 24: Line 5 should read, instead of "aor + 2 / 3 = 0 , " 

aa + 2b = 0 . 

Page 30: On line 4, change n e . n to " e " . 
On line 18, change ffunitn to "limit. ,? 



k PRIMER FOR THE FIBONACCI NUMBERS - PART V 

V E R N E R E. H O G G A T T , J R . and I. D. R U G G L E S 
San J o s e S ta te C o l l e g e , San J o s e , C a l i f o r n i a 

CORRECTION' 

Read the l a s t displayed equation, on page 67 of P a r t IV, as 

Tan { T a n " 1 i - T a n " 1 % - l } - ( - l ) n + 1 ( % ^ - ) ^ 

1. INTRODUCTION 

In Section 8 of P a r t IV, we d i scussed an a l ternat ing s e r i e s . This t ime 

we shall lay down some brief foundations of sequences and infinite s e r i e s . This 

leads to some ve ry in te res t ing r e s u l t s in this i s sue and to the b road topic of 

generat ing functions in the next i s sue and to continued fract ions in the i s sue 

after that. Many Fibonacci numbers shall appear . 

2. SEQUENCES 

Definition: An o r d e r e d se t of numbers a1f a9 ,ao,•• ' • . ,a , • • • i s ca l led an l s c t 2 J c L 3 9 n? 

infinite sequence of number s . If t he re a r e but a finite number of the a s , a~i 9 ao$ 

• ° » , a then i t is a finite sequence of number s . 

A sequence of r ea l numbers {a } _1 i s said to have a r ea l number , a, 

a s a l imi t (written _^ ^ a . = a) if for every posi t ive r e a l number e 9 la - a) < 

e for all but a finite number of the m e m b e r s of the sequence {a }. If the s e -

quence {a } has a l imi t , this l imi t i s unique and the sequence i s sa id to con-

verge to this l imit . If the sequence {a } fails to approach a l imi t , then the 

sequence i s sa id to d iverge . We now give examples of each kind. 

If a = 1. {a } = l . l . l , - • • converges s ince a. = 1. 
n s L n J 3 9 9 & n-*°° n 

If a = l / n , {a } = 1 , 1 / 2 , 1 / 3 , - • * , l / n , • • • converges to ze ro . 
If a = ( - 1 ) , {a } = 1 , - 1 , + 1 , -1,+1,« • • d iverges by oscil lat ion. That 

i s , i t does not approach any l imi t . 

If a = n, {a } = 1 , 2 , 3 , ' • • d iverges to plus infinity. 
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Finally if a = ——, then {a } = -^ 9 — , ••• converges to one. n n i x n ^ s 
Some limit theorems for sequences are the following: 
If {a } and {b } are two sequences of real numbers with limits a and 

b, respectively, then 

l im , , u \ , i 
n-^oo(a + b ) = a + b 11 v n n ; 

lim , u \ t. 
n-*oo(a - b ) = a - b x n n ' 
lim , , 

n-̂ oo (ca ) = ca, any real c 
lim , , 

n->oo a b = ab 
n n 

n l i ^ ( a n / b n ) = a/b9 b * 0 . 

3. BOUNDED MONOTONE SEQUENCES 

The sequence {a } is said to be bounded if there exists a positive num-
ber, K, such that la | <K for all n > 1. If a , . ^ a , for n ^ 19 the 

* * I nl • n+1 n1 * 
sequence {a } is said to be a monotone increasing sequence; if a —a ,-. 
for n ^ 1, the sequence is monotone decreasing sequence. If a sequence is 
such that it is either monotone increasing or monotone decreasing it will be 
called a monotone sequence. 

The following useful and important theorem is stated without proof: 
Theorem 1: A bounded monotone sequence converges. 
As an example, consider the sequence {(1+ l / n ) n } , this sequence is 

monotone increasing and bounded above by 3. The limit of this sequence is 
well known. We will use Theorem 1 in the material to come. 

4. ANOTHER IMPORTANT THEOREM 

The following sufficient conditions for the convergence of an alternating 
series are given below. 

Theorem 2: If, for the sequence { s n } , 

1. Sj > 0, 
2« ( S n- l " S n ) ( - 1 ) n > (Sn " V l H"1^1 > °' f ° r n " 2" 
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lim g _ = 
n~~ oo n n + 1 ; s 

then the sequence {S } converges to a limits S5 such that 0 < S < S1e n * 

5, AN EXAMPLE OF AN APPLICATION OF THEOREM 2 

For the following example a limit is known to exist by the application of 
Theorem 2 of Section 4. 

Let S = F / F - , where {F } is the Fibonacci sequence, then S -
i-A 11 11 ' X 11 -. . 11""" J. 

- S = (-1) / ( F F _L1 ). By Theorem 2 above, i i m S exists. n x ' ' v n n + 1 ; J 9 n~* °° n 
To find the limit9 consider 

Fn+1 =
 F n - 1 

F F 
n n 

which in terms of {S \ is 1/S = 1 + S n. Let the limit of S as n tends 1 nf n n-1 n 
to infinity be Ss then lim S = lim S . = S > 0. Applying the limit 
theorems of Section 2, it follows that S satisfies 

S = ZTT-Z or S2 + S - 1 = 0 
1 + S 

Thus S > 0 is given by 

NT5 S = 

the positive root of the quadratic equation S2 + S - 1 = 0o 

6. INFINITE SERIES 

If we add together the members of a sequence {a }, we get the infinite 
series Sit + a2 + • • • + a + • • • . We now get another sequence from this in-
finite series. . 

Define a sequence (S } in the following way. Let St = at = 2 a.9 S2 
2 n n i=l * 

= 8L4 + din = 2 a.9 • • • or in general S = a-. + a? + • • • + a = 2 a.. This is 
i=l . i= l 

called the sequence of partial sums of the infinite series. The infinite series 
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can a lso be denoted by 

A = a-! + a2 + a3 + • • • + a + 
i= l 

If the sequence { Sn} converges to a l imi t , S, then the infinite s e r i e s , 

A, i s sa id to converge and converge to the l imi t S; o therwise s e r i e s A i s 

sa id to d iverge . 

7. SPECIAL RESULTS CONCERNING SERIES 

1. If an infinite s e r i e s A = a1 + a2 + • • • + a + • • • converges , then 

n-Sooa = 0. This i s immedia te s ince a = S - S . . n n n n - 1 
2. F r o m Section 3 above, an infinite s e r i e s of posi t ive t e r m s converges 

if the pa r t i a l sums a r e bounded above s ince the par t i a l sums form a monotone 

inc reas ing sequence. 
3„ F o r the a l te rna t ing s e r i e s 

( - l ) n + a n such that a n > 0, n ^ 1; a n + 1 ^ a n , n ^ 1; n ^ o 0 a n = 0 

n=l 

then by Section 4, above, the infinite s e r i e s converges ; in the theo rem 

n 
Sn - I (-19 a. . 

An example of an a l ternat ing s e r i e s was seen in P a r t IV, Section 8, of 

this P r i m e r . 

8. FIBONACCI NUMBERS, LUCAS NUMBERS AND II 

It i s well known and easi ly verif ied that 

| = Tan""1 ~ = Tan""1 | + Tan""1 | 

Also one can verify 
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7 = T a n " 1 \ = T a n " 1 ~ + T a n " 1 ~ + T a n " 1 ~ 
4 1 Z D o 

or 

n _ - n . , _ - i i ' ^ - i i• _ - i i 
T = Tan - + Tan - + Tan 77 + Tan -
4 O D ( O 

We note Fibonacci and Lucas numbers h e r e , sure ly . We shall he re easi ly e x -

tend these r e s u l t s in s eve ra l ways. 

In this sect ion we shall use seve ra l new ident i t ies which a r e left a s e x e r -

c i s e s for the r e a d e r and will be marked with an a s t e r i sk . 

* L e m m a 1: L 2 L 2 0 - 1 = 5 F2 • - . This i s rea l ly a special c a se of a 

genera l iza t ion of B-22 , p . 769 Oct. , 1963, Fibonacci Quar ter ly . 

L e m m a 2: L^ = L 2 n + 2 ( - l ) n 

L e m m a 3: L2 - 5 F 2 = 4 ( - l ) n 
n n v •' 

*L e m m a 4 : LnLn+l = W ^ " 1 ? 

We now discuss 

Theorem 3: If tan ^ n = l / L , then 

T a n ( * 9 + ^n+9) - 1 / F - + 1 or T a n " 1 = - i - = T a n " 1 X 
2 n T ^2n+2> ~ ' * 2 n + l F 2 n + 1 « L 2 n 

. T a n " 1 X 

L2n+2 

Proof: 

m • • , •: 2n L2n+2 1 
Tan (.0 + ip ) = j — y - —£: = p 

zn zn+Z J j2nJj2n+2 X 2n+l 
s ince 

L 2 n + 2 + L 2 n = 5 F 2 n + l a n d L 2 n L 2 n + 2 " X = 5 F 2 i » l 

by Lemma 1 above. 
Theorem 4: If tan 6>n •= 1 / F n f then Tan (<92n - ^ 2 n + 2 ) .'= 1 /?2n+v 

or 
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T a n " 1 ^ X = T a n " 1 -^- - T a n " 1 X 

F 2n+1 F 2 n F2n+2 

Proof: F _ p 

T te - e \ 2 n + 2 2 n = i 
T a n < 2 n " 2n+2> " F ^ F ^ + 1 ~ F 2 n + 1 

s ince 

F Q ^o " F o = F o , t a n d F 0 F 0 | 0 - F 2
0 l 1 = ( ~ l ) 2 n + 1 

2n+2 2n 2n+l 2n 2n+2 2n+l v ' 

F r o m Theorem 4, 

M M 

Tan 
n = l «"•-«. n_-^ 

M x 

^ - Y T a n " 1 J - - T a n " 1 ^ 
x 2 n + l ^ \ r 2 n *2n+2 / 

rV "I 1 rp " I 1 
= Tan •=- - Tan 2 *2M+2 

Since M_^00 Tan •= = 0 by continuity of Tan x at x = 0 we may 
.. 2M+2 

wr i te 
Theorem 5: 

t-J x 9n4 
n ^ 
4 = T a n 

^ A2n+1 
n=l 

This i s the ce lebra ted r e s u l t of D. H. Lehmer , Nov. 1936, Amer ican Mathe-

mat ica l Monthly, p . 632, P r o b l e m 3801. 

We note in pass ing that the par t ia l s u m s 

M 

S _ = > Tan •••—-— = T a n " 1 4 ~ - Tan X X 

M / , F F F 
iVi ^ r 2 n + l 2 r 2 M + 2 

n=l 
a r e all bounded above by Tan 1 = n / 4 and S i s monotone,, Thus Theorem 

1 can be applied,, F r o m Theorem 3, 

M M 

J T a n " 1 ^ J L - = J (Tan" 1 - ^ + T a n " 1 ^ ) 
H . *2n+l ^ \ H n S t i + 2 / 

n=l n=l 
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so that 

M M 
) Tan"1 -=r^ + Tan"1 | = 2 ^ Tan*1 ~ + Tan"1 X 

H. 2n+l 6 H, - 2 n ^2M+2 
n=l n=l 

-1 - I -1 
The limit on the left tends to Tan 1 + Tan 1/3 = Tan 2 and the right-hand -1 side tends to this same limit and since Tan 1 / L ? M 9 -*09 then 

Theorem 6: 

I rp - 1 1 ^ - 1 ^ 5 " 1 1 „, ' - 1 „ 
Tan T — = Tan —-75-— = •$ Tan 2 

n=l 2 n 

Compare with Theorem 5 in Part IV, 
We shall continue this interesting discussion in the next issue. 

CORRECTIONS FOR VOLUME 1, NO. 2 

Page 45: In the tenth line up from the bottom, the subscripts on the Fibonacci 
numbers should be reversed. 

Page 47: Replace "Lamda" by "Lambda" in the title. 

Page 52: In line 6, replace (Rn) with \(Rn), 
In line 12, the author's name is Jekuthiel Ginsburg. 

Page 55: In problem H-18, part a, replace = by 4= . 

a b .,, / a b Page 57: In E2, replace — , — with , , , , , . 

Page 58: Add three dots after the 4 on the last line. 

Page 60: The title "Letters to the Editor" was omitted from Fibonacci Formu-
las , and, in that article, the "Correct Formula" due to the late Jekuthiel 
Ginsburg is I * + 2 - 3J#n + 1*_2 = 3 F 3 n . 
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CORRECTIONS FOR VOLUME 1, NO. 2 

Page 68: The right side of identity xix should read 

I n+l " FnVl - !> •. 
and in identity xx, the subscript n-1 should be n-i. 
The correct page number in reference 1 is 98. 

Page 75: Insert three dots after /32, in line 15. 

Page 80: In the last line, replace pN by p | N and p(2 • 3 • 5- • -p ) by 
p | (2 • 3 • 5 • • • p n ) . 

Page 81: Replace T + 1 by T in the left side of the first displayed 
equation. 

Page 86: In B-12, L = fa ] , a34 = i = \T-l instead of zero. 

Page 87: Change the equations in problem B-16 to read 

F2 F F F2 

n-1 n-1 n n 
Rn = 2 F - F F2 - F n F 2F F x 1 

1 n-1 n n+1 n-1 n n n+1 
F2 F F F2 

n n n+1 n+1 
See also solution in this issue. 

Page 88: See the last written line for notational error due to exclamation 
point punctuation. 



ON THE GENERAL TERM OF A RECURSIVE SEQUENCE 

F R A N C I S D. P A R K E R 
U n i v e r s i t y of A l a s k a , C o l l e g e , A l a s k a 

INTRODUCTION 

It is often comforting and useful to obtain a specific formula for the gene-
ral term of a recursive sequence. This paper reviews the Fibonacci and Lucas 
sequences, then presents a more general method which requires the solution 
of a set of linear equations. The solution may be effected by finding the inverse 
of a Vandermonde matrix, and a description of this inverse is included. 

THE SPECIAL CASE 

As is well known, the Fibonacci sequence is completely defined by the 
difference equation F(n) - F(n - 1) - F(n - 2) = 0 and the initial conditions 
F(0) = 0 and F(l) = 1. If we seek a solution of the difference equation of the 
form F(n) = x , we obtain x - x - x = 0, or x2 - x - 1 = 0. This 
has two solutions; xt = (1 + \T5)/2 and x2 = (1 - '\/5)/2. Now, the theory of 
homogeneous linear difference equations assures us that the most general solu-
tion is F(n) = ctxf + c2xn , where ct and c2 are arbitrary constants. (The 
reader who encounters this result for the first time can verify it by substitu-
tion; the theory parallels quite nicely the theory of linear differential equations.) 

The initial conditions give us two linear equations, 

ct + e2 = 0 

(1) cix1 + c2x2 = 1 

The solutions are ct = 1/NTS and c2 = - 1 / ^ 5 , and we obtain the well-known 
formula F(n) = l/\T5(xi - x 2 ) . 

The Lucas series is obtained from the same difference equation with dif-
ferent initial conditions. In this case, F(0) = 2, F(l) = 1, and equations (1) 
become 

Cj + c 2 = 2 

ctxt + c2x2 = 1 " . 
67 
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Then the general term of the Lucas sequence is 

[Feb. 

L(n) = 1 + ^ n 

From these formulas it is possible to prove such identities as L(n) - F(n) = 
2F(n - 1) and L(n) + F(n) = 2F(n + 1). 

THE GENERAL CASE 

We might solve all equations of the form of equations (1) by writing them 
in matrix form 

(2) 

1 

x l 

1" 

X2_ 

V 
- C 2 _ . 

~F(0)1 

_F(1)_ 

and then find the inverse of the first matrix, so that 

-1 
F(0) 

[Xl x2J [F(l) 

The matrix 

x i X 2 j 

is a simple case of a Vandermonde matrix, and the determination of the con-
stants is possible if the matrix can be inverted. Fortunately it can be easily 
inverted, even if the order exceeds two. 

Let us suppose that a recursion relation gives birth to a linear homogen-
ous difference equation with constant coefficients, say, 

F(n) + SLt F(n - 1) + • • • a k F(n - k) = 0, and that F(0) = b0, F(l) = bl f • 
F ( k - l ) = b k _ r 
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If we seek^again a solution of the form F(n) = x11, then we are led to the 
equation 

(3) -e/ v k k - 1 
f (x) = x + a t x + ° • ° + a, = 0 

Then assuming that the roots of (3), xux29
a " 9 \ are all different*, the 

theory of difference equations assures us that F(n) = c t xf + c2 xf + • • • + 
n ckxk° T i i e s u ^ s e c l u e n t equations corresponding to (1), but written in matrix 

form are 

(4) 

k - 1 . 
. x i 

1 
x2 

k - 1 
x2 

1 
X, 

k - 1 
x, "k-1 

or VkC = B. 
Now the polynomial fj(x) = f(x)/(x - xt) has k coefficients, and more-

over fi(x2) = fi(x3) = ° °e = f^x, ) = 0. Consequently if we form a row vector, 
(written in reverse order) of these coefficients, then this row vector will be 
orthogonal to every column of V, except the first. We need now only a nor-
malizing factor, so that the scalar product of this row vector with the first col-
umn of V, is unity. Investigation shows that this scalar product (before nor-
malizing) is fi(Xi) = V(xt)9 the first derivative of f(x) at x = x1# Moreover, 
the fact that f'fci) = lim f(x) makes this scalar product easy to calculate 

X—Xj X - X1 

by synthetic division. 
This procedure is now continued; the coefficients of f2(x)/f?(x2) provide 

-1 us with the second row of V! , and in general the coefficients of f,(x)/ff(x.) 
th -1 • l l 

provide the i row of V, . 
Aparticular example makes the procedure clear. Suppose the recurrence 

relation is 

* When there are multiple roots, the matrix takes a different form; the inverse 
for this case is not presented here. 
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F(n) - 3F(n - 1) - 5F(n - 2) + 15F(n - 3) + 4F(n - 4) - 12F(n - 5) 
= 0, 

and the initial conditions are 

F(0) = 1, F(l) = 1, F(2) = 1, F(3) = 2 
F(4) = 3. 

The difference equation yields the polynomial 

x5 - 3x4 - 5x3 + 15x2+ 4x - 12 = 0 , 

whose roots are [-2, - 1 , 1, 2, 3] The coefficients of ft(x) are easily found 
by synthetic division,, the normalizing factor by repeated synthetic division. 

2 

2 

| l - 3 - 5 + 1 5 + 4 - 1 2 
- 2 + 1 0 - 1 0 - 1 0 + 1 2 

1 1 - 5 + 5 + 5 - 6 0 

- 2 + 1 4 - 3 8 + 6 6 

1 - 7 + 19 - 33 + 60 

The vector (-6, 5, 5, - 5 , 1) is orthogonal to all the columns of V5 except the 
-1 first, the normalizing factor is 1/60, and the first row of V5 is 

(zl JL i_ zL _L\ 
UO* 12* 129 12' 60 J 

Synthetic division may be continued for the other roots until we obtain the de-
sired inverse. 

1 
10 
1 
2 

1 

1 
2 

1 
10 

1 
12 
2 
3 

2 
3 
1 

12 

0 

1 
12 
1 

24 

7 
12 
7 

12 

1 
8 

1 
12 

1 
6 

1 
6 
1 

12 " 

0 

1 
60 
1 

24 

1 
12 
1 
12 

1 
40 
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Multiplying equation (4) on the left by V5 , we have 

71 

1 
10 
1 
2 

1 
1 
2 
1 
10 

1 
12 
2 
3 
2 
3 
1 
12 

0 

1 
12 
'1 
24 
7 
12 
7 
12 
1 
8 

1 
12 
1 
6 
1 
6 
1 
12 

0 

1 " 
60 
1 

" 24 
1 
12 
1 
12 
1 

•. 4 0 J 

1 

1 

J 

2 

H 

— 

1 * 
20 
1 
12 

1 
1 ; 
12 
1 

20J 

Hence the genera l t e r m i s given by 

F(n) = 20 ( ~ 2 ) + 12 ( _ 1 ) + U 1 ) " 12 ( 2 ) + 20 ( 3 ) 

CORRECTIONS FOR VOLUME 1, NO. 2 

Page 4: Equation (2.8) should r e a d 

k=o j=o n=0 

Page 23: The fifth l ine up from the bottom should r ead : 

D0 ="0, D i '= x + y , D 2 = (x + y)2 . 

Page 30: In Line 10, r ep lace m ( u
n + 1 - 1) by m l (u ^̂  - 1) . 

Page 33: The = signs in l ines 10 and 11 should be rep laced by = s igns . 

Page 37: The f i r s t l ine of the t i t le should end in a lower ca se n m . " 



ELEMENTARY PBOBLEMS AM® SOLOTIOHS 

E d i t e d by A . P . H I L L M A N 
U n i v e r s i t y of Santa C l a r a , Santa C l a r a , C a l i f o r n i a 

Send all communications regarding Elementary Problems and Solutions to 
Professor A. P. Hillman, Mathematics Department, University of Santa Clara, 
Santa Clara, California. We welcome any problems believed to be new in the 
area of recurrent sequences as well as new approaches to existing problems, 
The proposer should submit his problem with solution in legible form, prefer-
ably typed in double spacing, with name(s) and address of the proposer clearly 
indicated. 

Solutions to problems listed below should be submitted within two months 
of publication. 

B - 3 0 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, Calif. 

Find the millionth term of the sequence a given that 

a1 = 1, a? = l s and a . 0 = a , - - a for n ^ 1 Q 1 ' l 9 n+2 n+1 n 

B - 3 1 Proposed by Douglas hind, Falls Church, Virginia 

If n is even, show that the sum of 2n consecutive Fibonacci numbers is 
divisible by F . J n 
B - 3 2 Proposed by Charles R. Wall, Texas Christian University, Ft. Worth, Texas. 

Show that nL = F (mod 5). 
n n v ' 

B - 3 3 Proposed by John A. Fuchs, University of Santa Clara, Santa Clara, California 

Let u ,v ,-"'9w be sequences each satisfying the second order r e -
currence formula 

yn +2 = SW + h y n ( n S *> • 

where g and h are constants. Let a, b, • • • , c be constants. Show that 
72 
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au + bv + • • • + cw = 0 n n n 
is true for all positive integral values of n if it is true for n = 1 and n = 2. 
B - 3 4 Proposed by G. L. Alex under son, University, of Santa Clara, Santa Clara, California 

Let u and v be any two sequences satisfying the second order recur-
rence formula 

y n + 2
 = sy n + i + h y n 

where g and h are constants. Show that the sequence of products w = u v 
satisfies a third-order recurrence formula 

y n + 3
 = a y n + 2

 + b y n + i + c y n 

and find as b, and c as functions of g and he 

B - 3 5 Proposed by J. L. Brown, Jr., Pennsylvania State University, University Park, Pa. 

Prove that 
r - 1 

I ^ k ) F k = ° 
k=l 

for r an odd positive Integer and generalize. 

B - 3 6 Proposed by Roseanna Torretto, University of Santa Clara, Santa Clara, California 

The sequence 1929 5,12,299709° • • is defined by ct = 1, c2 = 29 and 
c rt = 2c ^ + c for all n > 1„ Prove that c r is an integral multiple of n+2 n+1 n 5m 
29 for all positive integers me 

B - 3 7 . Proposed by Brother U. Alfred, St. Mary's College, California 

Given a line with a point of origin O and four positive positions A, B, C, 
and D with respect to O. If the line segments OAsOB9OC5 and OD cor res -
pond respectively to four consecutive Fibonacci numbers F^ F ^ F o» F

n+Q» 
determine for which set(s) of Fibonacci numbers the points ASB9C9 and D 
are in simple harmonic ratio, i. e. , 

AB AD 
BC DC " X ' 
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SOLUTIONS 

DIFFERENCES MADE INTO PRODUCTS 

B-17 Proposed by Charles R. Wall, Ft. Worth, Texas 

If m is an integer, prove that 

n+4m+2 n L2m+1 n+2m+l 

where F and L are the p Fibonacci and Lucas numbers, respectively. 
XT XT 

Solution by h D. Ruggles, San Jose State College, San Jose, California 

In "Some Fibonacci Results Using Fibonacci-Type Sequences,ff Fibonacci 
Quarterly9 Vol. 1, No, 29 p. 77, it is shown that 

F F = L F , for p odd. 
q+p q~p p q9 F 

If q = n + 2m -f 1 and p = 2m + 1, then this becomes the desired formula. 

Also solved by Douglas Lind, Falls Church, Virginia, and the proposer. 

A TRIGONOMETRIC SUM 

B-18 Proposed by J. L. Brown, Jr., Pennsylvania State University, State College, Pennsylvania. 

Show that 
n-1 

F n = 2 n 1 Y (-1)^ cos ll * x | sin^ -~~ for n > 0. .k n-k-1 TT . k IT 

k=0 

(It should be "for n > 1" instead of "for n > 0.?f) 

Solution by the proposer 

It is well known (e. g. , I. J. Schwatt, !fAn Introduction to the Operations 
with Series, n Chelsea Pub. Co. , p. 177) that 

cos ~ = 
TT = 1 + ^ 5 
5 4 

TT _ N / 5 - 1 

c o s _ _ _ 
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1 + 4~5 0 IT 
a = —j— = 2 cos - , 

U 1 - ^ 0 . TT 
b •= — 2 — = - 2 s m H 

75 

and 

_ a - b _ n-1 cos - - (-1) sin ^ 
TT . TT cos - + sin T^ o lu 

n TT . n / TT \ n-1 
n cos g - s m ^ - B ) ^ w 

S . / M
= 2 Z C°S 5S l n (-To) 

cos -= - sin f - • — i >-' 
k=0 •(- S) 

= 211"1 £ ( - l ) k COB11"*-1 I sink - 1 
n-1 

k=0 

as stated. We have made use of the algebraic identity 

n-1 
n n 

x - y 
x - y 

V n-k- l 
= 1x y 

k=0 

Also solved by Charles R„ Wall, Texas Christian University, who pointed out that the identity' 
does not hold for n~o. 

A TELESCOPING SUM 

B - 1 9 Proposed by L. Carlitz, Duke University, Durham, N.C, 

Show that y——+y—i— 
n=l n n+2 n+3 n-1 n n+1 n+3 

Solution by John 11. Avila, University of Maryland, College, Park Maryland 

Our solution is similar to that by Francis D. Parker for B-9. Let a = 
a(n) = F n , b = F n + 1 , c = F n + 2 > and d = F n + 3 . 
and the left side of the desired formula is 

Then a + b = c, b + c = d, 
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OO OO 

J=i \ a c 2 d a b 2 d / u . \ abc2d n—i x n=l ab2cd 

c - a d - b 

n=l 

2( 
n=l x 

n=l 

abc2d ab2cd 

1 1 ^ 1 1 
: _ — „j- _ _ 

abed bc2d ab2c abed 

ab2c bc2d 

The l a s t sum i s the te lescoping s e r i e s 

1 \ + /_J^__i_,+ 
Ft F\ F 3 F 2 F3

2 F 4 J \ F 2 F 2 F 4 F 3 F\ F 5 

whose sum i s 

F X F 2 F 3 1 - I 2 • 2 2 

Also solved by the proposer,, 

SUMMING GENERALIZED FIBONACCI NUMBERS 

B - 2 0 Proposed by Louis G. Brokling, Redwood City, California 

Genera l ize the well-known ident i t ies , 

(i) F t + F 2 + F 8 + • • • + F n = F n + 2 - 1 

(ii) Lj + L2 + Lg + • • • + L n = L n + 2 - 3 
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Solution by Charles R. Wall, Texas Christian University, Ft. Worth, Texas 

If EL = q, Hi = Pf and H - = H J - + H , then H = pF + qF , u l > n+2 n+1 n9 n ^ n H n-1 
so that 

n n n-1 

I H i = *J, Fl + « .£ Fi = P<F
ftf2-1> + « < V l - 1 > 

1=1 i=l i=0 

= p F ^ + q F . - (p + q) = H 10 - (p + q) = H , _ - H0 . * n+2 l n+1 ^ ^' n+2 ^ ^ ; n+2 2 

This identity is also obtained from Horadamfs VfA Generalized Fibonacci Se-
quence,M Amj^cajiJV!^^ Vol. 68 (1961), p. 456u 

Also solved by Fern Grayson, Lockheed Missiles and Space Company, 
Sunnyvale California and the proposer. 

EVENS AND ODDS 

B.-21 Proposed By L. Carlitz, Duke University, Durham, N. C» 

u„ = | [ (x+ I)2 +(x - l)2*] 

show that 

n 2 

u - = u2 + 2211 uguf - - - u2 -
n+1 n u x n-1 

Solution by Robert Means, University of Michigan 

on Let Let v = (x + 1) - u . Then u0 = x, v0 = 1 and for n > 1 u and n n n 
v are the terms of even and of odd degree respectively in (x + l ) 2 •. Now 

n u „ + v . = (u + v ) = u2 + 2u v + v2 and equating sums of terms of n+1 n+1 v n n ; n n n n *i & 

even and of odd degree respectively we have for n ^ 0, 

(a) u n + 1 = u£ + v£ 

w v r 2 v n • 
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Repeated use of (b) leads to v = 2u 1 v 1 = 22u 1 u 9 v 0 = • • • = 
n H"~x n—x n-~x n-"^ n*—̂  2 u u 0 * • • uA vn. . Since v0 = 1, the desired result is obtained by substi-n-~x n_z u u 

tuting the last expression for v in (a). 
Also solved by Charles R. Wall, Texas Christian University and the proposer 

LUCAS ANALOGUES 

B - 2 2 Proposed by Brother U. Alfred, St. Mary's College, California 

Prove the Fibonacci identity 

2k*2kf *k+k! *k-k f 

and find the analogous Lucas identity. 

(Editor's Note: The Fibonacci identity here is proved by I# D. Ruggles in 
"Some Fibonacci Results Using Fibonacci-Type Sequences/ ' this Quarterly, 
Vol. 1, Issue 2, p. 770) Proofs were submitted by Douglas l ind, Falls Church, 
Virginia; V. E. Hoggatt, J r . , San Jose State College; and Charles R. Wall, 
Texas Christian University, Ft. Worthy Texas. Lind and Hoggatt gave 

L 2 k L 2 j = L L j + Lk-j - ^ " ^ 

as the analogous Lucas identity and Wall gave it as 

L01 L0„ = L? . + 5F? . = 5 F ? , . + L? . . 2k 2j k+j k - j k+] k - j 

Proofs of these are left to the readers. 

TELESCOPING PRODUCTS AND SUMS 

B - 2 3 Proposed by S. L. Basin, Sylvania Electronic Systems, Mt. View, Calif. 

Prove the identities 

n / F. 1 
(i) F , - = n 1 + • 1 " 1 

'n+1 " 1 x T F. 
1=1 \ £i 
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(ii) 

(iii) 
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•n+1 

n 
= 1 + 

^ F i F t - i 
i=2 

1 + NT5 = 1 + 
i=2 

(-Dx 

F . F . , 
i i - l 

lower limits mis-
printed in problem 

statement 

Solution by J. L. Brown, jr., Pennsylvania State University, State College, Pa. 

(i) 

(ii) 

F , - F • • • F 0 n F. , - n F. + F. , „ , * . -
n + l n 2 = n i+l = n i i - l = n 1 + i - l n+1 F F • •• • F- . - F. . n 
n n-1 1 i=l i i=l 

F. 
i 

n 
n 

i=l 
F3 F2 

F. 
l 

F / F F \ / F F 
n+1 _ / n+1 n_ \ I n n-1 
F n = { F n ~ F n - J I V l " F n -2 I ' " \ F> F> 

+ 1 

= 1 + 

1 + 

i=2 V 1 *-* > 
n 

Z F F • 
i=2 

£ F.^nF. . - F? 
i + y i + i i~i i 

L F t F i - i 
i=2 

using the well-known identity, 

T? F - F2 = (-11) i+l i - l i K } 

(iii) In (ii) take the limit as n -*- °° and recall that _ - = — = — r 
7 n~•*°° JD z 

A/so solved by Dermott A. Breault, Sylvania»-ARL, Waltham, Mass. ; Douglas Lind, Falls Church, Va; 
Charles R. Wall, Texas Christian University, Ft. Worth, Texas? and the proposer 

A CORRECTED SOLUTION 
B - 4 Proposed by S. L. Basin, Sylvania Electronic Systems, Mt. View, California, 

and Vladimir Ivanoff, San Carlos, California 
n 

Show that 

Generalize. 
i=0 

F = F i ^2n 
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(Readers : Can you find the e r r o r s in the previously published solut ion?) 

Solution by Joseph Erbacher, University of Santa Clara, Santa Clara, Calif., and J. L. Brown, Jr., 
Pennsylvania State University, State College, Pennsylvania 

Using the Binet formula , 

(a 2 ) n a 5 - (b2)nb3
 = (1 + a ) n a j - (1 + b ) n b j 

2n+j a - b a - b 

s ince 

= a + 1, b 2 = b + 1 when a = 1 + \ r 5 b - 1 - N/5 

we have 

r n 

' 2n+j a - b 
1=0 

n ^ , , 1 / l_j VI 
i=0 

n hi+J n \ a i + j - b i + j °) a - b 
i=0 

(°K, 
i=0 

There fo re , for a r b i t r a r y in tegra l j , 

*-Kr 2n+j LJ\\ ) ~i+j 
i=0 

If j = 0, we have the or iginal p rob lem. The identity a lso holds , with a r b i t r a r y 

j , for Lucas number s s ince L = F . + F . . 

CORRECTION TO VOLUME 1, NO. 1 

See Vol. 1, No. 2, p . 46 for co r rec t ion to l a s t two r e f e r ences on page 42. 


