SOME DETERMINANTS INVOLVING POWERS OF FIBONACCI NUMBERS

BROTHER U. ALFRED
St. Mary's College, California
In the October, 1963 issue of this journal [1], the author discussed some of the periodic properties of Fibonacci summations. It was noted that a certain determinant was basic to these considerations. Its main characteristics and value were indicated and a promise was given of additional explanation in some later issue of the Fibonacci Quarterly. The purpose of this article is to set forth the manner of evaluating these determinants on an empirical basis. The proof of the general validity of the results obtained is to be found in an article by Terry Brennan in this issue of the Quarterly [2].

To fix ideas the determinant of the sixth order will be used. Written in a form that brings out its Fibonacci characteristics it would be:

$$
\left|\begin{array}{cccccc}
1^{6}+1^{6}-1 & 1^{5} 1 & 1^{4} 1^{2} & 1^{3} 1^{3} & 1^{2} 1^{4} & 11^{5} \\
2^{6}+1^{6}-1 & 2^{5} 1 & 2^{4} 1^{2} & 2^{3} 1^{3} & 2^{2} 1^{4} & 21^{5} \\
3^{6}+2^{6}-1 & 3^{5} 2 & 3^{4} 2^{2} & 3^{3} 2^{3} & 3^{2} 2^{4} & 32^{5} \\
5^{6}+3^{6}-1 & 5^{5} 3 & 5^{4} 3^{2} & 5^{3} 3^{3} & 5^{2} 3^{4} & 53^{5} \\
8^{6}+5^{6}-1 & 8^{5} 5 & 8^{4} 5^{2} & 8^{3} 5^{3} & 8^{2} 5^{4} & 85^{5} \\
13^{6}+8^{6}-1 & 13^{5} 8 & 13^{4} 8^{2} & 13^{3} 8^{3} & 13^{2} 8^{4} & 138^{5}
\end{array}\right|
$$

A certain subtlety should be noted in the first line as the first "l" stands for F_{2} and the second for F_{1}.

By separating the terms of the first column into groups, the problem can be changed to that of evaluating three determinants with first columns as indicated below:

(1)	(2)	(3)
1	1	-1
2^{6}	1	-1
3^{6}	2^{6}	-1
5^{6}	3^{6}	-1
8^{6}	5^{6}	-1
13^{6}	8^{6}	-1

Determinants (1) and (2) can be evaluated in terms of what shall be called the BASIC POWER DETERMINANT. Determinant (3) will be developed in terms of the cofactors of the first column which involve the basic power determinant minus one of its rows.

BASIC POWER DETERMINANT

The first determinant has a common factor in each of its rows (the factors are $1,2,3,5,8,13$ respectively). If these factors be taken out of the determinant, we have what will be called the basic power determinant. For the sixth order, it is as shown below:
$\left|\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2 & 1 \\ 3^{5} & 3^{4} 2 & 3^{3} 2^{2} & 3^{2} 2^{3} & 3 \cdot 2^{4} & 2^{5} \\ 5^{5} & 5^{4} 3 & 5^{3} 3^{2} & 5^{2} 3^{3} & 5 \cdot 3^{4} & 3^{5} \\ 8^{5} & 8^{4} 5 & 8^{3} 5^{2} & 8^{2} 5^{3} & 8 \cdot 5^{4} & 5^{5} \\ 13^{5} & 13^{4} 8 & 13^{3} 8^{2} & 13^{2} 8^{3} & 13 \cdot 8^{4} & 8^{5}\end{array}\right|$

This determinant is a special case of the more general determinant in which the first row starts with any Fibonacci number whatsoever

$$
\left|\begin{array}{lccccc}
F_{i}^{5} & F_{i}^{4} F_{i-1} & F_{i}^{3} F_{i-1}^{2} & F_{i}^{2} F_{i-1}^{3} & F_{i} F_{i-1}^{4} & F_{i-1}^{5} \\
F_{i+1}^{5} & F_{i+1}^{4} F_{i} & F_{i+1}^{3} F_{i}^{2} & F_{i+1}^{2} F_{i}^{3} & F_{i+1} F_{i}^{4} & F_{i}^{5} \\
\cdots \cdots
\end{array}\right|
$$

The basis for evaluating this determinant is the relation

$$
F_{n} F_{n+k+1}-F_{n+1} F_{n+k}=(-1)^{n+1} F_{k}
$$

To evaluate the determinant we proceed to produce zeros in the first row. This is done by multiplying the first column by F_{i-1} and subtracting from this F_{i} times the second column; then multiplying the second column by F_{i-1} and subtracting from this F_{i} times the third column; etc. The operations for the first and second columns would be as follows:

$$
\begin{aligned}
& F_{i+1}^{4}\left(F_{i-1} F_{i+1}-F_{i} F_{i}\right)=(-1)^{i} F_{1} F_{i+1}^{4} \\
& F_{i+2}^{4}\left(F_{i-1} F_{i+2}-F_{i} F_{i+1}\right)=(-1)^{i} F_{2} F_{i+2}^{4}, \\
& F_{i+3}^{4}\left(F_{i-1} F_{i+3}-F_{i} F_{i+2}\right)=(-1)^{i} F_{3} F_{i+3}^{4}
\end{aligned}
$$

and so on. It is clear that the second row would have a factor F_{1}, the third a factor F_{2}, etc. Thus, after eliminating the common factors and expanding by the non-zero term in the last column of the row, the absolute value of the resulting determinant would be $F_{1} F_{2}$ $\cdot{ }^{-}{ }_{3} F_{4} F_{5}$ multiplied by the basic power determinant of the fifth order. If we adopt the notation $\quad \Delta n$
to represent the basic power determinant of the nth order, this result may be expressed as

$$
\left|\Delta_{6}\right|=\prod_{i=1}^{5}\left(F_{i}\right) \cdot\left|\Delta_{5}\right|
$$

In general, for a determinant of order n,

$$
\left|\Delta_{n}\right|=\prod_{i=1}^{n-1}\left(F_{i}\right) \cdot\left|\Delta_{n-1}\right|
$$

Since the process may be repeated, it is not difficult to arrive at the final result:

$$
\left|\Delta_{n}\right|=\prod_{i=1}^{n-1} F_{i}^{n-i}
$$

In the particular case of order six,

$$
\left|\Delta_{6}\right|=F_{1}^{5} F_{2}^{4} F_{3}^{3} F_{4}^{2} F_{5}=2^{3} 3^{2} \cdot 5
$$

It is interesting to note that the values of these basic power determinants areindependent of where we start in the Fibonacci sequence.

SIGN OF THE BASIC POWER DETERMINANT
It is important to be able to determine the sign of the basic determinant value inasmuch as we shall combine the values of determinants (1) and (2) with the values of the cofactors of determinant (3). The considerations involved are a bit tedious. We distinguish four cases according as n is of the form $4 k, 4 k+1,4 k+2$, or $4 k+3$. The following three factors determine the outcome:
(i) The sign introduced by expanding from the last element in the first row;
(ii) The signs of the terms of the determinant resulting after each of the steps indicated above. These terms will be either all plus or all minus.
(iii) The sign of Δ_{2} which is the second-order determinant of the first powers of the Fibonacci numbers in the last two rows. Thus, for the sixth order determinant we have been considering, Δ_{2} is

$$
\left|\begin{array}{ll}
8 & 5 \\
13 & 8
\end{array}\right|=-1 .
$$

The final outcome is as follows:
(i) For order 4 k or $4 \mathrm{k}+1$, the sign is always plus;
(ii) For order $4 k+2$ or $4 k+3$, the sign agrees with that of Δ_{2}. As noted previously, the basic power determinant enables us to evaluate determinants (1) and (2). The latter can be brought to this form by shifting the first column so that it becomes the last column.

BASIC POWER DETERMINANTS WITH ONE ROW MISSING

To evaluate the third determinant we find the cofactors of the elements in the first column. For the element in the first row, this cofactor is a basic power determinant after removing common factors, but for all the others it is essentially a basic power determinant with one row missing. The absolute value of such a determinant of order n with a missing row between the k and ($k+1$)st row will be represented by

$$
A_{n}(k \mid k+1)
$$

the implication being that the absolute value does not depend on the particular Fibonacci number with which it starts. When developing such a determinant the procedure is the same as for the development of the basic power determinant, only in this case there is a gap. The calculation for a determinant of order n with a row missing between the third and fourth rows can be summarized schematically in the following manier. The column headings are Fibonacci numbers. A table entry is the power to which the Fibonacci number at the head of the column is being raised. The quantities in any one row are multiplied together. In the first row we have the result of the first step in
the evaluation in which the order is changed from 9 to 3 ; in the second, the factors resulting in reducing the determinant from order 8 to order 7; etc.

F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{7}$	$\mathrm{~F}_{8}$	$\mathrm{~F}_{9}$
1	1	0	1	1	1	1	1	1
1	0	1	1	1	1	1	1	
0	1	1	1	1	1	1		
1	1	1	1	1	0			
1	1	1	1	0				
1	1	1	0					
1	1	0						
1	0							
0								

The sum of the quantities in any column gives the power of the Fibonacci number in the determinant. In the above case

$$
A_{9}(3 \mid 4)=F_{1}^{7} F_{2}^{6} F_{3}^{5} F_{4}^{5} F_{5}^{4} F_{6}^{3} F_{7}^{3} F_{8}^{2} F_{9}
$$

The same result would have been obtained if the gap had been after the sixth row. In general, if the determinant is of order n, a gap after the kth row or the $(n-k)$ th row gives the same result.

The pattern observedis as follows: (1) A reduction of 2 in the powers of F_{l} to F_{k} inclusive (if k is less than $n-k$); (2) A reduction of 1 from F_{k+1} to F_{n-k} inclusive; (3) No reduction thereafter. If $n-k$ is less than k, the roles of k and $n-k$ are reversed. Finally, if $n-k$ equals k (even n), there would be a reduction of 2 from 1 to k and no reduction thereafter.

These results may be summarized in the following formulas. FORMULA FOR k LESS THAN $\mathrm{n}-\mathrm{k}$

$$
A_{n}(k \mid k+1)=\prod_{i=1}^{k} F_{i}^{n-i-1} \prod_{i=k+1}^{n-k} F_{i}^{n-i} \prod_{i=n-k+1}^{n} F_{i}^{n-i+1}
$$

FORMULA FOR $n-k$ LESS THAN k

$$
A_{n}(k \mid k+1)=\prod_{i=1}^{n-k} F_{i}^{n-i-1} \prod_{i=n-k+1}^{k} F_{i}^{n-i} \prod_{i=k+1}^{n} F_{i}^{n-i+1},
$$

FORMULA FOR k EQUAL TO $n-k$

$$
A_{n}(n / 2 \mid n / 2+1)=\prod_{i=1}^{n / 2} F_{i}^{n-i-1} \prod_{i=\frac{n}{2}+1}^{n} F_{i}^{n-i+1}
$$

These formulas are not difficult of application. However, for the sake of convenience (in view of future considerations) and as a possible guide to readers the results for orders 12 and 13 are set down in detail. Since, however, there is symmetry in k and $n-k$ only the first half need be given in each case.

TABLE OF $\mathrm{A}_{12}(\mathrm{k} \mid k+1)$

k	F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{7}$	$\mathrm{~F}_{8}$	$\mathrm{~F}_{9}$	$\mathrm{~F}_{10}$	$\mathrm{~F}_{11}$	$\mathrm{~F}_{12}$
1	10	10	9	8	7	6	5	4	3	2	1	1
2	10	9	9	8	7	6	5	4	3	2	2	1
3	10	9	8	8	7	6	5	4	3	3	2	1
4	10	9	8	7	7	6	5	4	4	3	2	1
5	10	9	8	7	6	6	5	5	4	3	2	1
6	10	9	8	7	6	5	6	5	4	3	2	1

TABLE OF $\mathrm{A}_{13}(\mathrm{k} \mid k+1)$
$\begin{array}{llllllllllllll}\mathrm{k} & \mathrm{F}_{1} & \mathrm{~F}_{2} & \mathrm{~F}_{3} & \mathrm{~F}_{4} & \mathrm{~F}_{5} & \mathrm{~F}_{6} & \mathrm{~F}_{7} & \mathrm{~F}_{8} & \mathrm{~F}_{9} & \mathrm{~F}_{10} & \mathrm{~F}_{11} & \mathrm{~F}_{12} & \mathrm{~F}_{13}\end{array}$

1	11	11	10	9	8	7	6	5	4	3	2	1	1
2	11	10	10	9	8	7	6	5	4	3	2	2	1
3	11	10	9	9	8	7	6	5	4	3	3	2	1
4	11	10	9	8	8	7	6	5	4	4	3	2	1
5	11	10	9	8	7	7	6	5	5	4	3	2	1
6	11	10	9	8	7	6	6	6	5	4	3	2	1

SIGN OF POWER DETERMINANT WITH ONE LINE MISSING

The considerations leading to the determination of the sign of power determinants with a line missing are involved. The approach is precisely the same as for the power determinant. The results for
all values of n, i (subscript of the leading Fibonacci number in the determinant) and k (as defined for the break point but taken modulo 4) are listed in the following table.

k	4 r	$4 \mathrm{r}+1$	$4 \mathrm{r}+2$ i odd	$4 \mathrm{r}+2$ i even	$4 \mathrm{r}+3$ i odd	$4 \mathrm{r}+3$ i even
1	-	+	+	-	+	-
2	-	-	+	-	-	+
3	+	-	-	+	-	+
4	+	+	-	+	+	-

EVALUATION OF THE ORIGINAL DETERMINANT
We noted previously that the original determinant could be represented as the sum of three separate determinants (1), (2), and (3). Determinant (l) is simply the product of Fibonacci numbers (one from each row) by the basic power determinant. Thus for the sixth order, the situation would be as follows:

	F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{7}$
BPD	5	4	3	2	1		
$\mathrm{~F}^{\prime} \mathrm{s}$		1	1	1	1	1	1
(1)	5	5	4	3	2	1	1

The sign would be negative.
Determinant (2) can be related to the basic power determinant by moving the first column into the last position. For the sixth order, this involves a change of sign. Again factors can be taken out leaving a basic power determinant. The pattern is as follows:

	F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$
BPD	5	4	3	2	1	
$\mathrm{~F}^{\prime} \mathrm{s}$	1	1	1	1	1	1
(2)	6	5	4	3	2	1

The sign would be positive.

To evaluate (3) we expand by the first column. We shall de signate successive elements of the expansion, due account being taken of all signs including the negative quantities in the first column, by successive capital letters: A, B, C, D,.... A gives rise to a simple basic power determinant; B to one with a line missing ($k=1$); C with the second line missing $(k=2)$; etc. However, there are factors that have to be multiplied in each case. It should be noted too that we are referring to determinants of the fifth order and not of the sixth.

F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{7}$

4	3	2	1

A

(negative)

F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{7}$
3	3	2	1	1		

$\begin{array}{lllllllll}B & 3 & 3 & 3 & 3 & 3 & 2 & 1 & \text { (positive) }\end{array}$

F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{7}$

C | | | 1 | 1 | 2 | 2 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 3 | 2 | 3 | 3 | 3 | 2 | 1 | (positive)

F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{7}$
3	2	2	2	1		

		2	1	1	2	1
3	2	4	3	2	2	1


```
            F1
            4
F lllllll
```

Summarizing in one table (omitting the first and second Fibonacci number factors as they are both unity) we have the following for the evaluation of the determinant of the sixth order.

	Sign	F_{3}	F_{4}	F_{5}	F_{6}	F_{7}
(1)	-	4	3	2	1	1
(2)	+	4	3	2	1	
A	-	4	3	2	2	1
B	+	3	3	3	2	1
C	+	3	3	3	2	1
D	-	4	3	2	2	1
E	-	4	3	2	1	1
F	+	4	3	2	1	

The following pairs of terms combine: E and (1); F and (2); A and $D ; B$ and C. The resulting sums have a common factor of $2^{8} 3^{3}$ 5^{2}, the adjoint factor being 144 . Thus finally the value of the sixth order determinant is found to be $2^{12} 3^{5} 5^{2}$.

DETERMINANT OF ORDER 12

Without justifying all the intermediate steps, the summation table for order 12 is shown below.

	Sign	F_{3}	F_{4}	F_{5}	F_{6}	F_{7}	F_{8}	F_{9}	F_{10}	F_{11}	F_{12}	F_{13}
(1)	+	10	9	8	7	6	5	4	3	2	1	1
(2)	-	10	9	8	7	6	5	4	3	2	1	
A	+	10	9	8	7	6	5	4	3	2	2	1
B	-	9	9	8	7	6	5	4	3	3	2	1
C	-	9	8	8	7	6	5	4	4	3	2	1
D	+	9	8	7	7	6	5	5	4	3	2	1

	Sign	F_{3}	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{7}$	$\mathrm{~F}_{8}$	F_{9}	$\mathrm{~F}_{10}$	$\mathrm{~F}_{11}$	F_{12}	F_{13}
E	+	9	8	7	6	6	6	5	4	3	2	1
F	-	9	8	7	6	6	5	5	4	3	2	1
G	-	9	8	7	7	6	5	5	4	3	2	1
H	+	9	8	8	7	6	5	4	4	3	2	1
I	+	9	9	8	7	6	5	4	3	3	2	1
J	-	10	9	8	7	6	5	4	3	2	2	1
K	-	10	9	8	7	6	5	4	3	2	1	1
L	+	10	9	8	7	6	5	4	3	2	1	

It will be noted that the following pairs add up to zero: E and $F ; D$ and G; C and H ; B and I; A and J; (1) and K ; (2) and L. Therefore, the value of the determinant is zero. The same result was found for orders 4,8 , and 16 .

DETERMINANT OF ORDER 13

| | Sign | F_{3} | F_{4} | F_{5} | F_{6} | F_{7} | F_{8} | F_{9} | F_{10} | F_{11} | F_{12} | F_{13} | F_{14} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (1) | + | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 1 |
| (2) | + | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |
| A | - | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 2 | 1 |
| B | - | 10 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 3 | 2 | 1 |
| C | + | 10 | 9 | 9 | 8 | 7 | 6 | 5 | 4 | 4 | 3 | 2 | 1 |
| D | + | 10 | 9 | 8 | 8 | 7 | 6 | 5 | 5 | 4 | 3 | 2 | 1 |
| E | - | 10 | 9 | 8 | 7 | 7 | 6 | 6 | 5 | 4 | 3 | 2 | 1 |
| F | - | 10 | 9 | 8 | 7 | 6 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| G | + | 10 | 9 | 8 | 7 | 7 | 6 | 6 | 5 | 4 | 3 | 2 | 1 |
| H | + | 10 | 9 | 8 | 8 | 7 | 6 | 5 | 5 | 4 | 3 | 2 | 1 |
| I | - | 10 | 9 | 9 | 8 | 7 | 6 | 5 | 4 | 4 | 3 | 2 | 1 |
| J | - | 10 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 3 | 2 | 1 |
| K | + | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 2 | 1 |
| L | + | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 1 |
| M | - | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |

It will be noted that the following pairs add up to zero: E and G; C and I; A and K; (2) and M. The others can be combined to give the following table.

	Sign	F_{3}	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{7}$	$\mathrm{~F}_{8}$	$\mathrm{~F}_{9}$	$\mathrm{~F}_{10}$	$\mathrm{~F}_{11}$	$\mathrm{~F}_{12}$	$\mathrm{~F}_{13}$	$\mathrm{~F}_{14}$
(1), L	+	12	10	9	8	7	6	5	4	3	2	1	1
B, J	-	11	10	9	8	7	6	5	4	3	3	2	1
D, H	+	11	9	8	8	7	6	5	5	4	3	2	1
F	-	10	9	8	7	6	7	6	5	4	3	2	1

After taking out the cornmon factor

$$
F_{3}^{10} F_{4}^{9} F_{5}^{8} F_{6}^{7} F_{7}^{6} F_{8}^{6} F_{9}^{5} F_{10}^{4} F_{11}^{3} F_{12}^{2} F_{13} F_{14}
$$

the following remains for evaluation:

Sign	F_{3}	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{7}$	$\mathrm{~F}_{8}$	$\mathrm{~F}_{9}$	$\mathrm{~F}_{10}$	$\mathrm{~F}_{11}$	$\mathrm{~F}_{12}$	$\mathrm{~F}_{13}$	$\mathrm{~F}_{14}$
+	2	1	1	1	1							
-	1	1	1	1	1					1	1	

No easy method was found for evaluating the sum of these quantities. Essentially it was a matter of evaluating them, combining them and then factoring. Fortunately, as the numbers to be factored increased in size going up to 23 digits in one instance, a pattern involving Fibonacci and Lucas numbers was discovered with the result that the formalas (1) and (2) on page 38 of [1] were discovered.

The matter can be allowed to rest here. The path pursued has been illustrated in sufficient detail to allow others to explore these interesting determinants. The formulas obtainedas well as the determinant values to the twentieth order are set, forth in the paper [1] and need not be repeated.

REFERENCES

1. Brother U. Alfred, "Periodic Properties of Fibonacci Summations, The Fibonacci Quarterly, l(1963), No.3, pp. 33-42.
2. T. L. Brennan "Fibonacci Powers and Pascal's Triangle in a Matrix" The Fibonacci Quarterly, 2(1964), No. 2, pp. 93-103. $X X X X X X X X X X X X X X X X X X X X$

FIBONACCI POWERS AND PASCAL'S TRIANGLE IN A MATRIX - PART I*

TERRENCE A. BRENNAN
Lockheed Missiles and Space Co., Sunnyvale, California

1. INTRODUCTION

The main point of this paper is to display some interesting properties of the $(\mathrm{n}+1) \times(\mathrm{n}+1)$ matrix P_{n} defined by imbedding Pascal's triangle in a square matrix:

$$
P_{\mathrm{n}}=\left[\begin{array}{cccccc}
. & . & . & 0 & 0 & 0 \tag{1.1}\\
. & 1 \\
. & . & 0 & 0 & 1 & 1 \\
. & . & 0 & 1 & 2 & 1 \\
. & . & 1 & 3 & 3 & 1 \\
& & . & . & . & . \\
& & . & . & . & . \\
& & . & . & . & \cdot
\end{array}\right]
$$

The matrix P_{n} was originally constructed by the author in order to evaluate a determinant presented by Brother U. Alfred. The determinant, and itsorigin, has subsequently been published in [1] and, for the sake of completeness, its evaluation will be presented here.

2. THE PROBLEM AND ITS SOLUTION

THE PROBLEM:
Evaluate the fifth order determinant

$$
\left|\begin{array}{lllll}
1^{5}+1^{5}-1 & 1^{4} 1 & 1^{3} 1^{2} & 1^{2} 1^{3} & 1 \cdot 1^{4} \tag{2.1}\\
2^{5}+1^{5}-1 & 2^{4} 1 & 2^{3} 1^{2} & 2^{2} 1^{3} & 2 \cdot 1^{4} \\
3^{5}+2^{5}-1 & 3^{4} 2 & 3^{3} 2^{2} & 3^{2} 2^{3} & 3 \cdot 2^{4} \\
5^{5}+3^{5}-1 & 5^{4} 3 & 5^{3} 3^{2} & 5^{2} 3^{3} & 5 \cdot 3^{4} \\
8^{5}+5^{5}-1 & 8^{4} 5 & 8^{3} 5^{2} & 8^{2} 5^{3} & 8 \cdot 5^{4}
\end{array}\right|
$$

[^0]and its n -th order generalization. For the n -th order the powers in the first column would be n and the determinant would extend to u_{n+1} and u_{n} in the last row, where u_{n} is the n-th Fibonacci number:
\[

$$
\begin{equation*}
u_{n+1}=u_{n}+u_{n-1} \quad \text { with } u_{0}=0, u_{1}=1 \tag{2.2}
\end{equation*}
$$

\]

The determinant (2.1), which we will call D_{5} (D_{n} in general), will be evaluatedas an expansion of cofactors of the first column. In order to keep track of terms in the expansion it is convenient to define D_{n} for an arbitrary sequence $a_{0}, a_{1}, a_{2}, \ldots, a_{n+1}$ by appropriately placing the members of this sequence in the first column of D_{n} :

$$
D_{5}\{a\}=\left|\begin{array}{l}
a_{2}-1^{5} a_{1}-1^{5} a_{0} \tag{2.3}\\
1^{4} 1 \\
a_{3}-2^{5} a_{1}-1^{5} a_{0} \\
a_{4}-3^{5} a_{1}-2^{5} a_{0} \\
a_{5}-5^{5} a_{1}-3^{5} a_{0} \\
a_{5}-5^{4} 3 \\
a_{6}-a_{1}-5^{5} a_{0} \\
8^{4} 5
\end{array}\right|
$$

Clearly (2.1) is $D_{5}\{a\}$ with $a_{0}=a_{1}=a_{2}=\ldots=a_{6}=-1$.
For simplicity we will content ourselves with the reduction of the fifth order determinant (2.3) while mentioning the corresponding results for the general case. The reduction rests on the groundwork of Brother U. Alfred.
THE SOLUTION:
Basic to the reduction is the determinant of the following matrix:

$$
B_{5,1}=\left[\begin{array}{ccccc}
1^{4} & 1^{3} 1 & 1^{2} 1^{2} & 1 \cdot 1^{3} & 1^{4} \tag{2.4}\\
2^{4} & 2^{3} 1 & 2^{2} 1^{2} & 2 \cdot 1^{3} & 1^{4} \\
3^{4} & 3^{3} 2 & 3^{2} 2^{2} & 3 \cdot 2^{3} & 2^{4} \\
5^{4} & 5^{3} 3 & 5^{2} 3^{2} & 5 \cdot 3^{3} & 3^{4} \\
8^{4} & 8^{3} 5 & 8^{2} 5^{2} & 8 \cdot 5^{3} & 5^{4}
\end{array}\right]
$$

and in general $B_{n i}$ where n is the order of the matrix and i denotes the first row entries as u_{i+1} and u_{i}.

An interesting property of the determinant of $B_{5, i}$ is that its magnitude is independent of the index, or starting point, i. This fact is evident when we multiply the two matrices

$$
\begin{equation*}
B_{5, i} Q_{4}=B_{5, i+1} \tag{2,5}
\end{equation*}
$$

where

$$
Q_{4}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \tag{2.6}\\
4 & 3 & 2 & 1 & 0 \\
6 & 3 & 1 & 0 & 0 \\
4 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

is the matrix of (1.1) "transposed" about its counter diagonal. Since the determinant of Q_{4} is ± 1 we have

$$
\left|B_{5, i}\right|= \pm\left|B_{5, i+1}\right|
$$

More precisely we can develop

$$
\begin{gather*}
\left|Q_{0}\right|=1, \quad\left|Q_{1}\right|=-1, \quad\left|Q_{2}\right|=-1, \ldots \\
\left|Q_{n-1}\right|=(-1)^{n(n-1) / 2} . \tag{2.7}
\end{gather*}
$$

We can start, then, with $B_{5,0}$ and shiftindices on each row to obtain

$$
\begin{equation*}
B_{5,0} Q_{4}^{i}=B_{5, i} \tag{2.8}
\end{equation*}
$$

But

$$
\mathrm{B}_{5,0}=\left[\begin{array}{cccccc}
1^{4} & 0 & 0 & 0 & 0 \\
1^{4} & 1^{3} 1 & 1^{2} 1^{2} & 1 \cdot 1^{3} & 1^{4} \\
2^{4} & 2^{3} 1 & 2^{2} 1^{2} & 2 \cdot 1^{3} & 1^{4} \\
3^{4} & 3^{3} 2 & 3^{2} 2^{2} & 3 \cdot 2^{3} & 2^{4} \\
5^{4} & 5^{3} 3 & 5^{2} 3^{2} & 5 \cdot 3^{3} & 3^{4}
\end{array}\right]
$$

Passing to determinants we have

$$
\left|\mathrm{B}_{5, \mathrm{i}}\right|=\left|\mathrm{Q}_{4}\right|^{\mathrm{i}}\left|\mathrm{~B}_{5,0}\right|=(-1)^{10 \mathrm{i}} 1 \cdot 2 \cdot 3 \cdot 5\left|\mathrm{~B}_{4, \mathrm{i}}\right|
$$

where $\left|B_{5,0}\right|$ has been expanded by cofactors of its first row and common row factors have been removed. Having established a recursive process for evaluating $\left|B_{n i}\right|$ the general formula may be shown:

$$
\begin{aligned}
\left|B_{n i}\right| & =(-1)^{s} u_{n-1} u_{n-2}^{2} u_{n-3}^{3} \cdots u_{2}^{n-2} \\
s & =n(n-1)(3 i+n-2) / 6
\end{aligned}
$$

where

In a notation which will be more convenient to use, we define

$$
\begin{aligned}
S_{0} & =1, \quad S_{n+1}=(-1)^{n} S_{n} \quad \text { for } n \geq 0 \\
F_{0}(x) & =1, \quad F_{n+1}(x)=x_{n+1} \quad F_{n}(x) \quad \text { for any sequence }\left\{x_{n}\right\} \\
W_{n}(x) & =F_{n}(F(x))
\end{aligned}
$$

Then

$$
\begin{equation*}
\left|Q_{n-1}\right|=S_{n} \quad \text { and } \quad\left|B_{n i}\right|=S_{n}^{i-1} F_{n}(S) W_{n-1}(u) . \tag{2.9}
\end{equation*}
$$

Let us see what progress can be made with $\left|D_{n}\right|$. Writing (2.3) as three separate determinants on the first column we have, symbolically,
(2.10) $D_{5}\{a\}=\left|\begin{array}{l}a_{2} \\ a_{3} \\ a_{4} \ldots \\ a_{5} \\ a_{6}\end{array}\right|-a_{1}\left|\begin{array}{l}1^{5} \\ 2^{5} \\ 3^{5} \\ 5^{5} \\ 8^{5}\end{array}\right|-a_{0}\left|\begin{array}{l}1^{5} \\ 1^{5} \\ 2^{5} \ldots \\ 3^{5} \\ 5^{5}\end{array}\right|$

The first determinant is the hard one. The second compares nicely with $\left|B_{5,1}\right|$ after a common factor is removed from each row. The third becomes $\left|B_{5,1}\right|$ when the first column is movel to the last (a change in sign for an even order determinant) and common factors are removed from each row. Hence

$$
D_{5}\{a\}=\left|\begin{array}{l}
a_{2} \\
a_{3} \\
a_{4} \ldots \\
a_{5} \\
a_{6}
\end{array}\right|-a_{1} F_{6}(u)\left|B_{5,1}\right|-a_{0} F_{5}(u)\left|B_{5,1}\right|
$$

and using (2.9)

$$
D_{5}\{a\}=\left|\begin{array}{ll}
a_{2} \tag{2.11}\\
a_{3} \\
a_{4} & \ldots \\
a_{5} \\
a_{6}
\end{array}\right| \begin{array}{llll}
& -a_{1} & F_{5}(S) F_{6}(u) & W_{4}(u) \\
& -a_{0} & F_{5}(u) & W_{5}(u)
\end{array}
$$

Expansion of the first determinant by cofactors of its first column gives rise to determinants of the form

$$
(1 \cdot 2 \cdot 5 \cdot 8) \cdot(1 \cdot 1 \cdot 3 \cdot 5) a_{4}\left|\begin{array}{ccccc}
1^{3} & 1^{2} & 1 & 1 \cdot 1^{2} & 1^{3} \tag{2.12}\\
2^{3} & 2^{2} 1 & 2 \cdot 1^{2} & 1^{3} \\
5^{3} & 5^{2} & 3 & 5 \cdot 3^{2} & 3^{3} \\
8^{3} & 8^{2} 5 & 8 \cdot 5^{2} & 5^{3}
\end{array}\right|
$$

the minor being similar to $\left|B_{4,1}\right|$ except that the third row is missing. Our task is to evaluate these minors. Starting with $B_{5,1}$ in (2.4)we form the product
(2.13) $B_{5,1}^{B_{4}} Q_{4}^{-3}=\left[\begin{array}{ccccc}u_{-1}^{4} & u_{-1}^{3} u_{-2} & u_{-1}^{2} u_{-2}^{2} & u_{-1} u_{-2}^{3} & u_{-2}^{4} \\ 0^{4} & 0^{3} u_{-1} & 0^{2} u_{-1}^{2} & 0 \cdot u_{-1}^{3} & u_{-1}^{4} \\ 1^{4} & 1^{3} 0 & 1^{2} 0^{2} & 1 \cdot 0^{3} & 0^{4} \\ 1^{4} & 1^{3} 1 & 1^{2} 1_{1}^{2} & 1 \cdot 1^{3} & 1^{4} \\ 2^{4} & 2^{3} 1 & 2^{2} 1^{2} & 2 \cdot 1^{3} & 1^{4}\end{array}\right]$

Here, as in (2.8), the matrix Q shiftsindices on each row and, overapplying this shift, introduces the negative side of the Fibonacci sequence by way of the relation $u_{n-1}=u_{n+1}-u_{n}$. Expanding thedeterminant of (2.13) by the third row we have

$$
\begin{equation*}
\left|B_{5,1}\right|\left|Q_{4}\right|^{-3}=(-1)^{2}\left(u_{-2} u_{-1}\right)\left(u_{1} u_{2}\right)\left|B_{4,-2}^{3}\right| \tag{2.14}
\end{equation*}
$$

where $B_{4,-2}^{3}$ is $B_{4,-2}$ (i.e., the fourth order matrix of (2.4) with u_{-1} and u_{-2} in its first row) and where the superscript 3 denotes that the third row is missing.

$$
B_{4,-2}^{3}=\left[\begin{array}{cccc}
u_{-1}^{3} & u_{-1}^{2} u_{-2} & u_{-1} u_{-2}^{2} & u_{-2}^{3} \tag{2.15}\\
0^{3} & 0^{2} u_{-1} & 0 \cdot u_{-1}^{2} & u_{-1}^{3} \\
1^{3} & 1^{2} 0 & 1 \cdot 0^{2} & 0^{3} \\
1^{3} & 1^{2} 1 & 1 \cdot 1^{2} & 1^{3}
\end{array}\right]
$$

We transform (2.15) to the desired matrix of (2.12) by

$$
\begin{equation*}
B_{4,-2}^{3} Q_{3}^{3}=B_{4,1}^{3} \tag{2.16}
\end{equation*}
$$

Passing to determinants, and conbining (2.16) with (2.14) we have

$$
\left|B_{4,1}^{3}\right|=\frac{(-1)^{2}}{\left(u_{-2} u_{-1}\right)\left(u_{1} u_{2}\right)} \frac{\left|Q_{3}\right|^{3}}{\left|Q_{4}\right|^{3}}\left|B_{5, I}\right|
$$

Using $u_{-n}=-(-1)^{n} u_{n}$ for the negative half of the Fibonacci sequence, and evaluating the known determinants,

$$
\left|\mathrm{B}_{4,1}^{3}\right|=(-1)^{12} \mathrm{~S}_{5} \mathrm{~S}_{3} \mathrm{~F}_{4}(\mathrm{~S}) \frac{W_{4}(u)}{\mathrm{F}_{2}(u) \mathrm{F}_{2}(u)}
$$

The general case, using this technique, m y be formulated as

$$
\begin{equation*}
\left|B_{n, 1}^{r}\right|=(-1)^{n r} S_{n+1} S_{r} F_{n}(S) \frac{W_{n}(u)}{F_{r-1}(u) F_{n+1-r}(u)} \tag{2.17}
\end{equation*}
$$

Two simplifications to (2.17) are in order:

$$
(-1)^{n r} S_{n+1} S_{r}=S_{n+1-r}
$$

and

$$
\frac{W_{n}(u)}{F_{r-1}(u) F_{n+1-r}(u)}=W_{n-1}(u) \frac{F_{n}(u)}{F_{r-1}(u) F_{n+1-r}(u)}
$$

It seems appropriate, since $F_{n}(u)=u_{n} u_{n-1} u_{n-2} \cdots u_{2} u_{1}$ is a factorial type product for the sequence $\left\{u_{n}\right\}$, that we define the specialized "binomial coefficient"

$$
\left[\begin{array}{c}
\mathrm{n} \\
\mathrm{r}
\end{array}\right]=\frac{\mathrm{F}_{\mathrm{n}}(\mathrm{u})}{\mathrm{F}_{\mathrm{r}}(\mathrm{u}) \mathrm{F}_{\mathrm{n}-4}(\mathrm{u})} ; \quad \mathrm{F}_{0}(\mathrm{u})=1,\left[\begin{array}{c}
\mathrm{n} \\
\mathrm{r}
\end{array}\right]=1 .
$$

We then have

$$
\left|B_{n, l}^{r}\right|=F_{n}(S) W_{n-1}(u) S_{n+1-r}\left[\begin{array}{c}
n \\
r-1
\end{array}\right]
$$

The remaining determinant of (2.10) may now be expanded, and the general case has the form

$$
\sum_{r=2}^{n+1}(-1)^{r} a_{r} \frac{F_{n+1}(u)}{u_{r}} \frac{F_{n}(u)}{u_{r-1}}\left|B_{n-1,1}^{r}\right|
$$

or

$$
F_{n-1}(S) W_{n}(u) \sum_{r=2}^{n+1}(-1)^{r} S_{n+1-r}\left[\begin{array}{c}
n+1 \\
r
\end{array}\right] a_{r} .
$$

The first two determinants (2.11) round out the summation nicely for $\mathrm{k}=1$ and 2 , so that we can state

$$
D_{n}\{a\}=F_{n-1}(S) W_{n}(u) \sum_{r=0}^{n+1}(-1)^{r} S_{n+1-r}\left[\begin{array}{c}
n+1 \\
r
\end{array}\right] a_{r}
$$

or, summing backwards,

$$
D_{n}\{a\}=(-1)^{n-1} F_{n-1}(S) W_{n}(u) \sum_{r=0}^{n+1}(-1)^{r} S_{r}\left[\begin{array}{c}
n+1 \tag{2.18}\\
r
\end{array}\right] a_{n+1-r}
$$

At this point we consider the summation

$$
\phi_{\mathrm{n}}\{\mathrm{a}\}=\sum_{\mathrm{r}=0}^{\mathrm{n}+1}(-1)^{\mathrm{r}} \mathrm{~S}_{\mathrm{r}}\left[\begin{array}{c}
\mathrm{n}+1 \tag{2.19}\\
\mathrm{r}
\end{array}\right] \mathrm{a}_{\mathrm{n}+1-\mathrm{r}}
$$

and the associated polynomial

$$
\phi_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{r}=0}^{\mathrm{n}+1}(-1)^{\mathrm{r}} \mathrm{~S}_{\mathrm{r}}\left[\begin{array}{c}
\mathrm{n}+1 \tag{2.20}\\
\mathrm{r}
\end{array}\right] \mathrm{x}^{\mathrm{n}+1-\mathrm{r}}
$$

For the first few values of n we have

$$
\begin{aligned}
& \phi_{0}(x)=x-1 \\
& \phi_{1}(x)=x^{2}-x-1 \\
& \phi_{2}(x)=x^{3}-2 x^{2}-2 x+1=(x+1)\left(x^{2}-3 x+1\right) \\
&(2.21) \\
& \phi_{3}(x)=x^{4}-3 x^{3}-6 x^{2}+3 x+1=\left(x^{2}+x-1\right)\left(x^{2}-4 x-1\right) \\
& \phi_{4}(x)=x^{5}-5 x^{4}-15 x^{3}+15 x^{2}+5 x-1=(x-1)\left(x^{2}+3 x+1\right)\left(x^{2}-7 x+1\right)
\end{aligned}
$$

The factorizations suggest the relation

$$
\begin{equation*}
\phi_{n}(x)=(-1)^{n-1}\left(x^{2}-v_{n} x+(-1)^{n}\right) \phi_{n-2}(-x) \tag{2.22}
\end{equation*}
$$

where v_{n} is a Lucas number, and $v_{n}=u_{n+1}+u_{n-1}$. (2.22) may be proved by induction, and the complete factorization of ϕ_{n} comes from the identity

$$
v_{n}=a^{n}+b^{n}, \text { where } a^{2}-a-1=b^{2}-b-1=0
$$

Thus (2.22) becomes

$$
\begin{aligned}
\phi_{n}(x)= & (-1)^{n-1}\left(x-a^{n}\right)\left(x-b^{n}\right) \phi_{n-2}(-x)=(a b)^{n-1} \\
& \cdot\left(x-a^{n}\right)\left(x-b^{n}\right) \phi_{n-2}(x / a b)
\end{aligned}
$$

and we can construct

$$
\phi_{n}(x)=\prod_{r=0}^{n}\left(x-a^{r} b^{n-r}\right)
$$

The evaluation of $D_{n}\{a\}$ for $a_{0}=a_{1}=\ldots=-1$ becomes, from (2.18) and (2.19),

$$
\begin{equation*}
D_{n}\{a\}=(-1)^{n} F_{n-1}(S) W_{n}(u) \phi_{n}(1) \tag{2.24}
\end{equation*}
$$

The evaluation of $\phi_{n}(1)$ requires the investigation of four separate cases. Using (2.23) with $b=-1 / a$

$$
\begin{equation*}
\phi_{n}(1)=\prod_{r=0}^{n}\left(1-(-1)^{n-r} a^{2 r-n}\right)=0 \quad \text { if and only if } n=4 k \tag{2.25}
\end{equation*}
$$

When $n=4 k+2$ the quadratic factorization (2.22) becomes
and

$$
\begin{aligned}
& \phi_{n}(x)=(1+x) \prod_{r=1}^{n / 2}\left(x^{2}+(-1)^{r} v_{2 r}+1\right) \\
& \phi_{n}(1)=2 \prod_{r=1}^{n / 2}\left(v_{2 r}+2(-1)^{r}\right) .
\end{aligned}
$$

Using the well known relation $v_{r}^{2}=v_{2 r}+2(-1)^{r}$ we have

$$
\begin{equation*}
\phi_{n}(1)=2 \prod_{r=1}^{n / 2} v_{r}^{2} \quad \text { when } \quad n=4 k+2 \tag{2.26}
\end{equation*}
$$

For $n=4 k \pm 1$ we have, from (2.22)

$$
\begin{aligned}
& \phi_{n}(x)=\prod_{r=0}^{\frac{n-1}{2}}\left(x^{2}-(-1)^{x+1}{ }^{v_{2 r+1}} x-1\right), \quad \text { when } n=4 k-1 \\
& \phi_{n}(x)=\prod_{r=0}^{\frac{n-1}{2}}\left(x^{2}+(-1)^{r+1}{ }^{n}{ }_{2 r+1} x-1\right), \quad \text { when } n=4 k+1
\end{aligned}
$$

so that
(2.27)

$$
\begin{gathered}
\phi_{n}(1)=\prod_{r=0}^{\frac{n-1}{2}}(-1)^{r} v_{2 r-1}=S_{2 k-1} \prod_{r=0}^{2 k-1} v_{2 r+1} \\
\text { when } \quad n=4 k-1
\end{gathered}
$$

(2.28) $\quad \phi_{n}(1)=\prod_{r=0}^{\frac{n-1}{2}}(-1)^{r+1} v_{2 r+1}=S_{2 k+1} \prod_{r=0}^{2 k} \quad v_{2 r+1}$,
when $n=4 k+1$.

Combining (2.25), (2.26), (2.27), (2.28) with (2.23), and using the sign convention

$$
S_{n}=(-1)^{n(n-1) / 2} \text { and } F_{n}(S)=-1 \quad \text { only when } n=4 k+2
$$

we have

$$
\begin{aligned}
D_{4 k} & =0, \\
D_{4 k+1} & =(-1)^{k} W_{4 k+1}(u) \prod_{r=0}^{2 k}{ }^{v}{ }_{2 r+1}, \\
D_{4 k-1} & =(-1)^{k} W_{4 k-1}(u) \prod_{r=0}^{2 k-1} v_{2 r+1}, \\
D_{4 k+2} & =2 W_{4 k+2}^{(u)} \prod_{r=0}^{2 k-1} v_{r+1}^{2}: \\
W_{n}(u) & =u_{1}^{n} u_{2}^{n-1} u_{3}^{n-2} \ldots u_{n-1}^{2} u_{n}=\prod_{r=1}^{n} u_{r}^{n+1-r} .
\end{aligned}
$$

1. Brother U. Alfred, Periodic properties of Fibonacci summations, Fibonacci Quarterly, 1(1963), No. 3, pp. 33-42.

Continued next issue.

FIBONACCI GEOMETRY

H. E. Huntley

Below are some additional observations about Hunter's [1] article.

If the rectangle $A B C D$ has a triangle $D P P^{\prime}$ inscribed within it so that $\triangle A P D=$ $\Delta B P P^{\prime}=\Delta P^{\prime} D C$ then $x(w+z)=w y=z(x+y)$ whence

$$
\begin{equation*}
\frac{y}{x}=\frac{w+z}{w}=\frac{z}{w-z} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\text { From (i) } \frac{y}{x}=\varphi \text { or } y=\varphi x \tag{iii}
\end{equation*}
$$

Thus P, P^{\prime} divide their sides in the Golden Section.
Now, suppose $A B C D$ is the Golden Rectangle, beloved of the Greek architects, i. e. $A B / B C=\varphi$, then $\frac{x+y}{W+z}=\varphi$. Hence, from (ii) and (iii) $\frac{x(l+\varphi)}{z(1+\varphi)}=\varphi$, i. e. $x=\varphi z$ whence $x=w$. From (i) $y=w+z=\varphi^{2} z$. Since $<A=<B=r t<$ and $x=w, y=w+z$, triangles $P A D, P^{\prime} B P$ are congruent. It follows that $P D=P P^{\prime}$, that $\varangle A P D$ is the complement of $\left\langle B P P^{\prime}\right.$, whence $\left\langle D P P^{\prime}\right.$ is a right angle.

The area of the right triangle is
$\frac{1}{2}\left(w^{2}+y^{2}\right)=\frac{1}{2}\left(\varphi^{2} z^{2}+\varphi^{4} z^{2}\right)=\frac{1}{2} \varphi^{2} z^{2}\left(\varphi^{2}+1\right)=\frac{1}{2} z^{2}(\varphi+1)(\varphi+2)=\frac{1}{2} z^{2}(4 \varphi+3)$.
we may conclude, therefore, that if the rectangle is the Golden Rectangle, that is, if its adjacent sides are in the Golden Ratio, φ, then the inscribed triangle is right-angled and isosceles, the length of the equal sides being $z \sqrt{4 \varphi+3}$.

Editorial Note: $P^{\prime} \| A C$

REFERENCES

1. J.A.H. Hunter, "Triangle Inscribed in a Rectangle" l(1963) October, pg. 66.

ON SUMMATION FORMULAS FOR FIBONACCI AND LUCAS NUMBERS

DAVID ZEITLIN, Honeywell,
Minneapolis, Minnesota
Recently, Siler [1] gave a closed form for $\sum_{k=1}^{n} F_{\text {ak-b }}$, where $a>b$ are positive integers and F_{k} are Fibonacci numbers with $F_{0}=0, F_{1}=1$, and $F_{n+2}=F_{n+1}+F_{n}, n=0,1, \ldots$. In this note, we will establisha more general summation formula which yields the result of [1] as a specialcase. General summation formulas for Fibonacci and Lucas numbers will be obtained as special cases of our general result.

Theorem. Let p, q, u_{o}, and u_{1} be arbitrary real numbers, and let

$$
\begin{array}{rlr}
u_{n+2} & =q u_{n+1}-p u_{n} & (n=0,1, \ldots), \\
S_{n} & =r_{1}^{n}+r_{2}^{n} & (n=0,1, \ldots), \tag{2}
\end{array}
$$

where $r_{1} \neq r_{2}$ are roots of $x^{2}-q x+p=0$ (i.e., $q^{2}-4 p \neq 0$). We define

$$
\begin{array}{ll}
u_{-n}=\left(u_{0} S_{n}-u_{n}\right) / p^{n} & (n=1,2, \ldots), \tag{3}\\
S_{-n}=S_{n} / p^{n} & (n=1,2, \ldots) .
\end{array}
$$

Let $\mathrm{a}=0,1, \ldots ; \mathrm{d}=0, \pm 1, \pm 2, \ldots$, and let x be a real number. Then

$$
\begin{align*}
& \left(1-S_{a} x+p^{a} x^{2}\right){\underset{k=0}{n} u_{a k+d^{x}} x^{k}=p^{a} x^{n+2} u_{a n+d}}_{\quad-x^{n+1} u_{a n+a+d}+x u_{a+d}+\left(1-x S_{a}\right) u_{d}} .
\end{align*}
$$

Moreover, in the region of convergence, we have

$$
\begin{equation*}
\left(1-S_{a} x+p^{a} x^{2}\right) \sum_{k=0}^{\infty} u_{a k+d} x^{k}=u_{d}+\left(u_{a+d}-u_{d} S_{a}\right) x \tag{6}
\end{equation*}
$$

Proof. If $C_{i}, i=1,2$, are arbitrary constants, then $u_{n}=C_{1} r_{1}^{n}+C_{2} r_{2}^{n}$, $\mathrm{n}=0,1, \ldots$, is the general solution of (1). Then

$$
\mathrm{v}_{\mathrm{k}}=\mathrm{u}_{\mathrm{ak}+\mathrm{d}}=\left(\mathrm{C}_{1} \mathrm{r}_{1}^{\mathrm{d}}\right)\left(\mathrm{r}_{1}^{\mathrm{a}}\right)^{\mathrm{k}}+\left(\mathrm{C}_{2} \mathrm{r}_{2}^{\mathrm{d}}\right)\left(\mathrm{r}_{2}^{\mathrm{a}}\right)^{\mathrm{k}}, \quad \mathrm{k}=0,1, \ldots,
$$

satisfies the linear difference equation

$$
\begin{equation*}
v_{k+2}=S_{a} v_{k+1}-p^{a_{k}} v_{k} \quad(k=0,1, \ldots), \tag{7}
\end{equation*}
$$

since $\left(x^{2}-S_{a} x+p^{a}\right) \equiv\left(x-r_{1}^{a}\right)\left(x-r_{2}^{a}\right) . \quad$ Let

$$
g(x)=\sum_{k=0}^{n} v_{k} x^{k}
$$

Multiplying both sides of (7) by x^{k+2} and then summing both sides with respect to k, we obtain.

$$
\begin{equation*}
\sum_{=}^{n} v_{k+2} x^{k+2}=x S \sum_{k=0}^{n} v_{k+1} x^{k+1}-p^{a} x^{2} \sum_{k=0}^{n} v_{k} x^{k} \tag{8}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\sum_{k=0}^{n} v_{k+2} x^{k+2}=g(x)+v_{n+2} x^{n+2}+v_{n+1} x^{n+1}-v_{1} x-v_{0} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=0}^{n} v_{k+1} x^{k+1}=g(x)+v_{n+1} x^{n+1}-v_{0} \tag{10}
\end{equation*}
$$

If we substitute (9) and (10) into (8), use (7) to eliminate v_{n+2}, and solve for $g(x)$, we obtain our principal result, (5).

The generating function for v_{k} is readily obtained from (5). Let $R>0$ and suppose that $\sum_{k=0}^{\infty} v_{k} x^{k}$ converges for $|x|<R$. Then, for $|x|<R, v_{n} x^{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus, for $|x|<R,(5)$ yields (6) as $n \rightarrow \infty$. Remarks. Let $q=1$ and $p=-1$ in (1). Then, for $u_{0}=0$ and $u_{1}=1$, we have $u_{n} \equiv F_{n}, F_{-n}=(-1)^{n+1} F_{n}$, and $S_{n} \equiv L_{n}$, the well-known Lucas sequence, where $L_{0}=2$ and $L_{1}=1$. Thus, (5) and (6), for $u_{n} \equiv F_{n}$, become, respectively,

$$
\begin{gather*}
\left(1-L_{a} x+(-1)^{a} x^{2}\right) \sum_{k=0}^{n} F_{a k+d} x^{k}=(-1)^{a} x^{n+2} F_{a n+d} \tag{11}\\
-x^{n+1} F_{a n+a+d}+x F_{a+d}+\left(1-x L_{a}\right) F_{d}, \\
\left(1-L_{a} x+(-1)^{a} x^{2}\right) \sum_{k=0}^{\infty} F_{a k+d^{\prime}} x^{k}=F_{d}+\left(F_{a+d}-F_{d} L_{a}\right) x \tag{12}
\end{gather*}
$$

The main result of [1] is obtained from (11) for $x=1$ and $d=-b$. For $\mathrm{x}=-1$, (11) yields the interesting result

$$
\begin{align*}
& \left(1+(-1)^{a}+L_{a}\right){\underset{k=0}{n}(-1)^{k} F_{a k+d}=(-1)^{n+a} F_{a n+d}}^{+(-1)^{n} F_{a n+a+d}-F_{a+d}+\left(L_{a}+1\right) F_{d}} . \tag{13}
\end{align*}
$$

For $d=0,(12)$ yields

$$
\begin{equation*}
\left(1-L_{a} x+(-1)^{a} x^{2}\right) \sum_{k=0}^{\infty} F_{a k^{x}} x^{k}=F_{a} x, \quad(a=0,1, \ldots) \tag{14}
\end{equation*}
$$

Again, let $q=1$ and $p=-1$ in (1). Then, for $u_{0}=2$, and $u_{1}=1$, we now have $u_{n} \equiv L_{n}, S_{n} \equiv L_{n}$, and $L_{-n}=(-1)^{n} L_{n}$. Thus, with $u_{n} \equiv L_{n}$, (5) and (6) become, respectively,

$$
\left(1-L_{a} x+(-1)^{a} x^{2}\right) \sum_{k=0}^{n} L_{a k+d^{x}} x^{k}=(-1)^{a} x^{n+2} L_{a n+d}-x^{n+1} L_{a n+a+d}
$$

$$
\begin{equation*}
+x L_{a+d}+\left(1-x L_{a}\right) L_{d}, \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\left(1-L_{a} x+(-1)^{2} x^{2}\right) \sum_{k=0}^{\infty} L_{a k+d^{x}} x^{k}=L_{d}+\left(L_{a+d}-L_{a} L_{d}\right) x \tag{16}
\end{equation*}
$$

REFERENCES

1. Ken Siler, Fibonacci summations, Fibonacci Quarterly, Vol. 1, No. 3, October 1963, pp. 67-69.

The Editor,
Fibonacci Quarterly.
Dear Dr. Hoggatt,
I refer to the article, "Dying Rabbit Problem Revived" in the December 1963 issue. The solution given there is patently wrong - if only because the alleged number of rabbits tends to minus infinity as n tend to infinity. It may easily be shown that the correct answer, X_{n}, is given by the recurrence relation

$$
X_{n+13}=X_{n+12}+X_{n+11}-X_{n}, n \quad 0
$$

together with the initial conditions

$$
X_{n}=F_{n+1} \text { for } n=0,1, \ldots, 11 ; \quad X_{12}=232
$$

In view of the fact that the two equations $z^{2}-z-1=0$ and $z^{13}-z^{12}$ $-z^{11}+1=0$ have no common root, it is clear that the answer can never be expressed simply as a-linear expression in Fibonacci and Lucas numbers whose coefficients are merely polynomials in n. For, any such expression, Y, where the highest power of n which occurs is n^{m}, satisfies

$$
\left(E^{2}-E-1\right)^{m+1} Y=0
$$

In particular the expression found by Bro. Alfred satisfies

$$
\left(E^{2}-E-1\right)^{2} Y=0
$$

The error made by Bro. Alfred stems from his table on p. 54 where the number of dying rabbits in the ($n+13$) th month is seen to be $F_{\text {for }}$ $n=1,2, \ldots 11$ and it is then assumed without proof that this is true for other values of n. In fact the very next but one value on n, namely $\mathrm{n}=13$ shows that this is false. In fact of course the number of dying rabbits in the ($n+13$) th month equals the number of bred rabbits in the $(n+1)$ th month, and this will be less than F_{n} for all n exceeding 12 .

Yours sincerely, (John H. E. Cohn)
BEDFORD COLLEGE
(University of London)

SQUARE FIBONACCI NUMBERS, ETC.

JOHN H.E. COHN
Bedford College, University of London, London, N.W.I.

IN'TRODUCTION

An old conjecture about Fibonacci numbers is that 0,1 and 144 are the only perfect squares. Recently there appeared a report that computation had revealed that among the first million numbers in the sequence there are no further squares [1]. This is not surprising, as I have managed to prove the truth of the conjecture, and this short note is written by invitation of the editors to report my proof. The original proof will appear shortly in [2] and the reader is referred there for details. However, the proof given there is fairly long, and although the same method gives similar results for the Lucas numbers, I have recently discovered a rather neater method, which starts with the Lucas numbers, and it is of this method that an account appears below. It is hoped that the full proof together with its consequences for Diophantine equations will appear later this year. I might add that the same method seems to work for more general sequences of integers, thus enabling equations like $y^{2}=D x^{4}+1$ to be completely solved at least for certain values of D. Of course the Fibonacci case is simply $D=5$.

PRELIMINARIES
In the first place, in accordance with the practice of the Fibonacci Quarterly, I here use the symbols F_{n} and L_{n} to denote the n-th. Fibonacci and Lucas number respectively; in other papers I use the more widely accepted, if less logical, notation u_{n} and v_{n} [3]. Throughout the following n, m, k will denote integers, not necessarily positive, and r will denote a non-negative integer. Also, whereveritoccurs, k willdenote an even integer, not divisible by 3 . We shall then require the following formulae, all of which are elementary

$$
\begin{equation*}
2 \mathrm{~F}_{\mathrm{m}+\mathrm{n}}=\mathrm{F}_{\mathrm{m}} \mathrm{~L}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}} \mathrm{~L}_{\mathrm{m}} \tag{1}
\end{equation*}
$$

(2)
(3)

$$
\begin{align*}
2 L_{m+n} & =5 F_{m} F_{n}+L_{m} L_{n} \\
L_{2 m} & =L_{m}^{2}+(-1)^{m-1} 2 \tag{4}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{F}_{-\mathrm{n}}=(-1)^{\mathrm{n}-1} \mathrm{~F}_{\mathrm{n}} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{L}_{\mathrm{k}} \equiv 3(\bmod 4) \text { if } 2 \mid \mathrm{k}, 3 \nmid \mathrm{k} \tag{9}
\end{equation*}
$$

$$
L_{-n}=(-1)^{n} L_{n}
$$

$$
\begin{equation*}
L_{m+2 k} \equiv-L_{m}\left(\bmod L_{k}\right) \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
F_{m+2 k} \equiv-F_{m}\left(\bmod L_{k}\right) \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
L_{\mathrm{m}+12} \equiv L_{\mathrm{m}}(\bmod 8) \tag{12}
\end{equation*}
$$

THE MAIN THEOREMS
Theorem 1.
If $L_{n}=x^{2}$, then $n=1$ or 3.
Proof.
If n is even, (3) gives

$$
L_{n}=y^{2} \pm 2 \neq x^{2}
$$

If $n \equiv 1(\bmod 4)$, then $L_{1}=1$, whereasif $n \neq 1$ we can write $n=1+$ $2 \cdot 3^{r} \cdot k$ where k has the required properties, and then obtain by (11)

$$
L_{n} \equiv-L_{1}=-1 \quad\left(\bmod L_{k}\right)
$$

and so $L_{n} \neq x^{2}$ since -1 is a non-residue of L_{k} by (10). Finally,
if $\mathrm{n} \equiv 3(\bmod 4)$ then $\mathrm{n}=3$ gives $\mathrm{L}_{3}=2^{2}$, whereas if $\mathrm{n} \neq 3$, we write as before $n=3+2 \cdot 3^{r} \cdot k$ and obtain

$$
L_{n} \equiv-L_{3}=-4\left(\bmod L_{k}\right)
$$

and again $L_{n} \neq x^{2}$.
This concludes the proof of Theorem 1.

Theorem 2.
If $L_{n}=2 x^{2}$, then $n=0$ or ± 6.
Proof.
If n is odd and L_{n} is even, then by (6) $n \equiv \pm 3(\bmod 12)$ and so, using (13) and (9),

$$
L_{n} \equiv 4(\bmod 8)
$$

and so $L_{n} \neq 2 x^{2}$.
Secondly, if $n \equiv 0(\bmod 4)$, then $n=0$ gives $L_{n}=2$, whereas if $n \neq 0, n=2 \cdot 3^{r} \cdot k$ and so
whence

$$
\begin{array}{r}
2 L_{n} \equiv-2 L_{0}=-4\left(\bmod L_{k}\right) \\
2 L_{n} \ngtr y^{2}, \quad \text { i. e. } L_{n} \ngtr 2 x^{2}
\end{array}
$$

Thirdly, if $n \equiv 6(\bmod 8)$ then $n=6$ gives $L_{6}=2 \cdot 3^{2}$ whereas if $n \neq 6, n=6+2 \cdot 3^{r} \cdot k$ where now $4 \mid k, 3 \nmid k$ and so

$$
2 L_{n} \equiv-2 L_{6}=-36\left(\bmod L_{k}\right)
$$

and again, -36 is a non-residue of $L_{k} u s i n g(7)$ and (10). Thus as before $L_{n} \neq 2 x^{2}$.

Finally, if $\mathrm{n} \equiv 2(\bmod 8)$, then by (9) $\mathrm{L}_{-\mathrm{n}}=\mathrm{L}_{\mathrm{n}}$ where now $-\mathrm{n} \equiv 6(\bmod 8)$ and so the only admissible value is $-\mathrm{n}=6$, i. e, $\mathrm{n}=-6$.

This concludes the proof of Theorem 2 .

Theorem 3.
If $F_{n}=x^{2}$, then $n=0, \mid \pm 1,2$ or 12.
Proof.
If $n \equiv 1(\bmod 4)$, then $n=1$ gives $F_{1}=1$, whereas if $n \neq 1$, $\mathrm{n}=1+2 \cdot 3^{\mathrm{r}} \cdot \mathrm{k}$ and so

$$
F_{n} \equiv-F_{1}=-1 \quad\left(\bmod L_{k}\right)
$$

whence $F_{n} \neq x^{2}$. If $n \equiv 3$ (mod 4), then by (8) $F_{-n}=F_{n}$ and $-n \equiv 1$ $(\bmod 4)$ and as before we get only $n=-1$. If n is even, then by (l) $F_{n}=F_{1 / 2^{n}} L_{1 / 2^{n}}$ and so, using (4) and (5) we obtain, if $F_{n}=x^{2}$ ${ }^{n}$ either ${ }^{1 / 2^{n}} \quad 1 /\left.2^{n}\right|_{n}, \quad F_{1 / 2 n}=2 y^{2}, \quad L_{1 / 2 n}=2 z^{2}$. By Theorem 2, the latter is possible only for $1 / 2 n=0$, 6 or -6 . The first two values also satisfy the former, while the last must be rejected since it does not. or $\quad 3 \nless n, F_{1 / 2 n}=y^{2}, \quad L_{1 / 2 n}=z^{2}$. By Theorem 1 , the latter is possible only for $1 / 2 n=1$ or 3 , and again the second value must be rejected.

This concludes the proof of Theorem 3.

Theorem 4.
If $F_{n}=2 x^{2}$, then $n=0, \pm 3$ or 6 .
Proof.
If $\mathrm{n} \equiv 3(\bmod 4)$, then $\mathrm{n}=3$ gives $\mathrm{F}_{3}=2$, whereas if $\mathrm{n} \neq 3$, $\mathrm{n}=3+2 \cdot 3^{\mathrm{r}} \cdot \mathrm{k}$ and so

$$
2 F_{n} \equiv-2 F_{3}=-4\left(\bmod L_{k}\right)
$$

and so $F_{n} \neq 2 x^{2}$. If $n \equiv 1(\bmod 4)$ then as before $F_{-n}=F_{n}$ and we get only $n=-3$. If n is even, then since $F_{n}=F_{1 / 2 n} L_{1 / 2 n}$ we must have if $\mathrm{F}_{1 / 2 \mathrm{n}}=2 \mathrm{x}^{2}$
either $\quad F_{1 / 2 n}^{1 / 2^{n}}=y^{2}, \quad L_{1 / 2 n}=2 z^{2}$; then by Theorems 2 and 3 we see that the only value which satisfies both of these is $1 / 2 n=0$
or $F_{1 / 2}=2 y^{2}, \quad L_{1 / 2 n}=z^{2}$; then by Theorem 1 , the second of these is satisfied only for $1 / 2 n=1$ or 3 . But the former of these does not satisfy the first equation.

This concludes the proof of the theorem.

REFERENCES

1. M. Wunderlich, On the non-existence of Fibonacci Squares, Maths. of Computation, 17 (1963) p. 455.
2. J. H. E. Cohn, On Square Fibonacci Numbers, Proc. Lond. Maths. Soc. 39 (1964) to appear.
3. G. H. Hardy and E. M. Wright, Introduction to Theory of Num bers, 3rd. Edition, O. U.P. 1954, p. 148 et seq.

EDITORIAL NOTE
Brother U. Alfred cheerfully acknowledges the priority of the essential method, used in "Lucas Squares" in the last issue of the Fibonacci Quarterly Journal, rest solely with J. H. E. Cohn. This was written at the request of the Editor and the unintentional omission of due credit rest solely with the Editor.

EXPLORING THE FIBONACCI REPRESENTATION OF INTEGERS

Proposed by Brother U. Alfred on page 72, Dec. 1963,
"The Fibonacci Quarterly"
The completion of the Theorem stated in the article is:
The Maximum number of different Eibonacci numbers required to represent an integer N for which $[N] \%=F_{n}$ is given by $\left[\frac{n}{2}\right]$.

This is a corollary of the following theorem.
Eor $E_{n}<N \leq F_{n+1}$ the number N can be represented as a sum of Fibonaccinumbers, the largestwhich is F_{n} and the smallest greater than or equal to F_{2}. Moreover, the sumnever contains two consecutive Fibonacci numbers. We therefore have at most the alternating terms of indices from 2 to n which gives us $\left[\frac{n-2}{2}+1\right]=\left[\frac{n}{2}\right]$, as claimed.

The proof of this theorem depends upon a Lemma which is a well known Fibonacci Identity that $F_{2}+F_{4}+F_{6}+\ldots+F_{2 n}=F_{2 n+1}-1$ and that $E_{3}+E_{5}+E_{7}+\ldots+F_{2 n-1}=E_{2 n}-1$. The proof of the first part of this is given byinduction and the second partis similarly proved. Proof.
For $\mathrm{n}=1$, we have $E_{2}=E_{3}-1$
$n=2$, we have $F_{2}+E_{4}=E_{5}$ - I which clearly shows the Lemma holds for $n=1,2$.

Now assume that it holds for all $n \leq K$, where K is a fixed but unspecified positive integer greater than or equal to 3 .
i.e. $F_{2}+F_{4}+\ldots+E_{2 K}=E_{2 K+1}-1$, therefore by addition to both sides we have that $F_{2}+F_{4}+\ldots+F_{2 K}+F_{2 K+2}=F_{2 K+1}+F_{2 K+2}-1$

$$
=F_{2 K+3}-1
$$

which implies the Lemma holds for all positive n.
Using this Lemma whichwe shall call Lemma 1, part A fox the first part which was just proved, and part B for the second part with the odd indices; we can now prove the general theorem that for $F_{n}<N \leq F_{n+1}$, we can represent N as a sum of at least alternating Fibonacci numbers where the largest is $F_{n 2}$ for $N<F_{n+1}$ and which trivially is just F_{n+1} itself when $N=F_{n+1}$.
Proof. For $N=1$, we have $1=F_{2}$, and fox $N=2$, we have $2=F_{3}$. Now assume the theorem true for all $N \leq k$, wherekisa fixed but unspecified positive integex and n is such that $F_{n}<k \leq F_{n+1}, n \geq 3$. Now if Contimued on Page 134

PARTITION ENUMERATION BY MEANS OF SMPLER PARTITIONS DANIEL C. FIELDER, Georgia linatitute of Technology, Atlanta, Ga.

1. INTRODUCTION

Netto [1] illustrates a method for enmerating all partitions of n having exactly p members, all non-zero. It is shown herein that Netto's procedure can be reduced to an algorithmic form through use of simpler partitions which are limited in range (size and number of members) but otherwise unrestricted. Properties of these rangelimited partitions per se and a means of adapting them to Netto's enumeration procedure are discussed. An obvious application of the algorithmic procedure is the digital compatation of both types of partitions.

2. LIMITED-RANGE, UNRESTRICTED PARTITIONS

Chrystal's [2] partitionterminology, suitablymodified, is used throughout. Thus, $p\left(\geqslant n_{1}, \leqslant n_{2}\left|\geq p_{1}, \leqslant p_{2}\right| q_{1}: \leqslant q_{2}\right)$ specifies the enumeration of partitions of all positive integers from n_{1} to n_{2}, inclusive, no partition havingless than P_{1} normorethan p_{2} members, each member being not less than q_{1} now more than q_{2}. However, the set rather than the enumexation of range-limited partitions is of immediate interestin this paper, and to specifyaset a V is appended to the enumeration notation. Accordingly, $P V\left(\Delta n_{1}, \leqslant n_{2}\left|\sum_{p_{1}}, \leqslant p_{2}\right|\right.$ $\geqslant q_{1}, \leqslant q_{2}$) denotes the set of partitions having the properties of the enumeration counterpart.

The existence conditions are $n_{2} \doteq n_{1}, p_{2} \neq p_{1}, q_{2} \nRightarrow q_{1}, q_{2} p_{2} \not n_{1}$, $q_{1} p_{1} \leqslant n_{2}$, simultaneously. Moreovex, forfixed $n_{1}, n_{2}, q_{1}, q_{2}$, there are optimum extreme values for p_{1} and p_{2}. These are*

Brackets [] except where obvious for references are used in the customarymanner with real numbers to indicate the greatest integer less than or equal to the number bracketed. See Uspensky and Heaslet [3].

$$
\begin{align*}
& \mathrm{p}_{1 \text { opt. }}=-\left[-\left(\mathrm{n}_{1} / \mathrm{q}_{2}\right)\right] \tag{1}\\
& \mathrm{p}_{2 \text { opt. }}=\left[\mathrm{n}_{2} / \mathrm{q}_{1}\right] \tag{2}
\end{align*}
$$

If $p_{1} \leqslant p_{1}$ opt., p_{1} can be changed to p_{1} opt., but if $p_{1}>p_{1}$ opt., p_{1} cannot be changed. However, if $p_{2} \geqslant p_{2}$ opt., p_{2} can be changed to p_{2} opt., but if $p_{2} p_{2}$ opt.,p_{2} cannot be changed.

In generating the partitions, the p_{1}-member partitions are found first, then the $\left(p_{1}+1\right)$-member partitions, etc., until the $p_{2}-$ member partitions arefound. The procedure used herein for the partitions of a typical p-member set is as follows:

A trial "first" partition is formed from $p q_{1}$'s. If the sum of the p membersis equal to orgreaterthan n_{l} but less than or equal to n_{2}, the partition initiates the set. If such is not so, the righthand member is augmented so that the sum of the p-members in n_{1}. To form new partitions, the right-hand member is successively increased by one until eitheritequals q_{2} or the sum of the p members equals n_{2} (or both). The next p-member trial partition is found by adding one to the member second from the right and replacing all members to the right with the new value of the changed member. The desired reinitiating partition is found from the sum of the p members, as before. The right-hand member is successively increased by one to form new partitions. When the possibilities of the particular second member from the right are exhausted, one is added to the third member from the right and the process repeated all over again. Eventually, all p-member partitions will be accounted for. An example for $\operatorname{PV}(\geq 8, \leq 10|\geq 2, \leq 5| \geq 2, \leq 7)$ follows:

2,6	$2,2,4$	$2,2,2,2$	$2,2,2,2,2$
2,7	$2,2,5$	$2,2,2,3$	
3,5	$2,2,6$	$2,2,2,4$	
3,6	$2,3,3$	$2,2,3,3$	
3,7	$2,3,4$		
4,4	$2,3,5$		
4,5	$2,4,4$		
4,6	$3,3,3$		
5,5	$3,3,4$		

3. APPLICATION OF NETTO'S METHOD

Netto [1] considers the enumeration $P(n|p| \leq q)$ of the partitions of n having exactly p members with no member greater than q. Netto's methodis limited to $q \geq(n+1-p)$ wi.th the existence conditions being $p \leq n$ and $q p \geq n$, simultaneously. In the terminology of this paper,

$$
\begin{equation*}
\mathrm{P}(\mathrm{n}|\mathrm{p}| \leq q)=\sum_{\mathrm{t}}\left[\frac{1}{2}\left(\mathrm{n}-\mathrm{p}+2-3 \mathrm{t}_{1}-4 \mathrm{t}_{2}-\cdots-\mathrm{pt} \mathrm{p}-2\right)\right] \tag{3}
\end{equation*}
$$

where $t_{\alpha}=0,1, \ldots,\left[\frac{n-p+2}{\alpha+2}\right]$. Inspection of (3) reveals that the typical term is

$$
\begin{equation*}
\left[\frac{n-p+2-w}{2}\right], \tag{4}
\end{equation*}
$$

in which w is always zero for $t_{\alpha}=0$, always 3 for $t_{\alpha}=1$, and always greater than 3 for all other $t_{\alpha}{ }^{\prime}$ s. It can be observed that except for the zerovalue of w, each w in the enumeration $P(n|p| \leq q)$ is the sum of the members of each partition included in the set

$$
\begin{equation*}
P V\left(\geq 3, \leq n-p\left|\geq 1, \leq\left[\frac{n-p}{3}\right]\right| \geq 3, \leq p\right) \tag{5}
\end{equation*}
$$

Thus, except for $p=1$,

$$
\begin{equation*}
\mathrm{P}(\mathrm{n}|\mathrm{p}| \leq \mathrm{q})=\left[\frac{\mathrm{n}-\mathrm{p}+2}{2}\right]+\sum_{\mathrm{i}}\left[\frac{\mathrm{n}-\mathrm{p}+2-\mathrm{w}_{\mathrm{i}}}{2}\right] . \tag{6}
\end{equation*}
$$

It should be noted that (5) does not exist for $p=2$, and/or ($n-p$) <3. There are no w_{i}^{\prime} s under these conditions, and the summation term of (6) is accordingly zero. The special case of $p=1$ is

$$
\begin{equation*}
P(n|1| \leq q)=1 \tag{7}
\end{equation*}
$$

As was stated earliex, the methods described herein are particularly adaptable to digital computations. To this end, the author can supply a Limited number of $A L G O L$ language programs and test examples for enumerating partitions with the Burroughs 220 digital computer.

REFERENCES

1. E. Netto, Lehrbuch dex Combinatorik, Leipsiz, 1901, pp. 127, 128.
2. G. Chrystal, Textbook of Algebra, Vol. 2, (Reprint) Chelsea Publishing Co., New Tork, 1952.
3. J. V. Uspenskyand M. A. Heaslet, Elementary Number Theory, McGraw-Hill Book Co., New York, 1939, pp. 94-99.

CORRECTIONS FOR TOLUME 1, NO. 3
Page 44: On line 4 read $10 \leq k \leq 2^{T}-1^{\prime \prime}$ for ${ }^{10} \leq \mathrm{k} \leq 2^{r_{1}}$
Page 49: On Line 8 read $\left[m_{a}\right] / F_{m}$ for $\left[m F_{n}\right] F_{m}$
Page 80: In $B-7$ line $2 \quad x=1 / 4$ and $\sum_{i=0}^{\infty} E_{i}^{2} / 4^{i}=\frac{12}{25}$?

EURTHER CORRECTIONS FOR VOLUME 1, NO. 4
Reference 4 The first author is IVAN NVEN.
In $\mathrm{H}-25 \quad(i, j=1,2,3,4)$

A NOTE ON WARING'S FORMULA FOR SUMS OF LIKE POWERS OF ROOTS

S.L. BASIN

Sylyania Electronic Systems, Mountain View, California
Sums of powers $S_{k}=x_{1}^{k}+x_{2}^{k}+\ldots+x_{n}^{k}$ may be expressed in terms of elementary symmetric functions or interms of the coefficients of:

$$
f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)=x^{n}+p_{1} x^{n-1}+\ldots+p_{n}
$$

by Newton's formulas, usually introducedin a course in the theory of equations, for example, J. V. Uspensky [1].

The relationship between Waring's formula for sums of like powers of the roots of a quadratic and Lucas numbers is quite obvious although perhaps a little too specialized for L. E. Dickson [2] to have pointed this out in his text, First Course in the Theory of Equations. In order to obtain an explicit expression for S_{k} where $k=1$, 2,3..., first consider the quadratic

$$
\begin{equation*}
x^{2}+p x+q=0 \tag{1}
\end{equation*}
$$

If we denote the roots by a and β then (1) may be rewritten as

$$
\begin{equation*}
x^{2}+p x+q=(x-\alpha)(x-\beta) \tag{2}
\end{equation*}
$$

After making the transformation $x=1 / y$ and multiplying by y^{2} we obtain,

$$
\begin{equation*}
1+p y+q y^{2}=(1-\alpha y)(1-\beta y) \tag{3}
\end{equation*}
$$

Differentiating both sides of (3) with respect to y and dividing both members of the differentiated equation by the corresponding members of (3) we arrive at

$$
\begin{equation*}
\frac{-p-2 q y}{1+p y+q y^{2}}=\frac{\alpha}{1-\alpha y}+\frac{\beta}{1-\beta y} \tag{4}
\end{equation*}
$$

Equations,

$$
\begin{equation*}
\frac{\alpha}{1-\alpha y}=\alpha+\alpha^{2} y+\ldots+\alpha^{k} y^{k-1}+\frac{\alpha^{k+1}}{1-\alpha y} y^{k} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\beta}{1-\beta \mathrm{y}}=\beta+\beta^{2} \mathrm{y}+\ldots+\beta^{\mathrm{k}_{\mathrm{y}}^{\mathrm{k}-1}}+\frac{\beta^{\mathrm{k}+1}}{1-\beta \mathrm{y}} \mathrm{y}^{\mathrm{k}} \tag{6}
\end{equation*}
$$

are both obtained from the geometric series

$$
\begin{equation*}
\frac{1}{1-r}=\sum_{j=0}^{k-1} r^{j}+\frac{r^{k}}{1-r} ; \tag{7}
\end{equation*}
$$

for example, let $r=\alpha y$ and multiply by α. Addition of (5) and (6) results in,
(8) $\frac{\alpha}{1-\alpha \mathrm{y}}+\frac{\beta}{1-\beta \mathrm{y}}=\mathrm{S}_{1}+\mathrm{S}_{2} \mathrm{y}+\ldots+\mathrm{S}_{\mathrm{k}} \mathrm{y}^{\mathrm{k}-1}+\frac{\alpha^{\mathrm{k}+1}(1-\beta \mathrm{y})+\beta^{\mathrm{k}+1}(1-\alpha \mathrm{y})}{(1-\alpha \mathrm{y})(1-\beta \mathrm{y})}$
where

$$
\mathrm{S}_{\mathrm{k}}=\alpha^{\mathrm{k}}+\beta^{\mathrm{k}}
$$

In order to expand the left-hand member of (4) using (7), let $r=-p y$ $-q y^{2}$, then

$$
\begin{equation*}
\frac{1}{1+p y+q y^{2}}=\sum_{j=0}^{k-1}(-1)^{j}\left(p y+q y^{2}\right)^{j}+\frac{(-p-q y)^{k} y^{k}}{1+p y-q y^{2}} \tag{9}
\end{equation*}
$$

Employing the binomial theorem we may write

$$
\left(p y+q y^{2}\right)^{j}=\Sigma \frac{(g+h)!}{g!h!}(p y)^{g}\left(q y^{2}\right)^{h}
$$

where the summation is taken over all two-part partitions of j, i.e., for all $g \geq 0$ and $h \geq 0$ such that $g+h=j$. Therefore,

$$
\begin{align*}
\frac{-p-2 q y}{1+p y-q y^{2}}= & (p+2 q y) \Sigma(-1)^{g+h+1} \frac{(g+h)!}{g!h!} p^{g} q^{h} y^{g+2 h}+ \\
& \frac{(-p-2 q y)(-p-q y)^{k} y^{k}}{1+p y+q y^{2}} \tag{10}
\end{align*}
$$

Now the left-hand members of (8) and (10) are equal as shown byequation (4); therefore we mayequate coefficients of like powers of y. Specifically, equating coefficients of y^{k-1} we arrive at

$$
\begin{align*}
& S_{k}=\Sigma(-1)^{i+j} \frac{(i+j-1)!}{(i-1)!j!} p^{i} q^{i}+2 \Sigma(-1)^{i+j} \\
& \cdot \frac{(i+j-1)!}{i!(j-1)!} p^{i} q^{j} \tag{11}
\end{align*}
$$

where we have replaced i for $g+1$ and j for h in (10). The summations in (11) now extend over all $i \geq 0$ and $j \geq 0$ such that $i+2 j=k$. Combining both summations in (ll) we have,

$$
\begin{equation*}
S_{k}=k \Sigma(-1)^{i+j} \frac{(i+j-1)!}{i!j!} p^{i} q^{j} \tag{12}
\end{equation*}
$$

summed over all $i \geq 0, j \geq 0$ such that $i+2 j=k$. Clearly, for $p=q=$ -1 we have $S_{k}=L_{k}$ the kth Lucas number; and (12) becomes

$$
\begin{equation*}
L_{k}=k \sum_{\substack{i \geq 0 \\ j \geq 0 \\ i+2 j=k}} \frac{(i+j-1)!}{i!j!} . \tag{13}
\end{equation*}
$$

Equation (12) of Waring's formula, publishedin 1762, which can be extended to include the sum of kth powers of the roots of nth degree polynomials.

The main point to observe is not necessarily the meager result given by (13) but the fact that implicit in the development of Waring's formula lies the generating function (4) for the Lucas numbers.

REFERENCES

1. J. V. Uspensky, Theory of Equations, McGraw--Hill, 1948. 2. L. E. Dickson, First Course in the Theory of Equations, John Wiley, 1922.

OMISSIONS

H-3 and H-8 were also solved by John L. Brown, Jr., The Pennsyl. vania State University, State College, Penn.

The solution to H-16 given in the last issue was compounded from solutions given by L. Carlitz and John L. Brown, Jr. The varitypist omitted the credit line.

H-13 was also solved by John H. Halton, University of Colorado at Boulder, Colorado.

H-15 was also solved by L. Carlitz, Duke University, Durham, N. C.

ADVANCED PROBLEMS AND SOLUTIONS

Edited by VERNER E. HOGGATT, Jr.
San Jose State College, San Jose, California
Send all communications concerning Advanced Problems and Solutions to Verner E. Hoggatt, Jr., Mathematics Department, San Jose State College, San Jose, California, This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, solutions should be submitted on separate signed sheets within two months after publication of the problems.

H- 34 Proposed by Paul F. Byrd, San Jose Srate College, San Jose, California
Derive the sexies expansions

$$
J_{2 k}(\alpha)=I_{k}^{2}(\alpha)+\sum_{m=1}^{\infty}(-1)^{m+k} I_{m+k^{\prime}}(\alpha) I_{m-k}(\alpha) L_{2 m}
$$

$\left\langle k=0,1,2,3, \ldots\right.$) for the Bessel functions $J_{2 k}$ of alleven orders, where L_{n} are Lucas numbersand I_{n} aremodified Bessel functions. H-35 Proposed by Walter W. Horner, Pittsburgh, Pa.

Selectany nine consecutive terms of the Fibonacci sequence and form the magic square

u_{8}	u_{1}	u_{6}
u_{3}	u_{5}	u_{7}
u_{4}	u_{9}	u_{2}

show

Generalize.

$$
\begin{gathered}
u_{8} u_{1} u_{6}+u_{3} u_{5} u_{7}+u_{4} u_{9} u_{2}= \\
u_{8} u_{3} u_{4}+u_{1} u_{5} u_{9}+u_{6} u_{7} u_{2} \\
123
\end{gathered}
$$

H- 36 Proposed by J.D.E. Konhauser, State College, Pa.
Consider a rectangle R. From the upper right corner of R remove a rectangle S (similar to R and with sides parallel to the sides of R. Determine the linear ratio $K=L_{R} / L_{S}$ if the centroid of the remaining L shaped region is where the lower left corner of the removed rectangle was.
H-37 Proposed by H.W. Gould, West Virginia University, Morgantown, West. Va.
Find a triangle with sides $n+1, n, n-1$ having integralarea. The first two examples appear to be $3,4,5$ with area 6 ; and $13,14,15$ with area 84.
H- 38 Proposed by R.G. Buschman, Suny, Buffalo, N.Y.
(See Fibonacci Numbers, Chebyshev Polynomials, Generalizations and Difference Equations Vol. 1, No. 4, Dec. 1963, pp. 1-7.) Show

$$
\left(u_{n+r}+(-b)^{r} u_{n-r}\right) / u_{n}=\lambda_{r}
$$

H-39 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California Solve the difference equation in closed form

$$
C_{n+2}=C_{n+1}+C_{n}+F_{n+2}
$$

where $C_{1}=1, C_{2}=2$, and F_{n} is the nth Fibonacci number. Give two separate characterizations of these numbers.
H-40 Proposed by Walter Blumberg, New Hyde Park, L.I., N.Y.
Let $\mathrm{U}, \mathrm{V}, \mathrm{A}$ and B be integers, subject to the following conditions

> (i) $U>1, \quad$ (ii) $(U, 3)=1 ; \quad$ (iii) $(A, V)=1 ;$ (iv) $V=\sqrt{\left(u^{2}-1\right) / 5}$.

Show $A^{2} U+B V$ is not a square.

SOLUTIONS

EXPANSIONS OF BESSEL FUNCTIONS IN TERMS OF FIBONACCI NUMBERS

P-2 Proposed by P.F. Byrd, San Jose State College, San Jose, California.
Derive the series expansions

$$
J_{0}(\alpha)=\sum_{k=0}^{\infty}(-1)^{k} I_{k}^{2}(\alpha)-I_{k+1}^{2}(\alpha) \quad F_{2 k+1}
$$

where J_{0} and I_{k} are Besselfunctions, with $F_{2 k+1}$ being Fibonacci numbers.
Solution by the proposer, P.F. Byrd, San Jose State College, San Jose, California

Note: This is a corrected version. Initially this read $J_{0}(x)=\ldots$ which does not make sense.

It is just as easy to derive the more general series expansions of $J_{2 p}(\alpha),(p=0,1,2, \ldots)$, for Bessel functions of all even orders, and then to obtain the desired result as a special case upon setting $p=0$. We make principal use of formulas (6.1) and (6.5) presented in [1]. Since $J_{2 p}(\alpha)$ is an even function, we first seek a polynomial expansion of the form

$$
J_{2 p}(\alpha)=\sum_{k=0}^{\infty} \beta_{2 k, p}(\alpha) \varphi_{2 k+1}(\mathrm{x}),
$$

where from equation (6.5) and [1] the coefficients are given by

$$
\beta_{2 k, p}(\alpha)=\frac{(i)^{2 k}}{\pi} \int_{0}^{\pi} J_{2 p}(-2 i \alpha \cos v)[\cos 2 k v-\cos (2 k+2) v] d v
$$

with $2 k+1$ being the Fibonacci polynomials defined in [1]. Now it is known (e.g., see [2]) that

$$
\int_{0}^{\pi} J_{2 p}(-2 i \alpha \cos v) \cos 2 m v d v=\pi J_{p+m}(-i \alpha) J_{p-m}(-i \alpha)
$$

and also that $J_{n}(i z)=i^{n} I_{n}(-z)=(-i)^{n} I_{n}(z)$. Hence we easily obtain

$$
\beta_{2 k, p}=(-1)^{p+k}\left[I_{k+p}(\alpha) I_{k-p}(\alpha)-I_{k+p+1}(\alpha) I_{k-p+1}(\alpha)\right] .
$$

Finally, taking $x=1 / 2$, and thus with $\varphi_{2 k+1}(1 / 2)=F_{2 k+1}$, we have the formal expansions

$$
J_{2 p}(\alpha)=\sum_{k=0}^{\infty}(-1)^{k+p}\left[I_{k+p}(\alpha) I_{k-p}(\alpha)-I_{k+p+1}(\alpha) I_{k-p+1}(\alpha)\right] E_{2 k+1}
$$

which in particular yield the solution to the proposed problem upon setting $\mathrm{p}=0$.

REFERENCES

1. P. F. Byrd, Expansion of Analytic Functions in Polynomials Associated with Fibonacci Numbers, The Fibonacci Quarterly, Vol. 1, No. 1, pp. 16-29.
2. G. N. Watson, A Treatise on the Theory of Bessel Eunctions, Cambridge, 2nd Edition, 1944, p. 151.

Note: Currected statements to P-1.
Verify that the polynomials $\varphi_{k+1}(x)$ satisfy the differential equation

$$
\left(1+x^{2}\right) y^{\prime \prime}+3 x y^{3}-k(k+2) y=0
$$

($k=0,1,2,3, \ldots)$.
Readers are requested co submit solutions to the problems in the above mentioned reference [1].

CORRECTIONS IN SAME PAPER

Page 19 Replace 2] by [2] in line 11.
Page 20 In line 5 read (3) as relation ${ }^{3}$ referring tofootnote 3 In view of... .
Page 21 Read $\varphi_{j+1(x)}$ as $\varphi_{j+1}(x)$ in (4.7)
Page 23 In (5.6) place absolute value bars around the quantity approaching the limit zero.

SYMBOLIC REIATIONS

H-18. Proposed by R.G. Buschman, Oregon State University, Corvallis, Oregon

"Symbolic relations"are sometimes used to express identities. For example, if F_{n} and L_{n} denote, respectively, Fibonacci and

Lucas numbers, then

$$
(1+L)^{n} \doteq L_{2 n}, \quad(1+F)^{n} \doteq F_{2 n}
$$

are known identities, where \doteqdot denotes that the exponents on the symbols are to be lowered to subscripts after the expansion is made.
(a) Prove $(L+F)^{n} \stackrel{\circ}{\equiv}(2 F)^{n}$.
(b) Evaluate $(L+L)^{n}$.
(c) Evaluate $(F+F)^{\mathrm{n}}$.
(d) How can this be suitably generalized?

Solution by the proposer (now of Suny, Buffalo, N.Y.)
Consider the generating functions:

$$
\begin{aligned}
& 2 e^{u / 2} \sinh (u \sqrt{5} / 2)=\sqrt{5} \sum_{n=0}^{\infty} F_{n} u^{n} / n! \\
& 2 e^{u / 2} \cosh (u \sqrt{5} / 2)=\sum_{n=0}^{\infty} L_{n} u^{n} / n!
\end{aligned}
$$

From these and the product formula for power series we can write
(a) $\sqrt{5} \sum_{n=0}^{\infty} F_{n} z^{n} u^{n} / n!=2 e^{u} \sinh (u \sqrt{5})=\sqrt{5} \sum_{n=0}^{\infty} \sum_{k=0} \frac{F_{k} L_{n-k}}{k^{!}(n-k)!} u^{n}$,
(b) $\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{L_{k} L_{n-1}}{k!(n-k)!} u^{n}=2 e^{i}\left(\cosh u_{4} \sqrt{5}+1\right)=\sum_{n=0}^{\infty} \frac{L_{n} 2^{n}+2}{n!} u^{n}$,
(c) $\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{F_{k} E_{n-k}}{k!(n-k)!} u^{n}=2 e^{u}(\cosh u \sqrt{5}-1) / 5=\sum_{n=0}^{\infty} \frac{L_{n} 2^{n}-2}{n!} u^{n}$.

Equating coefficients and multiplying by n ! then gives
(a) $\sum_{k=0}^{n}\binom{n}{k} F_{k} L_{n-k}=2^{n} F_{n} \quad$ or $(F+L)^{n}=(2 F)^{n}$,
(b) $\sum_{k=0}^{n}\binom{n}{k} L_{k} L_{n-k}=2^{n} L_{n}+2 \quad$ or $(L+L)^{n}=(2 L)^{n}+2$.
(c) $\sum_{k=0}^{n}\left(\frac{n}{k}\right) F_{k} F_{n-k}=\left(2^{n} L_{n}-2\right) / 5 \quad$ or $\left.(F+F)^{n}=(2 L)^{n}-2\right) / 5$.

Solution by L. Carlitz, Duke University, Durham, N.C.

As noted by Gould (this Quaxterly, Vol. 1 (1963), p. 2) we have

$$
\begin{gathered}
\frac{e^{a x}-e^{b x}}{a-b}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} F_{n}, \quad e^{a x}+e^{b x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} L_{n} \\
a=\frac{1}{2}(1+\sqrt{5}), \quad b=\frac{1}{2}(1-\sqrt{5}) .
\end{gathered}
$$

It follows at once that

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}(L+F)^{n}=\frac{e^{2 a x}-e^{2 b x}}{a-b},
$$

so that
(a)

$$
(L+F)^{n}=2^{n} F_{n}
$$

Similarly

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}(L+L)^{n} & =e^{2 a x}+2 e^{(a+b) x}+e^{2 b x} \\
& =e^{2 a x}+e^{2 b x}+2 e^{x}
\end{aligned}
$$

so that
(b)

$$
(L+L)^{n}=2^{n} L_{n}+2,
$$

while

$$
(\alpha-\beta)^{2} \sum_{n=0}^{\infty} \frac{x^{n}}{n!}(F+F)^{n}=e^{2 a x}+e^{2 b x}-2 e^{x}
$$

so that
(c)

$$
5(F+F)^{n}=2^{n_{n}} L_{n}-2
$$

To generalize these formulas consider

$$
\begin{aligned}
& \left(e^{a x}+e^{b x}\right)^{r}=\underset{s=0}{\mathbf{r}}\left(\begin{array}{l}
r
\end{array}\right) e^{(r-s) a x+s b x}= \\
& =\frac{1}{2}{\underset{s=0}{r}\binom{r}{s} e^{s x}\left(e^{(r-2 s) a x}+e^{(r-2 s) b x}\right)}^{(r)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
(L+L+\ldots+I)^{n} & =\frac{1}{2} \sum_{s=0}^{x}\left(\frac{1}{S}\right) \sum_{k=0}^{n}\left(\frac{n}{k}\right)(x-2 s)^{k} s^{n-k} L_{k} \\
& =\frac{1}{2} \sum_{k=0}^{\mathbb{D}}\left(\frac{n}{k}\right) L_{k} \sum_{s=0}^{X}\left({ }_{s}^{n}\right)(r-2 s)^{k} s^{n-k} .
\end{aligned}
$$

In particular

$$
(L+L+L)^{n}=3^{n} L_{n}+3 L_{2 n}
$$

Similarly, since

$$
5^{r}(F+\ldots+F)^{n}=\frac{1}{2} \sum_{k=0}^{n}\left(\frac{n}{k}\right) L_{k} \sum_{s=0}^{2 r}(-1)^{s}\left({ }_{s}^{2 r}\right)(2 r-2 s)^{k} s^{n-k}
$$

where the number of $\mathrm{E}^{\prime} \mathrm{s}$ is $2 x_{0}$ and

$$
5^{r}(F+\ldots+F)^{n}=\frac{1}{2} \sum_{k=0}^{n}\left(\frac{1}{k}\right) E_{k} \sum_{s=0}^{2 x-1}(-1)^{s}\binom{2 x+1}{s}(2 r-2 s+1)^{k} s_{s}^{n-k},
$$

where the number of $\mathbb{F}^{\prime} \mathrm{s}$ is $2 x+1$. In particulat

$$
5(E+E+F)^{n}=3^{n} E_{n}+3 E_{2 n}
$$

A formula for

$$
(L+\ldots+L+E+\cdots+E)^{n}
$$

can be obtained but it is very complicated. When the number of L's is equal to the number of E^{3} s it is less complicated. In particular

$$
(L+I+F+E)^{n}=\frac{1}{5}\left(4^{n} L_{n}-2^{n+1}\right)
$$

Indeed since

$$
\left(e^{a x}+e^{b x}\right)^{x}\left(e^{a x}-e^{b x}\right)^{x}=\left(e^{2 a x}-e^{2 b x}\right)^{r}
$$

it follows that

In particular

$$
(L+L+L+F+E+E)^{n}=\frac{2^{n}}{5}\left(3 F_{n}-3 F_{2 n}\right)
$$

THE RACE
H-19 Proposed by Charles R. Wall, Texas Christian University, Ft. Worth, Texas
In the triangle below [drawn for the case $(1,1,3)$], the trisectors of angle, B, divide side, $A C$, into segments of length F_{n}, F_{n+1}, F_{n+3}. Find:
(i) $\lim \theta$
$n \rightarrow \infty$
(ii) $\lim \varphi$
$n \rightarrow \infty$

Solution by Michael Goldberg, Washington, D.C.
As $\mathrm{n} \rightarrow \infty$, the ratio $\mathrm{F}_{\mathrm{n}+1} / \mathrm{F}_{\mathrm{n}}$ approaches $\mathrm{t}=(\sqrt{5}+1) / 2$, and F_{n+3} / F_{n} approaches $t^{3}=2 t+1$. Hence, the limiting triangle ABC can be drawn by taking points D and E on $A C$ so that $A D=1, D E=t$ and $E C=t^{3}=2 t+1$. Since $B D$ is a bisector of angle $A B E$, the point B must lie on the circle which is the locus of points whose distances to A and E are in the ratio $A D / D E=1 / t$. The circle passes through D. If the diameter of the circle is $2 r=x+1$, then $x /(x+1+t)=1 / t$ from which

$$
r_{1}=t /(t-1)=t^{2}=t+1
$$

Similarly, BE is a bisector of the angle DBC. The point B must lie on a circle which is the locus of points whose distances from D and C are in the ratio $D E / E C=t / t^{3}=1 / t^{2}$. If the diameter of the circle is $2 r_{2}=y+t$, then $y /\left(y+t+t^{2}\right)=1 / t^{2}$ from which

$$
r_{2}=t_{2}^{2}=t+1=r_{1} .
$$

Hence, $\cos <\operatorname{BAE}=-\mathrm{t} / 2(\mathrm{t}+1)=-(\sqrt{5}-1) / 4$ and $<\mathrm{BAE}=108^{\circ}$. From which $2 \theta=90^{\circ}-108^{\circ} / 2=36^{\circ} ; \theta=18^{\circ}, \quad \phi=180^{\circ}-108^{\circ}-3 \theta=18^{\circ}$ Also solved by the proposer and Raymond Whitney, Penn. State University, Hazelton, Penn.

FIBONACCI TO LUCAS

H-20 Proposed by Verner E. Hoggatt, Jr., and Charles H. King, San Jose State College, San Jose, California.

If

$$
Q=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), \quad \text { show } \quad D\left(e^{Q^{n}}\right)=e^{L_{n}},
$$

where $D(A)$ is the determinant of matrix A and L_{n} is the $n^{\text {th }}$ Lucas number.
Solution by John L. Brown, Jr., Penn. State University, State College, Penn.
Recall that

$$
Q_{n}=\left(\begin{array}{ll}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right)
$$

so that (by definition)

$$
e^{Q^{n}}=\left(\begin{array}{cccc}
\sum_{k=0}^{\infty} & \frac{F_{n k+1}}{k!} & \sum_{k=0}^{\infty} & \frac{F_{n k}}{k!} \\
\sum_{k=0}^{\infty} & \frac{F_{n k}}{k!} & \sum_{k=0}^{\infty} & \frac{F_{n k-1}}{k!}
\end{array}\right)
$$

It is well-known that

$$
\sum_{k=0}^{\infty} \frac{F_{n k}}{k!} x^{k}=\frac{e^{a^{n} x}-e^{b^{n} x}}{\sqrt{5}}
$$

[e.g. equation (2.11), p. 5 of Gould's paper in Vol. 1, No. 2, April 1963], where
and

$$
a=\frac{1+\sqrt{5}}{2}
$$

$$
\mathrm{b}=\frac{1-\sqrt{5}}{2}
$$

Similarly,

$$
\sum_{k=0}^{\infty} \frac{L_{n k}}{k!} x^{k}=e^{e^{n} x}+e^{b^{n} x}
$$

for the Lucas numbers.
But $L_{n k}=F_{n k+1}+F_{n k-1}$; therefore,

$$
\sum_{k=0}^{\infty} \frac{F_{n k+1}+F_{n k-1}}{k!}=e^{a^{n}}+e^{b^{n}}, \quad \text { or }
$$

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{F_{n k+1}}{k!}=\left(e^{a^{n}}+e^{b^{n}}\right)-\sum_{k=0}^{\infty} \frac{F_{n k-1}}{k!} \tag{1}
\end{equation*}
$$

Since $\quad F_{n k+1}=F_{n k}+F_{n k-1}$ and $\sum_{k=0}^{\infty} \frac{F_{n k}}{k!}=\frac{e^{a^{n}}-e^{b^{n}}}{\sqrt{5}}$
from above, we also have
(2) $\sum_{k=0}^{\infty} \frac{F_{n k+1}}{k!}=\sum_{k=0}^{\infty} \frac{F_{n k}}{k!}+\sum_{k=0}^{\infty} \frac{F_{n k-1}}{k!}=\frac{e^{a^{n}}-e^{b^{n}}}{\sqrt{5}}+\sum_{k=0}^{\infty} \frac{F_{n k-1}}{k!}$.

Solving (1) and (2) simultaneously, we find
and

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{E_{n k+1}}{k!}=\frac{1}{2}\left[\left(e^{a^{n}}+e^{b^{n}}\right)+\frac{e^{a^{n}}-e^{b^{n}}}{\sqrt{5}}\right] \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{F_{n k-1}}{k!}=\frac{1}{2}\left[\left(e^{a^{n}}+e^{b^{n}}\right)-\left(\frac{e^{a^{n}}-e^{b^{n}}}{\sqrt{5}}\right)\right] \tag{4}
\end{equation*}
$$

Now, $\quad D\left(e^{Q^{n}}\right)=\left(\sum_{k=0}^{\infty} \frac{F_{n k+1}}{k!}\right)\left(\sum_{k=0}^{\infty} \frac{F_{n k-1}}{k!}\right)-\left(\sum_{k=0}^{\infty} \frac{F_{n k}}{k!}\right)^{2}$

$$
\begin{aligned}
& =\frac{1}{4}\left[\left(e^{a^{n}}+e^{b^{n}}\right)^{2}-\left(\frac{e^{a^{n}}-e^{b^{n}}}{\sqrt{5}}\right)^{2}\right]-\left(\frac{e^{a^{n}}-e^{b^{n}}}{\sqrt{5}}\right)^{2} \\
& =e^{a^{n}+b^{n}}=e^{L_{n}} \text {, since } L_{n}=a^{n}+b^{n} \text { for } n \geq 0 \cdot q \cdot e \cdot d \\
& \text { FIBONACCI PROBABILITY }
\end{aligned}
$$

H-21 Proposed by Francis D. Parker, University of Alaska, College, Alaska
Find the probability, as n approaches infinity, that the $n^{\text {th }}$ Fib-onacci number, $F(n)$, is divisible by another Fibonacci number ($\neq \mathrm{F}_{\mathrm{I}}$ or F_{2}).
Solution by proposer
We use frequently the fact that $F(n)$ is divisible by $F(k)$ if k divides n. Then the probability that $F(n)$ is divisible by 2 is $1 / 3$; the probability that $F(n)$ is divisible by 3 butnot 2 is $\left(\frac{1}{4}\right)\left(\frac{2}{3}\right)$; the probability that $F(n)$ is divisible by 5 but not by 2 or by 3 is $\frac{1}{5} \frac{2}{3} \frac{3}{4}=\frac{2}{4.5}$. and in general the probability that $F(n)$ is divisible by $F(k)$ but not any Fibonacci number of order less than k is $\frac{2}{k(k-1)}$. These probabilities are all independent, so that the probabilities that $F(n)$ is divisible by at least one Fibonacci number of order not exceeding k is

$$
\frac{3}{3.2}+\frac{2}{4.3}+\frac{2}{5.4}+\ldots \frac{2}{k(k-1)}
$$

This sum is $\frac{k-2}{k}$, and as n approaches infinity, the probability apo proaches unity.

Also solved by J. L. Brown, Jr., Penn. State University, State College, Pennsylvania.
$k=F_{n+1}$, we have that $k+1=F_{n+1}+F_{2}$, and we are through. If $k=F_{n+1}-1$, we have $k+1=F_{n+1}$ and we are through. If $k=F_{n+1}-2$ we have $k+1=F_{n+1}-1$, which by Lemmal (A or B), can be represented as claimed and we are through again. Therefore let us consider $k \leq F_{n+1}-3$.

Now the representation for k in this form can best be expressed as $k=F_{n}+a_{n-2} F_{n-2}+a_{n-3} F_{n-3}+a_{n-4} F_{n-4}+\ldots+a_{3} F_{3}+a_{2} F_{2}$ where $a_{i}=0$ or 1 for $2 \leq i \leq n-2$, and $a_{i}=1$, implies that $a_{i} \pm 1=0$. Now there are only two possibilities for a_{2} and a_{3} in this representation. Either $a_{2}=a_{3}=0$, or $a_{2} \neq a_{3}$. If the first case is true for k, we can represent $k+1$ in the required menner, simply by adding 1 to k in the form of $a_{2}=1$. If the second case is true for k, we then claim that there exists at least one place in the representation where $a_{i}=$ $a_{i+1}=0$, since otherwise, $k=F_{n+1}-1$ which we have already taken care of above.

Therefore we can represent $k+1$ by the following:
$k+1=F_{n}+a_{n-2} F_{n-2}+\ldots+a_{i+2} F_{i+2}+a_{i-1} F_{i-1}+\ldots+a_{3} F_{3}+a_{2} F_{2}+1$ Now consider the expression from $a_{i+2} F_{i+2}$ on and the resulting inequality.
$a_{i+2} F_{i+2}+a_{i-1} F_{i-1}+\ldots+a_{3} F_{3}+a_{2} F_{2}+1 \leq F_{i+3}-1 \leq F_{n-1}-1$,
by our Inductive Assumption. Also by the Inductive Assumption, we can represent the expression from $a_{i+2} F_{i+2}$ on in the proper form which implies that we can then alsorepresent $k+1$ in the proper form. This shows that the proof holds for all positive integers N. Q.E.D.

Phil Lafer, Oak Harbor, Ohio

BEGINNERS' CORNER

Edited by DMITRI THORO
San Jose State College

THE EUCLIDEAN ALGORITHM II

1. INTRODUCTION

In Part I [1] we saw that the greatest common divisor of two numbers could be conveniently computed via the famous Euclidean algorithm. Suppose that exactly n steps (divisions) are required to compute the g.c.d. of s and $t(s \geq t)$. We then have

$$
\begin{array}{ll}
s=t q_{1}+r_{1}, & 0<r_{1}<t \\
t=r_{1} q_{2}+r_{2}, & 0<r_{2}<r_{1}
\end{array}
$$

(2)

$$
\begin{equation*}
0<r_{3}<r_{2} \tag{3}
\end{equation*}
$$

$$
0<r_{4}<r_{3}
$$

$$
r_{1}=r_{2} q_{3}+r_{3},
$$

$$
\begin{equation*}
r_{2}=r_{3} q_{4}+r_{4} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
r_{3}=r_{4} q_{5}+r_{5} \tag{5}
\end{equation*}
$$

$$
0<r_{5}<r_{4}
$$

-

$(\mathrm{n}-1) \quad \mathrm{r}_{\mathrm{n}-3}=\mathrm{r}_{\mathrm{n}-2} \mathrm{q}_{\mathrm{n}-1}+\mathrm{r}_{\mathrm{n}-1}, \quad 0<r_{\mathrm{n}-1}<r_{\mathrm{n}-2}$
(n) $\quad r_{n-2}=r_{n-1} q_{n}+0$.

Since each quotient $q_{i} \geq 1$, the above equations imply

$$
t \geq r_{1}+r_{2}
$$

$$
r_{1} \geq r_{2}+r_{3}
$$

$r_{2} \geq r_{3}+r_{4}$
$r_{3} \geq r_{4}+r_{5}$

From (2') and (3^{3}), $t \geq 2 x_{2}+r_{3}$; but from (4'), $2 r_{2}+r_{3} \geq$ $\left(2 r_{3}+2 r_{4}\right)+r_{3}$. Similarly, from $\left(5^{\prime}\right), 3 r_{3}+2 r_{4} \geq\left(3 r_{4}+3 r_{5}\right)+$ $2 r_{f}$, etc. Continuing in this manner we note the generous abundance of Fibonacci numbers. Thus

$$
\begin{gathered}
t \geq r_{1}+r_{2} \geq 2 x_{2}+r_{3} \geq 3 x_{3}+2 x_{4} \geq 5 x_{4}+3 r_{5} \\
\ldots \geq F_{n-1} x_{n-2}+F_{n-2} x_{n-1}
\end{gathered}
$$

2. A BASIC RESULT

Since the remainders form a strictly decreasing sequence with r_{n-1} the last non-zero remainder.

$$
r_{n-2}>r_{n-1} \geq 1
$$

Consequently,

$$
t \geq F_{n-1} r_{n-2}+F_{n-2} r_{n-1} \geq 2 F_{n-1}+F_{n-2}=F_{n+1}
$$

Tosummarize, if n divisionsare required to compute the g.c.d. of s and t, then t is at least as large as the $(n+1)^{s t}$ Fibonacci number!

3. LAME'S THEOREM

Although the Euclidean algorithm is over 2,000 years old, the following result was established by Gabriel Lamé in 1844.

Theorem
The number of divisions required to find the g. c.d. of two numbers is never greater than five times the number of digits in the smaller number.
Proof.
Let ϕ designate the golden ratio. In [2] it was shown that

$$
\phi^{n}=F_{n} \phi+F_{n-1}, \quad n=1,2,3, \ldots
$$

Now since $2>\phi=(1+\sqrt{5}) / 2$, we see that

$$
\begin{gathered}
2 F_{\mathrm{n}}+F_{\mathrm{n}-1}>F_{\mathrm{n}}^{\phi}+F_{\mathrm{n}-1} \text { or } \\
F_{\mathrm{n}+2}>\phi^{\mathrm{n}}
\end{gathered}
$$

Replacing n by $n-1$ and using the 'basic result' of the preceding section yields
$t>\phi^{n-1}$.

To complete the proof note that
(i) if t has d digits then $d>\log t$
(ii) $\quad \log t>(n-1) \log \phi$
(iii) $\quad \log \phi>1 / 5$.

Thus $d>(n-1) / 5$ or $n \leq 5 d$.

REFERENCES

1. D. E. Thoro, "The Euclidean Algorithm I," Fibonacci Quarterly, Vo!. 2, No. 1, February 1964.
(Note that in excercises E8 and E10, $\left(F_{n+1}, F_{n}\right)$ and $\max _{n}(n, F-1)$ should be replaced by $N\left(F_{n+1}, F_{n}\right)$ and $\max _{n} N^{n}(n, F-1)$ respectively.)
2. D. E. Thoro, "The Golden Ratio: Computational Considerations," Fibonacci Quarterly, Vol. 1, No. 3, October 196́3, pp. 53-59.

EXPLORING FIBONACCI NUMBERS WITH A CALCULATOR

BROTHER U. ALFRED
St. Mary's College, California
It has often been noted that the study of numbers is both experimental and theoretical in character. Even in the days before the calculator, to say nothing of the computer, the truly great mathematicians often arrived at beautiful results on the basis of observation and numerical work before they proceeded to proof and theoretical justification. If we find ourselves enjoying calculation and seeing tangible results, we are in very good company and need not worry about the attitude of the theorist who is afraid to soil his hands with numbers.

In this vein, the following explo:ation is proposed. It may be observed by looking ata list of Fibonaccinumbers that in certain cases F_{n} has the n corresponding to the terminal digits of the number. Thus F_{5} is 5; F_{29} is 514229; F_{61} is 2504730781961. As lo2g as we have a table of Fibonacci numbers on hand we can proceed to make such verifications. But suppose we set out to find all these coincidences for Fibonacci numbers up to a certain level such as $F_{10,000}$. In the absence of these numbers we now have an interesting mathematical problem involving computation.

One very simple way to proceed would be to take the successive Fibonaccinumbers modulo 10, 000. In other words we would consider only the last five digits and forget about all those that go before. This is a straightforward procedure but it would be long and tedious and subject to error. In fact, once a mistake in introduced, all results thereafter would be vitiated. There must be a better way. Perhaps there are several ways. We shall look forward to both the numerical results and the method employed in arriving at them.

Address all communications regarding this problem to: Brother U. Alfred, St. Mary's College, California. The solution willappear in the issue of December, 1964.

AMATEUR INTERESTS IN THE FIBONACCI SERIES - PRIME NUMBERS
 JOSEPH MANDELSON
 U.S. Army Edgewood Arsenal, Maryland

My interest in the Fibonacci series was born in 1959 when it was noticed that the preferred ratios developed in the research of my colleague, H. Ellner, and later included in Department of Defense Handbook Hl09 [1], wese 1, 2, 3, 5 and 8. From recollection of a brief mention in college algebra, this was recognized as the first few terms of the Fibonacci. To test the supposition that the preferred ratios would all be from this series, the next one was calculated and, sure enough, it was 13. Then it was noted that the sample sizes, Acceptable Quality Levels (AQL's) and lot size ranges of all sampling standards since Dodge and Romig [2] were series approximately of the type:

$$
\begin{equation*}
u_{n+2}=u_{n+1}+u_{n} \tag{1}
\end{equation*}
$$

In fact the latest version of Military Standard Mil Std 105 [3] shows sample sizes which are almost exactly the Fibonacci series itself. These occurrences were too remarkable to be ascribed to mere coincidence and my interest led me to examine the series empirically. According to Dickson [4], the literature on this subject is rich, exteading as it does from the year 1202 to the present. However, it is almost comp!.etely unavailable to me and, I suspeci, to most others.

On developing the series u_{n} from $n=0$ to $n=25$ or so, inspection soon revealed that two thirds of the series comprised odd numbers and exactly every third u_{n} was even. It did not take much to ascertain whythis is so. In this way I found that n, the ordinal of u_{n} in the series was, in a manner of speaking, the determinant of the properties of u_{n}. Thus, if z is a factor of u_{n} it will infallibly be afactor of $u_{2 n}, u_{3 n}$, etc. Therefore, in general, if n is composite, so is u_{n} (except for the case $n=4, u_{n}=3$), but if n is prime, u_{n} may be prime. My first guess that, since the density of odd num'ers
in the Fibonacci is twice that of the even numbers, the density of primes would be greater than in the cardinalnumber domain was pro.ven wrong when the primality of u_{n} wasfound dependent on n being prime. The next supposition of equal density was shown to be wrong when $u_{31}=1346269$ was found to be composite of 557 and 2417. When u_{37} and u_{41} werealso determined to be composite it became obvious that the density of primes in u_{n} was less than that of the cardinal domain.

Several other interesting details were elucidated after extending and examining the series, first down to $n=50$ then to $n=100$ and finally to $n=130$. No u_{n} is divisible by n except when $n=5$ or powers of 5. For example $u_{5}=5$ and $u_{25}=75025$. Except for u_{6}, every u_{n} seems to have at least one prime factor which has not been a factor of any previous u_{2}; some have two or three such new prime factors. Surely, any theory of prime numbers might profit from Fibonacci considerations.

However, the first gain from the extension of study of the series to $n=100$ was a remarkable regularity found from the fact that if P_{n} is a prime factor of u_{n} it will also factor, more generally, $u_{j n}$ where j goesfrom l to 00 . Consider the multiple j and let this be expressed as a sum of multiples of powers of P_{n}, reduced to a minimum of terms, and provided that no multiples of the powers of $P_{n} \geq P_{n}$. Thus:

$$
\begin{equation*}
j=a P_{n}^{0}+b P_{n}^{1}+c P_{n}^{2}+\ldots q P_{i l}^{r} \tag{2}
\end{equation*}
$$

where $a, b, c . . q$ may be zero but must always be less than P_{n}. Then $u_{j n}$ will be divisible by $P_{n}+1$ where P_{n}^{x} is the lowest power term of P_{n} in the sum of multiples of powers of $P_{n}=j$. Example 1.

The first prime to divide u_{n} is $2\left(P_{n}=2\right)$ and it divides the third number $(n=3)$ in the series: $u_{3}=2$. From the above lemma we have:

Ordinal		Sum of $\mathrm{P}_{\mathrm{n}}^{*}$	$\mathrm{P}_{\mathrm{n}}^{\mathrm{x}}$	$u_{j n}$ is divisible	
jn	j	terms $=j$	x	by $\mathrm{P}_{\mathrm{n}}^{\mathrm{x}}+1$	u_{jn}
3	1	P_{n}^{0}	0	$P_{n}^{0+1}=P_{n}^{1}=2$	2
6	2	P_{n}^{1}	1	$P_{n 1}^{1}+1=P_{n}^{2}=4$	8
9	3	$P_{n}^{0}+P_{n}^{1}$	0	$P_{n}^{0+1}=P_{n}^{1}=2$	34
24	8	P_{n}^{3}	3	$P_{n}^{3+1}=P_{n}^{4}=16$	46368
30	10	$P_{n}^{1}+P_{n}^{3}$	1	$P_{n}^{1+1}=P_{n}^{2}=4$	832040
33	11	$P_{n}^{0}+P_{n}^{1}+P_{n}^{3}$	0	$P_{n}^{1}+1=P_{n}^{1}=2$	3524578

*Since $P_{n}=2$, no multiples other than 0 or 1 appear in the sum of powers of $P_{n}=j$. Actually the sum of multiples of power terms for $j=11$ should read:

$$
11=1 P_{n}^{0}+1 P_{n}^{1}+0 P_{n}^{2}+1 P_{n}^{3}=P_{n}^{0}+P_{n}^{1}+P_{n}^{3}=2^{0}+2^{1}+2^{3}=1+2+8
$$

Example 2.

Another prime dividing u_{n} is $5\left(P_{n}=5\right)$ and, as already mentioned, it divides the fifth number in the series: $u_{5}=5$. Again we make a table:

* The multiple 2 of $2 P_{n}^{0}$ plays no part, only the power of P_{n} (zero in this case) is used.

At a later time, in a private communication, Dr. S. M. Ulam necommended Dickson [4] as a reference to the literature. In this I discovered that these findings were known to Lucas [5]. In particular, according to Dickson, the above was stated by Lucas as Theorem V of eight in the following form:
"If n is the rank of the first term u_{n} containing the prime Sactor p to the power λ, then u_{p+1} is the first term divisible by $p^{\lambda+1}$ and not by $p^{\lambda+2}$; this is called the law of repetition of primes in the recurring series of u_{n}."

On reading this it is clear that precedence in this finding lay with Lucas who had, moreover, stated it more clearly and economically. Far from being discouraged, however, I continued my search, listing all prime numbers up to 10009 and laboriously testing the primality of most u_{n} 's up to $a=130$. Of course, primes up to 10009 are sufficient only to test u_{n} up to $n=40$ directly but the fact that if z divides u_{n} it will divide $u_{j n}$ helped greatly. Nevertheless it speedily became apparent that repeated division of u_{n} greater than u_{45} on a desk calculator was not only laborious but increasingly prone to error as the number of digits in u_{n} rose above 10 . If only there were some way to eliminate some of the trial divisions!

A study of the primes, P_{n}, which divide u_{n} revealed that they were all of the form

$$
\begin{equation*}
P_{n}=a n+1 \tag{3}
\end{equation*}
$$

Since P_{n} isprime itis obvious that an had to be even sothat an \mathbb{I} could be odd. Therefore either a or n or both had to be even. Closer study of the primes indicated that, when a and n were both even, it was always necessary to add one to an to get P_{n}, i.e. with a and n even, $P_{n}=a n+1$, never an -1 . I cannotexplain this but, empirically, it turns out this way. Now it was possible to cut down on the number of divisions required to determine the P_{n} which would
divide u_{n}. Thus:
a. Calculate $2 n+1$ (If n is even, determine only $2 n+1$).
b. Determine whether $2 n+1$ and/or $2 n-1$ are prime.
c. Divide u_{n} by any prime number determined in a and b.
d. If u_{n} is not divided in c, calculate $3 n+1$.
e. Repeat setps c. and d.
f. If u_{n} is not divided in step e, calculate $4 n+1$ If n is even, determine $4 n+1$ only).
g. Continue until the P_{n} which divides u_{n} is found.

The relationship found above may be expressed as follows:
If P is any prime there exists an n such that $P_{n}=a n+1$ or an - 1 will divide u_{n} without remainder (a being some whole number >0.). The only exception is $P_{n}=5$ which divides $u_{5}=5$.

It is possible that the above relationship would repay investigation in prime number theory. In the past, a number of formulas have been proposed for the purpose of generating prime numbers. In every case the formulas have been found faulty in one or more of the following respects:
a. The density of primes generated has been much lower than the true density of primes.
b. They have generated composite numbers.
c. They have rarely been capable of generating paired primes (two consecutive primes which differ by 2, e.g. 11 and 13).

The formula given in (3) suffers only in generating very many composites. However, the procedure clearly furnishes a criterion whereby (empirically) it has been found that, if n is prime, u_{n} will be divided by P_{n} only when P_{n}, determined as in (3), is prime. If this can beproven, new light maybe shed by the proof on this age-old problem.

REFERENCES

1. Department of Defense Handbook Hl 09 'Statistical Procedures for Determining Validity of Suppliers' Attributes Inspection, " 6 May 1960.
2. Dodge and Romig, "Sampling Inspection Tables," Second Edition, 1959 , John Wiley and Sons, Inc.
3. Military Standard Mil Std 105D, "Sampling Procedures and Tables for Inspection by Attributes, " in process of publication by Department of Defense. Revision Mil Std 105C is dated 18 July 1961.
4. Dickson, 'History of the Theory of Numbers," Chapter XVII, Recurring Series, Lucas' u_{n}, v_{n}.
5. Lucas, "Sur la théorie des nombres premiers," Atti R. Accad. Sc. Torino (Math.), 11, 1875-6, 928-937, cited in [4].

NOTICE TO ALL SUBSCRIBERS! !!
Please notify the Managing Editor AT ONCE of any address change. The Post Office Department, rather than forwarding magazines mailed third class, sends them directly to the dead-letter office. Unless the addressee specifically requests the Fibonacci Quarterly be forwarded at first class rates to the new address, he will not receive it. (This will usually cost about 30 cents for first-class postage.) If possible, please notify us AT LEAST THREE WEEKS PRIOR to publication dates: February 15, April 15, October 15, and December 15.

A MOTIVATION FOR CONTINUED FRACTIONS

A.P. HILLMAN and G.L. ALEXANDERSON
University of Santa Clara, Santa Clara, California

This Quarterly is devoted to the study of properties of integers, especially to the study of recurrent sequences of integers. We show below how such sequences and continued fractions arise naturally in the problem of approximating an irrational number to any desired closeness by rational numbers.

We begin with the equation

$$
\begin{equation*}
x^{2}-x-1=0 \tag{1}
\end{equation*}
$$

One can easily see that there is a negative root between -1 and 0 and a positive root between 1 and 2 , for example by graphing $y=x^{2}-x-1$. We call the positive root r. This number has been known since antiquity as the "golden mean." We now look for a sequence of rational approximations to r.

A rational number is of the form p / q with p and q integers (and $\mathrm{q} \neq 0$). We therefore wish two sequences

$$
\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \ldots
$$

$$
\begin{equation*}
q_{1}, q_{2}, q_{3}, \cdots \tag{2}
\end{equation*}
$$

of integers such that the quotients p_{n} / q_{n} are approximations which get arbitrarily close to r. It would also be helpful if each new approximation were obtainable simply from previous ones.

We go back to equation (1) and rewrite it as

$$
\begin{equation*}
x=1+\frac{1}{x} \tag{3}
\end{equation*}
$$

This states that if we replace x by r in

$$
\begin{equation*}
1+\frac{1}{x} \tag{4}
\end{equation*}
$$

$$
145
$$

the resultis r and suggests that if we replace x in (4) by an approximation to r we will get another approximation. We now change (3) into the form

$$
\begin{equation*}
x_{2}=1+\frac{1}{x_{1}} \tag{5}
\end{equation*}
$$

and consider x_{1} to be an approximation to r. The relative error of $1 / x_{1}$ is the same as that of x_{1} and, if x_{1} is positive, the relative error of x_{2} (i.e., $1+1 / x_{1}$) is lower than that of x_{1}, since adding l increases the namber but not the error. It can be shown that x_{2} in (5) is a better approximation to r that x_{1}, if $x_{1}>0$.

We now let our first approximation x_{1} be a rational number $\mathrm{p}_{1} / \mathrm{q}_{1}$ and substitute this in (5) obtaining

$$
x_{2}=1+\frac{1}{\left(p_{1} / q_{1}\right)}=1+\frac{q_{1}}{p_{1}}=\frac{p_{1}+q_{1}}{p_{1}}
$$

We therefore choose p_{2} to be $p_{1}+q_{1}$ and q_{2} to be p_{1}. Similarly, our thirdapproximation is p_{3} / q_{3} with $p_{3}=p_{2}+q_{2}$ and $q_{3}=p_{2}$. In general, the $(n+1)-s t$ approximation p_{n+1} / q_{n+1} has

$$
\begin{align*}
& p_{n+1}=p_{n}+q_{n} \tag{6}\\
& q_{n+1}=p_{n} . \tag{7}
\end{align*}
$$

It follows from (7) that $q_{n}=p_{n-1}$; substituting this in (6) gives

$$
\begin{equation*}
p_{n+1}=p_{n}+p_{n-1} . \tag{8}
\end{equation*}
$$

Since r is between 1 and 2 we use 1 as the firstapproximation, i. e., we let $p_{1}=q_{1}=1$. This means that $p_{2}=2$ and it now follows from (8) that p_{n} is the Fibonacci number F_{n+1}. Then (7) implies that $q_{n}=F_{n}$ and we see that the sequence of quotients F_{n+1} / F_{n} of consecutive Fibonacci numbers furnishes the desired approximations to the root r of (I). It can be shown that this sequence converges to r in the calculus sense.

We next consider the problem of approximating $s=\sqrt{10}$ in this way. The number s is the positive root of

$$
\begin{equation*}
x^{2}-10=0 \tag{9}
\end{equation*}
$$

We write (9) in the forms

$$
\begin{align*}
& x^{2}-9=1 \\
& (x-3)(x+3)=1 \tag{10}\\
& (x-3)=1 /(x+3) \\
& x=3+1 /(x+3)
\end{align*}
$$

and change (10) into

$$
\begin{equation*}
x_{n+1}=3+\frac{1}{3+x_{n}} \tag{11}
\end{equation*}
$$

Again, if x_{n} is a positive approximation to s, it can be seen that x_{n+1} is an approximation with smaller relative error. There is a sequence of rational approximations p_{n} / q_{n} with

$$
p_{n+1}=3 p_{n}+10 q_{n}, \quad q_{n+1}=p_{n}+3 q_{n}
$$

Letting the firstapproximation be 3 , i. e., letting $\mathrm{p}_{1}=3$ and $\mathrm{q}_{1}=1$, we obtain the sequence

$$
3 / 1,19 / 6,117 / 37, \ldots
$$

which can be shown to converge to s.
Equation (11) contains the equations

$$
x_{2}=3+\frac{1}{3+x_{1}}, \quad x_{3}+\frac{1}{3+x_{2}}
$$

Substituting the first of these into the second gives us

$$
x_{3}=3+\frac{1}{6+\frac{1}{3+x_{1}}}
$$

If this is substituted into $x_{4}=3+1 /\left(3+x_{3}\right)$ and if we let x_{1} be 3 , we obtain

$$
x_{4}=3+\frac{1}{6+\frac{1}{6+\frac{1}{6}}}
$$

In this way we can write continued fraction expressions for any one of the x_{n}. Then it is natural to let the infinite continued fraction

$$
3+\frac{1}{6+\frac{1}{6+\ldots}}
$$

represent the limit s of the sequences x_{n} defined by (1l) and $x_{1}=3$. The infinite continued fraction for the root r of $x^{2}-x-1=0$ is

$$
1+\frac{1}{1+\frac{1}{1+\ldots}}
$$

whose elegant simplicity is worthy of the title "golden mean."
$X X X X X X X X X X X X X X X X X X X X$

FIBONACCI AND LUCAS NUMBER TABLES

Those interested may secure bound mimeographed tables of the first 1505 Fibonaccinumbers, F_{n}, and the first 1506 Lucas numbers, L_{n}, by sending two dollars to Professor Jack K. Ward, Westminster College, Fulton, Missouri.

FIBONACCI NUMBERS: THEIR HISTORY THROUGH 1900

MAXEY BROOKE
Sweeny, Texas
In l202, a remarkable man wrote a remarkable book. The man was Leonardo of Pisa, known as Fibonacci, a brilliant man in an intellectual wilderness. The book Liber Abacci (The Book of the Abacus) introduced Arabic numbers into Europe.

In the book was a seemingly simple little problem:
'A pair of rabbits are enclosed on all sides by a wall. To find out how many pairs of rabbits will be born in the course of one year, it being assumed that every month a pair of rabbits will produce another pair, and that rabbits begin to bear young two months after their own birth."

On the margin of the manuscript, Fibonacci gives the tabulation:
A pair
1
First
2
Second
3
Third
5
Fourth
8
Fifth
13
Sixth
21
Seventh
34
Eighth
55
Ninth
89
Tenth
144
Eleventh
233
Twelfth
377

He sums up his calculations
"... we see how we arrive at it. We add to the first number the second one, i.e., 1 and 2 ; the second to the third; the third to the fourth; the fourth to the fifth; and in this way, one after another, until we add together the tenth and eleventh and obtain the total number of rabbits - 377; and it is possible to do this in this order for an infinite number of months."

There the matter lay for 400 years. In 1611, Johann Kepler [1] of astronomy fame, arrived at the series $1,1,2,3,5,8,13$, 21, ... There is noindication that he had access to one of Fibonacci's hand-written books (The Liber Abacci was not published until 1857 [2]). At any rate, in discussing the Golden Section and phyllotaxis, Kepler wrote:
"For we will always haveas 5 is to 8 so is 8 to 13 , practically, and as 8 is to 13 , so is 13 to 21 almost. I think that the seminal facculty is developed in a way analogous to this proportion which perpetuates itself, and so in the flower is displayed a pentagonal standard, so to speak. I let pass all other considerations which might be adduced by the most delightful study to establish this truth."

Simon Stevens (1548-1620) also wrote on the Golden Section. The editor of his works, A. Gerard [3] arrived at the formula for expressing the series in 1634

$$
U_{n+2}=U_{n+1}+U_{n}
$$

A hundred years must pass before the problem is again considered. In 1753, R. Simpson [4] derived a formula, implied by Kepler

$$
U_{n-1} U_{n+1}-U_{n}^{2}=(-1)^{n+1}
$$

A second hundred years pass by and the series again comes under study. In 1843, J. P. M. Binet [5] derives an analytical function for determining the value of any Fibonacci number

$$
2^{n} \sqrt{5} U_{n}=\left(1+\sqrt{5}^{n}-\left(1-\sqrt{5}^{n}\right.\right.
$$

The following year, B. Lam'e [6] first used the series to solve a problem in Theory of Numbers. He investigated the number of operations needed to find the GCD of two integers (it does not exceed 5 times the number of digits in the smaller number).

Two years later, E. Catalan [7] derived the important formula

$$
2^{n-1} U_{n}=\frac{n}{1}+\frac{5 n(n-1)(n-2)}{1 \cdot 2 \cdot 3}+\frac{5^{2} n(n-1)(n-2)(n-3)(n-4)}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}+\ldots
$$

By now, the series had received enough attention to deserve a name. It was variouslycalled the Braun Series, the Schimper-Braun series, the Lamé series and the Gerhardt series.
A. Braun [8], applied the series to the arrangement of the scales of pine cones. Schimper is completely unknown. Lamé has already been mentioned, but the name has been credited to Father Bernard Lami, a contemporary of Newton and the discoverer of the parallelogram of forces. Gerhardt is probably a mis-spelling of Girard.

Edouard Lucas [20], who dominated the field of recursive series during the period 1876-1891, first applied Fibonacci's name to the series and it has been known as Fibonacci series since then.

About this time, 1858, Sam Loyd claimed to have invented the checkerboard paradox [9]. It is first found in print in a German journal in 1868 [10]. Today it seems proper to call it the Carroll Paradoxafter Lewis Carroll [11] (Charles Dodgson, 1832-93) who was quite fond of it.

Before the century ended, a number of familiar relations were found. Among them: (V_{n} is the nth Lucas number.) 1876, E. Lucas [12]

$$
\begin{aligned}
& U_{n-1}^{2}+U_{n}^{2}=U_{2 n+1} \\
& V_{4 n}=U_{2 n}^{2}-2
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}_{4 \mathrm{n}+2} & =\mathrm{U}_{2 \mathrm{n}+1}^{2}+2 \\
\mathrm{U}^{\mathrm{n}+\mathrm{p}} & =\mathrm{U}^{\mathrm{n}-\mathrm{p}}(\mathrm{U}+1)^{\mathrm{p}} \\
\mathrm{U}^{\mathrm{n}-\mathrm{p}} & =\mathrm{U}^{\mathrm{n}}(\mathrm{U}-1)^{\mathrm{p}}
\end{aligned}
$$

1886, E. Catalan [13] [14]

$$
\begin{aligned}
U_{n+1-p} U_{n+1+p}-U_{n+1}^{2} & =(-1)^{n+2-p} U_{p} \\
U_{n}^{2}-U_{n-p} U_{n+p} & =(-1)^{n-p+1} U_{n-1}
\end{aligned}
$$

1899, E. Landau [15] related the series

$$
\sum_{n=1}^{\infty}\left(1 / U_{2 n}\right)
$$

to Lambert's series and
to the theta series.

$$
\sum_{\mathrm{n}=0}^{\infty}\left(1 / U_{2 n+1}\right)
$$

A complete list can be found in Vol. l of Dickson's 'History of the Theory of Numbers."

This small history ends arbitrarly at 1900 for the pregmatic reason that a mere listing of twentieth century developments would fill a moderately sizedvolume. It would be interesting to see Fibonacci's reaction to the application of his rabbit problem to such diverse subjects as musical composition [16], process optimization [17], electrical network theory [18], and genetics [19].

REFERENCES

1. J. Kepler 'De nive sexangula'" 1611.
2. B. Concompagni. Il Liber Abbaci de Leonardo Pisano Publicato da Baldassure Boncompagni, Roma MCDDDLVII.
3. A. Gerard. "Les Oeuvres Mathématique de Simon Stevin" Leyde 1634, pp. 169-70.
4. R. Simpson, "An explanation of an obscure passage in Albrecth Girard's commentary upon Simon Stevin's works'" Phil. Trans. Roy. Soc. (London) 48, I, 368-77 (1753).
5. J. P. M. Binet 'Memoire sur l'intégration desequations linéaires aux différences finies d'un ordrequelconque, à coefficients variables" Comp. Ren. Accad. Sci. Paris 17, 563 (1843).
6. B. Lamé. 'Note sur la limite du nombre des divisions dans la recherche du plus grand commun diviseur entre deux nombres entiers" Compt. Rend. Acad. Sci. 19, 1867-70 (1944).
7. E. Catalan. 'Manual des candidates a E'cole Polytechnique" tome 1, Paris 1857, p. 86.
8. A. Braun. "Vergleichende Untersuchung úber die Ordnurng dez Schuppen an den Tannenzapfen als Einleitung zur Untersuchung der Blätterstellung überhaupt. " Nova Acta Acad. Caes. Leopoldina 15, 199-401 (1830).
9. M. Gardner 'Mathematics, Magic, and Mystery" Dover, New York, 1956, p. 133.
10. Zeitschrift für Mathematik und Physik, 13, 162 (1868).
11. Lewis Carroll 'Diversions and Digressions" Dover, New York, p. 316-7 (1956).
12. E. Lucas "Note sur la triangle arithmétique de Pascal et sur la série de Lamé" Nouvelle Corr. Math. 2, 74 (1876).
13. E. Catalan. Melanges Mathématiques Vol. 2, Liege 1887, p. 319.
14. E. Catalan: Mem. Soc. Roy. Sci. Lieges (2), 13, 319-21 (1886).
15. E. Landau. 'Sul la série des inverses des nombres de Fibonacci. Bull. Soc. Math. France 27, 298-300 (1899).
16. L. Dowling and A. Shaw. "The Schillinger System of Musical Composition'" Carl Fischer, New York, 1946.
17. S. M. Johnson. "Best Exploration for Maximum is Fibonaccian" Rand Corp. Research Memo. RM-1590 (1955).
18. A. M. Morgan-Voyce. "Ladder-Network Analysis using Fib.onacci Numbers" Proc. IRE Sept. 1959, pp. 321-2.
19. F. E. Binet and R. T. Leslie "The Coefficients of inbreeding in case of Repeated Full-Sib-Matings' J. of Genetics, June 1960, pp. 127-30.
20. E. Lucas "Theorie des Fonctions Numériques Simplement Periodiques" Am. J. Math. 1, 184-220 (1878).

ELEMENTARY PROBLEMS AND SOLUTIONS
 Edited by A.P. HILLMAN
 University of Santa Clara, Santa Clara, California

Send all communications regarding Elementary Problems and Solutions to Professor A. P. Hillman, Mathematics Department, University of Santa Clara, Santa Clara, California. We welcome any problems believed to be new in the area of recurrent sequences as well as new approaches to existing problems. The proposer should submit his problem with solution in legible form, preferably typed in double spacing, with name(s) and address of the proposer clearly indicated.

Solutions to prob?ems listed below should be submitted within two months of publication.

B-38 Proposed by Roseanna Torretto, University of Santa Clara, Santa Clara, California

Characterize simply all the sequences c_{n} satisfying

$$
c_{n+2}=2 c_{n+1}-c_{n} .
$$

B-39 Proposed by John Allen Fuchs, University of Santa Clara, Santa Clara, California

$$
\text { Let } F_{1}=F_{2}=1 \text { and } F_{n+2}=F_{n+1}+F_{n} \text { for } n \geq 1
$$

Prove that

$$
F_{n+2}<2^{n} \text { for } n \geq 3
$$

B-40 Proposed by Charles R. Wall, Texas Christian University, Fort Worth, Texas

If H_{n} is the n-th term of the generalized Fibonacci sequence, i.e.,

$$
H_{1}=p, H_{2}=p+q, H_{n+2}=H_{n+1}+H_{n} \text { for } n \geq 1 \text {, }
$$

show that

$$
\sum_{k=1}^{n} \mathrm{kH}_{\mathrm{k}}=(\mathrm{n}+1) \mathrm{H}_{\mathrm{n}+2}-\mathrm{H}_{\mathrm{n}+4}+2 \mathrm{p}+\mathrm{q}
$$

B-41 Proposed by David L. Silverman, Beverly Hills, California
Do there exist four distinct positive Fibonacci numbers in arithmetic progression?

B-42 Proposed by S.L. Basin, Sylvania Electronic Systems, Mountain View, California

Express the $(n+1)$-st Fibonacci number F_{n+1} as a function of F_{n}. Also solve the same problem for Lucas numbers.

B-43 Proposed by Charles R. Wall, Texas Christian University, Fort Worth, Texas
(a) Let $x_{0} \geq 0$ and define a sequence x_{k} by $x_{k+1}=f\left(x_{k}\right)$ for $k \geq 0$, where $f(x)=\sqrt{1+x}$. Find the limit of x_{k} as $k \rightarrow \infty$.
(b) Solve the same problem for $f(x)=\sqrt[3]{1+2 x}$.
(c) Solve the same problem for $f(x)=\sqrt[4]{2+3 x}$.
(d) Generalize.

SOLUTIONS

FIBONACCI AND PASCAL AGAIN
B-16 Proposed by Mariorie Bicknell, San Jose State College, San Jose, California, and Terry Brennan, Lockheed Missiles and Space Co., Sunnyvale, California

Show that if

$$
R=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 2 & 1
\end{array}\right)
$$

then

$$
R^{n}=\left(\begin{array}{lll}
F_{n-1}^{2} & 2 F_{n-1} F_{n} & F_{n}^{2} \\
F_{n-1} F_{n} & F_{n+1}^{2}-F_{n-1} F_{n} & F_{n} F_{n+1} \\
F_{n}^{2} & 2 F_{n} F_{n+1} & F_{n+1}^{2}
\end{array}\right)
$$

(There are some misprints in the original statement.)
Solution by L. Carlitz, Duke University, Durham, N.C.
Put

$$
R_{k}=\left[\binom{r}{k-s}\right] \quad(r, s=0,1, \ldots, k)
$$

a matrix of order $k+1$; for example

$$
\mathrm{R}_{1}=\left[\begin{array}{ll}
0 & 1 \\
& \\
1 & 1
\end{array}\right], \quad R_{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 2 & 1
\end{array}\right]
$$

It is easily verified that

$$
R_{1}^{n}=\left[\begin{array}{ll}
F_{n-1} & F_{n} \tag{1}\\
F_{n} & F_{n+1}
\end{array}\right] \quad(n=1,2, \ldots)
$$

Indeed this is obviously true for $n=1$. Assuming that the formula holds for n, we have

$$
R_{1}^{n+1}=\left[\begin{array}{ll}
F_{n-1} & F_{n} \\
F_{n} & F_{n+1}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
F_{n} & F_{n+1} \\
F_{n+1} & F_{n+2}
\end{array}\right] .
$$

In the next place we notice that the transformation

$$
T_{1}:\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=x+y
\end{array}\right.
$$

induces the transformations

$$
\begin{gathered}
T_{2}:\left\{\begin{array}{lr}
x^{\prime 2}= & y^{2} \\
x^{\prime} y^{\prime}= & x y+y^{2} \\
y^{\prime} & =x^{2}+2 x y+y^{2}
\end{array}\right. \\
T_{3}:\left\{\begin{array}{rr}
x^{\prime 3}= & y^{3} \\
x^{\prime 2} y^{\prime}= & x^{2}+y^{3} \\
x^{\prime} y^{\prime 2}= & x^{2} y+2 x y^{2}+y^{3} \\
y^{\prime 3}= & x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
\end{array}\right.
\end{gathered}
$$

and so on. Also it is evident from (1) that $\mathrm{T}_{1}^{\mathrm{n}}$ is given by

$$
T_{1}^{n}:\left\{\begin{array}{l}
x^{(n)}=F_{n-1} x+F_{n} y \\
y^{(n)}=F_{n} x+F_{n+1} y
\end{array}\right.
$$

We therefore get

$$
T_{1}^{n}:\left\{\begin{array}{l}
\left(x^{(n)}\right)^{2}=F_{n-1}^{2} x^{2}+2 F_{n-1} F_{n} x y+F_{n}^{2} y^{2} \\
x^{(n)} y^{(n)}=F_{n-1} F_{n} x^{2}+\left(F_{n}^{2}+F_{n-1} F_{n+1}\right) x y+F_{n} F_{n+1} y^{2} \\
\left(y^{(n)}\right)^{2}=F_{n}^{2} x^{2}+2 F_{n} F_{n+1} x y+F_{n+1}^{2} y^{2}
\end{array}\right.
$$

Also solved by the proposers.

LAMBDA FUNCTION OF A MATRIX
B-24 Proposed by Brother U. Alfred, St. Mary's College, California
It is evident that the determinant

$$
\left|\begin{array}{lll}
F_{n} & F_{n+1} & F_{n+2} \\
F_{n+1} & F_{n+2} & F_{n+3} \\
F_{n+2} & F_{n+3} & F_{n+4}
\end{array}\right|
$$

has a value of zero. Prove that if the same quantity k is added to each element of the above determinant, the value becomes $(-1)^{\mathrm{n}-1} \mathrm{k}$.

Solution by Raymond Víhitney, Pennsylvania State University, Hazelton Campus

Using the basic Fibonacci recursion formula $F_{n+2}=F_{n+1}+F_{n}$ and elementary row and column transformations we may reduce the determinant to:

$$
=k\left|\begin{array}{llr}
F_{n} & F_{n+1} & -1 \\
F_{n+1} & F_{n+2} & -1 \\
0 & 0 & 1
\end{array}\right|=k\left(F_{n} F_{n+2}-F_{n+1}^{2}\right)
$$

which is $(-1)^{\mathrm{n}-1} \mathrm{k}$ by a basic identity.
Also solved by Marjorie Bicknell, San Jose State College, San Jose, California
who pointed but the relation to 'Fibonacci Matrices and Lambda Functions," by M. Bicknell and V. E. Hoggatt, Jr., this Quarterly, Vol. 1, No. 2; R. M. Grassl, University of Santa Clara, California; F.D. Parker, State University of New York, Buffalo, N.W., R.N. Vawter, St. Mary's College, California; H.L. Walton, Yorktown H.S., Arlington, Virginia; and the proposer.

EXPONENTIALS OF FIBONACCI NUMBERS

B-25 Proposed by Brother U. Alfred, St. Mary's College, California
Find an expression for the general term(s) of the sequence $\mathrm{T}_{0}=1, \mathrm{~T}_{1}=\mathrm{a}, \mathrm{T}_{2}=\mathrm{a}, \ldots$ where

$$
T_{2 n}=\frac{T_{2 n-1}}{T_{2 n-2}} \quad \text { and } \quad T_{2 n+1}=T_{2 n} T_{2 n-1}
$$

Solution by Vassili Daiev, Sea Cliff, L.I., N.Y.
The first few terms are

$$
a^{F_{0}}, a^{F_{2}}, a^{F_{1}}, a^{F_{3}}, a^{F_{2}}, a^{F_{4}}, \ldots
$$

It is easy to see that $T_{n}=a^{k}$ where $k=F_{(n / 2)}$ if n is even and $k=F_{(n+3) / 2}$ if n is odd.

Also solved by J.A.H. Hunter, Toronto, Ontario, Canada
who suggested the consideration of $\log T_{n}$;
Ralph Vawter, St. Mary's College, California, and the proposer.
Editorial Comment: The problem can be solved by showing that $\log \mathrm{T}_{\mathrm{m}+4}=\log \mathrm{T}_{\mathrm{m}+2}+\log \mathrm{T}_{\mathrm{m}}$.

MAXIMIZING A DETERMINANT

B-28 Proposed by Brother U. Alfred, St. Mary's College, California

Using the nine Fibonacci numbers F_{2} to $F_{10}(1,2,3,5,8,13$, 21, 34, 55), determine a third-order determinant having each of these numbers as elements so that the value of the determinant is a maximum.
Solution by Mariorie Bicknell, San Jose State College, California
By considering combinations of Fibonacci numbers which give minimum and maximum values to sums of the form abc $+\operatorname{def}+\mathrm{ghi}$, the following determinant seems to have the maximam value obtainable with the nine Fibonacci numbers given:

$$
\begin{aligned}
&\left|\begin{array}{rll}
F_{10} & F_{4} & F_{7} \\
F_{6} & F_{9} & F_{3} \\
F_{2} & F_{5} & F_{8}
\end{array}\right|=F_{10} F_{9} F_{8}+F_{7} F_{6} F_{5}+F_{4} F_{3} F_{2}-\left(F_{10} F_{3} F_{5}+F_{9} F_{2} F_{7}\right. \\
&\left.+F_{8} F_{4} F_{6}\right) \\
&=39796-1496 \\
&=38300 .
\end{aligned}
$$

Also solved by the proposer.

Define a general Fibonacci sequence such that

$$
\begin{aligned}
F_{1}=a ; \quad F_{2}=b ; & F_{n}=F_{n-2}+F_{n-1}, \\
& n \geq 3 \\
& F_{n}=F_{n+2}-F_{n+1},
\end{aligned} \quad n \leq 0
$$

Also define a characteristic number, C, for this sequence, where $C=(a+b)(a-b)+a b$.

Prove:

$$
F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n} C \text {, for all } n
$$

Solution by F.D. Parker, State University of New York, Buffalo, N.Y.

$$
\begin{gathered}
\text { From } F(n)=F(n-1)+F(n-2), F(1)=a, F(2)=b \text {, we get } \\
F(n)=\frac{b-a r}{1+s^{2}} s^{n}+\frac{b-a s}{1+r^{2}} r^{n}
\end{gathered}
$$

where r and s are solutions of the quadratic $x^{2}-x-1=0$. Using the fact that $r+s=-r s=1$, direct calculation yields

$$
F(n+1) F(n-1)-F^{2}(n)=[(a-b)(a+b)+a b](-1)^{n}
$$

The well known result $F(n+1) F(n-1)-F^{2}(n)=(-1)^{n}$ is the special case in which $a=b=1$.

Also solved by Mariorie Bicknell, San Jose State College, San Jose, California; Donna J. Seaman, Sylvania Co.; R.N. Vawter, St. Mary's College, California; and the proposer, J.A.H. Hunter, of Toronto, Ontario.

[^0]: *Presented originally at the Research Conference of the Fibonacci Association, December 15, 1962.3

