SOME DETERMINANTS INVOLVING POWERS OF FIBONACCI NUMBERS
BROTHER U. ALFRED
St. Mary’s College, California

In the October, 1963 issue of this journal [1], the author dis-
cussed some of the periodic properties of Fibonacci summations, It
was noted that a certain determinant was basic to these considera-
tions. Its main characteristics and value were indicated and a pro-
mise was given of additional explanation in some later issue of the
Fibonacci Quarterly. The purpose of this article is to set forth the
manner of evaluating these determinants on an empirical basis. The
proof of the general validity of the results obtained is to be found in
an article by Terry Brennan in this issue of the Quarterly [2]

To fix ideas the determinant of the sixth order will be used.

Written in a form that brings out its Fibonacci characteristics it

would be:
10410 1°1 0 1Rt 1% 1At °
2410 2°1 e L IR L B R S
30 420 R RS S P L B C P S W
56136 1 593 532 5333 5%t 530
8%+ 5% 1 8%  g%? 8357 g%t g5d
130 189 1 13%s 13%% 1% 13%t 138%

A certain subtlety should be noted in the first line as the first '"1"
stands for FZ and the second for Fl.

By separating the terms of the first column into groups, the
problem can be changed to that of evaluating three determinants with

first columns as indicated below:
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(1) (2) (3)

1 1 -1
26 1 -1
36 26 -1
56 36 -1
86 56 -1
136 86 -1

Determinants (1) and (2) can be evaluated in terms of what shall be
called the BASIC POWER DETERMINANT. Determinant (3) will be
developed in terms of the cofactors of the first column which involve

the basic power determinant minus one of its rows.

BASIC POWER DETERMINANT
The first determinant has a common factor in each of its rows
(the factorsare 1,2, 3,5,8,13 respectively). If thesefactors be taken
out of the determinant, we have what will be called the basic power

determinant. For the sixth order, it is as shown below:

1 1 1 1 1 1

25 2* 23 22 2 1

2 3% 3322 32423 3. 2% 22|
52 5% 5332 5433 5+ 3% 35
8> 8% 852 8253 g 5% 5°
135 13%s 13%2%  13%33 13- g%t g5

This determinant is a special case of the more general determinant

in which the first row starts with any Fibonacci number whatsoever
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5 4 3.2 2.3 4

F FiFia FiF LFR FiFi Fia
5 4 3 2 2 .3 4 5
Fia  FiaF FiaFj Finf; FiaF Fi
5 4 3 2 2 .3 4 5
Fios  FiwsFiva  FisFira  FisFirg FisFipa Fipg

The basis for evaluating this determinant is the relation

F F n+l

FoFnsirt ~ Fpor Fpge = G177 F

To evaluate the determinant we proceed to produce zeros in the first
row. This is done by multiplying the first column by Fi—l and sub-
tracting from this Fi times the second column; then multiplying the
second column by Fi-l and subtracting from this Fi times the third
column; etc. The operations for the first and second columns would

be as follows:

4 i 4
FinFiF - BF) = COFEF
4 ) i 4
FiaFi 1 Figp - FiFiy) = CLOFFE
4 il 4
FipslFi 1 Figs - FiFipn) = ('1)F3Fi+3 )

and so on. It is clear that the second row would have a factor Fl’

the third a factor FZ’ etc. Thus, after eliminating the common fac-
tors and expanding by the non-zero term in the last column of the
row, the absolute value of the resulting determinant would be F1F2
'F3F4F5 multiplied by the basic power determinant of the fifth order.

If we adopt the notation An
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to representthe basic power determinant ofthe nth order, this result

may be expressed as

5
|6gl =1 (F) - [&
i=1

5]

In general, for a determinant of order n,

n-1

|44 = J ) 12,0

Since the process may be repeated, it is not difficult to arrive at the
final result:

1

n- .
la | = nm F7°
n . i
i=1
In the particular case of order six,
5.4_3_2 3,2
A = = .
|2, ] F{F,FiF,F =2"3" 5

It is interesting to note that th= values of these basic power deter-

minants are independent of where we start in the Fibonacci sequence.

SIGN OF THE BASIC POWER DETERMINANT

It is importantto be able to determine the sign of the basic de-
terminant value inasmuch as we shall combine the values of deter-
minants (1)and (2) with the values of the cofactors of determinant (3).
The considerations involved are a bit tedious. We distinguish four
cases according as n 1is of the form 4k, 4k+l, 4k+2, or 4k+3. The
following three factors determine the outcome:
(1) The sign introduced by expanding from the last element in the

first row;
(ii) - The signs of the terms of the determinant resulting after each

of the steps indicated above. These terms will be either all

plus or all minus.
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(iii) The sign of AZ which is the second-order determinant ofthe
first powers of the Fibonacci numbers in the last two rows.
Thus, for the sixth order determinant we have been consider-
ing, AZ is

8 5
13 8

The final outcome is as follows:
(1) For order 4k or 4k+l, the sign is always plus;
(ii) For order 4k+2 or 4k+3, the sign agrees with that of AZ'
As noted previously, the basic power determinant enables us
to evaluate determinants (1) and (2). The latter can be brought to
this form by shifting the first column so that it becomes the last

column.

BASIC POWER DETERMINANTS WITH ONE ROW MISSING

To evaluate the third determinant we find the cofactors of the
elerﬁents in the first column. For the element in the first row, this
cofactor is a basic power determinant after removing common fac-
tors, but for allthe others it is essentially a basic power determinant
with one row missing. The absolute value of such a determinant of
order n with amissing row beiween the k and (k+l)st row will be

represented by

An(k|k+1)

the implication being that the absolute value does not depend on the

particular Fibonacci number with which it starts. When developing
such a determinant the procedure is the same as for the development
of the basic power determinant, only in this case there is a gap. The
calculation for a determinant of order n with a row missing between
the third and fourth rows can be summarized schematically in the
following manner. The column headings are Fibonacci numbers. A
table entry is the power to which the Fibonacci number at the head of
the column is being raised. The quantities in any one row are multi-

plied togéther. In the first row we have the result of the first step in
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the evaluation in which the order is changed from 9 to 8; in the sec-
ond, the factors resulting in reducing the determinant from order 8

to order 7; etc.

b
o
o
Hj
o

o‘ﬁ
Hy
Hy
Hy

O o e e O b
O = b e e b O
O e O
O = e
O e
O = b

—

The sum of the quantities in any column gives the power of the Fib-

onacci number in the determinant. In the above case

7FDF5F5F4F3FDFZF

A9(3l4)=F123456789

The same result would have been obtained if the gap had been after
the sixth row. In general, if the determinant is of order n, a gap
after the kth row or the (n-k)th row gives the same result.
The pattern observedis as follows: (1) A reduction of 2 in the
powers of F; to Fk inclusive (if k is less than n-k); (2) A re-
to Fn

ductionof 1 from F inclusive; (3) No reduction there-

after. If n-k is le;(:ihan k, tII:e roles of k and n-k arereversed.
Finally, if n-k equals k (even n), there would be a reduction of 2
from 1 to k and no reduction thereafter.

These results may be summarized in the following formulas.

FORMULA FOR k LESS THAN n-k

k gy 2k 3 o n n-itl
A (k| ktl)y= T F I F; n F, ,
o i=1 ! i=k+1 i=n-k+1 *
FORMULA FOR n-k LESS THAN k
n-k s k . .
A (k[ k) ="T1 Fi“'l’l n Friop o opneidl
i=1 i=n-k+l '  izk+l *



1964 OF FIBONACCI NUMBERS 87
FORMULA FOR k EQUAL TO n-k
g po-itl
i
i=_r21+1

n/2 i
A (n/2 | n/241)= T F'
n i=1 1

These formulas are not difficult of application. However, for the
sake of convenience (in view of future considerations) and as a pos-
sible guide to readers the results for orders 12 and 13 are set down
in detail. Since, however, there is symmetry in k and n-k only

the first half need be given in each case.

TABLE OF A ,(k | k+1)

k Fy F, Fy Fy Fg Fg F; Fg Fg F, Fy Fp,
1 10 10 9 8 7 6 5 4 3 2 1 1
2 10 9 9 8 71 6 5 4 3 2 2 1
3 10 9 8 8 71 6 5 4 3 3 2 1
4 10 9 8 7 71 6 5 4 4 3 2 1
5 10 9 8 7 6 6 5 5 4 3 2 1
6 10 9 8 7 6 5 6 5 4 3 2 1

TABLE OF A, (k | ktl)

k F F F F

1234F5F6FFFFFFF

7 8 9 10 11 12 713

1 11 11 10 9 8 7 6 5 4 3 2 1 1
2 11 10 10 9 8 7 6 5 4 3 2 2 1
3 11 10 9 9 8 7 6 5 4 3 3 2 1
4 11 10 9 8 8 7 6 5 4 4 3 2 1
5 11 10 9 8 7 7 6 5 5 4 3 2 1
6 11 10 9 8 7 6 6 6 5 4 3 2 1

SIGN OF POWER DETERMINANT WITH ONE LINE MISSING
The considerations leading to the determination of the sign of
power determinants with a line missing are involved. The approach

is precisely the same as for the power determinant. The results for
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all values of n,

i (subscript of the leading Fibonacci number inthe

determinant) and k (as defined for the break point but taken modulo

4) are listed in the following table.

k

1
2
3
4

4r 4r+1 4r+2
i odd

- + +
- - +

+ -

4r+2
i even

4r+3
i odd

+

+

4r+3
i even

+
+

EVALUATION OF THE ORIGINAL DETERMINANT
We noted previously that the original determinant could be
represented as the sum of three ’separate determinants (1), (2), and
(3). Determinant(l)is simply the product of Fibonacci numbers (one
from each row) by the basic power determinant. Thus for the sixth

order, the situation would be as follows:

F, ¥, F, F, F, F, F,
BPD 5 4 3 2 1

F's 1 1 1 1
(1) 5 5 4 3 2 1 1

The sign would be negative.

Determinant (2) can be related to the basic power determinant
bymoving the first columninto the last position. For the sixth order,
this involves a change of sign. Again factors can be taken out leaving

a basic power determinant. The pattern is as follows:

F F F F F F

1 2 3 4 5 6
BPD 5 4 3 2 1
F's 1 1 1 1 1 1
(2) 6 5 4 3 2 1

The sign would be positive.
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To evaluate (3) we expand by the first column., We shall desig-
nate successive elements of the expansion, due account being taken of
all signs includingthe negative quantities in the first column, by suc-
cessive capital letters: A,B,C,D,.... A gives rise to a simple
basic power determinant; B to one witha line missing (k= 1); C with
the second line missing (k = 2); etc. However, there are factors that
have to be multipliedin each case. It should be noted too that we are

referring to determinants of the fifth order and not of the sixth.

B, ¥y F3 F, Fy Fg  Fy
4 3 2 1
2 2 2 1
A 4 3 4 3 2 1 (negative)
Fl FZ F3 F4 FS F6 F7
3 3 2 1 1
1 2 2 1
B 3 3 3 3 3 1 (positive)
Fy 2 T3 Fy Fg Fg gy
3 2 2 2 1
_ 1 1 2 1
C 3 2 3 3 3 1 (positive)
1 2 ¥z Fy Fg Fe  Fy
3 2 2 2 1
2 1 1 2 1
D 3 2 4 3 2 1 (negative)
FOF, Fg Ky Fg Fgoo By
3 3 2 1 1
2 2 1 1 1
E 3 3 4 3 2 1 1 (negative)
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F1 FZ F3 F4 F5 Fé F7
4 3 2 1
2 2 2 1
F 4 3 4 3 2 1 (positive)

Summarizing in one table (omitting the first and second Fibonacci
number factors as they are both unity) we have the following for the

evaluation of ths determinant of the sixth order.

Sign F, F, F, F, F,

(1) - 4 3 2 1 1
(2) + 4 3 2 1

A - 4 3 2 2 1
B + 3 3 3 2 1
C 1 3 3 3 2 1
D - 4 3 2 2 1
E - 4 3 2 1 1
F + 4 3 2 1

The following pairs of terms combine: E and (1); F and (2); A and
D; B and C. The resulting sums have a common factor of 28 3
52, the adjoint factor being 144. Thus finally the value of the sixth
order determinant is found to be 2]“2 35 52,
DETERMINANT OF ORDER 12
Without justifying all the intermediate steps, the summation

table for order 12 is shown below.

Sign F, F, Fy Fo F, Fgo Fgo Fig Fyp Fip Fig
1) + 10 9 8 7 6 5 4 3 2 1 1
2) - 10 9 8 7 & 5 4 3 2 1
A v 1009 8 7 6 5 4 3 2 2 1
B - 9.9 8 7 6 5 4 3 3 2 1
c - 9.8 8 7 6 5 4 4 3 2 1
D + 9.8 7 7 6 5 5 4 3 2 1
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Sign F3 F, Fy Fy F, Fg Fg Fiq Fyy F, Fig

E + 9 8 7 6 6 6 5 4 3 2 1
F - 9 8 7 6 6 & 5 4 3 2 1
G - 9 8 7 71 6 5 5 4 3 2 1
H 9 8 8 7 6 5 4 4 3 2z 1
1 9 9 8 7 6 5 4 3 3 2 1
J - 10 09 8 7 6 5 4 3 2 2z 1
K - 10 9 8 7 6 5 4 3 2 1 1
L + 10 9 8 7 6 5 4 3 2 1

It will be noted that the following pairs add up to zero: E and F; D
and G; CandH; Band I; AandJ; (1) and K; (2) and L. Therefore, the
value of the determinant is zero. The same result was found for or-

dsrs 4,8, and 16.

DETERMINANT OF ORDER 13

Sign F, F

hy
H
53]
b
5|
e
b
Fz
Fxf
1

3 ¥4 5 Fo F7 Fg fg Y10 Y11 Y1z 13 T14

() + 11 109 8 7 6 5 4 3 2 1 1
2) + 11 109 8 7 6 5 4 3 2 1

A - 11 109 8 7 6 5 4 3 2 2 1
B - 10 109 8 7 6 &5 4 3 3 2z 1
C 10 9 9 8 7 6 5 4 4 3 2 1
D 10 9 8 8 7 6 5 5 4 3 2 1
E - 10 9 8 7 7 6 6 5 4 3 2 1
F - 10 9 8 7 6 7 6 5 4 3 2 1
G 10 9 8 7 7 6 6 5 4 3 2 1
H 10 9 8 8 7 6 5 5 4 3 2 1
1 - 10 9 9 8 7 6 5 4 4 3 2 1
J - 10 109 8 7 6 5 4 3 3 2 1
K + 11 109 8 7 6 5 4 3 2 2 1
L 4+ 11 109 8 7 6 5 4 3 2 1 1
M - 11 109 8 7 6 5 4 3 2 1
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It will be noted that the following pairs addup to zero: E and G;
C and I; A and K; (2) and M. The others can be combined to give the
following table.

Sign F, F,  F

3 Ty Fg Fg Fq Fg Fg Fig Fyy Fip Fig Fiy
(1,L + 12 10 9 8 7 6 5 4 3 2 1 1
B,J - 11109 8 7 6 5 4 3 3 2 1
D,H + 119 8 8 7 6 5 5 4 3 2 1
F - 109 8 7 6 7 6 5 4 3 2 1

After taking out the common factor

OFZF‘EFZF6F6F5F4 F3 FZ F _F

F 7°8797107117127137 14

1
3
the following remains for evaluation:

Sign Fj F, Fg Fo F, Fg Fg Fio Fyp Fip Frg Fry

No easy method was found for evaluating the sum of these quantities.
Essentially it was a matter of evaluating them, combining them and
then factoring. Fortunately, as the numbersto be factored increased
in size going up to 23 digits in one instance, a pattern involving Fib-
onacci and Lucas numbers was discovered with the result that the
formalas (1) and (2) on page 38 of [1] were discovered.

The matter can be allowed to rest here. The path pursued has
been illustrated in sufficient detail to allow others to explore these
interesting determinants. The formulas obtainedas well as the deter-
minant values to the twentieth order are setforth in the paper [1] and

need not be repeated.
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FIBONACCI POWERS AND PASCAL’S TRIANGLE IN A MATRIX — PART 1 ¥
TERRENCE A. BRENNAN

Lockheed Missiles and Space Co., Sunnyvale, California
L. INTRODUCTION
The main point of this paper is todisplay some interesting pro-
perties ofthe (n+l) X (ntl) matrix Pn defined by imbedding Pascal's

triangle in a square matrix:

... 00O ﬂ

0011

01 21

(1.1) Pnz 1 3 31

The matrix Pn was originally constructed by the author in order
to evaluate a determinant presented by Brother U. Alfred. The de-
terminant, and its origin, has subsequently been published in [1] and,

for the sake of completeness, its evaluation will be presented here.

2. THE PROBLEM AND ITS SOLUTION
THE PROBLEM:

Evaluate the fifth order determinant

1 +12 01 a1t 132 122 1 aaf
224151 2t 221% 2213 2.t
(2.1) 2422 .1 3%y 3322 320 3t
52 +3° -1 stz 5332 5233 5. 3%
g +5° -1 8*s g®s5% 825> g 5%

*Presented originally at the Research Conference of the Fibonacci
Association, December 15, 1962,

93
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and its n-th order gemeralization. For the n-th order the powers in

the first column would be n and the determinant would extend to

u and u_ in the last row, where u_ is the n-th Fibonacci num-
n+l e n
ber:
= 13 + 1 1 = B = .
(2. 2) U F Uy . with u, 0 uy 1

The determinant (2.1}, which we will call D (Dn in general),

5
will be evaluatedas an expansion of cofactors of the first column. In
order to keep track of terms in the expansion it is convenient to de-
£3 1 £~y - Lo 3 4 s . =

ine D for an arbitrary sequence a,., a,, a 1 by ap-
£ o iy y a 0’ 1’ 2’ » n+i Yy ap

ropriately placing the meémbers of this sequence in the first column
p }9 I &

of D :
n
5 5 4
2, - 1 ay - 1 &g 171
a,-2°a -1°a 2%
3 1 0
. 5 5 4
(2.3) D. {a} = ay, - 3" a, - 2 2, 372
‘i5~55a.1—35a0 573
5 5
ag - 8 ay - 5 2 875
Clearly {2.1) is DS {a} with a, T3, Ta, = ... Fa = - 1.

For simplicity we will content ocurselves with the reduction of
the fifth order determinant {Z.3) while mentioning the corresponding
results for the general case. The reduction rests on the groundwork
of Brother U. Alfred,

THE SOLUTION:

Basicto the reducztion is the determinant of the following matrix:

I 1212 3 4]
A T L L S T
(2. 4) By | = R S U LR S SR
s:«4 573 5%3% 5.3 3%
zwé 8’5 8%% 8-5° 5
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and in general Bni where n is the order of the matrix and i de-

notes the first row entries as Ui and u,.

An interesting property of the determinant of B5 ; is that its

magnitude is independent of the index, or startingpeint, 1. This fact

is evident when we multiply the two matrices

(2.3) By i Q47 Bg i
where
M1 1 1 1 1]
4 3 2 1 0
(2. 6) Q= |6 3 1 0 0
4 1 0 0 0
1 0 0 0 0|

is the matrix of (1.1) '"transposed'' about its counter diagonal. Since

the determinant of Q4 is %1 we have

B, 5= = 35,1
More precisely we can develop
fogl=1 fogl=-1 IQZ/|=~1,..‘3
2.7) ' - n{n-1)/2
( lanll - ('l)

We can start, then, with B5 0 and shiftindices oneach row to obtain
3

(2.8) B

But
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IS 0 0 o |
SR B B S C S SO S &
By o= | 20 21 2% 2-® f
3% 32 3222 3.2 2t

| 5% 573 s5%3% 0 530 3t

Passing to determinants we have

85 ;I = IQ4Ii g ol = -1t%1 . 2-3-5 |B

where IB’S has been expanded by cofactors of its first row and

ol
common row factors have been removed. Having established a re-

cursive process for evaluating iBnil the general formula may be

shown:
~ s 2 3 n-2
‘Bnii = (-1) Un-1%n-2 %n-3 70 M2
where s = n{n-1)(3i + n-2)/6 .

In a notation which will be more convenient to use, we define

n

S,=1l, S ., =(-1"s_ for n>0

= = \
Fo(x) =1, F = x Fn(x) for any sequence {an

n+l(x) n+l
Wn(x) = Fn(F(x)) .

Then
(2.9) o . |=s  and |B.|=s"1F ()W . (u)
) n-1 n ni n " n n-1
Let us see what progress can be made with ]Dn| . Writing (2. 3) as

three separate determinants on the first column we have, symbolically,
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az 15 15

ag 2.5 15

(2.10) D_{a} = |a - a 35 -a 25
. 5 4 1 0

a5 55 35

5 5

ag 8 5

The first determinant is the hard one. The second compares nicely
with IBS, 1 I
third becomes IB

after a common factoris removed from each row. The
5 1 I when the first column is moved to the last (a
change in signfor aneven order determinant) and common factors are

removed from =ach row. Hence

%2
@3
D5{a} =lag | -3y Fé(u) |B5’1' - a, F5(u) |B5’1|
%5
%6
and using (2. 9)
%2
23
(2.11) Dy{a) = | ay - | -2, Fy(S) Fyla) Wylu)
%5
» —ag Fglu) Wg(u)

Expansion of the first determinant by cofactors of its first column

gives rise to determinants of the form
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12 141 114 3
3 2 2 3
3.2 2 .3
5° 543 5. 3% 3
8> 845 8- 5% 5°

the minor bezing similar to ‘B exceptthat the third row is miss-

4&,11

ing. Our task is to evaluate these minors. Starting with B5 1 in
(2. 4)we form the product
4 3 2 2 3 4]
Yol Yot Y B Bt Y
O4 03 u OZ u2 0 - u3 u4
-3 -1 -1 -1 -1
B, ., Q, 7=
2.13) »1 4 1t 13 1% o? 102 o
2
].4 13 1 1” 1Z 1 13 14
4
| 27 231 2%1° 2+ 1° 1%

Here, as in (2. 8), thematrix Q shiftsindices oneach rowand, over-
applying this shift, introduces the negative side of the Fibonacci se-

quence by way of the relation u -a . Expanding thedetermi-

=u
-1 ntl
nant of (2.13) by the third row we have

R L IR R e G PR SRR Uy

where BZ 2 is B4 2 (i.e., the fourth order matrix of (2. 4) with

u_ and u in its first row) and where the superscript 3 denotes

2
that the third row is missing.

B 2 2 3 7]
u_l u lu_z 11_1 U'.NZ U._Z
03 Ozu 1 0 u_y u
5 - - -1
(2.15) B, ,=
13 1% 0 1+ 0% 0’
13 12 1.12 13 |
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We transform (2.15) to the desired matrix of (2.12) by

(2.16) B

99

Passing to deierminants, and combining (2.16) with (2.14) we have

3
B2 | = (1) 9| B, |
4,1 (u_2 u_l)(ul uZ) IQ4!3 5,1
Using u_ = —(—l)n u for the negative half of the Fibonacci sequence,
and evaluating the known determinants,
W, (u)

312 , 4
1By, 1| = (-1)7% 5585 Fi8) F,(0 500

The general case, using this technique, me-y be formulated as

[ r l nr W, (w)
(2.17) B =(-1)""s_,, S_F_(8) -
n, 1 n+l "r " n Fr—l(u) Fn+l r(u)
Two simplifications to (2.17) are in order:
nr _ _
(-1) Pn+l Sr - Sn+-l—r

and

W_(u) W W F(u)

1:\r—l(u) Fn+l-r(u’) a1 Fr—l(u) n-l—l—r(

It seems appropriate, since Fn(u) =u u

a-1 'Lln_z P

is

s
a factorial type product for the sequence {un}, that we define the

specialized ''binomial coefficient"
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[n]:__;f_‘_i'g.ln_ ; F (u) =1 [n:l:l
r Fr(u)Fn_é(u) 0 r

We then have

r
a, ll =F (5) W __(w)sS ., . [rr-ll:l ’

The remaining determinant of (2.10) may now be expanded, and the

|B

general case has the form

+1 F
S (-1)
=2

n

T

or

+
+1
Fn-l(s) Wn(u) EZ (-1) Sn+1—r I:nr ] a'r

H
H

The first two determinants (2. 11) round out the summation nicely for

k=1 and 2, so that we can state

ntl r n+l
Dn{a} = Fn--l(s) Wn(u) I‘E:O (-1) Sn+l—r l: T :I r
or, summing backwards,
n-1 ntl r n+l
(2.18) Dn{a} = (-1) Fn—l(s) Wn(u) r—EO (-1) Sr[ r ]an+1—r .

At this point we consider the summation

M r n+l
(2.19) $pla = 2 (1) . ["F Jeni s

(2. 20) %l = X (1) e
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For the first few values of n we have

¢O(x) = x-1,

¢1 (x) = xz-x-l,

q’z(x) = x3—2x2-2x+1 = (x+l)(x2—3x+1),

(2.21)
¢3(x) = x4—3x3-6x2+3x+1 = (x2+x-1)(x2—4x-l),

8, (x) = K2 Bx 1Bkl 5xP4Bx-1 = (x-1)(x2+3%41) (s~ Tx+1)

The factorizations suggest the relation

2

(2.22) 6 ()= (DM v (D)D) g (%)

n-2

where v, isa Lucas number, and voEuog R (2.22) may

be proved by induction, and the complete factorization of ¢n comes

+ u
n
from the identity

Vn=an+bn, where az—a—l=b2-b—l=0

Thus (2. 22) becomes

P (2™ b 6L (-x) = (ab)™

9,(x) = (-1)

- (x-a")(x-b") 8, (x/ab) ,

and we can construct

n
¢ (x) = I (x-arbn—
n r=0

T

)

Thz evaluation of Dy {a} for ag=a;=...=-1 becomes, from

(2.18) and (2.19),



102 FIBONACCI POWERS and PASCAL'S April

(2.24) D_{a) = (-1 F__,(S) W_(u) ¢_(1)

The evaluation of (pn(l) requires the investigation of four

separate cases. Using (2.23) with b= - 1/a
o n-r _2r-n

(2.25) ¢n(l) = I (1-(-1) a ) =0 if and only if n = 4k.
r=0

When n = 4k + 2 the gquadratic factorization (2. 22) becomes

n/2 2 .
¢n(x) = (1+x) 1.1_—__11 (x7 +(-1) Vor + 1)
n/2 .
and ¢n(l) =2 11 (Vzr + 2(-1)7) .
r=1

Using the well knowa relation vi = Vo + 2(—l)r we have

2
n/2
(2.26) q&n(l) =2 I v: when n =4k +2
r=1

For n=4k £1 we have, from (Z.22)

n-1
2 2 r+l
¢'n(x)= o (x"-(-1) Vopqp X- 1),  when n=4k-1
r=0
n-1
P (x) = Ezi (*Z+ 11'+l x ~ 1) when n =4k +1
ntE =0 x +{-1) Var+l d -
so that n-1
2 - 2k-1
@ = ( ~ =
(2.27) R = I vy = S Var4l
r=0 r=0

when n=4k -1
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n-1
2 r+l 2k

2. - 3 -

(2.28) A ()= I (-1)7 7 v, =80 0 Vo,
r=0 r=0

when n=4k +1

Combining (2. 25), (2.26), (2.27), (2.28) with (2.23), and using the

sign convention

Sn = (_l)n(n—l)/Z and Fn(S) = -1 only when n=4k+2 ,
we have
D4k =0,
k 2k
Dgierr = 017 Wy (0 T Voryy
k 2k-1
Py = 017 Wy (0 T Vg
2k-1 2
Doz = 2 Wy 10 Yoy
n
W () = o n-1 un—Z uZ v o= I n+l-r
n 172 3 n-1 "n - r
r=1
REFERENCES
1. Brother U. Alfred, Periodic properties of Fibonacci summma-

tions, Fibonacci Quarterly, 1(1963), No. 3, pp. 33-42.
Continued next issue.
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FIBONACCI GEOMETRY
H. E. Huntley

Below are some additional observations about Hunter's [1]

article. Wz A x P y B
If the rectangle ABCDhas atriangle a w

DPP' inscribed within it so that AAPD =

ABPP' = AP'DC then x(w+z) = wy = z(x+y) P!

whence z

(i) }Z{ = VX%V_Z_ = G/E-_z D xty C

(ii) :_WZ--zZ = wz, i.e., wz'—wz-zZ =0 w=——=F"—"—= ¢z
(iii) ~ From (i) %: ¢ or y= ¢x

Thus P, P' divide their sides in the Golden Section.

Now, suppose ABCD is the Golden Rectangle, beloved of the
Greek architects, i.e. AB/BC = ¢, then—_l_— ¢. Hence, from (ii)
and (iii) ——((Tt‘f‘}‘ ¢, i.e. x= ¢z whence x=w. From (i) y=wtz= qazz.
Since <A = 4B = rtd and x = w, y = wtz, triangles PAD, P'BP are
congruent. It follows that PD = PP', that < APD is the complement
of <BPP', whence {DPP' is a right angle.

The area of the right triangle is

%-(wzwz :%(¢2z2+ o) =3 o 2% (9%41) = 327 (o +1)(e+2) = 5 27 (4 043)

we may conclude, therefore, that if the rectangle is the Golden Rec-
tangle, that is, if its adjacent sides are in the Golden Ratio, ¢, then

the inscribed triangle is right-angled and isosceles, the length of the
equal sides being =z v4<p+3 .

Editorial Note: PP' || AC
REFERENCES
1. J. A. H. Hunter, '"'Triangle Inscribedin a Rectangle'' 1(1963) Oc-~
tober, pg. 66.



ON SUMMATION FORMULAS FOR FIBONACCI AND LUCAS NUMBERS
DAVID ZEITLIN, Honeywell,

Minneapolis, Minnesota

n
Recently, Siler [1] gave a closed form for = F , where
k=1 ak-b
a> b are positive integers and Fk are Fibonacci numbers with
FO=O, F1=1, and Fn+2=Fn+l+Fn’ n=20,1,... . Inthisnote,

we will establisha more general summation formula which yields the
resultof [1] asa specialcase. General summation formulas for Fib-
onacci and Lucas numbers will be obtained as sp=cial cases of our
general result.

Theorem. Let p, q, u and Uy be arbitrary real numbers,
and let

(1) un+2= qun+1 - pun (n: 011’ ):
(2) Snzr?-kr? (n=0,1,...),

where 1, 7!1'2 are roots of x* - qx+p =0 (i.e., q2 -4p # 0). We define

n
(3) u_n—(uOSn—un)/p (n=1,2,...),
n
(4) S_n—Sn/p n=1,2,...).
Leta=0,1,...; d=0, %1, £2, ..., andletx bea realnumber. Then
n
a_2 k _ _a_nt2
(l—Sax +tpx) X U g =P X U 4d

k=0
(5) .

n+
X Uontasd T *%a4d * (l-xSa)ud

Moreover, in the region of convergence, we have

a2, == k _
(6) (1-Sax+px)k1;0 CEPIE —ud+(ua+d-udSa)x
Proof. If Ci, i=1,2, arearbitrary constants, then u = Cl rll.l + Czrrzl,

n=0,1,..., is the general solution of (1). Then
_ _ d,,_ak d,, ak _
Vie = U pig T (Clrl)(rl) +(C2r2)(r2) , k=0,1,...,

satisfies the linear difference equation

105
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a -—
(7) Vk+Z_Savk+l_pvk (k=0,1,...) ,
since (xz - S x + pa) = (x - ra)(x - ra). Let
a 1 2
n
g{x) = = vkxk
k=0
k+2

Multiplying both sides of (7) by x and then summing both sides with

respect to k, we obtain

D n n
- kt2 b+l a 2 13

(8) LEo VX = x5 T v ps -px v, x

k=0 k+2 a k=0 k+1 k=0 i

We note that

9 N L, Atz 0 I

( g kt2 =gl T vy " Vol 1 0’
n

k+l n+l
(10) kfo Vi ¥ gi{x) + Vo4 X - v

If we substitute (5) and (10) into (8), use (7) to eliminate Vo2 and
solve for g(x), we obtain our principal result, (5).

The generating function for Vi is readily obtained from (5).

xk converges for IXI<R.. Taexn,

Let R>» 0 and suppose that °§ Vi

k=0

for 1X1<R, vnxn#»@ a8 N-—eo. Thus, for IXI(R, (5) yields (6) as n=oe.

Remarks. Letqg=1andp=-1in (1), Then, for ug =0 and u; = 1, we
haveu =F _, F _= (—l)nHF , and S =z L, the well-known Lucas
n n -n n n n
sequence, where Ly = 2 and L, = 1.  Thus, (5)and {6), for u = Fn,
become, respectively,
oL (o) 2 P o 1)
(- 2 x )k—O ak+d™ * antd
(11) -
n+l
- <F -
* Fantatd TEE 4 T XLa)Fd ’
(12)  (I-Lx+(-1)%%) £ F x=F, +(F ,  -F.L)x
a ke 0 ak+d ~d a+d d"a '



1964 AND LUCAS NUMBERS 107
The main result of [1] is obtained from (11) for x = 1 and d = -b
For x = -1, (11) yields the interesting result

a 2 k +
WH-DTHLY) 2 C)7F = COTUF, g
(13) k=0

n
H(DPF, g - Fapg T (L HDF

d
For d = 0, (12) yields

2 E ]
(14) (-Lx+(-1)*%%) 2 F x“=Fx, (a=0,1,...)
a ak a
k=0
Again, letg=1and p=-11in (1). Then, for ug = 2, anclu1 =1,
wenowhaveu =L ,S =L ,and L :(—l)nL . Thus, withu = L ,
n n’ n n -n n n
(5) and (6) become, respectively,
n
a_2 k a nt2 n+l
(l_La.XH-l) x) kf() Lokta® = 1% "hnia = *  Danvasd
(15)
+xL_ o+ (1-xL )Ly,
a 2, = k
(16) (I—Lax +(-1)7x"7) kfo Lak+dx =Lyt (La+d - La,Ld)X
REFERENCES
1. Ken Siler, Fibonacci summations, FibonacciQuarterly, Vol. 1,
No. 3, October 1963, pp. 67-69.
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LETTER TO THE EDITOR

The Editor,
Fibonacci Quarterly.

Dear Dr. Hoggatt,

I refer tothearticle, '""Dying Rabbit Problem Revived''inthe December
1963 issue. The solution given there is patently wrong — if only be-
cause the alleged number of rabbits tends to minus infinity as n tend
to infinity. It may easily be shown that the correct answer, X , is
given by the recurrence relation o

X3 Xprz T ¥ %y o 2 0
together with the initial conditions
Xn= Fn+l forn=0,1,..., 11; X12 = 232

In view of the fact thatthe two equations zz -z-1=0and zl3 - zL2
-zl +1 =0 have no common root, it is clear that the answer can
never be expressed simply as a-linear expression in Fibonacci and
Lucas numbers whose coefficients are merely polynomials in n. For,
any such expression, Y, where the highest power of n which occurs is
n™, satisfies

m+l v

(E*-E-1) -0 .

In particular the expression found by Bro. Alfred satisfies

E*-E-1)%v=0

The error made by Bro. Alfred stems from his table on p. 54 where
the number of dying rabbits in the (n+l13)th month is seen to be Fn for
n=1,2,...11 andit is then assumed without proofthat this is true for
other values of n. In fact the very next but one value on n, namely
n = 13 shows that this is false. In fact of course the number of dying
rabbits in the (n+l3)th month equals the number of bred rabbits in the
(n+l)th month, and this will be less than Fn for all n exceeding 12.

Yours sincerely, (John H. E. Cohn)

BEDFORD COLLEGE
(University of London)



SQUARE FIBONACCI NUMBERS, ETC.
JOHN H.E. COHN
Bedford College, University of London, London, N.W.1.

INTRODUCTION

An old conjecture about Fibonacci numbers is that 0, 1 and 144
are the only perfect squares. Recently there appeared a report that
computation had revealed that among the first million numbers in the
sequence there are no further squares [1]. This is not surprising,
as I have managed to prove the truth of the conjecture, and this short
note is written by invitation of the editors to report my proof. The
original proof will appear shortly in [2] and the reader is referred
there for details. However, the proof given there is fairly long, and
although the same method gives similar results for the Lucas num-
bers, I have recently discovereda ratherneater method, which starts
with the Lucas numbers, and it is of this method that an account ap-
pears below. It is hoped that the full proof together with its conse-
quences for Diophantine equations will appear later this year. I might
add that the same method seems to work for more general sequences
of integers, thus enabling equations like yz = Dx4 +1 to be com-
pletely solved at least for certain values of D. Of course the Fib-

onacci case is simply D = 5,

PRELIMINARIES
In the first place, in accordance with the practice of the Fib-
onacci Quarterly, I here use the symbols Fn and Ln to denote the
n-th. Fibonacci and Lucas number respectively; in othsr papers I
use the more widely accepted, if less logical, notation U and Vo
[3]. Throughout the following n, m, k will denote integers, not
necessarily positive, and r willdenoteanon-negativeinteger. Also,

whereveritoccurs, k willdenote aneven integer, not divisible by 3.

We shall then require the following formulae, all of which are
elementary

(1) 2F =F L +F L
m+n m-n—— M

109
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(2) 2L =5F F +L_L

m+tn m  n m n

_ L2 m-1
(3) L, =L +(-1) 2
(4) (FBm’ L”‘»m) =2
(5) (F,L)=1 if 3/
(6) 2|L_ if and only if 3|m
(N 3| L_ if and only if m= 2 (mod 4)
o _ n-1
(8) F_=(-D"F
n

(9) L =(-1'L,
(10) L, = 3 (mod 4) if 2|k, 3/x
(11) Lospx = - Ly, (mod L)
(12) Fm+2k“=‘ - Fm (mod Lk.)
(13) L= L, (mods8)

THE MAIN THEOREMS
Theorem 1.

1f Ln = XZ, then n =1 or 3.
Proof.
If n is even, (3) gives

L ='y2:1:2;/x;2
n

If n=1 (mod4), then Ll = 1, whereasif n#¥ 1 wecanwrite n=1 +

2-3%+k where k hasthe required properties, and then obtain by (11)

I.J = - I_J

n 1 = -1 (mod L)

and so Ln'/xa since -1 1is a non-residue of Ly by (10). Finally,
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if n=z3 (mod 4) then n =3 gives L3 = 22, whereas if n ¥ 3, we

write as before n=3 +2-3 -k and obtain

Ly=-Ly=-4 (mod L

and again Ln 7z xZ.

This concludes the proof of Theorem 1.

Theorem 2.

If Ln= ZXZ, then n=0 or =6,
Proof.

If n is odd and Ln is even, then by (6) n= + 3 (mod 12) and
so, using (13) and (9),

and so Ln Z sz.

Secondly, if n= 0 (mod 4), then n =0 gives Ln = 2, whereas

if n#Z0, n=2-3"-k and so

2L = - 2L, =-4 (mod L

n 0 k)

whence ZLn;’yZ , i.e. Ln 7—/2.X2

Thirdly, if n= 6 (mod8)then n = 6 gives Lé = 2'32 whereas
if n#6, n=6+2"3""k where now 4|k, 3/k and so

2L =z - 2L, = - 36 (mod L
n 6

i)
and again, - 36 is a non-residue of Lk using (7) and (10). Thus
as before L, Z 2x°.

Finally, if n =z 2 (mod 8), then by (9) L_n = Ln where now
-n = 6 (mod8)andsothe only admissible valueis -n =6, i.e. n = -6.

This concludes the proof of Theorem 2.
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Theorem 3.
I F_ = %%, then n=0,\=l, 2 or 12.

Proof.
If n=z1 (mod4), them n=1 gives Fl =1, whereas if n# 1,
n=1+23"k and so
FmE - Fl = -1 (mod Lk)

whence Fn;fxz. If n=3 (mod4), thenby (8) F~n: Fn and -n= 1

(mod 4) and as before we get only n= -1. If n is even, then by (1)
2

F = F L1 and so, using (4) and (5) we obtain, if F_= =x
n pn iom 2 2 n

either 3 tn, E =2y, L = 2z . By Theorem 2, the lat-

Siner Von Yn

ter is possible only for ln =0, © or -6. The first two values also

satisfy the former, while the last must be rejected since it does not.
or B*n, E = yz, L = ZZ. By Theorem 1, the latter
— Y21 Ye1

is possible only for 14n =1 or 3, and again the second value must
be rejected.

This concludes the proof of Theorem 3.

Theorem 4.

If Fn = sz, then n =0, #£3 or 6,
Proof.

If n=3 (mnod4), then n=3 gives F
n=3+23"k and so

3= 2, whereas if n ¥ 3,

ZF - 2F, = -4 (mod L

n 3

1)

and so Fn ¥ ZXZ. If n=1 (mod 4) then as before ]:"_n = Fn and we

get only -n: -3. Ifz n is even, then since Fn: Fl/zn Li/zn we
must have if F = 2x

LE) 2
either EL=7Y5 L n = 2z; then by Theorems 2 and 3 we
see that the only value which satisfies both of these is n = 0
or = Zyz, L = ZZ; then by Theorem 1, the second

1,0 i,n
of these is satisfied only for Y%n =1 or 3. But the former of these

does not satisfy the first equation.
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This concludes the proof of the theorem.

REFERENCES

1. M. Wunderlich, On the non-existence of Fibonacci Squares,
Maths. of Computation, 17 (1963) p. 455,

2. J. H. E. Cohn, On Square Fiboaacci Numbers, Proc. Lond.
Maths. Soz. 39 (1964) to appear.

3. G. H. Hardy and E. M. Wright, Introductionto Theory of Num -~
bers, 3rd. Edition, O.U.P. 1954, p. 148 et seq. /
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EDITORIAL NOTE
Brother U. Alfred cheerfully acknowledges the priority of the
essential method, used in '""Lucas Squares'' in the last issue of the
Fibonacci Quarterly Journal, rest solely with J. H. E. Cohn. This
was written at the request of the Editor andthe unintentional omission

of due credit rest solely with the Editor.



114 April

EXPLORING THE FIBONACCI REPRESENTATION OF INTEGERS

Proposed by Brother U, Alfred on page 72, Dec. 1963,
H ,h, Fibonacci Quarterly’

The comnpletion of the Theorem stated in the article is:
The Maximum number of diﬁ'ezretﬂ' F'E‘:mnacci numbers required to
represent an integer N for which L-\zj"‘ = Fn is given by [%]

This is a coreollary of the following theorem.
For Fn < N ;‘EFHH the number N can be represented as a sum of
Fibonaccinumbers, the largestwhich is F and the smallest greater
than or equal to FZ' Moreover, the sum never contains two consecu~-

tive Fibonacci numbers. We therefore have at most the alternating
i
{ —1 as claimed.

The proof ofthis theorem depends upon a Lemma which is a well

terms of indices from 2 to n which gives

known Fibonacci Identity that F, + ¥, +F, +... + F = F -1
/ Z 4 [ 2n Zn+l
andthat F, + F 5 +F., ... +F, =¥, -1, The proof of the first
! 2n-1 Zn

2
pe
partofthis is given bv induction and the second partis similarly proved,

Proof.

Forn=1, we hav JP)xFB 1
n= 2, we have FZ + Fg & F5 - 1 which clearly showe the Lemma

holds for n = 1,2,
Now assume that it helds for alln £ K, where K is a fixed but un-

ger greater than or equal to 3.

3

specified positive inte

i. e, ;‘2 + JE .t ”,‘ = FM&H - 1, therefore by addition toboth

sides we hav:,i*at ka :+,M JEZ«K“#—T/},%é: FZKH + F?}‘ﬁ”‘ ~ 1
= Foges !

which implies the Lemmma holds for all positive n,

Using this Lemms whichwe shall call Lemma 1, part A fox the
first pa,;t't which was just proved, and part B for the second part with
the odd indices; we can now prove the general theorem that for
E‘n <N LT atl? We sum of at least alternating
Fibonacel numbers Fofor N < F and which

ol n+l
trivially is just Fr-?-‘ itself when N = 5‘11+1 .

%

Proof.For N= 1, wehave 1 = F 27 and for N = 2, wehave 2 = Fg. Now

.. -

assummne the theorem true forall N X k, where k is a fixed but unspecified

positive integer and n is such that Foo< k E’Fn-ﬂ’ n> 3, Now if

Continued on Fage 134



OF SIMPLER PARTITIONS

1

Netto [1] illustratesa mwirnerating all partitions of

n having exactly p mem ¢. It is shown herein that

Netto's procedure can be orm through use

of simpler partitions which arve limited in range (size and number of
f th
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(1) pl Opt. = - ['(nl/qz)] ’
(2) P2 opt. ~ [nz/qll

£ 2 i
If P, &P, opt.’ p, can bz changed to Py , but if Py

opt. > P opt.’
Py cannot be changed. However, if pz‘.ép2 opt.’ p, <an be changed
to P, opt.’ but if P, P, opt.’ P, cannot be changed.

In generating the partitions, the pl—member partitions are
found first, then the (p1 +l)-member partitions, etc., until the Py-
member partitions are found. The procedure used herein for the par-
titions of a typical p-member set is as follows:

A trial 'first'' partition is formed from p 9 's. If the sum of

the p membersis equalto or greaterthan n, buf less than or equal

1

to n the partition initiates the sst. If such is not so, the right-

2}
hand member is augmented sothat the sum of the p-members in n,.
To form new partitions, the right-hand member is successively in-
creased by one until either it equals q, or the sum of the p members

equals n, (or both). The next p-member trialpartitionis fouad by

adding orfe to the member second from the right and replacing all
members to the right with the new value of the changed member. The
desired reinitiating partition is found from the sum of thz p mem-
bers, as before. The right-hand member is successively increased
by oneto form new partitions. When the possibilities of the particular
second member from the right are exhausted, one is added to the
third member from the right andthe process repeated all over again.

Eventually, all p-member partitions will be accounted for. An ex-

ample for PV(28, <10 |>2, <5|>2, <7) follows:

, ) 2, 2,2,2,2 2,2,2,2,2
2 2 2 2’2)2’3
E 3 b 2‘!2,2"4

2,2,3,3

-
-
-
-

-
-

-

qu:.ﬁ:-»#-wwmmm
(G362 IV NIEN B o NS s B0 B 62N

W WD
W Wik LWL NN
B W U wo 0

-
-
-
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3. APPLICATION OF NETTO'S MZTHOD
Netto [1] considers the enumeration P(n'p‘ﬁq) of the parti-
tions of n having exactly p members with no member greater than
q. Netto's methodis limited to q2(n+l-p) with the existence condi-

tions being p<n and qp2n, simultaneously. In the terminology of

this paper,
1
< = —(n- - - - -
(3) P(n|p|<q) %[Z(n p+2-3t -4t ... ptp_z)] ,
where t, =0,1,..., lin(;fz-l-Z]_ Inspection of (3) reveals that the
typical term is
(4) [n-p+2-w]
2 2

in which w is always zero for ty =0, always 3 for t, =1, and al-
ways greater than 3 for all other t,'s. It can be observed that ex-
cept for the zerovalue of w, each w in the enumeration P(nlp ]Sq)

is the sum of the members of each partition included in the set

(5) PV(Z3,Sn-p‘Zl,S[I—1—;£] |>3, <p)

Thus, except for p =1,

n-p+2-w,
(6) P(n|p|<q) = [n——’—g”} +2 {-—2——} :

i

It should be noted that (5) does not exist for p = 2, and/or (n-p)<3.
There are no wi‘s under these conditions, and the summation term

<

of (6) is accordingly zero. The special case of p=1 is

(7) Pn|1|<q) =1
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A NOTE ON WARING'S FORMULA FOR SUMS OF LIKE POWERS OF ROOTS

S.L. BASIN
Sylvania Elecironic Systems, Mountain View, Califernia
_ k k k .
Sums of powers Sk = x5 tx, + x, may be expressed in

terms of elementary symmetric functions or interms of the coefficients

of:

f(x) = (x-—xl)(x—xz) e (x=x ) = xT4p

by Newton's formulas, usually introducedin a course in the theory of
equations, for example, J. V. Uspensky [1].

The relationship between Waring's formula for sums of like
powers of the roots of a quadratic and Lucas numbers is quite obvious
although perhaps a little too specialized for L. E. Dickson [2] to have

pointed this out in his text, First Course in the Theory of Equations.

In order to obtain an explicit expression for Sk where k=1,

2,3..., first consider the quadratic

(1) };Z-‘rp:; +q=0

If we denote the roots by « and f# then (1) mzy be rewritten as

(2') XK‘ + px + q = (X—*C()(X--B)

?

After making the transformation x = 1/y and multiplying by v° we

obtain,
(3) 1 +py +ay = (L-ay)(1-By)

Differentiating both sides of (3} with respect to y and dividing
both members of the differentiated equation bvthe corresponding mem-

bers of (3) we arrive at

119
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(4) -p2qy o, B
Ltpytqy” 1TV 1By
Equations,
k+1
e 2 k k-1 o k
= a+
(5) l-ay - “F@ v H ey +l—ayy
and
k+1
2 k k-1 B k
6 B - +8iy ... 8 + B
(6) T-gy y v 1-By ¥

are both obtained from the geonietric series

k-1 ;
(7) I A S
=0

for example, let r = ay and multiply by a«. Addition of (5) and (6)

results in,

k+1 k+1
o B 5 (1-8y) + 8 (l-ay)
(8) 1-ay+1-ﬁy’sl+szy+“' T8y + & T=ayT(T-3y)

where Sk =a t+p
In order to expandthe left-hand member of (4) using (7), let r = - py
—q_,rz, then
k; J 2j , (-p-ay)'y"
(9) —L— =2 eyt 4
l+pytqy l+py-qy

Employing the binomial theorem we may write

h

(py+ay®) = = (gfg" (p9)8(ay”)
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where the summationis taken over all two-part partitions of j, i.e.,

for all g20 and h20 such that g+ h = j. Therefore,

-p-2qy . +h+l (g+h)! h_g+2h
——0 = (pr2qy) = (-1)8*RFL (g g hoetih
l+py-qy g
(10)
k_k
(-p-2qy)(-p-qy) ¥

2
I+pytqy

Now the left-hand members of (8) and (10) are equal as shown
by equation (4); therefore we mayequate coefficients of like powers of
y. Specifically, equating coefficients of y'&—l we arrive at
i+j (i+j-1)! it+]
(i-1)1;!

B CRALEYD ER.
TG P

S, = = (-1) pla’ +23 (-1)

(11)

where we have replaced i for g+ 1 and j for h in (10). The sum-
mations in (11) now extend overall i20 and j20 such that i + 2j = k.

Combining both sumimations in (11) we have,

i+j (i+j-1)F 13
1 P 4

(12) 8 = kZ(-1) T

summed over all 120, j20 suchthat i + 2j = k. Clearly, for p =gq =

-1 we have Sk = L., the kth Lucas number; and (12) becomes

k)‘

) (i+j-1)!
(13) L=k 2, s
i>0
i>0
it+2j=k
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Equation (12) of Waring's formula, publishedin 1762, which can
be extended to include the sum of kth powers of the roots of n th
degree polynomials.

The main point to observe is not necessarily the meager result
given by (13) but the fact that implicit in the developmment of Waring's

formula lies the generating function (4} for the Lucas numbers,
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OMISSIONS

H-3 and H-8 were also solved by John 1. Brown, Jr., The Pennsyl-

vania State University, State College, Penn.

The solution to H-16 given in the last issue was compounded from
solutions given by L. Carlitz and John L. Brown, Jr. The varitypist

omitted the credit line.

H-13 was also solved by John H. Halton, University of Colorado at

Boulder, Colorado.

H-15 was also solved by L. Carlitz, Duke University, Durham, N.C.
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Send all communications concerning Advanced Problems and
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Jose State College, San Jose, C
welcomas problems believed to be new or extending old results. Pro-
posers should submit solutions or other information that will assist
the editor. To facilitate thelir consideration, solutions should be sub-
mitted on separate signed sheets within two months after publication

of the problems.

H-34 Proposad by Paul F. Byrd, San Jose Srate College, San Jose, California

Derive the series expansions
) L2 = m+k .
J. a) = I {a) + = -13 1 a) I {e) L
2t ®) = I Lo e = oot @) Tpple) Bory
m

(k=0, 1, 2, 3, ...} forthe Bessel functions of alleven orders,

Y2k
where L are Lucas numbersand 11 are modified Bessel functions.
n n
H-35 Proposed by Walter W. Horner, Pitishurgh, Pa.
Selectany nine consecutive terms of the Fibonaccl sequence and

form the magic square

U, 1. u
8 1 6
. u u
w3 5 7
uy U U,
show
Uy 11, & 1 4y . -
1}1 iué \1313511,? i U,nguz
Voo, T U, uu, tuuou, .
Generalize, 87374 17579 67772
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H-36 Proposed by J.D.E. Konhauser, State College, Pa.

Consider a rectangle R. From the upper right corner of R re-
move a rectangle S(similar to R and with sides parallel to the sides
of R. Determine the linear ratio K= LR/LS if the centroid of the
remaining L shaped region is where thes lower left corner of the re-
moved rectangle was.

H-37 Proposed by H.W. Gould, West Virginia University, Morgantown, West. Va.

Find a triangle with sides n+l,n,n-1 havingintegralarea. The
first two examples appear to be 3, 4,5 with area 6; and 13, 14, 15 with
area 84.

H-38 Proposed by R.G. Buschman, Suny, Buffalo, N.Y.

(See Fibonacci Numhbers, Chebyshev Polynomials, Generaliza-
tions and Difference Equations Vol. 1, No. 4, Dec. 1963, pp. 1-7.)

Show

H-39 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California

Solve the difference equation in closed form

n n

ntz ntl +2 7

where Cl =1, CZ = 2, and Fn is the nth Fibonacci number. Give
two separate characterizations of these numbers.
H-40 Proposed by Walter Blumberg, New Hyde Park, L.I., N.Y.

Let U, V, A and B be integers, subject to the following con-

ditions

(i) Uu>1, (i1) (U, 3) =1; (iii) (A, V) =1;
. 2
(iv) V = (u"-1)/5 .

Show A2U+BV is not a square.
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SOLUTIONS

EXPANSIONS OF BESSEL FUNCTIONS IN TERMS OF
FIBONACCI NUMBERS
P-2 Proposed by P.F. Byrd, San Jose State College, San Jose, California.

Derive the series expansions

(==l
k .2 2
Joted = = (=107 L(e) - Ly () Fopyy o
k=0
where JO and Ik are Bessel functions, with F2k+1 being Fibonacci
numbers.

Solution by the proposer, P.F. Byrd, San Jose State College, San Jose, California

Note: Thisis acorrected version. Initiallythis read JO(X) =...
which does not make sense.

It is just as easy to derive the more general series expansions
of sz(a), (p=0, 1,2,...), for Bessel functions of all even orders,
and then to obtain the desired result as a special case upon setting
p = 0. We make principal use of formulas (6.1) and (6.5) presented
in [1]. Since sz( «) isan even function, we first seek a polynomial
expansion of the form

J, ()=

2p o GZk,p(a) €kl X)

where from equation (6.5) and [1] the coefficients are given by

.2k T
_ ()
ng,p(a) B f sz(—Ziacosv) [cos2kv - cos(2k+2)v] dv ,
0
with ., beingthe Fibonaccipolynomials defined in [1]. Now it is

known (e.g., see [2]) that

™

j‘ J, (-2ie cosv) cosZ2mv dv =7 J
2p p

0

and also that Jn(iz) = inln(—z) = (-i)nln(z). <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>