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In the October* 1963 issue of this journal [l] , the author dis-

cussed some of the periodic properties of Fibonacci summations. It 

was noted that a certain determinant was basic to these considera-

tions. Its main characteristics and value were indicated and a pro-

mise was given of additional explanation in some later issue of the 

Fibonacci Quarterly. The purpose of this article is to set forth the 

manner of evaluating these determinants on an empirical basis. The 

proof of the general validity of the results obtained is to be found in 

an article by Terry Brennan in this issue of the Quarterly [2], 

To fix ideas the determinant of the sixth order will be used. 

Written in a form that brings out its Fibonacci characteristics it 

would be: 
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A c e r t a i n s u b t l e t y s h o u l d be n o t e d in the f i r s t l ine a s the f i r s t " 1 " 

s t a n d s for F - a n d the s e c o n d f o r F , . 

B y s e p a r a t i n g t h e t e r m s of the f i r s t c o l u m n i n t o g r o u p s , t he 

p r o b l e m c a n be c h a n g e d to t h a t of e v a l u a t i n g t h r e e d e t e r m i n a n t s w i t h 

f i r s t c o l u m n s a s i n d i c a t e d be low: 

81 
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(1) 

1 

26 

(2) 

1 

1 

13 

(3) 

Determinants (1) and (2) can be evaluated in t e r m s of what shal l be 
called the BASIC POWER DETERMINANT. Dete rminant (3) will be 
developed in t e r m s of the cofactors of the f i r s t column which involve 
the basic power de te rminan t minus one of i ts rows . 

BASIC POWER DETERMINANT 
The f i r s t de te rminan t has a common factor in each of i ts rows 

(the factors a r e 1 , 2 , 3 , 5 , 8 , 1 3 respec t ive ly) . If these fac tors be taken 
out of the de te rminant , we have what will be called the basic power 
de te rminant . For the sixth o rde r , it is as shown below: 
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This de te rminan t is a specia l case of the m o r e genera l de te rminan t 
in which the f i r s t row s t a r t s with any Fibonacci number whatsoever 
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The basis for evaluating this determinant is the re la t ion 

F F - F F = ( - l ) n + 1 F 
n n+k+1 n+1 n+k K } * k 

To evaluate the determinant we proceed to produce ze ros in the f i r s t 
row. This is done by multiplying the f i r s t column by F . , and sub-
tracting from this F. t imes the second column; then multiplying the 
second column by F. , and subtracting from this F . t imes the thi rd 
column; etc. The operations for the f i r s t and second columns would 
be as follows: 

4 i 4 '" 
Fr+i<Fi-iFi+i - w = t-1) FiFi+i •... 

Ff+2<Fi-lFi+2 - FiFi+l) \Wijr2Ft+2.. 

.4 /T_ ^ ^ w ; l A i „ ^4 
F i + 3 < F i - l F i + 3 ' . - F i F i + 2 ) = ^ " i + 3 

and so on. It is clear that the second row would have a factor F , , 
the third a factor F~, etc. Thus, after e l iminat ing the common fac-
tors and expanding by the non-zero t e r m in the las t column of the 
row, the absolute value of the resulting de te rminan t would, be F , F? 

•F^F.Fp. multiplied by the basic power de te rminan t of the fifth o r d e r . 
If we adopt the notation A n 
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to r e p r e s e n t the bas ic power de te rminan t of the nth o rde r , this r e su l t 
may be exp re s sed as 

l* 6 1 = n ( F 4 ) • | A | . 
1=1 

In genera l , for a de te rminan t of o rde r n, 

l ^ n l v n 1 ( F . ) - | A a | . 
1=1 

Since the p r o c e s s m a y be repea ted , it is not difficult to a r r i v e at the 
final resu l t : 

A = n F n - X . 

In the pa r t i cu l a r case of o rde r six, 

It is in te res t ing to note that the values of these basic power d e t e r -
minants a r e independent of where we s t a r t in the Fibonacci sequence. 

SIGN OF THE BASIC POWER DETERMINANT 
It is impor tan t to be able to de te rmine the sign of the bas ic de -

t e rminan t value inasmuch as we shall combine the values of d e t e r -
minants ( l ) and (2) with the values of the cofactors of de te rminan t (3). 
The cons idera t ions involved a r e a bit tedious . We dis t inguish four 
c a s e s accord ing as n i s of the form 4k, 4k+l , 4k+2, or 4k+3. The 
following th ree fac tors de te rmine the outcome: 
(i) The sign introduced by expanding from the las t e lement in the 

f i r s t row; 
(ii) The signs of the t e r m s , of the de te rminan t resu l t ing after each 

of the s teps indicated above. These t e r m s will be e i ther a l l 
plus or a l l minus . 
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(iii) The sign of A which is the s econd-o rde r de te rminan t of the 
f i r s t powers of the Fibonacci number s in the Last two rows . 
Thus, for the sixth o rde r de te rminan t we have been cons ide r -
ing, &z i s 

The final outcome is a s follows: 
(i) For o rde r 4k or 4k+l, the sign is always plus; 
(ii) Fo r o rde r 4k+2 or 4k+3, the sign a g r e e s with that of A 

As noted previous ly , the basic power de te rminan t enables us 
to evaluate de te rminan t s (1) and (2). The la t ter can be brought to 
this form by shifting the f i r s t column so that it becomes the las t 
column. 

BASIC POWER DETERMINANTS WITH ONE ROW MISSING 
To evaluate the th i rd de te rminan t we find the cofactors of the 

e lements in the f i r s t column. Fo r the e lement in the f i r s t row, this 
cofactor is a bas ic power de te rminan t after removing common fac-
t o r s , but for a l l the o thers it is e s sen t i a l ly a basic power de te rminan t 
with one row m i s s i n g . The absolute value of such a de te rminan t of 
o rde r n with a m i s sing row between the k and (k+l)st row will be 
r e p r e s e n t e d by 

A (k I k + 1) n ' 
the impl icat ion being that the absolute value does , not depend on the 
pa r t i cu l a r Fibonacci number with which it s t a r t s . When developing 
such a de te rminan t the p rocedu re is the same as for the development 
of the bas ic power de te rminant , only in this case the re is a gap. The 
calculat ion for a de te rminan t of o rde r n with a row mis s ing between 
the th i rd and fourth rows can be s u m m a r i z e d schemat ica l ly in the 
following m a n n e r . The column headings a r e Fibonacci n u m b e r s . A 
table en t ry is the power to which the Fibonacci number at the head of 
the column is being r a i s ed . The quanti t ies in any one row a r e mu l t i -
plied together . In the f i r s t row we have the r e su l t of the f i r s t step in 
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the evaluation in which the order is changed from 9 to 3; in the s e c -
ond, the fac tors resul t ing in reducing the determinant from order 8 
to o rde r 7; e tc , 

1 
1 
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1 
1 
1 
1 
1 
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1 
0 
1 
1 
1 
1 
1 . 
0 

0 

0 

1 
1 
1 
1 
1 
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1 
1 
1 
1 
0 

1 
1 
1 
0 

1 
1 
1 

1 
1 

The sum of the quanti t ies in any column gives the power of the F i b -
onacci number in the determinant. In the above case 

A9(3 | 4) = FJF^FJFJFJFJFJF, . 

The same resu l t would have been obtained if the gap had been after 
the sixth row. In genera l , if the determinant is of order n, a gap 
after the kth . row or the (n~k)th row gives the same result. 

The pa t t e rn observed is as follows: (1) A reduction of 2 in the 
powers of F-. to F inclusive (if k is l e ss than n-k); (2) A r e -
duction of 1 from F, M to F , inclusive; (3) No reduction there-

k+1 n-k x ' 
af ter . If n-k is less than k, the roles of k and n-k are reversed. 
Finally, if n - k equals k (even n), there would be a reduction of 2 
from 1 to k and no reduct ion thereafter. 

These r e s u l t s may be summarized in the following formulas. 
FORMULA FOR k LESS THAN n-k 

A (k k+1) n ' 
k . , n-k . n . , , 
n F ^ 1 " 1 n Fn'\ n Fn"1+1 

i=l 1 i=k+l 1 i=n-k+l x 

FORMULA FOR n - k LESS THAN k 

A (k n* k+1] n F.n x l 

i=l X 

k 
n 

i=n-k+l 

n Ff-i+1 

i=k+l 
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FORMULA FOR k EQUAL TO n - k 

87 

A (n/2 | n/2+1) 
n / 2 
n F 

i=l 

,n- i - l n 
XI 

. n , , 
F n - i + l 

i 

These fo rmulas a r e not difficult of appl icat ion. However, for the 
sake of convenience (in view of future considera t ions) and as a p o s -
sible guide to r e a d e r s the r e s u l t s for o r d e r s 12 and 13 a r e set down 
in deta i l . Since, however , t he re is s y m m e t r y in k and n - k only 
the f i r s t half need be given in each case . 

TABLE OF AT 0 (k 

1 
2 
3 
4 
5 
6 

£ 1 
10 
10 
10 
10 
10 
10 

12v 

2 
10 
9 
9 
9 
9 
9 

k+1) 

F 8 
4 
4 
4 
4 
5 
5 

3 
3 
3 
4 
4 
4 

10 11 x 1 2 
1 
1 
1 
1 
1 
1 

k F 

1 
2 
3 
4 
5 
6 

Fn F , 

TABLE OF A 1 3 ( k | k+1) 

10 11 12 x 13 

11 

10 

10 

1.0 

10 

10 

10 

10 

9 
9 
9 
9 

9 
9 
9 
8 

8 

8 

8 

8 

8 

8 

7 

7 

7 

7 

7 

7 

7 
6 

6 

6 

6 

6 

6 

6 

5 

5 

5 

5 

5 
6 

4 

4 

4 

4 

5 

5 

3 

3 

3 

4 

4 

4 

2 

2 • 
3 

3 

3 

3 

1 

2 

2 
2 

2 
2 

1 

1 

1 

1 

1 

1 

SIGN OF POWER DETERMINANT WITH ONE LINE MISSING 
The cons idera t ions leading to the de te rmina t ion of the sign of 

power de te rminan t s with a line mi s s ing a r e involved. The approach 
is p r e c i s e l y the same as for the power de te rminan t . The r e s u l t s for 
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a l l values of n, i ( subscr ip t of the leading Fibonacci number in the 
determinant) and k (as defined for the b r eak point but taken modulo 
4) a r e l is ted in the following table . 

k 4r 4r+l 4r+2 4r+2 4r+3 4r+3 

1 

2 

3 

4 

-

-

+ 
+ 

+ 

-

-
+ 

i odd 

+ 
+ 
-
~, 

i even 

-

-
+ 
' + 

i odd 

+ 
-
-

+ 

i even 
-

+ 

+ 
-

EVALUATION OF THE ORIGINAL DETERMINANT 
We noted previous ly that the or ig inal de te rminan t could be 

r e p r e s e n t e d a s the sum of t h r ee s epa ra t e de te rminan t s (1), (2), and 
(3). Determinant (1) i s s imply the product of Fibonacci number s (one 
from each row) by the bas ic power de te rminan t . Thus for the sixth 
o r d e r , the si tuation would be as follows: 

BPD 
F's 

(1) 

Fl 

5 

5 

F 2 

4 

1 

5 

F 3 

3 

1 

4 

F 4 

2 

1 

3 

F5 

1 

1 

2 

F6 

1 

1 

F 7 

1 

1 

The sign would be negat ive . 
Dete rminant (2) can be re la ted to the bas ic power de te rminan t 

by moving the f i r s t co lumnin to the las t posi t ion. For the sixth o rde r , 
this involves a change of sign„ Again fac tors can be taken out leaving 
a bas ic power de te rminan t . The pa t t e rn is a s follows: 

BPD 

F's 

(2) 

F, 

5 

1 

6 

F 2 

4 

1 

5 

r-3 
3 

1 

4 

F 4 

2 

1 

3 

F 5 
1 

1 

2 

F 6 

1 

1 

The sign would be positive* 



1964 OF FIBONACCI NUMBERS 89 

To evaluate (3) we expand by the f i r s t column. We shall des ig -
nate success ive e lements of the expansion, due account being taken of 
a l l s igns includingthe negative quanti t ies in the f i r s t column, by suc-
cess ive capi tal l e t t e r s : A, B, C, D, . . . . A gives r i s e to a s imple 
bas ic power de terminant ; B to one with a line m i s s i n g (k = 1); C with 
the second line mi s s ing (k = 2); e tc . However, the re a r e fac tors that 
have to be mult ipl ied in each c a s e . It should be noted too that we a r e 
r e f e r r i ng to de te rminan t s of the fifth o rder and not of the sixth. 

F l 
4 

4 

F l 
3 

3 

F l 
3 

3 

F 2 
3 

3 

F 2 
3 

3 

F 2 
2 

2 

F 3 
2 
2 
4 

F 3 
2 
1 

3 

F 3 
2 
1 
3 

F 4 
1 
2 

3 

F 4 
1 
2 

3 

F 4 
2 
1 

3 

F 5 

2 

2 

F 5 
1 
2 

3 

F 5 
1 
2 

3 

F 6 

2 

2 

F 6 

2 

2 

F 6 

2 

2 

F 7 

1 

1 

F 7 

1 

1 

F 7 

1 

1 

(negative) 

(positive) 

(positive) 

F i 
3 

3 

F 2 
2 

2 

F 3 
2 

2 

4 

F 4 
2 
1 

3 

F 5 
1 

1 

2 

F 6 

2 

2 

F „ 

1 

1 (negative) D 

F F F F F F , F 
3 3 2 1 1 

2 2 1 1 1 
E 3 3 4 3 2 1 1 (negative) 
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F l 
4 

4 

F 2 
3 

3 

• F 3 
2 

2 

4 

F 4 
1 

2 

3 

F 5 

2 

2 

F 6 

1 

1 

F 7 

(positive 

Summariz ing in one table (omitting the f i r s t and second Fibonacci 
number fac tors a s they a r e both unity) we have the following for the 
evaluation of the de te rminan t of the sixth o r d e r . 

(1) 
(2) 

A 

B 

C 

D 

E 

F 

Sign 

-

+ 
-

+ 
+ 
-
-
+ 

F 3 
4 

4 

4 

3 

3 

4 

4 

4 

F 4 
3 

3 

3 

3 
3 

3 ' 

3 

3 

F 5 

2 

2 

2 

3 

3 

2 

2 

2 

F 6 
1 

1 

2 

2 

2 

2 
1 

I 

F 7 

1 

1 

i 

1 

1 

1 

The following p a i r s of t e r m s combine: E and (1); F and (2); A and 
o o 

D; B and C. The resu l t ing sums have a common factor of 2 3 
2 5 , the adjoint factor being 144. Thus finally the value of the sixth 

12 5 2 o rde r de te rminan t is found to be 2 3 5 . 

DETERMINANT OF ORDER 12 
Without justifying al l the in te rmedia te s teps , the summat ion 

table for o rde r 12 is shown below* 

(1) 
(2) 
A 

B 

C 
D 

Sign 

+ 
. 
+ 
-

-
• t 

F 3 
10 

10 
10 

9 
9 
9 

F 1 4 
9 
9 
9 
9 
8 
8 

D 

3 

8 
8 

8 

8 
7 

F 6 
7 

7 
7 

7 

7 
7 

F 7 
6 

6 
6 

6 

6 
6 

F 8 
5 

5 
5 

5 

5 
5 

F 9 
4 

4 
4 

4 

4 
5 

F 1 0 

3 

3 
3 

3 
4 

4 

F n 
2 

2 
2 

3 

3 
3 

F £ 1 2 
1 

1 
2 

2 
2 
2 

F ^ 1 3 
1 

1 

I 

1 
1 
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E 

F 

G 

H 

I 

J 

K 

L 

Sign 

+ 
-

-
+ 
+ 

-

-

.+ 

F 3 

9 
9 
9 
9 
9 
10 

10 

10 

F 4 

8 

S 

8 

8 

9 
9 
9 
9 

F 5 

7 

7 

7 
8 

8 

8 

8 

8 

F6 

6 

6 

7 

7 

7 

7 

7 

7 

F? 

6 
6 
6 
6 
6 
6 
6 
6 

• F 8 

6 

6 

5 

5 

5 

5 

5 

5 

F9 
b 

5 

5 

4 

4 

4 

4 

4 

F 
•Mo 
4 

i 

4 

4 

3 

3 
"2, 

3 

- 11 

3 

3 

3 

3 

3 

2 
7 

2 

F 12 
2 

2 

2 

2 

2 

2 

1 

1 

F13 
1 

1 

1 

1 

1 
1 

1 

It will be noted that the following p a i r s add up to ze ro : E and F; D 
and G; C and H; B and I; A and J; (1) and K; (2) and L. Therefore , the 
value of the determinant i s z e r o . The same re su l t was found for o r -
d e r s 4, 8, and 16. 

DETERMINANT OF ORDER 1! 

(1) 
(2). 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 
M 

Sign 

+ 
+ 
-

-
+ 
+ 
-

-
+ 
+ 

-

-
+ 

'•+ 

-

F 3 

11 

11 

11 

10 

10 

10 

10 

10 

10 

10 

10 

10 

11 

11 
11 

F 4 

10 

10 

10 

10 

9 
9 
9 
9 
9 
9 
9 
10 

10 

10 
10 

F5 

9 
9 
9 
9 
9 
8 

8 

8 

8 

8 

9 
9 
9 

9 
9 

F6 

8 

8 

8 

8 

8 

8 

7 

7 

7 

8 

8 

8 

8 

8 
8 

F? 

7 

7 

7 

7 

7 

7 

7 

6 
7 

7 

7 

7 

7 

7 
7 

F8 

6 

6 

6 

6 

6 

6 

6 

7 

6 

6 ' 

6 

6 

6 

6 
6 

F9 
5 

5 

5 

5 

6 

5 

6 
6 
6 
5 

5 

5 

5 

5 
5 

F 
10 

'4 

4 

4 • 

4 

4 

5 

5 

5 

5 

4 

4 

4 

4 
4 

Fll 

3 

3 

3 

3 

4 

4 

4 

4 

4 

4 

4 

3 

3 

3 
3 

F 
12 

2 

2 

'2'" 
3 

3 

3' ' 

3 

3 

3 

3 

3 

3 

2 

,2 
2 

F 13 

1 

1 •' 

2 

2 

2 

\2 

2 

2 

2 

2 

2 

2 

2 . 

• 1 

1 

Fl 

1 

1 

1 

I 

1 ' 

1 

1 

1 

1 

l' 

i 

1 

1 
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It will be noted that the following p a i r s add up to ze ro : E and G; 
C and I; A and K; (2) and M. The o thers can be combined to give the 
following table . 

(1), L 
B, J 
D, H 
F 

Sign 
+ 
-
+ 
-

F 3 
12 

11 

11 

10 

F 4 
10 

10 

9 
9 

F 

9 
9 
8 

8 

10 11 12 13 F 14 
7 
7 
7 
6 

6 
6 
6 
7 

5 
5 
5 
6 

4 
4 
5 
5 

3 
3 
4 
4 

2 
3 
3 
3 

1 
2 
2 
2 

1 
1 
1 
1 

After taking out the common factor 

10 9 F 8 7 6 6 5 4 
* 3 4 5 6 7 8 9 10 

the following r e m a i n s for evaluation: 

11 12 13 14 

Sign F 3 F 4 F 5 F 6 F ? FQ F() F ^ F n F F F 12 13 14 

+ 
-
+ 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 1 

1 

1 

1 

1 

1 

1 

1 

1 

1 1 1 

No easy method was found for evaluating the sum of these quant i t ies . 
Essen t i a l ly it was a m a t t e r of evaluating them, combining them and 
then factoring. For tunate ly , a s the number s to be factored i nc r ea sed 
in size going up to 23 digits in one ins tance , a pa t t e rn involving F i b -
onacci and Lucas number s was d i scovered with the r e su l t that the 
formulas (1) and (2) on page 38 of [ l ] we re d i scovered . 

The m a t t e r can be allowed to r e s t h e r e . The path pursued has 
been i l lus t ra ted in sufficient detai l to allow o thers to explore these 
in te res t ing de t e rminan t s . The formulas obtained as well a s the de t e r -
minant values to the twentieth o rde r a r e set forth in the paper [l] and 
need not be repea ted . 

REFERENCES 
1. Bro the r U. Alfred, "Pe r iod ic P r o p e r t i e s of Fibonacci Summa-

t ions , The Fibonacci Quar te r ly , 1(1963), No. 3, pp. 33-42. 
2. T. L„ Brennan "Fibonacci P o w e r s and P a s c a l ' s Tr iangle in a 

Mat r ix" The Fibonacci Quar t e r ly , 2(1964), No. 2, pp. 93-103. 
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FIBONACCI POWERS AND PASCAL'S TRIANGLE IN A MATRIX - PART I * 

TERRENCE A. BRENNAN 
Lockheed Missi les and Space Co., Sunnyvale, Cal i fornia 

1. INTRODUCTION 
The mainpo in t of this paper is to display some in te res t ing p r o -

p e r t i e s o f t h e (n+1) X (n+1) m a t r i x P defined by imbedding P a s c a l ' s 
t r iangle in a square ma t r ix : 

0 0 0 1 
0 0 1 1 
0 1 2 1 
1 3 3 1 (1.1) P = n 

The m a t r i x P was or iginal ly cons t ruc ted by the author in o rde r 
to evaluate a de te rminan t p re sen ted by Bro ther U. Alfred. The de -
te rminan t , and i ts origin, has subsequently been published in [l] and, 
for the sake of comple teness , i ts evaluation will be p resen ted h e r e . 

2. THE PROBLEM AND ITS SOLUTION 
THE PROBLEM: 

Evaluate the fifth o rde r de te rminan t 

(2.1) 

5 5 1 + 1 - ] 
5 5 

2° + 1 - 1 
5 5 3 + 2 - ] 
5 5 5 + 3 - . 
5 5 8D + 5 - . 

1 1 4 1 

L 2 4 1 

I 3 4 2 

L 5 4 3 

L 8 4 5 

I 3 I 2 

2 3 1 2 

3 3 2 2 

5 3 3 2 

8 3 5 2 

1 2 1 3 

2 2 1 3 

3 2 2 3 

5 2 3 3 

8 2 5 3 

1 

2 

3 

5 

8 

"P resen ted or iginal ly at the R e s e a r c h Conference of the Fibonacci 
Associa t ion , December 15, 1962. 
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a n d i t s n - t h o r d e r g e n e r a l i z a t i o n . F o r t he n ~ t h o r d e r t he p o w e r s in 
t he f i r s t c o l u m n w o u l d be n a n d the d e t e r m i n a n t w o u l d e x t e n d to 

u , , and u in the l a s t r o w , w h e r e u i s the n - t h F i b o n a c c i n u m -n+1 n n 

b e r : 

( 2 . 2 ) n+1 u + u , 
n n- i 

w i t h u; 0 0, u , 

T h e - d e t e r m i n a n t (2. 1), w h i c h w e w i l l ca l l . D_ (D in g e n e r a L ) , 

w i l l be e v a l u a t e d a s a n e x p a n s i o n of c o f a c t o r s of the f i r s t c o l u m n . In 
o r d e r to k e e p t r a c k of t e r m s in the e x p a n s i o n i t i s c o n v e n i e n t to d e -
f ine D for a n a r b i t r a r y s e q u e n c e a„« a. , ' a~, . . . . a ,' by a p -

n 0 1 2 n+1 J r 

p r o p r i a t e l y p l a c i n g the m e m b e r s of t h i s s e q u e n c e in t h e f i r s t c o l u m n 

of D : 

(2.3) D 5 {a} 

a 2 

a 3 

i 5 1 a, i 5 

1 a r 
,5 1 5 
u a } - 1 aQ 

L a^ a 4 ' 5 a l 

a r ~ ,J a, 3 a 

5 a,r 

i 4 i 

2 4 1 

4 3 2 
4 5 3 

845 

C l e a r l y (2. 1) i s D r {a} w i t h a n = a , = a~ = . . . = a , = - 1. 

F o r s i m p l i c i t y we w i l l c o n t e n t o u r s e l v e s w i t h t h e r e d u c t i o n of 

the fifth o r d e r d e t e r m i n a n t (2. 3) w h i l e m e n t i o n i n g the c o r r e s p o n d i n g 

r e s u l t s for t he g e n e r a l c a s e . The r e d u c t i o n r e s t s on t he g r o u n d w o r k 

of B r o t h e r U* Alfred,, 

T H E S O L U T I O N : . 

B a s i c to the r e d a c t i o n i s the d e t e r m i n a n t of the fo l lowing m a t r i x : 

3 il 

(2 .4) B r 

r 4 

A 
2 ~~ 

\ .J 

\ . 4 

j 8 ~ 

i 3 . i 
3 2 1 
3 

3 2 
3 5 3 
3 8 5 

I 2 ! 2 

2 2 1 2 

? ? 
3 2 

5 2 3 2 

8 2 5 2 

1 

2 

3 

5 

8 
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and in genera l B . where n is the o rde r of the m a t r i x and i de~ ° ni 
notes the f i r s t row en t r i e s as u. ,, and u.. 

i+l i 
An in te res t ing p r o p e r t y of the de te rminan t of B- . is that i ts 

D j J. 

magnitude is independent of the index, or s ta r t ing point, i. This fact 
is evident when we mult iply the two m a t r i c e s 

(2.5) B c . Q A - B c . . , 5S I 4 5$ l+l 

where 

(2 .6) Q 4 = 

1 

4 
6 

4 

1 

1 

3 
3 

1 

0 

1 

2 
1 

0 

0 

1 

1 
0 

0 

0 

1 

0 
0 

0 

0 

is the m a t r i x of (1.1) " t r ansposed" about i ts counter diagonal. Since 
the de te rminan t of Q . is ±1 we have 

1 5, i ' 5, i+l 

More p r e c i s e l y we can develop 

l , IQ, 
(2.7) Q 'n- 1 

- i , 

(- i) 
lQ2h 

n ( n - l ) / 2 
1, 

We can s t a r t , then, with B r „ and shift indices on each row to obtain 
b, (J 

(2.8) B 5 , 0 Q 4 = B 5 , i • 

Bu t 
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, 4 

B 5 , 0 

0 

i 3 i 

2 3 1 

0 

I 2 ! 2 

2 2 1 2 

^ 2 2 

3 ? 2 
5^ 3 5 - 1 

0 

1 • 1* 

A p r i l 

P a s s i n g to d e t e r m i n a n t s we h a v e 

* 5 f i « - - 4 ' . - 5 i 0 l = t - l ) 1 0 i l - 2 - 3 - 5 | B 4 > i = Q , B c 

w h e r e B^ ~ h a s b e e n e x p a n d e d by c o f a c t o r s of i t s f i r s t r o w a n d 1 D, 0 ' J 

c o m m o n r o w f a c t o r s h a v e b e e n r e m o v e d . H a v i n g e s t a b l i s h e d a r e -

c u r s i v e p r o c e s s for e v a l u a t i n g | B . | t he g e n e r a l f o r m u l a m a y b e 

shown: 

w h e r e 

B . = (-1) u , u 0 u „ . 1 m ' v n - 1 n - 2 n - 3 

s = n ( n - l ) ( 3 i + n - 2 ) / 6 . 

n - 2 

In a n o t a t i o n w h i c h w i l l be m o r e c o n v e n i e n t to u s e , we de f ine 

for n > 0 

T h e n 

S = 1, S , . = ( - l ) n S o n+1 N ' n 

F~(x) = 1 , F . . (x) = x . . F (x) fo r a n y s e q u e n c e / x ) 0V ' n+1 n+1 nv J ^ ^ n> 

W (x) = F (F(x)) 

( 2 . 9 ) Q . - l = S a n d IB .1 = S 1 - 1 F (S)W , (u) 
n ' n i ' n n n - 1 

L e t u s s e e w h a t p r o g r e s s c a n be m a d e w i t h | D n | . W r i t i n g (2 . 3) a s 

t h r e e s e p a r a t e d e t e r m i n a n t s on the f i r s t c o l u m n we h a v e , s y m b o l i c a l l y , 
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(2.10) D5{a) 

The f i r s t de te rminan t is the ha rd one. The second compare s nicely 
with |Bp. , I after a common factor is removed from each row. The 

i th i rd becomes [Br -. | when the f i r s t column is moved to the las t (a 
change in sign for an even o rde r determinant) and common fac tors a r e 
removed from each row. Hence 

D.H " a l F6<u> l B 5 , l l - a 0 F 5 < u > l B 5 , l 

and using (2. 9) 

(2.11) D . { a ) = -ax F5(S) F6(u) W4(u) 

-aQ F5(u) W5(u) 

Expansion of the f i r s t de te rminan t by cofactors of i ts f i rs t column 
gives r i s e to de te rminan t s of the form 
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(2. 12) (1 -2 -5 -8 ) ' (I8 1- 3-5)a. 

I 3 I 2 1 1 • I 2 I 3 

3 ? 2 3 
2 Z 1 2 • \L 1* 

3 2 5 5 3 5 3 2 3 3 

^3 8 2 5 8 • 5 2 5 3 

the minor being s imi l a r to | B . •, j except that the th i rd row is m i s s -
ing. Our t a sk is to evaluate these m i n o r s . Start ing with B . 
(2.4)we form Ihe product 

J 5 , I 

2. 13) 
B 5 , 1 Q4 

3 

n 3 
0 u , 

3 1 0 

1 3 1 

2 3 1 

U~l U - 2 

n 2 2 

0 u , 

I 2 0 2 

2 2 
1 1 
2 2 I 2 

U - l U -2 

0 • u" 

1 • 0" 

2 • r 

4~1 u _ 2 l 

-1 
4 

1" 

Here , as in (2.8) , the m a t r i x Q shifts indices on each rowand , over -
applying this shift, in t roduces the negative side of the Fibonacci s e -
quence by way of the re la t ion u , = u ,, - u . Expanding the d e t e r m i -
nant of (2. 13) by the thi rd row we have 

(2.14) | B 5 > 1 i | Q 4 I " 3 = ( - u V ^ u ^ H i ^ u 2 ) | B 4 ( _ 2 | 

where B~ _ is B „ „ ( i . e . , the fourth o rde r m a t r i x of (2.4) with 4 , - 2 4, -2 v 

u and u 7 in i ts f i r s t row) and where the s u p e r s c r i p t 3 denotes 
that the th i rd row is m i s s ing . 

(2.15) B 4 , - 2 

3 2 2 3 
x - l u - l u - 2 u - l u - 2 U~2 

3 n 2 . . 2 3 
0 0 u__, 0 u , u^1 

3 2 
1 . 1 0 

1* 1 

2 3 
1 - 0 0 J 

1 . I 2 l 3 
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We t r ans fo rm (2. 15) to the des i r ed m a t r i x of (.2. 12) by 

<2-l6> B l - 2 Q 3 = B l l 

P a s s i n g to de t e rminan t s , and combining (2.16) with. (2.14) we have 

1 4,i' luTj^TT^r^? |Q P ' 5, I ' * 

Using u = ~(- l ) u for the negative half of the Fibonacci sequence, ° - n n © • -i 
and evaluating the known determinants^ 

, 3 . 12 W ^ U ) 

I B ! , | = (-1) -S- S. F,(S) 4 , 1 ' l ; "5 3 4V ' F 2 ( u ) F ^ ( u ) 

The genera l ca se , using this technique, rric,y be formulated as 

W (u) 
(2. 17) \Bl J = ( - D n r Sn + 1 Sr Fn(S) w - ^ r — — 

r - 1 n+1 -r(u) 

Two simplif icat ions to (2. 17) a r e in o rder : 

a n d 

(-1) S ,, S = S ,, x n+1 r n + l - r 

W (u) F (u) 
- W ,{u) F~~T(u) F x l TuT " n - l v u ; F . (TITF™77™T5T r - l x n + l - r x r - 1 n + l - r 

It s e e m s appropr i a t e , since F (u) = u • u , u - . . . u . u , is .rr r n \ / n n - I n - 2 2 1 
to r ia l type product for the s 

specia l ized "binomial coefficient" 
a fac tor ia l type product for the sequence / u }* that we define the 
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m • F MV.W = '.M-'-t:]-' • 
r n - 4 x 

We t h e n h a v e 

| B r , | = F (S) W AM) S , , f n
1 ] . 

1 n, 1 ' nx ' n - l v ' n + l - r L^- IJ 

The r e m a i n i n g d e t e r m i n a n t of (2. 10) m a y now be e x p a n d e d , a n d the 

g e n e r a l c a s e h a s the f o r m 

n+1 F J_1 (u) F (u) 
S (-l)r

a J^LL^LL |Br
 1 J 

r = 2 r U r U r - 1 ' n ~ l ' l 

o r 
n+1 

F , (S) W (u) S (-I)1" S , , [~n M a . n - 1 n% ' - v ' n + l - r L r J r 
r = 2 

The f i r s t two d e t e r m i n a n t s (2. 11) r o u n d out t he s u m m a t i o n n i c e l y f o r 

k=l a n d 2, so t h a t w e c a n s t a t e 

n+1 
D {a} = F . (S) W (u) 2 ( - l ) r S , . T 1 a n v > n - P nx ' A n + l - r L r J r 

r=0 
o r , s u m m i n g b a c k w a r d s ^ 

( 2 . 1 8 ) D n { a } M - i r 1 F n _ l ( S ) W n (u) " z ( - l ) r S r f ^ 1 ] a n + 1 . r 
r=0 

At t h i s p o i n t we c o n s i d e r t he s u m m a t i o n 

n+1 
/:> 1QX 0 {a} = 2 ( - l ) r S [" l a , . 
(2 . 19) n v / _ 0 r L r J n + l - r 

a n d the a s s o c i a t e d p o l y n o m i a l 

( 2 . 2 0 ) * n ( x ) = nz ( . 1 } r s [ n + l j x a + l - r 
r=0 
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For the f i r s t few values of n we have 

*0(x) = x - l , 

2 0x(x) = x - x - 1 , 

*2(x) = x 3 - 2 x 2 - 2 x + l = (x+l) (x 2 -3x+l) , 

(2. 21) 4 3 2 2 ? 
03(x) = x -3x -6x +3x+l = (x +x-l)(x - 4 x - l ) , 

«4(x) = x 5 - 5 x 4 - 1 5 x 3 + 1 5 x 2 + 5 x - l = (x- 1 )(x2+3x+l ) (x2-7x+l) 

The factor iza t ions suggest the re la t ion 

(2.22) <6n(x) = ( - l ) n _ i (x2 - v n x + ( - l ) n ) 0 n . 2 ( - x ) 

where v is a Lucas number , and v = u ,, + u , . (2. 22) may n n n+1 n-1 
be proved by induction, and the complete factor izat ion of 0 comes 
from the identi ty 

v = a + b , where a - a - 1 = b - b - 1 = 0 n 

Thus (2. 22) becomes 

0n(x) = (- l)1 1"1 (x -a n ) (x -b n ) 0 n _ 2 ( " x ) = < a b ) n " 1 

• (x -a n ) (x -b n ) 0 n _ 2 (x/ab) , 

and we can cons t ruc t 

n 
0 (x) = n (x-a b ) . 

n r = 0 

The evaluation of D n {a} for aQ = 3L^ = . . . = - 1 becomes , from 

(2. 18). and (2. 19), 
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( 2 . 2 4 ) D (a) = (-1) F AS) W (u) 0 ( 1 ) . 
n l ' n-1 n n 

The eva luat ion of 0 (1) r e q u i r e s the i n v e s t i g a t i o n of four 
s e p a r a t e c a s e s , U s i n g ( 2 . 2 3 ) w i t h b = - l / a 

n ? 
( 2 . 2 5 ) 0 ( 1 ) = XI ( l - ( - l ) n " r a ) = 0 if and only if n = 4k 

n r = 0 

When n = 4k + 2 the q u a d r a t i c f a c t o r i z a t i o n (2. 22) b e c o m e s 

n / 2 ? 

0n(x) = (i+x) n (x + ( - i ) r v 2 r + i) 
r=l 

n / 2 
and 0 n ( l ) = 2 n ( v 2 r + 2 ( - l ) r ) . 

r=l 

2 r 
U s i n g the w e l l known r e l a t i o n v_ = v ? + 2 ( - l ) w e have 

n / 2 7 
(2. 26) 0 (1) = 2 II v" when n = 4k + 2 . 

n , r 
r= 1 

F o r n = 4k ± 1 we have , f r o m (2, 22) 

2 
* n (x ) = II ( x Z - ( - l ) r + 1 v 2 r + 1 x - 1) , when n = 4k - 1 

r=0 

n-1 

0 (x) = n ( x 2 + ( - l ) r + 1 v 2 r + 1 x - 1) , when n = 4k + 1 
r=0 

s o that n--1 
"~2~~ 2 k - 1 

< 2 ' 2 7 > ^ > = " ^^Zr- l^Zk-l n
n

 V 2 r + 1 ' 
r=0 r=0 

w h e n n = 4k - 1 
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n-1 
T " ,, 2k 

(2.28) 0 ( i , , n (-Dr v2 r + 1 = s2k+1 n v2r+1 
r=0 r=0 

when n = 4k 4- 1 . 

Combining (2. 25), (2* 26), (2. 27), (2. 28) with {2. 23), and using the 

sign convention 

S = (-i)1^11"1)/2
 a n d F (S) = -1 only when n = 4k + 2 , 

we have 

D 4 k = ° > 

k 2 k 

D4k+1 = ^ W4k+l<U> n
n

 V2r+1 , 
r=0 

k 2k-1 
D4k-1 = (~l) W 4k - l ( u ) n

n
 V2r+1 , 

r=0 
2k-1 

D4k+2 = 2 W4k»-2<u> n
n
 Vr+1 f r=0 

„ / v n n-1 n~2 2 _ n+l-r 
W W = u u u~ . . . u , u = II u 

n 1 2 3 n-1 n , r 
r=l 
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Continued next issue. 
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FIBONACCI GEOMETRY 
H. E. Huntley 

Below a r e some addit ional observat ions about Hun te r ' s [1] 
a r t i c l e . w + z - j L _ J L _ — E Y . - - - 5 

If the rec tangle ABCDhas a t r iangle / 
D P P ' inscr ibed within it so that A A P D = V| 
ABPP' = AP'DC then x(w+z) = wy = z(x+y) 
v^hence 

(i) 

(ii) 

(iii) 

y __ w+z _ z 
x w w-z 

2 2 . 2 2 .*.w -z = wz, l. e. , w - w z - z = 0 

F r o m (i) ~ = *P or y = ^?x 

+ V7 +4z 
>̂z 

Thus P , P ' divide thei r s ides in the Golden Section. 
Now, suppose ABCD is the Golden Rectangle , beloved of the 

Greek a r ch i t ec t s , i.e., AB/BC = <P, then ^ - ^ = <p. Hence, from (ii) 
i. e. x= <pz whence x= w. F r o m (i) y = w+z = (p z. 

r t < and x = w, y = w+z, t r i ang les PAD, P ' B P a r e 

, x(l + <p) 
a n d ( l l l )TfT+?] : : = * 
Since < A = <B 
congruent . It follows that PD = P P 1 , t h a t < A P D is the complement 
of < B P ? ' , whence < D P P ' is a r ight angle. 

The a r e a of the r ight t r iangle is 

J ( w 2 + y 2
) = J ( ^ 2 z 2 + / z 2 ) = i / z 2 ( ^ 2 + l ) = i z 2 ( ^ + l ) ( ^ + 2 ) = i z 2 ( 4 ^ + 3 ) 

we may conclude, the re fo re , that if the rec tangle is the Golden R e c -
tangle, that i s , if i ts adjacent s ides a r e in the Golden Ratio, <p, then 
the inscr ibed t r iangle is r ight -angled and i s o s c e l e s , the length of the 
equal s ides being z "w4^+3 . 

Edi to r ia l Note: P P 1 1(1 AC 
REFERENCES 

1. Jo A. H. Hunter , "Tr iangle Inscr ibed in a Rec tangle" 1(1963) Oc-
tober , pg. 66, 



and Let 
( i ) 

(2) 

n+2 

S = n 

n+1 
n . n r + r 1 2 

ON SUMMATION FORMULAS FOR FIBONACCI AND LUCAS NUMBERS 
DAVID Z E I T L I N , Honeywel l , 

Minneapolis, Minnesota 
n 

Recently, Siler [ l ] gave a closed form for X F , , , where 
' , , ak -b 

k=l 
a> b a r e posi t ive in tegers and F, a r e Fibonacci number s with F n = 0, F , = 1, and F . 0 = F (1 + F , n = 0, 1, . . . . In this note, u 1 n+2 n+1 n 
we will es tab l i sh a m o r e genera l summation formula which yields the 
r e s u l t of [ l ] as a specia l c a s e . General summat ion formulas for F ib -
onacci and Lucas number s will be obtained as specia l c a se s of our 
genera l r e su l t . 

Theorem. Let p, q, u * and u, be a r b i t r a r y r e a l n u m b e r s , 

p u n (n = 0, 1, . . . ) , 

(n= 0 , 1 , . . . ) , 
2 2 

where r , / r~ a r e roots of x - qx + p = 0 (i. e. , q - 4p •/ 0). We define 
(3) u _ n = (u Q S n - u n ) / p n (n= 1 , 2 . . . . . ) , 

(4) S - n = S n / p n (n= 1,2, . . . ) . 

Let a = 0, 1, . . .• d = 0, ±1, ±2, . . . , and let x be a r e a l number . Then 

71 „ , a 2. v k a n+2 (1-S x + p x ) 2 u , , , x = p x u . j x a r i n ak+d r an+d 
(5) k = ° 

- x u• , , -j + xu , j + (1-xS )u , . an+a+d a+d x a d 
Moreover , in the region of convergence , we have 

a 2 ' *° k 
(6) ( 1 - S a x + P x ) S u a k + d x = u d + ( u a + d - u d S a ) x . 

k=0 
Proof. If C , i = 1,2, a r e a r b i t r a r y cons tants , then u = C, r1 + C 0 r , — l J n 1 1 2 Z 
n = 0, 1, . . . , is the genera l solution of (1). Then 

v k = uak+d = ( C l r l ) ( r l ) k + < C 2 r 2 ) ( r 2 ) k ' k = 0, 1, . . . , 

sa t i s f ies the l inear difference equation 
105 



106 ON SUMMATION FORMULAS FOR FIBONACCI A p r i l 

< 7 > V k + 2 = S a V k + l " P ^ k ( * = 0 , 1 . . . . ) . 

a s i n c e (x - S o x + p ) = (x - ^ ( x - r ^ ) . Le t 

n k 
g(x ) = S V x . 

. k=0 -

k+2 M u l t i p l y i n g bo th s i d e s of (7) by x and t h e n s u m m i n g bo th s i d e s w i t h 

r e s p e c t to k3 we o b t a i n 
n T . 0 n , . , 0 n ,. 
v kfZ _ . k+1 a 2 v . k 

<»> k , Z 0 V k + 2 X = x & a = V k + l X - P X , * V k X ' 
• k = 0 k=0 

We no te t h a t 

,~, x k+2 , , . n+2 . n+1 
(9) ^ v k + 2 x = g W t v 6 + 2 x . + v n + 1 x - v l X - v Q , 

k= 0 

( 1 0 ) = V k + l X = ^ x ) + V n + l X - V0 * k=0 

If we s u b s t i t u t e (9) and (10) i n t o (8), u s e (7) to e l i m i n a t e v ?s a n d 

s o l v e for g(x), we o b t a i n o u r p r i n c i p a l r e s u l t , (5) . 
The g e n e r a t i n g func t i on for v, i s r e a d i l y o b t a i n e d f r o m (5) . 

L e t R > 0 a n d s u p p o s e t h a t s VL-X c o n v e r g e s for | x | < R . Ti ien, 
k=0 k 

fo r | x |<R^ v x —>0 a s n - > c & < . T h u s , fo r | x | < R , (5) y i e l d s (6) a s n ^ o o . 

R e m a r k s . L e t q = 1 and p = - 1 in (1). Then, fo r u n = 0 a n d u , = 1, we 

h a v e u ~ F , F = (-1) F , a n d S = L , t he w e l l - k n o w n L u c a s 
n n - n n n n 

s e q u e n c e , w h e r e L n = 2 and L, = 1. T h u s , (5) a n d (6), fo r u = F , 
b e c o m e , r e s p e c t i v e l y , 

( 1 - L x + ( - l ) a x 2 ) £ F . , , x k = ( - i ) a x n + 2 F , , x a i n ak+d an+d 
k=0 

n+1 - x F , , , + x F , , + ( 1 - x L ) F , ., an+a+d a+d a d 

(11) 

(12) ( 1 - L a x + ( - l ) a x 2 ) ~ F a k + d x k = F d + ( F a + d - F d L a ) x 
k=0 
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The main r e su l t of [1] is obtained from (11) for x = 1 and d = -b . 
For x = - 1 , (11) yields the in te res t ing resu l t 

(13) K-U 

+ < - 1 ) n F a n + a 4 d - F a + d + < L a + 1 ) F d " 

Fo r d = 0, (12) yields 

(14) ( l - L a x + ( - l ) a x 2 ) T F a k x k = F a x . , - ( a= 0 , 1 / . ...) . 
k=Q 

Again, let q = 1 and p = ~1 in (1). Then, for un = 2, and u = 1, 
we now have u = L , S = L , and L = (-1) L . Thus, with u • = L , n n n n -n n n n 
(5) and (6) become, respec t ive ly , 

( l - L a x + ( - l ) a x 2 ) z L a k + d x k = ( " D a x n + 2 L - ^ n + 1 L a n + a + d 
k=0 

4- x L _ + ( l - x L ) W a+d x a' d 
(15) 

(16) (1 -L x + ( - l ) a x 2 ) IT L , , , x k = L , + (L , , - L L, )x . x~ ' * a x ; i r* • ak+d d x a+d a d' 
k=0 

REFERENCES 
1. Ken Si ler , Fibonacci summat ions , Fibonacci Quar te r ly , Vol. 1, 
No. 3, October 1963, pp. .67-69.. 
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LETTER TO THE EDITOR 

The Editor, 
Fibonacci Quarterly. 

Dear Dr0 Hoggatt, 

I refer to the article, "Dying Rabbit Problem Revived" in the December 
1963 issue. The solution given there is patently wrong — if only be-
cause the alleged number of rabbits tends to minus infinity as n tend 
to infinity. It may easily be shown that the correct answer, X , is 
given by the recurrence relation 

X n o
 = X ., ~ T X _ . - X 3 n 0 n+13 n+12 ntl 1 n 

together with the initial conditions 

X = F , . for n = 0, 1, . . . , 11; X, 0 = 232 . n n+1 12 
2 13 12 

In view of the fact that the two equations z - z - 1 = 0 and z - z 
- z•*••*• + 1 = 0 have no common root, it is clear that the answer can 
never be expressed simply as a-linear expression in Fibonacci and 
Lucas numbers whose coefficients are merely polynomials inn. For, 
any such expression, Y, where the highest power of n which occurs is 
nm, satisfies 

(E2 - E - l ) m + 1 Y = 0 . 

In particular the expression found by Bro. Alfred satisfies 

(E2 - E - I)2 Y = 0 . 

The error made by Bro. Alfred stems from his table on p. 54 where 
the number of dying rabbits in the (n+13)th month is seen to be F for 
n = 1, 2, . . . 11 and it is then assumed without proof that this is true for 
other values of n. In fact the very next but one value on n, namely 
n = 13 shows that this is false. In fact of course the number of dying 
rabbits in the (n+13)th month equals the number of bred rabbits in the 
(n+l)th month, and this will be less than F for all n exceeding 12. 

Yours sincerely, (John H. E. Cohn) 
BEDFORD COLLEGE 

(University of London) 



SQUARE FIBONACCI NUMBERS, ETC. 
J O H N H . E . C O H N 

Bedford Col lege, Universi ty of London, London, N.W.I . 

INTRODUCTION 
An old conjecture about Fibonacci number s is that 0, 1 and 144 

a r e the only perfec t s q u a r e s . Recently the re appeared a r epo r t that 
computat ion had revea led that among the f i r s t mil l ion n u m b e r s in the 
sequence the re a r e no fur ther squa res [ 1 ] . This is not su rp r i s ing , 
a s I have managed to prove the t ru th of the conjecture , and this shor t 
note is wr i t ten by invitation of the edi tors to r epor t my proof. The 
or iginal proof will appear shor t ly in [ Z ] and the r e a d e r is r e f e r r e d 
the re for de ta i l s . However, the proof given there is fair ly long, and 
although the same method gives s imi la r r e su l t s for the Lucas num-
b e r s , I have recen t ly d iscovered a r a the r nea te r method, which s t a r t s 
with the Lucas n u m b e r s , and it is of this method that an account ap-
p e a r s below. It is hoped that the full proof together with i ts conse -
quences for Diophantine equations will appear la ter this yea r . I might 
add that the same method seems to work for m o r e genera l sequences 

2 4 
of i n t ege r s , thus enabling equations like y = Dx + 1 to be com-
pletely solved at least for ce r t a in values of D. Of course the F ib -
onacci case is s imply D = 5. 

PRELIMINARIES 
In the f i r s t p lace, in accordance with the p rac t i ce of the F ib -

onacci Quar te r ly , I h e r e use the symbols F and L to denote the 
n - th . Fibonacci and Lucas number respec t ive ly ; in o thsr pape r s I 
use the m o r e widely accepted, if l e ss logical, notation u and v 
[ 3 ] . Throughout the following n, m, k will denote in t ege r s , not 
n e c e s s a r i l y posi t ive, and r will denote a non-negat ive in teger . Also, 
whe reve r it o c c u r s , k will denote an even in teger , not divisible by 3. 
We shall then r equ i r e the following formulae , al l of which a r e 
e l emen ta ry 

(1) 2F , = F L + F L 
x ' m+n m—n -n~-m 

109 
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(2) 2 L , = 5 F F + L L 
m + n m n m n 

(3) L 0 ' = L 2 + ( - I ) ™ " 1 2 
v 2m m 

(4) ( F - , L . ) = 2 

(5) ( F , L ) = 1 if 3>n 

(6) 2 L if a n d only if 3 m 
1 m . J ' 

(7) 3 L if a n d on ly if m = 2 ( m o d 4) 
' m J \ t 

(8) F _ n = ( ~ - D n - 1 F n 

(9) L = ( - l ) n L 
v ' - n v n 

(10) L k = 3 . ( m o d 4 ) if 2 ' |k , 3 ^ 

(11) L , 01 = - L (mod L. ) V. ' m + 2 k " " . . m . k 

<12> F a + 2 k = - F m ^ ° d Lk> 

(13) L
m + 1 2 ^ L

m ^ m ° d 8 ) 

T H E MAIN T H E O R E M S 
T h e o r e m 1. 

If L = x t h e n n = 1 o r 3 . n * 
P r o o f . 

If n i s e v e n , (3) g i v e s 

L = y 2 ± 2 / x 2 . 
n 7 

If 115 1 ( m o d 4) , t h e n L, =• 1, w h e r e a s if n & 1 w e c a n w r i t e n = 1 + 
r 2* 3 # k w h e r e k h a s the r e q u i r e d p r o p e r t i e s , a n d t h e n o b t a i n by (11) 

L =. - Li = - 1 (mod L, ) 

2 a n d so L n ^ x ^ s i n c e - l i s a n o n - r e s i d u e of L^. by (10) . F i n a l l y , 
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if 113 3 (mod 4) then n = 3 gives L, = 2 , whereas if n / 3, we 
wri te as before n = 3 + 2*3 -k and obtain 

L =. - L = - 4 (mod L ) n o j-^ 

and again L / x . & n 
This concludes the proof of Theorem 3. 

Theorem 2. 
2 If L = 2x , then n = 0 or ±6. n 

Proof. 
If n is odd and L is even, then by (6) n = ± 3 (mod 12) and 

so, using (13) and (9),. 

L = 4 (mod 8) n 

and so L ^ 2x . n 
Secondly, if n = 0 (mod 4), then n = 0 gives L = 2, whereas 

r if n ^ O , n = 2 * 3 »k and so 

2L = - 2L = ~ 4 (mod L, ) n 0 k' 

2 2 
whence 2L / y •, i . e . L ^ 2x 

n n 
2 Thirdly, if n = 6 (mod 8) then n = 6 gives L, -• 2 • 3 whereas 

if n / 6 , n = 6 4- 2*3 ' k where now 41 k, 3/fk and so 

2L = - 2Lx = - 36 (mod L, ) n o k 

and again, - 36 is a non- res idue of L, using (7) and (10). Thus 
as before L ^ / 2 x " . n 

Finally, if n =. 2 (mod 8), then by (9) L = L where now 
-n E 6 (mod 8) and so the only admiss ib le value is -n = 6, i. e, 11= -6 . 

This concludes the proof of Theorem 2, 
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Theorem 3. 
If F = x2, then n = 0,\±1, 2 or 12. 

Proof. 
If n = 1 (mod 4), then n. = 1 gives F, = 1, whereas if n / 1, 

r n = 1 + 2e 3 • k and so 

F = - F, = - 1 (mod L, ) n 1 k' 

whence F /• x . If n = 3 (mod 4), then by (8) F = F and -n = 1 
n " J -n n 

(mod 4) and as before we get only n = - 1 . If n is even, then by (1) 
2 

F = F L, and so, using (4) and (5) we obtain, if F =• x 
n i/2n i/2n 2 2 n 

either 3 In, F , = 2y , L = 2z . By Theorem 2, the lat-
' y2n y i/2n y 

ter is possible only for i/2n ='0, 6 or -6. The first two values also 
satisfy the former, while the last must be rejected since it does not. 
or 3iri, F , = y , L = z . By Theorem 1, the latter 

' Vi* V2n 

is possible only for i/2n = 1 or 3, and again the second value must 
be rejected. 

This concludes the proof of Theorem 3. 

Theorem 4. 

If F = 2xZ, then n = 0, ±3 or 6. n 

If n = 3 (mod 4), then n = 3 gives F~ = 2, whereas if n ^ 3, 
Proof. 

n = 3 + 2" 3 * k and so 

2F = - 2F a = -4 (mod L, ) n 3 k 

and so F 4 2x . If n= 1 (mod 4) then as before F = F and we n -n n 
get only n = - 3 . If n is even, then since F = F , L we B y

 z n i/2n y2n 
must have if F . = 2x 

/ 2 n 2 2 
either F = y , L, = 2z ; then by Theorems 2 and 3 we 

i/2n i/2n 
see that the only value which satisfies both of these is y2n - 0 

2 2 
or F = 2y , L = z ; then by Theorem 1, the second 

i/2n J i/2n 3 ' 
of these is satisfied only for' i/2n = 1 or 3. But the former of these 

does not satisfy the first equation. 
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This concludes the proof of the theo rem. 

REFERENCES 
1. M. Wunderlich, On the non-exis tence of Fibonacci Squares , 

Maths, of Computation, 1_7 (1963) p. 455. 
2. J. H. E, Cohn, On Square Fibonacci Numbers , P r o c . Lond. 

Maths . Soc. 3̂ 9 (1964) to appear . 
3. G. H. Hardy and E. M. Wright, Introduction to Theory of Num-

b e r s , 3rd. Edition, O. U. P . 1954, p. 148 et seq. 
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EDITORIAL NOTE 
Bro the r U. Alfred cheerfully acknowledges the p r io r i t y of the 

e s sen t i a l method, used in "Lucas S q u a r e s " in the las t i s sue of the 
Fibonacci Quar t e r ly Journal , r e s t solely with J. H. E. Cohn. This 
was wri t ten at the reques t of the Editor and the unintentional omiss ion 
of due c red i t r e s t solely with the Edi tor . 
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EXPLORING THE FIBONACCI REPRESENTATION OF INTEGERS 
Proposed by Bro ther U. Alfred on page 72, Dec. 1963, 

!! The Fibonac ci Quar te r ly! f 

The completion of the Theorem stated in the a r t i c l e i s : 
The Maximum number of different Fibonacci ' numbers requ i red to 
r e p r e s e n t an integer N for which [iMj * = P^ is given by -̂  L 

This is a co ro l l a ry of the following theorem. 
For F < N £. F , , the number N can be r e p r e s e n t e d as a' sum of n n+1 
Fibonacci minibers s the 1 a r g e s t which is F and the sma l l e s t g r e a t e r 
than or equal to F 9 . Moreover , the sum never contains two consecu-
tive Fibonacci n u m b e r s , 'We therefore have at mos t the a l te rna t ing 

as c la imed. ¥+']=[!]• t e r m s of indices from 2 to n which gives us 
The proof of this theorem depends upon a Lemma which is a wel l 

known Fibonacci Identity that F~ + F , + F , + . , . + F~ = F~ , 1 - 1 
J Z 4 6 Zn 2n+l and that P 0 + F r + F„ + . . . + 'B\ , = F n - 1. The proof of the f i r s t 3 D { In-1 Zn 

p a r t of this is given by induction and the second par t is s imi l a r ly proved. 
Proof, 
For n = 1, we have P 7 = ¥\ - 1 

n = 2, we have F ? + F . = F r - 1 which c l ea r ly shows the Lemma 
holds for 11 = 1, 2ff, 

Now a s sume that it holds for a i l n <. K? where K is a fixed but un-
specified posi t ive in teger g r e a t e r than or equal to 3. 
i . e . P.̂  + F , + . . . + F \ _ = F » T , . . - 1, therefore by addition to both ' 

2 4 Z K 2K+1 sides we have that F n + F" + . . . + F-,,- + F,,,T7.,.., = F~ _ _,v + FO T f. .^ - T" 2 4 2K ZK+2 2K+1 ZK+Z 
= F - 1 

M 2K+3 
which impl ies the Lemma holds for al l posi t ive n, 

Using this Lemm-* which we shall c.?U Lemma 1, p a H A ion the 
f i r s t ca r t whica was last proved, arid pa r t B for the second pa r t with 
the odd \ndices; we c-»,n now prove the genera l theorem that for 
F < N . I F ., , we car. r ep re sen t N es a s\im o£ at l eas t a l te rna t ing 

rj n M" ' . 
Fibonacci nurabe L'L- where the l a rges t is F for N < F , - and which 

° a n+I t r iv ia i lv is iu;'t F . , iC^eLf when IN - F . . n+J nid 
Proof. For N - i , we have 1 - f\« aiulior N = 2» we have 2 = F o s Now ' 2' 3 
as sume the theorem t rue for al l M <. k» where- k i H a fixed but unspecified 
positive integer and n is such that F < k 5. P . , , n > 3* Now if 
r ° n n+1 — 

Continued on Page 134 



PARTITION ^NUMLI'AM'^ l\ virA^$ \Jf AMPLER PART?TJOMS 
D'^Uk i i ILLL CR 

GeoiMG in i .<* il , r u l t v " , #,< , n t a / Gc. 

Netto [1] illustrate 3 a ,,i(~n> , 

n having exactly p monilois, .»!' 

Netto's procedure can be rein ** * f 

of simpler partitions wnlzh ? ^ h' 

members) but otherwise uru _ > -̂

limited partitions per sc an ' a * 

enumeration proceoura ore din en >J 

algorithmic procedure 13 Mv-, d >̂» 

partitions. 

1 <"c 5- ?nur aerating ai* partitions of 

«oi»- . t i c It i-? shown he re m that 

. n cJgoritliaur form through ase 

• * .4 IJJ range (size and number of 
!'-d5 Properties of these range-

Mu? of adapting them to Netto's 
wI An "Uviouc application of the 

;ofn j'ltd tlon of both lyp^s of 

2. LIMITED-RAi ICI", JN 
Chr y s ia, 1! s [ ?, ] part it ic " \ e 111 

th r oughout. To u &, P t -£ J1. -- "> -, , 

e n u m e r a t i o n o 1 p a r t i ! io "> ^ o T ̂ . u - c 

elusive, no partition ba " £ je. t 

each member being not >^-i . 'an 

the set rather ib^ii the CPUUJ >du^ 

immediate inte r e st ir .'hI s pa • >, ^ a* 

to the enumeratic»n rotation -x •;» 

=̂ qi , 4q?) denotes the 5 ̂ t oi ,< -i 

enumeration counterpar c, 

The existence cu^/'jLioor t« ^ 

q p , 4 n ^ simultaneous I -y. M c ; * 

are optimum extreme /? l , e c ' £ 

Brackets [ J except W J ^ I P orr c 

customary manner "VVIJILX̂  ^ 1 in1 1 

less than or equal ro in*4 1 * rt )jt. 

Heaslet [3] . 

* \,t TiJiC I~T?D PAR I IT JONS 

l^wf,/, suit? blymodifled. is ured 
r O I spe» mes tJtie 

-tiV' i'lL-^ers from 11 tc n v in-

i»„ uoi ir^ore than M. members, 

, 1 .H m ire than q?. rio^' = vei, 

^ :f i ••nge-'imited partition^ is of 

c fo .^rcifyi sff a V is appended 

:̂ -> " 3 - / , P ^ i ^ n ^ <r.n^ | ^ p l f 4 p J 
ior. " ' u v ^ g rbe properties of the 

V=pr f [ 2 p 2^ n r 
j "V "ixed ?, , n0, q,, q^s there 

am iliese a re 

u< r rcfeicncf s aie r̂ c-d in the 

IJ i'id„( a ie itie 0? t-ai« ^ i n t e g e r 
t* <-} ̂  eted. See U^p^nsky and 
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(1) P l o p t _ = " [-(n/q^l . 

W P2 opt. = [ Vql ] • 

I f p l - p l opt.* p l C a n b e c h a n 8 e d t o Pi 0 p t . ' b u t i f P i > P ! o p t . ' 
p, cannot be changed. However, if p7 —P? f > P? can be changed 

to p? , but if p p7 , p„ cannot be changed. 
Lt Op t . Ct tit Op t . & 

In generating the partitions, the p, -member partitions are 

found first, then the (p, +l)-member partitions, etc. , until the p ? -

member partitions are found. The procedure used herein for the par-

titions of a typical p-member set is as follows: 

A trial "first" partition is formed from p q, 's . If the sum of 

the p membersis equal to or greater than n but less than or equal 

to n?, the partition initiates the set. If such is not so, the right-

hand member is augmented so that the sum of the p-members in n, . 

To form new partitions, the right-hand member is successively in-

creased by one until either it equals q? or the sum of the p members 

equals n? (or both). The next p-member trial partition is found by 

adding one to the member second from the right and replacing all 

members to the rightwith the new value of the changed member. The 

desired reinitiating partition is found from the sum of the p mem-

bers, as before. The right-hand member is successively increased 

by one to form new partitions. When the possibilities of the particular 

second member from the right are exhausted, one is added to the 

third member from the right and the process repeated all over again. 

Eventually, all p-mernber partitions will be accounted for. An ex-

ample for PV(>8, <10 |>2, <5 |>2, <7) follows: 

2.6 2 , 2 , 4 2 , 2 , 2 , 2 2 , 2 , 2 , 2 , 2 
2.7 2 , 2 , 5 2 , 2 , 2 , 3 
3,5 2 , 2 , 6 2 , 2 , 2 , 4 
3, 6 2, 3, 3 2, 2, 3, 3 
3,7 2 , 3 , 4 
4 . 4 2 , 3 , 5 
4 .5 2 , 4 , 4 
4, 6 3, 3, 3 
5 ,5 3 , 3 , 4 
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3. APPLICATION OF NETTO'S METHOD 

Netto [ 1] considers the enumeration P(n|p|<q) of the parti-

tions of n having exactly p members with no member greater than 

q. Netto's methodis limited to q>(n+l-p) with the existence condi-

tions being p<n and qp>n, simultaneously. In the terminology of 

this paper, 

(3) P(n|p|<q) - S [ i (n-p+2-3t r4t 2 - . . . -pt 2 ) ] , 

where ta = 0,1, 

typical term is 

~ j*y . Inspection of (3) reveals that the 

(4) n-p+2-w 

in which w is always zero for ta - 0, always 3 for t = 1, and al-

ways greater than 3 for all other t ' s. It can be observed that ex-

cept for the zero value of w, each w in the enumeration P(n|p|<q) 

is the sum of the members of each partition included in the set 

(5) PV(>3,<n-p |>l ,<[^E] |>3, <p) 

Thus, except for p = 1, 

(6) P(n|p|<q) = n-p+2 
2 + 2 

i 

n-p+2-w. 

It should be noted that (5) does not exist for p = 2, and/or (n-p)<3. 

There are no w.'s under these conditions, and the summation term 
l 

of (6) is accordingly zero. The special case of p = 1 is 

(7) P(n 11 I <q) = 1 
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Vs w a s s t a t ed f a i b ^ , (n r u ^ l u ^ risscxihtd h e r e i n a r e p a r -
t i c u l a x l y a d a p t a o i e tu > g i f a i . ' rnp . r j ' a , s . To ilias end? t he a u t h o r 
cars s u p p l y -d i i m i t e a u r a b c r *». " I ^ O S U n g u a g e p r o g r a m s a n d t e s t 
exempla r s for e n u m e i d L n ^ h i h l JS with the B u r r o u g h s ZZO d i g i t a l 
c o m p u t e r * 

ft1] P E R B" 11C D 3 
1. E„ N e t i o , ^£tLfJ£UC h - J P I C J T?J>IJL=I l<' ~K5 L e i p s i z , 1 9 0 1 , p p . 127 , 

2.. G, C h r y s t a l , T ^ U J O O ! ^ 2LJ±*JeL!S" V"°'* 2 j ( R e p r i n t ) C h e l s e a 
P u b l i s h i n g C o . , Mo^ v i K, i ( ;b^ 

J . V. U s p e n s k y -oi 1 M A . h^ r s i 1 * - I ler^ntaxy N u m b e r T h e o r y , 

M c G r a w - H i l l B c o k G~, , >-* x 1% 1939, p p . 9 4 - 9 9 . 

3 

xxxxxxxxxxxxxxxxxxx* 

i ^ M I ^ J I P L V : „11P-JLI^LLM gJ.A._TJ-Q._3 
P a g e 44; On l ine 4 r e s d "0 ^ k ;„ ^ I ! £<»r "0 £ k < 2 r " 

P a g e 4-9; On l i ne 8 :>:—id \i\ir V V J o r I r»F 1 F 

P a g e 80: In B - 7 l ine 2 x = 1/4 and s Tri2 / 4 i L2 ? 
i ^ O ^ i ^ ~ 25 ' 

£ I I 5 ^ ^ i i ^ i l : : M i ^ r L f PV JLf ' :_./OPPME1, NO. 4 

R e f e r e n c e 4 H i e i i r i a u t h o r :,- i^v^L^cLVJJN , 

In H - 2 5 (i, j = 1, 2, 3 , 4 ) 



A NOTE ON WARING7S FORMULA FOR SUMS OF LIKE POWERS OF ROOTS 

S.L. BASIN 
Sylvania Hect ron ic Systems, Mountain View, Cal i fornia 

k k k Sums of powers S, = x " + x'~ + . . . Jr x'u may be exp re s sed in r k I 2 n J l 

t e r m s of e l emen ta ry s y m m e t r i c functions or in t e r m s of the coefficients 
of: 

f(x) = (x-x, )(x--x9) . . . (x-x ) = x'"+p,x ' " + . . „ +p^ 
A, i^i J.JL X XX 

by Newton1 s formulas , usual ly introduced in. a course in the theory of 
equat ions, for example , J . V. Uspensky l l ] . 

The re la t ionship between Waring\s formula for sums of like 
powers of the roots of a quadra t ic and Lucas number s is quite obvious 
although pe rhaps a little too specia l ized for L, E. Dickson. \Z] to have 
pointed this out in his text, F i r s t Course in the Theory of Equat ions. 

In o rde r to obtain an explicit express ion for S, where k = 1, 
k. 

2, 3. . . , f i rs t consider the quadra t ic 

2 
(1) x " T px T q = 0 . 

If we denote the roots by a and & then (1) may be rewr i t t en as 

(2) x" + px + q = (x~a)(x--/3) , 

After making the t r ans fo rmat ion x = 1/y and multiplying by y "' we 
obtain^ 

(3) I + py + qy" = (1-ay){l-/3y) . 

Differentiating both sides of (3) vvHii i e spec t to y and dividing 
b o t h m e m b e r s of the differentiated equation by the cor responding m e m -
be r s of (3) we a r r i v e at 

119 
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E q u a t i o n s , 

k+1 
a _,_ 2 , , k k - 1 , <* k 

(5) - = a + o : y + . . . + a y + - —y 
N ' 1 -ay J ^ 1-ay 7 

a n d 

k+1 

a r e bo th o b t a i n e d f r o m the g e o m e t r i c s e r i e s 

k - 1 
(7) T^— = 2 r J + 1 
v ' 1- r . n 1 -r 

J = 0 

for e x a m p l e , l e t r = a y a n d m u l t i p l y by a . A d d i t i o n of (5) a n d (6) 

r e s u l t s in., 

k+1 k+1 
(8) _ « _ + T 4 _ = S 1 + S ? y + . . . +Svyk-1

+«—i^M+^Iil^l) v ' 1 -ay 1-py 1 2 ' k7 (1 ~ay) ( l - /?y) 

k k w h e r e S, = a + /? 

In o r d e r to e x p a n d the l e f t - h a n d m e m b e r of (4) u s i n g (7), l e t r = - p y 

~qy , t h e n 

k _ 1 k k 

(9) l—z = & ( -DWqy2) j + ( - p - q y ) I 
1+py+qy 1 + P y - q y 

E m p l o y i n g the b i n o m i a l t h e o r e m we m a y w r i t e 

(Py+qy2)j = 2 ( - f ^ (py)g(qy2)h 
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where the s u m m a t i o n i s taken o v e r a l l two-pa r t par t i t ions of j , i . e . , 
for a l l g>0 and h>0 such that g + h = j . There fore , 

-P"2 c iy , ^ , v / l xg+h+l (g+h).r g h g+2h , 
1+py-qy *• 

( 1 0 ) k k 
(-p-2qy)(-p-qy) y b ^ 

1+py+qy 

Now the left-hand m e m b e r s of (8) and (10) a r e equal as shown 
by equation (4); therefore we m a y equate coefficients of like powers of 

k-1 y. Specifically, equating coefficients of y we a r r i v e at 

(11) 

w h e r e w e have rep laced i for g + 1 and j for h in (10). The sum-
mat ions in (11) now extend over al l i>0 and j >0 such that i + 2j = k, 
Combining both summat ions in (11) we have, 

(12) s k = k Z ( - l ) i + J ( i ^ P V 

summed over all i>0 , j^O such that i + 2j = k. Clear ly , for p - q 
-1 we have S, = L, , the kth Lucas number ; and (12) becomes 

L - k T ( i + J " 1 ) i 
(13) k ^ ~ i T j T -

i>0 
j>0 

i+2j=k 
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Equation .(12) of Waring1 s•• formula, published in 1762, which can 
be extended to. include the sum of kth powers of the roots of n t h 
degree polynomials . 

The main point to observe is not n e c e s s a r i l y the m e a g e r r e su l t 
given by (13) but the fact that impl ic i t in the development of Waring!s 
formula lies the generat ing function (4) for the Lucas n u m b e r s . 

REFERENCES 
1. J. V. Uspensky, Theory of Equat ions, McGraw-Hil l , 1948, 
2, L. E. Dickson, Fir_s_t Course in the Theory of Equat ions, John 

Wiley, 1922, 

xxxxxxxxxxxxxxxxxxxx 

OMISSIONS • 

H-3 and H-8 were a l so solved by John L. Brown, J r . , The Pennsy l -
vania State Univers i ty , State College, Penn. 

The solution to H-16 given in the las t i s sue was compounded from 
solutions given by L. Car l i tz and John L9 Brown, J r . The var i typ i s t 
omitted the c red i t l ine, 

H-13 was a lso solved by John H. Halton, Univers i ty of Colorado at 
Boulder , Colorado. 

H-15 was a l so solved by L. Car l i tz , Duke Univers i ty , Durham, N. C. 



ADVANCED PROBLEMS AND SOLUTIONS 
Edited by VERNER E. HOGGATT, Jr. 

San Jose State Col lege, San Jose, Cal i fornia 

Send all communications concerning Advanced Problems and 

Solutions to Verner Ea Hoggatt, Jr. , Mathematics Department, San 

Jose State College^ San Jose, California. This department especially 

welcomes problems believed to be new or extending old results. Pro-

posers should submit solutions or other information that will assist 

the editor., To facilitate their consideration, solutions should be sub-

mitted on separate signed .sheets within two months after publication 

of the problems. 

H - 3 4 Proposed by Paul F. Byrd, San Jose State College, San Jose, California 

Der i ve the ser ies expansions 

9 sj0 4_1 

J „ (« ) = I, ( ° ) + s (-1) I 
m = 1 

m+k m-k1 2m 

(k = 0, I j 2, 3, , . . ) fortheBessel functions J^, of all even orders, 

where L are Lucas numbers and 1 are modified Bessel functions. n n 
H - 3 5 Proposed by Walter W. Horner, Pittsburgh, Pa. 

Select any nine consecutive terms of the Fibonacci, sequence and 

form the magic squa.re 

b 

U8U1U6 + U3U5U7 + u4 u9 a2 = 

Generalize. 
U8U3U4 + U1U5U9 + U6U7U2 

123 
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H - 3 6 Proposed by J.D.E. Konhauser, State College, Pa. 

Consider a rec tangle R. F r o m the upper r ight co rne r of R r e -
move a rec tangle S ( s imi la r to R and with s ides pa ra l l e l to the s ides 
of R. Determine the l inear ra t io K = L 0 / L if the centroid of the 
remain ing L shaped region is where the lower left co rne r of the r e -
moved rec tangle was . 
H - 3 7 Proposed by H.W. Gould, West Virginia University, Morganfown, V/est. Va. 

Find a t r iangle with s ides n + l , n , n-1 having in tegra l a r e a . The 
f i r s t two examples appear to be 3, 4, 5 with a r e a 6; and 13, 14, 15 with 
a r e a 84. 
H - 3 8 Proposed by R.G. Buschman, Suny, Buffalo, N.Y. 

(See Fibonacci Numbers , Chebyshev Polynomials , Genera l i za -
tions and Difference Equations Vol. 1, No. 4, Dec. 1963, pp. 1-7.) 

Show 

(u , + ( -b ) r u ) /u = X v n+r s n - r ' n r 

H - 3 9 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California 

Solve the difference equation in closed form 

C I O = C , , + C + F ~ j n+Z n+1 n n+Z 

where C, = 1, C = Z, and F is the nth Fibonacci number . Give 1 Z n 
two sepa ra te cha rac t e r i za t ions of these n u m b e r s . 
H - 4 0 Proposed by Walter Blumberg, New Hyde Park, L.I., N.Y. 

Let U, V, A and B be in t ege r s , subject to the following con-
ditions 

(i) U > 1 , (ii) (U, 3) = 1; (iii) (A, V ) = l ; 

(iv) V= V^-1) / 5 • 

Show A U+BV is not a squa re . 
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SOLUTIONS 

EXPANSIONS OF BESSEL FUNCTIONS IN TERMS OF 
FIBONACCI NUMBERS 

P - Z Proposed by P.F. Byrd, San Jose State College, San Jose, California. 

Derive the s e r i e s expansions 

j 0 ( « ) = t (-Dk £( . ) - ij+1(«) F2k+1 , 
k=0 

where J and I a r e Bes se l functions, with F 9 1 , being Fibonacci 
n u m b e r s . 
Solution by the proposer, P.F. Byrd, San Jose State College, San Jose, California 

Note: This is a c o r r e c t e d ve r s ion . Initially this read J ( x ) = . . . 
which does not make sense . 

It is jus t as easy to der ive the m o r e genera l s e r i e s expansions 
of J ? (a ) , (p=0, 1 , 2 , . . . ) , for Besse l functions of all even o r d e r s , Zp 
and then to obtain the des i r ed re su l t as a specia l case upon sett ing 
p = 0. We make pr inc ipa l use of formulas (6. 1) and (6. 5) p r e sen ted 
in [ l ] . Since J ? (a) is an even function, we f i r s t seek a polynomial 
expansion of the form 

O O 

J 2 p ( a ) =
k ^ 0

 ? 2 k » P M ^ k + l ( x ) ' 

where from equation (6.5) and [1] the coefficients a r e given by 

,2k 7r 

"'2p 
0 

with _. ,, being the Fibonacci polynomials defined in [1 ] , Now it is Zk+1 
known (e. g. , see [2]) that 

7T 

J J \ (-2i« cosv) cos2mv dv = 7T J , (~i«) J (- i«) > 

2p p+m p - m 
0 

and a l so that J (iz) = i n I (-z) = (- i ) n l (z). Hence we eas i ly obtain 

52k,P
= ( - 1 ) P + k [ W t t ) I k - P

( a ) - W i ( t t ) W i ( 0 ) ] • 

('\£ 

52k, p ^ = ~ J J 2 (-2i<*Cosv) [cos2kv - cos(2k+2)v] dv , 
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Finally, taking x = 1/2, and thus with <p (1/2) = F . _, we have 
the fo rmal expansions 

J ( « ) = E ( - D k + P r j («)I ( * ) - I («)T ( a l l F • 
2P k=0 ' k + P k~P k+p+l l Mk-p+lv JJ ±2k+L 

which in pa r t i cu l a r yield the solution to the proposed problem upon 
sett ing p = 0* 

REFERENCES 
1. , P. .F. Byrd, Expansion of Analytic Functions in Polynomials 

Associa ted -with Fibonacci Numbers, The Fibonacci Quarterly,, 
Vol. 1, No,. 1,. pp. 16-29. 

2. G. N. Watson, A T r e a t i s e on the Theory of Bes se l Functions, 
Cambridge, 2nd Edition, 1944, pa 151. 

Note; Cor rec ted statements, to P - l . ' 
Verify that the polynomials P 1 (x) sat isfy the differential 

equation 
•' ( l +x 2 , ) y " +' 3xyf - k(k+2)y = 0 , 

Reade r s a r e reques ted t.o submit solutions to the problems in the above 
mentioned r e fe rence [l]„ 

CORRECTIONS IN SAME PAPER 
Page 19 Replace 2] by [ 2 ] in line 11. 

3 Page 20 In line 5 read (3) as re la t ion r e f e r r i ng to footnote 3 In view 
of . . . . ' 
Page 21 Read ^ . + 1 # x as y .(x) in (4. 7) 
Page 23 In (5. 6) place absolute value ba r s around the quantity a p -
proaching the l imit z e r o . 

SYMBOLIC RELATIONS 

H - 1 8 . Proposed by R..G. Buschman, Oregon State University, Corvaiiis, Oregon 

"Symbolic relat ions1 1 a r e sometimes used to e x p r e s s identities. 
For example, if F • and L denote, respectively, Fibonacci and n • n .r J 
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Lucas numbers,- then 

< l : + . L ) a = L ^ . ( l + F ) n = F 2 n 

are known identities* where = denotes that the exponents on the sym-

bols are to be lowered to subscripts after the expansion is made, 

(a) Prove (L + F)n = (2F)n. 

(b) Evaluate (L + L) . 

(c) Evaluate (F + F) . . 

(d) How can this be suitably generalized? 

Solution by the proposer (now at Sunyf Buffalo, N.Y.) 

Consider the generating functions: 

u/2 2 e ' H sinh{u./5~/2) = /s" £ F u /n! , 
n^O n • 

u / 2 2 e ' cosh(u/5/2) = z L u "/n.1 

n=0 
n: 

From these and the product formula for power series we can write 
F L 

(a) /5 s F 2 u' /nl = 2 e sinh(ui/5) = i/5 £ £ Tt~"TTT7 u x / * 0 ix / x v ¥
 n i n kf (n-k): 

n=0 n=0 k=0 ' ' 
n 

/u\ T̂ k n~l n ^ u , , / r , n „ n n 
(b) s 2 TT-rTTi u. = 2 e (cosh uy5 +1} = £• — - — — — u . 

n̂ O k~0 v i n=0 
_ n F, F , ô> L 2 - 2 ^ 

y , k n-k n ^ u , 1 /=- , , /=- • _ n n 
(c) x £ 7T""T~~"rTT u ~ ^ e ' ( coshui /b- i ) /5= £ ——--—— u 

n=0 k-0 ' • , .n=Q 
Equating coefficients and multiplying by nj then gives 

n 

(a) k=o © F* L - k = " F- °r (F + L>n = (2F) ' 
n 

(b) £ ( f ) L, L 1 = 2n L + 2 ' or (L + L)n =' (2L)n + 2 , 
1 , ~ \k / ic n-k n ' 

k=u 
n 

(c). s (£) F k F n _ k = (2n Ln - . 2)/5 or (F + F)n =. (2L)n - 2)/5 
k=0 

5o/uf/on &y L. Carlitzf Duke University, Durham, NX. 

As noted by Gould (this Quarterly, Vol. 1 (1963), p. 2) we have 
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a x bx oo n , ^ n 
e - e ^ x „ a x bx °1 x T a-b n n! n A ni n 

n= 0 n=0 

a = i ( l + ^ , b = i(l -f5) 

It f o l l ow s a t o n c e t h a t 
c ^ n 2 a x 2bx 

n=0 

so t h a t 

(a) ( L + F ) n = 2 n F . 
n 

S i m i l a r l y 

s o t h a t 

„ x /r . T . n , 2 a x . - (a+b)x , 2bx 
£ —p (L + L) = e + 2e v ' + e 

2 a x . 2bx . 0 x = e + e + 2e , 

(b) ( L + L ) n = 2 n L + 2 , 

w h i l e 

s o t h a t 

/ » \2 TT x . . n 2 a x 2bx x 
( « - 5 ) s - r r ( F + F) = e + e - 2e , 

n=0 n ' 

(c) 5 ( F + F ) n = 2 n L - 2 . 
' v n 

To g e n e r a l i z e t h e s e f o r m u l a s c o n s i d e r 
r , a x , b x x r _ ,rx ( r - s ) a x + s b x (e + e ) = X ( J ex 

s = 0 

r 1 ,rx s x . ( r - 2 s ) a x . ( r - 2 s ) b x . 
j 2 ( s ) e (ev ; + ev ) 

s=0 

, r °~ . . n n 
2 " V e

 n nl n * 
s=0 n=0 

T h e r e f o r e 
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/ T J_T J JLT / * li , ,. ' ^ - ^ .k n-k T 

'- , r ^ k 

5 --. T r . , 7 >k n - k 

In p a r t i c u l a r 

(L+L-l-J,)'"1 -- ^ L J 3 L , 

SimilarLy-j s i n c e 

5r(r+... +F)n - i r (C \ ^ i" i ) sd r ) ( 2 r " 2 s ) k s n~k . 

.where the n u m b e r of P! - »«= / j* H 

r n 1 -S ?, y-fl k n—k 
5 r ( F + . . . + F ) n = T ' , ^ , . T ( \ ) ( 2 r - 2 s + l ) K s n K , 

L-d 
w h e r e the n u m b e r of r 1 : JC ~ i 1 JU par t i cu lar 

A f o r m u l a for 
,L + s e , -f L + F + . . . T F) 

can be obtained but i t i s ^ c r y c o m p l i c a t e d . When the n u m b e r of L ' s 

i s equal to the n u m b e r <yc Ff;s i\' ic> l e s s c o m p l i c a t e d . In p a r t i c u l a r 

(L+L+F+F)1"1 =r. i ; 4 n 1^ - 2 n + 1 ) . 

Indeed s i n c e 

/ a x , b x . r , a x b x . r ,' 2 a x 2 b x , r (e + e ) ie ~ e ) = (e - e ) 

i t f o l l o w s that 

In p a r t i c u l a r 
(L + L + L + F ! ^ + F -= ~- (J F - 3 F , ) . K l" l n Z n •• D 
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T H E R A C E 

H - 1 9 Proposed by Charles R. Wall, Texas Christian University, Ft. Worth, Texas 

In the t r iangle below [drawn for the case ( 1 , 1 , 3 ) ] , the t r i s e c -
to r s of angle, B, divide side, AC, into segments of length F , F , , 
F 1 0 . Find: n+3 

(i) l ime 

n-> oo 
(ii) lim if 

A 
v\_ _/v_ 

"n+l n+3 

Solution by Michael Goldberg, Washington, D.C. 

As n ^ o o , the ra t io F , / F approaches t = (-v/5~+ l ) / 2 , a n d 
F , Q / E approaches t ~ 2t + 1< Hence, the l imiting t r iangle ABC 
can be drawn by taking points D and E on AC so that AD = 1, DE = t 

3 
and EC = t = 2t + 1. Since BD is a b isec tor of angle ABE, the point 
B mus t lie on the c i rc le which is the locus of points whose d i s tances 
to A and E a r e in the ra t io AD/DE = l / t . The c i r c l e p a s s e s through 
D. If the d iamete r of the c i rc le is 2r = x + 1, then x / (x + 1 + t) = l / t 
from which 

,2 
1 t/(t - 1) = t = t + 1 

Similar ly , BE is a b i sec tor of the angle DBG. The point B m u s t lie 
on a c i rc le which is the locus of points whose d is tances from D and C 
a r e in the ra t io D E / E C = t / t = l / t . If the d i ame te r of the c i r c l e is 

2 2 
2r^ = y + t, then y / (y + t + t ) = l / t from which 
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Hence, cos < B A E = - t / 2 ( t + 1) = - {^5~- l ) / 4 and < B A E = 108° . 
F r o m w h i c h 20 = 90° - 1 0 8 ° / 2 = 36° ; 6 = 18° , ^ = 180 ° - 108° - 3 6 =18° 
Also solved by the proposer and Raymond Whitney, Penn. State University, Hazelton, Penn. 

FIBONACCI TO LUCAS 
H - 2 0 Proposed by Werner E. Hoggatt, Jr., and Charles H. King, San Jose State College 

San Jose, California. 

If 

Q 
1 0 

snow D(e ) = e 

th where D(A) is the de te rminan t of m a t r i x A and L is the n Lucas 
n 

num be r . 
Solution by John L. Brown, Jr., Penn. StateUniversity, State College, Penn. 

Recal l that 

Q n = 
F F 

n+1 n 
F F . 

n n-1 
so that (by definition) 

2 nk+1 2 nk 

. Q 
k=0 k.! k=0 ^ i 

car 0 s 5 

V F ^ F 
i ^ n - n ^ i ^ n n k - 1 
k=0 k , k = 0 — j r 
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i t i s w e l l - k n o w n t h a t 
oo J? ,- , a x b x 

nk k e - e 
• v —•• x — — • k=0 ~ ' ^5 

[ e . g . e q u a t i o n ( 2 . 1 1 ) , p. 5 of Gould's paper in Vol . 1, No. 2, A p r i l 

1963j , w h e r e 
1 +VET 

a = _ _ _ 
a n d 

, 1 - VT 

S i m i l a r l y , 
L , • , n u n 

nk • k a x . b x 
x = e + e k=0 k, 

fo r t he L u c a s n u m b e r s . 

But L , = F , , , + F , , ; t h e r e f o r e , nk nk+1 nk-1 

°^ F 1 ,1 + F . . n u n 
y nk+1 nk-1 a . b 

k t 0 kl = e + e . • or 

(1) 2 nk+3. 
k=0 "~k! 

n , n , a . b (e + e ) 
0 0 jr 

2 " • ^ - 1 

k=0 k! 

00 •*- i ^ 

Since F n k + 1 = F ^ + F ^ and S - ^ - = S ^ _ 
k=0 V ^ 

f r o m above , we a l s o have 
00 F , , , 0 0 F , 0 0 F . , a b e*o F , , 

/ ? \ ^ 12bEZ± - -̂  nk , nk-1 _ e - e , nk-1 
k! k=0 k° k=0 * ' k=0 xv' k=0 AVe k=0 x " Y5~ 

So lv ing (1) a n d (2) s i m u l t a n e o u s l y , we find 

XT 
nk+1 1 

k=0 k! ' 

(3) 

a n d 

(4) 

k=0 k! 

T "nk̂  1 _ 1_ 
k=0 K* ^ 

( / * / ) 

n u n a . b e + e 

+ 
n . n a b 

e - e 

V r̂ 
n . T n a b 

e - e 

i^ 
Now, D(e Q-n 0 0 F , n \ / ° ° F , , 2 HK+1 \ I 2 nk-1 

k=0 kl M k=0" kl 
nk 

k=0 kl 
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n , n \ / a b v ' 
e a + e b > I e " e 

yr 
n , n N 2 

a b 
e - e f5 

n l t n L 
a +b n . T n , u n - . . , 

= e = e 9 s i n c e L = a +b for n > 0. q. e„ d. 
n — _ ± _ _ 

FIBONACCI PROBABILITY 
H - 2 1 Proposed by Francis D. Parker, University of Alaska, College, Alaska 

th 
Find the probabi l i ty , a s n a p p r o a c h e s infinity, t h a t the n" x F i b -

o n a c c i n u m b e r , F(n) , i s d i v i s i b l e by another F i b o n a c c i n u m b e r {/ F , 
o r F 2 ) . 
Solution by proposer 

We u s e f requent ly the fact that F(n) i s d i v i s i b l e by F(k) if k 
d i v i d e s n. Then the probab i l i ty that F(n) i s d i v i s i b l e by 2 i s 1 /3 ; 

1 2 the probab i l i t y that F(n) i s d i v i s i b l e by 3 butnot 2 i s (^)(4); t he p r o b -
~~~" " " 1 2 3 2 

ab i l i ty that F(n) i s d i v i s i b l e by 5 but not by 2 or by 3 i s •=• -̂  T = ^ | f ; 
and in g e n e r a l the probabi l i ty that F(n) i s d i v i s i b l e by F(k) but no t any 
F i b o n a c c i number of o r d e r l e s s than k i s T T T T ^ - T h e s e p r o b a b i l i t i e s 

k ( k - l ) 
a r e a l l independent , s o that the p r o b a b i l i t i e s that F(n) i s d i v i s i b l e by 
at l e a s t one F i b o n a c c i n u m b e r of o r d e r not e x c e e d i n g k i s 

1 Z ?. ?. 
+ T~: + 3 . 2 4 . 3 5 . 4 ' ' ' k ( k - l ) " 

k - 2 This s u m i s —-:—, and as n a p p r o a c h e s inf inity, the p r o b a b i l i t y a p -
K. 

p r o a c h e s unity . 
A l s o s o l v e d by J. L. Brown, Jr . , P e n n . State Un ive r s i ty , , State 

C o l l e g e , P e n n s y l v a n i a . 
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k = F , , , we have that k+1 = F ., + F„ , and we a r e through. If n+1 n+1 2 
k = F ,, - 1, we have k+1 = F , , and we a r e through. If k = F ,-, - 2 n+1 n+1 & n+1 
we have k+1 = F , - 1, which by Lemma 1 (A or B)? can be r e p r e -
sented as c la imed and we a r e through again. Therefore let us con-
s ider k i F ., - 3. 

n+i 
Now the r ep re sen t a t i on fo r k in this form can best be exp re s sed 

a s k = F + a ~ F » + a - F „ + a . F . + . . . + a ^ F - + a 0 F -n n-2 n-2 n-3 n -3 n -4 n -4 3 3 2 2 
where a. = 0 or 1 for 2 £. i S n -2 , and a. = 1, impl ies that a. ± 1 = 0. 

i I x i 

Now there a r e only two poss ib i l i t i es for a ? and a, in this r e p r e s e n t a -
tion. Ei ther a ? = a . = 0, or a ^ a« . If the f i r s t case is t rue for k, 
we can r e p r e s e n t k+1 in the r equ i red manner , s imply by adding 1 to k 
in the form of a ? = 1. If the second case is t rue for k, we then cla im 
that there exis ts at least one place in the r ep resen ta t ion where a. =' 
a. . , = 0 , since o therwise , k = F ., - 1 which we have a l r eady taken l+l n+1 . ' 
c a r e of above. 

Therefore we can r e p r e s e n t k+1 by the following: 
k+1 = F +a ~F „ + . . . + a . , - F . ,., + a.' F . , +. . . + a 'F0 + a 0 F 0 +1 n n-2 n-2 i+2 i+2 i - l i - l 3 3 2 2 
Now consider the express ion from a. , n F . ._ on and the resul t ing in-' r i+2 1+2 to 

equali ty. 
a . i 7 F . l 7 + a , . F . , + . . . + a Q F . + a 0 F „ +1 < F . , - - 1 <. F , - 1, i+2 i+2 i - l i - l 3 3 2 2 i+3 n-1 
by our Inductive Assumpt ion , Also by the Inductive Assumption, we 
can r e p r e s e n t the expres s ion from a. ,~F . ~ on in the p rope r form 
which impl ies that we can then a l so r e p r e s e n t k+1 in the p rope r form. 
This shows that the proof holds for al l posi t ive in tege r s N. Q. E. D. 

Phi l Lafer, Oak Harbor , Ohio 
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T H E E U C L I D E A N A L G O R I T H M II 

1. I N T R O D U C T I O N 

In P a r t I [ l ] we s a w t h a t the g r e a t e s t c o m m o n d i v i s o r of . two 

n u m b e r s c o u l d be c o n v e n i e n t l y c o m p u t e d v ia the f a m o u s E u c l i d e a n 

a l g o r i t h m . S u p p o s e t h a t e x a c t l y n s t e p s ( d i v i s i o n s ) a r e r e q u i r e d to 

c o m p u t e t h e g. c . d. of s a n d t (s > t ) . We t h e n h a v e 

(1) s = t q , + r , 0 < r < t 

(2) t = r , q^ + r , 0 < r? < r 

(3) r x = r 2 q 3 + xy 0 < ^ < rz 

(4) r 2 = r 3 q 4 + r ^ 0 < T^ < r^ 

(5) r 3 = r 4 q 5 + r ^ Q < x 
5 x 4 

(n-1) r 0 = r ^ q -,+r 1 0 < r , < r 9 
N ' n - 3 n - 2 ^ n - 1 n - 1 , n - 1 n - 2 

(n) r ~ = r , q + 0 . x ' n - 2 n - 1 ^n 

S ince e a c h q u o t i e n t q. > 1, t h e a b o v e e q u a t i o n s i m p l y 

e t c , 

(21) t > r : + r 2 

(3 ') r l - ^ r 2 + r 3 

(4') r 2 > r 3 + r 4 

(5 ') r
3 > r 4 + r 5 
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F r o m (21) and ^ i, -„ ~, * -' ,• , ' /, I rom (4f)? 2 r + r > 
(2 r . + 2 r J + r_, Sim:^"Ly, L - -.. t'i r \ ^ -! " r . > (3 r . + 3 r . ) + 
2 r . , e tc . Continuing In ch.-1 s JI* u % . .v j i<^ * he generous abundance 
of Fibonacci n u m b e r s . Thus 

t •£• r , + r > 2r -1-r, > 3rn-f2r , > 5r ,+3r r 1 2 2 j ~~ ..:> 4 *~ 4 5 

> ¥ , r _ + F n r _ "~ n-1 n-2 n-2 n-1 

2. A BASIC RESULT 
Since the r e m a i n d e r s form a sti 'i^tiy dec reas ing sequence with 

r , the las t n on-zero r e m a i n d e r . n-1 -

c „ v r 
XI-& "* 1 1 - I 

Consequently, 

n-1 xi" L n-L ) j - ! '"" n- 1 n-Z n+1 

To s u m m a r i z e , if n divisions a r e requ i red to compute the g. c. d. of 
st 

s and t, then t is at leas t as large as the (n + 1) Fibonacci 
number! 

3. LAME'S THEOREM 
Although the Eucl idean a lgor i thm is over 2,000 yea r s old, the 

following r e su l t was es tabl i shed by Gabr ie l Lame in 1844. 
Theorem 

The number of divisions requ i red to find the g„ c. d. of two num-
be r s is never g r e a t e r than five t imes the number of digits in the sma l l e r 
number . 
Proof. 

Let 4> designate the golden ra t io . In [2] it was shown that 

*pn = F n <t> + F n ^ | , n=l , 2, 3, . . . 
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Now since 2 > <t> = (1 + ^/5)/Z9 we see that 

2F + F , > F 4> + F , or 
n ii-1 n n-1 

F > * n 

n+2 

Replacing n by n~l and using the "basic r e s u l t " of the preceding 
sect ion yields 

t > * n - 1 . 

To complete the proof note that 

(i) if t has d digits then d > log t 

(ii) log t > (n-1) log 0 

(iii) log 4> > 1/5 • . 

Thus d > ( n - l ) / 5 or n < 5d . 

REFERENCES 
1. D. E. Thoro, "The Eucl idean Algori thm I, " Fibonacci Quar te r ly , 

Vol. 2, No. 1, F e b r u a r y 1964. 
(Note that i n e x c e r c i s e s E8 and E10, (F . , , F ) and max (n, F - l ) v n+1 n n 
should be rep laced by N(F , . , F ) and m a x N (n, F - l ) ^ J n+1 n' n 
r e spec t ive ly . ) 

2. D. E. Thoro, "The Golden Ratio: Computational Cons idera -
t ions , " Fibonacci Quar te r ly , Vol. 1, No. 3, October 1963, 

pp. 53-59 . 

xxxxxxxxxxxxxxxxxxxx 



EXPLORING FIBONACCI NUMBERS WITH A CALCULATOR 
BROTHER U. A L F R E D 

St. Mary's Col lege, Cal i fornia 

It has often been noted that the study of numbe r s is both expe r i -
menta l and theore t i ca l in c h a r a c t e r . Even in the days before the ca l -
cula tor , to say nothing of the computer , the t ru ly g rea t m a t h e m a t i -
cians often a r r i v e d at beautiful r e su l t s on the bas is of observat ion 
and n u m e r i c a l work before they proceeded to proof and theore t i ca l 
just if icat ion. If we find ourse lves enjoying calculat ion and seeing 
tangible r e s u l t s , we a r e in ve ry good company and need not w o r r y 
about the at t i tude of the theor i s t who is afraid to soil his hands with 
number sa 

In this vein, the following explorat ion is proposed . It may be 
observed by looking at a l ist of Fibonacci number s that in ce r ta in ca se s 
F has the n cor responding to the t e r m i n a l digits of the number . n ° . ° 
Thus F 5 is 5; F is 514229; F 6 l is 2504730781961. As long as 
we have a table of Fibonacci number s on hand we can proceed to make 
such ver i f ica t ions . But suppose we set out to find al l these coinci-
dences for Fibonacci number s up to a ce r t a in level such a s F , n n r m -
In the absence of these number s we now have an in te res t ing m a t h e -
ma t i ca l problem involving computation, 

One very s imple way to p roceed would be to take the success ive 
Fibonacci n u m b e r s modulo 10, 000. In. other words we would cons ider 
only the last five digits and forget about al l those that go before. This 
is a s t ra ight forward p rocedure but it would be long and tedious and 
subject to e r r o r . In fact, once a mis t ake in introduced, a l l r e s u l t s 
thereaf te r would be vi t iated. There mus t be a bet ter way. P e r h a p s 
the re a r e s eve ra l ways . We shall look forward to both the n u m e r i c a l 
r e su l t s and the method employed in a r r iv ing at them. 

Address ai l communicat ions regard ing this p rob lem to: Bro ther 
U. Alfred, St. M a r y ' s College, California. The solution will appear 
in the i s sue of December , 1964. 

138 
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JOSEPH MANDELSON 

U.S. Army Edgewood Arsenal, Maryland 

My i n t e r e s t in the Fibonacci s e r i e s was born in 1959 when it 
was noticed that the p r e f e r r e d ra t ios developed in the r e s e a r c h of my 
col league, H. El lner , and la ter included in Depar tment of Defense 
Handbook HI0 9 [ 1 ] , were 1, 2, 3, 5 and 8. F r o m recol lec t ion of a 
brief ment ion in college a lgebra , this was recognized as the f i r s t few 
t e r m s of the Fibonacci . To tes t the supposition that the p r e f e r r e d 
ra t ios would al l be from this s e r i e s , the next one was calculated and, 
su re enough, it was 13. Then it was noted that the sample s i zes , 
Acceptable Quality Levels (AQL's) and lot size ranges of all sampling 
s t andards since Dodge and Rornig [2] were s e r i e s approximate ly of 
the type: 

(1) u ^ ~- u + u 
n+^ n+1 n 

In fact the la tes t ve rs ion of Mil i ta ry Standard Mil Std 105 [3] shows 
sample s izes which a r e a lmos t exactly the Fibonacci s e r i e s itself. 
These o c c u r r e n c e s were too r e m a r k a b l e to be a sc r ibed to m e r e co-
incidence and my in t e r e s t led me to examine the s e r i e s empi r i ca l ly . 
According to Dickson [4], the l i t e r a tu re on this subject is r ich, ex-
tending as it does from the year 1202 to the p r e sen t . However, it is 
a lmos t completely unavailable to me and, I suspect , to mos t o the r s . 

On developing the s e r i e s u from n = 0 to n - 25 or so, in-
spection soon revea led that two th i rds of the s e r i e s compr i sed odd 
numbe r s and exactly eve ry th i rd u was even. It did not take much 
to a s c e r t a i n why this is so. In this way I found that n, the ordinal of 
u in the s e r i e s was , in a manner of speaking, the de te rminant of the 
p r o p e r t i e s of u . Thus, if z is a factor of u it will infallibly be 
a factor of u ? , u„ , e tc . Therefore , in general* if n is composi te , 
so is u (except for the case n = 4. u = 3), but if n is p r ime , u n x ^ • n ' ^ n 
may be p r i m e . My f i rs t guess that, since the densi ty of odd number s 
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in the Fibonacci is twice that of the even numbers, the density of 

primes would be greater than in the cardinal number domain was pro-

ven wrong when the primality of u was found dependent on n being 

prime. The next supposition of equal density was shown to be wrong 

when u~, = 1346269 was found to be a composite of 557 and Z417. 

When u^7 and u. , were also determined to be composite it became 

obvious that the density of primes in u was less than that of the 
3 r n 

cardinal domain. 
Several other interesting details were elucidated after extending 

and examining the series, first down to n = 50 then to n = 100 and 

finally to n = 130. No u is divisible by n except when n ~ 5 or 

powers of 5. For example uR = 5 and \i?i- - 75025. Except for U/, 
every u seem>s to have at least one prime factor which has not been 

J n 
a factor of any previous u ; some have two or three such new prime 

factors. Surely, any theory of prime numbers might profit from Fib-

onacci considerations. 

However, the first gain from the extension of study of the ser-

ies to n = 100 was a remarkable regularity found from the fact that 
if P is a prime factor of u it will also factor, more generally, 

n ^ n to J 

u. where j goes from 1 to 00. Consider the multiple j and let this 
be expressed as a sum of multiples of powers of P , reduced to a 
minimum of terms, and provided that no multiples of the powers of 
P > P . Thus: n n 

(2) j = aP° + bP1 + cP2 + . . . qP1" 
x ' J n n n ^ ii 

where a, b, c . . . q may be zero but must always be less than P . 
Then u. will be divisible by P x + 1 where P is the lowest power jn J n n x 

term of P in the sum of multiples of powers of P = i. 
n r r II J 

Example 1. 
The first prime to divide u is 2 (P = 2) and it divides the 

r n N n ' 
third number (n = 3) in the series: U3 = 2. From the above lemma 

we have: 
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Ordinal 

j n 

3 

6 

9 
24 

30 

33 

J 
1 

2 

3 

8 

10 

11 

SERIES -

Sum of P 
n 

t e r m s = j 
0 P n 

P 1 

n 
^ 0 _L 
P + n 
P 3 

n 

p + n 
r.0 J_ P + n 

^ 1 
P n 

^ 3 
P n 

p + 
n 

- PRIME ] 
* 

^ 3 P n 

p x 

n 
X 

0 

1 

0 

3 

1 

0 

NUMBERS 

u . 
j n 

is 

by P x 

J n 0 
P 

n 
P l 

n 
P ° n 
P 3 

n 
P

 1 

n 
P ° 

n 

+ 

+ 

+ 

+ 

+ 

+ 

divisible 
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1 

1 

1 

1 

1 

1 

1 

= 

= 
_ 

= 

= 

= 

1 P = n 
P 2 = 

n 
PX = 

n 
P 4 , 

n 
P 2 = 

n 
PX = 

n 

2 

4 

2 

16 

4 

2 

141 

u . 

2 

8 

34 

46368 

332040 

3524578 

Since P = 2, no mul t ip les other than 0 or 1 appear in the sum of 
powers of P = j . Actually the sum of mul t ip les of power t e r m s for 
j = 11 should read: 

0 1 2 ^ 0 1 ^ 0 1 3 11 = I P + I P + OP + I P = P + P + P = 2 + 2 + 2 = 1 + 2 + 8. n ' n n n n n n 

Example 2. 
Another p r i m e dividing u is 5 (P = 5) and, as a l ready men-

tioned, it divides the fifth number in the s e r i e s : u_ = 5. Again we 
mcike a table: 
Ordinal Sum of P P u. is divisible 

n n jn 
_ x+1 

u. 
5 

55 

6765 

75025 

832040 

9227465 

12586269025 

Jn 

5 

10 

20 

25 

30 

35 

50 

25 

j 

1 

2 

4 

5 

6 

7 

10 

25 

t e r m s 

P° 
n 

2P°* n 
4P° n 
P 1 

n 

= j 

P° + P 1 

n n 
2P° + n 
2 P 1 

n 
P 2 

n 

P 1 

n 

X 

0 

0 

0 

1 

0 

0 

1 

2 

by P 
J n 

p 0 + l 
n 

p o + i 
n 

p 0 + l 
n 

P 1+1 

n 
P o+i 

n 
p 0 + l 

n 
P 1+1 

n 
P 2+1 

n 

= P1 

n 
-P1 

n 
^ P 1 

n 
= P 2 

n 
^ P 1 

n 
= PX 

n 
= P 2 

n 
= P 3 

n 

= 

= 

= 

= 

= 

= 

= 

= 

5 

5 

5 

25 

5 

5 

25 

125 

59425114757512643212875125 
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* 0 
The m u l t i p l e Z of 2 P p l a y s no p a r t s on ly the p o w e r of P ( z e r o 

in t h i s c a s e ) i s u s e d . 

At a l a t e r t i m e , in a p r i v a t e c o m m u n i c a t i o n * D r . S« M. U l a m 

r e c o m m e n d e d D i c k s o n [4] a s a r e f e r e n c e to the l i t e r a t u r e . In t h i s 

I d i s c o v e r e d t h a t t h e s e f i nd ings w e r e k n o w n to L u c a s [ 5 ] . In p a r -

t i c u l a r , a c c o r d i n g to D i c k s o n , t he a b o v e w a s s t a t e d by L u c a s a s 

T h e o r e m V of e i g h t in the fo l lowing f o r m : 

"If n i s t he r a n k of t he f i r s t t e r m u c o n t a i n i n g the p r i m e 
n & r-

f a c t o r p to t he p o w e r A, t h e n u i s t h e f i r s t t e r m d i v i s i b l e by 
X+l X+2 ^>n 

p a n d no t by p ; t h i s i s c a l l e d the l aw of r e p e t i t i o n of p r i m e s 
in the r e c u r r i n g ; s e r i e s of u . " to n 

On r e a d i n g t h i s i t i s c l e a r t h a t p r e c e d e n c e in t h i s f ind ing l a y 

w i t h L u c a s who h a d , m o r e o v e r , s t a t e d i t m o r e c l e a r l y a n d e c o n o m -

i c a l l y . F a r f r o m b e i n g d i s c o u r a g e d , h o w e v e r , I c o n t i n u e d m y s e a r c h , 

l i s t i n g a l l p r i m e n u m b e r s up to 10009 a n d l a b o r i o u s l y t e s t i n g t he p r i -

m a l i t y of m o s t u ! s up to n = 130 . Of c o u r s e , p r i m e s up to 10009 

a r e su f f i c i en t on ly to t e s t u up to n = 40 d i r e c t l y but the f ac t t h a t 
if z d i v i d e s u i t w i l l d i v i d e u . h e l p e d g r e a t l y . N e v e r t h e l e s s i t 

n jii ^ a J • 

s p e e d i l y b e c a m e a p p a r e n t t h a t r e p e a t e d d i v i s i o n of u g r e a t e r t h a n 

u . j - on a d e s k c a l c u l a t o r w a s no t on ly l a b o r i o u s but i n c r e a s i n g l y p r o n e 
to e r r o r a s the n u m b e r of d i g i t s in u r o s e a b o v e 10. If on ly t h e r e 

° n J 

w e r e s o m e w a y to e l i m i n a t e s o m e of t he t r i a l d i v i s i o n s ! 
A s t u d y of the p r i m e s , P , w h i c h d i v i d e u r e v e a l e d t h a t t h e y 7 1 n n J 

w e r e a l l of the f o r m 

(3) P n = a n + 1 

S i n c e P i s p r i m e i t i s o b v i o u s t h a t an h a d to be e v e n so t h a t a n ± 1 n 
cou ld be odd, T h e r e f o r e e i t h e r a o r n o r bo th h a d to be e v e n . 

C l o s e r s t u d y of t he p r i m e s i n d i c a t e d t ha t , w h e n a and n w e r e bo th 

e v e n , i t w a s a l w a y s n e c e s s a r y to a d d one to a n to ge t P , i . e . w i t h 

a a n d n e v e n , P = a n + 1, n e v e r an - 1. I c a n n o t e x p l a i n t h i s but , 

e m p i r i c a l l y , i t t u r n s out t h i s w a y . Now i t w a s p o s s i b l e to cu t down on 
the n u m b e r of d i v i s i o n s r e q u i r e d to d e t e r m i n e the P w h i c h w o u l d 

•L n 
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divide u . Thus: n 
a. Calculate 2n + 1 (If n is even, de te rmine only 2n + 1). 

b. Dete rmine whether 2n + 1 and /o r 2n - 1 a r e p r i m e . 

c. Divide u by any p r i m e number de te rmined in a and b. 

d0 If u is not divided in c. calculate 3n + 1. 
n 

e„ Repeat setps c. and d, 

f. If u is not divided in step e, calculate 4n + 1 If n is n 
even, de t e rmine 4n + 1 only). 

e. Continue until the P which divides u is found. & n n 
The re la t ionship found above may be exp res sed as follows; 

If P is any p r i m e the re exis ts an n such that P = an + 1 or 
an - 1 will divide u without r ema inde r (a being some whole num-
ber > 0. )• The only exception is P = 5 which divides uc = 5. 

/ J 1 n 5 

It is poss ib le that the above re la t ionship would repay inves t iga-
tion in p r i m e number theory. In the past , a number of formulas have 
been proposed for the purpose of generat ing p r i m e n u m b e r s . In every 
case the formulas have been found faulty in one or m o r e of the follow-
ing r e s p e c t s : 

a. The densi ty of p r i m e s gene r a t ed lias been much lower than 
the t rue densi ty of p r i m e s . 

b. They have genera ted composi te n u m b e r s , 

c. They have r a r e l y been capable of generat ing pa i red p r i m e s 
(two consecutive p r i m e s which differ by 2, e. g'. 11 and 13). 

The formula given in (3) suffers only in generat ing ve ry many com-
pos i t e s . However, the p rocedure c lea r ly furnishes a c r i t e r ion w h e r e -
by (empir ical ly) it has been found that, if n is p r ime , u will be 
divided by P only when p , determined, as in (3), is p r i m e . If 
this can be proven, new light m a y b e shed by the proof on this age-old 
p rob lem. 
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A MOTIVATION FOR CONTINUED FRACTIONS 

A.P. HILLMAN and G.L. ALEXANDERSON 
University of Santa Clara, Santa Clara, California 

This Qua r t e r ly is devoted to the studyof p r o p e r t i e s of i n t ege r s , 
espec ia l ly to the study of r e c u r r e n t sequences of i n t e g e r s . We show 
below how such sequences and continued fract ions a r i s e na tu ra l ly in 
the p rob lem of approximat ing an i r r a t i ona l number to any des i r ed 
c loseness by ra t iona l n u m b e r s . 

We begin with the equation 

(1) x 2 - x - 1 = 0 . 

One can eas i ly see that the re is a negative root between -1 and 0 and 
2 

a posi t ive root between 1 and 2, for example by graphing y = x - x - 1. 
We cal l the posi t ive root r . This number has been known since an-
tiquity as the "golden mean . " We now look for a sequence of ra t iona l 
approximat ions to r . 

A ra t ional number is of the form p / q with p and q in t ege r s 
(and q ^ 0). We therefore wish two sequences 

p l * P 2 ' P 3 S ' * ' 
(2) 

q r qzs q3s 

of in tege r s such that the quotients p / q a r e approximat ions which 
get a r b i t r a r i l y c lose to r . It would a l so be helpful if each new ap -
proximat ion were obtainable s imply from previous ones . 

We go back to equation (1) and r ewr i t e it as 

(3) x = 1 + 1 . 
\ J x 

This s ta tes that if we rep lace x by r in 

(4) 1 + -
x ' x 

145 
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the result Is r and suggests that if we replace x in (4) by an approx-

imation to r we will get another approximation. We now change (3) 

into the form 

and consider x, to be an approximation to r. The relative error 

of l/x, is the same as that of x, and? if x, is positive, the rela-

tive error of x? (ic e. j 1 + 1 /x ) is lower than that of x,, since 

adding 1 increases the number but not the error. It can be shown that 

x? in (5) is a better approximation to r that x , if x > 0. 

We now let our first approximation x be a rational number 

Pi Ah and substitute this in (5) obtaining 

*i Pi + ^ 
x = 1 + ——;r— = 1 + -— = . 

* ^ p i / q r p i p i 

We therefore choose p? to be p, + q, and q? to be p, . Similarly, 

our third approximation is p /q„ writh p = p -f q and q„ = p . In 

general, the (n + l)-st approximation p , /q , , has 

( 6 ) Pn+l = Pn + qn 

< 7 > VU = Pn • 

It follows from (7) that q = p , ; substituting this in (6) gives 

(8) p ,, = p + p . 
% ' ^n+1 n ^n-l 

Since r is between 1 and 2 we use 1 as the first approximation, 
i. e. , we let p. = q, = 1. This means that p? = 2 and it now follows 

from (8) that p is the Fibonacci number F , 1 - Then (7) implies 

that q = F and we see. that the sequence of quotients F , , / F of ^•n n T. A n+1 n 
consecutive Fibonacci numbers furnishes the desired approximations 

to the root r of (1). It can be shown that this sequence converges to 
r in the calculus sense. 
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We next cons ider the p rob lem of approximat ing s = vTO in this 
way. The number s is the posi t ive root of 

(9) x 2 - 10 = 0 . 

We wr i t e (9) in the fo rms 

2 

(10) 

9 = 1 

(x - 3)(x + 3) = 1 

( x - 3) = l / ( x + 3) 

x = 3 + l / ( x + 3) 

and change (10) into 

(11) * u - = 3 + l 
n+1 3 -I- x 

Again,, if x is a posi t ive approximat ion to ss it can be seen that 
x , is an approximat ion with s m a l l e r re la t ive e r r o r . There is a 
sequence of ra t ional approximat ions p /q with 

p ... = 3p + lOq , q 1 = p + 3q ^n+1 ^n ^n ^n+1 *n ^n 

Letting the f i rs t approximat ion be 35 i. e. , letting p, = 3 and q = 1, 
we obtain the sequence 

3 / 1 , 19 /6 , 117/37, ... . 

which can be shown to converge to s0 

Equation (11) contains the equations 

1 1 
X 2 = 3 + 3 + xx ' x 3 + ~3 + x 2 

Substituting the f i r s t of these into the second gives us 
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*3 = 3 + * 1 6 + 3 + X;L 

If this is substituted into x4 = 3 + 1/(3 + x ) and if we let x, be 3, 

we obtain 

x, = 3 + l 

In this way we can write continued fraction expressions for any one of 
the x . Then it is natural to let the infinite continued fraction n 

3 + - 1 

6 +
 l 

6 + . . . 

represent the limit s of the sequences x defined by (11) and X ] = 3. 

The infinite continued fraction for the root r o f x - x - 1 - 0 

1 + 
i +

 1 
1 + . . . 

whose elegant simplicity is worthy of the title "golden mean. " 

xxxxxxxxxxxxxxxxxxxx 

FIBONACCI AND LUCAS NUMBER TABLES 

Those interested may secure bound mimeographed tables of the 

first 1505 Fibonacci numbers, F , and the first 1506 Lucas numbers, 

L , by sending two dollars to Professor Jack K. Ward, Westminster 

College, Fulton, Missouri. 



FIBONACCI NUMBERS: THEIR HISTORY THROUGH 1900 
MAXEY BROOKE 

Sweeny, Texas 

In 1202, a r e m a r k a b l e man wrote a r e m a r k a b l e book. The 
man was Leonardo of P i sa , known as Fibonacci , a br i l l iant man in an 
in te l lec tual w i l d e r n e s s . The book Liber Abacci (The Book of the 
Abacus) introduced Arabic numbers into Europe . 

In the book was a seemingly s imple li t t le p roblem: 
"A pa i r of rabbi t s a r e enclosed on. a l l s ides by a wall . To find 

out how many p a i r s of rabbi t s wil l be born in the cou r se of one year , 
it being a s s u m e d that eve ry month a pa i r of rabb i t s will produce 
another pa i r , and that rabb i t s begin to bear young two months after 
the i r own bi r th . " 

On the m a r g i n of the manusc r ip t , Fibonacci gives the tabulation: 

A pa i r 
1 

F i r s t 
2 

Second 
3 

Third 
5 

Four th 
8 

Fifth 
13 

Sixth 
21 

Seventh 
34 

Eighth 
55 

Ninth 
89 

Tenth 
144 

Eleventh 
233 

Twelfth 
377 

He sums up his calculat ions 

149 
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". - .we see how we a r r i v e at it . We add to the f i r s t number 
the second one* i . e M 1 and 2; the second to the third; the thi rd to the 
fourth; the fourth to the fifth; and in this way, one after another , until 
we add together the tenth and eleventh and obtain the total number of 
rabbi t s — 377; and i t i s poss ib le to do this in this o rde r for an infinite 
number of months . " 

There the m a t t e r lay for 400 y e a r s . In 1611, Johann Kepler 
[ 1 ] of a s t ronomy fame, a r r i v e d at the s e r i e s 1, 1, 2, 3, 5, 8, 13, 
21, . . . There is no indication that he had a c c e s s to one of F ibonacc i ' s 
hand-wr i t t en books (The Liber Abacci was not published until 1857 [2] ) . 
At any ra t e , in d i scuss ing the Golden Section and phyiiotaxis , Kepler 
wrote : 

"For we will always have as 5 is to 8 so is 8 to-13, p rac t i ca l ly , 
and as 8 is to 13, so is 13 to 21 a lmos t . I think that the semina l fac-
culty i s developed in a way analogous to this propor t ion which pe rpe t -
uates itself, and. so in the flower is displayed a pentagonal standard^ 
so to speak. I let pa s s al l other cons idera t ions which might be ad-
duced by the m o s t delightful study to es tab l i sh this t ru th . ,f 

Simon Stevens (1548-1620) a l so wrote on the Golden Section. 
The editor of his works , A. G e r a r d [3] a r r i v e d at the formula for 
express ing the s e r i e s in 1634 

U , o = U ,, + U n+£ n+1 n 

A hundred y e a r s mus t p a s s before the p rob lem is again con-
s ide red . In 1753, R. Simpson [4] der ived a formula, implied by 
Kepler 

u , u ,, - u2 = (-i)n+1 

n-1 n+1 n ' 

A secondhundred y e a r s p a s s by and the s e r i e s again comes under 
study. In 1843, J. P . M. Binet [5] de r ives an analyt ica l function for 
de te rmin ing the value of any Fibonacci number 

2 n ^ 5 U a = (l + ^ / 5 ) n - ( I - sf5)n 



1964 FIBONACCI NUMBERS: THEIR HISTORY THROUGH 1900 151 

The following year , B. Lame [6] f i r s t used the s e r i e s to solve 
a p rob lem in Theory of Number s . He invest igated the number of op-
e ra t ions needed to find the GCD of two in tegers (it does not exceed 5 
t imes the number of digits in the sma l l e r number ) . 

Two y e a r s la ter , E. Catalan [7.] der ived the impor tan t formula 

n -1 _ n 5n(n- l ) (n-2) , 5 2 n(n- l )(n-2)(n- 3)(n-4) J 
L u n - T + - - _ - - _ _ +_^™T___riT____„ + . . . 

By now, the s e r i e s had rece ived enough attention to dese rve a 
name, It was var ious ly called the Braun Se r i e s , the Sch imper -Braun 
ser ies^ the Lame s e r i e s and the Gerhard t s e r i e s . 

A. Braun [8] , applied the s e r i e s to the a r r a n g e m e n t of the 
sca les of pine cones , Schimper is completely unknown. Lame' 'has 
a l r eady been mentioned, but the name has been credi ted to Fa ther 
B e r n a r d Lami, a con tempora ry of Newton and the d i scove re r of the 
pa r a l l e l og ram of fo rces . Gerhard t is probably a mis - spe l l i ng of 
Gira rd . 

Edouard Lucas [20] , who dominated the field of r e c u r s i v e 
s e r i e s during the per iod 1876-1891 , f i rs t applied F ibonacc i ' s name 
to the s e r i e s and it has been known as Fibonacci s e r i e s since then. 

About this t ime , 1858, Sam Loyd claimed to have invented the 
checkerboard paradox [9 ] . It is f i rs t found in pr in t in a German 
journal in 1868 [10] . Today it s eems p roper to call it the Ca r ro l l 
Pa radox after Lewis Ca r ro l l [11] (Char les Dodgson, 1 832-93) who was 

quite fond of it. 
Before the century ended, a number of famil iar re la t ions were 

found. Among them: (V is the nth Lucas number . ) 
1876, E, Lucas [12] 

u2 , + u2 - u7 ., 
n - 1 n Zn-t-1 

v" = vt: - 2 
4n 2n 
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V4n+2 = U L + 1 + 2 

un + p = un~p (u+i)p 

un"p = un (u-i)p 

1886, E. Catalan [13] [14] 

U ,1 U . . . - U 2
+ . = ( - l ) n + 2 " P U n + l - p n+l+p n+1 p 

U2 - U U x = ( - l ) n " p + 1 U . 
n n -p n+p n-1 

1899, E. Landau [15] re la ted the s e r i e s 

"i (1 /U 9 ) n=l ' 2n 

to L a m b e r t ' s s e r i e s and 

to the theta s e r i e s . n~^ 
A complete l ist can be found in Vol. 1 of Dickson 's "His tory of 

the Theory of Numbers . " 
This smal l h i s to ry ends a r b i t r a r l y at 1900 for the p r egma t i c 

r ea son that a m e r e l ist ing of twentieth century developments would fill 
a modera te ly sized volume. It would be in te res t ing to see F ibonacc i ' s 
r eac t ion to the applicat ion of his rabbi t p roblem to such d ive r se sub-
jec t s as mus i ca l composi t ion [16], p r o c e s s opt imizat ion [17] , e l e c -
t r i c a l network theory [18] , and genet ics [19] . 
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ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by A .P . H ILLMAN 

Universi ty of Santa Clara, Santa Clara, Cal i fornia 

Send all communicat ions regard ing E l emen ta ry P r o b l e m s and 
Solutions to P r o f e s s o r A. P . Hil lman, Mathemat ics Depar tment , 
Univers i ty of Santa Clara , Santa Clara , California. We welcome any 
p rob lems believed to be new in the a r e a of r e c u r r e n t sequences as 
wel l as new approaches to exist ing p r o b l e m s . The p ropose r should 
submit his p rob lem with solution in legible form, p re fe rab ly typed in 
double spacing, with name(s) and a d d r e s s of the p ropose r c l ea r ly 
indicated. 

Solutions to p rob lems l is ted below should be submit ted within 
two months of publication. 

B - 3 8 Proposed by Roseanna Torretto, University of Santa Clara, Santa Clara, California 

Charac t e r i z e s imply al l the sequences c satisfying 

n+2 ~ n+1 n 

B - 3 9 Proposed by John Allen Fuchs, University of Santa Clara, Santa Clara, California 

Let F , = F . = 1 and F ^ = F ,. + F for n > 1 . 1 2 n+2 n+1 n 

P rove that 

F ^ < 2 n for n > 3 . n+2 

B - 4 0 Proposed by Charles R. Wal/, Texas Christian University, Fort Worth, Texas 

If H is the n - th t e r m of the genera l ized Fibonacci sequence, 
n ° 

i . e . , 
154 



1964 ELEMENTARY PROBLEMS AND SOLUTIONS 155 

R = p , H = p + q , H ± = H ± 1 + H f o r n > l , 1 r 2 r ^ n+2 n+1 n 

show that 

2 kH. = (n + 1)H J - - H , , + 2p + q . , 2-, .* x ; n+2 n+4 ^ H 

k=l 
B - 4 1 Proposed by David L. Silverman, Beverly Hills, California 

Do there exis t four dis t inct posi t ive Fibonacci number s in a r i t h -
met ic p r o g r e s s i o n ? 

B - 4 2 Proposed by S.L. Basin, Sylvania Electronic Systems, Mountain View, California 

E x p r e s s the (n + l ) - s t Fibonacci number F ,, as a function 
of F . Also solve the same problem for Lucas n u m b e r s . n 

B - 4 3 Proposed by Charles R. Wo//, Texas Christian University, Fort Worf/i, Texas 

(a) Let x n > 0 and define a sequence x, by x, , = f(x, ) for 
k > 0S where f(x) = y l + x. Find the l imit of x, as k —• ©o. 

(b) Solve the same prob lem for f(x) = v 1 + 2x 

(c) Solve the same prob lem for f(x) = V2 + 3x 

(d) Genera l ize . 

SOLUTIONS 
FIBONACCI AND PASCAL AGAIN 

B - 1 6 Proposed by Mar/or/e Bicknell, San Jose State College, San Jose, California, and 

Terry Brennan, Lockheed Missiles and Space Co., Sunnyvale, California 

Show that if 
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then 

ELEMENTARY PROBLEMS AND SOLUTIONS Apri l 

n - 1 2F , F n-1 n 

Rx" F , F n-1 n F - F F 
n+1 n-1 n 

F F 4-1 
n n+1 

2 F n F n + l n+1 

(There a r e some m i s p r i n t s in the originaL s ta tement . ) 
Solution hy\L. Carlitz, Duke University, Durham, N.C. 

Put 

R k = ( . ' . ) (r, s = 0, 1, . . . , k) , 

a m a t r i x of o r d e r k + 1; for example 

R l = 

0 

- 1 

1 

1 _ 
R 2 " 

" 0 

0 

_ 1 

0 

1 

2 

1"] 
1 

1 J 

It is eas i ly verified that 

(1) R; 
F . F 

n-1 n 
n+1 

(n= 1, 2, . . . ) 

Indeed this is obviously t rue for n = 1. Assuming that the formula 
holds for n, we have 

R" n+1 n - 1 

n+1 1 1 

n+1 

L n+1 n+2 

In the next place we notice that the t r ans fo rmat ion 
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!

x' = y 

y1 = x + y 

induces the t r ans fo rmat ions 

,2 2 
:' = y 

T 2 : ^ x'y« = xy + y 2 

y = x + 2xy + y 

T .1 
x '3 = y 

,2 , Z 4 3 
x1 y1 = xy + y 

, ,2 ' 2 2 , 3 
x ' y 1 = x y + 2xy + y 
y ' = x + 3x y + 3xy + y 

and so on. Also it is evident from (1) that T, is given by 

\ x ^ = F ,x .+ F y 
T n . / n-1 n7 

1 ) y ( n ) = F X + n~ ' F n + l y 

We there fore get 

( x ( n ) ) 2 = F 2 , x 2 + 2F . F xy + F 2 y 2 
x ' n-1 n-1 n J nJ 

„n ) x(n) (a) = F 
s n-1 

( y ( n ) ) 2 = F 2 x 2 + 2F F ,. xy + F~ ,, y w ' n n n+1 J n+1J 

T-: j x ' V = Fn_lFnx2
 + (F2

 + F^F^Jxy + F^y2 

M)2 , F
2

X
2

+ — - • ~ 2 - 2 

A/so solved by the proposers. 

LAMBDA FUNCTION OF A MATRIX 
B - 2 4 Proposed by Brother U. Alfred, St. Mary's College, California 

It is evident that the de te rminan t 



158 E L E M E N T A R Y P R O B L E M S A N D S O L U T I O N S A p r i l 

n+1 

n+2 

n+1. 

n+2 

n+3 

n+2 

n+3 

' n + 4 

h a s a v a l u e of z e r o . P r o v e t h a t if the s a m e q u a n t i t y k i s a d d e d to 
e a c h e l e m e n t of the a b o v e d e t e r m i n a n t , the v a l u e b e c o m e s (-1) n - 1 k. 

Solution by Raymond Whitney, Pennsylvania State University, Hazelton Campus 

U s i n g the b a s i c F i b o n a c c i r e c u r s i o n f o r m u l a F i n = F , , + F and & n+2 n+1 n 
e l e m e n t a r y r o w and c o l u m n t r a n s f o r m a t i o n s we m a y r e d u c e the d e -
t e r m i n a n t to : 

n+1 

F n + 1 

F n + 2 

0 

-1 

-1 

1 

= k ( F F -n n+2 • F n + 1 > • 

w h i c h i s (-1) k by a b a s i c i d e n t i t y . 

Also solved by Mor/or/e Bicknell, San Jose State College, San Jose, California 

w h o p o i n t e d out the r e l a t i o n to " F i b o n a c c i M a t r i c e s and L a m b d a 
F u n c t i o n s , " by M, B i c k n e l l and V. E . H o g g a t t , J r . , t h i s Q u a r t e r l y , 
Vol . 1, No. 2; R. M. G r a s s l , U n i v e r s i t y of San ta C l a r a , C a l i f o r n i a ; 
F.D. Parker, State University of New York, Buffalo, N.W., R.N. Vawter, St. Mary's College, 

California; H.L. Walton, Yorktown H.S., Arlington, Virginia; and the proposer. 

E X P O N E N T I A L S O F F I B O N A C C I N U M B E R S 
B - 2 5 Proposed by Brother U. Alfred, St. Mary's College, California 

F i n d a n e x p r e s s i o n fo r the g e n e r a l t e r m ( s ) of the s e q u e n c e 
T n = 1, T1 = a, T 9 = a, . . . w h e r e 

In-I 
2n 2 n - 2 

and "2n+l , T 7 T 9 . . Zn 2 n - 1 



1964 ELEMENTARY PROBLEMS AND SOLUTIONS 159 

Solution by Vassili Daiev, Sea Cliff, LA., N.Y. 

The f i r s t few t e r m s a r e 

F F F 
0 2 , 1 

F F F 
3 2 4 

It is easy to see that T = a where k = F , ' /o x if n is even and 1 n (n/2) 
k = F, IO\ /o ^ n is odd. (n+3)/2 

Also solved by J.AM. Hunter, Toronto, Ontario, Canada 

who suggested the cons idera t ion of log T ; 
Ralph Vawter, St. M a r y ' s College, California, and the p r o p o s e r . 

Edi to r ia l Comment: The prob lem can be solved by showing that 
log T L . = log T + log T , 

& m L 4 ° m+2 ° m 

MAXIMIZING A DETERMINANT 
B - 2 8 Proposed by Brother U. Alfred, St. Mary's College, California 

Using the nine Fibonacci number s F ? to F , ~ (1, 2, 3, 5, 8, 13, 
21, 34, 55), de t e rmine a t h i r d - o r d e r de te rminan t having each of 
these number s as e lements so that the value of the de te rminan t is a 
max imum 0 

Solution by Mar/one Bicknell, San Jose State College, California 

By consider ing combinations of Fibonacci number s which give 
min imum and max imum values to sums of the form abc + def + ghi, 
the following de te rminan t s e e m s to have the maximum value obtain-
able with the nine Fibonacci number s given: 

F F F .10 4 *7 

F6 F9 F3 

F F F 2 5 8 

F10F9F3 + F?F6F5 + F4F3F2 - ( F ^ F g + F ^ F , 

+ F8F4F6> 

39796 " 1496 

3 8 3 0 0 . 

Also solved by the proposer. 
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B - 2 9 Proposed by A.P. Boblett, U.S. Naval Ordnance Laboratory, Corona, California 

Define a genera l Fibonacci sequence such that 

F , = a; F 0 = b; F = F 0 + F . , n > 3 1 2 n n-2 n-1 
F = F , - - F ,. , n < 0 n n+2 n+1 "~ 

Also define a c h a r a c t e r i s t i c number , C> for this sequence, where 
C = (a + b)(a - b) + ab. 

P rove : 

F , . F , - F 2 = ( - l ) n C , for al l n . n+1 n-1 n 

Solution by P.O. Parker, State University of New York, Buffalo, N.Y. 

F r o m F(n) = F(n - 1) + F(n - 2), F( l ) = a, F(2) = b, we get 

_ , x b - a r n . b - as n F(n) = -j s + — — j r , 
1 + s 1 + r 

2 where r and s a r e solutions of the quadra t ic x - x - 1 = 0. Using 
the fact that r + s = - r s = 1, d i rec t calculat ion yields 

F(n + l )F(n - 1) - F2(n) = [(a - b)(a + b) + ab ] ( - l ) n . 

The well known r e su l t F(n + l )F (n - 1) - F2(n) = ( - l ) n is the 
specia l case in which a = b = 1. 

Also solved by Mor/or/e Bicknell, San Jose State College, San Jose, California; 

Donna J. Seaman, Sylvania Co.; R.N. Vawter, St. Mary's College, California; and 

the proposer, J.A.H. Hunter, of Toronto, Ontario. 


