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It is known [5] that anecessary and sufficient condition for p to

be prime is that for every natural number n

(1) <:>=[§] (mod p) ,

where [x] denotes the greatest integer less than or equal to x.

Indeed this result is equivalent to the congruence

(1 - x)k = 1- xk (mod p)

as is evident from the generating functions

® /n
2) s < >x“‘k = 1= k] <
k
n=k

and

X rnq n-k -1 k-1 |
(3) E[E]x = (1-x"(1-x97, Ix|l<1

n=k

These results and some extensions of (1) in a recent paper [2 ]
suggest that there is more than a casual relation between the binomial
coefficients and the bracket function. In the present paper this rela-
tion is made evident by exhibiting an expansion of the binomial coef-
ficients in terms of the bracket function, and conversely. These ex-
pansions give congruences equivalent to (1), and the expansions are a
special case ofa generalinversion theorem. In the course of the anal-
ysis we obtainnovel results concerning the compositions (ordered par-
titions) of a natural number into relatively prime summands. Expan-

sions involving unordered partitions are also developed.

*Research supported by National Science Foundation Grant GP-482.
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The compositions (Zergliederungen) of n intopositive summands

are given as the solution of the Diophantine equation

= 2
(4) ay +a2+... +ak n, (ai 1)
whereas the partitions (Zerfallungen) of n into positive summands

are given by the same equation together with the restriction that
< <
1< a; Sa, $...% a
Thus the compositions of 4 into positive summands in all are:
4; 3+1; 1+3; 2+42; 2+1+1; 1+2+1; 1+1+2; 1+1+1+41
The partitions are: 4; 143; 2+42; 1+1+2; 1+1+1+1
Catalan [3], [4], [6 ,Vol. 2, 114, 126] proved in 1838 thatthe

equation

(5) a, +a, +... ta_ = n, (ai—>-0) -

. 1 2 k
ntk-1

has ( k-1 ) solutions. He then observed in 1868 that equation (4)

has (E:b solutions. In factthis follows by addingl to each summand
in (5). A direct proof of the enumeration is not difficult. Indeed (Cf.
Bachmann [1, Vol. 2, 105-7:] ; MacMahon [8, Vol. 1, 150—1] ; Riordan
[10, 124]) if Ck(n) be the number of compositions of n into k pos-

itive summands, then

(x+ x> +x0 +..)F = ;’ Ck(n)xn
n=k
_ <X>k _ @ <n—l> Xn
= =) 7 = ,
n=k k-1

from whichthe resultis evident. P. Paoli [6, Vol. 2, 107] anticipated
Catalan in 1780.

We may state this basic result in the enumerative form

n-1
(6) C, (n) = = 1
k <k-1> 2 )
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The simple identity

R

now allow us to infer that

n . n
(7) (k> = b C. = 5 s 1
j=k j=k a1+...+ak:3

a.21
1

With this expansion we are now in a position to assert

Theorem 1.

n no_
8 = [.- 1
(8) . s 7] s
=k ap te... a =1
(al, ceas ak) =1
Proof. The expansion is evident from (7). Whenwe restrict the solu-
tions of the equation aq + a, +... 4 ay = j tothose whichare relatively

prime, it is evident that we may restore the equality by counting how
many multiples of j there are, less than or equal to n, and this is
precisely the meaning of [n/j].

A simple example will illustrate. On the one hand, by (7)

10 10
= 3 s 1 = 14346+10+15+21+28+36 = 120
3 i=3 a,ta,ta, = j
J 1732733 7]
a. 21
i

However, not all the partitions of j are formed by relatively prime
integers. Thesecasesareb6=2+2+2;8=2+2+4=2+4+2=4+2
+2; 9 = 3+3+3;.10 =2+2+6=2+6+2=6+2+2=2+4+4=4
+2+4=44+4+ 2. Removing the common factors, we could just as

well have written such solutions in the forms 3 =1 +1 + 1; =1+1
+2=14+42+1=2+1+1;3=1+1+1;5=1+4+1+3=1+3+1=3+1
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+1=1+2+2=2+1+2=2+2+1, provided that we regroup and

count multiplicities. This gives

10
( >= 3(1) + 2(3) +2(6) + (10 - 1) + 15 + (21 - 3) + (28 - 1) + (36 - 6),
3

or

—
o

10
()= = -
a1+a2+a3 =]
(al, as; a3) =1
We shall obtain expansion (8) by an entirely different approach
later in this paper.
For the sake of completeness we wish to show that Theorem 1 is

equivalent to the following result due to J. Schr’o’der[ll]. Schroder

proved the following Theorem 2.

n
a n
(9 <k>_ 3 _ [a1+a2+...+ak]'
(al,az, . ,ak) =1

1< a, _f n-k+1

As far as the writer has been able to determine, this is one of
the very few expansions in the literature of the sort under discussion.
Schriéder proved the formula by an enumerationin k-dimensional space
and an induction from k to k + 1. As for the equivalence of (9) and

(8), we have

n _ 2 n 1
3 [al + .. +ak]_ < . < k+j-1 3
(a<l,...<, ak) =1 1= j 2n-ktl a1+...+ak=k+_]-l
15 a; = n-k+1 (al,...,ak)=1
1S j-ktl S n-ktl9-a . Utay =
(al, oo ak)-—-l

which is our relation (8) and the steps are reversible.
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In view of Schrdder's approach, it is of interest to make some
remarks here about lattice points. By a lattice point in k-space is
meant a point (al, 3yt ak) where the coordinates a; are inte-
gers. If we view space from the origin (0, ..., 0) and assume that
the presence of a point may block our view of points further out along
the same ray, then we may speak of visible lattice points. In order for
a point to be a visible lattice point it is necessary and sufficient that
(al, Ay - a.k) = 1. Thus we may state the theorem of Schrdder in
the form of

Theorem 3. Let Vj(k) = the number of visible lattice points in k-space,

seen from the origin, and lying on the hyperplane ap ta, ... ta
=j+k-1. Then
n-k+1
n n
(10) ( > V0 [y ]
k .
=1

Thus, in 2-space,

n n-1 )
<2>= z Vi@ lgr]

j=1

where V.(2) isthe number of visible lattice points lying entirely within
the first Jquadra.n‘c and on the line x +y =j +1. The successive values
of V.(2)(j=1, 2, ...) here are 1, 2, 2, 4, 2, 6, 4, 6, 4, 10,

and \i/e always have in this case VJ.(Z) < j, since the line segment in
question has just this many lattice points in all.

In general we evidently have the estimate

jtk-2
(11) V.(k) <
J k-1

As other examples of Theorem 1 we have
SREE RN R C L
<:>= [%]+ 4[%]+ 10[%]+ 20 [;] + 34 [§]+ 56[g]+ o
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Since the equation ay + a, + ...+ ay = k, (ai > 1), has the sole
solution 1 +1 +... +1 =k, we have from Theorem 1 the (equivalent)

Corollary 1.

n
w2 )-B- = [Fae

j=k+1

where the number-theoretic function Rk(j) is defined by

(13) R, () = s R

and is the number of compositions of j into k relatively prime pos-

itive summands.

In order to relate our expansion to congruence (1) we shall now
study the arithmetic nature of the function Rk(j).
First of all, it is easy to use (2), (8), and (3) in order to develop

a generating function for R, (j). Indeed we have
g g kY

Xk ® n n @ n i n .
w3 (07 5 s e

|

n=k n=k j=k
W o
n

-5 om0 3 [
j=k n=j

@ . Xj
- s RG) ——r
S O maa-d)

and the lower summationindex may be changed to j =1 since Rk(j) =
0 if j < k. Thus we have established

Theorem 4. The number-theoretic function R'k(j) is the coefficient

in the Lambert series
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or, equivalently,

(15) s -
1 - x
= j=k

It may be of interest to compare this result with the Lambert
series for the Fuler totient function (Cf. Knopp [7, 466-7]):
28] . x) _ x
=1 1 - x (1 - x)

(16)

Now [7, 466—7] it is known that the Lambert series

n
@ x _ n
a = A x
S no, o n s n
n=1 n=1
is equivalent to the relation
An = 2 ad )
d !n
and so we have from (15) that
(I7) Ck(n) = 3 R(d)
d ln

We invert this expansion by the Mobius inversion theorem and so find
The number of compositions (ordered partitions) of the

Theorem 5.
integer n into k relatively prime positive summands is given by

d-1
(18) Ry(m) = 3 C(dpun/d = 3 < > # (n/d)
d'n d!n k-1

Therefore we also have Theorem 1 in the equivalent form:
Theorem 6.

(19)
alj

n n N d-1 _
<k> = 2 [j—] s <k ] 1>u<3/d)
j=k

We have presented what seems a natural wayto arrive at relation
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(19), but we now give a very short derivation on the basis of a famous
formula of E. Meissel. First of all we note the general lemma
(20) 20X fa,j) = X T £

jsx di_] dSXjSX

dl;
= 3 > £(d, md)
d<x m <€ x/d
valid for any number-theoretic function £(d, j).
Meissel (1850 [6, Vol. 1, 441] proved that for all real x 21

(21) 2 [Z]km) =1

m < x

Thus we have

3 [?—‘]z< >#(J‘/d)
1SijJ alj M-

- s <d_1> S

d $x k-1 me/d
- d-1 :<[X]
a<x k-1 k

and this gives us (more generally than Theorem 6)

Theorem 7. For any real x 2 1, and natural numbers k 2 i,
(%] d-1

(22) = 3 [;—‘] s i (G/d)
k 1< <x aly \k-1

The arithmetical nature of Rk(n) is of interestand in view of (12)
the congruence (1) is evidently equivalent to

Theorem 8. The congruence

(23) R

is true for all natural numbers n 2 k +1 if and only if k is prime.




1964 TION, AND COMPOSITIONS WITH RELATIVELY 249
PRIME SUMMANDS

Our proof will depend on some elementary results about the bi-
i
nomial coefficients and the Mobius function.

Now

1, n=1
(24) % wu(d) ={
dln 0, n>1

Therefore, if p is anyprime whichdivides eachdivisor d of n, then

1, m =1,
p(n/d) = 2 wlpm/pd") = 3 p(m/d")

p’d,dln pd'lpm dl[m 10, m > 1,

or therefore

g 1, n=p
(25) s #(n/d)

p’d,dln )_O,n>p
NOW it is familiar that
-1\ (0 (modp), pla ,

(26)
p-1 11 (modp), pld,

and so we have
q4 -1 0 (mod p), for p*d, d’n, i.e. p]/n )
s #(n/d) =< S p(n/d), for pld, d|n, i.e. pln
d’n p-l ld,n

Thus in any case (p ’n or p)fn) we have by this and (25) that

27 s (n/d) = 0 (mod p)

for all integers n 2 p + 1 if p is a prime.

As for the converse, suppose that Rk(n) = 0 {(mod k) for all

nZk+1. Then, in virtue of (17) we should have
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(1 (modk), n 2k +1, if k|n ,
C, (n) =<
k lo (modk), n2k+1, if kfn ,

or, equivalently,

n-1

"

(2] - [nl; 1] (mod k) forall n 2k +1

k-1

Summing both sides from n=k+1 to n=m we should then have

m
-1 = =1 . >k +
<k> = [k] 1 (modk) forall m2k+1 ,

or that is
m
<k>

But this can happenonly when k = primeas we know from our original

[%] (mod k) for all m > k +1

congruence (1) for which a separate proof is known.
As a matter of fact then, congruence (23) isa simple consequence
of (1).
Table of Values of Rk(n)

1 3 4 5 6 7 8 9 10 11 12 13..... n
111 0 ¢ 0 O 0 G 0 0 0 0 0 0
2 1 2 2 4 2 6 4 6 4 10 4 12
3 1 3 6 9 15 18 27 30 45 42 66
4 1 4 10 20 34 56 80 120 154 220
5 1 5 15 35 70 125 210 325 495
6 1 6 21 56 126 252 461 1792
7 1 7 28 84 210 462 924
8 1 8 36 120 330 792
9 1 9 45 165 495

10 1 10 55 220
11 1 11 66
12 1 12
13 1
k
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The numbers Rk(n) form an interesting modification of the fa-

miliar Pascal array. Wehave from (18)the modified binomial theorem

relation

n
(28) s R s s /!
k=1 dln

In particular, when x =1 this sum represents the total number
of compositions of n into relatively prime summands. These values,
1, 1, 3, 6, 15, 27, 63, 120, 252, 495, 1023, 2010, 4095, ... afford
a check of the table.

We note a few special values of Rk(n):

s s-1
s p -1 P -1
(29) Rk(P ) = - , s 21, p=prime,
k-1 k-1
pq - 1 p-1 q-1 0
(30) Rk(PCI)z - - + , P,q primes,
k-1 k-1 k-1 k-1
2 2
2 paqg-1 pq -1 p -1 p-1
(31) R, (p7q) = - - + ,
k-1 k-1 k-1 k-1

with similar formulas for other cases. The expansion always contains
as even number of binomial coefficients when n 2 2 since Rl(n) =0
for n 2 2.

It is of interest to translate (18) into terms of Dirichlet series.
It is easily shown that the formal relation involves Riemann's Zeta

function and is

w - 00
(32) 3 Cmn® ={(s) T Rmn®

n=1 n=1

and this also follows from (17).
Having found the expansion (19) ofa binomial coefficient in terms

of the bracket function, it is natural to look for an inverse expansion.
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Put
n
n n
[E] p3 <.> A4,.0)
j=k Y
Then n n n
RIS L ALY P I SN TR Pt A <J>
j=k j [k] r=k & jer i/ \r
= Ak(n) ,

since the inner summation is merely a well-known Kronecker delta.
Thus an expansion inverse to (19) is given by

Theorem 9.

B s () = e (O

k VY d=k

Since Ak(k) =1 we have an analogy to (12)
Corollary 2.

n
n n o .
(34) (2] - <k> =z () ALG)
j=k+1
where
Jj .
o j-d (I\ ra
(35) A = s D (d) HE

d=k

For Ak(j) we next develop an expansioninverse to (14). Indeed,
we have from (35), (2), and (3)

3 a0 () :
j=k

"
[o}
IR =]
n
—
fo}
—
b e
—
8
S
.
N———
~~
"l
[
Nailg
| S

1
o
1
L)
M3
—
faglen
| S—
»
A
I
%
.
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It is evident from (35) that Ak(j) =0 for j <k, so we have

Theorem 10. The expansion inverse to (14) is
j k
o . X b d
(36) > A (T‘;z) = —x -
=1 1-x

Now it is evident that (14) and (36) implya pair of orthogonal re-
lations involving the functions Rk(j) and Ak(j). By a routine calcula-
tion we find upon substitution of the one expansion into the other that
we have

Theorem 11. The numbers Rk(j) and Ak(j) satisfythe orthogonality

relations
n

(37) s R A =5
j=k

and
n

(38) 3 Ak(j)Rj(n) = 82
=k

Thus we have also established a general inversion theorem, of

which (19) and (33) are special cases. We have

Theorem 12. For any two sequences f(n, k), g(n, k)
n

(39) fln, k) = 3 g R ()
j=k

if and only if
n

(40) gln,k) = 5 f(n,J)A0)
j=k

where Rk(j) is given by (18) and Ak(j) by (35).

Analternative form of (35) is easily gotten by way of the recurrence

-G
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Indeed we find that
n .
. [n-1 5 . .
- n-j TJ j-1
Agm) =3 (1) ( > I[E] - 3 }
=k -t

but [j/K] - [G-1)/k] =1 or 0 accordingly as k|j or kfj, whence

Theorem 13.

. n-l n_l
(41) A (n) = s (_l)n-.]< >= s (_l)n—mk< >
k< j <n U0 1< m S mk-1

klj
Table of Values of Ak(n)
1 2 3 4 5 6 7 8 9 10 11 12 13..n

1 1 0 0 0 o0 O 0 0 0 0 0 0 0
2 1 -2 4 -8 16 -32 64-128 256 -512 1024 -2048
3 1 -3 6 -9 9 0 -27 8l -162 243 -243
4 1 -4 10 -20 36 -64 120 -240 496 -952
5 1 -5 15 -35 70 -125 200 -255 275
6 1 -6 21 -56 126 -252 463 -804
7 1 -7 28 -84 210 -462 924
8 1 -8 36 -120 330 -792
9 1 -9 45 -165 495
10 1 -10 55 -220
11 1 -11 66
12 1 -12
13 1
K

The numbers Ak(n) alsoform an interesting modification of the

Pascal array, and the companion to (28) is
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n n

]

k-1 n-j (" j k-1

(42) ToAmx T = I <> 3 [JE] x
k=1 j=1 I/ k=1

When x =1 we recall that
j
k=1 k=1 alx

and so we have

n n . n J
An) = X <-1)n'3(_> T (k)
k=1 j=1 I/ k=1
n n ) n
= X 7k I (_1)n'3< >
k=1 j=k J
n n-1
- 3 <—1)“‘k< > 7 (k)
- k-1
n-1 n-1
- 3 (-1)n‘1‘k< > r (k+1)
k=0 k

This result is easily inverted, and we may state these formulas as

Theorem 14. For allintegers n 20, and 7 (k) = number of divisors
of &,
n+l n
n-k (" n
(43) 3 A.(ntl) = X (-1) r(k+l) = A r(x)
=1 k=0 k x, 1 x=1

and inversely

n
(44) T(ntl) = 2() b Aj(k+1)
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The first few values of the sum (43) are 1, 1, -1, 2, -5, 13, -33,
80, -184, 402, -840, ... For example, we have the following differ-

ence table:

1 2 2 3 2 4 ... r(n)
1 o 1 -1 2
-1 ) 3
2 -3 5
-5 8
13

The arithmetical nature of Ak(n) is of interest. In view of (34)
and (1) we evidently have a result analogous to (23). In fact we have

Theorem 15. The congruence

(45) A (n) = 0 (mod k)

is true for all natural numbers n 2 k + 1 if and only if k is prime.

Indeed this congruence follows easily from (1) since we have

n .
am = s () [E]

j=k )
o .. n J (mod k) for all n 2k
=z D if and only if k = prime,
- j k
j=k
n
=8, = 0 (modk) forall n2k+1.

We should like next to return to relation (28) and give another

congruence involving Rk(n). It is known [6, Vol. 1, 84-86] that

(46) 2@ a™d - o (mod n)
dln
for all integers a 2 1. In fact Gegenbauer showed that
Ef(d)an/d—O( d n) wh £(d) = 0 (mod n)
d‘vn = mod n) whenever d]n = mod n).

Gauss proved (46) when a = prime. Thus we have from (28) that

z k-1
(47) a ¥ R, (n)(a-1)""" = 0(modn), (a 21, n 21)
k=1 K
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and in particular this holds for a = 2. Thus the numbers 2, 2, 6, 12,
30, 54, 126, 240, 504, 990, 2046, 4020, 8190, ... are, respectively,
divisible by 1, 2, 3, 4, 5, ... therebyaffording a check of the column
sums in the table of values of Rk(n) given previously.

It should be remarked thatany formula, suchas (18), which gives
the number of compositions of n into k relatively prime positive sum-
mands also solves the problem of counting how many compositions are
possible when the summands have greatest common divisor g; for

clearly if Rk(n, g) 1is this number, then

0, g}“n,

(48) R, (n,g) = z 1 = z L= Rk(n/g),g\n.

a t...fa =n b, +. ..+bk:n/g
(@p---ha) =g (bys-enbp)=1

Thus far we have restricted out attention to compositions. It
may therefore be of some interest to consider the possibility of expan-
sion ofa binomial coefficient interms of bracket functions and partitions.
Let

(49) p(n, k) = 3 1
1<b b. < ... €b_ <n
by

IN

2 k

1
+b2+... +bk = n

so that p(n, k) is the number of partitions of n into k positive sum-

mands. Consider a typical partition n = b1 +..00 1 bk' If 1 occurs

a; times, 2 occurs a, times, etc., then it is well known (e.g. Cf.

[1, Vol. 2, IOZ]) that we may restate (49) in the form

(50) p(n, k) = z 1
a1+2a2+3a3+... nan

+
= >
1+a2+...+a.n k, ai_O

n

1l

a

We recall that if we form an arrangement of k marks (CICZCI
c4c3...), where c., occurs a times, c¢., occurs a., times, étc.,

1 1 2 2
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with k = a) ... + a, a > 0, then the total number of distinct such
arrangements (permutations) which may be formed is enumerated by

the expression

This expression then enumerates the compositions of n into k
positive summands corresponding to a givenpartition n = bl + bZ +...
+ bk' It follows from this that we may change relation (50) into an enum-
eration of compositions by introducing the above ratio of factorials (in-

stead of just counting 1 for each partition). Thus we evidently have

proved
Theorem 16. For all natural numbers n and k
n-1 '
(51) - s — k. _
k-1 B RETLEEEEN
a1+2a2+3a3+...+nan~n
a, ta,+... ta =k, a, 20
1 2 n i

Again we may argue as we did in going from (6) to (7), whence

we have established

Theorem 17.
n n
1
(52) 2’ z S —
Kk _ . _ al.az....aj.
j=k al+2a2+3a3+... +Jaj—_]
= >
a1+a.2+... +a‘j k, ai_O

We may nextapply the same argument here which we used to ob-
tain Theorem 1, which is to say that we may restrict our attention to
relatively prime summands, but have the same total enumeration of
compositions, by introducing the bracket function. We evidently have
Theorem 18.

n
63 ()= T[2] 3 —
Kk 4 ) . _.al'aZ""aj'
j=k a1+242+3a3+...+3aj—3
a1+a2+.. +aj:k
@ gy eer 3=l
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It follows that the inner sum gives another way of expressing

Rk(j), that is, we conclude that

(54) Rk(n) = b3 m ,
a1+2a2+3a3+...+nan:n n
a1+a2+... +an=k
(al, @ tees an)zl

and of course the arithmetical properties we found for Rk(n) then ap-
ply to this summation also. Thus, also, in Theorem 12, our main in-
version theorem, we have several ways of expressing the coefficients
Rk(n) and Ak(n).

Some further consequences of Theorem 12 and the other expansions

in this paper will be presented later.
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LETTER TO THE EDITOR
B.G. BAUMGART

Glencoe, lllinois
Dear Sir:

In the article '"On the Periodicity of the Last Digits of the Fib-
onacci Numbers'' Vol. 1 No. 4, it was proved that for n 2 3 the n-th
digit (from the right) had a period of 1,5* 10" thus accounting for the
observation made at the University of Alaska on an IBM 1620; that the
last Fibonacci digit cycles every 60 numbers; the second to last digit,
every 300 numbers; the third, every 1500; the fourth, 15000; the fifth,
150000.

I,too,have observed the periodicity of the last Fibonacci digits on
anIBM 709 at Northwestern University (before discovering the Fibonacci
Quarterly). However, I also considered the so called:

Tribonacci Series
1,1,1,3,5,9,17,31,57,105, 193, 355, 653,1201, 2209, 4063, 7473. ..

and found that its last digit repeats every 31 numbers, its second to
last digit repeats every 620 numbers and its third to last digit repeats
every 6200 numbers;

Tetranacci Series
1,1,1,1, 4, 7,13, 25, 49, 94, 181, 349, 673, 1297, 2500, 4819, 9289. ..

and found that the last digit repeats every 1560 numbers as does the
second to the last digit. That is the period of the last and the second to
the last is the same. The periodof the third to last digit is 7800 and I
believe the period of the fourth to last digit is also 7800 but I can not
say for sure withmy present results (Igotallmy data from one program
whichtruncated at the fourth digit, at the time I was only thinking about
the very last digit. However, it will be easy to find out and I shall do
so when I get a chance. Actually, this sort of problem is a program-
mer's dream, because one may lose the most significant part of his
calculations with impunity. )

Pentanacci Series
1,1,1,1,1,5,9, 17, 33, 65,129, 253, 497, 977,1921, 3777, 7425, 14597...

(Continued on page 302.)



FOURTH POWER FIBONACCI IDENTITIES FROM PASCAL’S TRIANGLE
VERNER E. HOGGATT, JR. and MARJORIE BICKNELL

San Jose State College, San Jose, California

In this paper, matrix methods are used to derive some new
fourth power Fibonacciidentities. We let S be the 5X5 matrix which
contains the first five rows of Pascal's triangle beneath and on its

secondary diagonal; that is,

W
1
I l
— O O O O
o o- O O O
= N O O

W = O
A

The right column elements of s™ = (Sij) are given by

4 ..
5-i _Li-1 .
Si5"<. >Fn Fn+1’ i=1,2, ..., 5.
i-1
Proof is by induction. Obviously, S has this form. Since
s?t - ey = ss?,
1)

by definition of matrix multiplication,

4
t15 - l:‘nJrl ’

4 3 B 3
ths = o T Fon T fFan o

4 3 2.2 _ 2 2 2
tgg = OF 4y TI2F F o H O F 0 = O Fopy T 28 F i T )

2 2

- 6F1'1+1Fn-l-2 ’

4 3 2.2 3

t45 - 4Fn+l * IZFnFn-I-l * 12FnFn-i-l * 4F1an+1
3 2 2 3 3
4Fn+1(Fn+l * 3Fn+1Fn * 3Frr}'l Fn * Fn) - 4FrH-an+2 ’
) 4 4

t55 - (Fn+Fn+1) B Fn+2
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Since only the recursion relation of the Fibonacci sequence was
used above, we have almost immediatelya matrixidentity for general-

ized Fibonacci numbers. Let u be the nth member of the general-

ized Fibonacci sequence defined by u, =a, u,=b, and u =u_+u .
1 2 n+l n n-1
Let U= (aij) be the column matrix defined by
4 .
~ 5-i i-1 . _
a;, - ( >u1 u, i=1, 2, ..., 5
i-1
By our earlier proof, we can write
— - e —
4 4
! "+l
3 3
4:U.Iu2 4un+1un+2
n. _ n 2 2 _ 2 2 B
SU = 5 jbupuy o= bu | T Ui
3 3
4uyuy 4041 %042
4 4
92 Ynt2

By the Cayley-Hamilton Theorem, S must satisfy the matrix

equation

(1) s™s® - 58t - 158 + 1582 455 -1) = 0

Consideration of Equation (1) leads us to the matrix equation

(1" U - 50U - 15T
n

n+b n+4 * 15Un +5U -0, =0

+3 +2 n+l n

where Un is defined as the matrix Sn_lU. Since the elements in the

first rows of the matrices of Equation (1') must also satisfy the re-

cursion relation of (1'), we have the identity
4 4 4 4 4 4
Upes ~ Uy T By 3 s s Su L, - uy)

Equation (1) can be rewritten as

(5-1° = 258%(s - 1)

It can easily be shown by induction that
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s - I)4n+1 - 250 SZn(S -1
We plan to investigate
(2) (s - It - s gthg gy
(3) (s - I)4n+2. e SZn(S - I)2 )
(4) (s - I)4n+3 e SZn(S _ 1)3 ,
(5) (S - I)4n+4 - 25D SZn(S _ 1)4 )
From Equation (2),
4n+l
. . [4n+1 - .
+
SJ(S _ I)4171-!-1 _ Z (_1)1< ) giti  _ 25D SZn+J(S - 1)
i=0 b

Thus, equating elements inthe upper right corner of these matrices,

4n+1

20 (-1t ot i oo s pt SFt )y - A
(2" Z i itj ~ 2n+j+1 2n+j’ T
i=0
Similarly, from Equations (3), (4), and (5), we obtain
4n+2
. [4n+2
i 4 n, 4 4 4
(3 2, (1) ( . >Fi+j = 25 (F 42 7 2  ansge1 T Fonsg)
i=0 !
= A T Ay
4n+3
. [4n+3
i 4 _ _.n,_A4 4 4 4
(4 2 (-1 ( . >F1+j = 25 (F, 1437 3 ontie2 V3201541 T Fongy)
i=0 !
= A, - 2Ag H A
4n+4
. [4n+4
i 4 O o g § 4 4
- =2 F -
(5) 2 (1) < . >F1+j > e Fonte3 TOF oy
i=0 ' 4 4
“4F i+ T ongg)
= Ajp-3AL, 345, - A
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But, also from (2),

4n+5

. 4n+5\

i 4 __n+l, 4 4 B
2 D < . /Fi+j = 25 (Foneges ™ Fonijea) = 25 454,
i=0

so that we have the recursion relation

(6) A.

44 4Aj+3+6Aj+2-4Aj+l +Aj: 25 A,

j+2

By use of well-known Fibonacci identities, we can rewrite Equa-

tions (2") and (4') respectively to yield the following:

1

4n+1 i4n+1\ . .
2 ot )Fi+j 25 Fonti-1F2n+j+2F2(2ntj)+1

i=0 b

4n+3 . 4n+3 . .

Z (-1) . Fiyi = 2% LonyilontisF2(anty)+3
i=0

Equating elements in the first row of the column matrices formed by
multiplying Equations (2) and (4) on the right by the matrix U, and

taking u, = 1, u, = 3, we can rewrite Equations (2') and (4') to yield

1
the identities

2

4n+l1 : dn+l . N
2 o Lit; = 25 BLoniii1 Pantie2F2(2ng)+1)

i=0 *
and
4n+3

i 4n+3 4 n
> I L = 255, 3 F o (ngy 43

i=0 b

1t

for fourth powers of members of the Lucas sequence Ln

Returning to the recursion relation of Equation (6), we define

4 4 4 4 4
n+j+4 4Fn+j+3 - 19F 4F +F

GGy = F n+j+2 ~ *Fn+j+l T Fntj

By (6),
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n .
+1) - G(j)) = - - - =
25(G(+L) - GU)) = Ay - 4850 - 194, - 4A,,) + Ay=0

Thus, G(j+1) - G(j) = 0, sothat G(j) isa constant. Taking n =j = 0,
G(j) = -6, leadingto anidentity given by Zeitlinin [l] . If we redefine
G(j) by replacing the Fibonacci numbers by the corresponding Lucas
numbers, we find that G(j) = -150. Further, if we replace members
of the Fibonacci sequence by the corresponding generalized Fibonacci
number, we obtain G(j) = —6D2, where D 1is the characteristic of
the sequence,

2 2

D = uz-ul-uu

172

(See [2] and [ 3] for properties of the characteristic of Fibonacci-type

sequences. )

Finally, we derive another property of the characteristic of a

sequence. 5 It is vszfell—known that F2n+3 = 3F2n+1 - FZn-l and that
F2n+l = Fn+1 + Fn. Define
Gm) = F2, - 3F2 + Fo_|
Then,
G(n+l) + G(n) Fonis - 3F, ntF, 1 =0,
so that G(n) = (-1)"2. That is,
(-1)%2 = Fo, - 3F2+F.

For generalized Fibonacci numbers, it can be shown by induc-

tion that

n 2 2
0o 0 1 Uy ur1+1
n p—
R'U = 0o 1 2 Zulu2 2un+1un+2
1 1 1 2 2
2 Ynt2

The 3X3 matrix R given above has been discussed in an earlier

article [4] . From the characteristic equation of R, we obtain
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121+3—2u2 -ZuZ -i-uZ = 0

e n+2 n+1 n

Rewriting and defining H{(n),

2 2 2 _ 2 2 2 _
H(n) = Ynt2 T 3un+1 * Uy T U3 Tt 3U’n-l-Z = - H(ntl)
Thus,
a n, 2 2 2, n,, 2 2 _ n+l
H(n) = (-1) (uz - 3u1 + uo) = (-1) Z(u2 -uy - uluz) = (-1) 2D ,
where D is the characteristic of the sequence. That is,
n 2 2 2
(-1)7"2D = Ui 3un +un__l
REFERENCES
1. David Zeitlin, "On Identities for Fibonacci Numbers, ' The
American Mathematical Monthly, 70(1963), pp. 987-991.
2. Brother U. Alfred, '"'On the Ordering of Fibonacci Sequences, '
The Fibonacci Quarterly, 1:4, Dec., 1963, pp. 43-46.
3. A. P. Boblétt, Elementary Problem B-29, The Fibonacci Quar-
terly, 1:4, Dec., 1963, p. 75.
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AN ANALYTIC PROOF OF THE FORMULA FOR F,

PETER HAGIS, JR.
Temple University, Philadelphia, Pennsylvania

The Fibonacci sequence is defined recursively by the relation-

ship F_,,=F +F | forn 2 1, while Fq=7F, =1. The two most
common procedures for expressing Fn as an explicit function of n
are, rather naturally, 'finite'' in nature. The first of these methods
employs the principle of finite induction, while the second involves
the solution of a simple finite difference equation. In the present paper
I wish to make an analytic attack onthe problem employing in particu-
lar the theory of residues. The use of such powerful weapons to solve
such a simple problem may seem rather absurd, but I am hopeful that
the paper may serve as an elementary example of the analytic tech-
niques which have been employed so successfully in attacking very
deep and difficult questions in the theory of numbers.

As is well known, the generating function of the Fibonacci num-

bers is given by

f(z) = 1/(1-z-z2) = Z Fnzn
n=0

If we consider z to be a complex variable then f(z) is an analytic
function whose only singularities are simple poles at the points

r = (-1 +¥5)/2 and s = (-1 -VE)/2
r and s, of course, are the roots of the equation z2 +z - 1 = 0. By

Cauchy's integral theorem we have

) B 1 f(z)dz
LI £77(0)/nt - = 2 w1 n+l
C =z
where C 1is the circle |z] =1/2, 1f M is any circle with center at

the originand radius greater than ,s ] then by Cauchy's residue theorem

_ 1 f(z)dz
(1) Fn T 271 fr\ Zn+1 - (R1+RZ)
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FOR F
n
where Rl and R2 are the residues of f(z)/z at the poles r and

s respectively.

Now
R, = lim (z-1)i(z) /2”1 = 1/<s—r)rn+1>,
Z - T
and
R, = lim (z—s)f(z)/zn+1 = —l/és—r)sn-ﬂ) .
Z 8
Since rs = -1 and r-s =V5 we have after simplification
1 n+l
_ 11+ v5\™" 1 - \/5
(2) SR 4R, = - (———) -
1 2 V5 2
If P is the circle Izl S then, since on[ |
we have
(3) 1 f f(z)dz < 2 7S _ 1
2wl Jm Zn+l o n+l(S -S-1) Sn(SZ-S-l)

i
Since S may be taken arbitrarily large we conclude from (1),

(2), and (3) that

- 1 (/1 +vE) "t <1 - \@)n“
¥ = — J——, - —_—
n vE | 2 2
Editorial Note: Since rs = -1, then
r-(n+1) - (_S)n+1
and
-(ntl) _ (_r)n+l’
where
_1+ V5 _1- V5
-8 = and -r = —

PO 0 0.0.0.9.9..0.0.6.9.9.4



CONTINUED FRACTIONS OF FIBONACCI AND LUCAS RATIOS
BROTHER U. ALFRED
St. Mary’s College, California

The purpose of thisarticle is tolay the groundwork for continued
fraction representations of Fibonacci and Lucas ratios. We assume
the general theory of such fractions to be known and refer the unfa-
miliar or rusty reader to the very readable work of C. D. Olds [1] .
This paper will dealwith ratios in which the Fibonacci and Lucas num-
bers enter linearly since such resultsare the simplestand most funda-
mental, being necessary for more advanced developments.

1. THE RATIO F_/F
n n-a

Two cases may be distinguished depending on whether a is odd
or even.
Case 1. a = 2k-1

F /o ok = Lorer Vo a2/ Fao2ks

This devolves from the relation:

FoFnoaciz © Doxo1Fn-2xn
The next partial quotient results from the reciprocal of the fraction

and hence is again L Thus for odd a, all

F - aicr2/ Fno2ks1 2k-1"
the partial quotients are LZk-I’ the termination depending on the value
of n modulo 2k-1.

Example. F54/F47. There will be six partial quotients L7(29) after
which there will be a remainder F5/F12. This latter gives partial

quotients 28,1, 4. Thus

F54/F47 = (296: 28:114):

where the subscript 6 adjacent to 29 indicates the number of times 29
appears as a partial quotient.
Case 2. a =2k

It can be shown that

269
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F -F
- n-2k n-4k
Fo/Foox = Lo~ 1P —F
n-2k
Then
Fooax Ly F -4k
Foo2k ™ Fnoak Kook~ Fhoax
Next
Foook ™ Fnoak Fr-ax ~ Faoex
oy = Lpg-2# oy
n-4k n-4k

Thus, thereis a repeating pattern. The firstpartial quotient is LZk-l;
this is followed by (1, LZk-Z) as a repeated pattern, the remainder
after r such partial quotient pairs being

k- F

Foo2(r41) n-2(r+2)k
F

n-2(r+l)k

Example. F40/F32 hasa first partial quotient of Ls-l = 46 followed

by three sets (1, 45) and a remainder

F, - F

Thus
F4O/F32 = [46, (1, 45),, 1]

which could also be represented [46, (1, 45)2, 1, 46]

2. THE RATIO L_/F
n n-a

Case 1. a odd

Foa” Tnza
L/F _, =5F -1+ -
n-a
where the relation 5F_F =L + L has been used in arriving
a n-a n n-2a

at this result.
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Then
F L
n-a -1+ n-2a
F - L B F - L
n-a n-2a n-a n-2a
Next
Fn-a " n-2a Ln-Za. Fn—3a
L = F -2¢ L
n-2a n-2a
where the relation F_L =F + F has been employed.
a n-2a n-a n-3a
Then
Ln—Za -1 Fn—3a
T - =1l+g -
n-2a n-3a n-2a n-3a
Finally
Ln—Za n-3a Fn—3a n-4a
= BF -2+
F a F
n-3a n-3a

The form of the remainder is the same as that of the first remainder
so that a cycle has been completed. In summary, the first term is
5Fa-1;thecyclethatisrepeatedis 1, Fa—Z, 1, 5Fa—2;the remainder

after r cycles is:

Fo_@2r+1)a - Mn-(2r+2)a

Fn—(Zr+l)a

Example.
Lgg/Frq = (64, (1,11,1,63),, 1,10, 3]

The verification of this development is shown below.
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0
1
64 64
1 65
11 779
1 844
63 53951
1 54795
11 6 56696
1 7 11491
63 454 80629
1 461 92120
11 5535 93949
1 5997 86069
63 3 83401 16296
1 389399 02365
11 46 66790 42311
1 50 56189 44676
63 3232 06725 56899
1 3282 62915 01575
11 39340 98790 74224
1 42623 61705 75799
63 27 24628 86253 49561
1 27 67252 47959 25360
10 303 97153 65846 03161
3 939 58713 45497 34843
Lge
Case 2. a even
Ln/Fn-a

where the relation 5F F =L -1L
a n-a n-

formation. Then

Fn-a.
= F

n-2a

by virtue of the relation Fa Ln

i
Ul
o
+

a

=F _-F

—_— 0

12

13

831

844

10115

10959

7 00532

711491

85 26933

92 38424

5905 47645

5997 86069

71881 94404
77879 80473

49 78309 64203

50 56189 44676
605 96393 55639
656 52583 00315
41967 09122 75484
42623 61705 75799
4 68203 26180 33474
14 47233 40246 76221

Fa9

has been used in the trans-

F

n-3a

n-2a

December

Thus the pattern is

-2a n-a n-3a’
(5F_, Fa)r

with a remainder after r periods of

Fn—(2r+l)a

I"n-Z.ra
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Example. L79/F71 = (5F8, F8)4 with a remainder of F7/L

15°
Thus

L79/F71 = [(105,21)4, 104,1,12]
3. THE RATIO F_/L
n n-a
The algebra is quite similar to that in the case of Ln/Fn . SO

that only the final results will be given. If a is even, the partial

quotients are given by
(Fa, SFa)r
with a remainder of

L1'1—(21'+1)a

Fn-Zra

If a is odd, there is a first partial quotient of Fa-l followed by

cycles

(1, 5% -2, 1, F_ -2)
a a r

with a remainder of

L F

n-(2r+l)a = " n-(2r+2)a
Ln-(2r+l)a

4, THE RATIO L_/L
n n-a

Case 1. a even

L - L

_ n-2k n-4k
Ly/Ly g = Lo -1 F T
n-2k

the relation Ln- LZkLn— 2k T Ln-4k being used inthe transformation.

Then
L2k C 1 Lpax
- bnok T Faoax L2k ™ Mook
and ’ _ -
Ln-Zk Loax - L. -2+ Lo-ak ™ Tniok
T = Lox T

n-4k n-4k



274 CONTINUED FRACTIONS OF FIBONACCI December

Hence the pattern is: LZk -1, (L, LZk —Z)I with a remainder

Lo 2(r+1)k - Mn-2(r+2)k
Lno2(r+1)k

Case 2. a odd

L

n Ln—‘]:k+2
2k-1 “—

——e— = ], +
I"n-2k+]. Ln- 2k+1

Thus the process is a repeating one, the remainder after r partial

quotients being

Fn-(r+1)(2k-1)
Lo (2k-1)

5. GENERAL FIBONACCI SEQUENCE
Let the sequence be taken in the standard form [2] in which

f.=a, f,=b, a<b/2

1 2
Then
fn = Fn—lb + Fn_za
so that
fn i Fn-lb + Fn-Za
fook Frno1-k® T2
If k is odd,
F /P = Lt F L /Ty
so that
£ _ L (Fop - b Fp WP - F o Tyl
f -k k bE 1k tal, ok
_ n-2k
= L+
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275
Hence, there is a series of partial quotients (Lk)r with a remainder
L (r+1)k
—
n-rk
Example. Using the series (1, 4),
f62/f55 = (L;), with a remainder f6/f13 = 23/665
Thus
fo/f5s = [(29)7, 28, 1,10]

If k is even,

f -f
_ n-k "n-2k
fn/fn_k = L -1+ —"—
n-k
Then
f'n-k -1 fn-—Zk
i BRI e e
n-k n-2k n-k n-2k
f f
n-k n-2k _ Lk 24 n-2k "n-3k
n-2k n-2k
so that the pattern is
Lk -1, (1, Lk—Z)r

with a remainder

fn-(r+1)k - fn--(r+2)k
fn—(r+1)k

Example. f93/f83 in the (1, 4) series.

f95/Tg3 =[122, (1,121),]

with a remainder
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the latter yielding partial quotients 1, 132. Thus

£93/£83 = [122, (1,121),, 1, 132]

The verification of this expansion is shown below.

0 1
1 0
122 122 1
1 123 1
121 15005 122
1 15128 123
121 18 45493 15005
1 18 60621 15128
121 2269 80634 18 45493
1 2288 41255 18 60621
121 2 79167 72489 2269 80634
1 2 81456 13744 2288 41255
121 343 35360 35513 2 79167 72489
1 346 16816 49257 2 81456 13744
121 42229 70155 95610 343 35360 35513
1 42575 86972 44867 346 16816.49257
121 51 93909 93822 24517 42229 70155 95610
1 52 36485 80794 69384 42575.86972 44867
132 696410036 58721 83205 56 62244 50519 18054
Since £93 and £83 both have a factor of 5, these final quantities dif-

fer from them by this factor.

CONCLUSION

The continued fraction developments of the Fibonacci and Lucas
ratios featuredin this article are not only of interest in themselves by
their mathematical patterns. They provide a ready means of recog-
nizing Fibonacci and Lucas ratios thatarise in attempting to formulate
laws for the continued fraction developments of non-linear relations.
This wider field offers manya challenge to the searcher after additional

relations characterizing the Fibonacci sequences.

REFERENCES
1. C. D. Olds, '"Continued Fractions, '" Random House, 1963.
2. Brother U. Alfred, ''Onthe Order of the Fibonacci Sequence, ' Fib-

onacci Quarterly, Dec. 1963, pp. 43-46.
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A GENERALIZATION OF FIBONACC! NUMBERS

V .C. HARRIS and CAROLYN C. STYLES
San Diego State College and San Diego Mesa College,
San Diego, California

1. INTRODUCTION

Presented here is a generalization of Fibonacci numbers which
is intimately connected with the arithmetic triangle. It at once goes
beyond and falls short of other generalizations. In section 2 the num-
bers aredefined and denoted by u(n; p, q) where p isa non-negative
integer and q is a positive integer. The characteristic equation is

shown to be

(1.1) LPx-1)%-1 = o.

The numbers are represented in the usual manner in terms of powers
of roots of the equationand certain initial conditions. In section3cer-
tain sums and properties involving sums are developed and in section
4 there is made a beginning in the study of divisibility properties.
The generalization made here may be compared with character-

istic equations obtained in other generalizations:

by Dickinson [2] , x“-x*-1 =0 (a, ¢ integers)
by Miles [4], Koo Dxo1 = 0 (k integral, 2 2)
by Raab [5] s Xr+1 —ax' -b=0 (2, b real; r integral, 2 1)
by Feinberg [8] , Xnu+1 - ; Xui = 0, various positive inte-
i=0 gral values of u, n.

Generalizations by Basin [1] and Horadam [3] involve altering only the
initial conditions of the Fibonacci sequence.

The numbers studied here are special cases of sums defined in
Netto [6] and Dickinson [2] and their definition and relationto the arith-

metic triangle appear in Hochster [7] .
2. THE NUMBERS u(n; p, q)

Let p and g be integerswith p 20 and g > 0. Thenbydefi-

nition the n-th generalized Fibonacci number of step p, q is

277
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e

(2.1)  ulmp a) = <n{§p> ,n 21, uop, )=l
i=0
Here [x] denotes the greatest integer <x. In particular,
u(n-1; 1, 1) = fn (the n-th Fibonacci number), n=1, 2, ...
u(n; 0, 1) = 2%

When the definition is related to the arithmetic triangle one sees that
u(n; p,q) is the sum of theterm in the first column and the n-th row
(counting the top row as the zero-th row) and the terms obtained start-
ing from this term by taking steps p, q -- that is, p units up and q
units to the right.

It follows that

u(0; p, q) = u(l; p, q) = ... =ulptq-1; p,q) = 1, ulptq; p, q) = 2
1f V is the backward difference operator, so that
Vi(x) = {(x)-f(x-1),
then
(2.2) v. u(@ p.q) = u(n-p-q; p» @), 0 2p+q

From properties of binomial coefficients and

v um; p, @) = v&! v p, a)
it follows that
=
_ptq
Vamp 9= £ (PTP;I71P)

1

u(n - p - q; p, 9) ) Z2p+tgq
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This proves (2.2). In terms of forward differences this is

viun-q; p, @) = uln-p-q; p, @) , n2p+gq
The characteristic equation and initial conditions consequently are
(2.3) xPx-1)3-1=0

u(n; p, q) =1, n=0, 1, ..., p+qg-1l.

Let
ptq
u(n; p, q) = X C. X].’l+1
i1
i=1
where X i=1,2,...,(ptq) are the roots of (2. 3).

The derivative of
f(x) = xP (x-1)T -1 is £'(x) = pxP Hx-1)T + g xP (x-1)%7!
-1 -1
= xP7H (x-1)T ((ptq) x-p)

Since no root of f'(x) 1is a root of f(x), it follows that f(x) has no

multiple root. Hence the determinant of the coefficients of

ptq .
+
s cixlirl =u(n; p, 9 =1, n=0, ..., ptq -1

i=1

is different from zero. The system can be solved by Cramer's rule

with Vandermondians (as in several of the references). It results that

c, = 1/((pta)x; - p)

and
ptq X?H.

(2.4) u(n; p, q) = X m , n=0,1, 2,
i=1

There is apositive realroot x; > 1. This follows from £(1)< 0
and £(2) 2 0. Since f'{(x) # 0 for x > 1 there is no other real root
> 1. Also ,Xl ’ exceeds the absolute value of each other root. For if

%, # X is a root and IXZ] 2 %, then
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ng(xz—l)q |= Ilep lxz-l |q> ]xllp le—l ]q >1
sothat (2. 2) cannot be satisfied, a contradiction. From this itfollows
lim u(n+l; p, q)

(.5) n> © u(m p,q) | 1

To show this, merely note

. n+2
lim u(ntl; p,q) _ lim u(ntl; p, q)/Xl _
n-»e uln; p,q) = no>w otz - %1

u(n; p, q)/x;

We remark that if we choose initial conditions u(0; p,q) =
u(l; p,q) = ... = u(ptq-2; p,q) = 1, ulptq-1; p,q) = p+q+l, then we

have a sequence (w(n; p,q)), where

ptq
w(n; p, q) = XY X , n=0,1, 2, ...

i=1

Moreover, a convenient form for expressing u(n, p,q) arises

from writing the difference equation as

(2.6) wuln; p, q) = (P uln-1; p, q) - (J) wln-25p, @) +- ...

-1
+(-1)17" u(n-q; p,q) +uln-p-q; p, q), n 2p+gq

3. SUMS
Theorem 3.1. The relation
n q-1
. i g-1 .
(3.1) X ulp @)= I (D untpta-iip @) - 8
i=0 i=0

holds, where 81q is Kroneeker's & and (q-il) =1 in the case

q=1, i=0
If (3.1) holds for n, for q 2 2, then
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n+l n
2 u(; p, 9 = ulntl;p, q) + u(i; ps Q)
i=0 i=0
q .
= 2 (-1)" (D ulntliptq-is p, Q)
i=0
q-1
i -1 .
+ 2 (-1 (U ulntpta-isp, q) - 8
a
i=0
q-1
i -1 .
= 3 (1" () utlipta-isp, @) - 8y
i=0

Hence (3.1) holds for n+1. When n =0, with g 2 2, then (3.1) be-

comes

0 q-1
3 ou@poq = = (-1 (q'il) ulptq-i; p, q) - 8y
i=0 i=0
q-1
- uptaip @) + = (DT (3T =1=u0ip, q
i=1

To complete the proof, we consider q =1. Then

u(i; p, 1) = u(ptl+i; p, 1) - u(p+i; p, 1)

Hence

3 u(i; p, 1) = u(ntptl; p, 1) - u(p; p, 1)

= u(ntp+l; p, 1) - 611
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Theorem 3. 2.

m q-1 k
4 1 k
(3.2) 2 (-7 ulip,q) = ———er I X (1) () ulmtpta-kip, @)
i=0 ==-107 72 0 50
m+p
+ (-1 9 s (C1)! w(isps q)
i=m+1
+ (-1t et cymteta-l pa

where € =0, ptq even, and € =1, pt+tq odd.
Proof. Writing

m-j .
J u(m+p+q-j; p, q)

il

(-1)) u(m-j; p.q) = (-1)

-j-1 .
+ (-0 () uwlm+pta-j-1; p,a)

T Dl (&) u(mtp-j; p, q)

and summing for j=0, 1, ..., m gives for the sum S,

q-1 k m-q
k
s= 2 X (1) @) u(m+ptq-k;p, q) + (-1)92%9 3 (-1)F u(m+p-1; p, q)
k=0 j=0 r=0
F(-ymotgatt
q-1 k m+p
> <-1)k<‘}.) u(mtpta-ki pra) + (-1)2 29 (-1)F u(m+p-1; p, )
k=0 j=0 r=0
rn+p
sn™ eyl 9 3 (C)T u(mip-r; pq)
r=m-q+l
q-1 k m+p
k + -1 .
= 3 = (-1) (‘}) w(mtptg-k; p,q) + (-1)P74 29 T (-1)7 M u(i; p, q)
k=0 j=0 i=0
ptg-1

s enmrlasl o cpymtpta-laa s s p, q)

i=0
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Solving for S, and noting

ptg-1

RTLI _ J 0 ptq even, | _
2 (-1 ulispg) = { I ptq odd =
i=0

we get the result (3. 2).

From (3.1) and (3. 2) we can obtain expressions yielding

n n
2 u(2i; p,q) and 2 u(2i+1;p,q)
i=0 i=0

In the simpler case where q =1, we find

2n-p-n
n 2
(3.3) I u(i+1;p,1) =% (u2n4p+2; p,1) -1 + 5 u(2itn; p, 1)
i=0 i=0
and
2n-p-1
n 2
(3.4) = u(2i; p, 1) =% [u(2n+p+2; p,1) -1 - 3 u(2it+m; p, 1)]
i=0 i=0

where 7 =0 when p is evenand =1 when p is odd. Inthiscase

it is simpler to start with

u(2i+l; p, 1) = u(2i; p, 1) + u(2i-p; p, 1) , 2i 2 )

u(2i; p, 1) , 052i<p

and sum. We obtain in this way

2n-p-1
n n 2
(3.5) 3 u(2itl; p, 1) = b u(2i; p,1) + p3 u(2i+n; p, 1) .
i=0 i=0 i=0

Since we also can write
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2n+l
3 u(i; p, 1)
i=0
as
n n
(3.6) 3 u(2it+l; p, 1) + ¥ u(2i; p, 1) = u(2n+p+2; p, 1) -1
i=0 i=0

by (3.1), the results (3. 3) and (3. 4) follow by addition and subtraction
and solving for the sum.
For p =1 these results reduce to the well-known relations of

Fibonacci numbers:

n
1 = -
(3.17 T of=f -1
i=1
n
' n-i, _ _qyn-1
(3.27) (-1 f=f )+ (-1)
i=1
n
1 = -
(3.3 Zof, =1f, -1
i=1
n
U =
(3.49 2 £, =15
i=1

Theorem 3.3. Let g =1 and define u(i; p,1) =0 for i a negative

integer. Then

p-1
(3.7) u(ntm;p,l)=u(n;p, l)u(m;p,1)+ T u(n-1-i;p, 1)u(m-p+i;p, 1) ,
i=0

where n, m are anypositive integers or zero. To prove this we note
first that this is true for n any positive integer or zero and m = 0.

For n any positive integer or zeroand 0< m = k< p we have
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p-1
u(n; p, Du(k; p, 1) + = u(n-1-i; p, 1)u(k-p+i; p, 1)
i=0
p-1
=u(n; p,1)+ ¥ u(n-1-i;p,1)
i=p-k
ntk-p-1
=u(n; p,1) + b u(j; p, 1)
j=n-p
ntk-p-1 n-p-1
=ump, 1)+ T u@Gel)- T ou@opel)
j=0 j=0
= u(n; p, 1) + u(ntk; p, 1) - u(n; p, 1)

= u(ntk; p, 1)

where the sums have been evaluated using (3.1). Hence (3.7) is true
for n anypositive integerorzeroand m=20,1, ..., p. For m = p+l

we get

p-1
u(n; p, Du(p+l; p, 1) + T u(n-1-i; p, 1)u(p+l-p+i; p, 1)
i=0

p-1
2 u(n; p, 1) + 3 u(n-1-i; p,1)
i=0

n

u(n; p, 1) + S u(j;p,l)

j=n-p

u(ntp+l; p, 1)

Assume now, finally, that (3.7) is true for n any positive inte-

ger or zeroand m=20, 1, ..., p, ..., k where k 2 p+l. Then
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p-1
u(ntk-p; p, 1) = u(n; p, Iu(k-p; p,1) + ¥ u(n-1-i; p, 1)u(k-2p+i; p, 1)
i=0
p-1
u(ntk; p, 1)  =u(n; p, ulk; p,1) + ¥ u(n-1-i; p, 1)u(k-p+i; p, 1)
i=0
Hence

1]

u(ntk+l; p, 1) = u(n+k; p, 1) + u(ntk-p; p, 1)

u(n; p,1) [ulk; p, 1) + u(k-p; p, 1)]

1]

p-1
+ % u(n-1-i; p, 1) [u(k-p+i; p, 1) + u(k-2p;p, 1)]
i=0 -1
= u(n;p, 1)u(k+l;p, 1) + ¥ u(n-1l-i;p, 1) .
i=0

« u(ktl-p+i;p, 1)

But this is (3.7) with m = k+1 and the theorem is proved.

For m = n, equation (3.7) becomes

p-1
2
2, 2, ptl. . .
(3.8) u(2n;p,1)=u (n;p, 1)+tu (n—T,p, n+2 X u(n-i;p, 1)u(n-(p+1)+i;p, 1),
i=1 p odd
and
p
2
(3.9) wu(2n;p,1) = uz(n;p, 1) +2 3 u(n-i;p, 1)u(n-(p+l)+i;p, 1),
i=1 p even.
For m = n+l, equation (3.7) becomes
p-1
2
3.10) wu(2ntl;p, 1) = uz(n;p, 1) + 2 £ u(n-i;p, 1)u(n-p+i;p, 1),
i=0 p odd

and
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(3.11) u(2n+l;p, 1) = uz(n;p, 1) + uz(n—

oo

i ps 1)
P_
=-1

+2 2 uln-i;p, 1)u(n-p+i;p, 1),

i=0 p even

When p =1 equations (3.7), (3.8) and (3. 10) reduce to the known

relationships

(3.79 fn+1'n+1 - fn+1 frn-l—l * fn frn
(3.87) font1 ~ fiﬂ * fi

(3.10") £, = fi+2fn £

4, DIVISIBILITY PROPERTIES

Theorem 4.1. Any p + q consecutive terms are relatively prime.

The terms u(0; p,q), ..., u{lp+q-1;p, q are all unity and
so relatively prime. Any p + g consecutive terms containing one of
these will have greatest common divisor 1., Assume (u(n; p,q),
un+1;p,q9), ..., uln+p+qg-1; p, q))=d, where n>p+q-1.

Then because of (2. 2) it follows

dl(un -~ 1; p,q), ufn; p,q), ..., uln +p +q - 2; p, Q).

Successive applications will show

d](u(p+q -1;p,q), ulp+a; ps @) ..., ul2p + 29 - 2; p, q))

This contains u(p +q - 1; p, q) sothat d =1 andthetheorem follows.

Theorem 4. 2. The least non-negative residues modulo any positive

integer m of {u(n; p, q)} are periodic with period P not exceeding

mp+q. There is no preperiod. Each period begins with p + g terms

all unity.
There are m possible least non-negative residues modulo m
ptq

for each u{n; p,q) and m possible arrangements of residues in

p + g consecutive terms. Since by (2.2) the residue of u(n; p,q)
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depends uponthe residues of the preceding p + q terms, after mp+q
terms at most the residues must repeat with a period P. Suppose
u(n + p; p, q) is the first term such that the residues repeat and as-

sume n > 0. Then
uln+P +j;pyg)zuln+j p,q) (modm), j=0, 1, ..., p+tq
In view of the recursion formula, this shows
u(n-1+P; p,q)=uln-1; p,q) (mod m) ,

a contradictiontothe assumption u(n + P; p, q) is thefirst term such
that the residues repeat. Thus n =0 and there is no preperiod.
Hence each period begins with p + q terms each unity.

As an example, we have residues (mod 7) for wu(n; 2,1)

n 01 2 3 45 6 7 8 910111213141516171819 20 21
r 1 1 1 2 3 46 2 65 0 6 4 4 3 0 400 4 4 4

n 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
r 1 52 31 3 6 0 3 2 2502002 2 2 4¢61

n 44 45 46 47 48 49 50 51 52 53 54 55 56
r 5 45 305116 0100111

Here P = 57.

Theorem 4.3 Any prime divides infintely many u(n; p,q). If the

period of the residues (mod m) is P, then m divides each of

wP-1+Pk;p,q) u(lP-2+Pk;p,q) ..., u(P-p+Pk;p,q),
k=0,1, 2,...

Since the residues are periodic it is sufficient, to establish the
first part of the theorem, to showthat any prime divides one u(n; p, q).
Let m be any givenprime or multiple of any givenprime. Then with

P the period,

u(P; p,g)z=u(P+1;p,q)=... =u(P+p+q-1;p,q)=1 (modm).
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From the recursion formula,
q .
i .
wP-1;p,a)z T (- (D uP-1+p+q-ip, q)
i=0
q .
i
=z -0
i=0
=0 (mod m)
Hence m lu(P- 1;p, q). Similarlyfor w(P-2;p, q) ..., WP - p; p, q).

Inthe previous example, we note 7 [u(56; 2, 1), and 7 ’u(55; 2, 1).

Of course, 7 also divides other terms, as the table indicates.
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EXPANSIONS OF IN TERMS OF AN INFINITE CONTINUED
FRACTION WITH PREDICTABLE TERMS

N.A. DRAIM
Ventura, California
1 1 1 1 1
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(1) i 1 3+5 7-l—9 11~!—...etc.
4 4 4 4 4
Then, ﬂ_4-§+—5--7+§—T—1—+...etc.

Whence, byidentity of successive convergents, 4, 8/3, 52/15, 304/105,

etc., in the above series, and in the following expansion, we have:

B 4
"= 43T
2725
2 F 49
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2 + etc
B 4 9 25 49
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1< 1
w _ n-1
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- Z (-1) (Zn-1T)(2n+1
1

3 " 15 35 3 °te

whence, by identity of successive convergents, 10/3, 46/15, 334/105,

2946 /945, etc., in the above series and in the following expansion, we

have 1
7= 33712
T+16-1
4+36 -1
764 -1
4 ¥ etc.

. mo by 112 16-1 36-1  (2k)%-1 ote
1.e., = ,g, —1——, T, T, ,————4'—~—,... .
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AN APPLICATION OF UNIMODULAR TRANSFORMATIONS
DMITRI THORO

San Jose State College, San Jose, California

1. INTRODUCTION

The purpose of this paperis to investigate the Diophantine equa-

tion
2 2

(1) flx,y) = x -xy-vy = A
In particular, we will prove the following [1]

Theorem. Equation (1) has a solution in relatively prime inte-
gers x and y if and only if

(i) A =5°A"#0, where e=0 or 1 and

(ii) if p is a prime factor of A', then
p = 1 or -1 (mod10).

An application to Fibonacci numbers may be found in [Z] .

2. TECHNIQUES
Our primary tool will be unimodular transformations

x = aX+ Y
{Y=YX+8Y

with determinant @ § - By =+ 1.
If we define the productof two transformations in the customary man-

ner, it is a straightforward procedure to verify that the set of all uni-

modular transformations forms a non-abelian group. We shall make
tacit use of this fact.

For convenience, let us designate the binary quadratic form

ax’ +bxy+cy2 by [a, b, c] .

Note that the discriminant b~ - 4ac is invariant under a unimodular

transformation (cf. analytic geometry: rotation of axes).

291
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First we observe that
(iii) if (a,y) =1, then f(a,y) ;( 0

since (a,y) =1 implies @ and y are bothoddor of opposite parity,

hence f(a,y) 1is odd;
(iv) £(1,0) =1,
(v) if f(a,y) = A, then i(y, -a)=- A.

Thus in the following discussion we may, whenever it is convenient,

assume A > 2.
3. THE PROOF: PARTII

Suppose the Diophantine equation (1) has a solution in relatively
prime integers a and y : f(a,y)= A, (a,y)=1. Since the g.c.d.
of any two integers a and y (not both zero) may be expressed as a
linear combination of @ and y , there exist integers B and § such
that ad - By = 1.

Applying the unimodular transformation whose coefficient ma-

trix is
a B
y &

to f(x,y)= [l, -1, —1] yields a new binaryquadratic form [A, B,C]
But the discriminants are invariant under this transformation; thus
B2 - 4AC = 5.

Putting it another way, f{a,y) = A,where (a,y) =1 implies

the congruence

(2) x% = 5 (mod 4A)
is solvable. However, this congruence has a solution if and only if
conditions (i) and (ii) are satisfied. For any x, x2 =0, 1, or 4 (mod
8). Therefore (2) has no solution if A is even. If A = 25A', x2 = 5
(mod 100), whence x = 5t, which leads to the contradiction 5‘c2 =1
(mod 5).

To complete this discussion, the reader should use the quadratic
reciprocity theorem (first proved by Gauss at the age of 18). In
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particular, we note that XZ = 5 (mod p) has a solution if and only if

xZ = p (mod 5) has a solution.
4. THE PROOF: PART II

To establish the sufficiency of conditions (i) and (ii), we will
show that there exist unimodular transformations Tl’ TZ’ cey Tk’
H, and L. such that

T, T, T,
[A1 Bp» C ] —> [8, By Cp] —> [As By G —>
T H L

k
> [Men B Cien] 7 [Arez Brozr G — [, -1,-1

where Al = A (cf. (1)), B, = B (a solution of the congruence (2)),

1
Ak+1 = x1 1is the first Ai numerically equal to unity, lBk+2l =1,
and the Ci are determined by the invariance of the discriminant.
If T is the product of these transformations,
T 7!
[a B, o ]— [1, -1, -1] or [1, -1, -1]—>[A, B C]

= F(X: Y)

Thus if the coefficient matrix of T_1 is

F(1,0) = A implies f(tl, t3) = A. I.e., the desired solution of (1) is
simply x = tl’ y =t Moreover, since T"1 is unimodular, tlt4 -

t3t2 = x1 forces (tl,t3) =1,

A Useful Lemma. Given any two integers B and A # 0, there

exists an integer n such that
|B +2nal Al .
Proof. If we define g = [lBI/Z IAI:] and r= [B|-2 |A |g,then the

following flow chart exhibits n. (As usual ''s—>t'' means ''replace
s by t'.)
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| -g-1l->n

—=>n

We may now define the (matrices of the) required transforma-

tions. Let

where n, satisfies the inequality

-B, +2n.A] $]A.]
1 1 1

2

Then it turns out that Bi+1 = - Bi + 2 niAi’ Ai+l . (Bi+l - 5)/4Ai' As

previously mentioned, A1 = A (given) and Bl = B (a solution of (2)).

Note that B must be odd; hence all the Bi are odd. Similarly, all
the Ai are odd.
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Choose

so that h satisfies

|B,,, +2h A < a

k+1 | k+1 I
Then Bk+2 = Bk+1 + 2h Ak+1' Note that Bk+27{ 0 (since Bk

k+1

+1 '°

odd); but A, ., =+ 1 (by definition), hence |B,,|= 1.
The reader may quickly establish the inequality
la | <lal/e i=1,2, . .%

Since the Ai can be shown to be odd, this establishes the existence of
Ay
Finally, L is chosen to be

(1 0) <1 0) <0 -1 0 1)
o 1/, \¢ -1/, \1 o, °"\1 o
according as the penultimate form is

o, -1, -1, [, 1, -1, [-1,1,1], or [-1, -1, 1],
respectively.

Thus we have established the existence of the transformations
T

T H, L and hence the desired solution of (1).

1 T T

5. REMARKS
We have, however, more than an existence proof. The proced-
ures developedin Part II of the proof constitute an efficient algorithm.
The algorithm was programmed in FORTRAN successfully. For
]A‘ < 4k, no more than k+2 unimodular transformaticns are required
to obtain a solution.
REFERENCES
1. D. E. Thoro, "A Diophantine Algorithm, " (Abstract) Am. Math.
Monthly, Vol. 71, No. 3, June-July 1964, pp. 716-717.
2. Brother U. Alfred, '"On the Ordering of the Fibonacci Sequence, "
FibonacciQuarterly, Vol. 1, No. 4, December 1963, pp. 43-46.
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GENERALIZED BINOMIAL COEFFICIENTS
ROSEANNA F. TORRETTO and J. ALLEN FUCHS*

University of Santa Clara, Santa Clara, California

We consider the general second order recurrence relation (r.r.)

(1) Yatz = 8¥pyy " BV BFO

Let a and b be the roots of the auxiliary polynomial f(x) = XZ -gx+ h
of (1). Using the notation of the classic paper [1] of E. Lucas, we let
Un and Vn be the solutions of (1) defined by Un = (an - bn)/(a - b)
if a#b and U_= na™! if a=b and by vV _=a’+b.

In [3] , D. Jarden defined generalized binomial coefficients by
(2) [m] _ UmUm—l T Urn—j+l ) [m] -1 .

j U, U2 e Uj 0

(We have changed Jarden's notation (Dj) u to I:n;)}) If g=2 and

h =1 then Un =n and n;:l is the ordinary binomial coefficient (m)
Jarden showed that the product z_ of the n-th terms of k -1

sequences satisfying (1) satisfies the k-th order r.r.

k . .

(3) j§0 (-1y) [l;:th(J 1)/2 S
The definition (2) of nj:' for all j and m with 0 £ j £ m obviously
requires that Un #0 fo6r n > 0 since otherwise (2) may involve di-
vision by zero. We call the r.r. (1) ordinary if Un #0 foralln >0
and exceptional if Un =0 for some n >0. In (7) and (8) below we
give an alternate definition of [n: }which is valid in all cases. In [2] ,
D. H. Lehmer considered the exceptional r.r.'s (1) for which g = \/?
and for which f and h arerelatively prime. Lehmer's paper is con-
cerned with divisibility properties of the sequences Un and Vn.

It follows from h # 0 that a #0 and b # 0. It is then clear
from the definition of Un that (1) is exceptional if and only if a # b
and aP = bP for some positive integer p. If (1) is exceptional, a # b
and so every solution of (1) is of the form Y, = clan + czbn. Then
*This workwas supported by the Undergraduate Research Participation
Program of the National Science Foundation through G-21681. The
authors express their gratitude to NSF and to Dr. A. P. Hillman,

Dr. D. G. Mead, Mr. R. M. Grassl, and Mr. J. A. Erbacher for
much valuable assistance.
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Yn+p = clan-*‘p + czbner = ap(clan + czbn) = apyn for all n. Conver-
sely, one easily sees that yn+p = apyn for all n and all solutions Vo
of (1) implies that (1) is exceptional.

We show below that the following four conditions are equivalent
to each other and hence to (1) being ordinary:

(a) Either a =b or a™ 7 b* for all n > 0.

(b) Any solution Vo of (1) withtwo differentterms equal to zero

is identically zero.

(c) Forall k 22 the r.r. (3) isthe lowest order r.r. satisfied

by all term by term products of k - 1 sequences satisfying (1).

(d) Every solution of (3) is of the form

_ k-1 k-2 k-3_.2 k-1
(4) oz, = U " 40 Uy tegUy Uy tees T Unyy o
. k-j.j-1 . .
i.e., the sequences U *-U for j=1, ..., k form a basis
n ntl

for the vector space of all solutions of (3).
We shall also establish some identities involving the [r?] , one

of which is the addition formula:

irk,G+1)i/2 . -
(-1’ [§]n Ua, +k-j Ya_+k-j *** Va +k-j ntk-j

1 2 k

j=0

U,...U )2 21>
1 kinta, t...+a, + [k(k+1)/4:|

for Y, and Un satisfying (1) and n and the a's any integers.

If a#b, every solution of (1) is of the form Y, = clan + czbnL

and the term-by-term product of k - 1 sequences satisfying (1) is

given by

k-1 k-2 k-3, 2 k-1
(6) z = cl(a )+ cz(a b)™ + c3(a 15300 S ck(b )n
We therefore let
(7) £ .60 = bx-at e -2 ) Ll (- BT

and define B(] so that
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k
(8) fk(x) = 3 (-I)J[ﬁ]hj(j_l)/z Xk-j
j=0

The[l;]defined by (8) is a generalization of the ; I;E of L. Carlitz [4]
defined by

k

(-0 -at) ... 1-a"Ty = 5 (d0D/2 L
j=0
See especially formulas (6. 3) through (6.16) of [4].)

Then fk(x) is the auxiliary polynomial for the r.r. (3). The lowest

order r.r. satisfied by the z, of (6) is (3) if and only if the numbers

ak—l, ak-zb, e bk—1 are distinct. Since a # 0 and b # 0, this is

equivalent to al # b for j=1, ..., k-1. Hence condition (c) is
equivalent to (a) for a # b.

If a =b, everysolution of (1) is given by Vo = (c, + czn)an, the

1
term-by-term product of k-1 sequences satisfying (1) is of the form

(9) z = (c1 +c2n+... +cn )a )y,

and (3) is the lowest order r.r. satisfied by all the z of form (9).
Thus (c) and (a) are equivalent in this case too. It is also easily seen
that h = a® and [n;]=(r?) ™3 Ghen a = b,
Lemma.

A solution Yy of (1) that is not identically zero has Y, = 0 for

two different values of n if and only if a # b and there is a positive

integer p such that aP = bP,

Proof.
. n .
First let a =b. Then v, = (c1 + czn)a . If Yy = 0= Y, with

u # v, then (Cl + czu)au =0=(c, + czv)av. Since a # 0, it follows

1

that 1 +c2u =0 = c; +CZV, cz(u - v) =0, and so cy = 0. Then ¢y = 0

and y_=0 for all n.
n
Now let a #b. Then Yo = clan + czbn. If Vo = 0= Yy with

u> v, clau + czbu =0 = claV + czbv, and there exists a non-trivial
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solution for the c¢'s if and only if the determinant a’b’ - b'a’ = 0.

This is equivalent to a% V= ptY,

This shows that (a) and (b) are equivalent.
Corollary.

If v. and w_ are solutions of (1) and v_=w_ for two values

n n n n
of n, then v. = w_ for all n.
n n

This follows from the lemma and the fact that v,o- W is also
a solution of (1).

We next consider condition (d). First let (1) be ordinary. Let
z be the term-by-term product of k - 1 solutions of (1). If we can
c such that (4) holds for n=1, 2, ..., k

17ttt S

then the r.r. (3), which is satisfied by the sequences Ui_JUfj-;ll and

z > will make (4) hold for all n. Such c's can be found if the k by k

find constants c¢

determinant D with dij = UIE—JUg_I__l isnotzero. Since(l) is ordinary,

1
each of Ul’ U U, 1is not zero and we can factor Uls—l out of

20 eees Up
the elements of the i-th row of D thus obtaining the Vandermonde de-
terminant E with eij = (Ui_H/Ui)J-l. Then E, and hence D, is not
zero if and only if the ratios Ui+l/Ui are distinct. It is easily seen

that U_, /U_= U, /U, if and onlyif a® “=b%"". This shows that

s+l/ s
{a) implies (d).
. . pP_.pP
If (1) is exceptional, a' = b® for some p > 0 and so Un+p+1/
Un+p = Un+1/Un' Then for k >p, the determinant D is Zeli’(()— .511'1‘??
ithas proportional rows. Itfollowsthatone of the sequences U JUr‘1+l

is a linear combination of the others, first for 1 £n <k and then,
using (3), for all n. This implies that there is a solution of (3) not of
the form (4) and so (d) implies (a).

We now go back to (7) and note that ab = h. Therefore we can

write
£,,00) = [(x—ak+l)(x-bk+1)] [(x—akb)...(x—abk)]
400 = [XZ—(ak+l+bk+1) 4 hk“] [(X-ak‘lh)(x-ak'zbh). ..
k-1
(x-b h)]
(10)  £,,(x) = nX(x? - Vi Xt Rkt £ /)
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where Vn is the general Lucas sequence a™ +p™. Formula (10) im -~

plies the following:

k_] jt2 _ [k+2
(11) [ ] +[J+1J Vit +[J+z]h = [j+2:' ’
m
_ 2 m-j 2m-1
(12) me = I (x -sz_lh +h )
j=1
m
_ m 2 m-j 2m
(13) fymsr = (7B M (- Vb +h“™
=1

We next prove identity (5) when (1) is ordinary by induction on k.
When k =1, (5) becomes

(14) U - hU v

a+1 7 n+1 a’n = Yn+atl

We consider n to be aconstantand let a be the running index. Then
both sides of (14) satisfy (1) and they are equal to one another for a =0
and a = -1 since U= -1/h, U0 = 0, and U, = 1. Hence (14) holds
for all a (and all n) by the Corollary.

Now we assume that (5) holds for k = m-1 and show that this
s eeey @ and n tobecon-
1 m-1
stants and let a be the running index. Both sides of (5) satisfy (1).

implies (5) for k = m. We consider a

When a = 0, (5) becomes Um times the identity for k = m-1 with

each a.j replaced by 1 +aj. When a = -m, (5) reduces to Um
times the identity for k = m-1 using the easily established fact that
U_n = -Unh_n. Hence (5) is true for two values of a and thus true

for all values by the Corollary.

We now turn to identity (5) in the exceptional case. From sym-
metric function theoryand the definitions (7) and (8), it follows that for
fixed h the[J]are polynomials in g. For fixed values of Yo and
V1 and h, the two sides of (5) are then continuous functions of g.
Thus (5) for complex numbers g9 and hO that make (1) exceptional
can be established byhaving g approach g0 (while h is fixed at hO)
through values for which (1)is ordinary. A sufficient condition for (1)
to be ordinary is that Ial # Ib] Any point (g,, hj) is a limit of

points (g, hO) satisfying this sufficient conditionfor (1) to be ordinary.
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A purely algebraic proof of identity (5) in the exceptional case
can'also be given.

Finally we consider the l:m] when (1)is exceptional and g and h

are bothreal. Since aP = bP for some p > 0, ]al = ibl Since a #b
this means that a = -b, g=0, and h=-a~ if a and b are real. In
this case
2 2m-1m 2 2m,m m
£, ()= G+ L ) = - 0T - ((m)T)

and it can then be shown that

5] - e [] - o
[21’121;'1] - 1y hj(Zm—2j+1)(njl), [ZZIEI] - (c1yitm h(m-j)(2j+1)(n;> _
If a and b are complex, we can let a = peie and b = pe-ie with
h= PZ and p >0. Then aP = pP implies that pf§ = -pg + 2mm and
hence @ is a rational multiple mna/p of m. Let m/p = c/dwithc
and d relatively prime and d > 0. Then a/p and b/p are d-th
rootsof 1 if ¢ 1is evenand d-th rootsof -1 if ¢ is odd. Theroots

k'le(k'l'zj)ei. If k> d,

these roots repeat in blocks of d as j varies from 1 to k. Let

a.k—’]b‘]-1 of fk(x) are now of the form p

k=qd +r with g and r integers and 0 < r < d. Then

i

(15) fk(x) (_.l)cqrpqdr fr([ 1 ]qu/p qd) [Xd_(_l)c(k-l) p(k-l)d] q

Now let j=q'd + r' with q' and r' integersand 0 < r' < d. Itthen
follows from (15) that

k7 _ e. f/,q r
[5) = 0% (@ [5]
where e=q'(d +cr + cqd + ¢ +1) + cqr' and

26=a%[qq' - (@] +d(ar' +q'r - 29't") .

REFERENCES
1. E. Lucas, Théorie des Fonctions Numériques Simplement Pér-
iodique, Amer. Jour. of Math., 1(1878) 184-240 and 289-321.
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2. D. H. Lehmer, An Extended Theory of Lucas' Functions, Ann.
of Math., (2) 31 (1930) 419-448.

3. D. Jarden, Recurring Sequences, Published by Riveon Lemati-
matika, Jerusalem (Israel), 1958,

4. L. Carlitz, Generating Functions for Powers of Certain Se-
quences of Numbers, Duke Math. Jour., 29 (1962) 521-538,
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(Continued from page 260.)

the last digit repeats on a period of 781, the second to last digit has a
period of 3900, and the
Hexanacci Series

1,1,1,1,1,1,6,11, 21, 41, 81, 161, 321, 636, 1261, 2501, 4961, 9841, ..

the last digit as can easily be seen above repeats on a period of 7, the
sequence being:
61111116111111611111161111116...

the secondto lastdigithowever hasthe somewhatlarger period of 7280.

Finally, for sometime, I have wantedto apply these observations
on the periodicity of the last digits to some other Fibonacci problems.
So far, I have only the somewhat lame observation that the Prime-
Fibonacci-Number Density (that is the ratio betweenthe number of Fib-
onacci numbers which are prime below a given number n and that
number n)islessthan pd This observation fol-

4/15 [ dx/Inx .
2

lows from the theorem that if a Fibonacci number is prime, then its
subscript is prime. Thus if all Fibonacci numbers with prime sub-
scripts were prime the density would be Euler's famous expression

X
7(n) = [ dx/lnx
2

However, a good number of Fibonacci Numbers are not prime but do
have prime subscripts, some of these numbers can now be excluded
from the prime-density considerations because every prime greater
than 3 must end ina 1, 3,7, or 9 and can be expressed as 6x+l. Now
consider the sequence of the last digit of the Fibonacci series:

1 2 3 45 6 7 8 91011121314151617 181920
11235831 45 9 4370774175

) st o .
B 5 g

21 22 23 24 25 26 2

ate

28 29 6 37
61?85381909987527965
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1 6 7 30 3 3 6 95 4 9 3 25 72 910

g

(Conl’tinued on page 313.)



ADVANCED PROBLEMS AND SOLUTIONS
Edited by VERNER E. HOGGATT, JR.

San Jose State College, San Jose, California
Send all communications concerning Advanced Problems and
Solutions to Verner.E. Hoggatt, Jr., Mathematics Department, San
Jose State College, San Jose, California. This department especially
welcomes problems believed to be new or extending old results. Pro-
posers should submit solutions or other information that will assist
the editor. To facilitate their consideration, solutions should be sub-
mitted on separate signed sheets within two months after publication of

the problems.
H-46 Proposed by F.D. Parker, SUNY at Buffalo, Buffalo, New York

Prove

p_ = Jal = -1k,

4 .
Fotitjz b1 =

H-47 Proposed by L. Carlitz, Duke University, Durham, N.C.

where ajj = 1,2,3,4,5) and find the value of K.

Show that
; ntk-1 L <% = l/Ik(X)
n nX B 2.k
=0 (I-x-x")
where
k
g x) = T (-1)F 5 "

r=0
H-48 Proposed by J.A.H. Hunter, Toronto, Ontario, Canada

Solve the non-homogeneous difference equation

n
Cn+2 - Cn+1 * Cn tmeo,

where C1 and C, are arbitrary and m is a fixed positive integer.

2
303
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H-49 Proposed by C.R. Wall, Texas Christian University, Ft. Worth, Texas

Show that, for n > 0,

n
2*Fp = 3z 2 _ "D /2] ptm)
n+l m.
m=0

where [x] denotes the integral part of x, and x(n) = x(x-1)...(xn+l1).

H-50 Proposed by Ralph Greenberg, Philadelphia, Pa. and H. Winthrop, University of
South Florida, Tampa, Florida

Show

h On.=F

nl+n2+n3+. . +1r1i =n

where the sum is taken over all partitions of n into positive integers

and the order of distinct summands is considered.

H-51 Proposed by V.E. Hoggatt, Jr., San Jose State College, San Jose, California and
L. Carlitz, Duke University, Durham, N.C.

Show that if

o]

(i) xt = I Qk(x)tk
1-(2-x)t + (L-x-x")t k=1
and
o ?, (x)
) S n+§-l) P s — K
n=0 (I-x-x)
that
k
b0 = T (107 OF X" = o
r=0

See also H-47.
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LOG OF THE GOLDEN MEAN
H-29 Proposed by Brother U. Alfred, St. Mary’s College, California
Find the value of a satisfying the relation
"+ m+a)t = (n+2a)"
in the limit as n approaches infinity.

Solution by George Ledin, Jr., San Francisco, Calif.

n
Since lim (1 +§> = &%, then dividing
n—w

(1’1+a)n +n" = (n+2.a)n

through by n" #0 yields
2, 1
(147 +1 = 1+
which upon passing to the limit on n, gives the equation

e +1 = eZa

1+Vs
whose positive solution is a = In — = In¢; the log of the Golden.
Mean.
Also solved by R. Weinshenk, Sunnyvale, California, J.L.. Brown, Jr., State College, Pa.,
Raymond Whitney, Lock Haven, Pa., Zvi Dresner, and the proposer.
MORE DIOPHANTUS AND FIBONACCI
H-30 Proposed by J.A.H. Hunter, Toronto, Ontario, Canada

Find allnon-zero integral solutions to the two Diophantine equa-

tions,
(a) X2+XY+X-Y2=O
(b) XZ—XY—X—YZ=O
Report by the proposer
All solutions of XZ + XY + X - Y'2 =0 are
Y

FZnFZn+1
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All solutions of X2 - XY - X - Y2 =0 are

z
X = F2n+l
¥ F2.nFZn+].
. 2 2
All solutions of X + XY - X ~-Y =0 are
2
X = FZ‘.n+l
Y o= Foti¥ent2
. 2 2
All solutions to X~ - XY+ X - Y =0 are
2
X = Fone
Y FZn+lFZn+2.

The "'only if'' portion of the report was incomplete. The Editor awaits

further comments from our readers.
UNIMODULAR BILINEAR TRANSFORMATIONS
H-31 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California

Prove the following:
Theorem: Let a,b,c,d beintegers satisfying a >0, d >0 and
ad - bc =1, and let the roots of 1\2 - A -1=0 be the fixed points of

az + b
w cz +d °
Thenitis necessaryand sufficient for allintegral n # 0, that a = F2n+17
b=c=F, ,and d=F , where F isthe n Fibonacci number.
2n Zn-1 n

(Fl =1, FZ =1 and Fn+2 = Fn+1 + Fn for all integral n.)

Solution by John L. Brown, Jr., Pennsylvania State University, State College, Pa.
) . 2y - . 1+V5
S1nc<13 t_he esquatlon AT-X-1=0 hastwodistinctroots A 15—
and AZ = — we note that ¢ 7( 0. Fromthe fixed point conditions,

N a)\l + b a)gz + b
17 o, Fd and A, = A, +d
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it is simple to derive the following necessary conditions:

a = c+d

b = ¢

Conversely, if b 7! 0, b=c¢c and a = c+d, then the transformation be-

comes

w = 2% +b
~ bz +{a-b)
and the equation for the fixed points of this transformation is
zz—z—l = 0,
so that )\1 and AZ are the fixed points.
We have thus shown that the bilinear transformation w = azth
. . 1 +V5 1 - cztd
has fixed points )Ll = —5—— and )\.2 == if and only if ¢ # 0,

b=c and a = ctd.
Substituting these latter conditions into the condition ad-bc =1,

we obtain the following diophantine equation relating ¢ and d:
(*) cz—dz-cd +1 = 0

Let (c,d) be anarbitrary pair ofpositive integers which satisfy
(*). Then, it is clear that ¢ 2 d >0. It is easily verified that (c-d,

2d-c) is also an integer solution pair for (*) with first term 20 and

second term >0.2 I;If 2d-c < 0, then 0 <d << and cz—dz—cd +1 >

2 2 o2 - 2 2 2
c-x -5 +1 = I +1 > 1, contradicting the fact that ¢ -d -cd +1

= O.] If the first term c-d 1is actually >0, thenwemay form another
solution (2c-3d, 5d-3c) in the same manner and the new solution will
again have a non-negative first term and positive second term. After
n such iterations (assuming positive first terms), we arrive at the
2n-1° = Fan® Fony
terms of the solution pairs thus generated. For any n such that the

solution (F d - anc). Now, consider the first
firstterm is positive, we may constructan n+15-t— solution which either
has a positive first term or has a first term of zero. Also note the
first term of each successive solutionis smaller than the first term of

the preceding solution. It is clear that our construction process must
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lead, ina finite number of steps, toa solution with first term 0, namely
the solution (0, 1). For it not, we could produce by the foregoing proc-

ess an arbitrarily large number of solution pairs (cd, dn) in positive
and 0<d <c¢_ for each n.
n n

integers with ¢ > ¢ >c2 >c

1 3t
This infinite descent is obviously impossible; hence, there exists an

2k-1¢ " Fopd F

is identically the pair (0,1). We have, therefore,

integer k > 0 suchthatthe solutionpair (F 2k+1d - Fch)

Fok-1¢ 7 Fad = 0

Fornd - Fape

1}
—t
.

from which ¢c=F d= and a = ctd = This shows

2 47 Far Fake
the necessity of the condition that the coefficients are Fibonacci num-
bers of a certain form; the sufficiency follows directlyusing the identity

2

FZk—lFZkH - FZk = 1. This proves the stated theorem and also shows

that ¢ = FZk and d = FZk—l for k=1,2,3,... constituzte aEllpossible
solutions in positive integers of the diophantine equation ¢ -d -cd+1=0,

The reader is directed to an application of the result of H-31 in
S. L. Basin's ""The Appearance of Fibonacci Numbers and the Q-Matrix
in Electrical Network Theory' MathematicsMagazine Volume 3b No. 2
March 1962, pp. 84-97 (see specifically Theorem 1, page 94). This
theorem was first proved in an unpublished paper ''The Many Facets

of the Fibonacci Numbers'' by V. E. Hoggatt, Jr., and Charles H. King.
Also solved by Zvi Dresner.

NO FIBONACCI TRIANGLES
H-32 Proposed by R.L. Graham, Bell Telephone Laboratories, Murray Hill, N.J.

Prove the following:

Given a positive integer n, if there exist m line segments Li
having lengths a; 1 5 ai < n, for all 1 <4 Sm, such that no three
Li canbe usedto form a non-degeneratetriangle then Fm < n, where

R t . .
Fm is the m h Fibonacci number.

Solution by John L. Brown, Jr., Pennsylvania State University, State College, Pa.

. > _ > = .
By hypothesis, a; £ 1= F1 and a, = 1= FZ' Since Ll’ L2

and Ly donot form a non-degenerate triangle, we must have (assuming
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the Li have been reordered, if necessary, so that a Sa <

<
.o -am)

>a 4+a. 2F. +F. = F

a3 7 @dp TaA; =T 3 -

Similarly, LZ’ L3 and L4 do not form a non-degenerate triangle so
that

> =
a4>a3+a2 I~3+Fz F4 .

Proceeding inductivelyin this fashion, we conclude a > Fm’ and the

desired result follows (actually with strict inequality) from n 2 a -

Also solved by the proposer and Zvi Dresner.
LUCAS PRIMALITY
H-33 Proposed by Malcolm Tallman, Brooklyn, N.Y.

If a Lucas number is a prime number and its subscript is com-

posite, then the subscript must be of the form Zm, m 2 2.

Solution by John L. Brown, Jr., Pennsylvania State University, State College, Pa.

Assume Ln is prime and has a composité subscript n. Then
n= (21‘-1)-2m for some m2 0 and some r 2 1. It is well-known
(see e.g. equation (6) of "A Note on Fibonacci Numbers' by L. Carlitz,
this Quarterly, Vol. 2, No. 1, p. 15) that LkIL(Z if > 1 and

r-1)k
hence

L_|L r>1
om) T(2r-1)2m

Since L ) J2m is prime by hypothesis, we conclude r = 1. (The
-1 . .
alternati(vg m = 0 wouldforce n tobeaprime contrarytohypothesis).

Thus n= 2" and m must be 2 2 in order for n to be composite.

Also solved by the proposer. and Zvi Dresner.

PO 0.0 0 0.0, 0. 0.0.0, 0. ¢



THE PROBLEM OF THE LITTLE OLD LADY TRYING TO
CROSS THE BUSY STREET or
FIBONACCI GAINED AND FIBONACCI RELOST

RICHARD BRIAN
San Jose State College, San Jose, California
It is no surprise to readers of this journal or to Fibonacci enthusiasts

in general to find the numbers of the Fibonacci sequence popping up in
the most peculiar places. This is an essay concerning an unusual
situation in which these numbers appear in an interval of transience

but are then overpowered by a linear function.

Consider the problem of an old
lady standing on the northeast corner /r
of the intersection of two one-way N N @
streets (one running north and the other W "———>’ 7 E
running east) during rush hour. The ] T(
traffic from the south may go east and S '

north when its light is green but the
traffic from the west mayalso goeast and north whenits light is green,
hence a rather timid old lady might do well to bring a bag lunch if she
anticipates such a situation.

Having viewed such a situation one evening I wondered if there
might be some traffic, pattern which would always allow the old lady to
cross safely to any corner at any time.

Let us consider a network of one-way streets which alternate
directions for both eastand west and similarly north and south. If one
is allowed to make a turn only at every other intersection, then one
mustalways turnin the same direction. It is possible then to construct
a traffic pattern in which one is allowed only to make turns to the right

(see Figure 1).

A little study of this traffic pattern will show that one can drive
to any location although it may require a trip around an extra block or
two. But what of the old lady? Consider the corner letter AA. If she
is standing on the northeast corner and wishes to cross to the west,
she need only wait till the light stops the northbound traffic for the

eastbound traffic cannotturn north. If shewishestocross to the south,

310
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Figure 1

she cannot go directly but she can cross to the west, then to the south
and finally to the east, still achieving her goal in complete safety.
Having solved the old lady's problem in every respect except
convincing the traffic commission of the virtue of this scheme, I turned
to other questions suggested by this same traffic scheme. Suppose
one begins to drive north from corner (AA). How many blocks are
accessible if one drives n(n=1, 2, 3, 4,...) blocks? When one
reaches corner (BA), going north, one must continue north since no
turn is allowed northbound traffic here. When one reaches corner
(CA) one may either turn to the east or proceed north and so on. Let

us call f(n) the number of blocks which one adds to the total number

of accessible blocks when driving on the nth block from corner (AA)

then:
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n 1 2 3 4 5 - -- -- -_]

fn) {1 |1 | 2| 3| 5| - | = | --| - l

Lo and behold f(n) appearsto be the Fibonacci sequence. But there
is a difficulty. One of the available paths after 5 blocks brings us
back to corner (BA) travelling west. A turn to the north is allowed
here but the block thus gained is one which we have already counted.
Hence for n =6 we have 7 new elements rather than 8 which is the
next element of the Fibonacci sequence (Fn). This problem continues
to plague us and if we count all the elements everytime they occur, we
do indeed get a Fibonacci sequence. However, if we do not count the

duplications, our block acquisition sequence proceeds thus:

n |1!2}3{4|5{6] 7| 8| 9]to]11 1213 ]--1--

fn) [1{1|2{3]5|7111 (162230138 |46 .. |--1|--

F 1y1}(2)3|5{8{13 |21 |34 |55}89 |--]--]--1]--

Now the question comes asto how fastthis alteration takes place.

Perhaps we notice that each of the last four entries differ by eight.

With this in mind consider the situation where one has a traffic
pattern such that starting at corner (AA) one is allowed to go in any
of the four directions and at the next corner any of the three remaining
directions and so on. In this situation one acquires new elements at

the rate g(n) = 8 n-4.

It turns out that after the 9th step the acquisition of the new ele-

ments in the previous traffic pattern take on a linear form f(n) =
8 n-50 (n 2 9).

In summary:
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L.o. L, rraffic | g dard  Traffic Pattern
Pattern
n n
n £(n) 2 £(i) g (n) 3 g (i)
i=1 i=1
1 1 1 4 ! 4
2 1 2 12 ; 16
3 2 4 20 36
4 3 7 28 64
5 5 12 36 100
6 7 19 44 144
7 11 30 52 196
8 16 46
9 22 68
2 2
8n-50 4n"~-46n+158 8 n-4 4 n

(n29) (n 29)

In this situation, then, the Fibonacci sequence appears only as
a transient effect but such effects are, I think, relatively infrequent in

purely abstract mathematical models.

HKHKIOKAKHKAXKAKK

{Continued from page 302.)

Thus every time that this sequence repeats there are only a possible
16 Fibonacci Numbers (the starred ones) out of 60 which both end in
1,3,7, or 9and can be expressedas 6x+l andwhichjust may be prime.
Therefore we have established 16/60 or rather 4/15 of Euler's expres-
sion as an upper bound of the Fibonacci Prime Density.

HOKARHKKIEKIKAKHKAKNK

NO WONDER NO SOLUTION
H-26 (Corrected) Proposed by L. Carlitz Duke University, Durbam, N.C.
r-1
Let Rk— (brs)’ where brs —< >(r,s =1,2,...,k+1})

k+l-s
then show
s

R s (1:—1> <k+l.—r>Fk+l—r—s+JFr+s—2_]FJ-1
j-1 -] n-1 n n+l
j=1

HHKIHKIKRKK KK KHKAK KKK



APPLICATION OF FIBONACCI NUMBERS TO SOLUTIONS
OF SYSTEMS OF LINEAR EQUATIONS

BEN L. SWENSEN
Wentworth Military Academy, Lexington, Missouri

A casual glance at a system of linear equations such as
2584x + 4181y = 20
4181x + 6765y = 21

might lead one to think that it is unlikely that the solution could con-
sist of integers. However, a closer look by regular readers of this
journal will reveal that the coefficients of x and y in both equations
are Fibonacci numbers and that if the general notation of Fibonacci
numbers in which Fn denotes the nth term of the sequence 1, 1, 2,
3, ..., is used, then the equations above turn out to be the special

case n = 20 of the general form of the system of equations:

(1) (F _)x+(F _y=n,

(2) (F

n-l)X + (Fn)y =n+1.

The solution to such a system of equations is
n(Fn) - (n+ 1)(Fn_l)

(3) = x, and

n(F ) - (n +1)(F )
4 n-l n-2_ o

(FII—].)(FH-].) - (Fn_z)(Fn)

The denominators of the fractions in equations (3) and (4) have
the interesting property
+1 if n is odd,
n—l) -1 if

1}

(5) (Fn)(Fn—Z) - (F is even

-1 if n is odd,

]

(6) (F__(N(F__]) - (F__)F) o
+1 if n is even

It may be noted that statements (5) and (6) are equivalent.

Equations (5) and (6) permit one to write equations (3) and (4)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>