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ON THE USE OF FIBONACCI RECURRENCE RELATIONS IN THE DESIGN 
OF LONG WAVELENGTH FILTERS AND INTERFEROMETERS 

L. C. BOTTEN 
The New South Wales Institute of Technology 

P.O. Box 123, Broadway, N.S.W., 2007, Australia 
(Submitted May 1979) 

1. INTRODUCTION 

The frequent occurrence of Fibonacci related numbers in art and nature has 
been of interest to readers of this journal since the very first issue when Basin 
[1] wrote such an article. 

The purpose of this paper is to explain briefly the use of Horadam*s general-
ized Fibonacci recurrence relation [2] 

(1.1) un = pun_l - qun_2 in _> 2) 

in a problem in optics. If we consider the sequence {un} whose elements satisfy 
(1.1) with initial conditions u0 = 1 and u± = 50, thens from Horadam, we have that 

un = Van + W$n 

3 - S0 S. - a 
where V = ~TT » W - a 9 3 - a s 

in which a9 3 are the roots of the characteristic equation 

x2 - px + q - 0. 

2. NONLINEAR RECURRENCE RELATION 

To show the relationship with the optics problems we need some more prelimi-
nary results. 

Put p - B - A9 q = C - AB, and the recurrence relation can be rewritten as 

-2-i- - {B - A)—?- + (C - AB) = 0. 
un-l un-l 

We then add and subtract the term 

t o ge t 
(Z*± + A) 
\ Un ) 

Un + 1 Un U
n + 1 o Un+i o Un 

^Jl±l. + A—IL. + A-Jl£L + Az„ , 4 - ^ t i - - A2- B —-AB + C = 09 

which can be rewritten as 

From this we obtain the non-linear recurrence relation 

(2.1) R R n - Aff - BR . + C = 0, 
v ' n n-l n n-1 7 

in which 

1 
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(2.2) ^ . I k t L + A. 

Thus, 
(2 3) R = U + a)7an + q + &)W$n 

Van .+ A/3̂  
where the term 50 in the definitions of 7 and ftf is given by 

S0 =i?0 - A. 

3. THE OPTICS PROBLEM 

3.1 General Remarks 

In this section, we will show that Eq. (2.1) occurs in the theory of multi-
element optical filters and interferometers. However, before launching into its 
derivation, it is necessary to acquaint the reader with the background to the 
problem. 

Devices such as beam splitters, filters, and interferometers are common tools 
in all forms of experimental optics. In the fields of infrared physics and micro-
wave engineering, the construction of such apparatus relies upon the use of wire 
meshes (or grids) [3]. It is possible to classify these structures into two dis-
tinct classes according to their spectral properties. These are: 

a. inductive grids, made by perforating (in doubly-periodic fashion) a thin 
metal plate with aperatures, and 

b. capacitive grids, the natural complement of inductive grids, which are 
composed of a periodic array of metal inclusions immersed in an insulating 
material. 

The transmittance of inductive structures approaches zero at long wavelengths, 
whereas that of capacitive grids approaches unity at those wavelengths. In the 
far infrared and microwave regions of the electromagnetic spectrum, absorption 
within the metal is negligible and so we need only concern ourselves with the re-
flectance and transmittance of these structures. 

With these prefatory remarks, let us now concern ourselves with the design of 
interferometers and low-frequency pass filters. These consist of a stack of many 
such grids separated from one another by a distance of s. In the case of the in-
terferometer, the stack is composed of purely inductive elements, while the low-
pass filter is composed of a stack of captive structures. 

Each of the grids in the stack acts as a diffraction grating and gives rise to 
an infinite set of diffracted plane waves (orders) excited by the incident plane 
wave field. Interferometers and filters are operated with wavelengths in excess 
of the grid period (d), and so it may be deduced that only the single undispersed 
wave is propagating (i.e., capable of carrying energy away from the grids). All 
of the other orders are said to be evanescent and decay exponentially as they 
propagate away from a grid. Provided that the ratio s/d exceeds 0.5, the evanes-
cent orders provide no significant mechanism for communication between the grids 
[4] and so we need only consider the zeroth (or undispersed) order in our deriva-
tion. 

3.2 Derivation of a Non-Linear Difference Equation 

Let i?0 and T0 be the amplitude reflection and transmission coefficients of the 
zeroth order of one of these grids. Now consider a wave incident upon the (n+1)-
grid structure of Figure 1. Let Rn and Tn be the amplitude reflection and trans-
mission coefficients of this device relative to a phase origin at the center of 
the uppermost grid. We now regard this (n + l)-grid structure as a single grid 
displaced by a distance s from an n-grid structure. By adopting a multiple scat-
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tering approach, we can now trace the path of a wave through this system. This is 
a sophistication of the ray trace mentioned by Huntley [5]. 

- • • • • • OT-

~ t l £3 • t> 

Fig. 1. Side view of the (n + 1) grid stack with a plane wave 
of wavelength X indicent at an angle of cf>. Rn and Tn 
are reflection and transmission coefficients measured 
relative to a phase origin at 0. 

A wave of amplitude 1 incident upon the top surface is reflected with ampli-
tude i?0 and transmitted with amplitude TQ. The transmitted component then tra-
verses an optical path length of s cos $ (where (j) is the angle of incidence). Thus, 
the wave incident upon the n grid structure has amplitude TQQ where 

and 

p = exp (id) 

o = ~y-s cos q 

for a field of wavelength A. This wave is then transmitted and reflected by the n 
grid structure with the reflected amplitude being given by TQRn_1p. The reflected 
component then propagates toward the top surface9 advancing in phase by 6, where 
it is partially transmitted out into free space with amplitude TQRn_1p2 and par-
tially reflected back into the cavity with amplitude TQRn_1RQp2; we continue this 
process ad infinitum and arrive at the series: 

(3.1) 2xfe *n = R0 +#n-1^02p2E(^n-lP2) 
k = 0 

Since all of the reflection coefficients have magnitude less than unity, we write 

Rn = R0 + 
Rn-iT2y 

1 - V n - l P 
This may be reduced to the simpler form 

(3.2) Rn. 
RQ - i?n_xP g 

1 " W - ! P 2 

where 

with 

E, = exp (i\j)r) 

%- arg.(i?0). 
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This simplification is a consequence of 
a. conservation of energy, 

I 2 U?n + \T = 1 
and 

l o I ' I•"• o I 

b . the phase const ra in t [6, 7] 

a rg(T 0 ) =arg(i?Q) + TT/2 

appropriate to all lossless up-down symmetric structures. 
Equation (3.2) is of the same form as (2.1) with 

A. _J_ B. ii c - ±-

constants which are only dependent upon the geometry and the reflection coeffi-
cient R0, which may be found using a rigorous electromagnetic scattering theory. 
Having derived Rn, the transmittance is then 

I 2 _ i _ | D 12 \T„ = 1 U?„ 

3.3 Interferometers 

The basic component of any interferometer is an inductive element. In Figure 
2 are shown transmission spectra for a typical inductive grid and its associated 
two-grid interferometer. The transmittance of this interferometer is given by 

I2 = 1/[1 + F sin2(X)] 2\ 

where 

and 

4|fl„l: 

X = 6 + *, • 

I 2 ) 2 

Clearly, it can be seen that this is a wavelength selection device with interference 
maxima for normally incident radiation, at 

Kax (£ 
2s 
*P/T0 

a = o, i , 2, . ) . 

Fig. 2. Normal incidence wavelength spectra for a typical inductive grid 
[the curve whose decay is of the approximate form \TQ\2a (d/X) ] 
and its associated two-grid interferometer (the curve exhibiting 
resonant behavior at X = 2s/I). For this structure, s/d =2.0. 



1982] ON THE USE OF FIBONACCI RECURRENCE RELATIONS IN THE DESIGN 
OF LONG WAVELENGTH FILTERS AND INTERFEROMETERS 5 

The resonance width AA is governed by F, the finesse of the instrument, and 
decreases as the transmittance of a single grid decreases. This feature is illus-
trated in Figure 3, where a grid of substantially lower transmittance is used. 
Also shown on Figure 3 are spectra for three-, four-, and five-grid interferome-
ters. For an (n + l)-grid interferometer, the single transmission resonance for 
the two-grid device splits into n peaks, each having a significantly higher reso-
lution factor Q, 

The locations of these peaks are given by the n solutions of the equation 

(3.3) (3 +a). 
This reduces to the simpler and more explicit form, 

(3.4) <S + arg (i? ) = k-n ± — arccos [K - ( i ") COS \n + 1 

where £ = 1, 2, ..., n and k is a nonnegative integer. 

Fig. 3. Normal incidence wavelength spectra for an inductive grid stack 
composed of 2, 3, 4, and 5 elements (indicated by an integer above 
the resonance peaks). The separation of the individual elements 
is s/d =2.0. 

By considerably reducing the long wavelength filtering action of the inductive 
grids that compose the interferometer, we can obtain a broadband-pass filter. The 
spectrum of such a structure is illustrated in Figure 4. 

0-8 — 

0-6 — 

C 
1-
— 0-4 — 

0 - 2 -

> H U 

6 A 6 2,4,6 6 4 6 

Pi r^%j r i K^ L̂  w i i i 
7L/d 

Fig. 4. Normal incidence wavelength spectra for 2-, 4-, and 6-grid 
band-pass filters. Here s/d =1.2. 
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3.5 Low Pass Filters 

The aim of such filters is to exclude any high-frequency components from the 
transmission spectrum. To achieve this objective, it is necessary to select a 
capacitive grid as the basic component of the stack. In Figure 5 we present typi-
cal spectra for four multi-element filters. Note that as the number of grids in 
the stack is increased, the cut-off between the transmission and rejection regions 
is sharpened. 

1-0—i-

0-8-j 

0-6-j 

*C 

"~ 0-4-H 

0-2-H 

0-0-4-

0-1 

Fig. 5. Normal incidence frequency spectra of typical low-pass filters 
composed of up to 6 capacitive elements separated by s/d= 1.0. 

4. CONCLUDING REMARKS 

The solution of the nonlinear difference equations relying upon the use of 
Horadamfs generalized Fibonacci recurrence relation discussed here totally circum-
vents the explicit and inelegant treatments of earlier, less general attempts [8], 
It also facilitates the calculation of the positions of the transmission maxima 
[see Eq. (3.3)] for a grid stack containing an arbitrary number of elements. 
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ON THE CONVERGENCE OF ITERATED EXPONENTIATION—III 

MICHAEL CREUTZ and R. M. STERNHEIMER 
Brookhaven National Laboratory, Upton, NY 11973 

(Submitted May 1979) 

The present paper can be considered as an extension of two previous papers in 
which the properties of the following function were discussed (see [1] and [2]): 

(1) F(x9 y) = x^^ 

where an infinite number of exponentiations is understood. Equation (1) is the 
function specifically studied in [2]9 whereas in [1] we considered the simpler 
function 

(2) f(x) E F(x9 x)9 

i.e., the case of Eq. (1) where x = y. For both Eqs. (1) and (2), the ordering of 
the exponentiations is important, and for Eq. (1) and throughout this paper, we 
mean a bracketing order "from the top down," i.e., x raised to the power y9 fol-
lowed by y raised to the power x^, and then x raised to the power y^xy\ and so on, 
all the way down to the x which is at the lowest position of the "ladder." 

In the present paper, we study the properties of a function which is obtained 
by forming an infinite sequence of roots. We have restricted ourselves to a sin-
gle (positive) variable x9 i.e., the analogue of Eq. (2). We will call this func-
tion $(x)9 and it is defined as follows: 

(3) <|>(a?) = '^ / x 9 -

where an infinite number of roots is understood. The bracketing is again from 
"the top down," i.e., we mean /x9 followed by the i/ST-th root of x9 which can be 
written as E,(x), followed by the root and so on, down to the lowest x in the 
"ladder." 

From Eq. (3), it can be see that we have: 

(4) $(x) = x*^ = i/x9 

provided that the sequence (3) has a nontrivial limit. From Eq. (4), we obtain 
the equation: 

(5) Hx)Hx) = x. 
Values of (j)(#) were calculated by means of a simple program embodying the se-

quential operations of Eq. (3) on a Hewlett-Packard calculator. In this manner, 
we have obtained the graph of Figure 1, in which $(x) is shown as a function of x. 
We note that for x < e~1/e

9 i.e., x < 0.692200..., <f>(a?) = 0, and at x = e~1/e
9 <|>(a0 

has the value l/e = 0.36788. Indeed, for cj) = e"1
9 Eq. (5) gives 

^ » e-itt/'> = g-i/*= x , 

The reason for the abrupt decrease of $(x) to zero below x = e~1,e is illustrated 

This paper was authored under contract EY-76-C-02-0016 with the U.S. Depart-
ment of Energy. Accordingly, the U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or 
allow others to do so, for U.S. Government purposes. 
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in Figure 2, in which we have plotted (j)* as a function of <j). It can be seen that 
(j)̂  has a minimum value of e~lje which is attained at <f) = l/e. Indeed, the deriva-
tive dfy^/dfy is zero at this points as can be seen from the following equation: 

dfyb _ dexp (([) log (j)) 
(6) '(log (J) + 1), 

<*>(*) 

1 I 1 1 1 1 1 

-

1 ! 1 1 ! 1 1 

I 1 1 1 Y I 

/4>\M 

V . *2
{X) 

1 1 1 1 ! i 1 

16 20 24 

Fig. 1. The curve of the function <f)(x) as a function of x. 
For X < e~1/e = 0.6922, (J) (x) = 0. At X = e~1,e , 
§(x) = 1/e = 0.36788, so that §(x) has an abrupt 
discontinuity at x = e'1,e . For x > ee = 15.1542, 
the sequence $(x) defined by Eq. (3) converges to 
two different values ^>1(x) and $2(x) , depending on 
whether the number n of Xss is odd or even, respec-
tively. This property can be called "dual conver-
gence" and has been described previously in [1-3]. 

Thus, for x < e~1/e , Eq„ (5) has no solution with $(x) > 0. At <j> = 0, the 
derivative dfy^'/dty -> -° °, since log c|> -»• -° °. We also note from Figure 2 that for 

-l/e < 1, there are two values of (j) for a given value of Thus, we can 
divide the curve of Figure 2 into two branches, the one to the left of (f) = l/e, 
and the other to the right of (f) = l/e. The branch to the right of (j) = l/e9 i.e., 
the branch with (j) > l/e, gives the value of (j) for a given x9 as obtained from Eq. 
(3). The meaning of the other (left) branch will be discussed below. We note that 
for cf> > 1, there is a unique value of <J) for a given (J)-* = x9 as shown in Figure 2. 

Returning now to Figure 1, we note that for x > ee = 15.1542..., we have a dual 
convergence of Eq. (3) , namely a convergence to two values $1(x) and (J)2(̂ ) depend-
ing upon whether the number n of x1s in Eq. (3) is odd or even. This property of 
dual convergence has been discussed previously in connection with the function 
f(x) = F(x9 x) of [1] for x < e~e = 0.06599. The concept of dual convergence was 
actually introduced in an earlier paper by the authors [3] which was circulated as 
a Brookhaven Informal Report [4]. 

At the point x = ee
9 <$>(x) has the unique value <$>(x) = e, which is marked on 

the ordinate axis of Figure 1. For very large x9 it is easy to show that $i(x) 
approaches x9 whereas $2 0*0 approaches 1. In order to illustrate this property, 
we consider the choice x = 10,000. N o w ^ = 10,000 °'0001 = 1.000922, and the next 
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step calls for the calculation of 

followed by 
10,000 1/1.000922 

9915.53, 

1050001/9915'53 = 1.000929. 

The actual values to which the inf in i te sequence of Eq. (3) converges for x = 109000 
are: 

(ĵ Gc) = 9914.85 and (f)2(x) = 1.0009294. 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0 
0 

"T—r 

J_L 
0.2 04 ^ 0.6 0.8 1.0 1.2 

Fig. 2. The function (j)̂  as a function of (J) for (J) in the region 0 < (f) < 1.25. 
This function is of interest in connection with Eq. (5) , according to 
which cj)* = x. We note that the minimum value of <J>* is e~1/e = 0.6922 
and is attained at $ = 1/e. Thus, for x < 1, the function $$ can he 
considered as having two branchesr the one to the left of $ = 1/e and 
the one to the right of § = 1/e. The right-hand branch gives the 
value of (J) as a function of x = (f)4>, e.g. > for x = 0.8, we have (p(x) = 
0.7395. The left-hand branch gives the value of Nm±n , as explained 
in the text [see Eqs. (12)- (18) ] . Thus, for values of x between e 
and 1, §N(x) = §(x) , provided N _> N min . 
an example, Nm±n (x = 0.8) = 0.09465. 

For N < Nn Ax) 0. 

-1/e 

As 

Obviously, from the definition of <$>i(x) and (J)2(#), we have the relations: 

(7) b±(x) 2(x) 
,(a?) 

Incidentally5 the equation $(x) 

* i ( * ) 

<K*) x continues to have a solution for x > ee. 
for x > ee, but this solution does not give the values of $(x) to which the se-
quence (3) approaches by dual convergence. As examples of values of $1(x) and 
cj)2(x) for x > ee

s we may cite: 

for x 
for x = 

= 20: 
100: 

01(2O) = 7.28025 
^(100) = 76.3799 

(f2C20) = 1.50907; 
f)2(100) = 1.06215. 

The occurrence of x = e~1/e and x - ee as limiting values for (J)Or) and the 
similar occurrence of x = elfe and x - e~e as limiting values for f(x) suggests a 
recriprocal relationship between the functions $(x) and f(x). This conjecture is 
strengthened by the fact that the values of f(x) and $(x) at corresponding points 
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are the reciprocals of one another. Thus, we have: 

(8) 

(9) 

(10) 

<j>0c -1 /e ) = He, fix , 1 / e ) = e, 

)(x = ee) = e, fix = e-e) = lie. 

We now prove the following r e l a t i on between <j> (x) and fix) : 

f ( l / x ) 
Thus, the region of dual convergence of <J>(#) for x > ee corresponds point-for-point 
to the region of dual convergence of f(x) for x < e~e

 9 in which f(x) has two 
branches f±(x) and f2(x)9 which approach the limiting values f± (x) -> x as x -> 0 
for an odd number of xTs in Eqs. (1) and (2), and f2(x) -> 1 as x -> 0 for an even 
number of x's. 

In order to prove the relation of Eq. (10), we simply note that: 

(11) >(*> = 1 /I W 
where the bracketing is "from the top down" the ladder, as in all of the present 
work. Thus, all of the arguments given for the single or dual convergence of f(x) 
in [1] apply to the present case, provided that x > 0. 

We now wish to consider a generalization of cf)(x) to be denoted by $N(x)9 anal-
ogously to the generalization of f(x) to the function fN(x) of [2], Thus, we de-
find <$>N(x) as follows: a 

/x 

(12) V*> /x9 

where N is an arbitrary positive quantity 
we can rewrite Eq. (12) as follows: 

By the same procedure as in Eq. (11), 

(13) \>N(x) = x] 
1 .• 

= 1 IJ 1/N\X ) 

[see Eq. (26) of 2], For values of x > 1, we have l/x < 1, and as shown in [2, 
discussion following Eq. (29)]«» we have 

(14) fl/N\X) f\x) 
for all values of N9 and correspondingly: $N(x) = $(x). This statement applies 
both to the region 1 < x ± ee

9 where §(x) is single-valued, and to the region x > 
ee

9 where we have dual convergence. In this case: 

l.JT5^ 
(x) and .,/*> >(x). 

The situation is different when x < 1. As shown above, $(x) is nonzero only 
in the limited region extending from x = e~1/e = 0.6922 to x = 1. The correspond-
ing values of l/x are larger than 1, and hence fj^/^/x) maY diverge, depending on 
the value of N9 giving <pN(x) = 0 . _ 

It has been shown in [2] that, for the function f-(x) 9 the upper limit on N is 
given by the root of the equation 

(15) X? f, 
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where we must choose the upper branch of the curve of / vs. ~x9 i.e., the branch 
for which f > e9 which we have denoted by_/(2) [2, see the discussion following 
Eq. (28)]. We can therefore write f(2)_ = N. Now in view of Eq. (13), the lower 
limit on N for $N(x) is given by N = 1/N9 and the value of x is given by x = 1/x. 
Upon inserting these substitutions into Eq. (15), we obtain: 

(f -*• 
Upon taking the reciprocal on both sides of this equation, we find 
(17) x1/N = N9 
whence 
(18) x = N*. 

This equation for N is identical to the equation for <J)(ar) given in Eq. (5). Since 
N > e by the previous argument, we find N < l/e9 and therefore the relation of Eq. 
(18) for N, i.e., Nm±n (minimum value of N) corresponds to the part of the curve 
of (J)* = x which lies to the left of the point <j> = l/e. Thus, the values of Figure 
2 for <j> < 1 give both the value of $(x) (right part of the curve) and the value of 
^min (#) (left part of the curve), such that for N < Nm±n9 the function <pN(x) of Eq. 
(13) is zero, even though the simple function <$>(x) (with an x on top of the lad-
der) is convergent and nonzero, and in fact <$>(x) 2. 1/^-

In .connection with the iterated root-taking which is implied by Eq. (3) for 
the function §(x)9 we have considered another possible function obtained by itera-
tion, namely: 

(19) R(n9 a, x) - v a + x y a + xy .. . 

Assuming the convergence of Eq. (19), we find: 

(20) Rn = a 4-' xR. 

For the case n- = 2 (repeated square roots), Eq. (20) can be solved directly, with 
the result: 

(21) 7?(2, a, x) = | + (w Also, for the special case that a = 0 in Eq. (19), we obtain, for arbitrary 
(positive) n: 

(22) Rn = xR9 
which gives 
(23) R(n9 0, x) = x1Kn~1\ 

If, furthermore, we take n = x9 we obtain: 

(24) R(x9 0, x) = xinx~1). 

I t can be e a s i l y shown t h a t the f u n c t i o n R(x9 0 , x) d e c r e a s e s mono ton ica l ly from 
~~l/x nea r x = 0toR = e a t x = l and, f u r t h e r , t o R = 1 a s x •> °°. 

In Eq. ( 2 3 ) , we n o t e t h a t i?(2, 0 , x) = a?, i . e . , 

(25) X = yj tf \ X \. . . . 

Finally, we wish to show the connection of i?(2, a, a:) to the continued frac-
tion FQ (a9 x) defined as follows: 

(26) F^a' X) = X + ~ — ^ * 
X H ; 

X + . . . 
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From Eq. (26), we obtain the following equation determining the value of 
Fc(a9 x)i 
(27) Fc - x = f-9 

whence: 

(28) F2 - xFc -a = 0. 

This equation is identical to the one which determines the continued square root 
i?(2, a9 x), and correspondingly 

(29) Fe{a9 x) = i?(2, a, x). 
An interesting result of Eq. (28) is that in the limit that x -> 0, we find 

(30) llm Fc(a9 x) = a*-, 

which does not seem obvious from the definition of Fc (a, x) by Eq. (26). 
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1. INTRODUCTION 

The numbers Fn = 1 + 22" and Mp = 2P - 1, where n is a nonnegative integer and 
p is a prime, are called Fermat and Mersenne numbers, respectively. Properties of 
these numbers have been studied for centuries and most of them are well known. At 
present, the number of known Fermat and Mersenne primes are five and twenty-seven, 
respectively. It is well known that if 2n - 1 = p, a prime, then n is a prime. It 
is quite easy to show that if 2n - 1 = pq9 p and q are primes, then either n is a 
prime or n = v2

9 where v is a prime. Thus 

2vl - 1 = pq = (2y - l)(2y(u"1) + ... + 2y + 1), 

where 2 u - l = p i s a Mersenne prime. This leads to the following definition. 
Let k and n be positive integers. The number L(k9 n) is defined as follows: 

L(k9 n) = 1 + 2n + (2n)2 + ... + (2n) 
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The purpose of this paper is to study the numbers L(k, ri) , which contain both the 
Fermat, L(2, 2n),and Mersenne, L(k9 1), numbers. We will show that while L(k, ri) 
possesses many interesting properties, there remain unanswered some very elemen-
tary questions about this class of numbers. 

2. PRIME NUMBERS OF THE FORM L(k9 ri) 

In this section, we shall show that if L(k9 ri) is a prime, then either L(k, ri) 
is a Mersenne prime, or n = pl and k = p. But first we need a lemma which follows 
from Theorem 10 in [4, p. 17]. 

LEMMA 1: If (a, b) = d9 then (2a - 1, 2b - 1) = 2d - 1. 

THEOREM 1: If L(k9 ri) is a prime, then either L(k9 ri) is a Mersenne prime, orn = 
pl and k = p, where p is a prime and t is a positive integer. 

PROOF: If n - 1, then L{k9 1) is a Mersenne prime. So suppose n > 1. If fc 
is not a prime, then k - ab9 where a > 1 and b > I. Then 

L(fc, n)(2n - 1) = 2n7c - 1 = 2n(aZ?) - 1 = (2na)& - 1 

_ /2na - l)(2na(Z?-1) + ••• + 2na + 1) 

= (2n - l)(2n(a'1) + .--. + 2a + 1) 

. (2na(^-l) + ... + 2Wfl + 1 ) . 

Thus, cancelling (2n - 1) from both sides, L(k9 ri) is not a prime; a contradiction. 
Thus k = p for some prime p. 

Next we wish to show that n = pi. Suppose n - pf1 ... pdj and p fi pv for any 
k. Then J * 

L(fc, n)(2n - 1) = (2n)p - 1 = (2P - l)(2p(n-1) +'...+ 1). 

Since (p, n) = 1 , by Lemma 1, (2P - 1, 2n - 1) = 1. It follows that 

(2P - l)\L(k9 ri). 
If (2P - 1) is a proper divisor of L(k9 ri), then £(&, n) is not a prime; a contra-
diction. If 2p - 1 = L(/c, n), then 

1 + 2 + ••• + 2 P - 1 = 1 + 2n + ••• +" (2n) p _ 1; 

impossible, since n > 1. Thus p = p^ for some i. 
Finally, suppose n has more than one prime factor, say n = pax9 x > 1. Hence 

L(fc, n){2n - 1) = (2*)p - 1 = (2P" + 1 ) x - 1 

= (2pa + 1- 1)(..-) = (2pa- i)(...)(•••). 

Since (n, pa+1) = pa
9 it follows from Lemma 1 that 

(2n - 1, 2pa + 1- 1) = 2pa- 1. 
Thus 

(2pa(p-1) + •-. + l)\L(k9 ri). 
If (2pa(p"1) +•••+!) is a proper divisor of L(k9 ri) , thenL(X, ri) is not a prime; 
a contradiction. On the other hand, 

(2Pa(p-D + ... + 1} ^ L ( k > n ) = i + 2 -+• -• + (2n)p~1 

because n > pa. Thus n - pa and this completes the proof. 

For the remainder of this paper, we shall employ the following notation: 

L(p*) = 1 + 2pi + (2pi)2 + ••• •+ (2p i) p"1. 
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REMARK: By looking at the known factors of 2n - 1, the following are prime 
numbers: L(3),L(32), and L(7). The numbers L(33),L(5), L(52),L(72), L(ll)> £(13), 
and L(19) are not primes. 

Motivated by the properties of Fermat and Mersenne numbers, we shall investi-
gate the numbers L(pi) and present a list of unanswered problems concerning L(p^). 

Problem 1. Determine for which primes p there exists a positive integer i for 
which L(pl) is a prime. 

Problem 2. For each prime p, determine all the primes of the form L(p^). 

3. RELATIVELY PRIME 

It is well known [4, pp. 13 and 18] that each pair of Fermat numbers (also the 
Mersenne numbers) are relatively prime. We show below that for i £ j, L(pi) and 
L(pJ) are relatively prime for any prime p. 

The proof of the following lemma can be deduced from Theorem 48 [4, p. 105]. 

LEMMA 2: For each prime p and each positive integer i, pj(L(pi) . 

THEOREM 2: The numbers L(pt) and L(pi + k) are relatively prime, if k > 0. 

PROOF: First we show that for any positive integer j, the numbers L(pj) and 
(2pj- 1) are relatively prime. Suppose m = {L(pJ), (2pJ- 1)). Since 

m\2pJ- 1, m\2p'n- 1 

for any positive integer n. Thus 

m\(2p^p-1) - 1) + (2PJ'(P-2>- i) + ... + (2pJ- 1) + (1 - 1) 

i m p l i e s t h a t m\L(pJ') - p . Hence w|p i m p l i e s m = 1 or p . By Lemma 2 , p\L(pJ) and 
thus m = 1. Now 

2 p i + f c - 1 - 2 ( p i + * - 1 ) p - 1 = ( 2 p " f e _ 1 - l ) ( 2 p i + k " 1 ( p - 1 ) + . . . + 1) 

= ( 2 p i + k_1 - l)L(p* + k - 1 ) = (2 P - l)L(p)L(p2) • • • L C p ^ " 1 ) . 

Suppose the g.c.d. of L(jpl) and L(p'l + k) is d. Since L(p^)|2pl + - 1, it follows 
that d\(2pi + k - 1). But L(pi + k) and (2pi+* - 1) are relatively prime, thus d = 1. 
The proof is complete. 

4. PSEUDOPRIMES 

Recall that a number n is called a pseudoprime if n\2n - 2. It is well known 
[4, p. 115] that each of the Fermat and Mersenne numbers is a pseudoprime. We now 
show that Lip1) is a pseudoprime for each i . But first a lemma is needed. It is 
a consequence of Theorem 48 [4, p. 105]. 

LEMMA 3: For each prime p and each positive integer i, each prime factor of Lip1) 
is of the form 1 + kpL + 1 for some positive integer k. 
THEOREM 3: For each prime p and each positive integer £, L(pl) is a pseudoprime. 

PROOF: By Lemma 3, each prime factor of Lip1) is of the form 1 + kp'L + 1 for 
some positive integer k. Thus, there exists a positive integer x such that 

L(pl) = 1 + xpi + 1 

and hence 
L(p*) - 1 = xp^ + 1. 

Now 
2MP*)-i _ i = 2*pi + 1 - 1 = (2p' + 1 - l)(2pt + 1(x-1) + •-. + 1). 

Since L(p^)(2p"- 1) = (2P" + 1 - 1), it follows that 
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L(pt)\(2pi + 1- 1) 
and hence, from above, 

L(pi)|2W)-i _ 1.. 

ThusLip'1) is a pseudoprime. 

5 . POWERS OF Lip1) 

The Fibonacci sequence is defined recursively: 

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn. • 

It was shown in [1] and [6] that the only Fibonacci squares are F1, F2, and ̂ 12. 
In [3] necessary conditions are given for Fibonacci numbers that are prime powers 
of an integer. It is well known that each Fermat or Mersenne number [2] cannot 
be written as a power (greater than one) of an integer. We shall show that L(3Z) 
also shares this property. However, whether Lip1), for arbitrary p, has this prop-
erty or not is an open question. 

THEOREM 4: Let q and j be positive integers. If L(3i) = qJ', then j = 1. 

PROOF: In fact, we prove a bit more. Let n be a positive integer. Suppose 
1 + 2n + (2n)2 = <7<? and J > 1. Note that q is odd. 

Case 1. j > 1 is odd. Let x = 2n. Then 

x(l + #) = qo - 1 = (4 - 1)(qj ' 1 + ••• + q + 1). 

Since (q - 1) is even, L = (<7J_1 + — + 1) is odd. It follows that 

x\ (q - 1) and x <_ q - 1. 

Hence x+l<q<L;a c o n t r a d i c t i o n . 

Case 2. j > 1 is even. It suffices to take j = 2. Thus 

1 + 2n + (2n)2 = <?2 or 2n(l + 2n) = q2 - 1 = (q - 1) (<? + 1). 

Since both (q - 1) and (q + 1) are even, and 1 + 2n is odd, it follows that 

q - 1 = 2aQ and <? + 1 = 2bV9 

where both Q and 7 are odd and a + b = n. Now 

2 = (<7 + 1) -(q - 1) - 2*7.- 2aC - 2(2Z?"17 - 2a~1Q). 

Hence 1 = 22?~17 - 2a~1Q. It is clear that either a = 1 or b = 1. Suppose a = 1. 
Then 1 + Q = 2Z?~17. If $ = 1, then 2 = 2Z?~17 implies that 7 = 1 , and this cannot 
happen. Thus Q > 1. Now 

2n(l + 2n) = 2e2n_17 = 2n«7, 1 + 2n = QV = 7(2n_27 - 1), 
a n d 7 + 1 = 2n~272 - 2n = 2n"2(72 - 22) = 2n"2(7 - 2)(7 + 2). 

Clearly, this is a contradiction. The case b = 1 is similar. This completes the 
proof. 

We can also show that, for p = 5, 7, 11, L(pO is not the power (greater than 
one) of any positive integer. The general case has, so far, eluded our investi-
gation. It is so intriguing that we shall state it as a conjecture. 

CONJECTURE 1: Let p be an arbitrary prime and q and j be positive integers. If 
L(p*) = qj

9 then J = 1. 
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6. COMMENTS 

Even though each Fermat or Mersenne number is not the power (greater than one) 
of an integer, it is not known whether they are square-free. Naturally, we make 
a similar conjecture. 

CONJECTURE 2: For each prime p and positive integer i9 the number L(pi) is square-
free. 

REMARK: It has been shown in [5] that the congruence 2P~1 E 1 (mod p2) is 
closely related to the square-freeness of the Fermat and Mersenne numbers. We 
have shown, by a similar method, that this is also the case for the numbers L(p^). 

It is well known that (p, 2 P - 1 ) = 1 and (n, 1 + 22 ) = 1. Since the prime 
divisors of Lip1) are of the form 1 + kpt + 1 [4, p. 106], it follows that 

(i, L(p^) = 1. 

Finally, we see that while L(pi) possesses many interesting properties, there 
remain unanswered some very elementary questions about this class of numbers. 
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1. INTRODUCTION 

According to [1, p. 45], the total number of subsets of {l, ..., n} such that 
no two elements are adjacent is Fn+1, where Fn is the nth Fibonacci number, which 
is defined by 

p = F = 1. F - F + F 
C 0 r i l 5 j C n r n-l T r « - 2 * 

The sequence {1, ..., n) can be regarded as the vertex set of the graph Pn in 
Figure 1. Thus, it is natural to define the Fibonacci number f(X) of a (simple) 
graph X with vertex set V and edge set E to be the total number of subsets 5 of 7 
such that any two vertices of S are not adjacent. 

The Fibonacci number of a graph X is the same as the number of complete (in-
duced) subgraphs of the complement graph of X. (Our terminology covers the empty 
graph also.) 
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n- 1 

n-1 n 

Fig. 1 

In [1, p. 46] the case of a cycle Cn with n vertices is considered, as in Fig-
ure 1. The Fibonacci number f(Cn) of such a cycle equals the nth Lucas number F* 9 
defined by 

9 7?5 
0 - » - 1 

Let ^ = (7, S^) and X2 = (7, #2) be two graphs with E± 2L #2 > then 

f(Xx) >f(X2). 
So the following simple estimation results! 

(1.1) n + 1 = /(*n) <. /(J) £ /(iQ = 2\ 
where X is a graph with n vertices, and Kn is the complete graph with n vertices 
and Kn its complement. 

If J, Y are disjoint graphs, then we trivially obtain, for the Fibonacci num-
ber of the union X U Ys 

f{X U J) - f(X) • f(Y) . 

2, THE FIBONACCI NUMBERS OF TREES 

Trivially, the graph Pn is a tree with f(Pn) ~ Fn+1° Another simple example 
for a. tree is the star S„ : 

n - 1 

n- 2 

Fig. 2 

The Fibonacci number f(Sn) can be computed by counting the number of admissible 
vertex subsets (they do not contain two adjacent vertices) containing the vertex 
ft or not containing n. Thus 

f(S„) = 1 + 2"-1. 
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THEOREM 2.1: Let X be a tree with n vertices, then 

Fn+1 <f(X) < 2n~1 + 1. 
PROOF: First, we prove the second inequality by induction. For n = 1, 2, it 

is trivial. Let J be a tree with n + 1 vertices and let v be an endpoint of X. 
The Fibonacci number f(X) can be computed by counting the number of admissible 
vertex subsets containing v or not containing v. The number of admissible subsets 
containing v can trivially be estimated by 2 n _ 1 and the number of admissible sub-
sets not containing v can be estimated by 2n _ 1+l using the induction hypothesis. 
So we obtain 

f(X) £ 2n _ 1 + (2n~1 + 1) = 2n + 1. 

To prove the first inequality, it is necessary to prove a more general form; 
hence, we assume I to be a forest. We use induction and, for n = 1 , 2 , the estima-
tion is trivial. Now we proceed by the same argument as above. Let X = (F, E) be 
a forest with n + 1 vertices and v be an endpoint of X. Let X1 be the induced sub-
graph of the set V - {v} and let w be the adjacent vertex of v. Then X2 denotes 
the induced subgraph of the set V - {v9 w}. Trivially, X1 and X2 are forests with 
n and n - 1 vertices, respectively. By the induction hypothesis, we obtain 

f(X) = fax) + f(X2) >. Fn+1 + Fn = Fn+2, 

and so the theorem is proved. 

REMARK 2.2: There are natural numbers m such that no tree X exists with f(X) = m. 
This is evident because natural numbers m exist not contained in intervals of the 
form [Fn, 2 n _ 1 + 1]. Further, there are numbers m contained in such intervals that 
are not Fibonacci numbers of trees. 

EXAMPLE 2.3: Let Rn be the graph with In vertices as in Figure 3. 

72+1 n+2 In- 1 In 
f ? f T T f 

&• • A A 4 4 m 
n- 1 

Fig. 3 

For the Fibonacci numbers of i?n, we obtain the following recursion 

Afl» + i> ~ 2/(i?n) - IfiRn.O = 0, f(R±) = 3, f(R2) = 8. 

The solution of this recursion is 

3 + 2/3 f(Rn) = \ ^ + ^ ) n + 
3 - 2/3 (1 - / 3 ) \ 

Some other examples are treated in more detail in Section 3. 

3. EXAMPLES 

Let X = (F, E) be a graph and y1$ . . . , ys vertices not contained in V. Then, 
J = (V19 E±) denotes the graph with 

Vx = V U {#!, ..., 2/s} and E1 = J? u {{z/i, v j} | 1 <. i <. s, v e F|. 

By the usual recursion argument, we obtain 

(3.i) / a ) = / a > + 2s - i . 
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For an example, we take the following graphs: 

1 

n- 1 

Fig. 4 

EXAMPLE 3.2: We consider the graphs Qn with In vertices and Q'n with In - 1 verti-
ces as in Figure 5. 

Vn 

n+l n + 2 In 
m ®- f i f 

1X1X1XRI 
1 2 1 2 

n + l n + 2 • • • 2n - 1 

_ — i u — 4 — _ s - -® 
1 2 . - • n 

Fig. 5 

Let an and bn denote the Fibonacci numbers of Qn and Qf
n9 respectively. By our 

usual recursion argument, we obtain 

1. 
2. 

an = bn + bn_19 and 
bn =a„_1 + £n_i°  

We now have 

3 . bn_1 - an_2 + fc„_2, 
and by adding (2) and ( 3 ) , 

bn + On_1 = ( 2 n _ 1 + <2n_2 + ^ n - l ^ ^ n - 2 ' 
and so 

a n = 2a n _ 1 + a n _ 2 ; ax = 3 , a 2 = 7. 
This recursion has the solution 

j(l + /2)n+1 + (1 - /2)"+1 - f(Qn). 

EXAMPLE 3.3: Now we consider the graph Vn with 2n vertices, as in Figure 5. By 
the usual recursion argument, we obtain 
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and so 
f(Vn) = fiVn^) + 2/(7n„2); fWJ - 3, f(V2) = 5, 

/<?»> =^(2 n + 2 + (-Dn + 1). 

4. PROBLEMS 

PROBLEM 4.1: Compute the Fibonacci number f(Ln) of the lattice graph Ln with n2 

vertices in Figure 6. 

(n, 1) (n, 2) ... (n, n) 

» 4 A i 

L ••••••• A I 4 

I--- I • k h 

42 
(1, 1)(1, 2) v-.(l,n) 

Fig. 6 

PROBLEM 4.2: Compute the Fibonacci number of the n-dimensional cube Wn with 2n 

vertices in Figure 6. 

PROBLEM 4.3: Compute the Fibonacci number of the generalized Peterson graph Petn 
with 4n + 6 vertices (n > 1). 

Pet 

Fig. 7 

PROBLEM 4.4: Give a lower bound for f(X) in the case of a planar graph X with n 
vertices. Give estimations for f(X) if X denotes a regular graph X of degree p or 
if X denotes an exactly ^-connected graph. 

PROBLEM 4.5: Let a) = (fcn) be an increasing sequence of natural numbers5 then a 
sequence £1 of graphs ^ C I2 C I3 C • .. with F(Xn) = kn exists such that Xi is em-
bedded as an induced subgraph in Xi + 1. This is trivial if we take for Xn the com-
plete graph Kkn_1. 

We define 

6(03) - inf {a:\E(Xn)\ - 0{\V(Xn)\a)\ 

/<*„>-&„ 
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LINEAR SECOND-ORDER RECURSION SEQUENCES 

If Y is a class of increasing sequences of natural numbers (e.g., all increas 
sequences or the arithmetic progressions), then we define 

A(y) = sup 6(a)). 
o a e Y 

T r i v i a l l y , we o b t a i n A(y) <. 2 . 
The problem i s t o g ive b e t t e r e s t i m a t i o n s f o r A(y) i n t h e g e n e r a l case or 

t h e case where y i s t h e c l a s s of a l l a r i t h m e t i c p r o g r e s s i o n s . 

REFERENCES 

1. L. Comtet. Advanced Combinatorics. Dord rech t -Ho l l and : D. R e i d e l , 1974. 
2 . F . Hara ry . Graph Theory. Reading, Mass . : Addison-Wesley, 1972. 

SOME IDENTITIES AND D I V I S I B I L I T Y PROPERTIES OF 
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INTRODUCTION 

Fol lowing Lucas [ 5 ] , l e t P and Q be i n t e g e r s such t h a t 

( i ) (P , Q) - 1 and D = P 2 + 4§ ± 0 . 
Let the r o o t s of 

( i i ) x2 = Px + Q 
b e * 4 

( i i i ) a = (P + Z?*)/2, b = (P - P * ) / 2 . 
Consider the sequences 

(iv) un = (an - bn)/(a - b), vn = an + bn . 

In this article, we examine sums of the form 

E(J)^'(«^-i)fc"^ 
where xn = un or vn 9 and prove that 

g.c.d. (un> uknlun) divides k, 
and that 

g.c.d. (vn9 Vkn/vn) divides k if k is odd. 

PRELIMINARIES 

(1) (un, Q) = (vn, « = 1 
(2) (un, un_1) = 1 
(3) D = (a - b)2 

(4) P = a + 6 , « = - a i 
(5) yn = un+1 + ewn_! 
(6) au n + Qun_1 = a n

s iw„ + Qun_1 = 2?" 
(7) avn + «y n _ 1 = a n ( a - b), ton + ^ n _ x = - £ n (a - 2?) 
(8) z;„ = P y n _ ! + Qv.n-2 
(9) P even i m p l i e s Vn even 
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a-3)/2 

(10) k odd implies vkn/vn = £ %-i-2jO»«J'n ' ^ G ^ * ' 2 

j - 0 

REMARKS: (1) is Carmichael [2, Th. I], and (2) follows from [2, Corollary to 
Th. VI]. (3) follows from (iii), (4) follows from (i) and (iii). (5) follows from 
(iv) and (4). (6) can be proved by induction, while (7) follows from (5) and (6). 
(8) follows from (iii) and (iv), (9) follows from Carmichael [2, Th. Ill], and (10) 
is Lucas [5, Eq. (44), p. 199]. 

THE MAIN THEOREMS 

THEOREM 1: Ukn = £ (j^iQu^ )k '̂uj-
J = i 

PROOF: ( i v ) i m p l i e s 

(a - b)ukn « akn - bkn = {an)k - (bn)k ; 
(6) i m p l i e s 

(a - b)ukn = (aun + Qun_1)k - (bun '+ Qun.Y)k 

. J - 0 W ' j - l M / 

' 6 ' k k 
wk»> 5(5)w»(«w»-i)k"J"(«J' " W ( a - b) « 2 ( J ) M » ( e M w - l ) k " J ' M ^ 

J - l ' " ' J - l V J / 

THEOREM 2: (uns Ukn/un)\k> 

PROOF: Theorem 1 implies 

k k 

J - 1 V J 7 J = 1 d ! 

Let d = (un9 ukn/un), so that d\un9 d\u\niun' Therefore, we have d\k(Qun_{) "1. 
Now (1), (2) imply (d, fi) = (d, wn_1) = 1. Therefore, d|/c. 

THEOREM 3: If k is odd, then 
k '/O 0(k'1)/2^ -El^^'^n-!)"-'",-. 

PROOF: Toge the r , ( i v ) and (3) imply 

(a - k ) £ ( f e ~ 1 ) / 2 y k n = (a - £ ) k ( a f c " + Z?fen) 
= (a - b)kakn + (a - b ) k b k n 

= {(a - 2?)aw}*-.- {-(a - W ) f e . 
(7) i m p l i e s 

(a - i )Z? ( k " 1 ) / 2 i ; k n = (a^ n + ^ n „ x ) f e - « w n + ^ n . 1 ) " 
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JL /7,x JL. 

Therefore, ° 

J = 0 j - 0 d 

J - 0 ^ J - 1 V J 

-rm^M-n T / , , \ ( 1 if P is odd LEMMA 1: (Vn, Vn_±) = < 2 2 if P is even. 

PROOF: Let 6? = (i;M, Un_i), d* = (vn_19 Vn_2). (8) and (1) imply d|d*, while 
(8) implies d*|d, so that d = d*. Repeating this argument n - 1 times, one has 
^ = (̂ i» y0)- But (iv) and (4) imply Vi = P and i>0 = 2, so that d = (P, 2). There-
fore, P odd implies d = 1, P even implies d = 2. 
LEMMA 2: k odd, P even imply Vkn/vn odd. 

PROOF; The hypothesis and (10) imply 

(Zc-3)/2 

»*„/"» - e(k-1W2 = E "a-i^,,*'" 
j = o 

The hypothesis and (9) imply Vkn/vn - Q^k~1)n/2 is even, whereas the hypothesis and 
(9) imply Q is odd. Therefore, vkn/vn is odd. 

LEMMA 3: (vn_19 Vn, Vkn/vn) = 1 if fc is odd. 

PROOF: Let d = fon) vkn/vn)* so that d|i?n and (d, tfn-i) (vn9 i>n_i). Now Lem-
ma 1 implies (z;n, fn_1)|2. Therefore (d, vn_1)\2. If P is even, Lemma 2 implies 
d is odd, which implies (d, Vn_x) is odd. Therefore (d, Vn.1) = 1. If P is odd, 
then Lemma 1 implies (vn9 vn_1) = 1. Therefore (d, vn_1) = 1. 

THEOREM 4: k odd implies (vn9 Vkn/vn)\k. 

PROOF: The hypothesis and Theorem 2 imply 

HQVn.O"-1 + 1 ( 1 ) ^ ^ ^ 
J = 2 

I f d = ( y n , vkn/vn)9 we have d | /c($i>M_1)k~1 . Now (1) and Lemma 3 imply 

(d , « ) = (d , y n _ i ) - 1, 
T h e r e f o r e , d\k. 

CONCLUDING REMARKS 

Theorem 1 generalizes a result pertaining to Fibonacci numbers, i.e., the case 
P = Q = 1, by Carlitz and Ferns [l,Eq. (1.6), p. 62] with k = 0; by Vinson [6, p. 
38] with r = 0; and by Halton [3, Eq. (35), p. 35]. Theorem 2 generalizes Halton 
[4, Lem. XVI*] as well as Carmichael [2, Th. XVII]. Theorems 1 and 3 remain valid 
if ukn9 Vkn are replaced by ukn+r9 vkn+r9 while Uj is replaced by Uj+r. 
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I. INTRODUCTION 

The kth polygonal number of order n (or the feth n-gonal number) Pn is given by 
the equation 

pn = pn = fe[(n _ 2){k „ 1 } + 2 ] / 2 # 

Diophantus (c. 250 A.D.) noted that if the arithmetic progression with first term 
1 and common difference n - 2 is considered, then the sum of the first k terms is 
P£. The usual geometric realization, from which the name derives, is obtained by 
considering regular polygons with n sides sharing a common angle and having points 
at equal distances along each side with the total number of points being P™. Two 
pictorial illustrations follow. 

Pi = 10 P\ = 15 

The first forty pages of Dickson's History of Number Theory, Vol. II, is devoted 
to results on polygonal numbers. 
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In 1968, W. Sierpifiski [6] showed that there are infinitely many triangular 
numbers which at the same time can be written as the sum, the difference, and the 
product of other triangular numbers. It is easy to show that 4(w2 + I)2 is the 
sum, difference, and product of squares. Since then, several authors have proved 
similar results for sums and differences of other polygonal numbers. R. T. Hansen 
[2] considered pentagonal numbers, W. J. OfDonnell [4, 5] considered hexagonal and 
septagonal numbers, and S. Ando [1] proved that for any n Infinitely many n-gonal 
numbers can be written as the sum and difference of other n-gonal numbers. Al-
though Hansen gives several examples of pentagonal numbers written as the product 
of two other pentagonal numbers, the existence of an infinite class was left in 
doubt. 

In this paper we show that for every n there are infinitely many n~gonal num-
bers that can be written as the product of two other n-gonal numbers, and in fact 
show how to generate infinitely many such products. We suspect that our method 
does not generate all of the solutions for every n, but we have not tried to prove 
this. Perhaps some reader will be challenged to try to find a product which is 
not generated by our method. Moreover, except for n = 3 and 4, it is still not 
known whether there are infinitely many n-gonal numbers which at the same time can 
be written as the sum, difference, and product of n-gonal numbers. 

Our proof uses the well-known theory of the Pell equation. We also use a re-
sult (not found by us in the literature) on the existence of infinitely many solu-
tions of a Pell equation satisfying a congruence condition, given that one solu-
tion exists satisfying the congruence condition. In Section 2 we note some facts 
about the Pell equation and prove this latter result. In Section 3 we prove our 
theorem on products of polygonal numbers. 

2. THE PELL EQUATION 

Although it was first issued by Fermat as a challenge problem, and a complete 
theory was given by Lagrange, the equation 

(1) u2 - Dv2 = M, 

where D is not a perfect square, is usually called the Pell equation. The special 
case 

(2) u2 - Dv2 = 1 

always has an infinite number of solutions when D is not a square. In fact, if 
(tti, i?i) is the least solution of (2), then any solution (UJS Vj) is given (see, 
e.g. [3, pp6 139-48]) by the equation 

(3) Uj + i/DVj = (% + /DVi)d . 
Also, it is easy to see that if (u*9 V*) is any particular solution of (1), then 
(w*» Vp9 given by 

(4) w* + /Dvf = (u* + /Dv*) (UJ + i/DVj ), 
is also a solution. Thus, we can generate infinitely many solutions to (1) if we 
can find one solution. 

In what follows, Z+ denotes the positive integers and (a9 b) = (<?, d) (mod m) 
means that a = a and b = d (mod rn). We first prove a result which is heavily de-
pendent upon the representability given by (3) of the solutions to (2). 

THEOREM 1: If D £ Z+ is not a square, then for any m £ Z+ there are infinitely 
many integral solutions to the Pell equation 

u
2 _ DV

2 a i With (us V) = (1, 0) (mod m). 
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PROOF: Suppose (ul9 V±) is the least solution to (2) and (uj9 Vj) is the so-
lution given by (3). Since there are only m2 distinct ordered pairs of integers 
modulo m9 there must be j, I e Z such that (Uj9 Vj) = (u£, i>£) (mod m). Using 
(3) we notice that, for any t £ Z, 

Ut + y/T)Vt = (li1 + v/Dt?1)(ut_1 + /Dvt_1) 
so 

u+ = unw+ _ + Dv.v, n and TJ, = v,u+ _ + u,y, .. 

Applying these equations to the above congruence, we deduce 

(5) uiuo-i + ®vivj-i E uiui-i + ® v \ v i - \ (moc* m) 
and 
(6) viuj-i + Miyj-i ~ v\ui-\ + wiy£-i (mod w) • 

Multiplying (6) by ux and subtracting yx times (5), we have 

(u\ - 'Dv\)v^1 = (u\ - Vv\)vl-1 (mod m) 9 

or since u^ - T)v\ = 1, 
^j-1 E Vl-1 (mod 77?) . 

Similarly, u x times (5) minus Dv1 times (6) yields 

so in fact 
0*^-1* Vj'-i) E (̂ £-l» ^-l) (mod 777). 

We can conclude, therefore, that for K = |j - £|, 
(w0, 7J'0) =' (wsX, ys^) (mod 772) 

for any s £ Z+. But u0 = 1 and y0 = QJ s o t n e theorem is proved. 

As a corollary we can prove the following theorem about the general Pell equa-
tion showing infinitely many solutions in prescribed congruence classes. 

THEOREM 2: If m ,D £ Z + , £ is not a square, and the Pell equation u2 - Dv2 = M has 
a solution 

(u*9 v*) = (a, 2?) (mod 777), 

then it has infinitely many solutions 

(uf» t>f) = (a, 2?) (mod 777). 

PROOF: Let (u*, v*) be the solution to (1) provided in the hypothesis, and, 
for t £ Z+, let (ut9 ft) be solutions of (2) guaranteed by Theorem 1, that is, 

(ut9 vt) E (1, 0) (mod 777). 

Then the solutions (u*, v*) of (1) obtained from these solutions by applying (4) 
are such that 

u% = u*ut 4- Dv*vt S a * l + D ' b * 0 = a (mod m) 
and 

v* = v*ut + u*ut E & •. 1 + a • 0 = b (mod 777), 

as desired. 

The following corollary follows by taking 777 in the previous theorem to be the 
least common multiple of m1 and 77?2. 

COROLLARY: If m19m2S D £ Z + , D is not a square, and a2 - Db2 = M, then there are 
infinitely many solutions to the Pell equation u2 - Dv2 = M with u' = a (mod T ^ ) 
and v = b (mod TT?2) . 
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3. POLYGONAL PRODUCTS 

In this section we first show that any nonsquare n-gonal number is infinitely 
oft en the quotient of two n—gonal numbers* The theorem that n—gonal products are 
infinitely often n-gonal and a remark on the solvability of a related equation 
complete this section. 

THEOREM 3: If the n-gonal number P = Ps is not a square, then there exist infi-
nitely many distinct pairs (Px , Py) of n-gonal numbers such that 

(7) 

PROOF: Recalling that Px = hx[(n - 2)(# - 1) + 2] and setting n - 2 = p, Eq. 
(7) becomes 

Multiplying by 4p to complete the square gives 

{2rx - (p - 2))2 - (p - 2) 2 = P[{2ry - (p - 2))2 - (p - 2)2L 

t 

,2 

Px 

-

= 

(* 

** 

h&[ (n 

- 2)# 

- PePy 
- 2) (a: -

= P[pz/2 

1) + 

- (p -

2] and 

-2)z/]. 

setting n 

Setting 

(8) 

we get the Pell equation 

(9) 

with M = (r - 2) 2 - P(r - 2) 2. 

u = 2PX - (p - 2), 
v = 2P2/ - (p - 2), 

w2 - Pv2 = M9 

Thus, in order to ensure infinitely many solutions (xs y) to (7), it suffices 
to have infinitely many solutions (us v) to (9) for which the pair (x, y) obtained 
from (8) is integral. Put another way, it suffices to show the existence of in-
finitely many solutions (u*, v*) of (9) for which the congruence 

(u*, v*) = (-(P - 2), -(p - 2)) = (p'+ 2, r+ 2) (mod 2P) 
holds. 

But notice that, since P1 = 1, a particular solution of (7) is x = s9 y - 1, 
and these values of x and y give 

u = (2s - 1 ) P + 2, 
V = P + 2, 

as a particular solution of (9). Thus, we have a solution (w*, u*) of (9) with 
(u*, V*) = (P + 2, p + 2) (mod 2P ) . Theorem 2 guarantees the infinitely many so-
lutions we are seeking. 

Our final theorem is now a straightforward corollary. 

THEOREM 4: For any n _> 3, there are infinitely many n-gonal numbers which can be 
written as a product of two other n-gonal numbers. 

PROOF: The case n = 4 is trivial. By the previous theorem, we need only show 
that Ps is not a square for some s. But for n ^ 4, at least one of P2 = n and 
P9 = 9(4n - 7) is not a square. 

REMARK 1: We originally tried to prove that 

Pk - fc[(n " ?)(fc - 1) + 2]/2 = P^ . P^ 

infinitely often by setting Px ~ k and 

Pj, « (<n - 2)(PX - 1) + 2)/2, 

and solving the Pell equation that results from this last equation. This method 
works if n + 2t2 + 2, and thus, for these values of n5 there are infinitely many 
solutions to the equation PPx = PxPy • 
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REMARK 2: There a r e 51 s o l u t i o n s of Pj = P^Py1 w i t h Px < 1 0 6 . There a r e 43 s o l u -
t i o n s of P£ = Ps

nPy
n w i t h 5 <. n £ 36 and Px

n < 1 0 6 . In j u s t two of t h e s e , x = Ps : 
p 5 _ p 5 p 5 o-nrl P^ = P^ P^ 
r i f 7 7 "" ^ 1 8 ^ 2 2 a i l U ^ 9 4 6 ^ 2 2 ^ 3 1 ' 

For 36 <_ n <L 720, there are no solutions with Px < 106. 
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1. INTRODUCTION AND SUMMARY 

In the sequel, k is a fixed integer greater than or equal to 2, and n is an 
integer as specified. Let Nk be a random variable denoting the number of trials 
until the occurrence of the kth consecutive success in independent trials with 
constant success probability p (0 < p < 1). Shane [6] and Turner [7] considered 
the problem of obtaining the distribution of Nk. The first author found a formula 
for P[Nk = n] (n >_ k) 9 as well as for P[Nk <. x] (x >. k) , in terms of the polynac-
ci polynomials of order k in p. Turner derived a formula for P[Nk = n + k - 1] 
(n _> 1) in terms of the entries of the Pascal-T triangle. Both Shane and Turner 
first treated the special cases p = 1/2, k = 2, and p = 1/2, general k. For these 
cases, their formulas coincide,, 

Presently, we reconsider the problem and derive a new and simpler formula for 
P[Nk = n + k] (w'2l 0), in terms of the multinomial coefficients (see Theorem 3.1). 
The method of proof is also new. Interestingly enough, our formula includes as 
corollaries the special formulas of Shane and Turner. We present these results in 
Section 3. In Section 2, we obtain an expansion of the Fibonacci sequence of or-
der k in terms of the multinomial coefficients (see Theorem 2.1), which is of in-
terest in its own right and instrumental in deriving one of the corollaries. 

2. THE FIBONACCI SEQUENCE OF ORDER K 

In this section, we consider the Fibonacci sequence of order k and derive an 
expansion of it, in terms of the multinomial coefficients. 
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DEFINITION 1: The sequence {fnk)}°°n = 0
 i s s a i d t o be the Fibonacci sequence of or-

der k if '•/0(fc) = 0, f<k) = 1, and 

ik) \fnk-l + ••• +A(?° " 2 < n < * 
(2a) ^ = \ W 

Turner [7] c a l l s { / J * 0 } ^ t h e feth-order F ibonacc i -T sequence . With f<k) = 0 

(n < -1), \f™}' .„ 
is called by Gabai [4] the Fibonacci ^-sequence. The shift 

version of the last sequence, obtained by setting Fntk = /n(J|, is called by Shane 
[6] the polynacci sequence of order k. See, also, Fisher and Kohlbecker [3], and 
Hoggatt [5]. 

Denoting by Fn and Tn, as usual, the Fibonacci and Tribonacci numbers, respec-
tively, it follows from (2.1) that 
(2.2) fn(2) = Fn and f ^ = Tn9 n> 0. 

The Tribonacci numbers seem to have been introduced by Agronomoff [1], Their 
name, however, is due to Feinberg [2], who rediscovered them. 

We now proceed to establish the following lemma. 

LEMMA 2.1: Let <fn}~ = 0 he the Fibonacci sequence of order k» and assume that 

1 if n = 0, 1 

(2.3) *<*> - { 2c\k\ if 2 <n< k 

Then 
2c(k\ - ey

(k] . if n > k + 1. 
n -1 n-1-k — 

fnli> n>o. 
PROOF: From (2.1) and (2.3), it follows that 

(2.4) c<*> = /•„<*>, 0 <n < k. 

Suppose next that 

(2.5) aik) = f£\, k + 1 £ n <m, 
for some integer m >. k + 1. Then 

(2.6) oll\ = 2o[k) - eik\, by (2.3), 
- 2/^i - /i'l _ k, by (2.4) and (2.5), 

= .fm(f2, by (2.1). 

Relations (2.4)-(2.6) show the lemma. 

We will employ Lemma 2.1 to prove the following lemma. 

LEMMA 2.2: Let {f^jn^o b e t n e Fibonacci sequence of order k9 and denote by Ak) 

the number of arrangements of n + k elements (/ or s), such that no k adjacent 
ones are all s, but the last k. Then 

PROOF: For each n >_ 0, define a(/} (/), a^} (s) , and a^} as follows: 

(2.7) a^} (/) = the number of arrangements of n elements (f or s) , such that the 
last is / and no k adjacent ones are all s (n > 1); a0 (f) = 1. 

(2.8) a{
n
K) (s) = the number of arrangements of n elements (/ or s), such that the 

last is s and no k adjacent ones are all s (n > 1); a0 (s) = 0. 
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(2.9) a^ = the number of arrangements of n elements (/ or s) , such that 
no k adjacent ones are all s (n >_ 1); aQ = 1. 

Relations (2.7)-(2.9) imply 

(2.10) a(
n
k) = a^(f) + a(

n
k) (s), n >_09 

(2.11) a«{(f) = a£fc>, n >_ 0, 
and f 

\ a(k) , 0 < n < i k - 2 
(2'12) a « « ( s ) = { ,*, 

[a(
n

k) - aJVi-kCO. * > k - 1. 
The second part of (2.12) is due to the fact that, for n J> k - 1, an + 1(s) equals 
a^ minus the number of arrangements among the a(n (s) whose last k - 1 elements 
are all s. Adding (2.11) and (2.12) and utilizing (2.10) and (2.11), we obtain 

(2.13) a«\(f) = )2an+^> 0 < n ± k - 2 

(2a<*>(/) - a<*>_ktf), n >:fc - 1. 
( k ) We also have, by the definition of An and (2.7), that 

(2.14) a(
n

k)(f) = / j ° , n2: 0, 

with AQ = ^ I = 1 . The last two relations give 

( 1 , n = 0, 1 

4f} - | 2 ^ , 2 < n < k 

which establishes Lemma 2.2, by means of Lemma 2.1 

The following theorem gives a formula for the Fibonacci numbers of order k in 
terms of the multinomial coefficients. 

THEOREM 2.1: Let \fn \n=Q be the Fibonacci sequence of order k. Then 

&i- E (v"+nn:\ »*<>• 
n̂ TTT.nfc \ nl» '"> nk / 

where the summation is over all nonnegative integers n19 ...9nk satisfying the 
relation nx + 2n2 + • • •• + knk = n. 

PROOF: By Lemma 2.2 and (2.14), 

(2.15) / ^ - a(nk) (/), n >: 0. 
( k ) Next, observe that an arrangement of n elements (/ or s) is one of the an (f) if 

and only if n1 of its elements are e1 - f; n2 of its elements are e2 = sf9 . ..; nk 
of its elements are ek = ss . .. sf (n1 + 2n2 +••• + /cn̂  = ri). Now, for fixed non-

negative integers nl, ..., nfc, the number of arrangements of the nx + ••• + nk e's 

1 *) , However, n19 ..•, nk are allowed to vary, subject to the con-

dition n1 + 2n2 + ••• + knk = n. Therefore, 

(2.16) â tf)- E (V"'+»?VBi° ' 
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where the summation is taken over all nonnegative integers n19 . .., nk9 such that 
n1 + 2n2 + ••• + knk = n. Relations (2A5) and (2.16) establish the theorem. 

Setting k = 2 and k = 3 in Theorem 2.1, and defining [x] to be the greatest 
integer in x9 as usual9 we obtain the following corollariess respectively. 

COROLLARY 2.1: Let {^n}^.0 be the Fibonacci sequence. Then 
[n/2] 

i = Q N / 

COi?OLLAi?Y 2.2; Let {^}^ = 0
 b e t h e Tribonacci sequence. Then 

[n/2] [ ( « - 2 i ) / 3 ] , . . w 

*..>-E E (*f X"i*+"* •"-"' 
t = 0 ,7=0 X / X ^ / 

The first result is well known. The second, however, does not appear to have 
been noticed. 

3. WAITING FOR THE ZTH CONSECUTIVE SUCCESS 

In this section we state and prove Theorem 3.1, which expresses P[Nk = n-+ k] 
(n >_ 0) in terms of the multinomial coefficients. We also give two corollaries of 
the theorem, which re-establish all the special formulas of Shane [6] and Turner 
[7] for the probability density function of Nk* 

THEOREM 3.1: Let Nk be a random variable denoting the number of trials until the 
occurrence of the A:th consecutive success in independent trials with success prob-
ability p (0 < p < 1). Then 

P[Nk = n + k]= £ (»i + •'• + « * ) (i - p ) » > * - + »y.+'t-("I+ - — > . „ > o, 

where the summation is over all nonnegative integers n19 ...9nk9 such that nx + 
2n2 + ••• + knk = n. 

PROOF: A typical element of the event [Nk = n 4- k] is an arrangement 

XiX2 . •« xn-> + • - • + n,. s ^ n - ' ̂ ,lu_g,» 

such that n-L of the #'s are e1 = /; n2 of the #fs are s2 = s/, — ; nk of the x's 
are s^ = ss ... sf9 and nx + 2n2 + ... + knk = n. Fix nl9 .. *, nk. Then the num-

ber of the above arrangements is [ 1 K)9 and each one of them has proba-
bility v v • • • • w * / 

p[x±x2 ... *n,+ ... + » f c s s ^ ^ ... [H^fc}]n*p{82^^5} 

= (1 - p)ni+*"+^p" + ̂ -("i+ ••• +«*), n 2. 0, 

by the independence of the t r i a l s , the definition of ej (I <. j <_ k) 9 and P{s} = p. 
Therefore, 

s / « l + " • + « f c \ ( 1 . p j « i + . .- + nfcp» + fc-(»i+...+ nfc)j n >_ 0 . 
y n x , . . . nk J 
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But the nonnegative integers nl9 . .. , nk may vary, subject to the condition n1 + 
2n2 + ... + knk - n. Consequently, 

P[Nk = n + k] 

P all x±x2 ... xni + ..m + rik88 ... s; ̂  > 0 ( 1 < J < n ) , £ jnd 

J = I 

- X (̂  + '" + n " V 1 - p ) n i + ' " + nfepn + k"(ni+"- + ̂ 5 n ^ 0 5 
n15 ... , nfe \ n i » * • • s nk I 

where the summation is over all nl9 . .., nk as above9 and this establishes the 
theorem. 

We now have the following obvious corollary to the theorem. 

COROLLARY 3.1: Let Nk be as in Theorem 3.1, and assume k = 2. Then 

P[N2 = » + 2] = ̂  (n " V + 2 (l - p)"-*, n > 0. 

This result Is a simpler version of Turner's [7] formula for general p and 
k = 2 (our notation). 

We also have the following corollary, by means of Theorem 2.1. 

COROLLARY 3.2: Let Nk be as in Theorem 3.1, and assume p = 1/2. Then 

P[Nk - n + k] = fnC+\)/2n + k, n >. 0. 

This result is a version of formula (12) of Shane [6] and of Turner's [7] for-
mula for general k and p = 1/2. 
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INTRODUCTION 

Let D be t h e o p e r a t o r def ined on 4 - t u p l e s of nonnega t ive i n t e g e r s by 

D(ws x9 y 9 z) = (\w - z\ 9 \w - x\ s \x ~ y\ 9 \y - z\). 
Given any initial 4-tuple S = SQ = (wQ9 x0s y09 z0)9 we obtain a sequence {/Ŝ }, 
where Sn + 1 = DSn. This sequence is sometimes called the four-number game. The 
following curious fact seems to have been discovered and rediscovered several 
times—-[3], [4], [5]—Sn= (0, 0, 09 0) for all sufficiently large n. We can thus 
make the following definition. 

DEFINITION: The length of the sequence {Sn}9 denoted L(S)9 is the smallest n such 
that Sn = (0, 0, 0, 0). 

A natural question to ask is: "How long can a game continue before all zeros 
are reached?" Again, it is well known that the length can be arbitrarily long if 
the numbers in Sn are sufficiently large [4]. One of the easiest ways to see this 
makes use of the so-called Tribonacci numbers: 

t0 = 0, t1 = 1, t2 = 1 and tn = £n_i + tn_2 + £n-3 f° r n 2. 3. 

If we let Tn = (tn, tn_19 tn_2, tn_3)9 then a simple calculation shows that 

and so _ „ 

L(Tn) = 3[|J. 
It has also been noticed that the sequence beginning with some Tn seems to 

have the longest length of any sequence whose original elements do not exceed t n , 
We will prove that this is almost true. 

It should be pointed out that if we allow the elements of S0 to be real, then 
we can obtain a game of infinite length by taking SQ = (r3, r2

s v9 1)9 where r = 
1.839... is the real root of the equation x 3 - x 2 - x - l = Q (see [2], [6], [7]). 
Moreover, this is essentially the only way to obtain a game of infinite length [7]. 
To obtain a long game with integer entries, we should pick the initial terms to 
have ratios approximating r [1]. The Tribonacci numbers do this very nicely. 

MAIN RESULT 

Before proving our main theorem, we need a few easy observations. If 

\s\ = max(w, x, y, z ) s 

then 
\S,\ 2L \SI\ > \Si\ .*. . 

The games having initial elements 

(w, x, y9 z), (xs ys z9 w), (ys z9 w, x), (z9 w, xs y); 
(z9 y9 x9 w); (w + k9 x + k9 y + k9 z + k); 

and (kw9 kx9 ky9 kz), k > 0; 
all have the same length. We now state our main theorem which will be an immedi-
ate consequence of Theorem 2. 
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THEOREM 1: If \s\ ± \Tn\9 then£(S) <. L(Tn) + 1 = 3[~1 + 1. 

One of the first things to notice is that L(S) <. 6, unless the elements of S 
are monotonically decreasing, w > x > y > z. [Remember, cyclic permutations and 
reversals yield equivalent games, so (5, 7, 12, 2) -(2, 5, 7, 12) -(12, 7, 5, 2), 
which is monotonically decreasing.) This can be checked by simply calculating the 
first six Sn if S0 is not monotonic [1]. Also, if Sn is mono tonic decreasing, then 
Sn+1 cannot be monotonic increasing. Therefore, in a long game, all of the Sn at 
the beginning must be monotonic decreasing. 

Let Sn = (wn9 xn9 yn9 zn) « We say that Sn is additive if W 
If Sn_l is monotonic (decreasing), then a trivial calculation shows that Sn is ad-
ditive. Thus, although S = SQ may not be additive, Sl9 S29 ... 9 Sn will be addi-
tive as long as SQ9 Sl9 ..., £n-i are monotonic. 

LEMMA: If S19 S29 ••• > S10 are all monotonic (decreasing), 5X is additive, and 
|5j,| £ tn9 then either |SJ <_ 2tn_2 or |S7| £ 4tn_„ or |S10| 1 8tn„6. 

PROOF: Write 5X = (a + b + c, a9 b9 o) and assume a + b + <? £ £„, 

\SM\ > 2tn_2s \S7\ > 4tn_lf, and |S10| > 8tn_6. 

Since we know that £x ... 51 0 are all monotonic, they can be explicitly calculated, 
and we find that 

\Sh\ = 22?, |57| = ka -42? - 4<?, and |S10| - 16c - 82?. 

jsj > 2tn_2 implies 2b >_2tn_2 + 2 or 32? _> 3tn_2 +'3; |S7| > 4tn_4 implies 
<z-£-c?.> £„„!+ + !; | JŜ X 0 I > 8tn_6 implies 2c-b >_ tn-$ + \* Adding these three 
inequalities, we obtain 

a + b + o _> 3tn_2 + tn_k + tn-6 +•• 5. 

But since a + b + c £ tn, we have 

Using the defining relation of the Tribonacci numbers repeatedly, we get 

2£n_3 > 2tn.3 + 5, 

which is an obvious contradiction. This proves the lemma. 

THEOREM 2: If S1 is additive and |5j £ tn9 then L(5X) £ L(!Tn) = 3[~1 , n •> 2. 

PKCX)F: Since S^ is additive, we may write Sx = (a + 2? + o9 a, 2?, <?), where 
£n-i < # + 2? + o £ tn. We use induction on n. We can check the first 'few1 cases 
(by computer) and see that the theorem is true for n = 2, 3, ..., 9. (That is, 
\S1\ £ 81.) Now, assume the result is true for all Sx such that \S1\ <.tk9 where 
k < n, n >_ 10. 

If Sl9 ..., 510 are all monotonic, then, by the induction hypothesis and the 
lemma, either 

L(SX) = L(SJ + 3 £ 3p-=~^] + 3 = 3[|] 

or LiS^ = L(S7) + 6 £ 3p-=^] + 6 = 3^] 

or L(SO = L(£10) + 9 < 3 p - ^ ] + 9 - 3[f ] . 

Here we have used the fac t that 2t d i v i d e s every element of S3t+i> t >_ 1. 
Thus, for example, Sh - 2S% and LOS^) - 1 ( 5 $ ) . If | 5 k | £ 2 t n . 2 > then | 5 $ | £ t n _ 2 , 
a n d S O fn - 21 

Lost) i LCr„_2> - 3 r ^ J 9 
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by the induction hypothesis, taking S* as our 'new1:S> . Thus, in any case, 

LiS,) < 3[§], 
If S19 ...9 S10 are not all monotonic, let Sj be the first which is nonmono-

tonic. Then 

L(S±) = L(S3-) + (j - 1) < 6 + j - 1 = j + 5 < 1.5, 

since L(Sj) _< 6 whenever Sj is not monotonic. But since n _> 10, 

LCTn) = 3[fl 2: 15, 
so LOSx) 5 £(£„). L Z J 

This completes the proof of Theorem 2. 

Theorem 1 is now an easy corollary, since: if S0 is monotonic decreasing and 
\SQ\ <L \Tn\* then \SX\ <_ \.Tn\ and S1 is additive. If S0 is not monotonic decreas-
ing, then L(S0) £ 6. 

There actually are examples where L(S) = L(Tn) + 1: 

L(T&) = L(13, 7, 4, 2) = 9 and L(13, 6, 2,0) = 10. 
iy, 

L(a + b + e, H c, c, 0) = £(a + & 4- <?, a, 2?, a) + 1; 

L(tn9 tn_2 + *n_3, tn_3, 0) = L(Tn) + 1 - 3[|] + 1 . 

If we begin with a fc-tuple of nonnegative integers, then it is known that 
Sn = CO, 0, ..., 0) for sufficiently large n9 provided k = 2t. (If k ^ 2t, the 
sequence {£n} may cycle [3], [4], [9].) Thus, a natural question to ask is: "What 
is the maximum length of the eight number game, or, more generally, the 2*-number 
game?" 

It was already mentioned that if S± is additive and leads to a long four-num-
ber game, then the ratios of the elements of 'S1 should be close to the number r ~ 
1.839... . How accurately can the length of the game be predicted if one knows 
these ratios? 
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SUMS OF CONSECUTIVE INTEGERS 

ROBERT GUY 
Northern Illinois University, De Kalb, IL 60115 
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The purpose of this note is to simplify and extend the results in [1]. Given 
a positive integer ft, let Ce(n)9 C0 (ft) denote the number of representations of 
as a sum of an even, odd number of consecutive positive integers. 

THEOREM 1: CQ (ft) is the number of odd divisors d of ft such that — — ~ -̂  n a n d 

Ce (ft) is the number of odd divisors d of ft such that — — r — — > ft. 

PROOF: If ft is a sum of an odd number b of consecutive integers, then there 
exists an integer a _> 1 such that 

b-l 
n -

£ = 0 

Hence b is an odd divisor of n with —-—-z <_ ft, since 

£(a + i) -&(a +£-=-*). 
-• -. r\ * ' 

i + 1 „ ^ fr - 1 ft 
— 2 — < a + — 2 ~ - p 

If b is an odd divisor of ft such that 0 — — < ft, let a = T- ^—. Then a > 1 
, I — D 2 — 

and 
ft = 6 a + — ^ — = y^ (a + i)> 

i =0 
so that ft is the sum of an odd number of consecutive positive integers. 

If ft is a sum of an even number b of consecutive positive integers, then there 
exists an integer a >_ 1 such that 

b-l , 
n = 1L (a + i) = f(2a + * - ! ) • 

i = 0 
Let d = 2a + 2? - 1, then d is odd, a* divides ft, and — — 5 " — - > ft, since 

d + I = 2a + b > b = ?j. 

T £ ^ . J J j . r. r , _, _ d(d + 1) ^ -, „ ^ 2ft , (d + 1 - fc) If a i s an odd divisor of ft such that —-—r > ft, le t a - -3- and a = - « —. 
Then a > 1, 2? is even, and 

ft - ^ - f (2a + fc - 1) - £ (a + £), 
t = 0 

so that ft is a sum of an even number of consecutive positive integers. D 

An immediate consequence of Theorem 1 is the following corollary. 

COROLLARY 1: Let ft = 2 m, r >_ 0, w? odd. The number of representations of ft as a 
sum of consecutive positive numbers is T(m) (the number of divisors of m). Q 

This result is also in [2], which of course gives the results in [1]. 

We also find a characterization of primes. 
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COROLLARY 2: Let ft be an odd positive integer. Then ft is composite if and only 
if there is a pair of positive numbers u, V such that 

(1) 8ft = u2 - v2; u - v J> 6. 

PROOF: If ft is odd composite, then n is the sum of at least three consecutive 
integers by Theorem 1. That is 

w = a + (a + 1) + ••• + (a + fc), fc >. 2. 

Hence In = (fc + l)(2a + fc) . Let y = 2a - 1 and u = 2fc + 2a + 1. Then 

/c + 1 =s — - — and 2a + A: = — r — , 

so that 8ft = u2 - V2 and w - V _> 6. Note that u, V are odd. Conversely, given an 
odd integer n satisfying (1), we find 

8n = (u + z;) (u - v) . 

If ft is prime and u - V is even, then u - v = 8, 2ft, or 4ft. When w - v = 8, we 
have 2w = ft + 8 so that ft = 2, while u - V = 2n implies that u = 2 + ft, and hence 
i; == 2 - ft £ 0. If u - £> = 4ft, then u + f = 2 and u = V = 1, which says that ft = 0. 
Thus, if ft is a prime, we must have w + y = 8 and u - i? = ft, which implies once 
again that ft = 2. 

We conclude that ft must be composite. It is also simple to solve the above 
system for a and k. D 

It is not easy to find CQ(ji) explicitly. For instance, let T0(ft, x) denote 
the number of odd positive divisors of n which are _< x. One finds 

To(n> *) = I] ~V~ X k> 
dfx a k<%id K 

d odd k odd 

where od (ft) is the Ramanujan function. This is not altogether satisfactory, but 
it will yield an estimate. One direct but very elaborate way to find T0(ft, x) ex-
plicitly is by counting lattice points as follows. Write ft = 2 ° p^1 ... pa* as a 
product of primes. An odd divisor d of n is of the form d = p^1 ... p^*, where 
0 _<_ 2?̂  <. df The inequality d <. x means 

b± log px + ••• + bk. log pfe £ log x. 

Let el5 ..., efe be the standard basis of Rk. Consider the parallel-piped P deter-
mined by a1ei, ..., cckek and the hyperplane H with equation 

x1 log ?! + ••• + #fe log p^ = log a:. 

Then T0(ft, x) is the number of lattice points in the region "below" H which are 
also contained in P. There are of course k2 possible intersections of H. with P to 
consider, a formidable task! However, we have, perhaps a little surprisingly, 

COROLLARY 3: Write ft = 2km9 where m is odd. Then _ ' 

CQ(n) }T0TO; q(ft) < (k + | )T0TO. 

In pa r t i cu l a r , when ft i s odd, we have 

Pi?OOF: I t i s very easy to show that 
,iv / - ^ - 1 + / l + 8ft (1) /ft <. = — , 
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and if d> 0, then 

(2) HA±M±n^d±zl^Jp^ 
Thus CQ (n) is at least the number of odd divisors d of n that are _< /n, so a for-
tiori we have 

C0(n) >_ TQ(m, y/m). 

If d\m and d <_ Sm, then m/d\m and m\d _> \/m. Thus 

i(m) .c 
• ? if 77? is not a square 

v ' v » T(m) + 1 .-
*= — if m is a square. 

Hence CQ (n) >. T(m)/2. We have Cx (n) = x(n) - CQ(n)9 and thus 

Ci(n) £ (ft + D T W - 1f^- - (fc + |)T(^). 

This completes the proof. D 

REFERENCES 

1. B. de La Rosa. "Primes, Powers, and Partitions." The Fibonacci Quarterly 16, 
no 6 (1978):518-22. 

2. W. J. Leveque. "On Representation as a Sum of Consecutive Integers." Canad, 
J. Math. 4 (1950):399-405. 

***** 

CONCERNING A PAPER BY L . G. WILSON 

A. G. SHANNON 
New South Wales Institute of Technology, Broadway, N.S.W. 2007, Australia 

A. F . HORADAM 
University of New England, Armidale, N.S.W. 2351, Australia 

(Submitted June 1980) 

1. INTRODUCTION 

Wilson [3] uses the expression (2.1) below, which approximates the Fibonacci 
and Lucas sequences {Fr} and {Lr}9 respectively, for r sufficiently large. The 
object of this paper is to make known this and another expression (3.1) by apply-
ing techniques different from those used in [3]. In particular, we need 

(1.1) e, = 4 cos2-g. 

Special attention is directed to the sequence (2.4). 

2. A GENERATING EXPRESSION 

Consider 

(2.1) *„<*. y) E Tr = (* + /a2' + te)*" V". 
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in which x and y are real numbers and r + <». Some applications of this expression 
are given in Examples 1-3. 

EXAMPLE 1: Let x = 1 and y = 5, then 

(2-2) ^r+i^1' 5) = ~/fl—2 / = 7?' where a = — j 

Using Binet's formula, we see that 

lim Fr+1(l$ 5) = Fp. 

/5 

EXAMPLE 2: Let x = 1 and 2/ = 3 ~ ^5 = 4 cos2-—-, then y'1 - a2 Hence, 

(2.3) 
lim Fp+1(l, 1) = Lr. 

EXAMPLE 3: Let x be the real root of t3 + t2 - 1 = 0 and z/ = # . It can be veri-
fied that 

121^ I 23 ̂  /25 f^3 
* " N54 + V 108 + /̂ 54 " Vlo* 108 3' 

and it is shown in [2] that the reciprocal of x is the real root of the character-
istic equation for (2.5) below. For r sufficiently large, (2.1) approximates the 
Neumann sequence discussed in [2] and [3] and given by 

(2.4) 
TQ Tl T2 T3 Th T5 T6 T? TQ T9 T1Q T±1 T12 T1Z T^ T±s T±& T„ 

3 0 2 3 2 5 5 7 10 12 17 22 29 39 51 68 90 119 ... 

where 

(2.5) Tn = Tn_2 + Tn_3 (n> 3). 

This is possibly the slowest growing integer sequence for which p\Tp for all prime 
(see [2]). 

3. COMPLEX SEQUENCES 

Wri te 

(3 .1 ) 

where 

(3 .2 ) 

Then 

(3.3) 

Ix + /x2 + 4ar\ 

x = zm = - g w = - 4 c o s 2 ^ - [by ( 1 . 1 ) ] , 777 == 1 , 2 , . . . , n - 1. 

Fm„ = ( -1) 2 c o s 2 " ( ^ ) j l - ^ tan 2 ^ } 

= ( -1)"2* c o s « ( ^ ) e i " " r / 2 by Euler ' s Theorem 

= ( - l ) n e " / 2 e i m , r / 2 

so 
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HFL - £ ( ~ i ) 2 n 3 ^ 
771=1 

n-l , J J 
= ± X ^ ( " 1 ) n ^ ^ according as n i s S ° v e n 

n"X ( dd 
= ± E S ^ ^ b y ( 3 ' 2 ) ] > acco rd ing as n i s <| ° v e n 

777 = 1 

When n = 6, (3.3) gives 

F16 = (26 + 15/3)i, F26 = -27, F36 = -8i, F,6 = 1, F56 = (26 - 15/I)i. 

From (3.2), 

• sx = ~(2 + /J), s2 = -3, s3 = -2, zh = -1, s5 = -(2 - /J). 

Hence, by (3.4), 

777 = 1 m = 1 

From (3.3), it is clear that the Fmn are, alternately, purely real and purely 
imaginary. 

Together, (2.1) and (3.1) yield 

(3.5) Tr+1 ~KLny~m-

Wilson [3] also gives the cases y = -1 and y = -3 with n = 6, m = 1, so 

x = -4 cos2-jy = -(2 + /3) [by (3.2)]. 

This produces what he calls "regular complex Fibonacci sequences," by which he 
means that terms at regular intervals are either purely real or purely imaginary 
(while in all other cases the terms are of the form a + ib9 where a, b are real). 
The period of these "cycles" is, in both cases, 6, beginning with T-±, Details of 
the computation involved are omitted here in the interest of brevity, and are left 
to the reader's curiosity. 

4. CONCLUDING COMMENTS 

Return now to Examples 1-3 in Section 2. 

In (3.5), take n = 5, y = 5, m = 2, i.e., 32 = 4 cos2 ^ by (1.1). Then Exam-
ple 1, (2.2), results. « 

Next, with n = 5, m = 2 again, but with y = $h = 4 c o s 2 — by (1.1), Example 
2, (2.3), results. 

Furthermore, observe that3 when x = 1 and y = 5, the recurrence relation for 
Tr = Fr(l, 5) in (2.2) is given by 

C4-D ^+i = E ^ ( n K ^ n + if-
n = 0 L 

£i = (-1 + a2)r 

v^ /5" 

This is related to the more general 
d 

(4.2) Tn =Yia*Tn-*> 
r = 2 

given in Neumann and Wilson [2], where TQ = d, T1 = 0, T2 = 2a2, ̂ 3 = 3a3, 
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When d = 3, a2 = 1, a3 = 1, we obtain from (4.2) the Neumann sequence (2.4), 
which, as we have noted, can also be generated by Wilsonfs function (2.1). 

Finally, we observe that 

(4.3) 
fr = FP(l9 5) = (-l)r/5 • Fr+1(l, 5) 

&P = FPa, i) + ( - D ^ ( i } . 1 ) . 
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1. INTRODUCTION 

If / is the Dirichlet product of arithmetical functions g and h9 then by defi-
nition 

/(") " E 9(d)h(n/d). 
d\n 

In this paper we define a convolution of two arithmetical functions that general-
izes the Dirichlet product. With this new convolution, which we shall refer to as 
the the "fc-prime product," it is possible to define arithmetical functions which 
are analogs of certain well-known functions such as Eulerfs function (f)(n) , defined 
implicitly by the relation 

(1.1) J2 Hd) = n. 
d6=n 

Other well-known functions to be considered in this paper include x(n) and o(n) 
given by x(n) = El and o(n) = Zd» where the summations are over the positive di-
visors of n. The familiar Moebius function y(n) is defined as the multiplicative 
function with the evaluation y(p) = -1 and \i(pe) = 0 if e > 1, and satisfies the 
relation 

<*-2> p«>-e(n) = {J HZZlL 
d6~n v 

Note that y(l) = 1, since y is a nonzero multiplicative function. Upon applying 
the Moebius inversion formula to (1.1), one obtains the simple Dirichlet product 
representation for <J), 
(1.3) <K«) = £ UW)5. 

d& = n 
Another function which may be defined by means of the Dirichlet product is 

q(n)9 the characteristic function of the set Q of square-free integers, 
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(1.4) q(n) - £ v2<d> - £ ^ W ) » 

where v2(n) = y(m) if n = m2 and v2(ft) = 0 otherwise. The representations (1.3) 
and (1.4) are extremely useful in the development of the theory of the Euler func-
tion and the set of square-free integers. 

In Section 2, we define appropriate generalizations of the concepts mentioned 
above and prove a generalized Meobius inversion formula (Theorem 2.4). 

Included in Section 3 is a short discussion of the usefulness of the results 
obtained in Section 2 and an indication of the direction in which further study 
should be directed. 

2. THE GENERALIZED PRODUCT 

For each integer k .> 1, let Lk represent the set of positive integers ft with 
the property that if a prime p divides ft, then p k also divides ft. A number in Lk 
is said to be "fc-full." Let Qk be the set of positive integers ft such that each 
prime divisor of n has multiplicity less than k. A number in Qk is said to be 
"fc-free." Any positive integer ft can be written uniquely in the form n = ftift2, 
where ftx e Lk9 n2 £ Qk9 and (nl9 ft2) = 1- If m and ft are positive integers with 
unique decompositions m = 7721m2 and n = n1n2, then m and n are said to be "rela-
tively /c-prime" [notation: (m9 n)k - 1] provided that (m2, ft2) = 1. Given arith-
metical functions /(ft) and g(n) 9 we define the "/c-prime product" of / and g (nota-
tion: f° g) as follows: 

(fog)(n) - £ f(d)g(S), 
d6 » n 

(d.<S)k-« 

For /c = 1, the /c-prime product reduces to the Dirichlet product. The next two 
theorems are proved by arguments similar to those used in the case k = 1. 
THEOREM 2.1: The /c-prime product is an associative operation. 

More can be said about the algebraic structure of our system. As is the case 
in the Dirichlet product, the arithmetic functions form a cummulation ring with 
unity under addition and the /c-prime product. 

THEOREM 2.2: If each of g and h is a multiplicative function, then g o h is mul-
tiplicative. 

We now define the generalization of the Moebius function which was mentioned 
earlier. 

DEFINITION 2.1: Let ]ik(n) denote the multiplicative function for which \ik(pn) is 
-1, 1, 0 whenever 0 < n < k9 k < n < 2k9 and n >_ 2k9 respectively. Clearly, this 
is a valid generalization of Moebius1 function, and we shall see later on that 
]Xk(n) plays much the same role in the development of the theory for the fc-prime 
product as y(ft) does in the case of the Dirichlet product. In particular, we have 
the following two theorems. 

THEOREM 2.3: £ Vk(d) = e(n). 
d6«n 

<d,<S)k-l 
PROOF: For ft = 1 the theorem is obvious. By Theorem 2.2, we need only prove 

the theorem for prime powers, ft = p e
9 e > 0. Now, if e < k9 we have 

£ \xk(d) - yfc(l) + \ik{pe) = 1 - 1 = 0 , 

,«>k-l 

by the definition of relatively /c-prime and \xk. In the case e _> k9 we have 

d6 = pe 

(rf,6)k = l 
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then 

E M ^ ) = E Mpa)= E Mpa) 
dS =pe , a = 0 a = 0 

<d,6)k-l max(a,g-a)^k max(a, e - a) >k 
a<2k 

by definition of \ik. And this expression is k - k or (e - fc + 1 ) — O - k + I), 
according as e 2 2fe or fe i e < 2k. In either case, we have the desired result. 

Let £(n) denote the arithmetical function which is identically 1. 
THEOREM 2.4: If both f± and f2 are arithmetical functions, then fx = f2 o Z if and 
only if f2 = yfe o ^ . 

PROOF: I f 

(d,$)k=l 

E /2<w> = E ^ W i f f l = E ^Wiffl. 
d<$ = n ptfcS = n DE6= n 

(d,6)k = l (DE,6)k=I (Z?,6.)fc = l 
( 0 , £ ) f e « l (£",D6)fc = l 

'ff|n D6 = n/E 
(E,D6)k = l {D,6)k = l 

The inner sum here is 1 is n/E'= 1 and 0 otherwise, by Theorem 2.3, so the expres-
sion reduces to f1 (n). The proof of the other half is similar. 

It is interesting to note that a shorter proof of this theorem can be obtained 
by using only the algebraic structure that was mentioned following Theorem 2.1. 

The last theorem corresponds to the Meobius inversion formula in the theory of 
the Dirichlet product. 

From the familiar representation of Euler's function as a Dirichlet product, 
we are led to the following generalized <j) function. 

DEFINITION 2.2: (|>*(n) = .]jjj \lk(d)6:. 
d<5 = n 

(d,6)k«l 

By Theorem 2.4 and the definition of (f)J(n), we have immediately 

THEOREM 2.5: ] T <f>*(tt) = n. 
dS = n 

(d,6)k =1 

Also, by Theorem 2.2, we have 

REMARK 2.1: <f)£(n) is multiplicative. 

We now define the fc-prime analog of the square-free numbers. An integer n is 
said to be "^-square-free" provided that if a prime p divides n, then the multi-
plicity of p is in the range {1, 2, . .. , k - 1, k + 1 , k + 2, ..., 2fc '- 1}. So if 
^*(n) denotes the characteristic function of the set Q* of /c-square-free numbers, 
then q*(n) is multiplicative and, for prime powers pe, has the evaluation 

_ e. = ( 1 if ^ e {0, 1, ..., k - 1, fc + 1, fe + 2, ..., 2& - 1} 
^k^P I 0 otherwise. 

3. FURTHER RESULTS 

The algebraic results above coincide with classical results in the study of 
arithmetical functions. Another area of interest is in the area of analytic num-
ber theory. An important technique for obtaining estimates on the asymptotic 
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average of an arithmetical function f is to express / as a Dirichlet product of 
functions g and h. Therefore, it is natural to investigate the possibility of ex-
pressing a function / as a product of two functions under our new convolutionj and 
whenever such a representation exists, to use it to obtain asymptotic results for 
/. This would allow us to investigate certain functions which do not arise natu-
rally as a Dirichlet product. Some results have been obtained by this method but 
more refinements are required. 
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1. INTRODUCTION 

In two previous papers, [3] and [4], certain basic properties of the sequence 
{An(x)} defined by 

A0(x) = 0, A1(x) = 1, A2(x) = 1, A3(x) = x + 1, and 
(1.1) 

An(x) =xAn_2(x) - An_^(x) 
were obtained by the authors. 

Here, we wish to investigate further properties of this sequence using as our 
guide some of the numerical information given by L. G. Wilson [5]. Terminology and 
notation of [3] and [4] will be assumed to be available to the reader. In parti-
cular, let 
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(1.2) 6i = 4cos2g, 
then ln 

(1-3) 3 _ , = g ., 
(1.4) 3; - 2 = 2 cos ̂ , 
and n 

(1.5) (3; - 2) 2 = 32,8 

The main result in this paper is Theorem 6. Besides the proof given, another 
proof is available. 

2. PROPERTIES OF ̂ ( 3^ - 2) 

The following theorems generalize computational details in [5]. In Theorems 1 
and 2, we use results in [3] and [4] with the Chebyshev polynomial of the second 
kind, Un(x). 

( +1 (i odd) 
THEOREM 1 : A 2 n ^ 1 ( e > i - 2) = < (£ = 1, 2, 3, ..., n - 1). 

( -1 (£ even) 

PROOF: A^^tft - 2) = A2n(&, - 2) + ̂ 2 n_2(3; - 2) 

= ^.xfcos H ) + C/n_2(cos ̂ ) by (1.4) and [4] 

sinm * — j + sin(n - 1 ) — 

. ii\ sin —-
n 

= ±1 according as i is < 
° I even 

E .g . , i49 2 cos -=• = 1. 

THEOREM 2: Ar($i - 2) = i ^ 2 n - r ( ^ i " 2 ) a cco rd ing as £ i s r 

(p odd; £ = 1 , 2 , 3 , . . . , n - l ) . 

PtfOOF.- ^ ( B * - 2) = A r + 1 ( 3 i - 2 ) + A r . 1 ( 3 — 2) 

= % ^ ( c o s M-) + % ^ ( c o s ^ ) by (1 .4 ) and [4] 

• / r + 1\JTT , . / r - 1\JTT „ . riiT B ^ - — - J — + s i n ( — g - ) — s m - ^ -

£lT £7T 
s m -— s i n TT-

n 2n 
. / r\ii\ sm n - T — / o d d 

- -*• acco rd ing a s ^ i s < 
îT I even 

sin -z— v 

2n 

= [",.?H?)".-fh7)] 
tW2B.P+1(B( - 2) +42 n. r. 1(3i - 2)] by (1.4) and [4], 

^ n - r ^ ; - 2) according as i is j ^ . 
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COROLLARY 1: When i = 1, Ar 2 (cos -) = A2n_Al cos - ) . 

. 3TT' 

E.g., A3[2 cos -J = A7[2 COS -j = ^ = 2 cos - + 1 = ^ = I 2 j " 
sin 

COROLLARY 2: A1(&i - 2 ) , 4 3 ( 3 ; ~ 2 ) , . . . , A2n_1(&i - 2) for a c y c l e of p e r i o d n . 

E . g . , fo r n = 6, i = 1, ^ = A ^ = 1, A3 = 4 g = 1 + / J , 4 5 = A? = 2 + / I . 

Our next theorem involves $(n) , Euler's (J)-f unction. 

THEOREM 3: Let n be odd and m = ™cj)(n) , then 32„ - 2 = -(3X - 2). 

PROOF: By the Fermat-Euler Theorem, since (2, n) = 1, it follows that 

2m ~ ±1 (mod ri). 

Hence, there exists an odd integer t such that 2m = nt ± 1. Therefore, 

g9m - 2 F 2 cos 2m(~) = 2 cos(n£ ± 1)-

= 2 COS TTt COS (± —J 

= -(Bx - 2). 

COKOLLARF 3: When n is even, just one operator ("square and subtract 2") produces 
the Bx - 2 for n/2. 

o 2lT 0 TT 
2 cos — = 2 cos —rr-. 

n n/2 

This is obvious, because ($x - 2) - 2 

3. SEMI-INFINITE NUMBER PATTERNS 

Consider the pattern of numbers and their mode of generation given in Table .1 
for a fixed number k = 5 of columns (Wilson [5]). 

--^Column ??? 
R o w n ^ ^ ^ ^ 

0 

1 

2 

3 

4 

5 

6 

1 

1^ 

2-C 

6C 

20C 

70C 

250C 

900" 

^ 2 : 

^ > 6 ^ 

^ 2 o ; 

^ 7 0 : 

"250 : 

^900: 

2 

/ i -

^ > 4 : 

^ : H : 

^ T 5 0 ' 

^ ^ 2 : 

^ > 8 : 

^ T 3 0 : 

C no; 
^ 1 8 0 : 

^ 6 5 0 : 

^2350" 

^400^ 

3 

^ K 

^ > 4 C 

^ 1 6 " 

^ T 6 0 ^ 

^ > 2 C 

^ > 8 C 

^ 3 0 : 

^ ^ L I O : 
^ 2 2 0 ; 

":8oo" 
J450C 

4 

^ X ^ 

^ > 4 C 

^ 1 < 

^ 5 0 ^ 

J^180^ 
^"400^ 

>450" 
2900 

^ 6 5 C C 
"2350" 

5 

^>2C^ 
" > 2 

^ : 6 

^ 2 0 
> 7 0 

^ > 7 0 
> 5 0 

^ 2 5 0 
^900 

^ 9 0 0 

Table 1„ Pattern of Integers for k = 5 
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Designate the row number by n and the column number by m (n = 0, 1, 2, 
m = 1, 2, ..., k). The element in row n and column m is denoted by Unm. 

From Table 1, the following information may be gleaned: 

(3.1) 

u„3 

1 
2 

2 

ol 
1 

2J 

p»-i,i~ 
Wn-l, 2 

[_^n-l, 3_ 

= 

1 
1 
0 

1 
2 
2 

0 
1 
2 

n 
1 
1 
1 

(3.2) 5<^n-l, n-2, m ), n > 2 and 

(3.3) 

where 

Unl = ^ S " • ^ ( ° W " " 1 " ^ " _ 1 ) 

'n2 tfn„ = -|=C4a 
rc-1 

_2 
/B" 

(<7a' 

B&""1), n > l , 

Z*""1) 

(3.4) 

a =-|(5 + /5),.6 -|(5 - /5) 

a =|(1 + /5), 3 ={(1 - /5) 

4 = 2 + /B~, B = 2 - / 5 

C = 3 + /5, 0 = 3-/5 

so that 4 = 2a + 1, B = 23+1, C - 2(a + 1) = 4 + 1, D = 2(3 + 1) - B + 1. 
It follows from (3.3) and (3.4) that 

(3.5) 

and 

(3.6) H»(fe) = £ = 2« = M2c°s?)-
Extending Table 1 to the case k = 6, so that now, for example, U51 = 252 and 

^3 = 236, we eventually derive Unm = 6£/„.lm - 9£/„_2>m + 2Un.3t„; thus 

(3.7) 

whence 

(3.8) 

and 

(3.9) 

I'm - J*2" + <2 + / J ) n + (2 - /3)"} = UHt 

Un2 = \{2n + (1 + /3)(2 +/3)" + (1 - /3)(2 - /3)"} = £/„5 

Un3 = |{-1.2n + (2 + /3)(2 + /3)" + (2 - /3)(2 - /3)"} = Un„, 

Results (3.5), (3.6), (3.8), and (3.9) suggest a connection between various 

limits of ratios (as n -*• °°) and corresponding Ar (2 cos 77]. This link is developed 
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in the next section. [In passing, we remark that for k = 9, n ~ 13, we calculate 
to two decimal places that 

rT
13'2 = 2.85, AJI COS ~) = 2.88, 

the common value to which they aspire as n -*- °°, k ->• °° being 3 (cf. Theorem 6).] 

4. AN INFINITE NUMBER PATTERN 

For 1 <. m <_ k, we find [cf. (3.1)] 

(4.1) 

with [7 

(4.2) 

n m n - 1, m - 1 n-1, m n-1, m + 1 
Unl - ^ n . l s l +«/ n-1.2 

1 < m < k 

m = 1 

m = k 

n, k+1-m * Also 

[k/2] 

J ] (-DI,-1^rz/n.rf 
i> = 1 

2n\ 
Jnl ' (n ) 

n > [Zc/2] 

n <. k - 1 

in which vnm is an element of an array in row n and column m defined by 

(4.3) 

Vnm Vn-1, m ~*~ Vn-2, m-1 

yMl = n> vy 1» *>0w = 0> *> 

n >_2m 

n < 2m 

In, In- 1 = 2. 

For example, i f 

27f /„ . 2 , m + 30y„_ 3 ) m - 9Un_,,m. 

k - 6, Unm- 6Un_Um - 9U„_Z,„ + 2Un.3,„, 
and i f 

fc - 9, yn m = 9 y „ . 1 > m - 27[/„.2 > r a + 3 o y „ . 3 i m 

We look briefly at the {vn/J in Section 5. 
Notice in (4.2) that for n -> °°, i.e., k -> °°, £/nl are the central binomial co-

efficients. 
Now let n •> °° and fc •> °°. We wish to obtain the limit of Unm/Unm,. But first, 

by easy calculation using (4.1) we derive 

(4.4) 

THEOREM 4 

l i m ( ^ - \ 1. 
n-«\ tfnl / 4 

: limf-rj^-) 2m - 1. 

PROOF; The result is trivially true for m = 1. Assume the theorem is true 
for ?7Z = p. That is, assume 

lim(|^-) = 2p - 1. 

We test this hypothesis for m = p + 1, using (4.1) several times. Now 
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R = l im • ^ ^ 
Vnl 

(U + 2U + (U - U - 2U ) J n - l , p n-l, p + l v n , p + l n - l , p n - l , p + l ' 
l i m / . 

'2(tf - U - 2U ) + (U - 2U ) 
n . , nP n-l, p-l n-l, p n, p + l n-l, p + l 

= lxm< — 
/u u u u u 

i « / n P n - l , p - l n - l , 1 rt n - l , p n-l, 1 
l im <2| —— - — • — - 2 ^nl Un_lfl Unl Un,ltl Unl 

u u u 
n, p+l n-l, p +1 n- 1, 

^nl "n-l,1 "nl 

2(2p-l-(^)-2(^))+(B-2f) by (4.4) and the 
inductive hypothesis, 

whence R = 2p + 19 which establishes the theorem. 
' U„m\ 2m - 1 

COROLLARY 4: n^« \Unmt J 2mf - 1 

THEOREM 5: ^2m_1(B1 - 2) = 2m - 1 = ^2k~(2m-i)^i " 2 ) * X - m - ̂ 5 fc ̂  C° " 

sin(2w - I W -
PKOOF: ^ ^ ( ^ - 2) « — -jjp—^ = ̂ 2k.(2m-i)(Bi - 2> by Theorem 2 

Sin Ik 
= 2m - 1 

on using a trigonometrical expansion for the numerator, simplifying, and then let-

ting k -> °°o 
Clearly there is a connection between Theorems 4 and 5. We therefore assert: 

THEOREM 6: lim ( M = ̂ . ^ - 2) - 2m - 1 <fe - »>. 

Observe that, with the aid of (4.1) and the manipulative technique of Theorem 
4, we may deduce 

Ultimately, 

/ Un-r, m\ 2m - 1 
(4.7) lim Unl 

from which Theorem 4 follows if we put r = 0. 
This concludes the theoretical basis, with extensions, for the detailed numeri-

cal information given by Wilson [5]. 
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5. SOME PROPERTIES OF {i^J 

Define 

(5.1) 

THEOREM 7: krVkr = 1. 

At;. kr 'kr 

PROOF: Use induction. When r = 1, 

bvkl - k - (k - 1) = 1 
Assume the result is true for r = 2, 3, . 

Asi>,s - A * " 1 ^ . ) 

k-1, r 

by (5.1) and (4.3). 

, s - 1. Then 

- A'£ (u fc-i, + y, ^ ) 
k-1,8 J 

A3-1^ 
fc-2, s-1 

k-2, s-1 

from the inductive hypothesis 

by (5.1) 
and (4.3) 

Hence, the theorem is proved. 

It can also be shown that 

(5.2) 

whence 

(5.3) 

Vnm n - m\ m ) \ m ) \ m - l ) 9 

[n/2] 

]£ Vnm> 
m = 0 

in which L is the nth Lucas number defined by the recurrence relation 

V l + Ln-2 (n > 2) 

with initial conditions Lx = 1, L2 = 3. 
Another property is 

(5.4) Y v = 3 
m = 0 

Table 2 shows the first few values of vkr (see Hoggatt & Bicknell [2], where 
the vkP occur as coefficients in a list of Lucas polynomials). 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0 1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

2 

2 
5 
9 
14 
20 
27 
35 
44 

3 

2 
7 
16 
30 
50 
77 

4 

2 
9 
25 
55 

5 

2 
11 

Table 2. Values of vkr (k = 1, 2, ...., 11) 
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Coefficients in the generating difference equations (4.2),-as fc-varies, appear 
in Table 2 if we alternate + and - signs. Corresponding characteristic polynomi-
als occur in [4] as proper divisors, or as products of proper divisors. Refer to 
Hancock [1], also. 

Further, it might be noted that, if we employ the recurrence relation in (4.1) 
repeated.y, we may expand Unm binomially as 

^nm = "n-t, m-t + \ l ) ^ n - t, m-t + 1 + y 2 / ^ n ' t ' m~t+ 2 + " " " 

(2t\ 
+ [l )Un-t,m + t+l + Vn-t,m+t H < t < n9 1 <. t < TTl) . 

This is because the original recurrence relation (4.1) for Unm is "binomial" (t = 
1), i.e., the coefficients are 1, 2, 1. 

Finally, we remark that the row elements in the first column, U ,, given in 
(4.2), are related to the Catalan numbers Cn by 

(5.5) Unl = (w + l)Cn. 
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ONE-PILE TIME AND SIZE DEPENDENT TAKE-AWAY GAMES 
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1. INTRODUCTION 

In a one-pile take-away game, two players alternately remove chips from a sin-
gle pile of chips. Depending on the particular formulation of play, a constraint 
function specifies the number of chips which may be taken from the pile in each 
position. The game ends when no move is possible. In normal (misere) play, the 
player who makes the final move wins (loses). Necessarily, one of the players has 
a strategy which can force a win. 

In this Quarterly, Whinihan [7], Schwenk [5], and Epp & Ferguson [2] have an-
alyzed certain one-pile take-away games which can be represented by an ordered 
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triple (ji, w9 f). Here n e Z+ u {0}, w e Z + , and f : Z + -> Z+ is nondecreasing. On 
the initial move in the game (n:, w9 f)9 a player takes from 1 to w chips from a 
pile of n chips. Subsequently, if a player takes t chips from the pile, then the 
next player to move may take from 1 to fit) chips. In [3], the author provides an 
analysis of a generalization of this formulation of a one-pile take-away game so 
as to allow for play with two piles of chips. 

The purpose of this paper is to present a formulation and an analysis of an-
other type of one-pile take-away game. The formulation in this paper is quite 
dissimilar to that studied in [2], [5], and [7]. In the present formulation, the 
constraint function f is a function of two variables. The first variable is equal 
to one plus the number of moves made since the start of play. Think of this vari-
able as representing time. The second variable represents the number of chips in 
the pile, that is, pile size. We shall call this formulation the one-pile time 
and size dependent take-away game. It is nicknamed tastag. 

For example, suppose the constraint function is 

fit, n) = t + 1 + [|]. 
Here, [x] denotes the largest integer less than or equal to x. At the start of 
play (time t = 1), suppose that the pile contains 211 chips. The first player to 
move may take from 1 to 107 chips. Suppose that he takes 51 chips, say, so as to 
leave 160 chips in the pile. Then his opponent may reply (at time t = 2) by tak-
ing from 1 to 83 chips. In Section 4, it will be shown that for play beginning 
with a pile of 211 chips, the second player to move can force a win. In Section 
5, it will be shown that if the first player opens play by taking 51 chips, then 
the second player possesses fifteen winning replies. To force a win, the second 
player should take from 43 to 57 chips. If the first player opens by taking 107 
chips, say, then the second player has a unique winning reply, namely, to take a 
single chip. 

2. THE RULES OF THE GAME 

Let f:Z + X Z+ -> Z+. Suppose that the pile contains n chips after t - 1 moves 
have been made, t >. 1. On the tth move, the player to move must take from 1 to 
fit, n) chips. it, n, f) will denote the position consisting of a pile of n chips 
after t - 1 moves have been made, with play governed by the constraint function f. 

In this paper we restrict ourselves to tastags for which the constraint func-
tion f satisfies the following growth condition. 

CONDITION 2.2: V O J , V« > 1 

fit, n) < fit, n + 1) <. fit, n) + 1. 
Set 6 = {f\fiZ+ X Z+ -+ Z + and f satisfies Condition 2.1}. 

Define the normal outcome sets k+ and p+ by 

k+ = {it, n, f)]t'>_ 1, n _> 0, / e e and the first player to 
move in it, n, f) can force a win in normal play} 

and 
p+ = {it, n, f)\t _> 1, n >_ 0, f e e and the second player to 

move in (t9 n9 f) can force a win in normal play}. 

We define the misere outcome sets fe. and p_ just as we define k + and p+ , respec-
tively, except that we replace "normal" by "misere" in the definitions. 

For f e e9 define f:Z+ X Z+ -> Z+ by 

f(t9 n) = f(t9 n + 1) Vt > 1, Vn > 1. 

In a straightforward manner, it can be shown that' / e 6. It is also not difficult 
to verify the following: 
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PROPOSITION 2.1: If t > 1, n > 1, and f e e , then (t, n, f) e k. if and only if 
(t, n - 1, f) e h+-. 

An immediate consequence of Proposition 2.1 is the following: If we can ana-
lyze .(£., n, f) for normal play for each t > 1, n > 0, and f e e , then we can ana-
lyze (£, n, f) for misere play for each t _> 1, n _> 0, and / e C. 

In this paper attention is restricted to normal play. Our aim is the follow-
ing: 

1. Determine the outcome sets k+ and p+. 
2* For each (t, n, f) e h+, prescribe a winning move for the player who moves 

next. 

3. THE GAME TABLEAU 

For fixed f e e , to analyze all one-pile tastags (t, n, f), t _> 1, n _> 0, we 
construct a game tableau for f. The game tableau is an infinite array 

(Et,r) t, r = 1 

whose entries belong to the set Z + U {0, °°}. For each t _> 1, let Dt denote the 
tth diagonal of the tableau. That is, Dt = (Et + i-r, r)r=»i- For example, in the 
tableau in Figure 3.1, DQ = <2, 3, 5, 0, 0, 0, 0, 0>. 

In the sequel, the following conventions are adopted: 

i. E^_X = - u u = o n > i . 
2. max Z = °°. 
3 . n + ^ = o o \ / n e Z + u { 0 9 o o } . 
4 . The domain of / i s extended from Z+ X Z+ t o Z+ X (Z+ U {o°}) , and 

f(t9 °°) = «, \/t >L 1. 

Cons t ruc t t h e game t a b l e a u for / by double i n d u c t i o n as f o l l o w s : 
A. The s o l e e n t r y of D1 i s E11 = max{n\f(l, n) _> n } . 
B. Suppose t h a t t h e e n t r i e s fo r d i a g o n a l s D1, D2, . . . , Dt-\ have been computed 

fo r some t _> 2 . Then compute t h e e n t r i e s of d i a g o n a l Dt a s f o l l o w s : 

1. #tj x = m a x { n | / ( t , n) J> n } . 
2 . Suppose t h e e n t r i e s Et + 1_U} u, u = 1, 2* . . . , r - 1, have been computed for 

some r, 2 £ r <_ t . 

a. I f tft_r+2,r-i - 0 , put tft._r+1>r = 0. 
b . I f Et_r+2t r_ i > 0 and r i s even, pu t 

' 0 , i f Et_r+2>r_1 + 1 £ tft_p+1>w fo r some u, 1 £ w <_ *»- 1. 

^t-r+2, r-i + X> otherwise. 

c. If £'t_r+2, r- i > 0 and r is odd, put 

0, if #t_r+2,r-i- + max{n .> l|f(t - r +. 1, #t-r+2f r-i + n) j> w} 

<. Et-r+i,u f° r s o m e w, 1 < « < r - 1. 

^ - r + 2 , r - l + m a X ^ •> l \ f ( t * 3? + 1» ^ - r + 2 , r - l + «) >: *> > 

otherwise. 

Let us illustrate this construction with an example. 

EXAMPLE 3.1: Let f:Z+ X Z+ -> Z+ be defined as follows: 

( 3 for n <. 20, 
jf(l, w) - { 

( w - 17 for n• > 21. 

Et- r+ 1, r 
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For t = 2 or 3 , f(t, n) = 5 - t + [ | 1 V n >. 

( 1 fo r 1 < n < 9, 

[n - 9 for n > 10. 
/(4, n) /(5, n) = 4. /(6, n) = 1 + [?] Vn >. 1. 

For 7 < t < I35 f{t, n) •= 2. For £ >. 14, /(£, n) = n\/n _> 1. Condition 2.1 is 
satisfied by /. The complete game tableau for / is given in Figure 3.1. 

> < ^ 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1 

3 
4 
3 
1 
4 
1 
2 
2 
2 
2 
2 
2 
2 
0 0 

oo 
oo 

2 

5 
0 
0 
5 
0 
3 
3 
3 
3 
3 
3 
3 
oo 

0 
0 
0 

3 

0 
0 

10 
0 
7 
5 
5 
5 
5 
5 
5 
oo 

0 
0 
0 

• 

4 

0 
11 
0 
8 
0 
6 
6 
6 
6 
6 
oo 

0 
0 
0 

. . . 
« • . 

5 

14 
0 

15 
0 

10 
9 
8 
8 
8 
oo 

0 
0 
0 

. . . 

6 

0 
16 
0 

11 
0 
0 
9 
9 
oo 

0 
0 
0 

. . . 

7 

19 
0 

19 
0 
0 

13 
11 

oo 

0 
0 
0 

. . . 

8 

0 
20 

0 
0 

14 
0 
oo 

0 
0 
0 

. . . 

9 

oo 

0 
0 
oo 

0 
oo 

0 
0 
0 

e . . 

10 

0 
0 
0 0 

0 
oo 

0 
0 
0 

. . . 

11 

0 
oo 

0 
0 
0 
0 
0 

. . . 

12 

0 
0 
0 
0 
0 
0 

. . . 

• • 

Fig. 3.1. The game tableau for Example 3.1 

For a large class of constraint functions in <B, the corresponding game tab-
leaux have no zero entries. For any such game tableau, the entries of each row 
(column) form a strictly increasing (nondecreasing) sequence of positive integers. 
The tastags generated by such constraint functions will be called escalation tas-
tags. Set 

8 = {f e C|the game tableau of f has no zero entries}. 

EXAMPLE 3.2: Consider the constraint function f(t) = t + 1 + [n/2] mentioned in 
Section 1. For t >. 1 and r _> 1, it can be shown that 

[2(r + t) - 3]2(r + 1)/2 - 2(t - 2) if v is odd, 

[2(r + t) - 3]2r/2 - It + 3 if r is even. 

f e £. A portion of the tableau of f Is shown in Figure 3.2. 

EXAMPLE 3.3: On page 124 of [6], Silverman introduces a game called Triskideka-
philia Escalation. It was the challenge of this game for an arbitrary pile size 
n >_ 0 that motivated the present study of one-pile tastags. This game is equiva-
lent to the one-pile tastag (1, n, f), where f(t9 n) = t + 1. f e £>. For t _> 1 
and r _> 1, it can be shown that 
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( (^T^) + (* + ^i11-^) ~ l if ̂  is odd, 

( (f)2 + (t + 2)(f) lf V ±S even-
A portion of the game tableau of / is shown in Figure 3.3. 

> < s 

1 
2 
3 
4 
5 
6 
7 
8 

1 

4 
6 
8 
10 
12 
14 
16 
18 

2 

7 
9 
11 
13 
15 
17 
19 
21 

3 

22 
28 
34 
40 
46 
52 
58 
64 

4 

29 
35 
41 
47 
53 
59 
65 
71 

5 

74 
88 
102 
116 
130 
144 
158 
172 

6 

89 
103 
117 
131 
145 
159 
173 
187 

7 

210 
240 
270 
300 
330 
360 
390 
420 

8 

241 
271 
301 
331 
361 
391 
421 
451 

Fig. 3.2. A portion of the game tableau for Examle 3.2 

t ^ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

2 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

3 

7 
9 
11 
13 
15 
17 
19 
21 
23 
25 

4 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 

5 

14 
17 
20 
23 
26 
29 
32 
35 
38 
41 

6 

18 
21 
24 
27 
30 
33 
36 
39 
42 
45 

7 

23 
27 
31 
35 
39 
43 
47 
51 
55 
59 

8 

28 
32 
36 
40 
44 
48 
52 
56 
60 
64 

9 

34 
39 
44 
49 
54 
59 
64 
69 
74 
79 

10 

40 
45 
50 
55 
60 
65 
70 
75 
80 
85 

Fig. 3.3 A portion of the game tableau for Example 3.3 

4. DETERMINING THE NORMAL OUTCOME SETS 

From the game tableau of /, fee, the following theorem reveals the outcome 
set to which any tastag (t, n, f) belongs. 

THEOREM 4.1: If t 2. 19 n >. 1, and fee, then (t, n, /) e k+ if and only if 
m±n{r\Ettr 2. ri) is odd. 

As an illustration, return to Example 3.1. Is (1, 22, f) a first-player win? 
He r e m±n{r\EUp >. 22} = 9, 

which is odd. Thus, the first player to move in (1, 22, f) can force a win. 
How about the position (5, 11, f) ? Here 

min{p|£'5jr >_ 11} = 8, 
which is even. Thus, the second player to move in (5, 11, f) can force a win. 

As a final example, return to the tastag (1, 211, f) mentioned in Section 1: 
f(t, ri) = t + 1 + [nil], A portion of the game tableau for / is shown in Figure 
3.2. We observe that min{r|#i,r 1 211} = 8, which is even. As asserted in Sec-
tion 1, (1, 211, f) is a second-player win. 



56 ONE-PILE TIME AND SIZE DEPENDENT TAKE-AWAY GAMES [Feb. 

In the author's doctoral dissertation [4], it is shown that if f e C, then 
min{z»|i?lf.r >_ n} is, in fact, the normal remoteness number of (t, n, f). Moveover, 
if f e S, then min{2»| 1̂ r _> n} is also the normal suspense number of (£, n, f) ,* 

5. AN OPTIMAL STRATEGY 

The proof of Theorem 4.1 will be constructive. Suppose that (t9 n9 f) e h+. 
Set $(t, n, f) = m±n{r\Et$r J> n}. We prescribe the following winning move: 

1. Take n - Et+U z(t,n,f>-i chips if n > Et+U 3(t,n,/) - i-
2. Take a single chip if n <_ Et+lt $(t,n,f)-i • 

As an illustration, return again to Example 3.1. 
First consider the position (3, 19, f). 3(3, 19, f) = 7, so (3, 19, f) e h+. 

19 > ll = £'it> 6. The player whose turn it is to move should take 19 —.11 = 8 chips, 
Since jf(3, 19) = 8, seven other moves are also possible. Observe that each of the 
seven other moves is "bad," since 3(4, 19 - u9 f) = 9Vw, 1 £ u ± 7. 

Next consider the position (4, 13, f). 3(4, 13, f) = 9, so (4, 13, f) e k+. 
13^.14 = E5i8. The first player to move can make a winning move by taking a sin-
gle chip. /(4, 13) = 4 . Note that taking 2 chips is also a winning move. How-
ever, taking either 3 or 4 chips is a losing move. 

Let u denote the move in which u chips are taken from the pile. The set of 
winning moves from the position (t, n, f) is 

{u\l <_ u <_ f(t9 n) A n, and (t + 1, n - u9 f) e p+} 

= {u\ 1 <_ u <_ f(ts n) An, and g(£ + 1, n - u9 f) is even}. 

When this set is nonempty, Condition 2.1 and a short argument assures us that it 
is a set of consecutive integers. 

Return to the tastag discussed in Section 1. From Figure 3.2 we observe that 
3(2, 160, f) = 7, so (2, 160, f) e k+. The set of winning moves from (2, 160, f) 
is 

{w|l £ u <_ 83, and 3(3, 160 - u9 f) = 6} = {43, 44, ..., 57}. 

Next note that 3(2, 104, f) = 7. The set of winning moves from (2, 104, f) is 

{u|l <_ u £ 55, and 3(3, 104 - u9 f) = 6} = {l}. 

6̂  THE PROOF OF THEOREM 4.1 

Our proof of Theorem 4.1 takes the usual approach. Pick any f e e . To show 
that a set A satisfies 

A = {(t, n, /) |t >. 1, n >. 0} n fe+, 

it suffices to show each of the following: 

a. No terminal position is in A. 
b. For each position in A9 there exists a move to a position not in A. 
c. For each position not in A9 every move results in a position in A. 

Before proving Theorem 4.1, we introduce some notation and prove two lemmas. 
For each t _> 1, n _> 05 define 

a(t, n, f) = max[{0} u "O|0 < Et,r < n}]9 
3(t, n9 f) = mln{r\Et,r >. n}9 and 
y(t, n, /) = max[{0} u {r\r is even, Et+]>r > 09 r < 3(t, n, t)}]. 

^Chapter 14 of [1] is a good reference for the reader who is not familiar with 
the concepts of remoteness and suspense numbers. 
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Since fit, n) > 1 V t > 1, V n >_ 19 it can be shown that 3(£, n, f) < °o [±n fact, 
B(t, n, f) <_n] V t > 1, V n > 0 . Define the set of "followers" of position 
(£9 ^5 /) to be 

W , ns /) = {(t + 1, n - u, f)\l <_ u <_ fit, n) A n}. 

For each I _> 0, define the set 

4 £ = {(£, n9 /) |t >: 1, n _> 0, B(t, ns /) is odd}. 

Theorem 4 . 1 a s s e r t s t h a t 

{it, n5 f)\t >_ 1, n >. 0} n fe+ = | J 4 2 l . + 1 . 
2> = 0 

Demanding that / satisfies Condition 2.1 forces the game tableau of f to pos-
sess two nice properties. Lemma 6.1 reveals the two properties. 

LEMMA 6.1: Suppose f e e , t >_ 1, and r _> 0. 

a. If 0 < tftf 2p+i < ̂ 5 then n - /(£, n) > Et+it lv. 
b. If 0 < n <. Eti 2r+l , then n - fit, n) <_ Et+U 2r . 

PROOF: a. By the manner in which the tableau is constructed9 

%t, 2r+l > 0 ^ E t , 2r+l = # £ + 1, 2 r + <$ 9 

where 6 = max{nf | / ( t , Et+i} 2r + n f ) 2L ^ f } . Observe t h a t 

(1) fit, Et+U 2 r + 6 + 1) < 6 + 1. 

Since n > 2?^ 2 r + u w e have n - Et+l> 2r - 6 - 1 J> 0. Thus, 

(2) / ( * , n) = / [ * , G ? t + 1 , 2r + 6 + 1) + in - tft+lf 2p - 6 - 1)] 

<- / (*» £*+l, 2r + 6 + 1) + (n " £ t + 1 , 2r - 6 - 1) 
by Condition 2.1. (1) and (2) yield 

fit, n) < (5 + 1) + (w - £ t + l f 2P - 5 - 1) = n - Et+U lv . 

Thus, n - / ( £ , n) > tft+1, lv • 

b . Since S't, 2r+I > 09 we have Z?t, 2r+i = #£+i , 2r + 5 , where 6 i s as i n 
t he proof of p a r t (a) of t h e Lemma. I f n - 1 <_ Et+li 2r , then t h e a s s e r t i o n i n p a r t 
(b) of t he Lemma i s t r i v i a l . So suppose n > Et+ly 2r + 1. Then l<n-Et+lf2r<^ 
6, and so 

fit, n) = f{t, Et+li 2r + in - Et+U 2r)] _> n - Et+U 2r . Q.E.D. 

The second lemma we shall need is the following. 

LEMMA 6.2: Suppose f e e , t >_ I, P > 1, and Et>u < °° for each u, l £ w < 2r. I f 
Et+l> 2r > 0, then Eti 2r+l > 0. 

PROOF: Suppose EtiU < °° for each u, 1 £ w <_ 2 P , and suppose £ 7
t + l s 2r > 0 . Then 

^ t , 2r+1 = 0 i f and only i f 

lu, 1 £ w <. 2 P 9 a ^ ^ M 2: ^ t + i , ir + ^» 
where 6 = max{n|/(t9 Et+it 2r + n) _> n}. Assume that there exists such an integer 
w. We consider two cases. 

Case 1. u is even. Here 3rr, 1 £ pf £ r, 9U = 2rf. Since 

%t+l, 2r > ^ ' ^ t + 1 , 2 r ' - l < ^ t + 1 , 2r> • 
Thus 

# t + l , 2 r + <S -> ^ t + 1 , 2 r + 1 > E t + l , 2v'-\ + X = E t , 2r> = ^ t , M » 
a contradiction. 
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Case 2. u is odd. Here lr'9 0 <_ r' < r.9 zu= 2rr + 1. Let 

6' = max{n|/(t, Et+ij 2rt + ft) _> ft}, 
s°  #t, 2r'+i = Et+U 2r, + 6'. Then 

f[t9 Et+lt2r + (#t , 2r' + l ~ #*+l , 2r + 1)1 

= / [ * . * t + l . 2r + • (£*+! , 22.' + 6 ' - ^ t + 1 . 2r + D ] 

- / ( £ , Et+U 2r, + 6 ' + 1) > / ( * , Et+U 2r, + 6 ' ) by Cond i t ion 2 .1 

>. 6 f by t h e d e f i n i t i o n of 6 ' 
= # t , 2r' + i ~ Et+lt 2r, s i n c e Ett 2rt+i = Et+it ir' + 6 ' 

>..£*, 2r '+i " # t + i , 2r + 1 s i n c e ^ t + l f 2r > 0 = > # t + l f 2r > Et+lt 2 r , . 

Thus, 6 2: Eti 2r' + i - •S't+i, 2r + *• Consequent ly , 

#t + 1, 2v + °* 2. #*+l, Iv + (#*, 2r' + l " Et+1, 2*> + *) > %t, 2r' + l = #t, u , 

a contradiction. 
In both Case 1 and Case 2, a contradiction has been observed. Thus, it must 

be that Etj 2r+l > 0. Q.E.D. 

PROOF OF THEOREM 4.1: Consider the set 
00 

A m U A2p + 1. 
r = 0 

To prove Theorem 4.1, it suffices to establish statements (a), (b), and (c) in the 
first paragraph of this section,. Figure 6.1 is intended as a guide. 

- • • ̂ t,y + i * * * Ett(x . . . EttQ . . . 

• ' • %t+ 1, y • * • ^fc+l.ct-l • • • ^£+1,8-1 • • • 

Fig. 6.1. A portion of the game tableau for f 

a. The set of terminal positions is {(£, 0, f)\t >_ 1}. 

$(£, 0, f) = 0 V t >_ 1, since tftj 0 - 0 V t _> 1. 

Thus, {terminal positions} (1 A - 0. Statement (a) holds. 

b. Suppose (fr, n, f) e A. Then 3(t, ft, f) is odd. Let a = a(t> ft» f) and 
3 = 3(£, ft, f). There are two cases to consider. 

Case Jb.l. n > Et+1 3_j. Since 0 < ft <_ Ett$9 part (b) of Lemma 6.1 indicates 
that ft - /(t, n) £ #t+1' B-I« Thus, in position (£, n, /)» a player may take 

chips to leave the position (t + 1, #t+li B-i» /) • 0(t + 1, #t+i,8-i> /> - B - 1 
is even, so 

<* + *' gt+i, B-i' /) < ^ ' 

Case h.2. n <_ Et+l g.^ Taking a single chip leaves the position 

(t + 1, ft - 1, f). 

Let 3 ' = 3(£ + 1, n - 1, / ) . S ince Et+lt 6 _ i > ft - 1, we have 3 ' £ 3 - 1* and so 
3 f + 1 5 3 . 
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Assume t h a t (t + 1, n - i , f) e A. Then 3 f i s odd. Set #*,B '+i = Et+i,f$< + 1 -
Since Et+1^r _> re - 1 s we have 

Consequently, 

By the maximality of a, the minimality of 3* and (4), we conclude that Et,&f + i > 0 
(and, of course, Eti B» +1 = #tf g'+i). But B'+l is even, 3 is odd, and 3f'+ 1 £ 3. 
Hence, we also have 3'+l < 3. 3f+l < 3 and (3) contradict the minimality of 3. 
We conclude that ( t + l 9 n - l 9 f ) £ A . 

We have shown that, in both Case b.l and Case b.2, statement (b) holds. 

c. Suppose (t, re, /) j A. If re = 0, statement (c) is vacuous. So assume 
re > 0. Observe that 3 is even and that 3 > 0. Let y = y(£, re, / ) . If y = 0, then 
Et,y + i > 0. If y > 0, then y even and Et+i)Y > 0 imply that Etsy + i > 0 by Lemma 
6.2. Thus, in either case, Et>y + i > 0. So y + 1 £ a by the maximality of a, the 
minimality of 39 and the fact that a + 1 < 3. 

Now 0 < Etiy + 1 £ Et, a < re and y even imply that 

(5) re - f(t9 re) > Et+l>y 

by (a) of Lemma 6 . 1 . S ince re £ Et> B = £' t + 1} e _ r + 1, re - 1 £ ^ t+ i, 6 - i- Combine 
t h i s w i t h (5) t o ge t 

Et+l,y K n " W - Et+1, 3 - 1 V u 9 -1 1 w 1 / (*> n ) -

Thus, £>(t + 1, re - w, /) is odd V u B 1 £ u.£ f(t9 re). We have shown that 

W , n9 /) C A9 

which verifies statement (c). Q.E.D. 
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Horadam [2] defined and studied in detail the generalized Fibonacci sequence 
defined by 
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« > Qn - Fn + Fn + 1ix + Fn+2i2 + F n + 3 i 3 J 

(1) Hn = #n - 1 + #n_2 (n > 2), 

with ̂ ! = p, #2 = p + q, p and q being arbitrary integers. In a later article [3] 
he defined Fibonacci and generalized Fibonacci quaternions as follows, and estab-
lished a few relations for these quaternions: 

(2) P„ - Bn + Hn+1i1 + Hn+2i2 + Hn+ii3, 
and 
(3) 
where 

i\ = i\ - i* = -1, ixi 
and 

and {Fn} is the Fibonacci sequemce defined by 

Fx - F2 = 1 and Fn = Fn.x + Fn_2 (n > 2) . 

He also defined the conjugate quaternion as 

W Pn = Hn ~ Hn+l^l ~ Hn+2^2 ~ #n+3^3> 

and £Jn in a similar way. M. N. S. Swamy [5] obtained some additional relations for 
these quaternions. 

In Section 1 of this paper we define the Fibonacci and generalized Fibonacci-
Cayley numbers. In Section 2, we. obtain a further generalization of these numbers 
as well as of the complex Fibonacci numbers and Fibonacci quaternions discussed in 
[3] and [5]. 

SECTION 1 

We call 
(5) Rn - Fn + Fn + 1i1 + ••• + Fn + 7i7 
and 
(6) Sn = Hn + tfn+1ix + ... + Hn+7i7, 
where 

and six similar sets of six relations with 1,2, 3 replaced by 1, 4, 5; 6, 2, 4; 
6, 5, 3; 7, 2, 5; 7, 3, 4; and 1, 7, 6, respectively (see [1]), nth Fibonacci and 
generalized Fibonacci-Cayley numbers, respectively. We define conjugate Cayley 
numbers as 

(7) Sn = Hn - En^i%-L - •". - #n + ̂ 7 , 

and i?n in a similar way, so that 

7 

^n^n = X,#n + i " ^Hn + #n + l + #n + 2 + Hl + 3^ + ^ n + 4 + Hl+5 + #n + 6 + ^ n + 7^ 
•L » 0 

- P„Pn + P„ + , P n + l t = 3 [ (2p - q)H2n+3 - ( p 2 - p<? - q2)F2n + 3] 

+ 3[(2p - q)H2n+11 - (p2 - pq - q2)F2n+11] 
(us ing Eq. 15 of [5 ] ) 

(8) ^ = 3 [ (2p - q ) ( H 2 n + 3 + fl2n+11) - ( p 2 - W - q2)(F2n+3 + F2n+11)). 
Sn + Sn => 2ff„ i m p l i e s 

(9) S2
n = 2g n 5 n - 5 „ 5 „ . 

Since 



1982] FIBONACCI-CAYLEY NUMBERS 61 

( 1 0 ) Hm+n + i = F,+ iHn + 1 + FnHn = Fn + 1Hm + i + Fwffw 

( see [ 2 ] ) , we have 

' Fm+lSn+l + KSn = (F
m+lHn+l + FmEn) + ' " + ( ^ + 1 # n + 4 + ^ ^ + 3 ) ^ 3 

+ (^w + l^n+5 + ^ # n + ^ ^ + . • • • + (Fn+lSn + B +FmHn+?)iT 

~ "m+n + 1 + ^7w + n + 2 t ' l + .* " ' + ^ w + n + 8^7 
= c 

m+rc + 1 9 

so t h a t 

^2n + l = Fn+l^n + l + FnSn 

This i m p l i e s 
and 

sm - Fn+A + ^ s n- i = *;s„+i + ^.l5; Again, s i n c e 

<12> Bn+1 = qF„ +PFn+1 

(Eq. 7 of [ 2 ] ) , we have 

= p(? m + 1 S „ + 1 + F„Sn) + q(FnS.„.v +. ̂ . A ) 
= p 5 m + n + 1 + c?5ra+n [by ( 1 1 ) ] . 

Using (8) and (12) above and Eq. 17 of [ 5 ] , we ge t 

(14) S"^n = 3 [ P 2 f 2 „ + 3 + 2pqF2n+2 + q2F2n + l+ p2F2n+11 + 2pqF2n+1() + q2F2n+9] 

In = 3 [ p 2 C F 2 n + 3 + F2n+11) + 2pq{F2n+2 + F2n+10) + q2(F2n+1 + F2n+g)]. 
Hence 

SnSn + Sn_1Sn_1 = 3 [ p (F2n+3 + F 2 n + l l + F 2 n + 1 #
+ F2n+S^ 

+ 2 P ^ 2 n + 2 + ^ 2 n + 1 0 + ^2n + ^ 2 n + 8 ) 

+ 7̂ (^2n+l + 2rc+9 + F2n+1 + ^2n+7)-» 

- 3 [ p 2 ( £ 2 n + 2 + ^2n+10> + 2PQ^2n+l + £ 2 n + 9 > 

+ q2(L2n + L 2 n + 8 )], 

since -L' = J? •' ', + F ... , where {£„} is the Lucas sequence defined by 

Lx = 1, L2 = 3, Ln = Ln_x + Ln_2 (n > 2). 
From (9), (13), and (15), we have 

Sn + Sn_1 = 2(HnSn + Hn_1Sn_1) - (SnSn + 5n_16'n_1) 

= 2(PS2n-l + ̂ 2n-2> ~ 3tp2(^2n + 2 "+ ̂ rt+io) + 2P<7 (L2n + 1 + ̂2n+ 9) 

+q2(L2 n + L 2 n + 8 ) ] . 

Analogous to Eq. 16 of [2], we have 

(17) (2Sn+1Sn+2}2 + {SnSn+3}2 = {25n+15„+2 + S„}2. 

Using (11), we can establish the identity analogous to Eq. 17 of [2]: 

sn+t + (-D sn_t 

If p = 1, <7 = 0, then we have the Fibonacci sequence {Fn} and the correspond-
ing Cayley number Rn for which we may write the following results: 
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(19) RnRn=RnRn = 3(F2n^+F2n+li). 

(2°) ^ n + fln.A-i-3^2B+2+£2»+io>-

(2D ^2 + ^.i = 2 ^ . ! - 3(L2re+2 +L 2 n + 1 0 ) . 

Similar results may be obtained for the Lucas numbers and the corresponding 
Cayley numbers by letting p = 1 and q = 2 in the various results derived above. 

SECTION 2 

A. The following facts about composition algebras over the field of real numbers 
(the details of which can be found in [4]) are needed to obtain further generali-
zation of complex Fibonacci numbers, Fibonacci quaternions, and Fibonacci-Cayley 
numbers. 

1. The 2-dimensional algebra over the field R of real numbers with basis {1, 
ix} and multiplication table 

1 

1 i , 

1 ix 

i± -a 

(a being any nonzero real number). 

We denote this algebra by (7(a). The conjugate of x = aQ + a>1i1 is x - aQ - a1i1 

and xx = xx = a* + aa*. 
2. The 4-dimensional algebra (over R) with basis {1, i1 $ £2, i3} and multi-

plication table 

1 

H 
i2 

is 

1 

1 

i\ 
i2 

^3 

*1 

^1 

-a 

"^3 

a£2 

^2 

£2 
*3 

-B 
-B£i 

*3 

^3 

-ai2 

B£x 
-aB 

(a, B any nonzero real numbers). 

We denote this algebra by C(as B) • The conjugate of x - a0 + a\i\ + a 2£ 2 + a$is 
is "x = a0 - axi x - # 2i 2 ~ a37*3 anc* xx = x~x = O,Q + ona\ + Ba2 + apaf. 

3. The 8-dimensional algebra (over R) with basis {1, i19 ..., i7} and multi-
plication table 

i\ 
ii 
is 
ih 
is 
U 
ii 

*i 

-a 
-is 
ai2 
-is 
aiit 

ii . 
-a£6 

ii 

is 
-B 
-Bii 
-^6 
-i? 
B£4 
Bi5 

*3 

-a£2 

Bii 
-aB 
-£7 
ai6 
-Bi5 
aBi»+ 

H 

is 
is 
i? 
-Y 
-yix 
-y£2 
-Y^3 

is 

-aii* 

£7 
-a£6 
yii 
-ay 
yis 
-yai2 

i& 

-i7 
-Bii*-
Bi5 
y^2 
-yis 
-YB 
Y3ii 

i? 

a£6 
-Bi5 
-aBiif 
Y^3 
yai2 
-yBii 
-aBy 

(a, B* Y any nonzero real numbers). 
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We (denote this algebra by C(a9 g, y). JThe conjugate of x = a0 + axix +... + a7-z:7 
is a? = aQ - axi! a7i7 and asc » asc • (a2 + aa2 + Ba| + aBaf) + y(a2 + aal + 
6a| + aBaf). 

B. Next we shall consider the following generalizations of Hn9 Fn , and Ln9 re-
spectively: 

ft.„: fex = p9 h2 = bp + oq9 hn « M „ _ x + tf?zn_2 (n > 2) 

/«: A - 1, f2 -*>./„- bfn_x + afn_2 (n > 2) 

£n: £x = 2>, £2 = b2 + 2c, £n = bln_1 + c£K_2 (n > 2) 

(&, c, p, q being integers). 

Then we have the following various relations: 

hn = Pfn + qcfn-1 
n ^ ? 2 + l ^ tt-1 

Ph2n-2 + C<2*2n-3 * hn-l(ohn-2 + A,) 

<*» + fen + l = P f c 2 n + 1 + <*7&2» " <2P " Wh2n+1 ~ *An+l» 
where e = p2 - frpq - cq2. 

M » + l - ^ n ^ n - l = b(Ph2n-l + ^ 2 n - 2 > 

»n + l - ^ n - 1 - 6<P&2» + ^ 2 n - l > = ^ 2 P ' b^h2n " ^ A n 

hn-lhn+l ~ hn = (-<?)*£ 

fn-lfn+1 fn = ^~C' 

-t (-e)t+1^n. 

We now define the nth generalized complex Fibonacci number dn as the element 
hn + ^n+i^i °f t^ie algebra C(l/<?); the nth generalized Fibonacci quaternion pn as 
the element hn + hn+1i1 + 'hn^1i1 + ̂ n+3^3 of the algebra C(l/e9 1); and the nth 
generalized Fibonacci-Cay ley number sn as the element 7zn + h,n+1i1-+ • •• • + hn+7i7 
of the algebra C(l/c9 1,1). 

The following is a list of relations for these numbers: 

<*„-i<*B + 1 - 4 = (-tf)"e(2 + W 1 ) . 

dndn = dndn = hi + -fc*+1 

= | [ ( p 2 + cq2)f2n+1 + cq(2p - bq)fln}. 

dn~an + Cdn_^n_i = -i[(p2 + cq2)(f2n + 1 + ofln_j + g C(2p - &7)(/2„ + oy2B-2>] 

= ^l(PZ + *<?2H2„ + ?«(2p ~ W 2 B - J -

"m + n + l = Jm+l"n + l + °fmdn = J„+i"w+i + e / r t " m • 
hm+idn+i + ahmdn = pdn+n+1 + qodm+n. 

d\ + cd 2^ = 2(pd2n.! + <?cd2n.2) - -i[(p2 + eq2)£2n+ «jro(2p - bq)lln_J. 
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<*» + i " Q%dl-x " - - T - ( 2 P " b&h2n+i +~7T f z n + i + 2 6 Cp? i 2 B + i - + <?e?2 2 n ) i 1 . 

Tn °ft-i + ft+i-

PnPn = dn2n + dn+2dn+1 = £[(2p - bq)(h2n + 1 + h2n+5)-e(f2n+1 + f2n+5)} 

= i [ (p2 + aq2)(/2n+1 + / 2 n + 5) + oq(2p - bq)(f2n + / 2 „ + „ ) ] . 

PnP„ + CPn-lPn-l = ^ C ( P 2 + ^ M ^ n + A2»+i,) + <3<?(2p - & 7 ) ( « - 2 n - l + * 2 » + 3 > ] ' 

Pm+n+1 = Jm+lPn+1 + °fmPn = fn+lPm+1 + °fnPm' 

K + lPn+l + CKPn = PPra + „ + l + *?«?„ + „ -

P» + ° P n - l = P P 2 n - l + ^Pln-2 ~ (PnPn + <SP»- lP»- l> -

P w + t - ( - 0 ) * + 1 P n . t 

P e / t - 1 + / t + l -

8nSn = PnPn + P B + *P» + *-
S n ¥ n + e S „ _ 1 ¥ n . 1 = p n p n + ePn_1pn_1 + Pn + kpn+lt + C p n + 3 P n + 3 -

Sm+rc + l = J j t l s i i + 1 + °Jm8n ~ fn+lsm + l "*" °lnsm' 

Ql + c s n - l * P S 2 n - l + < 7 ^ 2 n - 2 " ( S A + ^ n - l*"n-1) • 

~ - ~ ~ cft-l + ft + 1' 
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1. INTRODUCTION 

In this paper, we obtain generalizations of some problems which have appeared 
in recent years in The Fibonacci Quarterly. 

Throughout {Fn} denotes the Fibonacci sequence defined by 

F1 = F2 = 1 and Fn = Fn_1 + Fn_2 (n > 2) 

and {Ln} denotes the Lucas sequence defined by 

L1 = 19 L2 = 39 and Ln = Ln-i + Ln-z (n > 2). 

Sequences {hn} 9 {/n}, and {in} are defined as follows9 respectively: 

h1 = p9 h2 = bp + cqs hn = bhn_1 + ohn_z (n > 2) 

A - 1» A - *>. /« - Vn-l + ̂ n-2 ^ > 2) 
jlx = &9 &2 = Z?2 + 2<?9 £„ - bin^1 + c £ n _ 2 (n > 2) 

(2?, cs p9 q being integers). 

Note that for b = e = p = 19 g = 0 we will have hn = /„ and for b = <2 = 1 we will 
have /„ = Fn and £n = in. 

The following relations will be used throughout: 

^ n p - s $ *n r - 8 '' 

>Cn = P + S s ^ n ~ ^Jn- l """ J"n+1» 

J2w ~ Jn^n9 * 2n ~ ~~° J~2n3 

where 
p H- s = 2?9 P S = - C 9 £ = p - sq9 and m = p - rq. 

2. GENERALIZATIONS 

No proofs of the following generalizations are given9 since they follow those 
of the original statements very closely. The original statements are referenced 
in parentheses9 giving the Problem number9 Volume number, and Year in which they 
appeared in The Fibonacci Quarterly. 

H-263 (15, 1977): %\mn E kc2mn (mod 1%). 

E-279 (17, 1979): 

( ^ fn + Sr ~ 02rakr + C2n{fn + hr - C^fn+Zr) - C12rfn = f2rhPferf*n+12V 

\D) Jn + Br+3 ° K)C^r+ 2 ° JKSn + hr+2 U Jn + 2r+lJ u -> n 

" ? 2r+l?l*r + 2 ^ 6 r + 3«>4n+12r+6 * 

LSAfMA 2 : A3m - (-C)mAm = (b2 + ho)fmf2m. 

LEMMA 2: {b2 + 4c) ( # - a 2 " " 2 8 / ? ) = fu_„fu + v [£„_„*„+„ - 4 ( - e ) " ] . 

LEMMA 3.- <-<?)%„, + C2m = (-0)mf3m/fm. 
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B-271(b) (12, 1974): If k is even, then lk - 2ek divides 

h(n+2)k ~ 2h(n+l)k°k + hnkCk. 

(This g e n e r a l i z a t i o n was sugges ted by t h e r e f e r e e . ) 

B-275 (13, 1975) : hmn - V * w ( » - i > " <-<*)Wfcw<»- 2) • 

B-277 (13, 1975)_: JL2n ( 2 f c + 1 ) = C2nH2n (mod f 2 n ) . 

B-282 (13, 1975): I f c = d2 (d > 0 ) , then 2dlnln + l , \^+i'oZn\» a n d c £ 2 n + £ 2 n + 2 
a r e t h e l e n g t h s of a r i g h t - a n g l e d t r i a n g l e . 

B-294 (13, 1975): hnlk + hkln = 2hn+k + q(-c)kln_k. 

B-298 (14, 1976): (b2 + hc)hln+ sh2n_ 3 = p 2 £ 4 n + 2cpqlhn_ x + q 2 o 2 ^ n . 2 + ^ 2 n ' 3 £ 6 , 
where e = p 2 - Z?p^ - oq2 = 9m. 

B-323 (15, 1977): h2
n + t - (-e)*/*2 = ft(ph2n + p + ^ 2 n + t - i ) -

^ 3 4 2 q 5 , 1977): 2c3 Z^^ + fc3&3
H + 6 g £ 2

+ 1 £ n - 1 • (£ n + 1 + g ^ . , ) 3 , 

B-343 (15, 1977): £ [c/ 2 f c_ xf2(n.fc) + 1 - f2kf2(n-k + i)] " ^ 2 j 4 J ^ " & n £ 2n + i) • 

B-354 (16, 197*;.- /z 3
+ k - ^3/z3 + ( - c? ) f c f e n . k [ e 2 k ^ . f c + 3/zn+k/zn£k] = 0. 

JB-355 (16, J 9 7 ^ : ^ 3
+ / c - iskh3

n + (~c)3kh3
n_k = 3e(-c)nKfkf2k-

B-379 (17 , 1979;.- / 2 n = n b ( - " g ) n _ 1 [mod (Z?2 + 4c) ] fo r n = 1, 2 , . . . . 
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IN THE GAMBLER'S RUIN PROBLEM 

MARK E. KIDWELL and CLIFFORD M. HURVICH 
Amherst College, Amherst, MA 01002 

(Submitted September 1980) 

In examining t h e g a m b l e r ' s r u i n problem (a s imple case of random walk) w i th a 
f i n i t e number of p o s s i b l e s t a t e s , we were led to c o n s i d e r a sequence of l i n e a r r e -
c u r r e n c e r e l a t i o n s t h a t d e s c r i b e t h e number of ways t o r each a g iven s t a t e . These 
r e c u r r e n c e r e l a t i o n s have a sequence of po lynomia ls as t h e i r a u x i l i a r y e q u a t i o n s . 
These polynomials were unknown to u s , bu t proved e x c e p t i o n a l l y r i c h i n i d e n t i t i e s . 
We g r a d u a l l y n o t i c e d t h a t t h e s e i d e n t i t i e s were analogous t o well-known i d e n t i t i e s 
s a t i s f i e d by t h e F ibonacc i numbers. A check of back i s s u e s of The Fibonacci Quar-
terly then r e v e a l e d t h a t our sequence of po lynomia ls d i f f e r e d only i n s i g n from 
t h e F ibonacc i po lynomia ls s t u d i e d i n [ 1 ] , [ 5 ] , and s e v e r a l o t h e r p a p e r s . 

In t h i s pape r we show, u s i n g graph t heo ry and l i n e a r a l g e b r a , how t h e g a m b l e r ' s 
r u i n problem g i v e s r i s e t o our sequence of po lynomia l s . We then compare our p o l y -
nomials t o t he F ibonacc i polynomials and e x p l a i n why t h e two sequences s a t i s f y 
analogous i d e n t i t i e s . F i n a l l y , we use t he P a s c a l a r r a y s i n t r o d u c e d i n our a n a l y -
s i s of g a m b l e r ' s r u i n t o g ive a nove l proof of t h e d i v i s i b i l i t y p r o p e r t i e s of our 
sequence . 
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The Fibonacci numbers are defined recursively by 

F0 = 0S Fr = 1, and Fn = Fn_x +,Fn_2, n >_ 2. 

Likewise, the Fibonacci polynomials are defined by 

F0(x) = 0, F±(x) = 1, and Fn (x) = xFn_1(x) + Fn_2(x), n _> 2 

(see [1, p. 407]). 

1. GAMBLER1 S RUIN AND PASCAL ARRAYS 

A gambler whose initial capital is j dollars enters a game consisting of a 
sequence of discrete rounds. Each round is either won or lost. If the gambler 
wins a round, he is awarded one dollar; if he loses the round, he must forfeit one 
dollar. The game continues until either! 

1. His capital reaches 0 for the first time. (Ruin.) 
2. His capital reaches b > 1 for the first time. (Victory.) 

Zero is called the lower barrier and b the upper barrier. Since the game ends as 
soon as either barrier is reached, these barriers are absorbing [3, p. 342], 

We are interested in the number of ways the gambler*s capital can reach i dol-
lars, 0 < i < b9 in n rounds. Since he gains or loses one dollar in each round, 
this number equals the sum of the number of ways his capital can reach i - 1 or 
i + 1 dollars inn - 1 rounds, provided that i - 1 and i + 1 do not lie on the 
barriers. These numbers thus satisfy a recursive relation similar to that of the 
binomial coefficients in Pascal's triangle, except for the interference of the 
barriers. 

Following Feller [3, Ch. 3], we use a "left-to-right" format for our truncated 
Pascal triangle rather than a "top-to-bottom" format. Thus in Diagram 1, we plot 
the numbers we have been describing on integer lattice points (n, i) with b = 5. 
We make the initial capital three dollars. 

Capital 

0 1 2 3 4 5 6 7 

Number of Rounds 

Diagram 1 

The appearance of the Fibonacci numbers Fn and Fn+1 in the nth column is an acci-
dental consequence of the selection of b - 5. In speaking of the point (n, i), we 
are using the "column first, row second" convention that is standard for coordi-
nate systems, not the "row first, column second" convention of matrix theory. 

It will be useful later to employ this rectangular lattice with more general 
initial values (the values in the 0th column). Given^an integer b > 1 and a vec-
tor X0 e €h~Y

 9 we define the Pascal Array P. A. (b9 X 0 ) , of height b and initial 
vector X09 to be the (complex) array whose (n, £)-entry, for n _> 0 and 0 < i < b9 
is 

X0 • ei if n = 0 
F(n - L, b9 X0s i - 1) + F(n - 1, b9. £Q9 i + 1) 

(1) F(n, b9 X0, i) = { if n > 0 and 1 < i < b - 1 
F(n - 1, b9 X0s 2) if n > 0 and i = 1 

KF(n - 1, b9 Jfo» b - 2) if n > 0 and i = b - 1. 

b -
4 
3 
2 
1 
0 -

0 
1 
0 
0 

1 
0 
1 
0 

0 
2 
0 
1 

2 
0 
3 
0 

0 
5 
0 
3 

5 
0 
8 
0 

0 
13 

0 
8 

13 A 
Barriers 

21 / JL.J 
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{Si. is the ith standard unit vector in C _1.) Thus, in gambler's ruin, we are 
dealing with P.A. (b, Sj), 1 <. j <. b - 1. 

If the initial values are all nonnegative integers, we could interpret the 
Pascal array as representing many gamblers with different amounts of initial cap-
ital gambling at the same time. The full generality of complex entries will be 
needed in the last section of this paper. 

LEMMA 1: If 2 > - l 
X 0 = 2-f ak ^k ' 

then 
b-i 

F(n, bs Z0, i) = ]T akF(n9 b, ek, i). 
fc = l 

PROOF: This is true for n = 0 since the Oth column of P.A. (2?, Z0) consists 
of the coordinates (a1, ..., a^_x) of ^0- T n e recursive definition (1) can then 
be used to establish the result for all n, U 

.2. GRAPH THEORY AND RECURRENCE RELATIONS 

To learn more about Pascal arrays, it is useful to consider the labeled graph 

G-~ (1) (2) (3) ... (b - 2) (b - 1) 

A gambler could keep track of his gains and losses by moving a marker in a "ran-
dom walk" along the vertices of this graph. (He would have to leave the graph 
when he achieved victory or ruin.) 

The associated adjacency matrix Ab is the (b - 1) X (b - 1) matrix with 

Ab(j, i) 

For example, 

1 if vertices (j) and (£) are connected by an edge, 

0 otherwise. 

0 
1 
0 
0 

1 
0 
1 
0 

0 
1 
0 
1 

0 
0 
1 
0 

LEMMA 2: [2, Lemma 2.5, p. 11] For n > 1, the (j, i)-entry of the matrix power 
Ab equals the number of paths of G of length n starting at vertex (j) and ending 
at vertex (i). D 

In Pascal array terminology., Ab(j, i) = F(n9 b, e- , i). 

The characteristic polynomial of Ab is 

Fh{\) - det(Ab - Mb)9 

where Ib is the (b - 1) X (b - 1) identity matrix. We have P2 = -X, P3 = X2 - 1, 
and, in general, we expand the determinant by its first row to obtain the impor-
tant recursive formula 

(2) pka) = - x p ^ a ) - pk.2{\). 
Note the similarity of this definition to that of the Fibonacci polynomials. Con-
sistent with (2), we define 

PiM = -P3M ~ AP2(A) = 1 and P0(A) = -P2(A) - \P1(X) = 0 . 
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In Diagram 2, we give a chart of the Pk(X) for 0 <. k <. 10. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Pk(X) 

0 
1 

-X 
X2 - 1 

-X3 + 2X 
Xh- 3X2 - 1 

-X5 + 4X3 - 3X 
X6- 5X4 + 6X2 - 1 

-X7 + 6X5 - 10X3 + 4X 
7Xb + 15XM 10XZ + 1 

-X9 + 8X7 - 21X5 + 20X3 - 5X 

Diagram 2 

LEMMA 3: Pk (X) = i1 kFk(-i\)9 where the Fk are the Fibonacci polynomials. 

PROOF: By induction. 

P0(X) = 0=i1F0(-iX) and P1(\) = 1 = i°F1(-i\). 

Pk (X) =-XP (X) - -Pfc_2(̂ ) (by inductive assumption) 

- (-X)i1-(k-1)F,„1(~iX) - i^-^-^Fk_2(-i\) 

For ^ > 2 , 

' [ ( - ^ ^ ( - i X ) - ^ ^ - ^ ) ] 

= i1-k[(-i\)Fk_1(-i\) + Fk_2(-i\)] 
= i ^ ^ C - i X ) . D 

LEMMA 4: Pk (X) is a polynomial with integer coefficients having degree k - 1 and 
leading coefficient (-1) . 

PROOF: These statements follow from Eq. (2) by induction. D 

The Cayley-Hamilton Theorem [4, Cor. 2, p. 244] states that Pb (Ab) equals the 
zero matrix. Then for any m _> 0, Am

h • Pb(Ah) equals the zero matrix. Let 

fe = 0 
Thus , . 

b - 1 
] P £>kAb

+k e q u a l s the zero m a t r i x for a l l m >_ 0 . 
k = o 

Looking at individual entries, 
b-l 

E M* 
m + & (j, i) = 0 for all to j> 0, 0 < i9 j < b. 

k = 0 
By Lemma 2, this is equivalent to 

b-l 
(3) ]T 6kF(/?? + k5 b9 ej9 i) = 0 for all m _> 0, 0 < i9 j < b. 

k = 0 
When a sequence satisfies a linear recurrence relation such as (3), we say that 

r„ W = t, M* = o 
is its auxiliary equation. 
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We have proved the following. 

THEOREM 5: Every row {F(n9 b9 3j9 i)}^=0 of the Pascal array P.A. (b9 §j) is a 
sequence which satisfies a linear recurrence relation with constant coefficients 
and auxiliary equation Pb (A) = 0, • 

COROLLARY 6: Every row of any Pascal array P.A. (b9 J0) satisfies the linear re-
currence relation with auxiliary equation P, (A) 0. 

PROOF: This follows from Theorem 5, from Lemma 1, and from the superposition 
principle for solutions to linear recurrence relations. D 

As a consequence of Corollary 6 and Lemma 4, if we know a row of a Pascal array 
P.A. (b9 j£Q) as far as the (b - 2)nd column, we can reconstruct the whole row 
uniquely. 

We have not yet derived a closed-form expression for Pk(\). Following [4, pp. 
267-70], we write 

pk+1a) = -APfc<x) - Pfc-i(x) 
Pk(X) = Pk(X) 

In matrix terms, 

Pfc + i W pka) 

A long calculation then produces the closed-form expression 

Thisparallels [1, Eq. (1.3), p. 409], And, as in [1, Sec. 3], the matrix 

[-A -i\ 
M -

L i oj 
can be made to yield a great number of identities based on the iterative property 

v pk+ia> -M*> 1 

Mk -
\Pk(X) -Pfc-i(X)_ 

Unlike the Fibonacci polynomials [5, Theorem 1], the P& (A) are reducible for k >_ 3. 
Their factors are interesting, and should be a subject of further study. 

3. DIVISIBILITY PROPERTIES 

In this section we will show how divisibility properties of {Pb(X)} similar 
to those of the Fibonacci polynomials [ls p. 415] follow from the consideration of 
Pascal arrays. Some of our theorems could also be derived using the above matrix 
M9 but we wish to give proofs in the spirit of the gambler's ruin problem. 

LEMMA 7: Let A0 be a root of Pb (A) = 0. Then the sequence {1, A0, AQ, ... sat-
isfies the linear recurrence relation with auxiliary equation Pb(X) - 0. 

PROOF: Let 

Then for any m >_ 09 
^w fe = 0 

.fc-i b - l 
^k + m , m JT*K Q , k 
A n ~ A 0 / rPfeA0 

k = 0 
DfcAg 0, since A0 is a root of Pb(X) = 0. O 
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LEMMA 8: There exists a vector Jx such that P. A. (b9 j?x) has bottom row {1, X0, 
X0, . ..}, where X0 is a root of Pb (X) 

PROOF: Suppose we are given 

F(0, b9 Xl9 1) = 1, F(l, b, Zls 1) A. , F{b 2, 2>, fl9 1) = Xb-2, 
and^we wish to determine X1. Using Eq. (1) (third clause), we can determine F(0, 
i, fi, 2) through F(i - 3, b9 Xl9 2). Then using Eq. (1) (second clause), we can 
determine F(0, b9 Xl9 3), . v , F(2> - 4, b9 Xl9J)9 . .., F(0, fc, Xl9 b - 2), F(l, 
b9 Xl9 b - 2), and F(09 b9 Xl9 b - 1). Thus, Jt1 is determined uniquely. Diagram 
3 illustrates this procedure in case b = 5. 

5 

4 

3 

2 

1 

X0 - 2AQ 

xl - i 

1 *! 

Diagram 3 

Now we can fill in all of P.A. (2?s Xi). By Corollary 6, its bottom row satisfies 
the linear recurrence relation with auxiliary equation Pb(X) = 0. By the remark 
following Corollary 6 and Lemma 7, that row must be {1, X0s XQ, XQ, ...}. Q 

Next we show that {1, X0s X§, . ..}9 and indeed all of P.A. (Xl9 b), can be em-
bedded in a Pascal array of height bo for any integer o > 0. It then follows 
easily that X0 is also a root of Pbo (X) = 0 . 

If 1 = otî ! + ••• + oikek9 then the palindrome Xp is defined to be 

a^x + ••• + a ^ . 

We construct an arbitrary array G(n9 i), n >;0 and 0 < i < 2?<2, as follows: 

F(n9 b, Xl9 i - 2db) if 2db < i < (2d + 1)2? and 0 < d <. \° ~ 1 j. 

(̂ (n, i) = \ 0 if i is a multiple of 2?, 

(2d - l)b) if (2d - l)b < i < 2db and 1 < d <. [|J. F[n9 b9 -~Xl9 ^ 

In Diagram 4, we illustrate this construction in the case b = 5, o = 2, A X = e3. 

0 
0 

-1 
0 
0 
0 
1 
0 
0 

0 
-1 

0 
-1 

0 
1 
0 
1 
0 

-1 
0 

-2 
0 
0 
0 
2 
0 
1 

0 
- 3 

0 
-2 

0 
2 
0 
3 
0 

- 3 
0 

-5 
0 
0 
0 
5 
0 
3 

0 
-8 

0 
-5 

0 
5 
0 
8 
0 

- 8 
0 

-13 
0 
0 
0 

13 
0 
8 

0 
-21 

0 
-13 

0 
13 
0 

21 
0 

Diagram 4 
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LEMMA 9: G{n9 i) is a Pascal array of height be with initial vector 

X2 = (Xl9 0, -If, 0S . . . ) . 
PROOF; This follows by checking definition (1) in the five cases of an entry 

in an all-zero row, an entry next to an all-zero row, an entry in the interior of 
one of the copies of P.A. (il9 b) or P.A. (-if9 b) s and an entry in the top or bot-
tom row of the whole array. D 

THEOREM 10: Any root of Pb(X) = 0 is a root of Pbc(X) = 0. 

PROOF: We have just seen that if AQ is any root of Pb(X) = 0, then {l, A0, 
AQS ...} is the bottom row of a Pascal array of height be By Corollary 6, the 
sequence satisfies the linear recurrence relation with auxiliary equation Pba(X) = 
0. Applying this fact to the subsequence {1, A0, ..., A Q ^ " 1 } , we have that 

Pbo(X0) = 0, D 

THEOREM 11: Pb (X) divides Pba (A), with quotient a polynomial Q(X) with.integer 
coefficients and leading coefficient ±1. 

PROOF: By Theorem 10, Pb (X) divides Pba(X). Let the quotient be Q(X) . Define 
Z>-2 

Q(X) - £akXk , Pb(X) = E M " ± **"1. ^d Pba(X) = £ Y,A* ± Ab*"x. 

The form of these last two expressions is dictated by Lemma 4. By multiplication 
of leading coefficients, (±l)abo_b = ±1, which implies that a ^ _ & = ±1. Suppose 
we have proved that ®<bo_b9 a ^ ^ ^ , ...,

 abe-b-k a r e integers. Then by polynomial 
multiplication, 

Thus afco_t.(k+1) .ust also be an integer. This completes the proof by induction. 
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In [7], Silvester shows that a number of the properties of the Fibonacci se-
quence can be derived from a matrix representation. In so doing, he shows that if 

then 

(1) Ar 01 = fun * 

ln + k + °ian+l + + a k-lun+k-l 

ck_1 are constants). Given values for the first k terms, a0, a19 . .., 
(2) uniquely determines a sequence {an}, In this context, the Fibonacci se-

where uk represents the kth Fibonacci number. This is a special case of a more 
general phenomenon. Suppose the (n+/c)th term of a sequence is defined recursive-
ly as a linear combination of the preceding k terms: 

(2) 

ak-i'-
quence {uns may be viewed as the solution to 

an+2 ~ an + an+l 

which has initial terms uQ = 0 and u1 = 1. 
Difference equations of the form (2) are expressible in a matrix form analo-

gous to (1). This formulation is unfortunately absent in some general works on 
difference equations (e.g. [2], [4]), although it has been used extensively by 
Bernstein (e.g. [1]) and Shannon (e.g. [6]). Define the matrix A by 

1 0 
0 1 
0 0 

'0 ""I ^ 2 ^fe-2 ^k-1 

Then, by an inductive argument, we reach the generalization of (1): 

(3) An 

fao 
a l 

• 

[ak-\ 
= 1 

an 
an + l 

Just as Silvester derived many interesting properties of the Fibonacci numbers 
from a matrix representation, it also is possible to learn a good deal about {an} 
from (3) . We will confine ourselves to deriving a general formula for an as a 
function of n valid for a large class of equations (2). The reader is invited to 
generalize our results and explore further consequences of (3). 

Following Shannon [5], we define a generalized Fibonacci sequence as a solution 
to (2) with the initial terms [a0, ..., ak_1] = [0, 0, ..., 0, 1], Equation (3) 
then becomes 

an + k 

An 
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More specifically, a formula for an is given by 

(4) an == [1 0 0 ... 0]An 

1 

When A can be brought to diagonal form, (4) is easily evaluated to provide the de-
sired formula for 

As many readers have doubtless recognized, A is the companion matrix for the 
polynomial 

(5) pit) * k - l * 
k-l tfc-2 

'k-l1 

In consequence, pit) is both the characteristic and minimal polynomial for A, and 
A can be diagonalized precisely when p has k distinct roots. In this case we have 

(6) pit) - it - rjit - r2) ... it - rk) 
and the numbers r19 r2, ...5 rk are the eigenvalues of A. 

To determine an eigenvector for A corresponding to the eigenvalue vi we con-
sider the system 

(7) (A - rtI)X = 0. 

As there are k eigenvalues, each must have geometric multiplicity one, and so the 
rank of iA - VJI) is k - 1. The general solution to (7) is readily preceived as 

X = xx 

vk-i\ 

where x± may be any scalar. For convenience, we take x1 = 1. 
Following the conventional procedure for diagonalizing A, we invoke the fac-

torization 
A = SDS'1, 

where S is a matrix with eigenvectors of A for columns and D is a diagonal matrix. 
Interestingly, the previous discussion shows that for a polynomial p with distinct 
roots rl9 r29 rk, the companion matrix A can be diagonalized by choosing S to 
be the Vandermonde array 

Vir13 n ) -

"1 
r l 

A 

I rk'1 

1 
r 2 

A 

< 
-1 

1 

^ 3 

A 

;*- i 

. . . 

. . . 

i 
r% 
*i 

r k-l 

Related results have been previously discussed in Jarden [3]. 
To make use of the diagonal form, we substitute for A in (4) and derive the 

following: 
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an = [1 0 0 ... 0]F(pls p29 ..., rk)DnV^(r19 r2, 9e.9 r,) 

1 

Noting that the product of the first three matrices at right is [r" r£ • • -
we represent the product of the remaining matrices by 

2/2 

and a much simpler formula for an results: 

t = 1 

Now, to determine the values z/ , .. . . , y , we solve 

*fc> 

2/2 

; 
A„ 

= 

" o l 
0 

:° 

1 J 
F(P1 5 r29 

By Cramer1s rule, z/m is given by the ratio of two determinants. In the numerator, 
after expanding by minors in column m, the result is 

(-l)m+fcdet 7(r15 •.. , r. ) , > L m - 1 > -1 m + 1 » • • * > ^fc -

while the denominator is det V{v1, . . . , r..). Thus, the ratio simplifies to 

hn 
(-D m + k 

(-ir .no * < > • 

The final form of the formula is derived by utilizing the notation of (6) and rec-
ognizing the last product above as p?(rm)* Substitution in (8), and elimination 
of the factors of (-1) complete the computations and produce a simple formula for 

(9) . • an = 2^ n t (r \ 
i = l P v•z^ ' 

We conclude with a few examples and comments that pertain to the case k = 2. 
Taking o0 "1, the sequence {an} is the Fibonacci sequence. Here 

pit) •5 £ 1 - /5 

and p'(£) = 2£ - 1. By using (9), we derive the familiar formula: 

'i + /sV (i - /lY 

/5 -/5 

Consider next the case e0 = c 
average of the two preceding terms. Now, 

1/2, in which each term in the sequence is the 
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pit) = t2 - \ t - | = (t - l)[t + | ) . 

This time, (9) leads to 

«-iR-*r} 
More generally for k = 2, the discriminant of p(£) will be D = c^ + 4c0 and (9) 
produces the formula 

(c± + /D)n - (̂  - /D)n 

2n/D 

If Z) is negative, we may express the complex number c1 4- /D in polar form as 

Z?(cos 6 + i sin 0). 

Then the formula for an simplifies to 

_ ('R\n-1sixi nQ 
an ~ \ 2 / sin 9 ' 

Thus, fo r example, w i t h c1 = c0 = - 1 , we o b t a i n 

an = ( i \ n - i 2 . (nir\ 

This sequence {an} is periodic, repeating 0, 1, -1, as may be verified inductively 
from the original difference equation 

0; ax = 1. 
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In a previous paper [1], the author proved the following theorem. 

THEOREM 1: Let 

Then we have 

5<w> *>) = H \z\ (u - 3> a n integer). 
k = o ^u I 

(a) B(u9 0) = [0, u]9 
B(u, 1) = [0, u - 1, u + 1]. 

(b) Suppose B(u, f) = [a0, a19 . .., a n]. Then 

B(u, v + 1) = [a0, a19 ... j-an_lf an.+ 1, an - 1, an_19 an_2, ..., a2, a j , 

Repeated application of this theorem generates the continued fraction for 

B(u9 oo) •m-For examples we find 

(1) BO, °°) - [0, 2, 5, 3, 3, 1, 3S 5," 3, 1, 5, 3, 1, . . . ] 9 

(2) 5 (u 9 °°) = [0, u - 19 w + 2, u 9 u 9 u - 29 u9 u + 2, ' u, u - 2, . . . ] . 

Recently, Bergman [2] provided an explicit, nonrecursive description of the 
partial quotients in (1), and by implication, in (2). (This description is our 
Theorem 3.) The purpose of this paper is to prove Bergman's result, and to pro-
vide similar results for the continued fractions given in [3] and [4]. 

We start off with some terminology about "strings." By a string9 we mean a 
(finite or infinite) ordered sequence of symbols. Thus, for example, we may con-
sider the partial quotients 

[<ZQ $ &i 9 • • • 9 CLn\ 

of a continued fraction to be a string. If w and x are strings, then by wx9 the 
concatenation of w with x9 we mean the juxtaposition of the elements of w with 
those of x. By \w\ 9 we mean the length of w9 i.e., the number of symbols in w. 
Note that |i<;| may be either 0 or oo. If w is a finite string, then by wR

9 the re-
versal of w9 we mean the symbols of w taken in reverse order. Finally, by the 
symbol Wn, we mean the string 

WWW ... W 

n times 

By w°9 we mean the empty string, denoted by 0, with the property that w$ = 0W = w. 
Note that, (WE)* = xRWE

9 and so (wR)n = (wn)R. 

THEOREM 2: Let AQ and B be finite strings. Define An + i = AnBA%. Let the symbol 
Am stand for the unique infinite string of which AQ9 A19 . .. are all prefixes. 

Then Am = X1Y1X2Y2X3Y3... where 

(a) Xk - {\l " k ±S ° dd 
if k is even9 

(b) Yk \ B if k t S. 
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and 
S ~ {n ^ li n - 2Z(I + 2j) , i , j integers _> 0 and j is odd} 

= {3, 6, 7, 11, 12, 14,-15, ...}. 

To prove this result, we need a lemma. 

LEMMA 1: Let A0, An9 and B be as in Theorem 2. Then 

where by the symbol B* we mean either B or B^. 

PROOF: We use induction on n. Clearly, the lemma is true for n = 0. Assume 
true for n. Then we find 

= W 0 B ^ ^B*) 2 n + 1 ^A^A* 

and the proof of the lemma is complete. 

We can now prove Theorem 2. Part (a) follows immediately from the lemma. To 
prove part (b) we will prove, by induction on n9 that the theorem is true for all 
k £ 2\ ' 

Clearly, part (b) is true for n = 0. Assume true for all k £ 2n. Then we wish 
to show part (b) Is true for all k such that 2n < k £ 2n+1. 

Assume 2n < k < 2n + 1. Since An + 1 = AnBA*9 we see that if Yk = BR then "J2„ + 1 _ ?< = 
B; similarly, if 7fe = B then J2„ + 1 _fe = BR. 

We note that every positive integer can be written uniquely in the form 

"2*(1 + 2J), 

where i and j are nonnegative integers. Thus, it suffices to show that (for 2n < 
k < 2n + 1) if k = 2*(1 + 2j), then 2n + 1 .- fc = 2^(1 + 2jf), where j and j' are of 
opposite parity. 

If 2n < k < 2n + 1
9 then the largest power of 2 dividing k is 2""1; hence, 0 £ 

i £ n - 1. Therefore, 

: 2n + 1 - fc = 2 n + 1 - 2*(1 +-2j) = 2*(2n+1~i - 1. - 2j) 

= 2*(1 + 2(2""'* - J - 1)) = 2*'(1 + 2jf). 

But n - i >_ 1; hence, j and j ' are indeed of opposite parity. 
Finally, we must examine the case k = 2n+1. But it is easy to see from Lemma 

1 that Yk = B if k is a power of 2. 
Now that we have built up some machinery, we can state and prove the explicit 

description of the continued fraction for B(u9 °°). 

THEOREM 3 (Bergman): 

B(u9 oo) =. [0,. u - 1, U19 V19 U29 V29 U39 V39 ...] 
where 

f (u + 2, u) if. k is odd 
k ((w, w + 2) if k is even, 

= ( (w, u - 2) if fc £ S 
k \ (u - 29 u) If k e S. 

S is as in Theorem 2. 

Bergman*s result follows immediately from Theorem 2 and the following lemma. 

LEMMA 2; Let AQ = (u + 2, w) ; B = (u, u - 2); let An and ^ be as in Theorem 2. 
Then 

(a) B(u9 V + 2) = [0, M - 1, iy, w - 1], 
(b) B(u9 oo) = [0, u - 1, 4 J . 
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PROOF: To prove part (a), we use induction on v. From Theorem 1, we have 

B(u9 2) = [0, u - 1, u + 2, u9 u - 1] = [0, u - 1, AQ9 u - 1]. 
Hence, the lemma is true for v - 0. 

Now assume true for v. We have 

B(u9 V + 2) = [09 u - 1, Av9 u - 1]. 
But by Theorem 1, 

B(u, v + 3) = [0, u - 1, Ay, u, w - 2, A*9 u - 1] 

B(w, y + 3) = [0, u - 1, 4tf+1, w - 1]. 

This proves part (a) of the lemma. To prove part (b) , we simply let v approach oo 
in both sides of (3). 

Note: Lemma 2 was independently discovered by M. Kmosek [5]. 

These results provide a different proof of the fact, proved in [1], that 
B{u9 oo) is not a quadratic irrational. This is an implication of the following 
more general result. 

THEOREM 4: Let AQ9 B9 AnS and A^ be as in Theorem 2, A0 and B not both empty. 
Then A*, is eventually periodic if and only if B is a palindrome. 

PROOF: We say the infinite string w is eventually periodic if and only if 
w = xym where, by the symbol y° °  , we mean the infinite string yyyy.. . . The string 
y is called the repeating portion, or the period. 

Suppose B is a palindrome. Then by Lemma 1, 

But B = BR; so B* always equals B. Hence, 

A*, = (A0BAR
0By. 

Now assume A^ is eventually periodic, i.e., AM = xy°°. Since 

\An\ = 2n(|A0| + \B\) - \B\9 

we may choose n such that \x\ <_ \An\ • Then since AnBAR is a prefix of ^4^, we may 
assume (by renaming x and y9 if necessary) that x = An. 

Now let s = Z/'4M' + 'B'. Clearly, 4oo = X£/°°  = xz°°. If z/ is a repeating portion, 
then, so is s. The string s consists of groups of B*A*Ts; hence, if we can show 
that groups of B*A%' s repeat only if 5 = BE

9 we will be done. 
By renaming "An

u to be "AQ9" we may use the result given in Theorem 2 to de-
scribe the positions of the S's in Am. We will show that for all integers i J> 1, 
there exist Oi z S and di i S such that <?£ - d^ = i. This shows that in Am there 
exists a 5 and a BR exactly \z\ symbols apart; hence, if z really is a repeating 
portion, we must have B = BR. 

Let i be written in base 2 as a string of ones and zeros. Then, clearly, for 
some m J> 0, n >_ 1, this expression has the form 

z 0 ln 0m
9 

where z is an arbitrary string of ones and zeros. 
Let Qi be the number represented by the binary string z 1 ln 0m and let di be 

the number represented by 1 0" 0m. Then, clearly, oi - d± = i9 and it is easily 
verified that Oi e S and di t S. 

Thus, B = BE and Theorem 4 is proved. 

Note: Theorem 4 was stated without proof in [6]. 

COROLLARY 1: B(u9 °°) is not a quadratic irrational. 
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PROOF: From Lemma 29 we have B(u$ °°) = [09 u - 19 Am] 9 where A0 = (u •+ 2, u) 
and B = (w, w - 2) . Since 5 ^ BR

9 Aoo cannot be eventually periodic, Hence9 by a 
well-known theorem (see Hardy & Wright [7]), B(u3 °°) is not a quadratic irrational. 

COROLLARY 2: Suppose each element x of the strings A0 and B satisfies 0 <_ x < b9 
where b is an integer _> 2. Then we may consider Am to be the base b representa-
tion of a number between 0 and 1. Then Theorem 4 implies that this number is ir-
rational if and only if B - BR. 

As the last result of this paper, we state a theorem giving a description sim-
ilar to that in Theorem 3 for another type of continued fraction. 

In [3] and [4]9 the following result is proved. 

THEOREM 5: Let {e(k)}k=o be a sequence of positive integers such that c(v + 1) J> 
2e(v) for all v _> v'. Let d{v) = o(v + 1) - 2c(v). Define S(u, v) as"follows: 

V 

S(u9 v) = ̂ T u~c(k) (u _> 29 an integer). 

Then, if v >_vf and S(u9 v) = [a0s al9 — 9 an] and n is even, 

S(u9 v + 1) = [aQ9- al9 . . . 9 an9 ud^v) - 19 1, an - 1, an_1$ an_29 ..., a29 a j . 

It is possible to use the techniques above to get an explicit description of 
the continued fraction for S(u9 °°) similar to that for B(u9 °°) . This description 
is somewhat more complicated due to the extra terms given in Theorem 5. If we 
assume that vf = 09 a(v + 1) > 2a(v) and u >_39 then the description becomes some-
what more manageable. 

THEOREM 6; Let S(u9 °°) = lim S(u9 v) . Let us write n = 2in (1 + 2j„) where in and 
j n are nonnegative integers; however, put j n ™ -1 for n = 0. Define p(n), the 
parity of an integer n as 0 if n is even, and 1 if n is odd. Then under the sim-
plifying assumptions of the previous paragraph, 

S(us «>) = [0, AQ9 B19 C19 B29 A19 B39 C29 Bh9 A29 B 5, . . . ] , 

where 
An - (uc(0) + pQ'n) - 2, 1, ud( 0 ) - 1, uaW - p(n)) 

Cn = (uc(0) - p(n)s ud ( 0 )- 1, l,^(f l ) - 1 - p(jn)) 

( (udil + in)~ 1, 1) if j„ is even, 

I (1, u^1"1"^- 1) if j n is odd. 

PROOF; The proof is a straightforward (though tedious) application of previous 
techniques, and is omitted here. 
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1. INTRODUCTION 

A natural number n is called perfect, multiperfect5 or quasip.erfect according 
as o(n) = 2n9 a(ft) = kn (k _> 2, an integer), or a(ft) = 2n-f 1, respectively, where 
o(n) is the sum of the positive divisors of ft. 

No odd multiperfect numbers are known. In many papers concerned with odd per-
fect numbers (summarized in McDaniel & Hagis [5]), values have been obtained which 
cannot be taken by the even exponents on the prime factors of such numbers, if all 
those exponents are equal. McDaniel [4] has given results of a similar nature for 
odd multiperfect numbers. 

No quasiperfect numbers have been found. It is known [Cattaneo [1]) that if 
there are any they must be odd perfect squares, and it has recently been shown by 
Hagis & Cohen [3] that such a number must have at least seven distinct prime fac-
tors and must exceed 1035. In this paper we shall give results analogous to those 
described for odd multiperfect numbers, but with extra generality. In particular, 
we shall show that no perfect fourth power is quasiperfect, and no perfect sixth 
power, prime to 3, is quasiperfect. We are unable to prove the nonexistence of 
quasiperfect numbers of the form m2, where m is squarefree, but will show that any 
such numbers must have more than 230,000 distinct prime factors, so the chance of 
finding any is slight! 

All italicized letters here denote nonnegative integers, with p and q primes, 
p > 2. 

2. SOME LEMMAS 

The following result is due to Cattaneo [1]. 

LEMMA 1: If ft is quasiperfect and pja(ft), then r = 1 or 3 (mod 8). 

We shall need 

LEMMA 2: Suppose ft is quasiperfect and p2a || ft. If q \ 2a + 1, then 

(q - l)(p + 1) = 0 or 4 (mod 16). 

PROOF: Notice first that if b is odd, then, modulo 8, 

(1) oip*-1) = 1 + p + p2 + ••• + p& _ 1 = 1 + (p + 1) + -•- + (p + 1) 

= 1 + k(b - Dip + 1). 

Let Fd (̂ ) denote the cyclotomic polynomial of order d* It is well known that 

?" - 1 = EFd(0 (m > 0), 
s o d\m 

(2) dp2) = n Fd(P). 
d\2a+ 1 

d> 1 
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Hence aCp^"1) = Fq(p)|a(p2a)|a(n), since o(ri) is multiplicative. From (1) and 
Lemma 1, 1 + h(q - 1) (p + 1) = 1 or 3 (mod 8) and the result follows. 

LEMMA 3: If n is quasiperfect and p2a||n, where a = 1 (mod 3), then p t 3 or 5 
(mod 8) and p $ b or c (mod q) for &, c, g in Table 1. 

Table 1 

b 

2 
3 
5 
10 
13 
23 
46 
45 
19 
32 
12 

o 

4 
9 
25 
26 
47 
55 
56 
63 
107 
118 
144 

<7 

7 
13 
31 
37 
61 
79 
103 
109 
127 
151 
157 

b 

48 
92 
39 
94 
28 
116 
122 
83 
88 
34 
20 

Q 

132 
106 
183 
134 
242 
160 
226 
283 
284 
362 
400 

q 

181 
199 
223 
229 
271 
277 
349 
367 
373 
397 
421 

b 

ill 
21 
232 
129 
210 
65 
43 
296 
227 
281 
307 

Q 

267 
441 
254 
411 
396 
547 
587 
364 
481 
445 
425 

<7 

439 
463 
487 
541 
607 
613 
631 
661 
709 
727 
733 

b 

72 
27 
174 
125 
220 
282 
52 
142 
113 
304 

Q 

678 
729 
648 
703 
632 
594 
866 
824 
877 
692 

q 

751 
757 
823 
829 
853 
877 
919 
967 
991 
997 

PROOF: Since a - I (mod 3) , we take q = 3 in Lemma 2 to see that p = 1 or 7 
(mod 8). If p = b or a (mod q), for any triple (2?, o9 q) in Table 1, then 

From (2), we have 
o(p2) = 0 (mod q) 

o(p2a) MP> n 
d\la + 1 

d>5 

^(P). 

But q 

q\a(p2) = F3(p)|a(p2a)|a(n). 

5 or 7 (mod 8), so Lemma 1 is contradicted. Hence p f b or o (mod q). 

Note: The primes q in Table 1 are all primes less than 1000 that are congru-
ent to 5 or 7 (mod 8) and to 1 (mod 3), and b and o E b2 (mod q) are the positive 
integers belonging to the exponent 3 (mod q). Lemma 3 provides a useful screening 
of primes p such that p2 [or p2a where a = 1 (mod 3)] can exactly divide a quasi-
perfect number: the three smallest primes p such that 0{p2) has a divisor congru-
ent to 5 or 7 (mod 8) and not eliminated by Lemma 3 are 2351, 3161, and 5431. 

3. THE THEOREMS 

THEOREM 1: (i) No number of the form mh is quasiperfect. 

(ii) No number of the form m&
9 where (m9 3) = 1 , is quasiperfect. 

PROOF: (i) Suppose 

= n rf 
^ = 1 and that n is quasiperfect. It is easy to see that o(pi 0 = 1 (mod 4) so, by Lem-

ma 1, cKp^O = 1 (mod 8) and hence 

a(n) - ft c(P;ai) E 1 (mod 8). 
t = i 

But n is an odd square, so o(n) = In + 1 = 3 (mod 8), a contradiction. 
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(ii) Suppose t 

n = J! Plai> Pi > 5, 
i = i ^ ^ 

and that n is quasiperfect. We have o{p\ai) E 1 (mod 3) , so 

t 
o(n) = n a(p.6^) E 1 (mod 3). 

i = i ^ 

However, since n is a square and 3Jn, we have o(n) = 2n + 1 E 0 (mod 3), another 
contradiction. 

THEOREM 2: If a number of the form f|P- a*+ i s quasiperf ect, then b = 1, 5, or 
* = i ^ 

11, p. £ 3 (mod 8) for any i, and t J> 10. 

PROOF: Suppose t 

t = l / 

is quasiperfect. From Theorem l(i), b .+ 0, 2, 4, 6, 8, or 10. It then follows, 
using (1), that pi t 3 (mod 8) for any i (or see Cattaneo [1])'. In particular, 
3|n, so from Theorem l(ii), H 3 or 9. Suppose Z? = 7. Then by Lemma 3 we have 
p. E 1 or 7 (mod 8) for all i. If p{ E 1 (mod 8) for some £, then 

o(plhai+lh) E 24a; + 15 E 7 (mod 8), 

and this contradicts Lemma 1. Hence, for all i, p. E 7 (mod 8), so 

oipj. ai ) E 1 (mod 8) and o(n) E 1 (mod 8). 

As in the proof of Theorem l(i), this is a contradiction. Thus b 4- 7. Since p. t 
3 (mod 8) for any i, we have, finally, if t j£ 9, 

q(n) A Pj < l Z i l i 7 2 1 _ 2 9 3 j L 3 7 A L < 9 
n il

m\ p - 1 ~ 4 6 12 16 22 28 30 36 40 

This contradicts the fact that o(n)/n = 2 + 1/n > 2. Hence £• _> 10. 

We are unable to establish in particular that there are no quasiperfect num-
bers of the form 

PI p2h for £•=• 1, 5, or 11. 

The next theorem includes information on the case £ = 1, and the final theorem is 
related to the cases b - 5 and b = 11. 

t 
THEOREM 3: If a number of the form 0 p6ai+2 is quasiperfect, then t >. 230876. 

i -1 ^ 

PJROOF; Let q^ be the ith prime (q1 = 2), and let IT denote a product over 
primes not congruent to 3 or 5 (mod 8) or to b or e (mod q), with £>, a, q as in 
Lemma 3. The 5000th such prime is P= 309769 = q2&775 a n d t h e 225876th prime 
greater than P is Q = 3538411. We have computed that 

Ii' z~T < 1-6768 = a, say. 
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Suppose n = f] p6a* + 2 is quasiperfect and that t < s = 230876. From Lemma 3, p. $ 
i-i ' ^ 

3 or 5 (mod 8) and p. i b or c (mod q) for any i and any triple (£>, c9 q) in Lemma 
3. Thus 

„f„\ 0(q"ai + 2) t 0(pBai+1) a . " e + 21775 a. a 
o(n) < rzi N ^ p| ^ < p|/- ^i Y\ v n 

using Theorem 23 in Rosser & Schoenfeld [6]. But n is quasiperfect, so o(n)/n > 2, 
and we have a contradiction. Hence t >. s. 

THEOREM 4: No number of the form 32am2b , where 3Jm, a E 2 (mod 5), and either 
b E 0 (mod 5) or b E 0 (mod 11) is quasiperfect. 

PROOF: Suppose n = 32am2b (3J[m) , with a, £ as given, is quasiperfect. Since 

o(32a) = 0 *V(3> - F5(3) II ^ ( 3 ) , 
d|2a + 1 d\2a+ 1 

d > 1 i d > 1, d * 5 
we have l l 2 = F 5 ( 3 ) | a ( 3 2 a ) | a ( n ) . Since 3 1 0 = 1 (mod 121) , 

o(n) = In + 1 E 2 • 3\?z2Z? + 1 = 0 (mod 121) . 
From this, w2& = 59 (mod 121), and thus 
(3) mb E 46 or 75 (mod 121). 

For each possible value of c = (J)(121)/(&, $(121)) it is not the case that 46c E 1 
(mod 121) or 75° E 1 (mod 121) (<j) is Euler's function). Euler's criterion for the 
existence of power residues (Griffin [2, p. 129]) shows the congruences (3) to be 
insolvable. This contradiction proves the theorem. 
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1. INTRODUCTION 

A powerful number has been defined by Golomb [3] to be a positive integer 
with the property that whenever the prime p divides r9 p2 divides r. In this pa-
per, we show that every nonzero integer can be written as the difference of two 
relatively prime powerful numbers in infinitely many ways. 

Let P(jn19 m2) = m1 - m2.» where mx and m2 are powerful numbers, k = m1 - m2 is 
said to be a proper representation of k by P If (jnl9 m2) = 1, and an improper rep-
resentation if (ml9 m2) > 1. 

It has been shown that there exist infinitely many proper representations of 
k by P if k = 1 or 4 [3], if k = 2 [6], or if k is a prime congruent to 1 modulo 8 
[4]. It is also lenown [3] that there is at least one proper representation of each 
odd integer and each multiple of 8 by P. Golomb has conjectured that there are 
infinitely many integers that cannot be written as the difference of two powerful 
numbers. Our principal result in this paper disproves this conjecture, showing 
that, in fact, every integer ^ 0 has infinitely many representations as the dif-
ference of relatively prime powerful numbers. 

2. THE DIOPHANTINE EQUATION x2 - Dy2 = n 

Our approach involves showing that corresponding to a given positive integer 
n f. 2 (mod 4) there exists an integer D such that 

(1) x2 - Dy2 = n 
has an infinitude of solutions x9 y for which D\y. 

(1) has been extensively studied (see [5] or [7]), and it is well known that 
if p, q is a solution of (1), where D is not a square, and u, v is a solution of 
the Pell equation x2 - Dy2 = 1, then pu + Dqv9 pv + qu is also a solution of (1). 
It follows that (1) has an infinitude of solutions when one solution exists, since 
the Pell equation has infinitely many solutions: if u9 V is a solution of x2 -
Dy2 = 1, then so is Xj9 y-9 where 

Xj + y./D = (u + V/DY , j = 1, 2, 3, ..., 
that is, where 

(2) x6 =ui+ J:({)uj-kVkDk/\ 
k = 2 

and 

(3) y. -jV-^+g^y-W*-1"2. 
[The index ranges over even values of k in (2) and odd values in (3).] 

We will find it convenient to make the following definition, 

DEFINITION: If p, q is a solution of (1) and u9 V is a solution of x2 - Dy2 = 1, 
pu + Dqv9 pv + qu is a Type A solution of (1) if u is odd, v is even, and D\pv + 
qu. 
THEOREM 1: Let p, q be a solution of (1) and.x0, y0 be a solution of x2 - Dy2 -
±1. Then (1) has infinitely many Type A solutions if d = (2py09 D) implies d\q. 
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PROOF: Let x± = x2 + Dy2
Q and y1 = 2x0y0. Then x\ - Dy\ = 1, z/i is even, and 

x1 is odd. Replacing u by xx and y by y± in (2) and (3) yields solutions 

Xj = pxj + Dqz^, 7,- = pẑ - + ^ 

of (1) w i t h Xj odd and 2/ • even for j = 1, 2S3 , . . . . Now, Z^Y^ i f 

0 .= Yj- E pz^- + qx j E pjx^"1z/1 + qxf E x3
1'1(py1j + qx±) (mod 0) . 

Since x\ - Dy\ =• 1, ( x l s Z?) = 1, so ZJJY^ i f 

0 E (p i / 1 ) j + .qx1 E (2xQyQp)j + qOr2 + % 2 ) = (2x0yQp)j + qx2. (modD) . 

Solutions of this linear congruence exist if and only if (2xQy0p9 D) divides qx\. 
Since a:2 - T)y\ = ±1 implies (x0, D) = 1, it follows that if (2y0p9 D) divides 
q9j = b (mod D) for some integer b and Xb + tD9 ^b+tv ^s a TYPe A solution, of (1) 
for £ = 1 , 2 , 3 , . . . . 

We observe at this point that if u, v is a solution of x2 - Z)z/2 = 1, and p and 
q are relatively prime integers, then pu + Dqv and pt; + qu are relatively prime 
integers, for if d = (pu + J9qy, pt; + qu), then <i divides u(pz; + qu) - y(pu + Dqv) = 
<7 and d divides u(pu + ZJqi;) - vD(pv + qu) = p, which implies that £? = 1. 

THEOREM 2: If n E -1, 0, or 1 (mod 4), there exists an odd integer D such that 
x2 .- Dy2 = n has infinitely many relatively prime Type A solutions. 

PROOF: The proof involves making a judicious choice for D in each of the 
three cases. In each case, we identify a solution p, q of (1) and a solution 
x0, i/0 of a;2 - Dz/2 = +1. D is odd in each of the three cases and is clearly not 
a square; it is then shown that (pu0, D) = 1, assuring, by Theorem 1, that (1) has 
infinitely many Type A solutions, and that (p, q) = 1, making the solutions rela-
tively prime. 

Case 1. n = 4k - 1, k = 1, 2, 3, ... . We choose Z) = 16k2 - 8k + 5. If p, 
q, xQ9 and z/0 are chosen, respectively, to be 8k2 - 6k + 2, 2k - 1, 32k3 - 24k2 + 
12k - 2, and 8k2 - 4k + 1, then p2 - Dq2 = 4k - 1, and a?g •- Zh/g = -1. Let dQ = 
(p, £>).' We find that d0 divides 4(0 - 2p) - [ (D - 2p)2 - D] = 8, so d0 = 1. Let 
d-i ~ 0/o» D) • Since d^ divides D - 2y0 = 3, and D t 0 (mod 3) for any k, <ix = 1. 
Let d2 = (p, <?). Since d2 divides (4k - l)q - p = -1, d2 ~ 1. 

Case_2_» n = 4k + 1, k = 2, 3, 4, . . . . We choose £ = 4k2 - 4k - 1. If p9 q9 
xQ9 and z/o are chosen, respectively, to be 2k, 1, 4k2 - 4k, and 2k - 1, then p2 -
Dq2 = 4k + 1 and x2 - Pz/2. = 1. Let d0 = (p, Z?) . Since d0 divides p2 - 2p - D = 1, 
d0 - I. (yo9 D) and (p, q) are obviously equal to 1. 

Because D = 4k2- 4k - 1 is negative when fc = 0 or 1, we treat n = 1 and n = 5 
separately, by considering x2 - 3z/2 = 1 and #2 - llzy2 = 5 . x2 - 3y2 = 1 is satis-
fied by p9q and x09y0 If p = x0 = 2 and q.= y0 = 1. If p = 4, q = 1, x0= 10, and 
z/0 = 3, then p2 - llq2 = 5 and x\ - llz/2, = 1. Clearly, in both cases, (pz/0, Z)) 
and (p, q) equal 1. 

Case 3. n = 4k, k = 1, 25 3, ... . We choose D = 4k2 + 1. If p, q, x0, and 
z/o are chosen, respectively, to be 2k + 1, 1, 2k, and 1, then p2 - £>q2 = 4k and 
^o " % o = _ 1 ' « L e t ^ = (P^o* ̂ ) • s i n c e ^ divides D - (2k - l)py0 = 2, <i = 1. Ob-
viously, (p, q) = 1. 

Since the proof gives no clue as to how the polynomials D were found, it might 
be helpful to mention that they were discovered, essentially, as a result of a 
process which began in an examination of the continued fraction expansion of vm9 
where m is a polynomial whose continued fraction has a relatively small period 
(<_ 10). The interested reader might consult Chrystalfs Algebra [2] and the paper 
by Boutin [!•].-
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3. APPLICATION TO POWERFUL NUMBERS 

THEOREM 3: If n is any integer ^ 0, there exist infinitely many relatively prime 
pairs m-y and m2 of powerful numbers such that n - mx - m2» 

PROOF: If Xj9 Yj is a Type A solution of x2 - Dy2 = n, n + 2 (mod 4), then 
mx - X2 and m2 = DY2 are powerful numbers whose difference is n. Since in each of 
the three cases of Theorem 2 p and q were shown to be relatively prime, Xj and Yj 
and, hence, m1 and m2 are relatively prime. 

If n = 2 (mod 4), we let n = 2 + kt and consider the equation of Case 2 of 
Theorem 2: x2 - Dy2 = 4fc + 1. Since n2/4 = 4(t2 + t) + 1, there exist infinitely 
many relatively prime Type A solutions Xj , Yj of x2 - Dy2 = n2/4, where D = 3, if 
t = 0, and 9 0 o 

£ = 4(t2 + t)2 - 4(t2 + t) - 1, if t > 1. 
Let m1 = Jj + n/2 and 77?2 = X/ - n/2. We observe that since, for all k in Case 2, 
p is even and q is odd, and since Xj, 7j is a Type A solution, Xj is even and Yj 
is odd. Thus m^ and tf?2 are odd. It follows immediately that (m19 m2) = 1: any 
common divisor of mx and m2 must be odd and must divide rri\ + tf?2 - 2X3- and ?7?i - m2 
= n, but (Xj , Yj) = 1 and X2 - P72 = n2/4 imply that (Xj, n) = 1. Since m ^ = 
Z)J2 is a powerful number, so is each of mx and 77?2 • Hence n = m± - m2 is the dif-
ference of two relatively prime powerful numbers. 

The theorem is obviously true when n is negative, since n = m1 - m2 implies 
-n = m2 - rn±. 

COROLLARY: Let S denote the set of all squarefree integers and n be any integer. 
n has infinitely many improper representations by P if n t S. If n £ S9 n has no 
improper representations by P. 

PROOF: Assume n £ S. If n - 0, the result is obvious. If n ^ 0, there exists 
a prime p and an integer m ̂  0 such that n = mp2. By Theorem 3, there exist in-
finitely many pairs of powerful numbers m1 and m2 such that m = mx - m2. Then, 
n = tf?ip2 - ̂ 2p2j t n e difference of two powerful numbers. Conversely, if n has an 
improper representation by P, then n is divisible by the square of an integer and 
is not in S. 

Example 1. 9 - mx - m2. The equation x2 - ly2 - 9 has Type A solutions 

^2 + 7t » ^2+7t • 

For t - 0, we obtain 

m1 == X2. = (214372)2 = 24 • 535932 and m2 = 7J2 = 7(81025)2 = 54 • 73 • 4632. 

Example 2. 6 = m1 - m2. Since 6 = 2 (mod 4) and 62/4 = 9, we again use x2 -
ly2 = 9. Letting m1 = X2 + 3 - 214375 = 5* • 73 and m2 = J2 - 3 = 214369 = 4632, 
w e h a v e 54 * 73 - 4632 = 6. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 
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A, P. HILLMAN 

University of New Mexico, Albuquerque, NM 87131 

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS 
to PROFESSOR A. P. HILLMAN, 709 Solano Dr., S.E.; Albuquerque, NM 87108. Each 
solution or problem should be on a separate sheet (or sheets). Preference will 
be given to those typed with double spacing in the format used below. Solutions 
should be received within four months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

and Ln+2 = Ln+1 + Ln^LQ = 2S L± = 1. 

Also3 a and b designate the roots (1 + /5)/2 and (1 - /5)/2, respectively., of 

x2 - x - 1 = Ch 

PROBLEMS PROPOSED IN THIS ISSUE 

B-466 Proposed by Herta T» Freitag, Roanoke, VA 

Letin = 1 « 2 ~ 2 • 3 + 3 • 4 - ... + (--l)n~1n(n + 1). 

(a) Determine the values of n for which 2An is a perfect square. 
(b) Determine the values of n for which |/4n|/2 is the product of two 

consecutive positive integers. 

B-467 Proposed by Herta T. Freitag, Roanoke, VA 
n £ 

Let An be as in B-466 and let Bn = £^ £^ k. For which positive integers n is 
\An | an integral divisor of 5n? i = ik = i 

B-468 Proposed by Miha1ly Bencze, Brasov, Romania 

Find a closed form for the nth term an of the sequence for which a± and a2 
are arbitrary real numbers in the open interval (0, 1) and 

, /l - a2 + a,J\ - a 2 w + 1 ' 
The formula for an should Involve Fibonacci numbers if possible. 

B-469 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Describe the appearance in base Fn notation of.* 

(a) HFn_1 for n >_ 5; (b) l/Fn + 1 for n >_ 3. 

B-470 Proposed by Larry Taylor, Rego Park, NY 

Find positive integers a5 b ? cs i% and s and choose each of Gn9 Hns In to be 
Fn or Ln so that aGn9 bHn + r» cln + s are in arithmetic progression for n >_ 0 and 
this progression is 6, 65 6 for some n, 
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B-471 Proposed by Larry Taylor, Rego Park, NY 

Do there exist positive integers d and t such that aGn9 bHn+r9 cln+s9 dJn+t 
are in arithmetic progression, with Jn equal to Fn or Ln and everything else as 
in B-470? 

SOLUTIONS 

Lucas Analogue of Cosine Identity 

B-442 Proposed by P. L. Mana, Albuquerque, NM 

The identity 2 cos26 = 1 + cos(20) leads to the identity 

8 cos4e = 3 + 4 cos(26) + cos(46). 

Are there corresponding identities on Lucas numbers? 

Solution by Sahib Singh, Clarion State College, Clarion, PA 

Yes; L2n = a2n + b2n = (a* + bn)2 - 2(-l)n = L2„ - 2(-l)B . Hence 

(1) ^ - I 2 „ + 2 ( - l ) » . 

Using (1), L\n - Lhtn + 2. Again using (1), the above equation reduces to 

(L2
n - 2(-lD2 = Lhn + 2, 

which yields 

(2) L\ = 6 + 4(-l)"L2B +L,n. 

Equations (1) and (2) are the required identities. 

Also solved by Paul S. Bruckman, Paul F. Byrd, Herta T. Freitag, Calvin L. Gard-
ner, Bob Prielipp, M. Wachtel, Gregory Wulczyn, and the proposer. 

Lucas Products Identity 

B-443 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

For all integers n and w with w odd, establish the following: 

Solution by Sahib Singh, Clarion State College, Clarion, PA 

The given equation is equivalent to: 

^n+lw^n + w "" t-'n-w^n-lw ~ ^n^3w = ^ w ^ n + w^n-w ~ Ln) . 

Using the identity Ln+wLn_w - L„ - 5(-l)n + wF*9 the above equation becomes: 

(1) ^n + 2w^n + w "" ̂ n-w^n-2w " ^n^3w = 10(-1) ^w
Fw ' 

Using Ln = an + bn, the left side of (1) becomes 

2(-l)n+»(Lw+ L3w). 

Thus (1) reduces to Lw + L3w = 5LWF%, Since w is odd, by using Ln = an + bn
9 the 

above equation is true and we are done. 

Also solved by Paul S. Bruckman, Herta T Freitag, Calvin L. Gardner, Bob Prie-
lipp, M. Wachtel, and the proposer. 
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Generating Palindromes 

B-444 Proposed by Herta T. Freitag, Roanoke, VA 

In base 10s the palindromes (i*e., numbers reading the same forward or back-
ward) 12321 and 112232211 are converted into new palindromes using 

99[103 +9(12321)] = 11077011 and 99[105 + 9(112232211)] = 100008800001. 

Generalize on these to obtain a method or methods for converting certain palin-
dromes in a general base b to other palindromes in base b, 

Solution by Paul 5. Bruckman, Concord CA 

Let (Pb denote the set of palindromes in base b. We will prove the following 
theorem. 

THEOREM: If m >_ 1, let P e (Pb be given by 
m-l 

( i ) P = X (bk + b2m-k)ek + bmQm = ( e 0 e 1 e 2 . . . e ^ e ^ . , . . . e ^ ) . 
k = 0 

Moreover, suppose the digits 0fc satisfy the following conditions: 

( 2 ) i 1 Q0 - e i - b~ 1» i f w = i ; i <_ e0 £ ex <. e0 + e1 £ e2 £ b- 1, i f / n > 2; 
(3) 0 £ 0k - Qk_x - 0k_2 + 6k_3 < i - 1, if 3 < fe<w; 

(4) '0 £ 0W_2 £ 0W £ 6 - 1, if m > 3. 
Let 

(5) Q = (£2 - l)(Z/" + 1 + (i - 1)P). 
Then § £ (P& . 

PJROOF.- Q = (fc -.l)(Z?m + 2 + bm + 1) + (b3 - b2 - b + 1)P 
m - l m - l 

= (b - i)(bm+2 + bm+1) + Y, ( b k + 3 + b2m+3'k)Qk - £ ( b k + 2 + b2m+2-k)Qk 
k=0 k = 0 

m-l m-l 

" E (bk + 1 + b2m + 1~k^k + E <*>* + b2m~k^k + » w + 3 " "̂ + 2 ~ bm + 1 + £ w ) 0 m 
k = o fe=o 

= (b - l ) ( 6 m + 2 + ^ + 1 ) + X (*k + ^ 2 / ? 7 + 3 " k ) 0 k - 3 - E tf* + ^ 2 " + 3 ~ " ) 
fe = 3 fe=2 

m w - 1 

- £ « > * + i2",+ 3 " k )e f c _ 1 + L (&k + fc2",+ 3 " k )e f c + (&m+3 - &m+2 - £'"+1 + bm)em. 
k - l k=0 

After some manipulation, this last expression simplifies to the following: 

Q = <z>° + b 2 m + 3 ) e 0 + (&1 + b2m+2)(Q1 - e 0 ) + (b2 + b2m+1)(Bz - e , - e 0 ) 

m 
+ E <** + £ 2 " + 3 " k ) ( ^ - e k - i - e*-2 + e k . 3 ) + (bm+1 + bm+2)(b-1 - ew + e m „ 2 ) . 

fe = 3 
If we make the following definitions 

(6) CQ = 0O 5 

(7) ^ = 0! - 0O s 

(8) <32 = 02 - 01 - 0O ? 

(9) ok E Qk - Qk_1 - Qk_z + 0 k _ 3 s 3 £ k £ /?'/, 
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and 

(10) om+1 = b - 1 - Qa + 0W_2, 

we may express Q as follows: 
OT + l 

( I D «= E «>* + ^ 2 m + 3 " / c ) ^ -
fc = 0 

Moreover, we see from conditions (2), (3), and (4) that, for 0 <_ k :<_ m + 1, the 
inequalities § <_ ek <_ b- 1 (with oQ '>_• 1) are satisfied, i.e., the e^'s are digits 
in base b. Therefore, Q = {Q^OXQ2 . . . cmom + 1om + 1 . . . o 1 o 0 ) b e (Pb. Q.E.D. 

This result is readily specialized to decimal numbers by setting b = 10 in 
the theorem. Thus, if P e <P10 is given by (l)-(4), with b = 10, then 

Q = 99(10m+1+ 9P) 
is a palindrome in base 10. 

Also solved by the proposer. 

Simple Form 

B-445 Proposed by Wray G. Brady, Slippery Rock State College, Slippery Rock, PA 

Show that 
5F2n+2 + 2L2n + 5F2n-^2 = L2n+2 + l 0 F 2n + L 2 n - 2 > 

and find a simpler form for these equal expressions. 

Solution by F. D. Parker, St. Lawrence University, Canton, NY 

Using the identities Ln = an + bn, Fn = (an - bn)//59 and ab=-l, both sides 
reduce to 

ahn+h + bhn+h + 2a1*" + 2bhn + a4"-11 + &lfn"4, 
which can be written 

Li+n+k + 2Lkn + Lhn_h. 

Using Ln = Ln_1 + Ln_2, we see that this is equal to 9Ll+n. 

Also solved by Pauls. Bruckman, Herta T. Freitag, Calvin L. Gardner, Graham Lord, 
Bob Prielipp, Sahib Singh, M. Wachtel, and the proposer. 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
RAYMOND E. WHITNEY 

Lock Haven State College, Lock Haven, PA 17745 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, Mathematics Department, Lock Haven State College, Lock Haven, 
PA 17745. This department especially welcomes problems believed to be new or ex-
tending old results. Proposers should submit solutions or other information that 
will assist the editor. Preference will be given to solutions that are submitted 
on separate, signed sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-335 Proposed by Paul S. Bruckman, Concord, CA 

Find the roots, in exact radicals, of the polynomial equation: 

(1) p(x) = x5 - 5x3 + 5x - 1 = 0„ 

H-336 Proposed by Lawrence Somer, Washington, D.C. 

Let p be an odd prime. 

(a) Prove that if p E 3 or 7 (mod 20)., then 

5F(p-l)/2 = ~ 4 (m° d P) arld 5F(p + l)/2 = ~l (m° d P)« 

(b) Prove that if p = 11 or 19 (mod 20), then 

5F(P-i)/2 = 4 (mod P> a n d 5F(P + i)/2 E l (mod P)« 

(c) Prove that if p = 13 or 17 (mod 20), then 
F(p-l)/2 E _ 1 (m° d P) a n d F(.p + l)/2 E °  (mod P)' 

(d) Prove that if p = 21 or 29 (mod 40), then 
FiP-i)l2 = 0 (mod p) and F(p + 1)/2 = 1 (mod p). 

(e) Prove that if p = 1 or 9 (mod 40), then 
F(.P-D/2 E °  (mod p) and F(p + 1)/2 = ±1 (mod p). 

Show that both the cases F(p + 1)/2 = -1 (mod p) and F(p + 1)/2 = 1 (mod p) do in fact 
occur. 

H-337 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

(a) Evaluate the determinant: 

det A 

1 

L2v 

L^v 

&6r 

L8r 

- 4 L 2 r 

- ( 3 2 ^ + 10) 
- ( 2 L 6 r + 6 L 2 r ) 

~~(LQr + lLhr) 

- 8 i 6 r 

6 £ , r + 16 

3L6 r + 25L2 r 

L 8 , + 12Llt, + 30 

7^6, + 2 1 £ 2 r 
28£ , r 

- ( 4 L 6 r + 2 4 £ 2 r ) 

- ( L 8 r + 2 5 £ l t r + 60) 

-(6LSr + 50LZr) 

- ( 2 1 ^ + 70) 
- 5 6 £ 2 r 

£ 8 r + 16L„r + 36 

10L6r + 60L2r 

30Lkr + 80 

70L2r 

140 

(e) 

(d) 

(C) 

(b) 

(a) 

(b) Show that: 
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625?! , = L\r - 8L\T + 28L2
r - 56L2

r + 140 
= 8L2

r + (LBr + lLhr)2 - 14(L6 r + 3 L 2 r ) 2 + 7(3Lkr + 1 0 ) 2 - 280L2
2r 

= 28L2
hr, - 14(L6 , + 3L2 2,)2 + (L 8 , + 12LUp + 3 0 ) 2 - 2 (3L 6 r + 25L ? r , ) 2 

+ 20(3LUr, + 8 ) : 

= - 5 6 L 2
r + 7(3L„r + 10) 2 - 2 ( 3 £ 6 r + 25L2p)2 + (LSr + 251^ + 6 0 ) 2 

- 40 (L 6 r + 6 L 2 r ) 2 . 

Grace Note; If the elements of this determinant are the coefficients of a 5 X 5 
linear homogeneous system, then the solution to the 4 x 5 system represented by 
equations (b), (c), (d) , (e) is given by the elements of the first column. The 
solution to (a),.(c), (d) , (e) is given by the elements of the second column; and 
so on. 

H-338 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

An integer n is abundant if o(n) > 2n, where o(n) is the sum of the divisors 
of n. Show that there is a probability of at least: 

(a) 0.15 that a Fibonacci number is abundant; 
(b) 0.10 that a Lucas number is abundant. 

SOLUTIONS 

Sum Enumerator 

H-316 Proposed by B. R. Myers, Univ. of British Columbia, Vancouver, Canada 
(Vol. 18, no. 2, April 1980) 

The enumerator of compositions with exactly k parts is (x+x2+ • '')k
 9 so that 

(1) [W(x)]k = (w±x + W2x2 + • • • ) * 

is then the enumerator of weighted /c-part compositions. After Hoggatt and Lind 
["Compositions and Fibonacci Numbers," The Fibonacci Quarterly 7 (1969):253-66], 
the number of weighted compositions of n can be expressed in the form 

(2) Cn(w) = -£ Wax ... Wak (n > 0), 
v(n) 

where w = {wl9 W2> ...} and where the sum is over all compositions ax + ••• + ak 
of n (k variable). In particular (ibid.), 

(3) £<*i ••• a
k = F2n(1> 1}' 

v(«) 

where Fk (p, a) is the kth. number in the Fibonacci sequence 

F±(P> q) = P C> 0) 
(4) F 2 (p 9 q) = q (> P) 

Fn + l(P> <0 = Fn+l(P> <0 + Fn(P> q) 
Show t h a t 

(5) £ tei ± ^ i • • • ak = 2[F2n_1(l9 

and, hence , t h a t 

(6) X) (^1 ~ X ) a i • ' • afe + S a i •'•• ak = F2n^9 

(n >_ 1 ) . 

1) - 1] 

1 + 2777) - 2777 (777 > 0 ) . 
v ( n ) v ( n ) 
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Solution by the proposer. 

As in the example Ck = 1(3 + 21 + 1 2 + 111) + 2(2 + 11) + 3(1) + 4, the com-
positions Cn of n are given by 

(7) Cn = \Cn_Y + 2Cn_2 + ... + nC0, 

where CQ is the identity element (nC0 E n ) . Equation (7) implies that 

£ a1(a1a2 . . . ak) = £ ^ i ^ •••<** + E 2 2^i^ 2 • • • ak 
(ft} V("^ v(n-l) V(n-2) 

+ e " + 2 ^2 x̂̂ 2 ... afe, 
v(l) 

so that, by (3), 
n- 1 

(9) 2 ^ ( a ^ ... a,) = ̂ ( 1 , 1) + £ i2F2(„. .> (1, 1). 
V(n) i-i 

It is not difficult to show (for example, from Problems P.36-P.37 on p. 9 of Bro. 
U. Alfred's "An Introduction to Fibonacci Discovery/' The Fibonacci Association, 
1965) that 

n- 1 

(10) F2n(l, 3) - 2 = n 2^(l, 1) + J i 2 F 2 ( B - 0 ( l , 1), 

so that, from (9) and (10) 

(11) E a1{a1a2 . . . aj = F2n(l9 3) - 2. 
V(«) 

Equations (5) and (6) follow routinely from manipulation of (11) in conjunction 
with the identity 

(12) Fk(l, 1 + 2m) = (m - l)Ffc-1(lf 1) + Fk+1(l, 1) 

for m >_ 09 k > I. " 

Prime Time 

11-317 Proposed by Lawrence Somer, Washington, D.C. 
(Vol. 18, no. 3, April 1980) 

Let \Gnfn = 0 be any generalized Fibonacci sequence such that Gn + 2 = Gn + 1 + Gn9 
(GQ9 G±) = 1, and {Gn} is not a translation of the Fibonacci sequence. Show that 
there exists at least one prime p such that both 

Gn + Gn+1 E Gn + 2 (mod P> a n d Gn+I E rGn (™od p) 

for a fixed v f § (mod p) and for all n >. 0* 

Solution by Paul S. Bruckman, Concord, CA. 

We define the discriminant of j^l =0 by 

(1) D(GJ = G\ - Gn_±Gn + 19 n = 1, 2, ... . 

This satisfies the invariance relation 

(2) D(Gn) = (-l)n~1D(G1). 

Since J6?n/n = o is not a translation of the Fibonacci sequence, thus |#(Gi)| > 1-
Hence DiG^ is divisible by a prime p. If we were to have p\GQ9 then we would 
also have p \G1, and conversely, since D(G±) - G\ - G$Gi - GQ. This, however, would 
contradict the condition (G0, G±) = 1; hence p|£0, pj^x . 

The congruence 

(3) Gn + Gn+1 = Gn+2 (mod p) 
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is a trivial consequence of the recursion satisfied by \Gn\ = Q. If the congruence 
(4) rGn = Gn+1 (mod p) 

is to hold for all n >_ 0, it must in particular hold for n = 0, for some fixed r9 
so that rGG = G± (mod p). Since G0 £ 0 (mod p) , this uniquely determines v (mod p) : 

(5) r = 6!1(6r0)"1 (mod p) , where p is any prime divisor of Z?(6f1) . 

Note that p ^ 0 (mod p). To show that this r satisfies (4) for all n > 0, we 
proceed by induction on n. Let S denote the set of nonnegative integers n such 
that (4) holds, where r is given by (5). Clearly, 0 e S. Also, rG^ E ^(G.Q)'1 E 
G0G2(G0)"1 E £2 (mod p), which shows that 1 e 5. Suppose k e S9 k = 09 1, ...9m. 
Then r£m + 1 E r(£OT + G ^ ) = ^ + 1 + Gm = £m + 2 (mod p) . Hence fc e 5 ̂  (fe + 1) £ S. 
By induction, (4) is proved. 

Also solved by the proposer. 

Canonical Mobius 

H-318 Proposed by James Propp, Harvard College Cambridge, MA 
(Vol. 18, no. 3, April 1980) 

Define the sequence operator M so that for any infinite sequence {u^}, 

M(un) = M(un) - £ M(^)y(|), 
i\n 

where u is the Mobius function. Let the "Mobinacci Sequence" S be defined so that 
S1 = 1 and Sn =• Af(Sn) + M{M(Sn)) for n > 1. Find a formula for 5n in terms of the 
prime factorization of n. 

Remarks: I've been unable to solve this problem, but some special cases were 
easier. Let p be a prime. S(l) = 1, 5(p) = 1. For a _> 2, 

M(5pa) = 5pa-i and M{M(Spa)) = Spa.2, 

so that Spa- Spa„1+ S a-i- Solving this difference equation, we get 

Q 1 (l + ̂  V 1 /l - /5 V 
> = M 2 ) - /s v 2 ; 

I have found no explicit formula for the case n = paqb
9 but if one holds b fixed 

and finds Sn in terms of a, the characteristic equations seem to have only the 
the roots 0 and -1/0, where 0 = h(l + /5). 

Fibonacci Never More 

H-319 Proposed by Verner E. Hoggatt, Jr., San Jose State Univ., San Jose, CA 
(Vol. 18, no. 3, April 1980) 

If Fn < x < Fn+1 < y < Fn + 29 then x + y is never a Fibonacci number. 

Solution by M. J. DeLeon, Florida Atlantic Univ., Boca Raton, FL. 

Assume that Fn < x < Fn+1 < y < Fn + 2. Since Fn < x and Fn+1 < y9 Fn+2 = Fn + 
Fn+1 < x + y. Since x < Fn+1 and y < Fn+29 x + y < Fn+1 + Fn+2 = Fn + 3. There-
fore, 

^n + 2 < ^ + 2/ < ^n + 3-

Since Fn < Fn + 1 < Fn + 29 n >_ 0. Since n ̂  0, there is no Fibonacci number between 
Fn+2 and Fn+3* Therefore x + y is not a Fibonacci number. 

Also solved jby P. Bruckman, R. Giuli, G. Lord, F. D. Parker, B. Prielipp, S. Singh, 
L. Somer, M. Wachtel, R. Whitney, and the proposer. 
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