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DUCCI PROCESSES 

FOOK-BUN WONG 
Simon Fraser University, Burnaby, B.C., Canada 

(Submitted April 1979) 

1. Introduction 

During the 1930s Professor E. Ducci of Italy [1] defined a function whose 
domain and range are the set of quadruples of nonnegative integers. Let 

J \X -̂  , X 2 9 ^ 3 s *K i± ) ~" M l ~ ^ 2 I ' I 2 "" 3 1 s I 3 — 1+ I » | i f ~" ^ 1 1 ) ' 

Let fn(x19 x29 x3, xk) be the nth iteration of f. Ducci showed that for any 
choice of x , x 9 x , a? there exists an integer N such that 

fm(x19 x29 x39 xh) = (0, 09 0, 0) for all m > N. 

We note the following properties of the function / of the previous para-
graph: 

(1) There exists a function g(xs y) whose domain is the set of pairs of 
nonnegative integers and whose range is the set of nonnegative integers. 
[Here g(x9 y) = \x - y \ ] . 

(2) f(x19 x29 x39 xh) = {g(x19 x2)9 g(x29 x3)9 g(x39 xh)9 g(xk9 x±)). 
(3) The four entries of fn(x19 x29 x39 x^) are bounded for all n. The 

bound depends on the initial choice of x1, x29 x39 xh. 

We call the successive iterations of a function satisfying these condi-
tions a Ducci process. Condition (3) guarantees that a Ducci process is either 
periodic or that after a finite number of steps (say N) 

fn+1(x19 x2, x39 xk) = fn(x19 x29 x39 xh) for all n > N. 

If a function g generates a Ducci process of the latter type, we say that 
g is Ducci stable (or simply stable). 

2. Illustrations 

(1) Let g(x9 y) = x+y (mod 3) 9 where x (mod 3) is the least nonnegative 
integer congruent to x (mod 3). Then, an example shows that g is not stable. 
Seta^ = x2 = x3 = 0 and xh = I. We may tabulate the successive values of / 
as follows: 

•f 
f\ f 
f fl K K K f 

(0 , 
(0 , 
(0 , 
( 1 , 
( 1 , 
( 1 . 
( 2 , 
( 0 , 
( 1 . 
( 0 , 

0 , 
0 , 
1, 
0, 
0, 
1, 
1, 
1, 
2, 
.0, 
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0 , 
1, 
2, 
0 , 
1, 
0, 
0, 
1, 
1, 
1, 

1) 
1) 
1) 
1) 
2) 
0) 
1) 
0) 
0) 
1) 
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Since /9(0, 0, 0, 1) = ̂ (O, 0, 0, 1)= (0, 03 1, 1), the process is peri-
odic with period 8 and g is not stable. 

(2) Let g(x, y) = x + y (mod 8). We construct a similar table for the 
same initial values. 

f 
f\ 
K K K r K f 
f 

(0 , 
( 0 , 
(0 , 
( 1 , 
(A, 
(2 , 
( 4 , 
( 4 , 
(0 , 
( 0 , 

0 , 
0, 
1, 
3 , 
6, 
2 , 
0, 
4 , 
0, 
0, 

o, 
1, 
2, 
3 , 
4 , 
6, 
4 , 
4 , 
0 , 
0, 

1) 
1) 
1) 
1) 
2) 
6) 
0) 
4) 
0) 
0) 

We observe that for n _> 8, fn(0, 0, 0, 1) = (0, 0, 0, 0). We prove below 
that g is stable, viz.., that any choice of initial values leads to a similar 
result. 

We now list a set of functions which can be proved to be stable. In some 
cases we prove the stability of the function and in others we leave the proof 
to the reader. 

3. Theorem 

The following functions are stable: 

(1) x + y (mod 2n), n - 1, 2, 3, .., 

(2) x • y (mod 2n) 9 n = 1, 2, 3, 

(3) x* + z/* (mod 2n), t = 2, 3, 4, ., 

(4) (x + yY (mod 2n);, t = 2 , 3, 4, . 

(5) \x* - yt\ (mod 2n), t = 1, 2, 3, 

; n = l , 2, 3, ... . 

.; n = 1, 2, 3, ... . 

..; n = 1, 2, 3, ... . 

(6) J (x - z/)* | (mod 2"), t = 1, 2, 3, . .. ; n = 1, 2, 3, . . . . 

(7) <$>(x) + §(y)* where (J) is Euler's c[)-function. 

The notation ir (mod 2") means the least nonnegative integer congruent to 
x modulo 2n. 

Proof of (1): We use f£ to denote the ith entry of the nth iteration of 
f(x19 x2, x3, xh). The subscript i + J of x will always represent i + j (mod 
4). We first consider the function g1(x, y) = x + y and show that for any n: 

f2(n + i)= (2«)[(2» _ l)Xi + (2» + 1 } ^ + 2 + 2*(xi+1 + * i + 3 ) ] . 

We compute: f1 = tf^ + ^ + 1. 

•>£ = xi + 2x-i,+ i + ^i + 2* 

f4 = 2 ^ + 4^i + 1 + 6xi+2 + 4 ^ + 3. 

(A) 

(B) 

(C) 

(D) 

(E) 
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(A) i s c l e a r l y t r u e for n = 1 by (E) . Suppose (A) i s t r u e for n. Then by (C) 

f-'n+2) - # < j f n + 1 ) > = (2 n + 1 ) [ ( 2 « + 1 - l)xi + 1 + (2* + 1 4- l ) * , + 3 

+ ( 2 n + 1 ) ( a ; . + * i + 2 ) ] . (F) 

We note that for any iteration of f(x19 x29 x3, x^) we can consider (f"9 f29 
f3

n
9 fO to be the same row as its transpositions (/», f?9 f%9 /£) , (/», /*, 

/i1, /£), and (/2n, /3n, ft, ft). Therefore (F) indicates that (A) is also true 
for n + 1. It follows by finite induction that (A) is true for all n. Hence 
we conclude that 

/ ? ( n + 1 ) = 0 (mod 2n), n = 1, 2, 3, ... . 

Since fn(09 0, 0, 0) = (0, 0, 05 0) for all n9 the stability of the function 
g(x9 y) = x + y (mod 2n) is established. 

Proof of (3): For any initial numbers x19 x29 x39 xk9 there are six ways 
to arrange even and odd numbers: 

(i) (e9 e9 e9 e) (iv) (e9 b9 e9 b) 

(ii) (e9 e9 e9 b) (v) (e9 b9 b9 b) 

(iii) (e9 e9 b9 b) (vi) (b9 b9 b9 b) 

where e and b represent even and odd numbers, respectively. Since the sum of 
the tth powers of two even (or two odd) numbers is even, the sum of the tth 
powers of an even number and an odd number is odd,. Therefore, when we consid-
er the function g2{x9 y) = xt+ yt, the initial arrangements (ii) and (v) yield 
the following: 

(e9 b9 b9 b) 

(bs e9 e9 b) 

and (b9 e9 b9 e) (G) 

(b9 b9 b9 b) 

(e9 e9 e9 e) 

The arrangements (i), (iii), (iv), and (vi) are included in the above opera-
tions. Thus there exists an integer m <_ 4 such that all numbers of fm(x19 xl9 
x39 Xi+) are even numbers for the arrangements (i)-(vi). 

Let fm(x19 x29 x39 xh) = (2im19 23m29 2um39 2vmh)9 where i9 j, u9 v9 m19 
m29 m39 mh are positive integers. Without loss of generality, we may assume 
that i <_ J, u, V. Then we have 

( 2 ^ ) * + (2jm2)t = 2̂ *777* + 2Hm2
t ^ I** (m\ + 2U'i)tmt

2)a 

This indicates that the value of i in fm will increase by at least t times at 
the next step (where t J> 2) . After a finite number of steps, we can obtain an 
integer q such that fq(x19 x29 x39 x^) = (2hq19 2lq29 2rq39 28ql+)9 where h9 £, 
r9 s9 q19 q29 q39 qk are positive integers and h9l9v9s >_ n9 i.e., all numbers 
of fq are the multiples of 2n. Thus, the four numbers of fq are congruent to 
zero modulo 2n. This shows that the function g(x9 y) = xt + y* (mod 2n) is 
stable. 

fl 

f 
f 
f 

(e9 e9 e9 b) 

(e9 e9 b9 b) 

(e9 b9 e9 b) 
{b9 b9 b9 b) 
(e9 e9 e9 e) 
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Before we prove the last statement of the theorem, let us recall a simple 
property of Euler's ^-function. 

Lemma 1: For any even integer N9 (i) lf-N is a power of 2, then $(N) = (k)N; 
(ii) if N is not a power of 2, then $(N) < (h)N. 

Proof of (7): First9 we consider only the initial numbers x±9 x29 x39 xh 
greater than 2. Since cj)(x) is even for all x > 2. Therefore, we have 

f1(xl9 x29 x39 xj = (Nl9 N29 N3, Nh)9 

where Nl9 N2, N$9 N^ are even integers and min-Oi, N2, N39 N^} _> 4. If N1 = 
N2 = N3 = Ni+9 we can see below that statement (7) of the theorem is true in 
this case. If all four are not equal, by Lemma 1 it is clearly seen that the 
greatest integer (if two or three are equal and greater than the remaining, 
each of these may be called "the greatest") of fn(x19 x29 x3, xh) must get 
smaller within three steps for all n. Hence, after a finite number of steps 
(such as m)9 fm(x19 x2, x39 xh) = (N59 N6, N79 NQ)9 where N59 N69 N79 NQ are 
even integers and either N5=N6=N7=N8=2t for some integer t >_ 3, or 
max{N59 N69 N79 N8} = 4. But, we also have m±n{N5, Ns, N7, NQ} _> 4 and 

/c(2*, 2*, 2*, 2*) = (2*, 2\ 2*9 2*) for all c and t . 

This implies that the function §(x) + $(y) is stable. 
It remains only to show that the initial numbers x19 x29 x39 xk contain 

some 2s or Is [since (f)(2) = <J)(1) = 1» so we only need to consider either 1 or 
2]. Suppose the initial numbers contain only one number 2, say x± = 2. Thus 

f1(xl9 x29 x39 x^) - (l + cjK#2), <K#2) + <K#3), <K^3) + <f>0&i>)» *(^4) + l)-

Since x29 #3, x^ > 2. Therefore, all four numbers of f1 (x1, x29 x39 xk) are 
strictly greater than 2. Similarly, when the initial numbers contain two or 
three 2s» we can prove that there exists an integer j <_ 3 such that 

J \X-^ , X29X39X^) = { J ^ 9 d 2 9 J 3 9 t / i i ) 9 

where J19 J29 J39 Jh are. integers and m±n{J1, J29 J39 Jk}> 2. This completes 
the proof of (7). 

4. Some More Ducci Processes 

Let us denote the w-digit integer by 

x = I0m-1cim+ I0rn'1am_1 + . . . + 10a2 + a1 
and 

S$ = (am + a w . x + . . . + a 2 + q ) * , T* = a* + a*_i + • • • + a\ + a £ , 
where t = 1, 2 , 3 , . . . . 

We now address the following problems: 

(1) For what values of t is the function \s£ - Sy\ stable? 

(2) For what values of t is the function \T% -'Ty\ stable? 

(3) For what values of t and n is the function T* + T$ (mod 2n) stable? 

Partial answers to these questions are given below. 

Obviously, the function \Sx - Sy \ is stable for t - 1. In order to prove 
stability for t = 2, we need the following lemma. 
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Lemma 2: Let Z be the set of all nonnegative integers and let #= {3s: ze Z}, 
L = Z\H. Then for any h9h19h2e H and £,£19£2££ w e nave 

(i) |/z2 - h\\ eH and | £2 - l\\ eH; 

(ii) 

Proof: For any heH, we have ft = 0 (mod 3) and ft2 E 0 (mod 3), For any 
leL9 we have either £ = 1 (mod 3) or £ = 2 (mod 3). But we see that I1 = 1 
(mod 3) for both cases. Therefore, we obtain 

(i) \h{ - h\\ E 0 (mod 3) and |£2 - %\| E 0 (mod 3), i.e.9 

\h\ - h\\ eH and | £2 - l\\ eH. 

(ii) |ft2 - £2| = |l|, i.e., \h2 - £2|eL. 

We may note that by division by three a nonnegative integer has the same 
remainder as the sum of its digits. Therefore, an immediate consequence of 
Lemma 2 is: 

Lemma 3: Let Z be the set of all nonnegative integers and let #= {3s: seZ}, 
L = Z\H. Then for any ft,ftx,ft2e# and l9l19l2eL we have 

(i) \S2
K - S2J e H and | ^ - S2J e H; 

(ii) \S2 - S\\ eL. 

We now prove that the function \S% - Sy | is stable for t' - 2. By Lemma 3 
we see that e and fc can play the same roles as shown in (G) if e represents 
the initial number which belongs to the set H and b represents the initial 
number which belongs to the set L. Thus we can find an integer m <_ 4 and four 
integers hl9 h29 h3, hk e H such that 

fm(xl9 x29 x39 xh) = (ftl5 h29 ft3, hh) 

and Sh1$ Shl9 Sh^9 S^ e H. It follows that there exist four nonnegative integers 
h59 ft6, h79 ft8 such that 

fm+1(xl9 x29 x39 a?lt) = (ft5, ft6, ft7, ft8) 

and Shi E 0 (mod 9), i = 5, 6, 7, 8. On the other hand, if max{ft5, ft6, h79 ft8} 
has four or more digits, then, after a finite number of steps (say d), we can 
find four nonnegative integers ft9, ft10s h119 h12 such that 

X 2 $ X 2 9 X i^ 

where Sh. = 0 (mod 9), £ = 9, 10, 11, 12 and max{ft9, ft10, ftxl, ?z12} < 999 (the 
proof is based on the same principle as shown in Steinhaus [2]). We know that 
(9 + 9 + 9) = 27. Therefore, max{^9, Shl0> Shll , Shl2.} < 27. This indicates 
that the values of Sh. (i - 9, 10, 11, 12) are either 0, 9, or 18. But we see 
that 

182 - 02 = 324 and 3 + 2 + 4 - 9; 

182 - 92 = 234 and 2 + 3 + 4 = 9; . 

182- 182 = 0. 
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Thus, in the next step., we have 

J \Xl9 XZf a?3, Xk) = ( « 1 3 J ̂ iit» ™15» ^16^» 

where the values of Shi (i = 13, 14, 15, 16) are either 0 or 9. It is easily 
verified that fc(xl9 x29 x3i x±) = (0, 0, 0, 0) for all o >_ m + d + 5. This 
shows that the function |-5| - S§ | is stable. 

The function |£* - Sy\ is not stable for t _> 3. For instance, letting 

and 

we have 

Jy I 

#0r, i/) = \SI - S\\-

x± = 21951, x2 = 21609, a?3 = 0, xh = 324, 

f 

(21951, 21609, 0, 324) 
( 0, 5832, 729, 5103) 
( 5832, 0, 5103, 729) 
( 5832, 729, 5103, 0) 

Since 

/3(21951, 21609, 0, 324) = /1(21951, 21609, 0, 324) = (5832, 729, 5103, 0), 

the process is periodic with period 2. The same result is obtained if we take 
(531441, 0, 426465, 104976) as the initial entries for t = 4. 

The reader is welcome to consider the stability of the function \T£ - Ty\ 
in problem (2). About 500 quadruples of two-digit numbers (xl9 x2, ^3, x^) 
have been tested for t = 2 and t - 3. In each case, the functions \T% - Ty\ 
and \T£ - T%\ stabilized after 80 steps. 

With respect to problem (3), it is not difficult to get an example to show 
that the function Tg + Tg (mod 32) is not stable. Letting 

X •! == 1U j Xn ~ Z. c-, Xo := 0, X h, == -̂0, 
we have 

(10, 22, 6, 26) 

f 

( 9, 12, 12, 9) 
(22, 10, 22, 2) 
( 9, 9, 12, 12) 

Thus, the process is periodic. 

5. Ducci Processes in fc-Dimensions 

By analogy with Section 1, we now consider a function / whose domain and 
range are the set of ^-tuples of nonnegative integers. Suppose that there is 
a function g(x9 y) whose domain is the set of pairs of nonnegative integers, 
whose range is the set of nonnegative integers, and that 

f{xl9 x29 ..., xk) = (g(xl9 x2)9 g(x2, x3)9 ..., g(xk, x±)). 
Let fm(xl9 x29 ..., x^ be the mth iteration of /. Assume that entries of 

) are bounded for all m (as before the bound depends on the 
initial choice of entries)» 

A Ducci process is a sequence of iterations of f. We call a function g 
stable if g generates a Ducci process such that for any choice of entries 

fm+l(xl9 x2, ..,., xk) = fm{xl9 x29 ..., xk) for some m. 
All of the Ducci processes in Sections 1-4 can be generalized to an arbi-

trary dimension k9 where k is any integer greater than 2. We propose to ex-
amine only two such generalizations. 
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B. Freedman [3] proved that function g(x9 y) = \x-- y\ is stable if the 
number of members of the initial entries k is a power of 2. 

We now show that the following functions are stable if and only if k is a 
power of 2. 

(I) g(x9 y) = x + y (mod 2n), n = ls 2, 3, ... . 

(II) g(x, y) = x + y (mod k) s where k is an arbitrary positive integer. 

Proof of (I): Let kfi
m be the ith entry of the mth iteration of f(xl9 x29 

..., xk). The subscript i + j of x will always represent i + j (mod &) . 
Consider the function g(x9 y) = x + y. We can show by mathematical induc-

tion that for any m9 

k 

J-O 

In fact, (H) is true for m = 19 because 

kf} = x, + x. . 

Suppose (H) is true for w. Then 

A'-? (")v <H> 

= (oh+ £[(*)+ G- - i ) ] x*w+ (IK-1 

?> + *V • 
J'-O 

Therefore, (H) is true for all m. 
In particular, if fe is a power of 2 (fc = 2r), then from (H) we have 

2 /->r\ / 0 r > 21 --l/0r x 

2r-l , 

= 2tf; + 
• 3 * 

Adopting FreedmanTs techniques we see that ( . ) is always even for J = 1, 
.., 2r - 1. Hence 

*/* =• 0 (mod 2), i = I, 2, ...., fc, fc = 2r 
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and 

In general 
*/?* =-0 (mod 4), £ = 1, 2, ..., k, k = 22 

fe^tk :/. = 0 (mod 2*), £ = 1, 29 j rC , K, "~ i. . 

Thus, we conclude that for any n we have 

*/,"* = 0 (mod 2"), £ = 1, 2, ..., fc, k = 2*\ 

This means the function ^(x, zy) = x + zy (mod 2n) is stable if k is a power of 
2. 

Proof of (II): The function g(x9 y) = x + y (mod k) is stable if and only 
if k = 2P for any p. That this condition is sufficient follows from the pre-
vious proof. We now show that it is necessary. 

We prove first that g(x, y) is not stable if k is an odd prime p. Let the 
initial entries be xl9 x29 ..., xp, and 

_ f 0 if 0 < £ < p 
if % - p. 

Then from (H) we have 

VryV y, 

We know that f . = . = 0 (mod p) for 0 < £ < p when p is an odd prime. 

if 0 < £ < 

if £ = p. 

Hence, 

and 

PfP = f 0 if 0 < £ < 
h [2 if £ = p 

P / P * _ f 0 if 0 < i < p , , . 
2* if £ = p 

where t is a positive integer. Thus, by Fermat's theorem 2P~1 = 1 (mod p), we 
o b t a i n 

PfP(p-i) _ J ° i f 0 < £ < 
^ [ 1 i f £ = p . 

Therefore, #(#, z/) is periodic. 
Now let k = ps9 where p is an odd prime and s is any integer greater than 

one. Let 
if £ is a multiple of p 
otherwise. *< - {l 

*For example, let k = 6; then k = ps 
as (0, 0, 2, 0, 0, 2). Thus we have 

3 X 2 . We set the initial entries 

6J?1 

6̂ *3 

f>/6 

(0, 0, 2, 0, 0, 2) 
(0, 2, 1, 0, 2, 2) 
(2, 4, 2, 2, 4, 2) 
(0, 0, 4, 0, 0, 4) 
(0, 4, 4, 0, 4, 4) 
(4, 2, 4, 4, 2, 4) 
(0, 0, 2, 0, 0, 2) 
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Then 
knP 

J i 
and 

k_ppt 
•* i 

where t is a positive integer. Hence 

fc«p(p-D J s if £ is a multiple of p 
•̂  1 0 otherwise. 

Thus, function g(x9 y) is periodic and the proof is complete. 

We leave it to the reader to examine generalizations of the Ducci proces-
ses presented in Sections 1-4. 
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0 otherwise 
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MINIMUM PERIODS MODULO n FOR BERNOULLI POLYNOMIALS 

WILFRIED HERGET 
Technlsche Universitat, Clausthal, Fed. Rep. Germany 

(Submitted September 1980) 

J1. It is known that the sequence of the Bernoulli numbers bm9 defined by 

b0 = 1, 

is periodic after being reduced modulo n (where n is any positive integer), 
cf. [3]. [In this note, we use the symbols bm for the Bernoulli numbers and 
Bm(x) for the Bernoulli polynomials.] In [3] we proved 

Theorem 1: Let p e /P, IP being the set of primes, p il 3, and e9k9m e IN. For 
k9m >_ e + 1, we have: 

bk n-integral and k = m mod pe(p - 1) =>bm n-integral and b\ = bm mod pe. 

In this note, we shall give some analogous results about the sequence of 
the Bernoulli polynomials Bm(x) reduced modulo n (Theorem 6) and the polyno-
mial functions over Zn generated by the Bernoulli polynomials (Theorem 4 ) . 
Here, Zn is the ring of integers modulo n, where n e IN, n >_ 2, and the Ber-
noulli polynomials in Q[x] are defined by 

i = o V v I 

Similar questions about Euler numbers and polynomials were asked by Professor 
L. Carlitz and Jack Levine in [2]. 

j2. In [4] we discussed in which cases it is possible to define (in a natural 
way) analogs of Bernoulli polynomials in Zn. In this section, we shall prove 
the periodicity of the sequence of the polynomial functions Bm over 2n gener-
ated by the Bernoulli polynomials. Each polynomial F(x) e Q[x] generates a 
polynomial function F : 2 ->- Q by 

(1) x * F{x). 

Now, considering (1) in Zn9 we get a function F : Zn •> Zn if and only if 

(a) all values of F are interpretable mod n, and 
(b) the relation (1) preserves congruence properties. 

For this, it is useful to introduce the following notations ([4], p. 28). 

Definition 1: A function F : 1 -> Q is said to be acceptable mod n, iff 

(a) V x9 F(x) is n-integral, 
(b) x E y mod n => F(x) = F(y) mod n. 
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A polynomial F(x) e Q[x] is said to be acceptable mod n if this is true for 
its polynomial function. 

Definition 2: Two functions F9G : Z -> Q are said to be equivalent mod n iff 

(a) F9G are acceptable mod n, 
(b) V x9 F(x) = G(x) mod n. 

Two polynomials F(x)9G(x) e Q[x] are said te be equivalent mod n if this is 
true for their polynomial functions. We write 

F ~ G mod n and F(x) ~~ G(x) mod n, 

respectively. 

From [4], p. 29, we have the following 

Theorem 2: Bm(x) is acceptable mod n 

o bm is n-integral and rnSm_1(n) = 0 mod n, 
where ,. 

x-1 

$«<*> 
£ km for 7w £ {0, 1, 2, .. . } , # e N 
fc = 0 

0 for w = -1 or x = 0. 

A more explicit characterization of Bm(x) acceptable mod n gives (cf. [4], 
p. 31) — 

Theorem 3: 

(a) For m > 1 and 2 1 n we have : Bm(x) a c c e p t a b l e mod n 

<* V p £ /P : ( p | n =* p - 117?7 and (p - 1 /f m - 1 or p 177?) ) . 

(b) For k e IN we have: Bm(x) acceptable mod 2k o m = 0. 

Now, we may state our first new assertion. (By Theorem 3, it suffices to 
discuss the case n = pe

9 p a prime, p >. 3.) 

Theorem 4: Let p e IP, p _> 3, and e9k9m e E. 
(a) For k9m _> e + 1, we have: 

Bk acceptable mod p and k = m mod pe (p - 1) 

=» 5W acceptable mod p and J3fc ~ Bm mod pe. 

(b) p&(p - 1) is the smallest period length of the sequence of the Ber-
noulli polynomials in the sense of (a). 

For the proof of this theorem, we need the following 

Lemma: Let p e p, p _> 3, e e IN. Then 

a.ACpO + vep') = XV(P') m o d pe f o r a l l ^ 

where both F(pe) = 5 and X(pe) = pe~1(p - 1) are minimal for this property. 

For the proof of this lemma, see [5], Theorem 1. 
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Proof of Theorem 4(a): Let k9m > e, k = m mod pe(p - 1) and Bk be accept-
able mod p, so that b\ is p-integral and kSk_1(p) = 0 mod p. By Theorem 1, 
bm is p-integral with bk =• bm mod pe. Furthermore, from k = m mod pe(p - 1), 
and k9m > e9 we have k° ik~x ^ m • i™'1 mod pe for all i, by the lemma above. 
Then 

kBk_1(x) »• kj^i1"'1 = m ^ i ™ " 1 = /7 m̂-1(a:) mod pe 

for all x. Now we use (5) from [4]: 

Bm(x) = mSm^1(x) + iOT. 

Thus £m is p-integral, too, and Bk(x) = Bw(#) mod pe for all x% i.e., 

Bk - Bm mod p*. 

Proof Of Theorem 4(b): Let Bk and Bm be acceptable mod p, let k9m _> e+ 1, 
and let Bk ~~ BOT mod pe. Then Bk(x) = Bm (#) mod pe for all #. We shall show 
that k = m mod pe(p - 1) if pe)( mm Obviously this would prove the assertion. 
First, we get bk - Bfc(O) = Bm(0) = bm mod pe, hence kSk_1(x) = mSm_1(x) mod pe 

for all x; and moreover, 

(2) fcc^"1 = mx"1'1 mod pe for all x9 

since 
kxk'1 = kSk_1(x + 1) - feS^Cs). 

Putting x = 1 in (2) shows fc = m mod pe. Let d = g.c.d.(fc, p e ) . We know that 
g.c.d.(m9 pe) = d9 and d ^ pi with 0 <. £ < e, since pe /f ?C. Thus (2) implies 

xk_ 1 = x""1 mod p*'1 for all x. 

But this is possible only i f f c - l = m - l mod (p - 1); i.e., Jc = m mod (p- 1). 
Together with k = m mod pe, we have k = m mod plS(p - 1), and the theorem is 
proved. 

Remark 1: The minimum period length of the Bernoulli polynomial functions mod 
n is the same as that of the Bernoulli numbers mod n. 

Remark 2: By a very similar argument one may prove that when Bm is acceptable 
mod p, m E 0 mod pe o Bm ~ 0 mod pe. For this, notice that m = 0 mod pe im-
plies fcm = 0 mod pe ([l],p. 78, Theorem 5). 

Remark 3: Let v(pe) denote the preperiod length of Bm mod pe. Then Theorem 4 
implies v(pe) <_ e + 1. Using Remark 2 one may slightly improve this inequal-
ity for special cases with e >_ p. For instance, u(33) = 3. 

_3. In this section we shall discuss the periodicity of Bernoulli polynomials 
reduced modulo n. 

Definition 3: A polynomial F(x) = a0 + axx + ••• + arxr e Q[x] is said to be 
n-integral if and only if the coefficients a0, a19 .. ., ar are all n-integral. 

From [4], p. 32, we have, for the Bernoulli polynomials, 

Theorem 5: Let p e P9 e e M9 and m e ffl U {0} with p-adic representation 
s 

m = E mkPk-
fc = 0 
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Then 
s 

Bm(x) e Q[x] is pe-integral if and only if J : ^ < p - 1, 
fc = o 

Remark 4: Each n-integral polynomial is acceptable mod n, but there are poly-
nomials acceptable mod n that are not n-integral (cf. [4], pp. 32-33). If we 
reduce the coefficients of any n-integral Bm(x)9 we still get a polynomial of 
degree m, since the coefficient of xm is 1. Consequently, no periodicity ap-
pears. But by the lemma above we have 

xPe-Hp-l) + e E xe m o d ve f o r al]_ x > 

Hence, any p-integral polynomial F(x) is equivalent to a reduced polynomial 
with degree < p6"1^ - 1) + e having coefficients in {0^ 1, ..., pe - l}. We 
shall denote such a polynomial F(x)9 reduced mod n, by F(x). 

Remark 5: If F (x) and F2(x) are reduced polynomials of F(x) mod n, then 

F1(x) ~ F2(x) - F(x) mod n. 

We conjecture that the sequence of the Bernoulli polynomials, reduced mod 
n, is periodic in a strong sense too, with a proof here only for n - p9 peP. 

Theorem 6: Let p e P, k9m _> 2, and suppose Bk(x), Bm(x) are p-integral. If 
k = m mod p{p - 1), then 

Bk(x) = Bm(x) in lv\x\. 

Proof: Bk(x)9 Bm(x) p-integral implies Bk{x) 9 Bm(x) acceptable mod p (Re-
mark 4). By Theorem 4 we get 

Bk(x) ~~ Bm(x) mod p, hence 

Bk(x) ~~ Bm(x) mod p, i.e., 

Bk(x) - Bm(x) = 0 mod p for all x. 

The degree of this difference polynomial is <X(p) + V(p) = p - l + l = p , but 
it has p zeros in Zp, hence it must be the zero polynomial, and we have 

Bk(x) = Bm(x) in Zp[x]. 

Remark 6: The question, whether Theorem 6 holds for arbitrary modulus n, re-
mains open. The proof above fails in ln when n $. F9 since Bk (x) ~~ Bm(x) mod n 
does not imply Bk(x) = Bm(x) in ^„ |>]. For example, let e > 1 and 

p-i 

F(X) = p6-1 n (̂  - ^)5 
i = o 

pe- i 

£(*) - II (o? - i ) . 
t = o 

Then F(x) - G(x) (-C) mod pe, but F(tf) + G(x) in %pe[x]. Or, if n = p ^ , 
where p19p2 £ ̂  and p1 ^ p2, then one may consider the polynomials 

Px-i P2-1 

P2 n (# - )̂ and Pi n & - )̂ 
t « 0 t - 0 

for a counterexample. 
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Remark 7: The assumption in Theorem 6 that both B^{x) andBm(x) are p-integral 
cannot be weakened, since B^(x) p-integral and k E m mod p(p- 1) does not im-
ply Bm p-integral. For example 

B2(x) = x2 - x + -7-

is 5-integral, while B22(x) is not so by Theorem 2, even though 22 = 2 mod 
5 • 4. 
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A NOTE ON FIBONACCI PRIMITIVE ROOTS 

MICHAEL E. MAYS 
West Virginia University, Morgantown, WV 26506 

(Submitted November 1980) 

A prime p possesses a Fibonacci primitive root (FPR) g if g is a primitive 
root (mod p) satisfying 

g2 = g + 1 (mod p). 

This definition was given in [2], and properties of FPRs were worked out 
in [2] and [3]. A good discussion of FPRs is contained in [4]. 

In [2] an asymptotic density for the set of primes having a FPR in the set 
of all primes was conjectured, and that this density is correct subject to a 
generalized Riemann Hypothesis was shown in[l], but it is still an open ques-
tion as to whether or not infinitely many primes possess FPRs. The purpose of 
this note is to provide a sufficient condition that a prime should possess a 
FPR. 

Theorem: If p = 60fc - 1 and q = 30k - 1 are both prime, then p has a FPR. 

Proof: p E 3 (mod 4) implies that at most one of {a, -a} is a primitive 
root of p for any a such that 2 <_ a <_ (p - l)/2=q; q prime implies that there 
are q- 1 primitive roots of p in all, so exactly one of {a9 -a} is a primitive 
root of p. 

p E -1 (mod 10) implies that two solutions to the congruence 

x2 - x - 1 E 0 (mod p) 

exist. These solutions may be written as g and 1 - g. 
Shanks points out that since g2 - g - 1 E 0 (mod p), 

g(g - 1) E 1 (mod p), 

so that g is a primitive root iff g- 1 is a primitive root. # - 1 is a primi-
tive root iff ~{g- 1) = 1 - g is not a primitive root. Thus exactly one of the 
solutions to the congruence is a FPR of p. 

Conditions similar to that in this theorem occur frequently in theorems in 
the literature about existence or ordering of primitive roots. Theorems 38-40 
in [4] are well-known instances of this. In [3] it is observed that primes p 
satisfying sufficient conditions to have two sets of three consecutive primi-
tive roots (a FPR g9 g- 1, and g- 2, and -2, -3, and -4) must be of the form 
120k - 1, with 60/c - 1 also prime. Using the theorem above, it is not neces-
sary to presuppose that p has a FPR. 
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A PROPERTY OF THE FIBONACCI SEQUENCE (Fm), m = 0, 1, 

L. KUIPERS 
Rue d'Orzival 4, 3960 SIERRE, Switzerland 

(Submitted November 1980) 

It Is well known that the sequence of the (natural) logarithms reduced mod 
1 of the terms Fm of the Fibonacci sequence are dense in the unit interval. 
See [1], [2]. This is also the case when the logarithms are taken with re-
spect to a base b, where b is a positive integer _> 2. In order to see this, 
we start from the fact that: 

1 + /5~ log Fn+1 - log Fn •> log as n 

1 + /5, Now log -z /log b is an irrational number, for if we suppose that 

log £ /lo§ b = p/s> 

where v and s are natural numbers, then we would have 

b' = ((1 +/5)/2)s, 

obviously a contradiction., Hence, log^i^+i - log^Fn tends to an irrational 
number as n -> °°. This implies that the fractional parts of the sequence 

(log ^ ) , m = 1, 2, ... 

is dense in the unit interval. 
We assume that the Fibonacci numbers Fm9 m _> 1, are written in base b, 

that is, 
Fm = a0bn +'a1bn~1' + ••• + an9 

where a0 _> 1, 0 £ a3- <_ b - 1, j = 0, 1, — , n, w? = 1, 2, . . . , or to any m a 
set of digits {a0, als ..., an] is associated. 

Now, given an arbitrary sequence of digits {a0, a15 ..., ar}, one may ask 
whether there exists an Fm which possesses this set as initial digits. The 
question can be answered in the affirmative. 

We associate to the sequence {aQ, al9 ..., ar} the value 

a, CLy, 

+ — + *' • v t> ' ' •» r» 

which is a point on the interval [1, b). This value is the left endpoint of 
the interval 

T = T( [ a1 ar ax ar ar + 1\ 

The function log,a:, mapping [1, £>) onto [0, 1), maps this interval T(r) 
onto the interval 

a subinterval of [0, 1). 
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Since the fractional parts of the logarithms to base b of the numbers Fm 
are dense in the unit interval, there is an m such that logbFm (mod 1) e T*. 
It follows that there exists a positive integer n >_ r such that 

( a1 a2 av a7 

Hence, there exists an integer k _> n such that 
a i ar an\ 

loghFm - fe + l o g j a 0 + E - + . . . + _ + . . . + _ j , 

i | f l 0 + l r + . . . + p r + . . . + -

a 0 J * + a ^ * - 1 + . . . + a2.fcf c".+ . . . . + a*" n . 
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NOTES ON SUMS OF PRODUCTS OF GENERALIZED FIBONACCI NUMBERS 

DAVID L. RUSSELL 
Bell Laboratories, Crawfords Corner Road, Holmdel, NJ 07733 

(Submitted November 1978) 

The infinite sequence {sn} is a sequence of generalised Fibonacci numbers 
(also called a generalized Fibonacci sequence or simply Fibonacci sequence) if 
s - sn_i + sn-i f° r a H n* A particular Fibonacci sequence is completely spe-
cified by any two consecutive terms. In this paper we let {'fn}9 {^n}, {hn}> 
and {kn} represent generalized Fibonacci sequences, and we let {Fn} represent 
the sequence of Fibonacci numbers defined by Fn = Fn_1 + Fn_2, F0 = 0 , F1 - 1. 

Theorem: If {/n}, ign^» and ihn} are Fibonacci sequences, then the following 
summations hold for y _> x. 

( 1 ) 2-f fi + r " lfn+r+2ln=x.i 
x <. i i y 

E -.n = y 

J~i + r$i + s ~ L j n + p ^ n + s + 1
 + Tn+r+i9n+s^n = x-1 

x<_i<_y 

{-*' 2-J Ji + r^-L + s'^i + t = >-Jn + r + ign + s + 1 "-n + t • + Jn + r+i9n + s "-n+t + l 
x <_ i <_ y 

fn.+ r&n+.s+l n+t+1 ~ Jn+r+l@n+s + l^n+t + l 

Jn + r9n + s^n+t^n = x - 1" 

Proof: The proofs are by induction on y. As base cases we take y=x- 1; 
the summations are empty, and the right-hand sides vanish identically. The 
induction steps are as follows: 

2-J J~i + r ~~ Z-* Ji + r Jy+r + 1 
x<_i<_y + l x±i±y 

= r f - in -y 
L J rc + r+2J

n = x- 1 Jz / + r + l 

= Ljy+ifi + 2 + fy + r+lJ ~ LJ ( a : - 1 ) +P + 2-I 

~ Lj"^ + 2 , + 3 J ~ L j ( #_ ! ) + P + 2-J 

= [f ] n ^ + 1. 

2 2-f Ji + r$i+s 2 - r fi + r^i+s fy+r+l^y + s + l 
x <i <_y + l #_< i<_ z/ • 

r - i " = # 
= Ljn + r ^ n + s + l "*" Jn + r+lGn + s-l n = x- 1 J y + r + l9y + s +1 
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1 - ^ + ̂  + 8 + 1 + fy+r+l&y+8+l) + (fy + r+l3y + 8
 + fy+-r+l^y+s+l^ 

L ^ ( x - l)+r& (x-l) + s+l ?(x-l) + r + l$(x-l) +S-* 

~ \-Jy + r+2@.y+ 8 + 1 + Jy.+ r+ lGy+s+2^ 

\-J(x- l)+r$(x-i) +s+l J(x- 1) +r + l&(x-l) +s -I 

= [f a + f nn=y+l 
L^ n+r^n+s +1 *n+ v+ l^n + s -• n =x - 1* 

3. We note that, as in the proofs of (.1) and (2), the bottom limit of the 
right-hand side is unchanged, and we need only prove the following identity-
related to the top limit y: 

\ ) ^-Jy + r + l^y+s + l^y + t + Jy+r+l^y+s^y+t+l + Jy + v9y + s + Vly+1 + 1 

Jy+r+i^y+s+l y+t+l ~ Jy + r$y + sny + t* fy+r+i@y+s+i y+t+i 

Ljy + r+29y+s+2&y+t + l + Jy+r+2&y +s + Y1 y+t + 2 + Jy + r+l&y + s+2^y + t+2 

~ Jy + r+2^y +s + 2^y + t+2 ~ Jy + r+ \$ y + s + l"' y +t+l -» * 

As a shorthand notation we let (aba) stand for fy + r+a9y+ s+b^ly + t + c> where 
a, b9 c are 0, 1, or 2. Then the identity (*) can be written as follows: 

(**) (110) + (101) + (Oil) - (111) - (000) + 2(111) 

= (221) + (212) + (122) - (222) - (111). 

The following identities are easily verified, and the validity of (**), 
and therefore of (3), follows immediately: 

(221) = (001) + (011) + (101) + (111), 

(212) = (010) + (110) + (011) + (111), 

(122) = (100) + (110) + (101) + (111), 

(222) = (000) + (001) + (010) + (011) + (100) + (101) + (110) + (111). •• 

Identity (1) is well known, although it is usually stated in terms of 
Fibonacci or Lucas numbers with limits of summations 1 to n or 0 to n. 

Identity (2) is a generalization of the identities of Berzsenyi [ 1] . This 
is easily shown using the following identity, which is easily verified, where 
{fn} and {gn} are generalized Fibonacci sequences: 

<4> fn+k9m-k - fn9m = ( - 1 ) " (fk Gm _ n _ k ~ fo9m-n)' 

We have the following: 

^ Z- / Ji9i + 2m + b ~ U { + \9i + 2m + b *i $i> + 2m + b+l -J ̂  0 _± 



116 NOTES ON SUMS OF PRODUCTS OF GENERALIZED FIBONACCI NUMBERS [May 

^^m + b+i^m + i + l ^ ' ^m + b-l^m ? Q& 2m + b-l' 

+ fm+b + i9m + i + l ~ v 1 ) \fm + bGm + l ~ JoG2m+b+l) -I i,_x 

r 7* -. i = n 
L 2 j m + f c + i ^ m + ^ + 1 + (-1) \fm+h.1gm - fm+bgm+1 + Jo^m+P-U^- i • 

Applying the limits, we obtain the following expression: 

2^ Ji &i+ 2m+ b ~" J~n + m+byn + m + l ~ Jm + b -l@m 
0< i <_n 

(I + ( - i ) n \ r - , + -P >> 
I 2 )^m + b-l^m ^m + b^m + 1 i~ J 0#2m+ M ' 

which is exactly the expression obtained in [1] for even or odd n and b - 0 or 
1. 

The advantages of identity (2), besides its attractive symmetry, are that 
(a) only a single case is needed instead of four separate cases and (b) it is 
applicable to general limits, not just the sum from 0 ton. In addition, (2) 
applies to the sum of the product of terms from different generalized Fibo-
nacci sequences, as opposed to the original form in [1]. 

It should be noted that (4) can also be applied directly to (2), leading 
to the summation 

n+r nn^y 

n = x - 1 _ 

The summation of (2) has also been considered by Pond [1], whose result is 
valid for the sum of the products of terms from identical generalized Fibonacci 
sequences: 

l~i -\n = y 
L* fifi+a = lT^fl-3/n/n+l + Fsfn+2^\ 

x<i±y L Jn-*- l 

Recall that {Fn} is the sequence of Fibonacci numbers. This result is easily 
derived from (2) by use of the identity fn + r = Fr-ifn +.^r/n + i* 

Identity (3) has been considered by Pond [2], again in a simpler context; 
he requires all three generalized Fibonacci sequences to be identical and de-
rives the following expression: 

^ 2 - / f<C fi+rfi + s ~ I s T ~ s - 1 r - l ' ' ' fn-i *>s + r+ n + lfn Jn+ l l _ ' 
x<i<y n " * ' 1 

where D(-l)n = fn_1fn+1 - fl = (-l)n(f.1f1 ~ fl). It is not hard to show that 
this summation is a consequence of (3). 

The advantages of identity (3) again lie in its pleasing symmetry, its ap-
plicability to general limits, and the fact that the summation is valid for 
products of different Fibonacci sequences. 

A general methodology for finding summations of the form of identities (1), 
(2), or (3) has been discussed elsewhere [3]. This methodology expresses the 
sum of the products of terms from several sequences, each defined by a linear 
recurrence, as a standard sum, defined below. 
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If the sum to be found is 

/ ^ •'ls n + rxJ 2, n + rz *'* Jm!)n + rm 
x ^_n<_y 

where the m sequences {/iK . .., {fm} are defined by linear recurrence rela-
tions (i.e., not necessarily Fibonacci sequences), the standard sum is a linear 
combination 

n = y 

-I n = x - 1 

with the following important properties: 

1. each term of the standard sum is the product of m terms, one from 
each of the original sequences in the product to be summed; 

2. the w-tuples (ix, ..., im) have constant integer components; 

3. the coefficients a^lt ..., im are constant and only a bounded number 
of the coefficients are nonzero. 

Of interest is the result that a standard sum for the sum of the products 
of terms from recurrence sequences does not always exist. In particular, the 
sum 

2-r Jn + rGn + s^n + t^n-^u 

(with {fn}s ign}9 {hn}, and {kn} Fibonacci sequences) cannot be expressed as a 
standard sum. For details, the interested reader is referred to [3]. 
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1. Introduction 

The terms of a recursive sequence are usually defined by a recurrence pro-
cedure; that is, any term is the sum of preceding terms. Such a definition 
might not be entirely satisfactory, because the computation of any term could 
require the computation of all of its predecessors. An alternative definition 
gives any term of a recursive sequence as a function of the index of the term. 
For the simplest nontrivial recursive sequence, the Fibonacci sequence, Binet's 
formula [1] _ 

un = (l//5)(a"+1 - B"+1) 

defines any Fibonacci number as a function of its index and the constants 

a = |(1 + /I) and 3=-|(l-/5). 

In this paper, an analog of Binet*s formula for the Tribonacci sequence 

1, 1, 2,4, 7, ..., un+1 = un + un_x + un_2, ... 

(see [2]), is derived. Binetfs formula defines any term of the Tribonacci 
sequence as a function of the index of the term and three constants, p, a, 
and T. 

2. .6inet's Formula for the Tribonacci Sequence 

Binetfs formula is derived by determining the generating function for the 
difference equation 

Un + 1 = Un + Un-1 + Un-2 n t 2' 

00 

Let f(x) = u0 + u-^x'+ u2x2 + ••• + unxn 4- •-•• = £ uix% be the generating 
function; then • £-o 

(1 - x - x2 - x3)f(x) = 1, 

so 
f( V = 1 _ 1 = 1 
nX) i ^ . ̂ 2 _ ̂ 3 (1 - PE)(1 " OX) (1 - TX) P(X)' 

118 
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The roots of p(x) = 0 are 1/p, 1/cr, and 1/T, where p, a, and x are the roots 
of 

p(:~) = ̂ 3 " ̂ 2 - * - 1 = 0, 

Applying CardanTs formulas to pi — 1 = 0 yields 

P = j(^19 + 3/33" + s/l9 - 3/33" + l), 

a = |(j> - ^19 + 3/33 - ^19 - 3/33" + V3i .^19 +"3/33" - > 1 9 - 3/33"])5 

and 

T = a, the complex conjugate of a. 

Approximate numerical values for p, a, and "a are: 

p = 1.8393, a = -0.4196 + 0.6063i, a = -0.4196 - 0.6063^. 

Since the roots of p(x) = 0 are distinct, by partial fractions 

fW = — — = i _ ̂  + i _ ̂  + ,. ^ \ /1 ^ w i - \ 1 - pa; 1 - era 1 - ox' (1 - px)(l - osc)(l - ax) 

Here 

A '~ - P~ 

and 

Consequently, 

( • • 

( ' • 

1 

- f ) ( • • 
1 

- 1 ) 
P/ 

- 1 ) 
a / 

(P -

(a -

- a)(p • 

-. a2 

- P)(a • 

a2 

- a)' 

- a) ! 

( > - § ) ( ' - § ) . © - p ) f f - « ' 

, 2 oo 9 

/Or) = ^ — £p*^ + — 2 a i ^ + - z : ^~z Eav 
. ... (p - a)(p - a)^ = o (a - p)(a - a)^ = °, , ( a - p ) ( a - a f = 0 

i = 0 \(p - a)(p - a) (a - p) (a - a) (a - p)(a - a) 

Thus, BinetTs formula for the Tribonacci sequence is 

pn+2 ^ an+2 _,_ an+ 2 

u - tL + + 

(p - a)(p - a) (a - p)(a - a) (a - p)(a - a) 
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Multiplying the numerators and denominators of the last two terms by (p - a) 
and (p - a), respectively, yields 

„.-^eHi-+ (P-a)a"+2 + ( p - a ) a " + 2 , 
|p - a|2 -2£J(a)|p - a\2 2iJ(a)|p - a|2 

Using the relations O = p(cos 0 + i sin 6), 

0n - rn(.cos n Q + i sin n 0), e = tan*1 (l(a)/i?(a)) 

and combining terms: 

p2
 M , r(r - 2p cos 6) „ n u„ = - pn + — — Pn cos n 0 

I 1 2 I 1 2 

I p - a J I p - a I 
, r2 cos 0 - pr(l - 2 sin2 0) „ 

s m 0 p - a 
3?" s m n 

2 

Denoting the coefficients of pn, rn cos n 09 and vn sin n 0 by a, 3, and y, 
respectively, yields 

un = apn + rn((3 cos n 0 + y sin n 0). 

Approximate values for the constants are: 

p = 1.8393, 0=124.69° , r = 0.7374, 

a = 0.6184, 3 = 0.3816, y = 0.0374. 

3. An Application 

Since \r\ = .7374 < 1, the nth Tribonacci number is the integer nearest 
apn when 

|pn(3 cos n 0 + y sin n 0) | < -y. 

Using calculus, the value of |$ cos n 0 + y sin n 0| is at a maximum when 

n0 = 5.60°  + &TT, for fe an integer. 
Consequently, 

|pn(3 cos n 0 + y sin n 0| < — for n > 1, 

Since [a + .5] = 1 (where [ ] is the greatest integer function), a short form 
of the formula that is suitable for calculating the terms of the Tribonacci 
sequence is 

un = [apn + .5] for n >_ 0. 
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Define the sequence {wn} by-
CD w0 = a, w1 - b, wn+2 = wn + 1 +wn 

(n integer >_ 0; a, b real and both not zero). 
Then [2], 

( 2 ) <»n*>n+3>2 + < 2 W n + A + 2 > 2 = <*>» + ! + W » + 2 > 2 -
Freitag [1] asks us to find a cn9 if it exists, for which 

(3) < ^ „ + 3 '
 2Fn+lFn+2> °n) 

is a Pythagorean triple, where Fn is the nth Fibonacci number. It is easy to 
show that on = F2n+3. 

Earlier, Wulczyn [3] had shown that 

(4) (LnLn+39 2Ln+1Ln+2, 5F2n+3) 
is a Pythagorean triple, where Ln is the nth Lucas number. 

Clearly, (3) and (4) are special cases of (2) in which a = 0, b = 1, and 
a = 2, 2? = 1, respectively. One would like to know whether (3) and (4) pro-
vide the only solutions of (2) in which the third element of the triple is a 
single term. Our feeling is that they do. 

Now 

(5) 
SO 

(6) 

Wn = aFn-l + bFn, 

' {a1 + bz)F2n+3 + {lab - a2)Fln+2 

{b2 + 2ab)F2n+3 + (a2 - 2ab)F2n+2 

(7) 

whence 

(8) 

results which may be 

wn 

verif 

b2?2n+s 

tt2F2n+3 

a F2n + 1 

5a2F2n+1 

— •< 

ie 

' bFn or 

oFn_x or 

d in (5). 

• if a -

if a = 

if b = 

if b = 

bLn 

-aLn-i 

0 

2b 

0 

-2a 

1 

II 

by I 
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Therefore, only the Fibonacci and Lucas sequences, and (real) multiples 
of them, satisfy our requirement that the right-hand side of (2) reduce to a 
single term. 
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The number of compositions of an integer n in terms of ones and twos [1] 
is Fn+1, the (n + l)st Fibonacci number, defined by 

F0 = 0 , F1 = 1, and Fn42 = Fn+l +Fn . : 

Further, the Fibonacci numbers can be used to generate such composition arrays 
[2], leading to the sequences A = {an} and 5 = {bn}9 where (an9 bn) is a safe 
pair in Wythoff's game [3], [4], [6]. 

We generalize to the Tribonacci numbers Tn9 where 

T0 = 0, Tx = T2 = 1, and Tn+3 = Tn+Z + Tn+1 + Tn. 

The Tribonacci numbers give the number of compositions of n in terms of ones, 
twos, and threes [5], and when Tribonacci numbers are used to generate a com-
position array, we find that the sequences A - {An}, B = {Bn}9 and C = {Cn} 
arise, where An9 Bn9 and Cn are the sequences studied in [7]. 

1. The Fibonacci Composition Array 

To form the Fibonacci composition array, we use the difference of the sub-
scripts of Fibonacci numbers to obtain a listing of the compositions of n in 
terms of ones and twos, by using Fn^1, in the rightmost column, and taking the 
Fibonacci numbers as placeholders. We index each composition in the order in 
which it was written in the array by assigning each to a natural number taken 
in order and, further, assign the index k to set A if the kth composition has 
a one in the first position, and to set B if the kth composition has a two in 
the first position. We illustrate for n - 6,using F7 to write the rightmost 
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column. Notice that every other column in the table is the subscript differ-
ence of the two adjacent Fibonacci numbers, and compare with the compositions 
of 6 in terms of ones and twos. 

FIBONACCI SCHEME TO FORM ARRAY OF COMPOSITIONS OF INTEGERS 

F6 

FB Fi 

Fy 

INDEX: 
A 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

or 

= 

-

= 

-

= 

= 

-

= 

= 

= 

= 

= 

= 

B 

*i 

&i 

a2 

^3 

b2 

ah 

b3 

a5 

a6 

b, 
a7 

^8 

bs 

One first writes the column of 13 F7's9 which is broken into 8 F6
fs and 5 

F5
?s. The 8 F6

fs are broken into 5 F5
fs and 3 F4

?s9and the 5 Fs's are broken 
into 3 F4

fs and 2 F3
Ts. The pattern continues in each column until each F2 is 

broken into F± and F0, so ending with F-^. In each new column, one always re-
places FnFn's with Fn_1Fn_1

1s and Fn_2Fn„2
!s. Note that the next level» rep-

resenting all integers through FQ = 21, would be formed by writing 21 F8
fs in 

the right column, and the present array as the top 13 = F7 rows, and the array 
ending in 8 F6's now in the top 8= F6 rows would appear in the bottom 8 rows. 
Notice further that this scheme puts a one on the right of all compositions of 
(n - 1) and a two on the right of all compositions of (n - 2). 

Now, we examine sets A and B. 

ni 

an: 
bn'. 

1 

1 

2 

2 

3 

5 

3 

4 

7 

4 

6 

10 

5 

8 

13 

6 

9 

15 

7 

11 

18 

8 

12 

20 

9 

14 

23 

10 

16 

26 

Notice that A is characterized as being the set of smallest integers not yet 
used, while it appears that bn - an + ̂ - Indeed, it appears that, for small 
values of n, an and bn are the numbers arising as the safe pairs in the solu-
tion of Wythoff?s game, where it is known that [2] 

(1.1) an = [ria]. bn = [na2], 

where [x] is the greatest integer in x and a = (1 + /J)/2. Further, we can 
characterize A and B by 
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(1.2) am = 1 + a3F3 + .... + akFk , o^ e {0, 1}, 

bm = 2 + a!fFlf + ... + a ^ , ai e {0, 1}. 

Any integer n has a unique Fibonacci Zeckendorf representation 

(1.3) n = a2F2 + a3^3 + a ^ + ... + akFk, 

where a^ e {0, 1} and o^o^^ = 05 or, a representation as a sum of distinct 
Fibonacci numbers where no two consecutive Fibonacci numbers may be used. Now 
suppose 1 is the smallest term in the Zeckendorf representation of n. Then n 
is in the required form for am. Suppose that the smallest Fibonacci number 
used is Fk , where k is even. Replace Fk by Fk_1 + Fk_2, Fk_2 by Fk_ 3 + Fk_h, 
Fk_h by Fk_ 5 + Fk_ 6 5 ..., until one reaches Fh = F3 + F2, so that we have 
smallest term 1, and the required form for am. 

Similarly, if 2 is the smallest term in the representation of n, then n is 
in the required form for bm. If the subscript of the smallest Fibonacci num-
ber used is odd, then we can replace Fk by Fk_1 + Fk_2, Fk_2 by Fk_3 + Fk_h, 
..., just as before, until we reach F5 - Fh + F3, equivalent to ending in a 2 
for the form of bm. 

Thus A is the set of numbers whose Zeckendorf representation has an even-
subscripted smallest term, while elements of B have odd-subscripted smallest 
terms. Since the Zeckendorf representation is unique, A and B are disjoint 
and cover the set of positive integers. Also, the unique Zeckendorf repre-
sentation allows us to modify the form to that given for am and bm uniquely, 
by rewriting only the smallest term. 

Now, we can prove that A and B do indeed contain the safe-pair sequences 
from Wythofffs game. 

Theorem 1.1: Form the composition array for n in terms of ones and twos, us-
ing ̂ n + 1 on the right border. Number the compositions in order appearing. 
Then, if 1 appears as the first number in the kth composition, 

k = am = 1 + a3-F3 + ahF^ + ... + akFk , a* e {0, 1}, 

and if 2 appears as the first number in the kth composition, 

k = bm = 2 + a4F4 + a5F5 + ... + akFk , o^ e {0, 1}, 

where (am, bm) is a safe pair in Wythofffs game. 

Proof: We have seen this for n = 6 and k = 1, 2, . . ., 13 = F7, and by us-
ing subarrays found there, we could illustrate n = 1, 2, 3, 4, and 5. By the 
construction of the array, we can build a proof by induction. 

Assume we have the compositions of n using ones and twos made by our con-
struction, using Fn+1 in the rightmost column. We put the Fn compositions of 
(n - 1) below. (See figure on page 125.) 

Take 1 £ j <_ Fn. If j e A, then j + Fn + 1 e A as the compositions starting 
with 1 go into A and those starting with 2 go into 5, and addition of Fn + 1 
will not affect earlier terms used. Note well that no matter how large the 
value of n becomes, the earlier compositions always start with the same number 
1 or 2 as they did for the smaller value of n, within the range of the con-
struction. Now, if j is of the form 
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1 + a3F3 + a^Fh + ••• + anFn, j e A, 

Q + ^n + 1 = 1 + a3F3 + a ^ + + anFn + Fn+1, 

and (j + Fn+1) e A, ai e {0, 1}. Since we know that all the integers from 1 
to Fn + i " 2 c a n b e represented with the Fibonacci numbers 1, 2, 3, . .., Fn, 
for the numbers through Fn+1 we need only F29 F3, . .., Fn. Thus the numbers 
1, 2, — , Fn + 2 can be represented using 1, 2, . .., Fn + ±9 and we continue to 
build the sets A and B9 having both completeness and uniqueness, recalling [1] 
that the number of compositions of n into ones and twos is Fn+1. Also, notice 
that there are Fn_2 elements of B in the first Fn integers and Fn_1 elements 
of A in the first F„ integers. 

3 + Fn + i-

Compositions 
of n - 1 

Compositions of n 

Compositions of 
n - 1 

•n + l 

rn+l 

Fn + 1 + 1 

Fn + 1 + 2 

F + F 
J-n + i ' x n 

I <j <Fn, n >. 2. 

2. The Tribonacci Composition Array 

Normally, the Tribonacci numbers give rise to three sets A, B, C [8]: 

A = {An i An = 1 + a3T3 + a ^ + •• • } , 

(2.1) B = {5n : Bn = 2 + a4T4 + a5T5 + • • • } , 

C = {<?n : Cn = 4 + a5T5 + a6T6 + •• - } , 

where a^ £ {0, 1}. Equivalently, see [7], if Tk is the smallest term appear-
ing in the unique Zeckendorf representation of an integer N9 then 

N e A if k E 2 mod 3, N e B if k = 3 mod 3, and N e C if k = 1 mod 3, fc > 3, 

where we have suppressed Tx ~ 1, but T2 = 1 = A19 and every positive integer 
belongs to A9 B9 or C9 where A9 B9 and C are disjoint. 
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Also, recall that the compositions of a positive integer n using l's, 2's, 
and 3Ts gives rise to the Tribonacci numbers, since Tn+1 gives the number of 
such compositions [5]. 

Now, proceeding as in the Fibonacci case, we write a Tribonacci composi-
tion array. We illustrate for T6 = 13 in the rightmost column, which is the 
number of compositions of 3 into lfs, 2Ts, and 3's. We put the index of those 
compositions which start on the left with a one into set A9 those with a two 
into set B9 and those with a three into set C9 and compare with sets A9 B, and 
C given in (2.1). 

INDEX: 
TRIBONACCI SCHEME TO FORM ARRAY OF COMPOSITIONS OF INTEGERS A9 B9 or C 

1 T5 

1 ^5 

2 T5 

2 T5 

3 T5 

1 Th 2 

1 • Th 2 
2 Th 2 

3 Th 2 

1 T3 3 

2 T, 3 

1 

2 

1 

1 

1 

T3 

?3 

Ti 
11 

T2 

?i 

Ti 
T2 

?i 
T, 

1 

1 

2 

3 

1 

2 

1 

1 

2 

1 

^6 

^6 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

^i 

Bi 
A2 

Ci 

A3 

B2 

Ak 

As 

B3 

As 

C2 

A7 

13 = Bu 

We note that thus far the splitting into sets agrees with these rules: An 
is the first positive integer not yet used; Bn is 2An decreased by the number 
of Cirs less than An; and Cn is 2Bn decreased by the number of Ci 's less than 
Bn; where An9 Bn9 and Cn are the elements of sets A9 B9 and C of (2.1). 

ni 

Ani 

Bni 

C„: 

1 -

1 

2 

4 

2 

3 

6 

11 

3 

5 

9 

17 

4 

7 

13 

24 

5 

8 

15 

28 

6 

10 

19 

35 

7 

12 

22 

41 

We next prove that this constructive array yields the same sets A9B9 and C as 
characterized by (2.1) by mathematical induction. 

We first study the array we have written, yielding the T6 = 13 composi-
tions of n = 5 using lfs9 2*s, and 3fs. We write 13 T6 ' s in the rightmost 
column. Then, write the preceding column on the left by dividing 13 T6

fs into 
7 T5

Ts, 4 T4
!s, and 2 r3's. In successive columns, replace the 7 T5

?s by 4 
Tn's, 2 2Vs, and 1 Tl9 and the 4 Th

 ? s by 2 T3
?s, 1 Tl9 and 1 Tl9 then the 2 

T3
Ts by 1 T2 and 1 Tx. Any row that reaches T± stops. Continue until all the 
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rows have reached T1. Notice that the top left corner of the array, bordered 
by 7 T5

1s on the right, is the array for the T5 = 7 compositions of n - 1= 4, 
and that the middle group bordered on the right by 4'2Vs is the 4 =T 4 compo-
sitions of n - 2 = 3, and the bottom group bordered by 2 T3

?s on the right is 
the 2 = T3 compositions of n - 3 = 2. The successive subscript differences 
give the compositions of n using lfs, 2fs, and 3?s. 

If we write Tn+1Tn+1
1s in the right-hand column, then we will have in the 

preceding column the arrays formed from TnTn
xs on the right, T n - A - i f s on the 

right, and Tn.2Tn-2ls on the right. All the integers from 1 through Tn+1 will 
appear as indices because there are Tn+i compositions of n into l's, 2!s, and 
3fs. The subscript differences will give the compositions of n into l's, 2fs, 
and 3*s, and we can make a correspondence between the natural numbers, the 
compositions of n, and the representative form of the appropriate set. Those 
Tn+i compositions are ordered with indices from the natural numbers. Each 
composition whose leftmost digit is one is cast into set A; those whose left-
most digit is two are cast into set B; and those whose leftmost digit is three 
are cast into set C. Descending the list, we then call the first A9 Al9 the 
second A, A2, . . . , the first B, Si, the second B, B2, and so on. We have now 
listed the elements of As B, and C in natural order. Since the representa-
tions of An, Bn, and Cn from (2.1) are unique, see [7], and since this expan-
sion is constructively derived from the Zeckendorf representation so that the 
largest term used remains intact (by the lexicographic ordering theorem [7]), 
every integer m < Tn uses only T2, T3, ..., Tn.1 in the representation, and Tn 
can itself be written such that the largest term used is Tn_1. Let j by any 
integer, 1 <_ j <_ Tn . Assume that J can be expressed as in (2.1). Then j' = 
j + Tn+1 will be in the same set as j, since all early terms of j and j' will 
be the same. Further, if the leftmost digit of the jth composition is a, where 
1 <_ j <_ Tn , then the leftmost digit of the j'th composition, j' = j + Tn+1 will 
be a, since the leftmost digits are not changed in construction of the array. 

V 
il \ 

v \ .Tr2\ 

T„ 

Array 
-^rc-2 

. *™,v 
\ 

\ 

! 
1 -Ln 

1 ' 

3 + ^ - 1 

j + Tn_x + Tn 

™n+l ~ Tn + Tn_1 + Tn 

T 

m m I 

-^n+l^n+l & 
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Recall that set elements are not characterized by the composition, but only by 
its leading 1, 2, or 3. Each number in the jth position in the original gives 
rise to one in the (j + Tn+1)st position in the same set A, B9 or C. Also, 
j + Tn + Tn+1 belongs to the same set as j. 
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THE CONGRUENCE x» = a (mod m), WHERE (71, <t> (m)) = 1 
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Craig M. Cordes [2] and Charles Small [4] proved Theorem 1, a result that 
W. Sierpinski [3] proved, using elementary group theoretic considerations, for 
n being a prime, and J. H. E. Cohn [1, Theorem 7] proved for n - m. Moreover, 
Theorem 1 is implicit in some of the solutions to Problem E2446 in the Ameri-
can Mathematics Monthly (January 1975). 

Throughout this paper, m and n will denote positive integers with m > 1. 

Theorem 1: Let n be greater than 1. The congruence xn =. a (mod m) has a solu-
tion for every integer a if and only if (n, $(m)) = 1 and m is a product of 
distinct primes. 

Let a-L, a2, . . . , am be a complete residue system modulo m. It follows from 
Theorem 1 that a", aj» .••* dm* where n > 1, is a complete residue system mod-
ulo m if and only if (n, <j>07?)) = 1'and m is a product of distinct primes. 

We shall give a simple proof of Theorem 1 and, in addition, prove the fol-
lowing two related results. 

Theorem 2: The following three conditions are equivalent. 

I. The congruence xn = a (mod m) has a solution for every integer a with 

( a ' T ^ o ) = 1 -
II. The congruence xn = a (modm ) has a solution for every integer a rela-

tively prime to m. 

III. (n, cj>(77z)) = 1-

From Theorem 2, it follows that for a19 a2, ..., a<j,(W) a reduced residue 
system modulo m9 a", a"» •••> ^J(m) i s a reduced residue system modulo m if 
and only if (n, (j)(m)) = 1. 

The following result tightens the equivalence of Theorem 2. 

Theorem 3: Conditions I and II are equivalent. 

I. The congruence xn E a (mod m) has a solution if and only if 

( a ' T ^ o ) = 1 -
II. (n, cf)(w)) = 1 and pn + 1 j( m for all primes p. 

By Theorem 3, we can, with only the simplest of calculations, write down 
the nth-power residues modulo 77? if (n, §(m))= 1 and pn + 1 j( m for all primes p. 

129 
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We shall now state and prove several results needed for the proofs of 
these three theorems. 

Lemma 4: Let a and n be positive integers. If ( , -, r-| = 1, then there is 
T-i™ ^ _ ^ + „„„£ ^ . V (a, 77Z) / a positive integer t such that 

Proof: Assume (a, -r- r-J = 1 and, for convenience, let d = (a, m). Since 

fa, ̂ j = 1 and (M ̂  j |<|>0w), 

by the Euler-Fermat theorem, 

a*<n> = 1 (mod | ) . ' 

There are positive integers a and t such that nt .-. (n, $0??)) = §{m)o. Thus 

a»t-(». •(».)) = a*(»)» = ! (mod J ) . 

Hence 

an* = a(n'*(m)) (mod m). 

Corollary 5: If (n, <f>(m) ) = 1> then the congruence xn = a (mod m) has a solu-

tion for every integer a with (a, -p r-) = 1. 

Corollary 6: If (ft, §(m) ) = 1 and w is a product of distinct primes, then the 
congruence xn = a (mod m) has a solution for every integer a. 

Corollary 6 follows directly from Lemma 4 since m being a product of dis-

tinct primes implies (a, y ^-y) = 1 for every integer a. 

Lemma 7: If the congruence xn = a (mod tf?) has a solution for every integer a 
relatively prime to m, then (ft, cK^)) = 1. 

Proof: Assume (ft, (J)(̂ )) ̂  1. Thus, there is a prime a such that q\n and 
a |(J)(pe) , where pe| |;72 and p is a prime. We shall show that the assumption p = 
2 leads to a contradiction and that the assumption p > 2 also leads to a con^ 
tradiction. 

First, assume p = 2. Thus, q divides <j)(2e') = 26"1 so q = 2 and g J> 2. 
Choose a such that a = 3 (mod 2e) and a = 1 (mod m/2e). Thus (a, /??) = 1; so, 
by assumption, the congruence xn = a (mod m) has a solution. Since 4|2e and 
2e\m, we have 4|w. Hence, the congruence ;rn = a = 3 (mod 4) has a solution. 
But xn = 3 (mod 4) is impossible, since ft is divisible by q = 2. 

Now assume p > 2. Choose a such that a is a primitive root modulo pe and 
a = 1 (mod mlpe). Thus (a5 m) = ls so there is an integer # such that # n = a 
(mod /??) . Since pe\m9 xn = a (mod pe) . For fc = (J)(pe)/q, afe = ̂ n/c = 1 (mod pe). 
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The last congruence is true because (J)(pe) = qk9 which divides rik. But afe = 1 
(mod pe) is impossible, since a is a primitive root modulo pe and 

0 < k <,<$)(pe). 

We shall now prove Theorem lv First, assume that the congruence xn = a 
(mod w?) has a solution for every integer a. Thus 0 , 1 , 2 , . .., (77? - 1) 
must be incongruent modulo m. Now if there is a prime p such that p2|w then, 
since n > 1, we would have the contradiction 

0n E 0 E p ) " (mod m). 

Therefore, m must be a product of distinct primes. By Lemma 7, we have that 
(n, (p(m)) = 1. 

Conversely, assume (n, (j)(w)) = 1 and m is a product of distinct primes. 
By Corollary 6, the congruence xn = a (mod m) has a solution for every inte-
ger a. , 

We shall now prove Theorem 2. Since (a, m) = 1 implies (a, -p r-1 = 1, 

II follows from I. The remaining implications—II implies III and III implies 
I—follow from Lemma 7 and Corollary 5, respectively. 

To prove Theorem 3, we need 

Lemma 8: Let a be an integer. If pn + 1 )(m for all primes p and the congruence 

xn = a (mod m) has a solution, then (a, —, rl = 1-
V (a, m) I 

Proof: Assume the congruence xn = a (mod 77?) has a solution and there is a 

prime p such that p\a and p\-( —r-. Choose e such that pe| |m; clearly e <_ n. 

Since p\a and p\m9 p\xn; so pe\xn. From pe 1772 and pe\xn
9 we have that pe\a, so 

pe|(a, 772). But since p k r-, too, we have the contradiction pe+1\rn. 
^ ' y ^ | (a, 77?) 

Finally, we prove Theorem 3. First, assume condition I. Thus, in parti-
cular, the congruence xn = a (mod rn) has a solution for every integer a rela-
tively prime to 777. Hence, by Lemma 7, (n, <\>{m)) = 1. To prove that pn + 1 1777 
for all primes p, assume there is a prime p such that p n + \m. Thus 

= (pn
s — ) > P > 1. 

(pn
s w) 

Therefore, by condition I, the congruence xn = pn (mod 777) has no solution. 
But clearly x = p is a solution to the congruence xn = pn (mod 777) . 

The fact that condition II implies condition I follows from Lemma 8 and 
Corollary 5. 
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Abstract 

The numbers 

A{m, k, s, r) = [Vw+1E*(ga? + r)JT_n, 

where V = 1 - E"1, EJf(x) = f(x + j), u_x = ux when 0 <_ x <_ k and u_x - 0 other-
wise, (y)m - y(y - 1) .•• (y - m + 1), are the subject of this paper. Recur-
rence relations, generating functions, and certain other properties of these 
numbers are obtained. They have many similarities with the Eulerian numbers 

A 7 - JLrvm+1Fkrm1 

and give in particular (i) the number Cm,ni8 of compositions of n with exactly 
m parts, no one of which is greater than s, (ii) the number Qs,mQ<) of sets 
{ix, i2» •••» ^m) with in £{l» 2, ..., s} (repetitions allowed) and showing 
exactly k increases between adjacent elements, and (iii) the number Qs>m(r9 k) 
of those sets which have i1 = v. Also, they are related to the numbers 

G(m9 n, s, r) = -^-[kn(sx + r)m]x = Q, A = E - 1, 

used by Gould and Hopper [11] as coefficients in a generalization of the Her-
mite polynomials, and to the Euler numbers and the tangent-coefficients Tm. 
Moreover, lim s~mm\A(m9 k9 s9 su) = Amt k u9 where 

S -*• ±oo ' * 

A„.k.u = ;frrV,+1E*fa + u) m U. n 

is the Dwyer [8, 9] cumulative numbers; in particular, 

lim s~mm\A{m9 k9 s) = Am k9 A(m9 k9 s) = A(m9 k9 s9 0). 
8 +±oo 

Finally, some applications in statistics are briefly discussed. 
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1. Introduction 

A partition of a positive integer n is a collection of positive integers, 
without regard to order, whose sum is equal to n. The corresponding ordered 
collections are called "compositions" of n. The integers collected to form a 
partition (or composition) are called its "parts" (cf. MacMahon [14, Vol. I, 
p. 150] and Riordan [16, p. 124]). The compositions with exactly m parts, no 
one of which is greater than s, have generating function 

and therefore the number Cm,n, 8 of compositions of n with exactly m parts, no 
one of which is greater than s9 is given by the sum 

"•» " • • • • • - & ( - , ) ' (")(" " . - i * 0 -
where k = [(n - m)Is], the integral part of (n - m)/s. 

Compositions of this type arose in the following Montmort-Moivre problem 
(cf. Jordan [12, p. 140] and [13, p. 449]): Consider m urns each with s balls 
bearing the numbers 1, 2, ..., s. Suppose that one ball is drawn from each 
urn and let 

m 

z = E *i 
be the sum of the selected numbers. Then the probability p(n; m, s) that Z is 
equal to n is given by 

(1.2) p(n; m, s) = s~mCms n> s, n = m9 m + 1, ..., sm. 

Carlitz, Roselle, and Scoville [4] proved that the number QsymOO* of sets 
{£l5 i2> »''3 ^m} with in z {l, 2, ..., s} (repetitions allowed) and showing 
exactly k increases between adjacent elements, is given by 

d.3) Q..mW-£l-i)<(m+
1
l)(B<*-*l+m-1). 

and the number QSj m(r9 k) of those sets which have i,1 - v is given by 

d.4) 0...(r. k) = *E (-I)'(J )(S(fc " J' " i'.V + " " ')• 
The next problem is from applied statistics: Dwyer [8,9] studied the prob-

lem of computing the ordinary moments of a frequency distribution with the use 
of the cumulative totals and certain sequences of numbers. These numbers are 
the coefficients ̂ a . r of the expansion of (x + r)m into a series of factor-
ials (x + k)m, k = 0, 1, 2, ...,77?; that is, 

m 

(* + ̂  = E 4m, fe,pto +.7W - k)mlm\ 
k = o 

Using the notation u_x = ux with 0 <_ x <_ k and u_x - 0 otherwise, he proved that 
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(1.5) . A m , k , r = [V^E^Qr + r)m] r_ 0 = £ (-l)J(m + M(fc - .j +r)".. 
k 

Z 
These numbers for r = 0 reduce to the Eulerian numbers 

(1.6) A n . k - [V"+1EV]«.o = E (-^'(^ * X ) ^ " ^m' 
j-o. x J ' 

In the present paper9 starting from the problem of computing the factorial 
moments of a frequency distribution with the use of cumulative totals, we in-
troduce the numbers 

(1.7) A(jn, k, s, r) = ±-[Vm+1Ek(sx + r).]..n 

so that 
m 

(1.8) (s# + r)m = 2 ^(m> &» *»• i»)(a: + m - fe).m. 
fe = o 

These numbers have many similarities with the Eulerian numbers (cf, Carlitz 
[1]). They are related to the numbers Cmtn>8 of the title of this paper by 

Cm.n.a = A(m - 1, k - 1, 8, v + m - 1) = (-ir--\A(m - 1, fc - 1, -s,-r - 1), 

fc = [ (n - m ) / s ] , 

3? = (n - w) - s[ (n - w ) / s ] , 

and t o t h e numbers Q8tm(^9 k) by 

Q8tm(r, k) = i4{m - 1, fc - 1, s , r + m - 2) = ( - l ) 7 " " 1 ^ ^ - 1, .fc - 1, - s , - r ) , 

and t h e i r p r o p e r t i e s a r e d i s c u s s e d in S e c t i o n s 2 and 3 below. Since 

i t fo l lows t h a t 

•Sa^tfO = 4 ( ^ k - 1 , 8, s + m - 1) = ( - l ) M ( m , k; - 8 ) , 

where i4(m, /c, s) = ,4(777, k9 s, 0 ) . Section 4 is devoted to the discussion of 
certain statistical applications of the numbers A(m9 k9 s , r ) . 

2. The Composition Numbers A[m9 k, s, r) 

Let {x)mtb - x(x - b) . .. (x - mb + b) denote the generalized falling fac-
torial of degree m with increment b; the usual falling factorial of degree m 
will be denoted by ( x ) m = 0*0 m,i' The Problem of expressing the generalized 
factorial { x ) m , b in terms of the generalized factorials (x + ka)m,a9 k = 09 1, 
2, ...,m of the same degree arises in statistics in connection with the prob-
lem of expressing the generalized factorial moments in terms of the cumula-
tions (see Dwyer [8, 9] and Section 4 below). More generally, let 

m 

(2.1) (x + rb)nub = £ Cm, k, r(a9 b){x + (m - k)a)m>a. 
k=>o 
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Following Dwyer, define u^ = ux when 0 <_ x <_ k and u_x = 0 otherwise. More-
over, let Ea denote the displacement operator defined by Eafix) = fix + a) and 
Va = 1 - Ea1, the receding difference operator; when; a = 1, we write E r =• E 
and Vx E V. Then, from (2.1), we have 

(2.2) (* + rfr)m^ - IC». t , , (a,i)(a+ (w'-fe)g^ 3. 
& = 0 ' 

Since 
\amml, k = n ? 

[Vm+1E2(x + (m - W a ) B , f l ] 8 . 0 =1 
I 0 , 0 <_ fc < n or n < k <_ m, 

we g e t , from ( 2 . 2 ) 
rr~m t 

cm, k, , ( a , w = fr[va
m+1Ea

k(£^Lz*)m> 6]«-o-
These coefficients may be expressed in terms of the operators V and E and the 
usual falling factorials by using the relations 

Va"+xE*/0B) = Vm+1Ekf(ax), (ax + vb)m,b = b™ (ax + x>)„, s = alb. 
We find 

cm,k, r(a> b) = s~mA{m, k, s , r ) , s = alb, 
where 
( 2 . 3 ) Aim, k, s, r) = -~-[\Jm+1Ekjsx + r ) X . n / i c = 0, 1, . . . , w, 

" m = 0, 1, 2, . . . . 
Hence 

m 

( 2 . 4 ) fo + rb)m fc = 2 s'm4(77z, fc, s , r ) ( x + (m - k)a)m,a9 s = a/2? 
fe = o or 

m 

( 2 . 5 ) (arc + r)m = 2 ^C777' &> s » r ) ( f e + 7 7 7 - fc)w. 
fc = 0 

Using the symbolic formula 

we get, for the numbers (2.3), the explicit expression 

(2.6) A(jn,k,s,r) =' ]£<-»< (™ 1%'* r f + % 

It is easily seen that 

(2.7) Aim, k, -s, -r) = i-l)mAim, k, s , r+m- 1), 

and, also, that the numbers Aim, k, s, r) are integers when s and r are inte-
gers. Moreover, Aim, k, s, r) = 0 when k > m. 
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Remarks 2.1: As we have noted in the introduction, the number CmtntS of com-
positions of n with exactly m parts, none of which is greater than s is given 
by 

(2-8) Cmtn>s = E <-!>'(")(" ~m"f i * ) . k = [<n -m)/s]. 

Comparing (2.8) with (2.6) and using (2.1), we get the relation 

(2.9) CmtniS= A(m - 1, k9 s , v + m - 1) 

= {-l)m'1A{m - 1, k, -s9 -v - 1), r = (n - m) - s[(n - m)/s], 

which justifies the title of this section. 
Since the number Qs,m('^9 k), of sets {il9 i2* •••> ^m) with in e {l, 2, 

..., s} (repetitions allowed) and showing exactly k increases between adjacent 
elements which have ix = p, is given by (see [4]) 

(2.io) Q.,m<r, k) = j E < - i ) ' ( S ) ( a ( * " 1 ~ f _V + m ' % 
we get, by virtue of (2.6), the relation 

(2.11) Qs,m(r, k) = A(jn - 1, k - 1, s, r + m - 2) 

= (-l)ffl"1A(wi - 1, k - 1, -8, -r). 

These numbers give in particular the numbers 

k 

(2.12) Qs,m(k) = EC-U'f" .J 'X 3 ^ ~ ' V ™ ~ *) 
restriction i1 = r. \ 

,mQQ. = es,m+]_(s, k>» 

J 

of the above sets without the restriction ix = r. We have 

and hence 

(2.13) efl,m(k) = i*(m,- fc - 1, s, s + m - 1) = (-l)mA(m9 k9 -s), 

where 

(2.14) A(m, k, s) = ̂ -[V"+1Efc(ear)m]x.0 = £ (-l)'(m +. l){s{k ~ J)). 

Since 

it follows that 

£ <-< j : ) r -«+') - .;?>•>'"(•; or v+1 
and (2.6) may be rewritten as follows: 
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m + l 
A(m, k, s, r) = £ (-iy' + 1(m + l)(8^k ~ 3) + A 

_ "y* f_if+itm + l\/-s(m - fe + 1 - i) + r\ 

= m'y1(-l)i(m + 1)(8^" - k + l - i ) + m - r - l \ 

Hence 

A(w, fe, s, r) = i4(m, m - k + 1, s, wz - r - 1) + O - ^ L !! £ + 'l)(m) 

= i-D'AOn. »-*+!. -s, *) + (-1)^ » + * ̂  . 

In particular 

(2.16) A(m9 k9 s) = (-l)mA(m9 m - k + 1, -s) , 

which should be compared with the symmetric property of the Eulerian numbers 
"•m, k = "-m, m- k + \ • 

Using the relation 

(m + 2)(s(k - j) + v - m) = (sk - m + r)(mt ̂  - (8(m - k + 2) + m - r)(™ + J), 

we get9 from (2.6), the recurrence relation 

(2.17) (m + 1)4 (m + 1, k9 s9 r) 

= (sk - m + r)A(m9 k9 s9 r) + {s(m - k + 1) + m - r)A(m9 k - 1, s, r) 

with initial conditions 

4(0, 0, s, r) = 1, A(m9 0, s, r) = (*j, TW.> 0. 

From (2.5), we have 
m 

(s(k - j) + r)m = £ 4 0??, m - i9 k - j, r) (s + £)OT. 

i = 0 

Hence (2.6) may be rewritten as 
k 

A(rn,k,s,r)--i(-iy(my)(S«-f+r) 

= i^fV) £ (8 +
m

l)Mm, m - i, k-j, r) 

- f(8!i)Z:(-lW'nt W m - i , fc-j. r). 
i = 0 X A" ' J = 0 X ^ ' 
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and putting 
k 

(2.18) B(m, n, k9. .r) = £ (-lW™ t 1)A,(PI9 n, k - j9 P) 

we get 

(2.19) Mm9 k9 s, r>,- E T * * W m , W - i9 k9 P) , 
i = o \ r/n I 

and 
(2.20) B(m, n, k, r) = £ £ (-l)i + '(m + ̂  + l)^n " *>» " ̂  + * ) . 

It is clear from (2.20) that 

(2.21) B{m, n9 k9 P ) = B(m9 k9 n9 p). 

Since 

{""I 2)(my)((n-i)(k-j)+r-m) 

- <n* - m + r)(™ J ̂  + X) - (»QH - * + .2) + m - r)(m t ; 1 ) ^ + }j 

- (fcOn - „ + 2) + m - r)(m. +_ ^)(m +. X) 

+ ( < * - « + 2) On - fc + 2) - m + r)(™ t j)(j ! J). 

it follows, from (2.20), that 

(2.22) {m + l)B(m + 1, n, fc, P ) 

= (n/c - m + r)B(m9 n, fe, p) + (n{m - k + 2) + m - r)B(m9 n, 7c - 1, P) 

'"+ (fc(m - n'+ 2) + m - v)B(jn9 n - 1, ft, P) 

+ ((m - n + 2)(/H - k + 2) - m + r)B(m9 n - 1, fc - 1, P) . 

with 
B(0, 0, 0, p) == 1, £(0, 0, ft, P) = £(0, ft, 0, P ) = 0. 

Remark 2.2: Comparing (2.20) with the formula 

giving the number of permutations on m letters which have n jumps and require 
k readings (cf. [4]), we find 

(2.23) Rm(n9 ft) = B'(m9 n, ft, m - 1) = B(m9 m - n + 1, k) 

- B(rn9 n9 m - k + 1), 

where 

(2.24) B(m, n, *) E B(m, ,, 'fc, 0) = & t ^ l f * ^ * 1 ) ^ J * )((W" *><* " *>) • 
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Using the relation 

j : !.«-»'*'(" I'X" J 1)(0,"*>.<*"i0)-
rf.r+ii^r+i } \ i A 3 ) \ m ) ' 

it can be easily shown that 

(2.25) B(m, n, k)=B(m, m - n + 1, m- k + 1). 

Expanding the generalized factorial (x+ rb)m,b in terms of the generalized 
factorials (x+ka}m,a9 k = 09 1, 2, .. ., m and then these factorials in terms 
of the factorials (x+jb)m,b, j = 0, 1, 2, . . . , m, by using (2.4), we get 

m 
(x + rf>)m>ib = J ] a'mbmA(m9 m - k, alb, r) (x + ka)m,a 

fc«0 
mm 

= E E 4 .On, m -'fc, a/fc, I'Mlm, w? - j , i / a , &).'(# + jb)m b 

k - 0 j *. 0 

m m 
= £ H ^ O " , m - fe, alb, v)A{m, m - j , b/a, r)(x + jfc) . , 

j - 0 fc-0 
which implies 
(2.26) ^ ^.(w> w ~ &» a/fr* FMOW, m - j , b/a, r) = 6r i- , 

fe-o J 

with 6rj the Kronecker delta: 6rr = 1, 6rj- = 0, j ^ r. Hence, we have the 
pair of inverse relations 

(2.27) ar = Yl A(m> m - k, a/bs r)$k, $k = J2 A(m, m - k, b/a, r)ar. 

3. Generating Functions and Connection with 
Other Sequences of Numbers 

Consider first the generating function 

(3.1) Am,8,r(t) - 2 X ^ > k9 s, r)tk, 

where the summation is over all possible values of k which are 0 to m and can 
be left indefinite because A(m, k, s, v) is zero elsewhere. Then, from (2.6), 
it follows that 

(3.2) A™,«,,<*) - (1 - t)m+1 i(sk + r)tK 

In a generalization of the Hermite polynomials, Gould and Hopper [ 11 ] used 
as coefficients the numbers 

(3.3) G(m, n, s, r) = -^ £ (-1)"' { (n\ (sj + r)m , 
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which may be equivalently defined by 

G(m9 n9 s, v) = -^j[t\n (sx + r)m]x = 0. 

Using the symbolic formula 

= 0 n-0 W 

and since [Ek(sx + r)m]g;mQ = (sk + v)m9 we get 

m 

(3.4) (sk + r)m = £ £(^> n> s, v)(k)n. 
n = 0 

The generating function (3.2) may then be rewritten as 

m j 

Am,..,(*) = £ ^ ( m , n, s, r)tra(l - t)"-", 
n = 0 "<• 

so that 
(3.5) A(m9 k, s, P ) = Eo(-l)*"njf(^ I ̂ ( m ,"n, s, P ) . 

Since for r = 0 the numbers G(m9 n9 s9 r) reduce to the numbers 

C(jn9 n9 s) = -^j[kn(sx)m]x=0 

studied by the author [5, 6, 7] and also by Carlitz [2] as degenerate Stirling 
numbers, we have, in particular, 

(3.6) A(m9 k9 s) = £ (-Dk"nSf(!J I k)C(m> n> S)' 

The generating functions 

(3 .7 ) Ae,r{t, x) = £ E A(jn, k, s, r)tkxm 

m±Q k=0 

and 
(3 .8 ) As(t9 x9 y) = £ £ f ^ f a , fc, s , r)tkyrxm

9 
m= 0 r = 0 & = o 

using (3.2), may be obtained as 

(3 .9 ) * a i p ( * . . ) - d - t ) [ i + ( i - t ) g r a 

1 - £[1 + (1 - t)x]s 

(3.10) As(t9 x9 y) = (1 " *} . 
{1 - t[l + (1 - t)x]s}{l - y[l + (1 - t ) x ] } 

Since 11m A8t r(t9 x) = (1 - s x ) " 1 , we ge t 

(3 .11) Am>3i , ( 1 ) = £ i ( n , &, s , r ) = s m . 
fc = o 
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Using (2.19) and (2.21), (3.11) may be rewritten in the form 

m m + 1i . 

sm = E E r ' L )B(m, m - i + 1, k, v) 
fc = 0 i = l \ "l / 

m m+1 J . v 

- E E r ' ' >(^5 i, m - fc +1, p) 
k = 0 i = l \ m / 

= E „ " E B(m, i, m - k + 1, v). 

It is known that the Eulerian numbers Am i satisfy the relation (see [19] 
or [1]) 

£(,+i-'K 

(3-14) Am,Str(t) - E T „ "JB,,. „.<.,(*) 
and 

Therefore 
m + i 

(3 .12) . ^ Bfa , £ , fc, r) = i 4 W i i . 

The g e n e r a t i n g func t i on 
m 

(3 .13) £ m s n > 2 , ( £ ) = E B ( m , n , fc, p ) t k 

fc = o 
is connected with Am> Sj r (t) by the relations 

E (s + ^ 

(3.15) Bn, „,,(*) = ZX-D'f"} V , , . ^ ^ * ) . 
j-o \ «/ / 

Returning to (2.6), let us put r = sw. Then 

(3 .16) l im s""mM(/n, fc, s , r ) = 4m, &,«, 
S -*• ±oo 

where 
4,.*.« - [Vm+1Efefa+u)-]_n = E(-D^'(mt XW +u - j)" 

are the numbers used by Dwyer [8] for computing the ordinary moments of a fre-
quency distribution. In particulars 

(3.17) lim s-mm\A(m9 k, s) = Am k. 
S -* ± 00 ' 

Consider the function 

(3.18) Hm(t; s, r) = (1 - * ) " X , «. P(*)' 

= E £rff(m,.n, s, r)t"(l - t)" n . 
nsQ m. 

Then, using (3.3), we get 

(3.19) H(x; i, s9 r) = E#m(*; s, a?)** = (1 - t) (1 + x)r[l - t(l + a?)*]""1. 
m = 0 
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Since lim H(x/s; -1, s9 su) = E(x; u), where 
8 -*• ± <» 

(3.20) E(x; u) = Y, Em(u)xm = 2e*w/(l + ex) 
m- 0 

is the generating function of the Euler polynomials ([12, p. 309]), it follows 
that for the polynomials 

m 
Cm(u; s) = ffm(-l; s, su) = 2"m 2 (-l)k4fa> fc, 8, su) 

£ = 0 
we have 

lim s"mt>m(u9 s) = Em(u), 
S -*- ± oo 

which, on using (3.16), gives 
m 

(3.21) £ (-D^m.fc.u - 2mm\Em(u) 
k = 0 

and, in particular, 
m 

(3.22) E(-D f c ^.fc.i/2-^. 
& = o 

where Em = 2mm\Em(l/2) is the Euler number ([12, p. 300]). 
Putting u = 0 in (3.21), we get 

m 

(3-23) £(-l)"Vfc = 2'^ 
fc = 0 

where Tm = 2mm\Em{0) is the tangent-coefficient ([12, p. 298]). 

Remark 3.1: The degenerate Eulerian numbers Amtk{\) introduced by Carlitz [2, 
3] by their generating function 

(3.24) i + £ f r £ 4 m . k < x ) t * = — - — — 
m-1 m' k-1 1 - £[1 + Xx(l - t)]1/X 

are related to the numbers 

A(m9 k9 s) = i4(77?, Zc, s, 0). 

Indeed, comparing (3.24) with (3.9), we get 

A(m9 k, s) = — Amtk{s-1). 

4. Applications in Statistics 

The numbers A(m, k9 s9 r) like the Eulerian numbers Am,-k seem to have many 
applications in combinatorics and statistics. Special cases of these numbers 
have already occurred in certain combinatorial problems, as was noted in the 
introduction. In this section, we briefly discuss three applications in sta-
tistics. The first is in the computation of the factorial moments of a fre-
quency distribution with the use of cumulative totals. This method was sug-
gested by Dwyer [8, 9] for the computation of the ordinary moments, as an 
alternative to the usual elementary method and, therefore, for details, the 
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reader is referred to this work. We only note that the main advantage of this 
method is that the many multiplications involved in the usual process are re-
placed by continued addition. Let fx denote the frequency distribution and 

Cm + 1fx = C(Cmfx)9 m = 1, 2, 3, ..., Cfx ^hfj* 

the successive frequency cumulations. Then, from the successive cumulation 
theorem of Dwyer, we get9 for the factorial moments, 

k m 

(4.1) £ (ax + r)mfsx+r = £ m\A(jn, n, s, v)Cm+1fsn+I,. 
x-0 n=0 

When r = 0, i.e., when the factorial moments are measured about the smallest 
variate, (4.1) reduces to 

k m 

(4.2) Z^x)mfsx= T,m\A{m, n, s)Cm+1fsn, 
rc= 0 n = 0 

which for s = 1, i.e., when the distance between successive variates (class 
marks) is unity, gives ([8, §9]) 

k m 

(4.3) Z&)mfx = £m!il<m, n, l)Cm+1fn -mlC»i\, 
x=0 n=0 

since A(m9 m9 1) = 1, A(m9 n , l ) = 0 if n # m. 
The second statistical application of the numbers A(m9 k9 s9 r) is in the 

following problem: Let X1, X2, ..., Xm be a random sample (that is, m inde-
pendent and identically distributed random variables) from a population with 
a discrete uniform distribution 

p(n; s) = P(X = n) = s"1, n = 0, 1, 2, ..., s - 1. 

Then the probability function of the sum Zm = X
 xi may be obtained as 

i = l 

(4.4) p(n;m>S) = « - £ (-1)* (j )(» + ̂  } ~ 8') 

= s"mA(m - 1, [n/s], s, P + m - 1), 

n = sk + P, 
0 <. r < s. 

Note that the distribution function 

[w] 
F
m 0 fa) = 2 pWs; m9 s) 

n = 0 
of the sum 

m 

Wm=Y*Yi9Yi=s-1Xi9i = l,29...,m 
i = l 

approaches, for s -> oo, the distribution function 
[u] 

Fm(u). x 2(-i)^(J)(M - ' j r 
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of the sum 

m 

i = l 
of m independent continuous uniform random variables on [05 1) (Feller [10] 
and Tanny [18]). 

Since 
E(Zm) = mE(X) = m(s - l)/2, 

Var(Zm) = wVar(J) = m(s2 - 1)/125 

it follows from the central limit theorem (see, e.g., Feller [10]) that the 
sequence 

Zm - m{s - l)/2 

/m(s2 - 1)/12 

converges in distribution to the standard normal. Hence 

lim V s'mA(m - 1, k9 s9 r) = $(g), 
mJhto k = o 

(4.5) 

sw = z/m(s2 - 1)/12 + m(s - l)/2. 

and 

(4.6) lim /w(s2 - l)/12s-m4(/?2 - 1, [zm] , s, r + m - 1) = <p(z) , 
m->oo 

where <̂ (s) and <£>(s) are the density and the cumulative distribution functions 
of the standard normal. 

Finally, consider a random variable X with the logarithmic series distri-
bution 

p(k; 0) = P(X = k) = aQk/k9 k = 1, 2, ..., a"1 = -log(l - 0 ) , 0 < 0 < 1. 

Patil and Wani[15] proved the following property of the moments \im(0) = E(Xm) : 

ym(6) = a(l - QymY,c(m - 2, fc)9k+1, 
fc = o 

where the coefficients satisfy the recurrence relation 

c(m9 k) = (Zc + l)c(m - 1, Zc) + (TH - fc + l)e(w - 1, fc - 1), 
c(0, 0) = 1, <?(m, k) = 09 k > m. 

It is not difficult to see that 

e(m, fc) = Am+Uk+1 

w i t h t h e l a t t e r a E u l e r i a n number. Hence 

y n ( 0 ) = a ( l - 0)~mtAm-i k®k = a ^ " ^ " X - i W -
fc = 0 

A similar result can be obtained for the generalized factorial moments 
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y ( I B . f c ) ( e ) =E[(x)mtb] 

in terms of the numbers AQn, k5 s, r) . Indeed , we have 

y<»;i) (©) = a E(fe)W f ie f c / fe = £ £ (fc - i ) W i J 

as - m + 1 2 (*fc - D^e*, * = zr1, 
fc-l 

and s i n c e , by (2 .17) and ( 2 . 1 8 ) , 
00 

£ ( s f c + P ) ^ * * = (/n - 1)1(1 - tTmAm_ltStV(t), 
k - l 

i t fo l lows t h a t 

(4-7) y ( n , . 6 ) (6) = a s - r a + 1 ( l - BYm (m - 1) lAm_lt s> . , ( 6 ) , 

which, in p a r t i c u l a r , g ive s 

y ( m . D (9) = a ( l - e)"w(m - 1) ! 5>(TTZ - 1. &» 1, - 1 ) 9 * 
k = l 

= a(m - 1) 10^(1 - Qym . 
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Introduction 

It may surprise some people to find that the name "golden section," or, 
more precisely, goldener Schnitt, for the division of a line AB at a point C 
such that AB • CB =-AC2, seems to appear in print for the first time in 1835 in 
the book Die reine Elementar-Mathematik by Martin Ohm, the younger brother of 
the physicist Georg Simon Ohm. By 1849, it had reached the title of a book: 
Der allgemeine goldene Schnitt und sein Zusammenhang mit der harminischen 
Theilung by A. Wiegang. The first use in English appears to have been in the 
ninth edition of the Encyclopaedia Britannica (1875), in an article on Aesthe-
tics by James Sully, in which he refers to the "interesting experimental en-
quiry . . . instituted by Fechner into the alleged superiority of Tthe golden 
section' as a visible proportion. Zeising, the author of this theory, asserts 
that the most pleasing division of a line, say in a cross, is the golden sec-
tion . . . ." The first English use in a purely mathematical context appears 
to be in G. Chrystal's Introduction to Algebra (1898). 

The question of when the name first appeared, in any language, was raised 
by G. Sarton [11] in 1951, who specifically asked if any medieval references 
are known. The Oxford English Dictionary extends Sarton1s list of names and 
references and, by implication, answers this question in the negative. (The 
1933 edition of the OED is a reissue of the New English Dictionary, which ap-
peared in parts between 1897 and 1928, together with a Supplement. The main 
dictionary entry "Golden," in a volume which appeared in 1900, makes no ref-
erence to the golden section, though it does cite mathematical references that 
will be noted later; the entry "Section" (1910) contains a reference to "me-
dial section" (Leslie, Elementary Geometry and Plane Trigonometry, fourth edi-
tion, 1820) and to Chrystal's use of "golden section" noted above. The 1933 
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Supplement does not appear to contain any further references. A further Sup-
plement, which started publication in 1972, has a long and detailed entry un-
der "Golden" which is clearly based on and extends, but does not answer, Sar-
ton's question.) Among the other names are: the Italian divina proportione 
(Luca Pacioli, in his book of that name, published in Venice in 1509) or Latin 
proportio divina (in a letter from Johannes Kepler to Joachim Tanck on May 12, 
1608; then in Keplerfs book De Nive Sexangula, 1611); the golden medial; the 
medial section; and the golden mean. This last term "golden mean" is credited 
by the OED to DTArcy W. Thompson. (Further complications! The OED—1972 Sup-
plement entry "Golden"—cites p. 643 of On Growth and Form [12]: "This cele-
brated series, which . . . is closely connected with the Seotio aurea or Gol-
den Mean, is commonly called the Fibonacci series." The reference is to the 
now rare first edition of 1917; the second edition has an expanded and elabo-
rately erudite version of this footnote on pp. 923 and 924, which starts dif-
ferently: "This celebrated series corresponds to the continued fraction 1 + 
1/1+ 1/1+ etc., [though Thompson, who uses a slightly different layout of the 
fraction, omits the first term in both versions of the footnote] and converges 
to 1.618..., the numerical equivalent of the seotio divina, or 'Golden Mean.'" 
This same dictionary entry later assigns the first use of the Latinized seotio 
aurea to J. Helemes, in 1844, in a heading in the Arohiv fur Mathematik und 
Physik, IV, 15: uEine . . . Au fid sung der seotio aurea.11) Unfortunately, the 
same expression "golden mean" is usually applied to the Aristotelian principle 
of moderation: avoid extremes. Other quite different things with similar names 
are the golden rule (the rule of three; see the OED 1933 edition entry "Gol-
den" for references) and the golden number (the astronomical index of Meton's 
lunar cycle of nineteen years). Also E. T. Bell, in "The Golden and Platinum 
Proportions" [2], refers to "the so-called golden proportion 6:9::8:12," but I 
cannot decide whether this article is meant as a serious contribution or not. 
If confusion and misapprehension were confined to nomenclature, that would, it 
is evident, be bad enough; alas, more is to be described, after a paragraph of 
sanity. 

The mathematical theory of the golden section can be found in many places. 
I would cite' Chapter 11 of H. S. M. Coxeter's Introduction to Geometry [4] as 
both the best and most accessible reference, and further developments can be 
found in other of Coxeter's works. The briefest acquaintance with any treat-
ment of the Fibonacci series will indicate why many accounts of that topic 
will tend to the golden section, and The Fibonacci^Q^arterly is a rich source 
of articles and references on this subject. That there appears to be a con-
nection between the Fibonacci numbers (and hence the golden section) and phyl-
lotaxis (i.e., the arrangement of leaves on a stem, scales on a pine cone, 
florets on a sunflower, infloresences on a cauliflower, etc.) is an old and 
tantalizing observation. The subject is introduced in Coxeter [4], a brief 
historical survey is included in a comprehensive paper by Adler [1], and Cox-
eter [5] gives a short and authoritative statement. 

The application of the golden section to other fields has, however, cre-
ated a vast and generally romantic or unreliable literature. For instance, 
the application to aesthetics is, by its nature, subjective and controversial; 
a good brief survey with references is given in Wittkower [ 13] . For a compre-
hensive example of the genre, see the rival explanation and critical view of 
the role of the golden section in literature, art, and architecture in Brunes, 
The Seorets of Ancient Geometry [3]. (Lest I be incorrectly understood to be 
dismissing the scientific and experimental study of aesthetics as worthless, 
let me cite H. L. F. von Helmhlotz's On the Sensations of Tone [10] as an 
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impressively successful example of this type of investigation, the very acme 
of science, mathematics, scholarship, and sensibility. In particular this book 
contains the first explanation of the ancient Greek observation that harmony 
seems to be connected with small integral ratios. But it is precisely Helm-
holtzfs masterly blend of acoustics, physiology, physics, and mathematics that 
establishes firmly a standard which so few other writers on scientific aesthe-
tice approach.) 

With this outline of the recent history of the golden section behind us, 
my objective here is to treat the construction as it is described in Euclidfs 
Elements under the name of "the line divided in extreme and mean ratio" and to 
develop and explore beyond the propositions we find proved there. My covert 
purpose is historical: to pose implicitly the question of whether the general-
izations to be described here might have had any part, now lost, in the devel-
opment of early Greek mathematics. To isolate this discussion of the ancient 
period from the later convoluted ramifications sketched in this introduction, 
I would like to finish with what is, I hope, an accurate description of the 
surviving evidence about the Greek period: the propositions to be found in 
Euclid's Elements constitute the only direct, explicit, and unambiguous sur-
viving references to the construction in early Greek mathematics, philosophy, 
and literature; and the only other surviving Greek references are to be found 
in mathematical contexts, in Ptolemy's Syntaxis^ Pappus ' Colleotio, Hypsicles1 

"Book XIV" of the Elements3 and an anonymous Scholion on Book II of the Ele-
ments. 
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The Definition in Euclid's Elements 

The golden ratio is defined at the beginning of Book VI of the Elements'. 

A straight line is said to have been cut in extreme and mean ratio 
when, as the whole line is to the greater segment, so is the greater 
to the less. 

Book VI applies the abstract proportion theory of Book V to geometrical magni-
tudes, and Proposition 16 describes how to manipulate the proportion in the 
definition above into a geometrical statement: 

If four straight lines be proportional, the rectangle contained by 
the extremes is equal to the rectangle contained by the means; and 
if the rectangle contained by the extremes is equal to the rectangle 
contained by the means, the four straight lines will be proportional. 

Otherwise said, if a, b, c, and d are four lines such that aibiia:d9 then rec-
tangle (a, d) = rectangle (£>, o) and conversely. Hence, if C divides the line 
AB in the golden section, the rectangle with sides AB and BC is equal to the 
square with side AC. 
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This is meant literally. An elaborate 
theory9 now generally called the "applica-
tion of areas," is developed in the Elements, 
and this describes how, for example, to 
manipulate any rectilinear plane area into 
another area equal to the original area and 
similar to a third figure. Our arithmeti-
cal definition of area ("base X height") is 
not needed and is never used; indeed, this 
theory of application of areas, together 
with the Book V theory of proportions, pro-
vides a completely adequate alternative to 
the construction of the real numbers and 
their use in plane rectilinear geometry. It merits considerable respect, and 
gets it: the same (probably equally unreliable) story is found about Pythago-
ras sacrificing an ox to the discovery of a result on the application of areas 
as is also told about the theorem on right angle triangles. 

The golden section is constructed in Proposition 30: 

To cut a given finite straight line in extreme and mean ratio, 

and the method used there involves an elaboration of the theory called "ap-
plication with excess." Fortunately, an easier construction is possible and 
has already been given in Book II; and the manuscripts that we possess of the 
Elements contain a second, possibly interpolated, proof of VI, 30, referring 
back to this earlier construction. Using this method, it is possible to by-
pass the use of proportion theory, and the elaborations of the theory of ap-
plication of areas, and to give a direct definition and construction of the 
golden section. This is now we shall proceed. 

The Construction of the Line Divided in Extreme and Mean Ratio, 

and Its Generalization 

Book II, Proposition 11, describes how: 

To cut a given straight line so that the rectangle contained by 
the whole and one of the segments is equal to the square on the 
remaining segment, 

and we shall hereinafter adopt this as the definition of the extreme and mean 
ratio. The construction is straightforward: 

To construct the required point C on AB 9 draw the 
square ABDE; take F to be the midpoint of AE, and G on 
EA produced such that FG = FB. If ACHG is the square 
with side AG9 then C cuts AB in mean and extreme ratio. 

The verification of this is easy: 

FG 2 = (AF + AG) 2 

= AF2 + AC1 + 1AF • AC (Since AG = AC.) 
But FG1 FBZ AF2 + AB2. (By Pythagorasf theorem.) 
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Therefore, AC1 + 2AF • AG ?= AB1. 
Subtract IKE • AG = AE • AC from both sides, 
then AC1 = vl£ • CB = CS • B£>. 

Q.E.F. 

This proof can be read as if AF • AC 9 for example, represented the product 
of two numbers, the lengths of AE and AC; or the purist can interpret AE • AC 
as a rectangle with sides equal to the lines AE and AC and, using some obvi-
ous manipulations, check that the proof makes sense and is correct. This lat-
ter method is in the spirit of the techniques of application of areas, though 
none of the subtle manipulations of that theory are needed. 

It is clear that it must be the rectangle contained by the whole and the 
lesser* segment that will be equal to the square on the greater segment, since 
the square on the lesser segment will fit inside the rectangle contained by 
the whole and the greater segment and so it has smaller area. (The common no-
tions at the beginning of Book I set out what are, in effect, the axioms of a 
theory of equality and inequality of area or, more strictly, of content; and 
Common Notion 5 states: The whole is greater than the part.) 

We now describe the generalization that we call the nth order extreme and 
mean patio, abbreviated to the noem ratio. There is one such construction for 
each integer n, and the golden section corresponds to the case n - 1; the im-
plications of the construction are somewhat simpler for the case of even val̂ -
ues of n, and therefore we shall always illustrate the case of n = 3; and we 
shall shortly introduce and use a consistent and general notation and termin-
ology to describe the resulting configuration. 

Start with the square ABDE on the given line 
AB, and on AE produced as necessary, take points 
F9 G9 H9-as shown, with kAB = AE = EE = EG = GH9 

etc.; then these points will be used in the con-
struction of the 1st, 2nd, 3rd, 4th, etc. , extreme 
and mean ratios. We always illustrate the case 
of n- 3 and so, here, work from the point G. On 
EA produced, take J such that GJ = GB; then the 
square AJKCi defines the point C1 dividing AB in 
the 3rd extreme and mean ratio. -1st 

2nd E 

3rd G 

4th H 
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The Definition and Properties of the Noem Ratio 

We start with the basic defining property of the generalization, and show 
that it is possessed by our constructed point. 

Definition: The point C1 is said to divide AB in the noem ratio (read: nth-
order extreme and mean ratio) if, taking points C19 ..., Cn-i> Cn on AB such 
that 

j l _j I l_ 
A C1 C„.x Cn B 

ACX = 0^2 = ,• • • = Cn_1Cn , then Cn lies between A and B and AB • CnB = AC\. 

Note that the latter condition implies that CnB is less than AC1; it will 
be called the ''lesser segment" of the noem ratio. The greater segment of the 
golden ratio generalizes two ways: to ACl9 which we call the initial segment 
of the noem ratio; and to ACn, which we again call the greater segment of the 
noem ratio. Care must be exercised in generalizing the results on the golden 
section to make the appropriate choice. As remarked earlier, we shall always 
illustrate the case of n = 3, and will always use the same letters to label 
the points, calling the three division points C19 Cn-l9Cn9 so that their roles 
will be clear. Proofs will be given for the general case, sometimes referring 
to a phantom point C2 and adding a few dots "+ ••• + ." 

Proposition: The point C19 described in the construction, divides AB in the 
noem ratio* 

Proof: The figure illustrates the construction 
for the case n = 3 . The proof is a straightforward 
generalization of the proof given in the case n= 1, 
and we can even use the same letters to identify the 
vertices of the* figure. 

As before, 

FG2 = (AF + AG)2 

• = AF2 + AC\ + 2AF • ACX. 
But FG2 = FB2 = AF2 + AB2. 
Therefore, AC\ + 1AF • Ad = AB2. 
But 2AF • AC1 = nAE • ACX = AE • ACn . 

(since AF = jAE9 and nAC1 = ACn\ 

Hence ACn < AB and, subtracting AE • ACn from 
both sides, we see that AC\ = AB • CnB. Q.E.F. 

Book XIII of Euclid's Elements contains the details of the construction of 
the five regular "Platonic" solids, and a proof that these are the only regu-
lar solids; but it contains a lot more material besides that. In particular, 
it starts with six propositions on the extreme and mean ratio, together with 
alternative proofs of these results illustrating a method of "analysis and 
synthesis." These propositions follow on in the style of Book II—-in particu-
lar, they do not explicitly need to use any more than the rudiments of the 
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theory of application of areas—and they can easily be generalized to apply 
to the noem ratios. We now alternate the enunciations of these Euclidean 
propositions with their generalizations, interposing some general remarks. 
(Later propositions of Book XIII describe relationships between the extreme 
and mean ratio and pentagons, hexagons, decagons, icosahedra, and dodecahedra; 
we shall not consider them here.) 

XIII, Proposition 1. If a straight line be cut in extreme and 
mean ratio, the square on the greater segment added to half of 
the whole is five times the square on the half. 

Paraphrase of Euclid's Proof: 

If AB is cut in extreme and mean ratio at C, 
and DA = h&B, then we prove CD2 = 5AD2. 

Draw the squares on DC and AB, and complete 
the figure as shown. (In addition to the Eucli-
dean labelling of the vertices, we have also la-
belled the regions of the figure.) 

We know that AB • CB = AC1 (Definition of mean 
and extreme ratio) 

i.e., 

and 

i.e., 

hence 

Adding AD2 

squares, 

AB 'AC = 2AD- AC (Since 
AB 

IS, 

D*-

"71 
V 

2AD) 
R — ZO i — *-> i "I" J 2 J 

P + R = Q + S± + S2. 

JP, and assembling the result into 

DC2 = AB2 + AD2. 

But AB2 = kAD2 , so DC2 5 AD2. Q.E.D. 

Remark: Our way, today, of considering the golden ratio is almost always to 
identify it with the real number ^(/5+ 1); this and the following propositions 
represent the closest approach we find in surviving Greek texts to this eval-
uation. For instance, this proposition implies that if AB = 2, then CD = /5 
(i.e., the side of a square of area equal to the rectangle with sides AB and 
5AB) so AC = /5 - 1, and the ratio is 2: (A - 1) [= ̂ (/5 + 1):!]. 

Proposition 1': If a straight line be cut in the noem ratio, the square on the 
initial segment added to n times half of the whole is n2 + 4 times the square 
on the half. 

Remark: It is standard Euclidean practice to handle such a general proof by 
choosing a particular small value of n, typically n = 2, 3, or 4. The figures 
for our proofs differ very slightly according as n is even or odd (a conse-
quence of the occurrence of halves in the construction), with the case of even 
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n being slightly simpler. It is also standard Euclidean practice when there 
are several different cases to a proposition only to consider the most compli-
cated one. Therefore, our choice of n = 3 is in line with the Euclidean pro-
cedure. We shall9 however, use a general labelling system, writing C19 Cn_l9 
Cn9 rather than C±, Cz> C3, and develop further the practice of labelling re-
gions of the figure, using letters P, Q, R, etc., and suffixing to denote equal 
regions, so P1 = P2 = P3 etc. Euclidean practice appears to be to label only 
the vertices of the figure, working through the alphabet strictly in order of 
occurrence in the setting-out and construction of the figure. 

A final point in which our enunciation differs from Euclidean practice is 
in referring to the chosen parameter n. A more idiomatic expression, as ren-
dered in English, might read: 

Proposition 1": If a straight line be cut in the general extreme and mean ra-
tio to some number, the square on the initial segment added to that number of 
segments each equal to half of the whole is the square of that number increased 
by four times the square on the half. 

Purists might like to try a similar rephrasing of later generalizations! 

Proof: If AB is cut in the noem ratio at C19 and DnA = -~AB9 then we prove 
that DnCl = (n2 + 4)4P2. 

Draw the squares on ~DnC\ and AB9 and complete the figure as shown: 

S* 

^1 Cn-1 Cn 

•Vn D n _ x D ± A 

We know t h a t AB • CnB = AC\ ( D e f i n i t i o n of t h e noem r a t i o ) 
i . e . , P = Q9 

and AB • AC1 = 2AD1 • AC± (S ince AB = Z4PX) 
i . e . , R = 2S19 
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and hence, P + nR = Q + 2nS1. 

Adding AD2 = n2T and assembling the result into squares, we get 

DnC\ = AB2 + n2T 
= (n2 + 4)T (Since AB2 = 4T) 
= (n2 + k)AD\. 

Q.E.D. 

The next propositions give the converses to these results. We start with 
Euclid's enunciation: 

XIII, Proposition 2. If the square on a straight line be five 
times the square on a segment of it, then, when the double of 
the said segment is cut in extreme and mean ratio, the greater 
segment is the remaining part of the original straight line. 

The Euclidean practice of never referring to a particular figure can make 
the enunciations of propositions very cumbersome, and these propositions, to-
gether with the propositions of Book II contain some particularly awkward ex-
amples. In these cases, it is best to ignore the enunciation and proceed 
directly into Euclid's proof of the proposition, where the setting-out will 
give a more accessible explanation of the result. In this case we find, par-
aphrasing and adjusting the labelling to accord with our convention, that if 
C and B are taken on a line DA produced with DC2 = 5DA2 and AB = WA9 then C 
cuts AB in the extreme and mean ratio with AC the greater segment. 

-L, L , J i 
D A C B 

Proposition 2': If a line DnA is divided equally into 

and C\ and B are taken on DnA produced with 

DnCl = (n2 + 4)Z?nD*_1 and AB = ~pnA.= 2DnDn_19 

then C-L cuts AB in the noem ratio with AC1 the initial segment. 

J L _ I I I I I _ L 
Dn Z?n-1- D1 A Cx Cn.x Cn B 

Proof: For both propositions we can construct the same figures as for the 
preceding propositions and then read the previous arguments backwards. Q.E.D. 

XIII, Proposition 3. If a straight line be cut in extreme and 
mean ratio, the square on the lesser segment added to half of 
the greater segment is five times the square on half of the 
greater segment. 
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Proposition 3': If Cx cuts AB in the noem ratio, and ADn = ^AC1 (as shown), 
then DnB2 = (n2 + b)AD\i i.e., the square on (the lesser segment CnB added to 
half of the greater segment ACn) is equal to (n2 + 4) times the square on (half 
of the initial segment AC±). 

Proof: Construct the figure shown, 
where A9 B9 Cl9 Cn.l9 Cn are as usual, 
and AD1 = D ^ ^ 

First observe that 

DnCn = ACn -ADn 

- nACi - nADj, 

= nAD1 (S ince AC-L 

= ADn. 

Hence, DnB2 = Q + R1: + S 

= Q + i?2 •••+ 5 

24Z?!) 

p 
— — h - 1 

* 1 

s 

^_ {— , 

s 

R2\ 

D, C\ n-l 

+ ACX (Since C1 divides AB in the noem ratio.) 

Cn 

= (n2, + 4)4£>2. (Since g = £nC2 = n2AD{ and 4CX = 24Z?X.) Q.E.D. 

XIII, Proposition 4. If a straight line be cut in extreme and 
mean ratio, the square on the whole and the square on the les-
ser segment together are triple of the square on the greater 
segment. 

Proposition 41: Let AB be cut in the noem ratio at C± , then 

AB2 + CnB2 = (n2 + 2)AC\9 

i.e., the square on the whole and the 
square on the lesser segment together 
are (n2 + 2) times the square on the 
initial segment. 

Proof: We have that CnB • AB = AC\, 
i.e., Q1 + R~P. 
Hence, + R + + i?= 2P. 

Adding AC2 = n2P to each side, and 
assembling into squares, we see that 
AB2 + CnB2 = (n2 + 2)ACl> Q.E.D. 

# 2 

P 

1 1 _J 

R 

Qi\ 
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XIII, Proposition 5. If a straight line be cut in extreme and 
mean ratio, and there be added to it a straight line equal to 
the greater segment, the whole straight line has been cut in 
mean and extreme ratio, and the original straight line is the 
greater segment. 

Proposition 5': If C± cuts AB in the noem ratio, and 
duced with AnB = nAB, and D on BAn produced with DAn = 
the noem ratio by A. 

An is taken on BA pro-
ACi , then DB is cut in 

Note: In the Euclidean proposition, n = 1 and An = A; therefore, there is no 
need to mention the first step of constructing the point An* After this step 
the generalization states that, if there be added to AnB a line equal to the 
initial segment, the whole BD has then been cut in the noem ratio, with the 
line BAn being the greater segment, and so the original line BA the initial 
segment. 

Proof: Complete the figure as shown; 
we want to show that DAn • DB = AB^ Now, 

and 
DAn • DA = P + Q1 + 

Jn-i + «i + R 

and, since C1 cuts AB in the noem ratio, 

AB • CnB 
i.e. , P = R. 

ACf, 

Hence DAn • DB = AB2 

D 
A, A 

-A, 
Ci 

c 

~TR 

Cn 

XIII, Proposition 6. If a rational straight line be cut in ex-
treme and mean ratio, each of the segments is the irrational 
straight line calleid apotome. 

This result, together with its proof, generalizes directly to the noem 
ratio, but an explanation of what it means depends on a knowledge of the long 
and difficult Book X. It is perhaps worth noting that Euclid uses the words 
"rational" and "irrational" here in completely different sense from our modern 
usage: a short, though oversimplified explanation is that when a unit line p 

has been chosen, then anything of the form /jK-• p (where p and q are integers) 
is called rational; anything not of that form is an irrational; and an apotome 
is an irrational line that can be expressed as a difference of two rational 

lines, p - / l 
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Ratio in Eudlid's Elements 

It is a curious and remarkable fact that ratio is not defined either in 
Eudlid's Elements, or anywhere else in the surviving corpus of Greek mathema-
tics. All that we have is a vague description of the word at Book V, Defini-
tion 3: 

A ratio is a sort of relation in respect of size 
between two magnitudes of the same kind. 

What is defined (at Book V, Definition 5) is proportion, which is a relation 
that may or may not hold among four magnitudes, aibiioid; and we can think of 
it, and appear to be encouraged in this by Euclid, in terms of the equality of 
two "ratios." An examination of the scanty surviving evidence of pre-Eudlidean 
mathematics, and a reinterpretation of some of the books of the Elements has 
led me to suggest that ratio might have been defined, in the period before the 
development of the abstract proportion theory that we find in Book V of the 
Elements, by a process based on the "Euclidean" subtraction algorithm. (Actu-
ally, what little evidence we have indicates that the person who realized the 
importance of the procedure might have been Theaetetus, a colleague and friend 
of Plato, so the "Theaetetan subtraction algorism" might be a more appropriate 
name; here, I have also corrected what the OED calls a "pseudo-etymological 
perversion. . . in which algorithm is learnedly confused with Greek apiOyos.") 
Let me illustrate this by describing the operation of the procedure on two 
lines a0 and a1. Suppose that a1 goes into aQ some number n0 of times, leav-
ing a remainder a2 less than a1; and then a2 goes into a± some number nx of 
times, leaving a remainder a3; etc. Then the ratio aQia will be defined by 
the sequence of integers [n0, n19 n2, . . . ] . 

If, at any stage, a remainder is zero, the process terminates, and this is 
characteristic of commensurable ratios. Among incommensurable ratios, with 
nonterminating expansions, the simplest will be the ratio in which, at each 
step, the smaller magnitude goes once into the larger magnitude, leaving a re-
mainder for the next step, thus giving the ratio [1, 1, 1, . . . ] . This is the 
golden ratio, as can immediately be deduced from the figure of the regular pen-
tagon of which the diagonals, which form an inscribed pentagon, cut each other 
in the golden ratio (this is explicitly proved at XIII, 8, but the result is 
implicit in the construction of the pentagon given at IV, 11); or it can eas-
ily be deduced from the defining property of the ratio. What we have been 
constructing here are the next simplest incommensurable ratios, of the form 
[n, n, n, . . . ] , in which, at each stage, the smaller magnitude goes n times 
with a remainder into the larger magnitude. By using a bit of algebra we can 
easily work out the numerical value 9 of this ratio, since 

e = n + FTT = n + e' 
n + . . . 

so 92 - n6 - 1 = 0, and, taking the pos i t ive root , 
6 = kW(n2 + 4) + n). 

[Alternatively, we can read off from the construction that 

6 = AB/AC1 = 2/(/(n2 4- 4) - n) = hW(n2 + 4 ) + n).] 
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This explains the occurrence of the number 5, generalizing to n2 + 4, the 
halves, and the addition and subtraction of segments in the propositions that 
we have been proving. 

It is possible to extend the construction, and thus describe a procedure 
for constructing any ratio that eventually becomes periodic, though the longer 
the period, the more involved becomes a perliminary calculation of two param-
eters needed in the construction. (One of these parameters describes the lo-
cation of the initial point on the left-hand edge of the square on AB, in our 
diagram; the other describes the position of an auxiliary point Br on AB; the 
construction then continues from these two points as before.) Further details 
of these constructions, together with details of the historical and mathemati-
cal ideas that fill out, explain, and set in context these remarks, are given 
in the papers [7], [8], and [9]. 

I do not know whether any of the noem ratios, with n >_ 3, occur in any 
regular or semiregular figure, generalizing the appearance of the golden sec-
tion in the pentagon and other figures, and the ratio [1, 2, 2, 2, ...] of the 
diagonal and side of a square. 
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A Golden Triangle is a triangle with two of its sides in the ratio (J>:1, 
where <f> is the Fibonacci Ratio, i.e., (J> = ^(1 + /J) ^ 1.618. Let AABC be a 
triangle whose sides are a,b, and o and let a/b = k > 1. Bicknell and Hoggatt 
[1] have shown that (1) a triangle with a side equal to b can be removed from 

AABC to leave a triangle similar to AABC if and only if k = cj), and (2) a tri-
angle similar to AABC can be removed from AABC to leave a triangle such that 
the ratios of the areas of AABC and the triangle remaining is k if and only if 
& = <(>. 

Unlike the Golden Rectangle whose adjacent sides are in the ratio cj>:l (or 
l:cj)), the Golden Triangle does not have a single shape. The diagonal of a Gol-
den Rectangle divides it into two Golden Triangles whose sides are in the ra-
tio 11cj):/cj)2 + 1. The most celebrated Golden Triangle, which can be found in 
the regular pentagon and regular decagon, has angles of 36° , 72° , and 72°  and 
sides in the ratio 1K p : ^ . In general, Bicknell and Hoggatt demonstrated that 
a Golden Triangle can be constructed with sides in the ratio l:cj):c7, where (J)"1 

< G < cj)2. Figure 1, adapted from their presentation, shows Golden Triangle 
CGH. Line GH is constructed to be of length r$ (r > 0) and line CG to be of 
length rcj)2. Line CG is twice divided in the Golden Section by points E and D, 
with CE = DG - v and ED = r/§. A Golden Triangle is formed whenever H is a 
point on the circle whose center is G and whose radius is EG. Line DH produces 
ADGH ~~ ACGH, and ACDH whose area is 1/cf) times the area of ACGH. In general, 
ACDH is not similar to ACGH. Nonetheless, ACDH is also a Golden Triangle, as 
CH/DH = <f> [ 1 ] . 

The present paper will explore the consequences of successively partition-
ing Golden Triangles. To begin, let us show that ACDH can be partitioned into 
two triangles, one similar to itself and the other having an area 1/cf) times 
its own area. If line DJ is drawn parallel to line GH, one can readily veri-
fy that ADHJ is similar to ACDH. (Alternatively, we could have chosen point 
J so that CH/CJ = cj). Lines DJ and GH would then be parallel, because CH/CJ = 
CG/CD.) We now need to show that the ratio of the area of ACDH to the area of 
ACDJ is cj). If we designate the area of ACGH by S, the area of ACDH is S/$ 
[1]. Since DJ is parallel to GH, ACDJ ~ ACGH. The ratio CG/CD = <|>, hence the 
area of ACDJ is S/$2. Accordingly, the ratio of ACDH to ACDJ is S/<$> divided 
by S/$2, or cj). Since 5/cJ) - 5/cj)2 = S/$3 , we find that the area of ADHJ is S/cJ)3. 

We can note several other relationships. Two additional Golden Triangles, 
ACDJ and ADHJ, are produced so that ACGH is partitioned into three mutually 
exclusive Golden Triangles. Moreover, ACDJ is congruent to ADGH. They are 
similar, as both are similar to ACGH and both have areas equal to 5/cJ)2. 

Moving beyond the Bicknell-Hoggatt demonstration and its immediate impli-
cations, we can show how successive partitions of Golden Triangles generate 
Fibonacci sequences. Let us repeat the above partitioning, subdividing all of 
the larger triangles produced in the previous partition. The partitions can 
be carried out in a manner analogous to the way in which ACDH was partitioned. 

159 
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^ GH DH DG DJ HJ 

a = tDCH = tDHG = L.KDJ 

hCDJ = LDGH 

FIGURE 2. The General Golden Triangle 

For example, ACDJ can be split into two Golden Triangles by a line through 
point J parallel to ED. The resultant line is JE, which has a length equal to 
DH/$ and divides line CD in the Golden Section. As we proceed, the number of 
triangles and their areas are as follows: 

Partition 
Number 

(n) 

0 

1 

2 

3 

4 

5 

Fibonacci 
Number 
(F ) 

1 

1 

2 

3 

5 

Number 
of 

Triangles 

1 

2 

3 

5 

8 

13 

Area of Triangles 

S/<f>, Sl^1 

S/cf)2, S/cf)2, S/cf)3 

S/<$>\ S/cj)3, S/$\ S/cj)\ S/^ 

S/$k (5 t r i a n g l e s ) , S/($>5 (3 t r i ang les ) 
S/§5 (8 t r i a n g l e s ) , S/$6 (5 t r i angles ) 

Sl§n (Fn+l t r i a n g l e s ) , S/$n+1 (Fn t r i angles ) 
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The total number of triangles and the number of larger and smaller triangles 
increase in Fibonacci sequence. Figure 2 shows the five triangles produced by 
the third partition. The eight triangles produced by the fourth partition re-
sult from subdividing the three larger triangles in the figure. Because par-
titioning produced triangles whose areas, relative to the area of the parti-
tioned triangle, are l/(j> and l/(j)2, the pattern is perpetuated. 

S = Area kCGH 

ACEJ ~ kDHJ ~ kDHK 

bDEJ = kDGK 

FIGURE 2. The Partition of a Golden Triangle into 
Five Golden Triangles 

By a repetition of the earlier demonstrations, it can be seen that every 
triangle that results from the partitioning is similar to one of the two Gol-
den Triangles produced by the first partition (i.e., the partition effected by 
line DE), and that all triangles of the same area are congruent. Every trian-
gle has an area equal to S/fy'1, for some integer i. For triangles similar to 
ACGH9 i, is even, while for triangles similar to &CDH9 i is odd. Correspond-
ing sides of triangles with areas S/<^i and 5/(Ĵ  + 2 are in the ratio <\>:1. The 
total area of the larger triangles relative to the total area of the smaller 
is §Fn+1/Fn after the nth partition, and that ratio approaches (j)2 as n becomes 
large. 

Each partition illustrates the equation for powers of (J), i.e., 

(1) V*-Fn$+Fn_x. 

Dividing (1) through by cf)n, we have 
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which expresses the area of a unit Golden Triangle as the sum of the areas of 
partitioned triangles. For example, with n = 4, we have the situation before 
the fourth partition, shown, in Figure 2, where 

(3) 

Multiplying (3) by $** IS gives 

(4) 

a - 3S , 2S 
6 " IF + TV* 

3<|> + 2. 

Let us move from the general case to the special case where the two Golden 
Triangles formed by the first partition are similar to &CGE, and hence to one 
another. In that case, the triangles must be "Fibonacci Right Triangles," with 
sides in the ratio (J):c()3/2:(j)2. To demonstrate that, consider triangles CDE and 
DGE in Figure 1. From (1) we know LDCH = LDEG. If triangles CDH and CGH are 
similar, LCED must equal L.DGE because i-CED + LCEG. Since ACDE ~ M)GE and we 
have established equalities between two of their three angles, we must have 
LCDH = LGDH. A S LCDE and LGDE sum to 180° , both of those angles equal 90°  and 
line BE is an altitude. With LCEG = LCED + L.DEG and LDEG = LDCE, we have LCEG = 
L.CED + tDCE. In right triangle CDE, L.CED and L.DCE sum to 90° , hence i^CEG must 
be 90° . As Figure 1 was constructed with GE = rcj> and CG - r(j)2, applying the 
Pythagorean Theorem yields r2$h = v2§2 + CE2, and thus we find CE = P(J)3/2. 

The Fibonacci Right Triangle has been examined by a number of writers. 
Ghyka [2] identified it as one of the three most significant nonequilateral 
triangles. He noted that it was sometimes called the "Great Pyramid" triangle 
because its proportions are found in the Great Pyramid of Cheops, or the tri-
angle of Price, after W. A. Price, who proved that it is the only right trian-
gle whose sides are in geometric progression (i.e., if the sides of a triangle 
are 1, k9 and k2, k = /cjT is the only positive real solution that satisfies the 
Pythagorean equation 1 + k2 = kh). Hoggatt [3] noted that the altitude of a 
Fibonacci Right Triangle produced two Fibonacci Right Triangles that were 
"five parts congruent," that is, were similar and had two (but not three) sides 
of equal length. The Fibonacci Right Triangle is related to mean values, in 
that the harmonic, geometric, and arithmetic means of two positive numbers form 
a right triangle (the Fibonacci Right Triangle) if and only if those numbers 
are in the ratio (J)3:l [4]. In successive partitions of Fibonacci Right Tri-
angles, all line segments are in Fibonacci proportions, as they are all mul-
tiples of (j)i/2, with i an integer [5]. A multiply partitioned Fibonacci Right 
Triangle thus presents a striking geometric pattern. An example is given in 
Figure 3, which shows the 13 Fibonacci Right Triangles that result from five 
partitions of the original triangle. 

FIGURE 3. Five Partitions of a Fibonacci Right Triangle 
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In summary, successive partitions of a Golden Triangle provide a multi-
faceted geometric representation of the Fibonacci sequence. The triangles 
described above are Fibonacci in three different ways because they are in Fi-
bonacci proportions with regard to their numberss their areas, and the lengths 
of their sides. Golden Triangles not only embody the Fibonacci ratio, they 
also carry within them the ability to generate Fibonacci sequences. 
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1. Introduction 

Articles of a geometrical nature relating to recurrence sequences have 
appeared in recent years in this journal (e.g. [1], [2], [6]). 

The purpose of the present paper is to consider the loci in the Euclidean 
plane satisfied by points whose Cartesian coordinates are pairs of successive 
numbers in recurrence sequences of a certain type. Readers might plot some 
points on the resulting noncontinuous curves (conies). 

Extension to higher-dimensional space is briefly discussed. 

2. The General Conic 

Begin by defining [4] the general term of the sequence {wn(a> b; p, q)} as 

(1) wn+2 = pwn+1 - qwn, wQ = a, w1 = b, 

where a, b, p, and q belong to some number system, but are usually thought of 
as integers. Write [4] 

(2) e =p a b - qa2 - b2. 

Now [4] 

(3) WnWn+2 - Wn + 1 = ^ * > 

which is a generalization of Simson?s formula 

(4) p p - F2 (-nn+1 

occurring in the Fibonacci sequence {Fn} = {wn(0, 1; 1, -1)}. 
Equation (3) generalizes the famous geometrical paradox associated with 

(4). For the details, see [5]. 
From (1) and (3), we obtain 

(5) qw1 + w2 - pw w + eqn = 0. 

Next, put Wn = x9 Wn+1 = y. Then, by (5), 

(6) qx2 + y2 - pxy + eqn = 0. 

This equation represents a conic in rectangular Cartesian coordinates 
Or, y). Anticlockwise rotation of axes through an angle 

164 



[May 1982] GEOMETRY OF A GENERALIZED SIMSON'S FORMULA 165 

eliminates the xy term and produces the canonical form of the conic (an el-
lipse if p2 < kq9 a hyperbola if p2 > kq> where the degenerate cases are ex-
cluded) . Equation (6) is also obtainable by laborious reduction of the general 
equation of a conic using the uniqueness of a conic through 5 given points. 

3. Some Par t i cu la r Cases 

!• <7 < 0 (Hyperbolas) 

(a) p = 19 q = -1: Substituting in (6) yields the two systems (n even, 
n odd) of rectangular hyperbolas 

(7) x2 - y2 + xy = e1(-l)n (e1 = a2 - b2 + ab), 

asymptotes of which are the perpendicular lines 

(8) y = ax, y = —ar, 

in which a = , the positive root of t2 - t - 1 = 0. For the Fibonacci 

sequence (a = 0, b = 1) and the Lucas sequence (a = 2, 2? = 1), it follows that 
ex = -1 and 5, respectively. These Fibonacci-type curves (7) approach their 
asymptotes remarkably quickly. 

With a fixed eY in (7), a hyperbola for which n is odd (even) may be trans-
formed into the corresponding hyperbola for which n is even (odd), by a re-
flection in y = x followed by a reflection in the z/-axis (x-axis). 

(b) p = 2, q = -1: For the Pell sequence (a = 0, b = 1), (6) gives 

(9) x»2 - y2 + 2*2/ = (-l)n + 1, 

rectangular hyperbolas with perpendicular asymptotes y = kx, y = -j-x, where 
fc = 1 + /2" is the positive root of t2 - 2t - 1 = 0. 

Gradients of the perpendicular asymptotes of the hyperbolas (6) for which 
p > 0, q = -1 are given by the roots of t2 - pt -•1 = 0. 

II. 4 > 0 

Equation (6) now represents ellipses if kq > p2 and hyperbolas if hq < p . 
For example, the loci for the Fermat sequences 

{wn(0, 1; 3, 2)} and |u„(|,.2; 3, 2 U 

are hyperbolas (one point for each n) 

(10) 2x2 + y2 - 3xy = 2n 

and 
(11) 2x2 + y2 - 3xy = - 2 n _ 1 . 

Further, for the Chebyshev sequences 

{wn(l, 2X; 2A5 1)} and {wn(2, 2X; 2\, 1)}, 
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where A = cos 9, we obtain the ellipses 

(12) x2 + y2 - 2\xy = 1 
and 
(13) x2 + y2 - 2\xy = 4 - 4A2. 

III. Degenerate Case 

When X = 1 in (12), i.e., for the sequence {w (1, 2; 2, 1)}, of integers, 
we have the degenerate curve x2 + y2 - 2xy = 1, i.e., the line 

x - y = -1. 

No values of x + y, as defined, satisfy the equation x - y = 1. Successive 
pairs of odd integers and of even integers, generated by 

{wn(ls 3; 2, 1)} and {wn(2, 4; 2, 1)}, 

respectively, satisfy the line 

(15) x - y = -2. 

4. Extension to Higher Space 

Equations of the third, fourth, and higher degrees that are based on sec-
ond-order recurrences like (1) (see, e.g. [3], [4]) cannot yield any nondegen-
erate loci in spaces of dimension greater than two. 

For three-dimensional (nonprojective) space, it is necessary to consider 
third-order recurrence relations, of which the simplest is 

(16) Pn + 3 = Pn-+2 + Pn+1 +P„ in > 0). 

Waddill and Sacks [8] have established the following relation for {Pn} cor-
responding to the Simson formula (4) for {Fn}: 

p2 p + p3 + p2 p _ p p P • - 2P ' P P 
n + 3 n n + 2 n + 1 n+h n+h n+2 n n+3 n+2 n+1 

(17) 
= Pi + 2P* +P\ + 2P\P1 + 2PQPl + P2

QP2 - 2P1P\ - 2P0PXP2 - PQP2
2. 

Putting P0 = 0, ?! = P2 = 1 and P0 = 1, Px = 0, P2 = 1 they obtained their 
sequences {Kn} and {Qn}$ respectively: 

(18) {Kn}i 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, ...; 

(19) {Qn}: 1, 0, 1, 2, 3, 6, 11, 20, 37, 68, 125, 230, ... . 

Letting Pn=x, Pn+1
=sy> ^n + 2 =

 z i n (17)» w e derive, after some algebraic 
manipulation, 

(20) x3 + 2y3 + s3 + 2x2# + 2xy2 - 2yz2 + x2z - xz2 - 2xz/s = A, 

where A = 1 for {#„} and .4 = 2 for {$n}. Equations (20) represent cubic sur-
faces in Euclidean space of three dimensions. 
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More general forms of (16) would lead to extremely cumbersome equations. 
Observe that if we label any three successive numbers in (18) as x, y9 z, 

and the corresponding three numbers in (19) as X, Y9 Z, then we perceive that 
X = y - x9 Y - z - y9 Z = x + y. 

Fourth- and higher-order recurrences should produce equations correspond-
ing to (17) which are generalizations of Simsonfs formula (4). While (17) is 
not a pretty sight, the mind boggles at the prospect of further extensions, 
which we accordingly do not investigate. But the general pattern seems clear: 
a recurrence of the nth order ought to lead to a hypersurface (of dimension 
n - 1) in Euclidean n-space. 

5. Concluding Comments 

a. For the sequence {wn(l9 a; 1, -1)}, e = 0 [see (1), (2), (7)] and the 
curve (7) degenerates to the line-pair x2 + xy - y2 = 0. 

b. Graphing the Fibonacci numbers Fn against n reveals that they asymp-
totically approach the exponential values 

C. M. H. Eggar, in "Applications of Fibonacci Numbers" [The Mathematical 
Gazette 63 (1979):36-39], refers to (7), in the case where e1 = 1, though his 
context is nongeometrical. 

d. Interest in the theme of this article was stimulated by a private com-
munication to the author in 1980 by L. G. Wilson, who determined the vertex of 
the hyperbola (7) for the Fibonacci sequence, but only in the case where n is 
odd, namely, x = 0..92.0442065...., y = 0.217286896... . He also calculated the 
angle of inclination of the axis of this hyperbola to the x-axis, namely, 

13.28252259... degrees [ (= 13° 17f) = tan^/B" - 2)]. 

Furthermore, Wilson briefly investigated the geometry of the third-order 
sequence {Tn}i 

(21) 0, 2, 3, 6, 10, 20, 35, 66, ..., 

defined in Neumann-Wilson [7] by 

(22) Tn+3 = Tn + 2 + Tn + i +Tn + (-l)n (n >_ 0). 
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AN ENTROPY VIEW OF FIBONACCI TREES* 

YASUICHI HORIBE 
Shizuoka University, Hamamatsu, 432, Japan 

(Submitted May 1981) 

Abstract 

In a binary tree with n terminal nodes weighted by probabilities pl9 .. ., 
Pn9 ^Pi = 1 > it: ^s assumed that each left branch has cost 1 and each right 
branch has cost 2. The cost a^ of terminal node pi is defined to be the sum 
of costs of branches that form the path from the root to this node. The sum 
£Ptai *-s c^lled the average cost of the tree. As a top-down tree-building 
rule we consider ^-weight-balancing which constructs a binary tree by succes-
sive dichotomies of the ordered set pi, ..., pn according to a certain weight 
ratio closely approximating the golden ratio. Let H = H(pl9 ..., pn) = -Zp^ 
log pi be the Shannon entropy of these probabilities. The ijj-weight-balancing 
rule is motivated by the fact that the entropy per unit of cost 

H(x9 1 - x)/{l • x + 2 • (1 - x)) 

for the division x : (1 - x) of the unit interval is maximized when 

x = i|> = (/5 - l)/2, 

the golden cut point. It is then shown that the average cost of the tree built 
by ijj-weight-balancing is bounded above by #/(-log ip) + 1, if the terminal nodes 
have probabilities p1, ..., pn , px _> ••• > pn, from left to right in this or-
der in the tree. If Pj + 1/Pj ^ (l/2)ip for each j, the above bound can be im-
proved to El {-log \p) + ijj. For the case px = ••• = pn, we obtain the following 
results. The ̂ -weight-balancing constructs an optimal tree in the sense of 
minimum average cost and constructs the Fibonacci tree of order k when n = Fk9 
the kth Fibonacci number. The average cost of the optimal tree is given ex-
actly. Furthermore, for an arbitrarily given number of terminal nodes, the 
ip-weight-balanced tree is also "balanced" in the sense of Adelson-Velskii and 
Landis, and is the highest of all balanced trees. 

We will discuss some properties of Fibonacci (Fibonaccian) trees in view 
of their construction by an entropic weight-balancing, beginning with the fol-
lowing preparatory section: 

*This paper was presented at the International Colloquium on Information 
Theory, Budapest, Hungary, August 24-28, 1981. 
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1. Binary Tree with Branch Cost 

Let us consider a binary tree (rooted and ordered) with n - 1 internal 
nodes (branch nodes) and n terminal nodes (leaves) [6]. An internal node has 
two sons, while a terminal node has no sons. A node is at level £ if the path 
from the root to this node has £ branches. The terminal nodes are assumed to 
be associated, from left to right, with probabilities or weights p2, ..., pn, 
Y,pi = 1. We assume, furthermore, that every left branch has unit cost 1, and 
every right branch has cost o (>. 1). A node is then associated with two num-
bers, probability and cost; the probability of an internal node is defined to 
be the sum of probabilities of its descendant terminal nodes, and the cost of 
a node is defined to be the sum of costs of branches that form the path from 
the root to this node. The root, then, has probability 1 and cost 0. Some-
times, for simplicity, a node will be named by the associated probability. We 
define the average cost of a tree as 

n 

c = E ViZi* 
i = l 

where a± is the cost of the terminal node pi . Since we interpret C as the 
average cost required to get to a terminal node by tracing the corresponding 
path from the root, C measures a global goodness of the tree: for fixed n, c9 
px, . . . , pn , the smaller C is, the more economical the tree is. If we view 
the binary tree, for example, as representing a binary code consisting of n 
codewords with code symbols 0 of duration 1 (corresponding to the left branch) 
and 1 of duration e (to the right) for the given source alphabet having letter-
probabilities p19 ..., p , then C is the average time needed to send one source 
letter. 

An internal node will be called internal node J, l<_j<_n - 1, if its left 
subtree has p- as the rightmost terminal node> (The leftmost terminal node of 
its right subtree is then Pj+1>) Let us denote by Lj and Rj the probabilities 
of the left and the right sons of the internal node j, respectively. Put 

Tj = LJ + RJ » 

which is, of course, the probability of the internal node j . 
We give here three general relations—(1), (2), and (3)—for use in later 

sections. First we have 
n-l. 

(1) C = £ (Lj + cRd). 
J=I 

This is seen by observing that the cost 1 [resp. a] of the left [right] branch 
that connects the internal node j and its left [right] son contributes 1 • Lj 
[c ' Rj] to C. 

Second, let 
n 

H E ff(Pl,-..., pn) = -Y.Vi log Vi 
i = l 

be the Shannon entropy. (Logarithms will always be to the base 2.) We have 
"-1 (L, Rj\ 

(2) E = E TjH[^, -£). 
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This is the well-known binary branching property of the entropy [4, 9], The 
entropy is known as a very appropriate function to measure the uncertainty, 
the uniformness, or the randomness, of the probability distribution pl9 ..., 
pn. It is this aspect and the branching property that relates the entropy to 
the economical structures of the trees having weighted terminal nodes, as will 
be seen in the following sections. 

Third, letting bj be the cost of the internal node j , we have 

Lemma 1 : 

o) f x = E&j + <n - DC1 + *>• 

Proof (by induction on n): When n = 1, (3) is trivially true. Consider 
an arbitrary tree with n+ 1 terminal nodes. At the maximum level there exist 
two terminal nodes that are sons of the same internal node, say A:. Merge these 
nodes into k to obtain a tree having n terminal nodes. The decrease in the 
total cost of terminal nodes due to this merging is given by 

(bk + 1) + (bk + o) - bk = bk + (1 + a). 

On the other hand, the decrease in the total cost of internal nodes is bk. 
This completes the proof. 

2. Weight-Balancing and "Discrete" Golden Cut 

A binary tree can be viewed as a pattern of successive choices between the 
left and the right branches started from the root in order to look for a ter-
minal node. The uncertainty per unit of cost, removed by the choice at the 
internal node j, is measured by 

H(EL ?L\ 

' • £ ) • • • & ) • 
So the tree that maximizes this quantity at each step can be expected to have 
a small average cost C. Of course, the successive local optimizations of this 
type will not necessarily lead to a global minimization of the average cost. 
Nevertheless, we will be concerned with this process because it is interesting 
in its own right. 

In the case o = 1, the above quantity reduces to H(Lj /Tj , Bj/Tj) , which 
becomes maximum when \Lj - Rj\ is minimum, i.e., when 

Lj - p. 12 < Tj/2 <LJ:+ Pj + 1/2, 

for fixed Tj . The rule for constructing a tree in a top-down, level-by-level 
manner, such that at each step Lj and Rj are made as equal as possible, is 
called "weight-balancing." The binary code corresponding to the tree thus 
built by weight-balancing under the monotonocity condition pi J> • • •__> pn is 
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known as the Shannon-Fano code ([3], [9], see also [11]). This code is not 
necessarily optimal (in the sense of minimum average cost), but it is almost 
optimal, and satisfies 

C <H + (1 - 2pn) 

(see [4]). Henceforth, we assume p, _> • • • _> p . 
In order to generalize the above weight-balancing rule to the general c9 

we naturally maximize the function 

(4) Hx' ) - X \ , 0<x< 1. 
x + c(l - x) — — 

Let X be the maximizing value of #. By differentiating, X is the unique posi-
tive root of x° - 1 - x. The maximum value of the function is -log X. Con-
sidering X = X(c) as a function of c9 we have X(l) = 1/2, X(e) is strictly 
monotone increasing, and X(c) •> 1 as c ->• °°. Now define X-weight-balancing as 
a rule for constructing a tree satisfying 

(5) Lj - (1 - \)p. < XTd <Lj +Xp.+1 

for each internal node J = 1, . .., n - 1. Recently, K. Mehlhorn has taken up 
a similar rule to study search trees [8]. We shall be confined especially to 
the case c = 2, where the "X-cut" X : (1 - X) of the unit interval becomes the 
golden cut, since we have X(2) = (/5* - l)/2 = 0.618... . We denote this num-
ber by IJJ, its inverse ty ~1 = cj) being commonly called the golden ratio, and 
ty2 = 1 - ty, -log ip = 0.694... . [Conversely, if x = ty maximizes (4), then c 
must be 2.] 

3. Bounds on the Average Cost 

For a reason that will be clear in the next section, trees constructed by 
ty-weight-balancing may be called "Fibonaccian trees.11 In this section we find 
entropic bounds on the average cost of Fibonaccian trees. Since we are treat-
ing c- 2, and -log \\) is the maximum value of H(x, 1 - x) / (2 - x) , the function 

f(x) = (-log i|0(2 - x) - H(x9 1 - x)9 0 < x < 1, 

is nonnegative. 

Theorem 1: • . H , < C < •., H , + (1 - p n ) . [Note that #/(-log ty) is the en-
— -log ip — - -log Ip ^n 

tropy with respect to the log-base (f), i.e., #/(-log ip) = - Ep^ logf p^ . ] 

Proof: The proof technique is that used in [5]. Consider the difference 
(-log ty)C - H. From (1) and (2) in Section 1, we have 

n-l 

i-iognc - H = £ ^-, 
J = l where 

wXi* «(£•*•£)-<£.£)-*/(£) 
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The fact f(x) ^ 0 implies the left-side inequality to be proved. (This lower 
bound is well known, see [2], and is valid for any tree, as we see from the 
proof.) To prove the upper bound, split (5) with X - \p into two cases, for 
each j : 

Case 1: 

(6) Lj - (1 - iJOp/ < Wd <Lj. 

Equation (6) leads us to ip <.Lj/Tj < 1. The function f(x) is clearly convex 
downward, and /(i|0 = 0, f(l) - -log I|J. Hence, 

f i x ) 1 (-log Wf-E-jjJ ± f ^ P < x < l . 
Therefore, 

^ = ̂ j ^ - j < (-log if;)-J 1 - ij, 

But by the left-side inequality of (6), we have Lj - ipTj < (1 - ty)p.. Hence, 
d^ < (-log ip)pj.. 

Case 2: 

(7) Lj < HJTJ <LJ + T\vj + 1 . 

The r i g h t - s i d e i n e q u a l i t y of Eq. ( 7 ) , t he obvious p- ^_Lj9 and t h e assumption 
Pi .> •• •_> Pn imply i)T. <. 1 -̂ + ippj. + 1 _< Z -̂ + ipp. £ Lj + i j ^ . Hence, 

This and t h e l e f t - s i d e i n e q u a l i t y of (7) g ive 

1 - * £ ™f< *• 2V 
Now we have jf(^) = 0 and 

/ ( l - 40 = ( - l og i|))(l + i|>) - fl(ip, 1 - *) 
= ( - l og i |0 ( l + <|0 - ( - l o g ijj)(2 - l|0 
= ( - l o g I|J)(2I|> - 1 ) . 

T h e r e f o r e , by t h e downward convex i ty of f(x), we have 

f ( x ) <_ ( - l og ifOOP - #) i f 1 - ty £ a; £ i|i. 

Hence, 

-̂ = ̂ (57) i (-los *>(<^ - ^ - J > 

But by the right-side inequality of (7), we have tyTj - Lj <.ipp. + 1. Hence, 

dj < (-log 4 0 % + 1 £ (-log ^)pi + 1. 
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In either case, we have 

dd <. (-log i))pj9 j = 1, ..., n - 1, 

since p. _> p. . This finishes the proof. 

For example, take the English alphabet including "space" (n = 27) with 
letter-frequencies given in [7], If we construct a tree by ^-weight-balancing 
for this source, we obtain #/(-log ip) = 5.885, C = 5.958. 

Remarks: The above proof can be modified to prove the same inequalities (with 
ip replaced by A) for the average cost of the tree built by A-weight-balancing 
whenever 1/2 <_ A £ ip, i.e., 1 .£ c •<. 2. 

If we impose an appropriate condition on p1, ..., p , we may somewhat im-
prove the upper bound on C. 

P.7+1 1 

Theorem 2: If — — >_ y^, j = 1, ..., n - 1, then 

C < , H , + I(J(1 - p ) . log ip YV *«' 

Proof: It is sufficient to show that for Case 1 in the proof of Theorem 1 
we have dj £ (-log ty)tyPj , because we have shown dj <_ (-log ty)tyPj + 1 for Case 2. 
From (6) and the assumption, we see that 

J «/ tj r<7 + 1 T 

The downward convexity of /(or) and a direct numerical check show 

fix) < c-iog wnf-E-jjJ ±f * ^ * ± rri' 
from which it follows that 

(Lj \ Lj ~ Wj 
dj = Tof\j7) <• ( - l o § W i - ^ <• ( - l o § *)*Pj-» u s i n § <6>-

This completes the proof. 

4. The Case pn = ••• = p and Fibonacci Trees 
r i rn 

In this section, we shall restrict ourselves to the special but important 
case p, = ••• = pn, i.e., all terminal nodes have equal weight. Let us first 
define the Fibonacci tree of order k according to [7]. 

Let 
(F0, F19 F29 F3, Fh, F5, ...) = (0, 1, 1, 2, 3, 5, . . . ) , 
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be the Fibonacci sequence. The Fibonacci tree of order k has Fk terminal 
nodes, and it is constructed as follows: If k = 1 or 2, the tree is simply the 
"terminal" root only. If k _> 3, the left subtree is the Fibonacci tree of 
order k - 1; and the right subtree is the Fibonacci tree of order k - 2. 

Remark: The Fibonacci tree we assign order k is called in [7] the "Fibonacci 
tree of order k - 1." We choose this indexing for its neatness in our argu-
ment. 

Figure 1 is the Fibonacci tree of order 7. 

FIGURE 1. The Fibonacci tree of order 7 

Lemma 2: The Fibonacci tree of order k9 k >_ 2, has Fk_± 
k - 2 and Fk_2 terminal nodes of cost k - 1. 

terminal nodes of cost 

Proof (Induction on k): Trivially true when k = 2. The Fibonacci tree of 
order 3 obviously has one (= F2) terminal node of cost 1 and one (= F2) termi-
nal node of cost 2. Suppose the lemma is true for each Fibonacci tree of or-
der less than k9 k >_ 4. By the construction of the Fibonacci tree of order k 
it has, in the left subtree, Fv_0 terminal nodes of cost (fc-3) + l=-/c-2 
and F-, k- 3 terminal nodes of cost (k - 2) + 1 = k 
tree, • k - 3 terminal nodes of cost {k - h) + 2 

1, and, in the right sub-
k - 2 and Fk_h terminal nodes 

of cost (k - 3) + 2 = k - 1. Hence, the Fibonacci tree of order k has, in all, 
Fk_ + Fk_3 = Fk_1 terminal nodes of cost k - 2 and F-k_3 + Fk_ 
nal nodes of cost k - 1. This completes the proof. 

Fk_2 termi-

Theorem 3: The average cost of the Fibonacci tree of order k is given by 

Fk-2 
C = -4r^+ (k - 2). 

Proof: By Lemma 2, we have 

C = -^-{(fc - 2)Fk..± + (k - l)Fk_2] = i~{Fk_2 + (k - 2)Fk}. 

Since 
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Fk =j^>'k " (-*>*}• by [6], 

we have Fk —if; ~k when k becomes large. Therefore, for large k9 

C-<(k-2)+^2=k-l-\l). 

The following procedure, due to Varn [12], constructs an optimal tree (in 
the sense of minimum average cost) for general c% Suppose an optimal tree with 
n - 1 terminal modes has already been constructed. Split, in this tree, any 
one terminal node of minimum cost to produce two new terminal nodes. The re-
sulting tree with n terminal nodes will be optimal. The validity of this pro-
cedure is an immediate consequence of Lemma 1: 

The left-hand side is the average cost to be minimized when px = 
minimize the left-hand side is to minimize the sum of costs of n 
nodes; i.e., to minimize 

n-i 

J = I 

Consider the infinite complete binary tree, and use the "greedy" procedure to 
pick the n - 1 cheapest nodes to be internal. It is easy to see that this 
grows a tree optimal at each step, the same tree as grown by Varn's procedure. 

Returning to our case o = 2, we have the following: 

Theorem 4: The Fibonacci tree of order k is optimal for each k _> 2. 

Proof: From Lemma 2, the Fibonacci tree of order k >_ 2 has Fk_1 terminal 
nodes of cost k - 2 and Fk_2 terminal nodes of cost k - 1. Hence, by VarnTs 
procedure, it is sufficient to prove that if we split all terminal nodes of 
cost k - 2, then the resulting tree, which then has Fk_2+ 2Fk_-L = Fk^1 + Fk = 
Fk+1 terminal nodes, is the Fibonacci tree of order k + 1. To prove this by 
induction on k9 suppose the assertion is true for the Fibonacci trees of order 
less than k9 k >_ 3. (When k = 2, the assertion is trivially true.) The left 
subtree of the Fibonacci tree of order k is the Fibonacci tree of order k - 1 
with Fk_2 terminal nodes of cost (k - 3) + 1. Splitting these nodes produces 
the Fibonacci tree of order k by the induction hypothesis. Similarly, the 
right subtree is the Fibonacci tree of order k - 2 with Fk_3 terminal nodes of 
cost (k - 4) + 2. Splitting these nodes produces the Fibonacci tree of order 
k - 1 by the induction hypothesis. Therefore, splitting all terminal nodes of 
cost k - 2 of. the Fibonacci tree of order k produces the Fibonacci tree of 
order k + 1. 

Theorem 5: Express the number of terminal nodes by n = Fk + r for some k >_ 2 
and 0 £ r < Fk_1. The tree built according to ip-weight-balancing is optimal, 
with the average cost given by 

•-p„. To 
1 internal 
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F + 3r 

When r = 0, the tree is the Fibonacci tree of order k. 

Proof: When k = 2 or 3, the theorem is trivially true. Suppose k >. 4. We 
prove by induction on the number of terminal nodes that the tree having Fk + r 
terminal nodes and built by ip-weight-balancing is the same as a tree con-
structed from the Fibonacci tree of order k by splitting r of it's Fk_1 termi-
nal nodes of cost k - 2. Varnfs procedure and Theorem 4, then, prove the op-
timality part of the theorem. When n - 3, we have k - 4 and r = 0. So the 
assertion is true, since the^ ijj-weight-balancing for n - 3 produces the Fibo-
nacci tree of order 4. Suppose the assertion is true for each number of ter-
minal nodes less than n ~ Fk + r9 & _> 4. By Lemma 2 and the construction of 
Fibonacci trees, there are Fk_2 terminal nodes of cost k - 2 in the left sub-
tree of the Fibonacci tree of order k9 and there are Fk_3 terminal nodes of 
cost k - 2 in the right subtree. Hence, we need only show that the ifj-weight-
balancing "divides" Fk + r into Fk_1 + s, 0 <_ s < ̂ . 2 for the left subtree, 
and Fk_2 + t9. 0 <_ t <_ Fk_3 for the right subtree, with s + t - r. If this is 
true, then we can apply the induction hypothesis and incorporate the cost of 
the initial branch to find that the tree built by ip-weight-balancing on the 
left is obtained by splitting s of its terminal nodes of cost (k - 3) + 1 and 
that on the right by splitting t of its terminal nodes of cost (k - 4) + 2. 

Let us show, therefore, for the left, that the integer m given by 

m - (1 - t|0 < ]\)(Fk + r) <_ m + ip, 

corresponding to (5), satisfies m - Fk_1 + s, 0 £ s < Fk_2. Using 

the above inequalities may be written as 

Fk-i + *p ~ ̂  ~ (~Wk 1 m < Fk_x + tyr - ty• - (-ty)k + 1. 

Since (-i|j)k < tjj2 = 1 - ty9 we have 

-1 < _ \p - (-^ <_ ^r - y - {-^)k , 

and, on the other hand, 

tyr - ty - (-\p)k + 1 <_ ^(Fk_1 - 1) - i\) - H>) k + 1 

= ^ . 2 - ( - ^ ) k _ 1 - * - (-^)fe + ^ 

= Ffc_2 - ^ 2 - (-^)fe} < Ffe_2. 

Therefore, Fkmml - 1 < m < Fk_± + Fk_2; thus, m = Fk_1+s for some s such that 
0 <_ s < Fk_2. 

Similarly, we can show, for the right, using Fk_2 - (1 - ty)Fk = -(-ip)* , 
that the integer m given by 
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m - ty < (1 - i\)){Fk + p) < m + (1 - \p) 

satisfies m = Fk_2 + t, 0 £ t <_ Fk_3. 
The average cost, then, using Lemma 2, is given by 

c =
 F \ r

{ ( k ~ 2><F*-i -*> + <*- D(^-2 + r) + kr} 

F + 3r 

= JirL-z + (fc - 2). 

This completes the proof. 

The height of a tree is defined as its maximum level, the length (the num-
ber of branches) of the longest path from the root to a terminal node. A bi-
nary tree is called balanced (the concept due to Adelson-Velskii and Landis 
[1]) if the height of the left subtree of every internal node never differs by 
more than 1 from the height of its right subtree. 

Theorem 6: When p = • • • = pn , the tree built by ip-weight-balancing is balanced. 

Proof: Let the number of terminal nodes be Fk + r9 0 £ r < Fk_1. It is 
easily seen, by induction on k9 that the Fibonacci tree of order k >_ 2 is of 
height k - 2 and hence balanced, and, if k _> 4, has only the leftmost two ter-
minal nodes at the maximum level, with cost k - 2 (for the left node) and k -
1 (for the right node). From the proof of Theorem 5, the ijj-weight-balanced 
tree having Fk +'r terminal nodes is made by splitting r = s + £ (0 ± s < Fk_2) 
terminal nodes of cost k - 2 of the Fibonacci tree of order k with s from the 
left subtree and t from the right subtree. In this splitting process, the 
leftmost terminal node at the maximum level is, however, never split as long 
as 0 £ r < Fk_19 and the tree remains balanced. Since s < Fk_2i t <_ Fk_39 

this assertion is readily seen by induction. 

Theorem 7: For p1 = • • • = pn and an arbitrarily given number of terminal nodes 
(or branch nodes), the tree built by ip-weight-balancing is the highest of all 
balanced trees. 

Proof: It is easily seen by induction on height that the balanced tree of 
height h with a minimum number of terminal nodes is the Fibonacci tree of or-
der h + 2 [8], Now suppose that there exists a balanced tree of height h with 
Fk + v (0 <_ p < Fk_1) terminal nodes, then 

** + 2 <^k+r<Fk+ F ^ = Fk + 19 

hence, h <. k - 2. But from the proof of Theorem 6 we know that the ip-weight-
balanced tree on Fk + r nodes has height k - 2. 

A Hypothetical Class of "Natural Trees" 

It is amusing to draw (suggested by [10]) the Fibonacci trees upside down 
so that they look like real trees or shrubs, with each branch of cost 2 about 
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twice (relatively) as long as its brother branch of cost 1 (i.e., bifurcation 
ratio 1:2; asparagus, as the author observed, seems to grow in this way). 
There may be variations in drawing. Figure 2 is a corresponding sketch of the 
Fibonacci tree of order 7 shown in Figure 1. As we saw in the last section, 
the simple repeating pattern (Fibonacci recursive rule) in the Fibonacci tree 
implies, and is implied by, the entropic balancing of the tree. This, along 
with the properties given in Theorems 5 and 7, might be of morphological in-
terest for a class of mathematical "natural trees." 

FIGURE 2. Sketch of a "natural tree" 
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DEFINITIONS 

The Fibonacci numbers Fy, and Lucas numb eirs Ln satisfy 

F + F F = 0 F = 1 

Ln + 1 + ^ ' LQ = 29 L1 = I. 

Also, a and (3 designate the roots (1 + /5)/2 and (1 - /5)/2, respectivelys of 
x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-472 Proposed by Gerald E. Bergumr S. Dakota State University, Brookings, SD 

Find a sequence {Tn} satisfying a second-order linear homogeneous re-
currence Tn = ccTn x + bTn 2 such that every even perfect number is a term in 
{Tn}. 

B-473 Proposed by Philip L. Maria, Albuquerque, NM 

Let a = Lxooos ^ = ^iooi» ° == ^ioo2> d = £1003- Is 1 + x +. x1 + x* •+xh 

a factor of 1 + xa + xh 4- x ° + xd1 Explain. 

B-474 Proposed by Philip L. Mana, Albuquerque, NM 

Are there an infinite number of positive integers n such that 

Ln + 1 = 0 (mod 2n)l 
Explain. 

B-475 Proposed by Herta T. Freitag, Roanoke, VA 

n 
Let Sk(n) = E (-1)J' + V/C. Prove that \S3(n) - S\{n)\ is 2[(n + l)/2] 

j = i 

times a triangular number. Here [ ] denotes the greatest integer function. 

and 
F 

E n + 2 

Ln+2 

179 
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B-476 Proposed by Herta T. Freitag, Roanoke, VA 

n 
Let Sk (n) = £ (~iy' + 1jk. Prove that \Sn(n) + Sz(n)\ is twice the square 

j-i 

of a triangular number. 

B-477 Proposed by Paul S. Bruckman, Sacramento, CA 

(-l)n 1 1 Prove that Y* Arc tan — = — Arc tan —. 
n-2 F 2 n 2 2 

SOLUTIONS 

Casting Out 27's 

B-446 Proposed by Jerry M. Metzger, University of N. Dakota, Grand Forks, ND 

It is familiar that a positive integer n is divisible by 3 if and only 
if the sum of its digits is divisible by 3. The same is true for 9. For 27, 
this is false since, for example, 27 divides 1 + 8 + 9 + 9 but does not divide 
1899. However, 27|1998. 

Prove that 27 divides the sum of the digits of n if and only if 27 di-
vides one of the integers formed by permuting the digits of n. 

Solution by Paul S. Bruckman, Concord, CA 

Given 
m 

(1) N = Y,aklOk, 
fc = 0 

where the ak s are decimal digits, let the sum of the digits be given by 

m 

(2) 8(210 = £ ak. 
k = o 

We begin by observing that the statement of the problem is false. The correct 
statement should read as follows: If 27 divides the sum of the digits of N9 
then 27 divides one of the integers formed by permuting the digits of N. The 
converse is clearly false, since, e.g., 27| 27 but 27|s(27) = 9. 

Suppose 
(3) 27|s(il/). 

The smallest positive integer N satisfying (3) is 999. Since 27|999, we see 
that the (modified) proposition is verified for N = 999. We may therefore sup-
pose m _> 3. 

Since 9\s(N)9 thus 9\N. Let (PN denote the set of all possible integers 
M formed by permuting the digits of N. Since s(M) = s(N) for all M e (PN 9 we 
see that 9\M for all M e &N. We will assume that M = ±9 (mod 27) for all M e 
(PN and show that this leads to a contradiction. 

Given k (0 <. k <_ m - 2) , form /17/c(1) e (PN and N£2) e <PN by merely permut-
ing the triple (ak9 ak+19 ak+2) to (ak+l9 ak+2, ak) and (ak+29 ak9 a^+i), re-
spectively. Then 
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N™ - N - 10*<afc+1 - ak) + 10fc+1(afc+2 - afc+1) + 10k+2(a, - ak+2) 

E l° ktak+1 - ak + 10(ak+2 - ak+1) + 19(ak - ak+2)} (mod 27) 

= -9(ak + afe + 1 + ^^+2) (mod 27). 

Similarly, we find that 

tf£2) - N = 9(ak + ak+1 + ak+2) (mod 27). 

Having assumed that N = ±9 (mod 27), we cannot have 

ak + ak + l + ak+2 ~ ± l (mod 3 ) ' 

for we would then have either 

N^1) = 0 or il/£2) E 0 (mod 27), 

contradicting the assumption. Since k is arbitrary, we must therefore have 

(4) ak + ak+1 + ak+2 = 0 (mod 3), k = 0, 1, ..., m - 2. 

Thus the sum of any three consecutive digits of N must be divisible by 3. But 
we see by symmetry that this same property must hold for all M e (P' . This can 
only be true if all the ak's are congruent (mod 3). 

Suppose, therefore, that 

(5) ak = 3bk + r, where bk = 0, 1, 2, or 3, 

v = 0, 1, or 2, 

with bk = 3 only if p = 0. 
Let 

m 

(6) 5 - Z bk!0k. 
k = 0 

m m 
Then N = £ (32>k + r ) 1 0 / c = 3£ + r £ 10 k , or 

k = 0 fe = 0 

(7) ' fl = 3B + | ( 1 0 m + 1 - 1 ) . 

A l so , 
m 

s(N) = E Ohk + r), or 
.fc-o 

(8) s(N) = 3s (5) + r(m" + 1 ) . 

We consider two (a pvlovi) possibilities: 

(a) m E Q or 1 (mod 3). Since 3\s(N), we see from (8) that r = 0. Hence, 
717 = 35 and s (N) = 3s (B). But 

27|e(i\̂ ) —>.9|s(B) —>9|5.— 
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which contradicts our assumption. This leaves the only remaining possibility: 

(b) m = 2 (mod 3). Let m = 3t - 1, t >_ 2. Note that 

|(10m + 1 - 1) = £(103* - 1) = p 3 £ 1 1 0 k = lllr £ 103* 
^ fc = 0 fc = 0 

= 3r £ x (mod 27> E 3^ (mod 27>-
k = 0 

Thus, using (7), 

N = 3B + 3rf- (mod 27) —> | = B + rt (mod 9). 

Also, ̂ p - = s(B) + rt E B + rt (mod 9). Hence, | E ̂ p - (mod 9), which, to-

gether with 271s(N) implies 27|#, again contradicting our assumption. 
Thus the assumption is false, establishing the (modified) proposition. 

Also solved by the proposer. 

Casting Out Eights 

B-447 Based on the previous proposal. 

Is there an analogue of B-446 in base 5? 

Solution by Paul S. Bruckman, Concord, CA 

Given 
m 

(1) N = £ ak5k, 
fc = 0 

where the ak's are digits in base 5 (ak = 0, 1, 2, 3, or 4) , let the sum of the 
digits be given by 

m 

(2) 8 0) = £ ak. 
k = o 

m • 

We n o t e t h a t N - s(N) = £ ak(5k - 1) '= 0 (mod 4 ) , s i n c e 5k = 1 (mod 4 ) . Thus 
fc = o 

(3) 4|iV i f f 4|s(71/). 

The analogue suggested by B-446 would probably read as follows: If 8 divides 
the sum of the digits of N (in base 5), then 8 divides one of the integers 
formed by permuting the digits of N (in base 5). 

Unfortunately, the above proposition is false, unless additional condi-
tions on N are specified. A counterexample is 

N = 3,908 = (111113)5; 

although S\s(N) = 8, we find that all six integers formed by permuting the 
digits (in base 5) of N are congruent to 4 (mod 8), and therefore not divisi-
ble by 8. 
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The following is the corrected (though more complicated) version of the 
proposition: If 8 divides the sum of the digits of N (in base 5), then 8 di-
vides one of the integers formed by permuting the digits of N (in base 5), 
unless all the digits of N are odd (i.e., 1 or 3) and the number of such digits 
is congruent to 2 (mod 4). In the latter case, all the permutations are con-
gruent to 4 (mod 8). 

(The proof is similar to that of B-446 and was deleted by the Elementary Prob-
lems Editor.) 

Sum of Products Modulo 5 

B-448 Proposed by Herta T. Freitag, Roanoke, Va 

Prove that, for all positive integers t , 

u 

i = l 

Solution by John Ivie, Glendale, AZ 

It suffices to show that each pair F5^+1L5i + ^si+e^5i+5i^n t n e sulrana~ 
tion is divisible by 5. Using the Binet Formula, this pair equals 

T? 4- F = ST 
r 1 0 U l ^lOi+ll J1J10i + Sm 

Also solved by Pauls. Bruckman, Bob Prielipp, Charles B. Shields, Sahib Singh, 
Lawrence Somer, Charles R. Wall, Stephen Worotynec, Gregory Wulczyn, and the 
proposer. 

Sum of Products Modulo 7 

B-449 Proposed by Herta T. Freitag, Roanoke, VA 

Prove that, for all positive integers t, 

£(-Di + ̂ 8i + 1 £ 8 i = 0 (mod 7). 
i = 1 

Solution by Charles R. Wall, Trident Technical College, Charleston, SC 

It is easy to show that 

The powers of -1 telescope, since the number of summands is even, and thus 

E (-ir + 1F,i + 1Lai = E(-l)i + 1 ^ e i + 1-
i* 1 t = i 

We group the It summands in the latter sum into t pairs, each of which is di-
visible by 21: 
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The stronger result, that the original sum is divisible by 21 (rather than 
merely 7), follows at once. 

Also solved by Pauls. Bruckman, John Ivle, Bob Prielipp, Sahib Singh, Lawrence 
Somer, Stephen Worotynec, Gregory Wulczyn, and the proposer. 

Lucas Quadratic Residue 

B-450 Proposed by Lawrence Somer, Washington, B.C. 

Let the sequence {Hn}n=Q be defined by Hn = F2n + F2n+2. 

(a) Show that 5 is a quadratic residue modulo Hn for n >_ 0. 
(b) Does Hn satisfy a recursion relation of the form Hn + 2 = eHn + 1 + dEn, with 

c and d constants? If so, what is the relation? 

Solution by E. Primrose, University of Leicester, England 

We prove (b) first, and use it to prove (a). 

(b) Examination of the first few terms suggests that 

Hn+2 = 3Hn+1 - Eny 

and this is easily verified by using the defining relation for Hn and the re-
currence relat ion ror r^. 

(a) We prove that H^+1 - HnHn+2 = 5, which gives the required result. Now 

Hn+1 " HnHn+2 = Hn+1 " #n(3#n+l " Hn) 
= Hn + Hn+1(Hn+1 - 3Hn) = Hn - Hn_1Hn+1. 

It follows by induction that H2
n+1 - HnHn+2 = H\ - HQH2 = 5. 

Also solved by Paul 5. Bruckman, Herta T. Freitag, John Ivie, John W: Milsom, 
Sahib Singh, Bob Prielipp, A.G. Shannon, Charles R. Wall, Gregory Wulczyn, and 
the proposer. 

Consequence of the Euler-Fermat Theorem 

B-451 Proposed by Keats A. Pullen, Jr., Kingsville, MD 

Let k9 m9 and p be positive integers with p an odd prime. Show that in 
base 2p the units digits of wfc(>P~1)+:L ±s the same as the units digit of m. 

Solution by Charles R. Wall, Trident Technical College, Charleston, SC 

Let (J) be Euler's function. Since p is an odd prime, <|>(2p) = p - 1 and 
therefore by Euler's Theorem, mp~1 = 1 (mod 2p). We take the fcth power of both 
sides and then multiply both sides by m to obtain 

muP-D+i = m ( m o d 2 p ) 

as asserted. [This assumes gcd(m, p) = 1 but also follows for p|m.] 

Also solved by Paul S. Bruckman, Herta T. Freitag, Bob Prielipp, Sahib Singh, 
Lawrence Somer, Gregory Wulczyn, and the proposer. 

***** 
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PROBLEMS 

H-339 Proposed by Charles R. Wall, Trident Technical College, Charleston, CA 

A dyadic rational is a proper fraction whose denominator is a power of 
2. Prove that 1/4 and 3/4 are the only dyadic rationals in the classical 
Cantor ternary set of numbers representable in base three using only 0 and 2 
as digits. 

H-340 Proposed by Verner E. Hoggatt, Jr. (Deceased.) 

Let A2 = B9 Ah = C9 and A2n + i* = A2n ~ A2n + 2 (n = 1, 2, 3, . . . ) . Show: 

a. A2n = (~l)n + 1(Fn_2B - F^C). 

b. If A2n > 0 for all n > 05 then B/C = (1 + /5)/2. 

H-341 Proposed by Paul S. Bruckman, Corcord, CA 

Find the real roots, in exact radicals, of the polynomial equation 

(1) p(x) E x 6 - 4x5 + lxh - 9x3 + 7x2 - kx + 1 = 0. 

SOLUTIONS 

Once Again 

Professor M. S. Klamkin has pointed out that this problem was proposed 
previously by him (Amer. Math. Monthly 59 (1952):471]. It also appears in an 
article by W. E. Briggs, S. Chowla, A. J. Kempner, and W. E. Mientka entitled 
M0n Some Infinite Series," Soripta Math. 21 (1955):28-30. 
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H-320 Proposed by Paul S. Bruckman, Concord CA 
(Vol. 18, No. 4, December 1980) 

Let 
oo 

C(s) = 2n"s» Re(s) > 1> the Riemann Zeta function. 
M - l 

Also, let 
n 

Hn = X) k"1, w = 1, 2, 3, ..., the harmonic sequence. 
fc -1 

Show that 
t % = 25(3). 

n-l ft 

Solution by C. Georghiou, University of Patras, Patras, Greece 
Method I: Clearly, the series converges; let S denote its sum. We note that 

K - ±k-> - £(£ - j ^ ) --twTTn) - -njy^a -t)dy 

and 

~ If* x3~1e'xdx 

»-i- U s ; ^o 1 - e~x 

where T(s) is the Gamma function. 
Then 

*-£%--£: C^lo*\-»dt • • f i ( q i o « v ^ 
n - i n2 n = i i 0 n * ; 0 n = iVn / £ 

. / l o g 2 ( l - *), ^ s i n c e £ l^-..iog(l - t) for |*[ < 1, 
Jo V n-l n 

and the interchange of the summation and integration signs is permissible. 
Setting t = 1 - e~x in the last integral, we get 

~~2e-xdx 
e ^ - 2C(3). 

-co 

/ • • £ 

-'o 1 -a; 
/0 1 " 5 

Method 11: Clearly, the series converges; let S denote its sum. We note that 

n 0° / -. -I \ oo 

Hn = £y=
k?^ • F + ^ ) = £ k(fc+«)-

Define a l s o 

Then - 2 

#n - E k" 2 and # 2 = ^(2) - E2
n. 

k = l 

Hn = jT, , the series 22 — converges, and we denote its sum by S. 
fc-i (k + ft)2 »-i n 
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The following hold true: 

(i) E - S. 
n=1 (n + l)2 

Indeed, by rearranging the above series, we get 

oc "-n °° -j ° ° 1 °° -. °° . oo Hk _ 

2^ - = 2^ — 2^ i7 = 2^ i7 2^ ~ ~ 2-# "ir = S; 
n = 1 (n + 1) n-i (n 4- l)2fc = i K *-i ;< » - i (n + fc) * = 1 

( i i ) 5 = C(3) + ~S. 

Indeed , w i t h H. = 0, 

oo — + # , O O T oo H ^ oo # 

n = i n z n = i n d n = i nz «-i (n + 1). 

which, by means of (i) establishes (ii). 

( i i i ) IS = 5 . 

Indeed, 

_ oo Hn co oo , °° °° 1 1 / 7> \ I/ 1 \ I 

S " ,?i ~ " S, £„(„ + *>* " «?. £ JFWT^) " ̂ T^l ) j 

from which (iii) follows. 
Combining (ii) and (iii), we have S = 2^(3). 

Also solved by L. Carlitz, A. G. Shannon, and the proposer. 

Big Deal 

H-321 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 
(Vol. 18, No. 4, December 1980) 

Establish the identity 

C1.W + Fn ~ <£l2r + Le, + L,r " » ^Liz* + FL 2, > 

+ (£20r + L16r + ^ r + 3)(^ + 10r + F%
n + hr) 

~ (i2„r - L
20r + L12r + 2LSr " ^(^n + sr + F« + 6r) 

= 40(-l)"n An-
i = ± 
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Solution by Paul S. Bruckman, Concord, CA 

Let 

(1) <Kn, r ) = Fs
n + 1,r + F*.- Ar(F6

n+12r + F* + 2r) + B (F* + 1 0 r + Fs
n + ,r) 

-6r — r' (F 6 + F6 ^ 
where 
(2) A r = L12r + L 8 r + L 4 r - lr 

(3 ) Bv - L2Qr + -^i6r ~*~ ^ 4 r ~*~ 3 ; 

( 4 ) C;p = Z/21+r - L 2 0 r + Ir122» + 2^8r ~ 1. 

We make repeated use of the following identities: 

(5) ^2u^2v = ^2u + 2v + ^2u-2v » 

(6) Fm
6 = 5 ' 3 {£ 6 m - e C - l f L ^ + 15L2m - 2 0 ( - l ) m } . 

I t i s a t e d i o u s bu t s t r a i g h t f o r w a r d e x e r c i s e t o prove t he fo l lowing i d e n t i -
t i e s , by means of ( 5 ) : 

(7) Lmkr ~ ArL1Qkr + BrLskr - CrL2kr = 0, k = 1, 2, 3 . 

Let 

(8) Ur = Cr - Br + Av - 1. 

We n o t e t h a t 

l25F2
2rFlFl - V*r ~ 2 ) ( £ 8 r " 2 ) ( L 1 2 , - 2) 

= \Lkr - 2 ) ( L 2 0 r + -^^r ~ 2 L 1 2 r - 2L8 r + 4) 

= L2i+r - 2L 2 0 r - Lier + 2L122, + 3LQr - 6 
( a f t e r s i m p l i f i c a t i o n ) 

= O ^ r - £20r + £12* + 2L*r " X) ~ (L20r + ^ISr + ^ r + 3> 

+ ^ 1 2 , + ^ r + £ , , - 1) - 1 

or 

(9) Z7 = 125F2 F 2 F 2 . 
Now 

125<|>(n, 3?) = £6n+84r + £'6n " 6 (-1) n L 4 n + 5 6 r - 6( - l )"Li + n + 1 5 £ 2 n + 2 8 r + 15L2n 

- 4 0 ( - l ) n 

- i4r{L6n+72r + -^6n+12r ~ 6 ( - l ) Li+n + i+83" - 6 ( - l ) L^n+Qr 

+ 15L2n + 2^ + 15L2n + ,r - 40(-l)n} 

+ 15L2n+20P + 15L2n+8r - 40(-l)n} 
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Cr^Sn+k8r + L6n+36r ~ 6 ( - l ) Li+n+32r " 6 ( _ 1 ) " ^ 4 * + 2 i ^ 

[using (6)] 
+ 1 5 ^ + 16, + 1 5 ^ n + l 2 , " *0(-l)»} 

^ 6 n + i + 2 r ^ 4 2r ^ r ^ 3 0r + 5r^l8r ^r^er^ 

- 6 ( 1 ) ^ l + n + 28i» (L28r "" ^2-^2 Or + BrLl2r " ^V^r ) 

+ 40(-l)n(-l + 4 r - 3r + Cr) 

[using (5) repeatedly once again, and factoring] 

= 40(-l)n[/2, [using (7) and (8)], or as a result of (9), 

(10) <|>(n, r) = 40(-l)nF^F^F^. Q.E.D. 

Also solved by the proposer. 

Two Much 

H-322 Proposed by Andreas N. Phillppou, American Univ. of Beirut, Lebanon 
(Vol. 19, No. 1, February 1981) 

For each fixed integer k >_ 2, define the ̂ -Fibonacci sequence f by 

and 

J n 
(k) 

n KK.J 
Jo 

[ f(^ + • J n-1 ^ 

fik\ + • 
J n-1 

= 0, f™ 

• • + f„(fe) 

- + ^ 

= l , 

i f 2 £ n £ fe, 

if n >. k + 1. 
Show the following: 

(a) /„(k) = 2r 

(b) fn
(H < 2r 

if 2 <. n < k + 1; 

if n >_ k + 2; 

(c) E (/f)/2n) - 2*-1. 

Solution by the proposer 

For 2 _< n _< /c, 

2 j?(k) _ 2n-2f(k) »'* and /<*"> - /<*> + 
(fe+1) "* 

which establish (a). Next, for n >_ k + 1, 

.00 ?(fc) .<*) (fc) 

+ f™ - 2f (*> ,fc-i 

.(*) /» = fn-i + ••• + / n . f c and / n - 1 - fn_2 + ••• + fn 
,(*> 

so that 

(1) 
,(*0 = 0Ak) __ „(fc) 
J n

 AJ n-l Jn-l- k (n >_ k + 1), 

,(k) Taking n = k + 2 in (1), (a) implies /fcv+2 = 2^ - 1 < 2k, which verifies (b) 
for n = k + 2. Assume now '/m^ < 2m for some integer m (>_ k + 3). It then 
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follows by (1) and the positivity of ff^ (i J> 1), that 

Jm+l zim Jm-k L 9 

and this proves (b). Using (1) again, we get 

(ff)/2n) - Cf<*)1/2B+1) = (/„(.\)/2B+1) > 0 ( n > k + 1). 
Therefore, 

(2) 11m (ff} /2") = 0. 
n + oo " 

m 

Setting s^ = /J (/n /2n) (m ̂ L 1) , and using (1) and (a), we get, after some 
algebra, n = 1 

(3) 8<« = 2*'1 - (2k + 1 - l)(/f)/2m) + £ (f,f)i/2'"-i) (m >. fc + 2). 
i = l 

Relations (2) and (3) give lim s^ = 2 ~1, and this shows (c). 
m -> oo 

Remark 1: For fc = 2, (b) reduces to Fn < 2n"2 if n _> 4. (Fuchs [2] proposed 
and Scott [4] proved Fn < 2n~2 if n >_ 5). 

Remark 2: For k = 2, (c) reduces to 2(^n/2n) = 2, a result obtained by Lind 
n-l 

[3] in order to solve a problem of Brown [1], 

References 
1. J. L. Brown. Problem B-118. The Fibonacci Quarterly 5, no. 3 (1967):287. 
2. J. A. Fuchs. Problem B-39. The Fibonacci Quarterly 2, no. 2 (1964): 154. 
3. D. Lind. Solution of Problem B-118. The Fibonacci Quarterly 6, no. 2 

(1968):186. 
4. B. Scott. Solution of Problem B-39. The Fibonacci Quarterly 2, no. 3 

(1964):327. 

Also solved by P. Bruckman and L. Somer. 

A Common Recurrence 

H-323 Proposed by Paul Bruckman, Concord, CA 
(Vol. 19, No. 1, February 1981) 

Let (con)°^ and Q/M)^ be two sequences satisfying the common recurrence 

(1) p(E)zn = 0, 

where p is a monic polynomial of degree 2, and E = 1 +A is the unit right-shift 
operator of finite difference theory. Show that 

(2) xnyn+i - xn+iyn
 = (p(o))n(^0^i " x i^ 0 )> n = o, i , 2, . . . . 

Generalize to the case where p is of degree e >_ 1. 

Solution by the proposer. 
We solve the general case, with p any monic polynomial of degree e >.!. 

Suppose 
(„U) }°°  f„(2) \°°  /(e) \°°  
\<»n I 0 ' \^n i 0 » •••s \<> n J o 
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are sequences satisfying the common recursion (1). We seek to evaluate Caso-
rati's Determinant 

(3) Dn 

,<D 

,(D 

,(2) 

,(2) 

~ U ) „(2) 
n+e-1 ^n+e-i 

,(*> 

,<*> 

,(«> 

Let Un = {(zji\-i))e*e be the matrix whose determinant is Dn; also, de-
fine the e X e matrix J as follows: 

(4) 

J = 

0 
0 
0 

1 
0 
0 

0 
1 
0 

0 
0 
1 

0 0 0 0 ... 1 

-p(0) -p'(0)/l! -p"(0)/2! -p'"(0)/3! ... -p(e _ 1 ) (0) / (e - 1) ! 

(5) 

Note that p has the Maclaurin Series expansion 

po-t^Sia... 
r=0 

Therefore, the sequences (s„ ) 0 (& = 1» 2, ..., e ) satisfy the 
sion 

common recur-

P = O * " ? =o 

since p is monic, p (e) (0)/e! = 1, and hence 

(6) L«I p? *r, (n = 0, 1, 2, . . . ) . 

We now observe, using (3), (4), and (6), that 

(7) J • Un = Z7n+1, n = 0, 1, 2, ... . 

It follows by an easy induction that 

(8) Un = JnUQS n = 0, 1, 2, ... . 

We may evaluate \j\ along the first column of J, and we find readily 
that \j\ = (-l)e_1(-p(0)) = (-l)ep(0). Therefore, taking determinants in (8) 
yields: 

Wn £o> 
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(9) Dn - {(-l)ep(O)}nZ)0, n = 0, 1, 2, ... . 

This is the desired generalization of (2). Many interesting identities 
arise by specializing further. For example, taking 

p(z) = z2 - z - 1, (xn) = (Fn)9 and (z/„) = (L„) , 

yields: 

(10) FnIn+ 1 - Fn+1Ln = 2C-1)""1, n - 0, 1, 2 

***** 

ERRATA 

In the article "On the Fibonacci Numbers Minus One" by G. Geldenhuys, 
Volume 19, no. 5, the following two errors appear on pages 456 and 457: 

1. The recurrence relation (1), which appears as 

D1 = 1 + y, D2 = (1 - y ) 2 , and Dn = (1 + y ) ^ . ! - \iDn_3 for n >_ 3 

should read 

D± = 1 + y, Z?2 = (1 + y ) 2 , and Dn = (1 + u)Z?n-1 - y£>„_3 for n _> 3; 

2. The alternative recurrence relation (4), which appears as 

Vm - 0»-i " ^-2 = 1 for m > 3 

should read 

Vm " V^m-i - ̂ m-2 = 1 for m' >. 3. 

We thank Professor Geldenhuys for bringing this to our attention. 

***** 
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