
THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION 

r 
VOLUME 20 
NUMBER 3 

CONTENTS 

AUGUST 
1982 

Lexicographic Ordering and 
Fibonacci Representations V.E. Hoggatt, Jr. & 

Marjorie Bicknell- Johnson 193 
Roots of Recurrence-Generated 

Polynomials A.F. Horadam & E.M. Horadam 219 
Primitive Pythagorean Triples Leon Bernstein 227 
A Note on the Farey-Fibonacci Sequence K.C. Prasad 242 
Thevenin Equivalents of Ladder Networks William P. Risk 245 
A Property of Binomial Coefficients Mauro Boscarol 249 
Characterization of a Sequence Joseph McHugh 252 
Consequences of Watson's Quintuple-

Product Identity John A. Ewell 256 
Analysis of a Betting System John Rahung & Jim Hyland 263 
Elementary Problems and Solutions Edited by A.P. Hillman 279 
Advanced Problems and Solutions .. Edited by Raymond E. Whitney 284 

Announcement of Fibonacci Research Conference 248 



*Qie Fibonacci Quarterly 
Founded in 1963 by Verner E. Hoggatt, Jr. (1921-1980), 

Br. Alfred Brousseau, and I.D. Ruggles 

THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION 
DEVOTED TO THE STUDY 

OF INTEGERS WITH SPECIAL PROPERTIES 

EDITOR 
Gerald E. Bergum 

BOARD OF DIRECTORS 

G.L. Alexanderson (President), Leonard Klosinski (Vice-President), Marjorie Johnson (Secretary), 
Dave Logothetti (Treasurer), Richard Vine (Subscription Manager), Hugh Edgar and Robert Criuli. 

ASSISTANT EDITORS 

Maxey Brooke, Paul F. Byrd, Leonard Carlitz, H. W. Gould, A.P. Hillman, A.F. Horadam, David A. 
Klarner, Calvin T. Long, DrW. Robinson, M.N.S. Swamy, D.E. Thoro, and Charles R. Wall. 

EDITORIAL POLICY 

The principal purpose of The Fibonacci Quarterly is to serve as a focal point for widespread 
interest in the Fibonacci and related numbers, especially with respect to new results, research 
proposals, and challenging problems. 

The Quarterly seeks articles that are intelligible yet stimulating to its readers, most of whom are 
university teachers and students. These articles should be lively and well motivated, with innova-
tive ideas that develop enthusiasm for number sequences or the exploration of number facts. 

Articles should be submitted in the format of the current issues of the Quarterly. They should be 
typewritten or reproduced typewritten copies, double spaced with wide margins and on only one 
side of the paper. Articles should be no longer than twenty-five pages. The full name and address of 
the author must appear at the beginning of the paper directly under the title. Illustrations should 
be carefully drawn in India ink on separate sheets of bond paper or vellum, approximately twice 
the size they are to appear in the Quarterly. Authors who pay page charges will receive two free 
copies of the issue in which their article appears. 

Two copies of the manuscript should be submitted to GERALD E. BERGUM, DEPARTMENT 
OF MATHEMATICS, SOUTH DAKOTA STATE UNIVERSITY, BROOKINGS, SD 57007. The 
author is encouraged to keep a copy for his own file as protection against loss. 

Address all subscription correspondence, including notification of address changes, to SUB-
SCRIPTION MANAGER, THE FIBONACCI ASSOCIATION, UNIVERSITY OF SANTA 
CLARA, SANTA CLARA, CA 95053. 

Annual domestic Fibonacci Association membership dues, which include a subscription to The 
Fibonacci Quarterly, are $20 for Regular Membership, $28 for Sustaining Membership I, $44 for 
Sustaining Membership II, and $50 for Institutional Membership; foreign rates, which are based 
on international mailing rates, are somewhat higher than domestic rates (please write for details). 
The Quarterly is published each February, May, August and November. 

All back issues of The Fibonacci Quarterly are available in microfilm or hard copy format 
from UNIVERSITY MICROFILMS INTERNATIONAL, 300 North Zeeb Road, Dept P.R., 
ANN ARBOR, MI 48106. 

1982 by 
© The Fibonacci Association 

All rights reserved, including rights to this journal 
issue as a whole and, except where otherwise noted, 

rights to each individual contribution. 



LEXICOGRAPHIC ORDERING AND FIBONACCI REPRESENTATIONS 
(Submitted June 1980) 

V. E. HOGGATT, JR . 
(Deceased) 

and 
MARJORIE BICKNELL-JOHNSON 

San Jose State University, San Jose, CA 95192 

The Zeckendorf theorem [1], which essentially states that every positive 
integer can be represented uniquely as a finite sum of distinct Fibonacci 
numbers 1, 2, 3,5, ..., 8, where no two consecutive Fibonacci numbers appear, 
led to so much new work that the entire January 1972 issue of the F-ibonaeei-
Quarterly was devoted to representations. 

Now, through consideration of the ordering of the terms in a representa-
tion and the ordering of the integers, we study mappings of one integer into 
another by increasing the subscripts of the terms in a representation. We 
are led to number sequences related to the solutions of Wythofffs game [2], 
[3], and the generalized Wythoff!s game [4], We investigate representations 
using Fibonacci numbers. Pell numbers, generalized Fibonacci numbers arising 
from the Fibonacci polynomials, Lucas numbers, and Tribonacci numbers. 

1. The Fibonacci Numbers 

If we define the Fibonacci numbers in the usual way, 

FQ = 0, F1 = 1, Fn+1 = Fn + Fn_19 n > 1, 

then every positive integer N can be written in its Fibonacci-Zeckendorf rep-
resentation as 

(1.1) N = a2F2 + a3F3 + akFh + • • • + akFk , 

where a^ e {0, l}, a^a^_x = 0, or a representation as a sum of distinct Fibo-
nacci numbers where no two consecutive Fibonacci numbers may be used. Such 
a representation is unique [5] and is also called the first canonical form 
of N. 

If, instead, we write the Fibonacci representation of N in the second 
canonical form, we replace F2 with F19 and 

(1.2) N = a1F1 + a3F3 + a^Fh + ••• + akFk , 

where a^ £ {0, 1}, a2 = 0, a^a^.^ = 0. Such a representation is also unique. 

193 



194 LEXICOGRAPHIC ORDERING AND FIBONACCI REPRESENTATIONS [Aug. 

Notice that, if the smallest Fibonacci number used in the representation has 
an odd subscript, the two forms are the same, but if the smallest Fibonacci 
number used has an even subscript, it can be written in either form. For ex-
ample, the Zeckendorf representation of 8 = F6 becomes 8 = F5 + F3 + F1, and 
11 = FG + Fh = F, + F3 + F X . 

We next need some results on the ordering of the terms in a representa-
tion. A lexicographic ordering was earlier considered by Silber [7], We de-
fine a lexicographic ordering as follows: 

Let positive integers M and N each be represented in terms of a strictly 
increasing sequence of integers {an} so that 

k k* 

d.3) ^ = Ea;a;> ^ = I > ^ ' 
i = 1 i = 1 

where â ,3-z: £ (0, 1, . ..,p}. Let a^ = 3^ for all i > m. If am > 3W only if 
M > N9 then we say that the representation is a lexicographic ordering. 

Theorem 1.1 

The Zeckendorf representation of the positive integers in terms of Fibo-
nacci numbers is a lexicographic ordering. 

Proof: Let M and N be the two positive integers given in (1.3), where 
an = Fn + 19 p = 1, and GL^a^.-j^ = 0, 3i3^_1 = 0. If a^ = &i for all i > m, and 
if am > Bm, then am = 1 and $m = 0, and we compare the truncated parts of the 
numbers. 

M* = a2F2 + asF3 + - • • + a ^ F ^ + Fm > Fm 

N* = &2F2 + 33^3 + ••• + e„.A-i <.Fm-i + Fm-3 + Fm-s + ••• <Fm - L> 

so that M* > N* and M > N9 since it is well known that 

F2k + F2k-2 + "** + F2 = F2k-l ~ 1» 

7? 4.7? _|_ . . . 4. 77 = 7? _ 1 

Application: Let f* be the transformation that advances by one the sub-
scripts on each Fibonacci number used in the Zeckendorf representation of the 
positive integers M and N. If 

M - — Mr and N -£-*- N ', 

and if M > N, then Mr > Nr. 

Theorem 1.2 

The Fibonacci representation of integers in the second canonical form is 
a lexicographic ordering. 
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The proof of Theorem 1.2 is very similar to that of Theorem 1.1. Next, 
we let f be the transformation that advances by one the subscripts of the 
Fibonacci numbers used in the representation in the second canonical form of 
the positive integers M and N. If 

M -^Mf and N - ^ N !, 

and if M > N9 then M' > Nr. 

Let A = {An} and B = {Bn} be the sets of positive integers for which the 
smallest Fibonacci number used in the Zeckendorf representation occurred re-
spectively with an even or with an odd subscript. Since the Zeckendorf rep-
resentation is unique, sets A and B cover the set of positive integers and 
are disjoint. 

Notice thats if the smallest subscript for a Fibonacci number used in the 
Zeckendorf representation for a number is odd, then the first and second ca-
nonical forms are the same. Thus, under f or / *, every element of B is mapped 
into an element of A. But every element of A can be written in either canon-
ical form, and under / every element of A is mapped into an element of A. 
Thus, every positive integer n is mapped into an element of A, or, aided by 
the lexicographic ordering theorems, 

An-J-* AAn 

Bn - ^ ABn 

n *- An 

f* 
^•n u n 

so that 

(1.4) AAn + 1 = Bn 

follows, as well as 

(1.5) An + n = Bn. 

Compare to the numbers an and bn9 where (an,bn) is a safe pair for Wythofffs 
game [3], [4]. If one uses the Zeckendorf representation of positive inte-
gers using the Lucas numbers 2, 1, 3, 4, 7, • ..., since the Lucas numbers are 
complete and have a unique Zeckendorf representation, we could make similar 
mappings. This is essentially developed in [4] but in a different way. For 
later comparison, we recall [3], [4], that 

(1.6) An = [na], 

where [x] is the greatest integer in x and a = (1 + /I)/2 is the positive 
root of y1 - y - 1 = 0. 
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2. The Pell Numbers 

Let us go to the Pell sequence {Pn}, defined by 

P± = 1, P2 = 2, Pn+2 = 2P n + 1 + Pn, n i l . 

The Pell sequence boasts of a unique Zeckendorf representation [6] . Consider 
the positive integers and the three sets A = {An}, B = {Sn}, and (7 = {Cn}9 
where i4n = Bn - 1 and C„ = 2Bn + n, and A9 B, and C contain numbers in their 
natural order of the form 

An = 1 + a2P2 + a3P3 + ••• + akPk , 

(2.1) £„ = a2P2 + a3P3 + ••• + akPR9 a2 ^ 0, 

where a^ e {0, 1, 2}, and if a^ = 2, then a^_x = 0. 

Since we next wish to map the positive integers into set B9 we will need 
a lexicographic ordering theorem for the Pell numbers. 

Theorem 2.1 

The Zeckendorf representation of the positive integers, in terms of Pell 
numbers, is a lexicographic ordering. 

Proof: Let M and N be two positive integers given by 

k k 

M = E a A > N =E^> 
where a^, 3 i e {0, 1, 2} except a x , 3x ^ 2; and i f a^ = 2 , then a^_x = 0 , or 
i f g^ = 2, then Bi_i = 0. If ai = 3i fo r a l l i > m, and i f am > 3m> then 
aw = 2 and 3m = 1, or affl = 1 and 3m = 0 , or affl = 1 and $m = 0. We compare 
t h e t r u n c a t e d p a r t s of t he numbers when am = 2 and 3W = 1: 

Af* = a x P x + a 2 P 2 + • • • + 2Pm >_ 2Pm 

N* = 3 ^ + 32P2 + • ' ' + Pm £ Pm + Pm " 2 < 2PW , 

Since, if 315 32» 33» •.•, &m-i a r e taken as large as possible, whether m is 
even or odd, 

2(^-i + ••• + P 3 ) + P , =P2fc - 1 =P m - 1, 

^ ^ 2k + P2k~2 + **" + ^ 2 ^ = ^ 2 k + l ~ ^ = ^ W ~ 1' 

so that M* > N* and M > N. If am = 2 and ]8W = 0, then 21/* is even smaller. 
If am = 1 and 3m = 0, then M* _> POT, but notice that, if the coefficients 3i 
are taken as large as possible, we can only reach N* = Pm - 1, and again 
M* > N*9 making M > N. By definition (1.3), we have proved Theorem 2.1. 
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In an entirely similar manner, we could prove Theorem 2.2, where we write 
the second canonical form by replacing P2 by 2P1 and 2P2 by P2 + 2P1 in the 
Zeckendorf representation, where again if 2Pk appears, then P^_x is not used 
in that representation. This second canonical form is again unique [6]. We 
write: 

Theorem 2.2 

The Pell number representation of integers in the second canonical form 
is a lexicographic ordering. 

Let f be the transformation that advances by one the subscripts of each 
Pell number used in the representation in the second canonical form of the 
positive integers M and N, and let /* be the transformation that is used for 
the Zeckendorf form. Then, as before, if 

M-J-+Mf and N - ^ N ', 

and if M > N9 then Mr > Nr, and the same for transformation /*. 

Now, we consider An, Bn9 and Cn of (2.1), and mappings of the integers 
under / and f*. We must first put Bn into the second canonical form. In the 
representation for Bn9 replace P2 by 2P1, or replace 2P2 by P2 + 2Pl9 since 
the smallest term of Bn is either P2 or 2P2. Now, under /, Bn is mapped into 
B3^9 while under f*, Bn goes into Cn9 applying the lexicographic theorems for 
Pell numbers. 

P2 - ^ P 3 5 or 2 -^- 5; 

2P1 J-+ 2P2, or 2 -£-» 4; 

2P2 - ^ 2P3, or 4
 J—^ 10; 

P2 + 2P1-^— P3 + 2P2, or 4^-— 5 + 2 • 2 = 9. 

Thus, the image of Bn under / is one less than the image of Bn under /*, and 

(2.2) BBn + 1 = Cn. 

We know where the ̂ 4n's go under /: into Bn9 since the An's start with a one, 
while their images start with a P2. The 5n's (second form) have 2Pl9 so their 
images start with 2P2, clearly a Bn. Now, where do the Cn

?s go? Each Cn be-
gins with 5 or 10. Replace 2P3 = 10 by 5 + 2 • 2 + 1 = P3 + 2P2 + P1, and 
replace 1P3 = 5 by 2P2 + P1 = 2 • 2 + 1 and under /, 

and 
10 -> P4 + 2P3 + P2 = 12 + 2 • 5 + 2 = 24, 

5 -> 2P3 + P2 = 2 • 5 + 2 = 12. 

Thus An9 modified Bn9 and modified Cn are all carried into Bn by / and 

Byn *~ C y, . 
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For later comparison, we note that 

(2.3) Bn = [n(l.+ /2)]5 

where [x] is the 'greatest integer in x, and (1 + /2~) is the positive root of 
y2 - 2y - 1 = 0. 

3. Generalized Fibonacci Numbers (Arising from Fibonacci Polynomials) 

Next, consider the sequence of generalized Fibonacci numbers {un}, 

uQ = 0, u1 = 1, and un + 1 = fcun + un_l9 n >_ 1. 

[Note that, if the Fibonacci polynomials are given by fQ (x) = 0, f1(x) = 1, 
and fn+1(x) = xfn(x) + Jn..iW5 n _> 1, then un = fn(k).] Let set B be the 
set of positive integers whose Zeckendorf representation has the smallest un 
used with an even subscript, and set 0 the set of integers whose Zeckendorf 
representation has the smallest un used with an odd subscript. We know from 
[6] that N has a unique representation of the form 

(3.1) N = CL1U1 + a2u2 + ••• + amum, 

where 

a-L e {0, 1, ..., k - 1}, 

ai e {0, 1, 2, .. . , k}9 i > I, 

ai = k => oti_1 = 0, 

so that sets B and 0 cover the positive integers without overlapping. 

We wish to demonstrate a second canonical form for elements of set B. We 
do this in two parts: Let a2k ^e t n e coefficient of the least u2k used; then 
a2k - 1> 2, 3, ..., k. Take lu2k and replace it by ku2k-i + u2k-2> and con-
tinue until you obtain lu2, and replace that by ku19 

u2k = k(u2k_^ + u2k_3 + ••• + u3 + u±). 

Thus, 

Bn = R + &U2fc _ x + ^2fe - 3 + " " " + ^U3 + ^ U l " 

If / is again the transformation that increases the subscripts by one for 
integers written in the second canonical form, and f* the transformation for 
the Zeckendorf form, then, if we can again use lexicographic ordering, 

Bn —-—^R ' + ku2k + ku2k_2 + ••• + ku2 

-p-k 

Bn——*Rr + u2k + 1 , 

but from [6], 
u2k+i - 1 = k(u2k + u2k,2 + ••• + uk + u2), 
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so that the images differ by 1. Now, under f9 we see that all of the elements 
of 0 are mapped into set B and set B in second canonical form is also mapped 
into set B. Thus, provided we have lexicographic ordering, the positive in-
tegers n map into Bn under /. If we split set 0 into sets A whose elements 
use lu1 in their representations and C =,{CW}, where Cn does not use lu1 in 
its representation, then 

Bn - £ - Cn , and Bn - ^ BBn, 

and since the images differ by 1, 

(3.2) BBn + 1 = Cn9 n > 0. 

The general lexicographic theorm should not be difficult. 

Theorem 3.1 

The Zeckendorf representation of the positive integers in terms of the 
generalized Fibonacci numbers {un} is a lexicographic ordering. 

Proof: Let M and N be positive integers which have Zeckendorf represen-
tations 

n n 
M=Y,Miuc and ff-2>^-

j = i J = i 

Compare the higher-ordered terms from highest to lowest. If Mj = Nj for all 
j > 777, and Mm > Nm, then we prove that M > N. It suffices to let M = Mmum 
and Mm >_Nm + 1. 

N £ N* = ku2j-_1 + ku2j-_3 + ku2j_5 + ••• + ku3 + (k - l)ux = u2j. - 1 

or 

N <_ N* = ku2 . + ku2._2 + • • • + ku2 = u2j- + 1 - 1. 

Thus M >_ M* > N* >_ N9 so that M > N, proving Theorem 3.1. 

This shows that, if two numbers M and N in Zeckendorf form are compared, 
then the one with the larger coefficient in the first place that they differ, 
coming down from the higher side, is larger. Now, what need be said about 
the second canonical form? If both M and N are in the second canonical form, 
and they differ in the jth place, whereas their smallest nonzero coefficient 
occurs in a position smaller than the jth place, then the original test suf-
fices. If they both differ in the smallest position, then again the one with 
the larger coefficient there is larger, as their second canonical extensions 
are identical. 

Theorem 3.2 

The representation of positive integers in the second canonical form us-
ing generalized Fibonacci numbers {un} is a lexicographic ordering. 



200 LEXICOGRAPHIC ORDERING AND FIBONACCI REPRESENTATIONS [Aug. 

Under transformation f9 using the second canonical form, if M = N + 1, 
then 

M-L+M', a n d N-L+Nr9 

such that Mr > /!/' + k - 1. For example, 

u1 = 1-L»u2 = fc, 2 = 2 U - L ^ - 2 U 2 = 2fe, and 2k > k + fe - 1, 

taking Af = 2 and N = 1. 

We now return to sets ̂ 4 and C which made up set 0 and with set B covered 
the positive integers. Sets A9 B, and C can be characterized as the positive 
integers written, in natural order, in the form 

An = a1u1 + a2u2 + OL3U3 + ••• + amum9 a± + 0, k9 

(3.3) Bn = a2u2 + a3u3 + ••• + oimum9 a2 ̂  0, 

cn = a3^3 + a^u^ + •'*•+ amum9 a3 ̂  0, ai e {0, 1, 2, 3, . .., fc}. 

For the numbers Bn9 we can write: 

Theorem 3.3 

BBn+l ~ B3n = k + 1, and if m + Bn, 

Also, it was proved by Molly Olds [18] that 

Theorem 3.4 

Cn = kBn + n. 

4. The Tribonacci Numbers 

The Tribonacci numbers {Tn} are 

T0 = 0, 2\ = 1, T2 = 1, Tn+3 = Tn+ 2 + Tn+ 1 + Tn9 n > 0. 

The Tribonacci numbers are complete with respect to the positive integers, 
and the positive integers again have a unique Zeckendorf representation in 
terms of Tribonacci numbers (see [8]). That is, a positive integer N has a 
unique representation in the form 

(4.1) N = a2T2 + a3T3 + ... + akTk9 

where ai e {0, l}, aiai_xai_2 = 0. 

Now, consider the numbers An9 Bn9 and Cn listed in Table 4.1. Here, be-
cause we want completeness in the array, we take An as the smallest positive 
integer not yet used, and we define A n as the number of C^fs less than An9 
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and <Pn as the number of Ck
,s less than B„. Then, we compute Bn and Cn as 

(A.2) Bn = Un - A„, 

(4-3) Cn = Wn - <Pn. 

We write the Tribonacci recurrence relation: 

(4.4) n + An + Bn = Cn. 

TABLE 4.1 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

An 

1 
3 
5 
7 
8 
10 
12 
14 
16 
18 

Bn 

2 
6 
9 
13 
15 
19 
22 
26 
30 
33 

Cn 

4 
11 
17 
24 
28 
35 
41 
48 
55 
61 

Now, A = {An} is the set of positive integers whose Zeckendorf represen-
tation has smallest term Tk, where k E 2 mod 3; B = {Sn} contains those pos-
itive integers using smallest term Tk , where /c = 3 mod 3; and C = {Cn} has 
smallest term Tk9 where k = I mod 3, k > 3. We have suppressed !T1 = 1 in the 
above; thus, every positive integer belongs to A, B, or C by completeness, 
where A, Bs and C are disjoint. 

We write a second canonical form by rewriting each An by replacing T2 by 
Tx; replacing T3 = 2 in each Bn by T2+ Tx; and leaving the numbers Cn alone. 

Note that, instead of saying uAn has smallest term T3rn+2," we could say 
"An has 3/?? + 1 leading zeros." 

Theorem 4.1 

Each An has /c = 1 mod 3 leading zeros in the Zeckendorf representation 
and can be written so that 

An = T2 + a3T3 + a4T4 + ••• + a ^ , where o^ e {0, l}. 

Each Bn has fc E 2 mod 3 leading zeros and can be written as 

Bn = T3 + a ^ + ••• + aP2V, where ai e {0, l}. 
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Each Cn has k =• 0 mod 3 leading zeros, k >_ 39 and can also be written 

Cn = Th + a5T5 + ••• + arTr9 where o^ e {0, 1}. 

Proof: Let T3m+2 have a nonzero coefficient. Replace T3m+2 by 

™3m+l + -^3/7? + ™ 3 m - l = ™ 3m+ 1 + -^3tf? + ™ 3 ( m - l ) + 2 * 

Continue until the right member ultimately lands in slot 2. The similar re-
placement for T0 in By, and T0„,, in Cn will establish the forms given above. 
^ dm rL dffl+l " ° 

Theorem 4.2 

The Zeckendorf representation of the positive integers in terms of the 
Tribonacci numbers {Tn} is a lexicographic ordering. The representation in 
the second canonical form is also a lexicographic ordering. 

Proof: Write M and N in their Zeckendorf representations, 

n n 

J = 2 j = 2 

If Afj = Nj for all j > m and Mm > Nm, then Mm = 1 and /Vm = 0, and we prove 
that M > N. We let M* and 21/* be the truncated parts of the numbers M and N. 
Then 

M* = M2^2 +M3T3 + ••• +MmTm >_ Tn9 

N* = N2T2 + N3T3 + .-• + tfm_12'JI!_1. 

Since N^N^_ 1Ni_2 = 0, #* is as large as possible when both #m-i and #m-2 are 
nonzero. Either m = 3k or 777 = 3& + 1 or m = 3k - 1. We use three summation 
formulas given by Waddill and Sacks [9]. 

If m = 3ks then 

k 
N* i E ^ - i + ̂ 3i-2) ~ T1 = T3, - 1 < Tm £ M*. 

i = i 

If 77? = 3k + 1, 

^ * < E (̂ 3i + ̂ i-i) = ̂ 3k+i - 1 < Tm < M*. 
i = l 

If 777 = 3k - 1, 

k 
^* < E (T3i-2 + ̂ - 3 ) " ̂ 1 = ̂ 3,., - 1 < Tm < M*. 

i = l 
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Thus in all three cases, M* > N* so that M > N, and the Zeckendorf represen-
tation is a lexicographic ordering. The same summation identities would show 
that the second canonical form is also lexicographic. 

Next, let / be the transformation that increases the subscripts by one 
for integers written in the second canonical form, and f* the similar trans-
formation for the Zeckendorf form. Now, the numbers in set A are ordered, 
and since we have lexicographic ordering for the second canonical form, 

7i * A A jX ». A * B -f »• A O -£-*- A „ 

Since we have lexicographic ordering for the Zeckendorf form, 

f-k J?* f* 

& n **" & n s & n "*"" ^ n s ^ n "" ̂  Cn ' 

But each AA is one less than Bn, and each AB is one less than Cn, so that 

(4.5) AAn + 1 = Bn9 and ABn + 1 = Cn. 

(4.5) reminds one of aan 4- 1 = b n from Wythoff's game [3], [4]. Note that 
{Cn} clearly maps into {An} because they were of the form whose least term 
had subscript k E 2 mod 3, so that an upward shift of one yields k = 3 mod 3 
and, hence, Ac • 

Comments: Under f,. An maps to A An , and under f*, An maps to Bn • If An 
is in second canonical form, then An + 1 = A n + T2 is" also in second canoni-
cal form. Thus, using the Zeckendorf and then the second form for An, 

An + T1-^^Bn + T2 = Bn + 1, 

4n + T2—l—+AAn+ T3 = AAn+ 2, 

so that AAn + 1 = Bn. Clearly Bn + 1 is an 4j since the 5n's have T3 as the 
lowest nonzero Tribonacci number, but Bn + 1 has T2. Thus, 

(4.6) AK + 1 = Bn and 5n + 1 = AAn+l 

so that 

We also have shown that there are An of the Aj's less than Bn. 

Under /, Sn maps to ABri , and under / *, Bn maps to Cn.. Therefore, 

ABn + I = Cn, 

which shows that there are Bn of the Aj's less than Cn. Also, Cn + 1 is an 
i4J- since each Cn can be written with the least summand Th. Therefore, 

and 

(4.7) 4Sn + 1 = C„ and C„ + 1 = ABn+l 



204 LEXICOGRAPHIC ORDERING AND FIBONACCI REPRESENTATIONS [Aug. 

give us 

ABn+l~ &Bn = 2« 

Next, we look at Cn and Cn + 1. 

Cn-^-~ACvt and Cn + I = Cn + T1-^-*Ac^+1 =• Ac + 1. 

Since Cn + 1 is ̂ 5 +1, the one is T± in Cn + 1. We conclude that 

Acn+i Acn *• -

This gives all the recurrent differences for the A sequence. 

We now turn to the B sequence. 

1 = (ACn+1 - ACn ) -£- (Bc^+1 - BCr ) = 2, 

2 = W.4.+1 " AAn > ^ (S4,+i - S.4„ ) = A, 

1 + 1 = 2 = (4 B J I + 1 - 4 ^ ) - £ • (B^ + 1 - Bfl< ) = 1 + 2 = 3 . 

We look f i r s t a t 

Cn-^~ACr and C„ + 1-^— Ac+1 

because C„ + 1 i s an ^ so 1 in i t i s T1. Thus 

V i = 4 C + T2^~ BCn+1 = B ^ + T3 = B ^ + 2, 
and 

Bcn+i ~ Bcn = 2 -

Now, in second canonical form, An has 571 but no T2, but An + 1 has 571 and 
!T2f or, 4n + 1 = An + T2. 

^n-^^A ~^BA 

An + 1 = An + ^ - ^ ^ + ^ 3 —J—+ BAn + Th = 5 ^ + 4 , 

4 n + l-^AAn+1 -^-BAn+1 = BAn + 4 . 

Thus, 

54„ + l ~ BAK
 = 4 ' 

Next, let Bn =Rn+T3=Rn+T2+ T1 be in second canonical form. 

Bn -t-ABn = /?„' + T3 + T2 -^~ i?;' + T, + T3, 

Bn + 1 = Rn + T3 + T1^-R'n + Th + T2 - ^ i?J,' + T5 + T3, 

Bn + 1-^Vi -^Vi = *" + T5 + T3-

Therefore, 
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BBn+i - BBn = (Rn + T5 + T,) - (R» + T4 + T3) = T5 - Th = 3. 

Finally, for the third difference of B numbers, 
/ /* 

Cn *Acn
 Bcn , 

? .crk 

Cn + 1 = Cn + T^-L~ACn + T2^—BCn + T3, 

Therefore, 

Dcn+i Br = To = 2. 

Lastly, the three differences of consecutive CjTs are found by using the 
above differences of Aj*s and Bj*s and (4.4). 

Q a + i - <M„ = (4 + 1 + AAn+1 + 2^+1) - (An + 4 ^ + B4B ) 

= (An + 1 - 4 n ) + WA n + 1 - A A n ) + ( 5 4 n + 1 - BAn ) 

= 1 + 2 + 4 = 7 . 

^ n + i ~ CBn - (B n + 1 - B n ) + (A5 n + 1 - ^ ) + ( B 5 n + 1 - S 5 n ) 

= 1 + 2 + 3 = 6 . 

CCn+l - ̂  = (̂ „ + 1 - £») + (\+1 " ̂  ) + (%B+1 " ^ 

= 1 + 1 + 2 = 4 . 

We summarize all the possible differences of successive members of the A , 
B9 and C sequences as: 

Theorem 4.3 

4^+1 ~ ^An
 = 2» ^Bn+1 - AB^ = 2, A c ^ + 1 A C n = 1 ; 

S 4 n + 1 " BAn = 4 > 5 5 n + l - BBn
 = 3 ' 5 C n + l " BCn = 2> 

^ n + l " ^ n
 = 7 s ^ + 1 " C S n

 = 6 ' CCn + l " ^ = 4 ' 

Returning to (4.6), we know that there are ̂ n of the A^s less than B n . 
Then, Bn is n plus the number of A^s less than Bn, plus the number of Ck * s 
less than B n , or, 

£ n = n + 4 n + <Pn. 

Then 

Cn = 25n - <Pn = 2Sn - (5n - n - An) = Bn + A n + n, 

a consistency proof that the C n
! s are properly defined by the array of Table 

4.1. 
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Theorem 4.4 

The number of Cj's less than An is 

l\n — ZA.n — D n . 

Proof: We show t h a t 24 n - Bn inc rements by 1 i f and only i f n = Bm, and 
zero o t h e r w i s e , app ly ing Theorem 4 . 3 : 

2 0 V i - AAn ) - (BAn+1 - BAn ) = 2(2) - 4 = 0, 

2(ABn+i " ABn ) ~ (55n+i ~ BBn ) = 2(2) - 3 = 1, 

2 ( \ + 1 ~ i4Cn ) - CE^+1 - 5Cn ) = 2(1) - 2 = 0. 

Note w e l l t h a t {An}, {Sn}, and {£„} a r e s e t s whose d i s j o i n t union i s t h e s e t 
of p o s i t i v e i n t e g e r s . From ( 4 . 7 ) , we see t h a t 

AB, < Cn < ABn+l-

From AG +1 - ,4^ = 1, there are no Cj's between those two A^'s. From (4.6), 
we see that 

AAn + 1 = Bn = ̂ . i - 1* •• 

Thus, 24n - 5n counts the number of Ĉ- T s less than /ln. 

Theorem 4.4 shows that Bn is properly defined in the array of Table 4.1. 
We know from earlier work that (Bn -,An - n) counts the number of C/s less 
than Bn and agrees with the definition of Cn in the array. Since each Bn and 
Cn is followed by some A^, the choice of An as the first positive integer not 
yet used guarantees that the sets in the array cover the positive integers. 

Nota bene: If (24n - Bn) counts the number of Cj's less than An9 it also 
counts the number of Bj's less than n. Further, (Bn - An - n) counts the num-
ber of Cj 's less than Bn; it also counts the number of Bj's less than An, and 
the number of i/s less than n. These follow immediately from the lexico-
graphic ordering by moving backward. Summarizing: 

Theorem 4.5 

(d) (2n - 1 - An) counts the number of Cj's less than n; 

(b) (24n - Bn) counts the number of Sj's less than n; 

(c) (Bn - An - ri) counts the number of A- 's less than n. 

Next, we make application of a theorem of Moser and Lamdek [11]; 
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Theorem (Leo Moser and J. Lamdek9 1954) 

Let f(n) be a nondecreasing function of nonnegative integers defined on 
the positive integers, 

(A) F(n) = f(n) + n, G(n) = f*(n) + n, 

where f*(n) is the number of positive integers x satisfying 0 <. f(x) < n. 
Then, F(n) and Gin) are complementary sequences. Conversely, every two in-
creasing complementary sequences F(n) and G{n) decompose into form (A), with 
f{n) nondecreasing. 

Let f*(n) = Bn - An - n; then 

G{n) = Bn - An and F(n) = An + n = Cn - Bn9 

since Cn = Bn + An + n. Thus, (Bn - An) and (Cn - Bn) are complementary se-
quences. 

Let f*(n) = 2An - Bn; then 

G(n) = 2An - Bn + n = Cn - 2Bn + An = (Cn - Bn) - (Bn - An) 
and 

F(n) = Bn + n = Cn - An = «7„ - Bn) + (Bn - An) . 

Thus, G(n) = (Cn - B„) - (Sn - An) and F(n) = (Cn - Bn) + (£„ - An) are com-
plementary sets. 

Let f*(n) = 2n - 1 - An; then 

G(n) = 3n - 1 - An and F(n) = Cn + n. 

Thus, F(n) and G(n) are complementary sets. We have just proved: 

Theorem 4.6 

The three sequences {An} 9 {Bn}, and {Cn} are such that their disjoint 
union is the set of positive integers. That is, they form a triple of com-
plementary sequences. Further, their differences (Bn - An) and (Cn - Bn) form 
a pair of complementary sequences, and the sum and differences of this pair 
of complementary sequences form another pair of complementary sequences: 

(Gn - An) and (Cn - Wn + An = 2An - Bn + n) . 

5. The r-nacci Numbers 

The r-nacci numbers {Rn} are given by [14] 

RQ = 0, R1 = 1, Rj = 2J'"2, j = 2, 3, ..., v + 1, 
and 

(5.1) Rn + r ^n+r-1 """ -"n + r-2 + * * + -"n • 



208 LEXICOGRAPHIC ORDERING AND FIBONACCI REPRESENTATIONS [Aug . 

The F ibonacc i numbers {Fn} are t h e case v = 2 , wh i l e t he T r ibonacc i numbers 
{Tn} have v = 3 , and t h e Quadranacci numbers {Qn} have v = 4 . 

We have t h e sequence of i d e n t i t i e s 

F2 + Fh + F, + ••• + F 2 n = F 2 n + 1 - 1, 
( 5 .2 ) r = 2 : 

P - L P 4 - / ? + • • . + / ? - 77 _ I 

(T 2 + ^ 3 ) + (T5 +T6) + - - - + < 2 ? 3 » - l + ^ 3 n ) = ^ 3 n + l " *> 

(5 .3 ) r = 3 : 0T3 + ^ ) + (^6 + T7) + . . . + (T3n + T 3 n + 1 ) = T3 n + 2 - 1, 

T2 + (T, + T5) + (T7 + TQ) + ••• + O ^ + I + ^ n - ^ ) = ^ g - l . 

(e2 + e3
 + «*) + w6 + e7 + e8>. + •" 

+ (e^.2 + «, ,_! + e , j = e,n + 1 - 1, 

(Q3 + Qh + Q5) + (Q7 + Qe + « 9 ) + • • • 

( 5 . 4 ) r> = 4 : 
e 2 + (Qh + Q5+ e6) + w 8 + e9 + e 1 0 ) + ••• 

+ (Sit n + ^4n + l + ^4n + 2) = ^4« + 3 ~ *> 

^2 + #3 + («5 + ^6 + «7> + W 9 + « 1 0 + fin) + ' " 

+ (Qi+n+1 + Qi*n+2 + 6 ^ + 3 ) = Qi+n+n ~ I -

Note that• R1 is never used on the left. Generalizing to the r-nacci num-
bers s we make groups of (r - 1) terms, writing r equations: 

(i?2 + i ? 3 + « . . + Br) + (i?r + 2 + ••• + i ? 2 p ) + . . . 

+ ( ^a - l ) i>+2 + • • • + Rkr) = Rkr+l ~ I» 

(i?3 + i?4 • + • • • + i ? p + 1 ) + ( i ? r + 3 + • ' • + i ? 2 r + 1 ) + • • • • 

+ ( % - l ) r + 3 + ' " • + R]<r+1) = Rkr+2 ~" * »• 

C5 5) ^2 + (-̂ tf + *** + ^ r + 2^ + ( ^ P + 4 + *** + F2r+2) + • •* 

+ (R(k-l)r + k + ' " " + Rkr+2^ = ^kr+3 ~ l j 

i?2 + J?3 + (i?5 + - • • + Rr+3) + (i?r + 5 + « • • + i ? 2 p + 3 ) + '.« • 

+ (R(k-l)r+5 + * * ' + R k r + 3^> =Rkr+k ~ I » 
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(5 .5 ) —cont inued 

R2 + i ? 3 + ••• + i ? r _ x + (i?r + 1 + . . . + i ? 2 r ) + (R2r+2 + . . . + R3r+2) + - - -

+ (Rkr+1 + • • • + R
k r + (r-l)) = Rkr+r " 1 " 

Notice that the proof of Eqs. (5.5) is very simple. In any of the equa-
tions, add 1 = R1 to the left, and observe that 

R1 + R2 + i?3 + ••• + Ri = Ri + 1 for i = 1, 2, ..., p - 1, 

and that R-c + i can be added to the next group of (P - 1) consecutive terms to 
get i?£ + 2, + 1, which can be added to the next group of (P - 1) consecutive terms. 
Repeat until reaching Rjir + i> 

The p-nacci numbers, which are the generalized Fibonacci polynomials of 
[13] evaluated at x = k = 1, again give a unique Zeckendorf representation 
for each positive integer N, 

(5.6) N = a2R2 + a3i?3 + ••• + akRk, 

where a^ £ {0, l}, and a^ai_1a^_2 . . . a^_r + 1 = 0. 

Now let Ai'= {disn} be the set of positive integers whose unique Zecken-
dorf representation has smallest term Rk, k>_ 2 (we have suppressed i?i) , where 
k = i mod r, £ = 2, 3, . .., P + 1. Thus, every positive integer belongs to 
one of the sets A^ by completeness, where the sets A^ are disjoint. 

Theorem 5.1 

Each ai n can be written so that 

ai>n = Ri + ai+i#i+i + ai + 2Ri + 2 + " e + otpi?p, 

where a^ e {0, 1} and £ = 2, 3, ..., p + 1. 

Proof: Let N = a^>n have Rmr+i as the smallest term used in its unique 
Zeckendorf representation. Write Rmr+i as 

Rmr + i - l + Rmr + i-2 + "^"^mr+i-r' 

Then rewrite i?(m_1)r+i as 

•^(m-l)r+i-l +^(m-l)r + i-2 + ••• + R(m-l)r+i - r» 

and continue replacing the smallest term used until the smallest term ob-
tained is i?£, which is one of Z?2, i?3, ..., Rr+1» 
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Theorem 5.2 

The Zeckendorf representation of the positive integers in terms of the 
r-nacci numbers {Rn} is a lexicographic ordering. 

Proof: Write M and N in their Zeckendorf representations, 

n n M =I>A' and N =I>̂ ' 
3 = 2 j = 2 

where Mj, ilfy e {0, l}. If Mj = Nj for all j > m and M m > Nm, then Afm = 1 and 
Nm = 0, and we prove that M > N. Let M* and #* be the truncated parts of the 
numbers M and #. Then 

M* = M2R2 +M3R3 + ... + M ^ >Ra, 

N* = /^2i?2 +^3i?3 + ... +Nm_1Rn_1. 

Since N^Ni-i . . . Ni_r+i = 0, N* is as large as possible when Nm_1, Nm_29 •••» 
^m-r+i a r e nonzero. Then m = rk + i for some i = 1, 2, ..., p. But Eqs. (5.5) 
show that tf* at its largest is i?m - 1, so that N* < Rm £ M*, and thus M > N, 
so that the Zeckendorf representation is a lexicographic ordering. 

6. The Rising Diagonals of Pascal's Triangle 

The numbers u(n; p, 1) of Harris and Styles [15] lie on the rising diag-
onals of Pascal*s triangle with characteristic equation 

XP+± _ XP _ i = o. 

We define u(n; p, 1) = un, where n _> 0 and p 2l 0 are integers, by 

in/ip+l)] 

(6.1) un = u(n; p, 1) = ^ (n "̂  * P V « .> 1, u(0; p, 1) = 1, 
i = o 

where [x] is the greatest integer function, and L is a binomial coeffi-
cient. We note that, if p = 1, 

u(ji - 1; 1, 1) = Fn, 

and if p = 0, 

u(n; 0, 1) = 2n. 

Also, 

We write Pascal's triangle in left-justified form. Then u(n; p, 1) is the 
sum of the term in the leftmost column and nth row (the top row is the zero-
th row) and the terms obtained by starting at this term and moving p units up 
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and one unit right throughout the array. We also have 

(6.2) un = un_1 + Mn.p-i 

with the useful identity, for any given value of p, 

n 
(6"3> J2Ui = Un+P+1 ~ !• 

i = 0 

Now, each positive integer N has a unique Zeckendorf representation in terms 
of {u(n; p, 1)} for each given p, as developed by Mohanty [16]: 

s 

(6.4) N = J^a^ud; p, I), 
i = p 

with as = 1 and fl{ = 1 or 0, p £ i < s. Here, s is the largest integer such 
that Fs is involved in the sum, and u± = u2 = ''' = ̂ p_i = 1 are not used in 
any sum. If a^a^+j = 0 for all i _> p and j = 1, 2, . .., p - 1, then we have 
the unique Zeckendorf representation using the least number of terms. If 
di + a-i + j 2.1 for all i ^p and j = 1, 2, ..., p - 1, then we have a third 
form, which also is a unique representation. 

The results of Mohanty can be restated. Let Ai be the set of positive 
integers whose unique Zeckendorf representation in terms of u(n; p, 1) has 
smallest term un, n £ p , where n = i mod (p + 1), i = 0, 1, 2, ..., p. Then 
every positive integer belongs to one of the sets A^, where the sets A± are 
disjoint. Further, every element in set Ai can be rewritten uniquely so that 
the smallest term used is up + i, i = 0, 1, 2, ..., p, by replacing the small-
est term repeatedly, as, 

un ~ un-l ~*~ un-l-p = un-l "*" un-p-2 "*~ un-2p-2 

= ^ n - l + Un-(p + l) + Wn-2(p + l) + •** + up+i* 

We write a second canonical form by replacing up = 1 by up_1 = 1 whenever it 
occurs, but notice that only set Ap is affected. 

We can establish the identity 

n 
(6.5) 2 ^ u(p + l)k + i = u(p + l)n+i + l ~ 1 

A: = 1 

for each integer i, 0 £ i £ p, by mathematical induction. For each value of 
p, when n = 1, we have, by (6.2): 

u(P + l) -l + i = u(p + l) • l + i+i ~ u p = w ( p + l) -l + i+l ~ !• 

If (6.5) holds for all integers n £ t, then 

t + i t 
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= (u(p + l)t+i + l ~ 1) + u(p+l) t + p + i + 1 ~ * 

= ^(p+i)t + (p+i) + -z:+i " 1 

= u(p + i)(t + i) + i + i " 1» 

the form of (6.5) when n = t + 1, so that (6.5) holds for all integers n by 
mathematical induction. 

We are now ready for our main theorem. 

Theorem 6.1 

The Zeckendorf representation of the positive integers in terms of 

{u(n; p, 1)} 

is a lexicographic ordering. The representation in second canonical form is 
also a lexicographic ordering. 

Proof: Write M and N in their Zeckendorf representation using the least 
number of terms, 

n n 

M =J^MiUi and ff-£ff<Mf, 
i = p i = p 

where Mi9 Ni e {0, 1} and MiMi + ;j = 0 for all i _> p and j = 1, 2, ..., p - 1. 
If Mi = Ni for all i > m and Mw > i\7m, then Mm = 1 and 71/m = 0, and we prove 
that M > N. Let Af* and iU* be the truncated parts of the numbers M and N. 
Then 

M* = AfpWp + Mp+1up + 1 + • • • + Mmum _> ww, 

N* = Npup + Np + 1up + 1 + ••' + ^_i^-i. 

Since NiNi + j = 0 for j = 1, 2, . .., p - 1, TV* is as large as possible when 
Nm_1 is nonzero, but then Nm_2 = Nm_3 = ••• = i!7m_p = 0. The next largest 
possible Ui used is um_p_ls, then wm.2 15etc. Now, we can represent (m - 1) 
as 

m - 1 = (p + l)fc + i, 

where 0 _<_ i <_ p. By (6.5), for any value of (m - 1), we always have 

[(m-l-i)/(p+ 1)] 

N* £ ^ (̂p + Dk + i = um - 1 <. M*. 
fc = i 

Thus, M > N9 and the Zeckendorf representation is a lexicographic ordering. 

Note that the same proof can be used in the second canonical form because 
only the smallest term in the Zeckendorf representation is changed. 
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7. Applications to the Generalized Fibonacci Numbers u[n\ 2, 1) 

Let us concentrate now on the sequence u(n- 1; 2, 1) = un, where we take 
p = 2 in Section 6. We write 

(7.1) u1 = 1, u2 = 2S w3 = 3, and un + 3 = wn + 2 + un. 

Theorem 7.1 

Each positive integer N enjoys a unique Zeckendorf representation in the 
form 

i = l 
where a^ e {0, 1}. 

Each positive integer N can be put into one of three sets A, B, or C ac-
cording to the smallest uk used in the unique Zeckendorf representation of 
N, by whether k = 1 mod 3 for A, k = 2 mod 3 for B, or k = 3 mod 3 for C. 
Let A = {^n}, 5 = {Bn}, and C = {CVJ be the listing of the elements of A9 B, 
and C in natural order. Note that we can rewrite each unique Zeckendorf rep-
resentation by changing only the smallest term used to make a new form where 
the smallest term appearing is u±, u29 or u3. If the smallest term appearing 
is uk, we replace the smallest term repeatedly: 

+ u~, 

l3m+l ~ U3m + U3m-2 U3m + U3m- 3 + U3m-5 

+ U 1 5 

^3m+l + U3m-1 " U3m + 1 + U 3 m - 2 + U3m-h 

l3m+l + U3m-2 + " " * + W 2 ' 

We can summarize as 

Theorem 7.2 

Each member of set /L has a representation in the form 

An = 1 + a2u2 + a3u3 + ••• + amuOT, a^ e {0, l}; 

each member of set B has a representation in the form 

Bn = 2 + a3u3 + a ^ + ••• + amum9 a^ e {0, l}; 

and each member of set C has a representation in the form 

Cn = 3 + a ^ + a5u5 + ••• + amum9 ai e {0, 1}. 
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There are some instant results: 

(7.2) Bn - 1 = A j 9 Cn - 1 = Bj . 

Now, let H = {Hn} = A U C, where the elements of H are listed in natural 
order. We write the second canonical representation for sets' A9B9 and C, by 
replacing u1 = 1 by u0 = 1 in the representation of An but leaving Bn and Cn 
represented as in Theorem 7.2. Let / be the transformation that advances by 
one the subscripts of each of the summands un for each representation that is 
in second canonical form. Let /* be the transformation that advances the 
subscripts by one of each summand un used in the Zeckendorf representation 
of N. 

Theorem 7.3 

J?* fit 

Proof: It is clear that An —-—*~$n —'—*" C?i by the lexicographic ordering 
theorem (Theorem 6.1). Consider the sequence 1, 2, 3, ..., Hn; then, since 
H and B are complementary sets, we have 

Hn ~ n + (number of Bj's less than Hn). 

Thus, by Theorem 6.1, 

(number of Bj's less than Hn) = (number of Aj's less than n) 

= Cn - Bn - n. 

Here we have assumed the equivalence of the definitions of An,Bn, and Cn and 
the following (see [17]): 

An = smallest positive integer not yet used, 

Bn = An + n, 

^n=^n*Hn. 

We now consider the sequence 1, 2, 3, ..., Bn; then 

Bn - n + (number of BjHs less than Bn) . 

From j - Bn - n = An and Theorem 6.1, we conclude 

(7.3) HAn + 1 = Bn, 

but we also get that 

. An = (number of A^s less than Cn) 

from Theorem 6.1. From 1, 2, ..., Cn, then 

Cn = n + (number of Aj's less than Cn) + (number of Bj1s less than Cn) 
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= n + An + (number of Sj's less than Cn), 
or 

(number of B^s less than Cn) = Cn - (An + n) = Cn - Bn = Hn. 

We therefore conclude from Cn - 1 = B • that 

(7.4) B ^ + 1 = Cn. 

From Theorem 6.1, 

(number of Bj's less than Cn) = (number of A^s less than Bn) = Hn. 

Therefore, since Bn - 1 = A-, we conclude 

(7.5) ^ + 1 = Bn. 

From (7.5) and (7.3), we conclude 

(7.6) HAn = ̂  . 

We would normally have that ^4n ^ Bn and An—
J—+Bn - 1 = HA = AH . Also, 

Bn —-—- Cn = H3 . But, C n—-— - Aj for some j , so that set N under f goes into 

set H. From Theorem 6.1, An^—*HAn = Bn - 1 = AH^ and Bn~^^HBn = Cn> and 

C„ ——- #£, . Now, Ec - AB as B and B are complementary, and these are the 

only elements left. 

From (7.5), we conclude that 

(7.7) AAn + 1 = BHn and ACr + 1 = B3n , 

since H3^ = Cn. Since HAri + 1 = Bn, 

(7.8) ff^ + 1 = BHn =AHB/ 

Note that, if we remove all #sn = Cn from the ordered sequence Hn9 then 
all we have left are the An, and these are HHn = An . Thus, 

(7.9) AAn + 1 = Bffn . 

Putting i t together, AAn + 1 = B Hn and B#rt + 1 = Cn imply t h a t AA^+l = Cn 4- 1, 
s i n c e Cn + 1 = ^ a lways . Thus, 

( 7 . 1 0 ) i4 A n + 1 - A A n = 3 . 

From B^ + 1 = Cn, one concludes that, because B and B are complementary, 
55vi + 1 4- CJ , and since no two BjTs are consecutive, BBn + 1 = Aj. From 

4^ + 1 = 5 ^ and BK + 1 = ̂  = Ac+l, 

we have 

(7.H) ^ + 1" ACn = 2. 
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We consider 1, 2, 3, ..., Hn. Then 

Hn = n + (number of Bj's less than #„), 
and 

Cn - Bn - n = (number of #jfs less than #n) 

= (number of Ajns less than n) = (number of C•Ts less than i4n). 

Therefore, 

C5 - 5Bn - Bn - (number of CjXs l e s s than .45 ) . 

But , #Sn = Cn9 so #s?i - Bn =•- Cn - Bn = Hn. T h e r e f o r e , we conclude t h a t 

(7 .12) CUn + 1 = A B n . 

No two CjTs have a difference of 2. Now, can ̂ 5 n + 1 = B3-l The answer is 
no, since AAn + 1 = Bn and H and 5 are complementary sequences. Then AByi+\ -
Asn 1 1 so that CBn+i~ CBn >_ 3, and (7.10) implies that CAn+\ - CA = 6, while 
(7.11) implies that ^ n + i ~

 ccn
 = 4-

By considering the mappings under /*, we now conclude that: 

Theorem 7.4 

AAn+i"AAn = 3 , ABH + l-ABn = 1 , ACn+l-ACn = 2 ; 

BAn + l " 5 4 n
 = 4 , 5 3 n + l " 5 3 n

 = 2 » BC,,+ l ~ BCn
 = 3 5 

Q „ + l ~ ^ n
 = ^» ^ 5 n + l ~ ^Bn ~ ^ ' ^Cn+1 "" Ccn

 = 4 . 

Finally, we list the first few members of A9 B, C, and H in Table 7.1. 

TABLE 7.1 

n 

1 
2 
3 
4 
5 
6 

^n 

1 
4 
5 
7 
10 
13 

Bn 

2 
6 
8 
11 
15 
19 

#n 

1 
3 
4 
5 
7 
9 

Cn 

3 
9 
12 
16 
22 
28 

Notice that we may extend the table with the recurrences: 

Cn + An = /L5̂  , 

#n + %n ~ Cn9 
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An + IL n + Dn — C ĝ  , 

An
 + Cn + Bn = ^£r • 

We have two corollaries to Theorem 7.4: 

Corollary 7.4.1 

(Number of A^s less than n)=Cn-Bn-n= f(n), 

(Number of B^s less than n) = Cn - 2An - 1 = g(n) 9 

(Number of C-j's less than n) = 3Bn - 2Cn = h(n) . 

Proof: /(l) = 0 and 

jfWffl + 1) - f(Am) = 1, 

/(5n + 1) - f(Bm) = 0, 

/(Cm + 1) - /(O « 0. 

Thus, f(n) increments by one only when n passes Am9 so that f(n) counts the 
number of Aj's less than n. 

Next, g{\) = 0, and 

g(Am +• 1) - #0U) = 0, 

g(Bm + 1) - g(Bm) = 1, 

^ + 1) - g(Cm) = 0. 

Thus, g(n) increments by one only when n passes Bm9 so that g(n) counts the 
number of Bj's less than n„ 

Similarly, /z(l) = 0, and 

h(Am + 1) - h{Am) = 0, 

h(Bm + 1) - fctfj = 0, 

h(Cm + 1) - MO = 1. 

Thus, h{n) increments by one only when n passes Cm, so that h(n) counts the 
number of Cj !s less than n, 

Corollary 7.4.2 
p, m e A; 

Let um + 1 - um = <[ q, m e B; 
r, m £ C. 
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Then 

um = (Cm - Bm - m)p + (Cm - 2Am - l)q + (3Bm - 2Cm)r + u±. 

References 

1. C. G. Lekkerkerker. "Voorstelling van natuurlyke getallen door een som 
van Fibonacci." Simon Stevin 29 (1951-1952):190-95. 

2. Michael J. Whinihan. "Fibonacci Nim." The Fibonacci Quarterly 1, no. 4 
(Dec. 1963):9-14. 

3. R. Silber. "Wythofffs Nim and Fibonacci Representations." The Fibonacci 
Quarterly 15, no. 1 (Feb. 1977):85-88. 

4. V. E. Hoggatt, Jr.5 M. Bicknell-Johnson, and R. Sarsfield. "A General-
ization of Wythoff's Game." The Fibonacci Quarterly 17 (1979):198-211. 

5. L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr. "Fibonacci Repre-
sentations." The Fibonacci Quarterly 10, no. 1 (Jan. 1972):l-28. 

6. V. E. Hoggatt, Jr. "Generalized Zeckendorf Theorem." The Fibonacci 
Quarterly 10, no. 1 (Jan. 1972):89-94. 

7* Robert Silber. "On the N Canonical Fibonacci Representations of Order 
N." The Fibonacci Quarterly 15, no. 1 (Feb. 1977):57-66. 

8. L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr. "Fibonacci Repre-
sentations of Higher Order." The Fibonacci Quarterly 10, no. 1 (Jan. 
1972):43-70. 

9. Marcellus E. Waddill and Louis Sacks. "Another Generalized Fibonacci 
Sequence." The Fibonacci Quarterly 5, no. 3 (Oct. 1967):209-22. 

10. V. E. Hoggatt, Jr. and A. P. Hillman. "Nearly Linear Functions." The 
Fibonacci Quarterly 16, no. 1 (Feb. 1979):84-89. 

11. L. Moser and J. Lamdek. "Inverse and Complementary Sequences of Natural 
Numbers." Amer. Math. Monthly 61 (1954):454-58. 

12. A. S. Fraenkel. "Complementary Sequences of Integers." Amer. Math. 
Monthly 84 (Feb. 1977)i114-15. 

13. V. E. Hoggatt, Jr. and Marjorie Bicknell. "Generalized Fibonacci Poly-
nomials and Zeckendorf's Theorem." The Fibonacci Quarterly 11, no. 4 
(Nov. 1973):399-419. 

14. V. E. Hoggatt, Jr. and Marjorie Bicknell. "Generalized Fibonacci Poly-
nomials and Zeckendorf 's Theorem." The Fibonacci Quarterly 11 (197'3) :399. 

15. V. C. Harris and Carolyn C. Styles. "A Generalization of Fibonacci Num-
bers." The Fibonacci Quarterly 2, no. 4 (Dec. 1964):277-89. 

16. S. G. Mohanty. "On a Partition of Generalized Fibonacci Numbers." The 
Fibonacci Quarterly 6, no. 1 (Feb. 1968):22-34. 

17. V. E. Hoggatt, Jr. and Marjorie Bicknell-Johnson. "A Class of Equiva-
lent Schemes for Generating Arrays of Numbers." The Fibonacci Quarterly 
(to appear). 

18. Molly Olds, in a private communication with V. E. Hoggatt, Jr., Spring, 
1979. 



ROOTS OF RECURRENCE-GENERATED POLYNOMIALS 
(Submitted July 1980) 

A. F. HORADAM and E. M. HORADAM 
University of Warwick, Coventry CV4 7AL, England 

University of New England, Armidale 2351, Australia 

1. Introduction 

The object of this note is to synthesize information relating to certain 
polynomials forming the subject matter of [1], [2], [3], and [4], the nota-
tion of which will be used hereafter. In the process, a verification of the 
roots of the Fibonacci and Lucas polynomials obtained in [2] is effected. 

Polynomials An(x) were defined in [3] by 

'A0(x) = 0, A1(x) = 1, A2(x) = 1, A3(x) = x + 1 and 
(1.1) 

. A n \X ) = XA n _ 2 \W ) ~ A n _ ̂  \X ) , 

Squares of the roots of 

(1-2) — = 0 
Au (x) 

(of degree 2n - 2) , associated with the Chebyshev polynomial of the second 
kind, Un(x) , were shown in [4] to be given by 

(1.3) 4 cos2 ~[ (i = 1, 2, ..., n - 1). 

The actual roots may be written 

(1.4) ±2 sin (n ~n
i)TF (i = 1, 2, ..., n - 1) 

or, what amounts to the same thing, 

(1.5) ±2 sin T ^ (i = 1, 2, ..., n - 1). 

Proper divisors were defined in [4] as follows: "For any sequence {un}, 
n _> 1, where w„ e Z or wn(#) e Z ( x ), the proper divisor wn is the quantity 
implicitly defined, for n ̂  1, by w1 = wx and un = max{ci: d|un and g.c.d. 
(ds wm) = 1 for every 77? < n}.M 

219 
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For {An(x)} 9 the first few proper divisors are: 

w1(x) = 1, w2(x) - 1, w3(x) = x + 1, wh(x) = #, ic?5(#) = x2 + x - 1, 

wQ(x) - x - 1, w7(#) = x3 + x2 - 2x - 1, ZJ8 (x) = x2 - 2, 

w3(x) = x3 - 3x + 1, w10(x) = x2 - x - 1, 

W1] LGE) = x5 + x1" - 4x3 - 3x2 + 3x + 1, w12(x) = x2 - 3. 

From the definition of proper divisors, we obtain (see [3]) 

(1.6) An(x) = n wd(x). 
d\n 

2. Complex Fibonacci and Lucas Polynomials 

Hoggatt and Bicknell [2] defined the Fibonacci polynomials Fn(x) by 

(2.1) F±(x) = 1, F2{x) = x, Fn+1(x) = xFn(x) + Fn_1{x) 

and the Lucas polynomials Ln(x) by 

(2.2) L1(x) = x, L2(x) = x2 + 2, £n + 1(ff) = ̂ n (a:) + Ln_1{x). 

Table 1 in [2] sets out the Lucas polynomials for the values n = 1, 2, 
..., 9 (while Table 2 of [7] gives the coefficients of the Lucas polynomials 
as far as L11(x)) . Using hyperbolic functions, Hoggatt and Bicknell ([2, p. 
273]) then established complex solutions of the equations 

F2n{x) = 0, F2n+1(x) = 0, L2n(x) = 0, and L2n+1(x) = 0, 

which are of degree In - 1, 2n, 2n, and In + 1, respectively. 

Suppose we now replace # by ix (-£ =/-T) in (2.1) and (2.2). Designating 
the new polynomials by F*(x) and L*(x), we have, from F2n(x) = Fn(x)Ln(x) : 

(2.3) F*n(x) = F* (*)£*(*). 

Referring to the details of Table 1 in [2], we can tabulate the ensuing 
information where, for visual ease, we have represented the polynomials An(x) 
and the proper divisors wn(x) of An(x) by An and wn9 respectively (see Table 
1, p. 221). 

Summarizing the tabulated data, we have 

(2.A) F*n(x) = (-l)n-lUhn(x) (n>l), 

(2.5) *t„+i<*> = ( - D \ t 2 W = (-l)B(F2„(ar) ( n > 0 ) , 

(2.6) i*„(«) = (-D"BBn(x) (nil), 

(2.7) i$n + i(ar) = (-DnixBH2n+1)(x) = (-l)"ia:$2n(a;) (w >. 1), 
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TABLE 1 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

F*(x) n 

iAn 

-iAQ 

iA12 

-iAls 

: 

pven F*(x) n 

A2 

-A6 

Aio 

-Alk 

Al8 

odd L*(x) n 

-WQ 

^ 1 6 

even 

-WQW2^ 

^ 3 2 

; 

L*(x) n odd 

ixw\ 

-1XW\2 

VXW2 0 

-%XW2Q 

%XW\2Wo>$ 

where the symbolism ^ 2n(x) and §2n(x) of Hancock [1] has been introduced in 
(2.5) and (2.7). For the Bhn (x) notation given in terms of proper divisors, 
see [4, p. 248], Degrees of F* (x) and L*(x) are, of course, the same as those 
of the corresponding Fn(x) and Ln (x). 

The results of (2.4) and (2.5) follow directly from (1.4) of [4] and the 
well-known fact: 

[(n-D/2] 

F„ . 
[(w-D/2] . . -. 

To establish (2.6) and (2.7), we consider the evenness and oddness of n 
separately and invoke (4.1) of [4]. 

n even {n = 2k) J2k (x) F*k (x) by (2.3) 

(-l)k-xiAhk{x) 
by (2.4) 

(x) 
(-D' 

n odd (n = 2fe + 1): L*k+1(x) 

Akk(x) 

nk+iW 

= (~l)kBsk(.x) by (4.1) of [4], 

by (2.3) 

(-D2kiAf k+h (X) 

i-l)kAhk+2{x) 
by (2.4), (2.5) 

= (.-l)kixBBk+h(.x) by (4.1) of [4]. 
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From (2.6) and (2.7), an explicit formula for Bhn(x) may be obtained by 
appealing to the known expression for Ln(x): 

ln/2] . •.. 

f?o n - A a ) 
Arguing for Al¥n + 2(.2x) = U2n(x) (the Chebyshev polynomial of the second 

kind) as for Ahn (x) in [4], we derive the In roots of 

(2.8) A^n+2(x) = 0 

to be ±2 cos -^———j- (•£ = 1, 2, . . . , ri) or, equivalently, 

(2.9) ±2 sin g + {j • \ (i = 0, 1, 2, ..., « - 1). 

Next, consider the roots of 

(2.10) Bgn(x) = 0. 

From [4], these are the roots of = 0 excluding those belonging to 

the set of roots of (1.2). Consequently, by (1.4), the roots of (2.10) are 

• 0 . {In - i)i\ ,. . 0 0 .. ,. . . , , , 4_0 2(n - i)iT ,. ±2 sin : (t = 1, 2, . . . , 2n — 1) diminished by ±2 sin ; to -
4n 4n 

1, 2, ..., n - 1). Calculation yields the remaining roots to be 

(2.11) ±2 sin ( 2 ^ 1)TT to = 0, 1, 2, ..., n - 1). 

Finally, in our analysis of the roots of F*(x) = 0 and L*(x) = 0, we find 
from [1] that the In roots of 

(2.12) $2nto) = 0 

are ±2 sin 7; ;—r = ±2 sin TT - -̂  •—7- , % = 1, 2, . . . , n, that is, after man-
2n + 1 \ 2n + 1 / 

ipulation, 

(2.13) ±2 sin 2 ^ T T to = 1 > 2, ... , n) . 

The roots of F*n to) = 0:> ̂ fn+ito) = 0, Lfn to) = 0, and L%n + 1(x) = 0 are, 
respectively, those given in (1.5), (2.9), (2.11), and (2.13). See also [8]. 

Akn(x) 
It must be noted that the In - 2 roots in (1.5) relate to = 0 in 

(1.2), so A^n{x) = 0 = F*n(x) in (2.4) has {In - 2) + 1 = In - 1 roots, one 
of these,roots being x - 0. Also note the zero root associated with (2.7). 
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Verification of the Hoggatt-Bicknell roots is thus achieved by complex 
numbers in conjunction with the properties of the polynomials An(x). 

3. The Polynomials A2n+1[x) 

So far, the odd-subscript polynomials A2n+1(x) of degree n have not been 
featured. As mentioned in [4, pp. 245, 249], 

(3-D A2n-nM = ?»<*> 

in the notation of [1], where 

(3.2) fn(x) =A2n + 2(x) -A2n(x) = (-l)nfn(-x) = (-l)M2n+1(-*). 

For instance, 

f5(x) = A12(x) - A10(x) = x5 - 4x3 + 3x - (xk - 3x2 + 1) 

= -(-x5 + x* + kxz - 3x2 - 3x + 1) = -Ai:L(.-x) 

= (-n575(-*). 
Using the information given in [1] for the n roots of fn(x) = 0, we have 

that the n roots of 

(3.3) A2n+1(x) = °  

9V TT 

(3.4) 2 cos 2 ^ l 1 (i = 1, 2, ..., n). 

Thus, the two roots of A5(x) = fz(x) = x2 + x - 1 = 0 are 

, 2 cos — 1= -2 cos —1. 2TT 4TT 
2 COS —r 

Following Legendre [6], Hancock [1] remarks that the equations 

(-l)nfn(-x) = fn(x) 

constitute a type of reciprocal equation obtained by substituting z = x + — 

* 2 n + 1 - 1 0. 
x - 1 

In [3, p. 55] it is shown that 

(3.5) A2n(x) • * ' * , 
s2 - t2 

where s2 = -jOc + /x2 - 4) and t2 = -jte - /x2 - 4) . Then 
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Akn+2^ = A2n+2^ " A2n ̂  OHUSing (3.5) 

= (A2n+2^ ~ A2n^y>(<A2n+2^ + A 2 n ^ ) 

= / n (#)•/„ G&) (Hancock [1]) 

= / n ( x M 2 n + 1 » by (3.1), 

where we note as in [4, p. 248] that our A2n(x) is HancockTs An_1(x). Thus, 

(3.6) /BW=V2W^+iW-
so that the fn (x) are expressible in terms of proper divisors. As an exam-
ple, A1Q(x) = w6(x)w18(x)As(x), i.e., 

(3.7) f^(x) = A1Q(x) - AQ(x) =w6(x)w1Q(x) = (x - 1) (x3 - 3x - 1). 

4. Concluding Comments 

(a) The 2n roots of each equation 

(4.1) Ann+iW = ("D* s e c 2 ^ 1 ( i = l > 2> ' " n) 

are shown in [1] to be 

(4.2) ±2 sin ̂  1 (i = 1, 2, ..., n). 

Combining (2.5), (2.7), (2.12), (2.13) (in the equivalent form), (4.1), 
and (4.2) we see that 

(4.3) Tx « o and^n+1(a:) - sec 2 ^ 7 = 0 (fc = 1, 2, .. . , n) 

of degree 2n, for a given n and a given value of k have the roots 

±2 sin 2 ^ T T (fe = 1, 2, ..., n) 

/ 2TT 4TT \ 
in common. For example, i f n = 2 we f ind t h a t ±2 s i n a ( a = -=-, ~F~ ) a r e roots 

L*(x) V * 7 

Qf —. = o and F%(x) - sec a = 0. 
%x 5 

(b) It is observed in [1] that the curves 

y = fn(x) = A2n+2(x) - A2n(x) [(3.2)] (n =1,2,...) 

all pass through the point with coordinates (2, 1), and through one or the 
other of the points (0, 1), (0, -1). Examples for easy checking are y = f^(x) 
given in (3.7), and y = f5(x) appearing after (3.2). 



1982] ROOTS OF RECURRENCE-GENERATED POLYNOMIALS 225 

(c) Mention must finally be made of the very recent article by Kimber-
ling [5] on cyclotomic polynomials which impinges on some of the content 
herein. Among other matters, one may compare Table 2 of [5] with Table 1 of 
[2]. 

If the irreducible divisors of the Fibonacci polynomials Fn(x) given by 
(2.1) are represented by ^d(x) where d\n9 then by [55 p. 114], 

(4.4) Fn(x) = II %(x). 
d\n 

Allowing x to be replaced by ix in the polynomials ^n(x) occurring in Kimber-
lingTs Table 2, and writing the polynomial corresponding to ^n(x) as ^*(x) , we 
find using [8] that 

(4.5) S^Oc) = F*(x) p prime 

(4.6) S$n(a) = (-l)iHiin)w^n(x) (« > 1), 

where ty(n) is Euler's function and,by [4], 

(4.7) deg. wn(x) = y <Kw). 

While the proof of (4.5) is straightforward, that of (4.6) requires some 
amplification. Now 

F*n(x) = (-l)n-1Ul+n(x) which is (2.4) 

II V%(x) = (~l)n"1ix n wd{x) by (4.4) amended and [4, p. 244] 
d\2n d\kn 

(4 .8 ) n V*(x) = (-l)n'1i n w
d(x) n 1 1 s i n c e wh^x) = x-

d\ln d\kn 

Apart from the sign (+ or - ) , the highest factor &*„(x) on the left-hand 
side of (4.8) must equal the highest factor whn(x) on the right-hand side of 
(4.8). This sign must, on the authority of (4.7), be 

whence (4.6) follows. 

For example, 

F* = i(xh - 4x3 + 3x) = ix(x2 - l)(x2 - 3) = V*(x) {-V*(x)){-V*(x)) 

= iA12 = ix{x + l)(x - l)0r2 - 3) = iwh (x)w3 (x)we (x)wlz(x) , 

whence 

g*(a?) = -w12(x) = (-1)^(12 )ZJ12(X). 

Kimberling's article opens up many ideas which we do not pursue here. 
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This concludes the linking together of material from several sources. 
Consideration of the polynomials An(x) does indeed enable us to encompass a 
wide range of results. 
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On April 30, 1982, the Department of Mathematics at 
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VERNER E. HOGGATT, JR. READING ROOM. 

The room, opposite the offices of the Department of 
Mathematics, houses a splendid research library and 
various mathematical memorabilia. At the ceremony, 
Dean L. H. Lange of the School of Sciences talked 
of his long association with Professor Hoggatt and 
about Fibonacci numbers. A reception followed for 
faculty members and guests. Among the guests were 
various friends and associates of Professor Hoggatt, 
a number of whom are active in carrying on the work 
that Professor Hoggatt started with Th<i Fibonacci 
Qj±aAt2AZy. Mrs. Hoggatt and her daughters attended 
the dedication ceremony, and Mrs. Hoggatt was pre-
sented with a portrait of her late husband. 
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0. Introduction 

This paper investigates some problems concerning PRIMITIVE PYTHAGOREAN 
TRIPLES (PPT) and succeeds in solving, completely or partially, some of these 
problems while leaving open others. Dickson [2], in his three-volume history 
of number theory has given a twenty-five-page account of what was achieved 
in the field of Pythagorean triangles during more than two millenia and up to 
Euler and modern times. Therefore, it is surprising that still more ques-
tions can be asked which, in their intriguing simplicity, do not lag behind 
anything the human mind has been occupied with since the times of Hamurabi. 
The author thinks that, in spite of the accelerated speed with which the mod-
ern mathematical creativeness is advancing in the era of Godel and Matajase-
vich, some of his unanswered questions will remain enigmatic for many decades 
to come. 

1. Definition 

There are a variety of definitions on the subject of PPTs. The author 
thinks that he was able to come up with some of his results thanks to a sim-
plification of on such definition, which is as follows: 

Definition 1 

A triple (x, y9 z) of natural numbers if a PPT iff there exists a pair 
(u, v) of natural numbers such that 

x = u2 - v2, y = 2uv, z• = u2 + v2, 
(1.1) 

(u, v) = 19 u + V - 1 (mod 2). 

The pair of numbers (u, v) as introduced in Definition 1 is called a genera-
tor of the PPT (x, z/, z) . We shall use the chain of inequalities 

(1.2) 2u > u + v > u, 

which follows from Definition 1. 

227 
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All small italic letters appearing in this paper denote natural numbers, 
1, 2, 3, . .., if not stated otherwise. 

By virtue of Definition 1,a countability of all PPTs has been established, 
namely, 

(u9 v) = (2, 1) =̂> (x9 y9 z) = (3, 4, 5); 

(u9 v) = (3, 2) ^ (x9 y9 z) = (5, 12, 13); 

(u9 v) = (4, 1) =*> (x, y9 z) = (15, 8, 17); 

(u9 v) = (4, 3) >̂ (x9 y9 z) = (7, 24, 25); 

etc. 

If we drop the condition (u, v) = 1 in (1.1), then the resulting triple 
(x9 y9 z) is a Nonprimitive Pythagorean Triple. They are of no interest to 
us. 

2. Pythagorean Frequency Indicator 

We introduce the interesting 

Definition 2 

The number of times the integer n appears in some PPT, excluding order, 
is called the PYTHAGOREAN FREQUENCY INDICATOR (PFI) of n. The PFI of n is 
denoted by f(n). We write f(n) = 2~°°, if n does not appear in any PPT. As 
we shall see later, 

/(l) - 2"00, f(2) = 2"~, f(3) = 1, 

f(4) - 1, f(5) = 2 , ..., /(84) = 4, etc. 

The following result is due to Landau [4]: 

Theorem 1 

The number of positive solutions L(ri) of x + y2 = n (excluding order), 
with Or, y) = 1 and 

k 

(2.1) x2 + y2 = n - II P.Si 9 P. a n °dd prime, 
i = i % ^ 

is given by 

(2.2) L(n) = 2k~1 if each p. = 1 (mod 4) 
^ 

and 

(2.3) L(n) = 0, if at least one p. E 3 (mod 4). 
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Landaufs theorem also elaborates on such numbers n which are not of the form 
(2.1) with (2.2) or (2.3), but that is not relevant for us. To state the main 
theorem of this chapter, it is useful to introduce the following. 

Let n be as in (2.1). If all primes are as in (2.2), we let n = 0(k9 1); 
otherwise, we let n - 0(/c, 3). 

Theorem 2 

The PFI of any number n equals 

f(l) = /(2) = f(2 0(k, 1) ) = f(2 0(k, 3) ) = 2 -
(2.4) 

f{ 0{k + 1, 3) ) = /( 0(fe, 1) ) = /(2S+ 1 0(fc, 1) ) 

= f(2s+1 0(k, 3) ) = 2k, 8 > 1 . 

Proof: We have, by Definition 1, x = z = 1 (mod 2) , y = 0 (mod 4), and 
x9 z £ 1. This proves the first line of (2.4). When n = 0(k + 1, 3), then 
only n = x is possible by Theorem 1. Let n = fg with (/, g) - 1 and f > g. 
Since (u9 v) = 1 and n = (w - i?) (w + #) » we have 

u = 2"(f + g) and y = j(f - #) . 

But, 

is the total number of pairs {/, g} with (/, g) = 1. Hence, we have only 2k 

pairs with f > g. Now let n = 0(fc, 1). When n = z there are, by Theorem 2, 
2?c~1 pairs (u, y) such that u2 + v2 = n; when n = x there are 2 T_1 pairs, by 
the same argument given for n = 0(/c + 1, 3). Hence, /( 0(fc, 1) )• = 2fe. Let 
n = 2/ = 2s+10(k, 0) or n == 2s+10(k, 3). Let n = 2s+1fg, where (/, #) = 1. 
Since there are only 2k~1 pairs (/, g), excluding order, with (/, g) = 1, we 
can choose u = 2s/ and v = g or u = f and y = 2sg\ Hence, there are 2k pos-
sibilities. This proves the second line of Theorem 2, and proves the theorem 
completely. 

Theorem 2 also holds for n = 2s + 1 with the symbolism n = 2s + lp , since 
f(2s+1) = 2°  = 1. The following examples illustrate the use of Theorem 2: 

/(2Sl+1) = f(p&2) = 2°  = 1, p any odd prime, p = 3 (mod 4). 

f(2Sl+1p ) = 21 = 2, p any odd prime. 

f(qs) = 21 = 2, 4 = 1 (mod 4), q prime. 

f(p°ip*i) = 21, not both p ^ p2 = 1 (mod 4), p1, p2 odd primes. 

fip^p^P*3) = 22 = 4, p , p , p odd primes not all contruent to 1 
modulo 4. 
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f(qtlqtl) = 22 = 4, q 3 q odd primes congruent to 1 modulo-4. 

f{2s + 1ptqr) = 22 = 43, p, q any odd primes, etc. 

We have /(60) = /(4 • 3 • 5) = 22 = 4. The corresponding PPTs are (899, 60, 
901), (91, 60, 109), (11, 60, 61), (221, 60, 229). Also, /(16) = f(24) = 1. 
The corresponding PPT is (63, 16, 65). 

We let the smallest integer n such that f(n) = 2k (k = -°°, 0, 1, 2, ...) 
be denoted by M(n, k) . 

It is easily seen that M(n, -°°) = 1, Af(n, 0) = 3, M(n9 1) = 5. An inter-
esting result is stated in Theorem 3, but first we let p19 p2, ... denote the 
successive odd primes and we denote the product of k successive odd primes 
b y n/c = P1P2 •••• pk-

Theorem 3 

If k >_ 2 then M(n, k) = 4nfe . 

Proof: The reader can easily verify the relations 

28+10('fc, 1) > 0(k, 1) > 4nfe, 

2s+10(k, 3) > 4nk 
and 

0(fe + 1, 3) > 4nk, 

if k >_ 2, while all have the same value of f(n) = 2k. This proves the theo-
rem. We thus have M(n, 2) = 4II2 = 60, M(n, 3) = 4 • 3 • 5 • 7 = 420, etc. 
Hence, 420 is the smallest number which appears exactly eight times in PPTs. 

3. Perimeters 

This is the most important part of our paper. It contains problems never 
investigated previously. To clarify them, we start with: 

Definition 3 

Let (x, y9 z) be a PPT and (u, v) be its. generator. We call the sum x + 
y + z the PERIMETER of PPT. 

We denote the perimeter of a PPT with generator (u, v) by 

(3.1) II(u, v)=x+y + z = 2u(u + v) = IT. 

Thus n(2, 1) = 12, n(3, 2) = 30, 11(4, 1) = 40, etc. Different PPTs may have 
the same II for different generators. An example of this will be given in 
Theorem 5. (No two different generators can lead to the same PPT.) Accord-
ingly, we introduce: 
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Definition 4 

The (exact) number of different PPTs having the same perimeter is called 
the DOMAIN of this perimeter. In symbols, we write Z?(IT) = k if the number of 
generator pairs in the set {(u, v)\ll(us v) = II} is k. Since a number n may 
not be a perimeter, we introduce the notation n £ IT and write Z?(IT) = 0. 

By (3.1), every perimeter is even. Hence D(2t + 1) = 0. Let m = 1 (mod 
2) and p be an odd prime such that pt > 2s m for some s with (p, m) = 1. It 
is easy to prove that D(2smpt) = 0. The method of proving this will emerge 
from the sequel. 

Theorem 4 

Let p be an odd p r ime . 

a) If 2 s + 1 p = n and 2 S + 1 > p > 2 8 , then D(2s+1p) = 1. 

(3 .2 ) b) If 2p*(p* + 1) = n , then D(2pHpt + 2) ) = 1. 

c) If pt(pt + 1) = II, then D(pt(pt + 1)) = 1. 

Proof: Generally, in order to investigate whether a given n is or is not 
a perimeter, it suffices to write n in the form 2u(u + v), where (u, v) is a 
generator. Then make use of the relation (1.2). 

To prove [(3.2), a], we proceed as follows. Let 2s+1p = 2u(u + v), then 
2sp = u(u + v). Since u + V = 1 (mod 2), we have 23\u. There are therefore 
two cases p\u or p | (u + y) .. If p\u9 we have w = 2sp and u + t; = 1, which is 
impossible because u + z; < u. If p | (u + v) , we have w = 2s, w + v = p, and 
y = p - 2s. By hypothesis, u < u + v < 2u. Obviously (us v) - 1 and u + V = 1 
(mod 2), so (u, y) is a generator and Z}(2s + 1p) = 1. 

To prove [ (3.2) , b] , we let pt(pt + 2) = u(u + v) . Since p* + 2 may fac-
tor, we assume pt + 2 = fg with f > g. With p*/^ = u(w + y), there are two 
obvious cases to consider. They are J 

u = p t 9 v = fg _ pt a n ci u = fg9 v = pt _ ^ . 

The latter case is out, since we need v > 0. The former case yields a solu-
tion since (u, v)=l9u+v=l (mod 2), and u < u + V < 2u. With (/, g) = 
1, ̂  ^ 1, there are six more possibilities, all of which can be ruled out, 
since the relations 

p*fg < 1, ptfg < 2, g < p*f < 2g, p*f < g < 2fp*9 

f < p*g < 2f, and gp* < f < 2gp* 

are impossible. Therefore, D(2pt(pt + 2)) = 1 . 

An argument similar to that of [(3.2), b] will show that the only solu-
tion for [(3.2), c] is u= (p*+ l)/2, v= (p* - l)/2, so that D(pt(pt+ 1)) = 1, 
completing the proof of the theorem. 
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The following is an immediate consequence of Theorem 4. 

Corollary 

Let 2P~1(2P - 1), p prime, be a perfect number. Then 2P-1(2P - 1) cannot 
be a perimeter, while 2P(2P - 1) can be a perimeter only once. 

Theorem 4 also shows that there are infinitely many PPTs of domain 1. We 
prove the following interesting result. 

Theorem 5 

Let be an odd prime. 

a) When p > 6, 12p(p + .2) =11 has D(Jl) = 1 if p = 1 (mod 3) 
and D(Jl) = 2 if p E -1 (mod 3). 

(3.3) 
b) When p > 8, 12p(p - 2) = II has £(11) = 1 if.p = -1 (mod 3) 

and DQI) = 2 if p = 1 (mod 3). 

Proof: Since 6p(p + 2) = u(u + v)9 where u is even, u + v = 1 (mod 2) 
and (u, u + v) = 1, we have eight possible cases for the choices of the fac-
tors of u and u + V. However, we need u < u + v < 2w, so six of these cases 
can be eliminated immediately leaving only 

(3.4) u = 2p, v = 3p + 6 - 2p = p + 6 

and 

(3.5) u - 2(p + 1), v = p - 4. 

When p = 1 (mod 3), then (3.5) is not a valid generator, since (u, f) ^ 1. 
However, (3.4) is a generator with perimeter 12p(p + 2). When p E -1 (mod 3) 
both (3.4) and (3.5) are valid generators of 12p(p + 2), since (u, v) - 1, 
u + v = 1 (mod 2), and u < u + v < 2u. 

Let 6p(p - 2) = II. A similar argument to that of part (a) shows that 

(3.6) u = 2p, v = p - 6 

and 

(3.7) w = 2(p - 2), z; = p + 4 

are generators of 12p(p - 2) if p = 1 (mod 3), while only (3.6) is a valid 
generator if p = -1 (mod 3). 

By Dirichlet!s theorem and Theorem 5, we know there are infinitely many 
PPTs with D(J[) = 2. 

Actually, Theorem 5 is a special case of the following more general the-
orem whose proof we omit because of its similarity to that of Theorem 5. 
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Theorem 5a 

Let p be an odd prime. Let q be a prime such that 2q - 1 is a prime. 

(i) When p > 2(2^ - 1) , 2^(2* - l)p(p + 2) = II has D(Tl) = 1 if p = -2 
(mod 2^ - 1) and 0(11) = 2 if p ^ -2 (mod 2* - 1) . The solutions 
are 

u = 2«~1p» y = (2<?_1 - l)p + 2(2* - 1) 
and 

u = 2q'1(p + 2), y = (2q~1 - l)p - 2q 

If p 1 -2 (mod 2* - 1). If p E 2 (mod 2* - 1), only the first so-
lution is a valid generator. 

(ii) When p > 2q+1, 2*(2q - l)p(p - 2) = II has Z)(II) = 1 if p E 2 (mod 
2q - 1) and D(Ji) = 2 if p £ 2 (mod 2* - 1). The solutions are 

u = 2q"lp9 V = (2*"1 - l)p - 2(2* - 1) 
and 

u ~ 2q~1(p - 2), v = (2*-1 - l)p + 2* 

if p 1 2 (mod 2* - 1). If p = 2 (mod 2* - 1), only the first solu-
tion is a valid generator. 

When p E -1 (mod 3) and p + 2 is also a prime, the two solutions of parts 
(a) and (b) of Theorem 5 are the same. Hence, twin primes enter into our 
analysis of the perimeter problem. 

It is easy to show that the smallest value of II with D(Jl) = 2 is 

12 • II • 13 = 1716. 

The generators are II = 11(22, 17) = 11(26, 7), whose Pythagorean triples are, 
respectively, (195, 748, 773) and (627, 364, 725). 

4. More on Domains 

The following two theorems state the most important results of this 
paper. In the sequel, it will be convenient to denote the two numbers T = ps 

and T + 2 = qt, where p, q are odd primes, by prime power twins. We state: 

Theorem 6 

Let 

II = 2u(u + v) , T and T + 2 be prime power t w i n s , 

T > n , D{Jl) = k9 and (II, T(T + 2) ) = 1. 
(4 .1 ) 

Then 

(4 .2 ) n f = TIT(T + 2 ) i s a p e r i m e t e r wi th D(Jif) = Ik. 
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Proof: We prove that any generator for II leads to exactly two generators 
for IIf. Since T > II > 2(u + v) , we see that 

(4.3) T > 2(w + v)/(u - v) and T > 2u/v. 

But, (4.3) implies that T(u - v)/(u + v) > 2, so 2uT/(u + v) > (T + 2) or 

(4.4) 2uT > (u + v)(T + 2) > u2\ 

Furthermore, from (4.3) we obtain 2/T < v/u, so 

{T + 2)/T < (u + v)/u or (w + y)!T > u(T + 2). 

Hence, by (1.2), 

(4.5) 2u(T + 1) > (u + v)T > u(T + 2 ) . 

Since we want IIf = TIT(T + 2 ) = 2u(u + v)T(T + 2) = 2x(x + 2/), where (x9 z/.) is 
a generator, there are sixteen possible ways of choosing the factors of 
u(u + v)T(T + 2) for a: and x + y. However, we need x < x + y < 2x. There-
fore, fourteen of these possibilities can be easily eliminated. For example, 
if x = u(u + v) and x + y = .T(T + 2), then 

T(T + 2) > 2(u + y)(T + 2) > 2(u + i;)T > 4(w + i>)2 > 2u(w + y), 

so a? + y > 2x. As another example, let x = T(T + 2) and x + z/ = u(w + i>) . 
Then 

r(T + 2) > u(u + y), 

so x > x + y. The only two cases that satisfy x < x + y < 2x, by (4.4) and 
(4.5), are 

(4.6) x = uT, x + y = (w + y) (T + 2) , 2/ = (u + v) (T + 2) - uT 

and 

(4.7) x = u(T + 2), x + y = (w + ^)T, y = vT - 2u. 

In both of these cases, it is easy to show that (x9y)=l9x+y=l (mod 2) 
and 2x(x + z/) = 11'. 

Because u(u + 1?) ~ f @ g with (/, g) = 1, where / > ̂  is possible, since 
u(u + v) = ps, p a prime, is impossible, we need to show that these factori-
zations do not lead to any new generators of II'. We let f > 2g 9 then 2g > f> g 
and 2f>g>f are both impossible, so that (/, g) is not a generator of II. 

With 2u(u + v)T(T + 2) = 2fgT(T + 2) = 2x(x + y) , where (x, y) is a gen-
erator, there are, again, sixteen possible ways of choosing the factors of 
fgT(T + 2) for x and x + y. All of these cases are easily eliminated. For 
example, if x + z/ = g(T + 2) and x = fT, then /T > 2#t > #(T + 2) , so x > x + y, 
which contradicts (x, zy) being a generator; as another example, let x + y = gT 
and x = /(21 + 2), then /(T + 2) > 2#(27 + 2 ) > gT and again x>x+y, which is 
a contradiction. As our final example, we choose x + y = fT and x = ̂ (T + 2). 
Then kg > (/ - 2^)^ > T > 2w(w'+ y) = 2/#, so that 2 > /, which is a contra-
diction. We leave the other cases to the reader. 
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Hence, we have proved that'the only generators for IT' are the generators 
for II, each of which leads to exactly two generators for II'. This proves the 
theorem. 

Example 

Let n = 11(22, 17) = n(26, 7) = 1716. We choose T = 1721 and T + 2 = 1723, 
where 1721 and 1723 are primes with T > II. Hence, 

n' = 1716 • 1721 • 1723, D(Jlr) = 4, 
and 

nf = nf(37862, 29335) = II'(37906, 29213) 

= II'(44746, 12113) =II'(44798, 11995). 

With doubling the D(Ji) 9 the PPTs grow enormously, since T > II. Hence, if the 
T' s are finite in number, there may be an upper bound for Z?(H) . The follow-
ing modification of Theorem 6 may somehow be helpful. 

Theorem 6a 

Let 

II = 2u(u + V) , (T9 T + 2) be prime power twins, D(Tl) = k9 
(II, T(T + 2)) = 1, and T > 2(u + v). 

(/ ft. Let the number of pairs (/, g) - 1, such that 

u(u + v) = / * g9 f > 2g9 and 2g(T + 2) > fT > g{T + 2) 

with f odd be m9 where 777 = 0, 1, 2, ... . 

Then D(Jlr) = D(IIT(T + 2)) = 2k + m. 

Proof: With T > 2{u + v) 2. 2(u + v)/(u - v) and T > 2{u + v) > 2u/v, we 
prove, as in Theorem 6, that each generator for II leads to exactly two gen-
erators of n' = 2u(u + v)T(T + 2). Since 2g(T + 2 ) > fT > g(T + 2), (4.5) 
would account for another solution, so D(Ur) = 2k + m9 m 2. 0. The author was 
unable to find an example where 77? ̂  0. 

Example 

Let n = 11(22, 17) = 11(26, 7) = 1716, then 2(u + v) equals 78 or 66. For 
T > 78, we choose T = 101 and T + 2 = 103. We then have 

g . f = 6(11 • 13) = 2(3 • 11 • 13) 

with 2g < f and / odd. But in neither of these cases does the relation 

2g(T + 2) > fT > g(T + 2) 
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hold, as can be easily verified. When T > 66, we choose T = 71 and T + 2 = 
73. Then 

g • / = 6(11 • 13) = (3 • 11 • 13). 

Again, in neither case, is 

2g{T + 2) > fT > g(T + 2 ) . 

Thus, m = 0 and II' = 1716 • 101 • 103 has D(Jlr) = 4. 

Theorem 7 

Let II = 2u(u + v) . Let (T, T + 2) be prime power twins with 

(n, T(T + 2)) = 1. 

Let D(J[) = k. Further, let 

1, u - v >_ 5, and v >_ 3, or 

1, u - V >_ 6, and v >_ 5 with w odd. 

Then 
nf = 2u(u + v)T(T + 2) has D(Jlf) = 2fe + 1 + m, 

(4.10) 
7W as in Theorem 6a. 

Proof: With the restrictions on u - v, and v from (4.9), we can easily 
prove that 

/ n \ 1/2 

1 > 2(u + v)Ku - v) and (̂  + l) - 1 > 2u/v. 

1 > 2(w + f)/(u - y) and (̂  + l) - 1 > 2u/v. 

Thus, T > 2(u + v)/(u - v) and T > 2u/f. From these last two relations, it 
is then proved, as before, that every generator (u, v) for II leads to exactly 
two generators for II' = 2u(u + v)T(T + 2 ) . We further have, from part (b) of 
(4.9), that 

2T(T + 1) > w(w + v) > T(T + 2), 

and from part (a) of (4.9) that 

2u(u + V) > T(T + 2) > u(u + v) for a fixed 2\ 

This would account for the additional generator for IIf. The meaning of the 
possible m generators for II' is the same as in Theorem 6a. This completes 
the proof of Theorem 7. 

(4 .9 ) 

/n \1/2 

\j + I) - I < T < (n + i) 

(!»r-<"ii») 
1/2 

1/2 

Also 
(1*0 

1/2 

1/2 
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The reader may ask whether in the intervals given by (4.9) there is al-
ways a prime power (or prime) T. This fundamental question is answered af-
firmatively by a famous theorem by Chebyshev [1] which states that in the 
interval (y, (1 + e)y) , e > 1/5 there is always, from a certain point on, one 
prime, from a further point on, two primes, etc. The reader will easily veri-
fy that the intervals (4.9) satisfy the conditions of Chebyshev1s theorem. 

As our first example, we choose II = 11(40, 3) = 3440, so that /1721 - 1 < 
T < /3440 - 1 or 40 < T < 57. With T = 41 and T + 2 = 43, we have 

(n, T(T + 2)) = 43, 

so that Theorems 6, 6a, and 7 do not apply. We choose T = 47 and T + 2 = 72. 
Note that D(Ji) = 1 and K' = 3440 • 47 • 49 = 7922320. Since 1720 = 8(5- 43) = 
gf with / > 2g and / odd does not yield 

2g(T + 2) > fT > g(T + 2), 

we have m = 0 and D(Ur) = 3. 

As another example, we choose 11(46, 29) = 11(50, 19) = 4 • 3 • 23 ? 25 = 6900 
so that D(Jiy = 2 = k. We have u - V = 17, V = 29 and u - v = 31, v = 19. 
Further 

y|- • 6900 + 1 - 1 < T < /6900 + 1 - 1, 

and we choose T = 59, T + 2 = 61, so that IIf = 6900 -59-61 = 24833100. We 
also have u(u + v) = 6(23 • 25) = 2(3 • 23 • 25) = fg with f > 2 and f odd. 
But the condition 

2g(T + 2) > fT > g(T + 2) 

is not satisfied here. Thus, by Theorem 7, V(J[f) = £(24833100) = 5. The au-
thor leaves it to the reader to find the value of #(11') when 2 7 = 7 1 , T + 2 = 
73 and T = 79, T + 2 = 3h. 

5. n-Periadic Numbers 

We introduce 

Definition 5 

A number t is called n-PERIADIC if t" is a perimeter but tn+1 is not. 

If tn is a perimeter, then there exist x and i/ relatively prime such that 
x + y = 1 (mod 2), 2x(x + y) - t n , and ^ < x + t < 2x. Hence, there exist u 
and v relatively prime such that x = 2n'1un and x + y = Vn. Furthermore, 
2(n'1)/nu < v < 2u. If tn + 1 is not a perimeter, then v < 2n/n + 1u . This proves 
the necessary part of the following theorem. 
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Theorem 8 

The number t is n-periadic iff there exists (u, v) = 1 such that 

(5.1) 2("- 1 ) / n
M < v < 2u and V < 2"/(n + 1)

M. 

We leave a proof of the sufficiency part to the reader. 

From (5.1), we see that V > 2(n~1)/nu > fl + n ~ l In 2Ju, so 

(5.2) n—±<!L<2. 
n u 

I V 

When n = 2, (5.2) yields — < — < 2. Choose v = 6s + 1 and u = 4s + 1 with 

s _> 2. Then (w, y) = 1 and t;2 > 2u2. Furthermore, v3 < 4u3. Let 
as = 2(4s + I)2 and x + y = (6a; + l) 2, 

as in the proof of the theorem. Then 

(5.3) t = n(4s + 1, 2s) 

is 2-periadic. In particulars with s - 2, we have that 11(9, 4) = 18 • 13 is 
2-periadic with generator x = 162, y - 7. 

When n = 3, (5.2) yields - < - < 2. Choose V = 10s +. 1 and u = 6s + 1 with 

s > 2. Then (u, v) .= 1, i?3 > 4u3 and ̂  < 8U4 . Let 

x = 4(6s + l)3 and y + x = (10s + l)3. 
Then 

(5.4) t = n(6s + 1, 4s) 

is 3-periadic. In particular, for s = 2, we have 

v = 21, u = 13, x = 4 • 133 = 8788, z/ = 473 

and t = 11(13, 8) is 3-periadic. 

By this method, we can obtain any n-periadic number. However, those ob-
tained by (5.3) and (5.4) are by far not all of the infinitely many 2-periadic 
and 3-periadic numbers. 

Conspicuously absent are the 1-periadic numbers. We have, 

(5.5) n = Ii(u, 1), u _> 3 

is 1-periadic, since 2u > u + 1 > u and (u + l)2 > 2u2. 

The reader should not overlook the following trivial relation. Let 
II(w, v) = 2u(u + v) 9 then 

(5.6) (U(u, v))n = H(2n-1un, (w + t;)n - 2M-1un), n > 1. 
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Note t h a t i f Ti(u, v) = x + y + z9 then 

II (u , v) 2 = #11 (u , v) + z/II(u, V) + sll(w, y ) , 
bu t 

(II (u , v)x9 TT(u:, y)z/, II (u , v)z) + Jl(u, v) . 

In this context, we prove 

Theorem 9 

For every perimeter R(u9 v) there exists at least one prime p such that 
pll(w, v) is a perimeter. 

Proof: Let II = 2u(u + V). By Bert-rand's postulate, there is at least 
one prime p such that 2u(u + v) > p > u(u + v) . Hence, 2u(u + v)p is a per-
imeter. 

6. Associating with Fibonacci 

We introduce 

Definition 6 

Let (x9 y, z) be a PPT. It is called associative if f(x) = /(z/) = f(z)9 
nonassociative if all PFIs of x9 y9 z are dif f erent, quasi-associative if the 
PFIs of exactly any two x9 y9 z are equal. If 

fix) = f(y) = /(a) = 2k
9 k = 0, 1, ..., 

we say the PPT = (x9 y9 z) is k-associative. 

Examples 

(3, 4, 5) is quasi-associative, 

(5, 12, 13) is 1-associative, 

(7, 24, 25) is quasi-associative, 

(99, 100, 101) is 1-associative, since /(99) = f(32 • 11) = 21, 
/(100) = /(4 • 52) = 21 and /(101) = 21, 

(675, 52, 677) is quasi-associative, 

(11, 60, 61) is nonassociative, since f(ll) = 2 , 
f(60) = f<4 • 3 • 5) = 22, /(61) = 21, 

(3477, 236, 3485) is nonassociative, since /(3477) = /(3 • 19 • 61) = 22, 
/(236) = /(4 • 59) = 21, /(3485) = /(5 • 17 • 41) = 23. 
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The Fibonacci sequence 

P1 =P2 = L Fn+2 =Fn +Fn+1 in = 1, 2, . . . ) , 

has solved and raised many puzzles. Every mathematician should have a copy 
of HoggattTs precious booklet [3] on this subject. Since F6k+3 = 2 (mod 4), 
F6k+3 does not appear in any PPT; all other Fn , n > 3, do. F12 = 144 has 
II = II(89 1), with the PPT being (63, 16, 65). The only Fibonacci numbers 
known to appear in the same PPT are 3, 5 and 5, 13, see [5]. The Fibonacci 
number F8 - 21 has (21) = 2 where the two PPTs are (21, 20, 29) and (21, 220, 
221). Note that (21, 220, 221) is quasi-associative, since 

/(21) - /(3 • 7) = 21, /(220) = f(4 • 5 • 11) = 22, 
and 

/(221) = f(13 • 17) = 22. 

Observe that (21, 20, 29) is also quasi-associative. The Fibonacci number 
F11 = 89 appears in (89, 3960, 3961) with 

/(89) = 21, /(3960) = /(8 • 32 • 5 • 11) - 23, 
and 

/(3961) = f(17 • 233) = 22. 

Hence, the triple is nonassociative. The first Fibonacci number which is a 
perimeter is 144, the largest perfect square in the Fibonacci sequence. 
n(8s 1) = 144 leads to the PPT (63, 16, 65), with D(144) = 1. This PPT is 
nonassociative with 

/(63) = 21, /(16) = 2° , /(65) = 22. 

Concluding, we want to point out that apart from the riddle of associativity 
the most saddening unsolved problem in this paper is the question of whether 
or not there are infinitely many PPTs of any given domain. Since a solution 
seems to hinge on the unsolved problem of the number of prime twins, it seems 
to be a difficult problem. 
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A NOTE ON THE FAREY-FIBONACCI SEQUENCE 
(Submitted October 1980) 

K. C. PRASAD 
Ranchi University, India 

1. Introduction 

The Fibonacci sequence {Fn : n _> 0} is defined as 

F0 = l, Fx = 1, Fn =Fn.1 +Fn_z for n > 2. 

Let ^i,j - Fi/Fj • Alladi [1] defined a Farey-Fibonacci sequence fn of order 
n as the sequence obtained by arranging the terms of the set 

E f ir. . | 1 <. i < j £ n] 
n ' ° 

in ascending order and studied its properties in detail. Alladi [2] and Gupta 
[3] gave rapid methods to write out fn. Finally, Alladi and Shannon [4] 
briefly considered certain special properties of consecutive members of /„ . 

We now prescribe a different scheme to write out /„, which is rapid, di-
rect, and simpler than the earlier approaches. We not only obtain the term-
number of a preassigned member of fn as found by Gupta [3], but also a formula 
for the general term of /„ not explicitly obtained before. 

Scheme 

Let us write out the terms of ^ in a triangular array as shown belc 

r i , n ' r i , n-1 ' r i , n- 2 

2, n9 2, n-1 

' ' ' ' r i , 1 + n-i' 

- • • ; ^ o 2, 2+n-

; r 

. yt 

' » L 1, 2 

' > * 2, 3 
3, 3 + n-i9 ' * * > 3, 4 

n-1, n 

242 
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Next, we designate the terms of the ith column of this array by 

1 ? 2 * • • • 5 %k> ^ * 

Clearly, x- = rj.^. + n_i for 1 <_ j £ i. Observe that 

(i) x1 < x2, an inequality equivalent to Fn_i < F1+n_i 
and 

(ii) xk lies between xk_1 and xk_2 for 3 <_ k £ i, 

a consequence of the simple rule that the fraction 

(h + h')/(k + kf) 

lies between h/k and hr/kf. 

Let a{ 1; ^^j2; • ••; #£, % denote the sequence obtained by arranging the 
x%s in ascending order. Then the observations (i) and (ii) above imply 

(A) 
ai 

and so on. 

In fact, the xx s arranged in ascending order are 

This reveals the scheme of writing, in ascending order, the members of any 
given column of the above array. 

Now since aiti < ai + 1> 1 for I <_ i <_ n - 1 is equivalent to Fn_i < F1+n_i 
for I <_ i <_ n - 1, we get /„ as follows: 

^ 1 , 1' ^ 2 , 1 ' ^ 2 , 2 * • • • > ^ i , 1 > ^ i , 2 ' *"* 

... a ^ s i ; ^i + i s l ;
 a i + 2, 2> ° ' ' 9 a t + l , i + l'9 8 ° * » a n - l , l ' ' • " •> a n - l , n-1 ' 

3. Formulas 

I. If Fq/Fm is the tth term (Tt) of fn, then 

y(n - ^ + ^)(n-w + q - l ) + -^—r—: if q is odd, 

t 
—{n -m + q)(n-m + q-l)+n-m+-2+l: if q is even. 

Proof: If Fq/Fm or z^, m appears in the ith column of the array, then 

obviously m - q = n - i, £ = yi(i - 1) + j, and from (A) j = M or i - M + 1 

according as q = ZM - 1 or 2M, respectively. Thus t is apparent. 
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and 

I I . The following i s the formula for the t t h term of fn : 

Tt = Fi-2\k\+6(i, k)/Fn-2\k\ + 6(i, fe ) ' 

where 

[ / (2t - 2)] if It 1 [/(it - 2 ) ] ( [ / ( 2 t - 2)] + 1) 

Wi.lt - 2)] + 1 otherwise, 

k = t - Hi - l)/2 - [(i + l)/2], 

(-1 if £ is even and k £ 0 
o ̂  . T,x ) 0 if i is odd and k £ 0 ou, A:; j ! if ̂  is odd and k > 0 

V 2 if i is even and k > 0. 

Proof: If !Tt appears in the ith column of the array, then 

HI - D / 2 + 1 1 1 1 a + 1)^/2 

and consequently i is as described above. Furthermore, if 

™t a i , j = XP = rP, p+n^i> 
then 

£(£ - l)/2 + j = t . 

To find p,we examine its dependence on k where j = [ (i + l)/2] + k. From 
relations (A) it is clear that 

for even i9 p = 

and 

for odd £, p = 

£ + 2k - 1 if fc <_ 0 

i - 2fc + 2 if £ > 0 

i + 2k if & £ 0 

£ - 2fc + 1 if fc > 0. 

These observations suffice. 
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THEVENIN EQUIVALENTS OF LADDER NETWORKS 
(Submitted January 1981) 

WILLIAM P. RISK 
Tempe, AZ 85282 

An electrical network of considerable importance in applications is known 
as the ladder network. A common form of this circuit consists of resistive 
elements connected together as shown in Figure 1. It is often used as an at-
tenuator to reduce the applied input voltage to various other values which 
are made available to subsequent loads through the m taps shown in the same 
figure. 

m m-i k 2 i 

Figure 1 

A basic result of elementary circuit analysis is that any network of 
linear resistors and sources may be replaced by an equivalent circuit con-
sisting of an ideal voltage source and a single series resistor. This con-
figuration is known as the Thevenin equivalent of the original network. It 
is often desirable to find the Thevenin equivalent voltage and resistance of 
a ladder network as perceived by a load connected to one of its taps. The 
case in which all the resistors in the ladder network have identical values 
is of particular interest since the expressions for the Thevenin equivalents 
involve the Fibonacci sequence. 

The derivation of these expressions requires the use of three basic rules 
of circuit analysis and one observation. The three rules are known as Kir-
ehoff's voltage law, Kirchoff's current law* and Ohm's law (for a full dis-
cussion of these, see [1]). The observation is that in a ladder network such 
as that shown in Figure 1, the current in the jth resistor is related to that 
in the rightmost resistor by: 

l 3 = Fjii> 0 = 1» 29 ..., 2m - 2. 

245 
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To derive an expression for the Thevenin equivalent voltage at the kth 
tap, with a given input voltage v9 one must find the voltage appearing at 
that tap with the tap open-circuited. Under these conditions: 

Vk = R^2k-1 = F2k-1R^1»-

where R is the common value of all the resistors. Applying Kirchoff's volt-
age law to the leftmost loop yields: 

or 

Hence, 

V = (i2m-2 + t2m_3)R = F2m_1Ri1 

V 

v* = V\F, 
2k-l 

RF0 

for k = 1, 2, , m. 

Derivation of an expression for the Thevenin equivalent resistance at the 
kth tap requires the application of a principle of circuit analysis which 
says that the Thevenin equivalent resistance of a network may be found by 
evaluating the effective resistance of the network after all independent 
sources have been set equal to zero. In this case, the 77?th tap must be shor-
ted to ground to eliminate the voltage source supplying the input voltage v. 
To determine the effective resistance once this is done, a current source of 
unit value may be applied at the kth tap. If the voltage at the kth tap can 
be determined, the Thevenin equivalent resistance may then be found from Ohm's 
law. 

Applying the unit current source to the kth tap, as shown in Figure 2, 
Kirchofffs current law at the kth tap becomes: 

+ v, 1. 

I-0IL 

Figure 2 

What is the relationship between ^ e 9 7 ^ , and -£e? We previously cited the ob-
servation that, in the circuit of Figure 1, the current in the jth resistor 
was related to that in the rightmost resistor by: 
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^3 = FQ il * 0 = l » 2, . . . , 2772-2. 

This was obtained from examining the results of applying Kirchoff?s voltage 
law to loop A in Figure 1, then applying KirchoffTs current law to node 2, 
and so forth, each time relating the currents and voltages back to %1. Since 
these relationships depend on the way the resistors are connected, they are 
still valid for resistors to the right of the 7<th tap in Figure 2. Hence, we 
obtain 

%G = F 2k-2%a * 

If we start at the left end and work rightward, alternately writing loop and 
node equations and relating the voltages and currents back to i b , we can si-
milarly obtain 

%& = F2(m-k)-l'lb' 

Working again from the right, end, we find 

Working from the left end, we find 

^e ~ F 2{m-k)Lb ' 

The current ie can be eliminated to give a relationship between ia and ib9 
namely 

F 2k-\La = F 2{m-k)lb ' 

Now, we may replace iQ , i& , and ie in Kirchofffs current law at the fcth 
tap. We obtain: 

F2k-2La + F 2{m-k)-\Lb + F 2 k - l L a = * • 

Eliminating ih gives us: 

^F2(m-k)-l^F2k-l^ 

CD K[F2k-2 + p + F2k-l) = 1-

Now, the voltage at the kth tap is vk = Rie. The Thevenin equivalent resis-
tance is then 

(2) Rk = vk/l = Rie = R[F2k^ia]. 

Solving for ia from Eq. (1) above and substituting it into the expression for 
R k (2), we obtain: 

Fn 
(3) Rk = Rl — 1 , - ^ = 1 , 2 , . . . , 7 7 7 . 

*- 2(w-ft>-lJ ̂  2k-
KF 2k + 77 

2(m-k) 

The Fibonacci sequence is thus seen to insinuate itself into the expres-
sion for ladder network Thevenin equivalents, chiefly as a result of the man-
ner in which currents are related in the network. These results may be of 
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some practical value in affording a simple means of analyzing a particular 
ladder network. If nothing else, they provide an interesting example of the 
occurrence of the Fibonacci sequence in an applied situation. 
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A PROPERTY OF BINOMIAL COEFFICIENTS 
(Submitted February 1981) 

MAURO BOSCAROL 
Libera Universita di Trento, 1-38050f Povo (Trento), Italy 

The purpose of this paper is to prove identity (1), related to the bino-
mial coefficients. 

For each pair of integers n9 m _> 05 the following identity holds: 

In + i\ in + m - h\ 

(1) j^^—t+i-—-—--2. 
i-o 2n+i y^o 2n+m-h 

The meaning of th i s iden t i ty becomes more clear if one considers Pasca l ' s 
t r i a n g l e : 

n 
1 0 

1 1 1 

1 2 1 2 

1 3 3 1 3 

1 4 6 4 1 4 

1 5 10 10 5 1 5 

1 6 15 20 15 6 1 6 

Let us consider a path which starts from any point on the left side and 
goes down following a line parallel to the right side5 then stops at any point 
and goes up again9 following a line parallel to the left side, until it 
reaches the right side. If we add all the binomial coefficients we have met, 
each multiplied by 2~"9 the result is always 2. (The binomial coefficient at 
the turning point of the path being considered twice.) For example, the fol-
lowing path yields 

(AMMMMMMM 
The Pascal triangle is shown in the following figure. 

2. 

249 
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n 
0 

1 

2 

3 

4 

5 

To prove identity (1), we need: 

Lemma 1 

Let a, b, o e 71 with a < b and c >_ 0. Then we have 

Proof: This identity stems immediately from the fact that 

Now we can prove identity (1). This identity is true if n = m = 0. Let 
us assume that n is different from zero and change the index h to j - n - h. 
We obtain the following equivalent identity: 

In + i\ (m + j \ 

t = o z j = o z 

which is symmetrical in n and 77? since ( ) ~ \ )' ^e c a n t n u s assume 
that 77Z <_ n (and n ^ 0) . \ rn J \ 3 J 

Let us now write the binomial theorem (1 + Y)m - 2m - T^ I - J ^n t n e fol-
lowing form: fc=o 

Since, for fc < 0, ( . ) = 0 , the sum may start at k = m - n <_ 0: 

,t(!) 
2 = n 
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Since m > m - n, applying Lemma 1 to the sum we get: 
m m 

2,?J") , x r n •(--„)•(:) 

\.£jV) (m'-n) + C) 
= + o 

2m + 1 2m 

Again we have m > m - n + 1, and again we can apply Lemma 1. If we pro-
ceed in this way, after using the lemma r times we get: 

2 Y lm + r\ l m + j \ + lm + j \ 
fc-ra-n + iA & / r - X \/77 + n + j ) \ 777 j 

2m + r M 2m + j 

So we can apply Lemma 1 until m - n + r < m9 i.e., until r < n. At this 
point we get: 

2im + n\ I m + j \ + lm + j\ / m + j \ + /w + j\ 
V 777 / n~i\m-n + j) \ '777 / \ \m - n + j) \ m j 

+ Z- ~ - - £ 2m+j j m Q 2m+j 

n \m - n + s) * \ m j 

= v + y . 

If we select the index transformation i = s + m - n and observe that, due to 
the fact that m - n < 0, we can restrict the range of i to nonnegative val-
ues, we obtain 

In + i\ , (m + j \ 

= 0 2' 

which is what we desired. 



CHARACTERIZATION OF A SEQUENCE 
(Submitted June 1981) 

JOSEPH McHUGH 
La Salle College, Philadelphia, PA 19141 

In[l], Hoggatt and Johnson characterize all integral sequences {un} sat-
isfying 

(1) Un+lUn-l ~ Ul = ("I)". 

The purpose of this paper is to characterize all sequences which satisfy 
the relation 

(2) sn - sm sn+msn_m 

for all integers 777 and n. Of necessity, we see that 

(3) s0 = 0, 

while m = -n yields 

W 8.n = ±Sn 

for all integers n. Let n = 0 in (2), then replace m by n. This gives 

(5) sn(sn + s.n) = 0 

for all integers n. Replacing n by n + 1 and 77? by n in (2) yields 

(") Sn + 1 Sn S2n + lSl 

for all integers n. 

Letting sx = 0 in (6) and using mathematical inducation with (6) we see 
that sn = 0 for all nonnegative integers. However, by (4) we than have sn = 
0 for all integers n. The sequence, all of whose terms are 0, obviously sat-
isfies (2), so for the remainder of this paper we assume s1 = a ^ 0. By (5), 
we than have 

(7) s.n = s n . 

Using (2) wi th n = 2k + 1, 777 = 2k - 1 and n = 2k + 2, 777 = 2k 9 we o b t a i n 
3hks2 and s2fe+2 ~ s2k = S4/M S27<+I ~ S 2 k - i = s4/<s2 anc* fif27<+2 ~ s2/< = S47<+2S2» s o t h a t when s2 - 0 we have 

<8> S 2 f c + 1 = ±S2k-l 

252 
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and 

(9) s 2 k + 2 = ± s l k . 

Mathematical induction and (9) together with (7) imply that s2n
 = °  for all 

integers n. Furthermore, (8) and mathematical induction together with (7) 
tell us that s2n+1 = ±a for all integers . However, s\n - s\ = s2n+1s2n_1, 
so -s1 = s2n+1s2n_1 showing that s2n+1 and s2n_x have opposite signs. There-
fore, with s± = a ̂  0 and s2 - 0, we have 

C a, n = 1 (mod 4) 
(10) sn = <-a, n = -1 (mod 4) 

( 0, otherwise. 

The sequence just calculated in (10) is a solution to the problem at hand be-
cause, if n and m are of the same parity, then m + n and m - n are even, and 
s„2 = sj so sj - s^ = 0 = sn + msn-m' *f n ^s °dd and 777 is even, then n + m and 
n - 77? are odd and separated by 2T?7, which is a multiple of 4. Hence, 

_ 2 _ 2 _ 2 
Sn + mSn-m ~ a ~ sn sm' 

Similarly, if n is even and 777 is odd. 

Throughout the remainder of this paper, we assume that s2 = b / 0 and 
sx = a ̂  0. From (6) and (2), 

aS2n + l = Sn + 1 Gn " ^Sn + 1 " S n - 1 ' ~ ' S n ~ Src-l) = 'DS2n ~ aS2n-l> 

so that 
bsn - asn 

(11) s2n + 1 = , for alln 

or, equivalently, 

(12) «(s2n+1 + s2n.x) = &s2n. 

Now 

Sn + 2 ' Sn = K n + 2 = <Sn+2 " S n - l > + < S n - l " *n> n + 2 

Furthermore, by (11), s3 = (2?2 - a2)/a and by (7), s _± = -a. Hence, substi-
tution and (12) yield 

/-, ON 7 b2 - a 2 

(13) bS2n + 2 = a S 2 " + 1 " a S 2 n - l 

= VS2n + l ~ a<S2n + l + S 2n- i> 

~ a
 S2n + 1 DS2n' 

Hence, 
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bsn . - asn 
2n+l In 

(14). S2n+2 = ~ ^ ~~~> f o r a 1 1 n ' 

Combining (11) and (14), we have 

bsk - ask_1 
(15) 8k + 1 = , for all k. 

Therefore, the only sequences other than the two exceptions which might sat-
isfy (2) for all n and m must be second-order linear recurrences of the form 
(15), where s1 = a f 0 and s2 = b 4 0. 

Using standard techniques with 

b + A 2 - 4a2
 J ' b - A 2 - 4a 2 

a = ancJ g = 

a - (j "• & * ±2a 

2a 2a 

as the roots of ax2 - bx + a = 0, we see that, for all integers n, 

a(an - 3n) 
a - 3 : 

(16) s„ = ( na, b = 2a 

(-l)n+1na, & = -2a 

If s„ = na or sn= (-l)n + 1na for all n, then it is easy to verify the truth 
of (2). Hence, we assume b 4- ±2a; then, with a3 = 1, we have 

*l~ *l- {^Z~i)^Zn - 2 + 22") - («2m - 2 + 32m>] 

(a - 6/ 
2(a2n - a2m + 32n - (S2m), 

Furthermore, 

^ + m̂ -m = (^)V' 1 - a2m + S2" - S2ra), 

and again (2) is true for all integers n and m. Thus, we have found all se-
quences satisfying (2) for all integers n and m. 

It is interesting to note that the Fibonacci and Lucas sequences do not 
satisfy (15). However, the sequence of Fibonacci numbers {F2n}n=1 does, if 
we let a - I and b = 3, for then 

3 + /5 (l +/5\2
 R (I - /5\2

 A 

Another interesting example of such a sequence is found by letting sx = 1 and 
s2 = £s then 

s3 = -2, s4 = -3i, s5 = 5, s6 = 8i, s7 = -13, sQ = -21i, etc. 
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It should be noted that sn is an integer for all integers n if and only 
if a and b are integers and a divides b. This follows directly by using the 
recursive formula in the form 

= - 8 n + 1 a n n-19 

for then, by induction, 
hk-l bk-3 ^3 

s - + (integer) + ••• + (integer) — + (integer) b, k even 
ak'2 ak~" a2 

and 
fok-l fok-3 b2 

s = + (integer) + ••• + (integer) — + (integer) a, k odd. 
k-2 k-h & 

Hence, by induction, sn £ Z if and only if an divides bn+1 for all n _> 3, but 
then a must divide b. • 

Also note that if a divides b, then a divides sn for all integers n. 
Hence, the only integral solutions to the problem are multiples of those gen-
erated by letting s1 = 1 and s2 - b, where b is. an integer. 
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1. Introduction 

In t h i s inves t iga t ion , the leading ro le i s played by the following iden-
t i t y : 

(1) fl (1 - xn)(l - oxn)H - a'1xn'1)(l - a2x2n-1)(l - a'2x2n^) 

- i > n ( 3 n + i ) / 2 ( a 3 w - a- 3 *- 1 ) , 
— 00 

which is valid for each pair of complex numbers a, x such that a ^ 0 and \x\ 
< 1. As presently expressed, identity (1) was first presented by Basil Gor-
don [2, p. 286], However, as observed by M. V. Subbarao and M. Vidyasagar 
[5, p. 23], Gordon was anticipated some 32 years earlier by G. N. Watson [6, 
pp. 44-45], who stated and proved a fivefold-product identity easily shown 
to be equivalent to (1). We are here concerned about several applications of 
(1). Our first result is: 

Theorem 1 

For each pair of complex numbers a, x such that a 4- 0 and \x\ < 1, 

(2) ft (1 - xn)2 (1 - axn) (1 - a^x") (1 - ax"'1) (1 - a^x"1'1) (1 - a 2 ^ 2 n _ 1 ) 2 

. (l-a-2*2"-1)2 

- P(x)J2x3m2a6m + e ( * ) f > w ( 3 m + 1 > (a6m+1 + a'"""1) 
- o o 0 

+ R(x) J2*m(3m+2) (a6 m + 2 + a~6m-2) + S(x) J2x3m(m + 1) (a6m+3 + a^m~3) 
0 0 

+ T W E ^ ( w ) ( a 6 m H + a-6™-1*) + U(x)f^xm(3m+5Ha6m+5 + a"6772"5), 
0 0 

where 

P(x) = 2itxk(3k+1) , Q(x) = - f > 3 f c 2 , R(x) = -x-j£x3kik+l) , 

256 
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S(x) = 2 s £ > k < 3 k + 2 \ T(x) = -x2±x3ka+1\ U(x) = - * 2 i > 3 " 2 . 
~ ° °  — OO _ OO 

The details of the proof are given in Section 2. As a corollary of The-
orem 1, we then represent the decuple infinite product 

n a - xn)6a - x2*1-1)* 
by a double series in the single variable x. In Section 3 we shall need the 
following identity: 

(3) flu - x")3(l - X 2 " " 1 ) 2 = £ <6w + l)xn(3n+1),z, 
n-1 _ o o 

shown by Gordon to be a fairly straightforward consequence of (1). On the 
strength of (3) and two other well-known identities, we then derive a recur-
sive formula for the number-theoretic function r2 (n), which for a given non-
negative integer n counts the number of representations of n as a sum of two 
squares. 

2. Proof of Theorem 1 

For given a, x let G(a, x) be defined by: 

G(a, x) = fi (1 - axn)(l - a"V)(l - ax"1-1) (I - a'V- 1) 

•(1 - a V - ^ d - a'2*2"-1)2. 

Then, for each pair of positive real numbers A9 X, with X < 1, c7(a9 x) con-
verges absolutely and uniformly on the set of all pairs a, x such that 

A~1 1 \a\ ! A and \x\ ^ x-

Hence, for a fixed choice of x, \x\ < I, G(a, x) defines a unique function of 
a, which is analytic at all points of the finite complex plane except a - 0, 
where it has an essential singularity. Accordingly, 

G(a, x) = C0(x) + £ [Cn(x)an + C_n(x)a-n], 
n = l 

where the coefficients Cn(x), C_n(x) are uniquely determined by the chosen x. 

Now, G(a, x) = £(a_1, x), whence Cn(x) = C_n(x), for each positive inte-
ger n. Hence, 

(4) G(a, x) = C0(x) + ̂ C n W(a" +a""). 
n = l 

An easy calculation then establishes the following identity: 

G(axs x) = a"6x"3{?(a, x) . 
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With the help of (4) we expand both sides of this identity in powers of a, 
and subsequently equate coefficients of like powers to obtain the following 
recurrence: 

£»(*) = Cn_6(x)xn's. 

The coefficients CQ(x), (^(x), C2(x), C3(x), Ch (x), C5(x) are here undeter-
mined, but for all n > 5, we distinguish six cases, 

(i) n - 6m, (ii) n = 6m + 1, (iii) n = 6m + 2, 

(iv) n = 6m + 3, (v) n = 6??? + 4, (vi) n - 6m + 5, 

777 _> 0, and i t e r a t e t he r e c u r r e n c e to o b t a i n : 

C6n(x) =x3m2C0(x), C6m + 1(x) =xml3m + 1'>C1(x), C6m + 2(x) = xm^m + 2)C2{x), 

C6m + 3(x) « x3m<m + 1)C3(x), Cim+h(x) = x " ' 3 " ^ ^ ! ) , C6m + 5 ( x ) =x m ( 3 ' " + 5 ) C 5 ( x ) . 

Hence, 

(5) G(a, x) = CQ(x)Y,x3m2a6m + C1{x)j^xm{3m + 1) (a6m + 1 + a " 6 w - 1 ) 
o 

+ C2(x)f^xm(3m + 2)(a&m + 2 + a'6m-2) 
o 

+ ^ M i > 3 m ( m + i ) <a6w+3 + ^ _ 6 " 7 " 3 ) 
0 

o 

+ Cs(x)'jjrxm<3m + 5)(a6m + s + a"6"- 5). 
o 

To evaluate CQ9 Cl9 C2, C3, C. , and C5, we multiply identity (1) and the 
identity which results from (1) under the substitution a .-> a'1 to get 

O (1 -.xn)2G(a9 x) = P(x)a° + Q(x)(a + a"1) + R(x)(a2 + a"2) 
w-l 

+ Six) (a3 + a"3) + TCxXa4 + a-4) 

+ £/(#) (a5 + a"5) + a series in an, a"n, ft > 5. 

Between identity (5) and the foregoing identity, we eliminate the product 
G(a9 x) and, thereafter, equate coefficients of a0, a + a"1, ..., a5 + a"5 to 
get 

^o = Hx) 0(1 - x n r 2 , C, = Q(x) ft(l - * n ) ~ 2 , ^2 = R(x) fi (1 - x")" 2 , 
n = l n = l n = 1 
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C3 = S(x) 0(1 ~ xn)'\ Ch = T(x) n (1 ~ xn)~2
5 C5 = U(x) n (1 - ^ n ) " 2 -

n=l n = 1 n =i 

Substituting these values of Ci (i = 0, 1, ..., 5) into (5) we thus prove our 
theorem. 

Corollary 

For each complex number x such t h a t \x\ < 1, 

(6) n (1 - x*)6(l - x2""1)1* = - £ ,fc(3fc + l ) ' E (fe) 2^,3m2 

+ 2 > 3 * 2 £ (6m + D : 

— 00 —OO 

Proof: For given as ^s let F(a9 x) be defined by 

(1 - a)(l - a- 1)* 7^, #) = II (1 ~ xn)2G(a, x) , 
n= 1 

which is the left side of (2) . Now, put a = e t' , and for brevity 

/(*) = F(e2it, x). 

Identity (2) is hereby transformed into a new identity, the left side of which 
is 4/(t)sin2t. Hence, we multiply both sides of this new identity by 4" to 
get 

f ( t ) s in 2 t = P(x) 1 + 2 Z > 3 m 2 cos(12/??£) 
n = l 

Q(x) 
2 ^X 

o 
m(3m + l ) cos(12m + 2 ) t 

i?(aj) , m ( 3 m + 2 ) cos(12m + 4)£ + SixlJ2x3rnim + 1)cos(l2m + 6)£ 

T(x) , m (3 m + 4 ) :os(12m + 8) i + ^ - f > r a (3m + 5 ) cos(12m + 10)* . 
2 n 

We now differentiate the foregoing identity twice with respect to t to get' 

2/(t)cos2£ + 2 sin t Dt[f(t)cos t] + Dt[ff (£)sin2t] 

-2P(x) £ x 3 m ( 6 w ) 2 c o s ( 1 2 ^ t ) - 2 ^ W ^ a : 
1 0 

m (3m + l ) (6/w + l)2cos(12?7? + 2 ) t 
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2R(x) X > m ( 3 m + 2 ) (6m + 2)2cos(12w + 4 ) t 
o 

2S(x) J2x3m(m + 1) (6m + 3)2cos(12w + 6 ) t 
o 

2T(x) J2xm(3m + k) (6m + 4)2COS(12TT7 + 8 ) t 

0 

. m(3m + 5) 

In the foregoing we first put t = 0 and cancel a factor of 2 from both sides 
of the resulting identity. Of course, f(0) is the left side of (6). To get 
the right side, we then combine the 2nd and 6th, and the 3rd and 5th sums on 
the right side of the last-mentioned identity, while effecting some fairly 
obvious transformations along the way. 

3. Recurrences for r An) 

In order to carry out our present assignment, we also need the following 
well-known identities: 

n„n(3n+l)/2 (7) 11(1 - xn) = £(-Dn* 
n = 1 

(8) fi (1 - ar»)(l - x2"-1) = E (-ar)"2 . 
n = 1 - o o 

(7) is a famous result due to Euler, and both identities are easy conse-
quences of the celebrated Gauss-Jacobi triple-product identity [3, pp. 282-
284]. 

For convenience, put r(n) = v2(n). 

Theorem Z 

For each nonnegative integer n, 

(9) r(n) + 2 l(-l)J(3j-1)/2r(n- (3j + 1) /2) + (-iyu ~1) ,2r(n - (3j-l)/2)] 
J = I 

(-l)n [6(±m) + 1], if n = /7?(3w ± l)/2, 

0, otherwise, 

where summation extends as far as the arguments of r remain nonnegative. 

Proof: First of all, we recall that the generating function of r(n) is 
given by: 
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V -oo / n = 0 

We now rea l i ze that (3) i s equivalent to 

ft (1 - %n) fl (1 - xn)2(l - x2"-1)2 = f: (6n + l)xn(3n + 1)/2
s 

1 1 

whence [owing to (7) and (8)] 

JT(-l)V ( 3 n + 1 ) / 2 X>(n)(-x)n = E (6^ + l)* n ( 3 n + 1)/2. 
o 

Expanding the left side of the foregoing identity and thereafter equating 
coefficients of like powers of x5 we obtain the desired conclusion. 

Remarks 

It is of interest to compare the recursive determination (9) of the arith-
metical function v with similar ones for the partition function p and the 
sum-of-divisors function a. Accordingly, let us briefly recall that for a 
given positive integer n, p(n) denotes the number of unrestricted partitions 
of n, while o(n) denotes the sum of the positive divisors of n; convention-
ally, p(0) = lc From his identity, Euler derived the following recursive 
formulas for p and G. 

(10) pin) + £ {-iy[p{n - J(3J + l)/2) + p(n - J(3J - l)/2)] = 05 
J = I 

where n > 0 and summation extends as far as the arguments of p remain non-
negative. 

(11) o(n) + £ (-l)J'[a(n - J(3J + l)/2) + o(n - J(3J - l)/2)] 
J' = I 

( {-l)m + 1n3 if n = mOm ± l)/2, 

( 0S otherwise, 

where n > 0 and summation extends as far as the arguments of a remain posi-
tive. 

For proofs of (10) and (11), see [4, pp. 235-237]. 

Thus, for these three important arithmetical functions r9 p , and a, we 
have pentagonal-number recursive formulas for each of them. And for each of 
them one needs about 2/(2/3)n of the earlier values to compute a given value 
for large n. 

In [1] the author has also derived the following triangular-number recur-
sive formula for r: 
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(12) £ ( - l ) ^ " + 1 ) /Mn ~ J(J + D/2) 
j-o 

( 0, otherwise, 

where n >_ 0 and summation extends as far as the arguments of r remain non-
negative. 

We now observe that recursive formula (12) is more efficient than (9). 
For with (12) one needs about /2n of the earlier values in order to compute 
r{ri) for large n. 
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1. Introduction 

A friend of ours, on hearing about a "new" system for betting in roulette, 
did some initial investigating with pencil and paper, thought it looked good, 
and proceeded to try it out in Las Vegas. With a set goal and a capital he 
was willing to risk, he played the system religiously ... and won! This was 
the incentive for our more thorough investigation of the system. The outcome 
of the investigation may be guessed in advance; if not from a mathematical 
standpoint, surely from the facts that: 

1. we have decided to publish the findings, and 
2. neither of us is yet wealthy, 

Since roulette is a game of (presumably) independent trials and since the 
house holds an edge on each trial, it is a foregone conclusion (see, for ex-
ample, [1]) that there can be no betting scheme which gives the bettor a pos-
itive expectation. Nonetheless, there is a certain enticement to a scheme 
which is designed for use in a nearly "even" game of independent trials and 
which promises, by its nature, to leave the bettor ahead by a certain amount 
after the completion of a little routine which seems unavoidably destined for 
completion. Betting on red or black in roulette (probability of success with 
an American wheel is 18/38 since there are 18 red numbers, 18 black numbers, 
and, yes, two green numbers—-0 and 00) provides the nearly "even" game. The 
scheme for betting in the game begins with a prechosen but arbitrary sequence 
of numbers b19 b2, . .., bn% which we shall call the betting sequence. The 
algorithm to be followed is then: 

1. (Make bet b) b = b± + bn if n >. 2. b = b1 if n = 1. 
2. (Decrease betting sequence after a win) If win, then 

2.1. (Scratch outer numbers) Delete the values b1 and bn from the 
betting sequence. 

2.2. If sequence is exhausted, then halt. (Completion of a betting 
cycle) 

2.3. Decrease n by 2. 
2.4. (Relabel sequence numbers) Renumber remaining betting sequence 

to b19 ..., bn. 

263 
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3. (Increase betting sequence after a loss) If lose, then 
3.1. Increase n by 1. 
3.2. (Attach current bet to sequence) Set bn = b. 

4. Repeat, starting at step 1. 

As an example, suppose a bettor begins with the sequence 1, 2, 3, 4, 5. 
His first bet would be 6 units (1 + 5). If he wins that bet, his betting 
sequence becomes 2, 3, 4, and his next bet would be 6 units again (2 + 4). 
Given a loss of this second bet, his betting sequence would become 2, 3, 4, 
6, and 8 units would be bet next. A complete betting cycle is illustrated 
below: 

Trial No. Betting Sequence Bet Outcome Financial Status 

1 1, 2, 3, 4, 5 6 Win +6 
2 2, 3, 4 6 Lose Even 
3 2, 3, 4, 6 8 Lose -8 
4 2, 3, 4, 6, 8 10 Win +2 
5 3, 4, 6 9 Win +11 
6 4 4 Lose +7 
7 4,4 8 Win +15 

cycle complete (betting sequence exhausted) 

Now the invitation to wealth is clear. With a nearly even chance of win-
ning any bet and with the system scratching two numbers from the betting se-
quence on every win while adding only one number to the sequence on a loss, 
how can we fail eventually to exhaust the betting sequence? And sequence 
exhaustion beings with it a reward equal in monetary units to the sum of the 
numbers in the original betting sequence (easily proved). The only hitch in 
this otherwise wonderful plan is that there may come a time when we cannot 
carry a betting cycle through to completion simply because we do not have the 
resources to do so; i.e., we cannot cover the bet required by the system. 
(House limits on bets may also impose on our scheme, but these are not con-
sidered here.) 

It turns out that this system is an old one called either Labouchere or 
the cancellation system. Mention is made of it (in a dismissing way) in the 
writings of professional gamblers (see [4], [6], [7], and [8]) and (in a pro-
motional way) in one book [5], where the author claims to have won $163,000 
using an anti-Labouchere system (turn around the win and lose actions) in a 
French casino in 1966. 

Here we investigate Labouchere by first probing (in Section 2) a system 
which is somewhat similar to Labouchere, but more amenable to mathematical 
analysis. This gives a forecast of results to come. Next (Section 3) we 
look at Labouchere in a setting where there is no limit on the bettorTs cap-
ital. Here the probabilities of cycle completion become clear. Finally, in 
Section 4, we simulate (mathemetical analysis seems very difficult) various 
situations under which Labouchere is applied with finite working capital. 
The intent is to display how the control of certain parameters (initial cap-
ital, goal, length of initial betting sequence, size and order of values in 
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the original sequence) can impact the outcome statistics (frequency of goal 
achievement, mean bet size, mean number of bets to a win, mean earnings). 

2. Analysis of a Simpler Scheme 

Consider for a moment the popular double-up or Martingale betting system 
wherein the bettor doubles his wager after each loss and returns to his orig-
inal bet after each win. This can be considered somewhat close to a Labou-
chere scheme by viewing the Martingale bettor as starting with a single num-
ber in his betting sequence, adding to the sequence any bet that he loses, 
betting the sum of the whole sequence, and deleting the whole sequence after 
any win. Thus, any win completes a betting cycle. 

What "control" does the Martingale bettor have over his fortunes? Sup-
pose the probability of success on any trial is p and let q- 1-p. For sim-
plicity, we let the gambler's initial capital be 

CQ = (2k - l)b 

for some positive integers b and k5 where b is the amount to be bet initially. 
We shall also say that the gambler's profit goal is G and, again for simpli-
city, set G - mb, where 0 < 7?? < 2k. Under this arrangement, the bettor must 
experience m successful trials (complete betting cycles) to achieve his prof-
it goal, while k consecutive losses will ruin him (i.e., leave him with in-
sufficient resources to continue with the Martingale scheme). Thus, 

Prob[achieve G] = (1 - qk)m. 

We note immediately that, given the same capital, the greedier gambler (the 
one with a larger profit goal) has a smaller probability of achieving his ob-
jective, but that the amount by which this probability diminishes with in-
creased ambition depends on the bettor's initial capital. 

Now assume that the gambler will achieve his profit goal G = mb9 and let 
X19 J2, . . . , Xm be random variables whose values are determined by the number 
of trials needed to complete cycle 1, cycle 2, ..., cycle m, respectively. 
Then the expected number of trials to achieve G (given that G will be achieved) 
is 

E[x1+x2 + --- +xj = ^ - E E i W
i - 1 - ^ - i ; * * * - 1 . 

1 - qk j = i i = i I - qk ^ = 1 

To get a feeling for these numbers, we present some examples in Table 1 where 
we assume that p = 18/38 (as in roulette) and that in each case shown the 
initial amount wagered is 10 units (i.e., b = 10). 

The main observations that we wish to make from Table 1 are that under a 
Martingale system a bettor has the following "controls": 

1. He can adjust his probability of achievement of the profit goal, £, 
by adjusting his goal-to-initial capital ratio (G/C0) . This apparent 
dependence is shown dramatically in Figure 1, a plot of Table 1 data. 
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TABLE 1 

Expected Results Using a Martingale Betting Scheme 
with Initial Bet $10 and p = 18/38 

m 

5 
4 
3 
10 
5 
9 
8 
4 
2 
7 
6 
3 
5 
4 
2 
1 
3 
5 
4 
2 
1 
3 
2 
1 
1 

k 

3 
3 
3 
5 
4 
5 
5 
4 
3 
5 
5 
4 
5 
5 
4 
3 
5 
6 
6 
5 
4 
6 
6 
5 
6 

Profit 
Goal (£) 
£= 10m 

50 
40 
30 
100 
50 
90 
80 
40 
20 
70 
60 
30 
50 
40 
20 
10 
30 
50 
40 
20 
10 
30 
20 
10 
10 

Initial 
Capital (C0) 

C0= (2k- 1)10 

70 
70 
70 
310 
150 
310 
310 
150 
70 
310 
310 
150 
310 
310 
150 
70 
310 
630 
630 
310 
150 
630 
630 
310 
630 

Prob[achieve G] 
PG = (l~qk)m 

,455 
.532 
,623 
.662 
.671 
.690 
.719 
.727 
.730 
.749 
.781 
.787 
.814 
.848 
.852 
.854 
.883 
.898 
.918 
.921 
.923 
.938 
.958 
.960 
.979 

Expected 
Number 

of Trials 
to achieve G 

7.995 
6.396 
4.797 
21.350 
9.612 
19.217 
17.082 
7.690 
3.198 
14.947 
12.811 
5.767 
10.676 
8.541 
3.845 
1.599 
6.406 
11.348 
9.078 
4.270 
1.922 
6.809 
4.539 
2.135 
2.270 

Expected 
Earnings 
per Play 

GPG-C0(l-PG) 

-15.40 
-11.48 
-7.70 
-38.58 
-15.80 
-34.00 
-29.59 
-11.87 
-4.30 
-25.38 
-21.03 
-8.34 
-16.96 
-13.20 
-5.16 
-1.68 
-9.78 
-19.36 
-14.94 
-6.07 
-2.32 
-10.92 
-7.30 
-2.80 
-3.44 

2. He can adjust his expected time for achieving his goal. The general 
rule here seems to be that a need for more cycles to achieve the goal 
increases expected achievement time as does having a larger initial 
capital. That is, increasing either k or m increases the expected 
number of trials for gaining G. 

3. The more a gambler is willing to risk (C0) and the greedier he is 
(G)9 the larger his expected loss. 

We shall see shortly that: the Labouchere bettor has the same sorts of con-
trols over his fortunes, but that his setting provides for more controls, in 
that he also has a choice of betting sequence. This is the real complicat-
ing factor in the analysis of Labouchere. We turn now to some of the mechan-
ics of the cancellation scheme before going into the full simulation of prac-
tical situations. 
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FIGURE 1 

A plot of the Martingale results in Table 1 showing the relationship 
between probability of goal achievement and goal-to-initial-capital 
ratio. Dashes connect points with same initial capital. 

3. The Case of Infinite Capital 

Throughout this section we shall assume that our Labouchere bettor really 
does not care what sorts of temporary losses he incurs, for he has enough 
money to cover any loss. His only real concern is how long it will take him 
to recover the loss by completing his betting cycle. He asks then for the 
probability that he will complete a cycle in t or fewer trials. 

Suppose the initial betting sequence consists of n numbers. Let-w rep-
resent the number of wins in t trials and let £ = t - w represent the number 
of losses. In order for a betting cycle to be completed on trial t we must 
have 

(1) 2w > I + n and 2{w - 1) < + n. 

That is, since two numbers are deleted from the sequence with each win and 
only one number added for each loss, the first inequality gives a condition 
for sequence exhaustion and the second assures that the sequence was not ex-
hausted on the (£- l)st trial. Together, these yield 

(2) i(£ + n) <_w < |-(t + n + 2) , 

Because w is an integer and the two extremes of this inequality differ by 
only 2/3, there can be at most one solution w for given t and n. In fact, 
since t and w are also integers, the only situation in which no such w exists 
will be that for which 

1 
(t + n) = m + 1_ 

39 
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where m is an integer; i.e., 

t = 2n +• 1 (mod 3) . 

Hence, i f t = 3k + i and n = 3/2 + j , where 0 <. f s j <. 2 , then 

\ k + h, if i = j = 0 

I fc + 7z + 1, otherwise, unless £ + j = 1 (mod 3), 
^ where there is no solution. 

From the way we set up our conditions to find w, it is seen that not every 
permutation of w wins and t - W losses will result in cycle completion on 
trial t . (Some will dictate earlier sequence exhaustion.) However, every t-
trial cycle completion with an initial betting sequence of n numbers will 
involve exactly w wins where w is determined as above. 

Our question now becomes: How many permutations of w wins in t trials re-
sult in cycle completion on trial tl To address this, we make our setting 
more definite, and note simply that other settings are similar. We take the 
case where there are five numbers in the original betting sequence (n = 5). 
In this case our analysis above shows that it requires exactly 

w = k + 2 

wins to complete a betting cycle in t = 3k + i trials, providing i = 0 or 1. 
It is impossible to complete a cycle in t trials if i = 2. 

Figure 2 shows a graph in the u&-plane of the inequalities (1), which 
here become 

2w _> % + 5 and 2(w - 1) < I + 5. 

The lines t = w + £ are shown at various levels. We consider a random walk 
on this graph where each loss corresponds to a positive unit step vertically 
and each win corresponds to a positive unit step horizontally. Beginning at 
the origin, we hope to follow the determined path into the region described 
by the inequalities, since this corresponds to completing a cycle. Hence, we 
call this region the completion zone. 

For the purpose of restating our question in this new context,let us say 
that a path in our random walk from the origin to some point (a, b) is per-
missible if it never enters the completion zone before reaching (a,Z?). Then 
our question asks how many different permissible paths lead to the point 

(k + 2, 2k + i - 2), k >. 1, i = 0 or 1. 

Now a recursion formula that answers the question is easily derived from 
noticing that any path leading to (a9b) in this random walk must have as its 
last step either the step from (a- 1, b) to (a, b) or from (a, b- 1) to (a,Z?). 
So denoting the number of permissible paths to (a, b) by N(a9 b), we have 

N(a9 b) = N(a - 1, b) + N(a9 b - 1). 
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FIGURE 2 

The Random Walk Setting with n = 5 

This formula iss of course, subject to the provision that neither (a - 1, b) 
nor (a, b - 1) is in the completion zone, for then the path to (a, b) would 
not be permissible. So, for example, if (a, b - 1) is in the completion zone, 
then N(a9 b) = N(a - 1, b). 

Putting this in terms of t and w rather then w and I and denoting the 

number of permissible ways to achieve w wins in t trials by < >, our basic 

formula becomes 

M:iWV} 
with the same provision that if either t - 1 and W - 1 or t - 1 and w deter-
mine a point in the completion zone, then the corresponding number is not 
added in the formula. These numbers clearly act somewhat like binomial coef-
ficients and, in fact, we get a modification of Pascal's triangle as shown in 
Figure 3. There the circled items represent numbers corresponding to points 
in the completion zone and, consequently, are not added in the derivation of 

the succeeding row. Now we have, for example, that < , > = 83; that is, there 

are 83 permissible paths to the point (4, 5) in Figure 2. This, in turn, is 
equivalent to saying that there are 83 sequences consisting of four wins and 
five losses which lead to completion of the betting cycle in exactly nine 
trials. 



270 ANALYSIS OF.A BETTING SYSTEM [Aug. 

t_ 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1 

. 1 1 

1 2 1 

1 3 3 (T). 
1 4 6 (?) 0 

1 5 10 6 0 0 

1 6 15 16 (?) 0 0 

1 7 21 31 @ 0 0 0 

1 8 28 52 31 0 0 0 0 

1 9 36 80 83 (3j) 0 0 0 0 

1 10 45 116 163 (83) 0 0 0 0 0 

1 11 55 161 279 163 0 0 0 0 0 0 

1 12 66 216 440 442 (163) 0 0 0 0 0 0 

FIGURE 3. 

These counts of the number of ways to complete a cycle in exactly t tri-
als can be written explicitly in terms of binomial coefficients and., somewhat 
more neatly, in terms of binomial coefficients and the analogous numbers as-
sociated with a three-number initial betting sequence. We sketch the deriva-
tion of this latter expression in the appendix to this paper. 

Given these numbers, we have essentially answered the question posed by 
the infinitely wealthy gambler at the beginning of this section. For if the 
probability of a win on any turn is p, then the probability of completing a 
cycle on or before the tth trial (still assuming n = 5) is found by adding 
terms of the form 

{ ? +
+

2 V + 2 ( i -p)2x+i'2 

with i = 0 or 1 and k ranging from 1 to -̂- with the restriction that 

3k + i £ t. 

Some of these numbers are given in Table 2 below under the assumption that p 
is, again, 18/38. 

The mean of such a distribution of the number of trials (bets) needed to 
complete a cycle with an initial betting sequence of length n can be found 
without too much trouble. We let Xi5 for t = 1, 2, 3, ..., be a random vari-
able which takes the value -2 if bet i is won and +1 if bet i is lost. Then 
after ^ bets we see that St = X1 + X2 + " * * + Xt gives the change in length 
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TABLE 2 

Completion Probabilities with a Five-Member Initial 
Sequence and p = 18/38 

t 

3 
4 
6 
7 
9 
10 
12 
13 
15 
16 
18 
19 
21 
22 

Probability of Completion 
on Trial t 

.1063 

.1678 

.0837 

.1174 

.0567 

.0799 

.0391 

.0559 

.0278 

.0401 

.0202 

.0295 

.0151 

.0221 

Probability of Completion 
within t Trials 

.1063 

.2741 

.3578 

.4752 

.5319 

.6119 

.6510 

.7069 

.7347 

.7748 

.7950 

.8246 

.8396 

.8617 

of the betting sequence from its original length. For any t we have 

E[St] = E[X±]t9 

since the X^fs are identically distributed and independent. Since 

W J = 1 - 3p, 

where p is the probability of success on any trial, then 

E[St] = (1 - 3p)t. 

We note that, in terms of wins and losses, if we combine the conditions 

w + I = t 

-2w + & = (1 ~ 3p)t, 

we get the line 

£ = i-=-£W . 
V 

Plotting this line of expected results on a graph like that in Figure 2 and 
extending it to meet the completion zone, we can get an idea of the expected 
number of trials to complete a cycle by computing the point of intersection 
with the completion zone boundary line. We get 
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E[T] 3p 1 

where T is the random variable whose value is the number of trials in the 
completion of a cycle. In fact, this is a geometric version of Wald?s iden-
tity (see [3]) which relates E[ST] and E[T]. 

Of course, this analysis addresses only the number of bets needed to com-
plete a cycle and, like the infinitely wealthy gambler, ignores any consider-
ation of the money involved in completing a cycle. In the next section, our 
gambler has finite capital and the difficult questions of financial impact of 
parameter adjustment become paramount. 

4„ A More Realistic Setting 

Consider the following two betting cycles, each of which is completed on 
the 10th trial: 

Trial 

1 
2 
3 
4 
5 
6 
7 
8 
'9 
10 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1, 
2, 
3 
3, 
3, 
3 
3, 
3, 
3 
3, 

Bet Sequence 

2, 
3, 

3 
3, 

3 
3, 

3 

3, 4, 5 
4 

6 

6 

Exhausted 

1, 
2, 
2, 
3, 
3, 
3, 
3, 
3, 
4, 
7, 

2, 
3, 
3, 
4 
4, 
4, 
4, 
4, 
7, 
10 

3, 4, 5 
4 
4, 6 

7 
7, 10 
7, 10, 
7, 10, 
10, 13 

Exhausted 

13 

Bet 

6 
6 
3 
6 
9 
3 
6 
9 
3 
6 

6 
6 
8 
7 
10 
13 
16 

13, 16 19 
17 
17 

Outcome 

Win 
Win 
Lose 
Lose 
Win 
Lose 
Lose 
Win 
Lose 
Win 

Win 
Lose 
Win 
Lose 
Lose 
Lose 
Lose 
Win 
Win 
Win 

Financial Status 

+6 
+12 
+9 
+3 
+12 
+9 
+3 
+12 
+9 
+15 

+6 
Even 
+8 
+1 
-9 
-22 
-38 
-19 
-2 
+15 

Notice that in each cycle there occurred five wins and five losses, as 
expected for a completion on trial ten. However, the money required of the 
bettor greatly differed between the two cycles. In the first, the bettor 
needed only enough money to cover his first bet (6 units). From there on he 
was always "ahead of the game." But in the second cycle, the bettor needed 
to have an initial capital of at least 57 units in order to be able to bet 
19 units on the eighth trial, while being 38 units behind. So we see that 
the arrangement of the win-loss sequence in a cycle of fixed length can have 
great impact on the amount: of money needed to survive the cycle. It is this 
dependence of monetary needs on both the bet sequence and the sequence of 
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wins and losses that drives us to the computer in an effort to understand 
generally what can be expected from various situations. Using a random num-
ber generator we have simulated (naturally, a. Monte Carlo simulation) a 
tournament of Labouchere gamblers. The rules of the tournament were: 

1. Each player begins with $500 and tries to realize a profit of $60. 
2. Each player must strictly follow a given Labouchere scheme until he 

either earns the $60 profit or cannot meet the bet level necessary to 
continue playing. At such time, he is given another $500 and begins 
another play of his system. 

3. All players gamble simultaneously at the same American roulette wheel 
until they have completed at least 2,000 plays and at least 62,500 
spins of the wheel. 

The 24 simulated players who competed in this tournament (which took under 2 
minutes of computer time) had various ideas about what constitutes a good 
betting sequence. The following fairly well characterize the two extremes in 
these ideas: 

Claim of Gambler A: If I structure my sequence so that generally my bets 
are quite small relative to my capital, then chances are that I'll have suf-
ficient capital to survive most streaks of misfortune. 

Claim of Gambler U: I'll use a sequence which is short and requires only 
one cycle completion to achieve the profit goal. This way, on any given play 
I probably won't be around long enough to run into a disastrous win-loss se-
quence. Besides, with my bets being fairly large, chances are that not being 
able to cover a bet still leaves me with substantial capital (i.e. , a ruin is 
not so bad). 

The 24 simulated gamblers and a host of simulated officials gathered a-
round the simulated wheel of fortune and watched it spin more than a quarter 
of a million times until the final player had completed his 2,000 plays. (A 
required 254,661 bets to complete 2,000 plays.) The results, as reported in 
Table 3 in ascending order of goal achievement rate, tend to support the no-
tions of gambler U, up to a point. We do see that, initially, the sequences 
with fewer cycles needed to achieve the goal yield better returns in terms of 
both achievement percentage and mean earnings per play. However, toward the 
bottom on Table 3 some leanings toward player A1s ideas can be noted. Where, 
under player Ufs philosophy, we would have expected his ultimately short se-
quence to have done better then the sequences of players (/, W, or X, we see 
instead that, apparently on occasion, player LPs bets built up a little too 
quickly for his $500 capital to withstand, while the sequences of players I/, 
W, and X allowed for more moderate build-up and a better achievement percent-
age. Compare the mean bet size of players R, S, T, U, I/, W, X to see this. 
Note, however, that the six 10s of player S allowed for a moderate bet size, 
too, but also required substantially more bets to complete a winning cycle. 
Note, too, that while players W and X achieved the profit goal most frequent-
ly, player U was correct about mean earnings and fared better than anyone in 
that category. 
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TABLE 3 

Simulation Results for a Minimum of 2,000 Plays and 62,500 Bets at an 
American Roulette Wheel Using Various Betting Sequences to Attempt 

to Achieve a Profit Goal of $60 from an Initial Capital of $500 

Player 

A 
8 
C 
V 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
? 
a R 
S 
T 
U 
1/ 
W 
X 

Initial 
Bet 

Sequence 

1,1,1,1,1,1 
1,2,3 
3,2,1 
2,2,2 
5,1 
4,2 
2,4 
3,3 
5,4,1,2,3 
1,5 
1,2,3,4,5 
5,4,3,2,1 
6 
7,5,3 
3,5,7 
5,5,5 
5,10 
10,5 
10,10,10,10,10, 
50,10 
60 
10,50 
10,20,30 
30,20,10 

% of 
Plays 
Goal 

Achieved 

74.6 
76.6 
76.6 
76.8 
78.2 
78.2 
78.4 
78.6 
79.0 
79.0 
79.3 
79.4 
79.7 
80.4 
80.4 
80.5 
80.8 
81.0 

,10 82.2 
82.2 
83.2 
83.5 
83.6 
84.3 

Mean 
Bet 
Size 

10.26 
14.76 
14.87 
14.97 
19.36 
19.62 
19.95 
19.87 
20.55 
19.81 
20.30 
20.67 
23.99 
27.44 
27.58 
27.57 
36.42 
36.08 
46.73 
87.43 
115.36 
93.19 
68.55 
68.66 

Mean 
// of 
Bets 
to Win 

136.7 
71.1 
71.1 
71.0 
43.8 
43.9 
43.9 
43.9 
41.6 
44.1 
42.0 
41.7 
30.6 
25.8 
25.8 
25.8 
15.3 
15.5 
10.2 
2.7 
1.8 
2.6 
4.8 
5.0 

Mean 
Earnings 

per 
Play 

-64.86 
-54.16 
-53.97 
-52.32 
-45.65 
-45.04 
-44.47 
-43.76 
-42.71 
-41.68 
-41.89 
-41.26 
-38.78 
-35.81 
-35.55 
-35.16 
-32.59 
-31.57 
-26.77 
-12.42 
-10.52 
-13.84 
-18.35 
-17.52 

# of 
Plays 

2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2040 
2368 
2362 
2367 
3809 
3802 
5470 
17018 
30117 
16380 
11160 
11143 

# of 
Cycles to 
Achieve 
Goal 

10 
10 
10 
10 
10 
10 
10 
10 
4 
10 
4 
4 
10 
4 
4 
4 
4 
4 
1 
1 
1 
1 
1 
1 

To a good extent these results reflect what is generally the case in the 
classical setting where a constant amount is wagered on each trial. In that 
situation an increase in bet size (with initial capital held constant) brings 
a decrease in probability of ruin for a player whose probability of success 
on any trial is less than 1/2 (see [2, p. 347]). This principle needs modi-
fication under Labouchere only where bet sizes tend to grow too rapidly for 
underlying capital. 

Table 4 gives results of another simulation which was run as a study of 
the effects of initial capital on relative frequency of goal achievement. 
Here 15 players stood around the same wheel (actually playing along with the 
24 players in the first simulation) betting the same Labouchere system (bet 
sequence 1, 2, 3, 4, 5 ) , aiming for a $60 profit, but starting with differ-
ent capital amounts. The effects can be noted to be much like those under a 
Martingale scheme by comparing Figure 1 in Section 2 with Figure 4, which 
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gives a visual presentation of Table 4 entries. Again, the wealthy, unambi-
tious gambler has a high likelihood of goal achievement, but a worse expec-
tation since he loses so much in the infrequent disasters he encounters. 

TABLE 4 

Simulation Results for a Minimum of 2,000 Plays and a Minimum of 62,500 Bets 
at an American Roulette Wheel in an Effort to Gain a Profit Goal of $60 

Using Betting Sequence 1,2,3,4,5 ' from Various Initial Capital Values 

Initial 
Capital 

60 
80 
100 
120 
150 
180 
240 
300 
500 
600 
1200 
1800 
2400 
3000 
6000 

Percentage 
of Plays 
Goal 

Achieved 

33.3 
39.6 
45.0 
49.6 
54.9 
59.5 
65.7 
70.6 
79.3 
81.6 
88.7 
91.2 
92.5 
93.8 
96.1 

Mean 
Bet 
Size 

10.97 
11.82 
12.47 
13.17 
14.11 
14.97 
16.20 
17.53 
20.30 
21.58 
27.30 
30.98 
33.79 
36.60 
44.74 

Mean Number 
of Bets 
to a Win 

30.3 
32.1 
33.3 
34.4 
36.0 
37.0 
38.6 
39.8 
42.0 
42.5 
45.6 
46.7 
47.1 
47.9 
48.6 

Mean 
Earnings 
per Play 

-11.67 
-15.05 
-17.53 
-20.18 
-23.55 
-25.70 
-30.35 
-32.28 
-41.89 
-46.44 
-63.77 
-83.17 
-99.61 
-104.18 
-148.92 

Number 
of 

Plays 

2809 
2440 
2217 
2062 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 

60 
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FIGURE 4. A Summary of Entries in Table 4 
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Just to see what sort of capital it would take to make it successfully 
through all 2,000 plays under the setting of Table 4, we simulated a gambler 
with $9,000,000 initial capital rather modestly seeking the $60 profit goal. 
He did win all 2,000 plays of the system, but needed to place some HUGE bets 
from time to time in order to complete a betting cycle. In five of the 8,000 
cycles which he completed he was forced to lay down bets exceeding $100,000. 
His moment of most concern occurred when a bet of $751,440 was demanded by 
the system and his capital was down to $6,926,517. This, of course, suggests 
that the gambler had to have a minimum of $2,824,923 in working capital in 
order to survive all 2,000 plays. Consequently, without an unreasonably large 
capital relative to a given profit goal, we cannot expect to play a Labouchere 
scheme without occasional losses. It is, as with other schemes, possible to 
manipulate the probability of achieving the profit goal and the expected du-
ration of the betting, but, alas, the losses more than cover the gains even-
tually. We are, as noted at the outset, victims of the house edge. 
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Appendix 

In this appendix we first investigate the number of ways in which a bet-
ting cycle can be completed in exactly t trials under the assumption that our 
initial betting sequence contains only three numbers. Having answered that 
question, we shall then apply the result to the now more familiar situation 
of a five-number initial sequence answering the same question in that set-
ting. The result is easily generalized to fit any initial sequence. 

Given a three-number initial sequence, let 

( 1, if j = 0 or -1 
C. = < the number of ways of completing a cycle in exactly J trials, 

3 ( i f j > o. 

In this new setting, the inequalities corresponding to (2) in Section 3 are 

~(.t + 3) <. w < j(t + 5). 
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These, as before, give the conditions for completing a cycle. Consequently, 
in this setting a cycle can be completed only when t = 0 or 2 (mod 3). This 
gives us C3k+1 = 0 for k = • 0, 1, 2, . . . . 

With an argument like the one advanced in Section 3, we see that if t = 
3k + i where i = -1 or 0 and k > 1, exactly k + 1 wins are needed to complete 
a cycle in t trials. However, these wins must be distributed over the trials 
so that the cycle is not completed before trial £. 

For example, exactly 10 wins are required to complete a cycle in 27 tri-
als, but if 9 of these occurred in the first 24 trials, the cycle would have 
previously completed. Similarly, no cycle which completes in exactly 27 
trials will have 8 wins in the first 21 trials, and so on. We are faced with 
the model shown in Figure 5, 

Trials: R R R R R r — R R R 
1 2 3 L J 4 5 6 L J 7 8 9LJ1O 11 I2LJ1314 15LJ&6 17 18LJ19 20 2lLJ22 23 24LJ25 26 27 

FIGURE 5 

wherein we consider the number of ways to place 10 wins among the 26 trials, 
while respecting the barriers shown. The number on each barrier is meant as 
a strict upper bound to the number of wins which may fall to the left of the 
barrier. 

To compute C27 we start with the observation that the last trial of any 
complete cycle must be a win. Consequently, we must determine in how many 
ways 9 wins may be appropriately distributed among the first 26 trials. 

First, ( Q ) gives the number of ways to do this distribution without regard 

to barriers. From this we first subtract the number of win-loss sequences in 
/24\ 

which the 9 wins occur in trials 1-24, L . Next we need to subtract out of 
/ r ) £ t \ / r ) / \ \ J / 

of these f q )-( Q ) remaining win-loss sequences those which do not respect 

the barrier at 21, and have not yet been subtracted; i.e., those with 8 wins 

in the first 21 trials and the 9th win in the 25th or 26th trial—l( ~ j. 

Now we are left with ( J - (q) - ^\Q) win-loss sequences, all of which 

respect the rightmost two barriers of the figure. How many of these should 
be subtracted out for violating the restriction on the barrier at 18? Such 
a sequence would have 7 wins in the first 18 trials and two more wins in 
trials 22 to 26 respecting the barrier at 24. Notice this last condition of 
disstributing two wins appropriately among trials 22 to 26 with a fixed win 
in trial 27 is exactly the condition for completing a cycle in six trials 
(i.e., having a win in the 6th trial and distributing two more wins among 
trials 1-3). Consequently, the number of sequences to be subtracted out at 
this step is 

C*\7 
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Continuing this reasoning, we finally get 

« » • (V ) -« . (? ) -« . (V ) - ".ft8)-".( ' . ' ) -c»( 's
2) 

" ^15(4) - ̂ 18(3) " ^21(2) 

And a simple inductive argument gives us that 

1, if t = -1, 0 

0, if t = 3k + 1, k _> 0 

3k • ' - k~2 

k J ~ L C3i + i{ k _ 1 J), ±£ t = 3k + z, k ^ l , and 
7 £=0 v • ' i = 0 or -1, 

where we take a sum to be zero if its upper index limit is less than its 
lower index limit. 

Returning to our example with the five-number initial betting sequence, 
an argument entirely like the preceding one leads us to 

(3k + i\ _ (3k + 21 - 2\ k v"% (3k + 3i ~ 5 " 3Z\ 
\k + 2f \ k + i I 2^ c3i + 2i[ k + i _ i h 
\ ; \ / £=Q \ / 

where k >_ 1, % - 0 or 1, and the Ĉ- are the same numbers as before (arising 
in the three-number initial sequence case). Here, again, we take sums whose 
upper index limit is less than the lower index limit to be zero. 

This, of course, is easily generalized to the case where the length of 
the initial betting sequence is arbitrary. 
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DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy 

Fn+2 = Fn+1 + Fn 5 F0 = ° 9 Fl = 1 ? 

and 
Fn + 2 = Fn+1 + F

n
5 F0 = 2 s ^ 1 = ^ ° 

Also, a and (3 designate the roots (1 + /5)/2 and (1 - /5) /2, respectively s of 
x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-478 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

(a) Show that the congruence 

x2 E -1 (mod km2 + 4 ^ + 5 ) 

has x - ±(2m2 + m + 2) as a s o l u t i o n fo r m in N = {05 1, . . . } . 

(b) Show that the congruence 

x2 E -1 (mod lOOm2 + 156m + 61) 

has a solution x = am2 + bm + o with fixed integers a9 b, e for m in N. 

B-479 Proposed by Herta T. Freitag, Roanoke, VA 

Prove or disprove that La+nd + La+nd_d - La+d - La is an integral mul-
tiple of Ld for positive integers a5 d, n with d odd, 
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B-480 Proposed by Herta T. Freitag, Roanoke, VA 

Prove or disprove that La + nd~ La + n(i_d - La+d + £a is an integral mul-
tiple ot Ld -2 for positive integers a, d, n with d even. 

B-481 Proposed by Jerry Metzger, University of N. Dakota, Grand Forks, ND 

A and B compare pennies with A winning when there is a match. During 
an unusual sequence of rmi comparisons,A produced m heads followed by m tails 
followed by m heads, etc., while B produced n heads followed by n tails fol-
lowed by n heads, etc. By how much did A's wins exceed his losses? [For ex-
ample, with m - 3 and n == 5, one has 

A: HHHTTTHHHTTTHHH 
B: HHHHHTTTTTHHHHH 

and A's 8 wins exceeds his 7 losses by 1.] 

B-482 Proposed by John Hughes and Jeff Shall i t , U.C., Berkeley, CA 

Find an infinite sequence a15 a2> •••> of positive integers such that 

lim (an)1/n and lim 
n -> oo ' n-> oo 

both exist and are unequal. 

B-483 Proposed by John Hughes and Jeff Shall i t , U.C., Berkeley, CA 

Find an infinite sequence a , a2, ..., of positive integers such that 

1 
n k = l 

lim (an)1 exists and lim "l n 

-E(^+1/^) 
A i 7^-1 

does not exist. 
k=l 

SOLUTIONS 

Generating F2 and L2 

B-452 Proposed by P. L. Mana, Albuquerque, NM 

Let o0 + CyC + c2x2 + ••• be the Maclaurin expansion for 

[(1 - ax)(I - bx)]"1, 

where a ^ b. Find the rational function whose Maclaurin expansion is 

c\ + c\x + o2
2x2 + • • • 

and use this to obtain the generating functions for F2 and L2. 

Solution by A. G. Shannon, New South Wales Inst, of Tech., Sydney, Australia 

Let U(x) = ]T xn, formally. Then ^ cnxn = [(1 - ax)(1 - bx)]~1 yields 
n = 0 n = 0 

on = (an + 1 - bn+1)/(a - b) so that 
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£ o2xn = (a2U(a2x) + b2U(b2x) - 2abU(abx)) / (a - b)2 

= (1 + abx) I {I - a2x)(l - b2x) (1 - abx). 

Thus, when a = 1 - b = h(l + /5) , we have 

E ? > " - £ » " ^ E ^ - i * " " 1 =*U -*)/(l - a2x)(l - &2x)(l + x) 
n = 0 n = 1 rz = 1 

= (x - x2)/(l - 2x - 2x2 + ;c3) . 
Also 
X ^ x n = U(a2x) + U(b2x) + 2U(abx) = (4 + 7^ - x2) / (1 - a2x) (1 - b2x) (1 + x) 
n = 0 

= (4- 7x-x2)/(l- 2x- 2x2 + x3). 
These results are particular cases of Eqs. (33) and (42) of A. F. Horadam's 
article, "Generating Functions for Powers of a Certain Generalised Sequence 
of Numbers," Duke Math. J. 32 (1965):437-46. 

Also solved by Paul S. Bruckman, John Ivie, E. Primrose, Heinz-Jurgen Seif-
fert, Sahib Singh, John Spraggan, Gregory Wulczyn, and the proposer. 

FiFibonacci and LuLucas Equations 

B-453 Proposed by Paul S. Bruckman, Concord, CA 

Solve in integers r, s9 t with 0 <_ r < s < t the FiFibonacci Diophan-
tine equation 

FF, + FF. = FFt 

and the analogous LuLucas equation in which each F if replaced by an L 

Solution by Sahib Singh, Clarion State College, Clarion, PA 

It is easy to see that the FiFibonacci Diophantine equation has solu-
tions : 

v = 0; s = 1, 2; t = 3 
v = 1; s = 2, 3; t = 4 
r = 2, s = 3 ; £ = 4 

and the LuLucas equation admits the following solutions: 

r = 0; s = 1; t = 2 
p = 0 ; s = 2 ; t = 3 

We show that there is no other solution possible. 

After considering the above values, we see that onward the values of 
Fr and Fs are neither equal nor consecutive. Hence Fs - 1 is greater than Fv . 
Thus FFs < FFr + FFs < F(Fs _ 1} + FFg = F(Fs +1). Therefore, FFp + FFs lies between two 
consecutive Fibonacci numbers FF and %v + D and cannot qualify as a Fibonacci 
number. Thus no other solutionis possible. Similar arguments enable us to 
conclude that no other solution is possible for the LuLucas Diophantine equa-
tion. 

Also solved by Herta. T. Freitag, John Ivie, Lawrence Somer, and the proposer. 
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Magic Corners 

B-454 Proposed by Charles W* Trigg, San Diego, CA 

6 7 5 
In the square array of the nine nonzero digits 2 1 3 

9 4 8 

the sum of the four digits in each 2-by-2 corner array is 16. Rearrange the 
nine digits so that the sum of the digits in each such corner array is seven 
times the central digit. 

Solution by J. Suck, Essen, E. Germany 

(a b c\ /l 9 2\ . _ _ . , ~ . . I - , -p l = I ft -\ 7 \ is up to rotating and flipping 
\g h i/~\4 6 5) the only solution: 

e = 1 is impossible, since 9 >-7 must be in some corner, e = 2 is impossible 
from the fact that, in the corner of the 9, the sum of the other two digits 
would have to be 3, e >_ 4 is impossible, since the sum of the remaining three 
digits in a corner is at most 7 + 8 + 9=24 with no other corner reaching this. 

Now, let e = 3. Then the sum of all corner sums is 4 • 21 = 1+ 2+ ••• 
+ 9 + £ + d + f + /z + 3° 3, i.e. , b + d + f + h = 309 showing that 

ib9 d, f9 h] = {6, 7, 8, 9}. 

Let, say, b = 9, then h = 8 is impossible (since, say, / = 7 so that i = 3, 
and <i = 6 so that a = 3, too). Also, h = 7 Is impossible (since, say, f = 6 
making <7 = 3, and d = 8 making £7 = 3, too). Thus, 7z = 6, which entails the 
given solution. 

Also solved by Paul S. Bruckman, Karen S. Carter, Derek Chang, Frank Higgins, 
Walther Janous, Birgit Kober, John Milsom, Bob Prielipp, Sahib Singh, Lawrence 
Somer, W. R. Utz, Gregory Wulczyn, and the proposer. 

Simplified Convolution 

B-455 Proposed by Herta T. Freitag, Roanoke, VA 

m 
Let Sm = £ Fi + 1Lm_ and Tm = lQSm/(m+ 2) . Prove that Tm is a sum of 

i - 0 

two Lucas numbers for w = 0 , 1, 2, ... . 

Solution by Sahib Singh, Clarion State College, Clarion, PA 

m 1 m 

i=0 ^ t=0 

Using L^ = a"2, + 2?\ the above summation becomes 

i m 

sm = i £ [(£„ + £
m + 2 ) + ( - D M £ m . 2 i . 2 + i m . 2 i > ] 

J -£=0 

_ fa + 2) , v 
- - \-Um -r Lm+2J ° 
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Thus, 
Tm = 2(Lm+2 + Lm) = Lm+h + Lm_2a 

Also solved by Paul S. Bruckman, Frank Higgins, B. S. Popov, Bob Prielipp, 
Gregory Wulczyn, and the proposer. 

Fibonacci Products of Two Primes 

B-456 Proposed by Albert A. Mull in, Huntsville, AL 

It is well known that any two consecutive Fibonacci numbers are coprime 
(i.e., their g.c.d. is 1). Prove or disprove: two distinct Fibonacci numbers 
are coprime if each of them is the product of two distinct primes. 

Solution by Lawrence Somer, Washington, D.C. 

A counterexample is provided by the Fibonacci numbers 

F22 = 17711 = 89 • 199 
and 

F121 = 8670007398507948658051921 = 89 . 97415813466381445596089. 

These numbers were found with the help of Table.1 in [1]. However, the fol-
lowing result is true. 

Theorem: Two distinct Fibonacci numbers, each the product of two distinct 
primes, can have a common factor greater than 1 only if one. of the numbers is 
of the form F2p and the other number is of the form Fpi^ where p is an odd 
prime such that Fp is prime. 

Proof: If p is a prime, call p a primitive factor of Fn if p\Fn but 
p\Fm for 0<m<n. R. D. Carmichael [2] proved that Fn has a primitive prime 
factor for every n except n = 1, 2, 6, or 12. In none of these cases is Fn a 
product of exactly two distinct primes. It is also known that if m\n,. then 
Fm\Fn. Thus, if n has two or more distinct proper factors r and s which are 
not equal to 1, 2, 6, or 12, then Fn has at least three prime factors—the 
primitive prime factors of Fv , Fs , and Frs respectively. Since F6 = 8 = 23, 
it follows that if n is a multiple of 6, then F„ is not a product of two dis-
tinct primes. It thus follows that if Fn is a product of two distinct primes, 
then Fn is of the form Fp, F2p5 or Fpz , where p is prime. Moreover, inspec-
tion shows that n ^ 2 or 4. However, if Fp is a product of two distinct primes, 
then (Fn,Fp) > 1 implies that n is a multiple of p. But then n = p or Fn has 
at least three distinct prime factors. Further, if p and q are distinct 
primes, then 

(F2p3 F2q) = (F2p5 Fqz) = (Fp2, F2q) = (Fp29 Fqz) = 1 . 

The theorem now follows. 

References 

1. Brother Alfred Brousseau. Fibonacci and Related Number Theoretic Tables. 
Santa Clara, Calif: The Fibonacci Association, 1972. 

2. R. D. Carmichael. "On the Numerical Factors of the Arithmetic Forms 
an + gn.n Annals of Mathematics, 2nd Ser. 15 (1913):30-70. 

Also solved by Paul S. Bruckman, Herta T. Freltag, and the proposer. 
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PROBLEMS 

H-342 Proposed by Paul S. Bruckman, Concord, CA 

Let 

a> K= ¥ U ) ( 2 W > » - ° . i. 2> ••• • 
Prove t h a t 

(2) E w * = 4X+i-
k = o 

H-343 Proposed by Verner E. Hoggatt, Jr., deceased 

Show that every positive integer m has a unique representation in the 
form 

m = U1[i42[i43[...[i4„]...]s 

where Aj = a or a2 for j = 1, 25 . .., n - 1, and 

An = a2, where a = (1 + /fT)/2. 

H-344 Proposed by M. D. Agrawal, Government College, Mandasaur, India 

Prove: 

!• LkLl + 3m - L k + i t m L 2
k + m= (-Dk52F*F2mFk+2m, and 

2- hLL3m ~ ^ + 2 m = 5 ( - D ^ ( L , + ,m + 2 ( - l ) % + 2 J . 
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SOLUTIONS 

Say A 

(Corrected) 
H-324 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

(Vol. 19, No. 1, February 1981) 

Establish the identity 

A - F (F7 + F7) - IF (F6 F + F F6) + 21F (F5 F2 + F2 F5) 

- 35F (Fh F3 + F3 F^) 
= j?7 j? 

kr> 7n+14' 

Solution by Paul S. Bruckman, Concord, CA 

We first observe that there is a misprint in the statement of the 
problem. The first quantity under the first .parenthesis in the definition of 
A should be "F7 ," not "F7

 n ." For brevity, let 
n+hr n + lhv J 

(1) " = Fn+**> V = Fn-

Using the extension to negative integers: 

(2) F.m = (-l)m-XFm, 

we see that we may express A as follows: 
7 

(14-kk)r 

Thus, 

A=Y.o{l)u"-H-vtF, 

k = 0 

where a = - | (1 + / J ) , fc = - | (1 - / 5 ) ; t hus 

A/5 = a^y^(1
1)u7-\-va-hr)k - b^j^ (l)u7-\-vb-hr) 

= alltr(.u - vbhr)7 - bli>r,(u - vahr)7, or 

(3) A/5 = (ua2r - vb2r)7 - iubzr - va2r)7. 

Now 

Also , 

ua2r - vb2r = 5'll2{a2r {an+hr - bn + hr) - b2r (an - bn)} 

= 5-1 / 2 (an + 6 r - bn + 2r - anb2r + bn+2p) 

= 5-1/2an + 2r{ahr -bhr) = an + 2rFhr. 

ub2r - va2r = 5-1/2{b2r (an + hr - bn + hr) - a2r(an - b")} 

'-(an + 2r - bn + er - an + 2r + a2rbn) = 5'll2bn + 2r {ahr - bhr) = bn+2rF t r 
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T h e r e f o r e , A/5 = (an+2rFkr)7 - (bn+2rFkr)7 = (a7n+lhr - b7n+lhr)F7
hr , or 

(A) A -FlrF7n+llir. Q.E.D. 

Also solved by the proposer. 

Sum Fun 

H-325 Proposed by Leonard Carlitz, Duke University, Durham NC 
(Vol. 19, No. 1, February 1981) 

For arbitrary as b put 

Show that j+k-m 

(1) £ sm(a> b)Sn(c, d) = Sp(a + c, b + d) 
m + n = p 

(2) £ (-Dn£'m(a, i)5„(e, d) = Sp (a - d, b - a). 
m + n = p 

Solution by the proposer. 

(3) 
Thus 

We h a v e 

£s„(a 
m = 0 

(3) £ s m ( a , b)x» = £ ( ^ ) ( f c + £ " V + fc- ( l + * ) a ( l - a ) " 6 . 
j . f c -o " J 

£ x ? £ 5 n ( a , 2>)S„(c, d) = J^Sm(a, & ) x r a £ 5 «( G > # * " 
p = 0, m + n=p rn = 0 n = 0 

= (1 + x ) a ( l - x ) " & ( l + x)°(l - x)"d 

= (1 + x ) a + c ( l - x)' •b -d 

= ^ Sp(a + e, b + d)xp. 
p = 0 

Equating coefficients of xp, we get (1). By (3) we have 

£ (~l)nSn(c, d)xn = (1 - x)° (1 + xYd . 
n = 0 

Hence 
- & /1 ™\ ° /1 i_ ™\- d £ *P L (-D"Sn(a, i)S„(c, d) = (1 + x)a(l - x)"6(l - x)° (l + x)~ 

p'°  m+n-p - (1 +x) a^(l -x)-(b"c> 
and (2) follows immediately. 

Also solved by P. Bruckman. 

A "Primitive Solution 

H-326 Proposed by Larry Taylor, Briarwood, NY 
(Vol. 19, No. 1, February 1981) 

(A) If p E 7 or 31 (mod 36) is prime and (p - l)/6 is also prime, prove that 
32(1 ± Z11^) is a primitive root of p. 
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(B) If p - 13 or 61 (mod 72) is prime and (p - 1)/12 is also prime, prove that 
32(i/̂ T ± /3) is a primitive root of p. 

For example, 11 = /^3 (mod 31), 12 and 21 are primitive roots of 31; 
11 E y^T (mod 61), 8 E /J (mod 61), 59 and 35 are primitive roots of 61. 

Solution by Paul S. Bruckman, Concord, CA 

Part (A) : We must first show that (-3/p) = 1, so that we can indeed define 
#E32(1±/-T) (modp). Since (p/3) = (7/3) = (31/3) = 1, thus (3/p) (p/3) = 
(-l)1/2(p_1) = -1, or (3/p) = -1. Thus, 

(-3/p) = (-l/p)(3/p) = (-l)1/2(p-1}(3/p) = (-1)2 = 1, 

which shows that x exists. 

Let W E 2~1(1 ± /=3) (mod p). Thus x E 26w (mod p). Note that p > 7, 
since q = (p - l)/6 must be prime. Note also that W3 E -1 (mod p). This im-
plies that w % \ (mod p) . Also, u ̂  -1 (mod p) , for if we suppose w E -1 
(mod p), then 

1 ± /^3 E -2 (mod p) => ±/=3" = -3 (mod p) => -3 E 9 (mod p) =̂> p|l2, 

a contradiction. We observe further that, whichever sign is taken with /^3~ 
in the definition of W, the other sign must be taken to define w'1, since 

2"1(1 +/=I)2":L(1 - vQT) E 4_1 • 4 E 1 (mod p) . 

But, since w3 E -1 (mod p), thus w_1 E -w2 (mod p). We conclude that w t ±1 
(mod p) and W2 f ±1 (mod p). 

In order to show that x is a primitive root of p, it suffices to show 
that xm t 1 (mod p) for all proper divisors 777 of <p(p) =p - 1 = 6q. Since all 
the proper divisors of 6q divide at least one of the exponents 6, 2q, and 3q, 
it suffices to show that x6, x2q, and #3c? are ̂  1 (mod p) . 

Now x6 E 236w6 E 236(-l)2 E 236 (mod p). Note that 

2
3 6 - 1 = 33 . 5 . 7 • 13 • 19 • 37 • 73 • 109. 

Since all the primes in this decomposition are f 7 or 31 (mod 36), with the 
exception of 7, which is excluded, the congruence 236 E 1 (mod p) is impos-
sible. Thus x6 t 1 (mod p). 

Since q = 6r ± 1 for some r, w"7 E u6 r ± 1 E ZJ±:LE w or-W2 ? ±1 (mod p) ; 
similarly, fa-1)* ? ±1 (mod p) . Thus, a;* = 26<?z^ E 2P"V? = wq 1 1 (mod p) . 

Thus, x2? E (w2)^ E (-aT1)* E -(w-1)q 1 1 (mod p) . Finally, 

x3q E (W3)^ E (-1)* E -1 £ 1 (mod p). 

This completes the proof of (A). 

Part (B): The proof of (B) is patterned after that for (A). Since 

(p/3) = (13/3) = (61/3) = 1, 

thus (3/p)(p/3) = (-l)1/2(p-1} = 1, or (3/p)=l. Also, (-1/p) = (_i)V2(p-D = lo 
Defining y E 32(/^T ± /J) (mod p) , we then see that y exists. Also, we see 
that (-3/p) = 1. 

Let 9 E 2~1(/T ± /3) (mod p) . Then y E 269 (mod p) . Note that p> 13, 
since q = (p - 1)/12 must be prime. Note also that 02 E 2_1(1 ± A3) (mod p) , 
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and 66 = -1 (mod p) . This implies that 6 and 83 are f ±1 (mod p) and 92 f 1 
(mod p) . Moreover, 92 f -1 (mod p) , for the congruence 92 E -1 (mod p) would, 
as in part (A) , lead to a contradiction. Also, whichever sign is taken with 
./5" in the definition of 9, the other sign must be taken to define -9 ~1, since 

2'1(/=T+,y3)2"1(/=T - /3) = 4"1(-1.- 3) E -1 (mod p) . 

Therefore, 9 ~1 ? ±1 (mod p) . Combining this with the congruences 92 E -9~lf 

(mod p) and 83 E -9~3 (mod p) , we conclude that 9^ f ±1 (mod p) if fc = ±1, 
±2, ±3, ±4, or ±5. 

In order to show that y is a primitive root of p, it suffices to show 
that ym ? 1 (modp) for all proper divisors m of <p(p) = 12q. Since all the 
proper divisors of \2q divide at least one of the exponents 12, 3q9 and Aq9 
it suffices to show that y12, y3q , and z/4c? are t 1 (mod p) . 

Now y12 ~ 272912 E 272(-l)2 = 272 (mod p). We may verify that 

272 - 1 = 33 • 5 • 7 • 13 • 17 • 19 • 37 • 73 • 109 • 241 • 433 • 38,737, 

this being the prime decomposition. Since the only prime in this decomposi-
tion that is E 13 or 61 (mod 72) is 13, which is excluded, we see that 272 t 
1 (mod p). Therefore, y12 $ 1 (mod p). 

Since q = 6r ± 1 for some r9 thus 

yq E 2SqQq E 2l/2(p-l)96r±l = .(2/p) (-1)'0 " E ±0 ±X f ±1 (mod p) . 

Therefore, 

z/3? E ± 9 ± 3 E 9 ± 3 ? 1 (mod p ) , 
and 

z / ^ E 9±I+ ^ 1 (mod p ) . 

This completes the proof of part (B). 

Also solved by the proposer. 
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