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SEQUENCE TRANSFORMS RELATED TO REPRESENTATIONS USING 
GENERALIZED FIBONACCI NUMBERS 

V. E. HQGGATT, JR. (Deceased) 
and 

MARJORIE BICKNELL-JOHNSON 
San Jose State University, San Jose, CA 95192 

1. INTRODUCTION 

We make use of the sequences A = {an} and B - {bn}» where (an, bn) are 
safe-pairs in Wythoff*s game, described by Ball [1], and, more recently, 
by Horadam [2], Silber [3], and Hoggatt & Hillman [4] to develop properties 
of sequences whose subscripts are given by an and bn. 

Let U = fcj^^ We define A and B transforms by 

AU = \ l i a^J <l s ] = L ^ l » ^ O 5 ^ ^ 5 2^g 9 « • • 5 W a . , . e . J , 

( l . D 
Bf/ = {ub}°l^1 = {w2, w5, w7, . . . , ubi, . . . } . 

Notice that, for 27 = {n^}, n^ = i, the set of natural numbers, we have 

M = {na.} = {a^} - A, 

M = K . } = {bt} = B. 

Next, we list the first fifteen Wythoff pairs, and some of their proper-
ties which will be needed. 

n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
an: 1 3 4 6 8 9 11 12 14 16 17 19 21 22 24 
bn: 2 5 7 10 13 15 18 20 23 26 28 31 34 36 39 

Notice that we begin with a± = 1, and ak is always the smallest integer 
not yet used, We find bn = an + n. We list the following properties: 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

ak + k 

an + bn 

aan
 + 1 

:+ l " ak 

= 

= 

= 

= 

bk 

aK 

K 

i2' 
I, 

k 

k 

= an 

= &n 
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(3, ft = a n 
bk+1 -bk-l (1.6) 

U , ft = bn 

Further, (an9 bn) are related to the Fibonacci numbers in several ways, 
one being that, if A = {an} and B = {bn}, then >4 and 5 are the sets of posi-
tive integers for which the smallest Fibonacci number used in the unique 
Zeckendorf representation occurred respectively with an even or odd subscript 
[6]. 

2. A AND B TRANSFORMS OF A SPECIAL SET U (FIBONACCI CASE) 

Let U = { w j , where 
, if m ~ ak 

(2.1) 
_, if m = bk 

Actually, we can write an explicit formula for um in terms of uly p, and qs 
as in the following theorem. 

THEOREM 2.1: um = (2m - 1 - am)q + (am - m)p + ux. 

PROOF: Um = (Um - Um_x) + («„.! - Um„2) + (ttOT_2 - Um„3) + ••• 

+ (w3 - u2) + (w2 - w1) + u1 

= (no. of bj^s less than m ) ^ + (no. of <Zjfs less than w)p + wa 

= (2w - 1 - am)q + (am - m)p + ux 

by the following lemma. 

LEMMA 1: The number of bj's less than n is (2n - 1 - an) 9 and the number of 
a.j 's less than n is (an - n) . 

PROOF: an: 1 3 4 6 8 9 
w: 1 2 3 4 5 6 

an - n: 0 1 1 2 3 3 
â -'s less than n: 0 1 1 2 3 3 

Notice that the lemma holds for n = 1, 2, ..., 6. Assume that the number of 
aj?s less than k is given by ak - k. Then the number of aj!s less than (ft + 
1) has to be either (ak - ft) or (ak - ft) + 1. If ft = 2?̂  , then 

ak + i ™ (̂  + 1) = afe -f 1 - (ft + 1) = â . - ft 

by (1.5), while if k ~ a^s then 

#k+1 - (ft + 1) = afc + 2 - (ft + 1) = ak - ft + 1, 
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giving the required result for ak + 1 - (k + 1). Thus, by mathematical induc-
tion, the number of ctj's less than n is given by an - n. But, the number of 
integers less than n is made up of the sum of the number of a^s less than n 
and the number of bj's less than n, since A and B axe. disjoint and cover the 
natural numbers. Thus, 

n - 1 = (an - ri) + (number of bj 1s less than n), 

so that the number of b-j^s less than n becomes (2n - 1 - an) . 

We return to our sequence U and consider the A and B transforms. In par-
ticular, what are the differences of successive terms in the transformed se-
quences AU and BUI 

For AU, 

(q + p, if w = ak 
uam+1 - uam= < (2.2) 

( p, if m = bk 

Equation (2.2) is easy to establish by (1.5), since when m = ak9 ccm + 1 - ccm + 2, 
so that 

Uam + 1 - Uam = (uam+2 - Uam+1) + (Uam+1 - Uam) = (ub. + 1 - Ub.) + p = q + p , 

where we write am + 1 = bi, because am + 1 ̂  a^ and A and 5 are disjoint and 
cover the natural numbers. For the second half of (2.2), since am+1 = am + I 
by (1.5), we can apply (2.1) immediately. 

F o r BU9 

' 2 p + q9 i f m = ak 

( 2 . 3 ) 
p + q9 i f 777 = bk 

We can establish (2.3) easily by (1.6), since when m = ak , bm+1
:=:bm + 3, and 

bm + 2 = a^, bm + 1 = a j- for some £ and j, so we can write 

Ubm + l ~ M&m
 = (Ubm+3 ~Ubm + 2^ + ( u £ m + 2 ~ubm + l^ + (U&m + 1 ~ U ^ m ) 

= (Wflt+i - M«t ) + K , + i - "a, ) + K m + 1 - W*m ) 

= p + p + q = 2 p + g . 

For the case m = bk 9 bm + 1 = bm + 2 and £m + 1 = a^ for some £, causing 

U 2 > m + i " uba= (Ubm + 2 ~Ubm + l) + tybB + l - UbJ 

= (Wa. + 1 " Ua.) + (W2,B + 1 - W^) 

= p + q. 
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Notice that we have put one hi subscript on BU and one ai subscript on 
AU. Now if we applied B twice, BBU = {ubb} would have two successive Z?-sub-
scripts, and we could record how many ^-subscripts occurred by how many times 
we applied the B transform. Thus, a sequence of A and B transforms gives us 
a sequence of successive a- and ^-subscripts. Further, we can easily handle 
this by matrix multiplication. Let the finally transformed sequence be de-
noted by U* - w*a£, and define the difference of successive elements by 

U(ah)i + 1
 UKab)i 

' pr, if i = ak 

sq' 9 if i = bk 

and define the matrix Q - I ). Then AU has p' = p + a, qr = p, and 

«( ; ) • ( } i)(?) • ( "? ' ) - (? : ) . 
and BU has pf = 2p + a , qr = p + q, and 

Now, the ̂ -matrix has the well-known and easily established formula 

F F 

<F F 

for the Fibonacci numbers F± = F2 = 1, Fn + 2 = ^n + i +
 Fn * 

Suppose we do a sequence of A and B transforms, 

AABAAAU = A^BH^U. 

Then the difference of successive terms, pt and qr
9 are given by 

«•(?)•(?; J :x ; ) - (?s : ?3) •(?:)• 
Note that each ,4 transform contributes Q1 but a 5 transform contributes Q2 to 
the product. Also, the sequence considered has successively 3 a-subscripts, 
one Z?-subscript, and 2 a-subscripts, so that u*ab) has six subscripted sub-
scripts, or, 

Also notice that the order of the A and B transforms does not matter. Thus, 
if U* is formed after m A transforms and n B transforms in any order, then 
the matrix multiplier is Qm+2n , and 

P' = ?m+2n+lP + Fm+2n<?> <7 ' = Fm+2nP + Fm+2n-lCl' 
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Comments on A and B Transforms 

Let W be the weight of the sequence of A and B transforms9 where each B 
is weighted 2 and each A weighted 1. Thuss the number of different sequences 
with weight W is the number of compositions of W using lfs and 2Ts, so that 
the number of distinct sequences of A and B transforms of weight W is Fw + 1> 
Thus, u-i in Theorem 2.1 can be any number 1, 29 ..., Fw + 1 for sequences of A 
and B transforms of weight W, 

3. A, B9 AND C TRANSFORMS (TRIBONACCI CASE) 

The Tribonacci numbers Tn are 

T0 = 0, T1 = 1, T2 = 1, Tn+3 = Tn+2 + Tn+1 +Tn, n> 0. 

Divide the positive integers into three disjoint subsets A - {̂ 4̂ }, B - {B^} s 
and C = {Ck} by examining the smallest term Tk used in the unique Zeckendorf 
representation in terms of Tribonacci numbers. Let n e A if k = 2 mod 3, 
n e B if k E 3 mod 3, and n e C if k = 1 mod 3. The numbers An, Bn, and Cn 
were considered in [6], We list the first few values. 

TABLE 3.1 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

•̂ •n 

1 
3 
5 
7 
8 
10 
12 
14 
16 
18 

Bn 

2 
6 
9 
13 
15 
19 
22 
26 
30 
33 

Cn 

4 
11 
17 
24 
28 
35 
41 
48 
55 
61 

Notice that we begin with A1 = 1 and Ak is the smallest integer not yet 
used in building the array. Some basic properties are: 

An + Bn + n = Cn (3.1) 

AK + 1 = Bn, ABn+ 1 = Cn (3.2) 

(2, n e A 
An+i - An = <23 n e B (3.3) 

( 1, n e C 
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4 , n e A 
Bn+i - Bn = ^ 3 , n e B (3 .4 ) 

2 , n e C 

7 71 £ A 
Cn+i -Cn = \b\ n e B (3 .5 ) 

4 , n e C 

Let the special sequence U - {u^}, where 

p, m e A 
ym = { q, m e B (3.6) 

r, m e C 

We can write an explicit formula for um in terms of u19 p, q9 and r. 

THEOREM 3.1: um = (2m - 1 - 4m)p + (2Am - Bm)q + (Bm - Am - m)p + 2^. 

PROOF: Um = (wm - Um_{) + (Um_1 - Um_2) + ' ' ' + (u3 - Uz) + (u2 - u{) + U± 

= (no. of Cj-'s less than m)v + (no. of 5 ?s less than m)g 

+• (no. of Aj's less than m)p + % . 

But, Theorem 4.5 of [6] gives (2m - 1 - Am) as the number of Cj's less than 
777, (Z4OT -Sm) as the number of Bjfs less than m, and (Bm - Am-m) as the num-
ber of A^s less than 772, establishing Theorem 3.1. 

We now return to our special sequence U of (3.6) and consider A, B, and C 
transforms as in Section 2. For AU, 

(p+q, m e A 
uA - uA =<p+r,meB (3.7) 

\ p, m e C 

To establish (3.7), recall (3.3). If m e A, then 

UAm + 1 ™ UAm
 = UAm + 2 ~ UAm + l + UAm+l ~ UAm 

+ UAm+l~ UA 

q + p. 

I f m e 

lA " UK = UAm+2 ~ 

UC„+1 

= r + p. 

UAm+l+ UA„ + 1~ UA 

UC„ + UA„ + 1 ~ UA„ 
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If m e C, 

Now, matrix T9 

1 
1 
1 

1 
0 
0 

0 
1 
0 

can be used to write AU9 since 

S W i I ?Ŷ  
vf \1 . 0 0/\r 

Notice that the characteristic polynomial of T is x 
the characteristic polynomial of Q of Section 2 is x 

In an entirely similar manner, for BU one can establish 

p + q\ 
p + v j . 
. p / 

x3 - x2 

2 

(3 .8 ) 

- x - 1 = 0 , w h i l e 
- 1 = 0 . 

and for CU9 

2p + q + r9 m e A 
2p + q9 m e B (3.9) 
p + q9 m s C 

4p + 2q + v9 m e A 
uc - uc = <! 3p + 2q + v9 m e B (3.10) 

m + l m ' 2p + q + r9 m e C 

We compute BU as 

p\ 12 1 l\/p\ /2p + q + r 
q = 2 1 0 q = 2p + q 
r/ \l 1 0 / W \ p + 4 , 

and OT as 

p \ 
«?) 
r/ 

/ 4 

" 3 
\ 2 

2 
2 
1 

! \ 
1 
1/ 

/ P \ 

4 w 
/4p + 2q + i>* 

= (3p + Iq + r 
\ 2p + q + r . 

We note that 

J-n n- 1 

2"1 = |r„ +2-.., T n . i + ^ . z r„-2 +Tn_3\, (3.11) 

^n - 1 ^n- 2 

which could be proved by mathematical induction. 
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We may now apply A9 B> and C transforms in sequences. If we assign 1 as 
weight for A9 2 as weight for B9 and 3 as weight for C9 then there are Tn + 1 
sequences of A, B, and C of weight n corresponding to the compositions of n 
in terms of lTs, 2fs, and 3fs. Since any positive integer in sequence An9 
Bn9 or Cn can be brought to u1 by a unique sequence of A9B9 or C transforms9 
there is a unique correspondence between the positive integers and the compo-
sitions of n in terms of lfs, 2fs9 and 3fs. 

4. A, B9 AND C TRANSFORMS OF THE SECOND KIND 

We now consider the sequence defined by 

U, 1, U2 - 29 U3 - 3, Un„ Un + 2 +Un> 

with characteristic polynomial x 1 = 0 . We d e f i n e A = {An}, B = {Bn}9 
C = {Cn}9 and let H = {Hn} be the complement of B = A U C9 where A9 B9 and C 
are disjoint and cover the set of positive integers, as follows: 

An = smallest positive integer not yet used 

Bn = An + n 
i 

Cn = Bn + Hn = An + Bn - (number of Cj fs less than An) 

(4.1) 

This array has many interesting properties [6], [8], but here the main theme 
is the representations in terms of the sequence Un above. We list the first 
terms in the array for n, A9 B9 C9 and H in the following table. 

TABLE 4.1 

n 

1 
2 
3 
4 
5 
6 

An 

1 
4 
5 
7 
10 
13 

Bn 

2 
6 
8 
11 
15 
19 

Hn 

1 
3 
4 
5 
7 
9 

Cn 

3 
9 
12 
16 
22 
28 

Here we can also obtain sets A9 B9 and C by examining the smallest term Uk 
used in the unique Zeckendorf representation of an integer N in terms of the 
sequence Uk. We let N £ A if fc = 1 mod 3, iV £ B if fc = 2 mod 3, and N e C if 
/< = 3 mod 3. 

From Theorem 7.4 of [6], we have: 

™n + l ^-n 

3, n = Ak 

2, n = Ck 

(4.2) 
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Bn+1 

^n+1 

- Bn -

- cn = 

( 4 , 
2S 

U 
( 6 , 

3 s 

u, 

n - Ak 
n = Bk 
n = Ck 

n = Ak 
n = Bk 
n = Ck 

(4.3) 

(4.4) 
< = Cfc 

Let the special sequence U - {u^}, where 

p* . 7w e A 
q, m e B (4.5) 
r9 m e C 

We can now write an explicit formula for um in terms of ux , p, qs and P. 

THEOREM 4.1: Um = (C?m - Bm - m)p + (Cm - 2Am - l)q + (35w - 2Cm)v + ux. 

PROOF: Um = («m - Um_±) + (Wm_1 - Wm_2) + ••' + (U3 - U2) + (l*2 - «1) + U± 

= (no, of Aj's less than ?w)p + (no. of Bj f s less than 772)<? 

+ (no, of Cj's less than 777)P + ux. 

Corollary 7,4.1 of [6] gives the number of Aj's less than m as Cm - Bm - m9 
the number of Bj ?s less than m as Cm ~ lAm ~ 1, and the number of Cj Ts less 
than m as 3£m - 2Cm. Each of these is zero for m = 1. 

We again return to our special sequence U of (4.5) and consider A, B9 and 
C transforms as in Section 2. We write the matrix Q* and consider the AUS 
BU, and CU transforms: 

For AU, we have 
, Z 1 

S*2F =! i 
\ i 

and 

Q* = 

uA - uA 
Hm+1 Hm 

1 
0 
1 

/ l I 
0 0 

\ l 0 

l\/p\ o U -
0/W 

^ P + <7 + 

I P + 

°\ 1 
0 / 

IV 
• 

V 
2% 
p * 
<7> 

+ 

P 

77? 
77? 

777 

q + P 
P 
+ <7 

e 4 
e B 
e C 

(4.6) 

For BU, we write the matrix multiplication Q*3V, 

>*3V = / 2 

1 

\ 1 

1 
1 
1 

1\ 
0 

1/ 

/ P \ 
( ? ) " 
VW 

/2p + q + r 
= ( P +<7 

\ p + q + r 
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and 

For CU9 we write 

;s„ + i 

•*v, 
• V = 

UB„ = 

( ; 

1 
2 
1 
1 

2p + q + r , m £ A; 
p + q, m £ B; 

p + q + i», m e C. 

l \ / p \ /3p + 2^ + 2? 
1 U = P + q + r 
l/\r/ \2p + q + r , 

(4.7) 

and 
3p + 2q + r9 m e A; 

p + q + r, m e 5; (4.8) 
2p + ^ + P, 777 £ C. 

Here, as a bonus, we can work with the transformation HU by using the ma-
trix Q* itself. Since A U B U C = N9 using H and B transforms corresponds to 
the number of compositions of n using lfs and 3 *s, which is given in terms of 
the sequence Un , defined at the beginning of this section by Un_1, 
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SELF-GENERATING SYSTEMS 
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University of New Mexico, Albuquerque, NM 87131 

(Submitted September 1980) 

Let S = a19 a29 ...» and T - b1, b2, . . . be sequences of integers, and let 
g be an integer. Then gS and S + T denote the sequences gal9 ga29 «•• and 
ct\ + Z>i* CL2 •+ b2* ..•» respectively. Also {5} denotes the set {al9 a29 . . * } . 

If the an of S are positive and strictly increasing, the characteristic 
sequence \S = ol9 c<i9 ... has cn = 1 when n is in {S} and e n = 0 otherwise. 
Also AS denotes the sequence d19 d2> ... with dn = an+1 - aM. 

DEFINITION: A system 5 X , 5 2 9 , .. 9 Sr of sequences of strictly increasing pos-
itive integers is self-generating if the sets {5i}, {JS,

2}9 ...» {£r} partition 
Z + = {l, 2, 3, ...} and there is an rx r matrix (dhk) with positive integral 
entries such that 

LSh = dhl(x5x) + dh2(xS2) + ••'. + dhTixSr) for 1 < fe < P. 

Hoggatt and Hillman in [2] and [3] used shift functions based on certain 
linear homogeneous recursions to obtain self-generating systems. In Theorem 
5 of Section 7 below, we generalize on their work by increasing the set of 
recursions for which similar results follow. Examples are given in Section 8. 

1. THE RECURSIVE SEQUENCE U 

In the following, d and p 1 9 p 2 , ..., pd are fixed integers with d > 2 and 
Pi ^ Pi ^"•' ̂  Pd-i ^ Pd ~ •*•* Also u n is defined for all integers n by ini-
tial conditions 

Ux = 1, UQ = U_x = U_2 = *•• = ^2-d = ^ 

and the recursion 

Un + d = PlWn + d-l + PlUn + d-2 + '" + ?<**„• 

For each integer i9 let J/̂  denote the sequence ui + 19 ui + 2, 
written as U. 

Hoggatt and Hillman obtained self-generating systems using such recur-
sions for the case d = 2 in [3] and for general d with p 1 = p 2 = • • • = pd = 1 
in [2]. 

(1) 

(2) 

. and let UQ be 

299 
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In the representations discussed below, we want U to be an increasing 
sequence of positive integers with 1 as the first term. This is clearly true 
when p1 > 1. If px = 1, then u1 = u2 - 1 and one of these terms must be de-
leted; this is equivalent to changing the initial conditions (1) to the con-
ditions uh = 2?l"1 for Kh<d of [2]. Since the case p± = 1 is that of [2], 
we avoid notational complications by assuming that p1 > 1 in what follows. 

The representations introduced next are similar to those of the papers in 
the special January 1972 issue of this Quarterly as well as those of [2] and 
[3]. 

2. CANONICAL REPRESENTATIONS 

Let N = {0, 1, 2, ...}. If X = x1, x2, ... and I = y19 y2, ... are se-
quences of numbers with xn = 0 for n > h9 let 

X * J = x±y± + x2y2 + ••• + xhyh. 

In this section the only properties of U = u-±, u2» ... needed are 1^ = 1 and 
the fact that U is an increasing sequence of integers. 

With respect to U, we define inductively for each m in N a sequence Z^ = 
eml, em2, ... of nonnegative integers as follows. Let all the terms of EQ be 
zero. Assume that Eh has been defined for 0 ̂  h < m. Since the un are un-
bounded and ux - 1 < 777, there is a largest /c such that uk < 777• For this &, 
let t - m - uk. Then Z?t is defined, and we let £w& = 1 + etk and ewn = etn 

for n ^ k. Clearly Em
 a U - m, i.e., we have the representation 

m = emlu± + em2u2 + ••• . (3) 

It is also clear that when m = uk with k ̂  1, em?J = 1 and £OTS = 0 for s £ k. 

For n ̂  2, let gn and rn be the integers (guaranteed by the division al-
gorithm) such that 

m ~ O ^ n + l ^ + l + emvn + 2Un + 2 + ' * ' ) = <?nMn + ^ n > 0 < P n < M n . 

Then the definition of #m implies that 

CLn = g * m a n d vn = emlwl + ^ 2 ^ 2 + • • • + ^ . n - l ^ n - l -

Hence 

emlWl + e,2W2 + '•• + ̂ ,n-lWn-l < Wn f°* n> 2. (4) 

We next show that (4) and the fact that each emh is a nonnegative integer 

characterize Em. 

LEMMA 1: Let E - el9 e29 .... and Er - e[9 e29 ...be sequences of nonnegative 
Integers with en = 0 = e^ for n greater than some v. Also let 
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elUl + e2u2 + ..- + en_1un_1 < un 
and 

e[u1 +eJ
2u2 + ••- + eJL_1un_1 < un for n > 2 (5) 

and E • U = Er * U. Then E = ET. 

PROOF: Since en = 0 = e^ for n > r, E ^ E! implies that there is a largest n 
with en ^ e^9 and we let £ be this n. Without loss of generality, we let 
et < e/. Upon deletion of the equal terms in E • U = Ef • [/, we have 

e1w1 +. • • • + etut = ̂.(ẑ  + • • • ' + elut. 

Since U\ = 1, this implies that £ > 1. Then 

ut < (e/ - et)ut = et 'ut - etut 

= O ^ + ... + £t _!«£_!) - (e{Wx + ... + e't_1Ut_1). 

Since each enf ̂  0S this implies that 

Ut < g^! + ••• + £t_iWt_15 

contradicting (5) and proving that E - Ef
 B 

The following definition introduces another characteristic property of 
the Em which will be needed below. 

DEFINITION: A sequence E = el9 e2, ... is compatible [with respect to the 
recursion (2)] if, for any In in Z+ and any integer k with 1 < k ̂  d9 the se-
quence of k differences 

has the two following properties: 

I. If h = 1 or k ~ d, at least one difference in (6) is nonzero. 

II. If some difference in (6) is nonzero, the first nonzero difference 
is positive. 

THEOREM 1: For each m in Z+, Em is.compatible. Also if E = e19 e29 . . . is a 
compatible sequence with en = 0 for n greater than some n0 and E 8 U = 777 then 
E = Em. 

PROOF: We first show that Em is compatible. Let E = Em. If h = I or k = d 
and all the differences in (6) were zero, then it would follow from (1) and 
(2) that 

uh + k = eh+k-luh+k-l + eh+k-2uh+k~2 + ••• + ehUh. 
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Since this would contradict (4), we have shown than I holds. 

To prove II, we assume it false and seek a contradiction. Then we can 
assume that in (6) the first nonzero difference is p - eh+k_Q and also that 
eh+k-g ^ 1 + Vq • These assumptions would imply 

h+k-i h+k-i g 

E eoU3 > E eJud > uh+k-g+ t,PjUh + k-r 
j-h j=h+k-g j - i 

d 
Here , i f one u se s t h e r e c u r s i o n (2) t o r e p l a c e uh + k_ by £} Pjuh + k-g-j * o n e 

f i n d s , s i n c e p± > p 2 > • • • > pd , t h a t J = 1 

fc+ fc-i d # 

E^ ^ « j > E PdUh + k-g-j + E Pjuh + k-j 
j=h J = 1 j = 1 

> E pjuh+k_j+ EPjuh+k-j - "*+*• 
j-0 + 1 i=i 

This contradicts (4), and thus II holds, and ̂  is compatible. 

Second, assume that E is compatible, the desired n0 exists, and E • U - m. 
It suffices to show that un > e1u1 + e2u2 + ••• + en.1un_1 for n > 2, since 
this, the hypothesis # • £/ = #?, (4), and Lemma 1 imply that E = Em. We prove 
these inequalities by induction on n. The hypotheses I and II with h ~ 1 = k 
imply that y1 > e±. Hence, u2 = px > ex = e^^, and the case n = 2 is true. 
Assume that n > 2 and that the desired inequalities are true for 2, 3, ..., 
n - 1. Using I and II, one finds a ^ in {1, 2, ..., <i} such that 

Pk > 1 + £n~fc and p̂ . = en_j. for 1 < j < k. (7) 

Using the hypothesis of the induction and n - k < n, one has 

w-fc -l 

J - 1 

Using (2), (7), and (8), one sees that 

d k n-Jc-i k n - 1 
Un = E PjUn-j > Un.k + £ en-jUn-o > E ej Wj + E en-j«n-j = E ^ j -

This e s t a b l i s h e s t he d e s i r e d i n e q u a l i t y for n and completes t h e proof of t h e 
theorem. 

LEMMA 2: Let k > 1, w = uk. Also define the sequence F = / x , / 2 , . „ . Jby 

A = Pr ~ *> fctfiere r e { 1 , 2 , . . . , <i} and 2» E fc - 1 (mod J ) ; 
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fn=0 for n > k; 

fn = 0 for n E k (mod d); 

fn = VQ when k ~ n = j (mod d) , 1 < n < fc, and n f k (mod d) . 

Then Ew_i = F. 

PROOF: Obviously F is compatible. Since p = 1, repeated use of (2) gives 

q-l d-1 
Uz = Uz_qd + Y, £ PfcW

a-fcd-fcfor <? £ Z+* ( 9 ) 

fr = 0 ^ = 1 

Now let q e Ns r e {1, 25 ..., d} , and s = qd + r + 1. Then 

^s-qd = ^ P + 1 = Pl^r + PzUr-l + •'• + PrUl 

follows from (2). Hence9 (9) can be rewritten as 

q- 1 d-1 v 
uz = uqd+r+1 = ^ x Pku*-hd-k + E Pfcw2.+i-k- (10> 

h = 0 ^ = 1 fc-l 

Now, F • [/ = U - 1 follows from (10), and then Theorem 1 gives us the desired 

3. PARTITIONING Z+ 

Let m E Z + . Then em^ f 0 for some k and we define zm as follows: if 
eml > 05 zm = ls and if eml = 0S then zm is the largest 7z such that ems = 0 
for 1 < 8 < h. For 1 < t < d, let 7t = {m : sm = t (mod d)h Clearly, 7X, 
72s . . . s 7̂  form a partitioning of Z+. 

4. THE SHIFT FUNCTIONS O1 

Let Z be the set of all integers. Recall that U^ denotes the sequence 
u.,,» u.JO> ... . For each t in Z, let oi be the function from N to Z with 

c^fa) = £OT • Ui = ewlwi + 1 + em2wi + 2 + ••• for all m in N. 

The following properties are easy to verify: 

(i) a^im) satisfies the recursion (2) for fixed m in N and varying •£. 

(ii) 0^(0) = 0 for all t in Z. 

(iii) oi(uk) = uk + ir for t in Z and k in Z+. 

(iv) at + 1(w) = 0(0^(171)) for 777 and i in i!7. The proof of this depends on 
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the fact that the canonical representation of Ot(m) is, in fact, E} 
shifted, i, times. 

(v) 0° (m) = m for m in N. 

5. DIFFERENCING a* 

For i in Z and m in Z + , let the backward difference Vcr^m) be defined by 

VoHm) = oHm) - a*(m - I) = Em • ̂  - ̂  • ̂ .. 

For t in Z and n in Z + , let Z)^n = Va^(un). If wn = w9 then #w = 0X, e2* ••-
with en = 1 and et = 0 for t £ n and £'tl7-1 = /x, /2 > • • • * fn-i9 ^, ®> ••• wi-tn 

the f. as described in Lemma 2. Then 

n-l 

Let n = k (mod d) with & in {1, 2, . .., d}. Temporarily, let i > 2. Then, 
using (10) with s = i + n, the formulas of Lemma 2 for the f., and the recur-
sion (2), one finds that 

Din = ui+x if k = 1, (11) 

and if k ? 1, 

c ; « - u
i+i +Pk

ui +Pk + iui-i + ••• + P d M i + ^ - d 

For fixed n and varying £, the Din satisfy the same recursion (2) as the u's, 
Hence, the truth of (11) and (12) for i ̂  2 implies these formulas for all 
integers i,. In particular, these formulas imply the following lemma. 

LEMMA 3: Din = Dik if n = k (mod d). 

Next we show that Voz(m) depends only on i, and the k such that m e Vk . 

THEOREM 2: Let m £ Vk . Then Vai(m) = Dik. 

PROOF: Let Em = e19 e2s . .. . Since me Vk s there is a positive integer s 
such that z = fc (mod d) , es > 0, and es = 0 for 1 < s < s. Let w = es and 
%w-i ~ fi» /*2' •••> /a-i» 0, 0, ... . Using Theorem 1, one finds that 

Em-l = / l ' J29 • • • » fz-ls ez " 1» ^ z + 1 5 ^ s + 2 5 " • " 

and hence , 
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Then Lemma 3 implies that loz{m) - Vik as desired. 

The two following results are not needed for the main theorem (Theorem 5 
below) but they generalize on work of [2] and [3]. 

LEMMA 4: For 1 < i < d9 Va"1 (m) is 1 for m in V{, + 1 and is 0 otherwise. 

PROOF: Temporarily, let k $ 1. By Theorem 2 and (12), for m in Ffe, 

VcTMm) = uk_i - P^.i-i - ••• - Pfc.x«., + 1 + "_i + 1 

- Pk-iu-i + i + M-ni" 

For k = i + 1, this becomes 

Va"Mm) = M l - pxu0 - p2wml - ... - Piu_i + 1 + u_i+1 = u± = 1, 
since 

For k £ i + 1, i.e., for 777 not in Vk , Vo~t (m) = 0, since 

by (1) and (2). The same results are obtained for k = 1 from (11). 

THEOREM 3: Let \s\ denote the number of elements in the set S, Then 

( i ) o'i(m) = \Vi+1 PI { 1 , 2, . . . , 777> J f o r £ = 1, 25 . . . , d - 1. 

( i i ) m - a" 1 (777) - a"2(m) - . . . - a"(d"1} (777) = | F^ n { 1 , 2 , . . . , 772} | . 

PROOF: For ( i ) , 

VcT*(l) + Va"*(2) + ••• +Va"*07z) = [ a " M D - a " M 0 ) ] + [ a "M2) - c T M l ) ] 

+ ••• + [a"Mm) - Q-MTT? - 1)] 

= CTMTT?) - a"M0) - a"* (777). 

For fixed i, by Lemma 4, Vc"^(l) +••• + Vo~z (m) is the number of integers in 
"P-i + i H {1, 2, ...,777}. But the telescoping sum shows this to be a"1 (777). Part 
(ii) follows from (i). 
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6. A PARTITIONING-OF N 

For i = 19 2, ..., <2 and j = 0, 1, ..., p^ - 1, let B^ be the sequence 
2?0, b1$ ... with Z?m = ui + 1 + J - p^ + o^im). When the dependence of 2?m on £ 
and j has to be indicated, we will write bm as b^m . 

THEOREM 4: The px + p2 •+ " • • + Pd subsets {5# } partition N. 

PROOF: Let s £ N. We need to show that there is a unique ordered triple 
(is j 9 7W) such that 

s = wi+1 + j - p^ + a*(m). (13) 

Let S'g = e19 eZ9 ... and for the sought after m$ let Em = / x, /2, . .., i.e., 
let e ^ = gfc and eTÔ  = /^. With this notation and using (1) and (2), one can 
rewrite (13) as 

8 = p1Ui + p2Ui_1 + •-. + p^.^2 + piU1 + J ~ P̂  + fiUi+1 + f2Wi+2 + ..- . 

Since u1 '= ls p.^% + J - p^ = ju1 and the equation takes the form 

S = JMi + Pi. ^2 + Pi„2U3 + . - • + p l M i + / 1 U i + 1 + / 2 M i + 2 + • • • . (14) 

Using the condition of Theorem 1 that Em = f1, jf2 * ••• must be compatible, 
together with the fact that j ^ p^. - 1, one sees that the sequence 

O = J5 Pi-is Pi-29 »*«* Pi* j i » J2» ••• 

must be compatible. Since the right side of (14) is S * U9 Theorem 1 (with m 
replaced by s) tells us that (13) is equivalent to S = Es . 

If there is no £ with 2 < i, < d and 

(p15 p2» ..., p^.i) = (e*, ̂ . ^ ..., e2) (15) 

then the sequence e2% e3, ... is compatible and E8 - S holds if and only if 
i = 1, j = e ^ and the sequence <22, e3, ... is the sequence f1, /2, ... . 

Now assume that (15) holds for some j , in {2, 39 . .. , <f} but not for any 
larger integer in this set. We wish to show that the sequence 

ei+i> ei+2> ••• (16) 

is compatible. Since e19 e25 ... is compatible, (16) can fail to be compat-
ible only if there is an integer g with 

(pis p2, ..., pg) = ( e ^ , ei + g_19 ..., e i + 1) and i < # < d. (17) 

Then condition II (of the definition of a compatible sequence) with h = i- and 
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k = 1 + g would imply that et < Pg + 1- If e± < pg+1, (15) gives us the con-
tradiction p1 = ei < pg + 1 < px. Now condition I implies that g + I < d. Also 
ei = P# + i similarly implies that p1 = p2 = • • • = p^ + 1. This, (17), and the 
equality V\ ~ ei from (15) would give us 

(p15 p2, ..., pg + 1) = (ei + j7, ̂  + ̂ .19 ...5 ^ ) . 

As before, condition II with h = i - 1 and /c = 2 + ̂  implies that pg + 2
 = Pi> 

and hence that 

(pl5 p2, ...,-pg+2) = (ei + (7, e i + (7-1, .... e . ^ ) . 

This process would continue until we had 

(Pi. P2> •••> Pi + g-i> = < ^ + (7» ^ + £-1' •••• e2>» 

which contradicts the fact that the i in (15) is maximal. 

Hence &i + 1> 0£ + 2> ••• satisfies I and II and so is compatible. Then Es -
S holds if and only if i is the maximal i for (15), J = e19 and 

J19 f 2 s • • • = ei + i» ^i + 2 » • • • • 

This completes the proof. 

7. SELF-GENERATING SYSTEM 

For i, - 1, 2, ..., c? and j = 1, 2, ..., p., let ̂ - be the sequence 

with a^jm = 1 + &£,j-if/n_i (the Z?fs are as in Section 6). When both i and j 
are known from the context, we may write a^^m as am, 

THEOREM 5: The sequences A^ for 1 < i < J and 1 < J < p. form a self-gen-
erating system. 

PROOF: From the definition of the sets {BiJ_1} in Section 6 and 7̂  in Sec-
tion 3, it follows that 

where T is the union of the {Aij } for 1 < i < d and 1 < j < p^, and that 

Vh + i = t^^} f o r h = x> 2> •••> d - I. 

Since the {B^j} form a partition of # (or, equivalently, since the Ffs 
partition Z+) , the {4^- } partition Z+. Since 2 ? ^ = wi+1 + J - p. + 0i(m)9 
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Vbijm = bi,j,m " Kj,m-1= ^Ui + 1 + «?' " P* + ° '*<&) ) - {ui + 1 + J - p ^ + CF *( /??- 1 ) ) 

= a^Or?) - oi(m- 1) = 

= Vo*(m). 

Then by Theorem 2 we have 

Vbijm = Vcr*(m) = Dik If m e Vk. 

Since a,ijm = 1 + ̂ ,j-i,m-i> ^tj ̂ s tne sequence ^ , d2, ... with 

"w = aiyj, m+l ~ ai,j,m = ®i,j-l,m~ ^i,j-ltm-l = ^ife 

when W2 £ 7/j . Since each Ffe i s an {A^j} or a union of {A-cj}» 

&Aij = 2 dijhkXAhk 
l4h<d 
Kk<ph 

where d^j-hk - Dis when { i4^} i s a subse t of Fs . 

8. EXAMPLE 

For d = 3 and px = p 2
 = 3, p3 = 1, we have un+3 = 3un+ 2 + 3u„+1 + u„ and 

[/ = 1, 3, 12, 46, 177, .... As an illustration of the canonical representa-
tion in Section 1, for m = 136, we have Em = 2, 2, 3, 2, 0, 0,... and o(m) = 
2u2 + 2u3 + 3uk + 2w5 = 522. The following is a table of the G^O?) for the 
iTs involved in Theorem 5. 

m 

o(m) 
o2(m) 
a3 (m) 

0 

0 

0 

0 

1 

3 

12 

46 

2 

6 

24 

92 

3 

12 

46 

177 

4 

15 

58 

223 

5 

18 

70 

269 

6 

24 

92 

354 

7 

27 

104 

... 

8 

30 

116 

9 

36 

138 

10 

39 

150 

11 

42 

162 

12 

46 

177 

The p 1 + p2 + p3 = 7 subsets partitioning Z+ are: 

Ul x} = {o(m) + 1} = {1, 4, 7, 13, 16, 19, 25, 28, 31, 37, 40, ...} 

{A12} = {o(m) + 2} = {2, 5, 8, 14, 17, 20, 26, 29, 32, 38, 41, ...} 
{i413} = {o(m) + 3} = {3, 6, 9, 15, 18, 21, 27, 30, 33, 39, 42, ...} 
{A21} = {a2(m) + 10} = {10, 22, 34, 56, 68, 80, 102, ...} 

{AZ2} = {o2(m) + 11} = {11, 23, 35, 57, 69, 81, 103, ...} 
{A23} = {G2(TT?) + 12} = {12, 24, 36, 58, 70, 82, 104, ...} 
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and 

{Asl} = {oz{m) + 46} = {46, 92 , 138, 223, . . . } . 

The fo l lowing i s a t a b l e of Dik for -2 < i < 3 and 1 < k < 3 . 

l 
2 
3 

-2 

0 
0 
1 

-1 

0 
1 
0 

0 

1 
1 
1 

1 

3 
6 
4 

2 

12 
22 
15 

3 

46 
85 
58 

Since V1 = A1X U A12 U i42 1 U A22 U A 3 1 , F2 = A139 and F3 = A23, we have 

M i j = z : ) i i ( X ^ i i ) + £ 1 1 ( x 4 1 2 ) + ^ i 2 ( X ^ i 3 ) + ^ n ( X ^ 2 i ) 

+ ^xi(X^22) + ^ i 3 ( X ^ 2 3 ) + £ n ( X ^ 3 i ) 

M 

kA 

2 j 

3 j 

= 2? 2 1 (xAn) + ^ 2 i ( X ^ 1 2 ) + £ 2 2 ( X ^ 1 3 ) + ^ 2 i ( X ^ 2 1 ) 

+D21(XA22) +D23(XA23) + £ 2 1 ( X ^ 3 1 ) 

= Z?31(x41]L) + ^ 3 i ( X ^ 1 2 ) + ^ 3 2 ( X ^ 1 3 ) + ^ 3 i ( X ^ 2 1 ) 

+ £3 1(x^2 2) +^ 3 3 (x^ 2 3 ) + ^ 3 i ( x ^ 3 1 ) 

and the 7x7 matrix (dhk) for the self-generating system A±1, A'12, ^13s
 A

2i9 

A12> A2Z> AZ1 1 S 

'3 
3 
3 
12 

3 
3 
3 
12 

6 
6 
6 
22 

3 
3 
3 
12 

3. 
3 
3 
12 

4 
4 

. 4 
15 

3 
3 
3 
12 

12 12 22 12 12 15 12 
12 12 22 12 12 15 12 
y46 46 85 46 46 58 46y 

As an illustration of Theorem 3(i), with i = 1 and m = 20, 

a"1(20) = a2(20) - 3a(20) - 3a° (20) 

= 2u + 2uk + u5 - 3(2w2 + 2w3 + uh) - 60 

= 5 = \V2 H {1, 2, ..., 20}|, 

where V2 = {n : sn = 2 (mod 3)} = {3, 6, 9, 15, 18} since the only sequences 
En , with n < 20 and sn = 2 (mod 3) are: 
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E3 = 0, 1, 0, 0, 

Ee = 0, 2, 0, 0, 

E9 = 0, 3, 0, 0, 

J15 0, 1, 1, 0, 

tf . = 0, 2, 1, 0, 
i. 8 
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1. INTRODUCTION 

Let {un} be a primary Fibonacci-like sequence (PFLS) defined by the re-
cursion relation 

un+2 = aun+1 + buni (1) 

where u0 = 05 U\ - 13 and a and b are integers. We will call a and b the 
parameters of the recurrence. We will denote such a sequence as u(a3 b) . 
Two of the most important questions concerning these sequences are: For a 
given PFLS w(a, 2?), which odd primes have a maximal rank of apparition? and 
For which odd primes does the PFLS u(a5 b) have a maximal period modulo p? 
No definitive results are known for these questions. What we propose to do 
in this paper is to first present the best known results concerning these 
questions. Then we will turn the questions around and fix the odd prime and 
ask which PFLSfs have maximal ranks of apparition and maximal periods with 
respect to that prime. In a previous paper [6]s the author obtained partial 
results by considering only those PFLS's u(a9 b) for which b - 1. 

Before proceeding further9 we will need a few definitions. We will let 
]i(a, b9 p) denote the period of the PFLS u(a, b) reduced modulo p, where p is 
an odd prime. Moreover, a(a5 b\ p) will denote the rank of apparition of p 
in the PFLS u(a9 b). Let s(as b, p) be the multiplier of the PFLS u{a9 b) 
modulo p. If k - a(a, b9 p) , then s(a, 2?, p) = uk + 1 (mod p) . Then 

B(a, 2?, p) = ]i(a5 b, p)/a(as 2?5 p) 

is the exponent of the multiplier s(a5 b, p) modulo p. Let the characteris-
tic polynomial of the PFLS u(as b) be 

x2 - ax - b = 0. (2) 

Let r± = (a + Va^"* 42?)/2 and r2 = (a - Ja1 + 42?)/2 be the roots of this 
polynomial. Then by the Binet equations 

un = (rj - r")/^ - r2). (3) 

Let 

D = a2 + 42? = (r1 - P 2 ) 2 

311 



312 POSSIBLE PERIODS OF PRIMARY FIBONACCI-LIKE SEQUENCES [Nov. 

be the discriminant of the characteristic polynomial. Throughout this paper 
K will denote the algebraic number field Q(vD). R will denote the integers 
of K. Further, Zp and GF(p2) will denote the Galois fields with p and p2 

elements, respectively. Finally, ordp(d) will denote the exponent of d mod-
ulo p. 

2. PRELIMINARY RESULTS 

The following well-known results will be necessary for our later theo-
rems. 

LEMMA 1: Let p be a prime. In the PFLS w(a, b), suppose that b t 0 (mod p) . 
Then the PFLS u(a9 b) is purely periodic modulo p and if u E 0 (mod p), then 

a(a, b, p)\k. (4) 

If b = 0 and a f 0 (mod p) , t£en the ranfc of apparition of p in u{a, b) is 
undefined and u(a9 b) reduced modulo p is of the form 

(0, 1, a, a2, a3, . . . ) . 

If b = 0 and a = 0 (mod p), then u(a, Z?) reduced modulo p is of the form 

(0, 1, 0, 0, 0, . . . ) -

PROOF: Suppose the pair (n&, Wfc + i) is the first pair of consecutive terms 
to repeat and k ^ 0. Let m = |i(a, 2>, p) . Then wfc + m = ufe and uk + 1 + m =• w ^ + 1 
(mod p). However, by the recursion relation (1), 

buk_x = wfc+1 - auk. 

Since b f 0 (mod p), 

wfe_i E (Wfe+i - auk)lb (mod p). 

Thus, the pair (uk_l9 uk) also repeats, which is a contradiction if & ^ 0. 
Thus, the pair (u0, ux) repeats. Hence, w(a, 2?) is purely periodic modulo p. 
A similar argument shows that if uk = 0 (mod p) , then a(a, 2?, p)|fc. The rest 
of the lemma follows by direct verification. 

LEMMA 2: Let p he an odd prime. In the PFLS u(a9 b), suppose b t 0 (mod p). 
Then 

Up-(D/p) E °  (mod P) » 

p/here (Z?/p) is the Legendre symbol for the quadratic character of D modulo p. 
Further, 

up = {D/p) (mod p). 
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PROOF: See [1, pp. 315-317] or [2, p. 45]. 

COROLLARY: Let V be an odd prime. Consider the PFLS u(a9 b) . Suppose b f 0 
(mod p) . Then if (D/p) = 1, 

a(a, b9 p)|p - 1 

and p - 1 is the maximal value for a(a9 2?, p) . 

]i(a9 &s p) \p - 1 

and p - 1 is the maximal value for \x(a9 b9 p) . 

a(a9 &9 p) |p + 1 

and p + 1 is the maximal value for a(a, b9 p). 

\±(a9 b9 p)\p2 - 1 

and p2 - 1 is the maximal value for \i(a9 b9 p) . 

3, SPECIAL PRIMES HAVING MAXIMAL PERIODS AND RANKS OF APPARITION 

We will now see that given specific PFLSfs u(a9 b) 9 there exists a class 
of primes dependent on the parameters a and b with maximal ranks of appari-
tion and maximal periods. In the case of ranks of apparition, we will also 
obtain the next best result, namely half-maximal ranks of apparition. We now 
present the following results. 

LEMMA 3: Let p be an odd prime. Consider the PFLS u(a9 b). Suppose pjfabD. 

(i) If (-b/p) = 1, then 

u(P-(D/P))/2 E °  ( m o d P>' 

(ii) If (-b/p) = -1, then 

U(P~(D/p))/2 ? °  (m° d P>-

PROOF: See D. H. Lehmer [5] or Robert P. Backstrom [1]. 

THEOREM 1: Let p he an odd prime. Consider the PFLS u(cc9 b). Suppose pjfdbD. 

(i) If r is a prime and p - 2v + 1 is a prime such that 
(-b/p) = (D/p) = 1, then 

a(as b9 p) = 2? = (p - l)/2. 

Further, if (D/p) = 1, 

Jf (D/p) = -1, 

Moreover, if (D/p) = -1, 
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(ii) If s is a prime and p - 2s - 1 is a prime such that 
(-b/p) = {Dip) = -1, then 

a (a, b\ p) = p + 1. 

(iii) If s is a prime and p = 2s - 1 is a prime such that 
(-b/p) = 1 and (D/p) = -1, then 

a(a, 2>, p) = s = (p + l)/2. 

(iv) If r is a prime and p = 2P + 1 is a prime such that 
(-b/p) = -1 and (£>/p) = 1, then 

a(a, &, p) = p - 1. 

PROOF: See Backstrom [1], This proof relies heavily on Lemma 3. 

COROLLARY: Let p be an odd prime. Consider the PFLS u(a9 b) . Suppose pjfabD. 

(i) If v is a prime and p = 2r + 1 is a prime such that 
(-b/p) = (D/p) = 1, 

\i(as b, p) =. p - 1. 

(ii) If s is a prime and p = 2s - 1 is a prime such that 
(D/p) = 1 and -b is a primitive root modulo p, then 

\i(a, b, p) = p2 - 1. 

PROOF: (i) By the corollary to Lemma 2, ji(a» 2?, p) is at most p - 1 and the 
result now follows. 

(ii) By Lemma 25 

uv = (D/p) = -1 (mod p) 
and 

UP~W/P) = up+l E °  ^mod P>-

Now, by the recursion relations 

s(a, £, p) = ua{atbtp)+1 = up + 2 = £>Mp + aup + 1 

= -i + 0 = -b (mod p). 

Further, 

ordp(s(a, 6, p)) = ordp(-b) = p - 1 

by hypothesis. Thus, 
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y(a, b, p) = (a, b, p) • ordp(s(a, b9 p)) 

= (p + l)(p - 1) = p2 - 1. 

Unfortunately, it is not known if there exist an infinite number of pairs 
of primes of the form {r9 2v + 1) or (s, 2s - 1). Two other classic sets of 
primes, the Mersenne primes, Mq = 2q - 1, where q is a prime, and the Fermat 
primes, Fn = 22* + 1, can have maximal periods. We have the following theo-
rems . 

THEOREM 2: Consider the PFLS u(a9 b). Let p = Mq = 2q - I be a Mersenne 
prime. 

(i) If {-b/p) = {Dip) = -1, then 

a (a, fr, p) = p + 1. 

(ii) If {Dip) = -1 and -fc is a primitive root modulo p, then 

y(a, 2?, p) = p2 - 1. 

PROOF: (i) By Lemma 2, up + i = 0 (mod p) . Now by Lemma 1, if uk = 0 (mod p) , 
then a(a, £>, p)|k. Moreover, by Lemma 3, pjfU(P + 1) /2* The only 
divisors of p + 1 are 2n, where 0 < n < q. Thus, 

a(a, &, p) = p + 1, 

since this is the only divisor of p + 1 not dividing (p + l)/2. 

(ii) This follows from the same argument used in the proof of asser-
tion (ii) of the corollary to Theorem 1. 

THEOREM 3: Consider the PFLS u{a9b). Let p = Fn = 22 + 1 be a Fermat prime. 
If {-b/p) = -1 and {Dip) = 1, then 

a(a, b9 p) = ]i{a9 b9 p) = p - 1. 

PROOF: By Lemma 2 and its corollary, a(a, £>, p) |pn - 1. and ]\{a9 b9 p)\p - 1. 
The only divisors of p - 1 are 2k, where 0 < k ^ 2 . But by Lemma 3, we have 
PMP-n/2« Therefore, 

a(a, fc, p) = \±{a9 by p) = p - 1, 

since this is the only divisor of p - 1 not dividing (p - l)/2. 

Unfortunately, again, it is not known if there are an infinite number of 
Mersenne or Fermat primes. 
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4. PRELIMINARY LEMMAS FOR THE GENERAL CASE 

Theorems 1, 2, and 3 and the corollary to Theorem 1 are limited in that, 
for a specific PFLS, we do not know if there are an infinite number of primes 
having the required form to assure that these primes have maximal ranks of 
apparition or periods. What we intend to do is, instead of fixing the PFLS 
u(a9 b) , we will fix the prime and ask if there are PFLSTs for which the rank 
of apparition or period is a maximum. The answer is "yes" for both the cases 
(D/p) = 1 and (D/p) = -1, and there are an infinite number of PFLSfs which 
satisfy this condition. More generally, given an odd prime p, we will vary 
over all PFLSfs and investigate the possible values for the period, rank of 
apparition, exponent of the multiplier, and multiplier modulo p. In the first 
three cases, we shall see that there exist PFLS?s reduced modulo p for which 
the function takes on a maximal value. Clearly, if we let the parameters a 
and b vary over all the integers rather than just the integers between 0 and 
p - 1, we will obtain an infinite number of PFLS*s u(a, b) with this proper-
ty. We will now need the following four lemmas. 

LEMMA 4: Let p be an odd prime. Suppose that pjfbD. Let P be a prime ideal 
in K = Q(JD) dividing p. Consider the PFLS u(a, b) . 

(i) \\(a> b, p) is the least common multiple of the exponents of v1 and 
r2 modulo P. 

(ii) a(a, b, p) is the exponent of r1/r2 modulo P. This is also the 
least positive integer n such that v^ E r2 (mod P) . If (D/p) = -1, 
then a (a, b, p) is also the least positive integer n such that r™ 
is congruent to a rational integer modulo P. 

(iii) If k = a(a, b, p), then 

s(a, b, p) = v\ (mod P). 

PROOF: Let R denote the integers of K. Since b i 0 (mod p), neither r± nor 
r2 = 0 (mod P) . Since R/P is a field of p or p2 elements, r1/r2 (mod P) is 
well-defined. 

(i) Let n = y(a, b9 p). Then 

un E 0 (mod p) E 0 (mod P) 
and 

un+1 E 1 (mod p) E 1 (mod P) 

by definition of \i(a, b, p) . Since D = (r± - r2)2 t 0 (mod p) , 

un = (rj - r2
r)/(r1 - r2) 

is well-defined modulo P. Since 

(rj - r^)/(r1 - r2) = 0 (mod P), r? = rj (mod P). 
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Hence, 

un + 1 = (rj^) - r«(r1))/(r1 - P 2 ) = v\E 1 (mod P). 

Thus, 

p£ E p* E 1 (mod P) . 

Conversely, if 

v\ E p£ E 1 (mod P), 

then it easily follows that uk E 0 (mod p) and w^+i E ^ (mod p) . 
Assertion (i) now follows. 

(ii) Now let n = a(a, £5 p) . Then 

wn = (rj - rn
2)/(r1 - P 2 ) = 0 (mod P). 

This occurs only if r" E p^ (mod P). Dividing through by v\ , we 
obtain 

(Pi/p^" E 1 (mod P), 

and hence a(a, b, p) is the exponent of r1/r2 (mod P) . Further, if 
(P/p)= -1, let c be the automorphism of the Galois field R/P of p2 

elements. Then 

ad^) = pf E P2 (mod P) 
and 

a(rj) = (r{)n = r« (mod P) . 

Thus, if P£ = p* (mod P) , we obtain (p£)p = P* (mod P) . Now, P/P = 
Zptv^], where Zp is the field with p elements. In Zp[VS] 5 the only 
solutions of the equation 

xp - x - 0 

are those in Zp by Fermatfs theorem. Consequently, the rest of as-
sertion (ii) now follows. 

(iii) Let k = a(a, b9 p). Then 

uk+1 = s(a9 b, p) (mod p) E s(a, b9 p) (mod P). 

By the proof of (ii), P£ E p£ (mod P). Thus, 

Wfc + i = (^i+1 ~ ̂ 2 + 1)/(̂ i - *2> E (r*^) - r\{v1))l(v1 - r2) 

E r* E s(a9 b, p) (mod P) . 

The proof is now complete. 
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LEMMA 5: Let p be an odd prime. Let m he a residue modulo p - Then, given a 
fixed integer a, there exists a unique residue b (mod p) such that in the 
PFLS w (a , b) , (P/p) = 0 or 1 and r± E m (mod p) . 

PROOF: We want 

7w E (a + Va2 + 4 i ) / 2 ( m o d p ) . 
Then 

(2m - a ) 2 E a 2 + 42? (mod p) . 

Solving for 2?, we see that b = m2 - am (mod p) suffices. Note that if m E a/2 
(mod p) , then r± = r2 (mod p) and (P/p) = 0. 

LEMMA 6: Let m ^ 0 (mod p) 2>e sozne residue modulo p, where p is azi odd prime. 
Then, given a fixed integer b, where b ? 0 (mod p) , there exists a unique 
residue a (mod p) such t&at in the PFLS u(a, 2?), (#/p) - 0 or 1 and r± = 77? 
(mod p). 

PROOF: By the proof of Lemma 5, if such a residue a exists, 

b E m2 - am (mod p). 

Solv ing for a , we o b t a i n 

a E (??22 - 2?)/7?7 (mod p ) . 

Thus, such a residue a does exist. Note that if m2 E -2? (mod p) , then 

P 2 E -i/tfZ E 77Z E P 1 (mod p) 

and (P/p) = 0 . 

LEMMA 7: Let m and n he a fixed pair of residues modulo p where p is an odd 
prime. Then there exists a unique PFLS u(a9 b) reduced modulo p such that 
(Dip) = 0 or 1 and r± E m, r2 E n (mod p) . 

PROOF.- Suppose that such a PFLS u(a, b) does exist. Then r1 = 77? and r2 E n 
(mod p) . Further, P X + r2 = a. Moreover, i>12,2 = ~^' Thus, 

a E 777 + n, 2? E -77?n (mod p) 

suffice as the parameters of the PFLS u(a, b) . Note that if 777 E n (mod p) , 
then P X E r2 (mod p) and (D/p) = 0 . 

5. THE CASE (D/p) = 1 

We are now ready to present our main results. 
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THEOREM 4: Let p be an odd prime and let d $ I be a divisor of p - 1. Let 
t(d) be the number of ways of expressing d as the least common multiple of 
the exponents of the nonzero residues m and n (mod p ) 9 where m $ n (mod p). 
Then there exist t(d) PFLS!s u(as b), where 0 < a < p - 1 and 1 < b < p - 1, 
reduced modulo p, such that (D/p) = 1 and \l(ct9 b* p) = d. In particular 
there exist t(p - 1) reduced PFLS!s u(a3 b) with a maximal period, of p - 1. 

PROOF; First, by the corollary to Lemma 2, \i(a9 b, p) is at most p - 1. By 
Lemma 4(i), y(a, by p) is the least common multiple of the exponents of r1 
and P 2 modulo p. By Lemma 7, for any pair of residues m and n, where m i n 
(mod p) 5 we can find a PFLS u(a, b) such that z>i = m (mod p) , P 2 = ̂  (mod p) 9 
and (Z?/p) = 1. Since for any positive divisor d of p - 1 there exists a resi-
due m such that ordp(m) = d3 the theorem follows. 

THEOREM 5: Let p be an odd prime and let d $ 1 be any positive divisor of 
p - 1. Then there exist exactly (p - l)/2* cj)(d) PFLSfs u(a5 b) reduced mod-
ulo p such that b ? 0 (mod p) , (D/p) = 1, and a(a3 b, p) = d. In particular 
there exist (p - l)/2 * <|>.(P ~ 1) such PFLS?s with a maximal rank of apparition 
of p - I. ' • 

PROOF: a (a, b9 p) = d if and only if 

ud = (pi " Y&KV-L - r2) ~ 0 (mod p) 

and uw ^ 0 (mod p) for any positive integer n < d. Let P 2 = ̂ 1 9 where £7 ? 1 
(mod p) . Then r£ = 9d^i- Hence, a(a9 2>, p) = d if and only if g belongs to 
the exponent d modulo p. Note that neither r1 nor P 2 = 0 (mod p) 9 since b $ 
0 (mod p) . Now there exist (J)(<i) residues belonging to the exponent d modulo 
p. Since i>1 can be any one of the p- 1 nonzero residues by Lemma 7, we have 
(p - 1) • §(d) ordered pairs of residues, (P19 P 2 ) = (P15 gpx) , such that the 
corresponding PFLS u(as b) has a rank of apparition of p equal to d. 

We are really interested in the unordered pairs of solutions for r± and 
p2s since vx and P2 considered In any order determine the same PFLS. The 
ordered pairs (P1 } P 2 ) and (r2s 3?i) are equal as unordered pairs. Now, if 
r2 E 9ri* then 2»1 = r2/g9 where g f 0 (mod p), since neither r± nor P 2 = 0 
(mod p). But if # belongs to the exponent d9 so does 1/^. Further, P3 ? P 2 

(mod p) 9 since (D/p) ^ 0. Thus, exactly half of the (p - 1) • §(d) ordered 
pairs are equal as unordered pairs. The theorem now follows. 

THEOREM 6: Let p be an odd prime. If d\p - 1 and d £ p - 1, then there ex-
ists a PFLS u(a, b) reduced modulo p such that b $ 0 (mod p), (D/p) = 1, and 
3(a, Z?, p) = cL Further, if s ^ 0 (mod p) is a fixed integer, then there 
exists a PFLS M(a, 2?) reduced modulo p such that s(as b* p) = s (mod p) . 

PROOF; By Lemma 7, simply pick residues P 1 and P 2 modulo p such that 

ordp(p1) = p - 1 and p2 E gr1 (mod p ) s 
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where ordp(g) = (p - l)/d and g $ 1 (mod p) . Hence, for the corresponding 
PFLS u(a, b), 

y(a, i, p) = [ordp(p1), ordp(p2)] = p — 1 

by Lemma 4(1), where [m, n] is the least common multiple of m and n. By the 
proof of Theorem 5, 

a(a9 2?, p) = (p - 1)AL 
Then 

3(a, J, p) = y(a, Z>, p)/a(a, 2?, p) = <f. 

Now suppose that s is a fixed integer and the exponent of s modulo p is d. 
Then, by elementary number theory, there is a primitive root r1 of p such that 
p(p- = Q (mocj p) # By t^e above proof, we can find an integer r2 such that 
r± and r2 are the characteristic roots of the PFLS u(a9 b) with 

y(a, b9 p) = p - 1 and a(a, 2>, p) = (p - l)/d = &. 
Then 

s(a> b9 p) = rk E s (mod p) 

and we are done. 

6. THE CASE (£>/p) = -1 

Theorems 7, 8, and 9 below will deal with those PFLS's u(a, b) for which 
(D/p) = -1. 

THEOREM 7: Let p be an odd prime. Suppose that d\p2 - 1 hut d\p - 1. Then 
there exist exactly (l/2)(f)(<if) PFLS's u(a9 b) reduced modulo p such that 

(D/p) = -1 and \i(a9 b9 p) = d. 

In particular^ there exist exactly (l/2)(j)(p2 - 1) reduced PFLS*s u(cc9 b) with 
a maximal period of p - 1. 

PROOF: Look at GF(p2), the finite field of p2 elements. Since the nonzero 
elements form a cyclic multiplicative group, there exist exactly <j>(d) elements 
in this field belonging to the exponent d. Let r1 be one of these elements. 
Let Zp represent the field of p elements. Now, r1 e GF(p2) but r1 i Zp by 
Fermat's Little Theorem, since the exponent of vx does not divide p - 1. So 
2p[Px] = GF(p2). Thus, r1 satisifes an irreducible polynomial of degree 2 
over Zp: 

x2• - ax - b = 0, (5) 

where 0 < a < p - 1 and 1 < b ^ p - 1. The other root of this polynomial is 
oir-t) = v\ = r2. Then 

2»! = (a + Va"2"^ 420/2 and r2 = (a - Va2 + 4Z>)/2 
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can be considered elements of Z=§(\/a2 + 4i). Let P denote a prime ideal of 
K dividing p. By assumption, both r1 and r2 belong to the exponent^ in the 
field R/P of p elements, since P X does and r2 is automorphic torl t Hence, 
by Lemma 4(i), y (a , b9 p) = d. Finally, it is clear that there exist exactly 
(l/2)$(d) such PFLS?s reduced modulo p9 since each PFLS u(a9 b) is determined 
by 21! and r2 • 

THEOREM 8: Let p be an odd prime. Suppose d\p + 1 and d j> 1. Then, there 
exist PFLS's reduced modulo p9 such that (D/p) = -1 and a (a, 2?, p) = a7. Jn 
particular, there exist PFLSfs w(a, 2?) p̂ ith a maximal rank of apparition of 
p of p + 1 . 

PROOF: First, find an element r± of GF(p2) such that r-^ belongs to the ex-
ponent (p - l)d. Then 2»x is not a (p - l)st root of unity and, hence, r± is 
not a member of the prime field Zp. Thus, GF(p2) = Zpfp-jJ. As in the proof 
of Theorem 7, we can consider i^ an element of K. Let P be a prime ideal in 
£ dividing p. Then 

p^"1^ = 1 (mod P) 

and pf is a (p - l)st root of unity in R/P. Hence, 

r^ E z (mod P) , 

where z is a rational integer and z t 0 (mod p) , since these are the only 
residue classes (mod P) that are (p - l)st roots of unity. 

Now, suppose that 2»" = £' (mod p) , where 0 < n < d and s f is a rational 
integer. Then 

rl{p-1] E 1 (mod P) 

and n(p - 1) < (p - l)<f. But this is a contradiction. Thus, d is the least 
positive integer such that rf = z (mod P), where 3 is a rational integer. 
Hence, by Lemma 4(ii), a(a, £>, p) = <2. 

THEOREM 9: Let p be an odd prime; also let d\p - 1. If p is not a Mersenne 
prime, then there exists a PFLS u(a9 b) reduced modulo p such that {Pip) = -1 
and $(a9 b9 p) = d. If p is a Mersenne prime then there exists at least one 
PFLS u(a9 b) reduced modulo p such that (D/p) = -1 and 3(a, &, p) = d if and 
only if d is even. In any case* there exists a PFLS u(a, b) with a maximal 
exponent of the multiplier modulo p of p - 1. Further, if d\p - 1 and there 
exists a PFLS u(a9 b) such that $(<z9 b9 p) - d and s is any integer whose ex-
ponent modulo p is d9 then there exists a PFLS u(a9 b) such that s(a9 b9 p) = 
s (mod p). 

PROOF: Suppose that the period modulo p of a PFLS u(a9 b) is k9 where 

kjfp - 1, k\p2 - 1, and (D/p) = -1. 
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By the proof of Theorem 8S both r1 and r2 belong to the exponent k modulo P. 
It is clear that we can express k uniquely as the product of 777 and n, where 
m and n are positive integers, 77z|p-l, n|p + l, n > 1, and (mn9 p - 1) =777. 
We shall show that n = a (a, b* p) and 777 = $(a$ b* p). 

By Lemma 4(ii), a(a, b3 p) Is the least positive integer o such that v\ 
Is congruent to a rational Integer modulo P. Now, n is such an integer, be-
cause r'1 is an 777th root of 1 in R/P and7??|p - 1. I claim, that no smaller 
positive integer j suffices. If this were true., then 

3(a, b3 p) = y(a, b9 p)/a(a9 b9 p) = mn/j 

and TTM/J must d i v i d e p - 1. C l e a r l y , 

?7?n/j 1777ft 

also. But, since j <C n, rnn/j > 77?. However, 777 is the largest integer divid-
ing both ?77 and p - 1, so we have a contradiction. Thus, a(as b9 p) = ft and 
3 (a, 2?s p) = y(a, b9 p)/a(a, &, p) =77?, 

Now suppose that p is not a Mersenne prime. Clearly, (p - 1, 'p + 1) = 2. 
Since p is not a Mersenne prime, p + 1 has a prime factor h > 2 such that 
(ft, p - 1) = 1. Let r1 be any integer in R whose exponent (mod P) is dh„ By 
the proof of Theorem 7, we can find a PFLS «(a, b) such that (Pip) = -I, the 
characteristic roots P X and P2 have exponent d/z (mod P) , and y(a, £>, p) = dft8 
It is apparent that (dh9 p - 1) = d* By our above arguments in this proof, 
3(a5 bs p) = <2. Furthermore, among the fy(dh) , such possibilities for 2Q1, pj 
must be one of the (j)(ci) residues (mod P) whose expopent is d. Since (ds ft) -
1, §(dh) = (f)(d)(f)(/2) . Thus, it follows that for any fixed integer s with ex-
ponent d (mod p) , there exist (j)(̂ ) residues r± (mod P) such that r\ = s (mod 
P) . Then r± and 0"(r1) = r2 are the characteristic roots of a unique PFLS 
u(a9 b) modulo p3 where o is the Frobenius automorphism of R/P. By Lemma 4-
(iii), 

T\ ~ s(a9 b9 p) = s (mod p). 

Now assume that p Is a Mersenne prime. Then p + 1 is a power of 2 and 
21p — I but k\p - 1 , If d is an even number, then by Theorem 7 we can find a 
PFLS u(a9 2?) such that (Dip) = -1 and y(a, 2?§ p) = 2d. It is easily seen that 
(2<f, p - 1) = d. By our above arguments, $(a9 b9 p) = d. Further, by using 
our arguments above, if s is a residue (mod p) whose, exponent is d9 then there 
exists a PFLS u(a9 b) such that s(a9 b, p) E s (mod p). If d is an odd num-
ber, it is impossible to find positive integers h and k such that dh = k9 
d\p - 1, h\p + 1, ft > 1, and (dft, p - 1) = J. This is so because ft must be a 
power of 2 greater than 1 and thus (dh9 p - 1) = 2d9 not d. The theorem now 
follows. 

7. THE CASE (Dip) = Q 

Theorem 10 will explore the case in which (D/p) =•0. But first, we will 
need Lemma 8, which discusses the possibilities for ]i(a9 b9 p) , ot(a, 2?, p) , 
3(a, bs p) , and s(a, 2?, p) for such PFLS?s u(a, /3) . 
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LEMMA 8: In the PFLS u(a9 b)» suppose p\ab 9 but p\D. Let af = a/2. Then 

a(a, b9 p) = p, 

\i(a9 b9 p) = p • ordp(a')5 

s(a9 b9 p) E a' (mod p) , 
and 

g(a, &, p) = ordp(a'). 

PROOF: The fact that a(a, b9 p) = p follows from Lemma 2. The rest of the 
theorem follows from definition of the terms and the fact that 

s(a9 b, p) = v\ = (a/2)p E (a/2) (mod p) 

THEOREM 10: Let p he an odd prime. 

(i) There exist exactly p - 1 PFLS's w(a, £>) reduced modulo p such 
that (£/p) = 0, Z? ̂  0 (mod p) , and a (a, £>, p) = p. 

(ii) Jf d\p - 1, then there exist exactly $(d) PFLS's u(a, £>) reduced 
modulo p such that 3(a, &, p) = d* and y(a, Z?, p) = dp. If s is 
any integer such that the exponent of s (mod p) is d9 then there 
exists exactly one of these $(d) PFLS's u(a9 b) reduced modulo 
p such that s(a9 b, p) = s (mod p). 

PROOF: (i) a(a, b9 p) = p if and only if a2 + kb E 0 (mod p) . Given a non-
zero residue a, there is a unique nonzero residue b such that 
a2 + 4& E 0 (mod p) . Assertion (i) now easily follows from Lem-
ma 8 and Lemma 7. 

(ii) By Lemma 8, s(a, b9 p) = a/2 (mod p ) . The result now easily 
follows from Lemma 7. 

8. THE CASE FOR WHICH b IS A FIXED INTEGER 

By Lemma 3, one might suspect that the parameter b might play a large 
part in determining the divisibility properties of the PFLS u(a9 b). The 
following two well-known identities add further credence to this suspicion, 
since they depend only on the parameter b. 

,.!«„ + ! = i-b)n-\ 
bumUn-l + unum+l-

(6) 

(7) 

Both (6) and (7) can be proved from the Binet formulas or by induction. So, 
given a fixed value of b9 we should be able to develop some conclusions con-
cerning the possible periods and ranks of apparition of PFLS's u(a9 b) with 
respect to a given odd prime p. In particular, we have the following three 
theorems. 
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THEOREM 11: Suppose that p is an odd prime and b is any integer such that 
b ? 0 (mod p) . If \x(a, b9 p) = d, then ordp(-b)\d for any PFLS u(a, b) such 
that (D/p) •- 1. Let d ^ 1 be any integer such that d\p - 1 and ordp(-b) \d. 
Further, suppose that it is not the case that both b = 1 (mod p) and d = 4 or 
both b = -1 (mod p) and d = 2. Then there exists at least one PFLS u(a9 b) 
reduced modulo p such that p(a, b9 p) = d and (D/p) = 1 . If b = 1 (mod p) 
and <i = 4 or b E -1 . (mod p) and d = 2, then no such PFLS u(a, 2?) exists. In 
particular, if ordp(-b) = p - 1, then there exists at least one PFLS u(a9 b) 
with a maximal period modulo p. 

PROOF: Firstly, we shall show that if u(a9 b) is a PFLS such that (D/p) = 1 
and ]i(a9 b9 p) = d9 then ordp(-Z?) |<i. Note that -b - 2i

1z)
2
 a n d d = [ordp(p1), 

ordp(p2)] by Lemma 4(i). Thus, it follows that 

(-b)d = v{v{ = 1 • 1 E 1 (mod p). 

Thus, ordp(-Z?)|d. Next, note that if (D/p) - 1, then r1 t r2 (m°d p) . Since 
r2

 = -b/rl9 T-L E 2»'2 (mod p) if and only if v\ = -Z? (mod p) . 

If £? ̂  2, 3, 4, or 6, then §(d) ^ 4. Consequently, we can then choose a 
residue r1 modulo p such that ordp(r1) = d and r\ t -b (mod p), since there 
are $(d) residues n (mod p) such that ordp(n) = d and at most two residues m 
(mod p) such that m1 E -b (mod p). Then 

pf = (-b/r1)d E 1 (mod p), 

since ordp(-2?)|d. Hence, ordp(p2) | ordp(p1) and 

[ordp(p1), ordp(p2)] = d. 

By Lemma 4(i), \x(a9 b9 p) = d for the PFLS u(a9 b) corresponding to r± and T2 
(mod p) . By Lemma 6, we can find a PFLS w(a, 2?) such that its characteristic 
root Px indeed satisfies the conditions that ordp(r1) = d and v\ 1 -b (mod 
p) . 

Now suppose that <i = 2, 3, 4, or 6 and we can choose a residue P X (mod p) 
such that ordP(p1) = d and z»f ̂  -b (mod p) . Then, by our previous argument, 
u(a, &, p) = <i. 

If <f = 2- and v\ E -Z? (mod p) for all choices of P X such that ord^r^ = 2, 
then -b E 1 (mod p). However, this case is excluded by hypothesis. 

If d = 3 and v\ E -2? (mod p) for all choices of r1 such that ordp(px) = 3, 
then ordp(-Z?) = 3. Now, choose r1 E 1 (mod p) . Then 

r2 E -b/r E -& (mod p) . 

By Lemma 4(i), \i(a, b9 p) = 3. 

If d - 4 and rf E -Z> (mod p) for all choices of r1 such that ordp(P1) = 4, 
then -Z? E -1 (mod p) . But this case is excluded by hypothesis. 
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If d = 6 and r1 E -b (mod p) for all choices of P X such that ordpCi^) = 6, 
then ordp(-2?) = 3. In this case, choose r± E -1 (mod p) . Then r2 E -S/-1 E 
2? (mod p) . Clearly then, ordp(2?) = 6 . By Lemma 4(i), ]i(a9 2>, p) = 6. 

Now suppose that 2? E 1 (mod p) and d = 4. Then {wn} modulo p is of the 
form 

uQ E 0, u1 E 1, u2 E a, w E a2 + 1, 

u^ E a3 + la E 0, u5 E a2 + 1, ... . 

Since a2 + 1 E 1 (mod p), then a E 0 (mod p). But then, u(a, b9 p) = 2 and 
not 4. Thus, y(a, 1, p) can never be 4. 

If b E -1 (mod p) and d = 2, then {un} modulo p is of the form 

UQ E 0, U1 E 1, u2 E 0, U3 E -z^ E l , ... . 

But it is clearly impossible for u3 to be both congruent to -1 and 1 if p is 
an odd prime. Thus, u(a, -1, p) never equals 2. 

THEOREM 12: Let p be an odd prime, and let b be any integer such that b f 0 
(mod p). 

(i) If (~b/p) = 1, then there exists a PFLS u(a, b) reduced modulo p 
such that (Pip) = 1 and a (a, 2?, p) = d if and only if d\(p - I)/2> 
where d ^ 1. 

(ii) Jf7 (-b/p) = -1, then there exists a PFLS w(a, 2?) reduced modulo 
p such that (D/p) = 1 and a (a, 2?, p) = d if and only if d\p - 1 
and ^(p - l)/2. 

PROOF: (i) Firstly, a (a, 2?, p) can never equal 1, since ux = 1. Now, sup-
pose that we have found a PFLS u(a, b) such that a(a, 2?, p) = d9 
where d ^ 1 is a positive integer dividing p - 1 and (-b/p) ~ 1. 
Then 

r2 = -blv^ E ̂ p1 (mod p) 

for some nonzero residue £7 ? 1 (mod p). This leads to the con-
gruence 

v\ E -big (mod p). (8) 

If a(a, 2?, p) = <f, then by Lemma 4(ii), d is the least positive 
integer such that rf E i»| (mod p) . Consequently, ordp(gO = d. 
Since (-blp) = 1, congruence (8) is solvable if and only if 
(glp) = 1. But since ordp(gO = d, (glp) = 1 if and only if 

d\(p - l)/2. 

By Lemma 6, we can now choose v1 such that 
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r i = ~b/9 (mod P)» 

where ordp(g) = d. Assertion (i) now follows. 

(ii) This proof is similar to the proof of (i). 

Before presenting Theorem 13, we will need Lemma 9, which is due to Wyler 
[8]. 

LEMMA 9 (Wyler): Consider the PFLS u(a9 b). Suppose b f 0 (mod p) , and let 
h = ordp(-b). Suppose h - 2°hT, where hf is an odd integer. Let 

k = a(a9 b, p) = 23kr, 

where kr is an odd integer. Let H be the least common multiple of h and k. 

(i) \x(a9 b, p) = H or 2H; g(a, b9 p) = Elk or 2E/k. 

(ii) If o 4- j, then y(as b 9 p) = 2#. 
Jf" <? = j > 0, then ii(a, 2?, p) = #. 

THEOREM 13: Let p he an odd prime of the form 2mq+ 1, where q is an odd in-
teger. Let b he a fixed integer such that b i 0 (mod p). Let h = ordp(-b) -
2°ht

9 where h* is an odd integer. 

(i) Jf a is an integer, then 3(a, £>, p)\2h for the PFLS w(a, b) . 

(ii) Jf (-b/p) = -1, then there exists a PFLS u(a, '2?) reduced modulo 
p such that (Z?/p) = 1 and 3 (a, 2?, p) - d if and only if d\hf. 

(iii) jf (-b/p) = 1, hr ± q9 and either c=0oro<m-l9 then there 
exists a PFLS u(a,' 2?) reduced modulo p such that (£>/p) = 1 and 
B(a9 b9 p) = c? if and only if d\ 2h. 

(iv) Jf (-b/p) = 1, 772 ^ 2, c =777 - 1, and 7z' ̂  g, then there exists 
a PFLS u(a9 b) reduced modulo p such that (B/p) - 1 and 3(a, 2?, 
p) = d if and only if d\ 2h and d t 2 (mod 4) . 

(v) Jf (-b/p) = 1* 777 = 1, and h = q9 then there exists a PFLS u(a9 b) 
reduced modulo p such that (B/p) = 1 and 3(d9 b9 p) = d if and 
only if d\2h and h\d. 

(vi) Jf (-b/p) = 1, 777' > 2, and h = q9 then there exists a PFLS u(a, 2?) 
reduced modulo p such that (Dip) = 1 and 3 (a, 2?, p) = d if and 
only if d\2h and d 4 h. 

(vii) Jf (-b/p) = ls 7?? = 2, and h = 2q9 then there exists a PFLS u(a9 b) 
reduced modulo p such that (D/p) - 1 and 3(a, b» p) = <f if and 
only if d\2h9 d ? 2 (mod 4), and fejtf. 
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) If (-b/p) = 1, 777>3, l<<?</77-l, and hf => q9 then there ex-
ists a PFLS u(a, b) reduced modulo p such that (D/p) = 1 and 
$(a, &9 p) = d if and only if d\lh and d 4- 2h. 

) If (-b/p) = 1, m ̂  39 c = 7?? - 1, and hf ~ q9 then there exists 
a PFLS u(a9 2?) reduced modulo p such that (D/p) = 1 and 3(a9 £>5 
p) = d if and only if d\lhy d i 2 (mod 4) 9 and d ̂  2?z. 

) If there exists a PFLS u(a9 b) such that 3 (a, b, p) = J and s 
is an integer such that ordp(s) = d9 then there exists a PFLS 
u(as b) such that s(as b9 p) = s (mod p) . 

) Let k = a(a5 b9 p) . By the definition of s(a9 fc, p) and (6)5 

s 2 * u L i = wLi - ° E uLi - \uk+2E (^>" ( m o d p>-

Thus, 

s2h = (_6)kfc E ((.fc)h)fc = 1 = 1 (mod p) 

and ordp(s), which is equal to B(a5 bs p) , divides 2/2. 

) Note that (-b/p) = -1 implies that c = m. Since (-b/p) = -1, it 
follows from Theorem 12(ii) that for any PFLS u(a, &) such that 
(D/p) = 1, a(a9 £>, p)f(p - l)/2, but a(a, &, p) |p - 1, Thus, 

2w|a(a, b9 p). 

By Theorem 11, h= 2ahf\\i(a, b, p) . Since a(a, fc, p) |y(a, 2?, p) , 
y(a, b9 p)\p - 1, and 3(as &, p) = y(a9 b9 p)/a(a9 2>, p) 9 it 
follows that $(as b5 p) is an odd Integer, By part (i), 

3(a, bs p)\2h. 
Thus, 

3(a9 Z), p)|/zf, 

Now suppose that d\hT. We wish to cho6se a residue P 1 such that 

p2 = (~b)dJtl (mod p). (9) 

One solution for P X Is (-Z?)̂ "4"1} / 2, since d 4- 1 is even. By Lem-
ma 6 9 we can find a PFLS w(a, b) whose characteristic root vx 
satisfies congruence (9). Now, 

p2 = -b/r1 = (-&)(1-d)/2 (mod p). 

Since (J + l)/2and (1 - d)/2 are relatively prime to each other 
and to hf, 

[ o r d p ( p 1 ) , o r d p ( p 2 ) ] = ovdp(-b) = 2°h'„ 

Thus, by Lemma 4 ( i ) 9 \i(a9 b, p) = 2°hf. By Lemma 4 ( i i ) , 
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a(a9 b9 p) - ordpCr./r,) = ordp( (-b){d+1) /2 / (-b)a'd)/2) 

= ordp((-b)d) • 2°h'/d. 

Thus 

3(a, by p) = y(a, &, p)/a(a, 2>, p) = d. 

(iii) It follows from part (i) that if $(a, 2?, p) = J, then d\2h. If 
d| 2/z and d is odd, then by the same argument as in the proof of 
part (ii), one can find a PFLS u(a9 b) such that (Pip) = 1, 

y(a, by p) = ordp(-2?)9 a(a, i, p) = o?dp(-b)/d, 
and 

3(a, 2>, p) = -d. 

Now suppose that c = 0, d\lh9 and d E 2 (mod 4). By what was 
stated above in this proof, we can find a PFLS w(a, 2?) such that 
{Dip) - 1, 

y(a» 2?, p) = 7z, a(a5 2?, p) = h/(kd)9 
and 

3(a, fe, p) = d/2, 

since d/2 is odd. Note that 

y(a, 2?, p) , a (a, b9 p), and 3 (a, fc, p) 

are all odd. Since ]i(a9 b9 p) is odd, ordp(s(a, b9 p)) is odd, 
and no power of s(a9 b9 p) is congruent to -1 modulo p. Let 
k = a(a, 2?, p) and s = s(a, 2>s p) (mod p). Note that w^+1 = s 
(mod p) and ugk+1 = s^ (mod p) , where ^ is a positive integer. 
One can easily verify that for the PFLS u(a9 b), 

un(-a9 b) = (-l)n"1un(a5 2?). 

It is clear that a(a, b9 p)=a(-a, £>., p) . Let kf = a (-a, 2?, p) 
= /c and s' = s(-a9 b, p) . Then y(-a, 2>, p) = gkr for some posi-
tive integer g and 

E (-1)0*8* E 1 (mod p). 

Since s* ̂  -1 (mod p) and ordp(s) = d/29 it follows that 

g - ordp(s') = <f 

and that 3(-a, £>, p) = d. 
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Now suppose that c > 0, 4|d, and d\Zh. Choose a residue n such 
that n2 = -b (mod p) . This is possible because m > c and ?zf|<7 
imply that 

(-20(p-1)/2 E (-&)2""l?= 1 (modp). 

By Lemma 6, we can find a PFLS u(a, b) whose characteristic root 
P X satisfies 

v\ = nd+2 (mod p). 

One solution for Y-± is n(c?/2)+1, since d is even. Then 

r2 E -blrx = „2-«d/2)+1) = „i-«/2) ( m o d p ). 

Since 1 + (d/2) = -(l - (d/2)) + 2, the greatest common divisor 
of 1 + (d/2) and 1 - (d/2) must divide 2. Since d/2 is even, it 
follows that 1+ (d/2) and 1- (d/2) are both odd, and thus rela-
tively prime. Furthermore, 1+ (d/2) and 1- (d/2) are both rela-
tively prime to ordp(n), which is equal to 2h. Thus, 

)i(a, b, p) = [ordp(p1), ordp(2>2)] = ordp(n) = Zh. 

Further, 

a(a, b, p) = ordp(p1/p2) = ordp(n1+(d/2)/n1'(d/2) ) 

= ordp(n^) = 2h/d. 

Thus, 

$(a, £>, p) = ]i(a, 2?, p)/a(a, 2?, p) = d. 

Finally, suppose that a > 0, d|2fo, and d = 2 (mod 4). Choose a 
residue / such that fh = -2? (mod p) . This is possible, since 
c < m - 1 and fo?|<7 imply that 

(_h)(P-D/k = (-^)2m"2^ = 1 (mod p). 

Note that ordp(/)|4/z. By Lemma 6, we can find a PFLS w(a, &) 
whose characteristic root r± satisfies 

v\ = /d+lf (mod p). 

One solution for rx is f(d/2)+2
y since d is even. Then 

rx = -fc/̂  E f^d/2) + 2) E /2-<<*/2> ( m o d p ) -

Since 2 + (d/2) = -(2 - (d/2)) + 4, the greatest common divisor 
of 2 + (d/2) and 2 - (d/2) must divide 4. Since d = 2 (mod 4), 
d/2 is odd. Consequently, 2 - (d/2) and 2 + (d/2) are both odd 
and therefore both are relatively prime to 4/z, since d\ 2h9 Thus, 
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\i(a9 b9 p) = [orclpC^), ordp(p2)] = ordp(f) . 

Further5 

a(a, b, p) = ordp(ri/r2) - ordp(f2+w/2) /fW» ) 

= ordp(fd) = k • ordp(/)/d. 

Hence, 

3(a, b9 p) = y(a, 2?, p)/a(a, 2?, p) = ̂ . 

(iv) Suppose that there exists a PFLS w(a, 2?) such that (D/p) - 1 and 
3(a, 2?, p) = <f, where d\2h and <i = 2 (mod 4). Further, suppose 
2/72~1||a(a, £, p), where 2fc||n means that 2k\n but 2k+1\n. Then, 
by Lemma 9, y(a, b9 p) = #, where 

H = [ordp(-2?), a(a, i, p)]. 
Thus, 

2IB"1|y(a, 2?, p) and 2°||3(a, b9 p) , 

which is a contradiction. Now suppose that 2e||a(a, b9 p) where 
e < m - 2. Then by Lemma 9, y(a, 2?, p) = 25" and 4l 3 (a, 2?, p) , 
which again is a contradiction* Now suppose that 2m||a(a, b9 p) . 
Then by Lemma 9, y(a, 2?, p) = 2H and 2w+1||y(a, 2?, p) . This con-
tradicts the fact that (D/p) = 1, which implies |i(a, b, p)|p™ 1. 
Therefore, 3(a, 2?, p) ^ 2 (mod 4) for any PFLS u(a9 b) such that 
(D/p) = 1. The rest of this proof is similar to the proofs of 
parts (ii) and (iii), 

(v) Suppose that there exists a PFLS u(a9 b) such that (D/p) = 1 and 
3(a, b9 p) = q or 3(a, b, p) = 2q. If /|a(a, 2?, p) , where /|q 
and / > 1, then by Lemma 9, y(a, b9 p) = H or 2#, and ^// is the 
largest odd divisor of $(a, b9 p). This contradicts the fact 
that q\$(a9 b9 p). Further, a (a, b, p) 4- 1. Thus, a (a, 2?, p) 
= 2. In this case, y (a, b9p) = 2# by Lemma 9, and 4 |y (a, 2?, p) . 
However, this contradicts the fact that (Z)/p) = l, which implies 
\x(a9 b9 p)\p - 1. Thus, q\$(a9 b9 p). The rest of the proof 
is similar to the proofs of parts (ii) and (iii)«, 

(vi) We shall exhibit a PFLS u(a9 b) such that (D/p) = 1 and &(a, b, 
p) = 2q. By Theorem 12(i), we can find a PFLS u(a9 b) such that 
(D/p) = 1 and a(a9 b9 p) = 2, since m > 2 and thus 2| (p - l)/2. 
By Lemma 9, y(a5 2?, p) = 2H = kq9 which divides p - 1. Hence, 
3(a9 b9 p) = 2q. The rest of the proof is similar to proofs of 
parts (ii), (iii), and (iv). 

(vii) We shall exhibit a PFLS u(a9 b) such that (D/p) = 1 and &(a, b, 
p) = q. By Theorem 12(i), we can find a PFLS u(a9 b) such that 
(D/p ) = 1 and a (a, b9 p) = 2. By Lemma 9, y(a, 2?, p) = H = 2^ 
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g(a, b9 p) = q. The rest of the proof is similar to proofs of 
parts (ii)-(v). 

(viii) We shall exhibit a PFLS u(a9 b) such that (D/p) = 1 and &(a9 b9 
p) = 2eq, where 0 < e < e. If 1 < e < e9 then by Theorem 12(i) 
we can find a PFLS u(a9 b) such that (D/p) = 1 and a(a, b, p) = 
2°-e+1, since 2°-e+1\(p - l)/2. By Lemma 9, y(a, b, p) = 2i7 = 
2c + 1q and B(a, 2>, p) = 2eq. If e = 1, then by Theorem 12(i) we 
can find a PFLS u(a9 b) such that (D/p) = 1 and a(a9 b9 p) = 
2 C + 1 , since 2c + 1 | ( p- l)/2. By Lemma 9, u(a, b9 p) = 2H = 2c + 2<7 
and y(a, &5 p) |p - 1, which is consistent with (D/p) = 1. It 
follows that $(a9 b9 p) = 2q. If e = 0, then by Theorem 12(i) 
we can find a PFLS u(a9 b) such that (D/p) - 1 and a(a, b9 p) -
2°. By Lemma 9, y(a9 b9 p) = H = 2Gq and g(a, Z?s p) = q. The 
rest of the proof is similar to proofs of parts (ii), (iii)9 and 
(v). 

(ix) This proof is similar to proofs of parts (ii)-(v) and (viii). 

(x) This proof is similar to that of Theorem 6. 

9. THE CASE FOR WHICH a IS A FIXED INTEGER 

I am unable to obtain such definitive results given the parameter a as 
were obtained given the parameter b. The reason is that P12,

2
 = ~^» while 

ri + rz = a' a n d it is frequently easier to obtain multiplicative results in 
number theory than additive results. We now present two theorems, Theorems 
14 and 15. Theorem 14 is completes while Theorem 15 is not as comprehensive 
as the corresponding result in the preceding section. 

THEOREM 14: Let p be an odd prime and let a be any fixed integer. If a = 0 
(mod p), then for any integer b such that b t 0 (mod p), a(a, b9 p) - 2. If 
a i 0 (mod p), d\p - 1, and d\29 then there exists a PFLS u(a9 b) such that 
(Dip) = 1 and a(a, b9 p) = d. 

PROOF: If a E 0 (mod p) and b t 0 (mod p) , it is obvious that a(a9 b9 p) = 2. 
Suppose that a t 0 (mod p) , d\p - l9 and <^2. Let s be an integer such that 
ordp(s)=<i. We wish to find residues r1 and r2 that satisfy the simultaneous 
congruences 

ri + rz ~ a (m° d p) 
(10) 

r1/r1 ~ s (mod p) 

which lead to the simultaneous congruences 

r 1 -\- r2 = a (mod p) 
(11) 

ri " r2s = ^ (mod p). 
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By Cramer's rule, if a ? 0 (mod p) , then (11) is solvable if and only if 

-rxr2s - rir
2 ^ °  (mod P) * 

Now, ~r1r2s - r±r2 = 0 (mod p) if and only if s = -1 (mod p) , which implies 
that d = 2. However, this case is ruled out by hypothesis. Thus, (10) is 
solvable. Now, by Lemma 7, we can find a PFLS u(a9 b) such that r1 + r2 = a 
(mod p) and r1/r2 = s (mod p). Then 

a(a, 2?, p) = ordp(r1/p2) = ordp(s) = d 

and we are done. 

THEOREM 15: Let p be an odd prime and a be any integer. Look at the collec-
tion 

a - 1, a - 2, a - 3, ..., a - (p - 1). 

Then there exists a PFLS w(a, b) such that b f 0 (mod p) , (Z)/p) = 1, and 
|i(a, 2?, p) =77?, where m is any of the numbers 

[ordp(a - 2^), ordp(i^)], 1 < r̂  < p - 1, 2^ 2 a/2 (mod p) . 

Jn particular, if p > 3, then, given any integer a, there exist at least 
(c()(p- l))/2 PFLS?s u(a, 2?) reduced modulo p such that b $ 0 (mod p) , (£>/p) = 
1, and u(a, b) has a maximal period modulo p of p - 1. 

PROOF: This follows from the fact that r^_ -\- r2 = a and from Lemmas 4(i) and 
7« Note that by hypothesis.,, r1 % r2 (mod p) , which is satisfied if and only 
if r1 ? a/2 (mod p ) . The last assertion follows from the fact that there are 
(J)(p - 1) residues modulo p belonging to the exponent p - 1. Excluding the 
residue a/2 modulo p leaves at least (J>(p - 1) - 1 residues remaining with a 
maximal exponent of p- 1. Since p > 3, <j)(p - 1) - 1 is a positive odd inte-
ger. Since a PFLS u(a9 b) might have both its characteristic roots vx and r2 
with exponents of p - 1, these residues correspond to at least 

(<|>(p ~ 1) " 2)/2 + 1 

distinct PFLS's u(a, b) modulo p. The result now follows. 

The reason I was not able to obtain a more definitive result for Theorem 
15 was that for a PFLS u(as b) , ]i(a, b, p) is determined by 

[ordp(i,i),» ordp(p2)]3 where P X + r2 = a. 

However, I was not able to find any clear relationship between the exponents 
of r1 and a - r± modulo p, which limited the scope of the theorem. 
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ON A CONVOLUTION PRODUCT FOR THE TRANSFORM WHICH MAPS 
DERIVATIVES INTO DIFFERENCES 

MIOMIR S. STANKOVIC 
Brace Taskovica 17/29, 18 000 NIS, Yugoslavlja 

INTRODUCTION 

In [1] we def ined a l i n e a r t r ans fo rm w i t h t he p r o p e r t y t h a t d e r i v a t i v e s 
a r e mapped i n t o d i f f e r e n c e s in t h e fo l lowing way: 

V{f(x)} = (vn) = l~~e*f(x)\ V i . e . , vn = £ ( ^ ) / ( i ) ( 0 ) . (1) 
\dxn U = o/ i - o ^ 1 

Its inverse E transform considered in [2] is defined by: 

+ - fre +00 e 

E(en) = f(x) = £ ~ r r x \ i.e., f(x) = e'^TT xi> <2> 

where Aen = en + 1 - en, Aken = A{Ak~1en) (k = 0, 1, . . . ) . 

The linear two-dimensional R transform and its inverse, the I transform, 
with the property that the partial derivatives are mapped into partial dif-
ferences are defined in [3] by: 

Rifix, y)} = (rm „)• = -2 ex+»f(x, y) 
rv m +n 

x= 0 
w = 0 

(3) 

£ ±^ A m Vo.O • . 
-Ttfm.n) = /<*, y) = E £ — 7 T T T - * V > <*> 

where 

Kim.n = V « + l - V » » A « V n = M ^ ^ n ) (& = °> *> • • • ) -

In this paper, we give an extension of the results obtained in [1], [2], 
and [3]. Having the transform at hand, we proceed to determine a convolution 
for E and I transforms. Also, we will apply this product to solve some dis-
crete equations by establishing analogies between these equations and corre-
sponding continuous equations. At the end of this paper, we will show the 
practical use of the described transform for obtaining some combinatorial 
identities. We use the notation introduced in [1]. 

334 
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1. A CONVOLUTION PRODUCT FOR E AND I TRANSFORM'S 

Let C°*{R) be the set of real functions having continuous derivatives of 
all orders. Furthermore^ let Sf C C,co(R) be the set where f e Sf if and only 
if there exist constants a5 M > 0 such that |/^)(0) | < ^ks for every k £ N0.9 
and let Sv be the set of all real sequences where (vn) £ Sv if and only if 
there exist constants g5 N > 0 and |A^^0| < 3#& for every k £ NQO 

DEFINITION 1: Let (vn) , (wn) E Sv* The convolution product of sequences (vn) 
and (wn) is given by 

vn^n--toiQi-iri{n
i)^)vjWi_r (5) 

It is easy to see that the convolution product can be defined by 

*n *»n = ± t (J)(^)A'Z;OA*-V (6) 
i = 0 j-0 x% f V d j 

If (un) , (vn) , (&;„) £ SV3 then the following properties of convolution 
product can readily be established: 

(a) c * Vn = c?yn (c constant) , 

(b) wn * Vn.. = #w >v wn? 

(c) wn * (yn + Wn) = un -k vn + un * Wns 

' A -* * A yn. (d) AkUn * t>n = E ( J ) ^ 

THEOREM 1: (a) IT f(x) £ 5/, then F/ £ £y , 

(b) If (en) £ 5y , then E(en) e Sfs 

(c) If (un), (Vn) £ 5 U 5 then (un * t>„) £ Sv< 

PROOF: (a) By (1), we conclude that 

|A^o| = \f(k) (0)| < oA/\ 

and we have that Vf £ Sv. 

(b) By (2)5 we conclude that 

|/(fc)(0)| = |Ake0| < Bffk, 

and we have that E(en) £ Sf. 
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(c) Since (w„), (vn) e Sv, it follows that there exist $19 62J #1» 
N2 > 0 such that 

|A*M0| < B^i and 

Using (6), we conclude that 

|A*i>0| < M * . 

LK(un * i>n)| < &1&2(N1 + fl2)*, 

which means that un * y„ given by (5) or (6) belongs to Sv.. 

THEOREM 2: Let (vn) 9 (h)n) S Sv . The relation 

E(vn * wn) = E(vn)E(wn) 

is satisfied if and only if Vn * wn is defined by (6) . 

PROOF: If (7) is satisfied, then we will have 

(7) 

A'2' (vn * wn) 
rc = 0 j = o \J / 

and hence follows (6). Conversely, if (6) is satisfied, then (7) will follow 
by elementary series manipulations. 

Let Vf = (vn) and 7^ = (wn). Then by (7) we easily conclude that 

£ = 0 J = 0 
(8) 

i.e., 7{/(a;)̂ (a;)} = (un * zy) . 

Now we consider an extension of the result obtained for 7 and E transforms 
to two-dimensional R and I transforms defined by (3) and (4) . Theorems for R 
and I transforms are proved analogously and we omit the proofs here. 

Let C°°(R2) be the set of real functions having continuous partial deriv-
atives of all orders with respect to both variables. Also, let S} C C°°(R2) 
be the set where f e S* if and only if there exist constants a,Af, N > 0 such 
that 

\i + J 

^xidy^ 
/(0, 0) < oM%J, 

and Sv be the set of real sequences where (vmt n) e S2, if and only if there 
exist constants (3, P, Q and |A*A£Z;0> 0| < S,PiQJ for every i9 j e NQ. 

DEFINITION 2: Let (yOT, n)» fem, n) £ $v • T n e convolution product of the se-
quences (vm n) and (&?„,,„) is given by 
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" - * - - • i?„|0P?„,?/-1,"-'i")(i)(p)(J)"-»~ 
It is easy to see that the convolution product can be defined by 

«... *«..»-£ t i: E(J)(;)(j)(j)^AX.0Ai-vn-Vo. w 
THEOREM 3: (a) jf /(#, z/) e £^9 then R{f(x9 y)} e S^, 

(b) I f ( i m , n ) e Sl* then J ( i m , „ ) e £ y , 

(c) I f ( i m , „ ) , (̂ m, n ) £ ^v» t j f : j e I 2 (^m, n * *»m, n ) £ ^ y • 

THEOREM 4: Let (im > n) 5 (rWs„) £ S* . The relation 

I(im9n * ^%, n) = Kim,n)Z(rmsn) (10) 

is satisfied if and only if ^hm^n * Fm n is defined by (9). 

Let R{f(x> y)} = (pWjn) and Rf(x9 y) = (sm> n). Then by (10) we easily 
conclude that 

R{f(x, y)g(x, y)} = (rm?n * s m ) K ) . (11) 

2. SOME APPLICATIONS 

2,1 Difference Equations 

In this sections we will give some applications of the V9 R and its in-
verse transform in solving some difference and partial difference equations. 

From (8) and (11)5 using the orthogonality relation of the binomial coef-
ficients, we obtain the following relations: 

4 * * ^ 4 = (n<«Ap
y„_k) 

and , # . 

RLkyk *i+df(*> yn , (w(fc)n(p)AmA^w.feiB.p). 
( dx+dyj ) 

These relations show that the V and R transform maps linear differential 
equations with polynomial coefficients to linear difference equations with 
polynomial coefficients, too. The above correspondence may provide a useful 
method for solving difference equations with polynomial coefficients because 
the resulting differential equation is often easier to solve. 

2.1.1. By an application of the V transform we conclude that the difference 
equation which corresponds to the following differential equation 
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(a1rc2 + b±x + c^y" + (a2x2 + b2x + o2)yf + (a3x2 + b3x + c )y = 0 (12) 

i s g iven by 

°ivn + i + ^ i n " 2ci + ^ 2 ) ^ + 1 + (« !« (« - 1) + (b2 - 2 i x ) n + c1 ~ c2 + o3)vn 

+ n ( ( a 2 - 2a1)(n - 1) + Z?x - &2 + ^ 3 ) ^ M _ i 

4- n (n - 1) (ax - a 2 + ^ 3 ) ^ n _ 2
 = 0* (13) 

Equation (13) is a second-order difference equation in one of the follow-
ing three cases: 

1. b± = 0, Cj = e 2 = 0; 

2. a 1 = a 3 , a 2 = 2als b 1 + b 3 - £>2; 

3. <3i = 05 ax + a3 = a2» 

Notice that Equation (12) contains some differential equations of special 
functions as Legendrefs5 Laguerre?s, Chebyshevfss Hermite?s9 etc. For exam-
ple 3 by an application of V and E transforms to Laguerre and Bessel differ-
ential equations and their solutions, we find that the solutions of differ-
ence equations 

and 

are given by 

and 

(n + l)vn+1 + (m - 3n - l)vn + 2nvn_1 = 0 

(n2 - m2)vn •- n(2n - l)vn_1 + n(n - l)vn_2 - 0 

vn = E (k)~H— / cos\mt + -y-)sinH dt. 

2 . 1 . 2 . By an a p p l i c a t i o n of t h e V t r ans fo rm to t he e q u a t i o n 

(ex + l )z / ' + exi/ = 2aea*c (a e i?) (14) 

we ge t t h e e q u a t i o n 

vn + 1 ~vn + t ( n A v i + 1 = 2a{l +ar. (15) 
i, = 0 

Since a particular solution of (14), given by 

2eax 
y = __ 

ex + 1 
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belongs to Sfi we have that a particular solution of (15) is given by 

vn = En(a + 1), 

where En(a + 1) are Eulerfs polynomials. 

2.1.3. By an application of the V transform to the equation 

y " - y f = 2 sin x, 2/(0) = 25 y ' (0) = 0 (16) 

we get the equation 

vn + 2 ~ 3^n+1 + 2vn = 2("/2)+1 sin(« J ) , v0 = 2, vx = 2. (17) 

Since the solution of (16), given by 

y ~ ex + cos x - sin x 

belongs to Sf9 we have that the solution of (17) is given by 

vn = 2n + 2n/1 cos (n J ) - 2n/1 s i n ( n J ) . 

2 . 1 . 4 . The t r ans fo rms V1 and E^ , def ined by 

V^fix)} = (i>n) = \^~ ex-x°f{x) 
\dxn 

a I l d
 Afc 

is A ô . 
^i(e„) = fix) = Z -^r-^ - *o> 

fc = o K-

have analogous properties to the 7 and E transforms. 
By an application of the E1 transform to 

tTvn + a1km~1vn + ••• + amvn = en (^ e i?, i = 1} 2, ..., m) (18) 
we get the equation 

y<*> (x) + a ^ ^ h x ) + ... + amy(x) = f(x), (19) 

where f(x) = E(en). 

In paper [4] (see also [5]), Cauchy obtained that the general solution of 
Equation (19) is given by 

y z R e s ( f8y e Z X ) + £^fS/Vs'f(t)4 
where f(z) is an arbitrary regular function whose zeros do not coincide with 
zeros of the polynomial g{%) = zm + alzm~1 +••• + am. The summation is taken 
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over all the singularities of the function 

i.e., over all the zeros of the polynomial g(z). 

Since y(x) sSf, then by an application of the 7X transform and using the 
convolution product, i.e., using (8), we have that the solution of linear 
difference equations (18) is given by 

"» = £ R e s | g £ ( l + z)n + £ R e s U l + z)^1 ^ ( l + z)'k f \ 

Notice that B. Tortolini [6] (see also [5]) obtained this result in an-
other way. 

2.1.5. By an application of the V transform to the following recurrence re-
lations for Laguerre and Gegenbauer polynomials 

(m + DL^ix) - (x - 2m - a - l)L(
m

a) (x) + (m + a)L(
m

a\(x) = 0 
and 

(m + l)G„+\(x)-2(m+a)xG(a) (x) + (m + 2a - l)Gia_\(x) = 0 

we get that particular solutions of equations 

(m + l)vm + l t n - (2m + a - l)vm,n + (m + a)t>OT_1>n + nvn%n^ = 0 
and 

(m + Dvm+lyn + (m + 2a - l)vn_1%n - 2(m + a )w W f n - 1 = 0 

are given, respectively, by 

min(m, n) 
Vm, n = 

and 

1 [ ^ 2 ]
 f 1 w 2w-2irfa + a - i)( n 

i - 0 

1 l ' ^ J , . si 2m-2iT(m + a - i) ( n \ I s 1 , n \ 

2.1.6. By an application of the I transform to the equation 

A r , + l,n+ BVm,n + l+ <C ~ A ~ B>*V n = °  (A . B, C £ R) (20) 

we get the equation 

Afx + Bfy + ̂  = °- (21) 

Since the general solution of Equation (21), given by 

f = e-{c/A)x f(Bx - Ay), A * 0; / = e-{c/B)y f(x), A = 0, B + 0, 
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where / is an arbitrary function, belongs to SJ9 we have, by application of 
the R transform and the convolution product, i,e.s using (11), that the gen-
eral solution of (20) is given by 

rm,n ~Bnfl^l)iAi(1\)aa + i 04 * 0, A = C) 

rm,n = (l -f)"a», W = °.'B * 0) 

where in all cases am is an arbitrary sequence. Compare this with the solu-
tions given by Keckic [7]. 

2.1.7. By an application of the I transform to the equation 

*Wl.„ + l " toa + l,n ~ 4 2 V« + 1 + 12r„,„ = ^ ^ ^ <22> 

we get the equation 

Since the general solution of Equation (23), given by 

fix, y) = (a(x) 4- b(y))e3x + 2y + ex+\ 

where a(x) and b(y) are arbitrary functions, belongs to Sf 9 we have, by an 
application of the R transform, that the general solution of (22) is given by 

rm, n = (am + &« ) * 4 3 + 2 ' 

where am and bn are arbitrary sequences, 

2.2 Combinatorial Identities 

Now we will show that the described transform is very useful for obtain-
ing some combinatorial identities. 

Applying the V transform to both sides of relations 

£ L?0r) = q + 1(x) 
i = o 

and 
JL . , l V \ rr.k £ ( - D ^ ) M * ) =f, 

i = 0 

where L^ (x) are Laguerre polynomials defined by 
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% JTa U - J/J! 
>i + a\xJ 

we can easily obtain the following combinatorial identities: 

1, min(n, i) . min(w, k) 

i. min(n, i) , 
— - •' K\( %\ln E E <-»"'(S)(;)(3)-(!;). . i - 0 j = o 

Similarly, by application of the i? transform to the relations 

i = 0 
and 

E (^)(2z/)^fc_.(^)=^(x + 2/), 

where #^ (#) are Hermite polynomials defined by 

we have the following combinatorial identities: 

min(n, k) 

?;<-'^)c^i')-(:)• t = 0 
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LETTER TO THE EDITOR 

A NOTE ON THE GEOMETRY OF THE GREAT PYRAMID 

The information in James M. Suttenfield, Jr., "A New Series," The Fibo-
nacci Quarterly 16, no. 4 (August 1978):335-343, may be misleading to those 
who have never studied the geometry of the Great Pyramid. 

Mr. Suttenfield apparently used information in recent literature to sug-
gest geometry for the Great Pyramid which is different from well-known theo-
ries. Mr. Suttenfield1s dimensions yield an angle between a face plane and 
the base plane: 

6 = arctan — = 50° 59f58.9" (<J> - golden number) 
2V^ 

An error analysis using eight sets of angle data from W. M. F. Petrie, The 
Pyramids and Temples of Gizeh (Longon: Field & Tauer, 1883), yields an aver-
age of his mean angles of 51° 50f03.25". Considering his uncertainties, the 
standard deviation (la) about the mean is ±02T59.155". A more narrow window 
of ±01f29.375" can be found by taking the averages of his minimum and maximum 
angles due to the uncertainties. 

The theory that the perimeter of the pyramid divided by twice its verti-
cal height is the value of Tr gives an angle of 51° 51'14.3" which is just in-
side the upper limit of the more narrow range of uncertainty. The theory 
that the slant height divided by one-half the basewidth gives the golden num-
ber yields an angle of 51° 49?38.25", and this is just short of the average 
mean angle from Petrie's data. Mr. Suttenfield1s theory yields an angle that 
is short of the mean by 50*04.35", and this is far outside the range of un-
certainties in the survey data. 

Elmer D. Robinson 
JHU Applied Physics Laboratory 
Laurel, MD 20180 

irferkfak 
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EULERIAN NUMBERS AND THE UNIT CUBE 

DOUGLAS HENSLEY 
Texas A & M University, College Station, TX 77843 

(Submitted April 1981) 

1. INTRODUCTION 

There is an excellent expository paper [3] on Eulerian numbers and poly-
nomials, and we begin with a quotation from it: "Following Euler [5] we may 
put 

-Lz_L« E nn^ (x * i ) , (i.D 

where Hn = Hn(X) is a rational function of A; indeed 

Rn = 2?n(X) - (X - DnHn(X) (1.2) 

is a polynomial in X of degree n - 1 with integral coefficients. If we put 

Rn = E^JfcX*"1 (" > 1). d.3) 
k = l 

then the first few values of An^ are given by the following table, where n 
denotes the row and k the column; 

1 
1 
1 
1 
1 

1 
4 
11 
26 
57 

1 
11 
66 

302 

1 
26 

302 
1 

57 

(1.4) 

1 

Alternatively, Worpitzky showed that the An\ may be defined by means of 

The numbers Ank occur in connection with Bernoulli numbers and polynomi-
als [11], and splines [10], and as the number of permutations of (1, 2, .. . , ri) 
with k vises. [A permutation (<z19 ..., ccn) has a rise at ai if a^ < ai + 1; by 
convention, there is a rise to the left of a1.] The ̂ 4nfe satisfy a recursion 
and are symmetric: 

K + i,k = ^n,k + (n - fe + i M ^ ^ i (1.6) 

344 
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and 
An,k = An,n-k + l (1 < fe < n). 

From (1.6), it follows that 

n 
£ Ak = n\ (n > 1). 

We now consider the unit cube Qn : 0 < 2^ < 1 (1 < £ < n) , with the usual 
measure. It is evident from elementary calculations and from observation of 
(1.4) that, for n = 2, 3, or 4 and 1 < k < n, the volume F„^ of the section 

n 
fc - 1 < Yixi < fc 

i = l 

of the unit cube is given by 7n& = Any. /n\ . This observation led Hillman (in 
a private communication with this author) to conjecture that, generally, 

Vnk = Ank/nl 

He was right. 

2. APPLICATIONS 

In the notation of Section 1, we have 

THEOREM 1: For 1 < k < n, p/e £ave 7nfc = Ank/nl (2.1) 

The proof is not difficult, but we defer that to the last. What is nice 
about this is that the unit cube is the natural probability space for a sum 
of n independent random variables X^ (1 < i < n) identically and uniformly 
distributed on [0, 1]. Thus, we may reinterpret (2.1) to read: 

For 1 < k < n, Probffe - 1 < £ Xt < k J = Ank /nl (2.2) 

Through this interpretation, the central limit theorem and related results 
can be brought to bear on the asymptotic behavior of the Eulerian numbers. 

For instance, the variance of each X^ is 
• l 

(x - l/2)2dx = 1/12. / ' 
Jo '0 

71 

Thus the variance of £ Xi is nI'12. Now, by the central limit theorem, if x 
is fixed and x 

(n/12)1/2x + \n, 
then 
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lim ProbjE X. < oon ) = — f e~t2/2dt. (2.3) 

n 
Since the probability density function / (£) of 2 X± tends to zero uniformly 

in t as n ->• °°9 we can replace 0)n with [u)w] 'in (2.3). Then, from (2.2), we 
have 

lim J^A^/nl = - ^ / e't/2dt. (2.4) 

This is equivalent to Theorem 1 of [4], It may be that this approach permits 
a simpler proof or an improvement in the error term in the other theorem of 
[4]9 which states that 

(l/nl)AnA.n] = (6/n^)1/2exp(-|*2) +0(n"3/!+). (2.5) 

From a geometric point of view, one important property of the cube is 
that it is convex. The Brunn-^Minkowski theorem' states fzĥ t,|\the" area A(t) of 
the intersection of a hyperplane H(t) with equation 

n 

1 

with a convex body Q in real n-space has a concave nth root on the interval 
where it is positive. Thus, if Hn(t) has equation 

n 

1 

and An{t) is the area of Hn(t) C] Qn (where Qn is still the unit cube 0 < ^ < 1, 
1 < i < n) , then {An(t))1/n is concave on (0, n) . Consequently, 

log An(t) is concave on (0, n). (2.6) 

There is a simple relation between i4n(t)andthe probability density function 
fn(t) ofS^: 

i4n(t) = ,/nfn(t). 

(See, e.g., [6].) 

Now let Fn^ be the volume of Qn between H(k - 1) and H(k). Then, 

fk fk 
Vnk = n~1/2 An(t)dt =/ fn(t)dt. (2.7) 

A -1 A -1 

There is a considerable literature on logarithmic concavity. A function 
g(t) is called tog-concave if #(£) ) 0 on R and is positive on just one in-
terval, and if log git) is concave on that interval. A very special case of 
a theorem due to Prekopa says that if fit) is log-concave, then 
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Fix) = f f(t)dt 
J X - O 

is also log-concave [2, 8, 9]. In particular, 

V(x) = n-ll2f A(t)dt 
•* X - Q 

is log-concave, and in most particular, 

\ , *.!*;, *+i < vlk> (2-8) 
or what is the same thing, 

Antk.1Antk + 1 <A2
n,k. (2.9) 

This is due to Kurtz, who proved strict inequality in (2.9) when 1 < k ^ n. 

3. PROOF OF THEOREM 1 
n 

The probability density functions fn (t) for £ X^ can be generated recur-
sively starting with 1 

(1 if 0 < t < 1 
J l V W \o otherwise 

and using 

f„ + 1(*> = /„(*) * AC*) - / /„(w)A<* - " ) d M = / /„("><*"• (3-1) 
Jo Jt-i 

Thus, 

^ = / fn(t)dt = /n+1(fc). (3.2) 

It follows from (1.5) (but not trivially) that 

k-i 
&nk = 

j-o 
E (-DJ'(n *il)fr- J)n. (3.3) 

This is (2.15) of [3] and is due to Euler. Thus, we can prove Theorem 1 by 
showing that 

fn + iW = -V ^(-W^ * X)0c - J)n. (3.4) 

Now, fn+1(t) is the convolution of n + 1 copies of f±(t)s so its Laplace 
transform is 

F( 
(I \n + 1 

7(s) = (̂ (1 - £"*)) . (3.5) 

(See, e.g., [1].) Expanding (3.5) by the binomial theorem gives 
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j-o x J ' 

and the inverse Laplace transform of the sum of these n+ 2 terms computes to 

fn+1(t) = E ^ ( - i ) j n - > - ^ : . (3.6) 
where (t - J) + is 0 for t < j and t - j for t > j.- With t = k, (3.6) reduces 
to (3.4). • 
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ON A SYSTEM OF DIOPHANTINE EQUATIONS CONCERNING 
THE POLYGONAL NUMBERS 
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1. INTRODUCTION 

For the integer k (k ^ 3) and the natural number n, we call the integer 

pn,k = { { ( & - 2)n2 - (fe - 4)n} 

the nth polygonal number of order k. If k = 3, this number is called the nth 
triangular number and is denoted by tn. 

Wieckowski [1] showed that the system of Diophantine equations 

~t~x 

*x 

h 

+ 
+ 
+ 

ty == tu 

~kz ~ £y 

^z ~ tw 

has infinitely many solutions. It seems difficult to establish the counter-
part of this theorem for general polygonal numbers. 

In this paper it will be shown that the system of Diophantine equations 

Px, k + Pyt k ~ ^u, k 

Px,k + Pz,k = Pv, k 

has infinitely many solutions for any integer k (k > 3). In other words, 
there are infinitely many polygonal numbers of order k which can be repre-
sented in two different ways as the difference of polygonal numbers of order 
k. 

To show this s we establish a stronger theorem in a manner similar to that 
used earlier in [2], 

THEOREM: Let a and b be integers such that a > 0 and a = b (mod 2)s and let 

An - -j(an2 + bn) (n = 1, 2, 3, . . . ) . 

349 
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There are an infinite number of An1s which can be expressed in two different 
ways as the difference of numbers of the same type. 

PROOF OF THE THEOREM 

First, we prove the following lemma. 

LEMMA: The equation 

Az = Am - An (1) 

is satisfied by the positive integers 

£ = (pa + l)s (2) 

m = n + s =? -|{(r2a2 + 2pa + 2)s + rb} (3) 

n = ~-{ra(ra + 2)s + rb} (4) 

where r is any positive integer and s is any sufficiently large positive in-
teger that is odd if both a and r are odd. 

PROOF: From (1), we have 

£(a£ + b) = (m - n) (am + an + b). 

Therefore, the integers £, m, and n which satisfy the relations 

£ = o (m - n) , 
and 

a£ + 2? = —(am + an + b) , 

for any possible constant e, give a solution of (1) . Solving for m and n, we 
have 

m = lit + °l + a(c " 1)} = I { ( p a + D 2 s + s + P£} 
n = - | j - ^ + c£ + |(<? - 1)1 = ^{(ra + l)2s - s + rb}, 

where £ = cs, and e = ra + 1 are the defining equations for P and s. Equa-
tions (2), (3), and (4) follow immediately. 

By observing Equation (4) and recalling that a E b (mod 2) , we see that 
if p is any positive integer and s is any integer that is odd if both a and 
p are odd, which also satisfies 

8 > max^O , - — 7 ;—rr- > , 

( aira + 2) j 

then £, m, and n are positive integers, and the lemma is proved. 
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To prove the theorem., we first observe that for any t that satisfies the 
same condition as s in the lemma, 

lf = ~{ra(ra + 2)t + rb} 9 

mf - ~^{(r2a2 + 2va + 2)t + rb}, 

satisfy the equation 

(pa + l)t5 

4£, = ̂  - An,. (5) 

Now we shall determine values of s and t so that we have £ = £f» For these 
valuess (1) and (5) will yield the required representations, 

Let 

s = -^{ra(ra + 2)x + r(ra + 1)2?}, (6) 

t = (ra + l)x + p£9 (7) 

where x is an integer that makes s odd if ra is odd* Then we have 

£= (pa + l)s = 2"{pa(pa + 2)t + rb} = £f 

and thus9 for x sufficiently la.rge? s and t given by (6) and (7) will satisfy 
our requirement. Substituting (6) and (7) into £s m5 n, m\ and n \ we get 
the following proposition, which establishes the theorem. 

PROPOSITION: If x is a sufficiently large integer that makes s in (6) odd 
whenever ra is odd, then 

I = ~{ra(ra + 1)(pa + 2)x + rira + l)2b} 

m = T{ra(ra + 2) (p2a2 + 2ra + 2)x + r(r3a3 + 3p2a2 + 4pa + 4)2?} 

n = ~{r2a2(ra + 2) 2x + p(p3a3 + 3p2a2 + 2pa + 2)b} 

l " • ^ ' ' 2 . 2 , o _ , 0 \ ™ JL ™ / ^ 2 ? 
m' = -̂ {(ra + l)(p2a2 + 2pa + 2)x + r(r2a2 + 2pa + 3)2?} 

nF = (ra + l)2x + p(pa + 1)2? 

are positive integers, with m ^ m\ which satisfy the relation 
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Ai Am An Ami — Anr» 

Note that for any p, as and b, the equation m = m' has at most one solu-
tion Xi because it can be reduced to the equation 

(r2a2 - 2)x = -r(ra - 1)2?. 

3. THE CASE OF POLYGONAL NUMBERS 

If we put 

a = k - 2, b = ~(k ~ 4), for k > 3, 

in £, rris n» m'9 and nf in the proposition, we get formulas for polygonal num-
bers which satisfy the equation 

^A, k = ^m,k ~ Pn,k = Pm',k ~ ^n',k' '**) 

If p = 1, for instance, then we have 

I = ~{/c(^ - 1) (k - 2)* - (k - 1)2 (k - 4)} 

m = |-{fe(̂  - 2)(k2 - 2k + 2)x - k{k - 4)(k2 - 3k + 4)} 

n = |{^2(/c - 2)2x - (k - 4)(k3 - 3k2 + 2k + 2)} 

m' = -|{(k - D(k2 - 2k + 2)x - (k - 4)(k2 - 2k + 3)} 

n' = (k - l)2x - (k - l)(k ~ 4). 

For every positive integer x, if k is even, and for positive x such that x E 
k + 1 (mod 4), if & is odd., these values are positive integers with m 4 mf, 
which satisfy Equation (8). 

In the case of v = 2 we have, for every positive integer x9 

£ = 2(k - l)(k - 2) (2k - 3)a? - (k - 4) (2k - 3) 2 

m = 2(k - l)(k - 2)(2k2 - 6k + 5)x - 2(k - 4)(2k3 - 9k2 + 14k - 7) 

n = 4(k - l)2(k - 2)2x - (k - 4)(4k3 - 18k2 + 26k - 11) 

m' = (2k - 3)(2k2 - 6k + 5)x - (k - 4)(4k2 - 12k + 11) 

nr = (2k - 3)2x - 2(k - 4)(2k - 3), 

which are positive integers with m £ mr, which satisfy Equation (8). 



1982] ON A SYSTEM OF DIOPHANTINE EQUATIONS 353 

For k = 3 and 5, these values are as follows. In the case of r = 1, we 
use kx for k = 3 and 4x - 2 for k = 5 instead of x$ so that we can get posi-
tive integral values for every positive integer x« 

k = 

k = 

3 

5 

£ 
777 
n 

m' 
nt 

£ 
77? 
n 

m< 
n* 

= 

= 
= 
= 
= 

= 
= 
= 
= 
= 

r = 1 

12x + 2 
15x + 3 
9 x + 2 
20x + 3 
16x + 2 

120^ - 68 
255x - 145 
225x - 128 
136x - 77 
64x - 36 

£ 
m 
n 

mf 

nf 

£ 
m 
n 

mf 

nf 

— 
= 
= 
= 
= 

= 
= 
= 
= 
= 

r = 2 

12ar + 9 
20x + 16 
16a? + 13 
15a: + 11 
9x + 6 

168a; - 49 
600a; - 176 
576a; - 169 
175x - 51 
49a; - 14 
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In th i s paper we consider the Fibonacci sequence defined by 

F0 = 0, F1 = 1, and Fn = Fn _ 1 + F n „ 2 9 n> 29 

the fc-ordered Fibonacci sequence {Grf ' } •, and the generalized /c-ordered l inear 
recursive sequence 0?^ ) }, both of which wi l l be defined. 

F i r s t a new re l a t i on on the Fibonacci sequence w i l l be proved and a wel l -
known re l a t i on on the Fibonacci sequence wi l l be generalized for the ^-ordered 
Fibonacci sequence. Then an i n f i n i t e set of pos i t ive integers w i l l be found 
such that no integer in t h i s set Is a divisor of any term In the sequence 
{RJl'}. F ina l ly , a r e su l t of Lieuwens [1] w i l l be generalized for ^-ordered 
l inear recursive sequences. 

DEFINITION 1: For every k > 1, the k -ordered Fibonacci sequence {£„ } i s 
defined by G$k) = G{k) = ••• = G^\ = 1, and 

• £ = 1 

(When k = 2, this sequence is essentially the Fibonacci sequence.) 

DEFINITION 2: For every k > 1, the generalized /c-ordered linear recursive 
sequence {£<*> } is defined by /?0<*> = i?f} = ••• = RJ£\ = 1, and 

i =1 
where the a^ are integers not all equal to 0. 

DEFINITION 3: If 777 ^ 0 Is an integer, then for every k > ls the length of 
the period modulo m of {i?^) } is the least natural number p(rn) such that there 
exists an index nQ , and for n > n0, 

354 
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A sequence is called absolutely periodic modulo m if n0 = 0. 

REMARK: Every sequence {Rn } is clearly periodic. 

DEFINITION 4: The occurrence order of the natural number m > 1 in the se-
quence {R^k) } is the number r(m) , for which m\R^k) , but m|i?„(7c) if 0 < n < r. 

EXAMPLE 1: Let the a^ = 1 and 7c = 3. Then we have the sequence 

{i?^3)} = 1, 1, 1, 3, 5, 9, 17, 31, 57, 105, 193, ... . 

If m = 5, this sequence reduced modulo 5 becomes 

1, 1, 1, 3, 0, 4, 2, 1, 2, 0, 3, 0, 3, 1, 4, 3, 3, 0, 1, 4, 
0, 0, 4, 4, 3, 1, 3, 2, 1, 1, 4, 1, 1, 1, 3, ..., 

and we have 

p(5) = 31, n0 = 0,"r(5) = 4. 

THEOREM 1: If {Rn} is the sequence defined by 

#0 = X> Rn = E ^n-j» n > °» 

then for n ̂  2, 

(a) i?n = F2n; 
n 

(b) 2-r ̂ j = F2n+l> 
3 =0 

PROOF: (a) For n = 2, 3, and 4, the theorem is easily established. Using 
finite induction, and assuming that for i > 4, 

#£ = F2i> 
then 

•^2( i+l ) = F2i+2 = ^ 2 i + l + ^ 2 i = F2i + F2i-1 + F 2i 

= 2F2^ + F 2 i - F2i_2 = 3F2i - ^ 2 ^ . ! ) = 3Rt - Ri-\ 

i i-1 

J = 1 J = 1 J = 1 
£ £ + 1 i +1 

J = l j - 2 J - 2 
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L, JRi+i-j " Ri 
J =1 

as required. 

(b) Applying (a) above, we have 

F2n + 1 F2(n + l) F2n Rn + l Rn 

~ HJRn + l-j - £ JRn-o ~ Y*RJ' 
J = 1 i - 1 J = 0 

A well-known identity for Fibonacci numbers is 

n 
Fn = Y.Fn-i + Is n.> 2. (1) 

i =2 
An alternate form of (1), which we obtain by renaming F0 = 1, 
F1 = 1, F2 = 2, and generalize as Theorem 2, is 

n-2 
^ = I>n-i + 3, n> 4. (2) 

i =2 

THEOREM 2: If G^ is as in Definition 1, then for all n > 2k, 

<k) = XX*U + « - i) E ^ + ^ f ^ . o) 
t = 1 i = k 

Note that G^ ~Fn as defined in (2) and hence (2) is a special case of (3). 

(k) PROOF: Let k ) 2 be fixed. If n = 2k9 then using the definition of G2^ 
twice and performing the indicated sums, we have 

u2k ~ JL> {j2k-i - 2^ Ls^ik-i-j 

= 4 k - 2 + ™%\3 ! ••• + (* - 2)Gk
(« + (fc - DC™ +Mfe_UO 

&-2 

£«,«,_,+ ( * - 1 ) s w + Mi i* . 
i = l 

(Recall that G™ = G™ = ••• = G^-i = 1.) 

Now suppose that (3) is true for m > 2&. Then 

i=l i-0 i=1 

= z ^ i . , + <* -1) "if^ - ^ s ^ + xxw< 
i=l i=k i=1 
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"fc-3 fe-2 

i = l £ = 1 
m-k 

+ a- i>2> 

(k) (k) 
( f e - 2 ) ^ - 1 ) + f f

m - ( f e - 1 ) 

(k) 
m-i 

i=k 
m+l-k 

k{k + 1) 

fc-2 

- £< 
which proves that (3) is true for n - m + 1 and hence for all n. 

We now turn to the question of divisibiltiy of the terms of the sequence 
{R^K)} by the natural number m and state the following theorem. 

(k) THEOREM 3: If {Rn } is as in Definition 2, and if m if a natural number 
such that 

k 

X>;) -Wo 
\i =1 and 

•c-4-(••(£"'-1)) d > 1, 

then m^Ryjr for any n. That i s , r(m) does not exist. 

PROOF: Let 

/ JL \ 
• 1 . M 

i = l 
If g.c.d. (w, M) = £? > 1, we show that for every n, 

R 

,(fe) 

<fc) 

<fc) 

1 (mod M). 

If n < k9 then i?^; = 1 and M\R^} , since M > 1. 

Now, if we assume that the theorem is true for any k successive terms of 
the sequence, we have 

R (k) J0M + 1 

*n + l = JlM + X 

Multiplying each of these equations successively by a^, ak-i> 9'*9 a i 9 w e ° "̂~ 
tain 
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(,k) 
akRn = akJoM + ak 

(V) 
aA+M = aiJk-iM'+ ai> 

and then adding, we have 

k k I k \ 
R™k = £ aAk\-i - M t,aiJk-i + (2><) - * + i 

i=l i -1 \i = l / 

which establishes that -#n+£ = 1 (mod Af) . 

Now we assume that for some s, 

Then d|i?e and <i|M and hence there exist integers j, r , and P2 such that 

i?s(k) = i^d = j*M + 1 = r2d + 1, 

which implies d\l9 a contradiction, and the proof is complete. 

If g.c.d. (m, M) = 1, then it is not known whether, in general, there ex-
ists n such that m\R^ . 

Finally, we examine p(jri)9 the length of the period of {Rn} modulo m. 

Waddill[2] has shown that in the special case where R0 = 0, R± = R2 = 1» 
fc = 3, ax = a2 = a3 = 1, and m = ̂ i1» q2

2, . ..5 <?ar> q. prime, then 

p(m) = l.c.m. [piql1), p(qa
2>), ..., p(^')]. (4) 

Lieuwens [1] has shown that (4) holds for an arbitrary 2-ordered sequence. 
We show that (4) is true for every k-ordered sequence. 

THEOREM 4: Let {R^ } be as in Definition 2 and let m > 1 be an arbitrary 
integer, where 

m = q^q^ ... q%» , q. prime, 

then 

p(m) = l.c.m. Ipiql1), p ( ^ 2 ) , .... p(<?^)]. 
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PROOF: For every integer <??*, there exists an index n« such that for n > nn9 

C p ( ? ; o E *»*' (mod qJO, J = 0, 1, 2, ... . 

Let n* = max(n0i, n^ . .., n0r) . Then for every integer £ > Q, j > 0, 

Rn*)+jp(q-<)+t E ^rc*** (mod <?£') 

for all £. Hence, for { = 1 , 2 , say, 

R$ijp(q^+t =Rtflt (mod ?»i) 

Since g.c.d. (̂  , q ) = 1, then the smallest integer, p, such that 

occurs when 

p = l.c.m. [pGrf1), p(qa
z
2)l, 

since p must be a multiple of both piq®1) and p(qa2). The general case fol-
lows similarly. 
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INTRODUCTION 

A Latin cube of order n is an n3 (n X n X ri) array in which each of the 
numbers 1, 2, ..., n appears exactly once in each line of the array. Simi-
larly, a Latin &~cube of order n is an nk array where each of the numbers 1, 
2, ..., n appears exactly once in each line. A set of k Latin &-ctibes is 
orthogonal ifs when superimposed, each ordered ?c-tuple of the numbers 1, 2, 
. .., n appears once. 

Orthogonal Latin /c~cubes of order n can be constructed from 2 orthogonal 
Latin squares of order A [1]. However, there are no orthogonal Latin squares 
of order 6 [3] and it has been conjectured that there are thus no orthogonal 
Latin &-cubes or order 6 [4]. 

We now show how orthogonal Latin k-cubes can be constructed from three 
orthogonal Latin cubes. 

THEOREM: If there exist three orthogonal Latin cubes and k orthogonal Latin 
k-cubes or order n, then there exist orthogonal Latin (k + 2)-cubes of order 
n. 

PROOF: Let A = (a^fc)» B = (bijk)> and C = (Cijk) be orthogonal Latin cubes 
and A1

9 A2, .. ., Ak be orthogonal Latin &-cubes of order n. Write the entries 
of AJ' as a? . . 

Then we can define (fc+2) orthogonal Latin (fc+2)~cubes B1, B2, ...,Bk + 2 

by 

I. - ~ , . . b) , = a 

hk 

bk+1 . =oal . . 
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The (k + 2)-cubes thus defined are orthogonal, since there is a unique 
position (il5 i2» •••» ̂ +2) i n each Latin (k + 2)-cube for every (k 4- 2)-tu-
ple of the numbers (19 29 ..., ri) (see [1]). 

Examples of 3 orthogonal Latin 3-cubes and 4 orthogonal Latin 4-cubes of 
order 6 are presented in Table 1 below. Hence, we have shown the existence 
of k orthogonal Latin k-cubes of order 6. 

TABLE 1 

(a) 3 Orthogonal Latin Cubes of Order 6 

661 
435 
524 
212 
346 
153 

433 
522 
665 
344 
151 
216 

526 
663 
431 
155 
214 
342 

242 
356 
113 
421 
565 
634 

354 
111 
246 
563 
632 
425 

115 
244 
352 
636 
423 
561 

Other 

(b) 

layers are obtained 

4 

by the cyc-

Orthogonal Latin 

lic 

4-

* permutation (1 2 

•Cubes of Order 6 

3 4 5 6). 

I II 

3554 
1135 
2221 
4413 
6366 
5642 

2241 
3514 
1155 
5662 
4433 
6326 

1115 
2261 
3534 
6346 
5622 
4453 

5663 
6446 
4312 
3524 
2155 
1231 

4332 
5623 
6466 
1251 
3544 
2115 

6426 
4352 
5643 
2135 
1211 
3564 

1131 
2223 
3556 
6362 
5644 
4415 

3516 
1151 
2243 
4435 
6322 
5664 

2263 
3536 
1111 
5624 
4455 
6342 

6442 
4314 
5665 
2151 
1233 
3526 

5625 
6462 
4334 
3546 
2111 
1253 

4354 
5645 
6422 
1213 
3566 
2131 

III IV 

2225 
3552 
1133 
5646 
4411 
6364 

1153 
2245 
3512 
6324 
5666 
4431 

3532 
1113 
2265 
4451 
6344 
5626 

4316 
5661 
6444 
1235 
3522 
2153 

6464 
4336 
5621 
2113 
1255 
3542 

5641 
6424 
4356 
3562 
2133 
1215 

6443 
4616 
5362 
1254 
2535 
3121 

5322 
6463 
4636 
3141 
1214 
2555 

4656 
5342 
6423 
2515 
3161 
1234 

2534 
1125 
3251 
6363 
4646 
5412 

3211 
2554 
1145 
5432 
6323 
4666 

1165 
3231 
2514 
4626 
5452 
6343 

V VI 

4612 
5364 
6445 
2531 
3123 
1256 

6465 
4632 
5324 
1216 
2551 
3143 

5344 
6425 
4652 
3163 
1236 
2511 

1121 
3253 
2536 
4642 
5414 
6365 

2556 
1141 
3213 
6325 
4662 
5434 

3233 
2516 
1161 
5454 
6345 
4622 

5366 
6441 
4614 
3125 
1252 
2533 

4634 
5326 
6461 
2553 
3145 
1212 

6421 
4654 
5346 
1232 
2513 
3165 

3255 
2532 
1123 
5416 
6361 
4644 

1143 
3215 
2552 
4664 
5436 
6321 

2512 
1163 
3235 
6341 
4624 
5456 

Other layers are obtained by the cyclic permutation (1 2 3 4 5 6). 
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A TRINOMIAL DISCRIMINANT FORMULA 

PHYLLIS LEFTON 
Manhattanville College, Purchase, NY 10577 

The expression b2 - kac is well known to algebra students as the discrim-
inant of the quadratic ax2 + bx + c> with a f 0. However, how many students 
are aware of the existence of discriminant formulas for higher-degree poly-
nomials? The purpose of this paper is to develop such a formula for the tri-
nomial 

axn + bxk + o9 (1) 

with n > k > 0 and a ^ 0. The formula has appeared in the literature in 
various forms ([1, p. 130], [2], [3], [4], [5, p. 41], and [6]). It can be 
written as 

An,k = (-l^n{n-1)an-k-1ak-1{nNaKcN-K + (-l)*"1^ - k)N~KkV)d, (2) 

where d is the greatest common divisor of n and k and N and K are given by 
n = Nd and k = Kd. Notice that the case n = 2 and k = 1 gives the quadratic 
discriminant 

A2j 1 = b2 - 4ac. 

In this paper we derive (2) by standard algebraic techniques that involve 
some elementary calculus and roots of unity. As a generalization of the 
quadratic case, the trinomial discriminant formula can provide an interesting 
enrichment topic for advanced-level algebra students. 

To appreciate what is involved in deriving (2), consider the usual defi-
nition of the discriminant Dn of the general nth-degree polynomial , 

fix) = a0xn + axxn~x + ••• + a„. (3) 

Van der Waerden [7, p. 101], for example, defines Dn as 

Dn = af-2 n (a;- a,-)2, (4) 

where the a*s are the roots of f{x)« 

As examples, let us compute Dn for n = 2 and n = 3. In these cases, (3) 
is more commonly written as f(x) = ax2 + bx + c and f(x) = ax3 + bx2 + ox + d, 
respectively. Using (4) together with the well-known expressions that relate 
the coefficients of each polynomial to the elementary symmetric functions of 
their roots, we get 

363 
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D2 = b2 - kao 
and 

D3 = b2c2 - 21a2d2 - hbzd - kao% + 18abcd. 

We note that for n ^ 3, Dn becomes more difficult to compute directly from 
the roots of fix). 

There are other expressions for Dn that involve the derivative /' of (3). 
A straightforward manipulation of the product (4), for example, gives: 

Dn = (-l)in(n-1)aS"2 ft /'(a,). (5) 

Still another expression for Dn is the one we will use to derive (2), namely: 

Dn = (-l)Jn(B-1)a;-1n»'nV(Bj), (6) 

where, the $?s are the roots of fix). It is not hard to compute the discrim-
inant of (1) from (6) because the derivative of a trinomial is a binomial 
whose roots are easy to find. 

The expression (6) is obtained by considering the double product 

(a0n)n ft nft (c^ - e,-), 
i = 1 Q = 1 

where the a^?s and the 3j!s are the roots of fix) and fix), respectively. 
By rearranging this double product, as described in [7], it is easy to show 
that it is equal to each of the following single products, which are hence 
equal to each other: 

^n*riV(Bj) - ft r^). (7) 
j = 1 i = 1 

A comparison of (7) with (5) then gives (6). 

We now derive the discriminant formula. We first obtain the formula for 
fix) = axn - bxk + a and then replace b by -b. Write 

fix) = axn - bxk + e = o - (fc - axn'k)xk (8) 

and 

fix) = nax"-1 - kbx*-1 = xk-1(naxn-k - kb). 

Clearly, the roots of the binomial fT(x) are (k - 1) zeros and the solutions 
of xn~k = kb/na. Therefore, by (8), 

"nVcBj) - ^_ 1 n(o - (b - a(mn-k)(mk)> 
J - 1 C V ' 
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where £ runs through all of the (n - k)th roots of unity and $n~k = kb/na. 
For further information about roots of unity, see [7, Sec. 36]. Simplifying, 
we have 

Now, as £ runs through the (n - k)th roots of unity, Z,k runs d times through 
the (N - Z)th roots of unity. Therefore, after further simplification with 
roots of unity, we get 

"flVcep -.c*-1^*-* - (n - k)»-KkKn-Na-Kbl')d. 

Here we are using the fact that, if oo is a primitive mth root of unity, then 

7 7 7 - 1 

ww - ym = II (w - tw*). 
i = 0 

Using (6) and substituting -2? for 2?, we obtain the desired formula given in 
(2). 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN 

University of New Mexico, Albuquerque, NM 87131 

Send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to 
PROFESSOR A. P. HILLMAN, 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each 
problem or solution should be on a separate sheet (or sheets). Preference 
will be given to those that are typed with double spacing in the format used 
below. Solutions should be received within 4 months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy 

Fn+2 = ^ n + l + Fn> F0 = °> Fl = *• 
and 

£n+2 = Ln + l +Ln> L0 = 2 ' L l = 1-

Also, a and b designate the roots (1 + v5)/2 and (1 - v5)/2, respectively, of 
x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-484 Proposed by Philip L. Mana, Albuquerque, NM 

For a given x,what is the least number of multiplications needed to cal-
culate x98? (Assume that storage is unlimited for intermediate products.) 

B-485 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Find the complete solution un to the difference equation 

un + 2 ~ 5un+l + 6^n = 1lFn - 4F„+2. 

B-486 Proposed by Valentina Bakinova, Rondout Valley, NY 

Prove or disprove that» for every positive integer k, 

JP 7? J? JP TP 7? 
k+1 . k+3 . k+5 , . T, . . k+6 . fc + it . k+2 

-p— < -j— < ~Y~ < • • < « * < • • • < - y - < -f— < -p— • 
1 3 5 6 h 2 

366 
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B-487 Proposed by Herta T. Freitag, Roanoke, VA 

Prove or disprove thats for all positive integers n, 

5Lhn ~ Lln + 6 " 6(-l^^2n E °  (mod l0Fn) • 

B-488 Proposed by Herta T. Freitag, Roanoke, VA 

Let a and d be positive integers with d odd. Prove or disprove that for 
all positive integers h and k, 

La+hd + La+hd+d ~ La+ka + La+kd+d ^ m ° d Ld) • 

B-489 Proposed by Herta T. Freitag, Roanoke, VA 

Is there a Fibonacci analogue (or semianalogue) of B-488? 

SOLUTIONS 

Pythagorean Triples 

B-457 Proposed by Herta T. Freitag, Roanoke, VA 

Prove or disprove that there exists a positive integer b such that the 
Pythagorean-type relationship (5F2)2 + b2 E (L2,)2 (mod 5m2) holds for all m 
and n with m\Fn . 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

We will show that the specified Pythagorean-type relationship holds with 
b = 4. Since 

^n = 5F* + 4(-l)n, (L2)2 = (5F2)2 + 8(-l)n(5F2) + 42, 

we have 
(5F2)2 + 42 E (L2)2 (mod 5F2). 

Hence3 for all m such that w divides Fn 9 

(5F2)2 + 42 E (L2)2 (mod 5m2). 

Also solved by Paul 5. Bruckman, Frank Higgins, Sahib Singh, Lawrence Somer, 
and the proposer. 

Prime Difference of Triangular Numbers 

B-458 Proposed by H. Klauser, Zurich, Switzerland 

Let Tn be the triangular number n(n + l)/2* For which positive integers 
k do there exist positive integers n such that Tn+k - Tn is a prime? 
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Solution by Lawrence Somer, Washington, B.C. 

The answer is k = 1 or k = 2. Note that 

?n+fe " Tn " (w + fe)(« .+ ̂  + l)/2 - n(n + l)/2 

- (k2 + fc + 2n&)/2 = k(k + 2n + l)/2. 

If ^n + fc - y« i s prime, then k = 1 or fc/2 = 1 since & + 2n+ 1 > fc. If fc = 1, 
then n = p- 1, where p is prime, suffices to make Tn+k~Tn prime. If /c = 2, 
then n = (p- 3)/2, where p is prime, suffices to make Tn+k - Tn prime. 

Also solved by Paul Bruckman, Herta Freitag, Frank Higgins, Walther Janous, 
Peter Lindstrom, Boh Prielipp, Sahib Singh, J. Suck, Gregory Wulczyn, and the 
proposer. 

Incongruent Differences 

B-459 Proposed by E. E. McDonnell, Palo Alto, CA and 
J. O. Shallit, Berkeley, CA 

Let g be a primitive root of the odd prime p. For 1 < i < p - 1, let a^ 
be the integer in S = {0, 1, ..., p - 2} with gai= £ (mod p). Show that 

^ 2 ~" ^1» ^ 3 ~~ <^2* •••» ^p - 1 "" ^p - 2 

(differences taken mod p - 1 to be in 5) , is a permutation of 1, 2, ..„, p- 2. 

Solution by Lawrence Somer, Washington, B.C. 

Suppose that cii + 1 - ai = <Z-- + 1 - #j (mod p - 1), where 1 < £ < J < p - 2. 
Then 

gai + 1 - a i = gdj + i-aj ( m o d pj 

or 
gai + l/ga*= (i+ l)/i= ga'"lga*=ti + i)/j (mod p) . 

Since neither £ nor j E 0 (mod p), this implies that 

(i + l)j = £j + 3 = £(j + 1) = ij + £ (mod p). 

However, this is a contradiction, since -i ^ j (mod p). 

Also solved by Pauls. Bruckman, Frank Higgins, Walther Janous, Bob Prielipp, 
Sahib Singh, and the proposer. 

First of a Pair 

B-460 Proposed by Larry Taylor, Rego Park, NY 

For all integers j, k9 n, prove that 

FkFn + j " FjFn+k = (""̂  Fk-jFn' 
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Solution by A. G. Shannon, New South Wales I.T., Australia 

FkFn+j - FjFn + k = (a* - &*)(aB+' - bn+s')/5 - (a* - b')(an+k - bn+k) 

- (afe)"7'(a""-7' - ̂ - ^ ( a " - bn)/5 

= (-DJ>ft.^„ -

Also solved by Clyde Bridger, Paul Bruckman, D. K. Chang, Herta Freitag, John 
Ivie, Walther Janous, John Milsom, Boh Prielipp, Heinz-Jurgen Seiffert, Sahib 
Singh, Gregory Wulczyn, and the proposer. 

Companion Identity 

B-461 Proposed by Larry Taylor, Rego Park, NY 

For all integers j s k, ns prove or disprove that 

FkLn+j " FjLn+k = (-1)° Fk-jLn* 

Solution by Paul S. Bruckman, Sacramento, CA 

The following relation follows readily from the Binet definitions: 

KLV =FV + U - <-l)uF„_„. (1) 
Therefore, 

Fk^n + j " Fj-^n + k ~ Fn + j + k "" (""•*-' Fn+j-k ™ Fn + k + j + (""•*•) Fn+k~j 

= (-iy(Fn+k.j - (-Dk-JFn_„..,) 

= {-lYFk_.Ln 

[using (1) again, with u = k - j 9 V ~ n], 

Also solved by Clyde Bridger, Herta Freitag, John Ivie, Walther Janous, John 
Milsom, Bob Prielipp, A. G. Shannon, Sahib Singh, Gregory Wulczyn, and the 
proposer. 

Typographical Monstrosity 

B-462 Proposed by Herta T. Freitag, Roanoke, VA 

Let L(n) denote Ln and Tn = n(n + l)/2. Prove or disprove* 

L(n) = (-lf"~nL(Tn„1)L(Tn) -L(n2)]. 

Solution by John W. Milsom, Butler County Community College, Butler, PA 

Using L(n) = Ln = an + bn, ah = -1, and Tn = n(n + l)/2, it follows that 
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The number n(n - 1) is always even, so that (-l)n(n"1) = l. Thus 

L{n) = {-l)T^-nL{Tn_1)L(Tn) -L(n2)]. 

Also solved by Clyde Bridger, Paul Bruckman, Walther Janous, Bob Prielipp, 
Sahib Singh, Gregory Wulczyn, and the proposer. 

Casting Out Fives 

B-463 Proposed by Herta T. Freitag, Roanoke, VA 

Using the notations of B-462, prove or disprove: 

L(n) = (-l)2'B-1L(n2) (mod 5). 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

We shall prove that the given congruence holds. Let F(n) denote Fn. It 
is known that 

L(a + b) - (~i)hL(a - b) = 5F(a)F(b) 

[see (10) and (12) on p. 115 of the April 1975 issue of this journal.] Hence, 

L(Tn + yn.,) - (-l)T»-*UTn - Tn_1) = 5F{Tn)F{Tn_1) 
so 

L(n2) - (-l)^-1L(n) = 0 (mod 5). 

The desired result follows almost immediately. 

Also solved by Clyde Bridger, Paul Bruckman, Walther Janous, Sahib Singh, 
Gregory Wulczyn, and the proposer, 

Consequence of a Hoggatt Identity 

B-464 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Let n and w be integers with w odd. Prove or disprove: 

^n + 2w n + w ~~ Aj^n +w^n -w ~~ ^ n-w n-2w ~~ ^3w " ^w'^n * 

Solution by Sahib Singh, Clarion State College, Clarion, PA 

The given equation is equivalent to: 

-^n+2w^n + w ~ ^n-w^n- 2w ~ ^3w^n ~ ^w^n + w^n-w "" "n >> ' 

Using J19 {Fibonacci and Lucas Numbers by Hoggatt), the right side 

= 2(-D%Fw
2. 

Expressing the left side of the above equation in a and b9 it simplifies to 
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^-f^-(L3w + L y ) - 2(-l)%Fw
2. 

Also solved by Paul Bruckman, Herta Freitag, Walther Janous, Bob Prielipp, 
M. Wachtel, and the proposer. 

Evenly Proportioned 

B-465 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

For positive integers n and k9 prove or disprove: 

F + F + F + - - - + F , F 
2k Sk lOfc Un-2)fc ink 

L2k + LSk + L10k + '•• + L
{hn.2)k L2nk ' 

Solution by Sahib Singh, Clarion State College, Clarion, PA 

Expressing 
„2k -L2k 

F,. = ̂  Z_£_ and L = a
2k + b2k, 

the left side of the equation simplifies to 

77 _ 7? — 977 
£(hn+2)k (hn-2)k r 2k 

^{hn + 2)k ^{hn-2)k 

Using I2h and J16 (Fibonacci and Lucas Numbers by Hoggatt) successively, the 
above becomes 

5F07Fj 7 2k 2nk 

£J(itn + 2)k " ^{hn- 2)k 

Since L(t „,, - Ln ow = 5F07 F0 .£_ 7 , we are done. 
C+n + 2)k (4n-2)k 2k 2nk 2nk 

Also solved by Clyde Bridger, Paul Bruckman, Herta Freitag, Bob Prielipp, and 
the proposer. 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
RAYMOND E. WHITNEY 

Lock Haven State College, Lock Haven, PA 17745 

Send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN STATE COLLEGE, LOCK 
HAVEN, PA 17745. This department especially welcomes problems believed to be 
true or extending old results. Proposers should submit solutions or other 
information that will assist the editor. To facilitate their consideration, 
solutions should be submitted on separate, signed sheets within two months 
after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-345 Proposed by Albert A. Mull in, Huntsville, AL 

Prove or disprove: No four consecutive Fibonacci numbers can be products 
of two distinct primes. 

H-346 Proposed by Verner E. Hoggatt, Jr., deceased 

Prove or disprove: Let 

P1 = 1, P2 = 2, Pn+2 = 2Pn+1 + Pn for n = 1, 2, 3, ..., 

then P7 = 169 is the largest Pell number which is a square, and there are no 
Pell numbers of the form 2s2 for s > 1. 

H-347 Proposed by Paul S. Bruckman, Sacramento, CA 

Prove the identity: 

xn (2 ^ xn (1) 

n — l + x
2") n = - (1 + (~X)n)2 

valid for all real x ^ 0, ±1. In particular, prove the identity: 

t T-\Z - t ^- (2) 
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H-348 Proposed by Andreas N. Philippou, Patras, Greece 

For each fixed integer k > 2, define the sequence of polynomials oS^ (p) 
by 

nj. • • •» nk 

where the summation is over all nonnegative integers n19 . . . 9 nk such that 
n1 + 2n2 + ••• + knk = n. Show that 

£ a(
n

k)(p) = 1 (0 < p < 1). 
n = 0 

SOLUTIONS 

Are You Curious? 

H-327 Proposed by James F. Peters, St. John's University, Collegeville, MN 
(Vol. 19, No. 2, April 1981) 

The sequence 

1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 
19, 21, 22, 24, 25, 27, 29, 30, 32, 34, 35, ... 

was introduced by D. E. Thoro [Advanced Problem H-12, The Fibonacci Quarterly 
1, no. 1 (April 1963):54]. Dubbed "A curious sequence," the following is a 
slightly modified version of the defining relation for this sequence suggested 
by the Editor [The Fibonacci Quarterly 1, no. 1 (Dec. 1963):50]: If 

TQ = 1, Tx = 3, T2 = 4, T3 = 6, Th = 8, T5 = 9, T6 = 11, T7 = 12, 
then 

Tfi _,_, = 13m + Tv , where fc>0, 77Z=l, 2, 3, ... . 
Assume 

F0 = l s Fl = l s Fn+1 = Fn + Fn-1 
and 

L0 = 2, L± = 1, Ln+ 1 = Ln + Ln- 1 

and verify the following identities: 

For example, 
TF _ 2 = F n + 1 - 2, where n > 6. (1) 

^ 6 - 2 = T6 = 11 = F 7 - 2 

TF?_2 = T±1 = 19 = F 8 - 2 

e t c . 

TF -2 - ^V -2 = F« ' where n > 6. (2) 

^ F _ 2 = F„ + 1 - 2 + Ln_12, where n > 15. (3) 
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Solution by Paul S. Bruckman, Concord, CA 

We first prove the following explicit formula for Tn: 

Tn "[ l 3V- 1 2]. n-0,, 1, 2' •'• ' (1) 

Let Un = \ U n g l l - We r e a d i l y v e r i f y t h a t Un = Tn fo r 0 < n < 7 . A l s o , 

f l3(aw + k) + 121 1 Q ^ \Uk + 121 , o 

^ s m + k = [~ 8 J = 13m + L — r — J = 13m + ^-
Since Tn and £/n satisfy the same recursion and have the same initial values, 
thereby determining each sequence uniquely, they must coincide. This proves 
(1). 

Next, we will prove the following formula: 

m 

TF -2 =
 Fn + i - 2 + £ £n-i2*» 3 + 12m < n < 11 + 12m (2) 

fc-i 

(if m = 0, the sum involving Lucas numbers is considered to vanish). Let 

Gn = TF-2-
Then 

r i 3 ( F n - 2) + 121 f 1 3 F n ~ 14" -H^4 
M (3) 

Now, u s i n g well-known F ibonacc i and Lucas i d e n t i t i e s , i t i s easy t o v e r i f y 
t h a t , fo r a l l n, 

!3Fn - 8Fn + 1 = F 7 F n - F6Fn+1 = Fn_e; 

l3Fn - SFn+1 - 8 L n _ 1 2 = ^ n _ 6 - 8 L n _ 1 2 = Fn_18; 

13Fn - 8Fn + 1 - 8 £ n _ 1 2 - 8Ln_2if = Fn.le - 8Dn_2 l |
 = F n - 3 o ; 

and, in general, 
m 

l3Fn = SFn+1 + 82^n-i2fe +^n-6-i2m <the s u m vanishing for m = 0). (4) 
k = i 

Substituting this expression into (3) yields: 

n 
(5) 

m [Fn-e-l2m + 21 

Let il/ = w - 6 - 12m. I f 3 + 12m < n < 11 + 12m, then - 3 < tf < 5 . Hence, 
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F_2 < FN < F5 = 5 ^ 1 < FN• + 2 < 7 => 
F + 2" 

8 - 0. 

Thus, for the range 3 + 12m < n < 11 + 12m, the greatest integer term in (5) 
vanishes, and we are left with (2). It may further be shown that (2) is also 
valid for n = 12m + 1 while, if n = 12m or 12m + 2, the formula should be re-
duced by 1 [i.e., the "2" should be replaced by "3" in (2)]. We may therefore 
obtain an expression which works for all values of n: 

m 
Gn = Fn+1 " 2 - Xn + E £»-12fc> f 0 r a 1 1 n > 3 (6> 

(to avoid negative indices for Tn)-
where 

( 1, if n = 0 or 2 (mod 12); , r /101 X = \ n ^ . and 777 = [n/12]. 
An (0, otherwise; L 

As a matter of passing interest, we may observe that xn
 mSLY be expressed in 

terms of familiar functions of n: 

Xn = [n/12] - [{n - 1)/12] + [(n - 2)/12] - [(n - 3)/12]. (7) 

Furthermore, the sum in (6) may be simplified to the following expression: 

V T - F6mLn-B-Sm ,ox 
1* Ln~12k ~ Q W 

fe = l ° 
The formula in (6) corrects the misstatement of the problem*s parts (1) 

and (3). Thus, part (1) is valid only for 3 < n < 11 and part (3) only for 
15 < n < 23 and n = 13. 

Part (2) of the problem is also false in general. The correct statement 
of part (2) is as follows: 

m' 

Gn ~ Gn_2 = Fn - 0n + X, L n _ 1 _ 1 2 k , (9) 
k = 1 

( 1, if n ~ 1 or 4 (mod 12); 
n > 5; 0n = <-l, if n E 0 (mod 12); and m' = [ (n - D/12]. 

( 0, otherwise; 

The derivation of (9) is a straightforward consequence of applying (6) and 
considering the possible residues of (mod 12) . Remarks similar to those 
made after (6) may be made in conjunction with (9). Thus, we see that part 
(2) of the problem yields the correct formula only for 5 ̂  n < 11. 

Also solved by C. Wall and the proposer. 

Irrationality 

H-328 Proposed by Verner E« Hoggatt, Jr«r deceased 
(Vol, 19, no. 2f April 1981) 



376 ADVANCED PROBLEMS AND SOLUTIONS [Nov. 

Let 0 be a positive irrational number such that 1/6 + l/QJ + 1 = 1 (j > 1 
and integer). Further, let An = [n0] and Bn = [n0J+1] and Cn = [w6J]. 

Proves (a) Ac + 1 - £n 

Am + i ~ ̂ m = * (m ^ Ck for any fc > 0) 

(c) Bn - n is the number of Aj's less than B„ . 

Solution by Charles R, Wall, Trident Technical College, Charleston, SC 

Since 1/0 + 1/6J' + 1 = 1,1 = 0J'(0 - 1) and 1 < 0 < 2 from elementary con-
siderations. 

Now, n0 J~ 1 < [n0J] < n0J, but the second inequality must be strict, for 
if nQJ = N9 an integer, then 

0 = 1 + 1/0J'= 1 + n/N 

and the left side is irrational but the right side is rational, a contradic-
tion. Thus, ndJ' - 1 < [ndJ] < n0J, and multiplying through by 0 - 1 yields 

n - l < n + l - 0 = n0J(0 - 1) - (0 - 1) 

< [n0J'](0 - 1) < n0J'(0 - 1) = n. 

(a) Note that 

Bn = [n6J" + 1] = [n(0J' + 1)] = [n0J' + n] = [n0J"] + w. 

Since Cn = [n0J], we have 

4^ = [[n0J']0] = [[n0J*] + [n0J"](0 - 1)] = [nQj] + n - 1 

by (&). Therefore, 1 + Ac = J9n as asserted. 

(b) Since A1 = 1, the claim that 

if m = C& 

(*) 

Am+1 Am ll, otherwise 
(2, if 
\l, ot 

is equivalent to 
Ck < m < Ck+1 iff Am = m + k9 

a version we shall prove. Now, 

Am - m - [m0] - w = [m(9 - 1)] = [m/Qj], 

Let £ = [̂ /0J*]: 

m = fc0J' + P with 0 < i» < 0J" 
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iff m - 6J' < [m/Qije3 = kQj < m 

iff m6 <m < (k + 1)6*'. 

Taking integral parts, the last inequality is equivalent to 

Ck = [kQj] < W < 777 < [(fe + 1)6J'] = Ck + 1 , 

which is to say Ck < m < C . 

(c) In (a) we noted that Bn - n = [ndJ'] = CM . From (a) , 1 + Ac 
so Cn = Bn - n is the number of ̂ .?s less than Bn. 

Also solved by P. Bruckman and the proposer. 

E Gads 

H-329 Proposed by Leonard Carlitz, Duke University, Durham, NC 
(Vol. 19, No. 2, April 1981) 

Show that3 for s, t nonnegative integers, 

(1) e-*yi!*(k)(k) =y a « + * _ ^ L _ u ; e ^ k l V s A t / £ kl(s - fe)!(t - fe)! -

More generally, show that 

. . . x ~ x*(k +a\(k\ v xa + t-k (a+t\ 
(2) e ^k\\ s At) =?TF^T)Ttrl k ) ' 
and 

Solution by the proposer. 

7 ^ fc!s!£! 

x , + t - k 

?n^ V?^(s - fc)!(* - k)l ,t-o fc 

Equating coefficients of yszt, we get (1)< 
To prove (2)5 we take 



378 ADVANCED PROBLEMS AND SOLUTIONS [Nov. 

3+ t- k 

_3+t-k ^ / a \ 1 

k 

The inner sum is equal to 

= £ (?)5 Y\(S -k ^rj^r^m [by (1)] 

X (s - k)\ Y \i) (k - i)l(t - k + i)l ' w 

&!(t - ft:)! y £!(£ - k + l)i 
l (a + t - k• + l)fc 

= TT7T~~~ frSV — (+ - 1 4- n ^ Y Vandermondef s theorem) 

J / a + £\ 

Thus (*) becomes 

V ^s+t"fe /a + t\ 
~ (e - &)!*!V k )> 

which proves (2). 
The proof of (3) is exactly the same. 

REMARK: It does not seem possible to get a simple result for 

It can be proved that this is equal to the triple sum 

^ s + t - k 

Also solved by P. Bruckman. 

0 Rats 

H-330 Proposed by Verner E* Hoggatt, Jr., deceased 
(Vol. 19, No. 4, October 1981) 

If 0 is a positive irrational number and 1/0 + 1/03 = 1, An = [w0], 
Bn = [n03]? Cn - [n©2], then prove or disprove: 

An "T Dn + on = 6g . 

Solution by Paul S~ Bruckman, Sacramento, CA 

The assertion is false, the first counterexample occurring for n = 13„ 
The equation defining 0 Is equivalent to the cubic: 03 = 02 + 1, which has 
only one real solution: 

(1) 0 = -~(U -f V + 1), where U = f-~(29 + 3^93)] , V = f-|(29 - 3/93)) ; 

~7. (fc - i - J)!(s - fe + j)!(t - fc + i)! U A j / 
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t h u s , 

(2) 6 = 1.4655712, G2 = 2.1478989, 63 = 3.1478989. 

We f ind r e a d i l y t h a t A13 = 19, B13 = 40 , C13 = 27, CB = Ch0 = 85 ; t hus 

* i s + B i 3 + ^ i s = 86 ^ 85 = C5 i 3. 

It is conjectured that the assertion is true for infinitely many n9 how-
ever. It is further conjectured that CBn - (An + Bn + Cn) = 0 or 1 for all 
n, each occurrence occurring infinitely often, but with "zero" predominating. 
A proof of this conjecture was not attempted, since it was not required in 
the solution of the problem; it will probably depend upon the property that 
04n)^=1 and (5n)~=1 partition the natural numbers, and moreover, Bn - Cn + n 
(both properties readily proved). It is easy to show that 

\CBn " Wn + Bn + Cn)\ < 2 for all n, 

the proof of which depends solely on the properties of the greatest integer 
function. 

Barely There 

H-331 Proposed by Andreas N. Philippou, American Univ. of Beirut, Lebanon 
(Vol. 19, No. 4, October 1981) 

For each fixed integer k ^ 2, define the fc-Fibonacci sequence I f' }\ 

{k) (fi-1 + ••• +fok) if 2<n< k 

Letting a = (1 + v/5)/2, show: 

' (a) f(k) > an~2 if n > 3; 

(b) if f _ has Schnirelmann density 0. 

Solution by Paul S. Bruckman, Sacramento, CA 

We see that /3(k) = 2 for all k > 2, and f ^ > Fn + I for all k > 3 and 
n > 4. Since 2 > a and 4 > a, we see that (a) holds for n = 3 and n = 4. 
Also, , 

45 < 49 =» 3v"5 < 7 =» 3̂ 5 - 5 < 2 => 5'1/2 > ™(3 - i/5) = 1 + 6 = 32. 

T h e r e f o r e , i f n > 5 , 

/ „ ( k ) > Fn + 1 = 5" 1 / 2 (a n - 3n) + 1 > e 2 ( a n - 3n) + 1 

= a n " 2 + 1 - 3 n + 2 > a*" 2 . . 
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Hence (a) Is true for all n ^ 3. Q.E.D. 

We recall the definition of the Schnirelmann density of a set A of non-
negative integers. If A(n) denotes the number of positive integers in A that 
are less than or equal to n, then the Schnirelmann density d(A) is given by: 
d(A) - Inf A(n)/n. 

n >1 

Let f *•*' - (/„ )n = o anc* An be the number of positive integers in / ̂  

that are < n. Since jy ^ fn
2 ^or a^- n anc* & ̂  2, it is clear that 

AW < Ai2) • 

hence d(f(k)) < d(/( 2 )). It therefore suffices to show that d(f(2)) = 0. 

Now A^2) = 1 and %^2(2) = 1 (since F2 = 1, F3 = 2, and /(2 ) is an increas-
ing sequence. Generally, it may be shown that 

Therefore, 

1 + n/5) 1 
og a J 

^ . . ) _! log 2rca I ^ . £ ) 2 log n 
< inf < n —T3 > < m f •< -z • — - — 

n>i) log a i n>3 ) log a n 
Note that log z/z is a decreasing function for 2 ̂  3 and approaches zero as 
z •> °°  (s real). Hence, 

inf (log s/s) = 0. 

It follows that d(f(2)) = 0 . Q.E.D. 

Also solved by the proposer. 
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