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ON FIBONACCI AND LUCAS NUMBERS WHICH ARE SUMS OF 

PRECISELY FOUR SQUARES 

NEVILLE ROBBINS 
San Francisco State University, San Francisco, CA 94123 

(Submitted April 1981) 

INTRODUCTION 

A well-known theorem of Lagrange states that every positive integer is a 
sum of four squares [4, p. 302], In this article we determine which Fibo-
nacci and Lucas numbers are sums of not fewer than four positive squares. 
The nth Fibonacci and Lucas numbers are denoted Fin) s Lin) 9 respectively, 
in order to avoid the need for subscripts that carry exponents. 

PRELIMINARIES 

(1) 77? + a2 + b2 + o2 iff 77? = 4J"fc, with j > 0 and k = 1 (mod 8) 
(2) F(2n) = F(n)L(n) 
(3) L(2n) = Lin)2 - 2(-l)n 

(4) F(m + n) = F(rn)F(n - 1) + F(m + l)F(n) 
(5) F(l2n ± 1) = 1 (mod 8) 
(6) Fin) = 7 (mod 8) iff n = 10 (mod 12) 
(7) Fin) = 0 (mod 4) implies F(n) = 0 (mod 8) 
(8) Lin) $0 (mod 8) 
(9) L{n) E 7 (mod 8) iff n = 45 8, or 11 (mod 12) 

(10) Lin) = 28 (mod 32) iff n = 21 (mod 24) 
(11) Lilln) = 2 (mod 32) 
(12) If j > 2, then 4J" |F(n) iff n = 3(4J_1)m5 with (6, m) = 1. 
Remarks: (1) is stated on p. 311 of [4]. (2) and (3) are 12b5 d, and e 
on p. 101 of [1]. (4) is (1) on p. 289 of [2]. (5), (6), and (7) are es-
tablished by observing the periodic residues of the Fibonacci sequence 
(mod 8), namely: 0S 1, 1, 2, 3, 5, 0, 5, 5, 2S 7, 1,0, 1, etc. (8) and 
(9) are established by observing the periodic residues of the Lucas se-
quence (mod 8), namely: 2, 1, 3, 4, 75 3, 2, 5, 7, 4, 3, 73 2, 1, etc. 
(10) and (11) are established by observing the periodic residues of the 
Lucas sequence (mod 32), namely: 2, 1, 3, 4, 7, 11, 18, 29, 15, 12, 27, 
7, 2, 9,11,20, 31, 19, 18, 5, 23, 28, 19, 15, 2, 17, 19, 4, 23, 27, 18, 
13, 31, 12, 11, 23,2, 25, 27, 20, 15,3, 18, 21, 7, 28, 3, 31, 2, 1, etc. 
Finally, (12) follows from (37) on p. 225 of [3]. 

THE MAIN THEOREMS 

Theorem 1 

Lin) ± a2 + b2 + c2 iff n = 4, 8, or 11 (mod 12) or n = 21 (mod 24). 

3 
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Proof: If L(n) 4 a2 + b2 + e2, then (1) implies L(n) = 4J'fc, with j > 0 
and k E 7 (mod 8). (8) implies J = 0 or j = 1. Now (9) and (10) imply 
n = 4, 8, or 11 (mod 12) or n E 21 (mod 24). Conversely, if n E 4, 8, or 
11 (mod 12) or n E 21 (mod 24), then (9) and (10) imply L(n) = 7 (mod 8) 
or L(w) E 28 (mod 32), i.e., L(n) = ¥k, with j = 0 or j = 1, and k = 1 
(mod 8). Therefore, (1) implies L(n) ± a2 + b2 + c2. 

Lemma 1 

F(3 * 4J'"1)/4J" E 1 (mod 8) for j > 2. 

Proof: (Induction on j) If j = 2, then 

F(12)/16 = 144/16 = 9 = 1 (mod 8 ) . 

Now let j > 3. 

F(3 • 4J') _ F(4 • 3 • 4-7'"1) = F(3 • 4t7'~1) L(3 • 4e7'"1)L(6 • 4J'"1) 
4J + I 4J + I 4 J 4 

by (2). (11) implies L(3 • 4J'_1) = 2 (mod 32); (3) implies L(6 • 4J'~1) = 2 
(mod 32). Thus 

L(3 • 4t7'~1)L(6 • 4J"~1) E 4 (mod 3 2 ) , 

which implies L(3/* 4J'"1)L(6 • 4J'~1)/4 E 1 (mod 8 ) . By the induction hy-
pothesis, F(3 * 4J_1)/4J' E 1 (mod 8 ) . Therefore, 

F(3 * 4J')/4J' + 1 E 1 • 1 E 1 (mod 8 ) . 

Lemma 2 

F ( 3 * 4 J ' ~ V > / 4 J ' E 777 (mod 8) f o r j > 2 and 77? > 0 . 

Proof : ( I n d u c t i o n on 77?) S i n c e F ( 0 ) = 0 , Lemma 2 h o l d s f o r 7?7 = 0 . (4) 
i m p l i e s 

F ( 3 • 4J""1(772 + 1 ) ) / 4 J ' = F ( 3 • 4J"~17r? + 3 • 4 J ' " 1 ) / 4 J ' 

= (F (3 • 4J '"17?7)/4J ')F(3 • 4 J " _ 1 - 1) 

+ F ( 3 • 4J'_1777 + 1) (F(3 • 4 J ' _ 1 ) / 4 J ' ) ; 

by t h e i n d u c t i o n h y p o t h e s i s , F(3 * 4J _ 17?7)/4J E 777 (mod 8 ) ; (5) i m p l i e s 

F ( 3 * 4 J ' ~ 1 - 1) E F ( 3 • 4J'-1777 + 1) E 1 (mod 8 ) ; 

Lemma 1 i m p l i e s 
F ( 3 • 4 J ' " 1 ) / 4 J ' E 1 (mod 8 ) . 
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Therefore, 

F(3 * 4J'-10T? + 1))/4J' = m * 1 + 1 • 1 E m + 1 (mod 8). 

Theorem 2 

F(w) + a2 + &2 + c2 iff n E 10 (mod 12) or n = 3 • 4J'~1???, with j > 2 
and m E 7 (mod 8). 

Proof: If F(n) + a2 + b2 + c2, then (1) implies F(n) = 4J't with j > 0 
and t E 7 (mod 8). (7) implies j ± I. If J = 0, then (6) implies n E 10 
(mod 12). If j > 2, then (12) implies n = 3 * 4J'~1??7. Now Lemma 2 implies 
77? E t E 7 (mod 8). Conversely, if n E 10 (mod 12), then (6) implies 
F(n) E 7 (mod 8), hence (1) implies F(n) + a2 + b2 + o2. If n = 3 • 4J'~1T?7 
with j > 2 and m= 7 (mod 8), then (12) implies F(n) = 4Jt. Lemma 2 im-
plies £ = F(n)/h° E 77? (mod 8). Since t = 7 (mod 8), (1) implies 

F(n) ̂  a2 + fc2 + <?2. 

REFERENCES 

1. R. G. Archibald. An Introduction to the Theory of 'Numbers. Merrill, 
1970. 

2. D. M. Burton. Elementary Number Theory. Allyn & Bacon, 1976. 

3. J. H. Halton. "On the Divisibility Properties of Fibonacci Numbers." 
Fibonacci Quarterly 4 (1966):217-240. 

4. G. H. Hardy & E.M. Wright. An Introduction to the Theory of Numbers. 
4th ed., Oxford University Press, 1965. 
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INTERSECTIONS OF SECOND-ORDER LINEAR RECURSIVE SEQUENCES 

A. 6. SHANNON 
The New South Wales Institute of Technology, Sydney, Australia 

and 
Universidad de Navarra, Pamplona, Spain 

(Submitted September 1981) 

1. INTRODUCTION 

We consider here intersections of positive integer sequences 

{wn(wQy W±; p, -<?)} 

which satisfy the second-order linear recurrence relation 

Wn = PWn-l + ^n-2> 

where p, q axe positive integers,p ^ q9 and which have initial terms W0, 
W-L. Many properties of {wn} have been studied by Horadam [2; 3; 4] (and 
elsewhere), to whom some of the notation is due. We look at conditions 
for fewer than two intersections, exactly two intersections, and more than 
two intersections. This is a generalization of work of Stein [5] who ap-
plied it to his study of varieties and quasigroups [6] in which he con-
structed groupoids which satisfied the identity a{(a • ba)a) = b but not 
{a(ab • a))a = b. 

2. FEWER THAN TWO INTERSECTIONS 

We shall first establish some lemmas which will be used to show that two 
of these generalized Fibonacci sequences with the same p and q generally 
do not meet. 

Suppose the integers aQ9 a , a2, a3, bQ9 and bx are such that 

a2 > b0 > aQ and a3 > b1 > a1. 

These conditions are not as restrictive as they might appear, although 
they may require the sequences being compared to be realigned by redefin-
ing the initial terms. We consider the sets 

{wn(aQ9 a±; p, -q)} and {wn(bQ, b1; p9 -q)}9 

and we seek an upper bound L for the number of a / s (b1 > ax > b0) such 
that 

{wn(aQ, a1; p, -q)} n {wn(b0» b1; p, -q)} + 0. 

6 [Feb. 
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We shall show that if A(b) = b - L (b = bx - bQ) is the number of a^s-
such that if this intersection is nonempty, then lim A(Jb) lb = 1; that is, 

b + oo 

these generalized sequences do not meet, because if 11m A (n) /n - 1, then 
n -> oo 

we can say that for the predicate P about positive integers n {n : P(n) is 
true} has density 1, which means that P holds "for almost all n." 

We first examine where {wn(aQ9 a1; p, -q)} and {wn(b0, b1; p, -q)} 
might meet. Since a0 < bQ and a± < b19 then an < bn for all n by induc-
tion. Thus, If ak e {wn(bQ9 bl9 p, -q)} and ak = bi9 then i must be less 
than k. 

Now 

so that 

that is, 

Thus, if 

then 

a2 > bQ, and a3 > b19 

ah = pa3 + qa2 > pb1 + ̂ &0 = & , and so on; 

ak ^ bk-i f o r ^ ̂  3. 

â  e iwn(b09 bx% p, -4)}, 

fc^_2 < ak < bk; that is, afe = bk_1. 

We next examine the a1 for which afc = bk_1. Since 

ak = a^-i + qa0uk_2 (from (3.14) of [2]) 

where {un} = {wn(l9 p; p, -4)} is related to Lucasf sequence, then 

ak = bk_1 
is equivalent to 

bk_j_ = a- ^ ^ + qa0uk_z or ax = (Ẑ _i - QaQuk_2) /uk_±. 

We now define 
xk = (&*-i " qaouk-2)/uk-i> 

and we shall show that xl9 x29 x39 ••• has a limit X9 that it approaches 
this limit in an oscillating fashion, and that xk + 1 - xk approaches zero 
quickly. 

Lemma 1 

xk+i ~ xk = (~q)k~1(b1 - bQ - qa0)/ukukmml. 

bk - qaQuk_1 bk_1 - qaQuk_2 
Proof: XT,., - Xy = 

(bkuk_x - bk_1uk) + qaQ(ukuk_2 - u\_J 

1983] 
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Now 
{-q)k-x = u\_x - ukuk_2, (from (27) of [3]) 

Z>kuk-i = ^\u\-\ + 3*owk-iMk-2' (from (3.14) of [2]) 

t>k-iuk = b1ukuk_2 + qb0ukuk_3, 
so that 

&k"k-l ~ ̂ -lMJc = &l("k-l - UkMk-2) + ^bQ<-Uk-lUk-2 ~ UkUk-J 

= (-<?)?c-1fc1 - C - ? ) * - 1 ^ 
since 

(~q)k~2 = uk_1uk_2 - ukuk_3 (from 4.21) of [2]). 

This gives the required result. 

Lemma 2 

l^k+i ~ xk\ < l̂ i ~ &o " qa0\/a2k'^, where a, 3> |a| > |g|, are the 
roots, assumed distinct, of 

x2 - px - q = 0. 

Proof: uk = puk_1 + quk_2 ^ Vuk-\ 

> quk_x (p > 4) 

and 
ukuk_x > q 2 k ' \ 

Thus 
kfc+i - xk\ < \(hi - ho - qa0)/qk~2\, 

which implies that the xk*s converge to a limit X in an oscillating fa-
shion. Now 

and 

lk-2 _ |„|k-2|g|fc-2 < a 2 ^ - 4 

kk+i " xk\ < \bi - bo - qa0\/a2k~h. 

Theorem 1 

If a0 is a positive integer and {wn} is a generalized Fibonacci se-
quence, then for almost all a19 {wn(a0, ax; p, -q)}D{wn} consists of at 
most the element a0. 

Proof: It follows from Lemma 2 that at most one xk is an integer for 
those k which satisfy the inequality 

(b1 - b0 .- qa0)/a2k~h < 1, 

8 [Feb. 
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or, equivalently, the inequality 

k > 2 + log(fc1 - &0 - qa0)1/2 

in which log stands for logarithm to the base |a|. Thus the total number 
of k1 s for which xk is an integer (since ax must be an integer) is at 
most 

L = 2 + logO^ - Z>0 - qa0)1/2. 

If we choose b0 such that bQ = om and b1 = om+19 om e {wn(cQ, c1; p9 -q)} , 
where cm + 1/cm<l [1 + a], then L is small in comparison with b - bQ. There 
is such an integer m: 

cm + ±I°m ^ [ 1 + Ot] f o r a l l k > 777 
since 

lim ok+1/ok = a. ((1.22) of [4]) 

We could take b0 = cm+1 or cm+1 and still conclude that the total number 
of ax*s (b0 < a1 < b±) for which {wn(aQ9 a±; p9 -q)} meets {wn(bQ9 b1; 
p9 -q)} is small in comparison with b = b1 - bQ. 

Thus 
A(b) = b - L9 

and since 
lim(log b)/b = 0, 

we have 
lim A (b)/b = 1 - lim(2 + log(6 - qa0)1/2)/b 
b + <x> &-*00 

= 1, as required. 

Thus9 for allmost all a1 , {wn} D {wn(aQ9 a1; p5 -q)} contains a0 only or 
is empty. 

3. EXACTLY TWO INTERSECTIONS 

Lemma 3 

If ai = bj and a^_x ^ bj-i* t n e n f o r ^ ̂  I 

fc^ + r i {wn(a0, a±; p, -q)} and ai + v fi {wn(b0, b1; p, -q)}. 

Proof: If ai_1 > ij.15 then ai + 1 > bj + l , and 

since 

Thus 
^ < ̂  + 1 < ai + 1 and a.+1 < bj + 2 < ai + 2, 

and, by induction, 

1983] 9 
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Hence, bj+r $. {wn(aQ9 ax; p, -q)}9 v ^ 1, from which the lemma follows. 

Theorem 2 

If {ic?n(a05 <Zi; p5 -q)} and {wn(2?0, &i; p5 -q)} meet exactly twice, 
then at least one of these statements holds: 

a0 £-{wn(bQ9 b1; p, -q)}, bQ e {wn(aQ9 a1; p, -q)}. 

As an illustration of Theorem 2, consider the sequences 

•1, 4, 5, 9, 14, ..., and 1, 1, 2, 3, 5, 8, 13, ...; 

the second of these is the sequence of ordinary Fibonacci numbers 

{wn(l, 1; 1, -1)}. 

Proof of Theorem 2: If a,; = 2?j- , i, J > 0, and the sequences meet ex-
actly twice, then a^ _ 1 4- bj _ x; otherwise the sequences would be identical 
from those terms on, as can be seen from Theorem 3. (We need i, j > 0, 
since we have not specified an9 bn for n < 0.) Thus, from Lemma 3, 

bj+r t iwn(aQ9 a±; p, -q)} and ai+r t {wn(bQ9 b1; p, -<?)}, r > 1. 

So an = fem, 0 < m < j, 0 < n < i , and, again, an-1 ^ bm_1; otherwise the 
sequences would be identical from those terms on. But from Lemma 3 this 
implies that 

bm+T t {wn(aQ9 ax; p, -q)} and an+r t {wn(bQ9 b±; p, -q)}9 r > 1, 

which contradicts the assumption that a^ = tj. So the only other possi-
bilities are that a0 = bm for some m or an = &0 for some n, as required. 
This establishes the theorem. 

4. MORE THAN TWO INTERSECTIONS 

Theorem 3 

If {wn(aQ9 ax; p, -q)} and {wn(bQ9 b1; p9 -q)} have two consecutive 
terms equal, then they are identical from those terms on. 

Proof: If ai = bj and ai_1 = bj_l9 then 

and the result follows by induction. 
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REMARKS 

A. It is of interest to note that the number of terms of {wn(aQ9 a1; p9 
-q)} not exceeding b0 is asymptotic to 

log(&0(a - 3)/(axa 4- a0ag)). (Horadam [4]) 

B. As an illustration of Theorem 19 if we consider the case where p = q 
= 1, and if we take a0 = 1, b0 = 100, b1 = 191, then b2 = 291, b3 = 392, 
bh = 683. When: 

a± = 100, ax = b0; a± = 190, a2 = &1; ax = 145, a3 = 2?2; 

ax = 130, ah = fc3; ax = 136, a5 = Z?̂ . 

Thereafter, there are no more integer values of a± that yield ak = bk_1. 
Thus 100, 130, 136, 145, and 190 are the only values of a± (100 < ax < 191) 
for which 

{wn(l, a±; 1, -1)} n{w„(100, 191; 1, -1)} 4 0. 

Also, (y(4 + log 90)) = 6, so the bound L is valid. 

C. It is not apparent how Theorem 1 can be elegantly generalized to ar-

bitrary order sequences. If {w^]} satisfies the recurrence relation 

with suitable initial values, where the Prj- are arbitrary integers, and 
if {u^n^ satisfies the same recurrence relation, but has initial values 
given by 

then it can be proved that 

r-l 

J = 0 \ k = 0 / 

where P = 1. When r = 2, this becomes 
PO 

7,(2) = 7l,(2)-.(2) . -,(2) ?,(2) _ p 

Wl Un r22W0 Wn-1 

which is Eq. (3.14) of [2] for the sequences 

« 2 ) } = {»„(<> , WT> P21' P22>> 
and 

y(2) {u(2) } = {wM(l, P ; P , P )}. 
L rc + l J L n v > 2 1 ' 2 1 2 2 
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Thus, one of the key equations in Theorem 1 generalizes to 

w^ = lww _ V (-l)j~I'~1P . w{r)uir) 

+ y (-Dj~kp . w(r)u{r) \ /u{r) 

^ Z-» V L> ^r,j-kWk Un-j + l) / Un-r + 2> 
k = 0 II 

which is rather cumbersome. 

Thanks are expressed to the referee for several useful suggestions. 
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1. INTRODUCTION 

The Fibonacci numbers are defined by setting 

a± = a2 = 1 and an + 1 = an + an_1 for n > 2, 

A related family of sequences are the £-bonacci numbers (where O 2 is 
an integer), These are defined by setting 

ax = 1, an = 2n~2 for 2 < n < t 
and 

an + i = an + -° + an-t+i f o r n> t. 

Thus, for t = 2 we obtain the Fibonacci numbers again, and for t = 3 we 
obtain the so-called Tribonacci numbers. 

The Fibonacci numbers have many interesting properties. The property 
of interest to us here is that this sequence satisfies the equation 

Aan = an_1 (n > 2), 

where A denotes the forward difference operator. The Tribonacci numbers 
satisfy 

A3an = 2an_2 (n > 3). 

We call a sequence (an) that satisfies an equation of the form 

hkan = rnan_T in > r), (1) 

a self-generating sequence with parameters (k9m9 r). We abbreviate this 
to SGS(k9m, r) . [We will work under the convenient assumption that k9 m9 
and r are integers and that k ^ 1. Similarly, our sequences (an) will be 
integral.] 

Thus, the Fibonacci numbers are an SGS(1, 1, 1) and the Tribonacci 
numbers form an SGS(3, 2, 2). This immediately suggests the question of 
whether, for any t > 4, the t-bonacci numbers form a self-generating se-
quence. The main result of this paper is as follows. 
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Theorem 1 

The Fibonacci sequence is an SGS(1, 1, 1); the Tribonacci sequence is 
an SGS(3,2, 2). For t ̂  4, no t-bonacci sequence is self-generating. 

2. PROOF OF THEOREM 1 

Let 

n = l 

denote the generating function (G.F.) of the sequence (an) and let kJF(x) 
denote the G.F. of the sequence of jth forward differences (AJan). 

Lemma 1 

For j > 1, we have 

AjF(x) = \[(l - x)jF(x) - xp^^x)], (2) 

where p._1(^) denotes a polynomial of degree at most j - 1. 

Lemma 1 can be proved by induction on j. We leave the details as an 
exercise. 

Now let (an) be an SGS(k9m,r). In order to satisfy (1), we have to 
subtract from AkF(x) its first v terms [i.e.,a polynomial qr(x) of degree 
at most r] and equate the rest with mxrF(x) i 

—[(1 - x)kF(x) - xpk_1(x)] - qr(x) = mxrF(x). 

From this equation, we immediately obtain: 

Theorem 2 

The generating function of an SGS(k,ms r) is of the form 

F(x) = — , (3) 
(1 - x)k - mxk + r 

where pk+r (x) is a polynomial of degree at most k + r with zero constant 
term. • 

Remark 1: It can be shown that any sequence with generating function of 
the form given in (3) is an SGSCfc,???, r) . We will not prove this because 
we will not make use of it here. 
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The G.F. for the t-bonacci sequence is 

F(x) 
1 - x - - • • - sct' 

hence, a necessary condition for this sequence to be self-generating is 
that the zeros a, 3, y» ••• of I - x - — - xt are also zeros of the 
polynomial (1 - x)k - mxk + r appearing in the form of F(x) given in Theo-
rem 1. Our aim is to show that for t > 4 we can find three zeros a, B, y 
for which this necessary condition is violated. Thus, it will be useful 
to list some facts about the roots of 

1 - x - - ' • - a?* = 0. (4) 

Remark 2: We observe that no root of (4) equals 1. Now, multiplying (4) 
by 1 - x and collecting terms transforms (4) into 

xt+1 - 2x + 1 = 0. (5) 

Remark 3: A geometrical argument about the curves y = xt+1 and y = 2x - 1 
shows that for odd t there is exactly one, for even t there are exactly 
two, real roots of (5) not equal to 1. For all t, one of these tends 
monotonically to -1 from the left as t increases. In [1], the positive 
real roots have been calculated. For t = 6 this root is a= 0.504138...; 
hence, for t ^ 6 we have a < 0.505. 

Remark 4: In [2], it was proved that (5) has exactly one root z with \z\ 
< 1 and one with \z\ =1; all other roots satisfy \z\ > 1. We shall now 
give an upper bound for the absolute values of these roots. 

Lemma 2 

The roots of (5) with \z\ > 1 satisfy \z\ < 3. 

Proof: Let z be a root of (5) with \z\ > 1. Then, since 

\z\\z* - 2| = |-l| = 1, 

we have \zt - l\ < 1, which implies l^l < 3 and, therefore, \z\ < ^J. a 

Combined with the previous lemma, our next result approximately de-
termines the positions of the roots of (5). 

Lemma 3 

For each j with 1 < j < — ^ — , Eq. (5) has a root Zj with 
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Proof: We use Gaussfs method for trinomial equations (see e.g. [3], 
pp. 397- 398). Write z = p(cos <p + i sin <p) . Then, if zt+1 - 2s + 1 is 
zero, we must have 

pt + 1cos(£ + l)<p - 2p cos <p + 1 = 0; (6) 

From (7) , we get 

pr xsin(t + l).<p - 2p sin <p = 0. (7) 

2 sin <P 
sin(£ + l)<p* 

Substituting this into (6) and using the trigonometric addition formulas, 
we obtain 

M 2 sin t<p9 (8) 

Upon substitution into (7)9 this yields 

2t+1s±ntt<p sin <p - sint+1(£ + l)<p = 0, (9) 

which determines <p. Denote the left-hand side of (9) by f(<P) • Then 

fm<o 
whereas 

/ ( ^ ) > 0 . 

By the continuity of /, the lemma follows. • 

Now let t ^ 4 and let a, (3, and y denote three nonconjugate distinct 
roots of (4) . If the t-bonacci sequence was self-generating, we would 
have (1 - a)k =.mak + r as well as (1 - 6)k = m$k + r for some k9 m9 and i>; 
hence, 

/I - q\fc _ (oL\k + r 

\l - 6/ U/ ' 
An analogous equation holds for a and y. Taking logarithms, we get 

and 

k log j ^ - (k + 20 log ! = 0 

k l o g f ^ - (k + p)log^= 0. 

To obtain nontrivial solutions for given k and r, the two equations must 
be linearly dependent. Therefore, considering the absolute values, we 
must have 
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log 1 log = log 
1 - Yl log (10) 

Denote the left- and right-hand sides of, (10) by L and i?, respectively. 
Our aim is to find roots a, (35 and y for which L $ R. 

Let t be even, t > 6. Take as a the positive real root, as 3 the 
negative real root, and as y a root with 0 < arg y < 2TT/5. (Such a 
exists, by Lemma 3.) Then the following inequalities hold, by virtue of 
Remark 3 and Lemma 2: 

0.5 < J061 < 0.505 

|B| < 1.201 

1 < IYI 

0.495 < |l - aj < 0.5 

2 < |l - 3| 

|l - y| < 1.304 

From these, we calculate L > 0.947 and R < 0.849. 

Now let t be odd, t ^ 7. As a we take the positive real root, as g 
a root with 6TT/7 < arg 3 < TT, and as y a root with 0 < arg y < 2TT/6. The 
resulting inequalities are 

0.5 < |a| < 0.505 

|3| < 1.17 

1 < |y| 

and we obtain L > 0.926 and R < 0.675 

0.495 < |l - a| < 0.5 

1.94 < |l - 3| 

|l - y| < 1.094 

The remaining cases, t = 4 and t = 5, can be settled by approximate 
calculation of <p and p using (8) and (9) ; again, roots can be found for 
which L ^ Re The details will be omitted here. • 
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1. INTRODUCTION 

Ore [2] investigated the harmonic mean H(n) of the divisors of n3 and 
showed that 

H(n) = nx (n) I'o(n) , 

where, as usual, x(n) and o(n) denote, respectively, the number and sum 
of the divisors of n. An integer n is said to be harmonic if H(n) is an 
integer. For example, 6 and 140 are harmonic, since 

H(6) = 2 and #(140) = 5. 

Ore proved that any perfect number (even or odd) is harmonic, and that 
no prime power is harmonic. Pomerance [3] proved that any harmonic num-
ber of the form paqb

9 with p and q prime, must be an even perfect number. 
Ore also conjectured that there is no odd n > 1 which is harmonic, and 
Garcia [1] verified OreTs conjecture for n < 107; however, since 0reTs 
conjecture implies that there are no odd perfect numbers, any proof must 
be quite deep. 

A divisor d of an integer n is a unitary divisor if g.c.d. (d9 n/d) 
= 1, in which case we write d\\n. Let T*(n) and o*(n) be, respectively, 
the number and sum of the unitary divisors of n. If n has oo(n) distinct 
prime factors, it is easy to show that 

T*(n) = 2U)(n) and o*(n) = O (1 + p e ) , 
pe\\n 

both functions being multiplicative. 

Let H*(n) be the harmonic mean of the unitary divisors of n. It fol-
lows that 

H*(n) - nT*(n)/o*(n) = II — ^ 
Ve\\n 1 + V6 

We say that n is unitary harmonic if H*(n) is an integer. 

In this paper we outline the proofs of two results: 
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Theorem 1 

There are 23 unitary harmonic numbers n with 0)(n) < 4 (see Table 1). 

Theorem 2 

There are 43 unitary harmonic numbers n < 106. These numbers, which 
include all but one of those in Theorem 1, are given in Table 2. 

TABLE 1 

w(w) 

0 

2 

2 

3 

3 

3 

3 

4 

4 

4 

4 

4 

H*(n) 

1 

2 

3 

4 

4 

7 

7 

7 

7 

9 

9 

10 

1 

6 

45 

60 

90 

15,925 

55,125 

420 

630 

3,780 

46,494 

7,560 

n 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

2 • 3 

325 

223 • 5 

2 • 325 

527213 
3 2 5 3 7 2 

223 • 5 

2 • 325 

23335 • 

2- 3^7 

23335 * 

• 7 

• 7 

7 

• 41 

7 

o)(n) 

4 

4 

4 

4 

4 

4 

i 4 
4 

4 

4 

4 

H*(n) 

10 

10 

10 

11 

12 

12 

12 

12 

13 

13 

15 

9,100 

31,500 

330,750 

16,632 

51,408 

66,528 

185,976 

661,500 

646,425 

716,625 

20,341,125 

n 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

22527 • 13 

2232537 

2 • 33537 

23337 • 11 

24337 • 17 

25337 • 11 

233lf7 • 41 

22335372 

325213217 

32537213 

3V7241 

TABLE 2 

H*(n) 

1 

2 

2 

3 

3 

7 

7 

1 

6 

45 

60 

90 

420 

630 

n 

= 2-3 

= 325 

= 223- 5 

= 2 • 325 

= 223 • 5 • 7 

= 2 • 325 • 7 

H*(n) 

9 

13 

10 

13 

10 

7 

n 

3,780 = 22335 • 7 

5,460 = 223 • 5 • 7 • 13 

7,560 = 23335 • 7 

8,190 = 2 • 325 • 7 • 13 

9,100 = 22527 • 13 

15,925 = 527213 

(continued) 
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TABLE 2 (continued) 

H*(n) 

11 

15 

10 

15 

9 

12 

7 

17 

12 

18 

16 

14 

19 

20 

19 

16,632 

27,300 

31,500 

40,950 

46,494 

51,408 

55,125 

64,260 

66,528 

81,900 

87,360 

95,550 

143,640 

163,800 

172,900 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

n 

23337 • 11 

223 • 527 • 13 

2232537 

2 • 32527 • 13 

2-3^7- 41 

2lf337 • 17 
3 2 5 3 7 2 

22335 -7-17 

22337 • 11 

2232527 • 13 

263 • 5 • 7 • 13 

2 • 3 • 527213 

23335 -7-19 

2332527 • 13 

22527 -13-19 

\H*(n) 

12 

15 

20 

10 

20 

18 

22 

19 

13 

12 

13 

17 

18 

33 

20 

185,976 

232,470 

257,040 

330,750 

332,640 

464,940 

565,448 

598,500 

646,425 

661,500 

716,625 

790,398 

859,950 

900,900 

929,880 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

n 

233tf7 • 41 

2 - 345 -7-41 

2tf335 -7-17 

2 - 335372 

25335 -'7 • 11 

22344 -7-41 

2lf337 -11-17 

2232537 - 19 

325213217 

22335372 

32537213 

2 . 347 . 17 . 41 

2- 33527213 

2232527 -11-13 

223**5 -7-41 

The complete proofs of Theorems 1 and 2 are quite tedious, requiring 
many cases and subcases. However, the techniques are quite simple, and 
are adequately illustrated by the cases discussed here. 

2. TECHNIQUES FOR THEOREM 1 

If p and q are (not necessarily distinct) primes and pa < qb, then it is 
easy to show that H*(pa) > H*(qb). This fact can be used, once u)(n) and 
H*(n) are specified, to find an upper bound for the smallest prime power 
unitary divisor of n\ for each choice, the process is repeated to find 
choices for the next smallest prime power unitary divisor, and the pro-
cess continues until all but one of the prime power unitary divisors is 
found; the largest prime power can then be solved for directly, without 
a search. Of course, this procedure is interrupted any time it becomes 
obvious that the as yet unknown portion of n must have more prime divi-
sors than allowed by the prespecified size of o)(n) • 

With 03(n) and H*(n) given, the problem is to find n with 

n/o*(n) =#*(n)/T*(rc) 

being a prespecified fraction, which in turn requires that any odd prime 
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that divides o*(n) must also divide n. Also., since T*(n) is a power of 
2, any odd prime that divides H*(n) must also divide n. Several of the 
cases are shortened by using results of Subbarao and Warren [4] for the 
special case o*(n) = In (i.e., for n being unitary perfect). 

We present here the proof for the case a)(n) = 4, H*(n) = 15, one of 
the longer and subtler cases of Theorem 1. Throughout, let n = pqrs with 
p < q < v < s and p, q, r, and s powers of distinct primes (though not 
necessarily prime). Note that because n/o*(n) = 15/16, 3°  5\pqrs. Also, 
if n has a prime power unitary divisor which is congruent to 3 (mod 4) , 
then n must be even. 

If p > 59, then n/o*(n) > 15/16, so p < 53. 

p = 53: q < 61, so q = 59, which requires that 2 • 3 • 5|PS, a contra-
diction. 

p = 49: q < 64. But q = 61 implies 3 • 5 * 3l|rs, and q = 59 requires 
2* 3 * 5|rs; both of these are impossible. If q = 53, then r < 79, but 
there are no powers of 3 or 5 between 53 and 79. 

p = 47: q < 67 and 2 • 3 * 5|qps, so ̂  = 64, from which follows the im-
possibility 3 • 5 • 13|z»s. 

p = 43: 2* 3°  5* ll\qrs, a contradiction. 

p = 41: q < 71 and 3* 5e 7|gi>s. The only possibility is ̂  = 49, which 
requires v < 103 and 3* 5|rs. This in turn forces r = 81, which implies 
s = 125. Thus we have a unitary harmonic number, since 

#*(34537241) = 15. 

p = 37: q < 79 and 3» 5 • 19|grs5 a contradiction. 

p = 32: <y < 83 and 3 °  5 * ll|qrs, so q = 81. But then 5 • 11 • 4l|ps, 
a contradiction. 

p = 31: q < 89 and 2* 3» 5|grs. There are three unpalatable choices: 
q = 81 requires that 2» 5» 41|rs, and ^ = 64 implies 3- 5« 13|rs, while 
q = 32 forces 3 • 5 • ll|ps. 

p - 291 31 < q < 97, and rs is divisible by at least three primes 
unless q is 89, 81, 59, or 49. If q = 89, then v < 103 and there are no 
powers of 3 or 5 between 89 and 103. If q = 81, then v < 109 and 5 • 4l|ps, 
a contradiction. If q = 59, then p < 167 and the only possible cases are 
r = 125, which implies 3 • 7|s, and v = 81, which forces 5 • 41|s. If q -
49, then v < 193, so either r = 125, which does not leave the required 5 
in the numerator of n/o*(n), or r = 815 which forces 5» 41 \s» Thus p = 29 
is impossible. 
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p = 27: 35 < q < 107 and 2 • 5 • l\qrs9 so the only possible values for 
q are 64 and 49. If q = 64, then 5 • 7 • 13|rs. If q = 49, then 125 < r 
< 251 and 2 • 5|rs, SO r - 138, whence 5 • 43 |s, a contradiction. 

p = 25: 39 < q < 121 and rs is divisible by three or more primes ex-
cept when q is 107, 103, 89, 81, 64, or 53. If q = 107, then r < 125, 
while q - 103 implies r < 128, and q = 89 forces r < 149; in each case, 
3* 13|rs, a contradiction. If q = 81, then r < 157 and 13* 4l|rs, which 
is impossible. If q = 64, then r < 211 and 3* 13Ire; thus r = 169, which 
forces 3 • 1718, or r - 81, in which case 13 • '411s. If q - 53, then r < 
307 and 3* 13|rs, so r is 243, 169, or 81; each of these possibilities 
forces s to be divisible by two distinct primes. 

p = 23: 45 < q < 137 and 2 • 3 • 5\qrs. The possible values for q are 
128, 125, 81, and 64, but each of these forces rs to be divisible by three 
or more primes, a contradiction in any event. 

p = 19: 75 < q < 227 and 2 • 3 • $\qrs. Thus, q is 128, 125, or 81. 
Each of these possibilities is ruled out since rs cannot be divisible by 
three primes. 

p = 17: 135 < q < 407 and 3* b\qrs. To be within the interval, q can-
not be a power of 5, and q = 243 forces r < 611 and 5 • 6l|rs, a contra-
diction. Therefore, q is a prime power between 135 and 407, congruent to 
1 (mod 4), and such that q + 1 has no odd prime factor other than 3fs, 
5fs, and at most one 17. There are but two possibilities: q = 269 and 
q- 149. If q = 269, then v < 544 and 3' 5 Irs, a contradiction. If q = 
149, then 1446 < r < 283 and 3- 5|rs, so r = 2187, whence 5- 547|s, a 
contradiction. 

p = 16: 255 < q < 765 and 3 • 5 • 17\qrs9 so q is 729,625, or 289, each 
of which would require that rs be divisible by three distinct primes. 

Finally, if q < 16, then n/o*(n) < 15/16. 

3. TECHNIQUES FOR THEOREM 2 

Suppose that n is unitary harmonic, i.e., that 

H*(n) = nx*(n)/a*(w) 

is an integer. Suppose also that n < 106 and that 2a|n. Since T*(n) is 
a power of 2, any odd prime that divides o* (n) must also divide n. For 
a > 0, o*(2a) = 1 + 2a, so 2a||n implies 2a(l + 2a)|n, and hence a < 10. 

Except for a = 0, the supposition that 2a||n requires that n be divi-
sible by the largest prime dividing 1 + 2a, and the restriction that n < 
106 can be used to determine how many times this prime divides n. This 
gives rise to newly known unitary divisors of n9 and therefore (usually) 
newly known odd primes dividing o*(n) and hence n. The procedure is re-
peated until all the possibilities are exhausted. 
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No particular difficulty arises with this procedure, except when one 
runs out of primes with which to work, and then the procedure breaks down 
completely. In such a case we write n = Nk, where N\\n and k is unknown. 
In light of Theorem 1, we may require (o(n) > 4, which imposes a lower 
bound on o)(/c) ; and n < 10 imposes an upper bound on k and hence on oj(k) . 
There are also divisibility restrictions on k and a*(k) from N and a*(N). 
See the 2 • 325||n and 2 a 3 s 7||n cases in the discussion below. 

The n odd (a - 0) case of Theorem 2 is somewhat easier to handle than 
the others since pb\\n implies p b = 1 (mod 4) in order to avoid having too 
many 2? s in the denominator of H*(n). 

We present here the a = 1 (i.e., 2n) case of Theorem 2: 

Immediate size contradictions result if 312 \n or If 3b\\n for 6 < b ^ 
11. If 33||n, then 6l| n, so either 612|n or 6l||n, in which case 3l|n; both 
possibilities make n > 106. 

If 3If||n, then 41 |n. If 413|n or 412||n, then n > 106, so 4l||n. Then 
7|n, and n > 106 if 7s\n or 72||n. If n = 2 • 3 • 7 • 41fe, then 1 < & < 21, 
(2 • 3 e 7, fe) = 1 and o*(k) 18, so k is 5 or 17. Thus we have located two 
unitary harmonic numbers: 

H*(2 • 345 • 7 • 41) = 15, 

#*(2 • 347 • 17 • 41) = 17. 

If 33||n, then 7 |n. Size contradictions easily result if 76|n or 75\\n 
or 7k\\n or 73|n. If 72||n, then 52|n, and n > 106 if 5^^. If 53||n, then 
n = 2 . 335372 since n < 106, but a)(n) = 4. Therefore, 52||n, so 13|n and 
hence 131|n» and another unitary harmonic number is found: 

#*(2 • 33527213) = 18. 

If 337||n, then n = 2- 337fe. It follows that tf*(w) = 9H*(k)/2. But 
H*(k) does not have an even numerator after reduction, so H*(n) is not an 
integer. 

If 32|n, then 5|n. Size contradictions occur if 57 \n or 56 \\n or 5^ lln, 
while there are too many 3fs in the denominator of H*(n) if 55\\n or 53||n. 
Therefore, 52j|n or 5||n-

If 3252|jn, then 13|n, and n > 106 if I3h\n or 133|jn or 132||n. Thus, 
13||n, so 7\n, but n > 106 if 73|n5 and if 72||n there are too many 5fs in 
the denominator of H*(n) , so 7||n. Therefore, 

w = 2- 32527 • 13- fe, 

where fe < 24, (2 • 3 • 5 • 7 • 13, k) = 1 and a*(fc)|30. This locates another 
unitary harmonic number: 
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#*(2 • 32527 • 13) = 15. 

If 2 • 325||n, then n = 2 • 325 • k with ( 2 - 3 - 5 , k) = 1, fc < 11,111 and 
(a*(fc), 3-5)= 1, so k is composed of prime powers from the set 

{7, 13, 31, 37, 43, 61, 67, 73, 97, 103, 121, . . . } . 

Since a)(n) > 5, co(fc) > 2. However, ca(fe) < 3 since 

7 • 13 • 31 • 37 > 11,111. 

If co(fc) = 3, then the smallest prime dividing k is 7, since 

13 • 31 • 37 > 11,111. 

Also, 37|fe or else 19|fc, which is impossible if fc < 11,111. Thus, the 
only possibility with b)(k) = 3 is k = 1 * 13 • 31, which forces E*(ri) to be 
nonintegral. If 0)(/c) = 2, then write n = 2 • 325 • p • q. Now, p < 103, 
since 103- 121 > 11,111 and 0*(q)\l6p9 so the only possibility is p = 7 
and q = 13, and another unitary harmonic number is found: 

#*(2- 325 • 7 • 13) = 13. 

If 3||n, then n = 2 - 3 • k wi th k < 166,666, (2 • 3 , fc) = 1, (a*(fe), 3) 
= 1 and oo(fc) > 3 . But oo(fe) < 4 , s ince 

7 - 13 • 19 • 25 • 31 > 166,666. 

If co(fe) = 4, the smallest possible next prime power is 7, since 

13 • 19 • 25 • 31 > 166,666. 

But if 3- 7|n, then #*(n)'has at least one excess 2 in its denominator. 
Therefore, (o(fe) = 3 , so let fe = pqr with p < q < r. Now, p < 49, since 
49 • 61 .• 67 > 166,666. We have the following possibilities: 

p = 43 forces ll|n. But lljfn, so n > 2 - 3 • 7211243 > 106. 

P = 37 implies 19|n. But 19fn, so n > 2 • 3•• 19237 • 43 > 106. 

p = 31 leaves extra 2fs in the denominator of H*(n). 

p = 25 requires 13 |n, but 13|fn. If 134|n, then n > 106, and the same 
is true if 133|n, because then 157 \n. Then 132||n, so 17 \n and 17||n, so 
n > 2 • 3 • 5213^172 > 106. 

p - 19 forces 5|w, but 5|n. But n > 106 if 56|n or 54||n, and there 
are extra 3's in the denominator of H*(n) if 55||n or 53||n. Therefore, 
52|n, so 13|n and 13|n, but n > 106 if 133|n, and hence 132||n, whence 
17jn and n > 106. 
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p = 13 requires l\n$ and l\n. If 75|n or lh\n or 73||n, then n > 106. 
Thus, 72||n, so 52|n. Then n = 2* 3* 527213 • k with fe < 10. The only 
value of k that checks out is k = 1: 

#*(2 * 3 • 527213) = 14. 

p = 7 leaves extra 2?s in the denominator of H*(n). 

Since 2||n, 3\n and the 2>\n subcase is eliminated. Thus, the l\n case 
of the theorem is proved. 

4. LARGE INTEGRAL VALUES OF H*(n) 

It is not at all hard to construct n with H*(n) a large integer. For ex-
ample, one may start with the fifth unitary perfect number [5], 

2183 • 5^7 • 11 • 13 • 19 * 37 * 79 • 109 • 157 • 313, 

and have H*(n) = 2 1 = 2048. However, substituting for various blocks of 
unitary divisors yields the related number 

n = 2183If5if7lfl 1213217 *19231« 37 *41° 43-61 •79-109-157 • 181 °313°  601 • 1201, 

for which H*(n) = 211 3 • 7 • 19 = 817,152. 

The author conjectures that there are infinitely many unitary har-
monic numbers, including infinitely many odd ones, but that there are 
only finitely many unitary harmonic numbers with a)(n) fixed. 
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Euler's <j>-function, (f)(n) , denotes the number of positive integers less 
than ft and relatively prime to it. There are many generalizations of 
this famous function; for example, see [1; 2; 3]. In this note, we ex-
tend the (J)-function to an arithmetic progression 

D(s9 d, n) = {s, s + d9 . .. , s + (ft - l)d}9 

where (s9 d) = 1. A formula will be established giving the number of 
elements in D(s9 d9 ft) that are relatively prime to ft. Observe that (J)(ft) 
is the number of elements in the progression D(l9 1, ft) that are rela-
tively prime to ft. 

Before we establish the formula, we begin with some preliminary re-
marks . Let 

P(x9 d9 ft) = {x9 x + d9 . .. , x + (ft - l)d} 

be an arbitrary progression of nonnegative integers. Note that if (x9 d) 
= 1, then P(x9 d9 ft) = D(x9 d9 ft). 

Lemma 1 

Let P(x9 d9 ft) be an arbitrary progression with (d9 ft) = g. Suppose 
that ft = gk and d = gk-±. Then no two elements in each of the g blocks of 
k consecutive elements are congruent (mod ft). Furthermore, every block 
contains the same residues (mod ft). 

Proof: x + rd = x + td (mod n) if and only if v E t (mod k). 

Defini tion: Let §(s9 d9 ri) denote the number of elements in the arithmetic 
progression D(s9 d, ft) that are relatively prime to ft. 

Remark: <J>(19 1, n) = <f>(n) = $(s9 1, ft). 

Theorem 1 

Suppose (m, n) - 1. Then 

(J)(s5 d9 mri) = (()(s, d9 m)§(s9 d9 ft). 
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Proof: Write the elements of D(s9 d9 mri) as follows: 

s s + d s + 2d ... s + (7W - l)d 
s + md s + (m + \)d s + (m + 2)d ... s + (2m - l)d 

s + (n - l)md ... s + (?w? - l)<f. 

Since the elements in the first row are elements of the progression 
D(s9 d9 m) 5 the number of elements in it that are relatively prime to 777 
is <f>(s, d, m) . Let Ci denote the column headed by s + td. If (s + td, m) 
> I, no element of Ci is relatively prime to m. If (s + id9 m) = 1, every 
elements of Ci is prime to 777. So to complete the proof, we need to show 
that §(s9 d9 ri) of the elements in each column of Ci are prime to n. 

Let (d, ri) = g. Since (777, ri) = 1, it follows that (md, ri) = g9 and 
by Lemma 1, there are g blocks of ft consecutive elements in which no two 
of them are congruent (mod ri) . Thus5 all we need to show is that each 
element in the first block of Ci is congruent modulo n to an element in 
the first block of D(s9 d9 ri) . This would imply that there are (f>(s, d9 ri) 
elements in C^ that are relatively prime to n. 

Suppose (s + id) + jmd9 0 ̂  j ^ ft - I, is an arbitrary element in the 
first block of C^. Then there is an integer q such that 

Thus 
(i 4- j'777) = qk + v9 0 < v < ft. 

(s + id) + jmd = s + rd (mod ri), 

where s + rd is an element of D(s9 d9 ft). 

Lemma 2 

Let p be a prime and ft a positive integer. Then 

)(e, <i* p*) 

pk, if p|d. 

Proof: If p|<i, then (s 9 d) = 1 implies that (s + £<2, pk) = 1 and hence 
every element in Z)(ss d9 pk) is relatively prime to p. If p\d9 then 
all p-consecutive elements in D(s9 d, pk) form a complete residue system 
(mod p). Thus, each has (p - 1) elements relatively prime to p. Since 
there are p k ~ 1 blocks of p-consecutive elements in D(s9 d9 p k ) , it fol-
lows that 

<t>(8, d, P
k) = P ^ 1 ^ ~ 1) = P

k(l ~ ^\y if P\d. 

Now combining Theorem 1 and Lemma 2, we have a formula for $(s9d9 ri) . 
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Theorem 2 

Let D(s9 d9 ri) be an arithmetic progression with n - paipaz . . . pf 
Then, for n > 1, J 

n, if p.|d for all i, 

)(s, d9 n) 

nil ML - — ) for all pjd. 
\ tr £ I 

Remark: §(s9d9n) is independent of the first element in the progression 
D(s9 d, n) . 

The following corollaries are immediate. 

Corollary 1 

<Kn) = *d, 1, n) = wll(l - ±\. 

Corollary 2 

If (n, d) = 1, then cf>(s, d, n) = (f)(n). 

Corollary 3 

Let a and & be any two positive integers. Then 

§(db) = (J>(a)<Ks, #> i>) = §(b)$(s9 b9 a). 

Now we return to the arbitrary progression P(x9 d9 ri) . Let §(x9 d9 ri) 
denote the number of elements in P(x9 d9 ri) that are relatively prime to 
n. The proof of the following result is immediate. 

Theorem 3 

Suppose P(x9 d9 ri) is an arbitrary progression with (x9 d) - g. Then 

(i) If (g9 ri) + 1, then ®(x9 d9 ri) = 0, 

(ii) If (g9 ri) = 1, then $(x, d9 ri) = $M|, -, n) . 
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HARMONIC SUMS AND THE ZETA FUNCTION 
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1 . SUMMARY 

Consider the harmonic sequence 
n 

Hn = E fc_1» n> l9 
k = l 

and the Riemann zeta function 

COO = E fc"8, Re(s) > 1. 
fc = l 

Recently, Bruckman [2] proposed the problem of showing 

E 7~= 2?(3). 
fc = i fc 

See also Klamkin [3] and Steinberg [4]. Presently, we establish the fol-
lowing generalization. 

Theorem 

Le t Hn and £ ( s ) be a s a b o v e . Then 

H -, 2n 
(i) E -T—7 = 4 E ( -D J C( j )C(2n + 2 - j ) , n > 1, 

and 
( i i ) E ~i = (l + f k ( n + 1) - ^ E CO'KCn + 1 - «/), n > 2. 

Here and in the sequel, as usual, 

n 
E o- = 0 if n < j0. 

J = «70 

The series which will be manipulated are readily shown to be absolutely 
convergent, so that summation signs may be reversed. 

The proof of the theorem will be given in Section 2 after some auxi-
liary results have been derived. Some further generalizations are given 
in Section 3, and an open problem is stated. 
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2. AUXILIARY RESULTS AND PROOF OF THE THEOREM 

Define the generalized harmonic sequence 

B™ = 0 and R™ = £ l~m> m > 1, n > 1, (2.1) 
i = i 

and set 

ff™ - Y - ff(„" and fl^ra) = c(m) - H™, m > 2, n > 0, (2.2) 

where Y is Euler's constant. Note that 

fa Id + n) ~ ̂ U i. +n) ~ a" ^+l^ ~ N N+n n 

= Hn+ (HN- l o g ff) - [ffff + n - i o g ( f l + n ) ] - l o g ( l + £ ) ; 

t h e r e f o r e , us ing the well-known l i m i t i n g express ion 

limO?, - log ff) = Y, (2.2a) 
iV-i-oo 

i t follows t h a t 

Hn-H? = 1 ^ , n > 0 ; (2.3) 

it also follows from (2.1) and (2.2) that 

%nm) = E (̂  + ̂ )~W> ^ > 2, n > 0. (2.4) 
£= 1 

Now define the sums 
E{m) 

Snm) = £ - V . m> 1, n> 2, (2.5) 
fc-i fe and 

Sn^ == £ :-V^ rn > 2, n > 1, (2.6) 

which may be shown to exist. S^ exists because Ek = 0(log k) and 

*-i kn 

exists for all n ̂  2. Also 

Si"' = 5 ^ ' - C0n + 1), 

as will be shown in Lemma 2.1, so s[m exists for all m ̂  2. These sums 
are related to the zeta function as follows. 
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Lemma 2.1 

Let Sm and Sn be as in (2.5) and (2.6), respectively, and let £(•) 
be the Riemann zeta function. Then 

(i) Sm = Sn +^(m+n)sm>2sn>l, 

(ii) S™ + S{™] = C(7TZ + n) + z(m)Z,(n)9 m > 2, n > 2. 
and 

Proof: (i) Clearly, 

Next, 

m Zs 7 m &-«> -i m + n ^ -i.m 
k=i k k=i k k=i k 

Hin) 

= Kim + ri) + E " , by (2.5) and (2.1), 
*-i (fc + if 

#( n ) °°  & 

" = E (fc + l)-mE^-", by (2.1), 
*=i (fc + l)m ^-i £= 1 

= E £~n E(fc + D"m 

= E ^~ n E (fc + £)~m 

£ = 1 fc = 1 

= ̂ ° , by (2.4) and (2.6). 

The last two relations establish (i). 

(ii) Relation (2.6) gives 

S{
n
m) = eOn)C(w) - S%\ m > 2, n > 2, 

by means of (2.2) and (2.5). This along with (i) establishes (ii) 

Lemma 2.2 

For each integer m19 m2 ^ 1, and n1 ^ n2 > 0, set 

^lj = ^ l j ( m i ' W 2 ' n i 5 n2^ 

. /m, + m0 - 1 - j\ 

= <-n",+M )(»2 - % r w , 
/7?2 - 1 

and 
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(m + m - 1 - j 
> + .7 / x 2 

("-lf2 + J( Kn, - n 2 ) - ^ - ^ + ^ , 

and let Hn and #w be given by (2.2). Then 

2 mi 

*-i (& + n,)™1^ + Wo) 2 i = 1 ̂ ' = 1 

Proof: Expanding (k + n )~mi(k + n^)~mi into partial fractions, we 
obtain (by residue theory or otherwise) 

(fc + nxYm- (k + n 2 ) " ^ = £ ~ r + E ~ r (2.7) 
J = I (fc + nx)J j-i (& + n2)3 

with i4lt7- and J42J- as defined above. We see t h a t A2i = ""^n- Then, sum-
ming in (2.7) over k ^ 1, and using (2.2) and ( 2 . 4 ) , we obta in 

^ 1 <A ( A Alj S ^2J ) 
= E < E —r + E J fc = x (fc + n^™1 (k + n 2 ) m 2 fe=i U - i (fc + nxY i-i (k + nz) 

J = 2 (fe + n2)° 

*riVC + " i fc + " 2 / 1 1 f e T i \ f e + " i * + n 2 / 
n2 ^ 

= il11(ff„2 - ff„x) = i411(H„i - ff„2) 

A similar conclusion follows if n1'^ n„. Therefore9 

^ 1 tf?2 

Z ~ - - ^ + ^ 2 1 < + £ A i ; C + £ A^K 
^ ( k + n ^ i k + n ^ J-2 - 2

( c o n t i n u e d ) 
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2 mi -(') 

which was t o be shown. 

Lemma 2 . 2 w i l l be u t i l i z e d t o e s t a b l i s h t h e f o l l o w i n g : 

Lemma 2.3 

L e t S™ and Sm be g i v e n by ( 2 . 5 ) and ( 2 . 6 ) , r e s p e c t i v e l y . Then 

( m + n - 2 \ n /m + n - 1 - j \ 

, W - 1 / J = 2 \ 7W - 1 / 

m /m + n - I - j \ 
- L (-DJ k(j)C(m.+ n - j ) , 

j=2 \ n - 1 / 
m > 1 , w > 2 , 

Proof : We have 

S{
m

n) = L ^ - = t t , by ( 2 . 4 ) and ( 2 . 6 ) , 
* - i km A - i * - i fe«(fe + W » 

E < E AldH{
0
d) + £ ^ 2 , ^ j ) >s by Lemma 2 , 2 , 

£ = l f j = l J=1 ) 

£ < ^ i A U ) + E ^ i j C ( j ' ) + £ 4 2 i l { J ) V, by ( 2 . 1 ) , ( 2 . 2 ) and 

/m + n - 2\ „ ff(D 

( -D m + 1 IS * \ n - 1 ./i-ilT*"-1 

m [m + n - 1 - j \ •» , 
+ (-Dm £ (-i)J( k(j) £ — L -

3-2 \ „ _ 1 J 1=1 £™ + " ^ 

„ /m + n - 1 - j \ » #<J> 
+ (-Dra £ £ * 

/m + n - 2 \ 

• " " I , - )«~ 
m /m + n - I - j \ 

+ H ) m E H ) 1 k(j)C(w + n - j) 
J = 2 \ n - 1 / 

( c o n t i n u e d ) 

1983] 33 



HARMONIC SUMS AND THE ZETA FUNCTION 

n (m + n - 1 - j\ 
+ (-!)"£ K+n-,- by (2.5) and (2.6), 

J=2\ m - 1 / 

from which the lemma follows. 

Proof of the Theorem 

(i) Utilizing (2.3) and Lemma 2.2 with mx = 2n, m2 - 1, nx = 0 , and 
n2 = £, we get 

y* Hk = f> 1_ Y * V - f* X 

fe^i fe2n+1 fc-i fc2n + 1 £=i M ^ + £) £=i £ k = ik2n (k + £) 

- £ I J E ^ ' + ^ C J 

*-i £ I \ £ 2 n l2n ) o = 2 l2n+1-J) 

= E ~ — + E (-D^(J') E L — . by (2.1) and (2.2), 
H = l £ 2 n + 1 j = 2 4 - 1 £ 2 " + 2 - J 

= - E — i — + E (-DJ'?(j')C(2n + 2 - j ) , 

from which (i) follows. 

(ii) Setting m = 1 in Lemma 2.3, we get 

J = 2 

and from Lemma 2.1(i) we have 

K'li-o = ̂ n+1"J) - U * + *>» J > 2» « > 2. 

In particular, 

S[n) = ̂  " tin + 1), n > 2. 

It follows that 

C(n + 1) = t S^i-j = E{4n+1-j) - ?(n + 1)1, n > 2, 
J = 2 j = 2 

or, equivalently, 
n-l 

E 
J-2 

3™ = n^(n + 1) - 53 sf*1'^, n > 2. (2.8) 

Next, Lemma 2.1(ii) gives 
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5(n+W) +S{J^_. = C(n + 1) + ?(j)C(n + 1 - j), j > 2, w > 3, 

so that (by a change in variable from j to n + 1 - j) 

n-1 ( 2 B 9 ) 

= (n - 2)C(n + 1) + E C(J)C(« + 1 - j), w > 2. 

Relations (2.8) and (2.9), along with (2.1) and (2.5), establish (ii). 

As a byproduct of the theorem, we get the following interesting re-
sult, if we replace n by 2n + 1 in (ii) of the theorem, eliminate the 
series, then replace n + 1 by n, 

Corollary 
j n~\ 

K(2n) = £ C(2jK(2n - 2j), n > 2. 

Remark: Taking into account that 

C(2n) = (-l)n-122n"17r2n[(2n)!]-152n, n > 1, 

from [1], where 5n are the Bernoulli numbers, the above relation becomes 

3. FURTHER GENERALIZATIONS 

In this section, we give the following additional results, which express 
generalized harmonic sums in terms of the zeta function. 

^ - ^ - - C(2K(2n + 1) - <" + 2)0(2n + 1} K(2n + 3) 
fc-i fc2n+1 (3.1) 

n + l 
+ 2j](j- l)C(2j - l)C(2n + 4 - 2j) , w > 1. 

3 = 2 

E —?L- = |[C(2n) + C(w)C(w)], n > 2. (3.2) 
fc-1 ?Cn l 

^ 42) 1 
E - n r = ~4c(6) + C(3)C(3). (3.3a) 

CO # 0 ) 

E -7TT- = 18^7> " 10C(2)?(5). (3.3b) 
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Relation (3.1) follows from Lemma 2.3 (by setting n -
m by 2m + 1) , Lemma 2.1, and part (ii) of the theorem. 
follows immediately from Lemma 2.1(ii) by setting m - n. 
tions (3.3a) and (3.3b) can be derived from Lemma 2.3 by 
propriate values of m and n. We also note that the sum 

„ rj{2Z + l-n) . _ _ v 

may be obtained from Lemma 2.3 by means of some algebra that becomes pro-
gressively cumbersome with increasing n. 

It is still an open question to give a closed form of 

V k 

fc-1 kn 

for any integers m ̂  1 and n ^ 2 in terms of the zeta function. 
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INTRODUCTION 

Let N denote the set of positive integers, and Z the set of all integers. 
The function F : Z + Z with F(l) = 1, F(2) = 1, and F(n) -Fiji- 2) + F{n- 1) 
for every n £ Z, constitutes the extention to the left of the original 
Fibonacci sequence, where the domain is restricted to N. With the argu-
ments written as subscripts, the following table gives the "middle" sec-
tion of this extended two-sided sequence: 

F-7 

13 

F-s 

-8 

F-s 

5 

F-, 

-3 

F-s 

2 

F-2 

-1 

F-l 

1 

^ 0 

0 

F i 

1 

F2 

1 

Fs 

2 

F< 

3 

^ 5 

5 

Fs 

8 

F7 

13 

Similarly, one obtains the extended Lucas sequence as L i Z -»• Z with 
Lx = 1, L2 = 3, and Ln = Ln_2 + Ln_1 for every n e Zi 

L-y 

-29 

L-B 

18 

L-s 

-11 

L-» 

1 

L-3 

-4 

£ - 2 

3 

L - i 

-1 

Lo 

2 

L i 

1 

L2 

3 

Ls 

4 

^ 

7 

£ 5 

11 

Ls 

18 

L 7 

29 

In general, H : Z -> Z with ^1 = a e Z , E2
=z b £ Z9 and En - En_2 + En_-l 

for every n £ Z, constitutes the extended generalized Fibonacci sequence 
generated by the ordered pair of integers (a, b): 

E-, 

- 8 a + 5fc 

B-3 

5a - 3Z? 

ff-2 

-3a + lb 

H-i Ho 

2a - b\-a + b 

H1 

a 

H2 

b 

Hs 

a + b 

h 
a + lb 

The functions F and L as defined above are not infective; i.e., there 
are different arguments having the same values, or, in the terminology of 
sequences, some terms with different indices are equal, or, simpler still, 

The authors of this paper cooperated as faculty advisor and student 
participant, respectively, in the NSF-supported Undergraduate Research 
Participation project in mathematics at the University of Santa Clara, 
Summer 1981, Grant SPI-80254'33. 
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some terms occur more than once. An extended generalized Fibonacci se-
quence generated by (a, b) will be called infective or noninjective ac-
cording as the function H is infective or not. 

The problem posed and solved in this paper is: 

What are the necessary and sufficient conditions for 
a and b to generate an injective extended generalized 
Fibonacci sequence? 

For the sake of brevity, in this paper the word "sequence" stands for 
an "extended generalized Fibonacci sequence." In general such a sequence 
will be denoted by H with the values of E1 and H2 given, while F is short 
for H with H1 = H2 = 1 and L is short for H with H1 = 1, H2 = 3. (Since 
F commemorates Fibonacci and L commemorates Lucas, perhaps H might com-
memorate Hoggatt.) 

In Section 1, it is proved that injective sequences do exist, which 
makes the research meaningful. 

In Section 2, the problem is reduced to the investigation of a cer-
tain subset of the set of all sequences, a subset which represents all 
"candidates" for injectivity. 

In Section 3, the solution is given. 

Without further reference, some well-known properties will be used, 
e.g.: 

Hn = &Fn_2 + bFn_1 for every n e Z, where a = H1 and b = H2; 

Ln = Fn_^+ Fn+1 for every n e Z; 

F_n = (~l)n+1Fn and L_n = (~l)nLn for every n £ N U {0}; 

and finally, if two of any three consecutive terms of a sequence are 
known, then the whole sequence is known. 

For these properties, see, e.g., [3; 5; 2]. 

1. EXISTENCE 

The ordered pair (1, 1) generates F, but so does the ordered pair (1, 2), 
and any ordered pair of consecutive terms of F. The generated sequences 
are identical, the order-preserving shift of the indices is irrelevant. 
The pair (1, 3) generates L, and continuing along this line, one might 
consider the sequences generated by (1, 4), (1, 5), (1, 6), ... . The 
following table shows that the first four sequences are noninjective, but 
from there on there seem to be candidates for injectivity, a conjecture 
strengthened by the use of a computer. 
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! . . • #_7 

\ F ... 13 

\L ... -29 

| (1, 4) ... -50 

(1, 5) ... -71 

(1, 6) ... -92 

(1, 7) ... -113 

(1, 8) ... -134 

*-6 

-8 

18 

31 

44 

51 

70 

83 

*-5 

5 

-11 

-19 

-27 

-35 

-43 

-51 

H 

-3 

7 

12 

17 

22 

27 

32 

H 
- 3 

2 

-4 

-7 

-10 

-13 

-16 

-19 

H 
-2 

-1 

3 

5 

7 

9 

11 

13 

-l 

1 

-1 

-2 

-3 

-4 

-5 

-6 

0 

0 

2 

3 

4 

5 

6 

7 

l 

1 

1 

1 

1 

1 

1 

1 

H 
2 

1 

3 

4 

5 

6 

7 

8 

H 
3 

2 

4 

5 

6 

7 

8 

9 

4 

3 

7 

9 

11 

13 

15 

17 

H 
5 

5 

11 

14 

17 

20 

23 

26 

6 

8 

18 

23 

28 

33 

38 

43 

H ... 
7 

13 ... 

29 ... 

37 ... 

45 ... 

53 ... 

61 ... 

69 ... 

Further inspection of the table suggests the following lemma. 

Lemma 1 

If H± = 1 and H2 = b > 3, then Hn = L n + (b - 3)Fn_1 for every n S Z. 

Proof: Every n e Z yields the identity 

#n = Fn-2 + kFn-± 

= Fn_2 + 3Fn_1 + (b - 3)Fn_1 

= Fn 4- 2F n_ x + (2> - 3)Fn. x 

- K + i +Fn-i + (*> " 3)Fn_x 

= L n + (2> - 3)Fn_ x. 

Another fact revealed by the table is the importance of the terms with 
even negative index. These are the terms that might be equal to terms 
with positive index. 

Lemma 2 

If H1 = 1 and H2 = b > 3 5 then H_n =Hn+ (b - 3)Fn for every even n e Z. 

Proof: Let n e N be even. By Lemma 1, #_n = L - n + (b - 3)F_n_1. Since 
n Is even, L _ n = L n , and -n - 1 is odd, so that F_n_1 = Fn + 1. Hence 

#_„ = L„ +(b - 3)Fn + 1 
or 

#_n = Ln + (6 - 3)Fn-1 + (b - 3)Fn . 
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Hence , by Lemma 1, 

H_n = Hn + Q> - 3)Fn . 

Since the sequence H generated by (1, 6) is the first candidate for 
being infective, a close inspection of this sequence is helpful. It is 
obvious that the sequence consists exhaustively of three one-sided se-
quences : 

(i) the sequence Hn , n e N9 the strictly increasing sequence 

1, 6, 7, 13, ...; 

(ii) the sequence H_2n* n e ^^{0}, t n e strictly increasing sequence 

5, 9, 22, 57, .-..; 

(iii) the sequence F_{2n_1), n e N-9 the strictly decreasing sequence 

-4, -13, -35, -92, . .. . 

The only possibility for H to be noninjective is that the sequences (i) 
and (ii) have a common term. 

Theorem 1 

If #! = 1 and # 2 = 6 , then H is injective. 

Proof: Assume that H is noninjective. Then, by the introductory re-
marks above and by Lemma 2, there are n e N and p e N, where 0 < n < p 
and n even, such that H.n = Hp with Hp = Hn 4- 3Fn . Since 

ffp=V2 + 6 F P - l a n d #« = F n - 2 + ^ n - l ' 

one o b t a i n s 

Fn-2 + W „ - l ' + 3 F n = V 2 + 6 F P - 1 = 
and h e n c e 

5F + 4F = F + 5F 

4 ^ + l + V l = 4 F P - 1 + F P + 1 ' 

3 f n + 1 + L n = 3Fp.1 +Lp, 

which yields 

which gives 

which finally results in 

3 ^ n + l "• Fp-j " LP ~ Ln- (D 

Since 0 < n < p, one obtains Lp > Ln and Lp - Ln is positive. Therefore, 
F +1 - Fp , is also positive, and hence Fn + 1 > -fp^ and n + 1 > p - 1 or 
p < n + 2, which combined with n < p yields p = n + 1. Rewriting the 
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identity (1) with n + 1 for p, one obtains 

3(Fn + l - Fn) = Ln+1 " Ln> 
or 

3Fn_x =Ln_x. (2) 

Since n > 2 and n = 2 gives the contradiction 3£\ = L1 or 3 = 1, one ob-
tains n > 2. 

Nextj it is proved by induction on n that Ln < 3Fn for every n > 2. 

Base step: n = 3 yields L3 = 4 < 6 = 3F3. 

Induction Step: Assume Lfe < 3Fk for every k e N9 3< k< m, m e N. 
Then Lm_2 + Lm_1 < 3Fm_2 + 3Fm_15 by assumption; or Lm < 3Fm . Hence, by 
induction, Ln < 3Fn for every n £ N9 n > 2» Thus, for every even n > 2, 
certainly Ln_x < 3Fn_1, contrary to (2). Hence, by reduetio ad absurdum, 
H is infective. 

Corollary 

If #! = 1 and #2 = Z? > 6, then # is injective. 

Proof: Assuming again that # is noninjective, one obtains the iden-
tity: 

(b - 3)(Fn+1 - Fp^) =L p - Ln, (3) 

which again yields p = n + 1, because (Z? - 3) > 0. Substituting rc + 1 
for p in (3), one obtains 

(b - 3)Fn_± = Ln-1. (4) 

Again, n = 2 is contradictory, and for n > 2, the proof of Theorem 1 ar-
rived at £„_! < 3Fn_15 and therefore, since b ^ 6, certainly 

£„_! < (& - 3)Fn_15 

contrary to (4). 

2. REPRESENTATION 

The search for the necessary and sufficient conditions for (a9b) to gen-
erate an injective sequence is simplified in two ways: (i) by elimination 
of classes of sequences which are obviously or can be proved to be non-
injective; (ii) by representation of the remaining set of sequences by a 
proper subset so that the investigation may be restricted to that subset. 

Trivially, all sequences generated by a pair of equal integers are 
noninjective. Moreover, If a ^ b, but either a = 0 or b = 0, then the 
sequences generated by (a, b) are noninjective; if a = 0, then H2 = H3 = b 
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and if b = 0, then H1 = a = #3. As a matter of fact, all sequences con-
taining 0 can be discarded, since the successor and predecessor of that 0 
are equal. 

The sequence obtained from the sequence H by multiplication of all 
its terms by c e Z may be called a multiple of H and denoted by cH. If 
H is generated by (a, b), then cH is generated by (ca9 cb) . Clearly, cH 
is injective if and only if H is injective. If a and b are relatively 
prime,then the sequence generated by (a, b) represents all its multiples 
with respect to injectivity. This implies that the search can be re-
stricted to generating pairs (a, b), where a and b are relatively prime. 
Moreover, the sequence -H 9 short for (~1)#, can be seen as the negative of 
H and clearly only one of H and -H has to be considered. 

As is well known (see [1] , and also [4]) , every sequence has two parts: 
a right-hand part where all the terms have the same sign (the monotonia 
portion) and a left-hand part where the signs of the terms alternate (the 
alternating portion). Let a sequence be called positive or negative ac-
cording as the monotonic portion has positive or negative signs. Since 
any sequence can be generated by any successive pair of its terms, the 
search for injectivity can be restricted to pairs (a, b) where a and b 
have the same sign. Moreover, since a negative sequence is the negative 
of a positive sequence, a further restriction can be made to pairs (a, b) 
where a and b are both positive. In a positive sequence there is a last 
alternating pair; namely, the pair (H^_2, Hi_1)9 ^ £ Z9 where Hi_2 < 0, 
Hi-i ^ 0, and Hi > 0 (in general, Hi = 0 is possible, as in F, but these 
sequences have already been discarded as noninjective). If the pair 
(Hi _ 2 5 #£-i) is the last alternating pair of the sequence, the pair (Hi9 
Hi + 1) may be called the characteristic pair of the sequence. It is the 
unique pair of successive terms of a positive sequence such that: 

(i) H^ > 0 is the smallest term of the monotonic portion of the 
sequence; 

(ii) Hi is the only term of the monotonic portion that is smaller 
than its predecessor; 

(iii) Hi is the unique term of the monotonic portion that is smaller 
than half its successor. 

As to (i) , Hi < Hi_1 because Hi - ^_i = #£-2 ^ 0* a n d Hi ^ #j * f o r 
every j > i, because Hj = Hi + one or more positive numbers. As to (ii) , 
if there is another term in the monotonic portion smaller than its pre-
decessor, say Hk9 then k> i9 since k = i - 1 does not qualify; but then 
Hk_2

 = Hk~Hk-i would be negative and (Hi, 2» #£-1) would not be the last 
alternating pair. As to (iii), in general, for every m e Z, 2Hm < Hm + 1 
if and only if Hm < Hm_±. The argument is as follows: since 

2Hn = 2aFn_2 + 2bFn_± and Hn + 1 = dFn_x + bFn , 

one obtains 2Hn < Hn+1 if and only if 
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2aFn_2 4- 2bFn_1 < aFn_1 + bFn9 

which holds i f and only i f 

aFn_2 + bFn_± < a{Fn_1 - Fn_2) + b(Fn - Fn_1) , 

which is the same as 

Hn<aFn_3 +bFn_2 o r Hn < Hn^. 

It follows that #^ is the unique term of the monotonic portion such that 
2Ei < Hi + 1 , since Ei is the only term of the monotonic portion smaller 
than its predecessor. 

Since every positive sequence has a characteristic pair, this pair 
can be seen to generate the sequence, and the investigation may be re-
stricted further to pairs (a, b) where 2a < b. 

Summarizing, the investigation may be restricted to ordered pairs of 
integers (a, b) , where a + b5 both a > 0 and b > 0, a and b relatively 
prime and, finally, 2a < b. 

3. CONCLUSIONS 

The following lemma is strongly suggested, of course, by the table in 
Section 1. 

Lemma 3 

Let E1 = a, H2 = b9 and 0 < 2a < b. Then H_n > 0 for every even n e N 
and H_n < 0 for every odd n e N. 

Proof: By induction on n» 

Base step: E.1 = 2a - b = ~(b - 2d) < 0; 

H_2 = 2b - 3a = (b - 2a) + (b - a) > 0. 

Induction step: Assume the lemma holds for all k < m, k e N 9 m e N, 
m > 2. If 77? is odd, then w - 1 is even and m - 2 odd; hence, by assump-
tion, #-(m_i) > 0 and E.{m_2) < 0, or, H-m + i > 0 and E-m+i < 0. Since 
#_m = E_m + 2 - E_m+19 it follows that F_m < 0. Similarly, if TT? is even, 
#_w+1 < 0 and H_m+2 > 0, so that H_m = E_m+2 - E_m + 1 yields E_m > 0. 

Conclusion: The lemma holds for every n e Ns by induction. 

Corollary 

Let H be as in Lemma 3. Then H is noninjective if and only if there 
exist p e N and even n e N such that E_n = Ep. 
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Proof: Consider the set {Em : m £ Z} and its subsets A = {Hm ' m > 0}, 
B = {Em : m < 0, 77? odd} 5 and C = {#m : m < 0, m even}. It can be readily 
shown, by considerations similar to those preceding Theorem 1, that with-
in each of A, S, and C9 one has Hi = Hj if and only if i - j. Since A 
and B are clearly disjoint, and B and C also, for H to be noninjective, 
it is necessary that A P) C ̂  0. Since #0 = i - a is clearly not in A9 it 
is then necessary that there exist an even n £ N and p £ N such that 
H-n = Ep. Obviously, #_n = Hp, n e N, n even, p £ N, is sufficient for 
# to be noninjective. 

Theorem 2 

L e t #x = a , # 2 = ^ 5 and 0 < 2a < £>. Moreove r , l e t #_n = #p f o r some 
even n £ N and p £ N. Then n - 2 < p < n + 2 . 

Proof: If H.n = #p, then 

aF-n-2 + b F - n - l -<#P-2 +bFp-l> 

or, since n + 2 is even and n + 1 is odd, 

bFn+1 = a(Fp_2 +Fn+2) + bFp_x. 

F u r t h e r , n > 0 y i e l d s Fn+Z > 0 , and p > 0 y i e l d s Fp_2> 0, so t h a t 

a ( F p _ 2 + F n + 2 ) > 0 , 
and hence 

bF > bF or F > F 
urn+l ' U£p-l UL n + l ^ p - l * 

Thus n + l > p - l o r p < n + 2 . On t h e o t h e r h a n d , 

oiF + bF = aF + bF 
UL-n-2 ^ UL -n-1 urp-2 U p-l 

y i e l d s 
&(Fn + 1 - F p . x ) = a(Fp,2 +Fn + 2) 

a n d , s i n c e 2a < b, one o b t a i n s 

a ( F p . 2 +Fn + 2) > 2a(Fn + l - Fp_J. 

a(Fp_2 + Fp.J + aFn + 2 + aFp_x > 2aFn+1, 

a(Fp +Fp_1) + aFn+2 > 2aFn+1 

Hence, 

which yields 

or 
aFp + 1 + aFn + 2 > 2aFn + l i 

"&n+2 " ^ n + l > - aFn + l > ~<*p + 1 > 
o r 

<^n - aFn + 1 > -aFp + l* 
or 

~aFn_1 > ~aFp+1, 
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Fn-1 <?V+1> 

which in its turn yields n - 1 < p + 1 or n - 2 < p. 

Remark: The next proof uses a little lemma of number theory which can be 
formulated as follows: let k and m be fixed positive integers generating 
the set of pairs {{k9 m+ sk} : s e Z}; if one of these pairs is relative-
ly primes then each of them is* (The proof can be seen readily by con-
sideration of the contrapositive: if one of the pairs has a common factor 
other than 1, then each pair has.) This lemma is applied four times in 
the proof of the next theorem, where a and b are fixed positive integers 
which are relatively prime: 

1. If b is odd9 then 2a and b are relatively prime also and hence, 
by the lemma, so are 2a and b - 2a. 

2e If b is even, then & - 2a is even and 2a and b - 2a are not rela-
tively prime, but a and \b are, and hence, by the lemma, a and 
jb - a are. 

3. If a is odd, then a and 2b are relatively prime and hence, by the 
lemma, so are a and 2b - 3a. 

4. If a is even, then a and 2b - 3a have 2 as a common factor, but 
a and b are relatively prime and hence, by the lemma, so are la 
and b - fa. 

Theorem 3 

Let H1 = a, H2 = b9 0 < 2a < b and, moreover, let a and b be rela-
tively prime. Then H is noninjective if and only if one of the following 
alternatives holds: 

a. a = 1 and b = 3. 

b. For some even n > 0, 2a = Fn_1 and b =F n + 1 , where b is odd. 

c. For some even n > 0 , a = F n - 1 and \b = Fn + 1» where b is even (and 
hence a is odd). 

d. For some even n > 0, a = Fn_1 and 2(6-a) =^n + i5 where a is odd. 

e. For some even n > 0, |a = ̂ n_x and & - a = F„ + 1, where a is even 
(and hence b is odd). 

Proof: (i) If H is noninjective, then, by the corollary to Lemma 3, 
there exist p e N and even n e N such that H-.n = Hp» Thenf by the pre-
vious theorem, n - 2 < p < n + 2. In the proof of the latter theorem, 
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the identity 

b(Fn+1 -Fp.i) = a(Fp_z +Fn + Z) (5) 

did appear, which will be used again here, 

Case 1. p = n yields for (5) the identity: 

M ^ + i ~Fn.x) = a(Fn_2 + F n + 2 ) , 

which t r a n s f o r m s i n t o 

b(Fn + i - Fn + Fn - Fn-i) = a(Fn + F n + 1 + Fn_2), 
and hence 

bF„ - a(Fn_1 +Fn + 1 + 2 F n . 2 ) , 
which y i e l d s 

bFn = a(2Fn_1 + F n + 2 F n _ 2 ) , 
and h e n c e j f i n a l l y , 

£>Fn = 3 a F n , 

o r , s i n c e n > 0 and hence Fn ^ 0 , 

fc = 3 a . 

Since a and £ are relatively prime, a = 1 and b = 3, which is alternative 
a. 

Case 2. p = n + 1 yields for (5) the identity: 

bK + l ~ Fn\= <*&n-l +Fn + Z), 
which gives 

bFn_x = a(F„_x + Fn +F„ + 1 ) , 
and hence 

M ^ = a(2F„_x + 2Fn), 
which transforms into 

(6 - 2a)Fn_x = 2aFn, 

or, since n > 2 and hence ̂ ^ ^ 0, 

Fn b - 2a 
Fn-i 2a ' 

Any two successive Fibonacci numbers are known to be relatively prime 
(cf, e.g. [3], p. 40). If b is odd, 2a and b - 2a are relatively prime 
(remark 1), and hence, for some even n > 0, 

2a = Fn_1 and b - 2a = Fn , 
or 

la = Fn_± and 2>=Fn + 1, 
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which is alternative b. If & is even, then 

and, since a and ^b - a are relatively prime (remark 2), for some even 
n > 0, 

a = Fn_1 and Fn = jb - a, 
or 

a = Fn_± and f& = Fn + 1, 

which is alternative c. 

Case 3. p = w - 1 yields for (5) the relation 

b(Fn + 1 - Fn_2) = a(Fn_3 + F n + 2 ) , 

which, by some manipulations similar to those in the previous cases and 
left to the reader, can be transformed into 

(26 - 3a)Fn_1 =aFn, 

or, since Fn_1 ^ 0, 

lb - 3a =
 Fn 

a Fn-i° 

If a is odd, then a and 2b - 3a are relatively prime (remark 3); hence, 
for some even n > 0, 

a = Fn _ 1 and 2b - 3a = Fn , 
or 

a = Fn_1 and 2(2? - a) = Fn + lS 

which is alternative d. Finally, if a is even, then ~a and b - \a are 
relatively prime (remark 4 ) ; hence, for some even n > 0, 

la = Fn_1 and b - fa = Fn , 
or 

}a = Fn_! and b - a = Fn + l9 

which is alternative e. 

(ii) As to the converse, the first alternative with a = 1 and b = 3 
generates the Lucas sequence, which is well known to be noninjective, as 
L-n = Ln for even n £ N* The second alternative, with 2a = Fn_1 and b = 
Fn+1, where n e N9 n even and b odd, generates a sequence H with 

#n + l = ^ n - l + bFn = ^ + h & " 2^> = 2 ^ ~ 2c^ + &* » 
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and 

H = aF „ . + bF _ = -aF 9 + Z?F _ 
-n -n-2 -n-1 n+2 n+1 

= -a(22> - 2a) + &2 = 2a2 - 2a& + b2. 

Hence #_n = #n + 1 and, since obviously -n ̂  n + 1, H is noninjective. The 
third alternative, with a = Fn_1 and yi> = Fn+19 wheren e N9 n even, fe 
even, and a odd, generates a sequence # with 

Hn + 1 = ^ n - l + &Fn = <? + & (2& " a> = ^ " 0* + 2 ^ 
and 

H_n = a F „ n „ 2 + bF_n_± = - a F n + 2 + 2>Fn+1 

= -a(fc - a ) + fZ?2 = a 2 - a£ + f £ 2 . 

Hence, again, H_n = Hn+1 and # is noninjective. The fourth alternative, 
with a = Fn„1 and 2(b - a) = Fn + 1, where n e N 9 n is even and a is odd, 
generates a sequence # with 

#*-l == ^ - 3 + fcFn-2 = a{^a ~ 2 & ) + & ( 2 & ~ 4a> = 5 a 2 " 6ab + 2 & 2 

and 
H-n = oF_n_2 + fcF^.! = -aFn+2 + bFn + 1 

= -a(4fc - 5a) + 6(2& - 2a) = 5a2 - 6ab + 2b2. 

Hence H.n = Hn_1 and H is noninjective. Finally, the fifth alternative, 
with \a - Fn_1 and i - a = -Fn+l5 where n e N 9 n even, a even, and & odd, 
generates a sequence # with 

Hn-i = ^n-s + bFn~i = a(f a - &) + M & - 2a) = fa2 - 3ab + b2 

and 
#_„ = aF_n_2 4- iF^., = -aFn+2 + &Fn + 1 

= -a(2fc- fa) + 2>(fc - a) = fa2 - 3afc + 2?2. 

Hence, again, H_n = H n - 1 and # is noninjective, which completes the proof. 

Examples of noninjective sequences according to the alternatives of 
Theorem 3 are: 

1. The Lucas sequence with characteristic pair (1, 3). 

2. The sequence with characteristic pair (1, 5). Here 

2a = 2 = F3, b = 5 = F5, E_h = #5 = 17. 

3. The sequence with characteristic pair (1, 4). Here 

a = 1 = F±9 \b = 2 = F3, H_2 = H3 = 5. 
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4. The sequence with characteristic pair (13, 30). Here 

a = 13 = F75 2(2? - a) = 34 = F9, H_8 = H7 = 305. 

5. The sequence with characteristic pair (45 9). Here 

\a = 2 = F3, (b - a) = 5 - F5, #_4 = H3 = 13. 

The proof of the following corollary uses the fact that the ratios 
of successive Fibonacci numbers5 

— s n e Ns n > 1, 
K.-, 

form a sequence which, for n -+ °°, converges to 

a = 1 +
2 (= 1.61803398875...) (see [3], pp. 285 29). 

In particular5 the subsequence consisting of the ratios where the numer-
ators have even indices, contains only terms < a and converges to a from 
below: 

1 3 8 21 55 
Is 29 5s 135 34s 88°  ' 

F F 
This sequence is strictly increasing, i.e., if — = — 3 then n = m; 

£ n - 1 * m-1 

moreovers n x m x 

Fn 
1 ̂ T T ^ < 1.62. 

Corollary 1 

Let E-L = a, H2 = &, 0 < 2a < 2?, a and 2? relatively prime, and (a, 2?) 
^ (ls 3). Moreover, let H be noninjective. Then there is a unique pair 
n e N and p e Ns where n is even and either p = n - l o r p = n + l , such 
that #_n = #p. 

Proof: The hypothesis that H is noninjective implies that there is a 
pair p e N and even n £ N such that #_n = Hp. The hypothesis that (a, b) 
^ (1} 3) implies that p is either n + 1 or n -• 1. In case p = n + 1, the 
proof of the theorem arrives at 

Fn b - 2a 
Fn_! 2a 

Assuming that n, p is not unique, one obtains a different pair, say q e N 
and even m e N, such that #_OT = #?. If a = w + 1, then 

^ b - 2a 
Fm-i 2a 
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also, and m - n and q = p, since equal ratios imply equal indices (see 
the remarks preceding this corollary), contrary to the assumption that 
m9 q was different from n9 p. If q = m - 19 then the proof of the theo-
rem yields 

Fm 2b - 3a Fm b - 2a , _ Fm , Fn 

= 4 • — — hi or -= = 4 • r= *" 1 • F 2a F F 

Even if Fn/Fn_1 is as small as possible, namely F2/F1 = 1, then, still, 
Fm/Fm_1 = 5 contrary to the fact that for even m9 Fm/Fm_1 < 1,62, Hence, 
in case p = n + 1, the pair n9 p is the unique pair such that H_n = Ev . 
In case p = n - 1, the argument is the same, be it in reversed order. In 
this case 

2b - 3a 
£ n- 1 

and a different pair, m, q with q - m - 1, would also yield 

^ 2& - 3a 
* m-l 

and n - m9 contrary to the assumption of different pairs; and a different 
pair, w, q with q = m + 1, would yield 

^ & - 2a 
V i 

Fm 
F . 

7 7 7 - 1 

= 1 
4 

2a 

/ ^n 

Vn-1 

and since Fn/Fn_1 < 1.62, this would yield Fm/Fm_1 < 1, contrary to the 
remarks preceding the corollary. 

The following table lists the first twenty noninjective sequences, 
ordered lexicographically by their generating characteristic pairs (a, 
b), where 0 < 2a < b and a and b are relatively prime. 
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Characteristic 
Pair Equal Terms 

Alternative 
of Theorem 3 

( 1 , 

( 1 , 

( 1 , 

(4, 

(5, 

(10, 

(13, 

(13, 

(17, 

(68, 

(89, 

(178, 

(233, 

(233, 

(305, 

(1220, 

(1597, 

(3194, 

(4181, 

(4181, 

3) 

4) 

5) 

9) 

26) 

23) 

30) 

68) 

89) 

157) 

466) 

411) 

538) 

1220) 

1597) 

2817) 

8362) 

7375) 

9654) 

21892) 

#-2n 

H_2 

H_, 

#-. 

#~6 

#-6 

#~8 

#-8 

#-10 

#-10 

#-12 

#-12 

#-14 

#-14 

#-16 

#-16 

#-18 

#-18 

#-2 0 

#-2 0 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

#2n = 

#3 = 

#5 " 

#3 = 

#7 = 

#5 = 

#7 = 

#9 = 

#11 

#9 = 

#13 

#11 

#13 

#15 

#17 

#15 

#19 

#17 

#19 

#2 1 

, n e N 

= 5 

= 17 

= 13 

= 233 

= 89 

= 305 

= 1597 

= 5473 

= 4181 

= 75025 

= 28657 

= 98209 

= 514229 

= 1762289 

=1346269 

= 24157817 

= 9227465 

= 31622993 

= 165580141 

1 

3 
2 
5 
3 
5 
4 
3 
2 
5 
3 
5 
4 
3 
2 
5 
3 
5 
4 
3 

The above table turns out to be considerably more than a list. It 
suggests several more corollaries to Theorem 3, only one of which will be 
mentioned here; the proof is left to the reader, 

Corollary 2 

Every even n > 2 determines exactly two ordered pairs of integers, 
(a, b) and (cs d) , with 0 < 2a < b, 0 < 2c < d, b > 3, d > 3, b + d9 a 
and b relatively prime, c and d relatively prime, and such that the se-
quence generated by one of the pairs has H_n =zHn + 1 and the sequence gen-
erated by the other pair has H_n =H n _ 1 . 

It should be noticed that n = 2 also determines two ordered pairs of 
integers, (a, b) and (o, d), generating noninjective sequences, but with 
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slight modification that one of the pairs, say (a, b) , has 0 < 2a = b9 
namely the pair (1, 2) generating the sequence with H_2~H1 = 1 which is 
F9 shifted one place. 

Remark: If H is infective, then the terms of H form an abelian group 
under "multiplication" defined by HmHn = Hm + n> where m £ Z , n e Z, with 
H0 as multiplicative identity, and H'1 - H_n. See also [2]. 
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ONE-FREE ZECKENDORF SUMS 

CLARK KIMBERLING 
University of Evansville, Evansville, IN 47702 

(Submitted December 1981) 

The main theorem about representations of positive integers as sums of 
Fibonacci numbers, widely known as Zeckendorf*s Theorem even before it 
was published [8] 5 states that every positive integer is a sum of noncon-
secutive Fibonacci numbers and that this representation is unique. Ex-
amples of such sums follow: 

11 = 3'+ 8, 12 = 1 + 3 + 8, 13 = 13, 70 = 2 + 13 + 55. 

Zeckendorffs Theorem implies that the sums of distinct Fibonacci numbers 
form the sequence of all positive integers. It is the purpose of this 
note to prove that the sums of distinct terms of the truncated Fibonacci 
sequence (2, 3, 5, 8, . .*) form the sequence 

[(1 + VE)n/2] - 1, n = 2, 3, 4, ... . 

We shall use the usual notation for Fibonacci numbers, the greatest 
integer function, and fractional parts: 

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn for n = 1, 2, 3, ...; 

[x] = the greatest integer < x; and 

{x} = x - [x]. 

A well-known connection between the number a = (1 4- v5)/2 and Fn , to be 
used in the sequel, is that [aFn] = Fn+1 if n is odd and = Fn+1 - 1 if n 
is even. 

Lemma 1 

Let n and a be positive integers satisfying n ̂  2 and K o^ Fn . Let 
S = {ac} + {aFn}. Then S < 1 for odd w and 5 > 1 for even n. 

Proof: It is well known (e.g. [6, p. 101]) that 

1 
£ n + 2^n+ h 

< a -
F 
£n + 2 
Fn+: 

< 
Fn + 2Fn + 3 

Shifting the index and multiplying by Fn gives 

^i/^n+l^n + 3 < ^ n } < K 'Fn + lFn + 2 f o ^ o d d "• (1) 
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and 

1 " VF„ + A + 2 < {a*"*} < 1 " FjFn + 1Fn + z for even n. (2) 

Now Fn/Fn_1 i s a best approximation of a, which means that 

l ^ n - l " Fn I ^ \ae " d l ( 3 ) 

for all integers d and e satisfying 0 < e ^ F^. 

Case 1. Suppose n i s odd. Then (3) with d = [one + 1] implies 

Fn - oFn_1 < [otc + 1] - ac9 

so that 1 - {aFn_1} < 1 - {ac}5 or equivalently, {ao} < {aFn_1}. Thus 

S < {otF^.J + {aFn} 

< 1 - Fn_jFnFn + 2 + FjFn + 1Fn + 2 by (1) and (2) 

1 - l/FnFn + 1Fn + 2 

< 1. 

Case 2. Suppose n is even. Then (3) implies {aFn_1} < 1 - {aa}, so 
that 

5 > 1 - {aF^-J 4- {aFn} 

> l " Fn_1/FnFn + 1 + 1 - Fn /Fn + 1Fn + 2 

- 2 ~ Fn + 1 /Fn Fn + 2 

> 1. 

Lemma 2 

Let n and o be posi t ive integers satisfying n^ 2 and K e < F n . Then 

[(a + I) (a + Fn) - 1] = [(a + l)c - 1] + Fn + 2 . 

Proof: If n i s odd and > 3, then 

[(a + l)(c + Fn)] = [(a + Do] + [(a + l)Fn] by Lemma 1 

= [(a + Do] + Fn + [ a F j 

= [(a + l )c] + Fn + F n + 1 

= [(a + l )e] + Fn+2. 
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If n is even, then 

[(a + l)(e + Fn)] = [(a + l)o] + [(a + l)Fn] + 1 

= [(a + l)o] + Fn + [aFn] + 1 

= [(a + l)c] + Fn + Fn + 1 

= [(a + l)o] + Fn + 2. 

Lemma 3 

If M is a positive integer whose Zeckendorf sum uses 1, then there 
exists a positive integer C such that M = [ (a 4- 1)C - 1]. Explicitly, if 

M = 1 + Fn + Fni + • • • + FHk where 4 < ni < ni + 2 - 1, (4) 

^ = 1 , Z , e e s , K ~" Z , 

then 

Proof: As a first step, 1 = [a]. Now, suppose M > 1 has Zeckendorf 
sum (4) and, as an induction hypothesis, that if m is any positive inte-
ger < M9 then, in terms of its Zeckendorf sum 

m = 1 + Fu±+ FUi+ ••- + FUv, 

we have m = [ (ot + l)c - 1], where 

* = l +F
Ul-2 + Fu2-2 + • • • + ^ - 2 -

L e t ^ = 1 + \ - 2 + V * + • • • + ^ . , - 2 - T h e n 

n k - i ~ 2 

X-^ J "*_! nk - 2 
J =2 

Lemma 2 therefore applies: 

[(a + D O ' + Fn _2) - 1] = [(a + l)c' - 1] + F , 

and by the induction hypothesis, this equals 

(1 + Fn + Fn + • • • 4- Fn ) + Fn s \ n1 n2
 nk-i nk 

so that Lemma 3 is proved* 

Lemma 4 

The set of all positive integers C of the form 
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1 +Fnx-2+Fn2-2+ '•• +Fnk-1' n as in (4), (5) 

toge ther with 1, i s the s e t of a l l p o s i t i v e i n t e g e r s . 

Proof: Let C be any p o s i t i v e in t ege r > 1 and l e t C - 1 have Zecken-
dorf sum 

Fu + Fu + • • • + Fu. . 

(If Fu = 1, it is understood that u1 = 2.) Then C equals the sum (5) with 
j = k and n^ = Ui + 2 for i = 1, 2, . .., ?c. 

Theorem 

The sums of distinct terms of the truncated Fibonacci sequence 

(2, 3, 5, 8, ...) 
form the sequence 

[an - 1], n = 2, 3, 4, ... . 

Proof: By Lemmas 3 and 4, the set of positive integers that are not 
such sums forms the sequence 

[(a+l)n- 1], n = l , 2, 3, ... . 

Applying Beatty's method (based on a famous problem published in [1]) to 
the sequence [(a + l)n]9we conclude that the complement of this sequence 
is [an]. The complement of [ (a + l)n - 1] in the positive integers is 
therefore [an - 1], n = 2, 3, 4, ... . 

Remarks: 

1. The first 360 terms of the sequence [an - l],i.e., the first 360 
positive integers whose Zeckendorf sums do require 1, are listed 
in [2, pp. 62-64]. 

2. Fraenkel, Levitt, & Shimshoni [4] observe in their Corollary 1.3 
that a certain property relating to Zeckendorf-type sums holds 
if and only if a has the form 

1 |(2 - a + Va2 + 4) 

for some positive integer a. When a = 2S we have a = and the 
sequence analogous to 1, 2, 3, 5, 8, 135 ... is 19 3, 7, 17, 419 
99, ... . The first few numbers expressible as Zeckendorf-type 
sums of the truncated sequence 3, 7, 17, 41, 99, ... (see [4, p. 
337, item (i) , for a precise definition of Zeckendorf-type sums 
in this setting) are 3, 6, 7, 10, 13, 14. Sequences of the form 
[yn + 6] cannot yield 3, 6, 7, consecutively. Therefore, Corol-
lary 1.3 of [4] offers no immediate generalization of the theorem 
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on sums from the truncated Fibonacci sequence. Does any nontri-
vial generalization exist? 

3. The interested reader should consult Fraenkel, Levitt, & Shim-
shoni [4J. Their Theorem 1 states that for a = (1 + \/5)/2, the 
numbers [na] are "even" P-system numbers (= Zeckendorf sums, al-
though they are not so named in [4]) and the numbers [n|3] are 
"odd." The one-free Zeckendorf sums discussed in this present 
work are [na - 1], some of which are even and some of which are 
odd in the sense of [4]» Being one—free is equivalent to ending 
in zero in [4]; however, the attention in [4] is on the number of 
terminal zeros—whether that number is even or odd, and no cri-
terion is given in [4] for whether the terminal digit is zero. 
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INTRODUCTION 

A family of binary trees {T^} is studied in [2]. The numbers p(n, k) of 
internal nodes on level k in Tn (the root is considered to be on level 0) 
are called profile numbers, and they "enjoy a number of features that are 
strikingly similar to properties of binomial coefficients" (from [2]). 
We extend the results in [2] to t-ary trees. 

DISCUSSION 

We discuss t-ary trees (see Knuth [1]). A t-ary tree either consists of 
a single root, or a root that has t ordered sons, each being a root of 
another £-ary tree. 
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Let p t (n5 k) denote the number of internal nodes at level k in the 
tree T*. 

The numbers p t (n9 k) satisfy the recurrence relation 

pt (n + 1, k + 1) = (t - l)pt (w, k) +tpt(n9 k - 1) (1) 

together with the boundary conditions 

pt (w, 0) = 1 

Ptd, 1) = 1 
p (n, 1) = t for n > 1 

p. (1, k) = 0 for fc> 1. 

(2) 

The corresponding trees and sequences for the case of binary trees 
(t = 2) is studied in [2]. Thus9 Tn and p(n5 k) in [2] are denoted here 
by T% and p2(ns k), respectively. 

We first show that 

pt (n, k) = tk-n E (* ~ ̂ '(i)' <3> 
0^i<2n-k 

where n ̂  19 k ̂  09 and the / . J ?s are the binomial coefficients. 

Note that when k < n we have p (n, fc) = tfee 

The expression in (3) is easily shown to satisfy the boundary condi-
tions (2)e To continue3 we induct on n (and arbitrary k); using (1) and 
the inductive hypothesis, we get 

pt(n + 1, k + 1) = (£ - l)pt(n, fc) + tpt(n5 k - 1) 

0<7:<2n-k 0< i<2n- fe+ l 

-**-* E ( * - D < ( i : 1 ) + * f c -+* k - E (*-i)*(;) 
0 < £ < 2 n - & : + l V 0 < £ < 2 n - k + l 

= **-» + **-» x ) ( * - ^ ( " t 1 ) = **-» E ^-l)i{n+il) 
0<i<2n-k+l 0<i<2n-k + l 

and this establishes (3)* 

Using (3)5 we get 

pt(n9 k + 1) =tpt(n9 k) - tk~n + 1(t - D 2 " - * " 1 ^ - _ * + x ) (4) 
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and 

pt(n + 1, k) = pt(n, k) + tk-n~Ht - D2n~k 

where n > 1 and k ^ 0. 

(k\)-^-<:'„)] ^ 

Let x* be the number of internal nodes in Tn , namely 

< = L Pt(». k>- (6) 
0 < k < In 

Using (3) , changing the order of summation, and applying the binomial 
theorem results in 

«.• • m -t ^ - ' • «> 

Note that, by their definition, the numbers x* satisfy the recurrence 
relation 

x\ = 2 

^+i = (2t ~ l^xt + 2 for i > 0, (8) 

which also implies (7). 

Let in denote the internal path length (see [1]) of Tn , namely 

£n = E kpt(n, k). (9) 
0 < k < In 

The numbers ln also satisfy the recurrence relation 

l\ = 1 

£*+1 = (It - l)li + (3t - 1 ) ^ + 1 for i > 0. (10) 

Using (9) and (3), or solving (10) with the use of (7), one gets 

(* - I ) 2 

The average level e% of a node in T% is thus given by %nlx\ , and 
satisfies 

< ~ H Z I n + 0(1). (12) 
The results in (1), (2), (3), (4), (5), (7), and (11) are extensions 

of (1), (3), Theorems 1, 2a, 2b, 3, and 4 of [2], respectively. 
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If we denote 

F*(x> y) = X Pt
(n> k)xny*9 

then, using (1) and (2), we get 

t 

Ft(x9 y) = *- ^ . (13) 
(1 - x)(1 - txy + xy - txy1) 

Equations (1) and (7), for the case t = 29 were noted in [2] to be 
similar to the recurrence relation 

and the summation formula 

0<fc<n 

The binomial coefficients also satisfy 

E<-»'U)-°-
Using (3) 5 one can show that the same identity holds for any t and n; 

namelys 

X ) (-l)*Pt(n, fc) = 0. (14) 
0^k<2n 
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In m&nosiy oh l/e/ut Hoggatt, 3K. 

It is unusual when one comes across a sequence of polynomials whose coef-
ficients, roots, and sums of powers can all be given explicitly. It is 
our purpose to expose such a sequence of polynomials involving Fibonacci 
numbers. 

The general polynomial in question is of even degree, which it will 
be convenient to take as In - 2. The coefficients are the first n Fibo-
nacci numbers as follows: 

Pn(x) = x2n~2 + x2n~3 + 2x2n~h + ... + F„xn'1 - F xn~2 + F xn'3 

n n n-1 rc-2 

" Fn-3Xn~h + ••• + (-I)"* - (-Dn-

In particular 

P±(x) = 1 

P2(x) = x2 + x - 1 
P3(x) = xh + x3 + 2x2 - x + 1 
Ph(x) = xe + x5 + 2xk + 3x3 - 2x2 + x - 1 
P5(x) = x8 + x7 + 2xe + 3x5 + 5x* - 3x3 + 2x2 - a: + 1. 

Thus the coefficients of P (x) are the first n Fibonacci numbers followed 
by the reversed sequence with alternating signs. 

We shall begin by showing that the roots of Pn(x) lie on two concen-
tric circles in the complex plane. More precisely, we have 

Theorem A 

The roots of Pn(x) are given explicitly by 

a^» 3 ^ (v = 1, 2, ..., n - 1), 
where 

a = (1 + /5)/2, 3 = (1 - /5)/2 

and t>n is the nth root of unity g2™/". 
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Proof: If we multiply Pn(x) by x2 - x - 1, we find that, after col-
lecting the coefficients of 1, x9 x2

 5 ..., x2n, all these coefficients 
vanish except three, because 

Fk = F k - l + F k - 2 -

The remaining trinomial is 

x2n - (Fn + 2Fn_1)xn + (-1)*. 
Since 

F + IF = F + F - T, = an + 9>n 

we see at once that 

(x2 - x - l)Pn(x) = x2n - Lnxn + (-l)n = x2n - (a* + $n)xn + (angn). 

It is obvious that the quadratic in y obtained by putting xn = y has for 
its roots an and 3n-

Hence (x2 - x - l)Pn(x) has for its roots a, 3 times all the nth roots 
of unity. Omitting the extraneous roots a and 3, we are left with the 
2n - 2 roots of Pn (x) as specified by the theorem. 

As for the sum Sk (n) of the kth powers of the roots of Pn (x), we have 

Theorem B 
(n - l)Lk if n divides k9 

Sk (n) 
-Lk otherwise. 

Proof: Using Theorem A3 we have 

Sk(n) = (a* + gfc) i:1Ck„v = Lk(-l + "EC 
v = 1 \ v = 0 

But if n divides k9 then 

n - 1 , ^ L 1 

V = 0 v = 0 

while if n does not divide k9 

n-l 
£ ^v = (i - (On)/(i - ?£> = °-
v =0 

We can make two statements about the factors of the discriminant D 
of Pn (x) 9 which is the product of all the (nonzero) differences of its 
roots, namely: 
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Theorem C 

The discriminant D of Pn(x) is divisible by 5n"1n2n_lf. 

Proof: Among the differences there are three special types: 

a(^ - d); eai - ci); ±(a - mi a * J = i, 2, ..., w - D. 
The product of the last type is equal in absolute value to 

(a - B)2n"2 = 5n-\ 

If we allow i and j to be zero, the first two types contribute in abso-
lute value the factor 

n U* 
y *d 

which is the square of the discriminant of xn - 1, which is well known to 
be nn. If we now remove the product of those differences in which i or j 
equals zero, we remove 

"tfu - O2 =n2 

j = 1 

from the inner product. Hence the theorem. 
We now present the following small table of the discriminant of Pn : 

n D 

2 

3 

4 

5 

6 

7 

,20 

7io 13J 

We note t h a t Theorems A and B, as wel l as t h e i r p roof s , remain v a l i d 
i f we rep lace Fn by Un and Ln by Vn, where 

U0 = 0 , Ux = 1 , Un = Aun_x + Un_2 

V0 = 1 , V± = A, 7„ = ^ n - 1 + Vn_2 

and a , (3 by (A ± VA2 + 4 ) / 2 . 

•<>•<>• 
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THE PARITY OF THE CATALAN NUMBERS VIA LATTICE PATHS 

OMER EGECIOGLU 
University of California San Diego, La Jolla, CA 92093 

(Submitted April 1982) 

The Catalan numbers 

Cn = (2nn)/(n + l) 

belong to the class of advanced counting numbers that appear as naturally 
and almost as frequently as the binomial coefficients$ due to the exten-
sive variety of combinatorial objects counted by them (see [1]9 [2])« 

The purpose of this note is to give a combinatorial proof of the fol-
lowing property of the Catalan sequence using a lattice path interpreta-
tion. 

Theorem 

Cn is odd if and only if n = 2r - 1 for some positive integer v. 

Proof: The proof is based mainly on the following observation: If X 
is a finite set and a is an involution on X with fixed point set Xa

s then 
|z| = |j a| (mod 2); i.e.s \x\ and |j a| have the same parity,, 

Now let Dn denote the set of lattice paths in the first quadrant from 
the origin to the point (2ns 0) with the elementary steps 

x : (a, b) -»• (a + 1, b + 1) 

xi (a, b) -*- (a + 1, b - 1). 

It is well known that \Dn\ = Cn (see [2], [3]). Define a : Dn -* Dn by 
reflecting these paths about the line x = n* The fixed point set D% of 
a consists of all paths in Dn symmetric with respect to the line x - n. 

Now define an involution 3 on D% as follows: for w-W^uuWi e &% with 
\wi\ = 1^21 = n ~~ * a n d u e {x* ^ 3 s e t 

1 w1uuw2
 i f ^i 4 Dn-i 

I w otherwise. 

Of course the set Dn-i is empty unless n is odd. Hence9 we can put 
2 

Cn-i ~ 0 f° r n even. 
2 
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Note that 

2 I 

since w -*• W1 is an obvious bijection between the sets D* and Dn-i. Thus 
we have 2 

£n = Cn-i (mod 2). (1) 
2 

If Cn is odd, then induction on n gives (n - l)/2 = 2r - 1 for some r so 
that n - 2r+1 - 1 is of the required form. Of course, C2-i ~ ^1 = ^' 

The converse also follows immediately from (1) by a similar inductive 
argument. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN 

University of New Mexico, Albuquerque, NM 87131 

Send all communications concerning ELEMENTARY PROBLEMS AND SOLUTIONS 
to PROFESSOR A* P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. 
Each problem or solution should be on a separate sheet (or sheets) . Pref-
erence will be given to those that are typed with double spacing in the 
format used below. Solutions should be received within four months of 
the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy 

Fn+2 = Fn+1 + Fn > F0 = °* Fl = * » 
and 

^n + 2 = Ln + 1 + ^n' ̂ 0 = 29 Lx = 1. 

Alsos a and 3 designate the roots (l + v5)/2 and (l-v5)/2, respectively9 
of x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-490 Proposed by Herta T. Freitag, Roanoke, VA 

Prove that the arithmetic mean of L2nL2n+3 and 5F2n
F2n+3 ^s alwaYs a 

Lucas number. 

B-491 Proposed by Larry Taylor, Rego Park, NY 

Let j 9 ks and n be integers. Prove that 

FkFn + j " FJFn + k = (Lj£n+k- LkLn+^/'5-

B-492 Proposed by Larry Taylor, Rego Park, NY 

Let J, k3 and n be integers. Prove that 

FnFn+J-+k - Fn + J-Fn + k = (Ln+c-Ln + k - LnLn+j + k) /5. 

B-493 Proposed by Valentina Bakinova, Rondout Valley, NY 

Derive a formula for the largest integer e = e(n) such that 2e is an 
integral divisor of 
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where ( * ) = 0 for k > ft. 

B-494 Proposed by Philip L. Mana, Albuquerque, NM 

For each positive integer ft, find positive integers an and &n such 
that 101ft is the following sum of consecutive positive integers: 

an + (a„ + 1) + (an + 2) + •-. + (an + &n). 

B-495 Proposed by Philip L. Mana, Albuquerque, NM 

Characterize an infinite sequence whose first 24 terms are given in 
the following: 

1, 45 55 9, 13, 14, 16, 25, 29, 30, 36, 41, 49, 50, 54, 55, 
61, 64, 77, 81, 85, 86, 90, 91, ... . 

[Note that all perfect squares occur in the sequence.] 

SOLUTIONS 

Squares and Products of Consecutive Integers 

B-466 Proposed by Herta T. Freitag, Roanoke, VA 

Let4„ = 1«2 - 2-3 + 3-4 - . - + (-l)n-1ft(ft + 1). 

(a) Determine the values of ft for which 2An is a perfect square. 

(b) Determine the value of ft for which |J4n|/2 is the product of two 
consecutive positive integers. 

Solution by Graham Lord, Quebec, Canada 

A1 = 2, A2 = -4, A3 = 8, Ah = -12, and one can easily establish (by-
induct ion) 

A2m-i = 2m2 anc* ^2m = -2m (m + 1). 

Then 2An is a perfect square if n is odd and |i4n|/2 is the product of two 
consecutive positive integers if n is even. But since the equation 

x2 = y2 + 1 

has no solution in positive integers, 2|^n| cannot be a perfect square 
when ft is even and |i4n|/2 cannot be the product of two consecutive inte-
gers when ft is odd. 

68 [Feb. 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Also solved by Paul S. Bruckman, H. Klauser, P. V. Satyanarayana Murty, 
Bob Prielipp, Sahib Singh, Gregory Wulczyn, a solver at the Madchengym-
nasium Essen-Borbeck, and the proposer. 

i4's into Bl$ 

B-467 Proposed by Herta T. Freitag, Roanoke, VA 

Let An be as in B-466 and let 

n i 

Bn = E E *• 
t = l fc=l 

For which positive integers n is |i4„| an integral divisor of 5n ? 

Solution by Graham Lord, Quebec, Canada 

Note that 2 = A± does not divide B1 = le As Bn = n(n + 1)(n + 2)/69 
then 

£0 , = 7?z(4w2 - l)/39 

which is evidently not divisible by A2 1 = 2m2
 5 for ??? > 1. And for 

n even, 
52m = 2m(2m + l)/3, 

which will be divisible by \A2m | = 2m(m + 1) as long as (2m + l)/3 is an 
integer; that is5 if m = 1 (mod 3) or, equivalently9 n = 2 (mod 6). 

^Iso solved by Paul S. Bruckman, H. Klauser, P. 17. Satyanarayana Murty, 
Bob Prielipp, Sahib Singh, the solver at the Madchengymnasium Essen-Bor-
beck , and the proposer. 

Fibonacci Sines 

B-468 Proposed by Miha'ly Bencze, Brasov, Romania 

Find a closed form for the nth term an of the sequence for which a1 
and a2 are arbitrary real numbers in the open interval (09 1) and 

The formula for an should involve Fibonacci numbers if possible. 

Solution by Sahib Singh, Clarion State College, Clarion, PA 

Let ax = Sin A, a2 = Sin B3 where A9. B are in radian measure and be-
long to the open interval (0, TT/2) . Thus 

a3 = Sin04 + £) 5 ah = Sin 04 + 2B) , 
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and in general, by induction technique, we conclude that 

an = Sin(AFn_2 + BFn_1)9 where n > 1. 

Also solved by Paul 5. Bruckman, L. Carlitz, and the proposer. 

Base Fn Expansions 

B-469 Proposed by Charles R. Wall, Trident Tech. College, Charleston, SC 

Describe the appearance in base Fn notation of: 

(a) l/Fn_1 f o r n > 5 ; (b) l/Fn+1 f o r n > 3 . 

Solution by Graham Lord, Quebec, Canada 

L e t F2n_2 = u9 Fln_x ~ 1 = v9 F2n - 2 = W, F2n - 1 = x9 F\n = y9 and 
F2n + i = z- T h e i d e n t i t y Fm_1Fm + 1 - F* = ( - l ) " 7 g i v e s , f o r m = In + 1: 

1/F2 n = F2n+2I{Z2 - 1) = (3 + 2 / ) (^" 2 + 3"1* + S" 6 + • • ' ) 

which i s . lty i n b a s e F0 . . And 

which i s .Oz/ i n b a s e F2n + 1 . The same i d e n t i t y f o r m = 2n y i e l d s : 

= ^ 2 n + ^ 2 „ ^ 2 „ - l - 1) +F2n(F2n ~ 2> ^ n - J / ^ " D » 

which i s . lfuw i n b a s e F 2 n . S i m i l a r l y , 

i / ^ 2 » + i = ^ 2 n - i ( ^ L - D / d / * - i ) 

= ^i„(^2»-l - 1) +^2n^2n " D + F2fX. 2] / (y" - 1), 

which is . 0t;xw in base F2n. The lower bounds imposed on the subscripts 
guarantee the digits are nonnegative. 

Also solved by Paul S. Bruckman, L. Carlitz, Bob Prielipp, J.O. Shallit, 
Sahib Singh, and the proposer. 

3 Term A.P. 

B-470 Proposed by Larry Taylor, Rego Park, NY 

Find positive integers a, b9 c9 v9 and s9 and choose each of Gn9 Hn9 
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and In to be Fn or Ln9 so that 

aGn9 bHn+r, and cln+s 

are in arithmetic progression for n > 0 and this progression is 6, 6, 6 
for some n. 

Solution by Paul S. Bruckman, Carmichael, CA 

In order for the indicated quantities to equal 6, they must lie in the 
set 

S = {6F±9 6F2, 6L1§ 3F35 3LQ, 2F^, 2L2> 

for some n. This means that for all n, the indicated quantities must lie 
in the set Tn , defined as follows: 

{6Fn, 6Fn + 1 , 6Fn + 2, 6Ln, 6L„+1, 3Fn, 3F„ + 1, 3Fn + 2 , 3 ^ + 3, 3L„, 

2Fn, 2Fn+1, 2Fn+2, 2Fn+3, 2Fn+h, 2Ln, 2Ln+1, 2Ln+2}. 

Of the 18 elements of Tn, 3 are to be in arithmetic progression for all 
n. We may choose n sufficiently large so that no duplication of elements 
occurs in Tn , e.g., n = 5. Thus, 

^s = {10, 15, 16,22, 24,26, 30,33, 36,39, 42,48, 58,63, 66,68, 78, 108}a 

Considering all possible combinations, we find that the only triplets 
which are subsets of T5 in arithmetic progression are as follows: 

(10,16,22), (10,26,42), (10,39,68), (15,24,33), (15,39,63), (16,26,36), 

(16,42,68), (22,24,26), (22,26,30), (24,30,36), (24,33,42), (24,36,48), 

(24,66,108), (26,42,58), (30,33,36), (30,36,42), (30,39,48), (30,48,66), 

(33,36,39), (33,48,63), (36,39,42), (36,42,48), (48,63,78), (48,78,108), 

(58,63,68), and (58,68,78). 

We then relate each triplet above to the appropriate multiple of a Fibo-
nacci or Lucas number, e.g., (10,16,22) = (2F5, 2F6, 2L5) . From the re-
sulting set of 26 triplets, we exclude those where the smallest subscript 
is repeated (which is a consequence of the requirement that r and s be 
positive); thus, we would not count (10,16,22), since the subscript 5 is 
repeated. We thus reduce the foregoing set of triplets to the following 
set: 

(2F5, 2F7, 2F8), (2FS9 3F7, 2F9), (3F5, 3F75 3F8), (2F6, 2F8, 2F9), 

(2L5, 3F6, 2F7), (3F6, 6F5, 2L6), (3F6, 3£5, 2F8), (3F6, 6L55 6L6), 

(6F5, 2L6, 2F8), (6F5, 3F7, 6F6) , (3L5, 2L6, 3F7), (3L5, 6F6, 3F8), 

(2L69 3F79 2FB)9 (6F6, 3F8, 7F7), and (2£7, 3F8, 2F9). 
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Each of the foregoing triplets corresponds in the general case to a trip-
let which is a subset of Tn; if we form these corresponding triplets, 
however, with the smallest subscript in the triplets from T$ replaced by 
n, we obtain some triplets which must be rejected, since they do not re-
duce to (6, 6, 6) for any value of n. To illustrate, the triplet (2F5, 
2F7, 2FQ) suggests the possible triplet (2Fn, 2Fn+2, 2Fn+3) in the gen-
eral case; however, the latter triplet clearly can never equal (6, 6, 6) 
for any n. This further restriction reduces the total set of possible 
triplets to four possibilities, and these turn out to be acceptable solu-
tions: 

(6Fn , 2Ln+ 1, 2 F n + 3 ) , (6Fn , 3Fn+2, 6Fn+1), 

(2£„, 3Fn+1, 2Fn+2)9 (3L„, 6Fn+ 1, 3F n + 3 ) . 

The above triplets assume the values (6, 6, 6) for n - 1, 1, 2, and 0, 
respectively. It is an easy exercise to verify that the above triplets 
are in arithmetic progression for all n, and the proof is omitted here. 

Also solved by Bob Prielipp, Sahib Singh, and the proposer. 

4 Term A.P. 

B-471 Proposed by Larry Taylor, Rego Park, NY 

Do there exist positive integers d and t such that 

aGn, oHn+r, aIn+s, aJn+t 

are in arithmetic progression, with Jn equal to Fn or Ln and everything 
else as in B-470? 

Solution by Paul S. Bruckman, Carmichael, CA 

Any quadruplet consisting of the indicated quantities must contain a 
solution of B-470 as its first three elements. Referring to that solu-
tion, if we set n = 5, for example, we obtain the triplets: 

(30,36,42), (30,39,48), (22,24,26), and (33,48,63). 

Therefore, any solution of this problem must reduce, for n = 5, to the 
quadruplets: 

(30,36,42,48), (30,39,48,57), (22,24,26,28), or (33,48,63,78). 

Each element of any quadruplet must be of the form kUm , where k = 2, 3, 
or 6, U is F or L, and m is a nonnegative integer. However, 57 and 28 
are not of this form (57 = 3 • 19, and 19 is neither a Fibonacci nor a 
Lucas number; 28 = 2 • 14, and 14 is neither a Fibonacci nor a Lucas num-
ber) . We must therefore eliminate the second and third of the above in-
dicated quadruplets. This leaves the following two triplets as possibly 
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generating acceptable solutions of this problem: 

(6F„, 2Ln+1, 2Fn+3) or (3Ln, 6Fn+1, 3Fn+3). 

If these do generate acceptable solutions to this problem, the fourth 
element of the desired quadruplet must equal twice the third element, 
less the second element. Thus, if x^ denotes the missing fourth element 
corresponding to the ith triplet above (i = 1 or 2), then 

xi = ^n + 3 2£n +1 = 4Fn + 2 + 4Fn + 1 - 2Fn + 2 2Fn 

also, 
* 2 = 6Fn+S ~ 6Fn + l = 6Fn+2-

This suggests the possible solutions: 

(6F„, 2Ln + 1, 2Fn + 3, 6Fn + 1) and (3L„, 6F„ + 1, 3F„ + 3, 6Fn + 2 ) . 

It only remains to verify that these quadruplets assume the values (6, 6, 
6, 6) for the same values of n which generated the triplets (6, 6, 6) in 
B-470, i.e., for n - 1 and n = 0, respectively. Obviously, this is the 
case. Therefore, the above two solutions are the only solutions to this 
problem. 

Also solved by Bob Prielipp, Sahib Singh, and the proposer. 

•<>•<>• 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
RAYMOND E. WHITNEY 

Lock Haven State College, Lock Haven, PA 17745 

Send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMONDE. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN STATE COLLEGE, LOCK 
HAVEN, PA 17745. This department especially welcomes problems believed 
to be new or extending old results. Proposers should submit solutions or 
other information that will assist the editor. To facilitate their con-
sideration, solutions should be submitted on separate signed sheets with-
in two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-349 Proposed by Paul S. Bruckman, Carmichael, CA 

Define Sn as follows: 

n- 1 
Sn = ]|T csc2"nk/n, n = 2 , 3 , . . . . 

k = l 

Prove S„ n2 - 1 
3 

H-350 Proposed by M. Wachtel, Zurich, Switzerland 

There exist an infinite number of sequences, each of which has an 
infinite number of solutions of the form: 

A* x\ + I = 5 • y\ A = 5 • (g2 + a) + 1 a = 0 , 1, 2, 3, ... 

A- x2 + 1 = 5 • y\ x± = 2; x2 = 40(2a 4- l)2 - 2 

A • x\ + 1 = 5 • y\ yx = 2a + 1; y2 = (2a + 1) • (16,4 + 1) 

A • x\ + 1 = 5 • y2
n 

Find a recurrence formula for x3/y3, xh/y^9 ..., xn/yn. (yn is dependent 
on xn.) 

Examples 

a = 0 1 • (-£-) + 1 = 5 - (-jj a = 1 11 • 22 + 1 = 5 • 32 
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a := 0 l'\-jj + 1 = 5 e ( x ) a = l H * 3582 + 1 = 5* 5312 

1 • \-j-J + 1 = 5 • l^—j 11 . 637222 + 1 = 5 - 945152 

1 • -.. + 1 = 5 • ... 11 • ... + 1 = 5-... 

a = 5 151 • 22 + 1 = 5 • ll2 

151 • 458382 + 1 = 5 • 26,5872 

151 - 11969892822 + 1 = 5 • 64928753552 

151 ... + 1 = 5 ... 

H-351 Proposed by Verner E. Hoggatt, Jr. (deceased) 

Solve the following system of equations: 

Ux = 1 

7i = 1 

U2 = Ui + Vx + F2 = 3 

V2 = U2 + Vx = 4 

^n + i = Un + Fn + Fn + 1 (« > 1) 

SOLUTIONS 

Eventually 

H-332 Proposed by David Zeitlin, Minneapolis, MN 
(Vol, 19, No. 4, October 1981) 

Let a = (1 + v5)/2. Let [x] denote the greatest integer function. 
Show that after k iterations (k ̂  1), we obtain the identity 

[a^2[a^+2[a^+2[.••]]]] = *<2p+1X2k+1) /F2p+1 (p = 0, 1. . . . ) . 

Remarks: The special case p = 0 appears as line 1 in Theorem 29 p. 309, 
in the paper by Hoggatt & Bicknell-Johnson, this Quarterly, Vol. 17, No. 
4s pp. 306-318. For k = 2, the above identity gives 

[akp+2[ahp+2]] = F5{2p+1)/F2p+1 = ^ M 2 p + 1 ) - L
2{2p+1)+ 1-

1983] 75 



ADVANCED PROBLEMS AND SOLUTIONS 

Solution by Paul S. Bruckman, Carmichael, CA 

We may proceed by induction on k. For brevity, let $&. denote 

[a4p+2[a1,p+2[a'tp+2[...]]]], considering p fixed; 
v v / 

k pairs of brackets 

we seek to prove that 

*k . ^ « * ± » _ , fc-i, 2, 3, ... . (1) 
2p+l 

L e t S d e n o t e t h e s e t of n a t u r a l numbers k f o r which (1) h o l d s . Note t h a t 

*x = [ a 4 p + 2 ] = [Lhp+2 - 3 ^ + 2 ] = L , p + 2 - 1, 

s i n c e 0 < S>"p + 2 < 1 . T h u s , 1 e S. 

Suppose k e S. Then 

$ fc + i 

a ^ + 2 F 
"(2p + l ) ( 2 f e + l ) 

2 p + l 

unde r t h e i n d u c t i v e h y p o t h e s i s . 

Now i f 772 and n a r e odd5 w i t h n > 3 , t h e n 

m(n + 2) nm(n-2) 
a2mFmn/Fm = a 2 w ( a m " - B m " ) / F m / 5 = — 

\/5Fm 

„m(n + 2) om(n + 2) r,mn , 2m (c^ 5 2 m ) _ - g ' a ( n + 2) 

V^Fm 

7Lr a. 

S i n c e - 1 < B m n < 0 , gmnLra < 0 . A l s o , 

-Bm nLm = c T m " ( a m - cTm) = a-™'"-11 - cr m ( * + 1) < o r " " " - 1 ' < a - 2 < 1 . 

T h e r e f o r e , 0 < - $mnL < 1, which i m p l i e s 

uzmFm ' m(n + 2) (2) 

Setting m = 2p + 1s n = 2fc + 1 in (2), this is equivalent to the as-
sertion of (1) for k + 1. Since k e S -> (k + 1) e S9 the proof by induc-
tion follows at once. 

Also solved by the proposer. 
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Nab That Pig 

H-333 Proposed by Paul S. Bruckman, Carmichael, CA 
(Vol. 19, No. 5, December 1981) 

^The following problem was suggested by Problem 307 of 536 Puzzles & 
Cuv%ous Problems, by Henry Ernest Dudeney, ed i ted by Martin Gardner (New 
York: Charles Sc r ibne r ? s Sons, 1967). 

Leonardo and the pig he wishes to catch 
are at points A and B, respect ively , one 
unit apart (which we may consider some 
convenient distances e . g . , 100 yards) . 
The pig runs s t ra ight for the gateway at 
the or ig in , at uniform speed. Leonardo, 
on the other hand, goes d i rec t ly toward 
the pig at a l l times, also at a uniform 
speed, thus taking a curved course. What 
must be the r a t i o r of Leonardo's speed 
to the p i g ' s , so that Leonardo may catch 
the pig jus t as they both reach the gate? 

(0,0) 

Solution by the proposer 

Let the curve along which Leonardo runs be represented by the equa-
tion 

y = f(x)• ( i ) 

We note that / must be continuously differentiable in (0,1) and that the 
following additional conditions are to be satisfied: 

/(I) = 1; 

/'(D = 0; 

f(0) = 0, 

(2) 

(3) 

(4) 

The tangent line at any point P = {s 9 f(s)) of the curve has the 
equation: y - f(s) = ff(s)(x - s) , with z/-intercept yQ = f(s) - sff(s). 
Thuss the distance the pig has traveled when Leonardo is at point P is 
equal to 1 - z/0 = 1 - f(s) + sff(s). On the other hand9 the distance 
Leonardo has traveled at that point is equal to 

f •i + (fit))2 at, 
as is well known from the calculus. 

with a change of notations this implies the relationship: 

f. A + [fit))2 dt = r(l - fix) + xf'{x)), 
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which is to be satisfied, along with (2), (3), and (4). 

We may differentiate each side of (5) with respect to x (assuming this 
to be legitimate), thereby obtaining 

-A + {ff(x))2 = vxf'{x) , 
or equivalently: 

£^> = -±-. (6) 
A + (fix))2 vx 

Integrating each side of (6) and using (3), we find that 

log//'(a:) + Vl + (/'Or))2} = -± log x, 
or ^_ 

Vl + (fr(x))2 + fr(x) = x~1/r . (7) 

Solving for fT(x) in (7) (by transposing and squaring), we obtain: 

/'(*) = j(ar1/r - x 1 ^ ) . (8) 

Now integrating (8) and using (2), this yields: 

i ( «.l-l/r r l + l/r ) 

<[(P + Dx1'1^ — (p - l)x1+1/r\ + C, 
2(P2 - 1) ' } 

where /(l) = 1 = f C; hence, C = (P2 - P - 1)/(P2 - 1), and 
p2 - 1 

«, . _ 2(p2 - p - 1) + P(P + l ) ^ 1 " 1 ^ - r(y - l)x1 + 1/p n 

2(P2 - 1) 

In order for Leonardo to catch his pig, it is clearly necessary that 
p > 1. We need to determine the particular value(s) of P satisfying (4), 
with v > 1. Setting x = 0 in (10), and assuming /(0) = 0 and P > 1, we 
obtain the equation p - p - 1 = 0, whose only admissible solution is 

v = a = |(1 + /5), the Golden Mean. (11) 

If p > a, Leonardo will catch the pig before reaching the gate, while if 
p < a, the pig will escape. 

NOTE: In the original problem Dudeney gives the value p = 2 and asks 
for /(0), which turns out to be 1/3. 

78 [Feb. 
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CHECK: Substituting the value v = a in (10), we obtain: 

fix) = _ 

or equivalently: 

f(x) = a ^ 3
 2

+ ®X\ where (3 = f (1 - A ) . (12) 

The distance that the pig runs to the gate is5 of course, 1. We should 
thus find that the length of the curve from (05 0) to (1, 1) (call this 
distance d) is equal to a. Now 

d = / Vl + (/f(x))2 dx» 
Jo 

Differentiating (12), we obtain: 

and 

\ j\x* + x'*)dx = I (f~^ + f ^) 
1 

= \{a2x^- $xa) 
o 

= f (az - 6) = \(a + 1 - g) = a, 

as expected. The other conditions on / are readily verified for the 
function given by (12). 

Also solved by B. Cheng. 

Little Residue 

H-334 Proposed by Lawrence Somer, Washington, D.C. 
(Vol. 19, No. 5, December 1981) 

Let the Fibonacci-like sequence |#„>°°  be defined by the relation 

Hn + 2 = aHn + 1 + bHn9 

where a and b are integers, (a, 2?) = 19 and H0 = 09 H1 = 1. Show that if 
p is an odd prime such that -b is a quadratic nonresidue of ps then 

PtH2n+l f ° r any n ^ °°  

(This is a generalization of Problem B-2249 which appeared in the Decem-
ber 1971 issue of this Quarterly,) 

Solution by the proposer 
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I offer three solutions. 

First Solution: It can be shown by induction or by the Binet formula 
that 

Suppose that p\H2n + 1 and (-b/p) = -1. Since 

(n, 2n + 1) = (n + 1, 2w + 1) = 1, 

p|#n and p|^n+i- This follows because {Hn} is periodic modulo p and be-
cause i70=0. Thus9 

bH2
n + ff*+1 = 0 (mod p) 

and 
E2

n + 1 E -bE2
n (mod p ) . 

Since neither Hn nor #n + 1 = 0 (mod p) and since (-b/p) = -1, this is a 
contradiction. 

Second Solution: It can be shown by the Binet formula or by induction 
that 

H2 - H ,H ^ = (-£)""1. 
n n- 1 n + l v ' 

Suppose p|#2n+i anc* ("b/p) = -1. Then it follows that 

*L + 2 -
 H2n+lH2n+3 = Eln + 2 = (-2»2" + 1 (mod p) . 

Since (-b/p) = - 1 , t h i s i s a c o n t r a d i c t i o n . 

Third Solu t ion: Let { j ^} 0 0 be defined by 

Jn+2 = aJn+l + bJn> 

with J0 = 2 and J1 = a. It can be shown by the Binet formulas that 

4 - (a2 + hb)E2
n = 4{-b)n . 

Suppose that p\S2n+1 and (-b/p) = -1. Then 

Since (-b/p) = -19 this is a contradiction. 

Also solved i?y A. Shannon and P. Bruckman. 
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