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A NOTE ON THE FIBONACCI SEQUENCE OF ORDER K 

AND THE MULTINOMIAL COEFFICIENTS 

ANDREAS N. PHILIPPOU 
University of Patras, Patras, Greece 

(Submitted July 1980; revised May 1982) 

In the seque l , k i s a f ixed i n t ege r g r e a t e r than or equal to 2, and n i s 

a nonnegative i n t e g e r as s p e c i f i e d . Recal l the following d e f i n i t i o n [ 6 ] : 

Definition 
The sequence {f£ ) n = 0 i s sa id to be the Fibonacci sequence of order 

k i f f0
(k) = 0, f™ = 1 , and 

\f«\ + ••• +CI if n>fc+ 1. 
Gabai [2] called {/n(/°  }~ = _ with /n

(k) = 0 for n < -1 the Fibonacci 

fc-sequence. See, also, [1], [4], and [5]. 

Recently, Philippou and Muwafi [6] obtained the following theorem, 

which provides a formula for the nth term of the Fibonacci sequence of 

order k in terms of the multinomial coefficients. 

Theorem 1 

Let {/n }n=o b e t n e Fibonacci sequence of order k. Then 

/n, + . .. + nj.\ 

n 1 5 • • • »nk \ n x , . . . , 71 ^ I 

where the summation is over all nonnegative integers nl9 . . . , nk such that 

n1 + 2n2 + ••• + knk = n. 

Presently, a new proof of this theorem is given which is simpler and 

more direct. In addition, the following theorem is derived, which pro-

vides a new formula for the nth term of the Fibonacci sequence of order 

k in terms of the binomial coefficients. 
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Theorem 2 

Let {f„ ) } n = 0 be the Fibonacci sequence of order k. Then 

4(
+^ = 2n £ <-I>MM - ^ W 1 * 

[(n-l)/(fc + l)] / v 

- 2n_1 E (_ 1 )'V " i " fc^2^ + «S n>l, 

where, as usual, [#] denotes the greatest integer in x. 

The proofs of the above formulas are based on the following lemma. 

Lemma 
Let if„k) }̂  = 0 be the Fibonacci sequence of order k9 and denote its 

generating function by g (x) . Then, for \x\ < 1/2, 

2 
^ X) = = m 

1 - 2x + xk + 1 1 - x - x2 - ••' - xk 

Proof: We see from the definition that 

/«> = 1, fn
(k) - f«\ = f«[ for 3 < n < k + 1, 

and 

/„a> - /»(-i = tf-1 - /»(-l-k for « > fc + 1. 
Therefore , 

( 2 n " 2 2 < n < k 
fW = (1) 

)2fw _fW n > k + 1 . 
By induction on n, the above relation implies /„ < 2n"2 (n > 2) [5], 

which shows the convergence of gk(x) for |#| < 1/2. It follows that 

gk(x) = ± //„ ( M = x + £ xn2-2 + £ xnf™ , by (1), (2) 
n = 0 n = 2 n = & + l 

and 

» = fc + 1 n = k + l n = k + l 

-2x(± xnf<k) - x - 2>»2»-2) - ** + 1 ^G«0 
\n = 0 « = 2 / 
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- (2a: - xk+1)g(x) - x2 - £ x"2
n-

, k n~Z 

The last two relations give g,ix) = x + (2x - x )g (x) - x , so that 
2 

gAx) = — — 
1 - 2x + a?k + 1 1 - x - *2 -

which shows the lemma,. 

Proof of Theorem 1: Let \x\ < 1/2. Also let ni (1 < i < fc) be non-
negative integers as specified. Then 

E xnfnli = (1 - x - *?2 - ••• - ar^)"1, by the lemma, (4) 
n = 0 

00 

= 23 OK + a:2 + — + x k ) n , s ince \x + x2 + • • • + xk\ < 15 
« = 0 

-£ £ L n „ ) * * « » . • ••••*«.. 
n = 0 n 1 , . . . , n k 3 \™1 » » nkf 

» i + • • • + «& = n 

by the mult inomial theorem. Now s e t t i n g n^ ~ m^ (1 < £ < fc) and 

k 
n = m - Y, (i - l)miy 

we get 

m1+2mz+ • •- + kmk = m 

m1 + ' • • + mk 

n = o « i . - - - .n k 3 ^ n p ...9nk) 
n± + • - - + nk = n 

777 = 0 

m1+ 1 

Equations (4) and (5) imply 

n = 0 n = 0 «!•..-» nfc 3 \ 

(5) 

from which the theorem follows. 

Proof of Theorem 2: Set Sk = {a? G i?; |#| < 1/2 and 12x - arfe + 1| < 1}, 

and let x E5k. Then 
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Z xnf™{ = . by the lemma, (6) 
"=o 1 - 2x + xk + 1 

= (1 - x) £(2ar - xk + 1)n 

n = 0 

= (1 ~ x) t ! ) ( !?) 2"-*(-l)**"+*S 
n = 0 i = 0X% ' 

by the binomial theorem. Now setting i = j and n - m - kj, and defining 
the sequence {b n ) n = 0 by 

[n/(k + D] 

^ = 2n £ ("1) i ( n "i
/c t ')2-(k + 1>S n > 09 (7) 

we get 

„ oo N/Cfc + l)] 

T Y0(n.)2n-i(-iyxn+ki = t*xm E l "' /CJ)2"7-(fe + 1)J '(-l)J ' (8) 

w = 0 

(A:) 

Relations (6) and (8) give 

t x"C\ = (1 - x) ±x»blk) - 1 + £ «»(&«> - 2^). 

since b^ = 1 from (7). Therefore, 

C \ = ^ - ^ - \ > n > l . (9) 

Relations (7) and (9) establish the theorem. 

We note in ending that the above-mentioned same two relations imply 

i=1 i=l 

[(n-l)/(fc+l)] / . .v 

= 2n"1 ]P (-Dl^2 " \~ /cz')2"(fc+1H, n > 1, 
£ = o ^ ' 

which reduces to 

[(»-D/3] 

:=1 i-0 V ^ / 
(11) 

\ ^ / 
£ = 0 
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since i*\ = /. (i ̂  0) from the definition. Also, observing that 

n 

X F. = F _ - 1 (n > 1), 
.*-< ^ n + 2 v ' 
^ = 1 

see, for example, Hoggatt [3, (1^, p. 52], we get, from (11), the fol-

lowing identity for the Fibonacci sequence: 

[(w-D/3] 
Fn + 2 = l + 2U'1 £ (-l)Hn ~ \~ Uh-3i> n> I. (12) 
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ASSOCIATED HYPERBOLIC AND FIBONACCI IDENTITIES 

E. EHRHART 
Institut de Recherche Mathematique Avancee 

7 rue Rene Descartes, 67084 Strasbourg Cedex, France 
(Submitted August 1980) 

It is well known that by using the substitutions 

cos X = cosh x9 sin X = -i sinh x9 

where i - v-1, trigonometric identities give rise to hyperbolic ones and 
conversely. This results from Euler's formulas 

cos X = cosh -LX and sin X = -£ sinh iX* 

For instance, we have the relations 

cos2J + sin2X = 19 cosh2x - sinh2^ = 1 

and 

sin 2J = 2 sin X cos X9 sinh 2x = 2 sinh x cosh x. 

Also, we shall see that a simple substitution automatically associates 

some Fibonacci identities to a class of hyperbolic ones. 

This note is more original in its form than in its conclusions. Sim-

ilar methods have been used by Lucas [1], Amson [2], and Hoggatt & Bick-

nell [3]. 

I. THE HYPERBOLIC-FIBONACCI ASSOCIATION 

The following notation will be essential:* 

{ A if n is odd, 

B if n is even. 

We start from Binet's formulas: 

F" = a - b ' L"~a + b ' 

*More generally [ul9 ul9 ..., up]n is equal to the ut in the brackets 
such that i = n9 modulo p [4]. 
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where a = ~ ana b = ~ are the roots of the equation 

X2 - X - 1 = 0. 

With a = log a, we have a - ea and b = -£~a * and therefore 

F_n_ = ean . (_!) g-an ^ ^ & an + ( . 1 ) g-an 

2 = ^ ' 2 = 2 

We now l e t an = x9 t h e n 

A / 5 K L 
—^— = [cosh x9 sinh a;] , -77- = [sinh x9 cosh xl . 
Z n Z ri 

Substituting fen for n, fc being an integer, we have 

2 
F7 = — [ c o s h kx9 s i n h foc]7 , L7 = 2 [ s i n h kx9 c o s h fcff], . (1) 

kn r-L ' J kn kn L 9 J kn x ' 

Substituting n + m for n and putting am = y 9 we find that 

2 
F = —-[coshOs + y) 9 sinh(x + y)] , 

(2) 
L^^m- 2[sinhOr + y) , cosh(̂ c + zy) ] 

Equivalently, we have 

c o s h he = \WlFkn, Lkn]kn, s i n h fcr = j[Lkn9 ^ 5 F k n ] k n , (3) 

and 

c o s h ( a r + y ) = ^[v /5Fn + m , L n + J B + TO, 

s inhGc + y) = y [ L n + m, i/5Fn +Jn + ffI. 

(4) 

Formulas (2) and (4) also hold if we replace all the plus signs by minus 

signs. 

Theorem 1 
By substituting (1) and (2) on one side or (3) and (4) on the other, 

a Fibonacci identity gives one or several hyperbolic identities and con-

versely, provided that the indices or arguments have the form kntk'm or 

kx±kfy. The indices may be null or negative. 
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Remark 

If we start with a Fibonacci identity, we must theoretically control 

the associated hyperbolic identity by other means, for then we pass from 

the particular to the general case. However, such an identity being true 

for x = an and y = am is probably true for all x and y9 because 

1 + /5 
a = log 2 

is a transcendental number. 

Since the hyperbolic identities are classic, we can easily establish 

some well-known Fibonacci identities, 

II. DEVELOPMENT OF FIBONACCI IDENTITIES 

Example 1 

sinh 2x = 2 sinh x cosh x 

For all ns the substitution of (3) gives F 2n - LnFn. 

Example 2 

cosh2^ - sinh2x = 1 

The substitution of (3) gives: 

= 1, if n is odd, and —. r— = 1 , if n is even. 
5F2

n L2
n Li 5F* 

4 4 

Thus for all n9 

Lt - 5Fl = 4(-l)n
0 (5) 

Example 3 

sinh 5x = sinh x coshf2̂ r - S3 cosh x + y )(cosh 2x + J5 cosh x + -^J. 

By substitution 

— = 4 — \— " ^ — + 2 / \ T + ; = — + l ) ' lf " 1S ° d d' 

and 
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y/lF J5F (L L 0\/L L 
n is even, 

5n . n I 2n r- n 3 \ I 2n r- n 3 \ 

2 y 2
 v " 2 2/\2 2 2 

Using 2n - 1 in place of n if n is odd and 2n in place of n if n is even, 
we find the following two distinct identities, which are valid for every 

n: 

10n-5 2n-lv hn-2 2n-l , x 4« - 2 2n-l ' 

and 

F = F (L - V5L + 3) (L + A/5L + 3). 
lOn 2n 4n 2n **« 2?z 

Example 4 

(cosh x + sinh x)k = cosh /OK + sinh kx (k an integer ̂  0) 

Examining three cases (n even,n odd and k even, n odd and k odd), we 
find for all n and k that 

L + f5F„\k Lv + y/5F, 
kn kn - — # (6) 

Appl ication: Suppose we wish to express L-. and Fkn as functions of 

Ln and Fw . We could do this by separating the expanded form of the left 

side of (6) into those terms with or without the factor /B. 

Instead, we use the well-known fact that Fkn is divisible by Fn to 

show that the integer Fkn /Fn is a function of Ln of the form 

P(Ln) + (-l)nQ(Ln), 

where P(X) and Q(X) are polynomials whose parities are opposite to that 

of k. By (6) we see that Fkn has the form 

eiFnLn ' 

where i, takes the odd values equal to k or less. Therefore, Fkn/Fn has 

the form 

but, according to (5), 

Thus for k = 2, 3, 4, 5, 6, the values of Fkn/Fn are, respectively: 
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Ln, L2
n-(-l)n, Ln[L2

n- 2 ( - l ) » ] , Ll-3(-l)nL2 + 1, LJL*- 4(-l)"L„2 + 3], 

Example 5 

4 + cosh 2x + cosh kx + cosh 6x + • • + cosh 2fcc = s x n h ( 2 ^ + 1 ) x 

^ sxnh # (7) 

Therefore, 

1 + L2n + £,n + £6n + + L 2kn 

L(2k + l)n
 F(2k+l)n 

If we replace n by 2n9 we get 

1 + L. + LD + 
hn Qn 

+ L hkn 
' (i*k+ l)n 

2n 

If we substitute Z+ (TT/2) for X in the trigonometric identity associated 
with (7), we find a formula whose associated hyperbolic one is 

(-l)^cosh(2^+ l)x -z - cosh 2x + cosh kx - cosh 6x +••• + (-l)̂ cosh 2kx 
2 cosh x 

Hence, 

1 ~ L2n + Lhn ~ LSn + ' " " + (-1) L2kn = (~1) 
r(2k+l)n Uk+l)n 

Ln 

Application: We can use these two Fibonacci identities to prove that 

for any odd k, Lkn is divisible by Ln. 

Example 6 

sinh (a; + y) = sinh x cosh y + cosh x sinh y 

cosh OK -Hz/) = cosh x cosh y + sinh x sinh 2/ 

Using (3) and (4)5 we see that for a l l n and m9 

2Fn + m =FnLm +LnFn, 

2Ln + m = LnLm + 5FnFm. 

Note that for m = ±1, (8) becomes 

(8) 
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Example 7 

cosher + y) + cosh(^ - y) = 2 cosh x cosh y 

sinh Or + y) + sinh(x - y) = 2 sinh x cosh y 

Examining the four cases (according to the parities of n and m) 5 we find 

that 
(9) Ln + m + Ln_m - [5FnFm , LnLm]m, 

Fn + m + F n - m " ^LnFm » F n L r c 1 m e 

In particular for m = 19 (9) becomes L n _ x + Ln + 1 = 5Fn . I t can also be 

shown that 

Ln + m ~~ Ln-m = ^FnFm > V j m - l 

and 

F - F = \L F . F L 1 . 

Application: We shall establish the following proposition using the 

preceding identities. 

Theorem 2 

A number of the form Fn ± Fm or Ln ± Lm is never prime if the indices 

have the same parity and a difference greater than 4. 

Proof: The proof goes as follows: Let a = n + m and b = n - m9 then 

£, + F,. a + b a-b a+b a-b 

Since a - b > 4, we have — > 2, so that there is no term 

Li = Fi = p2 = i 

in the brackets. Hence, Fa + F& is composite. 

A similar demonstration exists for Fa - Fb or La ± Lb. 

Example 8 

sinh(x + y)sinh(x - y) - sinh x - sinh y 

coshOr + ?/)cosh(x - y) = cosh2x + s±nh2y 
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By substitution, we have: 

a) if n and 777 are even, 

rp jp _ jp2. _ rp2 
n+m n-m n m 

Ln+mLn-m ™ Ln + 5Fm 

^Fn + mFn-m ^n ^m > 

b ) i f n and 777 a r e odd , 

^n+m^n-m ~ ^Fn + Lm% 

c ) i f n i s even and 777 i s odd , 

LI + L ' -'xtt+77ZjL«-77Z 

-L'n+m-hn-m = ^ n ~ ^ml 

d) if n is odd and 77? is even, 

w v = F2 + F2 

^n + mJ-n - m n *- m 

^n +rrfin - m ~ ^n ~ ^Fm * 

With the help of (5) the four expressions thus obtained for Fn + mFn_m and 

Ln+mLn_m can be condensed into two identities: 

F F - F2 = (-l)n+7W + 1F2
9 

and 
Ln + mLn.m - L2

n = (-l)n + mL2
m - 4(-l)». 

The first is the Catalan formula. 

Letting n = 1 and 77? = 2, we see that 

and 

F« + ]/n-i - Fn = (-!)"» (Simsonfs formula) 

Fn+2Fn-2 ~ Fn = ("i)* * 

A i + 2 ^ - 2 ~ ^ * 5 < - l ) » . 

Example 9 
Our last example is of a Fibonacci-trigonometric transposition. In 

[5], it is shown that if a, b9 and o axe. even integers, then 
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LaLbLo ~ La+b+c + ^b+c-a + ^e+a-b + La + b-c> 
and 

5FaFbFe = Fa+b + c + Fa-b-c + Fb - a - a + ^c - a - b ' 

Using the hyperbolic transposition, (substitutions (1) and (2), we obtain 

4 cosh x cosh y cosh z = cosh(# + y + z) + cosh(z/ + s - x) 

+ cosh(s + x - 2/) + cosh(a: + y - z) , 
and 

4 s i n h # s i n h y s i n h g = s i n h ( x + y -{- z) + s i nh (a : - y - z) 

+ s i n h Q / - 3 - x ) + s i n h ( g - x - y) . 

Now, applying the trigonometric transposition, we have 

4 cos Z cos Y cos Z = cos(Z -f J + Z) + cos(J + Z - Z) 

+ cos(Z + X - Y) + cos(Z + Y - Z), 
and 

4 sin X sin J sin Z = -sin(Z + Y + Z) + sin(J + Z - Z) 

+ sin(Z + Z - 7) + sin(Z + Y - Z) . 

III. GENERALIZATION 

Let s be a positive integer with a and b the roots of the equation 

Z - sZ - 1 = 0, where a = ~ . 

Consider the two generalized Fibonacci sequences given by 

f = * £-_, £n = an + £n. (10) 
^ a - b n 

Let 

A = s 2 + 4 , a = l o g a , an = x , a/7? = z/, 

t h e n , 

= — [ c o s h x , s i n h # ] , 

si 

= [ s i n h x , c o s h x] . 

/"May 

and 

Hence , 

94 

fn an - bn 

2 2/E 

l n an + bn 

2 2 

. ean - ( - 1 ) e~an
 = 

2v^ 

e a n + ( -1 ) e~an 
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cosh fcr = } [ A f f e n , Hkn]kn, sinh kx - |[Ak n, ^ / k J , n , 

^COshCx + y)=j[SAfn + m , Hn+mln + m* s i n h ( x + 2 / ) = y U n + m , ^fn + mU + n 

(ID 

Theorem 3 

To a hyperbolic identity with arguments of the form k ± kfm (n and m 
integers)3 the substitution formulas of (11) associate one or several 

generalized Fibonacci identities (the same as for Fn and Lns with the re-

striction that the factor 5 or is replaced by A or V̂ A) . 

For instance9 

fin ~ &nfn» ^n Ajn = 4(-l) s fn + m + fn-m = *-^nfm ' fn^m^m" 

Note that the neighborly relations, 

Ln + Fn = 2Fn+l9 Ln ' Fn = ^ n - l ' Ln-1 + Ln + 1 = 5Fn » 

Ln-1 " Fn+1 = Ln+1 ~ F n - 1 = 3Fn » L l ~ Fn = ^Fn-lFn + l> 

L\ + Fl = 2(F2 + F\J* 
n n n-1 n+1 

do not hold for / and £n. However 9 for every s: 

?n+l + Jn-1 = ^n° 

The formulas of Simson and Catalan also hold for fn and 

^n + l^n-l "~ ̂ w = A(-l) 

Appl ication: If we put a = n + m and b = n - m9 the formula 

f 4 - f = \ Q f f Q , ~ \ Jn + m Jn-m L nJ m 9 Jn mJ m 

becomes 

fa +fb = 

if a - b is even. Therefore: 

^a+bfg-b9 fg+b^a-b 
2 2 2 2 

g-fe 
2 

Theorem 4 

A number fa + /^ is not prime if a - b is even and other than 2, and 

/a _l" fa+ 2 is a P r i m e o n l y if ̂ a + 1 i s a Prime« 
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Proof: Note that 

fa + fa + 2 = la+l a n d fa
 + 4 + «* = 3 - ^ + 2> 

so if a- b > 4, there is no factor f± = 1 or f2 = £x = s = 1 in the brack-
ets , and if a - b = 4, then 

2 

Remarks 

1) Under the same conditions, £a ± lb is not prime. Furthermore, if 

a - £> is even other than 2 or 4, fa - fb is not prime. 

2) An integer Fa i 1 is not prime for n > 6. (See [6].) 

The latter remark is true, since Fa ± 1 can be considered as Fa ± F 

if a is odd and Fa ± F2 if a is even. For a > 6, the difference a - 1 or 
a - 2 exceeds 4. 

Recurrence: The generalized Fibonacci sequences can also be defined 

by 
fn + 2 = Sfn+1 + fn 5 ^ 0 = °» A = l j 

and 
X/yj^_2 ~~ * ^ ^ n + l n 5 0 — ' 1 "~ 

This results directly from Binet's formulas (10). Note that for s = 2, 
the f are the "Pell numbers." 
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INTRODUCTION 

In the late 1940fs John von Neumann began to develop a theory of automa. 

His substantial and unique works covered a broad range of subjects from 

which one, self-replication, is of particular interest in this study. 

A self-replicating system (SRS) is an organization of system elements 

that is capable of producing exact replicas of itself which, in turn, 

will produce exact replicas of themselves. The replication process uses 

materials or components from its environment and continues automatically 

until the process is terminated. Examples of potential space and terres-

trial applications are in the areas of photoelectric cells, oxygen, plan-

etary explorer rovers, ocean bottom mining, and desert irrigation. We 

will investigate an aspect of SRSfs, that which concerns the number of 

replicas various systems would produce. 

OUTLINE FOR A SELF-REPLICATING SYSTEM 

For a description of self-replication, the reader should refer to 

[1]. The basic system elements of an SRS are: 

Mining and Materials Processing Plant Production Facility 
Materials Depot Universal Constructor 
Parts Production Plant Product Depot 
Replication Parts Depot Product Retrieval System 
Production Parts Depot Energy System 
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In the Mining and Materials Processing Plant, raw materials are ga-

thered by mining, analyzed, separated, and processed into feedstock such 

as sheets, bars, ingots, and castings. The processed feedstock is then 

laid out and stored in the Materials Depot. 

The Parts Production Plant selects and transports feedstock from the 

Materials Depot and produces all parts required for SRS replication and 

the products. The finished parts are laid out and stored in either the 

Replication Parts Depot or the Production Parts Depot. The Parts Produc-

tion Plant includes material transport and distribution, production, con-

trol, and sub-assembly operations. All parts and sub-assemblies required 

for replication of complete SRS's are stored in the Replication Parts De-

pot in lots destined for specific facility construction. In the Produc-

tion Parts Depot, parts are stored for use in manufacturing the desired 

products in the Production Facility. 

The Production Facility produces the product. Parts and sub-assem-

blies are picked up from the Production Parts Depot, transported into the 

Production Facility, and undergo specific manufacturing and production 

processes depending on the specific product desired. The finished prod-

ucts are stored in the Product Depot to await pickup by the Product Re-

trieval System. 

The Universal Constructor, in principle, is a system capable of con-

structing and system. The purpose of the Universal Constructor is to 

self-replicate a complete SRS a specified number of times in such a way 

that these replicas, in turn, construct replicas of themselves, and so 

on. The Universal Constructor has the overall control and command func-

tion for its own SRS as well as for the replicas until control and com-

mand functions have been replicated and transferred to the replicas. The 

Product Retrieval System collects the outputs of all units of an SRS 

field. Finally, the energy source generally considered practical is 

solar. 
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SELF-REPLICATING OPTIONS 

There are several possible schemes that one must consider in design-

ing a self-replicating system. One is to design each replica to repro-

duce simultaneously its n-replicas (Figure 1), and we will refer to this 

TIME 

CUT OFF 

FIGURE 1. Option A, S = 127 

case as Option A. Because of large mass flows and programming complexi-

ties 3 this option presently has little support. Another scheme, referred 

to as Option B, is to design each replica to produce its n-replicas se-

quentially (Figure 2). When a sufficient number have been obtained, re-

production is stopped and production begins. The main reason for limit-

ing the number of replicas to, say ?z, is that with each replication a 

defective replica becomes more likely. An objection to Option B is that 

earlier branches will have reproduced more generations than later ones, 

which would result in some lower-quality replicas than necessary. 

Therefore, a third scheme (Figure 3) is considered and referred to as 

Option C: a replica reproduces sequentially no more than n replicas and 
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FIGURE 2. Option B, S = 33 

TIME 

- 6 CUT OFF 

FIGURE 3. Option C, S = 15 

in such a way that none will have more than m direct ancestors. We have 

given a comparison of growth rates between the three options (Figure 4) 
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for the case of two replicas per primary and a limit of three ancestors 

in case of Option C. 

FIGURE 4. Growth Rate Comparison 

COMPUTATIONAL ASPECTS OF SELF-REPLICATING SYSTEMS 

There are multitudes of novel relationships that one may discover 

hidden in replicating sequences. We begin by looking at Option A, where 

replication continues throughout the system until cutoff. The number of 

replicas sk generated in the kth time interval is clearly sk = nk and 

accumulates to 

sk = E S* = 1 
J=0 n - 1 * (1) 

so that this option triggers little mathematical curiosity. 

In consideration of Option B, we begin with the case of two replica-

tions per primary, n = 2, and refer to Figure 3. Because each replica 

produces two offspring, one in each of the two time frames immediately 

following its own existence, any replica must have come from one of the 

two previous time frames. This means that the number of replicas s^ pro-

duced in the ith time interval equals that produced in the previous two, 
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Si = Si-1 + Si-2' (2) 

This recursion relation, with sQ = Sj^ = 1, gives precisely the Fibonacci 

numbers. By addition, one computes the total number of replicas Sk in k 

time intervals to be 

An explicit formula for s, is well known, since equation (2) holds: 

sk - Jl 
1 + /5\k + 1 (l - /S\k + 

Equations (3) and (4) give a formula for the cumulative replicas: 

Si = — k S5 

For n replicas per primary 

1 + ^5\*+3 

= E< 
i = l 

SsY - I . 

Jk-V 

s and S, may be calculated by division [2], 

(3) 

(4) 

(5) 

1 
k=l 

fe = 0 
and 

(1 - x)[l ]C xk 

k = l 

E ^ * . 
k = o 

(6) 

Because of linearity, a matrix method can be applied to this problem. To 

cast Option B with n replicas per primary in the framework of [3], we 

consider n + 1 types of individuals (replicas) denoted by 0, 1, . .., n; 

the index referring to the number of offsprings this individual has re-

produced. One then sets up an n + 1 by n + 1 matrix F = (f^- ) , where each 

individual of type i, in the fcth time frame gives rise to f.. individuals 

of type j in the (k + l)th time frame ( l < i , j < n + l ) and k = 0, 1, 

... . If the vector f(fe) is the state of the replicas at time k9 then 

f{k)F = f (fc+1) and by induction f(0)Ffc = f(fc). This means that once we 

have the matrix F9 we can determine the replica state at any future time 

by matrix multiplication, 
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For example, let the number of offsprings per replica be 3, n = 3. 

An individual of type i produces a type i + 1 and a type 0 if it has re-

produced less than 3 and remains a type i if i = 3. So if i < 3, fiQ = 1 
an d fii + i = 1 » if ^ = 3> /"as = l » a n d /# = °  otherwise. 

1 
1 
1 
0 

1 
0 
0 
0 

0 
1 
0 
0 

0 
0 
1 
1 

and after four time frames, 

f(4) = (1, 09 0, 0) F4 = (7, 4, 2, 2); 

starting with one new replica we have seven with no offspring, four with 

1, two with 2, and two with 3 for a total of fifteen. 

We now turn to Option C, where the number of replicas is restricted 

to a fixed number m of generations. In the case where n - 2, m = 3 (see 
Figure 2) , one observes that the diagram is the same as Option B until 

the limited number of generations begins to curtail replication; equali-

ty ceases after k = 3. One observes also that adding one more generation 
would add two replicas for each with maximal m ancestors; this would add 
a total of 2ffl replicas and, in general, nm replicas. We find the sum for 

m generations by adding the terms: 

171 . nm+1 - i S = V n J =- T+. (7) 

Again, we are able to use the matrix method [3] to find the state of 

the replicas at any time. Two indices, a and b9 are used to denote the 

type of replica; the first for the number of offsprings, the second for 

its ancestors. This, of course, increases the dimension of the matrix by 

a factor of m + 1. A replica of type a, b results in two replicas, one 
of type a + 1, b and one of type 0, b + 1 unless a = n or b = m, in which 
case a, b goes into a, b. For n = 2 and m = 3, one calculates 
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0 1 0 
0 0 1 
0 0 1 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 

0 
0 
0 
1 
1 
0 
0 
0 
.0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
1 0 0 
1 0 0 
0 0 0 
1 0 0 
0 1 0 
0 0 1 

(• 

STATE VECTOR 

100 000 000 000 

oio ioo ooq ooo 

001 110 100 000 

001 Oil 210 100 

001 002 121 400 

001 002 013 700 

001 002 004 800 >03 

001 002 004 800 

FIGURE 5. Cumulative Diagram 

The diagram has a lack of symmetry which cannot be helped; it does, 

however, place the final replicas equidistant on a straight line and does 

not move them after they are first placed. The strategy for positioning 

the replicas is another problem and one we are not going to address. We 

would like to point out that the matrix is in a form 
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B 0 
A B 
0 A 
0 0 

'0 1 0\ /l 0 0\ 
where 4 = 1 0 0 1 and 5 = 1 1 0 0 1. The A matrix is due to the 

0 0 1/ \0 0 0/ 

renaming of existing replicas, while the B matrix is due to replication. 

The obvious extension of this observation is useful in both setting up 

the F matrix and its subsequent calculations. Since for Option C there 

is a limit to the number of generations as well as offsprings, the state 

vector must eventually be constant. So, for some k and for all integers 

greater, f(0)Fk = f(0)Fk+1. The minimal such k* is mn and, further, we 

note that the sum of the f(k) coordinates is given by equation (7) as is 

the sum of the first row of Fk*9 since f(0) = (1, 0, ..., 0). 

Using the definitions, one can write relationships where complete 

tables can be generated to show various totals at any time. For n rep-

licas per primary, sm k denotes the number of replicas produced in the 

kth time frame under the m generation restriction and Sm-^ the cumulative 

number. Similarly, p , refers to those coming into production during 

the kth. time frame and Pm k the cumulative number (see Table 1): 

n 
sm,k 2^ Sm-i, k-i 

i = \ 

Sm, k+1 = ^ / 7 7 , k ^rn.k 

¥m,k = 2Sm, k Sm, k + 1 

Pm,k 2^ Pm-ly k- i 

Pm,k = 2Sm,k ~ Sm,k + 1 

For Option B,a replica begins production when it has completed its n 

replications. Therefore, p, = s7 for k less than cutoff; at cutoff, 
r rk k- n 

the remaining replicas begin production. Finally, in Option A, since 

replication is simultaneous, p, = sk_,. 
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TABLE 1 

Results for four replicas per primary with m = 2 and m = 3 

k 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

1 • 

S2,fc 

1 
1 
2 
3 
4 
4 
3 
2 
1 
0 
0 
0 
0 
0 

• 

?2,k 

0 
0 
1 
2 
4 
5 
4 
3 
2 
0 
0 
0 
0 
0 

• 

S2,k 

1 
2 
4 
7 
11 
15 
18 
20 
21 
21 
21 
21 
21 
21 

• 

P2,k 

0 
0 
1 
3 
7 
12 
16 
19 
21 
21 
21 
21 
21 
21 

• 

S3,k 

1 
1 
2 
4 
7 
10 
13 
14 
13 
10 
6 
3 
1 
0 

• 

P3,* 

0 
0 
0 
1 
4 
7 
12 
15 
16 
14 
9 
5 
2 
0 

• 

53,k 

1 
2 
4 
8 
15 
25 
38 
52 
65 
75 
81 
84 
85 
85 

• 

P 3 , , 

0 
0 
0 
1 
5 
12 
24 
39 
55 
69 
78 
83 
85 
85 

• 
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WHY ARE 8;18 AND 10:09 SUCH PLEASANT TIMES? 

H. G. MONZINGO 
Mathematics Department, S.M.U., Dallas, TX 75275 

To rephrase this facetious question: Why does a watch or a clock appear 

most pleasing when its hands are set at approximately 8:18 or 10:09? In 

case the reader has not noticed, nondigital watches and clocks (not run-

ning) on display in stores, or photographs of them in catalogs, often are 

set very nearly at one of these two times. One common myth concerning 

the time 8:18 (or 8:17) is that this is precisely the time at which 

President Abraham Lincoln died. In [1, p. 394], this myth is discussed. 

In reference to clock faces painted on signs, it is suggested that 8:17 

is used for the setting of the hands to allow more space on the clock 

face for advertising. 

The purpose of this note is to investigate the aforementioned ques-

tion. In the process, interesting relationships between these two times 

and the golden ratio will be discovered. 

First, one observes that at both 8:18 and 10:09 the angle between 12 

o'clock and the hour hand is approximately equal to the angle between 12 

o'clock and the minute hand. Of course, 8:20 and 10:10 would be "equal-

angled" if the hour hnad moved in discrete hourly jumps rather than mov-

ing continuously. Certainly, then, symmetry plays a key role. 

Theorem 

For the times listed in the table, the clock hands are approximately 

"equal-angled." 

Proof: The conclusion can be drawn by observing a clock or by using 

the following analysis. Let a be the angle formed by 12 o'clock and the 

minute hand and 3 the angle formed by 12 o'clock and the hour hand. 

Then, since each hour yields 30° , 

B = (a/360° )30°  = a/12. (*) 

For equal angles, 
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360°  - 3 differs from a by some integral multiple of 360° ; 

hence 

a + B = 360°fe. (**) 

From (*) and (**), a = 12 • 360°k/13. 

Now, the hour, ft,, is [3/30°] (30°  per hr.), the minute, m, is [5a/30°] 
- 60ft (30°  per 5 min.), and the second is 60 times the "decimal part" of 

777.. The following table, generated by varying k9 lists hours, minutes, 

seconds and, most importantly, the angle 6. Note that all of the angles 

have been reduced to <90°  so that, for half of the listed times, the an-

gle is measured with respect to 6 oTclock, e.g., 5:32. 

TABLE 

Hour 

12 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Minute 

55 
50 
46 
41 
36 
32 
27 
23 
18 
13 
9 
4 

Second 

23 
46 
9 
32 
55 
18 
42 
5 
28 
51 
14 
37 

Angle (in degrees) 

27.7 
55.4 
83.1 
69.2* 
41.5* 
13.8* 
13.8* 
41.5* 
69.2* 
83.1 
55.4 
27.7 

^Measured with respect to 6 o'clock. 

The time 8:18 will be investigated first; for this, the following 

lemma will be useful. 

Lemma 

Let <p be the golden ratio, a - Arc tan <p, and b - 90°  - a; then, 

tan 2b = 2. 

Proof: Since tan a = <p9 tan2 a - tan a - 1 = 0 ; hence, division by 
tan a - cot a = 1. Then, 
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0, 2 tan b 2 2 2 „ 
tan 2b = = = =- = = — = 2. 

, ^ 2, cot b - tan b tan a - cot a 1 1 - tan b 
Note: a s 58.3° . 

Now, if one were to visualize a rectangle (see Figure 1) superimposed 

on a clock face at the time 8:18 (or at 3:41 when the hands are reversed) 

using the hour and the minute hands to form semidiagonals, one would see 

a rectangle whose corners were approximately at minutes 12, 18, 42, and 

48„ At these particular times, 6 (-69.2°) is very nearly 2b (*63.4°); in 
fact, the relative error, 

69.2° - 63.4° 
63.4° 

is less than 10%. From the lemma, it follows that the imagined rectangle 

is approximately proportioned 2 to 1. That is, the rectangle would (al-

most) be formed by two squares. By checking the table, one can see that 

8:18 (and 3:41) give the "equal-angle" times for which the imagined rec-

tanble most closely approximates such a rectangle. 

The imagined rectangle at 10:09 (or 1:50) is even more significant. 

If one were to visualize a rectangle (see Figure 2) at these times, one 

would see a rectangle whose corners were approximately at the minutes 9, 

21, 39, and 51. At these particular times, 3 (~55.4°) is very nearly Arc-

tan <p («58.3°); in fact, the relative error, 

58.3°  - 55.4°  
58.3°  

is less than 5%. Therefore, at 10:09 (and 1:50), the imagined rectangle 

is approximately a golden rectangle. A check of the table shows that 

these times give the "equal-angle" times for which the imagined rectan-

gle most closely approximates the golden rectangle. 
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Perhaps the close association with the golden ratio for 8:18 and the 

good approximation to the golden rectangle for 10:09 are the reasons why 

these two times are chosen for display purposes. 
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ON EXPONENTIAL SERIES EXPANSIONS AND CONVOLUTIONS 

M. E. COHEN 

California State University, Fresno, CA 93740 

and 
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(Submitted January 1982) 

1. INTRODUCTION 

With the aid of the Lagrange Theorem, Polya and Szego [10, pp. 3015 302, 

Problems 210, 214] deduced the very important expansions 

e-z =£ (w)nan + iy-\ w = _se*K ( 1 - 1 ) 
n = 0 n' 

and 

- f; fr)"a» + i)". (1.2) 
1 + zl n^0 nl 

For applications of the above equations, see Cohen [4], Knuth [8, Section 

2.3.4.4], Riordan [12, Section 4.5]. In fact, (1.1) was of interest to 

Ramanujan [11, p. 332, Question 738]. The higher-dimensional extensions 

and their ramifications were studied by Carlitz [1], [2], Cohen [5], and 

others. 

A two-dimensional generalization of (1.2) is one result presented in 

this paper: 

For a, A, a, c real or complex, 

2-r Z-r p \ k l 
p=0 k=0 r 

i _ acxy 

( I + 7 ) ( 1 + ? ) 
where the double series is assumed convergent. 

# 
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x = 0, along with other appropriate substitutions, reduces (1.3) to 
(1.2). For other similar two-dimensional exponential series, see Carlitz 

[2, Equations (1.4) and (1.9)] and Cohen [5, Equation 2.28]. 

With the aid of (1.3), we obtain a new convolution: 

I" (A + ep)"P["(A + op) ~}m-p\ (a + ak)f[(a + ak) .Jn~k 

v T* L (a + afe)-> Lfa + afe) J L a + gp)J L a + gp) J 
£ 0 ~ 0 pl(m - p)lkl(n - k)l 

= e!f* (-a/\y'in-d __ sH^ t^ A (-a/ays""* n ,. 
ml JTo (n - j)l mini ni f?Q (m - i) ! ' . U.<U 

(1.4) may be considered as a two-dimensional extension of the Abel-

type Gould [7] convolution. See also Carlitz [3] and, for another type 

of two-dimensional generalization, refer to Cohen [6]. Letting m = 0 in 
(1.4) and simplifying, one obtains the expressions (2) and (4) given in 

[6]. For an excellent discussion of convolutions, see Riordan [12, Sec-

tions 1.5 and 1.6]. 

A two-dimensional generalization of both (1.1) and (1.2) is also pre-

sented here: 

For a, A, y, a, c9 d real or complex, 

K x) U J e x P [ ( a + ak) + (x•+ gp) j 

fe = 0 p = 0 
^ *-» k ! p ! 

. (a + ak)k~pa + ap)p-/c"1(y + 4>)* = (A + ya\i) ' (1'5) 

where the double series is assumed convergent. 

y = 0 and simplification gives (1.1), and x = 0 and reduction yields 

(1.2). 

(1.5) is employed in the proof of the new expression: 

r-q+cp)1 p RX+op) , , r p r - ( a + a f c ) ( y + ^ ) T f(a+afe)(y+dp) 
L(a+afe)J L(«+afe)"*"sJ L (A+cp) J L (A+gp) 

n - fc 

& ? 0 £ ~ p! On - p) !fc! (n - fc) ! (A + op) 

_ sm y . ( -au/X) J t"- J
 n , . 

Am! ^ ( n - j ) ! ' U J 
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(1.6) may be regarded as a two-dimensional extension of the Abel-type 

Gould convolution to which it reduces for m = 0. 
Another generalization of (1.1) is the expression, 

*~OP-O *!P! t (a + afe) + (A + Cp) / 

• (a + ak)k-p-lW + bk)p(\ + cp)p"fc-1(y + dp)k 

= jx iF2 [1; (a/a) + L' (A/e) + ̂  (?-e)(¥-y)^]' (1'7) 
where a5 3, A, ys a5 Z?s c, d are real or complex, and the double series 
is assumed to be convergent. 

The ±F2 hypergeometric function is defined in Luke [9, p. 155], In 

fact, this particular function is called the "Lommel function," given by 

[9, p. 413, Equation 1]. Letting x = 0 in (1.7) gives (1.1). 
With the aid of (1.7), we are able to prove the expansion, 

/ f - ( g + bk)(X + gp)1p[(B + bk){X + op) . lm~p 

VL (a + ak) J L .(a + ak) sj 
f - ( a + afe)(u + dp)~]k[(a + ak) (u + dp) , ."|n"fe\ 

^r £ ' L a + gp) J L a + op) + *] / 
k = o P = o pi (m - p)\k\ in - k) I (a + ak) (X + cp) 

-o 0 B . O 1 ( B . O ! ( - + l ) < ( - + l ) aA 

where (a)n = (a)(a +1) ••• (a + n - 1) for n > 0, 

= 1 for n = 0. 

The proofs of Equations (1.3) through (1.8) are given in the follow-

ing section. 

2. PROOFS OF EQUATIONS (1.3) THROUGH (1.8) 

Proof of (1.3) 

Consider the expression 

00 JUL rV.m1,n 
E E ~^j(xD)n-m[xaa - xa)n](xD)m-n[xHl - xG)m]e (2 .1) 

m=0 n=0 m ' n ' 
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At x = 1, it may be expanded to give 

\m- n - co x „ y n n m (-n)k(a + ak)n-m(-m)p(\ + opf 
2^ 2-r i f 2L, 2^~" TTiZT] (2 .2) 

m = 0n = 0 m ' n ' k = 0p = 0 *"r ' 

= £ £ ^k)\l?)k ^v\Xr{Xl%\ + ^ a f c i 1 ( a + afe)fe-p(X + g p)^ f e . (2.3) 

The double series transformation, 

E E /(n, fc) - £ £ /(n + fe, fe) and (-n), = i " 1 ?*^ , , (2.4) 

is used over fc, n and p, m in going from (2.2) to (2.3). Also, after em-

ploying the transformation, the series over m and n are summed to give 
the exponentials. 

Returning to (2.1), it may be observed that the only contributions in 

that expression give 

E ^ E -TT1^ + ak)n\-n + £ x™am{-c)m (2.5) 
n=0 n ' k=0 K' m = 1 

acxy 
aX (2.6) 

(l + f)(, • f) 

(2.5) reduces to (2.6) with the aid of (2.4) and series simplification. 

Equating (2.3) and (2.6) gives the result (1.3). 

Proof of (1.4) 

Assuming (1.3), multiply both sides of that equation by exp [ sx + t?/] . 

The exponentials may be expanded, and the left-hand side assumes the form 

(2.7) 

£ £ £ E ("1 ) P ( - 1 ) sVo* + qfe) (A + ep)p 

m =0 n = 0 k = 0 p = 0 p • K • 

a" [(A + gp) . Ty"[(a + ak) ln . 
ml L(a + afc) J «! |_tt + op) * v\ 

The right-hand side may be expanded to give 
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(2.7) may be expressed as 

r-(X+gp)1pr-(a+g/c)1fer(X + op) T-p[(a + ak) , T'k 

v v ^ , * v f L(g + qfe)J la + ev)\ L(g + gfe) J La + cp) + 1 
(2.9) 

Comparing coefficients between Equations (2.8) and (2.9) gives the re-

sult (1.4). 

Proof of (1.5) 

Consider the expression 

£ £ £ 7 i L
r ( ^ ) n " m [ ^ a ( l - xa)n](y6)n\x d {xDT-n-x[xx{\ - xc)m}\ , 

n = 0 m = 0 m-n- L J 

(2.10) 

where y - x°'d, D = £ , 6 = ^ . 
Following the procedure adopted in the proof of (1.3), (2.10) assumes 

the form 

v- v* (-^)P(-.v)fe f ^ q + op) z/(a + qfe)(u + dp)~] 
^ L plkl e x p L ( a + ak) (A + op) J 

p = 0 k = 0 L 

'• (a + ak)k'p(X + cp^-*-1^ + Jp)fe. (2.11) 

Referring to (2.10), it may be seen that at x = 1 for n> m9 only m = 0 
contributes and for n < m, the expression is zero. Hence, we have 

x i W- <2-'« n = 0 

Equating (2.11) and (2.12) gives the result (1.5). 

Proof of (1.6) 

Following the procedure given in the proof of (1.4), the left-hand 

side of (1.5) multiplied by ewp[sx+ ty] may be expanded as 

t t t t ( ~ 1 ) P ( ;^'Aa + ak)k-?(\ + gp)p-fe-1(y + dp)k 

k = 0 P = 0 m = 0 n = 0 P " K" 

ml 
(A + op) T.Vn[(a + ak)(\i + dp) 
(a + ak) J nil (A + op) + t (2.13) 
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The right-hand side reduces to 

i i l f. A xmynsm A {-a\i/\ytn~3 

n m = 0 n = 0 "'• j =0 ^n 3} ! 

Equating coefficients in (2.13) and (2.14) gives Equation (1.6). 

Proof of (1.7) 

Consider the operators 

n = 0 m=0 "L'n' L J 

• (y282r^x-a+-§r(xD)n-m-1[xaa - a:")"]], (2.15) 

where yx = x°>*, y2 = x"*>, D E £ , 6X = -£-, 62 = J-. 

As in the proof of (1«,3) and (1.5) 9 (2.15) reduces to 

V V (-x)P(-y)k )x(g + bk){\ + op) y(a + afe)(y + dp)\ 
p~0 iho P!fc! S X P ( (a + a W + (A+cp) J 

• (a + afe)fc-p-1(g + bk)p(X + cp)p~k_1(y + 4>)fc. (2.16) 

Now, looking at (2.15), at x = 1, and noting that 

- (-n),(3 + mn
 n<.(,-f)nr(l) 

h kia + ch) " c r ( A + n + 1 ) ( 2 ' 1 7 ) 

with the only contributions coming from m = n, one has the reduced ex-
pression 

<*£0~ ( « + A ( i + 1 ) (2a8) 

Comparing (2.16) and (2.18) gives (1.7). 

Proof of (1.8) 
Assuming the expansion (1.7) and following the type of proof adopted 

for (1.6), with suitable modifications. Equation (1.8) is obtained. 

116 [May 



ON EXPONENTIAL SERIES EXPANSIONS AND CONVOLUTIONS 

REFERENCES 

1. L. Carlitz. "An Application of MacMahonfs Master Theorem." SIAM J. 
Appl. Math. 26 (1974):431-36. 

2. L* Carlitz, "Some Expansions and Convolution Formulas Related to 
MacMahonfs Master Theorem." SIAM J. Math. Anal. 8 (1977) : 320-36. 

3. L. Carlitz. "Some Formulas of Jensen and Gould." Duke Math. J. 27 
(1960):319-21. 

4. M. E. Cohen. "On Expansion Problems: New Classes of Formulas for 
the Classical Functions." SIAM J. Math. Anal. 5 (1976):702-12. 

5. M. E. Cohen. "Some Classes of Generating Functions for the Laguerre 
and Hermite Polynomials." Math, of Comp. 31 (1977):511-18. 

6. M. E. Cohen & H. S. Sun. "A Note on the Jensen-Gould Convolutions." 
Canad. Math. Bull. 23 (1980):359-61. 

7. H. W. Gould. "Generalization of a Theorem of Jensen Concerning Con-
volutions." Duke Math. J. 27 (1960):71-76. 

8. D. E. Knuth. The Art of Computer Programming. Vol. I: Fundamental 
Algorithms. Reading, Mass.: Addison-Wesley, 1975. 

9. Y. L. Luke. Mathematical Functions and Their Approximations. New 
York: Academic Press, 1975. 

10. G. Polya & G. Szego. Aufgaben und Lehrsatze aus der Analysis. Ber-
lin: Springer-Verlag, 1964. 

11. S. Ramanujan. Collected Papers of Srinivasa Ramanujan. New York: 
Chelsea, 1962. 

12. J. Riordan. Combinatorial Identities. New York: John Wiley & Sons, 
1968. 

1983] 117 



• 0#0# 

NOTES ON FIBONACCI TREES AND THEIR OPTIMALITY* 

YASUICHI HORIBE 

Shizuoka University, Hamamatsu, 432, Japan 
(Submitted February 1982) 

INTRODUCTION 

Continuing a previous paper [3], some new observations on properties and 

optimality of Fibonacci trees will be given, beginning with a short re-

view of some parts of [3] in the first section. 

1. FIBONACCI TREES 

Consider a binary tree (rooted and ordered) with n - 1 internal nodes 
(each having two sons) and n terminal nodes or leaves* A node is at 

level £ if the path from the root to this node has £ branches. Assign 

unit cost 1 to each left branch and cost c (̂  1) to each right branch. 

The cost of a node is defined to be the sum of costs of branches that 

form the path from the root to this node. Further, we define the total 
cost of a tree as the sum of costs of all terminal nodes. For a given 

number of terminal nodes, a tree with minimum total cost is called opti-
mal. Suppose we have an optimal tree with n terminal nodes. Split in 

this tree any one terminal node of minimum cost to produce two new ter-

minal nodes. Then the resulting tree with n + 1 terminal nodes will be 
optimal. This growth procedure is due to Varn [6], (For a simple proof 

of the validity of this procedure, see [3].) 

A beautiful class of binary trees is the class of Fibonacci trees 

(for an account, see [5]). The Fibonacci tree of order k has Fk terminal 

nodes, where {Fk} are the Fibonacci numbers 

F0 = 0, Fx = 1, Fk =Fk_1 +Fk_2, 

and is defined inductively as follows: If k = 1 or 2, the Fibonacci tree 

*This paper was presented at a meeting on Information Theory, Mathe-
matisches Forschungsinstitut, Oberwolfach, West Germany, April 4-10, 1982. 
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of order k is simply the root only. If k > 39 the left subtree of the 
Fibonacci tree of order k is the Fibonacci tree of order k - 1; and the 
right subtree is the Fibonacci tree of order k - 2. The Fibonacci tree 

of order k will be denoted by Tk for brevity. 

Let us say that Tk is c-optimal, if it has the minimum total cost of 

all binary trees having Fk terminal nodes, when cost c is assigned to 
each right branch9 and cost 1 to each left branch. 

We have the following properties [3]: 

(A) Tk 9 k^ 2, with cost c = 2 has Fk_1 terminal nodes of cost k - 2 
and Fk_2 terminal nodes of cost k - 1. 

(B) Splitting all terminal nodes of cost k - 2 in Tk with a = 2 pro-
duces T, ̂  . 

(C) Tk is 2-optimal for every fe. 

By the properties (A) and (B), it may be natural to classify the ter-

minal nodes of Tk into two types, a and 3: A terminal node is of type a 

(a-node for short) [respectively* type B (8-node for short) ], if this node 

becomes one of the lower [higher] cost nodes when a = 2. 

See Figure 1. (T± and T2 consist only of a root node. In order that 

the assignment of types to nodes will satisfy the inductive construction 

in Lemma 1 below, we take the convention that the node in T± is of type 3 

and the node in T2 is of type a.) 
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Lemma 1 

The type determination within each of the left and right subtrees 

gives the correct type determination for the whole tree. 

Proof (induction on order k): Trivially true for T3. Consider Tk 9 

k > 4, with c = 2. • The left [right] subtree is Tk_1 [Tk_2], so within 

this subtree, by (A), the a-nodes have cost k - 3 [k - 4] and the 3-nodes 
have cost k - 2 [k - 3]. But in the whole tree, these a-nodes have cost 

(k - 3) + 1 = k - 2 [(k - 4) + 2 = k - 2], 

hence, they are still of type a, and these 3-nodes have cost 

(k - 2) + 1 = k ~ 1 [(k - 3) + 2 = k - 1], 

hence, they are still of type g. This completes the proof. 

Before going to the next section, we show two things. First, let us 

see that Tk with a = 2 has Fj + ± internal nodes of cost J, j = 0, 1, ..., 
k - 3. In fact, T- + 2 has Fj+1 nodes of cost J, and they must all be ter-

minally (A). Split all these a-nodes, then the resulting tree Tj+3, by 

(B), has F-+1 internal nodes of cost J, and so does every Fibonacci tree 

of order greater than j + 3. 

Secondly, let us see what happens when we apply the operation "split 

all a-nodes" n - 1 times successively to Tm+1. The tree produced is, of 

course, the Fibonacci tree of order (m + 1) + (n - 1) = m + n, by (B). 
On the other hand, the B~nodes in the original tree of order m + 1 will 
change into a-nodes when the a-nodes in this tree are split to produce 

the tree of order m + 2. Hence, each of the Fm [resp. Fm_1] a-nodes [3~ 

nodes] in the original tree of order m + 1 will become the root of Tn + 1 

[Tn ] when the whole process is completed. By counting the terminal nodes, 
we have obtained a "proof-by-tree" of the well-known relation [4]: 

JP = w F + F F 
^m + n J-mJ-n+l ' J-m-lJ-n' 

2. NUMBER OF TERMINAL NODES AT EACH LEVEL 

In this section, we shall show the following: 
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Theorem 1 

The number of a-nodes at level £ of the Fibonacci tree of order k> 2 

is given by L_ 2 _ A and the number of (3-nodes is given by L^_ ~l_ ), 

£ = 0, 1, . .., k - 2. [i?̂ w<ZP?c: The height (the maximum level) of the 

Fibonacci tree of order k ^ 2 is k - 2e] 

Before proving this theorem, let us look at the Fibonacci trees more 

closely with the aid of the following branch labeling. We label (induc-

tively on order k) each branch with one of the three signss a, 3a, 39 as 

follows: In T3, the left branch is labeled a, and the right branch is 

labeled 3- Suppose the labeling is already done for TJ<_1 and Tk_2. Let 

these labeled trees be the left and right subtrees of Tk, respectively, 

and let the left and right branches that are incident to the root of Tk 

be labeled a and |3a, respectively (see Figure 1). (The branch labeling 

may have the following "tree-growth" interpretation: Every branching oc-

curs at discrete times k - 3, 4, . . . , and produces two different types of 

branches a, 3. Suppose a branching occurs at time k. The a-branch pro-

duced at this time is "ready" for similar branching at time k + 1, but 

the 3-branch must "mature" into a 3a-branch at time k + 1 to branch at 

time k + 2a) This labeling rule immediately implies that every left 

branch is labeled a and every right branch not incident to a terminal 

node of type 3 is labeled 3ou 

Now, by F-sequence (called PM sequence in[2])5 we mean a sequence of 

a and 3 with no two 3fs adjacent * It is easy to see, by induction on or-

der k9 that paths (by which we always mean paths from the root to ter-

minal nodes) in Tk correspond, in one-to-one manner, to F-sequences of 

length k - 2 obtained by concatenating branch labels along paths, and 

that all possible F-sequences of length k - 2 appear in Tk; hence, there 

are Fk F-sequences of length k - 2 in alla For example, if we enumerate 

all paths in T& (see Figure 1) "from left to right," we have eight (=F6) 

F-sequences of length 4: aaaa, aaa35 aa3a, a3aa, a3a3? 3aaa, 3aa3, 3a3a* 

Proof of Theorem 1: It is also easy to show, using Lemma 1 and by in-

duction on order k5 that any path leading to an a-node [resp* a B-node] 

corresponds to an F-sequence ending with a [3]- Therefore, the number of 
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a-nodes at level £ of Tk is the number of F-sequences of length k - 2 

ending with a and composed of £ afs and k - 2 - £ gfs. The number of such 

F-sequences is the number of ways to choose k - 2-£ positions to receive 

a 3 from the £ starred positions in the alternating sequence *a*a.. . *ou 

This is (- _ J. Similarly9 the number of g nodes at level £ of Tk is 

the number of F-sequences of length k - 2 ending with g and composed of 

£ - 1 a?s and k - 1 - £ gfs. The number of such F-sequences is the number 

of ways to choose k - 2 - £ positions to receive a g from the £ - 1 starred 

positions in the (almost) alternating sequence *a*a ... *ag. This is 
/ £ - 1 \ 
( v _ ?_ Q/' This completes the proof. 

Note that, since 

/ A - 1 \ / £ - 1 \ 
\k - 2 - £/ \k - 3 - (£ » l)/5 

the number of g~nodes at level £ > 1 of the Fibonacci tree of order k ^ 3 

equals the number of a-nodes at level £ - 1 of the Fibonacci tree of or-

der k - 1. 

Now, let us look at a relation between the numbers of the terminal 

nodes of each type and some sequences of binomial coefficients appearing 

in the Pascal triangle. Draw diagonals in the Pascal triangle as shown 

in Figure 2. It is well known ([2], [4]) that, if we add up the numbers 

between the parallel lines, the sums are precisely the Fibonacci numbers. 

56 28 

FIGURE 2. Pascal Triangle 
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We observe that the sequences totalling Fk_2 and Fk_1 in the triangle 

F . Ik - 3 \ Ik - 3\ Ik - 3\ / % - 1 \ 
**-2 - ' V 0 / ' \ 1 / ' I 2 ) ' " • ' U - 2 - £ / ' ••• 

'.-.= (VMVM*;2)-
l e v e l = fc - 2 , & - 3 S & - 4 9 

• • ( . . ) • • • • 

£ 

display the numbers of the 3-nodes and the a-nodes9 respectively, at de-

creasing levels of Tk. For example, we find in Figure 2 that T10 has 15 

a-nodes and 10 3~nodes at level 6. In [1], the total number of terminal 

nodes at level £ of Tk is also given (with a slightly different interpre-

tation) but not in the form of the sum of two meaningful numbers: 

(k - 2 - £/ + \k - 2 - £/' 

3. g-OPTIMALITY OF FIBONACCI TREES 

Property (C) above states that Tk is 2-optimal for every k« In this 

section we prove the following. 

Theorem 2 
When 1 < o < 2, the Fibonacci tree of order k ^ 3 is c-optimal if and 

only if 

k < 2 + 3. 

When c > 2, the Fibonacci tree of order k > 3 is ^-optimal if and only if 

1 
k < 2 + 4, [e - 2J 

( |_xj is the largest Integer < x.) 

To prove the theorem, we first note the following: Tk 9 k> 5, has 

the shape shown in Figure 3 and Figure 4, and k - 2 (k > 3) is the maxi-

mum level of Tks where both a- and 3™nodes exist, because from Theorem 1 

the maximum level of Tk must be < k - 2 and £ = k - 2 gives 
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U - 2 - Jl) \k - 2 - l) 1 if k > 3. 

The minimum level where a terminal a-node [resp. 3~node] exists is given 

by 
\k - l\\\ k 1] 
L 2 JLL 2 JJ 

the smallest integer £ satisfying fe-2-£<£ [ f e - 2 - £ < £ - l ] , from 

Theorem 1 (see Figures 3 and 4). 

Level 

0 

(k - 3)/2 —»• 

(fe " D/2 

k - 3 

fe - 2 

FIGURE 3. Fibonacci Tree of Odd Order k > 5 

k - 3 

fc - 2 

FIGURE 4. Fibonacci Tree of Even Order k > 6 
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Proof of the "only if" part of Theorem 2 

Trivial for k = 3S 4* 

Case 1 < a < 29 Odd k > 5: See Figure 3. Change Tk into a non-Fibo-

nacci tree having Fk terminal nodes by deleting the two sons of the node 

p and by splitting the left son of the node q. Let us compute the change 

in the total cost by this transformation. Deletion of the old vertices 

saves (k - 3) + (1 + c) = s. The new vertices add cost 

1 + °i^Y^) + (1 + c) = *. 

The net change in cost is 

t - s = 1 + (a - 2)p-=-^). 

If T is ̂ -optimal, we must have t - s ^ 05 so 

Case 1 < c < 2, even k > 6: See Figure 4. Change Tk into a non-Fibo-

nacci tree having Fk terminal nodes by deleting the two sons of the node 

p and by splitting the right son of the node q. Again, if t is the added 

cost of the new vertices and s the savings from deleting old vertices, we 

have s = (k - 3) + (1 + o)9 t = 1 + o(k/2)9 so 

t - s = 1 + (c - 2)(^-=-^). 

If Tk is c-optimal, we must have t - s > 05 so 

k - U ^ - or H ^ - + 2 . 
2 2 - c 2 - e 

? 2 
The conditions k < ̂ — + 3 for k odd and fc < + 2 for ft even 

can be combined to get 
I i I 

+ 3* ft < 2 1 
2 - c 

Case g > 2, odd ft S* 5: See Figure 3* Change ̂  into a non-Fibonacci 

tree having Fk terminal nodes by deleting the two sons of the node q and 
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by splitting the left son of the node p. Here 

s = 1 + e ^ H H 1 ) ' * = ! + (k " 2 + e), t - s = (2 - C)(fe ~ 3 ) + i. 

Fibonacci c-optimality requires t - s ^ 0, so 

^ - ^ < - ^ - y or k ^ - ^ + 3 . 2 e - 2 o - 2 

Case c > 2, even k > 6: See Figure 4. Change T^ into a non-Fibonacci 

tree having Fk terminal nodes by deleting the two sons of the node v and 

by splitting the left son of the node p. Here 

s = 1 + c(j - 2) + (1 + c), t = 1 + (k - 2) + o9 

t - s = (2 - c?)(^-=-^) + 1. 

Fibonacci c-optimality requires t - s > 0, so 

fc - 4 . 1 7 ^ 2 ^ , 

-T-^^-^l or fc<7^T+4-
2 2 

The conditions k < r- + 3 for fc odd and k < - + 4 for fc even 
c - 2 c - 2 

can be combined to get 
k < 2 + 4. 

Our proof of the "if" part of the theorem will be based on the next 

lemma. 

Lemma 2 
Denote by a(k9 £9 o) and £>(k9 £, c) the costs of the a-nodes and the 

(3-nodes at level £ of the Fibonacci tree of order k ^ 3 with cost o for 

right branches. Then we have: 

a(fes £9 c) = (2 - c)£ + (a - 1) (fc - 2), 

$(ks £9 c) = (2 - c)£ + (c - l)(fe - 1). 

Proof : O b v i o u s l y , a(Zc, £9 1) = $(k, £9 1) = £. By (A) , we have 

a(fc, £9 2) = fc - 2S B(fe9 £5 2) = k - 1. 
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Since (2 - a) (Is 1) + (a - 1)(1, 2) = (1, c) , i.e., the cost assignment 

(1, o) to (left branch, right branch) may be written as this linear com-

bination of two cost assignments (1, 1) and (1, 2), the proof is finished. 

Proof of the "if" part of Theorem 2 

Case 1 < a < Z: Put 

k* = 21 + 2. 

We show that, for every k < k*, 

(1) a(fc, k - 2, c) < sffe, 

(2) a(fc, fc - 2, c) < 

1 k 

k -

9 O 

- 1 1 
) , Q + 1. 

To show (1) [(2) and (3) and (4) below can be verified similarly), con-

sider the difference: 

' k , c - a(k9 k - 2, c), D = Blfe, 

If k is even, we have, using Lemma 2 and k ^ k* 9 

D = (2 - s)(-|-) + (s - i)(fe - 1) - (fc - 2) 

= -(2 - e)(^-2-^) + X ^ " ( 2 " C ) 
1 + 1 > 0. 

If fe is odd, we have, using Lemma 2 and k < fc* - 1 (note that &* is even), 

'k - 1 
D = (2 - o){^~^j + (a - l)(k - I) - (k - 2) 

= -(2 - ̂ ) ( ^ ~ 1 ) + 1 > -(2 ~ c)1 l + 1 > 0. 

Now, let us remember the remarks given just before the proof of the 

"only if" part. By Lemma 2, a(k9 &, c) and g(fc, £, <?) increase linearly 

in £, so (1) implies that all a-nodes in ̂ , k < fc*, are the cheapest of 

all terminal nodes. The inequality (2) implies that, if the cheapest a-

node™its cost is a Ik k- 1 , aj—Is s p l i t , the cos t a[k9 
k- 1 ,c) + 1 
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of its left son will never be less than the highest cost a(fe, k - 2, c) 
of all a-nodes. This means that the successive applications (Fk_1 times) 

of Varn!s procedure mentioned in the first section will result in split-

ting all a-nodes of Tk. Hence, if this tree of order k is c-optimal, the 
resulting tree, which is Tk+1 by (B), is also ̂ -optimal. Since T3 is c-
optimal and k* ^ 3, we conclude, inductively, that Tk is c-optimal for 

every k < k* + 1. 

1 
Case a > 2: Put fe* = 2 

\k 

+ 3. We have, for every fc < k*, 

1 
2 

k - 1 

, c) < 3(fe, k - 2, c), 

, c) < a(fe, k - 2, c?) + 1. 

(3) a fc, 

(4) a 

The remainder of the proof is similar to Case 1 < c < 2. Note in this 

case that a(k, £, e) and |3(fc, £, c) decrease linearly in £ by Lemma 2. @ 
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A NOTE ON FIBONACCI CUBATURE 
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Zaremba [3] considered the two-dimensional cubature formula 

fix, y)dxdy = j~J2f(xk> yk) > 

where FN is the Nth Fibonacci number and the nodes (xk, yk) are defined 

as follows: xk = k/FN and yk = {FN _1x]<} <> where { } denotes the fraction-
al part. Thus, y = FN_1xk - [FN_±xk]5 where [ ] denotes the greatest 

integer function. The purpose of this paper is to prove the conjecture 

stated by Squire in [2]; that is, 

Theorem 

(even\ J, then 

K(yk, 1 - xk) t 

is also a node. 

We will assume throughout that 1 <: k ^ FN - 19 N > 29 and will show: 

(i) Each yk is equal to some xm9 1 < m < FN - 1. 

(ii) The yk
1s are distinct. 

By definition, the xk's are distinct, and so (i) and (ii) imply that for 

every node (xk9 yk) there is a unique node (xm9 ym) with xm = yk. 
Finally, we show: 

(iii) If (xm, ym) is the node with xm = yk , then 

!

xk if N is even, 

1 - xk if N is odd. 
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Proof of (i): We have 

^E-lXk* 
7 1 7 - 1 I 

N - 1 
(1) 

= \k F - F 
\ *• L N - l N 

Now from [ 1, p. 288], gcd (FN_19 FN) - 1, and so 

0 < k ' N - 1 

Thus 

0 < k F„ 

' N - 1 

" 7 1 / - 1 

< 1. 

< ^ > 

where the middle quantity in this inequality is an integer and is also 

the numerator of the right-hand side of (1). Hence, z/ is equal to some 

xm9 1 < m < FN - 1. 

Proof of (i i) : To show the yfe!s are distinct, we will prove yk = ym 

if and only if k =777. Assume, without loss of generality, that 1 < 777 < k. 

i f y„ , we have 

^ x 

(k - m} 
' N - 1 

k 
' N - 1 

F f f . 
9 

V i 1 

'" F" J 
(2) 

Now recalling gcd (FN_19 F ) = 1 and since 0 < fc - m < F^ , (fc - m)FN_1/FN 

is never an integer unless k - m - 0. However, the right-hand side of 

(2) is always an integer, and so yk = y if and only if k = m. 

Proof of (iii ): Assume that (xm, ym) is the node with xm = yk. Then 
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I * - i \ F„ 

7 N ' 1 

' N - l 

From [ 1 , p . 294] , we have F^_1 = FNFN_2 + ( - l ) ^ " 2 for N > 3, and so 

ym = i k F
N - 2 + (-ir-2k/FN -FN k 

• N - l 

Now i f n i s any i n t ege r {n + x} = x - [x], and s ince 

& F - F r& F IF I 
^ 2 V - 2 X ^ - l L A - L N-1/JJN J 

i s an i n t e g e r , we have 

z/w = ( - l ) ^ 2 / c / F ^ - [(-lf-2k/FN] 

!

k/FN - 0 = xk ±f N Is even, 

-fe/Fy - (-1) = 1 - xk i f N i s odd, 
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A FAMILY OF POLYNOMIALS AND POWERS OF THE SECANT 
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In this paper, we discuss a family of polynomials An(z) , defined by the 

conditions 

AQ(z) = 1 and Ak(z) = z(z + ^)Ak_1(z + 2) - z2Ak_±(z). 

Using these polynomials, we may express complex powers of the secant and 

cosine functions as infinite series. These polynomials provide ways to 

obtain numerous relations among Euler numbers and Bell numbers. They 

appear to be unrelated to other functions which arise in this context. 

Suppose that we consider the family of polynomials An(z) 9 n = 0, 1, 
2, ..., defined as follows: AQ(z) = 1 and if AQ(z)9 ..., Ak_1(z) have 

already been defined, then Ak(z) is given by the recursion formula: 

Ak(z) = z(z + l)Ak_1(z + 2) - z1Ak_1(z). (1) 

It follows immediately that if A l(z) is a polynomial of degree £ for 

0 < I < k - 1, then Ak(z) has leading coefficient (27c - l)akl9 where 

ak_1 is the leading coefficient of Ak_1(z) , and where (2k - l)ak_1 is the 

coefficient of zk* Thus, we generate a series of leading terms: 

1, 2, 3s2, 15s3, lOSs1*, ..., [(2k - l)l/2k~1(k - l)\]zk, ..., (2) 

so that Ak(z) is a polynomial of degree precisely k. It also follows im-

mediately from (1) that .4̂ (0) = 0 for all k > 1. We note further that if 

A*(z) =Ak(-z), then A*(z) = AQ(-z) = 1, and from (1), A*(z) = Ak(-z) = 

-z(-z + l)A* (z - 2) - z2A* (z) so that we have a corresponding family 

of polynomials A*(z) 9 n = 0, 1, 2, ..., given by the recursion formula: 

A*(z) = z{z - 1)4*^(3 - 2) - z1A*_i(z). (3) 

It follows immediately that for the sequence A*(z) we have a correspond-

ing sequence of leading terms: 
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1, -a, 3s2, -1523, 1053\ ... [(-l)k(2k - l)l/2k-x(k - l)\]zk, ... (4) 

It is our purpose in this note to prove that 

sec2x = f; [An(z)/(2n)\]x2n (5) 

and 

c o s ^ = £ [A*{z)/(2n)\}xZn , (6) 
n = 0 

as well as derive some consequences of these facts. 

In particular, if 2 = 1, then we obtain the corresponding formulas, 

sec x = f] [An(l)/(2n)l]x2n (7) 
n = 0 

and 
cos x = f; [A*(l)/(2ri)l]x2n

9 (8) 
n = 0 

so that we obtain the results: An(l) = E2n, the usual Euler number; and 

A*(l) = An(-l) = (-l)n, so that we are able to evaluate these polynomials 
at these values by use of the definitions. 

Given that formulas (5) and (6) hold, we obtain from 

sec2l# • sec22x = secZl+s*x 

the relation 

I L Um(Sl) / (2m) l]x2m)( Z [Az(^2) / (2^) l]x2i 

\m=0 /\l=0 

= f ) ( £ Am^1)Ai^2)/(2m)l(2i)l)x2k; 

whence, 

T Am{z1)Ai{z2)K2m)\{2l)\ = Ak(zx +zz)/(.Zk)l, (10) 
m + £ = k 

so that we obtain finally the addition formula: 

From (11) we have the consequence 

Ak(z - s) = E (ifjAjizU* (z) = 0, k > 0; (12) 
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whence, since secs^ • cossx = 1, it follow that for k ^ 1, 
k 

mh (z)A*_d(z) = 0. (13) 

In particular, if 3 = 1, then we obtain the formula for k ^ 1, using 

To generate sample polynomials, we use the original relations (1) and 

take consecutive values of k9 

k = 1, A1(z) = z(z + 1) - s2 = z 

k = 2, 42G0 = 3(3 + l)(s + 2) - s3 = 3s2 + 2z 

k = 3, i43(g) = s(3 + l)[3(s + 2)2 + 2(s + 2) - s2(3s2 + 2z) 
= I5z3 + 30s2 + 16s, etc., 

with A1(l) = E2 = 1, 42(1) = Eh = 5, i43(l) = #6 = 61. 

From Equation (1) we find, taking z = 1, that 

£2k = 2Ak_1{3) - E2k_2, EQ = 1 (15) 
and 

Ak_1(3) = l/2[E2k + £ 2 k _ 2 ] , fc > 1, (16) 

so that we have an immediate expansion for sec3s in terms of the Euler 

numbers: 

sec3x = JL{[E2n + E2n_2]/2(2n - 2)\)x2n-2 

n = 1 
(17) 

= tlE2n+2 +E2n]/2(2n)lx2n. 
n = 0 

By repeated use of (1) in this fashion, we may generate expressions for 

sec z, sec s, ..., sec n+ z, which are expressed in terms of the standard 

Euler numbers only. 

To prove the formulas (5) and (6), we proceed as follows: 

(sec^x) ' = m so.cmx tan x, 

(secmx)" = (m2 + m)secm+2x - m2secmx9 

and thus, if we write (formally) 
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secma; = £ [An On)/(2K) ! ]x2n , 
n = 0 

then 

(m2 + m)secm+2x - m2secmx = £ C(0?2 + m)An(m + 2) - ???2^n(w) ) / (2n) ! > 2 " 
rc = 0 

= E Un+1fa)/(2n)!]ar2n, (18) 
72 = 0 

so that upon equating coefficients, we find: 

^n + 1(m) = m(m + l)An(m + 2) - m 2 ^ (???). (19) 

From (19), it is immediate that Ak(m) is a polynomial in the variable 777, 

where we consider 777 a real number 777 > 1, and such that sec^ has the ap-

propriate expression. 

If we fix x so that sec2x > 1, then f(z) = sec x yields 

/f(s) = f(z) * log(sec x), 

and thus / (2) is an analytic function of z which agrees with the series 

given in (5) for the real variable 777 > 1. Since g(z) given by the series 

in z is also analytic and since f(m) - g(m) for the real variable 77? > 19 

it follows that f(z) = g(z)s or what amounts to the same thing, equation 

(5) holds for all z. Equation (6) is now a consequence of equation (5) 

if we replace z by -2, 

Making use of what we have derived above, we may also analyze other 

functions in this way, as the examples below indicate. 

Suppose we write 

tan x = X (Tn/nl)xn, where T 2n = 0 and 
n = 0 

tt-lo2n snn-1 
(20) 

( - l ) n ~ i 2 2 n ( 2 1)3 

(2n)I 

Then from -j-(sec x) = z s ec 2 ^ t an s x we obta in the r e l a t i o n 

' „ ( An(z)/z 

n=o {(2n - 1 ) ! . 
„ 2 w - 1 E # 

m = 0(277z)! 
E ̂ / ^ 2 

£ =0 

(21) 

whence it follows that: 
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An(z)lz AAz)T, 
(22) 

{In - 1)! 2m + £ = 2n-i (2m) \V. 

An(z)/z = £ (2n~ l)Am(z)T,. (23) 

In particular, we conclude that if £ is even, then Tz = 0, which is of 

course known, and the corresponding expression is 

n- 1 

*n 00 -j?0(^1)2,(2(n-W)-l)^W- (24) 

Hence we may derive a variety of formulas. For example, by taking z = 15 

(24) yields 

E2n = ^ \ 2m )THn-m)-lE2m> 

or, since the coefficients Tz are vastly more complicated: 

™2n-l == E2m L \ 2ff? j ^2(n - m)-1E2m 9 

m = 1 ^ / 

which yields a recursion formula involving the Euler numbers. 

Similarly, from z - --1, An(-l) = (-l)n, we obtain 

n~ 1 

(-u» = Ec-ir^f2^1)^.,)-, , 
w = 0 \ / 

or, once again, for 77? = 0, 

n- 1 

£ 
7 = 1 

^•I'I^I^K"-1'^1 , 

Using the fac t t h a t 1 + tan2^c = sec2^c, we obta in the r e l a t i o n 

t , (2m + 1)! x 
• 21 + 1 

4?0(2A + 1)! 
„2£ + l 

00 / T T \ 
y > / ^ 2m + l 2 £ + l \ 2fc 

& L £* -1 ̂ rrryr (2£ + D.J* 
so t h a t 

and 

L 2m + 1 2 & + 1 _ 

_7 1 (2m + 1 ) ! (2£ + 1)! i+m=k-1 (2fc)! 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 
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Aki2)
 m ? 0 v2777 + lr2--^^-"')-!' 

I f we u s e t h e f a c t t h a t ( t a n x)' = s e c 2 x , t h e n 

^ o ( 2 m ) ! 

; Am{2) 
x 

so that immediately: 

^W(2) = ?\ 

Hence, by using (31), we have the relation: 

k-1 
T = V I IT • T 

2k + l La \2m + W ^ m + l ^2(fc-m)-l " 
777 = 0 N ' 

(31) 

(32) 

(33) 

(34) 

Having these relations at hand, we use the fact that 

tan x • cos x = sin x 

to obtain 

sin x = £ Ura(2)/(2m + l)!k2m + 1 J3 i4£(-l)/(2£)!a; 
£ = 0 

2£ 

A: = 0 

4„(2) • At(-1) 
(35) 

£ + m=/c 
(2m + 1)!(2£)! 

so that 

Hence: 

A (2) • AA-l) 

, (2m + 1)1 

„2k+ 1 

(-D' 
£ + m = k 

(21)1 (2k + 1)1 

77? = 0 * ' 

Using the fact that Az(-1) = (-1)£5 it follows that: 

£ (-^^-"{llt f)Am(2) = 1. 

(36) 

(37) 

(38) 

From these examples9 it should be clear that the polynomials An(z), 

n = 0, 1, 2, ... are a family closely related to the trigonometric func-

tions and, hence, they should prove interesting. The sampling of such 

properties given here seems to indicate that this is indeed the case. 
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The game Spite Nim I was introduced by Jesse Croach in [2] and discussed 

further briefly in [3]. No solution was given for the same in these ref-

erences, and some questions were raised about a partial solution for cer-

tain simple cases of the game. This note will solve part of one of these 

questions, and will show that the solution is closely related to the gol-

den ratio a = . 

Spite Nim is played in the following way: Two players pick from sev-

eral rows of counters. On a playerfs turn to move, he announces a posi-

tive number of counters. This number must be less than or equal to the 

number of counters in the longest row. His opponent then indicates from 

which row these counters are to be taken. (This is the "spite" option.) 

This row must have at least as many counters as the call. The players 

alternate moves. The player who takes the last counter wins. 

In this note only the case of two rows will be considered. A config-

uration of two rows of lengths n and r will be denoted by (n, r). This 

actually should be considered an unordered pair. 

Given any pair,a person receiving such a pair can either make a call 

which with best play on both sides will give him a win, or he loses, no 

matter what call he makes. In the first case, the position is called un-

safe (it is unsafe to leave it to your opponent); in the second case, it 

is called safe. 

It will be shown that for each n there is an r < n for which (r, n) 

is safe, and if s < r, (n, s) is unsafe. The number r will be shown to 

be equal to a function of n which has been previously studied. 

Define a function / on the natural numbers by /(l) = 1, and for n > 15 

fin) = r, where r is the smallest number for which r + fir) ^ n. Since 

fir) > 1, such an r clearly exists. 
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Theorem 1 

For all natural numbers n, (ft, /(ft)) is safe, and if s < /(ft), (ft, s) 
is unsafe. 

Proof: Use induction. (1,0) is clearly unsafe, while (1, 1) is safe. 

So the theorem holds for n - 1. 
Assume Theorem 1 holds for all s < ft. Then, first, if s < /(ft), then 

(ft, s) is unsafe, 

To show this, suppose a player is given (ft, s). Since s < /(ft) , s + 
/(s) < n, by definition of f. Therefore, n - f(s) > s. So, on the call 

^ - f(s)* the resulting pair is (/(s) , s), which by hypothesis is safe. 

Secondly, (ft, /(ft)) is safe. On a call of P < /(ft)* take from the 

second row to get (ft, /(ft) - r). This has just been shown to be unsafe. 

On a call v > /(ft), the result is (ft-p, /(ft)). But since ft < /(ft) + 

f(fW) ) J ft-^ < /(/(ft)). So by hypothesis, (ft-r, /(ft)) is unsafe; thus, 

Theorem 1 is proved. 

Now, reexamine /. /(ft) is in fact the same as e(n)9 defined in [1]. 

To show /(ft) = e(n)9 we will show e(n) satisfies the recursion /(ft) 

does. Since /(I) = 1 = <s(l), this will show the functions are identical. 

First, write n in Fibonacci notation. Let Fm be the mth Fibonacci 

number. Then ft = Fr + Fr + • • • + Fr , where ri - ri + 1 > 2, and rfe > 2. 

By definition, e (ft) = FI,_1+FI3_i + ••• + F̂  _ -,_. 

If rk f 2, then 

e(e(ft)) = F + F + ... + F 

So g (ft) + e(g(ft)) = ft. Also, since e (ft) is nondecreasing, if s < e{ri) 9 

then s + e(s) < £(ft) + e(e(ft)) = ft. So e(ft) satisfies the recursion here. 

If v = 2 , again e (ft) = Fp ^ 4- ••• + F̂  _1. However, since r>k - 1 = 
1, this no longer expresses e(ft) in correct Fibonacci representation, so 

the preceding argument requires modification. We can say, however, that 

e{n) > Fr + ... + Fr , so e{e(n)) > F + • • - + F , and e(n) + 

e(e (ft) ) > ft. 

Also, if s < e(n), then s < F,, _-,+ •••+ F^ , . Thus 

e(s) + e(e(s)) < F^ 4- . .. + F^^ < n - 1 < ft. 
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So here, also, e(n) satisfies the recursion. Therefore, e(n) = f(n) for 

all natural numbers n. 

Alternate formulas for e(n) are given in [1] that indicate how close 

e(n) is to a~1n. Let {x} be the integer nearest x9 and let [x] be the 

greatest integer < x. Then if n = F + • • • + F is the Fibonacci repre-

sentation for n9 

e(n) = {a-1n} if rk £ 2, 

e(n) = [or1??] + 1 if rk = 2. 

Deeper inspection of Fibonacci notation might possibly solve the two-

row game, but I have been unable to do so. 

To close this note, here are two weak results regarding safe (n, s) 

with s > e(n) . 

Theorem 2 

Exactly one of the pairs (n, e(n)+ l) and (n - 1, e(n) + l) is safe. 

Proof: If (n, e(n) 4- l) is unsafe, the only call must be 1. But then, 

(n - 1, e(n) + l) must be safe. The converse follows in the same way. 

Consider for any natural number n the number 

h(n) = # {s : s < n9 (s, e(s) + l) is safe}. 

Since e(s) = e (s - 1) for approximately (1 - a_1)n numbers s < n, this 

gives, with Theorem 2, 

1/! -K > h(n) ^ 1, -i\ , -i 
y(l - a ) < v y < j(n - a ) + a . 

Theorem 3 

If e(n) < s < n, (n, s) is unsafe, and r is a winning call, then (n, 

n - r) is unsafe and n - s is a winning call. 

Proof: If (n, s) is unsafe and r is a winning call, then (n - r, s) 

and (n, s - P ) are both safe. But the call n - s on (n9 n - r) gives rise 

to the identical results. 
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Perhaps these may help determine for what s > e(n) is (n, s) safe. 
Results for the three- or more-row game would also be interesting. 
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Let the circle T be parametrized by the real numbers modulo the integers. 
When a real number is used to denote a point in T9 it is implied that the 

fractional part of the number is being considered. If a9 b £ T with 
a - b 4- -55 then (a, b) will denote the shortest open arc in T whose 
endpoints are a and b. 

Fix an irrational number x. For any positive integer n let Sn denote 
the set of n open arcs in T formed by removing the points x9 . . ., nx from 
T9 and let Ln be the length of the longest arc in Sn. Then5 the result 

of Kronecker in [1, p. 363., Theorem 438] implies that Ln -*- 0 as n •> °°. 
Without further restrictions on x it is not possible to characterize the 
rate of convergence of Ln. However5 if x is an algebraic number of de-
gree d (that is9 if x satisfies a polynomial equation having degree d and 
integer coefficients), then the following result gives an upper bound for 

the rate of convergence of Ln. 

Theorem 1 

If x is an irrational algebraic number of degree ds there exists 

a(x) > 0 such that for all n > 3 

Ln < c(x)/hind'^ . (1) 

The proof of this theorem is based on the following three lemmas. 

Lemma 1 

If x is an irrational algebraic number of degree ds there exists 

k(x) > 0 such that, if (x, px + x) is an arc in Sn , then 

Length (x5 px + x) > k(x)/p(d~1K (2) 
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Proof: This inequality follows from Liouville's theorem [1, p. 160, 

Theorem 191]. 

Lemma 2 

If x is irrational and n > 3, choose p < q such that (x, px + x) and 
(x, qx + x) are arcs in Sn . Then the set Sn can be partitioned into two 

or three subsets as follows: 

Ap = {(fa, -px + kx)}: 1 < k < n - p (3) 

Aq = {(fex, qx + for)}: 1 < k < n - q (4) 

i4r = {(nx - qx + /<x, nx - px + fcx)}: l < f c < p + q - n . (5) 

Proof: Let (a, 2?) be any arc in Sn with a < b. Then (a + x, b + x) 
is an arc in Sn or i = nx or (a + x, b + x) contains the point x. In the 

latter case, a = px and b - qx. Hence, letting a = x, b = px + x, and 
successively translating the arc (a9b) by x yields the n - p arcs in set 
Ap. Similarly, set Aq is formed if a = x and fc = qx + x. Finally, if 

(a, b) is an arc not contained in Ap or ^ , then successive translation 

by x must terminate at the arc (px, qx). Since there are 

n - ( n - p ) - ( n - q ) = p + q - n 

arcs in Sn that are not in Ap or in Aq9 the proof is complete. 

Lemma 3 

Assume the hypothesis and notation of Lemma 2. Let Ip and Iq denote 

the lengths of the arcs in sets Ap and Aq, respectively. Then the arcs 

in set Av have length Ir = Ip + Iq . Furthermore, the following relations 

are valid: 

p + q > n% (6) 

plq + qjp = 1. (7) 

Proof: Clearly Jp = Ip + Jq, since 

Ir = length (px, qx) = length (px + x, qx + x) 
= length (px + x, x) + length (x, qx + x) 

= IP + I? • 
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Also, since the total number of arcs in Ap and Aq does not exceed n, 

(n - p) + (n - q) < n; 

hence, p + q > n, which is inequality (6). Finally, since the sum of the 

lengths of the arcs in Sn is 1, it follows that 

1 = (n - p)IP + (n - q)Iq + (p + q - n) (Ip + Iq) = plq + qlp, 

which is equality (7). The proof is finished. 

Proof of Theorem 1: Assume x is an irrational algebraic number of 

degree d and that k(x) > 0 is chosen as in Lemma 1 so that inequality (2) 

is valid. Then, for any n > 3, choose p < q as in Lemma 2. Therefore, 

combining inequality (2) with equality (7) yields the following inequal-

ity: 

1 > k(x)[p/qd-1 + q/p*'1] > k(x)q/pd~1
e (8) 

This combines with inequality (6) to yield 

pd~1 > k(x)q > k(x)(n - p). (9) 

Therefore, 

pd'1 + k(x)p > k(x)n. (10) 

Clearly, there exists a number g(x) > 0 which depends only on k(x) and d 

such that for every n > 3 

p > gWn1'*'1. (11) 

Substituting inequality (11) into equation (7) yields 

1 = plq + qlp > p(Iq + Ip) > gWnW-Vl,. (12) 

Since Ln < Ir9 if c(x) = l/g(x)9 then inequality (12) implies inequality 

(1). This completes the proof of Theorem 1. 

If in Lemma 1, d = 2 and x is irrational and satisfies the equation 

ox2 + bx + c = 0 and fc(a?) < (£2 - 4ac?)"1/2, then inequality (2) is valid 

for all except a finite number of values for ps 

Clearly, as n -»• °°, both p -> °°  and q ^- °°; hence, it follows from in-

equality (10) that inequality (11) is valid for all except a finite number 
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of values for n if 
g(x) = k(x)/{l + k(x)). 

Hence, the inequality (1) in Theorem 1 is valid for all except a finite 

number of values for n if 

c{x) = l/g(x) = 1 + l/k(x) > 1 + (b2 - hac)1'1. 

The smallest value of the right side of this inequality occurs for a= 1, 

&=-!, c - -1 in which case x= (1 + v5)/2 (the classical "golden ratio"), 

or x= (1 - /5)/2. 

Remark 

The referee has noted that, for algebraic numbers of degree three or 

more, the bound in Theorem 1 is not the best possible. If Roth's theorem 

[2, p. 104] is used in place of Liouville's in Lemma 1, then one obtains 

a bound of the form 

Ln < ci^ln1-*- (13) 

for any £ > 0, where o{€) is a constant depending on e. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 

A, P. HILLMAN 

University of New Mexico, Albuquerque, NM 87131 

Send all communications concerning ELEMENTARY PROBLEMS AND SOLUTIONS 
to PROFESSOR A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. 
Each problem or solution should be submitted on a separate signed sheet, 
or sheets. Preference will be given to those that are typed with double 
spacing in the format used below. Solutions should be received within 
four months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy 

Fn + 2 = Fn + l + Fn> F0 = °> Fl = l> 
and 

Ln+2 = Ln + 1 + Ln> L0 = 2 ' Li = l e 

Also, a and 3 designate the roots (1 + A/5)/2 and (l-v5)/2, respectively, 
of x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-496 Proposed by Stanley Rabinowitz, Digital Equip. Corp., Merrimack, NH 

Show that the centroid of the triangle whose vertices have coordinates 
(Fn » Ln) 9 (̂  + 1 ) Ln + 1) s (Fn + 69 Ln + 6) is (Fw + £f9 Ln + h) . 

B-497 Proposed by Stanley Rabinowitz, Digital Equip. Corp., Merrimack, NH 

For d an odd positive integer9 find the area of the triangle with ver-
tices (Fn5 Ln)s (Fn+ds Ln+d)9 and (Fn + 2ds Ln+ld). 

B-498 Proposed by Herta T. Freitag, Roanoke, VA 

Characterize the positive integers k such that, for all positive in-
tegers n, Fn + Fn+k = Fn+2k (mod 10). 

B-499 Proposed by Herta T. Freitag, Roanoke, VA 

Do the Lucas numbers analogue of B-498. 
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B-500 Proposed by Philip L. Mana, Albuquerque, NM 

Let A(n) and B(n) be polynomials of positive degree with integer co-
efficients such that B(k)\A(k) for all integers k. Must there exist a 
nonzero integer h and a polynomial C(n) with integer coefficients such 
that hAin) = B{n)C{n)l 

B-501 Proposed by J. O. Shallit & J. P. Yamron, U.C., Berkeley, CA 

Let a be the mapping that sends a sequence X = (x1, x2, ..., ̂ 2fc) °f 
length 2k to the sequence of length k 

KX \ A . J \«L -.tI/,-,15 2 2 f c — 1 ' 3 2k- 2 ' • • » j /cfc+1'* 

Let F= (1, 2, 3, ..., 2*% a2(V) = a(a(F)), a3(F) = a(a2(F))5 etc. Prove 
that a(F), a2(F)9 ..., a/l-1(F) are all strictly increasing sequences. 

SOLUTIONS 

Where To Find Perfect Numbers 

B-472 Proposed by Gerald E.Bergum, S. Dakota State Univ., Brookings, SD 

Find a sequence {Tn} satisfying a second-order linear homogeneous re-
currence TM = aTn_1 +bTn_2 such that every even perfect number is a term 
in {Tn} . 

Solution by Graham Lord, Universite Laval, Quebec 

A(trivial) solution to this problem is the sequence of even integers 
a = 2 and b = -1, with seeds T1 = 2 and T2 = 4. With a = 6 and b = -8, 
the sequence Tn is 2n~1(2n- 1) if T1 = 1 and T2 = 6. The proof is imme-
diate: 

Tn = 62^ _]_ - STn_2 

= 6(22n"3 - 2n"2) - 8(22n'5 - 2n~3) 

Also solved by Paul S. Bruckman, Herta T. Freitag, Edgar Krogt, Bob Prie-
lipp, Sahib Singh, Paul Smith, J. Suck, Gregory Wulczyn, and the proposer. 

Primitive Fifth Roots of Unity 

B-473 Proposed by Philip L. Mana, Albuquerque, NM 

Let 
a = ^1000s ® ~ ^1001* ° ~ ^1002' ^ = ^1003°  

I s 1 + x + ^ 2 + x3 + ^ a f a c t o r of 1 + # a + xh + x e + x d ? E x p l a i n . 

145 /"May 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Solution by Paul 5. Bruckman, Carmichael, CA 

It is easy to verify that {Ln (mod 5)}^=0 is periodic with period 4. 
Specifically, 

Lhk E L0 = 2 * Litfc+1 = L l " l s ^ + 2 E L 2 = 3 

and 
L ^ + 3 E L

3
 = 4 ( m o d 5) 5 k = 05 19 29 ... . 

Therefore9 a E 2 9 2 ? E l 9 < ? E 3 9 and J E 4 (mod 5). 

A polynomial p(x) divides another polynomial q(x) if q(x0) = 0 for 
all xQ such that p(x0) = 0. Letting p(x) = 1 + x + x2 + x3 + xh , we see 
that p(ar) is the cyclotomic polynomial (x5 - I) / (x - 1)9 which has four 
complex zeros equal to the complex fifth roots of unity. Let 0 denote 
any of these roots. Since p(0) = 09 it suffices to show that q(Q) = 09 

where q{x) E 1 + xa + xb + x° + xd\ 

Now 0 = 15 and it follows from this and the congruences satisfied by 
as b5 c3 and d5 that 

q(Q) = 1 + 02 + 0 + 03 + 04 = p(0) = 0. 

This shows that the answer to the problem is affirmative. 

Also solved by C. Georghiou, Walther Janous, Bob Prielipp, Sahib Singh, 
J. Suck, and the proposer. 

Sequence of Congruences 

B-474 Proposed by Philip L. Mana, Albuquerque, NM 

Are there an infinite number of positive integers n such that 

Ln + 1 E 0 (mod 2n)? 

Explain. 

Solution by Bob Prielipp, Univ. of Wisconsin-Oshkosh, WI 

Induction will be used to show that 

L2k + 1 E 0 (mod 2k+1) 

for each nonnegative integer k. Clearly, the desired result holds when 
k = 0 and when k = 1. Assume that 

L2J- + 1 E 0 (mod 2j + 1)5 

where j is an arbitrary positive integer. Then 
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L2i = q ' 2̂' + 1 - 1 

for some integer q. It is known that if m is even, L2 = L2m + 2 [see p, 
189 of "Divisibility and Congruence Relations" by Verner E. Hoggatt, Jr. 
and Gerald E. Bergum in the April 1974 issue of this journal]. Thus, 

L2j + 1 = LHlh + 1 = (L2,)2 - 2 + 1 

= (q • 2j + 1 - l)2 - 1 

= (q2 • 2^ + 2 - q • 2d+2) + (1 - 1) 

E 0 (mod 2J' + 2 ) . 

Also solved by Paul S. Bruckman, C. Georghiou, Graham Lord, Sahib Singh, 
Lawrence Somer, J. Suck, and the proposer. 

Wrong Sign 

B-475 Proposed by Herta T. Freitag, Roanoke, VA 

The problem should read: "Prove that |S3(n)| - S2(n) is 2[(n + l)/2] 
times a triangular number." 

Solution by Paul Smith, Univ. of Victoria, B.C., Canada 

It is easily shown that if n = 2m, 

(i) £3(w) = -m2(4m + 3) 

(ii) S2(n) = m2 

(iii) 2[(n + l)/2] = 2m. 

Thus 

|S3(n)| - ̂ i(n) = m2(4m + 2) = 2m • 2n^7m^r 1> = 2[(n + l)/2] • Tn. 

If n = 2m + 1, 

53(n) = -m2(4m + 3) + (2m + l)3, 

S\(n) = (m + l)2 

and 
2[(n + l)/2] = 2(m + 1). 

And now 

1̂ 3 (w) | - S1(n)2 = 2(2m3 + 5m2 + 4m + 1) = 2(m + l)(2m + 1) (m + 1) 
(continued) 
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= 2(m + 1} . <** + lH2m 4- 2) _ 2[(n + 1)/2] . ^ 

Also solved by Paul S. Bruckman, Graham Lord, Bob Prielipp, Sahib Singh, 
J. Suck, Gregory Wulczyn, and the proposer. 

Multiples of Triangular Numbers 

B-478 Proposed by Herta T. Freitag, Roanoke, VA 

Let 

Skin) = t (-DJ' + 1J*. 
i = i 

Prove that \Sh(n) + S2(n)\ is twice the square of a triangular number. 

Solution by Graham Lord, Universite Laval, Quebec 

As (k + I)1* - k* + (k + l)2 - k2 = 2(k + l)3 + 2k\ then 

Sh(2m) + S2(2m) = -2(l3 + 23 + - - - + (2m)3) 

= -2{2m(2m + l)/2}2. 
And 

Sh(2m + 1) + S2(2m + 1) = ̂  (2w) + £2 (to) + (2m + l)4 + (2m + l)2 

= 2{(2m + I)(2m + 2)/2}2. 

Also solved by Paul 5. Bruckman, Walther Janous, H. Klauser, Bob Prielipp, 
Sahib Singh, J. Suck, M. Wachtel, Gregory Wulczyn, and the proposer. 

Telescoping Series 

B-477 Proposed by Paul S. Bruckman, Sacramento, CA 

Prove that 

2^ Arctan = y Arctan y. 
n = 2 2n 

Solution by C. Georghiou, Univ. of Patras, Patras, Greece 

It is known [see, e.g.. Theorem 5 of "A Primer for the Fibonacci Num-
bers—Part IV" by V. E. Hoggatt, Jr. and I. D. Ruggles, this Quarterly, 
Vol. 1, no. 4 (1963):71] that 

2 (-Dm+ X Arc tan y~ = Arctan ̂ 5 ~ 1. 
m = l 2m 
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The problem is readily solved by noting that 

(~l)mArctan x = Arctan(-l)mar 

and that 

Arctan 1 - Arctan — — = -y Arctan —. 

Also solved by John Spraggon, J* Suck, and the proposer. 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 

RAYMOND E. WHITNEY 

Lock Haven State College, Lock Haven, PA 17745 

Send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN STATE COLLEGE, LOCK 
HAVEN, PA 17745. This department especially welcomes problems believed 
to be new or extending old results. Proposers should submit solutions or 
other information that will assist the editor. To facilitate their con-
sideration, solutions should be submitted on separate signed sheets with-
in two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-352 Proposed by Stephen Turner, Babson College, Babson Park, Mass. 

One night during a national mathematical society convention, n math-
ematicians decided to gather in a suite at the convention hotel for an 
"after hours chat." The people in this group share the habit of wearing 
the same kind of hats5 and each brought his hat to the suite. However, 
the chat was so engaging that at the end of the evening each (being deep 
in thought and oblivious to the practical side of matters) simply grabbed 
a hat at random and carried it away by hand to his room. 

Use a variation of the Fibonacci sequence for calculating the proba-
bility that none of the mathematicians carried his own hat back to his 
room. 

H-353 Proposed by Jerry Metzger, Univ. of North Dakota, Grand Forks, ND 

For a positive integer n$ describe all two-element sets {a9 b} for 
which there is a polynomial f(x) such that f(x) = 0 (mod ri) has solution 
set exactly {a9 b}. 

H-354 Proposed by Paul Bruckman, Concord, CA 

Find necessary and sufficient conditions so that a solution in rela-
tively prime integers x and y can exist for the Diophantine equation: 

ox2 -by2 = c9 

given that a, b9 and o are pairwise relatively prime positive integerss 
and9 moreover, a and b are not both perfect squares. 
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H-355 Proposed by Gregory Wulczyn, Bucknell Univ., Lewisburg, PA 

Solve the second-order finite difference equation: 

n(n - l)an - {2rn - r(r + l)}an_r + ^ 2 & n _ 2 p = 0. 

v and n are integers. If n - far < 0, an„^v - 0. 

SOLUTIONS 

Al Gebra 

H-335 Proposed by Paul Bruckman, Concord, CA 
(Vol. 20, no. 1, February 1982) 

Find the roots, in exact radicals, of the polynomial equation: 

p(x) = x5 - 5x3 + 5x - 1 = 0. (1) 

Solution by M. Wachtel, Zurich, Switzerland 

It is easy to see that one of the solutions is: x = 1. 

Step 1: Dividing the original equation by x - 1, we obtain 

xh + x3 - 4x2 - 4x + 1 = 0. 

Step 2: To eliminate x3, we set x - z ~ T» which yields: 

i+ 3j> 2 _ 15 , 445 _ 
Z 8 z 8 Z 256 U' 

Step 3: Using the formula t3 + £ t2 + | f ( f ) 2 ~ A t ~ ( f ) * = 0, and 
35 15 445 setting p = - -£-, q - - -5-, 2» = yFF> the above equation is transformed 

,3 _ | 5 t 2 + 1 9 5 t _ 225 = 0 . 

into a cubic equation: 

3 

16 " ' 256 " 4096 

Step 4: To eliminate t2, we set t = u 4- -£=-, which yields: 

3 . 1 __ 475 
U 6U 1728 

Step 5: Using the Cardano formula, we obtain the "Casus irreduzibi-
lus" (cos 3a) with three real solutions: 

_JL _ 5 + 9/5 5-9/5 
Ul ~ 12' U 2 ~ 24 ' Us 24 ' 
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and it follows U = u + | § ) : 

_5_ 
16 ; t2 = 

15 + 6/5 
16 ; 

15 - 6/5 
16 

Further: 

„ _ ,/T" _ /5. T/ _ /— /15 + 6/5 r7 /— /15 - 6/5 
^ 3 = ^ • 

Step 6: Considering x = z• - -r and the identities 

A 5 + 6/5 + Vl5 - 6/5 _ ̂ 30 ± 6/5 
4 ~ 4 4 

we obtain the following solutions: 

^30 + 6/5 + /5 - 1 
#! = £/ + 7 + IV = 

Z7 - 7 - W = 

x0 

x, 

-U + V - W = 

-U - V + W 

-/30 + 

/30 -

-/30 

4 
6/5 + 

4 
6/5 -

4 
- 6/5 -

/5 - 1 

/5 + 1 

- /5 + 1 

c£ * X 

X * X 

Xn • #1 * I , * Xo m Xu 

The proofs of Steps 3 and 5 are tediouss but the respective formulas can 
be found in formula registers of algebra„ 

Also solved by the proposer. (One incorrect solution was received.) 

Mod Ern 

H-336 (Corrected) Proposed by Lawrence Somer, Washington, D.C. 
(Vol. 20, no. 1, February 1982) 

Let p be an odd prime. 

(a) Prove that if p E 3 or 7 (mod 20)9 then 

5F, (P-D /2 -1 (mod p) and 5F2
 1)/2 = -4 (mod p ) . 

(b) Prove that if p = 11 or 19 (mod 20), then 

5F(P-l)/2 = 4 (mod P) a n d 5^(p+l)/2 = l (mod P)' 
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(c) Prove that if p = 13 or 17 (mod 20), then 

F
( p - l ) / 2 E - 1 < m ° d P> a n d F ( P + D / 2 E 0 ( m 0 d P>-

(d) P rove t h a t i f p E 1 o r 9 (mod 2 0 ) , t h e n 

F ( p - l ) / 2 E ° ( m ° d P> a i l d F(p + D / 2 E ±]" ( m ° d P>-

Show that both the cases F +1)/2 = -1 (mod p) and F E 1 (mod p) do 
in fact occur. 

Solution by the proposer 

It is known that Fp E (5/p) (mod p) and Fp_(5/p) E 0 (mod p) , where 
(5/p) is the Legendre symbol. It is further known that 

F(i(p-(5/p))) E °  (m° d P) 

if and only if (-1/p) = 1. (See [1] or [3]). We also make use of the 
following identities: 

F2n = Fn(Fn-l + Fn+0 • <D 

F2n+l=Fn +Fn+1- ^) 

L e t t i n g k = (p - 1 ) / 2 S we a r e now r e a d y t o p r o v e p a r t s ( a ) - ( d ) . 

(a ) In t h i s c a s e ( 5 / p ) = ( - 1 / p ) = - 1 . Then, by (1) and ( 2 ) , 

Fl + i -Fk+i&k
 + ^ + 2 > E 0 ( m o d p ) . (3) 

and 
Fl = Fl + FLi E -1 (mod P ) - ^ 

Since (-1/p) = -1, Fk i 0 (mod p) . Thus, by (3), Fk+2 E -Ffc (mod p). 
Hence, 

F
fe = ^ + 2 - Fk+1 = ~Fk ~ Fk+1 ( m o d p ) . 

Thus, 2Fk = -Fk+1 (mod p) and 4F2 = F2
+1 (mod p). Thus, by (4), 

FP = *"£ + H = 5 F ( 2p-D/2 = ^ ( m ° d P } -

S i n c e F 2
+ 1 = 4 F 2 , 5 F (

2
p + 1 ) / 2 = 4 ( 5 F (

2
p _ 1 ) / 2 ) = - 4 (mod p ) . 

(b) I n t h i s c a s e ( 5 / p ) = 1 and ( - 1 / p ) = - 1 . Then 

J ' p - i = M * V - i + i W = 0 (modp) 
and 

FP = *t + FLi = l < m o d p > -
Making use of the fact that Fk ^ 0(mod p) and solving as in the solution 
of part (a), we find that 
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5ifp + l)/2 = l ( m ° d P) a n d 5F(p-l)/2 = 4 ( m ° d P>-

( c ) I n t h i s c a s e (5/p) = - 1 and ( - 1 / p ) = 1. T h u s , Ffc = 0 (mod p ) . 
A l s o , 

*£ = ^ +^fc+i E i 1 + i = - 1 (nodp). 

(d) In this case (5/p) = (-1/p) = 1, Thus, Fk = 0 (mod p). Also, 

# = ** +^1 E*ti E X (modP>-
Thus, Fk+1 = ±1 (mod p) . For p = 29, 89, 101, or 281, ̂ (p+1)/2 = 1 (mod 
p) and for p = 41, 61, 109, or 409, ^(p + 1)/2 E -1 (mod p) . These examples 
were obtained from [2]. 
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nacci Sequence." The Fibonacci Quarterly 4, no. 4 (1966):313-22. 

2. Tables of Fibonacci Entry Points. Santa Clara, Calif.: The Fibonacci 
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Also solved by P. Bruckman and G* Wulczyn* 

Pivot 

H-337 Proposed by Gregory Wulczyn, Bucknell Univ., Lewisburg, PA 
(Vol. 20, no. 1, February 1982) 

(a) Evaluate the determinant 

det A 

1 

L2r 

LhP 

^er 

£fir 

- 4 L 2 r 

- ( 3 L , r + 10) 

- ( 2 L 6 r + 6 L 2 r ) 

-(LSr + 7L^r) 

- 8 £ 6 , 

6 L ^ + 16 

3LSr + 25L2p 

LBr + l2Lkr + 30 

™sr + 2lL2r 

2SLhP 

- ( 4 L 6 r + 24L 2 r ) 

-(LBr + 25Lhr + 

-(6L6p + 50L2p) 

- ( 2 1 2 ^ + 70) 

-56L2r 

60) 

Lep + l6L,r + 36 

!0LSr + 60L2p 

30Lkr + 80 

70L2 r 

140 

(e) 

(d) 
(c) 

(b) 

(a) 

(b) Show that 

8LL + 28L2
r - 56L2

2r + 140 
+ tLar + 7L , r ) 2 - l4(L6 r + 3L 2 r ) 2 + 7(3L,r + 1 0 ) - 2S0L2p 

2SL I - IHLSP + 3L 2 r ) 2 + (LQP + 12L4r + 30)2 - 2(3L6r + 25L2r) 
+ 20(3LkP + 8) 

= -56L2
r + 7(3L,P + 10)2 - 2(3L6P + 25L2 r)2 + (L8r + 25L,r + 60) 

- 40(£6r> + 6 L 2 r ) 2 . 
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Grace Note: If the elements of this determinant are the coefficients of 
a 5 X 5 linear homogeneous system, then the solution to the 4 x 5 system 
represented by Equations (b)5 (c), (d), and (e) is given by the elements 
of the first column. The solution to (a), (c), (d), and (e) is given by 
the elements of the second column. And so on. 

Solution by the proposer 

(a) Using a Chio pivot reduction and taking out LUtV - 2 as a common 
factor from each term 

a hr 2)' 

Det A 

(b) 

1 

2L2r 

3 £ , r + 3 

«6r + 4 L2r 

3Lkr + 9 

- 3 £ 2 r 

-{5Lhr + 14) 

- ( 6 L 6 r + 21L2P) 

- ( 6 L 8 r + 28L„r + 28) 

- ( L 6 r + 9 L 2 p ) 

4L 6 r + 26L2r -(Ler + 1.8Lhr + 42) 

4L 8 r + 32L , r + 63 - ( L 1 0 r + 18L6, + 7 1 L 2 r ) 

4 L 1 0 r + 32L 

= tfm. " 2)7 

= (Lhr - 2 ) 9 

1 

3 i 2 r 

6£u 

1 

4L 2 r 

= (5F2
2F)10 = 5 1 0 F 

L\ !, - 8 i l + ; lKr 

6 r + 84L 2 r - ( L 1 2 r + 18L8 r + 71Lkr + 140) 

—2L2r ^i+r + 4 

-(5Lkr + 14) 2L 6 r + l6LZr 

+ 8 - ( 8 L 6 r + 3 2 D 2 , ) 3L 8 r + 28L,p + 58 

- O L ^ + 10) 
= ( i , r - 2 ) 1 0 

2 0 
2p • 

- 5 6 L ^ r + 140 = 1 ̂6r-Mi2r + 2ZLBr-56Ll)i, + -, 

= 625Fa2P. 

-8Z4 + (L8p + 7 L ^ ) 2 - 14(L6p + 3 L 2 p ) 2 + 7(3L,p + 10)2 - 280L2p 

L162, + L1 2 p(14- 8- 14)+L8r (49- 84+ 63) + Lkr (14 - 84- 126+420- 280) 

- 1 6 + 2 + 9 8 - 2 8 - 252+ 126+ 700- 560 

16r 8L12r + 28L8p - 56L,r + 70 = 625F«p 

158 /"May 



ADVANCED PROBLEMS AND SOLUTIONS 

28L2
p - H ( L 6 p + 3L2r)2+ (LQr + 12L,p + 30) 2 - 2(3LSr + 2 5 L 2 p ) 2 

+ 2 0 ( 3 L , p + 8 ) 2 

= Lisr + £ 1 2 p ( ~ 1 4 + 2 4 - 18)+LQr(28- 8 4 + 1 4 4 + 6 0 - 3 0 0 + 180) 

+ Lhr ( -84 - 126 + 24 + 720 - 300 - 1250 + 960) + 56 - 28 - 252 + 2 + 288 

+ 9 0 0 - 3 6 - 2 5 0 0 + 3 6 0 + 1280 

= L16r - 8L12r + 28£ 8 p - 56Lhr + 70 = 625F8
2r 

- 5 6 L 2
p + 7 (3L , p + 10) 2 - 2(3L6r + 2 5 £ 2 p ) 2 + (LQr + 25L,r + 60) 2 

- 4 0 ( L 6 p + 6 L 2 r ) 2 

= L16r + L 1 2 p ( - 1 8 + 5 0 - 4 0 ) + L 8 p ( 6 3 - 3 0 0 + 1 2 0 + 6 2 5 - 480) 

+ Lhr ( - 5 6 + 4 2 0 - 3 0 0 - 1250+ 5 0 + 3 0 0 0 - 4 8 0 - 1440) - 112+ 126 

+ 7 0 0 - 3 6 - 2500+ 2 + 1250+ 3 6 0 0 - 8 0 - 2880 

Some Abundance 

H-338 Proposed by Charles R. Wall, Trident Tech. Coll., Charleston, SD 
(Vol. 20, no. 1, February 1982) 

An integer n is abundant if o(n) > 2n, where o(n) is the sum of the 
divisors of n. Show that there is a probability of at least: 

(a) 0.15 that a Fibonacci number is abundant; 

(b) 0.10 that a Lucas number is abundant. 

Solution by the proposer 

Three well-known background facts are needed: 

1. Any multiple of an abundant number is abundant. 

2. Fnm is a multiple of Fn for all m» 

3. Lnm is a multiple of Ln if m is odd. 

From published tables of factors of Fibonacci numbers, we see that Fn 
is abundant if n is 12, 18, 30, 40, 42, 140, 315, 525, or 725. Since none of 
these numbers is a multiple of any other, the probability that a Fibonacci 
number is abundant is at least 
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l(, 1 2 4 6 \ ^ 1 2 , 1 2 6 1 1 A 2 4 6 \ 184 
6 \ 2 3 5 7 / 1 4 0 3 40 3 7 2 105 \ 3 5 7 / 1255 

= 0 . 1 5 0 2 . . . . 

Also, Ln is abundant if n is 6,45, 75, or 105, and so the probability 
that a Lucas number is abundant is at least 

2 • 6 
1 / i 2 4 6\ 71 n l f t l / 

^ M 1 - 3 5 ir TOO = ° - 1 0 1 4 -
•<>•<>• 
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