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PROPERTIES OF SOME EXTENDED BERNOULLI 

AND EULER POLYNOMIALS 

S. N* SINGH and B. K. RAI 
Banaras Hindu University, Varanasi - 221005, India 

(Submitted September 1980) 

1. INTRODUCTION 
The study of Bernoulli, Euler, and Eulerian polynomials has contributed 

much to our knowledge of the theory of numbers. These polynomials are of 
basic importance in several parts of analysis and calculus of finite differ-
ences , and have applications in various fields such as statistics, numerical 
analysiss and so on. In recent years, the Eulerian numbers and certain gen-
eralizations have been found in a number of combinatorial problems (see [1], 
[3]s [4]5 [5]5 [6], for example). A study of the above polynomials led us to 
the consideration of the following extension (3.1) of the Bernoulli, Euler, 
and Eulerian numbers, as well as polynomials in the unified form from a dif-
ferent point of view just described. 

PRELIMINARY RESULTS 

and 

It is well known that the formulas [2] 

9(n) = E fid) (n = 1, 2, 3, ...) (2.1) 
d\n 

fin) = E Vio)g(d) in = 1, 2, 3, . . . ) , (2.2) 
od=n 

where ]i(n) is the Mobius function, are equivalent. If In (2.1) and (2.2) we 
take n - exe2 ... eT9 where the e$ are distinct primes, it is easily verified 
that (2.1) and (2.2) reduce to 

0r = ? 0 ( J ) ^ ^ = °' U 2* •••> ( 2 ° 3 ) 

fr = E ('~DP~J'(5)^ <* = 0, 1, 2, . . . ) , (2.4) 
and 

3 

respectively, where for brevity we put 

fr = fieiei . . . er)9 gr = gie1e2 . . . ev). (2.5) 

The equivalence of (2.3) and (2.4) is of course well known; the fact that the 
second equivalence is Implied by the first is perhaps not quite so familiar. 
It should be emphasized that fin) and gin) are arbitrary arithmetic functions 
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subject only to (2.1) or equivalently, (2.2); a like remark applies to fr and 

Given a sequence 

fr (r = 0, 1, 29 . . . ) , (2.6) 

we define an extended sequence 

f(n) (n = 1, 25 35 ...) (2.7) 

such that 

fte... eT) = fp9 (2.8) 

where the ej are distinct primes. Clearly the extended sequence (2.7) is not 
uniquely determined by means of (2.8). If the sequence gr is related to fr 
by means of (2.3), then the sequence g{n) defined by means of (2.1) furnishes 
an extension of the sequence g . 

If we associate with the sequence fr the (formal) power series 

then (2.3) is equivalent to 

Gt = exp t • Ft , (2.10) 

where 

v=0 

We associate with the sequence f(n) the (formal) Dirichlet series 

fin) 
n = 1 

Then (2.1) Is equivalent to 

Hs) = E ^f-- (2.U) 
n = 1 ri 

G(s) = <;(s)F(x), (2.12) 

where 

GO) = t ^f. as) = t ji-

3. EXTENDED POLYNOMIAL 

We now define the extended polynomial set B(ns h$ a$ k; x) using the fol-
lowing formula: 
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l(±h log.C(8))*(e(£0)** 
= y B(n> h> a> fe; x>> (3 D 

U(s))h -a „~i n 

where a is a nonzero real number, k is a nonnegative integer, and ft ̂  0. 

On specializing various parameters involved therein we find the following 
relationships between our polynomials B(n9 ft, a9 k; x) and the extended Ber-
noulli, Euler, and other polynomials: 

(i) Extended Bernoulli polynomials 

B(n9 ft, 1, 1; x) = g(n, ft; x) (3.2) 

(ii) Extended Bernoulli numbers 

B(n9 ft, 1, 1; 0) = g(n, ft) (3.3) 

(iii) Extended Euler polynomials 

Bin, ft, -1, 0; x) = • e(n, ft; x) (3.4) 

(iv) Extended Euler numbers 

B(n9 ft, -1, 0; 0) = e(w, ft) (3.5) 

(v) Extended Eulerian polynomials 

2 
B(n9 ft, a, 0; x) = - r — — ^(n, ft, a; #) (3.6) 

( v i ) Ex tended E u l e r i a n numbers 

B{n3 ft, a , 0 ; 0) = y - ^ — H ( n 9 ft5 a ) , ( 3 . 7 ) 

where the extended Bernoulli, Euler, and Eulerian polynomials and numbers are 
those introduced by Carlitz [2]. 

In the present paper we obtain numerous properties of the polynomials and 
numbers defined above. These properties are of an algebraic nature, and for 
the most part are generalizations on the corresponding properties of the. Ber-
noulli, Euler, and Eulerian polynomials and numbers. 

4. COMPLEMENTARY ARGUMENT THEOREM 

Theorem 1 

B(n9 ft, a, k; 1 - x) = -^-±2 B(n9 -ft, 1/a, k; x) . (4.1) 

Proof: Consider the following: 
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tB(n,h,a,k; 1 - a) 2 ( | * log C(e))* (C(a))»fr-«> 

»-i ns (t.(s))h - a 

•hk i{jh log e<«))*(c(e))" 

1 - a(C(s))-fe 

(-1)*"1 2 ( _ I h l o g 5(s))*(C(s))-** 

The theorem would follow if we interpret the above expression by (3.1). 

Putting x = 0 in (4.1) , we obtain 

Corollary 1 

£(ns h9 a, ft;. 1) = - ^ 5(n9 -/z, 1/a, ft), (4.2) 

where (here and throughout this paper) £(n, 7z9 a, ft; 0) = B(n9 h9 a, ft). 

5. RECURRENCE RELATIONS 

To obtain some interesting results, we refer to [2] for the definition of 

oo Tx (n) 

where 

and put 

n = l 

^(n) = n (j + X, l) with 
e/h \ 0 I 

n = ireJ
 9 

a(n) 

where 

log C(e) = E ^ . (5.2) 

a(n) = < P (5.3) 
(O (otherwise). 

We remark that Tx(n) is a multiplicative function of n; that is9 

Tx(jm) = ̂ (m) • Tx(n) [(m, w) = 1], (5.4) 

where (HI, n) denotes the highest common divisor of two numbers m and n. 

It is evident from (3.1) that 

A g(re, fo, qg ft; x + y) _ 
n-i ^S " ~"(C(a))'* - a 
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= f* Thx {n) f* B(n> h> <*> kl 2/) 
„~i ns ~± ns 

which yields 

Corollary 2 

B(n9 ft, a, k; x + y) = J] Thx(a)B(d9 ft, a, fc; 2/). (5.5) 

In p a r t i c u l a r , 

B(n, ft, a, fc; a:) = X) Thx{Q)B{d9 ft, a, fc). (5.6) 

From ( 3 . 1 ) , i t i s easy to deduce the r e s u l t 

_d_ 
dx 

3 

-T- B(n, ft, a, k; x) = ft ^ a(c)B(d9 ft, a, fe; x) . (5.7) 
sd = n 

Again, we may write (3.1) as 

^ B(n9 2ft, a2, k; x) __ 2(ft log C(s))fe (g(s))2?la? 

- a2 U(s))2h - ~2 

= 2k 
i{\n log c(s)f(as))^ i[\h log coo)*"1 (coo)** 

(COO)* " a (Us))h + a 

which gives a recurrence relation: 

£(n, 2ft, a2, fc; x) = 2k~1 £ 5(c, ft, a, 1; x)B(d, ft, -a, fc - 1; x) . (5.8) 

Let us now consider the identity 

l{\h log C ( s ) ) f c ( ? ( s ) ) ^ / 2 2 ( i ^ log ? (*) )* (?(s))f c ( a ! + 1 ) / 2 

{as))h/2 + a k(s))h - a2 

l[\k log c ( s ) ) k ( C ( s ) ) ^ / 2 

(COO)* - a2 

Because of the genera t ing r e l a t i o n ( 3 . 1 ) , we ob ta in : 

2kB(n, ft/2, - a , fc; x) = s f n , ft, a 2 , k; °° * M - aS(n, ft, a 2 , fc; x/2) . (5.9) 

It follows from (3.1) that 

£ - T ( £ ( W , ft, a, fc; a? + 1) - aB(w, ft, a, ft; a:)) = 2 (j ft log C(e))k (e(s) )**, 
n-l ne V^ / 
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which implies: 

hk 

B(n9 h, a9 k; x + 1) - aB(n9 h9 a9 k; x) = ~ ^ T Y^ ak^Thx^ - (5.10) 
2 od= n 

This leads to the summation formula: 

it m~1 1 
*• cd = n 3 =0 u 

= B(n9 h9 a9 k; x + m) - aB(n9 h9 a9 k; x) . (5.11) 

It is easily verified that when h = 1 and n = e-^e^ . . . £r , (5.11) reduces to 
the familiar formula 

Dn(x + TH; a9 k) - aDn(x; a9 k) = k_\ ]T (x + j) , 
2 j = o 

where 

(n)k - n(n - 1) -•• (n - k + 1) and Z?w(#; a, k) is defined in [7]. 

6. ADDITION THEOREMS 

It may be of interest to deduce some addition theorems that are satisfied 
by B(n9 h9 a9 k; x) . 

Since 

2 ( | / z log C(e ) )* (e ( a ) ) 2 h a ! l[\h log Us))k (? (s ) ) 2 ^ 

(e(fi))" - a ( ? ( s ) ) f t + a 

2({?z log C ( s ) ) Z * ( a s ) ) 2 ^ » 

(C(s))2ft - a2 

there follows at once: 

Theorem 2 

22?C"1 Y*B(G* ^ a5 fc; 2#)£(d, h9 - a , fc; 2z/) 

= S(ns 2?29 a 2
9 2fc; x + y) . (6 .1) 

If we note the i d e n t i t y , 

1 1 2a 

U(s))h - a (Us))h + a (r;(s))2h - a2 

then9 as a consequence of (3.1), we arrive at: 
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Theorem 3 

B(n9 h9 a, k; x) - B(n9 h9 -a, k9 x) = k_1B(n9 2h9 a2
9 k; x/2). (6.2) 

On the other hand, since 

1 1 2a - 1 
(C(a))* - a (z(s))h - 1 + a ((^(s))h - a)(U(s))h - 1 + a) 

we get, from (3.1): 

Theorem 4 

\a ~ T ) E B(C> h> a> k; x)B(d9 h9 1 - a, k; y) 
\ Licd=n 

= B{n9 h9 a9 2k; x + y) - B(n9 h9 1 - a9 2k; x + y) . (6.3) 

7. MULTIPLICATION THEOREMS 

We establish the following multiplication theorems, in which m stands for 
a positive integer. 

Theorem 5 

E —B[n9 mh9 am
9 k; x + -) = - ^ - j £ ( n , /*, a , fe; rar). (7.1) 

Proof: In order to ob ta in ( 7 . 1 ) , we have, from ( 3 . 1 ) , the r e l a t i o n , 

tB(n9 H9 a9 k;mx, 2 ( 1 ^ log g (a)) f c ( g ( a ) ) ^ 

n - i n " (C(e ) ) h - a 

= ^ . 2 ( l n i o g g ( a ) ) f c ( C ( a ) ) ^ ^ . x ( e ( f l ) ) r t 

( C ( s ) ) w ; i - a * p-o a P 

„m-i m-i T co B ( n , wfe, a772, fc; or + £ ) __ a ^ l ^ \ in / 
mk ~0 a1' n—! 

which completes the proof, 

Proceeding exactly as in the proof of Theorem 5, and recalling (3.1), we 
obtain: 

Theorem 6 

E -TB(n> "*. *w, k; x + Z-) = - ^ r E (c)B(d, 7z, a, fc- 1; TO:). (7.2) 
r=0 ^ m I 2<X od = n 
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Theorem 7 
m-l 

a"'. "' — 
r = o a 

p-i 

Proof : From ( 3 . 1 ) , we h a v e : 

Bin, mh9 am
9 k; — + — ) 1 \ ' m m / 

ns 

1 2(±mhlogUs))k(Z(s)f« + ^ m h 

oo m - l 

E E 
Z-r Z-* P p 

n = 1 P = Q # 
m - l 

r = 0arP (Z,(s))mh - am 

m-i (r(s))rph 

i* . 2 ( i / z log C ( s ) ) " U ( a ) ) h x E - ^ 
r = 0 ^rP 

2(±hIogZ(s))k(Us))»* ( e ( a ) ) B p > _ Q m p 

a P ( m _ 1 ) ( C ( S ) ) m ? ! - a m ( e ( s ) ) p * - a P 
(7 .4 ) 

From ( 7 . 4 ) 5 and u s i n g symmetry i n 777 and p , we o b t a i n t h e r e q u i r e d r e s u l t . 

Theorem 8 

L ~ \ sin, mh9 am
9 k; - + ^ ) Jrfn nrP \ ' m ml 

m-l 

E 
r = 0 a 

mk7i • a p _ m p ^ 1 ' E - L r ' E a ( e ) s k pfc, am, k - 1; £ + f ^ ) . ( 7 . 5 ) 

Proof : I t f o l l o w s from ( 3 . 1 ) t h a t 

oo m 

2w 2-r pp 
n = 1 P = 0 o t 

i , s(n9 mh9 am, fc; - + — ) 
, l \ 3 m ml 

_ m f c h ( l o g ? ( « ) ) . 2 ^ P ? Z l Q g C ( S ) ) 1 ( C ( S ) ) ? " . ( 5 ( 8 ) ) " * * - q"P 

2 p f e - V ( m - l ) ( ? ( s ) ) p ? I - a P ( C ( s ) ) p ? I - a p 

_ m ft • a^p-^ . y> a W A p^ J _ . g("» P^ aP' k ~ 1; f + f9 
2 p k - 1 a p ( m - l ) " - 1 " S » - i ?-o a ? m ' " s 

which c o m p l e t e s t h e p r o o f . 
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Theorems 7 and 8 are elegant generalizations of Theorems 5 and 6, respec-
tively. 

8. ANOTHER MULTIPLICATION THEOREM 

If we define the function B{n9 h9 a9 k; x) by mean's of 

B(n, h9 a, k; x) = B(n9 h, a9 k; x) (0 < x < 1), 

B(n9 h9 a, k; x + 1) = aB(n9 h, a, k; x) 9 

then it is easily seen that multiplication formula (7.1) also holds for the 
barred function. 

In this section we obtain an interesting generalization of (7.1) suggested 
by a recent result of Mordell [9]. In extending some results of Mikolas [8], 
Mordell proves the following theorem: 

Let u^x) 9 . .., up(x) denote functions of x of period 1 that satisfy the 
relations 

E ui(x + S):= ct\{mx) w = i» ..•» P) , ( s . i ) 
m-l 

£ 
p = 0 

where c!-™ is independent of x9 let al9 ..., ap be positive integers that are 
prime in pairs. Then, if the integrals exist and A = a1a2 ... ap9 

f 
I u1(x/a1)u2(x/a2) ... up(x/ap)dx 

Jo 

= A I u1(Ax/a1)u2(Ax 
Jo 

I ux 
Jo 

la2) ... up(Ax/ap)dx 

= c[ai)C^ ... Cpap) I u1(x)u2(x) ... up(x)dx. (8.2) 

We prove: 

Theorem 8 

Let p > 1; n19 . . . , n1 > 1; al5 ...s ap be positive integers that are rela-
tively prime in pairs; A = a1a2 ... ap. Then, 

E -^B[nl9 ma{h9 ama^ , k; xx + — - • B[n29 ma2h9 ama* , fc; ̂r2 + — - ) r = o ar \ ma-ij \ ma2/ 

#(np5 maph9 ama?,. fc; #p + -~-\ 

(continued) 
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= c E ~t 5 ( ^ P rnh9 am
9 k; a1x1 + ~ j - ~B[n29 mh, am

9 k; a2x2 + - ) 

• • • • • ~B\np, mh9 am
 9 k; a x + -)9 ( 8 . 3 ) 

where a\a^ . . . al 
c =

 ll 2 " • " P ( 8 . 4 ) 
am(a1-l)am(a2-l) ^^ ^m(ap-l)' 

Proof : From ( 7 . 1 ) , i t i s n o t d i f f i c u l t t o show f o r a r b i t r a r y a* > 1 t h a t 

ma*-! -I / \ 

T —'Bin, ma*h9 ama\ k; x + - ^ V ) 
r = o a V mcc*) 

m- 1 a* - l - j _ / \ 

a ^ ( a * - i ) r = 0 ar \ w/ 

which agrees with (8.3) for p = 1. 

For the general case, let 5 denote the left member of (8.3), and 

As = a1a2 ... a8 (1 < s < p). 

If we replace r by smA ± + P9 we have 

/ 7 ? 4 p _ i - 1 / 

S = E " 7 % i > TTK^/Z, ama- , fc; ^ + - ~ 
r = o u \ '' <a i / 

9 •"• • J ^ p . i , mav_Ji9 ama?-\ k; xp_x + ^ — J 

a p - i j __/ A p - i s v \ 
* E B\np9 maPh9 am<2p

 9 k; xv + + 1 
s% asm \ P P P ap map) 

l ^ 1 " 1 l - / r \ 
2^ ~-B\n19 ma{h9 ama± 9 k; x-, + 

* ( W P - I > rnav_Ji9 ama*-*9 k; xp_± + ^ ~ ) 

E ^B(np9 maph9 a"*>, k; xp + f- + ^ ) 

E " T ^ f w ! , ma^h, ama'9 k; x± + —) 

mAp^-1 

a* mAp-!-! 

am(ap-i) 

(continued) 

1983] 171 



PROPERTIES OF SOME EXTENDED BERNOULLI AND EULER POLYNOMIALS 

B\np.19 map_xh9 ama*-\ k; xp_± + ^ \ 

B\np9 mh, a171, k; apxp + — ]. 

Continuing the same process, we get: 

a\a\ ... ap 

am(a1-l)am(a2~l) a™^'1^ 

77? - 1 -j / - . 

]£ — B[nl9 mh, am
9 k; a1x1 + —) • S"(n2s mh, am, k; a2x2 + —) 

~B[np9 mh9 am
9 k; apxp + -J, 

which completes the proof. 

We remark that for m = 1, (8.3) reduces to 

£ —- B[n19 a±h9 aai
 9 k; x± + — ) B[np9 aph9 aap

 9 k; xp + — ) 
^ = o a \ a1/ \ aPj 

= C*B(n19 h9 a9 k; a-^x^) • - . . - • B(np9 h9 a9 k; apxp) 9 (8.5) 

where 
a\ . . 

C* 
a^'1 . . . a a p _ 1 
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COMMENT ON PROBLEM H-315 

WILHELM WERNER 
Johannes Gutenberg-Universitat in Mainz 

Recently I came to know Problem H-315 of The Fibonacci Quarterly (Vol. 
18j 1980) which deals with "Kerner?s method" for the simultaneous deter-
mination of polynomial roots. I want to comment on two aspects of the 
problem and its solution. 

1. The method was already used by K. Wierstrass for a constructive 
proof of the fundamental theorem of algebra (cf. [1]). Kerner [2] realized 
that the method can be interpreted as a Newton method for the elementary 
symmetric functions; this fact is also observed in the textbook of Durand 
([3], pp. 279-80) which appeared several years before Kerner!s publication. 

It is remarkable that the assumption 
n 

-1 2L Zi ~ an-l 

is not necessary for the validity of the assertion! This fact is mentioned 
by Byrnev and Dochev [4] where further references are given. The proof of 
the assertion n 

i = l 
is easy: following Kernerfs derivation of the method, one must apply New-
ton's method to the system of elementary symmetric functions. Hence, one 
of the equations reads: 

n 
J2 xi = ~an-i (^i? #2* •••» xn denote the unknowns). 

i = l 

[Please turn to page 188] 
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FIBONACCI GRACEFUL GRAPHS 

DAVID W. BANGE and ANTHONY E. BARKAUSKAS* 
University of Wisconsin-La Crosse, La Crosse, WI 53601 

(Submitted November 1980) 

1. INTRODUCTION 

A simple graph G(p9n) with p vertices and n edges is graceful if there is 
a labeling £ of its vertices with distinct integers from the set 

{0, 1, 2, ..., n} 

so that the induced edge labeling £', defined by 

l'(uv) = \l(u) - l(v)I 

assigns each edge a different label. The problem of characterizing all grace-
ful graphs remains open (Golomb [3]), and in particular the Ringel-Kotzig-Rosa 
conjecture that all trees are graceful is still unproved after fifteen years. 
(For a summary of the status of this conjecture, see Bloom [2].) Other classes 
of graphs that are known to be graceful include complete bipartite graphs 
(Rosa [7]), wheels (Hoede & Kuiper [5]), and cycles on n vertices where n = 0 
or 3 (mod 4) (Hebbare [4]). 

A natural extension of the idea of a graceful graph is to have the induced 
edge labeling £' of G(p, n) be a bijection onto the first n terms of an arbi-
trary sequence of positive integers {a{}. In a recent paper, Koh, Lee, & Tan 
[6] chose the sequence {a^} to be the Fibonacci numbers {F^} where 

Fn = Fn- 1 + Fn- 2 I Fl = F2 = *• 

They defined a Fibonacci tvee to be a tree Tin + 1, ri) in which the vertices 
can be labeled with the first n+ 1 Fibonacci numbers so that the induced edge 
numbers will be the first n Fibonacci numbers. Koh, Lee, & Tan gave a system-
atic way to obtain all Fibonacci trees as subgraphs of a certain class of 
graphs and showed that the number of (labeled) Fibonacci trees on n+1 verti-
ces is equal to Fn . The only graphs other than trees which can be labeled in 
this fashion are certain unicyclic graphs where the cycle is of length three. 

In this paper, we modify the definition of Koh, Lee, & Tan so that the 
vertex labels of G(p9 n) are allowed to be distinct integers (not necessarily 
Fibonacci numbers) from the set {0, 1, 2, 3, 4, ..., Fn}. Formally, we make 
the following: 

*This work was supported by a grant from the Faculty Research Committee, 
University of Wisconsin-La Crosse. 
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Defini t ion 

A graph G(ps n) will be called Fibonacci graceful if there is a labeling 
I of its vertices with distinct integers from the set {0, 1, 25 3, 4, ...,F„} 
so that the induced edge labeling £', defined by V (uv) = \l(u) - £(u)|s is a 
bisection onto the set {Fls <F2, F3, . .'., Fn}. 

This definition gives rise to an extensive class of graphs that are Fibo-
nacci graceful; several examples appear in Figure 1. In Sections 2 and 3, we 
shall show how the cycle structure of Fibonacci graceful graphs is determined 
by the properties of the Fibonacci numbers. In Sections 4 and 5, we shall 
prove that several classes of graphs are Fibonacci graceful, including almost 
all trees. The general question of characterizing all Fibonacci graceful 
graphs will remain open. 

a. Cycles C5 and 06 b. Fans 

c.. A graph homeomorphic to Kh 

FIGURE 1. SOME FIBONACCI GRACEFUL GRAPHS 

2. SOME PROPERTIES OF FIBONACCI GRACEFUL GRAPHS 

From the definition of a Fibonacci graceful graph, it is apparent that the 
edge numbered Fn must have 0 and Fn as the vertex numbers of its endpoints. 
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Furthermore, any vertex adjacent to the vertex labeled 0 must be labeled with 
a Fibonacci number. The remaining vertices receive integer labels between 0 
and Fn9 but these need not be Fibonacci numbers. 

It is easy to see that if a graph is Fibonacci graceful, then it may have 
several distinct labelings. In fact, we have the standard "inverse node num-
bering" ([3], p. 27). 

Observation 1 : If {0 = a13 a2, a3, ...,a„ = Fn] is a set of vertex labels 
of a Fibonacci graceful graph, then changing each label a^ to Fn - ai also 
gives a Fibonacci graceful labeling of the graph. 

We also have the following theorem which demonstrates that the cycle struc-
ture of Fibonacci graceful graphs is dependent on Fibonacci identities. 

Theorem 1 

Let £(p, ri) be a graph with a Fibonacci graceful labeling and let Q be a 
cycle of length k in G. Then there exists a sequence {<5̂ -}. 1 with 6̂ - = ±1 
for all j = 1, 2, ..., k such that 

.7 = 1 

where {F^- }js:1 are the Fibonacci numbers for the edges in Q . 

Proof: Let a19 a2, . .., ak be the vertex labels for Q . Clearly, 

fc-i 
E <^+1 - <*j) + K - <**> = 0. 
J--1-

Since each difference <Zj- + 1-a:j equals either an edge label on C± or its nega-
tive, the theorem follows, m 

Corollary 1.1 

If graph G has a Fibonacci graceful labeling, then the edges of any cycle 
of length 3 in G must be numbered with 3 consecutive Fibonacci numbers (note 
that Fl9 F3, Fh is equivalent to F2s F39 F^). 

Corollary 1.2 

If graph G has a Fibonacci graceful labeling, then the edges of any cycle 
of length 4 in G must be numbered with a sequence of the form Fi , Fi+19 Fi+39 
F. 

Corollary 1 .3 

If graph G has a Fibonacci graceful labeling, then the edges of any cycle 
of length 5 must be numbered with either a sequence of the form F±, Fi + 19 
Fi+3> Fi+5> Fi + 6 o r F19 F29 Fi9 Fi + 19 Fi + 2 . 
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CoroTlary 1.k 

Let graph G have a Fibonacci graceful numbering. Suppose that in cycle Ci 
of length k the three largest edge labels are consecutive Fibonacci numbers, 
^fc_23 Fik-i> F-ik- Then for the remaining labels on Ci we have 

k-3 

J = I 

Proof: Both 6^_2 and 6^^_x must be opposite in sign to &ik for, other-
wise, the sum of Fik and either of Fik_2 or Fik_x would exceed the sum of all 
the remaining edge labels on Ci , violating Theorem 1. [See Identity (2) be-
low] . m 

For convenience, we list some of the basic Fibonacci identities that are 
useful later: 

(1) Fn = Fn_x + Fn_2; F± = F2 = 1. 

(2) F1 + F2 + F3 + ••• + Fn_2 = F„ - 1. 

(3) Fl+F3+F5+ -•• +FZn_1 = F2n. 

(4) F 2 + F^ + F 6 + • • • + F2n = F2n - 1. 

A variation of Identities (3) and (4) may be obtained by once omitting a pair 
of consecutive Fibonacci numbers: 

(5) Fn - 1 > Fn_2 + Fn_h + Fn_6 +... + *V + 2 + ^ + ^ _ 3 + ^ _ 5 + ..., 
(J > 3) . 

The next result, stated as a lemma, is useful both in seeking Fibonacci 
graceful labelings and in developing a theory of the structure of Fibonacci 
graceful graphs. 

L emma 1 

Suppose G(p9 n) has a Fibonacci graceful labeling and C is a cycle of G. 

a. If Fk is the largest Fibonacci number appearing as an edge label of C9 
then Fk_1 also appears on C. In particular, the edge labeled 

*n- i mus t 
be in every cycle that contains the edge labeled Fn. 

b. The cycle C whose largest edge number is Fk must contain either the 
edge labeled Fk_2 or Fk_3* 

Proof: 

a. By Theorem 1, some linear combination of the edge numbers on C must sum 
to 0. By Identity (2): 
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Fx + F2 + F3 + ... + Fk_2 = Fk - 1 < Fk. 

Thus, Fk_1 must appear as an edge label of C. 

b. Since Fk - Fk_x = F^_2, some combination of the remaining labels on C 
must equal Fk_2. But, since Fx + F 2 + **# + ^£-4 ^^/c-2' there must be an 
edge labeled Fk_3 unless there is one labeled with Fk_2 itself, m 

We also have the following theorem, which corresponds to a well-known re-
sult for graceful graphs [3, p. 26], 

Theorem 2 

If £(p, n) is Eulerian and Fibonacci graceful, then n = 0 or 2 (mod 3). 

Proof: If G is Eulerian, then it can be decomposed into edge-disjoint 
cycles. By Theorem 1, the sum of the edge numbers around any cycle must be 
even and, hence, 

F + F + F + m ' ' + F = F - 1 

must also be even. Thus, Fn + 2 must be odd, and this occurs if and only if 
n = 0 or 2 (mod 3). m 

3. FORBIDDEN SUBGRAPHS 

One possible way to characterize Fibonacci graceful graphs would be to 
find a complete list of graphs such that G would be Fibonacci graceful if and 
only if it did not contain a subgraph isomorphic to one on this list. This 
approach seems difficult because gracefulness is a global rather than a local 
condition. Nevertheless, the following theorems do limit the structure of 
Fibonacci graceful graphs considerably. 

Theorem 3 

If G(p, n) contains a 3-edge-connected subgraph, then G is not Fibonacci 
graceful. 

Proof: Suppose G(p9 n) is Fibonacci graceful, and G r is a 3-edge connected 
subgraph. Let Fk be the largest edge number appearing in Gr, and let vx

 a nd ^2 
be the endpoints of that edge. Since GT is 3-edge connected, there is a path 
joining v1 and V2 which does not contain either the edge numbered Fk or the 
edge numbered Fk_1. This path, together with the edge (i?l5 v2) forms a cycle 
which contains the edge labeled Fk , but not the one labeled Fk_1. This vio-
lates Lemma 1. m 

It is interesting to note that a graph G which is not Fibonacci graceful 
may have homeomorphic copies thich are. For example, although Kh is not Fibo-
nacci graceful by Theorem 3, the graph in Figure 1(c), a homeomorphic copy of 
Kit 3 is Fibonacci graceful. Perhaps a more striking example is the nonplanar 
graph shown in Figure 2, which is Fibonacci graceful even though the complete 
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graph K5 and the complete bipartite graph K3i3 are not. The graph in Figure 2 
contains a subgraph homeomorphic to K3i3. A consequence of the next theorem 
is that it is impossible for a nonplanar graph to contain a subgraph which is 
homeomorphic to K5 and have a Fibonacci graceful labeling. 

17724 

6768 

2674 

2585 

6766 

(Z3j3 is homeomorphic with a subgraph containing the vertices 
labeled 24, 17711, 0 and 13, 46368, 1.) 

FIGURE 2. A NONPLANAR FIBONACCI GRACEFUL GRAPH 

Theorem 4 

If there is a pair of vertices joined by 4 edge-disjoint paths in G(p, n) , 
then G is not Fibonacci graceful. 

Proof: Let v1 and V2 be two vertices of G joined by 4 edge-disjoint paths 
P1SP2!> ?3s and Pk. Suppose G has a Fibonacci graceful labeling. With no loss 
of generality, assume that Fk is the largest Fibonacci number on these paths 
and that it lies on an edge of Pla By Lemma 1(a), Fk_± must also lie on Pl9 
since otherwise there are cycles containing edge Fk , but not Fk_1» Addition-
ally, either Fk_2 or Fk.3 must also be an edge label on P19 for if they were 
on other paths, say P2 and/or P3, then paths Px and Pk would form a cycle vio-
lating Lemma 1(b). 

Suppose that it is Fk_2 that appears as an edge label on P±, Then Corol-
lary 1.4 permits us to ignore Fk , Fk_l9 and Fk_2 and tells us that some linear 
combination of the remaining Fibonacci numbers on any cycle must sum to 0. 
Repeat this process, beginning with the largest of the remaining edge labels, 
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to discard or ignore the presence of three consecutive edge numbers on any of 
the paths. This repetition cannot discard all of the edge numbers along any 
path, for then vertices V1 and V2 would necessarily have the same vertex label. 
Thus, the process terminates at a time where Fj is the largest remaining edge 
label and Fj , Fj_l9 and Fj_3 appear on some path, say P2, but Fj-2 appears on 
another path, say Fh. Then there is a cycle, P3 and Fh for example, on which 
Fj_2 ^s t n e largest Fibonacci number, but Fj_3 does not appear, violating Lem-
ma 1. 

4. CLASSES OF FIBONACCI GRACEFUL GRAPHS 

We begin with easy observations that any Fibonacci graceful graph may be 
embedded in larger ones. 

Observation 2: Let £(p, ri) have a Fibonacci graceful labeling. Then the 
graph 6?1(p+ 1, n+ 1) formed from G by attaching a vertex V of degree 1 at the 
vertex labeled 0 can be given a Fibonacci graceful labeling by labeling v with 
Fn+1-

Observation 3: Let G(p, n) have a Fibonacci graceful labeling. Then the 
graph G2(p+l, n+2) formed from G by attaching a vertex v of degree 2 to the 
vertices labeled 0 and Fn can be given a Fibonacci graceful labeling by num-
bering v with Fn + 2. 

Theorem 5 

The cycle Gn is Fibonacci graceful if and only if n E 0 or 2 (mod 3). 

Proof: Since Cn is Eulerian, it is not Fibonacci graceful for n E 1 (mod 
3) by Theorem 3. 

If n E 0 (mod 3) , the following labeling sequence on the vertices is a 
Fibonacci graceful labeling: 

0, Fn , Fn_2, Fn-i> •••> Pn_3j-9 Fn_3j_29 Fn-3j-i> •••' ̂ 6' Fh» ̂ 5» ^3' ^i-

If n E 2 (mod 3), the following numbering sequence on the vertices is a Fibo-
nacci graceful labeling: 

0 , Fn , Fn_2> Fn_ly . . . , Fn_3j, Fn-3j-2* Fn-3j-l> ' • • ' ^5> -^3> ^ M ^ 1 • • 

Theorem 6 

A maximal outerplanar graph G with at least four vertices is a Fibonacci 
graceful graph if and only if it has exactly two vertices of degree 2. 

Proof: Let G be a maximal outerplanar graph with more than two vertices 
of degree 2. Then G must contain a subgraph isomorphic to the graph shown in 
Figure 3. Since there are 4 edge-disjoint paths between vertices V1 and v2 in 
this grapl>, G cannot be Fibonacci graceful by Theorem 4. 
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FIGURE 3. A FORBIDDEN SUBGRAPH 

We next use induction to show that a maximal outerplanar graph G(p9 2p - 3) 
with exactly two vertices of degree 2 has a Fibonacci graceful labeling. 
Moreover, this labeling can be given so that the 0 label appears on either 
vertex of degree 2, say vQ9 and that F2p_3 may be the label of either neighbor 
of VQ. Since all the maximal outerplanar graphs with two vertices of degree 2 
can be generated by repeatedly adjoining a new vertex of degree 2 to a previ-
ous vertex of degree 2 and one of its neighbors ([1], p. 607), Observation 3 
will complete the proof. 

To begin the induction and to illustrate the labeling, Figure 4 shows all 
the maximal outerplanar graphs with exactly two vertices of degree 2 for p = 
4, 5, and 6. Assume the inductive hypothesis is valid for p = k and consider 
a maximal outerplanar graph £(p+l, 2p - 1) with exactly two vertices of degree 
2. Let VQ be a vertex of degree 2 in G with neighbors v1 and V2. When vQ is 
removed, one of its neighbors, say i?l5 will become a vertex of degree 2 in 
G - vQ. By induction, G - vQ may be given a vertex labeling £ such that 

l(v{) = 0 and l(v2) = F2p_3. 

By Observation 3, G can be made Fibonacci graceful by labeling V0 with F2p-i* 
By Observation 1, the transformation F2p_1 - a^ applied to the vertex labels 
gives G a Fibonacci graceful labeling £x with 

l1(v0) = 0 and i1(v1) =F2p_1. 

To show that G has a second labeling £2 in which 

^"l\V 2) ~ £ 2p - 1 ' 

apply the transformation F2p ~ di to the vertex labels of G - VQ. This gives 
an induced edge labeling £2; to G for which 

i'2(voVl) = Fzp_2 and £2'0Vi>
 =F2P-i 

with all other edge labels unchanged, m 
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3 

5 13 8 

a. p = 4 b. p = 5 

24 21 31 34 

# » * 32 29 21 23 26 34 

• - # • # . ^ 
26 34 29 21 34 21 C. p = 6 

FIGURE 4. FIBONACCI GRACEFUL LABELINGS OF MAXIMAL OUTERPLANAR GRAPHS 
WITH SIX OR FEWER VERTICES AND EXACTLY TWO VERTICES OF DEGREE 2 

5. FIBONACCI GRACEFUL TREES 

In this section we will present an algorithm that will enable one to find 
a Fibonacci graceful labeling for nearly all trees. The trees which do not 
have such a labeling are easily characterized. Except for K1 and K2, which 
are trivially labeled9 any tree T(p, n) with five or fewer vertices cannot be 
Fibonacci graceful since with n ^ 4 edges there are not enough distinct inte-
gers between 0 and Fn to label the p = n+ 1 vertices of T« It is also appar-
ent that KliYl is not Fibonacci graceful for n > 2. That this is so follows 
from the fact that all the edges have a vertex in common and if the remaining 
vertices are distinctly labeled, there cannot be two edges with the label 1, 
The only other tree that is not Fibonacci graceful is shown in Figure 5. 

> — < 

FIGURE 5. A TREE THAT IS NOT FIBONACCI GRACEFUL 
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It is generally easy to provide a labeling for any other tree, especially 
one with a large number of vertices, because for n large, Fn is considerably 
larger then n + 1 and there are many distinct integers from which to choose 
the vertex labels. In Figure 6 we show a Fibonacci graceful labeling for the 
remaining trees with six vertices. 

3 

0 5 4 1 3 2 0 4 2 

0 
#-

5 3 

FIGURE 6. THE FIBONACCI GRACEFUL TREES T(6, 5) 

The trees in Figure 6 are examples of a class of trees called "caterpil-
lars"—trees which become paths when all of their endpoints are removed. (It 
is known that all caterpillars are graceful trees [8].) The length of a cat-
erpillar will be the number of edges in the remaining path. 

Theorem 7 

All trees T(n+l, n) with n ^ 6, except for KliTi3 are Fibonacci graceful. 

Proof: We divide the proof into cases, and provide a labeling £ for each 
case. The cases are: 

a. caterpillars of length 1; 

b. caterpillars of length 2 or more; 

c. noncaterpillars. 

We begin x̂ ith caterpillars of length 1. Since T has at least six edges, 
there is a vertex y0 of T with degree 4 or more. Let Vj. denote the neighbor 
of Vo which Is not an endpoint. Let £ label vQ with 0; V1 with Fn ; the k + 1 
> 3 endpoints adjacent to V0 with 1, Fn_l9 Fn_2J . .., Fn_^; and the endpoints 
adjacent to v1 with Fn ~ Fn-ji_l9 Fn -rc-fc- 2» 3, bn 2, Fn 1. 
Figure 7 gives an example of the results of this procedure. Clearly the algo-
rithm gives a proper edge labeling; thus, it remains only to verify that the 
vertex labels are distinct. Note that, if V^ is a neighbor of v0 and Vj is a 
neighbor of Vls then Sl(Vj) > 1(V<L) since for n > 6 and 2 < H n - 3 we have: 

iU(u,)} - F„ - n-k -1 > Fn- cU(y7-)L 
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18 

-•19 
21 

13 ̂  ^ 2 0 

FIGURE 7. A FIBONACCI GRACEFUL CATERPILLAR OF LENGTH 1 

For a caterpillar T of length 2 or more, choose a longest path in T and 
call its vertices VQ9 V19 V29 , . . 9 Vk. Denote the endpoints adjacent to Vi by 
vn> vn* •••» vij> t = 1, 2, ..., L We consider two subcases depending on 
the degree of v1. If V1 is of degree 2, define I as follows. Let 

Hv0) = 0, l(v±) = Fn9 l(v2) = Fn - 1. 

Then label the neighbors of v2 by 

£ ( v 2 1 ) = £ ( y 2 ) - F n _ 1 5 £ ( y 2 2 ) = £(z;2) - F n _ 2 , . . . 5 Hv2j) = £ ( y 2 ) - Fn_.9 

a n d , f i n a l l y , 

Proceed to define for the v + 1 neighbors of v3, 

Hv31) = l(v3) +Fn_j_2, Z(v32) = l{v3) +Fn_d_39 

l(v3r) = l(v3) + Fn_._T_1, 

ending with 
Kvh) = l(v3) + Fn. 3 -v-2' 

Notice that each neighbor of V3 has been distinctly labeled with positive in-
tegers strictly between Z(v2) and max{£(i;3), ^(v2i)}- For the neighbors of Vi+ 
label each vertex with 

&(̂ i+) ~ (the appropriate Fibonacci number) . 

Again each of these will be distinctly labeled with positive integers between 
&(i?3) and m±n{i(v^) , %>(v3i)}. Continue in this manner, adding the continuing 
sequence of Fibonacci numbers to the neighbors of Vs,v7, v$9 ... and subtract-
ing them from the neighbors of V6, VQ9 V1Q9 .... An example of the resulting 
labels is shown in Figure 8(a). 

If vertex v1 is of degree more than 2, let 

l(v0) = 0 and £(t;i) = Fn 

as before. For the neighbors of V\9 define 
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*(*>n) = Fn - 1, Hvlz) = l(v{) - Fn_13 Z(v13) = i(v{) «-2 3 

Hvld) = i(v±) 

ending with 

-n-o-2 s 

£(z;2) = £0^) • n - 3 - 2• 

Proceed to label the neighbors of V2 by adding the appropriate sequence of 
Fibonacci numbers to i(v2). In this instance, the vertex labels for these 
vertices will lie between l{v11) and &( 2̂)> the two largest vertex labels ap-
pearing on the neighbors of v±. From here, proceed in a fashion analogous to 
that above. An example of such a caterpillar is shown in Figure 8(b). 

49 
m 

45 
m 

55 41 F, 46 43 44 

b. 

232 89 144 188 186 

0 F1S 233 F10 178 F7 181 F6 183 F3 185 P2 

FIGURE 8. TWO LABELED CATERPILLARS OF LENGTH 4 

184 

Finally, we consider a tree T which is not a caterpillar. Remove the two 
endpoints of a longest path in T to form a subtree Tr that is not a path. Tr 

has either one or two centers, both lying on some longest path Pr in TT. Se-
lect one of the centers, denoted v0, and root Tr at vQ. If ̂ 0 is a vertex of 
degree k ^ 2, denote the neighbors of y0 by i?n, U12J ..»9 Vlk in such a way 
that v1± and i?lk lie on Pr and i;lfe is the other center of J" if there are two 
centers. Denote the "half" of Pr containing v0 and V1± by PLf (the "left half") 
and the section containing v0 and vlk by PRf (the "right half"). (Thus, the 
vertices at the first level are labeled from left to right.) Also denote the 
k subtrees rooted at vll9 V12, . ..» Vlk by T1, T2, . . • , ̂ 5 respectively. Next 
call the vertices at a distance of 2 from v0 by'i;21, ̂ 22? •••» vij in such a 
way that v21 is on PR' and V2j is on PL'; that is, name the vertices from right 
to left. Proceed to name the vertices at distance 3, V3l9 V32, ..., V3r again 
from right to left. Continue from right to left at each level until all the 
vertices of Tr have been named. Note that there will be at least two vertices 
at each distance or level (except perhaps at the final level, where there may 
be only a single vertex on PRf) , since vQ was a center. Also, there must be a 
level with at least three vertices, since Tr is not a path. 
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We define the Fibonacci graceful labeling I on 2" as follows: 

Ui>0) = 0; 

&(^ii) = Fn, l(v12) = Fn_l9 ..., i(vlk) = Fn_k_1; 

^(v21) = l{vlk) - Fn_k_2; 

&(v22) = ^(parent vertex of V-22) - Fn-k-3* •••; 

that is, for any subsequent vertex in Tr
9 its label will be the difference 

between the label of its parent vertex and the next smaller Fibonacci number. 
Note that the edges of Tf receive the labels Fn9 Fn_19 „..9 F3 in decreasing 
order from left to right on the first level, and from right to left on all 
subsequent levels. To extend £ to the original tree T9 label each of the two 
endpoints which were removed by £ (its neighbor) - 1. Figure 9 presents two 
applications of this algorithm. 

553 552 554 516 513 220 212 143 110 

FIGURE 9. TREES WITH FIBONACCI GRACEFUL LABELINGS 

It is clear that this procedure will properly label all the edges, so it 
remains only to observe that the vertex labels are distinct and nonnegative. 

186 [Aug. 



FIBONACCI GRACEFUL GRAPHS 

First, we note that within any of the rooted subtrees Tis t = 1, . .., k9 the 
vertex labels decrease as the distance from V0 increases. Finally, we claim 
that for i < j, every vertex label in Ti exceeds those in Tj . Note that the 
vertex labels in T1 all equal 

Fn - (a sum of Fibonacci numbers), 

where the terms in this sum include at most 

•^n-3* ^n-5* ^ n - 7 ' •••» £n-r» ^ - p - 3 5 -tn_r_59 ..., 

for some i5, since at each level there is at least one edge in PR , and at some 
level there is at least some other edge not on P. Thus, by Identity (5), the 
smallest vertex number in T1 is greater than 

Fn ~ (Fn -2 ~ 1) *> Fn-l' 

Thus, every vertex number in T1 exceeds any vertex number in T2• A similar 
argument will show that if v e T2 (̂  Tk), then 

Fn.2 < Hv2) < Fn_19 

and that if v e Tk 9 then 

0 < l(v) < Fn_k. 

This concludes the proof of the theorem8 a 

6. SUMMARY AND CONCLUSION 

In this paper, we have extended the idea of graceful graphs to numberings 
where the vertex labels are distinct integers but the edge labels are members 
of the Fibonacci sequence. We investigated the cycle structure of Fibonacci 
graceful graphs and used this to find forbidden subgraphs. We found infinite 
classes of Fibonacci gracegul graphs, including almost all trees. It is in-
teresting to note that, if we had required the edge numbers of Tin + 1, n) to 
come from the set {F2y F33 . . . , Fn + 1] in order to eliminate the problem with 
duplicate vertex labels in K1}US then all trees could be labeled eadily. This 
is due to the large size of Fn relative to ns which leaves many possible dis-
tinct integers available for the vertex labels. Thus, in a certain sense, the 
Ringel-Kotzig-Rosa conjecture is a limiting case for this type of tree label-
ing problem, since to produce the edge labels {l, 2, 3, „ . . , n} it is required 
to use every integer in {0, 1, 2, ..-, n}. 

For the Fibonacci graceful graphs, the problem remains to characterize all 
of them, perhaps by forbidden subgraphs, although this appears difficult in 
view of Observations 2 and 3. Further classes of Fibonacci graceful graphs 
can certainly be discovered. For example, we conjecture that all unicyclic 
graphs with at least one endpoint are Fibonacci graceful graphs. 
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[continued from page 173] 

Since the Newton iterates always fulfill the linear equations which belong 
to the system of nonlinear equations that is to be solved (with the excep-
tion, of course, of the starting value), the conclusion follows at once. 
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For any positive integer m9 the Fibonacci sequence is clearly periodic 
modulo m. Many moduli 777, characterized in [1], have the property that every 
residue modulo 777 occurs in each period. (Indeed, 8 and 11 are the smallest 
moduli which do not have this property.) However, moduli m with the property 
that all m residues modulo m appear in one period the some nwnhev of times 
occur very infrequently, as the following theorem from [2] shows. 

Theorem 1 

If all 77? residues appear in one period of the Fibonacci sequence modulo m 
the same number of times, then w is a power of 5. 

The converse of this theorem is also true [3]. Since (see [4]) for k > 0 
the Fibonacci sequence modulo 5k has period 4 • 5k, it follows that if 777 > 1 
is a power of 5, and (un) is the Fibonacci sequence, then every residue modu-
lo 77? appears exactly four times in each sequence 

Us ? Us + 1> Us+2* •••» u
s + km-l' 

This result can be strengthened considerably. 

Theorem 2 

Denote the Fibonacci sequence by (un) . If m > 1 is a power of 5, then 
every residue modulo m appears exactly once in each sequence 

Us 9 Us+^y US + Q , ..., ^ 6 + 4(777 - 1 ) • 

Proof: Write m = 5k, and denote the greatest integer function by [ ]. The 
Fibonacci sequence u1 - 1, u2 = 1* u3 = 2, ... satisfies the well-known form-
ula 

un = (((1 + A)2-1)" - ((1 - /5)2"1)n)/y5. 

Apply the binomial expansion to this formula to obtain 

where all terms after ( j5^ vanish and I = [ (n - l)/2]. Fix s9 and let 
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Sk = {0, 1, ..., 5k - 1}. Then, for n = s + 4a, a e Sk, we have 

« „ - (2-l)-l(2-l)-((?) + ( 3 ) 5 + •••) 

and it is obvious that un represents every residue modulo 5k if and only if 

*-- <2-)-((7) + (5)5+ -..) 
represents every residue modulo 5k

 9 since s is fixed and (2"1)8"1 is a unit 
modulo 5k. Thus, we shall only consider tn and prove the theorem by induc-
tion on k. 

If k = 1, then a e {0, 1, 2, 3, 4} and tn = 3 + 4a (mod 5), since 2"1* = 1 
(mod 5). Thus, the theorem is true for k = 1. Assume the theorem is true for 
k9 and consider k + 1. For a e 5 H l , write a = & + c?5k, where b e Sk and e'e 
{0, 1, 2, 3, 4}. Then, 

t„ = (2-1)«(2-1)-5*((8 + 4 & + ̂  + (S+ 4 \ + 4C5")5 + •••) 

= (2"1)^((S +
1
4*) + (S +

3^)5 +•••) + (2-1)lti4c5fc (mod 5*+1), 

since 

( 2 - V 5 * E 1 (mod 5fe+1) 

and 
/s 4- 4fc +"4e5k\C7 _ As + 4&\cj , , c H u r . ̂  , 
V 2j + 1 ) 5 =\2j + l)5 (m0d 5 ) f o r ^ U 

[To prove the last congruence, note first that it is equivalent to 

( • • « ; * • = > - . 3 ( » M * + * ) 5 ' - M - d 5 ' ) . 

Then, observe that the power of 5 dividing (2j + 1) ! is exactly j - 1 for j = 
1, 2, and is 

£ [(2j + l)/5*] < X (2j +• l)/5* = (2j + l)/4 < j - 1 for j > 3. 
a - 1 ii= 1 

Hence, 5J"1/(2j + 1)! is integral at 5, and this implies the congruence.] 

Let us now consider the congruence modulo 5k. We obtain 
*» = ( 2 - 1 ) ^ ( ( S +

1
4 i ) + ( S +

3
4 i ) 5 + •••) (mod 5*). 

and, by the induction hypothesis, tn represents the complete residue system 
modulo 5k

9 for n=s+bb9beSk. 

If we hold b fixed in Sk and let c run through the set {0, 1,2, 3, 4}, we 
obtain 

tn = ( l - 1 ) ^ 8 +
1

4&) + (S + 4&)s.+ •••) + (2-1)^4c5k (mod 5k + 1 ) , 
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which are all distinct residues modulo 5k + 1 since (2"1)4Z)4^ takes on distinct 
values modulo 5. Since the five tn are all congruent to 

( 2 - v * ( ( e + 4fc) + (e + 4*)5 + ...j (mod5fe)j 

the induction is complete. 
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1. INTRODUCTION 

Throughout this paper we let {Fn} denote the Fibonacci sequence as defined 
in [1] by 

^ n ~ ^n-1 ~*~ ̂  n- 2 > ^ 0 = ^ > ^ 1 = •*-

and {Ln} denote the Lucas sequence which is defined by 

Ln = Ln-1 + Ln-2> LQ = 2> L l = *• 

Furthermore, as in [2], we define the set of integers {gm,n} by the two rela-
tions 

^m,n ^m-l,n ^m-2tn ^ ' 

(m > 2, 77? > n ^ 0) 
#m,n ~~ #m-l, n-1 #m-2,n-2 '^' 

W h e r e #0,0 = 2 > #1,0 = l> #1,1 = l j a n d #2,1 = 2 -

When we arrange this sequence in triangular form, like that of Pascal's 
triangle, we obtain what shall be called the Lucas triangle where the numbers 
in the same row have the same index m and as we go from left to right the in-
dex n changes from zero to m. See Figure 1. 

2 

1 1 

3 2 3 

4 3 3 4 

7 5 6 5 7 

11 8 9 9 8 11 

18 13 15 14 15 13 18 

29 21 24 23 23 24 21 29 

47 34 39 39 38 37 39 34 37 

76 55 63 60 61 61 60 63 55 76 

123 89 102 97 99 98 99 97 102 89 123 

FIGURE 1. LUCAS TRIANGLE 
192 [Aug. 



LUCAS TRIANGLE 

2. CHARACTERISTICS OF THE LUCAS TRIANGLE 

Examining the Lucas triangle associated with {gm,n} 9we see that there are 
two Lucas sequences and two Fibonacci sequences in the triangle: 

9m,0 = 9m,m = Lm > m > °  (3) 
and 

Qrr, 1 = 9 m rr, 1 ~ ^m ? 777 ̂  1 . (4) 

In other words, the first and second "roofs" of the triangle are formed by the 
familiar sequences {Fn} and {Ln}. Because of the recursive definition for the 
set {gm n}9 it is obvious that 

9m,n = Fk + i " ̂ m-*,* + Fk m $m-k-i,n for any I ^ k < m - n - I 
and 

9m,n = F*c + i * 9m-k9n-k + ^ °  Src-fc-i, n-fc-i for any 1 < H n - 1. 

Furthermore, the Lucas triangle is symmetrical. That is, 

9m, n ~ 9 m, m-n • 

In forming the Lucas triangle, we used the following four numbers 

{#0,0> ^1,0' ^1,1» ^ 2 , 1 } 

Because of the recursive relations defining {gm>n}s it is obvious that we could 
start with any four numbers 

*-9m,n9 9m-l,n* 9m-l,n-±9 9m-2,n-l* 

and, by using (1) and (2) , working forward as well as backward, obtain the en-
tire Lucas triangle. 

There are also many relations that we could establish for the Lucas tri-
angle, as was done for the Fibonacci triangle in [2], We mention only a few, 
since they are so similar in form. First, note that 

9m+ 2, n + i = 9m,n + &-l,n + 9m-I, n -1 + 9m-2, n-i> 

9m-h,n-2 ~ 9m,n ~ 9m-l,n ~ 9m-l,n-l + 9m-2, n-l> 

9m - 1, n - 2 ~ 9 m ,n 9m-l, n ~ 9m-l,n-i ~ 9m-2, n -i> 
and 

9m - 1, n v+1 = 9 m ,n ~ 9m-l,n "*" 9m-l, n -l ~ ffm-2, n-i* 

Next, consider the three numbers 

^9m , n 9 9m - 1, n ' 9m-l,n -1* 
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which form a triangle in the Lucas triangle with the peak of the triangle at 
gm-n. Observe that the sum of these three numbers does not depend on their 
position with respect to n. That is, for a given m and n, 

9m,n +&m-l,n + 9m-l,n-l = &m,i + &m-l,l + ^m - 1 , I -1 ' 

for all 1 < £, n < m - 1. 

Furthermore, note that the sum of the three numbers forming such triangles 
for a given m always equals the sum of a Lucas and Fibonacci number associated 
with the given m. That is, 

9m,n + 9m-±, n + 9m-l, n-1 = ^m -1 + Fm + 1> 

Finally, we examine the three numbers 

*-9m,n ' 9m,n-19 9m- 1, n- 1-" 

which also form a triangle but with the peak at gm-i,n -i' The sum of numbers 
forming the base minus the peak number is constant with regard to horizontal 
motion and it is again the sum of a Lucas and Fibonacci number. That is, 

$m,n 9m,n-l "" ^m-l,n-l ~ m-2 m ~~ ̂  m - 2 * 

3. GRAPHPCAL EQUIVALENT OF LUCAS TRIANGLE 

In [4], we find a nonadjacent number P(G, k) for a graph defined as the 
number of ways in which k disconnected lines are chosen from G. Furthermore, 
in [5], we find the definition of a topological index for nondirected graphs. 
This is a unique number associated with a given nondirected graph. 

The topological index for a linear graph is given in [4], and it is shown 
to be a Fibonacci number (Table 1). Similarly, in the same manuscript, it is 
shown that the topological index for a cyclic graph is a Lucas number (Table 
3). Using these concepts, Hosoya [2] defines a Fibonacci triangle for the se-
quence {Fntm} and constructs what is called the graphical equivalent of the 
Fibonacci triangle by letting fn>m be the index of a graph and then replacing 
fn,m with its graph. To do this, he also uses the composition principles de-
fined in [4]. 

Adopting the procedures of Hosoya in [2], we replace each number gm,n in 
the Lucas triangle by its graph, obtaining the graphical equivalent of the 
Lucas triangle shown in Figure 2. Note that all the linear and cyclic graphs 
must occur in Figure 2. 

The graphical ecuivalent of the Lucas triangle easily leads to its corre-
sponding topological index, which can be used in the chemistry of organic 
substances [5] when dealing with the boiling point to determine the structure 
of saturated hydrocarbons. 
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o o 

A - - A 
• -A- • 

O - A A - O 
O -----A A A - O 

O-AAAA-O 
O ---A A A A A _ Q 

O —/M/AV\—O 
FIGURE 2. GRAPHICAL EQUIVALENT OF LUCAS TRIANGLE REFERENCES 
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1. INTRODUCTION 

A number of physical phenomena, e.g., adsorption, crystallization, magne-
tism, can be treated by considering the occupation statistics of lattice 
spaces. One of the interesting problems that arise from such an approach is 
that of determining the occupational degeneracy of A-bell particles on lattice 
spaces of various dimensionalities. Exact solutions for one-dimensional spa-
ces have been found for dumbbells [1,2] (A = 2) and for A-bell particles [3] 
but exact solutions for spaces of higher-order dimensionality have only been 
obtained for dumbbells for very special cases [4, 5]. Consequently, approxi-
mation methods [6-8] have been used to attack this problem. 

The present paper is concerned with a determination of the occupational 
degeneracy for indistinguishable A-bell particles that completely fill a A x N 
rectangular lattice space (see Fig. 1). 

This figure shows one arrangement 
for A = 3 particles that fill com-
pletely a 3 x N lattice space. 

FIGURE 1 

We first derive a recursion relationship that describes exactly the multi-
plicity of arrangements when the A x N lattice space is saturated. 

In Sections 3 and 4, we derive an exact summation representation for the 
degeneracy and present the corresponding generating functions and continuous 
representation for large values of N. 

*This work was supported by the Air Force Office of Scientific Research 
under Grant AFOSR 81-0192. 

196 [Aug. 



THE OCCUPATIONAL DEGENERACY FOR A-BELL PARTICLES 
ON A SATURATED A x N LATTICE SPACE 

2. EXACT RECURS I ON RELATIQNSHIP 

Consider AN to be the set of all possible arrangements of indistinguish-
able A-bell particles on a completely filled A x N lattice space. AN can be 
considered to consist of two subsets, each of which is characterized by the 
state of occupation of the column of sites at one end of the space. One sub-
set is identified by the occupation of the end column by a single (vertical) 
A-bell particle (see Fig. 2a). In such a case, the remaining (N - 1) A-bell 
particles can be arranged on the remaining Ax (N - 1) lattice sites in A^-i 
independent ways. The other subset of which AN is composed consists of those 
arrangements in which the A sites of the end column are occupied by A (hori-
zontal) A-bell particles (see Fig. 2b). The remaining (N - A) A-bell parti-
cles can be arranged in AN_X independent ways. Thus 

AN = AN_X + AN_X (A > 1) (1) 

If A = 2, Eq. 1 becomes the Fibonacci recursion [9] and 

AN =—-i—{[1 + f5]N + 1 - [1 - Jbf + 1 } . (2) 
2N + 1JS 

This arrangement is one member of the 
subset of AN that is characterized by 
the fact that all the compartments of 
the column at the left-hand end are 
occupied by a single, vertical A = 3 
particle. 

(a) 

This arrangement is one member of the 
subset of Ap, that is characterized by 
the fact that each compartment of the 
column on the left-hand end of the 
lattice space is occupied by three 
different A = 3 particles. 

FIGURE 2 

For recursion relations of the kind given in Eq. 1, we may write [9] 

AN = C(B)N (3) 
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where C and R are not functions of N hut depend on A. Substituting Eq. 3 into 
Eq. 1 yields 

R' R A-l 1 = 0 
or 

where T = i?"1. 
TK + T - 1 = 0 

(4) 

(5) 

If A is even, then by Descartes1 rule of signs, we see that there are two 

real roots, one greater than unity and one less than unity; and — - — pairs 

of complex roots, the largest absolute value of which is less than the largest 

real root. If A is odd, then there is one real root whose value is greater 

than the absolute value of any of the — ~ — pairs of complex roots. Thus, 

for large values of N9 

AN = CiRj" 

where R is the largest (real) root of Eq, 4. 

(6) 

Figure 3 shows i?11 = T1 as a function of A. Note that T1 approaches unity 
for large values of A. 

L0Ge X 

FIGURE 3. T1 THE SMALLEST ROOT OF EQUATION 5 AS A FUNCTION OF A 

In Section 4, we will calculate the bivariant generating function which 
can be utilized to determine numerical values for C. 
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3. SUMMATION REPRESENTATION 

Another representation of the occupational degeneracy can be developed 
through the following considerations. There are essentially two kinds of en-
tities on the lattice space under consideration: vertical particles and groups 
of horizontal particles (each group consists of a block of A particles) (see 
Fig. 4). If there are q£ = qh/X groups of horizontal particles (where each 
group occupies X columns and X rows) 5 then there are N - \q£ vertical parti-
cles. Thus5 there are a total of 

q^+N - Xql = N - q^X - 1) 

different individuals of which q£ are one kind (the blocks of horizontal par-
ticles) and N - Xq' are another (the vertical particles). These may be per-
muted in 

N 'ia - ir 

independent ways [3]. Thus5 the total degeneracy is obtained by summing over 
all values of q'9 

imi/N- q'h(X- D\ 
AN = £ , (7) 

^ ° \ ?*' / 
where [N/X] is the largest integer contained in N/\. 

This figure shows, for X = 3 
particles, two arrangements 

o-j-o-j-o 

out of a total of /15 \5 )=(io5) 

L. _ _• _ _) c T 

o—j-o-j-o j 6 A Mo-i-o-j-o 

arrangements that are possi-
ble when ten vertical parti-
cles and fifteen horizontal 
particles [which must be ar-
ranged in five groups] are 
distributed on a 3 x 25 lat-
tice space. 

FIGURE 4 

k.. GENERATING FUNCTIONS 

According to Eq. 7S we form the polynomials [10] 

IN/X] IN - k(X - 1)> 
<xk; (8) 

then, utilizing Eq. 1, we see that 
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uw(x) = uN_1(x)•+ xuN_x(x)> 

with the initial conditions 

uQ(x) = u^ix) = ... = ux_1(x) = 1, 

(9) 

(10) 

which reflect the fact that, if N K X '- 1, there is only one way in which the 
space can be completely filled; i.e., all the particles must be vertical. 

The so-called bivariant generating function can be obtained as follows: 

u(x9 y) = £ uN(x)yN (11) 

[^Ti—J + y\u(x> 2/) & 
A-l 1 
y - i 

A-l-l 

+ xyxu(x, y) 

u(x, y) = [1 ~ y - xyk] 

On the basis of Eq. 12, we may write 

w ( i , y) = [ i - 2/ - yxYx 

11 = 0 

(12) 

(13) 

= £ Asy'. 
N = 0 

B u t , by p a r t i a l f r a c t i o n e x p a n s i o n , 

i - y - \r = .?,T J = l ^ £ EtyUyy]*, (14) 
j = l A « 0 

where the C/s are constants (not functions of N) , and.Sj are the reciprocals 
of the roots of 1 - y - y^i i.e., £j are the roots of Eq. 4. Thus, Sj ~ Rj. 
By comparing Eqs. 13 and 14, we obtain 

A* - £Cj[fyl*. (15) 

31 1 To determine the C7-Ts, we let y -> i?j , then the dominant term in the partial 
ef-fraction expansion, Eq. 14, is -r—^——. We may then write 

•j 2/ 

lim 
^-i?/1 i 1 - y - y x l " ^ j 

Applying LTHopitalTs rule yields 

= 0. 

1 - tfjy 

200 

l i m 
2/ + */1 [j. _ y _ zyXj 

= l i m 
y + Rf 

R.n 

1 + Ay A - l 1 + Ai?j ' r 

(16) 

(17) 
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and Eq. 15 becomes 

A, = t —^—ti (18) 
•̂ = 11 + XR)'X J 

If B1 i s the dominant r o o t , then as N -> °°, 

AN~- — « — — Rl (19) 
1 + XR\ A 1 + Ai?J"A 

so that the C in Eq. 6 is given by 

Ri 
c = ~7^' <2° ) 

i + \R\~X 

As an example, for A = 3, i?1 = 1.46557123 and C = 0.611491992, so that 

AN = 0.611491992(1.46557123)^ (21) 

For #=10, Eq. 21 yields a value of 27.96. This is compared to an actual 
value of 28 or an error of 0.14%. 

Note that as A becomes large, C -*• R1, so that (see Eq. 6) 

AN = 7?f+1 (for large values of 71/ and A). (22) 

CONCLUSION 

The occupational degeneracy for a A x 21/ lattice space completely covered 
with A-bell particles can be represented exactly by a two-term recursion rela-
tionship and by the summation of certain binomial coefficients. The appropri-
ate generating functions have been derived and utilized to develop a continuous 
representation for the degeneracy as 21/ •+ °°. 
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1. INTRODUCTION 

While searching for a class of graphs with certain desired properties to 
be used as computer networks, we have found graphs that come close to being 
optimal. One of the desired properties is that the design be simple and re-
cursives so that when a new node is added5 the entire network does not have to 
be reconfigured. Another property is that one central vertex be adjacent to 
all others. The third requirement is that there exist several paths between 
each pair of vertices (for reliability) and that some of these paths be of 
short lengths (to reduce communication delays). Finally, the graphs should 
have good cohesion and connectivity [1 ] . Complete graphs Kn satisfy all these 
properties, but are ruled out because of the expense. 

This paper introduces a set of adjacency matrices called Pascal matrices, 
which are constructed using PascalTs triangle modulo 2. We also define Pascal 
graphs, the set of graphs corresponding to the Pascal matrices. We begin by 
showing that the Pascal graphs have the properties described above. In the 
second part of the paper we explore the properties of the determinants of the 
Pascal matrices. It appears that every Pascal matrix of order > 3 has a de-
terminant of either 0 or 2. We indicate the sequence of matrix orders for 
which the determinant is 2. The third part of our report lists unexplored 
ideas and presents attributes of Pascal graphs which we have not been able to 
exploit in our proofs. 

Standard graph theoretic terms are used throughout this paper. The reader 
seeking a reference should consult Deo [3] or Harary [6]. 

2. DEFINITIONS 

Def in i t ion 1 

An n x n symmetric binary matrix is called the Pascal matrix PM(n) of order 
n if its main diagonal entries are all 0fs and its lower triangle (and there-
fore the upper also) consists of the first n - 1 rows of the Pascal triangle 
modulo 2. Let prn-cj denote the element in the ith row and the jth column of 
the Pascal matrix. 

*This work was supported by NSF grant MCS 78-25851 and by U.S. D.O.T. con-
tract DTRS-5681-C-00033. 
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(This definition should not be confused with another definition of Pascal 
matrix by Lunnon [8]. Note, however, that the matrix he defines as the Pascal 
matrix has been defined previously as Tartaglia1s rectangle [9].) 

Definition 2 

An undirected graph with n vertices corresponding to PM(n) as its adjacen-
cy matrix is called the Pascal graph PG(n) of order n. 

The first seven Pascal graphs along with associated Pascal matrices are 
shown in Figure 1. 

Definition 3 

Let ptt,j- refer to the jth element of the ith row of PascalTs triangle, 
where rows and their elements are numbered beginning with 0. 

1 2 

PC(1) 2W(1) [0] 

PC(2) PM(2) e a 
Pff(3) EW(3) 

PC (4) BW(4) 

PA/(6) 

PGO) PM(7) 

0 1 
1 0 
1 1 

0 1 
1 0 
1 1 
1 0 

0 1 
1 0 
1 1 
1 0 
1 1 

1 1 
0 1 
1 1 
0 1 
1 0 

FIGURE 1 
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3. CONNECTIVITY PROPERTIES OF THE PASCAL GRAPHS 

Lemma 1 

PG(n) is a subgraph of PG(n + 1) for all n > 1. 

Proof: This property is a direct consequence of the definition of the 
Pascal matrix 

Theorem 1 

All PG(i) for 1 < £ < 7 are planar; all Pascal graphs of higher order are 
nonplanar. 

Proof: Figure 1 clearly indicates that all PG(i) for 1 < i < 7 are pla-
nar. Z3j 3 is a subgraph of PG(8). Thus, by Lemma 1, all graphs of order 8 
and higher are nonplanar. 

Theorem 2 

Vertex v1 is adjacent to all other vertices in the Pascal graph. Vertex 
Vi is adjacent to Vi+1 in the Pascal graph for i ^ 1* 

Proof: Vmi,Q = P^-2, o -l (m°d 2) 5 -£ > j > 1 (Definition of Pascal matrix), 

For all i > 29 ptf7ifl = P^_2} 0 (mod 2) = r " 2J (mod 2) = 1. 

Thus3 2^ is adjacent to all vi 5 -£ > 2. 

For all i > 1, pmf + 1>f = p*f_i.i-i (mod 2) = (̂  " j) (mod 2) = 1. 

Thus9 v^ is adjacent to V^+i for all i ^ 1. 

Corollary 1 

PG(n) contains a startree for all n ̂  1. 

Corollary 2 

PG(n) contains a Hamiltonian circuit [19 2, . .., n - 15 ns 1]. 

Corollary 3 

PG(n) contains Wn - x (wheel of order n minus an edge). 

L emma 2 

If k = 2n + 15 n a positive integer, then vk is adjacent to all v^9 1 < i 
< 2k and i + k. 

Proof: Let k = 2n + 1, where n is a positive integer. 
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Case 1. 1 < i < k 

V™Ki - P**-2.i-i (mod 2) = ^ i - l ) ( m ° d 2) = l [4]' 

Case 2. k < i < 2k 

Pmk,i = Pmi,k =Pti-2,k-i (mod 2> = \ 2" ) ( m ° d 2)> 

We may factor i - 2 into its binomial coefficients: 

i - 2 = mQ + m1 x 21 + •- - + mn_1 x 2n~1 + I x 2n. 

Thus, 

(V-2) <«*> 2) - ft)^) •- (V)(i) Cod 2) . 1 [«,. 

Since for all z;̂  , 1 < i < 2k and £ ̂  k9 pmk i = l9 Vk is adjacent to all such 

The following connectivity property is useful in the design of reliable 
communication and computer networks. 

Theorem 3 

There are at least two edge-disjoint paths of length < 2 between any two 
distinct vertices in PG{ri)9 n ^ 3. 

Proof: Let vi9 Vj be two vertices of PG(ri)9 n > 3, i < j . 

Case 1. i = 1, j = 2 

Two edge-disjoint paths are [v19 V2] and [v19 V3, V2] . 

Case 2. i = 1, j > 2 

Two edge-disjoint paths are [v2 9 v^] and [v19 Vi_19 Vi] (Lemma 2). 

Case 3- i > 1 

By Theorem 2 , we know t h a t one p a t h i s [v^ 9 i ? 1 5 i?j ] . L e t 

k = i + 2Lio8a<j)j _ 

Lemma 2 indicates that Vk is adjacent to all vm where 1 < m < 2k and m £ k. 
If £ = & or j = k9 then a second path is [v^9 Vj]; otherwise, a second path is 
[Vi9 Vk9 Vj]. 

Corollary h 

All Pascal graphs of order > 3 are 2-connected. 
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Lemma 3 

No two even-numbered vertices of a Pascal graph are adjacent. 

Proof: Let i9 j be even integers, i > j . 

Pmi,j = P^-2, j-i (mod 2) = (} I i) (mod 2). 

Since i - 2 is even and j - 1 is odd, (\ ~~ 2 J (mod 2) = 0 [4]. 

Theorem 4 

If Vi is adjacent to Vj 9 where j is even and \i - jl > 1, then i is odd 
and r>i is adjacent to V1-_1. 

jl > 1. By 

(Definition of Pascal triangle) 

(Definition of Pascal triangle) 

Proof: Assume Vi is adjacent to Vj , where j is even and 
Lemma 3, we know that i is odd. 

Case 1. i > j 

1 = Pmi,j " P^i-i, i + P^-isj-i (mod 2) 

= 0 + Vmi-\yo-\ (Lemma 3) 

= Pmi-i,j-i> 

Thus , 

P^i.j-i =P^-i,j-i +P^i-i,j-2 (mod 2> 

= pmi_1 {J-_1 + 0 (Lemma 3) 

= 1 (Above). 

Case 2. i < j 

The proof proceeds similarly to Case 1. Thus, since pm^ 7-_1v= 1» vi is adja-
cent to Vj_±. 

Although the set of complete graphs Kn has maximal connectivity and cohe-
sion properties, the fact that the number of edges in Kn increases at a rate 
of n2 makes it too costly to consider . The following theorem shows that the 
number of edges in the Pascal graphs increases at a much lower rate. 

Theorem 5 

Define e(PG(n)) to be the number of edges in PG(n). Then 

e(PG(n)) < [(n - l)log2^| . 
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Proof by induction: 

Basis 

e{PG{\)) 

e{PG{2)) 

e(PG(3)) 

Induction 

Assume true for all PG(n), 1 < n < 2k + 1, k > 0. 

Prove true for PG(n), 2k + 2 < n < 2k+1 + 1. 

Let r be the positive integer such that n - 1 = 2k + r. 

e(PG(n)) = e(PG(2k + 1)) + 2e(PG(r + 1)) [7] 

< [_(2k)log23_] + 2[rlog23_\ (Induction Hypothesis) 

< [_(2k + p)log23J = L(w ~ l) l o g 2 3J . 

Pascal graphs are not the graphs with the fewest possible edges satisfying 
the preceding structural properties (which are useful in designing practical 
networks). For example, in PG{1) , the edge from v2 to v7 is redundant. There 
is a possibility that for some set of connectivity requirements, the Pascal 
graphs may exhibit optimal connectivity; i.e., they have no redundant edges. 
We have not found such a set of requirements, however. 

k. DETERMINANTS OF THE PASCAL MATRICES 

Theorem 6 

Let det(PM(n)) refer to the determinant of the Pascal matrix of order n. 
Then det(PM(n)) = 0 for all even n > 4. 

Proof: Given PM(n) satisfying the conditions on n, we show that the even-
numbered rows of PM{n) are linearly dependent. 

No two even-numbered vertices of a Pascal graph are adjacent (Lemma 3). 
Since even-numbered vertices are only adjacent to odd-numbered vertices, and 
since we desire to show that the even-numbered rows are linearly dependent, we 
may create a reduced Pascal matrix by removing the odd-numbered rows and even-
numbered columns from PM(ji) (see Figure 2) . 

To show that the even-numbered rows are linearly dependent, it is suffi-
cient to show that the determinant of the reduced Pascal matrix is 0. The 
reduced Pascal matrix contains two columns of l*s. Vertex V\ is adjacent to 

= o < i = Lplog23J • 

= i < i = L i l o g 2 3 j . 

= 3 < 3 = L2loS2U • 
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all the other vertices (Theorem 2). Let k = 2Ll° 82(n"1)J + 1. Vertex vk of 
PG(n) is adjacent to all other vi3 1 < i < k or k + 1 < i < 2k (see Lemma 2). 
Thus, columns 1 and (|_fc/2| + 1) of the reduced Pascal matrix consist only of 
l?s. 

Since the reduced Pascal matrix contains two identical columns, its deter-
minant is 0. Thus det(PM(n)) = 0. 

1 

2 

3 

4 

5 

6 

7 

8 

0 

1 

1 

1 

1 

1 

1 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

1 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

0 

0 

1 

1 

1 

1 

0 

1 

1 

1 

1 

0 

0 

0 

1 

0 

1 

0 

1 

1 

0 

0 

1 

1 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

% 
u 

rH 
o 

O 
U 

1 3 5 7 O r i g i n a l column 

1 2 3 4 New column 

1 

1 

1 

1 

1 

1 

0 

1 

1 

1 

1 

1 

1 

0 

1 

1 

FIGURE 2 . THE REDUCED PASCAL MATRIX 

Theorem 7 

Det(PA/(n)) is even for all odd n > 3* 

Proof: Let n be an odd integer > 3; Gi be one of the m linear subgraphs 
of PG(n); ei be the number of components of Gi which have an even number of 
vertices; and c^ be the number of cycles in G^» 

1983] 
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Since there are an odd number of vertices, each linear subgraph of PG(n) must 
contain at least one cycle. Thus, det(PAf(n)) is a sum of even integers, and 
therefore det(PM(n)) is even. 

Observations 

Det(PM(n)) = 
'2, for n = 3, 7, 11, 23, 43, 87 

,0, for all other n, 4 < n < 86. 

Let t0, t19 t2, ... be the sequence of integers such that det(PM(ti)) 
Then the sequence of ti1s is conjectured to be: 

= 2. 

ti = 2^ + ti_1, i > 2. 

Det(PAf(t̂  + 1)) = 0 for all £, since t± + 1 is even. This implies that 
row ti + 1 is linearly dependent upon other even-numbered rows in the Pascal 
matrix (Theorem 6) . It appears that the first of these rows whose linear com-
bination yields row ti + 1 is row t̂ -i ~ !• This linear combination of rows 
must always break down at column 2i + 1 + t^_15 since this column has a 1 in row 
t{,„1 - 1 and 0Ts in rows t£_i 4- 1 through ti + 1. Note that it is precisely 
at this point, when the linear dependence must break down, that the Pascal 
matrix again has determinant 2. Figure 3 illustrates this phenomenon. 

4^ 

+ 

Vi - l-

ti^ 
U + i-

0 1 1 
1 0 1 
1 1 0 
1 0 1 
1 1 1 
-10 0 
1 1 0 
1 0 1 
1 1 1 
1 0 0 
- 1 1 0 
-10 1 

1 1 
0 1 
1 1 
0 1 
1 0 
0 1 
0 1 
0 1 
1 1 
0 0 
0 0 
0 0 

1 1 
0 1 
0 0 
0 0 
1 1 
0 1 
1 0 
0 1 
1 1 
0 0 
0 0 
0 0 

1 1 1 
0 1 0 
1 1 0 
0 1 0 
1 1 0 
0 1 0 
1 1 0 
0 1 0 
1 0 1 
0 1 0 
0 1 1 
0 1 0 

1 1 1 1 1 
1 0 1 0 1 
0 1 1 0 0 
0 0 10 0 
0 0 0 11 
0 0 0 0 1 
0 0 0 0 0 
0 0 0 0 0 
1 1 1 1 1 
1 0 10 1 
0 1 1 0 0 
1 0 1 0 0 

il! CNi 
1 1 

1 1 1 1 1 1 1 1 
0 1 0 1 0 1 0 1 
1 1 0 0 1 1 0 0 
0 1 0 0 0 1 0 0 
1 1 0 0 0 0 11 
0 1 0 0 0 0 0 
1 1 0 0 0 0 0 
0 1 0 0 0 0 0 
1 1 0 0 0 0 0 
0 1 0 0 0 0 0 
1 1 0 0 0 0 0 
0 1 0 0 0 0 0 

Tj 
0 
0 
0 
0 
0 
_0J 

FIGURE 3 

Thus discussion leaves several questions unanswered. We just described 
why the linear combination of rows breaks down when it does. Why does it fail 
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to break down sooner? When it does break down, why is there not another com-
bination of linearly dependent rows? Why is the determinant of PM(ti), i > 0, 
equal to 2? 

There is a pattern to the rows that are linearly dependent on each other, 
causing the determinants of the matrices to be 0. Relationships among these 
rows are illustrated in Figure 4. 

This combination of rows.., yields row... for Pascal matrices of size. 

2 4 4-6 
2 8 8-10 

-6 +8 +10 12 12-22 
-10 +16 +18 24 24-42 

22 -24 -26 +28 -38 +40 +42 44 44-86 

For example, row 8 plus row 10 minus row 6 equals 
row 12 in all Pascal matrices of sizes 12 through 22. 
Thus, since row 12 is linearly dependent upon other 
rows, the determinant of each Pascal matrix of order 
12 through 22 is zero. 

Note that 6 = 4 + 2 , 10 = 8 + 2, 22 = 12 + 10, 
42 = 24 + 18, and 86 = 44 + 42. 

Arranging the rows that are linearly dependent on 
each other in increasing order: 

+2 -4 
+2 -8 

-6 +8 +10 -12 
-10 +16 +18 -24 

+22 -24 -26 +28 -38 +40 +42 -44 

Looking at the differences between the rows: 

2 
6 

2 2 2 
6 2 6 

2 2 2 10 2 2 2 

FIGURE 4 

5. UNEXPLORED IDEAS AND UNUSED DATA 

A necessary and sufficient condition for a matrix to have a zero determin-
ant is that it have at least one eigenvalue that is zero. Unfortunately, de-
ciding whether or not a matrix has a zero eigenvalue is no easier than deciding 
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if it has a zero determinant. The only method not requiring direct calcula-
tion of the determinant involves finding linear subgraphs [5]. 

Figure 5 summarizes what we have discovered about the number of linear 
subgraphs of various types for the first few Pascal graphs. The number of 
linear subgraphs of PG(n) grows very rapidly as n increases, limiting our pur-
suit of additional data. We have not yet discovered a pattern in these data 
that would point to a proof showing those Pascal matrices that have 0 deter-
minants and those that have determinant 2. 

PG(3): 1 linear subgraph 

Shape / \ 

Number 1 

PG(4): 3 linear subgraphs 

Shape | | Q 

Number 2 1 

Shape 

Number 

PG(5): 12 linear subgraphs 

/A O 
PG(6): 10 linear subgraphs 

Number 4 4 0 2 

PG(7) i 53 linear subgraphs 

Shape 

Number 15 20 4 14 
'<] <G ^ > Q 

Shape 

PG(8): 100 linear subgraphs 

< > ^ ^ v 0 o 0 O 
29 0 32 0 5 20 

Number 14 29 0 32 0 

FIGURE 5 
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A topic that we have not explored is the eigenvalue spectra of the Pascal 
matrices. Since the matrices are symmetric, their eigenvalues are real. Per-
haps a pattern in these spectra could be found. Several facts concerning the 
eigenvalue spectra may be useful. Let A i be one of the n eigenvalues of 
PM(n); dn be the mean valence of the vertices in PM(n); rn be the greatest 
eigenvalue of PM(n). Then the number of edges in PG(n) is 

E A2/2; 
i = 1 

the number of triangles in PG(n) is 

£ A3/2; 
i = l 

and dn < rn < n - 1 [2]. 

Table 1 lists the number of edges in the Pascal graphs of small order and 
Table 2 shows the vertex valency spectra of Pascal graphs of small order. 

n 

1 
2 
3 
4 
5 
6 
7 

Edges 

n 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

i n 

0 
1 
3 
5 
9 

11 
15 

PS(n) 

Valency 

1 
2 
2 
3 
2 
3 
3 
4 
2 
3 
3 
4 
4 
5 
5 
6 
2 
3 
3 

1 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
5 
5 
6 
6 
4 
4 

2 
3 
4 
3 
4 
4 
5 
4 
4 
4 
5 
4 
5 
5 
6 
6 
6 
5 

Spe 

3 
4 
4 
4 
4 
5 
5 
4 
4 
5 
5 
5 
5 
6 
6 
6 
6 

n 

8 
9 

10 
11 
12 
13 
14 

ctrum 

4 
5 5 
4 6 
5 5 
6 6 
5 6 
5 6 
5 5 
5 6 
5 5 
5 5 
5 5 
6 6 
6 6 
6 6 
6 6 

f o r 

6 
7 
8 
6 
6 
6 
6 
6 
6 
7 
8 
6 
6 
6 

TABLE 

Edges 

TABLE 

PG( 

1 
8 
8 
6 
6 
7 
6 
6 
7 
8 
8 
6 
6 

n) 

8 
9 
a 
7 
8 
7 
8 
8 
9 
8 
8 
6 

1 

i n 

19 
27 
29 
33 
37 
45 
49 

: 2 

9 
10 

8 
8 
8 
8 
8 
9 
9 
8 
8 

PG(n) 

10 
n 
8 
9 
8 
9 

10 
9 
9 
8 

11 
12 

9 
10 

9 
10 
10 
10 
9 

12 
13 
10 
11 
12 
10 
10 
10 

n 

15 
16 
17 
18 
19 
20 

13 
14 14 
11 15 
12 16 
12 12 
10 12 
10 11 

Ed 

15 
16 
16 
12 
12 

ges 

16 
17 
16 
12 

in PG(n) 
57 
65 
81 
83 
87 
91 

17 
18 18 
16 19 19 
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INTRODUCTION 

Consider the equat ion: 

Fm = a* (») 

where Fm denotes the 77?th Fibonacci number, and ot > 1. Without loss of gener-
ality , we may require that t be prime. The unique solution for t - 2, namely 
(m, c) = (12, 12)5 was given by J. H. E. Cohn [2], and by 0. Wyler [11]. The 
unique solution for £ = 3, namely (m9 o) = (6, 2), was given by H. London and 
R. Finkelstein [5] and by J. C. Lagarias and D. P. Weisser [4]. A. Petho [6] 
showed that (#) has only finitely many solutions with t > 1, where mscs t all 
vary. In fact, he shows that all solutions of (#) can be effectively deter-
mined; that is, there is an effectively computable bound B such that all solu-
tions of (*) have 

max(l77?l , \o\9 t) < Ba (**) 

Similar results were obtained independently by C. L. Stewart [10], see, also, 
T. N. Shorey and C. L. Stewart [9]. The proofs of these results use lower 
estimates on linear forms in the logarithms of algebraic numbers due to A. 
Baker [1], and the bounds obtained for B in (##) are astronomical. In [7], 
A. Petho claims that (#) has no solutions for t = 5. 

In [8], we showed that if m = m(t) is the least natural number for which 
(*) holds for given t, then 7?? is odd. In this paper, our main result, which 
we obtained by elementary methods, is that 77? must be prime. If (#) has solu-
tions for t > 5, and if q Is a prime divisor of Fm , one would therefore have 
ziqt) = z(q) - m5 where z(q) denotes the Fibonacci entry point of q9 This re-
quirement casts doubt on the existence of such solutions. For the sake of 
convenience, we occasionally write F(m) instead of Fm. 

PRELIMINARIES 

(1) If t is a given prime, t > 5, and 7?7 = m(t) is the least natural number 
such that (#)• holds, then m is odd. 

(2) Fj\Fjk 

(3) (Fd, Fk) =FUik) 
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(4) O j , F3.k/Fj)\k 

(5) F x = 1 

(6) 5J'\\k i f f 5J'\\Fk 

(7) I f p i s an odd p r i m e , t h e n p2 \ F(pjk)/F(pj~1k) 

(8) I f xy = zn, n i s odd, and (x9 y) = 1 , t h e n x = u n , 2/ = Vn, where ( u , 7;) 
= 1 and uv = z. 

(9) I f tfz/ = zn, n i s odd , p i s p r i m e , ( # , zy) = p , and p 2 / f ^ 5 t h e n # = pn~1un
i 

z/ = pvn, where (w, 1?) = ( p , z;) = 1 . 

(10) I f 2k\Fm, where fe > 3 , t h e n 3*2k~2\rn 
( 1, i f p = ±1 (mod 1 0 ) , 

(11) If p is prime, then p\Fp_e , where ep = < 0, if p = 5, 
(-1, otherwise. 

(12) Fd < Fjk if j > 2 and k > 2 

Remarks: All but (1) and (4) are elementary and/or well known. (1) is the 
Corollary to Theorem 1 in [8], and (4) is Lemma 16 in [3]. 

THE MAIN RESULTS 

Theorem 1 

If t is a given prime, t ^ 5, and m = rn(t) is the least natural number 
such that Fm - o^ > 1, then m is prime. 

Proof: Let 

m = II pfs 
i = l * 

where the p^ are primes and p1 < p2 < • • • < pp if p > 1. Furthermore, assume 
tfz is composite, so that pv < m. (1) implies 2 < p1. Let 

d = (F(pr), F(m)/F(pr)). 

(4) implies d |(m/p ). If d = 1, then since hypothesis implies 

F(pr) * F(m)/F(pp) = c*, 

(8) and (12) imply F(pr) = a* with 1 < a < c, contradicting the minimality of 

m. If <f > 1, then p. |^ for some £ such that I < i < p. If { < r, then Lemma 

1, which is proved below, implies pi = 2, a contradiction. If i = r, then (11) 

implies p^ = 5, so r = 1 or 2. If r = 2, then 777 = 3a5*. But F. = 2, so the 
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hypothesis and (2) imply l\ct, hence 2t\ot
9 and 2*|FOT. Now (10) implies that 

3*2t~2|3a5i, so that t = 2, a contradiction. If p = 1, then w = 5e, which is 

impossible by Lemma 3, which is proved below. 

Lemma 1 

If p, q are primes such that p < q and p|F(<7*) for some k, then p = 2 and 
<? = 3 . 

Proof: The hypothesis, (11), and (3) imply p\ Fd , where d = (qk, p - ep). 
(5) implies d > 1, so that d = <7«7 for some j such that 1 < j < fc. Therefore, 
q̂ l (p - ep), so that £7 < ̂  < p + 1. But the hypothesis implies q > p + 1. 
Therefore, q = p + 1, so that p = 2 and q = 3. 

Lemma 2 

If F(5J') = 5*Vf, where 51 v^ then F^''1) = 5j'1v^_19 where 51^.!-

Proof: The hypothesis and (2) imply F(5j'1) * F(5J') /F(5j'1) = 5jv?. (6) 
and (7) imply 

(F^'-1), F(5J')/^(5J'"1)) = 5, 

so that (9) implies F(5j~1) = 5j~1vJ_1, and (6) implies 5)(vj_1. 

Lemma 3 

F(5J') + c* for £ > 1. 

Proof: If F(5J) = e*, then (6) implies 53d = ot
9 where 5^6?. Now (8) im-

plies 5J' = u*, d = i^, so thatF(5J) = 5Jz;J. Applying Lemma 2 j - 2 times, one 
obtains F(52) = 52y|. But F(52)/52 = 3001, so that v\ = 3001, a contradiction, 
since 3001 is prime. 
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1. INTRODUCTION 

In [9] 5 the Fibonacci number f(G) of a (simple) graph G is introduced as 
the total number of all Fibonacci subsets S of the vertex set V(G) of G9 where 
a Fibonacci subset S is a (possibly empty) subset of V(G) such that any two 
vertices of S are not adjacent. In Graph Theory [6, p* 257] a Fibonacci sub-
set is called an independent set of vertices. From [9] we have the elementary 
inequality 

pn+1 < f(G) < r + i , ( i . i ) 

where Fn denotes the usual Fibonacci numbers with 

1? = W = 1 J? = TP + TP 

and G is a tree with n vertices. Furthermore., several problems are formulated 
concerning the Fibonacci numbers of some special graphs. The present aim is 
to derive a formula for f(Tn(t))9 where Tn(t) is the full t-ary tree with 
height n: [TQ(t) is the empty tree.] 

1 vertex 

t vertices .. 

t vertices 

... height 1 

.o. height 2 

... height 3 

tn 2 vertices 

t71'1 vertices 

FIGURE 1 

For t = 1, one can see immediately that f(Tn(t)) = Fn+19 so the interesting 
cases are t > 2* In Section 2, for t = 29 33 43 the asymptotic formula 

f(Tn(t)) ~ A(t) • k(t)tn (n •> oo) (1.2) 

is proved, where >l(t) and k(t) denote constants (depending on t) with 
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2 i / ( i - t > < A { t ) < i < k { t ) < 2 i n t ~ 1 ) . 

In Section 3, it is proved that for t > 5 such an asymptotic formula does not 
hold; we show that for t > 5: 

f(T2m(t)) ~ B(t) • fe(t)*2" 
(1.3) 

where B(t) > C(t) are constants depending on t with 

lim B{t) = lim C(t) = 1. 
t -*oo t ->-oo 

In Section 4, we establish an asymptotic formula for the average value Sn 
of the Fibonacci number of binary trees with n vertices (where all such trees 
are regarded equally likely). For the sake of brevity, we restrict our con-
siderations to the important case of binary trees; however, the methods would 
even be applicable in the very general case of so-called "simply generated 
families of trees" introduced by Meir and Moon [8]. 

By a version of Darboux's method (see Bender!s survey [1]), we derive 

Sn ~ G • rn (n -> ° ° ), (1.4) 

where £ = 1, 12928... and v = 1 , 63742... are numerical constants. 

2. FIBONACCI NUMBERS OF t-ARY TREES (t = 2, 3, *0 

By a simple argument (compare [9]), the following recursion holds for the 
Fibonacci number xn: = f(Tn(t))9 

Xn+1 = Xn + xn2-l w i t h X 0 = 1 , X 1 = 2 . ( 2 . 1 ) 

We proceed as in [4] and put y n = log x n ; by (2.1), 

yn+l = tyn + an w i t h an = log U + — 1 . (2.2) 

Because of 

the estimate 

0 < an < log 2 (2.3) 

results. The solution of recursion (2.2) is given by 

, v,/ 0 1 n -1 \ 

It is now convenient to extend the series in a^ to infinity [because of (2.3) 
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the series is convergent]i 

For the difference 

we have 

Therefore, we obtain 

where 

- V = Z t " ' 1 - ^ - (2 .4) 
- i = 0 

?n ~ Un = E ^ " 1 _ X 5 

°<*n < ± 2 * f (2.5) 

xn = gJn"Pn = g"Pn . k(t)tn , (2.6) 

fc(t) = e x p / f ; * - * - 1 ^ (2.7) 

and 1 < &(£) < 2 1 / ( t - 1 } by ( 2 . 3 ) . 

In the fol lowing, we i n v e s t i g a t e the fac to r e~Vn of ( 2 . 6 ) ; we se t 

Qn ~ xn'xn+l 

and obta in the recurs ion 

1 (2 .8 ) 
1 + qf 

from (2.1). It is useful to split up the sequence (qn) into two complementary 
subsequences 

(2.9) 

(uj: = (<72m + 1) = (̂ i» <73> °°°)° 

Lemma 1 

The following inequalities hold for the subsequences (gm) and (um) of (qn) 

(i) 9m+1 > Gm
 for a11 w = ° 9 ls 2> 3> ••• 

(ii) um+1 < um for all m = 05 1, 2, 3S ... 

(iii) um > ÔT for all m = 0, 1, 2, 3, ... * 

Proof: Let qn_2 > qn; then 1 + q*_2 > 1 + q*9 1/(1 + q*_2) < 1/(1 + q$): 
and so 

i + / — ± — r I + 
> 

<7n-2/ V1 + 
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Applying (2.8), we have proved: 

If qn.2 > qn> t h e n Rn > Qn+2' (2.10) 

Because of g > g 9 (i) is proved by induction; (ii) and (iii) follow by a 
similar argument. 

By Lemma 1, (gm) and (um) are monotone sequences with the obvious bounds 

\ < g m < u m < l . (2.11) 

So the sequences (gm) and (um) must be convergent to limits g and u (depending 
on t), The following proposition shows that g = u in the cases t = 2, 3, 4. 

Proposition 1 

For t - 2, 3, 4, the sequence (qn) is convergent to a limit w(t) , where 

w(t) is the unique root of the equation wt + 1 + W - 1 = 0 with -~- < w(t) ^ 1. 

Proof: By Lemma 1 we only have to show that (gm) and (um) are convergent 
to the same limit. For (gm) and (wm) the following system of recursions holds: 

1 

1 + ^ 

1 
(2.12) 

9'm+l - , + 
1 + M 

Taking t h e l i m i t m -»- °°5 we o b t a i n 

w = - , g = — r , w i t h -y < # < u < 1 . ( 2 . 1 3 ) 
1 + 0 * 1 + W* 2 

Let us start with the case t = 2. By (2.13), we have ug2 = 1 - u, ^w2 = 1 - ^, 

and therefore, u - u = g - gz. Because the function a: +> x - x is strictly 

decreasing in the interval —3> 1 , u = g follows immediately. 

In the case t = 3, we derive in a similar way the relation u2 - u3 = 

<72 - g3 . Since the function x +* x2 - x3 is strictly decreasing in the inter-

val -̂, 1 and -^ < g^ = 0, 684..., we obtain u = g again. 

Since the function x +» x3 - a?1* is strictly decreasing in the interval 

T-, 1 and g73 = 0, 7500138.. . > -r-, we obtain u = g in the case t = 43 too. 

So u = £7 in all considered cases; therefore, a limit w(t) of (<?„) exists 
for t = 29 3, 4, and w(t) fulfills the equation 

1 
1 + w t ' 
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Since the function f(w) = wt + 1 + w - 1 is strictly monotone in the interval 

L2' H a n d ^\2/ ^ ° 3 ^ ^ ^ ° 9 ttlere e x i s t s a unique root of this equation in 

the interval [1 il which is the limit w(t) from above. 

By (2.2) we derive 

lim an = log(l + w(t)t). (2.14) 

Because of 

I 1 
1 l o g ( l + w ( £ ) * ) < 5 > W ~ W K - log(l + w(*)*)| < £ - 1 

[for all e > 0, n > nQ(e)]9 the sequence (rn) is convergent; so 

lim eTn- (1 + ^ ( t ) ^ - 1 / ^ - ^ = w(t)1/{t-1] = (1 - w(t))1/{t2-1} (2.15) 

results. Altogether we have established: 

Theorem 1 

Let Tn{t) be the full £-ary tree (t = 2,3, or 4) with height n. Then, the 
Fibonacci number f(Tn(t)) fulfills the following asymptotic formula: 

f(Tn(t)) ~ A(t) • k(t)tn (n -> oo) 

where A(t) = w(t)1/(t~1) and fe(t), defined by (2.7), are constants (only depend-
ing on t) bounded by 

2i/n-t) < A ( t ) < i < fe(t) < 21/^"1) 

J 
2 w(t) is the unique root of wt + 1 + w - 1 = 0 with -~- < w(£) < 1. 

Rema rk: The numerical values of ZJ(£) are 

u(2) = 0, 68233..., w(3) = 0, 72449..., and w(4) = 0, 75488... . 

3. FIBONACCI NUMBERS OF t-ARY TREES {t > 5) 

In this section we consider t-ary trees with t ^ 5. Let (gm) * (um) be the 
subsequences of (^„) defined by (2.9). (gm) and (wOT) are convergent to limits 
g and u3 respectively (depending on t) . We shall prove that g ^ u; therefore, 
(<7n) has two accumulation points. For g, u the following system of equations 
holds, 

u = g (3.1) 

1 + g* y 1 + ul 

and ^ = w if and only if u or ^ is the unique solution of 
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wt+1 + w - 1 = 0 (3.2) 

in the interval y, 1 . If (u', g') and (u", g") are two pairs fulfilling 

(3.1) with uT<.un, then gt%>g!1. Let (u, g) denote the pair of solutions with 
minimal g and maximal u. 

Lemma 2 

The subsequence (gm) of (<?„) is convergent to the limit g and the subse-
quence (um) to the limit u. 

Proof: First we show that gm < g implies um > w and £7m+1 < #• 

Because of ̂ m < g", we obtain 1 + g* < 1 + gt = 1/u, and so um > u. From 

um > u, it follows that 1 + wj > 1 + u* = l/.<7» hence £7m+1 < #. 

Using the fact that g0 = -y < £f, we obtain, by induction, 

lim ̂  ^ g7 and lim um ^ u. 

By the definition of (u9 g), it follows that 

lim # = g and lim um = u9 

and the Lemma is proved. 

Lemma 3 

Let t ) 5 be a positive integer; then there exists a solution (u, g) of 
the system (3.1) with 

2 < ^ < 2 + 1 • 
Proof: System (3.1) is equivalent to the equation 

9= —, (3-3) 
1 + -

(1 + g*)* 
We consider the function 

(1 + gt)t 

vt(g) = — ^ g, 
l + (i + g*)* 

and obta in <Ptl-^J ^ ®> i n t^ i e s e c l u e l » w e s n o w <SMy + -r) < 0. For t = 5 or 6, 
t h i s i nequa l i t y can be shown by d i r e c t computation: 

^5(lo) = ""° 3 ° 1 5 0 2 and ^6(f) = ~0s ° 4306-
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Let us assume t > 7 in the sequel. By elementary manipulations, the inequal-
ity 

1 2 t U 
1 + 

It 
T o r 

i s equiva len t to 1 + ( l + ( 7 + 7 ) * ) * > 7 ^ 

/ 2 \ t / 2 

Because of 11 + 7 1 < ^ , i t i s s u f f i c i e n t to prove 

(••£)• (3 .5 ) t + 2 
£ - 2 : 

We have 

('•#'<-K£). 
and 

e X P\V") ^ * - 2 for * > 7e 

So ̂ .("o" + -r) < 0, and the Lemma is proved, because the continuous function 9 
V 2 t j 1 1 1 

has a root between 7 and 7 +7* 
Equation (3.3) is equivalent to 

g(g* -f 1)* - (gt + l ) ^ r 0 . (3.6) 

jt +1 

The polynomial on the left-hand side of (3.6) is divisible by gt+1 + g - 1. 
/ 3 \ t +1 3 

Because of (y) + -7- - 1 < 0 (for t > 5) , the unique solution w(t) of # 
f3 1 ^ - 1 = 0 is contained in the interval 7, 1 . By Lemma 3, vwe have found a 

pair of solutions (u, g) with u £ g such that y < g < -7- < w(t) < u < 1. We 

denote by (u(£), ^(t))9 £ > 5, the pair of solutions of (3.1) such that #(£) 

is minimal and u(t) is maximal. Because of g(t) < 7 + 7 and u(t) = 1 + git)' 
for £ ̂  59 we obtain 

lim g(t) = -k lim w(£) = 1. (3.7) 

Altogether, we have proved: 
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Theorem 2 

Let Tn(t) be the full t-ary tree (for t > 5) with height n. Then the Fi-
bonacci numbers fulfill the following asymptotic formulas, respectively: 

f(T2m(t)) ~ B{t) • k(t)t2m, 

f(T2m+1(t)) ~ at) • Ht)t2m+\ 
where 

C(t) = (gityuit))1^2-" = (1 - ^ ( t ) ) 1 ^ * 2 - 1 ' , 

B(t) = (jWuWr'*1-11 = (1 - ^i))1^"1 ' , 

and k(t)9 defined by (2.7), are constants (only depending on t) bounded by 

2i/(i-t) < c { t ) < B { t ) < 1 < fe(t) < 2i/(t-i) . 

g(t) is the minimal root and u(t) the maximal root of 

x(x* + 1)* - (x* + 1)* + # = 0 

in the interval I -r-, 1 ; furthermore, 

lim B(t) = lim C(t) = 1. 

Remark: In [2], similar recurrences are treated by a slightly different 
method. The recursion for (qn) can be considered as a fixed-point problem and 
our results can be derived in principal by studying this fixed-point problem. 

4. THE AVERAGE FIBONACCI NUMBER OF BINARY TREES 

The family B of all binary trees is defined by the following formal equa-
tion (• is the sumbol for a leaf and o for an internal node): 

o 
6 = • + / \ ; (4.1) 

(this notation is due to Ph. Flajolet [3]). The generating function 

B{z) = ZKzn 

of the numbers of binary trees with n internal nodes is given by 

B(z) = YZ ^4-2^ 
and, therefore, 

bn--^T(ln). (4.3) 
n n + l\n I 
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For technical reasons, we consider the family £* of all binary trees with 
leaves removed; g* fulfills 

0* = 0 + 0 + 0 + o (4.4) 

e* 3* 3* 3* 

Let 3n be the family of binary trees t with n internal nodes, and let 

/00 = Z fn*n and g(z) = £ gnzn 

be generating functions of 

fn = S card{5 : 5 C F(T) ; S a Fibonacci subset 
Te#n n<2t containing the root}, 

9n
 = X) card{5 : 5 C 7 CO ; 5 a Fibonacci subset 

^€3« containing the root}. 

(4.5) 

Obviously, the average value of the Fibonacci number of a binary tree with n 
internal nodes is given by 

Sn = J- with hn = '/„ + gn. (4.6) 

The remainder of this paper is devoted to the asymptotic evaluation of Sn. By 
Stirling1s approximation of the factorials, the well-known formula 

bn ~ -7= 22nn-3/2 (n + <*>) (4.7) 

holds and we can restrict our attention to hn. 

For the generating functions, we obtain 

/ = z + z(f + g) + z(f + g) + s(/ + # ) 2 

0 = s + zf + a/ + 2/2. 
(4.8) 

[The contributions of (4.8) correspond to the terms in (4.4).] Setting 

y(z) = 1 + f(z) + g(z), 

we derive, by some elementary manipulations, 

z3yk + (2z2 + z)y2 - y + (z + 1) = 0. (4.9) 

Now we want to apply Theorem 5 of [1]; for this purpose, we have to determine 
the singularity p of y(z) nearest to the origin. (4.9) is an implicit repre-
sentation of y (z) * Abbreviating the left-hand side of (4.9) by F(z, y)s the 
singularity p (nearest to the origin) and a = y(p) are given as solutions of 
the following system of algebraic equations: 
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F(z, y) = 0, 

**< > n (4-10) 
^{z, y) = 0. 

Now p and O are simple roots of the above equations. By a theorem of Prings-
heim [7, p. 389], p and a are positive (real) numbers. Using the two-dimen-
sional version of Newton's algorithm (starting with s0 = 0 , 2 and y0 = 1), we 
obtain the following numerical values: 

p = 0, 15268... and a = 2S 15254... . (4.11) 

Now Theorem 5 of [1] allows us to formulate the following: 

Proposition 2 

hn U - ^ ( P , a>; p • ( n _ } (4el2) 

~ (0, 63713...) (0, 15268...)~n • n"3/2. 

Altogether, we have proved: 

Theorem 3 

The average value Sn of the Fibonacci number of a binary tree with n in-
ternal nodes fulfills asymptotically 

Sn ~ G • rn (n -> oo) 9 

where (7=1, 12928... and i3 = 1, 63742... ̂ are numerical constants. 
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CORRIGENDA TO "SOME SEQUENCES LIKE'FIBONACCI'S" 

B. H. NEUMANN and L. G. WILSON 
The Fibonacci Quarterly, Vol. 17, No. 1, 1979, pp. 80-83 

The following changes should be made in the above article. These errors 
are the responsibility of the editorial staff and were recently brought to the 
editor's attention by the authors. 

p. 80, at the end of formula (1)9 add superscript "r< 
p. 81, in formula (7), replace the second "<y" by "£! 

p. 82, in the line following (8), add subscript 
p. 82, in the line following (10), add subscript "<f" to the last "a". 
p. 83, line 3, insert "growth" between "slower" and "rate". 
p. 83, end of text and reference, delete "t" from the name "Johnson". 

Gerald E. Bergum 

^o^o# 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN and G. C. PADILLA 

Send all communications concerning ELEMENTARY PROBLEMS AND SOLUTIONS 
to PROFESSOR A. P. HILLMAN, 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. 
Each problem or solution should be submitted on a separate signed sheet, 
or sheets. Preference will be given to those typed with double spacing in 
the format used below. Solutions should be received within four months of 
the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

V = F 4- TP F = 0 F = I 
Ln+2 rn+i T £ n » r 0 u ' r1 L 

and 
Ln+2 ~ £J

n+1 + Ln, L0 = 2, L1 = 1. 

Also, a and (3 designate the roots (1 + v5)/2 and (1 - v5)/2, respectively, 
of x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-502 Proposed by Herta T. Freitag, Roanoke, VA 

Given that In and k are integers with In + k an integral multiple of 3, 
prove that FkFk_h_1 + Fk + 1Fk_h is even. 

B-503 Proposed by Charles R. Wall, Trident Technical College, 
Charleston, SC 

Prove that every even perfect number except 28 is congruent to 1 or -1 
modulo 7. 

P-504 Proposed by Charles R. Wall, Trident Technical College, 
Charleston, SC 

Prove that if n is an odd integer and Fn is in the set 

{0, 1, 3, 6, 10, ...} 

of triangular numbers, then n E ±1 (mod 24). 

B-505 Proposed by Herta T. Freitag, Roanoke, VA 

Let 
N = N(m, a) = Lm_2aLm - Lm+1_2aLm_19 
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where m and a are positive integers. Prove or disprove that N is always 
(exactly) divisible by 5; never divisible by 3, 4, 6, 7, 8, 9, or 11; and 
is divisible by 10 only if a E 2 (mod 3) . 

B-506 Proposed by Heinz-Jurgen Sieffert, student, Berlin, Germany 

Let Gn = (n + l)Fn and Hn = (n + l)Ln. Prove that: 

(b) T H ff - (n + 2 ) ( n + 3 ) 77 + -?- 77 4 F 
VD̂  Z«r tiktin-k " fi r̂z + 5 ^n + 2 " T ^ n + 3 9 

& = 0 u J ~* 

B~507 Proposed by Heinz-Jurgen Sieffert, Berlin, Germany 
n 

Let Gn and #„ be as in B-506. Find a formula for ^ ^k^n-k s^-m^aT t o 

the formulas in B-506. ^ = o 

SOLUTIONS 

Fibonacci Norm Identity 

B-478 Proposed by Gregory Wulczyn, Bucknell University, Lewisburgr PA 

(a) Show that the congruence 

x2 E - 1 (mod 4m2 + 4??? + 5) 

h a s x = ±(2TT72 + m + 2) as a s o l u t i o n f o r m i n N = {09 1 , . . . } . 

(b) Show that the congruence 

x2 E -1 (mod IOOTT?2 + 156m + 61) 

has a solution x = am2 + bm + c with fixed integers as b5 c for m in 21/. 

Solution by Paul S. Bruckman, Carmichael, CA 

The identities 

(1) (2TT?2 + 777 + 2 ) 2 + 1 = (m2 + 1)(4TT?2 + 4/77 + 5 ) , and 

(2) (5077?2 + 53777 + l l ) 2 + 1 = (257T72 + 14/77 + 2) (10O7?2 + 156777 + 61) 

are particular instances of the more general identity (due to Fibonacci 
himself!) 

(3) (pq - vs)2 + (ps + qr)2 = (p2 + r2)(q2 + s2). 

Setting p = 2777-fl9^ = l 5 p = 2s and s = m in (3) yields (1). Setting 
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p = 3m + l,q = 8m + 6,P = 4 m + l , and s = 6m + 5 in (3) yields (2). This 
establishes parts (a) and (b) of the problem; in part (b) , we have a = 50, 
b = 53, c = 11. 

Also solved by Herta T. Freitag, L. Kuipers, Bob Prielipp, Sahib Singh, J. 
Suck, M. Wachtel, and the proposer. 

Divisibility from a Lucas Sum 

B-479 Proposed by Herta T. Freitag, Roanoke, VA 

Prove Or disprove that La + nd + La+nd-d - &a+d - La is an integral mul-
tiple of Ld for positive integers a, d9 and n with d odd. 

Solution by J. Suck, Essen, Germany 

For positive integers a, d9 and n with d odd, we have 

^cz + nd + ^a + nd-d ~ ^a + d ~ ^ a ~ &a + d + ^a + ld + ••• + La + (n_i) ̂  )L d . 

Proof by induction on n; For n = 1, both sides equal 0 (the empty sum 
on the right-hand side). For the step n -> n + 1, we have to show that 

La+(n + l)d = ^a + (n-l)d + ^a+nd^d ' 

This is clear from the identities J8 and I23 of Hoggatt's list; namely, 

L
k =

 Fk-i + ̂  + i and Ffc+p - Ffc_p = FfcLp for p odd. 
Thus, 

^a + (n-l)d + La + ndLd = ^a+(«-l)d-l + ^a + (n-l)d + l + Fa+(n + l)d-l 

Fa+(n-l)d-l + Fa + (n + l)d + l *~ Fa + (n-l)d + l 

^a+{n + l)d ' 

Also solved by Paul S. Bruckman, Walther Janous, L. Kuipers, Bob Prielipp, 
Sahib Singh, and the proposer. 

Even Case 

B-480 Proposed by Herta T. Freitag, Roanoke, VA 

Prove or disprove that La+nd - La+nd-d - La+d + La is an integral mul-
tiple of Lfi - 2 for positive integers a, d9 and n with d even. 

Solution by Sahib Singh, Clarion State College, Clarion, PA 

This result is true. The proof is based on applying induction on n. 
The result is obvious when n = 1. For n = 2, with d even, it is easy to 
verify that 
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Using the pattern for n = 3, we assume the validity of the result: 

£a + nd - La+nd-d ~ La + d + £>a = ( £ a + c£ + -^a + 2^ + • • • + L a + ( n_1 } d ) (Ld - 2 ) . 

Alsoj with d evens we have 

^a + (n+l)d ~ 2La + nd * ^a + in-Dd ~ ^a + nd&d ~~ 2 ) . 

By addition9 we get the confirmation that the result is true for (n + 1). 
Thus, the proof is complete. 

Also solved by Paul 5. Bruckman, Walther Janous, L. Kuipers, Bob Prielipp, 
J. Suck, and the proposer. 

Matching Pennies 

B-481 Proposed by Jerry Metzger, Univ. of North Dakota, Grand Forks, ND 

A and B compare pennies with A winning when there is a match. During 
an unusual sequence of rnn comparisons, A produced m heads followed by m 
tails followed by m heads, etc., while B produced n heads followed by n 
tails followed by n heads, etc By how much did Afs wins exceed his losses? 
(For example, with m = 3 and n - 5, one has 

A: HHHTTTHHHTTTHHH 
B: HHHHHTTTTTHHHHH 

and Afs 8 wins exceed his 7 losses by 1.) 

Solution by J. Suck, Essen, Germany 

Let d = gcd(m9 ri)« The excess is 0 if m/d or n/d is even, and d2 if 
both are odd. 

Proof: The whole double sequence can be split into d blocks of length 
mn/d = lcm(/?7, ri). If m/d or n/d is even, then the first block ends in a 
non-match. Let there be M matches and N non-matches in the first block. 
Interchanging heads and tails in the row which ends with a T means writing 
down the block in reverse order, leaving the number of matches unaffected. 
But matches have become non-matches and vice versa, so that M = N. Inter-
changing heads and tails in both rows of the second block (if d > 1) pro-
duces the first block in reverse order, and so, again, there is no excess 
of matches over non-matches. The third block is equal to the first, etc. 

If m/d and n/d are odd, odd-numbered blocks are identical, even-numbered 
blocks equal the first block when heads and tails are interchanged. Now, 
we may assume that m and n are relatively prime: replacing each symbol by 
a run of d of the same sort produces the first block of the general case, 
Furthermore, assume m < n. 

Insert a bar after every n symbols of the double sequence. Let au resp. 
-au (by resp. -bu) be the length of the string of successive matches resp.. 
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non-matches preceding (following) the yth b a r , y = 1, . . . , m - 1. For ex-
ample, wi th m = 3 and n = 5, one has ^ i = - 2 , ^ = 1, a2 = 1, and b2 - - 2 . 
Since d - l y 0 < | a y | , | & y | < t f 7 . We have | a y | + \b\i\ = m9 and so the excess 
of matches over non-matches i s 

n-(m-l) m- 1 m - 1 

ei = E (-Dv + 1m + E^y + E V 

Now, \a>i\ wonTt recur among |a2|» --.a |#m-i| since d = \ . Also, \b1\ won?t 

recur among |£>2|, •••» l̂ m-il since, otherwise, |^^| would have had to re-

cur, etc. Thus, la-Js...* |am-il anc^ |&i|»---» |̂ 777-i | are permutations of 

1, ...,7?7-l. Setting bQ : = 0, let qv be defined by 

n "*" l^y-il = %m + l a y U 1 J = 1» oB-> m ~ 1-

It is clear that 
even, < 0 
even, < 0 

even 
odd 

odd, > 0 
even, < 0 

if 2?u , is { "jT*9 \ X and q is { " " , then au is A . n y x i odd, > 0 ^ J even M j even, < 0 
odd, > 0 odd odd, > 0 

and that 
. j . i even, < 0 , , . i odd, > 0 
if au is{ j, \ n , then bu is < , A. 

V | odd, > 0 I e v e n s < 0 
... _ (?T?~1))2 = 1, which had to be 

This implies that e = m + (l - 2 + 3 
shown. 

Also solved by Paul S. Bruckman and the proposer. 

Pi sti net Limits 

B-482 Proposed by John Hughes and Jeff Shallit, 
Univ. of California, Berkeley, CA 

Find an infinite sequence a,, a2, ... of positive integers such that 

,1/n and lim 
ft-* oo 

~ Etek+1/ak) 
1 k = 1 

lim (an) 
ft-)- oo 

both exist but are unequal. 

In the following tabulation of the solutions, 

L = lim(an) i/ft and Ll lim 
1 n 

- E ^ + i / ^ ) • fc = l 
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SOLVER: 2m - 1 

1 

1 

2 

a/a1/(2m-

nm-l 

1 ) a 

a2m 

3 

2 

4 

• a1/(2m) 

r\ TTl 

Paul S. Bruckman 
Carmichael, CA 

Walther Janous 
Univ. Innsbruck, Austria 

L. Kuipers, 
Sierre, Switzerland 

5/3 

5/4 

5/4 

J . SlZOfc / 1/(2/77-1) 1/(2777) 1 / 3 . M 
a/a' a • a ' ; a —la + — 

Essen, Germany Z\ a / 
5. Uchiyama „m-i 2m V? 3/2 
Univ. of Tsukuba, Japan 
Proposers S a m e a g t h a t o f go U c h i y a m a 

Hughes & Shallit 

L tmi t, No Limit 

B-483 Proposed by John Hughes and Jeff Shallit 
Univ. of California, Berkeley, CA 

Find an infinite sequence a19 a2* ... of positive integers such that 

l±m(an)1/n exists and lim 
1 n 

~Ystak + 1/ak) 
does not exis t . 

'-k-i 

Solution by Walther Janous, Universitaet Innsbruck, Innsbruck, Austria 

Let a2m_1 = 1 and a2m = m. Then l±m(an)1/n = 1. Also 

{an+1/an} = 1, 1, 25 1/2S 39 1/3, 4, 1/4, , 8 « s 

and thus 

- Z ( ^ + i/«fe) > ( l + 2 + 3 + - - - + [n/l])/n -* °° as «< + °°* 

ill so solved i?y Paul 5. Bruckman, L. Kuipers, J. Suck, S» Uchiyama, and the 
proposers. 

• <>•<>• 
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Edited by 
RAYMOND E. WHITNEY 

Lock Haven State College, Lock Haven, PA 17745 

Send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN STATE COLLEGE, LOCK 
HAVEN, PA 17745. This department especially welcomes problems believed to 
be new or extending old results. Proposers should submit solutions or any 
other information that will assist the editor. To facilitate their consid-
eration , solutions should be submitted on separate signed sheets within two 
months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-356 Proposed by David Singmaster, Polytechnic of the South Bank, 
London, England 

Consider a set of r types of letter with rti occurrences of letter i . 
How many words can we form, using some or all of these letters? 

( Ilk- \ 

v
 v

 v \ ways 
to form a word, and the desired number is 2 (7, % y )• When r = 2, 

fc;< rii V^l» • • • » ' W 

this can be readily evaluated using properties of Pascal's triangle and we 

( yi + > 7 + 9 \ 

1 2, , 1 - 1 . W. 0. J. Moser has found a nice combinatorial deri-n± + 1 / 
vation of this result, but neither approach works for r > 2. 

Moserfs solution for r = 2 is as follows: In the case r = 2, 

0 < 3 < n 

is the number of ways of forming words with some of m Afs and n B's. Any 
such word with £ A's and J B's can be extended to a word of m + 1 Afs and 
n + 1 B's by appending m + 1 - i A's and n + 1 - j B's to it. If our orig-
inal word begins with an A, we append a block of m + 1 - i Afs followed by 
a block of w + 1 - j B's at the beginning* If the original word begins 
with a B, we append the block of Bfs followed by the block of A?s at the 
beginning,, The empty word can be extended in two ways: AA •... ABB*.. A or 
BB.., BAA •.. A. Otherwise^ we have a one-to one correspondence between our 
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original words and words formed from all of m + 1 Afs and n + 1 B's. The 
reverse correspondence is to take any word of m + 1 A's and n + 1 Bfs and 
delete its first two blocks (i.e. , constant subintervals). Since the empty 

word arises from two extended words, we have (m U t J - 1 of our oriei-
nfl1 ™ ^ e \ HI + 1 / 5 nal words 

As an illustration, let m = n 
Original Word Extended Word 

_ 
A 
B 
AB 

AABB or BBAA 
ABBA 
BAAB 
ABAB 

H-357 Proposed by Clark Kimberling, Univ. of Evansville, Evansville, IN 

For any positive integer N9 arrange the fractional parts of the first 
N integral multiples of a = (14- /5)/2 in increasing order: 

{&1a} < {k2a} < ••• < {kNa}. 

Is kn + kN+1_n a sum of two Fibonacci numbers for n - 1, 29 35 ..., Nl 

I have not been able to prove that kn + kN+1_n is always a sum of two 
Fibonacci numbers. However, a computer has verified that it is so for N = 
15 29 .e e s 666. 

The following table may be helpful: 

N a/1/ {a/1/} kl9 k2S « » , 9 kN k1 + kN$ k2 + kN_2, ««.. s kN + k1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1.618 
3»236 
4.854 
6.472 
8.090 
9.708 
11.326 
12.944 
13.562 

.618 

.236 

.854 

.472 

.090 

.708 

.326 

.944 

.562 

1 
2 1 
2 1 3 
2 4 1 3 
5 2 4 13 
5 2 4 16 
5 2 7 4 1 
5 2 7 4 1 
5 2 7 4 9 

3 
6 
6 
1 

3 
3 
6 
8 
3 8 

2 
3 3 
5 2 5 
5 5 5 5 
8 3 8 3 8 
8 8 5 5 8 8 
8 8 8 8 8 8 8 
13 5 13 5 5 13 5 13 
13 5 13 5 18 5 13 5 13 

As you see, all numbers in the fifth column are sums of two Fibonacci num-
bers. For N = 6629 for example, there are six (and only six) different 
numbers kn + kN+1_n as n ranges from 1 to 662; they are: 

144 = 8 9 + 5 5 
377 = 233 + 144 
521 = 377 + 144 
754 - 377 + 377 
987 = 610 + 377 
1131 = 987 + 144 
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H-358 Proposed by Andreas N. Philippou, Univ. of Patras, Patras, Greece 

For any fixed integers k ^ 1 and r ^ 1, set 

f(t\ = E ("x + '" +n*+r ~ \ ) , n>0, 
«i» • • •, " k

 x 

where the summation is over all nonnegative integers n,, »»«3 nk satisfy-
ing the relation n1 + 2n2 + * e °  4- fenk = n. Show that 

00 

V (f C) /2») = 2rk. 
n-0 n + 1 ' r 

You may note that the present problem reduces to H-322(c) for r - 1 (and 
k ^ 2) 3 because of Theorem 2,1 of Philippou and Muwafi [1]. In addition, 
the present problem includes as special cases [for k = 1, r - 1, and k = 1, 
p(^l)] the following infinite sums; namely, 

E(l/2») = 2 and £ |"(" + *" " 1)/2"' 
n 

Reference 

2r. 

1. A.N. Philippou & A. A. Muwafi. "Waiting for the fcth Consecutive Success 
and the Fibonacci Sequence of Order Z." The Fibonacci Quarterly 20, no. 
1 (1982):28~32. 

H"359 Proposed by Paul S. Bruckman, Carmichael, CA 

Define the "Zetanacci" numbers Z (n) as follows: 

Z{n) = I I P„ + 1 , n = 1 , 2 , 3 , . . . [ w i t h Z ( l ) = 1 ] . (1) 
Pelln 

For example, Z(n) = 1, n = 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, ...; 
Z{n) = 2 , n = 4, 9, 12, 18, 20, ...; Z(8) = 3, Z(16) = 55 Z(135,G00) = 
Z(23335^) = 45, etc. 

(A) Show that the (Dirichlet) generating function of the Zetanacci numbers 
is given by: 

f, Z{n)n-S = n (1 - Vs - p-28)'1, (2) 
n = 1 P 

the product taken over all primes. 
(B) Show that 

II (1 - p"s - P~2S) = E u(P(w)) • |y(n/P(n))| • n'8 , 
P n-l 

where y is the Mobius function and 

P(w) = f I P [with P(l) = 1]. 
p\n 
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SOLUTIONS 

Rat iona1 Thirds 

H-339 Proposed by Charles R. Wall, Trident Technical College, 
Charleston, CA (Vol. 20, No. 2, May 1982) 

A dyadic rational is a proper fraction whose denominator is a power of 
2* Prove that 1/4 and 3/4 are the only dyadic rationals in the classical 
Cantor ternary set of numbers representable in base three using only 0 and 
2 as digits. 

Solution by the proposer 

Clearly 1/2= .1 (base three) is not in the sets but 1/4 = .02 and 3/4 = 
.20 are. The other cases require a lemma: 

If k > 3 and 0 < a < 2k~2
s the numbers ±3a are distinct modulo 2k. 

This assertion is true for k = 3 by observations 3°  = 1, -3°  E 79 31 = 3, 
and -31 E 5 (all mod 8). Thus, we may assume k ^ 4. That the numbers 3a 

are distinct (mod 2k) rests on the congruence 

32*"3 = 1 + 2*"1 (mod 2k), 

which is easily proved by induction for k > A, and its corollary 

32*"2 = 1 (mod 2*). 

To show that the numbers 3a are distinct from their negatives, note that 
3* E (-1)* (mod 4). If k > 4 and 0 < b < a < 2k~2 and 3a ~ ~-3b (mod 2k) , 
then 3a~b E -1 (mod 2k) , so a - b Is odd. Then 32(a~b) = 1 (mod 2k) , so 
2 divides 2(a~b)3 and thus 2k~3 divides the odd number a - b5 which is 
Impossible if k 4. 

Let f(t) be the fractional part of t: f(t)~t~ [t] 9 where the brackets 
denote the greatest Integer function. For k^ 3S by the lemma5 each dyadic 
rational with denominator 2k can be written uniquely as /(±3a/2^)5 0 < a < 
2k"2. If a fraction x = /(±3a/2^) is In the Cantor set, so" (by shifting 
the ternary point) is f(3x) = f(±3a + 1 /2k), and so is the 2fs complement 
1 - x = f(+3a/2k). Thus5 if any dyadic rational x = f(±3a/2k) Is in the 
set., all such fractions with the same denominator are. However, the two 
fractions closest to 1/2 are forbidden, so all are. 

Also solved by P. Bruckman. 

Making a Difference 

H-3̂ 0 Proposed by Verner E. Hoggatt, Jr. (deceased) 
(Vol. 20, No. 2, May 1982) 

Let A2 = Bs Ah = C, and A2n+li = A2n - A2n+2 (n = 1, 2., 33 .. .) . Show: 

a. A2n = (~l)n + 1(Fn_2B - Fn„1C) 

bo If A2n > 0 for a l l n > 05 then B/C = (1 + v/5)/2 
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c, A2n = Cn-YlBn^ 

Solution by Paul Bruckman, Carmichael, CA 

For all n > 1, let 
Gn = A 2 n . (1) 

The given recursion is then transformed to the following recursion: 
Gn + 2 + Gn + 1 * Gn = 0> n = 1, 2, 3, ..., (2) 

with initial conditions 
G1 = £, G2 = C. (3) 

The characteristic polynomial p (z) of (2) is given by 

pGO = £2 + s - 1 = (s + a) (2 + B), (4) 

where a and 3 are the usual Fibonacci constants. Hence, there exist con-
stants p and q such that, for all n, 

Gn = p(-a)n + q(-g)n. (5) 

We find p and q by setting n = 1 and n = 2 in (5) and using (3) . After 
simplificationj we find the following expression (which is readily verifi-
able) : 

Gn = (-Dn + 1(Fn_2B - Fn_1C), n = 1, 25 3, ... . (6) 

Note that the expression in (6) is of the same form as given in (5) , and 
moreover satisfies (3). Hence, A2n is given by (6). 

Thus, 
G2n = F2n-1G ~F2n-2B *OT n > 1 

and 
G2n + i = Fm-iB - F2nC f o r n > 0 . 

S i n c e Gn > 0 f o r a l l rc > 0 , we have B > C > 0 and 
^2n/^2n-l < B ̂  < ^2n-l/^2n-2. n = 2, 3, 4, ... . (7) 

Taking limits in (7) as n -> °°, each extreme expression approaches a, which 
implies J5/C = a. Q.E.D. 

Also solved by if. Freitag, C. Georghiou, W. Janous, G. Lord, A. Shannon, 
and the proposer. 

Late Acknowledgment: G. Wulczyn solved H-332. 
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A Primer for the Fibonacci Numbers. Edited by Majorie Bicknell and Verner E. 

Hoggatt, Jr. FA, 1972. 
Fibonacci's Problem Book. Edited by Majorie Bicknell and Verner E. Hoggatt, 

Jr. FA, 1974. 
The Theory of Simply Periodic Numerical Functions by Edouard Lucas. Trans-

lated from the French by Sidney Kravitz. Edited by Douglas Lind. FA, 1969. 
Linear Recursion and Fibonacci Sequences by Brother Alfred Brousseau. FA, 

1971. 
Fibonacci and Related Number Theoretic Tables. Edited by Brother Alfred 

Brousseau. FA, 1972. 
Number Theory Tables. Edited by Brother Alfred Brousseau. FA, 1973. 
Recurring Sequences by Dov Jarden. Third and enlarged edition. Riveon Lema-

tematika, Israel, 1973. 
Tables of Fibonacci Entry Points, Part One. Edited and annotated by Brother 

Alfred Brousseau. FA, 1965. 
Tables of Fibonacci Entry Points, Part Two. Edited and annotated by Brother 

Alfred Brousseau. FA, 1965. 
A Collection of Manuscripts Related to the Fibonacci Sequence — 18th Anni-

versary Volume. Edited by Verner E. Hoggatt, Jr. and Marjorie Bicknell-
Johnson. FA, 1980. 

Please write to the Fibonacci Association, University of Santa Clara, CA 95053, 
U.S.A., for current prices. 


