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WAITING TIMES AND GENERALIZED FIBONACCI SEQUENCES

V. R. R. UPPULURI
Union Carbide Corporation, Nuclear Division
P.0O. Box Y, Oak Ridge, TN 37830

S. A. PATIL

Tennessee Technological University, Cookeville, TN 38501

(Submitted November 1981)

1. INTRODUCTION AND SUMMARY

Suppose we consider the following experiment: Toss a coin until we ob-
serve two heads in succession for the first time. One may ask for the prob-
ability of this event. Intuitively, one feels that the solution to this
problem may be related to the Fibonacci sequence; and, in fact, this is so.
More generally, one may be interested in finding the probability distribu-
tion of the waiting time to find »r heads in succession for the first time.
As one may guess, these results contain generalized Fibonacci, Tribonacci,

.., sequences. This problem was studied by Turner [8], who expressed the
probability distribution in terms of generalized Fibonacci-T sequences which,
in turn, were expressed in terms of generalized Pascal-T triangles. In this
paper, we will express the probability distribution of this waiting time as
a difference of two sums (Proposition 2.1). This result enables us to ex-
press Fibonacci numbers, Tribonacci numbers, etc., and their generalizations
as sums of weighted binomial coefficients.

In probability literature (Feller [2]), the probability generating func-
tions of waiting times of this type are well known. We derive Proposition
2.1 from one of these generating functions. In Section 3 we illustrate how
one can obtain further generalizations of Fibonacci-T sequences by using the
probability generating functions of the waiting times associated with dif-
ferent events of interest. Finally, starting with the generating function,
we obtain new formulas for Tribonacci numbers.

2. THE PROBABILITY DISTRIBUTIONS OF WAITING TIMES

Suppose there are k possible outcomes on each trial (denoted by E,, E,,
«.+s E3) with probabilities m;, Ty, ..., T , respectively, such that Ty =0
and Ty + My + -+ 4+ M = 1. At each trial, exactly one of the outcomes is
observed. After n independent trials, we are interested in finding the

Research sponsored jointly by the Applied Mathematical Sciences Research
Program, Office of Energy Research, U.S. Department of Energy under contract
W-7405-eng~-26 with Union Carbide Corporation, the Office of Nuclear Regula-
tory Research of the Nuclear Regulatory Commission, and the Tennessee Tech-
nological University in Cookeville, Tennessee.
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WAITING TIMES AND GENERALIZED FIBONACCI SEQUENCES

probability of the first occurrence of r specified outcomes in succession.
Let E, denote this event, and W, denote the waiting time for the first oc-
currence of EFr. We are interested in the distributional properties of W,.

Suppose E, = {E\E, ... E1}, which corresponds to the occurrence of the
same outcome £;, r times in a row. Then we have the following:

Proposition 2.1

The probability distribution of the discrete random variable W,, denoted
by f,..s is given by

P, = n+ 2] = nf B0 (" L) - momd)?
=0 (2.1)

J
o . -1 - ap )
- n‘{“Z(—l)J(n J J )((1 -m)n)d, m=0,1, 2, ...,
Jj=0
where we define (Z) =0if m< k or m < O.
The derivation of this proposition will be given in a later section. We

discuss the generalities of this result now. If there are two possible out-
comes (i.e., kK = 2) with m, =T, = %, then we define

1 n=20
Bu,» = (2.2)
2"TPWW, =t r]l = A, -4,y 21
where Ay, = 2" (—1)5(” ;Jr’>(1/2<1"+1>=7'),
i=0
! (2.3)
with A, » =29, for 0< j < r.

We shall show later that the sequences {B,,,} are generalized Fibonacci
sequences. Specifically, for r = 2, {Bn’g} is the Fibonacci sequence given
by 1, 1, 2, 3, 5, 8, 13, ... . For r = 3, we have the so-called Tribonacci
sequence (Feinberg [1]), given by 1,1, 2,4, 7, 13, 24, 44, ... . For r = 4,
one can verify that

Busu, v = Bura,u + Buuo,w t Buva,w + By (2.4)

and the sequence {Bn’4} is given by 1, 1, 2, 4, 8, 15, ... . For general r,
we have
E’n+1r',1r= = Bn+r-l,r + Bn+1r'—2,1r' + oo+ By, po (2.5)
which is an rth order Fibonacci-T sequence.
If we leave k unspecified but still require m; =T, = «++ =m = 1/k,
then we can define
(k) _ gntr Wy =7 + 7] (2.6)

n,r
so that, using Proposition 2.1, we get

B, = 4%, - 4® (2.7)

n,r n+l, r
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n - gry| (k - 1) J
. —_— . 2.8
J >[(kr+1);l ( )

I

where @ . .
Ay = Kk" 2:(~1)J(
i=0

We prove in Section 3 that

(k) _ (k) &) k
Bn+r,r~ - (k - l)[6n+r—l,r + Brz+1r‘—2,1r’ o 4 B(n,)r] (2'9)
with the boundary conditions

BSOP =1 and Bg?r =0 for s < r;
and for the special case k = 2, (2.9) gives the recursion satisfied by the
rth order Fibonacci-T sequence given in (2.5). For r = 2 and k = 3, the
sequence {Bg?z} is given by 1, 2, 6,16, 44,120, ... . For r = 3 and k = 3,
the sequence {Bﬁ?a} is given by 1, 2, 6, 18, 52, 152, 444,

3. THE PROBABILITY GENERATING FUNCTIONS OF WAITING TIMES

In this section we shall give a derivation of Proposition 2.1, starting
from the probability generating function of the waiting times for recurrent
events and then prove equation (2.9). Following Feller [2], the generating
function given for binomial processes can easily be extended to multinomial
processes, for the events of type E, considered in this paper. 1In particu-
lar, the probability generating function of the first occurrence of Ey dis-
cussed in Section 2, is given by

ﬂfsf(l - T, 8)

F(s) = Y s"*"P[W, = n + r] =
n=0 1 -8+ (1 - ﬁl)ﬂfsp+l
mrs” Trr+lsr+l
= 1 _ 1 . (3.1)
1 - s+ (1 - ﬂf)ﬂlsr+l 1 -s+ (1 - ﬂf)ﬂlsr
= (1) - (i1).
Let 6 = (1 - m,)7}, then
mrs”
(1) = = = mrsT[1 + s(1 - 870) + s%(1 - 76)% + -
1 - s(1 - &78)
4+ 87(l - 879)T 4 -+ 4+ 3(j-l)r(l _ Sre)(j~1)r el (3.2)

In (3.2), sJ” appears only in the following (j - 1) terms:
mrgIT(1 - TR)I VT, qrglINT (] L gTe)ImDT T2 (1 - 570);

and the coefficient of s9% in (i) is given by

-1 -2 -3 - o2 _» ' )
{((.70 )r) _ ((Jl )r)e . ((‘72 )I’>ez e b (o1 z(jfz)eJ z}ﬂl. (3.3)
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More generally, s9**%, 0< & < r-1, appears in (3.2) only in the following
(7 - 1) terms:

ﬂfsg'r’+2(l _ Sr9>(j~l)1“+l’ Wfs(j—1)11+1(l _ Sy‘e)(j—i)r+2,

ﬂfs<j'2)r+2(l _ Sre)(j—S)rHL’ ., ﬂfs“”(l _ Sre>r+£;

and the coefficient of s/"*4, 0 < < »-1, in (3.2) is given by

(G- Dr+4 (G-Dr+2 (F-3)r+2
(79 < (G 9me e (@i
R

Since f,,, is equal to the sum of the coefficients of g”*% in (i) and (ii),
taking n = (J- 1)r+ 2% in the above, we obtain:

e () - (e (32
_ {(n - 1) B (n - i - r)e N (rz - 12- 2r>62 ...}ﬂfu’ (3.5)

which proves Proposition 2.1.

The probability generating function given by (3.1) can also be written
in the form

2 r
F(s) = 1/[1 (1 - s)[g%+ <s$1> 4o 4 <671r1> ]il (3.6)

which may be recognized as a special case of the probability generating
function discussed by Johnson [5] and Johnson & Kotz [6]. In order to sum-—
marize these results, we need to introduce some notation.

Returning to the situation introduced in Section 2, suppose we are in-
terested in a specific event £, of length » (or r independent outcomes). We
shall now obtain the probability generating function for the waiting time,
Wy, which denotes the first occurrence associated with the event E,. As a
first step, we introduct the definition of the critical points of £y, as
defined by Johnson [5].

Definition: A critical point of E» is defined as the position between
two labels, such that the subsequence of labels up to that position is iden-
tical to the subsequence of labels of the same length concluding the pat-
tern. Also, a critical point always follows the last trial at which event
Ey» occurs.

As an illustration, suppose we toss a coin so that we have the two pos-
sible outcomes, Heads and Tails, denoted by the labels H and T, respective-
ly. For a given pattern like HTHTH, we can observe three critical points.
Since the last trial completes the pattern, it precedes a critical point.
At the third trial of this pattern, we have a H, and the subsequence HTH up
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to the third trial is the same as the subsequence at the end of the pattern
and, hence, the third trial precedes a critical point. And finally, at the
first trial of this pattern we have a H, and we have a H at the end, so the
first trial also precedes a critical point.

Let us consider another pattern E,, defined by HHTHHHT, which has only
two critical points. For this pattern, the seventh trial (by definition)
and the third trial precede the two critical points.

More generally, let the event of interest, £,, have c(l € ¢ < »r) criti-
cal points. Let q,; denote the number of outcomes E, observed up to the Zth
critical point, fora =1, 2, ..., kand t =1, 2, ..., ¢. Then the proba-
bility generating function F(s8) of W,, as given by Johnson [5], is

/ c k
F(s) = 1// 1+ (1 - 3)2: ——**—-l—————"—{[]ﬂ;a“}. (3.7)
t=1(g

51r+a2t+"'+akt) a=1

Special Cases

(1) When the event of interest E, is given by a succession of »r identi-
cal events £, then there are r critical points associated with this event;
and associated with the first critical point, we have

a;, = I, a,; =05 covy agy = a,

and associated with the ¢th critical point, we have
Ay =t Qgp =0, 0 =2, ..., kfort =2, ..., r.

In this case, the probability generafing function of the event of length r,
given by E,E, ... E; reduces to

F(sg) =1 /[1 + (1 - s)fi-l—-l— (3.8)
\ / st wff
which agrees with (3.6).
Next, taking 7, = 1/k, we shall derive (2.9). We have

i

F(s) fi s"tTPIW, = n + rl
n=0

8

=3 (s/k)" W from (2.6)

n,r
0

=
i

1

— T~

r

.r 1,2 r-1
[&~ - (k- 1)(1 + k-+-&; + oo+ kq_l)].
2 S 3 Y

2 r
[1 + (1 - s)(% + %7 + e +-§7>] from (3.8)

1

57 - 8

/

Therefore, we have the relation

o r r-1 _
[ 2:(8/k)n+rBS?{][k_ - (k - 1)(1 +.§ 4 oo kr—l)] =1,
n=0 s’
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From which it follows that

@ r-1 ©
3 (o) B = L+ (K 1)(1 vEy Lk ) (s/k)n+7p®
n= n=0

r-1 n,r"*
S

Equating the coefficients of s”*%¥, on both sides, we find

(%) - ) (%) (€3]
Bn+r,r = (k - l)[Bn+r-l,r + Bn+r-2,r +oeee + 8 ]5

n,r
which proves (2.9).

(2) Let the event of interest be EiE, ... E;, which is of length k, and
the outcomes occur in the specified order. This event has only one criti-

cal point, and
ay; =1 =ap; = =ag,

and all others are zero. In this special case, the probability generating
function is given by

F@)==l/[1‘+(l-8)———*L——-> ) (3.9)
skmy.oom

(3) Let k = 2 and the event of interest be E.E,E; (of length 3) and let
1
2

Ty = = m,. In this case, there are ¢ = 3 critical points and
aypy =1, ayp, =2, a3 = 3,
a,, =0, a,, =0, a,; = 0.
With these values,
® 3
s"PPW, = n + 3] = F(s) = 1// L+ (1 -s8)3 (2/8)
n=0 t=1
/ 2 4 .8
= - -+ — + — .10
1/ [14- (1 s)<s+82+33>:| (3.10)

33

s+ 2(1 - 8)(8% + 25 + 4)

From this, we obtain

]

ST PIN, = 0o+ 3] = F(22) = t3/[1 - t - t2 - 7],
n=0

and, as defined in (2.2),

2n+3P[W3

it

n+ 3] =B, 5 (3.11)

which are the Tribonacci numbers.

From this generating function of the Tribonacci numbers, we obtain a
representation for B, ; in terms of trigonometric functions, which is stated
in the following proposition.
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Proposition 3.1

The Tribonacci numbers Bn,a are given by

8 _ 1 1+ fsin(m + DO _ ¢ sin ne) 1
7,3 (¢ - I)(e + 3) ¢ sin O sin © c

for n = 2, 3, ..., where

e = (1/3)[ (V297 + 1) - (V297 - 17)® - 1]

and 6 = m - Arc sin (V3 .- ¢2)/2 , and B, 3 and B, , are defined to be equal
to 1. From (3.11), we note that B, 5 is given by the coefficient of ¢"~! in
1/(1 - t=t?-¢%). 1In order to find this coefficient, we use partial frac-
tions given by

1 . D G
. g CE-BHTE@-n G-

Let ¢, d, and g denote the real and the complex conjugate roots of the cubic
1 -t - t%-t%®=0, given by

c= (1/3)(y - 6 - 1),
d= (-1/6)(y = 6§ - 2) + (V/3/6)i(y + &) = (1/Ve)e®,
and g = (1//2)6_“

where Y = (V297 + 17)*?, § = (/297 - 17)*/®, and < = V-1. Now, C, D, and G
can be expressed in terms of ¢, d, and g, and we obtain

2 3 n-1
L ! E,+-E-+-EE + E;»+ v L + --]

Lt - @-al@-eel el et
1 t 2 ¢t
tEe - add- g)dl} *t3 +‘§? toee +‘§?TT + ]
2 n-1
+ L A A + -
(¢ - g)d- g g g2 gn

Therefore, B, 3 can be obtained as the coefficient of ¢"7%, given by

8 . = 1 [f 1l ,elg-o _cle-d J
mroele-d -l ST g - pdt W - g
) -1 1 (eg-e® . . (- ed) {]
e - dig - c)[;n-l YAy Tt Taog
(here we use the fact that edg = 1)

-1 1

Te(e - D(g - ) gnt

. 1 [cn+l(gn+l _ dn+1) _ c,n+2(gn - dn)

c(c - d)(g - o) (g-ad g-a |
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The following identities between the roots ¢, d, and g can be verified.

(i) cle - d)y(g-e¢) = (¢ - 1)(c+ 3)
and
sin(k + 1)6 _ d**! - gkt
sin 6 a d-g

(ii)

H

where 0 is as defined in Proposition (3.1).
Using these properties, we find

(¢ - 1)(c+3)8, 5 = cl+<n/z>{sin<ﬂ + 1)6 _ ¢*” sin n@} _ 1
n,
c

sin 0 sin © n-1?

for n = 2, 3, ... . This representation corresponds to the "Golden Number"
representation of the Fibonacci numbers.

4. REMARKS

We wish to thank a referee for bringing to our attention the article by
Philippou & Muwafi [6], which also deals with the waiting time problem for
the kth consecutive success of a Bernoulli process. There is not much of
an overlap with our results, and the references cited by these authors may
be of historical interest to the reader.
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1. INTRODUCTION

T is the real root of the equation T° - 7?2 -= T - 1 = 0, and is approxi-
mately equal to 1.8392867... T has the property:

r=3 4 pn=2 4 opn-l oo opn
which is similar to the formula that defines the Tribonacci numbers:
tn - 3)+tn-2)+tn-1) =tn).
In fact, T has a relationship to the Tribonacci numbers similar to that be-

tween ¢ and the Fibonacci numbers. Binet's formula for calculating the value
of the nth Fibonacci number is

fn) = &_(__@1
V5

Since ¢°' = .618... < 1, we can see that the ratio between two adjacent Fi-
bonacci numbers is a close approximation to ¢, and moreso as the value of »n
increases:

Fo+ 1)/Fm) = ("7 = (=) D)/ (47 - (=0)7") » ¢ as n > .
Similarly, given Binet's formula for deriving a Tribonacci number ¢(n):
t(n) = of" + »"(B cos nb + Yy sin »6) (see [11]),
and since lr] = .7374... < 1, we can see that the value of the ratio of two
adjacent Tribonacci numbers is a close approximation to T, and moreso as the
value of # increases:

tn+ D/tm) = (a7 + »"T1(B cos n6 + vy sin n8))/

(aT™ + r"(B cos nB + v sin n@)) > T as n » =,

2. A GEOMETRIC APPLICATION OF T

If three circles are externally tangent to each other, and the radii of
each are three successive powers of T, then a fourth circle, internally tan-
gent to all three has a radius equal to the next higher power of T.
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Proof: Given the three circles with centers A, B, and C:

Xne Xeo
==
Kac. A c
Kso 5 =102
rd = 1"
PB = Tn+l
rC = Tn+2
Since (AB)Z - (Tn + Tn+l)2 = T2n + 2T2n+l + T2n+2
and (AC)2 = (T™ + T"*2)2 = p2n 4 op2n+2 4 p2ntts

2(T2n + T2n+l + T2n+2) + T2n+2 + T2n+'+

I

then (4B)? + (40)?

= T2n+2 + 2T2n+3 + T2n+4.
And since (BC)2 - (Tn+1 + Tn+2)2 = M2 L oom2n+3 T2n+4’

then (4B)? + (40)? = (BC)Z.
Triangle ABC is a right triangle; angle BAC = 90 degrees. Extend C4 to
E on the circumference of circle A. Draw BF parallel to AC; F is on the
circumference of circle B. Extend FE to meet AB extended at XAB , which is
the external center of similitude for circles 4 and B.
Then, if X,; 4 = X, an unknown, and
AE/FB = X/ (X + AB)
and given the aforementioned values for 4B, AE = rA, and FB = rB, then
TP = XX 4+ T+ T
XTJ’L+1 = XTn + T2n + T2n+l
X(Tn+1 _ Tn) = TZn + T2n+1
If we define
d=T7"(@"* - 1" = /("7 + 772y,
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then
TRl oproo el g pne2 o opryg
and
72y 2+l oo p2nt2)g.
therefore,

X = (TZn + T2n+l)/(Tn+1 _ Tn) = (T2n+2/d)(Tn/d) = Tn+2 = Q.

Where a tangent from X,z touches the circumference of circle ( is the
external center of similitude between circle C and the fourth circle (Xgp),
which is where they are internally tengent; a line drawn from X.,p through C
will contain the center of the fourth circle, D. Since X,z;4 is perpendicu-
lar to AC and equal to »r(C, X,,C is parallel to AB and also perpendicular to
AC.

We can also construct the point Xz, in the same manner; Xz,B will be
found to be perpendicular to AB and parallel to AC. So D is located at a
point such that BD is parallel and equal to AC and perpendicular to 4B and
CD; AB and (D are in turn parallel and equal to each other.

The definition of the construction of this fourth circle, D, is that it
is tangent to each of the other three circles at a point where a line from
the external center of similitude of the other two circles in each case is
tangent to it. We do not need to construct point X,, to locate point D.

Therefore, since

rD = rC + CD = vB + BD,

and having shown that

CD = AB = rA + rB
and that

BD = AC = rA + »rC,
then

D = vA + rB 4+ rC = T" 4+ " 4 %2 = 743,
Q.E.D.
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ON SOME DIVISIBILITY PROPERTIES OF FIBONACCI
AND RELATED NUMBERS

GERHARD ROSENBERGER

Universitat Dortmund, Federal Republic of Germany

(Submitted April 1982)

l. Let x be an arbitrary natural number. We define, recursively, the
following two sequences of rational integers.

S_y(@) =-1, S;(x) =0, S, (x) =x5,_,(x)-5,_,(x), n=> 1. (1)
R_,(x) =1, Ro(x) =0, R,(x) = xR,_,(x) + R, _,(x), n=1 (2)

If x =1 and »n =2 0, then R,(x) is the nth Fibonacci number. By mathe-
matical induction, we immediately obtain

R, (x) = x5, (x? + 2) (3)
and

Ry, (@) =5, @&*+2) -5, (x*+ 2), where n € N U {0}. (4)

The purpose of this note is to lock at some divisibility properties of
the natural numbers R, (x) that are of great interest to some subgroup prob-
lems for the general linear group GL(2, Z).

0f the many papers dealing with divisibility properties for Fibonacci
numbers, perhaps the most useful are those of Bicknell [1], Bicknell & Hog-
gatt [2], Hairullin [4], Halton [5], Hoggatt [6], Somer [9], and the papers
which are cited in these. Numerical results are given in [3]. Some of our
results are known or are related to known results but are important for our
purposes. As far as I know, the other results presented here are new or are
at least generalizations of known results.

2. Let p be a prime number. Let n(p, x) be the subscript of the first
positive number R,(x), n 2 1, divisible by p.

If p divides x, then
2.

n(p, x)
If p = 2 and x is odd, then
3.

]

n(p, x)

Henceforth, let p always be an odd prime number that does not divide wx.
Then it is known that n(p, x) divides p - €, € = 0, 1, or -1, where

<x2 + 4)
e = (2 *+ 5
p

is Legendre's symbol (cf., for instance, [7]).

1983] 253



ON SOME DIVISIBILITY PROPERTIES OF FIBONACCI AND RELATED NUMBERS

We want to prove some more intrinsic results about n(p, x). For this we
make use of the next five identities; the proof of these identities is com-
putational.

R ,,(@ = (®+ )R (®) - R, _,@); (5)
Ry, (@) = 8. (R, ,, (®) + R,_,(x)) + R,(x) if n is even, (6a)
R, (@) =R, (R, ,(x) + R, _,(x)) = R,(x) if n is odd; (6b)
R,y @R, (x) - Ri(®) = (-1)"; )
Rl,, (@) - R, (@R, (x) = (-1)"x?; (8)
R,, ,(®) = Ri(x) + Ri_,(x), (9a)
xR,, (x) = R2,1(x) - RZ_,(x); (9b)
where n € N U {0}.
3. The case n(p, x) odd. Let n(p, ) = 2m - 1, m €N; it is m > 2.

Proposition 1
a. Rype1(x) = —RZm_3(.’L‘) (mod p) .
b. R%,_,(x) = -x® (mod p).

c. Rl (@) = -1 (mod p).
d. Ryp_1-x®) = (-1)**'R, (x)R,,_,(x) (mod p) for all integers k
with 0 < k < 2m - 1.

Proof: Statements (a), (b), and (c) follow directly from (3), (5), (7),
and (8).

We now prove statement (d) by mathematical induction. Statement (d) is
true for Xk = 0 and kK = 1 because R,,-1(x) = 0 (mod p) and R;(x) = 1. Now we
suppose that statement (d) is true for all integers £ with 0 < £ < k, where
1<k<2m-1.

For 1 < k< 2m - 1 and kK even, we obtain

Ry 1oeany@) = —@Ry, @) + Ry ooy ()

(xR () + Ry_, () = Ry, _,(x)

i

1

= (-D)**?R,,  (®)R,,_, (@) (mod p).
For 1 < k< 2m - 1 and k odd, we obtain

Rypo1-qeeny @ = (-aBy(x) - R (@) * By, (@)

(-1)K*2R, | (x)R,p_,(x) (mod p).
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Corollary 1
p =1 (mod 4).

Proof: Proposition 1 gives that -1 is a quadratic residue mod p. That

means
-1
1 = (__) = (-1 (P"D/Z,
b )

and, therefore, p = 1 (mod 4). Q.E.D.
Proposition 2

If p =1 (mod 4), then there is a natural number z such that

22 +1=0 {(mod p)
and
(xz + DE2_ (x) = 2" (mod p).
Proof: TFrom (9) we get
RZ(x) = -R%_,(x) (mod p).

Then there is a natural number z such that

22+ 1 = 0 (mod p)

and
R, (x) = zR,_,(x) (mod p).
Therefore,
Rm+l(x) = xR, (x) + Bm_l(m) = (xz + 1)R,_,(x) (mod p)
and

(-1)" =R, (@E,_ (@) - Ri(z) = (xz + 2)R>_, (x) (mod p)

m-=1

w
1

by (7). Q.E.D.

The following corollary is an immediate consequence.
Corollary 2

If p =1 (mod p), then there is a natural number z such that

z? + 1 = Q (mod p)

and x3 + 2 is a quadratic residue mod p.

Remark concerning Proposition 2: If p = 4g + 1, 2 1, and g is a primi-
tive root mod p. then z = #g? (mod p). But unfortunately, no direct method

is known for calculating primitive roots in general without a great deal of
ccmputation, especially for large p.

Proposition 3

Let # 2 1 be a natural number such that p divides R,,_1(x). Then
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Rz(k+1)-1(x) © S, (x® +2) = Ry, (x) - Sn_(k+l)(xz + 2) (mod p),
for all integers k with 0 < k < #.

Proof by mathemetical induction: The statement is true for k = 0, since

S,(x® +2) =5 _ (¢ +2) (mod p) [by (4)].

Now suppose the statement is true for an integer k with 0 < k¥ < n. Then we
obtain

Rop-1(@) * Sy gany@® +2) 2 Ryyr (@) » Spox@® + 2)
= (@ + 2)S, g4y @ +2) = Sy _eay@® + 2)) * Rypsr () (mod p).
This gives
Ryger1y-1 @)+ Sy (@ + 2)
= (@ + DBy @) - By (@) 8y gy @+ 2)
= Rygerny -1 &) * Sy ey @ +2) (mod p) [by (5)]. Q.E.D.
Corollary 3

a. 0% Ry, (@) = 8, @ +2) =Ry (x) (mod p) for all integers
k with 0 < k <m- 1.

b. Rosp-1(2) * Sp_x(@2 +2) = Ry 1 (x) * Spoeapy(®® + 2) (mod p) for
all integers k and £ with 0 < k, 0 < %, and 0 < k + & < m.

m then L = 0);

Proof: Statement (b) is obviously true for k = =
1. Now, letting

m
statements (a) and (b) are also obviously true for k
0< k<m- 2, we obtain (from Proposition 1)

(if k

m

Ry (@) ¢ Rypyy (@) 5%—(k+a(x2 +2)

= Rpp 1 (®) ¢ Bypyqa(®) » Sﬁ—(k+n(x2 +2)

i

Ropys(@) ¢ Bypyr(@) * Spop(x® + 2) (mod p),
which gives
Rys2y-1(x) Sp_x@? + 2) = Ry y(x) - m_(k+2)(x2 + 2) (mod p)

because R,;,,(x) # 0 (mod p).
Now, by mathematical induction, we obtain

R « Spop(@? +2) 2R, (@) ¢ Sy_ken @ + 2) (mod p)

2k +2) - ()

for all integers k and £ with 0 < k, 0 < £, and 0 < k + £ < m (this state-
ment is trivial for § = 0 and just Proposition 3 for § = 1). Now statement
(b) is proved; statement (a) follows for Kk + £ =m - 1. Q.E.D.
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4. The case n(p, x) even. Let n(p, x) = 2m, m € N; it is m > 2 because
p does not divide x. Moreover, Sm(x2 + 2) = 0 (mod p) by (3).

Proposition 4
(? + &RZ (@) = (-1)""'x? (mod p).
Proof: From (6), we get

-R (x) = R o.,(x) = 2R, (x) + Rm_l(x) (mod p)

m-1
and

xR, (x) = -2k _,(x) (mod p)
because n(p, x) is minimal. Therefore,

(-D"z? = x*(R,, (@B, _ () - Rhp(z)) = =(x® + 4)R2_ (x) (mod p)

by (7). Q.E.D.
Corollary 4
If p = 1 (mod 4), then 2® + 4 is a quadratic residue mod p.

Proof: 1If p =1 (mod 4), then (ii) = 1 and the statement follows imme-
diately from Proposition 4. Q.E.D.

2
+
If we ask for prime numbers p’ with p’ = 1 (mod 4) and (f ,4> = -1, we
obtain the following. p

Corollary 5 (Special Cases)

a. If x

1]
]

1, then p # g (mod 20), where g = 13 or 17.

b. If x =2 or 4, then p Z 5 (mod 8).

]

Cc. If x =3, then p # ¢ (mod 52), where g = 5, 21, 33, 37, 41, or 45.

d. If =5, then p Z ¢ (mod 116), where g = 17, 21, 37, 41, 61, 69, 73,
77, 85, 89, 97, 101, 105, or 113.

Analogous to Proposition 1, Proposition 3, and Corollary 3, we obtain
the following results.

Proposition 5

a. R, .,(®) = -R, ,(x) (mod p).

b. RZ _,(x) = x?S,_,(x® + 2) = x* (mod p).
c. RZ _(x) =1 (mod p).

d. R, _ (@) = DR ()R, (=) (mod p)

for all integers k with 0 < k < 2m.
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Proposition 6
Let n 2> 1 be a natural number such that p divides R,, (x). Then
Ry @) + 8, _gan@® +2) 2 Ryp )@ S,_x(@® +2) (mod p)
for all integers k with 0 < k < n.
Corollary 6

a. 0% R, (@) * Sy x(@® +2) =R,y (x) (mod p)
for all integers k with 0 < k <m - 1.

be Ry @) ¢ Sy_p(@® +2) 2R, () ¢ 5, g, @ +2) (mod p)
for all integers k and % with 0 < k, 0 < &, and 0 < kK + £ < m.

5. Final Remark. I wish to thank the referee for two relevant refer-
ences that were not included in the original version of the paper. He also
noted that some results of this paper are special cases of results of Somer
[9] for the sequence

To(xs y) =0, T (x, y) =1, T,(x, y) =xT,_,(x, y) + yT,_,(x, y), n = 2,

where x and y are arbitrary rational integers. Proposition 1(c) is a spe-
cial case of Somer's Theorem 8(i); Proposition 2 is a special case of his
Lemma 3(i) and the proof of his Lemma 4 when one takes into account the hy-
pothesis that (-1)/(p) = 1; Corollary 4 1is a special case of Somer's Lemma
3(ii) and (iii); finally, Proposition 5(c) is a special case of his Theorem
8(1).

But, on the other side, some results of Somer's paper follow directly
from known results about the numbers S, (x) and R,(x). For, let x and y now
be arbitrary complex numbers with y # C. Let S,(x), R,(x), and T,(x, y) be
analogously defined as above. Then

T, (x, y) = <f—3>”‘1sn<i> = </§>”‘1Rn<i>, n >0,
V-y Vy

where V@ and V-y are suitably determined (see, for instance, [7]).
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LETTER TO THE EDITOR

JOHN BRILLHART
July 14, 1983

In the February 1983 issue of this Journal, D.H. and Emma Lehmer introduced
a set of polynomials and, among other things, derived a partial formula for
the discriminant of those polynomials (Vol. 21, no. 1, p. 64). I am writ-
ing to send you the complete formula; namely,

D(Pn(x)) = 5n—1n2n—4Fin—4’

where F, is the nth Fibonacci number. This formula was derived using the
Lehmers' relationship

(x* - x - )P, (x) = x* - Lxz” + (-1)*,
where L, is the Lucas number. Central to this standard derivation is the
nice formula by Phyllis Lefton published in the December 1982 issue of this

Journal (Vol. 20, no. 4, pp. 363-65) for the discriminant of a trinomial.

The entries in the Lehmers' paper for D(Pq(x)) and D(Pe(x)) should be cor-
rected to read

2% . 3% . 53 and 282 . 3% . 53,
respectively.

€040
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ON THE SOLUTION OF {E* + (Ap - 2)E + (1 - Ap - A*@)}"G, = n*,
BY EXPANSIONS AND OPERATORS

H. N. MALIK
P.M.B. 1032, Birnin-Kerbi, Sokoto State, Nigeria

(Submitted September 1981)

I. INTRODUCTION

This paper continues the work initiated in the author's joint paper [1]
with A. Qadir, in which the authors found the particular solution of the dif-
ference equation (F?> - F - G, = nk, using two methods, that is, the usual
operator method and the method of expansions, eventually establishing an iden-
tity involving the Fibonacci numbers F, defined recursively by F,=F, = 1 and

F = F

ey T E,, n 21,

the Lucas numbers L, given by L, = 2, L, = 1, and

=1L + L,, n=20,

n+2 n+1

and the Sterling numbers of the second kind.
In this paper, the author uses the same two methods to solve a more gen-
eral difference equation, namely,

(B2 + Op - 2E + (1 - xp - M2)Y'6, = nk,

getting an identity involving the Sterling numbers of the second kind, the mth
convolved Fibonacci numbers, Ff(p, q), where

1

= X Fl(p,
(1 - px - qe?)" i=0

and the generalized Lucas numbers, where

L,.,®s @ =pL, (s @ +qL, (0> q@> Lyps q) =2, L, (p, q) =p.

The plan for this work is as follows. First, in II we find the particu-
lar solution of the above-mentioned difference equation by the usual operator
method. Then, in III we find the particular solution of the same equation by
the method of expansions. Finally, in IV we compare the coefficients of sim-
ilar powers of n and those of A, which finally results in the aforesaid iden-
tities.
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BY EXPANSIONS AND OPERATORS

IT. PARTICULAR SOLUTION BY THE METHOD OF OPERATORS

From [1] it is known that

z (‘1)r<§>(r)35(i, rynk-t

nk éi
E-a 7= /5 (1 = g)7*?

k <—1>”(§><r>!3(i, rynk-t

>

i=0 r=0 (1 - a)rtl

Where S(Z, r) are the Sterling numbers of the second kind, the shift
operator E is defined as

Ef(n) = f(n + 1)
and the difference operator A is defined as
Af(n) = f(n+ 1) - f(n) = (& - 1f(n).
That is, A = F - 1.

Therefore,

k

i)(r)!S(i, rynk-1

nk ko k (—1)”(
E - 1+ ra) 2; z

i=0 r=o0 PRARPELS!

Also,

nk
(E -1+ a)(E -1+ Ab)

(—1)”+t<§)(k ; i)(r)!(t)!S(i, r)S(s, t)nk-t-s

3D

+r+t +1l7¢t+1
AZFrEEaTHLY

Letting ¢ = 4 + g implies min(g) = 0, max(2) = k, so that

nk
E-1+x)E -1+ 2xb)

Lok e GO () (KD Dt @ise, nsa - 4, pnkt

=2 2 XX s

Z=0 r=0 &=0 t=0 >\2+P+tal+rbl+t

I

Putting j = r + ¢, we have min(j) 0 and max(j) = k. Now, recall that

(G20 = ()
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and change % to Z,, ¢ to Z,, r to j,, and j to Jj,, to get

nk
(B -1+ ) -1+ 2Ab)

jz 2 it"'l . . . . . . k-1
COPILN )0, =, 86, =4y d, = J, T
t

2,20 4,=0 §,=0 4,=0 A2+dagltiipltds =g,
where 7, = k, 27 = 0 = j,.
Using induction on m, it can be proved that

nk
E-1+2)"E -1+ )"

(2.1)

2m

, 7
D7 11 < f+l><Jt>!s<It, I, )nk=ian
1 ¢

t=

2320 7,20 §, =0 Jpy=0 A2MH Jan oM Tamoap M Tom
m .
where 72, ., =K, 15 =0 = jo, T, = 3, (-1)"J.,
i=1
I, =i, - 1,., and J, =4, - J,_, for every t > 0.
Let G(n, m, k) be the particular solution of the difference equation
{E2 + Op - DE+ (1 - p - V)G, = nk,

and let a, b be the roots of x? = px + g.

Noting that the left-hand side of (2.1) is symmetric in a, b, we inter-
change ¢ and b in (2.1) and add the resulting equation to (2.1). Using the

fact that a + b = p and ab = -g, we get, after a little manipulation,
G(n, m, k) . (2.2)
28 B (A RYEY ) k-2
(~1)“*" . (TSI JL)L [
D> A R
2 2,=0 Zpn=0 =0 Gyn=0 >\2m+'jz'r‘ (—Q)MLTZ"’

where Ly = Ls(p, q)-

Interchanging a, b in (2.1) and subtracting the resulting equation from
(2.1) and dividing both sides by a - b, we also have

2m-1

7
I ( ;:1>(Jt)!S(It, I )Fr op

2m-]

k K Ck k
PIED DD MDY =0 (2.3)

- . . +
1170 25,320 J1=0 g, ,=0 (_q)"’ Tonm

where Fy; = Fo(p, q)-.
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3. PARTICULAR SOLUTION BY THE METHOD OF EXPANSIONS

A Particular Solution of G(n, m, k) is given by

nk nk

(E-1+2)"E - 1+ )" (b+ A" (A + AB)"

Gn, my k) =

That is,

nk
G(n, my, k) = , (3.1)
(A% + dph - A2g)"

where a, b are the roots of x* = px + q. Since a + b = p, ab = -q, (3.1) be-
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