
THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION 

VOLUME 21 
NUMBER 4 

NOVEMBER 
1983 

CONTENTS 

Waiting Times and Generalized 
Fibonacci Sequences V.R.R. Uppuluri & S.A. Patil 242 

Powers of T and Soddy Circles John H. Selleck 250 
On Some Divisibility Properties of 

Fibonacci and Related Numbers Gerhard Rosenberger 253 
Letter to the Editor John Brillhart 259 
On the Solution of {E2 + (Xp - 2)E + (1 - Xp - X2q)}m Gn = nk 

by Expansions and Operators H.N. Malik 260 
On Fibonacci Numbers of the Form PX , 

Where P is Prime Neville Robbins 266 
A General Method for Determining a Closed Formula 

for the Number of Partitions of the Integer n 
into m Positive Integers for Small Values 
of m W.J.A. Colman 272 

n—Dimensional Fibonacci Numbers 
and Their Applications Malvina Baica 285 

Counting the Profiles in Domino Tiling T.C. Wu 302 
The Fibonacci Sequences Fn 

Modulo Lm Karolyn A. Morgan 304 
Elementary Problems 

and Solutions Edited by A.P. Hillman, G.C. Padilla, & C.R. Wall 306 
Advanced Problems and Solutions Edited by Raymond E. Whitney 312 
Volume Index 319 



PURPOSE 
The primary function of THE FIBONACCI QUARTERLY is to serve as a focal point for 

widespread interest in the Fibonacci and related numbers, especially with respect to new results, 
research proposals, challenging problems, and innovative proofs of old ideas. 

EDITORIAL POLICY 
THE FIBONACCI QUARTERLY seeks articles that are intelligible yet stimulating to its 

readers, most of whom are university teachers and students. These articles should be lively and 
well motivated, with new ideas that develop enthusiasm for number sequences or the explora-
tion of number facts. Illustrations and tables should be wisely used to clarify the ideas of the 
manuscript. Unanswered questions are encouraged, and a complete list of references is abso-
lutely necessary. 

SUBMITTING AN ARTICLE 
Articles should be submitted in the format of the current issues of the THE FIBONACCI 

QUARTERLY. They should be typewritten or reproduced typewritten copies, that are clearly 
readable, double spaced with wide margins and on only one side of the paper. The full name and 
address of the author must appear at the beginning of the paper directly under the title. Illustra-
tions should be carefully drawn in India ink on separate sheets of bond paper or vellum, approx-
imately twice the size they are to appear in print. 

Two copies of the manuscript should be submitted to: GERALD E. BERGUM, EDITOR, 
THE FIBONACCI QUARTERLY, DEPARTMENT OF MATHEMATICS, SOUTH 
DAKOTA STATE UNIVERSITY, BOX 2220, BROOKINGS, SD 57007-1297. 

Authors are encouraged to keep a copy of their manuscripts for their own files as protection 
against loss. The editor will give immediate acknowledgment of all manuscripts received. 

SUBSCRIPTIONS, ADDRESS CHANGE, AND REPRINT INFORMATION 
Address all subscription correspondence, including notification of address change, to: 

RICHARD VINE, SUBSCRIPTION MANAGER, THE FIBONACCI ASSOCIATION, 
UNIVERSITY OF SANTA CLARA, SANTA CLARA, CA 95053. 

Requests for reprint permission should be directed to the editor. However, general permission 
is granted to members of The Fibonacci Association for noncommercial reproduction of a 
limited quantity of individual articles (in whole or in part) provided complete references is made 
to the source. 

Annual domestic Fibonacci Association membership dues, which include a subscription to 
THE FIBONACCI QUARTERLY are $20 for Regular Membership, $28 for Sustaining Mem-
bership I, $44 for Sustaining Membership II, and $50 for Institutional Membership; foreign 
rates, which are based on international mailing rates, are somewhat higher than domestic 
rates; please write for details. THE FIBONACCI QUARTERLY is published each February, 
May, August and November. 

All back issues of THE FIBONACCI QUARTERLY are available in microfilm or hard 
copy format from UNIVERSITY MICROFILMS INTERNATIONAL, 300 NORTH 
ZEEB ROAD, DEPT P.R., ANN ARBOR, MI 48106. 

1983 by 
© The Fibonacci Association 

All rights reserved, including rights to this journal 
issue as a whole and, except where otherwise noted, 

rights to each individual contribution. 



^h Fibonacci Quarterly 

Founded in 1963 by Verner E. Hoggatt, Jr. (1921-1980) 
Br. Alfred Brousseau, and ID. Ruggles 

THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION 
DEVOTED TO THE STUDY 

OF INTEGERS WITH SPECIAL PROPERTIES 

EDITOR 
GERALD E. BERGUM, South Dakota State University, Brookings, SD 57007 

ASSISTANT EDITORS 

MAXEY BROOKE, Sweeny, TX 77480 
PAUL F. BYRD, San Jose State University, San Jose, CA 95192 
LEONARD CARLITZ, Duke University, Durham, NC 27706 
HENRY W. GOULD, West Virginia University, Morgantown, WV 26506 
A.P. HILLMAN, University of New Mexico, Albuquerque, NM 87131 
A.F. HORADAM, University of New England, Armidale, N.S.W. 2351, Australia 
DAVID A. KLARNER, University of Nebraska, Lincoln, NE 68588 
CALVIN T. LONG, Washington State University, Pullman, WA 99163 
JOHN RABUNG, Randolph-Macon College, Ashland, VA 23005 
DONALD W. ROBINSON, Brigham Young University, Provo. UT 84602 
M.N.S. SWAMY, Concordia University, Montreal H3C 1M8, Quebec, Canada 
D.E. THORO, San Jose State University, San Jose, CA 95192 
THERESA VAUGHAN, University of North Carolina, Greensboro, NC 27412 
CHARLES R. WALL, Trident Technical College, Charleston, SC 29411 
WILLIAM WEBB, Washington State University, Pullman, WA 99163 

BOARD OF DIRECTORS OF 
THE FIBOWACO ASSOCIATION 

G'.'L. ALEXANDERSON (President) 
University of Santa Clara, Santa Clara, CA 95053 
HUGH EDGAR (Vice President) 
San Jose State University, San Jose, CA 95192 
MARJORIE JOHNSON (Secretary) 
Santa Clara Unified School District, Santa Clara, CA 95051 
LEONARD KLOSINSKI (Treasurer) 
University of Santa Clara, Santa Clara, CA 95053 
ROBERT GIULI 
Giuli Microprocessing, Inc., San Jose, CA 95193 
JEFF LAG ARIAS 
Bell Laboratories, Murray Hill, NJ 07974 
CALVIN LONG 
Washington State University, Pullman, WA 99163 



*o*o# 

WAITING TIMES AND GENERALIZED FIBONACCI SEQUENCES 

V. R. R. UPPULURI 
Union Carbide Corporation, Nuclear Division 

P.O. Box Y, Oak Ridge, TN 37830 

S. A. PATIL 
Tennessee Technological University, Cookeville, TN 38501 

(Submitted November 1981) 

1. INTRODUCTION AND SUMMARY 

Suppose we consider the following experiment: Toss a coin until we ob-
serve two heads in succession for the first time. One may ask for the prob-
ability of this event. Intuitively, one feels that the solution to this 
problem may be related to the Fibonacci sequence; and, in fact, this is so. 
More generally, one may be interested in finding the probability distribu-
tion of the waiting time to find r heads in succession for the first time. 
As one may guess, these results contain generalized Fibonacci, Tribonacci, 
. .., sequences. This problem was studied by Turner [8], who expressed the 
probability distribution in terms of generalized Fibonacci-T sequences which, 
in turn, were expressed in terms of generalized Pascal-T triangles. In this 
paper, we will express the probability distribution of this waiting time as 
a difference of two sums (Proposition 2.1). This result enables us to ex-
press Fibonacci numbers, Tribonacci numbers, etc., and their generalizations 
as sums of weighted binomial coefficients. 

In probability literature (Feller [2]), the probability generating func-
tions of waiting times of this type are well known. We derive Proposition 
2.1 from one of these generating functions. In Section 3 we illustrate how 
one can obtain further generalizations of Fibo.nacci-27 sequences by using the 
probability generating functions of the waiting times associated with dif-
ferent events of interest. Finally, starting with the generating function, 
we obtain new formulas for Tribonacci numbers. 

2. THE PROBABILITY DISTRIBUTIONS OF WAITING TIMES 

Suppose there are k possible outcomes on each trial (denoted by E19 E2> 
..., Efr) with probabilities T\l9 TT2, . .., TT , respectively, such that IT̂  > 0 
and TTi + TT2 + • • • + T[k = 1. At each trial, exactly one of the outcomes is 
observed. After n Independent trials, we are interested in finding the 

Research sponsored jointly by the Applied Mathematical Sciences Research 
Program, Office of Energy Research, U.S. Department of Energy under contract 
W-7405-eng-26 with Union Carbide Corporation, the Office of Nuclear Regula-
tory Research of the Nuclear Regulatory Commission, and the Tennessee Tech-
nological University in Cookeville, Tennessee. 
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probability of the first occurrence of r specified outcomes in succession. 
Let E_r denote this event, and WP denote the waiting time for the first oc-
currence of E_v, We are interested in the distributional properties of Wr. 

Suppose Ej, = {E1E1 . .. E±}5 which corresponds to the occurrence of the 
same outcome El9 v times in a row. Then we have the following: 

Proposition 2.1 

The probability distribution of the discrete random variable Wrs denoted 
by fn+r> is given by 

j=0 \ J / 

- Trr1E(-DJ'(n " \~ J'r)((l " "iK)J'* n = ° > X> 2> •••> 
,7=0 \ J I 
J 

where we define ( ̂  ) = 0 If m<k or m<0. 

The derivation of this proposition will be given in a later section. We 
discuss the generalities of this result now. If there are two possible out-
comes (i.e., k = 2) with n1 = u2 = j , then we define 

1 n = 0 

2n+rP[Wr = n + r] = AntP - A,-i,r> n > 1 

where An r = 2n±(-iy(n ~ J>)(l/2<*+1>'), 
j = o \ / 

with Aj,r = 23', for 0 < j < r. 

(2.2) 

(2.3) 

We shall show later that the sequences {$n,z>} are generalized Fibonacci 
sequences. Specifically, for r = 2, (3n,2) is the Fibonacci sequence given 
by 1, 1, 2, 3, 5, 8, 13, ... . For r = 3, we have the so-called Tribonacci 
sequence (Feinberg [1]), given by 1, 1, 2, 4, 7, 13, 24, 44, . . . . For r = 4, 
one can verify that 

Pw+.i*, if = $ n + 3s h + $n + 2, h + "w + l,*t + " ft, 4 5 

and the sequence {3njit} is given by 1, 1, 2, 4, 8, 15, ... . 
we have 

$n + r,r ~ $n + r-l,r ~*~ $n + r-23r + ••• + P«,ps 

which is an rth order Fibonacci-27 sequence. 
If we leave k unspecified but still require i\± = TT2 = 

then we can define 

Q(k) _ vn + r 
Jn, r k [Wr = n + r] 

(2. 

For g e n e r a l 

•• = H 

(2. 

•4) 

r, 

•5) 

= l/k, 

(2. • 6) 

so that, using Proposition 2.1, we get 

*<*> = A(k) - ̂ W (2 7} 
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where 

j' = o 

We prove in Section 3 that 

^•*"t(-i)fv'1 (k - l ) 
(kr+1) 

( 2 . 8 ) 

tflr.r = «< ~ D ^ + r-l.r + tflr-2.r + " • + C ] ( 2 - 9 ) 

with the boundary conditions 

3 ^ , - 1 and $™p = 0 for s < r ; 

and for the special case k = 2, (2.9) gives the recursion satisfied by the 
pth order Fibonacci-T sequence given in (2.5). For v = 2 and k = 3, the 
sequence {ftw3,̂ } i s given by 1, 2, 6, 16, 44, 120, . . . . For r = 3 and & = 3, 
the sequence {3n,3} is given by 1, 2, 6, 18, 52, 152, 444, ... . 

3. THE PROBABILITY GENERATING FUNCTIONS OF WAITING TIMES 

In this section we shall give a derivation of Proposition 2.1, starting 
from the probability generating function of the waiting times for recurrent 
events and then prove equation (2.9). Following Feller [2], the generating 
function given for binomial processes can easily be extended to multinomial 
processes, for the events of type E_r considered in this paper. In particu-
lar, the probability generating function of the first occurrence of E_r dis-
cussed in Section 2, is given by 

TTfs r ( l - T^S) 

n = 0 1 - s + (1 - T T 1 ) 7 T ; V + 1 

1 - S + (1 " T r J > i S ' r + 1 ' 1 " S + (1 - TTl) lT 1 S r + 1 
(3.1) 

= ( i ) - ( i i ) . 

Let 8 = (1 - 7T1)7rf, then 

( i ) = -= T T ^ I + S ( l - S^0) + S
2 ( l - SP0)2 + ••• 

1 - s ( l - s r9) 

+ s ' ( i - s'e)'2, + ••• + s ( J ' - 1 ) r ( i - s r e ) ( J ' - 1 ) r + •• • • • ] ' . (3 .2) 

In (3 .2 ) , sJ'r appears only in the following (j - 1) terms: 

TrJV 'd - 8rB)u'1)r
9 n^su-1)r(l - srQ)(j'-2)r, . . . T T ^ 2 P ( 1 - srQ)r; 

and the coeff icient of sJr in ( i) i s given by 

|((j'o1)r) - (( j ' i2 ) r)e + (ui3>y-+ i-»'-i3
:t2y-z}k- '(3:.3>" 
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More generally, sJ'r+z, 0 < £ < r- 1, appears in (3.2) only in the following 
(j - 1) terms: 

7Trg(j-2)r+£(1 _ srQ)U-3)r+Z3 _ ^ ^ ^ ( 1 - S r e ) * + * ; 

and the coefficient of sJV + z
i 0 < £< r- 1, in (3.2) is given by 

••• + c-i)''-2^)9'"2}*'- (3-4) 

Since fn+r is equal to the sum of the coefficients of sn+r in (i) and (ii), 
taking n = (j - l)r+ £ in the above, we obtain: 

' .*>-{(Z)-("i*) 6 + f~22,>*-H 
"{Co ')-("" ! ~ > + ("~ 2" 2r)«2 ••}<"• »-5) 

which proves Proposition 2.1. 

The probability generating function given by (3.1) can also be written 
in the form 

F(s) 1 +• (1 - s) U- + U - )2 + . . . + ( _ L V (3.6) 

which may be recognized as a special case of the probability generating 
function discussed by Johnson [5] and Johnson & Kotz [6]. In order to sum-
marize these results, we need to introduce some notation. 

Returning to the situation introduced in Section 2, suppose we are in-
terested in a specific event E_r of length r (or r independent outcomes) . We 
shall now obtain the probability generating function for the waiting time, 
Wr, which denotes the first occurrence associated with the event E_T. As a 
first step, we introduct the definition of the critical points of E_r, as 
defined by Johnson [5] » 

Definition: A critical point of Ey is defined as the position between 
two labels, such that the subsequence of labels up to that position is iden-
tical to the subsequence of labels of the same length concluding the pat-
tern. Also, a critical point always follows the last trial at which event 
E_r occurs. 

As an illustration, suppose we toss a coin so that we have the two pos-
sible outcomes, Heads and Tails, denoted by the labels H and T, respective-
ly. For a given pattern like HTHTH, we can observe three critical points. 
Since the last trial completes the pattern, it precedes a critical point. 
At the third trial of this pattern, we have a H, and the subsequence HTH up 
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to the third trial is the same as the subsequence at the end of the pattern 
and, hence, the third trial precedes a critical point. And finally, at the 
first trial of this pattern we have a H, and we have a H at the end5 so the 
first trial also precedes a critical point. 

Let us consider another pattern E?5 defined by HHTHHHT, which has only 
two critical points. For this pattern, the seventh trial (by definition) 
and the third trial precede the two critical points. 

More generally, let the event of interest, E_r, have a (I ^ c ^ r) criti-
cal points. Let aat denote the number of outcomes Ea observed up to the tth 
critical point, for a = 1, 2, ..., k and t = 1, 2, . .., c. Then the proba-
bility generating function F(s) of Wr, as given by Johnson [5]s is 

F(s) i + (i - * > E — 1 
" + akt)la,= l 

(3.7) 

Special Cases 

(1) When the event of interest E_r is given by a succession of r identi-
cal events E1$ then there are r critical points associated with this event; 
and associated with the first critical point, we have 

CL-. -. — I, ^^l ~ 9 • • • > ^ k l = 5 

and associated with the tth critical point, we have 

alt = t, aat = 0 , a = 2 , . .., k for t = 2,"..., r. 

In this case, the probability generating function of the event of length 2% 
given by E1E1 . . . E± reduces to 

F(s) = 1 i + (i - * ) i : - T r t 
which agrees with (3.6). 

Next, taking ,n1 = l//c, we shall derive (2.9). We have 

(3,8) 

•Fis) = £ sn+rP{Wr = n + r] 

1 + (1 - s ) ( * • £ • ••••£)] 

from (2 .6) 

from (3 .8 ) 

7 
l[kr

 (V ,J, .k M k2 ' A 7 c ' - 1 

- - (fe- 1) I 1 + — + — + • • • + ~ 
\ S S' S 

- ) 

Therefore, we have the relation 

,n = 0 
(*.- i ) l i + - | + CIV 1, 
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From which it follows that 

k 
Z(s/k)n3n,r = 1 + (fc - l)(l +f + ••• +^)£(s/k)n + r&K!r. 

k 

Equating the coefficients of sn+r
5 on both sides, we find 

i+rQV<) 

which proves (2.9). 

+ 6 (fc) 1 n t r \9 

(2) Let the event of interest be E±E2 ••• ^ » which is of length &, and 
the outcomes occur in the specified order. This event has only one criti-
cal point3 and 

and all others are zero* In this special case, the probability generating 
function is given by 

F(s) - 1 

/ 
1 + (1 - s) 1 

S TF-, . . . IT. fc/J 

(3.9) 

(3) Let k = 2 and the event of interest be E^^i (of length 3) and let 
TTi = 4 - Tr2» ^n this case, there are o = 3 critical points and 

a x l = 1, a 1 2 = 25 a 1 3 = 3, 

a 2 1 = 0, a 2 2 = 0, a 2 3 = 0. 

With these values., 

J^sn + 3P[WS = w + 3] = P(s) - 1 1 •+ (1 - 8) £ (2/ff)* 
£ = 1 

= 1 1 + (1 - s)\~ + s2 W (3.10) 

s3 + 2(1 - s)(s2 + 2s + 4) 

From this, we obtain 

]T t n + 3 2 w + 3 P [ ^ 3 - n + 3] - F(2t) = £3/[l ~ t - t2 - t 3 ] , 
n = 0 

and, as defined in (2.2), 

) n + 3Dru ~ « j. Qi - ̂  
J n s 3 s 

2" + 3 P [ ^ = n + 3] (3.11) 

which are the Tribonacci numbers, 
From this generating function of the Tribonacci numbers, we obtain a 

representation for @n>3 i n terms of trigonometric functions, which is stated 
in the following proposition, 
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Proposition 3.1 

The Tribonacci numbers 3n 3 are given by 

1 ,1 + 02/2) (sin(n + 1)6 _ c3/2 sin nQ) 1 
\ sin sin 

Hn>3 (o - l)(c + 3)| 

for n = 2, 3, ..., where 

c = (1/3)[(7297 + 17)1/3 - (/297 - 17)1/3 - 1] 

and 0 = 7T - Arc sin (v3k- c2)/2 , and 3o,3 an^ £>i, 3 are defined to be equal 
to 1. From (3.11), we note that 3n,3 is given by the coefficient of tn-1 in 
1/(1 - t - t2 - t3). In order to find this coefficient, we use partial frac-
tions given by 

1 - ° + * ,. + * 
x _ t _ t2 _ t3 (c? - t) (d - t) (g - t) ' 

Let c, d9 and g denote the real and the complex conjugate roots of the cubic 
1 - t - t2 - t3 = 0, given by 

c = (l/3)(y - 6 - 1), 

d = (-1/6) (y - 6 - 2) + 0/3/6)£(y + 6) = (1/Ve)ei95 

and # = (l//c)e'iB 

where y = (7297 + 17)1/3, 6 = (7297 - 17)1/3
5 and i = 7-1. Now, (7, £>, and £ 

can be expressed in terms of o, d, and g% and we obtain 

1 _ t - t2 - t3 ( d " ^ " C ) C 

1 
(c - d)(d - g)d 

1 
(c - #)(d - g)g 

1 + — + — + — + 

1 + l + 7 + ,n-l 

- g g2 gn~x 

Therefore, 3 n 3 can be obtained as the coefficient of tn , given by 

_1 + e(g - c) _ c{e - d) 
"'3 o(e - d){g - c) 

-1 
o{o - d)(g - c) 

-1 1 
c(a - d){g - o) Qn-i 

(g - d)dn (d - g)gnJ 

„n-i (d - g) y (d - g) 

(here we use the fact that cdg =1) 

+ 
1 

0(0 - d)(g - c) 
cn+l{gn+l _ dn+l) ^ cn+2^gn _ ^ 

(g - d) (g - d) 
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The following identities between the roots c, d, and g can be verified. 

(i) c(c - d)(g - c) = (c - l){c + 3) 

and 

(ii) 
sin(fe + 1)9 = dk+1 - gk + 1 

sin 6 d - g ' 

where 0 is as defined in Proposition (3.1). 
Using these properties, we find 

(a - 1 ) ( C + 3 ) 3 n 3 = ci + C » / 2 ) j s i n & + l ! 9 _ a3/z slnnB) _ _ 1 
"• 3 ( s i n 6 s i n 9 / c " -an-X--

for n = 2, 3, ... . This representation corresponds to the "Golden Number" 
representation of the Fibonacci numbers. 

4. REMARKS 

We wish to thank a referee for bringing to our attention the article by 
Philippou & Muwafi [6], which also deals with the waiting time problem for 
the kth consecutive success of a Bernoulli process. There is not much of 
an overlap with our results, and the references cited by these authors may 
be of historical interest to the reader. 
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POWERS OF T AND SODDY CIRCLES 

JOHN H. SELLECK 
Winston-Salem, N.C. 27106 

(Submitted April 1982) 

1. INTRODUCTION 

T is the real root of the equation T3 - T2 - T - 1 = 0 , and is approxi-
mately equal to 1.8392867... T has the property: 

mn-3 _j_ mn-2 , rr,n-l __ m n 

which is similar to the formula that defines the Tribonacci numbers: 

tin - 3) + tin - 2) + tin - 1) = tin). 

In fact, T has a relationship to the Tribonacci numbers similar to that be-
tween (j) and the Fibonacci numbers. Binet?s formula for calculating the value 
of the nth Fibonacci number is 

fin) = »"- W\ 

Since (j)-1 = .618... < 1, we can see that the ratio between two adjacent Fi-
bonacci numbers is a close approximation to (J), and moreso as the value of n 
increases: 

f(n+l)/f(n) = (<|>n + 1 - (-((,)-<« + 1>)/(<|,"-- H ) - " ) ^ a s n ^ . 

Similarly, given Binet's formula for deriving a Tribonacci number tin): 

tin) = aTn + pn(3 cos n6 4- y sin n0) (see [1]), 

and since \r\ = .7374... < 1, we can see that the value of the ratio of two 
adjacent Tribonacci numbers is a close approximation to T, and moreso as the 
value of n increases: 

tin + I)/t(n) = (aTn+1 + rn + 1((3 cos nQ + y sin n6))/ 

(aTn + pn(3 cos n0 + y sin n0)) -> !F as n ->• °°. 

2. A GEOMETRIC APPLICATION OF T 

If three circles are externally tangent to each other, and the radii of 
each are three successive powers of T, then a fourth circle, internally tan-
gent to all three has a radius equal to the next higher power of T. 
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Proof: Given the three circles with centers A, B, and C: 

Since 

and 

then 

rA = Tn 

rB = Tn* 

rC = Tn+ 

(AB)2 = (Tn + Tn+1)2 = ']]2n + 2T2n + 1 -f rp2n + 2 

(AC)2 = (Tn + Fn+2)2 = lJ>2n + 2T2n+2 + ijiZn + h 

(AB)2 + (AC)2 = 2(T2n + T2n+1 + W2n+2\ _{_ rp2.n+2 _̂_ m2n+h 

_ m2n + 2 _j_ 2T2n+3 4. mZn + h 

And since (BC)2 = (Tn+1 + Tn+2)2 = m2n + 2 _|_ 2rp2n + 3 + T72 

then W 5 ) 2 + (AC)2 = (5(7)2. 

Triangle A3C is a right triangle; angle BAC = 90 degrees. Extend CA to 
E7 on the circumference of circle A. Draw BF parallel to ̂4(7; F is on the 
circumference of circle B. Extend FE to meet AB extended at XAB , which is 
the external center of similitude for circles A and B. 

Then, if XAB A = X> an unknown, and 

AE/FB = XI (J + AB) 

and given the aforementioned values for AB, AE = rA, and FB = rB, then 

Tn/Tn+l = x / ( x + Tn + ^n+lj 

J57" = X27" + ^ 2 n + ^ 2 

If we define 

X([pn+1 - rpn) - y 2 n + T2 

d = Tn/(Tn+1 - Tn) = ^/(T11'1 + Tn~2), 
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then 
mn + l __ mn _ mn-1 , rpn - 2 __ rpn I i 

and 
T2n + TZn+l = T2n+2/d; 

t h e r e f o r e , 
X = (T2n + ^ 2 n + l ) / ( T n + l _ Tn} = (T2n+2 /d) (T*/d) = Tn + 2 = VC. 

Where a tangent from XAB touches the circumference of circle C is the 
external center of similitude between circle C and the fourth circle (XCD), 
which is where they are internally tengent; a line drawn from XCD through C 
will contain the center of the fourth circle, D. Since XABA is perpendicu-
lar to AC and equal to rC, XCDC is parallel to AB and also perpendicular to 
AC. 

We can also construct the point XBD in the same manner; XBDB will be 
found to be perpendicular to AB and parallel to AC. So D is located at a 
point such that BD is parallel and equal to AC and perpendicular to AB and 
CD; AB and CD are in turn parallel and equal to each other. 

The definition of the construction of this fourth circle, D, is that it 
is tangent to each of the other three circles at a point where a line from 
the external center of similitude of the other two circles in each case is 
tangent to it. We do not need to construct point XAD to locate point D. 

Therefore, since 
vD = rC + CD = vB + BD, 

and having shown that 

CD = AB = rA + vB 

and that 

BD = AC = rA + rC, 

then 

vD = vA + rB + rC = Tn + ^n + 1 + ^n + 2 = Tn + 3. 

Q.E.D. 
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ON SOME D I V I S I B I L I T Y PROPERTIES OF FIBONACCI 

AND RELATED NUMBERS 

GERHARD ROSENBERGER 
Universitat Dortmund, Federal Republic of Germany 

(Submitted April 1982) 

1. Let x be an arbitrary natural number. We define, recursively, the 
following two sequences of rational integers. 

S_±(x) = - 1 , SQ(x) = 0, Sn(x) = xSn_1(x)-Sn_2(x), n > 1. (1) 

R_±(x) = 1, RQ(x) = 0, Rn(x) = xRn_1(x) + Rn_2{x), n> 1 (2) 

If x = 1 and n > 0, then Rn(x) is the nth Fibonacci number. By mathe-
matical induction, we immediately obtain 

R2n(x) = xSn(x2 + 2) (3) 
and 

R2n-1(x) = Sn(x2 + 2) - Sn_1(x2 + 2), where nE N U{0}. (4) 

The purpose of this note is to look at some divisibility properties of 
the natural numbers Rn(x) that are of great interest to some subgroup prob-
lems for the general linear group GL{2, Z ) . 

Of the many papers dealing with divisibility properties for Fibonacci 
numbers, perhaps the most useful are those of Bicknell [1], Bicknell & Hog-
gatt [2], Hairullin [4], Halton [5], Hoggatt [6], Somer [9], and the papers 
which are cited in these. Numerical results are given in [3]. Some of our 
results are known or are related to known results but are important for our 
purposes. As far as I know, the other results presented here are new or are 
at least generalizations of known results. 

2. Let p be a prime number. Let n(p, x) be the subscript of the first 
positive number Rn(x), n > 1, divisible by p. 

If p divides x} then 
n(p, x) = 2. 

If p = 2 and x is odd, then 
n(p, x) = 3. 

Henceforth, let p always be an odd prime number that does not divide x. 
Then it is known that n(p, x) divides p - e , e = 0 , 1, or-1, where 

(x2 + 4\ 

is Legendre's symbol (cf.5 for instance, [7]). 
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We want to prove some more intrinsic results about n(ps x). For this we 
make use of the next five identities; the proof of these identities is com-
putational, 

Rn+3(x) = (x2 + 2)Rn+1(x) - #„_!(*); (5) 

Rkn(x) = Sk{Rn+1(x) + Rn_1(x)) • Rn(x) i f n i s even, (6a) 

Rkn(x) = Rk(Rn + 1(x) + i ^ O c ) ) • i?„(tf) i f n i s odd; (6b) 

Rn + 1(x)Rn_1(x) - R2
n(x) = ( - l ) n ; (7) 

Rl + 1{x) - Rn + l¥(x)Rn(x) = ( - l ) n x 2 ; (8) 

R2n-1^) = Rn&) + i ?^_! (a r ) , (9a) 

a:i?2n(a:) = i?2
 + 1(a?) - i ? 2 . . ^ ) ; (9b) 

where n G N U { 0 } . 

3. The case n(p9 x) odd, Let n(ps x) - 2m- 1, m e N; i t i s m> 2. 

Proposition 1 

a, R2m + 1(x) = -i?2m_3(a:) (mod p) . 

b, i?2m_3(x) E -a:2 (mod p) . 

,C. i?2m_2(x) •= -1 (mod p). 

d. #2m~i-fc(x) E (-l)k + 1^(^)^9m-2(x) (mod P) f o r all integers k 
with 0 < k < 2m - 1.-

Proof: Statements • <a), (b)., and (c) follow directly from (3), (5), -(7), 
and (8) . 

We now prove statement (d) by mathematical induction. Statement (d) is 
true for k = 0 and k = 1 because R2m-i(x) E 0 (mod p) and i?i'(#) = 1. Now we 
suppose that statement (d) is true for all integers I with 0 ̂  £ < k? where 
1 < k < 2m - 1. 

For 1 < k < 2m ~~ 1 and k even* we obtain 

E (ttfffcOx;) +i?k-1(j:)) * i?2m_2(^) 

E (-l)fe + 2^+1(^)^2m_2(^) M p ) . 

For 1 < k < 2m - 1 and fc odds we obtain 

R2m-i-ik + i)<-^ = (~xRk(x) - Rk^(x)) • R2m„2(x) 

= (-l)fc + 2i?fc+1(x)i?2m.2(x) (modp). 

Q.E.D. 
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Corollary 1 

p E 1 (mod 4). 

Proof- Proposition 1 gives that -1 is a quadratic residue mod p. That 
means 

1 = ( y ) = ( -D ( p - 1 ) / 2 > 

and,, therefore., p E 1 (mod 4). Q„E,D. 

Proposition 2 

If p E 1 (mod 4 ) , then there is a natural number z such that 

z2 + 1 E 0 (mod p) 
and 

Ocs + l)i?^_1(a;) E s2 m (mod p ) . 

Proof: From (9) we get 

i?^(x) E - i ^ G r ) (mod p ) . 

Then there is a natural number z such that 

s2 + 1 E 0 (mod p) 
and 

Rm(x) E sfl^^Orr) (mod p) . 
Therefore3 

i?m + 1(tf) = arî Oc) + i?m_!(x) E (xs + l)Rm_1(x) (mod p) 
and 

z2m E (~l)w E i ^ O r ) ^ . . ^ ) - R2(x) E (a* + 2)R2_±(x) (mod p) 

by (7). Q.E.D. 

The following corollary is an immediate consequence. 

Corollary 2 

If p E 1 (mod p ) , then there is a natural number z such that 

z2 + 1 E 0 (mod p) 

and xs + 2 Is a quadratic residue mod p* 

Remark concerning Proposition 2: if p = 4^ + 1,q > 1, and g is a primi-
tive. root mod ps then s E ± <̂? (mod p) . But, unfortunately, no direct method 
is known for calculating primitive, roots In general without a great deal of 
computations especially for large p, 

Proposition 3 

Let n ) I be a natural number such that p divides R2n_-i(x). Then 
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i? 2 ( / c + 1)_1(x) • Sn_k(x2 + 2) E R2k_1(x) - Sn_ik + 1){x2 + 2) (mod p ) , 

for all integers k with 0 < fc < ft. 

Proof by mathematical induction: The statement is true for k = 0, since 

sn(x2 + 2) = s n _ i ^ 2 + 2> (mod P) [by ( 4 ^-

Now suppose the statement is true for an integer k with 0 < k < ft. Then we 
obtain 

R2k-1(x) • 5n_(k + 1 ) ( ^ 2 + 2) E i?2fc+1(ar) • Sn.k(x2 + 2) 

E {(x2 + 2)5n_(k + 1)(x2 + 2) - 5n_(A: + 2)(x2 + 2)) • R2k+1(x) (mod p ) . 

This gives 

E ((x2 + 2)R2k+1(x) - R2k_1(x)) • 5n_(k + 1)(x2 + 2) 

E ^(fc+D-i^) * Sn_(k + 1)(x2 + 2) (mod p) [by (5)]. Q.E.D. 

Corollary 3 

a. 0 t i?2(m_1)_1(x) • Sm_k(x2 + 2) E i?2fe-i(x) (mod P) f o r a 1 1 integers 

k With 0 < k < 772 - 1. 

b. i?2(k + ji)-i(̂ ) • ̂ -fc(^2 + 2) E i?2fc_1(a;) • £ m _ a + £)(x2 + 2) (mod p) for 

all integers k and £ with 0 < k, 0 < £, and 0 < k + £ < 777. 

Proof: Statement (b) is obviously true for k = m (if k = m then £ = 0); 
statements (a) and (b) are also obviously true for k = m - 1. Now, letting 
0</c<7?7- 2, we obtain (from Proposition 1) 

E i?^.!^) • Rzk+3(x) • Sm_{k + l)(x2 + 2) 

E R2k+3(x) • i?2/c+i(^) * ̂ -fe(^2 + 2) (mod P>> 

which gives 

^2(^ + 2)-!^) * Sm-k(&2 + 2) E i?2k_1(ar) • Sm_{k+2){x2 + 2) (mod p) 

because i?2^+1(^) ? 0 (mod p) . 
Now, by m a t h e m a t i c a l i n d u c t i o n , we o b t a i n 

i?2(/c + £ ) - i f o ) ' Sm-k&2 + 2) E R2k_^x) • ^ _ ( / c + £)(a?2 + 2) (mod p ) 

for all integers fc and £ with 0 < k, 0 < £, and 0 < fc + £ < 777 (this state-
ment is trivial for £ = 0 and just Proposition 3 for £ = 1). Now statement 
(b) is proved; statement (a) follows for k + I = m - 1. Q.E.D. 
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4. The case n(p9 x) even. Let n(p, x) = 2m, m e N; it is m > 2 because 
p does not divide x. Moreover, Sm(x2 + 2) E 0 (mod p) by (3). 

Proposition 4 

(x2 + 4)i?^_1(x) E {-\)m + 1
x
2 (mod p). 

Proof: From (6), we get 

-Rm_1(x) E i?w + 1(x) E xRm{x) + Rm_1{x) (mod p) 
and 

xRm(x) E -27?^ Or) (mod p) 

because n(p, x) is minimal. Therefore, 

( - l ) V E a 2 ( ^ + 1(a?)i?OT.1(a:) " * £ ( * ) ) = ~ ( ^ 2 + 4 ) 2 ? ^ (ar) (mod p) 

by ( 7 ) . Q.E.D. 

C o r o l l a r y 4 

If p E 1 (mod 4)5 then x2 + 4 is a quadratic residue mod p. 

Proof: If p E 1 (mod 4)5 then (— ] = 1 and the statement follows imme-
diately from Proposition 4. Q.E.D. \^' 

/x2 + 4\ 
If we ask for prime numbers p! with pr = 1 (mod 4) and ( -7—J = -1, we 

obtain the following. \ P / 

Corollary 5 (Special Cases) 

a. If x = 1, then p t q (mod 20), where q = 13 or 17. 

b. If x = 2 or 4, then p ? 5 (mod 8). 

C. If x = 3, then p f q (mod 52), where q = 5, 21, 33, 37, 41, or 45. 

d. If x = 5, then p $ q (mod 116), where q = 17, 21, 37, 41, 61, 69, 73, 
77, 85, 89, 97, 101, 105, or 113. 

Analogous to Proposition 1, Proposition 3, and Corollary 3, we obtain 
the following results. 

Proposition 5 

a. R2m + Z(x) E -R2m_z(x) (mod p). 

b. Rz
lm^2(x) E x2Sm_1(x2 + 2) E x2 (mod p) . 

.C. ^ ^ W = 1 (mod p). 

d. R2rn_k(x) E (-l)k+1i?fc(a:)i?2/n„ x Or) (mod p) 

for all integers fc with 0 < k < 2m. 
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Proposition 6 

Let n ) 1 be a natural number such that p divides R2n(x). Then 

R2k(oo) • Sn_(k+1)(x2 + 2) E R2(k + 1)(x) • Sn„k(x2 + 2) (mod p) 

for all integers k with 0 < k < n. 

Corollary 6 

a. 0 ^ fl^.^Oc) • ̂ -fe(^2 + 2) = fl^Oc) (mod p) 

for all integers k with 0 < k < w - 1. 

for all integers fc and I with 0 < k, 0 < £, and 0 < Zc + £ < m. 

5. Final Remark. 1 wish to thank the referee for two relevant refer-
ences that were not included in the original version of the paper. He also 
noted that some results of this paper are special cases of results of Somer 
[9] for the sequence 

TQ(x, y) = 0, T1(x9 y) = 1, Tn(x, y) = xTn_1(x) y) + yTn_2(x, y), n > 2, 

where x and y are arbitrary rational integers. Proposition 1(c) is a spe-
cial case of Somer's Theorem 8(i); Proposition 2 is a special case of his 
Lemma 3(i) and the proof of his Lemma 4 when one takes into account the hy-
pothesis that (-l)/(p) = 1; Corollary 4 is a special case of Somer !s Lemma 
3(ii) and (iii); finally, Proposition 5(c) is a special case of his Theorem 
8(i). 

But, on the other side, some results of Somer's paper follow directly 
from known results about the numbers Sn(x) and Rn(x). For, let x and y now 
be arbitrary complex numbers with y £ 0. Let Sn(x), Rn(x), and Tn(x9 y) be 
analogously defined as above. Then 

Tn(x, y) = {^r^sJ-^A = ( V ^ - W - ^ V n> 0, 

where Vy and v-y are suitably determined (see, for instance, [7]). 
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LETTER TO THE EDITOR 

JOHN BRILLHART 
July 14, 1983 

In the February 1983 issue of this Journal, D. H. and Emma Lehmer introduced 
a set of polynomials and, among other things, derived a partial formula for 
the discriminant of those polynomials (Vol. 21, no. 1, p. 64). I am writ-
ing to send you the complete formula; namely, 

D(Pn(x)) = 5n-1n2n~hF1
n

n-\ 

where Fn is the nth Fibonacci number. This formula was derived using the 
Lehmers' relationship 

(x2 - x - l)Pn(x) = xzn - Lnxn + (-l)n, 

where Ln is the Lucas number. Central to this standard derivation is the 
nice formula by Phyllis Lefton published in the December 1982 issue of this 
Journal (Vol. 20, no. 4, pp. 363-65) for the discriminant of a trinomial. 

The entries in the Lehmers1 paper for D(l?h(x)) and £>(P6(x)) should be cor-
rected to read 

28 • 3" • 53 and 232 • 38 • 55, 

respectively. 
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ON THE SOLUTION OF {E2 + (Ap - 2)E + (1 - kp - X2q)}mGn = nk, 
BY EXPANSIONS AND OPERATORS 

H. N. MALIK 
P.M.B. 1032, Birnln-Kerbi, Sokoto State, Nigeria 

(Submitted September 1981) 

I. INTRODUCTION 

This paper continues the work initiated in the author's joint paper [1] 
with A. Qadir, in which the authors found the particular solution of the dif-
ference equation (E2 - E - l)Gn = nk, using two methods, that is, the usual 
operator method and the method of expansions, eventually establishing an iden-
tity involving the Fibonacci numbers Fn defined recursively by F1= F2 = 1 and 

Fn + 2 = Fn+1 + Fn> n ^ l > 

the Lucas numbers Ln given by L0 = 2, L± = 1, and 

,Ln+2 = Ln+1 + Ln3 n > 0, 

and the Sterling numbers of the second kind. 
In this paper, the author uses the same two methods to solve a more gen-

eral difference equation, namely, 

{E2 +-(Xp - 2)E + (I - Xp - X2q)}mGn = nk, 

getting an identity involving the Sterling numbers of the second kind, the mth 
convolved Fibonacci numbers, F™(p9 q), where 

(1 - px - qx2)m i-o 

and the generalized Lucas numbers, where 

Ln + l(P> ? ) = PLn + l(P> ? ) + VLn(P> ? ) > L 0 <P > & = 2> M ? ' ^ = P' 

The plan for this work is as follows. First, in II we find the particu-
lar solution of the above-mentioned difference equation by the usual operator 
method. Then, in III we find the particular solution of the same equation by 
the method of expansions. Finally, in IV we compare the coefficients of sim-
ilar powers of n and those of A, which finally results in the aforesaid iden-
tities . 
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ON THE SOLUTION OF [E2 + {Xp - 1)E + (1 ~ Xp - X2q)}mG = n^5 

BY EXPANSIONS AND OPERATORS 

II. PARTICULAR SOLUTION BY THE METHOD OF OPERATORS 

From [1] it is known that 

„* k i ( - l ) P ( J ) ( p ) ! 5 ( i , p )n f e - £ 

JP _ n 2—d L-J 
i-o r - o ( i - ay+1 

k k ( - l ) r ( 5 ) ( r ) ! 5 ( i , r)nk~i 

i = o r = o (x _ ay+i 

Where S(i, r) are the Sterling numbers of the second kind, the shift 
operator E is defined as 

Ef(n) = f(n + 1) 

and the difference operator A is defined as 

A/(n) = fin + 1) - fin) = (E - l)f(n). 

That is, A = E - 1. 

Therefore, / ̂  \ 

(tf - 1 + Xa) im0 rm0 xr+la 

Also, 

(E - 1 + Xa)(E - 1 + \b) 

k k k k (-DP+t(J)(fe I *)(*)•(*)!£(£, r)S(e, *)«»<-*-« 
V* \^ V^ X""* 
i-o r = o s = o t-o A 2 + r + t a r + 1 Z ? t + 1 

Letting £ = i + s implies min(£) = 0, max(£) = k, so that 

te - 1 + Aa)te ~ 1 + Afc) 

= E E E E - U A ^ - ^ — 
i = o r = o £ = o t = o X2 + r+ta1 + rb1 + t 

Putting j = v + £, we have min(j) = 0 and max(j) = k. Now, recall that 
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and change £ to i2, i to i15 p to j 1 5 and j to j 2 , to get 

(£ - 1 + Xa) (E - 1 + Xb) 

£ £ E E 
__ * * * ^ AOA i*>* ~ ^-i>!^* " **-!• h - A ^'u 

* _ = 0 i2=0 j \ = 0 j2=0 A 2 + J ' 2 a 1 + J ' 1 & 1 + J ' 2 ~ « 7 ' 1 

where i 3 = k , i 0 = 0 = j 0 . 

Using induction on m, it can be proved that 

(E - 1 + Xa)m(E - 1 + XbY 
(2 .1 ) 

( - 1 ) J - n I - )(Jt)lS(It, Jt)nk~^ 

m 
where i2/r? + 1 - k5 i0 = 0 = j 0 , :TW = £ (~l)ZJi> 

i = l 
It = it ™^t~i anc^ ^ = e7"t ~ 0t-\ ^or every t > 0. 

Let G(n, m9 k) be the particular solution of the difference equation 

{E2 + (Xp - 2)E + (1 - Xp - A2<7)}X = w*, 

and let a, Z? be the roots of x2 = px + q. 

Noting that the left-hand side of. (2.1) is symmetric in a3 bs we inter-
change a and b in (2.1) and add the resulting equation to (2.1),. Using the 
fact that a + b = p and a£ = -q, we get, after a little manipulation, 

S(n, m, k) . (2.2) 
• 2m /H+l\ 

l k k k k t= 1 \ ^t J *•• 2m-l 

H~o i2,-o 3\-o j2n=o X2m + J^(-~q)n^T^ . - .. 

where Ls = L8(p» q). 
Interchanging a, Z? in (2.1) and subtracting the resulting equation from 

(2.1) and dividing both sides by a ~~ b, we also have 

2 / 7 1 - 1 / ^ '£+ 1 

E E E E — ——— — - 0 (2 .3) 

where _?_• = Fs(p, q). 

2 6 2 [Nov, 



ON THE SOLUTION OF { E 2 + {X2 - Z)E + (l - Xp - X2q)}mG = nk> 
BY EXPANSIONS AND OPERATORS 

3. PARTICULAR SOLUTION BY THE METHOD OF EXPANSIONS 

A Particular Solution of G(n, ms k) is given by 

nk nk 
G(n5 m, k) 

(E - 1 + Xa)m{E - 1 + Xb)m (A + Xa)m(A + Xb)m 

That is, 

G(ns m, k) = , (3.1) 
(A2 + ApA - X2qf 

where a, b are the roots of x2 = px + q. Since a + b = p, ab = -q, (3.1) be-
comes 

7, nk {-l)mnk 

G(n, m, k) = • - — (A2 

1 
X2m 

where F™(p, q) are the 777th convolved Fibonacci numbers. 

Therefore, 
(_um k F™(p, q)Ai

 k 
G(n, m, k) = ±^- £ £ S(k, j) • nU), 

X2mqm^o \ i q i j=o 

where S(k9 j) are the Sterling numbers of the second kind and 

nU) = n(n - 1) ... (n ~ j '+ 1), for all j •> 1, n(o) = 1. 

Therefore, 

• ' •• fc k (-l)mF™(p, q)U)(i)S(k, j)n(j''i} 

£(n, 777, k) = E 2 " : 

t =0 j = 0 m + i^2m + z 

k k (~l)mU)(i)Ft
m(Pi q)S(k, jV J " ~ 0 

E E i = 0 j = i ra.+ i^2m + i 

k k-i (-l)m(J + ^(i)\Fz
m(p, q)S(k, j + i)nu) 

= £ E — - ^ — ^ — • • — . 
i=0 j=0 m+z^2m+z 

Now, change J to k - % - j in order to reverse the order of summation of 
j . Then, putting i + j = £ implies that min(£) = 0, max(£) = k9 so that 

k k (-D'Wif " J + *W(p, <?)£(*, k - l + i ) n ( k ' ^ 
G(n, m, k) = £ £ 1—_J___Z _ 

i=0 £=0 m + i-^lm+i 
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k k k-t (-l)m(f)!(/C ~ \ + *)F?{p, q)S(k, k - i + i)S*-*n* 
~ 2*t I** Z-» ' ' ' ' r~~ ~ "• 
i = 0 £ = 0 t'-0 m + v^2.m + -L 

where s\~l are the Sterling numbers of the first kind. 

Let us once again reverse the order of summation of t by changing t to 
k - I - t. We then let £ + t = r so that min(r) = 0 and max(p) = k* Then 

G(n9 m, k) = X E E 
(-l)m(i)l(k ~ J + ^ ( p , q)S(k, k - £ + i)s£: k fc k (-i) w]A' • ')*'i\p> q)s{K, K - i + ^s;;"V"r 

i=0 £ = 0 2" = 0 m+i^2m+i 

Now, replace £ by & - £ in order to reverse the summation of £. Next, note 
that 

S(k, I + i) = 0 if I > k - i and ^ _ r = 0 if I < k - r. 

Also, from [2], we have 

F(A:V-* + *<--(JK.o 
Hence, writing %lm for r and j 2 m for i, we obtain 

(-l)mFm (P, ? ) ( / )(J2B)!S(i2ffl, J2n)n*-^-

Gin, m, k) = £ E — : • (3.2) 
^2 m=0 j 2 f f l - o < ?

w + « 7 2 . X 2 m + J 2 m 

4. THE DERIVATION OF THE IDENTITY 

Equating the coefficients of similar powers of n from (2.2) and (3.2), 
and dividing both sides of the resulting equation by the common factor 

Vlml '2m t 
we have 

i .E E E E _ . . (A.i) 
•*i-o **,-<> rfl-o 4 , -0 x 2 m + ^ » ( - ^ ) m + r -

E 
, ^mti2m)\(fya,m, c2m)Fi 

j 2 „ - 0 <?<" + J2 ,»x 2 m + " 7 2 ' " 

where f f = F.m (p , q). 
Jim J 2m 

Finally, equating the coefficients of similar powers of A in (4.1), we 
obtain 
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* * * * 2n"1
1ft;1)(J*)! (-1)r ,""15(J**J*)L'-".-> 

E E E E — — . (4-2) 

= 2(j2m)!5(i2m, J 2 m ) ^ . 

Equating (2.3) and (4.2) gives the identities we wanted to derive. 
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ON FIBONACCI NUMBERS OF THE FORM PX2j WHERE P IS PRIME 

NEVILLE ROBBINS 
San Francisco State University, San Francisco, CA 94132 

(Submitted April 1982) 

INTRODUCTION 

Let p denote a prime, n a natural number, Fin) the nth Fibonacci number. 
Consider the equation: 

F(n) = px1, (*) 

In [3], J. H. E. Cohn proved that for p = 2, the only solutions of (*) are 

(i) n = 3, x2 = 1 
and 

(ii) n = 6, x2 = 4. 

In [8], R. Steiner proved that for p = 3, the only solution of (*) is n - 4, 
a:2 = 1. Call a solution of (*) trivial if x = 1 . In this article, we solve 
O ) for all odd p such that p E 3 (mod 4) or p < 10,000. 'Except for p = 3,001, 
all solutions obtained are trivial. Lin) denotes the nth Lucas number. 

Definition 1 

z{p) is the Fibonacci entry point of p, that is, 

zip) = m±n{k : k > 0 and p\F(k)}. 

Definition 2 

yip) is the least prime factor of zip), 

PRELIMINARY RESULTS 

(1) Film) = Fim)Lim) 

(2) (FC/T?), L(m))|2 

(3) If \\ a^ - b and the a^ are pairwise coprime, then each ai = b^) where 
i = l 

m 

the 2P̂  are pairwise coprime and H b^ = b * 
i = l 

(4) p\Fin) iff s(p)\n 
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(5) F{m) = x2 implies m = 1, 2, or 12 

(6) F(??2) = 2x2 implies m = 3 or 6 

(7) L(?7?) = ̂ 2 implies 777 = 1 or 3 

(8) L(m) = 2x2 implies m = 6 

(9) p > 5 implies 2/(p) < p 

(10) (F(77z), F(km)/F(m))\k 

(11) p = 3 (mod 4) implies z{p) is even 

(12) p|F(p) iff p = 5 

Remarks: (5) through (8) are Theo rems 1 through 4 in [3]. (9) follows 
from Theorem 3 in [7]. (10) is Lemma 16, p. 224 in [6]. The other prelimi-
nary results are elementary or well known. 

THE MAIN THEOREMS 

Theorem 1 

If n = 2m, then the unique solution of (*) is p = 3, n = 4, x2 = 1. 

Proof: Hypothesis and (1) imply F(m)L{m) = px2. Now (2) and (3) imply 
F(m) or L(jn) is a square or twice a square. By (5), (6), (7), and (8), we 
have rn = 1, 2, 3, 6, or 12. The only case which yields a solution of <*) is 
m = 2, so that n = 4, p = 3, x2 = 1. 

Corollary 1 

If p E 3 (mod 4), then the unique solution of (*) is p = 3, n = 4, a;2= 1. 

Proof: Follows from hypothesis, (11), (4), and Theorem 1. 

Theorem 2 

If n is odd, then any solution of (*) requires that n = s(p) = q, a prime, 
unless n = x2 = 25 and p = 3,001. 

Proof: Hypothesis and (4) imply that z(p) is odd. By [5, pp. 643-45], 
we have n = s(p) E ±1 (mod 6), so that n = q^m, where ^ > 5, k > 1, and each 
prime factor of 777 exceeds q. If ^|F(w), then (4) and Definition 2 imply 
y{q)\m. But (9) implies z/ (̂7) < q, a contradiction. Therefore, 

(<?-, F(m)) = 1. 

Now (*) implies px
2 = F(m) * F(qkm)/F(m) . Let rf = (F(/??)5 F{qkm)/F{m)). (10) 

implies d\qk. Therefore, the only possible prime divisor of £? is <?. But, 
since (q, FQn)) = 1, we have d = 1. Since m <n, (4) implies (p, F(m)) = 1, 
so JFOW) is a square. Since m is odds (5) implies m - 1, so that n ~ qk. 
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Therefore, px2 = F ^ ' 1 ) * F(qk) /F(qk~ 1) . 

Let d' = ( i ^ " 1 ) , Fiq^/F^'1)). (10) implies df = 1 or <?. If dr = 1, then, 

since n = s(p) = qfc, we have (p, P(qk-1)) =1. Once again, this implies that 

Fiq1"-1) = 1, hence qk~1 = 1 and k = 1. If cZ' = q, then (12) implies <7 = 5, 

so that (3) implies P(5k_1) = 5x\. We have 

^2 = ^(5fc-i)/^(5) = P5,_2(ll) 

in the notation of [5]. By Theorem 3 in [4], this implies 5k~2 = 1, i.e., 

n = 25, and thus p = 3,001. 

Theorem 3 

If 2<p< 10,000, then the unique nontrivial solution of (*) is p = 3,001, 
n = x2 = 25; all other solutions are trivial with 

(n, p) = (4, 3), (5, 5), (11, 89), (13, 233), or (17, 1,571). 

Proof: If n is even, then Theorem 1 implies (n, p) = (4, 3). If n is 
odd and p ^ 3,001, then Theorem 2 implies n = s(p) = q, a prime. We there-
fore consider all p such that 5 ̂  p < 10,000, p ^ 3,001, and q = s(p) is an 
odd prime. If q < 229, namely for p = 5, 13, 37, 73, 89, 113, 149, 157, 193, 
233, 269, 277, 313, 353, 389, 397, 457, 557, 677, 953, 1,069, 1,597, 2,221, 
2,417, 2,749, 2,789, 4,013, 4,513, 5,737, 6,673, or 8,689, the conclusion 
follows from the examination of the prime factorization of F(q) in [2]. Ac-
cording to [1], there are 101 primes,. p, such that p < 10,000 and q=z(p) is 
a prime,exceeding 229. For each such p, to show that F(q) ^ px2, it suffices 
to find an odd prime modulus, t, such that F(q)/p is a quadratic nonresidue 
(mod t) . The results are listed in Table 1. For each p, the corresponding 
t is the least required prime modulus. In each case, t ^ 19. 

TABLE 1 

p q t F(q) (mod t) p (mod t) 1/p (mod t) F(q)/p (mod t) 

2 1 1 2 
5 8 12 3 
1 5 3 3 
2 1 1 2 
1 2 3 3 
2 1 1 2 
2 1 1 2 
1 5 3 3 
2 3 4 8 
2 1 1 2 
6 4 2 5 
2 1 1 2 
2 1 1 2 
6 4 2 5 
1 2 2 2 

613 
673 
733 
757 
877 
997 
1093 
1153 
1213 
1237 
1453 
1657 
1753 
1873 
1877 

307 
337 
367 
379 
439 
499 
547 
577 
607 
619 
727 
829 
877 
937 
313 

3 
19 
7 
3 
5 
3 
3 
7 
11 
3 
7 
3 
3 
7 
3 
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1933 
1949 
1993 
2017 
2137 
2237 
2309 
2333 
2437 
2557 
2593 
2777 
2797 
2857 
2909 
2917 
3217 
3253 
3313 
3517 
3557 
3733 
4057 
4177 
4273 
4349 
4357 
4637 
4733 
4909 
4933 
5009 
5077 
5113 
5189 
5233 
5297 
5309 
5381 
5413 
5437 
5653 
5897 
6037 
6073 
6133 
6217 
6269 
6337 

967 
487 
997 
1009 
1069 
373 
577 
389 
1237 
1279 
1297 
463 
1399 
1429 
727 
1459 
1609 
1627 
1657 
1759 
593 
1867 
2029 
2089 
2137 
1087 
2179 
773 
263 
409 
2467 
313 
2539 
2557 
1297 
2617 
883 
1327 
269 
2707 
2719 
257 
983 
3019 
3037 
3067 
3109 
1567 
3169 

7 
3 
3 
5 
3 
7 
3 
5 
3 
5 
7 
3 
5 
3 
3 
3 
5 
3 
7 
5 
3 
3 
3 
5 
11 
3 
3 
13 
3 
7 
3 
3 
3 
3 
3 
7 
7 
3 
7 
3 
5 
17 
3 
3 
3 
3 
3 
3 
5 
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TABLE 1 (continued) 

q t F(q) (mod t) p (mod t) 1/p (mod t) F(q)/p (mod t] 

6 1 1 6 
1 2 2 2 
2 1 1 2 
4 2 3 2 
2 1 1 2 
5 4 2 3 
1 2 2 2 
4 3 2 3 
2 1 1 2 
1 2 3 3 
1 3 5 5 
1 2 2 2 
1 2 3 3 
2 1 1 2 
1 2 2 2 
2 1 1 2 
4 2 3 2 
2 1 1 2 
6 2 4 3 
1 2 3 3 
1 2 2 2 
2 1 1 2 
2 1 1 2 
4 2 3 2 
2 5 9 7 
1 2 2 2 
2 1 1 2 

11 9 3 7 
1 2 2 2 
6 2 4 3 
2 1 1 2 
1 2 2 2 
2 1 1 2 
2 1 1 2 
1 2 2 2 
6 4 2 5 
2 5 3 6 
1 2 2 2 
2 5 3 6 
2 1 1 2 
1 2 3 3 
5 9 2 10 
1 2 2 2 
2 1 1 2 
2 1 1 2 
2 1 1 2 
2 1 1 2 
1 2 2 2 
4 2 3 2 
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TABLE 1 (continued) 

p 

6373 
6397 
6637 
6737 
6917 
6997 
7057 
7109 
7213 
7393 
7417 
7477 
7537 
7753 
7817 
7933 
8053 
8317 
8353 
8369 
8573 
8677 
8713 
8753 
8861 
8893 
9013 
9133 
9277 
9377 
9397 
9497 
9677 
9697 
9817 
9949 
9973 

<7 

3187 
457 
3319 
1123 
1153 
3499 
3529 
1777 
3607 
3697 
3709 
3739 
3769 
3877 
1303 
3967 
4027 
4159 
4177 
523 
1429 
4339 
4357 
1459 
443 
4447 
4507 
4567 
4639 
521 
4699 
1583 
1613 
373 
4909 
829 
4987 

t 

3 
13 
5 
7 
3 
3 
5 
3 
17 
11 
3 
3 
5 
3 
3 
13 
3 
5 
11 
5 
5 
3 
3 
5 
5 
7 
3 
11 
5 
3 
3 
3 
7 
3 
3 
3 
3 

F{q) (mod t) 

2 
8 
1 
2 
1 
2 
4 
1 
13 
2 
2 
2 
4 
2 
1 
8 
2 
1 
2 
2 
4 
2 
2 
1 
2 
1 
2 
2 
1 
1 
2 
1 
2 
2 
2 
2 
2 

p (mod t) 

1 
1 
2 
3 
2 
1 
2 
2 
5 
1 
1 
1 
2 
1 
2 
3 
1 
2 
4 
4 
3 
1 
1 
3 
1 
3 
1 
3 
2 
2 
1 
2 
3 
1 
1 
1 
1 

1/p (mod t) 

1 
1 
3 
5 
2 
1 
3 
2 
7 
1 
1 
1 
3 
1 
2 
9 
1 
3 
3 
4 
2 
1 
1 
2 
1 
5 
1 
4 
3 
2 
1 
2 
5 
1 
1 
1 
1 

F(^)/p (m 

2 
8 
3 
3 
2 
2 
2 
2 
6 
2 
2 
2 
2 
2 
2 
7 
2 
3 
6 
3 
3 
2 
2 
2 
2 
5 
2 
8 
3 
2 
2 
2 
3 
2 
2 
2 
2 

CONCLUDING^ REMARKS 

According to [2], additional trivial solutions exist (corresponding to 
larger p) for n = 23, 29, 43, 83, 131, 137, 359, 431, 433, 449, 509, and 569. 
It remains to be decided whether (i) any nontrivial solutions exist apart 
from those already known, and/or (ii) infinitely many p exist having trivial 
solutions. 
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A GENERAL METHOD FOR DETERMINING A CLOSED FORMULA FOR THE 
NUMBER OF PARTITIONS OF THE INTEGER n INTO m POSITIVE 

INTEGERS FOR SMALL VALUES OF m 

W. J. A. COLMAN 
North Each London Polytechnic, Barking Precinct, 

Long-bridge Road, Dagenham, RM8 2AS 

(Submitted May 1982) 

The function p (n) is defined as the number of partitions of the integer 
n into exactly m nonzero positive integers where the order is irrelevant. A 
general method for determining a formula for pm(n) for small values of m is 
given. The formulas are simpler in form than any previously given. 

1. INTRODUCTION 

If pm(n) is the number of partitions of the integer n into exactly m posi-
tive integers and if p*(n) is the number of partitions into at most m parts 
and p(m) is the usual partition function, then there are some simple known re-
lationships between them. 

P (ri) - p (n - m) = p (n - 1) 

P*(rc) = pm(n + m) 

pirn) = pm(2m) 

The first recurrence relationship can be solved sequentially starting with 
m = 2 to determine the exact solution for small values of m. The method is 
given in Section 2. The procedure is to determine the complementary function 
and the particular solution to satisfy the m initial conditions pm(n) = 0 for 
0 < n < m - 1 starting with p1(n) = 1. This leads to the following forms. 

P2(n) = [yyjj-] 

n3 + 3n2 + ~{9n(-~l)n 

ph(n) -[ 
p3(n) 

9n} + 32 

4!3! 

+ 3" 
3!2! 

Ps<-

pAn) 

\nh + 10n3 + 1 On2 - 75n - 45re(-l ) n + 905 1 
5!4! 

n5+22~nh+l26^n3-ll2\n2-l599in+ll2~(-l)n(n2-\-9n)+l066^n cos ^ + 19224" 
Z 3 l b ^ - ^ 3 
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HISTORICAL NOTE 

Exact determinations of pm(n) for small m have been given in a variety of 
forms by many writers. See Dickson's History of the Theory of Numbers, Vol. 
2, and The Royal Society Mathematical Tables, Vol. 4, by H. Gupta and others 
for extensive details of previous work together with references. De Morgan 
(1843) gives formulas for p3(n) and p4 (n) which are equivalent to the above 
forms (see Dickson, p. 115). In Gupta (p. xvi) , formulas are quoted in the 
form below, where p(n, 777) = p {n + m) . 

p(n, 1) = 1 

p(n, 2) = ~(n + | ) + ~{-l)n 

p{n, 3) = j^(n2 + 6n + ^~) + |(-l)n + |(a£ + a f ) 

p(n, 4) = T ^ ( n 3 + 1 5 n 2 + ^ + ^ ) + ̂ ( n + 5) (-l)n +-^-(a5"x - af " 2) 
9/3 

+ j^(in+i3n) 

where a3 = exp is a cube root of unity. 

This development is essentially due to J.W. L. Glaisher (1908) (see Gupta and 
Dickson, p. 117). Glaisher obtained complete results to m = 10 and the re-
sults are given to m = 12 in Gupta, but the formulas obtained are very com-
plicated. 

Further results are given in Gupta, but all the exact formulas given for 
small 777 are more complicated than those given here. 

SECTION 2 

Write the recurrence equation in the form 

p (n + m) - p {n) = p • (n + m - 1). 

The solution of this equation is composed of two parts. 

1. The complementary function given by the solution of 

v (n + m) - p (n) = 0 . 

This simply g ives the form 

a±Cii + a 2 a " + * • " + ama%> 

where the az; are constants and the 0^ are the mth roots of unity where a± = 1 
(say). 
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2. The particular solution is determined apart from the arbitrary con-
stant which is included in (1) by the solution of the equation 

A(rn){pm(n)} = pm_ ±(n + m - I), 

where A(m) is an operator such that 

A(w){pm(n)} = pm (n + m) - pm(n). 

Thus we can write formally 

V M = irr~T~{p An + m - 1)}, 

where . , N is the inverse operator to A ( m ) . 

To Determine the Action of A(m) 

2.1 Let p(n) be any polynomial function in n with constant coefficients. 
Then 

/ B mD B^m3D3 B6m5D5 \ 

__{p(n)} = j _ + Bi + _ i _ + _J___ + ____ + .. .J {p(n)h 
where the B are the Bernoulli numbers and the right-hand side is finite as 
p(n) is a polynomial. This is a well-known result. 

2.2 Consider A(77?) < — — — 1 , where am + .1 

am - 1 

1 {an} = —^— when "a777-^ 1. 
'• A(m) a . _ x 

2.3 Consider A(m) { -.}•,-where am = 1 

(n + m)an + m - nan 

1 -{â } = IBl w h e n a" 
A (m) m 

2.4 Let f(n) and ̂ (n) be any functions of n; then 

h(m){f(n)g(n)} = f(n + 7??)̂ (n + 777)- f(n)g(n) 

= f(n + 77?)̂ (n + 777) - f(ji)g(n + 777) 4- f{n)g(n + 777) 

- f(n)g(n) 
(continued) 
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= g(n + m)A(m){/(n)} + f {n)K{m){g(n)} 

•'• f(n)g(n) = Jfifi{g(n + w)A(m){/(n) }|+^-|/(n)A(m){?(n)}| 

^y|/-(n)A(m){?(n)}| = f(n)g(n) - j ^ \ g i n + m)A(m){/(n)} 

Put A(m){g{n)} = an 

1 nn 

3^ ~ T7^{an} = ~ if «m ̂  1 
A W am - 1 

^/(*)a»> - An) • - ^ - A k {^TT A(W){/(K)} 

= l_v_i— _ _ ^ ^ <anA(w){/(n)}V 
aw - 1 am - 1 

Thus, if /(n) is a polynomial in n, then this is a reduction formula that can 
be successively applied to determine the left-hand side. From which it fol-
lows that if am ^ 1 and f(n) is a polynomial of degree p, we have 

1 i a V W J = a " , (l + a " A(m)) \f(n)} 
A (777) ^ _ x 

a" d . - ^ - A +/__^_\V -
am - 1 \ aOT - 1 

\ a m - 1/ / 

2 .5 Consider A (TTZ){/(w)a"} , where am = 1. 

.'. A(77?){/(n)an} = f ( n + m)an + m - f(n)an 

= a " ( / ( n + 777) - f(n)) 

= anA (777) { / (n )} 

j?(n)a" ~ { a " A W { / W } J . 

Put Mm){fin)} = p(n) . 

" ^ = A^( n ) } 

••- ^ y ( ^ p ( n ) } = «»/(«) = aWA^ofP<")> i f a77? = K 
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Thus, if p(n) is a polynomial and am = 1, we have 

1 / 1 B2mD B m3D3 

A 0 ^ a n P ( n ) } = a ^ + ^ +TT + - 4 ! - . + . '--){P( w ) }'-

This determines the action of A / x in all cases. Thus, for 
Mm) 

p (n + m) - p (n) = p An + m - I), 

we have that 

Vm (") = a i < + a2a£.+ * ' * + ama^ + ̂ ^y{pw-i(^ + m - 1)}, 

where the a^ are constants and the a^ are the wth roots of unity with a±= 1. 
We have the w conditions p (n) = 0 for 0 ̂  n < /?? - 1 for the determination of 
the m constants. 

Thus, the p (n) can be determined sequentially for values of 777 starting 
with m = 2. 

Now, pi(n) = 1, 

.'• p2(n + 2) - p2(n) = px(n + 1) = 1 

p2(n) = <21(1)*.+ a2(-l)n +—^-{1} A(2)' 

ax + a2(-l) + — 

Now, p2(0) = a1 + a2 = 0 

p2 (1) = a1 - a2 + y = 0 

_I =1 
.. a1 - ^, a2 ^ 

/- P2(n) = -I + i(-l)- + 5 • .. 

Now p2(n) is an integer for all positive integral n. Now 

max j-i + j(-l)n\ = 0v for n = 2 (say). 

Thus, we can write p2(n) = —- . 

m = 3 

:. p3(n + 3) - p3(n) = p2(n + 2) = - | + {(-!)" + ^~~^ 

.. p3(n) = ax + a2( 2 ~ ~ j . + a i \ 2 J ~ 12 = 8"(" } 

(rc + 2)2 _ (n + 2) 
12 4 
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5 
72' ^2 "-3 72 

n1 7 

This gives a1 = ~JJ, a2 = a3 = ŷ -

^2 1 /, , /2nv. 

__ __ L n » , 8 (-1 + i/3\n 8 7-1 - i / 3 \ " 
12 72 8^ J 7 2 \ 2 j 72V 2 

12 + 7 2 U 6 c o s ( i f ) - 7 -9 ( - l )< 

But p 3(w) is an integer for all n, and so as 

we have p 3(n) = 

m = 4 

16(cos(^p) - 7 - 9(-l)"J = 18, for n = 3 (say, 

12 72J L 12 J" 

Pl|(n) = a, + a 2 ( - l ) " + a3(.i)" + a„ (-£)?* + :(W ^ Y 
288 

-1 + i/3\" 
(n + 3) 2 (» + 3) 1 n(-l)n i 

24 18 8 4 72 ^ + .^ 

H^r (^-i 
72 -1 -i/3 

which can be reduced to 

ph{n) = a1 + a2(-l)n + a3(i)n + ak(-i)n + 
2n3 + 6n2 - 9w,+ 9n(-l)n - 6̂  

2mr\ 
54 

, L / c 2n7T . o R • 2mI~ 
+ -7-7" 1-6 cos — — — h 2v3 s m — 7 — r-

7 9 1 
Whence a, = - -j^, a2 = 7gg> ^3

 = ^ = T6' 

9w(-l)w - 6\ 2rr + 6nz - 9n + 9r 
288 

x i f 2nTr , 0 /x , 2mr \ 
+ -T-7-(~6 cos — V 2vj s m —o~J< 54 

Now following the previous technique, since p 4(n) is an integer for all n5 we 
have, for n = 4 (say): 

imw +-kM" + &-*>' 6 2HTT , 2>/3 . 2n7T\ 7 7 
54 C°S T " + ~^T S l n ~T7 = 288' 
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'• Pif(w) 
fn3 + 3n2 + ~{9n(-l)n - 9n) + 32" 

144 

2mr 2nu 
It is clear from the above form for ph(n) which contains cos and sin 

that we need to convert formula 2.4 to a form which encompasses this type in 

order to proceed to determine p (n) for m > 5 exactly. The resulting formu-

las are in themselves interesting. If as = 1, then 

a = cos 
(2ki\\ ^ . . (2kn\ 
I + ̂  sini 1 and \ s I \ s J 

(2km\\ _,_ . . I 

i"v)+ ^ s inv an _ c o s( i + i sin I i, 
2kni\\ 

0 < k < s - 1. 

We have from 2.4 that 

1 
A(m) •{a^/} = a' 

am - 1 
1 -

a"7 - 1 
A + { /} , i f am f- 1. 

Then i t can be shown t h a t 
r + i/famA 

where /(ft) is a polynomial of degree p and as = 1 but am ̂  1 and I < /c < s - 1, 
k ^ 0. The proof is easy but lengthy. 

Similarly, 

r + l /?0??TT\ 
p cosec I 

_y- \ s ) 
r - 0 - 2

r+i 
h){*±nfc^)fin) 

AC 

m = 5 

3(-J(2w-m+rm) - . ̂ LV- A) r{/(n) } . 

Thus returning to p5(m) it can be shown using the previous formulas that 

1 (p,(n+4)} = i y i 0 +
 n" + "2 ~ 7^ A(5) 

, 9(n + 4)(-l)» , 45(-l)5 . (-1)" 

"2 2 (-1)5-1 

, 9 (-1)" in(-l - i) (-i)H(-l + i) 
288 -2 32 32 

1 2HTT 
18 C O S 3 

+ ̂ ( " i , S ± n 2WTT /3 . (2nv\ , 1 /2wr' 

— - 3i s x n n~y + 34 c o s l ~ 
Using 

32 V 
(-1 - i ) + ( - £ ) * ( - ! + i)) = 7 5 ( s i n y - c o ftTT 

(con t inued) 
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"288\T0 + n + n " V2 ~ ( 2 n + 5) j + T 6 \ s l n T" " C ° S T J 
1 2mT v3 . 2mr 

- u COS -y- ~ iy S ln i-
p (n) = C.F. + P.S., where the complementary function is 

Ju / 2kni\ , . . 2km\\ 
2^ak\cos —y- + ^ s in — ^ — j , 

which by modifying the constants afc can clearly be written in the form 

0 1 C ° S ~~S 2 C O S ~S 1 S 1 T 1 ~S 2 S i n ~T~' 

The method is clearly general. 

n = 0 

2395 
:. c0 + cx + c2 = T77280 = 3o ( s a y ) 

n = 1 • 

2 T T IT _ . 2TT , _ . TT 1061 0 
C0 + Cx COS — + C2. -COS — + 5]L Sill ~r- + 5 2 Sin — = ~ TT~OOQ" = Pi 

CQ + C1- -cos — + C2 cos — + S1 s in -^ H- 5 0 . - s i n 5 2 5 ! 5 2* 5 17,280 

n = 3 

TT 2TT TT 2TT 1061 
C0 + C1. -cos — + C2 cos — + 51 . - s i n — + S2 s in — = - , Q 

n = 4 

• „ 2TT TT , • . 2TT , _ . TT 1061 
. . C0 + C1 cos — + C2. -cos — + 5 r - s m — + 52„ - s i n — = -

Thus if we add the equations we have immediately 

i -1849 
c0 = ^ (3 0 + 3i + B2 + B3 + e o = 1 7 ) 2 8 0 x 5 -

As we are concerned with the mth roots of unity this form will be quite gen-
is 

- C2 and Si = S2 = 0. 

eral for CQ. The solution is 

1 17,208 x 5 

p5(n) = - ^ ( n * + 10n3 + 10^ - 75n - 45n(-l)* ) + ^ ( ^ l l . ) 

1 . 7-271- m r \ 1- 2̂ 7T / 3 . 2mr 1849 
K s i n T " c o s T") " T7 c o s T" " "27 s i n T " " T77280"x—5 

6912 2mr-, 6912 4rar\ 
+ T77280~^5 c o s ~ 5 " + 17,280" x 5 c o s — } -
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Again we have that the part within braces is purely trigonometric and has a 
maximum value given by n = 5 (say), which is 905/2880. 

* -n (y,\ = \ n h + 1 Q n 3 + 10n2 ~ 15n ~ 45n(-lf + 9051 .. p s W ^ _ _ j 

It would appear from previous work that we have to determine a solution to 
a set of linear equations each time we determine pm (n). But this is not the 
case as the constants C^ and S^ can be determined explicitly in terms of the 
(3̂  as follows. 

We have for the Complementary function 

' m-l . 2kmr 

. k = 0 

and for the Complete S o l u t i o n , we have 

n = 0 a0 + a1 + a2 + ••• + am_1 = 3 0 (say) 

. 2TT , 4TT . 2 Q - DTT 

n = 1 a0 + a ^ m + a ^ m + • • • + am_1eL m • = g1 

. 2(m-l)Tr , 2(W-1)2TT . 2 Q - 1 ) ( m - I)TT 

. 2-rrr . 2r2Tr .2r(m-l)n i2irr 
^ _ e _ j_ Now 1 + e m + g m + • • • + g m = = 0, as r is an integer 

< rn. ^ _ 1 

Thus, if we add, 

an 777 

To determine a19 we can essentially do the same thing. Multiply equation (2) 
_ .2T\ _-Al _ . 2(m- 1)T\ 

by e % m, (3) by e l ffl , ..., (777) by e_t" /" . . Thus, the coefficients in the 

aj column are all one. Then add the equations by columns again and we have 
-i— -j 2^m~1^ 

ma1 = 30 + B1e"\m + ••• + B ^ e " m . 

In general, 

Thus, we have the form 

2jor_ _ -20^J l i iAlL\ .2kni\ 
Y, (B0 + 6 1 ^ m + ••• + ^ . ^ "• j£ 

This is the Complementary function but not in an explicit real form, but the 
terms can be grouped to give the real form. 
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I f 7?7 i s odd > 3 , 

m- 1 

(m - 1 ) H T T (TT? - 1 ) TCTT 
+ c /( 

o s i -
\ m m 

If rn is even > 4, there is a root (-1) in the form, and we have 

= > 0 + • • • +Bn_1) + ~ ^ ( B o - S, + 32 K-,) 

+ 1 m £ 3 (c o s/2«i _ 2 k 1 \ + . . . + coJ<*-u™ _ (* - 2>^)l 
• m ~n

 k \ \ m m J \ m m ft 
k = 0 v-

Or f i n a l l y , by r e g r o u p i n g , we have, f o r m odd ^ 3 : 

- ^ < e „ + • • • + &m.o 

m-l 

2nku 
+ ~ £ ( B 0 + &i c o s — + • • • + 3 _ x c o s J 

k = l v 

m - l 

+ - E ($i s i n ^ + • • • + B m _ ! s i n 
fc = 1 V 

2{m - l)ki\\ . 2nki\ 
\ L \ s l n _ ^ 

For m e v e n > 4 , 

= ^(60 + • • • + 6m_x) + ^ - ( 6 0 - 3X + • • • - Bm-i) 

_m_-_2_ - • . ' • . • . • . . 

2 Jk / 2ki\ „ 2{m - 1 ) / O T \ ?2n/c7T 
+ 1 ^ ( 6 0 + ^ c o s i M + . . . + B m _ i c o s _ L _ _ 2 _ j c 0 S _ _ 

m - 2 

2 2 / . 2kTT , n ';. 2(m - l)ku\ . 2n/cTT 
+ ^ t ( B i s i n ~ ^ + • • • + 3 m _ x s i n s m 

T h u s , r e t u r n i n g t o p ( n ) , we h a v e t h a t t h e p a r t i c u l a r s o l u t i o n i s 

2nTT . n c o s ——-

- iFr&o--1 • * - »> - U"- f+ 8l" f ) + IT1 

+ T T J F T I S I — i "»1(2»" 6 , )+H~ f SI° T<2" - «)• 
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The Complementary function is 

n . n 2m\ . n 4nir , _ 6mr , a . 2rar , _ . km\ 
C0 + C1 cos —7— + C2 cos —7— + C3 cos —7— + Si s i n —7— + S2 s i n —7—. 

The coefficients C- are 

756| 

^ 86,400' 

s± = 0, 

480°  
C l 6 2 86,400 

1066| 
p< 
u 2 ~ r-

5156^ 
'3 86,400 

/3 x 86,400 

Thus p (n) is the sum of the two forms. Again the maximum value of the pure-
ly trigonometric part—that is, the part that does not contain any algebraic 
powers of n, is given when n = 6 and is 19,224/86,400. Hence, 

P6(") 

" V + 2l\nh + 126§n3 - 112}n2 - 1599|-n+ I12~(-I)n(n2+ 9n) + 1066-frc cos -^~ + 19224 

6!5! 

The method can of course be continued; I simply state the result for p7(n) 

|7n6 + 42n5 + 5 6 0 ^ + 1960n3 - 8725-|n2 - 45,325n- (-if • 2362j{n2+ 14n) 

7T . TT 

3 S i n 31 
p 7 ( n ) = 

+ 22,400n cosec •£ s i n ~(2n - 7) + 1 ,029,154j 

716! 

Having determined the explicit form for p6(n), it is time for some general 

remarks. Looking at the method of production, we can see that the leading 

terms are purely algebraic and that this property of the formulas will con-

tinue under the operator -7-7—7. The leading nonalgebraic power of n or, more 
^ A(/77) 

precisely, its coefficient increases when (-1) is a root of the operator .• •, 
l\{m) 

as we see from formula 2.5. 
That is for all even powers of m. Thus for m - 7 we have that the first 

four powers are purely algebraic, that is, for n6, n5, n4, and n3. For n = 8 
n5, and n4 will be, but not n3. 

The pattern is quite clear, and we can see that the first "} m + 
— j ~ \ powers 

are purely algebraic in pm (n) . We can go further than this and say that 
pm(n) contains a purely algebraic part which is a polynomial in n of degree 
(777 - 1) with rational coefficients as the Bernoulli numbers B^ are rational. 
Let this polynomial of degree (m - 1) be denoted by q (n) (say) and the trig-
onometric or nonpolynomial part by fm(n). Thus 

Pm(n) = qm{n) V tm(n)\ 

where the polynomials q (n) naturally satisfy 
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Vjn^ ~ Rmfr ~ "0 = qm_1(n - 1). 

From the forms so far determined, we have 

q3(n) = JjjTin2 - l|) 

qh(n) = jTy[(n3 + 3n2 " 4 n ~ 6l) 

<75(n) = yr^y-Cn4 + 10n3 + I0n2 -75n - 61~) 

q^n) = -gr^yCn5 + 2l\nh + 126fn3 - 112|n2 - 1599{n - 756f) 

where the constant term is just the value of C0. As the first -—-—• 

agree with p (n), an examination of the general form of these leading terms 

is required. 

3. A SERIES EXPANSION FOR q (n) 

terms 

The general form for the leading terms of qm(n) are given in [ 1 ] , where I 
also consider the problem of determining an upper bound for p (n) for arbi-
trary 7?7 and n, together with some numerical examples. For the sake of com-
pleteness, I simply quote the expansion of qm(n) given in that paper. 

?*(*> 
1 

ml(m - 1)1 ml(m - 2)!\ 4 . 1! 
(m2 - 3m\ 
\ 4 . 1! ) 
m- - 3m \ m-2 n 

where the first 

h 58 3 . 75 2 2 
m - -j m* + Jfrn ~ -§m 

2! 

{m° - ^-}~m5 + 29m4 - ^ m3 + 2m2\ 
1__ 2 nm-± 

43 . 3! / 

14§m7 + 66^fw6 - 1 0 7 ^ m 5 + 55~j~mh 

lOf^m3 + ^m2 
§5m) 

agree with the terms above if 

4! 

terms in the expansion of p (n) are algebraic and 
m + I' ) 5 or m ) 9. The polynomials can be 
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generated by means of a computer program where the summations are effected 
using the Bernoulli polynomials. This expansion, although of some interest, 
is of little use for calculating pm(n) unless n is large compared with m. 
J. W. L. Glaisher gives an expansion for qm{n) based on the "waves" of J. J. 
Sylvester (see Gupta [3]). 

Looking at the action of the operator l/A(/7?) in formulas 2.2 and 2.3, it 
is easy to see the form of the leading term in tm(n), the nonpolynomial part 
of p (n). We have 

Yn L 2 J 
for m > 4. *m(«) (-D 

'[fH^i1}'" 
4. CONCLUSION 

The method not only yields closed formulas for small values of but also 
illustrates the general structure of pm(n). The method is perfectly general 
but clearly, as the formulas are calculated recurvisely, the computations be-
come increasingly lengthy. The method can also be used to determine closed 
formulas for partitioning into an arbitrary small set of integers. The re-
currence relationship is 

P*(Pi> P2 
n) ~ P*(Pi> P2 Pm Pm) = P*(Pl> P2 Pm n) 

where p*(p1, p2, . . . , pm ; n) means the number of partitions of n into at most 
parts p13 p2, ..., pm or, equivalently, the number of solutions in integers ̂  
0 of the Diophantine equation 

Pl^l+ P2^2 + •'• + PmXm = n' 

For example, the method yields 
T^3 a. Uj2, 

1 • 2 • 3 • 5 • 3! 

This more general problem will be explored in a future paper. 

p*(l, 2, 3, 5; n) = 
n3 + 16Jn2 + 8 In + 180" 
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INTRODUCTION 

In one of his papers [3] Bernstein investigated the Fin) function. This 
function was derived from a special kind of numbers which could well be de-
fined as 3-dimensional Fibonacci numbers. The original Fibonacci numbers 
should then be called 2~dimensional Fibonacci numbers. The present paper 
deals with n-dimensional Fibonacci numbers in a sense to be explained in the 
sequel. In a later paper [4] Bernstein derived an interesting identity that 
was based on 3-dimensional Fibonacci numbers. Also Carlitz in his paper [5] 
deals with this subject. 

If we remember that the original Fibonacci numbers are generated by the 
formula r -> 

F(n) = E (n - i), n = 1, 
i = 0 V 'l I 

2, 

then the function 

*•(«).= E (-!)*(" " i :
2 i ) 

= o 

can be regarded as a generalization of the first, and the author thought that 

<n - ki^ 
i = o 

Hn) = £ <-!)*(" ~{
ki), T< = 1.2, 

could ser've as a k - 1-dimensional generalization of the original Fibonacci 
numbers, but, regretfully, this consideration led nowhere. From the fact 
that the Fibonacci numbers are derived from the periodic expansion by the 
Euclidean algorithm of /5, there is opened a new horizon for the wanted gen-
eralization. 

In a previous paper [1], the author had followed the ideas of Perron [9] 
and of Bernstein [4] and stated a general Algorithm that leads'to an n-dimen-
sional generalization of Fibonacci numbers. 

In this paper, the author is introducing the GEA (Generalized Euclidean 
Algorithm) to investigate the various properties and applications of her k-
dimensional Fibonacci numbers. It first turns out that these ^-dimensional 
Fibonacci numbers are most useful for a good approximation of algebraic ir-
rationals by rational integers. Further, the author proceeded to investigate 
higher-degree Diophantine equations and to state identities of a larger mag-
nitude than those investigated before, in an explicit and simple form. 
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1. THE GEA 

Let w be the irrational 

w = ^Dn + 1; n > 2, D E N; x(v) = {x{v)(w), . . ., 4-i (w)) > 

(a^/ > (b^/ sequences of the form x^v\ V = 0, 1, ... . 
(1.1) 

The GEA of the fixed vector cr0^ is the sequence (aSv^\ obtained by the recur-
rency formula 

T^ + 1 ) = (n^ - hW\-i(,rW - h^ (v) Av) « - bf'y^a™ - bT, .-., a?-\ - %Llt 1) 

hf = alU)(0); i = 1, .... n - 1; v = 0, 1, ...; a™* b™. 
(1.2) 

The GEA of a^ is called purely periodic if there exists a number m such that 

ia(0^ = a(m); m is called the length of 
l the primitive period 

The following formulas were proved in [2], Let 

1 4U + n) = SV^r*'; v-0, 1, ... 
& = 0 

i4/ =6^; 6̂  the Kronecker delta, 
i , j = 0, 1, ..., n - 1; 5 = 0 , 1, ..., n - 1; 

,(U) (u)/n\ 7 n i i (y) T J U ) i 

2?k = a\ AD); k = 0, 1, , n - 1; aK
0
 J = b0 = 1 ; 

(1-4) 

A s are called the matricians of GEA; then the three formulas hold: 

,<y) 

AM 

4(y) 

n-1 

Av+l) 

A (v+ 1) 

A (v+l) 

Av + n- 1)] 

(v + n- 1)1 

Av + n- D' 
n-i 

= ( - i ) 
u(n- 1) 

a ^ = A^o 5 y = o, 1, ... ; s = 0, ..., n - 1. 
n- 1 

fe = o E4 y ) ^ + k ) 

(1.5) 

(1-6) 

fc = i k=o 
(1.7) 

Perron proved the following theorem which, under the conditions of the GEA 
(D ^ 1) , becomes 
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Theorem 1 

The GEA is convergent in the sense that 

7(0) = jiz 
lim A] (v) 

o 

lim A (v) 
, s = 1, . . . , n - . 1 (1.8) 

As
v) : AQ is called the yth convergent of GEA. 

In [1], the author proved 

Theorem 2 

If the GEA of a^ is purely periodic with m- length of the primitive pe-
riod, then 

II an-l ~ 2*, ak A0 
n- 1 

„W = 
J-n- 1 

k=0 k=Q 

is a unit in Q(w). 

From (1.9) the formula follows, in virtue of (1.7), 

v n- 1 

E 
fe = o 

(1.9) 

k = 0 

n 1 (*0 \" '\^ MAvm+k) (1.10) , y = 1, 2, ... . 

2. A PERIODIC GEA 

In this section, we construct a periodic GEA, with length of primitive 
period m = 1. The fixed vector a^ must be chosen accordingly, and this may 
look complicated at first. We prove 

Theorem 3 

The GEA of t h e f i x e d v e c t o r 

(tf(0) a(0) a ( 0 ) aKyj} ) 

(0) ^ /ft - s - 1 + i\ 

/ a< 0 ) . (0) 

a t(n 
i = 0 x 

')z/~V ( 2 . 1 ) 

s = 1, . . . , ft - 1 

is purely periodic and the length of its primitive period m = 1. 

Proof: We shall first need the formula 

= 1, . . . , n - 1. t r v ' ) - ( : ) • • - ' • (2.2) 
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This is proved by induction. The proof is left to the reader. We have, from 
(2.1), the following components of a^ which we shall use later: 

a<0) = w + (n - 1)D; a?\ = " ^ u"" 1 "^. (2.3) 
i = 0 

Since wn - Dn = 1, we also have 

"E W " " 1 " ^ = (w - D)-1. (2.4) 
i =0 

The vectors fcf (i = 1, . . . , n - l ; v = 0 , 1, ...) obtained from aSf*iw~) by 
the defining rule (1.2) are called their corresponding companion vectors. We 
shall calculate the companion vector b^ of a(°) and have 

= £ /„ - s _ 1 + i\Ds-iDi = Dej^lr 
i = 0 \ % I i=0\ 

,(0) _ y , / w - S - l + %\~B^i i „ s W B - S - 1 + "Ẑ  

so t h a t , by ( 2 . 2 ) , 

i S 

Thus, 

(
s
0) = ( " V ' s = 1, 2, . . . , n - 1. (2.5) 

fc(0) (T>. ( ; K . - . ( „ " > " - x > 
We s h a l l now c a l c u l a t e t he v e c t o r cr . From ( 1 . 2 ) , i t fo l lows t h a t 

a™ = (a<0> - i i W ^ - i f , . . . . 40-}x - i f x, 1). (2-6) 
From ( 2 . 3 ) , ( 2 . 4 ) , and ( 2 . 5 ) , we o b t a i n : 

a[0) -b[0) = U + (n - DO - ( " ) 0 = w - £> , 

i = 0 

[ ( a ' " - 4°>, a<2°>, . . . . . a^2,a*\) - a<°\ 

L(»» = a(0>, y = 1, 2, . . . . 

This proves Theorem 3. 

(2.7) 

We can prove the relation 

(af - fc(s0))(40) - bf)-* ~ a*\, s = 2, ..., n - 1. (2.8) 

Since the proof is elementary, we leave it to the reader. 
From (2.6), it follows that 

(2.9) 
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3. EXPLICIT MATRICIANS A (v + n) 

We shall proceed to find an explicit formula for the "zero-degree matri-
cians" A Q +

 3 V = 0, 1, ..., and shall make use, for this purpose, of the 
defining formula (1.4)., and the fact that the GEA is purely periodic with 
length of the primitive period m = 1. Taking into account (2.5) and (2.9), 
we have 

^ o = £ {sjD A° ; y = 0, 1, (3.1) 

We s h a l l now make use of E u l e r ' s g e n e r a t i n g f u n c t i o n . We have 

i x v = A ( :»+ E4(
0v + ZA /\Wxi 

i = 0 

1 + 

= 1 
„• - n • ?: = n \ -1- / ?: = n* z ' 

„• _ n \ ^ 1 / 

1 - [xn + 

Z»rf ^ o ^ 
i = 0 

+ 1, 

\Dkxn-k 

i = l 
<*)„ 

* < ; + <;x2 + ••• + >c '* 

EG) 
t = 0 \ f e = 0 X K / / 

- * 
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For x sufficiently small. Thus, since A0 = ... = AQ~ = 0, we have 

E ^ V =x»±(',tXl)Dk*n-k)t, 
i = n t = 0\A: = O x / c / / 

t^+i)^1 - *n± axi)**"-1)*' 
t^+i)^ «£( "til)**"-^* (3-2) 
i - o t-oVfc-cA*' / 

and comparing coefficients of powers xv on both sides of (3.2), we obtain 

(v + n) 
A 0 n (u)^) (3-3) 

n i / i + C M - l ) i / 2 + - - - + 2 i / n _ 1 + i / „ - u y z / i , z / 2 

or 

n - l 
^(v+») = \ r1 Jl n \ n ^ J+1 "ft1 /ny/fc+i 

y = o, l , 

Formula (3*4) looks very complicated. 4.0 can also be calculated by the 
recurrency relation (1.4). It is conjectured that it is easier to do so by 
formula (3.4), and would be a challenging computer problem. 

4. MATRICIANS OF DEGREE s, s = 1, 2, ..., n - 1 

In this section, we shall express "s-degree matricians," 

A^\ s = 1, . .., n - 1, 

by means of zero-degree matricians. This is not an easy task. Now we shall 
prove a very important theorem. 

Theorem 4 

The s-degree matricians are expressed through the zero-degree matricians 
by means of the relation 

4 U + n'1}= t (l)vkA{rn~S + k~l) V = 0, 1, ...;. (4.1) 
^ °  KK/ 5 s = 1, -.,., n - 1. 

Proof: From formula (1.6) it follows that 

a ^ B £ 4 V + * ^ E ^ f ^ = 1, 2, ..., » - 1; (4.2) 
* = °  fc = 0 D - 0, 1, .,. . . 
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ng ai fc 
(2.1), we obtain 
Ors writing at for a • , i = 0,...5n- 1, and substituting their values from 

i ( n - e i 1 + ty-vta^r*- EvrB- «-3> 
•i = 0 ^ 7 fe = o fe = o 

We shall now compare coefficients of if1'1 on both sides of (4.3). The power 
of wn_1 appears, on the right side only in 

an_± = w""1 + Dwn~2 +... + Z?nTl, 

and its coefficients is 

4 W + B-1). (4.4) 

So the whole problem is to find the coefficient of wn~l on the leftside, and 
this is the problem. We shall start with the first power of w in as, which 
is Ws (in the left side). Now in 

n±\*rk) 

k = 0 

we have to look for those ak
1 s which have the powers wn~s~ ; this appears in 

( r • r r . • A(V + H - S - 1)\ 

first term, coefficient = AQ J 
an_s (second term, coefficient = I )DAQ

 n J 
aw_s+17third term, coefficient = (S^D2A^ + n~ s+l)) 

(l + s)th term, coefficient (;)^(rB_1))-
Thus, we have obtained the partial sum of coefficients of wn l in the left 
side. 

A(.v + n-s.l)+ ^ M ( v + n-e)+ £ y j v + n-e+l) + ... + ^D'$+»-l\ 

Now the next power of as on the left side is ws_1 with coefficient 

( M - s - i + y = (w - S)D. 
To obtain w71'1, w8'1 must be multiplied by n - ss so we must start with the 
first term of an_ss the second term of an_s+ls ..., etc. Compared with the 
previous sum, s has to be replaced by s - 1. The sum will then be multiplied 

by (n ~ S)D, and the number of summands will be smaller by one. We then ob-

tain the partial sum: 

(n-s)z?k+n- + (8- i )<+ n-a + i )+ (s-2
iyA

(:+n-s+2)+°~~ + ( j ; ^ - ^ : " ' 1 1 
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Proceeding in this way, we obtained the partial sums: 

3 r ^ CO A ! r^f 

D CN to n 

en en to 

CO 0-3 CO CO ^ 

CO CO 

to to 
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Thus the general term in the sum of coefficients of wn~l on the left side of 
(4.3) which contains BkA^ + n~s~l + k) as a constant factor has the form, adding 
up in (4.5) the column with this factor, 

i = 0 \ 

S - 1 + i\(S ~ i \ k (v + n- s-k+k) 
i ) \ k - i ) D A * • ( 4 - 6 ) 

The following formula is well known: 

k 
(4.7) 

which becomes formula (2.2) for./c = s. Now, since in 

s / 

i = o \ 
n - s - 1 + i)ws^D,t 

the exponent of D sums from i = 0 to i = s, we have, finally, 

£ + *-!) = y ( n ^ ^ + n.l-a + JO 

which is formula (4.1) and proves Theorem 4. From formula (4.1), we have the 
single cases 

A(v + n- 1) = j^v-kn- 2) + (n
l)DA^ + n-1\ (4.8) 

and 

AT-?~1) = ATn)- (4-9) 

(4.9) is a very surprising relation and will be applied in the next section. 
Similarly, : 

+ Q < + "-2,+ (n
2)D*ATn-B\ etc. (4.10) 

(v + n-l) _ (y+ n-3) j / n \ n/I(u+n-2) ̂  /n \ n 2 ^ C ^ " 1 " n ~ s) 
^ 2 ~~ ^ 0 

5. APPROXIMATION OF IRRATIONALS BY RATIONALS 

We shall investigate especially the case D = 1, but produce first formu-
las for any value of D. We obtain from (4.8) and (1.6), 

a(0) = v~^± = l i m _J °  > 

. l i m ^ + B _ 1 ) "*" 4," + 
y->- oo U u 

/,(y+n-2) 
0 w + (n - 1)Z) - n£ + lim 

y+oo (y+n-l) 
o 

/.(y+w-2) Av+n-1) 
A0 M0 

w = D + lim — — = Z) + lim . (5.1) 
v-*°°  (y+n-1) y->oo ^y+n) 

^ 0 "^0 

19S3J 293 



n-DIMENSIONAL FIBONACCI NUMBERS AND THEIR APPLICATIONS 

For D = 1, w = v2, and from (3.4) and (5.1) we obtain the approximation for-
mula 

<fi* I 
T,(n-i)yi + 1 = v, i=0, ..., n - l \ y i ' y2' •••' yn lk~° 

E M +y2 + • • • + J / „ \ » - I ^ + 1 

&fe = (l)> k = °> •••• « - 1; 2>0 - !• 

The approximations are not very close, and we would have to continue a few 
steps further to get a closer approximation. Formula (4.9), surprisingly 
simple as it is, does not yield any news. It enables us to calculate wn~1 by 
means of the powers i^, / c = l , . . . , n - 2 . 

We have approximately, expanding y2 = (1 + 1) n by the binomial series, 

tfT* l + 1 . 

According to our approximation formula (5.1) with D = 1, 

</l= w * 1 + 
A (n) 

,("+1)' 

0 7^4Q = ^, 

since ̂  = /0
O) + 4 °  + 

be. u(ru /0
0) = 1, <fl * 1 + -, as should 

6. DIOPHANTINE EQUATIONS 

We shall construct two types of Diophantine equations of degree n Inn 
unknowns and state their explicit solutions, which are infinite in number. 
We have from (1.5) 

Av+n) 

Av+n) 

Av + n+l) (v+n+2) 
H0 A0 

Av + n + n- 1) 

A(v+n) ^(v+n+l) A(v + n+2) A[ {v + n+n- 1) 

Av+n- 1) Av+n+ 2) Xv+ n+ n- 1) 

(-1)' 
(n- l)v (6.1) 

v = 0, 1, ... . 

/.(*) Substituting in (6.1) the values of As from (4.1) we obtain* after simple 
row rearrangements, 
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Av+3) 
1 o 

Av+2) 
0 

, ( y + i ) 

Av+n+l) Av + n+2) A(V+ n) AKU^ n-r i) A^ 
no ^o A o A (v + n + n-l)\ 

^{v + n- 1) /\(v+n^ A 
(v + n+ 1) Xv+n+n-2)\ 

Av+n- 2) Av+n- I) Av+n) 
0 ^ o ^ 0 

Av+h) 

/ . ( u + 3 ) 
0 

- ( u + 2 ) 

( y + 5 ) 

/ i . ( u + 4 ) 
0 

Av+3) 

. . 4' (y + n + r c - 3 ) 

(y + rc + 2) 
0 

(v + n + 1) 
0 

{v + n) 

= ( - 1 ) ( n - l)v (6.3) 

We introduce the notat ions 

Xv,k ~ ^ o ' ^ - , 1 , 2 , i . (6 .3 ) 

( Av+k) _ y,(y+fe- n) 
1^0 ~ ^ 0 + blAy + k-n+1)

+b2A(V
0
+k+2-n)

 + 

( £ ) # * » k - 0 , 1, . . . . n - 1, u = 1, 2 , 

+ & x ( u + f c " 1 ) 

(6 .4 ) 

We introduce these notations in (6.2) and then make the following manipula-
tions in this determinant. 

From the first row we subtract the b\ multiple of the first row from be-
low, then the b2 multiple of the second row from below, ..., then the b^th 
multiple of the kth row from below, k = 1, ..., n - 1. 

Then (6.2) takes the form, in virtue of (6.4), 

n- 1 
%v, n ~ £~* bk^v, k 

fe=l 

Av+n- 1) 
A0 

Av+n- 2) 

Av+2) 

Xv, 1 

vv, 1 

. (v + n) 

lv,2 

(v+n + 1) 

{v + n- 1) Av + n) 

A(r3) a 0>+A) 

*y, 3 

xv, n - 1 

A(v + n + n-2) 

Xv+ n+ n-3)\ 

.. i4' 
(y + n+ 1) 

. X. v, n 

(-D' (n- l)y (6.5) 

We further subtract from the second row the b2 multiple of the first row from 
below, the b3 multiple of the second row from below, .. . . , the bj< multiple of 
the (k - l)th row from below; the determinant (6.5) then takes the form (k = 
2, ' ..., n - 2): 
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n-l 
Xv,n ~ LJ bkXv, h XVt 

Y.\+lXv,l< Xv,n ~ Y,bk+lXv,k + l Xv,l + \ * V t 2
 Xv,2 + M v , 3 ' • • Xv.n-2 + blXv,n-l 

(-!)(«-Dw 

(6.6) 

Continuing this process by another step, the third row of determinant (6.6) 
will have the form 

k = i 

n-3 

k = i 
Xv,n-2 L* ^k + 2^v,k Xv,n-l ~ 2^> ®k + 2Xv,k + 1 %v,n ~ JL, ^k + 2^v, k+: 

k = ± 

Xv,l + blXv, 2 + ^2^y,3 Xv, 2 + ^lXv, 3 + ^2Xv,< 

%v,n-3 + bi%v,n-2 + ^2^v, n - 1 • 

Generally we subtract from the th row in (6.2) the bi multiple of the first 
row from below, then the bi+i multiple of the second row from below, ..., the 
bn_1 multiple of the (n-i)th row from below (i = 1, . , , , n - 1). The reader 
can verify, that by these operations the determinant (6.. 2) transforms into 
one containing only the unknowns XVj ^ (i = 1, . . . , n) , which yields the Dio-
phantine equation of degree n in these unknowns. 

7. MORE DIQPHANTINE EQUATIONS 

The GEA of a( ^ is purely periodic with length of the primitive period 
m = 1. Since 

i=0\ Z I i^0 

we have by Theorem 2 and formula ( 1 . 1 0 ) , 

{wn~1 + Dwn~2 + . . . + Dn~1)v =n£af)A%+i\ v = 1, 2, 
i = 0 

We f ind the norm of ( i / 2 - 1 + Dwn~2 +. • • • + Dn~1)v . We have 

Dn - wn = - 1 , 

Dn - w' £ (D - pkw) = -N(D - w), 

Pfc = e 

k = 0 

2T\ ik/n , fc = 0, 1, . . . , n - l . 

(7 .1 ) 

( 7 . 2 ) 
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But w"-1 + Dwn~2 + ••• + £n _ 1 = ~(D - w)'1; hence, 

N[(wn-1 + Dwn~2 +..- + Dn~1)v] = (-l)*""1^ 

We have 

n- i 

i = o 

;
3 y = 1, 2, . . . 

n = 2, 3 , . . . 

Eaf4 y + ^=<> + [»+ (n" > ] < + 1 

(7.3) 

2) 

+ 

2 + (n; > + (n 2 > 2 k + 

[U' + ( B : V D + (n22)^2 + ( n 3 > 3 ] ^ + 3 , + ---

Denoting 
n-l-k H<)T 

yv, k 

k = 0, 1, ..., n - s. 

This lv,k is n o t the ̂ u k from (6.4). We have from (7.1), 

(7.4) 

(wn Dwn + o"-!)" = Y x Vtj<iJk = e°> e a u n i t . (7.5) 

We shall find the field equation of 

n- 1 

£ = 0 

The free member of it is the norm of ev, and since ev is a unit with the norm 
(-l)^""1)^, according to (7.3), we find easily, b}r known methods, that 

%v, 2 

Xv, 1 

mXv,n-2 mXv,n-l Xv, 0 

- v, 0 

mXv, n - 1 Xv, 0 

tf?X y , 2 wJ y , 3 mX. v, 4 

wJ7. mJ y , 2 tftf y , 3 

^ y , n - 2 Xv, n - \ 

X-v, n -

vv, n - 4 A^> n - 3 x„ 

A u , 0 

/7?X 

L y , l 

y , n - l A y , 1 

- (-D 
( n - l)v (7.6) 

It is not difficult to see that, in the case n = 2m + 1 (m = 1, 2, ., 
highest powers of the n unknowns of the discriminant (7,6) as 

Xv,0> < P ^ 2 > .... ^^K.n-V 

. ) , the 
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while the last unknown, XVi n _ i does not have the exponent n, but a smaller 
one. In the case n = 2m (m = 1, 2, . ..) these n - 1 powers are the same, 
but with alternating signs, viz., 

Xl0> -mXn
Vtl, +m2X^2, .... 

In the case n = 2, the expanded discriminat (7.6) had the form 

Xl - mil = ±1, 

and in the case n = 3, it had the form 

J3 + /7/J3 + m2Z3 - 3mXYZ = 1. 

The first is Pell's equation. 

8. IDENTITIES AND UNITS 

We return to formulas (7.4) and (7.5), and have 

/ v
 n~^'k(n - 1 ~ k\Xvn+s + k) "*)r 

fc = 0, 1, ..., n - 1 

(W71"1 + Z^n~2 + . . . + Z}"'1) = E *nv k wl 

k = 0 

(8.1) 

We compare powers of wk (7c = 0,1, . . .. , n- 1) on both sides of (8.1) and take 
into consideration that wnt - m1^ - (Dn + 1)^ . We have, looking for the ra-
tional part of the right side, k - 0, and the value of the right side equals 
Xnv,o ' a n d by (7.4), 

*«,.«> - ] s ( n ; ' V m , + a V v u - ° ' *• •••••• (8-2) 

On the left side, we have to look for the coefficients of wn. Since the high-
est power in the expression 

(w*-1 + Dwn~2 + + D"-1)*" 

is n(n - l)v, we have the expression 

y 
n - 1 Jsaffi^ 
£ ( « - i)z/£ - sn^n(n~ l)y, 

n - 1 
2 C ^ + 1 = n(n- l)v- sn, e = 0 , 1, 

K " 1 Z? = Z ^ , ( 8 . 3 ) 
# ! • 2/2 

(n - l)v 

yn 
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We want to obtain in this way the rational part of 

{wn + Dwn~2 + + Dn-1y 

At the same time 

i = 1 

is the sum of the exponents of the powers of y. (i = 1, 
in every summand of 

n - 1). Since 

+ D ' 

the sum of the exponents of Dzwn x ^ (i = 0 , 1, ...,n - 1) is n - 1, and the 
highest exponent in the expansion if n(n - l)y, we have that 

n-l 

i = 1 

n-l 

i = 1 
£ (n - f)^ + 2 %i + i =

 n^n ~ x ) y ' 

which explains the left side of (8.3). We further have 

n- 1 

so that 
Z l(n - i)yi + %?: + 1] = n(n - l)v, 

h! + y2 + -- + yn = nv. (8.4) 

Now3 taking into account that the exponent of w under the summation sign in 
(8.3) equals sn5 wsn = ms

s and Dn = m - 1, formula (8.3) takes the form 

E l nv \ 
\ms(m - 1 ) = J W s 0 

:?:(%•) 
n- 1 

pk^inv+k) 

( 8 . 5 ) 
? = 0 3 1 , . . . , (n - l ) y ; i? = 0 , 1, . . . 

| ^ i + y2
 + • •* + i/n = n z ; 

(8.5) is an interesting combinatorial identity. 
From (8.1), n - 1 more identities can be obtained by comparing the coef-

ficients of the powers wl, i = 1,..-...., n - l , on both sides of (8.1). The 
identities have a somewhat complicated form; however, they will express the 
coefficients of wt, t = 1, ..., n - 1, in the expansion of 

(w""1 + 2?wn-2 + Dn-1)nv 

w i t h w n = 77Z = £ n + l : 
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£(w- i)yi = sn+ £<n(n- l)u 
t- 1 

n-l 

?^t + i = n(?2~ 1 ) y - (sn+ *) 

n- 1 - t 

(8.6) 

V In - I - t\ (nu +j'+i 

j = 0, 1, . .., (n - l)y - 1; £ = 1, . .., n - 1. 

72 - t 

We wish to explain the appearance of the factor D under the summation sign 
on the left side of (8.6). The power of D in the expantion of 

(i/1-1 + Dwn~2 + -.- + D"'1?" 

equals 
n-l 

£ ^i + 1 = n ( n ~ 1)y " (sn + t) 
i = 1 

- n{n - l)v - sn - n + (n - t) 

= n[(n - l)i? ••- s - 1] + n - t . 

Thus, the power of D equals 
(Dn^n(n-l)v-s-l . £ * " * , with Dn = m - 1. 

The power of w is 

n-l 
2 {n - i)y • - sn + t = (uw)sit;t = mswt, 

i = l 

so ms is the coefficient of wt as desired. 
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COUNTING THE PROFILES IN DOMINO TILING 
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1. INTRODUCTION 

Read [2] describes "profiles" that can be formed when one tiles a given 
rectangle with dominoes. For rectangles of width m = 2, 3, 4, the number of 
profiles N(m) subject to certain rules are shown to be 2, 9, and 12, respec-
tively. In fact, it is not difficult for one to program a computer to pro-
duce the following tabulated values for N(m): 

m 

N(m) 

2 

2 

3 

9 

4 

12 

5 

50 

6 

60 

7 

245 

8 9 10 

280 1134 1260 

We notice that values of N(m) grow rather rapidly. Knowing these numbers 
is helpful in the estimation of execution time and storage requirement if one 
follows Read's method to calculate the number of domino tilings on a given 
chessboard. 

In this note, we shall sketch a proof of the following formula: 

1 ( iAmi2, if m Is even 

N(m) = <̂  

( \{m+ l)/2)m/2> ±fm 1 S ° dd' 

2. DEFINING THE PROFILES 

The profiles in [2] can be seen as patterns on an mx 2 board with certain 
properties. We label 1 for each square taken by a domino and label 0 for each 
square not taken by a domino on the profile. For m = 4, say, we can repre-
sent the 12 profiles in [2] as follows, 

00 
00 
00 
00 

A 

00 
10 
10 
00 

L 

(1) 

00 
00 
10 
10 

I 

11 
00 
00 
00 

B 

10 
00 
00 
10 

H 

(2) 

11 
00 
10 
10 

K 

11 
11 
00 
00 

D 

10 
10 
00 
00 

C 

(3) 

10 
11 
00 
10 

J 

11 
11 
11 
00 

G 

10 
10 
11 
00 

F 

(4) 

11 
10 
10 
00 

E 

where the letters A-L are names of the corresponding profiles given in [2], 
Count rows from top to bottom and columns from left to right. Assign 

Boolean variables L19 L2s • . . 9 Lm to the corresponding left squares and Boo-
lean variables R1, R2, , . . , Rm to the corresponding right squares. Using 
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the argument of [1], a profile can be defined as a solution of the following 
system of equations and inequalities, 

m 

£ (-l)i+1(Li - Ri) - p 
i = l 

Li > Ri+j, i = 1, ..., m; j = 0, 1, ..., m - i (*) 

L± + L2 + • • • + Lm < m9 

where p = 0 if m is even and p = 0 or 1 if m is odd. 

3. COUNTING THE PROFILES 

We shall indicate how to calculate the number of solutions of the system 
(*) when m = 2h is even. Consider the cases, 

Ck : Lk = 0S and Lj = 1 for j < k 

for k = 1, ...,777. Then by the first inequality in (*), Rj^+j = 0 for j = 0, 
1, . . . , 77? - k. For example, when 77? = 4, the four cases are shown in the pre-
vious section. 

Assume the case Cy, . The equation in the system (*) becomes 

£Vi)i+1(i - RO + t (-Di + % - o. 
£ = 1 i = k + l 

When k is odd, there are 

solutions. 
When k is even, there are 

?:ev)(i h-i 

E 
i = o 

?:ei%io L 
i = 0 

( 1 ) 

(2) 

s o l u t i o n s . 
In either case, the number is independent of k. There are h odd k values 

and h even k values. The number of solutions of (*) is h times the sum of 
(1) and (2), which is the number of profiles when 777 is even. 

4. OTHER CONNECTIONS 

Klarner and Pollack [1] attacked the domino tiling problem using a dif-
ferent approach. It is interesting to note that the number of profiles is 
always 77?/2 times the dimension of the graph matrix constructed in [1], The 
graph matrix obtained from the profiles has a simpler structure than the one 
used in [1]. The number of edges of the graph matrix in Read [2] can be cal-
culated by the following formula: 

•^(Nirn) x 3 / 2 , i f 7?7 i s e v e n 
{m) ~\N(m) x ( 3 / 2 - 1/(277? x m))s i f TT? i s o d d . 

We see that E(m) is close to 3/2 of iV(777) when m is large. 
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THE FIBONACCI SEQUENCE Fn MODULO Lm 

KAROLYN A. MORGAN 
The University of Alabama in Birmingham, AL 35294 

(Submitted August 1981) 

This paper is concerned with determining the length of the period of a 
Fibonacci series after reducing it by a modulus m. Some of the results es-
tablished by Wall (see [1]) are used. We investigate further the length of 
the period. 

The Fibonacci sequence is defined with the conditions f0=a9f1=$ and 
fn + i ~ fn + / f° r n '̂ !• ^e will refer to the two special sequences when 
a = 0, 3 = 1 and a = 23 $ = 1 as (Fn) and (Ln), respectively. (Ln) is often 
called the Lucas sequence. 

The Fibonacci sequence 0, 1, 1, 25 3, 5S 8, ... reduced modulo 3 is 

0, 1, 1, 2, 05 2, 2, 1, 0 ,1, 1, 2,' ... . 

The reduced sequence repeats after 8 terms. We say that the reduced sequence 
is periodic with period 8. The second half of the period is twice the first 
half. We refer to the terminology used by Robinson [2] and say that the se-
quence has a restricted period of 4 with multiplier 2 or -1 (since 2 E -1 mod 
3). If the reduced sequence, has a value of -1 at F^_x and 0 at Fk , then the 
sequence is said to have a restricted period of k with multiplier -1. The 
period of the reduced sequence is 2k. The 2k terms of the period form two 
sets of k terms. The terms of the second half are -1 times the terms of the 
first half. 

Wall [1] produced many results concerning the length of the period of the 
recurring sequence obtained by reducing a Fibonacci sequence by a modulus m« 
The length of the period of the special sequence Fn reduced modulo m will be 
denoted by p(m). 

Theorem 1 (Wall) 

fn (mod m) forms a simply periodic series. That is, the series is periodic 
and repeats by returning to its starting values, 
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We have (see [3]) : 

(1) Fm = (am - bm)/(a - b), 

(2) Lm = am + bm = Fm_1 + Fm + 1, where a = (1 + v/5)/2 and b = (1 - i/5)/2. 
Also, 

(3) F2m E 0 (mod Lm) [follows from (1) and (2)]. 

Note that 

ab = (^A^)l^A)=-l. 

Since {abV1 = ( - l ) m " 1 , we have 

a 2 * - l _ ^2/n-l _ ( - l ) - - l ( a _ & ) = a2m-l _ £2*1-1 _ ( a & ) * - l ( a _ J) 

= a 2 " " 1 - Z^^" 1 - a Z/77"1 + a f f l ' V 
= (a7""1 - ^ _ 1 ) ( a m + bm). 

From t h i s , we have 

Hence 
F2fn-1 ~ H ) " 1 B V l V 

W F2m_± = ( - l)™"1 (mod Lm). 

Theorem 2 

For m ̂  2, the Fibonacci sequence F„ (mod Lm) has period 4T?7 if m is even 
and period 2??? if m is odd. 

Proof: Suppose m is odd, and the sequence Fn (mod Lm) has period p. It 
follows from (3) and (4) that the reduced sequence has values 1 at F2m_1 and 
0 at F2m. Therefore, 2m is a multiple of p and 2m = kp for some integer k > 
0. From (2) we have Lm = Fm_± + Fm + 1 and Lm > Fj for all j<m+l,l£m>2. 
Hence, Lm cannot divide any Fj for j < m + 1, which implies that Fj ̂  0 (mod 
Lm) for any j < m. Therefore, p > ms kp = 2m < 2p, and k < 2. Thus, k = 1 
and p(Lm) = 2m. 

Suppose ?77 is even. It follows from (3) and (4) that the reduced sequence 
has values -1 at F2m_1 and 0 at F2m. This implies that the reduced sequence 
has a restricted period. Let p! be the restricted period. It follows that 
2m = k • pT for some k > 0. Again m < pr since Fj < L for all J < 777. This 
implies that k < 2 and, therefore, fc = 1. Thus, the restricted period is 2777 
and the period is 477?. • 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 

A. P. HILLMAN 

Assistant Editors: Gloria .C. Padilla & Charles R» Wall 

Send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to 
PROFESSOR A. P. HILLMAN; 709 Solano Dr., S.E.; Albuquerque, NM 87108. Each 
solution or problem should be on a separate sheet (or sheets). Preference 
will be given to those typed with double spacing in the format used below. 
Solutions should be received within four months of the publication date, and 
proposed problems should be accompanied by their solutions. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+1 + Fn> F0 = ° » ^ 1 = 1 

and 
Ln+2 = Ln + 1 + Ln> L 0 = 2* Ll = 1 * 

Also, a and 3 designate the roots (1 + v5)/2 and (1 - A/5)/2, respectively, of 
x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-508 Proposed by Philip L. Mana, Albuquerque, NM 

Find all n in {l, 2, 3S ..., 200} such that the sum nl + (n + 1)! of suc-
cessive factorials is the square of an integer. 

B-509 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Let ip be Dedekind * s function given by 

*(n) = n n (l +^V 

For example, i|;(12) = 12 (l + — J (1 + ~j = 24. Show that 

ip(iKiKn))) > 2n f o r n = 1, 2, 3, ... . 

B-510 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Euler's (f> function and its companion^ Dedekind !s \p function are defined 
by 
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<f>(n) = n n (l - -) and \\j(n) = n T\ (l + - V 

p|* \ P/ ' p|n V P/ 
(a) Show that (j>(n) + ̂ (n) > In for n > 1, 
(b) When is the inequality strict? 

B-511 Proposed by Larry Taylor, Rego Park, NY 

Let j\ ky and n be integers with j even. Prove that 

Fj (Fn + Fn + 2j. + Fn+h. + ••• + Fn+2j.k) = (Ln + 2j.k+J- - Ln_j)j5. 

B-512 Proposed by Larry Taylor, Rego Park, NY 

Let j, &3 and n be integers with j odd, Prove that 

^ • ( ^ + Fn + 2j + *n + t j + * • • + Fn+2jJc) = Fn + 2jk + j ~ Fn-j' 

8-513 Proposed by Andreas N. Philippouf University of Patras, Greece 

Show that 
n [n/2] / _ IA 

E ^+1^n + 1-fc = E (* + 1 - ̂ )(n ̂  ^ r n - 0, 1, ,*., 

where [x] denotes the greatest integer in x* 

SOLUTIONS 

Correction of a Previously Published "Solution" . 

B-468 Proposed by Miha'ly Benczef Brasov, Romania. 

Find a closed form for the nth term an of the sequence for which a± and 
a2 are arbitrary real numbers in the open interval (0, 1) and 

an + 2 « an + 1VT^^al + an/T- a% + 1. 

The formula for an should involve Fibonacci numbers if possible. 

Solution by Charles R. Wall, Trident Technical College, Charleston? SC 

The published solution (FQ, Feb, 1983) is clearly erroneous, because it 
allows negative terms in a sequence of positive numbers. The error apparent-
ly arises from (1 - sin2£)* = cos £, which is false if cos £ < 0. 

Let 
bn = Fn~~2 A r c s i r i # l + *Vz-l A r c s i n <22 

and let k be the least positive integer for which b^ > 7r/2«» Then k ̂  3> and 
it is easy to show that an = sin bn f° r n ̂  k (as given in the erroneous so-
lution) . However, 
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ak+1 = sin bk(l - s±n2bk_1)1 + s in bk_1(l - sin2bky 

= s in bk(cos bk_±) + s in ^ ^ ( - c o s bk) 

= s±n(bk - bk_±) = s in bk_2 = ak_2. 

9 — 9 -

ak+2 = sin bk_2(l - sinzZ?k)2 + s in bk(l - s in bk_2)2 

= s in bk_2(-cos bk) + s in bk(cos bk_2) 

= sin(2?fe - &£_2) = s in bk_1 = ak_1. Then 

a k+3 = ' W 1 - a?<+i^ + a * + i ( 1 - < W * 

= a^.^l - a£_2)* + ak_2(l - aj^) * = ak. 

Thus, the sequence eventually repeats in a cycle of three values, so we have 

sin bn if n < k 

sin bk_2 if n = fc + 3j + 1 and j > 0 

sin bk_± if n = k + 3j + 2 and J > 0 

sin 2^ if n = k + 3j and j > 0 

where {£>n} and k are defined as above. 

Efficient Raising to Powers 

B-484 Proposed by Philip L. Mana, Albuquerque, NM 

For a given x, what is the least number of multiplications needed to cal-
culate x98? (Assume that storage is unlimited for intermediate products.) 

Solution by Walther Janous, Universitaet Innsbruck, Austria 

Since 96 = 26 + 2 + 2 , the least number of multiplications needed to 
calculate x98 is 6 + 2 = 8. This can be achieved as follows: 

~,™ = ™ 2 • ^ 2 ^ 2 _ *t . ^,^^,4 _ ^ 8 . ^8^,8 _ ™1 6 . 1 6 1 6 _ „;2 . 

In general, the following theorem holds true: If 

k 
£ â 2S â  G {0, 1}, 

i = 1 

is the dual-representation of the number N, then the least number of multi-
plications needed to calculate xN (under assumption of unlimited storage for 
intermediate products) equals 
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p(N) = k + #{i : I < k and at = 1}. 

Also solved by L. Kuipers, Vanla D. Mascioni, Samuel D. Moore, John Oman & 
Bob Prielipp, Stanley Rabinowitz, Sahib Singh, J. Suck, and the proposer. 

Difference Equation 

B-485 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Find the complete solution un to the difference equation 

Un + 2 ~ X + l + 6un = H ^ " Wn+2' 

Solution by J. Suck, Essen, Germany 

Since 
un + 2 ~ 5un + i + 6M„ = HFn - Wn + 2 = Fn + 2 - 5Fn+1 + 6Fn, 

we see that the difference sequence dni = un - Fn has the auxiliary equation 
x2 - 5x + 6 = 0, of which the roots are 2 and 3. The general solution for dn 

is5 thus, dn =. a2n + b3n, and so un — cc2.n + b3n + Fn with arbitrary constants 
a, b [which are a = 3(w0 - F0) - u± + i^, b = u1 - F1 - 2(u0 - F0) in terms 
of initial values], 

Of course, the solution does not depend on FQ = 0, F1 = 1, but only on 
the Fibonacci recurrence. 

Also solved by Wray G. Brady, Paul S. Bruckman, C. Georghiou, Walther Janous, 
L. Kuipers, John W. Milsom, Bob Prielipp, A. G. Shannon, Sahib Singh, and the 
proposer. 

Monotonia Sequences of Ratios 

B486 Proposed by Valentina Bakinova, Rondout Valley, NY 

Prove or disprove that, for every positive integer k, 

F F F F* F, F, 
< - r r - < — — < -•• < CL* < ••• < - T T - < - S — • < • 

Fl F3 FS Fb i-*f * 2 

Solution by Vania D. Mascioni, student, Swiss Fed. Inst, of Tech., Zurich 

F i x k > 0 . U s i n g t h e w e l l - k n o w n i d e n t i t y 

Fn + kFm_k - FnFm = (~DnFm_n_kFk 

(see, e.g., Knuth, The Art of Computer Programming, 1, Ex. 1.2.8.17), we ob-
tain 

F F - F F - F F - F F = Fi y 0. 
rfe + 2P^2P + 2 rfe + 2P + 2 r 2 P rk + 2P + l£ 2P-1 L k+ 2P - IT 2P + 1 x& 

I t i s t h e n /P • -T*7 ' F 
k+2P+2 k + 2P fe + 2P + l fc + 2 P - l ' 

< ~jr— and — — — > — f o r P > 1 . 
r 2P + 2 r 2P 2P + 1 r 2P ~ 1 
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r' an n 
From Fn = T" + 7 ' ±Z f o l l o w s t h a t 

lim — - — = ak . 

Also solved by Paul S. Bruckman, C. Georghiou, Walther Janous, L. Kuipers, 
Bob Priellpp, Stanley Rabinowitz, A. G. Shannon, Sahib Singh, J. Suck, and 
the proposer. 

Multiple of 50 

B-487 Proposed by Herta T. Freitag, Roanoke, VA 

Prove or disprove that, for all positive integers n, 

5Lhn - L\n + 6 - 6(-l)%„ = 0 (mod 10F2). 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

We will show that the given congruence holds. Since 

L2n = 5F2 + 2(-l)", Fln = LnFn, and L2
n - F2 = 4F2 + 4(-l)n 

(See Exercises 4, 1, and 10 on p. 29 of Fibonacci and Lucas Number's by V. E. 
Hoggatt, Jr.). 

5L,n ~ L\n + 6 - 6 ( " 1 ) " £ 2 n = 25Fln + 1 0 ~ 15Fn + Z M . ) * ] 2 + 6 - 6 ( - l ) B 

[5Fl + 2(-l)"] = 25F2
K + 10 - 2 5 ^ - 20(-l)"F2 - 4 + 6 - 30(-l)V2 - 12 

= 25£2F2 - 25# - 50(-l)V2 = 25F2(L2 - F2) - 50(-l)nF2 

= 25F2[4F2 + 4(-l)"] - 50(-l)"F2 = 50F2[2f2 + (-1)"]. 

Clearly the immediately preceding expression is congruent to zero modulo 50F% 
(and hence is congruent to zero modulo lOF^) • 

Also solved by Paul S. Bruckman, Walther Janous, L. Kuipers, Stanley Rabino-
witz, Heinz-Jurgen Seiffert, Sahib Singh, J. Suck, and the proposer. 

Odd Difference 

B-488 Proposed by Herta T. Freitag, Roanoke, VA 

Let a and d be positive integers with d odd. Prove or disprove that for 
all positive integers h and k, 

La + hd + La+hd+d = La+kd + La+kd+d (mod Ld^' 

Solution by Sahib Singh, Clarion State College, Clarion, PA 
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This congruence is true. The proof follows by using the result of B-479 
which states that 

La+hd + La + hd+d = La + d + La (mod F d) • 
Similarly, 

La+kd + La+kd+d- La+d + ^a (mod Ld) 
is true. 

By subtraction, the required result follows, and we are done. 

Also solved by Paul S. Bruckman, Walther Janous, L. Kuipers, Bob Prielipp, 
J. Suck, and the proposer. 

Even Difference 

B-489 Proposed by Herta T. Freitag, Roanoke, VA 

Is there a Fibonacci analogue (or semianalogue) of B-488? 

Solution by Walther Janous, Unlversitaet Innsbruck, Austria 

Let a and d be positive integers with d even. Then there holds for all 
positive integers In and k9 

Fa + hd + Fa+hd+d E Fa + kd + Fa + kd + d (mod Fd) ' 

As before, it is enough to consider the case h - k + 1. Since, for d even, 
there holds 

Fa+(k + 2)d " Fa + kd = FdLa + (k + ±)d> 

the claim is proved. 

Also solved by Paul S. Bruckman, L. Kuipers, Bob Prielipp, Sahib Singh, J. 
Suck, and the proposer. 
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Edited by 
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Send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, Mathematics Department, Lock Haven State College, Lock 
Haven, PA 17745. This department especially welcomes problems believed to 
be new or extending old results. Proposers should submit solutions or other 
information that will assist the editor. To facilitate their consideration, 
solutions should be submitted on separate signed sheets within 2 months after 
publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-360 Proposed by M. Wachtel, Zurich, Switzerland 

Let FnFn + 1 + F2
n + 2 = A± 

Fn+lFn+2 + Fn+3 = ^ 2 

Fn+2Fn+3 + Fn+h = ^ 3 

Show that: 

(1) No integral divisor of A is congruent to 3 or 7 modulo 10. 
(2) A1A2 + 1, as well as A±A3 + 1, are products of two consecutive integers. 

H-361 Proposed by Verner E. Hoggatt, Jr. (deceased) 

Let Hn = P2n/25 n > 0, where Pn denotes the nth Pell number. Show that 

Hm + Hn = Pk + Pk-1 

if and only if m = n + 1s where k - 2n + 1s and 

^2n + 2/2 + Pinl2 = ((2P2n + 1 + P2n) + ?2n)/2 = P2n + 1 + F2n • 

Editorial Note; Refer to the January 1972 article on Generalized Zecken-
dorf Theorem for Pell Numbers. 

H-362 Proposed by Stanley Rabinowitz, Merrimack, NH 

Let Z be the ring of integers modulo n. A Lucas Number in this ring is 
a member of the sequence {L^}s k = 0., ls 2, ..., where L0 = 2, L1 = 1, and 
Lk + 2 E £fc + 1 + Lfe for /c > 0. Prove that, for n > 14, all members of Zn are 
Lucas numbers if and only if n is a power of 3. 
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Remark: A similar, but more complicated, result is known for Fibonacci 
numbers. See [1], I do not have a proof of the above proposal, but I sus-
pect a proof similar to the result in [1] is possible; however, it should be 
considerably simpler, because there is only one case to consider rather than 
seven cases. 

To verify the conjecture, I ran a computer program that examined Zn for 
all n between 2 and 10000 and found that the only cases where all members of 
Zn were Lucas numbers were powers of 3, and the exceptional values n = 2, 4, 
6, 7, and 14 (the same exceptions found in [1]). This is strong evidence for 
the truth of the conjecture. 

Reference 

1. S. A. Burr. "On Moduli for Which the Fibonacci Sequence Contains a Com-
plete System of Residues." The Fibonacci Quarterly 9 (1971):497. 

H-363 Proposed by Andreas N. Philippou, University of Patras, Greece 

For each fixed integer k ^ 2, let < f ^ > be the Fibonacci sequence of 
order k, i.e., f^k) = 0, f^k)= 1, and l j n = 0 

, f(k\ + — + fik\ if 2 < n < k, 
1 f™ + ••• + f ( k l , if n >k+ 1. 

J n-l J
n-k 

Evaluate the series 

^ 1 

n = 0 f (fc) 
(k> 2, m> 2). 

Remark: The Fibonacci sequence of order k appears in the work of Philip-
pou and Muwafi, The Fibonacci Quarterly 20 (1982);28-32. 

H-364 Proposed by M. Wachtel, Zurich, Switzerland 

For every n, show that no integral divisor of F2n+1 is congruent to 3 or 
7, modulo 10. 

SOLUTIONS 

The Root of the Problem 

H-341 Proposed by Paul S. Bruckman, Concordf CA 
(Vol. 20, No. 2, May 1982) 

Find the real roots, in exact radicals, of the polynomial equation 

p(x) = x6 - 4x5 + lxh - 9x3 + 7x2 - 4x + 1. = 0. (1) 

Solution by the proposer 

We note that p(0) £ 0 and p(x) = xGp(l/x). Let 
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y = x + x"1. (2) 

Then y2 - x2 + x"2 + 2 and y3 = x3 + x~3 + 3y; hence, 

x~3p(x) = x3 + x~3 - 4(x2 + x~2) + 7(x + x"1) - 9 

= z/3 - 3z/ - My1 - 2) + ly - 9, | 
or 

y3 - hy2 + ky - 1 - 0. (3) 

This polynomial in z/ may be readily factored, noting that it vanishes for 
y = 1. Thus, 

(2/ - D(y2 " 3y + 1) = (y - 1) (y - a2) (y - b2) = 0. 

Now, we may solve for x in terms of z/, first multiplying (2) throughout by 
x : x2 - .#z/ + 1 = 0, or 

x = \{y ± i / ^ ^ 4 ) . (4) 

Setting 2/ = 1 or z/ = Z?2 in (4) }?ields imaginary roots of (1) (and,, moreover, 
of unit modulus). Setting y = a2, however5 yields real roots, which after a 
little manipulation are found to be as follows: 

x, = |(3 + /5 + /6/5- 2) = 2,1537214, (5) 

a:2 = \{3 + /5 - V6/5 - 2) = .46431261 = l/x1. (6) 

Also solved by W. Blumberg, H. Freitag, W. Janous, D. Laurie, D. Russell, C. 

Shields, and M. Wachtel. 

H-342 Proposed by Paul S. Bruckman, Corcord, CA 

(Vol. 20, No. 3, August 1982) 

Let 

'.-me"-,ay. n = 0, 1, 2, ... . (1) 
fc»0 

Prove that 

fe = 0 

Solution by the proposer 

Proof #1: The well-known Legendre polynomials are defined by the gener-
ating function 

(1 - 2xz + z2)-^ = X) Pn(x)^n (valid for |x| < 1, |s| < 1), (3) 
n = 0 

and are given explicitly as 

p„(*) - 2 - \ E ( f c ) ( 2 n ; 2 f c ) < - i ) k « , , - 2 k - <*> 
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(see, for example, formulas 22.3.8 and 22o9»12 in Handbook of Mathematical 
Functions with Formulas^ Graphs^ and Mathematical Tables, ed. Milton Abramo-
witz & Irene A* Stegun, National Bureau of Standards Applied Mathematics Se-
ries 55, issued June 1964, 9th printing, November 1970, with corrections). 

In (3) and (4), set x = ~i and replace z in (3) by -iz. Then 

(1 .- z - a2)"* = EP„(^)(->s)V (5) 
n = 0 

and, using the definition of An in- (1): 

Pn(±£) = t^X- (6) 
Thus5 

(1 - Z - 32)~* - 2>n(^) n » (7) 
n = 0 

Squaring both sides of (7), we obtain the generating function of the Fibonac-
ci numbers: 

w = 0 n-Q k=0 

(the last result by convolution). We obtain (2) by comparison of coefficients 
in the last two expressions. Q.E.D. 

The following Is a more direct proof :of the foregoing result. 

Proof #2: Let 

n, k = 0 

» (i - «2)-ii:o(7)(-«)B(i - *2rn - a - s2)"*!1 - r ^ i - } " ' 
or 

f(Z) - (1 - 3 - a2)"*. (9) 

The rest of the proof now proceeds as in the first proof, after (7). Q.E.D, 

The first few values of (An)nssQ are as follows: in = 1, A± = 2, i2 = 14, 
A3 - 68, An = 406* As = 2,332,''A6 = 13,964, A7 - 83,848, etc. The "etc." is 
puzzling-™-can any reader discover a closed form expression for An'l 
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Also solved by C. Georghiou. 

Continue 

H-343 Proposed by Verner E. Hoggatt, Jr. (deceased) 
(Vol. 20, No. 3, August 1982) 

Show that every positive integer, m9 has a unique representation in the 
form 

m = U 1 U 2 M 3 [...U n ]...], 
where Aj = a or a2 for j = 1, 2, . . ., n - 1, and 

where a = (1 + v/5)/2. 

Solution by Paul Bruckman, Carmichael, CA 

Let A{k) = [ak], J5(/c) = [a2/c], fe = 1,2,3, — . Note A(l) = [a] = 1 and 
5(1) = [a2] = 2, Let a "string" denote any composition of functions A or 5 
ending with 5(1) [e.g., A(B(A(B(l)))) ]. Let the length of a string denote 
the number n of functions used in the string (n = 4 in the example). Let 

A = [A(k)Tkml, B = {B(k)Tkml, N = (J<)~=1. 

It is a well-known theorem that A U B = N, A D B = 0. 
The problem is incorrectly stated, since l = A(l) is not representable by 

a string. We shall prove that all integers > 1 are representable. 
We first prove that distinct strings represent distinct positive inte-

gers. This is trivially true for n = 1, since there is only one number of 
string-length 1, namely 5(1) = 2. Also, for n = 2, we have 

A(B(l)) = A{2) = 3 and 5(5(1)) = 5(2) = 5. 

Suppose that all distinct strings of length ̂  n represent distinct positive 
integers. Then, if k is the integer represented by any string of length n, 
we have A(k) ^ 5(/c), since A C\ B = 0. Likewise, A(k) ^ B(j) s where j is the 
integer represented by any string of length less than n. If A{k) = A(j) or 
B{k) - B(j), then k = j, since A(rn) and B(m) are one-to-one functions. This 
is, however, contrary to hypothesis. Thus, all distinct strings of length ^ 
(n + 1) represent distinct integers. It follows by induction that distinct 
strings represent distinct positive integers. 

It remains to show that all positive integers m > 1 are thus represent-
able. Suppose that all integers k5 with 2 < k K m are representable. Since 
A U 5 = N, thus, m + 1 = A(j) or 5(j) for some integer j with 2 < j < m. 
Therefore, m + 1 is also representable. Since 2 = 5(1), 3 = A(B(l)), etc., 
it follows by induction that all integers m > l are representable. This com-
pletes the proof of the problem (as modified). 

Also solved by the proposer and by L. Kuipers, who remarked that the solution 
is contained in this quarterly, Vol 17 (1979):306-07. 
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Don't Lose Your Identity 

H-344 Proposed by M. D. Agrawal, Government College, Handsaur, India 
(Vol, 20, No. 3, August 1982) 

Prove: 

1- LkLL,m ~ Lk+,mLt+m ' (~l)k5Z^F2mFk + 2m and 
2- hLk + 3m - Ll+2m = 5(-l)kF2jLk + hm + 2(-l)% + 2 J . 

Solution by Bob Prielipp, University of Wisconsin, Oshkosh, WI 

U s i n g t h e B i n e t f o r m u l a s 

Ln = an + bn and y/5Fn = an - bn 

and t h e f a c t t h a t ab = - 1 5 

LkLk + 3m ~ Lk+,mLk + m ~ (ak + bk)(ak + 3m + bk + 3m)2- (ak + "m + bk + "m)(ak + m+bk+m)2 

= (ak + bk)(a2k+6m+2(-l)k + r"+b2k+6m) 

- {ak + hm + bk + hm){a2k+2"' + 2{-l)k + m+b2k+2m) 

= a3k+6m+ (-l)k (ak + 6m) + 2(-l)k + m(ak + bk) + (-l)kbk+6m 

+ b3k+6m _.a3k+Sm _ (_1) ^ ( a ^ 2 m ) - 2 ( - 1 ) / c + m ( a / : + 1,m+ ^ + ^ ) 

- (-l)k(a2mbk)-b3k+lim 

= (-l)k[(ak + 6m+ bk + Sm) + 2(-l)m(ak+bk) 

- 2(-l)m(ak + ',m + bk + hm)- (akb2m + a2mbk)]. 
A l s o 

(-l)k52F2F, F,+7m = (-l)k(am - bm)2{a2m - b2m)(ak+2m - bk+2m) 
ffi ZTH K T Zrn 

= (-lf(a2m - 2 ( - l ) m + b2m){ak+hm - bk - ak + bk + "m) 

= (-l)k[ak+Sm - a2mbk - ak + 2m + bk + 2m - 2(-l)mak + km 

+ 2(-l)wbk + 2{-l)mak - 2{~l)mbk+hm 

+ ak+2m - bk+2m - akblm + bk + 6rn] 

= (-l)k[(ak+Sm + bk+Sm) + 2(-l)m(ak + bk) 

- 2(-l)m(ak+hm + bk+hm) - (akb2m •+ a2mbk)}. 

T h i s e s t a b l i s h e s t h e f i r s t f o r m u l a . 
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Again using the Binet formulas and the fact that ab = -1, 

k k + Sm k+2m LVL\^ - L* = (ak + bk)(ak + 3m + bk+3m)2 - (ak+zm + bk+2m)3 

= (ak + bk){azk+Bm + 2 ( - l ) f c + m + b2k+im) 

_ f 3k+Sm _j_ 3(-l)kak + 2m + 2(~l)kbk+2m
 + ^3k+Sm\ 

= a
3k+6m + (-l)kak+6m + 2(-l)k + m(ak + bk) 

+ (~l)kh^+6m + 2 j 3 ^ + 6 m - a3k+&m 

- 3(»l) f e (a f c + 2m + £ k + 2 m ) - £37c+6m 

= ( - l ) f e [ (a f c + 6m + fck+6w) + 2{-l)m{ak + fcfe) - 3(ak + 2m + bk + 2m)]. 
Also 

= (-l)k(am - bm)2[(ak+hm + 2?k + I*m) + 2(-l)m(ak+2m + bk + 2m)] 

= ( - i ) * ( a
2 w - 2 ( - l ) w + ^ 2 m )[ (a f e + l f W + ^ + ^ ) + 2 ( - l ) w ( a ^ + 2w + Z?fc+2m)] 

= (- l ) f e [a f e + 6;?7 + Z?k + 2 7 7 ? +2( - l ) m a f e + 4 m + 2(- l)mZ?f e- 2(-l)/7Za/c+lfm - 2 ( - l ) m ^ + 1 + / ? 7 

- 4a^ + 2 m - 42>k + 2m + afe+2m + b k + 6w + 2 ( - 1 ) ^ + 2 (-l)mbk+km ] 

= ( - l ) k [ ( a k + 6 m + . ^ + 6 m) + 2 ( - l ) m ( a * + bk) - 3(ak + 2m + 2 ? k + 2 w ) ] . 

This establishes the second formula. 

Also solved by P. Bruckman, W. Janous, L. Kuipers, J. Spraggon, and the pro-
poser . 

The Fibonacci Association and the University of Patras,. Greece would like 

to announce their intentions to jointly sponsor an international conference 

on Fibonacci numbers and their applications. This conference is tentatively 

set for late August or early September of 1984. Anyone interested in present-

ing a paper or attending the conference should contact: 

G. E. Bergum, Editor Professor Andreas N, Philippou 
The Fibonacci Quarterly Department of Mathematics 
Department of Mathematics University of Patras 
South Dakota State University Patras, Greece 
Box 2220 
Brookings, SD 57007-1297 
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