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ABSTRACT 

The generalized Fibonacci numbers {un}, 

Un+2 = Un+1 + Un> Ul = a> U2 = ^' (a> ^ = l > 

induce a unique additive partition of the set of positive integers formed 

by two disjoint subsets such that no two distinct elements of either sub-

set have un as their sum. We examine the values of a special function 

En(m) = mun_1 - u [mun_1/un\, m = 1, 2, . . ., un - 1, n > 2, 

and find relationships to the additive partition of N as well as to Wy-
thoff!s pairs and to representations of integers using the double-ended 

sequence {un}_00 and the extended sequence {un}_m . We write a Zeckendorf 

theorem for double-ended sequences and show completeness for the extended 

sequences. 

1. TABULATION OF En(m) FOR THE FIBONACCI AND LUCAS SEQUENCES 

We begin with the ordinary Fibonacci sequence {Fn}, where F± = 1, and 

F = 1, and Fn+2 = Fn+1 + Fn. We tabulate and examine a special function 

En(m), defined by 

En(m) = mFn_1 - Fn[mFn_ 1/Fn], m = 1, 2, ..., Fn - 1, n > 2, (1.1) 

where [x] is the greatest integer function. Notice that n = 2 gives the 
trivial E2(m) = 0 for all m, while E3(m) is 1 for m odd and 0 for 777 even. 

The table of values for En{m) (Table 1.1) reveals many immediate pat-

terns. First, En(m) is periodic with period Fn , and the rth term in the 
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cycle is En(r) = iiFn_1 (mod Fn) . We could easily show, using properties 

of modular arithmetic and of the greatest integer function, that 

M D = Vi» V 2 ) = V 3 » EnO) = Ln_2, E„W = 2Fn^. 
Also, counting from the end of a cycle, we have 

En(-D = Fn_2, En(-2) = 2Fn_2, En(-3) = Fn^, 2?„(-4) = Ln_3, 

which also can be established by elementary methods, but these apparent 

patterns are not the main thrust of this paper. 

TABLE 1.1 

VALUES OF EAm) FOR THE FIBONACCI SEQUENCE 

n - 4 n = 5 n - 6 n = 7 n = 8 
En(m): 2m-3[f] 3m - 5 [f] 5« - 8 [ f ] 8. - 13g] 13m - 2 l [ ^ ] 

77? = 

m = 
m = 
777 = 

777 = 

777 = 

77? = 

777 = 

77? = 
777 = 

77? = 

m = 
777 = 

m = 
m = 
m = 
77? = 

m = 
77? = 

777 == 

777 = 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

2 
1 
0 
2 
1 
0 
2 
1 
0 
2 
1 
0 
2 
1 
0 
2 
1 
0 
2 
1 
0 

3 
1 
4 
2 
0 
3 
1 
4 
2 
0 
3 
1 
4 
2 
0 
3 
1 
4 
2 
0 
3 

5 
2 
7 
4 
1 
6 
3 
0 
5 
2 
7 
4 
1 
6 
3 
0 
5 
2 
7 
4 
1 

8 
3 

11 
6 
1 
9 
4 

12 
7 
2 

10 
5 
0 
8 
3 

11 
6 
1 
9 
4 

12 

13 
5 

18 
10 

2 
15 

7 
20 
12 

4 
17 

9 
1 

14 
6 

19 
11 

3 
16 

8 
0 

We need two other number sequences, derived from the Fibonacci numbers. 

We write the disjoint sets {An} and {Bn}$ which are formed by making a 
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partition of the positive integers such that no two distinct members from 

A and no two distinct members from B have a sum which is a Fibonacci num-
ber. We also write the first few Wythoff pairs (an, bn) [1] for inspec-

tion. 

A, Bv 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 
3 
6 
8 
9 
11 
14 
16 
17 
19 

2 
4 
5 
7 
10 
12 
13 
15 
18 
20 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 
3 
4 
6 
8 
9 
11 
12 
14 
16 

2 
5 
7 
10 
13 
15 
18 
20 
23 
26 

We note that the Wythoff pairs are given by 

an = [na] and bn = [na1], (1.2) 

where [x] is the greatest integer contained in x and a = (l+v5)/2 is the 
Golden Section ratio. Also, bn = an + n9 and an is the smallest integer 

not yet used. It is also true that no two distinct bn's have a Fibonacci 

number as their sum, and that {bn} C {Bn}. 
Now, examine the periods of the values of En(m): 

5: 6: n = 7: 

3 
1 
4 

un 

2) > bn 

3 
1 

4 
2 

}̂ n 5 
2 
1 

4] 
1 
6 
3 

• & w 

•a* 

5 
2 
7 
4 

1 
6 
3 

Bn 

A-n 

3 
11 
6 
1 
9 
4 
12 , 

r 2 
10 
5. 

[ &n 

>bn 

3 
11 
6 
1 
9 

4 
12 
7 
2 
10 
5 
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13 
5 

18 
10 

2 
15 

7 
20 

1 3 1 

5 
18 

>t>n 2 

15 
7 

20 
12 

4 

n = 8: 

1 12' 
4 

17 
9 

. 7 ? X 
Dyi 14 

6 
19 
11 

3 
16 

8 

171 

9 
1 

14 
6 

19 
• CLn ^ ^ 

3 
16 

8 

Notice that the integers 1, 2, 3, ..., fn - 1, all appear, but not in 

natural order. Each cycle is made up of early values of {an} and {bn}, 
and of early values of {An} and {Bn}, not in order, but without omissions. 

If we apply En(m) to the Lucas numbers Ln, defined by L± = 1, L2 = 3, 

Ln+z = ^n+i + ^n» so that we consider 

En(m) = mLn_1 - Ln[mLn_1/Ln], m = 1, 2, ..., Ln - 1, (1.3) 

then we get the integers 1, 2, 3, . .., Ln - 1 in some order. Recall our 

generalized Wythoff numbers an3 bn9 and on [1, p. 200]. We obtain within 

each cycle a segment of {an}, a segment of {cn}> and a segment of {bn}s 

where each segment is complete (the first few terms of each sequence with-

out omission, but not in order). This same cycle contains the first few 

terms of {An}s out of order, but without omissions, followed by the first 

few terms of {Bn}, where {An} and {Bn} is the unique split of the positive 

integers induced by the Lucas sequence such that no two elements of {An}, 
and no two elements of {Bn}9 have a Lucas number for their sum. 

To illustrate the Lucas case, we write the first twelve values of the 

generalized Wythoff numbers, and early values of the partition sets: 

n 

1 
2 
3 
4 
5 
6 

A 

1 
4 
5 
8 
9 

11 

Bn 

2 
3 
6 
7 

10 
13 

n 

1 
2 
3 
4 
5 
6 

°<n 

1 
4 
5 
8 

11 
12 

bn 

3 
7 

10 
14 
18 
21 

^n 

2 
6 
9 

13 
17 
20 
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bn 

1 
8 
9 
10 
11 
12 

15 
16 
19 
22 
23 
26 

25 
28 
32 
36 
39 
43 

24 
27 
31 
35 
38 
42 

7 
8 
9 
10 
11 
12 
13 
14 

12 
15 
16 
19 
22 
23 
26 
27 

14 
17 
18 
20 
21 
24 
25 
28 

Now, examine the periods of values of En(m) for the Lucas sequence: 

n = 4 : 

km - 7 [4m/7] 

41 
1 
5J 

CL* 1 \An 

h°» !} 
3} bn 

7m 

n = 5 : 

- l l [777z/ l l ] 

I*- ,!l 
]• il 

7 
3 

10 
6 
2 

9 
5 
1 "•n 

n = 6: 

l b n - 18[ll/7z/18] 

i r 
4 
15 
8 
1 
12 
5 
16, 

91 

2 
13 
6 
17. 

10' 
3 
14 
7. 

11 
4 
15 
8 

" ̂ n i 

12 
5 
16 
9 

2 
<?n 13 
1 6 

17 
10 
3 

'K 7 

18w 

18 
7 
25 
14 
3 
21 
10 
28 

17 
6 
24 
13 
2 
20 
9 
27 

16 
5 
23 
12 
1 
19 
8 
26 
15 
4 
22 

7: 

29[18TW/29] 

18 
7 
25 
14 
3 
21 
10 
28 
17 
6 
24 
13 
2 
20 

9 
27 
16 
5 
23 
12 
1 
19 
8 
26 
15 
4 
22 

For comparison, the generalized Wythoff numbers are formed by letting an 

be the smallest positive integer not yet used, letting cn = bn - 1, and 
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forming bn = an + dns where dn + bk + 1. Letting the generalized Wythoff 

numbers be denoted with an asterisk, we can express them in terms of Wy-

thoff pair numbers as 

a* = 2an - n, b* = bn + n = an + 2n, c* = an + In - 1 = aa + n. 

It is also true that a^ + a^f ^ Lm, b* + M ^ Z^, and the Lucas generalized 

Wythoff numbers and the Lucas partition sets have the subset relationships 

{an} C {An} and {bn) C {#„}. 

2. ZECKENDORF THEOREM FOR DOUBLE-ENDED SEQUENCES 

Before considering representations and additive partitions regarding 

the generalized Fibonacci sequence {un}™m9 where u1 - a and u2 = b, Un + 2 = 

un + 1 + un, we consider representations of the integers in terms of special-

ized {un}, where u1 = 1 and u2 = p. 

Theorem 2.1 (Zeckendorf Theorem for double-ended sequences): Let p > 1 be 

a positive integer, and let un + 2 = un+1 + uni u1 - 1, u2 = p. Then every 

positive integer has a representation from {uj.^, provided that no two 

consecutive Uj are in the same representation. 

Proof: We need to recall two major results from earlier work. David 

Klarner [2] has proved 

Klarner's Theorem: Given the nonnegative integers A and B, there exists a 

unique set of integers {kl9 k2> k3s ..., kr} such that 

A = \ + \ + • • • + *kr 

for \k • - k-\ > 2, i ^ j, where each î- is an element of the sequence 

{F-T . 

When u = 1 and u = p5 we know from earlier work that 

for all integral n. Next, if we wish a representation of an integer 777 > 0, 

we merely solve 

1984] 7 



ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS 
AND GENERALIZED FIBONACCI REPRESENTATIONS 

B = m = Fki +Fk2 + ••• +Fkr 

which has a unique solution by Klarner's Theorem. A constructive method 

of solution is given in [3]. Thus, 

m = w*i+1+ uK+1+ ••• + uK+1 

= p(Fki + l+ Fki + 1+ ••• + FK+1)+ (Fki + Fk%+ ••• + Fkr) 

We note in passing that the representation we now have is independent of 

the explicit p > 0. 

Theorem 2.2: The Fibonacci extended sequence is complete with respect to 

the integers. 

Proof: Since 1, 2, 3, 5S 8, 13, . .., is complete with respect to the 

positive integers, one notes 

F_„ = (-Dn + 1F„, 

and, therefore, one can pick out an arbitrarily large negative Fibonacci 

number. Consider M an arbitrary negative integer, and there exists a Fi-

bonacci number F_k such that F_k < M < 0. Now, M - F_k = N, which is pos-
itive and has a Zeckendorf representation using Fibonacci numbers, and 

M = N + F_-, is the representation we seek. 
Since un + 2 = un + 1 + un9 if it consists of positive integers as n -> °°, 

then, as n -> -°°, the terms become alternating and negatively very large. 

Thus, the same thing holds for the generalized Fibonacci numbers once we 

know that they are complete with respect to the positive integers, finish-

ing the proof of Theorem 2.1. 

Completeness of the generalized sequence {un}_00 is equivalent to show-

ing that every positive integer is expressible as the sum of a subsequence 

{un}™m , m > 0, where m is independent of the integer chosen. We show some 

special cases: 

1, 1, 2, 3, 5, ... Already complete. 

1, 2, 3, 5, 8, ... Already complete. 

1, 3, 4, 7, 11, ... 
Complete when L0 = 2 is added to the sequence. 
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Case 4: p = 4 1, 4, 5, 9, 14, 23, ... Complete when 
uQ = 3 and u.^ = -2 are added to the sequence. 

Case 5: p = 5 1, 5, 6, 11, 17, ... Complete when 
uQ = 4 and u_x = -3 are added to the sequence. 

Case 6i p = 6 1,6,7, 13, 20, ... Complete when 
uQ = 5, W.-L = -4, and u_2 = 9 are added. 

Case 7: p = 1 1, 7, 8, 15, 23, ... Complete when 
u0 = 6, u_± = -5, u_2 = 11, and u_3 = -16 are added. 

Case 8: p = 8 1, 8, 9, 17, 26, ... Becomes complete when 
u0 = 7, w ^ = -6, w_2

 = 13, and u_3 = -19 are added. 

Next we consider the generalized Fibonacci sequence. 

Theorem 2.3: Let un + z = un+1 + un, where u± = a, u2 = bs and (a, b) = 1, 

b ^ a^ 1. Then, every positive integer has a representation from {un}_0O 

provided that no two consecutive Uj are in the same representation. 

Proof: It is known that the generalized Fibonacci numbers are related 

to the ordinary Fibonacci numbers by 

un + 1 = bFn + aFn.1. (2.1) 

Let m be a positive integer, m > b. Then we can always write 

m = bA + aB 

for some integers A and 53 since (a, b) = 1. If both ̂  and 5 are nonnega-

tive, we are done, since the dual representation of A and B5 by Klarner*s 

Theorem, leads to a representation of m via (2.1). If A or 5 is negative, 
notice that, since the ordered pair (A$ B) is a lattice point for a line 

with slope -b/a and ^-intercept mla, if we can add an arbitrarily large 

integer to m» then we can raise the line so that it crosses the first quad-
rant and we will have nonnegative values for A and B. Thus, choose u, < 0 

with an absolute value sufficiently large, and we represent 

m - u_k = M * + aB* 

for A* and B* nonnegative. We then represent m - u_k via Klarnerfs Theo-

rem, and add u_k to that representation to represent m. Similarly, if 

m < b, since the negatively subscripted terms of Un become negatively as 

large as we please, choose u_k < 0 so that m - u_^ > i, represent m - u_^ 
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as above, and then add u_k to the representation. 

3. A PATTERN ARISING FROM KLARNER'S 

DUAL ZECKENDORF REPRESENTATION 

Recall the Klarner dual Zeckendorf representation given in Section 2, 

where 

A = \ + l + \ + l + "" + F ^ + 1= 0 

B = F, + Fk + ••• + F, = n, 

where n = 1, 2, 3, . .., \ki - kj\ > 2, i £ j , and Fj comes from {Fj-}™m. 
The constructive method for solving for the subscripts kj to represent A 
and B described in our earlier work [3] leads to a symbolic display with 

a generous sprinkling of Lucas numbers. Here we use only two basic for-

mulas , 

This allows us to push both right and left. We continue to add F_1 = 1 at 
each step, using the rules given to simplify the result. For example, for 

n = 1, we have F_± = 1. For n = 2, F_± + F_1 = 2F_1 = FQ + F_3 = 2. For 

n = 3 , F _ 1 + F 0 + ^ 3 becomes Fx + F_3 = 1 + 2 = 3. We display Table 3.1. 

Strangely enough, the Wythoff pairs sequences enter into this again. 

The basic column centers under F_ . The display is for expressions for B 
only; A is a translation of one space to the right. At each step, B = n, 
and ,4 = 0. 

From Table 3.1, many patterns are discernible. There are always the 

same number of successive entries in a given column. Under F_2 there are 

L1; under F_3, L2; under F_4, L3; and under F_5, L^. Under F_6 there are 

L5 successive entries, starting with B = 30, and under F_7 there are L6 

successive entries. On the line for B = 47, there are only two entries, 

one corresponding to F_3 = 34 and one to F? = 13, so that 34 + 13 = 47 as 

required, while F_ = -21 and F = 21 have a zero sum as required. 

The columns to the right of F_1 (under F0, for instance) have Ln ± 1 
alternately successive entries, but the same numbers of successive entries 

always appear in the columns. Once we have all spaces cleared except the 
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extreme edges in the pattern being built, we start again in the middle, as 

in line 48 or line 19« 

TABLE 3.1 

B F-3 F-B F~7 FS F-5 F-, F-3 F-2 F-l F0 Fl F2 F3 F, ^5 ^6 

1 X 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 x 

X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 

X 
X 
X 

X 
X 
X 

X 
X 
X 

X 
X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 
X 
X 
X 

X
X

X 

X 
X 

X 
X 
X 

X
X

X 

X
X

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

k. REPRESENTATIONS AND ADDITIVE PARTITIONS FOR 

THE SEQUENCE 1,4,5, 9, 14, 23, ... 

We make the following array: 

An = first positive integer not yet used 
Bi(n) = Bn - 2 
B2(n) = Bn - 1 

1984] 11 



ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS 
AND GENERALIZED FIBONACCI REPRESENTATIONS 

where dn £ Aj and goes through the complement of {An} in order, except we 

do not use B1(n) opposite the second of a consecutive pair of A n ; i.e., we 
do not use B1(n) if A n = A n _ 1 + 1. The underlined numbers in the follow-

ing table cannot be used for dn. 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

A 

0 
1 
5 
6 
10 
14 
15 
19 
20 
24 
28 

B^n) 

2 
1 

11 
16 
21 
25 
30 
34 
39 
44 

B2(n) 

3 
8 
12 
17 
22 
26 
31 
35 
40 
45 

Bn 

4 
9 
13 
18 
23 
27 
32 
36 
41 
46 

dn 

3 
4 
7 
8 
9 
12 
13 
16 
17 
18 

We now have the following constant differences, where (a„, bn) is a 

Wythoff pair: 
(5, n = ai 

Bn+1 ~ Bn= I (4.1) 
14, n = bj 

!

4, n = a{ 
(4.2) 

1, n = bj 
Alternately, 

A n = 3an - In = (2n - a„) • 1 + (an - ri) • 4 

5^ = a„ + 3n = (2n - an) • 4 + (an - ri) • 5 

Apparently, dn ^ 5j + 1 and dn ^ Bj + 2. 
This extends for the sequence 1, p, p + 1 , ...5 ^n+2

 = ; 

5- REPRESENTATIONS AND ADDITIVE PARTITIONS USING THE 

GENERALIZED FIBONACCI NUMBERS 

We consider the general case for (a, b) = 1, and 

u1 = a, u2 = b, un+2 = un+1 + un. 

First we have a unique additive partition and the function 

ln + l + un' 

(4. 

(4. 

• 3 ) 

•4) 
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En(m) = mun_1 - un[mun_1/un]5 m = 1, 2} ..., un - 1 (5.1) 

generates 1, 2, 3, ..., w„ - 1, but, of course, not in natural order. One 

set of the additive partition includes 1 < m < un/2, while the other has 

un/2 < m < un~ 1. Suppose 0 < a* < b*; then the values of En{m) are split 

into b* disjoint sets whose first elements are 1, 2, 3, . .., a* > . .., b*. 
The elements of the sets to the left of a* are, correspondingly, 1 less, 2 
less, 3 less, ..., as we go to the left, while the sets between a* and b* 
have their values 1 less, 2 less, 3 less, ..., than b*. Each element sat-

isfies 

1 + J5 
(5 .2 ) 

an + i " an = £> n £ {#&}* afc = [fca], a 
a*+l " an = a> n E ibk}> bk = [to2]. 

The a* are the representations using 

a + a2b + a3u3 + ..., ai = 0 or 1, 

while we can show 

a* = {In - an)a + (an - ri)b (5.3) 

fc* = {In - an)b + (a„ - n)(a + 2?) (5.4) 

because of the formula 

Let a* = {a + a2u2 + a3u3 + •••} in natural order. Then 

a* = Z?F0 + aF_1 + a2(Z?i?7
1 + aFQ) + ••• 

= 2?(F0 + a2F1 + a 3 F 2 + . . . ) + a(F_± + a2FQ + - • • ) 
= a(2?z - a n ) + Z?(an - ri) 

s ince 
an -> n -> a n - n ->• 2n - a n . 

Thus, once we know that an+1 - an = 2 for n = â- and an + 1 - an = 1 for 
n + a-, and wn + 1 = ̂  + aFn_x, we have (5.3) and (5.4). Further, these 

a* and b* a^e the generalizations of the Wythoff pair numbers an = [wa] 

and bn = [na2] themselves (a = ~—z 1. 
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6. REPRESENTATIONS AND ADDITIVE PARTITIONS ARISING FROM 

TWO SUCCESSIVE FIBONACCI NUMBERS 

It is well known that if we start with 1 and 2, we get the Wythoff 

pairs and have a unique additive partition of the positive integers. Next, 

to see something else, take 2 and 3. Since (2, 3) = 1, we still have the 

same additive partition of the positive integers, and the function En(m) 
of (5.1) and (1.1) still yields the residues mod Fn, but our array changes 

in an interesting way. 

TABLE 6.1 

2, 3, 5, 8, 13, 21, ... 

1 
4 
6 
9 
12 
14 
... 

aa 

w = 

2 
5 
7 
10 
13 
15 
... 

K 
2 

3 
8 
11 
16 
21 

. . . 

W = 3 

^•n 

1 
3 
6 
8 
9 
11 
14 
16 
17 
19 

Bn 

2 
4 
5 
7 
10 
12 
13 
15 
18 
20 

Note that, if we give a weight one and b weight two, we have the weights 
abbreviated by W above. The successive values of En(m) are the same as 

before, but we now have a different split to look at. Note that A and B 
are formed so that no two elements of either set have 2, 3, 5, 8, 13, ..., 

as their sum. Now let us look at En(m) for 13 = Fn_1 and 21 = Fn ; i.e., 

En{m) = \2m - 21[ 13^/21]. 

The twenty values in the cycle are: 

13, 5, 18, 10, 2, 15, 7, 20, 12, 4, 17, 9, 1, 14, 6, 19, 11, 3, 16, 8. 

The first 10 are elements of Bn; the other 10 are An. The first 8 have 

the form bn ; the next 8 have the form aaj the last 4 have the form ab . 
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Now look at the array induced by 3 and 5 as a starting pair. 

TABLE 6.2 

3, 5, 8, 13, 21, 34, ... 

1 
6 
9 
14 
19 
22 
27 

... 

aa 
an 

2 
1 
10 
15 
20 
23 
28 

... 

^n 

W = 3 

3 
8 
11 
16 
21 
24 
29 

... 

On 

4 5 
12 13 
17 18 
25 26 
33 34 
38 39 
46 47 
51 52 
... ... 

abn
 bn^ 

W = 4 

An 

1 
3 
6 
8 
9 
11 
14 
16 
17 
19 

Bn 

2 
4 
5 
7 
10 
12 
13 
15 
18 
20 

The A n and Bn are the same as before. 

Return to the values of En(m) for 13 and 21 given above. Notice that 

the first 3 values—13, 5, 18—come from bh ; the next 5 from bn ; the 
Dn n 

next 3 from aa_ ; then five from a a ; and, lastly, 4 from ah . We begin 
bn

 an un 
to see familiar patterns emerging [4], [5]. 

We write the array induced by 5 and 8 in Table 6.3. 

TABLE 6.3 

5, 8, 13, 21, 31*, 55, ... 

1 
9 
14 
22 
30 
35 
43 

Go 

2 
10 
15 
23 
31 
36 
44 

Five 

3 
11 
16 
24 
32 
37 
45 
. . . 
aban 

of wei 

4 
12 
17 
25 
33 
38 
46 
. . . 

ght 4 

5 
13 
18 
26 
34 
39 
47 
. . . 

h 
On 

6 
19 
27 
40 
53 
61 
74 
• • 

Three 

7 8 
20 21 
28 29 
41 42 
54 55 
62 63 
75 76 
... ... 
habn ahn 

of weight 5 

"•n 

1 
3 
6 
8 
9 
11 
14 
16 
17 
19 

Bn 
2 
4 
5 
7 
10 
12 
13 
15 
18 
20 

1984] 15 



ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS 
AND GENERALIZED FIBONACCI REPRESENTATIONS 

Since an and bn are elements in complementary sets, the array on the left 

covers the positive integers. Note that the additive partition sequence 

An and Bn is the same for (1, 2), (2, 3), (3, 5), (5, 8), and for all con-

secutive Fibonacci pairs. 

Now, the weights mentioned under the arrays from (2, 3), (3, 5), and 

(8, 13) are precisely the unshortened sequence of lTs and 2!s in the com-

positions of W (the weight) as laid out by our scheme in [4] . As each must 
end in a 1 = ax or a 2 = b19 to get the proper representation, we simply 

replace 1 in each case by n and let n- 1, 2, 3, ... . This is a wonder-

ful application of Wythoff pairs, Fibonacci representations, additive par-

titions of the positive integers, and the function En(m). 

Before we prove all of this, we need some results for WythoffTs pairs 

from [1] and [5]. For Wythofffs pairs (an, bn), 

abn+l - Hn
 = l a n d aan+i - aan = 2; (6.1) 

aan + 1 = bn. (6.2) 

Return to the weights given in the array induced by 3 and 5 in Table 

6.2. From (6.2), replacing n by ani we get immediately that 

Now, 
% + i = ^ » - <6-3) 

+ 1 = ba and an , = aa + 2 

from (6.1) rewritten as 

Thus 5 

a = an + 2. 
an+1 an 

K+ l = aaa + i = abn 

as required. 

We obtain 

"ah + 1 = Hn (6.4) 

by replacing n by bn in (6.2). These are all the weights appearing in 

Table 6.2. 

Now, we move to Table 6.3, the array induced by 5 and 8, and examine 

the weights. From (6.2), by replacing n by aa , we easily obtain 

aaa + 1 = Ka • 
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an + 2 = ba + 1 = an + 1 = ah . 

Next, again from (6.2) with n replaced by bn and then n replaced by a, , we 
have 

an + 1 = bh and n + 1 = ba . 

Again using (6.2), we can also write 

K + l = aaa +1 = % • 

This undoubtedly continues. 

To get our next line of weighted l?s, we simply add an to end each 1 

of weight 4, and take those of weight 5 together with these. All of the 

following are of weight 5: 

an ba ah ani bh aary ba, ahl 
°-aaan

 aaan
 baan

 a^an
 ban aabn ^n °^n 

The five on the left end in an, and came from adding an an to each 1 of 

weight 4; the three on the left ending in bn are of weight 5 already. 

To get the next five of weight 6 to the right, we add ah to the end 

of the weight 3 aa , ba , and ah , then add bn only to the weight 4 aa and 

bh of Table 6.2, to form 

aaa
 b ^ aha

 a n d aab, bbb-

Now, we would like to have 

From an + 1 = bh , we have 
aah + 2 = bb + 1 = aa 

(6.5) 

Now, ah + 1 = ah +1, so that 

a, + 1 = a, , n = an ^9 

Thus, a = a , establishing (6.5), 
a +i 

Finally, we write a complete proof based on (6.1) and (6.2). Notice 

that we have to show that the differences between successive columns are 

1984] 17 



ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS 
AND GENERALIZED FIBONACCI REPRESENTATIONS 

always 1, except for the transition that comes between the columns headed 

by Fn_± and Fn_ ± + 1 in the array. Also, we need a rule for formuation. 

The rule of formation of one array from the preceding array is as fol-

lows: To get the array with Fn+1 columns, build up the left Fn_1 and the 

right Fn_2 columns of the array for Fn columns by extending the subscripts. 

Add an to the bottom of each subscript in the left part, copy down the 

right part next as is, and then copy down the old left part with bn added 

to the bottom to get the rew right part. 

Line 1 

Line 2 

Line 3 

Left Part 

^-dy, E>n 

ia„ b„ a i>n 

Line 4 aa b a, a bb 
aan CLn

 u&n Dn n 

Right Part 

by, 

aa ha-, ah 
aabn

 abn
 b 

From [4, p. 315], 2n+2 = . a and F 

n Z?Ts 

Now, the entries before the dashed line in Lines 1, 2, 3, and 4 above are 

alternately odd- and even-subscripted Fibonacci numbers, while the entries 

on the far right are the next higher Fibonacci numbers if we replace n by 
1. Thus, we have the sequence of representations in natural order. 

We show that the columns always differ by one within the left part and 

within the right part. We count each a subscript 1 and each b subscript 
2. Then the left part of Line 1 has weight 1 and the right part weight 2, 

and the left part of Line 2 has weight 2 and the right part has weight 3. 

The columns in the left part of Line 2 differ by 1 according to (6.2), 

aa + 1 K> 
which generalizes to 

an + 1 = b& (6.6) 
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for any An. Next, for Line 3, 

I 
Weight 3 Weight 4 

we have, from (6.2), 

K + 1 = a + 2 = a +1 = ab, 

and from (6.1) and (6.6), 

+ 1 = a„ + 2 = an _̂n = a^ , (6.7) 

so that 

aa + 1 = bb * 
bn

 n 

follows for An - bn* 
Now, for 

an bn a? a„ bh , a„ fc„ a, 
% a«n &aM a& n ^ I aab

 abn
 hbn 

I 
Weight 4 Weight 5 

note that all cases follow from earlier cases, except transition case #1, 

marked with an asterisk above: 

ab + 1 = aa . (6.8) 
an Dn 

But, ab + 1 = ab +1 = a +2 = aa = a . 

We now display all of one more case: 

a«a K % aah
 hba

 aaa \ % | &aa K ab a bb 
aan

 an an
 ban

 an abn °n Dnl uab
 ubn

 abn
 Dbn

 Dn 

Weight 5 Weight 6 

Note that all these columns differ by one within the left and right parts 

from earlier results, except transition case #2, marked with an asterisk 

above, 

K + 1 = a a > (6.9) 
which is proved as follows: 
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bh + 1 = an + 1 + 1 = an + 2 = a , = an 
Da b ab a7 + l aa 

n ari an bUn
 abn 

from (6.2) and (6.8), which was transition case #1 above. 

When we write the next line, our transition case will again be like 

#1, as 

ah + 1 = a0 , (6.10) 

proved from (6.1) and (6.9), which was transition case #2 above, as 

a, + 1 = a, = an . 

Next, the transition will again by like #2 above, 

h + l = a (6.11) 
an abn 

proved from transition case #1 given in (6.10): 

bhi_ + 1 = an + 2 = a = aa 
°bn

 ah^ ah-, + 1 aa 
a " ban

 bban
 a°-bn 

The proof is now complete, by the principle of mathematical induction. 

That is, if, for the earlier cases, each term of the sequence plus 1 is 

the next one to the right, then, from the formation rules and general re-

sult (6.1), we get that it holds for the next case, but we have to prove 

the transition cases, since we get the results for each left and right 

part separately. To get a new left section, we add an to the bottom of 

the old left section subscripts and use general result (6.7) and just copy 

down the right section as is, and these two parts are, separately, okay. 

The transition from left to right in the new left section is now proved in 

four cases by mathematical induction. The new right part, which is the 

former left part with bn added on the end, yields to general result (6.1). 

This completes the discussion. 

Suppose the line array, at some level, produces sequences whose ele-

ments cover the positive integers without overlap. Since an is added to 

the left portion to form the left part of the new left part and the bn is 

added to the left portion to form the new right part, these two pieces 
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cover all the integers together that we covered by the left part before, 

and the old right side is left intact, ao that the new line again covers 

the positive integers without overlap. 
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1. INTRODUCTION 

In [3], the author considers the loci in the Euclidean plane satisfied 

by points whose Cartesian coordinates are pairs of successive members in 

recurrence sequences of a special type. The purpose of this paper is to 

extend that discussion. 

We begin as in [1] and [3] by defining the general term of the sequence 

{wn(a, b; p, q)} as 

w ^ = pw x1 -qw,wn=a,w1=b, (1.1) 
n + 2 r n+1 ^ n ' 0 ' 1 ' v y 

where a, b9 p> q belong to some number system, but are generally thought 
of as integers. In this paper, they will always be integers. 

In [1], we find 

WnWn + 2 ~ Wn + 1 =
 s(f > (1-2) 

where 

e = pab - qa2 - b2. (1.3) 

Combining (1.1) and (1.2) as in [3], we obtain 

qw2 - pwnwn+l + w%+1 + eqn = 0, (1.4) 

which, with Wn = x and W = y, becomes 

qx2 - pxy + y2 + eqn = 0. (1-5) 

The graph of (1.5) is a hyperbola if p2 - kq > 0, an ellipse (or cir-
cle) if p2 - kq < 0, and a parabola if p2 - hq = 0 (degenerate cases ex-
cluded) . The xy term can be eliminated by performing a counterclockwise 
rotation of the axes through the angle 0, where 

cot 20 = l ~ q , (1.6) 
p 

using 
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x = x cos 6-z/ sin 0 
(1.7) 

y = x sin 6+2/ cos 0. 

When q = 1, 0 = TT/4, and (1.5) becomes 

(2 - p)x2 + (p + 2)z/2 + 2g = 0 (1.8) 

with 

e = pab - a2 - b2. (1.9) 

When q ^ I, and therefore 0 ̂  TT/4, we let 

r = Vp2 + (9 - l)2. (1.10) 

Substituting (1.7) into (1.5) and using the double angle formulas for 

cos 20 and sin 20, we find that 

-2/q + 1 + (a - l)cos 20 - p sin 20\ 

+ y2{q + l ~ {q ~ 1 ) C
2 ° S 26 + P Sln 2Q) + eqn - 0. 

Now, by (1.1), depending upon the values of q and p, we have 

(^ + l
2

 + ry + (? + * - ry + < = o i f P < o 
(1.11) 

(? + \ - ry + (q + 1
2
+ T)t + eqn = 0 if p > 0. 

We now consider the special cases when q= 1 (§2) and when q--1 (§3). 

2. THE SPECIAL CASES WHEN q = 1 

If p = 2, we have from (1.8) the degenerate conic Ty2 = -e = (a - b)2 

which gives rise to the parallel lines x - y = b - a and x - y = a - b. 
The sequence of terms associated with this degenerate conic is 

a, fc, 2b - a, 3b - 2a, kb - 3a, 5b - 4a, ... . (2.1) 

Since none of the successive pairs of (2.1) satisfy x - y = b - a, we see 
that all pairs (wn, w„+1) of (2.1) lie on the line x - y = a - b. 

If p = -2, the degenerate conic is 2x2 = -e = (a + &) 2, the sequence 

is 
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a, b, -lb - a, 3b + 2a, -42? - 3a, 5b + 4a, ..., (2.2) 

and the success ive p a i r s (wn, w +1) of (2.2) s a t i s f y x+y=a+b If n Is 
even and x + y - - ( a + 2?) when n i s odd. 

If p = 0, the sequence {wn(a> b; 0, 1)} is 

a, &, -a, -2?, a, b9 -a, -2?, ..., (2.3) 

so that for (2.3) the only distinct pairs of successive coordinates on the 

circle x2 + y2 = -e = a2 + b2 are (a, b), (£>, -a), (-a, -2?), (-2?, a). 

If p = 1, then equation (1.8) becomes x2 + 3y2 = 2 (a2 + b2 - ab) . But 
a2 + 2?2 - a2? > 0 if a and b are not both zero, so the graph of (1.5) is 

always an ellipse with the equation x2 + y2 - xy = a2 + b2 - ab. The se-

quence {wn(a, b; 1, 1)} is 

a, b, b - a, -a, -2?, -b + a9 a9 b, ... . (2.4) 

The only distinct pairs of successive coordinates on the ellipse for (2.4) 

are (a, b), (2?, b - a), {b - a, -a), (-a, -2?), (-2?, -2? + a), (-2? + a, a). 
When p = -1, equation (1.8) becomes 35f2 + y2 = -2e = 2(a2 + 2?2 + ab) . 

If a and 2? are not both zero, then a2 + 2?2 + a2? > 0, so that the graph of 

(1.5) with equation x2 + xy + y2 = a2 + b2 + a2? is an ellipse. The se-

quence {wn(a, b; -1, 1)} is 

a, b, -b - a, a, b, -b - a, ..., (2.5) 

so that the only pairs of successive coordinates of (2.5) on the ellipse 

are (a, b), (£>, -2? - a), (-2? - a, a). 

One might wonder about the case e = 0. Under this condition, since a 
and p are integers, we have p = ±2, which has already been discussed, or 

a = 2? = 0, which is a trivial case. 
For all other values of p, the graph of (1.8), and hence of (1.5), is 

a hyperbola. Thus, there exists an infinte number of distinct pairs of 

integers (wn* w
n+1) lying on each hyperbola for a given p. The following 

facts help to characterize the hyperbola for a given p. 

If p > 2 and e < 0 or p < -2 and e > 0, then the asymptotes for (1.5) 
are 

y = P W f ~ 4 x, (2-6) 
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the vertices are 

'* S and I - /—^r , J z r ~ ) (2.7) p + 25 V p + 2 / \ V p + 2' Vp + 2 

the eccentricity is 

2p 

VP - r 
the foci are 

(2 .8 ) 

and the endpoints of the latera recta are 

Is - t s + t\ Is + t s - t\ Is + t s - t\ Is - t s + t\ (r) l n . 
\ p 2 - 4 5 p 2 - 4 / 5 \ p 2 - 4 3 p 2 - 4 / 5 \ 4 - p 2 5 4 - p 2 / ? \ 4 " P 2 ' 4 " P 2 / 

where s = (p + 2)>/-£(p + 2) and £ = -V2pe(p2 - 4 ) . 

If p > 2 and e > 0 or p < -2 and e < 0, then the asymptotes and eccen-
tricity are found by using (2.6) and (2.8). The vertices are 

p - 2' Vp - 2)' \ Vp - 2' Vp - 2/' 
the foci are 

/ 2pg / 2pg \ / / 2pg _ / 2pg 
p2 - 4s V p2 - 4 J5 I Vp2 - 45 V p 2 - 4 

(2.11) 

(2.12) 

and the endpoints of the latera recta are 

<s± - tx s± + t \ /Sl + t± s± - t±\ 

p2 - 4 p2 - 4/ \p2 - 4 p2 - 4 

'ei + *i si " *A /si ~ t i s i + tiN 
(2.13) 

,4 - p2 4 - p2 / \4 - p2 4 - pz 

where sx = V2pe(pz - 4) and t2 = (p - 2)Ve(p - 2). 

3. THE SPECIAL CASES WHEN q = -1 

Letting <? = -1 in (1.11) and simplifying, we have 

*2 -T = 2 e ( ; 1 ) M . p > o, (3.1) 
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and 
72 ^ 2 _ 2 g ( - l ) n 

y2 - x2 = \ > V < °> (3 .2) 

where the values of e and r from (1.3) and (1.10) are now 

e = pab + a2 - b2 and r = Vp2 + 4. (3.3) 

The case p = 0 is trivial and, therefore, omitted. 

Since (3.1) and (3.2) are always the equations of a hyperbola, unless 

e = 0, which is a trivial case, a = b = 0, there are always an infinite 
number of distinct pairs of integers (w , ̂ n+1) which lie on the original 

hyperbola of (1.5) for any value of p, unless the sequence is cyclic. The 

following facts characterize the hyperbola for different values of p, e, 
and n. 

The asymptotes of (1.5) which are perpendicular are always given by 

y = £~ : x, (3.4) 

and the eccentricity is always 2, giving a rectangular hyperbola. These 

cases are in accord with the cases p = 1 and p = 2 given in [3]. 

If p > 0 and e(-l)n > 0, then the vertices are 

(u, v), (-u, -v), (3.5) 

the foci are 

(W2, vJl), {-m/l, -v/V), (3.6) 

and the endpoints of the latera recta are 

(u/l - v, u + v/2) , (u/l + v, -u + v/l), 

{-wfl - V> u - Wl), (-u/l + v9 -u - 2V2), 
(3 .7) 

where u = -V e(-l)n(r> + 2) ' and v = ^V e(-l)n ( r - 2 ) . 

If p > 0 and e(-l)n < 0, then the vertices are 

(1^, -u1), (-v19 w 1), (3.8) 

the foci are 

(-v/l, u/l), (v^29 -ujT)> (3.9) 

and the endpoints of the latera recta are 
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(3.10) 
(-u± - v^fl, u±/2 - v1), (-u1 + v^/l, -u^Jl - v±)9 

where u± = -V e(-l)n+1(r + 2) and v± = -V e(-l)n+ 1 (r - 2). 

If p < 0 and e(-l)n > 0, then the vertices are 

(~u9 v) 9 (u, -v), (3.11) 

the foci are 

(-W2, tV2), (w/2, -zV2), (3.12) 

and the endpoints of the l a t e r a r e c t a are 

(v - w/l9 v/l + u), (V + UA/2, - vil + u ) , 

(-•y - uJl9 vJl - u), {-v + u/l9 -v/l - u), 
(3.13) 

(3.16) 

where u and V are as before. 
If p < 0 and e(-l)n < 05 then the vertices are 

(v19 u±) 9 (-v19 -u±) 9 (3.14) 

the foci are 

(Vi/29 u1V/2)s (-V-/2, -Uj/2), ( 3 . 1 5 ) 

and the endpoints of the latera recta are 

(v1Jl - u19 v± + u1yfl) 9 (v1Jl + u19 -V1 + u^y/l) 9 

{-v^fl - ul9 v± - u/l)9 (-v/l + u±9 -v± - uxJi)9 

where u1 and i? are as before. 

4. CONCLUDING REMARKS 

Consider p > 0. Note that the hyperbola for e < 0 and n odd is the 
same as the hyperbola for e > 0 and n even for any pairs (a, b) giving the 
same value of e9 while the hyperbola for e < 0 and n even is the same as 
the hyperbola for e > 0 and n odd for any pair (a, b) giving the same e. 
A similar statement holds if p < 0. 

For the sequence Q = {wn(as b; p, -1)}, we know from (1.4) that 
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depending on whether n is even or odd. Let e < 0 for n = 0 and 

R = {wn(w2m, w2m+1; p, -1)}. 

The successive pairs of Q and R lie on ~y2 - x2 = if ft is even and on 

~x2 - v2 = if ft is odd. Let 

S = {wn(w2m + 1, w2m + 2; p, -1)}. 

then the successive pairs of S with n even lie on the same hyperbola as 

the successive pairs of Q with n odd. That is, they lie on 

-2 -2 2g(-l)n 

x - y = — - —— . 

Furthermore, the successive pairs of S with n odd lie on the same hyper-
bola as the successive pairs of Q with n even. That is, they lie on 

We close by mentioning that the vertices for the Fibonacci sequence 

{Wn(0, 1; 1, -1)} are 

when n is odd and 

B( yfb - 2 //5 + 2 W //5 - 2 / A + 2 

when n is even. Furthermore, all the pairs (F , •?72n+1) lie on the right 

half of the positive branch of y2 - x2 = 2/r when n > 0, and on the left 

half of the positive branch of ~y2 - ~x2 = 2/r when n < 0, so that no points 
(Fn, ^n+1) lie on the negative branch of the hyperbola. A similar remark 

holds for (F2n+1, F2n + 2) and x2 - I}2 = 2/r. 

REFERENCES 

1. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of 
Numbers." The Fibonacci Quarterly 3, No. 3 (1965):161-76. 

2. A. F. Horadam. "Special Properties of the Sequence Wn(a, b; p, q)." 
Tfte Fibonacci Quarterly 5, No. 5 (1967):424-34. 

3. A. F. Horadam. "Geometry of a Generalized SimsonTs Formula." The Fi-
bonacci Quarterly 20, No. 2 (1982):164-68. 

4. Edwards & Penny. "Calculus and Analytic Geometry." Prentice-Hall, 
Inc., 1982, pp. 416-42* 

•<>•<>• 
28 Feb. 



#<>•<>• 

GENERAL SOLUTION OF A FIBONACCI-LIKE RECURSION RELATION 

AND APPLICATIONS 

ALAIN J. PHARES 
Villanova University, Villanova, PA 19085 

(Submitted June 1982) 

1. INTRODUCTION: THE COMBINATORICS FUNCTION TECHNIQUE 

In a series of papers published over the past few years, [1]? [2]s a 

method called the combinatorics function techniques or CFT5 was perfected 

to obtain the solution of any linear partial difference equation subject 

to a set of initial values. Fibonacci-like recursion relations are a spe-

cial case of difference equations that could be solved by the CFT method,, 

Although many applications of the CFT have been published elsewhere, [3], 

[4], the study here leads to original results and provides a natural gen-

eralization of the problem investigated by Hock and McQuistan in "Occupa-

tional Degeneracy for X-Bell Particles on a Saturated XxN Lattice Space" 

[5]. 

For the reader who is not familiar with the CFT method, we summarize 

briefly the results of [2]. Consider a function B depending on n variables 

{m1^m15 ms$ ...5 mn) . The evaluation points Ms in the associated n-dimen-

sional space whose coordinates are (rnl9 m2S »*»s mn) and vector M5 whose 

components are the same as the coordinates of point M9 will be used inter-

changeably for convenience. The multivariable function B is said to satis-

fy a partial difference equation when its value at point M9 5(M), is 

linearly related to its values at shifted arguments such as M - Afe3 i.e., 

B(M) = £ fA <M)£(M-Ak) + J(M)- (LI) 
k = i k 

The coefficients / (M) and the inhomogeneous term J(M) are assumed to be 

known and may not necessarily be constant. The problem to be investigated 

here is a difference equation with no inhomogeneous terms i.e., 

KM) = Os (1.2) 
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one-dimensional (n = 1), and with N=2, thus corresponding to a three-term 

recursion relation. 

The set formed by the N shifts or N displacement vectors, A^ , is de-

noted c9̂; 

d = {A19 A2, ..., A*}. (1.3) 

Generally, equation (1.1) holds for points M in the n-dimensional space 

belonging to a certain region, ̂ , that may not necessarily be finite. The 

values of a function B at a boundary, called^, of region^?, are also gen-

erally known as 

5(JA) = A£; £ = 1, 2, ... and JZEJ. (1.4) 

The evaluation points, J£ , exhibited in equation (1.4) are referred to as 

boundary points for obvious reasons. Similarly, the region fl containing 

the boundary points Jl is interchangeably referred to as the set of bound-

ary points or, simply, boundary set, while region 5? is the set of points 

M for which equation (1.1) must hold. 

Equation (1.1) and its boundary value conditions, equation (1.4), were 

first discussed by the author and collaborators in earlier papers [1] for 

the special case of a single-variable function B and therefore defined on 

a one-dimensional space (n - 1). Some applications were also discussed in 

connection with the Schrodinger equation with a central linear potential 

[3]. Equation (1.1) is not necessarily consistent with the boundary value 

condition (1.2). To obtain the consistency condition, it was essential to 

introduce in [2] a set, ̂ , containing all points M in the n-dimensional 

space having the following property: 

Every possible path reaching any point belonging to set *J6 by suc-
cessive discrete displacement vectors A^ E s& should contain at 
least one point belonging to the boundary set #. 

When such a relationship exists between two sets <J£ and ^ , then J, is 

called a full boundary of ^ with respect to s&. Also essential to the 

consistency problem was the notion of restricted discrete paths connect-

ing a boundary point, say J£ , to a point M belonging to set ^ . Such a 

restricted path, if it exists, does not contain any boundary point other 

than J^. In [2], we were able to show that there exists one and only one 
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set, $ s called the minimal full boundary of <M with respect to sd> such 

that each and every element of £ can be connected to at least one element 

of <Jt by at least one restricted path. It then follows that: 
(i) equation (1.1) is consistent with equation (1.4) provided 0t <^J6 

and, 

(ii) if this is the case, its solution is unique and depends only on 
those £!s corresponding to boundary points J£ C $~ -

The CFT method gives an explicit and systematic way of constructing 

the solution of equation (1.1) in terms of the so-called combinatorics 

functions of the second kind. An early version of the combinatorics func-

tions of the second kind can be found in [1], and their applications to 

some physical problems are discussed in [3] and [4]. An extended and more 

complete version of the e functions was obtained in [2]. We now give the 
definition of the combinatorics functions of the second kind leading to 

the construction of the solution of equation (1.1). 

For every boundary point J£ G iQ and evaluation point M E «^, one con-

siders all possible paths connecting Jl to M by discrete displacement 

vectors 6 • E sd. A given path is identified by two labels 0) and q. Label 

0) refers to the total number of displacements on a discrete path. Label 

q is used to distinguish among various paths, having the same number, oo, 
of displacement vectors. Corresponding to each (udq)-path with displacement 
vectors (6X, B2s ...* ̂ o>)* ordered sequentially from the boundary point J^ 
to the evaluation point M9 intermediate points, S^9 on the path are gen-

erated and represented by vectors S^, according to: 

i 
®i = J^ *+- 2 % ; i = 1» • • •» ^; So3 = M. (1.5) 

J = I 

With each (o)^)-path one associates the functional 

Fj(J£;M) = ft tf(S*)JV (S*). (1.6) 

Here, the f6
 fs are the coefficients appearing in the difference equation 

(1.1), and W(Si) is a weight function that may take the values 0 or 1, ac-
cording to: 

W(Si) = 0, if S,e/ 0 ; 

W(Si) = 1, otherwise. 

1984] 31 



GENERAL SOLUTION OF A FiBONACCI-LiKE RECURSION RELATION AND APPLICATIONS 

That is, F^ vanishes whenever a path connecting Jz to M contains an inter-

mediate point Si belonging to the boudary set $ . In other words, re-

stricted paths are automatically selected and Fq would otherwise be iden-

tically zero. The combinatorics function of the second kind associated 

with the boundary point Jg and the evaluation point M are then defined as 

c(JA; M) = E E ^ ? ( J * ; M ) . ( i .8) 
6o q 

Finally, the solution of a homogeneous (J = 0) difference equation (1.1), 

subject to the initial conditions (1.4), when it exists, is given by 

BQK) = E A£C(J£;M). (1-9) 

The problem we intend to discuss is the three-term Fibonacci-like re-

cursion relation, 

Bm = aBm_1 + bBm_x, (1.10) 

where a and b are constant parameters and A is a positive integer greater 
than unity. The case A = 2 was discussed in detail elsewhere using the 

CFT (see [4]). The case a = &= 1 with an unspecified value of A describes 

exactly the occupational degeneracy for A-bell particles on a saturated 

A x m lattice space when equation (1.10) is subject to a special set of 

initial conditions, as studied by Hock and McQuistan [5]. It is the pur-

pose of this article to develop a unified approach to the problems of [4] 

and [5] that will be based on the generating function of Hock and McQuis-

tan combined with our CFT method. 

Section 2 develops the general solution of equation (1.10) subject to 

the unspecified initial value conditions 

B_x+j = Ad for j = 1, ..., A - 1 (1.11a) 

B0 = A0 (1.11b) 

The choice AQ for BQ instead of Ax, as might be suggested by (1.11a), is 

motivated by nicer looking equations appearing later in the paper. 

Section 3 presents a class of generating functions that may be asso-

ciated with equation (1.10). The method used there is somewhat more gen-

eral than the one presented in [5]. 
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Section 4 makes the comparison between the CFT and generating function 

methods, thus leading to a very interesting sum rule that is a generaliza-

tion of the sum rules obtained in [4] and [5]. 

The conclusion of the paper is presented in Section 5. 

2. THE CFT SOLUTION 

The Fibonacci-like recursion relation, 

Bm = aB n + bBm,9 X > 2, (2.1) 

will be solved for a general set of initial values: 

£_A + J- = Â -, for j = 1, ..., A - 1, 
(2.2) 

h = V 
This one-dimensional problem has boundary points J, J , . . . , J. , . . . , Jx_1 

of abscissae 0, -A + 1, . .., _x + j, ..., - 1, respectively. The one-

dimensional region, ,JK9 consistent with the boundary region $ consists of 
points M of positive integer abscissae. Paths connecting an evaluation 

point M of abscissa m (m > 0) to a boundary point Jj of abscissa -X + j, 
if j ^ 0, or 0, if j = 0, are made of displacements or steps of lengths 1 

and A. No intermediate point on these paths should belong to the boundary 

region /. Boundary and evaluation points are represented on Figure 1. 

1 2 3 4 5 m 
_x x x x * • 

- A + 1 

^ i 

- A + 2 

J2 

-X + j - 1 

J0 J A - 1 

FIGURE 1 

0 

J, 

The points represented by circles "o" are boundary points and those 
represented by crosses "x" are evaluation points 

We now proceed along the lines set by the CFT method for the construc-

tion of the combinatorics function C(Jj ; M). In any path, a displacement 

by +1 produces a factor / E a and a displacement by A produces a factor 
fa E b' Thus, for any given path connecting J. to Af, we count the number 

of displacements +1 and the number of displacements A. This path is then 

represented, according to the CFT method, by the product 
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F^ = ^(number of displacements +1) v -r(number of displacements X) 
rto a * D (2.3) 

It is convenient to discuss separately the construction of C(JQ; M) and 
Cty ; M) 

C(Jn; M) 

C(Jj; M) for j = 1, ..., X - 1. 

Figure 2 indicates that none of the distinct paths made of displace-

ments +1 and X leaving boundary point JQ and reaching evaluation point M 
contains a boundary point other than JQ. In this case, none of the weight 

functions W(S ) is zero. Let T- refer to integer divisions and m to the 

remainder, so that 

-[!] + 77?. (2.4) 

m 
- - - o o o o :—' x • 

JX-2 JX-1 ^ 0 M 

FIGURE 2 

None of the distinct paths made either of displacements +1 or X 
leaving JQ and reaching the evaluation point M 

contains a boundary point other than JQ 

Clearly, the maximum number of displacements of length X from the origin 
JQ to M is r corresponding to a minimum number of displacements of length 

+1 equal to ~m. If in a path connecting J0 to M there are k displacements 
of length X (o < k ^ y ], then the number of displacements of length +1 

must be (m - Xk) since the length of segment JQM is precisely equal to 777. 

The total number of displacements in such a path is 03 = k + (m - Xk) . If 
q is the label of this particular path having 00 displacements, then 

Fj(e70; M) = am~xk x bk . (2.5) 

For a given total number of displacements a), distinct paths may be gener-

ated by a reshuffling of the order of displacements of different lengths. 

Clearly, the distinct number of arrangements of these displacements for a 

given value of w, i.e., for a given value of k [O < H T I is the bino-

mial 
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Thus, the combinatorics function C(J0; M) is given by 

C(J0; M) = £ £ F*(J0; M) 
co q = 1 

£ r ̂ " ^ = E a-^bHm ~ k[X ~ V) (2.7) 
fc = 0 (7 = 1 fc = 0 \ K / 

C(Jji M) for j = 1 to A - 1 

Figure 3 shows that5 in order to avoid intermeriate boundary points on 

any path that may connect Jj to point M9 the first displacement, when leav-

ing Jj , must be of length A, thus reaching point Mj of abscissa j . Clearly, 

if the abscissa, m» of the evaluation point M is less than j, then every 

possible path contains at least one boundary point as an intermediate 

point, and the associated combinatorics function vanishes, i.e., 

C(J, ; M) E 0, for 0 < m < j. (2.8) 
d 

On the other hand, if m ̂  j, then all possible paths that contain no bound-

ary points other than Jj have the same first displacement A. 

X 

-X+j 
o — 

-1 0 

^ A - 1 ^ 0 

FIGURE 3 

J 

Mj 

m 

M Jo 

Here j - 1 to X - 1 . In order to avoid intermediate boundary points 
when leaving point Jj to reach the evaluation pointM by displace-

ments of lengths -M and A, the first displacement must be of 
length A, thus reaching point Mj, of abscissa j 

This first displacement contributes to the functional F ̂  by producing an 

overall factor 2?. It is then straightforward to show that 

F«(Jj ; M) = bF^^Mji M), (2.9) 

where F(i}_1(Mjl M) refers to the functional associated with the qth. path 

cojnecting Mj to M and having (A - 1) dispalcements of length 1 and A* 
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Since the length of segment MjM is m - j, one may write an equation simi-
lar to (2.4): 

m - j = ̂ [^y-52-] + ^ r 7 > (2.10) 

where the square bracket [ ], and the top bar, , still have the same 

meaning as in (2.4). The analysis for the paths connecting JQ to M may be 

reproduced for the paths connecting Mj to M. The functional associated 

with a path having k displacements X and (rn - j - Xk) displacements of 
length +1, when leaving Mj to reach M9 is 

F^^iM-j; M) = am-d-xk x bk , (2.11) 

where k may vary from 0 to —r—^- . Combining equations (2.9) and (2.11), 

one finally obtains 

CVji M) = E TbFl^Mj; M) 
rm^jh (2.12) 

= ± am~i-^ x bk+1(m ~ J \ k ( X - l ) ) ; for j = 1, .... A - 1 

and 777 ̂  J . 

The domain of definition of (2.12) can easily be extended to include the 

region 0 < m < j with the understanding that the result of the operation, 

^ > f ° r 0 < 777 < J, 
k = 0 

i s exac t ly zero , so as to recover equat ion ( 2 . 8 ) . With t h i s d e f i n i t i o n in 
mind, the genera l so lu t ion of the F ibonacc i - l ike recurs ion r e l a t i o n (2.1) 
subject to the boundary condi t ions (2.2) i s 

Bm = t ^C(Jd ; M) 
3-0 

[SLZ£\ ( 2 . 1 3 ) 

= E V E a"-'-*V + 1 - a « ( n ~ ' ~,fe(A_1)). 
j - 0 fc-0 ^ K ' 

In (2.13), 60j- is Kronecker's symbol, which is zero for j ^ 0, and unity 

otherwise. 
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3. THE STANDARD SOLUTION AND GENERATING FUNCTIONS 

The standard solution of equation (2.1) is obtained by searching for 

special solutions of the form [4]: 

Bm = Rm« (3.1) 

By requiring expression (3.1) to satisfy the recursion relation (2.1), 

one finds that the only possible values of R are the roots of the so-called 
characteristic equations which, in this case, is of order X; namely, 

Rx - oRx~1 - b = 0. (3.2) 

This equation has X roots we refer to as R^, with index k varying from 1 

to X. The general solution of equation (2.1) is then presented in the form 

x 
Bm = 2J

 LkRk5 
k = l 

where Lk are unspecified parameters. 

Next, we will be developing a class of generating functions to the 

series of coefficients Bm. Following Hock and McQuistan [5], we consider 

functions um(x) satisfying the recurrence relations 

um(x) = A(x)um_l(x) + B(x)um_x(x)» (3.4) 

A(x) and B(x) are some chosen functions of x restricted to take on the 

values 
A(x0) = a, B(xQ) = b, (3.5) 

when the variable x = xQ. Furthermore, for any value of the variable x5 

one also requires 

W_A+JO*0 = A7*» f o r J = 1> . .., X - 1 
(3.6) 

u0(x) = A0. 

Clearly, um(x) evaluated at x = xQ is precisely Bm5 whose explicit expres-

sion was obtained via the CFT method,namely, equation (2.13). The bivar-

iant generating function u(x$ y) is given by [5]: 

00 

u(x, y) = ^ um(x)ym. (3.7) 
m = 0 
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One separates the summation over m into two pieces as follows: 

A - l co 

u(x, y) = J^um(x)ym + JT um(x)ym. (3.8) 
777 = 0 m = X 

Next, one replaces um(x) appearing in the second summation by the right-
hand side of the recurrence relation (3.4), 

j^um{x)ym = t , A(x)um_1(x)ym + t , B(x)um_x(x)y™. (3.9) 
772 = A m= X m= X 

It is straightforward to recognize that 

A - l 

E 
777 = 1 777 = 1 " 7 7 2 = 1 

Yt^A(x)um_1(x)ym = Tl^A(x)um_1(x)um_1(x)ym - T,A(x)um_1(x)ym 

(3.10) 
A-I 

= A(x)ymu(x, y)-Yi A(x)um_1(x)ym, 
7 7 7 = 1 

and, a l s o , t ha t 

£ B(x)um-X(x)ym = B(x)yxu(x, y). (3.11) 
777 = A 

Combining (3.8), (3.9), and (3.10) and (3.11), one finds 

A - l A - l 

u(x, y) [1 - A(x)y - B(x)yx] = £ um(x)ym - £ A{x)un^ (x)y™. (3.12) 
772 = 0 777= 1 

A last manipulation on the right-hand side of equation (3.12) is possible 

to obtain the explicit form of the bivariant generating function u(x9 y); 
namely, 

A - l A - l A - l 

Y,um(x)ym- Y,A(x)u
m-i(x)ym = ̂ 0 W + £ [um&)-Mx)um_1(x)]ym. (3.13) 

m = l 772=1 7 7 7 = 1 

This is followed by the use of the recurrence relation (3.4) and its ini-

tial conditions (3.6): 

A - l A - l X - l 

£ [um(x) - A(x)um^x)] = £ B(x)um_x(x)y™ = £ B{x)knym. (3.14) 
772=1 772=1 m ~ l 

Finally, combining equations (3.12), (3.13), (3.14), and, again, (3.6), one 

finds 

A0 + B(aj)JAy 
u(x, y) = . (3.15) 

1 - A{x)y + B(x)yx 
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Equation (3.15) is a generalization of the bivariant generating function 

of [5], where Kj = 0 for j = 1 to A - 1, AQ = 1, A(x) = 1, and B(x) = x. 

4. SUM RULES 

The two approaches presented in Sections 2 and 3 must be equivalent. 

By making use of this equivalence, a sum rule will naturally emerge. One 

sets x = x0 in equations (3.7) and (3.15), and takes into account the re-

strictions A(xQ) = a, B(xQ) = b, and the property um(xQ) = Bm. It then 

follows that 

±Bmy«s ^ 1 — = i ^ (4.1) 
m = o 1 - ay - byx I - ay - byx 

Let 

f(y) = 1 - ay - byK (4.2) 

This polynomial is of order A; it has A roots we call y,9 k = 1, . .., A. 

When comparing equations (4.2) and (3.2), it is evident that the roots Rk 

of equation (3.2) are the inverses of the roots y, of equation (4. 2) , i.e., 

yk-j-k. (4-3) 

The standard expension of „ . . in terms of the zeros of the function f(y) 

is 

~Ny) ~S Yz~yl ~ "fc?i i - J /V (4"4) 

and the residue Dk is obtained in the usual manner as 

D-, = lim j?, N = - ̂ 77 r- = (4.5) 
k y + yk f(¥) f'(yk) a + bXR\^ 

Thus, equation (4.1) yields 

E^=i:V^yz:—k—— T^w, (4-6) 

The left-hand side (lhs) of equation (4.6) contains Bm whose explicit 

dependence on hj has been derived in Section 2, equation (2.13). It can 

be written as 
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fm - «n 

(lbs) = X Aj±y» ± a»-'->*bk + 1-S»(m - j " HX ~ 1 } ) . (4.7) 
0=0 m=0 k=0 X K / 

The right-hand side (rhs) of equation (4.6) can be rearranged using the 

power series expansion of (1 - yRy)'1 to yield 

x-i n , » A Rl'1 

(rhs) = £ fc1"50^,- L ^ ' + T T (4.8) 
5=0 m = 0 *-la + b\R\~ 

Recalling that 2 = 0 for 0 < m < j , then 
k = o 

(Ihs) = £ A b1-^ £ y £ a!»-i-^bk(m ~ J' \k{X ~ l)). (4.9) 

Also, making the shift m ^ m - j in the summation index m of (4.8), one 
has 

^ i-«0,A A ^ Rk (As) = E z/~°%- Y, yH r- (4-10> 

Clearly, since (lhs) and (rhs) are equivalent expressions, and, since 

AJ are completely arbitrary parameters, one necessarily has the identity: 

l±a^bHm ~ i " k<X ~ lA E £ —± , (4.11) 
fc = o v K > k - i a + bXR\'x 

which holds for m ̂  j ^ 0, or, simply, 

^ V ^ W ™ - fe(,A " 1}) E £ ^ . for „ > 0. (4.12) 
* = o \ * / fe-i a + Mi?^"A 

This identity reproduces the one derived by Hock and McQuistan [5] for 

a=b= 1 and any value of A, and the sum rule derived by Phares and Simmons 

[4] for X = 2 and arbitrary values of a and £>. Indeed, for A= 2, the two 

roots R1 and R2 of equations (3.2) are (see [4]): 

R1 = (1/2) [a + (a2 + 42?)*], 

i?2 = (1/2) [a - (a2 + 46)*]. 
(4.13) 

It is then easy to check that the left-hand side of equation (4.11), with 

A=2, and, the values of R± and R2 given by equation (4.13), becomes 
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r> m+ 1 

y k , [a + (a2 + 4fc)*] - [a - (a2 + 4fc)*f+ 1
 f, w , 

2^ 7 - . (4.14) 
fc-ia + 2&i^1 2m+1(a2 + 4&)* 

Equation (4.14) shows that equation (4.12) reduces, for A = 2, to equation 

(4.10) of [4]. 

5. CONCLUSION 

A Fibonacci recurrence relation with constant coefficients has been 

solved exactly for arbitrary initial conditions using the combinatorics 

function techniques. A class of generating functions involving two arbi-

trarily chosen functions A(x) and B(x) has been obtained. The method of 

Hock and McQuistan applied to the generating function and combined with 

the CFT solution leads to a sum rule that reproduces the two special cases 

discussed in [4] and [5]. 

The flexibility shown in the application of the CFT method in the sim-

ple case presented here is not an exception. More complicated problems have 

been solved involving two-dimensional, homogeneous, three-term difference 

equations with variable coefficients. The interested reader may refer to 

[6]. 
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OF FUNCTION LATTICES 
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University of J. E„ Purkyne, 662 95 Brno, Czechoslovakia 

(Submitted June 1982) 

1. INTRODUCTION 

By a poset we mean a partially ordered set. If G9 H are posets, then 
their cardinal power GH is defined by Birkhoff (see [1], p. 55) as a set 

of all order-preserving mappings of the poset H into the poset G with an 
ordering defined as follows. 

For /, g E GH there holds f < g if and only if f(x) < g(x) for every 

x E H. 

If G is a lattice, then £^ is usually called a function lattice. (It 

is easy to prove that if G is a lattice, or modular lattice, or distribu-
tive one, then so is GH (see [1], p. 56). 

Let A be a poset and let a, b E A with a< &. If no ̂  E A exists such 

that a < x < &, then & is said to be a successor of the element a. Let 

n(a) denote the number of all the successors of the element a E A. Fur-

ther, let o(A) denote the number of all the components of the poset A9 

i.e., the number of its maximal continuous subsets. 

Finally, if X is a set, then \x\ is its cardinal number. 

Now we can introduce the following definition. 

Def ini tion: Let A ^ cj) be a finite poset. Put 

(a) n(A) = £ n(a) (1.1) 
a EA 

(1.2) 

- |4 + cGl) (1.3) 

The number d(A) is called the density of the poset A9 the number v(A) 

is called the cyclomatic number of the poset A. 
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It is evident that, for a finite poset A9 n(A) is equal to the number 
of edges in the Hasse diagram of the poset A, thus v(A) is the cyclomatic 
number of the mentioned Hasse diagram in the sense of graph theory. 

Now our aim is to determine the density and the cyclomatic number of 

functional lattices GH, where G9 E are finite chains. 

2. PARTITIONS AND COMPOSITIONS 

The symbols N9 NQ9 will always denote, respectively, the positive inte-

gers, the nonnegative integers. 

Let k9 n9 s E N* By a partition of n into k summands, we mean, as usual, 
a fc-tuple Cl -I , CI O , B O O , CZt, such that each a^ E N* a1 ^ a2 ^ . . . ^ ak, and 

a1 + ••• + ak = n. (2.1) 

Let P(n9 k) denote the set of all the partitions of the number n into 
k summands. Let P(n9 k9 s) denote the set of those partitions of n into k 
summands, in which the summands are not greater than the number s9 i.e., 

such that s ̂  a1 ̂  a2 ̂  ... ̂  ak ̂  1. 

By a composition of the number n into k summands, we mean an ordered 
k-tuple (a19 ..«,

 aO> with a^ E N9 satisfying (2.1). Let C(n9 k) denote 
the set of all these compositions. 

Finally, let D(n9 k) denote the set of all the compositions of the 
number n into k summands a^ E NQ [so that C(n9 k) C D(n9 k)]. 

It is easy to determine the number of elements of the sets P(n9 k), 
P(n9 k9 s)9 C(n9 k) 9 and D(n9 k)—see, e.g., [2], [3], and [6]. 

Theorem 1: For k9 n9 s E N9 

(a) 

(b) 

(c ) 

(d) 
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\P(n, 

\P{n, 

\C{n, 

\D(n, 

k)\ 

k , > 

k)\ 

k)\ 

k 
= £ \P(n - k, i)\ 

i = l 

s + 1)| = 

In - V 
\k - h 

In + k 
V k -

k 
£ \P(n -

i = l 

) 

I 1 ) 

K, t-, s ) 

(2 

(2 

(2 

(2. 

• 2) 

• 3) 

.4) 

• 5 ) 
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Defini tion: Define the binary relation p on the set D(n9 k) as follows: 

If a, g ED(n9 k), a = (ax, ..., ak), g = (b±, ..., bk), then ap3 if 

and only if i G {2, 3, . .., k} exists such that 

bi_1
 = &i-1 + 1J b>i = CLI - 1, and bj = â  for remaining j. 

Further, put, for a ED(n9 k), 

r(a) = {g G/?(n, fc); apg}. 

Remark: Thus, for a = (a19 ..., ak) E D(n9 k) , the elements from I* (a) are 
all the compositions of the form 

(a1, ...5 a^_x + 1, at - 1, ai+1, ..., afc). 

From the definitions of the set D(n9 k) and the relation p, it follows 
that |r(a)| is equal to the number of nonzero summands a^9 i = 2, ..., k9 

in a. 

Defini tion: For i E NQ9 we denote 

Z^Mn, fc) = {aED(n9 k) ; |r(a)| = i}. (2.6) 

Theorem 2: For k, n E N9 i E NQ9 

\DUn9 k)\ = ('MP ^ x ) . (2.7) (")C i ')• 
Proof: Let a = (al9 ..., afe) E D'L{n9 k). Therefore, according to the 

above Remark, there are only i numbers that are nonzeros from all the sum-
mands a2, ..., ak9 ax being arbitrary. If now ax = j, then by (2.4) there 

exist precisely 

compositions of the required form. Hence, 

i»'<- *>i • C ; O K " : ! ) • ( ? : ? ) • • • • • ( * : ! ) ] - ( * ; ')(;)• 
Remark: It is evident that 

Dz(n9 k) ^ (j) if and only if £ < min[fc - 1, n] . 

hk [Feb. 



PARTITIONS, COMPOSITIONS AND CYCLOMAT5C NUMBER OF FUNCTION LATTICES 

Let Y denote the set of all nonincreasing sequences (a1$ a1$ ...., an9 

.— .) of nonnegative integers in which there are only finitely many a^ ± 05 
i.e.5 such that 

i = l 

We define the ordering < on the set Y by: 

(a15 a2, . ..) ̂  (b15 b2s • ••) if and only if a^ < b^ for every £GN. 

Then the poset Y is evidently a distributive lattice. It is the so-called 
Young lattice. For more details on its properties see, e.g., [4] and [5]. 

Identifying (ax, ..., ak)_EP(n, k) with (al9 . . . , ak, 0, 0, ...) E J, 

we henceforth consider the partitions as elements of the Young lattice. 

The elements with a height n in Y are evidently all the partitions of 
the number n. [The element with the height 0 is obviously the sequence 

(0, 0, ...)]• 

Defini tion: For a E J, the principal ideal Y(a) is given by 

1(a) = {g E Y; g < a}. 

Def in ? t ion: Let a denote the covering relation on the lattice 7, i.e., 

for a, g E J, 

aag if and only if 3 Is a successor of the element a. 

The next result follows immediately from the definition of the Young 

lattice. 

Theorem 3: Let a, g E 7, a = (a1? a2, . . . ) , g = (2^, Z?2, . . . ) . Then aag 

if and only if there exists i E N such that bi = a^ + 1, and aj = £j for 

Q E N, j ^ i. 

Definition: Let a = (a19 a2, ...) E J, let r be the number ai E a, with 

a{ + 0. Then canonical mapping / : J(a) -> Z?(z», 1 + ax) is defined as fol-

lows: 

For g = (fc1, fc2, ...) E J(a), the Image /(g) is the composition 
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for which o^ is the number of values of j for which bj = ax + 1 - -£ in the 

r-tuple (b19 ...» br). 

Remark: If 3 = (b19 . .., br, 0, 0, . . .) E 7(a), then evidently 0 < bi < at 

for all i = 1, . . ., r. The image of the sequence 3 under the canonical 

mapping / is the composition (cl9 . .., £1 + a ) with the following proper-

ties: 

c1 is the number of integers ax in (b19 . .., fcP), c2 is the number of 

values of j for which bj = a1 ~ 1 in (i>l5 . .., £p), etc., until <21 + a is 

the number of zeros in (&1, . .., 2?r) . 

Theorem 4: Let a = (ax, . . ., ar9 0, 0, ...) EI, with ax = • • • = ar= k >0. 
Then 

(7(a), a) £ [P(r, fc + 1), p]. (2.8) 

Proof: Let /: 7(a) -> P(r, fe + 1) be the canonical mapping. Then / is 

evidently a bisection. Let 3> y E 7(a). If 3 = (& , i> , . ..) and if gay, 

then by Theorem 3, y = (bl9 . .., bt + 1, &i+1j • ••) for some i. Denote b^ 
by t. Then there is in the sequence y one less t and one more t + 1 than 
in the sequence g. Combining this fact with the definition of the rela-

tion p on D(P, k + 1), we have 

3ay if and only if f(3)p/(y). (2.9) 

Thus, the canonical mapping / is an isomorphism from (7(a), a) on 

[Z)(p, k + 1), p]. 

3. DENSITY AND CYCLQMATIC NUMBER OF FUNCTION LATTICES 

Let P, Q be arbitrary posets. If P = cj)5 Q + <\>9 then PQ = (J). If § = (J), 

then P^ = {(j)}, P being arbitrary. Henceforth, we shall consider only such 

functional lattices PQ, where P £ ty £ Q. 

The basic properties of the functional lattices PQ, where P, Q are 
finite chains, are described in [6]. Namely, there holds 

Theorem 5: Let p, q E N9 let P, g be chains such that \p\ = p, \Q\ = g. 
Then 

(a) |P«| = ( P + ^ _ ') (3-1) 

*»6 [Feb. 



PARTITIONS, COMPOSITIONS AND CYCLOMATIC NUMBER OF FUNCTION LATTICES 

(b) For i E Nos the number of elements in PQ with height i5 is equal to 

\P(q + is q$ p) | . 

(c) PQ = 1(a) , where a = (a±s . . ., aq5 0$ 0S . . . ) , a1 = • • • = aq = p - 1. 

Proof: The assertion (a) is trivial. The proof of the assertion (b) 

is in [6]s p. 9. The assertion (c) results from the following! Put 

P = {0 < 1 < ••• < p - 1}, § = {1 < 2 < ••• < q}. 

The isomorphism F : P® -> Y(a) is given by 

F(f) = (/(<?), /(? - 1), ..., f(D, 05 03 . . . ) , 

for each f E PQ. 

Lemma: For fc, n E Ns 

t (m - e r) (a) 

(b) 

Proof: (a) The assertion (3.2) is well known. 

(b) In [8], Hagen states without proofs many combinatorial 

identities. As the 17th there is stated: 

A a + hi ip - id\(q + id\ = a(p + ff - rci) + bnq/p + <A . 
^ (p _ id)(q + id)\n - i/\ i / ?(p + q) (p - id) \ n ) ' 

The first very complicated proof of formula (3.4) was given by Jensen 

in 1902. The simplest of the known proofs is given in [9]. 

Substituting a = 05 b = 1, p = ns q = k> d = 0 into (3.4), we obtain 

T M n \(k\ = kn (k + n) ff0kn\n - i)\i) (k + n)kn\ n ) 9 

by which formula (3.3) is proved. 

Theorem 6: Let p, q E N9 let P5 S be chains such that \P\ = p , \Q\ = q. 

Then 
n(PQ) = , 

p + q - 1 \ g 

Proof: If p = 1, then \PQ\ = 1 so that n(P5) = 0 and (3.5) is evi-

dently valid. Thus let p > 1. By Theorem 5(c), we have PQ = T(a) , where 
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a = (a1,...,a(?, 0, 0, ...)» ax = • • • = aq = p - 1. Let /: J (a) -> P(p, <?) 

be the canonical mapping. For g EI(a), ft(S) = |r[/(g)]| by Theorem 4. 

Combining this fact with (2.7) and (3.3), we obtain 

3GJ(a) i=0 

Remark: Combining (3.1), (3.5), and the proof of Theorem 6, we have 

.^j^-i^Vl^fT) 
„(P«) = ? ( p - D ( P + * - i ) _ «p -1 ) . |P«| = £ ^ ? y p : i) . (3.6) 

p + q- - IV ? / p + q - I ' ' fri \i/\ % ) K ' 
Now it is easy to determine the density and also the cyclomatic number 

of the functional lattice P5. 

Theorem 1: Let p, q G N, let P, <2 be chains such that \P\ = p, |Q| = q. 
Then 

(a) d(P«) -Ig-Z-IL. (3.7) 

(b) v(P«) = J (i - 1)(|)(P : *) (3.8) 

Proof: (a) The assertion (3.7) follows from (1.2) and (3.6). 

(b) If A is a connected poset, then c(A) = 1. Combining this 

fact with (1.3), (3.6), (3.1), and (3.2), we obtain 

= i<?)(V)-i(?)(V) + 1 

Remark: Combining (3.6), (3.8), and (3.1), we obtain 

v<p«) - £ « - »(?)(" : ') - ^ f ^ T ' ) - ( P T ' ) " -
(3.9) 

Let p, (7, p, s E i!7, and let P, g, P, 5 be chains such that |p| = p, 

|<3| = 9, |P| = r, \S\ = s. By (3.7) and (3.8), 

if v = q + 1, s = p - 1, then d(PQ) = d(P5), v(P^) = v(Rs) . (3.10) 
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But in [7] we have proved that for p > 1, 

PQ ~ Rs i f and only if p = p , q=s or r=q+l5 s = p - 1. 

(3c10) i s now ev iden t . 

REFERENCES 

1. G. Birkhoff. Lattice Theory. Third (New) Edition. New York, 1967. 

2. L. Carlitz. "Restricted Compositions." The Fibonacci Quarterly 14, 
No. 3 (1976)1254-64. 

3. M. Hall, Jr. Combinatorial Theory. Toronto & London: Waltham, 1967. 

4. R. P. Stanley. ffThe Fibonacci Lattice." The Fibonacci Quarterly 13, 
No. 3 (1975):215-32. 

5. G. Kreweras. "Sur une classe de problemes de denombrement lies au 
treillis des partitions des entiers." Cahiers du EURO 6 (196-5) : 3-103. 

6. E. Fuchs. "On Partitions with Limited Summands." Arch. Math. 15 
(1979):1-12. 

7. E. Fuchs. "On the ̂ -Category of Finite Chains." Zeitschrift fur Math-
ematische Logik und Grundlagen der Mathematik 28 (1982):63-65. 

8. J. G. Hagen. Synopsis der hoheren Mathematik, I. Band, Berlin, 1891. 

9. H. W. Gould & J. Kaucky. "Evaluation of Some Binomial Summations." 
J. Comb. Theory 1 (1966)^233-47. 

•<>•<>• 

1984] 49 



• 0 + 0 + 
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(Submitted June 1982) 

1. INTRODUCTION 

As usuals let a(ft) denote the sum of all the divisors of n [with o~(l) 

= 1] and let oo(ft) denote the number of different prime factors of ft [with 

OJ(1) := 0]. The set of prime numbers will be denoted by 0*. The set of 

hyperperfect numbers (HPfs) is the set M i= \J Mn$ where 
n = 1 

Mn := {m e n\m = 1 + n[o(m) - m - 1]}. (1) 

We also define the sets 

kMn := {m E Mn\u(m) = k}, fe, n £ N , (2) 

and kM := |J ̂ Mn; clearly, we have Afn = |J ̂ Mn. We will also use the re-

lated set M* := Q ^*s where 
n = l 

M* : = {^ E N\m = 1 + n[a(m) - m]}, (3) 

and the sets 

kM% := {m E M^|co(m) = fc}, fc E N U {0}s n G N , (4) 

and kM* := Q k^5 so that also Af* = Q fc^S-
n = 1 /c = 0 

It is not difficult to verify that 1Mn = 05 Vft E Ns and that 

/ 0M* = {!}, Vft E N and 

< ({(ft + l ) a
s a E N } S if ft + 1 E ^ (5) 

I 1 n I ^ 
V v 0, if ft + 1 g <̂ . 

Afx is the set of perfect numbers [for which o{m) - 2m]* The ft-hyperper-

feet numbers Mn, introduced by Minoli and Bear [1], are a meaningful gen-

eralization of the even perfect numbers because of the following rule, 
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^ULE 0 (from [2]): I f p G ^ , a G N , and if q := p a + 1 - p + l E ^ , then 

There are 71 hyperperfect numbers below 107 (see [2], [3], [4], [5]). 

Only one of them belongs to 3M5 all others are in 2M, In [6] and [7] the 

present author has constructively computed several elements of J4 and two 

of hM. 

In Section 2 of this paper, we shall give rules by which one may find 

(with enough computer time) an element of /7 NAf and of „ NM from an 
(k + 2) n (k + 1) n 

element of kM* {k > 0), and an element of kM* from an element of (fe_2)M* 

(k ^ 2). Because of (5), this suggests the possibility to construct HP?s 

with k different prime factors for any positive integer k ^ 2. By actually 

applying the rules, we have found many elements of M> seven elements of 

hM5 and one element of 5M.2 

In Section 33 necessary and sufficient conditions are given for numbers 

of the form paq$ a G N, to be hyperperfect. For example3 for ,a ̂  3S these 

conditions imply that there are no other HPfs of the form paq than those 

characterized by Rule 0. The results of this section enable us to compute 

very cheaply all HPfs of the form paq below a given bound. Unfortunatelys 

we have not been able to extend these results to more complicated HPf s 

like those of the form paqB
5 a > 2 and 3 > 2S or paqBry with a > 1, (3 > 1 

and y > 1, etc. (However, these numbers are extremely scarce compared to 

HPfs of the form paq, and no HPfs of the form paq® and paq®ry with a > 2 

and 3 ^ 2 have been found to date.) 

Because of the importance of the set M* for the construction of hyper-

perfect numbers, we given in Section 4 the results of an exhaustive search 

for all m E M* with m < 108 and 0)(m) > 2. It turned out that elements of 

5M* are very rare compared with 2M*, in analogy with the sets 3M and ^M* 

This search also gave all elements < 108 of M, at very low cost, because 

of the similarity of the equations defining M* and M. See note 1 below. 

The paper concludes with a few remarks5 in Section 5, on a possible 

generalization of hyperfeet numbers to so-called hypercycless special cases 

of which are the ordinary perfect numbers and the amicable number pairs. 

Lists of these numbers may be obtained from the author on request. 
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Remark: After completing this paper, the author computed, with the rules 

given in Section 2, 860 HP?s below the bound 10 . See note 1 above. 

2. RULES FOR CONSTRUCTING HYPERPERFECT NUMBERS 

We have found the following rules [we write "a for o(a)] i 

RULE 1 : Let k E N, n E N3 a E kM*, and p := rid + 1 - n; if p E ^ then 

RULE 2: Let fc E N U {0}, n E N, a E feAf*, and p := na + 4, q := na + 5, 

where A B = l - n + ria + n2~d 2; if p G ^ and q E ̂ 5 then ap^ E (k + 2)Mn* 

RULE 3: Let fe E N U {0}, n E N, a E ^M*? and p := M + i} (7 := na + 5, 

where .45 = 1 + rid + n2"a 2; if p E ^ and g E ^ 5 then apg E (^ + o/^-

The proofs of these rules don!t require much more than the application 

of the definitions, and are therefore left to the reader. In fact, the 

proof of Rule 2 was already given in [7], although the rule itself was 

formulated there less explicitly. 

Rule 1 can be applied for k ^ 1, but not for k = 0, since 0Af* = {1} 

and a - 1 gives p = 1 { ^. For k = n = 1, Rule 1 reads: 

If p := 2a + 1 - 1 G 0>, then 2ap E 2M,, 

which is EuclidTs rule for finding even perfect numbers. For /c = 1, Rule 

1 is equivalent to Rule 0, given in Section 1. 

Rules 2 and 3 can both be applied for k > 0. For instance, for k = 0, 

Rule 2 reads: 

Let n EN he given; ifp := n + A E 0* and q : = n + 5 E gP, 

where ^5 = 1 + n2, then pg E 2Mn. 

For n = 1, 2, and 6, this yields the hyperperfect numbers 2x3, 3 x 7 , and 

7x43, respectively. Rule 3 reads, for k - 0: 

Let n E N be given; ifp : = n + A E ̂  and q : = n + 5 E «^, 

where 45 = 1 + n + n2, then p^ E 2M*°  

For n = 4 and n = 10, we find that 7x 11 E 2M* and 13x 47 E 2M*0, respec-

tively. 
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Rule 3 shows a rather curious "side-effect" for k > 1: if both the 

numbers p and q in this rule are prime, then not only apq E (k 2)M*', but 

also the number b := pq is an element of 2^na' Indeed, we have 

pq - 1 = n2 "a 2 + na(A + B) + AB - 1 
a(i) - fc p + q + 1 2na + ,4 + £ + 1 

n2~a2 + na(A + B) + na + n2~a2 — _ .. 
2na + i4 + 5 + 1 

For example, we know that 7 x 11 E 2M*. From Rule 3 with k = 2, n = 4, and 

a = 7x11, we find that 7x 11 x 547 x 1291 E 4A/*; the side-effect is that 

547x1291 E 2 < x 8 x l 2 ) = 2 M * 8 V 

In [6] we gave the following additional rule. 

RULE 4: Let i E N and p i= 6t - 1, q := 12* + 1; if p E ̂  and q E ̂ , then 

For example, t = 1 and t = 3 give 5213 E 2M3 and 17237 E 2M1:L, respec-

tively. In Section 3 we will prove that with Rules 1, 2, and 4 it is pos-

sible to find all HP's of the form paq, a E N, below a given bound. We 

leave it to interested readers to discover why there is no rule (at least 

for k > 1), analogous to Rule 1, for finding an element of (k+1)M^ from an 

element of kM^. 

From Rules 1-3, it follows that elements of kMn for some given kEN 

may be found from (k.±)M* (with Rule 1) and from (k_2)Af* (with Rule 2) pro-

vided that sufficiently many elements of (^-D^Z r e s P s (k-DMn a r e avail-

able; these can be found with Rule 3 and the "starting" sets QM* and ^ 

given in (5). We have carried out this "program" for the constructive 

computation of HPfs with three, four, and five different prime factors. 

(i) Construction of elements of 3Mn. With Rule 1, we found 34 HPfs 

of the form pqr, from numbers pq E 2^n: 

the smallest is 61 x 229 x 684433 G 3Af48; 

the largest one is 9739 x 13541383 x 1283583456107389 E 3M97 3 2* 

The elements of 2M* were "generated" with Rule 3 from QM* = {1}. Using 

Rule 2 we found, from prime powers pa E 1M*t, 67 HPf s of the form pqrt 
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five of the smallest are given in [6], 

the largest is 8929 x 79727051 x 577854714897923 E 3M 8 9 2 8; 

48 HPfs of the form p2qr9 

the smallest five are given in [6], 

the largest is 74592414994003583 x 34444004601637408163219 E 3M7h5Q; 
9 of the form p3qr, 

the smallest is given in [6], 

the largest is 8113432596915921 x 89927962885420066391 E 3MQ1Q; 
4 of the form phqr9 

the smallest is 7^30893 x 36857 E 3M6, 

the largest is 223^553821371657 x 130059326113901 E 3M2ZZ; 
and, furthermore, 

761340243 x 2136143 E 3M6, 

137815787979 x 11621986347871 E 3Af12, 

and 

198322687706723 x 11640844402910006759 E 3A/18. 

(ii) Construction of elements of HMn. In order to construct elements 

of hMn with Rule 1, sufficiently many elements of 3Af* had to be available. 

This was realized with Rule 3, starting with elements p a E 1^(P + i)5 p E ̂ . 

The following four HPfs with four different prime factors were found: 

3049 x 9297649 x 69203101249 x 5981547458963067824996953 E ^M30485 

4201 x 17692621 x 7061044981 x 2204786370880711054109401 E ^ 2 0 0 , 

18125991031 x 579616291 x 20591020685907725650381 E ^ 1 8 0 , 

18131108889497 x 33425259193 x 39781151786825440683346549261 E hM1QQ. 
By means of Rules 2 and 3S the following three additional elements of hMn 

were found: 

1327 x 6793 x 10020547039 x 17769709449589 E ^M111Q (is in [6]), 

1873 x 24517 x 79947392729 x 80855915754575789 E ^M17l¥0 (is in [7]), 

5791 x 10357 x 222816095543 x 482764219012881017 E hM371l+. 

(iii) Construction of an element of 5Mn. We have also constructively 

computed one element of 5Mn with Rule 1. The elements of 4M* needed for 

this purpose were computed from M* by twice applying Rule 3 (first yield-

ing elements of 2M^, then elements of hM*n) . The HP found is the largest 
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one we know of (apart from the ordinary perfect numbers). It is the 87-

digit number: 

209549717187078140588332885132193432897405407437906414 

236764925538317339020708786590793 

= 4783 x 83563 x 1808560287211 x 297705496733220305347 

x 973762019320700650093520128480575320050761301 G5^521f. 

3- CHARACTERIZATION OF ALL HP'S OF THE FORM paq 

The hyperperfect numbers of the form paq are characterized by the fol-

lowing theorem. 

Theorem: Let m := paq (a E N, p G 0>9 q E0>) be a hyperperfect number, then 
(i) a = 1 => (In E N with m E 2Mn such that p = n + A, q = n + B, with 

,45 = 1 + n2); 

(ii) a = 2 => (3t E N with m E 2̂ (I+t_ 1} and p = 6t - .1 and ^ = 12t + 1) 

V (/?? E 2%-i) with q = p3 - p + 1 ) ; 
(iii) a > 2 =•> (tfz G 2^(P-I)

 w i t h 4 = Pa+± " P + X ) 8 

Proof: (i) This case follows immediately from Rule 2 (with k = 0). 
(ii) If p2^ is hyperperfect, then the number (p2q - 1)/((p + 1)(p + g)) 

must be a positive integer. Consider the function 

To characterize all pairs x, y for which f(xs y) E N, we can safely take 
x > 2 and y > 2B Let ̂  > 2 be fixed., then we have for all y > 29 

2 2 i 
j?/ \ s y S i J_ 

J(^5 #' ̂  (# + 1) (X + y) x + 1 = * " x + 1" 

Hence5 the largest integral value which could possibly be assumed by f is 
x - 1, and one easily checks that this value is actually assumed for y = 
x3 - x + 1. So we have found 

f(x9 x3 - x + I) = x - ls x EN, x > 2. (6) 

One also easily checks that / is monotonically increasing in y (x fixed), 

so that 

2 < y < x3 - x + 1. (7) 
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Now, in order to have / E N, it is necessary that x + 1 divides x2y - 1, 

or, equivalently, that x + 1 divides y - 1, since 

xZy - l 
—^- = y(x - 1) +iL^—f 

Therefore, we have z/ = k(x + 1) + 1, with k E N and 1 < & < # ( # - 1) by 

(7). Substitution of this into f yields 

_£• t v I\.*XJ "T" «A/ " " J - ., »A^ "~" i/L/ ~~' Av -j / 7 \ 

/ u : ' ^ = (fe + i)(x + ij ^ x ~ L ~ (fe + i ) ( # + i ) = : * " x " ^ ' ^ 

It follows that x + 1 must divide #2 - # - k9 or, equivalently, that x + 1 
must divide k - 2. Hence, fc = j(x + 1) + 2, with j E N U{0} and 0 < j < 
a? - 2. Substitution of this into g yields 

g(x9 j(x + 1) + 2) - X ' 2 " J' 
j (a: + 1) + 3 ' 

This function is decreasing in j, and for j = 0, 1, ..., x - 2 it assumes 

thB V a l u e S : gtx, 2) = (x - 2)/3, 

#0r, ;r + 3) = ~-^- < 1, 

^ (.x, acr (x - 1) ) = 0. 

It follows that there is precisely one more possibility [in addition to 

(6)] for / to be a positive integer, viz., when j - 0, k = 2, y = 2x + 3, 

and & (mod 3) = 2. So we have found 

f(3t - 1, 6£ + 1) = 2t - 1, £ EN. (8) 

The statement in the Theorem now easily follows from (6) and (8). 

(iii) As in the proof of (ii), we now have to find out for which values 

of x, y E N, x > 2, and y > 2, the function /Or, z/) E N, where 

f(x9 y) := X^ " 1 , a> 2. 
(xa-l + ... + 1 ) ^ + 2/) 

For fixed a; ^ 2, we have 
# a 1 

/Or , z/) < = x - 1 + tf^1 + • • • + ! x a _ 1 + . . . + 1 
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As in the proof of (ii) we find that f(xs y) = x - 1 for y = ̂ a+1 - x + 1 
and that 2 < y < xa + 1 - x + 1. Furthermore, x*'1 + ••• + 1 must divide 

xay - 1, so that y = kix*'1 4- . .. + 1) + 1, with 1 < k < x(x - 1). Sub-

stitution of this into f yields a certain function gs in the same way as 

in the proof of (ii), but in this case g can only assume integral values 
for k - x(x - 1), This implies the statement in the Theorem., case (iii) . 

Q.E.D. 

It is easy to see that the characterizations given in this Theorem are 

equivalent to Rule 2 (k = 0) when a = 1, to Rule 4 or Rule 1 (k = 1) when 
a = 2 s and to Rule 1 (k = 1) when a > 2. 

This Theorem enables us to find very cheaply all HPfs of the form paqs 

a E N 5 below a given bound. For example, to find all HP?s in Mn of the 

form pq below 108, we only have to check whether 

p : = n + A E 0> and q : = n + B E 0> 

for all possible factorizations of AB = 1 + n2
 s for 1 < n < 4999 * This 

range of n follows from the fact that if pq E Mn then pq > 4n2s The fol-

lowing additional restrictions can be imposed on n: 
(i) n should be 1 or even since, if n is odd and n ^ 3S then n2 + 1 E 2 

(mod 4)5 so that one of A or B is odd and one of p or q is even and 

> 4. 
(ii) If n > 3S then n E 0 (mod 3) , since If n E 1 or 2 (mod 3), then 

n2 + 1 E 2 (mod 3), so that one of A or 5 is E 1 (mod 3) and the 
other Is E 2 (mod 3); consequently, one of p or q is E 0 (mod 3) and 

> 3. 

Hence, the only values of n to be checked are n = 1, n = 2, and n = 6£, 
1 < t < 833. It took about 6 seconds CPU-time on a CDC CYBER 175 computer 
to check these values of n, and to generate in this way all HPfs of the 

form pq below 1Q8* 

k« EXHAUSTIVE COMPUTER SEARCHES 

From the rules given in Section 23 it follows that it is of importance 

to know elements of M* when one wants to find elements of M. Therefore, 
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we have carried out an exhaustive computer search for all elements of M* 

below the bound 108. Because of (5) the search was restricted to elements 

with at least two different prime factors. A check was done to determine 

whether (m - l)/(o(m) - m) G N , for all 7?? < 108 with a)(m) > 2. Since the 

most time-consuming part is the computation of o(m), a second check was 

done to determine whether (m - l)/(o(m) - m - 1) G N [in the case where 

(m - l)/(o(m) - m) (£. N] . If so, m was an HP; thus, our program also pro-

duced, almost for free, all HPTs below 108. (The search took about 100 

hours of "idle" computer time on a CDC CYBER 175.) The results are as 

follows. 

Apart from the ordinary perfect numbers, there are 146 HP!s below 10 . 

Only two of them have the form paqr: 

13 x 269 x 449 £ 3M12 and 72383 x 3203 E 3MS; 

these were also found in the searches described in Section 2. All others 

have the form characterized in Section 3, and could have been found with 

a search based on that characterization (using the fact that if paq E 2Mn, 

then p > n and q > n). A question that naturally arises is the following: 

Are there any HPT s that cannot be constructed with one of Rules 1, 2, or 

4?2 

There are 312 numbers m < 108 which belong to M* and which have ud(m) 

> 2. Of these, 306 have the form pq and could have been (and, as a check, 

actually were) found very cheaply with Rule 3 of Section 2. The others 

are: 

7 x 61 x 229 E 3i^, 113 x 127 x 2269 E 3Af*8, 

149 x 463 x 659 E 3i^ 6, 19 x 373 x 10357 E SM*1Q, 

151 x 373 x 1487 E 3M?0 0 , 7 x 11 x 547 x 1291 E Jti*i 

the second, third, and fifth numbers could not have been found using Rule 

3. 

2The referee has answered this question in the affirmative by giving 
the example 12161963773 = 191 x 373 x 170711 EM1 2 6. 
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5- HYPERCYCLES 

A possible generalization of hyperperfect numbers can be obtained as 

follows. Let n E N be given, and define the function fn :N\{1} =» N as 

fn(m) := 1 + n[o(m) - m - 1], me N\{1}. (9) 

S t a r t i n g w i t h some / 7 7 0 E N \ { 1 } , one might i n v e s t i g a t e t h e sequence 

" V / n K > > fn(fn(m0))9 . . . . ( 1 0 ) 

For n = 1, this is the well-known aliquot sequence of mQ9 which can have 

cycles of length 1 (perfect numbers) , length 2 (amicable pairs) , and others. 

In order to get some impression of the cyclic behavior for n > 1, we have 
computed, for 2 < n < 20, five terms of all sequences (10) with starting 

term mQ < 106, and we have registered the cycles with length > 2 and < 5 

in the following table. 

TABLE 1 

HYPERCYCLES" 

5 2 19461 = 3x13x499, 42691 = 11x3881 
7 3 925 = 52375 1765 = 5x 353, 2507 = 23 x 109 
8 2 28145 = 5x 13x 433s 66481 = 19 x 3499 

3 238705 = 5x477415 381969 = 337x 43x47, 2350961 = 79x29759 
4 94225 == 523769, 181153 = 723697, 237057 = 3x31x2549, 

714737 = 61x 11717 
2 3452337 = 327x 54799, 17974897 = 53x 229x 1481 

9 2 469 = 7x 67, 667 = 23 x 29 
2 1315 = 5x 263, 2413 = 19 x 127 
2 1477 = 7x 211, 1963 = 13 x 151 
2 2737 = 7x 17 x 23, 6463 = 23 x 281 

10 3 1981 = 7x 283, 2901 = 3x 967, 9701 = 89 x 109 
12 2 697 = 17x 41, 2041 = 13x 157 

2 3913 = 7x 13 x 43, 12169 = 43 x 283 
2 54265 = 5x 10853, 130297 = 29x 4493 

14 2 1261 = 13x97, 1541 = 23x67 
3 508453 = 11x17x2719, 1106925 = 3 x 5214759, 

10126397 = 281x 36037 
'Different numbers mQS m19 .-., ̂ _ x such that m^ 
mi + i := fn(mi)> fn defined in (9). 
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TABLE 1 (continued) 

n k mQ9 m19 ..., mk^1 

19 2 9197 = 17x541, 10603 = 23x461 
4 184491 = 336833, 1688493 = 3x562831, 10693847 = 709x15083, 

300049 = 31x 9679 
2 5151775= 52251 x 821, 24124073 = 89x271057 
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1. INTRODUCTION 

Lucas [2] defined the fundamental and the primordial functions Un(p, q) 

and Vn(p9 q) 9 respectivelys by the second-order recurrence relation 

W„ pWn+1 - qWn (n > 0), 

where 

{Wn} = {Un} if WQ = 0, W± = 1, and 

{Wn} = {Vn} if WQ = 2, W± = p. 

Let X be a matrix defined by 

X 
* 2 2 

Taking 

t r , X = p and 

and using matrix exponential functions 

det. X = q 

n = 0 n! 
and e.x _ E i r„ s 

Barakat [1] obtained summation formulas for 

(1.1) 

(1.2) 

t^Un(P> q), t^Vn(p, q), and £-L tf (p, q) . 

Walton [7] extended Barakatfs results by using the sine and cosine func-

tions of the matrix X to obtain various other summation formulas for the 
functions Un(p, q) and Vn(p? q). Further, using the relation between {Un}, 
{Yn}5 and the Chebychev polynomials {Sn} and {Tn} of the first and second 
kinds3 respectively, he obtained the following summation formulas! 
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n = 0 

(-l)n sin 2n0 . f fl, . w . Q, ji—t j _ _sln (cos 0) smn (sm 0) 
{In) 

y, (-1)* sin {In + 1) = cos (cos 0) sinh (sin 0) 
n = 0 

(1.3) 
{In + 1)! 

v* (-I)72 cos 2nd , QN , , . QN 
V — — /ONI = c o s (cos 0) cosh (sin 0) 

n% (2n)! 
v* (-1)* cos (2n + 1)0 . , QN w . flv 2^ ——^-r^— n i — = sin (cos 0) cosh (sin 0) 

The question—Can the summation formulas for Un and Vn and identities 

in (1.3) be further extended?—then naturally arises. The object of this 

paper is to obtain these extensions, if they exist, by using generalized 

circular functions. 

2. GENERALIZED CIRCULAR FUNCTIONS 

Polya and Mikusifiski [3] appear to be among the first few mathemati-

cians who studied the generalized circular functions defined as follows. 

For any positive integer r, 

(-l)ntrn + 3' 
M*-3{t) ~ n ? 0 {vn + j)! ' j = 0, 1, ..., v 1 

and 

Nr.j(t) = r 
.rn + j 

n% {vn + j) I > 0, 1, ..., v - 1. 

The notation and some of the results used here are according to [4] . Note 

that 

MlfQ{t) = e"*, M2fQ{t) = cos £, M2>1{t) = sin t, 

^1,0^) = et> ^2so(^) = c o s h £> ^2,1^) = s i n h t-

Following Barakat [1] and Walton [7], we define generalized trigono-

metric and hyperbolic functions of any square matrix X by 
n rn + j 

rrn + j 

Sr.jW -„?0(m + j)l' 

., v - 1, and 

0, 1, ..., v - 1. 

(2.1) 
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3. SUMMATION FORMULAS FOR THE FUNDAMENTAL FUNCTION 

We use the following Lemmas. 

Lemma 1 : Let X be the matrix defined in (1*2), and Un(p» q) the fundamen-

tal functions defined by (!*!)« Then 

Xn = UnX - qUn_1I, 

where I is the 2 x 2 unit matrix. 

This lemma is proved by Barakat [1]. 

Lemma 2: If f(t) is a polynomial of degree < N - 1, and if X1, 

are the N distinct eigenvalues of X5 then 

(3.1) 

fa) = E /a*) n 
i=± i < j < 0 

X Xil 

U \n 
(3.2) 

This is Sylvesterfs matrix interpolation formula (see [6]). 

Lemma 3: (a) The following identities are proved in [3]: 

(x + y) = M3s0 (x)M3i0 (y) - M3>1 (a;)Af3>2 (y) - M3j2 (a?)A/3fl ( j / ) , M 3,0 

M 3 j l (a: + y) = M3j0 (^ )M 3 s l (y) + M3 s l (x)M3 j 0 (z/) 

M 

M3a (x)Mza ( y ) , 

3 j 2 Or + i/) = M3s0 Gc)Af3>2 (i/) + M 3 j l (ar)Af3fl (y) + M3s2 (a?)ilf3f0 Q/) 

v j / 2 -1/2 2-ni/r (b) NrsJ-(t) = ooJ / zMP s J . (a3~x/z £ ) , where 03 

The p roo f i s s t r a i g h t f o r w a r d and t h u s o m i t t e d ( f o r n o t a t i o n s s e e [4 ] )« 

Lemma 4 : We have 

M3 j j . (x) - Af3>J.(-aO = 

M 3 , J 
(a ) + M3s . . ( -# ) 

2Z^6sl (a?)» 

2N6sj(x)s 

~2NBih ( * ) , 

J = 0 , 2$ 

3 = 1. 

Q = 0S 2S 

d = 1. 

Proof : 
M0 . (x ) 

3 S J v J 
M. 

n e 0 (3n + j ) S L i ^ i ; J 
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2(-w;', ,•. o. 2 
n = lT3,... < 3 n + J) 

- -2(-l)nx3n + j 

n = 0, 2, ... (3n + j)! 

„6n+3 + «/ 

, J = 1 

"2
n?0(6» + 3 + J)!' J' = °* 2 

6n + j" 
2 V — — 
n~o(6" + «?)! 

J = 1 

The other formula can be similarly proved. 

Theorem 1: The following formulas hold for {u (p, q)} < 

- (-1)W[/, 

£„ (3n)! (3.3) 

-jtAf3f0 (p /2)^ 6 ) 3 (6/2) -M 3 > 1 (p/2)i76f5 (6/2) + M3;2 (p/2)776>1 (6/2)} 

n% On + D ! (3 .4) 

= ^{M3j0 (p/2)ff6fl (6/2) - M3>1 (p/2)N6y3 (6/2) + M3>2 (p/2)N6>5 (6/2)} 

( -D" l / , 

n ~ 0 (3n + 2) ! 

2 

(3 .5) 

{M3i0 (p/2)ff6>5 (6/2) - M3>1 (p/2)ff6fl (6/2) + M3>2 (p/2)N6>3 (6/2)} 

3 « - l 1 

6llB3 
( - D n y 

~ o (3«) ! - { X ^ . 0 (A,) - A2M3j0 (x 2 )} 

( - i ) " y , 
' 3n 1 ~ 0 (3n+ 1)! &q{XiM^ (Xi> ~ X A , i (*2)> 

ko ( 3 n + 2) ! = -6?{AiM3,2 U i ) " ^ 3 . 2 tt2». 

(3.6) 

(3 .7) 

(3 .8) 
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Here p = tr. Xs q = det. X5 where X is the matrix defined in (1.2) and 

X±, X2 are its eigenvalues. Further 6 = ^/p2 - kq« 

Proof: We prove (3.4) and (3.7). The proofs of the others are simi-

lar. Since AlS X2 are the eigenvalues of X* they satisfy its characteris-

tic equation X2 - pX + q = 0. Therefore, 

A 1 + A 2 = p s X1X2 = q5 and X1 = — - — , A2 = — - — . 

Now, using ( 3 . 2 ) , we have 

M,1 (*) = T — r y - i a - ^ ) ^ 3 , i (^i) - (* - A2-^")^3,i tt2>>» 
A l A 2 

i . e . 3 

M3jl (X) = -|{[M3jl (Xx) - M3sl (X2)]X - [ A ^ (X±) - X2M3sl (A2)]J>. (3.9) 

Using Lemma 35 we get 

#3,1 (^l) " #3,1 ^ 2 ) = #3,1 ( H ^ ) " M 3 , l ( ^ ) 

= M3;0 (p/2)[M3>1 (6/2) - A/3>1 ( -6 /2) ] 

+ M3>1 (p/2)[M3j0 (6/2) - M3)0 ( -6 /2 ) ] 

- #3,2 ( P / 2 ) ^ 3 , 2 ( 6 / 2 ) " #3,2 ( - 6 / 2 ) ] -

Now, using Lemma 4, we get 

# 3 , 1 < A l ) - # 3 , 1 ( A 2 > ( 3 ' 1 0 ) 

= M3>0 (p/2)ff6>1 (6/2) - 2M3>1 (p/2)ff6;3 (6/2) + 2M3>2 (p/2)ff6;S ( 6 / 2 ) . 

Subs t i t u t i ng (3.10) in ( 3 . 9 ) , we get 

#3,1 W = f{[#3,o <P/2)ff6.i ( 6 /2 ) - #3,1 (P/2)^6,3 ^ / 2 ) ( 3 - U > 

+ M3>2 (p/2)N6>5 ( 6 / 2 ) ] J - | [ ^ i # 3 . i (Ai) - X2M3,i a 2 ) ] - z j -

Now, by (3.1) and ( 2 . 1 ) , we have 

M3jl(X) = i^-jpfalu^X - ^ , B J J . (3-12) 

Equating the coefficients of X and I in (3-11) and (3.12), we get (3.4) 

and (3.7). 
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Starting with M3 Q(X) and M3 2(X) and following a similar procedure, 

we obtain (3.3), (3.6), and (3.5) and (3.8). 

Remark 1: The right-hand sides of (3.6)-(3.8) are expressible in terms of 

p and 6; however, the formulas become messy and serve no better purpose. 

k. SUMMATION FORMULAS FOR THE CHEBYCHEV POLYNOMIALS 

Theorem 2: The following summation formulas hold for {Sn(x)} and {Tn(x)}. 

Let x = cos 0 and y = sin 0. Then 

(-D"s3»^) 
rc = 0 ( 3 n ) ! 

= j-[M3i0 (x)M6t3 (y) + M3il (x)M6,5 (y) - M3,2 (x)M6jl (y)] 
y 

(-D"T3n + 1(x) 

n% (3n + 2 ) ! 

= -M3> 0 {x)M^z (y) - Af3>1 (x)M^ (y) + M ( a ) « 6 > 0 (y) • 

( 4 . 1 ) 

(4.3) 

A < - l > " * . n + l ( * > 
,?o ( 3 n + l ) - ( 4 - 2 ) 

= i[Af „ (x)M6 (y) + M3 , (a:)tf6 3 (y) + M3 2 (x)M6 5 (y) ] 

£ 0 (3n + 2)! 

= ^[-M3,o 0 ^ 6 . 5 (J/) + M3, i (^)M6,i '(J/) + M3>2 (x)M6,3 ( y ) ] 

- ( - i ) n r (x) 

= M3j0 (ar)M6>0 (j/) + M 3 j l (ar)Af6,2 (z/) + M3>2 (ar)Af6,»f Q/) 

£ 0 (3n + 1)! ( 4 - 5 ) 

= -M3>0(a;)M6jl t (y) + M3(1 (a:)Af6>0 (y) + M3>2 (x)M6 i 2 (y) 

- i-DnT3n + 2(x) 
( 4 . 6 ) 
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Proof: If p = 2x = 2 cos 6 and q = 1, then Un(p5 q) are the Chebychev 
polynomials Sn(x) of the first kind; i.e., 

Un(2xs 1) = Sn(x) = s ** n9 (n > 0), 
where 

with 
S0 = 0, 5X = 1. 

We prove (4*2) and (4.5) as follows. Now, 

(-l)Xn + 1 = » (-^^an + i ^ = ^ (-l)*sin (3n + 1)0 

n~0 Ow + 1)1 n = o On + 1)1 n = o O" + 1)! sin 0 

1 f* (-l)n 
sin 0 n^0 (3n + 1)! 

• i(3n + l)B _ -z(3n + l)e 
_ 

•[(eie)3n + 1 - (e~^y 
1 V (" 1) n

 r^7:fl^3n + l _ r/D-iQ^3n + l-

2i sin 0 n^0 (3n + 1)1 
1 2i sin 6^3,: ̂ 6 ) "*3.i <«-">]• 

Hence, 
» (-Dny3n+1 1 

g 0 ( 3 W + i ) i = nt[M^ (x + iy) - M^ (x ~iy)h (4-7) 

By Lemma 3, 

M3il(x + iy) - M 3 j l (x - iy) = M3j0 (ar)[M3sl (£#) - M3%1 (-iy)] 

+ M 3 j l ( ^ ) [ M 3 s 0 (iy) - Af3s0 ( - £ # ) ] 

- M3i2(x)[M332 (iy) - M3i2 (-iy)], 

so t h a t by Lemma 45 

M3sl (x + iz/) - Af3>1 (x - £z/) ( 4 . 8 ) 

= 2M3j0 (x)NSjl (iy) - 2M3sl (x)N^3 (iy) + 2M3j2 (x)N6i5 (iy) * 

F u r t h e r , by Lemma 3 ( b ) , 

N (iy) = N6ik (w3/2y)$ where w = e 2 7 l i / 6 , fe = 0, 1, . . . , 5 

= Wk,1M^k(wy) 

, , i t / 2 r (-1) ^ y 
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so that 

tf6,k(^/> = w 3 / C / X ^ ) < (4-9) 

Note that w 3/2 = i9 W3/2 = ~i, and w15/2 = i . Hence, substituting (4.9) 

in (4.8), we get 

M3il(x + iy) - M3>1(x - iy) (4.10) 

= 2i[M330(x)M6sl(y) + MSsl(x)M6i3(y) + M 3j2 (x)M 6j 5 (y) ] . 

Substituting (4.10) in (4.7), we get (4.2). It is easy to see that (4.1) 

and (4.3) can be similarly obtained. 

Noting that 

Vn(2x$ 1) = 2Tn(x) = 2 cos 6, 

and using similar techniques, we obtain (4.4)-(4.6). 

Remark 2: Since Sn(x) = ^ ~ s and Tn(x) = cos n0, (3.13)-(3.18) also 

give summation formulas for 

f, (-l)nsin (3n + j)8 . A (-1)" cos (3w + j)9 . 

„?o On + j)! and
 n ? 0 (3» + j) ! ' 3 ~ °' ls 2-

For example* from (3.14) we get 

E (-l) sin (jn + l)t) . QN 
(-l)n sin (3n + 1)( 

n% On + 1)! 

+ M3jl(cos 0)M6j3(sin G) + A/3j2(cos 0)M6s5(sin 0) , 

Remark 3: Shannon and Horadam [5] studied the third-order recurrence re-

lation 
Sn = PSn^ + QSn.2 + i?£n_3 (w > 4), £0 = 0̂  

where they write 

{5n> = Un) when Sx = 0, 52 = 1, and S3 = P, 

{Sn} = {Zn} when S± = 1, 52 = 0, and £3 = 0, 
and 

{5n} = {Ln} when 5X = 0, £2 = 0, and £3 = i?. 

Following Barakat, and using the matrix exponential function, they then 

obtained formulas for 
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in terms of eigenvalues of the matrix 

11 12 13 

a 2 2 ^23 

Using matrix circular functions and their extensions and following similar 

techniques could be a matter of discussion for an additional paper on the 

derivation of the higher-order formulas for {Jn}, {Kn}, and {Ln}. 

Remark 4: A question naturally arises as to whether Theorems 1 and 2 can be 

extended further. This encounters some difficulties, due to the peculiar 

behavior of Mr^{x) and Nrtj(x) for higher values of r. This will be the 

topic of discussion in our next paper. 
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THE GOLDEN MEAN IN THE SOLAR SYSTEM 

ORESTE W. LOMBARD I and MARGARET A. LOMBARD! 
1016 Denver Street, Salt Lake City, UT 84111 

The mean distances of planets and satellites from their primary, di-

vided by the next one out, bears a loose resemblance to the golden mean 

and the Fibonacci sequence. B. A. Read [6] explored this resemblance and 

related the deviation or offset of the planets from an exact Fibonacci 

spacing to the density of a planet and that of the next planet inward from 

it. However, when the aphelion and apogee distances are considered, the 

resemblance is no longer loose. Instead, as can be seen from the accom-

panying tables, the resemblance is close enough to reflect some underlying 

natural law. In Table 1, the observed aphelion distances of the planets 

from the sun are compared to distances calculated in direct proportion to 

the Fibonacci sequence as well as to distances calculated in proportion to 

the golden mean. The golden mean, 1.618034, an irrational number, is the 

limit that one Fibonacci number, divided by the preceding Fibonacci num-

ber, converges towards, which is equal to (1 + v5)/2. Its reciprocal is 

0.618034, which is the form of the golden mean used in this paper. 

As can be seen from Table 1, Mercury deviates considerably from cal-

culated distances, as would be expected from tidal interactions, as do the 

innermost satellites of Jupiter, Saturn, and Uranus in Table 2. The de-

viations of Jupiter and Saturn are not so easily dispensed with, and the 

gap between Jupiter and Saturn may be suggestive of a missing planet. 

However, Plutofs distance fits well, suggesting that Pluto is a normal 

member of the solar system rather than an asteroidal member. At the bot-

tom of Table 1 is a statistical workup of the various calculated spacings 

compared with the observed spacings. 

In the case of the planets, the Fibonacci sequence gives a better fit 

than the golden mean; however, the apogee distances of the satellites of 

Jupiter, Saturn, and Uranus fit the golden mean distances as well as the 

Fibonacci distances, as can be seen in Table 2. The Fibonacci and golden 

70 [Feb. 



THE GOLDEN MEAN IN THE SOLAR SYSTEM 

mean distances are calculated from assumed "true values" which are under-

lined. The asteroidal satellites of Jupiter form two families, the Himalia 

group consisting of Ananke, Carme, Sinape, and Pasiphae. The Himalia group 

satellites are close together and have a weighted apogee mean somewhat un-

der the calculated value such that it appears more reasonable that they 

are fragments of a shattered moon rather than captured asteriodal objects. 

Likewise for the retrograde group; however, Ananke?s inclusion may be 

doubtful and5 if so, then the weighted mean would be 30360 x 103 Km, which 

fits better than the weighted mean for all four bodies. 

Retrograde bodies may well be normal satellites or fragments of normal 

satellites. The break from direct to retrograde motion occurs at about 

the same value of the gravitational gradient for both Jupiter and Saturn. 

(The gravitational gradient is proportional to mass/distance cubed.) It 

would not surpirse these writers if both Uranus and Neptune were found to 

have outer retrograde satellites, and if planets beyond Pluto were found 

to be retrograde. In the case of the sun, Pluto lies farther out with re-

spect to gravitational gradient than do the retrograde satellites of Jupi-

ter and Saturn; thus, there is probably more to retrograde motion than 

gravitational gradient. 

In Table 3, the aphelion and apogee distances are divided by the dis-

tance of the next body outward from the primary. For purposes of compari-

son and averaging over intermediate and skipped spacings, the resultant 

ratios in Table 1 are raised to appropriate exponents. Thus, it can be 

seen that the ratios of closely-spaced satellite orbits of Saturn corre-

spond to the square root, 0.78615, of the golden mean reciprocal. In the 

statistical workup for the overall mean, the values for the innermost 

bodies, Mercury, Amalthea, the moonlets, and Miranda, were rejected since 

they would be the most subject to tidal forces. This workup yields a mean 

spacing ratio of 0.62103, which comes within 0.5% of the reciprocal of the 

golden mean. And if Phoebe and the "asteroidal" satellites of Jupiter are 

also rejected, the overall mean comes to 0.61877, which is within approx-

imately 0.1% of that reciprocal. This golden mean orbital interval corre-

sponds to a constant increase in the gravitational gradient by a factor 
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TABLE 1 

COMPARISON OF OBSERVED APHELION DISTANCES WITH FIBONACCI 
AND GOLDEN MEAN RATIOS 

Planet 

MERCURY 
VENUS 
EARTH 
MARS 
ASTER. 
JUPITER 

SATURN 
URANUS 
NEPTUNE 
PLUTO 

Aphelion 
Distance 
from Sun 
x 106 Km 

69.86 
108.8 
152.1 
249.1 

815.8 

1504 
3002 
4537 
7375 

The above 

Calculated Value 
Observed Value 

Sum, less Mercury 

Fibonacci 
Number 

1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 

- 1 

MERCURY 
VENUS 
EARTH 
MARS 
JUPITER 
SATURN 
URANUS 
NEPTUNE 
PLUTO 

Distances Proportional to 
Fibonacci Numbers 

With 
Neptune 
at "True 
Value" 

50.98 
101.9 
152.9 
254.9 
407.8 
662.7 
1070 
1733 
2804 
4537 
7340 

-0.270 
-0.063 
0.006 
0.023 

-0.188 
0.152 

-0.066 
0.000 
0.005 

-0.131 

With 
Pluto 

at "True 
Value" 

51.22 
102.4 
153.6 
256.1 
409.7 
665.8 
1075 
1741 
2817 
4558 
7375 

-0.267 
-0.059 
o.oiio 
0.028 
-0.184 
0.157 

-0.062 
0.005 
0.000 

-0.109 

x 106 Km 

With an 
Adjusted 
Best Fit 

51.88 
103.8 
155.6 
259.3 
414.8 
674.1 
1089 
1763 
2852 
4615 
7467 

-0.257 
-0.046 
0.023 
0.041 
-0.174 
0.172 

-0.050 
0.017 
0.013 

-0.002 

Golden Mean 
Ratio 

Best Fit 

61.04 
98.77 
159.8 
258.6 
418.4 
677.0 
1095 
1772 
2868 
4640 
7508 

-0.126 
-0.093 
0.051 
0.038 
-0.170 
0.178 
-0.045 
0.023 
0.018 

0.000 

Titius-Bode Law 
Numbers and 

Distances with 
Uranus at "True 

Value" 

Number 

4 
7 
10 
16 
28 
52 
-

100 
196 
-

388 

Distance 
x 106 Km 

61.3 
107.2 
153.2 
245.1 
248.9 
796.4 

-
1532 
3002 

-
5943 

The aphelion distances were taken from Joseph Armento's compilation [ 1] . The Titius-
Bode law relationship, which works best with mean distances is shown for comparison only. 
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TABLE 2 

COMPARISON OF THE APOGEE DISTANCES OF THE SATELLITES OF JUPITER, 
SATURN, AND URANUS WITH THE FIBONACCI AND GOLDEN MEAN RATIOS 

(The satellites are listed in order of increasing apogee distances,) 

Satellite 

JUPITER 

Amalthea 
lo 
Europa 
Ganymede 

Callisto 
Leda 
Lysithea 
Himalia 

Elara 
Weighted 

Ananke 
Carme 

Sinape 
Pasiphae 

Weighted 

SATURN 

Weighted 
A and B 

1980S2 

Mimas 
Enceladus 
Tethys 

Dione 
Rhea 
Titan 
Hyperion 

lapetus 
Phoebe 

URANUS 

Miranda 
Ariel 
Umbriel 
Titania 

Oberon 

Mean 
Distance 
x 103 Km 

181.3 
421.6 
670.9 

1070 

1883 
11110 
11710 
11470 

11720 
mean of th 

20700 
22350 

23700 
23300 

mean of th 

mean apoge 
ring moonle 
8-, S27s S26 

186 
238 
295 

378 
528 

1223 
1484 

3562 
12960 

130.5 
191.8 
267.2 
483.4 

586.3 

Eccen-
tricity 

0.003 
0.000 
0.0001 
0.0014 

0.0074 
0.1478 
0.1074 
0.1580 

0.2072 

Inclina-
tion 

0.4 
0.0 
0.5 
0.2 

0.2 
26.7 
29 
28 

28 
e above four . . . 

0.169 
0.207 

0.275 
0.410 

e above f 

e distanc 
ts 
, S3, and 

0.020 
0.005 
0.000 

0.002 
0.001 
0.029 
0.104 

0.028 
0.163 

0.00 
0.003 
0.004 
0.002 

0.001 

147 
163 

157 
148 

our . . . 

e of 

SI . . . 

1.5 
0.0 
1.1 

0.0 
0.3 
0.3 
0.6 

14.7 
150 

0.0 
0.0 
0.0 
0.0 

0.0 

Apogee 
Distance 
x 103 Km 

181.8 
241.6 
671.0 

1072 

1897 
12750 
12970 
13280 

14180 
13370 
24200 
26980 

30220 
32850 
29750 

150 

190 
239 
295 

379 
529 
1258 
1638 

3662 
15070 

130.5 
192.4 
268.3 
484.4 

586.9 

Fibonacci 
Number 

1 
2 
3 
5 

8 

55 

144 

1 

•2 
2 

2v/3?2 
3 

3v/V3 
5 
13 

13/21/13 

34 
144 

I/1/2 
2 
3 
5 

5/8/5 

Distance 
Proportional 
to Fibonacci 

233.7 
447.3 
671.0 

1118 

1789 

12300 

32210 

138 

196 
240 
294 

379 
489 

1272 
1616 

3327 
14090 

137.0 
193.8 
290.6 
484.4 

612.8 

Distance 
Proportional 
Golden Mean 

256.3 
414.7 
671.0 

1086 

1757 

12040 

31530 

145 

184 
235 
298 

379 
482 

1267 
1605 

3304 
14000 

145.4 
185.0 
299.4 
484.4 

616.2 

Weighted means were found by multiplying apogee distances by radii cubed. In the 
case of the Himalia group, the diameters of Leda, Lysithea, Himalia, and Elara are 8, 19, 
170, and 80 Km, respectively. In the retrograde group, the diameters of Ananke, Carme, 
Sinape, and Pasiphae are 17, 24, 21, and 27 Km, respectively. 

Assumed "true values" from which calculations were started are underlined, 
Satellite data were obtained from Patrick Moore's compilation [2]. A and B moonlets 

distance calculated from Robert Burnham's compilation [3]. 
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TABLE 3 

ORBITAL RATIOS 

Planet or 
Satellite 

Mercury 
Venus 
Earth 
Mars 

Jupiter 
Saturn 
Uranus 
Neptune 

Amalthea 
Io 
Europa 
Ganymede 

Callisto 
Himalia Group 

Moonlets 
Mimas 
Enceladus 
Tethys 

Dione 
Rhea 
Titan 
Hyperion 
lapetus 

Miranda 
Ariel 
Umbriel 
Titania 

d, 

^ 

0.64180 
0.71579 
0.61043 
0.30537 

0..54224 
0.50112 
0.66177 
0.61516 

0.43121 
0.62832 
0.62622 
0.56484 

0.14191 
0.44038 

0.78947 
0.79498 
0.81017 
0.77836 

0.71645 
0.42051 
0.76801 
0.44730 
0.24300 

0.67827 
0.71711 
0.55388 
0.82535 

Exponent 
y 

1 
1 
1 
1/2 

1/2 
1 
1 
1 

1 
1 
1 
1 

1/4 
1/2 

2 
2 
2 
2 

2 
1/2 
2 
2/3 
1/3 

2 
1 
1 
2 

M 
\dJ 
0.64180 
0.71579 
0.61043 
0.53260 

0.73637 
0.50112 
0.66177 
0.61516 

0.43121 
0.62832 
0.62622 
0.56484 

0.61374 
0.66361 

0.62327 
0.63199 
0.65637 
0.60585 

0.51329 
0.64847 
0.58984 
0.58488 
0.62400 

0.46006 
0.71711 
0.55388 
0.68121 

Mean ratio with Mercury, Amalthea, 
moonlets, and Miranda excluded 0.62103 

This table shows the aphelion and apogee dis-
tances, dl9 of planets and satellites divided by 
the distance, d2, of the next body outward from 
the primary. The ratios are raised to various 
powers for purposes of averaging over intermediate 
spacirigs or skipped spacings. 
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of 4.236068, the cube of the golden mean, which is equal to 2 + /5, going 

from one orbit inward to the next orbit nearer to the primacy. 

Concerning the motions of Mercury and Venus, Robert R. Newton [4] has 

come up with some interesting observations. He has carefully analyzed 

astronomical observations since Babylonian times and has noted that Mer-

cury has been persistently gaining energy and,likewise, Venus to a lesser 

extent. The angular accelerations he has come up with, in seconds of arc 

per century squared are: Mercury, 4.1520; Venus, 1.6225. These numbers are 

maximum values; thus, the true values are probably one-half or less of these 

numbers. These numbers are of the right magnitude to account for the devi-

ation from golden mean positions for these planets. Robert R. Newton [4] 

has noted a small increase in Saturn?s angular motion, but not enough to 

account for the observed discrepancy. No change has been noted for Jupiter. 

Possibly the explanation lies in the large mass of Jupiter and Saturn. 

The authors conclude that there is some underlying law involving gravi-

tation and the golden mean that determines both aphelion and apogee dis-

tances. With respect to some underlying gravitational principle, R. Louise 

[5] remarked: "that satellite systems mimic the planetary system suggests 

some possible unsuspected property of gravitation." 
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1. INTRODUCTION 

We shall consider a distribution property of sequences of integers. 

Let us denote a - (a„)nGM an infinite sequence of integers. For integers 

N > 1, m > 2, and j (0 < J < 77Z — 1), let us define AN(j9 m9 a) as the num-

ber of terms among al3 a2S ...9aN satisfying the congruence an = j (mod m) . 

A sequence a - (an)nEH±s said to be uniformly distributed modulo m 

(u.d. mod m) if, for every J = 0, 1, ...,772-1, 

AN(j9 m9 a) 1 

lim = -. (1.1) 
iu^co N m 

A sequence a = ( a n ) n € N is said to be uniformly distributed in Z if, for 

any integer m > 2, a = ( a n ) n e ^ is uniformly distributed modulo 777. 

This notion was first introduced by Niven [6] and various results are 

already obtained (see Kuipers & Niederreiterfs book [4]), among which the 

sequence of Fibonacci numbers and its generalizations were investigated 

with respect to uniform distribution property modulo 777. The sequence of 

generalized Fibonacci numbers is defined by the following linear recurrence 

formula of second order, 

hn + 2 = hn+1 + hn (n > 1), (1.2) 

with initial values h1 = a and h2 = h. 
The sequence of Fibonacci numbers {hn)nEu with h± = h2 = 1 is not uni-

formly distributed mod 77? for any m ^ 5k (k = 1, 2, . . . ) . Any sequence of 

generalized Fibonacci numbers is not uniformly distributed mod 777 for any 

777 ̂  5* (Jc-~= 1, 2, ...) and even for 777 = 5^ (k - 1, 2, ...) for certain ini-

tial values a and b [3]. 
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DISTRIBUTION PROPERTY OF RECURSIVE SEQUENCES 

Various modifications for the recurrence formula (1.2) can be consid-

ered. In this note we shall consider the following congruential recurrence 

formula: 

Un + 1 ~ Un + u~nX (mod m) ' (1-3) 

Since our interest is the distribution property of integer sequences mod-

ulo my the congruential recurrence will be sufficient for our purpose. 

For two given integers s and m, where m ) 2 is the modulus and s = u± 

is the starting point, we can generate a sequence of integers u = u(s, m) 

mod 777 by the recurrence formula (1.3). We give our attention only to in-

finite sequences, and the set of these starting points is denoted by Am, 

The structure of Am will be discussed in the next section. Similarly 

to the notion of uniform distribution modulo m, we define the function 

^ff(j, 777, u(s, m)) for j each invertible element in the ring Z/mZ, and we 

call u = u(s, m) for s E A uniformly distributed in (Z/mZ)* if, for any 

invertible element j E Z/mZ, 

ANU, m, u(s, m)) l 
lim — ~ = -77—r"> 
tf + oo N (j)(777) 

where (J)(°) denotes the Euler function. 

It will be proved that recursive sequences u(s, m) aire not uniformly 

distributed in (Z/TTZZ)* except for 777 = 3. 

Finally, we generalize the recurrence formula (1.3) as 

Un+1 E aUn + ku'n1 (mod 777), 

and a similar result will be given. 

2. THE STRUCTURE OF Am 

We consider the solvability of the congruence 

un + 1 E un + u^1 (mod 777) 

in (Z/mZ)*. 

Case I: 777 is even 

In this case, invertible elements in Z/mZ are odd and their inverses 

are necessarily odd. Therefore, the sum of an invertible element and its 
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DISTRIBUTION PROPERTY OF RECURSIVE SEQUENCES 

inverse is even. Here we get 

Theorem 1 : If 77? is even, then Am = (J>. 

Case II: m = p (odd prime) 

In this case, the only noninvertible element in Z/pZ is 0, so we can 

start with any starting point s, except 0, the recurrence 

un+1 = un + u^1 (mod p) . 

We consider the condition on s E (Z/pZ)* for which 

s + s'1 E 0 (mod p). (2.1) 

This congruence is equivalent to 

s2 = -1 (mod p), (2.2) 

since s and p are relatively prime. 

The first complementary law of reciprocity [1] shows that for any odd 

prime p, p_1 

where (~) is the Legendre symbol. Thus, we have 

Theorem 2: 

i) For any prime p of the form 4n + 3, 

Ap - (Z/pZ)*. 

ii) For any prime p of the form 4ft + 1, no sequences w(s, p) are uni-

formly distributed in (Z/pZ)* for any starting point s E (Z/pZ)*. 

Case III: m is a power of an odd prime p 

In this case, m = p°S a > 1, and we shall consider the following con-
gruence, 

s + s"1 E a (mod p a), 

where 5 E (Z/paZ) v and p divides a. This is equivalent to 

s2 E as - I (mod p«), (2.4) 

since s and pa are relatively prime. 
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DISTRIBUTION PROPERTY OF RECURSIVE SEQUENCES 

Letting f(x) = x2 - ax + 1, then f'(x)=2x-a. If the congruence 

s2 E as - 1 (mod p) (2.5) 

has a solution so5 then (2.4) has a solution, since 

fr(sQ) = 2s0 - a E 2s0 £ 0 (mod p). 

But (2.5) is identical to (2.2) because p divides a. Thus, we have 

Theorem 3: Let w = pa with a > 0 and p an odd prime. 

i) If p is of the form kn + 3, then Apa = (Z/paZ)*. 

ii) If p is of the form 4n + 1, then no u(s5 pa) is uniformly dis-

tributed in (Z/paZ)*. 

Case IV: m is odd 

In this case, 

m = paipa2 . .. pa 

where the p. fs are odd primes and a^ > 0. 

Considering the congruences 

s2 - as + 1 E 0 (mod m), 

where a divides ?7i5 the solvability of 

s2 - as + 1 E 0 (mod p̂ .) 

/a2 - 4\ 
depends on the value ( — J . Thus* we cannot concludes as in previous 

cases, that the structure of Am is in a compact form. 

3. DISTRIBUTION PROPERTY OF u{s9 m) 

In the preceding section, we saw that for infinitely many m9 Am =fi (j). 

We shall prove in this section that the distribution property of u(ss m) 

is quite similar to that of the sequence of Fibonacci numbers. 

Direct calculation gives 

Theorem k: For any s G A3 = (Z/3Z)*5 u(s, 3) is uniformly distributed in 

(Z/3Z)*. 

We now present the main statement of the paper as Theorem 5. 
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DISTRIBUTION PROPERTY OF RECURSIVE SEQUENCES 

Theorem 5: Let m be a positive integer greater than 1 satisfying A m ^ (J). 
For any s E A m , u(s, m) is not uniformly distributed in (Z/mZ)* , except 

for 777 = 3. 

We now generalize the recurrence formula (1.3) as follows: 

un + 1 = aun + bu^1 (mod 777), (3.2) 

where a and b are invertible elements in Z/mZ. The sequence generated by 

(3.2) is denoted by u(s; a, b, m), where s = u1 is the invertible starting 

value, and the set of starting values that generates infinite sequences 

is written as A m ; a b. 
Similarly to Theorem 3, for even 777, A m . a b = (j). We do not mention the 

structure of A m ; c i t h since the distribution property of u(s; a, b, m) is in 
question. 

Theorem 6: For any s contained in nonempty A m ; a i £, no sequence u(s; a, b> m) 
is uniformly distributed in (Z/mZ)*, except in the case of Theorem 4. 

Proof: As Theorem 6 includes Theorem 5, we only give the proof of the 

latter. 

We know that we only have to consider odd 777 greater than 2. If a se-

quence generated by (3.2) is uniformly distributed in G = (Z/mZ)*, then 

every element of G must appear in the sequence (considered mod m). In par-
ticular, for every c E G9 there exists s E G with 

as + bs'1 = c (mod 777). 

Hence the function f : G -> ZlmZ> defined by 

f(s) = as + bs'1, 

is a bisection of G. But 

f(s) = fOxx^s-1) 

f o r a l l s E G* and s i n c e f i s a b i j e c t i o n , we g e t 

s E ba~1s~1 (mod 777); 
h e n c e , 

s2 E Z?a_1 (mod 777) 

for all s E G. Setting s = 1 gives 
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DISTRIBUTION PROPERTY OF RECURSIVE SEQUENCES 

ba'1 = 1 (mod m), 

and setting s = 2 gives m = 3. 

Inspection shows that only the case a = b = I yields a uniformly dis-
tributed sequence in (Z/3Z)*. Q.E.D. 
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FIBONACCI RESEARCH CONFERENCE ANNOUNCEMENT 

The Fibonacci Association and the University of Patras, Greece, would 
like to announce their intentions to jointly sponsor an international con-
ference on Fibonacci numbers and their applications. This conference is 
tentatively set for late August or early September of 1984. Anyone inter-
ested in presenting a paper or attending the conference should contact: 

G. E. BERGUM, EDITOR 
THE FIBONACCI QUARTERLY 
DEPARTMENT OF MATHEMATICS 
SOUTH DAKOTA STATE UNIVERSITY 
BOX 2220 
BROOKINGS, SD 57007-1297 

PROFESSOR ANDREAS N. PHILSPPOU 
DEPARTMENT OF MATHEMATICS 
UNIVERSITY OF PATRAS 
PATRAS, GREECE 

FREE TEXTBOOK OFFER! 

For a limited time, The Fibonacci Association will provide free 
copies of its publication AN INTRODUCTION TO FIBONACCI DISCOVERY 
by Brother Alfred Brousseau to any qualified teacher of mathe-
matics, or any institution, offering an undergraduate course in 
Fibonacci numbers. 

This publication, designed and written by one of the cofounders 
of The Fibonacci Association, has been used as a textbook by 
teachers of undergraduate mathematics students for many years. 
For those instructors or mathematics department heads who are 
not familiar with the contents of AN INTRODUCTION TO FIBONACCI 
DISCOVERY, a complimentary copy of this publication is available 
upon request. 

The only cost for these free textbooks will be a minimum charge 
for postage and handling. Instructors or institutions contem-
plating a course in Fibonacci numbers should write to THE FIBO-
NACCI ASSOCIATION, UNIVERSITY OF SANTA CLARA, SANTA CLARA, CALI-
FORNIA 95053, indicating the dates of the courses to be offered 
and the number of textbooks that will be needed. 

•<>•<>• 

82 [Feb. 



•<••<>• 

ACKNOWLEDGMENTS 
In addition to the members of the Board of Directors and our Assistant Editors, the following mathemati-
cians, engineers, and physicists have assisted THE FIBONACCI QUARTERLY by refereeing papers 
during the past year. Their special efforts are sincerely appreciated, and we apologize for any names that 
have inadvertently been overlooked. 

ANDERSON, Sabra 
Univ. of Minnesota-Duluth 
ANDREWS, George, E. 
Pennsylvania State Univ. 
BACKSTROM, Robert P. 
CYMEA, New South Wales 
BALBES, Raymond 
Univ. of Missouri at St. Louis 
BENNETT, Larry F. 
South Dakota State Univ. 
BERZSENYI, George 
Lamar Univ. 
BRESSOUD, David M. 
Pennsylvania State Univ. 
BRANDWEIN, Bernard 
South Dakota State Univ. 
BRUCKMAN, Paul S. 
Fair Oaks, California 
BUMBY, Richard T. 
Rutgers Univ. 
BURTON, David M. 
Univ. of New Hampshire 
CHARALAMBIDES, Ch. A. 
Univ. of Athens 
COHEN, M. E. 
Calif. State Univ., Fresno 
COHN, John H.E. 
Royal Holloway College 
COWLES, John R. 
Univ. of Wyoming 
CREUTZ, Michael 
Brookhaven National Laboratory 
DeLEON, M. J. 
Florida Atlantic Univ. 
DESMOND, James E. 
Pensacola Jr. College 
DUDLEY, Underwood 
De Pauw Univ. 
DUNKL, Charles 
Univ. of Virginia 
EGGAN, L. C. 
Illinois State Univ. 
ERCOLANO, Joseph L. 
Baruch College 
FERGUSON, Thomas S. 
Univ. of Calif, at L.A. 
FUCHS, Eduard 
Univ. of J.E. Purkyne 
GEORGHIOU, C. 
Univ. of Patras 
GESSEL, Ira M. 
M.I.T. 
GRATZER, George A. 
Univ. of Manitoba 

GREENWOOD, Robert E. 
Univ. of Texas-Austin 
GROSSWALD, Emil 
Temple Univ. 
GUPTA, Hansraj 
Punjab Univ. 
HAGIS, Peter, Jr. 
Temple Univ. 
HANSEN, Rodney T. 
Whitworth College 
HAYES, David F. 
San Jose State Univ. 
HINDIN, Harvey J. 
Polymathic Associates-N.Y. 
HOWARD, Fred T. 
Wake Forest Univ. 
HUDSON, Richard H. 
Univ of South Carolina 
JONES, Burton W. 
Univ. of Colorado 
KALMAN, Dan 
Sioux Falls, S.D. 
KEMP, Dan 
South Dakota State Univ. 
KERR, J.R. 
National Univ. of Singapore 
KIMBERLING, Clark 
Univ. of Evansville 
KONHAUSER, Joseph D. E. 
Macalester College 
LEHMER, D.H." 
Univ. of California-Berkeley 
LIGH, Steve 
Univ. of Southwestern Louisiana 
LIVINGSTON, Marilyn L. 
Southern Illinois Univ. 
LORD, Graham 
Princeton, N.J. 
MACBEATH, A.M. 
Univ. of Pittsburgh 
McQuistan, R.B. 
Univ. of Wisconsin-Milwaukee 
MIRON, D.B. 
South Dakota State Univ. 
NAJAR, R.M. 
Univ. of Wisconsin-Whitewater 
NIEDERREITER, Harold G. 
Austrian Acad, of Science 
NEUMANN, Bernard H. 
Australian National Univ. 
PATIL, S.A. 
Union Carbide Corp.-Texas 
PHILIPPOU, Andreas N. 
Univ. of Patras 

PRODINGER, Helmut 
Technische Univ. Wien 
RICHERT, Norman J. 
Marquette Univ. 
ROBBINS, Neville 
San Francisco State Univ. 
ROBERTS, Joseph B. 
Reed College 
ROBERTSON, James 
Univ. of Illinois 
ROSELLE, David P. 
VPI & SU-Blacksburg, VA 
SCHMIDT, Bob 
South Dakota State Univ. 
SEEBACH, Arthur J. 
St. Olaf College 
SELMER, Ernst S. 
Univ. of Bergen 
SHALLIT, J.O. 
Univ. of Chicago 
SHANE, H.D. 
Baruch College of CUNY 
SHANNON, A.G. 
N.S.W. Inst, of Technology 
SINGMASTER, David B. 
Polytech of the South Bank 
SOMER, Lawrence 
Washington, D.C. 
STALLEY, Robert 
Oregon State Univ. 
STERNHEIMER, R.M. 
Brookhaven National Laboratory 
STRAUS, E.G. 
Univ. of Calif, at L.A. 
SUBBARAO, M.V. 
Univ. of Alberta 
SUN, Hugo S. 
California State Univ.-Fresno 
TERRAS, Riho 
Univ. of California-San Diego 
TURNER, Stephen John 
Babson College 
UPPULURI, V. R. R. 
Union Carbide Corp.-Texas 
VINCE, Andrew J. 
Univ. of Florida 
WADDILL, Marcellus E. 
Wake Forest Univ. 
WALTON, J. E. 
Northern Rivers College 

• <>•<>• 

198M 83 



•<>•<>• 

ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN 

Assistant Editors 
GLORIA C. PADILLA and CHARLES R. WALL 

Send all communications regarding ELEMENTARY PROBLEMS and SOLUTIONS to 
PROFESSOR A. P. HILLMAN; 709 Solano Dr., S.E.; Albuquerque, NM 87108. Each 
solution or problem should be on a separate sheet (or sheets). Preference 
will be given to those typed with double spacing in the format used below. 
Solutions should be received within four months of the publication date. 
Proposed problems should be accompanied by their solutions. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn + 1 + Fn> F0 = °> Fl = 1 

and 
-kft + 2 = -^n + 1 ~*~ -^n3 ^0 ~ *•> L1 = 1 . 

Also a and 3 designate the roots (1 + v5)/2 and (1 - v5)/2, respectively, 
of x1 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-514 Proposed by Philip L. Mana, Albuquerque, NM 

Prove that (™\ + V1 + 4J E n (mod 2) for n = 5, 6, 7, ... . 

B~515 Proposed by Walter Blumbergf Coral Springs, FL 

Let QQ = 3, and for n > 0, Qn + 1 = 2Q2
n + 2Qn - 1. Prove that 2Qn + 1 

is a Lucas number. 

B-516 Proposed by Walter Slumberg, Coral Springs, FL 

Let U and V be positive integers such that U2 - 5V2 = 1. Prove that 
UV is divisible by 36. 

B~517 Proposed by Charles R. Wall, Trident Tech. College, Charleston, SC 

Find all n such that n\ + (n + 1)!+ (n + 2)! is the square of an inte-
ger. 
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B-518 Proposed by Herta r. Freitag, Roanoke, VA 

Let the measures of the legs of a right triangle be Fn_1Fn + 2 and 
2FnFn+i* W h a t feature of the triangle has Fn_1Fn as its measure? 

B-519 Proposed by Herta T. Freitag, Roanoke, VA 

Do as in Problem B-518 with each Fibonacci number replaced by the cor-
responding Lucas number. 

SOLUTIONS 

Lucas Addition Formula 

B-490 Proposed by Herta T. Freitag, Roanoke, VA 

Prove that the arithmetic mean of F2nL2n+3 and 5F2nF2n+3 is always a 
Lucas number. 

Solution by J. Suck, Essen, GERMANY 

This is an instance of the addition formula 

2Lm + n = LmLn + 5FmFn, m,n E X, (*) 

a companion to 2Fm+n = FmLn + LmFn (compare Hoggatt!s i"38). Proof of (*) 
from the Binet forms Fn = (an - $n)//5, Ln = an + 3n, n E Z: 

LmLn + 5FmFn = (am + 3m) (a» + 3n) + 5(a* - gm) (an - 3n)/(V^V5) 

= 2aman + 23"?3n = 2(aw+n + $m+n) = 2LOT + n. 

Also solved by Paul So Bruckman,C. Georghiou, L. Kuipers, John W. Milsom, 
Andreas N.. Philippou, George N. Philippou, Bob Prielipp, Heinz-Jurgen Seif-
fert, Sahib Singh, Robert L. Vogel, Charles R. Wall, and the proposer. 

Application of the Addition Formula 

B-491 Proposed by Larry Taylor, Rego Park, NY 

Let j, k, and n be integers. Prove that 

FkFn+j ~ FjFn + k = (FjLn + k - LkLn + j)/5« 

Solution by J. Suck, Essen, GERMANY 

Using (*) in the above solution to B-490, we have 

5(FkFn + j - FjFn + k) = 2Lk+n + j~ LkLn + j - (2Lj+n+k- LjLn + k) 

= LjLn+k - LkLn+j» 

1984] 85 



Also solved by Paul S. Bruckman, Herta T.Freitag, C. Georghlou, L. Kui-
pers, John W. Milsom, George N. Philippou, Bob Prielipp, Heinz-Jurgeh Seif-
fert, Sahib Singh, Robert L. Vogel, Charles R. Wall, and the proposer. 

New Look at Previous Application 

B-492 Proposed by Larry Taylor, Rego Park, NY 

Let j, k9 and n be integers. Prove that 

Fn^n + j + k "" Fn + jFn + k = (^n+j^n+k ~~ ̂ n^n + j + k) ^ ' 

Solution by J. Suck, Essen, GERMANY 

The same as B-491: rename k++n.9 j •+ n + j * 

Remark: A companion problem (from Hoggatt's J38) would have been 

LkFn + j " LjFn + k = Fj Ln + k "~ FkLn + j> 3 > ̂ , n G Z. 

.Also solved 2?y Paul S. Bruckman, Herta T. Freitag, C. Georghiou, John W. 
Milsom, George N. Philippou, Bob Prielipp, Heinz-Jurgen Seiffert, Sahib 
Singh, Robert L. Vogel, Charles R. Wall, and the proposer. 

Exponent of 2 in Sum 

B-493 Proposed by Valentina Bakinova, Rondout Valley, NY 

Derive a formula for the largest integer e = e(n) such that 2e is an 
integral divisor of a> . . 

where f * J - 0 for k > n. 

Solution by C. Georghiou, University of Patras, GREECE 

Note that , for n > 05 

£ / ( £ ) = l t d + V5)W + (1 - Vs)w] = 2w"1Ln. 
From 2 | L 3 n ± 1 , 2 | £ 6 n , 4 | L 6 n , 4 | L 6 n + 3 > and 8 | L 6 n + 3 , we get 

{ n if n E 0 (mod 6) 
n + 1 if n = 3 (mod 6) 
n - 1 if n f 0 (mod 3) 

Also solved by Paul/S. Bruckman, L. Kuipers, Sahib Singh, J. Suck, Charles 
R. Wall, and the proposer. 
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Sum of Consecutive Integers 

B-kSk Proposed by Philip Le Mana, Albuquerque, NM 

For each positive integer n, find positive integers an and bn such 
that lOln is the following sum of consecutive positive integers? 

a„ + (a„ + 1) + (a„ + 2) + ... + (an + bn). 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

We begin by observing that 

an + (an + 1) + (an + 2) + ... + (an + bn) = (bn + l)an + bn(bn + 1)12. 

Next5 we let 

an - 51 - n and bn
 = 2n - 1 for each integer n3 I < n < 50 

and 
an = n - 50 and &n = 100 for each integer n, n > 51. 

Clearly, an and 2?n are always positive integers. Also, 

(1) if an - 51 - n and bn = 2n - 1, then 

(6n + l)an + bn(bn + l)/2 = (2w)(51 - n) + (2« - l)n 
= 102n - 2n2 + In2 - n 
= lOln; 

(2) if an = n - 50 and £>n = 100, then 

(bn + l)an + bn(bn + l)/2 = 101(n - 50) + 50(101) 
= lOlw - 50(101) + 50(101) 
= lOln. 

Also solved by Ada Booth, Paul S. Bruckman, M. J. DeLeonf Herta T. Freitag, 
H. Klauser & E» Schmutz & M. Wachtel, L. Kuipers, Sahib Singh, J. Suck, 
and the proposer. 

Sum of Consecutive Squares 

B-495 Proposed by Philip L» Mana, Albuquerque, NM 

Characterize an infinite sequence whose first 24 terms are: 

1, 4, 5, 9, 13, 14, 16, 25, 29, 30, 36, 41, 49, 50, 54, 55, 
61, 64, 77, 81, 85, 86, 90, 91, ... 

[Note that all perfect squares occur in the sequence.] 
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Solution by Paul S. Bruckman, Carmlchael, CA 

The indicated sequence may be characterized as the sequence of posi-
tive integers which can be expressed either as squares or as sums of con-
secutive squares, then arranged in increasing order. Equivalently, if the 
given sequence is denoted by (xn)°^=1 and if 

sn = t y} = n ( n + l\{2n + 1} (with s0 = o), 
k=l b 

the sequence is characterized as the set of all differences Sa-Sh, where 
a > b ^ 0, in increasing order. 

Also solved by Ada Booth, John W. Milsom, E. Schmutz & M, Wachtel, J. Suck, 
and the proposer. 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 

RAYMOND Es WHITNEY 

Lock Haven University, Lock Haven, PA 17745 

Send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E* WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK 
HAVEN, PA 17745. This department especially welcomes problems believed 
to be new or extending old results. Proposers should submit solutions or 
other information that will assist the editor. To facilitate their con-
sideration, solutions should be submitted on separate signed sheets within 
two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-365 Proposed by Larry Taylor, Rego Park, NY 

Call a Fibonacci-Lucas identity divisible by 5 if every term of the 
identity is divisible by 5* Prove that, for every Fibonacci-Lucas iden-
tity not divisible by 5, there exists another Fibonacci-Lucas identity not 
divisible by 5 that can be derived from the original identity in the fol-
lowing way: 

1) If necessary, restate the original identity in such a way that a 
derivation is possible. 

2) Change one factor in every term of the original identity from Fn 
to Ln or from Ln to 5Fn in such a way that the result is also an identity. 
If the resulting identity is not divisible by 5, it is the derived iden-
tity.. 

3) If the resulting identity is divisible by 5, change one factor in 
every term of the original identity from Ln to Fn or from 5Fn to Ln in 
such a way that the result is also an identity. This is equivalent to di-
viding every term of the first resulting identity by 5. Then, the second 
resulting identity is the derived identity. 

For example, FnLn = F2n can be restated as 

FT, = F + F (-l)n . 

This is actually two distinct identities, of which the derived identities 
are 

Ll = L2n + V - D " 
and 
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ADVANCED PROBLEMS AND SOLUTIONS 

H-366 Proposed by Stanley Rabinowitz, Merrimack, NH 

The Fibonacci 'polynomials are defined by the recursion 

with the initial conditions f±(x) = 1 and f2(x) = #. Prove that the dis-
criminant Of fn(x) is (-l)(n-lXn-2)/22n-lnn-3 f o r n > ^ 

Remark: The idea of investigating discriminants of interesting poly-
nomials was suggested by [1]. The definition of the discriminant of a 
polynomial can be found in [2], Fibonacci polynomials are well known, 
see, for example, [3] and [4]. I ran a computer program to find the dis-
criminant of fn(x) as n varies from 2 to 11, and by analyzing the results, 
reached the conjecture given in Problem H-366. The discriminant was cal-
culated by finding the resultant of fn(x) and f^(x) using a computer alge-
bra system similar to the MACSYMA program described in [5] . Much useful 
material can be found in [6] where the problem of finding the discriminant 
of the Hermite, Laguerre, and Chebyshev polynomials is discussed. The 
discriminant of the Fibonacci polynomials should be provable using similar 
techniques; however, I was not able to do so. 
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H-367 Proposed by M. Wachtel, Zurich, Switzerland 

/\. Prove the identity: 

V(L2n - Ll_2) • (L2n + , - LD + 30 = 5F2n - 3(-l)" 

B. Prove the identities: 

= Fn + 2Fn + l, or F*+3 + (-1) 

fan r~p ) . rpz r~y j 
v v n + 1 2n+3J K n + 3 2n + 7J 

A i ^ + 3 - F2n + 5) • ( J2 + S - F 2 n + 9 ) 

/(Ji r~^ ) . (F2 ^~P > 
v n + it 2 r c + 6 y v n + 6 2n+10/ 
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SOLUTIONS 

Woopsi 

The published solution to H-335, which appeared in the May 1983 issue 
of this quarterly is incorrect, The proposer (Paul Bruckman) pointed out 
that the polynomial in question can be factored as 

(x - 1)(x2 + bx - a2)(x2 + ax - b2), 
where 

a = (1 + \/5)/2 and b = (1 - V5)/20 
The desired roots may easily be obtained from this. 

Old Timer 

H-277 Proposed by Larry Taylor, Rego Park, NY 
(Vol. 15, No. 4, December 1977) 

If p = ±1 (mod 10) is prime and x E v5 is of even order (mod p) , prove 
that x - 3, x - 2, x - 1, x, x + 1, and x + 2 are quadratic nonresidues of 
p if and only if p E 39 (mod 40). 

Solution by the proposer 

Let / E (#+l)/2 (mod p). Then f '= x+2 (mod p) . But (f/p) = {f/p) 
and therefore 

In other words, \ r / \ r / 

(2/p) = 1 (1) 

is a necessary condition to have the six consecutive quadratic nonresidues 
of p. 

Also, f2 E (a;+3)/2 (mod p) . But (2/p) = 1 has been established and, 
therefore, 

Since (x + 3)(x - 3) = -4 (mod p), we have 

But (^——) = -1 is required and, therefore, 
P (-l/p) = -1 (2) 

is another necessary condition. 
Since (-l/p)= -1 has been established and x is of even order (mod p), 

therefore (x/p) = -1. Since If1 = x - 1 (mod p), therefore 

m • m 
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Since f~3 E x - 2 (mod p) , therefore 

m - m 
In [1], page 24, the following result is given: 

Since (2/p) = 1, (-1/p) = -1, and (x/p) = -1 have been established, and 

H1) - -1 
is required, therefore 

(V^/5) = -1 (3) 
is a third necessary condition. 

There are, by inspection, no further necessary conditions. Therefore 
the logical product of (1), (2), and (3), which is equivalent to p E 39 
(mod 40), is a necessary and sufficient condition that # - 3 , # - 2 , # - l , 

x9 x + 1, and x + 2 are quadratic nonresidues of p. 
Reference 
1. Emma Lehmer. "Criteria for Cubic and Quartic Residuacity." Mathe-

matika 5 (1958):20-29. 

Late Acknowledgment: E. Schmutz and P. Wittwer solved Problem H-333. 

Not in Prime Condition 

H-3^5 Proposed by Albert A. Mull in, Huntsville, AL 
(Vol. 20, No. 4, November 1982) 

Prove or disprove: No four consecutive Fibonacci numbers can be prod-
ucts of two distinct primes. 

Solution by Lawrence Somer, Washington B.C. 

The assertion is true. We, in fact, prove the following more general 
result: 

Theorem: No three consecutive Fibonacci numbers can each be products of 
two distinct primes, except for the case 

FQ = 21 = 3 • 7, F9 = 34 = 2 • 17, F10 = 55 = 5 • 11. 

Proof: We first show that a Fibonacci number Fn can be the product 
of exactly two distinct primes only if n - 8 or n is of the form p, 2p, or 
p2, where p is a prime. A prime p is a primitive divisor of Fn if p | Fn 
but p | Fm for 0 < m < n. R. Carmichael [1] proved that Fn has a primitive 
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prime factor for every n except n = 1, 2, 6, or 12. In none of these cases 
is Fn a product of exactly two distinct primes. It is also known that if 
m | ns then Fm\Fn* Thus, if n has two or more distinct proper divisors r 
and s that are not equal to 1, 2, 6, or 12, then Fn has at least three prime 
factors-—the primitive prime factors of Fr, Fs, and Frs> respectively. 
Since F6 = 8 = 23, it follows that if n is a multiple of 6, then Fn is not 
a product of exactly two distinct prime factors. Since F1 = 1 is not a 
product of two prime factors, it follows that if Fn is a product of two 
distinct prime factors, then Fn is of the form F23 = FQ, Fp, F2 , or Fp2 , 
where p is a prime. 

By inspection, one sees that if n < 9, then i^, Fn + 15 Fn + 2 are each 
products of two distinct primes only if n = 8. Now assume n ^ 10. Among 
the three consecutive integers n, n + 1, and n + 2, one of these numbers 
is divisible by 3. Call this number k. If the Fibonacci number Fk is the 
product of two distinct primes, then k is of the form p, 2p, or p2, where 
p is prime. This is impossible, since 3|fc and k > 9. The theorem is now 
proved. 

Reference 

1. R. D. Carmichael. "On the Numerical Factors of the Arithmetic Forms 
an+bn." Annals of Mathematics (2nd Ser.) 15 (1913):30-70. 

Also solved by P. Bruckman and 5. Singh. 

Pell-Mel I 

H-346 Proposed by Verner E. Hoggatt, Jr. (Deceased) 
(Vol. 20, No. 4, November 1982) 

Prove or disprove: Let P1 = 1, P2 = 2, Pn+2 = 2Pn+i + Pn f o r ^ = 1 > 
2, 3, ..., then P7 = 169 is the largest Pell number which is a square and 
there are no Pell numbers of the form 2s2 for s > 1. 

Solution by M. Wachtel, Zurich, Switzerland 
Pn + l 

1.1 The roots of x2 - 2x - 1 are 1 ± \/2, and the quotient — 5 — = 1 + v2. 

2.1 Pell numbers wit/z odd index show the identity: P2 + P^ + 1 = ?2n + 1-

2.2 P will only be a square if 

is identical with (2m + l) 2 + (2w2 + 2m)2 = (2m2 + 2m + l) 2 . 

2.3 Obviously (1.1) and (2.2) will only be satisfied if m = 2 and n = 3, 
i.e., 52 + 122= 169. For m > 2, the quotient 2m2 + 2m/2m + 1 is ris-
ing, thus 169 is the greatest Pell number which is a square. 

2.4 Using the general formula (m2 - n2)2 + (2mn)2 = (m2 + n 2 ) 2 , and set-
ting m - n = d (odd) yields: 
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(2dm + d2)2 + (2m2 + 2dm)2 = (2m2 + 2dm + d2)2. 

To satisfy (1.1), we have to set m = 2d, which leads to 5d2 + I2d2 = 
13d2> It is easy to see that (2.2) will only be satisfied if d = 1, 
whereas setting d - 3, 5, 7, ... will yield consecutive terms with 
common divisors, which is contrary to the Pell formula, 

2.5 Pell numbers with odd index always are odd and can never be 2s2. 
3.1 Pell numbers with even index show the identity. 

3.2 Obviously, Pn and Pn + 1 are coprime, from which it follows that also 
Pn + i and (Pn + Pn + 1 ) a r e coprime. Thus, P2 +2

 c a n neither be a square 
nor twice a square. 

Also solved by the proposer. 

It AT I Adds Up 

H~3̂ 7 Proposed by Paul 5. Bruckman, Sacramento, CA 
(Vol. 20f No. 4, November 1982) 

Prove the identity: 

\ 2 ——7 = E ~ ~> valid for all real x j* 0, ±1. (1) 

In particular, prove the identity: 

\t~-\Z= tjl (2) 
Solution by the proposer 

Let 

/(#) = E xn2 > where -1 < x < 1. (3) 

Theorems 311 and 312 in [1] state (using our notation): 

if(x))2 = i + 4 E 1M—- ; (4) 
n = l l - x ^ - 1 

while Theorem 385 in [1] states: 

(f(x))2 = 1 + 8 2 , where m runs through all positive inte- (5) 
1 ~ x gral values which are not multiples of 4. 

We may rearrange the terms in (4) and (5), since the series are absolutely 
convergent for \x\ < 1. Thus, 
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(f(x))2 = 1 + 4 £ (-lJ'-V2""1'" = 1+4 J2^'Z(-xZm)n 

m, n = l m = i n = 0 
J2« 'Y»777 

= 1 + 4 £ — - . 

If xm 

1 + x2m 

we note that for all x ̂  0, 

U Q O ) = 1/2 and um(x) = U-m(x) = um(l/x). 

Therefore, the transformed series for (f(x))2 converges for all real x ̂  
0, ±1, It follows that 

(f(x))2 = 2 JT — ^ \ > for a11 real x ̂  °» ±1- W 

By similar reasoning, 
» — 1 + X2" 

£ -2± = £ rixmn = £ x m £ (n + l )x m " = £ * , 
n = l ]_ _ ^ n 7773̂  = 1 777 = 1 n = Q m = l Q _ x™)2 

Therefore, using (5), 

oo yi oo l+H 

(/(a;))4 = 1 + 8 E - ^ — - 32 £- "* 
4ft n = l i _ xn n=li _ # 

i + s E — — — - 3 2 Z — 
" = i(l - xn)2 " = 1 ( 1 ~ ^ 4 n ) : 

I f 

= 1 + 8E + 8L 32 £ £ 
n ~ l ( l _ x2"-1)2 n = 1(l ~ X2n)2 n = 1(l ~ Xhn)2 

= 1 + 8f: + s £ a {(1 + x 2 * ) 2 - 4a-2"} 
n - l ( l - a ; 2 " " 1 ) 2 " = 1 ( 1 - X 1 *" ) 2 

= ! + 8 £ £ + 8 £ * (1 - X2")2 
" = 1 (1 - a : 2 "" 1 ) 2 " = 1 ( 1 - xhn)2 

» r 2 n - l » x2n 
= i + s E — + s E — 

« - i ( l _ a ; 2 " - 1 ) 2 " = 1 (1 + x 2 n ) 2 

= 1 + 8£ -. 
m = 1 ( l + (~x)m)2 

xm 
vm(x) = 

(1 - (~x)m)2' 
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we note that for all x ^ 0, 

v0(x) = 1/4 and Vm(x) = V-m(x) = vm(l/x). 

As before, the transformed series for (f(x))k must therefore converge for 
all real x ^ 0, ±1. We then see that 

(f(x))h = 4 £ ~ — , for all real a? = 0, ±1. (7) 
- — ( 1 + (~x)n)2 

Squaring both sides of (6) and comparing with (7) yields (1). As a spe-
cial case, we set x = b2, where b = (1/2) (1 - /5), and obtain (2). 

It should be pointed out that (2) was derived in [2] and given there 
as relation (59), using elliptic function theory. Indeed, relations (4) 
and (5) above have their basis in elliptic function theory. 
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