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THE GENERATION OF HIGHER-ORDER LINEAR RECURRENCES FROM 
SECOND-ORDER LINEAR RECURRENCES 

LAWRENCE SOMER 
1400 20th St., NW §619, Washington, D.C. 20036 

(Submitted May 1981) 

Let {un} be a Lucas sequence of t he f i r s t k ind def ined by the second-order 
r e c u r s i o n r e l a t i o n 

un+2 = aun+1 + bun, 

where a and b are integers and uQ = 0, u1 = 1. By the Binet formulas 

un = (an - 3n)/(a - 3), 

where a and 3 are roots of the characteristic polynomial 

Let 
D = (a - 3)2 = a2 + kb 

be the discriminant of the characteristic polynomial of {un}. We shall prove 
the following theorem which demonstrates that the quotients of specified terms 
of the second-order recurrence {un} satisfy a higher-order relation. 

Theorem 1: Consider the sequence 

{w n } ^ = 1 = {unk/un}™=1, 

where k is a fixed positive integer, a$ ^ 0, and a/3 is not a root of unity. 
Then {wn} satisfies a kth-order linear integral recursion relation. Further, 
the order k is minimal. 

Along the lines of this theorem, Selmer [1] has shown how one can form a 
higher-order linear recurrence consisting of the term-wise products of two 
other linear recurrences. In particular, let {sn} be an mth-order and {tn} be 
a pth-order linear integral recurrence with the associated polynomials s(x) and 
t(x), respectively. Let a^, i = 1,2, ..., m, and 3j, j = 1, 2, ..., p, be the 
roots of the polynomials s(x)andt(x), respectively, and assume that each poly-
nomial has no repeated roots. Then, the sequence 

{hn} = {sntn} 

satisfies a linear integral recurrence of order at most mp, whose characteris-
tic polynomial h(x) has roots consisting of the v distinct elements of the set 
{o^3j}> where 1 < i < m and 1 < j < p. Note that the coefficients of h(x) are 
integral because they are symmetric in the conjugate algebraic integers a^j-
However, {hn} may satisfy a recursion relation of order lower than r. 

Selmer Ts proof depends on the fact that the recurrences {sn} and {tn} can 
be expressed in terms of their characteristic roots by means of the formulas 

m P 

Sn = E Y^ai> tn = E ^ 3 j . (1) 
i = 1 j = 1 
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This follows from the fact that the sequences {a"}, Ki</77, and (3}}, l^j^p, 
satisfy the same recursion relations as {sn} and {£„}, respectively. Further, 
a linear combination of sequences satisfying the same linear recursion relation 
also satisfies that linear recursion relation. By means of Cramer's rule, one 
can then solve (1) for sn, Kn<tfz, and t n , Kn<p, in terms of a", Ki<m, 
and (3j, K j < p , respectively. The fact that the roots a-, l<i<m, and 37-, 
K j < p , are distinct guarantees unique solutions in terms of a" and - $r. Now, 

rln Sn ur WW' 
1< J^p 

and each a^3j is a root of the polynomial h(x). 
Before proving our main result, we will need the following lemma. 

of this lemma is given by Willett [2]. 
A proof 

Lemma 1: Consider the sequence {sn}. We i n t r o d u c e the de t e rminan t 

Dr(t) 

Wr-1 *t + r W2P-2 

Then {sn} satisfies a recursion relation of minimal order k if and only if 

and 
Dk(0) + 0 

Dp(0) = 0 for v > k. 

We are now ready for the proof of the main result. The first part of the 
proof will show that {wn} satisfies a fcth-order linear integral recursion rela-
tion. The second part of the proof will establish the minimality of k. The 
simple proof of minimality was suggested by Professor Ernst S. Selmer. 

Proof of Theorem 1: First, we claim that un + 0 for n > 1 and {wn} is well-
defined. If un = 0, then an - §n = .0 and (a/&)n = 1, since 3 ^ 0 . This is 
impossible because a/3 is not a root of unity. Note that 

The k algebraic integers ak~1~z$t, 0 < i < k - 1, are all distinct because a/3 
is not a root of unity. If a and 3 a r e rational integers, then the numbers 
ak-i-zgz^ 0 < i < ^ - 1, certainly satisfy a monic polynomial of degree k over 
the rational integers. If a and 3 are irrational, then a and 3 are conjugate 
in the algebraic number field K = Q(a, 3) = 5(a), where Q denotes the rational 
numbers. Thus, oJ<~1~'L$z an<^ at$ are conjugate in K. Hence, the numbers 
ak~1~l'$z, 0 < i < A: - 1, satisfy a polynomial of degree k which is a product of 
monic, integral quadratic polynomials and at most one monic, integral linear 
polynomial. By our discussion preceding the statement of Lemma 1, the sequences 
{(a ~^B^)n}™=1J 0 < i < k - l,all satisfy the same linear integral recursion 
relation of order k. Thus, {wn}™ = ], the sum of these k sequences, also satisfies 
this same recursion relation. 
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To prove the minimality of k, we first note that {wn} may also be defined 
for n = 0 if we put WQ = k. Replacing Dr(t) of Lemma 1 by Dr(sn, t) , the mini-
mality will follow if we can show that Dk(wn, 0) + 0. To illustrate the method, 
let us take k = 3 as an example, when 

Dk(wn, 0) 

a2 + a3 + 32 

The corresponding matrix may be written as the product 

Thus, Dk(wn, 0) is the square of a Vandermonde determinant: 

Dk(wn> ° ) = 

1 a2 a4 

1 a3 a232 

1 Q2 Qt 

[(aB - a2)(32 - a2)(32 - a3)]2. 

Since we assume a3 4- 0 and a/3 is not a root of unity, we have Dk(wn, 0) =f 0, 
as required. 

In the general case, we similarly get 

Dk(wn, 0) 

.,k-l 

,k-2r 
(a*'1)2 

(ak-2&)2 

(a^ 1 )*" 1 

5k-i (B*"1)2 (gfc-lj*-! 

+ 0, 

and the proof of the minimality is completed. 

As a final remark, we note the condition for a/3 not to be a root of unity. 
When ag = -b £ 0, then z = a/3 is the root of a quadratic equation 

GH-p(z) = sz + l^- + 2)z + 1 = 0. 

If a/3 shall not be a root of unity, we must have z ± ±1, and p(z) cannot be 
one of the c 
demand that 
one of the quadratic cyclotomic polynomials z2 + 1, z2 ± z + 1. Hence, we must 

4- + 2 + ±2, 0, ±1 or -a2 + 0, b, lb, 3b, Ab. 

REFERENCES 

1. E. S. Selmer. "Linear Recurrence Relations over Finite Fields." Lecture 
notes; Department of Mathematics, University of Bergen, Norway, 1966. 

2. M. Willett. "On a Theorem of Kronecker." The Fibonacci Quarterly 14, no 
1 (1976):27-29. 
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THE SOLUTION OF AN ITERATED RECURRENCE 

D. S. MEEK and G. H. J. VAN REES* 
University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 

(Sumbitted October 1981) 

1. INTRODUCTION 

Hofstadter [1, p. 137] defines the following iterated recurrence, 

g(0) = 0, gin) = n - g^(n - 1), n = 1, 2, ..., 

where gr(n) denotes the iterated function 

v levels 

g(g(...(g(n))...). 

He does not show how to determine the values of this irregular function. In 
this paper, we will show that the solution to the iterated recurrence can be 
given as a simple truncation function on numbers written in a generalized Fibo-
nacci base. 

First, for convenience, we will change the iterated recurrence by a trans-
lation of the origin. The iterated recurrence to be studied is the following: 

g(0) = 0 (la) 

g(n) = n - 1 - g*(n - 1) (lb) 

The values of g(n) for r. = 1, 2, 3, and 7 are tabulated below. 

n 
gin) 

0 
0 

1 
0 

2 
1 

3 
1 

4 
2 

5 
2 

6 
3 

7 
3 

8 
4 

9 
4 

10 
5 

11 
5 

12 
6 

n 
gin) 

0 
0 

1 
0 

2 
1 

3 
2 

4 
2 

5 
3 

6 
3 

7 
4 

8 
5 

9 
5 

10 
6 

11 
7 

12 
7 

n 
g(n) 

0 
0 

1 
0 

2 
1 

3 
2 

4 
3 

5 
3 

6 
4 

7 
4 

8 
5 

9 
6 

10 
6 

11 
7 

12 
8 

n 
^(^) 

0 
0 

1 
0 

2 
1 

3 
2 

4 
3 

5 
4 

6 
5 

7 
6 

8 
7 

9 
7 

10 
8 

11 
8 

12 
9 

If v = 1, it is clear that #(n) is the integer part of ^n, but for larger r it 
is more irregular. However, in the next section we will show that, if n is ex-
pressed in the appropriate Fibonacci base, then gin) is a simple truncation 
function. 

*This project was supported, in part, by NSERC Grant No. A4359 (Meek) and 
NSERC Grant No. A3558 (van Rees). 
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2. SOLUTION OF THE RECURRENCE 

Define the "radix" b± as: 

bi = i , i = 1, 2, ..., v (2a) 
hi = hi-i + bi-r> t = r + 1, r + 2, ... . (2b) 

If P is 1, then bi = 2^, and we get the binary base in which all numbers have 
a unique positional representation of zeros and ones. If r = 2, then we have, 
for example, the following representations: 

9 = 10001 = 1 x 8 + 0 x 5 + 0 x 3 + 0 x 2 + 1 x 1 

10 = 10010 = 1 x 8 + 0 x 5 + 0 x 3 + 1 x 2 + 0 x 1 . 

And for r ~ 3: 
9 = 100000 = 1 x 9 + 0 x 6 + 0 x 4 + 0 x 3 + 0 x 2 + 0 x 1 

10 = 100001 = 1 x 9 + 0 x 6 + 0 x 4 + 0 x 3 + 0 x 2 + 1 x 1 . 

Note that if v > 1, the representation is not unique. When r = 3, for ex-
ample, 10 could also be expressed as: 

10 = 11000 = 1 x 6 + 1 x 4 + 0 x 3 + 0 x 2 + 0 x 1. 

However, the representation can be made unique as follows. To represent a posi-
tive number n9 find the largest bi that is less than or equal to n. The repre-
sentation of n will have a one in the ith digit. Now find the largest bj less 
than or equal to n - b^ . The representation will also have a one in the j th 

digit. This process of reduction is continued until n equals a sum of distinct 
"radix" numbers bi . Then n will be represented in this base by cij<cck_1 ... a2a1 
where aif i = 1, 2, . . ., k is one or zero, depending on whether or not bi is 
present in the sum. This will be called the normalized form of the number in 
this base. 

The recurrence (2b) generates what have been called "generalized Fibonacci 
numbers." So we will call these bases "generalized Fibonacci bases." 

A function which removes or truncates the last digit of a number n repre-
sented in a generalized Fibonacci base will be denoted by T(n). If n = akak_1 
... a2#i or, equivalently, 

n = E aibi> 
i = l 

then 
k-i 

T{n) = akak_1 . . . a2 = £ ai + 1bi. 
i = ± 

We will define T(0) to be 0. 
For example, if n = 10, then in the Fibonacci base with v = 2, 10 = 10001 

and 
T(10001) = 1000 = 1 x 5 + 0 x 3 + 0 x 2 + 0 x 1 = 5 . 

In the binary base with v - 1, 

T(10001) = 1000 = 8. 
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Theorem: The solution to the iterated recurrence 

g(0) = 0 

g(n) = n - 1 - g*(n - 1), n > 1, 

is g(n) - T(n), where T(n) is the truncation function. 

3. PROOF OF THEOREM 

The function T(n) obviously satisfies the condition (la). To satisfy (lb), 
T(n) must equal n - 1 - T r(n - 1). The following lemma shows this equality. 

Lemma: If m and m + 1 are written in a generalized Fibonacci base, then 

T(m + 1) = m - Tr(m), •. (3) 

Proof: Let /?? be represented in normalized form by 

akak-l ' " ar + i a r a r - l ' '" a i a \ ^ digits). (4) 

Writing 
k v k 

m = E aihi = L ^^i + Z «i^» 
i = l i = l i = r +1 

the relation (2b) can be used on the second sum to show 

r k - 1 k-r 

i = l i-r i = 1 

Since the last sum is the value of Tr(m), the right-hand side of (3) equals 

akak_1 ... ̂ r+2(ar + 1 + ar)ar_1 ... a2ax (Zc - 1 digits). (5) 

Note that this number might not be in normalized form. 
The representation of m + 1 can be found by first noting that at most one 

of the a^, i - 1, 2, ..., r is a 1 in (4). Three cases to consider are: a.i = 0 
for ail i = 1, 2, . . ., r; a^ = 1 for some i < r; and ar = 1. In the first case, 
the representation of m + 1 will be like (4) but with a± = 1. This representa-
tion is in normalized form, so T(rn + 1) is 

akak_1 ... ̂ +2
a2>+iar ••• a3a2 (̂  " 1 digits). 

Since at = 0, i = 2, 3, ..., r, this is identical to (5). In the second case, 
at = 1 for some i < v, and m + 1 has a one in the i + 1st digit. Now T(w + 1) 
can be found even though m + 1 as described is not necessarily normalized. It 
has representation (5). In the third case, where ar = 1, m + 1 has the digits 
1 tor all zeros and a one is added to the digit ar+1. Thus T(m + 1) is again 
as shown in (5). • 

k. CONCLUDING REMARKS 

If g(n)9 for some large n, has to be calculated, the straightforward recur-
sive method for doing so requires the calculation of all g(i) numbers for ?- ̂  n. 
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However, it can be done efficiently by calculating the "radix" hi numbers using 
(2), finding the representation of the number as described in \2 of §2, using 
T(n) to obtain the answer, and then converting the answer back to base 10. If 

Z = lim —7 , 

then this method takes approximately 3 logzn steps. 
A closed form solution for (1) seems impossible to obtain for r ^ 2, but a 

good approximation to g(n) is n/Z. 
Finally, the theorem can be generalized by noting that the iterated recur-

rence 
g(A) = A, A an integer 

g\n) = n - 1 + A - gr(n - 1), n > A + 1 

has solution g(n) - T(n -A) + A, for n ^ A. For A = 1, this gives a solution 
to Hofstadter's original problem. 

ACKNOWLEDGMENT 
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DIGIT FUNCTIONS OF INTEGER SEQUENCES 

WILLIAM I. McLAUGHLIN and SYLVIA A. LUNDY 
JPL, California Institute of Technology, Pasadena, CA 91109 

(Submitted November 1981) 

1. SHIFTED INTEGER SEQUENCES 

It was noticed by Benford [1] that the first nonzero digit in certain sets 
of real numbers is not uniformly distributed among the integers 1 through 9; in 
fact, the probability that this first, leftmost digit equals 3 is equal to 

log10(l + 3"1). 

He extended the analysis to the frequency of digits beyond the first for num-
bers obeying a particular probability law: the logarithmic distribution. This 
phenomenon of nonuniform distribution of digits has generated a considerable 
mathematical literature, particularly for the first digit, and has been shown 
to apply to the Fibonacci numbers [2], [3], [4], 

The purpose of this paper is to examine the probabilistic structure of the 
entire set of digits from certain integer sequences. The Fibonacci sequence 
provides one example. 

The essential results are that, for a large class of probability laws, the 
digits are not equiprobable and their values are correlated; but in the limit, 
as the ordinal number of the digits goes to infinity, the digit values approach 
equiprobability and their correlation goes to zero. However, under certain con-
ditions, this limiting behavior does not occur; rather, the nonuniform behavior 
persists for all digits. In particular, subsequences of the Fibonacci sequence 
exist which exhibit "persistent Benford" behavior. 

Let 0) = {an} be a sequence of positive integers. Define a shifted sequence 
0) of rationals an E Ub = [b"1

9 1], for integer base b ^ 2, by 

— TV Zn — CZnU •v(an) 

where 
v(an) = [logban] + 1 

is the number of digits in the b-ad±c representation of an, with [•] the greatest 
integer function. 

The asymptotic distribution function (a.d.f.) g t Ub -> E1 is defined for co 
as usual by 

= liffl AOb^UJLL&l (1) 

when this limit exists. Here A is the counting function which records the num-
ber among the first N terms of S that lie in the interval [b"1

9 x). Note that 
g is left-continuous. 

Theorem 1: If an = an, a > 1 and not a rational power of b, then the a.d.f. g 
of {an} exists and 

g(x) = 1 + log,a?. (2) 
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Proof: Since an < x if and only if 1 + logban < 1 + loĝ a?, 

, , , . A([0, 1 + log^x); 21/; {1 + logban}) 
g(x) = lim 5 2 

if the limit exists. But, since a is not a rational power of b9 

{1 + log^a^} = {1 + n^}, E, irrational, 

is uniformly distributed mod 1, thus yielding the theorem. • 

It can be shown that (2) is also the a.d.f. of the shifted sequence {Fn} of 
Fibonacci numbers Fy, because 

1 (l + J5\n + 1 

r5\ 2 ) " 75 

(see also [5]). In fact, this a.d.f. holds for any integer sequence defined by 
a recurrence relation. 

An example of an important sequence of integers that does not have an a.d.f. 
is the sequence of primes. It was shown by Wintner [6] that the limit (1) does 
not exist in this case. However, the relative logarithmic density does exist 
[7]. 

Theorem 2: If {an} has a continuous a.d.f. g9 then for every Riemann-integrable 
function f i Ub -> E1, 

1 N fl 

1±mjfl2f(^n) = / f(x)dg(x). 'b~ 

Proof: Immediate from Theorem 7.2 of [8]. • 

Theorem 2 provides us the means to apply the standard facts of probability 
theory to the study of digit functions of integer sequences. 

2. DIGIT FUNCTIONS AND ASYMPTOTIC EQUIPROBABILITY 

Let the digit function dk be defined such that dk(x) equals the k digit 
of x so that 

x = J£ dk(x)b~k . 
Define k=1 

T[$(k)] = {x E Ub\dk(x) = g(fc)} C Ub9 

where &(k) E Zb = {0, ..., b - 1}. Then, the joint probability pg that 

dki(x) = BCki), ..., dks(x) = B(fca) 

is given by the Lebesgue-Stieltjes integral 

pg [B(^), ..., B(fea)] = f Inmi)] ... ITmK)]dg(x), (3) 
*^b 

where IG is the indicator function of the set G C Ub . Allowing some abuse of 
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notation, the same symbol p will be used for all such probability functions, 
regardless of the dimensionality of the domain. Also, when no confusion will 
result, the argument k of (3 will be suppressed. 

When g is the logarithmic distribution (2), 

Vg[Wj, .... B(ke)J - £ £ ...£ logj 
6(1) = 1 B(2) = o B(k.-1) = 0 

1 + 
£B(m)2>-

7 7 7 = L 

(4) 

where the sums over B(?Cj) for J = 1, . .., s - 1 are to be excluded. 
The relative frequency of digit values will be derived by setting s = 1 in 

(3) and (4). The succeeding section uses s = 2 to infer dependence properties 
between digits. 

Definition 1: The a.d.f. 
and only if 

lim prg(fe)] 
fc + oo y 

is asymptotically equipvobable with respect to Z? if 

b'1 for all 3 E ZL. (5) 

It can be shown that g is asymptotically equiprobable if a density function 
/ exists for g. Furthermore, for a sufficiently smooth a.d.f., such as the 
logarithmic distribution (2) , the rate of approach can also be displayed, as in 
Theorem 3. When / exists, p and p« will be used interchangeably to denote the 
function defined in (3), as suits the occasion, with the symbol f being reserved 
for the density function and g for the a.d.f. 

Theorem 3: if fecz[b"1
9 1], then 

where 

p [B(fc)] = b'1 + h($)b~k + 0(b~2k) for all 

fc(B) M^-1)^- /(i"1)]. 

Proof: Let <?• [$(&)] be the £-adic rationals defined by 

with 

r[3(fe)] U [?f [B(fc)], <7jB(fc)] + £"*] 
i = 1 

l, fc = l, 
M 

(i - l ) ^ " 2 , k > l. 

(6) 

(7) 

Then, writing 17. for <7.[g(fc)], 

pf tew] = r m(k)] / ( • 

x)d% = £ / f(x)dx 
i = 1Jq 

M 

E 
i = 1 

= E -5-b-fc [/(?,) + /(?,: + £"fe)] + 0(b-2k), 

where the last equality follows from the trapezoidal rule of integration [9]. 
The two ordinate sums in this last equation can be converted into integrals, 
with remainders, by use of the Euler-Maclaurin formula [10]. For k > 1, 

1984] 107 



DIGIT FUNCTIONS OF INTEGER SEQUENCES 

; ,2 JKHi) 2b < 
^ = 1 ^ = 1 

£ 4*"*/(^) = ^E^^Vf*"1 + & - iwk+1 + &-k] 
£ = 1 

/̂/w* + n a r ( ! " i ) [ f ( 1 ) " f<6"1)1-2fc-v 
For fc = 1, qi = 32?"1 s and the same result is obtained. Calculating a similar 
expression for the term involving f(q. + 2Tfe) and using the fact that 

I 1 f{x)dx = 1 

y i e l d t h e theorem, a 

Using Theorem 3 , t he expected v a l u e of t h e kth d i g i t of x i s 

E(dk) = £ - = - i + 2 T k [ / ( D - / X Z r 1 ) ] ^ ^ + 0 ( 2 T 2 * ) , 

which is approximately (b - l)/2 for large fc (as expected!). 
To denote the special case of the density function corresponding to the 

logarithmic distribution (applicable to the Fibonacci sequence), v will be used 
in place of f; that is, 

d logftfo) _ 1 
r(x) dx x In b' 

which has been termed the "reciprocal density function"[11]. Theorem 3 applies 
and gives 

pp[&(k)] = b'1 + h($)b~k + 0(b~2k). 

Theorem 4: 
- k • 

[000] = LiogJi + V ' 
£ = 1 N Hi I 

where qi i s def ined by (6) and M by ( 7 ) . 

Proof: 

•qi+b" etc p,[B(fe)] = flIimk)]r(x)dx = £ r -
• , / - In b 

M i 

= Z i ^ l n ^ £ + * > - i ^ . ) ] f 
£ = 1 

which yields the theorem, H 

For the special case b = 10, the relative frequencies, obtained from Theo-
rem 4, of values of the first four digits are given in the accompanying table. 
The last digit in each entry has been rounded and not truncated. Columns 1 and 
2 contain Benford's original results. For subsequent digits, the rapid approach 
of these data to b'1 is readily apparent when plotted as in Figure 1. 

Figure 2 provides samples of the convergence of the relative frequency of 
second-digit values for the Fibonacci sequence to their theoretical limits (cf. 
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column 2 of the table). The fraction of the first N Fibonacci numbers with 
second digit equal to 3 is plotted against N for five values of j3. 

Probability that Digit k Equals 3 for the Logarithmic Distribution 
(Base 10) 

T\ 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 

-
.30103 
.17609 
.12494 
.09691 
.07918 
.06695 
.05799 
.05115 
.04576 

2 

.11968 

.11389 

.10882 

.10433 

.10031 

.09668 

.09337 

.09035 

.08757 

.08500 

3 

.10178 

.10138 

.10097 

.10057 

.10018 

.09979 

.09940 

.09902 

.09864 

.09827 

4 

.10018 

.10014 

.10010 

.10006 

.10002 

.09998 

.09994 

.09990 

.09986 

.09982 

0.35r 

0.30 

•3-0.25 

£ 0.20 

§f0.l5 

§ 0.10 

0.05 

Fig. 1. Approach of Relative Frequency of Digits 
to b'1. Logarithmic Distribution with b = 10 
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Fig. 2. Convergence of Relative Frequencies to Theoretical 
Values for Second Digit of Fibonacci Numbers 

There exist integer sequences for which asymptotic equiprobability does not 
hold (for the a.d.f.). For example, BenfordTs first-digit frequencies can be 
retained for all subsequent digits for certain subsequences of the Fibonacci 
sequence, and, in the next theorem, conditions are given for the existence of 
integer sequences which possess specified digit properties, a reversal of the 
approach used thus far. 

Theorem 5: For each k = 1, 2, ..., let tk be a function from the Cartesian 
product of Zb with itself k times to [0, 1 ] and satisfying the three consistency 
conditions: 

t k [ B ( l ) , . . . , B ( f e ) ]>0 ; £ £,[3(1)] = 1; 
and e(1)ez> 

E ^ + i [ 3 ( i ) , • •> e(fc), &<fe + x ) ] - - ^ t e a ) , ..., B(fe)]. 
BCfe + D e z j 

Then, for any integer sequence GO with GO dense in Ub , there exists a subsequence 
T with a.d.f. g such that p = tfc. 

Proof: By BillingsleyTs theorem [12] (a consequence of Kolmogorov*s exis-
tence theorem), the three conditions on t\ insure the existence of a probabil-
ity measure y on the Borel sets of Ub such that, for each k, 

y(T[B(i)] n ••• n T[B(fc)]) = tJB(i), ..., B(fc)] 
for all 3(1), ..., B(fc) in Z^. 
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Then define a distribution g : Ub •+ [0, 1] by g(x) = \ilb~1, x) . By Theorem 
4.3 of [8], there exists a sequence a in Ub with a.d.f. go - ga 

Let a = {sj}. Since a) is dense in £/& * there exists a subsequence T of w 
with T = {VJ} such that î- = Sj + A^, where Aj > 0 and lim Aj = 0. 

Since Aj > 0, J'"*°°  

^ ( [ Z r 1 , a?); tf; T) ̂ ( [ Z T 1 , a?); /!/; 3 ) . (8) 

For e > 0, choose NQ such that Aj < e for j > 21? 0 . Then 

A([b-\ xe); N; {sj}^) ^ ( [ Z f 1 , x); ff; {i>j}*0)» (9) 

where aje = min{b_15 # - e}. 
By (1), there exists k^ such that 

Adb-1, x); N; isj}^) 
N — = ga(x) + kN(x), 

where lim kN(x) = 0 for every x £ Uh. 
N + oo iV 

Using (8) and ( 9 ) : 
A([b-\ x); N; {vd}; ) 

go(x - e) - ga(x) + kN (x - e) < 2 ^ ( x ) < kN(x). 

L e t t i n g N go t o °° g i v e s 

go(x - e) - go(x) < gT (x) - gQ (x) < 0 . 

Since ga is continuous from the left and £ is arbitrary, gT = ga = g, and the 
theorem is established. • . . . 

Definition 2: An integer sequence co is said to be absolutely equiprobable with 
respect to b if and only if 

l i m Atmmu*;*) (<6 - 1)_1- fe - \ f o r a l l e € 

Corollary 5,1: For every £ ̂  2S there exists a subsequence of the Fibonacci 
numbers that is absolutely equiprobable with respect to b. 

Proof: Let tfe[B(l), ..., 3(fc)] = (i - l)'1*?'*"1"1. Then, by Theorem 5, there 
exists a subsequence T of {Fn} with a.d.f. g such that p = tfc for all k. 

Since 

A(T[$(k)]; N; T ) = E ^ ( [ ^ > ^ + b~k); N; T ) , 
then 

l taMBWlLilJ) = E ^((? + 6-*) _ g(qi)] = p (e(fc)) 

= E ' P , (6(1). • - . , 6(fe - 1), B(fe)) 

= £ '**(&(!) . •••> 3(fc - 1 ) , B(*)) 

= 6_ 1S'*fc-i(B(l). •••» 3(/c - 1)), 
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where E' denotes the sum over all B(j) for j <"k. Then, k - 2 applications of 
the third consistency condition of Theorem 5, followed by use of the second con-
dition, yields the corollary. The case k = 1 is trivial. Thus, 

•N+ao N 

as required. 

Definition 3: An integer sequence a) is said to be a persistent Benfovd sequence 
with respect to b if and only if 

(logjl + B " 1 ^ ) ) , B(fc) > o 
lim A(T[M)]; N; 0)) 

N 0, B(fc) = 0, 
for all k > 1 and all B(k) G Z,. 

Corollary 5.Z: For every 2? ̂  2, there exists a subsequence of the Fibonacci 
numbers that is persistent Benford with respect to b. 

Proof: A calculation similar to that contained in the proof of Corollary 
5.1 serves here and, in fact, for any tk defined as the product of univariate 
density functions. • 

3. WEAK DEPENDENCE OF DIGIT FUNCTIONS 

Dependence between digit functions is demonstrated by showing that they are 
correlated random variables. 

First, an expression for the bivariate density function is derived. 

Theorem 6: If f E C2[Z?"1, 1] and k2 > k19 then 

pf [&(&!>, B(fc2)] « ZT^IBtfi)] + Me(fc2)]fr"*2"1 

+ .£[&(&!>, $(k2)]b-ki-k> + 0(b-m±n{2ki+k*'2k>}) 

where the function h is defined in Theorem 3 and 

[/'(D - fib-1)] 

with B19 52 Bernoulli polynomials and the prime denoting differentiation. 

Proof: Let ui(^>(k1), &(k2)) be the b-ad±c rationals defined by 
ML 

rieo^)] n ne(fc2)] = U lu^a^* nk2)), M B C ^ ) , B(fc2)) + £~*2], 
where M is defined in (7), L = b*2'*1'1 and i = (ix - 1)L + i2. Then, writing 
u^ for wi(B(fc1), B(fe )), ^ r ^ + 2 ^ 
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Using the trapezoidal rule, 

M L -h-k2 

H = l i2=l 

Substituting ut = qi±+ (i2~ l)b~kl + 1 + $(k2)b~k2 in this expression and apply-
ing the Euler-Maclaurin formula, as in the proof of Theorem 3, to the sums over 
i2 gives 

, M fl^+b-*'- M 

P ^ B ^ i ) , $(k2)] = ±Z / f(x)dx +-+£ Z b-k*+1 

i-l - 1 •Wtj i1 = 1 

x lAfll(~w+ Bl\ b—))mq^+ b °"f(qi)] 

\\-ir-) + BA—i—)) 2 

Recognizing the univariate expression for digit k1 in the first term and again 
applying the Euler-Maclaurin formula to each of the four sums inherent in the 
second term yields 

imo, e<*2>] -£P/[*<*!>] + ̂  r^«[Bl(l^) + Bl(^4^)] 

x LH-A—) - M-IT-).F(1) - ̂  )] 

+ ^ K ^ ^ ) _ B 2 ( ^ ) ] [ / , ( 1 ) _ r ( & . 1 ) ] ] 

+ 2F 

[W^^)-^)]^^)-^-^ 
+ ^ - y — K — T — ) " BA—F~)\[f,r(1) - f,r(h ) ] 

+ 0(Z)"2fel"fe2)s 

which reduces t o t h e theorem. • 

Corollary 6A: I f fE C2{b~x , 1] and £ 2 > &x, then 

P^tec^), B(fe2)j = b~2 + o(z?-fci). 
Theorem 7: If f E C2^'1, 1] and £2 > kls then 
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where 

of = [{b - 1 }
xf + l)J[f'(D - fib-1) - (/(l) - fib'1))2]. 

Proof: Write 
b-l b-1 

c o v / ( ^ i , dki) = £ E 3 (^1)3^2)^ (3 (^1) . -B(fc2)) 
3 ( f e i ) - l S ( fc 2 ) - l 

- Pr(3(fc1))p/(B(fc2))]. 
Using the univariate and bivariate expressions of Theorems 3 and 6, respectively: 

*-l *=.! l/23(fc2) + 1 \ 
covf(dk dkz) =b-k^k> E E e(fci)B(fc2)T( s i) 

3(fci)-l fl(fc2)«l ^ \ ^ / 

x f—^ " l ) [ [ / f ( D " fib'1)] - [/(l) - /(ZT1)]2] 

+ o(b"min{2/Cl+^25 2k2>)< 

Then, performing the two indicated sums yields the theorem. • 

Corollary 7.1: If f E C2[b"1
9 1] and k2 > k±9 then 

& Hm+«cov.f (^*i * ^ 2 ) = °-

A second indicator of the weakening of dependence for large-digit numbers 
exists because it can be shown that the sequence {dk} of digit functions is 
*-mixing in the sense of Blum, Hanson, and Koopmans [13] when f G C1\b~'L, 1] 
and 1/f is bounded above. 

The research described in this paper was carried out by the Jet Propulsion 
Laboratory, California Institute of Technology, under contract with the National 
Aeronautics and Space Administration. 
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INTRODUCTION 

1. Let z{ri) be the index of the first Fibonacci number divisible by the natu-
ral number n. At this writing, there has not been found a prime p whose square 
enters the Fibonacci sequence at the same index as does p. This does not occur 
for p < 106 [2], 

The problem is related to the following one. For what relatively prime p, 
b9 is it true that p2\bp~1 - 1? Apparently, this question was first asked by 
Abel. Dickson [1] devotes a chapter to related results. For b = 2, the con-
forming p 2 values are the well-known Wieferich squares, which enter in the solu-
tion of Fermat's Last Theorem. The only two Wieferich squares with p < 3 • 109 

are 10932 and 35112 [6, p. 229]. These phenomena are rare but, to a degree, 
predictable. An investigation of this predictability sheds some light on the 
Fibonacci phenomenon. 

2.1 Notation. Define n\bx - 1 as meaning n\bx - 1, and n\by - 1 for y < x 
(i.e., b belongs to the exponent x> modulo ri) . 

2.2 The following are well known. For p prime, (b, p) = 1; if p\\ba - 1, then 
p\bB - 1 if and only if 3 = k • a. Since p\bp x - 1 (Fermat), it follows that 
a\p - 1. For q prime, (b, q) = 1; if q\\by - 1, then pq\\blcm(a'Y) - 1 . The mul-
tiplicative properties are similar to those of the Euler <j) function. Indeed, 
p2\bpcL - 1 as (j)(p2) = pc()(p). However, here we have a deviation: p2\\bpa - 1, 
unless p2||^a - 1. (In terms of decimals of reciprocals of integers, the first 
prime > 3, such that 1/p2 has a period the same length as 1/p, i.e., p2|10p~ 1, 
is 487. Its period is of length 486.) It can be shown that this deviation oc-
curs if and only if p 2 | & p _ 1 - 1. If such is the case, and imitating Shanksfs 
flair for coinage of such terms, we say p is a wieferich, modulo b. 

2.3 Consider the solutions to xp~1 E 1 (mod p 2 ) . Gauss [3, art. 85] assures 
us that there are p - 1 distinct solutions, xs between 1 and p 2 - 1. 

For each b, 1 < b < p, there is a distinct k such that 

(b + kp^'1 = 1 (mod p 2 ) . 

These provide the p - 1 solutions: 

(b + kp)p~1 - 1 = bp~x - 1 + (p - l)bp~2kp (mod p2) 

and 

(- M - b~Xk = 0 (mod p ) , yielding k = b{~ —) (mod p) . 

If x is a solution, so too is p - x. x = 1 is always a solution; there-
fore, (p - 3)/2 solutions are scattered from x = 2 to x = (p2 - l)/2. If ran-
domly distributed, the probability that a particular x = b is a solution is 
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(p - 3)/(p2 - 3). Holding b fixed and letting p range, the expected number of 
solutions encountered < P is Ep(p - 3)/(p2 - 3). Since the series is divergent 
(£p<J7p = In In x + c + 0(l/log x) [5, Th. 50, p. 120]), but diverges slowly, 
the relative scarcity of these wieferichs, modulo b9 is not surprising. 

THE MAIN THEOREMS 

3.1 In [4], information about the entry points of the Fibonacci sequence was 
obtained by imbedding the sequence in a family of sequences with similar prop-
erties. Specifically, let {Tn} be a linear recursive sequence with nth term 
given by 

f (c + rq)n - (g - r q r 
l/q 

?n(c> <7) = 
xyn _ xyn 

~~~R 

fo r q % e (mod 4) 

JaY (Ĥ r - (^) 
rQ 

fo r q - c (mod 4) 

yielding the sequences defined by 

oT + q - g 2
 r 

with initial values 1, 2c or 1, c. For c = 1, q = 5, we have the Fibonacci se-
quence . 

Let e = (q/p) be the Legendre symbol. 

With q ? o2, c ? 0, q $ 0 (mod p), we have p|rp_e. 

I f p | | r a , then p | r 6 i f and only i f g = ka. A l so , a | p - £ , [ 4 ] . 

3.2 Theorem: Let p | | r a . Then, p 2 | | r a i f and only i f p2\Tp.e ( p a r a l l e l i n g t h e 
r e s u l t mentioned i n 1f2.2). Proof i s by means of Lemmas 3 . 2 . 1 , 3 . 2 . 2 , and 3 . 2 . 3 
below. 

3 .2 .1 Lemma: I f p 2 | | r a , then p2\Tx i f and only i f x i s a m u l t i p l e of a . Con-
s i d e r : 

Since p2 

r/ca 

\|/a 

\jjka 

_ Ya 

_ vpka 

R 

„ J « / " 

R 

h a - ^ct\^Ii(k-i)a + y(fc-2)cnjr + ... + "y ( k - 1 ) a ) . 

, and ¥n + Wn and ( W ) n are integers, it follows that pz\Tk 

Suppose p2|rfca + P, 0 < r < a, and that this is the smallest such index not 
a multiple of a. Dividing Tka + r by Tka , we obtain 

y/ca + r1 _ Tyka + 2 ,fr/¥fcg - ?f e a\ + ^r*r - r \ 

rfco+I. -*%„ + ^ a r r . 
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From 3.1, q ^ c2 (mod p), so p|^fea and, thus, p2\Tr. But this contradicts the 
hypothesis that a was the smallest such index. 

3.2.2 Lemma: If p||Ta, thenp2|rpa. Consider: 

Noting that Rp~1 is an integer, 
P-i 

i?^ 1 ^)^ =^ ^JL-+- £ (-1)*(OT)*"(P)[̂  ^ -J. 

yPa _ lJFPa 

p d i v i d e s a l l terms bu t — = Tpa , so i t must d i v i d e i t a l s o . 

3 . 2 . 3 Lemma: I f p\\Ta bu t p 2 | | r t a , 1 < t < p , t h e n , s i n c e p2\Vkta (from 3 . 2 . 1 ) 
and p2\Tpa (from 3 . 2 . 2 ) , i t fo l lows t h a t t\p; bu t p i s p r ime , so 

p2| |ra or p 2 | | r p a . 

In the former case, p\Tp±1; in the latter, since pi 1 is not a multiple of pa, 
p2|rp± 1. This establishes the result. 

3.3 We next consider ¥, ¥ with c = c± + E,p and q = q1 + £p, expand and reduce 
\j/P±i _ lp±i 

5 (mod p ). The result is linear in £ and £. Thus, for given c, q, 
yP±i _ yp±i 

for = = 0 (mod pA) , each £, 0 < ^ < p, generates one £, 0 < £ < p. 

Fix e. Let q range from 1 to (p - 1). One of these pairs (c, q), that with 
q= c2 (mod p) , will produce a sequence not containing an entry point for p [4]. 
The other p- 2 pairs will each generate a solution £ = 0, £ = 0 yielding a se-
quence with ¥ associated with c + /<7 + 0p such that s(p) = s(p2). When c = I, 
q = 5, we have the Fibonacci sequence. If the solutions 0 are randomly dis-
tributed over 0, 1, 2, ..., p - 1, the probability 0 = 0 is 1/p. The expected 
number of such phenomena, p < P, is E p 1/p, whose series diverges (§2.3). On 
the basis of random distribution, the phenomenon should occur before p > 106. 
On the other hand, In In 106 is not yet 3, perhaps not too wide a miss? 
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1. INTRODUCTION 

Stirling numbers of the first and second kind are less known among statis-
ticians than among people who deal with combinatorics or finite differences. 
Only recently have they made their appearance in distribution theory and sta-
tistics. They emerge in the distribution of a sum of zero-truncated classical 
discrete distributions: those of the second kind, S(m, ri), in the case of a 
Poisson distribution truncated away from zero, Tate & Goen[13], Cacoullos [2], 
the signless (absolute-value) Stirling numbers of the first kind, \s(m, ri)\, in 
the logarithmic series distribution, Patil [9]. In general, such distributional 
problems are essential in the construction of minimum variance unbiased esti-
mators (mvue) for parametric functions of a left-truncated power series distri-
bution (PSD). 

Analogous considerations for binomial and negative binomial distributions 
truncated away from zero motivated the introduction of a new kind of numbers, 
called C-numbers by Cacoullos& Charalambides [5]. These three-parameter (7-num-
bers, C(m, ns k), were further studied by Charalambides [8], who gave the rep-
resentation 

m 

C(ms ns k) = J2 krs(m, r)S(r, n) 
v = n 

in terms of Stirling numbers of the first kind, s(m, r), and the second kind, 
S(r, n) . Interestingly enough, this representation in a disguised form was, in 
effect, used by Shumway & Gurland [11] to tabulate C-numbers, involved in the 
calculation of Poisson-binomial probabilities. 

The so-called generalized Stirling and C-numbers emerged as a natural ex-
tension of the corresponding simple ones in the study of the mvue problem for 
a PSD truncated on the left at an arbitrary (known or unknown) point (Charalam-
bides [7]). It should be mentioned that, in particular, the generalized Stir-
ling numbers of the second kind were independently rediscovered and tabulated 
by Sobel et at. [12], in connection with the Incomplete Type I-Dirichelt inte-
gral. 

The multiparameter Stirling and C-numbers are the analogues of generalized 
Stirling and C-numbers in a multi-sample situation where the underlying PSD is 
multiply truncated on the left (Cacoullos [3], [4]). 

Recurrence relations for ratios of Stirling and C-numbers are necessary, 
because the mvue of certain parametric functions of left-truncated logarithmic 
series, Poisson, binomial and negative binomial distributions are expressed in 
terms of such ratios. These recurrences bypass the computational difficulties 
which come from the fact that the numbers themselves (but not the ratios of 
interest) grow very fast with increasing arguments. Recurrences for ratios of 
simple Stirling numbers of the second kind were developed by Berg [1], 

The main purpose of this paper is to provide recurrences for certain ratios 
of multiparameter Stirling and C-numbers, thus unifying several special results, 
including those of Berg [1]. For the development of the topic, we found the 
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use of exponential generating functions (egf) most appropriate both for intro-
ducing the numbers themselves and for deriving recurrences. Without claiming 
completeness, we included certain basic recurrences. As observed elsewhere, 
Cacoullos [3] and [4], it is emphasized here, once more, that in the study of 
PSDs the egf approach is the one suggested by the probability function itself 
in its truncated form. Also, we found it appropriate to include certain asymp-
totic relations between Stirling and C-numbers, which reflect corresponding 
relations between binomial and Poisson distributions or logarithmic series and 
negative binomial distributions. 

A typical result, which involves ratios considered here, is the following: 
Let x±j , j = 1, . .., rii, be a random sample from a left-truncated one-parameter 
PSD distribution with p.f. 

p(x; 6) = ~ (Q^ r y x = vt , vt + 1, ..., (1.1) 

where 

/€(8 . - *•*) = E <3i(x)ex, i = l , . . . , k. 
x - ri 

If the truncation point r = (r 9 . . ., rk) is known and a^{x) > 0 for every 
x > ri , i = 1, — , k9 then, according to Cacoullos [4], for every j = 1, 2, 
..., 6j is estimable and its (unique) mvue, based on all k independent samples 
{%ij }> is given by 

aim - j; n, v) 
W = (»>, a(m. g> ,} . d.2) 

where n = (nx, ..., nk), r = (PX , ..., rk), (m)j = m(m - 1) .. - (m - j + 1) and 

a(m; ns r) = , m' £ n n M * t f ) . (1.3) 
A ^ . ... /^. m i = 1 j = i 

where the summation extends over all ordered 217-tuples (N = n1 + — + n&) of 
integers a:̂- satisfying a;̂ - > vt , 

In the cases of interest (Poisson, binomial, and so on), the numbers (integers) 
a(tf7; n, r) turn out to be Stirling or C-numbers, depending on the series func-
tion ft in (1.1), which at the same time suggests the corresponding egf of these 
numbers. 

2. MULTIPARAMETER STIRLING NUMBERS OF THE FIRST KIND: 

DEFINITION-GENERAL PROPERTIES 

Let r13 . .., vk and nl9 ..., nk be nonnegative integers (k > 1). The multi-
parameter Stirling numbers of the first kind with parameters r = (rlf r2, ..., 
rk) and n = (n15 n2, ..., nk)9 to be denoted by s(m; n, r), can be defined (cf. 
Cacoullos [3]) by the egf, 
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(2.1) 
* 1 

?.=i nt • 
iog( i + t) - I T 1 ( - i ) i - 1 ^ 

j = i <? 

where we set m = r'n = Y-JI^ + ••• -V Vyn,. 
The special case k = I9 r± = r$ n1 = n yields the generalized Stirling num-

bers of the first kind, s(m; n, r)s defined by Charalambides [6], while k - 1, 
r = 1 gives the simple Stirling numbers of the first kind, s(m9 n). Proposi-
tions 2.1-2.3 summarize basic properties and recurrences for s(rn; n9 r) and 
facilitate their computation. 

Remark 2.1: In the sequel, in order to avoid unnecessary complications in the 
recurrences, we assume that all m > 0, some n^, say V, are zero, then the par-
ameter k becomes k' = k - V and the necessary modifications are obvious. 

Proposition 2.1: The multiparameter Stirling numbers of the first kind s(m;n9r) 
have the following representation 

s(m; n, v) = (-1)"-" m- n , E h U ~ , (2.2) 
n l ! ••• nk' ™ i = i j = i Xij 

where N = n± + ••• + nk and the summation extends over all ordered 71/-tuples of 
integers cc^- satisfying the relations 

k m 
xid > vi , i = 1, . .., k and £ £ x^ = m. 

Proof: We have 

Y(t, vt) = log(l + t) - Z (-D̂ *1 IT 
k = i 

= E C-D^"1 4r, i - 1, ..., fc. (2.3) 
k=vi

 K 

Forming the Cauchy product of series, we find, by virtue of (2.1), 

gn(t; r) ft**! = .11 ly(t, 2^)]n* 
~ i = 1 i. - 1 

= f: ( - D ^ - V E ft ff ^ , (2.4) 

where £ n a s t n e same meaning as above. Comparing (2.4) with (2.1), we get 
(2.2). m 

To obtain recurrence relations, we make use of the easily verified differ-
ence/differential equation, satisfied by the egf gn(t; v) in (2.1), namely, 

d k 
(1 +t)lign^' 5) " £ <-l>,V"1*'i"1flrs-.i<*; £>> (2-5) 
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where e^ = (0, . .., 0, 1, 0, ..., 0), i.e., a fc-component vector with zero com-
ponents except the ith component, which is equal to 1. 

Proposition 2.2: (m; n)-wise relations: The numbers s(m; n, r) satisfy the 
recurrence relation 

s(m + 1; n, r) + ms(m; n, r) 

k 
= Il(-^ri~1(^hi-1s(m-ri+l;n-eifr) (2.6) 

i = 1 

with initial conditions 
k 

s(0; 0, r) = 1, s(0; n9 r) = 0 whenever 2 vini > 0> 
i = l 

s(m; n9 v) = 0 i f m < r ' n . 

Proof: Equat ion (2 .5 ) by v i r t u e of (2 .1 ) can be w r i t t e n as 
oo ,m-\ 

(1 + t) £ s(m; n , r) , _ ^ 
m- r'n 

= £ L (-D^flOn; n - € i , v)±—y (2 .7 ) 
i = 1 m = r'n -ri 

Equating the coefficients of tm/m\ in (2.7) yields (2.6). Note that equation 
(2.6) for k - 1, T1 - 1 gives the well-known recurrence for the simple Stirling 
numbers of the first kind 

s(m + 1, n) = s(w, n - 1) - msim, n). (2.8) 

Proposition 2.3: (m; n, p)-wise relations: The numbers s(tf?; n, r) satisfy 

s(m; n, r+e^) = £ (-1)JP* — s{m- grii n- jei9 r), i = 1, . . ., k. (2.9) 
d'O j!(^)J 

Proof: We have, using also (2.3), 

<7n(t;r + €f) = -^r\y(t; r) + (-l)r^Tj[ ̂ M * . r,-)]"'; (2.10) 
5 = 1 

and using the binomial expansion 

we can write (2.10) as 

00
 s • iz ' i f ' — 1 ) v - f - " > - u - z 

22 s(m; n,r + e^-j- = £ ; Jj 8 ^ t i 'iSi^>—^—• (2-12) 

Hence, equating the coefficients of tm/ml9 we obtain (2.9), 
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Signless Multiparameter Stirling Numbers 

From the recurrence relation (2.6), it follows that the numbers s(m; n, r) 
are integers. Moreover, from the representation in (2.2), we conclude that 
s(m; n, r) is an integer with sign (-l)^-777, where N = n1 + ••• + nk. Therefore, 
if we multiply (2.6) by (-l)m~N+1

9 we obtain 

k 
\s(m+ 1; n, v)\ = m\s(m; n> £) | + 2 (m)r. _ ± \ s(m- vi + 1; n- ei9 r)\. (2.13) 

i = i l 

We call \s(m; n, r)| the signless (positive) multiparameter (^-parameter) 

Stirling Number of the First Kind, We will show 

Proposition 2.4: The egf of \s(m;n3 r)\ is given by 

« . .+m k 1 

m = r'n ^ = l ^ 
-log(l - t) - £ " - 1 1 * ~ 

i-i 3 
(2.14) 

Proof: From the difference equation (2.13), it is easily verified that the 
egf g*(t; r) satisfies the difference/differential equation 

(1 - t)-^hn_(t; r) - £ tP«-V*_ei(*; ?>. (2.15) 

which, in turn, yields (2.14). 
Alternatively, (2.14) leads to the representation of \s(m; n, r)\ as ob-

tained from (2.2). 

3. RATIOS OF MULTIPARAMETER STIRLING NUMBERS OF THE FIRST KIND 

We define, as a ratio of multiparameter Stirling numbers of the first kind 
with respect to argument m, the function 

s(m + 1; n, r) 
s(m; n, r) i? 1(777; n, v) = 7 ~ . (3.1) 

Ratios with respect to the arguments n i 9 v i 9 i = 1, ..., k, can also be defined 
The main reason for considering ratios with respect to 777 is seen from (1.1), 
which actually involves reciprocals of R19 when we are concerned with the par-
ameter of a logarithmic series distribution. 

Proposition 3.1: A recurrence relation for the ratio R1(m; n, r), independent 
of the multiparameter Stirling numbers of the first kind, is given by 

k (m)r _1
Iijnj m + l-r'n 

V—rVv II RAm - r, + 1 - i; n - ei9 r) 
RAm; n> r) + m = • (3.2) 

ij R1(m - i; n, r) 
i = l 
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for n > 1 and m > r'n, with the boundary conditions 

R1(m, 1, r) = -m (3.3) 
and 

k r • 71 * 

j = i ^Jj "*" 1 ; 

Proof: Using equation (3.1), it can easily be seen that 

rn- r'n s(m; n, r) 
O R^m - i; n, r) = , , . „ ~ (3.5) 
i = l s(r'n; n, r) * 

But equation (2.2), for m = r'n, miY = mi2 =••• = 7^ = rt , becomes 

(r'n)! 
s(r'n; n, r) = (-l)*'*"* — . (3.6) 

~. ~ k k 

n nt i n ^ 
£ = 1 i=l 

Consequently, equation (3.5) becomes 
m- r'n 

(-l)Z'2~s(r'n)\ n "R1(m - i; n, r) 

s(m; n, r) = (3.7) 

From equations (2.6) and (3.1) we have 

k 
E (-l)rj ~1(m) s(m - r. + 1; n - e •, r) 
. _ r • - l J ~ ~ <7 ~ 

i?1(772; W, P) + W = -^i- (3.8) 
s(m; n, r) 

and s u b s t i t u t i n g fo r s(m - r- + 1; n - e •, r) and s(m; n, r) from (3 .7 ) y i e l d s 
( 3 . 2 ) . By d e f i n i t i o n , 

s(r'n + 1; n, r) 

s(r'n; n, r) ' R-,(r'n; n, r) = j — . r — , (3 .9 ) 
1 '^ ~» ~> ~ ' a(vfm n. r} K ' 

and since equation (2.2), for m = r'n + 1, becomes 

(r'n + 1)1 k n . 
s(r'n + 1; n, r) = (-1)̂ +1-* £ °- , (3.10) 

n ^ i £"1^-1(rJ. + D j i ^ 
£ = 1 i * 1 

by using equation (3.6), the required formula (3.4) is easily obtained. 
The special case k = 1 yields 

Proposition 3.2: A recurrence relation for the ratio R\(m, n, r), independent 
of the generalized Stirling numbers of the first kind, is given by 
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rn(m) m +1- vn 

(m)~ n R^m - r + I - i9 n - l9 v) 
R (m9 ft, p) + m = (3 .11) 

m - vn 
II RAm - £ , ft, p) 

i = l x 

for n > 1 and m > rn, w i th 

i?1(772, 1 , P ) = -77? ( 3 . 1 2 ) 

n / N P f t (p f t + 1 ) / o i o N 
R1(rn9 ft, p) = ^ + 1 (3 .13) 

A l so , fo r k - 1, v = 1, we o b t a i n 

Proposition 3.3: A r e c u r r e n c e r e l a t i o n fo r t h e r a t i o R1(m, ft), independent of 
t h e s imple S t i r l i n g numbers of the f i r s t k i n d , i s g iven by 

m + 1 - n 

Tl R1(m - i9 n - 1) 

R1(m9 n) + m = — (3 .14) 
II i?x(m - iy ri) 

i = l 
for ft > 1 and 777 > ft, wi th 

#3.(777, 1) = -w (3 .15) 
i?1(w, ft) = -n(n + l ) / 2 (3 .16) 

Proposition 3,4: An a l t e r n a t i v e r e c u r r e n c e r e l a t i o n fo r t h e r a t i o R± (m, ft, p ) 
i s g iven by 

[R1(m- 1, n , r )+7W- l ] i ? 1 ( w - r , ft.-l, P ) 
RAm, n9 r) + m = •—= =—7 : r (3 .17) 

i v ' 5 J m - P + 1 R1(jn - 1, ft, P ) 

for ft > 1 and 772 > Pft. R1(m9 1, P ) and .^ (p f t , ft, r) a r e g iven by (3 .12) and 
( 3 . 1 3 ) , r e s p e c t i v e l y . 

Proof: Using e q u a t i o n (2 .6 ) wi th k = 1, we have 
( - l ) P " 1 ( 7 ? 2 ) p _ 1 S ( 7 7 ? - P + 1 , ft - 1 , P ) 

RAm, ft, P) +77? = T r (3 .18) 
l v 5 ' y S(777, ft, P ) 

from which equation (3.17) can easily be derived. 

Applying Proposition 3.4 with p = 1 gives 

Proposition 3.5: An alternative recurrence relation for the ratio i? (TTZ, ft) is 
given by 

[i? (777 - 1 , ft) + 777 - l ] i ? (777 - 1 , ft - 1 ) 
£ , (772, ft) + 777 = — 7 : r ( 3 . 1 9 ) 

1 R1(rn - 1 , ft) 

f o r ft > 1 a n d 77? > ft. 
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h. MULTIPARAMETER STIRLING NUMBERS OF THE SECOND KIND 

The multiparameter Stirling numbers of the second kind S(m; n, P ) are de 
fined by their egf 

* j.m k i 

/„(*; S) = E Sim; n, v)— = U — 
m~v'n '* ^ = 1 * * j - 0 "J • . 

(4.1) 

Taking fe = 1, V-^-v gives the generalized Stirling numbers of the second kind, 
5(77?, n, p) (Charalambides [6]; taking k = 1, P = 1 defines the simple Sterling 
numbers 5(77?, n). The following properties of 5(777; n, P ) can easily be estab-
lished (cf. §2). 

a) They have the representation 

777' *-̂  K Ui 1 
5(77?; n, P ) • , ' , S n n ^ T * (4.2) 

where the summation extends over all ordered N-twples (N = n1 + ••• + n^) of 
integers x^ satisfying 

k nt 

xid > vt , i = 1, .. ., k and J] £ a?̂ . = 77?. 

b) They satisfy the following recurrence relations, 

S(m + 1; n, p) = il75(m; n, P ) + £ L/!. ^(m - vt + 1; n - ei9 P ) (4.3) 

5(w; n, P + et) = XI ("1)J Z— S(rn - JP^ ; n - jei9 r), (4.4) 
~ j-o j!(^0 J 

with i n i t i a l conditions 

5(0 ; 0, P ) = 1, 5(0; n , P ) = 0 whenever J2 rini > ° 
and ~ ~ (4.5) 

5(TT?; n, P ) = 0 if TT? < p ' n . 

These follow from the d i f fe rence /d i f fe ren t ia l equation 

4:fnVi *0 = » /„(* , E) + E / „ . . , ( * ; r ) * " " 1 / ^ - 1)! (4.6) 
a ^ ~ ~ ~ £ = i ~ ~ 

It can easily be seen that the representation (4.2) provides the following com-
binatorial interpretation in terms of occupancy numbers. 

Proposition 4,1: The number of ways of placing 777 distinguishable balls into 
N = n1 + •. . + rik cells so that each cell of the i t h group of m cells contains 
at least vt balls for i = 1, ..., k is equal to n1l ... nk\S(m; n, P ) if the 
N cells are distinguishable, and is equal to S(m; n, p) if only cells belong-
ing to different groups are distinguishable (and cells in the same group are 
alike). 

If is easily concluded from Proposition 4.1, or from (4.3)-(4.5), that the 
numbers S(m; n, P) are nonnegative integers. 
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5. RATIOS OF MULTIPARAMETER STIRLING NUMBERS OF THE SECOND KIND 

We define, as a ratio of multiparameter Stirling numbers of the second kind 
with respect to argument m9 the function 

S{m + 1; n, r) 
Ri(jn\ n9 r) = — — , r — . (5.1) 

zv ' -' ~y S(m; n9 r) v J 

Working as for Proposition 3.1, we obtain 

Proposition 5.1: A recurrence relation for the ratio R2(m; ?k> V) > independent 
of the multiparameter Stirling numbers of the second kind, is given by 

k \Vj - \J 3 J m + l-v'n 

£ (rfn) -n R ^ m - rj + 1 ~ *> * ~ Zj> £) 
-/ = ! \i rJ:)r- ^ = l 

R2(m; n9 r) - N = - — , (5.2) 
II R2(m - i, n9 r) 

i = 1 
for n > 1 and m > r rn , with 

R2(m9 1, r) = k (5.3) 

and 
A nd R2(r'n; n, v) = (r'n + 1)£ , * n - (5.4) 

The s p e c i a l c a s e fc = 1 y i e l d s 

Proposition 5.2: A r e c u r r e n c e r e l a t i o n f o r t h e r a t i o R2(m, n9 r ) , i n d e p e n d e n t 
of t h e g e n e r a l i z e d S t i r l i n g n u m b e r s of t h e s e c o n d k i n d , i s g i v e n by 

( r n ) . ^ i?2(m - r + 1 - i , n - 1 , i?) 
2°! m + l-vn 

R0(m9 n9 r) - n = — ( 5 . 5 ) 

f l R2(rn - i , n9 r) 

f o r n > 1 and m > r n , w i t h 

fl2(m, 1 , r ) = 1 ( 5 . 6 ) 
a n d 

R2(rn9 n9 r) = n ( r n + l ) / ( r + 1 ) . ( 5 . 7 ) 

A l s o f o r k = 1 , 3? = 1 we o b t a i n 

Proposition 5.3: A r e c u r r e n c e r e l a t i o n f o r t h e r a t i o R2(m9 n), i n d e p e n d e n t of 
t h e u s u a l S t i r l i n g n u m b e r s of t h e s e c o n d k i n d , i s g i v e n by 

m + l-n 
II R2(m - i , n - 1) 

£ = 1 
#o(Wi n) - n = , ( 5 . 8 ) 
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for n > 1 and m > n, with 

R2{my 1) = 1 (5.9) 
and 

R2(n, n) = n(n + l)/2. (5.10) 

Proposition 5.4: An alternative recurrence relation for the ratio R2(m, n, r) 
is given by 

^ [R2(m - 1, n, p) - n]Z?2(?w. - P, n - 1, P ) 
R9(m, n, p) - n = —: — 7 , (5,11) 
2 m - v + 1 R2(m - I, n, r) v y 

for n > 1 and m > rn. 

Applying Proposition 5.4 with p = 1 gives 

Proposition 5.5: An alternative recurrence relation for the ratio R2(m, ri), is 
given by 

[Rz(m - 1, n) - n]R2(m - 1, n - 1) 
^ ( m ' w ) " " = fl2(m - 1, n) » (5'12) 

for n > 1 and w > n. 

The last relation was also derived by Berg [1]. 

6. MULTIPARAMETER ^-NUMBERS 

The multiparameter C-numbers, CQn; n, s, P ) 9 are defined by their egf 

k JZL . -t-m «- 1 „ <- - /q.\ 

W S> ?) = E C(m; n, e, P)-^ = n " V K1 + *) * " E ( I) 
^ - 1 

J=0 
(6.1) 

where the ŝ  ^ 0, £ = 1, . . ., /c, are any real numbers. 
Taking fc = 1 gives the generalized C-numbers (Charalambides [6]) and k = 1, 

Pi = 1 defines the simple (7-numbers (Cacoullos and Charalambides [5], Charalam-
bides [8]. 

The following properties of C(m; n, §, r) are easily verified. 

a) They have the representation 

C(m; n, g, r) - ml £ ft n (** ) , (6.2) 

where the summation extends over all ordered #-tuples (N = n1 + ••• + nk) of 
integers x^ satisfying 

k ni 
xio > Ti > *- = l> '' ' > k and E E %ij = rn. 

i = l j = 1 

b) They satisfy the following recurrence relations, 

C(m + 1; n, s, P ) = (sfn - m)C(m; n, s9 P ) 
~ * I m \ ( 6 ' 3 ) 

+ E [r, _ 1 ) ( s t ) ^ . C{m-vi + 1; n - g i 5 g, P ) 
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and 

C(m; n, s, v + g i) = £ ( - i ) ^ _ ^ _ / ^ V ^ ( ^ ̂  . n - j € i , g, P) , (6.4) 
j = 0 ^• V i / • 

with initial conditions 

C(0; 0, s, v) = 1, C(w; n, s, p) = 0 when m < rrn. 

They are obtained from the difference/differential equation 

(1 + t )3F f Pa ( t ; s* r) = $'*%&> $> & + ? (r. - 1)! ̂ ""^a-g*^ 6, £)-" (6.5) 

The representation (6.2) leads us to the following interpretation of the 
C(m; n, s, v)-numbers in the framework of coupon-collecting problems. 

Consider an urn containing k groups (sets) of distinguishable balls; the 
ith group consists of s^n^ balls and is divided into equal subgroups (subsets) 
of S-i balls each bearing the numbers 1, . .., n^; moreover, suppose the balls of 
the k groups are distinguished by different colors so that each ball in the urn 
is distinguished by its color and number. Now it is easily seen from (6.2) that 

Proposition 6.1: The number of ways of selecting m balls out of an urn with 

k 

i = l 

distinguishable balls, divided into k groups by color and number as above into 
ni subsets of size si within the ith subgroup, so that each number 1, ..., ni 
of the i t h subgroup (color) appears at least r^ times is equal to 

n1\ . . . n \ k-
•C(m; n, s, r) . (6.6) 

Here it was assumed that s^ is a positive integer. If s^ is a negative 
integer, say s. - -s?, then 

ri ri (_8 i ) = n ri ( : s ? ) = n fi (-DXiJ Is' +' ** ~ l) (6.7) 
. i = l j ' s l r i i / i = 1 3 = 1 \ xij I i = 1 j = 1 \ ^ V / 

and from (6.2) it can be concluded that the sign of C(m; n, s, r) is the same 
as (~l)m . Furthermore, we may deduce 

Proposition 6.2: The number of ways of distributing m (m^r'n) nondistinguish-
able balls into s*'n cells, divided into k groups of cells with s^n-i cells in 
the i t h group and ni subgroups each of si cells in the i t h group, so that each 
subgroup of the {. group contains at least r- balls is equal to 

n ! .. . n, ! 
1

 m{ \C(m; n, -g*, r) | . (6.8) 

As an indication of the applicability of the multiparameter C-numbers in 
occupancy problems, we refer to a problem posed by Sobel et al. [12, p. 52]. 
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Signless Multiparameter ff-Numbers 

From the basic recurrence relation (6.3) or from the last two propositions, 
we conclude that: 

a) for Si > 0 an integer, the numbers C(m; n, s, r) are nonnegative inte-
gers; they are positive for v rn ̂  m ̂  srn; otherwise zero; 

b) for s^ < 0 an integer, the numbers C(m; n, s, r) are integers having the 
sign of (~l)m . 

Thus, as in the case of the Stirling numbers of the first kind, Riordan [10], 
the positive numbers 

\c(m; n, -s*, r)\ = (-lfc(m; n, -s*, r) (6.9) 

will be called signless multiparameter C-numbers. 
It can easily be verified that 

Proposition 6.3: The egf of the signless multiparameter C-numbers 

\C(m; n, -§, r) | , 

s^ > 0, £ = 1, ..., k, is given by 

k 
<P*(t; -s, r) = O ITTT 

^ = 1 ^ 
(i - tySi - r£ ( - 1 ) J ' ( / ' )^ | l- (6-1Q) 

Remark; It should be observed that this is exactly the egf required for the 
treatment of the mvue problem in the negative binomial case when the probabil-
ity function of the ith sample is 

^ - *«> - who(" * :;r Y"'1 - ̂  
== (-l)Xii " S M 9 ^ ( 1 - d)Si (6.11) 

\xij I 
with 

j' = o 

7. RATIOS OF MULTIPARAMETER C-NUMBERS 

0(0, 2-) = (1 - 9)"Si - £ (-DJ"( f*W, i = 1, ..., fc. (6.12) 
i = 0 W / 

We define, as a ratio of multiparameter C-numbers with respect to argument 
777, the function 

Ro(m; n, s, r) ^/ ^ N (7.1) 
3V ' ~ ~ ~y C(m; n, s, r) 

Proposition 7,1: A recurrence relation for the ratio R3(m, n, s, r) , indepen-
dent of the multiparameter C-numbers, is given by 
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R3(m; n9 s9. r) + m - s'n 

k \p. _ l)^SJ^rj U3 m + l-r'n 
£ — " 7T^ II Rz(m - r. + 1 - i, n - e-9 s, r) 

<?' = 1 (r'n)Pj (̂ ) i = i J J 

m- v'n 
II RAm - i , n9 s9 r) 

i = 1 i ~ ~ ~ 

for n > 1 and m > rrn9 with 

(7.2) 

(7.3) 
and i?3(m, 1, s, r) = s - ??? 

R3(rTn; n, s, r) = (r'n + 1) 2* —7 +~T)—* (7.4) 

Proposition 7.2: A recurrence relation for the ratio R$(rn9 n9 s9 r)9 indepen-
dent of the generalized C-numbers (case k = 1), is given by 

II R3(m-r+l-i, n - 1 , s9 r) 
(rnh(t) 

R3(m9 n9 s, r) +m - sn = — : , ( 7 . 5 ) 
m-vn 

0 RAm - i9 n9 s, r) 
i = i d 

for n > 1 and m > vn9 w i th 
R3(m9 1, s , r ) = s - m ( 7 . 6 ) 

and 
R3(rn9 n9 s9 r) = n ( r n + 1 ) ( s - r ) / ( r + 1 ) . ( 7 . 7 ) 

Proposition 7.3: A r e c u r r e n c e r e l a t i o n for t h e r a t i o R3(m> n9 s) 9 independent 
of t he u s u a l C-numbers (case v = 1 ) , i s g iven by 

m + l-n 
II R3(m - i9 n - 1, s) 

R3(m9 n9 s) + m - sn = - I l i ^ — = , ( 7 . 8 ) 
I ! R3(m - i9 n9 s) 

i = l 
fo r n > 1 and m > n , w i th 

i?3(m, 1, s ) = s - m ( 7 - 9 ) 
and 

i?3(n5 n , s) = (s - l)n(n + l ) / 2 . (7 .10) 

Proposition 7.4: An a l t e r n a t i v e r e c u r r e n c e r e l a t i o n for t h e r a t i o R3(m, n9 s9 r) 
i s g iven by 

R3{m9 n9 s9 r)+m-sn 

m [R3(m- 1, n , s9 r) +m- sn- l]R3(m- r, n - 1 , s9 r) 

m-r+l R(m- l9 n9 s9 r) 
(7 .11) 

fo r n > 1 and 777 > m . 
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Proposition 7.5: An alternative recurrence relation for the ratio R3(m9 n, s) 
is given by 

[R3(m- 1, n, s) + m- sn- l]R3(m- 1, n- 1, s) 
S3(m, n, s ) + „ - s n = ^ i?3 ( w- l, „, a) : ' (7"12) 

for n > 1 and 77? > n. 

8. RELATIONS BETWEEN THE STIRLING AND ONUMBERS 

It was observed in Cacoullos and Charalambides [5] that 

lim s-mC(m, n, s) = S(m9 n); (8.1) 
Si -> ±00 

i.e., the C-numbers can be approximated by the Stirling numbers of the second 
kind for large s, a fact that reflects the corresponding well-known convergence 
of the binomial to the Poisson (s ->- °°, p -* 0, i.e., 0 = p/q ->- 0 and, hence, sp 
or 30 converges to the Poisson parameter A). The above property extends to the 
case of multiparameter Stirling numbers of the second kind and multiparameter 
C-numbers; namely, 

lim slmC(m; n, s, r) = S(m; n, r), i = 1, ..., k. (8.2) 
S^ ->• +oo ~ ~ ~ ~ ~ 

This can be verified by using the corresponding representations (4.2) and 
(6.2) of these numbers and noting that 

l im s~k ( ? ) = l/kl. (8 .3 ) 
Si -> ±oo \ K J 

A relationship between the signless multiparameter Stirling numbers of the 
first kind and the multiparameter C-numbers reflects the limiting relationship 
between the negative binomial and the logarithmic series distributions: 

lim s:N \C(m; n, -g, r)| = \s(m; n> £)I> N = ni + *•• + nk' (8.4) 

This can be seen, e.g., by showing that the egf of the s}N \C(m, n, -s, £) | -
numbers converge to the egf of the |S(TT?; n, r)|-numbers; i.e., 

iim -^n-Vfa - t)"Si - "E (-DJ'(7£) t-7 

A^T[-log(l - t) - £ \ (8.5) 

For this, note that 

-(-l)J'(~f)tJ' — r ; ^ . (8 .6 ) 
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1. INTRODUCTION 

In a recent paper, Kalman [3] derives many interesting properties of gen-
eralized Fibonacci numbers. In this paper, we take a different approach and 
derive some other interesting properties of matrices of generalized Fibonacci 
numbers. As an application of such properties, we construct an efficient algo-
rithm for computing matrices of generalized Fibonacci numbers. 

The topic of generalized Fibonacci sequences discussed here is related to 
the theory of polyphase sorting in an interesting way; in fact, it is used in 
optimizing the polyphase sort (see[l] and [7]). The theory of polyphase sort-
ing, in return, helps shape the construction of a fast algorithm for computing 
the order-fc Fibonacci numbers in 0(k2 log ri) steps (see [2] and [5]). 

2. DEFINITIONS 

Define k sequences of generalized order-fc Fibonacci numbers, for some k ^ 2, 
as follows: 

£ F?~\ for 1 < t < fc, (1) 

where F* is the nth Fibonacci number of the t sequence. We may arrange these 
k sequences in k columns extending to infinity in both directions. Define the 
window at level n, Wn , to be the k x k matrix of generalized Fibonacci numbers 
such that 

W (a?,), for 1 < i , 0 < k, (2) 

where a"̂  = Fj n-k + i 
A set of initial values of these k sequences, defined by (1), may be given 

by 
1, t = n + k 

, for 1 - k < n < 0. 
0, otherwise 

(3) 

In other words, W0 is the k x k identity matrix. 
By an application of (l)-(3), we deduce that 

Ft 1, for 1 < t < (4) 

In consequence, we have 

wl = 

0 
0 
0 
• 

0 
1 

1 
0 
0 
• 
0 
1 

0 . 
1 . 
0 . 
'• 

0 . 
1 . 

. 0 

. 0 

. 0 
; 

. 1 

. 1 

(5) 
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To derive the nth Fibonacci number such that n < -k, we simply invert (1): 

Ft = Ftn + k - EV + *> for Kt<k. (6) 
i = l 

In this way, the k columns can be extended to infinity in both directions, 
starting from the identity matrix, WQ. 

3. SOME PROPERTIES 

By the definition of generalized order-fc Fibonacci numbers, we have 

Wn = VI^n_Y. (7) 

In other words, W± maybe viewed as a row operator as it shifts a window verti-
cally by one level. From (7), we derive 

Wn = WlW0 • (8) 

Since W0 = T, we have just derived 

K = ̂  - (9) 

Abbreviating W1 as W9 we may write Wn for W . 
As a consequence of (9), we have 

K = ̂ n - l = ̂ -1^1- (10) 

The above equation shows that matrix multiplication of windows is commutative. 
Indeed, {Wn \n £ Z} is an infinite cyclic group and satisfies the usual laws of 
exponents. 

From Wn = Wn_1W1, we obtain the following two equations relating elements 
of two adjacent rows; 

and 
pn = pn-l + Fn-19 fOT 2 < t <ks (11) 

Fl = F^~\ (12) 

Interestingly, these two equations are foundational to the basic theory of poly-
phase sorting [1], The nth row of Fibonacci numbers is precisely the so-called 
ideal distribution in the sorting context. 

More interestingly, the column and row recursions of windows can be inter-
preted as follows. Multiplying by W on the left of any window has the effect 
of rolling the window down, exposing a window at the next level. More generally, 
multiplying two windows at levels v and c9 respectively, may be viewed as roll-
ing the window at level o down by r levels, with the resulting window placed at 
level (r + o), i.e., 

W*+° = wrW°, (13) 

where v and o are any integers. In contrast, multiplying any window by W on 
the right has the effect of bringing the row recursion into play. If 

7? = \JPnTPn JP 
k-
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is the nth row of Fibonacci numbers (therefore, the last row of Wn)9 then the 
(n+ l)s t row, 

may be obtained by: 

a) shifting each element of Rn one position to the right (filling the va-
cant position with a zero and truncating the element, F/2, moved out of place); 

and 

b) adding the truncated element, F£9 to each entry. 

These two steps may be illustrated as follows: 

[Fl F* . . . F£] + [ 0 ? ; . . . ^ ] (*"*" dr° Ps o u t) 

We see, from the above discussions, that matrix W contains the mechanisms 
for computing (1), (11), and (12). Surprisingly, to compute generalized Fibo-
nacci numbers, (1) need not be used directly; instead, (11), (12), and (13) are 
used. 

k. APPLICATIONS 

As an application of the interesting properties of windows, discussed pre-
viously, we describe the construction of a fast algorithm for computing gener-
alized Fibonacci numbers. Paradoxically, when n is large, it is faster to 
compute the nth Fibonacci number by using the matrix method discussed in the 
previous two sections than by using (1) alone (see [2] and [5]). As shown in 
equation (13), it is possible to increase the exponent of W through matrix mul-
tiplication, by treating each window as a single entity. In hand calculation 
or in computer implementation, it is desired to keep v = a so that (1) only one 
kx k matrix needs to be maintained during the computation and (2) the destina-
tion level can be reached in the shortest time. 

Note that any positive integer n can be expressed in terms of the binary 
representation: 

n = Z *;2\ (15) 

where x^ = 0 or 1. Therefore, we may write 

wn = n w2\ (i6) 
Xi = 1 

If an algorithm starts with the window at level 1 and doubles the window level 
each time, then Wn can be reached in 0(log n) steps. However, this approach 
requires two matrix multiplications: one for matrix squaring, another for ac-
cumulating the result by applying (16) (see Urbanek's implementation [5]). We 
now give an algorithm for computing the generalized order-fc Fibonacci numbers, 
which is better than the algorithm given by Urbanek because it requires only 
one matrix multiplication per cycle. 

Note that (15) can be rewritten as follows: 

n = (...((1 * 2 + arJ-_1) *2 + x^_2) * 2...) * 2 + x0, (17) 

where J is the smallest positive integer such that n < 2J+ , and xi = 0 or 1. 
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Consequently, we have 

^n _ ^(...((l*2 + fcJ--1)*2 + x7--2)*2...)*2+a:0 

= (...((W2*WX;i-1)2*WXj'-2)2*WXo. (18) 

For instance, 

W25 = rv7(((1*2 + 1 ) * 2 + 0 ) * 2 + ° ) * 2 + l 

= (((W2* W)2)2)2W. 

Equation (18) shows that, by working from the central parenthetical quantity 
outwards, Wn can be computed through successive steps requiring either matrix 
squaring or matrix squaring followed by multiplying by ft/. Fortunately, multi-
plying by W can be accomplished by applying (11) and (12) without the need of 
matrix multiplication. 

An efficient algorithm for implementing the ideas described above is best 
based on the following recursive expressions: 

( (Wn/2)2, n is even 
Wn = I 

{ (Wln/2])2W, n is odd, 
and 

W1 = W. 

The details of the algorithm are presented below using a programming notation 
commonly used in Computer Science (see [6]). Note that (n d iv 2) = [n/2\, and 
that A[1,] is row I of A. 

funct ion Fibonacci (n, k : integer) : integer; 

{Given n £ Z and k ^ 2, this function returns F£ as a result.} 

var A : k x k matrix; 

procedure Window (n : integer); 

{Compute W .} 

var R : 1 x k matrix; 

beg i n 

_i_f n = 1 then A := W"1 

else beg? n 

Window (n div 2); 

R : = A [ 1 J * A; {R = Wm[l J * Wm, m = n div 2} 
i f odd(n) then 

A[1 , ] := R * W1 { A [ 1 J = W2m[1,] * W} 
else A [1 , ] := R; { A [ 1 j = W2m[1 , ] } 
Compute rows 2 to k of A from previous rows 
end 

end {Window}; 
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begin 

i f n = 0 then return (1); 

jJL n < 0 then 

begin 

Window(-n) ; 

Inverse {inverse matrix A} 

end 

else Wi ndow (n); 

return (A[k,k]) 

end {Fibonacci}; 

The procedure "Window" is called recursively for achieving the effect of 
starting the computation from the innermost pair of brackets of (18). It halves 
the value of n per recursion, truncating the remainder for odd n, and terminates 
the recursion when n is reduced to 1. In the last recursive activation, matrix 
A is initialized to W1. Thus, the number of activations of Window is 0(log ri) . 
In contrast, a direct application of (1) takes 0(n) steps. 

Note that every row of a window satisfies (14). Therefore, in squaring a 
window, it is unnecessary to compute the value of every element of the result-
ing window by matrix multiplication (where a total of k3 multiplicative opera-
tions would be required). Instead, we compute the first row of the resulting 
window as i[l,] * A (see the procedure Window), and then compute the remaining 
rows by using (11) and (12). In this case, k2 multiplicative operations are 
needed for squaring a window. Note further that, if the level of a window is 
odd,a fine adjustment of the window by multiplying it by W is required. Again 
this operation can be carried out economically by using (11) and (12). If such 
an adjustment is required, it is more economical to carry it out immediately 
after A[l,] * A is computed than otherwise; hence, the test for odd(n), and 
R* W1 in the procedure Window. Thus, the total number of multiplicative opera-
tions per procedure call of Window is k2. 

Since the cost of computation of additions is negligible in comparing with 
that of multiplications, it is ignored in the calculation of cost. Thus, the 
overall running time of this algorithm is Q(k2 log ri) . In contrast, Urbanek's 
implementation [5] requires two matrix multiplications. Since the probability 
of carrying out the second matrix multiplication is 0.5, the overall running 
time for his algorithm is 0(1.5k2 log ri) , taking into account that matrix mul-
tiplications could be done in 0(k2) steps. Our algorithm thus runs 33% faster 
than Urbanek?s algorithm. Moreover, our algorithm supports the computation of 
-nth Fibonacci numbers, as seen in the procedure Fibonacci, which is not ad-
dressed in [2] and [5]. Alternatively, it is computationally faster by making 
procedure Window take the initial window as a second parameter. If n < 0, W"1 

is passed as a second parameter to Window; whereas, if n > 0, W is passed as 
a parameter. 

For an interesting application of the generalized order-?!: Fibonacci numbers 
to the polyphase sorting, the reader is referred to [1]. 
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5. REMARKS 

The material presented here could easily be adapted to computing solutions 
of linear difference equations with constant coefficients [4]. This is left 
as an exercise for the interested reader. 
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1. INTRODUCTION 

Throughout this paper n and k will denote positive integers that exceed 2. 
With or without a subscript, p will denote a prime, and the ith odd prime will 
be symbolized by P^. If d is a positive integer such that d\n and (d9n/d) = 1, 
then d is said to be a unitary divisor of n. The sum of al.1 of the unitary 
divisors of n is symbolized by 0*(n). If n = p^p^2 ••• Pas » where the p. are 
distinct and a^ > 0 for all i, then it is easy to see that 

o*(n) - FI (1 + paO (1) 
i-i l 

and that O* is a multiplicative function. 
Subbarao and Warren [2] have defined n to be a unitary perfect number if 

O \n) - 2n. Five unitary perfect numbers have been found (see [3]). The small-
est is 6, the largest has 24 digits. Harris and Subbarao [1] have defined n to 
be a unitary muttipevfect number* (UMP) if a*(w) = kn, where k > 2. We know of 
no example of a unitary multiperfect number and, as we shall see, if one exists 
it must be very large. 

Suppose first that n = p^pp ••• Pas > where n is odd and o*(n) = kn. As-
sume that k = 2aM, where l\M and c > 0. Then, since 

2|(1 + p a O for i = 1, 2, ..., s, 

it follows from (1) that s < c. Also, 

2CM = k = o*(n)/n = fl (1 + p7ai) < 2s < 2e, 
i = l z 

which is a contradiction. We have proved 

Theorem 1: There are no odd unitary multiperfect numbers. 

This result was stated in [1], Its proof is included here for the sake of 
completeness. 

2. LOWER BOUNDS FOR UNITARY MULTIPERFECT NUMBERS 

We assume from now on that 

t 
n = 2a fl pa\ where aa^ > 0 and 3 < p1 < p2 < -• • < p . (2) 

i = i ^ 

Also, o*(n) = kn, so that 

k = o*(n)/n = (1 + 2"a) n (1 + p:ai). (3) 
i = l ^ 
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Since z|(1 + p?*) , it follows from (1) and (2) that t < a + 2 if fc = 4, and 
t ^ a + 1 if k = 6. Therefore, since 1 + x"1 is monotonic decreasing for x > 0., 
it follows from (3), if k = 4 or 6, that 

4 < k < (1 + 2"a) A (1 + P;1) < (1 + 2-a)an2(l + P^1) = F(a). 
i=1 i=i 

A computer run showed that F(a) < 4 for a ̂  48. Therefore, a ̂  49 if fc = 4 or 
6. Also, from (3), 

4 < fc < (1 + 2_if9) n (1 + P"1) = G(t). 
i = i ^ 

Since (7(50) < 4, we see that £ ̂  51. Thus 

n > 2fy9IlP, > 1 0 1 1 0 i f fe = 4 or 6. 
I f k > 8, then 

8 < fe < 1.5 n a + p;1) = ^<t). 

A computer run showed that H(t) < 8 for t < 246. Therefore, if fe > 8, t > 247 
and 

n> 2UP-C > 10663. 
£ = i 

Now suppose that fc is odd and k ^ 5. Since 2| (1 + p?0» w e s e e that t < a. 
Also, from (3), 

5 < k < (1 + 2"a) fl (1 + P71) = J-(a); 
i = l ^ 

and since J"(a) < 5 for a < 165, it follows that a > 166. Moreover, 

5 < k < (1 + 2"166) Jl (1 + P71) = *(*), 
i = i ^ 

and since Z(165) < 5, we see that t > 166. Therefore, if & > 5 and k is odd, 
then 

n > 2 1 G 6 n P€ > lO^61. 
i = l 

Theorem 2: Suppose that n is a IMP with t distinct odd prime factors and that 
d*(n) = kn. If fc > 8, then n > 10663 and t > 247. If fc = 4 or 6, then n > 10110, 
t > 51, and 2h*\n. If fc is odd and k > 5, then n > 10461, t > 166, and 2166|n. 

3. UNITARY TRI PERFECT NUMBERS 

If o*(n) = 3n, n will be said to be a unitary triperfeot number. Through-
out this section we assume that n is such a number. We shall denote by q^ the 
i t h prime congruent to 1 modulo 3 and by Q^ the i t h prime congruent to 2 modu-
lo 3. If 3/fn, then £ < a and, from (3), 

a+l 

3 < (1 + 2"a) n (1 + P*1) - Ha). 
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Since L(a) < 3 for a < 49, we see that a > 50. Also, 

3 < (i + 2~50)tn1(i + P:1) = M(t), 
1 = 2 ^ 

and since M(49) < 3, it follows that t ^ 50. And, finally, since 3||a*(n) and 
3|(1 + p) if p = 2 (mod 3), we see that 

46 

n > 25052ll217223jl qi > 10105. (Note that qh& = 523.) 

If 3||n, then £ ̂  a - 1, since 

3 • 2a n pa^ = (i + 2a) (4) n (i + p a o . 
i = l'z- i = 2 ^ 

From (3), 

3 = (i + 2-a)(4/3) n (i + p;an < a + 2-a) an d + p:1) = AKOO, 

and since 21/(a) < 3 for a < 16, we see that a > 17. Also, 32||a*(n) and 3| (1 + p) 
if p = 2 (mod 3). Therefore, since 1 + x'1 is monotonic decreasing for x > 0, 
and since 

40 

(1 + 2"17)(4/3)(6/5)(12/11)(290/172) II (1 + aT1) < 3, 
i = l ^ 

it follows from (3) that t > 45. Thus, a > 46 and 

41 

n > 2I+63 • 5 • 11 • 172 II qi > 10 1 0 7 . (Note that q = 439.) 
£ = 1 ^ 

If 32||n, then t < a and, from (3) , 

3 < (1 + 2 ' a ) (10 /9) ft (1 + P"1) = i?(ot). 
•£ = 2 

a > 32, since 2?(a) < 3 for a < 31. Also, 33||a*(n) and 3 |(1 + p) if p = 2 (mod 
3) . Therefore, since 

(1 + 2"3 2) (10/9)(6/5)(12/11)(24/23)(290/172) ft d + « : 2 ) II (1 + q-.1) < 3 , 
J = 5 J i = l ^ 

we see that t > 237. (S8 = 53 and q227 = 3307.) Thus, a > 237 and 

n > 2237(5 •' 11 • 23) (3 • 17 • 29 • 41 • 47 • 53)2 X\qi> 10779. 
i = l 

If 33||n, then t < a - 1 and 
a - l 

3 < (1 + 2"a) (28/27) II (1 + P/ 1 ) = S(a). 
i = 2 

Since S(a) < 3 for a < 43, we see that a > 44. Also, 3k\\o*(n) and 3 | (1 .+ p) if 
p = 2 (mod 3). Therefore, since 
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(1 + 2-lf4)(28/27)(6/5)(12/ll)(18/17) ff (1 + O IlV + q'.1) < 3, 

we conclude that t > 544. (Q12 = 89 and q53Q = 8623.) Thus, a > 545 and 

n > 25 4 533 - 5 - 1 1 - n f f g f n 1 ^ > io 2 0 2 6 . 
If 3^^, then £ < a and 

3 < (1 + 2"a) (82/81) ft (1 + P'1) = T(a). 
i = 2 V 

Since T(a) < 3 for a < 47, it follows that a > 48. From (3), 

3 < (1 + 2"lf8)(82/81) n (1 + P;1) = U(t), 

and since Z7(47) < 3, we conclude that t > 48 and 

n > 2Lf83tf O P- > 10102. 
i = 2 V 

We summarize these results in the following theorem. 

Theorem 3: Suppose that n is a unitary triperfect number with t distinct odd 
prime factors. Then t > 45, n > 10102, and 2lf6|n. If 32||n, then t > 237, n > 
10779, and 2237|n. If 33||Vz, then t > 544, n > 102 0 2 6, and 25h5\n. 
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ON THE ASYMPTOTIC PROPORTIONS OF ZEROS AND ONES 
IN FIBONACCI SEQUENCES 

PETER H. ST. JOHN 
Computer Sciences Corp., Piscataway, NJ 08854 

(Submitted July 1982) 

By "Fibonacci sequence" we mean a binary sequence such that no two one's, 
say, are consecutive, with unrestricted first entry; hence, the number of such 
sequences of length n is f +1» 

It is understood that 

fn = can + ~can w i t h a = 1 "̂  5 ( t h e "golden r a t i o " ) , (1) 

5 + A/5 - , , -
c = —T-r—, a = 1 - a and o = 1 - o. 

We denote by p and q the asymptotic proportions of zeros and ones, respec-
tively, in Fibonacci sequences, so that p + q = 1. We will show 

Theorem: 

p = c and q = ~c. (2) 

Let wn be the total number of ones in all Fibonacci sequences of length n; 
hence, 0)0 = 0 and u^ = 1. Since the total number of ones in all n-sequences is 
the number in all (n - 1)-sequences, with zeros appended to the ends, plus the 
number in all (n - 2)-sequences, with zero-ones appended, plus the number of 
ones in those zero-ones, we have 

03n = Wn_l + ^n-2 + fn-1- (3) 

We know that such a recursion [1, p. 101] gives 

n 
Wn + 1 = Z fkfn-k' <4> 

k = 0 

The proportion of ones is the number of ones divided by the number of en-
tries—n per sequence times fn+1 sequences—so we define 

and q = lim qn. (5) 

Clearly, the limit exists and is less than 1/2, as the ones are restricted 
but the zeros are not. 

From (1) and (4), we have 

0)n + 1 = ^ (eak +~oak)(can~k +-5an~k) (6a) 
k = o 

n 
^n + i = ( n + l)(o2an + ~c2an) + do Y,{ak~ak~n + a n _ 7 c a f e ) . (6b) 

k = 0 

As aa" = -1, the indexed sum on the right of (6b) is 
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cc'£[(-l)kaLn-2k + (-l)kan~2k] (7a) 
k = Q 

and by inverting the order of summation on the left, 

loo £)(-!)""V"2* (7b) 
k = 0 

which is clearly less than 
a2n + 2 - 1 led = o(nan) (7c) 
an(a2 - 1) 

f(n) where f(n) = o(g(n)) means lim •; { = 0 . 

Substituting (7c) into (6b), and thence into (5), we have 

a2an + ~c2an , ,1N /ON 

^ + i = — — + * a > ; (8) 

as a > 1 and | a | < 15 and t a k i n g n -> °°, 

_£_ = 5 +V/5 . 2 _ 5 - A = 

" a * 10 3 + A 10 ' W 

and hence t he theorem. 
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AND A—IN-A-ROW PROBLEMS 
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1. INTRODUCTION AND SUMMARY 

In what follows, we use the Fibonacci sequences of order k9 as for example 
in Philippou and Muwafi [2] (although modified somewhat here), and the Pascal-
T triangles, as in Turner [6], to solve a number of enumeration problems involv-
ing the number of binary numbers of length n which have (or do not have) a 
string of k consecutive ones, subject to various auxilliary conditions (no k 
consecutive ones, exactly ks at least k, and so on). Collectively, these kinds 
of problems might be labelled fc-in-a-row problems, and they have a number of 
interpretations and applications (a few of which are discussed in §4): combina-
torics (menage problems), statistics (runs problems), probability (reliability 
theory), number theory (compositions with specified largest part). Generating 
functions, inclusion-exclusion arguments, and the like, are perhaps most com-
monly used in these problems, but the methods developed here are simple, sur-
prisingly effective, and computationally efficient. Finally, we note that al-
though the string length n is fixed here, some of our results will also apply 
to parts of [2], [5], [6] (cf.,, e.g., the Corollary to Theorem 3.1), which dis-
cuss the problem of waiting for the kth consecutive success, since the situa-
tion there is in some respects essentially that of having a fixed string length 
of size n + k. 

Definitions and constructions are in §2, the enumeration theorems are in 
§3, and §4 gives several examples of their use. 

2. MODIFIED ^-SEQUENCES, AND TRIANGLES T 

We need a slightly altered version of the usual definition of a Fibonacci 
sequence of order k9 one that omits the leading 0, 1. 

Definition 2.1: The sequence {/&(n)}£=0, k > 0, is said to be the modified 
Fibonacci sequence of order k if fQ(n) = 0, f1(n) = 1, and for k ^ 2, 

( 2n
t 0 < n < k - 1 

It will prove convenient to have a notation for the corresponding Pascal-^7 

triangles of order k. 

Definition 2.2: For any k ^ 0, T^ is the array whose rows are indexed by N = 
0, 1, 2, ..., and columns by K = 0, 1, 2, ..., and whose entries are obtained 
as follows: 

a) ̂ o is the all-zero array; 
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b) T1 is the array all of whose rows consist of a one followed by zeros; 

c) Tk, k > 2, is the array whose N= 0 row is a one followed by zeros, whose 
N= 1 row is fc ones followed by zeros, and any of whose entries in subse-
quent rows is the sum of the k entries just above and to the left in the 
preceding row (with zeros making up any shortage near the left-hand 
edge). 

Definition 2,3: In Tk , denote the entry at the intersection of row N and col-
umn Z by Ck(N, Z). 

T2 is of course the Pascal triangle, and we will denote its entries by ($). 
We note that the Tk can be tabulated for moderate values of N, K and can be 
considered as available as a binomial table. For k > 0, by construction there 
are (N(k - 1)+ 1) nonzero entries in each row, the symmetry relation among the 
Ck is 

Ck(N9 Z) = Ck(N, N(k - 1) - Z), 0 < K < N(k - 1), (2.2) 

and the relation among the Ck in adjacent rows is 

k-i 
Ck(N, K) = E Ck(N - 1, K - j)i (2.3) 

j = o 

here N9 Z, and k are nonnegative, an empty sum is taken to be zero, and any Ck 
with either argument negative is zero. That is, (2.3) just expresses property 
(c) of the definition of Tk* Also by construction, the relation between the fk 
and the Cv is 

K n 
fk(n) = E Ck(n - J + 1. J)> (2-4) 

J-0 

so that the fk(n) are also given by the successive southwest-northeast diag-
onals of Tk [starting with the (1,0) entry]. This follows from the recurrence 
in the definition of fk(n) and that fact that, by (2.3), each element in the 
diagonal making up fk(n) is a sum of k preceding elements. 

Definition 2. 4: Denote by $pk the number of binary numbers of length n which 
have a total of p ones and a longest string of exactly k consecutive ones. For 
any k ^ 2, define the 5^-array to be 

$k+i, k $k + i, k + i 

Pn,k Pn.fe + l ' pnn 

in which the row elements are associated with a fixed total number of ones, and 
the column elements with a fixed number of consecutive ones. 

3. ENUMERATION THEOREMS 

Theorem 3.1: The number of binary numbers of length n which have no k consecu-
tive ones is given by fk (n), n > 0. 
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Proof: Let gin) enumerate the numbers having the property stated. Then we 
have, schematically. 

I n 1 = [ n - 1 1 o] + 1 n - 2 | ofl + ••• + | n - k \ 011...1 1 , 
* , ' « „ * y „ « , » 

gin) gin- I) gin- 2) gin-k) 

with g{n) satisfying the same initial conditions as in (2.1), and so g(n) is 
just fk(n). 

Corollary 3.1: The number of binary numbers of length n which end with k con-
secutive ones but have no other string of k consecutive ones is given by 

fkin - k - 1), n > k, 
and with fki~l) = 1. 

Proof: We know that fk in - 1) enumerates the binary strings of length 
in - 1) with no k consecutive ones. These, however, form (with one zero at the 
end) the "first half" of the strings of length n. Thus, passing from fk(n) to 
fkin - 1) amounts to stripping the last one from the strings in the "last half" 
of the strings of length n. Continuing the argument in this way, we come to 
fkin - k - I), which enumerates the strings of length n - k that end with a 
zero. But, when a string of k consecutive ones is appended, these are precisely 
the configurations we wish to count. 

Remark 3.1: These two results can also be obtained from the work of Philippou 
and Muwafi [2], For k > 2, our fk in) is their sequence f£+\, n > 0. Then, 
Theorem 3.1 follows from the results in [2], since their a^p is 

4 W = <#+i(/> = 4 + i = fn+\ -fkW,n> 0, 

and Corollary 3.1 is equivalent to their Lemma 2.2. 

Theorem 3.2; The number of binary numbers of length n which have a longest 
string of exactly k consecutive ones is given by f^+1in) - fkin)9 n ^ 1. 

Proof: By Theorem 3.1, (2n - fkin)) is the number of configurations with 
k or more consecutive ones; (2n - fk+1W) is the number with (k + 1) or more 
consecutive ones. Their difference is the number with exactly k. 

Corollary 3.2: The column sums of the Bk -array are given by the numbers 

fk+1(n) - fk(n). 

Theorem 3. 3: The number of binary numbers of length n that have a total of J 
ones, no k consecutive is given by Ck in - j + 1, j). 

Proof: Let gkin9 j) enumerate these numbers. For 0 < J < k - 1, we have, 
by definition, and because we are in Tk, 

gkin, j) = Q ) = Ckin - 3 + 1, j), 

and for n > k9 gkin9 n) = 6^(1, n) = 0. Now let k < j < n. The numbers we want 
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that end in 0 are enumerated by 

gk(n - 1, J); 

those that end in 01 are enumerated by 

gk(n - 2 , j - 1); 

those that end in Oil are enumerated by 

gk (n - 3, j - 2), ...; and so on. 

Then we have the recurrence 

gk(n> j) = gk(n - I, j) + gk(n - 2, j - I) + -- + gk(n - k, j - k + I). (*) 

The conclusion can be proved by induction: the hypothesis asserts that 

9k(n - 1, j) = Ck(n - j, j), gk(n - 2, j - 1) = Ck(n - j, j - 1), ...5 

gk(n - k, j - k + 1) = Ck(n - j, j - k + 1). 

But this implies 

^(n, J) = Ck{n - j , j) + Ck(n - j, j - 1) +••• + Cfc(n - j, j - k + 1), by (*) 

= Ck(n - j + 1, j), by (2.3). 

CoroHary 3. 3; The number of binary numbers of length n that have a total of j 
ones and a string of ones of length at least k is given by 

(3) - Ck(n - j + 1, J). 

Corollary 3. 4: The row sums of the 5^-array are given by the formula of Corol-
lary 3.3. 

Theorem 3.4: The columns of the £fe-array (the elements $pk that give the num-
ber of binary numbers of length n with a total of p ones and a longest string 
of exactly k consecutive ones) are given by: 

6 i + i, j = C3+i(n ~ 3> 3 + 1) - CjO* - J ' 3 + 1) 
Bi + 2 j i = Cj+1(n - (j + 1 ) , j + 2) - Cj-Cn - ( j + 1 ) , j ) 2 < fc < j < n 

Bn-x.,. = Ci + 1 ( 2 , n - 1) - <7,(2, « - 1) 

3 „ , j = Cj + i d . «) " C j d . " ) 

Proof: Having the row sums of Bk for any k by Corollary 3.4, we can obtain 
B\ column by column. 

For completeness, we mention that although Bk was initially defined for 
k ^ 2, B0 and Bx can also be formed. The k = 0 column is a one followed by 

j, 1 < p < n. The 

1984] 149 



FIBONACCI ^-SEQUENCES, PASCAL-T TRIANGLES, AND fc-IN-A-ROW PROBLEMS 

corresponding column sums are f1(n) - fQ(n) ~ 1 a nd f2^n) ~ fiW > an(^ t n e r o w 

sums in this case are just the I j. 

k. APPLICATIONS 

In this section we give three brief examples that are quite straightforward 
but nevertheless give some idea of the variety of possible interpretations and 
uses of the previous material. 

Example 4.1: Given n objects arranged in a row, the number of ways of choosing 
Q objects from among the n such that among the j chosen no k are consecutive 

( n - 7 + 1 \ 
), a re-

d ' 
suit which is one of the principal steps in the solution of the menage problem 
[4, p. 33]. 

Example 4.2: Engineers often increase the reliability of a system by making 
the conditions under which it fails more stringent. An example from reliabil-
ity theory is what is called a "consecutive-fc-out-of-n:.F system" [1]. This is 
a system of n independent, linearly ordered components, each of which operates 
(fails) with probability p(q)» such that the system fails when and only when k 
consecutive components fail. What needs to be calculated is the system failure 
probability, Pf(n, k). If we let a one stand for a failure, then by Corollary 
3.3, if we put 

( - ) Ck(n - j + 1, j) 

(j total lTs and at least k consecutive lfs), the failure probability is given 
by 

Pf(n, k) 
3 = k 

Example 4,3: In number theory, an ordered partition of n is called a composi-
tion of n. Let a(n, k) denote the number of compositions of n in which the 
largest part equals k. There is a natural one-to-one correspondence between 
the compositions a(n, k) and the number of binary numbers of length n beginning 
with a zero, and containing the pattern 1...1 with k - 1 ones but not the pat-
tern 1...1 with k ones; that is, any integer m in the composition is represented 
by the pattern 01...1 with m - 1 ones. But if the string of length n must be-
gin with a zero, we are just considering the "first half" of all the strings of 
length n. This is equivalent to considering strings of length n - 1 that have 
a largest consecutive-ones substring of length k - 1, and so Theorem 3.2 solves 
the problem of enumerating the a(n,k); i.e., a(n, k) = fk(n - 1) - fk_1(n - 1), 
n > 1, I < k < n. A short table follows: 

a(n, k): > ^ 
1 
2 
3 
4 
5 
6 

1 

1 

2 

1 
1 

3 

1 
2 
1 

4 

1 
4 
2 
1 

5 

1 
7 
5 
2 
1 

6 

1 
12 
11 
5 
2 
1 
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(For a generating function approach to this enumeration, see John Riordan [3, 
Ch. 6].) 

It seems fair to say that the generalized Fibonacci-sequence/Pascal-trian-
gle approach, as well as being interesting in its own right, is quite useful 
and a reasonable alternative to the generating function or multinomial methods 
often used in these kinds of problems. 
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INTRODUCTION AND BACKGROUND 

Given an ordered s e t of n nonnega t ive i n t e g e r s , 

S1 = (a , b, . . . , m, n ) , 

define a linear transformation T : S1 -> S2> where 

S2 = (\a - b\, | & - e | , ..., | m - n | , | n - a | ) . 

Upon iteration of this transformation, a sequence of n-tuples of nonnegative 
integers is created. This sequence is called "the n-number game." 

The n-number game has been considered primarily in the form of the four-
number game. For example, 

5X = (37, 17, 97, 28), 
Sz = (20, 80, 69, 9), 
S3 = (60, 11, 60, 11), 
Sn = (49, 49, 49, 49), 
S5 = (0, 0, 0, 0). 

It is well known that the 2m-number game will always terminate (i.e., reach a 
2m-tuple of all zeros) [7], [10]. 

The domain of the elements of the n-number game can be extended to the reals 
with some interesting consequences (e.g., see [3], [6]). However, such exten-
sions will not be dealt with in this paper. 

Let us note three well-known properties of the n-number game and make a 
definition. 

(1) There exists a positive integer k such that S^ is an n-tuple all of 
elements are 0's and aTs (e.g., see [1]). 

Using Property (1), we will make the following definition. 

Definition: The length of the sequence beginning with S19 \S1\9 Is m - 1, where 
m is the smallest integer such that the elements of Sm + j< are all 0Ts and a!s 
for k > 0. 

If a ^ 0, we will say that the sequence cycles. 

(2) If Si = (ad, bd, ..., nd) = d(a, b, ..., n) = dS*9 then \si\ = |s*|. 
(This is easily proven.) 

(3) The necessary and sufficient condition for a "parent" to exist for a 
given n-tuple S± is that S^ can be partitioned into two subsets where 
the sum of the elements in each subset is the same (e.g., see [1]). 

Property (3) implies that, with the exception of the trivial case, the odd-number 
game will always cycle. To see this, assume that the odd-number game terminates 
and work backward. If 3 ̂  0,a simple parity argument shows that (3, 3, ..., 3) 
cannot have a parent if n is odd. 
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An n-tuple will be called an "orphan" if it has no parent. From Property 
(3), if S1 is not an orphan, no permutation of S1 is one; the converse is also 
true. In the example, S1 = (37, 17, 97, 28) is an orphan. If S± is not an or-
phan, a parent that is not an orphan is not necessarily unique. An example of 
this is the case where 51 = (5, 3, 8), SQ = (13, 8, 5) or (3, 8, 11). 

With these observations in mind, let us proceed to a more systematic study 
of the three-number game. 

THE THREE-NUMBER GAME 

In the study of the three-number game, we will use the convention that the 
first triple in any three-number sequence, S1 = (a, b9 o) is not an orphan and 
and that a ^ b ̂  o. However, by Property (3), a = b + c. Therefore, 

S± = (b + c9 b9 a). 
Each triple in the cycle of the three-number game is of the form (0, d9 d). 

Since the order of the elements in each triple is of no consequence, no dis-
tinction will be made between permutations of a given triple. 

Theorem 1: If S = (0, d9 d), d is the greatest common divisor (g.c.d.) of the 
elements of S1 (d + 0). 

Proof: Let d be the g.c.d. of the elements of S1 = (b + o9 b9 o). Let 

S* = (l/d)S1 = ((2> + c)/d9 b/d9 eld) = (b* + c*9 b*, d*). 

Then (b* 9 o*) = 1 and 
S* = (0*5 b* - c*9 b*)9 

where the g.c.d. of the elements of S% is also 1. By induction, the g.c.d. of 
the elements of S* is 1 for all m > 1. Therefore, if £* = (0, d*9 d*), d* = 1 
(since d* £ 0 by assumption) and Sk = (0, d9 d). 

THE LENGTH OF THE THREE-NUMBER GAME 

Let us consider an example of the three-number game: 

Si 

s? sH sh s5 

= 
= 
= 
= 
= 

(17, 
(20, 
( 3 , 
(11 . 
(8 , 

37: 
17, 

14, 
3 , 

11, 

. 2 0 ) , 
, 3 ) , 
17) , 
14) , 
3) 

s, 
s7 SR 

s, 
5 i n 

= 
= 
= 
= 
= 

( 3 , 
(5 , 
( 2 , 
( 1 , 
( 1 . 

8, 
3 , 
1, 
2, 
1, 

5 ) , 
2 ) , 
3 ) , 
1 ) , 
0 ) . 

The number of appearances of c = 17 is three. The generalization of this obser-
vation is in Theorem 2. 

Theorem 2: If 5X = (b + os bs o) , where b = qc + v9 0 < v < o9 the number of 
appearances of c is q + 2 = [b/c] + 2, where [ ] is the greatest integer func-
tion. 

Proof: We have 
Si = ((<? + 1)0 + r> qo + r9 c), 
£2 = (qc + PS (? - 1)^ + r9 c), 

and, by simple induction, 
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Sq = (2c + r, c + r, c). 
Thus, 

Sq+i = (̂  + v> G> r)> Sq + 2 = (°> r> c - r), and Sq+3 = (r, c - r, \a - 2r|). 

All the elements of Sq+Z are less than o and, since the transformation T cannot 
make max(Sk+1) > max(Sk), the number of appearances of o is q + 2. 

Note that c is not the g.c.d. of the elements of 5X in Theorem 2 by the 
assumption that 0 < v < c. That case is dealt with in Theorem 3. 

Theorem 3: If S1 = (b + os b, c), where 2? = qc, then |̂ ,
11 = q = — (c ̂  0). 

Proof: S± = ((q + l)c, ̂ , c) and simple induction gives S^ = (2c, e, c) . 
Thus, Sq + 1 = (c, o, 0) and \S1\ = g. 

With these two results, we have Theorem 4, which gives the length of the 
three-number game and clarifies what is indeed occurring in the sequence. 

Theorem 4: if sl = (b + c, b, o), c + 0, then 

i*ii = £ it* 
i = l 

where the q^9 1 < i < k, are all the quotients in the Euclidean Algorithm for 
b and c. 

Proof: Let b = q±c + r±9 0 < r± < c. By Theorem 2, 

Let c = ̂ r
2P1 + P2, 0 < r2 < r1, and repeat this process in the style of the 

Euclidean Algorithm until- vk = 0. If 

fc-i 

^ = i 

then 

^ = (rfc-l + ^ - 2 ' rfc-2* ^ - l ) > 

where rk_2 = qkrk_1. By Theorem 3, we have the desired result. 

From Theorem 4, we see that the length of the three-number game is greater 
than or equal to the length of the corresponding Euclidean Algorithm (with 
equality if and only if all the quotients in the Euclidean Algorithm are ones, 
i.e., if and only if b = o). 

There is a special case of the three-number game where the length is very 
easy to calculate. This case is given in Theorem 5. 

Theorem 5: If S1 = (b + c, b, o) and d is the g.c.d. of the elements of S1 and 
b = d (mod o), then 

I c I - i> - d c 
1 1 1 c d 
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Proof: If b - kc = d5 Theorem 2 gives 

Sk+1 = (b - kc, b - (k - l)cs c) = (d + c5 c3 d). 
By Theorem 3, 

19 ! - -
Thus 3 

| 5 l | - fc + § = ̂ _ i + §. 
1 1 1 a c d 

REMARKS 

It is important to note that although all the theorems in this paper refer 
to Sl9 they can be applied to any suitable triple in a sequence by neglecting 
previous triples. 

The three-number game affords a method for finding the g.c.d. of two posi-
tive integers b and c [using S1 = (b + c, b9 c) and finding d]. By Theorem 4, 
the length of the algorithm is small(relative to the size of b and c) if b and 
c are Fibonacci numbers, while the length of the corresponding Euclidean Algo-
rithm is maximized. In this case, the three-number game takes one more step. 
In general, however, the three-number game is not a viable method for finding 
the g.c.d. For a computer that can only add or subtract, it might be useful. 

It is known that the length of the four-number game is nearly maximized if 
the initial entrants are Tribonacci numbers [9]. Can we define "(n- l)onacci" 
numbers that strongly influence the length of the n-number game? 
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1. INTRODUCTION 

The Stirling numbers of the first and second kind can be defined by 

(-log(l - x))k = kl E ^ C n , k)xn/nl 
n = k 

(1.1) 
(ex - l)k = k\J2s(n9 k)xn/nl 

n = k 

These numbers are well known and have been studied extensively. There are many 
good references for them, including [4, Ch. 5] and [9, Ch. 4, pp. 32-38]. 

Not as well known are the associated Stirling numbers of the first and sec-
ond kind, which can be defined by 

(-log(l - x) - x)k = kl £ d(n9 k)xn/nl 
n = 2k 

(1.2) 
(ex - x - l)k = kl J2 b(n9 k)xn/nl 

n = 2k 

We are using the notation of Riordan [9] for these numbers. One reason they are 
of interest is their relationship to the Stirling numbers: 

^(n, n - k) = J£d(2k - j , k - j)(9.n_ .) 

S(n, n - k) = E h(2k - j , k - O)^^- j) 

j =0 
(1-3) 

k 

J = 0 

Equations (1.3) prove that S1{n9 n - k) and S(n, n - k) are both polynomials in 
n of degree 2k. Combinatorially, d(n9 k) is the number of permutations of 
Zn = {1, 2, ..., n) having exactly k cycles such that each cycle has at least 
two elements; b(n9 k) is the number of set partitions of Zn consisting of ex-
actly k blocks such that each block contains at least two elements. Tables for 
d(n9 k) and b(n9 k) can be found in [9, pp. 75-76]. 

Carlitz [1], [_2], has generalized S1(n9 k) and S(n9 k) by defining weighted 
Stirling numbers S1(n9 ks X) and S(n9 k9 A), where X is a parameter. Carlitz 
has also investigated the related functions 

i?i(n, k9 A) = ~S1(n9 k + 1, A) + S1(n9 k) 
(1.4) 

R(n9 k9 X) = S(n9 k + 1, X) + S(n9 k) 

For all of these numbers9 Carlitz has found generating functions, combinatorial 
interpretations, recurrence formulas, and other properties. See [1] and [2] 
for details. 
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The purpose of this paper __is to define, in. an appropriate way, the weighted 
associated Stirling numbers d(n, k, A) and b(n, k> A ) , and to examine their 
properties. In particular, we have the following relationships to Si(n9 k9 A) 
and S(n9 k9 X): 

S1(n, n - k, A) = £ (2k _"• + ^jd{2k - 3 + 1, k - 3 + 1, A) 

+ nXS-tin - 1, n - 1 - k) 

S(n, n - k, \) = £ (2fe _n. + ^b(2k - 3 + 1, k - j + 1, A) 

+ n\S(n - 1, n - 1 - k) 

We also define and investigate related functions Q1(n, k, A) and Q(n, k, A), 
which are analogous to ^(n, k, A) and R(n, k, A). In particular, we define 
Q1(n, k, A) and Q(n, k, A) so that 

R1(n, n - k, A) = £ ^ (2fc - j , k - j , A)(2feW_ .) 

T (i-6) 
i?(n, n - k, A) = £ Q(2k - 3, k - 3, X)(2/ c"_ .) 

which can be compared to (1.3). 
The development of the weighted associated Stirling numbers will parallel 

as much as possible the analogous work in [1] and [2]. In addition to the re-
lationships mentioned above, we shall find generating functions^ combinatorial 
interpretations, recurrence formulas, and other properties of d{n9 k, A ) , b(n9 

k, A ) , Q 1(n, k, A ) , and Q(n, k9 A ) . 

2. THE FUNCTIONS d(n, k, X) AND b(n, k, A) 

Let n, k be positive integers, n > k9 and k2, k3, ..., kn nonnegative such 
that 

k = k2 + k3 + ••• + kn 

(2.1) 
n = 2k2 + 3k3 + ••• + nkn. 

Put 
b(n; k2i ..., kn; A) = E(fc2A2 + M 3 + " ''" + &«*") (2.2) 

where the summation is over all the partitions of Zn = {1, 2, ..., n] into k2 

blocks of cardinality 2, k3 blocks of cardinality 3, . .., kn blocks of cardi-
nality n. Then, following the method of Carlitz [1], we sum on both sides of 
(2.2) and obtain, after some manipulation, 

E \ £ b(n; k2, fe3, ...; A ) ^ = z/(eA*- Xx - l)exp{z/(e* - ar - 1)}. (2.3) 
n = l n* fclffc2»-.. 

Now we define 

2>(«, *, *) = Z Z ( M 2 + M 3 + ••• + M*)> (2-4) 
(2.4) 

where the inner summation is over all partitions of Zn into k2 blocks of cardi-
nality 2, k3 blocks of cardinality 3, ..., kn blocks of cardinality n; the outer 
summation is over all k2, k3, . . .', kn satisfying (2.1). 
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By (2.3) and (2.4), we have 

£ 6 ( n , k, X)ff t/fe = y(eXx - Xx - l)exV{y(e* - x - 1 ) } , (2 .5 ) 

and from (2 .5 ) we o b t a i n 

fc!£ i ( n , fc + 1, X ) ^ = (eXx - Xx - 1) (ex - x - l)k . (2 .6 ) 
n = 0 ™ 'n\ 

It follows from (1.2) and (2.6) that 

n-2&+2 

i ( n , k, X) = £ ( " ) ^ & ( w - * , fc - 1 ) . (2 .7 ) 

For X = 1, (2 .6 ) reduces to 

k\Eb(n, k + 1, l ) f ^ - (e* - a - 1 ) * + 1 - (fc + l ) l X > ( n , fc + l ) f f . 
n = 0 r i • n = 0 ^ * 

Thus, we have 

bin, k, 1) = kb(n, k). (2 .8 ) 

We also have, by (2.6) and (2.1), 

b(n, 0, X) = 0, 

b(n, 1, X) = X if n > 2, 

5 ( » . 2 . A ) - ( ^ + (5)x» + . . . + ( n » 2 ) x - s 
6(n, A:, X) = 0 if n < 2k, 

b(2k,k, X) = (2^b(2k - 2, k - 1)X2. 

The relationship to 5(n, &, X) is most easily proved by using an extension 
of a theorem in [7]. In a forthcoming paper [8], we prove the following: 

Theorem 2.1: For r > 1 and / + 0, let 

F(x) = £ ^fj 1 and W(x, X) = 1 + £ wt (X)fJ-

be formal power series. Define 5 •(0, ..., 0, /r , fr+l9 • ••) by 

rc = 0 ™ * 

Then (^-)nBfc(^„jn (0, ..., 0, /r , fr+1, ...) = (k + vn) (k + rn - 1) ... (n + 1) 
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It follows from Theorem 2.1 and the generating function for S(n, k9 A) that 
if we define 

(eXx - l)(ex - x - l)k = klf^ain, k + 1, A)^-, (2.9) 
n = 0 n-

then 
k 

'Sin, n - k, A) = £ (2fe _*\ + x)a(2fc - J + l,fc - J + 1, A). (2.10) 

By (2.6) and (2.9), 

a(n, k + 1, A) = &(n5 fc + 1, A) + AnZ?(n - 1, fe), 

and by ( 1 . 3 ) , (2 .10) can be w r t i t e n 

S(n, n - k, A) = £ fc(2fc- J + 1, fc- j+ 1, *)(2£.."- + i) +
 XnS{n- 1, n- 1- fc), 

J' = °  (2.11) 
which proves £(^, n - k, A) is a polynomial in n of degree 2^ + 1. 

It is convenient to define 

Q(n, k, A) = b(n9 k + 1, A) + nA£(n - 1, fc) + 2>(w, fc), (2.12) 

which implies n-ik / N 

m = 0 

Note that Q(n9 k, 0) = &(n, k). 
A generating function can be found. If we sum on both sides of (2.12), we 

have 

X Q(n, k, X)~ yk = V*exp{z/(e* - x - 1)}. (2.14) 
n, k n\ 

If we differentiate both sides of (2.14) with respect to y and compare the 
coefficients of xnyk, we have 

Q(n, k, A + 1) = Q(n, fc, A) + (k + l)<2(n, Zc + 1, A) + nQ(n - 1, fc, A). (2.15) 

If we differentiate both sides of (2.14) with respect to x9 we have 

Q(n + 1, k3 A) = XQ(n, k9 A) + §(n, k - 1, A + 1) - S(n, fc - 1, A). (2.16) 

Combining (2.15) and (2.16), we have our main recurrence formula: 

Q(n + 1, k, A) = (A + k)Q(n, k, A) + nQ{n - 1, k - 1, A). (2.17) 

It follows from (3.4) that 

Q(n, k, 1) = bin, k) + bin + 1, Zc). 

We also have 

«(w, 0, A) = An, 

«». i, A) = ( j ) x ° + ( ^ + ... + ( n : 2 ) x - , 
Qin, k, 0) = i(n, k), 

Q(2k,k, A) = £(2fc, fc), 

S(n, k, A) = 0 if n < 2/c. 
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A small table of values is given below. 

Q(n, k, X) 

\k n \ 
0 

1 

2 

3 

4 

5 

6 

0 

1 

X 

X2 

X3 

xh 

X5 

X6 

1 

1 

1 + 3X 

1 + 4X + 6X2 

1 + 5X + 10X2 + 10X3 

1 + 6X + 15X2 + 20X3+ 15X4 

2 

3 

10 + 15X 

25 + 60X + 45X2 

3 

15 

It follows from (2.14) that 

k!£«(n, k, X)^- = ex*(e* - x - 1) . 
n = 0 Ti. 

(2.18) 

By comparing coefficients of xn on both sides of (2.18), we get an explicit 
formula for Q(n> k, X ) : 

n, k, X) '^jl(^)k'd(^)t[(kl (2.19) Q( 

where {ri)t = n(n - 1) ... (n - t + 1). 
It follows from Theorem 2.1 and the generating function for R(n,k> X) that 

k 
R(n, n - k, X) = £ QW - 3, k - j , ^)(2?,n_ • ) • (2.20) 

which shows that R(n, n - k, X) is a polynomial in n of degree 2k. Equation 
(2.20) also shows that Rf(n, k, X) = Q(2n - k9 n - k, X), where R'in, k, X) is 
defined by Carlitz in [2], 

In [1], Carlitz generalized the Bell number [4, p. 210] by defining 

B(n, X) = £ R(n, k, X). 
k = 0 

This suggests the definition 

A(n, X) = £ £(n, k, X), 
& = o 

which for X = 0 reduces to 

A(n) = £ 2>(n. fc). 
& = o 

The function A(n) appears in [5] and [6]. 
By (2.13), we have 

(2.21) 

(2.22) 

160 

Mn, X) = £ (l)T.Hn - m, k)\m = £ (")xra4(n - m). (2.23) 
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Also by (2.18), 

£ A(n9 X)ff = ex*exV(e* - x - 1), (2.24) 
and (2.24) implies 

E A(n9 A = e^-^expie* - 1) = £ B(n, X - l)ff, 
n=0 n- n=0 nl 

so 
A(n9 X) = B(n, X - 1). (2.25) 

For example, i4(n, 1) = B(n, 0), so 

[<w+l)/2] n 

£ (i(w, fe) + Hn + 1, fc)) = £ S(n, fc). 
k = o k=o 

There are combinatorial interpretations of A(n9 X) and Q(n, k9 X) that are 
similar to the interpretations of B(n9 X) and i?(n, fc, X) given in [1]. Let X 
be a nonnegative integer and let Bl9 B2, . . ., BA denote X open boxes. Let 
P(n, fc, X) denote the number of partitions of Zn into k blocks with each block 
containing at least two elements, with the understanding that an arbitrary num-
ber of the elements of Zn may be placed in any number (possibly none) of the 
boxes. We shall call these X± partitions. Clearly, P(n9 k9 0) = b(n9 k). 

Now, if i elements are placed in the X boxes, there are \j/j ways to choose 
the elements, and for each element chosen there are X choices for a box. The 
number of such partitions is {^i)Xib{n - i9 k). Hence, 

P(n, k, X) = £ H)fb(n - m9 k) = Q(n, k9 X). (2.26) 
m=0Xm/ 

It is clear from (2.26) that A(n9X) is the number of X1 partitions of Zn. 
It is also clear from (2.7) and the above comments that b{n9 k + 1, X) is 

the number of Xx partitions of Zn into k blocks such that at least two elements 
of Zn are placed in the open boxes. Definition (2.4) furnishes another combi-
natorial interpretation of b{n9 k9 X). 

Finally, we note that some of the definitions and formulas in this section 
can be generalized in terms of the r-associated Stirling numbers of the second 
kind br(n9 k). These numbers are defined by means of 

/ Yi\k °°  Yn 

\ i = Q u' I • n = Q n' 

and their properties are examined in [3], [5], and [6], Using the methods of 
this section, we c_an define functions br(n, k, X), Q^r)(n9 k, X) and A(r\n9 X) 
which reduce to S(n9 k9 X), R(n3 k9 X), and B(n9 X) when r = 0, and reduce to 
b(n, k9 X), Q(n9 k, X), and A(n9 X) when r = 1. The combinatorial interpreta-
tions and formulas (2.4)-(2.7), (2.10), (2.11), (2.17), (2.18), (2.22), (2.23) 
can all be generalized. 
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3. THE FUNCTIONS d(n, k, X) AND Q1{n, k, X) 

We define (\)3- = X(X + 1) ... (X + j - 1). Now put 

^ / <A)2 (X)n \ 
d(n; k23 ..., kn; X) = E (̂2 —jy + "•" + kn (n _ ̂ t h (3.1) 

where the summation is over all permutations of Z„s 

n = 2fc2 + 3k3 + ••• + nkn, 

with k2 cycles of length 2, k3 cycles of length 3, . .., kn cycles of length n. 
Then, as in [1], we sum on both sides of (3.1) and obtain, after some manipu-
lation, 

E ZT E d(n; k2, k3, ...; X)yk 

n = 2 n' kz, k3, ... (3.2) 

= z/((l - a?)~A - Xx - l)exp{z/(-log(l - a:) - a?)L 

We now define 
^ ^ / <X>2 <X)o <X>n \ 

d(n, k, X) - E E ^ . - j y ^ + fes " 2 T + ••' + fe„ (n , i).)v (3-3> 

where the inner summation is over all permutations of Zn with k2 cycles of 
length 2, k3 cycles of length 3, ..., kn cycles of length n; the outer summa-
tion is over all k2i k3, ..., kn satisfying (2.1). 

By (3.2) and (3.3), we have 

E d(n, k, X)^f y* = 2/((l - x)'x - Xx - l)exp{z/(-log(l - x) - x)} ( 3 ^ 
U'k = 2/((l - ^ ) " A - Xa: - 1)(1 - ar)~2Va:!', 

and from (3.4), we obtain 

k\ E J(n, k + 1, X ) — = ((1 - aO~A - Aa? - l)(-log(l - x) - ar)*. (3.5) 
n = 0 n 

It follows from (1.2) and (3.5) that 

_ n-2k + m . . 

d(n, fc, X) - £ r)d(n - m, k - l)(\)m. (3.6) 

For X = 1, (3.4) reduces to 

E d(n9 k, 1 ) — z/ = z/((l - a?)~ - a? - l)exp{z/(-log(l - a?) - ar)} 
n-0 • 

=-7^ exp{z/(-ln(l - a?) - ar)} - aa/ exp{ (?/(-log(l - x) - x)} 

Thus, we have 

J(n, fc, 1) = d(n + 1, k) - nd(n - 1, /c - 1) = nd(n, fc). (3.7) 
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We also have, by (3.5) and (3.6), 

d(n9 0, A) = 0 

d(n, 1, A) = <A)n if n > 2, 

d(n, 2, A) =(^)(n - 3)!<A)2 + (*)(w - 4)!<A>3 + ... + (̂  * 2)l!<A>n_2, 

J(n, fe, A) = 0 if n < 2fe, 

d(2k,k, A) = (22^(2^c - 2, fe - 1)<A>2. 

_ To find the relationship to 5x(n, fe, A), we use Theorem (2.1). We define 
c(n9 fe, A) by 

((1 - * ) ~ A - l)(-log(l - x) - x)k = fe!l>(n, k + 1, A)f^. (3.8) 

5i(n, w - fe, A) = X (2fe - j + ip(2k - J + 1, fe - J + 15 A). (3.9) 

(3.10) 

Then by Theorem 2.1 and the generating function for Sx(n9 fe, A), 

k 

^o^fe - J 

By (3.5) and (3.8), 

o(n9 fe + 1, A) = d(n, fe + 1, A) + Xnd(n - 1, fe), 
so by ( 1 . 3 ) , e q u a t i o n (3 .9 ) can be w r i t t e n 

~S1(n9 n - fe, A) = ]£ ^"(2fe - J + 1, fe - J + 1, A)(2fe - ^ + l ) 

+ AnS^(n - 1, n - 1 - fe), 

which proves S1(n9 n - fe, A) is a polynomial in n of degree 2fe + 1. 
We now define the function Q1{n9 fe, A) by means of 

«i(n, fe, A) = d(n9 fe + 1, A) + d(n9 fe) + n d(n - 1, fe). (3.11) 

then by (3.6), 
n-2k , v 

«i(«. fe, A) = 2 (")<*(" - m, fe)<X)m. (3.12) 
m = 0 X ' 

Note that ^(n, fe, 0) = <f(n, fe). 
A generating function can be found by summing on both sides of (3.11). We 

have 
E «i(n» &> ) ? 2/ = (1 " *rAexp{2/(-log(l - ar) - ar)} 
n,k n (3.13) 

= (1 - a?)- x-^-^. 

If we differentiate (3.13) with respect to x9 multiply by 1 - x9 and then 
compare coefficients of xnyk, we obtain 

Q1(n + 1, fe, A) = (A + n)Q1(n9 fe, A) + nQl(n - 1, fe - 1, A). (3.14) 

If we multiply both sides of (3.13) by 1 - x and compare coefficients xnyk
 9 

we have 

19810 163 



WEIGHTED ASSOCIATED STIRLING NUMBERS 

Qxin9 k9 X - 1) = Q1(n9 k9 X) - nQ\(n - 1, k, X). 

For X = 1, (3.14) and (3.15) can be combined to yield 

d(n + 1, k + 1) = nS1(n - 1, &, 1). 

Also, if X = 0 in (3.15), we have 

Q1(n9 ks -1) = d(n9 k) - nd(n - 1, k). 

In addition 

(3.15) 

(3.16) 

d(w, 0, X) = <X)n, 

ex(n, 1, X) = (n - 1)! + (*)(n - 2)!<X)1 + 

ex(n, fc, 0) = d(n9 k), 

Q1{2k9k9 X) = d(2k, k), 

Q1(ri9 k9 X) = 0 if n < 2k. 

A small table of values is given below. 

Q1(n9 k, X) 

+ ( n % ) 1 ! < A ) - ^ 

0 

1 

2 

3 
4 

5 

6 

0 

1 

X 

< x ) 2 

<*>3 

<x\ 
U>5 
<*>6 

1 

1 

2 + 3X 

6 + 14X + 6X2 

24 + 70X + 50X2 + 10X3 

120 + 404X + 375X2 + 130X3 + 15X4 

2 

3 

20 + 15X 

130 + 65X + 45X2 

3 

15 

I t fo l lows from (3 .13) t h a t 

fclZdCn, k9 \y~Y = (1 - ^ ) - A ( - l o g ( l - x) - x)k, (3.17) 

and from Theorem 2.1, that 

R^n, n - k9 X) = £ Gi(2fc - J, k - J, X ) ^ ^ . ) , (3.18) 

which shows that R1{n9 n - k9 X) is a polynomial in n of degree 2k* Equation 
(3.18) also shows that Rr(n9 k9 X) = Q1(2n - k9 n - k9 X), where R[{n9 k9 X) is 
defined by Carlitz in [2]. 

Letting y = 1 in (3.13), we have 
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and more generally, 

E « i ( » . *. W = E ( - y ) n - * ( " ) < x + t / ) t . 
k=o t=o ^^/ 

A combinatorial interpretation of Q1(n9 k, X) follows. Let X be a nonnega-
tive integer and let Bl9 B2, . . ., Bx denote X open boxes. Let P1(n9 k9 X) 
denote the number of permutations of Zn with k cycles such that each cycle con-
tains at least two elements, with the understanding that an arbitrary number of 
elements of Zn may be placed in any number (possibly none) of the boxes and then 
permuted in all possible ways in each box. We call these X permutations. 
Clearly, P1(n9 k, 0) = d(n, k). 

If i elements are placed in the boxes, there are ( •] ways to choose the 
elements and then X(X + 1) (X + 2) ... (X + i - 1) ways to place the elements 
in the boxes. The number of such permutations is (Jl.} (X)id(n - i9 k) . Hence, 

Pi(n, k, X) = £ (")<A>md(n - m9 k) = Q±(n9 k9 X). (3.19) 
772=0 ^ l / 

It is clear from (3.6) and the above comments that d(n9 k + 1, X) is the 
number of Xx permutations of Zn with k cycles such that at least two elements 
of Zn are placed in the open_ boxes. Definition (3.3) furnishes another combi-
natorial interpretation of d(n, k, X). 

We note that some of the definitions and formulas in this section can be 
generalized in terms of the p-associated Stirling numbers of the first kind 
dr(n, k). These numbers are defined by means of 

-log(l - x) - Z JTj = klZdr(n9 k)j^9 
\ i=l u-I n=0 n' 

and their properties are discussed in [3] and [6]. Using the methods of this 
section, we can define functions dr(n9 ks X) and Q^(n9 k9 X) which reduce to 
~S1(n9 k9 X) and R1(n9 k9 X) when r = 0, and to d{n9 k9 X) and Q1(n9 k9 X) when 
r = 1. The combinatorial interpretations and formulas (3.3)-(3.6), (3.11)-
(3.14), and (3.17) can all be generalized. 
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1 . INTRODUCTION 

L. B. Redei [7] proved an o p e r a t i o n a l i d e n t i t y for the Laguerre polynomials 
t h a t was l a t e r g e n e r a l i z e d by Viskov [ 9 ] . V i s k o v ' s main r e s u l t s were as f o l -
lows: i f D = d/dxy then for n - 0, 1, 2 , . . . , we have 

L(*\x) = ^~f- ex{{a + 1 + xD)D}ne~x = ^f- exBne~x ( 1 .1 ) 

and 

L(*\x) = -\{(l + a - x + xD)(l - D)}n • 1, (1 .2 ) 

where L (x) is the nth Laguerre polynomial. 
A third formula of a similar nature was given earlier by Garlitz [2]: 

L(
n
a\x) = - \ O (xD - x + a + k) • 1. (1.3) 

n- k = 1 

Recently, there has been renewed interest in ̂ -identities and operators as 
well as in the ̂ -Laguerre polynomial (see, e.g., [3], [5], [6]). Therefore, we 
felt it would also be interesting to discuss ^-generalizations of the identities 
(1-1)—(1.3). In the following, we shall assume always that \q\ < 1. 

We first introduce the following notation: 

[a]0 = (a; q)0 = 1; 

[a]n = (a; q)n = (1 - a) (I - aq) ... (1 - aq71'1) {n = 1, 2, 3, . . . ) . 

Also, we shall use [a]m = (a; q)m to mean the convergent product 

fid- aqk). 
k = 0 

It is well known that [a]ro is a ̂ -analog of the exponential function. Thus, we 
have 

lim (-(1 - q)x; q)Z1 = e~x. 

For this reason, the more suggestive notation 

fe; q)Z1 = eq(x) 
is used for a ̂ -analog of the exponential function. 

The ̂ -derivatives of a function f(x) is given by 

v<*> -f(x} lf(xq) • 
so whenever f has a derivative at x, we have 

lim __ Dqf(x) = f'(x). 

166 [May 



SOME OPERATIONAL FORMULAS FOR THE ^-LAGUERRE POLYNOMIALS 

We shall also use the substitution operator n : r\f(x) = f(qx) . It is related 
to the ^-derivative by means of xDq = I - r\, where I is the identity operator. 
Note that x and Dq do not commute. 

We recall that the ^-Laguerre polynomials [6] are defined by 

W*\*> - ^r1 z lq ]q
 +1 *k d - 4 ) 

lqin k = ° [q]klqa+llk 
so that 

lim L(
n
a\(l - q)x\q) = L{*\x), n = 05 1,2, ... . 

These polynomials, which are orthogonal and belong to an indetermined Stieltjes 
moment problem ([3] and [6]), were known to W. Hahn [5]. They have, among other 
properties, a Rodrigues formula: 

Cigler [4] gave the representation 

L^\x\q) = - ^ - ( n - Dq)n + axn = (_i)"a.-»-Jr(T1 - Dq)nxn + a. (1.6) 

Representations (1.5) and (1.6) are both of the same nature—the nth iterate of 
the operator (Dq or rj - Dq, respectively) acts on a function that depends on n 
also. In some applications, this is a drawback. This is why (1.1) and (1.2) 
are interesting. 

2. A ̂ -ANALOG OF THE REDEI-VISKOV OPERATOR 

Put 
Bq = {(1 - qa+1)I + qa + 1xDq}Dq. (2.1) 

Thus, formally, we have 
Bq 

lim -p. -rjf(x) = (a + 1 + xD)Df(x) = Bf(x), 

which is the operator that appears in the right-hand side of (1.1). 
It is easy to see that 

Bqxn = (1 - qn)(l - qn + a)xn-\ (2.2) 

from which we can verify another representation for the Bq operator, namely, 

Bq = (I - qa+1T))Bq (2.3) 
and 

: Bq = x-aDqxa + 1Dq = D^^DgX*. (2.4) 

The latter representation shows that the operator Bq is.also a q-analog of 
the Bessel operator (see [10]): 

B = x~a ~ xa + 1 4~-ax ax 

From the relation Dq (1 - qa + 1r\) = (1 - qa + 2r\)Dq9 we get, by induction, 
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B« = { A ( 1 "" q*+kj])}Di (n = °' l> 2> •• ° ' (2,5) 

It is easy to see that Dq{eq(-x)f(x)} = eq(-x)(Dq - r\)f(x). Thus, we have, 
for any formal power series F(x), 

F(Dq){eq(~x)f(x)} = eq(-x)F(Dq - r))f(x). (2.6) 

Using mathematical induction and noting that 

(Dq - n)(J - ̂ (l + x)r\) = (J - qu+1(l + x)r))(Dq - n), 

we get 

Bqieq(-x)f(x)} = eq(-x){(I - qa + 1(l + x)r\) (Dq - r\)}n • /(a;) 

= eq(-a?){ fl (1 - <7a+/c(l + *)n)} (^ - n) n ' /(a?) 

= ~ eq(-x) ft (1 - ̂ a+?c-n(l + ar)n)(l - <7^n(l + a?)n) • /(«). 

Now, to obtain operational representations for the g-Laguerre polynomials, 
we first calculate 

Bfai-x) = Bn
q±±=^-k 

X* 

_ » (.1 - qk) (l - qk~X) ... (1 - qk-n+1) (1 - qk+a) ... (l-qk-n+a+1)(-x)k-n 

- [qa+n+1]k 
= (~Dn[qa+1]n E (-*»*• 

k-° lq]k[qa+1]k 

Andrews [1] gave a ̂ -analog of Kummerfs Theorem, i.e., 

- [e]k[a]v(-l)^ik(k"^,wvfc [*]. - [Y/Bk[a] \T) = rar^ [dm, x (2,8) 

Putting a = 0 in this formula, replacing x by -x, and then taking y = qa + 1, 
3 = <7~n, we get that 

w-*o rar~k?0 w; xk= [^i- £- ("k)-
Together with (2.7), this formula gives the following three representations: 

4a)(^k) =-^-{e?(-^)}"Xn{e?(-x)}; (2.9) 

= -rjr- II (J - ?a+fcd + ar)n) • 1; (2.10) 

= - ^ - { ( 1 - qa + 1(l +x^)(Dq - T))}" ' 1. (2.11) 
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If we let q -»• 1, then (2.9), after suitable normalization by (1 - q), re-
duces to (1.1); (2.11) reduces to (1.2) ; and (2.10) reduces to Carlitz's formula 
(1.3). 

Using (2.2) and (1.4), we get, for m = 0, 1, 2, ..., 

m (a) I m 

BqLn (x\q) = (-1) 
lq* 

lqa 
qmim + a)L^_(q2mx\q), (2.12) 

rW, Notice that the operation on Ln (x\q) by Bq reduces the degree by one without 
changing the value of the parameter a. 

There is another ^-analog of the exponential function e~x , namely, 

M*> = E l r„i *fc = n (i - ̂ J ) . 

If we repeat the above calculation, we can show that 

Bn
qEq{X) - ( - D - r 1 ^ ^ " 1 ^ 1 ^ — k * j ' -

Once again we can transform the right-hand side of this formula by using (2.8) 
(with a = 0, cf + n + 1

9 y = qa + 1, and x -> xq2n) , to obtain 

Comparison formulas to this ares 

and 
^n(n - 1) r (a), 2n - 1 | - 1 > 

ff,(-B,){x»} = (-l)"t<7]B?'"tB"Wir(Vl"1k"1) 

(2.13) 

(2.14) 

(2.15) 

Both formulas (2.14) and (2.15) reduce in the case q -*- 1 to the new formula for 
the ordinary Laguerre polynomials: 

e-Bxn = (_i)«n!z^° V) („ = 0, 1, 2, . . . ) . 

On the other hand, formula (2.13) reduces to (1.1). 
If we calculate the right-hand side of (2.9) directly, we get 

Bn
qeq{-x) = (-1)" fl (1 " qa+1r\)eq(-x) 

(2.16) 

(2.17) 
fc-i 

£ C-Dn+J' 
J-0 

n 

= eq(~x)Y* (-D q ^ ' + 1 ) + ^ ' [ ^ ] J . . n + j 

J=0 

n 
L/J 

The second equality is due to the Euler identity 

n (i - qk-xx) = z ( -D J 

k = l j = o 

^ I J O ' - D ^ 
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stands for the ^-binomial coefficient, i.e., for 1 if j = 0 and for 

(1 - <7)(1 - q"-1) ... (1 - qn-j+1)/(l - q)(l - q2) ... (1 - qi) 

if j ^ 1. Combining (2.9) and (2.17), we obtain another expansion for the q-
Laguerre polynomial: 

[*c]dqiW + 1) + ai. ( 2 > 1 8 ) 
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1. INTRODUCTION 

The set of algebraic integers (hereinafter called integers) of the quadra-
tic number field Q(VE) is given by 

Z(oo) = {a + bu i a, b E Z}, 
where 0) = %(1 + V5) . It is well known that Z(OJ) is a Euclidean domain [6, pp. 
214-15], and that the units of Z(oo) are given by ±0)n, where nEZ [6, p. 221]. 

The Binet formula _ _ 
Fn = (00n - 03n)/((A) - W) = (0Dn - 0)n)/>/5, 

where 0) = %(1 - v5) is the conjugate of 0), expresses the nth Fibonacci number 
in terms of the unit 0). Simiarly, the nth Lucas number is given by Ln = b)n + 0)". 
Also, an elementary induction argument using the result (i)2 = 03 + 1 shows that 
0)n = Fn,1 + Fnb) for n > 1. These results suggest that the arithmetic theory of 
Z(oo) can be a powerful tool in the investigation of the arithmetical properties 
of the Fibonacci and Lucas numbers. This is indeed the case, and the articles 
by Carlitz [4],Lind [10], and Lagarias & Weisser [9] utilize Z(oo) on a limited 
scale. In this paper, I further document the utility of Z(OJ) by deriving many 
of the familiar divisibility properties of the Fibonacci numbers using the 
arithmetic theory of Z((JO). Much of the development has been adapted from pages 
164-174 of my doctoral dissertation [5], which gives a comprehensive treatment 
of number theory in Z(co). 

2. CONVENTIONS AND PRELIMINARIES 

We assume it is known that Z(OJ) is a Euclidean domain and that the units of 
Z(OJ) are given by ±oon. In the proof of Theorem 5, we use some results from 
quadratic residue theory. Apart from this, only the first notions of elementary 
number theory are taken for granted. 

Throughout this paper, lower case Latin letters denote rational integers 
(elements of Z), and lower case Greek letters denote elements of Z(o)). The 
Fibonacci number Fn is denoted by F(n), and n is called the index of the Fibo-
nacci number F(n). Also, p and q denote rational primes; and m, ft, and v de-
note positive rational integers. A greatest common divisor of a and 3 is 
denoted by GCD(a, 3). Of course, GCD(a, 3) is unique up to associates. We 
continue to use gcd(a, b) in the sense of rational integer theory; that is, 
gcd(a, b) is the unique largest positive rational integer that divides both a 
and b. We say that a and 3 are congruent modulo u, and write a E 3 (MOD y), 
provided y|(a - 3); that is, a - 3 = -yy for some y. We continue to use a E b 
(mod m) in the traditional rational integer sense. In the present setting this 
notation is a bit superfluous since a E b (mod m) If and only if a E b (MOD m). 
As in rational integer theory, a + y E 3 + 6 (MOD y) and ay E 36 (MOD y) when-
ever a E 3 (MOD y) and y E 6 (MOD y). Finally, it is clear that m\ (o + db)) in 
the sense of Z(ud) if and only if m\o and m\d in the sense of Z. 
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3. SIMPLEST DIVISIBILITY PROPERTIES 

Our first efforts will be directed toward establishing the classic results 
listed in Theorem 4. The reader is no doubt familiar with the standard proofs 
such as found in [6, pp. 148-49] and [11, pp. 29-32]. The attack here is dif-
ferent: An arithmetical function V(n) with values in Z((JO) and closely related 
to F(n) is introduced. This function will be shown to have properties anal-
ogous to those of F(ri) in Theorem 4. Theorem 4 will than follow as a simple 
corollary. 

Definition 1: V(n) = oo2n - ( - l ) n . 

Theorem 1: V(n) = /5o)wF(n). 

Proof: By the Binet formula, we have 

i/5a)*F(w) = con(o)n - con) = u2n - (im)n = co2n - ( - l ) w = V(n). Q.E.D. 

Theorem 2: I f m\n, then V(m)\V(n). 

Proof: Let a = co2m, 3 = ( - l ) w , and n = rot, so t h a t 

V(m) = a - 3 and V{n) = a* - 3 t . 

Then y = at_1 + at_23 + ••• .+ 3t_1 is an integer and 

V(n) = a* - B* = (a - g)y = 7(m) • y. 

Thus T(m)|F(n). Q.E.D. 

Lemma 1: if a)2n = (-1)" (MOD y), then a)2na = (-l)na (MOD y) for any rational 
integer a. 

Proof: If a > 0, the result is immediate. If a < 0, aT2na E (-l)"na (MOD 
y) . Multiplying both sides of the last congruence by the integer (-l)na0)2na, 
we obtain a)2na E (-l)na (MOD y). Q.E.D. 

Theorem 3: if d = gcd(n, m), then GCD(7(n), 7(m)) = 7(d). 

Proof: Let 6 = GCD(7(n), 7(??0). Since d - gcd(n, w) , there exist a and Z? 
such that d = ma + nfc. Now 7.(777) = 0 (MOD 6), so that co2"7 = (-l)m (MOD 6). Simi-
larly, w2n = (-l)n (MOD 6). Thus, by Lemma 1, 

a)2Wa E (_1)Wa ( M 0 D 6 ) a n d ^inb = (_1}n£ ( M Q D 6 ) # 

Accordingly, o)2^ + 2 ^ = (-l)^a+wi (MOD 6), and since d = ma + ni, a)2'* = (-1)<* 
(MOD 6). Consequently, 7(d) = oo2d - (-l)d = 0 (MOD 5); that is, 617(d). Con-
versely, since d\n and d\m9 7(d) |7(n) and V(d)\V(m) by Theorem 2; and so V(d) |<5 . 
We thus conclude that 6 = V(d) (up to associates). Q.E.D. 

Theorem 4: (i) if m\n, then F(w) |F(n). 
(ii) If d = gcd(7??,n), then gcd(F(/?7), F(n)) = F(d) . In particular, 

if gcd(m9n) = 1, then gcd(F(w), F(n)) = 1. 
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(iii) If gcd(n, m) = 1, then F(m) * F(n)\F(mn). 
(iv) If 777 > 2, then 777|n if and only if FQn)\F(n). 

Proof: If m\ns then V(m)\V(n) by Theorem 2. Thus, by Theorem 1, SbTFim) 
divides y/5un F(n); and since w is a unit, F(m)\F(n). This establishes (i). By 
Theorems 1 and 3, we have 

/5udF(d) = V(d) = GCD(7(777), V(n)) = GCD (/5um F (m), v V ^ n ) ) 

= /5GCD(F(m), F(n)). 

Thus F(d) = GCD(F(m), F(w)), and so F(d) = gcd(F(m), F{n)). Consequently, (ii) 
is true. Now (iii) follows from (i) and (ii), because F{m)\F(mri), F{n)\F(mn), 
and gcd(F(77?)s F(n)) = 1. Half of (iv) follows from (i) . Suppose F(m)\F(n). 
Then by (ii) we have F(m) = gcd(F(m) 9 F{n)) = F(d), where J = gcd(/77, n) . Thus 
F(77z) = F(d); and if 777 > 2, we have m = d = gcd(m5 n) , so that 777 |n. Q.E.D. 

Corollary 1: gcd(F(n), F(n + 1)) = 1. 

Proof: We have ged(n, n + 1) = 1, and so, by Theorem 4(ii), 

gcd(F(n), F(n + 1)) = F(l) = 1. Q.E.D. 

4. LAW OF APPARITION AND RELATED RESULTS 

If 777 > 0 is given, then a classical result states that 777 divides some Fibo-
nacci number having positive index not exceeding m2 [7, p. 44]. In this section 
we deal with various aspects of this problem. The key results we need from the 
arithmetic theory of Z(o)) are found in Theorems 5 and 6. Theorem 5 and its 
proof is a special case of Theorem 258 in Hardy and Wright [6, pp. 222-23]. 
Theorem 6, although trivial to prove, will be used many times in the remainder 
of this paper. 

Theorem 5: If p E ±2 (mod 5) and q E ±1 (mod 5), then 

(i) 0)p + 1 = -1 (MOD p) and (ii) o^-1 E 1 (MOD q) . 

Proof: Since 032-O3~ = O3+l-(l-O3) = 2OJ, then 032 E 03 (MOD 2). Accord-
ingly, a)3 E aico = -1 (MOD 2) and the result is true for p = 2. 

Now let t ̂  5 be an odd rational prime. Since 2t E 2 (mod t), by FermatTs 
theorem for rational integers, we have 

20)* E (2oj)* = (1 + i/5)* = 1 + S ^ " 1 ^ (MOD t). 

By E u l e r ' s c r i t e r i o n f o r q u a d r a t i c r e s i d u e s , 5 ^ ( t _ 1 ) = ( 5 | t ) (mod £) . T h e r e f o r e , 
203* E 1 + ( 5 | t ) V 5 (MOD t ) . By q u a d r a t i c r e c i p r o c i t y , ( 5 | p ) = ( p | 5 ) = - 1 and 
( 5 | ? ) = (q\5) = 1 . Thus 

203p E 1 - V^ = 203 (MOD p ) and 203^ E 1 + A/5 = 203 (MOD q) . 

By c a n c e l l a t i o n , OJP E oT (MOD p ) and 03 ̂  E 03 (MOD <?) . Thus 

oop + 1 E 030) = - 1 (MOD p ) and O ) ^ 1 = of V 7 E 03_103 = 1 (MOD q). Q . E . D . 
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Theorem 6: We have that m\F(n) if and only if 03n is congruent modulo m to a 
rational integer- Moreover, if m\F(n)y then Ud71 E F(n - 1) (MOD m) . 

Proof: If m\F(n), then 

03n = F(n - 1) + F(rc)cu = F(rc - 1) (MOD w) . 

Conversely, if o)n = a (MOD ???), then HSn E a (MOD m) . Thus, we have a)n - ~0dn = 0 
(MOD w) ; and since 

w* - Bn = /5F(n) = (-1 + 2o))F(n) ~ -F(n) + 2F(w)a), 

it follows thatm|F(n). Q.E.D. 

Theorem 7 (Law of Apparition): I f p = ±2 (mod 5) and q = ±1 (mod 5 ) , then 

( i ) p\F(p + 1 ) , ( i i ) q\F(q - I ) , and ( i i i ) 5 | F ( 5 ) . 

Proof: By Theorem 5, wp + 1 = -1 (MOD p) and a/7""1 = 1 (MOD q) . Thus, by 
Theorem 6, p|F(p + 1) and q\F(q - 1). Assertion (iii) is immediate, because 
F(5) = 5. Q.E.D* 

Theorem 8: If pv\F(n), then pr+1|F(np). 

Proof: Since pr|F(n), w" E a (MOD pr) by Theorem 6. Thus con = a + ppa and 
so 

a/*? =* (a. + p^a)P Ea? + pa^^a = a? (MOD p r + 1 ) . 

It therefore follows from Theorem 6 that p^^"1]^^). Q.E.D. 

Theorem 9: If p[F(n>, then pr\F(pr'1n)... 

Proof:, The proof is by induction on P. By hypothesis, the result holds 
for r = 1; and if pT\F(pT~ln) 9 then pr+1|F(ppn) by Theorem 8. Q.E.D. 

Theorem 10: If p E +2 (mod 5) and q ~ +1 (mod 5), then 

(i) pr\F(pr"7(p•+ 1)), (ii) ^ [ F ^ " - 1 ^ - 1)), (iii) 5p|F(5r). 

Proof? Immediate from Theorems 7 and 9. 

Definition 2 ; I f p- = +21 (mod 5) and q =' +1 (mod 5 ) , then 

T ( l l » *, ^Cp** = p r - 1 ( p + 1), . n q P > - ^ " " ' O ? - 1 ) , T(5r) = 5 P ; 
and i f m has. the: r a t i o n a l prime decomposi t ion nr =? p^p^2 • •• P° s > then 

^w - icm(np )̂„ HP*2), ...*** np;o). 
Theorem 1U We have m|*F(T(m)). 

Proofi The result is certainly true if TTT - 1.. If m > 1, then let m have 
the rational prime decomposition 

m = p^p^ ^. p^s -

Since Tip?*) divides T(T??) , F(T(p^)) divides F(T(m)) by Theorem 4(i). Also pV-
divides F(T(p?0) by Theorem 10 and Definition 2. Thus, p?i divides F(T(m)), 
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And since the pe* are pairwise relatively prime, m divides F(T(m)). Q.E.D. 

The result mentioned at the beginning of this section is an immediate con-
sequence of Theorem 11, since it is clear that 1 < T(m) < m2. Theorem 11 is a 
stronger result in the sense that it exhibits an easily calculated positive 
index n for which m\F(n) * 

5-, RANK OF APPARITION 

Given m > 0, it is natural to ask for the smallest t > 0 for which m\F(t). 
We might take T(m) as a tentative guess for t . This guess may not be correct 
(T(17) = 18 and 17|F(9)), but as we shall presently see in Theorem 13, t\T(m). 

Definition 3: The rank of apparition of m > 0, denoted by R(m), is the small-
est t > 0 such that m\F(t) . We also say that the index t is the point of entry 
of m in the Fibonacci numbers. 

Tables of R(p) are readily available. Brousseau [1] gives R(p) for each 
rational prime p < 269, while {2] does the same for p < 48,179 and [3] does 
for 48,179 < p < 100,000. Jarden, in [8], gives R(p) for each rational prime 
p < 1512. The following theorem gives a concise formulation of R(m) in terms 
of the structure of Z((JO). 

Theorem 12: R(m) is the smallest t > 0 such that a)* is congruent modulo m to 
a rational integer. 

Proof: Immediate from Theorem 6. Q.E.D. 

It should be noted that the period of m in the Fibonacci numbers also has 
a concise formulation in Z(u)), Recall that the period of m in the Fibonacci 
numbers is the smallest t > 0 such that F(t - 1) E 1 (mod m) and F(t) E 0 (mod 
m) . Thus, since 03* = F(t - 1) 4- F(t)o), it follows that the period of m in the 
Fibonacci numbers is the smallest £ > 0 such that oat E 1 (MOD m). 

The following trivial lemma paves the way for Theorem 13, the main result 
of this section. 

Lemma 2: The integer e + did is congruent modulo m to a rational integer if and 
only if m\d' 

Proof: If m\d9 then e + dco = o <M0D m) . Conversely, if c + du) E a (MOD m) , 
then ?7z|(e - a) and w|<i. Q..E.D. 

Theorem 13: We have that m\F(n) if and only if R(m)\n. 

Proof: Let £ = R{m). First, suppose that t|n. Then, by Theorem 4(i), we 
have F(t)|F(n); and since m\F(t)* it follows that 77?|F(n). Conversely, suppose 
that m|F(n). Then wn = Z? (MOD m) by Theorem 6. Since n > t , then n = s£ + tf, 
where s > 0 and 0 < x < £. Thus, as to* E a (MOD m) for some a with gcd(a, m) 
= 1 (Theorem 6), we have b E wn - wst + * = as(dx (MOD m) . Suppose a; + 0. Then 
a)27 = Q + <2GO and 7771 d. [For, if #2|d, we would have idx = £ (MOD w) by Lemma 2, 
and so m\F(x) > a contradiction to the minimality of £.] Thus, fc E <?as + das(d 
(MOD 7??). This is impossible by Lemma 2 [gcd(a5 m) = 1 and m|d; thus m|das.] 
Accordingly, a? = 0, and so t\n. Q.E.D. 
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6. LAW OF REPETITION 

We now direct our efforts to establishing the law of repetition (Theorem 
15). Along the way, we will establish Theorem 14 and Lemma 3. Theorem 14 is 
an important result in its own right, whereas Lemma 3 is instrumental in prov-
ing the law of repetition. The proof of Lemma 3 will be the last use of the 
arithmetic theory of Z(co) in this paper. 

Definition 4: By pr\\n, we mean that pr\n and pr+1\n. 

Theorem 14: If pr\\F(n)9 then pr + 1\F(nm) if and only if p\m. 

Proof: Suppose p\m. We have that pr+1\F(np) by Theorem 8; and since np\mn9 
it follows from Theorem 4(i) that F(np) |F(run). Now suppose that pr+1\F(nm). 
Set a = F(n- 1) and bpr = F(n). Since pr\\F(n)9 it follows that gcd(b9 p) = 1; 
and gcd(a, p) = 1, since F(n - 1) and F(n) are relatively prime. Therefore, 
gcd(ab9 p) = 1. Also, 

o)nm = (a + bpru>)m = am + m^-^p^d) (MOD p p + 1 ) . 

Now pp + 1 |F(?tf7?), and so, by Theorem 6, we have 

am + mam-1bpru = c (MOD p P + 1 ) . 

But, by Lemma 2, this means that p\mam~1b; and since gcd(a£>, p) = 1, it follows 
that p\m. Q.E.D. 

Lemma 3: If pT\F(n) and gcd(m, p) = 1, then 

pr+1 \F(nmp) , 
and if pr ̂  2, then 

pr + 1||F(nmp). 

Proof: Since n\nm9 then F(n)|F(nm), and so pv\F(rw\), Thus, pr+1\F(nmp), 
by Theorem 8. Also, since gcd(m9 p) = 1, we have p\m9 so that pr+1\F(nm), by 
Theorem 14. Accordingly, p;r,||.F(ntf7). Let # = run. Then we have pr\\F(x)9 and we 
are to show that, if pr f 2, then pr+1 \\F(xp). Of course, we already know that 
pr+1\F(xp), and so it only remains to show that pv+2\F(xp) . 

Suppose first that p > 2. Seta = F(x - 1) and bpr = F(x). As in the proof 
of Theorem 14, we have gcd(ab9 p) = 1. Also, 

u)px = (a + bpr^y =aP + pr+1ap-1btt + apr+2. 
Thus, 

oop* = ap + pr+1ap_1to (MOD pr+2), 

and since pr+2|pr+1ap~1&, it follows that oopx is not congruent modulo pr+2 to a 
rational integer (Lemma 2) . Therefore, by Theorem 6, pr + 2|F(xp). 

The proof for the exceptional case p = 2, r > 1, is exactly the same. (The 
condition r > 1 is needed to obtain the term apr+2.) Q.E.D. 

Theorem 15 (Law of Repetition): if pr\F(n) and gcd(m, p) = 1, then, for any 
k > 0, pp + fe|F(ntf?pk), and if pr ̂  2, pr + k\F(nmpk). 

Proof: Straightforward induction on fe using Theorem 8 and Lemma 3. Q.E.D. 
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7- FURTHER DIVISIBILITY RESULTS 

We conclude this article by listing in Theorems 16-20 additional well-known 
divisibility results which readily follow from Theorems 13-15. Since no addi-
tional use of the arithmetic theory of Z(oo) is needed, the proofs are left to 
the reader. 

Theorem 16: if p + 2, t = i?(p), pr\\F(t)9 and k > 0, then pr+k\\F(n) if and only 
if n = tmpk, where gcd(m, p) = 1. 

Theorem 17: (i) l\\F(n) if and only if n = 3???, where gcd(m, 2) = 1. 
(ii) If k > 0, then 23 + k\\F(n) if and only if n = 2k+1 • 3 • m, where 

gcd(w, 2) = 1. 

Theorem 18: If p ^ 2, t = i?(p), and pr||F(£), then 

i?(pn) = f pn,ax(0'n-r) and p r + max(0'n-r)||F(i?(p")). 

Theorem 19: t 3, n = 1 
i?(2n) = { 2 • 3, n = 2. 

( 2n~2 • 3, n > 3 

Furthermore, 2||F(3), 23 ||F(2 • 3), and 2n||F(2n~2 • 3) for n > 3. 

Theorem 20: If m = p^p^2 -•• P^s » then 

i?(/??) = lcm(i?(p*i), ..., i?(p/')). 
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A NOTE ON APERY NUMBERS 

DEREK K. CHANG 
University of California, Riverside, CA 92521 

(Submitted September 1982) 

To prove the irrationality of the number 

5(3) = £ (1/n3), 
n = i 

Apery recently introduced the sequence {an, n ̂  0} defined by the recurrence 
relation 

a0 = 1, ax = 5, 
and 

n3an - (34n3 - 51n2 + 27n - 5)an_1 + (« - l)3an_2 = 0 (1) 

for n > 2. Apery proved that for the pair (a0, a-^ = (1, 5), a l l the a„!s are 
integers, and each an has the representation 

A / n W n + 2c\2 

a"=£0(k) \ k ) • 
The first six an

fs are: 

a0 = 1, a-L = 5, a2 = 73, a3 = 1445, ah = 33001, a5 = 819005 

(see [1]). 
Some congruence properties of Apery numbers are established in [l]and [2], 

In [1], it is asked if there are values for the pair (a0, ax) other than (1, 5) 
in (1) that would produce a sequence {an9 n ̂  0 } of integers. In particular, 
taking a0 = 1> it is also asked if there is a necessary and sufficient condi-
tion on a± for all the an's to be integers. In answering these questions, we 
first prove the following theorem. 

Theorem: Let a0 = 0. The condition ax = 0 is necessary and sufficient for all 
of the an

fs defined by Apery recurrence relation to be integers. 

Proof: The sufficiency is clear. To prove the necessity we assume, on the 
contrary, that there exists an integer k ^ 0 such that all of the bn's produced 
by Apery recurrence relation with b0 = 0, b1 - k are integers. Without loss of 
generality, we assume k > 0. 

For the sequence { b , n ̂  0}, (1) can be written as 

n3bn = (34n3 - 51n2 + 27n - 5)bn_1 - in - l)3bn_2 (2) 

and hence 

bn - jB_i - (33 -f + %- -jpjK-i - (1 - 1 + ^ - ±>)h-2-
Since we have 

(33 - 51 + i i _ JL\ _ L _ 3 + ^ _ n = 4(2 _ i y > 0 

for a l l n ^ 2, i t follows that £>n_i > &n-2 ^ 0 implies £>n > 2?n-i- Since 2?x = 
fe > 0 = b0, then, by induction, bn > bn_1 for a l l n ^ 1. Similarly, since a1 = 
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5 > 1 = aQ, we also have an > an_1 for all n > I. Thus, an > 0 and bn > 0 for 
n > L 

The equation (2), with n = 2, implies that 8b2 = 1172?!- Therefore, we have 
b1/a1 < b2/a2. Now we prove that for each integer n > 2, 

n-l ri 

The Apery recurrence relation (1) can be written as 

(34n3 - 5ln2 + 27n - 5)an_1 = n3an + (n - l)3an_2. (4) 

Let \i = bi/ai3 i > 1. If An_2 < Xns then from (4) we have 

(34n3 - 51n2 + 27n - 5)Xn_1an_1 = n3Anan + (n - l)3Xn_2an_2 

< Xn(n3an + (n - l)3an_2)5 
and 

(34n3 - 51n2 + 27n - 5)Vian-i > Xn_2(n3an + (n - D 3 a n _ 2 ) . 
Hence, 

An-2 < Xn implies \n_2 < Xn_± < Xn. 
Similarly, 

Xn_2 ^ Xn implies Xn_2 ̂  Xn_1 ̂  An. 

Therefore, the inequality Xn_2 < Xn_x implies Xn_x < An. Now since (3) holds 
for n = 2, it also holds for all n > 2. 

From (4), we get 
b„ (n + l)zbn_1 +n%_1 

(n + l)3an_1 + n3an,1 

Hence, clearing the denominator and collecting terms yields 

/bn + l K\ 
(3n2 + 3n+ D \ ^ " ^ ) a n a n + l = n «an-lbn - K-Xar) ~ < a A + l " Kan^ ' 

Thus, using (3), we get a ^b - b ^a„ > a b ,. - b aH,. for all n ̂  2; hence, 
b v / ? °  n-l n n-l rc n n+1 n n + 1 ' 

an^n+l " &nan+l ^ (^n- A " &«-!<*«) " 1 (5) 

for all n > 2. Note that (3) also implies 

n + 1 ^n ̂ n +1 > 0 (6) 

for all n > 2. Comparing (5) and (6), we can clearly see a contradiction. This 
completes the proof. • 

We have the following corollary as a consequence of the above theorem. 

Corollary: It is necessary and sufficient that the pair (a0 9 a±) = c(l, 5), 
where o is any integer, for all the an

fs in (1) to be integers. 

Proof: The sufficiency follows immediately from the linearity of the rela-
tion (1) relative to a„Ts. To prove the necessity, suppose (a0> a{) = {&> d) 
is a pair that causes all of the a„fs to be integers. By the linearity of (1), 
the pair (0, d - 5e) = (o9 d) - c(l, 5) is also a pair that causes all of the 
an's to be integers. By the theorem, d - 5c = 0, that is, (<3, d) = <?(1, 5). 
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As a last comments we slightly improve a lemma presented in [2]. 

By multiplying (6n2 - 3n + 1) to the equation 

(n + l)3an+1 - (34(n + l)3 - 51(n + l)2 + 27(n + 1) - 5)an + n3an-1 = 0, 

we obtain 

(6n2-3n + l)((n3 + 3n2 + 3n + l)an + 1 -(34n3 + 51n2 + 27n + 5)an + n3an_1) = 0, 

and hence, 
an+i E (5 + 12n)a^ (mod n3) 

for n ^ 2. The same result was given in [2] with (mod n2) instead of (mod n 3 ). 
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manuscripts should be sent to the chairman of the local committee. Invited 
and contributed papers will appear in the Conference Proceedings, which 
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Department of Mathematics 
South Dakota State University 
PO Box 2220 
Brookings SD 57007-1297 
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GENERAL INFORMATION CONCERNING THE 

FIRST INTERNATIONAL CONFERENCE 
ON FIBONACCI NUMBERS AND THEIR APPLICATION 

1. The University of Patras campus, located between the sea and mountains in 
beautiful surroundings, is eight kilometers from the city of Patras. The 
university, which has a student population of approximately 6000, has Sci-
ence departments: Biology, Chemistry, Geology, Mathematics, and Physics; 
Engineering departments: Civil, Chemical, Electrical and Mechanical, and 
Computer and Informatics; and a Medicine department: Faculty of Medicine 
and Pharmacy. The Department of Mathematics, active in both education and 
research, has 30 professors and lecturers, 20 research assistants, and 1500 
students. The ancient city of Patras is famous for its castle, beautiful 
monuments, and splendid St. Andrew's Cathedral. 

2. The trip between Patras and Athens, the capital of Greece, can be made by 
bus (running at half-hour intervals), train (six times daily), or car (220 
kilometers of beautifully scenic highway by the sea). The taxi fare is 
about U.S. $70. Ferry boat service is available from Italy directly to the 
city of Patras. Bus and taxi service is available from Patras to the Uni-
versity campus. 

3. Accommodations in Patras are available in the Student Hostel on the Univer-
sity campus (a limited number of single rooms at the subsidized price of 
U.S. $15 per day per person, full pension), in many hotels in Patras, or in 
bed and breakfast pensions near the University (prices range from U.S. $10 
to U.S. $25 per day per person, breakfast only). Double rooms are avail-
able in the hotels at higher prices. 

4. The participation fee, which includes welcome cocktail, Conference dinner, 
and excursions to Olympia and Delphi, is U.S. $30. The fee for the Pro-
ceedings, which is separate from the participation fee, is U.S. $50. Advance 
payment for the participation and/or the Proceedings may be sent to: 

Professor N. I. Ioakimidis, P.O. Box 1120, GR-261.10 Patras, Greece. 

Payment may also be made at the beginning of the Conference. 

5. Participants who present a paper will have available both an overhead and a 
slide projector. Presentations will be given at the Central Auditorium of 
the University. The detailed program of the Conference together with the 
registration form and further details will be mailed to all participants by 
July 15, 1984. Preprints of papers will be available, in photocopy form, 
during the Conference. 

The Conference organizers are making every effort to provide a friendly, relaxed 
environment in which participants can present their ideas and join in friendly 
discussions with their colleagues. Persons who accompany Conference partici-
pants are welcome and will have an opportunity, along with participants, to 
visit the University, the city of Patras, and neighboring places of historical, 
cultural, and natural interest, 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN 

Assistant Editors 
GLORIA C. PADILLA and CHARLES R. WALL 

Send all communications regarding ELEMENTARY PROBLEMS and SOLUTIONS to 
PROFESSOR A. P. HILLMAN; 709 Solano Dr., S.E.,; Albuquerque, NM 87108. Each 
solution or problem should be on a separate sheet (or sheets). Preference will 
be given to those typed with double spacing in the format used below. Solu-
tions should be received within four months of the publication date. Proposed 
problems should be accompanied by their solutions. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn + 1 + f n » ^0 = °> ^ 1 = 1 

and 
Ln+2 = Ln+1 + Ln> L

0
 = 2> Li = 1' 

Also, a and 3 designate the roots (1 + v5)/2 and (1 - v5)/2, respectively, of 
x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-520 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

(a) Suppose that one has a table for multiplication (mod 10) in which a, 
b, , . . , j have been substituted for 0, 1, . .., 9 in some order. How many de-
codings of the substitution are possible? 

(B) Answer the analogous question for a table of multiplication (mod 12). 

B-521 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

See the previous problem. Find all moduli m > 1 for which the multiplica-
tion (mod m) table can be decoded in only one way. 

B-522 Proposed by loan Tomescu, University of Bucharest, Romania 

Find the number A(n) of sequences (al5 a2, ..., ak) of integers ai satisfy-
ing 1 < at < ai + 1 < n and ai + 1 - ai E 1 (mod 2) for i = 1, 2, . . ., k - 1. [Here 
k is variable, but of course 1 < k < n. For example, the three allowable se-
quences for n = 2 are (1), (2), and (1,2).] 

B-523 Proposed by Laszlo Cseh and Imre Merenyi, Cluj, Romania 

Let p, aQ, a-t, . . . , an be integers with p a positive prime such that 

gcd(a0, p) = 1 = gcd(an, p). 
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Prove that in {0, 1, ..., p - 1} there are as many solutions of the congruence 

anxn + an_1xn~1 + ••• + ciyZ + a0 = 0 (mod p) 

as there are of the congruence 

a0xn + axxn~x + '" + (Zn-iX + a = 0 (mod p). 

B-524 Proposed by Herta T. Freitag, Roanoke, VA 

Let Sn = Ffn_1 + FnFn.1(F2n_1 + Fn2 ) + 3FnFn + 1(F2n_1 + F„F„_i). Show that 
Sn is the square of a Fibonacci number. 

B-525 Proposed by Walter Blumberg, Coral Springs, FL 

Let x,y, and z be positive integers such that 2X - 1 = £/s and # >• 1. Prove 
that z = 1. 

SOLUTIONS 

Fibonacci-Lucas Centroid 

B-496 Proposed by Stanley Rabinowitz, Digital Equip. Corp., Merrimack, NH 

Show that the centroid of the triangle whose vertices have coordinates 

(Fn, Ln), (Fn+1, Ln+1), (Fn + 6, £n + 6) 

is (Fn + h, Ln+h). 

Solution, independently, by Walter Blumberg, Coral Springs, FL; Wray G. Brady, 
Slippery Rock, PA; Paul S. Bruckman, Sacramento, CA; Laszlo Cseh, Cluj, Romania; 
Leonard Dresel, Reading, England; Herta T. Freitag, Roanoke, VA; L. Kuipers, 
Switzerland; Stanley Rabinowitz, Merimack, NH; Imre Merenyi, Cluj, Romania; 
John W. Milsom, Butler, PA; Bob Prielipp, Oshkosh, WI; Sahib Singh, Clarion, PA; 
Lawrence Somer, Washington, CD; Gregory Wulczyn, Lewisburg, PA. 

The coordinates (x, y) of the centroid are given by 

3x = Fn + Fn+1 + Fn+6 
= Fn + 2 + Fn + h + Fn+5 

~ ^n + 2 "*" ^n+h + ^n+3 ^n + h 

and similarly, 
3y = Ln + Ln+1 + Ln+6 

= 3Ln+ h. 
Hence, the centroid is (Fn+h, Ln+h). 

Area of a Fibonacci-Lucas Triangle 

B-kS7 Proposed by Stanley Rabinowitz, Digital Equip. Corp., Merrimack, NH 

For d an odd positive integer, find the area of the triangle with vertices 
(Fn9 Ln), (Fn + di Ln+d), and (Fn + 2d> Ln+2d). 
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Solution by Paul S. Bruckman, Sacramento, CA 

By means of a well-known determinant formula,the area of the given triangle 
is given by 

1 II 

(In the above expression, the inner bar is the determinant symbol, the outer bar 
represents absolute value.) Then 

A = -2\(Fn + 2dLn + d " Fn + d^n + ld} ~ (Fn + 2d^n ~ FnLn + 2d^ + (Fn+d^n ~ FnLn + d ) \ . 

Using the relation 

FULV - FVLU = 2(-l)vFu_v, (2) 

this becomes: 

A = (-l)n + dFd - {-l)nF2d + (-l)nFd = (.-l)dFd - F2d + Fd> 

which equals F2d when d is odd (and equals F2d - 2Fd when d is even). 

Also solved by Walter Blumberg, Wray G. Brady, Leonard Dresel, Herta T. Freltag, 
L0 Kuipers, Graham Lord, John W. Milsom, Bob Prielipp, Sahib Singh, Gregory Wul-
czyn, and the proposer. 

Fibonacci Recursions Modulo 10 

B-498 Proposed by Herta T. Freitag, Roanoke, VA 

Characterize the positive integers k such that, for all positive integers n, 
Fn +

 Fn + k = Fn + 2k (mod 10). 

Solution by Leonard Dresel, University of Reading, England 

When k is odd, we have the identity Fm+k - Fm„k = FmLk. Applying this with 
m = n + k9 we have Fm = FmLk (mod 10), and this will be satisfied whenever 
Lk = 1 (mod 10). 

On the other hand, when k is even, we have Fm + k - Fm_k = LmFk , and it is 
not possible to satisfy the given recurrence for even k. 

Returning to the case of odd k, the condition Lk = 1 (mod 10) is equivalent 
to 

Lk = 1 (mod 2) and Lk = 1 (mod 5). 

The first condition implies that k is not divisible by 3; with the help of the 
Binet formula for Lki the second condition reduces to 2 " = 1 (mod 5), which 
gives that k - 1 in a multiple of 4. Combining these results, we have 

k = 12£ + 1 ov k = 12t + 5 (t = 0, 1, 2, 3, . . . ) . 

Also solved by Paul S. Bruckman, Laszlo Cseh, L. Kuipers, Imre Merenyi, Bob 
Prielipp, Sahib Singh, Lawrence Somer, Gregory Wulczyn, and the proposer. 

A=i 

i i 
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Lucas Recursions Modulo 12 

B-499 Proposed by Herta T. Freitag, Roanoke, VA 

Do the Lucas numbers analogue of B-498. 

Solution by Leonard Dresel, University of Reading, England 

We have the identit ies Lm + k — Lm- k — LmLk when k is odd, and Lm + k — Lm-k — 
5FmFk when k is even. Hence, putting m = n + k9 the relation Ln + Ln + k E Ln + 2k 
(mod 10) leads, for odd k, to Lm ~ LmLk (mod 10), so that we require Lk= 1 (mod 
10), leading to the same values of k as in B-498 above. 

Also solved by Paul S. Bruckman, Laszlo Cseh, L. Kuipers, Imre Merenyi, Bob 
Prielipp, Lawrence Somer, Gregory Wulczyn, and the proposer. 

Two Kinds of Divisibility 

B-500 Proposed by Philip L. Mana, Albuquerque, NM 

Let A(n) and B(n) be polynomials of positive degree with integer coefficients 
such that B(k)\A(k) for all integers k. Must there exist a nonzero integer h 
and a polynomial C(n) with integer coefficients such that hA(n) = 5(n)C(n)? 

Solution by the proposer. 

Using the division algorithm and multiplying by an integer In so as to make 
all coefficients into integers, one has 

hA(n) = Q(n)B(n) + R(n), (*) 

where Q(n) and R(n) are polynomials in n with integral coefficients and R(n) is 
either the zero polynomial or has degree less than B(n) . The hypothesis that 
B(n)\A(n) and (*) imply that B(n)\R(n) for all integers n. If R(n) is not the 
zero polynomial, R(n) has lower degree than B(n) and so 

lim [R(n)/B(n)] = 0; 

also R(n) is zero for only a finite number of integers n. Thus 0 < R(n)/B(n) < 1 
for some large enough n9 contradicting B(n)\R(n). HenceR(n) is the zero poly-
nomial and (?v) shows that the answer is "yes." 

Also solved by Paul S. Bruckman and L. Kuipers. 

Doubling Back on a Sequence 

B-501 Proposed by J. O. Shallit & J. P. Yamron, U.C. Berkeley, CA 

Let a be the mapping that sends a sequence X = (xl9 x2, ..., x , ) of length 
2k to the sequence of length k, 

(X\A ) — \X -^X 2k 9 2 2k - 1 ' •••> k k + 1 ) * 

Let V = (1, 2, 3, ..., 2h), a2(7) = a(a(F)), etc. Prove that a(7), a2(7), ..., 
a ~ (7) are all strictly increasing sequences. 
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Solution by Leonard Dresel, University of Reading, England 

Suppose the nubmers als a2, a3, ah form a strictly increasing sequence, 
subject to the condition a1 + ah = a2 + a3 = S, then 

(ah - a x ) 2 > (a3 - a 2 ) 2 

(ah - a x ) 2 = (a3 + a 2 ) 2 
and 

gives 
-4ar+a1 > -4a3a2 

hence, 
a^^. < a2a3. 

Now any two consecutive terms of a(7) are of the form a^^, a2a3, with 

ax + a^ = a3 + a2 = 1 + 2h, 

so that it follows that a(7) is a strictly increasing sequence. 
Next, consider a (7) . To avoid a notational forest, we shall apply our 

method to the specific case where h = 4, with 7 = (1, 2, 3, . .., 16). Then, 
using a dot to denote multiplication, we have 

a(7) = (1-16, 2 • 15, 3-14, ..., 8-9) 

a2 (T) = (1 • 16 • 8 • 9, 2 • 15 • 7 • 10, ..., 4 • 13 • 5 • 12) 
= (1 • 8 • 9 • 16, 2 • 7 • 10 • 15, . .., 4 • 5 • 12 • 13) 
= (b1 • cls b2 • e2, ..., 2^ • e4) 

where 
(bis i2, Z>3, \ ) = a(l, 2, 3, ..., 8) 

and 
(o13 c2, c3, ch) = a(9, 10, 11, ..., 16). 

By our previous argument, b± is strictly increasing, and similarly c^ is. Thus 
a2(7) = (b%Ci) is a strictly increasing sequence. Similarly, we can show that 
a3(7) = (d1e1f1g19 d2e2f2g2), where 

(d2, d2) = a(l, 2, 3, 4), (el5 e2) = a(5, 6, 7, 8), etc., 

is strictly increasing. The above arguments can be generalized to apply to any 
value of h, 

Also solved by Paul S. Bruckman, L. Kuipers, and the proposers. 
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PROBLEMS PROPOSED IN THIS ISSUE 

H-368 Proposed by Andreas N. Philippou, University of Patras, Patras, Greece 

For any fixed integer k ^ 2, 

T / « ! + • • < + " * + 1\ = A f(*) f ( f c ) > 
nl3 ...,nkB \ ni> ' " ' » "It* l J £=0 

n1+2n2 + --- + knk = n 

where /„ are the Fibonacci numbers of order k [1], [2]. 
In particular, for k - 2, 

C^2] (n - A A 
£ (n + 1 - £)P " ) = J] ̂  + 1Fn + 1_£, n > 0. 

The problem also includes as a special case (k = 1) the following: 

(n + 3? - 1\ " v* /n - £ + p - 2\ . • " ,_,. 

\ .r.- 1 )=h\ "2 ) ' n > ° - (B) 

References 
1. A. N. Philippou & A. A. Muwafi. "Waiting for the kth Consecutive Success 

and the Fibonacci Sequence of Order k." ' The Fibonacci Quarterly 20, no. 1 
(1983):28-32. 

2. A. N. Philippou. "A Note on the Fibonacci Sequence of Order k and Multi-
nomial Coefficients." The Fibonacci Quarterly 21. no. 2 (1983):82-86. 

H-369 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Call an integer-valued arithmetic function / a god sequence if 

gcd(a, b) = d implies gcd(/(a), f(b)) = f(d) 

for all positive integers a and b. A gcd sequence is primitive if it is neither 
an integer multiple nor a positive integer power of some other gcd sequence. 
Examples of primitive gcd sequences include: 

(1) f(n) = 1 (2) f(n) = n (3) f(n) = largest squarefree divisor of n 
(4) f(n) = 2n - 1 (5) f(n) = Fn (Fibonacci sequence) 

(A) 

(A.l) 
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Prove that there are infinitely many primitive gcd sequences. 

H-370 Proposed by M. Wachtel & H. Schmutz, Zurich, Switzerland 

For every positive integer a show that 

5 • [5 • (a2 + a) + 1] + 1 (A) 

5 • [5 • [5 • [5(a2 + a) + 1] + 1] + 1] + 1 (B) 

are products of two consecutive integers, and that no integral divisor of 

5(a2 + a) + 1 

is congruent to 3 or 7, modulo 10. 

H-371 Proposed by Paul S. Bruckman, Carmichael, CA 

Let [k] represent the purely periodic continued fraction: 

k + l/(k + l/(k + ..., k = 1, 2, 3, ... . 
Show that 

[k]3 = [k3 + 3k]- (1) 

Generalize to other powers. 

SOLUTIONS 

Give Poly Sum! 

H-3^8 Proposed by Andreas N. Philippou, Patras, Greece 
(Vol. 20, no. 4, November 1982) 

For each fixed integer k > 2, define the sequence of polynomials a(„fe)(p) by 

a(W(p) . pn+k E <n + ;•; +»k)(l^E)V-+-*. (B > o, - < P < - ) . 
«i» ••• »nfc \ n l s 3 n^ / \ p 1 

where the summation is over all nonnegative integers n19 ..., n^ such that 

nY + 2n2 + ••• + fcnfe = n. 
Show that 

Z 4k)(p) = 1 (0 < p < 1). 
rc = 0 

Solution by the proposer. 

Using the definition of a^Cp) and the transformation ni = m^ (1 < i < k) 
and fc 

^ = w + S (̂  " l)mi> 
i = l 

we get 

E a-cp) = P^L z ft+ - +
m > — • • • • * - ( i ^ ) m — 

m x + • • • + /7?k= m 

= Pk S((——^-)(p + p2 + ••• + Pk)j 5 by the multinomial theorem, 
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= Pk E C 1 " Pk)m = 1, for |l - p*| < 1, (1) 
m =0 

which establishes the result. Moreover, (1) implies that for any fixed integer 
I > 1, 

X>(
n
2£)(p) = 1, for -1 < p < 1. (2) 

n = 0 

Remark: If p = 1/2, the problem reduces to showing that 

E(/f)/2n) = 2*"1, (3) 
tt=l 

where /n is the Fibonacci sequence of order k, since it may be seen, [l]-[2], 
that 

f«\- E . (ni
n

+'"+nnk) (»>0). 
n1+2n2 + - • - + knk = n 

A direct proof of (3) is given in [3]. 

References 

1. A. N. Philippou & A. A. Muwafi. "Waiting for the kth Consecutive Success 
and the Fibonacci Sequence of Order k." The Fibonacci Quarterly 20, no. 1 
(1982):28-32. 

2. A. N. Philippou. "A Note on the Fibonacci Sequence of Order k and Multi-
nomial Coefficients." The Fibonacci Quarterly 21, no. 2 (1983):82-86. 

3. A. N. Philippou. Solution of Problem H-322. The Fibonacci Quarterly 20, 
no. 2 (1982):189-90. 

Also solved by Paul S. Bruckman and L. Kuipers. 

Triggy 

H-3̂ +9 Proposed by Paul S. Bruckman, Carmichael, CA 
(Vol. 21, no. 1, February 1983) 

n~1 n2 - 1 
Define Sn as follows: Sn - £ esc TTkin, n = 2, 3, ... . Prove Sn - — ~ — . 

k = i 5 

Solution by Omer Egecioglu, University of California, La Jolla, CA 

We will prove a slight generalization: Let 5 be a primitive n th root of 1. 
Then , . r 1 

n-1 ( n if n\m 
E tkm = \ 

k=0 (0 otherwise. 
For ItI < 1, we have 

E — h - = E E ? *m = I t " E ^ = —2—. 
k = 0 1 - £ £ /c = 0 w = 0 /?7 = 0 ^ = 0 l _ ^ n 

Thus 
V 1 1 1 - « 1 n - I > _ = i i m _ — - — - — 
«-i 1 - 5fc **i 1 - t" : - * 2 
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Using the fact that |l - E,k\2 = (1 - ̂ k)(l - ^k) and partial fractions, similar 
techniques yield the following, more general formula: For 0 < m < n, we have 

n - 1 rkm Vm _ i 
k = l [ 1 

Now, writing 

£ "2—— = "^(n2 + 6777(777 - n) - 1). (1) 
fc=i 1 - £k 2 z 

t, - cos 1- ̂  sin , 
n n 

we obtain 

|l - KK\2 = (1 - ?fc)(l - I") = 2(1 - Re £*) = 4 sinz -^ 

Separating E, m into its real and imaginary parts, (1) implies 

V-1 2-Khn 2 T\k 1 , 2 . , , x -, s / I N 
£ cos — — csc — = -r-(n + 6w(m - n) - 1) (la) 

k=i n n J 

V s m csc — = 0 (lb) 
L~t 71 71 

k=l L l 

whenever 0 < 77? ̂  n. 2 _ 1 
From (la), we obtain the special case Sn = — by taking 777 = n. For n 

even, with m = n/2, (la) yields 

EVD'CSC2?- -W + 2). 
k = l n b 

The following identities can also be obtained by arguments similar to the 
derivation of (1): 

n -1 rkm _ . •, 

L —-—r = m 9 — ' ( 2 ) 

fc = l I - E,k Z 

n - 1 rkm -i 
V 2 = -To(w + 6n - 6777n 4- 6TT?2 - 12m + 5 ) ; (3) 
* - i (1 - S k ) 2 1 2 

V 1 = 1 - JL c o t ™ (4) 
t i \ i - e \ 2 - i ^ 6 

These yield further trigonometric identities by separating £ to its real and 
imaginary components. For instance, from (4), we obtain 

n- 1 1 71 7ll\ E 1 1 ru _ ]_ c o t 

k= 1 4 s m 1 v3 

and for n even, (3) with 777 = n/2 gives 

/ . (~1) cos cot — = 0 . 
fcTi n n 

Also solved by P. Bruckman, W. Janous, S. Klein, D. P. Laurie, B. Prielipp, 
T. J. Rivlin, and J. Suck. 
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We Have the System 

H-351 Proposed by Verner E. Hoggatt, Jr. (deceased) 
(Vol. 21, No. 1, February 1983) 

Solve the following system of equations: 
Ui = l 

V1 = 1 

U2 = U1 + V1 + F2 = 3 

V2 = U2 + Vl = 4 

Un + i = Un +Vn + Fn + 1 (n > 1) 

Vn+l = Un+l + Vn fa > 1) 

Solution by C. Georghiou, University of Patras, Patras, Greece 

The generating functions of the sequences 

are, respectively, 

(1 - x - X2)'1, x(l - 3x + a;2)-1, and (1 - x)(I - 3x + x2)'1. 

Let u(x) and V(x) represent the generating functions of the sequences {Un}n=0 
and {Vn}n = Qi respectively. From the given system we get (since U0 = VQ = 0 ) : 

— u(x) = u(x) + v(x) + (1 - x - x2)'1 and — v(x) =—u(x) + v(x). 

Then i o i o . 
v(x) = a?/(l - x - x )(1 - 3x + ar) = — — 2 1 - 3ar - x2 2 1 - x - x2 

1 - x 
+ — 1 - 3x + ̂ c2 2 1 - 3x + xc2 1 - x - x2 2 1 - x - #2" 

Therefore . , 
n L Zn+1 T 2 2 n n + 1 2 w 

and 
^n vn vn-l 2 2.n+2 2 n + 1 

Also solved by P. Bruckman, W. Janous, L. Kuipers, J. Suck, M. Wachtel, and the 
proposer. 
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