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THE GENERATION OF HIGHER-ORDER LINEAR RECURRENCES FROM
SECOND-ORDER LINEAR RECURRENCES

LAWRENCE SOMER
1400 20th St., NW #619, Washington, D.C. 20036
(Submitted May 1981)

Let {u,} be a Lucas sequence of the first kind defined by the second-order
recursion relation )

Upypp = QUpyy + Dy,

where g and b are integers and u, = 0, u; = 1. By the Binet formulas

u, = (@" - 8" /(e ~ B)»
where o and B are roots of the characteristic polynomial

x? - ax - b.
Let

D= (a=-B)? =a’+4b

be the discriminant of the characteristic polynomial of {u,}. We shall prove
the following theorem which demonstrates that the quotients of specified terms
of the second-order recurrence {u,} satisfy a higher-order relation.

Theorem 1: Consider the sequence
W, Y, ., = lunr/und, -y

where k is a fixed positive integer, of # 0, and o/B is not a root of unity.
Then {w,} satisfies a k™ -order linear integral recursion relation. Further,
the order k is minimal.

Along the lines of this theorem, Selmer [1] has shown how one can form a
higher-order linear recurrence consisting of the term-wise products of two
other linear recurrences. In particular, let {s,} be an mtP-order and {t,} be
a pth-order linear integral recurrence with the associated polynomials s(x) and
t(x), respectively. Let a;, 2 = 1,2, ..., m, and Bi» J = 1,2, ..., p, be the
roots of the polynomials s(x) and t(x), respectively, and assume that each poly-
nomial has no repeated roots. Then, the sequence

{hn} = {snta}

satisfies a linear integral recurrence of order at most mp, whose characteris-
tic polynomial % (x) has roots consisting of the »r distinct elements of the set
{@iﬁj}, where 1 < ¢ <mand 1 < j < p. Note that the coefficients of h(x) are
integral because they are symmetric in the conjugate algebraic integers ozBj-.
However, {h,} may satisfy a recursion relation of order lower than r.

Selmer's proof depends on the fact that the recurrences {s,} and {tn} can
be expressed in terms of their characteristic roots by means of the formulas

m p
8p = 2 Yi0Ls tn = 2 6;B]. (D
i=1 i=1
98 ‘ ’ [May



THE GENERATION OF HIGHER-ORDER LINEAR RECURRENCES FROM
SECOND-ORDER LINEAR RECURRENCES

This follows from the fact that the sequences {a}}, 1<i<m, and {6?}, 1€ 7<p,
satisfy the same recursion relations as {s,} and {¢,}, respectively. Further,
a linear combination of sequences satisfying the same linear recursion relation
also satisfies that linear recursion relation. By means of Cramer's rule, one
can then solve (1) for s,, 1<n<m, and ¢,, 1<n<p, in terms of Cx‘?, 1<€7<m,
and 6;, 1< j<p, respectively. The fact that the roots ;s 1S$2<m, and By,
1</j<p, are distinct guarantees unique solutions in terms of o and E;. Now,

m p
hYL = Snt?’l =<Z Y‘LOL’T:)(Z 67 B;L> = '\/7' SJ(Q’LBJ)H’
i=1 Jj=1 1<z
1

m
P

VAN

z
J

VAWAS

and each o;B; is a root of the polynomial hx).
Before proving our main result, we will need the following lemma. A proof
of this lemma is given by Willett [2].

Lemma 1: Consider the sequence {s,}. We introduce the determinant

Sy St41 v Siyp-a
8 1 Sit2 St
DI‘ (t) =
=3
Sivr-1 Yt fror-2

Then {s,} satisfies a recursion relation of minimal order k if and only if

D, (0) # 0
and
D.(0) =0 for » > k.

We are now ready for the proof of the main result. The first part of the
proof will show that {w,} satisfies a k™ _order linear integral recursion rela-
tion. The second part of the proof will establish the minimality of k. The
simple proof of minimality was suggested by Professor Ernst S. Selmer.

Proof of Theorem 1: First, we claim that u, # 0 for n » | and {w,} is well-
defined. If y, = 0, then o” - 87 =0 and (a/B)" = 1, since R # 0. This is
impossible because 0/B is not a root of unity. Note that

k-1
w, = Za(k—l—L)}z . Bm’z'
1=0

The k algebraic integers o*"17%8%, 0 < ¢ < k - 1, are all distinct because o/f
is not a root of unity. If o and B are rational integers, then the numbers
ak-1-%gt 0 <4 <k - 1, certainly satisfy a monic polynomial of degree k over
the rational integers. If ¢ and R are irrational, then o and B are conjugate
in the algebraic number field X = g(a, B) = @(a), where § denotes the rational
numbers. Thus, o* 1 %g% and o%8%"1-% are conjugate in X. Hence, the numbers
ak-1-%0%, 0 < 7 < k - 1, satisfy a polynomial of degree k which is a product of
monic, integral quadratic polynomials and at most one monic, integral linear
polynomial. By our discussion preceding the statement of Lemma 1, the sequences
{(uk"l_lﬁl)n}:=l, 0< 7 <k -1,all satisfy the same linear integral recursion
relation of order k. Thus, {w,},_,, the sum of these k sequences, also satisfies
this same recursion relation.
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SECOND-ORDER L INEAR RECURRENCES

To prove the minimality of k, we first note that {w,} may also be defined
for n = 0 if we put w, = k. Replacing D,(t) of Lemma 1 by D,(s,, t), the mini-
mality will follow if we can show that Dk(wn,O) # 0. To illustrate the method,
let us take k = 3 as an example, when

3 a? + aBf + B2 a* + a?B? + g*
Dy Wy, 0) = |0 + of + B2 a* + a?B? + g*  of + a%p® + B®

o + a?B% + B*  of + B + 8% af + oMp* + B°

The corresponding matrix may be written as the product

1 1 1 1 o ot
a?  aB g2l «[ 1 oB a2p?
OL’+ OCZBZ B’-& 1 82 BL}

Thus, D;(w,, 0) is the square of a Vandermonde determinant:

2
1 a? o

Dy(w,, 0) = |1 aB a?B?| = [(aB - a®)(B* - a®)(B* - aB)]?.
1 g* g
Since we assume of # 0 and a/B is not a root of unity, we have Dy (w,, 0) # 0,

as required.
In the general case, we similarly get

1 ak-1 (uk—l)z . (uk—l)k—l 2
Dk(w O) _ 1 OLk—ZB (uk—ZB)Z .. (O(.k_ZB)k_l % 0,
1 Bk-l (Bk—l)z (Bk—l)k—l

and the proof of the minimality is completed.

As a final remark, we note the condition for a/f not to be a root of unity.
When of = -b # 0, then 2z = a/B is the root of a quadratic equation

a2
p(z)=zz+(?+2z+1=0.
If o/B8 shall not be a root of unity, we must have z # *1, and p(z) cannot be

one of the quadratic cyclotomic polynomials 22+ 1, 32 + 2 + 1. Hence, we must
demand that

E‘b— + 24 %2, 0, 21 or -a® #0, b, 2b, 3b, 4b.
REFERENCES
1. E. S. Selmer. '"Linear Recurrence Relations over Finite Fields." Lecture
notes; Department of Mathematics, University of Bergen, Norway, 1966.
2. M. Willett. "On a Theorem of Kromecker.'" The Fibonacci Quarterly 14, no
1 (1976):27-29.
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THE SOLUTION OF AN ITERATED RECURRENCE

D. S. MEEK and G. H. J. VAN REES*
University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
(Sumbitted October 1981)

1. INTRODUCTION

Hofstadter [1, p. 137] defines the following iterated recurrence,
g(0) =0, gn) =n-grn - ), n=1, 2, ...,
where g¥(n) denotes the iterated function

r levels

glgC...(gn))...).

He does not show how to determine the values of this irregular function. In
this paper, we will show that the solution to the iterated recurrence can be
given as a simple truncation function on numbers written in a generalized Fibo-
nacci base.

First, for convenience, we will change the iterated recurrence by a trans-
lation of the origin. The iterated recurrence to be studied is the following:

g(0)
gn)

0 (la)
n-1-gn - 1) (1b)

The values of g(n) for r = 1, 2, 3, and 7 are tabulated below.

—

7 0 2 | 3141516178
3

[10 |11 |12
gm)y [0 ] o1 [1 212 5

9
3[4 4]

n ol1l2|3]als]e6] 78] 09]o]i1]12
gm)y 0] o0 1212313415

n 0 1 2
g(n) 0 0 1

W
I
w
(o)}
~

(9,1 [e]
e}
—
o
=
—
=
N

n 0 2
gn) 0 0 1

—

3| 4|51 6| 718191011 12
213145161 717]18]81]29

If » = 1, it is clear that g(n) is the integer part of %n, but for larger r it
is more irregular. However, in the next section we will show that, if »n is ex-
pressed in the appropriate Fibonacci base, then g(n) is a simple truncation
function.

*This project was supported, in part, by NSERC Grant No. A4359 (Meek) and
NSERC Grant No. A3558 (van Rees).
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THE SOLUTION OF AN ITERATED RECURRENCE

2. SOLUTION OF THE RECURRENCE

Define the "radix" b; as:

b, =1, 1 =1, 2, ..., r (2a)
b, =b, ,+b, ,,it=r+l,r+2, ... . (2b)
If r» is 1, then b; = 2%, and we get the binary base in which all numbers have

a unique positional representation of zeros and ones. If r = 2, then we have,
for example, the following representations:

9 =10001 =1 x8+0X%Xx54+0x3+0x2+1x1
10 =10010 = 1 x8+0x5+0x3+4+1x2+0x1.
And for r = 3:
=100000 =1 x9+0x6+0x4+0x3+0x2+0x1
10 = 100001 =1 x 9 +0x6+0x4+0x3+0x2+1x1.

Note that if r» > 1, the representation is not unique. When » = 3, for ex-
ample, 10 could also be expressed as:

10 = 11000 =1 x 6 4+ 1 x 4 +0x3+0x2+0x1.
However, the representation can be made unique as follows. To represent a posi-

tive number #, find the largest b; that is less than or equal to n. The repre-
sentation of n will have a one in the ¢t digit. Now find the largest b; less

than or equal to n - b;. The representation will also have a one in the gt
digit. This process of reduction is continued until 7 equals a sum of distinct
"radix" numbers b;. Then n will be represented in this base by apaz_; ... a,a;
where a;, ¢ =1, 2, ..., k is one or zero, depending on whether or not b; is

present in the sum. This will be called the normalized form of the number in
this base.

The recurrence (2b) generates what have been called "generalized Fibonacci
numbers." So we will call these bases ''generalized Fibonacci bases."

A function which removes or truncates the last digit of a number # repre-
sented in a generalized Fibonacci base will be denoted by T(n). If n = aza;_,

. a,a; or, equivalently, .

n = z: a:b;,
i=1

then

k-1

T(n) = apay_q ~-- Ay = 9, Gz 1D 0

=1

We will define T(0) to be 0.
For example, if n = 10, then in the Fibonacci base with r = 2, 10 = 10001

and
T(10001) = 1000 =1 x 54+ 0 x3+0x2+0x1=35,

In the binary base with » = 1,

7(10001) = 1000 = 8.

102 [May



THE SOLUTION OF AN ITERATED RECURRENCE

Theorem: The solution to the iterated recurrence

g(0) =0

g(n)

]

1]

n-1-grn-1,n21,

is g(n) = T(n), where T(n) is the truncation function.

3. PROOF OF THEOREM

The function T(n) obviously satisfies the condition (la). To satisfy (1b),
T(n) must equal n» = 1 - T"(n - 1). The following lemma shows this equality.

Lemma: If m and m + 1 are written in a generalized Fibonacci base, then
Tm + 1) =m - T¥(m). (3)
Proof: TLet m be represented in normalized form by

akak_l e ar+larap_l e a

,a, (k digits). (%)
Writing 5 5
. r
m=3 ab; = 3 asb; + X agb;,
=1 =1

i=r+1

the relation (2b) can be used on the second sum to show

r k-1 k-r
m= Y ab; + Za¢+1bi + > a, ;b
=1 i=r 1

=1

Since the last sum is the value of T"(m), the right-hand side of (3) equals
Ay e Quio(@,y +ada, ; «.. a,a; (k- 1 digits). (5)

Note that this number might not be in normalized form.

The representation of m + 1 can be found by first noting that at most one
of the a;, © =1, 2, ..., 7 is a 1 in (4). Three cases to consider are: a; = 0
for all 2 =1, 2, ..., r; a; =1 for some 7 < r; and a, = 1. In the first case,
the representation of m + 1 will be like (4) but with g, = 1. This representa-
tion is in normalized form, so T(m + 1) is

Qg1 +++ QpyppQpi1@p ++- aza, (k- 1 digits).

Since a; = 0, 2 =2, 3, ..., r, this is identical to (5). 1In the second case,
a; = 1 for some ¢ < r, and m + 1 has a one in the 7 + 1°% digit. Now T(m + 1)
can be found even though m + 1 as described is not necessarily normalized. It
has representation (5). In the third case, where a, = 1, m + 1 has the digiFS
1 to r all zeros and a one is added to the digit a,,,. Thus T(m + 1) is again
as shown in (5). =

4. CONCLUDING REMARKS

If g(n), for some large n, has to be calculated, the straightforward fegur—
sive method for doing so requires the calculation of all g(%) numbers for = S H.
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THE SOLUTION OF AN ITERATED RECURRENCE

However, it can be dome efficiently by calculating the "radix" b; numbers using
(2), finding the representation of the number as described in Y2 of §2, using
T(n) to obtain the answer, and then converting the answer back to base 10. If

b.
i

then this method takes approximately 3 log,n steps.

A closed form solution for (1) seems impossible to obtain for r =2 2, but a
good approximation to g(»n) is »n/Z.

Finally, the theorem can be generalized by noting that the iterated recur-
rence

g4
g(n)

4, 4 an integer

n-14+4~g"n-1,n=224+1

has solution g(n) = T(n - 4) + A, for n 2 A. TFor A = 1, this gives a solution
to Hofstadter's original problem.
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DIGIT FUNCTIONS OF INTEGER SEQUENCES

WILLIAM 1. McLAUGHLIN and SYLVIA A. LUNDY
JPI,, California Institute of Technology, Pasadena, CA 91109
(Submitted November 1981)

1. SHIFTED INTEGER SEQUENCES

It was noticed by Benford [1] that the first nonzero digit in certain sets
of real numbers is not uniformly distributed among the integers 1 through 9; in
fact, the probability that this first, leftmost digit equals B is equal to

Log, (1 + 8™ 1.

He extended the analysis to the frequency of digits beyond the first for num-
bers obeying a particular probability law: the logarithmic distribution. This
phenomenon of nonuniform distribution of digits has generated a considerable
mathematical literature, particularly for the first digit, and has been shown
to apply to the Fibonacci numbers [2], [3], [4].

The purpose of this paper is to examine the probabilistic structure of the
entire set of digits from certain integer sequences. The Fibonacci sequence
provides one example.

The essential results are that, for a large class of probability laws, the
digits are not equiprobable and their values are correlated; but in the limit,
as the ordinal number of the digits goes to infinity, the digit values approach
equiprobability and their correlation goes to zero. However, under certain con-
ditions, this limiting behavior does not occur; rather, the nonuniform behavior
persists for all digits. In particular, subsequences of the Fibonacci sequence
exist which exhibit "persistent Benford" behavior.

Let w = {a,} be a sequence of positive integers. Define a shifted sequence
{ of rationals an €l = [pb™Y, 1], for integer base b 2 2, by

N -
a, = a,b vian)
where

vi(ay) [logban] + 1
is the number of digits in the b-adic representation of &,,with [+] the greatest
integer function.

The asymptotic distribution function (a.d.f.) g: U, = E' is defined for O
as usual by

A(D™Y, ©); U5 D)
N

gx) = lim (1)

when this limit exists. Here 4 is the counting function which recoxrds the num-
ber among the first N terms of O that lie in the interval [b™', x). Note that
g is left-continuous.

Theorem 1: If ap = o”, o > 1 and not a rational power of b, then the a.d.f. g
of {a,} exists and

g(x) =1+ log,x. (2)
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Proof: Since g, < x if and only if 1 + log,a, < 1 + log,x,

AC[O, 1 + 1 s Ny {1 + log, 2
g(z) = 1in 24! 08,%) - {1 + log,a,})
N>

if the limit exists. But, since 0 is not a rational power of b,
{1 + log,a,} = {1 + nE}, € irrational,
is uniformly distributed mod 1, thus yielding the theorem. =
It can be shown that (2) is also the a.d.f. of the shifted sequence {?}} of

Fibonacci numbers F, because
v J; 1 + Jg n+1
n ¢§ 2

(see also [5]). In fact, this a.d.f. holds for any integer sequence defined by
a recurrence relation.

An example of an important sequence of integers that does not have an a.d.f.
is the sequence of primes. It was shown by Wintner [6] that the limit (1) does
not exist in this case. However, the relative logarithmic density does exist

[7].

Theorem 2: If {an} has a continuous a.d.f. g, then for every Riemann-integrable
function f: U, - EL,

N 1
lim;t—Zf(&n) =f F(2)dg (@) .
N>o n=1 ’.

b-—l

Proof: Immediate from Theorem 7.2 of [8]. =

Theorem 2 provides us the means to apply the standard facts of probability
theory to the study of digit functions of integer sequences.

2. DIGIT FUNCTIONS AND ASYMPTOTIC EQUIPROBABILITY

Let the digit function d; be defined such that d;(x) equals the kP digit
of x so that

x = i dy (x)b7F.
k=1

Define

T[B(k)] = {z € Uy |d, (x) = B(K)} C U,
where B(k) € Z, = {0, ..., b - 1}. Then, the joint probability p, that
dler) =B(ky)s +uvs dks(x) = B(ky)

is given by the Lebesgue-Stieltjes integral

1
p, [B(ky)s ~vvs B(ks)] =vé:1ITW(kﬁJ . ITm(kQ]dg(x), (3)
where I, is the indicator function of the set G C U,. Allowing some abuse of
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DIGIT FUNCTIONS OF INTEGER SEQUENCES

notation, the same symbol 28 will be used for all such probability functions,
regardless of the dimensionality of the domain. Also, when no confusion will
result, the argument kX of B will be suppressed.

When g is the logarithmic distribution (2),

b-1 b-1 b-1 b-ks
P (B, «ovs BRI = 3 ) -2 Y log, |1 + 5|, %)
B(1)=1 B(2)=0 B(ks-1)=0 > Bmbp"
-1
where the sums over B(k;) for j =1, ..., 8 - 1 are to be excluded.

The relative frequency of digit values will be derived by setting & = 1 in
(3) and (4). The succeeding section uses 8 = 2 to infer dependence properties
between digits.

Definition 1: The a.d.f. g is asymptotically equiprobable with respect to b if
and only if

Lim p [B(K)] = D7* for all 8 € 7,. (5)

It can be shown that g is asymptotically equiprobable if a density function
f exists for g. Furthermore, for a sufficiently smooth a.d.f., such as the
logarithmic distribution (2), the rate of approach can also be displayed, as in
Theorem 3. When f exists, p, and py will be used interchangeably to denote the
function defined in (3), as suits the occasion, with the symbol f being reserved
for the density function and g for the a.d.f.

Theorem 3: 1f f € ¢?[b™', 1], then

p.[B(K)] =171 + (BDF + 0(b7%) for all B € 7,,
where

n® = 322 - D - e,

Proof: Let qi[B(k)] be the b-adic rationals defined by

M
TIB()] = U [g;[B()], q,[8(K)] + 7] (6)
with o
1, k=1,
M = { (7
(b - DB, k> 1.

Then, writing g, for qi[B(k)],

1 M q+b7"
b, 6] =_A:1ITm(M]f(x)dx - fl@)ds

;=1/4q,
M
=3 1 E [, + flq, + b1 + 0(7),
i=1

where the last equality follows from the trapezoidal rule of integration [9].
The two ordinate sums in this last equation can be converted into integrals,
with remainders, by use of the Euler-Maclaurin formula [10]. For k¥ > 1,
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M

1= LA - . - -
T 3R = LEEVIPTE 4 (6 - DB 4 gpTE]
=1 =1
B 1 1 dx b—k+1 B 1 -1
= EE.HJf(x) +'*§zr“‘g -7 [F(1) - FBH].
For k = 1, q; = Bb'l, and the same result is obtained. Calculating a similar

expression for the term involving f(q, + b"%) and using the fact that

1
ff(ac)dx =1
b‘l

Using Theorem 3, the expected value of the kR digit of x is

yield the theorem. ®

- 2 -—
Polap rry - ro Pt + 0%,

E(dy) =

which is approximately (b - 1)/2 for large k (as expected!).

To denote the special case of the density function corresponding to the
logarithmic distribution (applicable to the Fibonacci sequence), r will be used
in place of f; that is,

d log, () |
r@) =g Tz in B’

which has been termed the '"reciprocal density function'" [11]. Theorem 3 applies
and gives

p, [B()] = b™% + KRBT + 0(b7%F).

Theorem 4:

M b—k
b 18001 = X Tog, 1+ Z-).
r i=1 q

7
where g, is defined by (6) and M by (7).

Proof:

-1 M qi+b'kdm
pP[B(k)] =./b_lIT[B(k)]P(x)d'x = Z L x 1n b

=1

M

-3 l—nl—b[ln(qi + %) - 1n(g) ],
=1

which yields the theorem. =

For the special case b = 10, the relative frequencies, obtained from Theo-
rem 4, of values of the first four digits are given in the accompanying table.
The last digit in each entry has been rounded and not truncated. Columns 1 and
2 contain Benford's original results. For subsequent digits, the rapid approach
of these data to b~! is readily apparent when plotted as in Figure 1.

Figure 2 provides samples of the convergence of the relative frequency of
second-digit values for the Fibonacci sequence to their theoretical limits (cf.
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column 2 of the table).
second digit equal to B is plotted against N for five values of B.
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Probability that Digit k Equals B for the Logarithmic Distribution

The fraction of the first N Fibonacci numbers with

(Base 10)

Bk 1 2 3 4

0 - .11968 .10178 .10018
1 .30103 .11389 .10138 .10014
2 .17609 .10882 . 10097 .10010
3 .12494 . 10433 . 10057 .10006
4 .09691 .10031 .10018 .10002
5 .07918 .09668 .09979 .09998
6 .06695 .09337 .09940 .09994
7 .05799 .09035 .09902 .09990
8 .05115 .08757 .09864 .09986
9 .04576 .08500 .09827 .09982

0.30]

o ° o
G 2 o

UNIVARIATE PROBABILITY THAT DIGIT =3

=
=

0.05]

Fig. 1. Approach of Relative Frequency of Digits
Logarithmic Distribution with b = 10

to b~t.

DIGIT NUMBER
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FRACTION OF FIRST N FIBONACCI NUMBERS WITH SECOND DIGIT = B

Fig. 2. Convergence of Relative Frequencies to Theoretical
Values for Second Digit of Fibonacci Numbers

There exist integer sequences for which asymptotic equiprobability does not
hold (for the a.d.f.). For example, Benford's first-digit frequencies can be
retained for all subsequent digits for certain subsequences of the Fibonacci
sequence, and, in the next theorem, conditions are given for the existence of
integer sequences which possess specified digit properties, a reversal of the
approach used thus far.

Theorem 5: For each k =1, 2, ..., let t; be a function from the Cartesian
product of Z, with itself k times to [0, 1] and satisfying the three consistency
conditions:

4 [B(1), «ou, BT 205 D t [B(D] = 1;

€
and B(1EzZ,

Y b (B, ey BR), B(R + 1] = £ [B(1), ..., B(R)].

B(k+1)EZ,
Then, for any integer sequence w with & dense in Uy, there exists a subsequence

T with a.d.f. g such that p = %;.

Proof: By Billingsley's theorem [12] (a consequence of Kolmogorov's exis-
tence theorem), the three conditions on t; insure the existence of a probabil-
ity measure U on the Borel sets of U, such that, for each k,

wWIrBMWI N---N TRk = £ [B(), ..., B(K)]
for all B(1), ..., B(k) in Z,.
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Then define a distribution g : Ub [0, 1] by g(x) = ulp™t, 2. By Theorem
4.3 of [8], there exists a sequence 0 in Up with a.d.f. g, = g.
Let § = {s;}. Since ® is dense in U,, there exists a subsequence T of W

with T = {v;} such that v; = s; + A;, where A; > 0 and lim A; = 0.
Since A; 20, Jre
A(ID™Y, =); B T) <A™, @) N; O). (8)
For € > 0, choose N such that A; < € for j > N;. Then
ACID™Y, @e)s W5 {sgdy ) S AUD™, )5 M5 {vs}y), 9
where x. = min{b" ', = - €}.
By (1), there exists k, such that
AL, x5 N5 {s;)y )
7 =g, (@) + ky(x),
where %im ky(x) = 0 for every x € U,.
Using (8) and (9):
AUD™, @) W5 {v;}7)
go(x - €) - g (@) + ky(x - €) < 7 - g, (@) < ky(x).

Letting N go to » gives
g, (@ - €) - g, (x) S g, (x) - gs(x) <O0.

Since g, is continuous from the left and € is arbitrary, g, = g, = g, and the
theorem is established. =

Definition 2: An integer sequence W is said to be absolutely equiprobable with
respect to b if and only if

oA b-1"1 k=1
lim ATIB(RI]; Ny B) _ , for all B € Z,.
N+ N -1,k>1
Corollary 5.1: For every b > 2, there exists a subsequence of the Fibonacci

numbers that is absolutely equiprobable with respect to b.

Proof: Let t;[B(1), ..., B(R)]I=(b - l)'lb'k+1. Then, by Theorem 5, there
exists a subsequence T of {F,} with a.d.f. g such that Py = t, for all k.
Since

ATIB(Y]; W5 7) = X Allgys q; + D755 05 D),
then ¢

Lim A(T[B(k)}]; v; 1)

N>

=X lglq + 17 - 9@ = p; (BK)
Y'p, (B, ...y B - 1), BH))
Tt (B, ouy BR - 1), B(K))
= b Tt (B, ..y BK - 1)),
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where ¥’ denotes the sum over all B(j) for § < k. Then, k - 2 applications of
the third consistency condition of Theorem 5, followed by use of the second con-
dition, yields the corollary. The case kK = 1 is trivial. Thus,

g ACLBEOL B3 B _ e

N 5w

as required. =

Definition 3: An integer sequence wis said to be a persistent Benford sequence
with respect to b if and only if

1ip ATBUOT; N ©) _
N> N

{logb(l + B871(K), B(R) >0

0, B(k) = 0,
for all k 2 1 and all B(k) € Z,.

Corollary 5.2: TFor every b 2 2, there exists a subsequence of the Fibonacci
numbers that is persistent Benford with respect to b.

Proof: A calculation similar to that contained in the proof of Corollary

5.1 serves here and, in fact, for any %, defined as the product of univariate
density functions. ®

3. WEAK DEPENDENCE OF DIGIT FUNCTIONS

Dependence between digit functions is demonstrated by .showing that they are
correlated random variables.
First, an expression for the bivariate density function is derived.

Theorem 6: 1f f &€ ¢*[b™', 1] and k, > k,, then

P [B(ky)s B(kp)] = b7p [B(k1)] + RIBG,) 1D _
+ BIB(ky), B(ky)1p ™ e g o(p ™n {2kt koo 2Kaky

where the function % is defined in Theorem 3 and

N B(k,) B(k2) + 1
B (ky), B(ky)] = % [Bl< = > + &(T)]

B(ky) + 1 B(k1) -
x [Bz< ( 11)9 >— Bz( (bl ﬂ [ - £ @ H]

with B,, B, Bernoulli polynomials and the prime denoting differentiation.

Proof: TLet u;(B(ky), B(k,)) be the b-adic rationals defined by
ML
TRk DT N TIB (k)] = U [u; (BRy)s Bk s ug(B(ky), B(Ky)) + pkz7,
=1
where ¥ is defined in (7), L = pke- kil gng ¢ = (i, - DL + %,. Then, writing
u; for u;(B(ky), Bk )), v 1 wt b
p [B(R1), Bk = 20 2 f flx)dz.

i1=1 45=1
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Using the trapezoidal rule,

M L
P, [B(k1), B(k2)] = .E Z

pk2y1 + 0%z,

Substituting u; = q; + (Z2- 1)b4*+1 + B(k,)b7*2 in this expression and apply-
ing the Euler-Maclaurin formula, as in the proof of Theorem 3, to the sums over
1, gives

M q1l+b 1
P80y 8001 =3 3 [ f@dn + g5 3 b7

i, i, =1

x [<31<B(:2)> + Bl(ﬁ(_k?—_)gj_l_»[f(qil + b)) - £(q,)]
+ b'k22+ 1<Bz<8(;722)) . Bz<8(k2; + 1>>

X [£'(q,, +b7) —f'(qil)]} + 0y,

Recognizing the univariate expression for digit X; in the first term and again
applying the Euler-Maclaurin formula to each of the four sums inherent in the

second term yields
- (k) B(ky) +1
Lo 180 + 55 577 [3,(252) + Bl(—z———)]

b
x [[Bl(%i—i) - BI(B( >][f(1) -
+ 29—1;+1[Bz<6(7<1z)9 + 1> ) Bz<B( ﬁ)} [FUCLy - b J
) 2
* [[Bl(ﬁ%‘;—i“l) - Bl(B(k )ﬂ [£7(1) - £1(b™H)]

. b—k;+1 [B2<B(klz)7 + 1) _ BZ(B( ! ):l [F"(1) - f"(b_l)]:l

+ 0(b" PRy,

b, [B(ky), B(ky)] =

Bﬂ

which reduces to the theorem. ®
Corollary 6.1: 1f f€& C¢*[b™*, 1] and k, > k,, then
P, [B(ky), B(ky)] = B72 + 074
Theorem 7: If f € C*(b™', 1] and k, > k,, then
covp(dy, » dy,) = epb™am ke 4 g MR Rhat a2k} y
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where

_ ¥ 2
ep = [L=BEED ) - 107 - ) - FET.

Proof: Write
b-1 p-1
covp(dy, > di,) = D, 3 BB [Py (B(Ry), B(Ry))

B(k)) =1 B(kp)=1

Using the univariate and bivariate expressions of Theorems 3 and 6, respectively:

= R 28(ky) + 1
COVf(dkl, dkz) = b'kl‘kz E E 6(7{1)8(7{2)%—<———2b——— - 1)
B(ky) =1 B(kp)=1

2B(k 1
x <——*—( lb) - 1)[[f’(1) - F1TH] - () - £

+ O(b-min{zk1+ kas 2k, } ).

Then, performing the two indicated sums yields the theorem. =
Corollary 7.1: If f€ C*[b™%, 1] and k, > k,, then

lim;wcovf(dkl, dyg.) = 0.

k,+ k, 2

A second indicator of the weakening of dependence for large-digit numbers
exists- because it can be shown that the sequence {dy} of digit functions is
*-mixing in the sense of Blum, Hanson, and Koopmans [13] when f € C*[b71, 1]
and 1/f is bounded above.

The research described in this paper was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration.
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WIEFERICHS AND THE PROBLEM z(p?) = z(p)

JOSEPH J. HEED
Norwich University, Northfield, VT 05663
(Submitted January 1982)

INTRODUCTION

1. Let z(n) be the index of the first Fibonacci number divisible by the natu-
ral number #n. At this writing, there has not been found a prime p whose square
enters the Fibonacci sequence at the same index as does p. This does not occur
for p < 10° [2].

The problem is related to the following one. For what relatively prime p,
b, is it true that pz[bp_1 - 1?7 Apparently, this question was first asked by
Abel. Dickson [1] devotes a chapter to related results. For b = 2, the con-
forming p2 values are the well-known Wieferich squares, which enter in the solu-
tion of Fermat's Last Theorem. The only two Wieferich squares with p < 3 - 10°
are 10932 and 35112 [6, p. 229]. These phenomena are rare but, to a degree,
predictable. An investigation of this predictability sheds some light on the
Fibonacci phenomenon.

2.1 Notation. Define n|p® - 1 as meaning =n|b” - 1, and nfb? - 1 for y <=z
(i.e., b belongs to the exponent x, modulo 7).

2.2 The following are well known. For p prime, (b, p) = 1; if p“bq - 1, then
plb® - 1 if and only if B = k * a. Since plbp-l - 1 (Fermat), it follows that
alp - 1. For g prime, (b, g) = 1; if g|bY - 1, then pg[p**™*™ -1, The mul-
tiplicative properties are similar to those of the Euler ¢ function. Indeed,
p2|bP* = 1 as ¢(p?) = pd(p). However, here we have a deviation: p?[b?* - 1,
unless pznba - 1. (In terms of decimals of reciprocals of integers, the first
prime > 3, such that l/p2 has a period the same length as 1/p, i.e., p2|10p'1,
is 487. 1Its period is of length 486.) It can be shown that this deviation oc-
curs if and only ifvpz1bp'1 - 1. If such is the case, and imitating Shanks's
flair for coinage of such terms, we say p is a wieferich, modulo b.

2.3 Consider the solutions to ™! = 1 (mod pz). Gauss [3, art. 85] assures
us that there are p - 1 distinct solutions, x, between 1 and p? - 1.
For each b, 1 < b < p, there is a distinct k such that

(b + kp)?P™t = 1 (mod p?).

i

These provide the p - 1 solutions:

(B +kp)P =1 =P -1+ (p - 1)bP %kp (mod p?)

and y -
p-1 _ =L

(é——E;——l> - b 'k = 0 (mod p), yielding k = b(é——5~——l> (mod p).

If x is a solution, so too is p2 - x. x =1 is always a solution; there-

fore, (p - 3)/2 solutions are scattered fromx = 2 to x = (p2 - 1)/2. 1If ran-

domly distributed, the probability that a particular & = b is a solution is
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(® - 3)/(p?® - 3). Holding b fixed and letting p range, the expected number of
solutions encountered < P is Zg(p - 3)/(p2 -~ 3). Since the series is divergent
(Zpgml/p =1n lnx + ¢ + 0(l/log ) [5, Th. 50, p. 120]), but diverges slowly,
the relative scarcity of these wieferichs, modulo b, is not surprising.

THE MAIN THEOREMS

3.1 In [4], dinformation about the entry points of the Fibonacci sequence was
obtained by imbedding the sequence in a family of sequences with similar prop-
erties. Specifically, let {In} be a linear recursive sequence with #™® term
given by

(c + V)" - (¢ - V)"

for q # ¢? (mod 4)
2/q

Vq

yielding the sequences defined by
2¢T,, 1 + (g - ez)l"n_2

T, = _ g2
el +-g—7r—— r,_

2

with initial values 1, 2¢ or 1, ¢. For ¢ =1, q = 5, we have the Fibonacci se-
quence.

Let ¢ = (q/p) be the Legendre symbol.

With g # ¢®, ¢ 2 0, ¢ # 0 (mod p), we have p|Fp_e.

1f p|T,, then p|T, if and only if B = ka. Also, a|p - e, [4].
3.2 Theorem: Let p|ly. Then, p?|I, if and only if p?|Tp-e (paralleling the

result mentioned in §2.2). Proof is by means of Lemmas 3.2.1, 3.2.2, and 3.2.3
below.

3.2.1 Lemma: If pZHTa, then pzin if and only if x is a multiple of a. Con-
sider:

yke _ ko Yo - P k-1 (k-2)atg F&k-1)
Tpo = % = 5 ¢4 *+y U+ oo +V¥ *).

o3 W

i , and ¥" + ¥" and (V¥)" are integers, it follows that pleka.

Since p2

Suppose pzlfka+p, 0 < r<a, and that this is the smallest such index not
a multiple of a. Dividing [444+, by [y, we obtain

ko+r _ wko+r ko _ T ka _ r _gyr
y ¥ \P,,(w v )+Lyka<‘l’ ¥ )

R R R

or Teosp = VT + VT,
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From 3.1, ¢ # ¢® (mod p), so pf¥*® and, thus, p?|T,. But this contradicts the
hypothesis that o was the smallest such index.

3.2.2 Lemma: If p|T,, then p®|Tpy. Consider:

(T,)P = (Wa _ Wa>P'

Noting that R®"! is an integer,
p-1

p-1 b _ \P \ypo‘ T2 B —sa (D I:W(P-Zs)oc _‘\}7(?-23)&
BHIOP = Stk B D () = :

=

yhe — e

p? divides all terms but 7

= T'pa, so it must divide it also.

3.2. 3 Lemma: If p|T, but p%IT¢a, 1 < t < p, then, since p 2|Txtq (from 3.2.1)
and p [Tpa (from 3.2.2), it follows that t|p; but p is prime, so

p?|ty  or  p*|Tpa.

In the former case, pin+1, in the latter, since p* 1 is not a multiple of pa,
ZXTp+1 This establishes the result.

3.3 We next consider ¥, ¥ with ¢ = ¢; + £p and g = q, + {p, expand and reduce
ypEl _ gptl )

— (mod p©). The result is linear in & and . Thus, for given ¢, g,
yP*l _ JpEl )
———————— = 0 (mod p?), each £, 0 < £ < p, generates one ¢, 0 < g < p.

Fix ¢. Let g range from 1 to (p-1). One of these pairs (¢, ¢), that with
q= e? (mod p),will produce a sequence not containing an entry point for p [4].
The other p- 2 pairs will each generate a solution § = 0, £ = 6 yielding a se-
quence with ¥ associated with ¢ + Vg + Op such that z(p) = z(pz). When ¢ = 1,
q = 5, we have the Fibonacci sequence. If the solutions 0 are randomly dis-
tributed over O, 1, 2, ..., p - 1, the probability 6 = 0 is 1/p. The expected
number of such phenomena, p < P, is Z:Pl/p, whose series diverges (§2.3). On
the basis of random distribution, the phenomenon should occur before p > 10°
On the other hand, 1n 1n 10% is not yet 3, perhaps not too wide a miss?
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MULTIPARAMETER STIRLING AND C-NUMBERS:
RECURRENCES AND APPLICATIONS

T. CACOULLOS and H. PAPAGEORGIOU*
University of Athens, Greece
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1. INTRODUCTION

Stirling numbers of the first and second kind are less known among statis-
ticians than among people who deal with combinatorics or finite differences.
Only recently have they made their appearance in distribution theory and sta-
tistics. They emerge in the distribution of a sum of zero-truncated classical
discrete distributions: those of the second kind, S(m, n), in the case of a
Poisson distribution truncated away from zero, Tate & Goen [13], Cacoullos [2],
the signless (absolute-value) Stirling numbers of the first kind, ‘s(m, n)|, in
the logarithmic series distribution, Patil [9]. In general, such distributional
problems are essential in the construction of minimum variance unbiased esti-
mators (mvue) for parametric functions of a left-truncated power series distri-
bution (PSD).

Analogous considerations for binomial and negative binomial distributions
truncated away from zero motivated the introduction of a new kind of numbers,
called C-numbers by Cacoullos & Charalambides [5]. These three-parameter C-num-—
bers, C(m, n, k), were further studied by Charalambides [8], who gave the rep-
resentation

c(m, n, k) = 2, k's(m, r)S(r, n)

in terms of Stirling numbers of the first kind, s(m, r), and the second kind,
S(r, n). Interestingly enough, this representation in a disguised form was, in
effect, used by Shumway & Gurland [11] to tabulate (-numbers, involved in the
calculation of Poisson-binomial probabilities.

The so-called generalized Stirling and C-numbers emerged as a natural ex-
tension of the corresponding simple ones in the study of the mvue problem for
a PSD truncated on the left at an arbitrary (known or unknown) point (Charalam-
bides [7]). It should be mentioned that, in particular, the generalized Stir-
ling numbers of the second kind were independently rediscovered and tabulated
by Sobel et al. [12], in connection with the Incomplete Type I-Dirichelt inte-
gral.

The multiparameter Stirling and C-numbers are the analogues of generalized
Stirling and C-numbers in a multi-sample situation where the underlying PSD is
multiply truncated on the left (Cacoullos [3], [4]).

Recurrence relations for ratios of Stirling and C(-numbers are necessary,
because the mvue of certain parametric functions of left-truncated logarithmic
series, Poisson, binomial and negative binomial distributions are expressed in
terms of such ratios. These recurrences bypass the computational difficulties
which come from the fact that the numbers themselves (but not the ratios of
interest) grow very fast with increasing arguments. Recurrences for ratios of
simple Stirling numbers of the second kind were developed by Berg [1].

The main purpose of this paper is to provide recurrences for certain ratios
of multiparameter Stirling and C-numbers, thus unifying several special results,
including those of Berg [l]. TFor the development of the topic, we found the
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use of exponential generating functions (egf) most appropriate both for intro-
ducing the numbers themselves and for deriving recurrences. Without claiming
completeness, we included certain basic recurrences. As observed elsewhere,
Cacoullos [3] and [4], it is emphasized here, once more, that in the study of
PSDs the egf approach is the one suggested by the probability function itself
in its truncated form. Also, we found it appropriate to include certain asymp-
totic relations between Stirling and C(C-numbers, which reflect corresponding
relations between binomial and Poisson distributions or logarithmic series and
negative binomial distributions.

A typical result, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>