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A NOTE ON SOMER'S PAPER ON LINEAR RECURRENCES 

ERNST S. SELMER 
University of Bergen, 5014 Bergen, Norway 

(Submitted January 1983) 

In a r e c e n t paper [ 1 ] , Somer u s e s t h e second-o rde r l i n e a r r e c u r s i o n r e l a -
t i o n 

Sn + 2 = aSn+l + hsn> °>> h E Z> C1) 
to generate higher-order linear recurrences. The purpose of this note is to 
extend Somer?s results. In what follows, the notation in [1] is used without 
further comment. 

We assume a3 ^ 0, a/3 not a root of unity, and ask under what conditions 
the rational sequence 

{**L0 - {«»*/«»};.„ (2) 
satisfies a linear recursion relation of minimal order k, 

Somer gives the solution {sn} = {un}, where u0 = 0, u1 = 1. We can argue 
similarly for {sn} = {vn}3 where VQ = 2, v± = a, and vn = an + 3n

9 in the case 
when k is odd. Then 

+ - Vnk - <*** + $nk - ^ Sk-l-i)n{ iy-^n 
vn a

n + 3n 
i = 0 

is a rational integer, and {tn} clearly satisfies the same kth-order linear 
recursion relation as {wn} = {uny_lun~\. The proof of the minimality runs as for 
{wn}: In the first matrix factor of Dk(wn, 0 ) , we just change the sign of every 
odd-numbered column. 

The general solution sn 4 sxw„ of (1) may be written as 

= Aan + B$n 
sn A + B > 

if we "normalize" to s0 == 1. The above result for {vn} then follows from the 
fact that -B/A = -1 is a primitive square root of unity. In general, put -B/A 
= p, where p is a primitive 772th root of unity, and assume that 

k = 1 (mod 777) . 
Then 

t - snk _ ank - P$nk _ ank - (p3n)fe _ ky ^k-i-Vn i»in 
sn an - p3 n an - p3 n /r 0 

The question of minimality is settled as above: To obtain Z^(tn, 0 ) , we 
multiply the successive columns of the first matrix factor of Dk(wnS 0) by 1, 
p, p 2, ..., pk"1, respectively. 

For 777 > 2, however, the rationality of {sn} imposes severe conditions. In 
particular, 

= Aa + B$ = ex - P3 
Si A + B 1 - p 

should be rational, showing that p = \/T must be a quadratic irrationality, so 
m = 3, 4, or 6. But even in these cases, we get conditions on the coefficients 
a and b. 
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A NOTE ON SOMER'S PAPER ON LINEAR RECURRENCES 

We illustrate the method in the case m = 4, p = ±i. With 

™ - a + J® Q a - y/T) ^ 2 , ,T. 

this gives s± = (a ± iV3)/2s which is rational if and only if D = -o2, e e Z. 
Then 

T" = 1 Va n d S°  = 2 = l)' 
To get 2? integral, both a and e must be even. To get a3 ^ 0 and a/g not a root 
of unity, we must have ao $ 0 and a + ±o. Consequently, we have shown that if 

2 2 

c e Z, b = - a • ° , 2|a, 2|e, ao ± 09 a ± to, 

then the integral sequence 

has the property (2) when & = 1 (mod 4). 
We only state the corresponding results for m = 3 and m = 6. Let 

r, -, a2 + 3c2 

C £ Z s £ = T s 

a and o be of the same parity, ao^O, a^±o9 ±3o. Then the following integral 
sequences have the property (2): 

{«„}»-<> = l — 2 — ; „ . o i f & E * ( m o d 3 )-
/• i o o (vn + 3oun)m 

K U * { 2 Lo " &E1 ( m ° d 6 ) -
REFERENCE 

1. L. Somer. "The Generation of Higher-Order Linear Recurrences from Second-
Order Linear Recurrences." The Fibonacci Quarterly 22, no. 2 (1984):98-
100. 
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MULTILEVEL FIBONACCI CONVERSION AND ADDITION 

P. LIGOMENIDES and R. NEWCOMB 
University of Maryland, College Park, MD 20742 

(Submitted March 1982) 

I. INTRODUCTION 

Recently we have been making studies [1, 2] on the Fibonacci number system 
that appears to be of considerable importance to the Fibonacci computer [3], A 
specific result that appears to be of particular interest is that through mul-
tilevel coefficients on a Fibonacci radix system, efficient extension of repre-
sentations can occur. For example, through a ternary coefficient system, a 
doubling of the range with half the number of digits over a binary system has 
been shown, while in fact allowing a restriction to only even-subscripted Fibo-
nacci numbers in the radix [1]. Consequently, further investigation of various 
other properties and extensions has seemed warranted. This has led us to our 
present studies which indicate that the Fibonacci computer may have added fea-
tures, over those of redundancy for error detection and correction already re-
ported [4]. One such added feature lies in efficient processing techniques 
with these being based upon the conversion of numbers into special forms, in-
cluding even- and odd-subscripted Fibonacci radix systems. With this in mind, 
we develop in this paper several new Fibonacci number representations, in par-
ticular even- and odd-subscripted ones, a signed ternary one, and conversions 
between them. These ideas are developed in Sections II and III. In particular, 
we give the details of conversions among the various ternary Fibonacci radix 
representations. 

For reference purposes, we recall the defining recursion relation of the 
Fibonacci numbers [5] 

Fi = Fi-i + Fi-2> Fo = 0, F1 = 1. (l.D 

At times we will use this expressed in the alternate form F^ = Fi+1- Fi_1. If 
M - Fm+2 - 2, then any nonnegative integer N, 0 ̂  N ̂  M, can be expanded in a 
Fibonacci representation using (77? - 1) binary coefficients on the Fibonacci 
numbers as a complete base or radix set. Previously, we have shown how these 
expansions can be made in terms of some ternary and quaternary coefficient sets 
[1]; we will extend these latter expansions here as needed for conversions and 
arithmetic operations. 

II. BINARY TO MULTILEVEL CONVERSIONS 

Let an Unsigned Binary Fibonacci Representation, UBFR, be 

m 

E = E H"' h = {0> 1} (2-1} 
in the range (0, M) , where 

m 
M = E ^ = Fm+2 - 2. 

j-2 J 

Such a representation can be derived for a given number N using the conversion 
algorithm previously presented [2], 
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MULTILEVEL FIBONACCI CONVERSION AND ADDITION 

An Unsigned Quaternary F ibonacc i R e p r e s e n t a t i o n us ing only e v e n - s u b s c r i p t e d 
F ibonacc i numbers, UQFRe, i s d e r i v e d by t h e fo l lowing formula [ 1 ] : 

?? i = h2i-i + b2i - bz. + 1 ( 2 .2 ) 
where 

q\l E { -1 , 0, 1, 2 } , i = 1, 2, . . . , k, 
and 

m k 

N- E bjFj - Zq'2iF2.. (2.3) 
J = 2 i = 1 

The even-subscripted coefficients q\^ take four possible values according to 
the conversion Table 2.1. As is known, see [1], several Unsigned Ternary Fibo-
nacci Representations, UTFR, exist. Two of these that use only even-subscripted 
Fibonacci numbers, called UTFRe{-l, 0, 1} and UTFRe{0, 1, 2} may be derived from 
Table 2.1 by applying (1.1) on a UBFR, and thus eliminating either case 6 or 
case 1 by a prior conversion of the UBFR into the "minimum," UBFR(min), or the 
"maximum," UBFR(max), form respectively [6], Of these two ternary representa-
tions, the one derived from the UBFR(min) is of particular interest because it 
allows positive-to-negative number conversion by a simple form of complementa-
tion, namely -1 -*-»• 1 and 0 -<-> 0. In this Signed Ternary Fibonacci Representa-
tion, STFRe{-l,0, 1}, the sign of the number is determined by the sign of the 
most significant nonzero coefficient [5, p. 56]. In the above, we note that 
the binary representation of (2.1) holds only for nonnegative numbers; hence, 
we have called it "unsigned," as well as those representations coming from it 
by the quaternary transformation (2.2). However, upon making the complementa-
tion just mentioned within a UTFR {-1, 0, l}, negative numbers are contained 
within the system, which we consequently have called "signed" specifically to 
point out its broader nature. 

TABLE 2.1 

Binary-to-Quaternary Coefficient Conversion 

Case 

0 
1 

2 
3 
4 
5 
6 

7 

^ 2 i - l ^ 2 i ^2-i + l 

0 0 0 
0 0 1 

0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 

L ' • 

Qli = ^ 2 i - l + h2i ~ ^ 2 i + l 

0 
- 1 

1 
0 
1 
0 
2 

1 

Thus, the UBFR(min)-to-STFRe{-1, 0, 1} conversion is simply effected by 

*2i - b 2 i . 1 + b 2 i -b2i+1 ( 2 . 4 ) 
i n t h e r e l a t i o n 

m k 

N~ ZbdFj = Ete
2iF2i, (2.5) 

3=2 i-1 
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where k = [ (?7? + 1) /2] is the integer portion of {m+l)/2. The range now becomes 
{-My M) , where M = Fm+2 - 2 = F2k + 2 - 2 when m is even. 

The complete odd-subscripted Fibonacci representations may also be derived 
easily from a UBFR, in a manner analogous to the one discussed above for even 
subscripts. Indeed, a UBFR-to-UQFR0{-l, 0, 1, 2}, as also the UBFR(min)-to-
UTFR0{-1, 0, 1} and UBFR(max)-to-UTFR0{0, 1, 2} conversions, are all effected 
simply by almost identical conversion formulas [subtract "one" from all i, sub-
scripts in relations (2.2) through (2.5)]. Again notice that the complementa-
tion operation -1 -«->• 1 and 0 «-»• 0 allows for the positive-negative conversion, 
and thus provides the STFR0{-1, 0, 1}. 

II!. TERNARY CONVERSIONS AND ADDITION 

In this section, we will discuss techniques for conversion between several 
ternary representations, the ones of interest being the full-, STFRf{-l,0, 1}, 

the even-, STFRe{-l,0, 1}, 

and the odd-, STFRo{-l,0, 1}, 

N = E */*v (3- l a> 
J = i 

N = E ^2iF2i (3.1b) 
i = 1 

N = E ^i-i^i-i (3.1c) 
i = 1 

subscripted representations. In all cases, the coefficients t^, t i t t^ are in 
the set {-1, 0, 1}. 

Before discussion of the actual conversions, we show their use in terms of 
addition. 

A. Ternary Add i tion 

Addition becomes a very simple matter if we assume the availability of num-
bers in the full-, even-, and odd-subscripted ternary representations of (3.1). 
Thus, let two numbers N1 and N2 be given, one in the even- and the other in the 
odd-subscripted form: 

k k 
Ni = E te2iF2i and N2 = £ t^-i^i-i; 

then their sum has the full representation with 

t% j = even, 
t3 = \ o ° "2) 

t° , j = odd. 
That is, addition (and with it subtraction, because of readily executable com-
plementation) occurs through the interleaving of the digits of the numbers be-
ing summed. The process, as illustrated in Figure 1, is especially convenient 
for hardware implementations. 

B. Full- to Even-/Odd-Subscript Conversion 

As seen by the addition technique just discussed, it is convenient to be 
able to convert numbers from a full-subscripted form to a form using only even 
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Even Converter 

¥ 

Pi 
I 

p2 

I 

p3 

k 

k 
Nl = E KiF2i 

T 

p, 

N2 -

^ = 1 

T 

^ 5 ^6 
A 

k 
- T t°. F . 

£-* 2 ^ - 1 2^ - 1 ^ = 1 

F 2 f e - 1 
A 

T 

F2k ~N± + N2 

Odd Converter 

FIGURE 1. Ternary Addition 

subscripts as well as to one using only odd subscripts. As the principles are 
identical for obtaining the odd-subscripted form, we will concentrate here on 
obtaining the even one. 

Thus3 let there be given a full-subscripted ternary representation. By 
substituting for odd-subscripted Fibonacci numbers 

x 2i- 1 "- 2z li- 2 
and writing k = [(n+l)/2] for the integer part of (n+l)/2, we obtain: 

(*) 

N = E tdFd = E t2iF2i + E tii-iVu - F2i-2) (3 .3a ) 
j = 1 i = 1 £ = 1 

= E(*2i-1 + t2i ~ *2i+l)^2i- <3'3b) 
£ = 1 

Here we again assume £j = 0 for j < 1 and j > n. Thus, the coefficients 

* 2 * = *2*-l + t2i ~ t2i+l (3-3c) 

are those of an even-subscripted representation. However, if (3.3c) were to be 
applied directly to an arbitrary full-subscripted representation, it would lead 
to an even-subscripted representation with coefficients in the range of inte-
gers {±3, ±2, ±1, 0}, i.e., a septenary rather than a ternary one. Table 3.1 
shows these 33 = 27 possibilities, where the fourth column gives the result of 
applying (3.3c) directly. As is seen in Table 3.1, there are eight possible 
out-of-code (i.e., nonternary) cases. In each out-of-code case, though, a pre-
liminary preparation will bring the relevant coefficient back into code, the 
necessary preparation transformations being given in the final column of Table 
3.1. That is, by making an appropriate substitution via a Fibonacci number 
identity in the original full-subscripted representation, an out-of-code con-
verted coefficient can be brought back into code. Since some of the prepara-
tion transformations affect neighboring coefficients which could be brought 
out-of-code after transformation, it is necessary to continue the preparation 
until all coefficients become ternary when (3.3c) is finally applied. Since 
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TABLE 3.1 
Fu l l - to Even-Subscripted Conversion* 

c* •1 + * 2 i * 2 i + l > 

Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 

21 
22 

23 

24 

25 

26 
27 

* 2 i - l 

0 
1 

- 1 
0 
0 
0 
0 
1 

- 1 
1 

- 1 
0 
0 
1 
1 
1 

- 1 
- 1 
- 1 

1 

- 1 
1 

-1 

0 

0 
1 

- 1 

* 2 i 

0 
0 
0 
1 

- 1 
0 
0 

- 1 
1 
0 
0 
1 

- 1 
1 

- 1 
- 1 

1 
- 1 

1 

1 

- 1 

0 

0 

1 
- 1 

1 

- 1 

t2i+l 

0 
0 
0 
0 
0 
1 

-1 
0 
0 
1 

- 1 
1 

- 1 
1 
1 

- 1 
1 

-1 
-1 

0 

0 

- 1 

1 

- 1 
1 

- 1 

1 

* 2 < 

0 

- 1 

-1 
- 1 

0 
0 
0 
0 
0 
0 

- 1 i 

- 1 

2 

-2 

2 

-2 

1 2 

-2 
3 

- 3 

Revert 
to 

Case 

6 

7 

5 

4 

3 
2 
1 

1 

By 

Preliminary Preparation 
Transformations 

*2i-l + ^ 2 £ = ^ 2 i + l 

2 t - 1 2^ 2 i + l 
F • - F . = -F . 
L 2 ^ - 1 r 2 i + l r 2 i 

~F2i-\ + F 2 i + 1 = F 2 ^ 

F2i ~ F2i+1 = ~ F 2 i - 1 

F . + F = F . 
2^ x 2 i + 1 ^ i - l 

F . + F . - F = 0 
£ 2z-l ^ r 2i r 2 i + l U 

-F . - F . + F . = 0 
2i-l 2i 2i+l 

For a full- to odd-subscripted conversion, all subscripts are shifted 
down by one in the table entries. 

each preparatory transformation reduces by at least one the number of nonzero 
ternary coefficients in the full-subscripted representation being converted, 
successive applications of the preparatory transformations eventually will lead 
to a termination with only ternary £2fc calculated according to (3.3c). It 
should be noted that preparatory transformations can be applied simultaneously 
to nonoverlapping strings of three consecutive coefficients, but that simul-
taneous application to overlapping strings should be avoided. 

As an example, consider (see Table 3.1 for case numbers): 

N = _3 = (Fi _ Fs) + Fh _ (Fs _ F?) + FQ 

= -F2 + F, + F 6 + (FQ - F 9 ) , 

F9, cases 22 & 23 (3.4a) 

case 24 (3.4b) 
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= -F2 + Fh + (F6 - F 7 ) , case 24 (3.4c) 

= ~FZ + (i\ - F5), case 24 (3.4d) 

= ~F2 ~ Fs (3.4e) 

= -i^, by Eq. (1.1) (3.4f) 

The ripple effect of the preparatory transformations is well-exhibited by this 
example. 

It should be noted that none of the ternary representations of (3.1) need 
be unique, for example: 

N = 4 = F2 - F3 + F5 = F2 + Fh = -Fh + Fs = -F1 + F5 = Z^ - F3 + F5. (3.5) 

Conversion from full- to odd-subscripted representations uses identical 
techniques, the only difference being that one is subtracted from the indices 
in (3.3c). 

C. Even-/Odd-Subscript Conversion 

The conversion of an odd- to an even-subscripted representation, or vice 
versa, is really a special case of the full- to even-subscripted, or odd-sub-
scripted conversion. Thus, Table 3.1 applies. However, since the t2k = 0 in 
the present case of Table 3.1, only 32 = 9 of the cases occur with only two of 
these requiring preliminary preparation. This is illustrated in Table 3.2, 
where, also, in columns 2 and 6 we give the possible range of adjacent coeffi-
cients. In the two cases requiring preliminary preparation, we can actually 
carry out the adjustment after application of the conversion formula (3.3c) by 
using 3F. = F^_ 2+ Fi+2 [5, p. 59] for the replacement 

2F. = 3Fi - F• = Ft_2 - Fi + Fi+2. (3.6) 

It is seen in the three right-hand columns of Table 3.2 that adjacent coeffi-
cients are brought back into code. However, if two adjacent coefficients would 
become out-of-code by application of (3.3c), then (3.6) should only be applied 
to one of them so that the correction will remain in code. An example will 
illustrate this technique: 

N = -24 = F, - F5 + F7 - Fq, given (3.7a) 
by (*) 

(3.7b) 
F8 + F10) - F10, by (3.6) (3.7c) 

(3.7d) 

This last also results from one preliminary transformation on the given repre-
sentation using Table 3.1. 

In the case of even- to odd-subscripted conversions, or vice versa, it is 
seen that the "ripples" associated with the preliminary preparations can be 
avoided by one cycle of application of (3.6) after the use of (3.3c). 

IV. Discussion 

-24 

-?2 

-?2 

-F, 

= 
+ 
+ 
-

F3 -
2F, 

(F 2 

*v 

• ^5 + 

" 2F6 

?7 ~ 
+ 2Fi 

" * \ + *"6> 

F, 

) 
" 

5 

' F 1 0 » 

2FG + (**, 

Conversion between several Fibonacci number representations has been dis-
cussed here with special emphasis upon those representations which appear most 
useful for multivalued logic realizations of the Fibonacci computers. Of spe-
cial interest along this line is the addition technique that is seen, via Fig-
ure l,tobe a simple matter of register loading when even- and odd-subscripted 
ternary representations are on hand. Besides this rather considerable advan-
tage of the ternary Fibonacci representations, it is clear that they also 
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TABLE 3.2 

Odd to Even Conversion Table 
(for Even to Odd, interchange te and t°) 

Cases 

1 

2 

3 

4 

5 

6 

7 

8 

9 

t°.~-— 

u 2 l - 2 

(°) 

u (°) 

u (°) 
1 

U) 
( - 1 ) 

1:1 
(-1) 

1:1 M 
1:1 
(~2) 
r1^ l o ) 
( - 2 ) 

hi 
("2) 

hh 

- 1 

- 1 

-1 

0 

0 

0 

1 

1 

1 

— *u-
u2v- 1 

0 

- 1 

-2 

1 

0 

- 1 

2 

1 

0 

L2i + I V 

L2i + 1 L2i+2 

- 1 

0 

1 

- 1 

0 

1 

- 1 

0 

1 

(~2) 

M 
(- 1 ) 

{?} 
(°) 

1 

bj 
(-2) 

hi 
f-1) 
{?} 
(°) 
til 
I"2) 
f1^ (o) 
( - 1 ) 

1?} 
(°) 

Jil 

Followed 

^ 2 ^ - 2 

(-M 
1 °f I i) 

( - 1 ) 
\ °\ I i 

by (3 .6 ) t o g i v e : 

^2i 

1 

-1 

^ 2 i + 2 

HI 
1 °[ I i) 

( - 1 ) 
\ °\ \ i 

conveniently allow numbers and their negatives to be represented without use of 
negative subscripts. The negative of a number is easily formed by the inver-
sion of each coefficient in any ternary representation, also an advantage for 
hardware implementations using three-state devices or two-bits per cell binary 
equivalents [7], Ternary Fibonacci representations also allow the sign of a 
number to be determined conveniently by observation of the most significant bit 
as mentioned in Section II. 

The "ripples" that occur in the preliminary preparation transformations of 
Table 3.1 should be investigated for minimization and hardware implementation, 
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as well as for interfacing the Fibonacci processor with conventional binary 
processors and trade-offs between the two kinds of processors. 
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Recently, Kalman [2] derives a number of closed-form formulas for the gen-
eralized Fibonacci sequence by matrix methods. In this note, we extend the 
matrix representation and show that the sums of the generalized Fibonacci num-
bers could be derived directly using this representation. 

Define k sequences of the generalized order-fc Fibonacci numbers as shown: 

E c.q^ . , for n > 0 and 1 < i < k, (1) 
J = l 

with boundary conditions 

1, i = 1 n, 
for 1 - k < n < 0, 

k0, otherwise, 

where o- , 1 < j < k9 are constant coefficients, and q'1 is the nth term of the 
^ sequence. When k- 2, the generalized order-/c Fibonacci sequence is reduced 
to the conventional Fibonacci sequence. 

Following the approach taken by Kalman [2], we define a k x k square matrix 
A as follows: 

A = 

°1 
1 
0 

0 

0 

p 

Q2 

0 
1 
0 

0 

0 

c3 . 
0 
0 
1 

0 
0 

. . ek_1 

. . 0 

. . 0 

. . 0 

. . 0 

. . 1 

Q 

0 
0 
0 

0 
0 

Then, by a property of matrix multiplication, we have 

\?Lx 9* ••• ti-k + iY = A\dZ 9J-i ••• 9Lk+i]T- (2) 
To deal with the k sequences of the generalized order-& Fibonacci series simul-
taneously, we define a kx k square matrix Gn as follows: 

g1 

9n-l 

'n-k + 1 

?Z-1 

72 

0 n-k + 1 

*i-i 

7k 
1 n-k + l 
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G e n e r a l i z i n g Eq. ( 2 ) , we d e r i v e 
Gn + X = AGn. 

Then, by an i n d u c t i v e argument , we may r e w r i t e i t as 
Gn + 1 = ^ ^ i -

(3) 

(4) 

Now, it can be readily seen that, by Definition (1), G = A; therefore, Gn = An. 
We may thus rewrite Eqs. (3) and (4) as shown: 

(5) Gn + 1 - G1Gn - GnG1. 
In other words, G± is commutative under matrix multiplication. Hence, we have: 

g\ + g* + 1
9 for 1 < i < k - 1, 

$n+l °k &n' (6) 

More generally, we may write Eq. (5) as Gr+C = GVGQ* Consequently, an element 
of Gr+a is the product of a row of Gr and a column of GQ : 

In particular, when r = c = n, we have G2n = G^; this provides us with a means 
of evaluating Gn in an order of log2n steps. 

To calculate the sums Sn5 n > 0, of the generalized order-fc Fibonacci num-
bers, defined by 

^ = 0 

let B be a (fc+ 1) x (k + 1) square matrix, such that 

1 0 0 ... 0 
1 
0 A 

Further, let En also be a (k + 1) x (k + 1) square matrix, such that 

"l 0 0 ... 0* 

Sn-2 Gn 

Jn-k 

Then, by Eq. (6) and 

we derive a recurrence equation 

Inductively, we also have 

1984] 

Sn+1 ~ 3n+x + S
n> 

En+1 ~ EnB-

K+1 = EiBn-

(7) 

(8) 

(9) 

(10) 
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Since S_^ = 0 , 1 < £ < &, we t h u s i n f e r E1 = B, and in g e n e r a l , En = Bn. So, 
from Eqs . (9) and ( 1 0 ) , we r each t h e fo l lowing e q u a t i o n : 

E _ = E,E = E El9 (11 ) 
n + l l n n l ' v / 

which shows that E. is commutative as well under matrix multiplication. By an 
application of Eq. (11), the sums of the generalized order-k Fibonacci numbers 
satisfy the following recurrence relation: 

Sn=l+tsn_i. (12) 
i = 1 

Substituting Sn = g\ + Sn_±, an instance of Eq. (8), into Eq. (12), we may ex-
press g1 in terms of the sums of the generalized order-k Fibonacci numbers: 

9n = l+tSn-i- d3) 
i = 2 

When k = 2, this equation is reduced to 

3„ = 1 + Sn_2-
If c: = e2 = 1, we derive the well-known result [1]: 

Fn = l + 1:^' (14) 
i = 0 

where Fn is the nth term of the standard Fibonacci sequence. Equation (14) is 
also apparent from the Fibonacci number system viewpoint. Let 

W = {bm ... b.bj,} 
be a bit pattern, where b^ is either 0 or 1 associating with a weight F^. Thus, 
by an analogy of the binary number system, any natural number N may be defined 
as 

777 

i = 0 

where m is sufficiently large. Since 

n 

£ = 0 

the bit pattern of Sn consists of (n + 1) lTs, that is, 11 ?Q . By Zeckendorffs 
theorem [1, p. 74], the bit pattern can be normalized to a pattern made up of 
lTs at bn+2-i> where i is odd, and 0Ts at other positions. If a 1 is added to 
this pattern and, after the same normalization, the whole bit pattern consists 
of a 1 at bn+2 and 0's at other positions; the value is clearly equal to Fn+2. 
By induction, Eq. (14) holds. 

Further, Eq. (11) could be generalized to Er+e = ErEa. If v = c = n, we 
have E^n = En. Thus, En may be evaluated in an order of log2n steps, too. 
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1. INTRODUCTION 

In many communication and signal-processing systems, desired signals (se-
quences) are embedded in noise. Linear filters have been the primary tool for 
smoothing or recovering the desired signal from the degraded signal. Linear 
filters perform particularly well where the spectrum of the desired signal is 
significantly different from that of the interference. In many situations, 
however, the spectrum of the signal and of the noise are mixed in the same range 
and the performance of linear filters is very poor. Median filters can be used 
to circumvent these problems. Tukey [1] is generally credited with the idea of 
introducing nonlinear filters based on moving sample medians of the input sig-
nal. In this paper, we do not address the filtering problem, but we analyze 
the signal (sequence) set of median filtered binary sequences. To best explain 
the goal of this paper, the implementation of the median filter is described 
first. 

To begin, take a binary sequence of length n; across this signal we slide 
a window that spans 2s - 1 samples of the binary sequence, for s = 2, 3, ... . 
At each point of the sequence, the median of the samples within the window of 
the filter is computed and the output of the filter at the center sample is set 
equal to the computed median. To account for start-up and end effects at the 
two endpoints of the n-length sequence, s - 1 samples are appended to the be-
ginning and end of the sequence. The value of the appended samples to the be-
ginning is equal to the value of the first sample; similarly, the value of the 
appended samples to the end of the sequence equals the value of the last sample 
of the sequence. Figure 1(a) shows a binary signal of length 10 being filtered 
by a filter of window of size 3. The filtered signal is shown below. The ap-
pended samples are shown as crosses (X). Figure 1(b) shows the same sequence 
filtered by a filter of window size 5. Figure 1(c) shows similar results with 
a larger window. An interesting observation is that there exist sequences that 
are not modified by the median filter. Moreover, it has been shown that any 
finite input sequence, after repeated median filtering, will be reduced to one 
of these invariant sequences [2]. A sequence that is not modified by the fil-
tering process is called a "root" sequence. The following theorem provides the 
upper bound on the number of successive filter passes necessary to reduce an 
input sequence to a root sequence [2]: 

Theorem 

Upon successive median filter passes, any nonroot sequence will become a 
root sequence after a maximum of (n - 2)/2 successive filterings, where n is the 
sequence length. 

If we observe the structure of binary root sequences, we can see that they con-
sist of identically-valued segments of at least s samples. These segments of 
at least s consecutive equal-valued samples are called "constant neighborhoods." 
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WINDOW 15 = 2h 
Lef t to Right 

(a) 

i I I i I 

| WINDOW h 
5=3 

(b) 

WINDOW 1 H 
5=4 

x FILTER INPUT 

-̂  I 

FILTER OUTPUT 

FILTER INPUT 

FILTER OUTPUT 

FILTER INPUT 

FILTER OUTPUT 

(c) 

FIGURE 1. Signal Filtered by Three Different Median Filters: 
(a) S = 2 (b) S = 3 (c) S = 4 

Any sequence that does not consist only of constant neighborhoods will be modi-
fied by the filter. As an example, consider a window of size 3 (i.e., s = 2); 
if a sequence contains the segment "...11011...," then, clearly, this sequence 
will be modified when the window is centered at the "0" sample. In this case, 
the shortest constant neighborhood we can have is two. 

The problem addressed in this paper is concerned with the binary root se-
quence space of median filters. In particular, for a median filter of window 
size 2s - 1, how many possible binary root sequences can we have for a given 
sequence length? For instance, for a window of size 3 and sequence length 4, 
the only possible root sequences are: 

sequence 1 
sequence 2 
sequence 3 
sequence 4 
sequence 5 
sequence 6 
sequence 7 
sequence 8 
sequence 9 
sequence 10 

There are only 10 possible root sequences of length 4, compared to 16 possible 
binary sequences we can obtain if no restriction is imposed on the sequences. 
Thus, for a particular window size and sequence length n, we are interested in 
finding R(n), the number of possible root signals. 

0 0 0 0 
0 0 0 1 
1 0 0 0 
1 1 0 0 
0 0 1 1 
0 1 1 0 
1 0 0 1 
1 1 1 0 
0 1 1 1 
1 1 1 1 
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2. TREE STRUCTURE FOR A WINDOW OF SIZE THREE 

Consider a window of size 3 (s = 2). As mentioned above, the minimum con-
stant neighborhood for this filter is 2. Now, Let us build a root signal (a 
signal that will not be modified by the filter). The first sample can take any 
arbitrary values; for purposes of illustration, let us choose the first sample 
to be a "0." Next, for filtering purposes, we append a sample to the left of 
the first "0" sample. So far the sequence is "0 0" (appended + root sequence). 
The second sample of the sequence can be either a "0" or a "1." Let us pick a 
"1" for the second sample; the entire sequence is now: "001." The third sam-
ple of the root sequence (fourth of the entire sequence) is of decisive impor-
tance; if we let it be a "1," the entire sequence would consist of two differ-
ent constant neighborhoods satisfying the property of being invariant to the 
filter. On the other hand, if we let the third sample be a "0," then a non-
allowed structure occurs and the resultant sequence would be affected by the 
filter. Figure 2 shows every allowable path that the root signal can take* 

FIGURE 2. Tree Structure for a Filter of Window Size 3 

These paths branch in a tree structure fashion. If we take a close look at the 
tree structure, we can distinguish that sections of the tree repeat themselves 
as the tree propagates. This observation gives us the concept of the existence 
of discrete states. As is shown next, this is in fact true. These states are 
shown in Figure 2 and are denoted A, B9 C, and D. Each state is determined by 
a sequence to two consecutive digits; for the filter of size 3, these states 
are: 

A = {0, 0}, B = {0, 1}, C = {1, 0}, D = {1, 1}. 
Figure 2 shows how these states propagate as the sequence length increases. 
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Each state will generate other states; this can be seen in Figure 3, where a 
state transition diagram shows the state propagation. Notice that states B and 
C have only one allowable path. The nonallowed path is denoted by the "sink" 
in Figure 3. State A generates another state A plus a state 5, state B gener-
ates a state D only, state C generates a state1 A, and finally state D generates 
a state D and a state C. Notice that the pattern of growth is predictable, in 
other words, given the number of states A, B, C,D at a given stage of the tree, 
we can predict the number of ASB, C,D states at the next stage. Let n denote 
the nth stage (root sequence of length ri) , and let A(n) be the number of A states 
that the tree structure has at this nth stage. From the properties of the 
states, previously mentioned, we can write: 

A(n + 1) = Ain) + C(n) (1) 
Bin + 1) = Ain) 
C(n + 1) = D(n) 
Bin + 1) = B{n) + Bin). 

sink 

State Diagram 
Window = 3 

FIGURE 3. State Diagram for a Filter with Window Size 3 

Refer to the tree structure in Figure 2 and randomly select any stage, say stage 
3. At that stage, we have two A states, two D states, one C state, and one B 
state; a total of 6 states (6 branches or possible roots). For a sequence of 
length 4, we have 10 states (or 10 possible root sequences). In general, the 
number of root sequences at the n stage is simply 

Rin) = Ain) + Bin) + C(n) + Din), (2) 

and at the n + 1 stage is 
•Rin + i ) = Ain + 1) + Bin + 1) + C(n + 1) + Din + 1 ) . 

Replacing (1) into (2), we obtain the recursive expression for Rin + 1): 

Rin + 1) = 2Ain) + 2D(n) + C(n) + Bin), (3) 

with the initial conditions Ail) = 5(2) = C(2) = D(2) = 1. Using this expres-
sion, a recursion table for the number of different states and number of roots 
is obtained and shown in Table 1. 

Although the recursion table gives us a way to obtain the number of roots 
at any sequence length,a closed form solution for Rin) is more desirable. From 
(3) and (2), we obtain 

Rin + 1) = Rin) + Ain) + Din), (4) 

but, referring to the state diagram, 
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TABLE 1 

Recurs ion Table for R(n), Window = 3 

Sequence 
Length n 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

A(n) 

1 
2 
3 
5 
8 
13 
21 
34 
55 
89 

Bin) 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 

C{n) 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 

D(n) 

1 
2 
3 
5 
8 
13 
21 
34 
55 
89 

R(n) 

4 
6 
10 
16 
26 
42 
68 
110 
178 
288 

A(n) = i4(n - 1) + Cin - 1), 
and, 

D(n) = 5(n - D + 5(n - 1). 

Replacing these expressions for A(n) and £>(n) into (4), we obtain 

R(n + 1) = R(n) + R(n - 1). 

We have obtained a difference equation for the number of roots of a binary se-
quence for a filter with window size 3 and initial conditions 

i?(l) = 2 and i?(2) = 4. 

The solution is simply R(n) = 2F(n + 1), where F(n) is the Fibonacci sequence 

F(n) . — ^ — 2 — J - ^—2—y J' for n > K 

3. TREE STRUCTURE FOR THE GENERAL WINDOW 

Let us see what happens if we increase the window size to 5; later on we 
will generalize the window size to 2s - 1. For this window, the minimum con-
stant neighborhood length is 3. By using the same procedure as before, we ob-
tain a tree structure for this size window and it is shown in Figure 4. The 
difference between the tree structures for the filters of size 3 and 5 is that 
for the latter we have two similar states B and two similar states C. For the 
filter with window size 5, the states are specified as follows: 

A = {0, 0, 0}, B\ = {0, 0, 1}, B2 - {0, 1, l}, 

CI = {1, 1, 0}, C2 = {1, 0, 0}, and D = {1, 1, l}. 

The similarity between states CI and C2 is that both sequences start a neigh-
borhood of value "0," the difference is in that CI is a delay state (will gen-
erate a state C2 only). Similar observations can be made for states 51 and 52. 
Figure 5 shows the state diagram for the filter of size 5, and the delay states 
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Tt_?U 

FIRST DIGIT DIGIT 2 ' DIGIT 3 " DIGIT 4 ' 

FIGURE 4. Tree Structure for a Filter with Window Size 5 

can clearly be seen there. From the state diagram, we obtain the recursive 
expressions: 

As before, 

A(n) = A(n - 1) + C2(n - 1) 
Bl(n) = Ain - 1) 
B2(n) = Bl(n - 1) 
Clin) = B{n - 1) 
Clin) = Clin - 1) 

Bin) = Bin - 1) + 52(n - 1). 

Rin) = Ain) + Blin) + 52(n) + CI in) + C2(n) + Bin), 

(5) 

(6) 

sink 

State Diagram 
Window = 5 

FIGURE 5* State Diagram for a Window of Size 5 

Substituting (5) into (6), and after some manipulations, we find that 

Rin + 1) = i?(n) + Rin - 2). (7) 

Naturally, for a given sequence length, the number of roots decreases as we 
increase the window size. We have seen that, if we increase the window size, 
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only delay states are added to the state diagram. Although by following the 
same procedure we could obtain the difference equation for larger window sizes, 
a general recursive expression for a general size filter is a more convenient 
result. This relation will be obtained next. 

Figure 6(a) shows a state diagram for a filter of arbitrary window size 
2s - 1. The dotted line separates the diagram in odd symmetric parts. The odd 
symmetric correspondence is not only in a position sense, but in the multipli-
city of the given states also (i.e., # of Bl states = # of (71 states, etc.). 
States Bi and Ci are delay states (each Ci or Bi state will be transformed into 
only one other state as we move along the diagram). On the other hand, states 
A and D not only have the previous property, but, also, they will generate an-
other state of their own kind. Hence, for this 2s - 1 window size filter, the 
number of roots is 

R(n) = A(n) + Bl(n) + B2(n) + ... + B[s - I] in) (8) 

+ (71 (n) + Clin) + ••• + C[s - I] in) + Din), 
and 

A(n) = D(n) 
Bl(n) = A(n - 1) 
B2(n) = A{n - 2) (9) 

B[s - l](n) = A(n - [s - 1]) 
Clin) = Blin) 
Clin) = Blin) 

C[s - l](n) = B[s - l](n). 

Therefore, i?(n) can be represented in terms of a recursion relation of the A 
states only. It is important to recall that s is the minimum constant neigh-
borhood for a window of size 2s - 1. We find that i?(n) can be written as 

s-l 

R(n) = 2 £>(n - 1). (10) 
i = 0 

Let us now describe some properties of the multiplicity of A states. Refer to 
the state diagram for the general window size filter, Figure 6(a). Think of 
the state diagram as describing the propagation of particles in space. [Par-
ticles in Figure 6(a, b, c) are shown as XTs.) A particle at point A represents 
a state A; if at a given time there would be 5 particles at point D, this would 
imply that there would be 3 states D, and so on. At a sequence of length 1, we 
have 1 state A and 1 state D; this is shown in Figure 6(a). Increasing the se-
quence length to 2, state will generate another state A and also generates a 
state Bl. Similarly, state D generates a state D and also a state CI. As we 
can see in Figure 6(b), with a sequence of length 2, the number of states is 
the same as it was at a sequence of length 1. The states generated at point D 
move toward point A; this process goes on until the first state generated at 
point D gets to point A. As we can see in Figure 6(c), when the first particle 
generated by D reaches the A point, a particle in point A not only generates a 
new state A by itself, but also, it receives another state from the particle 
that has propagated from state A along points (71, CI, ..., C[s - 1], In other 
words, point A has to wait s discrete intervals until the number of states in 
that location increases by the number of particles at point D, s intervals ago. 
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sink 
(a) Signal Length = 1 

Part ic les (X) at points A and D. 

(b) Signal Length = 2 
(sink omitted) 

(c) Signal Length = 5 + 1 
(sink omitted) 

FIGURE 6. State Propagation for a Fil ter with Window Size 2s - 1 

Since the number of particles at the D point is the same as the number of par-
t ic les at the A point at any time, the previous observation can be written as 

A(n) = A(n - 1) + A{n - n). (11) 
Replacing (11) into (10), we find, after some manipulations, that 

R(n) = R{n - 1) + R(n - s) (12) 

is the recursive expression for the number of root sequences of a filter with 
window size 2s - 1, for any sequence length n. Letting 

R(n + i - 1) = xi{n), (13) 

we can see from (12) and (13) that 

x1(n + 1) = x2(n) 

x2(n + 1 ) = x3(n) 

xs_1(n + 1) = xs(n) (14) 

xs (n + 1) = xs(n) + xx(n). 

We can represent (14) in vector notation as 

X(n + 1) = AX(n), (15) 
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where 
X(n) = [^(n), x2(n), . .., xs(n)]T, 

and where A is the bottom companion matrix: 

0 1 0 ... 0 0 0 
0 0 1 0 0 0 

0 0 0 
0 0 0 
1 0 0 

0 1 0 
0 0 1 
0 0 0 

From (13), R(n) = [1, 0, 0, ..., 0]X(n) , where X(n) is the solution of (15), 

X(n) = AnX(0), (17) 

and where X(0) are the initial conditions obtained from the tree structure or 
recursion table; hence, 

R(n) - [1, 0, 0, ..., 0]AnX(0). (18) 

The characteristic equation of the A matrix in (16) is obtained to be 

1 = 0. (19) 

With the help of SturmTs theorem [3], we can show that (19) does not have re-
peated eigenvalues; hence, we can find R(n) from (18) as 

R(n) = [1, 0, 0, ..., 0]MDnM"1X(0), (20) 

where M is the matrix that diagonalizes A as M'^AM = D. In this case, 

and 

M 

D 

1 

*1 

X, 0 

(21) 

1 

X2 

A * - 1 K'1 

1 

K 
(22) 

where X19 ..., X8 are the s distinct eigenvalues of A. Replacing (21) and (22) 
into (20), we obtain the general solution for R(n): 

R(n) = [X19 X2, ..., X ] M - 1 X ( 0 ) . 

k. CONCLUSION 

We have developed a tree structure for the root sequence set of median fil-
ters of binary signals. This structure has the characteristic that the number 
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of branches it has at each stage is described by a simple recursive expression. 
In the case of the filter with window= 3, the number of branches is related to 
the Fibonacci sequence. In general, it is shown that the number of roots i?(n) 
for a sequence of length n and window size 2s - 1 is represented by the recur-
rence relation 

R(n) = R(n - 1) + R(n - s). 

REFERENCES 

1. J. W. Tukey. Exploratory Data Analysis. Reading, Mass.: Addison-Wesley, 
1971. 

2. N. C. Gallagher & G. L. Wise. "Theoretical Analysis of the Properties of 
Median Filters." IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, Vol. ASSP-29, no. 6 (December 1981). 

3. M. E. Van Valkenburg. Modern Network Synthesis. New York: Wiley, 1960. 

1984] 217 



EULER'S INTEGERS 

E. EHRHART 
Universite di Strasbourg, 67000 Strasbourg, France 

(Submitted September 1982) 

EulerTs integers are less known than the classic Eulerian numbers, though, 
in figurate form, they appear since antiquity.* 

First, we shall look at their origin and find their general expression; 
then we shall establish some of their properties and give various combinatoric 
applications. Several results may not have been published previously. 

The notation of periodic numbers and the notion of arithmetic polynomials 
will be useful tools. 

I. GENERAL EXPRESSION OF EULER'S INTEGERS 

Consider the infinite product 

n(x) = (1 - x)(l - x2)(l - x 3)... 

which Euler encountered in relation to the problem of the partition of inte-
gers. For instance, he showed that the number p{n) of partitions of n into 
integers, distinct or not, is generated by the function 

-T-T = 1 + E P(n)xn. 

If we develop n(x) in series, we expect a priori to find increasing coeffi-
cients. But, surprisingly, all coefficients are +1 or -1, isolated in gaps of 
zero coefficients, gaps which, on the whole, increase and tend to infinity. More 
precisely, 

i\(x) = 1 - xai~ xa2+ xa'+ xa" - xas- xa*+ ... + enxan+ ... (1) 

The coefficients are pairwise alternately -1 and +1. In order to see the 
behavior of the exponents, we shall examine some initial values of Euler's in-
tegers an: 

TABLE 1 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

an 1 2 4 7 12 15 22 26 35 40 51 57 70 77 92 100 

An (I) 3 (2) 5 (3) 7 © 9 ® 11 © 13 © 15 ® 

The integers an seem to follow a complicated law, since their rate of in-
crease oscillates. But if we form the differences An = an+1 - an, we see that 
they are the integers for n odd, and the odd numbers (beginning with 3) for n 
even. 

Now, we shall try to express the general term £n# " of the series (1) in a 
simple form. 

*The two kinds of Eulerian numbers En and A(n, k) are defined by: 

T — = E En ^r and xn = E A(n, k)(X + k ' l). 
cosh x n% n\ l £ ^ n

 J\ n ) 
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Definf t ions. 

(1) A periodic number un = [u1, u2> . . . , uk] is equal to the u^ in the 
brackets, such that i = n, modulo k. So we represent a series of period k by 
its k first terms. For instance, un = [a, b] equals a or b, according to whe-
ther n is odd or even, and un = [4,-1, 0] is the nth term of the series 4, -1, 
0, 4, -1, 0, 4, -1, 0, ... 

(2) An arithmetic polynomial P(n) is defined only for positive integers 
and takes only integer values. Contrary to an ordinary polynomial, some of its 
coefficients are periodic numbers. Example: 3n2 - [4, -1, 0]n + [5, 7]. 

We shall admit the following theorem, easy to establish [1]. 

Theorem 1 

ForMi= [a. b],ZX= ( a + ')WVa-'' ° ]; 
£ = 1 z 

r t l. A (a + b)n2 + [2a, 2b]n + [a - b, 0] 
for ui = [a, Z?H, J2 ui = ^ — ^ ~ " — • 

i = 1 
Clearly, 

A* = ^-—[l, 2] = |[1, 2]i + | [ 1 , 2]. 

So we can calculate 
n-l 

an
 = * + 2 î 

£ = 1 

by Theorem 1. Paying attention in brackets to the difference in parity of n - l 
and n, we find 

, , 1 3(n - 1) + [0, 1] , I 3(n - l) 2 + [4, 2](n - 1) + [0, -1] 
a„ - l + 2 • 2 + 2 • 4 

and, after simplification: 

Theorem 2 

The nt h Eulerian integer is the arithmetic trinomial 

3n2 + [4, 2]n + [1, 0] _ ^(3n + [4, 2]) (2) 

where the double bars indicate the nearest integer. 

Corol1ary 

The general term of the series u(x) is 

We define Eulerfs integers an by Table 1, indefinitely extended by means 
of the two arithmetic progressions mixed in A„, and then deduce (2) * But we 
have admitted (1) without proof, and so did Euler for ten years. In an article 
entitled "Discovery of a Most Extraordinary Law of Numbers in Relation to the 
Sum of Their Divisors," he said: 
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I have now multiplied many factors, and I have found this progression. 
. . . One may attempt this multiplication and continue it as far as one 
wishes, in order to be convinced of the truth of this series. . . . A long 
time I vainly searched for a rigorous demonstration . . . and I proposed 
this research to some of my friends, whose competence in such questions I 
know; they all agreed with me on the truth of this conversion, but could not 
discover any source of demonstration. So it will be a known, but not yet 
proven truth. 

Nevertheless, he finally proved it in a letter to Goldbach (1750). In the 
next century, various demonstrations were found, especially by Legendre [2], 
Cauchy, Jacobi, and Sylvester. 

II. PROPERTIES OF EULER'S INTEGERS 

First a quite simple question: What is the parity of the nth Eulerian inte-
ger? If one observes Table 1, it seems that the same parities reappear with 
period 8. That is true, for 

an+s = 3 ( n + 8 ) ' + [ 4 , 2](n + 8) + [1, 0] = ^ + 6 n + [28> 2 6 ] 

whether 6n + [28, 26] is even. Likewise, we find: 

Theorem 3 

Modulo k, the Eulerian integer an = ccn + hk or an E ccn + 2k, according to whe-
ther k is even or odd. Particularly, 

an = [1, 0, 1, 1, 0, 1, 0, 0], mod 2; 

an = [1, -1, -1, 1, 0, 0], mod 3. 

Now a more important question: Find a characteristic property of the inte-
gers an. An integer N is Eulerian, if the equation in n, 

N = 9n2 + [4, 2]n +[1,0] o r 3 n 2 + [4> 2]n + [1( Q ] _ M m 0> 
O 

has an integer and positive root. Therefore, its discriminator 

[2, l] 2 - 3[1, 0] + 24# = [4, 1] - [3, 0] + 24iV = 2421/ + 1 

must be a square. Conversely, if 

24/V + 1 = k1, 

k has the form 3n + 2 or 3n + 1. But Eq. (2) gives 

24an + 1 = 9n2 + 3[4, 2]n + [4, 1] = (3n + [2, l])2. 

So N is the nth Eulerian integer. 

Theorem k 

An integer N is Eulerian iff 24iV + 1 is a square k2. Then its rank is U-
(the greatest integer < k/3). 

The integers an have a second characteristic property, an arithmogeometric 
one. If in (2) we distinguish n odd and n even, we have: 

a) n = 2k - 1: an = — q
 K = 1, 5, 12, 22, ...; 
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b) n = 2k: an = JK
 2

 K = 2, 7, 15, 26, ... 

3k2 - k 
The integers are the pentagonal numbers, known since antiquity, and 

they count the dots of the closed pentagons below. 

3k2 + k The integers also have a simple figurative signification: they count 

the dots of the open pentagons. Therefore, we call them seoond-olass pentag-

onal numbers. Note that we also get them by ~ — for k = -1, -2, -3, ... . 

Theorem 5 

Eulerian integers and pentagonal numbers are identical. 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . .. 

an (7) 2 (?) 7 (12) 15 (22) 26 (35) 40 @ 57 (70) 77 (92) 100 ... 

Do the integers an satisfy a recurrence relation? Yes, for an is an arith-
metic polynomial. We know [1] that such a polynomial an of characteristics (d, 
g, p) (we shall define this notion directly) verifies the linear recurrence 
relation 

{(1 - a)d~g(l - ap)g+1} = 0, 

the exterior braces meaning that in the developed polynomial each power a^ will 
be replaced by an_i. For our trinomial an of (2), the degree d = 2, the grade 
g = 1 (i.e., that n1 is the highest power with periodic coefficient) and the 
pseudoperiod p = 2 (the least common multiple of the periods of the coeffi-
cients) . So 

{(1 - a)(l - a2)2} = {1 - a - 2a2 + 2a3 + ah - a5} = 0. 

Theorem 6 

The Eulerian integers verify the recurrence relation. 

an - <z„_i " 2an_2 + 2an_3 + an_h - an_5 = 0. 

We know [1] that every arithmetic polynomial an whose recurrence relation 
is {F(a)} = 0 is generated by a rational fraction f(x)/F(x), where f(x) is of 
lower degree than F(x). So the Eulerian integer an is generated by a fraction 

£ ^ r-5- = 1 + x + 2x2 + 5x3 + lxh + • • - + anxn + -.. , 
(1 - x)(1 - xz) 

where f(x) is of degree 4 at most. Hence, 

f(x) = 1 - x2 + 3x3 + x1*. 

1984] 221 



EULER'S INTEGERS 

Theorem 7 

Euler*s integers are generated by the fraction 

\__-_x + 3x + xh = ! + y; a xnm 

(i - x)a-x2)2
 nr0 

As application, we now shall see EulerTs integers in relation to the Eule-
rian function an and the partitions. 

111. EULER'S FUNCTION o{n) 

As usual, o(n) indicates the sum of the divisors of the integer n. Hence, 
cr(8) = 1 + 2 + 4 + 8 = 15, and o(n) = 1 + n, iff n is prime. Descartes already 
noted that a(nm) = o(ri)o(m), iff n and m are relatively prime. The first val-
ues of o(n) are: 

n 1 2 3 4 

o(n) 1 3 4 7 
5 6 7 8 9 10 11 12 13 14 15 16 

6 12 8 15 13 18 12 28 14 24 24 31 

With respect to this table, far prolonged, Euler observed: "The irregulari-
ty of the series of the prime numbers is here intermingled. ... It seems even 
that this progression is much more whimsical." Indeed the values of o(n) pre-
sent an infinity of irregular oscillations. But Euler discovered an unexpected 
law in their capricious succession. 

Theorem 8 

The function o~(n) verifies the recursive relation 

o(n) = o(n ~ a±) + o(n - a2) - o(n - a3) - o(n - ah) + 
with the convention 

(3) 

Lf k = 0, 
If k < 0. 

/7 N / n if a(fe) = { 0 if 
The a^ are EulerTs integers and the signs alternate pairwise. 

Example: a(7) = a(6) + a(5) - a(2) - a(0) =12 + 6 - 3 - 7 = 8. 

Admire the masterfs ingenious demonstration: 

Take the logarithmic derivative of the two members of (1) and multiply 
them by (-x): 

= fix) 
i\(x)' y 

a x l + a x 
1 2 

a x 
3 

a x"h + > 
4 

1 - X 1 - X2 1-x3 7T(x) 

Develop in series the fractions of the first member: 

y 
+ 2x2 + 2xh + 2x6 

+ 3x3 + 3#6 

+ hxh 

+ 5^r5 

+ 6x6 

+ 7^r7 

+ 2^8 + 
+ 

+ hx& + 
+ 
+ 
+ 

+ 8x8 + 
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Hence, 
y = o(l)x + o(2)x2 + a(3)x3 + ... . 

The identity 0 E -f(x) + yn(x) then gives: 

® = -x - 2x2 + 5x5 + 7x7 + 

+a(l)ar + a ( 2 ) ^ 2 + a(3);c3 + a ( 4 ) ^ + a ( 5 ) x 5 + o(6)x6 + a ( 7 ) x 7 + 

-o(l)x2 - o(2)x3 - a(3)xk - aWx5 - o(5)x6 - o(6)x7 + 

- a ( l ) x 3 - 0 ( 2 ) ^ - o(3)x5 - a ( 4 ) x 6 - o(5)x7 + 

+o(l)x& + o(2)x7 + 

Relation (3) states that the coefficient of xn in the second member of the 
preceding identity if zero. We see it clearly when we look at the coefficient 
of x7 for example. 

T, c . o(n) The Series u = —-—-

We proved that the function \^ increases and we shall see that it tends 
to infinity with k. 

Let P1 , P , . . . , Pr be the prime numbers up to Pr . Then 

o(P^) i o(Prl) .•£ and £ < - l > ( l + i _ ) ( l + 3 L ) . . . ( l + i ) . 
Hence, 

the sums being taken from i = 1 to i = r. We know that 2"5~ "* °°  with r, while 

the other sums converge. Therefore, pt -> °°  with P, and also \ t* • °°  with 

What a curious series is un = ! Obviously, un > 1. It oscillates 

irregularly—probably between 1 and 6 for n < 1017—but it presents an initial 
regularity: it has a relative extremum for each n < 62. The extreme example is 
likely 

n = 21 2 . 36 . 5 • 7 • 11 • 13 . 17 • 19 • 23 • 29 • 31 - 0.998 x 1017 

with un ~ 5999. It contains at once a decreasing series u(P^)5 which tends to 
1, a constant series u(Ey) = 2, where Z^ is the kth Euclidean integer, increas-
ing series u(ak) s which tend to finite numbers if k ->• °o, and an increasing 
series u(k\), which tends to infinity. Furthermore, wnm = unum if n and m are 
relatively prime, and unm < unum if not. For a prime P and an arbitrary inte-
ger k, u(Pk) < 2. While 

uY = 1, w6 « 2, u12 0 = 3, u302lf0 = 4, 

the least known n for un = 6 exceeds 1028 and the least n for un = 8 is gigan-
tic [3]. Descartes, Fermat, and others, assiduously searched for values of n 
for which un is an integer. All the found values, save 1 and 6, are multiples 
of 4. 

Perfect numbers can be defined by un = 2. Euler proved that the only even 
•perfect numbers are the Euclidean integers p(p + 1) /2, where p=2k + 1-l is prime. 
Can an odd perfect number exist! Nobody knows. But we know that the order of 
such an odd n would be at least 10200 [3]. The difficulty of this millenary 

1984] 223 



EULER'S INTEGERS 

q u e s t i o n has been compared t o t h a t of t h e t r anscendency of i\ ( p r e v i o u s l y , t o 
Lindemann's h i s t o r i c a l d e m o n s t r a t i o n ) or t h a t of Fermat*s open problem. More 
g e n e r a l l y : 

Conjecture 

For an odd n , save 1, t h e number un i s never an i n t e g e r . 

Here a r e some i n i t i a l v a l u e s of u(kl), approached for k > 5: 

k 1 2 3 4 5 6 7 8 9 1 0 — 1 3 — 2 0 — 30 

u(kl) 1 1.5 2 2 .5 3 3.36 3.84 3.95 4.08 4 .22 —4.99 —5.52 —5.95 

Generally, un < u(kl) for n < k\ . But never: 30240 < 8!, although ^(30240) = 4 
(found by Descartes) exceeds u(8l) — 3.95. 

IV. PARTITIONS INTO DISTINCT OR UNRESTRICTED PARTS 

Another Eulerian formula is strangely similar to (3) . It concerns the num-
ber pin) of partitions of n, into integers distinct or not, whose first values 
are: 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

pin) 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 

Theorem 9 

The number of unrestricted partitions of verifies the recursive relation 

-pin) = p(n - ax) + p(n - a2) - pin - a3) - pin - ah) + ••• 

with the convention 

/7s (1 if k = 0, 
V(k) = { 0 if k < 0. 

The CLi are Euler?s integers and the signs alternate pairwise. 

This formula results directly from the fact, mentioned at the beginning, 
that p(n) is generated by l/i\(x). 

Is it not fabulous that two beings, so disparate as o(n) and pin) (sum of 
the divisors of n and number of its partitions) follow the same recursive law 
(aside from a slight detail: 0Q = n, pQ = 1)? 

Could a similar recursive law exist, perhaps not linear, for the prime num-
bers Pn? 

Recently D. R. Hickerson found an interesting relation between the numbers 
of distinct or unrestricted partitions [4]: 

Theorem 10 

The number pn of unrestricted partitions of n and the number qn of its par-
titions into distinct parts are related by 

Qn = Pn Pn-2ax ~ Pn-2a2
 + Pn - 2a3

 + Pn - 2aH ~ 

with the convention 
/l if k = 0, 

P " (0 if k < 0. 
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The signs alternate pairwise. 

Starting from the generating functions of pn and an, we have established an 
unexpected relation between them: 

Theorem 11 

The arithmetic functions pn and on are related by 

°n = «iP„.fll+ *2Pn-a2- a,Vn.a~ %Vn . a+ ' 
with the convention 

( 1 if k = 0, 
Pk (0 if & < 0. 

The signs alternate pairwise. 

Conjecture 

For n > 6, the function Lp /Vn increases and Lp /n decreases. But 

> 1.44 and < 0.33. 
V20 

Hence, 
g1.44V^ < p^ < g<>.33« f o r n > ^ ( 4 ) 

Remarks 

1) An asymptotical value for pn was found by Hardy and Ramanujan: 
/in 

e v 3 g2.57v^ 

4v3n 6.93n 

Consequently (4) is proved for n great. 

2) We know that the number of partitions of n into unrestricted parts is 
2n - 1, if the order of the summands is relevant. 

Example: For n = 3 = l + 2 = 2 + l = l + l + l , this number is 22. 

Therefore, p < 2 n _ 1 for n > 2. 

Theorem 12 

Let q^ and q^9 respectively, be the numbers of partitions of n into an even 
or an odd number of distinct parts. If the integer n is not Eulerian, q£ = q"; 
for a Eulerian integer an9 qu

a = q^ + [-1, -1, 1, 1], the periodic number be-
ing related to the rank n of an. 

Corollary 

The number of partitions of an integer n into distinct parts is odd iff 
is Eulerian. Euler stated that this number equals the number of partitions of 
n in which all parts, distinct or not, are odd. 
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The coefficient of xN is the same in the series 

(1 - x) (1 - x2) (1 - x3) ••• = 1 + c±x + o2x2 + .-. + cNxN + -•• 

and in the polynomial 

(1 - x) (1 - x2) (1 - x3) • • • (1 - a?*) = 1 + c^x + <?2x2 + • • • + ^a?* + ^+ 1P(x) . (5) 

By developing the product (5) without reducing similar terms, we get, with 
coefficient (+1), every xN whose exponent appears as a partition of N in an even 
number of distinct terms, and with coefficient (-1), each xN whose exponent ap-
pears as a partition of N in an odd number of distinct integers. Therefore, 

But in (1), en = [-1, -1, 1, 1] or 0, according to whether N is Eulerian or not. 

Remarks 

1) Although Theorem 12 follows easily from identity (1), Legendre seems to 
have been the first to state it [2]. 

2) Now the great gaps in the series (1) are explained: they simply signify 
that generally an integer has as many partitions in an even as in an odd number 
of distinct parts. 

3) An odd qn is characteristic of Eulerian integers, as an odd on is char-
acteristic of squares or double squares. But the problem of the parity of p 
is still open. 

V. PARTITIONS INTO PARTS OF GIVEN VALUES 

The following text of Euler shows with charming simplicity his enthusiasm 
for his amazing formula (3). His integers seem to be still a little mysterious 
to him. 

We are the more surprised by this beautiful property, as we see no 
relation between the composition of our formula and the divisors whose 
sums concern the proposition. The progression of the numbers 1, 2, 5, 
7, 12, 15, ... not only seems to have no relation to the subject, but— 
as the law of their numbers is interrupted and they are a mixture of 
two different progressions: 1, 5, 12, 22, 35, 51, ... and 2, 7, 15, 26, 40, 
57, ...—it almost seems that such an irregularity could not exist in 
analysis. 

So Euler was surprised that an takes its values from two progressions, tri-
nomials of the second degree. However, notwithstanding what he believed, one 
often meets in analysis series of integers that take their values from several 
polynomials: the arithmetic polynomials, which all have a generating rational 
fraction and satisfy a linear recurrence relation. It is piquant to see that 
such series occur, particularly in a question which Euler examined at length: 
the partition into parts of given values [5]. 

Example 1 

In how many ways can n identical objects be divided in groups of 12, 13, 
and 17 pieces? 

This is equivalent to finding the number j n of nonnggative integer solu-
tions of the equation 

12a? + 13z/ + 17s = n. (6) 
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Those problems are solved by a general theorem, whose first part is due to 
Euler: 

Theorem 13 

The number j n of nonnegative solutions of the diophantine equation 

5^ a^x'1 = n 
i = l 

with positive coefficients, is generated by the fraction 

1 

(1 - tai) (1 - taz) ... (1 - tar) n>o 
Y,ont\ 

The function j(n) is an arithmetic polynomial, whose pseudoperiod is the least 
common multiple of the a^, its degree r - 1 and its grade m - 1, m being the 
greatest number of coefficients a^ that have a common divisor other than 1 [1]. 

So, for Eq. (6), j n is an arithmetic trinomial whose characteristics are 
(2, 0, 2652). More precisely, we know [1] that j n verifies a relation of the 
form 

2(12 x 13 x I7)jn = n2 + (12 + 13 + 11)n + un9 

where un is a number of period 12 x 13 x 17 = 2652. 
You may think the 2652 components of the periodic number un long to calcu-

late, and the expression of j n long to write. Not at all. The calculation of 
un is performed in an instant by the computer (with the program for the reso-
lution of a system of linear equations, which every computing center has) and 

vn 
n2 + 42n + 100C4n - Bn) 

5304 

where the periodic numbers 

An = [5, 21, 25, 17, -2, 17, 25, 21, 5, 30, 42, 42, 30] 
and 

Bn = [-2, 17, 6, 17, -2, 0, 24, 17, 33, 17, 24, 0] 

have, respectively, 13 and 12 components. 
The error is at most 1, for 

J„ 
n(n + 42) 

5304 

Example 2 

What is the number of solutions in nonnegative integers of the equation 

x + 2y + 6s + 3 = 3n? 

We have shown that this number is Euler1s integer an. 

Note that an has the characteristics (2, 1, 2), while, for the diophantine 
equation 

x + 2y + 6z = n 

the number of nonnegative solutions is, by Theorem 13, an arithmetic trinomial 
of characteristics (2, 1, 6). 
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1. INTRODUCTION 

After Stancliff [1] noted that 1/89 can be represented as the sum of Fibo-
nacci Series, Long [2] and Hudson & Winans [1] also perceived that there are 
some other numbers which can be represented as the sum of Fibonacci Series or 
Lucas Series. Hudson & Winans [1] gave the solution of the series 

E 10' -Mi+ DT 

Long [2] gave some particular solutions for the series 

i)(±ior*(i+1)*'i 
and for 

i = o 

£(±10)-*(f+1)£f. 
i = Q 

In this paper, a method similar to that employed by Hudson & Winans is used to 
obtain the general solution for all such series, 

2. THE SERIES £ 10" 
i = l 

•k(i+l)T 

According to Hoggatt [4], the nth Fibonacci number and the nth Lucas number 
can be represented, respectively, by 

and 

Note that we have 

and 
Ln + J5Fn = 21""(1 + VE)n, 

Ln - V5Fn = 21-*(1 - V5)\ 
Using these, we obtain: 

( i ) 

(2) 

(3) 

(4) 

£io' •k(i+i) 
F • 

i-i v/5 m ' - (Ĥ )"] 
(con t inued) 
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V lQ~* ( i + 1 ) 1 

i -1 / 5 

r/La + ^ y /£« - ̂ « Y ' 

1 

^ = 1 10fc>/5 

2 / \ 2 

Ja ' , J i a 

2 • 1CT 2 • 10" 

Since v + r2 + r3 + • • • = ]T rn, £ pn converges to iff |p| < 1. 
n = l n = l 1 - 3 ? 

Consequently, for values of a and k for which the series converges, we have 

i = ± 
r ^ t + D 

at 
4 • 10* • F„ /5 

10V5[4 • 102* - 4 • 10* • La + £ 2 - 5F2] 

4F^ 

4[102* - 10* • La + ( - l ) a ] 

Fn 

102* - 10* • La + (-1)° 
(5) 

Equation (5) agrees with (1.1) and (1.2) of [1] obtained by Hudson, noting 
that (a + l)/2 in (1.2) of [1] is a misprint and should read (a - 2)/2. 

Using the same method, we have 

£ 1 0 -fc(£+ l) r 2-10* - La 

i = o 

£(_i(r*r + 1F( i = l 

102* - 10* -La + (-l)a 

102* + 10* • La + (-l)a 

E ( - i o - k ) t + 1 L o i - — 
* = o 102* + 10* • La + (-l)a 

(k> a, i, n are integers). 
We note that: 

- i£ - 4(-l)u 

L* - 5F„2 = 4<-l)° . 

(6) 

(7) 

(8) 
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SOME PARTICULAR VALUES FOR THE ABOVE SERIES 

TABLE 1. Some Values of £ 10 

i = l 

-&(£+ 1) 
F • 
at 

1 

2 

3 

1 

89 

1 
9899 

1 
998999 

89 
800999 

2 

JL 
71 

1 

9701 

1 
997001 

144 
678001 

3 

_2_ 
59 

2 

9599 

2 
995999 

233 
478999 

4 

31 

3 
9301 

3 
993001 

377 
157001 

5 

5 
8899 

5 
988999 

6 

8 
8201 

8 
982001 

7 

13 

7099 

13 
970999 

8 

21 
5301 

21 
953001 

9 

34 

2399 

34 
923999 

10 

55 
877001 

TABLE 2. Some Values of £ 10 k(i+ l)Lai 

V 
1 

2 

3 

a l 

19 
89 

199 
9899 

1999 

998999 

1801 

800999 

2 

17 
71 

197 

9701 

1997 

997001 

1678 
678001 

3 

16 

59 

196 
9599 

1996 

995999 

1479 

478999 

4 

13 

31 

193 
9301 

1993 

993001 

1157 

157001 

5 

189 
8899 

1989 

988999 

6 

182 
8201 

1982 

982001 

7 

171 
7099 

1971 

970999 

3 

153 
5301 

1953 

953001 

9 

124 

2399 

1924 

923999 

10 

1877 

877001 

TABLE 3. Some Values of £ (~lO)~Hi+l)Fa 

k̂  
l 

2 

3 

a l 

l 

109 

_1 
10099 

1 
1000999 

89 
1198999 

2 

131 

1 
10301 

1 
1003001 

144 
1322001 

3 

2 

139 

2 
10399 

2 
1003999 

233 
1520999 

4 

3 
171 

3 
10701 

3 
1007001 

377 
1843001 

5 

5 
11099 

5 
1010999 

6 

8 
11801 

8 
1018001 

7 

13 
12899 

13 
1028999 

8 

21 
14701 

21 
1047001 

9 

34 
17599 

34 
1075999 

10 

55 
1123001 
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TABLE 4. Some Values of f) (-10) k(i+l)Lc 

\ a 

1 

2 

3 

1 

21 

" 109 

201 

^10099 

2001 

1000999 

2199 
1198999" 

2 

23 
" 131 

203 

"l0301 

2003 
"1003001 

2322 

132200l" 

3 

24 
139 

204 

~10309 

2004 
"1003999 

2521 
1520999 

4 

27 
" 171 

207 
"10701 

2007 

"1007001 

2843 
1843001 

5 

211 
"ll099 

2011 
"1010999" 

6 

218 
"ll801 

2018 
1018001 

7 

229 
"12899 

2029 
"1028999 

8 

247 
"14701 

2047 
"1047001 

9 

276 

~ 17599 

2076 
"1075999' 

10 

2123 
"1123001 

k. EXTENSION TO GENERALIZED FIBONACCI NUMBERS 

A general Fibonacci number can be represented as 

Tn = aTn.1 + bTn_2 with T0 = c, T± = d. (9) 

Long [2] has given the form of the general Fibonacci number as 

ay, - fe + JJSL^kj- JfTTbY + / * 2d -ca \/a -&^\» ( 1 Q ) 

V 2Va2 + 42>A / V 2Va2 + 42>A ^ / 

Here, if c = 0, a = b = d = 1, then Tn can be reduced to Fn9 and if c = 2 , 
a - b - d - 1, then 2^ can be reduced to Fn. 

Using the above method, we obtain 

where 

Sn ± Ja2 + 4&i?n = 21"n(a ± Va2 + 4b)n 

<? . / a + V a ^ T T & y + / a - Va2 + 4Z?\* 

1 \ia + / a 2 + 4ZAn _ /a - / a 2 + 4Mn~| 

/ a 2 + 4b 

Then we can get 

E i o -&(£+!)„ £ ( 2 . i o * - s a ) + ^ p ^ a 

10 2fc 10* • 5 a + (-b)a 

£ (-10) 
i = 0 

-fc(£ + 1) T --'•at 

- | ( 2 - 10* + Sa) + 2d - ca. 

102A: + 10* • 5 a + (~b)a 

for values of a and k with 

or, equivalently, with 

(a + /a2 + 4fr)a 

2 • 10* 
< 1, 

(11) 

(12) 

(13) 

(14) 

(15) 
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Sa + Va2 + AbRa 

10? 
< 1 (16) 

As an example, i f a = 1, b = 3 5 o = 2 , d = 5 , some v a l u e s of Sa, Ras Ta9 

« ka+l) Sa+Ra/l3 
Z-i ( 1 0 ) Tai > a n d a r e shown in Tables 5 , 6, and 7 for d i f f e r e n t 

i=o 2 - 10k 

a and k. 
TABLE 5. Some Values of Sa5 Ra, Ta 

Series\ 

_s„ 
i?a 

^a 

1 

1 

1 

5 

2 

7 

1 

11 

3 

10 

4 

26 

4 

31 

7 

59 

5 

61 

19 

137 

6 

154 

40 

314 

7 

337 

97 

725 

8 

799 

217 

1667 

9 

1810 

508 

3842 

10 

4207 

1159 

8843 

TABLE 6. Some Values of £ 1 0 " W + l>>Tai 
i=0 

1 

2 

3 

1 

23 
87 

203 
9897 

2003 
998997 

2 

17 
39 

197 
9309 

1997 
993009 

3 

206 
8973 

1916 
989973 

4 

197 
6981 

1997 
969081 

5 

215 
3657 

2015 
938757 

6 

2006 
846729 

7 

2051 
660813 

8 

2069 
207561 

TABLE 7* Some Values of 
Sa + Ray/l3 

2 • 10k 

1 

2 

3 

1 

0.2303 

0.0230 

0.0023 

2 

0.5303 

0.0530 

0.0053 

3 

1.2211 

0.1221 

0.0122 

4 

0.2812 

0.0281 

5 

0.6475 

0.0648 

6 

1.4911 

0.1491 

7 

0.3434 

8 

0.7907 

9 

1.8208 
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AN EASY PROOF OF THE GREENWOOD-GLEASON EVALUATION 
OF THE RAMSEY NUMBER K ( 3 , 3 , 3) 

HUGO S. SUN and M. E. COHEN 
California State University, Fresno, CA 93740 

1 . INTRODUCTION 

In 1955, Greenwood & Gleason proved tha t the Ramsey number i?(3, 3, 3) = 17 
by constructing a t r i a n g l e - f r e e , edge-chromatic graph in three colors of order 
16. Their method employed f i n i t e f i e l d s . This r e su l t was obtained l a t e r by 
another method. Here, we give yet another method which can be called "group-
theo re t i ca l " or, merely, "adding binary codes." 

2. THE METHOD 

Consider the set of 16 binary codes {0000, 0001, 0010, 0011, . .., 1111}; if 
we add them componentwise with 0 + 0 = 0 , 1 + 0 = 0 + 1 = 1 , and 1 + 1 = 0 , 
then this set G under + is isomorphic to the elementary abelian group of order 
16. Partition the 15 nonidentity elements into three sets G1, G2, G3 so that 
no two elements in any of the three sets add up to an element in the same set. 
Then, we identify the vertices of a graph T with the elements of this group G. 
We 3-color the edges as follows: join the vertices x and y by an edge of color 
i if x + y E Gi ; join 0000 with x by an edge of color i if x E Gi . 

3, THE CONSTRUCTION 

Partition the 15 nonidentity elements into 3 sets: 

G± = {1100, 0011, 1001, 1110, 1000}, 

G2 = {1010, 0101, 0110, 1101, 0100}, 

G3 = {0001, 0010, 0111, 1011, 1111}. 

Obviously, no two elements in G^ add up to be an element in G^. We thus obtain: 

4. THE GRAPH 

Using solid lines for color 1, dot-dash lines for color 2, and dotted lines 
for color 3, the triangle-free, edge-chromatic graph in three colors of order 
16 is shown in Figures 1-4. 

5. EXTENSION OF THE METHOD 

This method can be used to find the lower bound of other Ramsey numbers e 
to this end, one first finds an appropriate group, partitions the group ele-
ments into several subsets, making sure that in each subset the product of two 
elements is never in it. The sharpness of the bound depends on the choice of 
the group. 
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FIG. 1. The Triangle-Free, Edge-Chromatic Graph in Three Colors of Order 16 
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SOME ASYMPTOTIC PROPERTIES OF GENERALIZED FIBONACCI NUMBERS 

A . G. SHANNON 
The New South Wales Institute of Technology, N.S.W. 2007, Australia 

(Submitted November 1982) 

1 . INTRODUCTION 

Horadam [1] has generalized two theorems of Subba Rao [3] which deal with 
some asymptotic proper t ies of Fibonacci numbers. Horadam defined a sequence 

{w(
n
2)} = K ( « 0 , wi; P21, P 2 2 )} 

which s a t i s f i e s the second-order recurrence r e l a t i on 

Wn + 2 = P21Wn+l ~ P22Wn> W ± t h Wn = ^2X1 + ^ 2 2 a 2 2 > 

where a , a are the roots of x2 - P21x + P22 = 0. We shall let 

06 """ LX r\ r\ UO r\ -| • 

Horadam established two theorems for {wn}: 

I. The number of terms of {wn} not exceeding N is asymptotic to 

log(Nd/(P22wQ - a21w1)). 

II. The range, within which the rank n of wn lies, is given by 

log wn + log (J - d) lx < n + 1 < log wn + log(J - d) /x, 

where 

X = y/(w_1 + 2x), J = y/(w_1 - 2x), 

X = W0 " a 2 2 ^ - l 5 2/ = W
0 " a 2 1 ^ - l s 

and in which log stands for logarithm to the base aP1; v = 2 in this 
case. 

These were generalizations of two theorems which Subba Rao had proved for 

ifJ • fn = wn{l, 1; 1, -1), 

the ordinary Fibonacci numbers. 
It is proposed here to explore generalizations of the Horadam-Subba Rao 

theorems to sequences, the elements of which satisfy linear recurrence rela-
tions of artitrary order. To this end, we define {w^} i 

J = I 

with suitable initial values w^\ n = 0, 1, ..., r - 1, and where the Prj are 
arbitrary integers. Thus, {w^} represents Horadamfs generalized sequence of 
integers. 

We can suppose then that 

wf-t^cx^., (1.2) 
i = i 
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in which the Arj depend on the i n i t i a l values of {wff}, and the arj are the 
roots (assumed distinct) of 

xr _ £ (-l)J + 1Prj.Xr-J - 0. (1.3) 
J = l 

In fact, Ari = d^/d9 where 
V 

d = II (ari - 0LPj) 
i, o =1 
i> j 

is the Vandermonde of the roots ar^ , and di is obtained from d on replacement 
of its i t h column by the v initial terms of {w^} (Jarden [2]). 

2. ASYMPTOTIC BEHAVIOR 

Where convenient in this section, we follow the reasoning of Horadam or of 
Subba Rao. 

Theorem A 

The number of terms of {w£ } not exceeding N is asymptotic to 

lo&(N/Aplarl). 

Proof: Suppose w^ < N < w ^ . (2.1) 

Then the left-hand side yields 

j = i 

Suppose further that \ar | > |ot • | > • • • > lot^l > 0, so that for m > 1, 

( a rm / a n )" "* ° a s n "*" °°5 

and 
Arl < N/a^. 

Hence, 
n log arl + log AP1 < log tf 

and 
n < l o g ( i F / i n ) . (2.2) 

The right-hand side of the first inequality (2.1) yields 

whence 
n + 1 > log(N/A„). (2.3) 

Thus, from inequalities (2.2) and (2.3): 

n - 1 < log_(/l/Mrl) - 1 < n, 
or 

n ~ log(/l//i4y,1ay,i) as required. 

This is a generalization of Theorem I of Horadam, because when v - 2 and 
z42) - a, W™ = b, 

^2ia2i = d1a21/d = (aa22 - b)a21/d = (aP22 - a21b)/d)s 

which agrees with Horadam. 
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3. RANK 

To obtain a partial generalization of Theorem II of Horadam and the corre-
sponding proposition of 5ubbaRao,we first define {U^} * a fundamental sequence 
of order r; we illustrate its fundamental nature by showing that any linear 
recursive sequence of order v can be expressed in terms of {U^}. 

We define {uffty by means of 

r k = i 

0, n < 0. 
ap° v - ̂ i (3.1) 

where D = ^ wJap- , in which a) = exp(27ri/p) and arj- s a t i s f i e s (1 .3 ) . 
J = I 

I t follows tha t 

U™ - D^t^K^ n>0, (3.2) 

Proof: f ^ = 7 ^ r ) t ^ t " ( 1 - W = ^ ( : b r , 

which gives the result, since 

1 v 

- ^ 0 ) t J = 6i0? the Kronecker delta. J = I 

For example, when r = 2, w = -1, and we get, from (3.2), that 

U[2) = ZT^-l + 1) = 0, 

U^ = Z?"1(-a21 + a22) = 1, 

U[2) = ZT^-a^ + a22) - P21, 

so that U^2) = un_1 defined in (1.8) of Horadam, because, for n > 1, J7*r) satis-
fies the recurrence relation (1.1). 

Proof: The right-hand side of this recurrence relation is 

U) f e 

Our next result is quite important in that it justifies our finding the 
rank of U^r) instead of that of W^ because every W™ can be expressed in terms 
of the fundamental £/„ . 

To prove this, we look first at the set 

P = F(-rrl5 Jrr2* •••* £YV> 

of all sequences of order r which satisfy 
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&-»%»% - o . P , 0 - - I . 

P is closed with respect to "addition" and "scalar multiplication" and 

{U™k} GP, k < n + 1, 
so we may seek to express the elements of P as a linear combination of the fun-
damental sequence: 

^-'tV^x. »>0. (3-3) 
fc = 0 

The first r of these relations (3.3) may be considered as a system of simul-
taneous equations in the bk as unknowns; since the determinant of the system is 

u? 
u™ 
u^ 

0 

u™ . 
<£>! • 

. . 0 

. . 0 

.. u^ 
= i , (u[p)- 1 ) , 

the solution always exists, is unique, and can be expressed easily in determi-
nant form. To obtain a simpler expression, we calculate for n < r that 

Eo(-i)JWr-; = £o Eo ( - D ' ^ ^ ^ - H ! 
r-l 

E 
k = 0 " j = 0 

E^Zc-i^^-^-^i 

= ~bn> 
since 

n 

2-» (~1) Prj Un- k- j+ 1 = Pro $nk> 

where (5n£ is again the Kronecker delta; this follows from the facts that 

Unr) = 0 if n < 0, 

0 if n > 0, 
and 

Thus, 

J-0 

[/ (r) 1. 

,(r) E I 
£ = 0 i=»0 
r E(-Di + i^^>nw,+ I 

3 =0 \&=«7 / 

That is, w* depends on the initial values w[r\ w^\ ..., w^r]l9 and U \ and so 

the properties of w^ depend on the U„r\ 

We now seek the rank of U^f instead of W^' ; this will be a generalization 
of Subba Rao rather than Horadam. From Eq. (3.1), we have that 
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« " i = 7 ^ ' 
k = l I 

1 k = l 

1 k = l 

n + 1 < l o g l / f ) ( a P l t l ) k W r 

n + 1 > log ff<*> ( a r l X ^ V * ^ r, 

So 

and 

Thus, 

and 

which yield: 

Theorem B 

12S. ynr) + i2£ (<*„X^V^/r) < " + * < i°£ yf} + 1°S («rl£1
Dk/r)> 

and this gives the range within which the rank n of [/̂  lies. 

For example, when r = 2, D = d, £?2 = 5, a) = -1, P21 = -P22 = 15 a21 = 1.6, 
a2 2 4s ~0.6, we get for the Fibonacci number F^ = 2 that 

1° £2 + 1022^9 < 3 + 1 < 10^2 10^5,8 Q r 3 . 7 < 5 < 5 . 3 . 
log 1.6 log 1.6 log 1.6 log 1.6 

This is not quite as good as Subba Rao!s result, because there is just one 
number in the corresponding range for his result, but we do have an acceptable 
range. 

Thus, in Theorem A we have generalized Horadam's result, and in Theorem B 
we have generalized Subba Raofs result; we have also established a link between 
the more generalized sequence in Theorem A and the fundamental generalized se-
quence in Theorem B. 
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A MODIFIED TRIBONACCI SEQUENCE 

IAN BRUCE 
St. Peter's Collegiate School, Stonyfell, S. Australia 

(Submitted November 1982) 

1. INTRODUCTION 

The Tribonacci sequence [1] is generated by the recurrence relation 

^n+3 = Vn+2 + Un+1 + Uni (1) 

with U0 = 0, and U1 = U2 = 1. 

Part of the charm of the original Fibonacci sequence {Fn} is the ease with 
which new relations can be found, and a wealth of applications. However, (1) 
is rather unweildy and does not yield relations too readily. This article sug-
gests a modification so that a development analogous to the Fibonacci sequence 
can be made. In addition, higher-order sequences can be constructed. 

2. RECURRENCE RELATIONS FOR THE MODIFIED TRIBONACCI SEQUENCE 

Consider {Tn} generated by the recurrence relation 

(2a) 

(2b) 

where n > 2, and T± = T2 = T3 = 1. 

The numerical sequence that emerges using (2a) and (2b) is: 

1, 1, 1, 2, 2, 3, 4, 6, 7, 11, 13, 20, 24, 37, 44, 68, 81, ... 

Note that {Tn} resembles {Fn} in its mode of definition. 
However, successively odd and even terms are defined separately—note also 

that each odd term is the sum of the three previous odd terms, and, similarly, 
for the even terms. In this latter respect, the sequence resembles Tribonacci. 

3. SOME PROPERTIES OF (Tn) 

We can now go on to develop properties of {Tn}, some of which are analogous 
in form to {Fn}. These are presented without proof, as they are all elementary; 
no claim to completenes of the list is made. 

T, 
™ In 

2 n + l 

= 

= 
™ 2n-

^2n-

• 1 

• 1 

+ 
+ 

™2n-

™ 2n-

• 3 

- 2 

9 

i 

T = T ±2n+5 M2n+Z 
T = T 
-1 2n + 6 * 2n + k 
rp _|_ rp . 

Tx +T3 + . . . 
m2 _ m2 
J ' 2 n + 1 •L2n-1 

T2T6 + ThTB + 
TlT

3 + T3T5 + 

+T2n+1 + T2n-1' n>2'> 

+ T2n+2 + T2n> n > 2 ; 
+ Tm = T2n+3 - Ln>2; 
+ 7 2 „ - i = (T2n + T2n + z ~ D / 2 . n> 2; 
= 2 ,2„+2 • ^ - z ' w > 2; 

• • • + T2n-2 ' T2n+2 = Tln+1 ~ l> n > 2> 
f m _|_ . . . _i_ rp rp _ (rp2 , rp 
1 51 7 T ^ 2 2n + 1 1 2n+3 ^ 2n + k T ^ 

2 
2tt+ 2 - DM, 

n > 2; 

(3) 
(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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4. A GENERATING FUNCTSON FOR {Tj 

A generating function corresponding to the development in [2] is now pre-
sented. We first consider the odd and even series separately: 

Fe(x) = 1 + T2x2 + T x* + T6xG + TQx8 . .. when the subscript is even (11) 
and 

F0(x) - T±x + T x3 + T xs + T x7 + T x3 . . . when the subscript is odd. 

Therefore, 

(1 - x2 - xh - x6) . Fe(x) = 1 - x6, by (4) (12) 
or 

-̂ (̂ c) = (1 - x6)/(l - x2 - xh -xs) when the subscript is even. 

Similarly, we have 

FQ(x) = x/(l - x2 - xh - x6), by (3), when the subscript is odd. Hence, 

F{x) = (1 + x - xB)/(l - x2 - xh - x6) (13) 

is the required generating function. 

5. AN ALTERNAT8VE PRESENTATION 

Consider the original Fibonacci sequence {Fn}, with 

F0 = 0 and Fx = 1, 
then 

Fn+2= Fn+1+ Fn> n>0. (14) 

It is well known that if 

*2 = 1 + x9 (15) 
then 

xn+i = Fn-1 + Fnx. (16) 

We see that the Fibonacci sequence is generated in this way. Similarly, we 
can generate {Tn} by considering 

This gives 
x3 = 271 + T2x + T3x = 1 + x + #2. (17) 

x4 = T3 + 2\x + T*x2 (18) 

*5 + ^ ^5 = T, + TeX + TnX2 

leading to 
x«+3 - T2n + 1 + T2n + 2^ + T2n+3x2, n > 2. (19) 

6. GENERALIZATIONS 

By considering the method of Section 5 applied to 

x* = I + x + x2 + x3, (20) 

we can construct the sequence {Q }, defined by 

«x - C2 - G3 " ̂  - 1, (21) 
and (for n > 1), 

1984] 245 



A MODIFIED TRIBONACCI SEQUENCE 

+«,„-,> (22) 

leading to 

'3n+2 ^3n+l ' ^ 3n - 2 

hn+3 = ® 3 n + l + ® 3n - 1» 

*3n+4- = ®3n+l + ^ 3 n * 

*" + * = « 3 n + i + S 3 n + 2 ^ + Q3n+ix2 + Q3n + hx\ (23) 
This sequence has t h e form 

1, 1, 1, 1, 2 , 2 , 2 , 3 5 4 , 4 , 6, 7, 8 , 12, 14, 15, 23 , 27, . . . (24) 

We note that three Fibonacci-like recurrence relations are interwoven, and the 
feature 

«3» = «3„-3 + «3„-6 + «3„-9 + «3»-12' W > 4> (25> 
is retained. Further properties of this sequence can then be considered, as 
well as higher-order sequences. 

REFERENCES 

1. Mark Feinberg. "Fibonacci-Tribonacci.M The Fibonacci Quarterly 1, no. 3 
(1963):71-74. 

2. W. R. Spickerman. "Binet's Formula for the Tribonacci Sequence." The Fi-
bonacci Quarterly 20, no. 2 (1982):118-20. 

*o#o* 

246 [Aug. 
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(Submitted November 1982) 

1. INTRODUCTION 

In a previously published paper on the geometry of a generalized Simson's 
formula, Horadam [2] considered the loci in the Euclidean plane satisfied by 
points whose Cartesian coordinates are pairs of consecutive elements of a gen-
eralized Fibonacci sequence. A Simson?s formula as generalized by Horadam [l] 
was employed in obtaining the loci. 

In this paper, we also utilize the same Simsonfs formula to develop a gen-
eralized "Fibonacci circle"; that is, we show how the locus of a point gener-
ated by three consecutive elements of the generalized Fibonacci sequence {wn}, 
defined below, approximates a circle for large n, subject to special restric-
tions. 

We define the sequence {wn} by 

where a, b9 p, and q belong to some number system but are usually thought of as 
integers [1]. 

It is common knowledge that the terms of {wn} are related to the roots of 
the equation 

X2 - pX + q = 0. (1.2) 

We denote the roots by 

a = p + ̂  - 4?, and B . p - Vpj - 4?, 

and assume throughout the remainder of this paper that 

(a) p2 > 4<7, 

(b) p2 - kq + t2 

(c) \q\ < 1 d.3) 

(d) a < 1 + A/2 

(e) {wn} is strictly increasing. 

Now a& = q, so parts (c) and (d) of (1.3) tell us that |6| < 1. Therefore, 
from Horadam [1, 3.1], we know 

L i m - ^ - = a . (1.4) 
n •+ oo Wn _ -j_ 
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In closing, we observe that part (b) of (1.3) guarantees that p ^ 1 + q, 
which is enough to show that a 4 1. Part (b) with (e) is also enough to show 
that 

Lim w„ = <». (1.5) 
n -*• ° °  n 

2. PRELIMINARIES 

Let k9 £, and m be three consecutive terms of {wn} with k = Wn. 
Since wn is strictly increasing and Wn -> ° ° , we may as well consider through-

out the rest of the paper only those terms of Wn that are greater than 0. 
From [1, 4.3 & 1.9], we know that 

Z2 - mk = -eqn (2.1) 

= -(pab - qa2 - b2)qn 

= (w\ - W0w2)qn by (1.1) 

< M by (1.3), part (c) 

for some positive integer Af. We also have 

Lim(£ - k) = Lim k(~ - l) = °°, (2.2) 

by (1.4) and (1.5). Hence, for n sufficiently large, 

I2 - mk < I - k (2.3) 

or, with r as the midpoint of — = and 

£ - 1 . l2 + k m - l - k , m - l / 0 / . 
—k~- K v = 2H < —I"' (2'4) 

From (2.4), we immediately have 

£ - rk < 1 < m - rl. (2.5) 

Using (2.1), (2.4), and (1.4), we see that 

T . /f) T, , . I2 - km + k + I a + 1 /0 c. 
Lim(J6 - rk) = Lim ^ = — « (2.6) 

and 
T . , 0N ,. km - l1 + I + k a + 1 /o -?\ 
Lim(m - rl) = Lim r ? — = — - — . (2.7) 

Since a > 0, we can now strengthen (2.5) using (2.6) to 

0 < I - rk < I < m - rl, n sufficiently large. (2.8) 

Another obvious conclusion of (2.6) and (2.7) is 

_ . m - rl /o o\ 

In conclusion, using (2.6) and (2.7) with part (d) of (1.3), let us observe 
that 

Lim(£ - rk + 1 - m + rl) = 1 + 2
o

a " a > 0 (2 .10) 
n -*• 00 Z06 

so that for n sufficiently large 

I - rk -+ 1 > 77z - rl. (2.11) 
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3. THE GEOMETRY 

Throughout this section, we assume n is sufficiently large. We let 

AB = 1 
QA = I - rk 
QB = m - vl 

(3.1) 

and locate the origin of our system by setting 

OA = l/(a2 - 1) (3.2) 

and by extending BA to 0, 
We let D be the foot of the perpendicular form Q to OB. By (2.8) and (2.11) 

this construction is legitimate and gives us the triangle QAB (see Figure 1). 
Q(x9y) 

Z-rk 

m- rl 

Now, 
area QAB = —I 

• OKs - QB)(s - QA)(s - AB)) 

where s is the semi-perimeter of the triangle 
For notational convenience, let 

Then, for sufficiently large n, for which 

QB = a • QA = au, by (2.9), (3.4) 
we have 

and so 

Then, 

Whence 

s = j(au + u + 1), by (3.1), (3.4), (3.5) 

kBQ2 = (au + u + 1)(-au + u + 1)(au - u + 1)(au + u - 1), 

by (3.1), (3.3), (3.4), (3.5), (3.6) 

= ((au + u)2 - 1)(1 - (au - u)2) 

= 2u2(a2 + 1) - 1 - uh(a2 - l)2. 

4ZM2 = kQA2 - kDQ2 by the Pathagorean Theorem 

= -2u2(a2 - 1) + 1 + uh(a2 - I) 2, by (3.4), (3.7) 

(u2(a2 1) - l)2. 

IDA = u2(a2 - 1) - 1. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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Now OD and DQ a r e t h e x- and ^ - c o o r d i n a t e s , r e s p e c t i v e l y , of Q, so t h a t 

X2 + y2 = OD2 + Z^S2 

= (OA - DA)2 + £>«2 

= 04 2 + M 2 + DQ2 - 20A • DA 

= OA2 + QA2 - OA(2DA) by t h e Pa thagorean Theorem 

1 . 9 1 (u2(a2 - 1) - 1 ) , ( a 2 - l ) 2 " " ( a 2 - 1) 
by ( 3 . 2 ) , ( 3 . 4 ) , ( 3 . 8 ) , 

1 . 1 
( a 2 - I ) 2 a 2 - 1 

, 2 
a 

That i s , 
(a2 - 1)2 

\ « 2 - 1 / ^+y-[7^rT • (3-9) 

The locus of 8 as n increases is, therefore, a circle with center 0 and radius 
a/(a2 - 1). 

As p9 q (and, consequently, a) vary, the corresponding sequences clearly 
generate an infinite set of concentric circles. 

4. FIBONACCI-TYPE CIRCLES 

For the sequence of ordinary Fibonacci numbers 1, 1, 2, 3, 5,8, 13, 21, ..., 
we have 

p = - q = l , a 2 = a + l , and a = y(l + >/5), 

so the circle given by (3.9) becomes the unit circle. 
Moreover, all sequences for which p = -q - 1 [and so for which a2 = a + 1, 

a = (1/2)(1 + \/5)], e.g., the Lucas sequence 2,1,3,4, 7, 11, 18, 29, ..., give 
rise to this unit circle. 

The following table illustrates the result for the Fibonacci numbers. 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 
610 
987 

1597 
2584 
4181 
6765 
10946 
17711 
28657 
46368 
75025 
121393 
196418 
317811 
514229 
832040 

Fn+1 

2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 
610 
987 
1597 
2584 
4181 
6765 
10946 
17711 
28657 
46368 
75025 
121393 
196418 
317811 
514229 
832040 
1346269 

x2 + y2 

.763932 

.328550 

.914537 

.698798 
1.003089 
.878930 

1.044630 
.952913 

1.029224 
.981894 

1.011208 
.993066 

1.004288 
.997349 

1.001639 
.998987 

1.000626 
.999613 

1.000239 
.999852 

1.000091 
.999944 

1.000035 
.999978 

1.000013 
.999992 

1.000005 
.999997 

1.000002 
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Gratitude is-expressed to Wilson [3], whose Fibonacci circle, derived from 
five successive large Fibonacci numbers, was useful in the development of this 
theory. 
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THE GOOSE THAT LAID THE GOLDEN EGG 

NAOMI LEVINE 
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(Submitted December 1982) 

Last year when I was 13 and we were studying elementary algebra, I learned 
that x + y - 1 could be graphed as a line with x- and z/-intercepts of (1, 0) 
and (0, 1) and that x2 + y2 - 1 could be graphed as a circle of radius 1 with 
its center at (0, 0). This year we studied functions of the form 

f(x) = Ax2 + Bx + C 
and saw that their graphs were parabolas. Since this shape was so different 
from a circle, with what did not appear to me to be an enormous difference in 
mathematical form, I wondered what other curves of the form xn + yn = 1 would 
look like. Fortunately, I have an Atari 800 computer at home which allows me 
the opportunity to make such an investigation relatively simple. 

Eventually, I became bored with integral exponents and, since I had been 
working with the golden ratio for a math project, I wondered what x^2 + y$2 = 1, 
where <j> = the Golden Ratio, 1.618033989..., would look like. Inasmuch as all 
other facets of this ratio that I had investigated were so special, I thought 
that graphs using it should have very interesting shapes. I was correct. As 
soon as I looked at the shape generated by x^z+ y$2 = 1 , 1 recognized it as one 
end of an egg. This was an amazement to me. Knowing that eggs do not have two 
axes of symmetry, I wondered whether I could combine the curve generated with 
the curve of a slightly altered function to create the rest of a realistically-
shaped egg. My hypothesis was that there is an egg shape (which I called the 
"golden egg") whose configuration is directly related to the golden ratio. It 
is a composite shape, different from a circle, ellipse, or oblate spheroid. 
The left portion of the egg is the graph of the function generated by the golden 
ratio exponential x^2 + y$2 = 1. The right portion of the egg is the graph of 
the function generated by the golden ratio exponentials 

x* + -i-(z/)̂  = 1 (gee Figure 1). 

FIGURE 1. Picture of Golden Egg Generated by Atari 800 Computer 

I was so pleased with the result of my graph and my development and analy-
sis of the golden egg that I wondered whether Fibonacci-related exponential 
functions would generate other configurations. I began to experiment with the 
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coefficients and the positions of x and z/. By rotating the golden egg, I noted 
that the curve showed a strong resemblance to the shape of an adult head. A 
change in the ^-coefficient created the outline of an infantfs head. (See Fig-
ure 2.) 

-x*2+ y*>2 = 1̂  

Adult Shape 

. x* + y* = 1 

Infant Shape 
FIGURE 2 

With additional changes to the coefficients and constants, carrots, acorns, 
pine cones, and other figures appeared on my computer console. These figures, 
with descriptions of the equations used appear below as Figures 3 through 7. 

,y = 1(1 - x*2)¥ 

= (1 - a;*)* 

FIGURE 3. Acorn 

•y - (i - x*Vz 

-y = <r(i - x*)* 

-y = 0̂ (1 - x*)* 

FIGURE 5. Corn on the Cob 

FIGURE 4. Carrot 
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L y = 4>2(1 - a;*)* 
(<t>'N Cones) 

FIGURE 6. Round-Top Pine Cone FIGURE 7. Flat-Top Pine Cone 

It is interesting that Brother Alfred Brousseau found Fibonacci numbers in 
pine cones, and now we find pine cones in Fibonacci-related functions [1], 

I have defined equations of the type used to generate the previous config-
urations as Golden Functions (i.e., equations that are functions of variables 
raised to a power that is a function of (f>) . One might wonder whether the crea-
tion of the Golden Functions and these shapes is merely an academic exercise 
and an accident. I choose to believe not and leave the investigation of equa-
tions of the form Ax*- + Bx + C = 1 and x$y = 1 to the reader. 

REFERENCE 
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(Submitted December 1982) 

Tichy and Prodinger [5] have defined the Fibonacci number of a graph G to 
be the number of independent vertex sets J in G; recall that I is independent 
if no two of its vertices are adjacent. Following Tichy and Prodinger, we de-
note the Fibonacci number of G by F(G). If k is a nonnegative integer, we will 
denote the /c-element independent vertex sets in G by Fk (G) . It is clear that 
E Fk(G) = F(G). Kreweras [4] (see also [3]) has introduced the notion of the 
Fibonacci polynomial, 

k>oy K j 

We define the more general concept of the Fibonacci polynomial of a graph G9 
denoted FG (x). In case G is a path on n vertices, 

which closely resembles Kreweras1 polynomial. Before defining FG (x), we compute 
Fk(Pn) , Pn the path on n vertices, and Fk(Cn) , Cn the cycle on n vertices. 

Proposition 1 

(i) V p *> = !; 
(ii) F1(Pn) = n; 

(iii) Fk(Pn + 0 = Fk(PJ + ^-i(P»-i> for 1 < fe < [ ^ p 

(iv) M P J - C 1 - ^ 1 ) for 0 < * < [2-ti]. 
Proof: The first two statements are obvious. To verify (iii), consider 

those ^-element independent sets that contain the initial point of the path and 
those that do not. Finally, (iv) may be verified using (iii) and induction on 
n. • 

Proposition 1 provides a natural graph-theoretic interpretation of the 
well-known formula 

T.(n'k
k

 + l)=Fn+1, 
k>0X K ' 

the n + 1th Fibonacci number. The right side of the equality is the number of 
independent sets of a path with n vertices. The left side is the sum over all 
k of the number of k-element independent sets. The following proposition will 
enable us to give an analogous identity involving Lucas numbers, and a graph-
theoretic interpretation of that identity. 

• 
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Proposition 2 

(i) F0(Cn) = 1; 

(ii) F1(Gn) = n; 

(iii) Fk(Cn) = Fk(Pn_1) + Fk_1(Pn_3) for 1 < k < [|] and n > 3; 

<iv) f̂c(̂ ) = fC I I i *) for 1 < * < [f] and * > 3. 
Proof: Again, the first two statements are obvious. To verify (iii), fix 

a vertex x in Cn. Consider those ^-element independent sets that contain x and 
those that do not; use (iv) of Proposition 1. To verify (iv), we use (iii): 

Fk(Cn) = ̂ (Pn_x) + Fk_1(Pn_3) 

- C i V C " ; * : 1 ) 
n/n - k-— 1\ 

= k( k - i ) • ' 

We now use Proposition 2 to obtain an identity analogous to that following 
Proposition 1. Ln denotes the nth Lucas number. 

Proposition 3 

For- .3, l+JifjV).^ 
Proof: The right side is the number of independent sets in Cn (see [5]). 

The left side is the sum over k of the number of ^-element independent sub-
sets. m 

We now pause to establish some notation and state a definition. If G and H 
are graphs, we will denote by G * H the standard composition or lexicographic 
product (see [1]). That is, G • H is the graph constructed by replacing each 
vertex V of G by an isomorphic copy Hv of H9 and by joining each vertex of Hv 
to each vertex of Hw whenever V is adjacent to w in G. We define the Fibonacci 
polynomial of G9 FGs by FG(x) = F(£ • kx) for positive integers x. As usual, fc^ 
is the complete graph on x vertices. That FG is a polynomial follows from the 
next proposition. 

Proposition k 

Let G be a graph, and let Fk = Fk(G) for k > 0. Then î  (x) = ^ Fkxk. 
£>o 

Proof: To obtain a fe-element independent set in G 9 kx, one must first 
choose a ̂ -element independent set in G, and then choose one of the x vertices 
in each of the k chosen copies of kx* m 

The study of the Fibonacci polynomial of G thus reduced to the study of the 
coefficients F,{G). For example, the constant term of FG(x) is 1, the linear 

term is nx9 and the coefficient of x2 is f ?J - m9 where m is the number of edges 

of G. The degree of FG(x) is the independence number of G5 that is, the number 
of vertices in the largest independent set. 

256 [Aug. 



SOME IDENTITIES ARISING FROM THE FIBONACCI NUMBERS OF CERTAIN GRAPHS 

We obtain some combinatorial i d e n t i t i e s by expanding the Fibonacci polyno-
mials of paths and cycles . 

Theorem 5 

Let x be a positive integer, and let n be a nonnegative integer. Let £ be 
hil ± Vl + 4a0 . Then, 

Proof: We compute the Fibonacci polynomial of Pn in two ways. First, use 
Proposition 4 and Proposition 1 to get 

Z ( n ~ k
k
 + >*. 

As a second approach, we derive and solve a second-order linear recursion for 
an = F(Pn ° kx). Clearly, a0 = 1 and ax = re + 1. Divide the independent sets 
in Pn °  kx into those that contain a vertex in the last stalk and those that do 
not. There are xan_2 of the first type, and an_1 of the second type. Hence, 
an - an_1 + xan_2* This recursion has characteristic equation X2 - A - x = 0. 
Solving this equation, subject to the initial conditions, yields 

a„ - F(Pn °kx) = 2l
l_ Ian + 2 - (1 - D n + 2 ) . m 

Note that the identity in Theorem 5 is true for infinitely many values of 
x. Hence, it is in fact true for all complex numbers x. The same remark ap-
plies to the following theorem. 

Theorem 6 

Let x be a positive integer, and let n be a nonnegative integer. Let £ be 
h(l ± Vl + te). Then, 

i + E ^ ( n ~k
k_ i x ) ^ = ^ + (i - « n -

Proof: We compute the Fibonacci polynomial of Cn in two ways. First, we 
use Propositions 2 and 4 to get 

Now we use Theorem 5. Let £ be a fixed stalk in Cn °  fcx. Divide the indepen-
dent sets in Cn °  &x into those that contain a vertex in 5 and those that do 
not. There are 

"ferVrK"1" (1 " zr'1} 
independent sets of the first type and 

2l
l_ xan+1 - (i - Dn+1) 

of the second type. Adding, and substituting x = £2 - I yields the theorem, m 

The identity of Theorem 5 is known. See, for example, [2, p. 76]. But our 
approach seems to provide a new interpretation for this identity. We believe 
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that new identities may be obtained by expanding Fibonacci polynomials of 
graphs. 

ACKNOWLEDGMENT 

We wish to thank the referee for his helpful suggestions about this paper. 

References 

1. Mehdi Behzad, Gary Chartrand, & Linda Lesniak-Foster. Graphs and Digraphs. 
New York: Prindle, Weber and Schmidt, 1979. 

2. Louis Comtet. Advanced Combinatorics. Dordrecht-Holland: D. Reidel, 1974. 
3. P. Flajolet, J. C. Raoult, & J. Vuillemin. "The Number of Registers Re-

quired for Evaluating Arithmetic Expressions." Theoretical Computer Sci-
ence 9 (1979):99-125. 

4. G. Kreweras. "Sur les eventails de segments." Cahiers B.U.R.O. 15 (1970): 
1-41. 

5. Helmut Prodinger & Robert F. Tichy. "Fibonacci Numbers of Graphs." The 
Fibonacci Quarterly 20 (1982):16-21. 

•<>•<># 

258 [Aug. 



ON THE NUMBERS OF THE FORM an2 '+ hn 

SHIRO ANDO 
Hosei University, Koganei-shi, Tokyo 184, Japan 

(Submitted December 1982) 

It is clear that for any given positive integer N there are infinitely many 
square numbers which can be represented as the difference of square numbers in 
at least N different ways. 

For instance, if n = 4p1p2 . . . pv , where p1$ p2, ...s pr are the smallest r 
odd primes such that r > log2^s then for each subset S of {1, 2, 3, . .., p}, n2 

has the expression 
„2 „ ( f t2 + fe2)2 _ ( f t2 _ fe2)2; 

where 

^ = 2 n p . j = n p . 5 

with the convention that an empty product means 1 and the notation ~S for the 
complement of S, giving 2V > N distinct expressions. 

Thus, we can choose n in such a way that 
n = ĉiog-ffiogiogff) (1) 

for large values of N3 where o is a constant. 
In this paper we prove a similar theorem concerning the sequence of numbers 

An = an2 + bn for any integers a and b with a > 05 which Includes the earlier 
result [1] as the special case of N = 2. 

Theorem 

For any given positive integer N9 there exist an infinite number of ̂ n's 
which can be expressed as the difference of two numbers of the same type in at 
least N different ways. We can choose an n for each N in such a way that it 
satisfies (1) as N tends to infinity. 

Proof: It is enough to prove that for any sufficiently large N, there is 
an An which has at least N such expressions. Since 

An = Ah - Ak (2) 
is equivalent to 

n(an + b) = (h - k)(ah + ak + b), 
in order to get the expression (2) for given ns it is sufficient to find a de-
composition of n into two factors s and t; n = st, for which 

h - k = s3 a(h + k) + b = t(an + b) (3) 

has positive integral solutions In and k. 
Let plS p , ..., pv be the smallest r distinct prime numbers in the arith-

metic progression consisting of positive integers congruent to 1 modulo 2a, and 
let 

n = 2p1p2 . . . pr. 
For each proper subset S of {1, 2, ..., v}, there corresponds a distinct 

decomposition of n into two factors 
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s = 2 n pi and t = U p , 
ies ies 

where t can be expressed as t = 1 + 2au for a positive integer w, and we have 

h + k = st + 2w(an + 2?) 

from the second equation of (3). 
If n is sufficiently large so that it will satisfy an + b > 0, then Eq. (3) 

gives distinct pairs h, k for different decompositions n - st of n. 
In this case, however, two different h1s may give the same A^ if hi a is a 

negative integer. Since at most four pairs of In, k give the same expression, 
we have at least N distinct expressions (2) of An if r satisfies 

2r - 1 > 4/1/, 
and N is sufficiently large so that corresponding n will satisfy an + h > 0. 

If we take r that satisfies 

log2(4/l/ + 1 ) < r < log2(4tf + 1) + 1, 

then for large values of N we have 

log n = log 2 + log pi + • • . + log pr = C(pp) = C O log r) , 

from which we obtain 

for a constant <?, completing the proof. 

If we do not care about the size of n, we can take simpler forms for s and 
t in (3); if hi a is not a negative integer, 

s = 2(1 + 2a)*, £ = (1 + 2a)N'i9 (i = 1, 2, . . ., N - 1) 
give 71/ distinct expressions of the form (2) for h and k determined by (3) , and 
if hi a is a negative integer, N will be substituted by 4/1/. 

These results apparently cover the case of polygonal numbers of any order. 

Examples 

For tiagonal numbers tn = ̂ (n2 + n), we have tn = t^ - t k , where 

n = 2 x 3*, h = 3i + 32^" * + Jg(3*-* - 1), k = -3* + 32^" l + hO"'1 - 1) 

for i = 1, 2, ...,/!/- 1. 
For hexagonal numbers 7z„ = 2n2 - n, we have hn - hh - h-^, where 

n = 2 x 5*, h = 5* + 52^" * - %(5^" i - 1), fc = -5l + 52N~ l - h(5N~ i - 1) 

for i = 1, 2,...,/!/- 1. 

REFERENCE 
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(Submitted December 1982) 

The purpose of this note is to give an alternative, shorter proof of a re-
sult of R. P. Backstrom concerning the sums of series whose terms are recipro-
cals of Fibonacci numbers, a problem on which much interest has recently been 
focused. 

Furthermore, the method used here gives the possibility of obtaining new 
formulas related to the Fibonacci and Lucas numbers. 

In fact, we establish in explicit form series of the form 

^ 1 ^ 1 _ y 1 
n = 0 ^an + b ~ G n = 0 ^ an + b ^cn + d n = 0 jp 2 + JP 2 

for certain values of a, b, o9 and 
We star t with the identity 

Fn - Fn_rFn+r = (-l)n-rF2
r, (1) 

which, by replacing n with (2n + l ) r + 2k9 becomes 

F2(n+l)r+2k ~ Fr = F2nr + 2k F2(n+ l)r+ 2k' 
Then 

1 F(2n+l)r+2k r 
F2(n+l)r+2k + Fr F2nr+2k F2(n+ l ) r + 2k 

with ~(r - 1) < 2k < r - 1. 
Since 

LrF2(nr+k) + r F2(nr+ k) + 2v + ^ * ' F2(nr+k)> 

from (3) we obtain 

1 = 1 / 1 + (~Dr \ ^ 
F(2n+l)r+2k + Fr Lr\F2nr+2k F2(n+l)r+2k/ F2nr+ 2k F2(n+ l)r+ 2k 

Now, consider the sum 
N 1 

SN(r9 k) = £ -= T-^r-
N n = 0 *(2n+ l)v+2k ^ *r 

_ i f / i , (-Dr \ rpf> i 
Lrn = 0\F2nr+2k F2(n + l)r+2k' *n = 0 F2nr + 2k F2(n+ l)r+: 

n = 0\F2nr+2k F2(n+l)r+2k' F2k F 2 ( f f + l ) r + 2k 

for an odd integer r, and 

1 1 jL2k L2(N+l)r+2k 

(2) 

(3) 

(4) 
„ = 0 F2nr+2k F2(n+l)r+2k 2F2r \2k F2(N+ l ) r + 2k J 

which follows from the identity 
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J2k 

F. 2k 

J2k+ 2r 

- 2k + 2v 

2F Ar 2r 

F2k F2k + 2v 

i f we s u c c e s s i v e l y r e p l a c e k by k, k+r, . . . , k + Nv, and sum t h e ob t a ined equa-
t i o n s . 

T h e r e f o r e , 

SN(r, k) 

Using t h e r e l a t i o n s 

1 I2 - L2k 
2L, -2k 

L2(N+l)r+2k 2 

™2(ff + l)r+2k 

- L2
n - 2 ( - l ) " = 5F2

n + 2 ( - l ) " , 

i t fo l lows t h a t ( fo r odd i n t e g e r r) 

s
N(r> &) = E n = 0 F(2n + l)r+ 2k + Fr 

L e t t i n g N •+ °°, we have 

S(r, k) = £ 
n = 0 ™(2n+l ) r+2fe + ^ 2 

\ % + l ) r + f e *kll 

/L(N+l)r+k Lk\ / 

\F(N+l)r+k Fk II 

2LpS N-even, k-even, 

N-even, k-odd, 

N-odd, &-even, 

N-odd, k-odd. 

(5) 

(5a) 

fc-odd. 

Summing S(r, k) over the r values of k finally yields 

=, 1 S(r) 
n = 0 ^2n + 1 + Fr 

W5 
2L' 

by using the relations F_n = (~l)nFn and L_n = (~l)nLn. 

Following arguments similar to the above for obtaining (5), we have 

262 

\(r> k) 
N 1 = £ 1 

n = 0F(2n + l ) r + 2k " ^2? 

1 / 2 + £2A, ^2(/17+l)p+2fe + 2 \ 

2 L \ F2k F2(N+l)r+2k J 

(6) 

(con t inued) 
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5FV 

5F, 

J(N 

5Fk 5F(N + 

2Lr, N-even, k-odd, 

N-even, k-even , 

Lk L(N 

Fk F(N+ 

'+l)r+k\ I 
)/2Lr9 

+ l)r+k )l 

l)r+k\/ 
)/2Lr9 N-odd9 k-odd, 

l)r+k II 
+ l)r+k\ I 

)/2Lr, 
+ l)r+k// 

N-odd, k-even. 

whenever k > 1 and r i s odd. 
Comparing (5) and (6) by l e t t i n g k be even, k = 2s i n ( 6 ) , and k be odd, 

k = It - 1 in ( 5 ) , we see t h a t i f r i s odd, t hen 

SN(r, 2s) = SN(r, 2t - 1 ) . 
Similarly, with k = 2s - 1 in (6) and k = 2t in (5), we have, for r odd, that 

5^(r, 2s - 1) = SN(r, 2b). 
Letting N -> °°  in (6), we have, for odd r, that 

5(p, fc) = Z 
n = 0 F2(n + l)r+ 2k r 

LJL _ /5 j12LV , A: -odd, 

(6a) 

£-*) /l)/2Lr, k-
l\FK 

Comparing (5a) and (6a) as above, we see that if k = 2s - 1 in (6a) and k = 2t 
in (5a), then for r odd, 

£(r, 2s - 1) = S(r, 2t) , 

while k = 2s in (6a) and /c = 2t - 1 in (5a) yields 

~S(r, 2s) = -S(P, 2t - 1), if r is odd. 

We note that, from (1), it follows that 

2F„ 
1 1 

F2(n+l)+r Fr F2(n+I) + r + Fr F2(n + 1) + 2rF2(n+ 1) 

Hence, we have 
iv -j ^ 1 ^ 1 

n = 0 F2(n+ l) + r ~ Fr « = 0 ^2(n + l ) + p + Fv r
n = 0F2(n + l)F2(n+ 1) + 2v 

Taking (4) i n t o c o n s i d e r a t i o n , a long wi th t h e f a c t t h a t l im — = v 5 , we ob 
tain 

1 1 (L2k fe-4"-n = 0 F2nr+ 2k F2(n+ l)r+2k ^F2r \F2k 

Similarly, for the Lucas numbers, starting from 

is odd. 
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5 ^ - , ^ + r = ( - I ) " - ' £ , S 
we f i n d t h a t 

G (P, k) = E 
n = 0 £ ( 2 n + l ) p + 2£ + ^ P 10Fr 

1 / 2 ~ ^2/< ^2( t f + l ) p + 2k ~ 2 

•2(il7+ l ) r + 2k 2k 

w i t h -3? ^ 2k ^ P - 2 and r an e v e n i n t e g e r . 
F o l l o w i n g t h e m e t h o d s u s e d a b o v e , we o b t a i n , f o r p e v e n , 

GN(r, k) 

1 /L(N+l)r+k Lk 

lOFr\F(N+l)r 

1 

(N+.l)r+k 

^F(N+l)r+k 5K. 

I 1 0^r \^(N+ l)r+k Lk 

Letting N ->• °°, this relation yeilds, for p even, 

fc-odd, 

, fc-even. 

(7) 

^(r, fc) = £ 
n = 0 ^(2n+ l)2»+2fe + ^i 

1 
10F, 

102? 

r(^> &-odd, 

A 

Summing the last equation over the p - 1 values of k9 leads to 

GM = E 
n = 0 ̂ 2n + L r 

p^5 , 1 /0 ,, 
+ , p/2-odd 

10F„ 
10F, P/2 

when P is even. 
Similarly, for P even, 

P A , 1 / 0 
TTTTT- + > p / 2 - e v e n . 

Z 1 V 2 

Vr> fe) = E 
n = 0 F{2n + l)r + 2k ~ ^ 

1 (Lk L(N+ Dr + > 

lOFr\Fk F(N+i)r+k 

1 (5Fk 5F(N 

> / c - e v e n , 

10Fr\Lk 

s o t h a t 

£(*, k) = E 
n = 0 ^ 2 ( n + l ) r + 2£ ^ 2 

7+ l ) r + A 
1, k-o 

+ i)r + k I 

kht'^)' k'odd' 
k& - 4 k-even. 

( 7 a ) 

(8) 

( 8 a ) 

C o m p a r i n g ( 7 a ) and ( 8 a ) a s we d i d ( 5 a ) and ( 6 a ) , we h a v e , f o r v e v e n , p = 2s - 1 
i n ( 8 a ) and k = It i n ( 7 a ) , t h a t 

G(r, 2s - 1) = - £ ( P , 2t) 
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while, for v even, k = 2s in (8a) and k = It - 1 in (7a), we have 

G(r, 2s) = - £ ( P , 2£ - 1). 

By similar methods, the r e l a t ions (1) and (4) can also be used to show tha t 

TV F 
A 1 *2(N+l)r 

n = 0 7? 2 _ / _ i \ f e p 2 JP TP TP 
r(2n+l)r + k K } r r kn 2v r2(N + l)r + k 

and 

£ 1: = (^ - Dfe ̂  
*(2n+l)r+k K L) *r L *k*2r 

REFERNECE 
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AN APPLICATION OF THE RECIPROCITY THEOREM FOR DEDEKIND SUMS 

L. CARLITZ 
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1 . Put 

(x - [x] - h (x ^ integer), 
(^)> = A , . (1.1) 

10 Or = integer) . 
The Dedekind sum s(ft, k) is defined by 

•<*•» • „£„«*) ) • 
It is well known that s(ft, k) satisfies the reciprocity theorem 

s(h, K) -a(k, K) = - | + T 2 ( | H - 4 + I)' (1-3) 

where (ft, k) = 1. For references, see [1, Ch. 2]. 
In this note, we shall show that (1.3) implies the following result. 

Theorem 1 

Let ft, ft', k, kr denote positive integers. (a) The system 

"ftft' = 1 (mod k), ftft' = 1 (mod k') 

kk' = 1 (mod ft), kk' E 1 (mod ft') 

has no solutions with ft ̂ ft', k ^ kr. (b) The solutions of 

fftft' = -1 (mod k), hhf = -1 (mod k') 

I kk' E 1 (mod ft), kk' E 1 (mod ft') 

(1.4) 

(1.5) 

with k ± kT satisfy 
kk' - hh1 = 1, (1.6) 

and conversely. 

The auxiliary inequalities in hypotheses (a) and (b) cannot be dispensed 
with. Thus, for example, (1.4) is satisfied by 

(ft, ft', k, k') = (2, 3, 5, 5) and (2, 4, 7, 7); 

(1.5) is satisfied by 

(ft, ft', k, k') = (3, 5, 4, 4) and (2, 3, 7, 7). 

Note that (3, 5, 4, 4) satisfies (1.6), but (2, 3, 7, 7) does not. 
The congruences (1.4) and (1.5) suggest that it may be of interest to con-

sider the following, more general, situation. 
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hh' E a (mod k) , hh' = 3 (mod fc') 

kk' = j (mod W , kk> E S (mod 7z'), 
(1.7) 

where each of a, 33 y* and 6 is equal to ±1. We find that the method used in 
proving Theorem 1 applies, provided a<5 = $Y and a = 3. Thus, there are just 
four cases to consider. The cases a = y = 1 and a = -1, y = 1 are covered by 
Theorem 1. The case a = 1, y = -1 is essentially the same as a = -1, y = 1. 
The one remaining case is covered by the following: 

Theorem 2 

The system of congruences 

'hh' = -1 (mod k), hh1 = -1 (mod kr) 

^kkr = -1 (mod 7z), kk' = -1 (mod h') 

has no solutions in positive integers h9 hr, k9 kr. 

Note that it is now not necessary to assume either k' ^ k or hr ^ h. 

2. It follows from (1.1) that 

(1.8) 

((-*)) = -((a?)). 
Thus, 

s(-h9 k) = -s(h9 k). 
In the next place, if hh' E 1 (mod k), then, by (1.2), 

•"••»-£K(imm-KsM)M))-
on replacing r by ht and using the periodicity of ((a;)). Hence, 

s(ft', fc) = s(h, k) [hh' s 1 (mod k)]. 

(2.1) 

(2.2) 

Similarly, 
s(fc', k) = -s(fc, Zc) [TzTz' -1 (mod k)], 

(2.3) 

(2.4) 

Now let h, hr, fc, fc' be positive integers that satisfy the system of con-
gruences 

'hhf E 1 (mod k), hh1 = 1 (mod fc') 
(2.5) 

_Wc' = 1 (mod 7z), ^ f E 1 (mod ?zf). 
Thus, 

(h, k) = (fc, fe') = (hf, k) = {h\ kf) = 1. 
Therefore, we may apply the reciprocity theorem (1.3) to get the following set 
of equations: 

e<h, k)+s(k, h) = - ! + T2@ + 4 + !) 

sW, k)+s(k, h») = -k + HT + Wk+w) , , , , 
1 1 fin 1 k ' \ K^-'O) 

s(h, k>) +s(k'. h) = - 4 + T 2 ( f + F̂ + 1 ) 
[s(h', k>)+8<k',h') • -\ + Uw + FF + &) 
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In view of (2 .3 ) , we have 

e(h, k) + e(k, K) = - \ + ^ ( f + ^ + | ) 

e(h. k) + sik, h>) = -\ + UT+fk + £) 
(2.7) 

Multiplying the first and fourth equations in (2.6) by +1, the second and 
third by -1, and adding the resulting equations, we get 

\k hk h) \k hfk ft'/ \kT hk' h ) \k' hfkr ft'/ u' 

or better, 

hrkf(h2 + 1 + k2) -hk'(h'2 + 1 + k2) -h'k(h2 + 1 + k,2) + hk(h'2 + 1 + kr2) = 0. 

A little manipulation yields 

(ft' - h)(k' - fc)(l - ftft' - kk') = 0. (2.8) 

Now, assuming tha t ft' ^ ft and &' ^ fc, (2.8) reduces to 

ftft' + kk' = 1. (2.9) 

Since (2.9) obviously has no solutions in positive integers ft, ft', fc, &', 
we have proved the first half of Theorem 1. 

3. To prove the second part of the theorem, let ft, ft', k, kr be positive inte-
gers that satisfy the congruences 

"ftft' = -1 (modJc), ftft' = -1 (mod fc') 
(3.1) 

kk' E I (mod ft), fcfc' = 1 (mod ft') . 
Then 

(ft, k) = (ft, fc') = (ft', &) = (ft', k') = l, 
and exactly as above, we get the set of equations (2.6). However, we now use 
both (2.3) and (2.4). Thus, in place of (2.7), we get 

(3.2) 

s(ft, k) + *(*, ft) =-i + T2(J + 4 + !) 
-e(*. *>+*(*. ft') --j + ̂  + | ^ + f) 

e(h, *')+*(*, ft) --£ + ̂  + ̂  + ̂ ) 
[-s(ft, k') + s(k, ft') = - ^ + T2Vp- + jpj^r + p-) 

Multiply the first and second equations by +1, the third and fourth by -1, 
and add: 

\k hk h) \k h'k h'J \k' hk' ft ) \k' h'k' h'J ' 

h'k'(h2 + 1 + k2) + hh'(h'2 + 1 + k2)-hrk(h2 + I + k'2) - hk(h'2 + I + k'2) = 0. 

This reduces to 

(ft' + 7z)(fc' - k)(l + Mi' - kk') = 0. 
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Hence, assuming k! ^ k, we get 

kkr - hh> = 1. 
This completes the proof of the theorem. 

k. We now consider the system of congruences 

' hhr = a (mod &) , hh' = & (mod k!) 

kk1 = y (mod « , kkr = 6 (mod h') , 

where each of a, $, y, 6 is equal to ±1. Then, in place of (2.7), we get 

s(h, k) + s(k> h) 
as(hs k) + s(k, hr) 
s(h, kr) + ys(k9 h) 

Isihy kf) + Ss(k, hr)s 

(3.3) 

(4.1) 

(4.2) 

where, for brevity, we indicate only the left-hand sides. 
Now, multiply the first equation in (4.2) by 1, the second by B,3 the third 

by n, the fourth by £. To eliminate the left-hand side, g, n, £ must satisfy 

(4.3) 

(4.4) 

1 + a? = 0, 1 + yn = 0, ^ + 6̂  = 0, n + 3C = 0. 

This gives 
£ = -a, ri = -y* £ = a65 £ = 3y, 

so that a6 = 3Y* 5 = a3y- Hence, (4.3) becomes 

5 = -a, n = -y, £ = By 
It follows that (4.2) implies 

(* + M + h) ~ aVF + Ffc + FJ - Aw + W* + T) + *Aw + 7PkT+hT) = 0-
Simplifying, we get 

(h'k'-ahk' - yh'k + &yhk) - ahhf(hrkr - ahkf - a3y/zfk + ayhk) 
- ykkf(hfkr - $hkr-yh'k + ayhk) = 0. 

I f a = 3 , t h i s becomes 
(hr - ah)(k' - yk)(l - ahhF - ykkf) = 0, (4 .5 ) 

wh i l e (4 .1) r educes t o 

hhf = a (mod k) , hhf = a (mod fc') 
(4 .6) 

.kk' = y (mod ft), kkf = y (mod ft')-

The cases a = y = 1 and a = -1, y = 1 are covered by Thoerem 1. The case 
a = 1, y = -1 is essentially the same as a = -1, y = 1. Thus, the only case to 
consider is a = y = -1. In this case (4.5) is 

(h' + h)(k! + £0(1 + hhr + kkr) = 0. (4.7) 

Clearly, (4.7) cannot be satisfied in positive integers. It is now not neces-
sary to assume either kf £ k or hr £ h. 

This completes the proof of Theorem 2. 
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COAXAL CIRCLES ASSOCIATED WITH RECURRENCE-GENERATED SEQUENCES 
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(Submitted January 1983) 

1. INTRODUCTION 

Recently, some articles [1], [3], and [4] of a geometrical nature relating 
Fibonacci numbers to circles, with an extension to conies, have appeared in this 
journal. Here, we offer another geometrical connection between Fibonacci-type 
numbers and circles (though this material bears no relation to the other arti-
cles) . In particular, it is shown how Fibonacci and Lucas numbers, and their 
generalization, are associated with sets of coaxal circles. 

Define the recurrence-generated sequence {Hn} for all values of n (integer) 
by 

H
n+2 = Hn+1 + Hn, H0 = lb, H± = a + b, (1.1) 

where a and b are arbitrary, but may be thought of as integers. 
Using [2], equation (6), we have, mutatis mutandis, the explicit Binet form 

for this generalized sequence 

' _ (a + /5£)an - (a - v5fr)gw 
tin s K L * ^ J 

where a = (1 + /5)/2 (> 0), 3 = (1 - /5)/2 (< 0) are the roots of x2 - x - 1 = 0 
(so that ct(3 = -1) . 

From (1.2) it follows that 

where 

and 

Hn = aEn + bLni (1 .3 ) 

Fn = (an - $n)//5 (1 .4 ) 

Ln = an + 3 n (1 .5 ) 
are the nth Fibonacci and nth Lucas numbers, respectively, occurring in (1.1), 
(1,2), and (1.3) when a = 1, b = 0 (for Fn) and a = 0, b = 1 (for Ln). 

Observe from (1.4) and (1.5) that 

^5Fn< Ln when n is even, (1.6) 
while 

yf5Fn> Ln when n is odd. (1.7) 

2. COAXAL CIRCLES FOR {Hn} 

Consider the point with Cartesian coordinates (x, 0) where x is given by 

x = [(a + /Eb)a2n + (a - V5b)cos(n - l)n]//5an (2.1) 
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[the x-value being another form of Hn in (1.2)]. 
Elementary calculations show that the circle, denoted by CEn, with 

a + J5bVn A E (5r(^ _(^)} (2e2) center 

and 
/5 

radius: r(Hn) = ^b 
/5ar 

(2.3) 

ifr)'*" (*!&•• 
Clearly, 

and 
x(Hn)/x(Hn_1) = a (2.5) 

HH^/HHn-J = 1/a, (2.6) 
so that the sets {x(Hn)} and {r(Hn)} form geometrical progressions. 

The circles CHn cut the x-axis where 

x(Hn) = (a + v/5Z?)an/v/5 ± (a - v^Z?) / / 5 a n 

= a(an ± (-l)ngn)/V/5 + b(an + (-l)ngn), since a3 = -1. 

That is, 
x(Hn) = aFn + &Ln or aLn/y/5 + \/5Z?Fn (2.7) 

= Hn or aLn//5 + y/5bFn [by (1.3)]. 

The coordinates x = x(Hn), £/ = r(Hn) of the highest point on CHn lie on the 
upper branch of the rectangular hyperbola 

+ /5b) 
xy (^«)|a - S5b\ (2.8) 

on making use of (2.2) and (2.3). 
Of the other three points of intersection of the circle (2.4) and the rec-

tangular hyperbola (2.8), only one is real, given by the real root of the cubic 
equation x3 - anx2 - a~2nx - a~n = 0, e.g., in the case of {Ln}. No obvious 
geometry follows from the set of these real points [though one might hope that 
their locus would be a simple curve (another rectangular hyperbola?)]. 

Similar results apply to the case of the lowest point. 

3. COAXAL CIRCLES FOR {Fn} AND {Ln} 

Parallel details for the special cases {Fn} and {Ln} of {Hn} arising when 
a = 1, b = 0, and a = 0, b = 1, respectively, can be tabulated, as in the fol-
lowing table, after making appropriate notational adjustments to the results 
(2.1)-(2.8) in the previous section. 

Interesting features of the table appear in (3.7): 

(i) the (integer) Fibonacci numbers and the irrational numbers of the 
Lucas-related sequence {Ln}/v5 are represented on the x-axis as the points of 
intersection of the axis and the set of coaxal circles CFns and 

(ii) the (integer) Lucas numbers and the irrational numbers of the Fibo-
nacci-related sequence v5{Fn} are represented on the x-axis as the points of 
intersection of the axis and the set of coaxal circles CLn. 

If we define the orientation of a circle of the coaxal sets to be that in 
going (above the x-axis) from the Fibonacci value to the Lucas value in (3.7), 
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(3 .1 ) 

(3 .2 ) 

(3 .3 ) 

( 3 .4 ) 

(3 .5 ) 

(3 .6 ) 

(3 .7 ) 

(3 .8 ) 

{FJ 

(x = (a2n + cos(n - l)ir)//3an 

\y = o 
x(Fn) = un/J5, y(Fn) = 0 

r(Fn) = l//5an 

CFn: 
a"" x 

5a2n 

x{Fn)/x{Fn_1) = a 

HFn)IHFn.{) = 1/a 
x(Fn) = Fn, LjVS 
xy = 1/5 

iLn} \ 

(x = ( a 2 n - cos (n - l )Tr) /an 

x(Ln) = a n , y(Ln) = 0 

r(Ln) = l/an 

CLn: (x - an)2 + y2 = l / a 2 n 

^ ' ( L n ) / x ( L n _ 1 ) = a 

r(Ln)/r(Ln_1) = 1/a 

x(Ln) = L n 5 i/5F„ 
xzy = 1 

then (1.6) and (1.7) disclose that the orientation is reversed for alternate 
circles in both coaxal sets. 

It is an instructive exercise to draw some of the circles CFn and CLn for 
small integral values of n (<0, =05 >0), but we omit the diagram here in order 
to conserve space. 

k. CONCLUDING REMARKS 

This article developed from a brief private communication from L. G. Wilson 
[5], to whom the author expresses his thanks. Wilson, however, was concerned 
only with the polar coordinate representation of the points given in Cartesian 
coordinates (x, y) by x as in (2.1), and y = (a - /Eb)s±n(n - l)TT/)/5an but with 
n not restricted to integral values. Our concentration on just two special 
points on each circle was stimulated by a desire to exhibit the circle genera-
tion of the members of {Fn} and {Ln}. 

The occurrence of an//5 and an reminds us that these, by (1.4) and (1.5), 
are the limiting values of Fn and Ln) respectively. Thus, if n is graphed 
against y = lim Fn and y = lim Ln in turn, we find that the points (Fn, y) and 

n •+ oo n -> oo 
(Ln, y) lie remarkably close to the exponential curves y = an/v5 and y = an 

even for small values of n. 
It seems reasonable to expect an extension, albeit a slightly tedious one, 

to the more general sequence {Wn} defined for all integral n by 
Wn + 2 = Pttn + 1 ~ C[Wn) (4.1) 

with specified values for WQ and W1. Possibly some worthwhile results for the 
special cases of the Pell sequences arising from (4.1) when p = 2, q = 1 might 
eventuate from this investigation. 
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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

1 

1. 

T/5)/2, respectively3 of 

PROBLEMS PROPOSED IN THIS ISSUE 

B-526 Proposed by L. Cseh and I. Merenyi, Cluj, Romania 

Find all ordered pairs (ms ri) of positive integers for which there is an 
integer x satisfying the equation 

FmFn^ ~ lFm(Fm> F n) + FnF{m,n)^ + iFm. Fn)F(m,n) = 0 . 

Here (2% s) denotes the greatest common divisor of v and s. 

B-527 Proposed by L. Cseh and I. Merenyi, Cluj, Romania 

Do as in B-526 with the equation replaced by 

(Fm, Fn)x2 - (Fm + Fn)x + F(mtn) = 0. 

B-528 Proposed by Herta T. Freitag, Roanoke, VA 

For nonnegative integers ns prove that 

2tt + l 

T 2n + l ) F
2 = 5nF 

and 
n + 2 n+1 t f n ' ^0 U s r 1 

Ln + 2 = Ln+1 + Ln> L0 = 2> Ll = 

Also, a and 3 designate the roots (1 + v5)/2 and (1 
1 = 0. 

1384] 273 



ELEMENTARY PROBLEMS AND SOLUTIONS 

B-529 Proposed by Herta T. Freitag, Roanoke, VA 
In ,n . 

For positive integers ft, find a compact form for Y] f . )F? 
; = o W * + 1 

B-53Q Proposed by Michael Eisenstein, San Antonio, TX 

Let a = (1 + v/5)/2. For n an odd positive integer, prove that the contin-
ued fraction 

Ln + i—j = an. 
L n ~r -= — 

B-531 Proposed by Michael Eisenstein, San Antonio, TX 

For n an even positive integer, prove that 

Ln 1 = 0tn. 

SOLUTIONS 

Even Sum of Fibonacci Products 

B-502 Proposed by Herta T. Freitag, Roanoke, VA 

Given t h a t h and k a r e i n t e g e r s wi th h+ k an i n t e g r a l m u l t i p l e of 3 , prove 
t h a t FkFk_hmml+ Fk+lFk_h i s even. 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

L e t t i n g t = ft + 1 in ( J 2 6 ) — s e e p . 59 of Verner E. Hogga t t , J r . , Fibonacci 
and Lucas Numbers (Boston: Houghton M i f f l i n Co . , 1969)—yie lds t h e fo l lowing 
i d e n t i t y : 

Fm+t = Fm+lFt + FmFt_Y. (*) 
Thus, 

Fk
Fk-h-i + Fk+iFk-h = Fk+iFk-h + FkFk-h-i 

= F3k-(h+k)' 

Because /J + H s a multiple of 3, 3 divides 3k - (h + k) , hence 2 = F3 divides 
F3k-(h+ky 

Also solved by Wray G. Brady, Paul S. Bruckman, L. Cseh, M. J. DeLeon, C. Geor-
ghiou, Walther Janous, L. Kuipers, Graham Lord, I. Merenyi, Bob Prielipp, Heinz-
Jurgen Seiffert, Sahib Singh, and the proposer. 

Even Perfect Numbers Mod 7 

B-503 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Prove that every even perfect number except 28 is congruent to 1 or -1 mod-
ulo 7. 
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Solution by L. Cseh, Cluj, Romania 

It is well known that every even perfect number is of the form 

2p"1(2p - 1), 

where p is prime and so is (2P - 1). Every prime, except 3 is of the form 

3k + 1 or 3k + 2. 
Thus, we have 

23k(23k+i - i) = i . (i . 2 - 1) = 1 (mod 7) 

23k+i(23k+2 . i) = 2 . (4- 1) = 6 = -1 (mod 7), 

and because for p = 3 we obtain 28, the proof is complete. 

Also solved by Paul S. Bruckman, M. J. DeLeon, Herta T. Freitag, C. Georghiou, 
Walther Janous, H. Klauser and M. Wachtel, L. Kuipers, Graham Lord, I. Merenyi, 
Bob Prielipp, Sahib Singh, and the proposer. 

Triangular Fibonacci Numbers Mod 2k 

B-50^ Proposed by Charles R. Wall 

Prove that if n is an odd integer and Fn is in the set {0, 1, 3, 6, 10, ...} 
of triangular numbers, then n = ±1 (mod 24). 

Solution by Leonard Dresel, University of Reading, England 

If Fn is in the set of triangular numbers, then there is an integer k such 
that Fn = hk(k + 1 ) , so that SFn + 1 = (2k + l)2 is a perfect square. Reducing 
this modulo 9, we have 

SFn + 1 is a quadratic residue modulo 9. 

The Fibonacci sequence reduced modulo 9 is periodic with period 24, and for the 
odd integers n, we have 

n = 1 3 5 7 9 11 13 15 17 19 21 23 (mod 24) 

F n E 1 2 5 4 7 8 8 7 4 5 2 1 (mod 9) 

8Fn + l E 0 8 5 6 3 2 2 3 6 5 8 0 (mod 9 ) . 

By squaring the numbers 0, 1, 2, 3, and 4, we find that the quadratic residues 
modulo 9 are 0, 1, 4, 7. Hence, the only quadratic residue in the sequence for 
8Fn + 1 (mod 9) is the number 0, and this occurs only for n = ±1 (mod 24). 

We can extend this result in various ways. For example, by reducing the 
sequence SFn + 1 modulo 11, we obtain the further condition n E ±1 (mod 10). 

Also solved by Paul S. Bruckman and the proposer. 

Sum of Lucas Products 

B-505 Proposed by Herta T. Freitag, Roanoke, VA 

Let 
N = N(m, a) = Lm_ laLm - Lm+l_2aLm_l9 

where m and a a r e p o s i t i v e i n t e g e r s . Prove or d i sp rove t h a t N i s : (a) always 
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(exactly) divisible by 5; (b) never divisible by 3, 4, 6, 7, 8, 9, or 11; and 
(c) divisible by 10 if a E 2 (mod 3) . 

Solution by C. Georghiou, University of Patras, Greece 

When Ln is replaced by a n + 3n» w e g e t 

^ = Lm-2aLm " Lw+ I-2A-I = f"1^ (L2a + L2a-2^ = ("̂  5F2a-l' 

therefore, 7\7 is divisible by 5. 
Next, we take the following properties of the Fibonacci numbers as known 

(otherwise, they can easily be established): 

Fn E 0 (mod 3) iff n E 0 (mod 4) (1) 

Fn E 0 (mod 4) iff n = 0 (mod 6) (2) 

Fn E 0 (mod 7) iff n E 0 (mod 8) (3) 

Fn E 0 (mod 11) iff n = 0 (mod 10) (4) 

Fn E 0 (mod 2) iff w = 0 (mod 3) (5) 

Now (1) => N $ 0 (mod 3 or mod 6 or mod 9 ) , 
(2) => N t 0 (mod 4 or mod 8 ) , 
(3) => tf £ 0 (mod 7) , 
(4) =>/!/ 2 0 (mod 11), and finally, 
(5) =>21/ E 0 (mod 10) iff 2a - 1 E 0 (mod 3) or a = 2 (mod 3) . 

Also solved by Paul S. Bruckman, L. Cseh, M. J. DeLeon, Walther Janous, L. Kui-
pers, Graham Lord, Bob Prielipp, Sahib Singh, and the proposer. 

Fibonacci and Lucas Convolutions 

B-506 Proposed by Heinz-Jurgen Sieffert, student, Berlin, Germany 

Let Gn = (n + 1)F„ and # n = (n + l)Ln. Prove that: 

fa} V n C - (n + 2 ) ( n + 3 ) 77 -1-77 + J - F . 

fM V f/ff _ (n + 2) (n + 3) 2 4 
fc = 0 D J J 

Solution by Paul S. Bruckman, Fair Oaks, CA 

Let 

[7(a0 = x/(l - x - x2) = — ( ( 1 - o x ) " 1 - (1 - ^x)'1) = E ^ n * n ; ( D 
/ 5 n = 0 

00 

V(x) = (2 - x)/(l - x - x2) = P + Q = T, Lnxn, 
n = 0 

where 
P = (1 - o r ) - 1 and Q = (1 - 3 ^ ) _ 1 . 

A l so , l e t 
4(a?) = 0rt7(ar)) ' , B(x) = 0c7(a r ) ) ' . (2) 

Then 

MX) = Z ^ X " ' S W = X) ^n**- (3) 
n = 0 n = 0 
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Note t h a t (xP) ' = P 2 , (xQ) ' = Q2. Hence, 

A(x) = 5 _ 1 / 2 (P 2 - g 2 ) 5 5 (x) = P 2 + £ 2 . (4) 

R(x) = Ph + g 4 , S(x) = P 2 £ 2 . (5) 
Let 

Then 

n = 0 x J ' 

R(°°) = ^ E ( n + 2 ) ( n + 3)#nxn. (6) 
Al s o , 

hence , 

,.2\-2 - LfTJfry,\ . T/^^^2 

Now, 

£(a?) = (1 - x - xz)~z = |-(£/(a?) + V(x))d 

= | { ( 1 + 5~ 1 / 2 )P+ (1 - 5 " 1 / 2 ) ^ } 2 = } { a 2 P 2 + 2PQ + &2Q2}; 

5S(x) = a 2 P 2 + U(x) + F(x) + 3 2 « 2 

= ]T (n + DLn + 1xn + — (aP - 3® 
n = o / 5 

= E « ^ + l ) £ „ + 2 + 2 Fn + l > ^ n 
n = 0 

= E {(^ + 3)Ln + 2 + 2(Fn + 1 - Pn + 2 ) } ^ , 
n = 0 

5(x) = ± £ ( 5 B + 2 - 2Fn + 3 )x" . (7) 
J n = 0 

W(x))2 = ( E GnxnY = E ^ E ^ ^ . f e ; 
\n = 0 / n=0 k=0 

Likewise , 

a l s o , however, from (4) and ( 5 ) , 5(A(x))2 = R(x) - 2S(x). Using (6) and ( 7 ) : 

£Q
GkGn-k = 3 0 ^ + 2 H n + 3 ) ^ " A ( ^ + 2 " 2^+3>> 

or 
jt„GkGn_k - ±{n + 2){n + 3)Hn - ^ i ? n + 2 + ^ n + 3. (8) 

( t Bnx«Y = f > " £ EkEn_k = R{x) + 2S(x) 
\n = 0 I n = 0 fc-0 

= 4 £ > + 2) (n + 3)ffn*n + | E ( ^ + 2 " 2Fn + 3 ) * » , 
O n = 0 Jn=0 

SO 

t ¥ n - r ^ n + 2 ) ( n + 3 ) f f " + I f f » + 2 " J ^ n + 3- <9 ) 

Also solved by C. Georghiou, L. Kuipers, J . Sizcfc, Gregory Wulczyn, and the pro-
poser. 

(B(x))2 
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Mixed Convolution 

B-507 Proposed by Heinz-Jurgen Sieffert, Berlin, Germany 

n 
Let Gn and Hn be as in B-506. Find a formula for ^ ^k^n-k similar t o t n e 

formulas in B-506. k=0 

Solution by Paul S. Bruckman, Fair Oaks, CA 

We follow the notation introduced in the solution to B-506, and note that 

A(x)B(x) = E ( ? / • f; Hnxn = f ^ Z W - f e ' 
w = 0 n=0 n=0 k=0 

On the other hand, 

A(x)B(x) = 5 - 1 / 2 (Pk - Qh) = 5 " 1 / 2 E (n t 3)(un - &n)xn 

= l E ( ^ + 2 ) (n + 3)Gnarn. 
0 n = 0 

Hence, 
%GkHn_k = | ( n + 2 ) (« + 3)ffn. 
fc = 0 u 

Also solved by C. Georghiou, L. Kuipers, J . Suck, Gregory Wulczyn, and the pro-
poser . 

•<>•<>• 

(Continued from page 272) 

3. A. F. Horadam. "Geometry of a Generalized Simson's Formula." The Fibonacci 
Quarterly 20, no. 2 (1982):164-68. 

4. A. G. Shannon & A. F. Horadam. "Infinite Classes of Sequence-Generated Cir-
cles." The Fibonacci Quarterly (to appear). 

5. L. G. Wilson. "Fibonacci Sequences." Private communication, 1982. 
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PROBLEMS PROPOSED IN THIS ISSUE 

H-372 Proposed by M. Wachtel, Zurich, Switzerland 

There exist infinitely many sequences, each with infinitely many solutions 
of the form: 

A • x2 + C = B • y2 
— 1 — J \ 

A • x\ + C = B • y\ 
A°x2

3 + C = l° y\ 

A-x2
m + C = B°y2 

A 

Xj_ 

x2 

X3 

rn + 3 

= 1 

= Fn-lfn 

= ?F 

c = 

+ F2 

+ (-D" 

£» i. ~ Fn + 1 
y_i_ = 2 

£2 = 2Fn + l 

Vz = 2F2n+5 

Find a recurrence formula for xk/ylt, x5/y5, . . . , xm/ym (ym = dependent on xm). 

x3) Examples: (xx 

n = 3 

(I)2 + £3. 
(F2F3 + Fl)2 + L3 

(2)2 

(2F2): 

(2^o " D2 + L 3 = V <2Fn): 

n = 4 
( i ) + L, = F5 

F. Fj_- (F3Fh + F\)2 + L^_ - r^ 
F7 • (2F12 + l)2 + L± = £5 

(2)2 

(2F2)2 

2 ' - - Fc- (2F^)2 

(in numbers) 

1 + 4 

ll2 + 4 3 • 18' 

8 • 1092 + 4 = 3- 178' 

13 • 1 + Z = A" 2 

L3 • 312 + ]_ = 5/ 502 

13 • 2892 + 7 = 5 - 466' 

H-373 Proposed by Andreas N. Philippou, University of Patras, Greece 

For any fixed integers k > 0 and r > 2, set 

f (fc) £ 
1984] 

n, + 2n „ + 
"fc 3 

/Wl + ... + «, + r - 1\ n > 0 _ 
\n1 , ..., nk , r - 1/ 
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Show t h a t 
fm = y f(k) f(k) > 
Jn+l,r> ^ - j ' J £ + l , l J n + l - l , r - l ' 

H~37^ Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

If a*(n) i s t h e sum of t h e u n i t a r y d i v i s o r s of ft, t hen 

a*(ft) = II (1 + p e ) , 
pin 

where pe is the highest power of the prime p that divides ft. The ratio a*(ft)/ft 
increases as new primes are introduced as factors of n, but decreases as old 
prime factors appear more often. As N increases, is o*(Nl)/Nl bounded or un-
bounded? 

H-375 Proposed by Plero Flllpponl, Rome, Italy 

Conjecture 1 

If Fk = 0 (mod k) and k + 5n, then k = 0 (mod 12). 

Conjecture 2 

Let 772 > 1 be odd. Then, F12m - 0 (mod 12m) implies either 3 divides m or 
5 divides m. 

Conjecture 3 

Let p > 5 be a prime such that p\Flh, then F12m £ 0 (mod 12m). 

Conjecture h 

If Lk = 0 (mod fc), then k = 0 (mod 6) for fc > 1. 

SOLUTIONS 

Lotta Sequences 

H-350 Proposed by M. Wachtel, Zurich, Switzerland 
(Vol. 21, no. 1, February 1983) 

There exist an infinite number of sequences, each of which has an infinite 
number of solutions of the form: 

A • x\ + 1 = 5 • y\ A_ = 5 • (a2 + a) + 1 a = 0, 1, 2, 3, .. . 

A • x\ + 1 = 5 • y\ 

A - x\ + 1 = 5 • y\ x± = 2; x2 = 40(2a + l) 2 - 2 

,4 • ̂ r2 + 1 = 5 • yl y1=2a+l;y2=(2a+l)- (164 + 1) 

Find a recurrence formula for x3/y3, %i+/yi+> . ••> x
nlyn (l/n ~ dependent on xn) . 
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Examples 

a = 0 1 ii + 1 - 5 - \ i T 

>-ty"->-(? 
,-M\>-> 2 

1 + 1 = 5 - . . . 

a = 1 11 • 2 2 + 1 = 5 • 3 2 

11 • 3582 + 1 = 5 - 531 2 

11 • 637222 + 1 = 5 - 945152 

11 + 1 = 5' 

a = 5 151 • 22 + 1 = 5 • llz 

151 • 4 , 8 3 8 2 + 1 = 5 - 26 ,587 2 

151 • 11 ,698 5 282 2 + 1 = 5 ° 64 s 287 ,355 2 

151 . . . + 1 = 5 . . . 

Solution by Paul S. Bruckman, Carmichael, CA 

The g e n e r a l s o l u t i o n of t h e D i o p h a n t i n e e q u a t i o n : 

52/2 - Ax2 

i s g i v e n by 
(1 ) 

IJA 
yn 

2/5 
-, n = 1 , 2 , 

w h e r e 

u = ( 2 a + l)>/5 + 2/A, v = ( 2 a + l ) / 5 - 2vft. 

N o t e t h a t uv = 5 ( 2 a + 1 ) 2 - 4 ( 5 ( a 2 + a ) + 1) = 1 . A l s o , 

and 
u2 = 5 ( 2 a + l ) 2 + 44 + 4 ( 2 a + l)/5A = 8,4 + 1 + 4 ( 2 a + l ) / 5 4 , 

uh = ( 84 + l ) 2 + 8 0 4 ( 2 a + 1) 2 + 8 ( 2 a + 1) (8.4 + l ) / 5 4 

(2) 

(3) 

= (SA + l) 2 + 80A(l + ̂ (4 - 1)) + 2(84 + 1) (u2 - 8 4 - 1 ) 

= -(84 + l)2 + 164 + 6442 + 2(84 + l)u2 = 2(84 + l)u2 - 1. 

Note that v satisfies the same relation. Thus, 

wh - 2Bw2 + 1 = 0 , (4) 

where w denotes either u or vs and B = 84 + 1 = 40a2 + 40a + 9. From (4), we 
readily deduce the recursions: 

2Bzn+1 + zn = 0, n = 1, 2, .., 

where z denotes either x or y. 
Now, l€t 

yn 

Then, using (5) , we obtain 

2Bx ,. 

, n = 1, 2, ... . 

r
nyn 

(5) 

(6) 

r 2Br ^, ,, (rB+1 - r„)j/„ 

^ n + l " V„ 
1984] 

2B -

rn +i + 2Byn+1 - yn 
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Hence, 

or, equivalently: 

Also, using (5) and (7), 

n + l n yn+l 

yn+i i 

= IB 1, 
y n 

V - r 
n + 2 n 

2B V M0 n + 2 

yn+2 w yn i p _ p 
n+3 n + l 

which implies: 
^n + 1 Vn+1 B Vn+3 Vn + 2 

p P p _ p 

4B2 _ kBiLnl± 1±l\ = Jill iLLi, 
\ rn+2 rn I Tn+3 Vn + 2 

p - p - p _ p x 
n+3 n+l _ 2 / n+l n \ 

Vn+3 ~ Vn+2 \Vn + 2 ~ Vn I 

(7) 

(8) 

(9) 

Solving for rn+3 in (8) yields the desired recursion: 

r"+3 rn+2 - vn - 4B2(rn+1 - rn) 

Also solved by the proposer. 

Hats Off 

H-352 Proposed by Stephen Turner, Babson College, Babson Park, MA 
(Vol. 21, no. 2, May 1983) 

One n i g h t d u r i n g a n a t i o n a l ma themat ica l s o c i e t y c o n v e n t i o n , n math-
e m a t i c i a n s dec ided t o g a t h e r in a s u i t e a t t he conven t ion h o t e l f o r an 
" a f t e r hours c h a t . " The people in t h i s group sha re the h a b i t of wear ing 
t h e same kind of h a t s , and each brought h i s h a t t o t he s u i t e . However, 
t he cha t was so engaging t h a t a t t h e end of the evening each (be ing deep 
i n thought and o b l i v i o u s to t he p r a c t i c a l s i d e of m a t t e r s ) simply grabbed 
a h a t a t random and c a r r i e d i t away by hand to h i s room. 

Use a v a r i a t i o n of t h e F ibonacc i sequence fo r c a l c u l a t i n g t h e p roba -
b i l i t y t h a t none of t he mathemat ic ians c a r r i e d h i s own h a t back t o h i s 
room. 

Solution by J. Suck, Essen, Germany 

The p r o b l e m i s M o n t m o r t f s 1708 " p r o b l e m e d e s r e n c o n t r e s " ( s e e [ 1 ] , p . 180) 
and t h e r e q u i r e d s o l u t i o n i s a n o l d h a t of E u l e r T s . I n [ 2 ] , h e p r o v e s by a n 
e a s y - t o - f i n d c o m b i n a t o r i a l a r g u m e n t t h a t t h e number Dn of d e r a n g e m e n t s (= p e r -
m u t a t i o n s w i t h o u t f i x e d p o i n t ) of { 1 , 2 , . . . , n] s a t i s f i e s t h e r e c u r r e n c e 

D +0 = in + l)(D + D ) , D= 1 , D = 0 , 
n+2 K / v n+l n / s 0 1 

and h e n c e , 
Dn+1 - (n + 1)D„ + ( - 1 ) " + 1 . 

We c a n p r o c e e d t o show by i n d u c t i o n , t h e n , t h e " c l o s e d " e x p r e s s i o n ( a l s o known 
t o E u l e r [ 3 ] ) 

Dn = nljt (-l)v/v!, 
v - 0 
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which has to be divided by n! to get the required probability. 
Disclosing that k out of the n gathering mathematicians were members of the 

Fibonacci Association, one is led to ask a bit more generally for the probabil-
ity that none at least of that group carried back his own hat. Denote by Dn> k 
the numerator, that is, the number of permutations of {1, ..., n] with no fixed 
point in {1, ..., k}. We have 

D , , = i ( ;:*K = E(-i»1i)(«-„ 
v= k 

where the right-hand side equality was a recent problem by Wang [4]. It pays 
to look at the triangular array Dn k , 0 < k < n. Morgenstern ([5], p. 15, Prob-
lem 11) offers the recurrence 

Dn,k = (ri - l)Z?„_l,fc-l + (& " D0*-2,fc-2. 

To get started, note that the first two columns are 

Dn>0 = n\ and Z)^ x = in - 1) ! (n - 1) , n > 1. 

We may also start from EulerTs edge with 

n \ 

0 
1 
2 
3 
4 
5 

»n 

k o 
1 
1 
2 
6 
24 
120 

k 

]_ 

0 
1 
4 
18 
96 

\ - l, 

2 

1 
3 
14 
78 

* + Bn 

3 

2 
11 
64 

k+ l-

4 

9 
53 

5 

44 

Denoting by Rn the nth row sum, we find 

Rn + 2 = (n + 2)(i?„ + 1 + i?„) and 

And for the nth rising diagonal sum Sn: = Z)rij 0 

Rn = (n + 1)! - Z?n + 1. 

+ ^ _ 1 f 2 + * • * J we have 

$n+i - Sn+ (n + 2)\ 

Sn + 1 + Sn + (n + 2)! A (n+ l)/2 

for n even, 

for n odd. 

Peeping into the future, we see n growing, so finally, for our probability 

1 if k remains constant, 
lim Dn}k/n\ 

l/e if n - k does. 
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Also solved by P. Bruckman, E. Schmutz and M. Wachtel, N. Saxena and Sridhar 
Manthani (paper), and the proposer. 

Dual Solution 

H-353 Proposed by Jerry Metzger, University of North Dakota, Grand Forks, ND 
(Vol. 21, no. 2, May 1983) 

For a positive integer n, describe all two-element sets {a, b} for which 
there is a polynomial f(x) such that f(x) E 0 (mod ri) has solution set exactly 
{a, b}. 

Solution by L. Kuipers, Switzerland 

Let the congruence related to a pair (a, b) be written in the form 

(x - a) O - b) = 0 (mod ri) . (1) 

If a and b are the only solutions of (1), then (a, b) is called an 5 -pair, or 
g-pair. We assume throughout a # b, and distinguish several cases: 

(i) Let n = p, p prime. Then any pair (a, b) forms a set {a, b}. 

(ii) Let n = p2, p being a prime. Consider the congruence 

(x - a)(x - b) = 0 (mod p2) . (2) 

Each factor of the left-hand side of (2) if not zero produces at most one fac-
tor p. Hence, if a $ b (mod p), then (a, b) is an g-pair. If a = b (mod p), 
then x = a, x = b (mod p2) are not the only solutions of (2) . Let a - b = kp 
[k £ 0 (mod p)]. Then take x = a + p, and substitution in (2) gives 

(x - a)(x - b) E p2(l + fc) E 0 (mod p 2 ). 

(iii) Let n = p3, p being a prime. Consider the congruence 

(x - a)(x - b) E 0 (mod p 3 ). (3) 

If. a $ b (mod p) , then (a, Z?) is an 5-pair. If a E & (mod p2) , then (a, 2?)' 
is an 5-pair if and only if p = 2. We have here a = Z? + p2, for in a - 2? = fcp2 

we have k < p. If p > 3, a E Z? (mod p2) , then there is always a solution of 
(3) distinct from x = a and x = b (mod p3) . Let a - 2? = fcp2s k < p. Take # = 
a + p2, then 

(a; - a)(x - b) E p2(p2 + kp2) = 0 (mod p3) . 

So (a, 2?) is not an g-pair. 
If a E b (mod p), or a - b = kp, then, taking x = a + p2, we have to take 

fc = 1. In these cases, (a, b) is not an 5-pair. 

(iv) Let n = ph, p being a prime. Consider the congruence 

(x - a) (a? - 2?) E 0 (mod p^) . (4) 

If a £ b (mod p) , then (a, 2?) is an 5-pair. Let a E b (mod p), or a - b = kp 
(k < p 3 ) . Now take x = a + p3 in (4). 

(x - a)(x - b) = p2(p2 + kp) E 0 (mod p 3 ) . 

One then obtains p3(p3 + kp) E 0 (mod p^). 
In general, if n = p (/c > 5) , p being a prime, then a l b (mod p) yields 

the sets {a, 2?}, while # = a + pk~1 gives a third solution to the congruence 
(x - a) (x - b) E 0 (mod pk) if a - 2? E 0 (mod p) . 
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(v) Let n = pq; p, q being primes, (p, q) = 1. Consider the congruence 

{x - a) (x - b) E 0 (mod pq) . (5) 

For a solution of (5), one factor of the left-hand side of (5) must produce 
p and the second one the factor q. So, consider the system 

x ~ a (mod p) , . 
x E b (mod q) . 

Let qb1 E 1 (mod p), p£2 E 1 (mod q). Then a solution of (6) is given by 

x0 = qbYa + pb2b (mod pq). 

Now XQ E a (mod p^) implies a = b (mod ^ ) , and conversely. Thus, if a E 2? (mod 
p) , then (a, b) is an 5-pair, and if a E & (mod q), then (a, &) is an 5-pair. 

Now, assume a t b (mod p), a f b (mod g). There are integers x and z/ such 
that xp + yq = 1. Hence, a - b = (a - b)xp + (a - b)yq or a - b = kp + Iq or 
a - fep = 2? + Iq. Thus, a - kp is another solution of (5), as can be seen by 
substitution. 

(vi) Let n = m1m29 (ml9 m2) = 1. Consider the congruence 

(x - a) (x - b) E 0 (mod (T??1W2))O (7) 

For an extra solution of (7) , it is sufficient that the first factor of the 
left-hand side of (7), i.e., (x - a), is a multiple of m1 and the second one is 
divisible by m2. So consider the system 

x E a (mod m{) ,«s 
x E b (mod m2). 

Let ^ 2 ^ E 1 (mod 777x) , tf^Z^ E 1 (mod m2) . 

Then a solution of (8) is given by 

xQ = m2b1a + m1b2b (mod W1T?72) . 

Now, x0 E a (mod mYm2) implies a = b (mod m2) , and conversely. Also x0 E & (mod 
m1m2) implies a ~ b (mod 7771) . Hence, if a E £> (mod m2) , then (a, 2?) is an im-
pair; if a E b (mod 7722)5 then (a, b) is an 5-pair. 

Assume now that m1 \ a - b and m2\ a - b. There are integers x and y such 
that XT??! + ym2 = 1. Hence, 

a - b = (a - b)xm1 + (a - b)ym2 = fa^ + &w2 or a - km1 = b + lm2. 

Thus, a - km1 is another solution of (7) as follows by substitution. 

(vii) After the preceding cases, it is not difficult to deal with the gen-
eral case 

n = p^p2
2 ... p^. 

As soon as a - b is divisible by pT* , we have an 5-pair s and if pp \ a - b, 
i = 1, 2, ..., t, then there are, besides a and b, extra solutions of the in-
volved congruence. 

Also solved by the proposer. 

Not for Squares 

H~35^ Proposed by Paul Bruckman, Concord, CA 
(Vol. 21, no. 2, May 1983) 

Find necessary and sufficient conditions so that a solution in relatively 
prime integers x and y can exist for the Diophantine equation: 
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A* 

A • 

A • 

x\ 

x\ 

X2 

+ 
+ 

+ 

c 
c 

c 

= 

= 

= 

B • 

B • 

5 • 

y? 
2/2 

yl 

ax1 - by2 - o9 

given that a, b, and a are pairwise relatively prime positive integers, and 
moreover, a and b are not both perfect squares. 

Solution by M. Wachtel, Zurich, Switzerland 

1.1 In conformity with Problem H-350, which represents a special case of 
H-354, the following symbolism is used: 

A, B, and C = constant values 

A, B = relatively prime 

C = dependent on A and B 

C9 x3 y = reciprocally dependent 

1•2 These infinite sequences consist of an undeterminable number of groups 
and classes. Considering the limited space available, only main fragments of 
the whole issue can be dealt with here. 

2.1 First, we have to determine the desired C and the least x1 and y± for 
a given A and B, 

2.2 As to C9 we have to distinguish between: 

a) C_- 1, 2, a prime, a double prime, or a quadruple prime. Then, 
only one sequence exists, containing all terms possible. 

b) If C is one of the remaining composite numbers, then two or more 
sequences exist. No term in a sequence is identical to a term in 
another sequence. 

2.3 To determine ^2, z/2, there does not (presumably) exist a general for-
mula, but an undeterminable number of different construction rules, according 
to the group or class to which the sequence belongs. When both x±i y1 and x2, 
2/2 a^e found, all other terms are determined. See Section 3 below. 

3.1 For x3, 2/3, xhs yh9 ..., xn, yn, the following procedure leads to a 
recurrence formula which comprehends the whole of the terms in integers that 
are possible. 

3.2 The following applies if: A < B. 

3.3 Let: x2 - x1 = VL and y2 - y-y ~ V_-
3.4 Divide u_ and V_ by their greatest common divisor d and let: 

| = £ and 3-7. 

U_» V_ = auxiliary constants relatively prime. 

3.5 Let: U*yl - V ° x± = D_. Now, let 

x_ + x ^ y + y 
-J—_i = p and 

F_9 G_ = auxiliary constants, 

3.6 Further, let: U • yx + V • x± = S± 

U * y2 + V* x2 = S2 

U - yn + V * xn = Sn 
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3.7 and we o b t a i n t h e r e c u r r e n c e formula: 

x3 = F-S1 + Xl y3 = G*S1 - y± 

x^ = F° S2 + x2 yh = G» S2 - y2 

xn = F • S + x n y = G ° S - y 
n n-2 n-2 ^ n n-2 ^n-2 

3.8 The auxiliary constants USV and F5G hold also for any C in a sequence 
corresponding to 4, B. That means it suffices to choose an arbitrary C (fitted 
to A,B) to determine U,V and F9G for any sequence A9B. ~ 

3.9 If A > B, the procedure is similar to that of 3,2 but is omitted here 
to conserve space. 

3.10 Examples (for the sake of brevity and lucidity, the constants A, Bs 
and C are listed only onces and the power "2" above x and y is omitted through-
out) . 

3.11 Example I: A = 21, B = 31, C_ = 19 (= prime, one sequence only, see 
2.2a). 

21 e 6 (x±) 2L ° 5 (2/x) 
u = 124 i = 2 (see 3.4) £ = 102 

130 (x2) 107 (y2) 

%=U U-yi- V»x1 = D J = V 

124 10? 
- ^ == 62_ 6 2 * 5 - 51*6 = 4_ ~ = 51_ 

2/i + 2/2 
= F « = £ 

i f = 3 4 ^ = 2 8 

20,950 (a?3) tf • y1 + 7 • x± = 5X 17,243 (z/3) 
= F • Si + Xi — = G» S1 - yj_ 
= 34 • 616 + 6 62 5 + 51 6 = 616̂  = 28 • 616 - 5 

451,106 (xk) U ° y2 + V* x2 = S2 371,285 (yh) 
= F * S2 + x2 — = G • £ 2 - z/2 
= 34 • 13,264 + 130 62 107 + 51 130 = 13,264 = 28 • 13,264 - 107 

72,696,494 (x5) 59,833,205 (#s) 

Example II: A = 21, B = 31, C = 82 (see 2.2a) 

2J_ • 23 (a?x) 31_ • 19 
147 (#2) 121 

79,957 (ar3) 65,809 
510,113 (xk) 419,851 
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3.12 Example I I I : A = 6, B = 4 1 , C = 1001 (= composi te number = 7 - 1 1 - 1 3 
y i e l d s four d i f f e r e n t sequences , see 2 . 2 b ) , x±, x2, x3. 

Sequence ( a ) : xl9 x2, x3 

_6 • 2 4_1_ • 5 
983,100 376,081 

1,338,320 511,969 

Sequence (b) 

_6 • -80 41 • 31 
92,002 35,195 

14,300,802 5,470,715 

Sequence (c): 

_6 - 248 4J_ • 95 
29,850 11,419 

44,070,130 16,861,531 

Sequence (d) 

6_ • 2,052 41_ * 785 
3,610 1,381 

364,459,330 139,422,469 

Observe: 80 - 2 = 13 • 6 
80 + 2 = 2-41 
248 - 80 = 28 - 6 
248 + 80 = 8 • 41 

_4. Some construction rules for x2, zy2, based on C_: 

4.1 C = 1: x2 = ̂ (45 • z/i - 1) z/2 = ^i(4^ ' xi + !) 

Example: £ = 23, B_ = 26, C_ = 1 

23_ • 185 (#i) = _26 • 174 (#i) 
582,510,055 Qc2)

 Xyi' y" s e e — 587,873,974 (z/2) 

4.2 g = 2: ic2 = ^ ( 2 3 • y\ - 1) z/2 = z/x(Z4 - x\ + 1) 
Example: A = 33 , 5 = 107, C_ = 2 

33_ • 9 Ocx) = « 207 • 5 (2/i) 
48,141 (x2) Xn> y" s e e ±-L 26,735 (z/2) 

4.3 C = 4; ,4, £, x, z/ = odd 

^2 = ̂ [(g'l/i - 1)(3- zyf - 2) - 1] z/2 = yiUB-yj - 2)(B» z/f - 3) - 1] 

Example: A_ = 11, B_ = 47, C_ = 4 
_U • 31 (a?!) 4_7 - 15 (z/J 

3,465,765,931 Qs2) 1,676,666,325 (z/2) 

_5_. Apart from other formulas for xZ5 zy2, based on other values of C_> there 
exist those construction rules for groups (e.g., Problem H-350, and the prob-
lem based on F/L numbers I submitted in July 1982). However, this would be a 
field with no end, thus Problem H-354 has no general solution. 
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