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SOME CONGRUENCE PROPERTIES OF GENERALIZED 

LUCAS INTEGRAL SEQUENCES 

C. S. BISHT 
D.S.B.C. College, K.U. Naini Tal, 263002, India 

(Submitted December 1982) 

1. INTRODUCTION 

Let {Ln} be a sequence on integers defined as 

LQ = 2, L1 = 1, and Ln = Ln_1 + Ln_29 for n > 2. 

This is the famous Lucas sequence. In [1], Hoggatt and Bicknell proved that 
Lp E L1 (mod p) if p is a prime, together with its generalization L^p^L^ (mod 
p). It is interesting to note that these properties are not lost in generali-
zation of the sequence. The purpose of this paper is to prove these results 
for generalized Lucas integral sequences defined in §2 below. One more gener-
alization of Lp E L1 (mod p) has also been proved. In light of these results, 
the sequences given in [2] have been discussed. 

2. DEFINITIONS 

A generalized Lucas integral sequence of order m is defined as 

where ax, a2, . .., am are the roots of the equation 

xm = axxm~Y + a2xm~2 + ••• + am (2.2) 

with integral coefficients and am j1 0. 
These Ln

 Ts are easily obtained in terms of the a^ s by NewtonTs well-known 
formula: 

LQ = m9 Ln = a1Ln_1 + a2Ln 2 + ••• + an_1L1 + nan9 if n = 1,2, . . . , m - 1, 
(2.3) 

Ln = a A - l + a2Ln-2 + • " + "mLn-m> f o r ̂  > m* 

Equation (2.2) is called the characteristic equation of (2.3). 

3. HA IN RESULTS 

First, we shall prove a lemma for each theorem. The monomial symmetric 
functions 

0i-j_ Of-2 ... 0 i n , 

where t l t £2, ..., tn axe. integers as defined in [3]. Equation (3.1), used in 
the proofs of the lemmas, is given in [3]. 

Lemma 3•1 

Let a15 a2, .. . , am be the roots of (2.2). Then J a j 1 ^ 2 .. . a^, with dif-
ferent indices for a's, is an integer. 
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Proof: We prove the lemma by mathematical induction on n. Since 

£ "i1 = a*1 + a*1 + • • • + a*1 = Lti, 

an integer, therefore, the lemma is true for n = 1. Suppose the lemma is true 
for n = s - 1. As all the indices for aTs are different, we have: 

= L a * 1 a*2 ••• ^ts + T,OL^ + tla^ ... a*8_1 (3.1) 

t2 nt3 +t± ts , . . . . V n/** n/*3 ts+t± + E a*2 a*3 + ̂  ... at
8

8_1 + • • • + £ a*2 a . . a 8-1 *~> 1 2 ^ S - l 

Using the induction hypothesis and the fact that X) c^1 i s a n integer, we find 
that 

E ^ a * * ... a^ 

is an integer; i.e., the lemma is true for n = s. So, by induction, the lemma 
is completely proved. 

Theorem 3-1 

Let {Ln} be a generalized Lucas integral sequence and p be a prime number. 
Then 

Lp E L1 (mod p) . 

Proof: By using the multinomial theorem, we have 

(ax + a2. + ... + am)p = E , t. ,PI T~T a*1 a"2 ... a*", (3.2) 
^l• ̂ 2 ' * °  " m* 

where tl9 £2> ..., tm are nonnegative integers such that tx + t2 + ••• + tm - p 
and all indices of afs are different. 

From (3.2), we have 

(a1 + a2 + ... + am) p 

al + ap
2 + ... + ap

m + £ , P" a*1 a*2 ... a^ , (3.3) 
1 ' 

with the above conditions on t^Ts and no t̂  = p. With these conditions on the 
t^ ? s, we have that 

V ... £m! 
is an integral multiple of p. Since for each set of possible values of tl9 t2> 

..., tm all E ai l a2 2 •.. a^ m f s a r e integers, by our Lemma 3.1 we have, from 

(3.3) and (2.1), 
(Lx)p = Lp + pX9 where A is an integer. 

Using FermatTs little theorem, we get 

Lp E Lx (mod p). 

This completes the proof of Theorem 3.1. 
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Lemma 3.2 

Let a19 a2, . .., am be the roots of (2.2). Then, for different indices of 

a?s, 5Z (aj1a2
2 ... a^l

n)k is an integer for every positive integer k. 

Proof: Simply write kt^ for t± everywhere in the proof of Lemma 3.1. 

Theorem 3*2 

Let {Ln} be a generalized Lucas integral sequence and p be a prime number. 
Then, for every positive integer k, 

Lpk = Lk (mod p) . 

Proof: (aj + a2 + ••• + a ^ ) p 

p! 
y- ' y- i is a multiple of p and £ (ex* a^2 ... a^m ) is an integer for every 

given set of values of t±3 ..., tm hj Lemma 3.2. Therefore, 

(Lk)p - Lpk + p\19 where X1 is an integer 

or Lpk = Lk (mod p) , by Fermat*s little theorem, 

Lv
k = Lk (mod p) . 

Lemma 3-3 

Let ax, a2, ..., am be the roots of (2.2). Then, for different indices of 
ot * s 

E C o ^a* 2 ... atnfP* = E(ct*la*> ... a*")*?'"1 (»d p"). 

Proof: We shall prove the lemma by induction on P. In order to prove the 
lemma for r = 1, we have to prove 

ECcx*1^2 ... a*»)*p = E ( a ^ a ^ ... a*»)* (mod p). (3.4) 

The congruence (3.4) may be proved by induction on n. Since 

E (a* 1)^ - ZCal1)^ = L t l k p - Ltlk 

='.0 (mod p) (by Theorem 3.2), 
or 

Z (a^ 1 )^ E £ (a*1)* (mod p). (3.5) 

Therefore, (3.4) is true for n = 1. Consider the equation 

(£ajlkp)(i;<a*'cx*' ... a*-.,)*") 

= E C a ^ a * 2 ... a*/)fcp + E(«*2 + tla*3 ... a,*!,)^ 

+ E(a**a*'+tl ... at'./" + '•• + E (c^a*3 ... at;.+1
tl)kp. 
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Using the induction hypothesis and (3.5), we have 

(2X'*)(E(a*2a2*3 ... a*-.,)*) 

= £ ( a^a* 2 . . . al°)kp + £ ( a ^ + t l V 3 . . . «*<_/ 

+ £ (a*2a2*3+*i . . . a*'.!)" + • • • + £ (aj'a*> . . . a*-_ + *i)* (mod p) 

or 

£ (a*1"*2 ••• a* ' )* p = E (a^a*» . . . a*»)* (mod p ) . 

This proves that (3.4) is true for n = s. Thus, induction completes the proof 
of (3.4). 

Next, we suppose that our lemma is true for v = s. That is, 

E<o^a*» ... a'„")kp' = E(«i1a2
t2 ... o ^ 1 ) * " " 1 (mod p«) 

or 
Ax + ••• + X^ = X^ + • • • + X^ (mod p s ) , 

where q is the number of terms in the expansion of 

£a*la * 1 ™ * 2 ™ * « 
.. a„ 

and each X is the product of powers of the afs. Therefore, 

(X*P' + ... + x^'jP = a*/*-1 + ... + x^'" 1 )" (-°d PS + 1) 
or 

*r\ • — *ri
 + E , , p !

 y , ( £ x ? . . . A->*• 
M-]_ • • • • M q-

-= x r + - + ^r + E U ,p!
 u l (x^x^. . . xV)*"-1. 

pi 
Since :—— r is a multiple of p and 

yx! ... y«! ^ 
S ( ^ ^ ...x£«)*p' E ECX^X^ ... X^)^3"1 (modp*) 

by the induction hypothesis, we have 

, k p s + 1 . , nfePs + 1 - v
f c P B . . i k P a / J s + lx 

X / + ••• + Xq = Xx + ••• + X<? (mod ps + ±) 
or 

EXa*!1^' ... a*')kp* s E ^ a * 2 ...a*")k p' (modps + I ) , 
which shows that the lemma is true for r = s + 1. Thus, the lemma is proved 
completely by induction. 

Theorem 3*3 

Let {Ln} be a generalized Lucas integral sequence and p be a prime number. 
Then, for positive integers k and r, 

Lkvv ~ Lkp1"1 (mod Pr)* 
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Proof: The proof will be given by induction on r. By Theorem 3.2, 

Lkp E Lk (mod P)• 
This proves the theorem for r = 1. 

Suppose that the theorem is true for v = s - 1, i.e., 

£fcpa-i E £fcp"-2 (m° d P 3" 1)* 
which implies 

^p--i E Lkps~2 ( m o d P*>- ( 3 - 6 ) 
Now, 

(af--1 + ... + a r _ i ) p = a r + ••• + .«*"•+.ETT-EL-rj<«iti ••• -i-)*""1 
^ 1 • • • • ^ 7 7 7 • o r 

Lvn*-i = ^ + L T T - - T - r C a / a , 2 . . . a™) ^ . j^-ps-l -U^p 

Similarly, 
TP T , V P- / t i to tm,kp8 

"1 
On subtracting, we get 

rp TV 

= V - - * * P - + E TT^-n-Ital1 ... a',-)*""1 - ia? ...c£)*p' 

Using (3.6), - T — j — — — — — is a multiple of p, and Lemma 3.3, we have 
' i ; 

LfeD» E L ^ » - ' ( m o d P S > ' Jkps kpB 

which shows that the theorem is true for v = s. Therefore, the theorem is com-
pletely proved by induction. 

Note: Theorem 3.3 is a generalization of our previous theorems. The beauty 
of this theorem is that multiplying the index of each term of the difference 

Lkp* " Lkp1"1 

by p produces one more factor p to the new difference. It is observed that 

Lkp8 t Lkp.-i. (mod p s + 1 ) 

in most of the cases. In some cases, there exist primes where this incongru-
ence relation fails. For example, we take the sequence 

L0 = 3, Lx = 1, L2 = 5, and Ln = Ln_1 + 2Ln_2 + Ln_3, for n > 3. 

Writing a few initial terms of the sequence, 

3, 1, 5, 10, 21, 46, ..., 

we find that there exist primes 2 and 3 such that 

L2 = L (mod 4) and L% = L± (mod 9). 

4. SEQUENCES WHERE p\Lp FOR EVERY PRIME p 

Sequences of this type have been considered in [2]. First, let us prove 
the following simple theorem. 
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Theorem 4.1 

Let {Ln} be a generalized Lucas integral sequence. Then, for every prime 
p, p\Lp <=> L1 = 0. 

Proof: Suppose L1 = 0. Therefore, by Theorem 3.1, 

Lp = 0 (mod p), i.e., p|£p for every prime p. 

Conversely, suppose p\Lp for every prime p. We find, again from Theorem 3.1, 

L1 = 0 (mod p) for every prime p. 

This implies that L± = 0. Hence, the theorem is proved. 

Note: In light of this theorem, we conclude that for making such sequences 
we need L1 = 0. Ensuring the right start as pointed out in [2] is not needed. 
As a matter of fact, this right start is a consequence of L1 = 0. Moreover, it 
will be an appropriate place to point out a shortcoming in Lehmerfs proof pre-
sented in [2]. He first takes integers x9 y9 z9 and t9 and then allows x = a, 
y - 3J s = y, and t - 6, which are not integers because a, 3» Y> and 6 are the 
roots of the characteristic equation xh = 2x2 + 2x + 1. Consequently, one can-
not argue that Fp(x9 y, s, t) is an integer implies Fp(a9 3s Y* 6) is also an 
integer. In fact, Fp(a, 3> Y» <$) is an integer, as we see in our Theorem 3.1, 
with the help of Lemma 3.1. 
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ON WEIGHTED STIRLING AND OTHER RELATED NUMBERS 
AND SOME COMBINATORIAL APPLICATIONS 

Ch. A. CHARALAMBIDES 
University of Athens, Panepistemiopolis, Athens 621, Greece 

(Submitted December 1982) 

1 . INTRODUCTION 

The s i g n l e s s ( a b s o l u t e ) S t i r l i n g numbers of t h e f i r s t k ind 

S1(m9 ri) = (-l)m~ns(ms ri) 
and t h e S t i r l i n g numbers of t h e second kind 

S(m9 ri) 
may be de f ined by 

S^m, ri) = ( - I ) 1 ""* ±[D
n(x)n]xmQ, S(m, ri) = ^ - [ A V ] ^ , 

where (x)m = x(x - 1) ... (x - m + I) denotes the falling factorial of degree 
m9 D the differential operator, and A the difference operator. The numbers 

C(m9 n, r) = — j ib?(vx) m ] x = 0 , r a real number, 

which first arose as coefficients in the n-fold convolution of zero-truncated 
binomial (with p a positive integer) and negative binomial (with v a negative 
integer) distributions (see [1]) and have subsequently been studied systemati-
cally by the present author in [6], [7], and [8], are closely related to the 
Stirling numbers. This was the reason why Carlitz in [2] called the numbers 

S^m, n\X) = (-lf~n\~nC(m, n, A), S(m, n\X) = \mC(m, n, X"1) 

degenerate Stirling numbers of the first and second kind, respectively. 
Recently, Carlitz introduced and studied in [3] and [4] weighted Stirling 

numbers S1(ms n, X) and S(m, n, X) by considering suitable combinatorial inter-
pretations of S^m, ri) and S(m, ri) , respectively. Several properties of these 
numbers and the related numbers 

R1(m, n, X) = S1(m> n + 1, X) + 51(m, ri) , 
a n d R(rn9 n, X) = SQn, n + 1, X) + S(m, ri) 

were obtained. 
In the present paper, by considering suitable combinatorial interpretations 

of the number C(jn, n, v) when v is a positive or negative integer, we introduce 
the weighted (7-number, C(m, n; r, s) , with r an integer and s a real number. 
Certain properties of these numbers are obtained in §2. 

The related numbers 

G(m9 n; r, s) = C(m9 n + 1; r, s) + C(m9 n, r) 

are shown to be equal to 

G(m, n; r9 s) = — [ k n ( r x + s)m]xmQ. 
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These numbers have been systematically studied in [9]. A representation of 

G(m9 m - n; r, s) 

as the sum of binomial coefficients is obtained and certain properties of 

m 
Gm(r, s) = £ G(W> n> r> s) 

n = 0 
are derived in §3. 

Combinatorial applications of the numbers 

E1(mi n, A), R(jn9 n, A), and G(m9 n; P, S) 
are discussed in §4. 

2. THE NUMBERS C(m, n\ r, s) 

The C-numbers 

C(m, n, r) = ̂ y-[An (rx)m ]xssQ 

may be expressed in the form (see [7]): 

Cirri, n, r) = ~j ^ C ( O T ; k19 k2, ..., km; r) , (2.1) 
. *Tr(m, n) 

where 
(k1 + k2 + • • • + km) ! /v,k1 /v.kz /r\k„ 

C(m; kl, k2, .... km; r) = fc^,,..^, (\) (J) ... Q (2.2) 

and the summation is over all partitions TF(W, n) of m In n parts, that is, all 
nonnegative integer solutions (kl9 k2, . .., km) of the equations 

k± + 2k2 + • - • + 7??fcm = m9 k± + k2 + * • • + km- = n* (2.3) 

Note that C(m; k19 k29 ..., km\ v), v a positive integer, is a distribution 
of (number of ways of putting) m like balls into k1 + k2 + ••• + km different 
cells, each of which has r different compartments of capacity limited to one 
ball, such that kj cells contain exactly J balls each, j = 1, 2, ..., m. When 
the capacity of each cell is unlimited, the corresponding number is equal to 

\C(m; k19 k29 ..., km; -r)\ = (~l)mC(mi k19 k29 ...,-km; -r), 

where r is a positive integer. 
The expression (2.1) leads to the following combinatorial interpretations 

of the C-numbers: 
m\ 
-—j- C(m9 n, 2?) , v a positive integer, 

is the number of ways of putting m like balls into n different cells, each of 
which has r different compartments of capacity limited to one ball, with no 
cell empty. When the capacity of each compartment is unlimited, the corre-
sponding number is equal to 

—y\C(m9 n9 -3?) | = (-l)m—\€{m9 n, -v) , v a positive integer. 
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(2.4) 

Consider the weighted number of distributions 

C(m; k19 k2, ..., km; r9 s) 

= (ki + fc2 f... + K)l E(Kw± + k2w2 + ... + fcA) 
where the weights 

î . = ̂ -(r, s) = (s)^ /Wj, J = 1, 2, ..., 772, r a positive integer, 
s a real number, 

and the summation is over all distributions of 7?? like balls into k1 + k2 + 
+ &m different cells, each of which has r different compartments of capacity 
limited to one ball, such that kj cells contain exactly j balls each, j = 1, 2, 
.. ., 777, and 

C(m; k19 k29 . .., kw; -r, s) 

- (ki + k2+\r7Tl^^(kivi + M2
 + ••' + KvJ (2.5) 

where the weights 

vd = vj(~r> s ) = (sh' Z(~~rh' > 3 = -1' 2 , . . . , 772, p a p o s i t i v e i n t e g e r , 
s a r e a l number, 

and the summation is over all distributions of 777 like balls into k± + k2 + 
+ km different cells, each of which has r different compartments of unlimited 
capacity, such that kj cells contain exactly J balls each, j = 1, 2, ...,772. 

Let 

C(jn9 n; v9 s) = /J C{m\ k19 k23 ..., & ; r, s) , r an integer, (2.6) 
•n(m,ri) s a real number, 

where the summation is over all partitions IT(777, n) of 777 in n parts. The num-
bers , _ 

C(m9 n; rs s) = — C(m,-n; r9 s) (2.7) 

may be called weighted C-numbers. 
Putting s = v in (2.4) and.. (2.6), with Wj = 1, J = 1, 2, -.-.., 777, we obtain 

C(m9 n; v9 r) = C(m,.n, r), (2.8) 

while putting s = -2? in (2.5) and (2.6), with Vj = 1, J = 1, 2, . ... , m, we get 

(-l)mC{m9 n; ~v9 -v) = (-1)/7ZC(?7?, n, -2?) ='|C(m,n, -2?)|". (2.9) 

Now consider the generating function 

F(t, w1,.w2, •-...; P5 e) = X) S C{jn\k^ k2> ...,.km; r, s) —yU^-U.^... u;n
m, 

m = 0 Tr(rn) 

2» an integer, 
s a real number, 

where the inner summation is over all partitions i\{m) of m, that is, over all 
nonnegative integer solutions (kl9 k2% ..., ftm) of the equation 

k± + 2k2 + • • • + mkm = 772. 
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Using (2.4) when T is a positive integer and (2.5) when r is a negative inte-
ger, we get 

F(t9 ul9 u2i ...; r9 s) 

- i o A-js <Mi+M2+ • • •+ wki lkf;.. v [(O^f^M]*1 • • • [GK̂ P 

The generating function 

F(t, u; r, s) = 22 E C{m9 n; v9 s)-rw" 
n-0 m^ n m' 

(2.10) 
~ +rr 

'ml 
: E E <?0> n; r9 s)-^-uTl 

m=0 n=0 

may be obtained from F(t9u19 u > . ..; i», s) by putting Uj = u9 j = 1, 2, ... . 
We get 

F(t,u;r, s) = u [ ( l + t ) s - l]exp{w[.(l + t)r - 1 ]} , (2.11) 

and 

/ (*; r , s) = 2 c(m» »; r> s ) ^ r = / „ _ n , [ d + *) a - i ] [ d + * ) r - H " " 1 . (2.12) 

The corresponding generating function of the usual C-numbers is ([7]): 

m=n m' n' 
Since 

fn(t; r,.s) = [(1 + t)s - l]fn^(t; r)., 

we find 
m - n + 1 

C(77i, n; r, e) = E U ) 0 0 ^ 0 * - j, n - 1, r). (2.14) 

Note that (2.12) for s - v reduces to 

fn(t; r9 s) = nfn(t; r), 

which implies (2.8) and (2.9). 
Using the relation ([7]), 

(s)j = E «J> k> r)(s/r)k. 
k = l 

(2.14) may be written as 

C(m9 n; v9 s) = E fj E C(j, K r) (e/r) J<7(w - j, n - 1, r) 

rri-n-l l-n-1( m / ) 
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From (2.13), we have 

which implies 

(k I n)c(m, k + n, r) = jt (J) W * *> ^c^m ~ 3> n> ^ • 
Therefore, j - k < J / 

C(m, n; r, s) = £ V k )°(m> n + k " *' p) (s/p)* " (2'15) 

fe = i 

Using the generating functions (see [3]), 

^L _ -hm 1 

0„(*' x> = £ Si<m, n, X ) ^ - - , _. n,[(l - t)-A-l][-log(l - t)]""1, (2.16) 

and «, m 

Kit) = E s f c w>|r = ir(e t - D"-
m = n "' * r t ' 

(2.12) may be expressed as 

/ „ ( * ; r , 8) =jtnC(m, n; r, s ) g - ( n _X ^ , [ ( 1 + t ) s - i ] [e*log<i+t> _ 1 ] n - i 

= £ > ( f c - 1, n - l ) ^ - 1 ) ^ ^ ^ , [ ( 1 + t)s - l ] [ l o g ( l + t)]k-^ 

oo oo m 

= £ r ^ S t f c - 1, n - 1) £ ( - l r ^ - ^ O n , fc, -a ) | j -
' fc = n m = n * 

00 ( m ) -f"7 

= £ < £ ( - D m " ? ; - V - 1 5 1 ( m , fc, -s)5(fe - 1, n - 1)}^; 
m = rc ( fc = n \ m ' 

m ' _ 
C(m, n; r9 s) =' £ ( - l ) 7 7 7 " ^ 1 ! ^ " 1 ^ ^ , fc, -s)S(fc - 1, n - 1) . (2.17) 

/c= n 

hence, 

and 

Again from (2.12) we have 

lim r-n + 1fn(t; r, s) = J n,[(l + * ) s - l][log(l + t)]""1 

l±m f (t/r; r, s) = * n,(e A t - l)(e* - l)"" 1, if lim f = X, 

which, by virtue of the generating functions of the weighted Stirling numbers, 
(2.16), and (see [3]) 

Ht, X) = £ s ( m , n, X)|r °  . n,(e X t - D(e* - l ) " - 1 , (2.18) 

imply 

lim r-'nn?(w, n; r, S) = (-l)m"n + 1SAm, n, -s) (2.19) 
and ^ °  _ • .• i 

lim r~mC(m, n; r, s) = S(rn, n, X), if lim - = X, (2.20) 

respectively. 
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3Q THE NUMBERS G(m, n; r, s) 

Let 
G(m9 n; p, s) = C(ms n+ 1; P, s) -+ C(m9 n9 r). 

Then (2.14) implies 

Since 

m- n . 
G(m9 n; r9 s) = X ( A (s).C(m - j, n9 p). 

.7 = o \ <7 / J 

(3.1) 

(3.2) 
j = o 

Cfa, n, P) = ̂ y[An(p^);77]a,==03 w = 0, 1, 2, ..., m, TT? = 0, 1, 2, ., 

and 

it follows that 

C(m, n, p) = 0 for m < n9 

1 An £(777, w; *», s) = £ ("•) (shC(m - j\ n, p) = -^-A" 
j=0 \J / ri. .J = 0 a;= 0 

ands by virtue of Vandermondefs convolution formula, 

G(m, n; r, a) = ̂ [A* («c + S ) J X . 0 = ̂  £(-!)»-*(£) (l* + s ) m . 

These numbers, shown as coefficients in a generalization of the Hermite poly-
nomials considered by Gould and Hopper, were systematically studied in [9]. A 
representation of G(ms m - n; p, s) as the sum of binomial coefficients will be 
discussed here. 

The numbers G(ms n; P, S) satisfy the triangular recurrence relation 

G(m + 1, n; P, s) = (rn + s - m)G(m, n; P, s) + vG(m9 n - 1, P) (3.3) 

with initial conditions 

G(0, n; P, s) = S0n, G(m, 0; P, S) = (s)m, and G(ms n; P, s) = 0 for m < n. 

P u t t i n g n = m + 1, we ge t 

G(m + 1, 77? + 1; p , s) = vG{m9 m; P , s), m = 0, 1, 2, . . . 
and 

£(m, m; P , s) = p m . 

If we put n - 1 in (3.3), we find 

G(m + 1, 1; PS s) = (P + s - m)G(m9 1; P, S) + z>(s)„ 

and, in particular, 

C(2, • 1; p, s) = (P + s - 1 ) P + PS = r(i» + 2s - 1) .. 

Again, if we put n = TT? - /< + 1 in (3.3), we obtain 

£(777 + 1, 777 + 1 - k; P , s) - vG{m9 m - k; P , S) 

= [p(777 - k + 1) + s - m]G(m5 m - k + 1; P , S) 
or 

-m + k 

( 3 . 4 ) 

Lmr'm+KG(m9 m - k; r9 s) 
= r " m + / c " 1 t ( r - 1)772 - r(k - 1) + s]£(77z, TW - A: + 1; P , S ) . ( 3 . 5 ) 

For k = 15 we have 
hmr~m + 1G(m9 77? - 1; p , s) = ( P - 1)777 + s 

1984] 301 



ON WEIGHTED STIRLING AND OTHER RELATED NUMBERS 

and 

r-m + 1G(m, m - 1; p, s) = A ^ K P - l)w + s] = (P - 1)(2) + *(*) + X. 
Since (7(2, 1; p, s) = r(r + 2s - 1), X = 0, and 

r-m + 1£(m, m - 1; r, s) = (P - 1)(2) + e(j) • (3.6) 
Taking k = 2 in (3.5), we get 

r-m + 2G(m, m - 2; p, s) == A;X<[[(P - l)w + s - p] [(P - 1)(^) + *.(j)]}. 

which on using the relations 

»-.'{.(?)}-K,: o - ( J : a - « • »G: * ) + ' 0 : I ) -
gives 

p-w+2£0n, m - 2; P, 8) = 3(P - 1)2(^) + (p - l)(p + 3s - 2)(*) + s(s - 1)(^). 
Hence, r~m+2G(m9 m - 2; r, s) is a polynomial of m of degree 4. Consequently, 
r~m+nG(m, n - n; P, s) will be a polynomial of m of degree In. Let us write it 
as follows: 

In , . 

p"m+n£(m, m - n; p, s) = E fl(w, fc; P, s ) ( 2 n ^ fc). 

Multiplying both numbers by [ (p - 1)??? - rn + s] and using (3.5), we have 
2n Amp-w+n+1(;(m, m - n - 1; p , s) = E « n , fc; P , S ) [ ( P - 1)??? - rn + &](2n

W2_ j,)» 
and since 

A ^ [ ( P - Dm - r n + s](2n
m- k) 

- ( P - 1)(2„ - fc + D ( 2 n _W, + J + [ ( P - l ) (n - *> - n + s ] ( 2 n _* + J , 

we get 
-w+n + i£ ( 7 7 2 j m _ n _ i; P , s ) 

2n 

?c=0 

and 

£ (2n - fc + l ) ( r - l)ff(n,. fc; r , s > ( 2 n _ fe + 2 ) 

+ £ t ( r - D ( " - k) - n + e]H(n, k; r, s)(2n _ \ + J + K 
k= 0 

KZ+ 2 / m \ 
L f l ( n + 1, *; r , s ) ( 2 n _ & + J 

D (2n - k + 1 ) ( P - l )#(n , fc; P , s ) ( 2 n _ fc + 2 ) 

2 n + l / 777 \ 

+ E [(« - fe + D ( * \ - 1) - n + e]H(w, fc - 1; r , s ) ( 2 n _ j , + 2 ) + 

fc=0 
2n+ 2 

L 
2n 

= £ 
?c=0 
2n+ 1 

Therefore, 
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H(n + 1, k; r, s) = (2n - k + 1) (r - l)#(ft, fc; P, s) 

+ [(ft - fc + l)(p - 1) - n + s]#(ft, fc - 1; P, s) (3.7) 
and 

#(n + 1, 2n + 2; r, s) = Z. 

From (3.6), it follows that 

H(l, 0; P, s) = v - 1, #(1, 1; P, s) = s, and #(1, k; P, s) = 0 for fc > 1. 

Putting successively n = 1, 2, ... in (3.7), we conclude that 

H(n9 k; P , s ) = 0 i f k > ft, 

and hence , 

r-m + n£072, TTZ - ft; P , s) = £ #(ft, fe; P , e ) ^ 7 ^ fe)- (3 .8 ) 

Using (3.7), we may easily deduce that 

H(n, n; r, s) = (s) . ft = 1, 2, ..., (3.9) 
and 

.n (2ft)! H(n, 0; P, s) = ( P - l)nl • 3 • 5 • ••• • (2n - 1) = (r - l ) n ^ ;' (3.10) 
n\2n 

Moreover, for 
^„(r, e) = £ (-l)n'^(n, fc; P, e) 

k = o 
we get 

Sn(z», s) = [(s - r + 1) - r(n - l)]Sn_1(r, s), n = 2, 3, ..., 
and 

^(p, s) = -5(1, 0; p, s) + 5(1, 1; P, s) = s - P + 1. 

Therefore, 

S„(r, *) = E (-Dn'*H(n, fc; P, a) = Pn(g " ̂  + M - (3.11) 

, - I Jyi _ "7 \ 

Multiplying both members of (3.8) by (-l)m"r«MiC-" d) and summing for TTZ = ft, 
ft + 1, ..., 2n - j , we obtain the relation 

2n- j 
H{n, j ; r, s) = £ {-l)m+HZn " <7Vm+*G(m, n - n; r, a), (3.12) 

m = n \ rn / 

which leads to interesting combinatorial interpretations for these numbers or, 
more precisely, for the numbers 

G2(m, n% P, s) = rnH(m - n9 m - 2n; P, s) 

E(-l)k(™)rkG(m - k, n - k; r, s). (3.13) 

L G(jn, n; r, s)-^ = ̂ -(1 + t)s [(1 + t)r - l]n 

fc=0 
Since (see [9]) 

it follows that 

£ G2(m, n; r, s ) ^ = E < E (-l)k(£)r*G(m - fc, 
m = n '"• m=rc (fc = 0 X *' 

n - k; r, s)}^ 
ml 

(continued) 
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= £ i-Dk^ff-T.GOn - k ; n - k , v, s) * 

= ^-( i + * ) S E ( £ ) t a + ty - i ]* -^ -**)* , 
and 

E G2(TTI, «; *, s)^- = -̂ -(1 + t)s[(l + t) r - 1 - P £ ] V (3.14) 

Consider n different cells of P different compartments each and a (control) 
cell of s different compartments. The compartments may be of limited capacity 
or not (Riorday [11, Ch. 5]). From (3.14), it follows that the number of ways 
of putting 77? like balls into these cells such that each cell among the first n 
contains at least two balls is equal to 

^y G2(m, n; P, s) 

when the capacity of each compartment is limited to one ball and to 

(-If̂ f G2(m, n; -P, -s) 

when the capacity of each compartment is unlimited. 
It is worth noting that the expression (3.8) may be written in the form 

r-m+nG(ms m - n; r, s) = E L(n, j; p, s)(W^J), (3.15) 

where, on using the relation 

\ In ) fe?0 \k)\2n - k) 

the coefficients L(n9 j ; PS s) are related to the coefficients H(ns k; P, s) 
by 

n , . v 

H(n, k; P, s) = E (^jM^ 3\ r> s)," (3.16) 
j = k 

L{n, j; P, s) = E (~l)k-H))H(n9 k; P, s)-. (3.17) 

Moreover, L(n, j ; P, s) satisfy the recurrence relation 

£(n + 1, j; p, s) = [(a? - l)(n + j + 1) + n - s]L(n, j; p, s) (3.18) 

+ [(P - 1) (n - j + 1) - n +'• s]L(n, j - 1; P, s), 

with initial conditions 

L(l, 0; r, s) = r - s - 1, L(l, 1; P, S) = s, and L(n, j ; P, S), = 0 if j > n. 

Also, by (3.9), (3.10), and (3.11), 

L(n, n; P, S) = Z/(n, n; P, S) = (s)n , w = 1, 2, ..., (3.19) 

L(n, 0; p, s) = E (»D^(n, fc; P, a) = (-l)nPn(- ^-± Jl) . (3-20) 

^ (2n)! 
; n\2n 
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We conclude this section by considering the sum 

m 
Gm^, s) = E G{m9 n; r9 s) , (3.22) 

n = 0 

which for s = 0 reduces to 
m 

Cm(r) = E C(ra, n9 r). (3.23) 
rc = 0 

This sum has been studied in [5] and also by Carlitz in [2] as 

m m 

Ama) = E S(m, n\\) = £ AmC(m, n, 1/X) = \mCm{l/X). 
n=0 n=0 

Note that, since (see [7]) 

lim r-mC(m, n, r) = S(m9 n), (3.24) 

it follows that 
777 

lim r ' X W = E f̂a, «) = 3m. C3"2^) 
**-*° ° n = 0 

where Bm denotes the Bell number. Also from (3.1) we get, on using (2.20) and 
(3.24), 

lim r~mG(m9 n; r, s) = S(m9 n + 1, A) + S(m9 ri) 

Hence, 

= R(jn9 n9 X), X = lim —. 

7>->- oo 2? 

777 

lim r""Gm(r9 s) = E Hm, >̂ X) = B_(X), A = lim f, (3.26) 

where the number Bm{X) has been discussed by Carlitz in [3]. 
Now, from (3.22), (3.23), and (3.2), it follows that 

m m-n 

Gm(r> s) = E Z [A(8)jC(m - J, n, v) = E H W J £ ^ " <?> n> p)' 
n = 0 j = 0 X t y / j = o X t / / n « 0 

777 , v 

Gm(r, a) = E • ( S ) ^ B . i W . (3-27) 
j = 0 x d ' 

*<*; r , a) = £ Gm(r, a ) ^ = £ ( ^ ) * ' £ C^<r)iL 
777=0 W * J = 0 V ^ ' 777 = 0 ™ * 

(1 + t)sexp{(l + tY - 1}, (3.28) 

since (see [5] or [2]) 

Fit; P) = E CmWh- = e x P{d + *>* " ! } • 
777 = 0 ' * 

We have 
F(t; v9 s + 1) = (1 + t)F(t; r9 s) 

and, hence, 

Gm(r, s + 1) = Gw(r, s) + mGm.1{r9 s), TW = 1, 2, . . . , £0(r, s) = 1. (3.29) 

Differentiation of (3.29) gives the differential equation 
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(1 + t)~ F(t; r, s) = sF(t; r, s) + r(l + t)rF(t; r9 s), 
which implies 

Gm+1(r, s) = (s - m)Gm(r9 s) + r'J (J) (r). Gm_.(r, s). (3.30) 

Writing the generating function F(t; r, s) in the form 

. rk+ s 
F(t; r, s) = e^d + t)sexp{(l + t)r} = e ' 1 ^ i f (i + ty 

k = 0 k\ 

= e_ 1EF^w + s)^^T' 
we find 

n * (rfc + s)m 
GJr, s) = e-1 E W-^ (3-31) 

which should be compared to Dobinski!s formula for the Bell number: 

o°  7, m 

*m = ̂ E T T - (3.32) 

From (3.31) we obtain, on using (3.32) and the relation (see Carlitz [3]), 

m 
(rk + s)m = £ {-l)m-nR^m, n, -s)rnk\ 

n = 0 
m 

Gm(r> s) == £ (-l)m"Bi?1(m, n, -s)r"5n. (3.33) 

COMBINATORIAL APPLICATIONS 

*i.1 Modified Occupancy Stirling Distributions of the First Kind 

Consider an urn containing v identical balls from each of n + v different 
kinds (colors). Suppose that m balls are drawn one after the other and after 
each drawing the chosen ball is returned togather with another ball of the same 
kind (color). Let X be the number of kinds (colors) among n specified appear-
ing in the sample. The probability function of X, on using the sieve (inclu-
sion-exclusion) formula, may be obtained as 

p1(k; m, n, r, v) = Pr(X + k) 

(n\ V f-n*~H ̂  \(TJ + rv + m - l\ I Ivn + rv + m - 1\ 

= 7 ; ; : r-r— \G(m, k\ ~2», -TV) , (4.1) 
(rn + rv + m - l)m ' ' 

k = 1, 2, ..., min{w, n}. 

Now, consider the case where the number m of balls is not fixed but balls 
are sequentially drawn and after each drawing the chosen ball is returned to-
gether with another ball of the same kind until a predetermined number k of 
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kinds among the n specified is represented in the sample. Let I be the number 
of balls required. Then the probability function of J is given by 

qi(m; k9 n, r9 v) = Pl(k- 1; m- 1, n9 r9 v ) ^ ~ / + V - 1 

(rc)fc-i , 7 , , r(n - k + 1) 
= -7 ; ; rr \G(m- 1, k- 1; -r9 -rv) — ^ ; ~-

(rn + rv + m- 2)m _ 1' v ' ' lrn + rv + m- I 
K ]G(m-l3 k-1; -r9 -rv) \ , (4.2) 

(rn + rv + m- I). 

m = k, k + 1, ... . 

Suppose that lim rn = 0 and lim r^ = X, then since (see [9]) 
v -*• 0 2* -»• 0 

lim r-k\G(m, k; -r9 -rv) \ = |s(m, fc, A) I = S,(m9 k9 X) 

it follows from (4.1) and (4.2) that 

pAk; m, Bs A) = limp_(fc; m9 n9 r9 v) = , ^ T-T—S^fa, A:, X ) , (4.3) 
1
 P->o -1 W -r A + 777 - i;m 

and 

q,{m\ k, 6, A) = lim q,(m\ k, n9 r9 v) 

(9)k 

- (e + x + ̂ - i r ^ 0 " " *' fe~ ls X)- (4-4) 

Note that (4.3) gives in particular A = 0 the occupancy Stirling distribu-
tion of the first kind (cf. Johson and Kotz [10, p. 246]). 

4.2 Modified Occupancy Stirling distributions of the Second Kind 

Suppose that m distinct balls are randomly allocated into n + r different 
cells and let X be the number of occupied cells (by at least one ball) among 
n specified. Since R(m9 k9 r) is the number of ways of putting the m balls 
into the n + r cells such that k cells among the n specified are occupied (by 
at least one ball), it follows that 

(n) 
Pr(X = k) = *— R(m9 k9 r), k = 1, 2, . .., m±n{m9 n]. (4.5) 

(n + r)m 

The factorial moments of X may be obtained in terms of the number R(jn9 k9 r) as 
follows: 

H W ) = t ik)dPr(X = k) = * ±&)d(n)kR(.m, k, r) 
k=j \Jl + P) k = r 

i£r£&--flfc**-*-r) 

(continued) 
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3).R(m, i + j , r ) . 

Since 
n - j" 
E ( n v J')(^ + ftiRim, i + J, P) - TT E J ( n „• J V + J > = \ kjEn-Jrm 

i = 0, U ' d ' -i = o ' ^ * 

~ AJ'(p + n - j)"7 = i?(/7z, j, r + n - j), 

1 / n \ 

Now, consider the case where the number of balls is not fixed but balls are 
sequentially (one after the other) allocated into the n + r different cells 
until a predetermined number k of cells among the n specified are occupied. 
Let Y be the number of balls required. Then, 

(n + v)m~x > J n + r 

(n) v 
Rim - 1, k - 1, r), m = k, k + I, ... . 

(n + r)m 

Since ^ Pr(Y = m) = 1, we must have 
m = k 

1 1 £ i?(777 - 1, fe - 1, r) 
m~k (n + r)"7 (n)fc 

This relation holds in the more general case where v is any real number and n 
real number different from 0, 1, 2, ..., k - 1. Indeed from Carlitz [3], 

~ "m zk 

2~>k
R(m> k> V*m = "(i - Xz)(l - (A + l)s) ... (1 - (A + k)z) 

i t fo l lows t h a t 

E i ? ( m - 1, fc - 1 , P ) ^ " 1 = — : — ~ — • l-
m = k ( s " 1 - A ) ( s _ 1 - A- 1) . . . O s ^ - A - f c + l ) ( s - 1 - X ) k 

and putting z'1 - X = n, z = (n + A)" 1 , we obtain 

E # 0 w - 1* fe - 1, A) -m^k {m + X)m (n)k 

Remark 4.1 

The distribution (4.5) with r not necessarily a positive integer arose in 
the following randomized occupancy problem (see [10, p. 139]). Suppose that m 
balls are randomly allocated into n different cells and that each ball has 
probability p of staying in its cell and probability q = 1 - p of leaking. Let 
I be the number of occupied cells. Then, the probability function of X may be 
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obtained by using the sieve (inclusion-exclusion) formula in the form 

k 
Pr(X = k) = (J) E (-DJ'(J)(<7 + P(* - Q)ln)m 

(n)k 
- __ #(W j fc, X) , k = 1, 2, . .. , mln{m, n}, A = no/p. 

(n + X)m 
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ON A FAMILY OF NESTED RECURRENCES 
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1. INTRODUCTION 

A recursive definition of a function / is called nested if, in the defini-
tion body, the function f is called with an argument whose evaluation involves 
yet another call to function /. A famous example of such a nested recursive 
definition is "McCarthy's 91-function" 

f(n) 

whose solution 

fin) 

fifin + 11)) 0 < n < 100 

n - 10 n > 100 

91 0 < n < 100 

n - 10 n > 100 

is described in [2, p. 373]. Such recurrences seem difficult to understand and 
solve, and general solution techniques are lacking. 

In this paper a complete solution is developed for the family of nested 
recurrences (one for each integer k > 0) given by 

( n ~ Gk(9k(n - k)) n > I 
9k(n) ={ (1.1) 

( 0 n < 0. 

For the case k = 1, this recurrence is mentioned in [1, p. 137], where its be-
havior is described diagramatically. 

The functions g±(n) and g2(n) are plotted in Figures 1 and 2. 
Recently Meek and van Rees [3] have examined the recurrence family 

fr(n) = n - £(/,(... (fr(n - 1)) ... )), n > 1 

where fr is nested to r levels and fr(0) = 0. In [3] the solution for fr(n) is 
expressed indirectly through a transformation: n is represented as a general-
ized Fibonacci base numeral (dependent on r), the least significant digit of 
this representation is truncated, and the resulting Fibonacci base numeral rep-
resents fr(n) . In this paper we give a closed form solution for /^(n), which 
is g±(n) in our notation. The problem of finding a closed form for fr{n), r ^ 
3, remains open. 

The approximate behavior of gk(n) is easy to describe. Figures 1 and 2 
suggest looking for an asymptotic approximation to the solution having the form 
gAn) - An + 0(1). Substituting this into (1.1) and equating coefficients of 
n on both sides yields 

*The work of this author was partially supported by NSF Grant MSC80-04679. 
**The work of this author was partially supported by NSF Grant MSC81-01916. 
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gk in) = \pn + 0(1) as n (1.2) 

where \p = (YE - l)/2 is the reciprocal of the "golden ratio" <j).* The relation-
ship between gk(n) and the line \pn is even closer than the asymptotic estimate 
(1.2) would indicate, since Theorem 1 states 

(n) 
fc-i n + i + if; (1.3) 

Thus, ^x(n) = []p(n + 1)J is the function described in [1]. This function 
has an interesting number-theoretic property: Theorem 2 shows that the points 
at which g An) increases form a Beatty sequence. 

2. SOLUTION 

Let us first give a solution for the function g1(n). From it, we general-
ize the solution of (1.1). 

Figure 1 shows that while the line tyn must miss all the integral lattice 
points, the values of g1(n) fall on lattice points near the line. This behav-
ior suggests looking for a solution of the form g1in) = \jpn + C\ . If one sub-
stitutes this form into (1.1) with k - 1 and performs calculations similar to 
those in Lemma 1 below, it emerges that a choice of C = f will cause the equa-
tion to balance. Turning this calculation around into a proof yields the fol-
lowing Lemma, which shows that g1(n) = \tyn + ipj . This result is also needed in 
the proof of Theorem 1. 

FIG. 1. Plot of g1(n) for 0 < n < 20. The values of the function are 
indicated by heavy dots. The dashed lines are present only to 
facilitate interpretation. Superimposed on the function is 
the straight line tyn. 

Lemma 1 

For a l l n > 0 , \tyn + ipj = n - |_xp \tyn\ + ipj . 

*(j) is the positive root of (f)2 - (f) - 1 = 0 , while ty 
tive root of tyz + }p - 1 = 0 . 

(2 .1 ) 

1 is the posi-
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Proof: Let tyn = \]pn] + e, where e = \pn mod 1, the fractional part of ^n. 
First, we note that e can never equal ty2. For suppose ipn = [̂ nJ + ^2 f° r some 
n. Then tyn - ty1 = ipn - (1 - ip) = \|j(rc + 1) - 1 is an integer, and i|;(n + 1) is 
an integer for some n, which is clearly impossible. 

Now (2.1) is equivalent to the assertion 

[tyn + ipj + [}K^n - e) + î J = n . 
This i s e q u i v a l e n t t o 

\ipn + \p_| + L^2^ - ^e + ipj = n . 
S ince ip n = n - jpn, we may cance l t h e i n t e g e r n , y i e l d i n g 

or 
\pi + ty\ + [-^n - x̂ e - ipj = 0 , 

LL^J + e + Ĵ + |_""|jM ~ e " ^e + ^J = °-
Cancelling the integers from inside the floor functions, this is equivalent to 

[e + ip] + [* " £(1 + *)J = 0. 
This last identity can be seen to hold for all £ ^ if;2 in the interval (0, 1) as 
follows: The argument of the second floor term is linear in e, decreasing over 
(0, 1), with a zero at e = ̂ 2. In case e < î 2, both terms yield zero, because 
the arguments of each floor are positive and less than 1. In case e > ip2, the 
first term is 1 and the second is -1. • 

Next, we turn to the solution of gz, defined by g2(n) = n - g2(g2(n - 2)). 
At even arguments n = 2m 9 we have 

g2(2m) = 2m - g2(g2(2(m - 1))). (2.2) 

Define the function h via 

g2{2i) = 27z(£). (2.3) 

Then (2.2) can be written 

2h(m) = 2m - g(2h(m - 1)) = 2m - 2h(h(m - 1)), 

by using (2.3) again. Thus 

h(m) = m - h(h(m - 1)) 

w i t h h(0) - 0 and so h(m) = g1(m) = \$>m + ty]. P u t t i n g t h i s i n t o (2 .3 ) and u s -
ing n = 2m y i e l d s f i n a l l y 

gSn) = 2 n even. (2 .4 ) 

To solve for odd arguments n is not so straightforward. But an examina-
tion of Figure 2 shows that the values of g (n) at odd n seem to lie on a 
straight line between the neighboring values at even arguments. This observa-
tion suggests that the solution is the "average" of the two nearest even argu-
ment values, or 

* 
n 

_2_ + * + i> g2(n) = liM^ I + iM + I* ! Lr- t| + * n > 0. 

This expression is certainly consistent with (2.4). That this is indeed 
the solution is established by an induction argument. In fact, the "natural" 
generalization of this expression, given by (2.7), will be shown in Theorem 1 
to satisfy the general recurrence (1.1). 
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FIG. 2. Plot of g2(n) for 0 < n < 20. The values of the function are 
indicated by heavy dots. The dashed lines are present only to 
facilitate interpretation. Superimposed on the function is 
the straight line ipn. This function appears to be a "scaled 
up" version of Figure 1. 

The following lemma is needed for the induction of Theorem 1. 

Lemma 2 

For all n > 0, 0 < gk(n) < n. (2.5) 

Proof: By induction on n. The base 0 < n < k is easily checked, since 

gk(n) = n 
for arguments in this range. Assume that n > k and that (2.5) holds for all 
0 < i < n. We will establish (2.5) for n. Now 

gk(n) = n - gk(gk(n - /<)). (2.6) 

Let i = gk(n-k) . By the induction hypothesis for n- fc, we have 0 < i < n - fe, 
and so by the induction hypothesis for i , 0 < gk(i) < i , that is, 

o < gk(gk(n - *0) < ^k(« - fe). 
Using this inequality with (2.6) yields 

n - gh(n - k) < gk(n) < n, 
and, since n - k - gAn - k) > 0 by the induction hypothesis, the result (2.5) 
follows for n. s 

Now to the main result. 

Theorem 1 

The solution to (1.1) is given by 

\n + i k-l 
gAn) = E + ip , n > 0. (2.7) 
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Proof: By induction on n. The base 0 ̂  n < k can be checked directly, as 
gk(ji) = n for arguments in this range. Assume that n ^ k and that (2.7) holds 
for all 0 < i < n. We will establish (2.7) for n. 

By the induction hypothesis, 

k-l 
in - k) = £ 

i = o 

n + i (2.8) 

Suppose that n = qk + r with remainder 0 < r < k. Then the first & - v of the 
quotients 

n 
k\ 

9 
n + 1 

L fc j 
, . . . , n + k -

L & 
- 1 

are equal to q and the remaining v quotients are equal to q + 1. Thus, 

gAn - k) = (k - r) [tyq\ + r \$q + ipj . 
and similarly 

k-l n + + if, = (k - r) [}pq + i/;J + p[*<7 + 2ipJ . 

(2 .9 ) 

(2 .10) 

We would l i k e t o show t h a t gk(n) i s equa l t o ( 2 . 1 0 ) . There a r e two ca se s 
t o c o n s i d e r . 

Case \tyq + ipj = \$q] : Then i t fo l lows t h a t 

[if/? + 2i|;J « 1 + [ifa + *J > 
and by ( 2 . 9 ) , g~(n - k) = k[tyqj. But t h e n a l l t h e q u o t i e n t s 

gk(n - k) + i 
, 0 < i < k 

(2.11) 

(2.12) 

are identically equal to \tyqj . Since gk(n - k) *^n - k by Lemma 2, the induc-
tion hypothesis (2.7) holds with argument set to gk(n - k) s and so using the 
equality of all the quotients (2.12) 

gk(gk(n - k)) = fcL*W + '*J- (2.13) 
By Lemma 1, the right side of (2.13) is &(<?- |_̂q + ipJ) , and using this fact in 
(1.1): 

^(w) - w - ?k(^(n - k)) <* qk'+ r - gk(gk(n - k)) = r + fe^'+ *J.' (2.14) 
Using (2 .11) i n (2 .10) g i v e s agreement w i t h t h e e x p r e s s i o n for g (n) i n ( 2 . 1 4 ) , 
e s t a b l i s h i n g t h e s t e p i n t h i s c a s e . 
Case \_tyq + ij;J = \tyq] + 1:' In t h i s case (2 .9 ) y i e l d s 

gk(n - fc) = fe[*?J + r * (2 .15) 
Because of ( 2 . 1 5 ) , we o b t a i n 

gk(n - k) + i 

gk(n - k) + i 

\$q\>- 0 . < i < k - r 

\$q] + 1, k - r < i < k 

(2 .16) 
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Lemma 2 guarantees that gk(n - k) < n - k, so the induction hypothesis (2.7) 
holds with argument gk(n - k). Along with identities (2.16), this gives 

Gk(&k(n - *0) - (k - r)\_^q\ + *J + r\$\$q\ + 2*J , 
which in light of the case assumption can be rewritten 

9k(gk(n - k)) = (k - r)[*M + ̂J + *L*bK<7 + Dj + *J- (2.17) 
Now apply Lemma 1 to each of the terms in (2.17), and simplify to obtain 

gk(gk(n - k)) = kq + r - (k - r) [\pq + ipj - r|>7 + 2*J • (2.18) 

From this, using the recurrence (1.1), 

gk(n) = n - gk(gk(n - k)) = (k - r) |>7 + ipj + r|>7 + 2^J . (2.19) 

and this is seen to be just (2.10), as required. This case completes the in-
duction and the proof of (2.7). m 

3. THE DISTRIBUTION OF TRANSITION POINTS FOR g1(n) 

Let 

Vf(n) = f{ri) - f(n - 1), n = 1, 2, 3, ... 

be the "backward difference" sequence of the function f(n), n = 0, 1, 2, ... . 
The values of n for which V/(n) ^ 0 are called the transition points of / and 
the sequence Tf of the values of n for which V/(n) ^ 0 is called the transi-
tion sequence for /. 

Successive values for g\(n) clearly can differ by at most one. That is, 
SJg1 is a sequence of zeros and ones. As observed in Figure 1, the distribution 
of transition points for g±(ri) also shows considerable regularity. In fact, 
Theorem 2 establishes that Tg is the Beatty sequence [4, pp. 29-30] for the 
"golden ratio" <\> = ty + 1. 

Beatty sequences are defined as follows: if a and 3 are positive irration-
als such that 

then the two sequences 

Ba = {|_a|, [2a], L3aJ » •••> and B& = < lAl > L2$]> L3$J > •••> 
are mutually exclusive and together contain all the positive integers without 
repetition. A proof may be found in [5, §12.2], 

If a = c(), then 3 = <f> + 1 an(l t n e two complementary sequences are 

B^ = {1, 3, 4, 6, 8, 9, 11, 12, 14, 16, ...} 
and 

5<j> + i = { 2 > 5> 7> 1 0 > 1 3 > 1 5 > 1 8 » •'•*• 

In order to show that Tg = B$ , we establish the following identities. The 
first states that the function g±(n) is the inverse of Beatty!s function \j>n], 
and that transitions do occur at points in the sequence B$. 

Lemma 3 

0i(LH - i) = ^ - i 
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Proof: L^J = LW + ^ nJ = l_̂ nJ + n> hence 

g1{\_^n\) = ̂ ( [ H + n) = |jKLH + ^ + 1)J 

by Theorem 1. Using ipn = \pi\ + e, 

where we have used ip2 + i\) ~ 1. 
For the second identity, note that 

L^nJ - i = L(^ + 1 ) n - *J = bKl + n " 1 

so tha t 
0 i ( L H - D = b K b H + n>J = L*2n + #* - *(e)J 

= |_n - i/;(e)J = n - 1. a 

Lemma 4 
Let e = tyn mod 1 be the fractional part of tyn. Then for all n, 

L^n + ^K1 - e)J = L H = L^n - * e J - (3-1> 
Proof: Obviously 0 < ip(l - e) < 1 - e, and so 

ijm < tyn + ip(l - e) < if;n +. 1 - e . 
Since i(jn = [ijwj + e , 

[ipnj + e < pi + ip(l - e) < [ J H + 1» 
and so it follows that \tyn\ = |_̂ n + ^(1 -£)_], establishing the first equality. 

Next, notice that 

pi - p = [pi] + e (1 - ip) . 

Since 0<e(l-i(;)<l, the second equality follows. • 

The next lemma gives information about the points where g± does not have a 
transition. 

Lemma 5 

^([OJ* + l)nj) = giilW + DwJ ~ 1) = L<H- (3-2> 

Proof: Consider the first equality. Since cj) = if; + 1, by Theorem 1 this is 
equivalent to showing that 

\$.\pi + 2 n J + ^J = L H ^ + 2 n J J - ( 3 - 3 ) 
Now (3.3) is equivalent to showing 

L^bH + 2n^ + ^J = L^ijH + 2n^J* ( 3 - 4 ) 
Let i(#2 = jjj/ftj + e where e = pi mod 1. S u b s t i t u t i n g t h i s i n t o (3 .4 ) and s i m p l i -
fying u s i n g ty1 + ty- = 1 shows t h a t (3 .4 ) i s e q u i v a l e n t t o 

[n + ipn + ij;(l - e)J = \n + pi - p] . (3 .5 ) 
By Lemma 4, these expressions are equal, proving that (3.3) holds. 

Consider the second equality. By Theorem 1 this is equivalent to showing 
that 

\$\$n + 2nJJ = \jpn + n] , (3.6) 

which is equivalent to 
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L^W + 2 iH = \]Pn + n J - (3.7) 
Using t h e s u b s t i t u t i o n \tynj = i p n - e i n ( 3 . 7 ) , and s i m p l i f y i n g u s i n g ip2. + ty = 1 
shows t h i s i s e q u i v a l e n t t o 

[n + ipn - \pej = \tyn + nj . ' ( 3 .8 ) 

By Lemma 4, this last equality holds, and so (3.6) holds. • 

The connection with the Beatty sequence can now be made. 

Theorem 2 

\ = V 
Proof: By Lemma 3 , 

^ i (LH) - #i(LH - i) = i 
so t h a t |_<f>nj a r e t r a n s i t i o n p o i n t s co r respond ing t o B$, wh i l e by Lemma 5 

^ ( L ( * + DnJ) - ^i(*L(* + Djw - . 1 ) = °> 
so that the nontransition points [_(((>+ l)nj correspond to S^+1. By the proper-
ties of Beatty sequences, B± and -B^+1 include all the positive integers, n 
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1. INTRODUCTION 

Polygonal numbers received their name from their standard geometric reali-
zation. In this geometric realization one considers sequences of regular poly-
gons that share a common angle and have points at equal distances along each 
side. The total number of points on a sequence of the regular polygons is a 
sequence of polygonal numbers. For example (see Fig. 1), if the polygon is a 
triangle, we get the triangular numbers 1, 3, 6, 10, 15, ..., and if the poly-
gon is a pentagon, we get the pentagonal numbers 1, 5, 12, 22, 35, .... More 
information on the polygonal numbers may be found in L. E. Dickson1s History of 
Number Theory [4, Vol. II, Ch. 1]. We also recommend the discussion of "figu-
rirte oder vieleckigte Zahlen" by L. Euler [5, p. 159]. 

. A A A 

FIGURE 1 

In this paper we describe an order-theoretic realization of the polygonal 
numbers. We represent the polygonal numbers as the cardinalities of sequences 
of modular lattices that can be glued together from simple building blocks. 
The construction of these lattices is described in the first part of §3, the 
main result is formulated in Theorem 3.3. It is interesting to note that, in 
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the case of the triangular numbers and of the square numbers , the diagrams in 
our lattice-theoretic representation (Figure 3 and Figure 4) look just like the 
usual illustrations in the standard geometric realization. For all other poly-
gonal numbers, however, the diagrams are very different. 

In §2 we introduce some essential terminology and necessary facts about 
function lattices. For a more complete treatment of these topics, we refer the 
reader to the standard textbooks [1], [2], [6], and to [3]. 

2. FUNCTION LATTICES 

Let P and Q be partially ordered sets. A mapping f:P -> Q is order-preserv-
ing if x < y in P implies f(x) < f(y) in Q for all x> y G P. An order-isomor-
phism is a mapping / that is one-to-one, onto, and has the property that x 4 y 
in P if and only if f{x) < f(y) in Qs for all x9 y G P. The set Qp of all the 
order-preserving mappings from P to Q can be partially ordered by f K g if and 
only if f(x) ^ g(x) for all x G P. If f, g G Qp

3 then the supremum of / and g9 
f v g, exists in Qp if and only if the supremum of f(x) and g(x) exists in Q 
for all x G P, and (/ v g) (x) = f(x) v cK#) . Since the same is true for the 
infimum of / and g, it follows that § p is a lattice whenever Q is a lattice, P 
may be an arbitrary partially ordered set. It can be shown that the function 
lattice Qp Is a distributive or modular lattice provided that Q is a distribu-
tive or modular lattice, respectively. 

For integers n ^ O , n= {1, 2, ..., n} denotes the totally ordered chain of 
n elements ordered in their natural order, ^the empty chain, and m- the dis-
tributive function lattice of order-preserving mappings from the n-element 
chain n into the ̂ -element chain m. M(n) is the modular lattice of length 2 
with n atoms, M(0) = 2, M(l) = 3. 

M(2) MO) 

<$>• 
M(n) 

FIGURE 2 

An element a In a lattice is join-irreducible if a = b vc implies a = b or 
a = o; it is meet-irreducible if a - b A O implies a = b or a = c. A doubly 
irreducible element is an element which is both join- and meet-irreducible. 
Chains of doubly irreducible elements will play an important role in the con-
struction in 3. As examples we shall now determine the sequences of function 
lattices J3~ = M(l)~ (Fig- 3) and M(2)% (Fig. 4) for n > 0. In 2~> the doubly 
irreducible elements are circled where the function fin -> 3^ is represented by 
its image vector, i.e., 1223 stands for the function fih_ •+ _3 given by f(l) = 1, 
f{2) = /(3) = 2, and /(4) = 3. 

Obviously, the cardinalities of the lattices in Figure 3 are the triangu-
lar numbers, the cardinalities of the lattices in Figure 4 are the square num-
bers. This, of course, raises the question: Is it possible to represent all 
polygonal numbers as function lattices? 
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3. MODULAR PADDLEWHEELS AND POLYGONAL NUMBERS 

Let C = {GQ < c2 < • • • < <2n} be a chain and let Li9 1 < £ < k, be partially 
ordered sets with least and largest elements, z± and e± , which admit order-
isomorphisms (J) :C -> Li into L.̂  so that •<))•£ (co) = 2^ and (f)̂ (en) = e^ for each £. 
On the disjoint union of the Li9 1 < i < fc, we define a relation i? by (a:, z/) E i? 
if and only if 

(f)T1(̂ ) = (f)""-1 )̂ for some i and j, or x = y. 

R is an equivalence relation and the factorization of UlL^ 11 ̂  £ < A:} with re-
spect to this equivalence relation, denoted by M = M(Ll9 . .., L^\ C), is a par-
tially ordered set where the order of each piece Li is the given order, and if 
x G L - and y E Lj, £ ^ j, then x ^M y if and only if there is 0 < s < n so that 
a? < (J).(cs) and (j).(cs) < z/. Moreover, if we let 

then either 

min{t|a: < (j>̂ (ct) and y < (j^-O^)}, 

and 2/ ̂  ^jiom_1) 

and z/ £ $j(cm-i) 

and 2/ < *,-(^. 1). 

In the first case, x vM y = (f)̂ (cm) holds. In the second case, any common upper 
bound z £. M of••# and 2/ such that s ^ §i(cm) is in the piece Ẑ -; hence, x vM y 
exists in the piece Lj if L-j has suprema. In the third case, x vM y exists in 
Li if suprema exist in L^. Of course x AM y behaves in a similar way. There-
fore, M = M(L19 ..., Lk; C) is a lattice whenever each Li is a lattice. 

We will use this construction only in the case where L^ = Lj and (j)̂  = ((>•, 
for all £ and j, and we indicate that we have k copies of the same lattice L in 
the abbreviated notation M = M(k(L); C), 

If all Li = L9 a three-dimensional illustration of M(k(L); C) looks like a 
paddlewheel with k paddles, with the chain C as the vertical axis, and the k 
copies of the lattice L as the paddles, equally spaced around a circle and 
glued to the chain C by the mappings <J) = (j)̂ , for all 1 ̂  £ ̂  k. 
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As an example, let 

FIGURE 5 

We want to construct Af(4(L); 3). _3- contains an order-isomorphic copy of 3_9 
namely, a three-element chain of doubly irreducible elements, circled in the 
diagram above. Four copies of L axe glued to this chain and we get 

/ x /< \r\A-

V 
FIGURE 6 

The following theorem will show that this lattice is M(4)-. The proof of the 
theorem requires some knowledge of the irreducible elements in 3_-. 

Every function f:n_ -> m_ is piecewise constant and may be written as an in-
creasing tuple of m values. A convenient notation is 

1^2 k 2 ... mk™ 

with ki ^ 0, 1 < i < ???, and k1 + • • • + km = n, where the exponents ki count the 
number of occurrences of the value i for the function f(x) = i if and only if 

k1 + ••• + ki_1 < x < k1 + • • • + kt, 
Now, there are two types of doubly irreducible elements in m-s the constant 
mappings where k^ = n for exactly one i, and kj = 0 for all j' ̂  i, and those 
whose only values are the extremal elements of w. The latter are of the form 

lklmkn
9 where ki = 0 for all 1 < i < m. 

The constant mappings obviously form a chain of m elements in m-. For the 
second type of doubly irreducible elements, we have k± + km - n% hence, the 
possibilites km = 0,1, ..., n, and therefore these doubly irreducible elements 
form a chain of n + 1 elements in m-. This is the chain that we want to use 
for our paddlewheel construction. So in Theorem 3.1, n ® Ĵ  may be interpreted 
as the chain of these doubly irreducible elements in 3_-» with (j>:n. ® 1_ "** 3p- the 
identity mapping. 
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Theorem 3«1 

M = M(k(3_-); n®l) is the modular lattice M(k)~, f or k > 1, n > 0. 

Proof: An element in 3r- may be represented as zau®ey, where a + (3 + Y = n, 
0 ^ a, 3) Y ^ n> anc* where z < u < e is the chain 2» Similarly, we represent 
elements in M as (zau®ey)<c for 1 < i < fc, where the index i indicates that the 
element is in the ith of the k copies of _3~. Elements in M(k)~ are of the form 
zvQvet, where p + r + t = n, 0 < p, p, t < n, and j is the j t h of the k atoms 
of M(k). 

We now define a mapping \ptM -> M(k)~ by 

Should (zCLu^ey)i be in the chain n_ ® _1_ of Af, i.e., •£ is not uniquely determined, 
then it is doubly irreducible with 3 = 0 and its image under ip is then of the 
form zaey with a + y = n; in other words, it is independent of i . ip is thus 
well defined, and it is rather straightforward to show that ty is an order-iso-
morphism. H 

Note that for k = 1 we have 

M(l(3_~); n®l) ^ 2 " (see Fig. 3), 

and for k = 2 we have 

M(2(2~); n 0 D ^M(2)^. 

In the latter case, the two copies of _3- are glued together so that we get a 
planar diagram symmetric on its vertical axis (see Fig. 4). This representa-
tion theorem provides a procedure to calculate \M{k)~ \, the number of elements 
of M(k) , from the number of elements in 3_-. But 

tfi-(;:2)-
which can be easily verified by induction on n. 

Theorem 3«2 
|M(&)-| = (k • y + l) • (n + 1) for all n, fc > 0. 

Proof: For k = 0, |M(0)-| = |2~| = n + 1. In all other cases, it follows 
from the representation in Theorem 3.1, 

Mik)~ = M(k(3-); nei), 
that \M(k)~\ = k* |2"| " (k - 1) • (n + 1). Since 

we get 

|M(W~| = fc- (n +' 2 ) - (fe - 1)•• (n + 1) = (k-J + l) • (n + 1.). • 

It is now easy to see that the numbers Pnj^ = | M(k)-\ also satisfy the re-
cursion formula 

Pn.k " P«,fc-1 + Pn-l,l f o r W' k> 0 
P „ = n + 1 for n ^ 0 
n, 0 

P0t k = 1 for fc > 0. 
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AN ORDER-THEORETIC REPRESENTATION OF THE POLYGONAL NUMBERS 

However, this recursion defines the polygonal numbers [4, Vol. IIs Ch. 1], So 
we find that the modular lattices M(k)^ are order-theoretic realizations of the 
polygonal numbers. 

Theorem 3«3 

The cardinalities of the sequence of modular lattices M(k)- for increasing 
n ^ 0 and for k ^ 0 are the polygonal numbers. 

To illustrate the connection between |M(/c)~| and polygonal numbers, we list 
them in the following table for n, k < 5. For example, the horizontal line 
with entry k = 3 contains, from left to right, the numbers 

1 = |M(3)^|, 5 = \M(3)k\, 12 iMO)1 etc. 

These are the pentagonal numbers, listed in [7] as sequence number 1562. 

^S^j 
0 j 

1 
! 2 
3 

1 4 
! 5 

0 1 

1 2 
1 3 
1 4 
1 5 
1 6 
1 7 

2 

3 
6 
9 
12 
15 
18 

3 

4 
10 
16 
22 
28 
34 

4 

5 
15 
25 
35 
45 
55 

5 

6 
21 
36 
51 
66 
81 

Name 

natural numbers 
triangular numbers 
squares 
pentagonal numbers 
hexagonal numbers 
heptagonal numbers 

Sloan Number 

# 173 
# 1002 
# 1350 
# 1562 
# 1705 
# 1826 
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(Submitted January 1983) 

1. INTRODUCTION 

The purpose of this note is to generalize the results in [2] and to apply 
them to the particular case of Pell numbers. An acquaintance with [2] is de-
sirable. 

Define the generalized sequence {Wn} by 
Wn = PWn-l - <7̂ n-2» ^0 = P> Wl = P + S O - D 

for all integral n, where p, q, P, and s are arbitrary, but will generally be 
thought of as integers. 

Then, from [1], mutatis mutandis, 

J? - (y + g - ̂ 3)an - { Q + s) - pq}3n n 0, 
wn ^ , ki-.Z) 

where a and g a r e t h e r o o t s of x2 - px + q - 0 , so t h a t a + 3 = p s o t 3 = = < 7 5 and 
a - g = A = Vp2 - 4q. 

The generalized sequence {#„} in [2] occurs when 

p = 1, g = -1, A = 75, r = 2fc, and s = a - b, 

with the special cases of the Fibonacci sequence {Fn} and the Lucas sequence 
{Ln} arising when a = 1, 2? = 0 (i.e., p = 0, s = 1) and a = 0, b = 1 (i.e., 
v = 2, s = -1), respectively., 

Our particular concern in this note is with the case p = 2, q = -1, where 
a = 1 + y/2 (>0), 3 = 1 - y/l (<0), i.e., A = 2i/5. 

Writing A/nf for A/n when p = 2, q = -1, we have from (1.2) that 

^ = S p n + | « n , d . 3 ) 
where 

Pn = (an - 3 n ) / 2 / 2 (1 .4 ) 
and 

Qn = a n + 3 n (1 .5 ) 
are the nth Pell and the nth "Pell-Lucas" numbers, respectively, occurring in 
(1.1), (1.2), and (1.3) when r = 0, s = 1 (for Pn) and r = 2, s = 0 (for £ n). 

From (1.4) and (1.5), we have 

l/lPn < Qn when n is even, (1.6) 
and 

2/2Pn > Qn when n is odd. (1.7) 

2. COAXAL CIRCLES FOR {Wn} 

Consider the point (x, 0) in the Euclidean plane with 

x [(r + s - r 3 ) c r n + ( -0? + s ) + p a ) c o s ( n - 1)7T]/Aan (2 .1 ) 
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The circle CWn having 

center x(Wn) = (P + e ^ - an, y(Wn) = 0, 
and 

has the equation 

I x 

so that 

and 

radius v{Wn) 
-(r + g) + pa) 

Aan 

(p + s 

1 
*0/n)/2-0/n-1) a-

The points of intersection of CWn and the #-axis are given by 

ST? \ - (r + g - pg)qn (-(p + s) + pa) 
XilVy,) — Z 

A Aan 

|(r + S){a* ; 11} _ „{„-! +- ^ } J / A . 

(2.2) 

(2.3) 

J & . a")" + z,2 = (-(y+
Ag + r a ) 2 , (2.4) 

(2.5) 

(2.6) 

(2.7) 

Highest points on CWn lie on the upper branch of the rectangular hyperbola 

xy = O + s - rg) | (r + s - va) \ Its2. 

3. COAXAL CIRCLES FOR {P„} AND {§„} 

Proceeding now to the Pell numbers Pn (1.4) and Pell-Lucas numbers Qn (1.5) 
we can tabulate results corresponding to the more general results (2.1)-(2.8) 
as follows. 

Eq. {Pn} ( e j 

(3.1) 

(3.2) 
(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

x = {a2n - cos(n - l)TT}/2V/2a" 

y = o 
x(P„) = a"/2>/2, y(P„) = 0 

r(P„) = l/2v/2a" 

CP» :• < * -
2\/2 

x(P„)/x(Pn.1) = a 

a" 2 j. 2 1 

8a2 

r(P„)/r(Pn_1) 

2/2 

i 

x = {a2n + cos(n - l)ir}/a" 

2/ = 0 

*(«„) = a", y(Qn) = 0 

p(0„) = l /o" 

CSn: (x - a")2 + 2/2 = — 
a2" 

x(e„)/x(en_1) = a 

HQn)/HQH_J «£ 
x(«„) = .«„, 2>/2Pn 

xy = 1 
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Remarks about the circle-generation of Pell and Pell-Lucas numbers, simi-
lar to those made about results (3.7) in the tabulation in [2], may now be made 
about results (3.7) in the preceding table. 

It is worth noting that the same locus xy = 1 in (3.8) arises from both the 
Lucas numbers Ln [2] and the Pell-Lucas numbers Qni although the two sequences 
of points on the hyperbola are different. 

There do not appear to be any really interesting geometrical relations 
among the circles associated with Fn, Ln, Pns and Qn. 

In passing, we note that in (3.7) we use 

pn + Pn-1 = ~2^n 

Qn + Qn-1 = 4 ^n 

both of which may be easily derived from (1.4) and (1.5). 
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1. INTRODUCTION 

The terms of a recursive sequence are usually defined by a recurrence pro-
cedure; that is, any term is the sum of preceding terms. Such a definition 
might not be entirely satisfactory, because the computation of any term could 
require the computation of all of its predecessors. An alternative definition 
gives any term of a recursive sequence as a function of the index of the term. 
BinetTs formulas for the two simplest nontrivial recursive sequences are known. 
For the recursive sequence of order 2, the Fibonacci sequence, the formula 

un = —(an + 1 - 3n+1) 
A/5 

defines any Fibonacci number as a function of n and two constants a and 3 [1]-
Similarly, for the recursive sequence of order 3, the Tribonacci sequence, the 
formula 

,2 r(r - 2p cos 9) n 
+ ^ E 1 ptt c o s n p2 - 2pr cos 9 + p2 p2 - 2pp cos 9 + P 2 

, r2 cos 9 - pp(l-2 sin2 9) n . 
+ tL— -rn sin n 9 

sin 9(p2 - 2pp cos 9 + p2) 

defines any Tribonacci number as a function of n and three constants p, r, and 
9 [2]. 

In this paper, an analog of BinetTs formula for the recursive sequence of 
order k (k > 3) is derived. The recursive sequence of order k is defined as 
follows: 

un = 1 
tt-1 

un = T,ui 
i'O 

n-1 
«n = E Ui 

i = n-k 

n 

1 

n 

= 0 

< n < k 

> k. 

The analog of Binetfs formula defines any term of the recursive sequence of 
order k as a function of the index of the term and k constants. 

2. BINET'S FORMULA FOR THE RECURSIVE SEQUENCE OF ORDER k 

Binet!s formula for the recursive sequence of order k is derived by solv-
ing the system of difference equations: 

u0 = 1 
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E ui 
n-k + l 

1 < n < k - 1 

n> k - 1. 

Let f(x) = 53 ̂ i^t be the generating function for the solution. Then, 

h - |>^W ) = 1 

/'(*) = 

i - £ • 
J = l 

fc-1 

n (1 - a,x) 
(x)> 

j=o 

where 1/a is a zero of l-H* = 1xJ = 0. Miller (see [3]) proved that the zeros 
of pk(l/x) are. simple, consequently the roots of p (x) are simple. Hence, f(x) 
may be expressed by partial fractions as 

fix) 1 
k ~ 1 J = 0 
II (1 - a, a?) 

k-1 A . 
= V - , where A; 

f-fr. 1 - a-x ° 
m=oL \aJ/J 
m* o 

Further, since 

££-<)] ^ 
, it follows that i47- , i / l 

\aj 
m*j 

/(*) = E 
fc-l - C t , 

7 = 0 n ' I 1 J ^ = ° Pk\0Lj) 

k-i - a . ( a - ) n 

k-i _ a j 

m - 1 

a}#\ 

K~ ~ oK r / 1 \ / l \ 
Therefore, , n = £ — _ . Since P f c ' ( - ) - - ! > ( - ) and 

^•\a7-y 

Hence, 

^ / i \m 

0 for 0 < J < k - 1, 

then -/l - —)pf(—) = 2 - (k + 1)(—) , and it follows that 

a,(a,)n (l - — ) 

*-o 2-(fc + 1)(-U* 
\a.7 / 

Multiplying by (aj/aj)^, yields wn = E 
* W+1 - a ; K 

Let 

J=o 2a? - (fc + 1) 

fc-i 
p (a:) = x^ - 53 ̂ J"• 

j=o 
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Miller [3] showed that rk(x) = 0 has one real zero X such that 1 < X < 2, with 
the remaining zeros inside the unit circle of the complex plane. Considering 

q Ax) (x - 1) • rk(x) = 0 

and using Descartes' Rule of Signs, it follows that vk (x) = 0 has exactly one 
positive real zero when k is odd and that rk(x) = 0 has exactly one positive 
real zero and exactly one negative real zero when k is even. Therefore, all 
other zeros of rk(x) = 0 are complex and appear in conjugate pairs. 

Now let 
""& - 3" 

t 

where [[ I denotes the greatest integer function. Furthers let ou be a complex 
zero of Is, (x) = 0 if 

0 < j < 2£ + 1 

and a • be a real zero of r> (x) = 0 if 

it + 2 < j < k - l. 
Also order the subscripts of the zeros so that am 

m = t + j + 1, 0 < j < £. 
Consequently, 

t {a) + 1 - a£)a? 2t+x (a) + 1 - aiha? k-i (a^ + 1 - a^a7? 

OLj f o r 

j - o 2a7̂  - (k + 1) j = t+i 2a7- - (& + 1) j = 2t+2 2a^ (fc + 1) 

-E 
J - O 

(4+1 a > ? (a aj?)s* 

2a) - (fc + 1) 2a) (fc + 1) 

fe-i 

E 
j = 2t + 2 2dh-

(aY1 - a))un. 
d d J 

(k + 1) 

E 
J - O 

[2« (k + l ) ] ( a } + 1 - a | ) a j + [2a* - (& + l ) ] ( a } + 1 - a*)ajf 

|2a£ - (k + 1) 

fc-i ( a } + 1 - a | ) a " 

•=2t+2 2a* - (k + 1) 

* t 2 | a - | 2 k a , 

E 
j - o 

2 a, I 2k (k + l ) a } + 1 + (k + l)aj?]a* 

1 2 a ? - (fc + 1) 

+ E 
[2 a, I 2k a . - 2|a- |2 f e - (fc + l ) a ? + 1 + (fc + l)ajf]a? 

d d d d d 

|2a£ - (k + 1) 

*=! (a^+1 - a*)aj 

+ L — — 
j-.2t + 2 2a* -• (fc + 1) 

Applying Eulerfs formula, 
a. 2? • (COS ^ + ̂  sin ;) , a-- = 2», (COS £ sin 0j), 
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t h e r e l a t i o n 106̂ -1 2 = P 2
5 and s i m p l i f y i n g y i e l d s 

t fc-i (ak. + 1 - apa] 
un = X) r " U ( / c , j ) c o s w Qd + B(fe, j ) s i n n 0^ ] + £ —" ' 

j - o j = 2t + 2 2aJ - (k + 1) 
where 

2r}[2rk + 1 cos 0- - 2p? - (k + l ) r . cos (k + 1)0 • + (k + 1) cos k 0 •] 
A(k, j ) = 

4 P 2 7 C _ 4 ( f e + 1 ) p / c c o g ^ 0 + ( f c + ! ) 2 

and 

-2r?[23??c + 1 s i n 6, - (k + 1)^- s i n ( k + 1 ) 0 , + (k + 1) s i n k 0,] 
B(k, j ) = 

4 r 2 k - 4(k + l ) p f e c o s k 0, + (k + 1) 2 

J J 3 
A form more s u i t a b l e for computat ion of a s i n g l e te rm i s : 

2 r? + k [2r? c + i C o s ( n + 1 ) 0 , - (k + l ) p . cos (n + k + 1)0 , 

Un = 1 2 
+ (k + 1) cos (n + k ) 0 . - 2 r * c o s n 0.] 

3 3 3 

Let 

j=o 4P2 ? C - 4(k + 1 ) ^ cos k 0 . + (k + l ) 2 

j j J 

fc-i (a k + 1 - a k ) a n 

^p J 3 3 

j o 2 t + 2 2a^ - ( k + 1) 

3 . SOME NUMERICAL RESULTS 

a* + 1 - a* 
C(k9 J ) = - for (2£ + 2) < j < (fe - 1 ) . 

2a£ - (k + 1) 

Then approximate values for the constants in the Binet formula 

J = 0 J j = 2* + 2 

for 2 < k < 10 are given in the following table: 

CONSTANTS IN BINETTS FORMULA FOR 2 < k < 10 

k j w aj, 6^ v- Qj A(k, j) £(k, j) C(k5 j) 

2 0 - ' 1.6180 - 0.7236 
1 - -0.6180 0.2764 

3 0 1 -0.4196 ± 0.6063i 0.7374 2.1762 0.3816 0.0374 
2 - 1.8393 - 0.6184 

4 0 1 -0.0764 ± 0.8147i 0.8183 1.6643 0.2842 0.0563 
2 - -0.7748 - 0.1495 
3 - 1.9276 - - - - 0.5663 

330 [Nov. 



BINET'S FORMULA FOR THE RECURSIVE SEQUENCE OF ORDER K 

CONSTANTS IN BINET'S FORMULA FOR 2 < k < 10 (continued) 

k 

5 

6 

7 

8 

9 

10 

J 

0 
1 
4 

0 
1 
4 
5 

0 
1 
2 
6 

0 
1 
2 
6 
7 

0 
1 
2 
3 
8 

0 
1 
2 
3 
8 
9 

m 

2 
3 
-

2 
3 
-
-

3 
4 
5 
-

3 
4 
5 
-
-

4 
5 
6 
7 
-

4 
5 
6 
7 
-
-

ai> 

-0.6784 
0.1954 
1.9659 

-0.4619 
0.3903 
-0.8403 
1.9835 

-0.7842 
-0.2407 
0.5289 
1.9920 

-0.6416 
0.6287 
-0.0469 
-0.8763 
1.9960 

-0.8397 
0.1143 
0.7019 
-0.4755 
1.9980 

0.2462 
-0.3130 
0.7567 
-0.7399 
-0.8990 
1.9990 

ad 

+ 

± 

± 
± 

± 
± 
± 

± 
± 
± 

± 
± 
+ 

± 

± 
± 
± 
± 

0.4585i 
0.8489i 

0.719U 
0.8179i 

0.3600i 
0.8492i 
0.7653i 

0.6064i 
0.7085i 
0.9030i 

0.2948i 
0.9140i 
0.6539i 
0.7637i 

0.9013-z: 
0.8584i 
0.6039i 
0.5168i 

*V 
0.8188 
0.8710 

-

0.8547 
0.9062 

-
-

0.8629 
0.8826 
0.9303 

-

0.8828 
0.9472 
0.9042 

-
-

0.8900 
0.9211 
0.9593 
0.8996 

-

0.9344 
0.9137 
0.9682 
0.9025 

-
-

% • 

2.5472 
1.3446 

-

2.1418 
1.1255 

-
-

2.7112 
1.8469 
0.9661 

-

2.3844 
0.8450 
1.6227 

-
-

2.8040 
1.4464 
0.7500 
2.1276 

-

1.3041 
1.9205 
0.6735 
2.5319 

„ 

-

REFERENCES 

A(k, j) 

0.2421 
0.2200 

-

0.2012 
0.1741 

-
-

0.1765 
0.1703 
0.1398 

-

0.1550 
0.1132 
0.1461 

-
-

0.1401 
0.1266 
0.0924 
0.1368 

-

0.1106 
0.1218 
0.0759 
0.1259 

-
-

B(k, j) 

0.0178 
0.0654 

-

0.0279 
0.0689 

-
-

0.0103 
0.0340 
0.0691 

-

0.0168 
0.0672 
0.0377 

-
-

0.0067 
0.0398 
0.0641 
0.0212 

-

0.0408 
0.0242 
0.0602 
0.0113 

-
-

C(k, j) 

_ 
-

0.5379 

-
-

0.1029 
0.5218 

-
-
-

0.5125 

-
-
-

0.0785 
0.5071 

-
-
-
-

0.5040 

-
-
-
-

0.0635 
0.5022 

1. N. Vorob'ev. The Fibonacci Numbers. Boston: Heath, 1963, pp. 12-15. 
2. W. R. Spickerman. "Binet's Formula for the Tribonacci Sequence." The Fi-

bonacci Quarterly 20, no. 2 (1982):118-20. 
3. M. D. Miller. "On Generalized Fibonacci Numbers." The Amer. Math. Monthly 

78 (1971):1108-09. 
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I. INTRODUCTION 

In 1929, T. A. Pierce discussed an algorithm for expanding real numbers 
x €E (0, 1) in the form 

1 1 ^ 1 /1N 

x= + _ ee # j (i) 
CL-L a-^a2 cL1a2a^ 

where the a^ form a strictly increasing sequence of positive integers. 
He showed that these expansions (which we call Pievoe expansions) are es-

sentially unique. The Pierce expansion for x terminates if and only if x is 
rational. See [3] and [5] for details. 

In this note, we give formulas for the a^ in the case where 

x = ~— 

and c > 3 is an integer. For these numbers, Pierce expansions provide extreme-
ly rapidly converging series. 

II. FINDING REAL ROOTS OF POLYNOMIALS 

To save space, we sill sometimes write equation (1) in the form 

x = {als a2, a3, . . . } , 

where the braces denote a Pierce expansion. 
Let 

Pl(x) = bnxn + bn_1xn~1 + ••• + b±x + bQ 

be a polynomial with integer coefficients and a single real zero a in the in-
terval (0, 1). We want to find the first term in the Pierce expansion of a. 
From equation (1) It is easy to see that a± = [l/otj. Consider the polynomial 
ox{x) = ^np1(l/x); this is a polynomial with Integer coefficients that has 1/a 
as a zero. Through a simple binary search procedure, it is easy to find d1 
such that 

sign(q1(d1)) = slgn(q1(d1 +1)); 

this shows that d± = [L/aJ a n d s o w e c a n t a k e ai = di-
Now consider the polynomial 

p2(x) = alVJi-^y 
This again is a polynomial with integer coefficients. It is easily verified 
that if 3 is a zero of p2(x)9 then 

1 1 
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a2 a2a3 

By repeating this procedure on the polynomial p2(x) 9 we generate the coef-
ficient a2 in the Pierce expansion of a, and by continuing in the same fashion, 
we can generate as many terms of the Pierce expansion for a as desired: 

- l ' + • • • . 

Now let us specify our polynomial to be 

p (x) = x2 - ex + 1, 

where o ^ 3 is an integer. Let a be the smaller positive zero, so 

e - Ve2 - 4 /0. 
a = — ^ • (2) 

Now q-i(x) = x2p1(l/x) = x2 - ex + 1. We find q1(c - 1) = 2 - e, which is 
negative, and q-^ie) = 1, which is positive. Hence, we see that a1 = e - 1. 

Now 

p2(x) = (C- l)2
Pl(l^f); 

hence, 
p2(x) ~ x2 + (e2 - e - 2)x + 2 - e, 

We find 
q2(x) = x2p2(l/x) = (2 - c)x2 + (e2 - e - 2)x + 1. 

Now qz(e + 1) = 1, which is positive; but q2(e + 2) = 5 - c2, which is nega-
tive. Hence, we see that a2 - e + 1. 

Now 

P 
so we see 

,<«) = * 2 P 2 ( ^ T ) ' 

p3(x) = x2 - (e3 - 3e)x + 1. 

So far we have been following the algorithm. But now we notice that p3 (x) 
is essentially just p±(x) with e3 - 3e playing the role of c. We have found 

_ 1 _ 1 1 
a e - 1 (c - l)(e •+ 1) (<? - l)(e + 1) Y' 

where y is the root of x2 - (e3 - 3e)x + 1 = 0. By continuing this process, we 
get: 

Theorem 

Let a be as in equation (2). Then, 

a = {e0 - 1, e0 + 1, o1 - 1, e1 + 1, e2 - 1, e2 + 1, . . . } , 

where c0 = e, ^ + 1 = e\ - 3ek. 

For example, let e = 3. Then we find 

3 - A {2, 4, 17, 19, 5777, 5779, ...}. 
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Another example: let o = 6. Then, after some manipulation, we find 

i/2 - 1 = {2, 5, 7, 197, 199, 7761797, 7761799, ...}. 

Ironically, both Pierce [3] and Salzer [4] gave the first four terms of this 
expansion, but apparently neither detected the general pattern! 

III. THE COEFFICIENTS ok 

The recurrence ok + 1 = c\ - 3ok is an interesting one which has been pre-
viously studied ([1], [2])* Some brief comments are in order. 

If we let a and 3 be the roots of the quadratic 

x2 - ex + 1 = 0, 
with a < 3, and define 

V(n) = an + 3n; U(n) = a* ~_ [**, 

then it is easy to show by induction that 

V(n) = oV(n - 1) - V(n - 2); U(n) = oU(n - 1) - U(n - 2), 
where 

7(0) = 2, 7(1) = o; U(0) = 0, U(l) = 1. 

We can also show that V(3k) = V(k) 3 - 3V(k) ; hence, by induction, cfe = 7(3fe) . 
This gives the following closed form for the ok1 

°u 
to + Vo2 - 4 \ 3 " + (a - v ^ - 4\3fe 

S i m i l a r l y , i t can be shown by i n d u c t i o n t h a t 

^ ^ = ^ 0 - 1. c 0 + 1, C l - 1, c1 + 1 , . . . , e ^ - 1 , Cfc_1 + 1 } . (3) 

Here i s a s k e t c h of t h e i n d u c t i o n s t e p . Assuming (3) h o l d s s we f i n d 
{oQ - 1 , CQ + 1 , G1 - 1 , ^ + 1 , . . . , £fc - 1 , <2fe + 1} 

U(3k JL1 + - J L J _ i I ) 
) tf(3fc)V** - l (ck - D ( ^ + 1 ) / tf(3* 

t / ( 3 k - 1) ^ 1 
+ £/(3k) U(3k) o2 - 1 

= U(3k - l ) ( 7 ( 3 k ) 2 - 1) + V(3k) 
U(3k)(V(3k)2 - 1) 

Now, u s i n g t h e f a c t t h a t 

(4) 

and 
U(3n) = U(n)(V(n)2 - 1) 

U(3n - 1) = U(n - l)(7(n)2 - 1) + V(n), 

we see that the right side of (4) equals 

UQk + 1 - 1) 
U(3k+1) 

which completes the induction step. 
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Equation (3) gives us an alternative proof of our Theorem above. By let-
ting k -* °°, we see that 

{c - 1, cn + 1, c - 1, c + 1, . . .} = lim —^ =—i = - = a. 
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1. INTRODUCTION 

Following some of the techniques in [1] and [2], Walton [8] and [9] dis-
cussed several properties of the polynomial sequence {An(x)} defined by the 
second-order recurrence relation 

An+2(x) = 2xAn+1(x) + An(x), AQ(x) = q9 A±(x) = p. (1.1) 

The first few terms of {An(x)} are: 

(A0(x) = q, A±(x) = p, A2(x) = 2px + q, A3(x) = 4p#2+ 2qx + p, 

\A^(X) = 8px3 + bqx2 + kpx + q, A5(x) = I6pxh + 8qx3 + I2px2 + bqx+p, (1.2) 

Using standard techniques, we easily obtain the Binet form 

K{x) m (p - qw - (P - qm\ (1-3) 

where 

are the roots of 

so that 

= x • + V x ^ + 1 
(1.4) 

= x - v^2 + 1 

tz - 2xt - 1 = 0 (1.5) 

a + 3 = 2 x 5 a - 3 = 2/x2 + 1, a3 = -1. (1.6) 

In this paper we relate part of the work in [8] and [9] to other well-known 
polynomials. Thus, only some basic features of {An(x)} will be examined. 

It should be noted in passing that the expression for {An(x)} in (1.3) is 
in agreement with the form for the nth term of more general sequences of poly-
nomials considered in [6]. Properties of the general sequence of numbers {Wn} 
given in [4] are also readily generalized to yield properties of {An(x)}. 

Note that when x = 1/2 in (1.1) we obtain the generalized Fibonacci number 
sequence {Hn} whose basic properties are described in [3]. Furthermore, if we 
also let p = 1, q = 0 in (1.1) , then we derive the sequence {Fn} of Fibonacci 
numbers. Letting p = 1, q = 2 in (1.1) with x = 1/2, we obtain the sequence 
\Ln} of Lucas numbers. 

For unspecified x9 the Pell polynomials Pn(x) occur when p = 1 and q = 0 in 
(1.1), while for p = 2x and q = 2 the Pell-Lucas polynomials Qn(x) arise. Re-
lationships among Pn(x) and Qn{x) are developed in [5]. Hence, polynomials of 
the sequence {An(x)} may be called generalized Pell polynomials. 
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Readers may find some interest in specializing the results for {An(x)} to 
the polynomial sequences {Pn(x)} and {Qn(x)}9 and to the number sequences {#„}, 
{Fn}, and {Ln}. Some of the specialized formulas for {En} are, in fact, sup-
plied in [8] and [9]. 

Though it is not strictly pertinent to this article, we wish to record an 
important formula for {An(x)j which was not included in [9], namely, Sims on' s 
formula-. 

An^ ~ An + l(X^An-l(^ = H ) " (^ ~ P" + ^P*) . (1-7) 

2. An(x) AND CHEBYSHEV POLYNOMIALS OF THE SECOND KIND 

In [8] and [9] it is shown that 

M * ) = vZ\n ' m)t2x)n-2m + (p - 2qx) t (n ' 1 " 777)(2^)-1"2- (2.1) 
m = 0 777 = 0 X ' 

with n > 1. Furthermore, from [5] and [7], we have, respectively, the Pell 
polynomials given by 

*„(*>= t (" ~ Z ~ 1)(2x)""2'"-1 (2.2) 
777= 0 

and the Chebyshev polynomials of the second kind given by 

U„(x) = xf(-l) m( W: W)(2x)"-2m. (2.3) 
777 = 0 \ III / 

L e t t i n g x be r e p l a c e d by ix i n ( 2 . 3 ) , we see t h a t 

[ n / 2 ] 

E f " w)(2^)n-2- = ( - i ) X ( ^ ) = Pn+1.(a;), (2.4) 
m= o \ m / 

so that (2.1) can be rewritten as 

An(x) = q(-i)nUn(ix) + (p - 2qx)(-i)n~1Un_i(ix) (2.5) 

= ^ n + i W + <P " 2 ^ ) P n W 

= pPn(a;) + ^ . . W , 

which is another form of (1.1), which could also have been obtained by using 
the generating functions for An(x) (given in [9]) and Pn{x) (given in [5]) or 
their respective Binet forms. 

3. HYPERBOLIC FUNCTIONS AND An{x) 

Elementary methods enable us to derive, when x = sinh w = (ew - e~v)/2, 

A2k(x) = {p sinh Ikw + q cosh(2/;: - l)w}/cosh w (3.1) 

and 
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A2k+1(%) = {p cosh(2fc + l)w + q sinh 2fcw}/cosh w. (3.2) 

To achieve these results, we use the Binet form (1.3) and 

a = ew
9 3 = -e~w, a - 3 = 2 cosh w = ew + e'w. 

If we now use formulas (6.1) and (6.2) of [5], then (3.1) and (3.2) become 
(2.5) for the cases n = 2k and n = 2k + 1, respectively. 

k. GEGENBAUER POLYNOMIALS AND An(x) 

The Gegenbauer polynomials C^ for k > --y, k ^ 09 are given in [7] by 

C*(X\ = _J_[y Vnm r(n " m + feVn " /72V2x)n"2m (4 n 
* W r(fc) m t V ' r( n - 7 n + l ) \ m ) K l X ) > ^'L) 

where T(x) is the Gamma function. With k - 1, we have 

c j w = i ; ( -D"( n : "V-kcy-2™ « y„(x>, (4.2) 
w - o \ m / 

so that by (2.5) we obtain 
4n(a?) = q(-i)nC*(ix) + (p - 2^)(-i)n"1^_1(ix). (4.3) 

5. DETERMINANTAL GENERATION OF i4n(a;) 

Let us define two functional determinants An_x(x) and 6n_1(x) of order n- 1 
as follows, where d^ • denotes the element in the ith row and j t h column: 

n t 
2p# + g £ = 1 , 2, ...,n - l 

d-L i+i = P "̂  = 1 » 2 > •• •» n " 2 A Ax):{ ' (5.1) 
n J^,t-i = -1 i = 2, 3, ..., n - 1 

d^j = 0 otherwise 

6n-1(#): as for An„1(x) except that diti + 1 = -p, di>i_1 = 1 . (5.2) 

Expansion along the first row then yields: 
A n - l ^ = (2P^ + ^)An-2(ir) + P^n-sM (5-3) 

• p{2^Pn-!(x) + Fn_2(x)} + qP^Gc) by (5.5) of [5] 

- pPn(x) + qPn^(x) by (1.1) of [5] 

- An(x) by (2.5). 

Similarly, 

6n-1(ar) - 4n(a;). (5.4) 
As mentioned at the end of §2, a generating function for An(x) is given in 

19]. 
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INTRODUCTION 

Let n be a natural number, p a prime. Following Lucas [4], let A and B be 
integers such that 

(i) 04, B) = 1 and D = ̂ 2 + 45 ̂  0. 

Let the roots of (ii) #2 = Ax + 5 be 

(iii) a = |(,4 + D1 / 2), £ = -04 - D1/2). 

Consider the sequences 

(iv) un = (an - bn)/(a - b), yn = an + £n. 

If i4 = £ = 1, then un, Vn are the Fibonacci and Lucas sequences, respec-
tively. If A = 3 and 5 =-2, then un, t;n are the Mersenne and Fermat sequences, 
respectively. If A = 2 and 5 = 1 (so that Z? = 8), then un is called the Pell 
sequence (see [4, p. 187]), and is denoted Pn; vn may be called the secondary 
Pell sequence, and denoted i?n, following [7]. For the sake of convenience, we 
occasionally write u(n) instead of un and P(n) instead of Pn. Table 1, below, 
lists Pn and Rn for 1 < rc < 50. 

TABLE 1 

1 1 2 
2 2 6 
3 5 14 
4 12 34 
5 29 82 
6 70 198 
7 169 478 
8 408 1154 
9 985 2786 
10 2378 6726 
11 5741 16238 
12 13860 39202 
13 33461 94642 
14 80782 228486 
15 195025 551614 
16 470832 1331714 
17 1136689 3215042 
18 2744210 7761798 
19 6625109 18738638 
20 15994428 45239074 
21 38613965 109216786 3̂ 0 [Nov. 
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TABLE 1 (continued) 

n 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Pn 

93222358 
225058681 
543339720 
1311738121 
3166815962 
7645370045 
18457556052 
44560482149 
107578520350 
259717522849 
627013566048 
1513744654945 
3654502875938 
8822750406821 
21300003689580 
51422757785981 
124145519261542 
299713796309065 
723573111879672 
1746860020068409 
4217293152016490 
10181446324101389 
24580185800219268 
59341817924539925 
143263821649299118 
345869461223138161 
835002744095575440 
2015874949414289041 
4866752642924153522 

Rn 

263672646 
636562078 
1536796802 
3710155682 
8957108166 
21624372014 
52205852194 
126036076402 
304278004998 
734592086398 
1773462177794 
4281516441986 
10336495061766 
24954506565518 
60245508192802 
145445522951122 
351136554095046 
847718631141214 
2046573816377474 
4940866263896162 
11928306344169798 
28797478952235758 
69523264248641314 
167844007449518386 
405211279147678086 
978266565744874558 
2361744410637427202 
5701755387019728962 
13765255184676885126 

All solutions of the Pell equations x2 - 2y2 = ±1 such that x > y > 0 are 
given, respectively, by 

(Xn9 yn) =\-^R2n' P2n)> \2R2n-l> P 2n - ij * 

Furthermore, if (x, x-hl9 z) is a Pythagorean triple, then there exists n such 
that z = P2n+1* while 

{x, x + 1} = {Pn2+1 - Pn\ 2PnPn + 1}. 

These results follow from [8, pp.'44-48 and 94-98]. 
In [3], W. Ljunggren proved that if x > y > 0 and x - 2y = -1, then 

(x, y) = (1, 1) or (239, 13). 

From this result, it follows that if Pn = x2 with x > 0, then 

(n, x) = (1, 1) or (7, 13). 

In this article, we consider the equations 

Pn = px2
a (*) 
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We obtain all solutions such that p = 3 (mod 4) or p < 1000. The method used 
here is similar to the method used in [6] to find Fibonacci numbers of the same 
form. (m/p) is the Legendre symbol. 

Defini t ion 1: z(n) = min{fc : n\uk}; 2*(n) = m±n{k : n\Pk]. 

Definition 2: y(p) is the least prime divisor of s(p). 

PRELIMINARY RESULTS 

s*(2) = 2 

s*(3) = 4 

s*(5) = 3 

s*(7) = 6 

2*(13) = s*(132) = 7 

s*(29) = 5 

I f Z) ^ s 2 , t h e n s ( p ) | ( p - e) , where e = 

p |w n i f f s ( p ) | n ; p\Pn i f f s * ( p ) | n 

(£ /p) i f p\D 

0 i f p | # 

"• 2n+l 

(?m> PJ 

P2 + P: 

- (m, n) 
r In 

(P, 

Pn^n 

i s odd 
i s even 

> E ) = [l ±£ n i 
n> nn> \ 2 i f Yl i 

Rn = 2 (mod 4) for a l l n 

(}i?n)2 - 2P„2 = (-1)" 
un\ukn y Pn \Pkn 
I f m i s odd, t hen Rn ^ ms2 

I f p = 3 (mod 4 ) , t h e n z*(p) i s even 

/wn)]fc; ( P n , PknJPn)\k 

I f x 4 - 2z/2 = ( - l ) n , t h e n n i s odd and x2 

Rn = 2#2 i m p l i e s n = 1 

Pn = x2 i m p l i e s n - 1 or 7 

I f p i s odd and pk\\un, t h e n p k + 1 | | w p n 

= 1 

Remarks: Results (1) through (6) may be verified by examining the first seven 
entries in Table 1. (7) through (15) are elementary and/or well known. (16) 
follows from (13). (17) follows from (9), (10), Definition 1, and [2, Theorem 
367, p. 299]. (18) is Theorem 2 in [5]. (19) is proved in [8, p. 98]. (20) 
follows from (14) and (19). (21) follows from (14) and the result of Ljunggren 
mentioned above. (22) follows from [1, Theorem X, p. 42], 
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THE MAIN THEOREMS 

Theorem 1 

„2 Pn = 2x implies n = 2. 

Proof: Hypothesis, (1), and (8) imply n = 2m, so that (11) implies 

If 777 is even, then (12) implies 
PA = 2* 

But \ 2^m 5 2^m / 

(lPm)(|i?m)=2(|x)2. 

Now (13) implies ~^Rm = s2, so that (20) implies m = 1, a contradiction. If w 

is odd, then (12) and (16) imply Pm = r2, Rm = 2s2. Now (20) implies m = 1, so 

w = 2. 

Theorem 2 

If p is odd and Plm = px2, then p = 3 and 2w = x2 = 4. 

Proof: Hypothesis and (11) imply PmRm = px2. If 77z is odd, then (12) im-
plies Rm = s2 or ps2, contradicting (16). If m is even, then (12) implies 

But 
( ip ip U i 

( ip . ) ( i . . )=p(i«) 2 

Therefore, Pm or Pm = 2s . Now (20) and Theorem 1 imply m = 2, so that 

P2m = ?» = 12 - 3 ( 2 ) 2 -

Corollary 1 

If p is odd, z*(jp) is even, and Pn = px2, then p = 3 and n = x2 = 4. 

Proof: Hypothesis and (8) imply n is even, so that the conclusion follows 
from Theorem 2. 

Corollary 2 

If p = 3 (mod 4) and Pn = px2, then p = 3 and n = x2 = 4. 

Proof: Follows from hypothesis, (17), and Corollary 1. 

If p > 5, then the investigation of (*) is facilitated by Lemmas 1 and 2 
below, which hold for general sequences un, Vn which satisfy (i) through (iv) 
above, where D ^ s2. 
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Lemma 1 

Suppose p is odd, pfm, and ci = u{mp'L) lu(mp'L~1) for i > 1 . If i < j, then 

'p if p|# 

.1 if p\B. 

Proof: Let d = (^ , £j)» where i < j . Therefore, d\oi 9 d\c-> and d\u(mpi) • 
Now hypothesis and (15) imply d\u(mpJ'~1) , so 

df| (wCmp^'"1), u(mpc') /u(mp3~1)). 

Therefore, (18) implies d|p. If p̂ Z?» then (7) and (8) imply p\u(p) , so that 

(15) implies p^u(mpi). Therefore, p|ds so d = 1. If p|p, then (7) and (8) 

imply p\u(p) . Now (22) implies p\oi and p\ej , so p|d, and d = p. 

Lemma 2 

If un = pxr, z/(p) = qs a prime, and (pq, D) = 1, then n = qkm, where k > 1 
and (s, m) = 1 for all primes, s, such that s < q9 and, furthermore, pHum, If 
also q\umi then uw = cp and there is an integer, t, such that 1 < t ^ k, and 
for all j such that 1 < j < /c, we have 

r p x j if j = t 
u(mqJ) luimqj'1) - < 

I a;J if j + t. 

Proof: Hypothesis, (8), and Definitions 1 and 2 imply n = qkm> k ^ 1, and 
(s, m) ~ 1 for all primes, s, such that s < q. (8) implies p\um. Let 

d = (wOT, un/um). 

If q\umi then (18) implies <i = 1. Since (um) (un/um) = pxp, we have ww = <?r and 
unlum = pw2'. For each j such that 1 < j < /c, let a- = u(mqJ) /uimqj'1) . Now 

u„/wm = II a,, 
j-i J 

so that 

(1/p) ft ̂ = W . 
3 = 1 

Lemma 1 implies the factors on the left side of this last equation are pairwise 
coprime; the conclusion now follows. 

Theorem 3 

If Pn = 5x2, then n = 3. 

Proof: Hypothesis, (3), (8), and Lemma 2 imply n = 3fe?72 and (6, m) = 1. 
Therefore, (2) and (8) imply 3](Pm. Now Lemma 2 implies Pm = s2, so (21) implies 
in = 1 or 7. Lemma 2 implies P3m/Pm = s2 or 5s2. Since P21/P7 = 5*45697 ^ s2, 
5s2j we must have m = 1. If fc > 2, then Lemma 2 implies 197 = Ps/P3 = s2, an 
impossibility. Therefore, fe - 1, so n = 3. 
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Theorem k 

If Pn = 29x2, then n = 5. 

Proof: Hypothesis, (6), (8), and Lemma 2 imply n = 5km and (30, HZ) = 1. 
Therefore, (3) and (8) imply 5|Pm. Now Lemma 2 implies Pw = s2, so (21) implies 
m = 1 or 7. Lemma 2 implies Ps^/P^ = s2 or 29s2. Since 

P35/P7 = 29*1800193921 ^ s2, 29s2, 

we must have m = 1. If fc > 2, then Lemma 2 implies 45232349 = P25/P5 = s2, an 
impossibility. Therefore, k = 1, so n = 5. 

Lemma 3 

If Pw = px2, where n = 7^, & > 1, and (14, m) = 1, then Pm = px2. 

Proof: Let d = (Pw, Pn/Pm)» Hypothesis, (4), and (8) imply l\Pm, so l\&. 
Now (18) implies d = 1, so Pm = x2 or px2. If Pm = x2, then hypothesis and (21) 
imply /?i = 1, so n = 7fc. Since 

P7 = 132 + px2, 
we must have k ^ 2. But then Lemma 2 implies 

293*40710764977973 = Pks/P7 = x2 or px2, 

an impossibility. Therefore, we must have Pm = px2. 

Corol1ary 3 

Pn + 13x2. 

Proof: If Pn = 13x2, then (5) and (8) imply n = 7fe??7, l\m. Theorem 2 im-
plies m is odd, so Lemma 3 implies Pm = 13x2, contradicting (5) and (8). 

Theorem 5 

Let Pn = px2, where p and 3*(p) are odd. Then there exists a prime, ts such 
that Pt = pi/2. In fact, £ = s*(p). 

Proof: If n is prime, then t = n and x2 = y2* Therefore, assume n is com-
posite. Hypothesis and Theorem 2 imply n is odd. (1) and (8) imply Pn is odd, 
so x is odd. If n = 7̂777, 7|w, then Hypothesis and Lemma 3 imply Pm = pxj. So 
without loss of generality assume 7Jn, so that if <i|n, then d £ 7. 

Case 1 Suppose there exists d such that d\ns I < d < n, and z*(p)\d. Then 

(8) implies pfP^. Since <2 + 7, (21) implies Pd ^ s2. Therefore, there exists 

a prime, q1, such that q± + p and c?2/1""1 || Pd - Now, (15) implies q^'1"1 \ Pn , so 

that g^'i'1 | #2. This implies that q2^1] x2, so that ^2j'i | Pn . But (22) implies 

q[* \\Pdqi- Therefore, q2Ji\ (Pn,Pdqi)* Now, (10) implies q\h\ P{rLidqiy Since 

^2j'1"1||P^, we must have (ns dqx) > d, so that (n/d9 q±) > 1. Therefore, ̂ 1|n/i 

and q1\n. Since ^ ^ 7, (21) implies P(q±) + s2. Thus, there exists a prime, 

q , such that q2^'2'1 \\ Piq^) . If the only such prime is p, then 
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so that t = q± • If q ^ p, then q2^~x\ x2, so that by reasoning as above we 

obtain q9\n. Continuing in like fashion, we obtain a sequence of primes: q , 

<72> <735 etc., such that g.|P(<?. ,) and either q.|n or q̂  = p for i > 2. Since 

the q. are all odd, (7) and (8) imply q. 4- q. - Now (10) implies that the q. 

are all distinct. Since n has only finitely many divisors, there must exist r 

such that q = p, and thus q _ = t. 

Case 2 Suppose that s*(p)\d for all d such that d\n and 1 < d < n. Then 

s*(p) = q is a prime and n = qfc. Now Lemma 2 implies Pq = x2 or p^2. (21) im-

plies Pq 4 oc2, so Pq = px2 and t = q. In either case, since p\Pt , (8) implies 

£*(p)|t. Since £ is prime, we must have g*(p) = t. 

Lemma 4 

Suppose s*(p) = q, a prime, and q > 3. If p = ±2 (mod 5), then 

if p = 3, 5, or 6 (mod 7), then 

( ^ ) -
Proof: Hypothesis implies c? = ±1 (mod 6) , so that Pq - ±1 (mod 5) and Pq 

(mod 7). If p = ±2 (mod 5), then 

>P~% 
(-1)1 = -1. (^Mzm-m) If p = 3, 5, or 6 (mod 7), then 

'P'%\ /n-^/Pc i^)-KB)-m)-™-->-
Lemma 5 

Suppose 2*(p) = q, a prime, and q > 3. If either 

(i) (-|y) = -1 and q = ±1 or ±7 (mod 24), or 

(ii) (̂ -) = 1 and q E ±5 or ±11 (mod 24), 

Proof: If (i) holds, then Pq = 1 or 4 (mod 11), so f-̂ -j = 1; if (ii) holds, 
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then Pq E 7 or 10 (mod 11), so f^y) = -1. Therefore, 

Theorem 6 

If Pn = p^2 and p < 1000, then (n, p) = (2, 2), (45 3), (3, 5), or (5, 29). 

Proof: By Theorems ls 3, 4, and 5, and Corollaries 2 and 3, we need only 
consider those primes p, such that 37 < p < 1000, p E 1 (mod 4), and z* (p) = <7 
is prime. Examining Table 2 below, we see that these primes are: 

37, 61, 137, 157, 229, 277, 397, 421, 541, 569, 593, 
613, 661, 677, 733, 757, 821, 853, 857, 877, 997. 

Lemma 4 implies that p~1Pq is a quadratic nonresidue (mod 5) or (mod 7) except 
for p = 421, 541, 569, and 821. In each of these four latter cases, Lemma 5 
implies that p~ Pq is a quadratic nonresidue (mod 11). Therefore, in no case 
does Pq = px2. 

TABLE 2 

PELL ENTRY POINTS OF PRIMES, p, SUCH THAT p = 1 (mod 4), p < 1000 

V 

5 
13 
17 
29 
37 
41 
53 
61 
73 
89 
97 
101 
109 
113 
137 
149 
157 
173 
181 
193 

3*(P) 

3 
7 
8 
5 
19 
10 
27 
31 
36 
44 
48 
51 
55 
28 
17 
75 
79 
87 
91 
96 

P 

197 
229 
233 
241 
257 
269 
277 
281 
293 
313 
317 
337 
349 
353 
373 
389 
397 
401 
409 
421 

3*(P) 

9 
23 
116 
40 
64 
15 
139 
140 
49 
78 
159 
28 
175 
22 
187 
39 
199 
200 
102 
211 

V 

433 
449 
457 
461 
509 
521 
541 
557 
569 
577 
593 
601 
613 
617 
641 
653 
661 
673 
677 
701 

**(P) 

216 
224 
114 
231 
255 
65 
271 
279 
71 
16 
37 
60 
307 
308 
320 
327 
331 
336 
113 
351 

P 

709 
733 
757 
761 
769 
773 
797 
809 
821 
829 
853 
857 
877 
881 
929 
937 
941 
953 
977 
997 

**(P) 

355 
367 
379 
190 
384 
129 
399 
202 
137 
415 
61 
107 
439 
220 
464 
468 
471 
119 
488 
499 
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A FIBONACCI-LIKE SEQUENCE OF ABUNDANT NUMBERS 

CHARLES R. WALL 
Trident Technical College, Charleston, SC 29411 

(Submitted April 1983) 

Let o(n) denote the sum of the divisors of n. An integer n is said to be 
abundant if o(n) > 2n, perfect if a(n) = 2n, or deficient if o(n) < 2n. It is 
known [2] that if the greatest common divisor of the integers a and b is defi-
cient, then there exist infinitely many deficient integers n = a (mod b) . Fibo-
nacci buffs might expect an analogous result for generalized Fibonacci numbers, 
something along the lines of "if xn + 1 = xn + xn_1 and gcd (x19x2) is deficient, 
then the sequence {xn} contains infinitely many deficient terms/' In this note 
we shatter any such expectations by constructing a Fibonacci-like sequence {xn} 
with all terms abundant and having gcd (xl9x2) deficient. 

Vital to the construction are two easily proved theorems: 

(1) Any multiple of an abundant number is abundant. 

(2) If p is an odd prime, then 2ap is abundant if p < 2a + 1 - 1, 

perfect if p = 2a+1 - 1, 

and deficient if p > 2a+1 - 1. 

Graham [1] defined a Fibonacci-like sequence by 

g± = 1786 772701 928802 632268 715130 455793, 

g2 = 1059 683225 053915 111058 165141 686995, 

and gn+1 = gn + 9n-i' Graham1s sequence has the remarkable property that even 
though gcd (g±,g2) = 13 every term is composite. More specifically, every term 
is divisible by at least one of the primes 

(3) 2, 3, 5, 7, 11, 17, 19, 31, 41, 47, 53, 61, 109, 1087, 2207, 2521, 4481, 5779. 

Now, define a sequence {xn} by 

xn = 2128209» <7n, 

where {gn} is Graham!s sequence. Since 5779 < 213=8192, 212q is abundant for 
each odd q listed in (3) , and 2138209 is abundant since 8209 < 2lh - 1. There-
for, each xn is abundant. But 

gcd (x19 x2) = 2128209 

is deficient since 8209 > 213 - 1. 
Clearly, in the construction above, we may replace 8209 by any prime p such 

that 213 < p < 21\ 
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1. INTRODUCTION 

Let the cycle indicator 

( i ) 

where the summation is over all nonnegative integral values of k1, ..., kn such 
that fex + 2k2 + ••• + nkn = n. 

The exponential generating function of Cn(t) is (see [2, Ch. 4]: 

exp uC = E ?„(*);£ = exp|Z 1TW4> \u\ < l- (2) 

n = 0 n [k=1
 K ) 

Applying a Tauberian theorem [1, Th. 5, p. 447] to (2), we will be able to 
derive a limiting expression of Cn(t)ln\ , as n -> °°s under certain conditions. 

2. A LIMIT THEOREM 

Before we state and prove the main theorem, we shall prove the following 
lemma, which will be useful in the sequel. 

Lemma 1 

If 1 n 
-• £ .tk -> t , o < t < co, 

* - l ' * 

and the sequence {tn}» n = 1, 2, ..., is monotonic, then the sequence 

, n = 1, 2, ..., 

is monotonic for n > N9 where N is a fixed number. 

Proof: Using the well-known recurrence relation of the cycle indicator, we 
have: 

°n+l(t) 1 
(n + 1)! = (n + 1)! fe?0 (n)^ ̂fc + A -^(t) 

n + l ^ i n! + n + 1 p(n - 1)! + *'* + ^ + i r (3) 

Supposing that {tn}, n = 1, 2, ..., is monotonic decreasing, equation (3) 
is written: 
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(n + 1) ! w + \ t x n\ + n + 1 n! n + 1 nl ' (4) 

Since {tn}5 n = 1, 2, . .., is bounded, equation (4) is bounded by 

7—J_ n i < I—T-r) i— o r T-—, T\ , < j — for all n > N. 
(n + 1)! \n + 1/ n! (n + 1)! n! 

Theorem 1 

1 n 
If ~ 2 tk -+ t, as n -> a>, 0 < t < ooj then 

n * = i 

exp wC ̂  —L (i 7-)j as « t 1-, 
(1 - w)* Vl ~ */ 

(5) 

where L is a slowly varying function at infinity. 
Furthermore, equation (5) implies that 

If, additionally, {t„}, n = 1, 2, . .., is monotonic, then equation (5) is 
equivalent to 

°-{t) 1 t i 
n ! ^ Y7T)" n L ( n ) » as n -> ooe (7) 

Proof: Using the relation 

E X" = lo§ x _ u> for 0 < w < I, 

equation (2) is written 

Letting 

1 ( °°  u^ 
exp uC = — exp<̂  X T^k ' V 

(1 - uy (fe-i K 

and making the substitutions 

y — - = a? and tk - t = yk> 

equation (9) is written 

M-jij-i)'^ 
which is a slowly varying function at infinity, according to [1, Cor. p. 282]. 
So equation (5) has been proved. Now, applying Theorem 5 of [1, p. 447], we 
get equation (6). 
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Using Lemma 1 and the same Theorem we have that (5) is equivalent to (7). 

Corollary 1 

If -j n -j n 
n E*k "* t and n E sk -* s> n k = 1 n k = 1 

and the sequences {tn}9 {sn}, n = 1, 2, ..., are monotonic, then 

CM(t + s) 
n*"*"8" 1^), asn->». (10) n! T(t + s) 

Proof: Since the Cn(t) is of the binomial type, we have: 

Cn^ + «) - t (l)ck(t)Cn.k(s). (11) 
fe = 0 X / W 

Applying equation (7) to (11), we get 

C(t + s) 
^Yh)kt'lL(k)fhy(n • ^)S"lL(n -fc) + oft*'1* (n - ^r-1) , (i n: 

where oik*'1 , (n - ^)s-1) is such that 

^(fe*-1, (n - /c)5-1) : Q 

k*-1 - in - k)8-1 

uniformly in k and n as the min(/c, n - k) -* °°. 
Equation (12) is equivalent to 

2) 

C„(* + s) „*+ — i — iHn) Y vAkY-l(l k)S-lL(nn)M1-^)) 
(a) L (W) /- W W I1 n) L(n) L(n) r ( t )r ( 8 

By the definition of slowly varying function at infinity, we have that 

;(»§)4(>-t)) , 
— • , \r, N -> 1 as n -> oo„ L(n)L{nY 

Thus, interpreting the sum in (13) as the approximation to a Riemann integral 
as n -> <», we get 

Cn(t + s) t + a . i 

V(t)T(s 
y I,2(n) f xt'1a - x)s-1dx 

Cn(t + s) t + s . i 
»i " iferGO Mw)B(*' 8 ) ' ( u ) 
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where B(t + s) is the Beta function. Since it is well known that 

Bit s) - nm(s) 
equation (14) implies (10). 

Corollary 2 

If tk = t for k = 1, 2, ..., 0 < £ < 1, then 

ZQ-^T~^ T ( t + 1 } «', as n-^oo, ( 1 5 ) 

and 

n\ T(t) s a s e 

Proof: In this case, the exponential generating function of Cn(t, . .., t) 
is written 

exp uC = (1 - w)~* (17) 

as it is well known [2, p. 70], 
Applying Theorem 5 [1, p. 447] to (17) we get (15), and since the sequence 

, n = 1, 2S .. . , n! 

is monotonic decreasing [2, (11) , p. 71], relation (17) is equivalent to (16). 

Remark 1: Concerning the same probability problem as that in [2S p. 71], 
Cn(t)ln\ is the generating function of certain probabilities. 

Using equation (16), we can easily verify by differentiating that 

y ̂  log(n) + y, as n •> °°, 

where y is Eulerf s constant and 

a2 ^ log n + y + £(2), 
where £(2) is the Riemann Zeta function which, in this special case, is equal to 
7T2/6. Both these results agree with those obtained in [2, p. 72]. 
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The Fibonacci sequence of numbers, F^9 can be defined as the sequence whose 
first two terms are unity and whose nth term (for n > 2) is equal to the sum 
of the {n - l)s t term and the (n - 2)nd term. The ratio of increase between 
successive terms rapidly approaches a constant value, the positive root of the 
equation 

x2 - x - 1 = 0, (1) 

which is <f> = %(1 + A/5) * 1.618034. 
Fibonacci sequences can be generalized by increasing the number of previous 

terms that are summed to produce subsequent terms. Therefore, the Tribonacci 
sequence, Ti, has its nth term equal to the sum of its (n - l ) s t , (ft - 2)nd , 
and (ft - 3)rd terms. The ratio of increase between successive terms in the 
Tribonacci sequence is the real, positive root of the equation 

x3 - x2 - x - 1 = 0, (2) 

which is T = 1.839287 (see [1], [2], and [3]). 
In general, the n-bonacci sequence has its i th term equal to the sum of the 

previous n terms. The ratio if increase is then the real, positive root of the 
equation 

xn _ xn-l _ mmm _ x _ l = Q^ ( 3 ) 

For n > 2, <|> < a? < 2. 
Because such generalized Fibonacci sequences soon approximate geometric se-

quences, all of the terms in those sequences (aside from initial values) are 
approximately equal to the geometric means of the immediately preceding and 
immediately following terms. At the same time, because of the Fibonacci nature 
of those sequences, each term is also approximately equal to the harmonic mean 
and exactly equal to the arithmetic mean of neighboring terms. Those proper-
ties are the focus of the present paper. 

The harmonic, geometric3P and arithmetic means of two positive numbers, a 
and b9 are defined as 

ma. b) = ̂  (4) 

GM(a, b) = VaE, (5) 
and , 

ma, b) = £-|A (6) 
respectively. They are related by the classical chain of inequalities 

HM(a9 b) < GM(a, b) < AM(a, b). 

Now consider the question of finding a geometric sequence (i.e., a sequence 
of terms where the ith term is equal to the (i - l)st term times a constant) 
in which any four consecutive terms can be written in the form 

a, HM(a, b)9 AM(a, b), b. 
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If we set a = 1 and denote the ratio by x, we must solve the set of equations 

x 
2b 

1 + b> x 

which are consistent and reduce to 

1 + b 

2xA + 1 

and x3 = b, 

0. 

(7) 

(8) 

By inspection, x = 1 is a root of equation (8), 
identical terms satisfies the stated conditions. 
tion, we divide equation (8) by (x - 1) and find 

~2 1 o, 

indicating that a sequence of 
To exclude that trivial solu-

(9) 

the equation for the ratio of the Fibonacci sequence. Thus, the integers in a 
Fibonacci sequence approximate the harmonic and arithmetic means of nearby Fi-
bonacci numbers. Table 1 shows the first 15 Fibonacci numbers and indicates 
that the arithmetic mean relationship is exact from n = 2 onward, while the 
harmonic mean relationship is correct to within ±0.1 as early as n = 6. 

TABLE 1 

HARMONIC AND ARITHMETIC MEANS IN THE FIBONACCI SEQUENCE 

n 

1 
2 
3 
4 
5 
6 
•7 

8 
9 
10 
11 
12 
13 
14 
15 

Fibonacci 
Number 

K 
1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 
610 

Harmonic 
Mean of 

_ 
1.500 
1.667 
3.200 
4.875 
8.077 
12.952 
21.029 
33.982 
55.011 
88.993 
144.004 
232.997 
377.002 
609.999 

Arithmetic 
Mean of 

~P F 

__ 
-
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 
610 

Ratio 
Fn/Fn-l 

__ 
1.000 
2.000 
1.500 
1.667 
1.600 
1.625 
1.615 
1.619 
1.618 
1.618 
1.618 
1.618 
1.618 
1.618 

The same approach can be applied to finding a geometric series where suc-
cessive terms can be written in the form 

a, HM(a,- b), GM(a9 b), AM(a9 b), b. 

With a = 1 and ratio x, the equations are 

2b 
" " 1 + b 

which are consistent and reduce to 

s x2 = Vb, x3 = — ^ — , and xh = b3 (10) 

2x6 + 1 (11) 
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If we again divide by (x - 1) to eliminate the trivial solution, we have 

x3 - x2 - x - 1 = 0, (12) 

the equation for the ratio of the Tribonacci sequence. Table 2 shows the first 
15 Tribonacci numbers, and again the mean relationships emerge quite quickly. 

TABLE 2 

HARMONIC, GEOMETRIC, AND ARITHMETIC MEANS IN THE TRIBONACCI SEQUENCE 

Tribonacci Harmonic Geometric Arithmetic 
Number Mean of Mean of Mean of Ratio 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

T 
j . n 

1 
1 
2 
4 
7 
13 
24 
44 
81 
149 
274 
504 
927 
1705 
3136 

m m 
^ n - l ' -Ln + 3 

_ 
1.750 
1.857 
3.692 
7.333 
12.886 
23.914 
44.134 
80.934 
148.982 
274.051 
503.967 
927.000 
1705.018 
3135.985 

m m 
x«-29 ^n+2 

_ 
-
2.646 
3.606 
6.928 
13.266 
23.812 
44.011 
81.093 
148.916 
274.020 
504.029 
926.965 
1705.014 
3136.007 

m rp 

__' 
-
-
4 
7 
13 
24 
44 
81 
149 
274 
504 
927 
1705 
3136 

J-n/J-n -; 

_ , 
1.000 
2.000 
2.000 
1.750 
1.857 
1.846 
1.833 
1.841 
1.840 
1.839 
1.839 
1.839 
1.839 
1.839 

Let us now formally generalize the above relationships between Fibonacci 
sequences and harmonic and geometric means. 

Theorem 

If positive, real numbers 1 and b are the mth and (m + n + l)st terms in a 
geometric sequence with ratio x > 1, and the (m + l)st term is HM(lt b) and the 
(jn •+ n)th term is AM(l, b) , then the ratio of that geometric sequence is equal 
to the ratio of the corresponding n-bonacci sequence, i.e., the real, positive 
root of the equation 

xn - Z " 1 - ...- x - 1 = 0. 

P roof: The terms in the geometric sequence must satisfy the equations 

2£ =s - — __ g = _ ^ g = 0m (.ijj 

which are consistent and which reduce to 
xn + l _ 2xn + 1 = 0 > ( U ) 

Eliminating the root x - 1 by dividing equation (14) by (x - 1) yields the n-
bonacci equation 

xn _ xn-l _ ... _ x _ l = Q B ( 1 5 ) 
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Thus, in any n-bonacci sequence S, the term Sm is approximately equal to the 
harmonic mean of terms Sm_1 and Sm+n$ and exactly equal to the arithmetic mean 
of terms Sm_n and Sm+1. 

One might ask whether all of the n terms between Sm and Sm+n+1 in an n-bo-
nacci sequence can be expressed in terms of generalized means, where a general-
ized mean of order ts M(t), is given by 

M(t) = [|(a* + b^Y^ . (16) 

When t = 1 equation (16) yields the arithmetic mean, when t = -1 it yields the 
harmonic mean, and in the limit as t goes to 0, it yields the geometric mean 
[4, p. 10]. The answer, in general, is no, as in shown in the following para-
graph. 

Let us examine the case where n = 4, i.e., the Tetranacci sequence. If six 
consecutive terms can be expressed in the form 

a, HM(a9 b) , Af(-t) , M(t), AM (a, b) , b9 

then we have the equations (with a = 1): 

* = rfr* x2 - [i(1 + i-*)]"1'*. *3 = [V + &')]1". ** = H 1 ' -5 = b - (17> 
The first and fourth equations, for the harmonic and arithmetic means, reduce 
to 

^5 - 2x* + 1 = 0. (18) 

The second and third equations are consistent (because the values -t and t are 
used), and reduce to 

x5t - 2x3t + 1 = 0 . (19) 

Equations (18) and (19) are clearly inconsistent, however, as there is no value 
of t that can simultaneously satisfy the conditions 5t = 5 and 3t = 4. Thus, 
aside from the trivial solution x = 1, it is not possible to represent four 
consecutive terms of a Tetranacci sequence as generalized means of the two ad-
jacent terms. 

In summary, harmonic and arithmetic means naturally arise in Fibonacci-type 
sequences. In the geometric series that forms the limit of every n-bonacci 
sequence, the mth term will be equal to the harmonic mean of the (m - l)st and 
the (TW + n) t h terms and the arithmetic mean of the (m - n) t h and (m + l)s t 

terms. The aesthetic appeal of Fibonacci proportions may be due, in part, to 
their natural blending of harmonic, geometric, and arithmetic means. 
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It has been proved [7, Lemma 3] that an integer has the property that 

(x, m) = 1 implies x1 E 1 (mod m) iff TT?|24. 

To generalize this result, we make the following definition. 

Definition 1 

Let n be a positive integer. The integer m has property P(n) if and only 
if (x, m) = 1 implies xn = 1 (mod m) . 

In §1 we shall determine, for n > 1, all integers which have property P(n); 
in §2 we shall prove some consequences of an integer having property P(ri) or a 
similar property. 

1. INTEGERS HAVING PROPERTY P(n) 

In Theorem 2, we shall show that the only integers having property P(n), 
where n is an odd positive integer, are -2, -1, 1, and 2. In Theorem 3, we 
shall determine the integers which have property P(n) , where n is an even posi-
tive integer. In particular, we shall show that: 

m has property P(4) iff m divides 240 = 2̂ 3 -5 

m has property P(6) iff m divides 504 = 2332 * 7 

m has property P(8) iff m divides 480 = 25 • 3 • 5 

77? has property P(10) iff m divides 264 = 233 • 11 

77? has property P(12) iff 777 divides 65,520 = 24325 -7-13 

Theorem 2 

Let n be an odd positive integer. The integer m has property P(n) iff m\2. 

Proof: Assume that m has property P(n), where n is an odd positive inte-
ger. Thus, since (-1, 77?) = 1, 

1 E (-l)n E -1 (mod 777). 

Therefore, 77?12. Clearly, m\2 implies that 77? has property P(n) . 

Theorem 3 

Let n be an even positive integer and let the distinct odd primes p which 

are such that <f>(p)|n be denoted by p1? p- , ..., p . Choose e such that 2e|n, 

and for i = 1, 2, ...,£, choose e^ such that (|>{pe0 | n 'and cj)(pei + 1) | n. The 

integer m has property P(n) iff m\2e+2p^1p^2 ... pe*. 
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On page 47 of [2], it is stated that the integer 

2e + 2pe^p^ . . . pe* 

defined in Theorem 3 is the largest integer to have property P(n). Given a 
positive integer n9 Theorems 2 and 3 enable us to find all integers m that have 
property P(n) . Given an integer m9 Theorem 2 of [1] and its proof enable us to 
find all positive integers n such that m has property P(n). An earlier refer-
ence is Theorem 4-9 of [4]. 

We shall need the following two lemmas to prove Theorem 3„ 

Lemma 4 

Let d, 777, n be integers with n positive. If 777 has property P(n) and d\m9 
then d has property P{ri) . 

Proof: Without loss of generality, assume d > 1 and 777 > 1. Let 

777 = q^q** ... <?«*, 

where q±9 q2> ..., qt are distinct primes and e±9 el9 ..., et are positive in-
tegers. Also let q19 q29 . .., q- 9 where 1 < j < t9 be the distinct primes that 
divide d. We shall now prove that d has property P(n). Thus, let (a, d) = 1. 
Choose b such that 

b = a (mod q**qe* ... qV) and b E 1 (mod ^ ^ .e. qrj*). 1 2 j j +1 t 

Since (2?, 777) = 1 and 777 has property P(n), &n = 1 (mod 777). Therefore, since 
a E b (mod ^) and d\m9 an E Z?n = 1 (mod d) . 

A proof of the next lemma can be found, for example, in [6, pp. 104-105]. 

Lemma 5 

Let e be a positive integer. We have that: 

(i) a2 E l (mod 2e+2) for all odd integers a. 

(ii) 5 belongs to the exponent 2e modulo 2e+ 2. 

Proof of Theorem 3: First assume that the integer 777 has property P(n) . We 
shall show that 

m|2* + 2p^p'»... p^ 

by showing that: 

(i) 2e + 3 does not divide 777, 

(ii) for i = 1, 2, , t9 p&i+1 does not divide 777, and 

(iii) the only odd primes that may possibly divide 77? are p±9 p2> ..., pt . 

If 2e + 3|777, then by Lemma 4, 5M = 1 (mod 2e + 3 ) . But since 5 belongs to the 

exponent 2e+1 modulo 2e+3
9 we have the contradiction 2e+1|n. 

Now suppose pfi+1\m and let a: be a primitive root modulo pfi + 1. By Lemma 4, 

xn E 1 (mod pfi + 1 ) . But this is impossible since (f>(pfi + 1) does not divide n. 
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Similarly, suppose there is an odd prime p such that p\m and p ^ Pi for 
t - 1, 2, ...,£, and let x be a primitive root modulo p. By Lemma 4S #n E 1 
(mod p) . But this is impossible since (j>(p) does not divide n. 

Conversely, assume 

m\2e + 2 p e
1

1 p e
2 * . . . p** . 

Thus, by Lemma 4, it is sufficient to prove that 2e+2p&1 p&1 . . . p_f* has property 
P(n). So assume 

(<*, 2 e + V 1 P S 2 - - - P!*> = !• 
1 2 t 

Thus (a, 2) = 1 , so by Lemma 5, a2 = 1 (mod 2 e + 2 ) . Also, for £ = 1, 2, . .., t, 
(a, pf1') = I, so by the Euler-Fermat theorem, 

aHp^ '= 1 (mod pf*). 

Since 2e|n and 4>(pf*) |n for £ = 1, 2, . .., t, an = 1 (mod 2e+2) and an = 1 (mod 
pf*) for i = 1, 2, ..., t. Therefore, 

an = 1 (mod 2e + 2 p^p^... p«t). 

2. SOME CONSEQUENCES OF P(w) 

We shall now consider some consequences of an integer m having property 
P(n) or a similar property. Our first result shows that an integer m having 
property P(n) puts a restriction not just on the nth powers of the integers 
relatively prime to m but on the nth powers of all integers. 

Theorem 6 

Let m and n be integers with n > 2. The following four conditions are 
equivalent: 

I. m has property P(n). 

II. For all integers a, b9 k, where k is positive, 
akn + &fen E a?cn£fcn + ( a ? ^jfcn ( m o d m ) # 

III. For all integers a, 

an = (a, w) n (mod m). 

TV. For all integers a and 2?, if (a&, m) = (&, m) , then, for all positive 
integers k3 

aknb = £> (mod m) . 

Theorem 6 is not true for n = 2; for n = 2,m = 24,fc==l, a = 1 0 , and b = 
14. I is true but II is false. 

For Theorem 6, we clearly have that III implies I. Also, by letting b = m 
and k - 1 in II, we see that II implies III and, by letting b = 1 and k = 1 in 
IV, we see that IV implies I. We shall complete the proof of Theorem 6 by 
showing that I implies II and that I implies IV. To show that I implies II, we 
shall need the following lemma, which, for the case ab = 0 (mod m) and k = 1, 
was proved in Theorem 13 of [1], 
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Lemma 

Let n be a positive integer. If m has property P(n) and (a, b) = 1, then, 
for all positive integers ft, 

akn + hkn Eaknbkn + x ( m o d m) ^ 

Proof: Choose d and e such that 

de = w, (d, e) = 15 (as d) = 1, and (&, e) = 1. 

We can do this as follows: If (b, m) = 1, let d = 1 and e = m. Otherwise, let 
pl5 p23 ...,pt be the distinct primes that divide both b and 777 and, for i = 1, 
2, . .., t, choose e1, e2, ..., et such that p&i\m. Just let 

d = p^pl*-.. p** and <5 
77? 

2 e e ° ^ t — ~ d' 

Since d|m, d has p r o p e r t y P(n) . Thus, akn = 1 (mod d) . S i m i l a r l y 2^ n E 1 
(mod e). T h e r e f o r e , 

0 = (a&« - l ) 0 > k n - 1) = aknbkn - akn - bkn + 1 (mod TW) . 
That i s , 

a k " + bkn E £*"£>** + 1 (mod m). 

Proof that i Implies 1 1 

Assume that m has property P(n) and let a, b, ft be integers with ft posi-
tive. Let px, p2, ..., pt be the distinct primes that divide all three of a, 
b9 m and, for i = 1, 2, ..., £, choose ê  such that pfi\\mB Thus, there is an 
integer o such that 

m = P^pl*--. P^O, (a, b, o) = 1, and (c, ^ = 1. 

In addition, since m has property P(n) and n > 2, e^ < n for i = 1, 2, ..., t. 
We shall prove that I implies II by showing that 

akn + bkn a n d afcn^/cn + ( a ? b)kn 

are congruent modulo c and modulo m/c. 
Since o has property P(n), the preceding lemma implies that 

nkn -ukn nkn-ukn 
a D - a o + x (inod ^ 

(a, b)kn (a, 2>)kn (a, « 2 k n 

and ((a9 2?), c) = 1 implies that 

(a, Wfen E 1 (mod c). 

These two congruences imply that 
akn + bkn = afenZ?/cn + ( a $ h)kn ( m o d ^j # 

S ince , for i = 1, 2, . . . , t, pi | ( a , b) and e^ < n < ftn, ( a , 2>)*n = 0 (mod 
m/c). Hence, akn, &few, and aknbkn axe a l s o congruent t o 0 modulo 777/(2. Thus, 

akn + frkn E Q = aknbkn + ^ b)kn ( m o d ^ / ^ ^ 

Proof that 1 implies IV 

Assume that m has property P(n) and that (ab> m) = (b, m). Since 
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(b9 m) = (ab, m) = (ab, m(a, 1)) = (ab, am, m) 

= (a(b, m), m) = (2?, w)(a, /fcf m) )' 

have that 1 = (a, -TT v-J * Thus, 

(mod TF7m)\ 

akn = 1 

Therefore, aknb = b (mod m). 

The equivalence, for k = 1, of I and III in Proposition 7, below, implies 
Corollary 3.1 of [5]. 

Proposition 7 

Let m, n, 2» be integers where n and P are positive and m has property P(n). 
The following three conditions are equivalent: 

I. m is (r + 1) power-free. 

II. For all integers a, (ap, m) = (ar+1, w). 

III. For all integers a and all positive integers k, akn+r = ap (mod m). 

Proof: It is easy to show that I and II are equivalent. Now, II implying 
III follows from the equivalence of Theorem 6(1) and Theorem 6 (IV) with b = ar. 
To prove that III implies II, assume that an + r = ar (mod ni) . Therefore, 

(ar, m) = (an + r, m) > (ar+1, m) > (ar, m). 

Proposition 8 

Let k, m, n be integers such that k and n are positive,m has property P(n), 
and m is (/c, n) + 1 power-free. For every integer a, if the congruence 

xCk,n) E a ^mod mj 

has a solution, then congruence xk = a (mod m) has a solution. 

Proof: Let a be an integer and assume that the congruence 
xik.n) = a (mod m) 

has a solution, say a? = b. There are positive integers u and w such that 

ku = nw + (k, n). 
Thus, by Proposition 7, 

2>k" = 2>""+(*'n> = &(k'n) E a (mod m). 

Therefore, the congruence xk = a (mod m) has a solution, for example, x - bu. 

The restriction "m is (7c, n) + 1 power-free" is needed in Proposition 8. 
In general, for a prime p, if p(k»n)+1 divides m and fc > (k, n) , then the con-
gruence 

a-Ocn) = pik,n) ( m o d m ) 

will have a solution, but the congruence 
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xk = p(k,n) ( m o d w ) 

will not have a solution. This is so because, for p a prime, 

p(k>n) + 1\m, xk = p(k>n) (mod m)9 and k > (fc, n) 
imply the contradiction 

Our next result is a generalization of Theorem 1 of [3]. 

Theorem 9 

Let c, d, m, n be integers with n positive and (cd, m) = 1. The following 
two conditions are equivalent. 

I. For all integers ts if (£, m) = ls then 

(tn - cn)(tn - dn) = 0 (mod Hz). 

II. For all integers, a and /3, if ab E od (mod 77?) , then 

an + bn E cn + dn (mod 777). 

Proof: First assume I and assume ab E od (mod 777). Thus, 

(a, 7??) < {ab, m) = (c<i, 777) = 1. 
Hence, by I, 

0 E ( a n - <?n)(an - dn) = a2 n - a n d n - anan + <?ndn 

E a2n - andn - a n c n + anbn = a n ( a n - dn - c n + 2>n) (mod 777). 
Therefore, since (as m) = 1, 

an + &n = cn + dn (mod 777). 

Conversely, assume II and assume (£, 77?) = 1. Thus, there is an integer a 
such that at E c?d (mod 777). Hence, by II, 

an + tn E on + <fn (mod 777). 
Therefore, 

0 = 0tn E (tn - dn - on + an)tn = t2n - dntn - £nin + antn 

E t2n .- <intn - <?n£n + cnJn = (tn - on)(tn - dn) (mod 777). 

Theorem 10 

If an integer 777 has property P(2k), where k is a positive integer, then 
there is an integer o such that (£, 77?) = 1 implies 

(tk - ok)(tk - lk) E 0 (mod 777). 

Proof: Assume 777 = p^p^2... pej" has property P(2k) . We can choose c such 

that c E Qt (mod pfO for i = 1, 2, ..., J, where c]L, e2, ..., ̂  are chosen as 

follows: 

For p. = 2, #£ = 1 if k is an even integer and <?/ = 3 if k is 
an odd integer. For p^ an odd prime, oi = 1 if pf* has prop-
erty P(fc); otherwise, choose ^ such that ok E -1 (mod pf*). 
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The converse of Theorem 10 is false. A counterexample is k - 2 and m = 64. 
We do have that (t, 64) = 1 implies that 

(t2 - 1)(£2 - 1) E 0 (mod 64), 

but 64 does not have property P(4). The reason (t2 - 1)(t2 - 1) E 0 (mod 64) 
is because t odd implies 8|(t2 - 1 ) . 

The next theorem is a generalization of Theorem 2 of [3]. 

Theorem 11 

Let k be an odd positive integer. The following two conditions are equiva-
lent . 

I. There is an integer d such that if ab = d (mod rri), then 

ak + bk s I + dk (mod m). 

II. m has property P{2k). 

Proof: Assume I and assume (x, rri) = 1. Thus, there is an integer y such 
that xy E d (mod rri). Since xy E d (mod m) and (-1)(-d) E d (mod m) , by I, 

xk + yk E 1 + dk (mod rri) (1) 
and 

-1 - dk E (-l)k + (-d)k E I + dk (mod 777). (2) 

If m is an odd integer, then by (2), dk E -1 (mod 77?). Hence, by (1), 

Therefore, 
x2k E -xkyk E -dk E 1 (mod TT?) . 

If m is an even integer, then since {x, rri) - 1 and by (2), 2 divides #k - 1 
and 777/2 divides dk + 1. Thus, 

0 E (dk + l)(*k - 1) = dkxk - dk + xk - l (mod m). (3) 

T h e r e f o r e , by (1) and ( 3 ) , 

x2k E xk(l + d^ - yk) = #fc + dkxk - x ^ 
E ^ + d V - dk E 1 (mod 777) . 

Now assume 777 has property P(2k) . To prove I, we will prove that if ab = -1 
(mod 777), then ak + bk E 0 (mod m) . Therefore, assume a/3 E -1 (mod 777). Hence, 
(a, 77?) = 1. Thus, 

0 E a2k - 1 E a2k + (ab)k = ak(ak + bk) (mod 777). 

Since (a, 777) = 1, this implies that ak + bk = 0 (mod 777). 
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LETTER TO THE EDITOR 

Dear Dr. Bergum: 

A paper by Charles R. Wall entitled "Unitary Harmonic Numbers" appeared in 
the February 1983 issue of The Fibonacci Quarterly. We thought you might be 
interested in knowing that a paper with the same title and similar content was 
published by us (P. Hagis & G. Lord) in the Proceedings of The American Mathe-
matical Society, v. 51, 1975, pp. 1-7. Comparing Wall's results with ours, you 
will see that both of Wall's theorems contain minor errors. Thus, there are 45 
(not 43) unitary harmonic numbers less than 106, including 1512 = 23337 and 
791700, both of which were missed by Wall. And, since 0)(1512) = 3, there are 
24 (not 23) unitary harmonic numbers n for which 0)(n) ̂  4. 

It should also be mentioned that Wall's conjecture that "there are only 
finitely many unitary harmonic numbers with a)(n) fixed" is Theorem 2 in our 
paper. 

Sincerely, 

Peter Hagis, Jr. 

Graham Lord 

RESPONSE 

Dear Dr. Bergum: 

Professors Hagis and Lord are correct in their observations. The omission 
of 1512 and 791700 resulted from an oversight which is entirely my responsi-
bility. The duplication of their earlier work was unfortunate but done in in-
nocence; it is doubly unfortunate that neither the referee nor I was aware of 
the earlier paper. 

Independent but duplicate results are inevitable. One hopes that a re-
invented wheel is in some way superior; in this case, alas, the earlier model 
was better in all respects. I apologize to you and to readers of The Fibonacci 
Quarterly. 

Sincerely, 

Charles R. Wall 
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I. INTRODUCTION 

Recently Neumann & Wilson [6] and Shannon & Horadam [8] have discussed the 
sequence of numbers given by the linear recurrence 

Tk = 2*-2 + Tk-3-> To = 3> ^i - °. T2 " 2-
This sequence has the following interesting property: 

If p is a prime, then p\Tp. (1) 

The sequence {Tk} has been discussed several times before; for example, see 
[1]» [2], [3], [4], [5], and [7]. In particular, Perrin [7] asks if the con-
verse to (1) is true, that is: 

Does p\Tp imply that p is prime? 

Neumann & Wilson call a counterexample to the converse a pseudopvime* They 
did not find any pseudoprimes for the sequence {Tk}. 

Unfortunately, the converse is false; the first example being 

271441 = 5212. 

The only other composite n less than 1000000 for which n\Tn is 

904631 = 7 • 13 • 9941. 

These numbers were found using a computer program written in APL and were 
checked independently by John Hughes using a FORTRAN program. 

It can be shown that the sequence {Tk} is, essentially, exponential in 
growth. In particular, for large k we have 

Tk ~ ak, 
where a is the real root of x3 - x - 1 = 0 and a = 1.32, approximately. 

In [8], Shannon & Horadam remark that the sequence {Tk} "is possibly the 
slowest growing integer sequence for which p\Tp for all primes p." This is 
clearly false, as simple examples like 

Ak = k • |log k\ 
or even 

Ak = k 
will show. These examples might be dismissed as trivial. In this note we will 
show that there exist nontrivial sequences {T^} given by a linear recurrence 
having the property (1) that have rates of growth like 

Tk ~ ak, 
where a - 1 is a positive number arbitrarily close to 0. 
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M. SLOWLY-GROWING SEQUENCES 

Let n ) 3 be a positive integer and define 

f(x) = xn - x - 1. 
Let the roots of f(x) = 0 be 

1 ' 25 • • • » ^n 
arid put 

Then it is easy to see that 

Tk * a i + a 2 + " ° + a n -

f̂c ^fe + l-n + ^ - n 5 

where the starting values are given by 

Ta = n, Tx = 0, T2 = 0, .... Tn_z = 0, T _x = n - 1. 

By Theorem 2 of [6], the sequence {T^} has the property of (1). 

We have the following-: 

Theorem 

Let f(x) = xn - x - 1. Then: 

(1) All zeros of / are smaller in magnitude than 31'ne 

(2) All zeros of / are of multiplicity 1. 

(3) f has exactly 1 real zero if n is odd and exactly 2 real zeros if n is 
even. 

(4) / has a real zero a satisfying 2l^n < a < 3ly'n. If n is even, there is 
in addition a real zero 3 satisfying -1 < 3 < 0. 

(5) The positive real zero a is in fact the zero of / largest in magnitude. 

Proof: 

(1) Let a be the zero of / which is largest in magnitude„ Then9 for some 
integer k ^ 0, we have 

k1/n < \a\ < (k + l ) 1 / n . 

Now an - a + 15 so 

. |ot" | = |a + l'| < 1061 + 1 < (k + l) 1 / n + 1, 

whereas k < |an|. Hence 

k < (k + l) 1 / n + 1 

and so certainly k < 3. 
(2) Put g(x) = nf(x) - xff(x)„ Now, if there were a repeated zero of /, it 

would be a zero of fr and hence also a zero of g. But g is linear; in fact5 
g(x) = (1 - n)x - n* 

It is easily verified that the zero of gs namely rc/(l - n) s is not a zero of ff. 
This gives us the desired contradiction. 

(3) Suppose n is even. Then f (n) = 0 has only one real root3 namely 
n-l/(n-l)e 
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It is easily verified that f(x) •>+00 as x -»• ±00. Hence, / attains its minimum 
at x - n'1'^'1'. It is easily verified that this minimum is negative. Hence, 
/ has two real zeros. 

Now suppose n is odd. Then fr(x) = 0 has two real roots, namely 
± n-i/(n-i) e 

Now f(x) -> -°°  as x -> -°°  and f(x) -> °°  as x -*• °°, so / attains a local maximum at 
_n-i/(n-i) an(j stains a local minimum at n"1^n~1K It is easily verified that 
/ is negative at both these points, so / has only one real zero. 

(4) It is easily verified that f(2ljn) < 0, while f(31,n) > 0. Also, if n 
is even, then /(-I) = 1 but f(0) = -1. 

(5) Let yQ = r e^e be a complex zero of /. Then 

Hence, rQ = |i>0ete + l| < P 0 + 1. Thus, f(r0) = r% - r0 - 1 < 0. However, P 0 

is positive; and from parts (3) and (4) above, we see that if rQ is positive and 
f(rQ) < 0, then r0 < a. Hence, \yQ\ < a. 

This completes the proof of our Theorem, a 

This theorem implies that if 

Tk = a\ + a\ + ••• + a£, 
and if ax = a, the positive real zero of xn - x - 1, then the other zeros are 
smaller in magnitude, and hence for large k we have 

Tk ~ ak. 

From p a r t (4) of t h e theorem, we know t h a t 

21/n <a< 3 1 / n , 
so by choosing n sufficiently large, we can make a as close to 1 as desired. 
For example, if we choose n = 4, we get a sequence with property (1) that grows 
approximately like 1.22^. 

The authors thank the referee for detailed comments and a shorter proof of 
part (2) of the theorem. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN 

Assistant Editor 
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Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS 
to PROFESSOR A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each 
solution or problem should be on a separate sheet (or sheets). Preference will 
be given to those typed with double spacing in the format used below. Solu-
tions should be received within four months of the publication date. Proposed 
problems should be accompanied by their solutions. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+1 + Fn> Fo = ° s Fl = l 

and 
Ln + 2 = Ln+1 + L

n> L0 = 2> Ll = l e 

PROBLEMS PROPOSED SN THIS ISSUE 

B-532 Proposed by Herta T. Freitag, Roanoke, VA 

Find a, bs and o in terms of n so that 

a3(b - a) +bHo - a) + a3 (a - b) = 2FnFn + 1Fn + 2Fn+3. 

B~533 Proposed by Herta T. Freitag, Roanoke, VA 

Let g(a9 b, o) = ah(b2' - a2) + bh(c2 - a2) + ch (a2 - b2) . Determine an 
infinitude of choices for a, b$ and o such that g(a, bs c) is the product of 
five Fibonacci numbers. 

B-534 Proposed by A. B. Patelf V. S. Patel College of Arts & Sciences, 
Bilimora, India 

One obtains the lengths of the sides of a Pythagorean triangle by let-
ting 

a = u2 - v2
s b '=• 2uv, Q = u2 + v2

? 

where u and V are integers with u > V > 0* Prove that the area of such a tri-
angle is not a perfect square when u = Fn+1> V = Fn ,. and n > 29 

B-535 Proposed by L. Cseh <£ J-. Merenyi, Cluj, Romania 

Prove that there is no positive integer n for which 

^1 + F2 + ^3 + ••• + ^3n = 16!» 
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B-536 Proposed by L. Kuipers, Sierre, Switzerland 

Find all solutions in integers x and y of 

xh + 2xs + 2x2 + x + 1 = y2. 

B-537 Proposed by L. Kuipers, Sierre, Switzerland 

Find all solutions in integers x and y of 

x4 + 3x3 + 3#2 + ar + 1 = y2. 

SOLUTIONS 

Application of the Bertrand-Chebyshev Theorem 

B-508 Proposed by Philip L. Mana, Albuquerque, NM 

Find all n in {1, 2, 3, ..., 200} such that the sum n\ + (n + 1) ! of suc-
cessive factorials is the square of an integer. 

I. Solution by Paul S. Bruckman, Fair Oaks, CA 

Let 0n = n\ + (n + 1) ! = (n + 2)n!. We will show that n = 4 is the only 
integer n E {1, 2, 3, . .., 200} such that 9n is square. 

Proof: We easily verify that d1 = 3, 92 = 8, 63 = 30, while 9i> = 144 = 
122. If p < n < 2p - 3, where p is any odd prime, then p|6n but p2\§n\ hence, 
9n cannot be a square in this range. Also, if p and q are any two consecutive 
primes in the sequence of primes, with 5 < p < 103, it is easy to verify that 
7 < < 7 < 2 p - 3 < 203. Thus, the range {5, 6, 7, ..., 200} is spanned by at least 
one prime p with p|9n but with p2|9n; this shows that 9n is not square in this 
range. 

II. Solution by J. Suck, Essen, Germany 

n\ + (n + ! ) ! is a square only for n - 4 and a cube only for n - 2. 

Proof: Bertrandfs "postulate" as proved by Chebyshev states that for 
every integer k > 3, there is a prime p satisfying k < p < 2k - 2. (See, e.g., 
Hardy and Wright, An Introduction to the Theory of Numbers, 4th ed., p. 373.) 
Now, let n = 2w or 2m - 1, m > 2. We have a prime p then with m + 1 < p < 2m, 
so that p|n!. However, because 2p > 2m + 2 > n + 2, p2 is not a divisor of 
n!(n + 2) = n\ + (n + 1) ! . 

Also solved by L. Cseh, Walther Janous, Edwin M. Klein, L. Kuipers, Imre Mer-
enyi, J* M. Metzger, Bob Prielipp, Neville Robbins, Sahib Singh, M. Wachtel, 
and the proposer. 

Dedekind Function Inequality 

B-509 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Let ty be Dedekindfs function given by 

*(n) = n n (l + 1-). 
p\n \ P/ 
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For example, 

iK12) = 12(1 + 1 /2) (1 + 1/3) = 24. 
Show t h a t 

TKiKiKn))) > 2 n f o r n = l , 2, 3 , . . . . 

Solution by J. M. Metzger, University of N. Dakota, Grand Forks, ND 

The statement is false for n = 1. 

Since ipOK^K2))) = 6, the inequality is correct for n = 2. 

Now assume n > 3. For such n, i(i(n) is clearly even. Note that for all 
n > 25 ip(n) > n + 1 because i(/(n) is an integer greater than n. Moreover, if k 
is even, then 

<K*> 
It follows that 

* , l ( , + ? ) » * - ( , + * ) 3k 
2 ' 

*(*(*(«))) > § *(*(*)> > § •f*(n) >|(n + 1) > 2n. 
-Also solved 2?y Paul S. Bruckman, L. Cseh, Alberto Facchini, C. Georghiou, Wal-
ther Janous, L. Kuipers, J. Merenyi, Lawrence Somer, J. Suck, and the proposer. 

Inequality on Euler and Dedektnd Functions 

B-510 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

EulerTs (j) function and its companion, Dedekind's if/ function, are defined 
by 

cf)(n) = n n (l - ̂ ) and ij/(n) = w II U + ^) 
p|n \ P/ p|n V P/ 

(a) Show that (f>(n) + ip(n) > 2n for n > 1. 
(b) When is the inequality strict? 

Solution by Alberto Facchini, University of Udine, Italy 

Let p , ..., p be the prime factors of n. Then, 

n ( i ± M - i ±(-i-+ . . . + - U 

\ P i P 2 P1P3 

± ( _ i _ + . . . ) 
\P1P2P3 / 

> .-

+ _^. + _L_+. 
PiPt P2P3 

,t L + (tl)1 

Therefore, 
'if 2 

if) 
> 2n 

and the inequality is strict if and only if n has at least two distinct prime 
factors. 

1984] 371 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Also solved by Paul S. Bruckman, L. Cseh, C. Georghiou, Walther Janous, L. Kui-
pers, Vania D. Mascloni, I . Merenyi , J. Af. Metzger, Bob Prielipp, H.-J'. Seiffert, 
Sahib Singh, Lawrence Somer, J. Suck, and the proposer„ 

Telescoping Fibonacci Products 

B-511 Proposed by Larry Taylor, Rego Park, NY 

Let j , fc, and n be integers with j even. Prove that 

Fj (Fn + Fn + 2j + Fn + hj + • • • + F
n + 2jk^ = (^n+2jk+j ~ £ n - j ) / 5 . 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

We s h a l l show t h a t 

5FnFj + 5Fn + 2jFj + 5Fn + hjFj + 5F n + 6 j -Fy + - . . « + . 5F„+ ( 2 / c> 2 ) j ^ / + ^Fn + 2jkFj 

= ^n + (2fe+l)j ~ L n - j » 

which is clearly equivalent to the desired result. From (12) on p. 115 of the 
April 1975 issue of this journal, 

5F8Ft = LS+t ~ LS-t> * e V e i l » 

Thus, since j is even, 

5FnFd + 5Fn + 2.F. + 5F^,F. + 5Fn+6j.F, + ... + 5Fn + (2k_2).F. + 5*n+ 2 .^. 

= ( L n+j " L n - j ) + (Ln+3j " L
n + P + ( L n+5j " Ln + 3j) + (Ln + 7j ~ L n+5j ) 

+ • • • + (^n + (2fe-i)t7- ~ ^n+(2fc-3)P + ^n+(2k + l ) j ~ ^n + (2k- l ) j^ 

^n+(2k+l)j ~ ^ n - j 

because telescoping occurs. 

Also solved by Paul S. Bruckman, L. Cseh, Herta T. Freitag, C» Georghiou, Wal-
ther Janous, L. Kuipers, J. Merenyi, H.-J. Seiffert, A. G. Shannon, J. Suck, 
Sahib Singh, and the proposer. 

Telescoping Fibonacci-Lucas Products 

B-512 Proposed by Larry Taylor, Rego Park, NY 

Let j, fc, and n be integers with j odd. Prove that 

^J ^ n + Fn+2j + Fn+hj + ' • • + Fn+2kj-) = £n+2kj+j " Fn-j° 

Solution by J. Suck, Essen, Germany 

Do not use induction. Just telescope the left-hand side by Hoggattfs T23: 

LJF» = Fm+j ~ Fm-j> 0 Odd. 
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Also solved by Paul S. Bruckman, L. Cseh, Herta T. Freitag, C. Georghiou, Wal-
ther Janous, L. Kuipers, I. Merenyi, Bob Prielipp, tf.-J. Seiffert, A. G. Shannon, 
Sahib Singhf and the proposer. 

Fibonacci Convolution and Rising Pascal Diagonals 

B-513 Proposed by Andreas N. Philippou, University of Patras, Greece 

Show that 

tnFk + 1Fn + 1_k = if (n + 1 - k)(n " k) torn = 0, 1, .... 

where [x] denotes the greatest integer in x. 

Solution by C. Georghiou, University of Patras, Greece 

Since the generating function of the sequence {Fn+1} is 

fix) - (1 - x - X 2 ) " 1 , 

it follows that 

00 n 

E £ Fk+lFn+l-kX* = (1 - * ~ X2)"2 

n=0 k = 0 

-x:0(-i)"(;2)(* + - 2 ) ' . \'\<h 

= E (n + l)(x + a;2)" 
« - 0 

= £ z y + * + Dp'tV+ 2 1 
n = 0 j + k = n \ «. / 

= E E (i+ fc + "P"**)*" 
n = 0 j + 2k = n \ «. / 

[n/2] ^ ' T,V 

= E E (n +1 - * ) ( * ) * " 
from which the assertion is established. 

Also solved by Paul S. Bruckman, L. Cseh, Walther Janous, L. Kuipers, ff.-J. 
Seiffert, A. G. Shannon, J. Suck, and the proposer. 

• 0^04 
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Edited by 
RAYMOND E. WHITNEY 

Lock Haven University, Lock Haven, PA 17745 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, 
PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information 
that will assist the editor. To facilitate their consideration, all solutions 
should be submitted on separate signed sheets within two months after publica-
tion of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-376 Proposed by H. Klauser, Zurich, Switzerland 

Let (a, b9 c9 d) be a quadruple of integers with the property that 

(a3 + b3 + o3 + d3) = 0. 

Clearly, at least one integer must be negative. 

Examples: (3, 4, 5, T6>, (9, .10, -1, -12) 

Find a construction rule so that: 

1. out of two given quadruples a new quadruple arises; 
2. out of the given quadruple a new quadruple always arises. 

H-377 Proposed by Lawrence Somer, Washington, D.C. 

Let {ttn}™=0 be a /cth-order linear integral recurrence satisfying the 
recursion relation 

Wn+k « aiWn+k-l + a2Wn+k-2 + ' " + akWn• 

Let t be a fixed positive integer and d a fixed nonnegative integer. Show that 
the sequence 

{sn} = ^ t n + d)n = Q 

also satisfies a kth-order linear integral recursion relation 

Sn + k a i Sn + k-l + a 2 sn+k-2 + + ak Sn' 

Show further that the coefficients af , a^, ..., aSJp depend on t but not on d9 
and that a^ can be chosen so that 

a(t) m ( _ i ) ( ^ i ) ( * + D a t . 

H~378 Proposed by M. Wachtel, Zurich, Switzerland 

For every positive integer x and y9 provided that they are prime to each 
other, show that no integral divisor of 
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x2 - 5y2 

is congruent to 3 or 7, modulo 10, 

H-379 Proposed by A. N. Philippou and F. S. Makri, Univ. of Patras, Greece 

For each fixed integer k > 2, let if^n-o b e t h e Fibonacci sequence of 
order k(l). Show that 

_p(k) _ ^ ^ , ,y.i(n - ik\(n - j + 1\ . 

Reference: A. N. Phliippou & A* A. Muwafi. "Waiting for the k Consecutive 
Success and the Fibonacci Sequence of Order K. " The Fibonacci Quar-
terly 20, no. 1 (1982):28-32. 

H-380 Proposed by Charles R. Wall, Trident Tech. College, Charleston, SC 

The sequence 1, 4, 5, 9, 13, 14, 16, 25, 29, 30, 36, 41, 49, 50, 54, 55, ... of 
squares and sums of consecutive squares appeared in Problem B-495. Show that 
this sequence has Schnirelmann density zero. 

SOLUTIONS 

A reply from M. Wachtel regarding H-335 (May 1983) 

In the February 1984 issue, the proposer is claiming that the solution 
to the above-mentioned problem is incorrect. 

Reply: The roots of the polynomial, as split up by the proposer, are: 

(x - 1) xQ = 1 

(x2 + bx -a2) xli2 = ±\/30 + 6 / T + V5 - 1 
(x2 + ax - b2) x3ih = ±^30 - 6/5 - ( A + 1 ) 

These roots are exactly identical to those shown in my solution published in 
the May 1983 issue, with one exception: 

As far as x3i 4 are concerned, I have erroneously omitted to apply 
the parentheses ~(/5 + 1) , sorry. Apart from this error, I do not 
see why this solution should be incorrect. Certainly, the solu-
tion by the proposer is more obvious. 

Sum Difference! 

H-355 Proposed by Gregory Wulczyn, Bucknell Univ., Lewisburg, PA 
(Vol. 21, no. 2, May 1983) 

Solve the second-order finite difference equation 

n(n - l)an - {2rn - r(r + l)}an_r + rzan_2r = 0, 

r and n are integers. If n - kr < 0, °>n_^v
 = °-

1984] 375 



ADVANCED PROBLEMS AND SOLUTIONS 

Solution by Paul S. Bruckman, Sacramento, CA 

Let 

y = fr(%) - £ anxYl (where the an depend on r). (1) 
n = 0 

We deal with four separate cases. 

Case I: r < 0 

Letting v = -s, the given recursion becomes 

n(n - l)an + (2sn + s(2))an + s + s2an + 2s = 0, 
or, equivalently, 

s2an + (2sn - 3s2 - s)an_s + (n - 2s)(2)an_2s = 0. (2) 

Letting n = 0, 1, 2, . .., successively, we find that (2) has only the trivial 
solution 

an = 0, n = 0, 1, 2, ... . (3) 

Case II: r = 0 

The given recursion becomes n(n - l)an = 0. This implies 

an = 0, n = 2, 3, ..., with a0 and ax arbitrary. (4) 

Case IN: r = 1 

The given recursion becomes 

n(w - l)an - 2(n - l)an_1 + an_2 = 0. 

Again we find that aQ and ax are arbitrary. Making the substitution bn = n!an, 
then bn - 2in-1 + &n_2 = 0, i.e., A2bn = 0, n = 0, 1, ... . Hence, bn = A + Bn 
for some constants A and B. To find 4̂ and J3, note 

£>0 = A = a0, &! = A + £ = als 
so 

A = a0, B = a1 - a0. 

Hence, ', , N 

a0 + (ax - aQ)n 
an = — — — , n = 0, 1, 2, ... . (5) 

Case IV: r > 2 

We transform the given recursion into a differential equation: 

x2y" ~ 2rxr + 1y' + (r2x2r - ri2)xr)y = 0. (6) 

We may verify (6) by using (1) and noting that the left member of (6) becomes: 

£ n(2)anx" - 2v f) (n - 20an_rarn + r2 £ a^^a?" - r(2) £ ^ - r * n 

n»0 n=r n~2r n-v 
v - 1 2r - 1 

= £ n(2)ana:n + £ {n(2)an - (2m - r(r + l))an_r}xn 

+ £ {n(2)an - (2rn - P(P + l))an_r + r2a„_22,}x* = 0, 
rc = 2r 
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since each sum vanishes, using the recursion. 
To solve (6) , we make the fortuitous substitution y = uexr

 9 where u is 
some function of re. We find 

y1 = (rxr~1u + u')ex% yu = (r2x2r~2u + 2rxr-1uf + ^2)xr'zu + u")ex\ 
Then, eliminating the factor exT and simplifying, we obtain 

x2uu = 0. (7) 

Since (7) is to be valid for all xs we may also eliminate the factor x2. Then 
u" = 0, which implies u = A + Bx for some constants A and Ba Thus, 

2/ = /,(*) = W + £x)e*r. (8) 

Since f (0) = A = a0 and /r'(0) = B = ax, we have 

fr{x) = (a0 + axx)e*\ (9) 
Therefore, 

£(*> = «oE^ K W + a 1 | ] ^ + 1/n!. 
n = 0 n = 0 

aQ/(n/r)!, if r\n; 

an = <[ aj{n - 1/r)!, if r|(n - 1); (10) 

0, otherwise. 

An equivalent and compact formulation is the following: 

an = {S(r\n) + 6(r\(n - 1)) - 8(r\n)8(r\(n - 1)) }an_rJm\, (11) 

This shows that 

where 
r / i j P / m / 1 if P|fc, 

M - [n/r] and 6(r|fc) = j Q o t h e ^ 8 e . 

Lotsa Words 

H~356 Proposed by David Singmaster, Polytechnic of the South Bank, London 
(Vol. 21, no. 3, August 1983) 

Consider a set of v types of letter with n^ occurrences of letter i . 
How many words can we form, using some or all of these letters? 

If we use l<i of letter i, then there are obviously 

ways to form a word and the desired number is 

£ L Zkl * ) 
When r = 2, this can be readily evaluated using properties of Pascal's triangle 
to obtain 

n1 + n2 + 2 

nx +" 1 
- 1. 
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W. 0. J. Moser has found a nice combinatorial derivation of this result, 
but neither approach works for r > 2. 

Moser's solution for v = 2 follows. 

In the case r = 2, 
(**) 5 (* tJ') 

0 < i < m x • 0 ̂  3 < n 

is the number of ways of forming words with some of m ATs and n BTs. Any such 
word with i A!s and j Bfs can be extended to a word of m + 1 Afs and n + 1 B!s 
by appending m + 1 - tA's and n + 1 - j'B's to it. If our original word begins 
with an A, we append a block of m + 1 - i ATs followed by a block of n + 1 - J 
B's at the beginning. If the original word begins with a B, we append the block 
of B?s followed by the block of ATs at the beginning. The empty word can be 
extended in two ways: AA...ABB...A or BB...BAA...A. Otherwise, we have a one-
to-one correspondence between our original words and words formed from ,all of 
m + 1 ATs and n + 1 BTs. The reverse correspondence is to take any word of 
777+1 Afs and n + 1 B!s and delete its first two blocks (i.e., constant sub-
intervals). Since the empty word arises from two extended words, we have 

(m + n + 2\ 1 

\ m + 1 / 
of our original words. 

As an illustration, let m 
Original Word Extended Word 

_ 
A 
B. 
AB 

AABB or BBAA 
ABBA 
BAAB 
ABAB 

Solution (Partial) by Paul S. Bruckman, Fair Oaks, CA 

We let nr = (nx, n2, ..., nr) and i\(n_T) - (n^, ^£2> • •*> ^ir) denote any 
permutation of the elements of np. Also, we let 

_ T ~ \ £<••, y 7", J • • • J ur I 

and j = l,2;...", r 

M * r ) - X ) 5,(n,)aiV*... a?J', 

where # r = (a^, x2, ..., xr) . Then, 

^ )̂ = £ £ (V "1+'" X *')*?+**?+** ... 
J-1,2 

,«r+ ir 

J -1,2, 

(l-x^-^l-a? ) " 1 . . . (l-«P)"1Z)(*i + * 2 + •'• + * ! • ) " . 
n-0 

or 

378 

(1) 

(2) 

-1 z I j > 0 \ ^! > ^ 2 > • • •» ^ / Z 
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Fr(xr) = (1 - x^'Hl - x2)-! ... (1 - x^-Hl - xY - x2 xr)-K (3) 

The symmetry inherent in the definition in (1) provides us with the following: 

Sr(nr) = Sr(Tf(nr)) for all permutations TT. (4) 

Also, if m is any positive integer less then p, we may set Xj = 0 (m < j < v) 
in (3) and obtain: 

Sr(nl3 n2, .... nm, 0, 0, ..., 0) = Sm(nJ. (5) 

v - m 
Of course, we may also obtain (5) by setting rij = 0 in (1), m < j'< p. An-
other interesting relationship is obtained by multiplying (3) throughout by the 
factor (1 - x1 - x2 - ••• - xr). We then obtain: 

(1 - ajj-^i - x j " 1 ... (1 -a?,)-1'. 

2 
= (1 - X1 ~ X2 ~ • •• - #r) 2^ ^ ( T ^ ) ^ ^ 

S l n c e J-l,2,...,r 

(i - ̂ r^i - ̂ r 1 ... (i - ^ ) ' 1 = ]T x^^... *£', 
«,- > 0 

this yields the recursion: j-i, z, ..., r 

Sr(n19 n2, . .., nr) = 1 + 5'2,(n1 - 1, n2, ..., np) + Sr(n19 n2 - 1, . .., nr) 

+ Sr(n13 n2y . . . , np - 1). (6) 

The special cases P = 1 and 3? = 2 have already been noted, and are ready con-
sequences of the relations already derived: 

S^nJ = n1 + 1; (7) 

^/^(^l2)-!. (8) 
Even for the next case, r = 3, however, in spite of the fact that a generating 
function for the S3(nis n2, n3) is known, the general formula is difficult to 
obtain. By a change of notation, setting r = 3 in (6), we obtain: 

S3(u, v, w) = 1 + S3(u - 1, v9 w) + S3(us v - 1, w) + S3(us v, w - 1). (9) 

The remainder of this manuscript is devoted to the case r = 3, and even 
this is only imperfectly resolved. For brevity in the sequel, the following 
notation is adopted: 

UQ = SB(u, v, w); (10) 

U± = S3(u - 1, v, w) + S3(u, v - 1, w) + S3(u9 v, w - 1); 

U2 = 53(w, y - 1, w - 1) + £3(w - 1, y, w - 1) + S3(u - 1, v - 1, w ) ; 

tf3 E 53(u - 1, i; - 1, w - 1). 

Thus, a restatement of (9) would be as follows: 

UQ = 1 + tfx. (11) 

Multiplying (2) and (3) throughout by 

(1 - x)(l - y)(l - z) 
for the case r = 3 (by a change of notation), we obtain, on the one hand: 
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(!-*_ v_3)-i . T r ^ V j / V . 

On the other hand, this is equal to 

(1 - x - y - z + x y + yz + xz- xyz) Y^ S3(u, v, w)xuyvzw. 
M, y, w > 0 

This yields the relation: 

0 u l U 2 U3 \ u, V, W ) K J 

We use (11) and (12) to derive another interesting recursion involving 

53(u, v, w): 

TI TI i f ( u + ^ + ^+ l ) 2 (u+t>+^ + 2) + uvw)Ju + v + w\ n «. 
a° + ^3 L \ (u+i>+l)(z;+w+l)(w+i«?+l) | \ «, y, w j ' u ; 

A derivation of (13) follows: 

u v w 

= tt(^j'){(nir)+c:j:?)} 

\?0( w A i + U + l ) +S*(U> «. «- 1) 

- £3(u, v - 1, w - 1) + S3(u, v, w - 1) 

- £3(w, y - 1, w - 1) + Sz{u, v, w - 1), 
or 
S3(u, v, w) + 53(u, t; - 1, w - 1) 

Interchanging u9 V, and w in (14), and adding the resulting relations, we get: 
3UQ + U2 = 2^! + TJ/6, (15) 

where 

, M ( u + i; + i* + 1)1- 1 ,_ • + x * ,, . + / ^ l 8 E /« + * + *\. Y ' \ u + i> + 1 i; + w + 1 u + w.+ ly \ u, v, w / 
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Then, eliminating U1 and U2 from (15) by means of (11) and (-12) and simplify-
ing the result, we obtain (13). 

Applying (8) initially, then (13) recursively with succeeding values of 
W, we may derive the following formulas: 

S*(u' V> l) " (u+y + 3) I M + 2 J5 ( 1 6 ) 

q , 7, ? ) {(u+l)(v+ l ) f a + t ; + 5 ) + 4 } f a + i ? + 5 ) ! 
3^ 5 ' ; 2(u+l)(u+3)(v+l)(v+3)(u+v+3)(u+v+5)ulvl ' u / ; 

c (nj 7, ^ { f a + 2 ) Q ; + 2 ) f a + ? ; + 5 ) + 1 2 } f a + ? ; + 6 ) i n . 
^ 3 ^ 5 y3 J ; 6 ( H + 2 ) ( w + 4 ) ( i ; + 2 ) ( z ; + 4 ) ( w + y + 3 ) ( u + y + 5 ) u ! z ; ! 5 K *} 

(u + 1) (w+ 3) (v+ 1) ( y+ 3) (u + v + 5) (u + y + 7) 
q (ii 7, A^ = + 24(u + l ) ( v + l ) f a + z ; + 7 ) + 192 
D3W, v, <*) 2^(u+3)(u+5)(v+3)(v+5)(u+v+3)(u+v+5) 

fa+u+6)i x . 
(19) 

(w+ l)\(v+ 1) : 

( u+ 2) (w+ 4) (i> + 2) (i;+ 4) ( u + y + 5) ( u + y + 7) 
+ 40(u+ 2)(u + 2 ) ( u + z ; + 7) + 960 

' 3 W " ' ~// ) 120 (u+ 2)(w+ 4 ) (u + 6)(v+ 2 ) ( z ; + 4 ) ( y + 6) (M+ZH-3) (z-^+5) (wH>+7) 

( u + z ; + 8) ! 

SAu, v, 5) 

(20) 

(21) 

ulv! 

From the above formulas, we may infer the following general formula for 

S3 (us v5 w): 

. fa+i;+iJ + 3) ! 

. g <-»•( flC"* °) 
fc = o / - ^ ( M + i ; + 5 ) \ / S s ( u + w - l ) \ /*s(v + w - D \ 

where ew = Jg(l + ( - l ) w ) . 
A proof of (21) was not attempted, although it appears that induction 

[using (13)] should dispose of it. Unfortunately, the expression in (21) is 
neither symmetrical in u9 V, and w nor in closed form. The more general case, 
r > 3, appears even more formidable. It seems likely that any fruitful results 
will require the generating function in (3). 
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