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SOME CONGRUENCE PROPERTIES OF GENERALIZED
LUCAS INTEGRAL SEQUENCES

C. S. BISHT
D.S.B.C. College, K.U. Naini Tal, 263002, India
(Submitted December 1982)

1. INTRODUCTION

Let {L,} be a sequence on integers defined as
Ly=2,L,=1,ad L, =1, ,+L, ,, for n 2= 2.

This is the famous Lucas sequence. In [1], Hoggatt and Bicknell proved that
Lp = L, (mod p) if p is a prime, together with its generalization Lj, = [y (mod
p). It is interesting to note that these properties are not lost in generali-
zation of the sequence. The purpose of this paper is to prove these results
for generalized Lucas integral sequences defined in §2 below. One more gener-—
alization of L, = L; (mod p) has also been proved. In light of these results,
the sequences given in [2] have been discussed.

2. DEFINITIONS

A generalized Lucas integral sequence of order m is defined as

L,=af +af + -+ + o], (2.1)

n
where o,, 0,, ..., O, are the roots of the equation
™ = g et + a4 e 4 oay, (2.2)
with integral coefficients and a, # O.
These I, 's are easily obtained in terms of the a;'s by Newton's well-known
formula:
Ly=m, L, =a,L, ,+a,L, ,+ -+ +a, L, +tna,, ifn=1,2,...,m-1,

§ (2.3)
L, =a.lL + a. L + e+ al for n 2 m.

n 17n-1 2%n-2 m~n-m?

Equation (2.2) is called the characteristic equation of (2.3).

3. MAIN RESULTS

First, we shall prove a lemma for each theorem. The monomial symmetric
functions

t t t
Yotat. ..,

where t,, t,, ..., t, are integers as defined in [3]. Equation (3.1), used in
the proofs of the lemmas, is given in [3].

Lemma 3.1

t'ﬂ.
n o

Let O, Oy +..s Op be the roots of (2.2). Then Y oltal?...ol, with dif-

ferent indices for a's, is an integer.
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SOME CONGRUENCE PROPERTIES OF GENERALIZED LUCAS INTEGRAL SEQUENCES

Proof: We prove the lemma by mathematical induction on n. Since

|2 S 1 ty At
2ot =ayt tat b oeee ta

1
mo Ltl’

an integer, therefore, the lemma is true for n = 1. Suppose the lemma is true
for m = s - 1. As all the indices for a's are different, we have:

(Z:afl)<§: alzals ... a§i1>

= t1 yt2 te Lo+t t, te
> agtar ... oag F 2:@1 0,7 e.. 0 (3.1)
ty t3 1t ts e ty b3 to +t;
+ E:al o, ceeaf, + + 3 I SR e S

Using the induction hypothesis and the fact that 2:(xf1 is an integer, we find

that t
1., %2 t
z OLl OL2 PN OCSS

is an integer; i.e., the lemma is true for n = s. So, by induction, the lemma
is completely proved.

Theorem 3.1
Let {Ln} be a generalized Lucas integral sequence and p be a prime number.
Then
Ly, = Ly (mod p).

Proof: By using the multinomial theorem, we have

1
(ap +op 4+ -vr 4 o)’ = 2 ZE |p:_.

ailuzz co. ol (3.2)
1°Y2°

Tl

where ¢,, T3, ..., tp are nonnegative integers such that ¢, + ¢, + **+ + ¢, =p
and all indices of a's are different.
From (3.2), we have
p
(a, +a, + + o)

t, t tm

!
=QL€+0(,§+"'+OL§+Z'%1!—.F)T_OL O(.22 ees Oy (3.3)

Tal 1

with the above conditions on ¢;'s and no ¢; = p. With these conditions on the
t;'s, we have that

is an integral multiple of p. Since for each set of possible values of ¢, ¢,
os tp all Y d§1u§2 ... al"'s are integers, by our Lemma 3.1 we have, from

m
(3.3) and (2.1),
(5,)F = Lp + pX, where X is an integer.

Using Fermat's little theorem, we get
Lp =L, (mod p).
This completes the proof of Theorem 3.1.
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SOME CONGRUENCE PROPERTIES OF GENERALIZED LUCAS INTEGRAL SEQUENCES

Lemma 3.2

Let 0,5 O , Op be the roots of (2.2). Then, for different indices of

s wee
a's, X (aj*al? ... a%)* is an integer for every positive integer k.

Proof: Simply write kt; for t; everywhere in the proof of Lemma 3.1.
Theorem 3.2

Let {L,} be a generalized Lucas integral sequence and p be a prime number.
Then, for every positive integer k,

Lpx = Lx (mod p).
Proof: (ak + ok + -+ + of)P

- Pk pk ... pk p! (ot ot tnyk
= ol + ol 4 + ol +Zt1!t2! e eyt e o’

;:T—%¥j—z;T is a multiple of p and ), (a;lugz... a’") 1is an integer for every
given set of values of ¢;, ..., t, by Lemma 3.2. Therefore,

(Lp)? = Lpx + pAy, where A, is an integer
or Lpx = L; (mod p), by Fermat's little theorem,

Lf = L, (mod p).
Lemma 3.3
Let oy, QO,, ..., @, be the roots of (2.2). Then, for different indices of
a's,

ty t2 tnKPT = t1 Nt taykpT Tl
T (@ftay? ... ol = X (afralr L..oalr) (mod p7).

Proof: We shall prove the lemma by induction on r. In order to prove the
lemma for r = 1, we have to prove

kD = tavk
T @fralr L..af)® = X (altalz ... al)® (mod p). (3.4)
The congruence (3.4) may be proved by induction on 7. Since

PINCHI IS W CIPL

Lt1kp - Ltk

mn

0 (mod p) (by Theorem 3.2),

T @)% (mod p). (3.5)

or

m

tiyk
2 (afh)"P
Therefore, (3.4) is true for m = 1. Consider the equation
tik ty ts Yk
(Eall p)(Z(Otlz%s e aft) p)
= ) (ailagz R0 LR D ) (af2+tla§3 ce a;il)kp

k t ty + ¢
+ 2:(a§za§3+tl ce.ab Pyr.ci v+ X (a12a§3 . a;_ll)kp-
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SOME CONGRUENCE PROPERTIES OF GENERALIZED LUCAS INTEGRAL SEQUENCES

Using the induction hypothesis and (3.5), we have
(2 oLf”‘)(E (afzal* ... a:il)k>

_  t, toykp (b, +£1) ¢ te yK
_E(ocl az? ee.0t) + Z(ocl a, ...cxs_l)

+ 3 (ocfzoc;”tl RIS LS SRR ) (afzals ... afe i)k (mod p)

or

i

> (ocilotzz oc‘;’)kp > (oc:_;loc;fz .. afo)* (mod p).

This proves that (3.4) is true for n = s. Thus, induction completes the proof

of (3.4).
Next, we suppose that our lemma is true for r = g. That is,

t tn s _ t t tn s-1
PINCITICINUIIIA) AN DN C T S Lab L (mod p®)
or
kp® kpe _ kpe°? kpe~t
>\lp +oeee +2KPT 2 Alp +oeee 4+ g (mod p*®),
where g is the number of terms in the expansion of
t, T2 tn
2 oata,? ... ap
and each XA is the product of powers of the a's. Therefore,

OFF" 4o 425707 = O+ +a8TH7 (mod 71D

or
kps*t kps*t p! Hy (M, Ha | kps
}\1 +-..+>\q +ETU*—T——.—-:'T"—(>\1 )\_2 e Aq)p
1 q:
3 - kpse p! Uy 1 H, Ug \kps -1
=\ + +>\q +Zm—'(>\l )\2 e )\q) .
p!
Since is a multiple of p and

U1! e UQ!
oA B = oy L ST (mod p?)

by the induction hypothesis, we have

kps*l kps+l _ kp' kp‘
MNP 4 ey = A; o+ cee +Ag (mod p°tYH)
or
£, ot taykpetl £y ot tnykp®
X (@1t az? ... ay)f = ¥ @tag? ... al)P (mod p°th),

which shows that the lemma is true for » = s + 1. Thus, the lemma is proved
completely by induction.

Theorem 3.3

Let {L,} be a generalized Lucas integral sequence and p be a prime number.
Then, for positive integers k and r,

Lypr = Ly

xkpr = (mod p7).

pl”-l
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Proof: The proof will be given by induction on ». By Theorem 3.2,

This proves the theorem for » = 1.
Suppose that the theorem is true for » = ¢ - 1, i.e.,

Lype-r = Lype-2 (mod P,
which implies

p _ P
Lkp"‘l = Lkps-z (mOd ps). (3.6)
Now,
s -1 kp®-1 kp® s p! t tmkP°TH
- A L R e D e CLEI 1)
el Tyt
or
p _ ! ty t tmykp® 1
Lipe-1 = Lkps+—2: o tm!(al 02 el o) .
Similarly,

p p! ty t tmykp® 2
Lyps-2 = Lype-1 +E—"‘—(OL10L2 ce. ") .
kp kp tal ottt T2 m
On subtracting, we get

p p
Lipess = Lipe-z

=L

_ p! t taykpeTl oty tnykp® 2
pe = Dppe-i + 2 ey s ACHGIRERIL i) (@ .ooa™ 1.

!
Using (3.6), g—T—EQ——E—T is a multiple of p, and Lemma 3.3, we have
1.

m*

Lyps = Lype-r (mod p9),

which shows that the theorem is true for r = s. Therefore, the theorem is com-
pletely proved by induction.

Note: Theorem 3.3 is a generalization of our previous theorems. The beauty
of this theorem is that multiplying the index of each term of the difference

Lypr = Lygpr-1
by p produces one more factor p to the new difference. It is observed that
Lkp’ F3 Lkps-l (mod psfl)

in most of the cases. In some cases, there exist primes where this incongru-
ence relation fails. For example, we take the sequence

Ly=3,L,=1,L,=5,and L, =L, ; + 2L, , + L
Writing a few initial terms of the sequence,
3, 1, 5, 10, 21, 46, ...,
we find that there exist primes 2 and 3 such that

L2 = L1 (mod 4) and L3 =L, (mod 9).

ot 5 n-gs fOr 7 > 3.

L. SEQUENCES WHERE p]Lp FOR EVERY PRIME p

Sequences of this type have been considered in [2]. First, let us prove
the following simple theorem.
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SOME CONGRUENCE PROPERTIES OF GENERALIZED LUCAS INTEGRAL SEQUENCES

Theorem 4.1

Let {I,} be a generalized Lucas integral sequence. Then, for every prime
D p[Lp <>, =0.

Proof: Suppose L, = 0. Therefore, by Theorem 3.1,
L, =0 (mod p), i.e., pILp for every prime p.
Conversely, suppose p|Lp for every prime p. We find, again from Theorem 3.1,
Ly = 0 (mod p) for every prime p.
This implies that L; = 0. Hence, the theorem is proved.

Note: In light of this theorem, we conclude that for making such sequences
we need L, = 0. Ensuring the right start as pointed out in [2] is not needed.
As a matter of fact, this right start is a consequence of L; = 0. Moreover, it
will be an appropriate place to point out a shortcoming in Lehmer's proof pre-
sented in [2]. He first takes integers x, y, 2, and ¢, and then allows x = q,
y =28, 2=7v, and ¢t = §, which are not integers because 0, B, Y, and § are the
roots of the characteristic equation ¥ = 22% + 2z + 1. Consequently, one can-
not argue that Fp(x, y, %, t) is an integer implies F,(a, B, Y, §) is also an
integer. In fact, Fp(a, B, Y, 6) is an integer, as we see in our Theorem 3.1,
with the help of Lemma 3.1.

REFERENCES
1. V. E. Hoggatt, Jr., and Marjorie Bicknell. '"Some Congruences of the Fibo-
nacci Numbers Modulo a Prime p." Math. Mag. 47 (1974):210-14.
2. B. H. Neuman & L. G. Wilson. "Some Sequences Like Fibonacci's." The Fibo-

naceil Quarterly 17, no. 1 (1979):80-83.
3. D. E. Littlewood. 4 University Algebra. London: William Heinemann, Ltd.,
1958, p. 86.
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ON WEIGHTED STIRLING AND OTHER RELATED NUMBERS
AND SOME COMBINATORIAL APPLICATIONS

Ch. A. CHARALAMBIDES
University of Athens, Panepistemiopolis, Athens 621, Greece
(Submitted December 1982)

1. INTRODUCTION

The signless (absolute) Stirling numbers of the first kind
8,Gmy m) = (-1)"""s(m, n)
and the Stirling numbers of the second kind

S(m, n)
may be defined by

S10m, 1) = (1) D @ lans Slms m) = 8tET], s

where (x), = x2(x - 1) ... (x - m+ 1) denotes the falling factorial of degree
m, D the differential operator, and A the difference operator. The numbers

cimy, n, r) = %T[An(rx)m]x=o, r a real number,

which first arose as coefficients in the wn-~fold convolution of zero-truncated
binomial (with r a positive integer) and negative binomial (with » a negative
integer) distributions (see [1]) and have subsequently been studied systemati-
cally by the present author in [6], [7], and [8], are closely related to the
Stirling numbers. This was the reason why Carlitz in [2] called the numbers

5,Gmy n|A) = (D" C0m, n, A, SOm, n|X) = X"Clm, n, A7)

degenerate Stirling numbers of the first and second kind, respectively.
Recently, Carlitz introduced and studied im [3] and [4] weighted Stirling
numbers S, (m, n, A) and S(m, n, A) by considering suitable combinatorial inter-

pretations of S5,(m, n) and S(m, n), respectively. Several properties of these

numbers and the related numbers
Ry(my n, A) = 5,(m, n+ 1, ) + 8,(m, n),
and R(m, m, )) = S(m, n+ 1, \) + 80m, n)

were obtained.

In the present paper, by considering suitable combinatorial interpretations
of the number C(m, n, r) when r is a positive or negative integer, we introduce
the weighted C-number, C(m, n; r, 8), with r an integer and s a real number.
Certain properties of these numbers are obtained in §2.

The related numbers

G(m, n; r, 8) =C(m, n+ 1; v, 8) + C(m, n, v)

are shown to be equal to

G(m, n; r, 8) =-%T[A"(rx + ) plpco-
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ON WEIGHTED STIRLING AND OTHER RELATED NUMBERS

These numbers have been systematically studied in [9]. A representation of
G(m, m - ny r, 8)
as the sum of binomial coefficients is obtained and certain properties of
m

G,(r, 8) = 2, G(m, n; r, 8)

n=0
are derived in §3.
Combinatorial applications of the numbers

R,(m, n, ), R(m, n, A\), and G(m, n; r, s)

are discussed in §4.

2. THE NUMBERS C(m, n; », s)

The C-numbers
1 ..n
Clm, n, r) = 5[0 (rx), 1,0

may be expressed in the form (see [7]):

m!
Clmy ny 7) = 20 DLC(ms Kyy Ky vnns Ky 2, (2.1)
w(m, n)
where
(Ry + Ky + o0 + KD X A X
N . = r\"1/r\"2 r m
R T I TR A (1) (2> (m) (2.2)
and the summation is over all partitions m(m, n) of m in »n parts, that is, all
nonnegative integer solutions (k,, k,, ..., k,) of the equations
Ry + 2Ky + «oe +mky, =m, Kky + Ky + o0 +ky=n. (2.3)
Note that C(m; ky, Ky5 «..s Kp3 7), r a positive integer, is a distribution
of (number of ways of putting) m like balls into k; + k, + -+« + Ky different

cells, each of which has » different compartments of capacity limited to one
ball, such that k; cells contain exactly J balls each, j =1, 2, ..., m. When
the capacity of each cell is unlimited, the corresponding number is equal to

[Cmy Kys Koy vens Kps =2)| = (<1)"C(m5 Kkqs Kps ooy Kps -7),

where r is a positive integer.

The expression (2.1) leads to the following combinatorial interpretations
of the C-numbers:

1
%% C(m, n, r), r a positive integer,

is the number of ways of putting m like balls into n different cells, each of
which has »r different compartments of capacity limited to one ball, with no
cell empty. When the capacity of each compartment is unlimited, the corre-
sponding number is equal to

1 1
%{1C(m, 7,y —r)| = (—1)m%%0(m, n, -r), ¥ a positive integer.
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ON WEIGHTED STIRLING AND OTHER RELATED NUMBERS

Consider the weighted number of distributions

C(my kqs kys vouy Kp3 v, 8)

m!
S TR F vyt 2Ry R, ke Kwy) (2.4)

where the weights

w; = wj(r, s) = (s% /(r)j, Jg=1,2, ..., my, r a positive integer,
s a real number,

and the summation is over all distributions of m like balls into k, + k, + -«
+ k, different cells, each of which has r different compartments of capacity
limited to one ball, such that k; cells contain exactly j balls each, 4 = 1, 2,
eees m, and

Clms Kys Koy «ees Kp3 -7, 8)

_ m!
TRy F Ryt e F ! Lk, + Koy, + 000+ kyvp) (2.5)
where the weights
v; = vj(—r, s) = (s)j/(-r)j, jg=1,2, ..., my v a positive integer,

s a real number,

and the summation is over all distributions of m like balls into k; + k, + ---
+ k, different cells, each of which has » different compartments of unlimited

capacity, such that kj cells contain exactly j balls each, j =1, 2, ..., m.
Let
C(m, n; r, 8) = 2: C(m; kys kyy .., k 3 v, 8), r an integer, (2.6)
m(m, n) s a real number,

where the summation is over all partitions m(m, n) of m in »n parts. The num-
bers

c(m, ny; r, 8) = %Aa(m, n; r, s) (2.7)
may be called weighted C-numbers.
Putting s = r in (2.4) and (2.6), with w; =1, j =1, 2, ..., m, we obtain
c(m, ny r, ry = C(m, n, r), (2.8)
while putting & = -r in (2.5) and (2.6), with v; =1, Jg=1, 2, ..., my, we get
-n"cm, ny -r, -r) = (-1)"C(m, n, -r) = IC(m, 7, -P)l. (2.9)
Now consider the generating function
= - = t" Ky k ‘
F(ty Uys Uys vee3 Py 8) = Y Y Tim; kys Kysy vens ky3 7y 8) ;n—!ulluzz... uf‘n”,

m=0 m(m)
r an integer,
s a real number,

where the inner summation is over all partitions m(m) of m, that is, over all

nonnegative integer solutions (k;, k,, ..., k,) of the equation

ky + 2k, + «-+ + mk, = m.
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ON WEIGHTED STIRLING AND OTHER RELATED NUMBERS
Using (2.4) when » is a positive integer and (2.5) when r is a negative inte-
ger, we get

F(ts UystUys sees Ty 8)

&1 . m! r K/ ks r Kn
g A vios s V01 (G R (B

= {(‘?)ult+ (§)u2t2+ ceet (;)umt’u .. } exp«{(f)ult+ (g)uzt% ceet (Z)umt’% . } .

The generating function

I
Ms
Ms
Q|
PN
3
S
3
(Vo)
N

Slw
<

X

F(t, u; r, s)
(2.10)

may be obtained from F(t,ztl,uz, «e.3 ry, 8) by putting uj; =u, § =1, 2, ... .
We get

F(t,usyr, 8) = ul(l + t)° - 1lexp{ul(1l + )7 - 11}, (2.11)
and
f(t; r, 8) =3 Cm, n; 7, 3)-,%!1 =-(n—_11~)—![(1+t)5- I+ 8)7 =117 (2.12)

m=n

The corresponding generating function of the usual C-numbers is ([7]):

£(t5 ) =mzn0(m, n, P);—T o (CIRRO LA B (2.13)
Since
F(ts vy 8) = [(L+8)° - 11f, ,(¢; 1),
we find men 41
Bn, ny v, 8) = 3. (’;)(s)jc'(m i -1, . (2.14)
Jj=1

Note that (2.12) for s = » reduces to
F,(ts vy 8) = nf, (t; »),
which implies (2.8) and (2.9).
Using the relation ([7]),
J
(8); = 2 CGs ks ) (s/r)y-
k=1
(2.14) may be written as

k}: C(F> ks P)(s/7)pClm = G, n = 1, 7)
=1

C(m, n; r, 8)

]
E}
1
™=
+
-
—~
Q.3
~—
P
LXY

W) c(g, k, »)C(m - j, n -1, f) (s/r)y .
j=x Y

i
Kl
1
1]
——
™
—~~
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From (2.13), we have

(k Z n)fk+n(t; r) = f,(t; »f, (& r),

which implies

(k Z n)C(m, k+ n, r) =jz:l:k(’;)0(j: k, r)CGm = g, n, r).

Therefore,
m-n-1

T(m, n; v, 8) = 3, (n * ]72 - 1)C(m, n+ k-1, r)(s/r),. (2.15)
k=1

Using the generating functions (see [3]),

7,06 ) = L Bi(my ny NI = =Ll - B - 1 [F1g(L - 17, (2.16)

— T (n - DY
and w em 1
h,(t) = 3 S(m, my = Sylet - .

m=n

(2.12) may be expressed as

f_'n(t; r, s) =m§n5(m, n; r, s):l—! =—(n—1—1)![(1 +£)° - 1][ePloe*®) _ jyn-1
=£} Stk -1, n - 1)r’<'1{-(k_1—1)![(1 +¢)° - 1][log(l + t)]k'l}
=7§:nl”k_15(k -1, n- l)mz::n(-l)m'k'ls_l(m, k, —s)%
= i { Z(_l)m—k-llﬂk‘lgl(m, k, -8)S(k - 1, n - l)}%’ﬁ;

hence, men Lkemn N

C(m, n3 v, 8) = Y, (-1)" **1pk=15 (m, k, -8)S(k - 1, n - 1). (2.17)

k=n

Again from (2.12) we have

s emH1F . - 1 s _ n-1
;l,_—];né r f,(t;s v, 8) o = 1)![(1 + 1) 1]1[1log(1l + )]
and
im F : =1 (ot t _ )71, 4f 1im £ =
lim f (t/r; r, 8) = —y7(e e’ = D", if lim = = A,

which, by virtue of the generating functions of the weighted Stiriing numbers,
(2.16), and (see [3])

7 — o t" _ 1 At _ t _ n-1
h(t, A) -m;ns(m, o Mot = eI yTe 1) (et - "L, (2.18)
imply
lim » "t C(m, n; », s) = (—l)m'”+lsl(m, n, —8) (2.19)
and r>0
lim r™C(m, n; r, s) = S(m, n, \), if lim l;’;— = A, (2.20)
> r>o
respectively.
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3. THE NUMBERS G(m, n; r, s)

Let
Gims n3 vy, 8) =Clm, n+ 15 v, 8) + C(m, n, r). (3.1)
Then (2.14) implies
m-n m
G(m, ny; r, 8) = 2: <j>(s)j0(m - Js Ny, 7). (3.2)
ji=o0

Since

Il

1 :
Clmy ny ¥) = A" (2)ylyigs m =0, 1, 2, vy my m =0, 1, 2,
and

C(my, ny, r) =0 for m < n,

it follows that

G(m, n; r, 8) = 3 (?)(S)j Cm = g, n, r) = nL!A” l:jE (?)(S)J' (r’m)m—j]
« x=0

Jj=0

and, by virtue of Vandermonde's convolution formula,
. 1 _ln n-k
G(m, ny; r, s) = %—{A (re + 8), = Z_'z: -1) (rk + s),

These numbers, shown as coefficients in a generalization of the Hermite poly-
nomials considered by Gould and Hopper, were systematically studied in [9]. A
representation of G(m, m — n; r, 8) as the sum of binomial coefficients will be
discussed here.

The numbers G(m, n; r, s) satisfy the triangular recurrence relation

Gm+ 1, n; r, 8) = (rm + s - m)G(m, ny; r, s) + rG(m, n - 1, r) (3.3)
with initial conditions
G0, n; r, 8) = &,,, G(m, 0; r, &) = (s),, and G(m, n; r, ) = 0 for m < n.
Putting n = m + 1, we get

Gm+ 1, m+ 1; r, 8) = vG(my, my r, s), m=0, 1, 2,
and
G(m, my r, 8) = r™, (3.4)

If we put ©» = 1 in (3.3), we find
Gm+ 1, 13 », 8) = (r + s - m)G(m, 1; r, 8) + r(s),
and, in particular,
G(2, 1; v, 8) =(r+s8s -~ 1Dr+rs =r(+ 2 -1).
Again, if we put n =m - k + 1 in (3.3), we obtain
Gm+ 1, m+1 - k; r, s8) - vG(m, m - ky r, 8)

= [r(m - k+ 1) + 8 - m]G(m, m -k + 1; r, 8)
or
At kG(m, m - ks v, 8)

= p k-l (p - V)m - r(k - 1) + slG(m, m - k + 1; r, s). (3.5)
For k¥ = 1, we have

A, ™*G0m, m - 13 r, 8) = (r - Dm+ s
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and
r"G(m, m- 13 v, 8) = A (z - Dm+ 8] = (» - 1)<Z) + s(T) + K
Since G(2, 1; », 8) = r(r+ 28 - 1), K = 0, and
rlem, m - 13 »r, 8) = (r - 1)(2) + s(T) . (3.6)

Taking k = 2 in (3.5), we get
r*20m, m - 2; r, 8) = A;,l{[(r - Dm+ s - r] [(r - 1)(’;) + s(T)]},

which on using the relations
-1 /m _ m
A (J‘)‘(a’ﬂ)’
-1 m m _(m+ l) o (a m .( m )
s (D) - E) - (T ) -G E )+ ),
gives

P 2G(m, m - 23 v, 8) = 3(r - 1)2(’2) + (- 1)+ 3s - 2)(’;7) + s(s - 1)(’;’).

Hence, »™*2G(m, m - 2; r, s) is a polynomial of m of degree 4. Consequently,
r"™"*t"G(m, n - n; r, s) will be a polynomial of m of degree 2n. Let us write it
as follows:

2n

" e(m, m - ny r, 8) = H(n, k; v, s) m .
,EO (Zn - k)

Multiplying both numbers by [(r - 1)m - rn + s] and using (3.5), we have
2n m
A "G, m - n - 15 v, 8) = 2 H(n, ky v, 8)[(r - Dm - rn + S}(Z‘ k)’
k=0 n -
and since

A2 - Dm - rn + 3]<2nn1 k)

=(p-1)(2n_k+1)( m >+[(r-l)(n—k)-n+s]<2n _mk+1>,

2n - k + 2
we get
P lom, o m - n - 15 r, 8)
2n m
= L On - k+ D - DEG K5 v S)(Zn s 2)
2n m
+Z[(I’—l)(7’l—k)—T’l+3]H<nsk;r’S)Zn_k+1>+K
and 27171:20
m
ég%H(n + 1, k; », S)(Zn -k + 2)
3 - k+ D@ - D, Won -+ 2)
= n - + r - ", 5 rs S
= 2n - k + 2
2n+1 m
+Z[(n—k+l)(r-1)—n+s]H(n,k-l;r,s)<2n_k+2)+K.
k=1
Therefore,
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Hn+ 1, k; », 8) = (2n - k+ 1)(r - )H(n, k; r, 8)

+[(n-k+1)(x-1) -n+slHn, k - 1; r, s8) (3.7)
and

Hn+ 1, 2n + 2; »r, s) = K.
From (3.6), it follows that
H(l, 0; », 8) =» -1, H(l, 1; », 8) = s, and H(l, k; », s) =0 for kK > 1.
Putting successively n =1, 2, ... in (3.7), we conclude that
Hn, k; r, 8) =0 if k > n,

and hence,
n

-m+n _ . - . m
r G(m, m - n; r, 8) 2;;H(n, k; r, s)(Zn _ k)' (3.8)

Using (3.7), we may easily deduce that

Hn, n; r, 8) = (s)n, n=1,2, ..., (3.9)
and
1
H(n, 0; 7, 8) = (2 = 1)"1+35eceee(2n-1) = (v - 1)”(—2'%'— (3.10)
n!
Moreover, for
n
5, (r, 8) = ¥, (-1)""kH(n, k; v, 8)
k=0
we get
S,(r, 8) =[(s-2+1) —~r(n- 115, ,(r, 8), n=2,3, ...,
and
S,(r, 8) = -H(1l, O0; r, s) + H(l, 1; r, s) =8 - »+ 1.
Therefore,
n
S, (r, 8) = Y (-1)""FH(n, k; v, 8) = rn(s—'—;’—i—l)n. (3.11)
k=0

Multiplying both members of (3.8) by (—l)m+j(2n;;d) and summing for m = n,
n+1l, ..., 2n - j, we obtain the relation

2n-g . _
Hon G5 vy 8) = L GO DNemingan, mo- s v, 8, (3.12)
m=n

which leads to interesting combinatorial interpretations for these numbers or,
more precisely, for the numbers

G,(my, ny v, 8) =r"H(m - n, m - 2n; r, s)

3 -1k (Z)rkG(m -k, n-k; r, s). (3.13)
k=0

Since (see [9])

”z;nG(m, n; »r, s)%? =-%T(1 + [+ v" - 11"

it follows that

mz=:nG2(m, ny r, s)-’;%—"— = {Z (—1)k(z>rkG(m -k, n-%k; r, 8) —:1—,—

m=n (k=0

(continued)
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" ot kX tm-k
= kgo(—]_)k_(_zz_{_!l_m;ncl(m - k; n -k, r, S)(m——k)_'
_ 1 e~ (7 r _ n-k,_ K
= L+ B k};o(k)m + )7 - 1R )R,
and
Y G,0m ms vy )i = L+ DL+ DT - 1 - pt]” (3.14)

Consider n different cells of r different compartments each and a (control)
cell of s different compartments. The compartments may be of limited capacity
or not (Riorday [1l, Ch. 5]). From (3.14), it follows that the number of ways
of putting m like balls into these cells such that each cell among the first =
contains at least two balls is equal to

n!
ﬁTvGZ(m, ny r, 8)

when the capacity of each compartment is limited to one ball and to
) n!
(-5 Gy (m, 5 -1, -8)

when the capacity of each compartment is unlimited.
It is worth noting that the expression (3.8) may be written in the form

14 .
T G(m, m - ny v, &) = 2, L(n, §; 7, S)(mztl‘j), (3.15)
i=o

where, on using the relation
J

(mztzg) - kg()(i)(z;zm— k)

the coefficients L(n, J; », s) are related to the coefficients H(n, k; », &)
by

Hen, ks », 8) = 3 (i)_z(n, i3 v, 8, (3.16)
i

L(n, j; r, 8) = 57}, (—1)k‘j(k-)H(n, ki », 8). (3.17)
k=g J

Moreover, L{n, J; v, &) sdtisfy the recurrence relation

Iin+1, jy r, 8) =[(x-1Dn+J+1)+n-s8lln, jg; r, 8) (3.18)
+[r-Dnr-4+1) -n+s8lln, j - 1; 7, 8),
with initial conditions ‘
L(1, 0; », 8) = f -8 -1, IL(1, 1; r, &) =8, and L(n, J; », ) =0 if § > n.
Also, by (3.9), (3.10), and (3.11),

L(n, ny v, 8) = Hn, n; r, 8) = (8),, n=1, 2, ..., (3.19)
L(n, 0; r, g8) = ﬁi -D*am, k; r, &) = (—1)”?”(§—:—§—i—l>n, (3.20)
k=0
z n (2n) !

> L(n, j; », 8) = H(n, 0; r, 8) = (r = 1)
Jj=0
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We conclude this section by considering the sum

o
G, (2, 8) = 2. G(m, n; r, s), (3.22)
=0
which for s = 0 reduces to "
m
C.(r) = 3, C(m, n, r). (3.23)
n=0

This sum has been studied in [5] and also by Carlitz in [2] as
m m m
4, (0 = 2 80m, n|N) = 2 A"Cm, n, /N = NCp(1/N).
n=0 n=0

Note that, since (see [7])

%im r "C(m, n, r) = S(m, n), (3.24)
it follows that
m
lim r™"C,(r) = ), S(m, n) = B, (3.25)
P+ n=0

where B, denotes the Bell number. Also from (3.1) we get, on using (2.20) and
(3.24),
lim »™™G(m, n; v, 8) = S(m, n + 1, \) + S(m, n)

P>

R(m, n, \), A = lim 2.

P>

Hence,

m
lim »™"G,(r, 8) = 3 R(m, n, A) =B, (), A = lin 2, (3.26)
> co neo rparow P

where the number B,()) has been discussed by Carlitz in [3].
Now, from (3.22), (3.23), and (3.2), it follows that

m m-n m m-gJ
_ m . o (m ’ o
Gt ) = 2 B () (@00 - dum ) = 3 ()@ L= 3 n 0,
s (m B
G, (r, ) —j;(j)w)jcm_jm, (3.27)
and
: -3 LA S WEAPEE "
F(t, r, 3) - mgon(P’ S)m! _Jgo(j)t mgocm(r)m!

(1 + t)’exp{(l + )T ~ 1}, (3.28)
since (see [5] or [2])

F(t; r) = E;)CM(P)%T = exp{(l + &)" ~ 1}.

We have
F(t; o s+ 1) = (1 + £)YF(t; r, 8)

and, hence,

Gu(r, s + 1) = G, (v, 8) + mG,_y(r, 8), m=1, 2, ..., Gy(r, s) = 1. (3.29)

Differentiation of (3.29) gives the differential equation
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(r+ t)dit F(t; r, 8) = sF(t; r, &) + (1 + t)'F(t; », 8),

which implies

G, (s 8) = (s - MG, (», &) + rj;)(';)(r)ij_j(r, s). (3.30)

Writing the generating function F(%t; r, s) in the form

© rk+s
F(t; v, 8) = e "(1 + t)’exp{(l + )7} = e'lzw————
k=0 k!
1w 1 & m
=e 1Zm > (rk + s),,,’%,
k=0 m=0
we find (v ;
o rk + s
G, (r, 8) = e‘lkgo—Ti (3.31)

which should be compared to Dobinski's formula for the Bell number:

e m
B, = e'lkgoﬂ. (3.32)

From (3.31) we obtain, on using (3.32) and the relation (see Carlitz [3]),

m
(rk + s),, = 2, (-1)"" "R, (m, n, -8)r"k",
n=0
m
G (ry &) = 2 (-1)"""R (m, n, -s)r"B,,. (3.33)
n=0

L. COMBINATORIAL APPLICATIONS

4.1 Modified Occupancy Stirling Distributions of the First Kind

Consider an urn containing » identical balls from each of n + v different
kinds (colors). Suppose that m balls are drawn one after the other and after
each drawing the chosen ball is returned togather with another ball of the same
kind (color). Let X be the number of kinds (colors) among # specified appear-
ing in the sample. The probability function of X, on using the sieve (inclu-
sion-exclusion) formula, may be obtained as

[

Pr(X + k)

(Z)j};(_l)k-j(?)(rj + rvm+ m - 1)/(1/% + rvm+ m - 1)

(),

T m v+ m - 1)m]G(m, ks -ry -rv) [, (4.1)

p,(k; ms n, v, v)

]

k=1, 2, ..., min{m, n}.

Now, consider the case where the number m of balls is not fixed but balls
are sequentially drawn and after each drawing the chosen ball is returned to-
gether with another ball of the same kind until a predetermined number kX of
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kinds among the n specified is represented in the sample. Let Y be the number
of balls required. Then the probability function of Y is given by

r(n - k+ 1)
m+ rv +m-1

q,(m; k, n, r, v) p(k=13 m-1, n, r, v)

(n)k—l
- T +m_2)m_l]G(m—-1, k-1; -r, -rv) |

r(n - k+ 1)
m+ rv +m-1

r(n)y
- um-+ru+-m—1%[G@P'L k=1; -r, -rv) |, (4.2)

m=k, k+1,
Suppose that li% rn = 6 and li% rv = A, then since (see [9])
r-> r->

lim rk|G(m, k; -r, -rv)| = |s(m, k, N)| = 5,(m, k, A)

it follows from (4.1) and (4.2) that

. B (0)
p,(ks my 6, X)) = 1£% p (ks my n, v, V) = CESE L EE» Sy (m, ky A),  (4.3)
and
q,(m; k, 6, A) = lim g, (m; k, n, r, v)
(6),
= Sy(m -1, k-1, 1. (4.4)

G +Xrx+m- 1),

Note that (4.3) gives in particular A = 0 the occupancy Stirling distribu-
tion of the first kind (cf. Johson and Kotz [10, p. 246]).

4.2 Modified Occupancy Stirling vistributions of the Second Kind

Suppose that m distinct balls are randomly allocated into n + r different
cells and let X be the number of occupied cells (by at least one ball) among
n specified. Since R(m, k, r) is the number of ways of putting the m balls
into the n + » cells such that k cells among the »n specified are occupied (by
at least one ball), it follows that

Pr(X = k) = ——SE&L—— R(m, k, »), k=1, 2, ..., min{m, »n}. (4.5)
n + )™

The factorial moments of X may be obtained in terms of the number R(m, k, r) as
follows:
1

Uy = z'(k)jPP(X =k) = mkgr(k)j (n), R(m, k, r)

k=g
(7) X F\k!
BV VA (k N J.)J—! R(m, k, 7)

(n+ )" k=j '

(continued)
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N+ 9,80, 5+ 4, 2.

Since
n-g . n-g . ,
n-J\,- . . . =_}_ (n - J) i+im 1 ion-gm
gg%( ; )(L + 3);R(m, i + j, ) j!i=0 i A" ¢p 71 NME"p
——.I—AJ(r+n—J)m=R(m, Js r+n-7q),
J!
W = —————I——(n.)R(m, Jyr - ). (4.6)
(€)] (n + r)" \J

Now, consider the case where the number of balls is not fixed but balls are
sequentially (one after the other) allocated into the n + r different cells
until a predetermined number k of cells among the 7 specified are occupied.
Let Y be the number of balls required. Then,

(Mg -1 n-k+1
PI’(.Y = m) = m R(m -1, k - 1, I’)—T_——P———
(”)k

=——Rrm-1, k-1, ), m=k, kK + 1,
n+ r)"

Since 2:‘PP(Y =m) = 1, we must have
m=k
2: R(m -1, k-1, ») 1 — = 1 .
m=k (ﬂ + 17) (n)k

This relation holds in the more general case where r is any real number and =
real number different from O, 1, 2, ..., K — 1. Indeed from Carlitz [3],

o _ Zk
D T L G v ¥ 6 Ry G Wi s ) S 6 Ry w7 v

m=k

it follows that

1 1
(1= GETT-A-1) w37 A-k+ L) (BTR- ),

S>Rm-1, k-1, r)a"*t =
m=k

and putting 27 - A =#un, 3 = (n + \)™', we obtain

. . )
Rm - 1, k = 1, A) — = .
Ek ( Tm+ N (")

Remark 4.1

The distribution (4.5) with r not necessarily a positive integer arose in
the following randomized occupancy problem (see [10, p. 139]). Suppose that m
balls are randomly allocated into 7 different cells and that each ball has
probability p of staying in its cell and probability g = 1-p of leaking. Let
X be the number of occupied cells. Then, the probability function of X may be
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obtained by using the sieve (inclusion-exclusion) formula in the form

10.

11.

k
n ik .
Prx = 1) = (3) T 0I(5) @+ pk - pm”
i=0 J
(n)kR(kX)klz {m, n}, A /
= ————— R(m, k, =1, 2, ..., min{m, n = .
"+ N ’ ’ v
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1. INTRODUCTION

A recursive definition of a function f is called nested if, in the defini-
tion body, the function f is called with an argument whose evaluation involves
yet another call to function f. A famous example of such a nested recursive
definition is "McCarthy's 91-function"

{ f(f(n + 11)) 0<n <100
f(n) =
n - 10 n > 100
whose solution
91 0 <n <100
f(n) = {
n - 10 n > 100

is described in [2, p. 373]. Such recurrences seem difficult to understand and
solve, and general solution techniques are lacking.

In this paper a complete solution is developed for the family of nested
recurrences (one for each integer k > 0) given by

(1.1)

n - gk(gk(n - k) n=1
g, (m) =

n < 0.

For the case k = 1, this recurrence is mentioned in [l, p. 137], where its be-
havior is described diagramatically.

The functions g,(n) and g,(n) are plotted in Figures 1 and 2.

Recently Meek and van Rees [3] have examined the recurrence family

f,m) =n - f,(FfCe (frn=1))--2)), n21

where f, is nested to »r levels and f,(0) =0. In [3] the solution for f,(n) is
expressed indirectly through a transformation: # is represented as a general-
ized Fibonacci base numeral (dependent on r), the least significant digit of
this representation is truncated, and the resulting Fibonacci base numeral rep-
resents f,.(n). In this paper we give a closed form solution for f,(n), which
is g;(n) in our notation. The problem of finding a closed form for f,(n), r 2
3, remains open.

The approximate behavior of gk(n) is easy to describe. Figures 1 and 2
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