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A PATH COUNTING PROBLEM IN DIGRAPHS 

KAREL ZIKAN and EDWARD SCHMEICHEL 
San Jose State University, San Jose, CA 95192 

(Submitted June 1983) 

1. INTRODUCTION 

In this paper, we consider only directed graphs without loops or multiple 
edges. Our terminology and notation will be standard except as noted. A good 
reference for any undefined terms is [1]. 

Our main goal is to determine the maximum possible number of directed paths 
between a pair of vertices in an acyclic digraph with m edges (and any number 
of vertices). Denoting this maximum possible number by N(rri) , we will establish 
that 

' F{m+i)li f o r m o d d 

N(m) = O for m = 2 

2F, i2-)_1 for m > 4 and even 

where F satisfies the recurrence relation 

F = J? ' +F-, F = ] F - ? 

The actual proof of this formula will be preceded by a sequence of five easy 
lemmas. 

We then conclude with a brief discussion of the following related question: 
Given a positive integer k, what is the least number of edges in an acyclic 
digraph having exactly k directed paths between a pair of vertices. 

2. PROOFS OF THE LEMMAS AND MAIN RESULT 

Lemma 1 

Let D be an acyclic digraph. Then D contains vertices a and z such that 
indegree a = outdegree z = 0. (We call a and z9 respectively, a source and a 
sink of D.) 

Proof: Let x G V(D). Consider a longest path directed away from xs say 
from x to z. Then outdegree z = 0 (since any edge leaving z would yield either 
a longer directed path away from x or a directed cycle in P). 

The proof that indegree a = 0 for some a E V(D) is entirely analogous. • 

Lemma 2 

Let D be an acyclic digraph. Then the vertices of D can be ordered, say 
1, 2, ..., n, such that every edge in D is of the form (i,j), where i < j . 

Proof: We proceed by induction on n = | V(D) | . The result is trivially 
true for n = 2. For the induction step, choose any z G V(D) with outdegree 
z = 0 (one exists by Lemma 1), and consider the digraph D - z. By the induc-
tion hypothesis, the vertices of. D - z can be ordered, say 1, 2, . .., n - 1, 
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A PATH COUNTING PROBLEM IN DIGRAPHS 

in the manner described. If we let z be the nth vertex, we have the desired 
ordering of V(D). a 

In what follows, we assume D is an acyclic digraph with vertices ordered 
1, 2, ..., n such that every edge of D is of the form (i, j) , where i < j . 

For any x E V(D), let pD(x) denote the number of directed paths from 1 to 
x in D. [When D is clear from context, we will use just p(x) for this number.] 

Lemma 3 

Suppose D has a set of vertices S = {i < ••• < j < k}, with 1 < i < k < n, 
which induces a tournament (i.e., a digraph with every pair of vertices joined 
by precisely one edge). Then 

p(k) > p(i) + ... + pU). 

Proof: For each x E S, let P(x) denote the set of directed paths from 1 to 
x. If x £ k, let Pr(x) denote the set of directed paths from 1 to k obtained 
by taking a path from 1 to re together with the edges (x, k). Then, clearly, 

P'(i) U ••• U P'U) CP(k), 
and the sets on the left side are disjoint. Since 

\P'(x)| = \P(x) | = p(x), 
it follows at once that 

p(i) + ... + pU) < p(k). a 

Let /!/(#?) denote the maximum possible number of directed paths between two 
vertices of an acyclic digraph with m edges. Certainly N(m) is a nondecreasing 
function of m. Let us call an acyclic digraph on m edges having precisely 
N(m) directed paths between some pair of vertices a path maximum m-graph. It 
is easily seen that there will be a path maximum frz-graph D with the vertices 
ordered as in Lemma 2 such that 1 and n are joined by precisely N(m) directed 
paths, and 1 (resp., n) is the unique source (resp., sink) in D. We will as-
sume this property for the path maximum w-graphs we consider in what follows. 

Lemma h 

There exists a path maximum m-graph D in which 

{x E 7(2?) |(x, n) E E(D)} 

(i.e., the predecessors of n in D) induce a tournament. 

Proof: Otherwise, let i, j be two predecessors of n (with say i < j) such 
that (£, j) £ E(D). Form the digraph 

Dr = D - (i, n) + (i, j). 
To each directed path in D from 1 to n containing the edge (£, n) there corre-
sponds uniquely a directly path in Dr from 1 to n containing the edges (i, j) 
and (j, n). Hence,p (n) > p (n) s and so Dr is also a path maximum m-graph in 
which n has one less predecessor than in D. We simply iterate this procedure 
until we obtain a path maximum m-graph with the desired properties, m 

Lemma 5 

If m > 3, there exists a path maximum m-graph in which n has indegree 2. 
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A PATH COUNTING PROBLEM IN DIGRAPHS 

/ 
Proof: Let D be a path maximum m-graph in which the predecessors of n 

(ordered say 1 < •«• < j < k) induce a tournament. By Lemma 3S 

p(k) > p{i) + ... + p(j). 
Hence, 

2p(fc) > p(i) + ••• + p(j) + p(k) = p(n) = N(m). 
If indegree n ^ 3, we can construct a new acyclic digraph Df with m edges, 

as shown in Figure 1. Note that 

PD,(n') = 2p(k) > N(jn), 
and hence Dr is also a path maximum m-graph. But indegree d,nf = 2S and the 
proof is complete, a 

(indegree n) - 1 edges 

-̂ (m + l) /2 

1 

2^(m/2)-l 

ber satis 

for m 
for m 

for m 

fying Ffc 

odd 

= 2 

^ 4 and even 

= Fk_1 + Fk_29 Fi 

Figure 1. The Digraph Dr 

We now state and prove our main result. 

Theorem 

Let m be a positive inteter. Then 

N(m) 

1> F2 = 2 ' 

Proof: It is readily verified that 

21/(1) = 217(2) = 1, N(3) = 21/(4) = 2, 21/(5) = 3S 21/(6) = 4S 

and so the formula holds for m > 6. We thus proceed by induction on m > 7. 
Since the digraphs in Figure 2 contain m edges, and have as many dipaths 

from 1 to n as the number specified in the formula, it suffices to show the 
numbers in the formula are upper bounds for N(m). 

By Lemma 5 there is a path maximum m-graph D in which the indegree of n is 
2. Let x,y denote the predecessors of n in D9 with say x < y. We then have 
precisely three possibilities: 

(i) (x> y) & E(D) (Using the construction in the proof of Lemma 4, we 
could obtain a path maximum m-graph in which n has indegree 1.) 
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(ii) {xy y) E E(D), and x is the only predecessor of y. 

(iii) (x> y) G E(D), and x is not the only predecessor of y. 

m odd 

m even, m > 4 

Figure 2. Path Maximum m-Graphs 

By considering the maximum possible number of dipaths from the source to x and 
y in cases (i), (ii) , and (iii), respectively, we get 

N(m) < max{N(m - 1) , 2N(m - 3), N(m - 2) + N(m - 4)}. 
Using the induction hypothesis, and the fact that m ̂  7, we obtain 

( max{2F(w_3)/2, 4JF(m_5)/2, F(m.1)/2 + F(m.3)/2} = F(w + 1)/2, if m odd, 
717(772) < < 

( m a X ^ / 2 ) ' 2F(m/2)-l> 2i^/2)-2 + 2F(m/2)-3> = 2i?(m/2)-l> i f ^ e V e i l \ 

The inductive step, and hence the proof of the theorem, are now complete.a 

3. A RELATED PROBLEM 

The authors have also considered the following problem: Given a positive 
integer k» what is the least number of edges in an acyclic digraph having ex-
actly k paths between some pair of vertices? Noting the 717 (m) is nondecreasing 
in 777, it seems reasonable to conjecture that if N(m - 1) < k < N(m) , then m is 
the minimum number of edges required. This conjecture is indeed true for k < 
32. However, 717(14) < 33 < 717(15), and we have shown that at least 16 edges are 
needed in any digraph having exactly 33 directed paths between a pair of ver-
tices. Although it appears that a complete solution to this problem may be 
very difficult, we have the following conjecture to offer: 

Conjecture: Let kn be the smallest integer such that N(m - 1) < kn < N(m), but 
at least m + n edges are needed in any digraph with precisely kn directed 
paths between a pair of vertices. Then kn satisfies the recurrence relation 
kn = 34^.! + 21, kx = 33. 

REFERENCE 

1. M. Behzad, G. Chartrand, & L. Lesniak-Foster. Graphs and Digraphs. Bos-
ton, Mass.: Prindle, Weber and Schmidt, 1979. 
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PELL AND PELL-LUCAS POLYNOMIALS 

A. F. HORADAM 
University of New England, Armidale, Australia 

Bro. J. M. MAHON 
Catholic College of Education, Sydney, Australia 

(Submitted June 1983) 

1. INTRODUCTION 

The object of this paper is to record some properties of Pell polynomials 
Pn(x) and Veil-Lucas 'polynomials Qn(x) defined by the recurrence relations 

Pn+Z(x) = 2xPn + 1(x) + Pn(x) P0(x) = 0, P^x) = 1 (1.1) 

and 

Qn + 2(x) = 2xQn + l(x) + Qn(x) QQ(x) = 2, Q^x) = 2x. (1.2) 

Initially9 the polynomials are defined for n ^ 0 but their existence for 
n < 0 is readily extended, yielding 

P_n(x) = (-l)"+1Pn(aO (1.3) 

and 

Q_n(x) = (-l)nQn(x). (1.4) 

Some of these polynomials are: 

(P2(X) = 2x, P3(x) = kx2 + 1, Ph(x) = 8x3 + 4x, 

\p,(x) = 16^ + 12^2 + 1, P,(x) = 32x5 + 32^3 + 6x, . ..; 
(1.5) 

(Q0(x) = kx7- + 2 , Q(x) = Sx3 + 6x, Q(x) = 16a?1* + Ibx2 + 2, 
/ 2 3 4 (1.6) 
)S5(a;) = 32xs + 40x3 + lOx, Q6(x) = 64x6 + 9 6 ^ + 36x2 + 2, ... . 
Important special numerical cases are: Pn(l) = Pn 5 the nth PeZZ number; 

Qn(l) = $n5
 t h e ^th Pell-Lucas number; Pn(k) = Pn, the nth Fibonacci number; 

and Qn(h) = L„, the nth Lucas number. Furthermore, Pn(kx) = Fn(x) s the nth 

Fibonacci polynomial, and $n(^#) = Ln (x) 9 the nth Lucas polynomial (see [2]). 
Following standard procedures, we easily obtain the Binet forms 

and 

Qn(x) = an + 3n, (1.8) 

where 

a = x + vx + Vx2 + 1 

x - v^2 + 1 
(1.9) 

are the roots of 

X2 - 2x\ - 1 = 0 , (1.10) 

so that 

a + 3 = 2x, a - 3 = 2Vx2 + 1, a3 =' -1. (1.11) 
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The generating functions for the infinite sets of polynomials {Pn(x)} and 
iQn(%)} are found in the usual way to be 

±r„iMV = a _ 24 . y2 a-") 
and 

00 2x + 2zy 
J S ^ i f a ^ ' - l - 2xy-yz- ( U 1 3 ) 

Results involving these generating functions are not developed here. 

2. ELEMENTARY PROPERTIES OF Pn (x), Qn(x) 

Important elementary relationships involving Pn(x) and Qn(x) follow without 
difficulty with the aid of (1.7)—(1.11). Some of these are: 

Pn + 1(x) + Pn.1(a?) = Qn{x) = 2xPn(x) + 2Pn_1(x) (2.1) 

Cn + lC^) + ««-!<*) = 4 ^ + 1)P„W (2.2) 
Pn(x)Qn(x) = P2n(^) (2.3) 

Q2n(*) = hiQ2
n(x) + 4(x2 + l)pt(x)} (2.4) 

n + 1 n L > Svmson formulas 
Qn + 1(x)Qn_1(x) - Q2

n(x) = (-l)""^^2 + l)j (2.6) 

Pn + l ^ ~ P n - 1 ^ } = 2 x P 2 n ( X ) b y ( U 1 ) » ( 2 , 1 ) ' ( 2 ' 3 ) ( 2 ' ? ) 

40r2 + l)P20c) - Q2
n(x) = 4(-l)n"1 (2.8) 

Formula (2.3) is useful in establishing divisibility properties of the 
polynomials. Geometrical paradoxes can be constructed from (2.5) when numeri-
cal values of x are inserted. 

Summations of an elementary nature are obtained in the usual manner. The 
simplest are: 

n 
£P2 r(x) = (P2B + 1(a:) - l)/2x (2.9) 
r- 1 

YtPZT.1{x) - P2n(x)/2x (2.10) 
r= 1 

2>r(x) = (P„+1(a0 + P„(a» - l)/2ar by (2.9), (2.10) (2.11) 
r= 1 

E « 2 r W " («2„+i<«) " 2a0/2x (2.12) 
2»» 1 

r= 1 

£«,<*) = («n + 1(*) + «„<*> ~ 2 - 2x)/2x by (2.12), (2.13) (2.14) 
r= 1 

Extensions and variations of these finite summations, e.g., ZP=1^2Pr(^) 

and Hr=1(-l)r QT(x) 9 are omitted in this treatment of the polynomials. 

8 [Feb. 
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Induction can be used, with a little effort, to establish the explicit ex-
pressions r .-, 

PnW = i ( n - ^- 1 ) (2x)^ 2 - 1 (2.15) 
m=0 m ' 

and ^ -. 

171= 0 X in / 

where, in (2.16) we used the combinatorial identity 

n in - m\ n - \in - m\ n + 1 In - m + 1\ 
n - m\ m ) n - m\m-1/ n - m + l \ m / 

We proceed to prove (2.15). 

Proof of (2.15): The formula is trivially true for n = 1 and n - 2. Assume it 
is true for n = k and n = k - 1 where fc > 3. Then we have 

Pk+1(x) = 2xPk(x) + Pk_1M by (1.1) 

I f fe = 2 t , t h i s becomes 

i - 1 , 0 , ^ * - l 2: p - " 7 - 1 ) (2x ) 2 * - 2 m + x : ( 2 * - m - 2 ) ( 2 ^ ) « - 2 m - 2 

( 2*-1)(2 a ; ) 2* + (U-2)(2x)^-2 + (U-3)(2x)2t-" + .- . + (^JCZx) 2 

77 = 0 X ^ 7 777 = 0 X m ' 

by using Pascal's formula. Similarly, it holds if k is odd, and the proof is 
completed. 

Basic relationships involving Pn(x) and Qn(x) may be obtained from these 
combinatorial formulas, but the calculations required are tedious. Binet forms 
produce the same results more quickly. 

In passing, we note the differential calculus result: 

^ - * * „ ( * ) . (2.17) 

Later, in (6.20), we shall see that the first derivative of Pn(x) is given 
in terms of a (complex) Gegenbauer polynomial. 

Because Pn(x) and Qn(x) are generalizations of Fn and Ln, the collection of 
miscellaneous results for Fn and Ln given in [7] may be generalized; e.g., 

Qhn{x) - 2 = 4(x2 + l)P*„(x), (2.18) 

Pn_1{x)Pn+1{x) + Qn_x{x)Qn+1(x) = (4x2+ 5)P2(x) + (-l)""1^2- 1), (2.19) 
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and 
n£{2n^)P2k + pW - [ 4 (* 2 + 1 > ] " « 2 » + P + 1 < * > -

2n + l 

E 
k = 0 

( 2 .20 ) 

3 . MATRIX GENERATION OF FORMULAS 

We demons t ra te t h a t t h e m a t r i x 

~2x 1~ 

1 0 
(3.1) 

generates Pell polynomials and Pell-Lucas polynomials, and use it to establish 
some elementary properties of these polynomials. 

Induction, with (1.1), leads to 

pn 

whence 

P (x) 
n+ 1 v pn 

and 

P„(*) - [1 0]P 

1 

_0_ 

n-1 

The characteristic equation of P is 

X2 - 2xX - 1 = 0 

with eigenvalues 

[a = x + V^2 + 1 

$ = # - Vx2 + 1 

By the division algorithm for polynomials, 

An = (X2 - 2xX - l)f(X) + mX + k, 

where f(X) is of degree n - 2 in A and m, k are functions of x. 
Put X = a in (3.7). Then 

an = ma + k. 
Similarly, 

3 n = ̂ 3 + fc. 
Solving (3.8) and (3.9) yields 

-, k 
„ n -1 on-1 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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From (3.8) 

Pn = mP + kl. (3.11) 

Equate the top right elements in (3.11) to obtain m = Pn(x) so that the 
Binet form (1.7) for Pn(x) is again produced from (3.10). 

Use of (2.1) gives 

n + l (a?) 2x 

2 

and 

Ax) = [1 0]P" 
2x 

2 

for 

To illustrate the matrix technique, we prove 

= [ P m ( * ) , P ^ . ^ x ) ] ? " 

(3 .12) 

(3 .13) 

(3 .14) 

P„+1Cx) 

r 
0 

by ( 3 . 3 ) 

[1 0 ]P" by (3 .3 ) and PmPn = P m + n 

= P„+nW by ( 3 . 4 ) . 
S i m i l a r l y 

« „ + „ ( * ) = Pm-l(x)Qn(x) +Pm(x)Qn+1(x). 

From (3 .14) and (3 .15) w i t h (3 .2 ) and ( 3 . 1 2 ) , we d e r i v e 

and 

Pn+rW 

fnW -

QAx) 

Pp(x) •Pp,1(x) 

0 1 

'PP(X) Pr_1M~ 

0 1 

pn 

pn 

1 

0 

~2x 

2 

(3 .15) 

(3 .16) 

(3 .17) 

Equat ion ( 3 . 1 4 ) , i n c l u d i n g an i n t e r c h a n g e of m and n , i n con junc t ion wi th 
(2 .1 ) g i v e s 

Pm+nW = hiPm(x)Qn(x) + Pn(x)Qm(x)}9 (3 .18) 
while (3.15), including a replacement of m by w + 1 and n by n - 1, with (2.1) 
and (2.2) gives 
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„+„(») = h{Qm(.x)Qn(.x) + 4(x2 + l)Pra(x)Pn(x)}. (3.19) 

P u t t i n g J i = n i n (3 .18) and (3 .19) y i e l d s (2 .3 ) and ( 2 . 4 ) . F u r t h e r , 

s i n c e 
D2 ,M\ , -nl 

( 3 . 2 0 ) 

P n \ l<*> + W > = [ ? n + l W » P n ^ > ] LPn(x) _ 

[1 0 ]P 2 by (3 .2 ) and (3 .3 ) 

= P 0 n(a;) by 3 . 4 . 
2 n + l v y ^ 

R e s u l t (3 .20) a l s o fo l lows d i r e c t l y from (3 .14) w i t h m = n + 1. 
S i m i l a r l y , 

« n + l < * > + «»<*> = 4 ^ 2 + ^ ^ n + l ^ ' ( 3 ' 2 1 ) 

All the above results can, of course, be derived by using the Binet forms 
(1.7) and (1.8). Techniques employed in these sections give rise to the fol-
lowing formulas: 

[Pn(x)Qr(x) if v is even 
Pn+rW + Vr(*> = 

if v is odd 

W * > + «„„,(*) 

-c^+pV^) Pn_p(^) 

«n+r(*) - «„_,<*) 

^aOP^x) 

,0c) 6 r 0*0 r even 

>(x 2 + l)Pn(x)Pr (x) r odd 

^Qn(x)Pr (x) r even 

(pn(x)ep(x) r odd 

f4(x2 + l)Pn (x)Pr (x) r even 

2„(a0$r(a0 r odd 

P„2+r0*0 " *£_,(*> = P2n(x)P2p(x) by (3.22), (3.24) and (2.3) 

«n+r(x) ~ «»-!•<*> = 4 ^ 2 + DP2n(a:)P2l,W by (3.23), (3.25), 

"mfj+r (x^ 

and (2 .3 ) 

; P „ ( x ) e ( m . 1 ) n + r ( x ) + ( - l ) n P ( m . 2 ) n + > ) 

« „ » + , < * ) = ^ n - i ) n + , U ) e „ U ) + ( - D n " 1 « ( m - 2 ) n + r 

P 2 ( x ) - P n + r ( x ) P n _ r ( x ) = (-l)B"*P,2(a:) 

«»<*> " «„ + r 0 c ) e „ _ r ( x ) = ( - l ) M " r + 1 4 ( a ; 2 + l)Pr
2(x) 

P „ + 1 W P „ + S W - P n O O P n + „ + k 0 r ) = ( - l ) " P , ( x ) P ^ ( x ) 

Simson formulas 

12 

(3 .22 ) 

( 3 . 23 ) 

( 3 .24 ) 

(3 .25) 

(3 .26) 

(3 .27) 

(3 .28) 

(3 .29) 

(3 .30) 

(3 .31) 

(3 .32) 
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Qn + h(x)Qn+k(x) - Qn(x)Qn + h+k(x) = (~l)n-H(x2 + l)Ph(x)Pk(x) 

Pn+hMQn + k(x) - Pn(x)Qn+h+k(x) = (-lfph(x)Qk(x) 

Finally, we offer two relationships that can be described as being 
de Moivve type: 

and 
{Qn(x) + 2Vx2 + lPn(x)}r = 2r'1{Qnp(x) + 2Vx2 + lPnr(x)} 

{Qn(x) - 2Vx2 + \Pn{x)V = 2v-1{Qnl.(x) - 2Vx2 + lPnr(x)}. 

When x = ^ 5 (3 .35) and (3 .36) reduce t o 

and 
&F„)P LMT, - A F „ 

(3.33) 

(3.34) 

of the 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

respectivelys the first of which is given in [7, p. 60]. 
Results involving Pn(x) and Qn(x) are as multitudinous as the sands of the 

seashore, and one can gather these grains ad infinitum* ad nauseam. 

h. PASCAL ARRAYS GENERATING Pn (x), Qn(x) 

Consider the following table. 

Table 1: Pell Polynomials from Rising Diagonals 

^T 

1 

lOx 

(4.1) 

Denote the coefficient of the power of x in the mth row and nth column by 
(m, n). 

It is now shown that the rising diagonals presented in Table 1 produce the 
Pell polynomial (1.5). 

Define the entries in row m as the terms in the expansion (2x+ l)m~l
9 that 

is 

£ (m, n)xm~n = (2x + l)m~1 m > n. 
n=l 

(4.2) 
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Hence, 

(OT, n) =(m~ l)2m'n m > n. (4.3) 

Now t h e r i s i n g d i a g o n a l func t ion Rm(x) of degree m i n x i n Table 1 i s : 

^m(«) = E (rn + 1 - n, n ) x m + 1 " 2 " (m > 1) (4.4) 

V f m-n \ , „ ,m+1 
" „?, \m+l-2nY2x) 

ft1] 
= E ('"-""^(zx)'"-1 

- In by (4 .3 ) 

- 2n 

Now cons ide r Table 2. 

from (2.15.) 

Table 2: Pell-Lucas Polynomials from Rising Diagonals 

2 

22a? 

(4.5) 

Let [m9 n] denote the coefficient of the power of x in the mth row and nth 

column. 

We may define the entries in row m as the terms in the expansion of 

(2x + l)m + (2x + I)™-1 = (2a: + l)m~1(2a: + 2 ) , 

that is, 

m+ 1 
X [w, n]xm+1-n = (2a: + l)?7Z~1(2a: + 2) 
n= 1 

14 

(4.6) 
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and so 

[777, n] = 2(777, U) + 2(772, U - 1) = 2(772, Tl) + (777, U ~ 1) + (777, n - 1) 

= (m + 1, n) + (m, n - 1). (4.7) 

Denote the rising diagonal function of degree m in x in Table 2 by S (x). Then 

B2] 
^OTte) = E [rc + 1 - n , n ] x m + 2 " 2 n 

n = l 

m 
= E (fa + 2 - n> n) + (m + 1 - ^3 « - D } ^ w + 2 _ 2 n by (4 .7 ) 

n = l 

=[¥]r„-»)+(—)}< m + 2 - In by (4 .3 ) 

rc = 0 m - n tn") m - In on simplification 

QJx) by (2 .16) 

Thus, we have demonstrated that Pell and Pell-Lucas polynomials are gener-
ated by the rising diagonals in Table 1 and Table 2, respectively. 

Next, arrange the coefficients of the powers of x in Pn (x) , (1.5), in the 
following Pascal-like display. 

Table 3> Pell Polynomial Coefficients 

CoeffsT^\Powers 
in Pn (x) ̂ ^ \ ^ ^ 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 

1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

1 

2 
0 
4 
0 
6 
0 
8 
0 
10 

2 

4 
0 
12 
0 
24 
0 
40 
0 

3 

8 
0 
32 
0 
80 
0 

160 

4 

16 
0 
80 
0 

240 
0 

5 

32 
0 

192 
0 

672 

6 

64 
0 

448 
0 

7 

128 
0 

1024 

8 

256 
0 

9 ... 

512 

Designate the entry in the rth row and cth column of Table 3 by {r, a}, 
From the table and (2.15), we have: 

{2v, 2a} = 0 (4.8) 
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(/r+ c- 1\ 2c- l o = 1, 2, ..., r 
{2r, 2c - 1} = <\ r-o ) (4.9) 

V 0 c > v 
{2v - 1, 2c - 1} = 0 (4.10) 

((r+c- 1\ 2o c = 0, 1, 2, ..., v - 1 
{2p - 1, 2c} = U P - C- 1/Z (4.11) 

V 0 c > r 

Using (4.8)-(4-ll)5 we can prove: 

v- 1 
£ {2r - 1 - i, i} = 3P~1 (4.12) 

i= 0 

2r 

£ {i, 2c - 1} = %{2P + 1, 2c} (4.13) 
£= l 
2P 

£ {£, 2c} = ^{2P, 2C + 1} (4.14) 
i= 1 
2v- 1 
£{£, 2c - 1} = h{2r - 1, 2c} (4.15) 
£= 1 

2r- 1 

£{£, 2c} = ^{2P, 2C + 1} (4.16) 
i= 1 

Proof of (4.12) 

p- l 
]T (2r - 1 - i9 i] = {2P - 1, 0} + {2P - 2, 1} + ••• + {r, r - 1} 
i = 0 

= e : ! ) 2 ° + C : : 2 ) 2 l + "- + ( V ) 2 r ~ 1 b^(4-9) 
X P i 7 X P ' N U 7 and (4 .11) 

= (i + ly-1 = a21-1 

Proof o f (4 .13) 

2r 
E B , 2c - 1} = {2, 2c - 1} + {4, 2c - 1} + ••• + {2r, 2c - 1} by (4.10) 

i= 1 
= {2cs 2c - 1} + {2c + 2, 2c - 1} + ••• + {2r, 2c - 1} 

- * — ( ( V ) • ( ? ) • • • • • f" ; 1 ) ) *":>> 
- ^ ( e i i ) * ^ ) * - * Ci°-V)) 
= 220~1(^2oC) by identity C1-52) in [6] 

= ^{2P + 1, 2c} by (4.11) 

If a similar table for Qn(x) is constructed, and if we designate the ele-
ment in row v and column c by r, c, we have from (2.1) that 
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p, c = { P + 1, c} + {p - 1, c} = 2{p, c - 1} + 2{r - 1, a}. (4.17) 

Properties of p, c may then be developed on the basis of (4.8)-(4.11). 
From (2.2), we derive 

2? + 1, c + r - ls c = 4{p, c] + 4{P, c - 2}. (4.18) 

To conclude this section, we establish a relationship between (m, n) and 
{p, c} in Tables 1 and 3, respectively (both relating to the Pell polynomials). 
A relationship between [m, n] and p, c will also be formulated for the Pell-
Lucas polynomials. 

Now in (4.9), 2c - 1 is the power of x in P2r(x). Comparing the coeffi-
cient of the term x2c~1 in (2.15) with that in (4.3), where we recall that 

(m-l\= (m-l\ 
\m- nj \n- 1/ 

we deduce that 

{2P, 2c - 1} = (p + c, r - o + 1) (4.19) 

and so 

(p, c) = { P + a - 1, r - c}. (4.20) 

A similar argument applied to (2.15) and (4.3) for (4.1) yields 

{2P - 1, 2c} = (r + c9 r - c) 

whence (4.20) results again. 
Lastly, consider 2P, 2c, the coefficient of x2° in Q2r(x). From (4.17), 

*rE-((;:3 + (;:-i))2». 
Using (4.7) with (4.3), we find 

r i 11 W \ , (m~ l\\0m-n+l 
[m'w] - (U-i) + U-2)j2 

whence, by comparison of the two forms, 
2r, 2c = [r + c, r - c + 1]. (4.21) 

Reversely, 

[p, c] = P + c - 1, P - c + 1. (4.22) 

A similar formula to (4.21) is 

2P - 1, 2c + 1 = [P + c, P - c] 

whence (4.22) results again. 

5. DETERMINANTAL GENERATION OF Pn (x) , gn(a?) 

Write <iv- for the element in the ith row and j t h column of an n x n deter-
minant. 

Let hn(x) be the n x n determinant defined by 

( dn = 2x £ = 1 , 2 , .. ., n 

V <f ̂ = 0 otherwise 
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From An(x) , the determinants Sn(x) s A*(x), and 6*(x) are defined as follows: 

6n(x): as for An(x) except that diti+i = — 1, difi_l= 1 (5.2) 

A*(x): as for An(x) except that d12 = 2, ̂  i + 1 = 1 (5.3) 
(i = 2, ..., n - 1) 

6*(a:): as for An0r) except that d12 = -2, ̂  i + 1 = -1 (5.4) 
(i = 2, ..., n - 1) ^,'i-i = 1-

Induction and expansion along the first row, together with basic properties 
of Pn(x) and Qn(x), e.g., (1.1), (2.1), yield 

A n W = Pn + 1W (5.5) 

6n(tf) = Pn + 1(x) (5.6) 

A* (a:) = Cn(a?) (5.7) 

6* Or) = «n(x). (5.8) 

In the process of expansion, we derive recurrence relations such as 

Ak(x) = 2xAk_±{x) + Ak_2(x) k > 3 (5.9) 
and 

A*Or) = 2arA*.1(a?) + 2A*_2(a?) & > 3. (5.10) 

6. RELATIONS OF Pn (x) , Qn (a?) TO OTHER FUNCTIONS 

Perhaps the simplest results relating Pn (x) to other functions are found in 
[4]: 

P2n(x) = sinh 2nt/cosh t } (6.1) 
> ar = sinh t 

p2n + i(x) = cosh(2n + l)£/cosh t ) (6.2) 
Hence 

Q2n(x) = 2 cosh Inb \ (6.3) 
> x - sinh £ 

Szn + i^) = 2 sinh(2n + l)t } (6.4) 

Comparison of the explicit summation formulas for Pn{x) and Qn(x) given in 
(2.15) and (2.16) with the explicit summation formulas for Un(x) and Tn(x), the 
Chebyshev polynomials of the second and first kinds, respectively (see [11]), 
shows that 

Pn(x) = (-i)"-X-i(w:) <6-5) 
and 

Qn(x) = 2(-i)nTn(ix) (6.6) 
i.e., Pn(x) and Qn{x) are modified Chebyshev polynomials in a complex variable. 
To reconcile the form in [11] with (2.16) we had to replace the Gamma function, 
namely, T(n - m) - (n - m - 1)! 

Because of (6.5) and (6.6), Pn(x) and Qn(x) would have [9] complex hyper-
geometric representations. Other representations also exist in view of the 
many forms the expressions for Un(x) and Tn(x) can take. 

In particular, we may record that 

Pn (i cosh x) = £rz"1sinh n#/sinh x (6.7) 
and 

Qn(i cosh x) = 2£ncosh nx. (6.8) 

18 [Feb. 



PELL AND PELL-LUCAS POLYNOMIALS 

From (1.1) we observe that 

Pn+1(ix) + Pn_1{ix) = Qn{ix) 

leads, with the help of (6.5) and (6.6), to 

Un(ix) - Un_2(ix) = 2Tn(ix), (6.9) 

which is a complex version of a basic relationship between the two kinds of 
Chebyshev polynomials. Similarly, other Chebyshev relationships may be tied to 
corresponding relationships involving Pn(x) and Qn(x). 

Finally, we allude to the Gegeribauer (ultraspherical) polynomial of degree 
n and order v, C^(x), defined by 

Y,Cl(x)tn = (1 - 2xt + t2)"v (v > 0, \t\ < 1). (6.10) 
n = 0 

with explicit forms 

2 ( - l ) p / n - r\ro^n- iv 
r = 0 

and 

C°(x) = i j - ^ - ( n _ r ) ( 2 x ) n - 2 r C°.(x) = 1 (v = 0) (6.11) 

I 2 I 
C ~ W = T^o S ( - D F ( n - *•+ l ) t r ) ( 2 a : ) ( v > - ^ ; v ^ 0 ) . (6.12) 

A recurrence relation for C^(x) is 

(n + 2)Cnv+2(x) = 2(n + v + l)xC^+i(x) - (n + 2v)c£(a?) (6.13) 

which, for V = 1, reduces to 

C^+2(x) = 2x^+1(x) - C^x) (6.14) 

with 

Cl(x) = 1 , C\(x) = 2#. (6.15) 

Clearly, ££(*) = £/„(*), and by (6.5), 

Pn(x) = (-i)*"1^^ (&»).- (6.16) 

When v = 0, (6.11), where (7°  Or) = 2x, gives 

so that (6.6) gives 

Qn(x) = n(-i) C°(ix) (n > 1) (6.17) 

i.e., Pn(x), Qn(n) are modified Gegenbauer polynomials in a complex variable. 
As the Fibonacci and Lucas numbers arise from Pn(x) and Qn(x) when x = %, 

we have, from (6.16) and (6.17), 

and 

*i-c!(l) -1. Fn- W - ^ d ) (6.18) 

£0 = 2̂ o (f) = 2 , L„ = n(-D n ^(|) n > 1. (6.19) 

Using the known [9] result dTn{x)/dx = nUn_1(x) from [11] with (6.5) and 
(6.6), we can arrive back at (2.17), viz., dQn(x)/dx = 2nPn(x). 
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Differentiating in (2.15) and applying (6.12) in the case v = 2, we deduce 
that 

^^-2(-i)»-*<7*_2(t«). (6.20) 

Alternatively, we may differentiate in (6.16) and invoke the result [11] 

dCv
n(x) V + l 

dx 2vC_Ax) 

to obtain (6.20). 
Some of the above results, e.g., (6.16), were generalized in [12] for the 

sequence of polynomials {Ak(x)} defined by 

An+2(x) = 2xAn+1(x) + An(x) AQ(x) = s, A1(x) = r. (6.21) 

Of course, {An(x)} is a special case of the sequence {Wn(p, q; a, b)}, some of 
whose properties are documented in [8]. 

Information related to some aspects of the above ideas can be found in [1], 
[2], [3], [4], [5], [9], and [10]. 
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I 

Let the arbitrary real numbers a, b, c, and d be given. Construct two se-
quences { a j r = 0 and {3^}" = 0 f o r w n i c n 

,0 = a, QL1 = c, g0 = b, 3X = d 

•n + 2 = 3n + 1 + 3n, n > 0 (1) 

'»+2 = an + l + an> n > °  

Clearly, if we set a = b and c - d, then the sequences {ai}^ = 0 and {3^)^=0 
will coincide with each other and with the sequence {F^(a, d)}™= . The first 
ten terms of the sequences defined in (1) are: 

0 a b 
1 c d 
2 2? + d a + c 
3 a + c + d b + c + d 
4 a + b + 2c + d a + b + c + 2d 
5 a + 2b + 2c + 3d 2a + b + 3c + 2d 
6 3a + 2b + 4c + kd 2a + 32? + 4c + 4a7 

7 4a + 42? + 7c + 6d 4a + 42? + 6c + Id 
8 6a + 72? + 10c + lid 7a + 62? + lie + 10a7 

9 11a + 102? + 17c + 17d 10a + 112? + 17c + 17c? 
A careful examination of the corresponding terms in each column leads one 

immediately to 

Theorem 1.1 

(a) a 3 n + 30 = 33n + a0, n > 0 

(b) <*3n + i + 3X = 33n + 1 + al s n > 0 

(° ) a 3 n + 2 + a0 + ax = 3 3 n + 2 + 30 + 31? n > 0 

Proof of (a): The statement is obviously true if n = 0. Assume the state-
ment is true for some integer n ^ 1. Then 

a3n+3 + 30 = 03n+2 + 33n+l + S0 by (1) 
(continued) 
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= « 3 n + 1 + a3n + &3n+1 + 30 by (1) 

= a 3 n + 1 + 33n + 33n + 1 + ot0 by induction hypothesis 

= a3n + l +
 a3n + 2 + a 0 by (D 

= $3n+3 + a0 by C 1 )' 

Hence, the statement is true for all integers n > 0. Similar proofs can be 
given for parts (b) and (c). 

Adding the first n terms of each sequence {a^} and {3?;} yields a result 
similar to that obtained by adding the first n Fibonacci numbers. That is, 

Theorem 1.2. For all integers k ^ 0, we have: 

3k 3k 
(a) « 3 f c + 2 = E B i + Bx (d) $3k+2 = £ a . + «x 

^ = 0 ^ = 0 
3 k + 1 3Jc+1 

(b) a 3 , + 3 = £ a . + 3X (e) B3 , + 3 = £ Bf + a , 
i = 0 ^ = 0 
3k+2 3fc+ 2 

(c) a3 k + lf = E 6{ + ax (f) 33A: + 4 = £ o^ + 3X 
£ = 0 £ = 0 

Because t h e p roof s of each p a r t a r e ve ry s i m i l a r , we give only a proof of 
p a r t ( e ) . 

Proof of ( e ) : I f k = 0 t h e s t a t emen t i s obvious ly t r u e , s i n c e 

I 
£ &i + 04 = 30 + 3X + ax = a 2 + 04 = 63. 

i = 0 

Assume (e) i s t r u e for some i n t e g e r k ^ 1, t hen 
a3 f c + 5 + ot3k+lf by (1) 

_ + a3fc+lf by (1) 

3k + 1 
= 3 3 k + l f + Z 3 i + 04 + 3 3 k + 3 + 3 3 k + 2 by i n d u c t i o n h y p o t h e s i s 

* - 0 and (1) 
3k+4 

= E B { + 04 . 
i = 0 

Hence, (e) is true for all integers k ^ 0. 

Adding the first n terms with even or odd subscripts for each sequence {0^} 
and {3i)j we obtain more results which are similar to those obtained when one 
adds the first n terms of the Fibonacci sequence with even or odd subscripts, 
That is, 

Theorem 1.3. For all integers k ^ 0, we have: 

3k+ 2 3k+3 
(a) a6 7 c + 5 = L 3 2 i - a0 + 3X (c) a6k+7 = £ g2 / - 30 + 04 

i = 0 i = 0 
3k+3 3k+4 

(b) ot6 k + 6 = X 3 2 i „ ! + a0 (d) a6 f c + 8 = £ 3 2 ^ _ ! + 30 
i = 1 i = 1 
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3/c+ 4 

^ a6fc+9 = £ 6 2 i " 30 + 3X 
i = 0 

3fc+5 
( f ) a6fc+io = £ 6^ . ! + a0 + a, - 3X 

i = I 

3k+2 
(9) 3 6 f e + 5 = £ a 2 i - 30 + a , 

i = o 

3A:+3 

(h) 3 6 k + 6 = £ a 2 i _ x + 30 

i = 1 

3fc + 3 
( ' ) 3 6 / c + 7 = £ a 2 . - a0 + 3X 

^ = 0 

3£:+4 
( j ) e 6 k + 8 = £ a 2 i - i + ao 

i = 1 
3/c+4 

(k) 3 5 f e + 9 = £ a 2 i - a0 + 04 
i = 0 

3^+5 

( ] ) Befc+io = £ a 2 i - 1 + 30 - a , + 3X 
i = l 

Proof of (g): If k = 0 the statement is obviously true, since 

2 

£ a 2i - 30 + ax = aQ + a2 + a^ - 30 + 04 = 2a + £ + 3c + 2d = 35-
i = 0 

Assume (g) is true for some integer k ̂  1, then 

^6H11 = a6/c + 10 + a 6 k + 9 ^ C1) 

= a6/c+10 + ^6fc+9 + a 0 " ^0 b y T h e o r e m lA> P a r t (a) 

= a6fc+10 + a6fc+8 + a6fe+7 + a 0 " ^0 ^ ( ^ 

3/C+2 

= a6fc + 10 + a 6k + 8 + &6fc + 6 + £ a2i + ai + a 0 " 2 ^0 
i = 0 

by (1) and induction hypothesis 
3k + 3 

^6fe + 10 + ask + 8 + £ a2-z: + a i ~ ^0 by Theorem 1 . 1 , p a r t (a) 

3k+ 5 

= £ a 2 i + Otl ~ 3 0 -
i =0 

Hence, (g) is true for all integers k > 0. A similar proof can be given for 
each of the remaining eleven parts of the theorem. 

The following result is an interesting relationship which follows immedi-
ately from Theorems 1.1 and 1.2. Therefore, the proofs are omitted. 

Theorem 1.4. If k > 0, then 

3k 

(a) £ (a* - 3;) = a0 - 30 
i = o 
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3k+ 1 
(b) L (a, - 3,) = 32 - a2 

i = 0 

3£+ 2 
(c) L (a* - 3;) = 0. 

i= 0 
As one might suspect, there should be a relationship between the new se-

quence and the Fibonacci numbers. The next theorem establishes one of these 
relationships. 

Theorem 1.5. If n > 0, then 

an + z + 3n + 2 = Fn+1(a0 + 30) + Fn + 2(ai + 3X). 

Proof: The statement is obviously true if n = 0 and n = 1. Assume that the 
statement is true for all integers less than or equal to some n ^ 2. Then 

an + 3 + Sn + 3 = ^n + 2 + 3n + x + an + 2 + an + x by (1) 

= Fn + 1^0 + 30) + ^ + 2^1 + Pi) + M^0
 + &0> 

+ F „(a, + 3 ) by induction hypothesis n + 1 1 1 J Jr 

= Fn + 2^0 + Bo) + Fn+3^1 + Bl>-

Hence, the statement is true for all integers n > 0. 

At this point, one could continue to establish properties for the two 
sequences {a^} and {3^} which are similar to those of the Fibonacci sequence. 
However, we have chosen another route. 

11 
Express the members of the sequences {a^}^ = 0 and {3^}~ = 0> when n ^ 0, as 

follows: 

a„ = Via + Tib + Tic + T* d t 
(2) 

3n = 6*a + 6jfc + 6%c + 6*d 

In this way we obtain the eight sequences {r|}^=0, {6^}^,0, (J = 1,2,3,4). 
The purpose of this section is to show how these eight sequences are related to 
each other and to the Fibonacci numbers with the major intent of finding a di-
rect formula for calculating an and 3n for any n. 

Theorem 2.1 establishes a relationship between these eight sequences and 
the Fibonacci numbers. 

Theorem 2.1 

( a ) ^ + 6 j = Fn_l9 n > 0 (c) T3
n + 63

n = Fn, n>0 

(b) Tl + S2
n = Fn_lt n > 0 (d) T^ + 6^ = Fn, n > 0. 

Proof of (a): This is obviously true if n = 0 and 1, since 

rj + 6j = 1 + 0 = F_± and T\ + 6* = 0 + 0 = 0 = FQ. 
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(g) 

(h) 

( i ) 

( j ) 

(k) 

r3 = 
3k 

r3 

3k+l 

r3 

3k+2 

1 3k 

r4 

3k+ l 

« « 
= 63 

3 k + l 

" 6 3 , + 2 

«5* 
" 6 3 * + 1 

+ 1 

- 1 

- 1 

Assume this is true for all integers less than or equal to some integer n ^ 2. 
Then 

rn + 1 + «n + 1 = ^ + ^- ! + r^ + r^_x = F n - 1 + F n . 2 = Fn, 
and (a) is true for all integers n > 0. Similarly, one can prove parts (b) , 
(c), and (d). 

The next step is to show how the above eight sequences are related to each 
other. 

Theorem 2.2. If k > 0, then 

^ r L - 6L + i . - -

^ r 3 , + l - 6 3 , + 1 

( = ) r 3 , + 2 = « 3 k + 2 - 1 

W r 3 , - « § k - 1 

^ r 3 , + l = 5 3 , + l 

(f) r2 = 52 + i (l) r1* = 6 " + i 
V ' i 3 J e + 2 U 3 k + 2 T * V ' 3 k + 2 U3fc+2 T L 

Proof of (j): It is obvious that (j) is true if fe = 0, since T^ = 6̂  = 0. 
Assume the statement is true for some integer k > 1. Then 

= r : , + i + r 3 , + Kk+i b y ( i ) 
= ^3fe+i + ^ 3 k + ^3k+i by i n d u c t i o n h y p o t h e s i s 

= r ^ + i + r : , + 2 - « 3 * + 3
 b y ^ 

and the statement is proved. The remaining parts are proved in a similar way. 

We now show 

Theorem 2.3* If n > 0, then 

(a) Tji + r2 = 6i + 62 (b) Tn3 + rj = 6* + 6* 

Proof of (a): This is obviously true if n = 0 and n = 1. Assume true for 
all integers less than or equal to some integer n ^ 2. Then 

r1 + r2 = s1 + s1 + 62 + 62 by (i) 
n + 1 n + 1 n n-1 n n-l y v y 

= T^ + T̂ 2 + r^_1 + T2_x by induction hypothesis 
= S1 n + 52 by (1) 

n+1 n+1 J K 

Similarly, one can prove part (b). 

Before stating and proving our main result for this section, we need the 
following three theorems. 
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Theorem l.k. If n > 0, then 

(e) r3 = r 

(f) r* = r 

(a) 

(b) 

(c) 

s1 = r2 

62 = T1 

S3 = Yk 

• n L n 

n+ 1 

4 
n+ 1 

(g ) &l = 6. 2 n+1 
(d) 5̂  = rn3 (h) 6i-6h 

^+1 

Proof of (a): The statement is trivially true for n = 0, 1, 2, so assume 
it is true for all integers less than or equal to n where n ^ 3. Then 

«n\l - ^ + r n -l ^ < « 

" «i-.l + 6n-2 + *S-2 + 5n-3 ^ <*> 
= T2

 n + T2
 o + T2 + r2 by induction hypothesis 

n-l n-2 n-2 n-3 y 

Two applications of (1) will complete the proof of part (a) of the theorem. 
The other parts are proved by similar arguments. 

From Theorems 2.1 and 2.4, we have the following. 

Theorem 2.5 

(̂  r* + r2 = &l + &l = V i <»>o> 

(b) r„3 + r* = 6* + ^ = F„ (« >. o) 

Finally, we have the following statement. 

Theorem 2.6. If n > 2, then 

n + 1 

1 <"> r 2 = r n
2 . i + r 2 . 2 + n - 3 [ f ] 

(c) r* = r2 + a[f] - « + I 

<<0 r* « r 3 . , + r*_2 + * - 3 [ * - t i - ] 
(e) rj = r:.x + r:_2 + 3 [ ^ 1 ] - « 
(f) r» - r; + „ - 3 [ i ± i ] 
Proof of (a): The statement is obviously true if n equals 2 or 3. Assume 

the statement true for all integers less than or equal to n ^ 4. Then 

pi = 5 1 + 5 1 = T2 + T2 by (1) and Theorem 2.4, part (a) 
n+ 1 n n-l n n-l 

= 62 + 62 , + 62 + 62 , by (1) 

n-l n-2 n-2 n-3 J x 

= r1 + T1 + T1 + r1 by Theorem 2.4, part (b) 
n-l n-2 n-2 n-3 

(continued) 
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= rn " 3 [J] + n - 1 + r ^ - 3 p - ^ ] + n - 2 by induction 
hypothesis 

5] - 'H1] 
3n + 3 

= r 1 + r 1 + in - 3 - 3 
rc n - 1 

= T^ + T1
 n + 2n - 3 + 3 

n n-1 

- r« + ^ - i + ^ H 1 ] - <» - i) + i 
and part (a) is proved. (It can be shown that [(n+ l)/3]+ [n/3] + [(n- l)/3] = 
n - 1, n ^ 1.) Similarly, one can prove parts (b) , (d), and (e). 

The proof of part (c) above follows directly from part (a) of Theorem 2.6, 
(1), and part (a) of Theorem 2.4. The proof of part (f) follows by a similar 
argument. 

Adding the equations of part (a) of both Theorems 2.5 and 2.6, we have, for 
n > 0, 

^ 2 " i ( F » + l " r n + * + ^ l + ^ + 3^V\ ~ * ~ 0 
-i(*»+i - rn+2 + C 2

+ tfrr1] ~n~l) by (1) 

= l ( F n + i + 3 [ n 3 2 ] " n " l) hy ( a > o f Theorem 2 . 4 

= 6 2 by ( a ) of Theorem 2 . 4 
n + 2 

S i m i l a r l y , we h a v e 

r2 . uF _ 3 r z L + 2 ] + n + A . 6 i 
n+2 2 \ » + l L 3 J J n + 2 

c 2 = K ^ + 2 - 3 [ f ] + " - i ) = 6-2 

Substiting these four equations into (2), we have our 

BASIC THEOREM. If n > 0, then 

+ (fn + 2 + - " 3 [ f ] " l)« + (^ + 2
 + 3 [f] + L " »)<*} 

= }{(a + fc)Fn + 1 + (c + d)Fn + 2 + ^ [^y^] - n - l)(a - W 

+ (M " 3 [ f ] " 2 ) ( c " d ) } ; 

+ ( f " « + 3 B ] + ' - " ) ° * (*•.•*+" - 3[f] - !)4 
( c o n t i n u e d ) 
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= i{(a + b)Fn + i + (c + d)Fn + 2 + (3p4-^] - n - l) (Z> - a) 

+ (n - 3[I]' - l W - c)l. 

Ill 
The sequences {o^}. and {3i}J=0 can also be expressed as follows [simi-

larly to (1)]: 

'ap = a, a1 = c, (3Q = b, B1. = d 

aM+9 = a +1 + a x ' (3) 
> (n ̂  0) 

'a0 = a, a2 = c, 30 = b, 61 = <f 

a n + 2 = 6n + 1 + an ) (4) 
^ V (n > 0) 

n + 2 = an + 1 + 3n J 

aQ = a, ax = c, 30 = fc, 3X = ̂  

a"« = a"+1 + 3" 1 (n > o) (5) 

X + 2 = en + 1 + «n ) 
The sequences (3) are actually two independent Fibonacci sequences of the 

form {Fi (a, c)}^=0 and {Fi{b9 d)}^=0. It is easily seen that the sequences (4) 
can be expressed through the sequences {F^(a, d)}"=0 and {F^(b, c)}i = Q, namely, 
a2n = F2n(a> & , d2n+1 = F2n+1^» C^ > § In = F'in 0> > o) > B 2 n + 1 = F (a > &) , Tl> I. 

In the case of (5), two sequences are introduced whose members are related 
similarly to those discussed in I and II. Therefore, we shall discuss them no 
further here. 

Numerous similar pairs of sequences can be constructed. However, the ones 
introduced here stand most closely to the very spirit of the Fibonacci sequence 
and its generalization rules. 

We are deeply thankful to the referee for his thorough discussion. 
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1 • In t h i s no te I respond t o two e a r l i e r n o t e s [1] and [2] on t h e decimal ex -
pans ion of some f r a c t i o n s t h a t a r e r e l a t e d t o t h e F ibonacc i numbers Fn and t h e 
Lucas numbers Ln, The s imp le s t example i s 

4n = .0112358 = T F 10"". 

21 

I propose to put these expansions into a context from which more examples can 
be drawn in abundance. The recently studied Tribonacci numbers (see [3], [4]) 
will also fit into this context. 

The Fibonacci and Lucas numbers can be defined by the recursions 

FQ = 0, F1 = 1, L0 = 2, L1 = 1, Fn+1 = Fn + Fn_l9 Ln+1 = Ln + Bn_li 

for n ^ 1, or equivalently, by the formulas 

Fn = -ir(a)n - (5M) , Ln = a)n + oins (1) 
v5 

where co = %(1 + \/5) 5 co = %(1 - /5) . Taking this as a definition of Fn and Ln 

for arbitrary integers n, it follows from 

0)0) = -1 (2) 

that F_n = (-l)n+1Fn5 L.n = (~DnLn. 

First, I shall restate and prove Theorem 2 of [2] in the following form: 

Theorem 1. Let A, Bfa09 a± be arbitrary complex numbers. Define the sequence 
(an)n by the recursion an+1 = Aan + Ban_1. Then the formula 

y ^1 = a°Z + (a± " laq) (3) 
n = 1 zn z1 - Az - B 

holds for all complex z such that \z | is larger than the absolute values of the 
zeros of z2 - Az - B. 

Corollary 2. Let a rational function 

f(z) -
a0s + b1 

z - A z - B 

with arbitrary complex numbers A, B, a0, b1 be given. Then formula (3) holds 
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for sufficiently large \z\9 where the coefficients an are uniquely determined 
by the recursion a1 = b1 + AaQ9 an+1 = Aan + Ban_1. 

Proof: From the recursion, it is clear that an = 0(on) for some o > 0. 
Therefore, the power series converges for \z\ > c. Let 

n = l 

Then i t follows tha t 

W3 + B)S = £ f ^ i + - ^ ) = 4a0 + £ 
n=l \ s " " 1 2 n / n = 1 

n-l 

n-1 o>n 

»-» n + 1 n 

n = l s n 

This implies (3) . As a power series expansion, (3) is valid in the largest an-
nulus |3| > v which does not contain a pole of the function represented. This 
proves the theorem, and the corollary follows immediately. 

2. As an application, I shall prove a result which shows that all decimal ex-
pansions in [1] can be regarded as special instances of Theorem 1 and, there-
fore, of Theorem 2 in [2], Moreover, I believe that this result clarifies the 
question of convergence in [1]. 

Theorem 3- Let k and I be integers, k ̂  1. Then the formula 

AFft(n-l) + & _
 Fl* + (~l^Fk-Z (4) 

n-l Zn Z2-LkZ + (-1)'* 

holds for all complex s that satisfy |s| > 0) k 

Proof: This is a direct consequence of (1), (2), (3), and the geometric 
sum formula: 

n-l *n /En^O zn+1 

_ -1 / o)£ 

1 /((/ - d3£)z + (oo^£ - 03£^)\ 

^ > + (-!)*>. k-A 
-32-Lfe2 + (-l)k 

Corollary 2 now implies the recursion 

<* ̂  = ̂ a + (-l)k+1a n fora =F. ,. (5) 
n +1 Ac n v ' n-l rc kn + £ 

One can also prove (5) directly and then obtain Theorem 3 as a consequence of 
Theorem 1. 
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3. Examples: For 1=0, formula (5) reads 

L r k(n- 1) nk c 1 1 \ v , r^ 

—* - = — — for 2 > tx)K. (6) 
n = l Zn Z1 ~ LkZ + {~l)k 

This looks simpler than (5.1) and (5.2) in [1], and because of 

Lx + (L2 + L, + L6 + ••• + Llm) = LZm+19 
and 

L2 + (L3 + L5 + ••• + L^.,) - L2m, 

it is in fact equivalent with those formulas. All decimal expansions in [1] 
are special instances of (6) when z is a power of 10. I shall now write some 
instances of (4) with £ > 0. 

(a) Choose z = 102, I = 1, & = 2, 3. This yields 

102P - F 
QQ ±u r r 

* - = .010205133489..., 9 7 0 1 104 - 102L2 + 1 

99 1Q2Fi " F2 
^ - = .01031355 9 3 9 9 104 - 102L3 - 1 233 

987 

For z = 102, the condition \z\ > bdk is satisfied for k < 9, and therefore with 
£ = 1 there are similar expansions of the fractions 98/9301, 97/8899, 95/8201, 
92/7099, 87/5301, and 79/2399. 

(b) Choose z = 103, k = 5, and let I run from 1 to 4. With 

N = 106 - 103L5 - 1 = 988999, 

this yields 

997 
988999 (10dF1 - FJ/N = .001008089987..., 

1002 = ( 1 Q 3 F + F )/N = .001013144 
988999 1 5 9 7 

1999 /lo3 = (103F» - FJ/tf = .002021233 
988999 - - 2 5 g 4 

^||||g - (103F4 + FJ/N = .003034377 
4181 

For z = 103, the series (4) converges if k < 14. Generally, if 3 is fixed and 
\z\ is large, the range of values of k for which Theorem 3 applies is easily 
read from a table of Lucas numbers because, by (1) and |co| < 2/3, Ln is a good 
approximation for U)n. 
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Remark: The reasoning in the proof of Theorem 3 can also be applied to the 
Lucas numbers. The result is 

- LHn-l) + i = LlZ " (-1)£Lfe-£ 

n = l Zn Z2-LkZ + (-l)k 

v / c + 1 

for \z I > ix)k
9 (7) 

an+l = Lkan + (-1) an-l f o r an = Lkn+l> (8) 

4. Theorem 1 and its proof can easily be generalized for sequences with a more 
complicated recursion, and any rational function can be dealt with in this way. 

Theorem 4. Let arbitrary complex numbers AQ, A19 ..., Am9 a0, alf . .., am be 
given. Define the sequence (an)n by the recursion 

an+l = A0an + Aian-1 + ' " • + Am^n-m' <9> 

Then for all complex z such that \z\ is larger than the absolute values of all 
zeros of 

Anzm - Az™-1 - ••• - Ami (10) 

the 

q(z) = zm+1 - . 
formula 

n= 1 Z 

. PC*) 
" <7(a) 

(11) 

holds with 

p(s) = aQzm + fc^"1 + ••• + 1 ) ^ 

(12) 
k-1 

hk = ak " S Ajak-l-j f ° r X ̂  fc ̂  m* 
j =0 

Corol lary 5- Let any rational function f(z) = p(z)/q(z) be given such that the 
degree of the polynomial p is less than that of q. Then there are complex num-
bers AQ9 A±y . .., Am, aQ9 a1 •> ..., am such that, for \z\ sufficiently large, 
formula (11) holds with the sequence (an)n defined by the recursion (9). 

Proof: From (9) it follows that an = 0(on) for some o > 0. Therefore, the 
power series in (11) converges for \z\ > o. With 

n = l 

it follows that 

(AQzm + A^-1 + ••• + AJS = S OV* + A^-1 + ••• + V^-i2"* 

n = 1 

n = l 

+ ^ ( a ^ - 2 + axzm~z + - - • + am_2) + • • • + ̂ .-^0 
(continued) 
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= E am+nz-n + AQa0zm-1 + Ufa + Afa)zm~* + ••• 
n = 1 

= zm + 1S - aQzm - b ^ - 1 - b2zm~2 - ••• - bm, 

where the by_ are defined as in (12). This implies (11). As a power series 
expansion, (11) is valid in the largest annulus \z\ > v which does not contain 
a pole of the function p/q. This proves the theorem. The corollary follows at 
once, because the constants A , A , ..., Am, a0, a , ..., am can be read from 
(10) and (12). 

The coefficients an are uniquely determined by the function p/q. The re-
cursion (9), however, is not unique unless one requires m to be minimal. 

5- One must ask for good examples to illustrate Theorem 4 and its corollary. 
In view of (1), one may think of units in cubic number fields. An example of 
this kind is provided by the so-called Tribonacci numbers Tn (see [3], [4]). I 
will discuss these numbers briefly in section 6. 

As a first example, I choose 

q(z) - z3 - z - 1 
for the denominator in (11) . This means that I consider sequences (an)n that 
satisfy the recursion 

an = an_2 + an_3. (13) 

There are a real zero u)1= 1.32471... and a pair of conjugate complex zeros a)2, 
0)3 = oô" of the polynomial q. Define 

Xn = a)" + a)£ + ojg for n any integer. (14) 

Since Xn is symmetric in the roots of q that are algebraic units, it is plain 
that all Xn must be rational integers. This can also be shown as follows. The 
roots of q satisfy 

0) 1 + 03 2 + 033 = 0 , 0) 1 0) 2 + C02OJ3 + CO 3 00 x = - 1 , Ud-Lb}2b)3 = 1 . (15) 

This implies 

A2 = 03̂  + OJ2 + (OO-L + OJ2) 2 = 2(o)J + OJ2) + 20̂ 0) 

= 2(X2 - cup + — = 2X2 - 20^ + 2(d)2 - 1) = 2X2 - 2, 

whence X2= 2, and from oô  = GJV + 1 it follows that Xn = Xn_2 + Xn_3 for all n. 
Thus, the Xn satisfy recursion (13), the starting values being A0 = 3, X1 = 0, 
X2 = 2. The Xn may be regarded as an analogue to the Lucas numbers. A short 
table of these numbers is shown below. 

n -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 

Xn I -3 2 1 - 1 3 0 2 3 2 5 5 7 10 12 17 22 

N o t e t h a t ao1a)2aJ3 = 1 i m p l i e s 

X_n = (aj2oo3)n + (0)3(1)!)".'+ (o ) 1 o ) 2 ) n . 

The table indicates that Xn + 5-Xn + t f=Xn; this is easily shown for any sequence 
(an)n that satisfies (13). Another consequence from (15) is |OJ2|2 = 1/cOx < 1. 
Therefore, the power series Hn=1Xn_1z~n converges for \z\ > o)15 and the fol-
lowing analogue to Theorem 3 has a wider range of validity than Theorem 3: 
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Theorem 6. Let Xn be defined as in (14), and let k and I be integers, k ^ 1. 
Then the formula 

£ = (16) 
n = 0 zn + 1 z3 - \kz2 + \_kz - 1 

holds for all complex z that satisfy'\z\ > oô . The numbers cn = Xfen + Jl satisfy 
the recursion 

cn = \kcn_1 - \-kcn.2 + cn_3. (17) 

Proof: We proceed exactly as in the proof of Theorem 3, using the geometric 
sum formula and the relations (15) to obtain (16). Recursion (17) then follows 
from Corollary 5. 

For numerical examples, choose z = 102, k - 3, % = 0 , 1, 2. This yields 

29402 ~ X3n .030305122968 
970199 n^olo2(n + i) ' 1 5 g 

201 ^ X3n + 1 £ —?ILLL- = .000207173990 
970199 n^0l02(n + i) 2 Q 9 

19899 _ £ _}jn + 2 m e 0 2 0 5 1 0 2 2 5 1 

970199 n^0 102(n + i) n 9 

The particular choice of the numbers Xn is not essential for the conclusion 
in Theorem 6. In fact, let arbitrary complex numbers aQ9a19 a2 be given. Then 
the system of three linear equations 

d^l + d2tx)2 + 6Z3o)3 =
 an (n = °> !» 2) (18) 

has the unique solution 

a) - u /a v 
£? = f ha.Iu).1+a9]etc., 

where D = -23 is the discriminant of q. Use (18) to define an for all integers 
n. Then, from U)3 = u)v + 1, it follows that the an satisfy (13). Thus, any se-
quence (an)n which obeys (13) can be represented in the form (18). Therefore, 
we may proceed as in the proof of Theorem 3, and the result is 

oo a1 „ a0z2 + (av,0 - Xva0)z + an 1 

— = for \z\ > a)x. (19) 
n = ° zn+ z3 - Xkz2 + \.kz - 1 

It suffices to state and prove (19) for £ = 0, since the case of a general £ 
can be reduced to £ = 0 by a modification of aQ, a±, a2. 

6. The validity of a result like (19) does not depend on the particular choice 
of the polynomial q. Let 

q(z) = zm+1 - AQzm - AYzm~Y - ••• - A m 

be any polynomial with only simple zeros co1, ..., ttim+1. Then it follows as in 
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(18) that any sequence (a„)n which satisfies recursion (9) can be represented 
in the form 

an = d-^\ + • • • + <4 + 1a)JJ + 1 
with uniquely-determined coefficients d1, . .., dm + 1. Thus, an analogue to for-
mula (19) must hold for any such sequence. 

As a final example, let me discuss the polynomial 

q(z) = z3 - z2 - z - 1 
and sequences (an)n which obey 

an = an_1 + an_2 + an_3. (20) 

The numbers Tn that satisfy T0 = 1, T1 = 1, T2 = 2 and the recursion (20) (with 
an replaced by Tn) have been called the Tribonacci numbers in [3] and [4]. An 
equivalent of formula (11) for this particuler sequence (Tn)n has been proved 
in [4]. The zeros of q(l/z) have been computed in [3]; q(z) has a real zero 
-̂L = 1.83928... and a pair of conjugate complex zeros £2, £3 = T^~. An appro-
priate analogue to Ln and \ n are the numbers 

An = C, + C2 + e"; 
they satisfy A0 = 3, A1 = 1, A2 = 3 and the recursion (20) (with an replaced 
by A n). The corresponding formula for the Tribonacci numbers is 

Tn = d1?» + dzT,\ + d&, 
where 

. ^3 - ^ 2 

d1 = £ , etc., 
VD 

and D = -44 is the discriminant of q. The analogue to (19) reads 

y akn =
 a^2 + K - Vo>g + C 

" = o2 s3 - hvz2 + A 7,s- 1 

and any sequence (an)n that satisfies (20). 
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INTRODUCTION 

Def in J tion 1: Let k be a given positive integer. Two integers a and 3 are said 
to have the property p (resp. p^) if a$ + k (resp. a$ - k) is a perfect 
square. A set of integers is said to be a Pk set if every pair of distinct 
elements in the set has the property p . A sequence of integers is said to be 
a PPj k sequence if every r consecutive terms of the sequence constitute a P, 
set. 

Given a positive integer k9 we can always find two integers a and (3 having 
the property p . Conversely, given two integers a and $> we can always find a 
positive integer k such that a and (3 have the property pk . If S is a given Pk 
set and j is a given integer, then by multiplying all the elements of S by j, 
we obtain a Pfej-2 set. Suppose we are given two numbers a1 < a2 with property 
p and we want to extend the set {a1> a2) such that the resulting set is also a 
Pk set. Toward this end, in this paper we construct a P3 k sequence {an}. 

ASSOCIATED P3>k SEQUENCES 

and 

and 

Suppose 

a±a2 + k = b\ 
let a3 E {ax, 

a-Lag + k = x2 

a2a3 + k = y2 

. } , a Pj, set. Then we have 

(1) 

(2) 

(3) 

for some integers x and y. Eliminating a3 from (2) and (3), we obtain 

X2 - a1a2I2 = ka2(a2 - a x), (4) 

where X = a2x, I = y* Using (1) in (4), we obtain 

X2 - Q)\ - k)Y2 = k(a2
2 - b\ + k). (5) 

One can check that X = a2{a1 + 2?x) , Y = a2 + &i, is always a solution of (5). 
When b2 - k is positive and square free, (5) has an infinite number of solu-
tions. Henceforth, we concentrate on the solution X = a2(a1 + b±) , Y = a2 + bx 
of (5). This gives 

a2a^ + ĉ = fr2, 

axa3 + fe ,2 

with 

AMS CMOS; Subject Classifications (1980) 10 B 05. 
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b2 = a2 + bl9 o1 = a1 + Z?l5 a3 = Z?2 + <?.,_. 

In what follows, we construct three sequences {an}, {&n}, and {en}, where als 
a2'a3' blsb29 and c?x are as above. We say that {2>n} and {on} are the sequences 
associated with {an}. Taking 

aq + b9, a2 + b2, ah = bo + c23 

we can see that 2(a3 + a2) - a± = ah. Using this fact, we obtain 

a2ak + k = c?2 and a^a^ + k = b\. 

For the construction of the sequences {an}, {Z?n}, and {an}, the following dia-
gram can be helpful. 

an 

*-£/-

Djag ram 1 

Explanation for the diagram: Write b± = y/a-ja2 + fc in the second row, in the 
space between ax and a2\ and write ^ = ^laxaz + fc in the third row, in the 
space beneath a2« Along the arrows shown by thick lines, sum the elements of 
of the first and second rows to obtain the elements of the third row. Along 
the curved arrows, sum the elements of the first and second rows to obtain the 
elements of the second row. Along the arrows shown by dotted lines, sum the 
elements of the second and third rows to obtain the elements of the first row. 
The preceding discussion shows that the scheme provided in the diagram is valid 
for al9 a2s ct3, ahi bls b29 b3i clf and o2. Let n > 2. Assuming the validity 
of Diagram 1 for al9 ..., an, b1, . . . , bn_1, and a±, . .. , on_2i it can be proved 
without much difficulty that 

2(an + an-i) - an-2 = % + D (6) 

and that the scheme is valid for a15 

Theorem 1. The three sequences {an}3 

?„, and e19 

{bn}, and {on} have the same recurrence 
relation. 

Proof: We have an+1 = 2(an + <zn-i) [see ( 6 ) ] . Now 

bn+1 = an+1 + bn = on_1 + 2bn = an_± + bn_x + 2bn 

= 2bn + 2>B_i + < V i " *»-2> = 2 ^ « + 6 » - i > " (7) 

and 

= an + 1 + bn + 1 = 2an + 1 + bn = 2(<?n_1 + 2>n) + bn 

= 2cn-i + bn + 2(<?n an) = 2(on + cn_i) + (an + Z?w_i) 2a„ 

(8) 

Hence, the theorem is proved. 
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We shall now obtain additional relations. First, using 

an + l ~ Cn + 1 ~ bn + 1 a n d CLn + 2 = Gn + Dn + 1 , 

we have 

a n + i a n + 2=Cn~T~Cn+l> 

tha t i s , 
an + l ~ Gn = ~ ( ^ n + 2 ~ c n + l ) - ( 9 ) 

Next , from 

bn = cn - an and bn = bn + 1 - an+1, 
we obtain 

2bn = (cn + bn+1) - an+1 - an9 

which yields 

2bn = an+2 - an+1 - an. (10) 

Next, 

a n + 2 " an + l + an = (&„+i + Cn) ~ (hn + l " K^ + a n 

= 2en. (11) 

From (10), we obtain 

an + 2 = an + l + an + ^anan + l + K, 

and from (6) we have 

an + 2 = ^ ' an + 1 ~*~ an ) ~ a
n - 1 ' 

Hence, 

an+l + an ~ an-\ ~ ^ a n a n + l + ^' 

which gives the relation 

a2 ., + a2 + a2 .. - 2a â„ - 2a na ,. - 2av,aVIJ, = 4fc. (12) 
n + 1 n n-1 w - 1 n n-1 n + 1 n n + 1 K J 

FIBONACCI RELATIONSHIPS 

Next we shall exhibit a relationship between either of the sequences {an}, 
{bn}, and {cn} and the Fibonacci sequence {Fn}. The Fibonacci sequence {Fn} is 
defined by 

F = F = l * F = F + F » 
1 2 * n + 2 ^n + l ' x n °  

V. E. Hoggatt, Jr., and G. E. Bergum [1] have shown that the even-subscripted 
Fibonacci numbers constitute a P3 1 sequence. We can set 

an-l = F 2 n ' a n = F2n+2> a n d a n +1 = F2n+4 
in (12) and obtain 

F 2 + F2 + P 2 - 2F F -IF F - IF F = 4 
2n 2n + 2 2n + 4 2n 2n + 2 2n + 2 2n + 4 2n 2rc + 4 

Theorem 2. Any sequence {an} satisfying (6) is given by 
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Proof: From (6), we get 

ah = 2(a3 + a2) - a± = -F1F2a1 + F1F3a2 + ̂ 3 a 3 , 

a5 = 2(ah + a3) - a2 = -2a1 + 3a2 + 6a3 = - ^ ^ + F2F1OL2 + ^ 3 ^ a 3 , 

a6 = 2(a5 + a4) - a3 = -6ax + 10a2 + 15a3 = - ^ 3 ^ a 1 + F3F 5a 2 + FIfF5a3. 

So the theorem is true for n = 4, 5, 6. Let n > 4 and assume that the theorem 
is true for all integers j up to n. Using (6) we have 

CLn + i = 2(-Fn-3Fn-2a1 + Fn-3Fn-1a2 + Fn_2Fn_ia3) 

+ 2{-Fn-hFn-3ai + Fn_ 4F n_ 2a 2 + F„_3Fn_2a3) 

- (-F n- sFn-k^i + Fn- 5Fn_ 3a2 + ̂ n - 4 ^ _ 3 a 3 ) ; 

that is, 

#n+i = (~2Fn-3Fn-Z ~ 2Fn-i±Fn- 3 + Fn-5Fn-h)a-t 

+ (2F„_3Fn_1. + 2Fn_hFn_2 ~ Fn_5Fn_3)a2 

+ (2F„_2Fn.1 + 2F„_3Fn_2 - Fn_,Fn_3)a3. (14) 

The coefficient of ax in (14) is given by 

-[2Fn_3(Fn_2 + F n _J - Fn-^Fn-s - Fn_h)] = -(2Fn_3Fn_2 + Fn_3Fn_4 + Fn
2_0 

= -(2Fn_ 3 F n _ 2 + Fn_4Fn_2) 

= -Fn_2(2Fn_3 + F n _ J 
= ~Fn-2(Fn-3 + Fn_2) „ 
= 'Fn-lFn-l-

Similarly, upon simplification, we have the coefficients of a2 and a3 in (14) 
equal to Fn_2Fn and Fn_1Fn, respectively. This proves Theorem 2. 

Remark 1. The relations (6), (7), and (8) imply that (13) remains true if the 
afs are replaced by b1s or by c's. 

Now we express b% s in terms of a19 a2, a3. We have 

2b2 = -ax + a2 + a3 . 

Using a4 = 2(a3 + a2) - a19 we obtain 

22? 3 = -a2 + a3 + ah = -ax + a2 + 3a3, 

2Z?4 = - a 2 + a 3 + 3a4 = - 3 a 1 + 5a2 + 7 a 3 . 

Suppose 22? n = - r n a 1 + sna2 + tna3. Then 
2 ^ n + l = ~rna2 + Sna3 + tn^k = ~^nal + 2 ( ^ n " ^n)a2 + ( 2 t n + Sn)a3. 

Hence, 2bn + 1 = -rn + 1a1 + sn + 1 a 2 + tn + 1 a 3 , where 

u 2 •*- t 3 s 4 ' 

sn+1 = 2tn - tn_1, 

tn+1 = 2{tn + tn_Y) - tn_2 (n > 4). (15) 
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Similarly, we have 2en+1 = -wM+1a1 + vn+1a2 + wn+1a3, where 

Un+l = Wn> 

Vn + 1 = 2Wn ~ K-l> 
Wn+1 = 2 K + Wn-l) " Wn-2 (* > 3) . (16) 

Thus, the sequences {an}s {&„}, {cn}, {tn}, and {wn} have the same recurrence 
relation. 

Next we consider the possibility for the coincidence of the sequences {an} 
and {cn}. In this regard, we have the following: 

Theorem 3* Let {an} be a P3)k sequence with the associated sequences {bn} and 
{en}. The following statements are equivalent: 

(i) an+1 = on for some integer n > 1 

(ii) #n + 1 = cn for all integers n 

(iii) aM+1 = bn + cn for all integers n 

(iv) cM + 1 = bn+1 + cn for all integers n 

(v) an + 1 = an + &n for all integers n 

(vi) ̂ n+2 = 3bn + 1 - £>„ for all integers n 

(vii) c
n + 2 ~ ^°n + i " cn f° r a H integers n 

(viil) an + 2 = 3an + 1 - an for all integers n 

(ix) fc = a^ + 1 - 3anan + 1 + a* for all integers n 

(x) -fc = b*+1 - 32?n2?n+1 + b„ for all integers n 

(xi) k = c^+1 - 3cncn+1 + <2* for all integers n 

(xii) an = -F2n-hai + F2n~2a2 f o r a 1 1 integers n 
and 

Z?n = -•??2n-3ai +
 F2n-ia2 f o r a 1 1 integers n > 3 

(xiii) Z?n is a P3)_k sequence with the associated sequences {an} and {bn} 
(where 6B6» + i - k = a* + 1 ). 

Proof: The following scheme may be adopted. 

(i) =» (ii) => (iii) => (iv) =» (v) => (vi) => (vii) => (viii) => (ii) => (i) , 

(v) =» (ix) ̂  (viii), (v) => (x) ̂  (vi) ; 

(ii) =» (xi) =» (vii) ; 

(ii) => (xii) =̂> (ii) and (x) => (xiii) =$> (x) . 

The proof itself is left to the reader. 

F-TYPE SEQUENCES 

D-ef-in i t ion 2: Let {an} be a P3,^ sequence together with associated sequences 
{bn} and {on}a We say that {an} is an F-type sequence if the sequence 
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{a19 b±, a2, b2, a3, b3> . . . } , 

obtained by juxtaposing the two sequences {an} and {bn}9 is of Fibonacci type, 
i.e., f1 = a19 f2 = b19 and fn = fn ^ + fn_2, n > 3. 

Theorem 4. A P3ik sequence {an} with the associated sequences {bn} and {on} 
for which any one of the equivalent statements in Theorem 3 holds is an F-type 
sequences. Conversely, given a Fibonacci-type sequence 

T = {g, h, g + h, g + 2h9 . . . } , 

where g and In are two positive integers with g < h> if {an} and {bn} are the 
sequences formed by taking the terms in the odd and even places, respectively, 
of T9 in the same order as they appear in T, there is an integer k such that 
{an} is an F-type P3 k sequence for which the equivalent statements in Theorem 
3 hold. 

Proof: (=>) Using cn-\ = an-i + bn-i, we obtain an = an-i+ bn-1 for n > 2. 
We have that bn = an.1 + bn_1 for n ^ 2. Hence, the sequence {al9 b , a2, 2? , 
..,} is of the Fibonacci type. 

(<=) We have 
ai = 9> b1 = h, 

an = ?2n-39 + F2n~2h> hn = ^ 2 n - l G + ^ 2 n - 1 ^ ( « > 2 > > ( 1 7 > 

where {Fn} is the Fibonacci sequence. One can check that 

&n +
 a

n+2 = 3an + i for all n > 1. (18) 

Now 

(a^ + 2 - 3an + 1an + 2 + a* + 1) - (a* + 1 - 3anan + 1 + a*) 

— \&n + 2 - CLn) - ~>(2n + 1((2n + 2 - CLn) 

= (an + 2 - an)(an + 2 + an - 3an + 1) = 0 for all n> 1. 

Hence, we have 
an + i ~ 3anan + i + an = an + 2 ~ 3an+ian+2 + an + i = constant, for all n. 

Let a2
 1 - 3anan + 1 + a2 = /c. In particular, putting n = 1, we get 

fc = h2 - gh - g2. (19) 

We have, using (19), 

*„*»+l + * " ^ 2 n - 3 f
2 n - l " ^ + ^ 2 » - 3^2» + F 2„ - 2F 2n - 1 ~ ^ 

I t can be seen t h a t F2n_%F2n - 1 = F2„ _2-F2« -1 • T h e r e f o r e , 

anan + 1 + k = F L - 2 ?
2 + 2F2n_2F2n_igh + F2

2n^h2 = b2. 
Next , 

a «» + k = ^F2n-SF2n-l ~ ^ ^ + ^F 2n - SF 2n + F2n - J' 2n - 1 " W 

After some calculation, we have 
+ &2nF2n-» + 1 ^ 2 ' 

a n a + k = F2 a2 + 2F0 F og/z + F 2
 o/z2 = al. 

n-l n 2n-3y 2n - 2 2n - 3y 2n - 2 n 

Consequently, the sequence {an} is an F-type P3j^ sequence with the associated 
c-sequence given by on = an+1 for all integers n ^ 1. 
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ASSOCIATED DSOPHANTINE EQUATIONS 

Theorem 5« Given a positive integer k, an F-type P3j k sequence exists if and 
only if the Diophantine equation 

x2 -• 5y2 = 4/c (20) 

is solvable in integers. 

Proof: (=>) Let {an} be an F-type P3tk sequence with the associated se-
quence {bn} so that {a1, b19 a2, b2, ...} is a sequence of the Fibonacci type 
wherein the relations are given by (17). Then 

k = hz - gh - g2; 
that is, 

h2 - gh - (g2 + k) = 0. 
a ± /5a2 -f kk 

Treating this as a quadratic equation in ln9 we obtain h = - ^ . This 
implies 

5g2 + l±k = A2 

for some integer A* Hence, equation (20) is solvable in integers. 

(«=) Let (x, y) be an integral solution of (20) . Then x = y (mod 
2). Form the Fibonacci-type sequence {a19 .b19 a23 b2, . ..} by taking a1 = y9 
b-L = (x + z/)/2. Then by Theorem 4 there is an integer fcf such that {an} is an 
F-type P3tk' sequence. We have Zc' = a^ - 3a±a2 + a*. Since 

x + 3y a2 = ax + o2 = — - j — — 

we obtain 

fc r - x2 - 5y2 

Theorem 6. Given a positive integer k9 a necessary condition for the existence 
of an F-type P3,fc sequence is that 

k t 2, 3, 6, 7, 8, 10, 12, 13, 14, 17, 18 (mod 20) 

and 

k t 10, 15, 35, 40, 60, 65, 85, 90 (mod 100). 

We omit the proof. 

To prove our next result, we need the following: 

Theorem 7* (Nagell [4]) If u + v/5 and uf + v'y/D are two given solutions of 
the equation 

u2 - Dv2 = C (D: positive, square free), 
a necessary and sufficient condition for these two solutions to belong to the 
same class is that the two numbers (uuf-VVfD)/C and (vur-uv')/C be integers. 

In the following theorem, we prove a result for the Diophantine equation 
(20) by considering the terms of the corresponding F-type P3tk sequence. 
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Theorem 8. Given a positive integer k, the number of distinct classes of solu-
tions of equation (20) is divisible by 3, 

Proof: If (20) is not solvable in integers, then the theorem holds trivi-
ally. Assume the solvability of (20). Let (x19 y±) be an integral solution of 
(20). Take a± = y1, b1 = (x1 + y1)/2 and a2 = a± + b1; i.e., a2 = (x1 + 3yJ/2. 
Then by Theorem 5 we have 

k = a\ - 3a1a2 + a\ 

and {an} i s an F - type P3)k sequence . We have 
b2 - a2 + b1 = x± 4- 2z/1, 

3a; x + 7y± 5x± + l l2/x 
as = a2 + b2 = 2 ' bs = as + b2 = 2 5 

13a?! + 29y1 
a4 = a3 + b3 = hx1 + 9y1, bh = ah + Z?3 = ~ • 

Choose a^ , z/̂  (i = 2, 3, 4) such that yi = a^ and (xi + y^)/2 = b^; i.e., a?̂  = 
2bi - yt. Then x2 = (3x1 + 5yJ/29 x? = (7x± + 15y1)/2, xh = (9a?x + 20y1)/2. 
One can easily check that a^ + y/5yi (i = 2, 3, 4) are solutions of (20). Since 

^1^2 ~ ^1^2 _ 1_ ^1^3 ~ ^/lX3 _ _3_ , ^2^3 " ^2 X3 _ _1_ 
4k ~ 2' 4fc "" V a n d 4k "" " "25 

by Theorem 7 it follows that each xi + v5y. (i = 1,2, 3) belongs to a distinct 
class of solutions of (20). Now 

xh + JEy^ = (9x1 + 20y1) + V5(4a?1 + 9y±) = (x1 + /5y±)(9 + 4i/5)n . 

Since 9 + 4/5 is the fundamental solution of the equation 

u2 - 5v2 = 1, 

it follows that x1 + VEy1 and a^ + A/SZ/̂  belong to the same class of solutions 
of (20). Thus, given a solution x± + y/5yi of (20), we obtain three consecutive 
terms a^ (i = 1, 2, 3) of an F-type P3ik sequence which in turn yield two more 
solutions xi + ^Hi (̂  = 2, 3) of (20) such that xt + /Sy^ (i = 1,2, 3) belong 
to different classes of solutions of (20). Further, it follows by simple in-
duction that, for any integers i,if

sj, the terms CL3i + j and cz3if+3- (j = 0, 1, 2) 
yield solutions of (20) which belong to the same class. Hence, every F-type 
P3)k sequence contributes exactly three distinct classes of solutions of (20). 
Consequently, the number of distinct classes of solutions of (20) is divisible 
by 3. 

Definition 3: Given a positive integer k9 two P3ik sequences {an} and {a'n} are 
said to be distinct if there do not exist integers r and s such that ar = af

s. 

Theorem 9. Given a positive integer k9 the number of distinct F-type P-$ik
 se~ 

quences is equal to 1/3 of the number of distinct classes of solutions of (20). 

Proof: Follows from Theorem 8. 

CONCLUDING COMMENTS 

Our next investigation is on PPjk sequences with r > 4. Regarding this, we 
prove the following theorem. 
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Theorem 10. If k - 2 (mod 4 ) , then there is no Pr k sequence with r ^ 4. 

Proof: We follow the reasoning given by S. Mohanty [3]. Let k E 2 (mod 4) 
and let {an} be a Phtk sequence. Then, for any two integers i, j satisfying 
| j - i | < 3, we have 

a.a- +• k = B2 (21) 

for some integer 5. If a^ E 0 (mod 4) or if a^ E 0 (mod 4), then (21) implies 
B2 E 2 (mod 4) , which is impossible. Hence, neither a^ nor a^ is 0 (mod 4). 
If ai E <Zj (mod 4), we have a contradiction; thus the elements ai, a- + 1, a-z; + 2> 
and a^+ 3 do not share the property p . 

The foregoing complements the work of Horadam, Loh, and Shannon [2], whose 
Pellian sequence {Qn(N)} is a P3,#_2 sequence which is there also related to 
the even-subscripted Fibonacci numbers, to perfect squares, and to Diophantine 
equations. 
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A. KYRIAKOYSSIS 
University of Athens, Couponia, Athens (621)-Greece 

(Submitted June 1983) 

1 . INTRODUCTION 

A sequence of exponential numbers, say Pn , i s defined by i t s exponential 
generating function as 

^2>Pnxn/.n\ = exp{^(x)} 
n = 0 

for some (formal) power series g{x) with constant term zero. 
As regards Bell numbers [g(x) = ex - 1], Lunnon, Pleasants, and Stephens 

[6] showed that for each positive integer n, there exist integers a0, ax, ..., 
an_1 such that, for all m > 0, 

Pm + n + CLn_1Pm + n_1 + ••• + a0Pm E 0 (mod n!). 

In this paper, we show a similar congruence for the exponential numbers Pn 
when g(x) is a certain series function (Section 2). Special cases include num-
bers Pn equal to the number of permutations of n elements having cycles with 
given maximal and minimal size or equal to the sum of the horizontal entries of 
the table of Jordan [5, p. 223], also for Pn equal to the generalized derange-
ment numbers. 

2. THE CONGRUENCE 

Theorem. Suppose 

j = i J 

where the b- are integers. Let 

e9M=tPn£ (1) 
n = 0 n • 

and let 

jk y_e-9(y) = y D y_ ' (2) 
kl n = k ' k n l ' 

Then, for each m, n > 0, 
n 

£ Dn,kPm+k = 0 (mod nl) . 
k = o 

Proof: Let f(x) = e9M. Then 
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e-'Wf(x + y) = £ e-°M £f*\x) = £ ^ Ml £ DnikPm + k. 
k = 0 

Thus, it is sufficient to show that the coefficient of xm/ml in e~9^ f(x + y) 
is a power series in y with integer coefficients. 

Now we have 

e'gWf(x + y) = exp E 0<°(2/>7i 

Since gf(y) = EJ- = 0Z?J- + 1i/J, g^\y) is a power series in 2/ with integer coeffi-
cients, Hlcl=1g^(y)x'!'li\ is a Hurwitz series in # (in the sense that the coef-
ficient of xi /i! is a power series with integer coefficients). Thus, 

exp E g(i)wfr 
is also a Hurwitz series in x, which proves the theorem. 

Remarks: We have that g(x) is a Hurwitz series. Using the fact that 
[g(x)]k/kl is also a Hurwitz series for any nonnegative integer k, we define 
the integers A(n, k) by 

E4(n, k)xn/nl = [#(#)]*/&!. 

n = k 

Then, from ( 1 ) , we have 
n 

pn = E^o*> fc), P0 = 1. 
k = 0 

From (2), we have 

£D„ kynln\ = (yk/k\) £ (-1)* {g{y) Y l%\ 

= EM ) ' Ê (J. i)yd + k/kiji 
i = 0 3 = £ 

= E(-l>* E i«n - *, i)(^)i/n/n! 

n - k 

= E Z(2)(-l)*^(" " *. i)j/"/n!, 

and consequently, 
n-fc 

(3) 

(4) 

D».* = (fc) £ 0
 (~1)<il(" " fe' i}' 

For tabulation purposes, we may obtain a recurrence relation for the inte-
gers Dn , . Using (2), we have 

D(u, y) = E^.^V/*' " ̂ to) + uy. 
n,k 

(5) 

w [Feb. 



A CONGRUENCE FOR A CLASS OF EXPONENTIAL NUMBERS 

By differentiating both sides of (5) with respect to y 9 we obtain 

f-D(u, y) =-e-9Wgf(y)euy + e'^e^u = D(u3 y){-gf(y) + u}. 

Equating coefficients of ukyn/nl, we obtain 

Dn+Uk = Dn3k_x- f (l)bn_i+l(n - i + DlDiik for n, k > 0, 

with D0) 0 = 1 and £„ £ = 0 for fe > n or K 0. 

It may be noted that f(x) = e9^ counts permutations in which a cycle of 
length j is weighted b•. 

3. SPECIAL CASES 

We shall now give some special cases of g(x) for which the numbers Pn are 
of great interest in Combinatorics. 

a. g{x) = 2 X°IJ where S is any set of positive integers. 
jes 

Then f(x) = eg^x* counts permutations with all cycle lengths in S. For S = 
{l, 2}5 g(x) = x + x /2, and the numbers 

Pn =
 tn = 2 ^ , fe) 

k= [n/2] 

have been studied by Moore [3], Moser and Wyman [7], and others. From [4], we 
have a congruence for tn which is a special case of our theorem. 

b- gix) 'fcu- D ! T = (1 +x) -£0 W - D'T* 
r, s integers, 1 < v < s. 

Then ^4(n, /c) have occurred as coefficients in the /c-fold convolution of 
binomial distributions truncated at the point v - 1 (see [1]). In the case in 
which r = 1, i4(n, /c) = (l/nl) [Ak(sx)n]x= Q (see [2])5 and the numbers 

n 

pn = E ^(n> &) 
fc- [n/s] 

occur in combinatorial analysis being in fact Pn is equal to the sum of the 
horizontal entries of the table of Jordan (see [5, p. 223]). 

c. g(x) = (s - l)x + s J] xJ'/j = -x - s log(l - x) , s an integer, s ^ 1. 
J = 2 

Then Pn is equal to the generalized derangement numbers d(n9 s) [for s = 1, 
we have the derangement number din)]. 
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1. INTRODUCTION 

In this paper, we study a sequence of positive integers defined by recur-
rence that have applications in combinatorics and probability theory. 

Let a be a permutation of Mn = {1, ..., n}, i.e., a bijection M n •> Mn. 
Then k E !Nn is a regeneration point of G if o~QNfe) = 3Nfe. Here a will be a ran-
dom permutation, i.e., we consider a to be chosen at random from the set Sn of 
permutations of ]N„. Equivalently, we define a probability measure Pn on the 
power set of Sn by Pn({oQ}) = Pn(a=G0) = 1/n!, a0 G 5n. Expectation with re-
spect to Pn will be denoted by En. 

Let Ak be the event that /c is a regeneration point of the random permuta-
tion. Then 

Pn(Ak) = kl(n - k)\/n\ = (J)"1, k G M n . (1.1) 

For the event that /c15 ..., kr, with 1 < k1 < ••• < fcr < n, are regeneration 
points, we have 

PnWfcii4^ ... i4fcr) = k1l(k2 - k±)\ ... (kr - ^ . ^ K n - fcr)!/n!. (1.2) 

Let Af be the total number of regeneration points in a. The (factorial) 
moments of M can be expressed in terms of (1.2), e.g., 

EnM = 1 + «n = 1 + E 1 ? ^ ^ ) = 1 +nt1(l)'1' ^'3) 

Note that n is always a regeneration point. 
The theory of regeneration points is dominated by the numbers on or o(n) , 

n = 1, 2, ..., where on is the number of elements of Sn that have only one re-
generation point, or 

Pn(M = 1) = en/n\ , n = 1, 2, . . . . (1.4) 

This will be seen in Section 2. Here we mention the relation 

Pn(k) = Pn(v = k) = ok(n - k)l/nl9 k E M n , (1.5) 

where v is the first regeneration point of the random permutation a. Since 
Pn(l) + "" + Pn(n) = 1, we have 

£ ( w " k)\ok/n\ = 1 , n > 1. (1.6) 

The on can be computed recursively from (1.6). We find 

c, = c2
 = IJ. ^3 = 3 , £if = 13,- c5 = 71, 

(1.7) 
efi = 461, <?7 = 3447 = g-.x 383. 
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From (1.6) we see, by induction on n, that the on axe odd. Divisibility of the 
cn is considered in Section 4. By (1.4), the principle of inclusion and exclu-
sion, and by (1.2), 

cjnl = 1 - P(A± U ••• U An_1) = 1 + nZ(-l)hTh = £ (-l)*Tfc. (1.8) 
h=l h=0 

Here TQ = 1 and for h > 0, 

r, = E ^ W ^ ... ̂ ) = E'VCi, - i,)i ... (i, - H.^Kn - ih)!/n! 

= Z ' J V J V . . . Jh + i]Jn\, 

where E r sums over a l l i l s . ., . , i h wi th l < i 1 < ° * * < i ^ ^ n - l and E " over 
a l l Jx > 1, . . . . Jh + i > 1 w i t n J i + • " + Jh+1 = ^ . I n (1-8) t h i s g i v e s , by 
p u t t i n g h = m - 1. 

«» - £ ( - D m - 1 2 : * J 1 ! . . . 3m\, n > \ . ( 1 .9 ) 
m = l 

where E sums over all j \ > 1, ..., j m > 1 with j\ + ••• + j m = n. 
In Section 2, an integral equation for the exponential generating function 

of the cn will be derived. Section 3 studies the asymptotic behavior of cn for 
n -> °°. We have on/n\ -> 1, so M tends to 1 in probability as n -> °°. In Section 
5, some applications of the cn in. combinatorial probability theory are given. 

2. GENERAL FORMULAS 

For the total number M of regeneration points we find, by specifying re-
generation points only at j l 9 j1+ j 2 , ..., j x + ' • •' + dm = n, 

Pn(M = m) = H"toU1)oU1) '" cUm)ln\, m E Wn> (2.1) 

where E is the same as in (1.9). The event {M >/??}, with m ̂  2, means that 
there are at least m - \ regeneration points in {1, ..., n - 1}. This gives, 
in the same way as (2.1), 

Pn(M>rn) = L'c(Ji) *" cUm-i)(n - 3i ~ "" -Jro-i)*/"* 
(2.2) 

= E * ^ ^ ) ••• oUm_1)jm\/nl9. m = 2, ..., n, 

where E' sums over all j x > 1, ..., Jm_! ̂  1 with j 1 + • • • + j m _1 < n - 1 and 
E * is the same as in (1.9). 

For the first regeneration point V we have, with (1.5), 

Env = J2kok(n - k)\/n\ = £ (n + l)Pn(fc) - £ efe(n + 1 - fc)!/n! 

(2.3) 

= (« + 1) - (n + 1) EP n + 1(k) = (n + l)Pn + 1(n + 1) = o /nl . 
k = i 

From the relation k2 = (n + 2 - fc) (n + 1 - A:) + (2n + 3)k - (n + 2) (n + 1) , we 
find, in a similar way, 

Envz = {2(n + l)c„+1 - e„+2}/n!. (2.4) 
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Let 

C(z) = 2 zkck/kl, \z\ < 1 

From (1.6), 
* - i - • • ( 2 - 5 ) 

s(i - 3)-1 = 2 > n E ° * ( * - V-/n'- - • 2 > * i > " ( « - fe)'/"! 
« - l ?c-l • k-1 n*k 

= E^E^4JV!/a + J)!. 
* = l j = o 

With the relation 

/ (3 - x)k-\l - a;)" 1^ = (fc - 1)! f;zk + *j\/(k + j)!, 
./ 0 j = 0 

to be derived by putting x = zt and expanding (1 - at)"1, we see that 

s(l - s)" 1 = I Cf(s - x)(l - x)~1dx, 
Jo 

and with partial integration, noting that (7(0) = 0 , 

z(l - z)'1 = C(z) +• | (1 - aO~2C(s - #)<&?, ' |JS| < 1. (2.6) 
Jo 

The author was unable to find a solution of (2.6) in closed form. The Neumann 
series solution gives a series of iterated convolutions which, on expansion 
into powers of zs leads back to (1.9). 

3. ASYMPTOTIC BEHAVIOR 

We use the notation for falling factorials 

(n)r = n\/(n - 2?)!, r = 0, ..., n, n =•• 1, 2, ... . (3.1) 

First we consider Q = EnM- 1 given by (1.3). Rockett [4] gave an expres-
sion for 

but direct use of (1.3) seems better for asymptotic estimates. We have 

Qn = In-1 + 4(n)"1 + V (n3)-\ n > 6, (3.2) 

Fn = £ fc!(n - fc)!/(n - 3)!,' « > 6. .(3.3) 
fc = 3 

Theorem 1. We have 

Fn > 12, n > 7; 7n < 156/7, n > 6; (3.4) 

7n = 12 + 0(n-1), n -* ~; ' (3.5) 

Vn+1 < Vns n > 11. (3.6) 

Proof: The first inequality in (3.4) follows by considering the terms with 
k = 3 and k = n - 3 in (3.3). The relation (3.5) follows by estimating the 
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te rms i n (3 .3 ) w i th k = 4 , k = n - 4 , and 5<k<n - 5 . From ( 3 . 3 ) , for n > 6, 

n-3 
K+i ' vn = 6 + E k ! ( n - fc)!{(n + 1 - k) (n - 2 ) " 1 - l } / ( n - 3 ) ! 

k = 3 

= 6 + 4(n - 2 ) " 1 7 n - £ (fc + l ) ! ( n - fc)!/(n - 2 ) ! 
fc = 3 

n-2 

( 3 . 7 ) 

= 6 + 4(n - 2)_ 1FM - £ ft!(rc + 1 - h) I / (n - 2)1 
h = b 

= 12 + 4(n - 2 ) " 1 7 n - Vn + 1, 

so t h a t 2 7 n + 1 = 12 + (n + 2) (n - 2 ) - 1 7 ^ . S u b s t i t u t i n g t h i s i n t o (3 .7) shows 
t h a t Vn+1 < Vn , for n > 6, i f and only i f 

7M > 12 + 48(n - 6)" ( 3 . 8 ) 

From t h e terms i n (3 .3 ) w i th k K 5 and k > n - 5 , 

7n > 12 + 48(n - 3 ) " 1 + 240(n - 3 ) _ 1 ( ^ - 4 ) " 1 , n > 11 . 
Applying this to (3.8) we find (3.6). From (3.6) and direct computation of Vn, 
n = 6, ..., 11, we see that max Vn = 156/7 is reached for n = 11. Better bounds 
for larger n may be obtained from (3.6) by computing some Vn. 

For the study of cn, we introduce the following notation, see (1.5) and 
(3.1): 

rc-l 

Hn = 1 - oJn\ = P n ( v < n - 1) = 2 > f c ( n ~ k ) ! / n ! ; (3 .9 ) 
k = l 

Dn = ( n ) 3 { # n - In'1 - ( n ) " 1 } , n > 3 . (3 .10) 

We need some numerical values of nHn and Dn. By means of (1.6), (3.9), and 
(3.10), the values of nHn and Dn for 3 ̂  n ^ 200 were computed for the author 
at the University of Groningen Computing Centre. Part of the values are given 
in Tables 1 and 2, but the most important numerical result is 

Dn+1 < Dn, n = 13, ..., 199. (3.11) 

Table 1 

n 

1 

2 

3 

nHn 

0.000000 

1.000000 

1.500000 

n 

4 

5 

6 

nHn 

1.833333 

2.041667 

2.158333 

n 

7 
8 

9 

nHn 

2.212500 

2.227579 

2.220660 

Theorem 2. With Dn defined by (3.9) and (3.10), 

Dn > 4, n > 9; Dn < 6, n > 20. (3.12) 

Proof: Since ck < k\, we see from (3.9), (1.1), (1.3), (3.2), and (3.4) 
that nEn < nQn < 3, n > 9. 
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(3.13) 

(3.14) 

With Table 1, we then extend this to 

nEn < 3, n > 1. 

From (3.9), for n > 7, 

n\Hn > (n - l)lo1 + (n - 2)\c2 + (n - 3)lc3 

+ 6o(n - 3) .+ 2a(n - 2) + e(n - 1) 

With (1.7) and (3.13), writing ok = kl (I - Hk) for fc > n - 3, this gives 

tf„ > 2n~x + 3(n)-x - 18(n)^, n > 7. (3.15) 

From (3.15) we see that nHn > 2, n > 9, and then from Table 1, 

nHn > 2, n > 5. (3.16) 

From (3.9) for n > 9, with ck < fe!, 

(4 n-1 \ £ + 2 K(n 
k=1 k=n-hf 

k) ! 4- (n - 9)5!(n - 5) !. 

With (1.7) and (3.16), writing ok = kl(I - Hk) for k > n - 4, we find 

#n < 2n-1 + (n)"1 + ^(^(n)"1, n > 9; 

fc(w) = 5 + 25(n - 3)" 1 + (120(n - 9) - 48)(n - 3)~1{n - 4)" 1. 

(3.17) 

(3.18) 

(3.19) 

Table 2 

n 

3 

4 

5 

6 

7 

8 

9 

Dn 

-2.000000 

-3.000000 

-2.500000 

-0.833333 

1.375000 

3.558333 

5.356944 

n 

10 

11 

12 

13 

14 

15 

16 

Dn 

6.625992 

7.376414 

7.702940 

7.726892 

7.561317 

7.295355 

6.991231 

n 

17 

18 

19 

20 

21 

21 

23 

Dn 

6.687779 

6.406247 

6.156020 

5.939237 

5.754089 

5.596962 

5.463713 

By elementary computation we see that h{n+ 1) < h(ri) for 145n > 1 8 7 6 o r n > 1 3 
and 7z(196) < 6, so that h(n) < 6, n > 196. Hence, Dn < 6, n > 196, by (3.10). 
The second inequality in (3.12) then follows from (3.11) and Table 2, and it 
shows that 

En < In"1 + 2(n)~1
i 

From (3.9), for n > 93 

nlHn > ( £ 
\k = 1 

n-l 

& = n-4 

n > 20. 

c, (w - fc)!, 

(3.20) 

Here we apply (1.7) for fc < 4 and write cfe = &!(1 - #fc) for k > n - 4. Appli-
cation of (3.20) for k = n - 3 , n - 4 , and of (3.10) with £>n < 6 then gives 

Hn > 2n"1 + (n)"1 + 4(n)"1 + ^(n)(n)^, n > 24; (3.21) 
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gin) = 17 - 72(n - 4)" 1 - 48(n - 4)_1(n - 5)" 1. (3.22) 

Since gin + 1) > gin), n > 6, and #(13) > 0, 

Hn > In"1 + in)'1 + 4(n)3~1, n > 24, 

i.e., Dn > 4, n > 24. The first inequality in (3.12) then follows from Table 2. 

Remark 1 . By taking into account more terms in (3.9), it was proved in Stam [5] 
that Dn = 4 + Oin'1) and Dn+1 < Dn, n > 13. 

Remark 2. For the conditional probability P{A1 \M > 2), we see, using (1.1), 
(3.10), and (3.12), that 

P M j M > 2) = PiA^/PiM > 2) = n"1^"1 + y, n -> °°, 

and in the same way, 

P(4„.1|W> 2) - ± , 

so that the regeneration points concentrate near the end points of M n as n -> °°. 

4. DIVISIBILITY 

From (1.6) we have, since 777 divides hi If h ^ m9 the congruences 

m-l 

^2 j\cn~j = 0 (mod m), n > m. (4.1) 
j-o 

Let d 
n ~ dnini) be the remainder of <?n on division by 7??. Then the recurrence 

(4.1) also holds for the d^ and determines them completely if dly ..., dm_1 are 
given. Since dn E {0, ..., TTZ - 1}, there are at most m171'1 possibilities for 
the sequence uk = idk, ..., dk + m-2) > 0 n e of them is uk = (0, ..., 0) and this 
would give dn = 0, n ^ 1, which is excluded because cx - \. So we must have 
uk ~ uk + p ^01C s o m e ^ anc* some minimal p < T??7"-1 - 1. Since any w^ determines 
all dn3 n > 1, with (4.1) and the coefficients in (4.1) do not depend on n, it 
follows that the sequence dns n ^ 1 is periodic with period p. 

If 77? = 3, then (4.1) becomes 
°n + °n-l + 2cn-2 ~ 0 o r c n + e n - l " c ? i - 2 = ^ , mod 3 , Yl ^ 3 , 

so that (-1) on satisfies the same recurrence mod 3 as the Fibonacci numbers, 
but the initial conditions are different. We find 

cn = 1, 1, 0, 1, 2, 2, 0, 2, 1, 1, mod 3, n = 1, ..., 10. 
So p has its maximal value 8. 

If 7?7 = 4, then (4.1) gives 

°n + °n-l + 2Gn-2 + ^n-3 E °n + °n-\ + 2°n - 2 + 2<?n - 3 E °> m o d 4 , n > 4 . 

Since the oi are odd, this gives 

°n + cn-i = 0, mod 4, n > 4. 
With (1.7) we see that £w E 1, mod 4, if n is even and on = 3, mod 4, if n > 3 
is odd. 

Since the on are odd, we have cn = 1, cn = 3, en = 5, mod 6, if en = 1, 
c„ = 0, c?n = 2, mod 3, respectively. 
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The Computing Centre of the University of Groningen computed the sequences 
for m = 5, m = 7, and part of the sequence for m = 11. For m = 5 the period is 
62, whereas 5h - 1 = 624. For m = 7 the period is 684, whereas 76- 1 = 117649. 
For m = 5S 7, and 11 all possible values of cn (mod m) occur. It is conjec-
tured that this holds for all prime m. 

We note that for m prime the last two coefficients in (4.1) are 1 and -1 
(mod m) by Wilson1s theorem (see Grosswald [2, Ch. 4.3]). 

5. APPLICATIONS IN COMBINATORIAL PROBABILITY THEORY 

If a and x are independent stochastic elements of Sn and one of them has 
uniform distribution Pn , then the points k E ]Nn such that o(Mk) = TON^) have 
the same joint distribution as the regeneration points of a random permutation, 
since c(Nk) = x(]Nk) if and only if a~1T(M?c) = ~Mk and a-1x has probability dis-
tribution Pn . 

Let X19 . . . 9 Xn be independent random variables with common continuous dis-
tribution function and Yl9 . .., Yn their increasing order statistics, i.e., the 
value of Yk is the kth smallest of the values of Xl9 ..., Xk. Then the stochas-
tic points k in JSfn such that X± + ••• + Xfc = Ji + ••• + Yk have the same joint 
probability distribution as the regeneration points of a random permutation of 
]Nn. We have Y1 < J2 < ••• < Yn with probability 1 and the conditional distri-
bution of X±s ... , Xn given Y± = yi, i = 1, ... ,. n is the same as the distribu-
tion of a(i/1) , . .., a(z/n), where a is a random element of £„ (see Renyi [3]). 
Furthermore, o{y±) + ••• + o(yk) = y1 + ••• + i/k if and only if 

o({y19 . . . , z/k}) = {z/l5 . . . , z/kL 
A deeper application is the following. Let G and T be independent random 

elements of Sn. Dixon [1] defined tn as the probability that the subgroup (x, 
G > of Sn generated by G and x is transitive, i.e., has IN„ as the only orbit. 
This occurs if and only if 0(A) = T(A) = A for no proper subset A of 3N„. Using 
formal power series, Dixon [1] proved that 

n 
J2(n - k)\k\ktk = n\n9 n > 1. (5.1) 

k = l 

A slightly shorter proof starts from Uls the orbit of < G, x) that contains 1. 
By the definition of t k , we have 

P(U1 = A) = (kl)2tk((n - fc)!)2/(n!)2, 

If. AC !Nn, 1 G A, and \A\ = k. So 

P{\UX\ = k) = (*~ jVtf, = 4) = (n - ^S/cIfet^nln)-1. 

Equation (5.1) states that these probabilities sum to 1. From (1.6) and (1.7), 

E ( n - k)!cfc + i = E (n + 1 - J)!c- = (n + 1)! - n!^ = n!n, n > 1. 
fc = 1 J = 2 

Comparing this with (5.1) we see that the sequences cn+1 and nlntn, n > 1, are 
determined (uniquely) by the same recurrence. So 

n!ntn = cn+1, n > 1. 

The author was unable to find a direct combinatorial proof of this result. 
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Let X = (Xl5 . .., Xn) be a random sample with replacement fromJSf̂ , or a ran-
dom function ]Nn -> ]Nm. If J(3N̂ .) = M^, then X19 ..., Ĵ  defines a bijection 
]Nk -> ]Nk. So the probability that h is the first k with X(~ti$k) = l$k is 

chmn-hm-n = chm~h 

and the probability that there is at least one such k is 

777 A Yl 

/ z - l 

When the sample is drawn without replacement, so that n < m, the corresponding 
probability is 

Y,ch(rn - h)\lm\. 
h = l 
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1. INTRODUCTION 

Let {Un(p, q)} be the sequence of fundamental functions defined by Lucas 
[2] as follows: 

Un+2 = PUn+1 ~ qUn (n > 0) 

with initial values U0 = 0 , U1 = 1. Further, let {Sn(x)} and {Tn(x)} denote 
the Chebychev polynomial sequences of the first and second kind, respectively. 
In [5], formulas were obtained for 

„̂ o On + j) ! ' n% On + j) I ' a n d M On + j) ! ' 3 u> i. ^ 

As mentioned in [5, Remark 4], we generalize the above formulas in this paper 
to obtain 

„?o (nr+j)l ' 3 = °' U •••' p - l' 

and similar formulas for {Sn(x)} and {Tn(x)}. 

2. PRELIMINARIES 

The generalized circular functions are defined as follows. For any posi-
tive integer r, 

and 

Note that Mlf0(£) = £_t> M2f0(£) = c o s t, M2>l(t) = sin t, and #lf0(£) = e*, 
^2 o(^) = c o s n »̂ ^2,o(^) = s i n n t. 

The notation and some of the results presented here are found in Pethe and 
Sharma [4]. 

Following Barakat [1] and Walton [7], we define generalized trigonometric 
and hyperbolic functions of any square matrix X by 

and 
*,.,<*> - E , \"J+i ) ! » i-0, 1. .... r- 1, 

j rn + J 
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Lemma 1. Let X be a 2 x 2 matrix given by 

CI -] -i CL -I p 

'2 1 ^22 

Let tr J = p and det X = q. Then, for any integer n, 

Xn = UnX - qUn,1Is 

where Un is the nth fundamental function and I the unit matrix of order 2. 

This is proved in [1], 

Lemma 2. We have,for a positive integer P and j = 0, 1, ..., p - 1, 

J 2*- 1 

k=0 k=j+l 

This is proved in [3]. 

Lemma 3• Let p be a positive integer, and j = 0, 1, ..., P - 1. Then: 

a. For even p, 

• ^ r . j ^ ) + M r , j ( - ^ ) 

and 

Mr>j(x) - Mr>J-(-x) 

2MVij (x), J even 

0, J odd, 

0, j even 

2Mrfj(x), j odd. 

(2.1) 

(2.2) 

b. For odd P, 

MVij(x) + MPjJ.(-^) 

and 

2N2r,j (x) » .i even 

-2/l/2P)P+J-(^) , J odd, 

~ M 2 r , r + j ^ ) ' <7 e v e n 

2N2r,j (̂ )» J o d d-

Proof: We prove (2.1) and (2.4). The proofs of (2.2) and (2.3) are simi-

Mr)j(x) - Mrtj(-x) 

(2.3) 

(2.4) 

lar. 
Let P be even. Now, 

Mr}j(x) +MVt.(-x) =£Q±-V*d)l (1 + (-1)-^). 

Since p is even, (-l)nr+J' = (~1)J . Hence (2.5) becomes 

Mr>i(x) + M r ; , ( -x ) =z%l>+
x

J}l (i + (- i) ': 
n4"0 (nr + j) ! ' 

( 2 . 5 ) 

j even 

0, J odd, 
(con t inued) 
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2AfPj • (x) , j even 

0, J odd, 

which proves (2.1). 
Now, let v be odd. Then 

Mr>J.(x) - Mr>J-(-x) = to
 (^+ J ) 7 ( 1 - (-D"r+J'). (2.6) 

Since z> i s odd, ( - l ) ^ + i = ( - l ) ^ 1 " - « + " + j = ( - 1 ) " + J'; t h e r e f o r e , (2 .6) becomes 

» 2(-l)"x^+J 
Z_, —7 i—7\~i—> J even 

n-173, . . . (nr + j ) ! 

f. 2 ( - l ) " x " r + J ' . , . 
„ - < & . . . <™" + ^ ' J ° d d ' 

2nr+r + J 

n^0 (2nr + r + j)\ 

2nr + j 

n=o (2nr + j ) ! 5 

-,_ j even 

j odd, 

~2N2r,r+j(x^ > J e v e n 

2N2r,j O ) 3 J odd, 

which proves ( 2 . 4 ) . 

Lemma k. We have for j = 0, 1, . . . , 2 P - 1 and i = V^l, 

( - l ) j 7 2 M2r j (x) , P even 
M2r j (£K) = { (2 .7 ) 

( - l )^ ' / 2 / l / 2 j J s J - (x ) , r odd, 

(-l)J'/2N2r j (x) , v even 
N2rsj(ix) = { ' (2 .8) 

( - l ) j / 2 M 2 r j J - ( x ) , r odd. 

Proof: By d e f i n i t i o n , 

/ n n -inr + j 2nr + j 
M -(ix) = F C j %— . (2 .9) 
^ z r . j C ^ ^ (2np + j ) ! 

Now 

ak)h"lr~1\i)2nWd, r odd, 

so t h a t 
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j/2 

(i) 2nr+ J 
(-1) **"• , v even 

(-l)n+j72
J r odd. 

Using (2.10) in (2.9), we obtain 

M2r,j (ix^ 

00 f i\n^2nr+J 

^ i; n^0 (2np + j)! ' 

XJ72 v* (-D2^ (-DJ/2 E —, v odd, 
n^0 (2nr + j) 

which proves (2.7). We can prove (2.8) in a similar manner. 

3. SUMMATION FORMULAS FOR LUCAS FUNDAMENTAL FUNCTIONS 

We shall now prove 

Theorem 1. a. For even v and J = 0, 1, . . . , r - 1, 

n~i> (nr + J ) ! 
J _2 

6 
E Mrt2k+m(p/2)Mr}a(6/2) 

h(r~ 2) 
E Mr92k + mip/2)MP,r + a(&/2) 

k= IhU+D] 

b. For odd r and j = 0, 1, . . . , r - 1, 

( - D U nr + j 

n=o ( n r + J ) ! 6 
E Mrt2k+m(p/2)N2rtOL(6/2) 

a = j - 2k - m, 6 = j - 2k + m, and m = 

(2 .10) 

(3 .1) 

k(r- 3) + m 
E Mr}2k + 1_m(p/2)N2r>r + ^1(6/2) < 3 ' 2 ) 

fc = o 
hip- 1) -m 

+ E ^ , 2 f e + w ( p / 2 ) / V 2 P j 2 p + a ( 6 / 2 ) 

where , in both (a) and (b) above and in Theorems 2 and 3 below, 

1, j even 

0, j odd. 

Further, [5] = the greatest integer ^ S and 6 as defined below. 

Proof: By Sylvester's matrix interpolation formula (see [6]), we have 

where Xl9 X2 are distinct eigenvalues of X as defined in Lemma 1. It is easy 
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to see that A1 = (p + 6)/2, A2 = (p - 6)/2, where 6 = /(p2 - 4<?) • Now 

^j(^i) " ̂ ,fJ-(X2) = ̂ ( ^ ) - MPiJ(E-^y (3.4) 

Using Lemma 2, (3.4) becomes 

^fJ-(*i) -Mr,j(-^) = Eo^^(p/2)[Mp>i_^(6/2) - MPjJ..fe(-6/2)] 

" E Mr k(p/2)(Mr,r+j-k(S/2) ~ Mrsr+j_k(-S/2))e 

Let v and J both be even. Breaking the summation on the right side of (3.5) 
into even and odd values of k and then using (2.2), we obtain 

J- l 

î., j(*i> " Mr.j&i) = 2 E Mrtk(p/2)MrfJ._k(6/2) 
fe--l,3, ... 

p- 1 
- 2 E Mrtk(p/2)Mrsr+j_k(8/2). 

k=j+l,j + 3, . . . 

Changing k to 2k + 1, because fc takes only odd values, we obtain 

^r.j(^l) -^r,j(^2) = 2 E r̂,2fe + l(p/2)^J-_2fe_1(6/2) fe = 0 

JsO-2) 
2 E ^rs2fe + l (p /2 )M P , r + J -_ 2 f e _ 1 (6 /2 ) , 

fc-j72 

(3 .6 ) 

Now, by definition of Mr AX) and Lemma 1, we have 

Mr, J W = t o (£?]•) iWnr + J* " «Unr+j - l^ • < 3 - 7 > 

Equating the coefficients of X in (3.7) and (3.3) and then making use of (3.6), 
we get (3.1) for even j. For odd j, (3.1) and (3.2) are similarly proved. 

4. SUMMATION FORMULAS FOR Sn(x) 

For Chebychev polynomials Sn(x) of the first kind, we prove the following 
theorem. Let x = cos 9 and y = sin 0. 

Theorem 2. a. Let r be such that v/2 is even, and j = 0, 1, . . . , r - 1. Then 

rc=-0 

E ("if % . 2*+»-(*)«,.. r + a0/>> • 

b. Let r be such that r/2 is odd, and j = 0, 1, . . . , r - 1. Then 
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r0 (nr + j) i y \ kh Mr,2k + m(x)Nr>aW 

ig(r- 2) x 

fc-[Js(j+l)] 

c. Let? be odd, .7=0, 1, ...,r - 1. Then 

„ (-1)"5 .(X) (>s(r-3)+m 

+ £ (-ir Ka^w^.aW 

y ( * = o 

ikU- D] 

E 
fc = 0 

JfiCr- 1 ) - 777 

E + E (- l )^2^0"1^. r,2*+m(*)^2r, 2 r + a ( ^ -

Proof: If we write x = cos 6 and let p = 2x and q = l9 then Un(p, q) are 
the Chebychev polynomials of the first kind, i.e., 

Un(2x, 1) = £„(*) = (n> 0), 

where 

Sn + 2 = 2xSn + 1 - Sn, wi th 5 0 = 0 and S1 = 1. 

We s h a l l prove (a) and ( b ) . Now 

» (-DnUnr+j = „ ( - l ) n ^ n r + J - ( ^ ) ^ „ (-l)ns±n(nr + j ) ( 
n t t ) (nr + j ) ! ^ o ( w + J) I n~0- (n r + j ) ! s i n 9 

6 _ „-i(nr+,j)d-( -1)" | y ( n r + j ) . _ g 

s i n 6 n ^ 0 (n r + j ) ! 2^ 

(-Dn 

Hence, 

V - rr- = —T~[A? • (tf + iy) - M' • (x - iy) ] , (4 .1 ) 

Now, by Lemma 2, 

M r , j ^ + ^ " Mr,j(X - £y) = E Mr^WWr.j-ktty) ~ Mr, j - ^ ' ^ 1 
k = Q 

r- 1 (4 .2 ) 

k = j+ l 
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First, let J be even. Breaking up the right-hand side of (4.2) into summations 
over even and odd values of k and making use of (2.2), we obtain 

J - l 
MVtj(x + iy) - MTij{x - iy) - £ 2Mr> k(x)Mr> , _k(iy) 

k= l , 3 , . . . 

v- 1 

£ 2MPtk(x)MPtr+;j_k(iy) 
k = j + 1 , j + 3 , . . . 

( 4 . 3 ) 

Now, s i n c e r i s even, r/2 i s an i n t e g e r t h a t i s e i t h e r even or odd. F i r s t , l e t 
r/2 be even. By ( 2 . 7 ) , (4 .3 ) then becomes 

MVtj(x + iy) - MPt.(x - iy) = 2 £ W' ~kMr>k(x)Mri j _k(y) E 
k= 1,3, ... 

- 2 
(4'4) 

k= j"+ 1, j + 3 , ... 

If r/2 is odd, then again making use of (2.7), (4.3) becomes 

J- l 
^r,j(X + ^ ) " Mr,j '^ ~ ̂  = ? ^r 7-(* + ty) - Mr .(x - iy) = 2 £ (i)^~k 

k = 1, 3, ... 

:M Ax)N . h(y) 
r t k K r , j - kK3 y 

(4.5) 
V - 1 

- 2 E ( i f + J ' -V , fc (^)^ ,p + J -_^(^) -
/c = j + 1, j + 3, . . . 

Note that the power of i in all the summations in (4.4) and (4.5) is odd, 
so that when we substitute (4.4) and (4.5) in (4.1) and cancel i from the num-
erator and denominator, the remaining power of i will be an even integer. Then 
(4.1) becomes 

f ("1)W^^(g) 1 
J^o (nr + j) ! y 

when r/2 is even, and 

J E (-l)hU-k-l\tk(x)Mr9j_k{y) 
k= 1, 3, ... 

r- 1 

E 
fe = J + 1, j + 3, ... 

(-l)^^'"""1^,^^,,,^--^) 

(4.6) 

j - i 

E (-i) 
fc» 1,3, ... 

v- 1 

E 
/c= j + 1, j + 3 , 

hU-k- 1) Mp,fe^)^,j-fe(2/) 

(-l^^^'W.feW^.r+j-fcd/) 

(4.7) 

when r/2 is odd. 
Replacing k by 2fc+ 1 in the right-hand side of (4.6) and (4.7), we finally 

get (a) and (b) for even j . By adopting similar techniques, we get (a) and (b) 
for odd j and (c) . 
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5. SUMMATION FORMULAS FOR Tn(x) 

Theorem 3« For the Chebychev polynomials Tn(x) of the second kind, the follow-
ing summation formulas hold. 

a. Let r be such that r/2 is even and J = 0, 1, ..., r - 1. Then 

n = 0 Kni T < " • fe = 0 
Jg(p- 2) 

E (-1)^P+ 6" 'V, 2* + i -mWMPtP+ 6_ 20/) • 
fe-[W+2)] 

b. Let r be such that r/2 is odd, J = 0, 1, . . . , r - 1. Then 

„ (-D'^j.W [.72] 

n=0 V J ;' fe=0 

E (-0 ^^fc + l-m^^.r+B-lCi/)-
fc- [>5(j+2)] 

c. Let r be odd, j = 0, 1, . .., r - 1. Then 

- i-l)nTnr+Ax) u/2] 
E ,nv + /) • = S (-D'<B X,2. + 1-m(^2,,6-i(y) 

lg(r- l)-m 

fc = 0 

^(r-3) + m 

*- [W+2)] 

Proof: The proof follows the same technique as in Theorem 2 and is there-
fore omitted. Notice that the power of (-1) in each of the above summations is 
an integer. 

Remark. Since 

Sy,(x) = — : 5- and T (x) = cos H0, 
n sin t) n 

summation formulas in Theorems 2 and 3 also give those for 

T* (-l)nsin(nr + j) 0 ^ (-l)ncos(nr + j)0 
„rb (** + «/)! n=0 < n p + « ? > ! 

For example, formula (a) in Theorem 2 can be expressed as 

^ (-l)nsin(nr + j)Q ih(j^l)] .M*-DM , fiW , . fl, 
i- (YIV + ̂  , = L (-1) ^ , 2 H m ( c o s 6)MPja(sm 0) 

h(r- 2) 
E (-D^^-'^^^Ccos 0)Mp>r + a(sin 0). 
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Consider the following array of numbers 

V^ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0 1 

1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
1 10 
1 11 
1 12 

2 

2 
5 
9 
14 
20 
27 
35 
44 
54 
65 

3 

2 
7 
16 
30 
50 
77 
112 
156 
210 

4 

2 
9 
25 
55 
105 
182 
294 
450 

5 

2 
11 
36 
91 
196 
378 
672 

6 

2 
13 
49 
140 
336 
714 

7 

2 
15 
64 
204 
540 

8 

2 
17 
81 
285 

9 

2 
19 
100 

10 

2 
21 

11 

2 

where any element in the array is found by the usual Pascal recurrence, i.e., 

A(n9 k) = A(n - 1, k) + A(n - 1, k - 1), (1) 

subject to the initial conditions A(l, 0) = 1, A(l, 1) ='2, with 4(n, /c) = 0 for 
& < 0 or k > n. This array has been called a Lucas triangle by Feinberg [1], 
because rising diagonals sum to give the Lucas numbers 1, 3, 4, 7, 11, 18, 29, 
47, 76, 123, 199, 322, ..., in contrast to the rising diagonals in the standard 
Pascal triangle where rising diagonals sum to give the Fibonacci numbers 1, 1, 
2, 3, 5, 8, ... . The seventh diagonal in our array is 15 7, 14, 7; the eleventh 
diagonal is 1, 11, 44, 77, 55, 11. This suggests the following. 

Theorem 1. The number D ) 2 is a prime number if and only if every entry that 
is greater than 1 along the I)th rising diagonal in the Lucas triangle is divi-
sible by D. 

Before giving a proof, we set down further notation in order to rephrase 
the theorem. 

It is easy to prove directly from (1), or one can quote the general theorem 
of Gupta [4], that 

«-*>-(;;)• ( r ! ) - (2) 

so that the Lucas triangle is simply a combination of two shifted Pascal tri-
angles. Let D be the diagonal number in question and let j be the position of 
an entry along that diagonal, then a typical element of the diagonal is given 
by A(D - j, j), where 0 < j < D/2. We can now rephrase Theorem 1 as follows. 
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Theorem 2. D > 2 is a prime number if and only if D\A(D-J\ J) for all j such 
that 1 < j < D/2. 

Proof: We have from (2) that 

«*-<•'>-(V) • ( V ; ' M V - V ) / ' 
= D(D - J - l)l/jl(D - 2j)!. 

If D = p is a prime ) 2, we observe that (j ! , p) = 1 and ((p - 2j) ! , p) = 1 for 
1 < j < p/2 so that surely jI(p - 2j)! | (p - j - 1) ! and therefore p is a fac-
tor of the number p - ( (p - j - 1) ! /j ! (p - 2j) ! ) . 

Now suppose that Z) is composite. Then, from the formula for A9 

D\A(D - j , j) if and only if D \D{D ~ f ~. ^ / j . 

We will show that for a composite D> some j cannot divide f _ *". j . Recall 

that for the binomial coefficients we have ( J = (-1) I ). Therefore 

C\\- „ ^ ; . l) if and only if d \ { D l \ \ D - j -
D - 2j 

we need not consider the question of divisilibity of the entries in any diago-
nal by D when D is even, since the last entry is always a 2 for even D9 so we 
can restrict our analysis to odd composite D > 3. Put D = p(2k + 1), where p 
is an odd prime factor of D, and choose j = pk. Then we are concerned with whe-
ther 

pk 
But 

•(-pk - l)(-pk - 2) ••• (-pk - p + 1) ±-hk\ 
pk\ p ) 

p(p - l)(p - 2) ••• 3- 2- 1 9 (3) 

and we observe that the factors p - 1 , p - 2 , ... 3, 2 cannot affect the divisi-
bility of the numerator by p since (p, p - r) = 1 for all 1 < r < p - 1. Fur-
thermore, p is relatively prime to every factor in the numerator; that is, 

(p, pk + s) = 1 for all 1 < s < p - 1, 

and so the indicated quotient cannot be an integer. This completes the proof. 

We now claim that Theorem 2 is a dual to the criterion discovered by Mann 
and Shanks [7]. In [2] and [3] it is shown that the Mann-Shanks criterion can 
be restated as follows. 

Theorem 3. The number C > 2 is a prime number if and only if 

(4) 
\C - 2R] 

for all R > 1 such that C/3 < R < C/2. 

Comparison of our proof of the new prime criterion with that of the Mann-
Shanks criterion in [2], [3], and [7] shows that the same considerations have 
been made using (3), except that the numerator in the earlier proof was 

(pk - l)(pk - 2) ••• (pk - p + 1) 
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and the minus sign made no difference in the argument. In fact, we see that 
our new criterion may be restated as follows. 

Theorem h. The number C ) 2 is a prime number if and only if 

(5) 

for all R such that 1 < R < C/2. 

I -R \ 
\C - 2R) 

The natural display for our criterion is the Lucas triangle, just as the 
natural display for the Mann-Shanks criterion is their shifted Pascal triangle. 

Since the rising diagonals in the Lucas triangle sum to give Lucas numbers, 
that is, as Feinberg [1] noted, 

M2] [n/2] / • • ,\ 

Ln= ZMn-j.j)-l+Z ? ( V I ) 
3 - 0 j = i 0\ 0 1 / 

[n/2] [n/2] 

(6) 

where Ln = an + 3n with a and 3 the roots of the equation x2 - x - 1 = 0, and 
Ln+1 - Ln + Ln_i, subject to L1 = 1, L2 = 3, then we have an obvious 

Corol1ary. The Lucas numbers satisfy the congruence 

Dp E 1 (mod p) (7) 

for all primes p > 2. 

This corollary is well known and can be found in Lehmer [6] or in [8], 

That the converse of (7) does not hold follows from the well-known counter-
example of Hoggatt and Bicknell that 

L705 = 1 (mod 705 = 3 • 5 • 47), 

although Lind [8] used computer calculations to show that, for all 2 < n < 700, 
Ln = 1 (mod ri) implies that n is prime. 

In later papers, we shall exhibit and prove corresponding duals to the ex-
tensions of the Mann-Shanks criterion given in [2] and [3]. 

Remark: It is interesting to compare the criterion discussed here with the 
familiar fact that 

(?) for all with 1 ̂  k < n if and only if n is a prime. 

Harborth [5] has shown that "almost all" binomial coefficients ( -, ) are divisi-
ble by their row number n, 

Finally, we note that the generating function for the v4Ts is clearly 

(1 4- 2a)(l + x)71'1 = f] A(n, k)xk. (8) 
k = Q 

The results of this paper were first announced in an abstract [9] in 1977. 
There is now a rather extensive international bibliography on criteria related 
to the Mann-Shanks theorem, and we hope to summarize this at a later date. 

The authors with to thank the referee for comments and suggestions regard-
ing the presentation of this paper. 
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1. INTRODUCTION 

Throughout this paper we shall suppose that N is an odd perfect number, so 
that N is an odd integer and o(N) = 2N9 where O is the positive-divisor-sum 
function. There is no known example of an odd perfect number, and it has not 
been proved that none exists. However, a great number of necessary conditions 
which must be satisfied by N have been established. The first of these, due 
to Euler, is that 

N = paq2$i ... qf* 

for distinct odd primes p, ql9 ..., qt, with p = a = 1 (mod 4). (We shall al-
ways assume this form for the prime factor decomposition of N) . Many writers 
have found conditions which must be satisfied by the exponents 23i» ...5 2(3t» 
and it is our intention here to extend some of those results. We shall find it 
necessary to call on a number of conditions of other types, some of which have 
only recently been found. These are outlined in Section 2. 

It is known (see [8]) that we cannot have ^ E 1 (mod 3) for all i or (see 
[9]) &i = 17 (mod 35) for all i. Also, if 3i = ••• = 3t = 3, then: from [6], 
3 ^ 2 ; from [4], 3 + 3; and from [9], 3 + 5, 12, 24, or 62. We shall prove 

Theorem 1. If N as above is an odd perfect number and 3i = '•• = 3t = 3» then 
3 + 6, 8, 11, 14, or 18. 

The possibility that 32 = ''' ~ $t ~ 1 (with 3i > 1) has also been consid-
ered. In this case, it is known (see [1]) that $i ^ 2 and (see [7]) that $i ^ 
3; by a previously mentioned result [8], we also have that 3i t 1 (mod 3). We 
shall prove 

Theorem 2. If N as above is an odd perfect number and 3 2
= "*" = 3 ^ = 1 * then 

3i i 5 or 6. 

The computations required to prove these two theorems were mostly carried 
out on the Honeywell 66/40 computer at The New South Wales Institute of Tech-
nology. We also made use of some factorizations in [10]. 

Finally, we shall introduce a theorem whose proof is quite elementary, but 
it is a result which, to our knowledge, has not been noted previously. EulerTs 
form for N9 shown above, follows quickly by considering the equation o(N) = 2/1/, 
modulo 4. Using the modulus 8 instead, we will obtain 

Theorem 3» If N as above is an odd perfect number and x is the number of prime 
powers q2.®t in which both q. = 1 (mod 4) and 8^ = 1 (mod 2), then 

p - a = 4x (mod 8). 
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To obtain the following corollary, we then only need to notice that x = 0. 

CorolTary. If N as above is an odd perfect number and Qi E 0 (mod 2) for all 
i, then p E a (mod 8). 

2. PRELIMINARY RESULTS 

Since we are assuming that o(N) = 2/1/, it is clear in the first place that 
any odd divisor of o(N) is also a divisor of N. The proof of Theorem 1 makes 
use of the following facts. 

(i) N is divisible by (p + l)/2 (since a is odd). 

(ii) If q and 23 + 1 = r are primes, then r\o(q2®) if and only if q E 1 (mod 

p) . Furthermore, if p|a(q26), then p|a(c72e). If s|a(q26) and s ^ r, 

then s E 1 (mod p). (This is a special case of results given, for exam-

ple, in [9].) 

(iii) If Bi = ••• = 3t = 3 a n d 2g + 1 = r is prime, then rh\N and p E 1 (mod 
p) . In particular, p ^ p. (See [6] for generalizations of this.) 

(iv) If n\N, then o(n)/n < 2. 

The proof of Theorem 2 uses (i), (ii), and (iv), as well as the following 
results. 

(v) The second greatest prime factor of N is at least 1009 (see [3]) and the 
greatest at least 100129 (see [5]). 

(vi) The equation q2 + q + 1 = pa has no solution in primes p and q if a is 
an integer greater than 1 (see [1]). 

3. PROOF OF THEOREM 1 

We shall assume that 3 = 6, 8, 11, 14, and 18, in turn, and in each case 
obtain a contradiction, usually along the following lines. In each case, 23 + 
1 = p is prime so that, by (iii), r2® \\N. Then o(r2B)\N. If s is prime, s i p 
and s\o(r2B), then s = 1 (mod r) and S2B\\N, SO that P||G(S26), by (ii) . Apply-
ing the same process to other prime factors of o(s2B) and repeating it suffi-
ciently often, we find that p26 + 1|/i/, which is our contradiction. 

Except in the case 3 = 8 , we were not able to carry out sufficiently many 
factorizations explicitly. (We generally restricted ourselves to seeking prime 
factors less than 5 x 106.) However, we were able to test whether unfactored 
quotients were pseudoprime (base 3) or not. Each P below is a pseudoprime and 
eachM is an unfactored quotient which is not a pseudoprime, and hence is not 
a prime. We checked that each M was not a perfect power so that the existence 
of two distinct prime factors of each M was assured. We checked also that no 
Af's or P's within each case had any prime factors in common with each other or 
with known factors of N. In this way, we could distinguish sufficiently many 
distinct prime factors of N to imply that p2e+1|iV. There is a slightly special 
treatment required when 3 = 6 . 

We shall give the details of the proof here only in the cases 3 = 6 and 
3 = 11. These illustrate well the methods involved. The other parts of the 
proof are available from the first named author. 

(a) Suppose 3 = 6, so that 1312||ZV; a(1312) = 53- 264031- 1803647. The relevant 
factorizations are given in Table 1. We distinguish two main cases. 
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Table 1 

q 

53 
264031 
1803647 

131 
79 

(A) 131 

q9 

Some factors of a(^12)/13 

3297113, P± 

Pi 
131, A^ 
79, Q ; 
M2 

Q = M 3 

Q = <79 
<7l.O 

Suppose first that p ^ 53. We may assume that q2i- l^iil^i (̂  = 1» 2) and 
^J + IJPJ (j = 1, 2). In Table 1, § is also a pseud op rime (base 3) and we need 
to consider two distinct alternatives. In (A), we suppose that Q = M3 is com-
posite, so that q7qQ\M3, say. (We checked that Q was not a perfect power.) In 
(B) , we suppose that Q is prime, so we write Q = q3. If this is so, then q3 4-
p, since Q E 3 (mod 4). Thus, we have 14 primes: 

53, 79, 131, 264031, 1803647, 3297113, qi (1 < i < 6) 

with q7 and qQi or with q9 and <J10, Each of these primes is congruent to 1 
(mod 13) and at most one of them might be p. Put 

A = {53, 79, 131, 264031, 1803647, 3297113, M19M29Pl9P2,Q9 (Q13 - I) / (Q - 1)}. 

We checked that no two elements of A had a common prime factor; therefore, the 
14 primes above are distinct. Hence, 1313|/1/, the desired contradiction. 

Now suppose that p = 53. By (i) , 3\-N and so a(312) = 79716l|tf. Certainly 
there is a prime qY1 dividing a(79716112)/13. We thus have 13 primes: 

79, 131, 264031, 797161, 1803647, qi (I < i < b) 9 q&9 q12_ 

with q7 and qQ9 or with qs and q1Q. Each of these is congruent to 1 (mod 13), 
and we checked that no two elements of the set 

(A - {53, 3297113, Px}) U {797161, a(79716112) /13} 

had a common prime factor. Hence, again, 1313|#. 

(b) Suppose 3 = 11, so that 2322|j/l/, and note that 

a(2322) = 461 • 1289 • M1. 

Now refer to Table 2, where an asterisk signifies that the prime is 1 (mod 4), 
when that is relevant. 

There are three cases to consider. First, suppose that p =1289. By (i), 
3 • 5\N SO that n1\N where n1 = (3•• 5 • 23 • 47)22; but o(n1)/n1 > 2, contradict-
ing (iv). Similarly, if p = 461, then we have 3 • 7 • ll\N SO that n2\N where 
n2 = (3 • 7 • 11 • 23)22; but q(n2)/n2 > 2. 

Now suppose that p ^461 and p ^ 1289. We may suppose that ' q2i -±q2i \^i 
(1 < i < 7) and <715|P. Thus, N is divisible by the following 24 primes, each 
1 (mod 23): 

47, 139, 461, 1289, 37123, 133723, 281153, 300749, 2258831, q. (1 < i < 15). 
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Table 2 

<? 

461* 
133723 
2258831 
1289* 
47 
139 

37123 

Some factors of a(^22)/23 

139, 133723, P 
47, 37123, 2258831, 461 • M2 
300749,* M3 
281153,* Mh 

M5 
M& 
M7 

We checked that the 24 primes given above were distinct. One of them might be 
p, so 2323\N, our usual contradiction. 

This shows that 3 ̂  11. We remark that we also looked at the remaining 
possible values of 3 less than 15, namely, 9, 15, 20, 21, and 23, without fur-
ther success. 

k. PROOF OF THEOREM 2 

We begin by proving more than is stated in- Theorem 2 in the case in which 

Lemma. If N as before is an odd perfect number, 3 \ N and £>2 = ' ' ' = $t = 19 

then 3i ̂  5, 6, or 8. 

Proof: We will show first that, if 3i = 5, 6, or 8, then 7)(N. Notice 
that q. E 2 (mod 3) (2 < i < t) , since, otherwise, 3|a(<7?)|#. In particular, 
72f/l/^so that q1 = 7 if l\N. In that case, we obtain contradictions, as fol-
lows 

If 6, = 5, then 71U\N. But 11231 oO1 °) \N and p * 1123, so 11232||#. But 
—"~ ' '~12^ - 16148168401 |i7; if 1123 = 1 (mod 3). If 3i = 6, then 712\\N. Then r = a(7iZ) 

by (i). However, 103 E r = 1 (mod 3), If then 7 l bp 9 
But 223 a(140092) 

r = p, then 103|tf, -, „ . 
14009|a(716) |/1/. Then p ̂  14009, else 3 |/7 by (i) , so 140092 \\N 
and 223 = 1 (mod 3). 

Now we can show that 13 \ N for any of these values of 3i- Since N is not 
divisible by either 3 or 7, we must have q± = 13 if 13\N. Then 3i + 5, else 
23|a(1310)\N and 7|a(232)\N. Also, 3i * 6, else 264031|a(1312)\N and 264031 = 1 
(mod 3). Similarly, 3i + 8, else 103 | o( 1316) \N. 

Notice next that, by (ii), divisors of o(q^) (2 < i < t) are congruent to 
1 (mod 3), so that a(q2) = pa^q\- for some ai9 bi (0 < a^ < a, 0 < £; < 23i) 
and for each i (2 < i < t) . There can be at most 23i values of i > 2 such that 
qi\o(q2); by (vi) , there is at most one value of i > 2 such that oiq^) = pa 

(a > 1). It follows that N has at most 2&1 + 3 distinct prime factors. Of 
these, at most two are congruent to 1 (mod 3), namely, p and q±. By (i), cer-
tainly p = 1 (mod 3), so that in fact p = 1 (mod 12). 

In our case, when 3i = 5, 6, or 8, we must have p > 37 (since 13 \ N) and 
has at most 19 distinct prime factors. Using (v), we can now obtain the final 
contradiction which proves the lemma: 

N 
t 

n 
«i - 4i 

- 1 
< 

t 

n <7< " ! (continued) 
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.^j^^ZIilililZALAZlliiZl^li 191 191 111 1009 100129 < 
4 10 16 18 22 28 36 40 46 52 58 70 82 88 100 106 112 1008 100128 

We shall give the remaining details only in the case 3i = 6; the proof for 
the case 3i = 5 is available from the first named author. By the Lemma, we can 
assume that 3\N. 

We will assume first that q1 = 3. Then 797161 = cr(312)\N. We cannot have 
p = 797161 because then, by (i) , 3985812 \\N: 1621 | a(3985812) , 7 • 13|a(16212), 
19|a(72), and 127|a(192)9 so that n\N, where n = 312(7 • 13 • 19 • 127)2; but 
o(n)/n > 2 and (iv) is contradicted. Hence, 7971612 \\N. 

Notice that a(7971612) = 3 * 61 • 151 • 22996651; also note that 7|a(1512) 
and 19|a(72). Thus, 72192\\N. Making use of (i) , we then see that p + 1693, 
since then (p + l)/2 = 7 • ll2 and7|a(ll2), so that 73 \N9 and p + 433, since 
then (p + l)/2 = 7-3 1 , 331 |a(312) and 7|a(3312), so that again 73|/l/. We now 
observe that 

43]a(229966512), 63l|a(432), 433|a(6312), 1693|a(4332), 13Ja(16932), 

so that n\N9 where n = 31213(7 • 19 • 43)2; but a(n) In > 2, contradicting (iv) . 
Now, we assume that 32||/1/, so that we can have at most two values of i > 2 

with qi E 1 (mod 3). We have 13 = a(32) \N. 
First, we will suppose that p = 13, so that, by (i), 7 \N. We cannot have 

<7x = 7, because a(712) = 16148168401 = v is prime, 433|a(r2), 37|a(4332), and 
37 = 433 E v E 1 (mod 3). Hence, 72||/1/, so 19|a(72)|^. Again, q1 f 19, because 
599 • 29251 |a(1912), 513431 a(5992), and 29251 = 51343 = 1 (mod 3). Thus, 192|il/ 
and for no further values of i can be have q. E 1 (mod 3). Therefore, we have 
127|a(192)\N. 

Clearly, 1272 % N 9 so q± = 127. Setting q2 = 7 and q3 = 19, we must have, 
for i > 4, 0{ql) = 7ai \Zhi \9Ci \27di where a^ < 1, ̂  < a, ot < 1, and d^ < 11, 
since, by (ii), any other prime divisors of o(q^) would be congruent to 1 (mod 
3). Using (vi) , as in the proof of the Lemma, it follows that there are at most 
14 primes qi with i > 4. We cannot have ll|/l/ [although a(ll2) = 7 • 19], since 
then n\N9 where n = 3272ll213 • 192; but o(n)/n > 2, contradicting (iv). Pos-
sibly 107\N9 since a(1072) = 7 • 13 • 127, but we find that no other prime less 
than 500 can be q^ for some i ̂  4. Then we have our contradiction: there are 
13 primes q9 503 ̂  q ̂  653, that are congruent to 2 (mod 3); thus, 

= o(N) < a(3272192) j_3 J_07 J.27 6i¥ q < 
N 3272192 12 106 126 ^=503 q - 1 

q E 2 (mod 3) 
This shows that p + 13. 

We cannot have q1 = 13, because 53 • 264031 | a(1312) , p ̂  53 [else 33|/1/, by 
(i)], a(532) = 7 - 4 0 9 and 7 E 409 E 264031 E 1 (mod 3). Hence, 132\\N9 SO we 
have 62|a(132)\N. 

Suppose that p = 61, so that, by (i), 31|F. Then q1 + 31, since a(3112) = 
42407 • 2426789 • 7908811, 43|a(79088112), and 13 E 43 E 7908811 = 1 (mod 3). 
Thus, 312||/1/ and 3311 G(312) \W« Since 13 E 31 E 331 E 1 (mod 3), then q1 = 331. 
But 53ja(33112), 7|a(532), and 7 E 13 E 31 E 1 (mod 3). This shows that p + 61. 
Also, q1 + 61, since 187123|a(6112), 19|a(1871232), and 13 E 19 = 187123 = 1 
(mod 3). Hence, 612||/1/, so 97 | a(612) \N9 and we can have no further values of 
i > 2 with qi E 1 (mod 3). In particular, 972 |/1/. 

If p = 97, then 7|# by (i), so q1 = 7; but a(712) = r (above) E 1 (mod 3). 
Thus, q1 = 97. But 79|a(9712) and 79 = 1 (mod 3). 

This completes the proof. 
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5. PROOF OF THEOREM 3 

We note first that, modulo 8S 

a(^f') = 1 + Ri + q\ + ••• + qlBi = 1 + qi + 1 + ... + qt + 1 

= i + e .(<7. + i ) s 

and, writing a = 4a + 1, 

a(p«) = 1 + po(pha) = 1 + p(l + 2a(p +.1)) = (2a + 1)(p + 1). 

Since O(N) = 22V, we have 

t 
(2a + l)(p + 1) II (1 + 3, (a, + 1)) = 2p (mod 8), 

i = l ^ ^ 

or, since p = 1 (mod 4), 

(2a + D^-t-i" O (1 + B (a. + 1)) = 1 (mod 4). 
z i = i 

If a^ E 1 (mod 4) and 3i = 1 (mod 2), then 1 + 3i(ai + 1) = 3 (mod 4); other-
wise, 1 + 3i(qi + 1) E 1 (mod 4). Thus, 

3*(2a + 1)P * 1 E 1 (mod 4). 

We see that 3* E 2x + 1 (mod 4), so now 

(2a + 2x + 1)P * X E 1 (mod 4). 

Considering separately the possibilities p E 1 (mod 8) and p E 5 (mod 8) , we 
find that this is equivalent to 

_ P - 1 a + x - £ — T — (mod 2), 

o r p - a = p - 4 a - I E kx (mod 8), as required. 

Note: Since this paper was prepared for publication, we have noticed that 
Ewell [2] has also given a form of Theorem 3. Both his statement of the theo-
rem and his proof are more complicated than the above. 
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In Memoxy oi \lojm Hoggoutt 

Let Fn denote the nth Fibonacci number: 

F0 = 0, F1 = 1, Fn+1 = Fn + Fn_ie 

Tallman [2] noted that 0 = FQ9 1 = F1 = F29 3 = Fh, 21 = FQ, and 55 = F10 are 
triangular, i.e.9 of the form k(k + l)/2, and asked if any more Fibonacci num-
bers are triangular. In this paper, we develop some congruences which must be 
satisfied by n if Fn is triangular. As a result, we prove that there are no 
more triangular numbers among the first billion Fibonacci numbers. 

Moreover, the congruences developed here are so strikingly similar that they 
suggest an approach to proving that the known triangular Fibonacci numbers are 
in fact the only ones. A pattern is strongly suggested, but unfortunately any 
underlying generality remains elusive, leaving us with a good notion of how to 
test, but with no assurances that such tests will succeed. Thus, in a sense, 
the results in this paper constitute mere number ovunohing9 albeit on a rather 
massive scale, given the simplicity of the techniques. 

Throughout this paper, let 

A = 233 • 5 = 120 

B = 1A = 233 • 5 • 7 = 840 

C = 6B = 24325 • 7 = 5040 

D = HC = 24325 • 7 • 11 = 55,440 

E = 10D = 2532527 • 11 = 554,400 

F = UE = 2532527 • 11 • 13 = 7,207,200 

G = 17F = 2532527 • 11 • 13 • 17 = 122,522,400 

H = i9£ = 2532527 • 11 • 13 * 17 • 19 = 2,327,925,600 

Our approach is to show successively that 

if Fn is triangular, then n = 0, 1, 2, 4, 8, 10, M/2 or M - 1 (mod M) (1) 

for M = A9 ..., H. Once (1) is established for M = E9 it follows at once that 
there are no new triangular Fibonacci numbers with subscript less than one 
billion. 

At the heart of what we do here is the simple observation that an integer 
/ is triangular if and only if 8/ + 1 is a square. 

If p is an odd prime, let Z(p) be the entry point of p in the Fibonacci 
sequence. That is, Z(p) is the subscript of the first Fibonacci number divisi-
ble by p. Then p\Fn if and only if Z(p)\n. Tables of Z(p) for p < 101* may be 
found in [1]. 

Further, let k(p) be the period of the Fibonacci sequence modulo p. It is 
known that: 
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If Z(p) = 2m + 1, then k(p) = 4Z(p). 

If Z(p) = 2(2w + 1), then k{p) = Z(p). 

If Z(p) = 2a(2m + 1) with a > 2, then £(p) = 2Z(p). 

What we will do is to find primes p for which k(p) divides the new modulus 
but not the old one, and then eliminate most choices of n relative to the new 
modulus by showing that 1 + 8Fn is not a quadratic residue modulo p. The same 
thing may be done with composite moduli for alleged resedues, but it was neces-
sary to do so only once. 

Lemma. If F is triangular, then n = 0, 1, 2, 4, 8, 10, 20, 24, or 39 (mod 40). 

Proof: We cannot have n E 3,5,6, or 7 (mod 10) or else 1 + 8Fn is a non-
residue (mod 11). We rule out n = 9, 11, 12, 14, or 18 (mod 20) to avoid having 
1 + 8Fn be a nonresidue (mod 5). Similarly, we cannot have n = 3 , 5, or 6 (mod 
8) or else 1 + 8Fn is a nonresidue (mod 3). Finally, n = 28 (mod 40) is impos-
sible because 1 + 8F28 is a nonresidue (mod 41). 

Theorem. (1) holds for M = A, B9 C, D, E, F9 G9 and H. 

Proof: The lemma and Table 1 establish the result for M = A; in Table 1 
and the following tables, the entry gives a modulus which eliminates Fn as a 
triangular number. Then Table 2 establishes the result for M = B. The proofs 
for M = C9 D9 E9 F9 G, and H are given in Tables 3, 4, 5, 6, 7, and 8, respec-
tively. 

Table 1 
\ n 
X \ 

0 

40 

80 

X 

2521 

31 

X+l 

9 

9 

X+2 

31 

2521 

X+4 

61 

31 

X+8 

31 

31 

X+10 

31 

2521 

X+20 

31 

2521 

X+24 

31 

2521 

61 

X+391 

9| 

9 

^\ 
0 

A 

2A 

3A 

4A 

5A 

6A 

X 

421 

911 

83 

911 

911 

13 

X+l 

29 

29 

29 

29 

71 

29 

Ta 
X+2 

71 

911 

13 

71 

71 

71 

ble 

X+4 

1427 

71 

71 

83 

71 

911 

2 

X+8 

71 

71 

281 

281 

911 

13 

X+10 

911 

911 

83 

281 

13 

911 

X+A/2 

911 

911 

13 

421 

911 

281 

X+A-l 

29 

71 

29 

29 

29 

29 

v n I x \ 
0 

B 

2B 

3B 

4B 

5B 

X 

19 

19 

19 

19 

X+l 

19 

19 

167 

19 

19 

Ta 
X+2 

19 

17 

167 

19 

17 

ble 
X+4 

19 

17 

7 

19 

17 

3 
X+8 

17 

19 

241 

17 

19 

X+10 

17 

19 

23 

17 

19 

X+B/2 

19 

7 

19 

19 

167 

19 

X+B-ll 

19| 

19 

167 

19 

19 

x\" 
0 

C 

2C 

3C 

4C 

5C 

6C 

7C 

8C 

9C 

10C 

X 

89 

43 

89 

331 

89 

881 

43 

199 

199 

199 

X+l 

199 

199 

199 

199 

43 

199 

199 

199 

199 

89 

Ta 
X+2 

89 

89 

89 

881 

89 

307 

199 

199 

199 

307 

Die 
X+4 

89 

43 

89 

661 

331 

199 

199 

199 

331 

89 

4 
X+8 

89 

881 

43 

199 

199 

199 

331 

89 

43 

89 

X+10 

89 

307 

199 

199 

199 

307 

991 

89 

89 

89 

X+C/2 

881 

43 

199 

199 

199 

89 

43 

89 

331 

89 

X+C-l 

89 

199 

199 

199 

199 

43 

199 

199 

199 

199 
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Table 5 Table 6 
x^ 

0 

D 

2D 

3D 

4D 

5D 

6D 

7D 

8D 

9D 

X 

101 

3001 

151 

3001 

101 

3001 

151 

3001 

X+l 

151 

101 

101 

3001 

1601 

151 

101 

101 

3001 

X+2 

101 

3001 

3001 

101 

1601 

101 

3001 

3001 

101 

X+4 

3001 

3001 

3001 

3001 

1103 

3001 

3001 

3001 

3001 

X+8 

101 

151 

3001 

3001 

1103 

101 

151 

3001 

3001 

X+10 

47 

101 

47 

151 

47 

701 

101 

701 

151 

X+D/2 

151 

3001 

3041 

101 

3001 

151 

3001 

1103 

101 

3001 

X+D-l 

3001 

101 

101 

151 

1601 

3001 

101 

101 

151 

x\? 
0 

E 

2E 

3E 

4E 

5E 

6E 

7E 

8E 

9E 

10E 

HE 

12E 

X 

79 

1951 

131 

79 

233 

521 

521 

521 

521 

521 

521 

521 

X+l 

521 

521 

859 

233 

521 

79 

521 

103 

859 

521 

521 

103 

X+2 

79 

131 

2081 

859 

521 

521 

521 

521 

521 

521 

521 

79 

X+4 

79 

859 

233 

521 

521 

521 

521 

521 

521 

521 

2081 

859 

X+8 

859 

521 

521 

521 

521 

521 

521 

521 

79 

2081 

79 

131 

X+10 

521 

521 

521 

521 

521 

521 

521 

1951 

859 

3329 

79 

859 

X+E/2 

521 

521 

521 

521 

521 

521 

79 

1951 
131 

79 

3121 

521 

X+E-l 

103 

521 

521 

859 

103 

521 

79 

521 

233 

859 

521 

521 

Table 7 Table 8 
\ n 
xX 

0 

F 

2F 

3F 

4F 

5F 

6F 

7F 

8F 

9F 

10F 

11F 

12F 

13F 

14F 

15F 

16F 

X 

3571 

67 

1597 

1597 

3571 

239 

919 

919 

1871 

3571 

3469 

1597 

919 

3571 

919 

919 

X+l 

3571 

919 

919 

3469 

3571 

1597 

3571 

1597 

1597 

373 

67 

3571 

67 

3571 

1597 

919 

X+2 

3469 

919 

3571 

919 

3469 

919 

3571 

3469 

919 

373 

1223 

3571 

3571 

1597 

1597 

3571 

X+4 

3571 

67 

919 

1021 

3571 

67 

1597 

1597 

3571 

3469 

239 

3469 

919 

3571 

3469 

1597 

X+8 

3571 

883 

1597 

3469 

3571 

67 

3469 

919 

3571 

919 

1597 

1597 

3571 

3469 

919 

67 

X+10 

3469 

919 

3571 

3469 

1597 

1597 

3571 

239 

919 

67 

3571 

239 

919 

1223 

3571 

3469 

X+F/2 

239 

3571 

3469 

1597 

919 

3571 

919 

919 

3571 

67 

1597 

1597 

3571 

239 

919 

919 

X+F-ll 

919 I 

1597 1 

3571 I 

67 

3571 1 

67 1 

373 1 

1597 

1597 1 

3571 

1597 

3571 

3469 

919 

919 

3571 

X 
0 

G 

2G 

3G 

4G 

5G 

6G 

7G 

8G 

9G 

10G 

116 

12G 

13G 

14G 

15G 

16G 

17G 

18G 

X 

113 

37 

229 

797 

191 

229 

9349 

9349 

9349 

113 

9349 

229 

9349 

9349 

37 

2281 

37 

9349 

X+l 

113 

9349 

37 

9349 

9349 

229 

37 

761 

37 

37 

9349 

9349 

37 

9349 

37 

797 

9349 

9349 

X+2 

37 

37 

37 

9349 

9349 

9349 

229 

9349 

37 

9349 

9349 

191 

683 

37 

9349 

229 

37 

37 

X+4 

9349 

9349 

9349 

113 

9349 

229 

9349 

9349 

37 

229 

37 

9349 

227 

113 

37 

229 

229 

227 

X+8 

9349 

9349 

37 

227 

37 

9349 

229 

113 

37 

419 

761 

191 

229 

9349 

9349 

9349 

113 

9349 

X+10 

229 

37 

9349 

227 

, 37 

37 

229 

37 

37 

37 

9349 

9349 

9349 

229 

.9349 

37 

9349 

9349 

X+G/2 

113 

9349 

229 

9349 

9349 

37 

2281 

37 

9349 

113 

37 

229 

797 

191 

229 

9349 

9349 

9349 

X+G-l 

9349 

9349 

797 

37 

9349 

37 

9349 

9349 

37 

37 

761 

37 

229 

9349 

9349 

37 

9349 

113 
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GUESSING EXACT SOLUTIONS 

CHARLES R. WALL 
Trident Technical College, Charleston, SC 29411 

(Submitted July 1983) 

A recent problem [1] in this journal provides a nice illustration of a tech-
nique for guessing exact solutions of polynomial equations from approximate 
solutions. The technique depends on nothing more complicated than the familiar 
fact that if ax2 + bx + o = 0 has roots s and t9 then s + t - -b/a and st = c/a. 

Problem H-335 asked for exact solutions of the equation 

x5 - 5x3 + 5x - 1 = 0. (1) 

One of the solutions is x = 1, and dividing (1) by x - 1 yields 

x1* + x3 - kx2 - kx + 1 = 0. (2) 

Using bracketing techniques and a calculator, it is relatively easy to see that 
(2) has rounded solutions: rx= -1.8271, r2 = -1.3383, r3= 0.2091, vh =1.9563. 

Now we seek pairs of these solutions that have recognizable sums and pro-
ducts. Fibonacci fans are certainly familiar with the number a = (1 + i/5)/2 = 
1.6180... . Upon noting that r2 + rh « 0.618 « a 1 and r2rk * -2.618 * -a2, we 
suspect that v2

 and *\ are solutions of 

x1 - a'1x - a2 = 0. (3) 

Long division, using familiar properties of powers of a, confirms that suspi-
cion as fact, since 

xh + x3 - kx2 - kx + 1 = (x2 - a_1x - a2){x2 + ax - a"2). 

Then we can verify that r2 and rh axe indeed solutions of (3), namely, 

= a"1 ± v'cT2 + 4a2 a - 1 ± V6 + 3a - 1 + ^ 5 ± V3Q + 6̂ 5 x 2 2 4 . 

Also, 3?1 and r3 are solutions of x2 + arc - a"2 = 0, namely, 

= -a ± Vq2 + 4a"2' -a ± /9 - 3a = -1 - \/5 ± /30 - 61/5 
* 2 " 2 4 

(Incidentally, the published solution was incorrect in that r± and r were 
each off by 0.5, because of an incorrect sign in the numerator.) 

REFERENCE 

1. Paul Bruckman. Advanced Problem H-335. The Fibonacci Quarterly 20, no. 1 
(1982):93. 
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ON THE REDUCTION OF A LINEAR RECURRENCE OF ORDER r 

DORSN ANDRICA 
"Babes-Bolyai" University, 3400 Cluj-Napoca, Romania 

SERBAN BUZETEANU 
University of Bucharest, 7000 Bucharest, Romania 

(Submitted August 1983) 

1. INTRODUCTION 

J. R. Bastida shows in his paper [1] that, if u G R9 u > 1, and (xn)n>Q is 
a sequence given by 

Xn + 1 = UXn + >/(u2 - 1)(X* - #* ) + (^1 - UXQ)2
9 Yl > 0S (1 ) 

then xn + 2 = 2uxn + 1 - xn9 n > 0. So, if the numbers u, x0, and x1 are integers, 
it results that xn is an integer for any n ^ 0. 

Bastida and DeLeon [2] establish sufficient conditions for the numbers u, 
t9 xQ!> and x1 such that the linear recurrence 

Xn + 2 = Xn + 1 ~~ ^xn \*-J 

can be reduced to a relation of form (1), between xn and xn+1. Consequently, 
the relation's two consecutive terms of Fibonacci, Lucas, and Pell sequences 
are given in [2]. 

S. Roy [6] finds this relation for the Fibonacci sequence using hyperbolic 
functions. 

In this paper we shall prove that if a sequence (xn)n>1 satisfies a linear 
recurrence of order r > 2, then there exists a polynomial relation between any 
r consecutive terms. This shows that the linear recurrence of order r was re-
duced to a nonlinear recurrence of order v - 1. 

From a practical point of view, for r > 3, expressing xn in the function of 
xn_l9 ..., xn_r+1 is difficult, because we must solve an algebraic equation of 
degree > 3 and choose the "good solution." 

If v = 2, we can do this in many important cases. An application of this 
case is a generalization of the result given in [3]. 

2. THE MAIN RESULT 

Let (xn)n>1 be a sequence given by the linear recurrence of order r9 

xn = E ^^n-r + k-i^ n>r + I, Xi = CLi9 1 < i < r9 (3) 
k=l 

where al9 ..., ar and a15 ..., ar are given real numbers (they can also be com-
plex numbers or elements of an arbitrary commutative field). Suppose a1 + 0. 
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For n ^ p9 we consider the determinant 

n+l 

n+ r-2 

(4) 

and then prove the following theorem. 

Theorem 1. Let (xn)n>1 be a sequence given by (3) and let Dn be given by (4). 
Then, for any n > r5 we have the r relation 

D = (_i)<*-»<"-*>a»-*zv (5) 

Proof: Following the method of [4], [5], and [7] (for v - 2), we introduce 
the matrix 

Xn-r+2 
Xn-r+3 

Xn 

(6) 

It is easy to see that 

0 
0 

0 
0 

1 
0 

0 
0 

0 
1 

0 
0 

0 
•0 

0 
0 

0 
0 

0 
0 

0 
0 

1 
0 

0 
0 

0 
1 

*-r-2 "-r-1 

A n = A n + 1 9 (7) 

so that 

0 0 0 0 

0 0 0 0 

a, a0 a~ a,, 

0 1 0 

0 0 1 

^r - 2 ^v-1 ^2' 

Ay, — Ay, (8) 
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Passing to determinants in (8)s we obtain 

{{-~iy-1a1)n'vDr = Dn for n > r; 
that is, the relation (5) is true, 

Theorem 2. Let (xn)n>1 be the sequence given by the linear recurrence (3) . 
There exists a polynomial function of degree r, Fr iRr -> R9 such that the rela-
tion 

Fr(xn, xn_1$ ..., xn_r + 1) = (-D^-^-^aJ-'^Ca,, ar_ls ..... ax) (9) 

is true for every n ^ r. 

Proof: Observe that, from the recurrence (3), we can compute the value of 
Dr knowing a19 a2, ...9 otP. Also, from the recurrence (3) 9 we can express suc-
cessively all elements of Dn as a function of the terms xns xn_19 „ . . , xn_r+l 
of the sequence (xn)n^1. Thus there exists a polynomial function of degree ps 

FriRr -> R such that the relation (9) is true. 
If we suppose that the equation 

r -p \X n 3 X n _ -^ j o « « s Xn _ p+ ]_) ~ \ ~ L) CC-^ i / p ^ U t p j * e . 9 O G - ^ , / 

can be resolved with respect to xn9 we find that xn depends only on the terms 

If this is possibles the expression of xn is, in general, very complicated* 
When v = 29 we obtain 

F2(x, y) = x2 - a?_xy - a±y2, (10) 

and it results that, for the sequence (xn)n>1 given by 

xn = a1xn_2 + a2xn_lS n > 3, x1 = a1? x2 = a2, (11) 

the relation F2(xn$ xn_1) = (-l)naJ~2F2(a2s ax) holds. The last relation is 
the first result of [2], where it was proved by mathematical induction,, If we 
write this relation explicitly, we obtain 

(2xn - a2xn_1)2 = (a2. + 4a1)x2_1 + 4(-l)n~1ai~2 (a^2 + a2axa2 - a2). (12) 

From the relation (12), under some supplementary conditions concerning the 
sequence (xn)n^l5 we can express xn in terms of ccn_1, 

Again, from (12), it follows that if the sequence satisfies (11)s where 
a19 a2, a19 a2 G N9 then for any n ^ 3, 

(a2 + 4a1)x2_1 + 4(-l)n"1a^"2(a1a2 + a2a1a2 - a2) 

is a square. This result is an extension of [3], 
In the particular case v = 3, after elementary calculation, we obtain 

F3(x9 y9 z) = -x3 - (a1 + a2a3)y3 - a\zz + 2a3x2y + a2^2s 

- (a2 + a1a3)y2z - (a2 - a2)xy2 

- a1a3xz2 - 2a±a2yz2 + (3ax - a2a3)xyz. 

So from relation (9), we get that, for the linear recurrence 

xn = a-^xn.3 + a2^n_2 + a3xn_ls n > 4, ^x = al9 .r2 = a2, x3 = a3, (13) 

the relation F3(xn9 xn_19 xn_2) = a*~3F3(a3, a2, a1) is true, 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN 

Assistant Editors 
GLORIA C. PADILLA and CHARLES R. WALL 

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS 
to PROFESSOR A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each 
problem or solution should be on a separate sheet (or sheets). Preference will 
be given to those typed with double spacing in the format used below. Proposed 
problems should be accompanied by their solutions. Solutions should be received 
within four months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy 

Fn+2 = Fn + l + Fn> ?0 = *> Fl = *> 
and 

Alsos a and 3 designate the roots (1 + y/E)/2 and (1 - 75)/2, respectively, of 
x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-538 Proposed by Herta T. Freitag, Roanoke, VA 

Prove that /5gn = gLn + Ln_19 where g is the golden ratio (1 + v/5)/2. 

B-539 Proposed by Herta T. Freitag, Roanoke, VA 

Let g = (1 + y/5)/2 and show that 

1 + 2E< 1 + 2 E ( - D i g ' 3 i = 1. 

B-540 Proposed by A. B. Patel, V. S. Patel College of Arts & Sciences, 
Bilimora, India 

For n = 2, 3, . ..-, prove that 
Fn-lFnFn + lLn-lLnLn + l 

is not a perfect square. 

B-541 Proposed by Heinz-Jurgen Seiffert, student, Berlin, Germany 

Show that Pn+3 + Pn + 1 + Pn = 3(-l)nLn (mod 9), where the Pn are the Pell 
numbers defined by P0 = 0, P± = 15 and 

^n+2 = 2Pn+1 + Pn for n i n f = {09 1, 2, ...}. 
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B-5^2 Proposed by loan Tomescu, University of Bucharest, Romania 

Find the sequence satisfying the recurrence relation 

u(n) = 3u(n - 1) - u(n - 2) - 2u(n - 3) + 1 

and the initial conditions u(0) = u(l) = u(2) = 0. 

B-5^3 Proposed by P. Rubio, Dragados Y Construcciones, Madrid, Spain 

Let a0 = ax = 1 and ccn + 1 - ccn + an_1 for n in Z+ = {1, 2, . ..}. Find 
a simple formula for 

G(x) = 2L* 'TT xk' 
k = 0 Kl 

SOLUTIONS 

Same Parity 

B-514 Proposed by Philip L. Mana, Albuquerque, N.M. 

Prove that (5) + f* t ) E n (mod 2) f o r « = 5, 6, 7, ... . 

Solution by L. Cseh, student, Cluj, Romania 

It is well known that ( ) - ( ) + ( _ i )' ^or e v e rY n ^ p« Using 
this successively, we obtain: 

From here: 

and so 

C V) - G)+ « C ) + 6 G ) + « G ) + (") • l " -> 5-
(? ) + (" r ) - 2G)• ' 0 + i!)+ « G ) + -
(5) + C 5 4) E n ( m ° d 2) f ° r n = 5s 6' "" ' 

Also solved by Paul 5. Bruckman, Adina Di Porto and Piero Filipponi, L. A. G. 
Dresel, C. Georghiou, Lawrence D. Gould, F. T. Howard, Walther Janous, M. S. 
Klamkin, H. Klauser, L. Kuipers, Graham Lord, Vania D. Mascioni, Imre Merenyi, 
George N. Philippou, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Paul Smith, 
J. Suck, W. R. Utz, and the proposer. 

Disguised Lucas Number 

B~515 Proposed by Walter Blumberg, Coral Springs, FL 

Let QQ = 3, and for n > 0, Qn + 1 = 2Q2
n + 2Qn - 1. Prove that 2Qn + 1 is 

a Lucas number. 

Solution by C. Georghiou, University of Patras,, Greece 

We show that 2Qn + 1 = L2n + 2. Let i?n = 2Qn + 1. Then i?0 = 7, and for 
n > 0, 

*n+l " *n - 2. (*) 
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Now, using the identity Lhn = L2
2n - 2, it is easily verified that Rn = L2n + 2 

is a solution of (*) . Since i?0 = 7 = L22, i? = L2n + 2 is the unique solution 
of (». 

Also solved by Pauls. Bruckman, Laszlo Cseh, Adina Di Porto and Piero Filipponi, 
L. A. G. Dresel, Herta T. Freitag, Walther Janous, M. S. Klamkin, L. Kulpers, 
Graham Lord,VaniaD. Mascioni, Imre Merenyi, George N. Philippou, Bob Priellpp, 
H.-J. Seiffert, A. G. Shannon, Sahib Singh, P. Smith, Lawrence Somer, J. Suck, 
M. Wachtel, Gregory Wulczyn, David Zeitlin, and the proposer. 

Pell Equation Multiples of 36 

B-516 Proposed by Walter Blumberg, Coral Springs, FL 

Let U and V be positive integers such that U2 - 5V2 = 1. Prove that UV 
is divisible by 36. 

Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria 

From the theory of Pellian equations, it is very well known that start-
ing from the minimal solution u0 = 9, VQ = 4, all solutions in natural numbers 
can be obtained via the recursion un+i + vn+1V5 = (un + Vnv5)(9 + 4v5). Thus, 
the claim 36JZ7F can be shown by induction: 36\uQvQ = 36. Assume that 36\unvn, 
Since 

un + ivn + i = (9un + 20z>M)(4wn + 9v n) = 36(2^ + 5v^) + 161unvn, 
it follows at once that 36\un+1Vn+1. 

Also solved by Pauls. Bruckman, Laszlo Cseh, Adina Di Porto and Piero Filipponi, 
L. A. G. Dresel, C.Georghiou, Fuchin He, M. S. Klamkin, H. Klauser, Edwin M. 
Klein, L. Kuipers, Imre Merenyi, Bob Prielipp, H.-J. Seiffert, A. G. Shannon, 
Sahib Singh, P. Smith, Lawrence Somer, J. Suck, W. R. Utz, M. Wachtel, Gregory 
Wulczyn, and the proposer. 

Square Sum of Adjacent Factorials 

B-517 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Find all n such that n\ + (n + 1)! + (n + 2)! is the square of an inte-
ger „ 

Solution by Paul S. Bruckman, Fair Oaks, CA 

Let 6n = n\ + {n + 1)! + (n + 2)!; then 

9n = n\ (1 + n 4- 1 .+ in + l)(n + 2)) = n\ (n + 2)2. 

We see that Gn is a square iff n! is a square. Note that 0O = 1 + 1 + 2 = 2 
and ex = 1 + 2 + 6 = 32. 

By Bertrand's Postulate, for any n > 1, there exists a prime p such that 
n < p < 2n. This, in turn, implies that for any n > 2, there exists a prime p 
such that p < n < 2p. Hence, if n > 2, p\nl but kp \ nl for all k > 2. In par-
ticular, p 2 | n\ . This shows that nl cannot be a square if n > 2. Thus, the 
only values of n for which 9n is square are n = 0 and n = 1. 

Also solved by Laszlo Cseh, L. A. G. Dresel, Adina Di Porto and Piero Filipponi, 
C. Georghiou, Lawrence D. Gould, Fuchin He, Walther Janous, M. S. Klamkin, 
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Edwin M. Klein, L. Kuipers, Graham Lord, VaniaD. Mascioni, Imre Merenyi, George 
N. Philippou, Bob Prielipp, Sahib Singh, Paul Smith, J. Suck, Gregory Wulczyn, 
H. Klauser, and the proposer. 

Fibonacci Inradius 

B-518 Proposed by Herta T. Freitag, Roanoke, VA 

Let the measures of the legs of a right triangle be 

Fn-lFn+2 a n d 2FnFn+l' 

What feature of the"triangle has F F as its measure? 
0 n - 1 n 

Solution by L. A. G. Dresel, University of Reading, England 

The sides of the right-angled triangle are given as 
CL = Fn_1Fn+2 = (Fn+1 ~ Fn)(Fn+l + Fn) = Fn + 1 ~ Fn > 

b = 2F F -
hence, 

a2 + b2 - (F„2+1 - F 2 ) 2 + 4F2F2
+1 = (F2

+1 + F„2)2 

so that the third side is c = F2 , + F2, and 

a + b + o = 2F2 + 1 + 2FnFn + 1 = 2Fn + 1Fn + 2, 

while Fn_1F (a + b + o) = ab = twice the area of the triangle. It follows that 
Fn_1Fn measures the radius r of the incircle, that is, the circle inscribed in 
the triangle and touching the three sides. 

Also solved by Pauls. Bruckman, Laszlo Cseh, Adina Di Porto and Piero Filipponi, 
C. Georghiou, Lawrence D. Gould, Walther Janous, M. S. Klamkin, H. Klauser, L. 
Kuipers, Vania D. Mascioni, Imre Merenyi, Bob Prielipp, Sahib Singh, Lawrence 
Somer, J. Suck, Gregory Wulczyn, and the proposer. 

Lucas Inradius 

B-519 Proposed by Herta T. Freitag, Roanoke, VA 

Do as in B-518 with each Fibonacci number replaced by the corresponding 
Lucas number. 

Solution by L. A. G. Dresel, University of Reading, England 

Since the proof for B-518 given above uses only the recurrence relation 
for the Fibonacci numbers Fn+1 = Fn + Fn_19 etc., the corresponding result re-
placing each Fk by Lk can be proved in exactly the same way. 

Also solved by the solvers of B-518 and the proposer. 
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Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
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that will assist the editor. To facilitate their consideration, all solutions 
should be submitted on separate signed sheets within two months after publica-
tion of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-381 Proposed by Dejan M, Petkovic, Nis, Yugoslavia 

Let N be the s e t of a l l n a t u r a l numbers and l e t m E N. Show t h a t 

/ \mT72m-2f n m-1 , v £ - 2 i - 2 

(i) «m - 2) - <-> ^ _ <g - *> + E2 - j i f e y y «** - 2i), " > 2. 
m-1 / s i — 2 i 

( i i ) 3(2m - 1) - E , 2 A , . , , • S(2m - 2i - 1 ) , rn > 2, 

( i i i ) 5(2TTZ) = - ^ E o A ; — s 3(2^ - 2i - 1 ) , m > 1, 
^ 22m - 1 £ = o 2 ^ + 1 ( 2 i + 1 ) ! 

where 

C(^) = S n _ W5 m > 29 a r e Riemann z e t a numbers 

and 
B(m) - E ( - ) " " 1 ( 2 n - l ) " " , m > 1. 

» - i 

H-382 Proposed by Andreas N. Philippou, Patras, Greece 

For each fixed positive integer k, define the sequence of polynomials 

^ V P > = E ( " ; ; • ; : . : « i ) ( L f £ ) B l + " + " s <» > °. - < p <->. ( i ) 

where the summation is taken over all nonnegative integers n1, . . ., nfe such that 
n-L + 2n2 + "• + knk = n + 1. Show that 

^ ( p ) < (1 - p)p'(n+1)(l - p f c ) ^ (n > k - 1, 0 < p < 1), (2) 

where [n/k] denotes the greatest integer in (n/k). 
It may be noted that (2) reduces to 

F*U2"(*£±)lnm (n**-l> (3) 
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and 
Fn < 2"(3/4)[n/2] (n > 1), (4) 

where {F„ }^ = o and {-^^ = 0 denote the Fibonacci sequence of order k and the 
usual Fibonacci sequence, respectively, if p = 1/2 and p = 1/2, /c = 2. 

References 

1. J. A. Fuchs. Problem B-39. The Fibonacci Quarterly 2, no. 2 (1964):154. 
2. A. N. Philippou. Problem H-322. 2fe Fibonacci Quarterly 19, no. 1 (1981): 

93. 

H-383 Proposed by Clark Kimherling, Evansville, IN 

For any x > 0, let 

1 n 
cx = 1, c2 = x, and cn = - 2 X ^ for n = 3, 4, ... . 

n i = 1 

Prove or disprove that there exists y > 0 such that lim z/"cn = 1. 

H-384 Proposed by Heinz-Jurgen Seiffert, Berlin, Germany 

Show that for n = 0, 1, 2, ..., 

* 1 fc-i 

fe = 0 (2^) !J=0 

\2 
J2 2 E 2n+ 1 

SOLUTIONS 

Waiting Again 

H-358 Proposed by Andreas N. Philippou, University of Patras, Greece 
(Vol. 21, no. 3, August, 1983) 

For any fixed integers k ^ 1 and r ^ 1, set 

f«) = y fni + ••• + nk + r - i\ n > 0 
•T̂ i.r Z- U ... , „ r - ij' n " u' 

where the summation is over all nonnegative integers n19 ..., nk satisfying the 
relation nx + 2n2 + * * * + knk = n. Show that 

£ Cf <*> /2n) = 2r*. 

You may note that the present problem reduces to H-322(c) f or r = 1 (and k > 2), 
because of Theorem 2.1 of Philippou and Muwafi [1]. In addition, the present 
problem includes as special cases [for k = 1, r = 1, and k = 1, r (^1)] the 
following infinite sums; namely, 

Reference 
£<l/2») =2 and t \(n + r " 1)/2^1 - 2'. 
n-o n-o Lv n / J 

1. A. N. Philippou & A. A. Muwafi. "Waiting for the kth Consecutive Success 
and the Fibonacci Sequence of Order K." The Fibonacci Quarterly 20, no. 1 
(1982):28-32. 
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Solution by the proposer 

S e t 

.p(k) , . _ ^ (ni + - • + nP + r - l\ / l - p\ni + "- + ^k 

nx, 2n2 .+ • • • + fcnfc =n 
(n > 0 , -oo < p < oo). 

I t f o l l o w s , by means of t h e t r a n s f o r m a t i o n n^ = mi ( 1 < £ < fc) and 

k 
n = m + Y* ^ - l)mi9 

i - 1 
t h a t 

n = 0 
, n + ... + n 

n = 0 

= y V h i + • • • + «fc + r - l \ / n x + • • - + n , \ / l - p \ ^ + -
n = o w^.Tf, » k 9 \ « i + • " + " f c A n i > • • • > nk) \ V I 

rt]_, 2n2 + • • • + /cnk =?7 

= ^ Im + r - 1 \ / 1 - p \ w
 v / m \ « + 2m2+ • . . + hnk 

- o \ m )[ p ) ni92.tnkB[m19 . . . , m J P 
^! + • •. +mk = m 

00 /™ -i- VJ _ l\/l — pX"7 

= X) ( )( ) (p + p2 + ' ' ° + pk)m , by the multinomial theorem, 

= E ("^(rV1 " Pfc>m = (1 " (1 " Pk))~\ for |1 - pk\ < 1, 
m = 0 V m ' 

by the binomial theorem, 
= p~kr , for k odd and 0 < p < \/2~, or Zc even and - ^fl < p < $2. (2) 

For p = 1/2, (1) and (2) establish the problem. For r = 1, (1) and (2) show 
H-348. 

Also solved by Paul 5. Bruckman* 

Zetanacci 

H-359 Proposed by Paul S. Bruckman, Carmlchael, CA 
(Vo2. .22, 210. 3, August 1983) 

Define the "Zetanacci" numbers Z(n) as follows: 

Z(n) = I! F +., n = 1, 2, 3, ... [with Z(l) = 1]. (1) 
P'\\n 

For example, Z(n) = 1, n = 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, . ..; Z(n) = 2, 
n = 4, 9, 12, 18, 20, ...; Z(8) = 3, Z(16) = 5), Z(135,000) = Z(233351+) = 45, and 
so forth. 

(A) Show that the (Dirichlet) generating function of the Zetanacci numbers is 
given by: 

E Z(n)n-S = 0 (1 - p~s - p~2s)'\ 
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(B) Show t h a t 

Fl (1 - p~s - p " 2 s ) = £) M(PM) • |y (n /P(n)) | • n~s , 
P n = i 

where y is the Mobius function and 

P(n) = II P [with P(l) = 1]. 

Solution by C. Georghiou, University of Patras, Greece 

The solution of the problem is based on the following known proposition 
[see, e.g., G. Polya & G. Szego, Problems and Theorems in Analysis II (Springer-
Verlag, 1976), pp. 121, 312]: 

"Let f(n) be a multiplicative arithmetical function (m.a.f.). Then we 
have 

E f(n)n~s = 0(1 + f(p)p~s + f(p2)p~2s + f(p3)p-3s + •••) (*) 
n = l P 

and conve r se ly , i f (*) holds. , then f(n) i s a m . a . f . " 

(A) From the d e f i n i t i o n , we no te t h a t Z(n) i s a m .a . f . and Z(pk) = Pf e + 1 
for every prime p . The re fo re , from ( * ) , we have 

£ Z(n)n"s = II (1 + ^2P"S + £ \p- 2 s + FhP~3s + •••) 
n»l p 

= n ( i - p _ s - p-zs)-\ 
V 

where we used the fact that the (ordinary) generating function of the sequence 

^n + i^-o i s f(x) = (1 " x ~ « 2 )" 1 -
(B) We have, according to (*), 

n (i - p-sv2s) = n (i + np)p-s + np2)p-2s + np3)p-3s + •••) 
P V 

- £ f(n)n-s, 
n= 1 

where f(n) is a m.a.f. and /(l) = 1, f(p) = -1, f(p2) = -1, and /(p*) = 0 for 
every prime p and /c > 2. Thus the problem reduces to that of finding a m.a.f. 
/(n) with the above-stated properties. By choosing f(n) such that f(l) = 1 and 

f(pk) = P(p) - lyCp^"1)!, 

where y i s the Mobius f u n c t i o n , for every prime p and k ^ 1 the above r e q u i r e -
ments a r e s a t i s f i e d . I f n = pnipnz . . . p n k 5 then s i n c e y i s a m . a . f . , we have 

f{n) =M(Pmi, pmi, . . . . POTfc) • |y(n/(pm ipm 2 . . . pmk))\ 

= y(p(n) * |y (n /P(n) ) | 

from the definition of P(n), and this proves (B). 

-Also solved by L. Kuipers and the proposer. 
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Say A 

H-360 Proposed by M. Wachtel, Zurich, Switzerland 
(Vol. 21, no. 4, November, 1983) 

Let: F F 4- F2 = A 

F F + F2 = A 
x n + l1 n + 2 ^ c n+3 M 2 

W p + F2 -A 
Show that: 

1. no integral divisor of A is congruent to 3 or 7 modulo 10, 

2. 4^2 + 1, as well as A1A3 + 1, are products of two consecutive integers. 

Solution by Paul S. Bruckman, Fair Oaks, CA 

We make a change in notation. Let 

Bn = FnFn + l + ?« + 2 (1) 
n̂ " BnBn+1 + 1, (2) 

°n " S*Bn+2 + 1, M - 0, 1, 2, ... . (3) 

Note that 

Bn = F„FB+1 + Fn+3F„+1 + (-l)n+1 = Fn+1(Fn+, + Fn) - (-l)n 

= Fn + i(Pn + 2 + Fn + i + Fn + 2 - Fn + 1) - (-1)", 
or 

Bn = 2Fn+1Fn+2 - (-1)". (4) 

Proof of Part 1: It is sufficient to prove that no prime p with p E ±3 
(mod 10) divides Bn (for all ri) , since any number congruent to 3 or 7 (mod 10) 
divisible by such a prime. Note that 

B„ = FnFn + 1 + (Fn + 1 + Fn)2 = F2
n + 1 + 3Fn + 1Fn + F>, 

or upon factorization: 

Bn = (Fn+1 +a2Fn)(Fn+1 + S 2 F n ) , (5) 

where a and 3 are the usual Fibonacci constants. 
Suppose p is any prime with p E ±3 (mod 10). Then, (5/p) = (p/5) = -1. 

According to the calculus of "complex residues" (see [1])9 we can define 

a = 2_1(1 + i/5) and 3 = 2_1(1 - )/5) (mod p) 

as "complex residues" and manipulate such quantities algebraically in a manner 
analogous to that employed with ordinary complex numbers. In this proof, we 
assume that all congruences are modulo p and omit the notation "(mod p)" where 
no confusion is likely to arise. 

Assume Bn E 0 (mod v) . Then one of the two factors indicated in (5) must 
vanish (mod p) . If Fn + 1 + a2Fn E 0, thenan + 1 - 3n + 1 + an + 2 - $n~2 E 0, imply-
ing 

an + 1(l + a) E 3n"2(33 + 1) ̂ >an + 3 = 23n =»a2n + 3 = 2(-l)n 

and 
32n + 3 E -2-1(-l)n. 

Hence, 
F2n+3 = 5-^(a2n + 3 - 32n + 3) = (2 + 2"1)5-^(-l)n E 2-15ig(-l)n. 
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Similarly, if Fn + 1 + $2Fn E 05 then F2n + 3 = -2"151"2(-l)n - Hence, Bn E 0 implies 
F2n + 3 E ±2~15is. However, this is impossible, since F2n + 3 is "real," while 5^, 
and thus ±2"15i$ are "imaginary" (mod p) . This contradiction establishes that 
Bn t 0 (mod p) , and hence the desired result. 

Proof of Part 2: Using (2) and (4), 

Cn = (2Fn+1Fn+2 - (-l)n)(2Fn+2Fn+3 + (-lj») + 1 

= ^n+l^n + 2^n+3 ~~ ^-v 1J ^n+2^n+3 ~ ^n+l) 

= 2 F n + 2 ( 2 F ^ + 1 F n + 3 - (-1) ) 

= 2F„2
+2{2(F„2

+2 - ( -1 ) " + 1 ) - ( - 1 ) " } , 

Cn = 2F*+2(2F*+2 + ( - 1 ) " ) . (6) 
Also , 

^n = (2F n + 1 F n + 2 - (~Dn)(2Fn + 3Fn + k - ( - l ) n ) + 1 

= /*Fn + IFn + 2Fn + 3Fn + k ~ 2(~l^n(Fn+lFn+2 + Fn + 3Fn + 0 + 2 

= hF F (F - F ) (F + F ) 
^ n + 2 n+3K n + 3 Ln + 2' K n+ 3 i n + 2 / 

- 2 ( - l ) " { F n + 2 ( F „ + 3 - Fn + 2) + Fn+3(Fn+3 + Fn + 2)} + 2 
= ^Fn+2Fn+3^Fn+3 ~ Fn + 2^> ~ 2 ( ~ 1 ) " (2Fn+ 2Fn+ 3 ~ Fn+2 + Fn+3*> + 2 

- (F„2
+3 " Fn^^Fn + 2Fn+3 ~ 2 ( - D " ) " ( - D " ( ^ + A + 9 ~ 2 < - l ) " ) 

= ( F „ 2
+ 3 - Fn+2 ~ ( - D n ) ( ^ n + 2 ^ + 3 " 2 ( - l ) " > 

= 2 ( ^ n + 3 "~ ^ M + 3 ^ n + l ) (2Fn+2Fn+3 - ~ " ( - l ) ) 

= 2 F B + 3 ( F „ + 3 - Fn+1)(2Fn+2Fn+3 - ( - 1 ) " ) , 
or 

°» = 2Fn+2Fn+3(2Fn+2Fn+3 - ( - 1 ) " ) . (7) 

We see from (6) and (7) t h a t Cn and Dn a r e equal to p roduc t s of two consecu t ive 
i n t e g e r s . Q.E.D. 

Reference 
1. Paul S. Bruckman. "Some Divisibility Properties of Generalized Fibonacci 

Sequences." The Fibonacci Quarterly 17, no. 1 (1979):42-49. 

Also solved by L. Kulpers and the proposer, 

Pell-Hell 

H-361 Proposed by Verner E. Hoggatt, Jr., deceased 
(Vol. 21, no. 4, November, 1983) 

Let Hn = -P2n/2, n > 0, where Pn denotes the nth Pell number. Show that 

Hm + Hn = Fk 

Em + Hn = Pk + Pfc-1 

if and only if m = n + 1, where Zt = In + 1 and 
?2«+2/2 + P2n/2 = ((2P2B+1 + P2„> + P2n)/2 = P2„+1 + P2n-

Editorial Note: Refer to the January 1972 article on the Generalized Zecken-
dorf Theorem for Pell Numbers. 
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(3) 

Solution by Paul S. Bruckman, Fair Oaks, CA 

We recall or indicate (without proof) some of the basic definitions and 
properties of the Pell and "modified Pell" numbers: 

Pn = y|(an - 3n); Qn = j(a» + 3n), n = 0, 1, 2, ..., (1) 

where a E 1 + /2, g E 1 - /2. 

Pn + 2 = 2Pn + 1 + Pn; Qn + 2 = 2«n+1 + «n. (2) 

Pn and ̂ n are increasing with n, except for §0 = gx = 1; 
Pn and §n are positive, except for P0 = 0. 

PU|PV iff u\v; QjQv =>U\V. (4) 
Setting u = 2, we see that Pn is even iff n is even. 

^n ~ 2Pn = ("Dn; hence, £n is odd for all n. (5) 
P(a+ 1)2, + P(a- 1)2, = 2 ? ^ ; Q(,+ 1)& - ̂ . 1}, = 2QbQab , if 2? is odd. (6) 

P » + P „ - l = 8 n « (7) 
(2Pm + „Sm_„, if w + n is even; 

Plm +P2n ={ (8) 
\2Pm-nQm+n» ±f m + n Is odd. 

Most of these identities and properties follow readily from the definitions in 
(1), or are obtainable from the abundant literature on these sequences. Given 
two positive integers m and n, we define s E m -f n and d = m - n5 where without 
loss of generality, we can assume m ̂  n. We first note that there is an error 
in the statement of the problem; the first part of the problem should say: 

Em + Hn = Pk if and only if m = n, in which case k = 2n. (9) 

Proof of Part 1: The proposed equation is equivalent to the following: 

P2m +Pzn = 2Pk- (10) 
Hence, Pk is the arithmetic mean of P2m and P2n . Since the Pi

 fs are increas-
ing with i and since 777 > n, this implies: 2n < /c < 2m. We consider two possi-
bilities: 777 + n is even or ffl + n is odd. 

(a) s is even: Then, using (8), we must solve Pk = PsQd. Thus, from (4), s\k9 
or k = rs for some r > 1. Since 2n < r(77Z + n) < 2777, we must have r = 1; hence, 
since Ps > 0, we must have Qd = 1 and d = 0 or L Since <i is even, d= 0, i.e., 
777 = n, so k = In. This is the only solution of (10) in this case. 

(b) s is odd: Again using (8), we are, therefore, required to solve Pk = PdQS' 
Hence, again using (4), d\k, or k = rd for some r > 1. If r is even, so is k; 
therefore, Pk [using (4)]. But d is odd; hence, Pd and Qs are odd [by (4) and 
(5)], making it impossible for Pk to be even. This contradiction shows that 
v must be odd. Incidentally, this also shows that k must be odd. If r = 1, 
then (since d > 1) we have Qs = 1 and s = 0 or 1, which is impossible, because 
s > 3. Therefore, r must be odd and greater than 2. Now the assumed equation 
implies 

us ing 

Hence, 

1985] 

p* 
the f i r s t p a r t of 

PdQs < ZPd<kr-l)d> 

~ Ppd ~ Pd®s ~ 2Pd®(r-l)d P(r-
( 6 ) . S i n c e r > 2 and d > 1 , 

P ( r . 2 ) d > 0 and Pd > 1 . 

w h i c h i m p l i e s 

•2)<f 
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Qs < 2Q(r_l)d< S(r_i)d+1» 

using (2). Then, by the property in (3), s < (r - l)d + 1, or equivalently, 
2m < k. However, since In < k ^ 2m, this implies that k = 2m9 i.e., k is even: 
CONTRADICTION! Therefore, no solution of (10) exists in this case. This es-
tablishes (9) . 

Proof of Part 2: We see from (7) that the proposed equation is equivalent 
to 

Plm + F2n = Wk- (11) 

We again consider two cases: s is even or s is odd. 

(a) s is even: Then, using (8), we are required to solve Qk = PsQrf. Since s is 
even, so is Ps , hence Q^. However, this is impossible, since Qk is odd for all 
k. This contradiction eliminates any solutions in this case. 

(b) s is odd: Now we are required to solve Qk = PrfQs* Using (4), we have s\k9 
or k = rs for some v > 1. If r = 1, then Qk = Qs > 0, so Pd = 1, implying that 
k = 1. Then, m = n + I and k = 2n + 1. This is a solution to equation (11). 
Suppose r > 2. Then, since Qrs - Q(r_2)s = 2QsQ(r-i)s [from (6)], we have 

Qk = «ra = FdQs > 2«ae(2._1)8, 
implying that Pj > 2^p_ ̂ g. But clearly 2Qn > P̂  for all n [using (7)]. Thus, 
Pd > P(r_ i)sj which implies d > (r - l)s, i.e., (m - ri) > (P - 1) (m + n) . This 
can be true only if v = 1, which contradicts the hypothesis that v ^ 2. 

Hence, Hm + En = §k if and only if /?? = n + 1, where fc = 2n + 1. Q.E.D. 

Also solved by L. Kuipers. 

#o*o* 
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