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FIRST INTERNATIONAL CONFERENCE ON FIBONACCI 
NUMBERS AND THEIR APPLICATIONS 
UNIVERSITY OF PATRAS, GREECE 

AUGUST 27-31, 1984 

A Report by Karel L. de Bouvere 

About fifty mathematicians from thirteen different countries gathered in 
Patras, on the Peloponnesos in Greece, to exchange knowledge and thoughts on 
various mathematical topics all with the Fibonacci numbers as a common denomi-
nator. Professor A. N. Philippou, chairman of both the international and the 
local organizational committees, expressed it as follows in his remarks at the 
opening session: "Most will be lecturing on Number Theory, some will talk on 
Probability, and still others will present their results on ladder networks in 
Electric Line Theory and aromic hydrocarbons in Chemistry." 

The academic sessions were scheduled, of course, according to the pace of 
the host country. A morning session from 9:00 A.M. to 1:00 P.M. and an after-
noon session from 5:00 P.M. to 8:30 P.M. , each session interrupted once by a 
coffee break. All lectures lasted for 45 minutes and all were in the nature of 
contributed papers—twenty-four in total. The Conference Proceedings will be 
published. 

The relatively small number of participants made the conference a pleasant 
affair; in no time everyone knew everyone else. The social atmosphere was en-
hanced still more by outings and parties, not in the least due to the friendly 
guidance of the Greek colleagues. And clearly, it is hard to beat an environ-
ment that appropriately could be called the cradle of mathematics. 

At the end of the final session on August 31, Professor Philippou and his 
committees and staff were given well deserved praise and applause. It was sug-
gested that similar international conferences should be held every three years 
and that the University of Santa Clara, in California, U.S.A., "home" of The 
Fibonacci Quarterly, should be the host in 1987, followed in 1990 by an appro-
priate institution in Pisa, Italy, birthplace of Fibonacci. 

The conference was jointly sponsored by the Greek Ministry of Culture and 
Science, the Fibonacci Association, and the University of Patras. 

A Very "NonscientificM Report by Herta T. Freitag 

An announcement of the First International Conference on Fibonacci Numbers 
and Their Applications to be held at the University of Patras, Greece, August 
27-31, 1984, reached me in mid-February. I was overjoyed by the thought that 
the members of the "Fibonacci-oriented" mathematical community would be able 
to meet each other on an international scale. Although I consider myself but 
an amateur in this area compared to the remarkable caliber of my esteemed peers 
who work in this field, I have long been a devoutly "addicted" member, and have 
looked forward from one issue of The Fibonacci Quarterly to the next ever since 
The Fibonacci Association was founded in 1963. 

Countless hours of planning and work must have gone into the organization 
of the Conference by the International Committee and the Local Committee, both 
headed by Professor A. N. Philippou, Vice Rector of the University of Patras, 
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and Chairman of the entire Conference, which was sponsored by the Greek Minis-
try of Culture and Science, the Fibonacci Association, and the University of 
Patras. It saddened me to learn that some of the outstanding leaders in our 
Fibonacci community, among them Professor G. L. Alexanderson. President of the 
Fibonacci Association, and Professor Gerald E. Bergum, Editor of our Journal, 
could not attend. We felt their presence even from afar. It would have been 
beautiful to have Verner E. Hoggatt, Jr., in our midst. I know that his spirit 
was with us I 

The Conference well surpassed my fondest expectations. It was profession-
ally inspirational and personally heartwarming. Names that we have held dear 
for many years became people. Within moments we became a circle of friends. 
In a very significant sense we were able to speak the same language regardless 
of our national backgrounds. Our common interest, indeed enthusiasm, affected 
this miracle. 

To hold this first Conference in Greece, cradle of mathematical thought in 
antiquity, contributed immeasurably. "The Glory that is Greece"—Greece, the 
country which is indelibly imbedded in the minds, the heartss and the souls of 
all educated persons throughout the world! With their inimitable beauty and 
charm, the surrounding waters, the mountains, those picturesque cypress trees 
greatly enhanced the atmosphere of our meeting. 

The findings presented in the papers were profound and intricate. It seemed 
to me they not only deepened our conviction of the importance of the Fibonacci 
sequences and their ramifications, their ever-increasing relevance and applica-
bility; they also significantly contributed to our understanding of specific 
aspects in this mathematical area. The conspicuous care in the presentations 
was admirable. The ensuing comments and questions added yet a further dimen-
sion. I shall never forget Professor A. Zachariou's deeply searching delibera-
tions. 

The Conference was eminently enriching—a uniquely memorable experience. 
My heartfelt gratitude is extended to all members of our Fibonacci community 
who have made this Conference possible and who have contributed to its success. 
And I am truly moved, and most appreciative, that Professor Alexanderson has 
given me the opportunity to relate my impressions in our Journal. 

If I may become personal, I would also like to extend a very special "thank 
you" to Professor Andreas N. Philippou whose wit and warmth immediately set an 
unforgettable tone for our Conference. Indeed, his intuitive perception led 
him—at our first encounter—to "recognize" me without ever having seen me. I 
would like to thank him for the very special courtesies he has extended to The 
Fibonacci Association, and for allowing me to address the group in my capacity 
as one of the representatives of our organization. 

I believe I speak for all Fibonacci friends across the oceans if I express 
the hope that this, our First International Conference on Fibonacci Numbers and 
Their Applications, was but a prelude for those to come. 

•<>•<>• 
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FIBONACCI-TYPE POLYNOMIALS OF ORDER K 
WITH PROBABILITY APPLICATIONS 

ANDREAS N. PHILIPPOU and COSTAS GEORGHIOU 
University of Patras, Patrasf Greece 

GEORGE N. PHILIPPOU 
Higher Technical Institute, Nicosia, Cyprus 

(Submitted August 1983) 

1. INTRODUCTION AND SUMMARY 
In this paper, k is a fixed integer greater than or equal to 2, unless 

otherwise stated, ni (1 < i < k) and n are nonnegative integers as specified, p 
and x are real numbers in the intervals (0, 1) and (0, °°) , respectively, and 
[x] denotes the greatest integer in x. Set q = 1 - p, let {fnk^n=o D e t n e 

Fibonacci sequence of order k [4], and denote by Nk the number of Bernoulli 
trials until the occurrence of the kth consecutive success. We recall the fol-
lowing results of Philippou and Muwafi [4] and Philippou [3]: 

P(N- n + k) = pn+k 2* ( \ n7 (p ' i l A ) 

w x + 2rc2 + • • • + fcnfc = n f l ^ 0; 

fik) = E (ni + "" + n "V ^ > o ; (1 .2 ) 
« x + 2 n 2 + • • • + A:nfe = w 

xj;fc+1(-i)f(" - ! - ^)2-<*+1>\ „ > i. (i.3) 
i = 0 

[ (n - l)/(fe+ 1)] 

For p = 1/2, (1 .1 ) r educes t o 

P(Nk = n + fc) = fn^\/2n+h
9 n > 0 , (1 .4 ) 

which relates probability to the Fibonacci sequence of order /c. Formula (1.4) 
appears to have been found for the first time by Shane [8], who also gave for-
mulas for P(Nk = n) (n > k) and P(Nk < #) , in terms of his polynacci polynomials 
of order k in p. Turner [9] also derived (1.4) and found another general for-
mula for P(Nk = n + k) (n > 0), in terms of the entries of the Pascal-27 trian-
gle. None of the above-mentioned references, however, addresses the question of 
whether {P(Nk = n + k)}n=Q is a proper probability distribution (see Feller [1, 
p. 309]), and none includes any closed formula for P(Nk ^ x). 

Motivated by the above results and open questions, we presently introduce 
a simple generalization of {f„k^}™= 0, denoted by {F^\x)}Z = o a n^ called a se-
quence of Fibonacci-type polynomials of order k9 and derive appropriate analogs 
of (1.2)-(1.4) for F&Xx) (n > 1) [see Theorem 2.1 and Theorem 3.1(a)]. In 
addition, we show that E ^ = 0 ? ( ^ = n + k) = 1 , and derive a simple and closed 
formula for the distribution function of Nk [see Theorem 3.1(b)-(c)]. 
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2. FIBONACCI-TYPE POLYNOMIALS OF ORDER K 

AND MULTINOMIAL EXPANSIONS 

In this section, we introduce a sequence of Fibonacci-type polynomials of 
order k9 denoted by {F^\x)}^Q9 and derive two expansions of F^k\x) (n ^ 1) in 
terms of the multinomial and binomial coefficients, respectively. The proofs 
are given along the lines of [3], [5], and [7]. 

Definition 2.1 

The sequence of polynomials {F^ \x)}^ = Q is said to be the sequence of Fi-
bonacci-type polynomials of order k, if 

F^k\x) = 0, 

F(k\x) = 1, 

and (x[F<k\(x) + ••• + Ff-\x)], if 2 < n < k, 
F^k\x) = { 

{x[F^\(x) + ••• + F™k(x)], if n > k + 1. 

It follows from the definition of {/"„ } n = o an^ Definition 2.1 that 

The nth term of the sequence {F„ \x) } (n > 1) may be expanded as follows: 

Theorem 2.1 

Let {F (X)}™=0 be the sequence of Fibonacci-type polynomials of order k. 
Then 

(a) C w = £ (ni
n
 +'" +

n ^ K 1 + ' " + * * > * > ° ; 
nl+ 2n2+ • • • + knk = n 

(b> F«\(X) - (i + XT [n/z"\-iy(n ~ikiyu + «>~(*+1)* 

- (i + xr-i[(n~l)£+l)](-»Hn~ \~ * V a + *>~(/c+1)i> 
i = 0 

n > 1. 
We shall first establish the following lemma: 

Lemma 2.1 

Let {^fe)(^))n = o be the sequence of Fibonacci-type polynomials of order k9 
and denote its generating function by Gk(s; x). Then, for \s\ < 1/(1 + x), 

G. (s; x) = = 

I - (I + x)s + xs + 1 - xs - xs2 - • • • - xsfe 

Proof: We see from Definition 2.1 that 
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(x(l + x)n~2, 2 < n < k + 1, 
F^\x) = <̂  (2.1) 

( (1 + x)F(k) (x) - xFik) (x), n > k + 2. 
n -1 ' n -1-k 

By induction on n, the above relation implies F^\x) < x(l + x)n'2 {n > 2) , 
which shows the convergence of G-, (s; x) for \s\ < 1/(1 + x) . Next, by means of 
(2.1), we have 

Gk(a; x) = £) snF<*\x) = s + £ s"ar(l + x)"" 2 + £ s ^ f ^ ) 
n = 0 n = 2 n= k + 2 

and 
£ 8»*f>(*) - (1 + *) £ S"Fn

(«(x) - x £ e"F<k\_k(x) 
n=k+2 n=k+2 n=k+2 

k + 1 
= [(1 + x)s - xsk+1]Gk(s; x) - s2 - £ s ^ ( x + ^ ~ 2 > 

n = 2 

from which the lemma follows. 

Proof of Theorem 2.1 

First we shall show part (a). Let |s| < 1/(1 + x). Then, using Lemma 2.1 
and the multinomial theorem, and replacing n by n - £ . (i - l)n̂ ., we get 

^ " ^ ( J I ) = £(a?e + *s2 + ••• + a?a*)n 

n=0 n n = 0 

Z Y ^ / W \ n±+ ••' + nkQn1+2n2+ ••• + 

^ -An, , . . . , wJ 
72 = 0 nlt . .. , nk 3 X 1 J * ' 

« i + • " +nk = n 

= Y sn T /«! + •••+ **\ 
7ix + 2n2 + . . . + /crcfc = n 

which shows ( a ) . 
We now proceed to part (b). Set 

Ak(x) = {s ER; \e\ < 1/(1 + x) and | (1 + x)s - xsk + 1\ < 1}, 

and let s EA^ix). Then, using Lemma 2.1 and the binomial theorem, replacing 
by n - ki, and setting 

[ « / < * + l ) ] 

b«\x) = (i + xY E (-»'(n " V a + *r(fc+1)*. « > o> 
we ge t 

^ s V ^ W = (1 " 8 ) £ [ ( 1 + X ) S - XSk + 1]n 

n = 0 n n = 0 

- ( l - a ) £ £(-1)^(^(1 +^)"-^isn + " 

= (i - 8 )£ 8 » t n / ( ^ 1 ) , ( - i ) i (" "• **)(i + * r ( f e + 1 ) v 

= (1 - s ) ^ " i f w = 1 + £ s " [ ^ ( x ) - b^\{x)}. 
n = 0 n = 1 
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The last two relations establish part (b). 

3. FIBONACCI-TYPE POLYNOMIALS OF ORDER K 

AND PROBABILITY APPLICATIONS 

In this section we shall establish the following theorem which relates the 
Fibonacci-type polynomials of order k to probability, shows that 

{P(Nk =n + fc)}B-_0 

is a proper probability distribution, and gives the distribution function of 
Nk. 

Theorem 3»1 

Let iF^k\x) }~= 0 be the sequence of Fibonacci-type polynomials of order k, 
denote by Nk the number of Bernoulli trials until the occurrence of the kth 

consecutive success, and set q = 1 - p. Then 

(a) P(Nk = n + k) = pn+hF™^qlp), n > 0; 

(b) J^P(Nk = n + k) - 1; 
,[*]+! 

( c ) P(Nk ^ X) = < n x +2n 2 + ••• + fcnfc = [or] + 1 X > Ks 

0, otherwise. 

We shall first establish the following lemma. 

Lemma 3-1 

Let {F„k\x)}n = 0 be the sequence of Fibonacci-type polynomials of order k* 
Then, for any fixed x G (0, °°) , 

(a) lim = 0 ; 
n"° °  (1 + x)n 

(b) ? r = i - ' r> ^ > o. 
n = 0 (1 + x) (1 + X) 

Proof: F i r s t , we show (a ) . For any fixed x E (0, °°) and n > k + 1, r e l a -
t ion (2.1) gives 

F?\x) ?*(!) (1 + x)F<k\x) - F™x{x) ^ k ( x ) 

(1 + x)n (1 + x)n+1 x(l+x)n+1 (1 + x)n+1 

which implies that F„ \x) /(l + x)n converges. Therefore, 

> 0, 
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lim — = 0, 
**" (1 + x)n+1 

from which (a) follows. 
We now proceed to show (b). For m = 0, both the left- and right-hand sides 

equal (1 + x)'k, since F^}2 (x) = x(l + x)k - x by (2.1). We assume that the 
lemma holds for some integer m > 1 and we shall show that it is true for 777+1. 
In fact, 

n = o (1 + * ) n + k ~ (l + ar)'»+k + 1 + „ . o (1 + „ ) » + ' 

0*> 5$+2(*> 
, + 1 , by i n d u c t i o n h y p o t h e s i s , 

(1 + x f + 1 + /c ar(l + x)m + k 

(1 + ^ ) ^ ( ^ L o W - ooF{k)(x) 
v y 777+7< + 2 v ' 777 + 2 v y 

* ( 1 + x)m + k+1 

m+7<+ 3 x y 

= l " - ITT- by ( 2 a ) ' 

Proof of Theorem 3*1 

Part (a) follows directly from relation (1.1), by means of Theorem 2.1 ap-
plied with x = q/p. Next, we observe that 

777 777 

2 > ( / ^ = n + k) - £ Pn+kFn+l(q/p), by Theorem 3.1(a), 

-, by setting p = 1/(1 + x), 
*<*>> 

n = 0 (1 + x)m + k 

= 1 , by Lemma 3.1(b), 
x(l + x)m + k 

-> 1 as 777 -> oo, by Lemma 3.1(a), 

which establishes part (b). Finally, we see that 

P(Nk < x) = P(0) = 0 , i f x < k, 

a n d [*] [x] - fc 

P(tffc < x) = X) ̂ C^ = ") = £ p ( ^ = n + k) 
n=k n=0 

= ^ pn+kFn
(k\(q/p)9 by Theorem 3 . 1 ( a ) , 

n = 0 

plx]+l (k) 

" ! " £ T - ^ ] )
+ . 2 ( ? / P ) 
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• 1 - ^ E (nin+'"+nnk)(fT+'" + nk>*>K' 
" n1, ..., nk 3 \ ni* ••'» nk l\y I 

n1+ 2n2+ •• • + knk= [x] + 1 
by means of Lemma 3.1(b) and Theorem 2.1(a), both applied with x = q/p. The 
last two relations prove part (c), and this completes the proof of the theorem. 

Corollary 3*1 

Let J be a random variable distributed as geometric of order k (k > 1) with 
parameter p [6]. Then the distribution function of X is given by 

J>] + 1 

0, otherwise. 

c, a? > &, 
nk 3 

• + kn^. = [x] + 1 

Proof: For /c = 1, the definition of the geometric distribution of order k 
implies that X is distributed as geometric, so that P(X < x) = 1 - £7^, if x > 1 
and 0 otherwise, which shows the corollary. For k ^ 2, the corollary is true, 
because of Theorem 3.1(c) and the definition of the geometric distribution of 
order k. 

We end this paper by noting that Theorem 3.1(b) provides a solution to a 
problem proposed in [2], 
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P. J. RIPPON 
The Open University, Milton Keynes, U.K. 

(Submitted August 1983) 

For a > 0, the sequence 

a, aa, a(aa)5 ..., (1) 

is convergent if and only if a E I = [e~e , el'e]. This result, which was known 
to Euler [5], and which has been rediscovered frequently, is capable of gener-
alization in various directions (see [6] for a wide-ranging survey). For in-
stances Barrow [2] showed that if an E J, n = 1, 2, . .., then the sequence 

al9 a**, a ^ , ..., (2) 

is convergent also. 
More recently [1], we have observed that if a is a complex number and if 

az = exp[s log a], {z E €), 

where the principal value of the logarithm is taken, then the sequence (1) con-
verges if a lies in 

R = {e*e"' : \t\ < 1}. 

On the boundary of R however, and in its exterior, both convergence and diver-
gence may occur. 

The sequence (2) was shown by Thron [7] to be convergent if | log an\ ^ 1/e, 
n - 1, 2, ..., but we do not know whether this holds in general if anE R, n = 
1, 2, ... . 

The aim of the present note is to give a complete discussion of the behav-
iour of real sequences of the form 

a, a , a <
b"\ a<fc(a>>, .... (a, b> 0). (3) 

Such a sequence is of course a special case of (2), and so Barrow1s result 
guarantees convergence for (a5b) E J x J , though the full region of convergence 
is actually much larger. The same problem was discussed and partially solved 
by Creutz and Sternheimer'[4], who also presented considerable computational 
evidence concerning the region of convergence. 

With a, b > 0, we let $(x) = abx(= a^*>) , -°°  < x< °°, and 

<j>n + 10c) = <M>"(aO = §no$(x), (n = 1,-2, . . . ) . 

The sequence (3) under consideration is then of the form 

<()(0), <KD> *2(0), <j>2(i), ... . 
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Theorem 

The following statements are equivalent: 

(i) Both 

lira cf)n(0) and lim (J)M(l) 

exist finitely and are equal. 

(ii) The function cf> has precisely one fixed point a such that 

|<|>'(e) | < 1. 

(iii) We can write 

log a = se~t and log b = te~s, (|st| < 1), 

in a unique way. 

(4) 

The set of points (log a, log £>) defined by statement (iii) is shaded in 
Figure 1 for the reader's convenience. We shall discuss it in more detail once 
the theorem is proved. Notice that [-e> He] x [~e5 l/e] lies in the shaded 
set, as is implied by BarrowTs result. 

log b 

Figure 1 

The behavior of the sequence at the remaining points, which will become clear 
in the course of the proof, is indicated belows 

when (log a, log b) E E1, we have 

lim c()(0) = lim cf)n(l) = oo; 

when (log as log b) E E2 U Eh, we have 

lim cf)2n(0) = lim (j)2n+1(l) + lim (j)2n+1(0) = lim (f)2n(l) < °°s 
n -v oo n-*° °  72+° °  ft -»- oo 

when (log a, log 2?) E S3J we have 

lim c()(0) < lim (f)(1) < 1. 
w -> oo n n -> oo n 

The equivalence of statements (ii) and (iii) is a special case of the fol-
lowing lemma. 
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Lemma 1 

There is a one-to-one correspondence between the fixed points c = es of <j), 
such that |cj)f(c)| < 1, and the representations of (log a, log b) in the form 
(4). 

Proof: To prove the lemma, note that 

G = ah° = exp(exp(c log b)log a) 

if and only if c = es, where 

s = exp(c log Mlog a, 

and s is of this form if and only if we can write 

log a - se~t and log 2? = te~s . 

Since we then have 

cj)'(e) = a^ Z?c log a log 2? = c exp(c log Z?)log a log b = st, 

the proof of the lemma is complete. 

We now show that statements (i) and (ii) are equivalent. First we assume 
that a, b > 1 so that $ is increasing. Since 

<)>"(*) = abXbx log a(log b)2(l + 2)x log a) 

the function 0 has no points of inflection and so has at most two fixed points. 
It is clear that 

(j)̂ (0) < <J>»(1) < (})n+1(0), (n = 1, 2, . . . ) , 

and so convergence occurs if and only if cj) has at least one fixed point, in 
which case cj) has exactly one fixed point o such that |cj)'(c) | < 1. 

Figure 2 

If c() has no fixed points, then we clearly have 

cj)n(0) -> °°  and (J)n(l) -* °°, (n -> °°). 

Next we assume that 0 < a, 2? < 1. Once again <j> is increasing, but now it 
has one point of inflection, and so there may be one, two, or three fixed 
points. For n = 1, 2, ..., we have 

(f>n(0) < c))n+1(0) < <pn+l(V) < <(>"(1), 
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and 

lim cf)n(0) = lim (})n(l) 

is true if and only if (j) has exactly one fixed point c. The condition 
< 1 will then automatically be satisfied„ 

(5) 

I*'(c) I 

With more than one fixed point, as in Figure 3, both the limits in (5) exist, 
but they are not equal. This is an example of what Creutz and Sternheimer call 
"dual convergence." 

Since the sequence a, ab
9 a^3 \ . . . is convergent if and only if the se-

quence b, ba, b^ab\ ... is convergent, the cases 0<a<l<2? and 0<2?<l<a are 
equivalent. We may assume then, finally, that 0<a<l<2?. In this case, (j) is 
decreasing and has a unique fixed point o, 

b 

1 

a1 

0 

\ 

A 
a' 

/ 
S • 

^ 
!> C 

(L 
J C 

y = 

I 

TCyA 

-z/ = <|>(a:) 

L 

Figure k 

There are now four monotonic subsequences of interest. Indeed, for n = 1, 
2, ..., we have 

>2w"1(i) < * 2 n ( 0 ) < (j)2^+1(i) < e < cj)2n+1(o) < cj)2n(i) < c p - H o ) , (6) 

which is easily verified by induction, since cj)2 = <jx?<j> is increasing and has a 
fixed point at x = e. If |(|)f(<2)| > 1, then no sequence of the form §n(xQ) , 
n = 1, 2, ..., x0 > 1, can converge to cs and so in this case we have another 
(but slightly different) example of dual convergence. 

To prove that convergence does occur when ]<f>'(<2) | ^ 1, it is enough to show 
that (J)2 has in this case only one fixed point, namely c, since this would imply 
that 

lim $2n(0) = c = lim cj)2n(l). 
n + oo n+ oo 

We are, therefore, reduced to proving that, for 0 < x < c9 
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or 

ahX < (log(log a:/log a))/log fc. 

With log a = se_t, log 2? = t£_s, c = es, and or = (1 - u)es (cf. the proof of 
Lemma 1), this becomes, for 0 < u < 1, 

exp[-e(l - e'M*)] < 1 + -| log(l + ^ log(l - w)), (7) 

which we must show to be true when s < 0, £ > 0, and \st\ = |(f)f(c) | < 1. In 
fact, it is enough to prove (7) when s = -1/t, which we now do. 

Lemma 2 

For t > 0 and 0 < w < 1, we have 

e x p f - ^ f ^ ] < 1 + 1 log(l + t log ^ J . 

Proof: To prove the lemma, note that 

expr "t
g U 1 < exp|-| log(l + u£)l = (1 + wt)l7t, (t > 0, w > 0) , 

and so, since there is equality at u = 0, it is enough to show that 

^[(1 + „*)!/*]< ^ [l + I log(l + t log 3 - ^ ) ] , (t > 0, 0 < u < 1) , 

which is equivalent to 

1 + t log —!:— < il4" u t ) , (t > 0, 0 < u < 1). 
& 1 - u 1 - u 

Again there is equality at u = 0, and so it is enough to show that 

which is equivalent to 

(1 +M*)i/* < 1^-1 + * + U\ = T-L- + i ( T J — - l), (8) 
£ t(l - U) I - U t\l - U J 

(t > 0, 0 < u < 1). 

However, since 

(1 + ut)l,t < eu < T^— > it > 0, 0 < u < 1) , 1 - u 
the estimate (8) does in fact hold. This completes the proof of Lemma 2 and 
also that of our theorem. 

We now discuss the mapping x = se'*, y = te~s, \st\^x, which gives rise to 
the region in Figure 1. First, it is clear that, for k = 1, 2, 3, 4, the kth 

quadrant in the st-plane is mapped into the kth quadrant of the xzy-plane. Next 
we observe that the mapping is one-to-one for t > 0 and \st\ <1. This follows 
from Lemma 1, if we recall from the proof of the theorem that, for b > 1, the 
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function (j) has a fixed point c with |(j)f(c?)| < 1 if and only if this fixed point 
is unique. By symmetry, the mapping is also one-to-one for s > 0. 

It is easy to check with a little calculus that the boundary of the image 
of {(s, t) : \st\ < 1} takes the form shown in Figure 1 in the first, second, 
and fourth quadrants. In the third quadrant, however, the mapping is not one-
to-one and a more detailed discussion is required. 

If st = 1 (s, t < 0) and x - se^, y - te~s, then 

y < x < -es (s < -1) and x < y < -es (s > -1). (9) 

For instance, if s < -1, then the inequality 

x = se~l^s > s~l e~s = y 
is equivalent (on putting O = -s) to 

2 log o < o - 1/a, (a > 1), 

which is easily verified by differentiation. The maximum value of se~l^s for 
s < 0 occurs when s - -1, and so, for x < -g, the equation x = se~l^s has two 
solutions sl9 s2 with s2 < -1 < $i < 0. If s^x = 1 

^(a?) = t^"3! , ?/2te> = t2e"s2 , (x < -e), 

then 2/ , z/ are smooth functions in (-°°, -0) and, by (9), 

yz(x) < x < 2/•]_(#) < -e, (# < -e) . 

It is easy to check that 

lim y1{x) = -e = lim y 2{x) 
x+-e x-*~-e 

and, using the chain rule, that 

lim y !{x) = 1 = lim zy'O). 
x + . e

 U l x+-e * 2 

Hence, the image of st = 1 has a cusp at (-0, -e) . 

We now claim that the set 

{(#, z/) : a; < -e, 2/̂  (a?) < y < ^ W ) 

is covered twice by the mapping and that the remainder of the third quadrant is 
covered once. These facts could be verified directly, or we can deduce them 
from Lemma 1 as follows. 

Since, for 0 < a and b < 1, the maximum value of cf)f(x) is (-log b) Ie (this 
occurs when 1 + bx log a = 0) , we see that (f> has exactly one fixed point c (and 
(f)'(c) < 1) if 0 < a < 1 and e~e < b < 1. This means, by Lemma 1, that 
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{(x, y) : -<*> < x < 0, -e < y < 0} 
is covered exactly once. 

If 0 < b < e~e , however, then there are numbers ax and a2 with 0 < a1 < a2 

< £~e such that 

i/xClog ax) = log 2? = 2/2(log ̂ 2>* 

and then the corresponding functions 

(j>1(a;) = a^x and (J)2(x) = a%x 

each has a fixed point with derivative 1 (see the proof of Lemma 1). Since 
(j)(#) = ah* is strictly monotonic in a when b3 x axe fixed, we see that for all 
a E [a19 a 2], the function cf) has two fixed points c such that (f>'(c) < 1. If 
a £ [a± a 2], however, the function (f> has only one such fixed point. By Lemma 
1, this establishes the claim. 
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INTRODUCTION 

A partition of a positive integer n is defined as a way of writing n as a 
sum of positive integers. Two such ways of writing n in which the parts merely 
differ in the order in which they are written are considered the same parti-
tion. We shall denote by p(n) the number of partitions of n. Thus, for exam-
ple, since 5 can be expressed by 

5, 4 + 1 , 3 + 2 , 3 + 1 + 1 , 2 + 2 + 1 , 2 + 1 + 1 + 1 , and 1 + 1 + 1 + 1 + 1 , 

we have p(5) = 7. 
The function p(n) is referred to as the number of unrestricted partitions 

of n to make clear that no restrictions are imposed upon the way in which n is 
partitioned into parts. In this paper, we shall concern ourselves with certain 
restricted partitions, that is, partitions in which some kind of restriction is 
imposed upon the parts. Specifically, we shall consider identities valid for 
all positive integers n of the general type 

p\ri) = p"(n), (1) 

where p r(n) is the number of partitions of n where the parts of n are subject 
to a first restriction and p"(n) is the number of partitions of n where the 
parts of n are subject to an entirely different restriction. 

The most celebrated identity of this type is due to Euler [4], who discov-
ered it in 1748. 

Theorem 1 (Euler) 

The number of partitions of n into distinct parts is equal to the number of 
partitions of n into odd parts. 

Thus, for example, the partitions of 9 into distinct parts are 

9, 8 + 1 , 7 + 2 , 6 + 3 , 6 + 2 + 1 , 5 + 4 , 5 + 3 + 1 , 4 + 3 + 2 , 

that is, there are 8 such partitions, and the partitions of 9 into odd parts are 

9, 7 + 1 + 1 , 5 + 3 + 1 , 5 + 1 + 1 + 1 + 1 , 3 + 3 + 3 , 3 + 3 + 1 + 1 + 1 , 
3+ 1+ •• • + 1, 1+ 1+ • • •+ 1, 

so that there are also 8 partitions of 9 into odd parts. 
For a proof of this theorem by combinatorial methods, see [6], and by means 

of generating functions, see [2] or [3]. 
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In [2], Alder has given a survey of the existence and nonexistence of gen-
eralizations of Eulerfs partition identity and, in [3], he has shown how to use 
generating functions to discover and prove the existence and the nonexistence 
of certain generalizations of this identity. 

The use of generating functions, however, is by no means the only method 
for discovering partition identities or for proving their existence or nonexis-
tence. Other methods, particularly those likely to produce positive results, 
that is, suggesting the existence of new partition identities, need, therefore, 
to be developed. Other points of view in looking at the possibility of the 
existence of such identities need to be encouraged. One such method is used in 
this paper. It is used to show that a certain generalization of a known parti-
tion identity cannot exist. It may well be, however, that as of yet unthought 
of techniques may prove successful in discovering a generalization. 

In 1974 D. R. Hickerson [5] proved the following generalization of Eulerfs 
partition identity. 

Theorem 2 (Hickerson) 

If f(r, ri) denotes the number of partitions of n of the form b0 + b1 + b2 
+ ••• + bs, where, for 0 < £ < s - 1, bi > r^i + i> and g(rs ri) denotes the num-
ber of partitions of n where each part is of the form 1 + r + r2 + • • e + ri for 
some i ^ 0, then 

f(r9 ri) = g(r, ri) . (2) 

Thus, for example, for r = 2, the partitions of 9 of the first type are 

9, 8+1, 7+2, 6+3, 6 + 2 + 1 , 

so that /(2, 9) = 5 , and the partitions of 9 of the second type, that is, where 
each part is chosen from the set {l, 3, 7, .. . } , are 

7 + 1 + 1 , 3 + 3 + 3 , 3 + 3 + 1 + 1 + 1 , 3 + 1 + •• • + 1 , and 1 + 1 + •• • + 1 , 
so t h a t a l s o g(2, 9) = 5 . 

Hickerson gave a proof of this theorem, both by combinatorial methods and 
by means of generating functions. 

In this paper we are addressing the question: Do there exist identities of 
the type given by Theorem 2, where the inequality b^ ^ vbi + 1 is replaced by 
bi > rbi+12 

THE NONEXISTENCE OF CERTAIN TYPES OF PARTITION IDENTITIES 

OF THE EULER TYPE 

We shall consider the question stated above in the following more specific 
form: If /(p, ri) denotes the number of partitions of n of the form b0 + b± + 
••• + bs9 where, for 0 < i < s - 1, bt > rbi+19 and g(r3 ri) denotes the number 
of partitions of n, where each part is taken from a set of integers Sr, for 
which r do there exist sets Sv such that f(r9 ri) = g(r9 n)1 

We know, of course, that for v = 1, there exists such a set, since Euler*s 
partition theorem states that S1 is the set of all positive odd integers. The 
question—-whether there exist other values of r for which there exist sets Sr9 
so that (2) holds for all positive integers n—was posed at an undergraduate 
seminar on Number Theory by the first two authors in the Winter quarter 1983, 
and was answered with proof for all integers v > 2 by Jeffrey Lewis, namely as 
follows: 
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Theorem 3 (Lewis) 

The number f(v9ri) of partitions of n of the form bQ + bx +• • • + bS9 where, 
for G < i < s - 1, bi> rbi + 19 r a positive integer, is not, for all n9 equal 
to the number of partitions of n into parts taken from any set of integers what-
soever unless r - 1. 

Proof of Theorem 3- "We shall prove this theorem by contradiction. Let us 
assume that for some integer p > 2 there exists a set Sr of positive integers— 
denote the number of partitions of n into parts taken from that set by g(r9 ri) — 
for which f(rs n) = g(r9 n) for all n. 

Since f(r9 1) = 1, we see that 1 E Sr [otherwise, g(r9 1) = 0]. Since 
f(rs 2) = 1 , it follows that 2 <£ Sr [otherwise, g(r9 2) = 2 ] . Since /(p, 3) = 
f(r> 4) = • • • = f(r9 x> + 1) = 1, we conclude that 3 £ SV9 4 £ Sr> . .., r + 1 € Sr. 

Now f(r9 r+ 2) = 2, since the partitions of r + 2 for which bi > rbi + 1 are 
(p+2) and (p+l)+l. It follows that p + 2 E 5r [otherwise, g(r9 p+2) = 1). 

Thus, we have verified the entries in Table 1 up to n - r+ 2. We will now 
complete the construction of this table. 

Table 1. Determination of the Elements of Sr for p an Integer > 2 

n 

1 
2 
3 

p + 
p + 
p + 

2P + 
2P + 
2P + 

1 
2 
3 

2 
3 
4 

/ ( • 

p, n) 

1 
1 
1 

1 
2 
2 

2 
3 
3 

n 
, n) if 

0 
1 
1 

1 
1 
2 

2 
2 
4 

#(p 
n 
, n) if 
E £,, 

1 
2 
2 

2 
2 
3 

3 
3 
5 

Conclusion 

1 E S 
2 £ 5 
3 f 5 

p + 1 £ 5 
p + 2 E 5 
p + 3 € S 

2r + 2 £ S 
2r + 3 E S 
Contradiction 

Next we determine the least value of n for which f(r9 n) = 3. This occurs 
if n is of either of the forms 

n = b0 + b1 + 1 w i th Z?0 > PZ?X and b± > r 

or 

n = Z?0 + 2 w i t h Z?0 > 2 P 0 

The l e a s t n fo r which t h e f i r s t can occur i s 

n = (P2 + P + 1) + ( P + 1) + 1 = P 2 + 2 p + 3 e 

The least n for which the second can occur is 

n = (2P + 1) + 2 = 2P + 3. 

Since 2P + 3 < r2 + 2v + 3 for all positive P , it follows that n = 2P + 3 is 
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the least value of n for which f(r9 n) = 3. In that case, the partitions of 
2P + 3 for which bi > rbi + 1 are (2r + 3) , (2r+ 2) + 1, (2r + 1) + 2. Now, since 
thus far only 1 G 5 r and r + 2 E Sr9 it follows that there are only two parti-
tions of 2P + 3 into parts taken from that set, namely 

(r + 2) + 1 + •-• + 1 and 1 + 1 + • • • + 1, 

so that we need 2v + 3 E Sr in order to make g(v9 2r+ 3) = 3. 
Now f(r9 2P+4) = 3, since the only partitions of 2v + 4, with b^ > r^ + 1, 

are (2r+4) , (2r+3) + 1, (2P+2) + 2. (Note that it is here where we are us-
ing the fact that r > 2.) On the other hand, the partitions of 2v + 4 into 
parts taken from the set {1, p+2, 2r+ 3} are 

(2r+3)+l, (r+ 2) + (r+ 2), (r+2) + 1 + 1 + • • • + 1, 1+1+--- + 1, 

so that g(r9 2r + 3) = 4 if 2r + 4 <£ £P and #(r, 2r + 3) = 5 if 2r + 4 E £r, which 
is a contradiction. 

The question arises whether Theorem 3 is true also for all values of v > 1. 
We have some partial answers to this question. 

Theorem k 

The nonexistence of sets Sr given in Theorem 3 also applies to all v in any 
of the intervals N < r < N + 1/2, where N is any integer > 2. 

Proof of Theorem 4: This proof is identical to that for Theorem 3, except 
that, in the construction of Table 1, the entries in the columns for n and the 
conclusions have to be changed by replacing r in every case by [r], the grest-
est integer in ra Note that the condition that v < N + 1/2 is needed in the 
determination of the partitions of 2[r] + 3 with b^ > rbi+l9 which are 

(2[r] + 3), (2[p] + 2) + 2, and (2[r] + 1) + 2, 

the latter satisfying the inequality, since 

2[r] + 1 = 2N + 1 = 2(N + j \ > 2r. 

Now, for values of r for which N + (1/2) < r < N + 1, we have a method for 
proving the nonexistence of Sv for certain intervals, but have no method which 
will give a conclusion valid for all such intervals. We illustrate this method 
for intervals in the range 2.50 < r < 3.00. 

First we use the same method used in the construction of Table 1 to deter-
mine the elements of Sv for r = 2.50. (See Table 2.) 

Since a contradiction is obtained for n = 20, it follows that for r = 2.50 
no set Sr can exist for which f(r3 ri) = g(r9 n) for all positive integers n. 

Next we note that Table 2 applies for all r with 2.50 < r < x/y9 where x/y 
is the least rational number > 2.50 for which both x and y appear as parts in 
a partition counted by f(rs n) in Table 2; that is, we need to find the least 
rational number x/y > 2.50 for which x + y < 20. This clearly is 13/5, since 
13 + 5 is a partition of 18 and, therefore, Table 2 would not be applicable for 
r = 13/5 because the partition of 18 = 13 + 5 would not satisfy 13 > 5r for 
v = 13/5. 

Thus, Table 2 is applicable for all r with 2.50 < r < 13/5, and the nonex-
istence of the sets Sr follows for all r in this interval. 
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Table 2. Determination of the Elements of Sr for v = 2.50 

g(r, n) if g(n, r) if 
n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

f(r, n) 

1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
4 
5 
5 
5 
6 
7 
7 
8 
9 
9 

n & S 

0 
1 
1 
1 
2 
2 
2 
3 
3 
3 
3 
5 
5 
5 
6 
7 
7 
7 
9 
10 

n E £ 

1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
4 
6 
6 
6 
7 
8 
8 
8 
10 
11 

Conclusio 

1 E S 
i t s 
3 g S 
4 E 5 
5 £ £ 
6 g S 
1 £ S 
8 (£ S 
9 £ S 
10 £ S 
11 e 5 
12 g 5 
13 g 5 
14 g 5 
15 g 5 
16 g 5 
17 g S 
18 E 5 
19 g 5 

Contradict: 

We now construct, by programming on a computer, a table similar to Table 2 
for r = 13/5 (not shown here), obtaining a contradiction for n = 52. Next, we 
note that this table applies to all r with 13/5 < r < x/y, where x/y is the 
least rational number > 13/5 for which x + y < 52. This clearly is 34/13, so 
that this table is applicable for all v with 13/5 < r < 34/13. Constructing a 
table similar to Table 2 for r = 34/13, we obtain a contradiction for n = 136 
and find that this table is valid for all v with 34/13 < r < 89/34. Then, con-
structing the appropriate table for r = 89/34, we were unable to obtain a con-
tradiction on the computer in the time available, that is, for n < 181. 

Though we were unable to obtain a contradiction for r = 89/34 = 2.6176..., 
we were able to obtain one for v = 2.62, namely for n - 90 and, using the pre-
viously described method, to determine that this table is valid for all v with 
2.62 < v < 21/8. Then, considering v> 21/8, we were able to obtain contradic-
tions for all v < 32/11 = 2.909... for the values of n indicated in Table 3. 

For values of P ) 32/11, the corresponding tables again became so long that 
the time available on the computer to arrive at a contradiction was exceeded; 
thus, we have no conclusions for 32/11 ^ r < 3. 

For values of r between 1 and 2, the smallest value of r we considered was 
v = 1.08, for which we obtained a contradiction for n = 54. Using the same 
method as used for values of v in the interval 2.50 < v < 32/11, it was possi-
ble to prove the nonexistence of Sr for all r in the short interval 1.08 < r < 
25/23 = 1.0869... . 

To obtain results valid for larger intervals, we started with r = 1.25 and 
proved the nonexistence of Sr for all r in the interval 1.25 < r < 23/12 = 
1.9166..., as indicated in Table 4. 
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Table 3- The Nonexistence of ST for 2.50 < r < 89/34 = 2.6176... 
and 2.62 < r < 32/11 = 2.909... 

Interval Value of n for Which Contradiction Occurs 

2.50 < v < 13/5 
13/5 < v < 34/13 

34/13 < v < 89/34 
89/34 < v < 55/21 
55/21 < v < 21/8 
21/8 < v < 8/3 
8/3 < r < 11/4 
11/4 < r < 14/5 
14/5 < v < 11 lb 
17/6 < v < 20/7 
20/7 < r < 23/8 
23/8 < v < 26/9 
26/9 < v < 29/10 
29/10 < v < 32/11 

20 
52 
136 

No concli 
90 
38 
17 
21 
26 
30 
34 
48 
44 
48 

Table k. The Nonexistence of Sr for 1.25 < r < 23/12 = 1.9166... 

Interval Value of n for Which Contradiction Occurs 

1.25 < r < 9/7 
9/7 < r < 4/3 
4/3 < v < 7/5 
7/5 < r < 3/2 
3/2 < v < 5/3 
5/3 < r < Ilk 
Ilk < v < 9/5 
9/5 < v < 11/6 
11/6 < v < 13/7 
13/7 < v < 15/8 
15/8 < r < 17/9 
17/9 < v < 19/10 
19/10 < r < 21/11 
21/11 < r < 23/12 

18 
18 
14 
14 
10 
18 
18 
21 
24 
28 
33 
36 
39 
42 

For values of v < 1.25, as indicated above, the intervals for which a table 
similar to Table 2 is valid become very small. Considering the values of v = 
1.08, 1.09, ..., 1.20, separately, we obtained a contradiction for each of them. 
For values of r close to 1, the time available on the computer to arrive at a 
contradiction was exceeded. This is not surprising, because we know that, for 
r = 1, we have the Euler identity and, therefore, no contradiction can be ob-
tained. For values of r in the interval 1 < v < 1.25, except for those listed 
above and for those in the interval 23/12 < r < 2, we have no conclusions. 

It is an interesting question whether Theorem 3 can be proved by a method 
valid for all nonintegral values of r > 1. 
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The authors are greatly indebted to M. Reza Monajjemi for developing the 
program needed to construct Tables 3 and 4, and for cheerfully spending many 
hours in helping to prepare them. 
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1. INTRODUCTION 

In classical usage the fundamental and primordial second-order recurrences 
are those of Fibonacci and Lucas, {Fn} and {Ln}, defined by the linear homoge-
neous recurrence relation 

V« = Un-1 + Un-2> n > 2. (1-D 

with initial conditions F1 = 1, F2 = 1, and L1 - 1, L2 = 3. They are usually 
generalized by altering the recurrence relation or the initial conditions as 
described by Horadam [4]. 

There have been many generalizations of the Fibonacci numbers (cf. Bergum & 
Hoggatt [1] and Shannon [11]), but fewer published attempts to generalize the 
corresponding Lucas numbers, though those of Hoggatt and Bicknell-Johnson (cf. 
[4]) are notable exceptions. 

We believe that the following exposition is a useful addition to the liter-
ature because, unlike other papers, which concentrate on particular properties, 
we focus on the unexpected structure of the generalized recurrence relation. 
This complements the existing literature because the solution of our recurrence 
relation is the one used by the authors to develop various properties of these 
sequences. The corresponding approach for the Fibonacci numbers has been ap-
plied by Hock and McQuiston [3]. From the simple form of the recurrence rela-
tion as revealed here, we specify some particular generalized sequences and two 
special properties that will be of use to future researchers of the abritrary-
order recurrences who utilize the coefficients of the recurrence relation. 

We choose here to generalize the Lucas sequence by considering the rth-
(arbitrary)-order linear recurrence relation 

V™ = V^r + l + ^n-r* n > r > 1 , (1.2) 

and initial conditions V^ = 0 if 0 < n < r - 1, vr-i = r ~ * a n d VQ = Pe T h e 

notation is due to Williams [12] and has been used since then by several authors 
in studying rth-order recurrences. 

Thus, {fjj2)} E {Ln}9 and the accompanying table displays the first 16 terms 
of {^r)}'for r = 2, 3, 4, 5, 6. 

Table 1. Generalized Lucas Numbers for n > 0 

^ > ^ 
2 
3 
4 
5 
6 

0 

2 
3 
4 
5 
6 

1 

1 
0 
0 
0 
0 

2 

3 
2 
0 
0 
0 

3 

4 
3 
3 
0 
0 

4 

7 
2 
4 
4 
0 

5 

11 
5 
0 
5 
5 

6 

18 
5 
3 
0 
6 

7 

29 
7 
7 
0 
0 

8 

47 
10 
4 
4 
0 

9 

76 
12 
3 
9 
0 

10 

123 
17 
10 
5 
5 

11 

199 
22 
11 
0 
11 

12 

322 
29 
7 
4 
6 

13 

521 
39 
13 
13 
0 

14 

843 
51 
21 
14 
0 

15 

1364 
68 
18 
5 
5 

16 

2207 
90 
20 
4 
16 
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For example, from the table, we have that 

W = ̂ 3 + e \ or 20 = „<*> = v% + W<\> =13 + 7. 

We propose to consider some of the properties of {v^} that arise from the in-
teresting fact that all but three of the coefficients in the recurrence rela-
tion are zero. 

2. GENERAL TERMS 

The auxiliary equation associated with the recurrence relation (1.2) is 

x* - x - 1 = 0, (2.1) 

which we assume has distinct roots, ctj > j = 1, 2, ..., r. In fact, v$p is (in 
the terminology of Macmahon [8]) the homogeneous product sum of weight n of the 
quantities CLj, It is the sum of a number of symmetric functions formed from a 
partition of n as elaborated in Shannon [10]. The first three cases are 

v™ = p2
rl + p P 2 =E«! +2X^ 

in which Prm is (-1)OT+1 times the sum of the a3- taken m at a time as in the 
theory of equations. More generally, 

ZX=n i = l 

so that since Prm = 0 except for Prr and Pp p_19 which are unity, we have 

,(*•) £ < for n = 1, 2, ..., r. (2.2) 

Then, if we assume the result (2.2) is true for n = k - 1: 

Z ^ = Vir) + D « 
£ k-r+ I k- r 

= E(a}"r+1+ «}"r) = t«J"r(o}- + 1) = £ aj-'aj = fa*. 
J = 1 J = 1 J = 1 J = 1 

By the Principle of Mathematical Induction, we get 

v (r) E a". (2.3) 

For example, 

z/2) = (1.61803)* + (-0.61803)*, 

the well-known result for the Lucas numbers. 
Similarly, for instance, with i1 - -1, 

v(3) = (1.32472)* + (-0.66236 + 0.07165-z:)* + (-0.66236 - 0.07165i)*, 
and 

V{h) = (1 .22075)* + ( - 0 . 7 2 4 5 ) * + ( -0 .2481 + 1 . 3 4 U ) n + ( -0 .2481 - 1 . 0 3 4 1 i ) n . 
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3. GENERAL PROPERTIES 

Among the various properties that can be investigated, we focus on two that 
follow directly from (2.1) and (1.2). 

For odd values of p, (2.1) has the real solution 

a = (1 +a) 1 / p 

which leads to the approximation 

a = P/(P - 1); (3.1) 

for even values of p, we get 

a = ±(1 + a/p) 

or 

a = r/(r ± 1). (3.2) 

These are the initial approximate values which, by repeated iterations, converge 
to the real roots. Furthermore, we observe in (3.1) and (3.2) that as r in-
creases, a approaches unity, which can be confirmed readily with a few numeri-
cal examples. 

For notational convenience, we assume that un exists for n < 0. Then, for 
any j E Z+> 

v?-io(ty:i^+l. (3.3) 
Proof: We use induction on j. When j = 1, (3.3) reduces to the recurrence 

relation (1.2). Suppose the result is true for j = 2, 3, ..., fc - 1. Then 

f (k\ M m
 kj*/k - 1\ (P) +

ky1(k ~ 1)„W 
i, — 0 i> — u i = ± 

= W (k - l\ (P) +kY(k - l) <p> 
r^n\ i )Vn-r-r(k-l) + i A* \ i ) Vn- r- r(k- 1) + i+ 1 ^ = u ^ = 0 

= ^n-r + Vn-r+l = Vn > a S required. 

k. A DIVISIBILITY RESULT 

If we refer to Table 1 again, we observe that 5 divides i^o* ̂ l^' a n d yio» 
7 divides V^9

 v(±k» an<^ v*il> etc* M ° r e generally, this can be expressed as 

P\vprr+n) for n > 1, r > 1, and prime p > 2. (4.1) 

Proof: < / n ) = E n a f 

£ ((a,- + l)/a?)p from (2.1) 
,7=1 

]" + n P 

;?, &GK .-p-fc 

j = 1 £ = 0 

p + ft 

Y] (a~P + oC2 p) + m u l t i p l e s of p . 
J - l 
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This follows from Hardy and Wright [2, p. 64] and the fact that 

. . r+ n -k 

J-l 
r-rP + n -V- k 

is an integer because n.= 1a. 

r+ n 
Z (a/ + a'2? ). 

The polynomial with zeros 1/a- is 

±1. It remains to show that 

fix) = xr+n + x1 1. (4.2) 

From the theory of equations, we have that 

r+ n 
fr(x)/f(x) = 'E l/(x - Xj) where x- = 1/a^ 

r i n l / #? V"1 

= E "I1 " —) Wlth Xi < X' 
Thus 

fr(x)/nx) =rjf ±xpxm+i= j:vir+n)/xm+l' 
j = 1 m = 0 rn=Q 

Nlow, fr(x) = ( r + n)x !>+ n- l + (r + n - l)x r+n-2 and, by d iv i s ion , 

fr(x)/f(x) = ( r + n ) ^ ' 1 - J T 2 + 

(4.3) 

(4.4) 

Since p i s odd and 2p i s even, we get from (4.3) and (4.4) tha t i f £ • *a.p 

- 1 , then £^ = "oG2p = +1, and vice versa . Hence, 
r+ n 

0 = J] (ajp + cC2 p), as required. 
j-i 

CONCLUDING COMMENTS 

,(**) The consideration of v\ for n < 0 suggests the use of a result from Polya 
and Szego [9] to express the general term on the negative side of the sequence. 
Thus, for n < 0, 

[m/r] 

v{r) = E lm~ (r - l)k\, ,,m-rk 
kT*0 m - (r - l)k\ k )(-ir 

in which m ~ -n, and [•] represents the greatest integer function. 
The first few values are displayed in Table 2. 

Table 2. Generalized Lucas Numbers for n < 0 

2^^^/^ 

2 
3 
4 

- 9 

-76 
-7 

-19 

- 8 

47 
5 

13 

-7 

-29 
- 1 
- 8 

- 6 

18 
-2 

7 

- 5 

-11 
4 

-6 

-4 

7 
- 3 

5 

- 3 

- 4 
2 

- 1 

-2 

3 
1 
1 

- 1 

- 1 
- 1 
- 1 
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For example, when r = 2, we get the known result of Lucas [7]: 

[n/2] 

k = 0 

The recurrence relation for (5.1) is (with m = -n) 

[n/2] . - . 

so that these v^ = (~l)mAm of Hock and McQuistan [3] who apply this sequence 
to a problem on the occupation statistics of lattice spaces in relation to a 
number of physical phenomena. 

Other extensions can be found by developing an associated generalized Fibo-
nacci sequence {u^}, related to {v^} by, for instance 

(p) = y- (~1^ zSv) u(r) 

vn n Ls V U a ' B ' U a k > 

in which y(n) indicates summation over all the compositions (a1, a2, ..., ak) 
of n as in Shannon [11]. For example, when r = 2, 

£ i = 1 = A . 

£ 2 = 3 = " | / l A +T/2 - "I + 4. 
L
3 - 4 - - |AA - 4AA + TA + | A A A = -3 - 3 + 9 +1, 

where {/n} is the sequence of Fibonacci numbers that satisfy (1.1) with initial 
conditions f1=l9f2=2. The use of the lower-case letters for notational 
convenience (f - ^n + i^ ^s n o t n e w (c^ • E6'])» 

Thanks are due to Lambert Wilson [13] for the development of Table 1. 
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A CHARACTERIZATION OF THE SECOND-ORDER 
STRONG DIVISIBILITY SEQUENCES 

P. HORAK and L. SKULA 
J . E. Purkyne University, Brno, Czechoslovakia 

(Submitted September 1983) 

The F ibonacc i numbers s a t i s f y t h e well-known e q u a t i o n for g r e a t e s t common 
d i v i s o r s (cf . [ 2 ] , [ 4 ] ) : 

( F - , F.) = F(itj) for a l l i , j > 1. (1) 

Equation (1) is also satisfied by some other second-order recurring sequences 
of integers, e.g., Pell numbers or Fibonacci polynomials evaluated at a fixed 
integer (cf. [1]). In [3], Clark Kimberling put a question: Which recurrent 
sequences satisfy the equation (1)? In our paper, we answer this question for 
a certain class of recurring sequences, namely that of the second-order linear 
recurrent sequences of integers. 

We shall study the sequences u = {un:n = 1, 2, ...} of integers defined by 

u1 = 1 , u2 = b, un+2 = c • un+1 + d* uni for n > 1, 

where b9 c, d are arbitrary integers. The system of all such sequences will be 
denoted by U. The system of all the sequences from Us having the property 

(ui$ u.) = \u{ii^\ for a l l i , j > 1, (2) 

will be denoted by D. 
The main result of our paper is a complete characterization of all sequen-

ces from D. By describing D we solve, in fact, a more general problem of com-
plete characterization of all the second-order, strong-divisibility sequences, 
i.e., all sequences {un} of integers defined by 

u1 = a, u2 = b9 un + 2 = c • un + 1 + d* un, for n > 1, 

(where a, b9 cs d are arbitrary integers) and satisfying equation (2) . It is 
easy to prove that the second-order, strong-divisibility sequences are precise-
ly all integral multiples of sequences from D. 

1. CERTAIN SYSTEMS OF SEQUENCES FROM U 

Systems U1, F, Fl9 G, Gls H will be systems of all sequences u = {un} from 
U defined by w = 1, uz = b, and by the recurrence relations (for n ^ 1): 

U-, i un + 2 - b • f • un + 1 + d * un, where b9 d9 f ^ 0, F + 1, 
(d, b) = W , f) = 1; 

F: un + 2 = b * un + 1 + d« un; 
Fi : un + z = b* un + i + d° un> where {d, b) = 1; 

G i un + 2 ^ d 9 uni 

G1 i un+2 = d • un, where d = 1 or d = -1; 

H ' un + 2 = ° * un+i* 
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It is obvious that Fx C F and G1 C G» Further, we define sequences a, b, C, 
d, e, f = {un} E U by: 

Ddd 
even 

i-c 11 , s i . ( l i f n i s o 
in = 1 for a l l n > \ b : wn = < . . , 

n n \-l i f n i s e 
_ ( 1 if n = 1 . _ f 1 i f n = 1 or n i s 

' n \ - l if n > 1 d : M n (-1 i f n / l a n d n i 
even 
s odd 

J 1 if 3/n 
U n (-2 if 3 I n 

1 if n = 1, 5 (mod 6) 
f = 1-1 if n E 2, 4 (mod 6) 
T : un \ _2 i f n = 3 ( m o d 6 ) 

2 if n = 0 (mod 6) 

Let us denote A = { c, d, e, f}. Directly from the definitions we obtain: 

1.1 Proposi t ion 

1. a, b, c, d, e, f £ D , I.e. , A ED 

2. a, bs c, d E H 

3. a, b, e, f E U1 

4. a5 b E F1 O G1 

1 . 2 Propos i t ion 

Let u = {un} E G. Then u E D if and only if u E ( ? P 

Proof: Let u E D; then (u3, w^) = 1 and consequently u E G1. Let u E Gi; 
then for ̂  > 0 we get wlffc+1 = 1, w4fc + 2 = b, ukk+3 = ±1, uhk+h = ±2>. Thus, for 
iy Q > 13 

, N ( 1 if t is odd or j is odd (ui9 ud) ={ ]b \b\ if i is even and j is even 

and therefore, u E D. 

1.3 Propos i t ion 

Let u = {un} E H. Then u E D if and only if u G {a, b, c, d } . 

Proof: Let u E D; then (u2, u3) = (u39 uh) = 1 and we get \b\ = 1, \o\ = 1, 
and. consequently u E {a, b, c, d}« The rest of the proposition follows from 
1.1. 

1 . k Propos i t ion 

Let u = {un} E U, such that o9 d ± 0. Then, the following statements are 
equivalent: 

(i) (ui9 Uj) = \u(i3tj)\ for 1 < i, j < 4, 

(ii) u E ^ U Fla 
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Proof: Let (i) be true. From (u2, w3) = 1 we get (b, d) = 1. From u2\u^ 
we get b\c, b ̂  0. Therefore, there is an integer / ̂  0, such that c = bf, 
Since (u3, uh) = 1, we have (d, f) = 1 and thus u E Z7X U Fx. 

Let u E U1 U F1B Then u3 = d + Z?2/, u4 = b(d + d/ + b2f2) , where b, f + 0, 
(d, b) = (d, f) = I. Let p be a prime, plw3 and p\uh. Obviously pXb, and so 
d + b2f = 0 (mod p) , d + df + £2/2 = 0 (mod p) . Hence b2f E 0 (mod p) and con-
sequently pi/, pld, a contradiction. Thus (u3, u^) = 1 = lu-J. The remaining 
cases of (i) obviously hold. 

2. THE SYSTEM OF SEQUENCES F 

The following two results are easily proved by mathematical induction, in 
the same way as for the Fibonacci numbers (cf. [4]). 

2.1 Proposition 

Let u = {un} E F. Then for any k > 2, m > 1 it holds 

uk + m = ukum + 1 + d- uk_1um. 

2.2 Propos i t ion 

Let u = {un} E F and /c, m > 1 be integers. If k\m9 then Uji\um. 

2.3 Proposition 

Let u = {un} E F. Then the following statements are equivalent. 

(i) (u2, us) = 1 

(ii) (un, un+1) = 1 for all n > 1 

(iii) u 6 D 

(iv) u E Fx 

Proof: Clearly (iii) => (i) and (i) => (iv) . Let (iv) be true. Let r be the 
smallest positive integer such that (ur, ur+1) £ 1. Then r > 2 and there ex-
ists a prime p such that pluP, p\uP + 1. But uP+ 1 = 2?wr + ̂ P - i 5 and hence p\d. 
Now, it is easy to prove, by induction, that un = b71'1 (mod p) , for all n > 1. 
Hence, 0 = ur = Z?11"1 (mod p) so that p!£, a contradiction, and (iv) =̂  (ii) is 
proved. 

Now, let (ii) be true. We can assume that i > j > 1. Let g = (w?:, ẑ -) . 
Then from 2.2 we get u^tj)\g. It is well known that there exist integers P, S 
with, say, r > 0 and s < 0, such that (i, j) = vi + sj. Thus, by 2.1, we get 

W ^ = w(-s)j+ (i, j) = U{-s)jU(is j) + l + du(-s)j-lU(i, j)-

But by 2.2, #|u(_s)j-, #|z^ , and by (ii) , (#, W(-S)j- l) = 1, so that ^ldw(i.j). 
If p is a prime, p|#, p | <i, then piz^ = ZPU^ _ l + dui_2> a n d s o Pl&- Thus, (u2, 
u3) > 1, a contradiction. Hence, (#, d) = 1 so that g\u(^i^) and (iii) is true. 

3. THE SYSTEM OF SEQUENCES Ux 

If u = {un} E [/-,_, then directly from the definition we obtain 

u3 = d + b2/, 2^ - Z?(d + df + £2.f2) 
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and 

u5 = d2 + 2b2df + b2df + bhf\ (3) 

where b, d, f + 0, f + 1, and (d, b) = (d, f) = 1. 

3.1 Proposition 

Let u = {un} E U1. Then the following statements are equivalent. 

(i) u3\u6 

(ii) u3 ^ 0 and / E l (mod lu3l) 

Proof: 

I: Let u3\us and let 0 = u3 = d + &2jf\ Then ̂ 6 = M(d + £2/2) = 0, and 
consequently, / = 1, a contradiction. Thus, from (i) , it follows that u3 4- 0. 

II: Let u3 + 0. Since us E bd(d + b2f2) (mod \u3\) and (bd, u3) = 1, we 
have u3\u6 iff d + £2/2 = 0 (mod |w3|). But d + &2/2 = &2/(-l + f) (mod |w3|), 
and (/, u3) = (b, w3) = 1, so that d + Z?2/2 E 0 (mod |w3 I) iff / E 1 (mod |w3 I). 

3.2 Proposition 

Let u = {un} E £/ . Then the following statements are equivalent. 

(i) uh\uQ 

(ii) d + df + Z?2/2 ̂  0 and / E 1 (mod \d + df + b2f2\) 

Proof: 

I: Let uh \ue and d + df + 2?2/2 = 0. Then 

uh = 0 and u8 = bdf(2d + b2f2)u3 = 0. 

But both 2d + b2f2 = 0 and u3 = 0 lead immediately to a contradiction; thus, 
from (i) it follows that d + df + b2f2 ± 0. 

lis Let d + df + b2f2 + 0. Clearly, uQ E bdf{ld + b2f2)u3 (mod |w4|) and 
(d/, d + d/ + b2f2) = 1, and, from 1.4, we get (w3, uh) = 1. Hence, uh\uQ iff 
2d + £2/2 E 0 (mod Id + df + Z?2/2I). Trivially, 

b2f2 E -d - df (mod Id + df + b2f2\) 

and thus, 

2d + b2f2 E 0 (mod | d + d / + b2f2 | ) i f f / E 1 (mod | d + d f + Z?2/2 | ) . 

3»3 Lemma 

Let b, d, / 7̂  0, / + 1 be integers such that (d, £) = (d, /) = 1, d + Z?2/V 0, 
and d + df + b2f2 4 0. 

Then f E 1 (mod Id + b2f\) and / E l (mod Id + d/ + Z?2/2I) if and only if 
one of the following cases occurs: 

b = ±1, / = -1, d = -1 b = ±1, f = -2, d = 1, 5 

b = ±1, / = -3, d = 5 J = ±1, / = -5, d = 7 

2? = ±1, f + d = 1 f = ±b2
9 d = il + b2 + bh 
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Proof: Sufficiency is easy to verify in all of the cases, so we prove 
necessity. Let us denote x = d + b2f9 y = d + df + b2f2. Clearly, (x9 y) = 1, 
x - y (mod |/|) , and 

y = x + fx - b2f (4) 

xy\(f ~ D- (5) 
a) Suppose f > 1. 

Then x = y (mod f) 9 and from (5) we get \x\ > \y\ < /. 

. ax) If x9 y > 0 or x, y < 0, then x = y 9 and hence 2?2 = <i + Z?2/2 So Z?|d 
and we get b = ±l9f+d=l* 

a2) x < 0, y > 0 is impossible because of (4). 

a3) If x > 0, y < 0, then y = x - f, where 0 < x < f. 

From (4) we get x = b2 - I and from (5) we get x(f - x)\f - 1. If # ̂  (/- l)/2, 
then f - x> (f- l)/2, and hence / - x = / - 1. But then x = 1 = £2 - 1, a 
contradiction. If x > (f- l)/2, then x = f- 1. Thus, we get f = b2

 9 d = -1 + 
2>2 - 2>\ 

B) Suppose / < 0. 

Denote £ = -/. Then x ~ y (mod £) , and from (5) we get \x\ 9 \y\ < £ + 1. 

3X) If 1̂ 1 = t + 1 or I z/1 = £ + 1, then there are four possibilities: 

B1]L) x = / - 1, z/ = ±1 = f 2 - b2f- 1. 

From 1 = f 2 - £ 2 / - 1, we get 2? = ±1, / = - 1 , d = - 1 , and -1 = /2 - & 2 / - 1 is 
impossible, since then we get / = b2 > 0, a contradiction. 

Bi2> x = -Cf - i ) , y = ±i = -f2 - b2f + l. 
From 1 = -f 2 - &2.f + 1, we get f = -b2

 9 d = 1 + b2 + £ \ and from -1 = -/2 -
Z?2/ + 1, we get Z? = ±1, / = -2, J = 5. 

(313) x = ±1, y = f - l = ± l ± f - b2f both lead to a contradiction. 

B14) x = ±1, y = - ( / - 1) = ±1 ± f - b2f. 

From -f + 1 = 1 + / - b2f9 we get b2 = 2, a contradiction, and from -/ + 1 = 
-1 - / - b2f9 we get & = ±1, / = -2, d = 1. 

3 ) If I a; | = £ or |z/| = £ and |x|, |z/| ^ £ + 1, then £|£ + 1, and hence 
/ = -1. We get b = ±1, / = -1, d = 2, which is a special case of £> = ±1, / + 
d = 1. 

33) If \x\ 9 \y\ < £, then we have the following possibilities: 

331) x9 y > 0 or x9 y < 0. Then x = y 9 and in the same way as in a x ) , we 
get 2? = ±1, / + d = 1. 

332) x < 0, y > 0 is impossible because, then, x = y + f, and we get z/ = 
2?2 - / - 1, so that x = b2 - 1 > 0, a contradiction. 

333) x > 0 , z/<0. Then y = x - t = x + f, and hence x = b2 + I* From 
(5), we get #(£ - #) I £ + 1, where 0 < x < £ and 0 < £ - # < £. 

If x < (£ + l)/2, then £ - x > (£ - l)/2. From £ - x = £/2, we get a contra-
diction, and hence t - x = (£ + l)/2, x = (£ - l)/2. Now, from (£ - l)/2 * 
(£ + 1)/2|£ + 1, we get (£ - 1)/2|2, and consequently b = ± 1 , f = -5, d = 7. If 
x > (£ + l)/2, then, similarly as above, we get b = ±1, f = - 3 , d = 5. 
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3.4 Proposition 

Let u = {un} E U±a Then the following statements are equivalent. 

(i) u5\u1Q 

(ii) u5 + 0 and d2 + 3b2df2 + bhf = 0 (mod \u5\) 

Proof: 

I : Let u5\u10 and 0 = u5 = d2 + 2Z?2^/ + b2df2 + Z?Y3- Then u10 = d(c?2 + 
3Z?2df2 + bhf)uh = 0 . I f uh = 0 , t hen 0 = d + df + b2f2 = <2(1 + / ) + Z?2/2 and 
from (3) we ge t w 5 ( l + f) 2 = ~bhfz 4- 0., a c o n t r a d i c t i o n . Thus, we have d2 + 
3Z>2d/2 + bhf = 0. But then d2 = -3Z>2^/2 - bhfh and from 0 = u5 we ge t Z?2/2 = 
-2(i5 which i s a c o n t r a d i c t i o n s s i n c e (<i, b) = (d, f) = 1. 

I I : Let u5 4 0. Then 

w10 = d (d 2 + 3 £ 2 d / 2 + bhf)uh (mod | w 5 | ) . 

It is easy to prove that (uh> u5) = 1 and (d9 u5) = 1. Thus, u5\u10 if and only 
if d2 + 3b2df2 + b^fh E 0 (mod |w5|). 

3-5 Proposition 

Let u = {un} E £/]_. Then the following statements are equivalent. 

(i) u3\u6, uh\uQ9 u5 \u10 

(ii) u E D 

(iii) u E {a, b3 e, f} 

Proof: Clearly (iii) =̂  (ii) and (ii) =̂  (i). Let (i) be true. According 
to 3.1 and 3.2, just the cased described in 3.3 can occur for the integers b9 

d, f. 
a) IfZ?=l, / + d = l , then u = a; 

Ifb=-l>f+d=l> then u = b; 
If b = 1, / = -1, d = -1, then u = e; 
If Z? = -1, / = -1, d = -1, then u = f . 

3) If / = b2
s d = -1 + b2 - Z>\ then 

u5 = -Z?6 + bh~ - 2b2 + 1 

and 

d2 + 3Z?2df2 + bhf = Z?12 - 3Z>10 + 4Z?8 - 5Z?6 + 3bh - 2b2 + I 

= (-Z?6 + bh - 2b2 + 1)(-Z?6 + 2bk + 1) + b\ 

Obvious ly , (~be + bh - 2b2 + 1, Z?6) = 1 for every i n t e g e r b. So, from 3 . 4 , we 
get -b6 + bh - 2b2 + 1= ± 1 , and t h u s 1 = b2 = / , a c o n t r a d i c t i o n . 

y) I f / = -Z>2, d = 1 + Z>2 + b \ t h e n 

w5 = b6 + Z?4 + 2Z?2 + 1 

and 

d2 + 3Z?2<f/2 + bhf = b12 + 3Z?10 + 4Z?8 + 5b6 + 3b1" + 2b2 + I 

= (Z?6 + bh + 2Z?2 + 1)(Z>6 + 2bh) + bh + 2b2 + I. 
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But bs + bh + 2b2 + 1 > b1* + 2b2 + 1 > 0 for every nonzero integer b, which 
contradicts 3.4. 

y) It is easy to prove by direct calculation that the remaining cases of 
Lemma 3.3 also contradict 3.4. 

4. MAIN THEOREM 

4.1 Theorem 

It holds that D = A U F1 U G1. 

Proof: 

I: Let u E D. If .£, d + 0 then, by 1.4, 3.5, and 1.1.4, u € Fx or u E 4; 
if c = 0, then u E G and, by 1.2, u E Gx; if d = 0, then u E H and, by 1.3 and 
1.1.4, u <E F± or u G A. Hence, u E 4 U Fx U Gx. 

II: Let u G i l U ^ L K ? ! . Then, by 1.1.1, 2.3, and 1.2, we get u E D. 

4.2 Corollary 

All the second-order, strong-divisibility sequences are precisely all inte-
gral multiples of sequences from D> i.e., of the following sequences: 

c = {1, -1, -1, -1, ...} 

d = {1, 1, -1, 1, -1, ...} 

e = {1, 1, -2, 1, 1, -2, ...} 

f = {1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, ...} 

ux = 1, u2 = bs
 u

n + 2 = b * un + i + d * un where (d, b) = 1 

u1 = 1, u2 = b9 un+2 = d * un where d = ±1. 

4.3 Remark 

It is easy to prove that the systems 4, F19 G1 satisfy 

A H Fx = cj), A n Gx = <j), Fi fl f?! = {a, b, g, h}, 

where g = {1, 0, 1, 0, .. . } , and h = {1, 0, -1, 0, 1, 0, -1, 0, ...}. 
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In [1], Andrews proves that the number of consecutive triples of quadratic 
residues, n(p), is equal to p/8 + Ep, where \Ep\ < (l/4)\/p + 2. In addition in 
[1], it is proved* that for p = 3 (mod 4), \Ep\ < 2. 

In this note, m(p) will denote the number of consecutive triples of quad-
ratic nonresidues. In addition to topics related to those presented in [2], 
n(p) and m(p) will be determined for all odd primes. Also, the number of tri-
ples a, a + 1, a + 2 will be determined for which 

(?) • «• ( ^ ) • - - H±) - v. 
where £, n, and V each take one of the values ±1. Finally, an elementary proof 
of GaussTs "Last Entry" will be presented. 

In [2], the decomposition of the integers 1, 2, 3, ..., p - 1 into cells is 
developed as follows: these integers are partitioned into an array according 
to whether the consecutive integers are (or are not) quadratic residues. For 
example, for p = 11, the quadratic residues are 1,3, 4, 5, 9; hence, the array 
is 

1 2 3, 4, 5 6, 7, 8 9 10. 

The following are also defined in [2]: a singleton is an integer in a sin-
gleton cell, e.g., 2; a left (right) end point is the first (last) integer in 
a nonsingleton cell, e.g., 3 (5); and an interior point is an integer, not an 
end point, in a nonsingleton cell, e.g., 4. 

Furthermore, as in [2], the following notation will be used: s, e9 and i 
will denote the numbers of singletons, left end points (or right end points), 
and interior points, respectively. Values for s, e, and i are given in [2], 
and these values will be cited later. Quadratic residue and quadratic nonresi-
due will be denoted by qr and qnr, respectively. The subscript r (n) will be 
used with s, e, and i to denote the appropriate number of quadratic residues 
(nonresidues). For example, for p = 11, sr = 2 and en = 1. 

Lemma 1 

For p an odd prime, n(p) = iv and m(p) = i n , so that n(p) + m(p) = i. 

Proof: The middle integer, x, of either type of triple certainly cannot 
be a singleton or an end point; hence, x must be an interior point. Now, if 
a19 a2, ..., ak are the consecutive interior points of some cell, then there 
are precisely k consecutive triples: a, a15 a2; a19 a2, a3; ...; a^.1} a#, b> 
where a and b are the left and right end points, respectively, of this cell. 

*This case was solved by E. Jacobsthal, "Anwendungen einer Formel aus der 
Theorie der Quadratischen Reste," Dissertation (Berlin, 1906), pp. 26-32. 
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Hence, there is a one-to-one correspondence between the number of triples (of 
either type) and the number of interior points (of the same type) , and the con-
clusion follows. 

The next lemma is proven in [2], 

Lemma 2 

The results in the following table hold. 

(p = ) 

s 

e 

i 

8k + 1 

P - 1 
4 

p + 3 
4 

p - 9 
4 

8k + 3 

p + 5 
4 

P - 3 
4 

P - 3 
4 

8k + 5 

p + 3 
4 

P - 1 
4 

P - 5 
4 

8k + 7 

P + 1 
4 

P + 1 
4 

P - 7 
4 

Theorem 1 

Let p be a prime = 3 (mod 4) . 

P - 3 
(a) If p = 3 (mod 8), then iT = in = n(p) = m(p) = -—^—; 

(b) If p = 7 (mod 8), then iT = in = n(p) = m(p) = — g — . 

Proof: It is shown in [2] that the array of integers 1, 2, . .., p - 1 is 
symmetric, in that a cell of qr corresponds to a cell of qnr of equal length. 
(This follows from the fact that a is a qr if and only if p - a is a qnr.) So 
£r = in and, thus, from Lemma 1, n(p) = m(p) = i/2. The conclusion follows by 
applying Lemma 2. 

The fact that for p = 3 (mod 4) , both iv and in are determined in Theorem 1 
gives justification in also determining sv, sn, erS and en. Hence, this shall 
be done at this point. At the appropriate juncture, these entities will be de-
termined for primes = 1 (mod 4). 

Theorem 2 

Let p be a prime = 3 (mod 4) . 

P + 5 
(a) If p - 3 (mod 8) , then sv = sn = ^ and eT 

P + 1 
(b) If p = 7 (mod 8), then sv = sn = — ^ — and eT 

P - 3 
8 

p + 1 

Proof: As in Theorem 1, use symmetry and apply Lemma 2. 

Note: The case p E 1 (mod 4) does not follow so easily. The symmetry of 
the array used in Theorem 1 does not apply; a cell of qr corresponds to another 
cell of equal length of qr. (This follows from the fact that a is a qr if and 
only if p - a is a qr.) 
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Next, as in [1], S(l) will denote the following sum: 

p^3/n(n + l)(n + 2)\ 

n~A V )' 
Since Lemma 1 relates to the sum of ir and in, in order to solve for iT and 

i n i it is sufficient to discover iT - -in. Hence, this shall be our goal. 
The proof of the next lemma appears in [1], [The definition and value of 

S(i) will have no bearing on our results; the fact that S(l)/29 an integer, 
exists is sufficient.] 

Lemma 3 

For p a prime - 1 (mod 4), 

t^y - P. 
It is well known that p is uniquely expressed as the sum of squares of two 

integers (other than with a change in sign, or an interchange of the two inte-
gers) . Furthermore, the two integers have opposite parity. Ultimately, we 
shall show that £(1), whose value we seek, is such that S(l)/2 is (±) the odd 
integer which appears in the expression for p in Lemma 3. 

The next lemma lists further results from [2] which will be used in deter-
mining the value of S(l). 

Lemma k 

For p a prime E 1 (mod 4), the following are identities: 

(1) en + sn = — - . and ev + sr - — - . . (These follow from an examination of 

the number of qr and qnr cells in the array.) 

(2) i,T = sr - 2 and -in = sn„ (These follow from an examination of the rela-
tionship between a qnr singleton and its multiplicative inverse.) 

Next, a further investigation of 5(1). 

Lemma 5 

For p a prime E 1 (mod 4), 

'4(sP - sn) - 2, if p E 1 (mod 8), 

l4(sp - sn) - 6, if p - 5 (mod 8), 

Proof: First, an examination of S(l) shows that a term in the summation 
will be positive when n + 1 is either a qr singleton, a qnr left or right end 
point, or a qr interior point. Similarly, the term will be negative when n + 1 
is either a qnr singleton, a qr left or right end point, or a qnr interior 
point. 

Now, define A and B as follows: 

A = sr + 2en + ir 

= sr + 2f—T sn J + (sP - 2), using Lemma 4; 
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sn + 2(—7; si> ) + sn> using Lemma 4. 

Using the above determination as to when a term is positive or negative, 
5(1) is almost equal to A - B. In the case p E 5 (mod 8 ) , we must subtract 2 
from A because 1 and p - 1 are singletons counted in sv which do not appear in 
the sum (a result of the fact that 1 and p - 1 are qr and 2 and p - 2 are qnr). 
Similarly, incase p E 1 (mod 8 ) , we must subtract 2 from B because 1 and p - 1 
are quadratic residue left and right end points, respectively, which do not 
appear in the sum (a result of the fact that 1 and p - 1 are qr9 and, in addi-
tion, 2 and p - 2 are qr) . Finally, incorporating these changes with the ap-
propriate ±2 to A - B = 4(sp - sn) - 4, the conclusion follows. 

Theorem 3 

Let p be a prime E 1 (mod 4) and p = q2 + b2, where q is positive and odd; 
then, 

a+ 1 
P - 15 -f 2(-l) 2 a ., - i / J en _-i—:£ , if p = 1 (mod 8) , 

iv = n(p) = ^ a-l 
p - 1 + 2(-l) 2 q 

a- 1 
> - 3 + 2(-l) ^ q 

8 
i n = 77?(p) = \ q+ 1 

p - 3 + 2(-l) 2 a 

, if p E 5 (mod 8), 

, if p E 1 (mod 8), 

if p E 5 (mod 8). 

Proof: The case p = 1 (mod 8) will be examined; the case p E 5 (mod 8) 
follows similarly. As can be seen from Lemma 5, S(l)/2 is odd, and by using 
Lemma 3, the uniqueness of the odd integer in the sum of squares, and Lemma 5, 

Hsp - 8„) - 2 
— — 2 =±a. 

This, along with Lemma 4, implies that 

. _ . _ ±q - 3 

The symmetry of the array guarantees that both iv and in are even; hence, ±a -
3 must be divisible by 4. Since a is odd, q E 1 (mod 4) or a E 3 (mod 4). If 
q E 1 (mod 4), then we must have -a - 3; if a = 3 (mod 4), then we must have 
q - 3. The factor (_i)(a+1)/2 yields the appropriate sign. Now, from the table 
in Lemma 2, i r + in = (p - 9)/4. By solving the system of linear equations, we 
have the conclusion. 

For example, let p = 13; then, since 1 3 = 3 2 + 2 2 , q = 3 . Furthermore, 
13 E 5 (mod 13); hence, from Theorem 3, n(13) = i r = 0, and 777(13) = in = 2. 
Specifically, the two qnr triples occur in the middle cell in the decomposition 
for p = 13, 

1 2 3, 4 5, 6, 7, 8 9, 10 11 12. 
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Finally, having found iv and i n , we determine sr, sni eri and en. 

Theorem k 

Let p be a prime E 1 (mod 4) and p = a2 + b2, where a is odd and positive; 
then, 

a+l 
P + 1 + 2(-l) 2 q 

8 
a- 1 

p + 9 + 2(-l) 2 a 

ew = ' 

e„ = ' 

a- 1 
p - 3 + 2(-l) 2 a 

8 
a+l 

p - 3 + 2(-l) 2 a 

a- 1 
p + 5 + 2(-l) 2 a 

a+l 
3 + 2(-l) 2 a 

a+ 1 
p + 1 + 2(-l) 2 a 

a- 1 

if p = 1 (mod 8 

, if p i 5 (mod 8 

, if p E 1 (mod 8 

, if p E 5 (mod 8 

, if p E 1 (mod 8 

, if p E 5 (mod 8 

, if p E 1 (mod 8 

+ 1 + 2(-l) 2 a _ _ . , - Q ^ —, if p = 5 (mod 8 

Proof: Use Lemma 4 and. Theorem 3. 

Theorem 5 

Let each of £, rj, and V take one of the values ± 1, and let T denote the 
number of triples, a, a + 1, a + 2, where a - 1, 2, ..., p - 3 , for which 

(i) • «• m - -• - m 
Then 

i[* 3) - £ 

- V 

- nv 

1 • ( £ ) ] - H ? • ( £ ) ] - " D • ( r ) ] 
[l + (|)] + CTVS(l)] . 

Proof: As done with pairs on page 71 of [3] (here, the sums being from 1 
to p - 3), 

r=i4(>-(?))(-^))(>-(^)) 
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Next, expand T into eight sums and use the facts that 

then, apply Lemma 5 to substitute for S{1). 

We now turn our attention to "The Last Entry," see [4], which refers to the 
last entry in Gauss's mathematical diary. There, he states: 

Theorem (Gauss) 

Let p be a prime E 1 (mod 4); then, the number of solutions to 

x2 + y2 + x2y2 E 1 (mod p) is p + 1 - 2a, 

where p = a2 + b2, and a is odd. 

Note: (1) the sign of a is to be chosen "appropriately," and 
(2) there are four points at infinity included in the solution set. 

Proof: If either x or y is E 0 (mod p) , then the other is E ±1 (mod p) . In 
the following, we shall assume that neither x nor y is = 0 (mod p). Now, 

{x, y) is a solution 

x2 + y2 + x2y2 E 1 (mod p) < 

(x2 + l)y2 E 1 - x2 (mod p) 

x + 1 and 1 - x are both qv or qnv <=^ 

x2 + 1 and x2 - I are both qp or qnp [since p E 1 (mod 4)] <^> 

x2 - 1, x2, x2 + 1 is such that x2 is either a qr singleton or a qp interior 
point [with the exception that for pE5 (mod 8) and x E ±1 (mod p) ; these val-
ues are qv singletons (±2 are qnv) which have been taken into account]. Hence, 
the number of solutions is 

4(sp + ir) + 8 for p E 1 (mod 8), 

4(sP - 2 + ir) + 8 for p E 5 (mod 8), 

where the "4 times" is for (±x9 ±y), and the 8 is for the 4 points at infinity 
and the 4 solutions (0, ±1), (±1, 0). Simplification yields the solution. 
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1. INTRODUCTION 

In [3]s the first author obtained an expression for the number of equiva-
lence classes induced on the set of ft x ft Latin squares under row and column 
permutations. The first purpose of this paper is to point out that the results 
of [3] do not hold for all n, but rather that they hold only if n is a prime.* 
The second purpose of this paper is, in the case of prime ft, to extend the re-
sults of [3] to three-dimensional and finally to ft-dimensional Latin hyper cubes. 
This is done in Sections 3 and 4. 

2. LATIN SQUARES 

A Latin square of order n is an n x n array with the property that each row 
and each column contains a permutation of the integers 1, 2, ..., ft. In [3], 
two Latin squares were said to be equivalent if one could be obtained from the 
other by a permutation of the rows and another possibly different permutation 
of the columns, while a Latin square was said to be stationary if it remained 
invariant under some nontrivial row and column permutations. Let G be the 
group of all permutations of rows and columns so that G is isomorphic to Sn x Sn 
where Sn is the symmetric group on ft letters. A Latin rectangle is an m x n 
array (m < ft) in which each row contains a permutation of 1, 2, . .., ft and no 
integer occurs more than once in any column. Denote the number of m x n Latin 
rectangles by L(m5 "ft) . 

*We now correct two errors that occur in [3]. In the proof of Lemma 1.2 of 
[3] it is assumed that if d divides n then the expression L(kd+1, n)/L(kd, ft) 
is always an integer for k = 0, 1, ..., nld - 1. That this is not always the 
case is easily seen in the case when n = 4. Let d = 2 and k = ls and consider 
L(3, 4)/L(2, 4). It is easily checked (see, e.g., [2]) that L(3, 4) = 4!3!4, 
while L(2, 4) = 4!9, so that L(3, 4)/L(2, 4) = 8/3. Lemma 1.2 of [3] is cor-
rected in our Lemma 1.2. 

In Theorem 2 of [3], it is indicated that, if n is prime, then there are 
(n - 2)! classes of stationary Latin squares each of which contains (n - 1)! x 
(n - 2)! elements. While the proof of the theorem is correct, the statement 
contains a typographical error and should read "For n prime, there are (ft - 2)! 
equivalence classes of stationary Latin squares, each of which contains ft! x 
(ft - 1)! elements." 
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It is now easy to prove 

Lemma 1.2 

Let II = (11̂ , IIe) be a permutation of G such that both VLT and IIe consist of 
either vp 1-cycles or 1 p-cycle, where p is a prime. Then there are either 
L(p9 p) or L(l, p) Latin squares invariant under II. 

Proof: Clearly, if IIr and Tl0 both consist of p 1-cycles, then all Latin 
squares of order p are invariant while in the remaining case the first row can 
be chosen in p! = L(l, p) ways. Once the first row is completed, the remain-
ing rows are uniquely determined by Ti0. 

We now prove 

Theorem 1 

If p is a prime, then permutations of rows and columns induce 

HP, P) , (P - Di 
(p!)2 P 

equivalence classes in the pth-order Latin squares. 

Proof: Burnsidefs lemma gives the number of classes as 

(1/|G|) X>01) 
JieG 

where (̂11) is the number of squares invariant under II, from which the theorem 
follows. 

It may be noted that, if £p denotes the number of reduced Latin squares of 
order p, then L(p, p) =pl(p - 1)!£p so that the number of equivalence classes 
thus reduces to (£p + (p - l)!)/p. Moreover, the values of £p are known if 
p < 9 (see [1]). 

3. LATIN CUBES 

In this section we extend the results of [3] to Latin cubes of prime order. 
A Latin cube C of order p i s a p x p x p array with the property that each of 
the p3 elements oi^ is one of the numbers 1, 2, ..., p and {ci^} ranges over 
all of the numbers 1, 2, ..., p as one index varies from 1 to p while the 
other two indices remained fixed. Two Latin cubes of order p are equivalent 
if one can be obtained from the other by a permutation II = (np, IIC, IÎ ) , where 
IÎ  is a permutation of the rows, IIc is a permutation of the columns, and II£ is 
a permutation of the levels of C. Let G denote the group of all permutations 
so that G is isomorphic to Sp. We first prove 

Lemma 3«1 

Given three partitions of a prime p, each into at most p - 1 parts and not 
all into a single part, it is possible to select one part, say s^9 from each 
partition so that the least common multiple of two of the s^s is less than 
lcm(s1, s29 s3)• 
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Proof: Number the partitions so that the first has more than one part and 
select as s1 some part other than 1 from the first partition. Since p is prime, 
from the second partition we may select as s2 some part such that (s2, sx) = 1. 
Similarly, select s3 from the third partition so that (s3, sj = 1 and, hence, 
lcm(s2s s3) < lcm(sl5 s2, s 3 ) . 

Corresponding to Lemma 1 of [3], we have 

Lemma 3-2 

Let IT = (lip, Jl0, 11̂ ) G G. A Latin cube of order p a prime is nontrivially 
invariant under II only if each component of II is either a p-cycle or the iden-
tity and at least two of the components are p-cycles. 

Proof: The permutation II induces three partitions of p and if s. is a part 
from the it h partition for i = 1, 2, 3, we may assume that 

lcm(s1, s2) < lcm(s1, s2, s 3 ) . 

If TT = (IT1j II2, n3) , let (&n&i2' • • &isi) be the corresponding cycle of the per-
mutation 11̂ . Tracing the effect of the cycles beginning with position ( & n , 
£2i5 &31) w e get, after applying the permutation II <i=lcm(s1, s2) times that 

(361 1, &21> ^ 3 1 ' "*" ^ 1 2 ' ^ 2 2 ' ^ 3 2 ' "̂  '' "*" ™ 11 > ^ 2 1 ' ^ 3 J ^ S 

where £3^ ^ £ 3 1 since lcm(s19 s2, s3) >lcm(s 1, s2) . For invariance, the ele-
ments in these positions must be equal, a contradiction of the Latin property. 
Hence all of the s^ must be 1 or p. If only one component contained a p cycle 
while the other two contained the identity, clearly the cube cannot be invari-
ant without contradicting the Latin property. 

Let L(p, p, p) denote the number of Latin cubes of order p a prime. Clear-
ly, if IT is the identity, then L(p,p, p) cubes are invariant under II, while 
there are 3[(p- l)!] 2 permutations II = (lip, Hoi IT£) with the property that one 
of the components is the identity, while the other two consist of p-cycles. 
Moreover, each such permutation leaves L(l, p, p) = L(p, p) cubes invariant. 
In order to count the number of cubes invariant under IT, where lip, IIC, and II £ 
all consist of p-cycles, we need the following definitions and lemmas. 

Def i n i t ion 3-1 

A transversal of a Latin square of order p is a set of p cells, one in each 
row and one in each column such that no two of the cells contain the same sym-
bol. 

Definition 3.2 

A Latin square of order p is in diagonal transversal form if it consists 
of p disjoint transversals, one of which is the main diagonal and the remaining 
transversals are parallel to it, i.e., with addition mod p, cells (i, j) and 
(i + 1, j + 1) are always in the same transversal. 

Let dp denote the number of Latin squares of order p in diagonal transver-
sal form. We can now prove 
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Lemma 3°3 

A Latin cube of order p a prime is invariant under a permutation II = (Jlrs 
Jlc$ IÎ ) where J[r, JlcS and n£ are p-cycles only if level one consists of p dis-
joint transversals. 

Proof: Let J[r = 01r2„..rp) and IIc = (c?1c2. . ,cp) . Consider the elements 
in the p positions (P15C?1S •) to be some permutations of 1, 2, ..., p. Repeat-
ed applications of II carries these positions into the positions (r2, £2, a) , 
(p3s c3s •)> ... . Since n£ is a p-cycle, each element occupies the position 
in level one in exactly one of the p sets of positions, and thus the elements 
in positions (P1S O19 1), (2*2, <?2? 1), . .., (rp, cp9 1) form a transversal. 
Similarly, successive applications of II to the p positions (r2> c19

 9 ) fixes 
(r3, c2, O , . .., (̂ 15 cp, •) so that (r2, c1$ 1) , . .., (P15 cps 1) is a sec-
ond transversal in the first level. It thus follows that level one consists 
of p disjoint transversals. 

Lemma 3»^ 

For p a prime there are dp Latin cubes of order p invariant under a permu-
tation II = (IIr, IIC, n£) where lips IIe, and II£ are p-cycles. 

Proof: Suppose np = (H2...ip)s U0 = (lj2...jp)s and II£ = (lfc2 . . . A:p). By 
the previous lemma5 a cube will be invariant under II only if level one consists 
of the disjoint transversals 

T1 (1, 1), (i2, j 2 ), ..., (ip, j p ), 

^2 C1* J2)» (^2» J3>» •••» (^p» 1)> 

•̂  p (I> <Jp) 2 \^2S ' * •*•» ("Z-ps 0p-\) • 

Rearrange the rows and columns by using the permutations 

( i V : : : ? ) -d (1 •£:::£) 
so that level one now consists of the transversals 

T± (1, 1), (2, 2), ..., (p, p), 

T2 (1, 2), (2, 3), ..., (p, 1), 

(3.1) 

LP (1, p), (2, 1), ..., (p, p - 1). 

Hence, level one is in diagonal transversal form so that the number of cubes 
invariant under II is less than or equal to dp* 

Similarly, if we consider a Latin square of order p in diagonal transversal 
form and apply the permutations 

(} 2 ••• ? ) and (| 2 ••• P) 
Vl t2 ... ^p/ Vl Jz ••• 3 J 
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we obtain a square with p disjoint transversals as in (3.1). If we use this 
square as level one of a. cube and allow 11= (IIr, EQ5 Eg) to fix the remaining 
levels we will have constructed a cube invariant under II so that dp is no lar-
ger than the number of cubes invariant under IT. 

It may be of interest to note that for p = 2, 3, and 5, dp- (p - 2)p!. For 
p prime, one can construct a square in diagonal transversal form by choosing 
the first row in one of p! ways and then rotating the row one position to the 
left p - 1 times to obtain the remaining rows. By making the p - 1 rotations 
each two positions to the left, one obtains a second diagonal transversal square 
with a given first row. Similarly, for left rotations of any fixed size up to 
and including p - 2 positions, a new diagonal transversal square is obtained 
so that dp ^ (p - 2)pl. If p = 7, the following square 

1 2 3 4 5 6 7 
2 3 7 5 6 1 4 
7 5 4 6 1 2 3 
4 1 6 2 3 7 5 
3 6 5 1 7 4 2 
6 7 2 3 4 5 1 
5 4 1 7 2 3 6 

is not obtained by a rotation of the first row so that d7 > 5 • 7!* Moreover, 
in general3 if p ^ 7, we have dp > (p - 2)p!. It would be of interest to have 
an exact formula for dp for all p. 

We now apply Burnside's lemma to prove 

Theorem 3°1 

Permutations of rows, columns, and levels induce 

NP =JfT)3[L(P> P> P} + 3 ( (P - 1>!)2£(P- P> + «P - DD'dp] 
equivalence classes in the set of Latin cubes of order p a prime. 

If Cp is the number of reduced Latin cubes of order ps then 

L(p, p, p) = pl(p - l)!(p - l)lcp5 

so that Np may be written in the form 

Np = -j~[pcp + 3p !£ p + dp]. 

In [4] it was shown that c2 = o3 = 1 and c5 = 40,246. Therefore, it is easily 
checked that N2 = N3 = 1, while tf5 = 1774. 

4. HYPERCUBES 

In this section we extend our results concerning squares and cubes of prime 
order to n-dimensional hypercubes of prime order. A Latin hypercube A of 
dimension n and order p i s a p x p x •.. x p array with the property that each 
of the pn elements a^ in is one of the numbers 1, 2, ..., p and {ai1.,a in} 
ranges over all of the numbers 1, 2, . .., p as one index varies from 1 to p, 
while the remaining indices are fixed. Let L(n; p) be the number of n-dimen-
sional Latin hypercubes of order p. We may generalize the proof of Lemma 3.1 
to obtain 
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Lemma 4.1 

Given n partitions of a prime p, each into at most p - 1 parts and not all 
into a single part, it is possible to select one part S{, from each partition 
so that the least common multiple of n - 1 of the s-i' s is less than lcm(s1, s2, 
...5 sn). 

Let G be the group that permutes n-dimensional hypercubes by permuting each 
component so that G is isomorphic to Sp. Along the same lines as Lemma 3.2, we 
may prove 

Lemma 4.2 

Let IT = (II1, ..., IIn) E G . A Latin hypercube of order p a prime is non-
trivially invariant under IT only if each IÎ  is a p-cycle or the identity and 
at least two of the II ̂  are p-cycles. 

Def i n i t ion 4.1 

A hypertransversal of an 7^-dimensional Latin hypercube of order p is a col-
lection of p cells (i\, ..., i„), k = 1, ..., p, such that the corresponding p 
elements are distinct and among the p n-tuples, the set of p elements in each 
of the n coordinates is a permutation of 1, 2, ..., p. 

By extending the argument used in the proof of Lemma 3.3 to n dimensions, 
we may prove 

Lemma 4.3 

An n-dimensional Latin hypercube of order p a prime is invariant under a 
permutation II = (nis ..., II„) , where J[19 ..., II „ are all p-cycles only if the 
hypercube possesses a subhypercube of dimension n - 1 that is composed of p n ~ 
disjoint hypertransversals. 

Defini t ion 4.2 

An n-dimensional Latin hypercube of order p is in parallel hypertransversal 
form if it consists of p n _ 1 disjoint hypertransversals 

(1, i2, ..., in) , (2, i2+ 1, ..., in+ 1), . .., (p, i2 + p- 1, . . ., in + p- 1), 

where (i2, ..., in) ranges over all p n - 1 (n - l)-tuples and the additions are 
mod p. 

Let d(n; p) denote the number of n-dimensional Latin hypercubes in paral-
lel hypertransversal form. Analogous to Lemma 3.4, we can prove 

Lemma 4.4 

For p a prime there are d(n~ 1; p) Latin n-dimensional hypercubes of order 
p invariant under a permutation II = (II1, ..., IIn) , where each II ̂  is a p-cycle. 

Theorem 4.1 

Permutations of each coordinate induce 
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Np = l 

(pir L(n; p) + E (l)((P ~ ±)}-)kL(k; p) + ((p - !)!)»<*(« - 1; p 

equivalence classes in the set of n-dimensional Latin hypercubes of order p a 
prime. 

Proof: Clearly, L(n; p) hypercubes are invariant under the identity and 
there are 

(2K DO* 
permutations II = (TI15 . .., Jln) , where n - k of the IT,- are the identity. More-
over, each of these fixes L(k; p) /c-dimensional hypercubes of order p. Apply-
ing Lemma 4.4 and Burnside's lemma yields the result. 
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A COROLLARY TO ITERATED EXPONENTIATION 

R8 M. STERNHEIMER 
Brookhaven National Laboratory, Upton, NY 11973 

(Submitted October 1983) 

In connection with three previous papers on tUr. conve^ gence of iterated ex-
ponentiation by Creutz and Sternheimer [1], [2], [3], and with some earlier work 
[4], [5], it occurred to me that the problem of the proof of Fermatfs Last Theo-
rem might be intimately connected with the properties of the function F(x9 y) E 
xy - yx

s and in particular with the condition that 

F(x, y) = 0, (1) 

when x and y are restricted to be positive integers [6], It can be shown that 
aside from the trivial solution x = ys (1) is satisfied only for x = 2, y = 4, 
in which case 

F(x, y) = 2h - 42 = 0. (2) 

In order to prove this property of F(x, y), we consider Figure 1 of [1]. This 
figure gives the function f{x) defined by the condition 

x? = /. (3) 

In Figure 1 of [1], we consider the continuation of the dashed part of the 
curve to the right of f{x) = £_up to the region of f(x) = 4 . It is easily seen 
that the corresponding x is /2S since {/T)h = 22 = 4 satisfies (3). 

We also have f(x) - 2 for x = /2$ as shown by the left-hand part of Figure 
1. If we denote the two values of f(/2) by f± and f2s we have 

xfi = / , xf2 = / , (4) 

where x = Vz. We can rewrite (4) as follows; 

fl'K = f\'f* = x = Jl. (5) 
From (5), we obtain (by raising to the power f f ) : 

i.e., 2h = 42. 
Thus the two values of f(x) for a given x, namely f± and f2, are the solu-

tions of the equation f*2 = / A (6). We can now set f1 = x9 f2 = y in the no-
tation of (1) (where x is not to be confused with the auxiliary x of Figure 1 
of [1]). Now, from Figure 1, it is obvious that one of the / fs, say fl9 must 
be less than es while the other /, say f2s must be larger than e. It is also 
clear that, since the only integer smaller than e and larger than 1 is 2, the 
equation f^z = f^i can be satisfied only for f1 = 2, f2 = 4, if f1 and f2 are 
restricted to be integers. 

This manuscript was authored under Contract No. DE-AC02-76CH00016 with the 
U.S. Department of Energy. Accordingly, the U.S. Government retains a nonex-
clusive, royalty-free license to publish or reproduce the published form of this 
contribution, or allow others to do so, for U.S. Government purposes. 
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Incidentally, Figure 2 of [1] shows that, when the ordinate x is less than 
1, there is no second branch of the curve of x vs. /, and therefore, for / < 1, 
there is no f2 such that f\/f^ = f\lf\ 

The fact that x = 2, y = 4 is the only integer solution of F(xy y) = 0 can 
also be seen by inspection, i.e., by calculating 

F(2, 3) = -1, F(2S 4) = 0, F(2, 5) = 7, F(2, 6) = 28, F(3, 4) = 17, 

etc. Also, for arbitrary x and y such that the difference y - x E Ax is small, 
it can be shown by differentiation of xy with respect to both x and y that 

F(x, y) = xx(Znx - I)(y - x), (7) 

where x = (x + y)/2. In order to prove (7), we note that 

F(x, y) = xx+Ax - (x + Ax)x. (8) 

Now, if Ax is small, we can expand both terms in the right-hand side of (8) as 
follows, to first order in Ax: 

xx+hx - xx _j_ xx jLn xAx, (9) 

where we have used dxy/dy = xy In x. Moreover, 

(x + Ax)* = xx + x*Ax, (10) 

where we have used 

dxy/dx = 2/X̂ "1 = &Xy ~ X^. (11) 

Upon subtracting (10) from (9), one finds: 

F(x, y) = a;*(In x - l)Ax = x*(ln x ~ 1) (2/ - x). (12) 

Because of the rapid Increase of x* with increasing x, one will obtain a more 
accurate result by evaluating the derivatives dxy/dy and dxy/dx at the midpoint 
of the interval (x, z/), i.e., at the point x = (x + y) 12. Upon making this 
substitution in (12), one obtains (7). 

Equation (7) shows that for y - x small, xy is larger than z/x for positive 
Ax if x > 0 and is smaller than z/x for positive Ax If x < e. As an example, 
1.61'7 = 2.2233 is smaller than 1.71*6 = 2.3373 because 1.6, 1.7 < e. The dif-
ference F(1.6, 1.7) = -0.1140 is very well reproduced by (7), which gives, with 
x = 1.65: 

F(1.6, 1.7) = l ^ S 1 ' 6 5 ^ 1.65 - 1)(0.1) = -0.1140. (13) 

As a second example, 2.93'0 = 24.389 is larger than 3.02'9 = 24.191 because 
2.9, 3.0 > e. We find F(2.9, 3.0) = 24.389 - 24.191 = +0.198, and this differ-
ence is very well reproduced by (7), which gives, with x = 2.95: 

F(2.9, 3.0) = 2.952"95(ln 2.95 - 1) (0.1) = +0.199. (14) 

Equation (7) again points out the crucial role of the constant e for the sign 
of F(x, y) , since In x - 1 = ln(x/e). The same equation also shows that for x 
and y close to e and x < ey y > e, we must have 

x = (1/2)(x + y) = e for F(x} y) = 0. 

Obviously, (7) does not hold when the difference y - x is large, and the pre-
vious result x = 2, y = 4 with x < 0, y > e can be regarded as an extreme ex-
ample of (7) when higher derivatives of xy, i.e., terms in (Ax)2, (Ax)3, etc., 
are included. 

It is of Interest to speculate that xn+ yn = zn is solvable only for n = 1 
and n = 2 (with x, z/, 3 = positive Integers) because n = 1 and n = 2 are the 
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only positive integers smaller than e. Here I wish to mention that the Fermat 
equation xn + yn = zn has solutions both for n = 1 and n = 2. The case n = 2 
has been discussed frequently; however, the case n = 1 also merits some atten-
tion. Thus, if we assume (by definition) that x ^ y, then x + y = z has z/2 
distinct solutions when z - even, and it has (z - l)/2 distinct solutions when 
z = odd. As an example for z = 11, we have five distinct solutions: 

x + y = 6 + 5, 7 + 4 , 8 + 3 , 9 + 2 , and 1 0 + 1 . 

In this connection, I wish to point out that in complete analogy to the 
exponent n which appears in the Fermat equation, the equation F(x, y) = 0 , in 
addition to F(2, 4) = 0, also has a valid solution for x = 1, namely F(l, y) = 
0 in the limit in which y approaches infinity. This additional solution will 
be discussed in detail in a forthcoming paper. 

ACKNOWLEDGMENT 

This work was supported by the Department of Energy under Contract No. DE-
AC02-76CH00016. 

REFERENCES 

1. M. Creutz & R. M. Sternheimer. "On the Convergence of Iterated Exponentia-
tion— I." The Fibonacci Quarterly 18, no. 4 (1980):341-47. 

2. M. Creutz & R. M. Sternheimer. "On the Convergence of Iterated Exponentia-
tion—II." The Fibonacci Quarterly 19, no. 4 (1981):326-35. 

3. M. Creutz & R. M. Sternheimer. "On the Convergence of Iterated Exponentia-
tion—III." The Fibonacci Quarterly 20, no. 1 (1982):7-12. 

4. R. M. Sternheimer. "On a Set of Non-Associative Functions of a Single Posi-
tive Real Variable." Brookhaven Informal Report PD-128; BNL-23081 (June 
1977). 

5. M. Creutz & R. M. Sternheimer. "On a Class of Non-Associative Functions of 
a Single Positive Real Variable." Brookhaven Informal Report PD-130; BNL-
23308 (September 1977). 
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Theorem 

There exist arithmetic functions in closed form that are generators of all 
composite numbers. 

Proof: It suffices to produce an example of such a function. Here, the 
existence of several such functions will be shown. First, consider the follow-
ing two sequences: 

2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, ... (s±) 
2, 2, 3, 2, 3, 4, 2, 3, 4, 5, 2, 3, 4, 5, 6, ... (s2). 

(These sequences can be defined by specific recursions, but this will not be 
done here because the patterns of progression are clear.) It is easy to see 
that the products of corresponding terms in the sequences Sj^ and s2 constitute 
all the composite numbers and no prime numbers. 

Second, consider the following sequence, E, which progresses 

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, ... (H), 

whose terms are those of s1 less one. The nth term of the sequence H is given 
by 1 

H(n) = the least integer greater than or equal to ^(VSn+l - 1). 

This follows from solving for m in terms of n in the inequality 

l + 2 + ' - * + ( w - l ) < n < l + 2 + ° - - + w , 

where each pair of positive integer variables m and n satisfies H(n) = m. Now 
writing 

H(n) = j(V8n + 1 - 1) , where [x] is ceiling x, 

it follows with little difficulty that 

s1(n) = H(n) + 1 

s2(n) = (n + 1) - |(#(n) - l)tf(w). 

To show the second part, one can compare the sequences 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ... (N) 
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, ... (J). 

Observe that in the sequence of differences of corresponding terms 

0, 1, 1, 3, 3, 3, 6, 6, 6, 6, 10, 10, 10, 10, 10, ... (n - J(n)), 

the (n+ l)th block of terms consists of the term 1 + 2 + ••• + n, the nth tri-
angular number, repeated a total of n+ 1 times. This implies 
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n - Tin) = ~(H(n) - 1) • ((H(n) - 1) + 1) 

or 

I(n) = n - j(H(n) - l)H(n). 

Multiplying together the two formulas for s1(n)and s2(n), some cancellation of 
product terms occurs: 

s1M • s2(n) = (H(n) + 1) • (n + 1 - ~(H(n) - l)H(n)\ 

= (H(n) + l)(n + 1) - |(#(n) - l)H(n)(H(n) + 1) 

= n#(n) + w + H(n) + 1 - -|(#3(n) - H(n)) . 

This gives a complete composite number generator 

C(n) = s±(n) • s2(n) = (n + 1) + (n + | W w ) - |F3(n). 

For comparison, a similar function which generates the positive integers—not 
in their natural order and with repetitions—is 

N(n) = H(n) • I(n) = nE{n) + ~E2{n) - ^ H3 (n) . 

Alternative arithmetic generators of all the composite numbers can be found by 
considering sequences such as 

2, 3, 2, 4, 3, 2, 5, 4, 3, 2, 6, 5, 4, 3, 2, ... (s3) 

[here, s2(n) + s 3(ri) = s (n) + 2] 

and substituting s3(n) in place of either one of s2(n) or s1(n) in the product 
s1(n)s2(n). Following from its relation with s2(n), an arithmetic functional 
form for s3(n) is found to be 

s3(n) = (-w + 2) + ^H(n)(H(n) + 1). 

Other complete composite number generators in closed arithmetic form are then 
given by 

C(n) = s1(n) • s3(n) = (-n + 2) + (-n + J-Wn) + H2(n) + |-#3(n) 

C(n) = s2(n) * s3(n) = (-n2 + n + 2) + | #(n) + (n - ^\H2(n) - j Eh (n). 
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The Fibonacci numbers are defined by 

^0 = °« V - 1> Fn + 2 = Fn + 1 + Fn> n>2. (1) 
The following well-known identity relates F to the binomial coefficients: 

k = o 

In this note we give an interpretation of the individual terms in the identity 
(2) in terms of the original "rabbit problem": 

Given a new born pair of rabbits on the first day of a month3 find, the 
number of -pairs of rabbits at the end of n months^ assuming that each 
pair begets a pair each month starting when they are two months old. 

Fn is the number of pairs of rabbits at the end of n months. Now let 

S(ns k) = the number of pairs of kth generation rabbits at the end 
of the nth month. 

Here the initial pair of rabbits is called the zeroeth generation* the immedi-
ate offspring of the initial pair are called first generation rabbits, the im-
mediate offspring of the first-generation rabbits are called second generation 
rabbits, and so on. 

We can now state our 

Theorem 

>(«, « - ( " " £ " \ o<*<p-^-]. 
Proof: We have the simple accounting equation: 

S(n, k) = Sin - 1, k) + S(n - 2, k - 1). (4) 

This merely states that the number of kth generation pairs at the end of the 
nth month is equal to the number of such pairs at the end of the (n- l)st month 
plus the births of kth generation rabbits during the nth months However, the 
births of kth generation rabbits during the nth month must come from (k - l)st 

generation rabbits who are at least two months old; there are precisely 

S(n - 2, k - 1) 
such pairs. Since there is only one zeroeth generation pair, we must have 

S(n3 0) = 1. (5) 

To complete the proof, it is necessary only to verify that 

S{n, k) = (n " \ ~ l) (6) 
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satisfies (4) and (5). Putting k = 0 in (6) we find £(n, 0) = 1. Substituting 
(6) into (4) we obtain 

( " - r ' ) - ( " - j - 2 ) * ( " i * T 2 ) 
However, this is a well-known identity (see, e.g., [1, p. 70]). 

For example, if we put n = 12 in identity (2), we find 

F12 = 144 = 1 + 10 + 36 + 56 + 35 + 6. 

Thus, among the 144 pairs of rabbits at the end of 12 months, there are, in ad-
dition to the initial pair, 10 first generation, 36 second generation, 56 third 
generation, 35 fourth generation, and 6 fifth generation pairs. 

REFERENCE 
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The notion of a golden cuboid as a generalization of a golden rectangle was 
first introduced by Huntley [1], where it appears as a rectangular parallele-
piped with edges 1, (f), and (J)2. In this paper, we proceed from a somewhat dif-
ferent point of view by first recalling that a golden rectangle may be defined 
as the unique rectangle with the property that adjunction of a square to the 
larger side gives a larger rectangle geometrically similar to the first. This 
definition is generalized to the situation of rectangular parallelepipeds, the 
results being two new candidates for the title "golden cuboid" (Theorem 1). 
Theorem 2 establishes a nested sequence of golden cuboids analogous to the 
well-known sequence of nested golden rectangles. An unexpected application 
occurs in [2] with the construction of an interpretative model for a disputed 
passage of Vlato*s Timaeus, lines 31b-32c. 

In searching for a generalization of the above-mentioned property of golden 
rectangles, let R be a rectangular parallelepiped with edges a, b, and c, and 
suppose a < b K e. A larger geometrically similar parallelepiped R' can then 
always be produced by the adjunction of a single parallelepiped to R, provided 
hi a = c/b. However, as a generalization of the two-dimensional case, if we in 
addition insist that a cube appear in the adjunction process, then it is clear 
that at least two adjunctions must occur. This motivates the following defini-
tion. 

Def i n i t ion 

A rectangular parallelepiped G is golden if there is a rectangular paral-
lelepiped Gr geometrically similar to G that is obtained from G by the adjunc-
tion of two rectangular parallelepipeds, one of which is a cube. 

Continuing the previous discussion, if we wish to adjoin a cube to a rec-
tangular parallelepiped R with edges a, b, and c satisfying a < b < a, there 
must first be a prior adjunction with the effect of making two of the dimen-
sions equal. Adjunction of a cube then retains this property, and thus the 
result cannot be similar to R. Consequently, we must have 

a = b < c or a < b = c. 

An elementary analysis gives the following theorem. 

Theorem 1 

Up to geometric similarity, there are precisely two golden cuboids, a type 
one golden cuboid with edges 1, (J), and cj) and a type two golden cuboid with 
edges 1, 1, and (J). 

Now, consider the situation where A is a type one golden cuboid with edges 
1, (J), and (J), and let C be a golden cuboid of type two with edges (f), (f), and (f)2. 

1985] 153 



GOLDEN CUBOID SEQUENCES 

Observe that C is formed from A by the adjunction of a cube B with edge <J). 
Furthermore, if a rectangular parallelepiped D with edges 1, cf>, and (j) is ad-
joined to C, we obtain a rectangular parallelepiped A1 similar to A; see Figure 
1. Continuing, if a cube Bf with edge (J)2 is adjoined to i', we obtain Cf sim-
ilar to C. Inductively, we thus obtain the following theorem. 

Theorem 2 

There exists an infinite increasing sequence of nested golden cuboids, 

Ait Ci, A2f C29 '-• 9 A n 9 Cn, . . . , 

in which, for each n, An is similar to A, Cn is obtained from An by adjunction 
of a cube and is similar to C, and An+1 is obtained from Cn by adjunction of a 
parallelepiped similar to D. 

Figure 1 

As in the case of golden rectangles, a decreasing sequence may be similarly 
constructed. We call these sequences golden cuboid sequences. 

Remark 1: Observe that D is the "golden cuboid" of Huntley [1] but that it is 
neither of type one nor of type two. 

Remark 2: Recall that if C is a golden rectangle and if B is a square excised 
by a cut parallel with the shorter side, then the remaining piece A is also 
golden and the areas are related by 

area(C) _ area(g) _ . 
area(5) area 04) y°  

Now, consider the cuboid Af of the above discussion and observe that the se-
quence A, B, C, Ar has the analogous property that 

volume{A ') _ volume(C) _ volume(B) _ , 
volume(C) volume(B) volume(A) 
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If the simple continued fraction expansion of the positive real number a is 
given by 

, 1 
a = an + : 5 

an + a2 + 

where ctj is a positive integer, then we denote the continued fraction expansion 
of a by 

{a03 als a2S . . . } . 

If 

P = l ^ O ' ^ 1 ' ^ 2 ' • • • > % _ i s CLj^s &fc+i> ^fc+z* • • • / j 

then a and 3 are defined to be equivalent. That is5 they have the same tails 
at some stage. 

The j t h total convergent to a, Cj , is given by 

J = <- ̂" 0 > ^ 1 ' • • • J CC j S > 

and if we represent the rational number Cj by p./q.9 then it can be shown that 

Pj = Pj-2 + ^ j - 1 ' 

^ = «J-2 + a ^ J - l ? ( 1 ) 

for j > 0, p_2 = q_± = 05 and q_2 = p_x = 1. 
It is easily proved (Chrystal [1], Khintchine [2]) that 

qj+1 > qd > ^--x > ••• > q0 = 1, 
C0 < C2 < Ch < ' • • < a < • • • < C5 < C3 < C1, 

lim (7- = a. 

From Le Veque [3] or Roberts [4], we have the following theorems. 

D i ri chlet's Theorem 

If alb is a rational fraction such that 

a\ 
a - b < ^ 

then alb is a total convergent to a. 
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Hurwi tz's Theorem 

If a is irrational, then there are infinitely many irreducible rational 
solutions alb such that 

a -
/5b2 

for = 1. 

In fact, if we restrict a to be an irrational which is not equivalent to 
T = (1 + A/5)/2 = {1, 1, 1, . ..} (the Golden Mean), then we are able to find 
0 < 3 < 1 for which there are an infinite number of solutions. For example, if 
a is equivalent to A/2, then from Le Veque [3, p. 252] we have 3 = VTO/4. 

Using (1), the convergents to T are given by 

CA 
j + i 

where F;- is a term of the Fibonacci sequence {1,1, 2, 3, 5, ...} and 

,-J+i 
Fd = 

- (1 - T) J+l 

/5 
for 3 = 0, 1, 2, 

(2) 

(3) 

It has been shown in Roberts [4] that in the particular case where 0 < 3 < 1 
there are only finitely many irreducible rational numbers alb such that 

a 
T - -r 

< 3 
/5b2 

Since 0 < 3 < 1> then 0 < 3/̂ /5 < 1/2, and so by DirichletTs theorem there are 
only finitely many total convergents to T such that 

I T " Cj I < ^ 
(4) 

where Cj is given by (2). 
Our purpose is to determine explicitly the finite set of convergents to T 

that satisfy (4). 
If j is odd (j = 2k + 1, k = 0, 1, 2, 

positive values of k such that 
. ) , then using (2) in (4) we seek 

y2k+i I 
2fe+2 

?2k+l 
- T 

\/5F 2k+i 
Substituting (3) in (5) and simplifying, 

[T(l - T)] 2k+ 2 [(1 - x)2] 2 T 2k + 2 < /53 
2T - 1 

Using T2 = 1 + x, this becomes 1 - (2 - T)2k + Z = 1 - (5 - 3x)fe+1 < 3 or 

1 < (5 - 3T) ? 

5 - 3T 

Taking natural logarithms and using T = (1 + v/5)/2, we have 

In' 
> 

f(l - 3) (7 + 3V5)\ 

156 -f ^ } 

(5) 

(6) 
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If j is even (j = 2k, k = 0S 1, 25 . . . ) , then substituting (2) in (4) we 
have 

C I = T - F2k+1 < 
u2k\ F 2k S5<k 

By reasoning similar to that which led to (6), we find that 

ln|(B- D(3 + v ^ 

k<—i Z—z '-• (7) 

We note that the denominator of the right-hand side of (6) is negative and 
so positive values of k in (6) exist only if 

ln{(l-2B>(7 + 3^5)} < 0 ) 

which means 1 > 6 > (3A/5 - 5)/2. 
Similarly, we see that since 0 < (3 < 1 there are no positive values of k 

that satisfy (7)* 
Hence, there are no convergents to T that satisfy (4) unless 

% ^ < e < i , 
and in this case the only convergents that do satisfy (4) are given by 

F 
C- = ~y~l J = 1, 3, 5, 

where _ )• (8) 

fl-ln (1 - g)(27 + 3 ^ / l n 

and [R] denotes the integer part of R. Consequently, there are [R] + 1 conver-
gents to x that satisfy (4), and these may be determined explicitly from (8). 
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1. INTRODUCTION 

In this paper, unless otherwise stated, lower-case letters denote positive 
integers with p and q reserved for primes. 

Def i n i t ion 

A divisor d of n is a unitary divisor if (n, n/d) = 1, denoted by d\\n. 

The sum of all unitary divisors of n will be denoted o*(n). If 

n = p ^ p ^ ... p*k , 

then 

a*(rc) = (1 + p e O ( l + P^2) ee- (1 + pf k ) . 
L 1 L 2 K 

Hence, a* is multiplicative. If a(n) is the sum of all divisors of n, then 

o(n) = O*(n) iff n is square-free. 

Note that 

a*(n) = n iff n = 1. 

Hagis [1] defines a pair of positive integers m and n to be unitary amicable 
numbers if cr* (TW) = o* (n) = m + n. If m and n are both square-free, then the 
pair 77?, n is amicable (see [2]) iff it is unitary amicable. Independently, 
Wall [3] studies unitary amicable numbers and finds approximately six hundred 
pairs that are not amicable pairs. Hagis proves some elementary theorems con-
cerning unitary amicable numbers and gives a table of thirty-two unitary ami-
cable pairs that are not amicable pairs. (A thirty-third such pair, 

11777220 = 2232 • 5 • 7 • 13 °  719, 12414780 = 22325 .• 7 • 59 • 167, 

follows from his theorem 4 and was inadvertently omitted from the table.) This 
paper generalizes Theorems 4 and 5 of [1] and augments Hagis * list of unitary 
amicable pairs that are not amicable pairs by twenty-five. 

2. THE MAIN RESULTS 

In this section, we find conditions on a unitary amicable pair which are 
sufficient to generate another such pair. The main idea is that of a genera-
tor. 

Def i n i t ion 

The pair (/, k) , where / is a rational number not equal to one and k is 
an integer, is a generator if fk is an integer and o*(fk) = fo*(k). 

158 [May 



GENERATORS OF UNITARY AMICABLE NUMBERS 

Remark: If k = 1 in the above definition, then o* (f) = f> which implies that 
f = 1. Thus k + 1. 

Generators, in conjunction with unitary amicable pairs of a specified form, 
produce new unitary amicable pairs. In what follows, m and n denote a unitary 
amicable pair. 

Theorem 1 

If (f, k) is a generator, m = km15 n = kn13 and (fk9 ^1n1) = (k> m-ji^) = 1, 
then fkm1, fkn1 is a unitary amicable pair. 

Proof: a*(^771) = a*(A:n1) = k{m1 + nx) , since m, n is a unitary amicable 
pair. Thus, 

o*(k)o*(m1) = o*(k)o*(n1) = k{mY + n x ), 

since (/c, m^n^) - 1. Hence, 

/o* W o * (777̂  = /o*(fe)a (nx) = ^(777, + n x ) , 

which yields 

c r H / W a * ^ ) = a*(/fc)a (nx) = / f c ^ + W l ) , 

since (/, /c) is a generator. 

Both /, a rational number, and /c can be factored uniquely into a product of 
primes with nonzero (possibly negative) powers. Let TT(/) and TT(/C) denote the 
number of primes in the factorization of f and k9 respectively. Subsequent re-
sults classify all generators with TT(JO ^ 2 and i\(k) = 1. 

Def in i t ion 

The numbers f and k are relatively prime if their prime factorizations have 
no common prime. 

Lemma 1 

If (/, k) is a generator, then / and k are not relatively prime. 

Proof: Suppose that / and k are relatively prime. Then they have distinct 
primes in their prime factorizations. Since fk is an integer, / is also. Thus, 

oHfk) = o*(f)o*(k) = fo*(k)9 

yielding o* (f) = /, which implies / = 1, a contradiction to the definition of 
a generator. 

Theorem 2 

There does not exist a generator (/, k) with n(f) = ir(k) = 1. 

Proof: Suppose that (/, k) is a generator with ir(f) = TT(/C) = 1. By Lemma 
1, there is a prime p such that f = pa and k = pb for some a and b. Since fk 
is an integer, a + 2? > 0. Because k + \ in a generator, we must have & > 0. 
Similarly, / 4- 1 implies a ^ 0. 
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Case 1: If a + b = 0, then 

o*(fk) = o*(pa + b) = G*(l) = 1 

and 

fa* 00 = pao*(pb) = pa(l + pb) = pa + pa + b = p a + 1. 

Since o*(fk) = fo*(k) , we have 1 = pa + 1 or pa = 0, a contradiction. 

Case 2: If a + fc > 0, then 

o*(fk) = o*(pa + b) = 1 + pa + Z) 

and 

/a*(/c) = pa + p a + z\ 

Thus, 1 + pa + b = pa + p a + ̂ 5 which implies p a = 1 or a = 0, a contradiction. 

Def i n i t ion 

For the positive rational number f, the prime p divides f (written p\f) if 
p occurs in the prime factorization of f. 

Lemma 2 

Let (/, k) be a generator and p be a prime such that pa||/c and p j f. Then 
(/, kp~a) is a generator. 

Proof: Let & = pav, where a > 0 and (p, r) = 1. Then fk = fpav is an in-
teger. Since p\f> it follows that fv is an integer and that p\fv. Hence, 

o*(fk) = o*(fpar) = (1 + pa)o*(/r). 
Also 

fo*(fc) = fa*(par) = f(l + pa)a*(r). 

Hence, (1 + pa)o*(fr)= (1 + pa)/a*(p), yielding O* (fr) = fo*(r). Thus, (/, r) 
is a generator. 

Therefore, "extraneous" primes may be eliminated from k. 

Theorem 3 

There does not exist a generator (/, k) with i\(f) = 1 and i\(k) = 2. 

Proof: Suppose that (f, k) is a generator with Tf(f) = 1 and ir(k) = 2. Then 
there is a prime p and an integer a with pa||/c and p\ f* By Lemma 2, (/, kp~a) 
is a generator with i\{f) = u(kp~a) = 1, a contradiction of Theorem 2. 

Theorem 4 characterizes all generators (/, k) with TT(/) = 2 and TT(/C) = 1. 

Theorem k 

The pair (/, k) is a generator with Tf(jO = 2 and TT(/C) = 1 iff there are 
primes p and q and positive integers a, Z?, and o such that /" = pbq°, k = pa, 
and 1 + p a + fc = (7c(p& - 1). 
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Proof: Let (/, k) be a generator with u(f) = 2 and u(k) = 1. By Lemma 1, 
there are primes p and q and nonzero integers a, b, and c such that / = pbqc 
and k = pa. Since U 1, it follows that a > 0. Because j% is an integer, we 
have a + b > 0 and c > 0. We therefore have fk = pa + bq°. 

Case 1: If a + b = 0, then 

a* (fk) = a*(qe) = 1 + q° 

and 

jfo*(fc) = p&<7ca*(pa) = p^ c ( l + pa) = pbqo + pa+bqo = p Z ^ C + ^ . 

Thus, 1 + ge = p^qc + qG, which implies p ^ e = 1. Thus, Z? = c = 0, a contra-
diction. 

Case 2: If a + b > 05 then 

a* (/7c) = a * ( p a + ^ c ) = (1 + p a + z 0 ( l + ^ c ) = 1 + p a + z? + ^ c + p a + ^ c 

and 

fo*(k~) = p ^ e a * ( p a ) = p ^ c ( l + p a ) = p&<7c + pa+bqG. 

T h e r e f o r e , 

1 + pa+b + q<? + pa + bqc = pbqo + pa+bgo y 

y i e l d i n g 
1 + pa + b + q° = pbqG, 

Since 1 + pa + b + q° is an integer, pbq° is an integer and, hence, b ^ 0. If 
b = 0, then fc = pa5 / = qc

s and (/, /c) = 1, a contradiction of Lemma 1. Thus, 
b > 0 and 1 + p^ + & = qc(pb - 1). 

If p and q are primes, and a, b3 and c are positive integers such that f = 
pbqG

s k = pa, and 1 + pa + b- = qc(pb - 1) 5 then clearly fk is an integer. Also 

0*(fk) = o*(pa + bq°) = (1 + pa + b)(l + q°) = 1 + pa + & + <?c + pa + ̂ e 

= q°(pb - 1) + qc + p a + ^ c = p^q c + p a + z ? <7 c 

= p ^ e ( l + p a ) = fo*(k). 

Therefore, (/, k) is a generator. 

Theorem 5 

The equation 

1 + pa + b = q°(pb - 1) 
has a solution only if p = 2 and b = 1 or p = 2 and 2? = 2 or p = 3 and b = 1. 

Proof: Suppose that 1 + pa+b = qc(pb - 1) has a solution. Then, 

pb - l\pa+b + 1 or pa+b = -1 in Z(pb - 1), 

the ring of integers modulo pb - 1. Since p& = 1 in Z(p^ - 1), we have 

pa+b = papb = pa in Z(pb _ 1). 

Hence, 

pa = _i = pb _ 2 in Z(p^ - 1). 

1985] 161 



GENERATORS OF UNITARY AMICABLE NUMBERS 

Since 

(p, p* - 1) = (p* - 2, p* - 1) = 1, 

we see that p and pb - 2 belong to U(pb - 1) , the group of units of Z(pb - 1). 
Thus, pa = p£ - 2 in £/(p& - 1). Also, there exist a and b such that 

pa = pb - 2 iff p* - 2 G <p>, 

the cyclic subgroup generated by p in Z7(p& - 1) . If o K b9 then 

p° - 1 < pb - 1 and p& - 1 f p°  - 1, 

so pe ̂  1 in tf(p*> - 1). Since pb = I In U(pb - 1) , the order of p in U(pb - 1) 
is & and <p) = {1, p, p2, . .., p^"1}. Note that 

pb-i < pb _ 2 iff p& - p^"1 > 2 

iff p ^ C p - I) > 2 

iff pb-i > _ 2 
^ p - 1 

iff 2? - 1 > lo 2 

iff b > 1 + lot 

If p = 2, then 

P p - 1 
2 

'P p - 1 " 

l0§p ̂ T = l0g2 2^T = l 0 g 2 2 = l' 

Then 

b > 2 iff p^"1 < pb - 2 
iff pb - 2 & <p>, 

a contradiction. Thus, if 2? > 2, there does not exist a solution to (1). 
If p = 3, then 

2 
lo§P p - ! =

 loSsl = °-

Then 2? > 1 iff p & _ 1 < ph - 2. Hence, if 2? > 1, there does not exist a solution 
to (1). 

Also 

lo§P ̂ ™ T < °  i f f l o g P 2 ~ lo8p(P " 1) < 0 
iff logp2 < logp(p - 1) 

iff 2 < p - 1 

iff p > 3. 

Thus, if p > 3, then 

_2 
p - 1 

which yields 

1 + logp - ^ y < 1, 

b > 1 + logp _• for all 2?. 

Hence, pfc_1 < p& - 2 and there does not exist a solution to (1). 
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A computer-assisted search for solutions to (1) for a restricted range of 
values of a yields Table 1, which also lists the sixteen generators associated 
with these solutions. When these sixteen generators are applied, iterativelys 
to the table of thirty-three unitary amicable pairs that are not amicable pairs 
in [1], the result is the collection of twenty-five pairs in Table 2. Although 
not in [1], all but the 12 t h , 17 t h , and 18th pairs are found in [3]. 

Table 1 

/ 

V = 2, 1, 1 < a < 31 1 
2 
3 
7 
15 

5 
3 
17 
257 

65537 
27 

2 • 5 
2 • 3 
2 • 17 
2 • 257 
2 • 65537 

25 b = 2S 1 < a < 30 1 
3 
5 
9 
11 
15 
17 
21 

3 
11 
43 
683 
2731 

43691 
174763 

2796203 

223 
2211 

2^2731 
2243691 
22173763 
222796203 

3, b = 1, 1 < a < 19 1 
3 
15 

5 
41 

21523361 

3 • 5 
3 • 41 
3 • 21523361 

Table 2. Unitary Amicable Pairs 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

1707720 233 - 5 
2024760 = 233 • 5 

3951990 
4974858 

6940890 
7937190 

29656530 
29855790 

58062480 
68841840 

72696690 
76084110 

243 

2 
2 

491170680 
553923720 

ri 

345 

345 

3 • 5 
5 

3^5 

75139680 = 253 
89089440 253 

23325 
23325 

7 
47 • 

7 • 
41 

11 
41 

19 
29 

7 • 
17 

11 
29 

7 * 
11 

19 • 107 
. 359 

17 • 41 
• 107 

•19-41 
• 239 

• 41 
• 31 

17 • 
» 47 

• 41 
• 41 

11 • 
• 47 

• 47 
• 41 

19 • 107 
• 359 

• 199 
• 79 

19 • 107 
• 359 

11 
19 

13 
23 

29 • 47 
503 
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Table 2—continued 

(9) 

(10) 

(ID 

*(12) 

(13) 

(14) 

(15) 

(16) 

*(17) 

*(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

1476394920 
6479522280 

5530444920 
5791411080 

6365038680 
7221188520 

12924024960 
15323383680 

16699803120 
18833406480 

74555240760 
83515287240 

88962742748880 
95916546799920 

209173484520 
221927955480 

214910193960 
216191246040 

408774005640 
418940759160 

2534878185840 
2839519766160 

2616551257320 
2821074905880 

6642948829440 
7876219211520 

7111898473680 
7545550486320 

13898316191760 
14243985811440 

32583815704440 
33402225434760 

106595643389918760 
106934121830433240 

23325 

= 233z5 
= 23325 

273 
273 

24325 

7 • 11 • 13 • 71 • 241 
7 • 11 • 23 • 10163 

7 • 11 • 13 • 103 • 149 
7 • 13 • 17 • 10399 

7 • 11 • 13 • 17 • 1039 
7 • 13 • 53 • 4159 

5 • 7 • 11 • 19 • 43 • 107 
5 • 11 • 43 • 47 • 359 

2d3z5 
23325 

24325 
o4Q2c 

23325 
= ?3 2d3z5 

= 233z5 

= 2332 

= 283-
= 283 • 

= 2^32 

= 2"32 

• 7 • 

• 7 • 

• 7 -
. 7 , 

• 7 
• 7 

• 7 
• 7 

• 7 
• 7 

• 7 
• 7 

• 7 
• 7 

• 7 
• 7 

11 « 
17 • 

11 • 
11 • 

11 • 
11 

• 11 • 
• 11 « 

• 11 
• 11 

• 11 
• 11 

• 11 
• 11 

• 11 
• 11 

13 • 
19 • 

13 • 
83 • 

13 • 
17 • 

13 • 
29 • 

• 19 • 
17 • 

. 13 . 

. 19 . 

• 13 • 
. 17 . 

. 13 . 

. 43 . 

17 • 29 • 47 
23 • 503 

19 • 10889 
36299 

17 • 43 • 131 • 1289 
43 • 139 • 17027 

43 • 13499 
359 • 769 

53 • 7699 
149 • 3079 

191 • 5939 
307 • 2591 

17 • 19 • 10899 
83 • 36299 

43 • 131 • 1289 
139 • 17027 

• 5 • 7 • 11 • 19 • 43 • 107 • 257 
•• 5 • 7 • 11 • 43 • 47 • 257 • 359 

5 • 7 • 11 • 13 • 17 • 43 • 13499 
5 • 7 • 11 • 17 • 29 • 359 • 769 

24325 • 7 • 11 • 13 • 17 • 191 • 5939 
2^325 • 7 • 11 • 17 • 19 • 307 • 2591 

23325 • 7 • 11 • 13 • 181 • 499559 
23325 • 7 • 13 • 17 • 181 • 229 • 1447 

23325 • 7 • 11 • 19 • 61 • 853 • 3889679 
23325 • 7 • 17 • 19 • 37 • 61 • 853 • 68239 

3. CONJECTURES 

A preliminary investigation of generators in which TT(/') ^ 2 and TT(7C) ^ 2 
suggests the following. 

Conjecture 1 

The only generator (/, k) with TT(/) = ir(fe) = 2 is (3/2, 12). 
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Conjecture 2 

There are no generators (/, k) with ir(f) > 2 or u(k) > 2. 
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A NOTE ON BINOMIAL COEFFICIENTS AND CHEBYSHEV POLYNOMIALS 

MAURO BOSCAROL 
Universita di Trento, Italy 

(Submitted December 1983) 

In [1] the author gave a. demonstration in a slightly different notation of 
the following property of binomial coefficients: for every integer n, and k < n, 

y 2-(n-k+j- l)M - k + J - 1\ + n~y l
2-(k+j) Ik + J\ = 2> (1) 

J = 0 ^ J ' J = 0 ; V J / 

In this note we shall be concerned with an application of (1) to a problem in-
volving Chebyshev polynomials of the first kind. Remember that the Chebyshev 
polynomial of the first kind Tn(x) is defined in -1 < x ^ 1 as 

Tn(x) - cos n(arcos x). 
For the sake of convenience we sometimes use the notation Tn instead of Tn(x). 
We shall use the following two identities (see, e.g., [2] for the proofs): 

(a) for every integer n, 

T-n = Tni (2) 
(b) for r, n > 0, 

x*Tn{x) = 2-*±(r
i)Tn_p+2i(x). (3) 

Proposition 1 

For every integer n ^ 1, we have 

n-l n-l 

ll^^n- i- 1 = l~* Tn-2i-V W 
i=0 i=0 

Proof: Using (3), we can write the summation on the left as 

n-l 

2(i- J ) - 1 ^ E 2 - { E ( 5 ) v 2 ( 
*• = n -; = n x ̂  / £ = 0 J = 0 

or, changing indexes, 

S = "£ ±T<»-* + 1-"{" ~i+.J- >.n+2i+1. (5) 
* i = 0 j = 0 x J ' 

We denote by C^ the term involving ^-n+2i+i ^n (•*) > £ = 0, .,., n - 1. Then 

S = C0 + C± + C2 + • • • + <?„_! (6) 

and also, in reverse order, 

S = Cn_x + Cn-2 + ••• + C± + C0. (7) 
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Adding (6) and (7) term by term, we can write 

2S = (C0 + Cn_J + (C, + Cn_2) + -.- + {Cn_1 + C0) 

n-l 
= Ẑ  (^k + Cn- k- l) • 

k = 0 

Now, from (5), 

k 

(8) 

n _ ^ n-(n-k+j-l)(n ~ k + j - l\ 
uk ~ ^ Z \ j J1-n+2k+] 

n- k- 1 

,7=0 \ J / •2k- r 

Because of (2), T. n- 2k- 1 
T-n+2k+l- Therefore, 

^k + ^n-k- I 
y2~(n-k+j-i)/n - k + j - 1\ 

LJ=O 

w- fc- 1 

j=o V J / 
L n - 2k- 1* 

But the coefficient of Tn-2k-l in the above formula is just the expression (1) , 
which is always equal to 2, regardless of the values of n and k. Hence, we can 
rewrite (8) as 

n-l 

fc = o 2fe- I s 

and the proposition is thus proved, 

Corol1ary 1 

For every integer n > 1, 

£ =0 -t = 0 

where 2^ is the first derivative of Tn with respect to x. 

(9) 

Proof: Let /" = arcos^c and 03 = ev* = cos f + i sin /. Then, from the defi-
nition of Tn(x), 

Tn(^) = sin nf = 03* - or" = co^-^l - qT2*) 2^N « -l 

n sin f -i 
J 0) - 0) 

03 n- 2i- 1 

1 - 03" i = 0 

iZ(^"2i"1 + ^"n+2i+1) = £cos(« - 2^ - D/= Z Tn_H_v 
n-l n-l 

" i = 0 i = 0 

and from Proposition 1, the conclusion follows. 

A proof of the first equality of (9) is found also in [3] 
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Remark: Remember that the Chebyshev polynomial of the second kind Un(x) is 
defined as 

Un(f) = ^ -p (notation as in the proof of Corollary 1). 

From Corollary 1 and the known result T£ = nUn_1, it follows that 

n 

i = 0 
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RANDOM FIBONACCI-TYPE SEQUENCES 

R. DAWSON, G. GABOR, R. NOWAKOWSKI, D, WIENS 
Dalhousie University, Halifax, Nova Scotia 

(Submitted December 1983) 

1 , INTRODUCTION 

In t h i s p a p e r , we s h a l l s tudy s e v e r a l random v a r i a t i o n s of F i b o n a c c i - t y p e 
sequences . The study i s mot iva ted i n p a r t by a sequence def ined by D. Hofs tad-
t e r and d i s c u s s e d by R. Guy [ 1 ] : 

h1 = h2 = 1 , hn = hn-h^^ hn-hn-2' 

Although this sequence is completely deterministic, its graph resembles that of 
the path of a particle fluctuating randomly about the line h = n/2. Indeed, 
there appear to be no results on the quantitative behaviour of this sequence. 

Hoggatt and Bicknell [3] and Hoggatt and Bicknell-Johnson [4] studied the 
behavior of "r-nacci!! sequences, in which each term is the sum of the previous 
¥> terms. A natural extension of such a sequence is one in which each term is 
the sum of a fixed number of previous terms, randomly chosen from all previous 
terms. Heyde [2] investigated martingales whose conditional expectations form 
Fibonacci sequences, and established almost sure convergence of ratios of con-
secutive terms to the golden ratio. 

We consider three types of sequences: 

(i) For fixed positive integers p and q3 and values f1$ .„., f ; let 
Fi = fy with probability one for i < p, and set 

Fn + i = Y*Fki for n > p, 
i = 1 

where the kj, 3LT& randomly chosen, with replacement, from {1, 2, . .., n}. The 
sequence {Fn} is termed a (p, q) sequence. 

(ii) If, in the above, the k^ are chosen without replacement, we call {Fn} 
a (p, q) T sequence. 

(iii) For given values gQ, g 9 let GQ = gQ, 6r1 = g with probability one, 
and set 

&n + 1 = ^n^n + ^n -l^n-l> 

where {(XnS Yn_1)?] is a sequence of independent random vectors. We assume that 
Xn and 7„_! have finite first and second moments independent of ns and are dis-
tributed independently of Gn and Gn_Y» 

In Section 2, we derive the sequence of first moments for (p, q) and (p, q) f 

sequences, and obtain recurrence relations for the sequence of second moments 
of a (p, q) sequence. In Section 3, similar results are obtained for {Gn}, and 
it is shown that, under mild conditions, the sequence of coefficients of vari-
ation is unbounded. Section 4 addresses questions concerning the ranges of 
(p, q) and (p, q) f sequences. Some open problems are discussed in Section 5» 
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2. MOMENTS OF (p, q) AND (p, q)' SEQUENCES 

Theorem 1 

For the (p, q) sequence described in the Introduction, the expected value 
of the nth term, for n > p, is 

ln + q - 2 \ p 

g[F"]= (p^-1) ,?/,-• (2-1} 

def. 
Proof: Given F^ = (F1, . . . , Fn) f, we have 

n 

^n + 1 = X! Fj Xj » 
J = l 

where Z^ is the number of times F- is chosen in the formation of Fn+1, Then, 
def. 

X = (J1, . .., Xn) ' is a multinomially distributed random vector with 

P(f\ad =xJ-)) = q\n« I fix,-! 
V = 1 / / J = 1 

if 0 < Xj < ̂  and X) rcy = q, zero otherwise. Thus, S'tXj] = q/n, so that the 
conditional expectation of Fn+1, given Fn , is 

j = i 

Taking a further expectation over Fn gives 

E[Fn + 1] = ^ n " 1 ^ ^ ] . (2.2) 
J' = I 

This leads to the recurrence relation nE[Fn+1] = (n - 1 + q)E[Fn] (n > p) , from 
which (2.1) follows, n 

Corollary 1 

For the (p, <̂) f sequence described in the Introduction, E[Fn ] is again given 
by (2.1). 

Proof: Given Fn , we may define Fn+1 as 

n 

where now (X1s ..., Jn) is a sequence of (n - gO zeros and q ones, with 

?(.na, =*,))= i / Q , x, e{o, 1}. 
Marginally, Xj has a binomial (1, q/n) distribution, with E[XA = q/n. Thus, 
(2.1) follows as in the above proof. • 
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If, as in the deterministic Fibonacci sequence, we place p=q=2,f1=l, 
f2 = 2, then E[Fn] = n. In general, E[Fn] is a polynomial in n of degree q - 1; 
this contrasts with the exponential growth of the Fibonacci sequence. 

The determinat ion of the sequence of second moments of a (p, q) sequence is 
somewhat more involved. Define 

an = (2(n - 1) + q)(n - 1 + q)In2, 

3n_i = (n(n - 1) + (q - l)(3n + 3q - 4))/n2, 

Yn + i = nq/Uq ~ D(2<? - 1)), 
6n = <?(«(n - 1 + <?) - (<? - l)2)/(n(q - 1) (2<? - 1 ) ) , 

P P 
vi = E ^ / p . 

J = l 
E / / / P . 

Theorem 2 

For a (p, q) sequence, if q = 1, then 

#[*£] = v2 for n > p. 

If <7 > 1, then 

E[Fp+1] = qv2 + 4(<7 - l)v2, 

E^F
P\2^ = (p + i)2^p2 + p + p<7 + q2)v2 + (<? - l)(p2 + 3p<7 + q2)v2}; 

# [ ^ n + J = Yn + î t̂ n + ll " M ^ ' L (« > P + U ; 

£[^2
+1] = an£[F2] - B ^ t ^ h (n > p + 2). 

Proof: Representing F +1, given F̂  , as in Theorem 1, we find 

S^n+l] Ê t*"-
3 = 1 

?(w + ? - 1 } £*[*?] + 

7 = 1 / 

W . D 
J = I 

i?[F„Fn+1] = | E s [ * W + f *[*"«] 
J = i 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

The first statement of Theorem 2, and (2.3), are implied by (2.6). Assume now 
that q > 1. Replacing n by n - 1 in (2.7), subtracting the result from (2.7), 
and using (2.8) gives 

n2E[F%+1] = {(n - l)2 + q(n + 1 - q)}E[F2
n] 

n-l 
+ q E ^ ] ] + 2n(q - l)E[FnFn+1]. 

3 = 1 
(2 .9 ) 

Given Fn , we may r e p r e s e n t Fw + 1 F „ + 2 as 
n n + 1 

J = 1 fc = 1 
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where X, Y are independent random vectors, X is as in Theorem 1, and Y is dis-
tributed as is X, but with n replaced by n + 1. We then find 

2 

(M + ^ T T S [ ^ 2
+ 1

] - (2-10) 

Combining (2.6) and (2.10), then replacing n by n - 1 gives 

Wn^ - g ( ^ ! - )
2 ) ^ ] - ^ ^ ^ ] . (2.11) 

Combining (2.9) and (2.11), so as to eliminate E ^ ^ F J ] , yields (2.4). Com-
bining them so as to eliminate E[FnFn + 1] gives 

n2E[F2
+1] = {(n - l)2 + 3q(n - 1) + q2}E[F2] + {q - Iq2)^ F[F2]. (2.12) 

j" = i 

Replacing n by n - 1 in (2.12) and subtracting now yields (2.5). • 

Define the "sample11 means and variances by 

Fn = E Vn> Sl = t(Fj - Fn)2/n. 
J = 1 3 = 1 

From (2.2) and (2.8), then from (2.2) and (2.6), we get the interesting rela-
tionships 

cov[Fn+1, Fn] = q cov[Fn, Fn], (2.13) 

var[Fn+1] = qE[S2
n] + q\av[Fn}. (2.14) 

From (2.13) or otherwise, it is clear that Fn and Fn+1 are positively corre-
lated. Thus, from (2.9) and (2.12), 

(n - l)2 + q{n + 1 - q) , E^Fn+i^ (n - l)2 + 3q(n - 1) + q2 

so that 

-> 1 as n -> °°. (2.15) 

3. THE SEQUENCE {Gn} 

In this section, we investigate the sequence {Gn} described in the Intro-
duction. We use the following notation for moments: 

S[Xn] = \ix, ^[^_J = \iy, E[X2] = TX9 ElY2^] = Ty, E[XnYn_1] = Mxy, 

var[Xn] = o2
s var[Yn_1} = o2, cov[Jn, ^ n - x ] = a ^ , 

£[£„] = ]ins E[G2
n] = T „ , var[Gn] = a2. 

Taking expectations in the defining relationship Gn+1= XnGn + Yn_1Gn_1 and 
solving the resulting recurrence relationship yields: 
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Proposition 1 

For the sequence {Gn}, we have 

so that if &1S fc2 are the zeros of k2 - \ixk - \iy; 

fe2 - ^ 5 ! T ^2 ~S kx+k 
J , v 2 . ^ 

I / y . r X " " 1 / U r \ M 

v - 2 . 

A direct expansion of the defining relationship gives 

T„+i = txTn + 2y^5'[^^_1] + T ^ T ^ , (3.1) 

= TxTn + (2yag/yar+ Ty)in_i + 2y^ y ^ [ ^ n _ 2 ^ _ 1 ] e (3.2) 

Replacing n by n - 1 in (3.1), then combining with (3.2) yields 

\ + i = ATn + BTn_1 + (7Tn_2 (n > 2), (3.3) 

where 

4 = TX + y 5̂ 5 = 2y^y^ + Ty - Txy^, C = - T ^ . (3.4) 

Solving this recurrence relation gives 

Theorem 3 

If the zeros X1, X2, X3 of A3 - AX2 - BX - C are distinct, then 

3 n 
Tn = E ^iXi (n> 2); 

i = l 
where 

= (T2 - ( £ A^T, + ( n ^JToj/na,- - A.), (3.5) 
"J 

To = ^o> T i = 9b T2 = ^ + 2]xxygQg1 + x ^ . 

Example 1: If g0 = 0 , ^r
1 = 1, y x = ]iy = y ^ = 1, ^ = T^ = 2, t hen y n i s t h e 

nth F ibonacc i number and 

Tn = ( - 8 ( - l ) n + 7 ^ ( 2 + V2)n + 2(4 - i/2)(2 - / 2 ) n ) / 2 8 . 

Example 2: I f #0 = g1 = 1, y x = 0 = \i xy s \iy = 1» cr£ = a£ - 1, t hen y n = 1 and 

Tn = 

^ j / 5 V- y 

(greatest integer function), + 1 

Deterministic Fibonacci-type sequences are sometimes used to model the 
growth of certain physical processes. In such applications, the coefficients 
of the defining recurrence relation might more properly be viewed as random 
variables—e.g., gestation periods of rabbits. The usefulness of such random 
models for predictive purposes, hence of the deterministic models as well, is 
cast Into doubt by the next theorem. Note that in the examples above, the co-
efficients of variation On/]in are unbounded. We shall show that this is quite 
generally the case. 
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First define matrices 

M 
A B C 
1 0 0 
0 1 0 

D 
0 
0 

E 
0 
0 

F 
0 
0 

P = M 0 (M - N) , 

where 1, 5, C are as at (3.4), D = O*, E 
lation (3.3) becomes 

(T„ 

ay " a * ^ + 20^ y^, F = -0%\ly. 

Tn> T n - l ) ' - M^n< T,-l» Tn-2)'> 

and a parallel development yields 
,2 ,,2 

Theorem 4 

^ - i > ' 
(M~ N)(^n, y^_l3 y2 )'. 

Re-

If the characteristic roots of P are real and distinct, then crn/|yn| -> °°  as 
n -*- ° °. 

Proof: It suffices to show that xn/y^ -> °°. Put 

£n = Tn/\i2
ni kn = y*/y*+1, rn = T ^ / T ^ . 

Note that £n ̂  1, and that £n/£n_x = rnkn_1. We claim that rn , &n have nonnega-
tive, finite limits v and ks and that rk ̂  1. Then ln/in_1 + rk, so that rk > 
1, else %n -* 0. But then .£« -*• °°9 completing the proof. 

That z> exists is clear from (3.5) and the assumption of the theorem, since 
the roots of P are those of M together with those of M- N. The roots of M9 in 
turn, are the \i of Theorem 3. Thus, r = A0, where XQ is the root \i of largest 
absolute value, such that cô  £ 0. Clearly, r > 0. Similarly, £:„ ->• /c = VQ 1 > 0, 
where v0 is the root of M- N with properties analogous to those of A0. Thus, 
0 < rk = X0/v0 + 1. • 

The assumption and conclusion of Theorem 4 fail if 0%: 

sequence is deterministic. In this case, # 
conjecture that {crn/|yn|} is bounded iff a* 

0, i.e., if the 
We 0, P = Me M, oJ{\\in\} = 1. 

0. 

4. THE RANGES OF (p, q) AND (p, q)f SEQUENCES 

For a (p, gO or (p, q) ? sequence, any number which can be formed from f1, 
..., fp in the manner used to generate the sequence is, with positive probabil-
ity, in the range of {Fn}. The following result is the natural counterpart to 
this observation. 

Theorem 5 

Ifet S be the range of a (p, q) or (p, g) f sequence. If w £ {/ , 
and P(Pp + 1 = n) < 1, then P(n € S) > 0. 

» fp> 

Proof: Assume that q > 1; the result is obvious otherwise. Assume also, 
w.l.o.g., that \f±\ > |/2| > ••• > |/p|- Consider any sequence of the form 

#n = \f1s . . . , JpS / p + 1
 = tfjj •••> /p+& ^ / i » -^p+fc+i' «̂ p+&+25 B e • •» 

where | / p + f e + j | > 
'p+1 ^ i 5 ' e e » °* p + k 

for j > 1, and k i s chosen so t h a t \fp+k~i\ < \n\ < \fP + P+k\ 
I f \n\ = qz\f1 I for some i n t e g e r £ , t hen omit / p + £ from SQ. Let 5* be t h e s e t 
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of all such sequences. We shall show that P(S E SJ >0. Since no S0 E S* con-
tains n, this will complete the proof, 

Let Sj , £0jJ- be the initial j-element segments of S and SQ , respectively, 
and define Ej to be the event "Sd = S0}j for some S0 E Sj\ The sequence {E.} 
is decreasing, and ' J 

PCS E 5*) = P ( n^-) = lim HEi). 

Clearly, P(Ep+k) > 0. For £ > 1, 
p(Ep+k+^/p(EP+k+i-J = P(Ep+k+l\Ep+k+i-j) >P 

(at least one element from {fp+k, ... ,fp+k+l-i) is chosen in the formation of 
fp+k+l). This last term cannot be less than 

/ p + k - l\i / p -F K - 1 \ H 

~ \p + k + £ - 1/ ' 

so that for j > 1, 

With c = p + fc - 1, we then have 

p ( 5 G 5 j > m P + , ) t n ( i - ( ^ T ) ? ) ) 

so that it remains only to show that the infinite product is positive. But 
this is equivalent to the convergence of the series 

. ^ • ( • - U T ) ' ) -
whose terms are eventually dominated by those of 

^(c + a) £= 1 

5* OPEN PROBLEMS 

1 . Do any of the sequences considered here, properly normalized, have limiting 
distributions? If so, what are they? Monte Carlo simulations have indicated 
that the (p, q) sequence {Fn}, for q > 1, has a limiting log-normal distribu-
tion, This leads to the conjecture that, with yn = E[Fn] and Tn = E[F„], 

log Pn - log 
y2» 

log — 

•^~ff(0, 1). 

Numerical Investigations also lead to the conjecture that for such a sequence, 
xn = 0(n2q"2(log n)a), where a(q) £[0, 1] is an increasing function of q. Note 
that this holds for q= 1, with a(l) = 0. These conjectures together imply that 
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the coefficient of variation of Fn is 0((log n)a), while that of log Fn tends 
to zero. 

2. A simple consequence of Theorem 5 is that any finite set N, no member of 
which is forced to be the (p + l)th element of a (p, q) or (p, q) ' sequence is, 
with positive probability, disjoint from the range of such a sequence. Is the 
same true of infinite sets? Preliminary investigations indicate that it is true 
for countable sets if, when the elements of such a set are arranged as an in-
creasing sequence, the sequence diverges sufficiently quickly. Definitive re-
sults have yet to be obtained. 
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The number of steps in Euclid1 s algorithm for the natural number pair (a, b) 
with a > b is discussed. If the number of steps is k9 then the least possible 
value for a Is Fk+2. If the number of steps exceeds k9 then a ^ Fk+3. If the 
number of steps is k and a = Ffe + 2, then b = ̂ + 1 . If b = Fk + 1 and the number of 
steps is k9 then a = Fk + nFk + 1 where n is any natural number. (Fk is the kth 

Fibonacci number.) 

Given two natural numbers a, b9 Euclid's algorithm produces the greatest 
common divisor o.f a and b. The Fibonacci numbers are defined by the recurrence 
relation Fn+2 = Fn + 1 + Fn where n Is a natural number, with F1 = F2 = 1. Vari-
ous interesting properties of these numbers can be found in the literature. In 
the following, we shall demonstrate an extremal property of the Fibonacci num-
bers in relation to Euclidfs algorithm. 

If the nth quotient and nth remainder in Euclid's algorithm are qn and rn , 
respectively, and the algorithm consists of at least k steps, then the sequence 
of steps up to and including the kth step can be written algebraically as fol-
lows? 

rn-2 = ctnrn-l + vn » n = l , 2, 3, ...,&; 

where r_1 = a, rQ = b. 

Further, all the quantities ^n_2s
 v

n - 1 » v n > ^ n a r e natural numbers except 
r, , which may also be zero. 

Therefore, given any two natural numbers a, b with a > b, there is a unique 
natural number e(as b) associated with them where e(a, b) is the number of 
operations in Euclid's algorithm for the greatest common divisor of a and b* 
We have, for example. e(a, 1) = 1 for all natural numbers a (> 1). 

Given any natural number k , it is possible to determine a pair of natural 
numbers a, b with a > b such that e(a9 b) = k. This is not obvious for all k, 
but will be seen in a little while to be true. As special cases—e(2, 1) = 1, 
e(3, 2) = 2, e(59 3) = 3, and e(Ss 5) = 4—and it can be shown that all these 
number pairs are consecutive Fibonacci numbers. As a generalization, it fol-
lows that 

e(Fk+2> Fk+1) = k. (2) 

Given ks the number of pairs (a, b) such that e{as b) = k is nonfinite be-
cause, for all natural numbers n, e(a + rib* b) = e(as b). As a special conse-
quence, we also have 

e(Fk+3> Fk+1) = *• <3> 
It now follows that, given a natural number k9 

{a\e(a9 b) = k for some natural number b < a} 

is not bounded above, but being a subset of the set of natural numbers should 
have a least element. It is convenient to denote this least element by e{k + 2) 

(1) 
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with e(l) = e(2) = 1. We will also call e(k) the Euclid number of k. The main 
result that justifies the title of this note is: 

"The Euclid number of the natural number k is the kth Fibonacci number." 

Before proving this result, we need an equation that we shall be using over 
and over again. We multiply the equation in (1) corresponding to each value of 
n by Fn and sum over all the values of ft. This yields 

k k k 

Z^n-2 = E^n-l^n + E ^n -
n=1 n=1 n=1 

.-. Fxa + F2b + ±F„ + 2rn = bq, + t/n + 1rnqn + 1 + Vfc-i?* 
n = 1 n = 1 

+ X>»*•»+**-I**- i + V * i f * > 3. 
n = l 

That i s , 
a = biq, - 1) + ±Fn + 1rn(qn + 1 - 1) + Fkrk_iqk + Fk_1rk_1 + Fkrk, 

n = 1 

where we have used the fact that F„ ̂ „ = F^,, + FM when ft = 1, 2, ..., & - 2. 

rc=l 

•"• a " Fk + 1 = M<?i - 1) + E Fn + l̂ n(̂ n + l " D 
n = l 

Equation (4) has been obtained only when k ̂  3. However, it is easily veri-
fied to be true even when k = 2. 

Property 1 

If the number of steps in Euclid's algorithm for the pair of natural num-
bers a, b9 where a > b9 is exactly k9. then 

a>Fk + z. 

The case when k = 1 is t r iv ia l . When fc > 2, we have rfc = 0 and qk^ 2. 
Also, qn > 1, ft = 1, 2, . . . , fc - 1, and i»n > 1, ft = 1, 2, . . . , /c - 1. Hence, 
by equation (4), 

a9-Fk + 1>Fk 

a > Fk+2> 
Thus, the least value of a is Fk + Z = e(k + 2). This proves the main result as 
stated earlier. 

Property 2 

If the number of steps in Euclid's algorithm for the pair of natural num-
bers a, b9 where a> b> is greater than k, then a > Fk + 3. 
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Here again, the case when k = 1 is trivial. When k > 2, we have rk > 1 and 
vk_1 > 2. Also, qn > 1, n = 1, 2, ...,&. Equation (4) now gives 

Fk + i ^ Fk+i + Fk ~ Fk+2 

a > Fk + i + Fk + 2 

Fi • 

k + 3 

Property 3 

If the number of steps in Euclidfs algorithm for the pair of natural num-
bers Fk+13 b9 where Fk+2 > b9 is exactly k9 then 

h - F
k + i -

Here again, the case k = 1 is trivial. When k > 2, a = Fk + 29 vk =0 s and 
^ > 2, whereas ^n > 1 and vn > 1 when n = 1, 2, . .., /c - 1. Equation (4) now 
gives 

0 = &(?1 - 1) +
 k±2Fn+1rJqn + 1 - 1) + ̂ ( r ^ - 1) 
n = 1 

+ Fk[rk_1(qk - 1) - 1] if k > 2, 

with obvious modifications if k - 1. Since this is the sum of a number of 
terms, each of which is nonnegative, each term should be zero. 

.'. qn = 1, n = 1, 2, . . . , k - 1; rfe _ x = 1 and ̂  = 2. 

Equation set (1) now reduces to 

^n_2 = ̂ n_! + rn9 n = 1, 2, ..., fc - 1,̂  

rk_2 = 2, V (5) 

Fk + 2 = * - l - ) 

This set of equations has a unique solution with 

*•» = * * + i - „ . 7 = - 1 - °« !• •••> fe - 2-
In particular, pQ = i^ + 1 °  

Property k 

If the number of steps in Euclidfs algorithm for the pair a, Fk + 19 where 
a > Fk+1, is k, then a = Ffe + nFk+1, where n is any natural number. 

Here, too, the case when k = 1 is trivial. When /c > 2, we can use Eq- set 
(1) directly. Leaving the equation corresponding to n = 1 out for the moment, 
the other k - 1 equations would correspond to a (k - l)-step Euclid algorithm 
for the number pair Fk + 1, r19 where v1 < Fk + 1. 

By an application of Property 3, r1 = Fk. 

.'. a = 2?<gr1 + r1 

= Fk + q1Fk + 19 where q̂  is any natural number. 

This proves the result. 

• 0*04 
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LETTER FROM THE EDITOR 

Dear Readers: 

Recently, an expository Masterfs thesis was written by Mr. John Spraggon under 
the guidance of Professor A. F. Horadam on the mathematical research of V. E. 
Hoggatt, Jr. 

The editor has read this thesis and considers it to be a very well written and 
extensive analysis of the works of our former editor. 

Anyone interested in purchasing this thesis can do so by sending a request to: 

INTER LIBRARY LOANS LIBRARIAN, 
DIXSON LIBRARY 
UNIVERSITY OF NEW ENGLAND, 
ARMIDALE, N.S.W. 2351 
AUSTRALIA 

The title of Mr. Spraggon1s thesis is "Special Aspects of Combinatorial Number 
Theory: Being As Exposition of the Mathematical Research of V. E. Hoggatt, Jr." 
M.A. (Hons), 1982, U.N.E. 

Payment will be requested before the thesis is sent, and the cost, depending on 
the method of mail route chosen, is between $27.00 (Ordinary Mail) and $43.00 
(Airmail). 

Sincerely, 

Gerald E. Bergum 

<3*«*3*$*«*«*«*^i«*S^^ 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN 

Assistant Editors 
GLORIA C. PADILLA and CHARLES R. WALL 

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS 
to PROFESSOR A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each 
problem or solution should be on a separate sheet (or sheets). Preference will 
be given to those typed with double spacing in the format used below. Proposed 
problems should be accompanied by their solutions. Solutions should be received 
within four months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy 

r n + 2 c n + 1 n ' 
and 

Ln + 2 = Ln + 1 + Ln'> 

PROBLEMS PROPOSED IN THIS ISSUE 

%-^kk Proposed by Herta T. Freitag, Roanoke, VA 

Show that F^n+i = L^n + 1 (mod .12) for all integers n. 

B-5^5 Proposed by Herta T. Freitag, Roanoke, VA 

Show that there exist integers a, bs and c such that 

Fhn E an (mod 5) and Fhn + 2. = bn + c (mod 5) 

for all integers n. 

B-546 Proposed by Stuart Anderson, East Texas State University, Commerce, TX 
and John Corvin, Amoco Research, Tulsa, OK 

For positive integers a, let Sa be the finite sequence a±s a2, ..., an de-
fined by 

a1 = a, 
ai + i = ail^- i f ai i s evens a i + i = l + ai i f ai i s o d d 5 

the sequence terminates with the earliest term that equals 1. 

For example, S5 is the sequence 5, 6, 3, 4, 2, 1, of six terms. Let Kn be the 
number of positive integers a for which Sa consists of n terms. Does Kn equal 
something familiar? 

F0 - 0, F1- 1, 

L0 = 2, L1 = 1. 
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B-5^7 Proposed by Philip L. Mana, Albuquerque, NM 

For positive integers p and n with p prime, prove that 
Lnp E LnLp (mod p). 

B-5̂ *8 Proposed by Valentina Bakinova, Rondout Valley, NY 

Let D(n) be defined inductively for nonnegative integers n by D(0) = 0 and 
£>(n) = 1 + D(n- [v^]2), where [#] is the greatest integer in x. Let nk be the 
smallest n with Z?(n) = k. Then 

n0 = 0, nx = 1, n2 = 2, n3 = 3, and ri^ = 7. 

Describe a recursive algorithm for obtaining nk for k ^ 3. 

B~5^9 Proposed by George N. Philippou, Nicosia, Cyprus 

Let #0, H±, ... be defined by #0 = q - p, ̂  = p, and #n + 2
 = #n + i + ^ f° r 

n = 0, 1, ... . Prove that, for n > m > 0, 

*» + A " nn+1Hn = (-Dw+1[p^_w+2 - ^ B . m + 1 ] . 

SOLUTIONS 

Coded Multiplication Modulo 10 or 12 

B-520 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

(a) Suppose that one has a table for multiplication (mod 10) in which a, 
b, . .., j have been substituted for 0, 1, ..., 9 in some order. How many de-
codings of the substitution are possible? 

(b) Answer the analogous question for a table of multiplication (mod 12). 

Solution by the proposer. 

(a) There are two ways to decode the substitution. The letters represent-
ing 0 and 1 are easy to find, since x * 0 = 0 and x • 1 = x for all x; then 9 is 
easily found as the unique solution to x2 - 1 with x ^ 1. The letter repre-
senting 5 is identifiable, and the letters are easily sorted as odd or even, 
because 5 • x = 5 if x is odd and 5 • x = 0 if x is even. Then 6 is identified 
from 6 e x = x if x is even, and 4 is identified from x2 = 6 with x ^ 6. Still 
unidentified are 2, 3, 7, and 8, but 22 = 82 = 4 and 3 = 72 = 9. so there are 
two choices for 3. Once 3 is chosen, 7 is forced, and so are 2 and 8, since 
3 « 4 = 2 and 3 * 6 = 8 . 

(b) The substitution is unique. As in (a), 0 and 1 are easily identified. 
Then £ is easily found, and the letters can be classified as odd or even, be-
cause 6 8 x = 6 if x is odd and 6 * x = 0 if x is even. Now, 4 is the only non-
zero even solution of x2 = x. If x and y are both even, then x * y is 0, 4, or 
8, and since 0 and 4 are already known, 8 is easily identified, leaving only 2 
and 10 unknown among the even numbers. But 8 * 2 = 4 and 8 • 10 = 8, so 2 and 10 
can be determined. Among the odd numbers, 9 is the only solution to x2 = x with 
x + 1, so 9 is easily identified. If x is odd, then 9 e x is either 3 or 9, so 
3 is determined. Then 7 is identified using the fact that 7 • x = x if x is 
even. To identify 5 and 11, we use the fact that 3 9 5 = 3, while 3 * 11 = 9. 
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Also solved by Paul 5. Bruckman and by L. Kuipers & P. A. J. Scheelbeek. 

Unique Decoding 

B-521 Proposed by Charles R„ Wall, Trident Technical College, Charleston, SC 

See the previous probleme Find all moduli m > 1 for which the multiplica-
tion (mod m) table can be decoded in only one way. 

Solution by the proposer. 

Suppose the multiplication (mod 777) table can be decoded uniquely. Then it 
is easy to see that if k\ms the multiplication (mod k) table can also be decoded 
in only one way. 

If p ̂  5 is primes there are at least two distinct primitive roots (mod p) , 
say g and h; replacing gn by hn for each n yields an equivalent substitution., so 
the multiplication (mod p) table cannot be decoded uniquely, and hence p\m, 

The multiplication (mod 9) table cannot be decoded uniquely, because 3 and 
6 may be interchanged, and in the multiplication (mod 8) table, 2 and 6 may be 
switched. 

Therefore, m = 2a3 with a < 2 and 2? < 1. Since the multiplication (mod 
12) table can be decoded in only one way, m = 2, 3, 4, 6, or 12. 

Also solved by Paul S. Bruckman and by L„ Kiupers & P» A* J. Scheelbeek. 

Alternating Even and Odd 

B-522 Proposed by Joan Tomescu, University of Bucharest, Romania 

Find the number A(n) of sequences (al3 a2s . .., ak) of integers a^ satisfy-
ing 1 < ai < ai + 1 < n and ai + 1 - a^ E 1 (mod 2) for £ = 1, 2, ..., ?c - 1. [Here 
k is variable but, of course, 1 < k ̂  n. For example, the three allowable se-
quences for n = 2 are (1), (2), and (1, 2).] 

Solution by J. Suck, Essen, Germany 

A(n) = Fn+3 - 2. 

Proof by Double Induction 

Let B(n) be the number of sequences of the said type with ak = n. I claim 
that B(n) = Fn+1. This is so for n = 1, 2. Suppose it is true for v = 1, ..., 
n - 1 > 1. The sequences with ak = n, except (n) , consist of those with ak_1 = 
H - l o r n - 3 o r n - 5 . . „ . Thus 

F for n even 

F3 for n odd 

= Fn+1 in any case by Hoggatt!s J 5 or J 6 . 

Now, A(l) = 1 = Fh - 2, and, clearly, 

A(n) = i4(n - 1) + B(n) = Fn + 2 - 2 + F n + 1 = F n + 3 - 2 for n > 1. 

Also solved by Pauls. Bruckman, Laszlo Cseh, L. A. G. Dresel, Herta T. Freitag, 
L, Kuipers, J. Metzger, W» Moser, Sahib Singh, and the proposer. 
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Reversing Coefficients of a Polynomial 

B-523 Proposed by Laszlo Cseh and Imre Merenyi, Cluj, Romania 

Let p, a0, ali ..., an be integers with p a positive prime such that 

gcd(a0, p) = 1 = gcd(an, p). 

Prove that in {0, 1, ..., p - 1} there are as many solutions of the congruence 

anxn + 0Ln^1xn~1 + ••• + axx + a0 E 0 (mod p) 

as there are of the congruence 

a0xn + a ^ ' 1 + ' • • + an_xx + an = 0 (mod p) . 

Solution by Sahib Singh, Clarion University of Pennsylvania, Clarion, PA 

Since gcd(a0, p) = gcd(an, p) = 1, it follows that both polynomials asso-
ciated with the given congruences are of nth degree and that zero is not a 
solution of any one of these congruences. If a is a solution of the first con-
gruence, then a-1 is a solution of the second congruence where a-1 denotes the 
unique multiplicative inverse of a in Zp. 

Thus, we conclude that if a1} a2, ..., at are the solutions of the first 
congruence in Zp, then a"1, a^1, . .., a"1 are precisely the solutions of the 
second congruence in Zp. 

Also solved by Paul S. Bruckman, L. A. G. Dresel, L. Kuipers, J.M. Metzger, Bob 
Prielipp, and the proposer. 

Disguised Fibonacci Squares 

B-524 Proposed by Herta T. Freitag, Roanoke, VA 

Let 
Sn = F2n-1 + FnFn-l(F2n-I + Fn) + 3FnFn + l (F2n -1 + FnFn-0' 

Show that Sn is the square of a Fibonacci number. 

Solution by Paul S. Bruckman, Fair Oaks, CA 

Let a = Fn, b = Fyl_1« Note that F2n_1 = a2 + b2
 9 Tn+1 = a + b. Then 

Sn = (a2 + b2)2 + ab(a2 + b2 + a2) + 3a(a + b) (a2 + b2 + ab) 

= a* + 2a2b2 + i* + 2a3b + a£3 + 3ak + 6a3b + 6a2b2 + 3a£3 

= 4a4 + 8a3b + 8a2Z?2 + kab3 + 2?̂  

= (2a2 + lab + b2)2. 

Now 2a2 + 2a& + &2 = a2 + (a + b)2 = F2 + Fn2+ ± = F2n+1. Hence, 5n = F22n + 1. 

Also solved £>y L. A. G. Dresel, L. Kuipers, Imre Merenyi, Ja M. Metzger, Bob 
Prielipp, Sahib Singh, J. Suck, and the proposer. 
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Piophantine Equation 

B-252 Proposed by Walter Blumberg, Coral Springs, FL 

Let x,y, and z be positive integers such that 2X - 1 = yz and x > 1. Prove 
that 3 = 1 . 

Solution by Leonard A. G. Dresel, University of Reading, England 

Since # > 1, we have yz = 2* - 1 E -1 (mod 4). Hence, 2/ E -1 (mod 4) and 3 
is odd, so that we have the identity 

y* + 1 = (2/ + DO/3"1 - ^ " 2 + -•• - z/ + 1). 

Hence, 2/ + 1 divides yz + 1 = 2X
9 so that y + 1 = 2", u < x, and 

2*-" = z^"1 - 2/*-2 + .-- - z/ + 1 

E 1 + 1 + - - - + 1 + 1 (mod 4) 

E 3 (since there are z terms) 

E 1 modulo 2, since s is odd. 

Therefore, we must have x - u = 0, and yz = y, and since i/s > 1 it follows that 
2 = 1. 

Note by Paul S. Bruckman 

This is apparently a well-known result, indicated by S. Ligh and L. Neal in 
"A Note on Mersenne Numbers," Math. Magazine 47, no. 4 (1974):231-33. The re-
sult indicated in that reference is that a Mersenne number cannot be a power 
(greater than one) of an integer. 

Also solved by Paul S. Bruckman, Odoardo Brugla & Plero Flllpponl, Laszlo Cseh, 
L. Kulpers, Imre Merenyl, J. M. Metzger, Bob Prlellpp, E. Schmutz& H. Klauser, 
Sahib Singh, J. Suck, and the proposer. 
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Edited by 
RAYMOND E. WHITNEY 

Please send all communucations concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, 
PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information 
that will assist the editor. To facilitate their consideration, all solutions 
should be submitted on separate signed sheets within two months after publica-
tion of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-385 Proposed by M. Wachtel, Zurich, Switzerland 

Solve the following system of equations: 

T- Uf(n) + Vg\n) " 3 • UfM Vg(n) = 1; 

H-386 Proposed by Paul S. Bruckman, Fair Oaks, CA 

Define the multiple-valued Fibonacci function mF : C ~> C as follows: 

1. mF(z) = —(exp Lz - exp L'z), z G C, m E Z, 

where L = log a, a = %(1 + /5) , L1 = {2m + l)ii\ - Ly and "log" denotes the 
principal logarithm. 

a. Show that F{n) = Fn for all integers 777 and n. 

b. Prove the multiplication formula 

2. 11 mF(k + -) = 5~h(n~l)Fnk+r, where n9 ks r are integers with 0 < r < n. 
m = 0 \ n / 

c. With m fixed, find the zeros of mF. 

H-387 Proposed by Lawrence Somer, Washington, D.C. 

L§t {wn}n=Q be a second-order linear integral recurrence defined by the 
recursion relation 

wn+2 = awn+1 + bwns 

where b ^ 0. Show the following: 

(i) If p is an odd prime such that p \ b and w\ - wQW2 is a quadratic non-
residue of p, then 

p )( w2n for any n ^ 0. 
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(ii) If p is an odd prime such that (-b)(w\ - WQW2) is a quadratic nonresidue 
of p, then 

v%win+i f o r a n y n ^ °-
(iii) If p is an odd prime such that -b is a nonzero quadratic residue of 

and w1 - WQW2 is a quadratic nonresidue of p, then 

p j' &;n for any n > 0. 

H-388 Proposed by Piero Filipponi, Rome, Italy 

This problem arose in the determination of the diameter of a class of lo-
cally restricted digraphs [1], 

For a given integer n > 2, let Pl = {p l x, pl 2, ..., pljfc } be a nonempty 
(i.e. 5 ki ^ 1) increasing sequence of positive integers such that pl k < n - 1. 
Let P2 = {p2 p p2 2 > - . 5 p2 k 5" ̂ e t n e increasing sequence containing all non-
zero distinct values given by p. . + pl • (mod n) (t, j = 1, 2, ..., &i) . In 
general let P^ = {p^ . , ph 2 , . .'. ,p, fc } be the increasing sequence containing 
all nonzero distinct values given by p^_ \ i + V\ -• (mod n) (i = 1, 2, . .., kn_ ^ 
j = 1, 2, . .., /cx). Furthermore, let Bm (m = 1, 2, ...) be the increasing se-
quence containing all values given by 

m 

U Pj • 
J= 1 

Find, in terms of n, pl l9 ..., px ^ , the smallest integer t such that 
5t = {1, 2, ..., n - 1}. 

Remark: The necessary and sufficient condition for t to exist (i.e., to be 
finite) is given in [1]: 

gcd(n, plsl , ..., pl)ki ) = 1. 

In such a case we have 1 < £ < n - 1. It is easily seen that 

kx = 1 <N=> £ = n - 1 

fcx = n - 1 <==> £ = 1; 

furthermore, it can be conjectured that either t = n - 1 or 1 < t < [n/2]. 

Reference 

1. P. Filipponi. "Digraphs and Circulant Matrices." Rioeroa Operative^ no. 17 
(1981):41-62. 

An Example 

n = 8 Px = {3, 5} -> Bx = {3, 5} 

P2 = {2, 6} + 52 = {2, 3, 5, 6} 

P3 = {1, 3, 5, 7} + 53 = {1, 2, 3, 5, 6, 7} 

P4 = {2, 4, 6} -> Bh = {1, 2, 3, 4, 5, 6, 7}; hence, we have £ = 4, 
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SOLUT8QNS 

A Note to Solutions of H-350, ^35** by Paul Bruckman 

H-350 

Although the published solution is apparently correct, it can be consider-
ably simplified. In the course of solving H-372, it occurred to the solver 
that the same method of solution could have been applied to solve H-350 (but 
was not). As noted in the published solution, the given equation: 

5y2 - Ax2 = 1 (where A = 5a2 + 5a + 1) (1) 

has general solutions 
u2n-l _ v2n-l rfn - 1 + ^ n - 1 

Sn = 9 y ^ = _ , W = 1 , 2 , . . . , 
2y/A iJl (2) 

where u = (2a + l)i/5 + 2V£, t; = (2a + 1)^5 - 2A/Z. 

Note uv = 1. From (2), we could easily have derived the following relations: 

5ynyn+i - A v n + i = B E 4 0 ^ 2 + 4 0 a + 9 ; <3> 

^n + l^/n " Xn2/n + l = 4 ( 2 a + X ) • ( 4 > 

Divid ing (3) and (4) th roughout by ynyn + 1 would have y i e l d e d t h e fo l l owing : 

5 - Arnrn + 1 = B/ynyn+l9 rn + 1 - vn = 4(2a + l)/ynyn + 1, 
or 

5 ^ p n + i 4 ( 2 a + l ) ( ^ + 1 r n )' 

which yields: 

Brn + 20(2a + 1) 
r»+i = 4A(2a + l)rw + B' w i t h Pi = 2 / ( 2 a + 1}' (5) 

The expression given by (5) is a recursion of the first order (though modular 
rather than linear), which is considerably simpler than the cumbersome third-
order recursion published as the solution. The published third-order recursion 
follows from (5) (after some computation), but not vice-versa. 

H-354 

The published "solution" is not a solution (or even an attempted solution) 
of the original problem, as submitted. The original problem asked for neces-
sary and sufficient conditions for a solution in integers (x, y) to exist for 
the equation: 

ax2 - by2 = c, (1) 

where a, b, a are pairwise relatively prime positive integers such that db is 
not a perfect square. It Is already known that if a solution of (1) exists, 
then infinitely many such solutions exist. Moreover, an explicit formula for 
all such solutions is known, in terms of the one known solution (if any). 

In the published "solution" to the problem, as altered, Wachtel changed the 
notation to the following equation, 

By2 - Ax2 = C, (2) 

which in itself is not a substantive modification; however, he also indicated 
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that C is to be dependent on A and B. Nothing of the sort was intended by the 
proposer; in the original problem, a, bs and c are independently arbitrary, 
subject only to the conditions noted above. Moreover, Wachtel attempted con-
struction of the solutions to particular cases. This again was not the intent 
of the proposer, although admittedly the construction of the minimal solution, 
if possible, would go a long way toward solving the problem. 

The only progress made by the proposer toward solution of the original 
problem may be summarized as follows: 

I. Necessary conditions for a solution of (1) to exist are the following, in 
terms of the generalized Legendre symbols: 

( f ) - ( i2) - ( ¥ ) - • • <» 
That the conditions in (3) are not sufficient may be demonstrated from the 
counter-example: a = l , 2? = 17, <2 = 2,in this case, x2 - I7y2 = 2 has no solu-
tion, yet the conditions in (3) are satisfied. 

II. The construction of a minimal solution to (1) seems to depend somehow on 
the simple continued fraction expansion of vb/a (or equivalently, of Va/b) . It 
is however false9 in general, that for any solution (x, y) of (1), x/y is a 
convergent of the simple continued fraction expansion for Vbja. Nevertheless, 
a finite algorithm exists for finding the minimal solution (x0$ z/0), if any, of 
(1). By solving the congruence 

-by2 = c (mod a) (4) 

implied by (3), and also using the inequality 

0 < yQ < Vcu±/2bs (5) 

where (uls V±) is the minimal nontrivial solution of the auxiliary equation 

u2 - abv2 = 1, (6) 

[the trivial one is (uQ, vQ) = (1, 0)], we may determine in a finite number of 
trials if a solution exists. It would be far more desirable, however, to con-
struct such a minimal solution of (1) directly, rather than by trial and error. 

III. Given that (xQ, y0) is the minimal solution of (1), and (un, vn) the so-
lutions of the auxiliary equation in (6) (which latter solutions are known to 
exist in all cases, and for which several constructive algorithms are known), 
then all solutions of (1) are given by: 

xn = xQun + byQvnS yn = y0un + axQvnS n € Z. (7) 

Note that the solutions (un$ Vn) of (6) are given by: 

un = ~(pn + qn) , vn = ~^—{pn - qn) , n G Z, (8) 
1 iJab 

where 
p = ux + v1^/abs q = u1 - v1/ab, (9) 

IV. We note that u.n = un, v_n = -Vn for all n E Z. From this it may be de-
duced that xn > 0 for all n, while yn has the same sign as n, This eliminates 
trivial variations in solutions due to sign, and makes the theory more elegant. 

•k 
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Correction to H-382 

The left-hand side of (3) should read Fn + 2, and the left-hand side of (4) 
should read Fn+2. 

Correction to H-381 

Equation (ii) should read 

(ii) 3(2m - 1) = £ - ^ ^— $(2m - 2i - 1) , m > 2. 
i = i 22i(2i)l 

Ring around the Lucas! 

H-362 Proposed by Stanley Rabinowitz, Merrimack, NH 
(Vol. 21, no. 4, November 1983) 

Let Zn be the ring of integers modulo n. A Lucas number in this ring is a 
member of the sequence {Lk}, k = 0, 1, 2, . .., where 

L0 = 29 L1 = 1, and Lk+2 = Lk + 1 + Lk for k ^ 0. 

Prove that for n > 14, all members of Zn are Lucas numbers if and only if n is 
a power of 3. 

Remark: A similar, but more complicated, result is known for Fibonacci numbers. 
See [1]. I do not have a proof of the above proposal, but I suspect a proof 
similar to the result in [1] is possible; however, it should be considerably 
simpler because there is only one case to consider rather than seven cases. 

To verify the conjecture, I ran a computer program that examined Zn for all 
n between 2 and 10,000 and found that the only cases where all members of Zn 
were Lucas numbers were powers of 3 and the exceptional values n = 2, 4, 6, 7, 
and 14 (the same exceptions found in [1]). This is strong evidence for the 
truth of the conjecture. 

Reference 

1. S. A. Burr. "On Moduli for Which the Fibonacci Sequence Contains a Complete 
System of Residues." The Fibonacci Quarterly 9, no. 5 (1971):497. 

Solution by Paul S. Bruckman, Fair Oaks, CA 

We generalize and modify the definition of defectiveness indicated in [1]. 
Given a positive integer n9 let Rn = {0, 1, 2, . .., n - 1} denote a complete 
residue class (mod n), and consider the (periodic) sequence 

(Lr (mod n))ZmQ = (^)r = 0 
with elements in Rn. Let k = k(n) denote the period of this sequence. We say 
n is Lucas-defective if Rn <t {L'Qi L[, Lf

2, ..., L{}9 i.e., if there exists j E Rn 
such that Li t j (mod n) for all i > 0. Let LD denote the set of all Lucas-
defective numbers. A comparable definition using Fibonacci numbers instead of 
Lucas numbers may be made, with FD denoting the comparable set of Fibonacci-
defective numbers; these were simply called defective numbers in Burrrs paper 
[1]. Let LD* and FD* denote the complements of LD and FDS respectively, with 
respect to IN = {1, 2, 3, . ..}, i.e., 
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LD* =]N - LD9 FD* =W - FD. 
We recall the main result of Burr: 

Theorem 1 

FD* consists of the following numbers: 

5M, 2° 5W, 4*5W, 6»5", 7-5", 14 • 5U
5 3V « 5U

s u>0s v > l . 

We will establish Rabinowitz* conjecture, namely: 

Theorem 2 

LD* consists of the following numbers: 

1, 2, 4, 6, 7, 14, 3y, y > 1. 

Note that 1 is (trivially) LD*, as well as £!D*, although Rabinowitz did not 
specifically mention this. We will require some preliminary lemmas. 

Lemma 1 

If ft E LD, then kn E LD for all fcGE. 

Proof of Lemma 1 : Since n E LD, there exists an integer j E R such that 
L^ ^ j (mod n) for all i > 0. Therefore, Li $ j (mod kn) for all fc E IN and for 
all i > 0. Hence, kn E LZ? for all k E3N. 

Lemma 2 

(a) 1, 2, 4, 6, 7, 14 E LP*; 

(b) 5 E LP. 

Proof of Lemma 2: This follows from a simple, but trite, tabulation of the 
residues of the sequences (Lr (mod ft))£~J for the various stated values of n, 
leading to the indicated results by inspection. t 

Note that Lemma 1 and Lemma 2(b) imply that no multiple of 5 can be in LD . 

Lemma 3 

LD* C FD*. 

Proof of Lemma 3- Suppose n ELD*. Then there exists j E Rn such that 
Lj E 0 (mod n). Since gcd(LJ-, £J-M) = 1 J w e have gcd(ft, Lj + i) = 1; hence, LJ+i 
(mod n) exists. Define the sequence Qr E £"+]_ • Lr (mod ft), r = 0, 1, 2, ... . 
Note that the 0pfs are equal to a constant integer (LJ^ (mod ft)) times the L^'s 
(mod ft) , and therefore satisfy the basic Fibonacci recursion. Moreover, 0j E 0, 
0.+1 E 1 (mod ft), which are the initial values of the standard Fibonacci se-
quence. Hence, (0P)p=o is the Fibonacci sequence (mod ft), except in a cycli-
cally permuted order. Since n E LD* s the sequence of Lr's contains Rn in some 
order. Since gcd(L^ii (mod ft), ft) = 1, we see that multiplying the elements of 
Rn throughout by L-\1 (mod ft) regenerates Rn in some permuted order. Hence, 
(Fr (mod ft) ) ^ = Q contains Rn, i.e., n E FD*. Thus, LD* E FD*, Combining the 
results of Lemmas 1, 2, and 3, we see that LD* consists of all the numbers in 
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FD* (as stated in Theorem 1), except all multiples of 5, and possibly further 
excepting powers of 3. It therefore suffices to prove one more results namely: 

Lemma k 

3V G LD*, VG IN. 

Proof of Lemma k: Given y E I , let m = 3U_1. We indicate the main result 
of [3] below: 

a3"7 = 3m, 33w = am (mod 3m). (*) 

This is an instance of an identity in the "calculus of complex residues" ex-
plained in [3], whereby we may manipulate the quantities a E %(1 + \/5) and (3 = 
h(l - A ) (mod 3m) as we would ordinarily manipulate complex numbers; in this 
case, however, the object A/5 (rather than v-1) is "imaginary," since 5 is a 
quadratic nonresidue of 3m. Note that (*) implies a2m E -$2m (mod 3m), i.e., 
L2m E 0 (mod 3m). Also, we have 

a2m+l = e 2 m - l s ^ + 1 = ^ - 1 ( m o d 3 ^ 

which implies F2m+i- ~F2m-i (mod 3m) • Therefore, F2m+1 E F2m - ̂ 2w+i (mod 3m) 5 
or 

F2m = 1F2m+l < m o d 3 m > - (**) 

Since gcd(FP, Fr+1) = 1 for all r, we must therefore have gcd(F2mS 3m) = 1; 
hence, F~* (mod 3m) exists,. The rest of the proof is similar to that of Lemma 
3. Define the sequence ^r E 2F^Fr (mod 3m), r = 0, 1, 2, ... . Then the ¥r

fs 
satisfy the Fibonacci recursion. Moreover, ¥2m E 2 and 2̂77?+1 = 1 (m°d 3m), 
using (**); these are the initial values of the Lucas sequence. Thus, (¥r)r = o 
is the Lucas sequence (mod 3m), except in a cyclically permuted order. From 
Theorem 1, 3m G FD*; hence, the sequence (Fr (mod 3m))^=0 contains R3m in some 
permuted order. Since gcd^F^ (mod 3m), 3m) = 1, multiplying the elements of 
R3m throughout by 2F^ (mod 3m) regenerates R$m in some permuted order; hence, 
3m G LD*. Q.E.D. 

This completes the proof of Theorem 2 (Rabinowitz1 Conjecture). 

References 

1. S. A. Burr. "On Moduli for Which the Fibonacci Sequence Contains a Complete 
System of Residues." The Fibonacci Quarterly 9, no. 5 (1971):497-504. 

2. A. P. Shah. "Fibonacci Sequence Modulo m." The Fibonacci Quarterly 6, no. 2 
(1968):139-41. 

3. P. S. Bruckman. "Some Divisibility Properties of Generalized Fibonacci 
Sequences." The Fibonacci Quarterly 17, no. 1 (1979):42-49. 
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