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FIRST INTERNATIONAL CONFERENCE ON FIBONACCI
NUMBERS AND THEIR APPLICATIONS
UNIVERSITY OF PATRAS, GREECE
AUGUST 27-31, 1984

A Report by Karel L. de Bouvére

About fifty mathematicians from thirteen different countries gathered in
Patras, on the Peloponnesos in Greece, to exchange knowledge and thoughts on
various mathematical topics all with the Fibonacci numbers as a common denomi-
nator. Professor A. N. Philippou, chairman of both the intermational and the
local organizational committees, expressed it as follows in his remarks at the
opening session: 'Most will be lecturing on Number Theory, some will talk on
Probability, and still others will present their results on ladder networks in
Electric Line Theory and aromic hydrocarbons in Chemistry."

The academic sessions were scheduled, of course, according to the pace of
the host country. A morning session from 9:00 A.M. to 1:00 P.M. and an after-
noon session from 5:00 P.M. to 8:30 P.M., each session interrupted once by a
coffee break. All lectures lasted for 45 minutes and all were in the nature of
contributed papers—twenty-four in total. The Conference Proceedings will be
published.

The relatively small number of participants made the conference a pleasant
affair; in no time everyone knew everyone else. The social atmosphere was en-
hanced still more by outings and parties, not in the least due to the friendly
guidance of the Greek colleagues. And clearly, it is hard to beat an environ-
ment that appropriately could be called the cradle of mathematics.

At the end of the final session on August 31, Professor Philippou and his
committees and staff were given well deserved praise and applause. It was sug-
gested that similar international conferences should be held every three years
and that the University of Santa Clara, in California, U.S.A., "home" of The
Fibonacci Quarterly, should be the host in 1987, followed in 1990 by an appro-
priate institution in Pisa, Italy, birthplace of Fibonacci.

The conference was jointly sponsored by the Greek Ministry of Culture and
Science, the Fibonacci Association, and the University of Patras.

A Very "Nonscientific'' Report by Herta T. Freitag

An announcement of the First International Conference on Fibonacci Numbers
and Their Applications to be held at the University of Patras, Greece, August
27-31, 1984, reached me in mid-February. I was overjoyed by the thought that
the members of the "Fibonacci-oriented" mathematical community would be able
to meet each other on an international scale. Although I consider myself but
an amateur in this area compared to the remarkable caliber of my esteemed peers
who work in this field, I have long been a devoutly "addicted" member, and have
looked forward from one issue of The Fibonacei Quarterly to the next ever since
The Fibonacci Association was founded in 1963.

Countless hours of planning and work must have gone into the organization
of the Conference by the International Committee and the Local Committee, both
headed by Professor A. N. Philippou, Vice Rector of the University of Patras,
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and Chairman of the entire Conference, which was sponsored by the Greek Minis-
try of Culture and Science, the Fibonacci Association, and the University of
Patras. It saddened me to learn that some of the outstanding leaders in our
Fibonacci community, among them Professor G. L. Alexanderson, President of the
Fibonacci Association, and Professor Gerald E. Bergum, Editor of our Journal,
could not attend. We felt their presence even from afar. It would have been
beautiful to have Verner E. Hoggatt, Jr., in our midst. I know that his spirit
was with us!

The Conference well surpassed my fondest expectations. It was profession-
ally dinspirational and persomally heartwarming. Names that we have held dear
for many years became people. Within moments we became a circle of friends.
In a very significant sense we were able to speak the same language regardless
of our national backgrounds. Our common interest, indeed enthusiasm, affected
this miracle.

To hold this first Conference in Greece, cradle of mathematical thought in
antiquity, contributed immeasurably. 'The Glory that is Greece" — Greece, the
country which is indelibly imbedded in the minds, the hearts, and the souls of
all educated persons throughout the world! With their inimitable beauty and
charm, the surrounding waters, the mountains, those picturesque cypress trees
greatly enhanced the atmosphere of our meeting.

The findings presented in the papers were profound and intricate. It seemed
to me they not only deepened our conviction of the importance of the Fibonacci
sequences and their ramifications, their ever-increasing relevance and applica-
bility; they also significantly contributed to our understanding of specific
aspects in this mathematical area. The conspicuous care in the presentations
was admirable. The ensuing comments and questions added yet a further dimen-
sion. I shall never forget Professor A. Zachariou's deeply searching delibera-
tions.

The Conference was eminently enriching—a uniquely memorable experience.
My heartfelt gratitude is extended to all members of our Fibonacci community
who have made this Conference possible and who have contributed to its success.
And I am truly moved, and most appreciative, that Professor Alexanderson has
given me the opportunity to relate my impressions in our Journal.

If I may become personal, I would also like to extend a very special "thank
you" to Professor Andreas N. Philippou whose wit and warmth immediately set an
unforgettable tone for our Conference. Indeed, his intuitive perception led
him—at our first encounter—to ‘''recognize' me without ever having seen me. I
would like to thank him for the very special courtesies he has extended to The
Fibonacci Association, and for allowing me to address the group in my capacity
as one of the representatives of our organization.

I believe I speak for all Fibonacci friends across the oceans if I express
the hope that this, our First International Conference on Fibonacci Numbers and
Their Applications, was but a prelude for those to come.

08606
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FIBONACCI-TYPE POLYNOMIALS OF ORDER K
WITH PROBABILITY APPLICATIONS

ANDREAS N. PHILIPPOU and COSTAS GEORGH!IOU
University of Patras, Patras, Greece

GEORGE N. PHILIPPOU
Higher Technical Institute, Nicosia, Cyprus

(Submitted August 1983)

1. INTRODUCTION AND SUMMARY

In this paper, kX is a fixed integer greater than or equal to 2, unless
otherwise stated,n; (1 < 7 < k) and »n are nonnegative integers as specified, p
and x are real numbers in the intervals (0, 1) and (0, »), respectively, and
[x] denotes the greatest integer in . Set g =1 - p, let {f %}’ _, be the
Fibonacci sequence of order k [4], and denote by N, the number of Bernoulli
trials until the occurrence of the k™ comsecutive success. We recall the fol-
lowing results of Philippou and Muwafi [4] and Philippou [3]:

+etn
PN, =n+ k) = prtk (”1 + + nk><2)”1 k (1.1)
. e S n s My eees My p
ny+ 2,4 ot kng=n n 2 0;
w - (), as o "
fn+l n, 5 a3 nl, oo My ’ ’ ( )
nyt 2,4 et kn,=n
[n/(k+1)] . R
(k) _ on Y LA AV S b
IR MM G &
=0
[((n-1D)/k+1)] . s
_gntl )3 (-1YC¢"?£‘ ki)z*k+1’1, > 1 (1.3)
=0
For p = 1/2, (1.1) reduces to
P, =n+ k) = 18275 w0, (1.4)

which relates probability to the Fibonacci sequence of order k. TFormula (l.4)
appears to have been found for the first time by Shane [8], who also gave for-
mulas for P(Ny=n) (n 2 k) and P(N; < x), in terms of his polynacci polynomials
of order k in p. Turmer [9] also derived (l.4) and found another general for-
mula for P(Ny = n + k) (n 2 0), in terms of the entries of the Pascal-T trian-
gle. None of the above-mentioned references, however, addresses the question of
whether {P(W, =n + k) }n-o is a proper probability distribution (see Feller [1,
p. 309]), and none includes any closed formula for P(N, < x).

Motivated by the above results and open questions, we presently introduce
a simple generalization of {fn(k)}:=0, denoted by {F¥(x)}n-, and called a se-
quence of Fibonacci-type polynomials of order k, and derive appropriate analogs
of (1.2)-(1.4) for F{(x) (n > 1) [see Theorem 2.1 and Theorem 3.1(2)]. In
addition, we show that E:=OP(1V7< =n+ k) =1, and derive a simple and closed
formula for the distribution function of N, [see Theorem 3.1(b)-(c)].
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2. FIBONACCI-TYPE POLYNOMIALS OF ORDER X
AND MULTINOMIAL EXPANSIONS

In this section, we introduce a sequence of Fibonacci-type polynomials of
order k, denoted by {Fém(x)};=o,and derive two expansions of F{(x) (n > 1) in
terms of the multinomial and binomial coefficients, respectively. The proofs
are given along the lines of [3], [5], and [7].

Definition 2.1

The sequence of polynomials {Fﬁm(x)}:=o is said to be the sequence of Fi-
bonacci-type polynomials of order k, if

F{x) =0,
FR@ =1,
and 27 (@) + - + FP@ ], if 2 <n <k,
(k) - -
F(x) = ) .
2lF (@) + - + FP ()], 1f n >k + 1.

k)}

It follows from the definition of {fﬁ :=0 and Definition 2.1 that

(k) — e~
FO1) = £® (n>0).
The n'" term of the sequence {Fgo(x)} (n 2 1) may be expanded as follows:

Theorem 2.1

o

Let {Eﬁm(x)}n=0 be the sequence of Fibonacci~type polynomials of order k.
Then

(a) F¥ (@) =

N, + 2 +n N+t n
1 k 1 k >0-
nal >.’L’ ,Yl/O,

Al eevs My D (ﬂl, censy My
Nyt 2n,+ et hkn=n

[/ QL] c(n - Ki\ _; (k+1)Z
® FP@ = arar DI ety
i=0
(= D/ DT ) .
-+ x)r? Z (_1)1<7’l 17/ ki)xt(l + 2 (k+1)7,,

=0
n21.
We shall first establish the following lemma:

Lemma 2.1

Let {Eﬁm(x)}:=0 be the sequence of Fibonacci-type polynomials of order %k,
and denote its generating function by G,(s; x). Then, for ‘s] < 1/(1 + x),

2
s - 8 s
Gk(s; x) = =

1 - (1l +x)s + xsktt

1 - xs - x8% = <++ - xs

Proof: We see from Definition 2.1 that
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) x(l +x)" 2%, 2<n<k+1,
FR(x) = (2.1)

L+ F® (@ - 2F® (@), n>k+2.
By dinduction on n, the above relation implies E*kkx) Szl +x)"2 22,

which shows the convergence of G, (s;x) for [s] < 1/(1 + x). Next, by means of
(2.1), we have

k+1 ©
G, (85 x) = E s"F(k)(o:) =g+ Es (1l + x)""% + Z s”F}ik)(x)
and n=k+2
- *® = k) - k
Y E@ = L+ Y SER @ -x Y e
n=k+2 n=k+2 n=k+2
k+1
= [(1 +x)s - xsk+l]Gk(s; x) - g2 - s"x(l + x)* "2,

n=

N

from which the lemma follows.

Proof of Theorem 2.1

First we shall show part (a). Let !s| < 1/(l + ). Then, using Lemma 2.1
and the multinomial theorem, and replacing # by n - Z:§=l(i - Dn,;, we get

anFn(l-:)l(x) Zo(xs +xs® + oo+ xsh)”
= n=

©

It

( n )x”1+"'+”k3”1+7—”z+"'+k”k
Ao n, S N e T
Ryt e tn,=n

= + e 4+ 1 feertn
)LD M )t ez 0,
- M1 e D nl, e ey le

n1+.2n2+.---+knk=n
which shows (a).
We now proceed to part (b). Set

A (x) = {s €R; |s] <1/(L +x) and |(1 + 2)s - ws**1| < 13,

and let s € 43 (x). Then, using Lemma 2.1 and the binomial theorem, replacing
by n - ki, and setting
[n/(k+ 1)} . ki )
b = A+ @ X D)t * e s,

i=0
we get
gs"fﬁﬁ(w) C - %:'m e - wkti]n
= (1 - 8) Z Z( 1)% (:,'Z)(l + p)n-igigntki
= (1 - S);?:os [n/(ji:)](_l)i (n —iZ:i)(l + gyt r i
= (1 - )i @) =1+ an[b(k)(x) p® ()],
#=0

102 [May



FIBONACCI-TYPE POLYNOMIALS OF ORDER X WITH PROBABILITY APPLICATIONS

The last two relations establish part (b).

3. FIBONACCI-TYPE POLYNOMIALS OF ORDER X
AND PROBABILITY APPLICATIONS

In this section we shall establish the following theorem which relates the
Fibonacci-type polynomials of order k to probability, shows that

o

{P, =n+ R},

is a proper probability distribution, and gives the distribution function of
N
k-

Theorem 3.1

Let {Eﬁkkx)}:=o be the sequence of Fibonacci~type polynomials of order k,
denote by N, the number of Bernoulli trials until the occurrence of the k®h
consecutive success, and set ¢ = 1 - p. Then

(a) P, =n+k =p"t*E® (q/p), n > 0;

(b) D PW, =n+k =1;
ne nyt by

1 - p[x]+1 Z n1+ oo e +”7< (g
4 Nys eses Mg D <nl’ s ey nk) p) 5
(e) P, <) = nyH 2n, b e b o = (2] 41 .

0, otherwise.
We shall first establish the following lemma.

Lemma 3.1

Let {Eﬁkkx)}:=o be the sequence of Fibonacci-type polynomials of order k.
Then, for any fixed x € (0, =),

(k)
F(x)
(a) lim — = 0;
e (] o+ )"
k) (k)
Fé+1(x) E;+k+2(x)
(b) E: —7 = 1 - —e " 2 0.
n=0 (1 + x)" 1+ x)"

Proof: First, we show (a). For any fixed x € (0, ©) and n 2 k + 1, rela-
tion (2.1) gives

F® () FR () 1 + 2FR@) - FP (x) xF®, () N
- = = 0,
(1 + 2" 1+ )" x(l + 2"+t (1 + 2)"*?t

which implies that Eﬁk%x)/(l + x)" converges. Therefore,
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€]
xF, ()
1im __n_ﬁ__ = 0,
N> o (1 + x)n+1

from which (a) follows.

We now proceed to show (b). For m = 0, both the left- and right-hand sides
equal (1 + x)7%, since Fk(iﬁ)p_(x) =x(l + )%k - x by (2.1). We assume that the
lemma holds for some integer m 2 1 and we shall show that it is true for m + 1.
In fact,

k) &) (.n k)
(hds Fn+1(x) _ Fm+z("“) + & Fn+1(x)
neo (1 + x)n+k (1+x)m+k+l n=0 (1 + x)n+k
k) . 3]
Fm+2'"x) Fm+7<+2(x)
= -+ ] - —————————, by induction hypothesis,
(1 + )" e z(l + )"
" ®) _ (&)
- (14 x)Fm+k+2(9c) me+2('r)
©(l + x)m+k+l
Fm(f)k-f 3 (x)
=1 - , by (2.1).

CC(]- _}_x)m+k+lb

Proof of Theorem 3.1

Part (a) follows directly from relation (1.1), by means of Theorem 2.1 ap-
plied with & = g/p. Next, we observe that

m

3 p***,,.(a/p), by Theorem 3.1(a),
n=0
no P8 (@) _
————————, by setting p = /(1 + x),
n=0 (1 + x)m+k
k)
F ()
k
] - ez 7 by Lemma 3.1(b),
.’L‘(l + x)m+k

ZP(IVk =n + k)
n=0

it

+ 1 as m + «, by Lemma 3.1(a),

which establishes part (b). Finally, we see that

P(W, < x) = P(#) =0, if x <k,
and lz] (2] - k

P, Sa) = QP =n) = 3, PN, =n+ k)
n=k n=0

el k *)
= E p”+an+l(q/p), by Theorem 3.1(a),

n=0

plEl* L gy
- q Fix] +‘2(q/p)
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<n 4 e 4 nk)(ﬂ OB z >k
p> 3 = b

1
q 1y e ny 3 Mys wees My

ny+2n,+ s+ kng = [x]+ 1

by means of Lemma 3.1(b) and Theorem 2.1(a), both applied with x = q/p. The
last two relations prove part (c), and this completes the proof of the theorem.

Corollary 3.1

Let X be a random variable distributed as geometric of order k (k > 1) with
parameter p [6]. Then the distribution function of X is given by

. —p[x]+l Z <n1+ . +ﬂk>(£{_)n1+"'+nk, e
q Mys eres g D My1s «ews Ny p
P(X<x) = ny+ 2,4 s+ k= [x]+ 1

0, otherwise.

Proof: For k = 1, the definition of the geometric distribution of order k
implies that X is distributed as geometric, so that P(X S x) =1-gl®], if x > 1
and O otherwise, which shows the corollary. For k > 2, the corollary is true,
because of Theorem 3.1(c) and the definition of the geometric distribution of
order k.

We end this paper by noting that Theorem 3.1(b) provides a solution to a
problem proposed in [2].
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1. N. BAKER
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P. J. RIPPON
The Open University, Milton Keynes, U.K.

(Submitted August 1983)

For a > 0, the sequence
as a% a9, ..., (1)

is convergent if and only if ¢ € I = [e7¢, e'/€]. This result, which was known
to Euler [5], and which has been rediscovered frequently, is capable of gener-
alization in various directions (see [6] for a wide-ranging survey). For in-
stance, Barrow [2] showed that if ¢, €I, n =1, 2, ..., then the sequence
a, (a,™)

a;, ay?, ag s e (2)
is convergent also.

More recently [l], we have observed that if a is a complex number and if

a? = expl[z log al, (€ (),

where the principal value of the logarithm is taken, then the sequence (1) con-
verges if a lies in

t

R ={ete : |¢| < 1}.
On the boundary of R however, and in its exterior, both convergence and diver-
gence may occur.

The sequence (2) was shown by Thron [7] to be convergent if |log anl <1/e,
n=1, 2, ..., but we do not know whether this holds in general if a, € K, n =
1, 2, «o.

The aim of the present note is to give a complete discussion of the behav-
iour of real sequences of the form

a (a?)

a, ab, a®), a®" ), .., (a, b>0). (3)

Such a sequence is of course a special case of (2), and so Barrow's result
guarantees convergence for (a, b) € I xI, though the full region of convergence
is actually much larger. The same problem was discussed and partially solved
by Creutz and Sternheimer [4], who also presented considerable computational
evidence concerning the region of convergence.

With a, b > 0, we let ¢(x) = ab”(= ab™), —o <z < », and

"t (@) = dodpn(x) = ¢"odp(x), (n =1, 2, ...).
The sequence (3) under consideration is then of the form

6(0), ¢(1), $7(0), ¢*(1),
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Theorem

The following statements are equivalent:

(i) Both
1im ¢"(0) and %i@)¢”(l)

N>

exist finitely and are equal.

(ii) The function ¢ has precisely one fixed point ¢ such that

[67(e) | < 1.

(iii) We can write
log a = set and log b = te™®, (|st| < 1), (4)
in a unique way.
The set of points (log a, log b) defined by statement (iii) is shaded in
Figure 1 for the reader's convenience. We shall discuss it in more detail once

the theorem is proved. Notice that [-e, 1/e¢] x [-e, 1/e] lies in the shaded
set, as is implied by Barrow's result.

logb
SN
/////(-Ue,@
El
%‘(1/6,1/6)
loga
(e, -1/e)
E“
(-e, -e)
A
A /////
E /
* ///
Figure 1

The behavior of the sequence at the remaining points, which will become clear
in the course of the proof, is indicated below:
when (log a, log b) € E,, we have
lim ¢,(0) = lim ¢, (1) = «=;
>

N>

when (log a, log b) € E, U E,, we have

lim ¢2%(0) = lim ¢2*T1(1) # lim ¢Z*+1(0) = lim ¢?" (1) < =,
N> N> o n>co 9>

when (log a, log b) € E,, we have

lim ¢ (0) < lim ¢ (1) < 1.

N+ n n+ o n

The equivalence of statements (ii) and (iii) is a special case of the fol-
lowing lemma.
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Lemma 1

There is a one-to-one correspondence between the fixed points ¢ = e of ¢,
such that I¢'(c)! < 1, and the representations of (log a, log b) in the form
(4.

Proof: To prove the lemma, note that

¢ = ab’ = exp(exp(c log b)log a)
if and only if ¢ = e%, where

s = exp(e log b)log a,
and s is of this form if and only if we can write

log a = se~t and log b = te~S.

Since we then have

o' (e) = a?’p° log a log b = ¢ exp(c log b)log a log b = st,

the proof of the lemma is complete.

We now show that statements (i) and (ii) are equivalent. First we assume
that a, b > 1 so that ¢ is increasing. Since

o"(x) = a? b" log a(log b)2(1 + b log a)

the function ¢ has no points of inflection and so has at most two fixed points.
It is clear that

¢™(0) < ¢™(1) < ¢"FNO), (n =1, 2, ...),

and so convergence occurs if and only if ¢ has at least one fixed point, in
which case ¢ has exactly one fixed point ¢ such that |¢'(c)| < 1.

y=9¢(x)

Figure 2

If ¢ has no fixed points, then we clearly have
$"(0) > and ¢*(1) >, (n > =).

Next we assume that 0 < g, b < 1. Once again ¢ is increasing, but now it
has one point of inflection, and so there may be one, two, or three fixed
points. For m =1, 2, ..., we have

(bn(o) < d)n-)- 1(0) < ¢n+ 1(1) < (b"(l),
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and
1y 07O) < Lin ") )

is true if and only if ¢ has exactly one fixed point ¢. The condition ]¢’(c)|
< 1 will then automatically be satisfied.

ab 7= ¢(x)

ola ¢ ab1

Figure 3

With more than one fixed point, as in Figure 3, both the limits in (5) exist,
but they are not equal. This is an example of what Creutz and Sternheimer call
"dual convergence."

Since the sequence a, a?, cﬁb%, ... 1is convergent if and only if the se-
quence b, b%, ba?), ... is convergent, the cases 0<a<1<) and 0<H<1< g are
equivalent. We may assume then, finally, that 0<a<1<b. 1In this case, ¢ is
decreasing and has a unique fixed point c.

Y
=X
1 Y
a
Y= ¢(x)
0' gb ¢ a ®
Figure 4

There are now four monotonic subsequences of interest. Indeed, for m =1,
2, ..., we have

(bZn— 1(1) < ¢2n(0) < ¢2n+ 1(1) < e< ¢2n+ 1(0) < ¢7.n(1) < ¢2n-1(0)’ (6)

which is easily verified by induction, since ¢2? = ¢od is increasing and has a
fixed point at x = ¢. If |¢'(c)| > 1, then no sequence of the form ¢"(x,),
n=1,2, ..., %3 > 1, can converge to ¢, and so in this case we have another
(but slightly different) example of dual convergence.

To prove that convergence does occur when j¢'(c)] < 1, it is enough to show
that ¢ has in this case only one fixed point, namely ¢, since this would imply
that

1im ¢27(0) = ¢ = 1lim ¢27(1).
n—+ o

N>

We are, therefore, reduced to proving that, for 0 < x < ¢,
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o(x) < oM (@),
or
ab® < (log(log x/log a))/log b.

With log a = se™t, log b = te~%, ¢

=e®, and x = (1 - uwe?® (cf. the proof of
Lemma 1), this becomes, for 0 < u < 1,

exp[-s(l - e #t)] < 1 +% 1og<1 + —é— log(l - u)), (7)
which we must show to be true when s < 0, ¢ > 0, and {st| = |¢’(c)[ < 1. In
fact, it is enough to prove (7) when s = -1/¢, which we now do.

Lemma 2

For ¢ > 0 and 0 < u < 1, we have

- -ut .
exp[L__Q?——_] <1 +~% log(l + t log T E u)'

Proof: To prove the lemma, note that

- -ut ]
exp[_l 5 ] < expEr log(1 + ut):| =@ +u)’f, (>0, u>0),

and so, since there is equality at u = 0, it is enough to show that

a 1/t1 <« 4 1 1
Lia+unpiei< L 1+tlog<l+tlogl_u>:|, (t>0,0<u<1),

which is equivalent to

1-1/¢
1 < (1 + ut)

1+ ¢ log T2 A

, (>0, 0<u<l).

Again there is equality at u = 0, and so it is enough to show that

1-1/¢
i[1+tlog 1 }/d[w————], (>0, 0<u<1),

du I -ul| > du 1 - u
which is equivalent to
1/t t -1 1L +ut _ 1 l( 1 _
(1 + ut) < t + (1 - w 1 - u + t\l - u l)’ (8

(t>0, 0<u<l).
However, since

1
1 -w

the estimate (8) does in fact hold. This completes the proof of Lemma 2 and
also that of our theorem.

(A + up)l/t < eu < (t>0, 0<u<l),

We now discuss the mapping & = se~t,y = te~%, Ist'<-r, which gives rise to
the region in Figure 1. First, it is clear that, for kK =1, 2, 3, 4, the ke
quadrant in the st-plane is mapped into the X™® quadrant of the xy-plane. Next
we observe that the mapping is one-to-one for ¢ > 0 and [st|<lﬂ This follows
from Lemma 1, if we recall from the proof of the theorem that, for b > 1, the
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function ¢ has a fixed point ¢ with I¢'(c)[ <1 if and only if this fixed point
is unique. By symmetry, the mapping is also one-to-ome for s > 0.

It is easy to check with a little calculus that the boundary of the image
of {(s, ) : |st| < 1} takes the form shown in Figure 1 in the first, second,
and fourth quadrants. In the third quadrant, however, the mapping is not one-
to-one and a more detailed discussion is required.

If st =1 (s, t<0) and & = se-t, y = te~®, then

y <z <-e, (g<-1) and ax<y<-e, (g>-1). (9
For instance, if s < -1, then the inequality

x = sgel/s > gles =y
is equivalent (on putting 0 = -g) to

2logo<o~-1/o, (og>1),

which is easily verified by differentiation. The maximum value of se~1/s for
s < 0 occurs when 8 = -1, and so, for x < -e, the equation x = se~1/¢ has two
solutions s;, s, with s, < -1 < s; < 0. 1If s;2;, =1 = s,t, and

() = te 1, y,(x) = t,e™%2, (x<-e),
yl 1 2 2

then y,, y, are smooth functions in (-, -e) and, by (9),
y,@) <x <y, (x) <-e, (x<-e).
It is easy to check that
. - —o = 1i
Hm oy (%) = -e = lim y,(x)
and, using the chain rule, that
lim y!/(x) =1 = lim y!(x).
Sm oy = 1= Hn ya (@

Hence, the image of st = 1 has a cusp at (-e, -e).

(-e, -e)
Y=y, ()

y=x
Y=Yy,(x)

Figure 5

We now claim that the set
{(x, ) : x<-e, y,@ <y <y, (01}

is covered twice by the mapping and that the remainder of the third quadrant is
covered once. These facts could be verified directly, or we can deduce them
from Lemma 1 as follows.

Since, for 0 < @ and b < 1, the maximum value of ¢'(x) is (-log b)/e (this
occurs when 1 + b® log a = 0), we see that ¢ has exactly one fixed point ¢ (and
d'(c) 1) if 0<a <1 and ¢ < b < 1. This means, by Lemma 1, that
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{(x, y) + <2 <0, ey <0}

is covered exactly once.
If 0 < b < e™®, however, then there are numbers a; and g, with 0 < a; < a,
< e”¢ such that

y,(log ay) = log b = y,(log a,),
and then the corresponding functions
b, () = afz and  ¢,(x) = agr

each has a fixed point with derivative 1 (see the proof of Lemma 1). Since
o(x) = ab® is strictly monotonic in a when b, x are fixed, we see that for all
a € [a;, a,], the function ¢ has two fixed points ¢ such that ¢'(e) < 1. If
a & [al az], however, the function ¢ has only one such fixed point. By Lemma
1, this establishes the claim.
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INTRODUCT ION

A partition of a positive integer »n is defined as a way of writing 7 as a
sum of positive integers. Two such ways of writing # in which the parts merely
differ in the order in which they are written are considered the same parti-
tion. We shall denote by p(n) the number of partitions of n. Thus, for exam-
ple, since 5 can be expressed by

5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, and 1+1+1+1+1,

we have p(5) = 7.

The function p(n) is referred to as the number of unrestricted partitions
of n to make clear that no restrictions are imposed upon the way in which 7 is
partitioned into parts. In this paper, we shall concern ourselves with certain
restricted partitions, that is, partitions in which some kind of restriction is
imposed upon the parts. Specifically, we shall consider identities valid for
all positive integers n of the general type

p'(m) = p"(n), (1)

where p'(n) 1is the number of partitions of »n where the parts of n are subject
to a first restriction and p"(n) is the number of partitions of »n where the
parts of »n are subject to an entirely different restriction.

The most celebrated identity of this type is due to Euler [4], who discov-
ered it in 1748.

Theorem 1 (Euler)

The number of partitions of # into distinct parts is equal to the number of
partitions of » into odd parts.

Thus, for example, the partitions of 9 into distinct parts are

9, 8+1, 7+2, 6+3, 6+2+1, 5+4, 5+3+1, 4+3+2,
that is, there are 8 such partitions, and the partitions of 9 into odd parts are

9, 7+1+1, 5+3+1, 5+1+1+1+1, 3+3+3, 3+3+1+1+1,
341441, 141+ +1,

so that there are also 8 partitions of 9 into odd parts.
For a proof of this theorem by combinatorial methods, see [6], and by means
of generating functions, see [2] or [3].
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In [2], Alder has given a survey of the existence and nonexistence of gen-
eralizations of Euler's partition identity and, in [3], he has shown how to use
generating functions to discover and prove the existence and the nonexistence
of certain generalizations of this identity.

The use of generating functions, however, is by no means the only method
for discovering partition identities or for proving their existence or nonexis-
tence. Other methods, particularly those likely to produce positive results,
that is, suggesting the existence of new partition identities, need, therefore,
to be developed. Other points of view in looking at the possibility of the
existence of such identities need to be encouraged. One such method is used in
this paper. It is used to show that a certain generalization of a known parti-
tion identity cannot exist. It may well be, however, that as of yet unthought
of techniques may prove successful in discovering a generalization.

In 1974 D. R. Hickerson [5] proved the following generalization of Euler's
partition identity.

Theorem 2 (Hickerson)

If f(r, n) denotes the number of partiticns of #n of the form by + b, + b,
+ --- + b,, where, for 0 <Z<s -1, b; > rb;,,, and g(r, n) denotes the num-

ber of partitions of n where each part is of the form 1 + r + »? +--+ + ri for
some 7 2 0, then
f(r, n) = g(r, n). (2)

Thus, for example, for r = 2, the partitions of 9 of the first type are
9, 8+1, 7+2, 6+3, 6+2+1,

so that f(2, 9) = 5, and the partitions of 9 of the second type, that is, where
each part is chosen from the set {1, 3, 7, ...}, are

7+1+1, 3+3+3, 3+3+1+1+1, 3+1+-+-+1, and 1+1+---+1,

so that also g(2, 9) = 5.

Hickerson gave a proof of this theorem, both by combinatorial methods and
by means of generating functions.

In this paper we are addressing the question: Do there exist identities of
the type given by Theorem 2, where the inequality b; 2> rb;,; is replaced by
bi > r‘bi+1?

THE NONEXISTENCE OF CERTAIN TYPES OF PARTITION IDENTITIES
OF THE EULER TYPE

We shall consider the question stated above in the following more specific
form: If f(r, n) denotes the number of partitions of »n of the form b, + b; +
<+« + b,, where, for 0 S ¢ <s -1, b; >rb,,,, and g(r, n) denotes the number
of partitions of »n, where each part is taken from a set of integers S,, for
which r do there exist sets S, such that f(r, n) = g(r, n)?

We know, of course, that for r = 1, there exists such a set, since Euler's
partition theorem states that S; is the set of all positive odd integers. The
question—whether there exist other values of r for which there exist sets S,
so that (2) holds for all positive integers n—was posed at an undergraduate
seminar on Number Theory by the first two authors in the Winter quarter 1983,
and was answered with proof for all integers r > 2 by Jeffrey Lewis, namely as
follows:
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Theorem 3 (Lewis)

The number f(r,n) of partitions of »n of the form by + by +-:+- + b, where,
for 0<<Z<s-1, by > rb;,,, r a positive integer, is not, for all n, equal
to the number of partitions of n into parts taken from any set of integers what-
soever unless r = 1.

Proof of Theorem 3: ‘We shall prove this theorem by contradiction. Let us
assume that for some integer r > 2 there exists a set S,of positive integers—
denote the number of partitions of n into parts taken from that set by g(»r, n)—
for which f(r, n) = g(r, n) for all n.

Since f(r, 1) =1, we see that 1 € S, [otherwise, g(», 1) = 0]. Since
f(r, 2) =1, it follows that 2 € S, [otherwise, g(r, 2) = 2]. Since f(»r, 3) =
f(r, 4)=-++=f(r, r+1) = 1, we conclude that 3 & Sy, 4 & Spy ec., 7+ 1 & Sp.

Now f(r, r+2) = 2, since the partitions of r + 2 for which b; > rb;4; are
(r+2) and (r+1)+1. It follows that » + 2 € S, [otherwise, g(r, r+2) = 1).

Thus, we have verified the entries in Table 1 up to n = r+ 2. We will now
complete the construction of this table.

Table 1. Determination of the Elements of S, for r an Integer > 2
g(r, n) if g(r, n) if

n f(r, n) né&Sy neEs, Conclusion

1 1 0 1 1€S8

2 1 1 2 2 &S

3 1 1 2 3&S
r+1 1 1 2 r+1¢&S
r+ 2 2 1 2 r+2€S5S
r+ 3 2 2 3 r+3&38
2r + 2 2 2 3 2r+ 2 &S
2r + 3 3 2 3 2r+ 3 €S8
2r + 4 3 4 5 Contradiction

Next we determine the least value of n for which f(r, n) = 3. This occurs
if n is of either of the forms

n=>by + by +1 with by > rb; and b, > r
or
n=>b, +2 with b, > 2r.
The least »n for which the first can occur is
n=(r2+r+1)+(r+1)+1=1r2+2r+ 3.
The least 7 for which the second can occur is
n=Q2r+1) +2=2r+ 3.
Since 27 + 3 < »? 4+ 2r 4+ 3 for all positive r, it follows that n = 2r + 3 is
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the least value of n for which f(r, n) = 3. 1In that case, the partitions of
2r + 3 for which b; > rb;,; are (2r+3), (2r+2) + 1, (2r+1) + 2. Now, since
thus far only 1 € 5, and »r + 2 € 5,, it follows that there are only two parti-
tions of 2r + 3 into parts taken from that set, namely

(r+2)+1+++-+1 and 1+ 1+ <+« +1,

so that we need 2r + 3 € 5, in order to make g(r, 2r+3) = 3.

Now f(r, 2r+4) = 3, since the only partitions of 2r + 4, with b; > rb;,,
are (2r+4), (2r+3) + 1, (2r+2) + 2. (Note that it is here where we are us-
ing the fact that r 2> 2.) On the other hand, the partitions of 2r + 4 into
parts taken from the set {1, r+2, 2r+ 3} are

2r+3) +1, (r+2)+(r+2), (r+2)+1+1+-c-+1, 1+1+---+1,
so that g(r, 2r+3)=4 if 2r + 4 € S, and g(r, 2r+3)=5 if 2r + 4 € S,,, which

is a contradiction.

The question arises whether Theorem 3 is true also for all values of r > 1.
We have some partial answers to this question.

Theorem 4

The nonexistence of sets S, given in Theorem 3 also applies to all r in any
of the intervals N < r < N + 1/2, where NV is any integer 2 2.

Proof of Theorem 4: This proof is identical to that for Theorem 3, except
that, in the construction of Table 1, the entries in the columns for # and the
conclusions have to be changed by replacing r in every case by [r], the grest-
est integer in r. Note that the condition that » < N + 1/2 is needed in the
determination of the partitions of 2[r] + 3 with b, > rb;,,, which are

2[r] + 3), (2[r] + 2) + 2, and (2[r] + 1) + 2,

the latter satisfying the inequality, since

2[r]+1=2N+1=2(]V+%)>2r.

Now, for values of r for which ¥ + (1/2) < »r < N + 1, we have a method for
proving the nonexistence of $, for certain intervals, but have no method which
will give a conclusion valid for all such intervals. We illustrate this method
for intervals in the range 2.50 < r < 3.00.

First we use the same method used in the construction of Table 1 to deter-
mine the elements of S, for r = 2.50. (See Table 2.)

Since a contradiction is obtained for n = 20, it follows that for » = 2.50
no set Sy can exist for which f(r, n) = g(r, n) for all positive integers #.

Next we note that Table 2 applies for all r with 2.50 < » < x/y, where x/y
is the least rational number > 2.50 for which both x and y appear as parts in
a partition counted by f(r, n) in Table 2; that is, we need to find the least
rational number x/y > 2.50 for which x + y < 20. This clearly is 13/5, since
13 + 5 is a partition of 18 and, therefore, Table 2 would not be applicable for
r 13/5 because the partition of 18 = 13 + 5 would not satisfy 13 > 5r for
r = 13/5.

Thus, Table 2 is applicable for all r with 2.50 € » < 13/5, and the nonex-
istence of the sets S, follows for all » in this interval.



EULER'S PARTITION IDENTITY—ARE THERE ANY MORE LIKE IT?

Table 2. Determination of the Elements of S, for r = 2.50

g(r, n) if gn, r) if

n flrs n) ne¢gs nes Conclusion
1 1 0 1 1€5
2 1 1 2 2 &8
3 1 1 2 3¢ 8
4 2 1 2 4 es
5 2 2 3 5¢8
6 2 2 3 6 &S
7 2 2 3 7¢&8
8 3 3 4 8 &S
9 3 3 4 9 s
10 3 3 4 10& S
11 4 3 4 11es
12 5 5 6 12 ¢ S
13 5 5 6 13¢5
14 5 5 6 14 & 8
15 6 6 7 15 &S
16 7 7 8 16 € S
17 7 7 8 17€ 8
18 8 7 8 18 € S
19 9 9 10 19¢ 5
20 9 10 11 Contradiction

We now construct, by programming on a computer, a table similar to Table 2
for r = 13/5 (not shown here), obtaining a contradiction for n = 52. Next, we
note that this table applies to all r with 13/5 < r < x/y, where x/y is the
least rational number > 13/5 for which x + y < 52. This clearly is 34/13, so
that this table is applicable for all » with 13/5 < r < 34/13. Constructing a
table similar to Table 2 for » = 34/13, we obtain a contradiction for n = 136
and find that this table is valid for all r with 34/13 < r < 89/34. Then, con-
structing the appropriate table for r = 89/34, we were unable to obtain a con-
tvadiction on the computer in the time available, that is, for = < 181.

Though we were unable to obtain a contradiction for r = 89/34 = 2.6176...,
we were able to obtain one for r = 2.62, namely for n = 90 and, using the pre-
viously described method, to determine that this table is valid for all r with
2.62 < r» < 21/8. Then, considering » 2 21/8, we were able to obtain contradic-
tions for all » < 32/11 = 2.909... for the values of n indicated in Table 3.

For values of r 2 32/11, the corresponding tables again became so long that
the time available on the computer to arrive at a contradiction was exceeded;
thus, we have no conclusions for 32/11 < r < 3.

For values of » between 1 and 2, the smallest value of r we considered was
v = 1.08, for which we obtained a contradiction for n = 54. Using the same
method as used for values of r in the interval 2.50 < » < 32/11, it was possi-
ble to prove the nonexistence of S, for all r in the short interval 1.08 <r<
25/23 = 1.0869...

To obtain results valid for larger intervals, we started with » = 1.25 and
proved the nonexistence of Sy for all r in the interval 1.25 < r < 23/12 =
1.9166..., as indicated in Table 4,
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Table 3. The Nonexistence of Sy for 2.50 < r < 89/34 = 2.6176...
and 2.62 < r» < 32/11 = 2.909...

Interval Value of n for Which Contradiction Occurs

2.50 < r < 13/5 20

13/5 < r < 34/13 52
34/13 < » < 89/34 136
89/34 < r < 55/21 No conclusion
55/21 < » < 21/8 90

21/8 < r < 8/3 38

8/3 < r<11/4 17

11/4 < r» < 14/5 21

14/5 < » < 17/6 26

17/6 < » < 20/7 30

20/7 < r < 23/8 34

23/8 < r < 26/9 48

26/9 < r < 29/10 44
29/10 < » < 32/11 48

Table 4. The Nonexistence of S, for 1.25 < r < 23/12 = 1.9166...

Interval Value of n for Which Contradiction Occurs
1.25 < »r < 9/7 18
9/7 < r < 4/3 18
4/3 < r < 7/5 14
7/5 < r < 3/2 14
3/2 < »<5/3 10
5/3<»r<7/4 18
7/4 < r < 9/5 18
9/5 < r < 11/6 21
11/6 < » < 13/7 24
13/7 < » < 15/8 28
15/8 < » < 17/9 33
17/9 < » < 19/10 36
19/10 < » < 21/11 39
21/11 < » < 23/12 42

For values of » < 1.25, as indicated above, the intervals for which a table
similar to Table 2 is valid become very small. Considering the values of r =
1.08, 1.09, ..., 1.20, separately, we obtained a contradiction for each of them.
For values of » close to 1, the time available on the computer to arrive at a
contradiction was exceeded. This is not surprising, because we know that, for
r = 1, we have the Euler identity and, therefore, no contradiction can be ob-
tained. For values of r in the interval 1 < » < 1.25, except for those listed
above and for those in the interval 23/12 < r» < 2, we have no conclusions.

It is an interesting question whether Theorem 3 can be proved by a method
valid for all nonintegral values of » > 1.
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The authors are greatly indebted to M. Reza Monajjemi for developing the
program needed to construct Tables 3 and 4, and for cheerfully spending many
hours in helping to prepare them.
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1. INTRODUCTION

In classical usage the fundamental and primordial second-order recurrences
are those of Fibonacci and Lucas, {F,} and {L,}, defined by the linear homoge-
neous recurrence relation
U, =U,_, +U,_,, n>2, (1.1)

n
with initial conditions F, =1, F, =1, and L; =1, L, = 3. They are usually
generalized by altering the recurrence relation or the initial conditions as
described by Horadam [4].

There have been many generalizations of the Fibonacci numbers (cf. Bergum &
Hoggatt [1] and Shannon [11]), but fewer published attempts to generalize the
corresponding Lucas numbers, though those of Hoggatt and Bicknell-Johnson (cf.
[4]) are notable exceptions.

We believe that the following exposition is a useful addition to the liter-
ature because, unlike other papers, which concentrate on particular properties,
we focus on the unexpected structure of the generalized recurrence relation.
This complements the existing literature because the solution of our recurrence
relation is the one used by the authors to develop various properties of these
sequences. The corresponding approach for the Fibonacci numbers has been ap-
plied by Hock and McQuiston [3]. From the simple form of the recurrence rela-
tion as revealed here, we specify some particular generalized sequences and two
special properties that will be of use to future researchers of the abritrary-
order recurrences who utilize the coefficients of the recurrence relation.

We choose here to generalize the Lucas sequence by considering the rth-
(arbitrary)-order linear recurrence relation

v =M+ 0D w>r >, (1.2)
and initial conditions vSﬂ =0if 0<n<r-1, vS?l =»r - 1 and v?ﬁ = r. The

notation is due to Williams [12] and has been used since then by several authors
in studying rth-order recurrences.

Thus, {vg)} = {L,}, and the accompanying table displays the first 16 terms
of {v®™} for r = 2, 3, 4, 5, 6.

Table 1. Generalized Lucas Numbers for n 2 0

({0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 2 1 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207
3 3 0 2 3 2 5 5 7 10 12 17 22 29 39 51 68 90
4 4 0 0 3 4 O 3 7 4 3 10 11 7 13 21 18 20
5 50 0 0 4 5 0 O 4 9 5 0 4 13 14 5 4
6 6 0 0 0 0 5 6 0 0 O 5 11 6 0 0 5 16
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For example, from the table, we have that

@) _ ) () — ) _ (s 4)
v = oo+ ol o 20 = oW = o)+ 1) =13 4+ 7.

We propose to consider some of the properties of {v{’} that arise from the in-
teresting fact that all but three of the coefficients in the recurrence rela-
tion are zero.

2. GENERAL TERMS

The auxiliary equation associated with the recurrence relation (1.2) is
x?* -x-1=20, (2.1)

which we assume has distinct roots, &j, J =1, 2, ..., ». 1In fact, vg” is (in
the terminology of Macmahon [8]) the homogeneous product sum of weight # of the
quantities o;. It is the sum of a number of symmetric functions formed from a
partition of »n as elaborated in Shannon [10]. The first three cases are

P =ZOLJ'
2 _ 2
Prl + Prz —ZOLJ' +ZO{.7:06J'
(r) _ = 3 2
v =p) + 2P, P +P, Z:aj + z:aiuj + 3 0,050,

[

()
Ul

[

(r)
D)
3

in which P, is (-1)"*? times the sum of the o; taken m at a time as in the
theory of equations. More generally,

() L
vn = Z n O('i >
IA=n 1=1

so that since P,, = 0 except for P,, and P, ,_,, which are unity, we have
™ _ ¥
v, =;1u;.’ form=1, 2, ..., ». (2.2)

Then, if we assume the result (2.2) is true for n = k - 1:

@ 4 o,®

() _
Y% vk—r+1 k-r

r r r r
= k-r+1 k-ry - k-r = k-ryr _ k
= 'Z (aj + o ) .E ay (uj + 1) } o o ‘2 o5
g=1 J=1 J=1 J=1

By the Principle of Mathematical Induction, we get
r
v = X ol (2.3)
=1

For example,
v@ = (1.61803)" + (-0.61803)",

the well-known result for the Lucas numbers.
Similarly, for instance, with 72 = -1,

3 = (1.32472)" + (-0.66236 + 0.071652)" + (-0.66236 - 0.071652)",
and

o™ = (1.22075)" + (=0.7245)"+ (=0.2481 + 1.34172)" + (=0.2481 - 1.03417)".
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3. GENERAL PROPERTIES

Among the various properties that can be investigated, we focus on two that
follow directly from (2.1) and (1.2).
For odd values of r, (2.1) has the real solution

o= (1 +a)t/”
which leads to the approximation

aFr/(r-1); (3.1)
for even values of », we get

o= (1 + a/r)

or

o = r/(r+1). (3.2)
These are the initial approximate values which, by repeated iterations, converge
to the real roots. Furthermore, we observe in (3.1) and (3.2) that as » in-
creases, 0 approaches unity, which can be confirmed readily with a few numeri-
cal examples.

For notational convenience, we assume that u, exists for n < 0. Then, for

any j € Z,»

J .
r) _ d ), (™)
o = 3 (208 (3.3)

i=o\ 7

Proof: We use induction on j. When J = 1, (3.3) reduces to the recurrence
relation (1.2). Suppose the result is true for j =2, 3, ..., Kk - 1. Then

Zk: (k e ( 1) ) i <7< - 1) &)
= 7 n-rk+1 7 Uy - rk+1, - 7 - 1) n-rk+7

( 1) (r) +kz‘_:l (k - ].)U(r)
7 n-r-r(k-1)+1 0 7 n-r-r(k-1)+i+1

"MH OM,

= (1") L Uy(ll")r‘_” U;T), as required.

L4, A DIVISIBILITY RESULT

If we refer to Table 1 again, we observe that 5 divides v<1l'g, v(lso), and v(leo),

7 divides v(“,z, v(s) and v(z, etc. More generally, this can be expressed as

p[v(“'n) for n > 1, » > 1, and prime p > 2. (4.1)

(r+ n) _

Proof: OL
=1

J

r+n

J; ((ay + 1)/%%)17 from (2.1)

r+n P o
j{:l k§o(£)a‘jp k

r+n
>, (OL;p + OL;ZP) + multiples of p.
i1
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SOME GENERALIZED LUCAS SEQUENCES

This follows from Hardy and Wright [2, p. 64] and the fact that

r+n

(k) Z oy

is an integer because n. _1 ;p Kos1, 1t remains to show that

r+n

p j;l(oc;p + u;zp).

The polynomial with zeros l/aj is
flx) = zmtn 4 grén-l -1, (4.2)

From the theory of equations, we have that

r+mn

Fr@)/flx) =Y 1/(x - x;) where x; = 1/a;
Jj=1
r+n S\-1

=j=21%(1 - Z—'J) with x; < x.
Thus in - }

f’(x) /f(x) = Z Zx;n/xm+1 = 2 Ugnr+n)/xm+1. (4.3)

j=1 m=0 m=0

Now, f'(x) = (r + m)z"* " '+ (r + n - 1)2z"* "2 and, by division,

Fr@/f@ = (e+mat -z +a® -zt +a7% -, (4.4)
Since p is odd and Zp is even, we get from (4.3) and (4.4) that if 2:r-T ;p =
-1, then szuEZP +1, and vice versa. Hence,

r+n
=3 (a; P+ 2p), as required.
Jj=1

5. CONCLUDING COMMENTS

The consideration of v() for n < 0 suggests the use of a result from Polya
and Szego [9] to express the general term on the negative side of the sequence.
Thus, for n < 0,

/7]
RO n___n G- DR) e
n = m- (r - 1k k
in which m = -»n, and [*] represents the greatest integer function.

The first few values are displayed in Table 2.

Table 2. Generalized Lucas Numbers for n < 0

n|l -9 -8 -7 -6 -5 -4 -3 -2 -1

-76 47 =29 18 -11 7 =4 3 -1
-7 5 -1 -2 4 -3 2 1 -1
-19 13 -8 7 -6 5 -1 1 -1

~wn IR
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For example, when » = 2, we get the known result of Lucas [7]:

(2) (n/2) n n -k

= E - n-1

Un x=0 1~ k( k )( 1) : (5'2)
The recurrence relation for (5.1) is (with m = -n)

(_1)mv’(ﬂr‘) = (_l)m-lv(l")

_1yn-r_(r)
m=1 + ( l) Um-r

so that these vgﬂ = (—l)mAm of Hock and McQuistan [3] who apply this sequence
to a problem on the occupation statistics of lattice spaces in relation to a
number of physical phenomena.

Other extensions can be found by developing an associated generalized Fibo-
nacci sequence {u;”}, related to {U;m} by, for instance

k-1
@ - ED ()
v, ny?n) % Ug. +oe Ug's
in which vy(n) indicates summation over all the compositions (al, Ays wees ak)

of n as in Shannon [11]. For example, when r = 2,

L, =1=f,
2 2
L,=3=-5ff +1f, =-1+4,
-4 = _3 3 3 3 _
Ly=b=-30F -30LH +17; t3fHfify=3-3+9+1,

where {f,} is the sequence of Fibonacci numbers that satisfy (1.1) with initial
conditions f; =1, f, = 2. The use of the lower-case letters for notational
convenience (f, =F,,,) is not new (cf. [6]).

Thanks are due to Lambert Wilson [13] for the development of Table 1.
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A CHARACTERIZATION OF THE SECOND-ORDER
STRONG DIVISIBILITY SEQUENCES

P. HORAK and L. SKULA
J. E. Purkyné University, Brno, Czechoslovakia

(Submitted September 1983)

The Fibonacci numbers satisfy the well-known equation for greatest common
divisors (cf. [2], [4]):
F;, Eb) = E}i,j) for all 2, j 2 1. (D
Equation (1) is also satisfied by some other second-order recurring sequences
of integers, e.g., Pell numbers or Fibonacci polynomials evaluated at a fixed
integer (cf. [1]). In [3], Clark Kimberling put a question: Which recurrent
sequences satisfy the equation (1)? In our paper, we answer this question for
a certain class of recurring sequences, namely that of the second-order linear
recurrent sequences of integers.

We shall study the sequences U = {u,:n =1, 2,...} of integers defined by

u, =1, u, =>b, u,,,=c*u,, +d-u,, fornz=1,

where b, ¢, d are arbitrary integers. The system of all such sequences will be
denoted by U. The system of all the sequences from U, having the property

(s u) = |ug, 5 for all 2, j > 1, (2)

will be denoted by D.

The main result of our paper is a complete characterization of all sequen-
ces from D. By describing D we solve, in fact, a more general problem of com-
plete characterization of all the second-order, strong-divisibility sequences,
i.e., all sequences {un} of integers defined by

u, =a, u,=>b, u =c-u +d-u,, forn=1,

n+2 n+1
(where a, b, ¢, d are arbitrary integers) and satisfying equation (2). It is
easy to prove that the second-order, strong-divisibility sequences are precise-

ly all integral multiples of sequences from D.

1. CERTAIN SYSTEMS OF SEQUENCES FROM U

Systems U,, F, Fi, G, G;, H will be systems of all sequences U = {un} from

U defined by u, = 1, u, = b, and by the recurrence relations (for n = 1):

Uyt Upyyg =b*feou,,, +deu, whereb, d, f#0, F#1,
(d, b) = (d, ) =1;
Fiuy,o =bcu,  +deuy
Fiiu,,, =b-u,,, +du,, where (d, b) = 1;
Githyyp = d= Uy
Gy*Upy, =deu,, where d=1or d=-1;

H: Upyo = C° Upyq-
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It is obvious that F; C F and G; C G. Further, we define sequences a, b, c,
d,e, f = {u,} €U by:

a:u, =1for alln=>1 b:u, = {_1 if 7 is odd

1 if »n is even

iy = { 1 ifn=1 d:u = { 1 if n =1 or n is even
n -1 ifn>1 * Un -1 if n # 1 and n is odd
1 if n =1, 5 (mod 6)
. _ { 1 if 3/ n £ _)-1 if n = 2, 4 (mod 6)
€ lUn T -2 if 31 n FUn S92 if n = 3 (mod 6)
2 if nw = 0 (mod 6)

Let us denote 4 = {c, d, e, f}. Directly from the definitions we obtain:

1.1 Proposition

1. a, b,c,d, e, fED, i.e., ACD
2. a, b,c,der

3. a, b,e, fEU,

4. a, bEF, NG,

1.2 Proposition

Let u = {u,} €G. Then u €D if and only if u € G;.

Proof: Let u € D; then (u3, uy) = 1 and consequently u € G;. Let u € Gy;
then for kK 2 0 we get uy, ; =1, Uy, = by Uy, = *1, Uy = +b. Thus, for
i, § =21,

sy 1) = 1 if 7 is odd or j is odd
LAINE Ibl if 7 is even and j is even

and therefore, u € D.

1.3 Proposition

Let u = {u,} € . Then u € D if and only if u € {a, b, c, d}.

Proof: Let u € D; then (u,, u;) = (43, u,) =1 and we get |bl =1, lel =1,
and consequently u € {a, b, ¢, d}. The rest of the proposition follows from
1.1.

1.4 Proposition

Let u = {u,} € U, such that ¢, d # 0. Then, the following statements are
equivalent:

(i) (ui, uJ) = [u(h'])l for 1 < i, J < 4,
(ii) u €U, UF,.
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Proof: ©Let (i) be true. From (u,, u;z) = 1 we get (b, d) = 1. From uyluy
we get ble, b # 0. Therefore, there is an integer f # 0, such that ¢ = bf.
Since (u3, uy) = 1, we have (d, f) =1 and thus u € U; U F,.

Let U € U; UF,. Then us = d + b%f, u, = b(d + df + b2f2),where b, f # 0,
(d, b) = (d, f) = 1. Let p be a prime, plus and plu,. Obviously p/ b, and so
d+ b%f = 0 (mod p), d+ df + b2f? = 0 (mod p). Hence b%2f = 0 (mod p) and con-
sequently plf, pld, a contradiction. Thus (43, u,) =1 = lu;|l. The remaining
cases of (i) obviously hold.

2. THE SYSTEM OF SEQUENCES F

The following two results are easily proved by mathematical induction, in
the same way as for the Fibonacci numbers (cf. [4]).

2.1 Proposition

Let u = {u,} € F. Then for any k = 2, m 2 1 it holds

Upypm = Uglpey T d = Up Uy,

2.2 Proposition

Let u = {u,} €EF and k, m > 1 be integers. If klm, then uylu,.

2.3 Proposition

Let u = {u,} € F. Then the following statements are equivalent.

(1) (up, ug) =1

(i1)  (u, u,4y) =1 for all m =1
(iii) u €D

(iv) uer,

Proof: Clearly (iii) = (i) and (i)= (iv). Let (iv) be true. Let » be the
smallest positive integer such that (u,, U,,;;) # 1. Then r 2 2 and there ex-
ists a prime p such that plus, pluy,,. But .y, = bup + di,_;, and hence pld.
Now, it is easy to prove, by induction, that u, = pr-t (mod p), for all n > 1.
Hence, 0 = u, = b¥"! (mod p) so that plb, a contradiction, and (iv) = (ii) is
proved.

Now, let (ii) be true. We can assume that < > j > 1. Let g = (u;, uj).
Then from 2.2 we get u(i,ﬂlg» It is well known that there exist integers r, s
with, say, » > 0 and s < 0, such that (¢, J) = ri< + sj. Thus, by 2.1, we get

Upi = Ugyj+ (i, ) = Y-a)iti, p+1 T =) j-1%(z, j)°
But by 2.2, glucs)j>» 9gluprs, and by (ii), (g, U(-s)j- 1) = 1, so that gla’u(i,j).

If p is a prime, plg, pld, then plu; = bu;_, + du;_,, and so p|b. Thus, (u,,
uy) > 1, a contradiction. Hence, (g, d) =1 so that gluc, ; and (iii) is true.

3. THE SYSTEM OF SEQUENCES U,

If u = {u,} € U;, then directly from the definition we obtain
u; = d+ b%f, u, = b(d + df + b*f?)
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and
ug = d* + 2b%df + b2df? + bf3, 3)
where b, d, f#0, f# 1, and (d, b) = (d, f) = 1.

3.1 Proposition

Let u = {u,} € U;. Then the following statements are equivalent.

(1) uylug
(ii1) uy # 0 and f = 1 (mod lujyl)

Proof:

I: Let uzlug and let 0 = uy = d + b?f. Then ug = bd(d + b*f?) = 0, and
consequently, f = 1, a contradiction. Thus, from (i), it follows that ug # O.
II: Let us # 0. Since ug = bd(d + b?*f?) (mod lugl) and (bd, us) =1, we
have ujlug iff d + b2f%2 = 0 (mod |uzl). But d + b2f? = b2f(-1 + f) (mod |ugl),
and (f, uz) = (b, uz) =1, so that d + b%f% = 0 (mod |uszl) iff F =1 (mod lusl).

3.2 Proposition

Let u = {u,} € U,. Then the following statements are equivalent.

(1) Uy lUg
(ii) d+ df + b%f2 # 0 and £ = 1 (mod |d + df + b2F21)

Proof:
I: Let uylug and d + df + b?f? = 0. Then
u, =0 and ug = bdf(2d + b*fHu, = 0.

But both 2d + b?f%2 = 0 and u; = 0 lead immediately to a contradiction; thus,
from (i) it follows that d + df + b2f* # 0.

II: Let d + df + b?f% # 0. Clearly, ug = bdf(2d + b2f?)u; (mod |u,}) and
(df, d + df + b?f*) =1, and, from 1.4, we get (u;, u,) = 1. Hence, u,lu, iff
2d + b2f2 = 0 (mod |d + df + b%f%l). Trivially,

b2f2 = -d - df (mod Id + df + b2f2)
and thus,
2d + b2f% = 0 (mod |d + df + b2f?|) iff £ = 1 (mod |d + df + b%f?|).

3.3 Lemma

Let b,d, f # 0, f # 1 be integers such that (d, b)=(d, NH =1, d + b2f+#0,
and d + df + b%f% # 0.

Then £ = 1 (mod I|d + b2fl) and f =1 (mod |d + df + b2f*|) if and only if
one of the following cases occurs:

b=z, f=-1, d=-1 b=z, f=-2, d=1,5
b=tl, f=-3, d=5 b=1+%1, f=-5 d=17
b = =1, f+d=1 f=#b%, d=731+b*7 b*
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Proof: Sufficiency is easy to verify in all of the cases, SO WwWe prove
necessity. Let us denote x = d + b2f, y =d+ df + b>f*. Clearly, (zx, y) =1,
x =y (mod |f]), and

y =x+ fo - bf (%)
oyl (f - D. (3
o) Suppose f > 1.
Then x = y (mod f), and from (5) we get lxl, Iyl < f.

cay) If 2, y >0 or x, y <0, then x = y, and hence b*> = d + b*f? So bld
and we get b = *1, f+ d = 1.

a,) <0, y >0 is impossible because of (4).

ag) If x>0, y <0, then y = x - f, where 0 < x < f.
From (4) we get = = b?-1 and from (5) we get a(f - 2)If -1. If x < (f-1)/2,
then f — x > (f-1)/2, and hence f - x = f - 1. But then % =1=5* -1, a
contradiction. If x > (f-1)/2, then x = f- 1. Thus, we get f = b?, d = -1 +
b? - b*.

R) Suppose f < 0.

Denote ¢ = -=f. Then & = y (mod t), and from (5) we get lzl, lyl < ¢ + 1.

;) If lxl =t + 1or |yl =t+ 1, then there are four possibilities:

Bi) x=f -1,y =1z%1=f%-p2f 1.
From 1 = f2 - p2f -1, we get b = #1, f=-1, d = -1, and -1 = f2 - p2f - 1 is
impossible, since then we get f = b2 > 0, a contradiction.

Bi,) x=~(F-1), y=1%1l=-f2-Dp2f+ 1.
From 1 = -f% - b2Ff + 1, we get f=-b%, d =1+ b? + b*, and from -1 = -f2 -
b2°f + 1, we get b = t1, f = -2, d = 5.

B15) x=%1, y=Ff-1=1%1 % f- b’f both lead to a contradiction.

Br,) =%, y=-(f~-1) =zl =z f- b*f.
From -f + 1 =1 + f - b%f, we get b? = 2, a contradiction, and from -f + 1 =
-1 - f - b°f, we get b = %1, f=-2, d= 1.

82) If lxl = ¢ or |yl = ¢ and lz|, |yl # ¢ + 1, then ¢|¢t + 1, and hence
f=-1. We gethb =21, f=-~1, d= 2, which is a special case of b = 21, f +
d=1.

I+

I+

B,) If lxzl, lyl < ¢, then we have the following possibilities:

Bs1) % y >0 or x, y<0. Then x =y, and in the same way as in o,), we
get b =21, f+d=1.

B3s) <0, y>0 is impossible because, then, x = y + f, and we get y =
b? - f -1, so that = b2 - 1 » 0, a contradiction.

Bys) >0, y<0. Theny=x-t=x+Ff, and hence x =h* + 1. From
(5), we get (¢t - x2)|It + 1, where 0 < x < tand 0 < ¢t - & < ¢.

If < (¢ +1)/2, then ¢ -a > (¢t - 1)/2. From t - x = t/2, we get a contra-
diction, and hence ¢ - x = (¢t + 1)/2, x = (t - 1)/2. Now, from (¢t - 1)/2 -
(t+ 1)/21t+ 1, we get (¢ - 1)/212, and consequently b = *1, f =-5, d = 7. If
x 2 (¢t + 1)/2, then, similarly as above, we get b = t1,f =-3, d = 5.
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3.4 Proposition

Let u = {u,} € U,. Then the following statements are equivalent.
(1) usluy,

(i1) g # 0 and d* + 3b%df* + b*f* = 0 (mod |ugl)
Proof:

I: Let usluyo and 0 = ug = d> + 2b2df + b2df? + b*f%. Then u,, = d(d* +
3b%df? + b*f"u, = 0. If u, =0, then 0 = d + df + b2f% = d(1 + f) + b*f? and
from (3) we get us(l + )2 = -b*f% # 0, a contradiction. Thus, we have d? +
3b2df? + b*f* = 0. But then d*> = -3b2df% - b"f* and from 0 = uy we get b2f? =
-2d, which is a contradiction, since (d, b) = (d, f) = 1.

II: Let us # 0. Then

Uy, = d(d* + 3b%df* + b*fu, (mod lugl).
It is easy to prove that (u,, u#s) =1 and (d, ug)=1. Thus, uglu,, if and only
if d® + 3b%df% + b*f* = 0 (mod |usl).

3.5 Proposition

Let u = {u,} € U;. Then the following statements are equivalent.
(1) uzlug, uylug, uslug,
(ii) u€eD
(iii) u e {a, b, e, f}
Proof: Clearly (iii) = (ii) and (ii) = (i). Let (i) be true. According

to 3.1 and 3.2, just the cased described in 3.3 can occur for the integers b,

d, f.
a) If b=1, f+d=1, then u = a;
If b =-1, f+d=1, then u = b;
Ifb=1, f=-1, d=-1, then u = e;
If b=-1, f=-1, d=-1, thenu = f.
B) If f=0b2%, d=-1+ b% - b*, then

us = -b® + b* - 2% + 1

and
d? + 3b2df? + p*f* = b2 - 3p10 + 4p® - 5P + 3p% - 2b% + 1
(=b® + b - 2b% + 1) (-b® + 2b* + 1) + b°.

Obviously, (-b® + b* - 2b%2 + 1, b®) =1 for every integer b. So, from 3.4, we
get -b® + p* - 2b2+ 1= %1, and thus 1 = b? = f, a contradiction.

v) If f=-b%, d=1+ b%+ b*, then
us = b® + b% + 2p% + 1

and
d® + 3b%df% + bUF*=b2% + 3b*° + 4b® + 5B% + 3b* + 2b% + 1
= (b® + b* + 2b% + 1) (B® + 2b") + b* + 2b% + 1.
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But b® + b* + 2b% + 1 > b* + 2b%2 + 1 > 0 for every nonzero integer b, which
contradicts 3.4.

Y) It is easy to prove by direct calculation that the remaining cases of
Lemma 3.3 also contradict 3.4.

4. MAIN THEOREM

4.1 Theorem
It holds that D = AU F, UG,.
I: Letu€&€D. If ¢, d# 0 then,byl.4, 3.5, and 1.1.4, u € F, or u € 4;

if ¢ =0, thenu € ¢ and, by 1.2, u € G;; if d = 0, then u € H and, by 1.3 and
1.1.4, UEF oru€id. Hence, Uu€ 4 UF, UGQG,.

II: Let u€ A UF, UG,. Then, by 1.1.1, 2.3, and 1.2, we get u € D,

4.2 Corollary

All the second-order, strong-divisibility sequences are precisely all inte-
gral multiples of sequences from D, i.e., of the following sequences:

c={1, -1, -1, -1, ...}

d={1,1, -1, 1, -1, ...}

e={1,1,-2,1, 1, -2, ...}

f={1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, ...}

u, =1, wu, =b, Uyyp = b Uy +deu, where (d, b) =1
u, =1, u, =b, U,tp = d* U, where d = *1.

4.3 Remark

It is easy to prove that the systems A, F,, G, satisfy
ANF, =¢, ANG =¢, F, NG ={a, b, g, h},
where ¢ = {1, 0, 1, 0, ...}, and # = {1, 0, -1, 0, 1, O, -1, O, ...}.
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In [1], Andrews proves that the number of consecutive triples of quadratic
residues, n(p), is equal to p/8 + Ep, where |Ep| < (1/4)Vp + 2. In addition in
[1], it is proved® that for p = 3 (mod 4), IEp] < 2.

In this note, m(p) will denote the number of consecutive triples of quad-
ratic nonresidues. In addition to topics related to those presented in [2],
n(p) and m(p) will be determined for all odd primes. Also, the number of tri-
ples a, a+ 1, a + 2 will be determined for which

B e () n m ()

where €, n, and vV each take one of the values *1. Finally, an elementary proof
of Gauss's "Last Entry" will be presented.

In [2], the decomposition of the integers 1, 2, 3, ..., p — 1 into cells is
developed as follows: these integers are partitioned into an array according
to whether the consecutive integers are (or are not) quadratic residues. For
example, for p = 11, the quadratic residues are 1,3, 4,5, 9; hence, the array
is

1 2 3, 4, 5 6, 7, 8 9 10.

The following are also defined in [2]: a singleton is an integer in a sin-
gleton cell, e.g., 2; a left (right) end point is the first (last) integer in
a nonsingleton cell, e.g., 3 (5); and an <nterior point is an integer, not an
end point, in a nonsingleton cell, e.g., 4.

Furthermore, as in [2], the following notation will be used: s, e, and 7
will denote the numbers of singletons, left end points (or right end points),
and interior points, respectively. Values for s, e, and 7 are given in [2],
and these values will be cited later. Quadratic residue and quadratic nonresi-
due will be denoted by gr and gnr, respectively. The subscript r (n) will be
used with &, e, and © to denote the appropriate number of quadratic residues
(nonresidues). For example, for p = 11, s, = 2 and ¢, = 1.

Lemma 1
For p an odd prime, n(p) = %, and m(p) = %,, so that n(p) + m(p) = <.

Proof: The middle integer, &, of either type of triple certainly cannot
be a singleton or an end point; hence, & must be an interior point. Now, if
Ays Ay ..., Qp are the consecutive interior points of some cell, then there
are precisely k consecutive triples: a, ay, @,3 Ay, Ay Qg3 +--3 Agx_15 Axs D
where a and b are the left and right end points, respectively, of this cell.

*This case was solved by E. Jacobsthal, "Anwendungen einer Formel aus der
Theorie der Quadratischen Reste,' Dissertation (Berlin, 1906), pp. 26-32.
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Hence, there is a one-to-one correspondence between the number of triples (of
either type) and the number of interior points (of the same type), and the con-
clusion follows.

The next lemma is proven in [2].

Lemma 2

The results in the following table hold.

(p =) 8k + 1 8k + 3 8k + 5 8k + 7
. p -1 P+ 5 p+3 p+1
4 4 4 4
o p+3 p-3 p-1 p+1
4 4 4 4
: p -9 p -3 p-5 p -7
4 4 4 4

Theorem 1

Let p be a prime = 3 (mod 4).

m(p) =& 3 3,

m(p) = b g 7.

(a) If p = 3 (mod 8), then 7, = i, n(p)

(b) If p = 7 (mod 8), then 7,

i, = n(p)

Proof: It is shown in [2] that the array of integers 1, 2, ..., p -1 is
symmetric, in that a cell of gr corresponds to a cell of gnr of equal length.
(This follows from the fact that g is a gr if and only if p - g is a gnr.) So
ip = in and, thus, from Lemma 1, n(p) = m(p) = Z/2. The conclusion follows by
applying Lemma 2.

The fact that for p = 3 (mod 4), both 7, and %, are determined in Theorem 1
gives justification in also determining s,, s,, €,, and e,. Hence, this shall
be done at this point. At the appropriate juncture, these entities will be de-
termined for primes = 1 (mod 4).

Theorem 2

Let p be a prime = 3 (mod 4).

(a) If p = 3 (mod 8), then s, = 5, = P g > and e, = e, = p g 3;
(b) If p = 7 (mod 8), then s, = 5, = 4 ; L and e, = e, = 4 ; L

Proof: As in Theorem 1, use symmetry and apply Lemma 2.

Note: The case p = 1 (mod 4) does not follow so easily. The symmetry of
the array used in Theorem 1 does not apply; a cell of qr corresponds to another
cell of equal length of gqr. (This follows from the fact that a is a gr if and
only if p - a is a gr.)
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Next, as in [1], S(1) will denote the following sum:

P (e ) )
n§%<n n + lp(n + 2 >.

Since Lemma 1 relates to the sum of %, and Z,, in order to solve for <, and
i1y, it is sufficient to discover 7, - Z,. Hence, this shall be our goal.

The proof of the next lemma appears in [1]. [The definition and value of
S(&) will have no bearing on our results; the fact that S(2)/2, an integer,
exists is sufficient.]

Lemma 3

For p a prime = 1 (mod 4),

R + (52 -

It is well known that p is uniquely expressed as the sum of squares of two
integers (other than with a change in sign, or an interchange of the two inte-
gers). Furthermore, the two integers have opposite parity. Ultimately, we
shall show that S(l), whose value we seek, is such that S(1)/2 is (+) the odd
integer which appears in the expression for p in Lemma 3.

The next lemma lists further results from [2] which will be used in deter-
mining the value of S(1).

Lemma 4
For p a prime = 1 (mod 4), the following are identities:

(1) e, + 8, = P Z L and e, + s, = P Z 3. (These follow from an examination of

the number of gr and gnr cells in the array.)

(2) 2, = 8, - 2 and 72, = S,,. (These follow from an examination of the rela-
tionship between a gnr singleton and its multiplicative inverse.)

Next, a further investigation of S(1).
Lemma 5
For p a prime = 1 (mod 4),

4(s, — 8, - 2, 1if p =
S(1) =

4(s, - 8,) - 6, 1if p

1 (mod 8),

5 (mod 8).

Proof: First, an examination of S(l) shows that a term in the summation
will be positive when »n + 1 is either a gr singleton, a gnr left or right end
point, or a gr interior point. Similarly, the term will be negative when n + 1
is either a gnr singleton, a gqr left or right end point, or a gnr interior
point.

Now, define 4 and B as follows:

A =5,+ 2e, + iy

s, t 2(p Z L sn) + (8, — 2), wusing Lemma 4;
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B=g, + 2, + i,
+
=3, + 2(2—2~§ - sr> + s,, using Lemma 4.

Using the above determination as to when a term is positive or negative,
S(1) is almost equal to A - B. 1In the case p = 5 (mod 8), we must subtract 2
from 4 because 1 and p - 1 are singletons counted in s, which do not appear in
the sum (a result of the fact that landp - 1 are qr and 2 and p - 2 are gnr).
Similarly, in case p = 1 (mod 8), we must subtract 2 from B because 1 and p - 1
are quadratic residue left and right end points, respectively, which do not
appear in the sum (a result of the fact that 1 and p - 1 are gr, and, in addi-
tion, 2 and p - 2 are gr). Finally, incorporating these changes with the ap-
propriate *2 to 4 ~ B = 4(s, - 8,) - 4, the conclusion follows.

Theorem 3

Let p be a prime = 1 (mod 4) and p = a® + b?, where a is positive and odd;
then,

a+l
P-15 +é§(—1) : a’ if p =1 (mod 8),

1, = n(p) = a-1
p"7+§(’1)2 2 ifp =5 (mod 8),

a-1
P=-3% é(_l) ’ a, if p =21 (mod 8),

i, = m(p) = atl
p'3+§('1)2 . ifp=z5 (mod 8).

Proof: The case p = 1 (mod 8) will be examined; the case p = 5 (mod 8)
follows similarly. As can be seen from Lemma 5, S(1)/2 is odd, and by using
Lemma 3, the uniqueness of the odd integer in the sum of squares, and Lemma 5,

4(s, - 8,) = 2
2

= *q.

This, along with Lemma 4, implies that

i.o- 4 -*a-3
r n 2
The symmetry of the array guarantees that both <, and %, are even; hence, #*a -
3 must be divisible by 4. Since a is odd, a = 1 (mod 4) or a = 3 (mod 4). If
a =1 (mod 4), then we must have -a - 3; if a = 3 (mod 4), then we must have
a - 3. The factor (-1)(@+1)/2 yields the appropriate sign. Now, from the table
in Lemma 2, Z, + Z,=(p - 9)/4. By solving the system of linear equations, we
have the conclusion.

For example, let p = 13; then, since 13 = 32 4+ 22, a = 3. Furthermore,
13 = 5 (mod 13); hence, from Theorem 3, n(l3) = <, = 0, and m(l3) = i, = 2.
Specifically, the two gnr triples occur in the middle cell in the decomposition
for p = 13,

1 2 3, 4 5, 6, 7, 8 9, 10 11 12.
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Finally, having found ¢, and %,, we determine s,, s,, e,, and e,.

Theorem 4

Let p be a prime
then,

=1 (mod 4) and p = a

at+l
P+1+ 2(-1) 2 ¢ .
3 ,» 1if p
SI‘= az-l
p+ 9+ 2(-1) a .
8 ,» 1ifp
g%i
p -3+ 2(-1) a .
3 » 1if p
o T et
p -3+ 2(-1) a’ if p
8
aT—l_
p+5+2(-1)2 a .
) » 1if p
ér = atl
p -3+ 2(1)2 a i p
8
atl
_ 2
p+ 1+ 2(-1) a s p
8
n T ot
p+ 1+ g(—l) a’ if p =

= 1 (mod

m
wv

(mod

i
—

(mod

1t
w

(mod

i
—

(mod

i
w

(mod

= 1 (mod

1
w

(mod

Proof: Use Lemma 4 and Theorem 3.

Theorem 5

+ b?, where g is odd and positive;

8),

8),

Let each of €, n, and v take one of the values #* 1, and let T denote the

number of triples, a, a + 1, a + 2, where a

(7)o (3

Then

<0 ma (£52)-

=1, 2, ..., p - 3, for which

Proof: As donme with pairs on page 71 of [3] (here, the sums being from 1

top - 3),

7= -é—Z,:(l + e(%))(l + n(—o‘——;;-l))(l + \)(_6_1;-_2))]
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Next, expand T into eight sums and use the facts that

T(E) -0 ama T (FEEEED) 2 for o0 - 1

a=1 p a=1 p p
then, apply Lemma 5 to substitute for S(1).

We now turn our attention to "The Last Entry," see [4], which refers to the
last entry in Gauss's mathematical diary. There, he states:

Theorem (Gauss)

Let p be a prime = 1 (mod 4); then, the number of solutions to
z? + y* + z*y? = 1 (mod p) is p + 1 - 2a,

where p = a® + b?, and a is odd.

Note: (1) the sign of a is to be chosen '"appropriately," and
(2) there are four points at infinity included in the solution set.

Proof: If either « or y is = 0 (mod p), then the other is = *1 (mod p). In
the following, we shall assume that neither x nor y is = 0 (mod p). Now,

(x, y) is a solution <=

22 4+ y? + 2%y® = 1 (mod p) <>
(x? + Dy? =1 - % (mod p) <

z® + 1 and 1 - z? are both qr or gnr <=

2?2 + 1 and 2? - 1 are both gr or gnr [since p = 1 (mod 4)] <>

2 2

x? - 1, 2%, x> + 1 is such that x? is either a qr singleton or a gr interior
point [with the exception that for p=5 (mod 8) and x = *1 (mod p); these val-
ues are qr singletons (#2 are gnr) which have been taken into account]. Hence,
the number of solutions is

4(s, + 2,) + 8 for p =1 (mod 8),
4(sp, =2+ 72,) +8 for p =5 (mod 8), .

where the "4 times" is for (#x, *y), and the 8 is for the 4 points at infinity
and the 4 solutions (0, *1), (1, 0). Simplification yields the solution.

|
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1. INTRODUCTION

In [3], the first author obtained an expression for the number of equiva-
lence classes induced on the set of n x n Latin squares under row and column
permutations. The first purpose of this paper is to point out that the results
of [3] do not hold for all n, but rather that they hold only if #n is a prime.”*
The second purpose of this paper is, in the case of prime #n, to extend the re-
sults of [3] to three-dimensional and finally to n-dimensional Latin hypercubes.
This is done in Sections 3 and 4.

2. LATIN SQUARES

A Latin square of order »n is an »n X n array with the property that each row
and each column contains a permutation of the integers 1, 2, ..., n. In [3],
two Latin squares were said to be equivalent if one could be obtained from the
other by a permutation of the rows and another possibly different permutation
of the columns, while a Latin square was said to be stationary if it remained
invariant under some nontrivial row and column permutations. Let G be the
group of all permutations of rows and columns so that G is isomorphic to S, x S,
where S, is the symmetric group on n letters. A Latin rectangle is anm x n
array (m < n) in which each row contains a permutation of 1, 2, ..., »n and no
integer occurs more than once in any column. Denote the number of m x »n Latin
rectangles by L(m, 'n).

*We now correct two errors that occur in [3]. In the proof of Lemma 1.2 of
[3] it is assumed that if J divides » then the expression L(kd+ 1, »n)/L(kd, n)
is always an integer for k =0, 1, ..., n/d - 1. That this is not always the
case is easily seen in the case when n = 4. Let d = 2 and kK = 1, and consider
(3, 4)/n(2, 4). 1t is easily checked (see,e.g., [2]) that L(3, 4) = 41314,
while 1,(2, 4) = 4!9, so that [(3, 4)/L(2, 4) = 8/3. Lemma 1.2 of [3] is cor-
rected in our Lemma 1.2.

In Theorem 2 of [3], it is indicated that, if » is prime, then there are
(n - 2)! classes of stationary Latin squares each of which contains (n - 1)! x
(n - 2)! elements. While the proof of the theorem is correct, the statement
contains a typographical error and should read "For » prime, there are (n - 2)!
equivalence classes of stationary Latin squares, each of which contains n! x
(n - 1)! elements."”
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It is now easy to prove
Lemma 1.2

Let II = (II,, II.) be a permutation of G such that both II,, and II, consist of
either p l-cycles or 1 p-cycle, where p 1is a prime. Then there are either
L(p, p) or L(l, p) Latin squares invariant under II.

Proof: Clearly, if II,, and I, both consist of p l-cycles, then all Latin
squares of order p are invariant while in the remaining case the first row can
be chosen in p! = L(l, p) ways. Once the first row is completed, the remain-
ing rows are uniquely determined by II,.

We now prove
Theorem 1

If p is a prime, then permutations of rows and columns induce

L(p, p) + (p - 1)!
(p!)? P

equivalence classes in the p*h-order Latin squares.

Proof: Burnside's lemma gives the number of classes as
/
/
(1/]e) 2o
nee

where P(II) is the number of squares invariant under II, from which the theorem
follows.

It may be noted that, if %p denotes the number of reduced Latin squares of
order p, then L(p, p) =p!(p - 1)!%p so that the number of equivalence classes
thus reduces to (&p + (p - 1)!)/p. Moreover, the values of {£p are known if
p S9 (see [1]).

3. LATIN CUBES

In this section we extend the results of [3] to Latin cubes of prime order.
A Latin cube C of order p is a p X p X p array with the property that each of
the p? elements c¢;j; is one of the numbers 1, 2, ..., p and {c )} ranges over
all of the numbers 1, 2, ..., p as one index varies from 1 to p while the
other two indices remained fixed. Two Latin cubes of order p are equivalent
if one can be obtained from the other by a permutation II = (II,, II,, IIy), where
NIy is a permutation of the rows, Il is a permutation of the columns, and Il is
a permutation of the levels of C. Let G denote the group of all permutations
so that G is isomorphic to S;. We first prove

Lemma 3.1
Given three partitions of a prime p, each into at most p - 1 parts and not
all into a single part, it is possible to select one part, say s;, from each

partition so that the least common multiple of two of the s;'s is less than
lem(s,s 855 83)-
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Proof: Number the partitions so that the first has more than one part and
select as s; some part other than 1 from the first partition. Since p is prime,
from the second partition we may select as s, some part such that (s,, s1) =1.
Similarly, select s3 from the third partition so that (s;, s;) = 1 and, hence,
lem(s,, s3) < lem(sy, Sy, S3).

Corresponding to Lemma 1 of [3], we have
Lemma 3.2

Let II = (II,, I, My) € G. A Latin cube of order p a prime is nontrivially
invariant under Il only if each component of Il is either a p-cycle or the iden-

tity and at least two of the components are p-cycles.

Proof: The permutation Il induces three partitions of p and if s, is a part
from the 7 partition for ¢ = 1, 2, 3, we may assume that

lcm(sl, sz) < lcm(sl, Sy 83).

If m= (I, I,, I3, let (L;;2;,...%45,) be the corresponding cycle of the per-—
mutation II;. Tracing the effect of the cycles beginning with position (£33,
251, 231) we get, after applying the permutation I d=lem(s,, s,) times that

(Ry1s Rp1s R39) 7 (Rqgs Rons 230) > oo = (s £y05 L34)s

where 235 # %3, since lem(s;, S,, S;) > lem(s;, s,). For invariance, the ele-
ments in these positions must be equal, a contradiction of the Latin property.
Hence all of the s; must be 1 or p. If only one component contained a p cycle
while the other two contained the identity, clearly the cube cannot be invari-
ant without contradicting the Latin property.

Let L(p,p, p) denote the number of Latin cubes of order p a prime. Clear-
ly, if 1T is the didentity, then L(p,p, p) cubes are invariant under II, while
there are 3[(p-—1)!]2 permutations II = (II,, ., 1I,) with the property that one
of the components is the identity, while the other two consist of p-cycles.
Moreover, each such permutation leaves L(l, p, p) = L(p, p) cubes invariant.
In order to count the number of cubes invariant under II, where II,, II,, and I
all consist of p-cycles, we need the following definitions and lemmas.

Definition 3.1

A transversal of a Latin square of order p is a set of p cells, one in each
row and one in each column such that no two of the cells contain the same sym-
bol.

Definition 3.2

A Latin square of order p is in diagonal transversal form if it consists
of p disjoint transversals, one of which is the main diagonal and the remaining
transversals are parallel to it, i.e., with addition mod p, cells (%, J) and
(z+1, g+ 1) are always in the same transversal.

Let dp denote the number of Latin squares of order p in diagonal transver-—
sal form. We can now prove
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Lemma 3.3

A Latin cube of order p a prime is invariant under a permutation II = (II,,
e, Ty) where I, II,, and II; are p-cycles only if level one consists of p dis-
joint transversals.

Proof: Let I, = (ryry...7p) and I, = (ci¢,...¢p). Consider the elements
in the p positions (r;,c;, *) to be some permutations of 1, 2, ..., p. Repeat-—
ed applications of Il carries these positions into the positions (r,, ¢,, *),
(r3, ¢35, *)5 ... . Since Il is a p-cycle, each element occupies the position
in level one in exactly one of the p sets of positions, and thus the elements
in positions (r;, e, 1), (r,, ¢,, 1), ..., (rp, ¢p, 1) form a transversal.
Similarly, successive applications of Il to the p positions (r,, c¢,, *) fixes
(r3s Chs *)s veuy (7q, Cps *) so that (r,, c¢;, 1), ..., (ry, ¢p, 1) is a sec-
ond transversal in the first level. It thus follows that level one consists
of p disjoint transversals.

Lemma 3.4

For p a prime there are dp Latin cubes of order p invariant under a permu-
tation II = (I, H,, M) where N,, I,, and Il are p-cycles.

Proof: Suppose M, = (1Z,...%2p), I, = (1j,...Jp), and Ty = (lk,...kp). By

the previous lemma, a cube will be invariant under II only if level one consists
of the disjoint transversals

Tl (1’ l), (iz’ jz)’ e 00y (ip, jp)’

T, (1, 32)s (225 da)s +ovs (Zps 1),
. . (3.1)

Tp (1: jp): (izﬁ l): ey (ip’ jp-l)‘

Rearrange the rows and columns by using the permutations

12, oot dp Lz oo dy)
(1% p) and (7 %0 b

so that level one now consists of the transversals

Tl (l, 1), (2: 2): e ey (P, p),
T, (L, 2), (2, 3), ..y (ps 1),

Tp (1: p): (2’ 1)9 LI ] (p, p - 1)-
Hence, level one is in diagonal transversal form so that the number of cubes
invariant under II is less than or equal to djp.

Similarly, if we consider a Latin square of order p in diagonal transversal
form and apply the permutations

G2 k) e (7007
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we obtain a square with p disjoint transversals as in (3.1). If we use this
square as level one of a cube and allow II= (I, II;,, Iy) to fix the remaining
levels we will have constructed a cube invariant under II so that dp is no lar-
ger than the number of cubes invariant under II.

It may be of interest to note that for p = 2, 3, and 5,(ip= (p - 2)p!. For
p prime, one can construct a square in diagonal transversal form by choosing
the first row in one of p! ways and then rotating the row one position to the
left p - 1 times to obtain the remaining rows. By making the p - 1 rotations
each two positions to the left, one obtains a second diagonal transversal square
with a given first row. Similarly, for left rotations of any fixed size up to
and including p - 2 positions, a new diagonal transversal square is obtained
so that dp 2 (p - 2)p!. If p =7, the following square

1234567

2375614

7546123

4162375

3651742

6723451

5417236
is not obtained by a rotation of the first row so that d, > 5 ¢ 7!. Moreover,
in general, if p > 7, we have dp > (p - 2)p!. It would be of interest to have

an exact formula for dp for all p.
We now apply Burnside's lemma to prove
Theorem 3.1

Permutations of rows, columns, and levels induce

. =(—p%F[L(p, P, p) + 3((p - DND2L(p, p) + ((p - 1)1)%dp]

N
equivalence classes in the set of Latin cubes of order p a prime.

If Cp is the number of reduced Latin cubes of order p, then
L(p, ps p) =pl(p - DI(p - Dlcy,
so that N, may be written in the form

Np =-§;[pcp + 3p!, + dpl.

In [4] it was shown that ¢, = ¢; = 1 and c¢5 = 40,246. Therefore, it is easily
checked that NV, = N, = 1, while Ny = 1774.

L, HYPERCUBES

In this section we extend our results concerning squares and cubes of prime
order to #n-dimensional hypercubes of prime order. A Latin hypercube 4 of

dimension #n and order p is a p x p x ++» x p array with the property that each
of the p7” elements Ail s iy is one of the numbers 1, 2, ..., p and {ail...iJ
ranges over all of the numbers 1, 2, ..., p as one index varies from 1 to p,

while the remaining indices are fixed. Let L(n; p) be the number of n-dimen-
sional Latin hypercubes of order p. We may generalize the proof of Lemma 3.1
to obtain
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Lemma 4.1

Given »n partitions of a prime p, each into at most p - 1 parts and not all
into a single part, it is possible to select one part s; from each partition
so that the least common multiple of n- 1 of the s;'s is less than lem(s,, s,,

o5 Sp).

Let G be the group that permutes n-dimensional hypercubes by permuting each
component so that G is isomorphic to S;. Along the same lines as Lemma 3.2, we
may prove

Lemma 4.2

Let I = (II;, ..., II;) €G. A Latin hypercube of order p a prime is non-
trivially invariant under Il only if each II; is a p-cycle or the identity and
at least two of the II; are p-cycles.

Definition 4.1

A hypertransversal of an n-dimensional Latin hypercube of order p is a col-
lection of p cells (if, e iS), k=1, ..., p, such that the corresponding p
elements are distinct and among the p #n-tuples, the set of p elements in each
of the »n coordinates is a permutation of 1, 2, ..., p.

By extending the argument used in the proof of Lemma 3.3 to n dimensions,
we may prove

Lemma 4.3

An n-dimensional Latin hypercube of order p a prime is invariant under a
permutation II = (I, ..., I,), where I, ..., II,, are all p-cycles only if the
hypercube possesses a subhypercube of dimension n - 1 that is compqsed of p”'z

disjoint hypertransversals.

Definition 4.2

An n-dimensional Latin hypercube of order p is in parallel hypertransversal
form if it consists of p”'l disjoint hypertransversals

(Ly Zys vnes Zu)s (2, 2+ 1, 0iesint ), oo (P i2+p-1,...,in+p—1),

where (Z,, ..., %,) ranges over all p"‘l (n - 1)-tuples and the additions are
mod p.

Let d(n; p) denote the number of n-dimensional Latin hypercubes in paral-
lel hypertransversal form. Analogous to Lemma 3.4, we can prove

Lemma 4.4

For p a prime there are d(n- 1; p) Latin n-dimensional hypercubes of order
p invariant under a permutation Il = (Hl, Cees Hn), where each Hi is a p-cycle.

Theorem 4.1

Permutations of each coordinate induce
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n-1
N, = (p{)” liL(n; P+ 3 (Z)((p - DORLR; p) + ((p - DDA - 1 ;J

k=2

equivalence classes in the set of n-dimensional Latin hypercubes of order p a
prime.

Proof: Clearly, L(n; p) hypercubes are invariant under the identity and
there are

(%)@ - ok

permutations I = (M, ..., I,), where n - k of the II; are the identity. More-
over, each of these fixes L(k; p) k-dimensional hypercubes of order p. Apply-
ing Lemma 4.4 and Burnside's lemma yields the result.
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A COROLLARY TO ITERATED EXPONENTIATION

R. M. STERNHEIMER
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(Submitted October 1983)

In connection with three previous papers on t*-. conve" gence of iterated ex-
ponentiation by Creutz and Sternheimer [1], [2], {3], and with some earlier work
[4]1, [5], it occurred to me that the problem of thz proof of Fermat's Last Theo-
rem might be intimately connected with the properties of the function F(x, y) =
xY - y%, and in particular with the condition that

Fx, y) =0, (1)

when x and y are restricted to be positive integers [6]. It can be shown that
aside from the trivial solution x =y, (1) is satisfied only for x = 2, y = 4,
in which case

F(x, y) = 2% - 4% = 0. (2)

In order to prove this property of F(x, y), we consider Figure 1 of [1]. This
figure gives the function f(x) defined by the condition

xf = f. 3)
In Figure 1 of [1], we consider the continuation of the dashed part of the
curve to the right of f(x)=¢ up to the region of f(x) = 4. It is easily seen

that the corresponding x is V2, since (\/-)l+ =22 =4 satlsfies (3).
We also have f(x) = 2 for x = V2, as shown by the left-hand part of Figure
1. If we denote the two values of f(v2) by f, and f,, we have

xf1=j:" xfz=f, (4)
where x = V2. We can rewrite (4) as follows:

Filf e e c o = V2. (5)
From (5), we obtain (by raising to the power flfz):

Fio gt (6)

i.e., 2% = 42,

Thus the two values of f(x) for a given x, namely f, and f,, are the solu-
tions of the equation f 2 ff' (6). We can now set f; =, f, =y in the no-
tation of (1) (where x is not to be confused with the auxiliary x of Figure 1
of [1]). Now, from Figure 1, it is obvious that one of the f's, say f;, must
be less than e, while the other f, say f,, must be larger than e. It is also
clear that, 81nce the only integer smaller than eand larger than 1 is 2, the
equaftion fl f;1 can be satisfied only for f; = 2, f, = 4, if f, and f, are
restricted to be integers.

This manuscript was authored under Contract No. DE-AC02-76CH00016 with the
U.S. Department of Energy. Accordingly, the U.S. Government retains a nonex-
clusive, royalty-free license to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. Government purposes.
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Incidentally, Figure 2 of [1] shows that, when the ordinate x is less than
1, there is no second branch of the curve of x vs. f, and therefore, for fi <1,
there is no f, such that f}/fl= fg/f%

The fact that x = 2, y = 4 is the only integer solution of F(x, y) = 0 can
also be seen by inspection, i.e., by calculating

F(2, 3) = -1, F(2, 4) =0, F(2, 5 =7, F(2, 6) =28, F(3, 4) =17,

etc. Also, for arbitrary x and y such that the difference y - x = Ax is small,
it can be shown by differentiation of x¥ with respect to both x and y that

F(z, y) = ZUnk - 1) (y - ©), (7
where X = (x + y)/2. 1In order to prove (7), we note that
F(x, y) = xt0% - (x + Ax)®. (8)

Now, if Ax is small, we can expand both terms in the right-hand side of (8) as
follows, to first order in Ax:

xZTHAT = X 4 1n xhAx, 9
where we have used 3z2Y/3y = x¥ 1n x. Moreover,

(x + Ax)® = 2% + x"\x, (10)
where we have used

dx¥/ox = yx¥ 1 = %aﬁ’z x¥. (1D

Upon subtracting (10) from (9), one finds:
Fle, y) = x"(Iln x - DAx = x"(In x - 1) (y - x). (12)

Because of the rapid increase of % with increasing x, one will obtain a more
accurate result by evaluating the derivatives 3x¥/dy and dx¥/3x at the midpoint
of the interval (x, y), i.e., at the point T = (x + y)/2. Upon making this
substitution in (12), one obtains (7).

Equation (7) shows that for y - x small, x¥ is larger than y<® for positive
Ax if T > e and is smaller than y® for positive Ax if © < e. As an example,
1.6%7 = 2.2233 is smaller than 1.7'® = 2.3373 because 1.6, 1.7 < e. The dif-
ference F(1.6,1.7) = -0.1140 is very well reproduced by (7), which gives, with

x = 1.65:
F(1.6,1.7) = 1.65%%%(1n1.65 - 1)(0.1) = -0.1140. (13)

As a second example, 2.9%" = 24,389 is larger than 3.0%2°% = 24.191 because
2.9, 3.0 > e. We find F(2.9,3.0) = 24,389 - 24,191 = +0.198, and this differ-

ence is very well reproduced by (7), which gives, with x = 2.95:
F(2.9,3.0) = 2.95%%%(1n 2.95 - 1)(0.1) = +0.199. (14)

Equation (7) again points out the crucial role of the constant e for the sign
of F(x, y), since In - 1 = 1n(X/e). The same equation also shows that for x
and y close to ¢ and x < e, y > e, we must have

= (1/2)(x + y)

Obviously, (7) does not hold when the difference y - x is large, and the pre-
vious result x = 2, y = 4 with x < e, y > e can be regarded as an extreme ex~
ample of (7) when higher derivatives of x¥% i.e., terms in (Ax) %, (Ax)?3, etc.,
are included.

It is of interest to speculate that x"+ y” = 2" is solvable only for n =1
and n = 2 (with x, Yy, & = positive integers) because n =1 and »n = 2 are the

e for F(x, y) = 0.
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only positive integers smaller than e. Here I wish to mention that the Fermat
equation x™ + y” = z" has solutions both for n =1 and n = 2. The case n = 2
has been discussed frequently; however, the case n = 1 also merits some atten-
tion. Thus, if we assume (by definition) that x > y, then x + y = 2z has 2z/2
distinct solutions when z = even, and it has (z - 1)/2 distinct solutions when
z = odd. As an example for z = 11, we have five distinct solutions:

x+y=6+5,7+4,8+ 3,9+ 2, and 10 + 1.

In this connection, I wish to point out that in complete analogy to the
exponent #» which appears in the Fermat equation, the equation F(x, y) = 0, in
addition to F(2, 4) = 0, also has a valid solution for x = 1, namely F(l, y) =
0 in the limit in which y approaches infinity. This additional solution will
be discussed in detail in a forthcoming paper.
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Theorem

There exist arithmetic functions in closed form that are generators of all
composite numbers.

Proof: It suffices to produce an example of such a function. Here, the
existence of several such functions will be shown. First, consider the follow-
ing two sequences:

2, 3,3, 4, 4, 4, 5,5, 5,5, 6,6, 6,6, 6, ... (s;)
2! 29 3: 2’ 3: 4’ 2’ ) 43 5, 2, 3, 4, 5, 6, coe (82).

(These sequences can be defined by specific recursions, but this will not be
done here because the patterns of progression are clear.) It is easy to see
that the products of corresponding terms in the sequences s; and s, constitute
all the composite numbers and no prime numbers.

Second, consider the following sequence, H, which progresses

1, 2,2, 3,3, 3, 4, 4, 4, 4, 5, 5,5, 5,5, ... (H),
whose terms are those of s; less one. The nth term of the sequence H is given
by
H(n) = the least integer greater than or equal to %(v8n +1-1).
This follows from solving for m in terms of » in the inequality
l+2+4+ -+ m-1)<n<1+2+- " +m

where each pair of positive integer variables m and »n satisfies H(n) = m. Now
writing

H(n) = [%(V@Z—;—T - 1;], where fﬁ] is ceiling x,
it follows with little difficulty that

s;(n) = Hn) + 1

6,(n) = (n+ 1) - 2(H() -~ DE®).

To show the second part, one can compare the sequences

1, 2,3, 4,5,6, 7,8,9,10, 11, 12, 13, 14, 15, ... ()

1, 1,2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, ... (D).
Observe that in the sequence of differences of corresponding terms
o, 1,1, 3,3,3, 6,6,6,6, 10, 10, 10, 10, 10, ... (n - I(n)),
the (n+ 1) block of terms consists of the term 1 + 2 + +++ + n, the n'" tri-

angular number, repeated a total of n+ 1 times. This implies
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1
n-I(m ==5ER - D - (@m -1+ 1D
or
I() = n - 2 -~ DE®.
Multiplying together the two formulas for s,(n) and s,(n), some cancellation of
product terms occurs:

8 () + 8,00 = (HE + D+ (n+ 1 - FE - DAM)

1

(Hmn) + D(n + 1) - %(H(H) - DHEM) (H(n) + 1)

]

nH(n) + n + Hn) + 1 - %(H3(n) - Hn)).
This gives a complete composite number generator
Co = 5,0 + 2,00 = (o + 1) + (n+3)A() - ().

For comparison, a similar function which generates the positive integers—not
in their natural order and with repetitions—is

N(m) = B+ I(0) = nl(n) + 5H(n) - £ H3(n).
Alternative arithmetic generators of all the composite numbers can be found by
considering sequences such as

2, 3,2, 4, 3, 2, 5,4, 3,2, 6,5, 4, 3, 2, ... (s83)

[here, s,(n) + s,(n) = s,(n) + 2]

and substituting s,(n) in place of either one of s,(n) or s;(n) in the product
s;(n)s,(n). Following from its relation with s,(n), an arithmetic functional
form for s,(n) is found to be

s,(n) = (-n+ 2) + é-H(n)(H(n) + 1).

Other complete composite number generators in closed arithmetic form are then
given by

C(n)

51+ 8y = (n+ )+ (- + D)) + B ) + FH ()

Cn)

]
[}

g, () 5, () = (0% + D)+ S HG) + (0 - P)E() - TH).

4 4
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NICHOLAS J. ROSE
North Carolina State University, Raleigh, NC 27650

(Submitted November 1983)

The Fibonacci numbers are defined by

F =Os F =]~5 F = F +F71’ 7’Z>2. (1)

0 1 n+2 n+1l
The following well-known identity relates F, to the binomial coefficients:

7, J‘f_](n-;;- h. &

k=0

In this note we give an interpretation of the individual terms in the identity
(2) in terms of the original "rabbit problem'":

Given a new born pair of rabbits on the first day of a month, find the
number of patirs of rabbits at the end of n months, assuming that each
pair begets a pair each month starting when they are two months old.

F, is the number of pairs of rabbits at the end of » months. Now let

S(n, k) = the number of pairs of k" generation rabbits at the end
of the nth month.

Here the initial pair of rabbits is called the zeroeth generation, the immedi-
ate offspring of the initial pair are called first generation rabbits, the im-
mediate offspring of the first-generation rabbits are called second generation
rabbits, and so on.

We can now state our

Theorem
_(n-k-1 <1 < [m - l]
s(n, ( . ),O\k\ —|.
Proof: We have the simple accounting equation:
S(n, k) =S(n -1, k) +Sn -2, k- 1). (4)

This merely states that the number of kth generation pairs at the end of the
nth month is equal to the number of such pairs at the end of the (n- 1)S* month
plus the births of kP generation rabbits during the 7™ month. However, the
births of k! generation rabbits during the nth month must come from (k - 1)S°
generation rabbits who are at least two months old; there are precisely

Sn -2, k-1)

such pairs. Since there is only one zeroeth generation pair, we must have

S(n, 0) = 1. (5)
To complete the proof, it is necessary only to verify that
so 0 = (P75 )
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satisfies (4) and (5). Putting kK = 0 in (6) we find S(u, 0) = 1. Substituting
(6) into (4) we obtain

A A R SRR

However, this is a well-known identity (see, e.g., [1, p. 70]).
For example, if we put » = 12 in identity (2), we find

F,, =144 =1+ 10 + 36 + 56 + 35 + 6.

Thus, among the 144 pairs of rabbits at the end of 12 months, there are, in ad-
dition to the initial pair, 10 first generation, 36 second generation, 56 third
generation, 35 fourth generation, and 6 fifth generation pairs.
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The notion of a golden cuboid as a generalization of a golden rectangle was
first introduced by Huntley [1], where it appears as a rectangular parallele-
piped with edges 1, ¢, and ¢%. In this paper, we proceed from a somewhat dif-
ferent point of view by first recalling that a golden rectangle may be defined
as the unique rectangle with the property that adjunction of a square to the
larger side gives a larger rectangle geometrically similar to the first. This
definition is generalized to the situation of rectangular parallelepipeds, the
results being two new candidates for the title '"golden cuboid'" (Theorem 1).
Theorem 2 establishes a nested sequence of golden cuboids analogous to the
well-known sequence of nested golden rectangles. An unexpected application
occurs in [2] with the construction of an interpretative model for a disputed
passage of Plato's Timaeus, lines 31b-32c.

In searching for a generalization of the above-mentioned property of golden
rectangles, let R be a rectangular parallelepiped with edges a, b, and ¢, and
suppose a < b < ¢. A larger geometrically similar parallelepiped R' can then
always be produced by the adjunction of a single parallelepiped to R, provided
b/a = ¢/b. However, as a generalization of the two-dimensional case, if we in
addition insist that a cube appear in the adjunction process, then it is clear
that at least two adjunctions must occur. This motivates the following defini-
tion.

Definition

A rectangular parallelepiped G is golden if there is a rectangular paral-
lelepiped G' geometrically similar to G that is obtained from G by the adjunc-
tion of two rectangular parallelepipeds, one of which is a cube.

Continuing the previous discussion, if we wish to adjoin a cube to a rec-
tangular parallelepiped F with edges a, b, and ¢ satisfying a < b < ¢, there
must first be a prior adjunction with the effect of making two of the dimen-
sions equal. Adjunction of a cube then retains this property, and thus the
result cannot be similar to R. Consequently, we must have

a=b<c¢ or a<b=c.
An elementary analysis gives the following theorem.

Theorem 1

Up to geometric similarity, there are precisely two golden cuboids, a type
one golden cuboid with edges 1, ¢, and ¢ and a type two golden cuboid with
edges 1, 1, and ¢.

Now, consider the situation where 4 is a type one golden cuboid with edges
1, ¢, and ¢, and let C be a golden cuboid of type two with edges ¢, ¢, and ¢2.
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Observe that C is formed from 4 by the adjunction of a cube B with edge ¢.
Furthermore, if a rectangular parallelepiped D with edges 1, ¢, and ¢? is ad-
joined to C, we obtain a rectangular parallelepiped A' similar to 4; see Figure
1. Continuing, if a cube B' with edge ¢? is adjoined to A', we obtain C’' sim-
ilar to (. Inductively, we thus obtain the following theorem.

Theorem 2

There exists an infinite increasing sequence of nested golden cuboids,
A1, C1s Ayy Coys vvns Ayy Cus vy

in which, for each n, 4, is similar to 4, (C, is obtained from 4, by adjunction
of a cube and is similar to C, and 4,,, is obtained from C, by adjunction of a
parallelepiped similar to D.

¢ S
7
¢ i ¢
¢ ’
1T+ ¢ = ¢
| B

® 1

Figure 1

As in the case of golden rectangles, a decreasing sequence may be similarly
constructed. We call these sequences golden cuboid sequences.

Remark 1: Observe that D is the 'golden cuboid" of Huntley [l] but that it is
neither of type one nor of type two.

Remark 2: Recall that if C is a golden rectangle and if B is a square excised
by a cut parallel with the shorter side, then the remaining piece 4 is also
golden and the areas are related by

area(C) _ area(B) _
area(B) area(4) 9.

Now, consider the cuboid A' of the above discussion and observe that the se-
quence 4, B, C, A" has the analogous property that

wolume(4') _ volume((C) volume(B) _

volume (C) volume(B) = volume(4) 9.
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If the simple continued fraction expansion of the positive real number ¢ is
given by

o=qy ¥t —mm——,

where a; is a positive integer, then we denote the continued fraction expansion
of o by

{ao, Cll, az, -..}.
1f
8 = {bO’ bl’ bZ’ e ooy bk—l’ Clk, Clk+1, ak+2’ ..,.};

then o and B are defined to be equivalent. That is, they have the same tails
at some stage.

The Jth total convergent to o, C;, is given by

¢; ={ay, ay, ..o, a;l,
and if we represent the rational number Cj by Rj/qj, then it can be shown that
P; = Pj-2 +a;q;-1s
QJ = Qj_g + anﬁ_l’ )
for j 20, p ,=9q ,=0,and g, =p_ = 1.
It is easily proved (Chrystal [1], Khintchine [2]) that

D > q; > 950 > e >q, =1,
€, <C,<C, < <a< <o, <0, <0y,

lim 63 = Q.

Jroeo

From Le Veque [3] or Roberts [4], we have the following theorems.

Dirichlet's Theorem

If a/b is a rational fraction such that

a

“-3

then a/b is a total convergent to a.
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Hurwitz's Theorem

If o is irrational, then there are infinitely many irreducible rational
solutions a/b such that

a

o-g < 8 for B = 1.

V5b?

In fact, if we restrict o to be an irrational which is not equivalent to
T=(lL+V5/2=1{1,1,1, ...} (the Golden Mean), then we are able to find
0 < B <1 for which there are an infinite number of solutions. For example, if
o is equivalent to V2, then from Le Veque [3, p. 252] we have B = v10/4.

Using (1), the convergents to T are given by

F.
_ g+l
CJ - F H (2)
J
where FE is a term of the Fibonacci sequence {1,1, 2,3, 5, ...} and

I+ - (1 - T)j+l
V5

It has been shown in Roberts [4] that in the particular case where 0 < B <1
there are only finitely many irreducible rational numbers a/b such that

F, = for 5 =0, 1, 2, ... . (3)

< B

V5b?
Since 0 < 3 < 1, then 0 < B/V5 < 1/2, and so by Dirichlet's theorem there are
only finitely many total convergents to T such that

T

T - ¢ ] < ——, )
/54
where C; is given by (2).
Our purpose is to determine explicitly the finite set of convergents to T
that satisfy (4).
If jis odd (Jj =2k + 1, k=0, 1, 2, ...), then using (2) in (4) we seek
positive values of k such that

F
[T = Corerl = fﬁkiz'_ T <'““—§""“' (3
2k+1 J§F2k+1
Substituting (3) in (5) and simplifying,
[T(l - T)]2k+2 - [(l _ T)2]2k+2 <§_’g_§:@_l.

Using 12 = 1 + 7, this becomes 1 - (2 - T)2k+2 =1-(5- 3"[)k+l < B or
._L__B_ - k
= 3. < (5 31)%.

Taking natural logarithms and using T = (1 + v5)/2, we have

ln{(l - B (27 + 3\/5)}

ln{7 ‘23\/5}
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If j is even (Jj =2k, k=0, 1, 2, ...), then substituting (2) in (4) we
have
F
2k+1 B
T = Col =1 - 5—<—+.
2k ¢§EEk

By reasoning similar to that which led to (6), we find that

1n{<6 SSEE. JE)}

ln{7 - 3%3}
2

We note that the denominator of the right-hand side of (6) is negative and
so positive values of kX in (6) exist only if

ln{(l -23)(7 + 3/5)} <o,

k<

(7)

which means 1 > B > (3V5 - 5)/2.

Similarly, we see that since 0 < B < 1 there are no positive values of k
that satisfy (7).

Hence, there are no convergents to T that satisfy (4) unless

35

-5
s <p<1,

and in this case the only convergents that do satisfy (4) are given by

C—F—j*—l-j—1357 2(R] + 1
J Fj’ s s 5 [ 3 3

where (8)
R = ln (1 - B)(27 + 3\/—5—)/1'(1 7 “23‘/-5’

and [R] denotes the integer part of R. Consequently, there are [R] + 1 conver-
gents to T that satisfy (4), and these may be determined explicitly from (8).
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1. INTRODUCTION

In this paper, unless otherwise stated, lower-—case letters denote positive
integers with p and g reserved for primes.

Definition
A divisor d of » is a wnitary divisor if (n, n/d) = 1, denoted by d|n.

The sum of all unitary divisors of n will be denoted o*(n). If
n = pilpiz ees p:k,
then
o¥(n) = (1 + Pyl +pf2) =oe (1 + P
Hence, 0% is multiplicative. If o(n) is the sum of all divisors of 7n, then
o(n) = o*(n) iff »n is square-free.
Note that
o*(n) =n iff n = 1.

Hagis [l] defines a pair of positive integers m and 7 to be unitary amicable
numbers 1if 0*(m) = o*(n) = m+ n. I1If m and n are both square-free, then the
pair m, n is amicable (see [2]) iff it is unitary amicable. Independently,
Wall [3] studies unitary amicable numbers and finds approximately six hundred
pairs that are not amicable pairs. Hagis proves some elementary theorems con-
cerning unitary amicable numbers and gives a table of thirty-two unitary ami<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>