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A THIRD-ORDER ANALOG OF A RESULT OF L, CARLITZ 

VI CHS AN LAOHAKOSOL and NST ROENROM 
The University of Texas at Austin, Austin, TX 78712 

(Submitted March 1983) 

1. INTRODUCTION 
In 1966, L. C a r l i t z [1] employed a t e c h n i q u e based on a g e n e r a t i n g func t i on t o 
so lve complete ly t h e second-order d i f f e r e n c e equa t ion 

fn+2(x) = Or + In + p + l)fn+1(x) - {n2 + pn + q)fn(x), (n = 0, 1, 2, . . . ) , 

wi th t h e i n i t i a l c o n d i t i o n s 

f0(x) = 0 , f^x) = 1, 

and p , q a re pa ramete r s s u b j e c t only t o t h e r e s t r i c t i o n 

p 2 - kq + 0 . 

The polynomials fn(x) are known to be orthogonal on the real line with respect 
to some weight function. 

Though the difference equation considered by Carlitz is of a special form, 
by studying Carlitz!s proof, it is evident that his technique can also be used 
to solve analogous difference equations of higher order. It is our purpose 
here to illustrate this by way of solving completely the following third-order 
difference equation: 

fn+3(a0 = (̂ 2 + 3Pn +•<?)/„+2(*> + {-3p2n2 + (3p2 - 2pq)n + r}fn+1(x) 
+ {p3n3 + (-3p2 + p2q)n2 + (2p3 - p2q - pv)n + s}fn(x) , 

(n = 0, 1, 2, . . . ) , (1) 

with the initial conditions 

f0(x) = f^x) = 0, f2(x) = 1, (2) 

and p, q, r, s are arbitrary parameters subject to the following three restric-
tions: 

I. p * 0, 
II. all three roots X , A„, X of the equation 

p3X3 + (3p3 - p2q)X2 + (2p3 - p2q - pr)X - s = 0 
are distinct and none is a nonpositive integer, 

III. both roots y and y2 of the equation 

p3y2 + (3Ap3 + 3p3 - p2q)\i + (3A2 + 6X + 2)p3- (2A + l)p2q - pr = 0, 

where X denotes any one of X±, A2, or X3 from II, are nonpositive 
integers. 
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2. THE METHOD 

Let 

F(t) : = F(t, x) = f] fn(x)^ (3) 
n = 0 n • 

be a generating function for fn (x). From (1), (2), and (3) we get 

(1 - pt)3F'"(t) - q(l - pt)2F"(t) - r(l - pt)F'(t) - sF(t) = x2F"(t). 
We remark here 'that, save the right-hand side, this differential equation re-
sembles the well-known Euler linear differential equation (see,e.g., Ince [2], 
pp. 141-143). 

Next, we define an operator 

A: = (1 - pt)3D3 - q(l - pt)2D2 - r(l - pt)D - s, (D = d/dt) . 
Then our differential equation becomes 

AF(t) = x2F"(t)* 
We expect three independent solutions of this differential equation to be of 
the form 

<t>(t, A) : = cf)(t, A, x) = £ Tj.xHl ~ pt)~X~k, 
k = o K 

where A is any one of X±, A2, A3. Thus, we must compute T^ = Tk(\). 
By direct computation, we get 

A ( 1 " pt) = (A + k) (A + k + 1) (A + k + 2)p3 

(1 " p t ) - (X + k)(X + k + l)p2^ - (A + k)pr - s. 

Equating the coefficients of xk(l - pt)~'k~k for fc > 2 in 

Ac()(t, A) = x2$"(t5 A), (4) 

we get 
(A+fc- 2)(A+£: + l)p2 

^ = 
(A+k)(A+k + l)(A+k+2)p3- (A+k)(A+fc + l)p2q- (A+k)pr- s 

Making use of restriction II that A is a (nonpositive integer) root of 

p3A3 + (3p3 - p2^)A2 + (2p3 - p2q - pr)X - s = 0, 

we have 

(A+fc- 2)(X+k- l)p2 

rp _ . _ . <£ 
k k[p3k2+(3p3 + 3p 3 -p 2 q ) fc+{(3A 2 +6A+2)p 3 - (2X+l)p2q-pr}] 

Also, making use of condition III that both roots y of 

p3\i2 + (3p3A + 3p3 - p2q)\i + {(3A2 + 6A + 2)p3 - (2A + l)p2q - pr} = 0 

are nonpositive integers, we arrive at the fact that 

m .. (* + k - 2) (A + k - 1) 
J* fc(fc - Vl)(k - v2)p k-2 
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is well defined. Consequently, . , 

(?) (l + 7 
T = n, n-k A (2& - 2 + A)(2& - 1 + X) _ W / * W i / ?= 
i 2 k - i 0 p 1 ^ n ( 2 & _ ) ( 2 A _ y z ) " i o> 

where (z/)fc = y(y + 1 ) • • • (z/ + k. - 1) , and 

7» -s 71 
2fc+l ,, 1. 1" 

Thus, 

Ht, X) = £{T2kx2ka - p t ) " x " 2 k + r 2 k + 1 * 2 k + 1 ( l " p * ) " * - 2 * - 1 } . 
£ = 0 

Since the degree (in x) of fn(x) is even, we must choose ̂  = 0. Also, we have 
to adjust the initial conditions; equating the coefficients of x°(1 - pt)~ ~°  
in (4) and using restriction II, we may take TQ = 1. Thus, 

fc = 0 £ = 0 n = 0 At* 

where (l\(M), 
^ ' ( ' - H ( ' " - T ) , 

T2k = , (fc = 0 , 1, 2 , . . . ) . 

/fcV I Ik 
Let en(X) : = cM(X, a;) be t h e c o e f f i c i e n t of t n / n ! i n <(>(£, X). Then 

°nM = I ^ + 2k)nP
nX2k. 

fc = 0 

Hence, we have the general solution to (1) as 

fn(x) = w1cn(x9 Xx) + w2cn(x, X2) + w3<?n(#, X 3), 

where 

iĉ  = w^Oc, •X1, X2, X3), (i = 1, 2, 3) 

are to be chosen so that the initial conditions (2) are fulfilled, namely: 

0 = w1c0(X1) + w2c0(X2) + w3oQ(X3); 

0 = w1^1(X1) + W^^X^ + w3c1(X3); 

1 = w1c2(X1) + &?2e2(X2) + w3e2(X3). 

Solving this system of equations, we get 

Dw, = tf0(X2)^(X3) - ̂ 0(X3)Cl(X2) 

Dw2 = CoiX^c^Xi) - c0(X1)c1(X3), 

^ 3 = ^0(^1)^1(^2) " ^0(^2)^1(^1)' 

where 
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D : = D(x9 X l s X2, X3) 

= d e t 
VV W W 
c l ( A l ) <?1U2) ^1(^3) 
c?2(X1) ^ 2 (X 2 ) ^ 2 ^ 3 ) 

It can be verified rhat D ̂  0. With these values,we have completely solved our 
difference equation. 

3- AN EXAMPLE 

In closing, we give a more specific example to our result. Take p - 1, ̂  = 4, 
p = -3, s = 1. The difference equation (1) then becomes 

fn + 3(x) = (x2 + 3n + 4)/n+2(*) + (-3n2 - 5w - 3)/n+1(a;) 

+ (n3 + n2 + n + l)fn(x) . 
The three roots of 

X3 X2 + X - 1 = 0 

Xx = 1, X2 = i = v-1, X3 = ~i. 

The roots of 

y2 + (3X - l)y + (3X2 - 2X + 1) = 0 

for the corresponding X are 

Xo = i 1 y ,x = \/2 e x p ( - j p 1 j s y 2 2 = / 2 exp(^-y^], 

X, -*-: vu = 1/2 expl 
/ i r i 
\ 4 ) . / 2 

Also , 

T2 f e(x2) = T2k(i) 

^ ^ 3 ) - ^ ( - ^ 

(2fc)l 

2*k! O [ (2J + l ) 2 + 1] 

, (k = 0 , 1, 2 , 

U/2), 
fc!2*(l + i)k 

(-i/2)k 

k\2k(l - i \ 

cn(XJ = c„(l) = E (2fe + w)!xfe 

* ' ° 2kkl f l [ ( 2 j + l ) 2 + 1] 

. ) , 

-, (w = 0 , 1, 2 , . . . ) , 
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ona2) -on{i) ,£;"' 2 > * < * + 2 * > n a 2 f c > 

^=o k\2k(l + i)k 

k=o k\2k(l - i)k 

If we consider the case where x - 0, then we get 

cn(X1, 0) = n\, cn(\2, 0) = (i)n, 

cn(\3, 0) = (-i)n, (n = 0, ls 2, . . . ) , 

and 

it? = y5 w = -r(-l + i) , w = -T(-1 - i) . 

Hence, 

fn(0) = |w! +^(-1 + i){i)n +\i-l - i) (-£)„. 

This solution can be directly checked via the differential equation 

(1 - t)3F"'(t) - 4(1 - t)2F"(t) + 3(1 - t)F'(t) - F(t) = 0, 

which is the familiar Euler linear differential equation. 
The solution with initial conditions 

/(0) = F(0) = 0, ̂ (0) = *"(0) = 05 f2(0) = F"(0) = 1 

is given by (see, e.g., Ince [2], pp. 140-141) 

F(t) =|(1 - t)" 1 + -±-(-1 + i)(l - t ) - i +i(-l - i(l - £))* 

and it can be immediately verified that this agrees with the solution found 
above. 

REFERENCES 

1. L. Carlitz. "Some Orthogonal Polynomials Related to Fibonacci Numbers." 
The Fibonacci Quarterly 4, no. 1 (1966)^43-48. 
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GENERALIZED FIBONACCI NUMBERS AND SOME DIOPHANTINE EQUATIONS 

JANN1S A. ANTON IAD IS 
University of Thessaloniki, Greece 

(Submitted May 1983) 

1. INTRODUCTION 

The object of this paper is to generalize the results of Finkelstein [3], [4], 
and Robbins [8] about the Fibonacci and Lucas numbers of the form z2 ± 1, by 
using the method of Colin [2], Some results which contain the Fibonacci and 
Lucas numbers of the form 2s2 i 1 as special cases are also given. 

In all cases we obtain information about the solution of an infinite class 
of biquadratic diophantine equations, with the exception of Theorems 8 and 10, 
where it is not known if the class considered is finite or infinite [5]. 

The following notation will be used: 

• Fm, Lm for the (usual) Fibonacci, Lucas numbers. 

• a E b (mod c) or a =. b(c) for congruences. 

• {alb) for the Jacobi quadratic symbol. 

• The solutions (±x5 ±y) of a diophantine equation are counted once if 
x and y possess only even exponents. 

2, PRELIMINARIES 

Def i n i t ion 1 : Let ^ E N , d ^ 05 and d not be a square. 

(i) d will be called of the first kind if the Pellian equation x - dy = 
-4 has a solution with both x and y odd integers. 

(ii) d will be called of the second kind if d is not of the first kind and 
the Pellian equation x2 - dy2 = 4 has a solution with both x and y 
odd integers. 

Remark: A necessary but not sufficient condition for d to be of the first or 
second kind is J = 5(8). A counterexample is d = 37. 

Definition 2: Let d E N be of the first or the second kind with d = 5 + 8v. 
Let a = h{a + b/d) be the fundamental solution (see [7]) of x2 - dy2 = -4 or 
x2 ~ dy2 = 4 and 3 = h(a - by/d) . We define, for all integers n5 

Un = d~1/2(an - 3n) 

Vn = an + 3n. 

It is easy to see that UQ = 03 U1 = b, VQ = 2S V1 = a, and UnS Vn are integers 
for each n E Z. 

Supported by the Deutsche Forschungsgemeinschaft* 
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The terms of the sequence {Un}9 n E N ({7n}, n E N) will be called gener-
alised Fibonacci (Lucas) numbers. 

Remarks: (i) From Definitions 1 and 2, it follows that both a and b must be 
odd. 

(ii) If b = 1, then our definition of generalized Fibonacci numbers 
agrees with the Fibonacci polynomials Un = Fn(a), a odd, but in 
general, b can be different from one as for example in the case 
d = 61, a = 39, b = 5. 

From now on, d will always be of the first kind with the fundamental solu-
tion ̂ (a + by/d) of the corresponding Pellian equation x2 - dy2 = -4. According 
to [2], the following identities hold: 

Un + 2 = *Un+l + Un, . ' (1) 

Vn + 2 = aVn+1 + V„, (2) 

U.n = (-l)n-1Un, (3) 

7_„ = {-DnVn, (4) 

2Um+n= UmVn + UnVm, (5) 

2Vm + n = dym£/n + VmVn, (6) 

( - l ) n 4 - 7* - <ft£, (7) 
Vn - V2n + ( - 1 ) " ' 2 ' <8 ) 

2 | y n i f f 2 | F n i f f 3\n, (9) 

( 1 i f 3 | n 

(.2 i f 3 | n , 

Vn+lz = Vn (mod 8 ) , (11) 

2Um + 2N = (-l)',-12Um (mod VN), (12) 

27m + 2iV E ( - l ) " " ^ (mod VN), (13) 

2^m + 2J? = (-l)s2Vn (mod £/„), (14) 
2 7 m + 2 * = (~DN2Vm (mod £/ff) , (15) 
Vn E 2(mod a) i f l\n, (16) 

Fn E ( -1 )* / 2 • 2 (mod fe) i f 2\n, (17) 

& E 1 ( 4 ) , (18) 

and, f u r t h e r m o r e , for k E l , w i th 2\ks 3j7c, 
(3 (8 ) i f fc E 2(4) 

Fk > 0 and Vk = < (19) 
(7 (8 ) i f 41/c, 

( -1 )* 7 2 , (20) 

£/m+2k = -Um (mod 7 k ) , (21) 

^ , + 2fc E - ^ (*°d V » (22) 

(i) 
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(it) = (f)> <23> 
(FJ) = (f)> (24) 
[ff-J = -(f) provided that 5\ks (25) 

the general solution of x2 - dy2 = -4 is x = ^2n + 1s 2/ = ^2n + i? ^26^ 

the general solution of x2 - dy2 = 4 is x = V2n, y = U2 , (27) 

(ft = 1 if a = £2 and d + 5 
if 7n = x2

s then <̂  ft = 1, 3 if d = 5 (28) 
(ft = 3 if d = 13, 

(n = 0 
if 7n = 2^2, then ̂  and (29) 

(ft = ±6 if d = 5, 29, 

(n = ° 
if tfn = x 2 , t h e n < n = J2 ^ J = ^2 , , 2 (30) 

n J ft = 2 if a = r and b = r K J 

( n = ±1 if 2? = r2, 
(n = 0 

if J7n = 2̂ r2, then \ n = 6 if d = 5 (31) 
(and possibly the solutions n = ±3. 

We also need some values for £/„ and Vn: 

n 

0 
1 
2 
3 
4 
5 
6 

Un 

0 
£ 
a& 
(a2 + 1)2? 
(a3 + 2a)b 
(ah + 3a2 + 
(a5 + 4a3 + 

Dfc 
3a) b 

Vn 

2 
a 
a2 + 2 
a3 + 3a 
a1* + 4a2 + 2 
a5 + 5a3 + 5a 
a6 + 6a4 •+ 9a2+2 

3. GENERALIZED FIBONACCI NUMBERS OF THE FORM )iz2 + V 

Theorem 1: Let a ~ 1, 3(8) and b = 1(8). Then the equation 

Um = as2 + b, m = 1(2), 
has 

(a) the solutions 772 = ±1, ±3, and ±5 if d = 5, 

(b) the solutions 777 = ±1, ±5 if d = 13, 

(c) the solutions m = ±1, ±3 if a and b are both perfect squares, d £ 5, 

(d) only the solutions m = il in all other cases. 

Proof: It is sufficient by (3) to consider only the cases m = 1(8), 3(16), 
and 5(16). 
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Case 1. Let m = 1(8). For m = 1, z = 0 is a solution. If m + 1, then we 
write m = 1+2 • 3s * n, where 4|n, 3Jn, and as2 + b = Um = -U1 (mod 7n) by (21). 
Thus (as)2 E -2a2? (mod 7„). But 

m - -> 
by (19), (20), (16), (17), and the assumption. Hence, Um + az2 + b. 

Case 2. Let 777 = 3(16). If m = 3, then as2 + b = (a2 + 1)2? iff 22 = a£ iff 
a and 2? are both perfect squares, since (a, b) = 1. 

If ?77 ̂  3, then we write ??? = 3 + 2 8 3 S e n , where 8|n, 3|n, and az2 + b = Um 
E -7J3 (mod 7„) E -(a2 + 1)2? (mod 7„), by (21). Thus (as)2 = -a2?72 (mod Vn) . 

By applying (13) repeatedly, we obtain 

2 ^ = - 2 V , E 2Fn-8 - ••• = 27Q E 4 (mod 72), (32) 

which by (19) implies Vn E 2 (mod 72). Thus (7„ , 72) = (2, 72) = 1 and 

±1. £)--©-(*) 
Now (-a2?72/7n) can be calculated to be -1 by using (19), (16), (17), (33), and 
the assumption. Hence, Um £ az2 + b. 

Case 3- Let m E 5(16) . If m = 5, then there exists a solution iff az2 + 2? = 
(ah + 3a2 + \)b iff z2 = a{a2 + 3)2?. Since b is odd and b\U3, 

(2?, 73)/(*73, 73) = 2, 

which implies (2?, 73) = 1. Hence, 

z2 = a(a2 + 3)2? = 732? iff b = r2 and a(a2 + 3) = z\. 

By [1], the last equation has only the solutions (zl9 a) = (0, 0), (±2, 1) , 
(±6, 3), (±42, 12). Since we have a E 1(2), the only possible solutions are 
(z19 a) = (±2, 1), (±6, 3). For a = 1, we have 2? = 1 = v2 and a7 = 5. For a = 3, 
we have b - 1 = r2 and d = 13. 

If 77? ̂  5, then 7?? = 5 + 2«3 s - n with 8|n, 3|n, and thus 

Um E -/J5 (mod 7n) E -(a* + 3a2 + 1)2? (mod 7„) by (21). 

Applying (15) r e p e a t e d l y and us ing ( 4 ) , we have 
2Fn E -27„_ 6 E 2 7 n _ 1 2 E . . . = ±2V2 (mod V z) . (34) 

Since ( 7 n , 72) = 1 i m p l i e s ( 2 7 n , U3) = 2, we see t h a t 

/ f V 2 \ _ / ( a 2 + l ) / 2 \ / f c \ _ / ^n \ /fc \ 
\ Vn I \ Vn )\Vn) \ ( a 2 + D/2)\Vn) 

- (urhnm • (0 
Now, i f az2 4- 2? = [/w, we h a v e 

(ox)2 E - a ^ + 3a2 + 2)2? = -a2?72Z73 (mod Vn), 

which is impossible because (-abV2U3/Vn) = -1 by (19), (16), (17), (33), (35), 
and the assumption. Hence, Um 4 as2 + 2?. 
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Corollary 1: The diophantine equation x2 = a2dzh + labdz2 + a2 with a = 1, 3(8) 
and b E 1(8), has 

(a) three solutions (xs y) = (±1, 0), (±4, ±1), (±11, ±2) if d = 5, 

(b) two solutions (xs z) = (±3, 0), (±393, 16) If d = 13, 

(c) two solutions (#, s) = (±a, 0), (±a(a2 + 3), ttr) , where a = t2 and Z? = r2 

are both perfect squares, d £ 5, 

(d) only one solution (x, z) = (+a, 0) in all other cases. 

Proof: This follows, directly from (26), Theorem 1, and Definition 2. 

Following the arguments of Theorem 1 and Corollary 1, we have 

Theorem 2: Let b E 1(8). Then the equation Um = z2 + bs m E 1(2), has 

(a) the solutions m - ±1, ±3S ±5, if d = 5, 

(b) the solutions m = ±1, ±3, if 2? = r2, d ^ 5 9 

(c) only the solutions w = ±1 in all other cases, 

and 

Corol 1 ary 2: The diophantine equation x2 = dzh + 2dbz2 + a2 with b E 1(8) has 

(a) three solutions (a:, s) = (±1, 0), (±4, ±1), (±11, ±2), if d = 5, 

(b) two solutions (x, z) = (±a, 0), (±a(a2 + 3), tar) If b = r2, d ^ 5S 

(c) only one solution (ic, s) = (±a, 0) in all other cases. 

We now show the following results, which are similar to the above but with 
m even. 

Theorem 3: Let a E l, 3(8) and b E 1(8) or a = 5, 7(8) and b = 5(8). Then the 
equation Um = z2 + ab, m E 0(2), has only the solution m = 2. 

Proof: 

Case 1 . Let m = 0(4). No solution exists for 777 = 0; but if m + 0, then we 
write m = 2 • 3s a n with 2|«, 3|w, and thus Um = 0 (mod 7„) by (21). If Um = 
s2 + aZ? for some m, then we have z2 = -ab (mod Vn) , which is impossible, since 
(-afe/7n) = -1 by (19), (16), (17), and the assumption. 

Case 2: Let m E 2(8). For m = 2, we have the solution 3 = 0 . If m + 2, 
then we write w = 2 + 2»3 s ® n with 4|n, 3fn, and thus 

tfOT E -U2 (mod 7n) E -a£ (mod Vn) by (21), 

Thus, if Um = z2 + ab, we should have z2 E -2a& (mod Vn) , which is impossible, 
since (-2a2?/7„) = -1 by (19), (20), (16), (17), and the assumption. 

Case 3« Let m = 6(8). If m = 6, we have a solution iff 

s2 + ab = (a5 + 4a3 + 3a)b iff s2 = a(ak + 4a2 + 2)2? = aVhb, 

But 2?|c/ ; hence, 

(b9 Vh)l(Uh, Vh) = 1 by (10). 
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Therefore, it follows that b = t2, a = v2, and ah + ka2 + 2 = 7^ = s2, which is 
impossible mod 4. 

If m ̂  6, then we write w = 6 + 2 * 3 S e n with 4|n, 3|n, and thus 

Um = -£/6 (mod 7n) = -(a5 + 4a3 + 3a)b (mod 7n) by (21). 

Hence, if Um = z2 + ab, we have z2 = -ab(ah + 4a2 + 4) E -ab(a2 + 2) 2 (mod 7n) , 
which is impossible since 

l-ab(a^ + 2) \ = /z^V= _x b y ( 1 9 ) 5 ( 1 6 ) j ( 1 7 ) 5 a n d t h e assumption. 

Applying Theorem 1(a) and Theorem 3, we now have 

Corollary 3: (Theorem of Finkelstein [3], [9], [1]) 

Fm = z2 + 1 iff m = ±1, 2, ±3, ±5. 

Using an argument similar to that of Theorem 3, we have Theorem 4 and two 
immediate corollaries. 

Theorem k: Let b E 1(8). Then, the equation Um = az2 + ab, m E 0(2), has only 
the solution m = 2. 

Corol}ary 4: Let <f = a2 + 4, 2Ja. Then, the equation Um = az2 + a has only 
the solution m = 2. 

Corol lary 5: The diophantine equation a:2 = a2dzk + 2a2dbz2 + (a2 + 2) 2 with 
£ E 1(8) has only the solution (x, y) = (±(a2 + 2), 0). 

An argument similar to Theorem 3 will also give us the following extended 
result of Theorem 1. 

Theorem 5» Let a E 1, 3(8) and b E 1(8). Then, each of the equations 

Um = 2az2 + b, Um = 2z2 + b, m = 1(2), 
has only the solutions m = ±1. 

Corellary 6: Let a E 1, 3(8) and b = 1(8). Then, the equations 

x2 = ka2dzh + 4aMs2 + a2 and ^2 = 4ds4 + kdbz2 + a2 

have only the solution {xs z) = (±a, 0). 

The following is an extended result of Theorem 3 and is similar to Theorem 
5 but with m even. 

Theorem 6: Let a = 1, 3(8) and b = 1(8), or a = 5, 7(8) and b = 5(8). Then, 
the equation Um = 2z2 + ab, m E 0(2) has 

(a) the solutions m = 2, 4 i f £ Z = 5 , 

(b) only the solution 777 = 2 in all other cases. 
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Proof: 

Case 1. Let m E 0(8). If m = 0, Iz1 + ab = 0 is impossible. If m + 0, we 
write 777 = 2 • 3s • n with 4|n, 3|n, and therefore Z7m E 0 (mod Vn) by (21). Thus, 
if 2z2 + ab = Um, we have (2s)2 E -2a£ (mod Vn) , which is impossible, since 

R ^ J = -1 by (19), (20), (16), (17), and the assumption. 

Case 2- Let 7?? E 4(8). If m = 4, then there exists a solution iff 2s2 = 
ab(a2 + 1). Since a2 - db2 = -4, we have (£>, a2 + 1) = 1 or 3. But a2 + 1 £ 
0(3); therefore, (2?, a2 + 1) = 1. It is obvious that (a, £>) = (a, a + 1) = 1 . 
So we must have a = t2, b = r2, and a2 + 1 = 2A2, so that t4 + 1 = 2\2. In [6] 
W. Ljunggren proved that the diophantine equation Ax2 - By1* = 1 has at most one 
solution in positive numbers x and y. In our case, this is (t, X) = (±1, ±1), 
which corresponds to a = 1, so b = 1 = v2 and d = 5. 

If 777 # 4, then we write T?? = 4 + 2 • 3s * n with 4|n, 3|n, and therefore, 

£/m E -(a3/? + 2aZ>) (mod Vn) by (21). 

Hence, if 2s2 + ab = £/m, we have 2s2 E -aM<22 + 3) E -2bV3 (mod 7n), which is 
impossible, since 

-2bV, (-2bV3\ -1 by (19), (20), (16), (17), (24), and the assumption. 

Case 3- Let m - 2(4). If m = 2, then s = 0 is a solution. If m ^ 2 , then 
we write m = 2 + 2 • 3s * n, with 2Jn, 3Jn, and thus, 

Z7m E -ofc (mod Vn) by (21). 

Hence, if 2s2 + ab = t/OT, we have (2s)2 E -4aZ? (mod 7n) , which is impossible, 
since 

/z4a^\ = _x b y (19)^ (16)^ (1?)^ a n d t h e a s s u m p t i o n s 

The following corollaries are direct results of the previous theorems. 
Hence, the proofs are omitted. 

Corollary 7': Let a E 1, 3(8) and b = 1(8), or a = 5, 7(8) and b = 7(8). Then, 
the equation x2 = kdz* + kabdz1 + (a2 + 2)2 has 

(a) two solutions (x, s) = (±3, 0), (±7, ±1) if d = 5, 

(b) only the one solution (x, z) = (±(a2 + 2 ) , 0) in all other cases. 

Corollary 8: Fm = 2z2 + 1 iff m = ±1, 2, 4. 

4. GENERALIZED FIBONACCI NUMBERS OF THE FORM \xz2 - v 

Lemma 1: The generalized Fibonacci numbers Um have the form 

U2n+i = &(/2„+i(a2) + 1), UZm = abf2n(a2) 
and the generalized Lucas numbers Vm have the form 

V2n + 1 = < ^ 2 n + 1 ( a 2 ) , F2n = ^ 2 n ^ ) + 2, 
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Ukn±l ~ ^2n±1^2n 

Uhn ~ ^2n -l"^2n+l 

Ukn = ^2n+1^2n-l 

Ukn-2 = ^2rT2n-2 

- h 
- ah 
+ ah 
- ah 

where fm9q E Z[a2] for each m E Z and f , , qn have no constant term. 

Proof: U2n + i ~ M/zn+iC^2) + ! ) • The proof is by induction on n. If n = 
0, we have Ui = hs and the relation is true for f\(a2) E 0. Let us now assume 
the proposition is true for all values less than or equal to n. Then we have 

U2n+3 = aUin+2 + U2n+1 by (1) 
= a(aU2n + 1 + Z72n) + U2n + 1 

= (a2 + l ) M / 2 n + 1 ( a 2 ) + 1) + aUZn by assumption 

= (a2 + Dh(f2n+1(a2) + 1) + a ( a t / 2 n _ x + U2n„2) 

= (a 2 + Db(f2n+1(a2) + 1) + a ^ C / ^ ^ C a 2 ) + 1) + af/2n_2 by 

- ••• - M / 2 n + 3 ( a 2 ) + 1) + aZ/0 = Hf2n+3(a2) + 1 ) , ' assumption 

wi th f2n+3(a2) having no c o n s t a n t t e rm. 
In t h e same way, we can prove t h e o t h e r c a s e s . 

Lemma 2: The fo l lowing i d e n t i t i e s h o l d : 

(36) 

(37) 

(38) 

(39) 

Ukn-i = U2n.2V2n + ab (40) 

bVm+n = Vrn-Jn + UmVn+1 (41) 
V2n + 1 = « + l - (-!>"<* («) 

Proof of (36) : We have 2£/4 n ± 1 = U2n±1V2n + U2nV2n±1 by ( 5 ) ; t h u s , 

U^ntl + b - . 

It is therefore sufficient to show that 

UznVzn+l + 2b = U2n+1V2n (43) 
and 

^ n ^ n - l + 2b = VZn_J2n. (44) 

We will prove (43) by induction on n. For n = 0, (43) is true, because 
^o^±i + 22? = £/±i'7o- Under the assumption that (43) is true for ns it is enough 
to show that U2n+2V2n+3 + 2h = U2n+3V2n. By using (1) and (2), we find that it 
is equivalent to U2nV2n+1 + 2h = U2n+1V2n, which holds by assumption. In the 
same way, (44) can be proved. 

Proof of (37)• By using (5), it is enough to show that 

^2nV2n = U2n_1V2n + 1 - ah9 (45) 

which can be proved by induction on n with the aid of (1) and (2). Similarly, 
(38) , (39), and (40) can be proved. 

206 [Aug. 



GENERALIZED FIBONACCI NUMBERS AND SOME DIOPHANTINE EQUATIONS 

Proof of (41): We again use induction on n. For n - 0, it must first be 
proved that bVm = £/m_iF0 + JJ^^ = 2Um.1 + aUm. This can be proved by induction 
on m* The remainder of the proof is straightforward. 

Proof of (42): This follows by induction on n using (8) and (2). 

Lemma 3: If b = 1, then (Um, Vm±n)\Vn. 

Proof: By (4), it suffices to show that g | Vn , where g = {Um5 Vm + n) . By 
(41)"m^n-i^n- If Gi = (#» Um-i)> then ^ | £/OT and ^1|Z7m_i, so that g1\Um_z. 
Hence, 91\b. But b = 1.. Therefore, # = 1 and ̂  | Vn. 

Corol lary 9: If fc = 1, then (U2n±1, Vln) = 1. 

Proof: Let ̂  be as in Lemma 3, with m = 2n ± 1 and n = +1, then ^|F± 1 or 
^ja. Since g\U2n±i and £7|a, Lemma 1 implies g\b. However 5 (a, 2?) = 1. Hence, 
g = l. ' ' 

Theorem 7°  Let b = 1. Then, the equation Um = z2 - bs m = 1(2), has no solu-
tion. 

Proof: By (36), we have U2n±1V2n
 = ^ • Hence, Corollary 9 implies that 

U2n±i ~ z\ and VTm ~ S25 which is impossible by (28). 

Theorem 8: Let b = 1 and a2 + 2 = p, p a prime. Then, the equation 

Um = s2 - a, 77? = 0(2) , 

has 

(a) the solutions m = -2, 0, 4, 6, if d = 5, 

(b) the solutions /r? = -2, 4, if d = 13, 
(c) the solutions w = -2, 0, 6, if a is a perfect square, d + 5, 

(d) only the solution m - -2 in all other cases. 

Proof: 

Case 1 . Let m = 4n - 2. By ( 3 9 ) , [ / 2 / 2 w - 2 = s 2 ° Lemma 3 Impl ies t h a t 

C ^ n ' T/2n-2>|P° 
Hence, we have two p o s s i b i l i t i e s : 

'(a) U2n = ^ and F 2 n _ 2 = W2
2 or (b) J/2n = pWl and 7 2 n _ 2 = p ^ 2 . 

The f i r s t i s imposs ib le by ( 2 8 ) . The second can be w r i t t e n by (5) as 

UnK = PWl> V2n-2 = P^2-
Let re £ 0 ( 3 ) . Then equation (10) impl ies that (£/„, 7„) = 1, and so 

Un = p t \ Vn - v \ V2n_2 = pWl <«> 
Un = £ 2 , 7n = p r 2 , F 2 n . 2 = pW\. (47) 

Equation (46) does not possess any solution, since the possible values of n9 
by (28), In order for Vn to be a perfect square, do not yield a solution of 
Un = pt2. 
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By using (30) and direct computation, we find that (47) has only one solu-
tion, which is n = 2 or 77? = 6 provided a is a perfect square. 

Let n E 0(3). Equation (10) implies that (Un, Vn) = 2, and so we have to 
check the following subcases: 

3̂X " 2P*2> vsx = 2p2> V2n_2= pW2
2, (48) 

or 
U3X = 2t2, V3X = 2pr2, V2n_2 = pW2

2, (n = 3A). (49) 
By (29) and the assumption, V3X = 2v2 is possible only for A = 0 or A = ±2 in 
the case d = 5. The value A = 0 implies n = 0 or m = -2, which gives a solu-
tion to (48). The values X = ±2, d = 5, do not give a solution, since F±6 = 
±8 + 2pt2. 

According to (31), the only values of X for which a solution of (49) may 
exist are X = 2 if d = 5, or X = 0 and X = ±1. Now, A = 0 does not give any 
solution, because we would have pr2 = 1. Similarly, X = ±1 does not give any 
solution, since we would have V±3 = ±a(a2 + 3) = 2pt2, which is impossible be-
cause p\a and pjf(a2 + 3) when a2 + 3 = p + 1. Finally, X = 2, d = 5, does not 
give any solution, since Ls = 18 4" 2 • 3r2. 

Case 2. Let 777 = 4n. By (37), £/2n-î 2n+i = £2- Now Lemma 3 implies that 
(̂ 2n-i' ̂ 2n+i)I?' s o w e n a v e t w o possibilities, which are 

U2n-i = W\, V2n+1 = Wl (50) 
or 

"in-l = P*2 = 72*2> ^2n+l = V2I>2. (51) 

By using (28) and (30), we find that (50) has only the solutions: 

(a) m = 0, 4, if d = 5, 

(b) m = 4, if d = 13, 

(c) 777 = 0, if a is a perfect square, <f ̂  5. 

Using (13) for 2n + 1 = 4A ± 1, we have 

2r2n±i = - 2 ^ - , . ! = ••• E ±27±1 (mod 72) . 

Therefore, since V2n + i = pP2 = 72r2, we have (a2 + 2)|7±1 or p|a, which is im-
possible. Thus, (51) has no solution. 

Corollary 10: For each d = a2 + 4, a = 1(2), the diophantine equation 

x2 = cfe4 - 2dz2 + a2 

has no solution. 

Corollary 11: Let d = a2 + 4 and a2 + 2 = p, where p is a prime. Then, the 
diophantine equation x2 = dzh - 2adz2 + (a2 + 2) 2 has: 

(a) Four solutions, (x3 z) = (±3, 0), (±2, ±1), (±7, ±2), (±18, ±3), if d = 5. 

(b) Two solutions, (x, z) = (±11, 0), (±119, ±6), if d = 13. 

(c) Three solutions, (x, z) = (±(a2 + 2 ) , 0), (±2, ±t), (±(a6 + 6a4 + 9a2+ 2), 
±t(a2 + 2)), if a - t2 is a perfect square. 

(d) Only the solution (a?, s) = (±(a2 + 2), 0) in all other cases. 

When a = 1 in Theorem 8, we have the following result, found in [8]. 
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Corollary 12: Fm = z2 - 1 iff m = -2, Os 4, 6. 

The next result is an extension of Theorem 7. 

Theorem 9: Let Z? = 1. Thens the equation Um = 2s2 - b, m E 1(2), has only the 
solutions 7W = ±1. 

Proof: Equation (36) implies that U2n±1V2n - b = 2;?2 - 2?, for w = 4n ± 1. 
Hence, U2m±1V2n = 2s2. By Corollary 9, 

U2n±i = 2t2, V2n = r2 or *72„±, = t2, F2n = 2r2. 

Now 72n = r2 is impossible by (28) and the second case implies, using (30) and 
(29), that n = 0 or m = ±1. 

The following result is an extended parallel of Theorem 8, 

Theorem 10: Let b = 1 and a2 + 2 = p, where p is a prime. Then, the equation 
Um = 2z2 ~ a, m E 0(2) has 
(a) the solutions m = -2, 2 if a is a perfect square, 

(b) only the solution 777 = -2 in all other cases. 

Proof: 

Case 1 . Let 777 = kn - 2, Equation (39) implies that UznVm-i = 2s2. But, 
by Lemma 3, (U2n, V2n_2) | 72, where V2 = p, so that (Z72n, V2n-2) = 1 or p. If 
(U2n5 V2n-2) = 1J then we must have 

U2n = 2t2, F2n_2 = r2 or £/2„ = t 2 , V2n_2 = 2r2. 

The first case is impossible by (28). The second case has, by (30) and (29), 
only the solution n - 1 or m = 2 if a is a perfect square. 

Now, let (U2n9 V2n-2) - p. We then have to check two possibilities: 

U2n = pt2, 72n_2 = 2pp2 or U2n = 2p£2, F2n_2 = pr2. 

In the first case we must have, by (9), n E 1(3), say n = 3X + 1. By (5), 
we also have UnVn = pt2. But (£/n, 7M) = 1; therefore, we have 

Un = pW\, Vn = ¥2, Vxn_z = 2pr2, (52) 
or 

Un = Kl> Vn = pW2
2, V2n_2 = 2pr2. (53) 

Equation (52) has no solution since, by (28), the only solution of Vn = W2 is 
n = 1, for which Un = pW2 is impossible. Equation (53) has no solution either 
since, by (30), the only possible value for n of U - W2 is n = 1, but then 
V1 = a = p^2, which is impossible. 

For the second case we must have, by (9), 3|n, say n - 3X. By (5), we have 
U3XV3X = 2pt2. Since, by (10), (U3X 9 F3A) = 2, we must check the following 
subcases: 

3̂A = ty^ls *3A = 2P2, ̂ - 2 = P^l (54) 

[73A = ( 2 r , ) 2 , V3X = 2 p r 2 , 7 2 n . 2 = pr2; (55) 

3̂A = 2prf , V3X = ( 2 P 2 ) 2 , F 2 n _ 2 = pr2; (56) 

^3A = 2^ i> V3X = 4 p r 2 , F 2 n _ 2 = p r 2 . (57) 
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By (29), the only possible solutions of (54) are A = 0 for each d, and X 
±2 if d = 5. We know X = 0 is a solution, since UQ = 0 = 4pr\ with r1 = 0 an 
7_2 = pr2 = V2r2 with r = ±1. 

Since F±e = ±8 + 4 • 3 • r2, X = ±2 is not a solution of (54). By (30), the 
only possible solutions of (55) are X = 0, and X = 4 if d - 5. It is obvious 

o = 2 * 2° V2. that X = 0 is not a solution, since V0 = 2 ̂  2 • F2. Neither is X = 4 a solu 
tion, since L12 = 322 ̂  2 • 3 • r2. In the same way, we can prove that (56) and 
(57) have no solutions. The possible values X = ±1 in (57) do not yield a so-
lution, since p = a2 + 2|a(a2 + 3) = V±3. 

Case 2. Let m = 4n. By (37), U2n_1V2n + 1 = 2s2. Using Lemma 3 and the 
assumption, (U2n_19 V2n + 1) = 1 or p. 

If (U2n_19 V2n+1) = 1, we have 

U2n-1 = 2*2> ^2n + l = *' (58> 
or 

^2»-l = *2. 72n+l = 2P2,„ (59) 

By (31) and (28), (58) has no solution. By (29), (59) has no solution. 

l f (U2n-1> F2n + l) = P> w e h a v e 

^2n-l = 2P^?' F2n + 1 = V*\ (60> 
or 

^2«-l = PS1> F2n + 1 = 2P;32- (61> 

Neither (60) nor (61) has a solution by using a proof similar to that given at 
the end of Theorem 8. 

The following are immediate consequences of the preceding theorems. 

Corol lary 13: If d = a2 + 4, a = 1(2), then the equation x2 = kdzh - kdz2 + a2 

has only the solution (x, z) = (±a, 0). 

CoroMary 14: Let d = a2 + 4 and a2 + 2 = p, where p is a prime. Then, the 
equation x2 = kdzh - kadz1 + (a2 + 2) 2 has 

(a) two solutions, (x, s) = (±(a2 + 2 ) , 0), (±(a2 + 2), ±r) if a is a perfect 
square, a = r2, 

(b) only the one solution («x, s) = (±(a2 + 2), 0) in all other cases. 

Corol lary 15: Fm = 2s2 - 1 iff m = ±1, ±2. 

5. GENERALIZED LUCAS NUMBERS OF THE FORM \xz2 ± V 

Theorem 11 : The equation Vm = z2 + a, m = 1(2), has only the solution m = 1. 

Proof: 

Case 1 . Let m = 4n - 1. By (42), V2n-iV2n = s2- Since (72n-i, 72n) = 1. 
we have F2n_x = t2, F2n = r2, which is impossible by (28). 

Case 2. Let m = 4n + 1. By (42), 72„72n+1 - 2a = s2. Hence, using (8) and 
(42), we have 

{V% - 2(-l)n}{VnVn+1 - (-l)»a} - 2a = s2, 
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which implies that VnMn = z1 with Mn = V2Vn + x - (-l)naFn - 2(-l)nVn+1. Let p 
be an odd prime and let pe\\Vn. Since (7n+1, 7„) =••• = (Vl5 70) = (a, 2) = 1, 
it follows that plMn. This implies e = 0(2) and therefore Vn = t2 or Vn = 2t2. 
Using (28) and (29), we find that the possible solutions are m = 1, 5, 13, 25, 
-23 if d = 5, 777 = 1, 13 if d = 13, m = 1, 5, 25, -23 if <f = 29, m = 1, 5 if a = t2 
and d + 5, 77? = 1 otherwise. Obviously, 777 = 1 is a solution. For 777 = 5 and a = 
t2, we have (a2 + 2) 2 + a2 = r2, which is impossible because both a and a2 + 2 
are odd. By a direct computation of each corresponding Vm in all other cases, 
we see that no other solutions exist. Note that for d = 29, 

V25 = 766628450142675125., 

Following an argument similar to Theorem 11, we can prove Theorem 12. 

Theorem 12: The equation Vm = z2 - a, m E 1(2) has only the solution 77? = -1. 

Corol 1 ary 16: If b = 15 then the diophantine equations 

dy2 = z1* + 2az2+a2 + 4 and dy2 = ̂  - 2as2 + a2 + 4 

have only the solution (2/, 2) = (±1, 0). 

The next two theorems are similar to the last two, but 77? is even. 

Theorem 13- Let p be an odd prime. Then, the equation Vm = z2 + (p - 2) , 77? = 
0(2) has 

(a) the solution 777 = 0 if p = 3, 

(b) the solutions 777 = ±2, ±4 if d = 5 and p = 5, 

r 
(c) at most n (s- + 1) + 1 solutions if 

i-i 

p _ 4 = q*i • <7«* • • - • • g** 

as its unique factorization. 

Proof: 

Case 1 . Let 777 = 4n. By (8), 72
n - z2 = p, which implies that 

V2n = ± £ ^ or V2n - Z ^ 1 by (19). 

If p = 3, then V2n = 2, which implies that n = 0 or /n = 0 is a solution with 
s = 0. If p = 5, then F2n = 3, which can only be true if n = ±1 and d = 5 or 
777 = ±4 and <2 = 5. If p > 5, there exists at most one solution. 

Case 2. Let m= 4n+2. By (8), ̂ n + i" s 2 = P~ 4- If p = 3, then V2n + i = 0> 
which is impossible. If p = 5, then V2n+i = i1 a n d t n e only possibilities for 
solutions are n = 0 or -1 and d = 5 or 777 = ±2 and d = 5. If p > 5, then 

d1 + d2 
V2n+1 = ± ^1 > 0, d2 > 0, 

where (<i15 d2) runs over all the divisors of p - 4 with d1d2 = p - 4. Since the 
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number of divisors of p - 4 is O (s. + 1) , the theorem is proved. 
i = i z 

In the same way, we can prove 

Theorem 14: Let p be an odd prime. Then, the equation Vm = z2 - (p - 2), m = 
0(2), has 

(a) the solutions m = ±2, d = 5, i f p = 3 , 

(b) no solution if p = 5, 

I 
f2 

(c) at most 
' 1 

n(^ + 1) - 1 
i = i % 

+ 2 solutions if p - 4 is a perfect square 

o O ( s i + 1) + 2 solutions if p - 4 is not a perfect square, 

where p - 4 = q8!1 q^2 .-. qSr as its unique factorization. 

Corollary 17: 

(i) The diophantine equation zh + 2(p - 2)z2 + p(p - 4) = dy2 has 

(a) one solution for each d if p = 3, 

(b) four solutions for <i = 5 if p = 5, 
r 

(c) at most n (si + 1) + 1 solutions if p > 5 and p - 4 = q^1 . 
i = 1 

as its unique factorization. 

(ii) The diophantine equation zh - 2(p - 2)z2 + p(p - 4) = dy2 has 

(a) one solution for each d is p = 3, 

(b) no solution for each d if p = 5, 

n Ui + i) - i 
i = l 

+ 2 solutions if p - 4 is a 
perfect square 

1 
y II(#•£ + 1) + 2 solutions if p - 4 is not a 

i = 1 perfect square, 
where p > 5 and p - 4 = q^1 . . . g*r as its unique factorization. 

Corollary 18: The following can be found in [4] and [8]: 

Lm = z2 + 1 iff m = 0, 1, 

Lm = z2 - 1 iff m = -1, ±2. 

By an argument similar to Theorems 11 and 12, we can prove 

Theorem 15: 

(i) The equation Vm = 2z2 + a, 777 = 1(2), has only the solution m = 1. 

(ii) The equation 7m = 2s2 - a, m = 1(2), has 
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(a) the solutions m = ±1 is a is a perfect square, 

(b) only the solution m = -1 in all other cases. 

By using the method of Cohn, as before, we can also prove 

Theorem 16: Lm = 2z2 + 15 777 E 0(2), iff 77? = ±2, 

Lm = 2z2 - 1, 7?? E 0(2), iff 7?? = ±4. 

Corol lary 19: Lm = 2s2 + 1 iff 7?? = ±2, 1, 

Lm = 2s2 - 1 iff 7?? = ±1, ±4. 
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ZIGZAG POLYNOMIALS 

A. F. HORADAM 
The University of New England, Armidale, N.S.W., Australia 

(Submitted May 1983) 

1. INTRODUCTION 
The object of this paper is to obtain some basic properties of certain polyno-
mials which we choose to call zigzag polynomials. These arise in a specified 
way from the diagonal terms of the Pascal-type array of polynomials generated 
by a given second-order recurrence relation. 

Consider the sequence of generalized Pell polynomials {An(x)} defined by 

An(x) = 2xAn_1(x) + An_2(x), AQ(x) = q, A±(x) = p (n > 2). (1.1) 

Special cases of An(x) which will concern us are: 

the Pell polynomials Pn(x) occurring when p = 1, q = 0, (1.2) 

the Pell-Lucas polynomials Qn(%) occurring when p = 2x, q = 2. (1.3) 

The explicit Binet form for An(x) is given in [4], namely, 

An(x) -_ (p - qW - (p - q*)fi\ (1<4) 

where a, 3 are the roots of y2 - 2xy - 1 = 0 (a = x + Vx2 + 1, 3 = x - Vx2 + 1). 
From (1.4), the Binet forms of Pn(x) and Qn(%) are readily derived using (1.2) 
and (1.3). 

The generating function for {An(x)} is 

ZAn+1{x)tn = (p + qt)[l - (2xt .+ t2)]"1. (1.5) 
n = 0 

Generating functions for Pn(x) and Qn(x) are then, from (1.2), (1.3), and 
(1.5), 

E ? (x)tn = [1 - (2xt + t2)]- 1 (1.6) 
rc=0 n + 1 

and 

llQ^M)tn = (2x + 2t)[l - (2xt + t2)]-\ (1.7) 
n = 0 n 

as given in [3]. 
Results (1.4)-(1.7) will not be used in this paper. Nevertheless, we append 

them here for reasons of completeness and comparison. 
Though it will not interest us for the purpose of this paper, the curious 

reader may wish to investigate the special, simple case of (1.1) arising from 
the values p = 1, q - 1. 

Background information for the theory about to be developed is to be found 
in [1] and [2]. 
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2. ZIGZAG RISING DIAGONAL POLYNOMIALS 

From (1.1), we form the Pascal-type array (Table 1). 

ZQ(x) 

AQ(x) 
A±(x) = p 
A2(x) = 2px 
A3(x) = kpx 
Ak(x) = Spx3 

A5(x) = 16px4' 

AB(x) 
A7(x) 

Z^x) 

+ hqx 
+ 8qx3 

+ hpx "}>$' 
+ I2px2 + kqx 

32px5 + 16qxh + 32px3 + I2qx2 

6bpx6 + 32qx5 + 80pxh + 32qx3 
+ 6px + q' 
+ 2hpx2 + 6qx 

(2.1) 

+ V 
/ z n (^) z ,(*) 

A8(ic) = 128pa;7 + 6 4 ^ 6 + 192p;c5 + 8 0 ^ 4- 80px3 + 2kqx2 + Spx + (7" 
^ i49te) = 256px8 + 128^ 7 + 448p;c6 + 192^ 5 + 240p;c4 + SOqx3 + 40pa?2 + 8qx + 

Table 1. Zigzag Rising Diagonal Polynomials of {An(x)} 

Let us agree to call the polynomials in Table 1 that arise upward in step-
like formation from the left (indicated by lines) the zigzag polynomials (or 
echelon polynomials) associated with {An(x)}. At each level in the step-like 
formation, other than the first, the terms are paired in the second and third 
columns,the fourth and fifth columns,..., where this is appropriate. 

As will be evident in the next section, the value of this pairing technique 
is that specializations can be quickly visualized and obtained from the general 
pattern, e.g., by the disappearance of the first column of a pair when p = 1, 
^ = 0 (the Pell polynomials), and by the amalgamation of corresponding elements 
in a pair of columns when p = 2xs q = 2, i.e., p = qx (the Pell-Lucas polyno-
mials) . 

Designate the zigzag polynomials by Zn(x). Start with ZQ(x) = q. Then, the 
first few zigzag polynomials are, from (2.1)°  

Z0(x) = q, Z±(x) Z2(x) 2pxs Z3(x) = kpx1 + q9 (2.2) 

)Zk(x) = Spx3 + 2qx + p, Z5(x) = I6pxk + kqx2 + kpx, 

\Z6(x) = 32px5 + 8qx3 + 12px2 + q, Z?(x) = 64p;r6 + I6qxh + 32px3 + bqx+p, 

ZQ(x) = 128px7 + 32qx5 + 80px4 + 1 2 ^ 2 + 6px, ... 

Using (1.1) and the nature of the formation of the Zn(x), we observe that 

Zn(x) = 2xZn_±(x) + Zn_3(x)a (2.3) 

Elementary methods applied to (2.3) produce the generating function for 
Zn(x), namely (when n > 0 ) , 

E Zn{x)tn'1 = (p + qt2)[l {2xt + t3)] E Z(x, t). (2.4) 
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Explicit formulation of an expression for Z (x) can be obtained by compari-
son of coefficients of t in (2.4). Computation yields 

where [n/3] is the integral part of n/3. 
Certain differential equations are satisfied by the zigzag polynomials. 

These include the partial differential equation 

It ~T Z(x, t) - (2x + 3t2)4-Z(x, t) = 4at2[l - (2xt + t3)]"1 (2.6) 
d£ oX 

and the ordinary differential equation 

2x j t Zn+2(x) + 3 4^ Zn(a?) = 2(n + l)Zn + 2(a?) - 4qi?n(x) , (2.7) 

where Rn(x) is to be defined in the next section. 
In deriving the results (2.5), (2.6), and (2.7), we have been guided by 

similar specialized results established in [2] for the rising diagonal poly-
nomials Rn(x) and rn(x). To these polynomials we now turn our attention. 

3. SPECIALIZATIONS 

Using (1.1), (1.2), and (1.3), we form Tables 2 and 3 for the polynomial 
sequences {Pn(x)} and {Qn(x}}: 

RQ(x) 
(PO(X) = 0 ^ R^x) 

P1(X) = 1 R2^ 
y ^ R3(x) 

P2(x) = 2x y' R ^ 

PAx) = 4x2 + \' RAx) 

< Ph(x) = 8x5 + kx 
/ y ^ R7(x) 

P5(x) = 16a'4 + 12x2 + l ^ R (x) 

P6(x) = 32̂ r5 + 32a;3 + 62; 

P7(x) = 64a;6 + 8 0 ^ + 24x2 + 1 

v » 

Table 2. Rising Diagonal Polynomials of {Pn(x)} 

Tables 2 and 3, it may be noted, are special cases of arrays given in [2]. 
Allowing for the necessary change of notation from [2] to this paper, de-
note the rising diagonal polynomials in Tables 2 and 3 by Rn(x) and rn(x), 
respectively, commencing with i?0(x) = 0, r0(x) = 2. 
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rAx) 
Ax) r^ (x) 

h (x) = 2aT r (x) 
^ r 3 ( x ) 

,(x) = 4a;2 + 2 ' " 

23(aO = 8x3 V 6 a ; ^ r5(a:) r6(a?) 
h(x) = 1 6 ^ + 16a:2 + 2 r?(x) 

}5{x) = 32a:5 + 40a;3 + 10a: 

26(a?) = 64a;b + 96a;4 + 36a;z + 2 

27(aO = 128a:7 + 224a;5 + 112a;3 + 14a; 

Table 3* R i s i n g Diagonal Polynomials of {QAx)} 

Observe t h e r e l a t i o n s h i p s (cf . [ 2 ] ) , s u b j e c t t o t h e r e s t r i c t i o n n ^ 3 , 

(3.2) 

,Rn(x) = 2o:i?n_1(o;) + Rn_3(x) 

[r (x) = 2xv Ax) + v „ (x) 
\ nK n - l v / n-3 

(3.3) 

The formal structural equivalence of (2.3) and the first two equations in 
(3.3) is, of course, expected and essential. 

Substituting the appropriate values from (1.2) and (1.3) in (2.5), we derive 
the explicit forms 

ErWi 
i = o x 

2i )(2a;)n-1"3f5 n > 1, (3.4) 

and 

i = 0 v ' i=0 z' ' 

and 

that 

-3"3i, n > 3. (3.5) 

Generating functions are, from (1.2), (1.3), and (2.4), when n > 0, 

i,Rn(x)tn-1 = [1 - (2xt + t3)]"1 = R(x, t) (3.6) 
n = l 

E ^ O ^ H * " 1 = 2 (a? + t2)[l - (2a?* + t3)]"1 = r(*c, t) . (3.7) 
n = l 

Furthermore, on applying (1.2) to (2.6) and (2.7) in succession, we deduce 

It |f(a;, t) - (2x + 3£2) |f (a:, *)• = °  
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and 

2x 4- R .Ax) + 3 4- RJx) = 2 ( n + l ) R
 Ao 0*0 • 

But we cannot apply (1.3) to (2.6) and (2.7) because, in (2.6) and (2.7), 
p and q were implicitly assumed to be constants, whereas in (1.3), p = 2x and 
q = 2, i.e., p is a function of x« 

Guided by the appropriate results in [2] and carrying out the processes of 
differentiation, mutatis mutandis, we arrive at the differential equations 

It ^T r(x> £) " (2# + 3t2) 4- Hx, £) = Hx> V - 6xR(xs t) (3.10) 
at 3X 

and 
2 X i rn+2<*> + 3 ^ r"(X) = 2 (" " I ) rn + 2 ( X ) + 6 i ?n + 3 W ' (3,11) 

which should be compared with the corresponding results in [2], 
Equations (3.3)-(3.9) occur in [2], slightly modified where necessary to 

take into account the minor differences in notation in [2] and in this paper. 
In passing, it might be observed that a marginally neater form of (3.7) 

exists if the summation is allowed to commence with n= 2, instead of with n- 1 
in conformity with (2.4). [Had our summation in (2.4) begun with n=0, we would 
have obtained a slightly less simple form of the generating function than that 
given in (2.4).] 

While there may be other mathematically interesting instances of {An(x)}, 
we have limited our attention to the two well-known and related sequences 
{Pn(x)} and {Qn(x)}. Properties of {An(x)} are an amalgam of their separate 
properties. 

4. ORDINARY (NON-ZIGZAG) RISING DIAGONAL POLYNOMIALS 

Consider next the ordinary (non-zigzag) rising diagonal polynomials in 
Table 1, which must not be confused with the Zn(x) . 

Denote these non-zigzag polynomials by the suggestive notation %n(x), be-
ginning with -&o (x) = q. 

Some of these polynomials are: 

ifl(a;) = q, £i(tf) = p9 %z(x) = 2px, £3(x) = kpx2 + q, 

)%k(x) = Spx3 + 2qx, 25(x) = \6pxh + kqx2 4- p, 

\26(x) = 32px5 + Sqx3 + kpx, &7(x) = 64p^6 + 1 6 ^ + I2px2 + q9 

ZQ(x) = l2Spx7 + 32qx5 + 32px3 + kqx, ... 

Observe that the recurrence relation for {•&(#)} is 

. *n(x) = 2xZn_1(x) +2n_k(x). (4.2) 

Using elementary procedures, we may demonstrate that the (somewhat ungainly) 
generating function for £„(#) is 

Y,%n{.x)tn = {q + (p - 2qx)t + qt3}[l - (2xt + t*)]'1. (4.3) 
n = 0 

An explicit expression for the elements of {% (x)} may be established, 
namely, 

(4.1) 
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I"—1 ["—1 
*»<*> = P l ("' l { 3i)(2x)" — « + ? L £ J(»" 3" 3i W-»-«, (4.4) 

n > 5. 
Finally, we emphasize that the rising diagonals Rn(x) and r„(#) for {Pn (x)} 

and {£„(#)} in (3.1) and (3.2) are special cases of Zn(x) , not £n(a?), as a 
little thought reveals. 

5. ZIGZAG DESCENDING DIAGONAL POLYNOMIALS 

Just as the rising zigzag diagonal polynomials are constructed from Table 
1, so the corresponding zigzag polynomials for descending diagonals may be gen-
erated, i.e., by proceeding downward in step-like fashion from the left. 

To avoid repetitious waste of space, we invite the reader to refer to Table 
1 and to compose the following list of descending diagonal zigzag polynomials 
(or echelon polynomials) zn(x) s with initial value z0(x) = q: 

'z0(x) = q, s1(x) = p + q, z2(x) = (p + q)(2x + 1), 

z3(x) = (p + q)(2x + I) 2, zh{x) = (p + q)(2x + l) 3, (5.1) 

^z5(x) = (p + q)(2x + 1 ) \ z6(x) = (p + q)(2x + l) 5, ... 

The pattern is crystal clear. One does not have to be psychic to deduce 
immediately the recurrence relation from the geometric progression, namely, 

zn+1(x) = (2x + l)zn(x), n > 1, (5.2) 

with general term 

zn(x) = (p + q)(2x + l)*" 1, n > 1. (5.3) 

The generating function for zn(x) (if n > 0) is obviously 

2(x5 t) = f) 2n(x)tn"1 = (p + <7)[1 - (2* + Dt]'1. (5.4) 
n = l 

Mathematical calculations involving zn(x) will be manifestly simpler than 
those associated with Zn(x). In particular, the following differential equa-
tions flow easily from (5.3) and (5.4): 

It -~ z(x3 t) - (2x + 1) -^ s U , t) = 0 (5.5) 

(2a; + 1) -j^ sn(x) - 2(n - l)sn(x) = 0. (5.6) 

Specializations of (5.3)-(5.6) for {Pn(x)} and {Qn(x)} are readily obtained. 
Thus, for the descending diagonal polynomials Dn(x) of the Pell polynomial ar-
ray in Table 2, with initial conditions DQ(x) = 0 and D1(x) = 1, we derive 

Dn(x) = (2x + l ) n - \ n > 1, (5.7) 

« = 1 

2t ̂ r D(x, t) - (2x + 1) -£- £(#, t) = 0, (5.9) 

(2ar + 1) ̂  5B(ar) - 2(n - l)0„(ar) = 0, (5.10) 
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while, for the descending diagonal polynomials dn(x) of the Pell-Lucas polyno-
mial array in Table 3, we deduce 

dn(x) = 2{x + \){2x + l ) n _ 1 , n > 1, (5.11) 

d(x, t) = £ d^x)^-1 = 2(x + 1)[1 - (2x + I)*]"1. (5.12) 
n=l 

Initially, dQ(x) = 2. 
Observe that 

^n(*) = Dn(x) + £n+1(x). (5.13) 

Equations (5.5) and (5.6) cannot be applied directly to dn(x) since, in this 
case, p = 2x is not a constant (although q = 2 is). However, the results for 
d(x, t) and dn(x) corresponding to those for D(x, t) and Dn(x) in (5.9) and 
(5.10) , respectively, may be established without too much difficulty if we per-
mit ourselves to be assisted by similar results in [2]. They are: 

2t -—• d(x, t) - (2x + l)b|: d(x, t) - 2D(x, t)l = 0 (5.14) 

2{x + 1 ) j-(dn+1(x)) - 2dn+1(x) - Sn{x + l)2Dn(x) = 0. (5.15) 

The above specializations should be compared with analogous derivations in 
[2], modified as demanded by the circumstances. Variations that occur between 
a result in [2] and a corresponding result in this paper exist because of the 
different starting points, i.e., different values of d1 (x). 

Earlier results obtained in [1] relating to material in this paper might 
also be consulted. 

6. CONCLUDING COMMENTS 

This completes what we wished to say about the zigzag polynomials at this 
stage. Various generalizations of aspects of this paper suggest themselves, 
but, as we belieVe these developments go beyond the unity of this paper, they 
are left for possible further consideration. 

Finally, it might be observed that results (2.3), (3.3), (4.2), (5.2), (5.7) 
and (5.11) are readily established by using the rule of formation and the gen-
erating functions for the columns of the respective arrays. In Table 1, for 
instance, the generating functions for the first, second, third, ..,, pair of 
columns are (1 - 2x)~x, (1 - 2x)"2, (1 - 2a:)"3, ..., with appropriate multi-
pliers p and q. 
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CALVIN T. LONG 
Washington State University, Pullman, WA 99163 

(Submitted July 1983) 

1. INTRODUCTION 

A standard arithmetical trick for school children is to ask them to choose two 
positive integers, to extend this to a sequence of 10 numbers by adding any two 
to obtain the next in the Fibonacci manner, and then to add up the numbers in 
the sequence. When the exercise is complete the teacher, having unobtrusively 
noted the seventh number in each studentfs sequence while checking around the 
room to see that each is proceeding properly, can mystify the students by an-
nouncing the sum each has achieved. Given that the students did the arithmetic 
correctly, the sum is just 11 times the seventh number in their original se-
quence. If, for example, a student chooses 5 and 1, his sequence is 

5, 1, 6, 7, 13, 20, 33, 53, 86, 139 

and the sum is 363 = 11 • 33. 
Of course, as the reader will expect, this is just a special case of more 

general results which we now examine. 

2o SOME GENERAL RESULTS 

Let Fn and Ln denote, respectively, the nth Fibonacci and Lucas numbers so that 

F0 = 0, F± = 1, Fn+1 = Fn + Fn_1 for n > 1, 
and 

L0 = 2, L1 = 1, Ln + 1 = Ln + Ln_1 for w > 1. 

Also, define sequences Hn and Kn for integers a and b by 

EY = a, H2 = b, Hn+2 = Hn+1 + Hn for n > I, 
and 

K± = -a + 22?, K2 = 2a + b, Kn + 2 = Kn + 1 + Kn for n > 1. 

Then the following theorem holds. 

Theorem 1: For n > 1, 
kn- 2 4n 

(i) 2=* "i ~ ^2n-1^2n + l^ ^ "• i ~ ^2n^2n + Z> 
i = 1 i = 1 

kn- 2 kn 
(ii) 2-f %-i ~ £J2n-iK2n + i> 2-rf %-i ~ ^F2nH2n + 2 . 

i= 1 i= 1 

The arithmetical trick described above derives from the first formula of 
part (i) of the theorem with n = 3. For n = 4, it would say that the sum of 
the first 14 integers in the sequence is divisible by the ninth number in the 
sequence, and so on. 
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The proof of Theorem 1 depends on the following well-known results which we 
state for completeness. 

Lemma 1: For n > 1, 

Hn -

Lemma 2 : 

n 

i~ 1 

a?n 

For 

- 2 

n 

F 
n-

+ 

> 

f 2 

&n. 

1, 

- 1 

- 1 and Kn = aln_2 + bLn_x. 

n 
and Y.Li = Ln + 2 - 3. 

^ = 1 

Lemma 3 - For integers p and s, 

| F s L p + s s even, 
V.3J - c p + 2 s - ^ P 

( i i ) ^^+25 ~ Lr ~ 

( i 1 1 ) ^r+28 + F> 

( iv ) L r + 2 s + Lv = 

W + s s odd5 

5 ^ F P + S
 s e v e n > 

V ^ r + e S ° d d ' 

LsFr+s s even, 

^ ^ + 8 s odd, 

£ S L P + S s even, 

5F8Fr+8 s odd. 

Note t h a t Lemmas 1 and 2 a re e a s i l y proved by i n d u c t i o n and t h a t Lemma 3 
fol lows from B i n e t f s fo rmulas . A l t e r n a t i v e l y , Lemmas 1 and 2 fol low from (7) 
and (6) , page 456 of [2] for s u i t a b l e cho ices of p and q5 and Lemma 3 fo l lows 
from ( 5 ) - ( 1 2 ) , page 115 of [1] by s e t t i n g r = n - k and s = k. In f a c t , Theo-
rem 1 can a l s o be deduced from ( 6 ) , page 456 of [2] and Lemma 3 . However, for 
ease of r e a d i n g , we give an independent proof . 

Proof of Theorem 1: Since a l l t h e arguments a r e s i m i l a r , we prove only p a r t 
( i v ) . By Lemmas 1, 2 , and 3 , 

kn kn 
E * = E {aLi_2 + bL^±) 

£= 1 £= 1 kn kn 
= aL_1 + aL0 + aJ^Li_2 + bL0 + bYl^i-i 

i = 3 i = 2 

= -a + 2a + a{Lhn - 3) + 2b + b(Lkn+1 - 3) 

- 5aF2
2

n + 5bF2nF2h + 1 

= ^.2nCoF2 n + ^ 2 n + 1 ) 

= 3^ 2n^2n+2 as c la imed. 
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Setting a = b= 1, we obtain the following immediate corollary to Theorem 1. 

Corollary 1: For n > 1, 

4n - 2 4n 
( l ) 2^ ^ = ^2n-1^2n + ls *-* Fi F2nF2n + 2:> 

^=^ i= 1 
4n - 2 4n 

( l i ) E ^ i = L2n-lL2n+l* E Li = 5 F 2 n F 2 n + 2 » 
i= 1 ^= 1 

Now Lemma 1 and Theorem 1 sugges t a f u r t h e r g e n e r a l i z a t i o n . Define t h e 
sequences P , $5 P , 5 3 2% £/, F9 and P/ for n > 1 by 

P n = a ^ _ 2 + &£„_,, Qn = aLn_2 + bFn^, 

Rn = aLn_2 + 5bFn_1, Sn = 5aLn_2 + bFn_x, 

Tn = aFn_2 + 5bLn_lt Un = 5aFn_2 + bLn_x, 

Vn = aLn_2 + 52bFn_lt Wn = 52aFn„2 + bLn_x. 

Then t h e fo l lowing r e s u l t s ho ld . 

Theorem 2: For n > 1 s 

kn-2 4n 
( i ) E ^ = ^ 2 n - l P 2 n + l> E Pi = F2nR2n + 2> 

i= 1 £= 1 
4n- 2 4n 

( i i ) E Qi = £ 2 „ - i e 2 » + i . S 6 i = f 2 n f 2 „ + 2 . 
i= 1 i= 1 
4n- 2 4n 

(iii) E i ? i = F2n-lR2n+l> S ^ i = 5 P 2 n P 2 n + 2 , 
i = 1 i= 1 
4n - 2 4n 

( i v ) E ^ = L2n-lS2n+l> H$i = F2nW2n + 2> 
i=l i= 1 • 
4n- 2 4n 

(v ) E ^ = -^2n-l^72n + I s 2^ ^ i = ^2n^2w + 2» 
i= 1 £= 1 

4 n - 2 4n 
(v i ) I f f - £ 2 B - i ^ » + i ' 2 Ui = 5F2nQ2n + 2, 

i= 1 •£= 1 
kn- 2 kn 

• ( v i i ) E f; = £ 2 K - i ^ 2 n + i . E Vi = 5F2nT2n+2, 
i= 1 i= 1 
4n- 2 4n 

( V i i i ) E ^ i = ^ n - l ^ n + l* E Wi = 5-P2W
52n + 2« 

i= 1 ^= 1 

We omit the proof, since it is similar to that of Theorem 1. 

3. MORE GENERAL RESULTS 

We may generalize the results of Section 2 as follows. Define the sequences 
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/„ = 0 , f, = 1, fn+1 -afn +fn_1 
and 

J60 = 2 , x^ = a , ^ n + i = cz)in + icn_1 5 

where a = a(x) is an arbitrary function of #. Then it is easily shown, as with 
the Fibonacci and Lucas sequences, that 

nn - n" 
(1) 

(2) 

*> n 
^ 

and 

^n = 1 

fo r a l l n 

a 
P = -

A l s o , 
n 

i= 1 
n 
E * i 

i- 1 

^ - 1 -

/a2 + 4 

D n + Qn 

where 

+ Va2 + 4 
2 

f + f 
a 

^n+l + ^ 

a 

1 and I 

a i 

-

- l 

, a - Va2 + 4 
id a = ~ . 

1 
3 

a - 2 

. ^ 

= -a. 

In a d d i t i o n , we have t h e fo l lowing g e n e r a l i z a t i o n of Lemma 3 

Lemma k: For i n t e g e r s 

( i ) 

( i i ) 

( i i i ) 

( i v ) 

f - f 

^r+2s ~~ -^P 

f + f 

^p+2s + ^r 

p 

= 

= 

= 

= 

and s , 

( £ . * r + 8 s e v e n , 

1 Kfr+S 8 Odd, 

| ( a 2 + 4 ) / s / r + s s even, 

( lslP+s s odd, 

( ^sfr+s s e v e n ' 

\fe*-,+ e S 0dd< 

\ ( a 2 + 4 ) / s / r + s s odd. 

(3) 

(4) 

(5) 

Equations (1), (2), (3), and (4) can all be proved by induction, and Lemma 4 
follows as before from the Binet formulas (1) and (2). Alternatively, (1) and 
(2) are essentially special cases of (53) and (54) , page 119 of [1] and Lemma 4 
is, in the same sense, a special case of (56)-(63) of [1], 
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If we now define the sequences ft and k by 

h1 = c, ft2 = d, hn+1 = ahn + hn_± (6) 
and 

k1 = -ac + 2d, k2 = ad + 2c, kn+1 = akn + kn_1, (7) 

where o = £ ( » and c? = d(x) a r e a l s o a r b i t r a r y f u n c t i o n s of x, t h e n i t can be 
shown by i n d u c t i o n t h a t 

K = cfn_z + dfn_x (8) 
and 

K = oln_z + dln_x (9) 
for a l l n« F i n a l l y , by analogy w i th Sec t ion 2, we d e f i n e t h e sequences p, q, 
r, s, t, u, v, and w by 

p = of 0 + dl , 
rn

 J n-2 n-1 
In = C V 2 + dfn-l 
r» = cln_2 + (a2 + h)dfn_x 

sn = (a2 + 4)c£„_2 + dfn-x 
in = cfn-2 + (a2 + QdK-i 
un = (a2 +-4)o/B_2 + dln_1 

vn = o%n_z 4 (a2 + V2dfn_1 

wn = (a2 + 4 ) 2 c / n _ 2 + dln_1 

for a l l n . Then, as b e f o r e , we have t h e fo l lowing r e s u l t t h a t g e n e r a l i z e s bo th 
Theorem 1 and Theorem 2. 

Theorem 3 : For n > 1, 

4 n - 2 ^o - . ( ^ n + ^ o ) 4n f0 (& + k ) 
, .* V» •» 2 n - l v 2 n - l 2n ^^ - J 2n v 2n+l 2ny 

d ) £ ^ = — , L ^i = , 
i=1 a £= 1 a 

4 n - 2 £ (fc + fe ) • An ( a 2 + 4 ) / (ft + ft ) 
, . . v <ĉ  7 2 n - l 2 n - l 2rc £4 , v / J 2 n v 2 n + l 2n 
(11) E fci = , £ K = , 

?, = 1 a ^ = l a 

, . . . , % 2 %2n-1^2n-l + ?>2n) ^ jf2n (*2 n + 1 + 2 ^ ) 
( i n ) L P { = » E P , = 3 

kn- 2 & (Q + Q ) Ar7 f (U + U ) . q™z 2n-lKH2n-l H2nJ ™ J 2n v 2n+l 2n7 

( iv) > q. - — , V q . = , 

' , 4 ^ 2 £ 2 n - l ( r 2 , - l + Vzn) %> ^ + 4 ) ^2n ( P 2 n + l + P 2 J 
(V) E ^ - j , E ^ = - , 

* n l 2n-lK 2n-l 2nJ H . 2n v 2 n + l 2 n y 

(vi) L si = , £ s. 
a i M *• a 

, . . N v* J- 2 n - l x 2 n - l 2n ^ , Tin. 2n + l In' 
(vn) L * i = , £ tt = s 

i-1 " i= 1 a 
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(a2 

(a2 

+ 

+ 

+ 

Vfzn 

»f*n 

Vf2n 

< < ?2»+l 
a 

. 2 n + l 

a 

^ 2 n + l 

+ 

+ 

+ 

^2r) 

*2n> 

*2»> 
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, *"-2 *2n-l<W2»-l + M 2 n } *n 

(viii) 2-, ui = 7, > L,ui = 
i= l a i= 1 

, x
 4 ^ " 2 l 2 n - l { V 2 n - l + V2n) *" 

i=l a i= l 

(x> E ^ = > E »i = 
-2,= i a ^ = x 

Proof: The proofs of these formulas are all similar to those of Theorem 1 
and require the use of (3), (4), and Lemma 4 in the obvious places. To illus-
trate, we prove the first result in (i). Since fQ = 0, we have that 

4n - 2 kn - 2 4n - 2 4n - 2 

E fcf = E <<tff.2 + # , _ , ) = o / . ! + c E / i - 2 + d E /"i-i 
i= 1 i= 1 t= 3 i= 2 

A n - 3 + An-4- ~ A n - 2 + A n - 3 ~ 1 

= e + e : + d 
a a 

<KA*-3 + An-. + a - 1) + d(An.3 + A n _ 3 " 1) 

a 

e(A»-3 " A + An-4 + A> + ^(A„-2 ~ A + An-3 " A ) 
a 

C W 2 n - 2 ^ 2 n - l + J2n-3^2n-l' ~*~ ^kj 2n - l*'2n - 1 + A w - 2 ^ 2 n - l ' 

a 

£2,-l[(^2n-2 + <#W-l) + (eA-3 + ^An-2>] 

a 

^2n-1^2n + "-2n-l' 

The formulas in Theorem 3 are still neat and tidy though not so simple as 
those in Theorems 1 and 2. The difficulty is that H2n + H2n_x = #2 n + 1 in Theo-
rem 1, whereas here we require h2n + a'h2n_1 - ^2n+i" ° ^ course, if a = 1, the 
results coincide. 

k. STILL MORE GENERAL RESULTS 

It is natural to ask if the results can be generalized even further. Indeed, 
it would be reasonable to define sequences ifn}n^Q = {fn(x^n>0 anc* {&n}n>0 = 
U„(aO}n> 0

 by 

A = o, A = i. A+i = < + ̂ A-i 
and 

where a = a(^) and b = &(#) are arbitrary functions of as. Setting 

- a + /a2 + 42? , a - /a2 + 4£ 
0 = _ ar U} 0 = 
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we obtain as before (see [1], p. 119), 

- p " - g " 
f„ = (18) 

Va2 + hb 

1n = pn - an, (19) 
» fw+1 + fc/B - 1 

S ^ = a + b - 1 ' ( 2 0 ) 
£ = 1 

n in+1 + bln - a - 2b 

<?/< = a + b - 1 • <21> 
and the following lemma. 

Lemma 5: For integers r and s, 

( i ) 

( i i ) 

(i±±) 

( i v ) 

f 
J r+ 2s 

^r+ls 

f o + 

J r+ 2s 

7 + 

Con t inu ing , i f 

h1 = c , h2 = d 

hSfT 

bs~lv 

bsfr 

bslr 

we de 

- ^ n + l 

• ' 

• 

-

-

( J s ^r + s 

^ ^sfr+s 

\ (a2 + ^)fjT+s 

\ 3cs3c r + s 

| ^sJr+s 

1 ^ S ^ P + S 

I (a2 + mfgfr+8 

f i ne In^ and k^ by 

ahn + Mn_x 

s 

s 

s 

s 

s 

s 

s 

s 

even, 

odd, 

even, 

odd, 

even, 

odd, 

even, 

odd. 

(22) 
and _ _ _ _ _ 

k1 = 2d - ac5 k2 = ad + 2bc, kn+1 = akn + bkn_1 (23) 

where a = c(x) and d = d(x) as above, we prove as before t h a t 

K = bcfn_2 + dfn_^ (24) 
and _ _ _ 

kn = bcl 0 + dl n . (25) 
" n - 2 n - 1 

I f , by analogy w i th ( 1 0 ) - ( 1 7 ) , we now def ine sequences p , qn, rn, s n , ^ n 3 un, 
Vn, and Wn by 

Pn =b<-2 +dI
n-!> ^26> 

?„ " b°\-2 + dfn-l> (27) 

? „ = £ e l n _ 2 + (a 2 + hb-)dfn_x, (28) 
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sn = (a2 + Ub)baln_2 + dfn_^, (29) 

tn = bsfn_2 + (a2 + mdln_1, (30) 

un = (a2 + bb)bcfn_2 + d\_1, (31) 

«» - b a \ - 2
 + {Q2 + kV) dfn-i' ( 3 2 ) 

and _ _ 
wn = (a2 + ^b)2befn_2 + d£n_i5 (33) 

we can then prove the following theorems that contain a l l the preceding results 
as special cases. Of course, the formulas are less elegant, but they s t i l l 
exhibit a nice symmetry. 

Theorem 4: For n > 1, 

4n-2 _ i _ £2 n _ 1 ^w-l^Aw + ^fln-0 
(i) E / i + a + £ - T = a + 2? - 1 ' 

^= 1 

(ii) E ^ + a + fc - T = a + 2? - 1 ' 
^ = 1 

, . . . . 4 V 2 7 (a + 22?) (1 - fr2"-1) _ £ ^ - i ( £ 2 n + M 2 n - i ) 
U l l j A * a + b - 1 " a + b - 1 

, . , £ 7 ( a + 2 f c ) ( l - 2?2*) ( ^ + 4fc)72w(/2w + 1 +fcf2w) 
V i -1 * a + 6 - 1 " a + 6 - 1 

The proof i s similar to that of Theorem 5 and will be omitted. 

We note that Theorem 4 specializes to Corollary 1 if we set 

a = 2? = e = d = l . 

Theorem 5: Let 

= c + d - ac „ c{lb + a2 - a) + d{l - a) 
A a + b - 1 ' a + 2> - 1 

r - e(l - a) + d(2 - a) n _ g(22? + a2 - a) + d 
° " a + b - 1 ' " a + 2? - 1 

F _ e(22? + a2 - a) + d(a2 + 42?) p _ g(a2 + 42?) (22? + a2 - a) + d 
A " a + 2? - 1 » * - a + 2? - 1 
„ g(l - a) + d(a2 + 42?) (2 - a) „ g(l - a)(a2 + 42?) + d(2 - a) 
Cr = ;—7 ~ , tl — — a + b - I 9 a + 2? - 1 

1 - a) + d(a2 + 42?) = c ( l - a) (a2 + 42?) 2 

a + £ - 1 3 a + 2? - 1 
_ e(22? + a2 - a) + d(a2 + 42?) T _ c ( l - a) (a2 + 42?) 2 + d(2 - a) 
-L ~ T~>—I ~, ' s w -

Then, for n > 1, 

4 n - 2 _ ^2n-l^h2n + 2*2«-l> 

a) E ^ + i i a - i ^ - 1 ) . -nrzn = 
•v - l 
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*» - , f2n(k2n + l + hk2n) 
L hi + A(l - bZn) = , 

i= 1 + - 1 

to _ ( a 2 + 4&)f 2 „ (^ 2 „ + 1 +bh2n) 
E fc, + 5 ( 1 - **»> - ^ ^ ^ .. 

^ = 1 

(XXX) E pt + C ( l - 6 2 , 1, = a + f e _ , .. 

4n _ ^ H ^ n + l + i r2»> 
£ p . + C(l - b2n) = a + b - 1 

t = 1 

, ^ 4 * ~ 2 - „ , 2 „ - ^ *2»-l<?2n + % n - l > 
(iv) £ < + 5(1 - b*n l) + a + & _ 1 , 

^= 1 

Z q, + D(l - b^) = a + b _ , . 
i- 1 

, , 4 ^ 2 - „ , , „ , , \n-SV2n + % n - l > 
(v) E r i + J ( l - J ^ ) - a + fc-1 ' 

^= 1 

4, _ , («2 + ^)f2n(p2n+1 +bp2n) 
.*-', T- a + b - 1 

4n-2 . • . \ „ - i C 5 2 B + ^ 2 » - l > 
(Vi) £ 8. + F(l - &2""1) . . - a + b - 1 

.E a, + Fd - b*») - a + fc_ ! . 

4 " - 2 I 2n - l ( *2n + fc*2»-l>-
(vii) £ *< + ffd - 6-1) - a : \ - 1 •' 

"Z. = 1 

%k - , , „ , An ( ^2n + 1 +fc?2»> 

E t , + c(i - i2-) a + fc _ , , 

^ = 1 

4»-2 *2»-l<"2» + M2n-1> 
(viii) L "i + #a - &2n_1) = . , * T " ' " ' a + b - 1 

4n (a2 + 4 « 4 ( ^ 2 „ + 1 + %„) 
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4n-2 £ _ nO>„„ + bv^ , ) 

L 
£ = 1 

_ _ 7 2 n - l N 2 n - l 2n 2n - 1 
( ix ) V v • + J ( l - bzn L) = —— T 
x J Lo % v a + & - 1 

£ Vi + Id - 62») - a + fc_ ! 

(x) £ «i + Jd - i ) = a + b_ l , 
^ = 1 

4n (a 2 + 42?) f ( i + b~s) 
H K ' J 2n 2n+l In £ wt + J (I - b2n) = a + b - 1 

^= 1 

Proof: Again, s i n c e t h e p roofs a re s i m i l a r , we prove only t h e f i r s t p a r t of 
( i i ) . Since / _ . = 1/2?, fQ = 0 , and £ = 2, we have from ( 2 0 ) , ( 2 1 ) , and Lemma 
5, t h a t 

4n - 2 __ 4n - 2 _ _ n x kn-2 _ 4w - 2_ 

£ = 1 i = l w / £ = 1 - z - = l 

be(fhn_3 + bfhn_, - 1) <*(*„„-2 + M4n_3 - a - 2fc) 
c + - - r = + 2d + ^ - -

a + 2? - 1 a + 2? ~ 1 
ac - c + bcfhn_3 + b2cfhn_h ad - 2d + d£^n_2 + d M ^ . 

a + 2? - 1 a + 2? - 1 

M A w - 3 - &2w-2A) + b2c(f,n_h + 2?2*-3/2) 
a + b - 1 

d d ^ . j ~ i 2 " " 1 ^ ) + db(ihn^ + p 2 n - % ) 
+ . _ _ _ _ _ 

g ( a - 1) + d(a - 2) + 2? 2 n - 1 c ( l - a) + 2?2 n"1d(2 - a) 
a..'+ 2? - 1 

b°Jin - 2^2n - 1 + ^ C J 2 n - 3 ^ 2 n - l + " ^ 2 n - l + ^ ^ 2 n - 2 ^ 2 n - l 

a + 2? - 1 
[ s ( a - 1) + d(a - 2 ) ] [ 1 - £ 2 n _ 1 ] 

a + 2? - 1 

_ ^ . J ^ - z + ^ 2 * - l + b{bcf2nrS + d l 2 n _ 2 ) ] 
a + 2? - 1 

[g(a - 1) + d (a - 2 ) ] [ 1 - fc2""1] 
a + b - 1 

= l2n'1 ( ^ 2 n + ^ 2 n - l } , [c(a - 1) + d (a - 2 ) ] [ 1 - p ^ " 1 ] 
a + 2? - 1 a + 2? - 1 

by d e f i n i t i o n of p . But t h i s i m p l i e s t h e d e s i r e d r e s u l t . 
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Of course, if b = 1, these yield the formulas of Theorem 3 as they should. 
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In this paper we describe an order-theoretic realization of the Fibonacci num-
bers 1, 2, 3, 5, 8, 13, . .. and of the Bisection Lucas numbers 3, 7, 18, 47, 123, 
.. . . The Bisection Lucas numbers are part of the Lucas sequence and are ob-
tained from the Lucas numbers 2, 1, 3, 4, 7, 11, ... by deleting 2, 1, 4, and 
then every second number after that. We represent the Fibonacci numbers and 
the Bisection Lucas numbers as the cardinalities of sequences of distributive 
lattices that we glue together from simple building blocks. The gluing process 
is described in Section 2, and the main results are formulated in Section 3 as 
Theorem 3.1, Theorem 3.4, and their corollaries. In Section 1, we introduce 
some essential terminology and necessary facts about function lattices. For a 
more complete treatment of these topics, we refer the reader to the standard 
textbooks [1], [2], [5], and to [3]. For a related recursive construction of 
a sequence of modular lattices whose cardinalities are the polygonal numbers, 
we refer the reader to [6]. It should be noted that the construction discussed 
in [6] is very different from the construction discussed here in Section 2. 

1. FENCES, CROWNS, AND FUNCTION LATTICES 

Let P be a partially ordered set, then \p\ is the cardinality of P and P* is 
the dual of P. For integers n ^ 0, n = {l, 2, ..., n} is the totally ordered 
chain of n elements ordered in their natural order, 0 is the empty chain. The 
partially ordered set F(ri) = {i\l < i < n} for n > 1 is a fence if it has the 
following order: 

-i < i + 1 if £ is odd, •, .v 
i > £ + 1 if £ is even. 

From the 2n-element fence F{2n) , for n ̂  2, we construct the 2n-element crown 
C(2n) by introducing exactly one additional order relation5 namely 1 < 2n. For 
example, 

2 4 6 2 4 6 

P(6) = I \ | \ | and C(6) = 

1 3 5 1 3 5 

We extend the definitions to include C(0) = F(0) = 0 and C{2) = F{2) = 2. 
For partially ordered sets P, Q9 we define Qp to be the set of all order-

preserving mappings f: P -> Q partially ordered by 
/ < g if and only if f(x) < g(x) for all x G P. (1.2) 
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If f9 g £. Qp, then the supremum of / and g9 f v g, exists in Qp if and only if 
the supremum of f(x) and g(x) exists in Q for all x E P and 

(/ v g) (x) = f(x) v g(x) . 

Since the same is true for the infimum of f and g, it follows that Qp is a lat-
tice whenever $ is a lattice, P may be an arbitrary partially ordered set. It 
can be easily verified that Qp is a distributive or modular lattice, provided 
that § is a distributive or modular lattice. All of the partially ordered sets 
of the form Qp that we study in this paper are distributive lattices. We are 
particularly interested in the distributive lattices 2F^n* and 2c^n\ for n > 0. 
Note that 2F(°) = 2^0 ) = 1, 2*<1> = 25 and 2F(2) = 2^2> = 3 . As a convenient no-
tation for an order-preserving function f: F(n) •> 2, we use its representation 
by its image vector, i.e., 11212 stands for the function / : F(5) -*- 2 given by 
/(I) = f(2) = f(4) = 1 G 2 and f(3) = /(5) - 2 € 2. 

A list of arithmetical rules for the exponentiation of arbitrary partially 
ordered sets Ps Qs R may be found in [2] and [3]. We restate here only two 
that will be needed later. 

(QP)R s Qp*Rz (Qp)p (1.3) 

W P ) * s (^*)p* (1.4) 

Since we want to recursively construct the lattices 2 ^ and 2 w for in-
creasing n, we shall first describe a process of gluing for lattices that is 
the basis of our recursive construction. 

2. A LATTICE CONSTRUCTION 

Let L be a lattice. An ideal in L is a nonempty subset I C L such that for xs 
y E I also x v y E I9 and for a E J, a: E L , x < a implies a; E J. The dual con-
cept is called a filter or a dual ideal in L. Now let L be a lattice and let 
J C i be an ideal. We glue an order-isomorphic copy Ir of I below I to I as 
follows: Let M be the disjoint union of L and If with the order defined as 

x < y if any only if x <L z/ 

or x <j,y (2.1) 

or x = i f < i <L y for some i E J. 

With this order M is a lattice where the lattice operations are the given ones 
on L and on If and in addition we have x vM i' = x vL £ and # AM /if = (x AL i) '. 
With this structure, Af will be denoted by L 4- J. Similarly, if F E L is a fil-
ter, we can glue a copy ,Pf of F above F to the lattice .L, The order on the 
disjoint union K of L and of I" is then defined as 

x < z y if and only if x <^ 2/ 
or # <:F,y (2.2) 

or x ^L f < f! = y for some f E F9 

and the lattice operations are defined accordingly. With this structure, K 
will be denoted as H F. L t F and L 4- I are distributive or modular lattices 
whenever L is a distributive or modular lattice, and L is a sublattice of both 
£ + JF and L i I. Moreover, since the gluing constructions are duals of each 
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other, we have the De Morgan properties 

(L i I)* = L* t I* , N 

(2.3) 
( L t F ) * = L* 4- F* 

for any lattice L, ideal I C L and filter F C L. 
To illustrate how we will use this construction in the next section, let us 

look at 2F^ i 2F^ = 3 t 2, where the elements of the dual ideal 2 in 3 are 
circled: 

jF(2) 3 + 2 122 221 

But the latter is 2 ̂  with the mappings indicated in the diagram, so we get 
that 2F<3) = 2F^ + 2™>. 

This construction can, in a rather loose sense, be considered an opposite 
of a construction used in [4]. In our case, a separate copy of an ideal I or 
filter F of a lattice L is added to L and the new lattice has cardinality 

\L\ + |j| or |L| + \F\ 3P 
whereas in [4] a filter F in a lattice L± is identified with an isomorphic ideal 
J in a lattice L2 and the new lattice has cardinality 

\L, F = \L, \I\ 
In both constructions, modularity and distributivity are preserved and the old 
lattices are sublattices of the new ones. 

3. A FIBONACCI SEQUENCE OF DISTRIBUTIVE LATTICES 

We are now ready to recursively construct the sequence of distributive lattices 
whose cardinalities are the Fibonacci numbers. 

Theorem 3-1: (D 2F{n) = 2F(n~ 1} + 2F(n"2) if n is even, n > 2. 

(2) 2F(n) s 2nn~l) + 2F{n~2) if n is odd, n > 2. 

Proof: (1) If n ̂  2 and even, n is a maximal element in F(n), and the sub-
set A of 2F^n) where n gets mapped to 2 G 2 is order-isomorphic to 2F^n~ x\ In 
2F(n-l) w e fin(i the set J5 of all the mappings where n - 1 gets mapped to 1 E 2. 
B is an ideal in 2F^n~ l> and B is order-isomorphic to 2F^n~ 2\ Therefore, we can 
define the bijection <j> : 2F^~ x> + 2F(n" 2) •> 2F™ as follows: 

(()(/) = g if and only if g\F(n - 1) = / and #(n) = 2, if "/ G 2F(n~ x) 

^|F(n - 2) = / and gr(n - 1) = #(n) = 1, if / G 2F(n" 2). 

For any f G 2F(n"2), the extension f E 2F^ of / defined by f\F(n - 2) = / and 
/(w - 1) = 1 and -f(ri) = 2 is a direct upper neighbor of $(f) in 2F^; converse-
ly, for each g^h G 2Hn) with / = ^1{g)e2F^n-2) and (fT1^) E 2Hn~ l) and # < h9 
the extension / of /with /(n - 1) = 1 in 2F^n_1) is a direct upper neighbor of 
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/ and / < (J) 1(h) in 2F(n 1}. Straightforward calculations will complete the 
proof that (f) is an order-isomorphism, 

(2) For odd n, n is a minimal element in F(n) and we look for the subset 
A C 2FW of functions that map n to 1 E 2. As in part (1), A is order-isomor-
phic to 2F(-n~l\ and in 2F(*n~ L) we find the set B of functions that map n - 1 to 
2 6 2. This set B is a filter in 2F{n~ l \ Dualizing the argument of part (1) 
completes the proof. 

Since 2F^ ' = 1 and 2 = 2", we have an obvious consequence. 

Corollary: The cardinalities of the sequence of distributive lattices 2F^n' for 
increasing n > 0 are the Fibonacci numbers 1, 2, 3, 5, 8, 13, ... . 

It is possible to give an alternate recursive representation of the lat-
tices 2F^ which uses only the operator f. In essentially the same fashion as 
in Theorem 3.1 one proves 

Theorem 3»2: For any n ^ 2, 2F(n) = A t 2F(n~ 2\ where 

A = (2F{n~l))* if n is even, 
and 

A = 2F(n~l) if n is odd. 

Proof: Let A be the set of all functions that map 1 E F(n) to 1 E 2. Then 
this set is order-isomorphic to (2F(n"1))*. The rest of the proof is as that 
for Theorem 3.1. 

Since F(2n) is a self-dual partially ordered set, every lattice 2F(-2n\ 
n > 0, is self-dual also. The two theorems, 3.1 and 3.2, and De Morgan1s laws 
(2.3) explain how this self-duality appears in every other step of the recursive 
construction. Obviously 2F(0) = 1 and 2F(2) = 3 are self-dual and, for n > 0, an 
induction on n establishes 

2F(2n) „ 2 ^ ( 2 n - l ) ^ 2
F(2n~ ^ s ( 2 F ( 2 n - 1 ) ) * t 2F{2n~ 2 ) 

= (2F(2n_1) 4- 2 F ( 2 n - 2 ) ) * = (2F(2n))*. 

In fact, this self-duality is a consequence of the following general theorem* 
which is proved In the same manner. 

Theorem 3.3: Let A and B be lattices so that B C A is a self-dual ideal of A. 
The following statements are equivalent: 

(1) A + B s A* + B. 

(2) A 4- B is self-dual. 

Finally, it should be noted that 2F(3) is not self-dual. 

Theorem 3-4: 2cW s 2F<2*" x> + (2F<2*-3>)* 

3 (2mn-2) f 2^2n"3)) + (2^2""3))* for n > 2. 

Proof: The subset A of 2c^2rC) where the element 2n E C(2n) gets mapped onto 
2 E 2 is order-isomorphic to 2F(2n~ 1}. In 2^2n" 1} we find the set B of all 
those mappings where 1 and also 2n - 1 get mapped onto 1 G 2. B is an ideal in 
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2F(2n- l)s an(j i t i s order-isomoroMc to the dual of 2F(^2n 3^ by (1.4). All maps 
f in B can be extended to maps /: C{2n) ^ 2 by defining 

f{2n) = 1 and f\F(2n - 1) = /. 

These are the direct lower neighbors of the maps that have the same images on 
F(2n - 1) but map 2n to 2. Clearly, 2c(2n) is the disjoint union of A and an 
order-isomorphic copy of B, and its order structure is that of 

2F(2n-l) ^ (2F(2n~3))*. 

For the cardinalities of the lattices 2C^ , we have 

|2C(2tt)| = |2^(2n-l)| + |2F(2n-3)j (3.1) 

and we know already that |2^n)| for n > 0 are the Fibonacci numbers. The sum 
of the nth and the (n + 2)nd Fibonacci numbers generates another Fibonacci se-
quence which is part of the Lucas sequence 2, 1, 3, 4, 7, 11, ... . From the 
Lucas sequence, the Bisection Lucas sequence ([7], p. 1013 #1067) is generated 
by deleting 2, 1, 4, and every second number after that. Since |2^2)| = 3, and 
because of (3.1), we have the following 

Corollary: The cardinalities of the sequence of distributive lattices 2c^2n> for 
increasing n ^ 1 are the Bisection Lucas numbers 3, 7, 18, 47, 123, ... . 

For an interesting extension of the corollaries to Theorem 3.1 and Theorem 
3.4, we replace the two-element chain in the base of our function lattices by 
the Boolean algebra 2k, k > 1 denoting a k-element antichain. Then, (2*)F(n) = 
(2F^)k by (1.3) and, therefore, we have as a consequence of the corollary to 
Theorem 3.1 that the cardinalities of (2k)F^ for n > 0 are given by the kth 

powers of the Fibonacci numbers, 1*, l \ 3*, 5* 8*, .. . . Similarly, (2fe)C(2n) ~ 
(2c(2n^)k and, as a consequence of the corollary to Theorem 3.4, the cardinali-
ties of (2k)°(2n^ , n > 0, are the kth powers of the Bisection Lucas numbers, 
3k, lk

3 18*, 47*, ... . 

We conclude the paper with an example which illustrates our construction. 
We show that our method of gluing provides a completely symmetrical construc-
tion of the free distributive lattice on three generators, that is, the lattice 
2C(6^ which has 18 elements. We construct 2°^ as follows: 

2C(6) s 2F(5) 4- (2F(3))* = (2F(4) i 2F(3)) 4- (2F(3))*. 

The circled elements in the figure below are those of the filter 2F(3) in 2F^\ 
consisting of the maps where 4 G F(4) is mapped to 2 G 2. 

= 2 n 4 ) = 2F(3) + 2F{2) 

To get 2F(5) = 2 W ) f 2F(3\ we glue a copy of 2F(3) above 2F(3) as shown in the 
following figure. Here the mappings where 1 and 5 in F(5) both go to 2 E 2 are 
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circled. This circled set is an ideal in 2F(5) and it is an isomorphic copy of 
the dual of 2F^). 

= 2F(5) 

Finally, we attach a copy of the circled ideal in the figure for 2^u ; and get 
the free distributive lattice 2C^6\ 
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Recen t ly , G. E. Bergum and V. E. Hoggat t , J r . [1] have shown t h a t 

((a2(x) + I)/a(x) (a2k (x) - 1 ) , x > 0, 
ZF'XW = TTX) + \ , ,„ ( 1 ) 

n = 0 *kW> {($2(x) + l ) /g(a0(B2 f c0&) - 1 ) , x < 0 , 
where {Fji(x)}a^:sl is the sequence of Fibonacci polynomials, defined recursively 
by 

F^x) = 1, F2(x) = x, Fk+2(x) = xFk+1(x) + Fk (x) , k > 1, 

and a(x) = (x + )/x2 + 4) /2, 3(a:) = (a: - Vx2 + 4)/2. Evidently, for x = 1 it is 
the known formula for the Fibonacci numbers [2]. 

In this paper we give, by an elementary method, an extension of the result 
(1). Namely, we show that 

F(r n i i n A x ) (&k(x)/Fk(x), x > 0 , 

£ ( - 1 ) p n * F (x)F M= \ ( 2 ) 

n = o *rnkkx)]<pn + ik{x) {ak(x)/Fk(x), x < 0 . 

Obviously , for r = 2 , we o b t a i n (1) from ( 2 ) . 
Fur thermore , we f ind t h a t 

/ a(x) &k(x) x > Q 

f 2n^k{x) \<*2<*> + ! * * ( * > * > 

I a,*(x) + 1 Fk(x)'-

where Lk(k) is the Lucas polynomial defined by Lk(x) - ^ + 1 (^) + Fk_1(x). 
From the identity 

•pn+l 
.7? — .7!^ 

•.r-0(l - Xpr)(l -XpF + 1) (1 - X)(l -X?n + 1) 

if we put x = $k(x) /ak(x) we obtain 

Using the facts that \$(x)/a(.x)] < 1 if x > 0 and that B(«)/a(ic) < -1 if 
x < 0, from (4), when m ->- <=°, we have (2). 

Similarly, from 

£ 2rx2' x 
*-°l + x2' l ~ x' 
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if we put x = $k(x)/ak(x) 5 we find (3). 
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1. THE CONJECTURE 
In the March 1983 issue of the Mathematical Gazette [9], Mr. Moore conjectures 
that if one lets 

1 1 

1 1 + x 
(1.1) 

raises Q to powers and scales each such matrix down by making the leading entry 
1, then the scaled down sequence of matrices approaches 

(1.2) 

as n -* °°, where (f) = (x + vx2 + 4)/2. 
The purpose of this paper is to show that the conjecture is true if x>-2, 

while the limit is 

r1 
^-2 

(1.3) 

if x < -2 and does not exist if x = -2. 
It is worthwhile to mention at this point that the conjecture was first 

brought to the editor!s attention by a letter from Mr. Moore in October 1982. 
The proofs of Theorems 1 to 6 were completed by Professor Bergum in November 
1982. Due to the pressure of other work, the publication of these results was 
delayed. Several months later, the information on Jacobsthal polynomials ar-
rived from Professor Horadam along with an alternate proof of Theorem 4. Pro-
fessor Bennett joined the group by showing that (2.14) does not have a limit as 
n approaches infinity. The combined results are what is to follow. 
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If one carefully examines the way we multiply matrices, then it is quite 
obvious that the elements of the powers of Q satisfy linear recurrences. Exam-
ining the first five or six powers of Q5 we are led to believe that 

Mn Nn 

(1-4) 

where we define the sequences {Hn}, {Mn}, and {Nn} recursively by 

Hn+2 = (x + 2)Hn+1 1, ff, 2, 

Mn+2 = (x + 2)Mn+1 - xMn, M1 = 1, M2 = x + 2, 
Nn+Z = (a + 2)Nn+1 - xNn, N1 = x + 1, N2 = x2 + 2x + 2. 

(1.5) 

(1.6) 

(1.7) 

Before proving the validity of (1.4), we first establish the following re-
sults. 

Theorem 1: (a) #„ + M Hn + ls 

(b) Mn + Nn = M n+l ' 

(c) (x + l)Mn + En 

(d) (x + l)Nn + Mri 

M. n + l ' 

Proof: Since the proofs are very similar, we prove only part (c). 

When n = 1 we have (x + l)M1 + # 1 = x + l + l = x + 2 = M2, and when n = 2 
we have (x + 1)M2 + H2 = (a; + l)(a; + 2) + 2 = x2 + 3x + 4 = M3; so that (c) is 
true for n = 1 and 2. Now assume the statement is true for all positive inte-
gers less than k where k > 3. Then by (1.6), (1.5), and the induction hypothe-
sis, we have 

(x + l)Mk + Hk = (x + l)[(x + 2)Mk_1 xM-k-2- + [(x + 2)H fc-i x# fc-2 
(a; + 2)[(ar + DMk_1 + #fe_x] - ^ [ ( x + l)Mk_2 + #fe_2] 

<* + 2)Mk - xMk_1 =Mk+lS 

and (c) i s proved. 

The proof of (1.4) follows directly from Theorem 1 by mathematical induc-
tion giving 

1 1 
then Theorem 2: If 

Hn Mn 

Mn Nn 

for all integers n ^ 1. 
.1 I + x_ 

Now we scale down Qn and obtain a new sequence of matrices {Rn} where 

1 Mn/Hn 

_Mn/Hn Nn/HnJ 
(1.8) 

and then ask: What happens as n -* °°? To answer this question, we first apply 
(1.6) and (1.7) found in [6] and obtain 

_ (2 - 3)a* (2 - a)f n > l3 (1.9) 
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M (» + 2 - sxx"-1 - .Qr + 2 - o o e " - 1
 n>l> 

n Ot — p 

,7 [a?2 + 2a? + 2 - (a? + l ) S ] a n - 1 - [a?2 + 2a? + 2 - (a? + l j g J B " " 1
 n ^ 

" n - a _ 6 > u.n; 
w > 1, 

where 

(x + 2) + Va?2 + 4 , D (a + 2) - Vx2 + 4 /i io\ 
a = —̂~ and $ = ;> • (1*12) 

are the roots of the characteristic equation arising from the recurrences (1.5), 
(1.6), and (1.7). Next, we analyze the range of (3/a and a/$9 as this is needed 
before we can find 

Mn Nn 
lim — and lim — . 
rc + °°  tin n + ™ tin 

If x > -2, then 0 < 2(a?2 + 4) + 2(a? + 2)Vx2 + 4, so that 

4a? < [x2 + 4a? + 4 + 2(a? + 2)>/a?2 + 4 + a?2 + 4] = [ (a? + 2) + Vx2 + 4 ] 2 

or 
1 > 4a?/[(a? + 2) + Vx2 + 4 ] 2 . 

When a? ^ 0 we can m u l t i p l y and d i v i d e t h e r i g h t s i d e of t h e l a s t i n e q u a l i t y by 
(a? + 2 - y/x2 + 4) t o o b t a i n 

1 > x + 2 ~ ^ 2 + 4 = j3 
x + 2 + Va^~T~4 a 

I f x - 0 , t h e n 3 = 0 and a = 2 , so t h a t 3 /a = 0 < 1. Since x > - 2 , we a l s o have 

0 < x + 2 + /a?2 + 4 or 0 < 2 (a? + 2) 2 + 2(a; + 2)Vx2 +~4, 

so t h a t 

-4a? < 2a?2 + 4x + 8 + 2(a; + 2)>/a?2 + 4. 

Hence, 
4a? > -[(x + 2) + Vx2 + 4 ) 2 or - 1 < 4a?/[ (a? + 2) + /a?2 + 4 ] 2 . 

Opera t ing as be fo re when a? ^ 0 , we see t h a t 

_1 < QE + 2> ~ ^ 2 + 4" = 1 
(a? + 2) + Va?2 + 4 a 

which is also true if a? = 0. Therefore, 

-1 < -& < 1, if x > -2. (1.13) 

When x < -2, we have 
a? + 2 < /a?2 + 4 or 2(a? + 2) 2 > 2(a? + 2)\/a?2 + 4 , 

so t h a t 
2a?2 + 4a? + 8 - 2(a? + 2)Vx2 + 4 = (a? + 2 - /a?2 + 4) 2 > -4a?. 

Hence, 
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-1 < te/(* + 2 - v^~T^)2 = X+ 2 + ^ 2 ± A a a a 
x + 2 - Vx2 + 4 ^ 

Since x < 0, 

x2 + 4x + 4 < x2 + 4 or /(# + 2) 2 < Vx2 + 4. 

Therefore, 

|x + 2 | < /x2 + 4 and a? + 2 > -Vx2 + 4, 

so that a > 0. However, 3 < 0 and we get 

-1 < ! < 0, if x < -2. (1.14) 

When x = -2, we have a/3 = 3/a = -1. Combining these results, we obtain 

Theorem 3: If a = ~ and x + 2 - Vx2 + 4 
, then 

(a) 3 a -1, if x = -2, 

(b) -1 <•£ < 0, if x < -2, 

(c) -1 <-£ < 1, if x > -2. 
a 

Let x > -2 and # ^ 0; then by Theorem 3(c), substitution of 3* and ration-
alization 

, . Mn X + 2 x + 2 + Vx2 + 4 x + Vx2 + 4 
2 6 (2 - a) + Vx2 + 4 2 

Also, using similar steps, we have 

Nn _ x2 + 2x + 2 - Q + 1)3 _ x2 + x + 2 + (x + l)Vx2 + 4 lim 
#*» 2 - 3 (2 - x) + Vx2 + 4 

2x2 + 4.+ 2xv/x2~T~4 _ ,2 

If x = 0, then Mn./Hn = #n/#n = 1 for all ft, so that 

Mn Nn 
lim —- = lim — = 1. 

Hence, we have 

Theorem k: If x > -2, then lim i?„ 

Let us now assume that x < -2; then reasoning as above, we have 

2 _-, ., . Mn ar.+ 2 - a x + 2 - Vx2 + 4 lim — = — — = 
Yl -+• oo /iy, Z "— Gt 

2 - x - Vx2 + 4 x + Vx2 + 4 
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Similarly, 

- . Nn x2 + 2x + 2 - (x + l)a 
lxm 77— = ~ 

n + oo Hn 2 - a 
and we have in (1.8) 

Theorem 5-' If # < -2, then lim R -

When x = -2, Q 
1 1 

1 -1 
in (1.1) so that Rn = 

} , if n is odd 
, where 

J, if n is even 

1 0 

_0 1_ 

Hence, we obtain in (1.8) 

Theorem 6: If x - -2, then lim Rn does not exist. 

Observe that when # = -1, (1.5), (1.6), and (1.7) all reduce to the defi-
nition for the sequence of Fibonacci numbers and (1.1) becomes 

"l l" 

_1 0_ 

which is discussed in [1], [2], [3], and [4]. 

2. JACOBSTHAL POLYNOMIALS AND MATRICES 

The Jaeobsthal polynomials Jn(x) = Jn axe defined in [7] by the recurrence 
relation 

Jn+2 = Jn+1 + xJn (JQ = 0> Jl = D 

and the first few term of {Jn} are 

Jl J2 JB Jh JS 

1 1 1 + x 1 + 2x 1 + 3x + x2 

The matrix (1.1) can now be expressed as 

1 + l\x + 3xz 

(2.1) 

(2.2) 

J 
J, J2 

-J2 y 3 J 

and justifiably called a Jaeobsthal matrix. 

(2.3) 
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Powers of this matrix obviously do not have Jacobsthal polynomials as their 
entries. 

Therefore, two questions arise: 

(i) How may the Jacobsthal matrices 
Jn J

n+1 

L / n + l Jn+2-J 
, n > 2, be generated? 

(ii) What is the result if we scale these matrices down as in (1.8) and let 
n -> °°? 

The answer to (i) is associated with the matrix H [E H(X)] 

"0 
H 

x 1 
(2,4) 

Using (2.1)-(2.4) and induction* we readily obtain 

HnJ = 
Jn+1 Jn+2 

Jn+2 Jn+3 
(2.5) 

so question (i) is answered. 

Let the matrices generated by powers of H in (2.5) be represented as 

Jn=HnJ. (2.6) 

We call the set of matrices {Jn} the Jacobsthal matrices, since all their en-
tries are Jacobsthal polynomials. 

Scaling down the Jacobsthal matrices, we have 

J„ 

n+l 

Jn+2 Jn+3 
Jn+1 Jn-i 

(2.7) 

Now5 the Binet form for Jn can be found by routine measures (see [2] and 
[8]) to be 

eL r 
y/l + kx 

•y X i 
1 

where ^ _ _ _ 
1 + Vl + Kx . 1 - /l + kx 

y = _ , 6 = _ 

are the roots of the characteristic equation 

A2 - X - x = 0 

for the recurrence relation (2.1). 

(2.8) 

(2.9) 

(2.10) 
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Let x > -1/4. Elementary calculations reveal that |6/y| < 1. Hence, 

J 
lim-4^- = Y, (2.11) 

and 
J, n+2 

11m-=— = yz, (2.12) 

so that the limiting form of J,* is 

"1 Y" 

y Y 2 
(2.13) 

When x = -1/4, y = 6 = 1/2. Hence, Jn = n/2n~1 by standard methods of dif-
ference equations where the roots of the characteristic equation are equal. 
Therefore, (2.13) still holds. 

If x < -1/4, then from (2.1) 

2(v^) n . . , 
Jn = —ZZZZZZT sm(nT) 

V-l - kx 
where cos T = 1/lV-x and sin x = V-l - bx/2V-x. Therefore, 

n + 1
 = r— sin(n + 1 ) T _ ( 1_ (cot TIT)V-l - 4ar\ ,? , ,. 

Jn V ^ sin(nx) " \2 + 2 /' u" 1*' 

Theorem ~Ji There is no real number T having the property that 

lim cot(nx) exists as a finite real number or ±°°. 

Case I . Suppose that T is a rational multiple of IT, say T = (p/q)i\, where 
p is an integer and q is a natural number. Then cot(nx) is not even defined 
for integers n that are multiples of q. 

In each of the cases to follow, it will be assumed that x is not a rational 
multiple of TT. Then sin x + 0 and sin(nx) ^ 0 for any positive integer n. Sc 
the formula 

. , i\ cot(nx) cot x - 1 ,0 K v 
cot(n + l)x = 1 , ' - . , —-— (2.15) 

cot(nx) + cot x 
is valid. Note also that cot x ^ 0. Furthermore., cot(nx) £ 0 for any positive 
integer n since this would imply that X is a rational multiple of IT. 

Case I S . If lim cot(nx) = ±°°, then (2.15) yields 

1 
cot x / x -. . / IN -, . cot(nx) oo = lim cot(nx) = lim cot(n + l)x = lim • — — — — — = cot T, 

cot(nx) 
which is impossible. 

Case III. Suppose that lim cot(nx) = r9 where r is some real number. Set 
s = cot x. If r + s £ 0, then from (2.15), 
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rs 
r - r + s 5 

r2 •+ 
and 

r2 + rs = rs - 1, 

r2 = -1, which is impossible, 

If r + s = 0, then in order to obtain a finite limit in (2.15), it must follow 
that rs - 1 = 0 . Thus, 

or 

1 
r = -s = — 

s 
,2 _ -1, which is impossible. 

It has now been shown that, for all possible choices of T , lim cot(nx) can-
not exist. Hence, Llm(Jn+1/J ) does not exist. 

Much more can be said about other properties of the Jacobsthal polynomials 
Jn. They are, in fact, a special case of the un(a, b; p3 q) discussed in [6], 
where p = 1, q = -x» See the Historical Note below for Jacobsthal1 s original 
contributions and [5] for additional properties. 

3» HISTORICAL NOTE 

The recurrence relation (2.1) is associated with the name of Jacobsthal [7] 
who, in 1919, seems to be the first to record it. His notation is related to 
ours by the correspondence where Fn(x) are the Fibonacci polynomials defined by 
F^x) = 1, Fz(x) = l, Fn + 2(x) = xFn+l(x) + F (x). 

Using methods different from ours, Jacobsthal established the Binet form 
(2.8). Among other basic results demonstrated by him are, in his notation, 

(a) the explicit summation formula 

[n/2 
Fn(x) = EQ (n ~k

 k)x* 

(b) the extension of the definition of Fn{x) to negative values of n. That 

F_n(x) = (-Dn , n> 1. 

Both of the above results can be readily converted, with due care, into our 
(/-notation by means of the stated correspondence. 

Although Jacobsthal alludes to the polynomials (2.2) as "Fibonacci polyno-
mials," they are now known by his name; in fairness, then, the matrices whose 
entries are Jacobsthal polynomials must also bear his name. 
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INTEGERS RELATED TO THE BESSEL FUNCTION J i ( z ) 

F . T* HOWARD 
Wake Forest University, Winston-Salem, NC 27109 

(Submitted October 1983) 

1. INTRODUCTION 
Let Jv(z) denote t h e Besse l func t ion of t h e f i r s t kind and l e t j v denote t h e 
ze ros of z~vJv(z) , wi th | # ( « 7 v > r ) | < | i? ( j v ? p + 1) | . The Rayle igh func t ion of o r -
der 2n, 02n(v), i s def ined by' 

tf2n(v) = E ( J v r)~ln (n = 1, 2, 3 , . . . ) . 
r = l 

The early history of this function can be found in [10, p. 502]; more recently 
it has been investigated by Kishore [5], [6] and others. The first twelve Ray-
leight functions have been computed by Lehmer [8]. 

It is known that 
2n -1 

2 n V x / w - v x, (2n) ! ̂ 2n3 a9 Q/2) = (-l)""1 ^ T B 

a2n(-l/2) = (-l)w j2n)TG 
r2n5 

where B2n is the 2nth Bernoulli number and G2n is the Genocchi number, i.e., 

G2n = 2(1 - 22")B2n. 

A few other special cases have been examined. The writer [2], [3], and [4] has 
studied the cases v = ±3/2 and Carlitz [1] has investigated the integers ar de-
fined by 

2-2r 
a2i>(°) = 7 j ( p _ ! ) ! ar° (1-D 

Carlitz points out that in view of the known arithmetic properties of the Ber-
noulli and Genocchi numbers, it is of interest to look for arithmetic properties 
of CJ2 (v) for other values of v. 

In the present paper we define integers br by means of 

2~2r 

°2rW = r i ( r + 1)! b^ ( l o 2 ) 

and examine their arithmetic properties. A summary of these properties, along 
with a possible generalization of (1.1) and (1.2), is given in Section 4. A 
listing of the first 24 values of bn is presented in section 5. 

2. PRELIMINARIES 

Using formulas (6), (14), and (22) in [5], we can write a generating function 
and recurrence formulas for bn. We have 
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-X J[{x) ^ „ 2-2n 

T TJxJ + I = „?! n\ (n + 1) ! bnX2n' (2-1) 

n-l 
<-l)"(n + D2>„ - -n(n + 1) + E (-l)2""^" + })(" * l)br, (2.2) 

M i ) \ = z ( : ; i ) ( n ; > A . , (2.3) 

It follows from (1.2) that b± = 1, b2 - 1> b3 = 3, £4 = 16. In some of our 
proofs it will be convenient to rewrite (2.2) in the following way: 

n-l 
(-l)n(n + l)bn = -n(n + 1) + £ A(n, r) , (2.4) 

r = l 
where 

«». ,> . <-!)-(;: ix":') 2>. 
To derive properties of bn from (2.2) and (2.3) we need the following lem-

mas, the first due to Lucas [9] and the second due to Kummer [7]. In Lemma 2.2, 
and throughout this paper, we use the notation pm\\h to mean pm\h and pm + 1 \ h. 

Lemma 2.1: If p is a prime number and 

n = n0 + n^p + • • • + n^p^ (0 < ni < p) 

v = rQ + v^p + - — + rkpk (0 < vi < p), 

then 

Lemma 2.2: With the hypotheses of Lemma 2.1, let n - r = sQ + s^p + ••• + skpk 

with 0 ^ s^ < p, and suppose 

p0 + s0 = u0p + c0 (0 < oQ < p) 
uo + ri + si = uiP + ei (0 < cx < p) 

wfe_! + rk + sfe = ufcp + cfe (0 < ^ < p). 

Then 

? i ( " ) . where N = wQ + u± + • • • + Mfc. 

It follows from Lemma 2.2 that, if r^ > n. and *%-+t. ̂
 nj + t f o r ^ = lj *'"' 

q - 1, then 

(;)= 0 (mod p<?). 

It may be of interest to note the following relationship between the num-
bers defined by (1.1) and (1.2). This formula follows easily from Eq. (20) in 
[5]: for n> 1, 

n-l 

250 [Aug. 



INTEGERS RELATED TO THE BESSEL FUNCTION J±(z) 

3. PROPERTIES OF br 

Since 

utiX":1)/'-*') 
is always an integer, it is evident from (2.2) that the bn are positive inte-
gers. Our first five theorems are concerned with determining the prime factors 
of bn. 

Theorem 3.1: Let n = 2km, k > 0, m odd. Then bn E 0 (mod m). 

Proof: The proof is by induction on n. Using the table in Section 5, we 
can verify the theorem for n = 1, 2, ...,24. Assume it is true for n = 1, . .., 
J - 1 and suppose ps||j, p > 2. In (2.4) replace n by J and suppose p̂ flr for a 
fixed P. If s < t, then br = 0 (mod ps) by the induction hypothesis. If 0 < 
t < s, then 

£p E 0 (mod pt) and (P t l) E °  ( m o d P8'^ b y L e m m a 2-2-

If t = 0, then 

either (J + ^ E 0 (mod ps) or t3 * Y\ E 0 (mod ps) by Lemma 2.2. 

In all cases, A(j, r) E 0 (mod ps) , and by (2.4) we see that bj E 0 (mod ps) . 
This completes the proof. 

It follows that if p is an odd prime then bp = 0 (mod p). Also, if we re-
place n by p - 1 in (2.2) and observe that 

(r + i)(?) E ° (mod p2) f o r r = !• . . . . p - 2, 
we have 

bv_Y E 1 (mod p), (3.1) 

where p is an odd prime. The next two theorems give more results along this 
line. 

Theorem 3-2: Let p be an odd prime and 0 < k < p - 2. Then bmp+k E 0 (mod p) 
for all m > 1. 

Proof: We first show the theorem is true for m = 1. It is true for m = 1, 
k = 0, by Theorem 3.1. Assume it is true for m = 1 and A: = 0, ..., J - 1, with 
j < p - 2. Then by (2.4) and Lemma 2.1, we have 

P + j-i 
(-l)p + J(p + j + l)fcp + J- = ~(p + j)(p + j + 1) + E 4(p + j, r) 

r = 1 

«7 
= -J(j + 1) + E 4(P + j, r) (mod p) 

p = l 

J • . 

E -j(j + 1) + E ^(j\ r) (mod p) E 0 (mod p), 

r= 1 

1985] 251 



INTEGERS RELATED TO THE BESSEL FUNCTION J±{z) 

:he last congruence following from (2.4). Thus, the theorem is true for m = 1. 
Slow assume it is true for m = l , ...,/z-l. We know bhp = 0 (mod p) by Theo-
rem 3.1, so we also assume the theorem is true for m = h and fc=0,„..,j-l, 
with j < p - 2. Then, as in the first part of the proof, we have 

(-l)*P + *(fcp + j + l)bh • = ~j(j + 1) + E AU, r) = 0 (mod p) , 
p = l 

which completes the proof. 

Theorem 3.2 tells us that if n > p - 1 and n ^ -1, n i -2 (mod p), then 
2?n E 0 (mod p) . The cases n = -1, n E -2 (mod p) are examined in the following 
theorem. 

Theorem 3»3: Let p be an odd prime. Then for all m > 1, b x^ b 2 E aOT (mod 
p), where aOT is defined by (1.1). 

Proof: In (2.2), we replace n by mp - 1 and divide out p. Then, by Lemma 
2.1, Lemma 2.2, and Theorem 3.2, 

m - 1 i \ i i \ 

( - D ^ V I = i+
p?1(-i>'(")G= I K - * (modp)' 

wi th Z?p_1 E 1 (mod p) . In [1] i t i s shown t h a t a1 = 1 and 

(-l)-""1^ - 1 +"E (-Dr("Xr - IK" (3-2) 

It follows that bmp_l E am (mod p). Now, in (2.2), replace n by mp - 2. Then 
we have 

P"2 m~l im - 1 \2 

(-Om-%-2 = "2 + jC 1(P - 2, r) + iE2(-Dr(r I J) &^-2 

+ E W C " ; 1 ) ! ; : 1K-* ^dp>- < 3 - 3 > 
Note that -2 + Y,A(p - 2, r) = 0 by (2.4). We see from (3.3) that 

Z?2p_2 E 1 E a 2 E Z?2p-r (mod p) ; 

we now proceed to show bmp_2-a (mod p) by using induction on m in (3.3). If 
Theorem 3.3 is true for m = 2, ..., j - 1, then by (3.3) we have 

J-l (-t)*-**., st(-«'«,e:!)[«:!) * ( ' ; ' ) ] - ^ i 
= i +''i; ,(-i)''(jXJ: \)<>r = "j <~<i p>-

P=l 

This completes the proof of Theorem 3.3. 

Carlitz [1] has shown that, if n = mpr
9 then an E am (mod p) for r = 0, 1, 

2, ... . Therefore, we have the following corollary. 

Corollary: If p is an odd prime and n = mpr - 1 or n = mpr - 2, then &n E aOT 
(mod p) for r = 1, 2, 3, ... . 
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It follows from the corollary that, if m > p and pj m5 then bn = 0 (mod p) 
for n = mpr - 1 or- ft = wp^ - 2. 

We next show that Theorem 3.3 is valid for p = 2. 

Theorem 3-4: For TTZ > 1, b2m + 1 = £2m E am + 1 (mod 2). 

Proof: We first show that bhm = 0 (mod 2) for all m > 1. It is clear from 
Lemma 2.1 that 

C V 1)(?++11) E °  ( m o d 2 ) f o r r = 1, 2, or 3 (mod 4). 

Therefore, by (2.2), we have 

^ = £ 1 4r )Ur+ l)^' (mod 2)-
Since Z^ = 16, we can now easily prove by induction that bhm E 0 (mod 2). Now 
we replace n by 2m + 1 in (2.2) and divide out 2m + 2. Then we have 

because 2?^ E 0 (mod 2) and because 

(™\(m * l \ = 0 (mod 2) if r is odd. 

Since £> = 1, we now see by (3.2) that blm + 1 E aOT + 1 (mod 2). 
Next assume that b2m E aOT + 1 (mod 2) for /72=l,...,j-l. Replace ft by 2j 

in (2.2) to obtain 

By (3.2) 5 we now have 2?2 . E a- + 1 (mod 2), which completes the proof. 

It follows that, if ft = 2k - 1 or ft = 2k - 2, then Z?n is odd, /c = 1, 2, 3, 
... . Otherwise bn is even. These facts enable us to extend Theorem 3.1. 

Theorem 3-5: bn = 0 (mod ft) unless ft = 2J', j = 2, 3, . . . . If ft = 2j - 2, then 
bn E 0 (mod ft/2). 

Proof: We use induction on ft. Theorem 3.5 Is valid for ft = 1, 2, ..., 24; 
assume it is true for ft=l, ...,/c-l. We assume fc is even and k £ 2J - 2, 
since otherwise, by Theorem 3.1, there is nothing to prove. Assume 2s\k and 
2t\v for a fixed r, 1 < r < Zc - 1. If t > s, then bv E 0 (mod 2s) by induction 
hypothesis, and A(k, r) E 0 (mod 2s). If 1 < t < s, then 

( j ; 1 f ; 1 ) : o ( M d 2 - « ) 

and br = 0 (mod 2*), so 4(fc, r) E 0 (mod 2s). If 1 < t < s, then 
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(s:ix*; l) s i '<-"-•>• 
and A(k, r) = 0 (mod 2s). Thus, if t > 0 and s > 1, A(k, r) = 0 (mod 2s). It 
is now easy to see that, if s > 1, we have, by (2.4) and Lemma 2.2, 

bk = 4(fc, 1) + A(k, 2s - 1) = 2s"1 + 2s"1 = 0 (mod 2s). 

I f s = 1, l e t 2/77 + 1 | | ( k + 2 ) , m > 1. Then by ( 2 . 4 ) , 

m m+1 
* k

 E E M k , 2* - 1) + £ i4(/c, 2 { - 2) E 2m E 0 (mod 2 ) , 
£ = 1 £ = 2 

and the proof is complete. 

If we replace n by an odd prime in (2.2), then since 

(? t !)(P V) E ° <m o d P2) ̂  r = 2, . . . , p - 2, 
it is easy to see that 

bp = p (mod p 2 ) . (3.4) 

In the same way, we can show that if p > 3, then 

Vi -h (mod p2)- (3-5) 

If we set bp + n E pdn (mod p2) , we can find a simple generating function for dn. 

Theorem 3*6: Let p be an odd prime and let 0 < n < p- 3. Then Z?p + „ E pdn (mod 
p 2) , where 

„ dn(x/2)2» + 2 , x ,2 

1 +
 n ? 0 n\{n + 1)! ~ (,2c/,(x)j ' 

Proof: Define d„ by bp+n = pd„ (mod p2) for 0 < n < p - 3, and replace w 
by p + n in (2.3). Using Lemma 2.1, we see that d„ = dn (mod p), where 

< - + » ' * •»*,(;: IX" r K * . - * ^ °-6) 

with d0 = 1. We multiply both sides of (3.6) by (x/2)2n+2 and sum, beginning 
at n = 0, to obtain 

~ Df(x) = 2B(a)Z?(a:), (3.7) 

where 
. dn(x/2)2n+2 

D(x) = 1 + Z „f0 «!("+!)! ' 

B(x) - ̂  n, (w + x) , = - 2" J (X) + "2 ' 

the last equation following from (2.1). Thus, 

P'OO 2 ̂ ( X ) , 2 
(#) Jx (ic) re 
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After integrating both sides of (3.8) and plugging in x = 0 to determine the 
constant, we have 

D(x) = (^fey)2' 
which completes the proof. 

Theorem 3.5 can be compared to a similar result for the an. Carlitz [1] 
has shown that for 1 < n < p, ap + n

 E °nV (mod p2) , where the cn are defined by 

en(x/2)2n 

1 +
 n ? L ( n - l)!(n- 1)! = W*»"2-

Theorem 3«7- If p is a prime number and n = ps, s > 3, then Z?̂  E p s (mod ps + 1) . 
If p is odd5 the congruence is valid for s > 1. 

Proof: First, assume p is odd. Theorem 3.1 tells us that, if pt\r, then 
br E 0 (mod p*); we also note that, if j = ps - 1, then bj = 1 (mod p) by the 
corollary to Theorem 3.3. Now, in (2.4), replace n by ps. It is clear from 
Lemma 2.2 and the above comments that A(ps, v) E 0 (mod ps + 1) for r = 2, ..., 
ps - 2. We therefore have, for n = ps, 

(ps + l)in = (ps + l)ps + A(ps, 1) + ^(ps, ps - 1) 

E. (ps + i)ps (mod ps + 1 ) . 

This proof is valid for s > 1. 
For p = 2, the situation is more complicated. We first show that, if m = 

2s - 1 with s > 2, then bm = 1 (mod 4). In (2.4), replace n by 2s - 1, s > 2. 
It is easy to see by Lemma 2.2 and Theorem 3.5 that A(2S - 1, r) E 0 (mod 2S + 2) 
for each r except r = 2 S _ 1 -1; in that case, A(23 - 1, 2S_1-1) = 0 (mod 2 S + 1 ) . 
After dividing both sides of (2.4) by 2 , we have, for m = 2s - 1, 

bm = -1 + A(2S - 1, 2s"1 - 1)/2S = - 1 + 2 = 1 (mod 4). 

Now, replace n by 2s in (2.4). For p = 1, . . . , 2s - 1, it is easy to see, by 
Lemma 2.2 and Theorem 3.5, that A{2S, r) = 0 (mod 2S + 1) if 2t\\r with t >•!. If 
t = 0, then A(2S, r) = 0 (mod 2S+1) except for r = 1, 2s - 1, and 2s"1 - 1. We 
therefore have, by (2.4) with w = 2s, 

bw = 2s + A(2S, 1) + A(2S, 2s - 1) + 4(2S, 2s"1 - 1) 

E 2s + 2s"1 + 2s"1 + 2s E 2s (mod 2S + 1) . 

4. SUMMARY 

We have shown that the integers bn defined by (1.2) have the following proper-
ties i 

bn E 0 (mod n) unless n = 2j - 2, j = 2, 3, . . . . If w = 2J' - 2, 
then bn = 0 (mod n/2). (4.1) 

bmp + k - 0 (mod p) if p is an odd prime, 0 < fc < p - 3, and m > 1. (4.2) 

bmp-i E bmp-2 = am (mod p) if p is any prime number, m > 1 and am 

is defined by (1.1). (4.3) 

bp + n E p d n (mod p 2 ) 5 i f p i s an odd p r i m e , 0 < n < p - 3 , and• £?„ 
i s def ined by 
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1 +
 n ? 0 "!(n + 1)! " \2l^(^)j (4.4) 

bn ~ p s (mod p s + 1 ) if n = p s , p any prime number, and s ^ 3. 
If p is odd, the congruence is valid for s > 1. (4.5) 

To generalize (1.1) and (1.2), we can define the numbers ak n by 
o-2n 

a 2 n ( W (n + fc)!(w + fc - 1) ! a^'n'' 

It is evident that ao>n = an and a l j n = bn. Also, ak l = ak 2 = (/c!)2. For-
mulas analogous to (2.1), (2.2), and (2.3) can be written down, but properties 
such as (4.1)-(4.5) do not appear to be obvious or easily proved. 

5. TABLE OF VALUES 

The following table of values for bn was computed by Elmer Hayashi of Wake For-
est University. The writer is grateful to Professor Hayashi for his assistance. 
The writer also wishes to thank John Baxley of Wake Forest and Sam Wagstaff of 
Purdue University for their help in proving that all the factors listed below 
are prime numbers. 

b2 
b3 
bfy 

b5 
b, 
b7 
b, 
b9 
bio 
bn 
b12 
bi3 
blh 

bis 
bie 
bn 
bis 
bis 
b2o 
b21 
b22 

b23 
b2h 

= 1 
= 1 
= 3 
= 2h 

= 2 • 
= 33 

= 5 • 
= 2 3 

= 2 2 

= 2 2 

= 2 2 

= 2 s 

= 2 2 

= 3 • 
= 3 
= 2 
= 2 
= 2 
= 23 

= 2 5 

= 2 3 

= 2 2 

= 2 2 

= 2 5 

Table of Values for bri 

5 • 13 
•5-11 
7 • 647 
72 • 11 
3 2 , 7 , 

3 • 5 • 
3 * 5 * 
3 2 • 5 • 
3 • 11 < 

7 • 11 • 
5 • 7 2 « 
5 • 
5 • 
32 

3 • 
3 • 
32 

3 • 
3 • 
33 

7 • 
7 • 
• 7 
11 
5 • 
• 5 
5 • 
7 • 
• 7 

• 103 
• 79 • 547 
7*. 777013 
7 • 11 • 13 • 195407 
> 11 • 163 • 193189 
• 13 • 449 • 1229 • 26119 
13 - 677 • 15473 • 44983 
• ll2 • 13 * 2897 • 9208057 

13 • 85619815212829 
13 • 17 • 263 • 331 • 379 • 25452443 
• 132 • 17 • 181 • 827 • 22338511427 
• 17 • 19 • 4974009342476711903 
17 • 19 • 137 • 315195497 • 7249259477 
13 • 17 • 192 • 395001666315568761311 

19 • 463 • 13394141029047928133 
23 • 47 • 151 • 60443 • 3308491075235249 

11 • 
11 • 
• 11 
• 13 
13 • 
• 7 • 
7 2 -
11 • 
• 11 

11 • 
132 

• 17 

• 19z 

132 • 17 
•17-19 
19 • 23 • 24917 • 21854261271093057456989 

REFERENCES 

L. Carlitz. "A Sequence of Integers Related to the Bessel Functions." Proc. 
Amer. Math. Soc. 14 (1963):1-9. 

256 [Aug. 



INTEGERS RELATED TO THE BESSEL FUNCTION J1(z) 

2. F. T. Howard. "Polynomials Related to the Bessel Functions." Trans. Amer. 
Math, Soc. 210 (1975):233-248. 

3. F. T. Howard. "Properties of the van der Pol Numbers and Polynomials." J. 
Reine Angew. Math. 260 (1973):35-46. 

4. F. T. Howard. "The van der Pol Numbers and a Related Sequence of Rational 
Numbers/' Math. Nachr. 42 (1969):89-102. 

5. N. Kishore. "The Rayleigh Function." Proc, Amer. Math. Soc. 14 (1963): 
527-533. 

6. N. Kishore. "The Rayleigh Polynomial." Proc. Amer. Math. Soc. 15 (1964): 
911-917. 

7. E. Kummer. "Uber die Erganzungssatze zu den Allgemeinen Reciprocitatsge-
setzen." J. Reine Angew. Math. 44 (1852):93-146. 

8. D. H. Lehmer. "Zeros of the Bessel Function Jv(x)." Math. Comp. 1 (1943-
1945):405-407. 

9. E. Lucas. "Sur les congruences des nombres euleriens et des coefficients 
differentials . . ." Bull. Soc. Math. France 6 (1878):49-54. 

10. G. N. Watson. A Treatise on the Theory of Bessel Functions. New York: 
Cambridge University Press, 1962. 

1985] 257 



THE NUMBER OF SPANNING TREES IN THE SQUARE OF A CYCLE 

G. BARON, H. PRODINGER, R. F. TICHY 
Technische Universitat Wien, A-1040 Vienna, Bu$hausstra$e 27-29, Austria 

F. T . BOESCH 
Stevens Institute of Technology, Hoboken, NJ 07030 

J. F. WANG 
Cheng-Kung University, Tainan, Taiwan, Republic of China 

(Submitted October 1983) 

INTRODUCTION 

A classic result known as the Matrix Tree Theorem expresses the number of span-
ning trees t(G) of a graph G as the value of a certain determinant. There are 
special graphs G for which the value of this determinant is known to be obtained 
from a simple formula. Herein, we prove the formula t ^ 2 ) = nF%9 where Fn 
is a Fibonacci number, and (^n is the square of the n vertex cycle c^n using 
Kirchoff's matrix free theorem [7]. 

In this work graphs are undirected and, unless otherwise noted, assumed to 
have no multiple edges or self-loops. We shall follow the terminology and no-
tation of the book by Harary [5]. The graph that consists of exactly one cycle 
on all its vertices is denoted by ̂ „. The square G2 of a graph G has the same 
vertices of G but u and V are adjacent in G2 whenever the distance between u 
and V in G does not exceed 2. 

The number of spanning trees of a graph G, denoted by t(G) , is the total 
number of distinct spanning subgraphs that are trees. The problem of finding 
the number of spanning trees of a graph arises in a variety of applications. 
In particular, it is of interest in the analysis of electric networks. It was 
in this context that Kirchhoff [7] obtained a classic result known as the matrix 
tree theorem. To state the result, we introduce the following matrices. The 
Kirchhoff matrix M of n-vertex graph with vertex set V = {vls v2, ..., vn} is 
the n x n matrix [m^j] where 772 •• = -1 if X>i and Vj are adjacent, and m^ equals 
the degree of vertex i . 

KIRCHHOFF8S MATRIX TREE THEOREM 

For any graph with two or more vertices, all the cofactors of M are equal, and 
the value of each cofactor equals t(G). 

Clearly, the matrix tree theorem solves the problem of finding the number 
of spanning trees of a graph. Furthermore, we note that this is an effective 
result from a computational standpoint, as their are efficient algorithms for 
evaluating a determinant. However, for certain special cases, It Is possible 
to give an explicit, simple formula for the number of spanning trees. For ex-
ample, it is easy to see that this number is n if G is ̂ „. Also, If G is the 
complete graph Kn, then a classic result known as Coyleyfs tree formula states 
that t(Kn) = nn~2 (see Harary [5] for a proof). Another graph of special in-
terest is the wheel Wn which consists of a single cycle &n having an additional 

The work of F. T. Boesch was supported under NSF Grant ECS-8100652. 
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vertex3 called the centev, joined by an edge to each vertex on the cycle. In 
the case of wheels, there is a fascinating connection between the number of 
spanning trees, Lucas numbers, and Fibonacci numbers. Many authors including 
Harary, OfNeil, Read, and Schwenk [6], Sedlacek [12], Rebman [10], and Bedrosian 
[l]have obtained results regarding this connection. The classic result is due 
to Sedlacek who showed that 

t(Wn) = ((3 + V5)/2)n + ((3 - /5)/2) n - 2 for n > 3. 

Another simple graph, which is a variant of a cycle, is ̂  the square of a 
cycle. 

has all its vertices of degree 4. For n = 
5, ̂  = K5; for n = 4, ̂  = Khi however, the vertices of Kh have degree 3. In 
the case n > 5, the matrix M can be permuted into a circulant matrix form. Here 
we are assuming that an n x n circulant matrix K is one in which each row is a 

For n > 5, the squared cycle' 
f52 = K 5 ; for n = 4, <jf£ 

one-element shift of the previous row, 
are taken modulo n. Namely f or ̂ 2 , mn-n-

i.e. . 
= 4, 

^ j - ^i + i, j+ 13 
= -1 if |i -

where the indices 
j| = 1, 2, n - 1, 

2, and 777 7 0 otherwise. Alternatively, as M is a circulant, it could 
be specified by its first row (4, - 1 , - 1 , 0, 0, ..., 0, - 1 , - 1 ) . 

Recently, Boesch and Wang [2] conjectured, without knowledge of [8], that 
t(^n2) = nF%, Fn being the Fibonacci numbers FQ = 0 , F± = 1, Fn = Fn_1 + Fn_2. 
Herein, we prove that this formula is indeed correct. Clearly, by KirchhoffTs 
Theorem, if un denotes t(^n

2),then un is the determinant of the (n - 1) x (n- 1) 
matrix Vn_l9 where Vn is the following kxk matrix: 

4 
1 
1 
0 

0 
0 
0 
1 

-1 
4 

-1 
-1 

0 
0 

-1 
-1 

4 
- 1 

. 
0 

0 
-1 
-1 

4 

„ 

0 
0 

-1 
-1 

0 
0 
„ 

„ 

. 
0 

-1 

-1 
0 
0 
„ 

. 

. 

. 
0 

-1 
- 1 

0 
0 

0 

4 
-1 
-1 

0 

0 
0 
. 
• 

-1 
4 

-1 
-1 

0 
0 
0 
• 

-1 
-1 

4 
-1 

-1 
0 
0 
0 

0 
-1 
-1 

4 

= Vv 

For convenience of the proof, we introduce the following family of matrices, 
all of size kxk: 

Afr is the matrix obtained by deleting the first row and first column of 
Vfc+1> whereas 

*fc-i 

- 1 - 1 0 

f̂c-i 
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-1 -1 0 

4 

B, k-i 

Let ak, bk, ck, dk, vk be respectively the determinants of Ak, Bk> Ck, Dk, Vk 

Note that un = Vn_1. 

Lemma 1: vn = an - an_2 + 2 ( - l ) c n _ 1 B 

Proof: We use t h e fo l lowing simple i d e n t i t y : 

de t ( - l ) * + 1 a n l - d e t 

+ de t an- 1, 1 
0 a ns 1 

Applying this to vn, we obtain: 

-1 -1 0 ... 0 -1 

vn = (-l)ndet 

(1) 

-1 

0 

0 
-1 

- 1 

+ de t 

4 

-1 
- 1 

0 

: 
0 

- i - 1 0 . . 

V i 

. o - 1 

(2) 

Now, applying the transpose version of (1) to each of the two matrices in (2), 
where Mt is the transpose of M, we get 

vn = (-Dnen-i + (-D"(-l)"+1a„-2 + (-Dndet C i + *»• °  

We now proceed to ascertain the recursions that an,bn, cn, and dn satisfy. 

Lemma 2: (i) an = 4an_1 + bn_1 - dn.1 

(ii) bn = bn_x - an_x 
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(iii) dn = 5bn_2 - bn_3 - 5bn_1 

(iv) on = -cn_1 + hcn_2 

Proof: (i) is obtained by expanding An with respect to the first column. 

(ii) If we expand Bn with respect to the first row, we get 

bn = -a„-i + d e t O ^ ) = -an_i + bn_1. 
(iii) We expand Dn with respect to the first row: 

4 

-1 

+ det I 0 

0 

-1 0 . . 

An-2 

. 0 

and by expanding further with respect to the first row, 

~~-l - 1 - 1 0 .. 

dn = -K-l + K-2 + det 
0 

0 

K 

which is dn = -bn.1 + 4an_2 - a„_3. Now, by using (ii) to substitute for an_2 

and an_3, we obtain the desired result. 

(iv) We expand Cn with respect to the first row: 

+ det 

4 
1 
1 
0 

0 

-1 0 . 

Cn - 2 

. 0 

-°n-l + ten-2 + d 6 t 

-1-1 0 . 
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?„-! + 4<?n„2 - cn_3 + det 

1—
1 

0 

0 

- 1 0 . . 

^n-h 

. 0 

-°n-l + ^n-2 ^n_3 ~ cn_h as desired. • 

We now establish that the sequence {vn} (and thus {un}) satisfies the same 
recursion as nF2. For convenience, we use the following terminology. If we 
have a sequence {xn} and a recursion 

Xkxn+k + Xk-ixn+k-l+ '" + X0X0 = °> 
then we say {xn} fulfills the recursion given by 

KEK + X k-T E' ,k-i + + x0r o, 
where E is the shift operator Exn = %n+1> E = 1, and XQ, X13 
stants. 

X^ are con-

Lemma 3- The sequence {vn} fulfills 

(E + 1)2(#2 - 3E + I)2 = £6 

Proof: By Lemma 1, vn = an 

4#5 + 10E3 - kE + 1 = 0. 

2n_2 + 2{-l)non_1. 

We shall first determine the recursion for bn and, from this, determine a 
recursion for an. Then, by obtaining a recursion for cn , we get a recursion 
for vn* 

By (ii) of Lemma 2 with n = n + 1, and by (iii) of Lemma 2 with n = n - 1, 
we obtain, by substitution in (i) of Lemma 2, that 

K - bn + l = an = 4an -1 + &*-i " 5Z>n-3 + £n_4 + 5bn-2. 
Now, substituting for <2n-1 its value from (ii) of Lemma 2, we get 
bn + l " 5hn + 5&n- 1 + 5bn_2 - 5bn_3 + ̂ n_4 = 0. 

Hence, shifting the index so bn + 1 ->• & n + 5, we see that {bn} fulfills 

p(E) = E5 - Ŝ 1* + 5E3 + 5#2 - 5E + 1 = (#2 - 3# + 1)2(£7 + 1) 

Since an - bn - bn+l9 {an} fulfills the same recursion. 
By Lemma 2, the sequence {cn} fulfills 

0. 

q(E) = Eh + E3 - kE2 + E + 1 = (E - 1)2(E2 + 3E + 1) 0 

and (-l)nen fulfills the recursion where E is to be replaced by -E. Which is 

qt-E) 
Since 

(E + l)2(E2 - 3E + 1) = 0. 

n *n-2 + 2(-l)nan_15 
and (# + 1)2(#2 - 3# + l)2 is a common multiple of p(E) and q(-E), vn fulfills 
this recursion. • 

Lemma hi The sequence nF fulfills 

Eb - 4#5 + 10E3 hE + 1 0. 
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Proof: Since 

^-M^r-M^i) JS 
we obtain 

•n2 n riFt = T 

& 

(H4)" + (H^)" -«-»" 
Now by the standard methods for finding the solution of a linear recursion re-
lation via its characteristic polynomial, we see that nF2 fulfills 

3 + / 5 \ 2 

) ' • ( * ^ ) ' - « + i > ° {El 3E + 1)2{E + I ) 2 = 0 . 

So we see that vn9 uns and nF2 fulfill the same recursion. Since the computer 
computations of Boesch and Wang [2] tell us that u^ = i-F^ , 5 ̂  £ ̂  16, we know 
that the sequences coincide and have proved the following Theorem. 

Theorem: The number of spanning trees of the square of the cycle (ion , for n ^ 5, 
is given by nF2. 

Remarks: If we consider the square of a cycle for n < 5, which means that we 
consider the edge set to be a multiset, we have multiple edges and loops and 
the Theorem holds for n > 0. 

TO 1+ 

4 • 32 = 36 12 

TO 2 

l2 = 2 l2 = 1 
^ 0 

0 • 02 = 0 

Figure 1 

In closing, we note that there is an alternative approcah to finding t(&n) 
that uses the properties of circulant matrices. First, we note that M can be 
written as bl-A, where I is the identity matrix and A is the adjacency matrix 
of <*f2. If the maximum eigenvalue of the real, symmetric matrix A is denoted by 
Xn, then a result of Sachs [11] states that 

t&2) = ^ n f i 1 ( 4 - xv), 

where X^ are the eigenvalues of A. Now, using the explicit formulas for the 
eigenvalues of a circulant matrix (see, for example, Marcus and Mine [9]), one 
obtains 

II 4 sin —(1 + 4 cos 
fc-i n V 

nt&2) 
n / 
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Thus, the Theorem could be proved by showing that the above product is n2Fz. 
However, we have not found this approach to be any simpler than the one given 
here. 

The authors would like to point out that reference [8] gives a purely com-
binatorial proof of our result, which was conjectured by Bedrosian in [1]. 
Furthermore, the paper by Kleitman and Golden was not discovered until after 
our paper had been refereed and accepted for publication. 
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1. INTRODUCTION 

Let $(x) be Euler's totient function. The literature on solving the equation 
cj)0) = n (see [1, pp. 221-223], [2-5], [6, pp. 50-55, problems B36-B42], [7-11], 
[12, pp. 228-256], and the references therein) can be viewed as a collection of 
open problems. For n = 2a, we essentially have the problem of factoring the 
Fermat numbers. Another notorious example is Carmichaelfs conjecture [3, 7] 
that if a solution exists it is not unique. Some results (e.g., Example 15 of 
[12, pp. 238-239]) can be established on the basis of Schinzel's Conjecture H 
[12, p. 128] of which the twin prime conjecture is a very special case. See 
also [10, 11]. 

Here we define a new ratio R(ri) that is associated with this equation in a 
very natural way. Our main result, Theorem 3 of §3, is that R(ji) can be arbi-
trarily large. This can be read independently of §25 where the highest power 
of 2 dividing R(n) is studied. 

To define R(n) , let Ln be the least common multiple of all solutions of 
$(x) = n. Then, let Gn be the greatest common divisor of all numbers an - 1, 
where a is in the reduced residue system modulo Ln given by 

(a, Ln) = 1, (1.1) 

- 1 E 0 mod x (1.2) 

for any solution x, we have 

an - 1 = 0 mod Ln. (1.3) 

Hence, the ratio R(n) defined by 

R(n) = Gn/Ln (1.4) 

is an integer. For example, if n = 2, then x is 3, 4, or 6, so 

L2 = 12, G2 = (I2 - 1, 52 - 1, 72 - 1, ll2 - 1) = 24, (1.5)' 

and hence R(2) = 2. 
Our L„, Gn resemble Carmichaelfs L and M on pp. 221-222 of [1]. In fact, 

Carmichael very briefly alludes to the ratio M/L on p. 222. However, his table 
on p. 222 shows that his M = Mn is often astronomical in comparison to our Gn, 
and that Mn/Gn need not be an integer. 

We write (m) p for the highest power of the prime p in m> and (m)0dd for 
m/(m)2. Thus, (m)2 = 2e is equivalent to 2ellw. Theorem 3 of §3 asserts that, 

s 
1 

ince 
a 

< 

rc _ 

a < 

• 1 = 

Ln, 

- a* w 

*This work was partially supported by the National Science Foundation under 
grant MCS-8031615. 
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2 a + 2 | | l l 2 ° - 1 , 

2 a + 2 | | (8 O T + 5 ) 2 ° • 
and 

2 a + 2 | ( 2 fe + l ) 2 " • 

- 1, 

- 1. 

for every prime p and every M > 0, there is an n = n(p, M) such that 

(i?(n))p > M. 

2. RESULTS ON PARITY 

By means of induction, the binomial theorem, and the identity 

z2 - 1 = (2 - l)(s + 1), 
it is easy to prove the following lemma. 

Lemma 1: If a M is an integer, then 

(2.1) 

(2.2) 

(2.3) 

Propositions 1-3 and Theorems 1 and 2 are consequences of this Lemma. We 
give the details of the proof for Theorem 2 only; the others are similar. 

Write $ for the set of all n such that §(x) = n has a solution, and $ ' for 
the complement of this set. 

Proposi tion 1: If n > 2, then 2\Ln. If n = 2n', where n E $ and nr E $', then 
2IL„. 

It is harder to show that infinitely often every solution is even; this is 
proved in [12, p. 238, Example 14]. 

Proposition 2: If n > 2, then (i?(n))2 > 2. 

Proposition 3: If (n) 2 = 2a, then (i?(n))2 < 2a + 1. 

In the case of n = 136 = 8 • 17, for example, the bound of Proposition 3 is 
exact. 

Theorem 1: Let s ) 1 be a fixed integer. If t ̂  0 is minimal, such that 

n = 2*(2s + 1) G $, (2.4) 

then 

(R(n))2 = 2*+1. (2.5) 

We observe that again n = 136 = 8 * 17 illustrates this result, since 17, 
34, and 68 all belong to $f. Theorem 1 is proved with the aid of Proposition 
3 which, in turn, is proved with the assistance of (2.2) of Lemma 1. 

Corollary 1: If s > 1 is an integer and n = 2(2s + 1 ) E $, then (R(n))2 = 4. 

Proof: Clearly, 2s + 1 E <£>f. 

Corollary 2: Infinitely often (R(ri)) 2 = 4. 

Proof: If p is any prime of the form 4s + 3, then 
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ks + 2 = p - 1 = <()(p). (2.6) 

We may vary s so that p runs over the primes of the form 

p = 2t+1s + 2* + 1; (2.7) 

this implies that 

c|>(p) = 2*(2s + 1) G $. (2.8) 

However, it does not follow directly from crude density considerations and the 
prime number theorem for arithmetic progressions that the 2h(2s + 1 ) for 1 < h 
< t will sometimes all lie in $f. In fact, Erdos [4] has proved that, for any 
M > 0, the number of elements of $ not exceeding x is 

»i^( l o g l o g x)M- ( 2 - 9 ) 

Corol 1 ary 3» Schinzelfs Conjecture H [12, p. 128] implies that, for any fixed 
t > 0, the equality (i?(n))2 = 2t + 1 holds infinitely often. 

Proof: For t = 0 , 1, this follows unconditionally from Theorem 2 and Theo-
rem 1, Corollary 2. For t > 3, we first show that there are infinitely many s 
for which the two polynomials 

2s + 1, 2t+1s + 2* + 1 (2.10) 

are simultaneously prime, whereas the t - 1 polynomials 

2(2s + 1), 22(2s + 1), ..., 2t"1(2s + 1) + 1 (2.11) 

are all composite. In fact, for (A, B) = 1 and A > 0, the greatest common divi-
sor of the infinite set 

(2a; + l)[2A{2x + 1) + B], re = 1, 2, 3, . . . , (2.12) 

is unity (a trivial exercise in [12, p. 130]). Hence, "condition S" of Conjec-
ture H is satisfied for the first two polynomials, and the above assertion fol-
lows from [10] (use statement Ci3, p. 1). Now write p = 2t+1s + 2t + 1 so 

<Kp) = 2*(2s + 1) E $. (2.13) 

If 

<j>(a0 = 2/z(2s + 1 ) , 0 < h < t, (2.14) 

then x must be divisible by a non-Fermat prime q such that 

$(q)\2h(2s + 1 ) . (2.15) 

Hence, 

q - 1 = 2.*(2s + 1 ) , 0 < g < h9 (2.16) 

a contradiction. Hence, t satisfies the hypothesis of Theorem 1, and the re-
sult follows. C. Pomerance!s proof does not use H. 

Theorem 2: If a > 1 and n = 2 a , then (i?(n))2 = 2. 

Proof: Since (j)(2a + 1 ) = n, we have 2 a + 1 |L n . Since for any odd ra, 

cf>(2a + V> > 2 a + 1 > 2a, (2.17) 

we have 2a + 1||£„. 
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For any integer s, we have 10|(J)(lls), so (j)(lls) ^ 2a. Hence (since Ln > 12 
Is true for n < 12, and is obvious for n > 12) , the number 11 is in the reduced 
residue system. Thus, 

ffjll2" - 1 (2.18) 

and, by (2.1) of Lemma 1, 

(Gn)2 < 2a+2. (2.19) 

Because every element of the reduced residue system is odd, (2.3) of Lemma 1 
yields 2a+2\(Gn)2. Hence, (Gn)2 = 2a+2 and the result follows. 

Remark: We know of no other cases in which (R(n))z = 2. For £(a) = [log a] ̂  4, 
numerical calculations suggest, for n - 2 a , that 

£(a) 
Ln = In II Fm and Gr) = 2Ln, (2.20) 

m= 0 
where Fm is the Fermat number 

Fm = 22" + 1. (2.21) 

However, this simply reflects the fact that the Fermat numbers Fm are prime for 
m < 4, and (2.20) must fail for £(a) > 5; see [12, pp. 237-238, Example 13]. 
It is possible that (i?(n))odd > 1 for infinitely many n = 2a. C. Pomerance has 
proved the converse of Theorem 2. 

3.. ARBITRARILY LARGE R(n) 

Observe that 

<t>(x) = 2 <§=*> x = 3, 4, or 6, (3.1) 

and 

(f)(x) = 44 <=̂ > x = 3 • 23, 4 • 23, or 6 • 23. (3.2) 

We say that 23 is a prime replicator of 2. 

Defi ni t Jon: The prime p is a prime replicator of A? if all solutions of 

<f>(*) = m{p - 1) (3.3) 

are given by b-jp, ..., &rp, where b1> . .., Z?r are all solutions of 

(J)(X) =772. (3.4) 

Theorem E: Given m ̂  2, all but o(x/log x) of the primes are prime replicators 
of m. 

Proof: This is a result of Erdos [5, pp. 15-16]. His proof [5, pp. 15-18] 
uses BrunTs method. 

It follows by the prime number theorem for arithmetic progressions that 
every arithmetic progression containing infinitely many primes has infinitely 
many prime replicators of m. 

Theorem 3- Let q be any prime, and e ) 1 an integer. Then, for some n, 

(R(n))q > qe. (3.5) 
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P£00f: Set m = §(qe) . Let £1S . .., br be all solutions of $(x) = m. Set 

B = [bls ..., Z?p] and <?/ = (B)^ . (3.6) 

Clearly, f ^ e. By Theorem E, we can choose & so that 

p = qf<t>(q2f)k + 1 > B (3.7) 

is a prime replicator of m. Then all solutions to 

$(x) = n = ?w(p - 1) = qf$(q2f)mk (3.8) 

are Z^p, . . . , &pp, so 

Ln = [&,, ..., br]p = Sp. (3.9) 

If a is in the reduced residue system, then 

a = qfh + t, 0 < t < qf9 (ts q) = 1. (3.10) 

Hence, for Q = q2f, we have 

an - 1 = (t + ^7z)n - 1 = tn + ntn~xqfh + ••• - 1 

= tn - 1 mod § E s ^ 0 - 1 mod «, (3.11) 

where (s, ® = 1. By Eulerfs generalization of Fermatfs simple theorem, the 
above is congruent to zero, and hence 

(Gn/Ln) = (Gn)q/qf > q2f/qf > q*. (3.12) 
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INTRODUCTION 

In this paper, k, m, and n will represent arbitrary natural numbers; p, q9 P, 
s, primes; and a, h, o> ds natural number exponents. O is the sum-of-divisors 
function; <J*9 the sum-of-unitary divisors function; and T, the count-of-prime-
factors function. 

Definition 1 [6]: A number m is said to be n-hyperperfect, n-HP, if it satis-
fies 

m = 1 + n[o(m) - m - 1]. (1) 

Defini t ion 2 [2]: A number m is said to be n-unitary hyperperfect, n-UHP, if it 
satisfies 

m = 1 + n[o*(rn) - m - 1]. (2) 

For n = 1, the definitions reduce to those of the usual perfect and unitary 
perfect numbers. The two definitions agree on square-free numbers. To speak 
of both concepts simultaneously, we subsume equations (1) and (2) into 

m = 1 + n[I(m) - m - 1] (3) 

and speak of n-(unitary) hyperperfect numbers, n-(U)HP. 

1. PARITY 

Theorem 1: Let m be n-(U)HP. Then: 

(a) (m, ri) = 1; 
(b) If m is even, n is odd; 
(c) If n is even, m is odd; 
(d) (772, E(m) - 777 - 1) = 1; 
(e) (m, S(777) - 1) = 1; 
(f) T(777) > I. 

Proof: (a-e) Follow directly from (3). 

(f) By contradiction. If 777 = pa, a > 1, then 

p (777, Urn) - 1) 

which contradicts (e). s 
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The possibility that both m and n are odd is not addressed in this theorem. 
The table of hyperperfect numbers in [3] includes odd m for odd n. For exam-
ple, 325 is 3-HP. In the unitary case, we have a complete result. 

Theorem 2: If m is n-UHP, then not both m and n are odd. 

Proof: By contradiction. Assume m=2s+l9n=2t+l. Equation (2) be-
comes 

2s + 1 = 1 + (2t + l)[cr*O0 - (2s + 1) - 1]. 

Expand and regroup. 

4s + 2 = (2t + l)a*(m) - 4ts - 4£. 

Reduce modulo 4, remembering that 2t + 1 is odd. 

a* (777) = 2 mod 4. (4) 

For (4) to be true, T(/TZ) = 1. This contradicts Theorem 1(f). • 

Theorems 1 and 2 say that if m is n-UHP, not only are m and n relatively 
prime, they must be of opposite parity. The case in which n = 1 reduces to an 
old result. 

Corol1ary 1 [7]: There are no odd unitary perfect numbers. 

2. STRUCTURE THEOREMS 

Equation (3) can also be written in the form 

(n + 1)777 = nZ(m) - (n - 1) . (5) 

Theorem 3- If m is n-HP, n odd, then 77? has as a component an odd prime to an 
odd power. 

Proof: Let m = 2amr, (2, 7?7') = 1. Equation (5) becomes 

(n + l)2a777' = no(2a)o(mr) - {n - 1). 

The first and third terms are even since n is odd; n and o(2a) are odd. There-
fore o(mf) is even. This happens only if an odd prime factor of m occurs to an 
odd power, m 

This argument yields no information in the unitary case, because o*(mr) is 
even. Note that the argument does not depend on a; it holds for a = 0. 

Theorem h: Let 7?7 be n-UHP, 777 = pamf, ( p , 777') = 1. Then 

(pa - n) (mr - n) > n1 + 1. 

Proof: Equat ion (5) becomes 

(n + 1)772 = n(pa + l)o*(mr) - (n - 1) = npv-o^tjn1) + no*(mr) - (n - 1) 

(n + l ) p a m f - npao*(rnr) = no*(mr) - (n - 1) 

pa[(n + D m ' - na*(777')] = no*<m') - (n - 1) 

na = no*(mr) - (n - 1) „ v 
p (n + D777' - na* (777 0 w 
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o*(mf) ^ mf + 1 implies 

in + l)mf - no*(mf) < in + l)mf - n{mf + 1); (7) 

and 

no*(mr) - (n - 1) > n(mf + 1) = (n - 1) = nmf + 1 = n2 + 1 
(n + l)w' - no*(mF) "" (n + l)wf - n(?7?f + 1 ) mf - n mr - n* 

Thus, 

r mT ~ n or 

(pa - n) (mf - n) > n2 + 1. • 

Corol l a ry 2: Let TTZ be n-UHP, m = pa7??f, (p , wf) = 1. Then 

n + 1 . a* Q Q 
n /??' 

Proof: In (6), the numerator is positive; hence, so is the denominator: 

(n + l)mf - no*{mf) > 0. 

The inequality follows immediately. • 

Corollary 3- Let m be n-UHP, m = pamr
s (p, mf) = 1. Then 

n + 1 > mf + 1 
n mr 

Proof: o*(mr) > m' + 1. Alternatively, the right side of (7) is positive, 
as the left side is. m 

Corollary 4: Let m be n-UHP, m = paqb„ Then 

(pa - n)(qb - n) = n2 + 1. 

Proof: In Theorem 4, mf = gfc. o*(qb) = qb + 1. Equation (7) is an'equal-
ity. The result follows, a 

Corollary $: For given n, there are finitely many m of the form m = p ^ ^ which 
are n-UHP. 

Proof: From Corollary 4, 

, n2 + 1 , , , n2 + 1 . . 
pa = n -I and q& = n + . 

qb _ n pa - n 
There are finitely many solutions for pa

9 qb a m 

Corollary 6: There is exactly one unitary perfect number with two distinct 
prime divosors. 

Proof: in Corollary 5, n = 1, n2 + 1 = 2. There is only one solution for 
P S qb; namely, 2, 3. m = 6. m 

Corol lary 7: Let m be n-UHP, pa\\m. Then pa > n. 
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Proof: This is the penultimate inequality in the proof of Theorem 4. • 

The import of Corollary 7 is that, if m is n-UHP, then all unitary divisors 
of m5 except 1, exceed n. In the nonunitary case, every divisor of m, except 
1, exceeds n ([6], Theorem 1). Minoli and Bear ([6], Theorem 3) demonstrate 
bounds on the prime factors of an n-HP number of the form m = pq. These bounds 
can be proved for the unitary case with some generalization. 

Corollary 8: Let m be n-UHP, m = paqb, pa < qb. Then: 

(a) If n > 1, n < pa < In < qb < n2 + n + 1; 

(b) If n = 1, n < pa < In < qb < n1 + n + 1. 
Further, 

(c) For n = 1, 2, there are unique solutions. 

Proof: The first inequality is Corollary 7. The last inequality arises 
from Corollary 4. 

n1 + 1 = (pa - n){qb - n) > qb - n; 

thus, 

qb < n
2 + n + 1. 

For the second inequality, rewrite equation (2) as 

paqb = 1 + npa + wq& < 1 + 2nqb 
paqb < 2nqb 

pa < 2n. 

If p = 2, by Theorem 1, n is odd. Thus, equality is possible only for n = I, 
pa = 2. Equation (2) also yields 

paqb > 2npa 

qb > 2n. 
Again, if q - 2, n is odd. Equality is possible only for n = 1, qb = 2. Then 
T(rri) = 1, which contradicts Theorem 1 and the initial assumption. This com-
pletes the proof of the inequalities. For n = 1, they reduce to 

1 < pa < 2 < qb < 3. 

The only solution is pa = 2; qb = 33 m = 6. For n = 2, 

2 < pa < 4 < <?* < 7; 

thus, pa = 3. By Corollary 4, qb = 7. • 

Theorem 5: If w is n-(U)HP, then 

n > ft? . / re \/777 - 1 \ 
n + 1 "" E(m) \ n + 1A w / 5 

with equality on the left if and only if n = 1. 

Proof: On division by (n + l)Z(w), equation (5) becomes 

m _ n n - 1 
E(/7?) n + 1 (n + l)E(w) # (8) 
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The left inequality is immediate. 

As Z(m) > m, 

n - 1 ^ n - 1 , n - 1 ^ n - 1 
5̂ . A n n —• -s? — 

(n + l)E(m) in + l)m (n + l)E(m) (n + l)m" 
Equation (8) yields 

m > n _ n - 1 _ nm - n + 1 . nm - n = / n \/m - 1\ 
E(/7z) ̂  n + 1 (n + l)m ~ (n + l)m (n + l)m U + 1A m ) ' 

which is the inequality on the right, m 

Results on mod 3 properties have appeared before. In particular, Hagis [2] 
proved the following. 

Theorem 6: Let m be n-UHP, then: 

(a) If m f 0 mod 3, then m E 1 mod 3; 
(b) If n = 0 mod 3, then m = 1 mod 3; 
(c) If n = 1 mod 3, then o*(m) = 2m mod 3; 
(d) If n = -1 mod 3, then a* (??0 = 2 mod 3. 

Results (b), (c) s and (d) follow immediately from equation (3) and so are 
valid for the (ordinary) hyperperfect case also. 

3, UNITARY HYPERPERFECT NUMBERS 

The set of unitary hyperperfect numbers has nonempty intersections with the set 
of (ordinary) hyperperfect numbers and with the set of unitary perfects. In 
the first case, the intersection is the set of square-free hyperperfect num-
bers. In the second, it is the set (see [7], [11]) of 1-unitary hyperperfect 
numbers. For square-free hyperperfect numbers, see [4], [5], [6], [8], [9], 
and [10]. 

Hagis [2] ran a computer search for unitary hyperperfect numbers through 
106. Buell [1] found 146 unitary hyperperfect numbers less than 10 . 
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ANNOUNCEMENT 

ANNOUNCEMENT 

The Second Internationa] Research Conference on Applications of the 

Fibonacci Numbers will be held in the San Francisco area immediately 

following the International Conference at the University of California 

at Berkeley in August 1986. Currently, we are in the planning stages 

and would be interested in receiving any comments from those who might 

consider attending. Send all comments or requests for information to: 

GERALD E. BERGUM or 
THE FIBONACCI QUARTERLY 
DEPARTMENT OF MATHEMATICS 
SOUTH DAKOTA STATE UNIVERSITY 
BOX 2220 
BROOKINGS, SD 57007-1297 

PROFESSOR CALVIN LONG 
DEPARTMENT OF MATHEMATICS 
WASHINGTON STATE UNIVERSITY 
PULLMAN, WA 99163 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A8 P. HSLLMAN 

Assistant Editors 
GLORIA Co PADILLA and CHARLES R„ WALL 

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS 
to PROFESSOR A. P. HILLMAN; 709 Solano Dr., S.E.: Albuquerque, NM 87108. Each 
solution or problem should be on a separate sheet (or sheets). Preference will 
be given to those typed with double spacing in the format used below. Solu-
tions should be received within four months of the publication date. Proposed 
problems should be accompanied by their solutions. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1 

and 
A1 + 2 = LJI + I + ^w Lo = 23 Lx = 1. 

Also? a and 3 designate the roots (1 + y/E)/2 and (1 - v5)/2s respectively, of 
x2 - x - 1 = 0, 

PROBLEMS PROPOSED IN THIS ISSUE 

B-550 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Show that the powers of -13 form a Fibonacci-like sequence modulo 181, that 
is5 show that 

(-13)n+1 = (-13)n + (-O)""1 (mod 181) for w = 1, 2, 3, ... . 

B-551 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Generalize on Problem B-550„ 

B-552 Proposed by Philip L. Mana, Albuquerque, NM 

Let S be the set of integers n with 109 < n < 1010 and with each of the 
digits 0S 1, 2, 3, 4, 55 65 75 8, 9 appearing (exactly once) in n. 

(a) What is the smallest integer n in S with 11 In? 
(b) What is the probability that 11 In for a randomly chosen n in 5? 

B-553 Proposed by D. L. Muench, St. John Fisher College, Rochester, NY 

In 

i = 0 
Find a compact form for £ ( . JL? . 
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B-55^ Proposed by L. Cseh and I . Merenyi, Cluj, Romania 

For all n in Z = {1, 2, ... } , prove that there exist x and y in Z+ such 
that 

B~555 Proposed by L. Cseh and I. Merenyi, Cluj, Romania 

For all n in Z , prove that there exist x, y, and 2 in Z such that 

(F2n-1 + 4)0^+5 + 1) = *2 + 2/2 + 22. 

SOLUTIONS 

Quadratic with an Integer Solution 

B-526 Proposed by L. Cseh and I . Merenyi, Cluj, Romania 

Find all ordered pairs (m, n) of positive integers for which there is an 
integer x satisfying the equation 

FmFnx2 - [Fm(Fm, Fn) + FnF{miYl)}x + {Fm, Fn)F{mfn) = 0. 

Here (p, s) denotes the greatest common divisor of v and s. 

Solution by Paul S. Bruckman, Fair Oaks, CA 

We use the well-known relation 

(Fm> Fn) = F(m,n)' (*) 

Then, letting d = F,mj n^ , the given equation becomes 

(Fmx - d)(Fnx - d) = 0, (2) 

to be satisfied for some integer x. Since m ̂  (m, n) , n > (777, n) and C ^ ) ^ ! 
is an increasing sequence (except for F1=F2~l)» we see that for x - d/Fm 
to be an integer, we must have one of the following: 

(a) F
m =

 F(m,n) °r (b) Fn = F(m, n). 
These, in turn, imply at least one of the following: 

(i) m^l; (ii) m = 2; (iii) m|n; (iv) n = 1; (v) n = 2; (vi) n\m. 
Some of these cases are redundant, and we can consolidate them as follows: all 
ordered pairs {m, n} with (a) m\n; (b) n\m; (c) m = 2; (d) n = 2. (Note that 
there is still some redundancy, but this is minimal.) 

Also solved by Pauls, Bruckman, Laszlo Cseh, A, Di Porto & P. Filipponi, Herta 
T. Freitag, Walther Janous, L. Kuipers, Bob Prielipp, Sahib Singh, and the pro-
poser. 

Another Quadratic with an Integer Solution 

B-527 Proposed by L. Cseh and J. Merenyi, Cluj, Romania 

Do as in B-526 with the equation replaced by 

(Fmi Fn)x2 - (Fm + Fn)x + F(m>n) = 0. 
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Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria 

The given equation reads 

F(m3n)*2 ~ (Fm + Fn)x + F(m, n) = 0. (1) 

Since (m9 n)\m and (w, n)\n9 i t holds tha t sm,n = (Fm + Fn)/F(rri3n) i s i n t eg ra l ; 
tha t i s , (1) reads x2 - smiYlx + 1 = 0o This symmetric equation has to have the 
double root x± = x2{= 1, whence Fm + Fn = 2F(mj „). 

Because F(mj n ) < Fm and F(OTj „> < Fn, i t follows tha t Fm = Fn = F(rrij n). Thus, 
m = n or m = 1, n = 2 or m = 2, n = 1. 

Also solved by Paul S. Bruckman, A. Di Porto & P. Filipponif Herta T. Freitag, 
L. Kuipers, Bob Prielipp, Sahib Singh, and the proposer. 

Special Case of a Sum 

B-528 Proposed by Herta T. Freitag, Roanoke, VA 

For nonnegative integers n, prove that 

2n+ L. 
Y ( 2 n + V 2 = 5^ 
i=0 

Solution by Marjprie Bicknell-Johnson, Santa Clara, CA 

Let p = 1 in equation (4) on page 30 of the following article: "Some New 
Fibonacci Identities" by Verner E. Hoggatt, Jr., and Marjorie Bicknell, in The 
Fibonacci Quarterly 2, no. 1 (February 1964):29-32. 

Also solved by Wray G. Brady, Paul S. Bruckman, Laszlo Cseh, Leonard A. G. 
Dresel, Piero Filipponi, C. Georghiou, Walther Janous, L. Kuipers, Graham Lord, 
George N. Philippou, Bob Prielipp, A. G. Shannon, Sahib Singh, J. Suck, Robert 
L. Vogel, and the proposer. 

Compact Form for a Sum 

B-529 Proposed by Herta T. Freitag, Roanoke, VA 

For positive integers n, find a compact form for 

2n tin 

i=0 

Solution by Leonard A. G. Dresel, University of Reading, England 

In 

i = 0 
L e t T = | ( ^ / + 1 . Then 

5^ = E ( ? ) ( a i + 1 ~ 3i + 1 ) 2 = E (2^)(a2i+2 - 2a3(a3)' + 32i+2) 
= a 2 ( l + a 2 ) 2 n - 2aB(l + ag)2 n + 32(1 + 

Now, since n > 0 and a$ = - 1 , the middle term vanishes, and 

a2 + 1 = a(a - 3) = v^a and 32 + 1 = 3(3 - a) = -75g . 
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Hence, 
= qtt-1^2n+2 j . p2n+2N = q n - l 7 

J2n + 2 ' T = 5n-\a2n+2 + 32n + 2) = S"'^, 

Also solved by Marjorie Bicknel1-Johnson, Wray G. Brady, Paul S. Bruckman, Las-
zlo Cseh, Piero Filipponi, C. Georghiou, Walther Janous, L. Kulpers, Graham 
Lord, D. L. Muench, George N. Philippou, Bob Prielipp, A. G. Shannon, Sahib 
Singh, J. Suck, Robert L. Vogel, and the proposer. 

Lucas Continued Fraction 

B-530 Proposed by Michael Eisenstein, San Antonio, TX 

Let a = (1 + v5)/2. For n an odd positive integer, prove that the contin-
ued fraction 

Ln + — = un. 

Ln + 1 
Ln+ . . . 

Solution by Graham Lord, Princeton, NJ 

The simple continued fraction is convergent (see Hardy & Wright, for exam-
ple) . The limit x satisfies the inequality Ln < x9 and is a root of the equa-
tion Ln + 1/x = x. Since n is odd, the latter equation can be rewritten as 

(x - an)(x - 3n) = 0, 

from which, together with the inequality, it follows that an is the required 
value. 

Also solved by Wray Brady, Paul S. Bruckman, Laszlo Cseh, Walther Janous, A. Di 
Porto & P. Filipponi, Leonard A. G. Dresel, Herta T. Freitag, C. Georghiou, L. 
Kuipers, I . Merenyi, D. L. Muench, Bob Prielipp, Sahib Singh, Robert L. Vogel, 
and the proposer. 

Even Case of Lucas Continued Fraction 

B-531 Proposed by Michael Eisenstein, San Antonio, TX 

For n an even positive integer, prove that 

1 
Ln 

L _ 1 
Ln - ... 

Solution by Graham Lord, Princeton, NJ 

The existence of the infinite continued fraction is first established. If 
xk is the kth convergent, then easy induction arguments show that 

Ln - I < xk < Ln, 

and that 
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the latter requires use of the identity 

**+i + ̂  = Ln + (xk + i- - Ln)/(*fcLn - 1). 

So 

^k 
Hence, x is a strictly decreasing sequence which is bounded below by Ln - 1; 
thus, the limit exists. 

The value of the limit is a root of the equation x = Ln - i/x, which can be 
rewritten as (x - an) (x - 3n) = 0, since n is even. Because xk > Ln - 1, the 
value of the continued fraction is an. 

Also solved by Paul £. Bruckman, Laszlo Cseh, A. Dl Porto & P. Fllipponi, Leo-
nard A. G. Dresel, Herta T. Freitag, C. Georghiou, Walther Janous, L. Kuipers, 
X. Merenyi, D. L. Meunch, Bob Prielipp, Sahib Singh, Robert L« Vogel, and the 
proposer. 

• 0^04-
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tion of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-389 Proposed by Andreas N. Philippou, University of Patras, Patras, Greece 

Show that 

Fnl'i^ = 2 n " 2*(1 + i/2) (n > 2i + 1) 

for each nonnegative integer i , where Fn + 2 is the n + 2 Fibonacci number of 
order n - i [1] and F^ = 1. 

Reference 

1. A. N. Philippou & A. A. Muwafi. "Waiting for the kth Consecutive Success 
and the Fibonacci Sequence of Order k«n The Fibonacci Quarterly 20, no. 1 
(1982):28-32. 

H-390 Proposed by M. Wachtel, Zurich, Switzerland 

For every ms 

2F2_mF5+m + (-l)m(FmFm+1 + Fm
2

+2) has the unique value 11. 

Find a general formula for analogous constant values, which should represent 
the terms of an infinite sequence. 

Prove that no divisor of any of these terms is congruent to 3 or 7 modulo 10. 

H-391 Proposed by Lawrence Somer, Washington, D.C. 

For every n, show that no integral divisor of Lln is congruent to 11, 13, 
17, or 19 modulo 20. (This problem was suggested by Problem H-364 on p. 313 
of the November 1983 issue of The Fibonacci Quarterly.) 
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SOLUTIONS 

Any More? 

H-363 Proposed by Andreas N. Phillppou, University of Patras, Patras, Greece 
(Vol. 21, no. 4, November 1983) 

For each fixed integer k ^ 2, let i/^H be the Fibonacci sequence of 
order k, I.e., /<« = 0, f*> = 1, and ' " <n"° 

f, 

0 

. f(k\ + ••• + f(k\ if 2 < n < k, 

/ ( ^ + ••• + /<*> if n > k + 1. 
J n -1 Jn -k* 

Evaluate the series 

£ - k (*>2, n>2>. 

Remark: The Fibonacci sequence of order /c appears in the work of Philippou and 
Muwafi [The Fibonacci Quarterly 20 (1982):28-32.] 

Comment by Paul S. Bruckman, Carmichael, CA 

Letting 

S(k, m) = ± {f™)-\ 
n = 0 m 

to the best of my knowledge, the only known result (fairly well-known in fact), 
is 

S(2, 2) = E l/F9n = hO ~ V5) = 2.381966. 
n = 0 

I would be very surprised—indeed, amazed!—to learn of any other closed form 
expressions for S{k, m). 

Only Two! 

H-364 Proposed by M. Wachtel, Zurich, Switzerland 
(Vol. 21, no. 4, November 1983) 

For every n, show that no integral divisor of L2n+1 -*-s congruent to 3 or 7 
modulo 10. 

Solution by Paul S. Bruckman, Carmichael, CA 

Given any prime p with p = ±3 (mod 10), then (5/p) = (p/5) = -1. It is 
sufficient to prove that p does not divide ..£2n+1for all n, since any divisor 
of L2n+! congruent to 3 or 7 (mod 10) must be divisible by such a prime. By 
the calculus of "complex residues" (see [1]), 

ap E 3, 3P E a (mod p). (1) 

This, in turn, inplies ap+1 = 3P+1 = -1 (mod p); hence, 
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Lp+1 = -2 (mod p), Fp+1 = 0 (mod p) ., 

In the sequel all congruences will be understood to be modulo p, and the nota-
tion "(mod p)" will be omitted wherever no confusion is likely to arise. We 
will let e=e(p) denote the "entry point" (if any) of p in the Lucas sequence, 
i.e., e is the smallest positive integer k (if any) such that Lk E 0 (mod p). 
We consider two distinct cases: 

(A) p E 3 or 7 (mod 20). Let s = hip + 1)» an integer. Then 

(-D^CP+D = (-l)2a = 1. 

Note that Lp + 1 = Lks = L\Q - 2 E -2. Hence, 

L2s E 0. (3) 

Thus, g exists and we must have 

e\2s. (4) 

We suppose e is odd. Then, since Le E 0, we must have Lme E 0 for all odd m9 
because Le\Lme in that case. On the other hand, 

L2e = L2
e + 2 E 2, L,e = L|e - 2 E 2, L6e = L\e + 2 E 2, etc., 

i.e., Lme E 2 for all even m. Since 2s is an even multiple of es it follows 
that L2s = 2, which is a contradiction of (3); thus, e is even. Now, given any 
positive k with L^ E 0, we have e\k. Since e is even, so is k. Therefore, the 
congruence L2n+1 E 0 is impossible in this case. 

(B) p E 13 or 17 (mod 20). We will show that Lk f 0 for all k, in this 
case, i.e., e does not exist. Let er denote the entry point of p in the Fibo-
nacci sequence, i.e., er is the smallest positive integer k with F-^ E 0 (mod 
p) . It is known (see [2]) that e! always exists and that, if e exists, then 
e! = 2e. We suppose e exists; hence, e1 is even. 

Let t = y ? + 1). an odd number. Then h\ + 2 = L2t = Lp+1 E -2, which im-
plies Lt $ 0. Also, since Fp + i = F2t = -̂ t̂ t = 0» ^e have Ft E 0. Therefore, 
e'\t. However, because t is odd, it cannot be divisible by an even integer. 
This contradiction establishes that e does not exist. Hence, Lk ^ 0 for all 
k, in this case; a fortiori, the congruence L2n+i E 0 is impossible. 

Combining the results of (A) and (B), we reach the desired conclusion. 

REFERENCES 

1. P. S. Bruckman. "Some Divisibility Properties of Generalized Fibonacci 
Sequences." The Fibonacci Quarterly 17, no. 1 (1979):42-49. 

2. Brother A. Brousseau (compiler). Fibonacci and Related Number Theoretic 
Tables, p. 25. Santa Clara, Calif: The Fibonacci Association, 1972. 

Also solved by L. Somer and the proposer. 

Poly Nomial 

H-366 Proposed by Stanley Rabinowitz, Digital Equipment Corp. Merrimack, NH 
(Vol. 22, no. 1, February 1984) 

The Fibonacci Polynomials are defined by the recursion 
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with the initial conditions f1(x) = 1 and f2(x) = x. Prove that the discrimi-
nant of fn (x) is 

(_1)(n-l)(n-2)/22n-lnn-3 f o r n > ^ 

Remark: The idea of investigating discriminants fo interesting polynomials was 
suggested by [1]. The definition of the discriminant of a polynomial can be 
found in [2]. Fibonacci polynomials are well known (see, e.g., [3] and [4]). 
I ran a computer program to find the discriminant of fn(x) as n varied from 2 
to 11, and by analyzing the results, reached the conjecture given above in the 
proposed problem. The discriminant was calculated by finding the resultant of 
fn(x) and f„(x) using a computer algebra system similar to the MACSYMA program 
as described in [5]. Much useful material can be found in [6] where the prob-
lem of finding the discriminant of the Hermite, Laguerre, and Chebyshev poly-
nomials is discussed. The discriminant of the Fibonacci polynomials should be 
provable using similar techniques; however, 1 was not able to do so. 

REFERENCES 

1. Phyllis Lefton. "A Trinomial Discriminant Formula." The Fibonacci Quarter-
ly 20, no. 4 (1982):363-365. 

2. Van der Warden. Modern Algebra, Vol. I, p. 82. New York: Ungar, 1940. 

3. M. N. S. Swamy. Problem B-84. The Fibonacci Quarterly 4 (1966):90. 

4. Stanley Rabinowitz. Problem H-129. The Fibonacci Quarterly 6 (1968):51. 

5. W. A. Martin & R. J. Fateman. "The MACSYMA System." Proceedings of the 
2nd Symposium on Symbolic and Algebraic Manipulation, pp. 59-75. Associa-
tion for computing Machinery, 1971. 

6. D. K. Faddeev & I. S. Sominskii. Problems in Higher Algebra. Trans, by 
J. L. Brenner. San Francisco: Freeman and Company. Problems 833-851. 

Solution by Paul S. Bruckman, Carmichael, CA 

The Fibonacci polynomials are given by the explicit expression 

/„(*> = \ _ I , n = 0, 1, 2, ..., (1) 
where 

u = u{x) = h(x + Vx2 + 4), v = v(x) = h(x - Vx2 + 4). (2) 

From the defining recursion and the initial values, it is easy to see that fn 
is a monic polynomial of degree n - 1. 

We also define the Lucas polynomials gn(x) as follows: 

gn(x) = un + vn
9 n = 0, 1, 2, ... . (3) 

Let 

Dn = disc(/n), n = 2, 3, ... . (4) 

If the zeros of fn are x±s x2, ..., xn_l9 an explicit expression for Dn is given 
by 

Dn = n (xr - xs)2
} n > 3; also, D2 = 1. (5) 

1<p< s<n- 1 

We also know from higher algebra that, if the xk
%s are distincts 
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nnVf(x,) (6) 

We will use (5) only to determine the sign of Dn, and (6) to determine its ab-
solute value, using the relation 

Dn = \Dn\ • sgn(£n). 

The xk are determined by setting the expression in (1) equal to zero. Then 

(u/v)n = 1 =$>u/v = exp(2/cz/n7n); 

since uv = -1, we have 

-u2 = ex.-p(2kin/n) => u = ±i ex-p(kiv;/ri) . 

Changing the sign in the last expression above is equivalent to replacing k by 
(n - k), showing that we need to consider only the positive sign. Thus, we may 
take u = i exp(kii\/n) ; hence, v = i expi-kiu/n) . Since fn is of degree n - 1, 
we may take k to vary from 1 through n - 1; thus, 

xk = u + v = 2i cos(ki\/n) , k = 1, 2, . . . , n - 1. 

Note that the xk are distinct, which allows the use of (6). Finally, since f 
is monic and a polynomial, we obtain the factorization 

n-l 

fn(x) = II (x - li cos(ki\/n)), n = 2, 3, ... . (7) 

k=l 

To evaluate the expression in (6), we differentiate (1), noting first that 

u'(x) = h(l + x/Vx2 + 4) , vr(x) = h(l - x/Vx2 + 4) 

or 
u'(x) = U , v'(x) = ~V . (8) 

u - v u - y Then, 

^ f ( a . j I u - t; j (u - v) 

(u - v)' 

n ( u n + y ) - x< > 
\ U - V ) 

(u ~ v) 2 

ngAx) - xf (x) 
r;(x)=— . (9) 

x2 + 4 

S e t t i n g x = xk = 2i cos(kn/n) i n ( 9 ) , we see t h a t 
u(xk) = i cos(ki\/n) + sin(/cn7n) = i exp(-kii\/n) , 

and 
y ( ^ k ) = £ exp(kii\/n) ; 

t h u s , 
•fn^fc) = i n _ 1 sin(^TT)/sin(^TF/n) = 0 

as expected, whereas 

gn{xk) = i n - 2 cos(/c77) = 2in(-l)k; 
or 
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gn(xk) = 2 exp(hi^(n - 2k)), k = 1, 2, ..., n - 1. (10) 

Substituting this last expression into (9), we see that 

frfr \ = 2n exp(^iir(w - 2k)) 
Tn{ k) " 4 sin2(/c7r/n) ' 

or 

l^'(Vl = 9 . 2 ^ / x ( I D 
n k 2 s i n (ki\/n) 

T h e r e f o r e , us ing ( 6 ) , 
n - l 

K l = II n/2 s i n 2 ( /or /n) , 
fe = i 

or 

\Dn\ = nn-1infl2 s i n 2 ( ^ T r / n ) | . (12) 

To evaluate the expression in (12), we set x = 2i in (7). Then, 

L(2i) = n[l1(2i)(l - cos k-n/n) = (2f)n-inn2 sin2(/cTr/2n) . 
n fe=i fc = i 

Replacing A: by (n - k) in the last expression yields 

f(2i) = (2i)n"inn12 cos2(^7T/2n). 

Therefore, 

(fn(2i))2 = (-4)n-inn1sin2(?C7T/n), 

or 

(f(2i))2 = (-2)n-1"n12 sin2(?CTT/n). (13) 
n fc = i 

On the other hand, u(2i) = v(2i) = i. Using (1), 

Thus, 

(fn(2i))2 = n2(-l)""1. (14) 

Comparing (13) and (14) generates the identity: 

nfl2 s±n2(ku/n) = -~—s n = 2, 3, ... . (15) 
k=i 2 

Substituting this expression in (12) yields 

\Dn\ = 2n"1nn-3. (16) 

To obtain the sign of Dn, we consider the expression given in (5). Then, 

Dn = n (2i) 2(cos rn/n - cos sn/n)2; 
Kr<s^n- 1 

hence , 

sSn(Dn) = n (-D ="n l s n 1 ( -D = n n 1 ( -D s _ 1 = (_DU+2+ —+"-2), 
Kr<s<n-1 s = 2 r = l s = 2 
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sgn(Dn) = (-l)V I. 

Finally, combining (16) and (17), we obtain 
/„-l\ 

Dn = (-l)V 2 '2n-V--3, n > 3. 

Note also that setting n = 2 in (18) yields the correct expression 
v2 - i. 

Hence, the proposer!s conjecture is correct. 

Note: The proposer observed that some results regarding discriminants of Cheby-
shev polynomials (among others) were discussed in reference [6] of the proposed 
problem. This reference was unavailable to this solver; it may be shown, how-
ever, that the ff

n are, in fact, modified Chebyshev polynomials of the second 
kind, namely, 

fn(x) = (~i)n'1Un_1(ix/2) = \un_1(ix/2)\. 

This might lead to an alternative (and briefer) derivation of (18). 

Also solved by R. Stanley, who used Chebyshev*s polynomials. 

(18) 
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