
THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION 

VOLUME 23 
NUMBER 4 

NOVEMBER 
1985 

CONTENTS 

On ra-th Order Linear Recurrences Claude Levesque 290 
Gegenbauer Polynomials Revisited A.F. Horadam 294 
Fibonacci and Lucas Numbers of the 

Form 3z2 ± 1 Jannis A. Antoniadis 300 
Generalized Wythoff Numbers from Simultaneous 

Fibonacci Representations Marjorie Bicknell- Johnson 308 
Inverse Trigonometrical Summation Formulas Involving 

Pell Polynomials Bro. J.M. Mahon & A.F. Horadam 319 
A Two-Dimensional Generalization of Grundy's Game Georg Schrage 325 
Lucas Sequences in Subgraph Counts of Series-Parallel 

and Related Graphs Eric M. Neufeld & Charles J. Colbourn 330 
Longest Success Runs and Fibonacci-Type 

Polynomials Andreas N. Philippou & Frosso S. Makri 338 
Announcement 346 
On Bernstein's Combinatorial 

Identities Marie-Louis Lavertu & Claude Levesque 347 
Multiple Occurrences of Binomial Coefficients Craig A. Tovey 356 
Linear Recurrence Relations with Binomial 

Coefficients Michael Frenklach 359 
The Series of Prime Square Reciprocals Hans Herda 364 
Combinatorial Proof for a Sorting Problem 

Identity C.A. Church, Jr. 366 
A Fibonacci and Lucas 

Tannenbaum Arthur Barry & Stanley Bezuszka, S.J. 369 
Elementary Problems and Solutions 

Edited by A.P. Hillman, Gloria C. Padilla, & Charles R. Wall 371 
Advanced Problems and Solutions . . Edited by Raymond E. Whitney 376 
Volume Index 383 



PURPOSE 
The primary function of THE FIBONACCI QUARTERLY is to serve as a focal point for 

widespread interest in the Fibonacci and related numbers, especially with respect to new results, 
research proposals, challenging problems, and innovative proofs of old ideas. 

EDITORIAL POLICY 
THE FIBONACCI QUARTERLY seeks articles that are intelligible yet stimulating to its 

readers, most of whom are university teachers and students. These articles should be lively and 
well motivated, with new ideas that develop enthusiasm for number sequences or the explora-
tion of number facts. Illustrations and tables should be wisely used to clarify the ideas of the 
manuscript. Unanswered questions are encouraged, and a complete list of references is abso-
lutely necessary. 

SUBMITTING AN ARTICLE 
Articles should be submitted in the format of the current issues of the THE FIBONACCI 

QUARTERLY. They should be typewritten or reproduced typewritten copies, that are clearly 
readable, double spaced with wide margins and on only one side of the paper. The full name and 
address of the author must appear at the beginning of the paper directly under the title. Illustra-
tions should be carefully drawn in India ink on separate sheets of bond paper or vellum, approx-
imately twice the size they are to appear in print. 

Two copies of the manuscript should be submitted to: GERALD E. BERGUM, EDITOR, 
THE FIBONACCI QUARTERLY, DEPARTMENT OF MATHEMATICS, SOUTH 
DAKOTA STATE UNIVERSITY, BOX 2220, BROOKINGS, SD 57007-1297. 

Authors are encouraged to keep a copy of their manuscripts for their own files as protection 
against loss. The editor will give immediate acknowledgment of all manuscripts received. 

SUBSCRIPTIONS, ADDRESS CHANGE, AND REPRINT INFORMATION 
Address all subscription correspondence, including notification of address change, to: 

RICHARD VINE, SUBSCRIPTION MANAGER, THE FIBONACCI ASSOCIATION, 
UNIVERSITY OF SANTA CLARA, SANTA CLARA, CA 95053. 

Requests for reprint permission should be directed to the editor. However, general permission 
is granted to members of The Fibonacci Association for noncommercial reproduction of a 
limited quantity of individual articles (in whole or in part) provided complete references is made 
to the source. 

Annual domestic Fibonacci Association membership dues, which include a subscription to 
THE FIBONACCI QUARTERLY, are $25 for Regular Membership, $35 for Sustaining Mem-
bership, and $65 for Institutional Membership; foreign rates, which are based on international 
mailing rates, are somewhat higher than domestic rates; please write for details. THE FIBO-
NACCI QUARTERLY is published each February, May, August and November. 

All back issues of THE FIBONACCI QUARTERLY are available in microfilm or hard 
copy format from UNIVERSITY MICROFILMS INTERNATIONAL, 300 NORTH ZEEB 
ROAD, DEPT. P.R., ANN ARBOR, MI 48106. Reprints can also be purchased from UMI 
CLEARING HOUSE at the same address. 

1984 by 
© The Fibonacci Association 

All r ights reserved, including r ights to this journal 
issue a s a whole and, except where otherwise noted, 

r ights to each individual contribution. 



t3R? Fibonacci Quarterly 

Founded in 1963 by Verner E. Hoggatt, Jr. (1921-1980) 
Br. Alfred Brousseau, and I.D. Ruggles 

THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION 
DEVOTED TO THE STUDY 

OF INTEGERS WITH SPECIAL PROPERTIES 

EDITOR 
GERALD E. BERGUM, South Dakota State University, Brookings, SD 57007 

ASSISTANT EDITORS 

MAXEY BROOKE, Sweeny, TX 77480 
PAUL F. BYRD, San Jose State University, San Jose, CA 95192 
LEONARD CARLITZ, Duke University, Durham, NC 27706 
HENRY W. GOULD, West Virginia University, Morgantown, WV 26506 
A.P. HILLMAN, University of New Mexico, Albuquerque, NM 87131 
A.F. HORADAM, University of New England, Armidale, N.S.W. 2351, Australia 
DAVID A. KLARNER, University of Nebraska, Lincoln, NE 68588 
JOHN RABUNG, Randolph-Macon College, Ashland, VA 23005 
DONALD W. ROBINSON, Brigham Young University, Provo. UT 84602 
M.N.S. SWAMY, Concordia University, Montreal H3C 1M8, Quebec, Canada 
D.E. THORO, San Jose State University, San Jose, CA 95192 
THERESA VAUGHAN, University of North Carolina, Greensboro, NC 27412 
CHARLES R. WALL, Trident Technical College, Charleston, SC 29411 
WILLIAM WEBB, Washington State University, Pullman, WA 99163 

BOARD OF DIRECTORS OF 
THE FIBONACCI ASSOCIATION 

CALVIN LONG (President) 
Washington State University, Pullman, WA 99163 
G.L. ALEXANDERSON 
University of Santa Clara, Santa Clara, CA 95053 
HUGH EDGAR (Vice-President) 
San Jose State University, San Jose, CA 95192 
MARJORIE JOHNSON (Secretary-Treasurer) 
Santa Clara Unified School District, Santa Clara, CA 95051 
LEONARD KLOSINSKI 
University of Santa Clara, Santa Clara, CA 95053 
JEFF LAGARIAS 
Bell Laboratories, Murray Hill, NJ 07974 



ON m-TH ORDER LINEAR RECURRENCES 

CLAUDE LEVESQUE 
Universite Laval, Quebec, P. Quebec, Canada, GlK 7P4 

(Submitted April 1983) 

1 . INTRODUCTION 

Fix numbers uQ9 ul9 ...9u _1 9 and fo r every n > 09 d e f i n e um+n by means of 
t h e 77? p r e c e d i n g terms wi th t h e r u l e 

Um + n - klUm+n-l - • • • - kmUn = 0 , wi th km * 0 . (1.1) 

In this note, we wish to present two formulas for these numbers un satisfying 
the above 772-th order linear recurrence (Sections 2 and 3) . 

These results are probably known to some readers; however, since from time 
to time we happen to see in the literature special cases of these formulas, it 
may be worthwhile to present them once and for all. 

Note that for TT? = 2, k1 = k2 - 1, u0 = u x = 1, one is dealing with the Fi-
bonacci numbers, which have been extensively studied by many authors (see, for 
instance, [13], [5], and [3]), and which were used by Matijasevic [9] in his 
notorious proof that Hilbert?s tenth problem is recursively unsolvable. 

2. GENERATING FUNCTION AND BI NET'S FORMULA 

Using the m-th order linear recurrence 

Um + n = klUm+n-l + k2Um+n-2 + ' " + fcmw» » K * 0 , (2.1) 

(with the k^ s in 7L for instance, or in a given field), we easily obtain 

ik-z") m- 1 

(i _ k±x _ ... - kmxm) = Ei^zS 
i = 0 

where the v^s9 functions of the initial conditions on uQ9 u19 ..., um_19 are 
defined by 

j-o 

(with kQ = -1 throughout this article). Associated with that recursive sequence 
is the following polynomial, 

/(*) = Xm = kj'"-1 - ... - km.xX - km = (X - 04) (X - a2) ••• (X - a j , 

whose roots we assume distinct (and nonzero, since km ̂  0) . 

Then we have 

Zunxn-
v0 +vxx + ••• +fm.1xm-1 

l - kxx - k2x^ - ... - kmx" 
(continued) 
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ON 7W-TH ORDER LINEAR RECURRENCES 

vQ + v±X + + ^ - i ^ 

(1 - a 1 J ) ( l - a2X) (1 - amX) 

(v0 + v±X + • • • + vm_1Xm-1)(l + p±X + . . . + p.X17 + ), 

where p. stands for the sum of all symmetric functions of weight j in a1, a2, 
..., otm; in other words [2], p. is the "sum of the homogeneous products of j 
dimensions" of the m symbols a , . .., am. 

Let us recall from Volume 1 of [2, p. 178] that 

m a. 
?i & 7W with po = l' 

and that p = p = ••• = p _ m + 1 = 0 (which follows from Example 4 of p. 172). 
We therefore obtain for the tfz-th number Uy, what can be called 

BINET'S FORMULA: 

EXAMPLES: (1) Let V0 = v± 

[7], 

Un = Pn-

m- 1 

M« '&***-* 

= ••• = vm_2 = 0 

• 

* * > * - : 

a* a* 
— _i_ 

1; then, as in Formula 9 of 

"m+1 /'(«!) /'(a2) /'(a,) * 
(2) For 772 = 29 77? = 3 9 we recover Binet's formulas of [3] and [11]. 

(3) For n e M = {0, 1, 2, .. . } , define s„ by 

As is well known (see [2]), Newtonfs formulas state that: 

m if 72 = 0 

s„ = 
k1 i f n = 1 

^ l S n - l + k2Sn-2 + 

+ fen-lSl + n ^ i f 2 < n < /ri - 1 

i f n > 7?2. 

In particular, if un = sn, then {u„} satisfies (2.1). 

Thus, using the fact that k* — "~19 we find that (2.2) gives: 

-mkn m 

S2 - S ^ - 772/C2 = -(772 - 2)k2 

V„ = su 'm-1 °m-l 

In s h o r t , fo r j - 0 , 1 , 

S777-2^1 * * - 3 * 2 * A - 2 - * * w - i = - i * w . i « 

, 772 - 1, i>. =-(77? - j)kj, and B i n e t ' s formula becomes 

w - 1 

J - 0 J " J 

1985] 291 



ON m-TH ORDER LINEAR RECURRENCES 

3- ANOTHER FORMULA 

We can also use the multinomial theorem to obtain a formula for un that is 
a function of (i.e., the elementary symmetric functions of) k 1 , k 1 , ...9km. 
Here we no longer require that the roots of / be distinct. Within a certain 
radius of convergence, we find that 

- • 7 7 7 - 1 

Y.unxn v0 + vxX + + y
m - l * 

n = 0 1 - (T^X + kzX + ••• + kmXm) 

(v0 + VlX +••• + um.1Jm-1) ZOcj +--- + km_1xm-1 + knxmy 
i = 0 

where 

A(i) 

= (V0 + vxX +--- + Vm_1Xm-1)(f.A{i)Xi\, 

W *„ 
/C -j K n 

the last sum being taken over all /77-tuples (tl9 £2» . ..9 tw) of 3N"7 such that 

t± + 2t2 + ••• + mtm = i. 

Defining A(i) to be 0 for i < 0, we therefore conclude: 

7 7 7 - 1 

Y,.VjA(n - j) 
j" = 0 

(3.1) 

EXAMPLES: (1) If vQ = 1, v± = 

wn = A(n). 

(2) Let sn a; + a; + 

= Vm_1 = 0, then 

+ a„. Replacing y?- by -(m- j)kj9 and mak-

of variable tj •> tj - 1, we obtain after a few calculations what 
ing in the j-th summation (j = 1, ...,m - 1) of (3.1) the change 

is called in [2] Waring?s formula for sn: 

n(t1 + t2 + ••• + tm - 1)! 

tx + 2t2 + ••• +mtm = n t±lt2l ... V 
fc*1 kt2 ktm 
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GEGENBAUER POLYNOMIALS REVISITED 

A. F. HORADAM 
University of New England, Armidale, Australia 

(Submitted June 1983) 

1. INTRODUCTION 
The Gegenbauer (or ultraspherical) polynomials Cn(x) (A > -%, \x\ < 1) are 

defined by 

c\(x) = 1, c\(x) = 2Xx (1.1) 

with the recurrence relation 

nC„{x) = 2x(X + n - 1)<^-IO0 - (2X + n - 2)CnA_2(^) (w > 2) . (1.2) 

Gegenbauer polynomials are related to Tn(x), the Chebyshev polynomials of 
the first kind, and to Un(x), the Chebyshev polynomials of the second kind, by 
the relations 

Tn (x) = | liml—JJ—I (n>l), (1.3) 

and 

tf fe) = Cite). (1.4) 

Properties of the rising and descending diagonals of the Pascal-type arrays 
of {Tn(x)} and {Un(x)} were investigated in [2], [3], and [5], while in [4] the 
rising diagonals of the similar array for C^(x) were examined. 

Here, we consider the descending diagonals in the Pascal-type array for 
{Cn(x)}9 with a backward glance at some of the material in [4]. 

As it turns out, the descending diagonal polynomials have less complicated 
computational aspects than the polynomials generated by the rising diagonals. 

Brief mention will also be made of the generalized Humbert polynomial, of 
which the Gegenbauer polynomials and, consequently, the Chebyshev polynomials, 
are special cases. 

2. DESCENDING DIAGONALS FOR THE GEGENBAUER POLYNOMIAL ARRAY 

Table 1 sets out the first few Gegenbauer polynomials (with y = 2x): 

294 [Nov. 



GEGENBAUER POLYNOMIALS REVISITED 

TABLE 1. Descending Diagonals for Gegenbauer Polynomials 

CUx) 

C)(x) 

dhx) 

ds(x) 

(2.1) 

wherein we have written 

(A)„ = X(X + 1)(X + 2) (X + n - 1). (2.2) 

Polynomials (2.1) may be obtained either from the generating recurrence 
(1.2) together with the initial values (1.1), or directly from the known expli-
cit summation representation 

m= 0 ml (n - 2m)! —, X an integer and n ^ 2, 

wherej, as usual, [n/2] symbolizes the integer part of n/2. 

The generating function for the Gegenbauer polynomials is 

(2.3) 

E C^(x)tn = (1 - 2xt + t2)~X (\t\ < 1). 
n = 0 

(2.4) 

Designate the descending diagonals in Table 1, indicated by lines, by the 
symbols dj(x) (j = 0, 1, 2, ...) . 

Then we have 

d0(x) = 1, d^{x) = X(2a; - 1), dx
2(x) = 

(X),(2ar - 1): 

2! 

> ) = 
(A)3<2a? - 1); (A^Ote - l)' 

•• < < * > 4! 

(2.5) 

From the emerging pattern in (2.5), one can confidently expect that 
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GEGENBAUER POLYNOMIALS REVISITED 

(X) (2a? - l)n ,, ^ 
d > > - - ^ n ( X + r 1 ) ( 2 x - D " , (2.6) 

a result which we now proceed to prove. 

Proof of (2.6): Suppose we represent the pairs of values of m and n which give 
rise to d^(x) by the couplet (m9 n). 

Then, at successive "levels" of the descending diagonal dn(x) in Table 1, 
we have the couplets 

(0, n), (1, n + 1), (2, n + 2), ..., (n - 1, 2n - 1), (n, 2n), 

so that corresponding values of n - 2m are n, n - 1, n - 2, ..., 19 0, while 
n - m always has the value n. [It is important to note that the maximum value 
for m in the couplets must be n.] 

Consequently, from Table 1 and (2.3), with y = 2x for convenience, we have 

a)y» (A)y*-1 wy-2 wy 
i A / v _ n __ n , ^ _ , (_\ \^_________ 

U"{X) " 0!n! l!(n - 1)! 2!(n - 2)! ^ ; n\0\ 

= ^ - " " = ^ < - - ' > " - ( J + r > - » • • 
From (2.6) it follows immediately that 

dn(x) A + n - 1 
- - ^ L(2* " D» « > 1- (2-7) d„. x (x) 

Moreover, 

(2x - l)̂ -(dnA(.r) - 2ndA(x) = 0 , n > 0, (2.8) 

readily follows. 

Putting 

d{\, x, t) = £ <<«)*", (2.9) 
«= 0 

we find that the generating function for {<?*(«)} IS 
0 - [1 - (2* - I)*]"*. (2.10) 

Furthermore, 

2t || - (2x - l)log(2* - l)|f = 0, (2.11) 

which is independent of X. 

Additionally, we easily establish that 

2A2*(2x - I ) * " 1 ! ! - g^1 log g || = 0 (2.12) 

and 
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GEGENBAUER POLYNOMIALS REVISITED 

A2(2x - l)*log(2x - l)|f - g-y1 log g |f = 0 (2.13) 

if we allow A to vary. 

Differentiating (2.8) w.r.t. x and substituting from (2.8), we obtain 

(2x - 1)2A_(^A(X) _ 2
2n(n - l)dX

n(x) = 0. (2.14) 

Continued repetition of this process, with substitution from the previous 
steps, ultimately yields 

(2X ~ ir£^(d"(x)) - 2"rinr)dn^ = °  < 2 - 1 5 > 
for the vth derivative of the descending diagonal polynomial. If we write z = 
d^(x) for simplified symbolism, result (2.15) appears in a more attractive 
visual form as, when v = n, 

(2x - l)nz{n) - 2nnlz = 0 (2.15)' 

or by (2.6), 

z(n) _ 2n(A)n = 0. (2.15)" 

Observe that (2.15) can also be expressed as 

J-^(x)) = 2^(A)p^_+>), v = 1, 2, ,..., n, (2.15)'" 

on using (X)„(A + r)n_ p = (X)„ and (2.6). 

Note the formal equivalence of (2.15)'"and the known differential equation 
for Gegenbauer polynomials 

J^CnA(x) = 2^(X)r^+;(x). (2.16) 

Elementary calculations yield, additionally, by using (2.8) and (2.7), 

(2x - l)|^(x)) = ̂  J-(^+1(x)), (2.17) 

which differs in form from the corresponding result involving Gegenbauer poly-
nomials . 

3. SPECIAL CASES: CHEBYSHEV POLYNOMIALS 

If we substitute A = 1 in the relevant results of the preceding section we 
obtain corresponding results already given in [3] for the special case (1.4) of 
the Chebyshev polynomials Un(x), [Allowance must be made for a small variation 
in notation, namely d\{x) = bn + 1(x) in [3]; e.g., d\(x) = {2x - l)h = b5(x).] 

Coming now to the similar results for the Chebyshev polynomials Tn (x), we 
appreciate that the limiting process (1.3) requires a less obvious approach. 

Let us write 

^(x) = in + l)dX
+1(x) - ndX(x) (n > 0). (3.1) 

By careful analogy with the forms of (1.3), we may then define 

°«(X) = 2 ̂ (-J-) > (3'2) 
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where Dn(x) is the nth descending diagonal polynomial for Tn(x). 

Calculation yields 

Dn(x) = ~(2x - 2) (2a: - l)n = (x - 1)(2* - l)n. (3.3) 

Comparison should not be made with corresponding results produced in [3] 
where, it should be noted, each Chebyshev function is twice the corresponding 
Chebyshev polynomial in this paper. Accordingly, we have 20m(x) = an+2(x) in 
[3]; e.g., Dh(x) = (x - 1) (2x - l)4 = (l/2)a6(ar). 

Thus, we have shown that our results for the descending diagonals in the 
Pascal-type array of Gegenbauer polynomials are generalizations of correspond-
ing results for the specialized Chebyshev polynomials, as expected. 

4. GENERALIZED HUMBERT POLYNOMIALS 

Along with many other polynomials, the Gegenbauer polynomials (and conse-
quently the Chebyshev polynomials) are special cases of the generalised Humbert 
polynomial (see Gould [1])~ 

Generalized Humbert polynomials, which are represented by the symbol 

Pn(m9 x, y9 p, C) 
are defined by the generating function 

oo 

(C - mxt + ytm)p = T,Pn(m9 x9 y9 p, C)tn
9 (4.1) 

n= 0 

where 772̂ 1 is an integer and the other parameters are in general unrestricted. 

Particular cases of the generalized Humbert polynomial are: 

Pn(2, x9 1, -%, 1 

Pn(2, x9 1, -1, 1 

Pn(2, x9 1, -A, 1 

.) = Pn(x) (Legendre, 1784) 
Un(x) (Chebyshev, 1859) 

-) = C^(x) (Gegenbauer, 1874) 

Pn(3, x9 1, -%, 1) = 0>n(x) (Pinoherle9 10?0) (4.2) 

Pn(m9 x9 1, -v, 1) = Tiv
ntm(x) (Humbert, 1921) 

Pn(2, x9 -1, -1, 1) = 4>n + 1(x) (Byrd9 1963) 

|pn(/?2, x9 1.-™. l) = Prt(m, x) (Kinney, 1963) 

The recurrence relation for the generalized Humbert polynomial is 

CnPn - m(n - 1 - p)^Pn-1 + (n - m - ™P)yPn-m = °  (n > m > 1), (4.3) 

where we have written Pn = Pn(m9 x9 y, p, C) for brevity. 

Suitable substitution of the parameters in (4.2) for Gegenbauer polynomials 
reduces (4.3) to (1.2). 

In passing, it might be noted in (4.2) that Legendre polynomials are spe-
cial cases of Gegenbauer polynomials occurring when A = %. Hence, results for 
Gegenbauer polynomials C^(x) in [4] and in this article may be specialized for 
the Legendre polynomials C%(x). Moreover, Gegenbauer polynomials are closely 
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GEGENBAUER POLYNOMIALS REVISITED 

related to Jacobi polynomials, and they may also be expressed in terms of hy-
pergeometric functions. 

Using the generating function for Fibonacci numbers Fn , namely 

(1 - x - x1)-1 = E ^ * " " 1 , (4.4) 
n= 1 

we r e a d i l y see t h a t 
in/2] 

P„<2, %, - 1 , - 1 , 1) = F n + 1 = EQ(n-k
k), ( 4 . 5 ) 

whence the recurrence relation (4.3) simplifies to the defining recurrence re-
lation 

Gould [1] remarks that Eq. (4.5) is better than the usual device of using 
Chebyshev or other polynomials with imaginary exponent for expressing Fibonacci 
numbers. 

While it is not the purpose of this paper to pursue the properties of the 
generalized Humbert polynomial, it is thought that publicizing their connection 
with the polynomials under discussion—Gegenbauer and Chebyshev—may be a use-
ful service. 

To whet the appetite of the interested reader for further knowledge of the 
generalized Humbert polynomial, we append the explicit form given in [I] % 

[n/m] . . 7 v 

Pn(m, x, y, p, C) = £ ( ? ) ( „ I I _ ^cP-n+(">-l*yH-mx)n-mk, (4.7) 

from which one may obtain the explicit forms of the special cases given in 
(4.2). 

Likewise, the first few terms of the polynomials in (4.2) may be checked 
against the generalized terms given in [1]: 

P0 = CP 

P1 = -pmxCp-1 + p(P " ^y(-mx)1-mCp + m-2 (4.8) 

[ P2 = (P
2)cp-zmV + p(P I li)cp + m-3y(-mX)2-'" 

with 

Pn = (P\cp~n(-mx)n (m > n). (4.9) 
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FIBONACCI AND LUCAS NUMBERS OF THE FORM 3 z 2 ± 1 

Fm = 3 3
2 + 

Fm = 3 s 2 " 
Lm « 3 s 2 + 

Lm = 3 s 2 -

1 
1 

1 
1 

J A N N I S A . ANTON I AD I S 
University of Thessaloniki, Greece 

(Submitted July 1983) 

1. INTRODUCTION 

The purpose of this paper, which is a continuation of [1], is to report 
some results regarding the generalized Fibonacci and Lucas numbers of the form 
3s2 ± y. 

In particular, we show for the Fibonacci and Lucas numbers that the follow-
ing relations hold: 

if and only if m = ±1, 2, ±7 

if and only if m =.-2, ±3, ±5 

if and only if m = 1, 3, 9 

if and only if m = -1, 0, 5, +8 

This author tried to show similar properties for other recursive sequences 
while working on class number problems for his Dissertation. 

Throughout this paper we will make frequent use of the relations developed 
in [1]; thus, the numbering of the relations in this paper continues from that 
of [1]. 

Also, as in [1], d will always be a rational integer of the first kind and 

r will be the fundamental solution of the Pellian equation x2 - dy1 = -4. 

The sequences {Um} and {Vm} are as defined in [1], 

2. PRELIMINARIES 

Lemma 1: i) Let db % 0 (mod 3). Then the equation Um = 3s2 has 

(a) the solutions m = 0, 4 if d = 5, 
(b) only the solution m = 0 in all other cases. 

ii) Let b = 1 and a ^ 0 (mod 3). Then the equation Um = 3s2 has 

(a) the solutions m = 0, 4 if d = 5, 
(b) the solutions m = 0, 2 if a = 3s2, 
(c) only the solution m = 0 in all other cases. 

Proof of i): According to our assumptions (Um)mel
 i s periodic mod 3 with length 

of period 8 and 3 divides U if and only if 4 divides m. Hence, Um = 3z2 im-
plies U2nV2n = 3z , by (5). Since n - 0 is an obvious solution, we assume n =f 0. 

Supported by the Deutsche Forschungsgemeinschaft. 
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Case 1. Let n ^ 0 (mod 3). Then (U2n9 V2n) = 1, by (10)9 and we obtain 

(U2n = 3s2, V2n = s2) or (U2n = s2, V2n = 3s2). 

The first subcase is impossible, by (28), For the second, it is sufficient, by 
(30), to check only the value n ~ 1 in case a and b are both perfect squares 
(n = 6, d = 5, L12 = 322 ̂  3s2). 

For n - 1, we have 

F2 = a2 + 2 = 3s2, a = t2
 s b = P2. 

That is, t1* + 2 = 3s2. Using [3], the last diophantine equation has at most 
one solution, (t, s2) = (±1, ±1), which corresponds to the value d = 5. 

Case 2. Let n E 0 (mod 3), n ̂  0. Equation (10) implies (Z72n, 72n) = 2, 
so we must have 

(£/2n = 2s*, v2n = 6s2) or (y2n = b z \ , v2n = 2a|). 

The first subcase is impossible because, by (31), the only possible value of n 
for which U 2n = 2s2 is n = 3 (d = 5) for which L6 = 18 ̂  6s2. The second sub-
case has, by (29) and direct computation, no solution for n = ±3, d = 5, 29. 
The proof of (ii) follows along the same lines as the proof of (i); hence, the 
details are omitted. 

Lemma 2: Let a f 0 (mod 3). Then the equation Vm = 3s2 has the solutions m = ±2 
if a2 + 2 = 3s2 and no solution in all other cases. 

Proof: Since a ? 0 (mod 3), (Vm)meZ is periodic mod 3 with length of period 8 
and 3 divides Vm if and only if m = ±2 (mod 8). 

Case 1. Let m = ±2 (mod 16). Then, a2 + 2 = 3s2. The solutions of this 
equation are given in [4] by 

3s + a/l = (3 + V5)(2 + V^r for n = 0, 1, 2, ... . 

If m ̂  ±2, then (4) says we only have to consider the case m E 2 (mod 16). We 
write tf?=2 + 2 • 3s • n where 8|w and 3|n. Then, by (22), Vm = -V2 (mod Vn) . If 
7m = 3s2

s we have (3s)2 E -3V2 (mod Vn) where 8 In and 3/n, which is impossible 
since Vn = 2 (mod 3), (7„, 3)= 1, and (Vm, 72) = (2, 72) = 1 imply (-372/7„) = 1 
by (33). 

Case 2. Let m = ±6 (mod 16). If m = ±6, then a6 + 6a4 + 9a2 + 2 = 3s2 or 
(a2 + 2) (a1" + 4a2 + 1) = 3s2 so that c(c2 - 3) = 3s where c = a2 + 2 E 0 (mod 
3) by our assumption on a. Since (c, a2 - 3) = 3, we need only check the fol-
lowing two subcases: 

(i) o = 3s2, c2 - 3 = (3s2)2, 

(ii) o = (3sx)2, c2 - 3 = 3s2. 

By (i) we have 3s2 = ±1, which is impossible. By (ii), 3 3 s 2 - l = s 2 , which is 
impossible mod 3. Now let m E 6 (mod 16) with m + 6. We write 

772 = 6 + 2 • 3s * n, where 8 In, 3/n. 

Then, by (22), Vm E -76 (mod 7n). If 7W = 3s2, we have 

(3s)2 E -376 (mod Vn) with 8 In, 3/n. (62) 

By using (13) repeatedly with (4), we obtain 
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2Vn = 2Vs\ = '•• = ±2Vh (mod 76). (63) 

We now note that (76, Vk) = {Vh, 72) = 1 and 76 = 2 (mod 8), since a = 1 (mod 2). 
However, 

274 = -272 (mod 7 0 (64) 

and, by (22), 

2Vh E -270 = -4 (mod 72). (65) 

Applying the Jacobi symbol, we now have: 

by (63); 
6/2/ 

= -(̂ f)- since 7g = 2 (mod 8); 

270 

by (64); 

by (19); 

= -1, by (65). 

Therefore, (62) has no solution and the Lemma follows. 

Lemma 3: For the generalized Fibonacci numbers Un the following identity holds: 

^»±l =U2nV2n±, + b - <66> 

Proof: This is like the relation (36) of Lemma 2 in [1]. 

Lemma k: Let a f 0 (mod 3). Then the equation Vm = 6s2 has no solution. 

Proof: Since a is odd and a '$ 0 (mod 3), we have a = ±1 (mod 6) or a2 = 1 (mod 
12). In this case the generalized Lucas numbers are periodic mod 6 with period 
24 as are the usual Lucas numbers. Hence, it still holds that 

Fffl = 0 (mod 6) if and only if m = 6 (mod 12), 
and 

Vm = 18 (mod 24) if m = 6 (mod 2). 

With Vm = 6s2, we now have z1 = 3 (mod 4), which has no solution. 

3. FIBONACCI NUMBERS OF THE FORM 3s2 ± 1 
From now on b will always be 1; that is, d - a2 + 4. 

Theorem 1: The equation Um = 3s2 + 1, m = 1 (mod 2) has 

(a) the solutions wz = ±1, ±7, if d = 5, 
(b) the solutions m = ±1, ±5, if d = 13, 
(c) only the solutions m = ±1 in all other cases. 
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Proof: For m = kn ± 1, (66) implies that U2nV2n±1 = 3s2. If n = 0, then U2n = 09 
so that z - 0 is a solution which gives us m = ±1. Now assume that n ̂  0, then 
^2n^2n±i ^ °- Corollary 9 of [1] implies (£/2n, V2n±1) = 1. Hence, we must have 

U2n = 3*1> F2n±l = 4 ' (67) 
or 

U2n = Si» ^2n±i = 33*. (68) 
By using (28) and a direct computation of (/2n, we find that (67) has a solution 
for m = 5 if d = 13, and one for m = 7 if d = 5. By using (30), we find that 
the possible values of n for (68) to have a solution are n - 6 if d = 5, and 
n = 1 if a = t2. 

When n = 6, d = 5, we have L13 = 521 + 3z2 and L1± = 199 ̂  3s2 so (68) has 
no solution in this case. When n = 1, a = t2, we have 7X = 3s2 = a, which is 
impossible. Furthermore, V3 = a3 + 3a = 3z\* which implies that a2 + 3 = 3ẑ 2 

or th + 3 = 3u2 or 21th + 1 = u2. The last equation, by [2], has no solutions, 
so (68) is impossible. 

Note that m = -5, d = 13 and m = -19 d - 5 are also solutions, by (3). 

Theorem 1f : The equation Um = 3z2 - l9 m = I (mod 2) has only the solutions 

m = ±3, 15 if a2 + 2 = 3s2 

and no solutions in all other cases. 

Proof: This follows the arguments of Theorem 1 by using (36) , Corollary 9, (28) 
and (29) from [1]. 

Theorem 2: Let a2 + 2 = p where p is a prime. The equation Um - 3z2 + a, m ~ 0 
(mod 2) has only the solution m = 2. 

Proof: Case 1. Let 777 = 4n. By (38), we have U2n + 1V2n_1 = 3s2. But, Lemma 3 
of [1] implies ([/2n + u ^2n-i) = ^2 = P» s o t n e following possibilities must be 
checked: 

U2n+i = 33?, 7 2 „, = z\ (69) 

^2K+i = *?. F2n-i = 33? (70) 

'2n+l J ° l> '2JI-1 a 2 

^2n+l = s l» 

£/2n+1 = 3pS*, P ^ = Vz\ (71) 

y2«+i = P«i. 72»-i = 3?s2 (72) 

Equation (69) has no solutions, since the possible values for which V2ri-i 
is a perfect square are given by (28) in [1] and none of them gives a solution 
to U2n+1 = 3s2. 

Equation (70) has no solution either, because the values of n for which 
Um+i = z2 a r e n = 0,-1, which gives V.± = -a ± 3z\ and 7_3 = -(a3 + 3a) ̂  3s2. 

If we write In - 1 = 4A ± 1 and apply (13) repeatedly, we find that 

2f2„-i = - 2 ^ . * ± 1 = ••• = ±2V 1 (mod 72). 

Hence, if V2 _x = ps^ = 7222, we have 72 divides ±27±1 or a2 + 2 divides ±2a, 
which is impossible. Hence, (71) has no solution. 

If we write In + 1 = AX ± 1 and apply (13 repeatedly, we find that 

2f/2n + l = - % - u i S . . . = ±2J/X (mod 72). 
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Hence, if U2n + 1 = ps2 = 72s2, we have 72|±2, which is impossible. Thus, (72) 
has no solution. 

Case 2. Let m = 4n - 2. Equation (40) implies £/2n-2^2n + a = 3s2 + a, so 
^2n-2^2?7- = ^ S " 

If n - 1, then U2n-2 = 0 a nd 2 = 0 which is a solution giving m = 2. When 
n ^ 1, then U2n_2 ^ 0. Recalling Lemma 3 of [1], we see that (U2n_2, V2n) di-
vides 7 2 = p. Hence, we must check the following four possibilities: 

U2n_2 = 3z\, V2n - z \ (73) 

U2n-2 = 2i, V2n = 3a| (74) 

y 2 „ - 2 = 3 P 2 1 > F2n = P 2 2 ( 7 5 > 
U2n-2 = P 2 ? ' F 2n = 3 P * 2 ( 7 6 > 

Equation (73) has no solution by (28). 

The solutions of U2n_2 = s 2 are (n = 7, <2 = 5 ) , (n = 2 if a = t 2 ) , and n = 
1. For n = 7, we have L 1 4 = 843 ̂  3s2. For n = 2, 7 4 + ?>z\ by Lemma 2 if a ? 0 
(mod 3 ) , while 74 = 3z\ if a = 0 (mod 3) is obviously impossible. Since n - 1 
is also impossible, (74) has no solutions. 

If n E 0 (mod 2) , then we can see that 7 2 n ̂  ps 2 by the same argument given 
for Case 1. 

Now let n E 1 (mod 2 ) , n ^ 1. Since V_2n - V2n9 it is sufficient to con-
sider only the case n E 1 (mod 4 ) , that is, 2n = 2 (mod 8 ) . We write 2n = 2 + 
2£ • 3s with 4lt and 3jft so that 7 2 n = -Vz (mod 7t ) . Applying (13) repeatedly, 
and taking into account that t = 4A, we obtain 

27t = ±270 E ±4 (mod 7 2 ) , that is, (7t, 72) = 1, 

which implies p)(Vf Hence, V\n - ps 2 implies (ps)2 E -p2 (mod Vt), which is 
impossible since (-p2/Vt) = -1 by (19). Therefore, (75) has no solution. 

Now let U2n-2 = Vzi- Equation (5) implies that Un-1Vn-1 = psf. If n ? 1 
(mod 3 ) , then (Un_l9 7n-1) = 1 by (10), and we have 

By using (28) and (30), we see that both are impossible. 

If n E 1 (mod 3 ) , then (10) implies (£/n_l9 7n_x) = 2, and we have 

(f/n-i = 2ps|, 7n_x = 2s2,) or (*/„_! = 2s |, 7n_ x = 2 p 4 ) . 

The first is impossible by (29) and a direct computation of Un^1; the second is 
impossible by (31) and a direct computation of 7n„1. [For the second case, 
with n = 4, we should have 73 = 2pslf, which is impossible since, otherwise, we 
would have p = a2 + 2 dividing 73 = a (a2 + 3)]. 

Theorem 2' : Let a2 + 2 = p where p is a prime. The equation £/w = 3s2 - a, m E 0 
(mod 2) has 

(a) the solutions m = -29 0, 6, if a = 3t2, 
(b) only the solution m = -2 in all other cases. 

Proof: The proof of this theorem follows that of Theorem lf with the exception 
of the case 

U2n-1 = S l > V2n+1 = 3 s 2 > w h e n U = X • 
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Under these conditions, we have 73 = 3s2, which can be transformed by simple 
reasoning into 27ylt + 1 = v2, which has no solution by [2]. 

Corollary 1: (a) Fm = 3s2 + 1 if and only if m = ±1, 29 ±7. 

(b) Fm = 3z2 - 1 if and only if m = -2, ±39 ±5. 

4. LUCAS NUMBERS OF THE FORM 3s2 ± 1 

Theorem 3: Let a f 0 (mod 3). Then the equation 7W = 3s2 + a, m = 1 (mod 2) 
has 

(a) the solutions m - 1, 3, 9 if (i = 5, 
(b) only the solution m = 1 in all other cases. 

Proof: Case 1. Let 777 = 4n - 1. Equation (42) implies that V2n_1V2n = 3s2. 
However, i.V2n_1, 72n) = 1, so we have 

(72n-l = 3l» F2n = 3s|) o r (V2n-1 = 3s2, 7 2 n = g|). 

For the first subcase, (28) implies 

n - \ If a = t2
 9 d ^ 59 

n = 1, 2 if £Z = 59 

or n = 2 if d = 13. 

When n = 1 and a = £2, 72?2 = 3s2 if and only if 3s f - th = 2. Ljunggren [3] 
has proved that this equation possesses only the solution (s2s t) = (±1, ± 1), 
which gives a = 1 and so d = 5. 

For n = 25 <2 = 59 we have Lh = 7 ̂  3s 2 5 while for n = 29 d = 139 we obtain 
L R = 119 + 3z\. 

By using (28) once more, we see that the second subcase has no solution. 

Case 2. Let 77? = 4n + 1 = 2(2n) + 1. Equation (42) implies that V2nV2n + i 
3s2. By (8) and (42), we see that 

{V2
2n - 2(-l)n}{7 Vn + 1 - (-l)na} - 2a = 3s2 

(vX+i - ( - ! ) " < " 2(-lfVnVn+1 = 3 s 2 . 
Hence, VnMn = 3 s 2 wi th 

Mn = VX+i - ( " l ) n ^ n " 2 ( - l ) n 7 n . 
Let p be an odd prime not equa l t o 3 wi th pe\\Vn, Since p/Mn, we have e = 0 
(mod 2 ) . This i m p l i e s t h a t Vn = w2 or 7n = 2w2 or 7n = 3w2 or 7n = 6zJ2. 

When Vn= W2
 9 (28) imp l i e s 

tt = 1 i f a = t 2 , tZ ^ 5 , 
n = 1, 3 i f d = 5 , 

or n = 3 i f d = 13. 
When n = 1 and a = t2, we have m = 5* Hence, we must examine the equation 

a5 + 5a3 + 5a = 3s2 + a 

for solutions. According to our assumptions, this equation can be written as 

(a2 + 2 ) 2 + a2 = 3/2. 

However, a2 = 1 (mod 12) and 3/2 = 10 (mod 12), so the equation is unsolvable. 

1985] 305 



FIBONACCI AND LUCAS NUMBERS OF THE FORM 3s2 ± 1 

By direct calculation, we can show that for all other possible values of n 
no solutions exist. 

Let Vn = 2w2. Using (29) and direct calculation, we find that the unique 
solution in this case is n = 0 or m = 1. 

Let Vn = 3w2. In this case, Lemma 2 implies that solutions exist only for 
n = ±2 if a2 + 2 = 3w\. 

When n - -2, we have m = -7. Since 7_ 7 < 0, we know that V_ 7 i- 3s + a. 
Hence, we have only to check the case for n = 2 or 77? = 9, that is, the possible 
solutions of the equation a9 + 9a7 + 27a5 + 30a3 + 9a=3s2 + a. Factoring, we 
have a(a2 + 2) (a6 + 7a1* + 13a2 + 4) = 3s2 which, by replacing a2 + 2 with 3w\, 
becomes a (a6 + la* + 13a2 + 4) = w2. 

However, (a, a6 + 7a** + 13a2 + 4) = (a, 4) = 1, so it follows that 

a6 + lah + 13a2 + 4 = s2 or (a2 + 4) (a"1 + 3a2 + 1) = s2. 

Now, the greatest common divisor tells us that 

(a2 + 4, ah + 3a2 + 1) = (a2 + 4, (a2 + 4) - 5(a2 + 3)) 

= (a2 + 4, 5(a2 + 3)) 

= (a2 + 4, 5) = 1 or 5. 

If (a2 + 4, a2* + 3a2 + 1) = 1, it follows that a2 + 4 = A2 with a = t2. This 
implies a = 0, which is impossible since a > 0. 

Now let (a2+4, alf+3a2 + l) = 5. Then a2 + 4 = 5X2 and a* + 3a2 + 1 = 5\\ 
with a = t2 E 1 (mod 6). Recall that t4" - 5Xf = -4 has the solutions £ = 1 and 
t = 2 by (28). When t = 1, a = 1 and d = 5. When t = 2, a == 4, which is im-
possible since a E 1 (mod 2). 

Therefore, in this case, we have only the solution m - 9, d = 5. 

By Lemma 4, Vn = 6w has no solutions. 

Following the arguments of Theorem 3, we can also show 

Theorem k: Let a ^ 0 (mod 3). Then the equation Vm = 3z2 - a, m E 1 (mod 2) 
has 

(a) the solutions w = -1, 5 if d = 5, 
(b) only the solution m = -1 in all other cases. 

Theorem 5: The equation Lm = 3s2 + 1, tfz E 0 (mod 2) has no solution. 

Proof: Case 1. Let 77? = 4n. Equation (8) implies that L\n - Lhn + 2, which is 
the same as 3s2 + 1 = L\n - 2. Hence, 3(s2 + 1) = L\n , so that 3lL2n. There-
fore, In E 2 (mod 4) or w E 4 (mod 8). Since for even 777, L_m = LOT, it is suf-
ficient to consider only the case m E 4(16). 

If m = 4, then Z^ = 7 ̂  3s2 + 1. 

Let m i 4. We write m = 4 + 2n3 with 8 In, 3/n. Then Vm E -1/ (mod 7„) by 
(22). If FOT = 3z2 + l,we have (3s)2 E -24 (mod 7„) , where 8 In and 3/n. Since 
for 8 In, Vn E 2 (mod 3), we can now apply the Jacobi symbol which is calculated 
to be -1, by (19) and (20). Hence, no solution exists. 

Case 2. Let m = 4n + 2. Equation (8) gives L\n+1 = Lkn+2 - 2 or L\n+1 = 
3z2 - 1. But L2

n + 1 - 5F2
2n + 1 = -4 and so 5F2

2n + 1 = 3(;s2+l). This implies that 
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3l̂ 2rc + i5 which is impossible since 3 divides Fm if and only if 4 divides m. 
Hence, in this case also3 there are no solutions. 

Theorem 6: The equation Lm = 3s2 - ls m = 0 (mod 2) has only the solutions 
m = 0, ±8. 

Proof: The proof is the same as that of Theorem 3S where we take into account 
the fact that Lm = -1 (mod 23) if 16 divides n. 

Corollary 2: (a) Lm = 3s2 + 1 if and only if m = 1, 3, 9. 

(b) Lm = 3z2 - 1 if and only if m = -1, 0, 55 18. 

Remark: We can apply (26) and (27) as in [1] in order to obtain some state-
ments about the solutions of diophantine equations of the form 

BY2 = AXh + BX2 + C. 
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1 . INTRODUCTION 

In developing a Zeckendorf theorem for double-ended sequences , Hoggatt and 
B ickne l l - Johnson [1] found a remarkable p a t t e r n a r i s i n g from app ly ing K l a r n e r f s 
theorem [ 2 ] , [3] on s imul taneous r e p r e s e n t a t i o n s u s i n g F ibonacc i numbers. Here 
we s tudy the p r o p e r t i e s of the a r r a y g e n e r a t e d , a f t e r f i r s t p r o v i d i n g enough 
background in fo rmat ion to make t h i s paper s e l f - c o n t a i n e d . We s h a l l show r e l a -
t i o n s h i p s wi th the Lucas numbers, t he Wythoff p a i r s equences , and g e n e r a l i z e d 
Wythoff numbers [ 7 ] , 

David Kla rne r [2] has proved 

K l a r n e r 1 s Theorem: Given nonnega t ive i n t e g e r s A and J3, t h e r e e x i s t s a unique 
s e t of i n t e g e r s {kl9 k2» k39 . . . , kr] such t h a t 

A= \ + ** ,+ ' • • + **,. B = Fki + 1+Fk2+1+ - . . +Fkr+1, 
for \k^ - kj\ ^ 2 , i ^ j , where each Fi i s an element of t he sequence { F ^ } ^ * 
F . A 1 = F. + F. , , F, = 1, F„ = 1. 

%+l ^ ^ - 1 ' 1 ' 2 

Thus, to represent a single integer m > 0, we merely solve 
A = 0 - \ + 1 + V x + •'" +FK^' B-m-Fki +Fkz + ••• + F^ , 

which has a unique solution by Klarner?s Theorem. A constructive method of 
solution is given in [3], and we will soon use this idea to generate a most 
interesting array. 

We shall also need some properties of Wythoff pairs (an, bn) 9 which are 
formed by letting a± = 1 and taking an as the smallest positive integer not yet 
used, and letting bn - an + n. Wythoff pairs have been discussed, among other 
sources, in [4], [5], [6], [7], and [8]. Early values are shown below. 

n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

an: 1 3 4 6 8 9 11 12 14 16 17 19 21 22 

bn: 2 5 7 10 13 15 18 20 23 26 28 31 34 36 

We list the following properties: 

ak + k = bk (1.1) 
abn

 = an + hn and bbn = an + 2&n (1 .2 ) 

&an = &n - 1 and ^an = a n + bn - 1 (1 .3 ) 
( 2 , fc = a n 

U» & = bn 
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(39 k = an 
hk+i ~ hk = \ (1.5) 

U, k = bn 

Further, (an9 bn) are related to the Fibonacci numbers in several ways, one 
being that, if A = {an} and B = {bn}, then A and 5 are the sets of positive 
integers for which the smallest Fibonacci number used in the unique Zeckendorf 
representation has respectively an even or an odd subscript [9]. 

Also, the Wythoff pairs are related to the Golden Section Ratio 

a = (1 + /5)/2, 

and recall that Fn = (an - 0n)/(a - (3), where 3 = 1/a, as 

an = [na], bn = [na2], (1*6) 

where [x] is the greatest integer in x. 

Lastly, we recall the generalized Wythoff numbers An9 Bns and Cn of [7] 
with beginning values 

2 3 4 5 6 7 8 9 10 11 12 13 14 

4 5 8 11 12 15 16 19 22 23 26 29 30 

7 10 14 18 21 25 28 32 36 39 43 47 50 

6 9 13 17 20 24 27 31 35 38 42 46 49 

and the following properties useful in this paper: 

An = 2an - n (1.7) 

Bn = an + 2n = bn + n (1.8) 

Cn = an + In - 1 = bn + n - 1 = aa^+ n (1.9) 

Cn + 1 = Bn and Cn - 1 = A U n (1.10) 

n: 
A ' 

Bn-

1 
1 

3 
2 

1 , n = bk 

3 , n = ak 

i4 - 4 = < ( l . H ) 

3 , 

4 , n = a-, 
Bn+1 - * „ - < a -") 

C - C = < ( 1 - 1 3 ) 
u n + 1 u n ^ 

' 3 , n = £>fe 

^4, n = ak 

An = a„ + In - 2 and Bn = 3an + n - 1 (1 .14) 
*« 

\ ' \ + 1 -AK+i ( 1 ' 1 5 ) 

The sequences 4 „ , £ „ , and C„ d i v i d e the p o s i t i v e i n t e g e r s i n t o t h r e e d i s -
j o i n t s u b s e t s , c l a s s i f i e d by Zeckendorf r e p r e s e n t a t i o n us ing Lucas numbers 
[ 9 ] . 
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2. AN ARRAY ARISING FROM KLARNER'S DUAL 

ZECKENDORF REPRESENTATION 

Recall the Klarner dual Zeckendorf representation given in §1, where 

A = Fv , + F + • • • + F, A n = 0 
1 2+ (2 1) 

B =FK + ^ 2 + ••• + **, = ̂ > 

where n = 1, 2, 39 . .., \k^ ~~ kj\ ^ 29 i ^ j , and the Fibonacci number Fj comes 
from the double-ended sequence {F--}™^. The constructive method described in 
our earlier work [3] for solving for the subscripts kj to represent A and B 
leads to a symbolic display with a generous sprinkling of Lucas numbers Ln 
(L1 = 1, L2 = 3 , Ln+2 = Ln+± + Ln) and Wythoff pairs. 

Here we use only two basic formulas, 

F „ + 2 = F n + 1 + F n and 2Fn = F n + 1 + Fn_2, (2.2) 

to push both right and left in forming successive lines of the array. The dis-
play is for expressions for B only; A is a translation of one space to the 
right. At each step, B = n and A = 0. 

The basic column centers under F_1. We continue to add F_1 = 1 at each 
step, using the rules given in (2.2) to simplify the result. For example, for 
n = 1, we have F_x = 1. For n = 2 9 F_ x + F_x = 2F_ x = F0 + F_ 3 = 2. For n = 3, 
F-i + F0 + F-3 becomes Fx + F-3 = 1 + 2 = 3. We display Table 2.1 on the fol-
lowing page. 

Many patterns are discernible from Table 2.1. There are always the same 
number of successive entries in a given column. Under F_2 there are Li; under 
F_39 L2; under F_h9 L3; and under F_£, Lk + 1 successive entries. The columns to 
the right of F_± (under FQS for instance) have Ln ± 1 alternately successive 
entries9 but the same number of successive entries always appears in a given 
column. Also, we notice that once we have all spaces cleared except the ex-
treme edges in the pattern being built, we start again in the middle, as in 
lines 4, 8, 199 48, ..., L2k + 1 , ... . 

Reading down the columns, we write the sequence of numbers first using that 
Fk is its representation. For example, the sequence of numbers using F_x is 1, 
4,8, 11, 15, 19, ..., with first difference Ax = 3 and second difference A2 = 4. 
We want only the numbers first used when reading down the columns, so for F_3 
we would use 2, 9, 20, 27, ..., and ignore 3, 49 10, 11, 21, 22, ... . We list 
sequences appearing beneath Fk in Table 2.1 along with first and second differ-
ences : 

F 0 i 2, 6, 9, 13, 17, 20, 24, 27, ... Ax = 3, A2 - 4 

F1i 3, 10, 14, 21, 28, 32, 39, 43, ... Ax = 7, A2 = 4 

F2: 5, 16, 23, 34, 45, 52, ... Ax = 11, A2 = 7 

F3i 7, 25, 369 54, 72, ... Ax = 18, A2 = 11 

Fh: 12, 41, 59, 88, ... Ax = 29, A2 = 18 

F_x: 1, 4, 8, 11, 15, 19, 22, 26, ... Ax = 3, A2 = 4 

F : 5, 12, 16, 23, 30, 34, 41, 45, ... A, = 7, A2 = 4 
' -2 (continued) 
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Tab1e 2.1 Fn Used To Represent B from Klarnerfs Theorem 

Subsc r ip t n: 

B _9 _ 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 

1 x 
2 x x 
3 x x 
4 x x x 
5 x x x 
6 x x x 
7 x x 
8 x x x 
9 x x x x 

10 x x x x 
11 x x x x x 
12 x x x x 
13 x x x x 
14 x x x x 
15 x x x x x 
16 x x x x 
17 x x x x 
18 x x 
19 x x x 
20 x x x x 
21 x x x x 
22 x x x x x 
23 x x x x x 
24 x x x x x 
25 x x x x 
26 x x x x x 
27 x x x x x x 
28 x x x x x x 
29 x x x x x x x 
30 x x x x x 
31 x x x x x 
32 x x x x x 
33 x x x x x x 
34 x x x x x 
35 x x x x x 
36 x x x x 
37 x x x x x 
38 x x x x x x 
39 x x x x x x 
40 x x x x x x x 
41 x x x x x 
42 x x x x x 
43 x x x x x 
44 x x x x x x 
45 x x x x x 
46 x x x x x 
47 x 
48 x x 
49 x x x 
50 x x x 
51 x x x x 
52 x x x x 
53 x x x x 
54 x x x 
55 x x x x 
56 x x x x x 
57 x x x x x 
58 x x x x x x 
59 x x x x x 
60 x x x x x 
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^-3 2, 9, 20, 27, 38, 49, ... Ax = 7, A2 = 11 

12, 30, 41, 59, 77, 88, ... Ax = 18, A2 = 11 

5, 23, 52, 70, 99, ... Ax = 18, A2 = 29 

Surely the reader sees the Lucas numbers 1,3, 4, 7, 11, 18, 29, ..., as the 
first and second differences. In the next section, we write formulas for each 
term in the sequences given, and find both Lucas numbers and the Wythoff pair 
numbers. 

As a final observation, notice that the sequences associated with Fk when k 
is a negative odd integer have different behavior than all the others listed. 
For those sequences, A2 > A-L, and successive differences follow the pattern 
A15 A2, Ax, A2, A2, ..., while all the others have A2 < A-ĵ  and a pattern of 
successive differences that begins Ax, A2, Ax, Ax, A2, ... . 

3. LUCAS NUMBERS AND THE WYTHOFF PAIRS 

We write the general term un for the sequence of numbers first using F^ in 
its representation as observed from Table 2.1 for k ^ 0. 

F0: un = In + an - 1 

F1 : un = n + 3an - 1 

F2: un = 3n + kan - 2 

F3: un = 4n + 7an - 4 

i^: wn = In + llan - 6 

F5: un = lln + lSan - 11 

F6: un = 18n + 29an - 17 

Again we see the Lucas numbers Ln, defined by 

L1 = 1, L2 ~ 3, and Ln+1 = Ln + Ln_±. 

Observe that the last terms are either Ln or one less than Ln9 and the pattern 
of general terms seems to be 

Fk : un = Lkn + Lk+1an - [Lk - (1 + (-l)fe)/2], 

where an is the first member of a Wythoff pair. 

Theorem 3-1- The sequence of numbers first using F^9 k ^ 0, in its representa-
tion arising from Klarnerfs theorem is given by 

Fk: un = nLk + anLfe+1 - [Lk - (1 + (-l)k)/2]. 

Proof: From [8], all Fibonacci representations can be put in the form 

un = (2n - 1 - an)A2 + (an - n)Ax + u19 (3.1) 

where Ax and A2 are the first and second differences and u1 is the beginning 
term of the sequence. By the method of generation of the array, 

(Lk+1, k even 
Wi = { 

[Lk+1 + 1, k odd 
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and A2 = Lk + 2, A± = Lk+3 for k > 1. Substitution of these values into (3.1) 
yields the result quite quickly. 

For k - 09 we note that the sequence for FQ can be written from (3.1) by 
letting Ax = 3 , A2 = 49 and ux = 2. 

The sequence of general terms for the sequences using Fk when k is negative 
gives us a different story. First, take k negative and even: 

F_2: un = n + 3an + 1 Ax = 79 A2 = 4 
F-h

l un = 4n + 7an + 1 Ax = 18, A2 = 11 

suggesting 

F_k: un = nLk^ + anLk + 1 A, = Lfe + 29 A2 = Lk+1 

When & is negative and odd9 we let m = n - 1 and list 

F_1: un = 2/?7 + am + 1 

F_3: un = 3m + 4am + 2 

F : Uv, = 1m + 11a™ + 5 
• 5 °  """ ™ 

suggesting 

* V un = ̂ - l + amLfe + Lk-2 +1-

Theorem 3.2: The sequence of numbers first using F_k in its representation is 
given by 

(i) F_2j: un = nL2j_1 + anL2j + 1; 

(ii) F^i un = 2(n - 1) + an_1 + 1; 

Proof: (i) follows readily from (3.1) by taking 

A l = L 2 j + 2> A 2 = L2j+3> a i l d U l = L 2 j + 1 + l ' 

(ii) is proved by mathematical induction. Note that (ii) is true for early 
values. Study the pattern of successive differences A1 = 39 A2 = 49and by the 
rules for generation of the array, we have 

(3, n - 1 = bi 
Un + 1 - Un = < 

( 4 9 n - 1 = a • 
Assume uk = 2(k - 1) + ak_± + 1. Then9 when k - 1 = bi9 (1 .4 ) l e t s us w r i t e 

wfe+i = 3 + u k = 3 + 2(k - 1) + ak_1 + 1 
= 3 + 2(fc - 1) + afc 

= 2fc + afc + 1. 
When Zc - 1 = a^-, we aga in apply (1 .4 ) 9 and 

uk + 1 = 4 + ufe = 4 + 2(fc - 1) + afe_1 4- 1 

= 2k + (afe_x + 2) + 1 

= 2k + ak + 1, 
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so that uk+1 again has the form of (ii), establishing (ii) by mathematical in-
duction. 

The general case (iii) can be proved by mathematical induction in a similar 
way by using (1.4), if we take Ax = £2j + 2> ^2 = ^2j + 3> and

 ui = L2j-i + 1# W e 

again have Ax when n - 1 = b^ and A2 when n - 1 = aj. 

Corollary 3*2: A second formula for the sequence of numbers first using F. in 
its representation is given by 

F-i 
F 
-(2j + l) 

6»L2*-1 +a^2j'-2 + !• ^ ' > 0 ' 

^n = « + in-x 

i ,])„. + (a , + 1)L0 . + 1, j > 0. 
n-l 2j v n - l '2,7-1 ' ^ 

Proof: Change the form of the sequence for F given in Theorem 3.2 by apply-
ing (1.1): ° 

un = nL2j-x + ̂ nL2. + 1 = nty.! + On^.x + a„i2i-2 + 1 

-V 2 J - -1 +anL2j-2 + ^ 
Again apply (1 .1 ) t o F ^ : 

un = 2(n - 1) + a n - 1 + 1 = (n - 1) + (n - 1 + a n _ x ) + 1 

= n + Vl" 
The proof for F_,2i+i') is s i m i l a r -

If we take k negative and odd, and apply (3.1) to write the terms of the 
sequences, we 

F-i--
F-3--
F-s--

leading us to 

observe 
un = 5n -

un = I5n 

un = 40n 

an - 3 

- han - 9 

- llan - 24 

Theorem 2.3: If /c is odd and greater than 1, then the sequence of numbers first 
using F_k in its representation arising from KlarnerTs Theorem is given by 

F_kt un = 5nFk+1 - Lkan - 5Fk + 1. 

Proof: Let u1 = Lk_2 + 1, A2 = Lk+2, and Ax = Lk + 1 in (3.1) and simplify using 
Lk+2 + Lk = 5Fk+i' 

h. THE GENERALIZED WYTHOFF NUMBERS 

The generalized Wythoff numbers A n 9 Bn9 and Cn of [7] provide another de-
scription of the general term of the sequences arising from using Fk in the 
representation from Klarnerfs theorem. Observe that, for FQ9 

un = 2n + an - 1 = Cn 

by (1.9). Each sequence we have generated is a subsequence of the sequence for 
A n 9 Bn9 or Cn. The sequences for FQ and F_3 contain only C^'s, while the se-
quences for F2k+1 contain only B^s9 k ̂  0. All of the other sequences contain 
A^'s exclusively. 
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Theorem 4.1: The sequences arising from first using F2k+i9 ^ ̂  ̂ s i n t*le reP~" 
resentation from Klarnerfsi Theorem are 

F1: un - Ban 

F3: un = Bb 

F5: un - Bb 
D n 

F2k+1, k> Oi un = flfc 

kS^ban 

Proof: We simplify the form B^ to demonstrate that un has the form given by 
Theorem 3.1. For F19 observe (1.14). 

For F35 we apply (1.8) and then (1.2) and (1.3) in sequence finishing with 
(1.1) to obtain 

Bban= aban
+ 2 ^ n = (a*n+ b«J + 2K " &n ~ D + 3 ( a n + fcn - 1) 

= 4&n + 3an - 4 = 4(n + an) + 3an - 4 = hn + 7an - 4. 

For F55 we apply the same sequence of steps repeatedly to reduce the sub-
scripted subscripts. For F2k+is t*ie eduction of subscripted subscripts will 
always follow the same steps repeatedly. We show Lemma 4.1 to demonstrate one 
step of the subscript-reduction process and to show that we will end with the 
required form in terms of Lucas numbers. 

Lemma 4.1: L.+ la, +Li<h._ =ii+3%_
 +Li+2<h,. 

Proof: Apply (1.2) followed by (1.1). 

Li+iabh
 + L i ^ b . - Li+iabb

 + L i + i ^ b . + Li^b. 
)s^ba„ * \>» k^ba„ ls^a„ 

h+iabb. + h+2^b._ 

-N>«. kN.'2>a 

L. a, + L. l.bh + a, \ 

LH-3ahb. + Li+Z^b._ 

Theorem 4.2: F„: wn = Cn, *•_ : u„ = 4 x, and f_ : u„ = Ca 
an -1 + i 

Proof: The form for F0 follows by comparing (1.9) and Theorem 3.1. For F_lt 
we apply (1.11) and (1.14) and then compare with Theorem 3.2: 

Aan_1 + 1 = Aan.y + 3 = (an_x + 2(w - 1) - 2) + 3 = 2(71 - 1) + an_x + 1 

1985] 315 



GENERALIZED WYTHOFF NUMBERS FROM SIMULTANEOUS FIBONACCI REPRESENTATIONS 

For F_3, by (1.9) followed by (1.3), (1.4), and (1.5): 

Cn .. = an + 2a „ , , - 1 = (ba . Al - 1) + 2an 4.1 - 1 
•Lan_l + l a a n _ l + l n-x + l- X = (V1 +1- 1} + 2 a « B - 1 + l 

= (Z?a + 3) - 1 + 2(aa + 2) - 1 = fca + 2aa + 5 
v an-l ' an-l ' an-l "n-1 

Next, use (1.3) finished by (1.1), 

Caani + 1 " K-i + *„-i - D + 2»n-i - 1) + 5 - an_x + 2 2 ^ + 2 

= an_1 + 3(an_x + (n - 1)) + 2 = 3(n - 1) + kan_x + 2, 

and compare with Theorem 3.2. 

Theorem 4.3: F2: un = Aa = A^ +1 

F h l un = ^ , +i 

F2k, k> 0: un = Abb + 1 

kK^*, 

Proof: For F2, use (1.15) and (1.14), followed by (1.2) and (1.1): 

A„ = ah + 2bn - 2 = (bn + an) + 2bn - 2 
On n 

= 3(n + an) + an - 2 = 3n + 4an - 2 

Then compare with un as given in Theorem 3.1. 

For Fh9 first apply (1.15) ,and then (1.7). After than, use (1.2) followed 
by (1.1) repeatedly to reduce the subscripted subscripts. 

4 xl = 4 + 1 = 2a, - bh + 1 = 2 (a, + bh ) - bh + 1 
" n un an 

= 2aban + (aban+ Kn) + 1 = 3(aa n + ban) + ban + 1 

= 3 a a n + 4 ( a a ^ + an) + 1 = 7(&n - 1) + 4an + 1 

= 7(a„ + n) + 4a„ - 6 = 7n + l l a n - 6 

Now compare with Theorem 3.1. 

For F2k , the steps are always the same as for Fh , except for more repeti-
tions. 

Theorem 4.4: F_2: un = Ab +1 . 

F-h- un = Abbn + i 

F_2k, k > 0: un = Abb + 1 
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Proof: Use (1.15) and (1.7). Then reduce the subscripted subscripts repeatedly 
by applying (1.2) followed by (1.1), and compare with Theorem 3.2. Because the 
proof is so much like that for Fh and F2k in Theorem 4.3, we show only F_ . 

Abn+1= Abn
 + X = 2abn ~ K + 1 = 2(an + K) ~ ^n + 1 

= 2an + (an + ri) + 1 = 3an + n + 1. 

Theorem k.5: F_5: un = Aa 

F : u„ = A a 
-7 n aa 

F-w+»> k>2'-

2fc-3\«t 

Proof: In a manner similar to the proofs of Theorem 4.2 and Theorem 4.39 the 
subscripted subscripts can be painfully reduced, eventually9 to match the form 
of Theorem 3.2. But, we almost have subscripted subscripts using the Wythoff 
pairs numbers an and bn9 except for the last subscript. 

We apply results of [8]. Let U = {un}™=1 be a sequence of integers. If U* 
is a subsequence of U such that the general term is formed by subscripted sub-
scripts taken from the Wythoff pair numbers, then we give each a-subscript 
weight 1 and each b-subscript weight 2. Then, U has first and second differ-
ences A* and A* given by 

A* F A 4- F A and ^A2 +^U-A. 
where w is the weight of the sequence and A1 and A2 are the first and second 
differences of U9 the original sequence. 

Notice that F_ has weight 4 because the last subscript could be either ai 

or bj . Aan_l+1 is the original sequence, so we have Ax = 3, A2 = 4 because, by 
Theorem 4.2, we are looking at the sequence for F_±a Then 

A* = 4F5 + 3Fh = 4 - 5 + 3 • 3 

A* = t+Fh + 3F3 = 4 * 3 + 3 - 2 

where these are the known value for 
have the same sequence. 

For F 

29 

18 

L7 

Since we know w, for F_ we must 

-(2fc + 1)s fc ̂  2, the weight is 2fc, and 

A ; = ^ 2 f c + i + 3F2k 
= L 2fe+ 3 

^ 2 * + 3 F 2 * - 1 = L 2 * + 2 > 

which we recognize from earlier sections. 

Discussion: The weights for all of the other sequences for Fy. are easier to 
calculate. For example, F2k in Theorem 4.3 has weight 2k + 1 and we can use An 

as the original sequence, with Ax = 3 , A2 = 1, so that 
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A l = 3 F 2 f e + 2
 + F2k+l = ^tfe+3 ^ 4 = 3 F 2 k + l + F2k = ^ + 2 

which we recognize. From Theorem 4.1, the weight of F2k+1 is also 2k + 1, and 
Bn gives the original sequence5 so that Ax = 4, A2 = 3 , 

A l = « " 2 * + 2 + 3 F 2 f e + l = £ 2 f c + * a n d A*2 - 4 F 2 k + l + 3F2k m L2k+3' 
which again are known from earlier work. 

Notice that we can use original sequences to relate all of the sequences 
of this paper to the sequences for F0, F19 F_x, and F_ 2 , by looking at the next 
to last subscript in un. The original sequence related to F_f2k+D then is 

Aan_1 + i> 

the sequence for F_±. Even the sequence for F_3 is so related, because 

^ . i + i = ^a^.i + i + 1-

Now, F2k+1 has original sequence Ban , which is Fx, while ^_2^ goes with Ab , 
which gives F_2. Lastly, F2k has original sequence Aan , which is related to 
F0, since £„ = Aan + 1. 

Further, all of the sequences are related to the sequences^for F_±, FQ, or 
F . All of the sequences for F2^+1 are subsequences of Bn and thus are related 
to F1; F_3 and FQ have sequences that are subsequences of Cn. All of the other 
sequences are subsequences of An9 making them related to the sequence for F_1. 
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1. INTRODUCTION 

Pell polynomials Pn(x) and Pell-Lucas Polynomials Qn(x) are defined in [3] 
by the recurrence relation and initial conditions 

Pn+2(x) = 2xPn+1(x) + Pn(x) PQ(x) = 0, P±(x) = 1 (1.1) 
and 

Qn+2(x) = 2xQn + 1(x) + Qn(x) QQ(x) = 2 , ^ W = 2a?. (1.2) 

Properties of these polynomials are also set out in [3]. Among these* the 
most important for our current purposes are the following: 

p-(a;) = V ^ r ( (1-3) 

and > Binet forms 
Qn(x) = an + gn \ (1.4) 

where 
a = x + Vx2 + 1, 6 = x - Vx2 + 1 (1.5) 

are the roots of the characteristic equation 

X2 - 2xX - 1 = 0 (1.6) 

of the recurrences (1.1) and (1.2)5 so that: 

a + 3 = 2a?, a - 3 = 2Vx2 + 1, a3 = -1; (1.7) 

and 
*»+i &»*„-! C*> -PB2<*> = (-1)". 5 i m s o „ , s d-8) 

«„+i(«)«„-!(«) - «»<*> = ("D""1 * ^ 2 + i); ) ^ 2 T O w l a s (1.9) 

P„+1G*0 + P^.^x) = Qn(.x); (1.10) 

«»+!<*) + «„-i(«) = 4(x2 + l)P„(x); (1.11) 

Pn(x)«n0c) = P2ni.x). (1.12) 

When x = l , P„(1)=P„ and §„(1) = §„ reduce to the Pell numbers and the 
"Pell-Lucas" numbers, respectively. On the other hand, X = % leads to P„(%) = 
F„ and Q„(%) = L„, the Fibonacci and Lucas numbers, respectively. 

Analogous results to some of those obtained below occur in [2], which pro-
vided the stimulus for this article. 
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2. INVERSE TANGENT AND COTANGENT FORMULAS 

Calculation using (1.3) yields 

P2n + l(*)P2n + 2(*) " Pzn^)Pln + ^ = 2 * (" > 0) . (2.1) 

Substituting for P2n+3(x) from (1.1) and rearranging, we obtain 

F^{X) = (P2n+1<*)/2*) + P 2 n + 2 ( « ) * (2'2) 

which can be expressed trigonometrically as 

cot" ̂ ( a ? ) = cot"1(P2n + 1(x)/2x) + cot~1P2n+2(x). (2.3) 

Summing, we derive 

£ cot-1(P2j3 + 1(x)/2x) = £ - cof1P2n + 2(x), (2.4) 

since cot"10 = TT/2. Setting x - 1 and letting n -*• °°, we have a result about 
Pell numbers Pn: 

t cot-1(P2r + 1/2) = } , (2.5) 
r = 0 ^ 

while putting x = % leads to the known summation formula involving Fibonacci 
numbers Fn: 

Yicot-1F2r + 1 = |. (2.6) 
r = 0 L 

Next, 

/ 1 \ 7 1 \ / F2 ^ ~P2 - 2 ^ \ 

-^"'(pl^r) 
using (1.1) and (1.8) and simplifying. 

Consequently, summation of (2.7) produces 

£ tan-1(2a;/P2r.1(x)) = y - tatT^l/P («)) (2.8) 
P= 1 Z 

since PQ (x) = 0 and tan a? is undefined for x = IT/2. 

Alternatively, (2.8) is a direct consequence of (2.4). 

As above, the special cases X - ^, x = 1 reduce (2.8) to information about 
the Fibonacci numbers and the Pell numbers, respectively. 

In particular, when x = %, (2.8) leads to the limiting summation 

E t an 
r l 1 _ £ 
L 2i» - 1 J 
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which, like (2,6), is a slight variation of the D. H. Lehmer summation result 
for Fibonacci numbers (given in [2] as Theorem 5). 

When x = 1 in (2.8), we obtain another form of (2.5) for Pell numbers. 

Furthermore, using (1.9) and (1.11), one may obtain 

i/ 1 \ / 1 \ / 4 ( ^ 2 + 1 ) P 2 P l<*> \ 
tan"1 -r r-r- + tan"1-— j - ^ ) = tan"1! . (2.7a) 

Unfortunately, the right-hand side does not simplify any further as we should 
have desired, by comparison with (2.7). However, if we choose x = % [so that 
Pr (h) = Fr> Qr(h) = Lr], then the equation reduces to 

tan 

"fch") -<"" ' (£ ) f™"< 2-7 ) ' tan 

both of which are given in [2] (as Theorems 3 and 4), in a slightly varied form. 

Proceeding to the limiting summation in the first of these equations (with 
r replaced by v + 1) produces the result for Lucas numbers given in [2] as 
Theorem 6, namely 

Furthermore, for Pell-Lucas polynomials, 

tan" {-Q^r) ~ tan" l^T^J = tan" \QrWiQr + 1(x) +Qr.1(x))) (2-9) 

\p2rw) 
by (1.9), (1.11), and (1.12). 

Hence, 

fQAx)\ I Q„(.x) 

\Pn+l(^)/ 
tan 

by (1-3), (1.4), and (1.5), since 1 + xa = a/l + x*- and 1 + x3 = -3^1 + x*. 

By (1.5), a > 0 and 3 < 0 for all real x. Furthermore, a > 1 for x > 0 and 
0 < a < 1 for x < 0. In addition, | (31 < 1 for x > 0 and |$| > 1 for x < 0. 
From these considerations, (1.3), and (2.10), we have 

tan_1(l/a), for x > 0 

tan_1(l/3)s for x < 0. 
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An argument similar to that used in deriving (2.10) shows that 

,?1
tan"1(tfe)"tan" W ) " t a n " A " W / (2-12) 

/*«„<*) - « B + 1 ( a ) \ / Pn (a) v 

" tan" V«»<»+ *„«<*> J " "tan" ^ P ^ o ] ' 
Letting n -> °°, we have another derivation of (2.11). Special manifestations of 
(2.9), (2.10), (2.11), and (2.12) are derived when x = h and x = 1, yielding 
information about the Fibonacci and Lucas numbers, and the Pell and Pell-Lucas 
numbers, respectively. 

For example, if x = %, then (2.11) with (1.5) yields the known result 

^"i^H""-'2-""-1^1)-
which should be compared with the similar result for Lucas numbers preceding 
(2.9). 

If x = h in (2.9), then, with r replaced by n + 1, Theorem 3 (first part) 
of [1] results. 

When x = % in (2.12), we obtain Theorem 4 of [1]. 

Following the method used for (2.1)9 with appeal to (1.8) and (1.10), and 
then summing, we ascertain that 

• . « 

When x = ̂ , it follows that, for Fibonacci and Lucas numbers, 

r= 1 

Summing 

00 

£(• 
p= 1 

-L) 

to 

-1) 

Lclll I 

i n f in i ty 

" ^ t a n " 1 ) 

^L^)' 
gives 

,Q2p(x)s 

t^-^-if)-l 2F 

When x = 1, it follows that, for Pell and Pell-Lucas numbers, 

k^'-^-xfYi 
3> GENERALIZATIONS 

Results (2.10) and (2.12) can be generalized as indicated below. Firstly, 
however, some extensions and generalizations of previous formulas must be es-
tablished. Using the Binet forms (1.3) and (1.4), we may, with due diligence, 
demonstrate the validity of the following: 
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p(i.+ i , ( 2 f c . i K - i ) ( 2 f c . i , W - *V(2*-i,(*> = (-D u ^ I x W ; (3-D 

- (-D(P"1)(2"-1)4(x2 + D P ^ G c ) ; (3.2) 

PP(2^-1)(^)^(P+1)(2/C-1)(^) + P(r-l)(2/c-l)(X)> = P2P(2k-l)(a?)P2fc-l(a?)5 (3-3) 

r̂(2fe- 1)(^)^(P+1)(2/C- 1)(̂ ) + #(r- D (2/c- 1)0*0) 

= 4(*2 + l)P2P(2fc-i)<J?)P2fe-i(a:)- (3-4) 

The odd factor 2k- 1 is necessary to ensure the vanishing of certain terms 
that arise in the course of the algebraic manipulations. Of course, (3.1) and 
(3.2) are extensions of the Simsonfs formulas (1.8) and (1.9), respectively, 
when k = 1 (P1(x) = 1). 

Now, consider 

tan 

= tan 

1/g(P-l)(2fc-l)^)\ __ / ^(2^-1)^) \ 

\ Sr(2fe-l)(^) / \®{r+ 1) (2k- 1)(X)/ 

x / ^(r+l) (2k- lfX^(r- 1) (2fc- 1)(X) " ®r(2k-l)(X) \ 

\fir(2fc-l)^^(r+l)(2fc-l^) + Q(r-l)(2k-lfX^/ 

j ( _ l ) ( r - l ) ( 2 k - l ) e H x 2 + l)P22-i ( a.)v 

V 4(x2 + l)P2p(2/:_1)(x)P^_1(x) / 

( - l ) ( 2 , - 1 ) ( 2 k - 1 ) p 2 k . 1 ( ^ ) ' 

\ P,2r(2k- l)(x) 

Put fc = 1 in (3.5) and we obtain (2.9). 

If we sum (3.5), as before, we have 
, (_!)<!-!) (2*- D p ( x ) 

• ) 

£ tan" 
V= 1 \ P.2r(2fc-1)(*) / K ' 

aa-1! Q°(X) ) - L a u-i/ gn«fc-i><a) \ 

Recourse to (3.1) and (3.3) will likewise reveal that 
,(_1)r(2k-i)P (a;)> 

tan 

tan 

\ P2P(2fe- 1) (̂ ) / 

_1(P(r- 1) (2fc- 1)(X)\ _.,/ PP(2fe-l)(^) \ 

\ Pr(2fc-1)(*) / t a n \P(r+l)(2fc-l)(^)/ 

Therefore, since PQ(x) = 0, 

£ tan I — p — ; — ( x ) — ) = _tan b (xTi- (3-8) 
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Putting k = 1 in (3.6) and (3.8) leads us back to (2.10) and (2.12), respec-
tively. Some advantage accrues in (3.7) if r is replaced by r + 1. Summation 
then leaves an additional (nonvanishing) term 

tan^1' 
?2{2k- 1) W 

on the right-hand side. If we put k = 1 in (3.7) and replace r by r + 1, then 
x = 1 gives us 

while x = ̂  gives Theorem 3 (second part) in [1]. 

In conclusion, we notice, using the results needed for (2.11), that 

/ ( - i r ^ - % l W ^ ('tan^d/a2*-1), for x > 0 
E tan"1! p ^ = 

(-l)r(2/£-1)P2fc.1(a:)' 
(3.9) 

tan ^ U / g ^ " 1 ) , for x < 0. 
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1. INTRODUCTION 
A positional game with normal winning rule for two alternately moving per-

sons may be defined by a pair T = (P9S). P is the finite set of game positions 
and S is a mapping S % P -> 2P such that y E S(x) if and only if y is a position 
that can be brought about from position x by a legal move. We call S(x) the 
set of successors of x. A play of T terminates when a position x with S(x) = 0 
has been reached. The normal winning rule states that the player loses who is 
first unable to move. It is assumed that there is an upper bound for the num-
ber of moves in any play. A disjunctive combination of a finite set of such 
games T19 T2s .a»9 Tk may be defined thus: The players play alternately, each 
in turn making a move in one of the individual games. A player loses if unable 
to move. 

P. M. Grundy [1] showed that for V = (P9S) the function G : P -* ]N0 with 

(0 if S(x) = 0 
G(x) = <̂  (*) 

(min(]N0\{£Q/)|z/ ES(x)}) if S(x) ± 0 
has the properties 

PI: A player who moves from a position x with G(x) > 0 can consistently 
move to a positive the G-value of which is 0 and so win the play. 

P2i If T is a disjunctive combination of games T19 T29 ...» Tfe9 then for 
a combined position x = (xl9 x2* .'. .* xk) the £-value is the nim-sum 
of the individual (7-values, i.e., 

± * * * 

G(x) = G(x±) + G(x2) + •-- + G(x^)9 where the nim-sum a + b for 
a9 b E U 0 is defined by 

^ (0 if a = b = 09 
a -\- b = I ± 

[(a + b) mod 2 + 2(a div 2 + & div 2) otherwise, 

where a div 2 is the integer division of a by 2, 

So the (7-value of x = (J;1S ̂ 2 s ...,#&) can easily be calculated if 
G(x^) is known for i = 1, 2 S . .., fc. 

2. GRUNDY'S GAME 

P. M. Grundy himself invented the following game: The starting position is 
a single heap of K matches. The first player, by his move, divides this heap 
into two heaps of unequal size, the second player selects one of the heaps and 
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divides it into two heaps of unequal size, and so forth. The play terminates 
when each individual heap contains only one or two matches. The second player 
makes the first move in a game that is the disjunctive combination of the two 
Grundy-games determined by the two heaps resulting from the first player's 
move. If the starting position of a Grundy-game is described by the number K 
of corresponding matches, we get 

S(K) = {(J, K - J) 10 < I < K and I + K - I}. 

The £-value of K according to the recursive definition (*) taking into consid-
eration P2 is determined by 

G(K) = 
0 if K = 1 or K 2, 

tmin (]N0\{£a) + G(K - J) 10 < I < K9 I ± K 

For K < 100, the following £-values are obtained: 

J}) otherwise. 

K 

1- 40 

41- 80 

81-100 

0010210210 

5415415410 

2452437437 

Table 1 

GOO 

2132132430 4304304123 

2102152132 1324324324 

4374352352 

1241241241 

3243243245 

(See, also [4].) 

THE GENERALIZED GRUNDY-GAME 

A play in this game starts with an (M x N)-rectangle. The first player 
breaks this rectangle into two rectangles of unequal size, to that the sides of 
the resulting rectangles are of integer length. (Imagine a bar of chocolate 
that can be broken along vertical and horizontal scores.) The second player 
breaks one of these rectangles into two new rectangles of unequal size, and so 
on. The play terminates when both sides of each individual rectangle are less 
than or equal to 2. According to the normal winning rule, it is lost by the 
person who is first unable to move. 

G(M9 N) denotes the £-value corresponding to a single (M x N)-rectangle, 
while G(K) refers to a position in Grundy's original game. The following prop-
erties are obvious: 

Ql: G(M, N) = G(N9 M), and 

Q2i G(l, N) = (7(2, N) = G(N) . 
(The generalized game starting with a (1 x N)-rectangle or a (2 x N)-rectangle 
is obviously equivalent to the original Grundy-game starting with N matches.) 

The set of positions succeeding to (M, HO is: 

if M < 2 and N < 2, 

S{M9 N) = < { ( ( m s E)9 (Af - 772, N))\0 < m < M and m + M - m} 
kU(((M, n), (M, N - n))|0 < n < N and n £ N - n} otherwise, 

So G(M9 N) can be calculated according to; 
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' 0 i f M < 2 and N < 29 

G(M9 N) |min(]N \({G(m9 N) + G(M - m9 N)\Q < m < M9 m + M - m} 
.{j{G(M9 n) + G(MS N - n) lO < n < Ns n + N - n } ) ) o t h e r w i s e , 

resulting in Table 2: 

Table 2 

> < 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1 

0 
0 
1 
0 
2 
1 
0 
2 
1 
0 
2 
1 
3 
2 
1 
3 
2 
4 
3 
0 

2 

0 
0 
1 
0 
2 
1 
0 
2 
1 
0 
2 
1 
3 
2 
1 
3 
2 
4 
3 
0 

3 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

4 

0 
0 
1 
0 
2 
1 
0 
2 
1 
0 
2 
1 
3 
2 
1 
3 
2 
4 
3 
0 

5 

2 
2 
1 
2 

2 

6 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

7 

0 
0 
1 
0 
2 
1 
0 
2 
1 
0 
2 
1 
3 
2 
1 
3 
2 
4 
3 
0 

8 

2 
2 
1 
2 

2 

9 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

10 

0 
0 
1 
0 
2 
1 
0 
2 
1 
0 
2 
1 
3 
2 
1 
3 
2 
4 
3 
0 

11 12 

2 1 
2 1 
1 1 
2 1 

2 1 

. 13 

3 
3 
1 
3 

3 

3 

3 

14 

2 
2 
1 
2 
1 
1 
2 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 

15 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

16 

3 
3 
1 
3 
1 
1 
3 
1 
1 
3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
3 

17 

2 
2 
1 
2 
1 
1 
2 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 

18 

4 
4 
1 
4 

4 

4 

4 

19 

3 
2 
1 
3 
1 
1 
3 
1 
1 
3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
3 

20 ... 

0 
0 
1 
0 
2 
1 
0 
2 
1 
0 
2 
1 
3 
2 
1 
3 
2 
4 
3 
0 

This table indicates that G(MS N) is completely determined by the values G(M) 
and G(N)9 as the following theorem states. 

Theorem: 

G(M9 N) 

for all M9 N EM* 

'G(N) if G(M) = 0S 

(G(A0 if G(N) = 03 

1 if GQi) > 0 and £(#) > 09 

Proof (Induction on M + N): 

M + N = 2: £(1, 1) = 0 = G(l), 
M + tf = 3: G(l5 2) = G(29 1) = 0 = £(1) = £(2). 

Now assume that there is an (J x K)-rectangle such that I + K = n + ls where 
n > 29 and that the theorem is true for all (M x N)-rectangles with M + N ̂  n. 

Under this assumptions we must prove the following; 

1. G(I) = 0 =» £(J5 Z) = G(£), 
2. GOO = 0 =s>G(J, Z) = G(J), and 
3. G(J) > 0 and G(K) > 0 ^ G(I9 Z) = 1. 
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1. G(I) = 0 ^m±n(m0\{G(I, k) + G(I9 K - k)\0 < k < K9 k + K - k}) 

= min (IN0\{G(k) + G(K - k)\0 < k < K9 k + K - k}) = GOO. 

It remains to prove that 

GOO € {G(is K) + G(I - i9 Z)|0 < i < I9 1+1-1}. 
It is either G(K) = 0 or G(K) > 0. These two cases will be inspected 
separately. 

(i) GOO = Ot 

mln(WQ\{G(i9 K) + G(I - i9 K) 10 < i < 1, i + I - £}) = 

min(JN0\{6 r ( i ) + G(I - i) 10 < i < I , i + I - £}) = G(I) = 0 . 

Since G(K) = 0 , i t i s 

G(K) t {G(i, K) + G(I - i9 K)\0 < i < I9 i + I - i}. 

( i i ) GOO > 0 : 
{G(i9 K)\0 < i < 1} C { 1 , G(K)} as i + K < n. 

Because of 1 + 1 = 0 , 

GOO + GOO = 09 and 

i t r(v\ = i ^ f f l + 1 i f GW i s e v e n ' U W \£(X) - 1 i f GOO i s odd, 

y i e l d s £ ( i , K) + G(JT - i9 K) + GOO fo r 0 < t < I , and t h e r e f o r e 

G00 € {G(K9 I) + G(I - i9 K)\0 < i < I9 i + I - %}. 

2. G(K) = 0 ^>G(K, I) = G(I), as was just proved, and G{K, I) = G (I, K) . 

3. G(I) > 0 and G(K) > 0: 

In this case, J > 2 and K > 2. 

G(T, Z) = 1 is equivalent to: ' 

(i) G(i, K) + G(I - i , K) + 1 for all i such that 
0 < i < I and i ? I - i; 

(ii) G(I, k) * G{Ir K - k) + 1 for all k such that 
0 < k < K and k+ K - k; 

(iii) G(i9 K) + G(I - i, K) = 0 for some i such that 
0 < i < I and i + I - i 

or 

G(J, fc) + G{I9 K - k) = 0 for some fc such t h a t 
0 < k < K and k + K - k. 

To prove ( i ) , ( i i ) , and ( i i i ) of 3s 

( i ) By assumpt ion , G(i9 K) G { 1 , G(K)} for 0 < i < I. So we have 

( 1 + 1 = 0 or 

G(i9 K) + G(I - i , K) = <G(Z) + (7(Z) = 0 or 

( 1 + GOO * 1 
for a l l i , 0 < i < I. 
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(ii) G(I, k) + G(T, K - k) = G(k, I) + G(K - k, I) ± 1 for all k, 
0 < k < Ks because of (i). 

(iii) Suppose G(i, K) + G(I - i, K) + 0 for a certain £, 0 < i < I and 
i + I - i . This is equivalent to £(t, X) ^ G(I - i , K). Since, 
by assumption, G(i9 K) is determined by G(i) and £(Z), it follows 
that G(i) + G(I - i) for this i . 

However, there must exist an i, 0 < i < I and i ± I - i such that 
G(i) = G(I - i) because otherwise G(i) + G(I - i) ± 0 for all i9 
0 < i < J and £ ^ I - i . That would mean £(T) = 0, in contradic-
tion to the assumption G(I) > 0. 

4. FURTHER GENERALIZATIONS 

The theorem can be extended in different directions: 

1. Consider the game in which a heap of K matches may be split into two 
nonempty heaps of size I and K - I provided \K - I\ ^ d9 d £ N0. (For 
d = 1, it is GrundyTs original game.) 

For this game and its two-dimensional analogue, the above theorem re-
mains valid. The proof requires only replacing the conditions i ^ I - i 
and k + K- k by \I - i\ > d and \K - k\ > d. 

2. The theorem can be generalized to more than two dimensions. For exam-
ple: 

(G(M9 N) if G(L) = 0, 
G(L, M9 N) = { 

[l if G(L) > 0, GQd) > 0, G(N) > 0. 
The proof is completely analogous to the one given above. 

The author is grateful to the referee for these suggestions. 
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1. INTRODUCTION 
We follow graph theoretic terminology as in [B&M]. Let G = (V 9 E) denote a 

graph where V is a set of vertices and E is a set of nonoriented edges. Though 
we do not in general consider graphs with loops or multiple edg£s,we make ref-
erence to such graphs for the purpose of proofs. When an edge e appears m 
times9 we say e has multiplicity m. A subgraph £'= (Vr

9 Ef) of G is any graph 
such that V C V and Ef C E3 and a spanning subgraph of G contains every vertex 
of V. A sequence of vertices n19 n2, n3, ..., n^ is a path of G if n± E V9 
{n^, n^ + 1} ELE9 for all i9 and no vertices are repeated. A path is a cycle if 
n1 = nk. A tree of G is a subgraph with no cycles; a spanning tree contains 
every vertex of G, Let r(G) denote the count of spanning trees of G. 

Spanning tree counts of general graphs can be obtained in 0(n ) time by 
computing the determinant of its in-degree matrix [7], where n is the number 
of vertices. This function grows quickly; as well, the practical interest of 
circuit theory in counting spanning trees motivates the study of classes of 
graphs for which spanning tree counts can be obtained in linear time. 

Sedlacek [19] notes that Wn+l9 the wheel on n + 1 vertices9 is obtained 
from a cycle on n points we call the rim by joining each point in the cycle to 
another point we call the hub. Vertices and edges on the rim are rim vertices 
and rim edges; an edge joining a rim vertex and the hub is a spoke. Sedlacek 
considers Fn + l9 the auxiliary fan of Wn + 19 derived from Wn + 1 by removing a sin-
gle rim edge and proves 

. .F . _ (3 + v ^ ) ^ 1 - (3 - ^ 5 ) " + 1 

2" + V5 
and 

*«„> - H^r * (H^)"" - »• 
It is remarkable that r(Fn+1) generates every second number of the Fibonacci 
series. 

Myers [14] and Bedrosian [2] derive similar formulas for wheels and multi-
graph wheels in a circuit theory setting. Hilton [10] presents formulas for 
r(G) of fans and wheels in terms of Fibonacci and Lucas numbers3 and Fielder 
[8] provides tree counts for sector graphs9 fans with certain multiple edges. 
Slater [21] shows that all maximal outerplane graphs with exactly two vertices 
of degree two have the same spanning tree count as fans. (We coin the term 
generalized fan to refer to these graphs in [16] and [17].) Shannon [20] de-
rives r(Wn+1) with a number theoretic approach. Bange, Barkauskass and Slater 
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[1] show that generalized fans have more spanning trees than any other maximal 
outerplane graph. Most of these studies have been motivated by the remarkable 
involvement of Fibonacci numbers in spanning tree counts. 

The study of network reliability demands counts of subgraphs other than 
spanning trees. Previously, formulas for subgraph counts apparently existed 
only for complete graphs [9]• A network is commonly modeled as a probabilistic 
graph where each edge e fails independently with probability p and vertices 
never fail. The probability that such a graph is connected is called probabi-
listic connectednesss and is a standard measure of network reliability. This 
can be generalized in two different ways. In some applications, a network may 
not be considered operational unless it has edge connectivity or cohesion of 
at least k; this we call fc-cohesive connectedness. Alternately, a network may 
be considered operational if it has broken down into no more than k components; 
we call this ^-component connectedness. In Section 2, we use Lucas recurrences 
to count various types of subgraphs of generalized fans and related graphs. 
Section 3 counts connected spanning subgraphs with cohesion of at least two 
(two-cohesive). Section 4 presents the rank polynomial as a technique for 
classifying subgraphs of generalized fans both by number of edges and by num-
ber of components. We conclude in Section 5 with some applications. By noting 
that probabilities can be encoded in the coefficients of some of these recur-
rences, we obtain reliability formulas as well as subgraph counting formulas. 
As in previous studies, we find that the required enumerations are given in 
two-term recurrence relations; hence, the desired subgraph counts are Lucas 
numbers. 

2. COUNTING CONNECTED SPANNING SUBGRAPHS 

We begin by counting connected spanning subgraphs of generalized fans that 
satisfy a Lucas recurrence. Generalized fans are a subset of 2-trees [18], 
defined recursively as follows: 

1) A single edge is a 2-tree. 

2) If £ is a 2-tree with edge {x9 y}, adding a new vertex z9 and the two 
edges-{a?, z] and {y9 z} creates a new 2-tree. If G is not a single 
edge, {#9 y} becomes an interior edge of the new graph. 

When parallel edges are not allowed, 2-trees are equivalent to maximal 
series-parallel networks as in [6], [16], [17]'; other definitions of series-
parallel networks do appear in the literature. 

Any vertex of degree two is a peripheral vertex; an edge incident on a 
peripheral vertex is a peripheral edge. To illustrate the counting technique, 
we reproduce in part this lemma from [16] which counts connected spanning sub-
graphs of generalized fans. 

Lemma 2.1: The number of connected spanning subgraphs of an n-vertex general-
ized fan, sc(n) 9 satisfies the recurrence: 

sciri) = kscin - 1) - 2sc(n -2). 

Proof: Let peripheral vertex z be attached to edge {x3 y) of generalized fan 
G by edges {x9 z\ and {y9 z}. A connected spanning subgraph of G induces on 
G - z either a connected spanning subgraph or a disconnected spanning subgraph 
which the addition of {x9 y} would connect. To handle this latter case, we 
define dcin) to be the number of spanning subgraphs of an n-vertex generalized 
fan which the addition of a specific peripheral edge would connect. 
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Any connected spanning subgraph of G must contain at least one of {x, z] 
and {y, z}. If both are selected, the graph induced on G - z must either be 
connected, or be one of the graphs counted by dc. In this case, there are 
sc{ri - 1) + doin - 1) induced subgraphs. Otherwise, a connected spanning sub-
graph contains either [x9 z} or {x* s})but not both. But then the graph induced 
on G - z must be connected; the number in this case is 2so(n - 1) . Therefore, 

so in) = 3sc(n - 1) + doin - 1). 

By a similar argument, 

dc{n) - se(n - 1) + dcin - 1). 

These two recurrences may be combined to yield 

se(n) = kscin - 1) - 2sc(n - 2). • 

Since so{2) = 1 and so(3) = 4, the recurrence yields the closed formula 

(2 + v^)""1 - (2 - Jl)"-1 
se(n) = - . 

2/2 

From a reliability perspective, it is interesting that all generalized fans 
have the same number of connected spanning subgraphs; in addition, generalized 
fans have more connected spanning subgraphs than any other 2-tree [16]. We say 
Fi is a sub fan of the fan Fn if h, the hub of Fn, is a vertex in F^ , Fi is a 
subgraph of Fn and F^ is a fan. From Lemma 2.1, we then show: 

Lemma 2.2: For n > 4, the number of connected spanning subgraphs of a wheel on 
n vertices, scw(n), is 

n 
scw(n) = 2 £sc(£). 

i = 2 

Proof: Consider the n-vertex wheel Wn with rim edge {a, b}. Denote by Fn the 
auxiliary fan of Wn created by removing {a, b}. 

A connected spanning subgraph of W may or may not contain {a, 2?}. If not, 
there are sc(n) connected spanning subgraphs of the auxiliary fan of Wn which 
are also connected spanning subgraphs of Wn. But we can also add the edge 
{a, b} to any of the connected spanning subgraphs of Fn and get a connected 
spanning subgraph of Wn. 

Lastly, the edge {a,b] connects any two-component spanning subgraph of Fn9 
one containing a and the other containing b. Such a spanning subgraph of Fn 
must consist of a path on n - i vertices and a connected spanning subgraph of 
the subfan of Fn on the remaining i vertices. 

For each i, there are exactly two ways we can choose a path on n - t ver-
tices containing exactly one of a or Z?, and so(i) ways of obtaining a connected 
spanning subgraph on the remaining i vertices; hence, for each i we obtain 
2so(i) connected spanning subgraphs of Wn. We vary i from 2 to n - 1, and the 
result follows. • 

The above simplifies to: 

sow(n) = (2 + ^)n~1 + (2 - yfi)71'1 - 2. 

This is analogous to SedlacekTs formula for spanning trees in a wheel. 
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3. COUNTING 2-COHESIVE SPANNING SUBGRAPHS 

Sometimes a network must be at least ^-cohesive, i.e., the order of the 
minimum edge cutset must be at least k, to be operational. This happens in an 
environoment where queuing delay is a problem [26], The number of 2-cohesive 
spanning subgraphs of generalized fans satisfies a recurrence of the Lucas type 
[15]. We state the following without proof. 

Lemma 3-1: For n ^ 3, sc2(n)s the number of 2-cohesive spanning subgraphs of 
an n-vertex generalized fan is 

sc2(n) = dc2(n) = 2sc2(n - 1) + sc2(n - 2) 

= ̂ [(1 + V2)n~2 - (1 - /2)n~2]. m 

As before, the count of two-connected spanning subgraphs is maximized by mini-
mizing the number of peripheral vertices. 

k. THE RANK POLYNOMIAL OF A GENERALIZED FAN 

Subgraph counts have been studied in an algebraic setting by Tutte [22], 
[23], [24], and [25] and others [3] and [5]. In this section, we derive the 
rank polynomial of a generalized fan, by a similar technique. 

Let o(G) denote the number of components of a graph G. In addition, write 

i(G) = \V\ - c(G), j(G) = \E\ - \V\ + o(G). 

If S is any subset of E, GiS denotes the subgraph of G induced by S. Then 
denote by RK(G; ts z) the rank polynomial of G where 

RUGi t, 3) = L t^GiS)z^GiS\ 
SCE 

Note that i(G:S) + j(GiS) = \s\ ; thus, from the rank polynomial of a graph, 
we can quickly classify spanning subgraphs of G not only by number of edges 
but also by number of components. From [24], we can trivially derive the fol-
lowing three properties of the rank polynomial which completely characterize 
RK(G; t , z): 

1) If G consists of two vertex disjoint subgraphs H and K9 then 

RK(G; t, z) = RK(H; t , z)RK(K; t, z). 
2) (Rank polynomial factoring theorem). If e is any edge in E9 

RK(G; t9 z) = RK(G = e; t, z) + tRK(Gm e; t, 2), 
where G® e is graph G less edge e = {x, y] with endvertices x and y 
identified. 

3) If G consists of a single vertex and k loops, 

RK(G; t9 z) = (1 + z)k. 
Thus, the rank polynomial is a rich source of information about subgraph 

counts. We need some more identities: 
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Lemma 4.1: (a) If G is a single edge on two vertices, then 

RK(G; t9 z) = 1 + i. 

(b) If Gx is the graph derived by adding a loop to any vertex x of 
G9 then 

RK(GX; t9 z) = (1 + z)RK(G; t9 z). 

(c) If G - E U K and H D K contains no edges and exactly one ver-
tex, 

RK(G; t9 z) = RK(H; t9 z)RK(K; t9 z). 

Proof: (a) Note that if H is any edgeless graph, then RK(H; t, 2) = 1. A 
single application of the rank polynomial factoring theorem yields 
the result. • 

(b) Any spanning subgraph of G is a spanning subgraph of Gx; to each 
spanning subgraph of G9 we can add the edge [x9 x} also yielding 
another spanning subgraph of Gx. This second set of spanning sub-
graphs can be represented by multiplying the rank polynomial of G 
by 2, i.e., increasing the edge count of every term in the poly-
nomial without disturbing any other information, m 

(c) Consider any subgraphs H' and K' of H and K9 respectively. H' has 
nH vertices, eH edges, and cH components. Similarly, Kr has nK 
vertices, eK edges, and cK components. The subgraph H' U K' of G 
has nH + nK - 1 vertices, eH + eK edges, and cH + cK - 1 components. 
Expressing the term of RK(G; t9 z) corresponding to Hr U Kr in 
terms of the corresponding expressions for H' and K! in RK(H; t9 z) 
and RK(K; t9 z) yields the desired result, m 

We have seen that every generalized fan on n vertices, regardless of topol-
ogy, has the same number of connected spanning subgraphs. Nevertheless, it is 
surprising that all n-vertex generalized fans have the same rank polynomial, 
again satisfying a two-term linear Lucas recurrence. 

Lemma 4.2: The rank polynomial of any generalized fan on n vertices, S{n)9 
satisfies the recurrence 

S(n) = (1 + 3t + tz)S(n - 1) - £(1 + t)(l + z)S(n - 2) 

which may be solved for the closed formula 

L 2 , _i_ 2 „ _ / _, , /I , ,\rs. J -l , OJ- 1 -/- „ 1 nj\n~ 2 
c / s _ 1 + It + 3tz + tAz - tz + (1 + t)q/l + 3t + tz + a\n~ b\n) ~ ^ \̂  2 / 2a 

1 + It + 3t2 + t2s 
2a 

tz - (1 + t)a /l + 3t + tz - a\r' 

where a = V(l + 3t + ts)2 + 4£(1 + t)(l + g) . 

Proof: As preliminaries, consider some special cases. Let #n = Gn_i U {x9 y], 
be an n-vertex graph where Gn_1 is an n - 1-vertex generalized fan with periph-
eral vertex x and y is a new vertex not in Gn_1; then, 

RK(Hn; t, 3) = (1 + t)S(n - 1) 

by Lemma 4.1(a) and (c). Let G be an n-vertex generalized fan and write DD(n) 
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for the rank polynomial of an n-vertex generalized fan with one peripheral edge 
of multiplicity 2. A single application of the rank polynomial factoring theo-
rem to one of £fs peripheral edges yields 

S(n) = RK(Hn; t, z) + DD(n - 1) = (1 + t)S(n - 1) + DD(n - 1). 

We obtain a recursive expression for DD(n) by applying the rank polynomial 
factoring theorem to one of the edges of multiplicity 2. If (? is an n-vertex 
generalized fan with one peripheral edge e of multiplicity 2, then G - e is an 
n-vertex generalized fan and G® e is an n - 1-vertex generalized fan with a 
peripheral edge of multiplicity 2 and a loop at the peripheral vertex. Then 

Win) = S(n) + t(l + z)DD(n - 1) 
by Lemma 4.1(b). 

Combining these expressions provides the stated two-term Lucas recurrence, 
and solving gives the closed formula, m 

5. APPLICATIONS 

Subgraph counts alone provide a measure of the connectedness of a graph. 
However, the recurrences in Section 2 can be generalized to compute probabilis-
tic connectedness or, alternately, two-cohesive connectedness. If p is the 
probability that a single edge is up, then Rp(n) is the probability that an n-
vertex generalized fan is connected. Let pp(n) be the probability of obtaining 
a spanning subgraph on n vertices that would become connected if a specific 
peripheral edge were added. Since the context is clear, we omit the probabil-
ity subscript. The following is a new proof of the main result in [17] using 
Lucas recurrences rather than generating functions. 

Theorem 5-1: Let x = q/p. R(n)s the probability that an n-vertex generalized 
fan is connected is given by: 

R(n) = p2(3x + l)i?(n - 1) - ph (x2 + x)R(n - 2 ) . 

It is remarkable that p(n) also obeys the same relation, that is: 

p(n) = p2(3x + l)p(n - 1) - ph(x2 + x)p(n - 2). 

Proof: Consider the n-vertex generalized fan G having peripheral vertex z and 
edge of attachment {x,y}. We measure R(n) as a product of the states of edges 
{xs z}9 {y, z) and the subgraph induced by G - z. The probability that G - z is 
connected is R(n - 1); the probability that at least one of {x9 z} and {z/, z} 
is up is 2pq + p2. The probability of a connected spanning subgraph in this 
case is R(n - I)(2pq + p 2 ) . Suppose, on the other hand, G - z is disconnected 
but the addition of {xs y] would connect it; if both {x9 z] and {y, z} are up, 
the resultant subgraph of G is connected with probability p2p(n - 1). Then 

R(n) = p2Q(n - 1) + (2p<7 + p2)R(n - 1). 

Similarly, 

p(n) = pqp(n - 1) + q2R(n - 1). 

Combining these formulas yields the stated recurrences which can then be solved 
for a closed formula for probabilistic connectedness. ^ 

Such formulas are extremely useful, since it appears that no other exact 
measures of probabilistic connectedness exist except for complete graphs [9]. 
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A formula for 2-cohesive connectedness can be derived similarly; in both in-
stances , generalized fans are the most reliable maximal series-parallel network 
(see [15] and [17]). 

The rank polynomial of a generalized fan yields a family of reliability 
measures. Let t = z/r and z = p/q, and let KC(n, k) be the probability of ob-
taining a subgraph of no more than k components. We multiply the rank polyno-
mial by r^v^q2n~3 and collect terms by superscripts of z to yield 

, 2 « - 3 E c ^ , - i ( E ) 
d ^' 

KC(n, k) = q2n-3 £ c d r ( M - i < fc>(§)1 

From this, we can write 

y2n~3 E " mr]j/l - « < 7,WE\i + J 

d 

where T(expression) returns 1 if its argument is true and 0 otherwise. 

Lastly, these techniques apply to other classes of graphs. Generalizing 
Sedlacek [19], Mikola [13] describes V^k) as the path VQV1V2 ••• ^{n-i){k-D a n d 

the edges wvi for i = 0, k + 1, 2(k + 1), ..., in - 1)(k - 1), i.e., rim edges 
are replaced with paths of equal length. Then 

] ( k ) ((k + 3 + K)n - (k + 3 - K)n) 
^ n } (2»K) 

where K ~ vk2+6k + 5 . We generalize Mikola's result by replacing spokes with 
paths of equal length. Furthermore, a generalized Mikola fan is obtained from 
a generalized fan by replacing all the interior edges and any two nonadjacent 
peripheral edges by paths of length j + 2 and all the other edges by paths of 
length k + 2. 

The connected spanning subgraph count of a generalized Mikola fan, G(n), 
satisfies the recurrence: 

G(n) = (k + 2j + 4)G(« - 1) - (J2 + 3j + 2)G(n - 2), 

where n is the index as in the definition. Solving this yields a formula for 
subgraph counts of yet another class of uniformly sparse graphs. 
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1. INTRODUCTION AND SUMMARY 

Let Ln be the length of the longest run of successes in n (̂ 1) independent 
trials with constant success probability p (0 < p < 1), and set q = 1 - p. In 
[3] McCarty assumed that p= 1/2 and found a formula for the tail probabilities 
P(Ln ^ k) (1 ̂  k ^ n) in terms of the Fibonacci sequence of order k [see Remark 
2.1 and Corollary 2.1(c)]. In this paper, we establish a complete generaliza-
tion of McCartyTs result by deriving a formula for P{Ln > k) (1 < k ^ n) for 
any p £ (0, 1). Formulas are also given for P(Ln^k)' and P(Ln=k) (0 < k < n) . 
Our formulas are given in terms of the multinomial coefficients and in terms of 
the Fibonacci-type polynomials of order k (see Lemma 2.1, Definition 2.1, and 
Theorem 2.1). As a corollary to Theorem 2.1, we find two enumeration theorems 
of Bollinger [2] involving, in his terminology, the number of binary numbers of 
length n that do not have (or do have) a string of k consecutive ones. We pre-
sent these results in Section 2. In Section 3, we reconsider the waiting ran-
dom variable Nk (k ^ 1) , which denotes the number of Bernoulli trials until the 
occurrence of the kth consecutive success, and we state and prove a recursive 
formula for P(Nk = n) (n ̂  k) which is very simple and useful for computational 
purposes (see Theorem 3.1). We also note an interesting relationship between 
Ln and N^. Finally, in Section 4, we show that YLk= o ^(^n = k) = 1 and derive 
the probability generating function and factorial moments of Ln. A table of 
means and variances of Ln when p = 1/2 is given for 1 < n < 50. 

We end this section by mentioning that the proofs of the present paper de-
pend on the methodology of [4] and some results of [4] and [6]. Unless other-
wise explicitly specified, in this paper k and n are positive integers and x 
and t are positive reals. 

2. LONGEST SUCCESS RUNS AND FlBQNACCI-TYPE POLYNOMIALS 

We shall first derive a formula for P(Ln < k) by means of the methodology 
of Theorem 3.1 of Philippou and Muwafi [4]. 

Lemma 2.1: Let Ln be the length of the longest success run in n (>1) Bernoulli 
trials. Then 

*><*„< *>-p»i; E (nn1+'"+nnk+1)(i)ni+"' + nk+1' ° < f e < n , 

where the inner summation is over all nonnegative integers n1, ..., ̂ ^+1» such 
that n1 + 2n2 + *•• + (k + l)^/<+1 = n - i . 

Proof: A typical element of the event (Ln < k) is an arrangement 

x1x2 ... xn_i +...+ n^^^ss ... s, 
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such that n1 of the x1 s are e1 = f, n2 of the x1 s are e2 = sf9 . . . , nk+1 of the 
x's are ek+1 = ss . . . s/, and nx + 2n2 + • •• + (fc + l)wfc+1 = n - i (0 < i < /<) . 

k 
Fix nx, ..., nk+1 and t. Then the number of the above arrangements is 

(ni + ' " + n k + i \ 
\n19 ..., nk+1)> 

and each one of them has probability 

F{x1x2 . . . xn^ + ... + n^+ ss . . . s) 
i 

= [PCs ,}]" 1 [ H e 2 } ] " 2 . . . fP{e f e + 1 }] M t + 1 P{s£_^^} 
i 

= pn(q/p)ni+'" + nk+1* 0 < k < n 5 

by the independence of the trials5 the definition of e- (1 < j < /c + 1), and 
P{s} = p. Therefore, 

P(all ^xx2 . . . xn + ... + „ ££JLJ_1_2' nj (1 ̂  J ^ ^ + 1) and i fixed) 
i 

But rij (1 ̂  J ^ k + 1) are nonnegative integers which may varys subject to the 
condition nx + 2n2 +••• + (A: + l)nk + 1 = n - {,. Furthermores i may vary over the 
integers 05 1, ..., k. Consequently, 

P(Ln < k) 

I k+1 • \ 
= P ( a l l x±x2 . . . xn + ... + n s . . . sj rij > 0 3 £ J n j = ^ - i 9 0 ^ i < n | 

i 

which establishes the lemma. 

The formula for P(Ln ^ k) derived in Lemma 2.1 can be simplified by means 
of the Fibonacci-type polynomials of order k [6]. These polynomials, as well 
as the Fibonacci numbers of order k [4], have been defined for k ^ 25 and the 
need arises presently for a proper extension of them to cover the cases k = 0 
and k = 1. We shall keep the terminology of [6] and [4] despite the extension. 

Definition 2.1: The sequence of polynomials {F^k\x)}n= Q is said to be the se-
quence of Fibonacci-type polynomials of order k if F^°\x) = 0 in ^ 0), and for 
k > 1, Ff\x) = 03 î )(;r) = 1, and 

(x[F(k\ (#) + •••+ P-f̂ Or)] if 2 < w < k + 1 
Fn(/c)(x) =\ n 

W ^ W + ••• + Pn(^(x)] if n > k + 2. 

Definition 2.2: The sequence {F^ }~=0 is said to be the Fibonacci sequence of 
order k if P(0) = 0 (n > 0) , and for fc > 1, F(k) = 09 Pn(fe) = 1, and 
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F^ = 
n 

F « + 
} n-\ 

\ ^ + 

+ Fik) if 2 < n < k + 1 
1 

+ Fnk-k if n > k + 2. 

It follows from Definitions 2.1 and 2.2 that 

F^k\l) = F&\ n > 0. (2.1) 

The following lemma is useful in proving Theorem 2.1 below. 

Lemma 2.2: Let {F^ (X)}™=Q be the sequence of Fibonacci-type polynomials of 
order k (k > 1). Then, 

(a) Fn(1)(x) = x71'1, n > 1, and F^\x) = x(l + x)n~2, 2 < n < k + 1; 

n1,frrfJ nk3 \nl> •••» nfe/ 
nx+ 2n2+ ••• + A:nfc = n 

Proof: Part (a) of the lemma follows easily from Definition 2\ 1. For k = 1, 
the right-hand side of (b) becomes xn, which equals F„+\(x) (n > 0) by (a), so 
that (b) is true. For k ^ 2, (b) is true because of Theorem 2.1(a) of [6]. 

Remark 2.1: Definition 2.2, Lemma 2.2(a), and (2.1) imply that the Fibonacci 
sequence of order k (k ^ 1) coincides with the fc-bonacci sequence (as it is 
given in McCarty [3]). 

We can now state and prove Theorem 2.1, which provides another formula for 
P(Ln ^ k) . The new formula is a simplified version of the one given in Lemma 
2.1, and it is stated in terms of the multinomial coefficients as well as in 
terms of the Fibonacci-type polynomials of order k. Formulas are also given 
for P(Ln = k) (0 < k < n) and P(Ln > k) (1 < k < n). 

Theorem 2.1: Let {F„ (x)}^=0 be the sequence of Fibonacci-type polynomials of 
order k, and denote by Ln the length of the longest run of successes in n (̂ 1) 
Bernoulli trials. Then, 

n1 + 2n2+ • •• + (k+ l)nk + 1 = n+ 1 

(b) P(Ln = k) = ̂ t ^ + V W p ) " ̂ (fl/p)]. 0 < fc < n; 

(c) P(Ln > k) = 1 - E ^ - F^Cq/p), 1 < k < n. 

Proof: (a) Lemma 2.1, Lemma 2.2(b) applied with x = q/p, and Definition 2.1 
give 

R 

i = o " "•"x"" <- ^7 
P(Ln < k) = p».i:^»(?/p) = ̂ - C + V V p ) , 0 < fc < n, 
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which was to be shown. In order to show (b), we first observe that 

P(Ln = k) = P(Ln < k) - P(Ln < k - 1) 

by (a). Next, we note that 

P(Ln = 0) = P(Ln <, 0) = ̂  ^ 2 ( g / p ) = ̂ [ F ^ C ^ / p ) - F^\(q/P)], 

since Fn+2(q/p) = 0 by Definition 2.1. The last two relations show (b) . Fin-
ally, (c) is also true, since 

P(Ln > k) = 1 - P(Ln < k - 1) = 1 - ̂ - F^2(q/p), 1 < /c < n, by (a). 

We now have the following obvious corollary to the theorem. 

Corollary 2.1: Let {F^ }~=0 be the Fibonacci sequence of order k and let Ln be 
as in Theorem 2.1. Assume p = 1/2. Then 

(a) P(Ln < k) = F^+\l)/2n, 0 < k < n; 

(b) P(Ln = fc) = [Ff+
+
2
X)- F„(?2]/2n, 0 <k<n; 

(c) P(Ln > fc) - 1 - F^\/2n, 1 <k< n. 

Remark 2.2: McCarty [3] showed Corollary 2.1(c) by different methods. 

We now proceed to offer the following alternative formulation and proof of 
Theorems 3.1 and 3.2 of Bollinger [2]. 

Corollary 2.2: For any finite set A, denote by N(A) the number of elements in 
A, and let p , Ln, and {Fff}™,„ be as in Corollary 2.1. Then 

(a) N(Ln < k) = F™2, n > 1; 

(b) N(Ln = k) =F«+»-F™2, n> 1. 

Proof: (a) Corollary 2.1(a) and the classical definition of probability give 

N(Ln < k) F, (k) 
n+Z 

= P(Ln < K) = P(Ln < k - 1) = — — , 1 < k < n + 1. 

Furthermore, it is obvious that 

N(Ln < 0) = 0 and N(Ln < k) = 2n, k > n + 2. 

The last two relations and Lemma 2.2(a) establish (a). Part (b) follows from 
Corollary 2.1(b), by means of the classical definition of probability and Lemma 
2.2(a), in an analogous manner. 
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3. WAITING TIMES AND LONGEST SUCCESS RUNS 

Denote by Nk the number of Bernoulli trials until the occurrence of the 
first success run of length k (k ^ 2). Shane [7], Turner [8], Philippou and 
Muwafi [4]9 and Uppuluri and Patil [9] have all obtained alternative formulas 
for P(Nk - ri) (n ^ k). Presently, we derive another one, which is very simple 
and quite useful for computational purposes. 

Theorem 3-1: Let Nk be a random variable denoting the number of Bernoulli 
trials until the occurrence of the first success run of length k (k ^ 1). Then 

!

pfc, n = k, 

qpk, k + 1 < n < 2k, 

P[Nk = n - 1] - qpkP[Nk = n - 1 - /c], n> 2k + I. 

The proof will be based on the following lemma of [4] and [6]. (See also 
[5].) 

Lemma 3-1: Let Nk be as in Theorem 3.1. Then 

(a) P C * * - » > - P » E , ( " 1 + - + " k ) ( f ) n i + ' " ' + B * . » > * ; 
nlt ..., nk3 \nl9 . . . , rik/\p/ 

n1+ 2n2+ • • • + knk = n- k 

(b) P ( ^ < n ) . i . E ^ i V ( M - + »k)(£f+"' + ^ B > k i 
n:i + 2n2 + • • • + fenk = n+ 1 

Proof of Theorem 3 - 1 : By s imple comparison, (a) and (b) of Lemma 3 .1 g ive 
_1_ 

qpl 
P(Nk < n) = 1 — P(Nk = n + 1 + k) , n > fc, 

which imp l i e s 
|~ n - k - l 

P(fffc = n) = <7p*[l - P(fffc < n - k - 1)] = qp* 1 - E P ( ^ 
i = k 

«] 
= P[tffe = n - 1] - qpkP[Nk = n - I - k], n> 2k + 1. (3.1) 

Next, 

P(tffc = n) = pnF^k_\+l(q/p)9 n > k, by Lemma 3.1(a) and Lemma 2.2(b), 

= pn(-)(l + ~ ) n " ~ » k + 1 < n < 2Zc, by Lemma 2.2(a), 

= qpk, k + 1 < n < 2k. (3.2) 

Finally, we note that 

P(Nk = k) = P{ss . . . s} = pfc. (3.3) 

Relations (3.1)-(3.3) establish the theorem. 
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Remark 3.1: An alternative proof of another version of Theorem 3.1, based on 
first principles, is given independently by Aki, Kuboki, and Hirano [1], 

We end this section by noting the following relation between Ln and Nk. 

Proposition 3-1: Let Ln be the length of the longest success run in n (>1) 
Bernoulli trials, and denote by Nk the number of Bernoulli trials until the 
occurrence of the first success run of length k (k > 1). Then 

P(Ln > k) = P(Nk < n). 

Proof: It is an immediate corollary of Theorem 2.1 and Lemma 3.1(b). 

4. GENERATING FUNCTION AND FACTORIAL MOMENTS OF Ln 

In this section9 we show that {P(Ln - k)}k=Q is a probability distribution 
and derive the probability generating function and factorial moments of Ln. It 
should be noted that our present results are given in terms of finite sums of 
Fibonacci-type polynomials where the running index is the order of the polyno-
mial. It is conceivable that they could be simplified, but we are not aware of 
any results concerning such sums, even for the Fibonacci sequence of order k. 
For the case p = 1/2, we give a table of the means and variances of Ln for 1 < 
n < 50. 

Proposition 4.1: Let Ln be the length of the longest success run in n (>1) 
Bernoulli trials, and denote its generating function by gn(t). Also, set 

x(0) = 1 and xM = x(x - 1) .. . (x - r + 1), r > 1. 

Then 

(a) E P(Ln = k) = 1; 
k = o 

(b) gn(t) = tn - (* - l)^n±W\+l\q/p), n>'l. 

(c) E(L^) = »« - r ^L nil 1?- l¥n
k:2%/p), 1< , < „; 

H k=r-l 

(d) E(Ln) = n - ^n±F«+
+

2
l\q/p)9 n > 1; 

4 k=o 

(e) a2(Ln) = ^ — {In - l)n±lF«+
2
l\q/p) - 2 E ^ V W P ) 

£ = 0 fe=l 

. <? & = o 

2 

, n > 2. 

Proof: (a) We observe that F ^ (q/p) = 0, by Definition 2.1, and 

^ " V V p ) = (?/p)[l + (q/p)]n = ̂ /Pn + 1, by Lemma 2.2(a). 

Then Theorem 2.1(b) gives 
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" Pn+\w(k+i), 
k= 0 k =0 ^ 

7(1+1), (O) 

(b) By means of Theorem 2 . 1 ( b ) , D e f i n i t i o n 2 . 1 , and Lemma 2 . 2 ( a ) , we have 

git) = ff(tL") = £tkP(Ln = fc) 
fe=o 

= £*k £^[*f+
+

2Vp) - ^2(?/p)] 
0 n + l 

4 E ^ + V V P ) - " E V + ^ V W P ) 
n - 1 

^„ (
+

+ 2%/P> + E ( t k - ** + 1)F<*+yVp) 
*c=0 

9 n + l n _ 1 

4 4 ft = 0 

= tn - {t - D^n±ltkF«+\l\qlV), n > 1. 
^ k = 0 

(c) It can be seen from (b), by induction on r9 that the rth derivative of 
gn(t) is given by 

" k =r- 1 3t 

(t - iy^ntlkMtk-^\%/P)9 1 < 2- < n. 
H k= r 

The last relation and the formula 

E(L[r)) = — g (£) 
t= 1 

establish (c). Now (d) follows from (c) for r = 1. Finally, (e) follows from 
(c) by means of the relation 

a2(Ln) = E{L^) + E(Ln) - [E(Ln)]2. 

Corollary 4.1: Let Ln be as in Proposition 4.1 and assume p = 1/2. Then 

(a) a (t) = ty V t ¥ H l ) , n > 1. 
2" k-o n+2 

(b) E(L<*>) - «<r> - ̂  E ^ " ^ H 1 < r < «; 
2 fc = r~ l 

(c) E(Ln) = n - ^ E ^ V l n> 1. 
2 k= 0 
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In - l r c - ^ f e + l ) 1_ " - 1 

2n * = o * + 2 2 n - ^ = i (d) oHLn) = — I F ; ; 2 - - - L - Z ^ ; 2 " . \l
F(k+ l) 

k^Q n + 2 , n > 2 . 

We conclude this paper by presenting a table of means and variances of Ln, 
when p = 1/2 9 for 1 < n < 50. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

E(Ln) 

.500000 
1.000000 
1.375000 
1.687500 
1.937500 
2.156250 
2.343750 
2.511719 
2.662109 
2.798828 
2.923828 
3.039063 
3.145752 
3.245117 
3.338043 
3.425308 
3.507553 
3.585327 
3.659092 
3.729246 
3.796131 
3.860043 
3.921239 
3.979944 
4.036356 

o2(Ln) 

.250000 

.500000 

.734375 

.964844 
1.183594 
1.381836 
1.553711 
1.702988 
1.829189 
1.938046 
2.031307 
2.112732 
2.184079 
2.247535 
2.304336 
2.355688 
2.402393 
2.445150 
2.484463 
2.520765 
2.554392 
2.585633 
2.614727 
2.641880 
2.667271 

n 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

E(Ln) 

4.090650 
4.142980 
4.193483 
4.242285 
4.289496 
4.335215 
4.379535 
4.422539 
4.464300 
4.504889 
4.544370 
4.582799 
4.620233 
4.656719 
4.692306 
4.727035 
4.760948 
4.794080 
4.826468 
4.858143 
4.889137 
4.919477 
4.949192 
4.978305 
5.006842 

o2(Ln) 

2.691060 
2.713386 
2.734376 
2.754142 
2.772786 
2.790402 
2.807071 
2.822872 
2.837871 
2.852132 
2.865711 
2.878660 
2.891025 
2.902849 
2.914170 
2.925023 
2.935439 
2.945448 
2.955075 
2.964345 
2.973278 
2.981895 
2.990214 
2.998250 
3.006021 
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To the. mmofiy oh VhJoheA&on Vn.. Lucrn Be/w&tesLn* 

0. INTRODUCTION 

Using elementary properties of algebraic numbers of certain finite exten-
sions of |, L. Bernstein obtained in [1], [2], [3], [4], and [5] some combina-
torial identities. In this paper, we want to give a clear and quick matrix 
treatment of Bernsteinfs techniques from which it will be seen that his combi-
natorial identities are in fact determinants. 

In Section 1, writing the powers of an algebraic number oo of degree m over 
f as 

we give9 in (1.4) and (1.5), the tf?th-order linear recurrences satisfied by the 
numbers 

rjn , n € Z9 j = 1, 2, ..., m. 

Let us note that L. Bernstein is always considering the case where J = 1 and oo 
is a unit of (t(a)): see [3]; as far as [1], [2], [4], and [5] are concerned, L. 
Bernstein deals with the case m = 3. 

In Section 2S Eulerfs generating functions are calculated in two ways: one 
with the help of the sums pt of all symmetric functions of weight t; the other 
using the multinomial theorem. The second method is used by L. Bernstein, but 
the concluding remark of the last paragraph still applies. 

A very general procedure combining the properties of the norm of an alge-
braic integer and Cramerfs rule Is described in Section 3S which leads to what 
can be called combinatorial identities. 

In Section 4S we conclude this paper by giving a formula for rjn involving 
the determinant of a Vandermonde matrix and the determinant of a matrix that 
is "almost" of the Vandermonde type. 

1. RECURRENCE RELATIONS 

Let CO be a root of the polynomial 

f(X) = Xm + kiX™-1 + ... + km-iX + km = (X - ax) (J - a2) ... (X - a J 
irreducible over Q, with m distinct (nonzero) roots a1 =oos a2* ..., 0im* whence 
the field (1(a)) is of degree m over f. Let us consider the (positive, negatives 
zero) powers of a). 

^Professor L. Bernstein died on March 12, 1984, of a cerebral hemorrhage. 
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For n G 1L, let 

In ' x In^ 

with coefficients in (R. Since 
,,ffl _. 7, , .171- 1 

we obtain the equality 
" K-l® ~ km> 

"km*mn + (rin ~ km-irmn^ + (P2n km_2Pm)o) + 

which leads to the system 

r l , n + l = ° P m + 0r2n + 

P 2 ,n + 1 = 1 P ln + 0r2n + 

P 3 , n + 1 = ° P ln + 1P2n + 

P = Qp + OP + 

Define the matrices 

+ fr.-M " K^rrm^ 

+ OP k P 

+ OP , - & P , 

+ IP k P . ± rnn 

( i . i ) 

c = 

0 

1 

0 

0 

0 

1 

0 
0 

0 

-k 

-k 

~k 

0 0 

r l n 

r 2 n 

r 3 n 

^Frnn _ 

fi = [1 0) 032 Identity matrix, 

of dimension m x m9 m x ls 1 x m9 m x m, respectively. 

Hence, we have U)n = !w!i?n and 

from which we conclude 

and 

Rn = CnRQ with i?0 = [1 0 ... O r , 

p. = (j, 1) element of Cn* (1.2) 

It is worth noting that system (1.1) leads to the following matrix, which 
is that it st 

ficients of Udni 
means that it suffices to have a formula for rlt in order to know all the coef™ 
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R„ 

m - l 

1. n-1 km m 

^. .. . -•— T .— v. 
m - 2 

_j _ p 
1. n-2 fcOT l,n-l fc In 

m-1 

r H—= r + 
1, n + l-m K, 1, n + 2-m 

+ •=— r 
km in 

It is well known that the characteristic equation of C is 

\m + k^'1 + ... + km_±X + km9 

whereupon the eigenvalues of C are a13 a2, ...9 am. Since 

(7 = -A^C - .•" - km_1C - kmIm , 

we deduce 

^n + m = & Rn
 = "klRn+m-l ~ ~ km-lRn+l ~ ̂m^n» 

from which we conclude (with 1 ̂ j ̂  m)i 
vgn ~ ~^i pj s«-i - ••• - km_ 1rJ-3n _m + l - kmrjyn_m. (1.3) 

In particular we obtain, for the coefficients of ix)t and co with t ̂  m9 the two 
following ??7th -order linear recurrences (with 1 ̂  j ^ rri) i 

rjt ~ k i r j , t - i km-irj,t-m + l ^mrj,t-m9 

LJ, -t + 1 V rj, -t+m-l 

with the initial conditions for 0 ̂  i- ̂  m - 1 being 

(J, 1) element of Cl - {\ " J' f ' + l ' w (0 elsewhere, 

fem
 rj,-t+m> 

P- _£ = (j, 1) element of C~ . 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

Note that for the rest of this article, as opposed to [1], [2], [3], [4], 
and [5], we do not restrict ourselves to the case j = 1. 

2. GENERATING FUNCTIONS 

Using the 777th-order linear recurrence given in (1.4) and the known values 
of v.. in (1.6) we obtain, for j = 1, ..., m, " Jv 

C?o^41 + V + ••• + K-i^'1 + KX"1) = X"7'"1 +kix* + • • • + km •X"'-1. 
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So 

Y,rjnXn 
n = 0 

X^1 + H i + - 0 .X171-1 

1 rn-j 

1 + k x + . . . + k X"1 + K*m 
1 m - 1 m 

1 m - j 

(1 - a ^ d - a2J) . . . (1 - amX) 

= (^''Hlc^' + ••• + km_J.X;7?-1)(l + p1X+p2X2 + •••+?**+•••)» 

where p stands for the sum of all symmetric functions of weight t in a1, ..., 
am. Hence, we conclude A 

m- j 

0 if 0 < n < j - 1, 
(2.1) 

where, as stated in [6], 

a"-1+t 

P = E TFF7 \~> With p = fc = 1, D = p = - . . = 

S i m i l a r l y , u s i n g ( 1 . 5 ) , ( 1 . 3 ) , and then ( 1 . 6 ) , we o b t a i n 

p = 0 . 
-OT + l 

X + ••• + ^ c ^ " 1 + Xm) 

= L3? , n + kr, nX + fer». . X2 + • • • + kr m x j o m j , - 1 77T J , - 2 w j , - m + 2 X
m~2 + kmr 'rn j , -m+i 

+ **-l*\fO* + fcrn-l*/.-!*2 + • • ' + fc».l^.-w + s ^ " 2 + *m-l*\f.-W+2*W"1 

+ k 0 r , n X 2 + . . . + k m _„r , 772-2 JO 'w- 2 J , -m + 1t + K_0r HI-2 j , - m + 3 

+ V j o ^ " 1 

^ 3 ? . X - r , „X2 
w J O j , m - . l j , m - 2 r ^ X 7 " " 2 - p,nX; 

" J 2 J l 

- K*j.m-2* - V i i m - 3 ^ " • • ' " M j l ^ " " 2 

K-3rj'2X " ^ - 3 P j l Z 

^m-2Pjl^ 

= ^ (X) , 

where the polynomial Z^ (X) i s def ined by: 
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Ki (X) 
~K-m-jX km-j-1% 

if J = 1, 

kQXm-j+1 if 2 < j < m. 
(2.2) 

Thus5 

Zjj,-«xn = 
K.{X) 

n = 0 km(l - a-^Kl - a^Z) ... (1 - a"1!) 

For i = 1, ...9 m9 let k* denote the £th elementary symmetric functions in 
a^1, ...j a^x5 so that 

as is well known. Now, let p* stand for the sum of all symmetric functions of 
weight £ in a"1, . .., a"1; letting 

F(Y) = Ym + 
1 1 

Km Km 

(J - a"1)(J - a"1) ... (T - a;1), 

we have 

P ^ - E — . 

and p* = p* 
1 L -2 r-m + l 

We conclude that 

0. 

n = 0 

and this leads to 

J, -n 

L ^ . . / " = k-m%{x){i + p*x + v\x2 + ••• + p** + •••), 

P* if J - 1. 

7- Zkm_d_tpU^ if J - 2, 
(2.3) 

Instead of using p, (resp. p*)s one can also use the multinomial theorem 
from [7] to find rg-n (resp. z9^ _„). For example, as in [10], we have (within 
an irrelevant radius of convergence) 

n • 0 

= O^'-1 + k JJ' + ••• + k. 

{X3'1 + kYX3 + ••- + 

m ,xm-^\ ti-iy'ikj + ... + v ^ ' 1 + V)J1 
^ Lj = 0 J 

where 

4(i) =E("D 
(£.+£, + •"•+£-.)! 

i; V * 2 ! ... tm! 
Kx i ' * * m s 
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the last sum being taken over all m-tuples (t±, £ , . .., tm) of Nm such that 

tx + 2t2 + ••• + mtm = i; 

therefore, 
m-3 

rjn = E M(w - J + 1 - * ) , (2.4) 

with the convention k0 = 1, and A(i) = 0 for £ a negative integer. 

Similarly, for j = 2, ..., w?, we have 

„£>,•.-»*" = ( - V / - W i * 2 v™~J'+1>(£0
B<^). 

where 

(-l)*1 + ̂ + - + *-(ti+t2 + ... +tm)! t 

Km v1\v2i ... rmi 

the last sum being taken over all 77Z-tuples (t , £ , ..., tm) such that 

tx + 2t2 + - • + mtm = £. 

Defining B{jJ) to be 0 for £ < 0, we therefore obtain 

kmB(n) if j = 1, 

p. 
J, -w "E K-i-tB(n - I - t) if j = 2, ..., 77?. 

t=0 

(2.5) 

Although formulas (2.4) and (2.5) with J = 1 may look different from Bern-
stein's formulas (1.14) and (1.14a) in [3], they are in fact equivalent. 

To conclude this section, let us remark that if one wants a formula for the 
powers an for a = a± + a2w +••• + â oo772"1, one can use the characteristic poly-
nomial of a to write an equation of the form 

am + b ^ ' 1 + ••• + bm = 0, 

and apply the above procedure to get the powers of a as functions of the bj,'s. 

3. A GENERAL RESULT 
m 

If a = £ a i l ^ ~ 1 E Q.((JO) and if, for j = 1, ..., m, 
i = ± 

& " * • 

.0) i-1 

then #Q(LO)/m (a) = det 4, where A = [a^-]; see [11]. 

Let us consider the equality 

y = ag 
with 3 E OKo)) where, for j = 1, . . ., m, 
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13 

t a k i n g B = [bid]9 G = [g „ ] , fi = [1 GO . . . o / " * 1 ] , we have 

aft = QA9 $Q = ftB, y^ = ftc7 and (ag)Q = (ga)ft = Q(&4) = ft(4£), 
h e n c e , t he i d e n t i t y 

£ = AB = M . 
I f , fo r a m a t r i x M, we denote i t s j t h column by M, •), we conclude 

In p a r t i c u l a r , we o b t a i n AB^jj — G^^9 i . e . , 

anbn + a1 2fc2 1 + • • • + almbml = gn 

a2lbn + a22Z?21 +• . . - + almbml = # 2 1 

[ a w l £ u + am2b21 + . . . + a^b^ = gmV. 

Let a ^ 0; then ^(C^/Q (ot) = det A ^ 0, and the matrix A of the coefficients of 
the above system has det A £ 0. For £ = 1, . . „ 9 m9 Cramer's rule gives 

where cof (<2ti) is the cof actor of the (£, £) element of >4. 

Similarly, if $ ̂  0, we also have, for £ = 1, ..., m9 

a £gtl cof(bti). ( 3 .2 ) 
i i d e t B t = l 

In [2] Bernstein took m = 3, k± = 0, fc2 = g > 2, fc3 = -1, a = cos, 3 = aTs , 
Y = ls obtained recurrence relations for the rational coefficients of a and g, 
calculated the generating function of these coefficients, and then obtained his 
combinatorial identities, which turn out to be special cases of our formulas 
(3.1) and (3.2); see formulas (4.2) and (4.3) of [2], see also [1], [4], and 
[5]. The same was done in a lengthy way for arbitrary m in [3]. It turns out 
that in [3], Bernstein is considering a = o/""n+1, g = a"1, y = 1; nevertheless, 
he forgot to write a0 in front of the determinant appearing in his formula 
(2.3b), so formulas (2.4)-(2.7) must be modified accordingly [e.g., the power 
of a0 in (2.7) is m] . 

Let us observe that, from a linear algebra point of view, the equality G = 
AB with det A ^ 0 immediately implies that one can solve for the entries of B 
in terms of the entries of G and minors of A. 

k. VANDERMONDE MATR i X TREATMENT 

Consider the matrix G defined in Section 1, the Vandermonde matrix 7, and 
the diagonal matrix D shown on the following page: 
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m-l 
1 
m-l 
2 

a± 0 

0 a0 

0 0 

Since VC = DV, we have C = V^DV, and 

det 7 = |7| = O (aj - cu). 

It is possible to give an explicit formula for C in terms of det 7 and in terms 
of the determinant of a certain matrix that is almost of the Vandermonde type. 
Let us do it. 

For t = 1, ...,777-1, denote by kt(j) the tth elementary symmetric func-
tion in a , ..., a._ , ot. , ..., am, whence 

fet(j) = fct + / V i a j + 

With respect to 7, define 

7f = cofCa^1). 

Then it is well known that 

+ w + al- (4.1) 

1_ 

F| k1dn1 k1(2)V2 . k1(m)Vr 

(see for instance [9]). For a proof, call W the matrix |7|7~ , and show that 
WV - |7|Jm by comparing the (i,j) elements: if i = j, you obtain \v\; if j < i, 
you get 0, using (4.1); if j > i, you obtain 0, using the fact that 

ai^k .(£) = -k . ,a J-2 m - £ +1 ~ t m-t + 2 t 
J-3 -

m-l t 
Kai-1-1. 

By definition, for all n €: 2, let Hn be given by 

Hn = det 

m-2 

m-2 
'2 

X"1 
a j " 1 

as is easily verified, this determinant Hn satisfies the ?7?th-order linear re-
currence 

-Mn-l M»-2 KK-m-
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Keeping in mind formula (4.1), we find for the (j, t) element of Cn = V~lDnV 
(with 1 < j , t < rri): 

i rn-j 
U, t) element of Cn = - ^ .£ K _._ .Bn + t +. . 

So 9 for every n £ 2 , 

]_ m-j 
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I. INTRODUCTION 

How many times can the same number appear in Pascalfs triangle? After 

eliminating occurrences due to symmetry, (7 ) = ( 7 ), and the uninteresting 
(n\ ln\ V ' Xn " ; 

occurrences of 1 = ( J and n = f J, the answer to this question is not clear. 

More precisely, if 1 < k < n/2, we say that ( -, 1 is a -proper binomial coeffi-

cient. Are there integers that can be expressed in different ways as proper 

binomial coefficients? 
Enumeration by hand or with a computer program produces some cases, given 

in Table 1. The smallest is 120, which equals 

(?) - (?)• 
Table 1. Small Multiple Occurrences of Binomial Coefficients 

INTEGER 

120 

210 

1540 

3003 

7140 

11628 

24310 

BINOMIAL COEFFICIENTS 

Cs")- (?) 
c:). (V) 
(?)• (?) 
i\% ('/)• (?) 
(?). en 
(?)• (T) 
Cs7)- (T) 

There is even an instance of a number, 3003, which can be expressed in three 
different ways. No clear pattern emerges; the cases just seem to be sprinkled 
among the binomial coefficients. We conjecture that, for any t, there exist 
infinitely many integers that may be expressed in t different (proper) ways as 
binomial coefficients. 
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Here we prove the conjecture for the case t = 2. The proof is construc-
tive and depends in an unexpected way on the Fibonacci sequence. 

I. THE CONSTRUCTION 

We seek solutions to 

an especially tractable situation because it leads to a second-order equation. 
In particular, if (1) holds, then n(k + 1 ) = (n - k)(n - k - 1). Let 

x = n - k - 1. (2) 

Then x(x + 1) = n{n - x) so n2 - xn - (x2 + x) = 0 and 

x + V5x2 + kx ,0>l 
n = ^ (3^ 

(since n is positive). Integer solutions to (3) therefore lead to integer so-
lutions to (1). 

Since 5x2 + kx is even if and only if x is even, this means we must find 
integers x such that 5x2 + kx is a perfect square. Now x and 5x + 4 have no 
common factors except possibly 2 or 4, so a natural slightly stronger condition 
would be that both x and 5x + 4 be perfect squares. In other words, we need 
to find integers z such that 5z2 + 4 is a perfect square. These are given by 
the following lemma. 

Lemma 1: Let Fj denote the Fibonacci sequence. Then, for all J, 

(F..x + F - + 1 ) 2 - 5F| -4<-l)*. 

Proof: A straightforward calculation (see, e.g., [2], pp. 148-149) shows 

(.Fj + 1 + F..J* - 5F/ = 4 ^ + F.Fj_1 - F/) - -4(F? + F^^ - F ? + 1 ) , 

which yields the result by induction. 

The lemma tells us that for any j even, z = Fj gives the perfect square 

5s2 + 4 = {F._x +Fj+1)2. 
This completes the construction. 

Theorem 1: Let Fj denote the Fibonacci sequence. Then, for any even j, there 
exists a solution to (1), where x = FJ and n and k are given by (2) and (3). 

Remark: Letting Lj denote the Lucas sequence as usual, we can write this solu-
tion as 

Fjh +FI ,. FJLd - F ! , 

Theorem 2: Theorem 1 gives all solutions to (1). 

Proof: It follows from the preceding discussion that any solution to (1) cor-
responds via (2) to some integer x such that 5x2+ kx is a perfect square. Let 
a (resp. b) be the number of times 2 divides 5x + 4 (resp. x). If a > 2, then 
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b - 2 and, conversely, b > 2 implies a - 2. Since 5 ^ + 4 and x have no common 
factors except (possibly) 2 or 4, (5x + 4)/2a is a perfect square, as is x/2b. 
Therefore, a + & is even, so a and 2? are both even or both odd. In the former 
case, x and 5x + 4 are perfect squares. We claim this leads precisely to the 
class of solutions given by Theorem 1. In the latter case, it follows that 
a = b = 1. Thus, we seek integers s such that 5s2 + 2 is a perfect square. We 
further claim that no such integers exist. The two claims can be shown to fol-
lows from the general theory of the so-called Pell equation (see, for example, 
[1] for the first claim, and [3, pp. 350-358] for the second claim). For com-
pleteness, we give a simple proof that does not rely on the general theory. 

Let {An} denote any sequence of positive numbers satisfying the recurrence 
An + An+1 = An+2' T n e argument from Lemma 1 shows that, for all n, 

(An-i + A
n+0 ~ ~>An - 4(An_1 + An_1An - An) = -\An + An + 2) + 5An + 1 . 

Therefore, given any solution s, y to 5s2 + k - y2, we can construct smaller 
solutions by setting 

A y " z A - y + z 

Ai ~ S> Ai-1 ~ 2 5 Ai + 1 ~ 2 ' 

and extending the sequence {An} backward according to the recurrence 
An + A

n+i = An+2* 
[The solutions will be z = Aj, y = AJ-_1 + Aj+li where j = i (mod 2), with 

\k\ = h\An + AnA2
+1 - A2

+1\, for all n.] 

Now, let (s, y) be any integer solution to 5z2 + 4 = z/2. Set 

^ = 2 and ^- + 1 = — o — (an integer). 

Then extend {An} backward to get the solution corresponding to A^_ and A._ . 
If z > 3, then 

., ^ z/5 - z ^ . y - % ^ zy/5 + .5 - z ^ _0 
.61s ̂  « ^ ^i-i = — 9 — 2 -72s, 

whence .28s < Ai_2 < .39s. Therefore, if Ai ^ 3, the solution corresponding to 
i4^_2 is smaller. Repeatedly extend {An} backward until Aj < 3. Since the only 
such integer solution is (1, 3), s must have been a Fibonacci Number. This 
verifies the first claim. The second claim, that 5s2 + 2 = y2 has no solutions, 
follows immediately from the fact that y2 = 2 (mod 5) has none. 
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A l inear recurrence r e l a t ion of the nth order i s defined as 

2i + „ = tadTi+„-j> i - 0, 1, 2, . . . . (1) 
J = 1 

where al9 a2, . . . , an are given coefficients. When all the coefficients are 
set equal to 1, the relation generates ^-Fibonacci sequences [l]s the Fibonacci 
sequence for n = 2, the Tribonacci sequence for n = 3 [2], and so on. 

Another case arises when the coefficients in relation (1) are set equal to 
binomial coefficients, i.e.9 

^+* S w - iri+f (2) 

For n = 2, relation (2) is reduced to the Fibonacci sequence and the recurring 
sequences generated by the recurrence relations with binomial coefficients (2) 
can be considered as another generalization of the Fibonacci sequence. These 
"binomial" sequences interest the author because of their relation to the dy-
namic development of self-replicating biochemical systems [3]. 

Consider self-replication of the type shown in Figure ls i.e.9 

A 1 ^ A2 + A1 (Rl) 

A. ^ A j + l9 J = 2, ..., n - 1, (Rj) 

An
J^A1 (Rn) 

Figure 1. A Schematic Diagram of a Self-Replicating Process 
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Species A± forms species A2 while reproducing itself in reaction (Rl). Species 
A2 undergoes n- 1 transformations by reactions (R2)-(Rn) producing in the last 
step of this sequence the initial species A±. Assume the first-order mass-
action law for each of the reactions, that is, the rate of the j t h reaction is 
proportional to the concentration of species Aj, and also assume that the rate 
coefficients are identical, i.e. , kj = k for j = 1, 2, . . . , n, the differential 
equations which describe the kinetics of the system take the form 

d[A±] d[Aj] 
dt = k[An]9 dt = feUJ.-1] - k[Aj], J = 2, ..., n, 

with initial conditions 

W i l t - o =C 

where : 

t=o u o ' 
U j ] t = 0 = 0 , j = 2 , 3 , . . . , n , 

[Aj] is the concentration of species Aj; 

CQ is the initial concentration of species A ; 

t is time. 

Dividing both sides of each differential equation by kC0 and introducing dimen-
sionless variables 

ad = U I J / C Q for j = 1, 2, ..., n 

and T = kt9 

these equations can be rewritten as 

da1 d<2j 
IT = an9 IFF = aj-i " aj ' J = 2 , . . . , n , 

w i th i n i t i a l c o n d i t i o n s 

a. I = 6 . . 
J IT = O J 

The characteristic equation for this system of differential equations is 

r(r + l ) n _ 1 - 1 = 0 . (3) 

Thus, the roots of (3) determine the kinetics of the reaction sequence. 

Returning to the "binomial" sequence (2) , the auxiliary polynomial for this 
sequence is 

xn - E in- Z ))xn~j = ° or xn - < * + 1)n"1 = °- (4) 

Defining r = 1/x, (4) becomes (3). Analysis of the "binomial" sequences and 
their relations can provide information necessary for understanding self-rep-
lication of the type considered here. It would be of interest to determine all 
possible relationships between the roots of equation (4) and their dependence 
on the order n. 

For example, defining z - v + 1, equation (3) becomes 

zn _ zn-l _ i = Oo (5) 
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Equation (5) and its solution are discussed in a number of articles [4]-[7]. 
From the results of Ferguson [6] and Hoggatt & Alladi [7], the following con-
clusions can be made for roots of equation (3)I 

Property 1: For all n, there exists only one positive real root 2>1—the domi-
nant root of (3)—such that 

r1 = l/*„ (6) 

where 
T-

* = lim -=— (7) 
7 -> oo 1 • 

is the limiting ration of the "binomial" sequence of the nth order. 

Proof: It was proven in [6] and [7] that (5) has a single positive root with 
largest absolute value, \ 1 , That is9 Ax is the dominant root of (5). Since 
r = z - 1, 2?1 = Xx - 1 is the dominant root of (3). Furthermore, since x = 
l/(z - 1), (4) has only one positive real root, x1 = 1/iX-^ - 1). Root xx has 
the largest absolute value: It was proven in [6] that A1 - 1 < \z- 11 ; there-
fore 

_̂  ^ o r x ^ \x\ m 

1 |3 - 1 I 

Thus, there exists a single root of largest absolute value for (4); this satis-
fies the condition of the lemma in [7], proving the existence of limit (7) and 
that x± - cj)n. Equation (6) follows from xx = <J>n and r± = l/x^. 

Property 2: For n even, there is also one negative real root. 

Proof: This follows from applying Descartes' Rule of Signs to equation (5) and 
using the relationship r = z - 1. 

Prope r ty 3- l im 2?, = lim(l/<J> ) = 0 . 
n->oo X

 W-*. 00 

Proof: This follows from r1 = Xx - 1 and the result of Theorem B in [6] that 

lim A, = 1. 
n + co 

Property k: All the roots are distinct and lie in the intersection of the two 
annuli 

A0 < \r. + l| < r± + 1 and r1 < \rj \ < 1 + A0, 

where r-, j = 2, 3, ..., n, are the (complex) roots of equation (3) and A0 is 
the largest real solution of un + un _ 1 - 1 = 0 ( 0 < A 0 < 1 < P 1 + 1 < 2 ) . 

Proof: These results follow from Theorem A in [6] and r = z - 1. 

Species concentrations CLj are determined by linear combinations of n expo-
nential terms eT^ , where rz (Z = 1, 2, ..., n) are the roots of (3). Based on 
properties (l)-(4) above, the dynamic behavior of reaction system (Rl)-(Rn) is 
dominated by the term eriT (= eT/c^n) . At n > 14 there are complex roots v% with 
positive real parts (e.g., 0.00617 ± 0.38302i), thus indicating the appearance 
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of nondecaying, oscillatory components in the concentration profiles. The ex-
ponential term for a complex root takes the form eQLTe®TZ» where r = a+gi. The 
term e^Ti indicates oscillatory behavior of species concentrations in time. If 
a is negative9 oscillations are decaying with increase in x. For a > 0, the 
oscillatory behavior is nondecaying. More detailed general analysis of the 
reaction kinetics depends on whether the roots of (3) and their dependence on 
n can be isolated further. Thus, it would be of interest to determine the fre-
quencies and amplitudes of oscillatory components in concentration profiles. 

The following recurrence expression, 

l o g <t>n log n 
l°g 4>n-i log(n - 1)' 

(8) 

seems to be an approximate relationship between the limiting ratios (or the 
dominant roots) of different orders (see Figure 2). Since the dominant root 
of (3) is specified by <f>n, namely v1 = l/(f)n, and the dominant root determines 
the main dynamic behavior of the reaction system, relationship (8) can be used 
to approximate such behavior,, A question is: Can relationship (8) be justified 
and can it be improved? 

Inn 

Figure 2. Logarithmic Dependence of the Limiting Ratio of the 
"Binomial11 Sequence on the Order of the Sequence 

The following proof that log <j>n/log n is bounded was suggested by the re-
viewer . 
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log <f>n 
Conjecture: lim — exists. 

n+°°  log YI 

From y = (1 + (l/y))n, where y = <\>n and 1 < z/ < n3 we have 

l o g <$>n 
log z/ < log n and log cj>w < log n or - < 1 i s bounded. 

X O g ri 

For large n9 also9 

y = (l + ^ J < en'y or log y + log log y < log n 

or 
log 1/ + log log y < ^ 
log n log n ~ 

It may be that log c{)n/log n is eventually monotonically increasing. A short 
computer program showss howevers that it is not monotone at first. 
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THE SERIES OF PRIME SQUARE RECIPROCALS 

HANS HERDA 
University of Massachusetts at Boston, MA 02125 

(Submitted May 1984) 

The series 

E 1/p2 (the sum being extended over all primes p) 
P 

converges very slowly. Fortunately, the convergence can be quickened: 

k Lemma: £ 1/p2 = E ^&- log(£(2fc) ) . 
P k> 1 

Proof: F i r s t , 

iog(e<2fc)) = log n a - ( I / P 2 ^ ) ) " 1 

P 

by ( [ 1 ] , p . 2 4 6 , Theorem 2 8 0 ) . 

log II (1 - (I /?2*))"1 = E - log(l - <l/p2k)) = E E 
P " P ~ P s>l Sp2kS 

E ^ E 
8>1 S P p 2 / £ S 

We note the following for later use: 

iog(U2k)) = E i E - ^ - . (*) 
a>lS P p2ks 

Now, 

E ^ iog(C(2fe» = E E E ^ - ~ = E E E u ( f e ) ~ 
k > l K P K ^ l s ^ l * b p 2 / c s P n>\ k\n np 

= E E —7 E y(fc) = E \ 
P n>\ np k\n P pz 

the last equality by ([1]9 p. 235, Theorem 263). 

To compute Epl/p accurately (to 28 decimal places), we calculate the first 
seven terms in the Lemma using exact values for the relevant arguments of the 
zeta function £ (computed from [2], p. 298, Table 54, and p. 40, 2.), and we 
approximate the next twenty-four terms using (*). Thus, we obtain 

AMS 1980 Mathematics Subject Classification: 10A40, 65B10. 
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z i . ios© - i u&) -1 io8(jg. i xo8(^)•1 l o s y & p p 

_ I 1nPV ^ \ . _L i / 1746117T20 \ 
7 g\18243225/ 10 g\1531329465290625/ 

- -n-{(2"22 + 3"22 + 5"22 + -.- + 23"22) 

+ |(2-^ + 3"^) +|(2"66) +I(2-88)}... 

^ 4 6 U ; 4 7 u ; 

Our computer, when presented with this, answers: 

£ -~ * 0.4522474200410654985065433649. 
P p 

It is easy to see that the Lemma holds not only for the exponent 2, but for 
all exponents t > 1. Hence, 

(v * > i) E *<*> - *<* - *> - E ^ iog(C(*fc)). 
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COMBINATORIAL PROOF FOR A SORTING PROBLEM IDENTITY 

C. A. CHURCH, JR. 
University of North Carolina, Greensboro, NC 27412 

(Submitted June 1984) 

1. In [2], L. Carlitz suggests that a combinatorial proof of the relation 

H(m, n, p) - H(m - 1, n, p) - H(m, n - 1, p) - H(m, n, p - 1) 

=(*:T;T;*) «•» 
might be interesting, where 

We give such a proof. 

By a lattice point is meant a point with integral coordinates. By a path 
is meant a minimal path via lattice points,taking unit horizontal and vertical 
steps. Unless stated otherwise, only nonnegative integers will be used. 

2. To fix the idea, we first give the proof of Brock's original problem 
[1]; i.e., to show that 

H(m, ri) - H(m - 1, ri) - H{m, n - 1) = (m * nY , (2.1) 

»<». »> • t ± c; j >r - 1 : y <)(- - i+ %*• - 5 + > ) • (2 .2 , 
where 

By Figure 1, the number of paths from (0, 0) to (m, ri) via (£, j) and then 
from (m, ri) to {m + n9 n + m) via (m + n - j, n + i) is 

/£ + j\/m - i + n - j\im - i + j\/n - j + i\ (2.3) 

Summed over £ = 0, 1, . . ., m and j = 0, 1, . . ., n, (2.3) gives H(jn9 ri). H(m, n) 
counts all the paths from (0, 0) to (m + n9 n + m) via (??7, n), but the paths 
are counted more than once. 

For given i and j, each path from (0, 0) to (m + n, n + m) via (w?, n) that 
passes over the segment joining (£, j) and (£ + 1, j) is counted at (£, j) and 
again at (i + 1, j). The same is true for each path from (m, ri) to (m + n> 
n + 77?) that passes over the segment joining (777 + n - j, n + £) and (m + n - j 9 
n + £ + 1). The number of such paths is 

/£ + j\/m - i - 1 + n - j\/m - £ - 1 + j\/n - j + i\ 4 

Summed over £ = 0, l,...,m - 1 and j = 0, 1, . . . , n, (2.4) gives #(777 - 1, ri). 
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(m+n- j - I, 

(m, n)\ 

L. a, J+ i)f 
(i, j) (i + 1, j) 

-(m+n, n + m), 

Um+n- j , n + i + 1) 

- i) (m+n- j , n + i) 

(0, 0) 

Figure 1 

Similarly, H(m, n - 1) is obtained by considering those paths that pass 
over the segment joining (£, j) and (£, j + 1) and the segment joining (m + n -
j - 1, n + i) and (m + n - j , n + i) for j = 0, 1, ..., n - 1. Alternatively, 
interchange m and n (and £ and j) in the argument for #(777 - 1, n). 

Thus the left member of (2.1) counts each path from (0, 0) to (jn + n, n + m) 
via (m, ri) exactly once. But the right member of (2.1) is just the number of 
such paths. 

3- We now give the proof for (1.1). 

By Figure 2, the number of paths from (0, 0) to (m, ri) via (i, j), from 
(777, ri) to (77? + n, n + p) via (777 + j, n + k) , and from (m + n, n + p) to (777 + 
n + p, n + p + 777) via (m+n+p-ks n+p+i) Is 

ii + j\/77? - i + n - J\/J + Zc\/n - j + p - k\l k\/p - k + i\lm X" £ + /c ) . ( 3 . 1 ) 

(m+ n + p , n + p + m) 

(m + rz + p - 7<, n + p + i + 1 ) . 

(m+n + p - k - l , n + p+i) '(m+n + p-k, n + p+i) 

(m+n, n + p) 

(m+ j , w + & + l )T 

( m + j , ?7+7c) ( r o + j + i , n+fe) 

(m. n) 

(̂ » 3+ 1)J 
( i , J) '(i+ 1, j ) 

F i g u r e 2 
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Sum (3.1) over £ = 0, 1, . .., 777; j = 0, 1, ..., n; and k = 09 1, ..., p to get 
H(m9 n9 p). H(m9 n9 p) counts all the paths from (0, 0) to (m + n + p, n + 
p + m) via (777, n) and (777 + n, n + p) . Again the paths are counted more than 
once. 

For given i , j, /<, each path that passes over the segment joining (£, j) 
and (i + 1, j) is counted at (£, j) and again at (£ + 1, j) . The same is true 
along the segment joining (m + n + p - k9 n + p + i) and (m + n + p - /c, n + 
p + £ + 1). The number of such paths is 

(i + j\/777 - i - 1 + n - j\(j + k\(n - j + p - k\(p - k + i\(m - i - 1 + k\ 
\ J A n - j A fe A p - k A i A k ) 

(3.2) 

Summing (3.2) over permissible values of i9 j , and k9 we get #(777 - 1, n9 p) . 

#(777, n - 1, p) is obtained by counting the paths that pass over the segment 
joining (£, j) and (£, j + 1) and that joining (777 + j, n + k) and (777 + j + ls 
n + k). 

H(m9 n9 p - 1) is obtained by counting the paths that pass over the segment 
joining Qn + j 9 n + k) and (77? + j, n + /c+ 1) and that joining (777 + n + p - /c, 
w + p + i) and (m + ri + p - k - 1, n + p + i). 

Thus, the left member of (1.1) counts each path from (0, 0) to (m + n + p9 
n + p + 777) via (777, n) and (m + n9 n + p) . However, the right member of (1.1) 
is just that. 

REFERENCES 
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Review 6 (1964):20-30. 
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A FIBONACCI AND LUCAS TANNENBAUM 

ARTHUR BARRY & STANLEY BEZUSZKA, S.J. 
Boston College Mathematics Institute, Chestnut Hill, MA 02167 

(Submitted October 1984) 

The first 53 Fibonacci numbers expressed in base two are used for the Tan-
nenbaum display. The right side of the display is a mirror image of the left 
side. The squares are lfs and the dots are 0?s. Only the ending 11 digits of 
the Fibonacci numbers are given for the last six Fibonacci numbers in the Tan-
nenbaum. 

We hope that this whimsical display will prompt others to experiment with 
the artistic use of Fibonacci and Lucas numbers. The displays can also be done 
in various colors for striking and unusual effects. 

FIGURE OF FIBONACCI TANNENBAUM 
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FIGURE OF LUCAS TANNENBAUM 

is • ii • i 

• I! • H B H • I I 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A, P. HILLMAN 

Assistant Editors 
GLORIA C. PADILLA and CHARLES R. WALL 

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS 
to PROFESSOR A. P. HILLMAN; 709 Solano Dr., S.E.: Albuquerque, NM 87108. Each 
solution or problem should be on a separate sheet (or sheets). Preference will 
be given to those typed with double spacing in the format used below. Solu-
tions should be received within four months of the publication date. Proposed 
problems should be accompanied by their solutions. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+l + Fn> F
0 = °  > Fl = 1 

and 

^n + 2 = Ln + 1 + ^n» ^0 = 2, Lx = 1. 

Also, a and 3 designate the roots (1 + A/5)/2 and (1 - v5)/2, respectively, of 
x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-556 Proposed by Valentina Bakinova, Rondout Valley, NY 

State and prove the general result illustrated by 

42 = 16, 342 = 1156, 3342 = 111556, 33342 = 11115556. 

B~557 Proposed by Imre Merenyi, Cluj, Romania 

Prove that there is no integer n > 2 such that 

F F F F - F F F F = 19858 + 1. 

3n-6 3n-3 3n+3 3n + 6 n-2 n-1 rc + 1 n+2 

B-558 Proposed by Imre Merenyi, Cluj, Romania 
Prove that there are no positive integers m and n such that 

F2 - Fo - 4 = 0. 
km 3n 

B-559 Proposed by Laszlo Cseh, Cluj, Romania 

Let a = (1 + v5)/2. For positive integers ns prove that 

[a + .5] + [a2 + .5] + ••• + [an + .5] = Ln+2 - 2, 

where [x] denotes the greatest integer in x. 
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B-56O Proposed by Laszlo Cseh, Cluj, Romania 

Let a and [x] be as in B-559. Prove that 

[aF1 + .5] + [a2F2 + .5] + ••• + [anFn + .5] 

is always a Fibonacci number. 

B-561 Proposed by Piero Filipponi, Fdn. U. Bordoni, Rome, Italy 

(i) Let Q be the matrix ( j. For all integers n9 show that 

Qn + (-l)nQ-n = LnI, where I = (J J). 

(ii) Find a square root of Q9 i.e., a matrix i4 with A2 = Q. 

SOLUTIONS 

Double Product of h Consecutive Fibonacci Numbers 

B-532 Proposed by Herta T. Freitag, Roanoke, VA 

Find a, b9 and o in terms of n so that 

a 3 ( £ - c) + b3(c - a ) + c 3 ( a - b) = 2FnFn+1Fn + 2Fn+3. 

Solution by Graham Lord, Princeton, NJ 

The cyclic expression on the left-hand side factors into 

-(a - b)(b - c)(c - a) (a + b + c). 

The equality is quickly verified when a = Fn + 1 , b = Fn + 2, and c = Fn+3. 

Also solved by Wray Brady, Pauls. Bruckman, L. Cseh, L. A. G. Dresel, L. Kuipers, 
J. Merenyi, Bob Prielipp, Sahib Singh, M. Wachtel, and the proposer. 

Product of 5 Fibonacci Numbers 

B-533 Proposed by Herta T* Freitag, Roanoke, VA 

Let 

g(a, b, a) = a* (b2 - o2) + bh (c2 - a2) + ch (a2 - b2). 

Determine an infinitude of choices for a9 b» and c such that g(a, bs c) is the 
product of five Fibonacci numbers. 

Solution by Graham Lord, Princeton, NJ 

The cyclic expression on the left-hand side factors into 

-(b2 - c2)(c2 - a2)(a2 - b2). 

With a = Fn, b = Fn + 1, and c = Fn+29 this becomes V i V » + 2 fn+3^»' 

Also solved by Wray Brady, Pauls. Bruckman, L. Cseh, L. A. G. Dresel, L. Kuipers, 
Bob Prielipp, Sahib Singh, M. Wachtel, and the proposer. 
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No Pythagorean Triangle with Square Area 

B-53^ Proposed by A. B. Patel, India 

One obtains the lengths of the sides of a Pythagorean triangle by letting 

a = u2 - v2, b = 2uv9 Q = u2 + v2
9 

where u and v are integers with u > v > 0. Prove that the area of such a tri-
angle is not a perfect square when u = F .9 V = Fn, and n ^ 2. 

J. Solution by L. A. G. Dresel, University of Reading, England 

We have 

a = (u - v)(u + v) = (Fn+1 - Fn)(Fn + x + Fn) = Vi^n+2' 

and the area is given by A = \db - F ,F F , ,F ̂ ^. Also9 
0 J * n-l n n + 1 n+2 ' 

F ,F ^0 = F -F A1 + (-l)n. 
n - 1 n + 2 n rc +1 v 7 

It follows that the area A is the product of two consecutive integers, and thus 
cannot be a perfect square if Fn_1 > 0, i.e., n ^ 2. In fact, 

A = a(a + 1) when n is odd, 
and 4̂ = a (a - 1) when n is even. 
JJ. Solution by L. Cseh (Cluj, Romania), J. M. Metzger (Grand Forks, ND) , Bob 
Prielipp (Oshkosh, WI), Sahib Singh (Clarion, PA) , and Lawrence Somer (Washing-
ton, D.C.), independently. 

It is well known that the area of a Pythagorean triangle with integral 
sides is never a perfect square. For proof, see page 256 of Elementary Number 
Theory by David M. Burton (1980 edition). Thus, this result is true, in gene-
ral, and therefore independent of involvement of Fibonacci numbers. 

Also solved by Paul S. Bruckman, Piero Filipponi, Walther Janous, K. Klauser, 
L. Kuipers, I. Merenyi, M. Wachtel, Tad White, and the proposer. 

Impossible Sum 

B-535 Proposed by L. Cseh & J. Merenyi, Cluj, Romania 

Prove that there is no positive integer n for which 
p + p + F + . . . + F = 1 6 ' 

r l T £ 2 r 3 T r 3 n LU' 

Solution by L. A. G. Dresel, University of Reading, England 
We have the identity F^ + F2 + F3 + • ••• + F3n = F3n + 2 - 1, and it remains 

to prove that there is no integer n for which FSn + 2- 1 = 16! If there were 
such an integer n, then, since Wilson's theorem gives 

16! E -1 (mod 17) 

we would require 

F3n+2 = 0 (mod 17). 

Now, the first Fibonacci number divisible by 17 is Fg =34, and therefore Fm 
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is divisible by 17 if and only if 9 divides m. Clearly, there is no integer n 
for which 3n + 2 is divisible by 9, and the result follows. 

Also solved by Paul S. Bruckman, Plero Flllpponi, Walther Janous, Bob Prlelipp, 
Sahib Singh, J. Suck, and the proposer. 

Diophantine Equation 

B-536 Proposed by L. Kuipers, Sierre, Switzerland 

Find all solutions in integers x and y of 

xh + 2x3 + 2x2 + x + 1 = y2. 

Solution by Paul S. Bruckman, Fair Oaks, CA 

If we make the substitution 

w = 1 + 2x + 2xz
9 (1) 

the given equation is transformed to the simpler one, 

42/2 _ w = 3. (2) 

Thus, (2y - w)(2y + w) = 3 , which has only the four solutions: 

(w, y) = (1, 1), (-1, 1), (-1, -1), (1, -1). 

Setting w = 1 in (1) yields 2x(x + 1)= 0, which implies x = 0 or x = -1. This 
yields four solutions (x9 y), given by 

Or, y) = (0, 1), (0, -1), (-1, 1), (-1, -1). (3) 

On the other hand, setting w - -1 in (1) yields x1 + x + 1 = 0, which is impos-
sible for integral x (the solutions being the complex cube roots of unity). 
Thus, all the integer solutions of the original equation are given by (3). 

Also solved by L. Cseh, L. A. G. Dresel, Walther Janous, L. Kuipers, J,M. Metz-
ger, Bob Prielipp, Sahib Singh, J. Suck, M. Wachtel, and the proposer. 

Another Diophantine Equation 

B-537 Proposed by L. Kuipers, Sierre, Switzerland 

Find all solutions in integers x and y of 

xh + 3x3 + 3x2 + x + 1 = y2. 

Solution by John Oman & Bob Prielipp, University of Wisconsin-Oshkosh, WI 

We shall show that the only solutions (x9 y) in integers of the given 
equation are (0, 1), (0, -1), (1, 3), (1,-3), (-1, 1), ("1, -1), (-3, 5), and 
(-3, -5). 

It is easily seen that (x9 y) is a solution if and only if (x, -y) is a 
solution. Hence, it suffices to find all solutions (x, y) in integers of the 
given equation where y ^ 0. 

We begin with the following collection of equivalent equations: 
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xh + 3x3 + 3x2 + x + 1 = y2 

3 6 ^ + 108x3 + 10&c2 + 3.6ar + 36 = 36y2 

(6x2 + 9x + 2 ) 2 + 3x2 + 32 = (6#) 2 (1) 

(6x2 + 9̂ r + 3 ) 2 - 9(x + 3) (a; - 1) = (6z/)2 . (2) 

If x > 1, 6x2 + 9x + 2 < 6y [by (1)] and 6y < 6x2 + 9x + 3 [by (2)]. Hence, 
there are no solutions when x > 1. If a? < -3, 6a?2 + 9x + 2 < 6z/ [by (1)] and 
6y < 6x2 + 9a: + 3 [by (2)]. Hence, there are no solutions when x < - 3. The 
problem is now easily completed. 

Also solved by Paul S. Bruckman, L. Cseh, L. A. G. Dresel, Walther Janous, H. 
Klauser, J. M. Metzger, J. Suck, M. Wachtel, and the proposer. 

^0*0* 
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Edited by 
RAYMOND E. WHITNEY 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, 
PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information 
that will assist the editor. To facilitate their consideration, all solutions 
should be submitted on separate signed sheets within two months after publica-
tion of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-392 Proposed by Piero Filipponi, Rome, Italy 

It is known [1], [2], [3], [4] that every positive integer n can be repre-
sented uniquely as a finite sum of F-addends (distinct nonconsecutive Fibonacci 
numbers). Denoting by f(n) the number of F-addends the sum of which represents 
the integer n and denoting by [x] the greatest integer not exceeding x, prove 
that: 

(i) f([Fk/2]) = [fe/3], (fe = 3, 4, . . . ) ; 

([fc/4] + 1, for [Zc/4] = 1 (mod 2) and k = 3 (mod 4) 
(ii) f([Fk/3]) =^ (fc = 4, 5, ...) 

([fc/4], otherwise. 

Find (if any) a closed expression for fiFj, /p) with p a prime and k such 
that Fk = 0 (mod p). 

References 

1. J. L. Brown, Jr. "ZeckemdorfTs Theorem and Some Applications." The Fibo-
nacci Quarterly 29 no. 4 (1964):163-168. 

2. J. L. Brown, Jr. "A New Characterization of the Fibonacci Numbers." The 
Fibonacci Quarterly 33 no. 1 (1965):1-8. 

3. D. E. Daykin. "Representation of Natural Numbers as Sums of Generalized 
Fibonacci Numbers." J. London Math. Soc. 35 (1960):143-160. 

4. D. A. Klarner. "Partitions of N into Distinct Fibonacci Numbers." The 
Fibonacci Quarterly 69 no. 4 (1968):235-244. 

H-393 Proposed by M. Wachtel, Zurich, Switzerland 

Consider the triangle below: 
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A-n 

41 

29 

71 

19 

55 

99 

11 

41 

79 

125 

A.„ 

5 

29 
61 

101 

149 

A-3 

1 

19 

45 

79 
121 

171 

A-2 

-1 

11 

31 

59 

95 

139 

191 

A-! 

-1 

5 

19 

41 

71 

109 

155 

209 

A, 

= m2 

1 

9 

25 

49 
81 

121 

169 

225 

^i 

11 

29 

55 

89 

131 
181 

239 

A2 

31 

59 

95 

139 
191 

251 

A3 

61 

99 

145 

199 
261 

A, 

101 

149 

205 

269 

151 
209 211 

275 279 

An 

281 

This triangle shows two types of sequences: 

a) with primes5 or with composite terms with no divisors congruent to 3 or 
7 modulo 10; 

b) as described in a), and* in addition, terms with divisors congruent to 
(3 or 7 modulo 10)2fe. 

In the above triangle, let: 

A 0, m m2 (m odd) 

the terms on the left of AQ m 

the terms on the right of AQ } 

1. Establish general formulas for the sequences of every row, every column, 
and every diagonal. 

2. Establish formulas: 

a) for the sequences showing terms that either are primes, or else compos-
ite integers with no divisors congruent to 3 or 7 modulo 10; 

b) for the sequences with terms as described in a) and also with composite 
terms showing periodically also divisors congruent to 

(3 or 7 modulo 10) 2k 

Remarks: Apart from the formulas 

C - N2 + rN 

for the finite sequences, and 

C + mN2 + rN 

for the infinite sequences, there exist other construction rules. 

Some examples of relationships which can easily be established are: 
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Column A_2 Down Diag. A2 Down Left 

- 1 = -1 • 2 + 1 
11 = 1 - 2 + 3 
31 = 3 - 2 + 5 
59 = 5 - 2 + 7 

31 = -2 • 9 + 7 
55 = - 1 • 9 + 8 
81 = 0 • 9 + 9 

109 = 1 - 9 + 10 

Every term plus 5 = (m + l)2 

Columns A_h and ̂ 4 Down 

Every term plus 5 • 22 = (jn + 2)2 

According to what is stated in 2 above, the following rule holds true: 

^n,/n+5(a + a) + 1 = b + b, with infinitely many solutions 
whereby a and 2? are F/L numbers. 

Example: A^ 11 and ^_2 l3 = 139 

F - l + 6 n + l L - l + S n + l 

*•' 5r 2 + £n ? ^ 2 + 6 

L - 1 L + 1 
l + 6 n n ^ „ - l + 6 n 

I 3 : - F 6 + 6 n + 2 1 0 F 3 + 6n ~ 2 

F r + 1 L + 1 
l + 6n l + 6 n 

I I I . 5 F u + 6 n ^ 5 L 4+6n 2 

t - 1 L + 1 
l + 6 n n ^ ^ l + 6n I V - ^ e + S n + 2 1 0 F 5 + 6n 2 

Special Properties: All sequences emerging out of this triangle show the fol-
lowing property: 

Ak • Afc + £ + B yield either a square or, alternately, a product 
of two consecutive integers. For brevity, example and formula 
are omitted. 

Then there are combinations of different sequences, but it would take too much 
space to pursue the many things involved in this triangle. 

SOLUTIONS 

AB Surd 

H-367 Proposed by M. Wachtel, Zurich, Switzerland 
(Vol. 22, no. 1, February 1984) 

Problem A 

Prove the identity: 

V(L2n - £2_2) • (L2n + , - ID + 30 = 5F2n - 3(-l)n 

Problem B 

Prove the identities: 
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fan Z~p ) . (F2 ^~F ) 
v n + 1 2 n + 3 y v n + 3 2n+l} 

/ ( F 2 T~^ ) - (F2 ^~F ) \ = F F or F 2 + (-1)" 
v v n+3 2n+5' v n+5 2n+3; ( n+2 n+h n + 3 \ ; 

J (F2 - F ) • (F2 - F 7 
vyMn + k r2n+6J v n + 6 2n+10J 

Solution by the proposer. 

1. These a r e p a r t i c u l a r i n s t a n c e s of the more g e n e r a l i d e n t i t i e s : 
A^ 

A) ^L2n + m - L2_2+m) • (L2n + , + m - L2
 + m) + 5 [ L , . m - ( - l ) ^ T 

"~ 2n + 2 + ffi n-2+m n + m 

B) / ( F ^ T 2 ) • (F ' - -F2 ) - ( - l ) m ( F , - 1) 
J v 2n + m n - 2 + m7 2n+h+m n + m' \ / \ ^ _ ̂  

= F — F F 
2 n + 2 + m cn-2+mEn+m 

n, m = 0 ± 1, 29 3, ... . 

2. Squaring both sides of 1 and making use of the following identities on the 
left-hand side3 we obtain (with these identities the congruence of both 
sides is established): 

A) 1 " ^2n+m^2n+h+m ~ ^2n+2+m + ->^~J-J 

(de r ived from L2nL2n + k E L2
2n + 2+ 5) 

TT T T2 - T T T - ^(-]^n + rnT F 
LL' ij2n + mljn + m ~ Lj2n+2 + mun-2 + m n + m J^ } nn+m£n + 2 

[de r ived from L2nLn = L2n+2Ln_2 - 5(-l)nFn+2 

a n d £j2n+mLn+m - ^J
2n+2 + mLjn-2 + m ~ ~* ^~ ' "~ n + 2 J 

I I 1 , ^2n+h+m^n-2+m ~ ^h-m ~ ^2n+2+rn^n-2+m^n+m + 5 ( - l ) Ln+mFn+2 

(similarly derived as I and II) 

B) I . F F = F2 - (-l)m 

' 2n + m 2n+h + m 2n+2 + m 
I I F F 2 = F F F + (-l)n + mF F 

2n + m n + m 2n+2+m n-2+m n + m x ' n + m n+2 

I I I F Fz + (-l)mF = F F F - (-lf + mF F 
•LJ-J-' 2n+h + m n-Z + m v J m-h 2n+2+m n-2 + m n + m v y n + m n + 2 

(similarly derived as A) 

3. By establishing the values of 

A' = 5[Lh_m - ( - l ) m ] and B' = -(-l)m(Fm_h - 1) 

we o b t a i n : 

1985] 379 



ADVANCED PROBLEMS AND SOLUTIONS 

0 
1 
2 
3 
4 
5 
6 

30 
25 
10 
10 
5 
0 

10 

0 
1 
2 
3 
4 
5 
6 

4 
1 
2 
0 
1 
0 
0 

By application of the the formula 1 and the values 3S we find: 

A) mj^ V(L2n ~ L 2 . 2 ) . (L2n+lk - L 2 ) + 30 - L2n+2 - Ln_2L 

= 5F2n - 3 ( - l ) n 

B) 7w = 3 V(F0 ^ o - F2 J • (Fo „ - F 2
 a ) = F c - F F 

2 n + 3 n+l' 2n + 7 n+3 2n+5 n+1 n+3 

m = 5 V(F^^K - F 2 ) • (F - F 2 ) = F - F F 
x 2n+5 n + 3 ' x 2rc + 9 n + 5 2n + 7 n + 3 n + 5 

m = 6 / ( F - F 2 ) . (F - F 2 ) = F - F F 
llL - v u 2 n + 6 rn + h} K£2n + 1Q » + 6 ' r 2 n + 8 % + / « + ( 

* = all three versions identical to -(-l)mF .nF , , 9 
v ' n+2 n+h 

which had to be shown. 

5. Some special properties of the sequences (each sequence shows its own dis-
tinct characteristics, depending on rri) : 

A) rn Sequence 

1 ^(F ^n + F 2
+ 1 ) , which implies: No integral divisor of any 

term is congruent to 3 or 7 modulo 10. 

2, 6 sequences identical, but with phase difference 

4 unique term for any ni -3(-l)n 

B) 1, 49 7 ^r^r + i + ^r+2» w i t n phase differences. No integral divivor 
of any term is congruent to 3 or 7 modulo 10. 

3, 5, 6 sequences identical (see 4B) 

... etc. 

Also solved by P. Bruckman, L. Dresel, P. Filipponi, L. Kuipers, B. Prielipp, 
and H. Seiffert. 

Sum Formula 

H-368 (Corrected) Proposed by Andreas N. Phllippou, Patras, Greece 
(Vol. 22, no. 2f May 1984) 

For any fixed integers k > 1 and r > 19 set 

f(» m V (ni + '~+nk+r- 1\ n > Q 

n x + 2n2 + • • • + knk » w 
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Show that 

?(&) _ V -pM -POC) fK } = E :T ' fW
 s n> 0, r> 2. (*) 

The problem includes as special cases (r = 2) the following: 

For any fixed integer k > 25 

„ £ ft + • • •+ n
n

k Y ) = i f ^ C \ en>°> ^ 
n1,...,nk \ nl9 . . . , Tlk9 i / £ = Q SL + 1 n+l-SL 

nx + 2n2+ • • • + knk = n 
where /„<« are the Fibonacci numbers of order k [1]9 [2]. 

In particulars for k = 2s 
[w/2] 

The problem also includes as a special case (fe = 1, r ~& 2) the following: 

Eo(n + 1 - *>(" , *) = S / t + 1f +1.t. » > 0. (A.l) 

/n + r - 1\ ^ (n - I + r - 2\ ^ . ^ 0 
( r - 1 ) = ,? 0 ( r - 2 ). « > 0 , r > 2 . (B) 

References 

1. A. N. Philippou & A. A. Muwafi. "Waiting for the Kth Consecutive Success 
and the Fibonacci Sequence of Order K." The Fibonacci Quarterly 20sno. 1 
(19.82) :28-32. 

2. A. N. Philippou. "A Note on the Fibonacci Sequence of Order k and Multi-
nomial Coefficients." The Fibonacci Quarterly 21, no. 2 (1983):82-86. 

Solution by the proposer. 

For any fixed x E (09 °°) and k and r as in the problem9 set 

' C\r&- D (^+," + " k + ; : l W - + ^ « > o i CD 
n + 1 ^ « ! , . . . , nk 3 \ n x , . . . s nk9 r - 1/ 

" i + 2n2+ . . -+n^ = n 
We shall establish the more general result 

f{k) 0*0 = E /(/C) (aO/00 0*0, O 0 , P ) 2 . (2) 
• / n + l , r v y *-*> * / £ + l , l v y > /n + l - £ , r - 1 v J ' v y 

£ = 0 
To do so, we consider random variables X1s ..., Xv (r ^ 2) which are inde-

pendent and identically distributed as ^ ( 8 ; p) (0 < p < 1) (see [3]). Then 
Jx + ••• + Xv is distributed as NBk(°; r9 p) and X2 + ••• + Xr is distributed 
as NBk(»; r - 1, p) [3]. Therefore, 

Ai.rr:, £k9 V^i* ••*» ^ / x P ' 
(3) 

H1+ 2l2+ • •• + klk = 1 

P[XX + -" + Xv = n + kr] 

n1 + 2n2+ . . . + knk = n 

and 
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P[X2 + ••• + Xr = n + k(r - 1) - £] 
n + ... + n 

pn+k(r- l)-£ 

nx + 2n2 + • • • + fenk = n -• I 

Next, fo r n > 0 and n > 2 , 

[X-L + • • • + Xp = n + fcr] = U {[X = £ + &] Pi [X2 + • • • + XT = n + fc(r- 1) - £ ] } , 

with *-°  <6> 

{[*! = £ + k] n [X2 + ••• + Xr = n + k{r - 1) - £]} D { [Zx = £' + k] 

H [J2 + ••- + Xr = n + k(r - 1) - £']} = 0 (0 < £' < n) , 
and 

[X± = £ + fc], 

[J2 + ""• + Xr = n + /c(r - 1) - £] are independent events (0 < £ < ri) . Hence, 
for n > 0 and p > 2, 

Ptfi +••• + Jr = n + kr] = f) p[^i = & + k]P[X2 +••• + XP =n + fc(r- 1) - £] . (7) 
£ = 0 

Set (1 - p)/p = x9 so that a: E (0, °°). Then relation (7) implies (2), by means 
of (1) and (3)-(5). Q.E.D. 

For x = 1, relation (2) shows the proposed problem. In order to appreciate 
its generality, it is instructive to note the special cases (A), (A.l), and (B) . 
(A) follows from (*) for r = 2, by means of the definition of f^-' and the 
formula of [1] and [2]: n+i9r 

f(k\ = £ ( * i + • • • + * * } , n>0. 
n1 + 2n2 + • • • + knk = n 

(A.l) follows directly from (A), and (B) is a simple consequence of (*) and the 
definition of f^\ 

Jn+ 1, r 
References 

1. See Reference 1 above (p. 381). 
2. See Reference 2 above (p. 381). 
3. A. N. Philippou, C. Georghiou, & G. N. Philippou. "A Generalized Geometric 

Distribution and Some of Its Properties." Statistics and Probability Let-
ters 1 (1983):171-175. 

Also solved by P. Bruckman. 
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