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ON m-TH ORDER LINEAR RECURRENCES
CLAUDE LEVESQUE
Université Laval, Québec, P. Québec, Canada, G1K 7pP4

(Submitted April 1983)

1. INTRODUCTION

Fix numbers ugy, Uy, ..., 4 _;, and for every n > 0, define u,,, by means of
the m preceding terms with the rule

Upyew = Kilhyono1 — =<+ - kyu, = 0, with k, # 0. (1.1)

In this note, we wish to present two formulas for these numbers u, satisfying
the above m-th order linear recurrence (Sections 2 and 3).

These results are probably known to some readers; however, since from time
to time we happen to see in the literature special cases of these formulas, it
may be worthwhile to present them once and for all.

Note that form = 2, k; =k, =1, uy = u; = 1, one is dealing with the Fi-
bonacci numbers, which have been extensively studied by many authors (see, for
instance, [13], [5], and [3]), and which were used by Matijasevi¢ [9] in his
notorious proof that Hilbert's tenth problem is recursively unsolvable.

2. GENERATING FUNCTION AND BINET'S FORMULA

Using the m-th order linear recurrence
+ k,u + 0+ ku,, Ky # 0, (2.1)

u = Kyt pn “2Umin-2

m+n
(with the k;'s in Z for instance, or in a given field), we easily obtain

) m-1 .
<n§ounxn>(l - le -t T kam) - igovixl’

where the Ui's’ functions of the initial conditions on Ugs Uys eoes Uy 15 are
defined by
7
U’L = —jg:ou,’:_jkj, (2‘2)

(with k,= -1 throughout this article). Associated with that recursive sequence
is the following polynomial,

FOO = X" =k X" o s — kX m Ky = (X - a) (X = ay) cee (X = ),
whose roots we assume distinct (and nonzero, since k, # 0).
Then we have

e m=1
vy + v X+ +v, X

§321 x" =
n=o " 1 - kX ~ kX2 = oo = kX"
1 2
(continued)
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ON m-TH ORDER LINEAR RECURRENCES

) LAY m_l
vy + U X + + v, X

(1 =0, X)L = a,X) « --- ¢ (1 - a,X)
_ -1 J
= @, tv X+ ety XTHA +p1X+~--+pJ.X + o),

where p; stands for the sum of all symmetric functions of weight j in Ojs Oy,
«+s O,; in other words [2], p. is the '"sum of the homogeneous products of J
dimensions" of the m symbols @, ..., ap.

Let us recall from Volume 1 of [2, p. 178] that

m=1+4
m oci
.= 7 with =1
pJ igl 7@, with p, s
and that p_, =p_ cee=p_. = 0 (which follows from Example 4 of p. 172).

We therefore obtaln for the m- th number u, what can be called

=1
BINET'S FORMULA: |u, = 3 v;p,
i=0

EXAMPLES: (1) Let vy = vy = »++ = v,_, = 0, v,_, = 1; then, as in Formula 9 of

(71,

It

af o) on

u, = = + O L

n = Benel T F @y T FT@,) 7o
(2) For m = 2, m = 3, we recover Binet's formulas of [3] and [11].
(3) For n€ N= {0, 1, 2, ...}, define s, by

= n n e o n
s, =of +aj + + ar.

As is well known (see [2]), Newton's formulas state that:
m if n=20

k, ifn=1

n .
kis,., tkys, ,+ - +k s +rnk, if2€<n<m-1
ks, i *kys,_, + 0 + kps, if n 2 m.
In particular, if u, = s,, then {u,} satisfies (2.1).
Thus, using the fact that ko = -1, we find that (2.2) gives:
vy =m = -mkg
v, =8, —mk; = ~(m - 1)k,
v, =s, - s;k, —mk, = ~(m - 2)k,
Upo1 = 8poy T SpKy = Sp_gKy = e = 80K,y mmK, o= -1k
In short, for j = 0,1, ..., m - 1, v; =-(m - j)kj, and Binet's formula becomes

m=1 )
s, = —j=20(m - J)Z(J.pn_'7
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ON m-TH ORPER LINEAR RECURRENCES

3. ANOTHER FORMULA

We can also use the multinomial theorem to obtain a formula for u, that is
a function of (i.e., the elementary symmetric functions of) kl, k,» ey Kppe
Here we no longer require that the roots of f be distinct. Within a certain
radius of convergence, we find that

¢ -1
oo vy o X+ s 0 _1Xm
z:uan - . m
n=0 L= (RyX + kX" + -0 + k, X™)
= Wy + VX +eee + Um‘le—l)['zo(le R T b kam)JJ
J=
= Wy + v X+ + Um_le'1)< E:A(i)Xi>,
=0
where - (t]_ + tz 4 e 4 tm)! _— .
A@@) = X k'R, e K

t e, e !
the last sum being taken over all m—-tuples (£,, tys ..., &,) of N” such that
ty +2t, + =0 +mt, = 1.

Defining A(Z) to be 0 for Z < 0, we therefore conclude:

m-1
u, = L v AMm - 4y |. (3.1)
i=0
EXAMPLES: (1) If vy =1, v, =v, = «+- =v__, =0, then
u, =4n).

(2) Let s, = af'+ aly +cc + ug.‘ Replacing v; by -(m- J)k;, and mak-
ing in the j-th summation (J = 1, ...,m — 1) of (3.1) the change
of variable t; + ¢t; - 1, we obtain after a few calculations what
is called in [2] Waring's formula for s,:

n(ty + b, + bt - DL
s, = ) kiky? oo K.

i 1 ]
t1+2t2+"'+mtm=n tl'tZ' e tm
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GEGENBAUER POLYNOMIALS REVISITED
A. F. HORADAM
University of New England, Armidale, Australia

(Submitted June 1983)

1. INTRODUCTION

The Gegenbauer (or ultraspherical) polynomials Cﬁ(x) A > -k, Ix[ < 1) are
defined by

Ch@) =1, Ci(x) = 2z (1.1)
with the recurrence relation
nCMx) = 220 +n - 10, @) = QA +7 —2)C0 (@)  (n>2). (1.2)

Gegenbauer polynomials are related to T, (x), the Chebyshev polynomials of
the first kind, and to U,(x), the Chebyshev polynomials of the second kind, by
the relations

B G €Y
r,@) =7 ln\— ) n>1), (1.3)

and

U,(x) = Cy(x). (1.4)

Properties of the rising and descending diagonals of the Pascal-type arrays
of {7,(x)} and {Un(x)} were investigated in [2], [3], and [5], while in [4] the
rising diagonals of the similar array for Cé(x) were examined.

Here, we consider the descending diagonals in the Pascal-type array for
{CA(x)}, with a backward glance at some of the material in [4].
n g

As it turns out, the descending diagonal polynomials have less complicated
computational aspects than the polynomials generated by the rising diagonals.

Brief mention will also be made of the generalized Humbert polynomial, of
which the Gegenbauer polynomials and, consequently, the Chebyshev polynomials,
are special cases.

2. DESCENDING DIAGONALS FOR THE GEGENBAUER POLYNOMIAL ARRAY

Table 1 sets out the first few Gegenbauer polynomials (with y = 2x):
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GEGENBAUER POLYNOMIALS REVISITED

TABLE 1. Descending Diagonals for Gegenbauer Polynomials

\dém

Cy (@)

C1 (@)

Cﬁ(x)

Ci@) =
C:(x) (z.1)

Ci(@)

Ch (@)

.................................................

wherein we have written
M), =AA+ 1A +2) "* A+n-1). (2.2)

Polynomials (2.1) may be obtained either from the generating recurrence
(1.2) together with the initial values (l.l), or directly from the known expli-
cit summation representation

(/2 (1)), ()"

C:Qx) = ;gg Tor = o) s A an integer and n = 2, (2.3)

where, as usual, [n/2] symbolizes the integer part of n/2.

The generating function for the Gegenbauer polynomials is
T cr@tt = (1 - 20t + ¢2)h (|t < D). (2.4)
n=20

Designate the descending diagonals in Table 1, indicated by lines, by the
A N
symbols dj(x) (G=0,1, 2, ...).

Then we have
), 2z - 1)?

dy(@) = 1, di@) =A% - 1), di(x) = 57
L W,ee =D ), - D (2:3)
d,(x) = — 37— 4,@ = —gT > e -

From the emerging pattern in (2.5), one can confidently expect that
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GEGENBAUER POLYNOMIALS REVISITED

o), @z - 1)"

— _ (k +n -

d)(x) = "

1

)(Zx - D", (2.6)
a result which we now proceed to prove.

Proof of (2.6): Suppose we represent the pairs of values of m and »n which give
rise to dé(x) by the couplet (m, n).

Then, at successive "levels" of the descending diagonal dé(x) in Table 1,
we have the couplets

0, n), A, n+ 1), 2, n+2), vo.o, -1, 2n - 1), (n, 2n),

so that corresponding values of nw - 2m aren, n - 1, n - 2, ..., 1, 0, while
n - m always has the value n. [It is important to note that the maximum value
for m in the couplets must be n.]

Consequently, from Table 1 and (2.3), with y = 2xr for convenience, we have

\ M, y" )yt M), y"? ™), y°
L@ = Gor TTe DT e oo - Y Y e
- - Qe G - e (et}
= (23” (y - 1)'= (23" 2z - )" = ()‘ +Z - 1)(2x - ™.

From (2.6) it follows immediately that

dé(x)
- At lor -1, w3l 2.7)
dy_q (@)
Moreover,
d  ox oo 7 A
2z - 1)35(dn(x) - 2nd, (x) = 0, n20, (2.8)
readily follows.
Putting
g=di, @ t) = L di@)t", (2.9)

n=20
we find that the generating function for {d;(x)} is
g=1[1-(x-D1". (2.10)

Furthermore,

9 9
2 % - 2z - 1)log(2x - 1)5% =0, (2.11)

which is independent of A.

Additionally, we easily establish that
2 _ 1yt-199 _ _-a-1 3 _
2%t (2x - 1) N T log g N 0 (2.12)
and
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GEGENBAUER POLYNOMIALS REVISITED

3 R
A2 (2x - 1)tlog(2x - 1)—8% - gt log g %% =0 (2.13)

if we allow A to vary.

Differentiating (2.8) w.r.t. x and substituting from (2.8), we obtain
d? .
2z = D)P=—3(d,(2) - 2°n(n - 1)d, (@) = 0. (2.14)

Continued repetition of this process, with substitution from the previous
steps, ultimately yields
(P () - 27" dMx) =0
Tt Gn N,p)dn@) = (2.15)
for the rth derivative of the descending diagonal polynomial. If we write z =

dé(x) for simplified symbolism, result (2.15) appears in a more attractive
visual form as, when r = n,

(2x - 1)*

(2x - 1)"z™ - 2"n1z = 0 (2.15)"
or by (2.6),
20 - 2"(\), = o0. (2.15)"

Observe that (2.15) can also be expressed as

Mrey, r=1,2, ..., on, (2.15)™

i—i(di(x)) - 2" (), d
on using (A), (A + »),_, = (1), and (2.6).

Note the formal equivalence of (2.15)" and the known differential equation
for Gegenbauer polynomials

ddxp ch@) = 27,00 ). (2.16)
Elementary calculations yield, additionally, by using (2.8) and (2.7),
d o n d , ;x
2z - DZAd, (@) = 7755 7z ns 1)) (2.17)

which differs in form from the corresponding result involving Gegenbauer poly-
nomials.

3. SPECIAL CASES: CHEBYSHEV POLYNOMIALS

If we substitute A = 1 in the relevant results of the preceding section we
obtain corresponding results already given in [3] for the special case (1.4) of
the Chebyshev polynomials U, (x). [Allowance must be made for a small variation
in notation, namely di(x) =b,,1(@) in [3]; e.g., di(x) = 2z - ¥ = bg(x).]

Coming now to the similar results for the Chebyshev polynomials T, (x), we
appreciate that the limiting process (1.3) requires a less obvious approach.

Let us write

2)@) = (n + A}, (@) - ndi(x)  (n>0). (3.1)
By careful analogy with the forms of (1.3), we may then define
1 9;(17)
D,(x) = E‘B(“T‘) , (3.2)
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GEGENBAUER POLYNOMIALS REVISITED

where D, (x) is the n*M descending diagonal polynomial for T, (x).

Calculation yields
1
D, (x) = E{Zx -2)Qx - D" = (2 - 1)z - 1", (3.3)

Comparison should not be made with corresponding results produced in [3]
where, it should be noted, each Chebyshev function is twice the corresponding
Chebyshev polynomial in this paper. Accordingly, we have 20,(x) = a,,,{x) in
[3]1; e.g., D, (x) = (x -~ 1)(2z - 1)* = (1/2)aq(x).

Thus, we have shown that our results for the descending diagonals in the
Pascal-type array of Gegenbauer polynomials are generalizations of correspond-
ing results for the specialized Chebyshev polynomials, as expected.

4. GENERALIZED HUMBERT POLYNOMIALS

Along with many other polynomials, the Gegenbauer polynomials (and conse-
quently the Chebyshev polynomials) are special cases of the generalized Humbert
polynomial (see Gould [1]).

Generalized Humbert polynomials, which are represented by the symbol
B,(m, x, Yy, P, C)

are defined by the generating function
(€ -met +yt™MF = L P (m, x, y, p, O)L", (4.1)
n=0

where m2 1 is an integer and the other parameters are in general unrestricted.

Particular cases of the generalized Humbert polynomial are:

(P, (2, , 1, %, 1) = P, (x) (Legendre, 1784)
P (2, z, 1, -1, 1) = U, (x) (Chebyshev, 1859)
P, (2, x, 1, =}, 1) = C;Cr) (Gegenbauer, 1874)
17,3, =, 1, 4, 1) = &, (x) (Pincherle, 1090) (4.2)
P, (m, x, 1, -v, 1) =1, ,(x) (Humbert, 1921)
P,(2, 2, =1, =1, 1) = ¢,,, () (Byrd, 1963)
[ Pa(ms @2 1,-7 1) = P (my @) (Rénmey, 1963)

The recurrence relation for the generalized Humbert polynomial is
CnP, ~mn -1 -p)xP, , + (n -m —mp)yP,_, = 0 nz2m=z21), (4.3)
where we have written P, = P, (m, &, y, ps C) for brevity.

Suitable substitution of the parameters in (4.2) for Gegenbauer polynomials
reduces (4.3) to (1.2).

In passing, it might be noted in (4.2) that Legendre polynomials are spe-
cial cases of Gegenbauer polynomials occurring when A = ). Hence, results for
Gegenbauer polynomials Gi(x) in [4] and in this article may be specialized for
the Legendre polynomials QfLr). Moreover, Gegenbauer polynomials are closely
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GEGENBAUER POLYNOMIALS REVISITED

related to Jacobi polynomials, and they may also be expressed in terms of hy-
pergeometric functions.

Using the generating function for Fibonacci numbers F,, namely

(1 -z -x®)t = ¥Fa""t, (4.4)
n=1
we readily see that
[n/2]

n -k
P (2, %, -1, -1, 1) =F = k§o( 2 ) (4.5)

whence the recurrence relation (4.3) simplifies to the defining recurrence re-
lation
Fooy - F, - F,_, =0. (4.6)

Gould [1] remarks that Eq. (4.5) is better than the usual device of using
Chebyshev or other polynomials with imaginary exponent for expressing Fibonacci
numbers.

While it is not the purpose of this paper to pursue the properties of the
generalized Humbert polynomial, it is thought that publicizing their connection
with the polynomials under discussion—Gegenbauer and Chebyshev—may be a use-
ful service.

To whet the appetite of the interested reader for further knowledge of the
generalized Humbert polynomial, we append the explicit form given in [1]:

[n/m] _
B (ms @ s ps O = L (B)(, B K Yo o DRk amyn o, 4.7)

from which one may obtain the explicit forms of the special cases given in
(4.2).

Likewise, the first few terms of the polynomials-in (4.2) may be checked
against the generalized terms given in [1]:

p, =c?
P = p-1 p -1 1-map+m=2
L = -pmxC + p(l _ )y (Fm)PTC (4.8)
N
with
P, = (B)c? m) > . (4.9)
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FIBONACCI AND LUCAS NUMBERS OF THE FORM 3z2% % 1
JANNIS A. ANTONIADIS
University of Thessaloniki, Greece

(Submitted July 1983)

1. INTRODUCTION

The purpose of this paper, which is a continuation of [l1], is to report
some results regarding the generalized Fibonacci and Lucas numbers of the form
322 + .

In particular, we show for the Fibonacci and Lucas numbers that the follow-
ing relations hold:

F =322+ 1 if and only if m = #1, 2, %7
F_ =322 -1 if and only if m = -2, #3, %5

~
|

=322 +1 if and only ifm =1, 3, 9
L,=32" -1 if and only if m = -1, 0, 5, %8

This author tried to show similar properties for other recursive sequences
while working on class number problems for his Dissertation.

Throughout this paper we will make frequent use of the relations developed
in [1]; thus, the numbering of the relations in this paper continues from that
of [1].

Also, as in [1], d will always be a rational integer of the first kind and
2——‘:—Zzzzzg»will be the fundamental solution of the Pellian equation x? - dyz = -4,

The sequences {Um} and {V,} are as defined in [1].

2. PRELIMINARIES

Lemma 1: i) Let ab # 0 (mod 3). Then the equation U, = 3z° has

(a) the solutions m = 0, 4 if d = 5,
(b) only the solution m = 0 in all other cases.

ii) Let b =1 and @ Z 0 (mod 3). Then the equation U, = 3z has

(a) the solutions m = 0, 4 if d = 5,
(b) the solutions m = 0, 2 if a = 337,
(c) only the solution m = 0 in all other cases.

Proof of i): According to our assumptions (U,),ecz is periodic mod 3 with length
of period 8 and 3 divides U if and only if 4 divides m. Hence, U, = 322 im-
plies U,,V,, = 322, by (5). Since n = 0 is an obvious solution, we assume n # 0.

Supported by the Deutsche Forschungsgemeinschaft.
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Case 1. Let n # 0 (mod 3). Then (U,,, V,,) = 1, by (10), and we obtain
WUy, = 33]2.3 Von = Z%) or Uy = 3%9 Von = 33%)'

The first subcase is impossible, by (28). For the second, it is sufficient, by
(30), to check only the value # = 1 in case a and b are both perfect squares
(n=6,d=5, L, =322 # 3g3).

For n = 1, we have
V, =a®+2 =322, a=1t* b =r

That is, t* + 2 = 32%. Using [3], the last diophantine equation has at most
one solution, (¢, 22) = (*1, *1), which corresponds to the value d = 5.

Case 2. Let n =0 (mod 3), n # 0. Equation (10) implies (U,,, V,,) = 2,

so we must have
Uy, = 283, V,, = 632) or (U, = 622, V,, = 232).

The first subcase is impossible because, by (31), the only possible value of »n
for which U,, = ZZi isn =3 (d = 5) for which Ly =18 # 622. The second sub-
case has, by (29) and direct computation, no solution for m = *3, d = 5, 29.
The proof of (ii) follows along the same lines as the proof of (i); hence, the
details are omitted.

Lemma 2: Let a # O (mod 3). Then the equation V, = 3z? has the solutions m = *2
if a® + 2 = 322 and no solution in all other cases.

Proof: Since a # 0 (mod 3), (V,)nez is periodic mod 3 with length of period 8
and 3 divides V, if and only if m = *2 (mod 8).

Case 1. Let m = +2 (mod 16). Then, a®? + 2 = 3z2. The solutions of this

equation are given in [4] by
3z +a/3 = (3+V3)(@2 +V3)" forn=0,1, 2,

If m # *2, then (4) says we only have to consider the case m = 2 (mod 16). We
write m=2+42 ¢ 3%« 3 where 8|n and 3f/n. Then, by (22), V, = -V, (mod V,). If
Vn, = 322, we have (32)% = -3V, (mod V,) where 8|n and 3/n, which is impossible
since V, = 2 (mod 3), (V,, 3)=1, and (Vy, Vy)= (2, V,) = 1 imply (=3V,/V,) = 1
by (33).

Case 2. Let m = +6 (mod 16). If m = +6, then a® + 6a" + 9a* + 2 = 3z% or
@® + 2)@* + 4ta? + 1) = 322 so that c¢(c? - 3) = 3z where ¢ = a’ + 2 0 (mod
3) by our assumption on a. Since (c, ¢? - 3) = 3, we need only check the fol-
lowing two subcases:

(i) ¢ =32}, c¢*-3= (3%

2 = 2
(331)2’ c® -3 = 322.

(ii) e

By (i) we have 3z, = *1, which is impossible. By (ii), 3az% - 1= z%, which is
impossible mod 3. Now let m = 6 (mod 16) with m # 6. We write

m=6 + 2+ 3% «n, where 8ln, 3}tn.
Then, by (22), V, = Vg (mod V,,). If V, = 322, we have

(32)? = -3V, (mod V,) with 8ln, 3fn. (62)
By using (13) repeatedly with (4), we obtain
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2V, = 2Vgy = ++- = 2V, (mod Vg). (63)

n

We now note that (Vg, V,)=(V,, V,)=1 and V; = 2 (mod 8), since a = 1 (mod 2).
However,

2V, = =2V, (mod V) (64)
and, by (22),
2V, = -2V, = -4 (mod V,). (65)

Applying the Jacobi symbol, we now have:
(‘3Ve> ( 1)(V£/2> v,
Va Ve } Ve

iV“

6/2

14
6/2 . _
= —( 7, ), since V, = 2 (mod 8);

-2V,
—< A ) by (64);

T/'2
(V—) by (19);

= -1, by (65).

Therefore, (62) has no solution and the Lemma follows.

Lemma 3: For the generalized Fibonacci numbers U, the following identity holds:

U =U, V + b. (66)

kn+l 2n" 2n *1

Proof: This is like the relation (36) of Lemma 2 in [1].
Lemma 4: Let @ # 0 (mod 3). Then the equation V, = 62% has no solution.

Proof: Since a is odd and a # 0 (mod 3), we have a = *#1 (mod 6) or a? = 1 (mod
12). 1In this case the generalized Lucas numbers are periodic mod 6 with period
24 as are the usual Lucas numbers. Hence, it still holds that

V 0 (mod 6) if and only if m = 6 (mod 12),

m

and
v

m

11

18 (mod 24) if m = 6 (mod 2).
2

With V, = 622, we now have 3 3 (mod 4), which has no solution.

3. FIBONACCI NUMBERS OF THE FORM 3z? # 1

From now on b will always be 1; that is, d = a® + 4.

Theorem 1: The equation U, = 332 + 1, m =1 (mod 2) has

(a) the solutions m = *1, *
(b) the solutions m = *1, *5, if d = 13,
(c) only the solutions m = *1 in all other cases.
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Proof: For m = 4n * 1, (66) implies that U,,V,,,,=3z>. 1If n =0, then U,, =0,
so that z = 0 is a solution which gives us m = £1. Now assume that n # 0, then
UppVops1 # 0. Corollary 9 of [1] implies (U,,, V,,+;) = 1. Hence, we must have
= 252 - .2
Upp = 3815 Vipuy = 23 (67)
or
Upn = 215 Vinsy = 325 (68)

n
By using (28) and a direct computation of Uy, we find that (67) has a solution
for m =5 if d = 13, and one for m = 7 if d = 5. By using (30), we find that
the possible values of n for (68) to have a solution are n = 6 if 4 = 5, and
n=11if a = ¢2.

When n = 6, d = 5, we have L;4 = 521 # 322 and Ly, =199 # 322 so (68) has
no solution in this case. Whenn =1, a = tz, we have V; = 32% = q, which is
impossible. Furthermore, V3 = a® + 3a = 3z%, which implies that a”® + 3 = 3w?
or t* + 3 = 3w? or 27t* + 1 = w?®. The last equation, by [2], has no solutions,
so (68) is impossible.

Note that m = =5, d = 13 and m = -7, d = 5 are also solutions, by (3).

2

I
o
M
3
i

Theorem 1' : The equation U, = 3z = 1 (mod 2) has only the solutions

m= +3, 15 if a® + 2 = 3z°
and no solutions in all other cases.

Proof: This follows the arguments of Theorem 1 by using (36), Corollary 9, (28)
and (29) from [1].

Theorem 2: Let a’+2 = p where p is a prime. The equation U, = 322 +a, m = 0
(mod 2) has only the solution m = 2.

Proof: Case 1. Letm = 4n. By (38), we have U,py1Von-1 = 32°. But, Lemma 3
of [1] dimplies (Uyu41s Vion-1) =V, = p, so the following possibilities must be
checked:

Uspsr = 325, Vypoy = 25 (69)
Uspir = 215 Vopo1 = 323 (70)
Upnsr = 3923 Vypyoy = P2, (71)
Upnsr = P21s Vypoy = 323 (72)

Equation (69) has no solutions, since the possible values for which V,,_;
is a perfect square are given by (28) in [1] and none of them gives a solution
0 Uppsy = 351

Equation (70) has no solution either, because the values of n for which
Uppns1 = 2% are n = 0, -1, which gives V., =-a # 323 and V_; = -(a® + 3a) # 3z3.

If we write 2n = 1 = 4X *# 1 and apply (13) repeatedly, we find that

Wypo1 E =2V, yyy = t00 E 22V (mod V,).

Hence, if V, _, = pz% = szé, we have V, divides #2V,, or a? + 2 divides *2a,
which is impossible. Hence, (71) has no solution.

1

If we write 2n + 1 = 41 * 1 and apply (13 repeatedly, we find that
2Uppe1 E =2Uup gy = ==+ = 22U, (mod V,).
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Hence, if U,,,, = pz? = V,z3, we have V,|*2, which is impossible. Thus, (72)
has no solution.

Case 2. Let m = 4n - 2. Equation (40) implies U,,_,V,, + a = 32% + a, so
Upp-oVsn = 32°.

If n = 1, then Uy,_, = 0 and 2 = 0 which is a solution giving m = 2. When
n # 1, then U,,_, # 0. Recalling Lemma 3 of [1], we see that (Uy,_;, Vp,) di-
vides V, = p. Hence, we must check the following four possibilities:

Upnop = 3255 V,, = 2} (73
Upn-p = 8%y  Von = 3335 (74)
Upp-a = 3pzi, Vo, = P23 (73)
Upn-2 = pzl, Von = 3pz5 (76)

Equation (73) has no solution by (28).

The solutions of U, _, = zi are n =7,d =5), (n=21if a = t?), and n
1. For n = 7, we have L,, = 843 # 3z5. For n = 2, V, # 335 by Lemma 2 if a 7
(mod 3), while V, = 32% if a £ 0 (mod 3) is obviously impossible. Since n =
is also impossible, (74) has no solutions.

=l

If n = 0 (mod 2), then we can see that V, # ng by the same argument given

for Case 1.

Now let » = 1 (mod 2), n # 1. Since V_,, =7V,,, it is sufficient to con-
sider only the case n = 1 (mod 4), that is, 2n = 2 (mod 8). We write 2n = 2 +
2t + 3% with 41¢ and 3/t so that V,, = -V, (mod V,). Applying (13) repeatedly,
and taking into account that ¢ = 4A, we obtain

2V, *¥2Vy = £4 (mod V,), that is, V., Vy) =1,

Hi

which implies p/fV,. Hence, Vi, = pz2 implies (pz)2 = —pz (mod V.), which is
impossible since (—pZ/Vt) = -1 by (19). Therefore, (75) has no solution.

Now let Ujpy-n = pz%. Equation (5) dimplies that U,-1Vy-1 = pzf. If n#1
(mod 3), then (U,_i, V,_1) = 1 by (10), and we have
WUy-1 = pz%, Vo1 = 25) or Un-1 = 23, Vo1 = Pzﬁ)-
By using (28) and (30), we see that both are impossible.
If n = 1 (mod 3), then (10) implies (U,-1, V,_1) = 2, and we have
(Up-1 = 2pa3, Vo1 = 232)  or  (Uy_1 = 223, Vy.1 = 2pai).

The first is impossible by (29) and a direct computation of U,.;; the second is
impossible by (31) and a direct computation of V,_,. [For the second case,
with #n = 4, we should have V, = Zpgi, which is impossible since, otherwise, we
would have p = a? + 2 dividing V, = a(a® + 3)1.

2

Theorem 2': Let a®’+2 = p where p is a prime. The equation U, = 33> - a, m = 0

(mod 2) has

(a) the solutions m = -2, 0, 6, if a = 3t2,
(b) only the solution m = -2 in all other cases.

Proof: The proof of this theorem follows that of Theorem 1’ with the exception
of the case

U =z, v

= 352 =
on-1 = 335, when n = 1.

2n+1
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Under these condltlons, we have V3 = 322, which can be transformed by simple
reasoning into 27u + 1 = v2, which has no solution by [2].

Corollary 1: (a) F, = 332 + 1 if and only if m = *1, 2, *7.

(b) F, = 322 = 1 if and only if m = -2, 3, *5.

L. LUCAS NUMBERS OF THE FORM 3z° * 1

Theorem 3: Let a # 0 (mod 3). Then the equation V, = 332 +a, m = 1 (mod 2)
has

(a) the solutions m = 1, 3, 9 if d =

(b) only the solution m = 1 in all other cases.

Proof: Case 1. Letm = 4n - 1. Equation (42) implies that Von-1Von = 3z2.

However, (V,,_,s V, ) =1, so we have
V-1 = Z§’ Von = 335) or Vop-1 = 33%: Von = z%).

For the first subcase, (28) implies

n=1 if a = d + 5,

n=1,2 if = 5,
or n=2 if d = 13.
When # = 1 and a = t2, V,, = 323 if and only if 323 - t* = 2. Ljunggren [3]
has proved that this equation possesses only the solution (2,, t) = (*1, *1),

which gives a = 1 and so d =
For n = 2, d = 5, we have L, = 7 # 32%, while for n = 2, d = 13, we obtain
L,y = 119 # 3z3.

By using (28) once more, we see that the second subcase has no solution.

Case 2. Letm = 4n + 1 = 2(2n) + 1. Equation (42) implies that V,,Vyn41 -
= 332, By (8) and (42), we see that
(v2, - 2(-1)"HV V,yy - (-1)"a} - 2a = 322
or
V2V, oy = (CD)"aV? - 2(-1)"V,V, ., = 32°.
Hence, VM, = 3z2 with
M, =V, - (-D"aV, - 2(-1)"V,.

nVn+1
Let p be an odd prime not equal to 3 with peHV‘. Since p/Mn, we have e = 0

(mod 2). This implies that V, = w? or V, = w? or V, = 3w? or V, = 6w?
When 7, = w?, (28) implies

n=1 if a =t%, d + 5,
n=1,3 if d=5,
or n =3 if d = 13.

When n =1 and a = tz, we have m = 5. Hence, we must examine the equation
a® + 5a® + 5a = 3z2° + a
for solutions. According to our assumptions, this equation can be written as
(@® + 2)% + a® = 3f2,

However, a®> = 1 (mod 12) and 3f2 = 10 (mod 12), so the equation is unsolvable.
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By direct calculation, we can show that for all other possible values of n
no solutions exist.

Let V, = w2, Using (29) and direct calculation, we find that the unique

solution in this case is n = 0 or m = 1.

Let V, = 3w?. 1In this case, Lemma 2 implies that solutions exist only for
n o= *2 if a® + 2 = 3wl.

When n = -2, we have m = -7. Since V_, < 0, we know that V., # 3z +a.
Hence, we have only to check the case for m = 2 or m = 9, that is, the possible
solutions of the equation a® + 9a’” + 27a% + 30a® + 9a=33% + a. Factoring, we
have a(a® + 2)(a® + 7a* + 13a® + 4) = 3z% which, by replacing a® + 2 with 3w?,
becomes a(a® + 7a% + 13a? + 4) = w3.

However, (a, a® + 7a* + 13a? + 4) = (a, 4) = 1, so it follows that

a® + 7a% + 13¢% + 4 = g2 or (a2 + 4)(a” + 3a? + 1) = s?.
Now, the greatest common divisor tells us that
@®>+ 4, a* +3a% +1) = (@®> + 4, @ +4) - 5(@®+ 3))
(@ + 4, 5(a* + 3))
(@* + 4, 5) =1 or 5.
If (a® + 4, a* + 3a®> + 1) = 1, it follows that a® + 4 = A% with a = t2. This
implies a = 0, which is impossible since a > 0.

Now let (a’+4, a*+3a®+1) =5. Then a’+ 4 = 5 % and a* + 3a® + 1 = 5A%
with a = ¢t2 =1 (mod 6). Recall that t* - 5\A% = -4 has the solutions ¢ = 1 and
t=2Dby (28). When t=1, a=1and d=5. When t=2, a=4, which is im-
possible since a = 1 (mod 2).

1

Therefore, in this case, we have only the solution m= 9, d = 5.
By Lemma 4, V, = 6w? has no solutions.

Following the arguments of Theorem 3, we can also show

Theorem 4: Let a Z 0 (mod 3). Then the equation V, = 322 = a, m = 1 (mod 2)
has

(a) the solutions m = -1, 5 if d = 5,
(b) only the solution m = -1 in all other cases.

24+ 1, m=0 (mod 2) has no solution.

Theorem 5: The equation L, = 3z
Proof: Case 1. Let m = 4n. Equation (8) implies that L;n = L,, + 2, which is
the same as 3z% + 1 = Lgn - 2. Hence, 3(z% + 1) = Lgn, so that 3!0,,. There-
fore, 2n = 2 (mod 4) or m = 4 (mod 8). Since for evenm, L_, = L,, it is suf-
ficient to consider only the case m = 4(16).

If m =4, then I, = 7 # 32> + 1.

Let m # 4. We write m = 4 + 2n3 with 8In, 3/n. Then V, = -V (mod V,) by
(22). 1If Vp = 322 4+ 1, we have (33)%? = -24 (mod V,), where 8ln and 3fn. Since
for 8ln, V,, = 2 (mod 3), we can now apply the Jacobi symbol which is calculated
to be -1, by (19) and (20). Hence, no solution exists.

Case 2. Let m = 4n + 2. Equation (8) gives L§n+l = Ly,4, — 2 OF L§n+l =

2 2 2 _ 2 _ 5 . .
3z° - 1. But Lyper ~ S5FG 41 = -4 and so 5F, ., = 3(z2+1). This implies that

306 [Nov.



FIBONACCI AND LUCAS NUMBERS OF THE FORM 322 % 1

31F,, 41, which is impossible since 3 divides F, if and only if 4 divides m.
Hence, in this case also, there are no solutions.

2

Theorem 6: The equation L, = 33° - 1, m = 0 (mod 2) has only the solutions

m =0, *8.

Proof: The proof is the same as that of Theorem 3, where we take into account
the fact that L, = -1 (mod 23) if 16 divides n.

Corollary 2: (a) L, =322 + 1 if and only if m = 1, 3, 9.
(b) L, = 322 - 1 if and only if m = -1, 0, 5, 18.

Remark: We can apply (26) and (27) as in [1] in order to obtain some state-
ments about the solutions of diophantine equations of the form

DY? = AX* + BX? + C.
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1. INTRODUCTION

In developing a Zeckendorf theorem for double-ended sequences, Hoggatt and
Bicknell-Johnson [1] found a remarkable pattern arising from applying Klarner's
theorem [2],[3] on simultaneous representations using Fibonacci numbers. Here
we study the properties of the array generated, after first providing enough
background information to make this paper self-contained. We shall show rela-
tionships with the Lucas numbers, the Wythoff pair sequences, and generalized
Wythoff numbers [7].

David Klarner [2] has proved

Klarner's Theorem: Given nonnegative integers A and B, there exists a unique
set of integers {ky, kss K3» ..., K.} such that

kb Pttt B, B=hR f R s AR
for Iki - kjl 22, 1 # J, where each F, is an element of the sequence {E;}Tw;
F;+1 = E; +-E;_1, Fl =1, F2 = 1.

Thus, to represent a single integer m > 0, we merely solve

A =0 = F + F B:m:Fkl+Fk2+-..+Fk,

k,+1 k2+1+"'+F

Kp+12
which has a unique solution by Klarner's Theorem. A constructive method of
solution is given in [3], and we will soon use this idea to generate a most
interesting array.

We shall also need some properties of Wythoff pairs (a,, b,), which are
formed by letting a3 =1 and taking a, as the smallest positive integer not yet
used, and letting b, = a, + n. Wythoff pairs have been discussed, among other
sources, in [4], [5], [6], [7], and [8]. Early values are shown below.

n: 1 2 3 4 5 6 7 8 910 11 12 13 14

a,: 1 3 4 6 8 9 11 12 14 16 17 19 21 22

b,: 2 5 7 10 13 15 18 20 23 26 28 31 34 36
We list the following properties:

ak + k = bk (1.1)

a, =a, + b, and bp = a, + 2b, (1.2)

g, =b, -1 and by, =a, +Db, -1 (1.3)
{2, k =a,

a. -a, = (l.l})

k+1 k 1, k-b,
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]

3, k=a,

byyr = by = { (1.5)
2, k=2>b,

Further, (a,, by) are related to the Fibonacci numbers in several ways, one
being that, if 4 = {a,} and B = {b,}, then 4 and B are the sets of positive
integers for which the smallest Fibonacci number used in the unique Zeckendorf
representation has respectively an even or an odd subscript [9].

Also, the Wythoff pairs are related to the Golden Section Ratio
o= (1+V5)/2,
and recall that F, = (@" - B")/(a - B), where B = l/a, as
a, = [nal, by, = [na?], (1.6)
where [x] is the greatest integer in x.

Lastly, we recall the generalized Wythoff numbers 4,, B,, and C, of [7]
with beginning values

n: 1 2 3 4 5 6 7 8 91011 12 13 14
Ay, 1 4 5 811 12 15 16 19 22 23 26 29 30
B,: 3 7 10 14 18 21 25 28 32 36 39 43 47 50
Cp: 2 6 9 13 17 20 24 27 31 35 38 42 46 49

and the following properties useful in this paper:

4, = 2a, - n (1.7)
B, =a, +2n=>b, +n (1.8)
Chn=ap+2n-1=b,+n-1=q, +n (1.9)
Cc, +1=58, and Cn =1 =A4q, (1.10)
1, n = bk
A, -4, = (1.11)
3, n o= a;
3, n = bk
Bn+1 - B, = (1.12)
4, n o= a
3, n = bk
Corr ~ Cp = (1.13)
4, n o= ag
Ay =a, +2n -2 and B, = 3a, +n -1 (1.14)
A, =4, +1=4, 1 (1.15)
b a Ay

n n

The sequences 4,, B,, and C, divide the positive integers into three dis-
joint subsets, classified by Zeckendorf representation using Lucas numbers

[97.
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2. AN ARRAY ARISING FROM KLARNER'S DUAL
ZECKENDORF REPRESENTATION

Recall the Klarner dual Zeckendorf representation given in §1, where

A=F +F  ++E =0
(2.1)

B=F, +F + ' +F =n,

wheren =1, 2, 3, ""lki - kj! 2 2,47 #J, and the Fibonacci number F; comes
from the double-ended sequence {Ey}fw. The constructive method described in
our earlier work [3] for solving for the subscripts k; to represent 4 and B
leads to a symbolic display with a generous sprinkling of Lucas numbers L,
(Zy =1, L, =3, L,y = L,4, + L,) and Wythoff pairs.

Here we use only two basic formulas,
Fopo = Fpeq + Fy and 2F, = Fyiq + Fy_ s (2.2)

to push both right and left in forming successive lines of the array. The dis-
play is for expressions for B only; 4 is a translation of one space to the
right. At each step, B =% and 4 = 0.

The basic column centers under F_;. We continue to add F_; = 1 at each
step, using the rules given in (2.2) to simplify the result. For example, for
n =1, we have F_,=1. Form =2, F_., +F_,=2F_ 1 =Fy+F_ 3 =2. Formn-=3,
F-1 + Fy + F-3 becomes F; + F-3 = 1 + 2 = 3. We display Table 2.1 on the fol-
lowing page.

Many patterns are discernible from Table 2.1. There are always the same
number of successive entries in a given column. Under F., there are L;; under
F_3, Ly; under F_,, L;; and under F_j, Ly,; successive entries. The columns to
the right of F_, (under F,, for instance) have L, * 1 alternately successive
entries, but the same number of successive entries always appears in a given
column. Also, we mnotice that once we have all spaces cleared except the ex-
treme edges in the pattern being built, we start again in the middle, as in
lines 4, 8, 19, 48, ..., Ly + 1, ...

Reading down the columns, we write the sequence of numbers first using that
F, is its representation. For example, the sequence of numbers using F.y is 1,
4,8, 11,15, 19, ..., with first difference A; = 3 and second difference A, = 4.
We want only the numbers first used when reading down the columns, so for F_,
we would use 2, 9, 20, 27, ..., and ignore 3, 4, 10, 11, 21, 22, ... . We list
sequences appearing beneath #, in Table 2.1 along with first and second differ-
ences:

Fo: 2, 6, 9, 13, 17, 20, 24, 27, Ay =3, Ay =4
F,: 3, 10, 14, 21, 28, 32, 39, 43, By =7, by =4
F,: 5, 16, 23, 34, 45, 52, Ay =11, Ay =7
Fy: 7, 25, 36, 54, 72, A, =18, A, = 11
F,: 12, 41, 59, 88, ... A, =29, A, = 18
F: 1, 4, 8, 11, 15, 19, 22, 26, ... Ay =3, A, =
F_: 5,12, 16, 23, 30, 34, 41, 45, A, =7, 4, =4

(continued)
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Table 2.1 F, Used To Represent B from Klarner's Theorem

Subscript n:
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F_y: 2,9, 20, 27, 38, 49, ... Ay =7, 0, =11
F_,: 12, 30, 41, 59, 77, 88, ... A, =18, b, = 11
F_o: 5, 23, 52, 70, 99, ... A, = 18, A, = 29

Surely the reader sees the Lucas numbers 1,3, 4, 7, 11, 18, 29, ..., as the
first and second differences. In the next section, we write formulas for each
term in the sequences given, and find both Lucas numbers and the Wythoff pair
numbers.

As a final observation, notice that the sequences associated with F, when k
is a negative odd integer have different behavior than all the others listed.
For those sequences, A, > A;, and successive differences follow the pattern
Ayy Ayy Ay Ayy Ayy ..., while all the others have A, < A, and a pattern of
successive differences that begins A;, A,, Ay, Ay, A,,

3. LUCAS NUMBERS AND THE WYTHOFF PAIRS

We write the general term u, for the sequence of numbers first using Fj in
its representation as observed from Table 2.1 for k = 0.

Fo: Uy, =2n+a, -1

=
—
[

U, =n+ 3a, -1

Foi u, =3n+ ba, - 2

Fay: u, =4n + 7Ja, - 4
Fy,: u, =7n+ lla, - 6
Fg: u, = 1lln + 18a, - 11

&
o
N
S
]

187 + 29a, - 17

Again we see the Lucas numbers L,, defined by
Ly =1, L, =3, and Lpyyqy = Dy + Doy

Observe that the last terms are either I, or one less than L,, and the pattern
of general terms seems to be

Fk: un = Lkn + Lk+lan - [Lk - (l + (_1)7()/2]’
where a, is the first member of a Wythoff pair.
Theorem 3.1: The sequence of numbers first using Fy, K > 0, in its representa-
tion arising from Klarner's theorem is given by
Fpi uy = nly + ayly,, - [Ip = (1 + (-1)¥%)/2].
Proof: From [8], all Fibonacci representations can be put in the form
u, = (2n - 1 -a)h, + (a, - M)A, + uy, (3.1)

where A, and A, are the first and second differences and u, is the beginning
term of the sequence. By the method of generation of the array,

Lysrs k even
U, =

Ly, + 1, k odd
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and A, = Ly ,,, Ay = Ly, for k 2 1. Substitution of these values into (3.1)
yields the result quite quickly.

For k = 0, we note that the sequence for F, can be written from (3.1) by
letting A; = 3, A, = 4, and u,; = 2.

The sequence of general terms for the sequences using Fj, when X is negative
gives us a different story. First, take K negative and even:

F_,: u,=mn+3a, +1 Ay =7, A, =4
Fo,t U, =4tn+7a, +1 A, =18, A, =11
suggesting
F gt uy, =nlp_y +a,ly +1 By = Lysns By = Lyyy
When k is negative and odd, we let m = n - 1 and list
F i u, =2m+an+1

F_ .t U, =3m+ bay, + 2
F .+ u,=7m+ 1lla, + 5
suggesting
Fopi Uy =mhy_+aly + L, +1.
Theorem 3.2: The sequence of numbers first using F_, in its representation is
given by
(i) F_y;t
(ii) F i tn
(iii) F

Up = nly; oy + aply; + 13
2(n - 1) + a , + 1;

§>0: wuy=(n- DL, +a, I, +L, ,+1

]

-(24+1)°
Proof: (i) follows readily from (3.1) by taking
Ay = Los00, By = Ljsygs and uy = Logyy + L.

(ii) is proved by mathematical induction. Note that (ii) is true for early
values. Study the pattern of successive differences A, = 3, A, = 4, and by the
rules for generation of the array, we have

3, n—l=bi
Upp1 — Up =

by, n-1=a;
Assume u, = 2(k - 1) + a5, + 1. Then, when k-1=b;, (1L.4) lets us write

3+ 2k -1) +a,_, +1
342k - 1) +a;
2k + a; + 1.

Uper = 3+ Uy

When kK - 1 = a;, we again apply (1.4), and

=4 +u, =4+2k-~-1)+a,_, +1
2k + (ak_l+2) + 1

2k + a; + 1,

Upsa
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so that u,,, again has the form of (ii), establishing (ii) by mathematical in-
duction.

The general case (iii) can be proved by mathematical induction in a similar
way by using (1.4), if we take A; = Lyiggs A, = Lyjezs and u; = Lyjoy + 1. We
again have A, when n - 1 = b; and A, when n - 1 = a;.

Corollary 3.2: A second formula for the sequence of numbers first using F_, in
its representation is given by

—2j Un = anzj—l + aanj_z +1, § > 0;
Fit u,=n+b, _,
F_&j+1): u, = bn_lej + (an_l + l)sz_1 + 1, 4> 0.
?roof: Change the form of the sequence for sz given in Theorem 3.2 by apply-
ing (1.1):
U, =nlb,;_, + aanj + 1= ”sz—l + aanj_l tapl,;_, + 1
=b,L,. , + Al , + 1.

Again apply (l.1) to F_,:
U, =2(m - 1) + a, , +1= n-1)+ n-1+ an_l) + 1
=n+b, ;.
The proof for F-Qj+1) is similar.
If we take Kk negative and odd, and apply (3.1) to write the terms of the
sequences, we observe
F .1 u,=5-a, -3
F ¢ u, =15n - 4a, - 9

40n - lla, - 24

F .+ u,

leading us to

Theorem 2.3: If kX is odd and greater than 1, then the sequence of numbers first
using F_; in its representation arising from Klarner's Theorem is given by

F_k: U, = nky,, - Lya, - 5F, + 1.

Proof: Let u; = Ly, + 1, A, = L3,,, and Ay = Lz,; in (3.1) and simplify using
Lyso * Ly = 5Fpy,-

4. THE GENERAL!IZED WYTHOFF NUMBERS

The generalized Wythoff numbers 4,, By, and C, of [7] provide another de-
scription of the general term of the sequences arising from using F, in the
representation from Klarner's theorem. Observe that, for F,

U, =2n+a, -1 =20,

by (1.9). Each sequence we have generated is a subsequence of the sequence for
Aps Bys or Cy. The sequences for F, and F_, contain only (;'s, while the se-
quences for F,,,, contain only B;'s, kX > 0. All of the other sequences contain

A;'s exclusively.

314 [Nov.



GENERALIZED WYTHOFF NUMBERS FROM SIMULTANEOUS FIBONACCI REPRESENTATIONS

Theorem 4.1: The sequences arising from first using F k 2 0, in the rep-

resentation from Klarner's Theorem are Pl
Fit uy, = By,
Foiou, = Bba
n
Feoouy, = Bbb

F2k+ 1

k>20: u, =B,

k “%n
Proof: We simplify the form B; to demonstrate that u, has the form given by
Theorem 3.1. For F,, observe (l.14).

For F,, we apply (1.8) and then (1.2) and (1.3) in sequence finishing with
(1.1) to obtain

By, = a, *+ 2b, = (ag, + ba,) + 2by, = (b, - 1) + 3(a, + by - 1)

=4b, +3a, -4 =4(n+a,) +3a, -4 =4n + Ta, - 4.

For Fy;, we apply the same sequence of steps repeatedly to reduce the sub-
scripted subscripts. For F,, ., the reduction of subscripted subscripts will
always follow the same steps repeatedly. We show Lemma 4.1 to demonstrate one
step of the subscript-reduction process and to show that we will end with the
required form in terms of Lucas numbers.

Lemma 4.1: Li+1abb + L bbu = Li+3abb +L;,, bb_
}\:ban k-1 .'baﬂ k—l\ban

Proof: Apply (1.2) followed by (1.1).
i1, *Lidp, =1L

\\\\ i+1abb i+1 . i .
k\\.:ban k .ban k—xban }\"ban }\:ban

N by

n

Theorem 4.2: F_:

0f Up = Cps F =4z 41> and F_y: u, = C

aan_1+1

Proof: The form for F, follows by comparing (1.9) and Theorem 3.1. For F_,»s
we apply (1.11) and (1.14) and then compare with Theorem 3.2:

Aam4+1 =4, ,+3= (an_l +2(n-1) -2)+3=2(n-1) + a, , +1
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For F_,, by (1.9) followed by (1.3), (1.4), and (1.5):

Cy =q + 2a - 1= (ban_ - 1) + 2a,

Ap-1+1 Aq, ,+1 Ap-1t1 1+1

(g,  +3) -1+ 2@, +2)-1=b, +2 + 5

Next, use (1.3) finished by (1.1),

C -1)+5=a + 2b + 2

n-1 n-1

o 4y (@,_, +b, _, -1 +20,_,

a + 3(a + 2,

n-1 + (n=-1)) +2=3n-1)+4da,_

n-1 1

and compare with Theorem 3.2.

Theorem 4.3: F,iouy, = Aabﬂ= 4y

an+l

Fo:ou, = Abb 1
aYl

sz,k>0: un:Abb‘+1

KN_Pa

n

Proof: For F,, use (1.15) and (1.14), followed by (1.2) and (1l.1):
Aab=ab + 2b, -2 = (b, +a,) +2b, -2

=3(n+ay) +ta, -2=3n+4ba, -2

Then compare with u, as given in Theorem 3.1.

For F,, first apply (1.15) and then (1.7). After than, use (1.2) followed
by (1.1) repeatedly to reduce the subscripted subscripts.
4y + 1= 2abb - bban+ 1= 2(aban + by, ) - bban+ 1

n an

A =
bba-tl 1 ba

2a, + (a, +bg)+ 1 =3(a,+ by)+ bg + 1

3ag,+ 4(ag,+a,) + 1 =7(, - 1) + ba, +1

7(a, +n) + 4a, - 6 = Tn + lla, - 6

Now compare with Theorem 3.1.

For F,, , the steps are always the same as for F, , except for more repeti-
tions.
Theorem L.4: F u, = 4,

-2° n+1

-y Uy =Abbn+1

F-Zk’ k>0: un Ab +1
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Proof: Use (1.15)and (1.7). Then reduce the subscripted subscripts repeatedly
by applying (1.2) followed by (1.1), and compare with Theorem 3.2. Because the
proof is so much like that for F, and sz in Theorem 4.3, we show only F_,.

Ap p1=4p, + 1 =20, -b, +1=2(a, +Dby) -b,+1

2a, + (a, +n) +1 =3a, +n+ 1.

Theorem 4.5: F__: wu, =4,

F_orenys K > 2: u, =4,

Proof: In a manner similar to the proofs of Theorem 4.2 and Theorem 4.3, the
subscripted subscripts can be painfully reduced, eventually, to match the form
of Theorem 3.2. But, we almost have subscripted subscripts using the Wythoff
pairs numbers a, and b,, except for the last subscript.

We apply results of [8]. Let U = {u,},-; be a sequence of integers. If U*
is a subsequence of U such that the general term is formed by subscripted sub-

scripts taken from the Wythoff pair numbers, then we give each a-subscript
weight 1 and each b-subscript weight 2. Then, U* has first and second differ-

ences A} and A} given by
Az =F .0, + F,A and A¥ =F A, +F _,A,
where w is the weight of the sequence and A, and A, are the first and second
differences of U, the original sequence.
Notice that F_, has weight 4 because the last subscript could be either a;
or b;. Ag, ,+1 is the original sequence, so we have A, = 3, A, = 4 because, by
Theorem 4.2, we are looking at the sequence for F_,. Then

AY = 4Fg + 3F, = 4+5+3-3=29=1,
A¥ = 4F, + 3F, = 43+ 32 =18 = L

where these are the known value for F_.. Since we know u, for F_;, we must
have the same sequence.

For F_ iy 41y> k 2 2, the weight is 2k, and

* —
A2 =4F 0 t 3F2k = Loges
* _ =
Al - 4sz + 3F2k-1 - sz+z’

which we recognize from earlier sectiomns.

Discussion: The weights for all of the other sequences for Fj are easier to
calculate. For example, F,; in Theorem 4.3 has weight 2k + 1 and we can use 4,
as the original sequence, with A, = 3, AZ = 1, so that

1985] 317



GENERALI1ZED WYTHOFF NUMBERS FROM SIMULTANEOUS FiBONACCI REPRESENTATIONS

* _ _ x _ _ 7
Al - 3F2k+2 + F2k+1 - L2k+3 and A2 - 3F2k+1 + sz = Lorro

which we recognize. From Theorem 4.1, the weight of F,,,, is also 2k + 1, and
B, gives the original sequence, so that Ay =4, A, =3,

AT = 4Fypy, + 3F = Dypyy and  A) = 4F

which again are known from earlier work.

+ 3F,, =1L

2k+1 2k+1 2k 2k+3?

Notice that we can use original sequences to relate all of the sequences
of this paper to the sequences for F,, F,, F_;,and F_,, by looking at the next
to last subscript in u,. The original sequence related to F—Qk+1) then is

A

an—l+1’
the sequence for F_,. Even the sequence for F_, is so related, because
Can—1+1 = Aarz—1+1 + 1.

Now, Fyx,; has original sequence B, , which is F;, while F_,; goes with 4, ,
which gives F_,. Lastly, F,, has original sequence 4, , which is related to
Fy, since ¢, =4, +1

Further, all of the sequences are related to the sequences.for F_,, Fy, or
F,. All of the sequences for F,x;; are subsequences of B, and thus are related
to F,; F_, and F; have sequences that are subsequences of C,. All of the other
sequences are subsequences of 4,, making them related to the sequence for F_,.
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1. INTRODUCTION

Pell polynomials P,(x) and Pell-Lucas Polynomials @,(x) are defined in [3]
by the recurrence relation and initial conditions

(x) = 22P,, | () + B, () P,(x) = 0, P, (x)

P> 1 (1.1)

Qpyp @) = 22Q,,, @) + @, ) Q@) =2, ¢, @ = 2x. (1.2)

Properties of these polynomials are also set out in [3]. Among these, the
most important for our current purposes are the following:

and

P, (x) = o - 8% (1.3)
and § o -8 Binet forms

q, (x) =a” + g" (1.4)
where

o =x+VxZ + 1, B=zx-Vzz + 1 (1.5)
are the roots of the characteristic equation

A2 - 2zA - 1=0 (1.6)
of the recurrences (1.1) and (1.2), so that:

o+ B =2z, a-B=2/2+1, of=-1; (1.7)
and P, @B, (@) - Pi(x) = (-1)"%, Simson's (1.8)

Q0 @@, (@) - @) = (1)1 a@? + 1); ( Formlas (1.9)

P,@ +P,_(x) =9,x); (1.10)

Q@) + @, (@ = 4@ + 1)B, (x); (1.11)

P, (2)Q,(x) =P, (x). (1.12)

When = 1, P,(1) = P, and @,(1) = @, reduce to the Pell numbers and the
"Pell-Lucas" numbers, respectively. On the other hand, * =% leads to P,(53) =
F, and @,(%) = L,, the Fibonacci and Lucas numbers, respectively.

Analogous results to some of those obtained below occur in [2], which pro-
vided the stimulus for this article.
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2. INVERSE TANGENT AND COTANGENT FORMULAS

Calculation using (1.3) yields
Pypir1@P,, (@) - P, (©)P,, , ., (x) = 2% (n=20). (2.1)
Substituting for P,,,,;(x) from (1.1) and rearranging, we obtain

Py (@) /22)Py, 5 (®) = 1

Pon @ = (Pppypr @) /22) + Py, (@)’ 2-2)
which can be expressed trigonometrically as
cot™'P, (z) = cot™'(P,,  (x)/2x) + cot™'P, . (x). (2.3)
Summing, we derive
zn:ocot_l(Pzwrl(ac)/Zx) = 12‘- - cot™'P, (%), (2.4)
r=

since cot™0 = m/2. Setting x = 1 and letting n + ®, we have a result about
Pell numbers P, :

T cot™ (P, /2) = 3 (2.5)

while putting x =% leads to the known summation formula involving Fibonacci
numbers F,:

p);OCOt_IF“H -7 (2.6)
Next,
' P, (x)-P (x)
b (. S -1 1 _ -1 2r 2r -2
can (Pz,,_z(x)> - tan (PZ,,(x)) = tan <1 ¥ 7, (x)PzP_z(x)>' (2.7)

= tan'l(———igi———>
Pyp_1 (@)

Consequently, summation of (2.7) produces

using (1.1) and (1.8) and simplifying.

tan™* (22/P,,_, (%)) = 5 - tan ' (1/P, (@) (2.8)
1

M=

r

since P (x) = 0 and tan x is undefined for x = m/2.
Alternatively, (2.8) is a direct consequence of (2.4).

As above, the special cases * =%, £ = 1 reduce (2.8) to information about
the Fibonacci numbers and the Pell numbers, respectively.

In particular, when x

0 _ ) 1
Y tan 1[ ] =
r=1 Fzr—l
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which, 1like (2.6), 1is a slight variation of the D. H. Lehmer summation result
for Fibonacci numbers (given in [2] as Theorem 5).

When * = 1 in (2.8), we obtain another form of (2.5) for Pell numbers.

Furthermore, using (1.9) and (1.11), one may obtain

4(x® + P (x)
(g m) e ) e o L
2p-2 2r Q;r_l(x) + 4@+ 1) -1

Unfortunately, the right-hand side does not simplify any further as we should
have desired, by comparison with (2.7). However, if we choose & = % [so that
P,() =F,, Q,.(%) = L,], then the equation reduces to

tan'1<L 1 > + tan'l(zl—>= tan'l(F 1 >
2p -2 2p 2r -1

-1 1 _1< 1 )
= tan - tan from (2.7),
(FZI‘—Z) FZr

both of which are given in [2] (as Theorems 3 and 4), in a slightly varied form.

Proceeding to the limiting summation in the first of these equations (with
r replaced by » + 1) produces the result for Lucas numbers given in [2] as

Theorem 6, namely

L ) =1 tan™'2 = tan'l<Z3—:—l>.
o 2 2

lﬂg:_:ltan“l([l
Furthermore, for Pell-Lucas polynomials,
Q,_, @ Q, @) Q) @0, , @) - QL)
tan_l(fézzgg_> - tanle@::;C£§> = tan-l<Qr(x)(Qr+l($) +-Qr_1(m))> (2.9)

It

by (1.9), (1.11), and (1.12).

Hence,

~ tan”! ——(_l)r_l> = tan”? At W tan™? ) (2.10)
rz;l o Pn@ /) o d () Dpyr (@) '

N P, (x)
- tan <?T1(T>>

by (1.3), (l.4), and (1.5), since 1 + 2o = avl + x2 and 1 + xB = -BV1 + x2.

By (1.5), o> 0 and B < 0 for all real x. Furthermore,a > 1 for x > 0 and
0<a<1 for £ <0. In addition, |[B] <1 for = > 0 and |B| > 1 for z < 0.
From these considerations, (1.3), and (2.10), we have

tan"Y(l/a), for x> 0

© -1 (_1)1”'—1) -
P‘é’ltan (—_—Pzr @) (2.11)
tan"*(1/B), for x < 0.
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An argument similar to that used in deriving (2.10) shows that

n r q, (x) Q ., (@)
-1f (-1) _ - 1 _ _ n+l
rzz:ltan <?—;(—m—)—) = tan 1(——~—Qo(x)> tan 1<_——Qn(x) > (2.12)
N @, (@) - @,,, @) N P, (x)
- (Qn@c) ¥ xQn+l<x>> T <Pn+1<x>>'

Letting n + », we have another derivation of (2.11). Special manifestations of
(2.9), (2.10), (2.11), and (2.12) are derived when * =% and x = 1, yielding
information about the Fibonacci and Lucas numbers, and the Pell and Pell-Lucas
numbers, respectively.

For example, if x =%, then (2.11) with (1.5) yields the known result
S ) EDTT -1, _ Y5 -1
lﬁz=:1t.em { 7, =5 tan”"2 = tan 7 ,

which should be compared with the similar result for Lucas numbers preceding
(2.9).

If x=% in (2.9), then, with r replaced by n + 1, Theorem 3 (first part)
of [1] results.

When x =% in (2.12), we obtain Theorem 4 of [1].

Following the method used for (2.7), with appeal to (1.8) and (1.10), and
then summing, we ascertain that

ke er (=) m 1
Y (-1)’"'1tan'1<————> =7+ (—l)"'ltan'l(—P——()—). (2.13)
r=1 P2 (x) an+1 F
2r
Summing to infinity gives
© q,, @ -
b (—l)r'ltan'l<——> = —, provided P (x) + .
2 4 2n+1
r=1 P, . (x)

When & = %, it follows that, for Fibonacci and Lucas numbers,

o L
£ e 20) -
r=1 F2
2r
When £ = 1, it follows that, for Pell and Pell-Lucas numbers,

00 Q
1y lean-l £>= T
El( ) an <P2 4

2r

3. GENERALIZATIONS

Results (2.10) and (2.12) can be generalized as indicated below. Firstly,
however, some extensions and generalizations of previous formulas must be es-
tablished. Using the Binet forms (1.3) and (l.4), we may, with due diligence,
demonstrate the validity of the following:
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2 _ (2k-1)p 2
Bios 1y k- &P 1y k- @) = P (@) = (=D)F P 1) 3.1)

2
Q(r+ 1) (2k - 1)(‘7“)Q(r- 1) (2k - 1)(‘”) - Qr(zk—- 1)(“’)

(LT D@2 + P2 (@) (3.2)
Poak-1) @By 1y k- &) + Byl or- 1T = oy 1 @) Py 5 ()5 (3.3)
@ iak- @8y 1y 2k- 1@ + Qi 1) 21 1@}

= 4@ + )P, 0, @)Py_, @). (3.4)

The odd factor 2k- 1 is necessary to ensure the vanishing of certain terms
that arise in the course of the algebraic manipulations. Of course, (3.1) and
(3.2) are extensions of the Simson's formulas (1.8) and (1.9), respectively,
when k = 1 (P;(x) = 1).

Now, consider

tan'l<———Q(P— D) k- 1)(-'”)) - tan'1<—————-———————QP(2k- 1)(“’) > (3.5)
&2k - 1) (@) Qrs 1) 2k - 1% ’

. _1< ps 1) k- 1T Cno 1y (2 - 18) — Qr?(zk— 1) )
an
Qr(zk— 1)(.70){Q(T+ 1) (2k - 1)(.7:) + Q(r— 1) (2k - 1)(x)}

((—1YP-1>@k-1>-4(x2 + P (@)
tan”

) by (3.2), (3.4)
4(x? + 1)Ponik- 1) @) Py ()

~1)(r-1)(2k-1)
.
Py 2k - 1))

Put ¥ = 1 in (3.5) and we obtain (2.9).

If we sum (3.5), as before, we have

n (-1)r-1 (2k - l)sz— 1(x)
rz=:1tan-1< Pop 2k - 1)(x) ) (3.6)
= tan‘l( @ @ >_ tan'l( @z~ 1) @ )
@aic- 1) Bn+ 1) 2k - 1 @)
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