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THE FIRST DIGIT PROPERTY FOR EXPONENTIAL SEQUENCES IS 
INDEPENDENT OF THE UNDERLYING DISTRIBUTION 

TALBOT M. KATZ and DANIEL I. A, COHEN 
Hunter College of The City University of New York, New York, NY 10021 

(Submitted July 1982) 

The natural density in the set R = {cFk : k = 0, 1, 2, . ..}, where c > 0, r > 1, 
and log10P is irrational, of the elements beginning with the first digit I is 
known to be 

We show that this property persists for any finitely additive, translation in-
variant density on sets of the form 

E = {ek = (ork + ak) % ak = o(r*)9 k = 09 1, . . . } , 

where a > 0 and log1 r is irrational. 
In particular, this includes the Fibonacci sequences. 

Let o and r be real numbers, such that o > 0 and r > 1, but r £ 10^ for q 
a rational number. Define 

R = {<?r*: fc = 0, 1, 2, . ..} 

and let R{1) be the subset of R whose members begin with the string of digits 
£ in the decimal representation, e.g., if c = 3 and r = 7, then 147 € i?(l) (147 
begins with digit 1); 147 is also in i?(14) (147 begins with a two-digit string 
14), and 147 € i?(147). If A is any subset of R9 define its indicator function 
as follows: 

(1 if ovk~x e A 
x(fc; A) =< 7 k = l, 2, 3, ... . 

10 if er*"1 i A 

Then 

which is a consequence of the fact that the set 

{(log10crk) mod 1 : k = 0, 1, 2, .. .} 

is uniformly distributed in the interval [0, 1). (See [4].) 
When the limit exists, 

1 n 

i i m - E x(&; 4) 
n -> °°  n /j = ! 

is called the natural density of A with respect to R. Although the natural 
density exists for ^ach i?(£)s there are subsets of R which do not have natural 
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THE FIRST DIGIT PROPERTY FOR EXPONENTIAL SEQUENCES 

density. Nevertheless, the natural density can be extended to all subsets of R 
in a way which preserves finite additivity and translation invariance [defined 
below as properties (Dl) and (D2)]. However, even with added restrictions such 
as scale invariance, such extensions are not unique. (See [1].) 

Now consider any density d on R which satisfies the following two proper-
ties: 

(Dl) For all A, B c R5 d(A u B) = d(A) + d(B) - d(A n B) (finite additivity). 

(D2) For all A c Rs d(A) = d(A+), where- A+ is the "successor set" defined by 
A+ E {crk : cvk~'1 e A} (translation invariance). 

Subsequent successor sets to A will be denoted by 

A+h = (A+h-l )+ = {oTk: crk-h e A}a 

Notice that A+ = vA and A+h = rhA. Note also that (D2) implies that d(A) = 
d(A+h) for all h = 2 , 3, 4, ..., and that d(A) = 0 if A is finite [since d(R) = 

1]-
Naturally., the natural density satisfies (Dl) and (D2) . 

We remark that any density defined on an algebra of subsets of R which 
includes the single point sets, {crk} for each k = 0, 19 25 ..., and which sat-
isfies (Dl) and (D2), can be extended to all subsets of R. We presume that any 
density considered in Theorems I and II is defined on the entire power set. 
Also, since finite sets and sets of density zero are unimportant in the sequel, 
we adopt the following definitions: 

If A, B c Rs say 

(i) A =d B if and only if d(A) = d(A n B) = d(B), and 
(ii) A cd B if and only if d{A) = d(A n B) < d(B). 

Theorem I: For any density d on R which satisfies properties (Dl) and (D2), 

d(RW) = log10(~-^). 

Proof of Theorem I: There are two key observations to be made about the first 
digit sets, f?(£). The first observation is that 

i?(l) =d i?(10) u i?(ll) u R(12) u ••• u i?(19) 

=d R(100) u i?(101) u ••• u i?(199), 

i?(2) =d i?(20) u i?(21) u ••• u i?(29) 

=d i?(200) u i?(201) u • • • u i?(299) , 

etc. Since R = i?(l) u i?(2) u • • • u i?(9) and R(j) n i?(£) = 0 for 1 < j < U 9, 
it follows that 

E d(R(j)) = 1 for fc = 0, 1, 2, ... . (1) 

,;= io* 

The second key observation concerns the successor sets of the first digit 

sets. In the case in which c and r are integers, they have the form: 
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THE FIRST DIGIT PROPERTY FOR EXPONENTIAL SEQUENCES 

i?(l)+ =d R(r) u R(r + 1) u • • • u i?(2p - 1) 

i?(2) + =d i?(2p) u i?(2p + 1) u ••• u R(3r - 1) 

(£+l)p-l 

RW+ =d U *(J). (2) 
Then 

(£+l)r-l 
d(R(l)) = E d(2?(j)) for I = 1, 2, 3, ... . (3) 

j = lr 

The idea of the proof is to tie together formula (1) and formula (3). However, 
if the decimal expansion of P does not terminate, R(r) is no longer a well-
defined object; thus, before proceeding further, it is necessary to generalize 
the notion of first digit sets. 

If 1 < x < y < 10^, define 

R{x9 y) = {u e R i x < 10 u < y for some integer j} . 

Note that i?(£) = i?(£, I + 1) . 
For notational simplicity, assume r < 10. Otherwise, in what follows re-

place P by P, defined by 

7 = ri<rllog"I,], 

where the brackets denote the greatest integer function, e.g. s [3.76] = 3. Then 

i?(l, P) + =d R(r9 p 2 ) , i?(l, p) + ?> =d f?(r\ P h + 1 ) , 

and equation (2) generalizes to 

i?(a?, z/)+ = R(xr9 yr). (4) 

By assumption (D2) of translation invariance, 

m - l m - 1 

md{R(l9 r)) = E ^(#CU *0+^) = E d(R(rh
9 rh+1)). (5) 

ft= 0 fe= 0 

By assumption (Dl) of finite additivity, and the fact that P < 10, 

d(i?(l, P ) ) + d(i?(r, P 2 ) ) + ••• + ^(i?^- 1, rm)) 
[rl - 1 

= E d(RW) + ^(i?([pm], Pm)). (6) 

£= 1 

Combining equations (1), (5), and (6) yields 
[r*] - 1 

[md(i?(l, P ) ) ] = E d(R(i)) + d(i?([pm], Pm)) = [m log10r]. (7) 
£= 1 

Since equation (7) must be true for any choice of m9 it follows that 

d(fl(l, r)) = log10r. 
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THE FIRST DIGIT PROPERTY FOR EXPONENTIAL SEQUENCES 

Now let 1 < x < 10. We show that d(R(l9 r)) = d(R(x9 xr)) . 

Case 1: 1 < r < x < 10. 

<Z(i?(l, a?)) = d(i?(l, P ) ) + d(R(rs x)) 
and 

d(R(r9 rx)) = d(i?(r, a;)) + d(R(x9 xr)). 

By (D2), d(i?(l5 a;)) = d(R(r9 rx)) 9 so the result follows. 

Case 2: 1 < x < r < 10. 

Again using d(R(l9 x)) = d(R(r9 rx)) 9 we have 

<f(i?(l, r) = d(i?(l, x)) + d(i?(a;, P ) ) 

= d(R(r9 rx)) + d(R(x9 r)) = d(R(x9 rx)). 

Hence, by repeated use of (D2) 9 

log10P = d(i?(l, P ) ) = d(R(xrJ'9 xrj + 1)) for any j > 0, 

so that 
w -1 

md(R(l9 r)) = £ d(R(xrJ9 xrJ + 1 ) ) 9 
j=o 

from which i t fo l lows t h a t 
[xr-]- 1 

md(R(l9 r)) + d ( i ? ( l , x ) ) = £ d(RW) + ^ ( [ a a ? 7 7 7 ] , X2^) ) , 
e= I 

which implies 

[TH log1QP + d(i?(l, a?))] = [m log1QP + logiox]. 

Thus 

d(R(l, x)) = log10ar. 

Since d(R(x9 y)) = d(i?(10Jxs 10J'z/)) by the definition of R(x, 
integers J, the results 

d(R(x9 y)) = logl0(z//x) for 1 < a: < z/ < 10a? 

and 

d(i?(£)) = log10(^p-) 

follow easily from equation (8) and assumption (Dl). Q.E.D. 

Now consider real numbers c and r as above and real numbers a^ 
1 9 2 5 ...5 such that ak = o(rk). Define 

E = {ek = (crk + ak) : k = 0S 1, 2S ...}, 
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THE FIRST DIGIT PROPERTY FOR EXPONENTIAL SEQUENCES 

and a corresponding set 

RE = {{ek - ak) :/c = 0, 1, 2, ...}. 

Define a bijective function f : E -* RE by 

f(ek) = ek - ak = cr*. 

Let the sets E(x9 y), E(l)9 RE(x9 y)9 RE(l) be defined as above. 
Assumptions (Dl) and (D2) , and the notions of a successor set, =d , and c^ 

all extend to E in a natural fashion (although it is no longer true that A+ = 
vA for the successor set of A c E). Sets of type E include linear recursive 
sequences of the form 

+ avw. k^n-k 

whenever the characteristic equation has a unique highest root. In particular, 
the classic Fibonacci numbers {0, 1, 19 2, 3, 5, 8, ...} occur when 

1 1 + \/5 1 ( I + V5\k 

No te that log ( -z j is indeed irrational. 

Theorem M: Let d be a density on E satisfying assumptions (Dl) and (D2) , as 
they extend to E. Then 

d(E(i)) = i o g i o ( i i l ) . 

Proof of Theorem I I: The density d gives rise to a corresponding density dR on 
RE9 defined by 

dR(A) = dif'HA)) for A c RE. 

Theorem I applies to dR. 
Since ak - o(rk)9 it is evident that, for any e > 0, 

f~1{RE{x + e9 y - e)) cd E(x9 y) cd rx{RE{x - e, y + e)). 

Hence 

logio(^Tr) = ̂ ^ ^ + £' y " e> < ̂ ^ ^ - e, y + e)) = iogio(|-±-|) 

and the result follows. Q.E.D. 

These results can also be obtained using the measure-theoretic techniques 
developed in [1], For a review of the literature on the First Digit Problem, 
see [5]. It should be noted that the base 10 logarithmic behavior is due to 
the convention of writing numbers in decimal form. If the numbers were written 
in base b9 then 

d(PW) = log^J^p-). 
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THE FIRST DIGIT PROPERTY FOR EXPONENTIAL SEQUENCES 

Another example of a density which satisfies (Dl) and (D2) is the loga-
rithmic density 

l̂og <4) = lim 

£ X(fe; A) 
k = l Z-T 

n i 

Like the natural density, there exist sets which do not have logarithmic den-
sity. The logarithmic density agrees with the natural density wherever the 
natural density exists, but there are sets which have logarithmic density which 
do not have natural density. This raises the following questions: Does every 
density which satisfies (Dl) and (D2) agree with the natural density on sets 
which have natural density? with the logarithmic density? with other summabil-
ity methods? 
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GENERALIZED ZIGZAG POLYNOMIALS 

A . F. HORADAM 
University of New England, Armidale, Australia 

(Submitted July 1983) 

1. INTRODUCTION 

The purpose of this paper is to extend and generalize the results established 
in [5] for a category of polynomials described therein as "zigzag." These 
arise in a specified way from a given polynomial sequence generated by a sec-
ond-order recurrence relation. 

Consider the sequence of polynomials {Wn(x)} defined by the second-order 
recurrence relation 

tf„ + 2(*) = kxWn + 1(x) + mWn(x) in > 0) (1.1) 

with initial values 

WQ(x) = h, W±(x) = kx9 (1.2) 

wherein h, k9 and m are real numbers, usually integers. 
We have represented these polynomials in abbreviated form by Wn(x) though 

the parametric symbolism Wn(h, kx; kx, m) more fully describes them. Note that 
a characteristic feature of the definition (1.1) and (1.2) is that the initial 
value W1(x) = kx in (1.2) must be the same as the coefficient of Wn + x(x) in the 
recurrence (1.1). 

Standard methods enable us to derive the generating function for {Wn(x)}, 
namely, 

L Wn(x)tn = {h + kx(l - h)t}[l - (kxt + rnt2)]'1 (1 .3 ) 

n = 0 

o r , e q u i v a l e n t l y , 

lLWn + 1(x)tn = {kx + mht)[l - (kxt + mt2)]'1. (1 .3 ) ' 
n = 0 

An explicit form of Wn(x) (n ^ 2) is, in the usual notation, 

Wn(x) = fcr £ (n ~ \ ~ ^mHkx)"-1-2' +mh h (* " 2 " ^ ( t o ) * - 2 " 2 * . 
i=o \ ^ I i = 0

 v *" ' 
(1.4) 

This formula will be essential when we prove (3.3). 
At this point, we stress that Wn(h, kx; kx, m) defined above is a polyno-

mial variation of the Wn(a9 b; p, q) , wherein a - h, b = p = kx, q = m, whose 
basic and special properties have been discussed in [7] and [8]. Therefore, no 
further consideration of its salient features is required here. 

Special cases of Wn(h, kx; kx, m) which interest us are (when la = 2 ) : 
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GENERALIZED ZIGZAG POLYNOMIALS 

POLYNOMIALS 

Lucas 
Pe Il-Lucas 
Chebyshev (2nd kind) 
Fermat 

2 
2 
2 
2 

1 
2 
2 
1 

1 
1 

-1 
-2 

(1.5) 

More will be said about these special cases in Section 4, 

2. RISING DIAGONAL ZIGZAG POLYNOMIALS 

The first few members of the polynomial set {Wn(x)} are, from (1.1) with (1.2): 

Table 1. Rising Diagonal Zigzag Polynomials for {Wn(x)} 

WQ{x) * K M * > 
/ Z2{x) 

W±(x) = kx / z^(x) 

W2{x) = {kx)2 + mh 

W3(x) = {kx)3+mh(kx) + m(kx) 

Wk(x) = (kx)1* + mh(kx)2 + 2m(kx)2 + m2h 

W5{x) = {kx)5 + mh{kx) 3 + 3m(kx)3 + 2m2h{kx) 

y 
m2(kx) 

Z7(x) 
/ ZB{x) 
y ZAX) 

( 2 . 1 ) 

Z i o W W6{x) = {kx)6 + mh{kxY + km(kxY + 3m2h{kx)2 + 3m2 {kx)2 + m3h 

W7(x) = (kx)7 + mh(kx)5 + 5m(kx)5 + ^m2h(kx)3 + 6m2 {kx)3 + 3m3h(kx) + m3 (kx)' 

WQ(x) = (kx)B + mh(kx)6 + 6m(kx)E- + 5m2h(kx)L> + 10m2 (kx) ** + 6m3h(kx) 2 + km3 (kx) 2 + mHh 
/ / / ' 

In Table 1, pair terms in columns 2 and 35 columns 4 and 59 . .., to form 
the rising diagonal generalized zigzag polynomials Zn(x) as indicated by the 
lines, beginning with ZQ(x) = h. For example, some of these generalized zigzag 
polynomials are: 

}(x) = h9 Z±(x) = kx, Z?(x) = (kx): Z3(x) = (kx)6 + mh, 

,Zh(x) (kx)1* + mk (kx) + m(kx). Z5(x) (kx)5 + mh(kx)2+ 2m(kx): (2.2) 

,Z6(x) = (kx)6 + mh(kx)3 + 3m(kx)3 + m2h9 

Previously, in [5], we mentioned that the virtue of the pairing technique 
by which the zigzag polynomials are produced is that specializations may be 
readily obtained. In the case of Table 1 this is achieved by the amalgamation 
of corresponding elements in appropriate pairs of columns. 

For example, the rising diagonal polynomials for Pell-Lucas polynomials 
(1.5) , already given in [5], are obtained by adding like terms in columns 2 and 
3, columns 4 and 5, ... (as appropriate), in Table 1 when h=29k=2,m=l3 
to give, for instance, the special expression for Z (x) in (2.2) as 

64^6 4- 40x3 + 2 

(which is the polynomial r (x) in [5])« 
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GENERALIZED ZIGZAG POLYNOMIALS 

Correspondinglys for the Fermat polynomials (1.5) the rising diagonal poly-
nomial is x6 - IQjr3 + 8 (represented in [3] by R!(x))« 

Before proceeding to establish some properties of Zn(x)9 we introduce the 
companion polynomials Xn(x) 9 defined by 

Xn(x) — Zn(x) (2.3) 
h= 1 

i.e.9 Xn(x) are the rising diagonal zigzag polynomials of the set of polynomi-
als {Wn(x)} defined in (1.1) for which h = 1. 

Thuss if we consider the four special cases of Wn(23 kx; kx9 m) which are 
listed in (1.5) s yielding particular instances of the Zn(x) when In - 2 [the 
polynomials Yn(x) defined in (2.11) below)9 then the corresponding polynomials 
Xn (x) are associated with the four special cases of Wn(l9 kx; kxs m) corre-
sponding to those in (1.5)9 but with h = 1. These are the Fibonacci polynomi-
als , the Pell polynomials, the Chebyshev polynomials of the first kind, and. the 
companion Fermat polynomials ("Fermat polynomials of the first kindlf)9 respec-
tively. 

From (2.2) and (2.3) we have the expressions for the simplest polynomials 
Xn (x): 

(XQ(x) = 1, X±(x) = kx9 X2(x) = (kx)2, X3(x) = (kx)3 + m9 

}x^(x) = (kx)h + 2m(kx)9 X5(x) = (kx)5 + 3m(kx)2
9 (2.4) 

(x (x) = (kx)s + bm(kx)3 + m2
9 ... . 

The recurrence relation, the generating function9 and the explicit form 
for Xn(x) corresponding to (2.5)-(2.7), and the differential equations corre-
sponding to (2.8) and (2.9) which Xn(x) satisfy9 may all be readily derived by 
simple substitution. 

Following procedures already established in [5]9 we derive9 without much 
effort, the results exhibited below. 

RECURRENCE RELATION 

Zn(x) = kxZn_i(x) + mZn_3(x) (n > 3) (2.5) 

GENERATING FUNCTION 

oo 

E z . W t " " 1 = (tec + mhtz)[l - (kxt + mt3)]-1 = Z(x9 t) ( 2 .6 ) 
n = l 

EXPLICIT FORM 

M * ) = *» E ( n " L. " U)mi(kx)n~1-U + mh £ (n ~ 3 " U)mHkx)n-3-H 

DIFFERENTIAL EQUATIONS ( n ^ 3 ) ( 2 ' 7 ^ 

kt-^Z(x, t)- (kx + 3mt2)-^Z(x, t) = k{ (2h- 3)mt2 - kx}[l - (kxt + mt3)]-1 

(2 .8 ) 

kx-£zn + 2(x) + 2m-^Zn(x) = k{(n - DZn + 2(x) + 3Xn + 2(x)} (2 .9 ) 
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GENERALIZED ZIGZAG POLYNOMIALS 

Alternative and equivalent forms exist in some of the above results. For 
example9 the bracketed factor on the right-hand side of (2.9) may be equally 
well expressed as 

(n + 2)Zn + 2(x) - 3m(h - l)Xn_1(x)B 

The equality of these two forms arises from the relationship 

Zn(x) = Xn(x) + m(h - l)Xn_3(x) (n > 3), (2.10) 

which may be readily demonstrated. Substitution of In = 1 in (2.10) produces 
Zn(x) - Xn(x), of course, in accord with (2.3). 

Another alternative expression occurs in the right-hand side of (2.8), 
which can be made to simplify to k{2Z(x9 t) - 3X(x5 t)} where the symbol 

X(xs t) = Z(xs t) 

by 

h= l 

Next, for completion, we introduce the related polynomial Yn(x), defined 

Yn(x) = Zn(x) 
l/z = 2 

i.e., the Yn(x) are the particular cases of Zn(x) occurring when h = 2. 
Expressions for some of the Yn(x) are, by (2.2) and (2.11): 

(2.11) 

(?0(x) = 2, Y1(x) = kx3 Y2(x) = (Joe)2, Y3 (x) = (fee)3 + 2m, 

O^te) = (fcr)1* + 3w(^) 9 Y5(a0 = (fee)5 + 477?(te)2, (2.12) 

(l6(^) = (kx)6 + 5m(kx)3 + 2m2
 s ..., 

whence, by (2.4) and (2.12), 

Yn(*) = *„(*) + mXn_3(x)» (2.13) 

Corresponding to (2.5)-(2.9), the recurrence relation, the generating 
function, and the explicit form for Yn(x), along with the differential equa-
tions satisfied by Yn(x), are easily deducible. 

Subtraction of (2.13) from (2.10) reveals that 

Zn(x) = Yn(x) + m(h - 2)Xn_3(x). (2.14) 

When h = 2, (2.14) leads to Zn(x) = Yn(x) in accord with (2.11). 

3. DESCENDING DIAGONAL ZIGZAG POLYNOMIALS 

Re-organize the material in Table 1, as indicated in Table 2 below, to produce 
the descending diagonal generalized zigzag polynomialst 
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Table 2. Descending Diagonal Zigzag Polynomials for {Wn(x)} 

(3.1) [ WQ OB) 

Wx On) 

W2 OB) 

^ 3 On) 

Wk OB) 

W5 OB) 

tf6 (ar) 

V7(ar) 

^ 8 <*> 

= (J<x)\+mhOix) + m(fec) \ 

= (kx)*<*-mh(kx)2 + 2m(kx)2s+m2h s20c) 

= (to)5
N+w^(to)3 + 3m(fcc)3

si-2OT2^(fcc) + m 2 ( t o ) \ 

= (to)6
N+w/zte)it + 4/72(to)^3m2^(to)2+ 3m2(fcc)2\J- m3h z3(x) 

= (fcc)7
N+^(to)5 + 5m(to)5

sf-4m2^(fcc)3+ 6m2 (kx)3^-3m3h(kx) + ms (kx) \ 

- (fcc)8
N+772^(to)6 + 6m(to)6^5m2^(to)l t+ 10w2 ( t o ) 1 ^ 6m*h(kB)2 + 4m3 (kx)\+mLih 

Designate these polynomials by zn(x). Then, as we learned from experience 
to expectj we derive the relatively simple expressions 

(zQ(x) = h9 z±(x) = to + mh9 z2(x) = (/or + mh)(kx + m), 

L f r ) = (to + mh) (kx + 77?) 29 s. (x) = (to + mh)(kx + m ) 3 , 
(3.2) 

J3 

and in general 

3M(a?) = (to + ?rzft)(to + m ) n _ 1 (ft = 1, 2, 3, . . . ) , (3.3) 

so that 

z (x) 

^r = kx + mh- (3-4) 

As result (3.3) is crucial9 we proceed to demonstrate its validity. 

Proof of (3-3): Temporarily, write Wn(x) = kxP(x) + mhQ(x) in (1.4), wherein 
P(x) and Q(x) stand for the appropriate summations. 

Let typical values of i in P(x) and Q(x) be represented by p and q respec-
tively ( p = 0 , 1, ..., n - 1; q = 0, 1, ..., n - 1). 

Each value of n in the Wn(x) giving rise to a specified zn(x) in Table 2 
requires a pair of values (p, g). 

For 

Wn(x), ^+1fo)» ^n + 2 ( ^ ) ' •••» ^ 2 r c - l ^ ' ^ n ^ ' ' 

these are 

(0, - ) , (1, 0), (2, 1), ..., (ft - 1, n - 2), (-, ft - 1), 

respectively, in which the dash (-) signifies nonoccurrence. 
Then, from (1.4), we have, after the necessary simplifications: 
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^ z + 

= (kx + rrih) (kx + m)n"1. 

The generating function for zn(x) (n > 0) is 

z(x9 £) = £ zn(x)tn~1 = (kx + mh)[l - (kx + m)t\ 
n = 1 

(3.5) 

Differential equations satisfied by the descending diagonal zigzag poly-
nomials are, from (3.3) and (3.5), 

and 

kt-7r-z(x9 t) - (kx -+- 777)-Tc— (x, t) + k -pj -—^r- z(x, t) = 0 
dt 6x (kx + mh) 

(kx + m)-rzn(x) - k(n - l)zn(x) - k(kx + m)n = 0. dx 

(3.6) 

(3.7) 

Just as we have the specialized forms (2.3) and (2.11) of Zn(x) occurring 
when h = 1 and h = 2 respectively, so we have the specialized forms of zn(x): 

xn(x) = zn(x) 
and 

h= 1 

and 

yn(x) = zn(x)\ 

Consequently, 

xn(x) - (kx + m)n 

y (x) = (kx + 2m) (kx + m)n 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Result (3.7) may then, by (3.10), have the factor of k in the last term 
replaced by xn(x). 

Obviously, (3.10) and (3.11) together yield 

x„(x) kx + m 

and 

y (x) kx + 2m 

yn(x) = mxn_1(x) + xn(x). 

(3.12) 

(3.13) 
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4. SPECIAL CASES 

Recall that our generalization in this paper relates specifically to the situ-
ations in which 

W1(x) = kx = the coefficient of Wn+1(x) in the definition (1.1). 

This leads to some interesting and familiar polynomials which have been listed 
in (1.5). 

Details concerning the results for the rising and descending diagonal 
polynomials cataloged in (1.5) are to be found in a chain of papers in the fol-
lowing sources: 

POLYNOMIAL REFERENCE 

(Lucas [2] 
Well-Lucas [5] f£ n 
\Chebyshev [1], [3], [10] ^ } 

{Fermat [3], [4] 

where the reference numbers are those in the bibliographical references below. 
Results for these specialized polynomials should be compared with the 

corresponding generalized results in this paper. Allowance musts however, be 
duly made on occasion for slight variations in notation, especially where these 
involve the initial conditions. 

These principles are now carefully illustrated for the case of the Fermat 
polynomials ("of the second kind") in (1.5) for which h = 2. The companion 
Fermat polynomials ("of the first kind") for which h = 1 will also be required. 
In the illustration, we verify that equation (2.8) above does indeed reduce to 
equation (39) in [4] for the Fermat polynomials. 

Illustration (Fermat Polynomials): For the Fermat polynomials we have, by sub-
stitution in (2.6), 

Y = Y(x, t) = (x - 4t2)[l- (xt - 2£3)]"1 

= Y1(x) + Y2(x)t + Y3(x)t2 + ••-, (4.2) 
and 

X = X(x9 t) = (x - 2t2)[l- (xt - It3)]'1 

= X1(x) + X2(x)t + Xs(x)t2 + ••', (4.3) 

using a simplified notation™ 
Now in [3] and [4] the following notation was employed [wherein the dash 

(') does not indicate differentiation]: 

R = [1- (xt - 2t3)]-1 - R±(x) + R2(x)t + R3(x)t2 + ••• = R(xs t); (4.4) 

i?> = (1 - 2t3)[l- (xt - 2t3)]"1 = 1 + R2(x)t + R3(x)t2 + " • E i?' (x, £). 
(4.5) 

But 

Xn(x) = Rn + 1(x) (4.6) 
and 

Yn(x) = R^ + 1(x). (4.7) 
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Hence (4.2)-(4.7) give 

y - R ~ l 

X T~ (4-8) 
and 

J i?' - 1 
t 

Substitution in (2.8) from (1.5) for Fermat polynomials leads to 

t||- (x - 6t 2)|| = (-x - 2t2)[l- (xt - 2t3)]'1, 

i.e., by (4.9), 

K i f r - ^ - 1 ) - (x~ 6*2)fr = (~x - 2 t 2 ) t i - f e t - 2t 3 ) ] - i
9 

t ^ - (x - 6t2)^r = t(-x - 2t2)[l- (xt - It2)]-1 + i?» - 1 

= -6t2[l- (xt - 2t3)]"1 

= 3(i?' - i?) by (4.4) and (4.5). 

This is equation (39) in [4], which we set out to verify. 

In addition to the comments preceding the illustration, we remark that 
corresponding properties are developed for the polynomials Wn(2, px; px9 q) in 
[4], while in [6] and [9] analogous properties of the Gegenbauer polynomials, 
which are closely related to the Chebyshev polynomials, are investigated. 
(Brief mention is also made in [4] of the generalized Humbert polynomial of 
which the Gegenbauer and Chebyshev polynomials are particular cases.) 

Some interesting number sequences result if appropriate values of a; (e.g., 
x = -**>, x =1) are substituted in the various rising and descending diagonal 
polynomials discussed in the above papers. 

Thus, we have presented a summary and a synthesis of the basic thrust of 
the material in papers [l]-[6] and [9] by the author, along with that in [10] 
by Jaiswal. 

5- POSSIBLE EXTENSIONS 

One would like to be able to extend some of the ideas which have been applied 
in this paper to recurrence relations of higher order, particularly to the case 
of third-order recurrence relations .^^In order to produce thermost^worthwhile 
results, it would be necessary td^choose the most fertile initial polynomials 
(including constants) to generate the required polynomial set. 

Given such a fruitful selection of initial conditions, it might be possi-
ble to discover some geometrical results in three dimensions (Euclidean space) 
which would be analogous to, or extensions of, similar results about circles 
(in the Euclidean plane) by the author in other papers which are not lasted in 
the References. These investigations could be extended to three-dimensional 
surfaces corresponding to the conies in the plane. 

Hopefully (if tediously), such considerations could be further extended to 
hyper-surfaces in multi-dimensional Euclidean space. 
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SUMMATION OF RECIPROCAL SERIES OF NUMERICAL FUNCTIONS 
OF SECOND ORDER 

BLAGOJ S. POPOV 
University "Kiril i Metodij/' Skopje, Yugoslavia 

(Submitted September 1983) 

This paper is an extension of the results of G. E. Bergum and V. E. Hoggatt9 
Jr. [1] concerning the problem of summation of reciprocals of products of 
Fibonacci and Lucas polynomials™ The method used here will also allow us to 
generalize some formulas of R. Backstrom [2] related to sums of reciprocal 
series of Fibonacci and Lucas numbers. 

1 

The general numerical functions of second order which, following the notation 
of Horadam [3]9 we write as {wn(a5 b; ps q)} may be defined by 

wn = pwn_± - qwn_2$ n > 29 w0 = a9 w1 = b5 
with 

wn = wn(a9 b; p, q) s 

where a and b are arbitrary integers, 
We are interested in the sequences 

un = wn(0s 1; p9 q) (!) 
and 

vn = wn(29 p; p5 q) (2) 

that can be expressed in the form 

u n = ^ ^ , » > 1 , (3) 
n a - 3 

and 
vn = an + 3n> n > 1, (4) 

where 

a = (p + Vp2 - 4q)/2s g = (p - Vp2 - 4^)/29 a + 3 = P* ag = qs 

and a - 3 = 6 = A -

Using (3) and (4) 9 we obtain 

2an = vn + 6un 

and 
4 a m + n = ^ ^ + t\umUn + 6 ( u m y n + UmVn)s 

from which it follows that 

U8 + PVB ~ UsVs + v = 2c?Sur> ( 5 ) 
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and 

Vs+rVs ~ &UsUs + r = 2q8VP. (6) 

From r e l a t i o n ( 5 ) , we have 

v, vaA 
Ua Ua 

= 2q* 

If we replace s here by s, s + P, s + 2P, . .., s + (n - 1)P, successively, 
and add the results, we obtain, due to the telescoping effect, 

sn(p, q; p, s ) = E - — = I — - - — ) — s — 
fc=l Ms + ( / < - l ) r u s + f c r \ w s us+nrl2qbUr 

UrUsUs + n p 

Similarly, again using (5), we also have 

On(p9 q; P , s ) = E 
Vt k=l us + {k-l)rus+kr V^ ~ U s + wr ^ /2<7 S 2qsuT urVsVs+? 

Because 

l im 

and 
n + °° U-n + I 

l im 

" P , | B / a | < 1 

| a / g | < 1, 

f a ^ / C a 2 - q)9 | g / a | < 1 

U'-^/CB2 - q), |a/B| < 1, 
we o b t a i n 

5 ( p , <?; P , s ) = £ 
7(k- l ) p 

/ c = l Ws + ( / c « i ) r W s + fo 

-, | 3 / a | < 1 

r (p , q; r, s) = £ 7(fc- D^1 

fc = l ^ s + C f e - D r ^ s + fcr 

In particular, with r = s, we have 

M r V 

a1"3 

2 
a - q 

g l - e 

e 2 - < ? 

| U , / p 

1 
u p y s 

1 
W^S 

, |B/a| < 1 

, |a/B| < 1. 

5(p, 4; P, p) 

(7) 

(8) 

(9) 

(10) 

(11) 
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and 

0(p9 q; r , r ) 
a ' / J a ^ - q2r)s |B/a| < 1 

&*/&** - q2r)> | a /g | < 1. 
(12) 

3. SPECIAL CASES 

It is not difficult to obtain the formulas of Bergum and Hoggatt from (9) and 
(10). Indeed, if we let p = x and q - -1 in (1) and (2), these relations de-
fine the sequences of the Fibonacci polynomials {Fk(x)}™ and the Lucas poly-
nomials {Lk(x)}k=1, In this case, 

where 

i(x) = (x + Vx2 + 4)/2, 6(a?) = (x - Vi2 + 4)/2, 

-1 < a (a?) < 1 and @(#) > 1 when a? > 0, 

0 < a (a:) < 1 and &(x) < 1 when x < 0. 

Hences (9) and (10) become 

r__l 

lor 
£(#, -1; r9 s) = lim Sn(xs -1; r9 s) = 

1 

as(x) Fv(x)Fs{x) 

1 1 
g8(a?) Fp(x)Fs(x) 

•, x > 0 9 

•9 x < 0 9 

(13) 

and 

a(x9 -1; r, s) = lim a„0c, -1; rs s) = 

a1"8 (a;) 

1 + a 2 Or) Fp(x)Ls(a?) 
-, x > 0 

(14) 

1 + 3z(x) Fr(x)LAx) 
, x < 0. 

Comparing the results of Bergum and Hoggatt [1, p. 149, formulas (9) and 
(17)] with our (13) and (14) above, we find that 

and 
U(q9 a, b, x) = {-l)hFk{x)Fq (x)S(xs -1; q9 b) 

V(qs a, b9 x) = (-l)bFk(x)Fq (x) (x2 + 4)aGc,.-1; q9 i), 

(15) 

(16) 

when q = b ~ a + k. 
As particular cases, we give: 

1 

and 

S(x. - 1 ; 2, 2) = E ^ ^ ^ ^ 

crfe, - 1 ; 2, 2) = £ -r-y- r-y 

f$2(x)/x2
5 x > 09 

a 2 f e ) / x 2 , aj < 0, 

a2(x)/(a8(x) - 1), J: > 0, 

B2te)/(e8(*) - 1), x < 0. 
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Using the relat ions (5) and (6) with u_n = -q~nun and v_n = q^nvn, we have 

Then, by the method used to obtain (7), we have 

1 U(n+l)r jkr 

A £ (17) 
U(2k-h l ) r + 2.3 ^ Ur 

so t h a t 

A E 
7s + kr 

k = 0 7 , _ ^ s + fcr7, 

Similarly, from 

y2r + (?p"sy25 = vr_svr + i 

using (8) we obtain 

-, |3/ot| < 1, 

-, Iot/3 I < I -

(18) 

1 u(n+l)r 

s + 1/(<7 - 3 r )w r y s , | e / a | < 1, rs + kr 

k = 0 + kr^ 
V(2k+l)r+2s + <l Vv [us+1/(q " ar)urvsi | a / 6 | < 1. 

(19) 

(20) 

In particular, if we put p = -q = 1 in (17)-(20), we obtain the formulas 
of Backstrom [2] concerning the Lucas numbers. These are 

k = 0^(2k+ l)r+ 2s + ^ r 

and 

1 £(n+l)r 
*>F F F , s odd, 

1 F(n + l)r 

fe = o £ ( 2 f c + l ) r + 2 s + L r 

FrLg £(„ + 1 ) 2 , + i 
, s even, 

i—y—jiiTv sodd-
v's - l \ s 1 

( ^ ) - , s even, 

where p is an even integer satisfying -r ^ 2s ̂  r - 2. 
We notice that, from 

w* - ̂ - ^ = uv_sur + s 

it follows that 
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v ± 
{2k - l)r+ s n v 

and 
Q2(n-l)r 

V -
k=l u 2 - n s + 2A:P 7 ,2 U(2k- l)r+s 4 Uv 

Similarly9 

n 02(k-l)r 
A \ " -

k = l 7 ) 2 . . . - „s+2kr, ,2 

Sn(ps q; 2PS s) (21) 

($s/u2rus* | 3/ot| < 1, 

[as/w2pwsS |a/g| < 1. 

= Sn(p5 q; 2r9 s). 
y(2fc- 1 ) P + S <7 
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METRIC THEORY OF PIERCE EXPANSIONS 

J . 0 . SHALL1T 
University of Chicago, Chicago, IL 60637 

(Submitted October 1983) 

1. INTRODUCTION 

It is well known that every real number admits an essentially unique expansion 
as a continued fraction in the form 

a, + 1 a2 + .--

where the at- are positive integers (except for aQ, which maybe negative or 0) . 
Many mathematicians have been interested in the length of such expres-

sions; in particulars if x = p/q is rational, the expansion terminates with an 
as the last partial quotients and it is not difficult to show that 

n = 0(log q). 

See, for example, [14]'. This type of result is of particular interest because 
continued fractions are closely linked to Euclid*s algorithm to compute the 
greatest common divisor. 

Another question that has received attention is how the a^ are related to 
x, in particular, by equating probabilities with Lebesgue measure, we can con-
sider the a^ - a^(x) to be random variables, and ask: 

1. How are the a^(x) distributed? What are the means and variances of 
these distributions? 

2. Are the a^{x) independent, or "almost" independent? What does the 
distribution of a^(x) look like as i -> °°? 

We could also restate these questions in terms of iteration of an appro-
priate function. For example, if 

1 
1 

al ' 1 
a + 

2 s + ••• 

- and gW = - - _! 
X 

then it is easy to see that 

1 g(x) 
a9 

so that g(x) may be viewed as a "shift" operator. Here [x\ is the greatest 
integer function. 

This so-called "metric theory" of continued fractions has been studied 
extensively by Kuzmin [16], Levy [17], Khintchine [12], and others. 
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We can ask similar questions of other algorithms for expressing real num-
bers. Engelfs series 

was investigated thoroughly by Erdos, Renyi, and Sziisz [7], and later by Renyi 
[21] and Deheuvels [5]. 

Cantor's product 

\ ajl a2 / \ a3 / 

was investigated by Renyi [22]. 
There are also results for Sylvester's series [7] and other expansions of 

Cantor. For a summary of some of these resultss see [9]. 
The subject of this paper is an expansion that has not received much 

attention; it is of the form 

x . ± - ^ . + - i CD 

and is due to Pierce [19], who briefly examined its properties. Remez [20] 
attributes the expansion to M. V. Ostrogradskij and proves some elementary re-
sults. There are some metric theory results in [24], but they do not overlap 
with our results. We call an expansion of the form (1) a Pierce expansion, and 
in this paper we will demonstrate a connection between these expansions and 
Stirling numbers of the first kind. We obtain some new identities for Stirling 
numbers, and give a new derivation of a series for C(3). We discuss the dis-
tribution of the a^ = a^(x)s and the behavior of the related function 

f(x) = 1 mod x = 1 - x[l/x\9 

where by a mod b we mean a - b[a/b\. 
We also obtain some results on the lengths of finite Pierce expansions. 

2. ELEMENTARY CONSIDERATIONS 

In this section, we sketch some of the simple properties of Pierce expansions. 
The proofs are easy and all details are not given. 

Any real number x e (0, 1] can be written uniquely in the form 

X = H " e 8 (2) 
ai ci-la1 a±a2a3 

where the a^ form a strictly increasing sequence of positive integers, and the 
expansion may or may not terminate. If the expansion does terminate with 

(-l)n+1 

as the last term, we impose the additional restriction 
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This is to ensure uniqueness, since we could write 1/k as 

1 1 
k - 1 (k - l)k' 
We will sometimes abbreviate the expansion (2) as 

x = {a19 a2, a3, ...} 

where appropriate. 
Given a real number x9 we can obtain the terms of the Pierce expansion 

using the following algorithm: 

[Pierce expansion algorithm]: Given a real number x e (0, 1] , this algorithm 
produces the sequence of a^ such that x = {cc19 CL2, .«.}. 

P1 . [I ni t ial ize] . Set xQ *- x, set i <- 1. 

P2. [Iterate]. Set a^ «- [l/x._1J; set x^ <- 1 - ^^i_1-

P3. [All done?]. If x^ = 0, stop. Otherwise set i <- i + 1 and return to P2. 

If we run this algorithm on the rational number x - p/q9 it is easy to see 
that in step P2 we sill replace p by q mod p; this is less than p, and so even-
tually x^-0 and the algorithm terminates. On the other hand, if the algorithm 
terminates, we have 

x = {al9 a2, ..., an} 

and so x must be rational. 
(This argument provides simple irrationality proofs for some numbers of 

interest. For example, using the Taylor series for ex, sin x9 and cos x9 we 
find: 

1 _ e~l/a = {a, 2a, 3a, 4a, ...}, 

sin(l/a) = {a, 6a2, 20a2, 42a2, ...}, 

cos(l/a) = {1, 2a2, 12a2, 30a2, ...}. 

Since the expansions do not terminate, these functions take irrational values 
for any positive integer a.) 

Now choose x uniformly from (0, 1], and let Pr[X = o] be the probability 
that the random variable X equals c (thinking of probability as Lebesgue meas-
ure) . Let 

x = {a1$ a2, ...} 

be the Pierce expansion of x. Then 

Theorem 1: 

Pr[ai = b19 a2 = b29 ..., an = bn] = j - r -
^ J b1b2 ..- bn(bn + 1) 

Proof: Let b19 ...9bn be chosen. Now it is easy to see that the numbers whose 
expansions begin {bl9 Z?2, ..., bn} form a half-open interval whose endpoints 
are the two numbers 
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and 
x1 = {bl5 b2S ..., bn_l9 bn + 1}. 

(The first point is included9 but the second is not.) The measure of this in-
terval is just 

l I 1 
1 1 2l b±b2 ... bn(bn + 1) 

and the result follows. 

Theorem 2: 

Pr[an + 1 = k\ar - -n - 3 + l 

(Compare this with the result in [7] for Engelfs series,) 

Proof: To prove this9 we show it is true for all x that have Pierce expansions 
that begin {b15 b2* •••» ^n.ls j} where the b-i are specified constants. Then 

Pr[an+1 = k\ax = b19 .«*s an_x = bn_19 an = j] 

__ Pr[ax = 2^, .... £„_, = \_ 1 9 an = j , an + 1 = fe] 

Pr[ax = ZPI3 ..., a n - 1 = bn_1$ an = j] 

Now this conditional probability is the SAME for any specified prefix b1$ 
bn_1; hence9 it is equal to 

J + 1 
k(k + 1) 

if the bi are left unspecified. In particular^ the conditional probability in 
this theorem shows that the ai = a^ (x), considered as a sequence of random 
variabless form a homogeneous Markov chain. 

Theorem 3: 

o r 7 1 LnJ 
P r K = k] = (fe + 1 } , 

where is a Stirling number of the first kind. See9 e.g., [14] or [11]. 

Proof: By Theorem 19 we can compute the measure of the set of x whose Pierce ex-
pansions begin with a specified prefix. Let us fix an = k, and sum over all 
possible prefixes9 i.e., all strictly increasing sequences of positive integers 
of length n whose largest element is k. 

p*-[an = k] = J^ a1a2 • • • an ±k(k + 1) 
Kax< '•'<an_1<k (continued) 
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J _ 1 T ^ TW 
M°k(k+ 1) ~ f l c { 1 . 2 , e . . * 

\A\=n-l \B\=k-n 
i c u . 2 ? . , a - i } ™ ' *<* + 1} = B C { I , 2 ? . , k-i}« - 1 ) ! " * < * + 1} 

Yl n5 
(fc + l ) ! S C { i , 2 , T r ' . , k-i} 

\B\ =k-n 

and the proof is now complete if we observe that the sum over the product of 
elements of B is in fact the coefficient of xn in the polynomial 

x{x + 1) (x + 2) • • • (x + k - 1) 

which is just L a Stirling number of the first kind. 

(Some brief comments about the notation: in the proof above, A and B axe. 
sets. \ A \ is the cardinality of A. The sum is over all subsets with specified 
cardinality, and IL4 means the product of all elements in A,) 

We get two interesting corollaries: using a theorem of Jordan [11] we can 
estimate the distribution of the an. We have 

and so we get 

Pr\a « kl ~ O-ogfr + Yr- 1 
rrLan KJ ^(k + l)(n - 1)! 

where n is fixed and k -*• °°  and y is Euler's constant. Compare this with the 
similar result of Bekessy [2] for Engel?s series. More detailed asymptotic 
results can be obtained by using the results of Moser and Wyman [18]. 

Also, we observe that the events an = 1, an = 2, ... are all disjoint and 
exhaust the space of events. Therefore, 

, [k
n] 

k?o <* + 1) ! "
 l' (3) 

which is another derivation of the formula due to Jordan [11, p. 165]. 
In the next section, we derive some results on series involving Stirling 

numbers. 

3. IDENTITIES ON STIRLING NUMBERS 

Theorem k: 

[i] _ 4T- = £(w + 1) 

where £(&) is Riemann's zeta function. 

Proof: This is a result due to Jordan [11, pp. 164, 194, 339], 
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Theorem 5-

Proof: The proof of the first equality is just formula (3) above * To verify 
the second9 we use induction on j s holding n fixed. It is easy to verify the 
case j = 1. Now assume true for j; we show the identity holds for j + 1. We 
have 

1 V 1 LttJ a i f fji 

PI 
Now s u b t r a c t -r-.—;—T-T-T from both s i d e s t o g e t : ( j + 1) ! 

A (* + 1)! \ j ! - t - iUJ / (J + 1) 

\U + Di ^ / B J ) + ((«/ + Di f? ! UJ) " (J + i)! 

(J + 1) ! ̂ A L i J ~ [i ~ J + U J j " (J + 1) ! 
i f r«7 + n 

(J + D'itTiL i Js 

where we have used telescoping cancellation and the well-known identity on 
Stirling numbers 

m - p v}-i i j -
This completes the proof of Theorem 5» This is apparently a new identity on 
Stirling numbers. 

Michael Luby made the following clever observation (personal communica-
tion) : It is possible to prove Theorem 5 without the use of inductions by In-
terpreting the left and right sides combinatoriallys in terms of the an* The 
left sides in fact* is just 

Pr[an > j] 

while the right side can be shown to be 

Pr[(ax > j) or (a± < j and a2 > j) or (a19 a2 < j and a3 > j) • • • ] . 
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Theorem 6: 

\k] 
f g(fc)(fc+ 1)t - ?(2) + t(3) + ••• + C(n + 1) 

where #(fe) is the &th harmonic number, 

JJ(fe) = l + | + V " + f 

Proof: 

fc-

PI 

where we have used Theorems 4 and 5. 

The author would like to express his thanks to Richard Fateman and the 
Vaxima version of the MA.CSYMA computer algebra system—an early version of 
Theorem 6 was suggested by experimentation with Vaxima! 

Theorem 7: 

Proof: See [11, p. 339]. 

We can now give a new derivation of a formula for £(3) due to Briggs et 
al. [3]. Noting that 

[*] = H(k - l)(fe - D! 
we get ,-_ 

or, adding T^ —r- to both sides, we get 
k = i k 3 

2C(3) = E ^ ' 
k= 1 K 

Many similar formulas can be given; for example, by appealing to Theorem 6, we 
can obtain 

f. g(fc)(g(fe - 1) - 1) _ r n l 

fc~! fc<fc + 1) " C W < 

See also [4], [10], [13], and [23]. 

BOi - 1) 
k2 

28 [Feb. 



METRIC THEORY OF PIERCE EXPANSIONS 

Theorem 8: 

PI 
gm + D-(, + 1)T 

Proof: 

yE(k + n ["J _ f "f11 ["] 

. r*i pi 

= 1 +
i? i J -?r( j + D! n + 1 

In the next section, we use these identities on Stirling numbers to derive 
estimates for the expected value and variance of quantities connected with an. 

h« EXPECTED VALUES AND VARIANCES 

We will use E[X] and Var[X] for the expected value and variance of the 
random variable X. 

We are interested in how the an are distributed. However, the an are dis-
tributed such that E[an] = °°  for every ne It is reasonable to expect that the 
quantity log an rather than an gives more information. 

Theorem 9: 

(a) E[H(an)] = c(2) + C(3) + ••• + £(n + D 

(b) E [ l o g an] = n + 1 - y + 0(2~n) 

Proof: 

ra (a) E[H(an)] = £ g(fc)(fe + 1)! = C(2) + C(3) + '" + C(" + 1} 

using Theorem 6. 

(b) To prove part (b) we use the famous estimate 

H(k) = log k + Y + o(£), 
and therefore, using Theorems 6 and 7, 

E[log a J - E[5(a„)] - y + ° (E[^J) 

= C(2) + S(3) +-•• + C(n + 1) - y + 0(C(w + 1) - 1). 
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Now it is easily shown that 

C(2) + 5(3) + ••• + C(fc) = k + 6(2-*) (4) 
and 

e(fc) - i + e(2~fe); 

so, by substitutions we obtain the desired result. 

Similar techniques allow us to calculate the variance, 

Theorem 10: 

(a) Var[#(an)] - n + 0(1) 

(b) Var[log an] * n + 0(1) 

Proof: We find first that p,-, p*-. 

(a) £[*<*„)*] = £*(*>* ̂ i J ^ = £ ( .E^f^ + ^JT^IJT 

_ A / 2g(j - 1) 1 \ A LnJ 

where we have used the fact that 

HU)Z - HU - I)2 + md •" X) + -^ 
t/ J 

and Theorem 5. Note that H(0) = 0 by definition* 
On the other hand9 we have already seen that 

PI PI 
and therefore9 

tffiWft • A«+'+0(r"1)) • ^+ 0 < 1 ) -
Hence9 we f ind 

/SWAB]-»••*•• »«>• 
The left side of this equation looks very much like the right side of equation 
(5). In fact9 it is easy to show that their difference is bounded by a con-
stant that is independent of n, We have 

M^^ • * - m ) AAK] ^ ( ^ ^ + ? - m ) «> 
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Now the sum on the right side of (6) can be computed exactly: 

y (2HU - 1 ) J_ _ 2ff(j)\ = A /2ff(j - 1) , _i_ _ 2HU - D _ 2 \ 
A \ -7 i2 3 + x / J - I V ^ i 2 '̂ + x <?0' + i ) / 

= Y (2Hti - 1) _1__ _ 2 \ 

- C(2) - 0(1). 

Thus, we conclude that 

ElH(an)2] = n2 + 3n + (9(1). 

On the other hand9 from Theorem 9* we see that 

E2[#(an)] = n2 + In + 1 + 0(n2~n) 

and therefore, 

Var[ff(a„)] - n + 0(1) 

which is the desired result* 

(b) To prove part (b)» we use the fact that 

H(k) = log k + 0(1) 
to get 

Var[log an] = Var[tf(a„)] + 0(¥ar[l]) = n + 0(1). 

This completes the proof. 

In a similar fashion, we can obtain theorems about the expected values of 
various functions of the an» We give some unusual examples* 

Let f(x) = 1 mod x = 1 - x[l/x\. Then it is easy to see that if 

x = {alS a2$ ..„} 
then 

/(a?) = {a2§ a3* ...}. 

Let us write f^2\x) = f(f(x))s etc. Then we have 

Theorem 11: 

E[/(n)Gr)] «1( M+ 1 - c(2) - C(3) - • • • - C(n + D) - 9(2"^2) 

Proof: Suppose an = k. What is the expected value of f^n\x)2 If we restrict 
our attention to the half-open interval that contains all numbers whose Pierce 
expansions begin 
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{al5 a2$ ..., an_l9 k}, 

then it is easily seen that f^n\x) is linear on this interval. The minimum and 
maximum values that f^n\x) attains are 0 and l/(k + 1) respectively; hence the 
expected value of f^n\x) on this specified interval is l/[2(/c + 1)]. But this 
is independent of the choice, of a19 a2, ..., <zn_i» hence the expected value of 
f(n)(x) given that an = k is l/[2(& + 1)]. Therefore, 

PI / PI 

= |(n + 1 - 5(2) - CO) - •-• - C(n + 1)), 

where we have used Theorems 7 and 8. 
From equation (4), this quantity is 0(2"n+2)9 and the proof is complete. 

It is of some interest to note that Theorem 11 is a generalization of a 
result of Dirichlet [6]. He stated that 

n 
k = l LK- 12 * 

We can derive this easily. From Theorem 11, we have 

TT(2 - £(2)) = n I 1 mod x dx = I n mod nx dx = — I n mod x dx 
2 Jo Jo nJo 

i rn i r 
= — I n - xln/xldx = n J xln/xldx, 

nJQ
 nJo 

and we get the desired result by approximating the integral with a sum. 

Theorem 12: 

k=lak 

converges for almost all x (i.e.9 for all but a set of measure 0). The expected 
value of the sum is 1. The set of exceptions 

flJU diverges 
k 

is uncountable and dense. 

Proof: From Theorem 7, we have 

E[J_] - c ( „ + i ) . i < 2 i - » . 

and it is easily seen that the variance Var is also < 21~n. 
L^nJ 

32 [Feb. 



METRIC THEORY OF PIERCE EXPANSIONS 

Then, by Chebyshev?s inequality, 

Pr ol-n > y-nIk 
- n i l 

Now, by the Borel-Cantelli lemma, with probability 1 only finitely many of the 
events 

1 _ o l - n ~ > p - n / 4 

occurj and so the series converges almost everywhere. 
We also have 

k=l an 
E (e(fc + i) - i) = l. 

k = l 

(See, e.g., [11, p. 340].) This proves the result on the expected value. 
Now we show that the set of exceptions is uncountable. Let the real num-

ber x in the interval (0, 1) be written in base two notation, 

where each e^ = 1 or 0. Then associate with each such x the real number whose 
Pierce expansion is given by 

h(x) = |l + e19 3 + e2, 5 + e3, ...I. 

Then each of these numbers h(x) is distinct by the uniqueness of Pierce expan-
sions, and for each h(x) we have 

n i n i 

k= l a k k=l LK 

and so the series diverges. 
The proof that the set of exceptions is dense is left to the reader. 

Theorem 13: 

E / (fc)(*) 
k = l 

converges for almost all x. The expected value of the sum is y~ « 
of exceptions 

—. The set 

£ f (x) diverges 
k = l 

is uncountable and dense. 

Proof: We prove only the result on the expected value, leaving the rest to the 
reader. 

:\ t f{k\x) 
lk = l 

= E 4(k + i - E a j ) = f E i - E (c(J) - i) 
J = 2 ,7 = 2 

(con t inued) 
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i t ( . -"t '£^)- |£( i -£ lH;_lf-) 
I v- V 1 = I V 1 y 1 = I y 1 

=|(C(2) - 1), 

which is the desired result. 

5. DISTRIBUTION OF THE an: METHOD OF RENYI 

So far we have shown that log an has an expected value that tends to n + 1 - y 
as n approaches °°. We have also seen that the variance is small. In fact5 it 
is possible to prove much stronger results; for example9 that 

lim a1/n = e 
n + °°  

for almost all x. We will use a method employed by Renyi in his analysis of 
Engelfs series [21]. We start by identifying some new random variables and we 
show they are independent. 

Define 

f N (l if k appears in the Pierce expansion of xs 
K (0 otherwise. 

Then we have 

Theorem 14: E[ek(x)] 
kwi -^Tl 

Proof: 

[n] 1 E[ek(x)] - ^ — j - — = (k + i)f ̂ [J - {k +"1}! ^ T T T T 9 

since the events a^ - k and a^ = ft are disjoint if i ^ j. 

Theorem 15: The random variables ek(x) are independent. 

Proof: Let 

^1 = l9 "̂2 = 2 9 -••9 &n = ®n 

represent an assignment of O's and l?s for the values of e^. Let hi (Ki<fc) 
be such that 6^ = 1 and all other values of 6j are 0. Without loss of gener-
ality, assume that 6n = 1. Then the probability that the events 

£1 = 6 l' Cl = 6 2 5 "••» Cn = 6 n 

simultaneously occur is just the probability that the Pierce expansion for x 
begins 2? , Z?2s ...9 bk, which we have seen is equal to 

1 
b1b2 --• bk{bk + 1) " 
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On the other hands we have 

Pr[ef - SA 

Let us compute 

n p r [ £ i = SA. 

\ ^ 
U + i 

1 

U +1 

if 5; - 0S 

if 6̂  = 1. 

(7) 

In the numerator of (7) we have those i corresponding to the 6̂  that equal 
0; in the denominator we have (n + 1)!. By canceling in the numerator and de-
nominators we see that the value of the product (7) is just 

1 
b±b2 bk(bk + 1) * 

which shows the independence of the e^ 
It is also easy to see that 

Var[e, ] 1 1 

k + 1 (k + I)2 

Now9 let \lN = VN(x) denote the number of terms of the sequence an = an{x) 
that are < N. In other words, put 

N 

k = 1 

Then we see immediately that 

E[y 
and 

*1 %? 1 ^TT= l o ^ + Y - 1 + 0 ( l ) 
Var[^] - & (*77 " T ^ M " log " + Y - T + °(i) 
We can prove the strong law of large numbers for the random variables ek* 

We need the following general form of this law [21]: 

If £i» 525 oo* a r e independent nonnegative random variables with finite 
expectation Ek = E[£fc] and variance Ffe = Var[£fc] and if putting 

one 

and 

AN -

has 

lim 
PJ+co 

also 

N 

• E 

A N = 

£* 

: OO 

»-i ^ 
<«. 
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then with probability 1 we have 
N 

k= l 
l±tn~A = 1-

The conditions of this theorem are fulfilled for £fc = e^, since 

1 _ 1 
^ N + 1 N + l2 

^ = i(log ^ + y - 1) 

converges by comparison with the integral 

1 7 -1 dx f-
J x(log 2?) 2 log X 
Thus we obtain 

Theorem 16: For almost all x we have 

lim 
/-«, log tf + Y - 1 

Using ya = n5 we obtain 

lim a3 ,1/n _ 

for almost all x. 
[We can easily get a similar result for iterates of f(x) = 1 mod x. Since 

T V - < /(n)<*> < 1 
1 + an+l 

we find 

llm(/<n><a;))1"'=i 

for almost all a;.] 
We can use Ljapunov?s condition [8] to obtain a central limit theorem for 

the a„. We have 

and 
Ete*3] = 

E[e£] 
Var[y f c ] 

1 
A: + 1 

i s b o u n d e d . A l s o VVar []ik] -> «>. H e n c e , we f i n d 

Theorem 17: 
' u j - l o g ff 1 

Vlog 71/ J 

36 
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Now, noting that 

Pr[\iN < n] = Pr[an > N] 9 

we see that an equivalent statement of Theorem 17 is 

"log an - n 
lim Pr 

Vn 
< y $(2/). 

As a corollary, we get 

Lim V -£* ta 
_(/c + 1)! $(B) - $(a). 

This is similar to the result 

k= logn + RVlogn 
iim y a = $(g) - $(a) 

/c = log n + avlog n 

g i v e n i n [ 8 ] . 
Similarly, as the conditions given by Kolmogoroff [15] for the law of the 

iterated logarithm are fulfilled for the variables ek, we get 

Theorem 18: For almost all x9 

\iN - l o g N 
l i m s u p ~ ~ I I I I I I I Z I I Z I Z Z Z Z Z Z Z Z Z Z Z Z : = 1 

N^°° V2 l o g N • l o g l o g l o g N 

and 

l i m i n f 
y^ - log N 

N^°° A/2 l o g N • l o g l o g l o g N 

or, stated equivalently, 

log an - n 
lim sup 

and 

lim inf 

y/ln • log log n 

log an - n 

log log n 

SOME RESULTS ON FINITE PIERCE EXPANSIONS 

In [7], Erdos et al. put E1(a9 b) = n, where 

a 1 . 1 . 1 

?1<?2 ••• ^n 

(an expansion into Engel's series) and ask for a nontrivial estimation of 
E1(a9 b). 

1986] 37 



METRIC THEORY OF PIERCE EXPANSIONS 

We prove two results on the length of finite Pierce expansions. Unfortu-
nately, it does not seem possible to use our techniques for Engel*s series. 

Let us put L(p, q) = n, where 

P = J L _ + . . . , (-Dw+1 

q ax a1a2 a1a1 — an ' 

Then we have 

Theorem 19: L(p9 q) < iVq. 

Proof: Let us write 

P _ r , 
t<3, , CL2 s ... 9 u-^J 

and, as in the Pierce Expansion Algorithm, put p = p and 

ct = U/p.J, 

p. , = <? - a.p. . 

Without loss of generality, we may assume that a± = 1. For otherwise we have 

^ " ^ - I T 

which is a longer Pierce expansion. 
Then suppose p ^ an. Since dnpn = qs we have a n ^ vq. But the a^ are" 

strictly increasing, so n < v^. 
Now suppose pn K an. Since the p. are strictly decreasing, and the a^ are 

strictly increasing, we see that p^ - a^ is a strictly decreasing sequence. 
But p - a1 ^ 0 since a2 = 1, and pn - an < 0 by hypothesis. Hence, there must 
be a unique subscript ?c such that 

pv - ap > 0 
but 

z - cr < 0. 
*fc + l fc + i 

Then, since p . a. K. q for all i, we see that 

az, < Jq and p < y/q. 

By the monotonicity of these sequences, we see that k ^ vq and n - k < vq. We 
add these inequalities to get n < 2v^, which is the desired result. 

Unfortunately, this bound is not very tight. For example, 

Y~ = {1, 2, 3, 4, 5, 10, 11, 14, 17, 61, 67, 123, 148, 247, 371, 743}. 

This is the longest Pierce expansion with q <1000. We see that n- 16, but our 
estimate guarantees just n </54. 

It seems likely that L(p, q) = C(log q); we cannot expect a much better 
lower bound. For example, we have the following theorem. 

Theorem 20: There exist infinitely many a with L(p, a) > -z ~-"— . 
^ ^ ^ log log a 
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Proof: The proof is constructive * Let q = nl5 and set 

P \ 2! + 3! + nl )m 

Then we have 

— = {15 2, 3S ..., n - 35 n - 2S n}s 

and therefore9 L(p3 q) ~ n - 1. 
However, it is easily shown thats for n sufficiently large9 

- \ log nl 
n - 1 > -z f r 

log log nl and. the desired result easily follows. 
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NEWTON'S METHOD AND SIMPLE CONTINUED FRACTIONS 

MICHAEL FiLASETA 
University of South Carolina,, Columbia, SC 29208 

(Submitted January 1984) 

1 . INTRODUCTION 

Let. N be a pos i t ive integer that i s not a perfect square. The Newton approxi-
mations to }/N wi l l be obtained by fixing xQ and se t t ing 

xn+i = (*» + N)/(2xn). 

For example3 one possible list of Newton approximations to Vz is 

xQ = 1, x1 = 3/2, x2 - 17/12, ̂ 3 - 577/408, . .. . 

Let (aQ, a±s a23 ...) represent the simple continued fraction for VN with aQ, 
a1s a2, ... as partial quotients. Designate on = pn/qns (pn9 qn) - ls as the 
nth convergent of the continued fraction for VN, Thus9 for example, v2 = (1, 
25 2g ...) has convergents 

oQ = 1, c± = 3/2, c2 = 7/5, <?3 = 17/12, ch = 41/29, 

c5 = 99/70, o6 = 239/169, o? = 577/408, . s „ . 

Comparing the two lists of approximations, we see that each of the Newton ap-
proximations obtained in the manner above is a convergent of the continued 
fraction for in fact, it appears that xn = £2n-i°  This is indeed the case 
and follows from Theorem 1 below (cf. [1, p. 468], [2], [3], [4]). We give a 
proof which appears to be simpler than those in the literature. 

Theorem 1: If the continued fraction for /N has period ks then for any positive 
integer m9 Newtonfs method applied to emk-i results in C2mk~±° 

Proof: The sth positive solution to the equation x2 - Ny2 = ±1 can be found in 
the following two ways! 

(I) Write (P&_:L + ^%£~i) S i n t n e f o r m u + ^ ' where u and v are inte-
gers; then (x9 y) = (u* v) is the sth solution. 

(II) Calculate csk_1; then (psk_1^ <7s£_i) i s t n e
 sth solution, 

Letting s = 2m gives 

V , + VNq 7 = t(p7 + y/Nq, )m}2 = Cp 7 + v ^ . ) 2 

^2mk~l H2mk-\ ^k-1 ^k-1 ^mk-1 ^mk-1 
= p2

7 + fc27 + V^(2p a ) 
« ^ ^mk-l ^mk-l cmk -lnmk~l 

so that 

p 7 A? 7 = (p27 + M?2
7 )/(2p <y ), 

finishing the proofs 
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From Theorem ls we see that whenever the continued fraction for vN has 
period ones Newton1s method applied to a convergent of the continued fraction 
tor results in a convergent. An identical result holds when the continued 
fraction for V^ has period two and follows as a corollary of the next theorem 
which we state without proof (cf. [3]). 

Theorem 2: If the continued fraction for \/N has an even period k~2r9 then for 
any positive integer m9 Newton's method applied to cmr_1 results in c2mT-\« 

We now know that if the continued fraction for vN has period one or twos 
and if xQ is a convergent of the continued fraction for vN9 then we can con-
clude that all the successive approximations xn are convergents of the contin-
ued fraction for vN. The following example shows that the conclusion, is pos-
sible even when x0 is rational but not a convergent. Let N = 2 and xQ = 2 ; 
then we have x1 = 3/29 x2 = 17/12, x3 = 577/408s ... which results in the same 
sequence we had with XQ = 1. In the next two sections3 we shall examine more' 
closely the connection between Newton approximations and convergents in the 
cases when the continued fraction for has period one or two. 

2. CONTINUED FRACTION FOR V^ WITH PERIOD ONE 

If the continued fraction for has period one9 we can tell for what rational 
xQ the sequence {xn} of Newton approximations to vN contains convergents and 
how many xn are convergents. We note that if xQ = N/cm9 then 

x± = (x2
Q + N)/(2x0) = ({N/cJ2 + N)/(2N/cJ = (c2 + N)/(2cm)9 

which is the same Newton approximation obtained if XQ = cm. Since xn+1 depends 
only on xn (and N) 9 we see that the entire sequence {xn}™=1 of Newton approxi-
mations to is the same whether we begin with x0 = cm or xQ = N/om, This 
explains why we get the same Newton approximations to v2 when we begin with 
# 0 = 1 and when we begin with xQ = 2. 

Theorem 3: If the continued fraction for vN has period one and if {xn}n = i is 
the sequence of Newton approximations to VJV beg inning with any rational number 
XQ ^ 09 then either {xn} consists entirely of convergents or {xn} contains no 
convergents at all. Furthermores {xn} consists entirely of convergents if and 
only if xQ is a convergent or N times the reciprocal of a convergent. 

Proof: We have already seen that if xQ = om or N/cm for some nonnegative inte-
ger ms then {#n}^=1 consists entirely of convergents; therefore9 it suffices 
to show that if xQ is neither cm nor N/cm for any m9 then {xn} contains no con-
vergents. We begin with such an xQ and prove by induction that every subsequent 
Newton approximation is of the same form. This is clearly the case if x0 < 09 
since for such an xQ we have {xn} contains only negative numbers. Now consider 
x0 > 0. Suppose that we have shown that xn is neither om nor N/om for any m. 
Then 

xn + 1 = (x2 + N)/(2xn)9 

which is equivalent to 

< - 2*n+lXn + * = 0 (1) 
or 

*n =*n + l
 ± <*n + 1 ™ N)1'2 . (2) 
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Assume xn + 1 = cm for some nonnegative integer m« Since xQ is rational and 
therefore real, so is xn9 whence, by (2), xn+1 > V^N; this means that xn + 1 must 
be an odd convergent. By Theorem 1, taking k = 1, we see that Newton?s method 
applied to cn/2 results in xn+1» Consequently, Newton's method applied to 
N/on/2 also results in^n+1„ Since vf is irrational, cn/2 ^N/cn/2° Hence, 
°nii a n d N/°n/2 m u s t b e t n e t w o distinct roots of (1) so that, contrary to the 
induction hypothesis, xn = cn/2 or N/en/2* 

Assume now that xn + 1 = N/om for some m. Then (2) becomes 

xn = N/cm ± ({N(Nq2
m - p2)}1/2/pm)e (3) 

Since xn is rational, we must have {N(Nq2 - p^)}1/2 rational. But the contin-
ued fraction for V^N has period one, so that Nq2

m - p2 = ±1, and therefore, 

MWlm ~ &1'2 = i±N}1/2
s 

which is not rational* Hence, xn+1 + N/em for any m, completing the proof, 

3. CONTINUED FRACTION FOR V^ WITH PERIOD TWO 

When the continued fraction for VN has period two, a theorem analogous to The-
orem 3 does not exist. To see this, consider N = 12 and xQ = 6. We have 

/L2 = (3, 2, 6, 2, 6, . . . ) , 

with convergents 3, 7/2, 45/13, .. . , so that x0 is not a convergent,, Also, 
x0 = 12/2 so that x0 is not l2/am for any #7, But 

(62 + 12)/(2 • 6) = 12/3 - 12/o0 

which means, by an argument similar to that used at the beginning of Section 2, 
Newton!s method applied twice to x0 yields a convergent, namely o1 = 7/2. We 
shall see, in fact, that there are infinitely many N such that the continued 
fraction for vN has period two and^ for some rational x0 that is neither a om 
nor an N/cm$ the resulting sequence {xn} contains infinitely many convergents. 
On the other hand, we shall see that there are infinitely many N such that the 
continued fraction for VN has period two and, for any rational xQ that is nei-
ther a om nor an N/em§ the resulting sequence {xn} contains no convergents. 
Before we begin, we note that some of the results of Section 2 carry over imme-
diately into this section, namely Newtonfs method applied to cm is identical to 
Newton?s method applied to N/cms and the first part of the induction proof for 
Theorem 3 works here by using Theorem 2 rather than Theorem 1. 

Theorem k: Let S be the set of all s = kx2 or hkx2 where x2 - ky2 = 1 for some 
positive integers x9 y9 and k. If N e S s then the continued fraction for VN 
has period two and there is a rational xQ not of the form cm or N/om such that 
the sequence {xn} of Newton approximations to VN, beginning with xQ9 contains 
infinitely many convergents. Also, if N $ S and the continued fraction for VN 
has period two, then for any rational x0 that is neither a om nor an N/cms the 
resulting sequence contains no convergents. 

Proof: Let T be the set of all N such that the continued fraction for \/N has 
period two and, for any rational xQ not of the type om or N/cm$ the resulting 
sequence {xn} of Newton approximations to VN3 beginning with xQ9 contains no 
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convergent of the continued fraction for Consider some N such that the 
continued fraction for JN has period two. We show first that N t T if and only 
{N(N - p2)}1/2 is rational. Assume {N(N - p02)}1/2 is rational* Set 

x0 = N/c0 ± ({N(N - pg)}1/2/p0)e (4) 

Since q0 = 1, (4) is precisely (3) with n = m = 0, Thus, x± = N/cQ« Since the 
continued fraction for has period two, there are positive integers a and b 
such that b\2a9 N = a2 + (2a/b) and y/N = (a, £>, 2a, £>, 2a, . . . ) , so the first 
two convergents of the continued fraction for VN are a and (ab + l)/b, Also, 
^x = N/oQ = (a 2+ 2a/b)/a = (afc + 2)lb. Thus, xx is not a convergent. There-
fore9 x0

 i s different from om and ^/cOT for all m9 but the sequence {xn} con-
tains infinitely many convergents of the continued fraction for VN9 namely all 
xk for k > 2. Thus, N f T» 

Now assume {#(# - p^)}1^2 is not rational* Suppose xn is the nth Newton 
approximation to VN starting from some rational xQ and is given by (2) and (3) 
where xn + 1 = N/om for some m. From (2) and the fact that xn is rational, we 
have that xn + 1 > VN so that om K VN and m is even. Thus, 

so that by (3), 

xn = N/om ± ({N(N - p2)}1/2/pm), 

which is not rational by assumption, giving a contradiction. The induction 
argument given in the proof of Theorem 3 now works here, and we may conclude 
that N e T9 which finishes what we first set out to show. 

To complete the proof of the theorem we need only show that the continued 
fraction for %/N has period two and {N(N - pi)}1 is rational if and only if 
N e S* Consider N such that the continued fraction for VN has period two and 
write, as before, N = a2 + (2alb) where b\(2a). Assume that {N(N - p2.)}1'2 is 
rational. We have N - p\ = N - a2 = 2a/b so that N(N - p2) = N(2a/b) = d2 for 
some positive integer d. Then we consider two possible cases. 

Case 1. b is odd. 

Here b\a. Set a1 = alb so that N = b2a2 + 2a1. Therefore, 

a72 = 2a\(b2a1 + 2). (5) 

Thus, a-L is even and (2a1)\d. Writing a± = 2a2 and d - 2a1d1* (5) becomes 

d\ - a2b2 = 1, 

and, therefore, 

N = b2a\ + 2a1 = 4a2(£2a2 + 1) = 4a2d72. 

Hence, N e $. 

Case 2. 2? is even. 

Here b - 2b19 where b±\a9 so that a = Z?1a1 and d = ̂ d^ for some integers 
a-i and Jx with 
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d\ - aj>\ = 1. (6) 

We conclude that N = b\a\ + a± = a^d\ and, therefore, N e S. 

Now suppose N e S. Then N = kkx2 or kx2 for some positive integers x, y, 
and k such that x2 - ky2 = 1. 

Case 1. N = kkx2 . 

Here s e t a = 2ky and b = y. Then 

a2 + (2a/fc) = kk(ky2 + 1) = 4fcr2 = 71/ and fc|(2a). 

A l s o , Z> ^ 2a , s i n c e z/ < kky. Thus, the cont inued f r a c t i o n for v̂ 7 has pe r iod 
two. A l s o , we ge t /l/(/l? - p2,) = (kkx)2. 

Case 2 . 21/ = /ex2. 

Here set a = ky and b = 2y. Then a2 + (2a/b) = N and 2?|2a, so that the 
continued fraction for VN has period two (note that b + 2a since x2 - y2 £ 1). 
Also, N(N - p2) = (kx)2. 

This completes the proof. 

Corollary 1: If the continued fraction for vN has period two and N is square-
free, then N £ S. 

Proof: Suppose N e S. Then N = fer2 or kkx2 for some positive integers x and 
/c. Thus, x = 1 and 1 - % 2 = 1 for some positive integer y9 giving a contra-
diction. 

Corollary 2: If N= (2d)2 + 2, where d is the denominator of an odd convergent 
of the continued fraction for v2, then N £ S. On the other hand, if N = a2 + 2 
for any positive integer a not twice the denominator of an odd convergent of 
the continued fraction for v2, then N £ S. In particular, if N is odd and of 
the form a2 + 2, then N £ S. 

Proof: Consider N = a2 + (2a/b), where b = a. From the proof of Theorem 4, we 
know that N £ S if and only if 2/1/ = N(2a/b) = d\ for some positive integer dx 
if and only if a2 + 2 = 21/ = 2d\ for some positive integer d2 if and only if 
a = 2d for some positive integer d and a72 - 2d2 = 1 if and only if N = a2 + 2, 
where a - 2d and d2/d is an odd convergent of the continued fraction for v2, 
which proves the first part of the corollary. The last statement follows from 
the observation that if N is odd, then a is odd. 

Corollary 3" There exist infinitely many N e S and infinitely many N such that 
the continued fraction for vN has period two and N $ S. 

Proof: Take N of the form a2 + 2, and use Corollary 2. 

Finally, we note that the only N £ S less than 1000 are 

12, 18, 48, 72, 147, 150, 240, 288, 405, 448, 578, 588, 600, 960. 

1986] 45 



NEWTON!S METHOD AND SIMPLE CONTINUED FRACTIONS 

REFERENCES 

1. G. Chrystal. Algebra. 7th ed., Vol. II. New York: Chelsea, 1964. 
2. H. Liberman. "Continued Fractions." Master's thesis. McMaster Univer-

sity, May 1971. 
3. J. Mikusinski. "Sur la mathode dfapproximation de Newton." Ann. Polon. 

Math. 1 (1954):184-194. 
4. A. Sharma. "On Newton's Method of Approximation." Ann. Polon. Math. 6 

(1959):295-300. 

LETTER FROM THE EDITOR 

The editor wishes to express his gratitude to those who have agreed to 
referee papers for The Fibonacci Quarterly during 1986. A complete list of 
these referees will be given in the May 1986 issue. 

G. E. Bergum 

46 [Feb. 



SKEW CIRCULANTS AND THE THEORY OF NUMBERS 
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1. SKEW CIRCULICES AND SKEW DISCRETE FOURIER TRANSFORMS 

The matrices 

x y 

provide a familiar representation of complex numbers x + iy. Let us consider 
the more general matrix 

-x, 

t-3 

, . Xn 

(1) 

where t is a positive integer, and x0, x19 , X + are real numbers. The de-
terminant of X is called a sfcew oivculant by Muir [7, p. 442] and by Davis [1, 
pp. 83-85], and we call X a skew circulix. We can write X in the form 

X = xQI + x±J + +xt_1J" (2) 

where I is the t x t unit matrix and 

J = 

0 
0 

0 
-1 

1 
0 

0 
0 

0 
1 

0 
0 

0 . 
0 . 

0 . 
0 . 

. . 0 

. . 0 

. . 0 

. . 0 

0 
0 

1 
0 

(3) 

Since Jt - -J, it follows that all polynomials in J can be expressed as poly-
nomials of degree at most £ - 1, and every such polynomial is a skew circulix. 
Hence, all skew circulices commute with each other. 

On a point of terminology, a skew circulix is not in general a skew-sym-
metric matrix although it can be. For example, J2 is both a skew circulix and 
a skew-symmetric matrix when t = 4. 
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The eigenvalues of X are 

4 = tv'<28+1) (s - 0, 1, ...,*- 1), (4) 
r- 0 

where j = g^A . By analogy with the discrete Fourier transforms we may call 
the sequence (#J, x\9 ...5xJ"_1) the skew discrete Fourier transform (skew DFT) 
of (x 9 X± , , . . 9 xt _ ) . The eigenvectors of all skew circulices are the col-
umns of the matrix 

Ur(2s+1)} (r, s = 0, 1 * - 1). 

We now list a few further properties of skew circulices to emphasize their 
mathematical respectability. See also Section 4. 

Just as the ordinary discrete Fourier transform is associated with se-
quences of period t9 the skew DFT is associated with sequences of antiperiod t; 
that is, doubly infinite sequences such that xr + t = -xT for all integers r. 
This is so in the sense that, if (xr) has antiperiod t, then the sum (4) is 
unchanged if r runs through any complete set of residues modulo ts not neces-
sarily from 0 to t - 1. Antiperiodicity is a natural concept because, if a 
sequence has period 2t9 it can be readily expressed as the sum of two sequences, 
one with period t and one with antiperiod t. 

The skew DFT has the inversion formula 

V 3=0 

an application of which is mentioned in Section 4. The skew DFT also has the 
convolution property that, if 

t- l 
Zq = E Xryq-r (<? = 0 , 1 , . . . , £ - 1) , 

r= 0 

where either (xr) or (z/p) has antiperiod t9 then 

4 = 4y\ (s = o, i, . . . , t - i ) . • (6) 
Under the same circumstances, and if (xr) is real, the skew DFT of Hrxryq+r is 
^sUs » where the bar denotes complex conjugacy. In particular, the skew DFT of 
YtqXqxq+T is \xl|2 so that, by the inversion formula, we have a "Parseval" for-
mula, 

E < =|Ekll2. (7) 

Exercise: The skew circulant with top row (1, x9 x2, . .., xt~1) is equal to 
(xt + l ) t _ 1 . 

2„ CYCL0T0M0US INTEGERS 

A cyolotomio integer is defined (for example, by Edwards [2, pp. 81-88]) as a 
number of the form 

"Ecru* (a) = e^i/m)9 (8) 
r~ 0 
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where CQ9 O1S . .., em-i a r e ordinary integers9 positive, negative, or zero, and 
where m is prime. However, if we generalize the definition by allowing m to be 
even, and write m = 2£, then (8) becomes 

r= 0 

Accordingly, for any positive integer £, 

'ZXJ* = E'a,^^* , (9) 
2" = 0 ^ = 0 

where each av is an integer, will be called a cyolotomous integer (with respect 
to £). It is cyclotomic with respect to 2£, under the generalized use of the 
expression "cyclotomic." 

When £ = 1, the cyclotomous integers are the ordinary integers, and when 
£ = 2 they are the Gaussian integers (for example, LeVeque [6, pp. 129-131]). 

Definition: We say that £ is ausgezeichnet if the corresponding cyclotomous 
integers are "unique," that is, if the equation 

X> P j r = E M 2 , 

P = 0 r = Q 

i m p l i e s t h a t ar = br ( r = 0 , 1, . . . , £ - 1 ) ; o r , i n o t h e r words , i f 

X X J P = o (io) 

r = 0 

only If ar = 0 ( r = 0 , 1, . . . , £ - 1 ) . 
Theorem 1: The ausgezeichnet integers are the powers of 2, namely 1, 2, 4, 8, 
... . The others are unausgezeichnet. 

Proof: If £ is not a power of 2, then it has an odd factor k > 1. Write £ = 
ek, where 1 < c < £. Then 

0 = 1 + jt = (1 + J-C)(1 „ jo + j2c „ . . . + j&-»°)m 

Therefore, 1 - j c + j 2 c - ... + j(k-i)e ̂ s a CyCiotomous integer that vanishes, 
so £ is unausgezeichnet. 

To prove the theorem for £ = 2n (n = 0, 1, 2, — ) , we note first that the 
result is obvious when n = 0 or 1 (and very easily proved when n = 2), and we 
shall proceed by mathematical induction, assuming n ^ 2, so that £ ̂  4. Our 
inductive assumption is that %£ is ausgezeichnet. 

Suppose that equation (10) is satisfied for some "vector" (aP). Then 

^ 0 + K - at-l)COS f + (a2 " a t - 2 ) C O S f L + '•* 

+ (*Ht-l ~ < V + l > c o s (ht ~t
 1)1T = 0 (11) 

and 
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{a1 + at_1)s±n — + (a2 + at_2)sm — + • • • 

+ K*-i + a^+1)sin fet" 1)1T = 0. (12) 

Equation (11) can be rewritten as 

a0 + (a2 - at_2)cos - ^ + (ah - at_h)cos ~~ + • • -J 

[ IT 3lT 1 

(ax - at_1)cos — + (a3 - at_3)cos — + • • • = 0. (13) 
Now, if m is any positive integer, cos(2rrm/t) is a polynomial in cos(2Tr/t) with 
integer coefficients9 while cos[(2m + l)Tr/t] is of the form 

(2m + 1)TT D cos - — — = R 2TT cos — cos -̂  , (14) 

where i?, with or without a subscripts denotes a rational function (with ra-
tional coefficients), not necessarily the same function on each occasion* 
Equation (14) can be deduced, for example, from Hobson [5, p. 106, formula (6)], 
where in fact the rational function is a polynomial with integral coefficients. 
It then follows from (13) that either both bracketed expressions vanish or else 
cos(7r/t) is a rational function of cos(2Tr/t). Therefore, if we can rule out 
the latter possibility, we see from our inductive hypothesis that 

a0 " ai - at-l " a2 " at-2 - •" = °' ( 1 5 ) 

Similarly, on rewriting (12) as 

(a± + at_1)cos — — ^ — — + • • • + (a^t-1 + a^t+ ̂ cos j = 0, (16) 

we infer that 

ai + at-l = a2 + at-2 = See = °  ( 1 7 ) 

provided, once again, that, when t = 4, 8, 16, . .., 

cos(Tr/£) is not a rational function of COS(2TT/£). (18) 

Thus, if we can prove (18), it will follow that (15) and (17) are both true and, 
therefore, aQ - a± - a2 = • • • = at_1 - 0, which would complete the inductive 
proof of our theorem* It remains to prove statement (18). To do so, we for-
mulate a slightly more general result because the increased generality enables 
the method of induction to work. 

Theorem 2: When t = 2n (n = 2, 3, 4, ...) neither cos(i\/t) nor sin(ir/t) is of 
the form i?[cos(2ir/t) ] . 

For its historical interest, we mention in passing that the product of all 
the cosines is 2/TT, as Francois Viete or Franciscus Vieta, an eminent mathema-
tician, lawyer, and cryptanalyst, discovered in the seventeenth century. (See 
Hobson [5, p. 128] for its proof.) Vieta?s formula is often expressed in the 
form 

1 = ^L. i/2 + V2 . V2 + /^^V2 o 
7T 2 ' 2 2 " 
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Proof of Theorem 2: When £ = 4 , t he r e s u l t i s obvious 9 so we t ake n > 2 and 
proceed by induc t ion* Suppose t h a t c o s ( i r / t ) = P[cos(27i7 t ) ] and t r y t o a r r i v e 
a t a c o n t r a d i c t i o n . The r a t i o n a l func t ion of COS(2TT/£) i s of t h e form 

oQ + o1 cos(2u/t) + • • • + op COS P (2TT/£ ) 

dQ + d± COS(2TT/£) + • • • +-dq COS^(2TT/£) 

P 1 [ c o s ( 4 i r / t ) ] 4- C O S ( 2 T T / £ ) P 2 [ C O S ( 4 T T / £ ) ] 

= P 3 [ c O S ( 4 l T / t ) ] + C O s ( 2 7 T / t ) P j c O s ( 4 7 T / t ) ] * 
\ 

where P , . . . , P 4 a r e polynomials w i th i n t e g e r c o e f f i c i e n t s . [See t h e remarks 
fo l lowing equa t ion ( 1 4 ) . ] Mu l t i p ly t he numerator and denominator by 

P 3 [ C O S ( 4 T T / £ ) ] - cos(2Tr/ t )P l f [cos(47T/t)] 

which, by the i n d u c t i v e h y p o t h e s i s , does no t v a n i s h 9 and we o b t a i n an equa t ion 
of t he form 

c o s ( i r / t ) = P 1 [ c o s ( 4 i T / t ) ] + C O S ( 2 T T / £ ) # 2 [ C O S ( 4 7 T / £ ) ] . 

Squar ing bo th s i d e s g i v e s , a f t e r dropping t he arguments of R and i?2 fo r the 
sake of b r e v i t y 9 

k + k COS(2TT/£) = Rz + [k + k cos cos(2Tr/ t ) i?1P2 . 

However9 by t h e i n d u c t i v e h y p o t h e s i s 9 cos(2iT/t) i s no t a r a t i o n a l f u n c t i o n of 
cos(4 iT/ t ) 9 so 

k = A* + cos 2 (2Tr / t )P 2 

and 

1 = ^ R 2 . 

There fo re 9 

, _ 2 . C O S 2 ( 2 T T / £ ) 
^ - hi + : * 

16P2 

T h e r e f o r e , 
Rt ~ %Rl + j ^ c o s 2 ( 2 T T / t ) = 0. 

T h e r e f o r e , 

P i = k ± V[k ~ k cos2(2n/t) = hi I ± s in (2TT/ t ) ] . 

T h e r e f o r e , s in(2Tr/ t ) i s a r a t i o n a l f unc t i on of cos(47r/£)9 which i s f a l s e by t h e 
i n d u c t i v e h y p o t h e s i s . So c o s ( i r / t ) i s no t a r a t i o n a l f unc t i on of c o s ( 2 i r / t ) . 

S i m i l a r l y , i f s i n ( i r / t ) i s a r a t i o n a l f unc t i on of C O S ( 2 T T / £ ) 9 we have , as 
b e f o r e , i n t u r n 9 

s in(7r/£) = P 3 [ cos (4Tr / t ) ] + cos(2u/t)Rk [cos(4ir /£) ] , 

k - h COS(2TT/£) = R2
3 + [k + k cos (4Tr / t ) ]P 2 + 2 cos(2n/t)R3Rlt, 
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h = R\ + cos2(2iT/t) i?J9 

- 1 = 4 ^ , 
and 

^ = R l + COS2(27T/t) 

and, just as before, we deduce that sin(Tr/t) cannot be a rational function of 
cos(27r/£). This completes the proof of Theorem 2 and hence of Theorem 1. 

Theorem 3- When t is ausgezeichnet, that is, a power of 2, the degree of the 
algebraic integer j is t . 

Proof: By Theorem 1 we know that 0 cannot be expressed as a cyclotomous integer 
other than in the obvious manner; that is, j cannot satisfy an equation of de-
gree t - 1 or less having integral coefficients. But j does satisfy an equa-
tion of degree t, namely j* + 1 = 0, so j is an algebraic integer of degree 
(precisely) t, 

Theorem k: If j is replaced by j 2 s + l in (10), where s is a positive integer, 
then Theorem 1 remains valid. 

To see this, note first that the sequence of complex numbers 

1, J2s+1, J2<2«+1>, ..., j(*-D(2a+l) 

is merely a permutation of the same sequence with s replaced by 0. Hence, the 
substitution leaves the class; of cyclotomous numbers invariant. The remaining 
details of the proofs of Theorems 1 and 2 go through with only trivial changes. 

Theorem 4 shows that the eigenvalues of the integral skew circulix A with 
top row (aQ, ax, ..., <^t_1)9 where the afs are integers, are all uniquely ex-
pressible as cyclotomous integers, when t is a power of 2. These cyclotomous 
integers are called associates of one another and their product is det A9 the 
determinant of A. This determinant is also known as the norm of any one of 
these cyclotomous integers. 

When t = 2, the cyclotomous integers are the Gaussian integers a + ib. 
The associate of a + ib is a - ib and the norm is a2 + b2. The so-called units 
of the ring of Gaussian integers are those whose reciprocals are also Gaussian 
integers, that is, those with norm 1. These units are ±1 and ±i. It is fami-
liar that in the ring of Gaussian integers the "fundamental theorem of arith-
metic" is true, that is, each Gaussian integer has a unique decomposition into 
prime Gaussian integers, apart from units. For a rigorous statement of this 
property, and for its proof, see, for example, Hardy and Wright [4, pp. 184-
186]. 

3. THE CYCLOTOMOUS INTEGERS WHEN t = k 

Hardy and Wright [4, I.e., pp. 280-281] state the fundamental theorem for the 
algebraic integers a + $i + yv2 4- 6iv2, where a and 3 a r e integers and y and 6 
are either both integers or both halves of odd integers. It is readily seen 
that these are the same as the cyclotomous integers corresponding to t = 4, 
namely a + bj + cj2 + dj3, where j = g1^/4 = (1 + i)/Jl. These again are the 
same as the cyclotomic integers corresponding to m = 8, but the cyclotomous 
form has the merit of unique representation. The proof of the fundamental 
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theorem in this case can be obtained along the lines of the proof given in [4* 
§12,8] for the Gaussian integers, which is the case m = 4* But when m = It = 
16s or any higher power of 29 this proof does not works and presumably in these 
cases the decomposition into cyclotomous primes in not unique. 

In the remainder of this section, we assume that t = 4. Let a9 bs e9 and 
d be integers, and let 

A = 

a b e d 
-d a b c 
-a -d a b 
-b -e -d a 

(19) 

Then 

det A = n [a + bj28+l + < ? j 2 ( 2 s + 1 ) + # 3 < 2 * + 1 > ] . 
s = 0 

(20) 

By pairing off the complex conjugate pair of factors with s = 0 and s = 3* and 
the pair with s = 1 and s = 29 we see that 

det A > 0. (21) 

The determinant det A is also called the norm of a + Z?j + cj2+ dj3 and will be 
denoted by N(a9 b5 e9 d). 

The three ways of pairing off the four factors a of (20) (s = 0S 19 2S 3), 
lead naturally to three ways of writing the norm. Thus: 

a\a\ = (a + bj + ej2 + ^73)(a + 2?j3 + ej6 + dj9) 

= a2 - b2 + e2 - d2 + (j + j3)(ad + ab - be + ad) 

= a2 - b2 + e2 - d2 + i\fl(ad + ab - be + cd). 

t „t But a j = a^s a^ = a | s so a\a\ i s t h e complex con juga te of a\a\ and 

tf(a, £9 e9 d) = (a 2 - £>2 + c 2 - d 2 ) 2 + 2{ad + ab - be + ed)2 . (22) 

Again 

ata+ 7 * 1 2 a H 1- ^ i c + 
1/2 

- I a + ——— 1 + hbir) 
a2 + b2 + e2 + d2 + >/2(-ad + ab + be + e d ) , 

and 
(23) tf(a, £* o9 d) = (a 2 + b2 + <?2 + d 2 ) 2 - 2{ad - ab - be - ea)2» 

F i n a l l y , 

a\a\ = (a + 2>j + <?j2 + dj3)(a + £ j 5 + ej10 + d j 1 5 ) 

= [a + ci + j(b + di)][a + ei - j (b + di)] = (a + ei)2 - i(Z? + di)2 

= a2 - a2 + 2bd - £«>2 - d2 - 2ae) . 
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So 

N(a9 b9 o9 d) = (a2 - c2 + 2bd)2 + (b2 - d2 - 2ao)2. (24) 

Exercises: 

(!) N(a9 b9 c9 d) = N-(-a9 -&, -e, -d) = #W» e, 2?, a). 

(II) N(-l9 x- 1, x, x + 1) = (x2 + I)2. [Form N(x9 09 1, 0)ff(0, 1, 1, 1).] 

(Ill) The product of the skew circulices whose top rows are (x9 1*0, 0), 
(xs -1,0,0), (xs 0,0, 1), and (a;, 0,0,-1) is {xh + 1)J. 

(iv) #(#, x, x + 2, x + 3) = 2!/(x + 2, x + 3 , x + 1, x + 1). 

(v) N(ls b5 b$ 0 ) - 1, where b is an integer, is eight times the square 
of the triangular number b(b - l)/2« 

(vf) If a positive integer V is not of the form a2 + 2B2, then v2 is of 
the form h2 + k2 + 2£2, where not more than one of the three terms can vanish,, 
(Hint: Use the equality of (23) and (24) combined with Bachetfs theorem that 
every positive integer is the sum of four squares*] 

Theorem 5: N(a9 b9 o9 d) vanishes only l£a=b=e-d=0* 

For, from (23), N(as b9 c9 d) = 0 implies that 

a2 + b2 + o2 + d2 = ±/2(ad - ab - be - ad). 

Therefore, a + b2 + c2 + d2, being rational, must vanish, and the result fol-
lows. (Exercise: The vattonat skew circulices form a field.) 

Thus, (21) can be sharpened to 

det A > 1. (25) 

The units of the ring of cyclotomous integers (with t = 4) are the solu-
tions of the Diophantine equation 

N(a9 b9 c9 d) = 1. (26) 

We shall adopt the abbreviation (a, b9 c9 d) for the number 

a + bj + cj2 + djs. 

Theorem 6: The units of the ring of cyclotomous integers (with t ~ 4) ares 

±1, ±j, ±£, ±j3 

and 
(e<7n? ±pn, eqn> 0 ) , (0 , e ^ n , ± p n , e q n ) , ( - e q n , 0 , e q n , ±pn) 

and 
(±pn* - e q n 9 0 , eqn) 

where e = 1 or e = -l, and p /^ is the nth convergent in the continued fraction 
for y/2; that is, 

(i + nr + (i - 72)̂  (i + sir - (i - nr ,97* 
p = — — — o $ a„ = — — • \£i) 

2 n in 
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These units are all of the form 

j r d + j + j 2 ) s , 

where r and s are integers (positive, negative, or zero). 

(28) 

Recall first that the sequences of pn
fs and an

?s begin with the values 1, 
3, 7, 17, 41, 99, etc., and 1, 2, 5, 12, 29, 70, ..., and satisfy the recurrence 
relations pn + 1 = 2pn + pn„x, qn + 1 = 2qn + ^n_1. Moreover, (pn, an) provides the 
general solutions of the (Fermat-)Pell equations r = 2s ± 1 (see, for exam-
ple, LeVeque [6, pp. 139-144]). In fact 

pi = 2q2 +1 
^In " In 

and Pln-l 2 <7; (29) 

which is true even when n = 0 if we write p0 = 1, qQ = 0 (as we must if we want 
to satisfy the recurrence relations when n = 1). 

To prove Theorem 6 we note, for example, that N(as b$ a, 0) = (2a2 -2?2)2, 
from (22), and hence N(qnS pn$ qn, 0) = 1, from (29). Or we can simply check 
that (1, 1, 1, 0) is a unit, that its inverse is (1, 0, -1, 1), and then show 
that all the units defined in (28) are of the forms mentioned in the rest of 
the statement of the theorem, 

That there are no units other than those mentioned in the theorem follows 
from a deep theorem due to Dirichlet, concerning units in general; see, for 
example, LeVeque [6, p. 75]. In particular, therefore, N(a9 b3 as d) - 1 im-
plies abed = 0. 

As an example of Theorem 6, we have 

N(29s 41, 29, 0) 

29 
0 
29 
41 

41 
29 
0 

-29 

29 
41 
29 
0 

0 
29 
41 
29 

= 1. 

p , so the signs Although N(eqn9 ±pn, eqnS 0)= l,we have N(qn, pn, -qn9 0) 
can have a big effect. 

By (23), (29), and Theorem 6, we see that the only solutions of the simul' 
taneous Diophantine equations 

a2 + b2 + e2 + d2 = p2n, 

ad ~ ab - bo - od = ±q2n 

(30) 

are given by a = o = iqnJ b = ±pn , d = 0, and the "antirotations" of these 
solutions listed in the statement of Theorem 6 „ In particular, there is no 
solution with abed ^ 0, 

An allied question is what integers, and especially what primes, are ex-
pressible as integral skew circulants, not necessarily of order 4. For order 
2, the problem is the familiar solved one of expressing integers as the sum of 
two squares. Since the product of two integral skew circulices is a third one, 
we know that the products of "expressible11 numbers are also expressible (as 
skew circulants of order 4). 

If N(a» b» Cj d) is prime, then, by (24) it must either be 2, for example, 
N(ls 1» 0, 0) = 2, or it is of the form 4g + 1 * In the latter case, r and s 
are of opposite parity, where r = a2 - c2 + 2bd and s 2ac. Suppose 
that r is odd and s is even. Then a £ c (mod 2) and b - d (mod 2). By trying 
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the four possibilities for the parities of (a9 b9 c9 d) we see that r2+ s2 = 1 
(mod 8) 9 and the same conclusion is reached if r is even and s is odd* Thus, 
the only odd primes that N(as b9 c9 d) can equal are of the form 8n + 1. I 
conjecture that every prime of this form is expressible as N(a9 b9 o9 d), that 
is* as an integral skew circulant9 having found that this is true up to 1033s 
as shown in Table 1. Gall this Conjecture 1. 

Table 1. Values of (a9 b9 e9 d) for which p = N(as b9 o9 d) where p is prime 
and p = 1 (mod 8), for all p < 1033. Solutions are given for which 
a9 b9 c9 and d are all nonnegative. 

P 

17 
41 
73 
89 
97 
113 
137 
193 
233 
241 
257 
281 
313 

a 

2 
2 
2 
3 
3 
3 
3 
3 
1 
4 
4 
5 
3 

b 

1 
1 
2 
1 
2 
0 
3 
1 
4 
2 
1 
5 
3 

c 

0 
1 
0 
1 
0 
1 
2 
2 
1 
1 
0 
3 
3 

d 

0 
1 
1 
0 
0 
1 
1 
1 
1 
0 
0 
0 
2 

P 

337 
353 
401 
409 
433 
449 
457 
521 
569 
577 
593 
601 
617 

a 

4 
4 
3 
4 
4 
4 
3 
3 
6 
5 
4 
8 
4 

b 

3 
1 
3 
2 
0 
2 
1 
2 
8 
3 
2 
11 
1 

c 

0 
1 
1 
0 
2 
3 
3 
1 
7 
1 
1 
9 
2 

d 

0 
1 
2 
1 
1 
0 
2 
3 
0 
0 
2 
1 
2 

P 

641 
673 
761 
769 
809 
857 
881 
929 
937 
953 
977 
1009 
1033 

a 

5 
3 
4 
4 
4 
1 
5 
5 
5 
5 
5 
8 
7 

2> 

2 
3 
7 
0 
3 
6 
4 
1 
0 
1 
5 
9 
9 

c 

0 
2 
8 
2 
0 
3 
0 
2 
1 
1 
2 
6 
8 

d 

0 
3 
2 
3 
2 
1 
0 
1 
3 
2 
1 
0 
1 

Given a solution of tf(a, &, o9 d) = 1, we can multiply each of a* b9 c9 d 
by any number and thus show that all squares are expressible. So Conjecture 1 
implies that all numbers of the form 2qSp p ..., where S is a square and p , 
p2, ... are primes of the form Sn + 1, are expressible, and I suspect that no 
other numbers are. (Conjecture 2.) This conjecture is based on well over one 
hundred numerical examples. 

It is familiar that primes of the form 4n+ 1, and a fortiori those of the 
form 8n + 1, are expressible in essentially only one way as the sum of two 
squares. Suppose that a prime p = 1 (mod 8) is r2 + s2

9 where we can take r > 0 
and s > 0. Then9 if Conjecture 1 is right, integers as b9 as d exist, so that 
the two terms in (24) satisfy 

\a2 - a2 + 2bd\ = r or s 
and (31) 

\b2 - d2 - 2ac\ = s or r. 

Researches by Gauss, Lagrange, Cauchy, Eisenstein, Jacobi, and Stern (see 
Smith [9, p. 269] included the remarkable result that a prime p of the form 
8n + 1 is also uniquely expressible in the form h2 + 2k2* where 

±2/z E (^ (mod p) . (32) 

Conjecture 1 would then imply, from (22), that In and k can be written (by no 
means uniquely) in the forms 

h = \a2 - b2 + c2 - d2\ and k = \ad + ab - bo + od\ . (33) 
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We also know, by a theorem due to Gauss (see Smith [9, p. 268]), that p = r2 + 
s2, where 

2r = (£) (mo d P>" O*) 

Formulas (31)-(34) can be helpful in finding values for a, b9 c9d9 that is, in 
expressing a prime of the form 8ft + 1 as a skew cireulant. 

Table 1 can be used for writing down, for a given prime p E 1 (mod 8), the 
essentially unique solutions of p = r2 + s2 and p = h2 + 2k2 when p< 1033. We 
can also use the table (up to p = 1033), combined with (23), to obtain arbi-
trarily many solutions of p = a -232

5 because we can multiply (a, b9 c9 d) by 
any unit. For example, 

( a , b9 c9 d) x ( l 9 l , l , 0) = (a-c-d9 a+b-d9 a + b + c9 b+c+d) 

= ( a ' , br
9 c \ d<) 

say; and we see, by elementary algebra, that 

a'2 + b'2 + c'2 + dt2 = 3(a2 + b2 + c2 + d2) - k(ad-ab-be-ed) 9 

while 

a'd' - a'b' - b'cr - o'd' = 3(ad- ab- be- ad) - 2(a2 + b2 + o2 + d2) . 

This forces us to notice that if (an, 3n) i-s a solution of p = a2 - 232* then 
another one is (an_±9 3n_x)5 where we have the "backward" recursion 

<Vi = 3an - 43n, ?„.! = 33n - 2a„. (35) 

Likewise, by forming (a, &, c, J)(l, 0, -1, 1), or from (35), we are led to the 
"forward" recursion 

<*» = 3an_, + 43nL1, S„ = 2an.x + 3 3 ^ . (36) 

Thus, given one solution, we can generate an unlimited supply (compare LeVeque 
[6, p. 146], for example), by climbing up and down a ladder infinite in both 
directions. 

One can verify that equations (36) are equivalent to 

an = [iVs - 4m)An + 1 + (iVs + bm)\in + 1] ( 3 2 ) ^ 
(37) 

3 n = [(2£ - m/S)Xn + 1 - (21 + wv / 8)y n + 1 ] (32)"" 2 , 

where ft is aft2/ integer, A = 3 + /8, u = 3-V/8 = A"1, £2 - 2/?72 = p. Indeed, 
using only the fact that X]l = 1, one can verify directly that if I2 - 2m2 *= x, 
for any x9 then a2- 2|322 = x also. For example, when p = 17, we can take £ = 7, 
m = 4, giving ...a_2 = 37, a_x = 7, a0 = 5, ax = 23, a2 = 133, ..., 3_2 = -26, 
3-! = -4, 30 = 2, 3i = 16, 32 = 94, ... . 

Equations (37), in their turn, are equivalent to 

an+l = 6an ~ an-l> $n+l = 63„ ~ Bw-1» (38) 

which can be used both forward and backward. Equations (37) and (38) are de-
cidedly Fibonaccian, so it is not surprising that the a?s and 3fs have further 
nice properties. For example, 
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an^n+k " 2Bn6n+k = PYfe» 

where Y = 1, Y = 3, Y = 6Y™ - Y • The even-numbered numerators of the 
•0 ' ' 1 - ' n +1 y1 ' n -1 

simple continued fraction for v2 are y^ T2> Y3» ••• • ' 
To conclude this section, consider one more conjecture. Conjecture 3: Let 

p E l (mod 8) be prime. Then all solutions of p = a2 - 2$2 can be obtained 
from (37), or recursively from (38), by starting with a single solution. That 
there is a solution would be a consequence of Conjecture 1. The two conjec-
tures combined imply that all solutions are of the form shown in formula (23). 
(See Table 2.) 

Table 2. Some solutions of p = a2 - 232 where p E 1 (mod 8), and the top rows 
of the corresponding skew circulices. The signs preserve the recur-
rences an+1 = 6an - a.n-i9 3n+i = 63n - 3n-i- In each case, a = a2 + 
b2 + a2 + d2 and 3 = ad - aZ? - £>e - cd as in formula (23). 

a 

37 
7 
5 
23 
133 
775 

3 

26 
4 
-2 
-16 
-94 
-548 

p = 17 

a 

-2 
1 
2 
2 
-2 
-17 

2? 

4 
1 
1 
3 
4 
-5 

Q 

-4 
-2 
0 
3 
8 
10 

d 

1 
1 
0 
1 
7 
19 

a 

.71 
13 
7 
29 
167 
973 

3 

50 
8 
-2 
-20 
-118 
-688 

p = 41 

a b 

-1 5 
2 1 
2 1 
0 2 
-7 -1 
-22 -17 

c 

-6 
-2 
1 
4 
6 
-2 

d 

2 
2 
1 
3 
9 
14 

4. DISCUSSION OF ALLIED MATTERS 

Complicated Numbers 

In an unpublished paper, the author called the skew circulix (1) a representa-
tion of a "complicated number" 

XQ + Q1X1 + •••• + d-t~\Xt-\ 

and developed a theory of functions of a complicated variable (see Good [3]). 
The theory contained, for example, an easy generalization of the Cauchy-Riemann 
equations, and a more difficult generalization of Cauchy's residue theorem for 
integrals over contours encircling flat manifolds of dimension t - 2. These 
manifolds generalize the poles in the usual theory. Generalizations of Liou-
ville's theorem and analytic continuation were also given. The following dis-
cussion is extracted from that document to which it was, however, somewhat 
incidental. 

Generalized Trigonometry 

The skew DFT is related to the following generalization of trigonometry. 
Consider the differential equations 

Dty = fc*y, (39) 

Dty = -kty, (40) 
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where k is a positive number and D means d/du* (The case t = 4 occurs in the 
theory of a vibrating elastic bar; see Webster [11, p. 139].) A fundamental 
set of solutions (39) is given by the generalized hyperbolic functions of Ungar 
[10]: 

^ < M > = ^ + JFT^)i +
 (r + 2t)i + ••• ( * - o , i , . . . . * - i ) . (4D 

while3 for (40), a fundamental set contains the generalized trigonometric func-
tions 

g (u) = —- - , . ... + f \ n... - ••• (P = 0, 1, ..., t - 1). (42) 
^r rl (p + t)l (p + 2t)l 

(Compare to Muir [7S pp. 443-444], where the corresponding definitions contain 
minor errors; and Ramanujan [8].) The solution of (39) 9 with initial values 
cQ, c19 o13 ...9 ct_1 for y9 Dy, ...5 Dt~1y at u = 0, is Hcrfr(ku)9 while that 
of (40) s with the same initial values, is Hcrgr (ku) . Let us list some formulas 
that are satisfied by these generalized trigonometric functions. The reader 
should mentally consider what they state for the case t = 2. We omit most of 
the similar formulas for the functions fr(u). The reader might like to verify, 
however , that 

ZlfT(u)]2 = t-l7£exp[2u cos(2TTS/t)]. (43) 
* s = 0 

When t -> °°, this gives a familiar formula for the Bessel function IQ(2u) as an 
integral. 

The formula 

exp(uj2s+1) ^E Gr(u)JH2s+l) (44) 
r= 0 

[which is true also when j is replaced by J2p+1 (p = 09 19 29 ...)]9 is a di-
rect generalization of "de Moivrefs formula/1 which is the case t = 2. As in 
ordinary trigonometry we can obtain an addition formula by first deducing an 
expression for exp[(u + y)j2s+l] from (44)9 and then taking the inverse skew 
DRT. Another method, which is closely related, is to note that 

e«J = gQ(u)I + giiu)J + ... + gt_1MJt'1 (45) 

is a skew circulix whose eigenvalues are exp(uj2s+1) (s = 09 19 ..., t - 1). 
Hence, 

t- l 
gr(u + y) = £ ^r,s9s(u)gr+s(y) (r, s = 0, 1, . .., t - 1), (46) 

s = 0 

where eP, s = 1 if P ̂  s and £r, s = -1 if r < s. These identities generalize 
the usual formulas for cos(u + y) and sin(u + z/). It follows9 for example, 
that gr(nu) is a homogeneous polynomial in gQ(u)9 . .., 9t-1(u) (n = Is 23 39 

. . . ) • • 

It seems fair to conclude that the skew circulix has not previously been 
given the attention that it merits. 
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This paper describes how a subclass of the rational knots* may be constructed 
sequentially., the knots in the sequence having 19 29 ..., i s ... crossings. 
For these knots, the values of a certain knot invariant are Fibonacci numbers, 
the ith knot in the sequence having invariant number Fi . 

The knot invariant has a wide number of interpretations and properties, 
and some of these will be outlined9 particularly in relation to knots in the 
constructed class, 

The class will be called the Fibonacci knot-class. A generalization of 
this class will be introduced and briefly discussed. 

1. THE RATIONAL KNOTS 

J. H. Conway [2] defines the notion of "integer tangle/' and gives rules for 
combining integer tangles to form a large class of alternating knots which he 
calls rational knots. He develops operations by which all knots on a given 
number of crossings may be constructed and tested for equivalences. 

Conway's Notation and Construction of the Rational Knots 

Only an outline of the methods used9 proceeding largely by examples, can 
be given. The following diagrams show the first few integer tangles with their 
designations. 

X >X >x>< 
1 2 3 

Integer tangles 1, 2? and 3 

Integer tangles are combined to form rational tangles, as the following 
examples show: 

Note that to form the tangle abed (where a9 b> cs 
d represent integer tangles), first a is reflected 
in a leading diagonal then joined to b. Then the 
tangle ab is reflected and joined to c. Finally9 
abc is reflected and joined to d- The manner of 
joining two tangles is evident from the examples. 

21 

212 

A t a n g l e i s t u r n e d i n t o a k n o t by j o i n i n g t h e two 
y r — \ ^ u p p e r s t r i n g s ( l o o s e e n d s ) s and t h e n j o i n i n g t h e 

2123 C / / ^ ^ - ^ C t w o -*-o w e r strings * 

As in [2] , we use "knot" as an inclusive term for "]l-linkf" u ^ 1. 
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In [5] a table of diagrams of prime knots and links is given, showing the 
knots on n crossings, for n = 2, 3, ..., 10. Conway, in [2], classifies the 
knots and links through to n - 11 crossings. 

2. THE FIBONACCI KNOT-CLASS 

We now define what we have called the Fibonacci knot-class to be the sequence 
of rational knots which are* in Conwayfs constructional notation, 1, 11, 111, 
1111, .... There is thus one knot in the class for each value of n-crossings; 
we give diagrams for the first six in the sequence before describing the prop-
erties that relate them to the Fibonacci numbers. 

The Fibonacci knots to n = 6 

In the sequence, each knot corresponds to its Fibonacci number through a cer-
tain knot-invariant to be described. Then when F± is odd the knot is a 1-link, 
and when Fi is even the knot is a 2-link (where {Fi } is the sequence 1, 2, 3, 
5, 8, . . . ) . 

3. PROPERTIES OF THE FIBONACCI KNOT-CLASS 

A Vertex-Deletion Operation; Production of "Twins" 

If a crossing of a knot diagram is "cut-out" or "deleted," the four cut-
ends may be joined again in two ways that lead to a pair of alternating knots, 
each having one fewer crossing than the original knot. We may call the origi-
nal knot K9 and the associated pair of knots which are obtainable from the 
vertex-deletion KT and Krr; we may speak of K as the parent knot, and call (Kf, 
K") a pair of twins. 

Let us write, formally, that K = Kr ® Klf whenever (K', Kn) are twins from 
parent knot K. 

Twins from the Fibonacci Knots 

Consider, for example, the Fibonacci knot F5 E 11111. By its construction, 
the last 1 corresponds to the crossing on the far right of its diagram. We 
demonstrate that deletion of this vertex leads to the twins (F^9 ^13)» Thus: 
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$ © 

Cut out vertex Join a to d 
and b to c 

Join a to b 
and a to d 

The knot on the far right is immediately seen to be equivalent to Fs once the 
loop (shown shaded) is removed by twisting it once, out of the plane and back, 
through 180°  clockwise. 

To transform the first right-hand knot to the one shown in Section 2 re-
quires two operationsi (1) turn the entire knot over in the plane9 rotating it 
about an axis in the plane that runs from NW to SE; (2) rotate the entire knot 
through 180°  in the plane (about an axis perpendicular to the plane). 

Similarlys we can show that* if we delete its last vertex, F6 has twins 
(F5$ F^) s F7 has twins (F&, F5)9 and so on. Using the symbol © as described 
above, we can write, formally, 

Fn + 2 = Fn + 1 ® Fn> U " ls 2 * ee*5 

which is the recurrence relation for the Fibonacci series. 

The nTree Number11 Knot Invariant 

The edges of an alternating knot-graph may be given orientations in such 
a way that the arrows alternate in direction as the knot is toured from edge 
to edge. We call this a balanced alternating orientation. 

For a knot-graph with a balanced alternating orientation, we may count the 
number of directed spanning trees that emanate from any given vertex* We can 
show that this number is independent of the vertex chosen as root and* further, 
that it is a knot-invariant for alternating knots. The first proof of imparl-
ance of this tree number (T) may be found in [3]. 

A^^-^^" \ J T - 5 (whichever vertex is taken as root; 
\ r ^/\ an<^ whichever alternating diagram is used 
^^ — - ^ ' to represent the knot). 

Example: Knot Fh , with balanced alternating orientation 

Computation of x for the Rational Knots 

In [6] we derive the following recurrence equations for 

T(m1m2 ... ma)9 

the tree number of the rational knot m1m2 ... md. 
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x(^1m2) = m2ml + 1 

T(m1m2 ... mQ) = mc • T(m1m2 ... wc_1) + T(m1m2 ... mc_2). 

The tree numbers of the Fibonacci knot-class are given by setting 7/?̂- = 1, 
i = 1, ...9 <?. This gives 

X ^ ) = 1, T(F2) = 29 .... T(^) = T(^_x) + T(F^_2). 

Therefore, in this knot-class the tree numbers follow the Fibonacci sequence. 
Consider the rational knot mm ... mc, and the associated continued frac-

tion {terminated) (C.F.): 

C.F. (77z,7770 ... m„) = mc + + + • • • + — . 
1 2 ° ° mc-l ma-2 mi 

In view of the recurrence equations, the following is true: 

n(jn1m2 . . . mc) 
C . F . (m_77z0 . . . m„) - —, r- . 

1 2 c T(m1m2 . . . mo_±) 

This gives the following formula for the t ree number of the cth Fibonacci 
knot: 

T(FC) = £ C . F . ( ^ ) . 
i = l 

It should be noted here that Conway derives some interesting topological 
properties relating to the continued fraction of a rational knot in [2]. 

Other Interpretations of the Number x 

There are a number of knot invariants which have the same value as T for 
any given knot. We list three here; a fuller discussion of them can be found 
in [6]. 

Entities equal in value to x 

(1) The torsion number of the two-fold branched cyclic covering space of 
the knot [1]. 

(2) The number of Euler circuits on the knot-digraph [4]. 

(3) The quantity |A(-1)|9 where Afo) is the Alexander polynomial of the 
knot [5]. 

Thus, for the Fibonacci knots, all of these invariant values follow the 
Fibonacci sequence. 

On Parity of Tree Numbers 

In [6], we show that x is odd if and only if the knot-graph is a 1-link 
(i.e., one string). In the Fibonacci knot sequence, then, the knots F19 F3, 
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Fh, F6s F?9 ... are 1-links; it is easy to show that every third knot* with even 
Ts isa 2-link. That is F0, F., FQ, . .. are 2-links. 

On Amphichei ralIty 

A knot is amphicheiral if it can be transformed into its mirror image by 
a bi-continuous transformation (that is, without cutting and rejoining the 
string). 

_In Conway's notation9 the mirror image of 11 ... 1 is II ... I; the sym-
bol 1 denotes a crossing V^ . 

Proposition: Fc is amphicheiral for c = 1, 2, 4, 6, (c even after 1), 

Proof: For c = 1 and 2, it is easy to note how the transformation can be car-
ried out. For general c9 the necessary transformations to carry the knot into 
its mirror image are as follows: 

lift 
dotted 
string 
over 

-X 

rotate 
180°  
in the 
plane 

Knot: 111111...11 Knot: 11...111111 

It is well known that knots with an odd number of crossings cannot be am-
phicheiral; hence, Fi , where i = 3, 5, ... are not amphicheiral. 

4. GENERALIZATIONS 

An obvious generalization of the above work would be to study the knot-classes 
{FW}S where 

{F^} E {Fi} is the Fibonacci class, 

{F|2)} is the class of rational knots 2, 22, 222, 2222, ..., 

{Fl3)} is the class 3, 33, 333, 3333, . .., 

etc. 

Knots with i - 2, 4, ... (even) in each sequence are amphicheiral. 
The tree numbers of knots in these classes satisfy the equations of Sec-

tion 3. For m= 1, they are the Fibonacci numbers; for m = 29 the Pell numbers. 
Doubtless the properties of these numbers, which form interesting two-way 

sequences, are well known. 
Any rational knot may be represented as a formal sum of knots of type FJ , 

making use of the vertex deletion operation described in Section 3. Such 

1986] 65 



ON A CLASS OF KNOTS WITH FIBONACCI INVARIANT NUMBERS 

representations are not in general unique (that is* a given knot may have more 
than one representation), but it is conjectured that any representation is an 
invariant of that knot* For example* the knot (32) shown below may be repre-
sented in the following ways, by various vertex deletions: 

Z=^> knot (31) © F3 =$> F3 ® Fx ® F3 => 2F3 ® Fx 

also 
— • > F ® F„ 

^ % 2 

Knot (32) 

Note that to each representation there corresponds a linear decomposition of 
the knot's tree number into Fibonacci numbers; e.g., for the knot (32) we have 
T = 7, with the corresponding decompositions 5 + 2 and 2 x 3 + 1 . 

It would be exciting if a study of number sequences associated with knot-
classes were to lead to methods for counting more general classes of knots* 
There are virtually no results in this area, to my knowledge. 
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1. INTRODUCTION 

For each given pair of positive integers k9 ns with k < ns -a /c-part partition 
of n is a ^-element multi-set of positive integers whose sum is n% e*gos all of 
the 3-part partitions of 7 arei [5, 1, 1], [4, 2S 1], '[3, 3,1], and [3, 2, 2]. 
In this paper we are especially interested in k-part partitions of numbers for 
which k = 2, 4 and all of the parts are squares. We briefly refer to these as 
2-square and 4-square partitions of a number• Thus, [4, 1] is a 2-square par-
tition . of 5. Also, recall that for each positive integer n9 o(n) denotes the 
sum of all positive divisors of n. 

We are now prepared to state our results* 

Theorem 1: A nonsquare odd number n has an odd number of 2-square partitions 
if and only if 0(n) is twice an odd number, iee., n = pem2* es ms p e Z +, p a 
prime, p \ m3 and p = e. = 1 (mod 4). 

Theorem 2: If a.is odd and not of the form j(3j ± 2), then 3a + 1 has an odd 
number of 4-square partitions of the form 

3a + 1 = 3j2 + (6k ± I) 2 , j, k e 2+ 

if and only if a is a square. 

In Section 2, we prove these theorems, and also deduce Fermat's classical 
two-square theorem as an immediate corollary of Theorem 1. 

2, PROOFS OF THEOREMS 1 AND 2 

Our proofs are based on two recurrences for the sum-of-divisors function. 
These recurrences are best stated with the aid of several auxiliary arithmeti-
cal functions, which we now define* 

Definition: For each positive integer n, bin) denotes the exponent of the 
highest power of 2 dividing n\ and, Oin) is then defined by the equation 

n - 2Hn)0iri)» 

Hence, bin).is a nonnegative integer and Oin) is odd* We now define the arith-
metical functions a) and p bys 

a)(n) = oin) + a(<9(n)), p(n) = 3a(n) - 5o(0(n))« 
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The two recurrences are9 for each positive integer mi 

(1) a(2m - 1) - £ oo(2m - 1 - (2/c - I)2) + 2 £>(2m _ i _ (2k)2) 
fc = l k=l 

(j2, if 2m - 1 = j 2 , 

( 09 otherwise. 

(2) o(2m - 1) + E (6fe + 1)0(2m - 1 - 2k(6k + 2)) 
fc = i 

- E (6fe - l)a(2m - 1 - 2k(6k - 2)) 
fc = i 

+ E Ofc - 1)P(2TTZ - 1 - (27c - l)(67c - 1)) 
fc = i 

- E Ok - 2)p(2m - 1 - (2/c - l)(6/c - 5)) 

-J(3j + l)(3j + 2)/2, if 2m - 1 = J(3J + 2), 

J(3J - 2) (3 - l)/2, if 2m - 1 = J(3J - 2), 

09 otherwise. 

In both (1) and (2)9 the sums indexed by k extend over all values of k which 
cause the arguments of a9 a)s and p to be positive. For a proof of (1)9 see [19 
pp. 215-217], (2) is proved in [2, pp. 679-682]9 where p(n) = oo(39 -5; n). 

Proof of Theorem 1: Assume that 2m + 19 with m > 09 is nonsquare. Recurrence 
(1) then becomes 

(3) a(2m + 1) - E ^(2m + ] - (2fe - I)2) + 2 E a ( 2 w + l ~ (2^)2) = 0. 
i i 

If a(2m + 1 ) is twice an odd number9 say o(2m + 1) = 4a + 29 for some 
a ^ 09 then (3) becomes 

la + 1 - E M ( 2 m + 1 ) - (2fe- D 2 ) + £ a ( 2 m + 1 - (2fc)2) = 0. 
1 l 1 

Next, owing to the multiplicativity of a9 oo(n) = 2&(n) + l o(0(n)) . Hence, for n 
even, 4 divides co(n). It follows that the sum Ea(2m + 1 - (2k)2) is odd and9 
therefore9 contains an odd number of odd summands. But9 from the well-known 
fact: o(n) is odd <N=i> n is a square or twice a square9 it then follows that 
there is an odd number of pairs 2ks 2j - 1 (j9 fc e 2+) such that 

2m + 1 = (2k)2 + (2j - I)2. 

In a word9 2m + 1 has an odd number of 2-square partitions. 
Conversely5 if 2m + 1 has an odd number of 2-square partitions9 then re-

currence (3) allows us to reverse the steps of the foregoing argument9 whence 
cr(2m + 1) E 2 (mod 4); i.e., a(2m + 1) is twice an odd number. 

Corollary (Fermat): Each rational prime p of the form km + 1 is expressible as 
a sum of two squares. 
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Proof: For such a prime ps o(p) = p + l = 4 w + 2 = 2(2m + 1). Hence* p has at 
least one 2-square partition. 

Proof of Theorem 2: Assume 2m + 1, with m > 0S is not of the form J(3J ± 2). 
Recurrence (2) then becomes 

(4) a(2?7? + 1) + £ (6fc + l)a(2rc + 1 - 2&(6fc + 2)) 
k = l 

- £ (*>k - l)a(2w + 1 - 2fc(6£ - 2)) 
k = l 

+ L (3k - l)p(2w + 1 - (2k - I)(6k - 1)) 
k = l 

- H Ok - 2)p(2m + 1 - (2k - 1)(6£ - 5)) = 0. 
k = l 

If 2m + 1 is a square9 then a(2m + 1) is odd. Nows 

p(n) = 2(3- 2b(n) - 4)a(£(n)). 

Hence9 the sum 

E (t>k + l)a(27?z + 1 - 2k(6k + 2)) - E (6k - l)a(2/?? + 1 - 2k(6k - 2)) 
I l 

is odd and therefore contains an odd number of odd summands. In a word, there 
exists an odd number of pairs j s k € 2+ such that 

2m + 1 = j 2 + 2k(6k ± 2)9 

or equivalently* 

3(2m + 1) + 1 = 3d2 + (6k ± I)2. 

Conversely9 if 3(2m + 1) + 1 has an odd number of 4-square partitions of 
the prescribed form5 then recurrence (4) allows us to reverse the steps of the 
foregoing argument. And9 then9 2m + 1 must be a square. 
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1. FIBONACCI NUMBERS AND CHEBYCHEV POLYNOMIALS 

Properties of Fibonacci numbers have been known for a very long time. Their 
origin dates back to the year 1202 with the publication of the Liber Abaci by 
the Italian mathematician Leonardo of Pisa, better known to us by the nickname 
"Fibonacci," a short form of Filius Bonacci, meaning "Son of Bonacci." 

Fibonacci seems to have had a sense of humor apart from his mathematical 
talents: Liber was a Latin God, son of Ceres and brother of Proserpina. The 
Romans assimilated this God to Bacchus or Dyonisus, the Greek god of wine. 
Festivals, known as "Liberalia," were celebrated every year honoring Liber Ba-
cus. Since Liber Abaci means Book of the Abacus* Fibonacci may have amused 
himself by naming his book, at a time of strong domination by the Roman Catho-
lic Church, in a way reminiscent of a pagan god of wine and fertility. We know 
Fibonacci was fond of play on words. For instance, he signed some of his work 
"Leonardo Bigollo." Bigollo is a work meaning both "traveler," which Fibonacci 
certainly was, and "blockhead." It has been said that Fibonacci had in mind 
the latter meaning to tease his contemporaries who had ridiculed him for his 
interest in Hindu-Arabic numerals and methods. Fibonacci had become a very 
successful mathematician whith these methods. 

Fibonacci did not discover any of the properties of the sequence which 
bears his name. He simply proposed, and solved, in the Liber Abaci* the prob-
lem of how many rabbits would be born in one year starting from a given pair. 
With some natural assumptions about the breeding habits of rabbits, the popula-
tion of rabbit pairs per month correspond to the elements of the Fibonacci se-
quence— 1, 1, 2, 3, 4, 8, 13, etc.-—where, beginning with zero and one, each 
term of the sequence is the sum of the two preceding ones. 

With the passage of time, this sequence would appear in so many areas 
with no possible connection to the breeding of rabbits that, in 1877, Edward 
Lucas proposed naming it Fibonacci Sequence and its terms Fibonacci Numbers. 
The fertility of this sequence seems to be inexhaustible, and every year new 
and curious properties of it are discovered. Fn has become the standard symbol 
for Fibonacci numbers, and their defining relation is 

F = F n + F o9 Fn = 0, F1 = 1. n n-\ n-2s 0 1 

In spite of the above preamble, it will, perhaps, appear as surprising to 
encounter some new, simple, and unexpected relations between Fibonacci numbers 
and Chebychev polynomials. Let us proceed to their derivation. 

The known relation [8] for Chebychev polynomials of the first kind, 

Tn(x) = h\(x + Vx2 - l)n + (x - Vx2 - l)n], (1) 

gives, with x = v5/2, 

i,.(^).i[(H^)-+W).(H^"]. 
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For odd n, this relation coincides with Binet!s formula [6] for Fibonacci num-
bers: 

H^r - (H^r 
Thus, we obtain 

F = -^ 
- ( * ) • 

(3) 

(4) 

In a similar fashion, the known relation for Chebychev polyonmials of the 
second kind9 

~(a? + Vx2 - l)n+1 - (x - Vx1 - l)n + 1~] Un{x) = h 
V(x2 - 1) 

gives9 with x - v5/2, and n replaced by 2n - 1, 

The relation [8], 

Tn(x) = Un(x) - xU„_1(.x), 

(5) 

(6) 

(7) 

gives5 after changing n to 2n + 1, letting x = v5/2, and using (4) and (6) and 
the recurrence relation for Fn3 

F + F mU (£\ 
r 2 n T £ 2n + 2 u 2n\ 2 1 

(8) 

Equation (7) gives, after changing n by 2n, letting x = v^/2, using (4), (6), 
and the recurrence relat ion tor r y% 

+ F„ 2n + l *2n-l (y/5\ 
2

 12n\2 J* 

The relation [12] 

p = p p + p p 

(9) 

(10) 

which can be proved by induction, gives, after replacing both n and m by 2n+ 1, 
together with (8), the result 

-=<4#). ( i i ) 

Replacing both n and m in (10) by 2n gives, together with (9), the result 

F, 
(12) 

Equations (4), (6), (8) or (11), and (9) or (12) relate all Chebychev polyno-
mials with argument v5/2 with Fibonacci numbers. 

Identities that relate Chebychev polynomials lead to identities for Fibo-
nacci numbers. For instance, the relation [5] 
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n - l 

m = 0 
ZjFzm+lW = ^ - l W 

gives , with x = \/5/2, the known resu l t [6] 

n - l 

m = 0 

Equation [5] 

2/77+1 2 n 

2(1 -*2) E ^ . ! ^ ) -«-2'2„+1(«). 
772 = 1 

gives , with x = ^5 /2 , the known resu l t [6] 

£ F = F - 1. 
m ^ 2 2777 2 n + l 

Binet's formula (3) gives us 

F = — 
2n+1 A 

/ l + V5\2" + 1 _ (l^_S\2n + 1 

= 1 1/1 + V5Yn + l
 + / l - V5\2*+1~1 _ 2 / l - 75 \ 2 W + 1 

In an iden t ica l fashion, we obtain from (2) and (3) the approximation 

2 „ /V5^ 
L In r- x In 

V5 ®-

(13) 

(.14) 

Equations (8) and (9) combine with equations (13) and (14) to give the follow-
ing interesting approximate relations 

F + F n-1 n+l 

A 
(15) 

In (10), m - n gives, together with (15), the following approximate relation: 

s 
s Fz. 

The exact relation corresponding to (15), obtainable from (3), is 

2 F + F 
n-l n+l 

YE 
= F + 

A H®>'-

(16) 

(17) 

From (17) we see that (15) approximates Fn by excess for even n, and by defect 
for odd n-

Equations (13) to (16) give excellent approximations if n is greater than 
5. 
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2. EXPANSIONS WITH FIBONACCI COEFFICIENTS 

Chebychev polynomials are special cases of Jacobi polynomials P„ (x). The 
exact relations are [5]: 

Un(x) = {2gn + iyxP^\x) , 

with 

_ ft)„ 
$ n nl ' 

Consider the expansion [8]9 due to Gegenbauer9 

expert) = (|)"Vr(v) f) (v + n)Iv + n(t)C^(x)5 (18) 

where Ik(t) are modified Bessel functions of the first kind [5]9 given by 

and C^(x) are ultraspherical polynomials [8] defined by: 

(2V)„P<V-*' ̂ ( x ) 

4>> (v + h)„ 

In terms of Gegenbauer polynomials, Chebychev polynomials are given by: 

Un(x) = c\{x), (19) 

-,V Cnix) 
Tn (x) = lim . (20) 

v+o c v ( 1 ) 

In (18) , replace x by -as, recalling that Cn{-x) = (-l)n(7^(x)5 and subtract the 
resulting series from (18) to obtain 

sinh xt = ( | ) VT(v) £ (v + In 4- 1)JV+ 2 n + x ( t ){72
v

n + ^a?) . 
\ Z / n = 1 

Now let V = 1. Replace t by -it and recall that In(-it) = i'nJn(t)9 where 
Jn(t) are Bessel functions of the first kind. Let x - /5/ 2, replace n by n - 1, 
and finally let >/5£/2 = 5s to obtain, with the help of (19) and (6), 

sin 5 = | £ (-Dn + 12nF2nJ2n(25//5). (21) 

Separating the ei?en part of (18), instead of the odd, gives, with the use of 
(8) and (11), 

/ " C O F 

cos ^ = ̂  £ (-Dn(2n + 1) T ^ - ̂ 2n + 1 (2?/i/5) , (22) 
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cos C = 1 £ ("Dn(2n + 1) 
^ y? = 0 

F + F 
2n 2n + 2 

& 
J
2„ + i<2^>- (23) 

If use is made of equation (17), (23) can be written as 

cos 5 = I t <-l)»(2n + l)F2n+lt72n + 1(25/A) 

+ (24) 

The terms in the second series in (24) tend to zero very rapidly with increas-
ing n. 

Series (21) to (24) converge very rapidly and are, to the author's knowl-
edges completely new results. 

Paul Byrd [4] obtained some expressions for the sine and the cosine with 
Fibonacci coefficients that are very similar to (21) and (24). Byrdfs results 
are: 

and 
sin K = j t (~l)n + 12nF2I2n(2K)9 

*=• n = 1 

cos g= \ ±Q(-ir(2n + l)F2n + 1I2n + 1(2Z), 

where In(^) are modified Bessel functions of the first kind. 
From the series 

log(l + x) = L (-1)n+lx" 
n-1 n 

we obtain, in an obvious manner, using (3), the interesting expansion 

„ (-l)n + 1Fntn 

= 1/5 E . 
n-1 n 

1 

[ 1 
+ 

+ 

l_ 

l_ 

+ VE 
2 

- VE 
2 

t 

t 
(25) 

It must be noticed that this is a general technique. Given a function 
f(x9 t) that allows for an expansion of the form 

f(x, t) = Y.an{t)Cv
n{x), (26) 

it is necessary only to give appropriate values to V, and to let x equal v5/2, 
provided v5/2 is within the x-region of convergence, to come to an expression 
such as (21)9 (23), or (25). References [3] and [8] contain ample information 
on conditions that guarantee the validity of results such as (26). 

It is important to bear in mind that Fibonacci numbers grow very rapidly, 
for example, F10 = 55, F2Q = 6765, F30 = 832,040, F^Q = 102,334,155. Hence, 
when an expansion with Fibonacci coefficients is convergent, the an(t) must 
decrease very rapidly with increasing n. If t is not near the boundary of the 
t-region of convergence, this circumstance makes these series very amenable for 
numerical work. We will illustrate this fact in the following sections. 
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3. A SERIES FOR THE ARC TANGENT 

Consider the identity9 

easily verified by taking the tangent of both sides. 
Let us substitute the expansions 

tan-H - £ o ^ n \ l , (27) 

on the two terms on the right-hand side above9 and make use of equation (1) to 
obtain5 

- " r ? - ! , ? , — £ ^ T — • 
Series (27) 9 known as Gregory1s series9 is a special case of series (28) cor-
responding to x = 19 when use is made of the identity for the tangent of the 
half-angle: tan"1[2?/(l - ?2)] = 2 tan"1?. 

In (28), let x = v5/29 v5? = £* and use equation (4) to obtain 
/ i \ n w j_2n+l 

tan = 2^ 
5 - t2 n = 0 5n(2n + 1) 

Now let 5t/(5 - t2) = a > 09 and choose the smaller of the roots of this 
quadratic equations to obtain 

tan_1a = £ , (29) 
^ = o 5n(2n + 1) 

with 

t = 
1 + Vl + (4a2/5) 

* = Z a
 9 (30) 

a curious and simple series for the arc tangent with odd Fibonacci numbers as 
coefficients. 

4. COMPARISON WITH EULER'S SERIES FOR THE ARC TANGENT 

Series (27) discovered by Gregory in 16719 converges very slowly except for 
very small values of its argument. For £ = 1, for example, it yields Leibniz1 

celebrates series for TT/4 that requires two thousand terms to give three deci-
mal figures of JI. 

Let us use Pochhammer?s symbol 

(a)n = a (a + 1) (a + 2) • • • (a + n - 1), a ^ 09 

and the identity (3/2)n/(l/2)n = In + 1 to write (27) in hypergeometrie form: 

tan_1t = tF(ls 1/2; 3/2; -£ 2 ) . (31) 
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Now consider the relation 

F(a9 b; o; z) = (1 - z)~aF{a9 a - b; o; -s/(l - s)), (32) 

valid if \z\ < 1, and \z/(l - z)\ < 1. This relation is an equality among two 
of Rummer's twenty-four solutions to Gauss's hypergeometric differential equa-
tion. In (32), let a = 1, b = 1/2, a = 3/2, and z = -t2, to obtain 

tan_1t = tF(l, 1/2; 3/2; -t2) = [£/(l + t2)]F(l, 1; 3/2; t2/(l + t2)). 

Since (2ft + 1)! = (2)2n = 22nn!(3/2)n, the above equation gives 

y* -±—L512 ^~ (33) 
n%(2n +1)1 (1 + t2)n + i-

Inasmuch as t2/(I + t2) < 1 for every real t, we can conclude that (33) con-
verges for every real value of its argument. 

Equation (33) is Euler's famous series for the arc tangent discovered in 
1755. This series converges very rapidly for all t9 and especially for small 
values of its argument. 

Let t = a « 1. Using Stirling's formula for the factorial 

nl s Vz7rn(n/g)n, n large, 

we o b t a i n , fo r t he g e n e r a l term an of E u l e r ' s s e r i e s , t he e s t i m a t e 

„ e^Jn2n + 1a2n + 1 
an = . (34) 

2 (ft + h)2n + 3/2 

I f ft i s l a r g e , ft + \ = n , and we have the e s t i m a t e 

n „ e^R a2n + 1 _ 
an = - ^ — - - (35) 

Vn 
To compare this result with the corresponding one for series (29)5 notice 

that for a small (30) gives t = a. For the general term, omitting the sign, bn 
of series (29), we then have, recalling equation (3), the estimate 

b" = wn\—r~) • (36) 

Comparison of (34) or (35) with (36), observing that the expression in paren-
theses above is 0.723606798... < 1, shows that, for small values of its argu-
ment, series (29) converges substantially faster than (33). 

The requirement of the argument being small is only an apparent restric-
tion, necessary to simplify the proof above. If a is large, it is simply 
necessary to use the identity 

tan_1a = ~ - tan"1—, (a > 1). 

Series (29) has the added advantage of being an alternating series, which 
series (33) is not. It is, as is well known, a general property of such series 
that the remainder after n terms has a value which is between zero and the 
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first term not taken. It is a simple matter, then9 to determine the number of 
terms of (29) needed to obtain a given accuracy. 

If in series (28) we let x = cos 09 2E, cos 0/(1 - £2) = a, solve for E, in 
terms of a and cos 09 and substitute back into (28)s recalling that Tn(cos 0) = 
cos n9s we obtain the curious series 

tan-a = 2 £ ( - 1 ) ^ — coS(2n + 1 ) J L ^ § (o < 9 < f). (37) 
n = 0 (2n + l)(cos 6 + Va2 + cos20) V Z / 

where the right-hand side is independent of 0„ The rapidity of the conver-
gence 9 though, depends on the choice of 0. Series (37) converges very rapidly 
if both a and 0 are small. 

5. ANOTHER SERIES FOR THE ARC TANGENT 

Iteration of the method used in Section 3 to obtain equation (28) yields a new 
series for the arc tangent. In (28) 9 replace £ by E,(x + Vx2 - 1) and by E, (x -
Vx2 - 1) and add the two arc tangents to obtain 

_ -i 2xE,(x + Vx2 - 1) , -i 2xE,(x - Vx2 - 1) tan — + tan — -

4E 

(x + Vx2 - l)2?2 1 - (a; - /x2 - 1)2£2 

(-ir4+1(x)^2"+i 

»-o 2 n + 1 

Combining the two arc tangents by means of the identity 

-l . -I? -i a + b 
tan a + tan b = tan T- 9 

1 - ab 
we obtain 

tan x ^ ^ S_J . 4 ^ ^ . ( 3 8 ) 

1 - 2(4x2 - l)?2 + ?* »-o 2 n + X 

Gregory's series (27) is the special case of (38) corresponding to x = 19 if 
use is made of the identity for the tangent of one-fourth of the angle: 

A i - 6£2 + e 

Let the argument of the arc tangent in (38) equal a, and solve the result-
ing fourth-degree equation for 5°  The solution is easily obtained by dividing 
through by ?2

9 and making the substitutions £ - 5"1 = -2£, £2 + £T2 = 4t2 + 29 

which reduces it to two quadratics. The results are 
2 

5 = (t + /t2 + l)"1 and £ = 2L(1 + Vl + [a2(2^ - l)/a?*]). (39) 

Now9 if we let x = >/5/2 in (38) and (39)9 we obtain 

(~l)nF2 

-1 r T^ 2n+l 

tan xa = 5 £ , (40) 
* = °  (2n + l)(t + V ^ T T ) +1 
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with 

t = ̂ ( 1 + Vl + (24aV25)). (41) 

Series (40) converges substantially faster than series (29) . If a is small, 
the nth term, cn9 of series (40), is, apart from the sign, approximately given 

°n 2n+l\ 2 ) • ^Z) 

6. THE NEXT ITERATION 

Iteration of formula (38) by the method used in Section 5 gives, after some 
simple but lengthy algebra, the result 

tan-1 to3[g- (12a;2-5)g3 + (12a;2-5)g3-g7] 

1- 4(12x't- 6x2+ l)£2+2(32a;6 + 24a;lf- 24a; + 3)?1*- 4(12x'f - 6a;2 + l)g6 + $8 

- (-vnTi+(x)en+i 

= 8„?0 S " i • ^ 
If we let the argument of the arc tangent in (43) equal a we obtain, after di-
viding through by E,h and setting 

5 - r1 = -2*//5, e + r2 = U2 + 2, c3 - r3 = -—*3 - — t, 
ri+ r-i+ 16 , i+ 16 ,2 . o J v 5 
£/ + g = -05 ̂  + "T"^ + 2* and # = ~2~ > 

the result is 
( nnq"+2p3 

(44) 
n = 0 (2n + l)(t + /t2 + 5 ) 2 n + 1 

with £ the largest positive root of 

8ath - 100t3 - 450at2 + 875t + 625a = 0. (45) 

This quartic equation is in yvinevgte solvable by radicals [1] for any value 
of a,. The algorithm, though, does not seem to lead to any manageable combina-
tion of radicals, and for its solution we resorted to Newtonfs iterative method. 
Several solutions are discussed in the next section. 

7. SOME SERIES FOR IT 

To illustrate the convergence of series (29), (40), and (44), we will obtain 
some expressions for TT. Let a = 1 in (30), and substitute into (29) to get 

(-i)nF2n+122n+3 

T T = A E — . (46) 
»-°  (2n + 1)(3 + V/5)2* + 1 
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a = 1 in equation (41) when substituted into (40) gives 

J^ v J 2n+l 
7T = 20 £ . (47) 

n'0 (2n + 1)(3 + /l0)2n + 1 

Thirty-two terms of (46) give fifteen decimal places of TT, while series (47) 
requires nineteen terms. For a = 1, the largest positive root of (45) is 

t = 15.63057705819013... . 

With this value of t fourteen terms of (44) give fifteen decimal figures of TT. 
Euler!s series (33) for the same argument and for the same accuracy requires 
fifty terms. 

From equations (36) and (42), we see that rapid convergence of series (29) 
and (40) depends on our ability to choose the argument of the arc tangents or, 
which is the same, the angle, sufficiently small. For example, 

•JJ = tan"1 (2 - V3). 

For this arguments series (29) gives 

TT 12v^ £ 
(-DnF, 

2n+l 
n=0 2n + 1 

2(2 - y/3) 

VE + /l + 16(2 - V3) 
(48) 

The expression in brackets above is 0.1181577543..., which is more than seven 
times smaller than the corresponding root for equation (46). Series (48) con-
verges very rapidly. Ten terms give fifteen decimal places of TT. For this 
same argument the corresponding value of equation (41) is t = 9.488217845... . 
With this value of t nine terms of (40) give fifteen decimal figures of IT. 
Euler!s series (33) for the same argument and for the same accuracy requires 
thirteen terms. 

Use of Machinfs formula, 

TT = 16 tan'1 (1/5) - 4 tan-1 (1/239) , (49) 

with a in (41) equal to 1/5 and to 1/239 gives values for t which are approxi-
mately, 

t = 12.61886960..., and tf = 597.5025107... . 

Using these values on (49) with series (40), we obtain a very rapidly converg-
ing series for TT. A computer run with the double-precision routines of the 
BASIC Level II interpreter of the Radio Shack TRS-80 Model I microcomputer with 
this combination of arc tangents gave the values shown in the following table 
for Gregoryfs series (27), Euler's series (33), and series (40). We see that 
series (40) consistently gives better approximations than either Euler's or 
GregoryTs series. Series (29) will also, of course, converve more rapidly than 
Gregory's or Eulerfs series (n = 9). 
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n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Gregory 

3.183263598326360 
3.140597029326061 
3.141621029325035 
3.141591772182177 
3.141591682404400 
3.141592652615309 
3.141592653623555 
3.141592653588603 
3.141592653589836 
3.141592653589792 
3.141592653589794 
3.141592653589793 

3, 
3. 
3, 
3, 
3, 
3, 
3. 
3, 
3. 
3. 
3. 

Euler 

.060186968243409 
,139082236428362 
.141509789149037 
.141589818359699 
.141592554401089 
.141592650066872 
.141592653463209 
,141592653585213 
,141592653589626 
.141592653589787 
,141592653589793 

3. 
3, 
3, 
3, 
3. 
3, 
3, 
3, 

Series (40) 

.148158616418292 

.141554182069219 

.141592944101887 

.141592651171905 

.141592653611002 

.141592653589601 

.141592653589795 

.141592653589793 

The largest positive root of (45) corresponding to a = 1/5 is 

t = 63.25229744727801..., 

and the one corresponding to a = 1/239 is 

t1 = 2987.51589950963... . 

Using these values on (49) with series (44) gives fifteen decimal figures of IT 
after seven terms (ji = 6). We see that with the use of expressions such as 
Machin's identity (49), iterations beyond the second are not worth the added 
labor, it being much simpler to work with series (40). 

Application of the trigonometric identities 

tan-1—1-T- = tan"1- + tan"1 0 A \ ^ . , (50) 
a ± b a a* ± ab + 1 

and 
tarf1^ = 2 tan-S^ _ t a n - i _ L _ ( 5 1 ) 

on simpler formulas such as Machinfs identity, or on the identity 

7T = 20 tan^1 (1/7) + 8 tan"1 (3/79), (52) 

due to Euler, give additional expressions for the calculation of TT. Repeated 
application of (51) to Machin's formula, letting a equal 5, 10, 20, and (40), 
in turn, yields the identity 

TT = 256 tan"1(1/80) - 4 tan"1(1/239) - 16 tan"1(1/515) - 32 tan"1(1/4030) 

- 64 tan"1(1/32,060) - 128 tan"1(1/256,120), (53) 

first obtained by Cashmore in [7]. Identity (53) together with (40) provides 
an extremely rapidly converging series for the calculation of TT . Four terms of 
this series give fifteen decimal figures of TT. Euler*s series (33) also re-
quires four terms. The computed values are shown in the following table. 
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n Euler's Series Series (40) 

0 3.141259656493609 3.141619294232185 
1 3.141592611940046 3.141592652964994 
2 3.141592653584216 3.141592653589812 
3 3.141592653589793 3.141592653589793 

Once again we see that (40) converges to its limiting value faster than does 
Euler?s series. As more decimal figures are calculated, though, the difference 
between the series becomes significant and the tide swings in favor of our se-
ries. For the same value of the argument, the tenth term of Euler's series is 
4.54 x 106 times bigger than the tenth term of (40). The twentieth term of 
Euler's series is 2.60 x 1012 times bigger than the corresponding one of (40). 
The thirtieth term is 1.35 x 1018 times bigger. The one hundredth term is al-
ready 1.46x 1058 times bigger, and the one hundred fiftieth term is 2.25x 1Q86 

times bigger. 
With the combination of arc tangents given in (53), twenty-three terms of 

(40) give one hundred decimal places of TT. Two hundred twenty-six terms will 
give one thousand decimal places of TT. The calculation of the radicals in (40) 
and (41) can be performed very quickly, because of the smallness of a, with the 
quadratically converging algorithm given in Rudin [10]. Identity (53) is very 
amenable for a high-precision calculation of TT. It would be of interest to 
compare (53) against Eugene Salamin's quadratically converging algorithm [11] 
based on the theory of elliptic integrals. 

It should, perhaps, be mentioned that there exist series for the calcula-
tion of TT which converge faster than any series we have obtained. For example, 

1103 + 27493 l_ 1 « 3 + 53883 1 °  3 1 - 3 • 5 • 7 + 1 ( 5 4 ) 

992 996 2 42 9910 2 • 4 42 • 82 J" 

due to Ramanujan [9]. The numerators of the first fractions of each term above 
are in arithmetic progression, Three terms of (54) give seventeen decimal fig-
ures of TF! 

As stated at the beginning of this section, we have used TT simply as an 
illustration of the convergence of the arc tangent series (29), (40), and (44), 
and these series do converge faster than any other known arc tangent series. 

It is an interesting historical fact that Fibonacci made an attempt to 
determine the value of TT using Archimedes1 method of inscribed and circumscribed 
polygons. Using a 96-sided polygon, he obtained for TT the approximation 864 -=-
275, which gave him the value 3.141818, correct to three decimal places [2], 
It seems safe to think that he never suspected that the peculiar sequence he 
had discovered on the growth of the rabbit population would yield, nearly eight 
centuries later, a simple and powerful algorithm for the calculation of TT with 
any desired accuracy. 
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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn + 2 = Fn + l + Fn> F0 = ° » Fl = l 

and 
Ln+2 = Ln+l +Ln, L0 = 2, Lx = 1. 

Also, a and b designate the roots (1 + v5)/2 and (1 - v5)/2, respectively, of 
x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-562 Proposed by Herta r. Freitag, Roanoke, VA 

Let cn be the integer in {0, 1, 2, 3, 4} such that 

cn E L2n + [n/2] - [(n - l)/2] (mod 5), 

where [x] is the greatest integer in x. Determine cn as a function of n. 

B-563 Proposed by Herta T. Freitag, Roanoke, VA 

n 
Let Sn = £ ^2i + iL2-i-2' F o r w n i c n values of n is Sn exactly divisible 

by 4? i==1 

B-564 Proposed by Laszlo Cseh, Cluj, Romania 

Let a = (1 + V/5)/2 and [x] be the greatest integer in x. Prove that 

[oFj + [aF2] + -.. + [aFn] = Fn+3 - [ (n + 4)/2]. 

B-565 Proposed by Heinz-Jurgen Seiffert, Student, Berlin, Germany 

Let P , P , ...be the sequence of Pell numbers defined by PQ = 0, P1= 1, 
and Pn = 2Pn_1 + Pn_2 for n e {2, 3, ...}. Show that 
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B-566 Proposed by Heinz-Jurgen Seiffert, Berlin, Germany 

Let Pn be as in B-565. Show that 

9JtpkLk = Pn + 2Ln + Pn + 1Ln+2 + PnLn_x - Pn^Ln + l - 6. 

B-56'7 Proposed by P. Rubio, Dragados Y Construcciones, Madrid, Spain 

Let a0 = a1 = 1 and an + 1 = an + nan_1 for n in Z+ = {19 29 ...}. Find a 
simple formula for 

k = o K" 

SOLUTIONS 

Lucas Geometric Progression 

B-538 Proposed by Herta T. Freitag, Roanoke, VA 

Prove that y/5gn = gLn + £n_1? where ̂  is the golden ratio (1 + v5)/2. 

Solution by Laszlo Cseh, Cluj, Romania 

It is well known that Ln = gn + #n
s where # = (1 - A/5)/2. NOW 

^Ln + L„_x = <f+1 + g -g - ̂  + ^ " x + ^ " x 

= ^ + 1 _ gn-l + ^n-1 + ~n-l 

= #n(# + ^ _ 1) = S5gn° Q.E.D. 

Remark: By a similar argument, it can be proved that gn - gFn + Fn_1« 

Also solved by Wray G. Brady, Paul S» Bruckman, L»A. G. Dresel, Russell Euler, 
Piero Filipponi, C. Georghiou, Walther Janous, Hans Kappus, L. Kuipers, Graham 
Lord, 1. Merenyi, George N. Philippou, Bob Prielipp, Heinz-Jurgen Seiffert, A, 
G. Shannon, Lawrence Somer, W. R. Utz, and the proposer. 

Not Necessarily Golden GP's 

B-539 Proposed by Herta T. Freitag, Roanoke, VA 

Let g = (1 + V5)/2 and show that 

1 + 2 E ^ 3 i 

i = l 
1 + 2£(-i)V 

i = l 
1. 

Solution by A. G. Shannon, NSWIT, Sydney, Australia 

[1 + 2±;^-3£lfi + 2 E ( - i ) V 3 i ] ki < 1 
L i = l JL i - l J 

1986] 
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1 + 

+ 1 

19 
g5 - i 
.g3 + i. 

+ x. 

1, as required. 

(sums of GPs) 

This holds for \g\ < 1; i.e., g does not have to equal a. 

Also solved by Wray G. Brady, Paul S. Bruckman, Laszlo Cseh, L. A. G. Dresel, 
Russell Euler, Piero Filipponi, C. Georghiou, Walther Janous, L. Kuipers, Graham 
Lord, J. Merenyi, George N. Phillppou, Bob Prielipp, Heinz-Jurgen Selffert, 
Lawrence Somer, and the proposer. 

Product of 3 Successive Integers 

B-5^0 Proposed by A. B* Patel, V»S* Patel College of Arts & Sciences, 
Bilimora, India 

For n = 2,3, . .., prove that 

F F F ML L L A1 rc -1 n n+1 n-1 n n+l 

is not a perfect square. 

Solution by L. A. G. Dresel, University of Reading, England 

Using the identities F„L„ = P0 and Po P ,o = Po2 - 1, we have 
& n n in 2n - 2 2n+2 2n 
P = F F F L L L = F F F = F (F 

±n-l^nLn+l1Jn-ljUnn+l 2n -2 2n 2n+2 2nK 2n 
1 ) . 

Now for n = 2, 39 ..., we have F2n > 1 and9 therefore, (F2n ~ 1) is not a per-
fect square; furthermore, F2

2
n - 1 = (F2n ~ l)(-̂ 2n + 1) is coprime to F2n and, 

therefore9 the expression P is not a perfect square. 

Also solved by WrayG. Brady, Pauls. Bruckman, Adina Di Porto & Piero Filipponi, 
Walther Janous, L. Kuipers, Bob Prielipp, A. G. Shannon, Lawrence Somer, and the 
proposer. 

Congruence Modulo 9 

B~5^1 Proposed by Heinz-Jurgen Seiffert, Student, Berlin, Germany 

Show that Pn+3 + Pn+1 + Pn = 3(-l)nPn (mod 9), where the Pn are the Pell 
numbers defined by P0 = 0, P1 = 19 and 

Pn+2 = 2Pn+1 + Pn for n in N = {0S 1, 29 ...}. 

Solution by L. A. G. Dresel, University of Reading, England 

Pn+3 + Pn+1 + Pn = 2Pn + 2 + 2Pn+1 + Pn = 3Pn+2* 

Let iiCn = (-l)nLn. Then since Pn + 2 = Ln+1 + Ln, multiplying by (-l)n we obtain 
Zn+2 = ~Kn+i + ^n» s o t h a t K

n+2 E 2Zn+i + Xn (mod 3 ) • Thus, Kn and Pn satisfy 
the same recurrence relation modulo 39 and furthermore9 

P = 2P + P 
r2 1 ^ ^0 

and P3 = 2P2 + P1 = 5 = -1 = Zx (mod 3). 

It follows that Pn+2 = X (mod 3) for n in J = {09 1, 2, ...} and, therefore, 
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3-Pn+:z = 3Zn (mod 9) for n in N9 so that 

Pn+3 +Pn+1 +Pn = 3(-l)nLn (mod 9). 

Also solved by Laszlo Cseh, Herta T. Freltag, C. Georghiou, Walther Janous, L. 
Kuipers, Imre Merenyi, GeorgeN. Philippou, Bob Prielipp, A. G. Shannon, Lawrence 
Somer, and the proposer. 

3rd Order Nonhomogeneous Recursion 

B~5^2 Proposed by loan Tomescu, University of Bucharest, Romania 

Find the sequence satisfying the recurrence relation 

u(n) = 3u(n - 1) - u(n - 2) - 2u(n - 3) + 1 

and the initial conditions u(0) = u(l) = w(2) = 0* 

Solution by C. Georghiou, University of Patras, Greece 

It is easy to see that the roots of the characteristic polynomial of the 
homogeneous equation are r± = 2S r2 - cc9 and r3 = b and that a particular solu-
tion of the inhomogeneous equation is up(n) = 1* Therefore5 the general solu-
tion of the given recurrence relation is 

u(n) = A2n + BFn + CLn + 1. 

The initial conditions give A = ls B = -29 and C - -19 and the solution is 

uin) = 2n - 2Fn - Ln + 1 = 2n - Fn+3 + 1. 

Also solved by WrayG. Brady, Pauls. Bruckman, Odoardo Brugla & Plero Flllpponl, 
Laszlo Cseh, L. A. G. Dresel, Russell Euler, Walther Janous, Hans Kappus, L. 
Kuipers & Peter J. S. Shlue, I. Merenyi, Bob Prielipp, Heinz-Jurgen Selffert, 
A. G, Shannon, and the proposer. 

Fibonacci Exponential Generating Function 

B"5^3 Proposed by P. Rublo, Dragados Y Cons trucelones, Madrid, Spain 

Let a0 = ax = 1 and an + 1 = an + an_x for n in Z+ = {l, 2, ...}-. Find a sim-
ple formula for 

G(x) = £ ^xK 
k = Q Kl 

Solution by Paul S. Bruckman, Fair Oaks, CA 

We see readily that an = F .. Hence, 

G(x) = ± Fk+1 f£ = 5"* ± (ak+1 - $k+1)^ = 5 ^ ( a ^ - fie**). 
k=0 K+1 k\ k=Q Kl 

Also solved by Wray G. Brady, O. Brugla & A. Dl Porto & P. Fllipponi, John R. 
Burke, Laszlo Cseh, L.A. G. Dresel, Russell Euler, C. Georghiou, Walther Janous, 
Hans Kappus, L. Kuipers, Graham Lord, Imre Merenyi, A. G. Shannon, and the pro-
poser. 
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Edited by 
RAYMOND E. WHITNEY 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, 
PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information 
that will assist the editor. To facilitate their consideration, all solutions 
should be submitted on separate signed sheets within two months after publica-
tion of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-39^ Proposed by Ambati Jaya Krishna, Baltimore, MD, and 
Gomathi S. Rao, Orangeburg, SC 

2 4 6 Find the value of the continued fraction 1 + -r- , — . — . 
3 + 5 + 7 + • • • 

H-395 Proposed by Heinz Jurgen Seiffert, Berlin, Germany 

Show that for all positive integers m and k9 

m - l F 2 k ( 2 n + l) k~lF2m(2j+l) 
2^ - _ 2^ -

n = 0 ^ 2 n + l j = 0 2 j + l 

H-396 Proposed by M. Wachtel, Zurich, Switzerland 

Establish the identity: 

rc r i + n " i+n + 1 " i+n + 2 

i = 1 a ^ i = i av i = i a^ 

a = 2, 3, 4, ..., n = 0, 1, 2, 3, ... . 

A reply regarding H-354 by M. Wachtel, Zurich, Switzerland 

In a note in the May 1985 issue9 the proposer is claiming that my solu-
tion which appeared in the August 1984 issue is not a solution. 

Reply: After having unsuccessfully attempted to understand the argumentation 
given in the above note, I might restrict myself to the following: 

1. Admittedly, the theories I developed are not a solution in a strict 
mathematical sense; neither was it intended to evoke this impression, since no 
proofs were given. I believe, however, that these theories are new ones, and 
as shown, they lead to the desired solutions of the equation (Ax + C = By ) in 
integers. 
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2. The proposer claims that I attempted construction of the solutions 
to particular cases. Yes, but I designated them clearly as arbitrary examples, 
and, moreover, I also mentioned in §1.2: "Considering the limited space, only 
main fragments of the whole issue can be dealt with here." Not one, but many 
formulas are involved, 1 surmise. 

3. The problems H-350 and H-372, proposed by myself and mentioned by 
Bruckman, are particular instances of the equation {Ax2 + C = By2) and solvable 
by the theories I described. 

4. Bruckman states: "Moreover, an explicit formula for all such solu-
tions is known, in terms of the one known solution." Frankly, I cannot imagine 
that there exists a general formula which would cope with particular values of 
C, or with the sometimes amazing complexity of the relations of i to B. In 
§2.3, I outlined: "To determine {x29 yi)* there does not (presumably) exist a 
general formula, but an undeterminable number of different construction rules, 
according to the group or class to which the sequence belongs. When both (x1, 
2/i) and {xl9 y2) are found, all other terms are determined." I have found quite 
a lot of such construction rules to determine {x2s y 2 ) . 

As to the "explicit formula" for all such solutions, I wonder if, e.g., 
for {A = 11(L5), x1 = 2, C = 3, B = 47(L8), y1 = 1) the desired sequence can be 
established. 

5. As an autodidact in mathematics with no high school education, I am, 
naturally, sometimes unable to observe a strong mathematical way. In conclu-
sion, may I observe that Bruckman in this note quoted my name incorrectly. 

SOLUTIONS 

Primitive Sequences 

H-369 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 
(Vol, 22, no. 2, May 1984) 

Call an integer-valued arithmetic function / a gcd sequence if 

gcd(a, b) = d implies gcd(/(a), f{b)) = f{d) 

for all positive integers a and b* A gcd sequence is -primitive if it is neither 
an integer multiple nor a positive integer power of some other gcd sequence. 
Examples of primitive gcd sequences include: 

(1) fin) = 1 
(2) f{n) = n 
(3) f(n) = largest squarefree divisor of n 
(4) fin) = 2n - 1 
(5) f(n) - Fn (Fibonacci sequence) 

Prove that there are infinitely many primitive gcd sequences. 

Solution by Paul 5. Bruckman-,.-Fair Oaks, CA 

Let G and P£ represent t&e sets of gcd sequences and primitive gcd se-
quences, respectively. There is a possible misstatement in the definition of 
of gcd sequence given in the statement of the problem, which requires / to be 
an arithmetic function; recall a function f : N -»• N is arithmetic if /(l) = 1 
and f(mn) = f(m) f(n) whenever ged(m, n) - 1. However, fh(n) = 2n - 1 and 
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f5(n) = Fn are not arithmetic functions, even though these functions have the 
"gcd property" stated in the problem. Assuming that the proposer did not in-
tend the offending word arithmetic in the definition of G and its subset PG9 
no difficulty arises. 

Infinitely many sequences (/„) € G are then generated by the recursion: 

(1) /„+2<*> =
 xfn+i<x) + fnW> n = 0'1' 2' '•••; f0W = °> /]>> = L 

where a; is any positive integer. 
The fn(x)'s given above are generalized Fibonacci polynomials. It was 

shown by Hoggatt and Long ["Divisibility Properties of Generalized Fibonacci 
Polynomials," The Fibonacci Quarterly 12, no. 2 (1974):113-130] that these poly-
nomials have the gcd property, that is, 

(2) gcd(/„(*), fn(x)) = fgcd(m,n)(x). 

Hence (fn(x)) E G. Since f1(x) = 1, fn(x) is not a multiple of another sequence 
in G. Also, we may choose x = f2(x) to be a non-power, in infinitely many ways; 
with such choices, we see that (fn(x)) cannot be a power of another sequence in 
G. Hence (fn(x)) PG for infinitely many choices for x. Q.E.D. 

Also solved by W. Janous, L. Kuipers, L. Somer, and the proposer. 

Lotsa Fives in the Product 

H-370 Proposed by M. Wachtel and H. Schmutz, Zurich, Switzerland 
(Vol. 22, no. 2, May 1984) 

For every positive integer a show that 

(A) 5 • [5 • (a2 + a) + 1] + 1 

(B) 5 • [5 • [5 • [5 • (a2 + a) + 1] + 1] + 1] + 1 

are products of two consecutive integers, and that no integral divisor of 

5 • (a2 + a) + 1 

is congruent to 3 or 7, modulo 10. 

Solution by Lawrence Somer, Washington, D.C. 

Expanding expression (A), we obtain 

25a2 + 25a + 6, 

which is the product of the consecutive integers 5a + 2 and 5a + 3. Expanding 
expression (b), we obtain 

625a2 + 125a + 156, 

which is the product of the consecutive integers 25a + 12 and 25a + 13. 
In general, it can be shown by induction that if 

Sk(,d) = 5 • [5 • [5 [5 • (a2 + a) + 1] + 1] + ••• + 1] + 1, 

2 H ' s 2k Vs 
where k is a fixed positive integer, then 

Sk(a) = (5ka + (5k - l)/2) • (5ka + {(5k - l)/2) + 1). 
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By looking at the ring of integers modulo 10 9 one sees that an integer 
is congruent to 3 or 7 modulo 10 if and only if at least one of its prime di-
visors is congruent to 3 or 7 modulo 10. Thus, to prove the last part of the 
problem5 we need only show that no prime divisor 5 (a + a) + 1 is congruent to 
3 or 7 modulo 10. Let p be a prime such that p = 3 or 7 modulo 10. Then, by 
the law of quadratic reciprocity, (5/p) = -1, where (5/p) is the Legendre sym-
bol. Suppose 

5 (a2 + a) + 1 E 0 (mod p). 

Multiplying both sides by 20 and then adding 5 to both sides, one obtains 

(100a2 + 100a + 25) = (10a + 5)2= 5 (mod p). 

However, this is a contradiciton, since (5/p) = -1. We are now done. 

Also solved by P. Bruckman,0. Brugla & P. Fillpponi, L. Dresel, F. He, J. Metz-
ger, B. Prlelipp, and the proposers. 

Continuing ... 

H~371 Proposed by Paul S. Bruckman, Fair Oaks, CA 
(Vol. 22, no. 2, May 1984) 

Let [k] represent the purely periodic continued fraction: 

k + l/(fe + l/ik + -.-•, k = l, 2, 3, ... . 

Show that 

[k]3 = [k3 + 3k]. 

Generalize to other powers. 

Solution by O. Brugia, A. Di Porto, & P. Filipponi, Fdn. U. Bordoni, Rome, Italy 

Let &m be the mth convergent of [k] ; as known [ 1], both the numerator Pm 
and the denominator Qm of Sm can be expressed by the same difference equation, 
Rm = kRm_1 + i?m.2, with initial conditions RQ = 1, i?x = k for Pm9 and R0 = 0, 
R1 - 1 for Qm. Since the roots of the corresponding characteristic equation 

z - kz'- 1 = 0 are zx = (fc - Vk2 + 4)/2 and z2 = (k + Vk2 + 4)/2, we get 6m = 
(zm

2
+1 + zm

1
+1)/(z^ - sj1) , . and hence 

[k] = l im 8m = z2 = (k + A 2 + 4 ) / 2 , fo r £ > 0 . (1) 
777 -*- 0 0 

For every nonnegative integer n we will find, if any, a nonnegative in-
teger hn such that 

[ft„] = [k]n. (2) 
From ( 1 ) , e q u a t i o n (2) cari .be r e w r i t t e n a s (hn + Vh% + 4 ) / 2 = s " a n d gives 

fcn = (S|» - l)/a2 = s2n - (-Sl)» 

= («/&*' + 4 + fe)/2)n - ( ( V F T 4 - Zc)/2)", (3) 

where use has been made of the relation 

M j = -1- (4) 

Because 
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0, for n - 0 

l ^ = 0 
,2v- 2i- 1 for n = 2v, 

v = 1, 29 

i=0 j=0 v = 0, 1, (5) 

we see that h2v is irrational for V ^ 0 and h2v+1 is rational. Moreover, since 
(5) becomes 

^2v+1 ~ iL ^2v+l,2y + l^ 2y+ 1 (6) 

where 
y = o 

A 2 v + l , 2 y + l 92y . ^ \ 2 i A v - 11/ 
r = v - y 

1 y W 2v + 1 \ / i + v - y\ 
22^ ^ = 0 V2y - 2i + l A i / ' (7) 

it can be shown that h2v + i is a positive integer. 
First of alls we observe that the right-hand side of (7) is a polynomial 

in V having: 

• degree 2y + 1, 

• the coefficient of V2y+ l equal to 2/(2y + 1)! 

• the first y + 1 roots equal to -Jg and vP = r (r = 0, 1, .. ., y - 1) 

because either (0 ^ . , , I or . ) vanishes for these values \2y - 2^ + 1/ \ ^ / 
of v and 0 < i < y. 

To find the remaining y roots of the above polynomial, we utilize the 
identity 

^-(2v+l),2y + l = "^2v+l,2y + l (8) 

derived from (3), (4), and (6). Setting V = -vr - 1 into (7) and using (8), 
we have 

^2(-vr- 1) + 1, 2y + l = ^-(2vr+ 1), 2y + l = ""^2vr + 1, 2y + 1 = °  
because the Vr

fs are roots of (7), and therefore also -Vr - 1 = -r - 1 (p = 0, 
1, . .., y - 1) are roots of (7). 

On the basis of the previous observations, we have the result: 

*2v+i.2W+i - T 2 i r r i y r ( v + i)%(v ~ p ) ( v + r + l) 

= 2 v + X / v + y \ = o / v + ^ \ + ( v + Vl\ 
2y + 1\ 2y / z \2y + J V 2y ) ' 

S i n c e ( 9 ) shows t h a t t h e A 2 v + i , 2 y + l ' s a r e p o s i t i v e ^ 
i n t e g e r s , we c o n c l u d e t h a t t h e h2v+^s a r e p o s i t i v e 
i n t e g e r s a s w e l l . The v a l u e s of A 2 v + i , 2 y + i» f ° r 

0 < v < 4 , a r e g i v e n i n t h e t a b l e a t t h e r i g h t . 

The s e c o n d row of t h e t a b l e , t o g e t h e r w i t h ( 6 ) and 
( 2 ) shows t h a t _ 

[k]3 = [3k + k3]. 

92 

(9 ) 

v \ 
0 
1 
2 
3 
4 

y 0 

I 
3 
5 
7 
9 

1 

1 
5 

14 
30 

2 

1 
7 

27 

3 

1 
9 

4 

1 

[ F e b . 



ADVANCED PROBLEMS AND SOLUTIONS 

Reference: [1] I. M. Vinogradov* Elements of Number Theory. New York: Dover 
Publicationss 1954. 

Also solved by P. Bruckman, F. He, W. Janous, L. Kulpers, M. Wachtel, and the 
proposer„ 

Recurring Thoughts 

H-372 Proposed by M. Wachtel, Zurich, Switzerland 
(Vol. 22, no. 3, August 1984) 

There exist infinitely many sequences9 each with infinitely many solu-
tions of the form: 

A' x\ + C 

A-x^ + C 

A • x2 + C 

A- xi + C 

\-y\ A = F„ C = L„ 

*2 = Fn_1Fn + Fj+1 

x3 = 2 F 2 n + t+ + ( - l ) n 

2/1 = 2 

y_J_ = 2Fn + l 

2/3 = 2F2n+5 

Find a recurrence formula for x /y 9 x /y 9 ..., xm/ym (ym = dependent on xm), 

Examples : (x1 - x3) 

n = 3 

z w n 2 +^± = E±' 
Fs' (F2F3 + F202 + L3 = Fk-

H' (2F^o " !>2 +L_L = I±B 

n = 4 

F7- ( I ) 2 + L„ = F\ 

£ V (F3F, + F\)2 + L^ = F^ 

F7 • ( 2 F 1 2 + l ) 2 + L^_ = F5 

( 2 ) 2 

( 2 F 2 ) 2 

( 2 F i x ) 2 

• ( 2 ) 2 

• ( 2 F 2 ) 2 

' ( 2 ^ 1 3 ) 2 

8 • 

I" 

001 

11' 
11' 
11' 

( i n 

1 

l l 2 

109 2 

1 

3 1 2 

2 8 9 2 

numbers ) 

+ 4 = 3 -
+ 1 = 1° 
+ it = 1 ° 

+ 7_ = 5> • 
+ Z = A8 

+ ^ = I" 

2 2 

1 8 2 

1 7 8 2 

2 2 

5 0 2 

4 6 6 2 

Solution by Paul S. Bruckman, Fair Oaks, CA 

Let 

*m = xm/ym> m E %> ( 1 ) 

where (xm9 ym) are the solutions (if any) of the equation: 

Fn+1y2 -Fn+3x* =Ln, (2) 

and n is a fixed nonnegative integer. This is a particular instance of the 
general equation: 

ay1 - bxz = o9 (3) 

where a9 b, and c are pairwise relatively prime positive integers, with a and 
b not both perfect squares. 

By a solution of (3)9 we mean any ordered pair of integers (x9 y) solv-
ing (3), but with y > 0. This allows trivial sign variations in the x-coordi-
nate but not in the z/-coordinate; the theory is much more elegant with this 
convention. We then write (x9 y) e %{a9b9 c) iff (x9 y) is a solution of (3). 
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We may infer from the theory of such equations that the solution set 
S(a9 b9 c) (if nonempty) is generated from the set S(l, db9 1). More specifi-
cally, if (xm9 ym) e S(a, b9 c) and (pm, qm) e S(l, ab9 1), then 

X™ = *yQPm + * 0 ^ 
(4) 

z/m = bxQpm + y0qm, m e 2, where (x0, z/0) is any solution of (3). 
It is an easy exercise to show that the expressions given by (4) do9 in fact, 
provide solutions of (3), given that q2

m - abp* = 1. 
For our most specific case, we first show that 

(1, 2) e §>(Fn + 19 Fn + 3, Ln). 

For 4Fn + 1 - Fn+3 = 3Fn + 1 - Fn + 2 = 2Fn+1 - Fn = Fn + 1 + Fn_± = Ln. Thus, (1, 2) 
is a solution of (2); clearly, it is the minimal solution. We will find it 
convenient to choose (xQ9 y Q) = (1, 2). We then need to solve the auxiliary 
equation: 

"2 - Fn+iFn+3u2 = 1. (5) 
then substitute in (4) to obtain all solutions (xm9 y ) of (2), with 

x0 = l> Ho = 2* a = Fn + 1> b = Fn+3° 

Note t h a t Fn+lFn+3 = Fn
2

+ 2 + ( - l ) n . The g e n e r a l s o l u t i o n s of (5) a r e gene ra t ed 
by expansion of powers of t h e q u a n t i t i e s a and 3 def ined by : 

a = Fn+2 + V ^ / n + 3 , 3 = Fn + 2-JFn+1Fn+s. (6) 
Note t h a t 

a3 = ( - l ) n + 1 , a + 3 = 2 F n + 2 , a - 3 = ^Fn + 1Fn+3. 
If we make t h e fo l lowing d e f i n i t i o n s : 

um = a _ g , vm = Js(am + e m ) , in e Z , (7) 

we see that U2 - Fn + 1Fn + 3u* = Js(am + 3 m ) 2 - Js(am - 3 m ) 2 = h' 4 ( a e ) m , or 

^ -Fn + ,Fn + 3ul= ( - l ) m ( " + 1 ) . (8) 
From the definitions in (7), we may derive the following identities, which are 
indicated without proof: 

Um + 1Vm - umVm + 1 = (-1)^ + 1 ) - ; ( 9 ) 

*>m*Wl - ^n + A + 3 * V W = ( " D ^ + 1 ) ^ n + 2 ; <10> 

Um+2Um umum+2 ^ L) n + 2 ' V J 

Wfn + 2 ~ ^ + l ^ n + 3 * V W = (~ l ) ( n + l ) W(2Fn
2

+2 - 1 ) . (12) 
We see from (8) that if n is odd, (um> vm) e §(1, Fn + 1Fn + 39 1). Setting 

a = Fn + 1 , b = ̂ j + 3, ̂ o = l> Ho = 2> Pm = um> Vm = ym in (4) , we thus obtain the 
explicit solutions of (1), if n is odd: 

xm = 2Fn + lUm + ym> ^ = Fn + 3Um + 2 ^ > ^ G Z« <13> 

If n is even, we see from (8) that (um, vm) e S(l, Fn + 1Fn + 3, 1) iff m is even. 
Hence, we make the same substitutions in (4) as for the case where n is odd, 
except that now we set pm = u2m, qm •= v2m. Thus, the general solutions of (1) 
if n is even are as follows: 

*m = 2Fn + lU2m + *>2m»2/m = Fn + 3^2m + 2y2™* ™ G Z ' ^14> 
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Next9 we derive a pair of useful relations involving successive values of (xm9 

(LnS n odd, 
x M w - x y , , = < (15) 

{2LnFn + zS n even; 

(LnFn + 2, n odd, 
F u it - F xx =< (16) 

n + l^m^m + l n + 3 m m + l ) fn „ N K^^J 

{Ln(2Fn + 2 + 1), n even. 
For brevity5 we write u = um or u2m9 ur = um + 1 or u2 w + 2, depending on whether 
n is odd or even, respectively, with similar notation for v and vr-

Substituting the expressions in (13) or (14) into (15) and using (9) or 
(11), as appropriate, the left member of (15) becomes, after simplification: 

((-1)<* + 1 > % , =Ln, n odd; 
(u'v - uv')«Fn + 1 - Fn + 3) =! 

l(-^n + 1)2m2Fn + 1Ln - 2LnFn + 2, n even. 

Likewise, substituting the expressions in (13) or (14) into (16) and using (10) 
or (12), as appropriate, the left member of (16) becomes, after simplification: 

U-lf>+limFn + 2Ln = LnFn + 2, n odd; 

{(-l)(n+1)2m(2Fn
2
+2-l)Ln=Ln(2Fn

2
+z-l), n even. 

This completes t h e proof of (15) and ( 1 6 ) . 
Using (15) and ( 1 6 ) , we may now d e r i v e t he d e s i r e d r e c u r s i o n fo r the ^OT

!s. 
Div id ing (15) and (16) th roughout by ymym+19 we o b t a i n : 

v - vm = A/y y , , F - F r r = B/y y , 
m + l m JmJm + l ' n + l n + 3 m+1 m ^m^m + l 

where 
(Ln9 ft o d d ; (LnFn + 2> n o d d ; 

\2LnFn+2> n eVen' k ( 2 C 2 + 1). * even-
Thus, 

F n + l " Fn+3rm + irm = ^ X ^ + l ~ r«> ' 
Solving fo r r , we f i n d : 

5 ^ + ^ n + i 
P = . (17) 

/irn + 3Im ^ D 

In terms of the functions of ft, we find that each of the terms in the fraction 
in (17) contains the constant term Ln9 which may be cancelled. Hence, in sim-
plest terms, we obtain the two expressions: 

' F r + F n + 2 m n + i 
IF r> 4- F 9 U ° d d ; 

1 rn + 31m T £n +2 
Lm + i~ \ (2F2 + l)r + 2F F 

lrn + 2£n + $Tm + ZFn + 2 + 1 
-, ft even. 

We may also solve for rm in terms of P +1» thus obtaining: 
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•^n+2rm+l ^n+l 
5 n odd; m —JP y> + TP 

n+3 m+l n + 2 

(19) 
(IF2 + l)r - 2F F 

x>m = 9 n even. -2F F v + IF 2 4- 1 A r n + 2 r n + 3 1 m ^ r n+2 x 

Using (18) and (19)9 we may extend the sequence 

(r )°°  

in either direction, given rQ = %. 

Also solved by the proposer 
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