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THE FIRST DIGIT PROPERTY FOR EXPONENTIAL SEQUENCES IS
INDEPENDENT OF THE UNDERLYING DISTRIBUTION

TALBOT M. KATZ and DANIEL 1. A. COHEN
Hunter College of The City University of New York, New York, NY 10021
(Submitted July 1982)

The natural density in the set R = {erk: k =0,1,2, ...}, where ¢ > 0, » > 1,
and log,,r is irrational, of the elements beginning with the first digit % is
known to be

Log,, (LZ—Q) :

We show that this property persists for any finitely additive, translation in-
variant density on sets of the form

E={eg = (erk + qp) i a; =o(rk, k=0, 1, eedls

where ¢ > 0 and log, ,» is irrational.
In particular, this includes the Fibonacci sequences.

Let ¢ and » be real numbers, such that ¢ > 0 and r > 1, but r # 107 for g
a rational number. Define

R={erk:k =0,1,2, ...}

and let R() be the subset of R whose members begin with the string of digits
% in the decimal representation, e.g., if ¢ = 3 and r = 7, then 147 € R(1l) (147
begins with digit 1); 147 is also in R(l4) (147 begins with a two-digit string
14), and 147 € R(147). 1If A is any subset of R, define its indicator function
as follows:

1 if erf"tea
x(ks 4) = k=1, 2, 3,
0 if erkl ¢ A

Then

I R . _ 1L+ 2
11mzk§lX(k, R(Y)) = 10310( : )

7N+ o
which is a consequence of the fact that the set
{(log,,crk) mod 1: k =0, 1, 2, ...}

is uniformly distributed in the interval [0, 1). (See [4].)
When the limit exists,

14

lim & 2 x(k; A)

n+o N =1

is called the natural density of A with respect to R. Although the natural
density exists for cach R(L), there are subsets of R which do not have natural
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THE FIRST DIGIT PROPERTY FOR EXPONENTIAL SEQUENCES

density. Nevertheless, the natural density can be extended to all subsets of R
in a way which preserves finite additivity and translation invariance [defined
below as properties (D1) and (D2)]. However, even with added restrictions such
as scale invariance, such extensions are not unique. (See [1].)

Now consider any density d on R which satisfies the following two proper—
ties:

(D1) For all A4, B CR, d(A U B) =d(4) + d(B) - d(4 n B) (finite additivity).

(D2) For all A C R, d(4) = d(4*), where- At is the "successor set' defined by
A+ = {crk: crk~1 € A} (translation invariance).

Subsequent successor sets to 4 will be denoted by
ATh = (AT 1yt = {erk: crkt € 4.

Notice that AY = rA and A™" = r™. Note also that (D2) implies that d(4) =
d(A*h) for all h =2, 3, 4, ..., and that d(4) = 0 if A is finite [since d(R) =
1].

Naturally, the natural density satisfies (D1) and (D2).

We remark that any density defined on an algebra of subsets of F which
includes the single point sets, {cr*} for each k = 0,1, 2, ..., and which sat-
isfies (D1) and (D2), can be extended to all subsets of K. We presume that any
density considered in Theorems I and II is defined on the entire power set.
Also, since finite sets and sets of density zero are unimportant in the sequel,
we adopt the following definitions:

If A, B CR, say

d(A n B) = d(B), and
d(A n B) < d(B).

]

(i) 4 =4 B if and only if d(4)
(ii) A ¢; B if and only if d(4)

Theorem |: For any density d on R which satisfies properties (D1) and (D2),

dR®)) = log,,(+57).

Proof of Theorem |: There are two key observations to be made about the first
digit sets, R(L). The first observation is that
R(1) =; R(10) u R(11) U R(12) U ---U F(19)
=; R(100) v RE(101) u ---uU R(199),

R(2) =5 R(20) u R(21) v +-- U R(29)
=; R(200) U F(201) U -+ U R(299),
etc. Since R = R(1) u R(2) U ---u R(9) and R(j) N R(Q) = @ for 1 < <29,
it follows that

lOk+1__1
Y d@R(G)) =1 for k=0, 1,2, ... . (1)
J=10*%

The second key observation concerns the successor sets of the first digit
cets. 1In the case in which ¢ and r are integers, they have the form:

1986]



THE FIRST DIGIT PROPERTY FOR EXPONENTIAL SEQUENCES

R(1)* =; R(r) UR(x + 1) U---U RQ2r - 1)
R(2)* =; R(2r) U RQ2r + 1) U +++ U R(3r - 1)

AR+ 1r-1

RW*T = U RG). (2)
J=2r
Then
L+ 1)r-1
dR(R)) = > d(R(F)) for £ =1, 2, 3, ... . (3)
Jj=Ar

The idea of the proof is to tie together formula (1) and formula (3). However,
if the decimal expansion of » does not terminate, R(r) is no longer a well-
defined object; thus, before proceeding further, it is necessary to generalize
the notion of first digit sets.

If 1 <x <y < 10x, define

Rz, y) = {u € R: 2 <10 u <y for some integer j}.
Note that R(L) = R(%, 2 + 1).

For notational simplicity, assume r < 10. Otherwise, in what follows re-
place » by 7, defined by

T = p10 BT,

where the brackets denote the greatest integer function,e.g., [3.76] = 3. Then
R(1, »)* =; R(», %), R(1, r)t" =, R(»", »"*1),

and equation (2) generalizes to

R(x, y)* = R(zr, yr). (4)

By assumption (D2) of translation invariance,
m-~1 m=-1
md(R(1, »)) = ¥ d@R(1, r)*") = ¥ d@®(zh, £"*h)). (5)
h=0 h=0

By assumption (D1) of finite additivity, and the fact that » < 10,

dR(L, »)) + dR(r, r?)) + *=+ + dR@" Y, r™)
[r7] -1
= 121 d(R(L)) + dR([r"], ™). (6)
Combining equations (1), (5), and (6) yields
[r7] -1

(md(R(1, ))1 = ¥ d@®®) + d@&E([r™], rm)) = [m log, rl]. (7

Since equation (7) must be true for any choice of m, it follows that

d(R(1, r)) = log,,r.

L [Feb.



THE FIRST DIGIT PROPERTY FOR EXPONENTIAL SEQUENCES

Now let 1 S 2 < 10. We show that d(R(l, »)) = d(R(x, zr)).
Case 1: 1 <»r <z < 10.

d@®(1, %)) = d(R(1, r)) + d&R(r, x))
and

dR(r, rx)) = dR(r, x)) + d(R(x, xr)).
By (D2), d(R(1l, x)) = d(R(r, rx)), so the result follows.

Case 2: 1 <x < r < 10.

Again using d(B(l, z)) = d(R(r, rx)), we have

dR(1, r) = d(R(l, x)) + d(R(x, 7))

d(R(r, rx)) + dB(x, r)) = dR(x, rx)).

Hence, by repeated use of (D2),
log, ,r = d(R(1, 7)) = d(R (xr?, xrj+l)) for any 4 2 0,

so that

1 . .
md(R(l, r)) = d@EB(xr?, xr'*tty),

j=0
from which it follows that

(xr7] - 1
md(R(1, r)) + d@R(l, ©)) = 2 dER®) + d@([zr"], xr™)),
e=1

which implies
[m lOglOI’ + d(R(l, x))] = [m loglor + loglox]'

Thus
d(R(1, x)) = log, . (8)

Since d(R(x, y)) = d(R(lex, Iij)) by the definition of R(x, y), for all
integers J, the results

d(R(x, y)) = 1og10(y/x) for 1 S <y < 10z

and
2+ 1
dR()) = 1og10(_r)

follow easily from equation (8) and assumption (D1). Q.E.D.

Now consider real numbers ¢ and r as above and real numbers a for k = 0,
1, 2, ..., such that a; = o(rk). Define

E={e, = (erk+ay): k=0, 1, 2, ...},
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and a corresponding set
R, = {(ey —ay):k=0,1, 2, ...}.
Define a bijective function f: E > R, by
fley) = e - a, = erk.

Let the sets E(x, y), E(), Ryp(x, ¥), Ry() be defined as above.

Assumptions (D1) and (D2), and the notions of a successor set, =;, and <,
all extend to EF in a natural fashion (although it is no longer true that A% =
rA for the successor set of A C E). Sets of type FE include linear recursive
sequences of the form

Upgr = Oy + 0w,y + -o0 + 0w, g
whenever the characteristic equation has a unique highest root. In particular,
the classic Fibonacci numbers {0, 1, 1, 2, 3, 5, 8, ...} occur when

1 1+ V5 1 (1 + 5\
c=-—, r-= 5 ag=-—\—%—) -
V5 V5
Note that logIO(l—%f!§> is indeed irrational.
Theorem Il: Let d be a density on £ satisfying assumptions (D1) and (D2), as
they extend to E. Then
1+ 2
d(E(R)) = loglo(T).
Proof of Theorem 1l: The density d gives rise to a corresponding density djp on

Rp, defined by
dp(4) = d(f*(4)) for A C Rp.

Theorem I applies to dp.
Since a; = o(rk), it is evident that, for any € > 0,

F @By + e, y - €)) ¢ E@, y) ¢ Ry - €, y + €)).

Hence

1oglo(‘L—JC :_ z) = dg(Bp@ + €, y -€) SdpgBy(x - €, y +€)) = loglo(y + e)

X — €

and the result follows. Q.E.D.

These results can also be obtained using the measure-theoretic techniques
developed in [1]. For a review of the literature on the First Digit Problem,
see [5]. It should be noted that the base 10 logarithmic behavior is due to

the convention of writing numbers in decimal form. If the numbers were written
in base b, then

dE®)) = 1log,(LF I1).

3
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Another example of a density which satisfies (D1) and (D2) is the loga-—
rithmic density
n
X(k; A)
I
dlog(A) = lim

1>

M=
XY =

k=1

Like the natural density, there exist sets which do not have logarithmic den-
sity. The logarithmic density agrees with the natural density wherever the
natural density exists, but there are sets which have logarithmic density which
do not have natural density. This raises the following questions: Does every
density which satisfies (D1l) and (D2) agree with the natural density on sets
which have natural density? with the logarithmic density? with other summabil-
ity methods?
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GENERALIZED ZIGZAG POLYNOMIALS

A. F. HORADAM
University of New England, Armidale, Australia
(Submitted July 1983)

1. INTRODUCTION

The purpose of this paper is to extend and generalize the results established
in [5] for a category of polynomials described therein as '"zigzag." These
arise in a specified way from a given polynomial sequence generated by a sec-
ond-order recurrence relation.

Consider the sequence of polynomials {W,(x)} defined by the second-order
recurrence relation

W, ., (@) = kW, ., (x) + mi, (x) (n 2 0) (1.D)
with initial values
Wy(x) = N, W, (x) = kax, (1.2)

wherein %, k, and m are real numbers, usually integers.

We have represented these polynomials in abbreviated form by W,(x) though
the parametric symbolism W,{(k, kx; kx, m)more fully describes them. Note that
a characteristic feature of the definition (1.1) and (1.2) is that the initial
value W, (x) = kxr in (1.2) must be the same as the coefficient of W, ,(x) in the
recurrence (l.1).

Standard methods enable us to derive the generating function for {W,(x)},
nanely,

iown(ac)t” ={h + kx(l - B)t}[1 - (kot + mt*)]™* (1.3)
or, equivalently,

5§h@+l(x)t” = (kx + mht)[1 - (ket + me2)]7t. (1.3)7

n=0

An explicit form of W,(x) (n 2 2) is, in the usual notation,

n-1 n-2
W, (x) = kx[éjo](n - i - 7;)nzi(km)”’l“” + mh[;:](” - i - 7:>mi(7<x)n—2-2i )

=0

(1.4)
This formula will be essential when we prove (3.3).

At this point, we stress that W, (h, kx; kx, m) defined above is a polyno-
mial variation of the W, (a, b; p, g), wherein a = h, b =p = kxr, g = m, whose
basic and special properties have been discussed in [7] and [8]. Therefore, no
further consideration of its salient features is required here.

Special cases of W,(h, kx; kx, m) which interest us are (when A = 2):

8 [Feb.



GENERALIZED Z1GZAG POLYNOMJ|ALS

POLYNOMIALS h k m
Lucas 2 1 1
Pell-Lucas 2 2 1
Chebyshev (2nd kind) 2 2 -1 (1.5)
Fermat 2 1 -2

More will be said about these special cases in Section 4.

2. RISING DIAGONAL ZIGZAG POLYNOMIALS
The first few members of the polynomial set {W,(x)} are, from (1.1) with (1.2):
Table 1. Rising Diagonal Zigzag Polynomials for {W, (x)}

r Z, @) (2.1)
Wy(x) = W @

Z, (@)
Wy(x) = ke / 24 ()

W, (@) = (kx)2+/mh /Z“Z)(x)
Hy(m) = (ka)? +mhke) + mk) //Ze@)
{W, @) = (k) +mhlke)? + 2m(ka)® + m?h 27(2@)
We(x)y = (kx)®+mh(ke)® + 3m(ke) * F 2m*h(ke) +  m® (kx) 24 @)
We (o) = (ki) ®+mh(ke)® + bmke)* + 3m*h(kae)® + 3m? (k) >+ mh Z, . (x)

Wo(x) = (kx)”+mh(ke)® + 5mko) 5+ 4m*h (ko) ® + 6m® (k) *+ 3m°h(ke) + m® (k)

W (@) = (kx)® +mh(ka)® + bm(kx)®+ 5SmPh(ke)* + 10m® (kx)* + 6mh (ko) 2 + 4m® (kx)* + 'k
/

In Table 1, pair terms in columns 2 and 3, columns 4 and 5, ..., to form
the rising diagonal generalized zigzag polynomials Z,(x) as indicated by the
lines, beginning with Z (x) = k. For example, some of these generalized zigzag
polynomials are:

Zy(x) = h, 2, (x) = ks, Z,(x) = (ke)?, Z,(x) = (kx)® + mh,
z, (@) (kz)" + mk (kx) +m(kz), 2 (x) = (kx)® + mh(kx) > + 2m(ka) 2, (2.2)
Z (@) = (ke)® + mh(ka)® + 3m(kx)® + m’h,

I

It

Previously, in [5], we mentioned that the virtue of the pairing technique
by which the zigzag polynomials are produced is that specializations may be
readily obtained. 1In the case of Table 1 this is achieved by the amalgamation
of corresponding elements in appropriate pairs of columns.

For example, the rising diagonal polynomials for Pell-Lucas polynomials
(1.5), already given in [5], are obtained by adding like terms in columns 2 and
3, columns 4 and 5, ... (as appropriate), in Table | when 2 = 2, k = 2, m = 1,
to give, for instance, the special expression for Z (xz) in (2.2) as

642% + 40x® + 2

(which is the polynomial PG(x) in [5]).

1986] 9



GENERALIZED Z1GZAG POLYNOMIALS

Correspondingly, for the Fermat polynomials (1.5) the rising diagonal poly-
nomial is x® - 10x® + 8 (represented in [3] by R'(x)).

Before proceeding to establish some properties of Z,(x), we introduce the
companion polynomials X, (x), defined by

X, (@) = Z,(x) - (2.3)
=1
i.e., X,(x) are the rising diagonal zigzag polynomials of the set of polynomi-
als {W,(x)} defined in (1.1) for which & = 1.

Thus, if we consider the four special cases of W, (2, kx; kx, m) which are
listed in (1.5), yielding particular instances of the Z,(x) when %2 = 2 [the
polynomials Y, (x) defined in (2.11) below), then the corresponding polynomials
X, (x) are associated with the four special cases of W, (1, kx; kx, m) corre-
sponding to those in (l1.5), but with # = 1. These are the Fibonacci polynomi-
als, the Pell polynomials, the Chebyshev polynomials of the first kind, and the
companion Fermat polynomials ('"Fermat polynomials of the first kind"), respec-
tively.

From (2.2) and (2.3) we have the expressions for the simplest polynomials
X, (x):

X @) =1, X, (®) = ke, X,(x) = (ko)?, X, (x) = (kx)® + m,
X, (@) = (kx)* + 2m(kz), X (x) = (ka)® + 3m(kw)?, (2.4)
EXG(LL‘) = (kx)® + sm(kx)® + m?, ...

The recurrence relation, the generating function, and the explicit form
for X, (x) corresponding to (2.5)-(2.7), and the differential equations corre-~
sponding to (2.8) and (2.9) which X,(x) satisfy, may all be readily derived by
simple substitution.

Following procedures already established in [5], we derive, without much
effort, the results exhibited below.

RECURRENCE RELATION
Z,(x) = kan_l(x) + mZn~3(x) (n 2 3) (2.5)

GENERATING FUNCTION
L2, (@)t = (ke + mht?) [l - (ket + mt3)1°% = Z(x, ¢) (2.6)
n=1

EXPLICIT FORM

[ﬂ;l] 7= 1 = 29\ s [nEB] no= 3 = 24\ - s
7, (x) = kx i‘éo ( ; )m”’(kx)” T+ mh E < : )mi(kx)” z

=0

> .
DIFFERENTIAL EQUATIONS (n=>3) 2.7

kt—a%;z(x, ) - (ke + 3mt2)'8%2(x, £) = k{ 2k - 3)mt? - ka}[1- (kwt+mt?)]-L

(2.8)

2@ + 32, @) = k(G - D, @) + 3, @) (2.9)

n+2

a
ke

10 [Feb.



GENERALIZED ZIGZAG POLYNOMIALS

Alternative and equivalent forms exist in some of the above results. For
example, the bracketed factor on the right-hand side of (2.9) may be equally
well expressed as

(n+2)2,,,& - 3mth - DX, _, ().
The equality of these two forms arises from the relationship

Z,(x) = X, (x) +m(h - Dx, _,(x) (n 2 3), (2.10)
which may be readily demonstrated. Substitution of # = 1 in (2.10) produces
Z,(x) = X,(x), of course, in accord with (2.3).

Another alternative expression occurs in the right-hand side of (2.8),
which can be made to simplify to k{2Z(x, ¢) - 3X(x, t)} where the symbol

X(x, t) = Z(x, t)

h=1
Next, for completion, we introduce the related polynomial Y, (x), defined

by

Y, (@) = Z,(x) (2.11)

2

h=2
i.e., the Y, (x) are the particular cases of Z,(x) occurring when %k = 2.
Expressions for some of the Y, (x) are, by (2.2) and (2.11):

Yo(x) = 2, ¥ (x) = ke, Y,(x) = (kx)?, Y, (x) = (kx)® + 2m,
Y, (x) = (ko)* + 3m(kx), Y (@) = (ka)® + dm(kx)?, (2.12)
Y (@) = (ke)® + 5m(ka)® + 2m*, ...,

whence, by (2.4) and (2.12),
Y (x) =X, (x) + an_a(x). (2.13)

Corresponding to (2.5)-(2.9), the recurrence relation, the generating
function, and the explicit form for Y,(x), along with the differential equa-
tions satisfied by Y,(x), are easily deducible.

Subtraction of (2.13) from (2.10) reveals that

Z,(x) =Y, (x) + m(h - 2)X (x) . (2.14)

n-3

When % = 2, (2.14) leads to Z,(x) = Y,(x) in accord with (2.11).

3. DESCENDING DIAGONAL ZIGZAG POLYNOMIALS

Re-organize the material in Table 1, as indicated in Table 2 below, to produce
the descending diagonal generalized zigzag polynomials:
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GENERALIZED Z1GZAG POLYNOMIALS

Table 2. Descending Diagonal Zigzag Polynomials for {W,(x)}

(W, () =h\ v (3.1)
3, (x)

W, (@) = ka

W, (x) = (ka)2+mh 2z, ()

W) = (ka) i+ mh(ka) + m(ka) \

W, (@) = (kz)'&mh(ka)? + 2m(ke) ¢ m*h

2, (x)

W @) = (kz)Fmh(kz)® + 3m(ke) ¢ 2mPh(ko) +  m? (k)

We (@) = (ko) mhke)® + m (ko) 3m®h(ka)? + 3m? (ka)ig mh

24 ()

W, (x) = (ke) & mh(ke) S+ 5mke) °F bm?h (ko) ® + 6m? (kx) S+ 3mPh(kx) + m®(kx)

W, () = (ka)®+mh(ka)® + 6m(kx) St 5Sm2h(kae) " + 10m? (kx) "+ 6m*h(ka) 2 + 4m® (k) 2+ m*h
? AN N\ N

N

Designate these polynomials by z,(x). Then, as we learned from experience
to expect, we derive the relatively simple expressions

{zo(x) = h, 3, (@) = kx + mh, z,() = (kx + mh) (kx + m),

(3.2)
25 (@) = (kz + mh) (ke + m)?, z,(@) = (kz + mh) (ke + m)°, ...,
and in general
2,@) = (kx + mh) (ke + m)""t n=1,2,3, ..., (3.3)
so that
Z‘rl+1(x)
—W = kx + mh. (3.4)

As result (3.3) is crucial, we proceed to demonstrate its validity.

Proof of (3.3): Temporarily, write W,(x) = kxP(x) + mhQ(x) in (1l.4), wherein
P(x) and Q(x) stand for the appropriate summations.

Let typical values of 7 in P(x) and §(x) be represented by p and g respec-
tively (p =0, 1, ..., n - 1; qg=0,1, ..., n~- 1.

Each value of » in the W,(x) giving rise to a specified z,(x) in Table 2
requires a pair of values (p, q).

For

Wn(x), %_'_l(x): Wn+2(93)’ se ey WZn_l(x), WZn(fE)s

these are
(0, —): (1, 0)’ (2, ]-)5 sees (n -1l,n- 2), (""9 n - 1):

respectively, in which the dash (-) signifies nonoccurrence.
Then, from (l.4), we have, after the necessary simplifications:
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GENERALIZED ZIGZAG POLYNOMIALS
z, (@) = kx{(” 0 1)(kx)”'1m° + (” 1 1)(kx)"”2m1 + (” 5 1)(kx)”'3m2 + o

+ (n Z i)(kx)om”‘l} + mh{(n (_) 1)(7@)4—1”10 n (n I 1)(7@0)’ “2,1

+

—
S

N

- ]')(kx)”‘amz b oeee 4 (Z B i)(kx)"m”'l}

kx (ke + m)* ™Y + mh(ke + m)™ 1

(kx + mh) (ke + m)" .

The generating function for z,(x) (n > 0) is

z(x, t) = i 2, (@)t" "t = (kx + mh)[1 - (kx + m)t] . (3.5)

n=1

Differential equations satisfied by the descending diagonal zigzag poly-
nomials are, from (3.3) and (3.5),

X (kx + m)

) 3
ktg;Z(x, t) - (k{l) + m)%(&‘, t) + mZ(x, t) =0 (3.6)
and
(e + mLz @) - kn - Da,@) - k(ke + m)" = 0. 3.7

Just as we have the specialized forms (2.3) and (2.11) of Z,(x) occurring
when # = 1 and 4 = 2 respectively, so we have the specialized forms of z, (x):

x, (@) = zn(x)l (3.8)
h=
and .
y,(x) = z,(x) 1 (3.9)
Consequently,
x,(x) = (kx + m)" (3.10)
and
y, (@) = (kx + 2m) (ke + m)" 1. (3.11)

Result (3.7) may then, by (3.10), have the factor of k in the last term

replaced by x,(x).
Obviously, (3.10) and (3.11) together yield

“ ) kwtm (3.12)
y,@) ke + 2m ‘

and
yn(ac) = mx, ,(x) + x,(x). (3.13)
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L. SPECiAL CASES

Recall that our generalization in this paper relates specifically to the situ-
ations in which

W,(x) = kx = the coefficient of W,,,(x) in the definition (1.1).

This leads to some interesting and familiar polynomials which have been listed
in (1.5).

Details concerning the results for the rising and descending diagonal
polynomials cataloged in (1.5) are to be found in a chain of papers in the fol-
lowing sources:

POLYNOMIAL REFERENCE

Lucas [2]

Pell-Lucas [5] (4.1)
Chebyshev [11, [3], [10] )
Fermat [3]1, [4]

where the reference numbers are those in the bibliographical references below.

Results for these specialized polynomials should be compared with the
corresponding generalized results in this paper. Allowance must, however, be
duly made on occasion for slight variations in notation, especially where these
involve the initial conditioms.

These principles are now carefully illustrated for the case of the Fermat
polynomials ("of the second kind") in (1.5) for which % = 2. The companion
Fermat polynomials ("of the first kind") for which Z=1 will also be required.
In the illustration, we verify that equation (2.8) above does indeed reduce to
equation (39) in [4] for the Fermat polynomials.

I1lustration (Fermat Polynomials): For the Fermat polynomials we have, by sub-—
stitution in (2.6),

Y = Y(x, t) = (x - 4% [1- (xt - 2¢3)]71
=Y, (@) + Y, (@t + Y, (@)t* + -, (4.2)
and
X=2X(@, t) = (x - 2¢2)[1- (xt - 2£%)17°

X, (@) + X, (@)t + X, (@)t + =, (4.3)
using a simplified notation.

Now in [3] and [4] the following notation was employed [wherein the dash
(') does not indicate differentiation]:

R=[1-(xt - 2t*)]7" =R (x) + R, (@)t + R (x)t? + -+ = R(x, t);  (4.4)

Rt = (1 = 2¢3)[1= (et ~ 2¢HD]r =1 + Ry (x)¢ +R-3(x)t2 + v = R (x, £).

4.5)
But
X,(x) =R, () (4.6)
and
Y, (@) = Ry, @x). 4.7)
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GENERALIZED ZIGZAG POLYNOMIALS

Hence (4.2)-(4.7) give

_R-1
X = — (4.8)
and
_R' -1
Y = —
Substitution in (2.8) from (1.5) for Fermat polynomials leads to
oY oY -
toy- (@ - 6t2)—55 = (~x - 2t?)[1- (xt - 2£%)1°%,
i.e., by (4.9),
1 oR' R' -1 oR' -
¢ L - ) - @- 68 = (- 2601 (ot - 269177,
.B_R__._ — 2%1— . 2 3 -1 '
t NE (x - 6t )8x = t(-x - 2¢t°)[1~- (xt - 2¢°)] + R -1

= -6t2[1- (xt - 2¢%)]°?!
= 3(R' - R) by (4.4) and (4.5).
This is equation (39) in [4], which we set out to verify.

In addition to the comments preceding the illustration, we remark that
corresponding properties are developed for the polynomials W,(2, px; px, q) in
[4], while in [6] and [9] analogous properties of the Gegenbauer polynomials,
which are closely related to the Chebyshev polynomials, are investigated.
(Brief mention is also made in [4] of the generalized Humbert polynomial of
which the Gegenbauer and Chebyshev polynomials are particular cases.)

Some interesting number sequences result if appropriate values of x (e.g.,
x =13%, x = 1) are substituted in the various rising and descending diagonal
polynomials discussed in the above papers.

Thus, we have presented a summary and a synthesis of the basic thrust of
the material in papers [1]-[6] and [9] by the author, along with that in [10]
by Jaiswal.

5. POSSIBLE EXTENSIONS

One would like to be able to extend some of the ideas which have been applied
in this paper to recurrence relations of higher order, partlcularly to the case
of third-order recurrence relations. -In order to produce e themest _worthwhile
results, it would be necessary to “choose the most fertile initial polynomlals
(including constants) to generate the required polynomial set.

Given such a fruitful selection of initial conditions, it might be possi-
ble to discover some geometrical results in three dimensions (Euclidean space)
which would be analogous to, or extensions of, similar results about circles
(in the Euclidean plane) by the author in other papers which are not listed in
the References. These investigations could be extended to three-dimensional
surfaces corresponding to the conics in the plane.

Hopefully (if tediously), such considerations could be further extended to
hyper-surfaces in multi-dimensional Euclidean space.
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SUMMATION OF RECIPROCAL SERIES OF NUMERICAL FUNCTIONS
OF SECOND ORDER

BLAGOJ S. POPOV
University "Kiril i Metodij," Skopje, Yugoslavia
(Submitted September 1983)

This paper is an extension of the results of G. E. Bergum and V. E. Hoggatt,
Jr. [1] concerning the problem of summation of reciprocals of products of
Fibonacci and Lucas polynomials. The method used here will also allow us to
generalize some formulas of R. Backstrom [2] related to sums of reciprocal
series of Fibonacci and Lucas numbers.

1

The general numerical functions of second order which, following the notation
of Horadam [3], we write as {w,(a, b; ps g)} may be defined by

Wy, = PWy_1 — QW,_ps M 2 2, Wy = a, Wy = b,
with
w

n =wy(as by ps @)

where g and b are arbitrary integers.
We are interested in the sequences

fl

u, =w,(0, 15 ps q) (1)

and
v, = w,(2, p; ps q) (2)

that can be expressed in the form

y =ot=8" 5, (3)
n 0(4_6
and
Vyp = OLYL + Bn, n = ]-9 (4)
where

o= (p+vpZ - 4gq)/2, B = (p - Vp2 - 4q@)/2, o + B =p, aB = q»
and o -8 =26 = VA.

Using (3) and (4), we obtain

20" = v, + Su,
and

Gom* = pov, + Dugu, F S, o upvy) s

from which it follows that

- = 29°% 5
Us 4 nVs UgUs sy 2q7 Uy (5)
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and

Uy Vs — Dugtyy . = 2%V, (6)

From relation (5), we have

Vg Vs+p = 2g¢ Up
Usg z’ts+r’ usus+z’

If we replace s here by s, s + r, s + 2r, ..., s + (n — 1)»r, successively,
and add the results, we obtain, due to the telescoping effect,

n (k- Dr v v, u
q s s+nr) 1 nr
S, ( ; Py, 8) = —_—= (—— - = . 7
e 4 kgl Us + (k-1)rls + kr Ug us+mﬂ}2qsur UpUgUs +np @
Similarly, again using (5), we also have
n (k=-1)r Uy Ug 1 Uyp
0.(ps g3 75 8) = X . 5 =<Us —;;)28 = - (®)
k=1 "s+(k-DrYs+kr s+nr s/ Q7 Uy UpVsVs 1 yp
Because
u, o™, |B/a] <1
lim ” =
e o, o/l <1,
and
Uy at~"/ (@ - q), |B/a] <1
lim 5 =
rre Tnkr BYTT/BE - @), |a/Bl < 1,
we obtain
o [8/a] <1
© q(k—l)r UpUs
S(p, q; rs 8) = = 9)
k=1 Us+(k-1rts+kr g-®
Luru > lu/B] < 1,
1-
o 1
_ , fa] <1
o q(k—l)r 0(,2 - q urvs IB ]
a(p, q; r, 8) = —_—— = { (10)
k=1 vs+(k—1)1ﬂvs+kr' Bl—s 1
BT L ] < 1.
(82 - q WV
In particular, with » = s, we have
2 .
—of @ - g \2
of Z(T—qr'> s ]B/OL| <1
o - q
S(p, q; v, r) = ) (1D

: - 2
Bp-2<é§?—:—§;> . |a/B] <1,
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G(P, qs T, r)

SUMMATION OF RECIPROCAL SERIES

{ar/(w - g, |B/a] <1

BT/ (B*™ - g®"), |a/B| < 1.

3. SPECIAL CASES

(12)

It is not difficult to obtain the formulas of Bergum and Hoggatt from (9) and

(10). 1Indeed, if
fine the sequences
nomials {Lk(x)}:=l.

o(x) = (x + Va2 + 4)/2,

where

-1 <ox) <1
0<a(x) <1

Hence,

S(x, -1; r, S)

and

o(x, -1; », 8)

(9) and

we let p =

x and g = -1 in (1) and (2), these relations de-

of the Fibonacci polynomials {Fk(x)}:=l and the Lucas poly-

In this case,

B(x) = (x - Va2 + 4)/2,

and B(x) > 1 when x> 0,
and B(x) <1 when x <O0.
(10) become
st)leF()’wo’
af(x x x
= lim S, (x, -1; 7, 8) = . ¢ (13)
" 1 1 s, x <0,
| B (x) F,(x)Fg (x)
[ 1-s
: g?)F()lf:()’ 70
1 + a?(x) F.(@)Lg(x
= lim o, (xz, -1; 7, g) ={ . (14)
I M WY
L1l + B (x) F,(x)L,(x)

Comparing the results of Bergum and Hoggatt [1, p. 149, formulas (9) and

(17)] with our (13)

U(gs as bs x)
and

V(g, as bs x)

when g = b - a + k.
As particular

S(.’L‘, "1; 2, 2) =

and

o(x,

1986]

-1; 2, 2) =

and (14) above, we find that

(-1)PF, () Fy ()5 (s

—'l; q’ b)

(-1)PF, (x)F, (x) (@? + 4)o(x, -1; g5 D),

cases, we give:

- 1 B2 (x)/x*, x> 0,

kgl Fpe @F, gy )@ {ocz(x)/xz, x <0,

o 1 a? @)/ (@ (x) - 1), x>0,
k>;1 Lo @)Ly 4 1H®) ) {Bz(x)/(sa(x) -1, x<0.

(15)
(16)
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Using the relations (5) and (6) with u_, = -¢™"u, and v_, = q"v,, we have

— Ar-8 =
UZI‘ q UZS Aur—sur+s'

Then, by the method used to obtain (7), we have

n kr U, »
AT q _ 1 (n+ 1) (17)

k=0 _ ,Stkr UglUp us+(n+1)z1
Vok+ yr+2: ~ 4 v

r
so that

E . el <1,

o a+k u,u
q Ky r-s

APZO — = (18)
= - 58+ K1 8
Yor+r+2s = € T r udu > a/g] < 1.
r-s
Similarly, from
v2p + qr—SUZS = vr—sur+s’
using (8) we obtain
i qkr 1 U+ 1)r (19)
k=0 s+ kr upv Us+(7v+l)r
v(2k+1)1ﬂ+ 28 + q Vyp :
or
o q3+klﬂ Bs+l/(q - E)T)UI,US, ’B/OLI < ]-:
= (20)
R=00 it ypaas + @7, o®* /(g - aMuvg,  |a/Bl < 1.
In particular, if we put p = -g = 1 in (17)-(20), we obtain the formulas

of Backstrom [2] concerning the Lucas numbers. These are

¢ F
1 (n+1)r
» S odd,
n 1 SFI‘FS an+1)1,+5
k=0lx+ yr+2s T L L Fnvnyn s even
. LFrLs L(n+l)1=+3, ’
an
’(‘1 + J§>s 1 s odd
E) b
: X 2 5F,F,
= 4
K=0Lioks 1yry2s L (‘/5 - >S !
5 s S8 even,

5F, T,

where r is an even integer satisfying -r < 2s S r - 2.
We notice that, from
2

- AP -8,,2 _
U, q Ug, = U

Y‘—Su

r+s?

it follows that
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f: QZ(?’L—I)Z‘
=3,(, q; 2r, s) (21)
k=1 .2 6+ 2kr, 2 "
Z'{'(27<—}.)1f’+s q ul”
and
© qZ(YL— Dr {Bs/uzrus’ IB/O(fl < 13
= 2 E -
=2l Ui yprs — 4 +2kr“§ a®/uy g, |a/Bl < 1.
Similarly,
n q2(k—1)1ﬂ
AT =5, g; 2r, &).
k=1 192 s+ 2kr,,2 "
v(zk—l)r+s - q Un
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METRIC THEORY OF PIERCE EXPANSIONS

J. 0. SHALLIT
University of Chicago, Chicago, IL 60637
(Submitted October 1983)

1. INTRODUCTION

It is well known that every real number admits an essentially unique expansion
as a continued fraction in the form

where the a; are positive integers (except for a,,which may be negative or 0).

Many mathematicians have been interested in the length of such expres-
sions; in particular, if x = p/q is rational, the expansion terminates with a,
as the last partial quotient, and it is not difficult to show that

n = 0(log q).

See, for example, [l4]. This type of result is of particular interest because
continued fractions are closely linked to Euclid's algorithm to compute the
greatest common divisor.

Another question that has received attention is how the a; are related to
x, in particular, by equating probabilities with Lebesgue measure, we can con-
sider the a; = a;(x) to be random variables, and ask:

1. How are the a; (x) distributed? What are the means and variances of
these distributions?
2. Are the a;(x) independent, or '"almost'" independent? What does the

distribution of a;(x) look like as % =+ «?

We could also restate these questions in terms of iteration of an appro-
priate function. For example, if

1 1 _ |1
x = T and g(x) = ™ LWJ’

then it is easy to see that

1

gx) =

a2+a3 + e

so that g(x) may be viewed as a "shift" operator. Here |x] is the greatest
integer function.

This so-called 'metric theory" of continued fractions has been studied
extensively by Kuzmin [16], Lévy [17], Khintchine [12], and others.
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We can ask similar questions of other algorithms for expressing real num—
bers. Engel's series

1
1
a,a a,a,a,

@ =14
a 2
was investigated thoroughly by Erdos, Rényi, and Szusz [7], and later by Rényi

[21] and Deheuvels [5].
Cantor's product

x=(1+al—l)(1+aiz)(1 +a1—3)

was investigated by Rényi [22].
There are also results for Sylvester's series [7] and other expansions of
Cantor. For a summary of some of these results, see [9].
The subject of this paper is an expansion that has not received much
attention; it is of the form
1 1 + 1
a1 @G, 31,04

P (l)

and is due to Pierce [19], who briefly examined its properties. Remez [20]
attributes the expansion to M. V. Ostrogradskij and proves some elementary re-—
sults. There are some metric theory results in [24], but they do not overlap
with our results. We call an expansion of the form (1) a Pierce expansion, and
in this paper we will demonstrate a connection between these expansions and
Stirling numbers of the first kind. We obtain some new identities for Stirling
numbers, and give a new derivation of a series for 7(3). We discuss the dis-
tribution of the a; = a;(x), and the behavior of the related function

flx) =1l mod x =1 - x|[l/x],

where by a mod b we mean a - bla/b].
We also obtain some results on the lengths of finite Pierce expansions.

2. ELEMENTARY CONSIDERATIONS

In this section, we sketch some of the simple properties of Pierce expansions.
The proofs are easy and all details are not given.
Any real number x € (0, 1] can be written uniquely in the form

.’E=L— 1 +___1___... (2)
Ay @G1a; a;A,0,

where the a; form a strictly increasing sequence of positive integers, and the
expansion may or may not terminate. If the expansion does terminate with

(_1)n+l

alaz s Ay

as the last term, we impose the additional restriction

a,, <a, - 1.
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This is to ensure uniqueness, since we could write 1/k as

11
k-1~ (k- Dk’

We will sometimes abbreviate the expansion (2) as

z = {ay, a,, ag, ...}

where appropriate.
Given a real number x, we can obtain the terms of the Pierce expansion
using the following algorithm:

[Pierce expansion algorithm]: Given a real number x € (0, 1], this algorithm
produces the sequence of a; such that x = {al, a,s R

P1. [Initialize]. Set x, «x, set 7 <« L.

P2. [lterate]. Set a; « [l/xi_l]; set ¥, « 1 -ax, .

P3. [All done?]. 1If x; = 0, stop. Otherwise set ¢ « 7 + 1 and return to P2.

If we run this algorithm on the rational number x = p/q, it is easy to see
that in step P2 we sill replace p by g mod p; this is less than p, and so even-
tually x; =0 and the algorithm terminates. On the other hand, if the algorithm
terminates, we have

z=A{a,, a,, ..., a,}

and so x must be rational.

(This argument provides simple irrationality proofs for some numbers of
interest. For example, using the Taylor series for e%*, sin x, and cos X, we
find:

-1/a

1 -e = {a, 2a, 3a, 4a, ...},
sin(l/a) = {a, 6a®, 20a%, 42a%, ...},
cos(l/a) = {1, 2a%, 12a%, 30a?, ...}.

Since the expansions do not terminate, these functions take irrational values
for any positive integer a.)

Now choose x uniformly from (0, 1], and let Pr[X = c] be the probability
that the random variable X equals ¢ (thinking of probability as Lebesgue meas—
ure). Let

z={a, a,, ...}
be the Pierce expansion of x. Then

Theorem 1:

1

Prla;, = by a, = b,s ..., a, =b,] = LG, F D)

b.b

172

Proof: Let b;, ..., b, be chosen. Now it is easy to see that the numbers whose
expansions begin {bl, bys «-es b,} form a half-open interval whose endpoints
are the two numbers
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xl = {bl’ bzs LREICIE ) bn—l’ bn}
and

z, = 1{b

) b

13 bys wees by 15 by + 1},
(The first point is included, but the second is not.) The measure of this in-
terval is just

1
- b,(b, + 1)

[.’L‘l - .’L‘2| = blbz

and the result follows.

Theorem 2:
g+
=l TE T D

(Compare this with the result in [7] for Engel's series.)

Pria = k]a

n+1

Proof: To prove this, we show it is true for all x that have Pierce expansions
that begin {bl, bos eess b,_1, J} where the b; are specified constants. Then

Prigysr = klay = bys vvvs Gy_y = by_1s @, = g1
Pria, = b

Pr[a1 = bl, cees @, = bn_l, a, = Jl

n -

1o sees Gy = b, s ay =4 a,,, = K]

bib, o+ by 1 dG + 1)

= __d*1
bb,---b,_ Jk(k + 1)  k(k+ 1)
Now this conditional probability is the SAME for any specified prefix b,, ...,
b,_,; hence, it is equal to
Jg+1
kk + 1)

if the b; are left unspecified. In particular, the conditional probability in
this theorem shows that the a; = a;{(x), considered as a sequence of random
variables, form a homogeneous Markov chain.

]

Tk + Ny

Theorem 3:
Pria, = k]

where [ﬁ} is a Stirling number of the first kind. See, e.g., [14] or [11].

Proof: By Theorem 1, we can compute the measure of the set of x whose Pierce ex-
pansions begin with a specified prefix. Let us fix a, = Kk, and sum over all
possible prefixes, i.e., all strictly increasing sequences of positive integers
of length n whose largest element is k.

~ ~ 1
Pria, = k1 = E: a,a, +o a, kk + 1)

1<, 7 i
a, <+ <a, <k (continued)
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i 1.1 B e
aci, 2, e KK D) g oy o DY R+ D
Al =n-1 |Bl=&-n
1
- __ 1B
(k + 1)!Bc{1,2,2., k-1}
|B[=k—n

and the proof is now complete if we observe that the sum over the product of
elements of B is in fact the coefficient of x” in the polynomial

x(@ + D@ +2) -+« (x+k-1)

which is just [E], a Stirling number of the first kind.
(Some brief comments about the notation: in the proof above, 4 and B are
sets. IA[ is the cardinality of A. The sum is over all subsets with specified

cardinality, and II4 means the product of all elements in 4.)

We get two interesting corollaries: using a theorem of Jordan [11] we can
estimate the distribution of the a,. We have

£]- =B e

and so we get

_ . _(log k + )" 1
Prig, =kl ~ 2 + D = D1

where n is fixed and kK > © and Yy is Euler's constant. Compare this with the
similar result of Békéssy [2] for Engel's series. More detailed asymptotic
results can be obtained by using the results of Moser and Wyman [18].

Also, we observe that the events a, =1, a, = 2, ... are all disjoint and
exhaust the space of events. Therefore,

k
kio%—)—! - b )

which is another derivation of the formula due to Jordan [l1l, p. 165].
In the next section, we derive some results on series involving Stirling
numbers.
3. IDENTITIES ON STIRLING NUMBERS
Theorem 4:
]
n

J-J!

=z(n + 1)

J=1
where (k) is Riemann's zeta function.

Proof: This is a result due to Jordan [l1, pp. 164, 194, 339].
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Theorem 5:

K L [x .
kgj—(?['fﬂjl_ﬁ=l_zz=::ﬁg[—fjm=%g[] forn=>1, j=>1.

Proof: The proof of the first equality is just formula (3) above. To verify
the second, we use induction on j, holding »n fixed. It is easy to verify the
case j = 1. Now assume true for j; we show the identity holds for j + 1. We
have

o L IR

[j}
n .
Now subtract ?3—:7137-fr0m both sides to get:

. K _ i
B TRy

7]

- <(J +11>' 2 G+ D D' G DT

- 1 O 1 2 rd [i}

- (Geor )+ (geor (1) -+ or

=.__.l__z g+ 7. J 1404 >___L;7i:|__
G+ D! ([ 7 ] [i - 1] [i] G+ D!

-g+or 2l i)

where we have used telescoping cancellation and the well-known identity on
Stirling numbers

1-F19-10)
JU [ i-1])
This completes the proof of Theorem 5. This is apparently a new identity on
Stirling numbers.

Michael Luby made the following clever observation (personal communica-
tion): It is possible to prove Theorem 5 without the use of induction, by in-

terpreting the left and right sides combinatorially, in terms of the a,. The
left side, in fact, is just

Pria, 2 Jl
while the right side can be shown to be
Pri(a, > J) or (a; < j and a, > J) or (a;, a, <J and az = J) *--].
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Theorem 6:
q
PRI e IORSIOR SR SR RN

where H(k) is the kt" harmonic number,

- L
H(k)—l+7+ + 7.

[Zfb] 3 [ﬁ] LA |

k§1H(k) &+ D1

Proof:

]

_tnd =y Ll _tnl
ZRF DTS 7 " 7L &+ D

Zc(z+1>,

where we have used Theorems 4 and 5.
The author would like to express his thanks to Richard Fateman and the
Vaxima version of the MACSYMA computer algebra system—an early version of

Theorem 6 was suggested by experimentation with Vaxima!

Theorem 7:

- 1
D AN T
Proof: See [11, p. 339].

We can now give a new derivation of a formula for r£(3) due to Briggs et
al. [3]. Noting that

[7;] = Hk - 1)(k - 1)

we get

k
(@ = 5 (1+3) (] o % Hk - 1)
L

K=1 k + 1! =2 g2

or, adding z: to both sides, we get

_ o Hk
2e(3) kz=:1 k2

Many similar formulas can be given; for example, by appealing to Theorem 6, we
can obtain

= H(k) (H(k - 1) = 1) _
)2y ACED)) =20

See also [4], [10], [13], and [23].
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Theorem 8:

]

ZH(Z(‘FI)m:n'FI

Proof:

I
Ertes v = £ 5

n
+
™
I
™

1+ 2: )3 [J] =n+1

=1 =1 (J + 1)'

In the next section, we use these identities on Stirling numbers to derive
estimates for the expected value and variance of quantities connected with a,.

L4, EXPECTED VALUES AND VARIANCES
We will use E[X] and Var[X] for the expected value and variance of the

random variable X.
We are interested in how the a, are distributed. However, the a, are dis-

tributed such that E[aq,] = « for every n. It is reasonable to expect that the
quantity log a, rather than a, gives more information.
Theorem 9:

(a) E[H(an)] =C(2) +c@3) + - +1(n+1)

(b) E[log a,] =n+1-v+ 027"

-]

(2) Elf@n)] = T BRIy = L@ + @) + o + o0+ D)

Proof:

using Theorem 6.
(b) To prove part (b) we use the famous estimate
H(k) = log k + vy + 0(%),
and therefore, using Theorems 6 and 7,

ElH@)] - v + O(E[aln])
z(2) + z(3) ++--+z(n+1) -y +0(hn+ 1) - 1).

Ellog a,l
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Now it is easily shown that

£(2) +2(3) + - + T(k) =k + 6(275) (4)
and

c(k) =1+ 6(27%);

so, by substitution, we obtain the desired result.

Similar techniques allow us to calculate the variance.
Theorem 10:

(a) Var[H(a,)] =n + 0(1)

(b) Var[log a,] =n + 0(1)
-]

n

& n & (&G -1 1
DI R sy El( D B J—z) e+ D1

k= Jg=1

Proof: We find first that [k}

(a) E[H(an)?]

J

= <2H(j - 1) +:71_>_1_ D [] (5)

=1 J gt

k
B ji:l <2H(J S )Z (k[+]l)'

™

where we have used the fact that

2 L 2G -1 1
J J2
and Theorem 5. Note that H(0) = 0 by definition.
On the other hand, we have already seen that

HH? =HG - D

+ 14027,

Ms

o [ 5 o 2
k=

Yk + 1 RD + Dt

and therefore,

H(k) 1 < [k S (g - _n® +3n
K+ 1 k! 2}1[7,] L @+1+o@ ) ===+ o).

I Ma

k

Hence, we find

f:ZH j j; 55 [j]

jod + 1L gt ol
The left side of this equation looks very much like the right side of equation

(5). 1In fact, it is easy to show that their difference is bounded by a con-
stant that is independent of n. We have

]

n? + 3n + 0(1).
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since
n .
p> [i] < gt
=1

Now the sum on the right side of (6) can be computed exactly:

z"":(‘H(i.— 1) +.L_2'H(j)>=§:(2f](1’.— 1) + L 20(j - 1) 2 )
i=1 J J2 Jg+1 i=1 J g2 Jg+1 Jg + 1)
-5 (222&1_:_1)_+._l_ -2
S\d@ + 1D g2 j(j+1))
=z(2) =0Q).

Thus, we conclude that
E[H(an)?] = n* + 3n + 0(1).
On the other hand, from Theorem 9, we see that
E2[H(a,)] =n®+2n+ 1 +0m2™")
and therefore,
Var[H(a,)] = n + 0(1)
which is the desired result.
(b) To prove part (b), we use the fact that

H(k) = log k + 0(1)
to get

Var[log a,] = Var[H(a,)] + O(War[1]) = n + O(1).
This completes the proof.
In a similar fashion, we can obtain theorems about the expected values of
various functions of the a,. We give some unusual examples.
Let f(x) = 1 mod x = 1 - x|1/x]. Then it is easy to see that if
X = {al’ a2’ "'}
then
f@) = {a,s a5 ...},
Let us write f(”(x) = f(f(x)), etc. Then we have
Theorem 11:

E[f™@] =50+ 1 - 1(2) = 1(3) = *++ - g(n + 1)) = 8(27"*2)

Proof: Suppose a, = k. What is the expected value of f(m(x)? If we restrict
our attention to the half-open interval that contains all numbers whose Pierce
expansions begin
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{ays a,s ovvs a,_qs kb

then it is easily seen that f(’(x) is linear on this interval. The minimum and
maximum values that f%”kx) attains are 0 and 1/(k + 1) respectively; hence the
expected value of fU)(x) on this specified interval is 1/[2(k + 1)]. But this
is independent of the choice of a;, a,, ..., a,_;; hence the expected value of
() given that a, = k is 1/[2(k + 1)]. Therefore,

7]

n

k
Elf™@] = ¥ 2(k1+ 5) (k[f]l)! ='§'< L EE+ D - H(k))m>

k=1 k=1

[ e lo]

1 00
z <,§1H<7< RIS k§lﬁ<k>m>

F L= L2) - T(3) - e = Tl + 1)),

where we have used Theorems 7 and 8.

From equation (4), this quantity is 6(27"*2

)» and the proof is complete.

It is of some interest to note that Theorem 11 is a generalization of a
result of Dirichlet [6]. He stated that

n| _ m’n?
k 12 °

Tk

k=1

We can derive this easily. From Theorem 11, we have

1 1 n
E-(2 -7 (2)) =7{/.1 mod x dx = 7n mod nx dx = 1 n mod x dx
2 0 0 n 0
1 (" 1 ("
=—fn—x[n/xjdx=n——fx[n/:cjdx,
nJo "nJo

and we get the desired result by approximating the integral with a sum.
Theorem 12:

-~ 1

k=1%%

converges for almost all x (i.e., for all but a set of measure 0). The expected
value of the sum is 1. The set of exceptions

{x

is uncountable and dense.

> 4L—diverges
k=1

Proof: From Theorem 7, we have
E[QL] =gn+1) - 1< 277,
an,

and it is easily seen that the variance Var[g;] is also < 2177,
n
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Then, by Chebyshev's inequality,

Pr[§~ -2t > 2‘”/“] <

n

Zl—n

9-n/2

Now, by the Borel-Cantelli lemma, with probability 1 only finitely many of the
events

L
an

- 2t=nx g/

occur, and so the series converges almost everywhere.
We also have

© 1 ©
E{E-;J= T (Ck+1) - 1) =1.
k=1%9n k=1
(See, e.g., [11, p. 340].) This proves the result on the expected value.
Now we show that the set of exceptions is uncountable. Let the real num-
ber x in the interval (0, 1) be written in base two notation,

T = e.e.e, «.n,

where each e¢; = 1 or 0. Then associate with each such x the real number whose
Pierce expansion is given by

h@) ={l+e, 3+e,, 5+e,, ceefs
Then each of these numbers %4(x) is distinct by the uniqueness of Pierce expan-
sions, and for each Z(x) we have

yLls>y d
2> 2
KTiax k<1 2k

and so the series diverges.
The proof that the set of exceptions is dense is left to the reader.

Theorem 13:

©

Z f(k)(x)
k=1
m? 1
converges for almost all x. The expected value of the sum is 1~ 3 The set
of exceptions

{x| fi f*k%x) diverges}
k=1

is uncountable and dense.

Proof: We prove only the result on the expected value, leaving the rest to the
reader.

E[élf"“(x)] - ilé(k +1 —J}‘flaw) -5 3 (1-Few - D)

ji=2 =1 J=2

(continued)
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1<1 _ ii _1/___1/_"_)

7 -1

R
]

(NI

Ms

) D

i=24({ - 1)?

utﬂs
1]
N[ =
-tﬂs
Ms
N =

1
@@ - D,

which is the desired result.

5. DISTRIBUTION OF THE a,: METHOD OF RENYI

So far we have shown that log a, has an expected value that tends to7n + 1 — 7y
as n approaches ®. We have also seen that the variance is small. In fact, it
is possible to prove much stronger results; for example, that

lim a*/" = e

N> ™
for almost all x. We will use a method employed by Rényi in his analysis of
Engel's series [21]. We start by identifying some new random variables and we
show they are independent.

Define

e, (@) = 1 if k appears in the Pierce expansion of x,
k 0 otherwise.

Then we have

1

Theorem 1h: E[g;(x)] = T+l

Proof:

)
& [n _ 1 = [k] _ k! _ 1
Elex @] =Y DT = s DT, 2 el “ G+ DT - %+ 1
since the events a; = k and a; = k are disjoint if Z # J.

Theorem 15: The random variables Ek(x) are independent.

Proof: Let

€, =06,, €, =8,, ...y €, =Gy

1

represent an assignment of 0's and 1's for the values of €;. Let b; (1SZ<K)
be such that 6z, = 1 and all other values of §; are 0. Without loss of gener-
ality, assume that §, = 1. Then the probability that the events

e =8 ,¢e =8, ..., e, =26,

simultaneously occur is just the probability that the Pierce expansion for x
begins bl, b2 ««+s by, which we have seen is equal to
1
blbz .. bk(bk + l)'
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On the other hand, we have

i . ~
Tv1 £ 8=0,
Pr[Ei = 67,] =
1 . _
7; ¥ 1 if 6’1/ =1,
Let us compute
7
IMerie; = 6;1. (7

In the numerator of (7)we have those 7 corresponding to the §; that equal
0; in the denominator we have (# + 1)!. Ry canceling in the numerator and de-
nominator, we see that the value of the product (7) is just

1
Bib, - brlbr + D’

which shows the independence of the €£;.
It is also easy to see that
1 1

Y = -
ar e k+ 1 (k+ 1)2

Now, let Uy = up(x) denote the number of terms of the sequence a, = a,(x)
that are < V. In other words, put

N

Uy = 2 €g-
K=1

Then we see immediately that

El,] = 35— = 10 Wy -1+0(3)
e A & I

and
1

1
kK+1 (k4 1)?

il 72 1
Val’[uN]=k}: )=logZV+y——6—-+O(ﬁ>,
=1

We can prove the strong law of large numbers for the random variables g, .
We need the following general form of this law [21]:

1f £, £,, ... are independent nonnegative random variables with finite
expectation £, = E[gk] and variance ¥V, = Var[f,] and if putting

and also
- N
Lo <=
N=1 A2
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then with probability 1 we have

N

2 &g

k=1
1im = 1.
I Ay

The conditions of this theorem are fulfilled for &, = g;, since

1 1

S N+1 v+ 12
V=1(log N + vy - 1)?

converges by comparison with the integral

1 -1
fx(log x)2 da: = log x °
Thus we obtain

Theorem 16: For almost all x we have

1i el =1
Tt Tog N+y -1

Using Ug, = 1, we obtain

lim ql/"

> o

= e

for almost all x.
[We can easily get a similar result for iterates of f(x)=1 mod x. Since

1 (n) 1
T < =) £ ——,
L+a,,, Ay 41

we find
Lin(f P (x)) M = 2

for almost all x.]
We can use Ljapunov's condition [8] to obtain a central limit theorem for

the a,. We have

Elet] = ¢ i I
and
Ele;]
Var [z ]

is bounded. Also VVar[uk] -+ o, Hence, we find

Theorem 17:
-1 N
lim Pr[u < y} = o(y),
e L Vg W

2
where ®(y) is the normal distribution given by dly) = —l—_ln e'“/z du.
V2 o
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Now, noting that
Pr[uy; <nl =Prla, > N,

we see that an equivalent statement of Theorem 17 is
[log a, - n

Vn

1im Pr

V> ®

< y:l = d(y).

As a corollary, we get

k=ont8n [k]
lin 3 7 = 08 - 0.

]

k= en+u&

This is similar to the result

lim 3. L 0@ - o

. n!

" k=1logn+ avlogn
given in [8].

Similarly, as the conditions given by Kolmogoroff [15] for the law of the
iterated logarithm are fulfilled for the variables €15 We get

k=1logn+ BVlogn [J’L]

Theorem 18: For almost all x,

Hy — log NV
lim sup =1
N>« 2 log N+ log log log N

and 1y - log N

lim inf = -1
N>« V2 log N+ log log log N

or, stated equivalently,

log a, - n
lim sup =1

nr®  V2n-+ log log n

and log a, - n

lim inf = -1.

"7 V2n - log log n

6. SOME RESULTS ON FINITE PIERCE EXPANSIONS

In [7], Erdds et al. put E,(a, b) = n, where
a L 1 I 1

b q, q4, 9,4, 4,

(an expansion into Engel's series) and ask for a nontrivial estimation of

E,(a, b).

1986] 37



METRIC THEORY OF PIERCE EXPANSIONS

We prove two results on the length of finite Pierce expansions. Unfortu-
nately, it does not seem possible to use our techniques for Engel's series.

Let us put L(p, gq) = n, where

E_ _ 1 1 bt (_1)n+1

qg a aa, a,a, *** a,

Then we have
Theorem 19: L(p, q) < 2%5.

Proof: Let us write

§-= {ay, a,s «ovs ayl

and, as in the Pierce Expansion Algorithm, put p;, = p and

c; = lale; s

Frvr =4~ %P

Without loss of generality, we may assume that a, 1. For otherwise we have

q9-p _
; {

which is a longer Pierce expansion.

Then suppose p, 2 a,. Since a,p, = g, we have a, < Vg. But the a; are’
strictly increasing, so n < Vq.

Now suppose r, < a,. Since the p, are strictly decreasing, and the a; are
strictly increasing, we see that p, - a; is a strictly decreasing sequence.
But p;, - a; 2 0 since a; = 1, and P, - Ay < 0 by hypothesis. Hence, there must
be a unique subscript k such that

1, Ays Ays wens an},

Then, since p.a. < q for all 1, we see that
1 1

a, S Vg and p < V.

k+1
By the monotonicity of these sequences, we see that k < %5 and n - k < Va. We
add these inequalities to get n < 2/5, which is the desired result.
Unfortunately, this bound is not very tight. For example,
470

743 T {1,2,3,4, 5,10, 11, 14, 17,61, 67, 123, 148, 247, 371, 743}.

This is the longest Pierce expansion with ¢ <1000. We see that m=16, but our
estimate guarantees just n < 54.

It seems 1likely that L(p, g) = O(log g); we cannot expect a much better
lower bound. For example, we have the following theorem.

Theorem 20: There exist infinitely many g with L(p, q) > Tgég%gg—a.
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Proof: The proof is constructive. Let g = nl, and set

_ 1 1 (_1)7'Z+1
p—ﬂ!(l —’2—!—4'3—!— oo +T .

Then we have

'"={19 2, 3, eeos M= 3, m - 2, 7’1},

and therefore, Z(p, q) = n - 1.

However, it is easily shown that, for »n sufficiently large,

log !

n-1> log log n!

and the desired result easily follows.
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NEWTON'S METHOD AND SIMPLE CONTINUED FRACTIONS

MICHAEL FILASETA
University of South Carolina, Columbia, SC 29208
(Submitted January 1984)

1. INTRODUCTION

Let N be a positive integer that is not a perfect square. The Newton approxi-
mations to VN will be obtained by fixing x;, and setting

@y, = (xh + N)/(2x,).

For example, one possible list of Newton approximations to V2 is

x, =1, x. = 3/2, x, = 17/12, z, = 577/408, ... .

Let (ao, Ays Ay ...) represent the simple continued fraction for vl with Ays
Ays dps «e. as partial quotients. Designate ¢, = pn/qn, (Pys qn) = 1, as the
nth convergent of the continued fraction for VWN. Thus, for example, v2 = (1,
2, 2, ...) has convergents

[

e, Iy ey = 3/2, ¢, =7/5, ¢, = 17/12, ¢

99/70, ¢. = 239/169, ¢

, = 41729,
= 577/408, ... .

c

5 6 7

Comparing the two lists of approximations, we see that each of the Newton ap-
proximations obtained in the manner above is a convergent of the continued
fraction for v2; in fact, it appears that x, = ¢,»_;. This is indeed the case
and follows from Theorem 1 below (cf. [1, p. 4681, [2], [3], [4]). We give a
proof which appears to be simpler than those in the literature.

Theorem 1: If the continued fraction for VI has period k, then for any positive
integer m, Newton's method applied to ¢px-1 results in copg-1-

Proof: The sth positive solution to the equation z” - Ny’ = %1 can be found in

the following two ways:

(i) write (pgx.; + Vlgy.1)® in the form u + Vliv, where u and v are inte-
gers; then (x, y) = (u, v) is the sth solution.

(ii) Calculate Cyp .15 then Por _1° 4 ) is the sth solution.

sk-1
Letting s = 2m gives

- 2 - 2
Pomr -1 + Jﬁq2mk-1 B [(pk—l + Jﬁqk—l)m] - (pmk-l + /ﬁqu-l)

= p? 2 + 2
pmk-l * quk~1 Vil( pmk—lqu~1)
so that
= (2 2
p2mk—l/q2mk~1 (pmk-1 +Aquk—l)/<2pmk—lqu—l)’

finishing the proof.
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From Theorem 1, we see that whenever the continued fraction for VI has
period one, Newton's method applied to a convergent of the continued fraction
for VI results_in a convergent. An identical result holds when the continued
fraction for VN has period two and follows as a corollary of the next theorem
which we state without proof (cf. [3]).

Theorem 2: If the continued fraction for VIV has an even period k=2r, then for
any positive integer m, Newton's method applied to ¢,,_; results in Copp-1.

We now know that if the continued fraction for VN has period one or two,
and if x, is a convergent of the continued fraction for Vﬁ, then we can con-
clude that all the successive approximations X, are convergents of the contin-
ued fraction for VN. The following example shows that the conclusion is pos-—
sible even when X, is rational but not a convergent. Let N = 2 and X, = 2;
then we have x, = 3/2, x, = 17/12, x, = 577/408, ... which results in the same
sequence we had with £y = 1. In the next two sections, we shall examine more-
closely the connection between Newton approximations and convergents in the
cases when the continued fraction for VI has period one or two.

2. CONTINUED FRACTION FOR VN WITH PERIOD ONE

If the continued fraction for VI has period one, we can tell for what rational
x, the sequence {z,} of Newton approximations to VI contains convergents and
how many x, are convergents. We note that if x, = N/c,, then

x, = (@5 + N/ (2xy) = ([Ne,)* + W)/ (20/e,) = (ci + N)/(2¢n),

which is the same Newton approximation obtained if xo= ¢,. Since x,,,; depends
only on %, (and N), we see that the entire sequence {x,};_, of Newton approxi-
mations to VN is the same whether we begin with xy = ¢ or &g = N/¢p. This
explains why we get the same Newton approximations to V2 when we begin with
Xy = 1 and when we begin with x, = 2.

Theorem 3: If the continued fraction for Vi has period one and if {xnln-1 is
the sequence of Newton approximations to VN beginning with any rational number
xp # 0, then either {x,} consists entirely of convergents or {x,} contains no
convergents at all. Furthermore, {x,} consists entirely of convergents if and
only if x, is a convergent or N times the reciprocal of a convergent.

Proof: We have already seen that if x, = ¢, or N/c¢, for some nonnegative inte-
ger m, then {x,},., consists entirely of convergents; therefore, it suffices
to show that if x, is neither ¢, nor N/e, for any m, then {x,} contains no con-
vergents. We begin with such an x, and prove by induction that every subsequent
Newton approximation is of the same form. This is clearly the case if x, < 0,
since for such an x, we have {x,} contains only negative numbers. Now consider
x, >0. Suppose that we have shown that x, is neither ¢, nor N/c, for any m.
Then

%, = (@ + N/ (22,),
which is equivalent to

xZ - 2z, x, + N =0 (1)
or
Ty =Ly (x}f_'_l - N)l/z’ (2)
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Assume x,,; = ¢, for some nonnegative integer m. Since x, is rational and
therefore real, so is «,, whence, by (2), x,,; > VN; this means that X471 Must
be an odd convergent. By Theorem l, taking X = 1, we see that Newton's method
applied to ¢,/;, results in x,4+;. Consequently, Newton's method applied to
N/cnj, also results in x,,;. Since VN is irrational, Cunj2 # N/cny . Hence,
Cn/y and N/c,,, must be the two distinct roots of (1) so that, contrary to the
induction hypothesis, &, = cn/; or N/c,,;.

Assume now that x,,, = N/c, for some m. Then (2) becomes

L, = Nle, + ({NWq? - p;)}uz/pm)- 3

Since x, is rational, we must have {N(WNg} - p,ﬁ)}l/2 rational. But the contin-

ued fraction for VN has period one, so that Nqi - pj = +1, and therefore,

{W@q? - p2)}M? = {m}/2,

which is not rational. Hence, x,,, # N/c, for any m, completing the proof.

3. CONTINUED FRACTION FOR VN WITH PERIOD TWO

When the continued fraction for VN has period two, a theorem analogous to The-
orem 3 does not exist. To see this, consider NV = 12 and x;, = 6. We have

V12 = (3, 2, 6, 2, 6, ...),

with convergents 3, 7/2, 45/13, ..., so that &y is not a convergent. Also,
xy = 12/2 so that x, is not 12/¢, for any m. But

(62 + 12)/(2+6) = 12/3 = 12/¢,

which means, by an argument similar to that used at the beginning of Section 2,
Newton's method applied twice to ¥, yields a convergent, namely ¢, = 7/2. We
shall see, in fact, that there are infinitely many N such that the continued
fraction for VI has period two and, for some rational x, that is neither a ¢p
nor an N/c,, the resulting sequence {x,} contains infinitely many convergents.
On the other hand, we shall see that there are infinitely many N such that the
continued fraction for VI has period two and, for any rational x, that is nei-
ther a ¢, nor an N/c,, the resulting sequence {x,} contains no convergents.
Before we begin, we note that some of the results of Section 2 carry over imme-
diately into this section, namely Newton's method applied to ¢, is identical to
Newton's method applied to N/¢,, and the first part of the induction proof for
Theorem 3 works here by using Theorem 2 rather than Theorem 1.

Theorem 4: Let S be the set of all s = kx® or 4kx® where x® - ky® = 1 for some
positive integers &, Y, and k. If N € S, then the continued fraction for Vi
has period two and there is a rational x, not of the form ¢n or N/c, such that
the sequence {x,} of Newton approximations to v, beginning with xy, contains
infinitely many convergents. Also, if ¥ ¢ S and the continued fraction for VN
has period two, then for any rational x, that is neither a ¢, nor an N/c,, the
resulting sequence contains no convergents.

Proof: Let T be the set of all N such that the continued fraction for VN has
period two and, for any rational x;, not of the type ¢, or N/cp,s the resulting
sequence {x,} of Newton approximations to v, beginning with x,, contains no
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convergent of the continued fraction for V. Consider some N such that the
continued fraction for VI has period two. We show first that ¥ ¢ 7 if and only
{v@w - pj)}lﬂ is rational. Assume {N(V - pg‘)}l/2 is rational. Set

xy = Ve, = ({HW - p3) 3% /p ). 4

Since q, = 1, (4) is precisely (3) with n = m = 0. Thus, x; = N/co. Since the
continued fraction for VN has period two, there are positive integers g and b
such that b|2a, N = a®> + (2a/b) and VN = (a, b, 2a, b, 2a, ...), so the first
two convergents of the continued fraction for VN are a and (ab + 1)/b. Also,
x, =Nley, = (a 2+ 2a/b)/a = (ab + 2)/b. Thus, x; is not a convergent. There-
fore, ¢, is different from ¢, and N/ec, for all m, but the sequence {x,} con-
tains infinitely many convergents of the continued fraction for VN, namely all
xy for k2 2. Thus, NV ¢ 7.

Now assume {N(V - p%)}l/2 is not rational. Suppose %, is the n'™ Newton
approximation to VN starting from some rational x, and is given by (2) and (3)
where Xp41 = V/ey, for some m. From (2) and the fact that x, is rational, we
have that x,,, > VI so that enm < VN and m is even. Thus,

Pn ~ Mg, =y - Mgy = py - s

d

so that by (3),

%n = Nley = (LW - p2YP2/p),
which is not rational by assumption, giving a contradiction. The induction
argument given in the proof of Theorem 3 now works here, and we may conclude
that ¥ € T, which finishes what we first set out to show.

To complete the proof of the theorem we need only show that the continued
fraction for VN has period two and {N(WV - p%)}ll2 is rational if and only if
N € 5. Consider N such that the continued fraction for v/ has period two and
write, as before, N = a? + (2a/b) where b[(Za). Assume that {N@ - p%)}ll2 is
rational. We have N - p% =N - a? = 2a/b so that N - p%) = N(2a/b) = d* for
some positive integer d. Then we consider two possible cases.

Case 1. D is odd.

Here bla. Set a, = a/b so that N = b%a? + 2a,. Therefore,

d? = 2ai(b2a1 + 2). (5)
Thus, @, is even and (2a;)|d. Writing a; = 2a, and d = 2a;d,, (5) becomes

2 2 -

d1 - azb =1,
and, therefore,

- 7,2,2 - 2 _ 2

N = b%aj + 2a, = 4a,(b%a, + 1) = 4a,d;.
Hence, N € 5.

Case 2. b is even.

Here b = 2b,, where b,|a, so that a = bya, and d = a;d, for some integers
a; and d; with
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d? - a,b? = 1. (6)
We conclude that N = biai +a, = aldi and, therefore, NV € 5.

Now suppose N € S. Then N = 4kx? or kx? for some positive integers x, y,
and k such that z® - ky? = 1.

Case 1. N = &4kx?.
Here set a = 2ky and b = y. Then
a’ + (2a/b) = 4k(ky* + 1) = 4kx? =N and b|(2a).

Also, b # 2a, since y < 4ky. Thus, the continued fraction for VI has period
two. Also, we get N(N - p%) = (4kx)?.

Case 2. N = kx?.

Here set a = Ky and b = 2y. Then a’ + (2a/b) = N and b|2a, so that the
continued fraction for VI has period two (note that b # 2a since z? - yz #1).
Also, N( - p%) = (kx)?.

This completes the proof.

Corollary 1: If the continued fraction for VI has period two and N is square-
free, then N ¢ S.

Proof: Suppose N € S. Then N = kx? or 4kx® for some positive integers & and
k. Thus, £ =1 and 1 - ky? = 1 for some positive integer y, giving a contra-
diction.

Cerollary 2: 1If N= (Zd)2 + 2, where d is the denominator of an odd convergent
of the continued fraction for VE, then ¥ € 5. On the other hand, if N = a’ + 2
for any positive integer a not twice the denominator of an odd convergent of
the continued fraction for VE, then VN ¢ S. 1In particular, if N is odd and of
the form a? + 2, then N ¢ S.

Proof: Consider N = a? + (2a/b), where b = a. From the proof of Theorem 4, we
know that¥ € § if and only if 2N = N(2a/b) = di for some positive integer d,
if and only if a® + 2 = N = ng for some positive integer d, if and only if
a = 2d for some positive integer d and d% - 2d? = 1 if and only if NV = a® + 2,
where a = 2d and d,/d is an odd convergent of the continued fraction for V2,
which proves the first part of the corollary. The last statement follows from
the observation that if N is odd, then a is odd.

Corollary 3: There exist infinitely many ¥ € S and infinitely many /N such that
the continued fraction for VIl has period two and N ¢ S.

Proof: Take N of the form a? + 2, and use Corollary 2.
Finally, we note that the only ¥ € § less than 1000 are

12, Ié, 48, 72, 147, 150, 240, 288, 405, 448, 578, 588, 600, 960.
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SKEW CIRCULANTS AND THE THEORY OF NUMBERS

1. J. GOOD
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(Submitted March 1984)

1. SKEW CIRCULICES AND SKEW DISCRETE FOURIER TRANSFORMS

The matrices
L ;

provide a familiar representation of complex numbers x + 7y. Let us consider
the more general matrix

Ty 1 2 t-1
-x
t-1 0 1 t-2
Ll TEL 0 t-3
X = ] (l)
%, %y %, 1
% —%, %y 0
where ¢ is a positive integer, and Xy, &1, ...s &,_; are real numbers. The de-

terminant of X is called a skew circulant by Muir [7, p. 442] and by Davis [1,
pp. 83-85], and we call X a skew circulix. We can write X in the form

X=a,l +ad+ r +x,_J70, (2)

where 7 is the ¢ X ¢ unit matrix and

0 1 0 0. 0 0

0 0 1 0 ... 0 0
T . (3)

0 0 0 0 0 1

-1 0 0 0 0 0
Since Jt = -7, it follows that all polynomials in J can be expressed as poly-
nomials of degree at most ¢ - 1, and every such polynomial is a skew circulix.

Hence, all skew circulices commute with each other.

On a point of terminology, a skew circulix is not in general a skew-sym-
metric matrix although it can be. For example, J2 is both a skew circulix and
a skew~symmetric matrix when ¢ = 4.
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The eigenvalues of X are

i1
x;— = Zoxrjr’(23+l) (8 =0, 1, vevy t = 1), (4)
p=

where j = "/t , By analogy with the discrete Fourier transform, we may call
the sequence (xg, xI,..., xl_l) the skew discrete Fourier transform (skew DFT)
of (xo, Zys vees & The eigenvectors of all skew circulices are the col-

umns of the matrix

£-1)e

{77y (r, 8 =0, 1, ..., £ - 1).

We now list a few further properties of skew circulices to emphasize their
mathematical respectability. See also Section 4.

Just as the ordinary discrete Fourier transform is associated with se~
quences of period %, the skew DFT is associated with sequences of antiperiod ¢;
that is, doubly infinite sequences such that x,,; = -, for all integers r.
This is so in the sense that, if (x,) has antiperiod ¢, then the sum (4) is
unchanged if r runs through any complete set of residues modulo %, not neces-
sarily from O to ¢ - 1. Antiperiodicity dis a natural concept because, if a
sequence has period 2¢, it can be readily expressed as the sum of two sequences,
one with period ¢ and one with antiperiod Z.

The skew DFT has the inversion formula

-1
T == x;f'j'”ZS“), (5)
8=0

an application of which is mentioned in Section 4. The skew DFT also has the
convolution property that, if

t-1
2q = onpyq_r (@ =0, 1, vouy t = 1),
<

where either (x,) or (y,) has antiperiod ¢, then

2l =axlyl (e =0,1, ..., t - 1. (6)

8

Under the same circumstances, and if (x,) is real, the skew DFT of Z;a%yq+p is
Egy;, where the bar denotes complex conjugacy. In particular, the skew DFT of
Z@quq+r is |x;l2 so that, by the inversion formula, we have a "Parseval" for-
mula,

Tl =—;‘;E]x;f|2. N

Exercise: The skew circulant with top row (1, x, x?, e e xt'l) is equal to
(xt + 1)t°1,
2. CYCLOTOMOUS INTEGERS

A cyclotomic integer is defined (for example, by Edwards [2, pp. 81-88]) as a
number of the form

m=- 1

X:O crwr‘ ((.O = ezﬂi/m)’ (8)
r=
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where ¢gs €15 -++5 G,y are ordinary integers, positive, negative, or zero, and
where m is prime. However, if we generalize the definition by allowing m to be
even, and write m = 2t, then (8) becomes

t-1
Z(cr - cr+t)jr G = em'/t)-
r=0

Accordingly, for any positive integer ¢,

~1 t-1

Ta, it = ¥ ae™t, 9)
r=0 r=0
where each a,is an integer, will be called a cyclotomous integer (with respect
to t). It is cyclotomic with respect to 2%, under the generalized use of the
expression "cyclotomic.”

When ¢ = 1, the cyclotomous integers are the ordinary integers, and when

t = 2 they are the Gaussian integers (for example, LeVeque [6, pp. 129-131]).

Definition: We say that ¢ is ausgezeichnet if the corresponding cyclotomous
integers are "unique,” that is, if the equation

t-1 . t-1 .
2 a,dt = X bd”
r=0 r=0

implies that @, = b, (» =0, 1, ..., t = 1); or, in other words, if

t-1 i
2 A’
r=0

I
(o]

(10)

only if a, =0 (r =0, 1, ..., £ - 1).

Theorem 1: The ausgezeichnet integers are the powers of 2, namely 1, 2, 4, 8,
The othérs are unausgezeichnet.

Proof: If ¢ is not a power of 2, then it has an odd factor k > 1. Write £ =
ck, where 1 < ¢ < £. Then

(k- l)c)

0=1+gt=(1+341=-ge+g% - -+

It

Therefore, 1 - ¢ + j2¢ - -« 4 j&k-De

so t is unausgezeichnet.

To prove the theorem for ¢ = 2"(n =0, 1, 2, ...), we note first that the
result is obvious when # = 0 or 1 (and very easily proved when n = 2), and we
shall proceed by mathematical induction, assuming » > 2, so that # 2 4. Our
inductive assumption is that %¢ is ausgezeichnet.

Suppose that equation (10) is satisfied for some 'vector" (a,). Then

is a cyclotomous integer that vanishes,

il 21
a, + (a1 - at_l)cos E~+ (a2 - at_z)cos 7;—+ AN
Gst -~ D1 _
+(ay, ;- a%t+1)cos 7 =0 (11)

and
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. A
(a; + at_1)51n-z + (a, + a,_,)sin -t
Cst - L)m _

+ (a, 7

Le-1 + a

)sin 0. (12)

B+
Equation (11) can be rewritten as

[xo + (a, - a,_,)cos LU (a, - a,_,)cos %} + --;

T

+ [}al - a,_,)cos %—+ (a, - a,_j)cos %; + ---] = 0. (13)

Now, if m is any positive integer, cos(2mn/t) is a polynomial in ces(2n/t) with
integer coefficients, while cos[(2m + 1)n/¢t] is of the form

cos (2m : 1w

where K, with or without a subscript, denotes a rational function (with ra-
tional coefficients), not necessarily the same function on each occasion.
Equation (l4) can be deduced, for example, from Hobson [5,p. 106, formula (6)],
where in fact the rational function is a polynomial with integral coefficients.
It then follows from (13) that either both bracketed expressions vanish or else
cos{(m/t) is a rational function of cos(27/t). Therefore, if we can rule out
the latter possibility, we see from our inductive hypothesis that

_ 27 ki
= Rl:cos 75]cos <> (14)

=a2_a = ses = {J, (15)

0 1 t-1 t-2

Similarly, on rewriting (12) as

Lt - )m m
(a, + a,_yeos LEEZDT 4 ooy (a,, |+ ay,, Peos T =0, (16)
we infer that
a, ta,_,=a,ta, _,=- = 0 (17)
provided, once again, that, when ¢ = 4, 8, 16, ...,
cos(n/t) is not a rational function of cos(27m/%). (18)

Thus, if we can prove (18), it will follow that (15) and (17) are both true and,
therefore, a, = a, =a, = *+* = a,_; = 0, which would complete the inductive
proof of our theorem. It remains to prove statement (18). To do so, we for-
mulate a slightly more general result because the increased generality enables
the method of induction to work.

Theorem 2: When ¢ = 2" (n = 2, 3, 4, ...) neither cos(m/¢) nor sin(n/¢) is of
the form R[cos(27m/t)].

For its historical interest,we mention in passing that the product of all
the cosines is 2/m, as Frangois Viete or Franciscus Vieta, an eminent mathema-
tician, lawyer, and cryptanalyst, discovered in the seventeenth century. (See
Hobson [5, p. 128} for its proof.) Vieta's formula is often expressed in the

form
2 _ V2 V2 +V2 V24 V2 +v2
™ 2 2 2
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Proof of Theorem 2: When ¢ = 4, the result is obvious, so we take n > 2 and
proceed by induction. Suppose that cos(m/t) = R[cos(2n/¢)] and try to arrive
at a contradiction. The rational function of cos(2n/t) is of the form

¢, + ¢, cos(2n/t) + --+ + ¢p cosP(2n/t)

d, + d, cos(2n/t) + -+ + dg4 cos9(2n/t)

Pl[cos(4ﬂ/t)] + cos(ZW/t)Pz[cos(4ﬂ/t)]
" P, lcos(41/2)] + cos(2n/t)P, [cos(4n/E)]

where P., ..., P, are polynomials with integer coefficients. [See the remarks
following equation (14).] Multiply the numerator and denominator by

P,[cos(4m/t)] - cos(2m/t)P, [cos(4T/t)]

which, by the inductive hypothesis, does not vanish, and we obtain an equation
of the form

cos(m/t) = R, [cos(4m/t)] + cos(2n/t)R,[cos(4m/t)].

Squaring both sides gives, after dropping the arguments of R, and R, for the
sake of brevity,

L + % cos(2m/t) = Ri +[5+% cos(4ﬂ/t)]R§ + 2 cos(2m/¢)R\R,.

However, by the inductive hypothesis, cos(2m/t) is not a rational function of
cos(4m/t), so

L
2

R + cos®(2m/¢)R2

and
1= 4R1R2.
Therefore,
2
L = Ri + cos (2ﬂ/t)_
16R2
Therefore,
R: - %Hi + %E cos?(2m/t) = 0.
Therefore,

R? =% & /[% - % cos®(2n/t) = 4[1 * sin(2n/%)].
Therefore, sin(2m/t) is a rational function of cos(4m/t), which is false by the
inductive hypothesis. So cos(m/t) is not a rational function of cos(2m/t).
Similarly, if sin(w/t) is a rational function of cos(2m/¢), we have, as
before, in turn,

sin(m/t) = R,[cos(4m/t)] + cos(2n/¢)R,[cos(4n/E)],

% - % cos(2n/t) = Ry + [} + % cos(4m/t)IRZ + 2 cos(2m/t)R,R,,
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L= Rg + cosz(Zﬂ/t)Rf,

-1 = 4R.R ,

and
cos?(2m/t)

= R +
2
16R;
and, just as before, we deduce that sin(T/%) cannot be a rational function of
cos(2m/t). This completes the proof of Theorem 2 and hence of Theorem 1.

Theorem 3: When ¢t is ausgezeichnet, that is, a power of 2, the degree of the
algebraic integer j is t.

Proof: By Theorem 1 we know that 0 cannot be expressed as a cyclotomous integer
other than in the obvious manner; that is, J cannot satisfy an equation of de-
gree t — 1 or less having integral coefficients. But j does satisfy an equa-
tion of degree t, namely j* + 1 = 0, so j is an algebraic integer of degree
(precisely) t.

Theorem 4: 1If j is replaced by j2¢+! in (10), where s is a positive integer,
then Theorem 1 remains valid.

To see this, note first that the sequence of complex numbers

1, j2s+1, j2(2s+1), S j(t-l)(23+1)

is merely a permutation of the same sequence with s replaced by 0. Hence, the
substitution leaves the class: of cyclotomous numbers invariant. The remaining
details of the proofs of Theorems 1l and 2 go through with only trivial changes.

Theorem 4 shows that the eigenvalues of the integral skew circulix A with
top row (Ays Ays -ees a,_,), where the a's are integers, are all uniquely ex-
pressible as cyclotomous integers, when t is a power of 2. These cyclotomous
integers are called associates of one another and their product is det 4, the
determinant of A. This determinant is also known as the norm of any one of
these cyclotomous integers.

When ¢ = 2, the cyclotomous integers are the Gaussian integers a + Zb.
The associate of a + 2b is a - ib and the norm is a®+b?. The so-called units
of the ring of Gaussian integers are those whose reciprocals are also Gaussian
integers, that is, those with norm 1. These units are #*1 and #¢. It is fami-
liar that in the ring of Gaussian integers the 'fundamental theorem of arith-
metic" is true, that is, each Gaussian integer has a unique decomposition into
prime Gaussian integers, apart from units. For a rigorous statement of this
property, and for its proof, see, for example, Hardy and Wright [4, pp. 184-
186].

3. THE CYCLOTOMOUS INTEGERS WHEN t = L

Hardy and Wright [4, l.c., pp. 280-281] state the fundamental theorem for the
algebraic integers a + R7 + yV/2 + 87V2, where o and B are integers and y and §
are either both integers or both halves of odd integers. It is readily seen
that these are the same as the cyclotomous integers corresponding to t = 4,
namely a + bj + cj? + dj®, where j = e"/4 = (1 + 2)/V2. These again are the
same as the cyclotomic integers corresponding to m = 8, but the cyclotomous
form has the merit of unique representation. The proof of the fundamental
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theorem in this case can be obtained along the lines of the proof given in [4,
§12.8] for the Gaussian integers, which is the case m = 4. But when m = 2¢ =
16, or any higher power of 2, this proof does not work, and presumably in these
cases the decomposition into cyclotomous primes in not unique.

In the remainder of this section, we assume that ¢ = 4. Let a, b, ¢, and
d be integers, and let

a b e d
i1l e a9
-b - -d a
Then
3
det 4 =[] [a + bj23+1 T Cj2(23+1) + dj3(23+1)]. (20)
s=0

By pairing off the complex conjugate pair of factors with s = 0 and s = 3, and
the pair with s = 1 and s = 2, we see that

det 4 > 0. (21)

The determinant det 4 is also called the norm of a + bj + ¢j?+ dj° and will be
denoted by N(a, b, ¢, d).

The three ways of pairing off the four factors a of (20) (s = 0,1, 2,3),
lead naturally to three ways of writing the norm. Thus:

(@ + bj +cj?+di®)(a + bi® + ej® + dj%)
a? - b2 +c?-d%+ (G + 3%(d + ab - be + ed)
=a? - b? +¢c? - d*> + W2(ad + ab - be + cd).

Q
“r
Q
[
[]

But af = al, al = af, so ajal is the complex conjugate of afal and
N(a, by, ¢, d) = (a2 = b2 + ¢2 - d?)? + 2(ad + ab - be + cd)?. (22)
Again
afal = |af|? = |a + b-d, i<% +—£Li;g> ’
V2 V2
=<a+b—'-‘l>2+<c+ﬁ—d>2
V2 V2
=a?2 + b2 +c2 +d? +V2(-ad + ab + be + cd),
e N(a, b, ¢, d) = (a* + b* + ¢* + d*)? - 2(ad - ab - bc - ca)”. (23)
Finally,

alal = (@ + bj + cj® + di*)(a + bj® + cj*" + dj'®)
=la+eci+JB+dd]lla+ci -Jmb+di)] = (a+ci)? - i(b + di)?
=q? - e? + 2bd - 2(b? - d* - 2ac).
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So
N(a, by, e, d) = (a® - ¢*> + 2bd)? + (b? - d% - 2ac)?. (24)
Exercises:

(i) N(am b» Cs d) = N("Cl, _b: =Cs _d) = N(d, Cs b, CZ)'
(ii) WN(-1, -1, 2, x+1) = (x2+1)2, [Form N(x,0, 1,0)N(0, 1,1, 1).]

(i11) The product of the skew circulices whose top rows are (xz, 1,0, 0),
(x, -1,0,0), (x, 0,0, 1), and (x, 0,0, ~1) is (z* + 1)I.

(iv) Nz, 2 2+ 2, 2+ 3) =N@+2, x+3, x+ 1, ¢+ 1).

(v) ~N(, b, b, 0) -1, where b is an integer, is eight times the square
of the triangular number B(p - 1)/2.

(vi) 1If a positive integer v is not of the form a? + 282, then v? is of
the form h2 + k% + 222, where not more than one of the three terms can vanish.
(Hint: Use the equality of (23) and (24) combined with Bachet's theorem that
every positive integer is the sum of four squares.]

Theorem 5: N(a, b, ¢, d) vanishes only if a = b =¢ =d = 0.
For, from (23), N(a, b, ¢, d) = 0 implies that

a? + b2 +c?+d? = +/2(ad - ab - be - ed).
Therefore, a’ + b + ¢? + d2, being rational, must vanish, and the result fol-
lows. (Exercise: The rational skew circulices form a field.)

Thus, (21) can be sharpened to

det 4 2 1. (25)

The units of the ring of cyclotomous integers (with ¢ = 4) are the solu-
tions of the Diophantine equation

N(a, b, ¢, d) = 1. (26)
We shall adopt the abbreviation (a, b, ¢, d) for the number
a + bi + ej? + dj°8.

Theorem 6: The units of the ring of cyclotomous integers (with ¢ = 4) are:

tl, *j, i, #53
and

(Eqn’ ipn’ €4y 0), (0, €4, ipn’ Eqn)r (-Eqrp 0, EG e ipn)
and

(*p, s —€q,s 0s eq,)

where €=1 or e=-1, and;hlqn is the nth convergent in the continued fraction
for V2; that is,

} a+ ‘/E)n + Q- ﬁ)n, g = (1 + \/E)" - (1 - \/—z-)n . 27)
2 n
2v2
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These units are all of the form
JTA+ G+ 3D, (28)
where » and g are integers (positive, negative, or zero).

Recall first that the sequences of p,'s and g,'s begin with the values 1,
3, 7, 17, 41, 99, etc., and 1, 2, 5,12, 29,70, ..., and satisfy the recurrence
relations p, ., =2p, *+ P, 1> Guie1 =29, + q,.,. Moreover, (p,, q,) provides the
general solutions of the (Fermat-)Pell equations r? = 282 £ 1 (see, for exam-
ple, LeVeque [6, pp. 139-1441). 1In fact

2 _ 2 2 _ 2 .
Pyy = 2q9,, +1 and p, . =2, -1, (29)

which 1s true even when n = 0 if we write p, = 1, g, = 0 (as we must if we want
to satisfy the recurrence relations when n = 1).

To prove Theorem 6 we note, for example, that N(a, b, a, 0) = (2a% - b?)?2,
from (22), and hence ¥(q,s P,> 9, 0) = 1, from (29). Or we can simply check
that (1, I, 1, 0) is a unit, that its inverse is (1, 0, -1, 1), and then show
that all the units defined in (28) are of the forms mentioned in the rest of
the statement of the theorem.

That there are no units other than those mentioned in the theorem follows
from a deep theorem due to Dirichlet, concerning units in general; see, for
example, LeVeque [6, p. 75]. 1In particular, therefore, N{(a, b, ¢, d) = 1 im-
plies abed = 0.

As an example of Theorem 6, we have

29 41 29 0
4
H29, 41, 29, 0 = | 0 P AL 2o

-41 =29 0 29

Although N(eq,, *p,, €9, 0)= 1, we have N(q,, P, =G> O) = p, , so the signs
can have a big effect.

By (23), (29), and Theorem 6, we see that the only solutions of the simul-
taneous Diophantine equations

a> +p*+ct+d*=p,
(30)
ad - ab - be - ed = #q,,

are given by a=¢ =2q,, b =*p,, d =0, and the "antirotations" of these
solutions listed in the statement of Theorem 6. In particular, there is no
solution with abed # 0.

An allied question is what integers, and especially what primes, are ex-
pressible as integral skew circulants, not necessarily of order 4. For order
2, the problem is the familiar solved one of expressing integers as the sum of
two squares. Since the product of two integral skew circulices is a third one,
we know that the products of "expressible" numbers are also expressible (as
skew circulants of order 4).

If N a, bs ¢s d) is prime, then, by (24) it must either be 2, for example,
y(l, 1, 0, 0) = 2, or it is of the form 4g + 1. 1In the latter case, r and s
are of opposite parity, where r = a?-c¢? + 2bd and 8 = b? - 42 - 2qc. Suppose
that r is odd and s is even. Then g # ¢ (mod 2) and b = d (mod 2). By trying
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the four possibilities for the parities of (a, b, ¢, d) we see that r’+g? = 1
(mod 8), and the same conclusion is reached if r is even and s is odd. Thus,
the only odd primes that N(a, b, ¢, d) can equal are of the form 8z + 1. I
conjecture that every prime of this form is expressible as N(a, b, ¢, d), that
is, as an integral skew circulant, having found that this is true up to 1033,
as shown in Table 1. Call this Conjecture 1.

Table 1. Values of (a, b, ¢, d) for which p = N(a, b, ¢, d) where p is prime
and p = 1 (mod 8), for all p < 1033. Solutions are given for which
a, b, ¢, and d are all nonnegative.

P a b e d p a b ¢ d j2) a b e d
17 2 1 0 0 337 4 3 0 0 641 5 2 0 0
41 2 1 1 1 353 4 1 1 1 673 3 3 2 3
73 2 2 0 1 401 3 3 1 2 761 4 7 8 2
89 3 1 1 0 409 4 2 0 1 769 4 0 2 3
97 3 2 0 o0 433 4 0 2 1 809 4 3 0 2
113 3 0 1 1 449 4 2 3 0 857 1 6 3 1
137 3 3 2 1 457 3 1 3 2 881 5 4 0o o
193 3 1 2 1 521 3 2 1 3 929 5 1 2 1
233 1 4 1 1 569 6 8 7 0 937 5 0 1 3
241 4 2 1 0 577 5 3 1 0 953 5 1 1 2
257 4 1 0 0 593 4 2 1 2 977 5 5 2 1
281 5 5 3 0 601 8§ 11 9 1 1009 8 9 6 0
313 3 3 3 2 617 4 1 2 2 1033 7 9 8 1

Given a solution of N(a, b, ¢, d) = 1, we can multiply each of a, b, ¢, d
by any number and thus show that all squares are expressible. So Conjecture 1
implies that all numbers of the form 2qulp2 ..., where § is a square and p ,
Pys ... are primes of the form 8n + 1, are expressible, and I suspect that no
other numbers are. (Conjecture 2.) This conjecture is based on well over one
hundred numerical examples. i

It is familiar that primes of the form 4n+ 1, and a fortiori those of the
form 8n + 1, are expressible in essentially only one way as the sum of two
squares. Suppose that a prime p = 1 (mod 8) is r? + 52, where we can take »r > 0
and 8 > 0. Then, if Conjecture 1 is right, integers a, b, ¢, d exist, so that
the two terms in (24) satisfy.

|a® - ¢® + 2bd| = 7 or s

and (31)
|2 - d? - 2ac| = s or r.
Researches by Gauss, Lagrange, Cauchy, Eisenstein, Jacobi, and Stern (see

Smith [9, p. 269] included the remarkable result that a prime p of the form
8n + 1 is also uniquely expressible in the form %% + 2k2, where

+2h = (i?) (mod p). (32)

Conjecture 1 would then imply, from (22), that % and k can be written (by no
means uniquely) in the forms

h=la®> -b*+c?>-d?| and k= |ad+ ab - be + cd|. (33)
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We also know, by a theorem due to Gauss (see Smith [9, p. 268]), that p = r? +

32, where

2r = (gZ) (mod p). (34)

Formulas (31)-(34) can be helpful in finding values for a, b, ¢, d, that is, in
expressing a prime of the form 8n + 1 as a skew circulant.

Table 1 can be used for writing down, for a given prime p = 1 (mod 8), the
essentially unique solutions of p = r? + s* and p = h® + 2k? when p<1033. We
can also use the table (up to g = 1033), combined with (23), to obtain arbi-
trarily many solutions of p = a - 282, because we can multiply (a, b, ¢, d) by
any unit. For example,

(as by ¢, d) x (1, 1, 1, 0)

(a-c-d, a+b-d, a+b+c, b+c+d)
(a’s 'y ', d")

say; and we see, by elementary algebra, that

a'? + b’ + e’ +4d'"% =3@*+b*+c?+d?*) -4(ad-ab-be-cd),
while

a'd' = a'®' - b'le' - e'd’ = 3(ad-ab- be-cd) - 2(a®>+b%+c?+d?).

This forces us to notice that if (a,, B,) is a solution of p = a? - 282, then
another one is (un_l, Bn_l), where we have the "backward" recursion

Q,_, =30, - 4B, B,y = 3B, - 20,. (35)
Likewise, by forming (ay, by ¢, d)(1, 0, -1, 1), or from (35), we are led to the
"forward" recursion

On = 30“}1—1 + 4Bn-—l’ Bn = Zan—-l + 3671—1' (36)
Thus, given one solution, we can generate an unlimited supply (compare LeVeque
[6, p. 146], for example), by climbing up and down a ladder infinite in both
directions.

One can verify that equations (36) are equivalent to

(V8 - &m)N**Y + (W8 + am)p™tt1(32)72

O“VL
37)

Bn [2e - m\/8))\n+l - (22 + m\/§)un+l] (32)'1/2 s

where n is any integer, A =3 + J8, u=3- V8 =27, 22 - om? = p. Indeed,
using only the fact that Ay = 1, one can verify directly that if 22 - 2m® =z,
for any x, then a2- 283 = x also. For example, when p = 17, we can take & = 7,
m= 4, giving ...0_, = 37, 0.y =7, 0y =5, a; =23, 0o, = 133, ..., B_, = -26,
B.1 = 4, Bg = 2, By = 16, B, = 9%,

Equations (37), in their turn, are equivalent to

Oppy = 60, =0y g5 Byyy = 0B, = By s (38)
which can be used both forward and backward. Equations (37) and (38) are de-

cidedly Fibonaccian, so it is not surprising that the o's and B's have further
nice properties. For example,
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Ul gz = 2BnBrax = PYios

where vy, = 1, vy, =3, v, , = 6Y, - Y, q The even-numbered numerators of the
simple continued fraction for v2 are Yis Yoo Ygo
To conclude this section, consider one more conjecture, Conjecture 3: Let
p =1 (mod 8) be prime. Then all solutions of p = a® - 28% can be obtained
from (37), or recursively from (38), by starting with a single solution. That
there Zs a solution would be a consequence of Conjecture 1. The two conjec-—
tures combined imply that all solutions are of the form shown in formula (23).
(See Table 2.)
Table 2. Some solutions of p = a? - 282 where p =1 (mod 8), and the top rows
of the corresponding skew circulices. The signs preserve the recur-
rences Op4+y = 60y — Oy-1s PBn+1 = 6B, — Bn-1. In each case, o = a? +
b> + ¢ + d?> and B = ad - ab - be - cd as in formula (23).

p =17 p =41
o B a b c d o B a b c d
37 26 -2 4 -4 1 71 50 -1 5 -6 2
7 4 1 1 -2 1 13 8 2 1 -2 2
5 =2 2 1 0 0 7 -2 2 1 1 1
23 -16 2 3 3 1 29 =20 0 2 4 3
133 ~-94 -2 4 8 7 167 -118 -7 -1 6 9
775 =548 -17 -5 10 19 973 -688 -22 =17 -2 14

L4, DISCUSSION OF ALLIED MATTERS
Complicated Numbers

In an unpublished paper, the author called the skew circulix (1) a representa-
tion of a "complicated number"

Lo + Jy&y + o0+ gy 1Ty

and developed a theory of functions of a complicated variable (see Good [31).
The theory contained, for example, an easy generalization of the Cauchy-Riemann
equations, and a more difficult generalization of Cauchy's residue theorem for
integrals over contours encircling flat manifolds of dimension ¢ - 2. These
manifolds generalize the poles in the usual theory. Generalizations of Liou-
ville's theorem and analytic continuation were also given. The following dis-
cussion is extracted from that document to which it was, however, somewhat
incidental.

Generalized Trigonometry

The skew DFT is related to the following generalization of trigonometry.
Consider the differential equations
Dty = kty, (39)
Dty = -kty, (40)
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where Kk is a positive number and D means d/du. (The case t = 4 occurs in the
theory of a vibrating elastic bar; see Webster [1l, p. 139].) A fundamental
set of solutions (39) is given by the generalized hyperbolic functions of Ungar
[10]:

(r

r r+t r+ 2t
o =% + = Y 0, 1, vy £ - 1), (41)

M T e ot T ey T

while, for (40), a fundamental set contains the generalized trigonometric func-
tions

u’r ul"+t ur+2t
S s ey s ¥ My 2£)1 ~

(r=0,1, ..., ¢ - 1). (42)

(Compare to Muir [7, pp. 443-444], where the corresponding definitions contain
minor errors; and Ramanujan [8].) The solution of (39), with initial values
Cys Cis Cps wves Ci_q fOr Y, Dy, ou., D' 'y at u = 0, is Zenfr(ku), while that
of (40),with the same initial values, ile;g}(ku). Let us list some formulas
that are satisfied by these generalized trigonometric functions. The reader
should mentally consider what they state for the case ¢ = 2. We omit most of
the similar formulas for the functions fy(u#). The reader might like to verify,
however, that

TIf @17 = 671'F explou cos(2ms/t)]. (43)

=0

When ¢ - «, this gives a familiar formula for the Bessel function IO(Zu) as an
integral.
The formula
t-1
exp(uj23+1) = z gr (u)j!‘(23+l) A

r=0

[which is true also when J is replaced by §%®*! (p =0, 1, 2, ...)], is a di-
rect generalization of ''de Moivre's formula," which is the case ¢ = 2. As in
ordinary trigonometry we can obtain an addition formula by first deducing an
expression for exp[(u + y)g2s+1l] from (44), and then taking the inverse skew
DRT. Another method, which is closely related, is to note that

e = g I + g, W)d + -+ +g, (I (45)

is a skew circulix whose'eigenvalues are exp(uj2s+tl) (s =0, 1, ..., t - 1).
Hence,

t-1
g, +y) = EOET,SQS(U)QHS(ZJ) (ry 8§ =0, 1, ..., t - 1), (46)
5

where €5, =1 if » 2 s and €5,5 = -1 if » < s. These identities generalize
the usual formulas for cos(u + y) and sin(u + y). It follows, for example,
that g,(nu) is a homogeneous polynomial in go(u), eees gt_l(u) (n=1, 2, 3,

It seems fair to conclude that the skew circulix has not previously been
given the attention that it merits.
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ON A CLASS OF KNOTS WITH FIBONACCI INVARIANT NUMBERS

J. C. TURNER
University of Waikato, New Zealand
(Submitted September 1983, revised May 1984)

This paper describes how a subclass of the rational knots* may be constructed
sequentially, the knots in the sequence having 1, 2, ..., Z, ... crossings.
For these knots, the values of a certain knot invariant are Fibonacci numbers,
the ¢ ®® knot in the sequence having invariant number F;.

The knot invariant has a wide number of interpretations and properties,
and some of these will be outlined, particularly in relation to knots in the
constructed class.

The class will be called the Fibonacci knot-class. A generalization of
this class will be introduced and briefly discussed.

1. THE RATIONAL KNOTS

J. H. Conway [2] defines the notion of "integer tangle," and gives rules for

combining integer tangles to form a large class of alternating knots which he
calls rattonal knots. He develops operations by which all knots on a given
number of crossings may be constructed and tested for equivalences.

Conway's Notation and Construction of the Rational Knots

Only an outline of the methods used, proceeding largely by examples, can
be given. The following diagrams show the first few integer tangles with their

designations. N ~ \\ \v///
e /2\\/\ SN

1 3

Integer tangles 1, 2, and 3

Integer tangles are combined to form rational tangles, as the following
examples show:

\? Note that to form the tangle abed (where a, b, ¢

! d represent integer tangles), first g is reflected

21 g{:::7<:\ in a leading diagonal then joined to p. Then the
tangle gb is reflected and joined to ¢. Finally,

abe is reflected and joined to d. The manner of

2
AN \:::::><:><; joining two tangles is evident from the examples.

212

2123 <

*As in [2], we use "knot" as an inclusive term for "u-link," U = 1.

N

A tangle is turned into a knot by joining the two
upper strings (loose ends), and then joining the

\“é:><i two lower strings.

&%9_
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In [5] a table of diagrams of prime knots and links is given, showing the
knots on 7n crossings, for m =2, 3, ..., 10. Conway, in [2], classifies the
knots and links through to n = 11 crossings.

2. THE FIBONACCI KNOT-CLASS

We now define what we have called the Fibonacci knot-class to be the sequence
of rational knots which are, in Conway's constructional notation, 1, 11, 111,
1111, ... . There is thus one knot in the class for each value of n-crossings;
we give diagrams for the first six in the sequence before describing the prop-
erties that relate them to the Fibonacci numbers.

= 1111 (= 22) F = 11111 (= 212) F, = 111111 (= 2112)

6

The Fibonacci knots ton

In the sequence, each knot corresponds to its Fibonacci number through a cer-
tain knot-invariant to be described. Then when F; is odd the knot is a l-link,
and when F; is even the knot is a 2-link (where {F;} is the sequence 1, 2, 3,
55 8, ...).

3. PROPERTIES OF THE FIBONACCI KNOT-CLASS
A Vertex-Deletion Operation; Production of "Twins'

If a crossing of a knot diagram is "cut-out" or '"deleted," the four cut-
ends may be joined again in two ways that lead to a pair of alternating knots,
each having one fewer crossing than the original knot. We may call the origi-
nal knot K, and the associated pair of knots which are obtainable from the
vertex—deletion XK' and X"; we may speak of K as the parent knot, and call (X',
K") a pair of twins.

Let us write, formally, that XK = XK' & K" whenever (X', K'"') are twins from
parent knot X.

Twins from the Fibonacci Knots
Consider, for example, the Fibonacci knot Fz= 11111. By its construction,

the last 1 corresponds to the crossing on the far right of its diagram. We
demonstrate that deletion of this vertex leads to the twins (7, F3). Thus:
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-y

Join a to d Join a to b
and b to ¢ and ¢ to d

Q

Cut out vertex

The knot on the far right is immediately seen to be equivalent to F; once the
loop (shown shaded) is removed by twisting it once, out of the plane and back,
through 180° clockwise.

To transform the first right-hand knot to the one shown in Section 2 re-
quires two operations: (1) turn the entire knot over in the plane, rotating it
about an axis in the plane that runs from NW to SE; (2) rotate the entire knot
through 180° in the plane (about an axis perpendicular to the plane).

Similarly, we can show that, if we delete its last vertex, F; has twins
(Fs’ F“), F, has twins (Fs’ Fs), and so on. Using the symbol @ as described
above, we can write, formally,

Foyp =E,  ®F, n=1,2, ...,

which is the recurrence relation for the Fibomacci series.
The '""Tree Number'' Knot lInvariant

The edges of an alternating knot—-graph may be given orientations in such
a way that the arrows alternate in direction as the knot is toured from edge
to edge. We call this a balanced alternating orientation.

For a knot-graph with a balanced alternating orientation, we may count the
number of directed spanning trees that emanate from any given vertex. We can
show that this number is independent of the vertex chosen as root and, further,
that it is a knot-invariant for alternating knots. The first proof of invari-
ance of this tree number (1) may be found in [3].

\ﬁ,,//ér\\ T = 5 (whichever vertex is taken as root;
and whichever alternating diagram is used
to represent the knot).

Example: Knot F,, with balanced alternating orientation

Computation of T for the Rational Knots

In [6] we derive the following recurrence equations for
T(mym, ov. my),

the tree number of the ratiomal knot mym, ... Mg
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T(ml) =m
T(mlmz) =m,m, + 1

T(mm, ... mg) =mg e T(mm, «.. mc_l) + t(mm, oo m,_,).
The tree numbers of the Fibonacci knot-class are given by setting m; = 1,
=1, ..., ¢c. This gives

TF) =1, ) =2, ..., ©(F) =1, )+ 1F _,).

Therefore, in this knot-class the tree numbers follow the Fibonacci sequence.
Consider the rational kmot mm, ...m., and the associated continued frac-
tion (terminated) (C.F.):

1 + 1

e-1 c-2

1
C.F.(mym, ... m,) = m, + - +oee o
1

In view of the recurrence equations, the following is true:

T(mlm2 cee M)

C.F.(mm, ... my) =

.

tmm, .. m,_ ;)

This gives the following formula for the tree number of the c¢t" Fibonacci
knot:

T(Fc) = f C.F.(Fi).
1=1

It should be noted here that Conway derives some interesting topological
properties relating to the continued fraction of a rational knot in [2].

Other Interpretations of the Number T

There are a number of knot invariants which have the same value as T for
any given knot. We list three here; a fuller discussion of them can be found
in [6].

Entities equal in value to T

(1) The torsion number of the two-fold branched cyclic covering space of
the knot [1].

(2) The number of Euler circuits on the knot-digraph [4].

(3) The quantity |A(-1)|, where A(x) is the Alexander polynomial of the
knot [5].

Thus, for the Fibonacci knots, all of these invariant values follow the
Fibonacci sequence.

On Parity of Tree Numbers

In [6], we show that T is odd if and only if the knot-graph is a l-link
(i.e., one string). In the Fibonacci knot sequence, then, the knots F,, Fj,
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F,s Fgs F,, ... are l-links; it is easy to show that every third knot, with even
T, is a 2-link. That is F,, F gy F, ... are 2-links.

On Amphicheirality

A knot is amphicheiral if it can be transformed into its mirror image by

a bi-continuous transformation (that is, without cutting and rejoining the
string).

_In Conway's notation, the mirror image of 11 ... 1 is I11... 1; the sym—
bol 1 denotes a crossing ;\f'

Proposition: F, is amphicheiral for ¢ = 1, 2, 4, 6, ... (c even after 1).

Proof: For ¢ = 1 and 2, it is easy to note how the transformation can be car-
ried out. For general ¢, the necessary transformations to carry the knot into
its mirror image are as follows:

PN

e

'\ N /A. MQ/‘L\

4 / ( ) \
I A

R

' /
dotted 1 c 180° F\
string t D in the E

\

\

over plane
_— ' =k >
{ F c
' I
Cl/ ,
l _ /
B A

—_— - - ——

T

\ N
LLL'J/M N )

Knot: 111111...11 Knot: 11...111111

It is well known that knots with an odd number of crossings cannot be am—
phicheiral; hence, F;, where 7 = 3, 5, ... are not amphicheiral.

L., GENERALIZATIONS

An obvious generalization of the above work would be to study the knot-classes
{Egmﬂ, where

{F}lﬂ = {F;} is the Fibonacci class,
{Efzn is the class of rational knots 2, 22, 222, 2222, ...,
{F} is the class 3, 33, 333, 3333, ...,

etc.

Knots with ¢ = 2, 4, ... (even) in each sequence are amphicheiral.

The tree numbers of knots in these classes satisfy the equations of Sec-
tion 3. For m=1, they are the Fibonacci numbers; for m=2, the Pell numbers.

Doubtless the properties of these numbers, which form interesting two-way
sequences, are well known.

Any rational knot may be represented as a formal sum of knots of type Efmh
making use of the vertex deletion operation described in Section 3. Such
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representations are not in general unique (that is, a given knot may have more
than one representation), but it is conjectured that any representation is an
invariant of that knot. For example, the knot (32) shown below may be repre-
sented in the following ways, by various vertex deletiomns:

?\3 = kot 31) @ F,=> F, ® F, ® F, => 2/, ® F,
8&//\ also

P F, ® F,

Knot (32)

Note that to each representation there corresponds a linear decomposition of
the knot's tree number into Fibonacci numbers; e.g., for the knot (32) we have
T = 7, with the corresponding decompositions 5 + 2 and 2 x 3 + 1.

It would be exciting if a study of number sequences associated with knot-
classes were to lead tc methods for counting more general classes of knots.
There are virtually no results in this area, to my knowledge.
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T. INTRODUCTION

For each given pair of positive integers k, #, with k < n, a k-part partition
of n is a k-element multi-set of positive integers whose sum is #j e.g., all of
the 3-part partitions of 7 are: [5, 1, 11, [4, 2, 11, [3, 3,1], and [3, 2, 2].
In this paper we are especially interested in X-part partitions of numbers for
which k¥ = 2, 4 and all of the parts are squares. We briefly refer to these as
2-square and 4-square partitions of a number. Thus, [4, 1] is a 2-square par-
tition of 5. Also, recall that for each positive integer n, 0(n) denotes the
sum of all positive divisors of n.
We are now prepared to state our results.

Theorem 1: A nonsquare odd number n has an odd number of 2-square partitions
if and only if 0(n) is twice an odd number, i.e., n = p°m®, e, m, p € Z*, p a
prime, p/m, and p = e = 1 (mod 4).

Theorem 2: If a is odd and not of the form j(37 * 2), then 3a + 1 has an odd
number of 4-square partitions of the form

3a + 1 = 3% + (6k + 1)*, g, k € Z*
if and only if a is a square.
In Section 2, we prove these theorems, and also deduce Fermat's classical
two-square theorem as an immediate corollary of Theorem 1.
2. PROOFS OF THEOREMS 1 AND 2
Our proofs are based on two recurrences for the sum~of-divisors function.
These recurrences are best stated with the aid of several auxiliary arithmeti-

cal functions, which we now define.

Definition: For each positive integer n, b(n) denotes the exponent of the
highest power of 2 dividing »; and, 0(n) is then defined by the equation

n=22Mo@).

Hence, »(n) is a nonnegative integer and O(n) is odd. We now define the arith-
metical functions w and p by:

wmn) =ocm) +g@Om®))s pmn) =3cMH) - 50(0n))-
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The two recurrences are, for each positive integer m:

(1) o@m-1 - T w@n-1- Qk- 1D +2¥c@m-1- (2k)?)
k=1 k=1
{jz, if 2m - 1 = 42,

0, otherwise.

(2) oCm - 1) + kz;_‘,l(ak + o(@2m - 1 - 2k(6k + 2))
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