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ON SOME POLYGONAL NUMBERS WHICH ARE^ AT THE SAME TIME^ 

THE SUMS^ DIFFERENCES.* AND PRODUCTS OF 

TWO OTHER POLYGONAL NUMBERS 

SH01CHI HIROSE 
Mita High School, Tokyo 108 Japan 

(Submitted December 1981) 

We denote the nth ^-gonal number by 

Pn,g = n^(9 ~ 2)n - (g - 4)}/2. 

For g = 39 5S 6, and 8, we denote Pn,g by Tns the triangular numbers, Pf
n9 the 

pentagonal numbers, Hn9 the hexagonal numbers, and 0n, the octagonal numbers, 
respectivelyo We denote Pntg by Pn whenever there is no danger of confusion* 

Sierpinski [18] has proved that "there exist an infinite number of trian-
gular numbers which are, at the same time, the sums, differences and products 
of two other triangular numbers> 1.tf Ando [1] proved that "there exist an in-
finite number of ^-gonal numbers that can be expressed as the sum and differ-
ence of two other ^-gonal numbers at the same time." It was also shown in [6] 
that there are an infinite number of ^-gonal numbers that can be expressed as 
the product of two other ^-gonal numbers. 

The present paper will show that there are infinitely many ^-gonal numbers 
(#=5,6, and 8) which are at the same time the sums, differences, and products 
of two other #-gonal numbers. 

1. THE EQUATION Pu + W + Pv + W = Pu+v + w 

If Px + Py = Pz 9 by putting u = z - y 9 v = z - x 5 and w - x + y - z9 we have 
x = u + w9 y = V + W9 and z = u + V + w. However, a little algebra shows that 
Pu + w + Pv + w = Pu+v + w implies 2(g - 2)uv = (g - 2)w(w - 1) + 2w. Hence 

Theorem 1: Any solution x9 y9 z of the equation Px + Py = Pz can be expressed 
as x ~ u + w9 y = v + w9 z = u + v + w9 where 

w = 0 (mod g - 2) 
and 

uv = {(g - 2)w2 - (g - *)w}/2(g - 2). 

Using this theorem, which is a generalization of the work of Fauquembergue 
[7] and of Shah [15] on triangular numbers, we can obtain the solutions of the 
equation Px + Py - Pz in an efficient way. For example, we have the following 
table for g - 5. 
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Table 1. Pj + PJ = Pa' (w < 9, u < y) 

w 

3 

6 

9 

(3w2 - w)/6 

4 

17 

39 

u v 

2 2 
1 4 

1 17 

3 13 
1 39 

x y z ' 

5 5 7 ' 
4 7 8 

7 23 24 

12 22 25 
10 48 49 

If we put v + w = w' in P1 + y + w = P1 + w + Py+W and P1 + u, =P1 + y,+ ZJ, - Py + y , 
then we obtain ^-gonal numbers that can be expressed as the sum and difference 
of two other ^-gonal numbers at the same time. 

Corollary: If w = 0 (mod (g - 2)2) and v = {(g - 2)w2 - (g - h)w}/2{g - 2), 
then we have 

Pz,+ W+1 =
 Pw+1 + P

y + W =
 Pa ~ Pb> w h e r e 

a = {(g - 2)(v + w)z - (g - 4) (z; + w)}/2(g - 2) + v + w + 1 
and 

6 » {(# - 2)(i> + w)2 - (g - 4)(i? + w)}/2(g - 2) + v + w. 

Putting w = x- 1 for g - 3, we obtain a result of Sierpinski [18]; putting 
w = 9n for # = 5, w = 16n for # = 6, w = 25k for g - 19 and w = 36n for # = 8, 
we obtain the results of Hansen [9], 0TDonnell [13], Hindin [10], and O'Donnell 
[14], respectively. 

2. THE EQUATION Pat_d + Pbt.e = Pat.f 

In this section we stud}̂  somewhat more general second-degree sequences than 
Pn9 and obtain necessary and sufficient conditions for certain infinite fami-
lies of representations to exist. We then specialize to polygonal numbers. To 
this end, let P(a, 3; n) = n(an - 3)» where a, 3 are integers with (a, 3) = 1 
and a > 0. 

Theorem 2: Let a, b9 o9 d9 e9 and / be integers with a, b, and c positive and 
(a, b, c) = 1. A necessary and sufficient condition for the identity in t9 

P(a, 3; at - d) + P(a, 3; bt - e) = P(a, 3; ct - f) 9 

to hold is that there exist integers p, <?, r, and s that satisfy equations (0) 
and (I), or (0) and (II): 

a = (p + q)(p - q)9 b = 2pq, c = p2 + q2
9 

(0) 
(p, <?) = ls p > £7 > 0, p + g = 1 (mod 2), 
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(d={p + q)r, e = £s, f = (p - q)r + %-s, 

{ (I) 
{q = 0 (mod a), 2apr - (p - <?)s = -g, 
(d = £"=-^r, e - ps, f - ^ ^ r + qs, 
\ a a (ID 
[p - q (mod a), 2ar - a(p + a)s = B« 

Proof: In order for the desired identity in t9 

(at - d) (aat - ad - B) + (&£ - e) (afct - ae - B) = (ot - /) (act - af - B), 

to holdj it is necessary and sufficient that the equations 

a2 + b2 = c2, (1) 

(2ad + 3)a + (2ae + &)b = (2a/ + $)c9 (2) 

(ad + B)d + (ae + B)e = (af + B)/ (3) 

be valid. 
From (2)s 

of = ad + be + — ^ » (*) 

and from (1)9 (3)s and (4), we obtain 

(a2 + b2){(ad + &)d + (ae + B)e} 
= c2(af + B)jf 

= a(e/)2 + B̂ (ef) 

- a{ad + be + 3(^^1|2
 + g ^ + ^ + B(a +£ - o)y 

Expanding and transforming the above9 we have 

a(bd - ae)2 - B(a - b) (bd - ae) - &^ = 0. 

Hence9 

(a) 

.(b) 

fed -

M -

B(a ae = —— 

B(a 
ae = —— 

- b - c) 
2a 

- fc + o) 
2a 

(5) 

Now, for positive integers a9 &9 and e with (a9 £>9 e) = 1 and b even9 the 
solutions of (1) are given by 

(a = (p + a)(p - a), 2? = 2pa9 c = p2 + a2s where 
(0) <p and a are positive integral parameters with 

\(p» q) = 19 p > a > 0 9 and p + a = 1 (mod 2). 

Equations (6) and (7) below are necessary for (4) and (5) to hold. 

B(a + b - c) = 2Ba(p - q) = 0 (mod 2a), (6) 
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(7) 

(8) 

((a) $(a - b - c) = -2&q(p + q) = 0 (mod 2a), or 

}(b) 6(a - 2? + c) = 23p(p - q) = 0 (mod 2a). 

Since (a, 3) = 1 and (ps q) = 1, (6) and (7) hold only if 

((a) g E 0 (mod a), or 

((b) p E q (mod a) . 

(I) If q E 0 (mod a), (5)(a) becomes 

2pqd - (p + q)(p - q)e = -3^(p + <?) , 

so that we have 
q 

2app - (p - q)s = -6, where d = (p + qOr and £ = — s. 

Substituting this into (4), we have/ = (p - <̂ )r + -̂ -s. 

(II) If p E q (mod a), (5)(b) becomes 

2pqd - (p + <?) (p - (7)e = 3p - £-=-£ , 

so that we have 

2qr - a(p + q)s = B, where <i = ̂  " "v and e = ps. 

Substituting this into (4), we have f = — -r + qs* Thus, we have the equiv-
alence relation 

(1) • (2) • (3) <N> (0) • (4) • (5) ̂  (0) • (I) or (0) • (II), 

which proves Theorem 2. 

Corollary: Solutions of Px + Py = Pz are obtained by x = at - d9 y = bt - e, 
z = ct - f. We use Theorem 2 by putting 

PntQ = -F(g - 2, £ - 4; n) for # odd, and 

Dn,<7 = K^T^' ̂ ~ ; W) f° r ̂ (M) eVen* 
In the case g = 4, we obtain a, 2?, and c from Theorem 2 (0) by putting d - e = 
/ = 0. 

Example: If g = 5, then a = 3, 6 = 1. Since q = 0 (mod 3), or p = q (mod 3), 
and (p, g) = 1, p > q > 09 p + q E 1 (mod 2), we have 

q = 1; p = 4, 109 16, ..., 

<? = 2; p = 5, 11, 17, ..., 

q = 3; p = 4, 8, 10, 14, 16, ... . 
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When p = 4* q = 19 2qr - a(p+q)s = 6 becomes 2v - 15s = 19 where one s o l u t i o n 
i s r = 8 , s = 1. Using t h e s e v a l u e s i n (0) • ( I I ) , we o b t a i n 

and 
a = 15, b = 89 c = 179 d = 89 e = 49 / = 99 

P f -I- P f = P f 

15*-8 8 £ - 4 M 7 * - 9 
Changing £ i n t o 8t - 3 and 17t - 79 we have 

P ' = pf + P f = P f - Pf 

136£-60 120t -53 64£-28 289£-128 255 t -113" 

T a b , e 2 - C - d + pfct-e = p</t-/> p* + py = p* <2 < 3 ° ) 

( I I ) 

( I ) 

! (ID 
i ( i ) 

p 

4 

4 

5 
8 

<7 

1 

3 

2 
3 

p 

8 

0 

16 
3 

s 

1 

1 

3 
29 

a 

15 

7 

21 
55 

b 

8 

24 

20 
48 

c 

17 

25 

29 
73 

d 

8 

0 

16 
33 

e 

4 

1 

15 
29 

/ 

9 

1 

22 
44 

t 

1 
2 

1 

1 
1 

X 

7 
22 

7 

5 
22 

2/ 

4 
12 

23 

5 
19 

z 

8 
25 

24 

7 
29 

Table 3- Correspondence of t he S o l u t i o n s of P^ + Py = Ps i n [1] 
Ex. 1 

9 

k:even 

£:odd 

P a r i t y 

£:even 

tsodd 

Case 

( i ) 

( i ) 

(ID 

p 

- & ^ * + i 

4 ^ * + i 

(fc- 2 ) 2 t + 1 

3 

( k - 2 ) 2 

2 * 

(k-2)2 

2 V 

1 

r 

0 

0 

(&- 2 ) 3 t + (3fc- 8) 
2 

s 

fc-4 
2 

fc-4 

1 

£ 

1 

1 

1 

THE EQUATIONS Pz ?x + Py 

For # ^ 49 if (g - 2)Pn - (g - 4) = 2Pm 9 we conjecture that PPn = PnPm can 
be expressed as the sum and difference of two other ^-gonal numbers. But we 
cannot prove this. However, we have 

Theorem 3" There exist an infinite number of hexagonal numbers that can be 
expressed as the sum-difference-product of two other hexagonal numbers. 

Proof: If we assume Hn = #3#m» then we have (4n - 1) - 15(4m - 1) = -14. By 
putting N = kn - 19 M = km'- 19 we get N2 

is given by the formulas 
15MZ -14. Its complete solution 
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( i ) Ni + y/l5Mi = ±(1 + / 1 5 ) ( 4 + JlS)* 
and 

( i i ) Ni + VTEMi = ± ( - 1 + / L 5 ) ( 4 + / l 5 ) \ 

where i = 0 , ± 1 , ±2, ±3, . . . . . 
In ( i ) , i f Ni + v / l 5 ^ > 0 , i > 0 , and i E 2 (mod 4 ) , then ^ = Af̂  = - 1 (mod 

4 ) . #£ s a t i s f i e s a r e c u r r e n c e r e l a t i o n 

"i + 2 = 8Ni + l " "i> 

which leads to Ni + k = 62Ni + 2 - N^. Also, by repetition, il̂  + 8 = 3842% + h - N^. 
From 4n^ + 8 - 1 = 3842(4n^ + It - 1 ) - (4n^ - 1), it follows that ni + s = 3842ni+l> -
ni - 960. Changing ki - 2 into *£, it becomes 

ni + 2 = 3 8 4 2 n i + l " n ^ - 9 6 0> 

with initial values nx =38, n2 = 145058. Similarly, we get 

mi + 2 = 3842mi + 1 - TTZ* - 960, 

with initial values mx = 10, w2 = 37454. 
For all i, we have 

Eni = # 3 #^ = Ibmiilmi - 1) 

= ( 4 ^ - 1) (8?77 - 3) - (m* - 1) (277?̂  - 3) 

#%?;-l ~ Hmi -l" 

For i E 1 (mod 7), we have n^ E -1 (mod 13). On taking t = (n^ + 1)/13 in 

we get 
#13t- 1 "* #5* + #12t- Is 

^ i " #(5wf+5)/13 + #(12^-- 1)/13 ' 

Thus, for £ = 1 (mod 7), #ni is expressed as the sum-difference-product of two 
other hexagonal numbers. If we put i = 1, then we have 

#38 = #15 + #35 = #39 " #9 = #3#10 ' 

In a similar way, we obtain 

Theorem 4: For g ~ 5 and 8, there exist an infinite number of g-gonal numbers 
that can be expressed as the sum-difference-product of two other g'-gonal num-
bers . 

Proof: If we put 

n1 = 4 , n2 = 600912, ni + 2 = 155234wi + 1 - n^ - 25872) 
> i = 1 , 2 , 3 , . . . , 

m1 = 1, 7?72 = 128115, 77?̂  + 2 = 155234T??€ + 1 - mt - 25872) 

t h e n , fo r £ = 9 (mod 14 ) , we have n . E 7 (mod 29) and w^ = 1 (mod 2 ) , so t h a t 
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Cni
 r(2lni-2)/29 * r(20w€ + 5)/29 ^(23mi-7)/2 M21Wi-7) /2 

Alsos if we put 

n± =304, n2 = 1345421055984, 
ni+2 = 4430499842?-^+1 - ni - 1476833280 

mx = 38, m2 = 166878943590, 
mi + 2 = 4430499842^ + 1 - mi - 1476833280 

then, for i E 0, 1 (mod 7), we have n E 14 (mod 29), so that 

0** = £(21^-4)/29 + ^(20n,+ 10)/29 = °3mi-h ~ °hmi-li
 = ^5 < V 

Here , i f we put £ = 1, then we have 

^304 = ^220 + ^210 = ^338 ° 148 = ^5^38° 
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19 December 1985 

Dear Ed i to r : 

Before the publication of my article, "Generators of Unitary Amicable Num-
bers," in the May 1985 issue of The Fibonacci Quarterly, Dr. H. J. J. te Riele 
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Kruislaan 413 1098 SJ Amsterdam 
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R. M. STERNHEIMER 
Brookhaven National Laboratory, Upton, NY 11973 
(Submitted December 1983; revised August 1984) 

I. INTRODUCTION 

In connection with the discussion in my earlier paper [1] entitled: "A Cor-
ollary to Iterated Exponentiations" in which I have presented a new conjecture 
concerning Fermat's Last Theorem* it occurred to me that it is of interest to 
make a systematic study of the sets of three integers x9y9 z which satisfy the 
condition 

x2 + y2 = z2. (1) 

Such a triplet of integers (x9 y9 z) is commonly referred to as a "Pythagorean 
tripletj" for which we shall also use the abbreviation P-triplet. 

The actual motivation of the present work is to explore as thoroughly as 
possible the two cases, n - 1 and n = 2, for which the Diophantine equation of 
Fermat has solutions, namely., 

xn + yn = zn (n = 1 , 2 ) . (2) 

This interest is, in turn, derived from my earlier conjecture [1] that be-
cause n - 1 and n - 2 are the only two positive integers that are smaller than 
es (2) holds only for n - 1 and n - 2 when x9 y9 and z are restricted to being 
positive integers. Most of the discussion in the present paper will be devoted 
to the case in which n - 2 . 

I 1. PYTHAGOREAN DECOMPOS S TIONS 

By using a computer program devised by M. Creutz, we were able to determine 
all Pythagoeran triplets for which z ^ 300. At this point, a distinction must 
must be made between P-triplets for which x9 y9 and z have no common divisor 
[the so-called "primitive solutions" of (1)] and P-triplets which are related 
to the primitive solutions by multiplication by a common integer factor k. So, 
if Xi9y^9 zi are relatively prime and obey (1), it is obvious that the derived 
triplet (kx£S ky^, kzi) will also satisfy (1). 

The original computer program was therefore modified to print out only the 
primitive solutions, and was extended up to 2 < 3000. To anticipate one of my 
results, the number of primitive solutions in any interval of 100 in z is ap-
proximately constant and equal to « 16. Thus there are 80 primitive solutions 
(PS) between 3 = 1 and 500, and 477 PS in the entire interval 1 < z < 3000. We 

The manuscript was authored under Contract No. DE-RC02-76CH00016 with the U.S. 
Department of Energy. Accordingly, the U.S. Government retains a nonexclusive, 
royalty-free license to publish or reproduce the published form of this con-
tribution, or allow others to do so, for U.S. Government purposes. 
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will make the convention to denote by x the larger of the two numbers in the 
left-hand side of (1), i.e.. , X > z/. 

In Table 1, I have tabulated all primitive solutions for 1 < z < 500. The 
triplets are presented in the order x^9 y^9 z^. When a value of z± is under-
lined, this indicates that it is not prime. The nonunderlined zi values are 
primes which we will call "Pythagorean primes" or P-primes. In this work, and 
also for the region 501 ^ z ^ 2000, the tables of primes and prime factors 
given in the Handbook of Chemistry and Physics [2] were essential. 

When the z± of the primitive solution is not a prime, I have underlined it, 
and the underlined number is usually followed by a subscript 1 or 2, which has 
the following significance., Already in the work for z ^ 300 (with all trip-
lets listed) , I have noticed the following rule: If Zpt i and 3p,j belong to two 
different primitive solutions, the product 

zP*k = 2p,isp,j (3> 

belongs to two new primitive solutions, namely, 

(a?i.*» yi,k> zP,k) a n d ^2,fc> y2tk> *p,k)- (*) 

These two new P decompositions are relatively prime and are also prime with 
respect to the expected decomposition obtained by taking the product of zp,j 
with the decomposition (xps^, ypti* Zptt) and that obtained by taking the prod-
uct of Zp91 with the decomposition (xp,j» yp,j> sp,«7')* Thus, there are four 
linearly independent P decompositions for the number zp> \ of (3). To take an 
example, according to Table 1, the number 65 has the decompositions (56, 33, 
65) and (63, 16, 65), and, in addition, (52, 39, 65) and (60, 25, 65) obtained 
from (4, 3, 5) and (12, 5, 13), respectively. 

This rule is satisfied in all decompositions of products zp i^p^j provided 
that the prime factors of %Pti and Zp,j are different. On the other hand, if 
zPt i and zPtj are merely powers of the same prime pi , then there will be just 
one additional linearly independent Pythagorean decomposition for 

"p.* -PW-P^"*'- (5) 
As an example, the number 25 = 52 has one additional P decomposition, namely, 
(24, 7, 25) besides that derived from (4, 3, 5), namely, (20, 15, 25). Simi-
larly, the number 125 = 53 has one new P decomposition, namely, (117, 44, 125) 
in addition to the two decompositions derived from the P decompositions for 5 
and 25, namely, (100, 75, 125) and (120, 35, 125), respectively. 

We may notice that the square 52 = 25 has two P decompositions and the cube 
53 - 125 has three P decompositions. Thus, in general, a power p?* will have a^ 
Pythagorean decompositions, where p^ is a Pythagorean prime (such as 5, 13, 17, 
etc.). In Table 1, I have indicated the factors zp>i and zPtj which give rise 
to the new double primitive solution, when zp>% is a product of two different 
Zpt i and Zp9j which are relatively prime to each other. When a single power 
p^i is involved, this has also been noted, e.g., 132 = 169 has the new P decom-
position (120, 119, 169), in addition to the one expected from (12, 5, 13), 
namely, (156, 65, 169). 

The total number of primitive solutions in the successive intervals of 100 
in Table 1 are: 16 from 1 to 100, 16 from 101 to 200, 15 from 201 to 300, 16 from 
301 to 400, and 17 from 401 to 500, giving a total of 

Znp = 16 + 16 + 15 + 16 + 17 = 80. (6) 
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Table 1. Listing of the Pythagorean primitive decompositions for the integers 
in the range 1 ̂  N ̂  500. The values of z which are not prime num-
bers are underlined, and the subscripts 1 and 2 indicate the two new 
primitive solutions associated with such numbers. An exception oc-
curs when the number Ni is a power of a single P-prime numberf p?* 9 
in which case only one new primitive solution arises. For the num-
bers which are underlined (non-primes)s the prime decomposition is 
indicated. 

\* 
1 

2 

3 

4 

5 

6 

7 
8 

9 
10 

11 

12 

13 

14 
15 
16 

17 

18 

19 

20 

xi» yi> %i 

4 , 3 , 5 

12 ,5 ,13 

15,8 ,17 

2 4 , 7 , 2 5 = 5 2 

21 ,20 ,29 
35 ,12 ,37 

4 0 , 9 , 4 1 

45 ,28 ,53 
60 ,11 ,61 
5 6 , 3 3 , ^ = 5x 13 

63,16,j652
 = 5 x 1 3 

55 ,48 ,73 
77 ,36 ,85^ = 5x 17 

8 4 , 1 3 , 8 5 2
 = 5 x 1 7 

80 ,39 ,89 
72 ,65 ,97 

99 ,20 ,101 

91,60,109 

112,15,113 

117 ,44 ,125= 5 3 

Vi 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

*i> hi* *i 1 
105,88,137 

143 ,24 ,145! = 5x 29 

144 ,17 ,145 , = 5x 29 

140,51,149 

132,85,157 

120,119,169= 132 

165,52,173 

180,19,181 

153,104,185, = 5x 37 

176 ,57 ,185 , = 5x 37 

168,95,193 

195,28,197 

156,133,205, = 5 x 4 1 

187,84 ,205 2 = 5 x 4 1 

171 ,140 ,221 , = 13x 17 

2 2 0 , 2 1 , 2 2 1 , = 13 x 17 

221,60,229 

208,105,233 

209,120,241 

255,32,257 

Vi 

41 

42 

43 

44 

45 

46 

47 

48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

*i> yi> zi 1 
247 ,96 ,265 , = 5x 53 
264 ,23 ,265 , = 5x 53 

260,69,269 

252,115,277 

231,160,281 

240,161,289= 172 

285,68,293 

224,207,305, = 5x 61 
273 ,136 ,305 , = 5x 61 
312,25,313 
308,75,317 
253,204,325, = 5x 65 
323 ,36 ,325 2 = 5x 65 
288,175,337 
299,180,349 
272,225,353 
357 ,76 ,365 , = 5x 73 
364 ,27 ,365 , = 5 x 73 
275,252,373 
3 4 5 , 1 5 2 , 3 7 7 ^ 13x 29 

V i 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

xi» hi> *i 

3 5 2 , 1 3 5 , 3 7 7 , = 13 x 29 1 

340,189,389 

325,228,397 [ 

399 ,40 ,401 

391,120,409 

420 ,29 ,421 1 

304,297,_4251 = 5x 85 

416 ,87 ,425 ? = 5x 85 

408,145,433 

396 ,203 ,445 1 = 5x 89 

4 3 7 , 8 4 , 4 4 5 , = 5x 89 

351,280,449 

425,168,457 

380,261,461 

360 ,319 ,481 , = 13x 37 

4 8 0 , 3 1 , 4 8 1 ^ = 1 3 x 3 7 

1 476,93,485^ = 5x 97 

483 ,44 ,485 2 = 5x 97 

4 6 8 , 1 5 5 , 4 9 3 ^ 17 x 29 

475 ,132 ,493 , = 17 x 29 

In Table 1 the numbers z^ that are not underlined are the primes for which 
a Pythagorean decomposition is possible. We will call them Pythagorean primes 
or P primes. The other primes (which are not P-decomposable) will be called 
non-Pythagorean primes or NP primes9 e.g.9 29 39 79 119 199 239 319 439 and 47 
are the NP primes below N = 50. 

As mentioned aboves all of the primitive solutions up to N - 3000 have been 
obtained with the computer program. (The total running time on the CDC-7600 
Computer was less than 30 seconds.) However9 I have limited the main analysis 
to the numbers N < 2000. 

In the discussion below, I will derive a general formula for the number nd 
of Pythagorean decompositions for an arbitrary integer. 

In connection with the results of (3) and (4), it was noted and proved by 
M. Creutz [3] that when the triplets (x 1$ y 1$ 2X) and (x2> y2> %i) a r e multi-
plied by each other9 the additional primitive solutions mentioned in (4) have 
the following form; 

X1 = xxy2 + y1x2, Y1 = \x±x2 - z/^J; (7) 
x2 = l*i#2 - yixzl» Y2 = x i x 2 + y^z- ( 8 ) 
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Here we have omitted the subscript p for simplicity of notation. To prove the 
validity of (7) and (8), we note that 

X\ •+ Y\ = x\y\ + y\x\ + 2x1x2y1y2 + x\x\ + y\y\ - 2x1x2yly2 

= (x2 + y\)(xl + y\) - SJS2 = (Sig2)2 = Z 2 s ( 9 ) 

thus verifying that Z ~ z1z2 has the P decomposition (X19 Y±i Z) . A similar 
equation is obtained by calculating X\ + Y\ = z\z\ = Z2, thus confirming the 
new P triplet (J2, J2, Z) . 

As an example, for Z = 65, we have Xi = 4, 2/i = 3, 3i = 5 and x2 = 12, 2/2 = 5, 
B2=13, which gives Z1 = 56, ̂  = 33, leading to the triplet (56, 33, 65) listed 
in Table 1. Furthermore, equations (8) give X2=16> Y2 = 63, which is equiva-
lent to the second triplet, (63, 16, 65), also listed in Table 1. 

It is also obvious from (7) and (8) that if x± = x2, y1 = z/2, i.e., zp>k = 
zi ^ in the notation of (3), then 

X1 = 2x1y1, Y1 = 1^ - y11 , 

which gives rise to only one new P triplet, since for the other solution, X2 = 
0, Y2 = x\ + y\ - Zpsi = zpik . For the case x± = x2 = 4, z/x == y2 = 3, we have 

^ = 2x1z/1 = 24, J2 = 42 - 32 = 7, 

giving the one new triplet, (24, 7, 25). 
In Table 2, all the Pythagorean primes from N = 1 to N = 2000 are listed. 

Successive intervals of 100 are separated by semicolons. 

Table 2. List of all Pythagorean primes for 1 < N < 2000, i.e., primes which 
satisfy (1) where x and y are positive integers. Those primes which 
are underlined belong to a set of twin primes, i.e., primes p^ and pj 
such that \Pi~pj\ = 2 . For each set of twin primes pi , p-, one and 
only one is a P-prime. The primes in successive intervals of 100 are 
separated by a semicolon. 

I> 1A> il» .29, 37> AL> 53> 11> 21. 89, 97; 101, 109, 113, 137, 149, 157, 173, 

181, 193, 197; 229, 233, 241, 257, 269, 277, 281, 293; 313, 317, 337, 349, 

353, 373, 389, 397; 401, 409, 421, 433, 449, 457, 461; 

509, 521, 541, 557, 569, 577, 593; 601, 613, 617, 641, 653, 661, 673, 677; 

701, 709, 733, 757, 761, 769, 773, 797; 809, 821, 829, 853, 857, 877, 881; 

929, 937, 941, 953, 977, 997; 

1009, 1013, 1021, 1033, 1049, 1061, 1069, 1093, 1097; 1109, 1117, 1129, 1153, 

1181, 1193; 1201, 1213, 1217, 1229, 1237, 1249, 1277, 1289, 1297; 1301, 1321, 

1361, 1373, 1381; 1409, 1429, 1433, 1453, 1481, 1489, 1493; 

1549, 1553, 1597; 1601, 1609, 1613, 1621, 1637, 1657, 1669,1693, 1697; 1709, 

1721, 1733, 1741, 1753, 1777, 1789; 1801, 1861, 1873, 1877, 1889; 1901, 1913, 

1933, 1949, 1973, 1993, 1997. 
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MI, CONNECTIONS WITH THE TWIN PRIMES 

Note that many of the Pythagorean primes in Table 2 are underlined. These 
are the primes which belong to a set of twin primes, i.e., primes p^ and p • , 
which are separated by 29 i.e., such that \pi - p.| = 2, As an example9 17 is 
part of the twin prime set (17, 19); similarly9 41 is part of the twin prime 
set (41, 43). By a survey of all twin primes N^ < 20009 it was found that in 
all cases, for each set of twin primes9 one of them is a P-prime (P-decompos-
able), while the other is a non-P-prime. This result can be shown to follow 
naturally from a theorem due to Fermat, according to which all primes p. E 1 
(mod 4) are P-primes, while all primes q • = 3 (mod 4) are non-P-primes. Actu-
ally, what Fermat proved is that all primes p = 1 (mod 4) can be written in 
the form p^ = a2 + b2, and this is, according to an elementary theorem due to 
Diophantos, the necessary and sufficient condition for p2 = x\ + y2 to be sat-
isfied [4]. Here, x^ = a2 - b2 and yi = 2ab9 and the result follows naturally 
from the following equation: 

p2 E (a2 +b2)2 = (a2 - b2)2 + (2ab)2 = ah + bh - 2a2b2 + ka2b2 « (10) 

Obviously, pi E 1 (mod 4) means that pi can be written as 4n + 1. Then, if pj 
is either 2 units larger or smaller than p. , it is given by 4np + 3, and p. = 3 
(mod 4). 

Of the 147 P-primes listed in Table 29 60 are twin primes. The remaining 
87= 147-60 P-primes are "isolated" primes, i.e., they do not belong to a twin 
set. If we consider successive intervals of 500, we find a total of 44 P-primes 
between 1 and 500; 36 P-primes between 501 and 1000; 36 P-primes between 1001 
and 1500; and 31 P-primes between 1501 and 2000. Incidentally, there is a total 
of 302 prime numbers between 1 and 2000, so that the overall fraction of P-
primes is 147/302 = 0.487 * 49%, close to 50%, as would be expected from Fer-
mat fs Theorem concerning p^ E 1 (mod 4). 

The approximate equality of the number nP of P-primes and nNP of non-P-
primes indicates that the Pythagorean primes have an intimate connection with 
the entire system of positive integers and9 in addition, this connection indi-
cates that we may expect that very approximately on the order of one-half of 
all integers are P-decomposable in at least one way (n^ ^ 1 ) , while the other 
half is not Pythagorean-decomposable. These integers will be called P-numbers 
and non-P or #P-numbers, respectively. Numerical results for the fractions of 
P-numbers in three different intervals for N < 2000 will be given below. Ob-
viously, for an integer Nj, to be P-decomposable in at least one way, it is 
necessary and sufficient that N^ can be written as 

«i = ViJ, (ID 

where pi is an arbitrary P-prime and J is a positive integer. 

IV. THE DECOMPOSITION FORMULA FOR nd 

The most general integer can be written as 

= ri PII uqf -^kBk9 ( i2) 
i = 1 j = 1 
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where the p^ and P-primes are the oi£ are the corresponding powers, and simi-
larly, the qj are the non-P-primes and the gj are the corresponding powers. In 
the second row of (12)s na denotes the number of different P-primes in N% and 
rift denotes the number of different non-P-primes in the prime decomposition of 
Nk; finally, A^ and B^ represent the two products involving p?* and qfy , re-
spectively. 

Theorem: The total number of Pythagorean decompositions nd corresponding to Nk 
of (12) is given by: 

na na na na 

i = l i<j i<j<k i<j<k<SL 

+ 2 a" aTa2a3 ••• a„a. (13) 

Here, the first sum extends over all a^, the second sum extends over all pos-
sible products of pairs of a^, the third sum extends over all possible products 
GLzajGLk» where three a^'s are involved, etc. As an example, for the number 65 
of Table 1, we have 65 = 51x 131, so that a1 = a2 = 1, and (13) gives 

nd = 1 + 1 + 2(1)(1) = 4. (14) 

Similarly, for Nk = 325 = 52x 13, with ax = 2, a2 = 1, we find 

nd = 2 + 1 + 2(2)(1) = 7. (15) 

In order to illustrate equation (13), we consider the number 1625= 53x 13. 
First, we will count the number of ways in which 1625 can be written without 
mixing up the 5?s and the 13 in the decomposition. We use the notation (p?*) 
with parentheses to indicate the decomposition of p?*. Now, there are clearly 
ax= 3 decompositions pertaining to the powers of 5 alone; they are (53), (52), 
and (5), where (53) stands for (117, 44, 125) (see Table 1), (52) stands for 
(24, 7, 25), and (5) = (4, 3, 5). Thus, three decompositions of 1625 can be 
written as (53) x 13, (52) x 65, and (5)x 325, where the multiplication applies 
to the three integers x^s y^9 and z^ listed above for each case. In addition, 
there is the decomposition (13) x 125, where (13)= (12, 5, 13). These four de-
compositions correspond to ai + a2 = 3 + 1 = 4. Next, we consider the cases in 
which a product of a power of 5 times 13 appears inside the parentheses. These 
cases are (53 x 13), (52 x 13) x 5, and (5 x 13) x 25. According to the rule of 
equations (3) and (4) for zp%i and zPtj having different prime factors, there 
are two new primitive solutions for each such case, e.g., 

(325)x 5 = (253, 204, 325)x 5 and (323, 36, 325) x 5, 

where 325 = 52x 13 (see Table 1). There are axa2 = (3)(1) = 3 such cases, and 
they contribute 2axa2 = 6 decompositions. Thus, the total 

nd = 4 + 6 = 10 = a2 + a2 + 2axa2 

as given by (13). This illustration can be generalized to give the various 
terms of (13) and to provide the proof by induction. In each case, the factor 
2, 4, 8 in the second, third, and fourth terms, respectively, of (13) corre-
sponds to the doubling of the primitive solutions described above, where more 
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than one prime is involved. For another example of (13), consider the number 

N = (52)(13)(17) = 5525, (16) 

It has 22 decompositions of the type 

55252 = x1 + y2
9 (17) 

since ax = 29 a2 = a3 = 19 and9 from (13), 

nd = (2 + 1 + 1) + 2(2 + 2 + 1) + 4(2) = 4 + 10. + 8 = 22, (18) 

Using (13)9we have obtained the number of decompositions nd for three sets 
of 51 integers, namely those extending from N = 50 to N = 100 9 those extending 
from N = 950 to 1000, and those extending from N = 1950 to 2000, The results 
are presented in Table 39 which lists nps the number of Pythagorean numbers 
(for which nd > 1)9 nNps the number of non-P-prime numbers (for which nd = 0), 
the total Znd/np and9 finally, the ratio of nP to the total number 51, It is 
seen that while nP/all N = 0,49 for the first set (50-100), for the other two 
sets., np/all N is constant at a value of » 0,61, However, the total number 
of decompositions, T,nds increases from 34 (for N = 50-100) to 58 (for N = 1950-
2000), and the average Znd/np also Increases from 1,36 to 1,87 per Pythagorean 
number. It thus appears that the fraction of all numbers that are P-decompos-
able reaches a plateau value of -0,61 for large N9 at least In the range of 
N = 1000-2000, 

Table 3* For three ranges of N: 50-100, 950-1000, 1950-2000, I have tabulated 
the total number of Pythagorean numbers nP9 the total number of non-
P-numbers nNP, the total number of P-decompositions T,nds and the ra-
tios T,nd/np and nP/5l$ where 51 is the total number of integers in 
each range, 

1 N range 

50-100 

950-1000 

1950-2000 

nP 

25 

31 

31 

nNP 

26 

20 

20 

lnd 

34 

53 

58 

En /n-p 

1,36 

1,71 

1,87 

Wp/51 

0,490 

0,608 

0,608 

We note that for very large numbers N^ (say Nk~ 1020) which have many fac-
tors p?t [see (12)]s the use of (13) for nd becomes cumbersome. For this rea-
sons I have derived a simpler formula for nd which can be readily evaluated for 
large Nk. This formula is presented in Appendix A of this paper [see equation 
(A25)]. 

As a final remark regarding (12), we note that we may define a Pythagorean 
congruence (P-congruence) as follows: Referring to (12), it is seen that the 
product AK determines completely the type and the number nd of P-decompositions 
as given by (13), Therefore9 we can write 

Nk = Ak(P)s (19) 

and all numbers N^m with the same product A^ (but different values of Bk) will 
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have the same P-decompositions, except for a different cofactor Bk.. The con-
gruence (19) holds under the operation of multiplication, i.e., if we have two 
integers Nk and Nkt with different values of Ak and Bks then the product NkNk' 
can be written as follows, 

NkNk,~ (AkAk,)BkBk,9 (20) 

and the P-decompositions of NkNkt will be uniquely determined by the product 
AkAk'9 except for the cofactor BkBkt which multiplies all decompositions (x^9 
yi9 z^). Therefore, NkNkt is P-congruent to AkAkf. 

NkNk,= AkAk,(P). (21) 

As examples of Pythagorean congruence, we mention three cases: 84 = 1 (P), 
since 84 is not P-decomposable, and 84 = 22x 3x 7 is a product of non-P-primes 
only; similarly, 6630= 1105(P) = 5x 13 x 17(P), where 5, 13, and 17 are P-primes. 
Finally, 929E929(P), since 929 is a P-prime. 

V. CONCLUDING COMMENTS 

Of particular interest among the P-triplets, are those for which x = z - 1 
(see Table 1 for examples). In this case, it is easily seen that y must be an 
odd integer, which can therefore be written as 

y = 2v + 1, (22) 

where v is an arbitrary positive integer. We can now write: 

x2 + y2 = (z - I)2 + (2v + l)2 

= z2 - 2z + 1 + 4v2 + 4v + 1 = z2. (23) 

Upon subtracting z2 from the last two expressions in (23), and dividing by 2, 
we obtain 

-z + 1 + 2v2 + 2v = 0, (24) 

which gives 

z = 2v(v + 1) + 1, (25) 

and, therefore, x = z - 1 = 2v(v + 1), and a suitable (x9 y9 z) triplet exists 
for any choice of V (>0), i.e., for any odd integer except y = 1. [In the 
latter case, x - 0 and equation (1) is trivially satisfied.] Thus, the ensem-
ble of numbers y includes all odd numbers ^ 3, and hence, obviously, all prime 
numbers except y = 1 and y ~ 2. An example of such a triplet (from Table 1) is 
(40,9, 41), in which case V = 4, z = (2) (4) (5) + 1 = 41, x = z - 1 = 40. Thus, 
the set of y%s for x = z - 1 contains all prime numbers larger than e. We see 
again the privileged position of the numbers y = 1 and y - 2 (cf. [1]) that are 
not included among the y^s in the P-triplets, in complete similarity to the 
exponents n - 1 and n = 2 for which Fermat's Last Theorem is satisfied [i.e., 
equation (2)]. I should also note that I can amplify the statement made in [1] 
concerning the Diophantine equation 

F(x> y) E xy - yx = 0. (26) 
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In [1], I stated that the only nontrivial solution of (26) for integer x 
and z/is# = 2, z/ = 4. However, if we do not demand that y be an integer, but 
if we consider a limiting process for x and y9 then another nontrivial solution 
exists for x-+l9 i.e., the limit of y as x approaches 1 from above (x = 1 + e, 
e -> 0) is z/ = oo, Specif ically, I have calculated the values of y determined by 
(26) for x = 1.1, x = 1.01, and x = 1.001, with the following results: 

y(x = 1.1) = 43.56, x* = yx = 63.53; (27) 

z/(a? = 1.01) = 658.81, x* = yx = 703.0; (28) 

z/(a? = 1.001) = 9133.4, a:* = yx = 9217.05. (29) 

It is clear from these results that the limit of y as x approaches 1 from above 
is infinity, i.e., 

lim y = °°. (30) 

Thus, equation (26) is essentially satisfied for both x = 1 and x = 2, analo-
gous to Fermatfs Last Theorem., which is satisfied only for n = 1 and n = 2. 

Parenthetically, I may note that for x - 0, (26) cannot be satisfied for 
any positive z/, since 

P(0, z/) = 0* - y° = -1 (31) 

for all y. Analogous to this result, Fermatfs Last Theorem, equation (2), also 
has no solution for n = 0, since the left-hand side x° + y° - 2, whereas the 
right-hand side z° = 1. 

In summary, I have shown that the Pythagorean decompositions of z according 
to (1) provide a new classification of the number system into: (a) P-numbers 
NPt i [see (11)] that are P-decomposable in at least one way (nd > 1); (b) non-
P-numbers NNPii that cannot be decomposed according to (11) and (12), i.e., for 
which all of the a^ exponents of (12) are zero. The system of integers is ap-
proximately evenly divided between P-numbers and non-P-numbers in the range 
50 < Ei < 100, although for large Ni in the range of ~ 900-2000, the P-numbers 
predominate slightly, to the extent of 60% of all integers. 

The set of P-primes pi and products or powers of the p^, i.e., p^p. or p?* 
give rise to the primitive solutions (x^s y^9 Zi) for which (1) is satisfied. 
As described by equations (3) and (4), and (7)-(9), for each pair of primitive 
solutions (xPii, ypti , zpsi) and (x?a j , yp$ j , zp, j) , the product zp>k = zpsizPtj 
contributes two new primitive solutions (provided the prime factors of zPsi and 
zPij are different). 

The total number of Pythagorean decompositions for a given P-number NPii 
increases rapidly with the number na of p^ primes [see equation (12)] and with 
the powers a^ associated with each pi. I have obtained a general expression 
for nd in terms of the a^ and na [see equation (13)]. Furthermore, (13) has 
been proven by induction in the discussion which follows (15). An equivalent 
formula for (13) will be derived in Appendix A. The results given in Appendix 
A provide the means for a rapid evaluation of nd when the integer Nk [see (12)] 
is large, so that there is a large number na of P-primes pi in the prime decom-
position of Nk. 

Concerning the primitive solutions, I have noticed empirically from the 
decomposition tables that the density of primitive solutions, i.e., their fre-
quency, is almost constant in going from N ~ 0-100 to N = 3000. Thus, gener-
ally, for each additional interval of 100 in N9 we obtain sixteen additional 
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primitive solutions. As an example, the total number of primitive solutions 
included in Table 1 for 1 < N < 500 is exactly 80 = 5x 16 [equation (6)]. For 
1 < N ̂  1000, the total number of primitive solutions is 158, and for the en-
tire sample with 1 < N < 3000, the total number of primitive solutions is 477, 
almost equal to the expected number 16x30 = 480. At present, I have no ex-
planation for the remarkable constancy of the density (frequency) of primitive 
solutions as a function of iV. 

As a final comment, it is not clear at present to what extent the results 
reported in this paper for the case n = 2 will help in the ultimate proof of 
Fermat's Last Theorem. Nevertheless, my previous suggestion about the values 
of n > e [1] and its amplification as presented in this paper [equations (26)-
(30)] may offer a guideline to a complete proof. In any case, the interesting 
discovery of the doubling of the primitive solutions [equations (3), (4)] and 
the derivation of the resulting decomposition formula [equation (13)] will per-
haps shed new light on the nature of our integer number systme. Additional 
results on the evaluation of (13) and on the case n ~ 1 in (2) will be given in 
Appendix A and Appendix B, respectively. 

APPENDIX A 

EVALUATION OF EQUATION (13) 

In connection with (13) for the number nd of Pythagorean decompositions 
of an arbitrary integer N% as given by (12), it seems of interest to tabulate 
typical values of n^ for integers with relatively low values of the exponents 
â .. Table 4 shows a systematic listing of the numbers of decompositions n^ for 
all cases for which Ea^ < 6,. Obviously, the table can be subdivided into sub-
tables pertaining to those cases for which any given number of P-primes p^ are 
involved. Thus, the top part of the table pertains to a1 > 0, a2 = ot3 = a^ -
a5 = a6 " 0 (i.e., the case na = 1). The next panel of the table pertains to 
cases for which two Pythagorean primes occur (na = 2) in the decomposition of 
#& [equation (12)] , and these will be denoted a1 and a2, i.e., a3s ••»$ a6 = 0. 
In this panel I have arbitrarily assumed that a x^ a2 and, of course, all cases 
are subject to the limitation that a1 + a < 6. The third, fourth, fifth, and 
sixth panels of the table are similarly constructed. 

The next-to-the-last column of the table lists the values of n^, while the 
last column lists the values of Nm±n , the smallest integer N^ for which the 
particular decomposition as given in the first six columns exists. In addi-
tion, the prime decomposit ion of Nm±n is listed after the value of Nm±n • Obvi-
ously, in order to obtain the lowest Nk value consistent with the set {a^}, we 
must assume that all of the 3j in (12) are zero, i.e., B^ = 1. Furthermore, it 
is necessary to choose for the P-prime with the largest a^ the value 5, then 
the value 13 for the P-prime with the next largest a^, and so forth. 

Several results are apparent from a study of Table 4 and of (13)t 

1. Consider equation (13) and a particular a^, say a^ 0. Because the par-
ticular a.£, o appears linearly in all of the terms of (13), n^ depends linearly 
on o^ 0 , and in particular, for equally spaced values of % , e.g., 

ai,o> ai,o + x> a n d at,o' ai,o ~ x» 

we find 
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Table 4. Listing of special cases of (13) for the number of Pythagorean decom-
positions as a function of thea^'s and na, I have tabulated all 
cases for which Z^ = 1a^ < 6, The seventh column of the table gives 
the values of n^{a^} as obtained from (13). The last column gives the 
smallest numb er î min for which the. listed exponents ot̂ , o&2, oiq} ot̂ , otc, 
and a6 are realized. The prime decomposition of N m±n is listed for 
each ̂ mi n. The blank spaces in the columns for a^ correspond to val-
ues of a^ = 0. 

a l 

1 
2 
3 
4 
5 

! 6 

1 
2 
2 
3 
3 
3 
4 
4 
5 

i 1 
2 
2 
2 
3 
3 
4 

1 
2 
2 
3 

1 
2 

1 

a 2 

1 
1 
2 
1 
2 
3 
1 
2 
1 

1 
1 
2 
2 
1 
2 
1 

1 
1 
2 
1 

1 
1 

1 

a 3 

1 

a , 

1 
1 
1 
1 

1 
1 

1 

a 5 

1 
1 

1 

a 6 

1 

M a ; } 
1 
2 
3 
4 
5 
6 

4 
7 

12 
10 
17 
24 
13 
22 
16 

13 
22 
37 
62 
31 
52 
40 

40 
67 

112 
94 

121 
202 

364 

^ m i n J 

5 
25 
125 
625 
3125 
15,625 

65 = 5x 13 
325 = 25x 13 
4225 = 25x 169 
1625 = 125x 13 
21,125 = 125x 169 
274,625 = 125x 2197 
8125 = 625x 13 
105,625 = 625x 169 
40,625 = 3125x 13 

1105 = 5 x 13x 17 
5525 = 25x 13x 17 
71,825 = 25x 169x 17 
19221,025 = 25x 169 x 289 
27,625 = 125x 13x 17 
359,125 = 125x 169 x 17 
138,125 = 625x 13x 17 

32,045 = 5 x 13x 17X 29 
160,225 = 25x 13x 17X 29 
2 ,082,925 = 25x 169 x 17x 29 
801,125 = 125x 13x 17x 29 

1,185,665 = 5x 13 x 17 x 29 x 37 
5 ,928,325 = 25 x 13x 17 x 29 x 37 

48 ,612 ,265 = 5 x 13 x 17 x 29 x 37 x 41 

and, indeed, for any two values of a^ which differ by 1, the differences 

will be the same. Of course, in applying (Al), one must keep all of the other 
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CLJ values constant. Equation (Al) can be used to check the correctness of the 
entries of Table 4. As an example, 

nd(2, 2) - nd(29 1) = 1 2 - 7 = nd(29 1) - nd(2, 0) 

= 7 - 2 = 5 . (A2) 
Similarly, 

nd(3, 1, 1, 1) - nd(29 1, 1, 1) = 94 - 67 

= nd{29 1, 1, 1) - nd(l, 1, 1, 1) 

= 67 - 40 = 27. (A3) 

Here I have used the notation nd(a19 a2, a3, a^) and nd(al9
 a 2^ ̂ o r t*le c o r r e~ 

sponding entries in Table 4. 

2. Next, we consider the cases where all of the a^ are 1, e.g., 

nd(l, 1, 1) = 13, nd(l9 1, 1, 1, 1) = 121, etc. 

For simplicity, nd(l9 1, ..., 1) with £ lfs will be simply denoted by nd[l^]. 
We note that the nd[l^] satisfy the recursion relations 

V ^ + i J = 3n^[lc] + 1. (A4) 

As an example, nd[lB] =364; nd[l5] = 121, and we have 

nd[l6] = 3nd[l5] + 1 = 364 = (3x 121) + 1. (A5) 

Equation (A4) together with the additional condition n̂ tl-jj = 1 can be used to 
derive all of the nd[l^] values of Table 4, namely, 4 {= nd[l2]}9 13, 40, 121, 
and 364. 

I also note that the difference nd[l^ + 1] - na[l^] obeys the equation 

ndlh+J " nd^0 - 3*. (A6) 

As an example: nd[l6] - nd[l5] = 364 - 121 = 243 = 35. 
Therefore, I find: 

ndUO = £ 3n. (A7) 
n = o 

3. A similar relation is obtained when we calculate differences between 
values of nd(29 1, ..., 1). For simplicity, we write nd{29 1, ..., 1) with y 
l's as nd[29 1Y]. We note that 

nd(29 1, 1) - nd(29 1) = 22 - 7 = 15, (A8) 

nd(29 1, 1, 1) - nd(29 1, 1) = 67 - 22 = 45, (A9) 

and also 

nd(29 1) - nd(2) = 7 - 2 = 5. (A10) 

These results suggest the relation: 
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nd[29 1Y] - nd[29 l ^ J = 5 xJ*"1. (All) 

In fact, for y = 4, we find 

nd[2, 1J - nd[29 13] = 5 x 3 3 = 135 = 202 - 67, (A12) 

Moreover, I have found that 

nd[29 1Y] - nd[ls 1Y] - 3Y, (A13) 

and, therefore, in view of (A7), and generalizing to nd[k9 ly]9 

nd[k9 1Y] - E 3n + (ft - 1)3Y, (A14) 
n = o 

where & is an arbitrary positive integer. 
Finally, as a generalization of (A7), I have found that the nd[k^] for an 

arbitrary number £ of integers ft, e.g., nd[29 2, 2] = nd[23]9 are given by the 
following expression: 

£-1 
nd[kA = & E(2ft + l)n. (A15) 

* n = o 

As an example: nd[29 2, 2] = nd[2z] is given by 

2 
nd[23] = 2 E (5)n - 2(1 + 5 + 52) = 62, (A16) 

n = o 

in agreement with the corresponding entry in Table 4. The generalized recur-
sion relation which pertains to (A15) is 

nd[k^+l] = (2ft + l)nd[kK] + ft. (A17) 

A more general formula which is based on (A14) and (A15) gives 

nAk9 ft'] = ft'E (2ftF + D n + U2kf + 1)Y. (A18) 
Y n = o 

(A18) gives nd for y powers a^ equal to ftf and a single power aj equal to ft. 
In an attempt to simplify the evaluation of (A15) and (A18), we note that 

the sum in (A18) can be written as follows: 

E(2ft'+l)n= (2ft'+l)y-1|l + — + — - + . - . + ^—7IT\< 
-o L 2ft'+I (2fc'+l)2 (2ft'+l)Y XJ 

Y-l 

E 
n = o (A19) 

The expression in square brackets is the major part of the infinite series 

1 = i + —1 + I + • • • . (A20) 
1 - l/(2ft'+l) -2ft'+l (2ft'+l)2 

The left-hand side of (A20) can be rewritten as follows: 

1 _ 2fe '+l . A 9 n 

1 - l / ( 2 f t ' + l ) " 2kf 9 i A Z i ; 
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Therefore, the sum of (A19) is approximately given by 

Y~ 1 
E(2fc' + l)n = (2k' + l)y/2k\ (A22) 
n = o 

The part of the expression (A20) which is not included in the sum of (A19) 
can be shown to result in a negative contribution to n#[k9 k'-]9 which is given 
by 

A«<* = -*{i-i/(2fc' + i).-x] - -"'(rhr1 ~ 0 = -i- (A23) 

Upon inserting these results in (A18), we obtain: 

nd[k9 k'] = k'(2k' + 1)Y/2k' - \ + k(2k' + 1) 

= \(2k' + l)y(2k + 1) - ~. (A24) 

Equation (A24) suggests a natural generalization to an arbitrary number of dif-
ferent fe^'s, since each ki gives rise to a power (2ki + l)Yi in the expression 
for nd. We therefore obtain: 

ndaoL€}) = | n (2fc + l)Yi - | . (A25) 

This equation permits a rapid evaluation of w^({a^}) and is completely equiva-
lent to the much more complicated equation (13) from which it is ultimately 
derived. I may note that we have the additional relation 

^ max 

E yt = na, (A26) 
i = 1 

where na is the number of different P-primes, as used in (12). As an example, 
I consider the following number, 

N[29 113] = 52x 13 x 17 x 29 x 37 x 41 x 53 x 61 x 73 x 89 x 97 x 101 x 109 x 113 

Z 6.1605x 1023, (A27) 

which is close to Avogadrofs number 

NAv = 6.02204x 1023. 

The notation N[29 I13] obviously means that the lowest P-prime, p± = 5, was 
squared and the next 13 P-primes (power ki~ 1) were multiplied in the order of 
increasing pi (see Table 2). 

According to (A25), the number of Pythagorean decompositions of N[29 113] 
is , , 

^({ a i» = y(5)(313) - ± = 3,985,807. (A28) 

In general, we may try to calculate numbers.N% which in a given range have 
the largest number of P-decompositions nd. This is usually accomplished by 
multiplying an appropriate number y1 of P-primes, all taken linearly (k± = 1), 
i.e., to the first power. This conclusion was derived from the results of 
Table 4 which show, for example, that N[l, 1, 1, 1, 1] = N[l5] = 1,185,665 has 
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nd = 121 P-decompositions, whereas the slightly larger N[29 2, 2] = #[23] = 
1,221,025 has only nd = 62 P-decompositions. 

In view of this result, I have made a study of the numbers N[ly]9 where 
N[ly] denotes the product of the first y primes in Table 2. As an example, 

tf[liij = 5x 13 x 17 x 29 x 37 x 41 x 53 x 61 x 73 x 89 x 97 x 101 x 109 x 113 

= 1.2321x 102 3 (A29) 

has nd[llh] Pythagorean decompositions, where [from (A25)]: 

n d i l i ^ =|(31I+ - 1) - 2,391,484. (A30) 

For several values of y up to y = 25, Table 5 gives the values of N[ly] 9 

the corresponding nd[ly] [cf. (A30)], and the exponent a(y), which will be de-
fined presently. I noticed that nd[ly] is, in all cases, of the order of 

{ t f [ l Y ] } 1 / 3 tO {N[ly]}1/\ 

so that an accurate inverse power, denoted by 1/a, can be defined for each y, 
such that 

nd[iy] = o n i Y ] } 1 / a . (A31) 

a(y) is a slowly varying function of y that increases from a = 2.732 for y = 3 
to a = 4.145 for y = 25. Below y = 3,'a(y) increases to a = 3.011 for y = 2 
and to °°  for y = 1, since the first P-prime, p x = 5, has a single P-decomposi-
tion, and 5°  = 1. The resulting curve of a(y) vs y is shown in Figure 1. 

4.2 

4.0 

3.8 

3.6 

3.4 
r 

3.2 

3.0 

2.8 

2.6 

2.4j 
I 8 i I l I I i I 

2 4 6 8 10 12 14 16 18 20 22 24 
r 

Figure 1. The inverse exponent a as a function of Y for the nd values pertain-
ing to N[ly] [see (A31)]. 

1986] 121 



SOME RESULTS CONCERNING PYTHAGOREAN TRIPLETS 

Table 5- Values of a(y) , #[1Y], and nd[ly] for selected values of y in the range 
1 < y < 25 [see (A31)]. 

Y 

1 
2 

3 

4 

5 

6 

8 

10 
I 1 2 
1 14 

17 

20 

i 22 

25 

a(Y) 

oo 

3.011 

2.732 

2,813 

2.916 

3.001 

3.184 

3.358 

3.503 

3.620 

3.789 

3.936 

4.024 

4.145 

N[ly] 

5 

65 

1105 

32,045 

1,185,665 

48 ,612,265 
1.572x 1 0 1 1 

1.021x 10 1 5 

1.004x 10 1 9 

1.232x 10 2 3 

3 .949x 10 2 9 

2 .286x 10 3 6 

1.076x 1 0 4 1 

1 . 5 5 3 x l o 4 8 

nd[ly] 

1 

4 

13 

40 
121 

364 

3,280 

29,524 

265,720 

2 ,391,484 j 

64 ,570,081 

1 . 7 4 3 x l 0 9 , 

1 . 5 6 9 x l 0 1 0 

4 . 236x 1 0 1 1 

APPENDIX B 

THE CASE n = 1 OF EQUATION (2) AND COMMENTS ABOUT GOLDBACH'S CONJECTURE 

I t i s obvious t h a t the case n = 1 of ( 2 ) , namely 

x + y = z (Bl) 

always has a solution with integers x9 y, and z. We will assume, for definite-
ness, that x > y* Then (Bl) has z/2 linearly independent solutions when z is 
even, and (z - l)/2 linearly independent solutions when z is odd. As an exam-
ple for z = 11, we have the following (11 - l)/2 = 5 linear decompositions of 
g: 10 + 1, 9 + 2, 8 + 3, 7 + 4, and 6 + 5 . 

There is a well-known conjecture, namely Goldbachfs Conjecture, that any 
even z can be written as the sum of two prime numbers x and y. To my knowl-
edge, this conjecture has not yet been proven in the general case, i.e., for an 
arbitrary even s. In this Appendix I have made a systematic study of the lin-
ear decompositions [equation (Bl)] of all the even numbers z ^ 100 in terms of 
sums of two primes x and y. 

It can be shown that the total number of linearly Independent decomposi-
tions of an even z Into a sum of two odd numbers according to (Bl) is s/4 for 
z = 4v (divisible by 4) and (z + 2)/4 for z = 4v + 2 (not divisible by 4). 
According to the above-mentioned program, I am led to consider all of the lin-
ear decompositions of z as a sum x + y9 where x and y are restricted to being 
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prime numbers. It will be seen shortly that in this endeavor, the concepts of 
a Pythagorean prime (P-prime) and a non-P-prime are of great importance. 

In Table 69 I have listed all of the prime decompositions for even z in the 
range from 2 to 100. The number z is also denoted by N. In the prime decom-
positions, I have underlined the value of x^ or y^ in those cases where Xi or 
yi is a Pythagorean prime. The most striking result of this table (aside from 
the large number of prime decompositions as z - N increases) is that there are 
two types of cases, depending upon whether N is or is not divisible by 4; (a) 
If N is divisible by 49 i.e., N - 4v (V = positive integer)9 then each decom-
position is the sum of a P-prime and a non-P-prime. (The only apparent excep-
tion occurs for 4 = 2 4- 29 and this decomposition will be discussed further 
below.) (b) If N is not divisible by 4, i.e., for N = 4v + 2, the prime de-
compositions involve either the sum of two P-primes (both x and y underlined) 
or the sum of two non-P-primes (neither x nor y underlined). As an example, 
N = 16 = _13 + 3 = 11 + 5>- By contrast il/=10 = 7 + 3=_54-.5. 

These two rules can be derived from the theorem of Fermat [see the discus-
sion preceding equation (10)] that all primes p^ = 1 (mod 4) are Pythagorean 
primes9 while all primes q. = 3 (mod 4) are non-P-primes. Thus9 we can writes 

pi = 4V; + 1, (B2) 

q. = 4VJ - 1, (B3) 

from which it follows that 

p. + qA = 4 (v. + v7.) = 4v (B4) 
Is J <s V 

for numbers N = 4v that are divisible by 4. On the other hand9 

p. + p = 4v^ 4- 4v^4- 2 = 4(v$ + vv) 4- 2 = 4v 4- 2, (B5) 

q. 4- <?.,= 4vJ. 4- 4VJV- 2 = 4(Vj + V^. - 1) + 2 = 4v + 29 (B6) 

for even numbers that are not divisible by 49 i.e., N = 4v 4- 2 or 4v + 2. 
It may be noted that9 in constructing Table 69 I have underlined the number 

19 i.e., I have treated 1 as a Pythagorean prime (with the decomposition 1 = 
I2 + 02). This is essentially a matter of definition., but it is mandated by 
the result that the decompositions which involve 1 obey the rules (a) and (b) 
described above, provided that 1 is regarded as a P-prime for the present pur-
poses. I will also note that to regard 1 as a P-prime in cases where a direct 
addition is involved makes good sense, whereas in the arguments leading to the 
decomposition formula, (13), if I had introduced an arbitrary factor la°  in the 
expression for Nk of (12), this would have invalidated (13) for the total num-
ber of decompositions n^9 unless a0 = 0. 

The decomposition 4 = 2 4- 2 is an apparent exception to rules (a) and (b) 
given above. It does not seem to conform to the rule that one of the pair (x9 
y) be a P-prime, whereas the other of the pair (x9 y) should be a non-P-prime. 
One way to obviate this contradiction is to specify that rules (a) and (b) ap-
ply only when the prime numbers x and y are odd. Another way of looking at 
the situation with respect to both 1 and 2 is that9 as was emphasized repeat-
edly in [1] and in this paper, both 1 and 2 are special integers to which some 
of the rules governing other primes (̂ 3) do not apply; see especially the last 
two paragraphs of [1] and the discussion following (26) above. This privileged 
position of 1 and 2 has been correlated with the special properties of the 
powers n = 1 and n - 2 in the original Fermat equation, (2). Finally, a third 
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and more speculative way to describe the status of the integer 2 in connection 
with 4 = 2 + 2 is that just as y = 1 had to be defined as a P-prime in connec-
tion with Table 6, but as a non-P-prime in connection with (13), so x = 2 or 
y = 2 behaves half of the time as a P-prime (with the decomposition 22 = 22 + 02) 
and half of the time as a non-P-prime which has no decomposition 22 = x2 + z/2, 
where x9 y > 0. According to this interpretation, we could write 4 = 3 + 1 = 
2 + 2 in Table 6. 

Table 6. Linear decompositions of all even numbers 2 ̂  N ̂  100. For each N=%, 
all of the linear decompositions into a sum of prime numbers z - x + y 
are listed. Values of x and y which correspond to Pythagorean primes 
are underlined; the nonunderlined values correspond to non-P-primes. 
Note that when N is divisible by 4, i.e., N = 4v (v = positive inte-
ger) , one of the pair (x9 y) is a P-prime whereas the other number in 
the sum is a non-P-prime. When N is divisible by 2, but not by 4, 
i.e., for N = 4v + 2, either both x and y are P-primes, or both x and 
y are non-P-primes. A possible exception occurs for the decomposition 
of 4 = 2 + 2 (see discussion in text). We assume that x ^ y. 

N 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 

1 44 

1+1 
3 + 1 , 2 + 2 
2 + 1 , 3 + 3 
7 + 1 , J5+3 
7 + 3 , 2+_5 
1 1 + 1 , 7 + l 
JL3 + 1 , 11 + 3 , 7 + 7 
1 3 + 3 , 1 1 + 2 
1 7 + 1 , 1 3 + 5 / 11 + 7 
19 + 1 , l Z + 3 » i l + 7 
1 9 + 3 , 17 + 1 , 11+ 11 
23 + 1 , 19 + .5, I Z + 7 > i l + 1 1 
2 3 + 3 , 19+7 , i l + H 
23 + 1 , 1Z.+ 11 
19 + 1 , 2 3 + 7 , 19+11 9 17 + i l 
3 1 + 1 , _29+3, 1 9 + H 
31 + 3, 29 + 1 , 23+11* H + i Z . 
3 1 + 1 , 1 9 + 7 , 23 + H , l9 + l l 
1 7 + j . , 3 1 + 7 , 19+ 19 
_37 + 3 , 2 9 + 1 1 , 23 + 17 
4 1 + 1 , 37_+5_9 3 1 + 1 1 , 21+13 , 
43 + 1, Ai + 3 » lZ.+ 7» 3 l + i l 

*i + yj 

23+19 
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Table 6. continued 

1 N 

46 
48 

| 50 
52 
54 

' 56 
58 
60 
62 
64 
66 
68 
70 
72 
74 
76 
78 
80 
82 
84 
86 
88 
90 

92 
94 
96 
98 

100 

4 3 + 3 , 
4 7 + 1 , 
47 + 3, 
4 7 + 1 , 

H+l» 
^ 3 + 3 , 
H + l * 
59 + 1 , 
H + l , 
H + 3 , 
H + l * 
6 7 + 1 , 
6 7 + 3 , 
7 1 + 1 , 
72+1, 
1 3 + 3 , 

11+1' 
79 + 1 , 
7 9 + 3 , 
83 + 1 , 
8 3 + 3 , 
83 + 1 , 
89 + 1 , 
47 + 43 
8 £ + 3 , 
89 + 1 , 
89.+7, 
9 7 + 1 , 
12+3, 

xi + Vi 

4 1 + 1 , H + 2 1 * 23+23 
43 + 1 , A i + 7 , 37.+11, 3 1 + H , 19+19 
4 3 + 7 , 31+13 , 31+ 19 
41+ 11, 19+23 
4 7 + 7 , 4 3 + 1 1 , 41+13 , H + 2 2 > 3 1 + 2 3 

43 + 21 , 1 2 + 1 9 

47+ 11,' 4 1 + J 7 , 19 + H 
H + 7 , 4 7 + H , 43 + H , 41+19 , H + 2 3 , 3 1 + H 
5 9 + 3 , 43+19, 31 + 31 
59 + 1 , 5 3 + 1 1 , 47 + H , ^ 1 + 2 3 
5 9 + 7 , H + 2 1 , 47+19 , 43+23 , H + H 
6 1 + 7 , H + 3 1 
5 9 + 1 1 , H + 2 2 > 47+23 , 41 + 29 
67 + 1 , 1 1 + 1 1 , 59 + 21* H + 1 9 , 43 + 19 , 41+31 
71 + 3, 6 7 + 7 , 61+21» 4 3 + 3 1 , H + H 
7 1 + 1 , 59 + 21* H + 2 3 , 47+19 
71+7 , 6 7 + 1 1 , 61+175 59+19, 4 7 + 3 1 , 4 1 + H 
H + 7 , 67+21* 61+19, 4 3 + H 
71+11 , 59+23 , 13 + H , 4 1 + 4 1 
79 + 1 , H + l l » 71+21* 67 + 21* H + 2 3 , H + 3 1 , 4 7 + H , 
79+7 , 1 1 + 2 1 , 67+19, 43 + 43 
71+21* 59 + H , 47 + 41 
8 3 + 7 , 79+11 , 71+21* 71+19, 67+23 , H + H , 5 9 + 3 1 , 

79 + H * 2 1 + 1 9 , H + 3 1 
8 3 + 1 1 , 71 + 23, 51+41* 47 + 47 
83 + 21* 79+21* 22+23* 67+19, 59 + 12* H + 4 3 
79+ 19, 6 7 + 3 1 , 61+12 
H + l l , 83 + H , 71+29, 5 9 + 4 1 , H + 4 7 

4 3 + 4 1 

11+12* 
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The number of prime linear decompositions n^d9 (Bl), varies somewhat spor-
adically in going from a specific N9 N^9 to its neighbors N^ + 2, N^ + 4, etc. 
However, there is a definite trend of an increasing number of prime decomposi-
tions n^d with increasing N9 as would be expected because of the increasing 
number of integers x9 y which are smaller than N9 as N increases. We note, in 
particular, that ngd = 10 for N = 90 (see Table 6). Since the total number of 
all linear decompositions of N = 90 into a sum of two odd numbers is 

(N + 2)/4 = 23, 

we see that the percentage of the linear decompositions which consist of sums 
of primes is 10/23 = 43%. 

In Table 7 I have tabulated the total number of linear prime decompositions 
(£d) n^d for all even numbers N in the range 2 < N < 100. For the cases where 
N is not divisible by 4, I have also listed the partial n£d fs for two P-primes 
(x9 y), denoted by nAdj 2 » and for no P-prime, denoted by n£dj 0 . Obviously, 
when N is not divisible by 4, we have 

nU = n£d,2 + nU90' <B7) 

At the bottom of the table, I have listed the total number of ild's Zn^ in 
the range 2 < N < 50 and 52 < N < 100, and for the complete range 2 < N < 100. 
It is seen that Eft zd increases from 78 for the first half of the table (2!/<50) 
to Y,nld = 135 for the second half of the table (52 < N < 100), showing the in-
crease of the average Eft#d/25 from 3.12 to 5.40. 

Similar tabulations have been made for En£dj0 and Eft£ds 2 • It is seen that 
the total number of £d's with np_prinies =0 slightly predominates over the total 
number of £d*s with ftp-primes = 2. The ratio for the complete sample of 108 de-
compositions (up to N = 100) is 60/48 = 1.25. 

I have also written down the prime decompositions for eight even integers 
in the range 102 < N < 200. The results are: 

nid(N = 116) =6, n£d(130) = 7, nu (150) = 13, ft£d(164) = 6, 

ft£d(180) =15, ft£d(182) = 7, nu (184) = 8, and nu (200) = 9 . 

Finally, I wish to point out an important correlation which is as simple as 
the one derived by Fermat concerning p^ = 4v + 1 for a P-prime and qj = 4v + 3 
for a non-P-prime. It is well known that any prime number pi can be written in 
the form 

pi = 6vi + 1 or 6vi - 1, (B8) 

where v^ is an arbitrary positive integer. (This equation does not, however, 
apply to the prime numbers 2 and 3, and for p^ = 1 we must use v^ = 0.) The 
argument for (B8) goes as follows: Consider a specific v^. Then 6v^ + 1 is 
divisible by neither 2 nor 3, and therefore may be a prime; 6v^ 4- 2 is divisi-
ble by 2; 6v^ + 3 is divisible by 3; 6vi + 4 is again divisible by 2; 6v^ + 5 = 
6(v^ + 1) - 1 is divisible by neither 2 nor 3, and therefore is a candidate for 
being a prime number. 
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Table 7- For all even integers N in the range from 2 to 100, Lu is the number 
of linear decompositions of N into a sum of primes N = x^ + y^ 3 as 
given in Eq. (Bl). For the integers N which are divisible by 2 but not 
by 49 i.e»s for values N = 4v + 2S I have also listed the number of 
linear decompositions into a sum of two P-primes9 denoted by n£ds 2 * 
and the number of linear decompositions into a sum of two non-P-primes s 
denoted by n^dt0 * Obviously9 for values of N = 4v + 29 we have n%d = 
n£d 2 + n£d,o • The sum of all n^d and n£dsa (ot = 0 or 2) is listed at 
the' end of the table for the intervals 2 < N < 50 and 52 < N < 100, 
and also for the total range 2 < N ̂  100. 

^ 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 

j 26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

nU 

1 
2 
2 
2 
2 
2 
3 
2 
3 
3 
3 
4 
3 
2 
4 
3 
4 
4 
3 
3 
5 
4 
4 
6 
4 

n £ d s 2 

1 

1 

1 

1 

2 

1 

1 

2 

2 

1 

3 

2 

1 

n £ d 9 0 

0 

1 

1 

2 

1 

2 

2 

2 

2 

2 

2 

2 

3 

E n £ d (52 < tf < 100) „ 

lnu{2 < tf < 100) „. 

tf 

52 
54 
56 
58 
60 
62 
64 
66 
68 
70 
72 

t 74 
1 76 

78 
80 
82 
84 
86 
88 
90 
92 
94 
96 
98 

100 

nZd 

3 
6 
3 
4 
7 
4 
5 
6 
3 
5 
7 
6 
5 
7 
5 
5 
9 
5 
4 

10 
4 
5 
7 
4 
6 

78 

135 
i 213 

n £ d , 2 

3 

3 

1 

3 

2 

3 

3 

2 

1 

4 

2 

2 

19 
29 

48 

n £ d 9 0 

3 

1 

3 

3 

3 

3 

4 

3 

4 

6 

3 

2 

22 

38 
60 

Now the correlation which can be derived from Fermat's p. = 4v + 1 theorem 
is that all Pythagorean primes are of the form 

and 
p . = 6v^ + 19 i f v^ i s even* 

= bvi ~ 1, i f \>i i s odd* 

(B9) 

(B10) 
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Thus, 37 = (6)(6) + 1 is an example of (B9) (even v^ = 6); 89 = (6)(15) - 1 is 
an example of (BIO). 

In view of (B9) and (BIO), the non-P-primes (except 2 and 3) are of the 
form 

q3- = 6Vj - 1, if Vj is even, (Bll) 
and 

qj = 6Vj + 1 , if Vj is odd. 

It should perhaps be noted that not all v^ or Vj give rise to P- or non-P~ 
primes. The first few V^ values which do not give rise to a prime number are: 
V^ = 20, 24, 31, 34, 36, 41, etc. The preceding equations signify only that if 
a given number is a P-prime p^ or a non-P-prime q -, then it can be expressed 
by (B9) or (BIO), and (Bll) or (B12), respectively. 

Referring to the results of Table 7, I wish to note that the total number 
nAd of prime decompositions has maxima when N is divisible by 6 (N = 6v) , at 
least starting with N = 24. This trend is particularly noticeable when N lies 
in the range from 72 to 96. Thus, n^d (90) = 10 is considerably larger than 
w£d(88) = 4 a n d 

n^d(92) = 4. Similarly, ̂ ^(84) = 9 characterizes a peak in 
the n^d values as a function of N since, for the neighboring N = 82 and N = 86, 
we find n^d(82) = 5 and n^d(86) = 5. This property may be caused by the fact 
that, when N = 6v, we have two primes such that one of them is of the form 
6v2 + 1 and the other prime can be written as 6v2 - 1, and in taking the sum, 
we obtain N = 6(vx + v2) = 6v. It is also interesting that in several cases, 
particularly for N = 6v, both members of each of two twin prime sets are in-
volved , e.g., 

78 = 21 '+ 1 = 71 + 7 = 6l_ + ll_ = 59 + 19. 

Note also that 
84 = 2 1 + 11 = 71 + JL2 = 4_L + 4 3 

and 
90 = 21 + 11 = 7 1 + 19 = §1 + ^ i = 59 + 31. 
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Let 

fa = fa(x> y* s) = x3 + z/3 + s3 + 3axyz, (1) 

a an arbitrary real constants and denote, for a lattice A in H 3, by ya(A) the 
infimum of \fa\ if (#» y* s) runs through all lattice points of A except (09 09 

0). It is the objective of the present paper to estimates from the above9 the 
supremum Ma of pa(A), taken over all lattices A with lattice constant 1. (Since 
any homogeneous ternary cubic polynomial can be transformed into the shape (1) 
by a suitable linear transformations there is no loss of generality in start-
ing from this canonical form.) 

Classical work on this topic has been done by Mordell [6] (on the basis of 
his method of reducing the problem to a two-dimensional one) and by Davenport 
[1]9 [2]. Significant progress has been achieved in the special case a = 0. 
For arbitrary a however, the results obtained were not very sharp, as was noted 
by Golser [3]9 who improved upon Mordellfs estimate for the general case9 by a 
refined variant of his method* Later on, in [4] 9 he observed that9 for a cer-
tain range of the constant as the bound can be improved further by the simple 
idea of inscribing a sphere into the star body \fa\ ^ 1-

The purpose of this short note is to establish a result that improves upon 
all known estimates for certain intervals of a (at least for 0*9 < a < 2.9 and 
for -6 ̂  a ^ -1.2; see the tables at the end) by the elementary procedure of 
inscribing an ellipsoid of the shape 

Et(r) : x2 + y1 + z2 + 2t(xy + xz + yz) < r2, (2) 

where t is a parameter with ~h < t < 1, into the body Kai \fa\ ^ !• Our result 
reads 

Theorem: For arbitrary real a and a parameter t with -% < t < 1, t £ 09 we have 

Ma < /2(1 - t)Vl 4- It ma(t)§ 
where 

ma{t) : = max{|l + a\ (l + 2t)'3/23'1/2, <^1(t) s (f>2(£)}9 

^.(t) : = (2 + It + htCj + c2-)~3/2 | 2 + 3acj + a}\ (j = 1, 2) 9 

^ i = (2t)"1(Z? - 2t + (-1H(2>2 + 4£ + Abt2)1/2)s b = a - 1. 

Proof: We first briefly recall some well-known facts from the Geometry of Bvm-
bers. The critical determinant A(Ka) of our body Ka is defined as the infimum 
of all lattice constants d(A) of lattices A in ]R3 which have no point in the 
interior of Ka except the origin. For any such lattice A9 we put 

Ax = <i(A)-1/3As 
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[such that d(Ax) = 1] and Ar = A - {(09 09 0)}9 A{ = A1 - {(09 0, 0)}. Since 
fa is homogeneous of degree 3, it follows that 

&(Ka) = infW(A) i inf \fa \ > 1} 

= inf inf {d e M i inf | / a I > l/d} 
c?(A1) = l A/ A{ 

= ( sup ±nf\fa\)-\ 
d(A1) = l A{ 

hence Ma= ACZ^)"1. We further note that the e l l ip so id Et(r) can be transformed 
in to the uni t sphere by the l inear transformation 

x' = (x + ty + tz)r'19 yr = (Vl - t2 y + y/t - t2 z ) ^ " 1 , 

r v l + t 

which is of determinant (1 - t)/l + It r~3. Since the critical determinant of 
the unit sphere equals l/v2 (see Ollerenshaw [7] or [5]9 p. 259)9 we conclude 
that 

k(Et(r)) = P 3 ( ( 1 - t)Vl + 2tV2)"1. (3) 

If we choose r maximal such that Et(r) C Ka9 then obviously A(Za) > &(Et(r))9 
hence 

Ma = MKa)"1 < P"3^(l - t)Vl + It 

and, by homogeneity, 

| = 1 ̂  m a x |/ max |/a 

Therefore, it suffices to establish the following 

Lemma: For arbitrary t with -% < £ < 19 t ^ 0 9 the absolute maximum of \fa\ on 
Et(l) equals ma(t). 

Proof: Since the absolute maximum of \fa\ c a n be found among the relative ex-
trema of fa on the boundary of Et(l)9 we determine the latter by Lagrange's 
rule. We obtain 

3x2 + 3ayz 4- k(2x + 2t(z/ + z)) = 0 , (4) 

3z/2 + 3axz + fc(2# + 2t(x + <?)) - 09 (5) 

3s2 + 3axy -f k(2z + 2t(x + z/)) = 09 (6) 

x2 + y2 + s2 4- 2t(̂ z/ + #3 + z/s) = 1. (7) 

This system does not have any solution with x±y$z+x9 for otherwise we could 
infer from (4) and (5) (subtracting and dividing by x - y) that 

3(x + y) - 3az + 2k - 2kt = 0 

and similarly, from (5) and (6)9 that 
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3(1/ + z) - 3ax + 2k - 2kt = 0* 

Again subtracting, we would get the contradiction x = z (at least for a + -1; 
the case a = -1 then can be settled by an obvious continuity argument). 

Furthermore, it is impossible that a solution of our system satisfies x = 
y = 0S because this would imply that ktz = 0 and s(3 + 2k) = 0, hence z = 0* 
which contradicts (7). There remain two possibilities (apart from cyclic per-
mutations) . 

Case 1: x = y = z + 0. By (7), we have 

a; = ̂  = s = ±(i + 2t)"1/23_l/2 

and for these values of x9 ys and z9 

\fa\ = |1 + a | ( l + 2tV3/23-1/2. 

Case 2: 0 £ x = y £ z» E l i m i n a t i n g k from (4) and ( 6 ) , we g e t 

(8) 

(2£ - a - at)x3 + (1 + at)x2s + (a - 1 - t)xz2 

This can be divided by x - z and yields 

tz2 + (1 4- It - a)xz + (2£ - a - at)#2 = 09 

hence z/x = oj (j = 15 29 as defined in our theorem), 

x = z/ = ±(2 + It + 4t^ + ^ ) ~ 1 / 2
9 s = ĉ -a?, 

and for these values of x% ys and z* 

| / J = +j(« W - 1. 2). 

fcsd 

From (7) we deduce t h a t 

(9) 

Combining (8) and (9) » we complete the proof of the lemma and thereby that of 
our theorem* 

Concluding Remarks: Letting t -> 0 in our result, we just obtain Golserfs theo-
rem 1 in [4]. Howevers this choice of t turns out not to be the optimal one. 
In principles one could look for an "advantageous" choice of the parameter t 
(for a given value of the constant a) by computer calculations» but it can be 
justified by straightforward monotonicity considerations that it is optimal to 
choose t such that max{(()1(t)9 <f)2(£)} equals the right-hand side of (8). 

We conclude the paper with tables indicating the new upper bounds for Ma 
(for certain values of a) as well as the corresponding "favorable" values of t 
and the previously-known best results due to Golser [3]9 [4]. 

a 

t 

Ma < 

Golser: Ma < 

0*9 

0*02799 

1*428 

1*454 

1 

0.040786 

1.4483 

1.5018 

2 

0*07973 

1.9442 

2*0597 

2.9 

0.07301 

2.5758 

2.5775 
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a 

t 

Ma < 

Golser; Ma < 

-6 

-0.064204 

4.9848 

5.03779 

-5 

-0.07892 

4.1843 

4.31314 

-4 

-0.101987 

3.391 

3.58475 

-3 

-0.14273 

2.6116 

2.85169 

-2 

-0.23042 

1.8634 

2.1106 

-1.2 

-0.41324 

1.33 

1.54372 
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Let P = {1, 29 39 59 ... } be the set of Fibonacci numbers, where F2 = 19 
F3 = 29 and thereafter Fn = Fn_1 4- Pn_2. We shall examine the function pp(n)9 
which we define to be the number of ways to additively partition the integer n 
into (not necessarily distinct) Fibonacci numbers. 

We first consider the generating function for p (ri). By elementary parti-
tion theory9 we have 

EP,(^n = n —— - n —l——. -a) 
TOO a G F 1 - Xa rn>2 1 - x

Fm 

E q u i v a l e n t l y 9 

( n (1 - xF*)\ X pF(n)** = 1. (2) 

We may expand the infinite product as a power series 

n a - xF«) = z vm> o) 
m>2 m^o 

where am counts the number of partitions of m into an even number of distinct 
Fibonacci numbers9 minus the number of partitions of m into an odd number of 
distinct Fibonacci numbers; we may write this as 

am - p*(m) - p°{m). (4) 

We shall see later that knowledge of the terms am will lead us to a recursion 
relation for p (n) . With this objective in mind, we prove the following, 

Theorem: Let 
k 

Pv = II (1 - xFm) when k > 29 

K m= 2 

and set P, = 1. Let ZL = P,,, + P " 1 be the nth Lucas number. Then 

Pw = II (1 - xFm) = 1 - a: - x2 + £ xLkPk_2, 
m>2 k>3 

First proof: This proof is combinatorial in nature. First consider the partial 
products Pj,. When expanded as a power series of the form 

pk = t <4w*m> 
m= 0 
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the coefficients a)jp represent the same thing as the am» except that the parti-
tions are now restricted to Fibonacci numbers not exceeding Fk. It is evident 
that a^ = am for all m such that 0 < m < i^+1,by inspection of (4). We shall 
use this fact later. 

We may partition an integer n into distinct Fibonacci numbers in one par-
ticular way by first writing down the largest Fibonacci number not greater than 
w, subtracting, and iterating this process on the difference. For example, 

27 = 21 + 5 + 1. 

See the references listed at the end of this paper for a more detailed discus-
sion of these points. 

For simplicity of notation, we will represent a partition of a number into 
distinct Fibonacci numbers as a string of l's and Ofs,with the rightmost place 
corresponding to F2 = 1 , and each succeeding place corresponding to the next 
Fibonacci number. In the above example, 

2 7 « l « 2 1 + 0 - 1 3 + 0«8 + l-5 + 0*3 + 0-2 + l-l, 

which we may write more compactly as 
(8) 

27 : 1 0 0 1 0 0 1, 

where the (8) signifies that the 1 below it is the coefficient of FQ = 21. 
The first few terms am for m = 0, 1, 2, and 3 can be obtained by direct 

calculation of the first few P^; they are seen to be 1, -1, -1, and 0, respec-
tively. Now let n ^ 3; our objective will be to characterize the terms am in 
the range Ln < m < Ln + 1. As Ls = 4, this will give us am for every nonnegative 
m. Since n > 3, we have a partition of Ln + 1 obtained in the above manner (from 
here on, all partitions are into distinct Fibonacci numbers, unless otherwise 
stated): 

in) 
Ln + 1 : 1 0 1 0 0 0 ••• 0 

Thus, we have the following nine possibilities for partitions of 777, where 
Ln < m < Ln + 1: 

in) (n) in) 
(a) 1 0 0 1 x ... x (d) 0 1 1 0 x ... x (g) 0 0 1 1 x ... x 
(b) 1 0 0 0 x .«. x (e) 0 1 0 1 x ••• x (h) 0 0 1 0 x •«• x 
(c) 0 1 1 1 x • • • x (f) 0 1 0 0 x • • • x (i) 0 0 0 x x ... x 

The x1s indicate "we don't care which digits go here." 
In the above list, we may find a one-to-one correspondence between the par-

titions in (a) and the partitions in (c). Given a partition beginning with 
1 0 0, we may replace these three digits with O i l . Both strings will have 
equal value because Fn + 2 = Fn + 1 + Fn. However, out of each of these pairs of 
partitions, one is a partition of even cardinality, whereas the other is odd, 
since they are different only in their first three places. Hence, these par-
titions will cancel each other out when we compute am using equation (4) . Sim-
ilarly, there is a one-to-one correspondence between partitions of type (b) and 
of type (d), and they cancel out for the same reason. Partitions of the forms 
(f) and (g) differ only in the positions corresponding to Fn+19 Fn, and Fn_1; 
they cancel each other out in the same way. Partitions of the forms (h) and 
(i) are excluded from possibility. To see this, recall that 
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Fx +F2 + ••• +Fk = Fk+2 - 1. (5) 

Thus, the largest number expressible in the form (h) is 

Fn + Fn - 2 < 2F„. 

B u t Ln =Fn + 1 +Fn_lt so 

Ln = Fn + 2F„_1 > F„+ Fn_1 + Fn_2 = 2Fn. 

Thus, if m is expressible in the form (h) , then m < Ln9 contrary to assumption. 
Similarly9 if m is expressible in the form (i) , then m < Fn+1 - 2, which is 
less than Fn + 1, which in turn is less than Ln, again a contradiction. 

Therefore, the only class of partitions of m which will contribute to the 
right-hand side of (4) are those of the form (e) . But the leftmost four places 
in (e) form our partition of Ln; therefore, the x ••• x in (e) must represent 
a partition of m-Ln into distinct Fibonacci numbers of size less than or equal 
to n - 2. Conversely, given any such partition of m - Ln, we can construct a 
partition of m of the form (e). Since both partitions in this correspondence 
are of the same parity, i.e., either both are partitions into odd numbers of 
Fibonacci numbers or both are partitions into even numbers of Fibonacci num-
bers, we deduce from (4) that 

#r _. = <2m » whenever 0 < m < L„ , . (6) 

We have thus proved the theorem. 

Second proof: This proof is analytical. We require the following two results: 

Let A - a19 a2, ... be an arbitrary set of positive integers. If \q\ < 1, 
then 

n — l - — = i + £ ^ , (7) 
aeA (1 - zqa) i>i(l - zqai)(l - zqai) • • • (1 - zqa*) 

and 
I I (1 + zqa) = 1 + E (1 + zq*1) '" U + zqai^)zqai. (8) 

aeA £>x 

Proof of (7): We consider the partial products. Clearly, 

1 = x , a?*1 

(1 - zqa±) (1 - zqai) 

Now suppose that 

n — i = i + E - • 
i = 1 (1 - zqai) ^ = 1 ( 1 - zqai)(l - zqa2) • • • (1 - zqa*) 

Then 

" f f — l - — - ( f t — i — V i +
 zqa"+1 ) 

t = 1 (1 - zqai) V"1 (1 - zqai) A (1 - zqa» + i)J zqai) V - 1 (1 - zqai) I \ (1 - zql 

n zqai zqa*+^ n i 
= 1 (1 - zqai) • - . (1 - zqa±) (1 - zq°n+1 ) i = 1 (1 - zqa*) 
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n + l 

i + E 
zq"-^ 

* = 1 (1 - zqa±) ••• (1 - zqai) 

By induction on n, the partial products on the left-hand side of (7) are equal 
to the partial sums on the right-hand side. As \q\ < 1, the sum converges. 
This proves (7). 

Proof of (8): The first partial product is clearly the first partial sum. 
So suppose that 

Then 

.11 (1 + zqa-) = 1 + £ (1 + zclai> ••' C1 +zqai-1)zqa 

i = l 

n+l / n \ 
n (1 + zqa<) = 0 ( 1 + 3<7a*))(l + zqa*+i) 

i=l V = l / 

= 1 + £ (1 + zqai) • • • (1 + zqa<-i)zqai + zqa"^ O (1 + zqai) 

n+l 
= 1 + £ (1 + zqai) ••• (1 + zqa*-i)zqaK 

i = l 

By induction on n, this proves (8). 

The following argument is due to the referee. 

In (8) we set z = -1, q = x9 and A = Fi 
EI (1 - arF-) = 1 - x - x2 + x 3 - £ ( 

m>2 m>3 

= l-X-X2+X3- £ ( 
m^3 

+ E ( 
777^3 

= 1 - x - x2 + * 3 - £ ( 
777^3 

+ E ( 
777^3 

+ E( 
777^3 

xF*) 

xFn 

xF>) 

xF>) 

- xF>) 

- xF")xFm+1 

- ar^- l)** '" '*1 

- x }x 

- xFm~2 )xLm 

- X ^ " 1 )XF"> + * 

= 1 - a; - x2 + £ (1 - / 2 ) • •• (1 - x F - - 0 ^ L m . 
777^3 

This proves the theorem. 

Corollary: For all m > Os aOT is either 1, -1, or 0. 

Proof: We have already seen that this is true for 777 < 3. Now the degree of 
P^_2 is 1 + 2 + 3 + • • • + Fjc_29. or Ffc - 2, which is clearly less than L% + 1 - L^9 
which equals Lk_1. What this tells us is that the polynomials on the right-
hand side of the theorem add together without overlapping. Thus9 we only need 
to show that each PT, has coefficients a^ = 0, ls or -1 for all m. 
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We do this by induction on k* Clearly9 it is true for k = 1, as P1 = 1. 
Suppose, then, that a^k) = 1, -1, or 0 for all m and all k < n. By the defini-
tion of Pn, it is clear that the first Fn + 1 coefficients of Pn are identical 
to those of P^; in other words, 

am = a™ for all m such that 0 < m < Fn + 1* 

Hence, by the theorem, the first n + 1 terms a£ are the coefficients of the 
partial products Pk with k such that L^ < Fn + 1; this includes all k less than 
n - 2 because £n_3 < Fn + 1 < Ln_2. By the induction hypothesis, the first Fn + 1 
coefficients are either 1, -1, or 0. 

Now recall that Pn is a finite product of "antipalindromic" polynomials of 
the form (1 - xFk)* Thus, we have 

« « - (-Dn+v;>+2.2_m, (9) 
whenever both subscripts are positive, since the degree of Pn is Fn + 2- 2. But 
&n + i ^ ^(^n+2 "-2)» so the first half of the coefficients in Pn are 1, -1, or 
0. By (9), so are the last half. By induction, all Pk's have coefficients 1, 
-1, or 0. By the theorem, all terms am are 1, -1, or 0. This proves the cor-
ollary. 

By equating like terms on both sides of (2) , where we have evaluated the 
product P as the power series (3), we obtain, for all n ^ 0: 

a0PFW + ̂ iPF(^ - 1) + '*' + an-lPF^ + a n M 0 ) = °> 

where pF(0) = 1 in accordance with the power series (1). This yields a recur-
sion for p (n) with all coefficients ak equal to 1, -1, or 0. 
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Let {Un9 n ̂  0} be the ordinary Fibonacci sequence defined by 

U0 = 0 , U1 = 19 Un = Un_1 + Un_2, for n > 2. 

For any integer k > 2, let {7fe (ft) , ft > -k + 2} be the &th-order Fibonacci se-
quence defined by 

M j ) = 0, for -fc + 2 < j < 0, 7k(l) = ls 

and Vk(n) = 7k (ft - 1) + Vk(n - 2) + ... + 7fc (ft - £), for n > 2. 

It is well known that, for any integer m > 29 the sequence /Jn [=72(ft)] mod TT? is 
periodic, and it is easy to see that this also holds for any sequence 7^ (ft) mod 
777 with k ̂  3. For any m ̂  2, let p(fc, TT?) denote the length of the period of 
the sequence Vk (ft) mod TT70 The proof of the next result is almost identical to 
that in [3] for the ordinary Fibonacci sequence 72 (ft), thus is omitted here. 

Theorem 1: The sequence 7̂  (ft) mod m is simply periodic, i.e., it is periodic 
and it repeats by returning to its starting values. If m has the prime factor-
ization 777 = isqfi

9 then p(k9 m) = 1cm [p(k9 qf1)]* the least common multiple of 
the p(k9 q^1) S 

In order to prove Theorem 2, we first state Lemma 1, the proof of which is 
quite simple and, therefore, will be omitted here. 

Lemma 1: Let {W^(ft), ft ̂ 0}, £ = 1 , 2 , 3 , be three sequences such that for each 
l9 Wi(n) = Wi(n - 1) + ..» + Wi(n - k) for all n > k. If the equality Ws (ft) = 
W±(r0 + W2(n) holds for 0 < ft < /c - 1, it also holds for all n > k. 

The following result extends the corresponding result [3] for the sequence 
72(ft) to any sequence 7^ (ft) with k ̂  2. Our proof is quite different from that 
in [3], and we do not have a general formula for Vk (ft). 

Theorem 2: Let q be any prime number. If p(k9 q2) ^ p(k9 q), then 

p(k9 qe) = qe-1p(ks q) (1) 

for any integer e ̂  2. 

Proof: Let r = p(k9 q). For the sake of simpler notation, we shall prove (1) 
only for e - 2. The same proof stands, with obvious modifications, for e > 2. 

Define the fc-tuple 

ô = Wk(-k + 2), ..., vk(i)) = (o o, i), 

and 
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T± = (Vk(-k + 2 + r)9 ..., Vk(l + 2-)) = (0, ..., 09 1) mod q 

= (qsl9 ...., <?sfe_l5 gs^ + 1) mod q2, 

where 0 < Sj < <? for 1 < j < fc, and sx + ••• + s^ > 1. The fc-tuple 2^ is ob-
tained by moving TQ r units to the righto 

T± can be decomposed as follows; 

T± = ̂ ( 1 , 1, 2, .... 2k'2) + q(s2 - Sl)(09 1, 1, .... 2k"3) 

+ q(e3 - s2 - Sl)(0s 09 1, .... 2k'k) + ••• 

+ [?(sk - s ^ - ••- - sx) + 1](0, 0, ..., 09 I) mod q2. 

Applying Lemma 1, one can obtain the fc-tuple T2 by moving T1 r units to the 
right. 

T2 = W8k" <?*_!- s1) + l](qs1, qs29 qs3, ..., qsfc-1, ^ + 1) + • • • 

+ <?(s2- s1)(qsk_lSqsk+ l9q(sk + sk_± + sk_2) + 19 ..., q(...) + 2*~3) 

+ ^ ( ^ H - 1, q(sfe + s^H- sfe_2) + 1, ... , <?(...) + 2fe"2) mod q2 

= (2^slS 2 ^ , ..., 2qsk_l9 2qsk + l) mod q2 * 

Similarly, one has 

Tj = (dqsl9 jqs2S ..., jqsk_l9 jqsk + 1) mod <?2 

for 2 < j < g. Since ^ is a prime number, Tj ^ T0 for 1 < j < q - 1, and since 
Tq = T0 mod ^2, we have p(k9 q2) = qr - qp(k9 q). This completes the proof. 

As a final remark, we note that some simple facts about higher-order Fibo-
nacci sequences can be easily observed. For example9 many moduli m have the 
property that the sequence Vk (n) mod 77? contains a complete system of residue 
modulo m9 while m = 8 and m = 9 are the smallest moduli which do not have this 
property in the case k = 3, and they are said to be defective [2]. For m - 2 
and 777 = 11, the sequence V3(n) mod m is uniformly distributed. (See [1] for a 
definition.) It is interesting to extend the results for ordinary Fibonacci 
sequences to those of higher order. 
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1. INTRODUCTION 

In what follows we give a formula for the entries in the Pascal-27 triangle 
Tm in terms of the multinomial coefficients; this is the counterpart for these 
arrays of the result of Philippou [1] on the elements of the Fibonacci &-se-
quences in terms of the multinomial coefficients. The proof is direct, and the 
method also leads to a recurrence relation which gives the elements of a given 
triangle Tm as a combination of certain elements of the "preceeding" triangle 
Tm-i> t n e coefficients in the combination being binomial coefficients. Final-
ly, because the multinomial coefficients provide the connection here, we offer 
some remarks on those arrays of multinomial coefficients referred to in the 
literature as "Pascal pyramids." 

It will be convenient to recall the definition of the triangle Tm. 

Definition 1.1: For any m ̂  0, Tm is the array whose rows are indexed by n=0, 
1, 2, ..., and columns by k = 09 1, 2, ..., and whose entries are obtained as 
follows: 

a) T0 is the all-zero array; 

b) T1 is the array all of whose rows consist of a one followed by zeros; 

c) Tm9 777^2, is the array whose n = 0 row is a one followed by zeros, whose 
n= 1 row is m ones followed by zeros, and any of whose entries in sub-
sequent rows is the sum of the m entries just above and to the left in 
the preceeding row. 

The entry in row n and column k is denoted by Cm(n9 k), although we note that 

C2(n9 k) = (£), 
since T2 is the Pascal Triangle. There will be n(m - 1)+ 1 nonzero entries in 
row n9 and the principal property we need is that these are the coefficients 
(see, e.g., [2], p. 66) in the expansion 

n(m- 1) 

(1 + t + t2 + ••• + t m " V = £ Cm(n9 k)tk. (1.1) 
k = o 

Although it is easy to use property (c) to build the array Tm by means of the 
relation 

m- 1 
Cm(n9 k) = £ Cm(n - 1, k - j), (1.2) 

j = o 

the main result presented here evaluates Cm(n9 k) directly as a sum of certain 
multinomial coefficients. 
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2* FORMULAS FOR Cm(n, k) 

Theorem 2,1: If Cm(n$ k) is the (n, &)-entry in Tm9 m > 39 then for any n > 0 
and 0 < k < n(m - 1), 

C„(». *> = E (n n * n ). (2.1) 

where the summation is over all m-part compositions nls n2s ..., nm of n such 
that (1) nx + n2 + .-. + nm = n9 and (2) 0n1 + ln2 + ••• + (m - l)nm = fc. 

Proof: The proof follows directly from the multinomial theorem9 for if in 

(Xi +Xz + . . . +Xm)n = W n \x»ix£m„xn.t ( 2 . 2 ) 
\ ri-^ $ • • • s 'frfi?/ 

where the summation is over all m-part compositions of ns we put x^ = tz~1
s 

1 < i < ms we have 

(1 + t + ... +t»-l)» = W " Xt"2 + 2n3+... + (m-l)n„5 ( 2 > 3 ) 

\ttlJ ...5 nmf 

and when the coefficients of tk on the right-hand sides of (1.1) and (2.3) are 
equated, (2.1) follows from conditions (1) and (2). 

Example: ^ ( 4 , 4) - (^ £ Q> Q ) + ( u ^ Q) + (2> Q * 2> 0 ) + ( 2 > ^ ^ 

= 1 + 12 + 6 + 12 = 31 

Another application of the multinomial expansions used partly as a binomial 
expansions gives the following theorem. 

Theorem 2.2: 

Cm(n9 k) = t OK-i<J. k - j). (2.4) 
j = o w / 

Proof: If the left side of (2.2) is grouped as [x1.+ (x2 +••• + xm)]n
9 expanded 

as a binomials and again tv~x is substituted for x^s the result is 

nirn- 1) 

k 

n- I) n 

£ COT(n5 k)tk = E n U ' d + * + eee + t m - 2 ) J . (2.5) 
= o t/ = o x ^ / 

But then the factors .(1 + t +•••+ tm~2)3 may be expressed in terms of Cm-ifss 

using (1.1). When the coefficients of a given power of t on the right of (2.5) 
are collected and equated to the corresponding coefficient on the left9 then 
(2.4) follows. 

Example: C„(4, 4) = (JJ^CO. *) + (JJ^sC1* 3> + (2)^(2, 2) 

+ (3)^3(3, 1) + ( J H < 4 . 0) 

= l-0 + 4«0 + 6-3 + 4-3 + l-l = 31 
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3. THE PASCAL PYRAMID 

The device used in the previous theorem of bracketing off one term of a 
multinomial in order to expand the result as a binomial cans of course, be re-
peated with the remaining multinomial parts, eventually running the unexpanded 
part down to a binomial itself; this offers the possibility of obtaining the 
multinomials entirely as products of binomial coefficients. In fact, this has 
been done in [3] and [4] for a trinomial expansion, with the multinomial coef-
ficients appearing in the successive powers of (x± + x2 + x3) being associated 
with points in triangular arrays, which form successive levels of a pyramidal 
structure—the so-called Pascal pyramid. For example, Figure 1 shows the first 
four levels, with each point labelled with both a multinomial coefficient and 
the composition which gives rise to it (the compositions can be obtained by 
designating the sides as first, second, third in some fashion, and letting n19 
n29 n3 in the composition measure units of perpendicular distances from the 
first, second, third sides, respectively). The law of formation for this tri-
nomial case is clear (and also correct, as is easily verified by doing the re-
duction described earlier): just generate the ordinary Pascal triangle down to 
level n9 and then multiply the rows successively upward by the numbers found 
in the last line. For n = 3, e.g., 

1 _1 • 1 

1 1 J • 1 J • 1 
1 2 1 becomes ^ ^ 2 ^ ± 

1 3 3 1 1 3 3 1 

n = 0 i 

n = l 

n = 2 

(0,0, 0) 

n = 3 

(3. 0. 0} 3 J (0, 3, 0) 

Figure 1. Levels of the Pascal Pyramid for the Case (x1 + x2 + x3) 
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This works nicely, the idea is not restricted to trinomials (the generalization 
is not just a bigger triangle9 but it is similarly simple), and there have been 
several comments to the effect that it is surprising that the Pascal pyramids 
(or hyperpyramids) are not more widely known or used. 

Why should this be? An answer would seem to be that as soon as one gets 
past the trinomials, the method, while still elegant, becomes computationally 
unwieldy. That is, in the usual expansion of a multinomial (x1 +••• + xm)n 

there are ( J terms corresponding to the m-part compositions of n. To 

see what is required to deal with these in terms of products of binomials, we 
look at what might be called the Pascal square, in which we tabulate for m = 0, 
1, 2, ... and n = 0, 1, 2, ... the number of m-part compositions of n (taking 
the entry for m = n = 0 to be one). The first several lines are shown below: 

Pascal Square 

No. P a r t s m 

0 
1 
2 
3 
4 
5 

n 
0 1 2 3 4 5 

1 0 0 0 0 0 
1 1 1 1 1 1 
1 2 3 4 5 6 
1 3 6 10 15 21 
1 4 10 20 35 56 
1 5 15 35 70 126 

Here, the law of formation is that each entry is the sum of alt those entries 
above and to the left of it in the preceeding row, and we recognize the m = 3 
row as the triangular numbers, the m = 4 as the pyramidal numbers, and so on. 
The point here is that the square shows that the trinomials (m = 3) are simple 
sequences of products of binomials; as in the example, the ten trinomials in 
(x± + x2 + x3)3 reduce to 4 + 3 + 2 + 1 products of binomials. But for m > 3, 
we find not sequences, but sequences of sequences. The thirty-five terms in 
(x± + x2 + x3 + xh)h [the (4, 4) entry], e.g., have to be obtained using the 
sequence 

15 = 5 + 4 + 3 + 2 + 1 , 
10= 4 + 3 + 2 + 1 , 
6 = 3 + 2 + 1 , 
3 = 2 + 1, 
1 = 1, 

of sequences of products of binomials. It would seem that in spite of the ap-
peal of an array for multinomial coefficients similar to the triangle for 
binomials, one is better off for most purposes using a convenient algorithm 
(e.g., [5], pp. 46-51) to generate the m-part compositions of n, from which the 
exponents on the x^ and the multinomial associated with a given term are imme-
diately available. 
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1. INTRODUCTION 

It is well known that T (z) is an analytic function of z that gives n\ when 
z - n + 1. It is reasonable to look for a similar function for the Fibonacci 
numbers Fn. Several such functions are known (see Bunder [2] where further ref-
erences are given)s but the formula we will derive is more general than any of 
those obtained earlier. 

To be specifics we are looking for an F(z) with the following properties: 

(a) F(z) is an analytic function (perhaps entire)s 

(b) F(z) is real valued for all real z3 

(c) F(n) = Fn9 the nth Fibonacci number for all integers n5 

(d) For z in the domain of analyticity we have 

F(z + 2) = F(z + 1) + F(z). (1) 

It is clear that if F(0) = FQ = 0 and F(l) = F± = 1, then equation (1).im-
plies that F(n) = Fn for every positive integer n. This follows immediately 
from the defining equations F0 = 09 F1 = 1, and Fn + 2 = Fn+l + Fn. In fact, this 
latter relation can be used to define the Fibonacci numbers for negative inte-
gers. 

If F(z) satisfies the functional equation (l)sthen so does each derivative 
F (z), m = 19 29 ... . This suggests that we try eRz as a solution9 for some 
number R. When eRz is used in (1), we find that it is a solution if and only 
if eE is a root of 

x2 = x + I, (2) 

Using the standard notation for the roots of (2), we have 

1 + 7 5 „ 1 - >/5 
a 

and hence 

(3) 

R = In a or R = In 3 = In | 31 + (2q + 1)TT£, q = 0S ±1, ±29 . .. . 

Using the linearity of (1) (see Spickerman [4]), it is clear that if p and q 
are integers9 and C1 and C2 are arbitrary real numbers, then 

f(z) = c1ez(lna + 2P^ + c2ez(ln\^ + (2^+1)7ji) (4) 

satisfies the functional equation (1). Now f(z) is an entire function but it 
is not real valued for every real a. To remedy this defect, we consider 
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This function is not an analytic function, but if we replace a by a; we obtain 
the real function 

F(x) = C1exlnacos 2pi\x + C2exln\^cos(2q + 1)TO. (5) 

If we now replace x by z in (5) , we have a function that satisfies the 
conditions (a), (b) , and (d) . The initial conditions F(0) = 0 and F(l) - 1 
force the selection C1 = l/i/5 and C2 = -l/i/5. Then, finally, the function 

F(Z) =—[6
2 l n acos 2pTTs - e2lnl3icos(2^ + l)i\z] (6) 

has all of the properties (a), (b), (c), and (d) that we wish. 
Equation (6) was given earlier by Spickerman [4] and is an entire function 

that gives the Fibonacci numbers for integral values of z. 

2. THE MAIN THEOREM 

Equation (6) gives a countable infinity of functions that satisfy the con-
ditions (a), (b), (c), and (d) , and we may ask if we now have all such func-
tions. In fact, we shall soon see that (6) gives only a tiny portion of the 
functions that satisfy (a), (b), (c)-9 and (d). We first observe that if a and 
3 are the roots of (2) and m is an integer, then 

G(z) = ezlnQL sin 2rrmz + e2ln!31 sin(2m + l)itz (7) 

satisfies the three conditions (a), (b), and (d). Further, G(n) = 0 for every 
integer n. 

We now take linear combinations of the functions F(z) and G(z) defined by 
(6) and (7). To simplify the presentation, we impose a condition on the coef-
ficients to ensure that we obtain entire functions. 

Definition: We say that the real sequences {Am}, {Bm}, {Cm}, and {Dm} satisfy 
condition E if 

t Cm = 1, t c « - l (8) 
m= 0 rn= 0 

and 
t,Amemz

9 tBme™9 t Cme™, £ Dmemz (9) 
w = 0 m = 0 m-0 m=0 

are all entire functions. 

These are very weak restrictions. For example, (9) is trivially satisfied 
if all but a finite number of terms in each sequence are zero. The linearity 
of equation (1), and our earlier work, immediately give 

Theorem 1: Let {Am}, {Bm}, {Cm}9 {Dm} satisfy condition E9 and let a and 6 be 
defined by (3). Then each one of the functions 

F(z) = — E Cmezln(Xcos Irrmz - — E VmezlnWcos{2m + 1)TTS + (10) 
^ 5 ^ = 0 ^5 m = 0 

(continued) 
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+ E Amezlnas±n 2mi\z + f) Bmesl^^s±n(2m + l)i\z 
777= O m= 0 

satisfies the conditions (a), (b), (c)9 and (d). 

It is clear that (1) gives an uncountable infinity of suitable functions. 
We still have an uncountable infinity if we set all coefficients equal to zero 
except C09 C1 = 1 - C0, DQ5 and D1 = 1 - DQ. 

Do we have all such function? In other words, given a function with prop-
erties (a)s (b), (c), and (d), is it one of the functions described in Theorem 
1? This is an open problem. 

The Fibonacci numbers satisfy many interesting relations, see, for example, 
Bachman [1, 11:55-96], Vorobfev [5], or Wall [6], Many of these generalize, 
and we cite only a few here. 

If F{z) is any one of the uncountably many functions given in Theorem 1, 
then9 for all zs 

N 
E F(z + k) = F(z + 7^+2) - F(z + 1), (11) 

k = 0 

and 

N 
£,F(z + 2fc - 1) = F(z + 2N) - F(z)s (12) 

k=l 

2N 
£ (-l)kF(z + k) = F(z + 2N - 1) - F(z - 2). (13) 

k = o 

3. A GENERALIZATION 

One natural generalization arises when we replace F = F + Fn by 

Fn+2 = rFn+1 + sFn 

and impose the initial conditions FQ = a and F± = b* To extend the work of §1 
and §29 we look for entire functions that are real on the real axis, give the 
generalized Fibonacci numbers at the positive integers, and satisfy the func-
tional equation 

F(z + 2) = rF(z + 1) + sF(z) (14) 

for all z. Here we restrict r, ss as and b to be real. We preserve the basic 
notation of §2 and set 

r + Vr2 + 4s n r - Vr2 + 4s 
a = — 2 

the two roots of 

x2 = rx 

(15) 

(16) 

[Compare this equation with equation (2).] 
For simplicity9 we assume that a and 6 are distinct real roots, and this 

implies that r2 + 4s > 0. We also assume that s ^ 0 because, if s = 0, equa-
tion (14) reduces to F(z + 1) = rF(z) for all z9 and the generalized Fibonacci 
sequence is then a geometric sequence. If v and s are positive, then a>0>(3°  
We consider this case first. 
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Theorem 2: Suppose that a > 0 > 6 , where a and g are given by (15), r and s are 
real numbers9 and the sequences {Am}9 {Bm}9 {Cm}, and {Dm} satisfy condition E. 
Set 

Hz) = E " a g * » b Cme*lnacos 2rrmz + E a a " / P^2lnlelcos(2m + 1)TT3 

+ E Wwe2lnasin 27777TS + B^ln'3lsin(2m + Dra). (17) 
m= 0 

Then: 

(a) F(z) is an entire function; 

(b) F(z) is real on the real axis; 

(c) F(z) satisfies the functional equation (14); 

(d) for all positive integers F(n) ~ Fn9 the nth generalized Fibonacci num-
ber defined by FQ = a9 F± = b9 Fn + 2 = rFn + 1 + sFn, n = 0, 1, 2, ... . 

We omit the proof because it follows the pattern set forth in §2. First, 
one shows that each individual term satisfies (14), and then one applies the 
linearity property. A simple computation shows that F(0) = a and F(l) = b. 
Parker [3] obtained a simplified version of (17) in which only two of the coef-
ficients are different from zero. 

If r > 0 and s < 09 then a > 3 > 0 . In this case9 we have 

Theorem 3-' Suppose that a>|3>0 and the sequences {Am} 9 {Bm}9 {Cm}, and {Dm} 
satisfy condition E. Set 

F(z) = E "aB t b Cme*lnacos Irrmz + £ ^ ~a Dmezln® cos Irrmz 

+ E (i4TOealnasin 2/?7Trs + £OTeslnB sin 2rm\z). (18) 
m= o 

Then F(s) satisfies conditions (a) 9 (b)9 (c)9 and (d) of Theorem 2. 

The proof is similar to that of Theorem 2; thus, it is omitted here. 

If v < 0 and s < 0, then 0>a>$. In this case, we replace a and 3 by |a| 
and |@|» respectively, in (18). Further, cos 2mi\z is replaced by cos(2m + 1)TTS 
and sin 2rrmz is replaced by sin(2m 4- l)i\z. The details are left to the reader. 

In each of the three cases, there is an uncountable infinity of functions, 
each satisfying the conditions (a), (b), (c), and (d). 

4. CONCLUDING REMARKS 

We return to the original Fibonacci sequence 0, 1, 1, 2, 3, 5, ... treated 
in §§1 and 2. If a and 3 are given by (3), then, as is well known, 

Fn =4:(a" - gn). (19) 
V5 
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This formula for Fn is called Binet's formula. If we replace the minus sign by 
a plus sign in (19), we obtain 

Ln = an + 6n. (20) 

These numbers Ln9 n = 0, 1, 2, ..., are often called the Lucas numbers [5, 6]. 
Now LQ - 29 L1 - 1, and Ln+2 = Ln+i + ^n f° r n ~ 0» 1» 2, ... . Consequently, 
Theorem 2 gives a set of uncountably many entire functions for the Lucas num-
bers. Indeed, set a - 2 and b = 1 in (17) to obtain 

z2§+k _ ! and £ ° L ^ = a - 6 a - 3 K ' 
Then F(n) = Ln for all n. 

Finally, we note that Binetss formula can be extended to cover the gener-
alized Fibonacci numbers treated in §3. Let r, s, a, b9 a, and 3 be real num-
bers, where a and 3 are given by (15). If FQ = a, F1 = &, ̂ n + 2

 = p^z+i + s^n» 
for n = 0, 1, 2, ..., then 

Fn - ̂ f^T a" + ̂ f r 6"' f0rW = °» *• 2 <22> 
Here, of course, we assume that r2 + 4s > 0 so a ^ 3 and both a and 3 are real 
numbers. For brevity, we omit the discussion of the special cases (a) a = 3, 
(b) a = 0 > 3s and (c) a > 3 = 0. In these last two cases, equation (16) gives 
s = 0. Hence, Fn+1 = rFn and the sequence {Fn} is a geometric sequence. 
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1. INTRODUCTION 

For each nonnegative integer n, r3(n) denotes the cardinal number of the 
set: 

{(xl9 x2, x3) e E3\n = x\ + x\ + x\]. 

We here propose to express r3 in terms of simple divisor functions, defined as 
follows. 

Definition: For each pair of positive integers i9 n9 with i, K 29 6^(n) is de-
fined by 

«i(n) = E (-l)0^"1. 
d\n 

d= i (mod 3) 

Theorem 1: Let n denote an arbitrary positive integer. 

(i) If n = 3m2
9 for some positive integer m9 then 

r3(«) = 2 + 6(-l)"[62(«) - 61(n)] 

+ 12(-l)n £(-l)n[62(n " 3i2) - 6-LOZ - 3i2)]. 
i - 1 

(i i) If n is not of the form 3m2, then 

r,(n) = 6(-l)»[62(n) - 6,(n)] 
+ 12(-1)" E (-D"[62(n - 3iz) - 6 An - 3i2)]. 

£ = 1 

In both statements (i) and (ii), summation for the sums indexed by i extends 
over all values of i for which the arguments of 6X and 62 are positive. 

In §29 we prove this theorem. Our concluding remarks are concerned with 
comparison of the present representation of r3 with the classical representa-
tion due to Dirichlet. 

2. PROOF OF THEOREM 1 

Our proof is predicated on the quintuple-product identity 

fi(l- xn)(l - oxn)(l - a~1xn-1)(l - a V n _ 1 ) ( l - a"2^2n_1) 

= £ xn(3n+l)/2(a3n _ a'3"1'1), (1) 

which (as observed by Carlitz and Subbarao[l]) is derivable from the classical 

150 [May 



ON THE ENUMERATOR FOR SUMS OF THREE SQUARES 

triple-product identity 

ft(l - x2n)(l + ax271"1) (I + a"1*2"-1) = £ > " V . (2) 
1 ~z 

Both identities are valid for each pair of complex numbers a9 x such that a ̂  0 
and \x\ < 1. We shall also require the following classical identities associ-
ated with the names of Euler9 Gauss9 and Jacobi* 

ftd - x^-^d + xn) = 1, (3) 

0(1 - x2n)(l + x2"-1)2 = ± xn\ (4) 
l 

Identity (4) is an easy special case of (2) (simply set a = 1), but we list it 
separately to observe that the cube of its right side generates P3. 

In (l)s let a ->• a2 and multiply the resulting identity by a to get: 

(a - a"1) ft (1 - xn)(l - a2xn)(l - a~2xn)(l - aVM_1)(l - a^x2"'1) 

a ^ x n ( 3 n + l ) / 2 a 6 n __ a - l £ xn(3n+ l)/2a-6« 

= a O (1 - x3n)(l + a6x3n"1)(l + a-6x3n~2) 
1 

- a"1 ft (1 - x3n)(l + a-&x3n-1)(l + asx3n~2). (5) 
l 

Here we have used (2) to express the infinite series as infinite products. For 
the sake of brevity9 put 

F(a) = F(as x) = ft (1 - a2xn) (I - a"2xn)(l - a V ' ^ d - a"^2*"1), 
l 

G(a) = C(a9 a) = ft (1 + a V " " ^ ! + a~sx3n-2)9 
l 

and 
tf(a) = £ ( a - 1 ) . 

Hences (5) becomes 

0 (1 - xn)(a - a~1)F(a) = ft (1 - x3n){aG(a) - a'1H(a)}. 
l i 

We now differentiate the foregoing identity with respect to a to get: 

ft d - xn){(l + a~2)F(a) + (a - a~1)FF(a)} 
l 

= ft (1 - x3n){G(a) + a'2H(a) + aGf(a) - a^H^a)}. (6) 
l 

Sequentially, we use the technique of logarithmic differentiation to evaluate 
Gf(a) and Hr(a)9 substitute these evaluations into (6) , let a •> 1 in the result-
ing identitys and finally cancel a factor of 2 to get: 
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Now, 

n ( i - ^ n ) 3 ( i - x 2 n - 3 ) 2 

1 
°° „ « , „ ( / °°  /v»3n-l oo ~ 3 n - 2 \\ 

= n ( i - ^ 3 n ) ( i + ^ - i ) ( i + ^ - 2 ) 1 + 6 ( E — E — )> 
i I \ i l + tf3"-1 i l + x3n-2'> 

= n (l-^3")(l + x3n-1)(l + ̂ 3n-2)|l + 6f; [62(n) - 6x(n)]x4. 

1 (l-a;3n)(l + a:3n-1)(l + a:3w-2) 

- n ( i - ^ ) 3 ( i - ^ - i ) 3 > ( 1 + a : 3 n ) ( 1 + ^ " 1 ) ( 1 + ^ 3 n " 2 ) 
1 ( l - a r 3 n ) ( l + x 3 n - 1 ) ( l + ^ 3 n - 2 ) 

[by E u l e r ' s i d e n t i t y (3 ) ] 

- ltr3(n)(-xA* ft l + ^^ . 
( 0 ) 1 1 - ^ 3 n 

Hence, 

i > 3 ( n ) ( - x ) n = ft - " ^ ^ j l + e f ) [ 6 2 ( w ) - fi^n)]*"} 
0 1 1 + x3n { ! J 

= {l + 2 E(-^3)"2}{l + 6f: [62(n) - 6 ^ ) ] ^ . 

Now, letting x -> -#, we have 

f>3(rc)arn= 1 + 2 f; a:3"2 + 6 L(-l)n[S2(n) - 6 ^ ) ] * * 
0 m« 1 w = 1 

+ 12 £) (-l)nxn£ (-l)M62(n - 3i2) -«,(«- 3i2)]. 

[Here we adopt the convention that &i(k) = 0 whenever /c < 0, £ = 1, 2.] Equat-
ing coefficients of like powers of x9 we thus prove our theorem. [Note that 
r3(0) = 1.] 

CONCLUDING REMARKS 

There is a somewhat complicated formula for r3(n) [n e Z+] due to Dirich-
let. This is: 

'•<"> -T»'ftx!(»«<-ta)-pn(i ^ . . . ^ - ^ - ( e ^ ) ! ) " ) , 

where the d e f i n i t i o n of T i s p 2 T | n , but p 2 ( T + 1 ) | n , 

x(.4„) = ± (—)k> J?x\ m fm 

Here, and above, ( j is a Jacobi symbol. And 
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iO if k~an = 7 (mod 8), 

2~a, if 4_an = 3 (mod 8), 

3.2-1'a9 if k~an = 1, 2, 59 6 (mod 8), 
and here the definition of a is 4a|n, but 4a + 1 \ n. This formula (among others) 
is given by Hua [29 pp. 215-216]. First of all, it is far from obvious that 
this expression for r3(n) is an integers whereas our expressions of Theorem 1 
are clearly integral. However9 Dirichlet's formula permits an easy proof of 
the fact: r3(n) > 09 if and only if, n is not of the form 4a(8tf? + 7 ) . At the 
moment, the author has not seen a way of deducing this fact from Theorem 1. 
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1. INTRODUCTION 

There is a large literature concerning various properties of the Bernoulli 
numbers; see, for example, [1, 12, 16, 23] and their references. According to 
H. S. Vandiver [23], by 1960 over 1500 papers had been written on the subject. 
The main thrust of the present paper is to consider several congruence proper-
ties of the Bernoulli numbers that extend various results of Vandiver, Nielson, 
Carlitz, and Stevens; see [2, 16, 19, 22]. The Bernoulli numbers Bn (n > 0) 
are defined by the expansion 

r 1 Z-f Dn ~ j 9 

ex - 1 n = o nl 

which is equivalent to 

t (")sr = Bn (n > 1) (1.1) 

together with B0 = 1. It is sometimes convenient to write (1.1) in the form 

(B + l)n = Bn (n > 1) (1.2) 

where it is understood that, after expansion of the left-hand side, we replace 
Bk by Bk. It is easy to check that for the first few values of n we have 

Bx = -1/2, B2 = 1/6, Bh = -1/30, 

and that in general B2k+1 = 0 if k ^ 1. 
Bernoulli numbers have numerous interesting properties. For example, if 

Sn(k) = ln +... + kn
9 then Sn(k) = (Bn+1(k + 1) - Bn+1)/(n + 1), where Bn(x) = 

(B + x)n. The Bernoulli numbers are related to class numbers and to FermatTs 
Last Theorem. Moreover, they satisfy numerous recurrences and congruences. 
For further details regarding various properties of the Bernoulli numbers, the 
reader should consult the papers [1, 12, 16, 23] and their references. 

2. CONGRUENCE PROPERTIES 

If p is a prime, we now consider several congruence properties of sequences 
of rational numbers where we say that a/b is integral modulo p if (b9 p) = 1. 

*Professor Stevens passed away on Decembers, 1983. Many of the results in 
this paper were presented by him to the departmental number theory seminar held 
on December 1, 1983. The paper, based on results obtained by Professor Stevens, 
has been written by several departmental colleagues. 
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Moreover, if a lb and c/d are integral modulo p, then 

a _ c 
-r = -j (mod p) if ad = bo (mod p) . 

We assume throughout this paper that p is an odd prime even though similar re-
sults could be obtained for the case in which p = 2. 

In [15] Kummer proved that 

Bn+ l-p Bn 

; = — (mod p) 
n + p - 1 n p 

for all n > 1, where (p - 1) ( n. More generally, one can consider congruences 
of the form 

,?0<-'>-(;)„°"<7-Vo <-*-> 
for n > P, where (p - 1) | n. In [15] Kummer studied congruences similar to the 
above but in a more general setting in which he proved the following theorem. 

Theorem 1 (Kummer): Let an be integral modulo p and suppose 

X > n ^ = £ An(e* - l)n. (2.2) 
n=0 n ! n=0 

If the An are integral modulo p, then 

E(-l) 8 ( * W + e<p-D E °  (mod p'), for n > r > 1. (2.3) 

Nielson showed in [16] that if an = Bn, the nth Bernoulli number, then the 
Bernoulli numbers themselves satisfy (2.3) if (p - 1) | ns where the modulus is 
replaced by pr~ 1. In attempting to remove the restriction (p - 1) | n, Vandiver 
[22] showed that if n = a(p - 1) and an = Bn then (2.3) holds modulo pr~ 1 pro-
vided that v + a < p - 1. This latter restriction is, however, a rather severe 
one. In [2] Carlitz showed that the congruence (2.3) holds if P < p - 1 and 
that some much weaker congruences hold if r ^ p - 1. 

Congruences similar to (2.3) were later studied in a series of papers by 
Carlitz and Stevens [5-9,18-21]. Recently, a number of authors have taken re-
newed interest in the topic of congruences for various sequences of numbers. 
For example, Rota and Sagan [17], Gessel [13], J. Cowles [10], and J. Cowles, 
S. Chowla, and M. J. Cowles [11] have used various general combinatorial tech-
niques, such as group actions on sets, to obtain various congruence properties 
for several sequences of numbers. 

If one looks at Kummerfs Criterion (2.2) and (2.3), it is easy to see that 
the condition is sufficient but not necessary. We will make use of the follow-
ing theorem due to Carlitz [5]. 

Theorem 2 (Carlitz): Let an be integral modulo p and suppose 

00 xn °°  (ex - 1)^ 
2-r an ~~\ ~ L* ^-k y\ • 

rc=0 n ' k=0 K-

Then Ak = 0 (mod p^/p]) for a n k >,0 if and only if 
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jto(-D8(r
8)«n+Hp-i)EO (mod PP)' for a11 n > r > l' 

3. APPLICATIONS 

In this section we apply Theorem 2 to the Bernoulli numbers to obtain sev-
eral congruences that extend various results of Vandiver, Nielson, Carlitz, and 
Stevens, see [1, 16, 19, 22]. Finally, we use the theorem to obtain an elemen-
tary proof of the Staudt-Clausen theorem. Let us put 

* = f B SSl = logd + (e* - 1)) _ f* , n „ nl (ex - l)n 

ex __ i n = 0 n- ex - I n = ° 

so that 

(-l)nn! 
*" n + 1 ' 

Now however, the -4nTs do not satisfy the condition of the theorem. If we mul-
tiply by p, each coefficient in the new series does satisfy the condition, ex-
cept for the coefficient of 

(p2 - 1)! 

Thus, we have 

n = 0 
E PBn fr = - ^ (e* - l)p - 2 + C(x), 

where C(x) satisfies the condition of the theorem. Hence, if D is the deriva-
tive operator, then 

2 , 

(Dp-D)*±PB„£= (Dp -Df {~l\ " ( e * - I ) ? 2 ' 1 (mod p " ) , 
n = o n-

where we say t h a t 

£ a>n ZT = L, bn Z7T (mod m) 
n = 0 r i ' « = 0 r i ' 

i f an = bn (mod TW) for each n *> 0 . 2 
We now c o n s i d e r (£>p - D)r(ex - l)p ' 2 (mod p p + 2) . S ince 

(e* - l)p2-2 = PZ (-lf~l~Hpl 7 ^ S 
-r = n \ J / 

if we apply the operator (Dp - D)r, we get after some simplification that, f,or 
each n > 0, the coefficient of xn/n\ is 

sW ! - u f : Mcr1- nv+'. (3.D 
= o x J / 3 
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We now break the sum (3.1) into two sums E f and E " § where in E ' we sum over 
those j for which p \ j s while in E " we sum over those j for which p\j. 

To compute E ?
 s suppose that j p ~ l - 1 = pk(j) , so that 

j = o x «7 

We know that 

-.* - n x f/ / 

(p2 . *) = (-l)J (mod p). 

If j ' = j (mod p) so that j ' = j + $p9 then &(jf) = &(j) - jp~2Q (mod p ) , and 
hence 

(*> Z ' (- i )p 2"1"J'(p 2 r ^(fco-))1-^"*1, 

j " " (mod p) ( -D" 2 " 1 P E P E W ) - jp"2c)' 
.5=0 

E (-l)̂ -1 Ptr+r E V (mod p), 
j = l e = o 

since the terms in the brackets run through a complete residue system modulo p. 
If (p - I) ][ r» then the inner sum is zero modulo p 3 while If (p - 1) | (n + r) 9 
then the outer sum is zero modulo p . If (p - l)|r and (p - 1)|(n + r), then 
the left-hand side of (&) is congruent to (™l)p " l modulo p. Hence § 

(0 (mod pJ,+ I) if (p - 1 ) | r 

£ ' = <0 (mod p^+1) If (p - 1) | («'+ r) 

((~1)P2- x (mod p^+1) If (p - 1)|P and (p - l)|(n + r ) . 

Along similar lines, we may compute the sum E ! ! to obtain 

(0 (modp^1) if (p - 1 ) | (n + p) 

\(-l)p2 + rpn+r (mod p*+i) if (p - l)|(w + r) 

Therefore, combining the congruences obtained for E f and E 9 we see that pBn 
is integral modulo p, Thuss we may apply Theorem 2 to the sequence an = pBn to 
obtain 

Theorem 3: Let N = E (™ 1) P~ S( q ) 5«+s(p-i) 

(A) If (p - 1) | n where n > r > 1, then tf = 0 (mod p r ~ * ) . 

(ft) If (p - 1) \n and (p - 1) | r where n > r > 1, then /!/ E 0 (mod p r~ 2 ) . 

(C) If (p - l)|n and (p - l)|r where n > r > 1, then N = p p~ 2 (mod pr~ l). 

(D) If n = r and (p - 1)|w, then N = 0 (mod p r + 0 -

We note that (A) is a result of Nielson [16] , while the result in (B) improves 
upon results of Vandiver [22] and Carlitz [2]. 
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We now obtain a generalization of these congruences. Since 

---1'-"1 y> 

Se - yPe= (xP"1 - yP"1)^- W'1 + *(p- WW1-
+ ar(P-3)p-1j/2P-1 + ... + yCP-Dp- 1 ) , 

by induction on e one can prove the following identityt 
e - 1 

xPe-' - yP"1 = £ pi(x - y)P"1'ifi(x9 y) (e > 1) (3.2) 

where each f^(x9 y) is a polynomial in x and z/. Let E be the difference oper-
ator and suppose b ̂  1. Let x = #&(p-l) and z/ = 1 in (3.2) and then take the 
p t h power of both sides. We obtain 

.^•^"'(D^ip'-'o'-i)' °(mod pA) ( 3 - 3 ) 

where A is the minimum of 

e- 1 e- 1 
-1 + £ &X +5Zpe""1~ ̂  a n d a

0
 + " " + 0te_ ! = P. 

i = l £ = 0 

This minimum occurs when 

aQ = ••• = ae_ 2 ~ 0 and ae_ x = P. 

Hence, if n > er, then ;4 = er - 1. We may now state 

Theorem k: Let b > 1, e > 1, and M = £ (-l)r~ S ( ^ ) ^ + sbpe-i(p_ i y 

(A) If r > 1, n > er, and either (p - l)|n or (p - 1) \ r9 then 
M E 0 (mod p e r ~ l ) . 

(B) If n > er9 (p - 1) |n, and (p - l)|r, then M E 0 (mod p e p ~ 2 ) . 

These results should be compared with Theorem 8 of Stevens [19]. 

We now apply Theorem 2 to obtain an elementary proof of 

Theorem 5 (Staudt-Clausen): If n > 1, then 

B2n = G2n " ^ ~ 
(p- D|2n ̂  

where £ 2 n is an integer. 

Proof: It suffices to show that pBn = -1 (mod p) if and only if (p - 1) \ n . We 
have 

*fe -2. p 
£P** fr= £ (~Dfe irrrte* - x> & 

By induction on n in (1.1), it is easy to show that pBn = 0 (mod p) if 0 < n < 
p - 2, and hence from (1.1) we have that pBp_x E -1 (mod p ) . If n = a(p - 1), 
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then for r = 1 we have pBa(P- i) = pBp. i (mod p) so that Ba(p. i) = -1/p + Q where 
C is integral modulo p. Similarly* p£n E 0 (mod p) if (p - 1) | n. Thus p di-
vides the denominator of Bn if and only if (p - 1) \n. 
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1. INTRODUCTION 

One of the more appealing aspects of'the Fibonacci sequence, and certainly 
the most appealing to the uninitiated, is the very large number of remarkable 
identities that can be found* Discussing identities with Vern Hoggatt several 
years ago, I pointed out that it was easy to discover new identities simply by 
varying the pattern of known identities and using inductive reasoning to guess 
new results. With characteristic enthusiasm, Vern immediately picked up on the 
idea and suggested that an appropriate paper be written. Shortly after return-
ing homes I received a letter from Vern which began: "There are a surprising 
number of good ways of expanding the list of identities. Consider .*. ." And 
the last sentence read; "At least some of this is sparkling new, and we are 
only using observation.," 

What follows is an account of some of the ideas we were sharing. They are 
not deep but, like Vera, I find them interesting. Of course, the ideas can be 
extended to more general recurrent sequences in obvious ways, but we restrict 
our attention here to the familiar Fibonacci and Lucas sequences defined by 

and LJ = a* + BS (1) 
v5 

where a = (1 + v/5)/29 3 = (1 - \/5)/2, and i is an integer. 

2. THE GENERAL IDEA 

The identities 

tF/=FnFn+1 (2) 
and 

i = l 

£.£/-£A+i "2 ") 

are well known (see, for example9 [4], p. 55]. Alternatively, for the Lucas 
sequence, one can easily obtain 

Z L 2 = j^nFn + 1 "even, (3 f) 

*-l \5FnFn+l " 4 n o d d * 

How might these be generalized? Well, sums of squares might be viewed as 
sums of terms of the second degree in Fibonacci and Lucas numbers. Thus, one 
might consider other such sums like, for example, 

2>.F. + 1, £ F,Fi+2, ..., E/fPi + d 
^ = 1 ^ = 1 t = 1 
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and their Lucas counterparts or the mixed sums 

%=\ ^ = 1 ^ = 1 

One can now proceed fo rmal ly 9 or wi th a l i t t l e g u e s s i n g , t o o b t a i n , fo r d any 
p o s i t i v e i n t e g e r 5 

» (FnFn+d+l n e v en 9 

*ml (FnFn+d+l~Fd n ^ d 9 

* (5FnFn+d+l n e v e n * 
^ V i + d " (5) 

* = 1 I 5 * n * n + < f + 1 - Ld + 3 n o d d , 

" (FnLn+d+l n e v e n > 
S ^ i + d - < (6) 
* = 1 VVn+d+l - Ld " odd' 

" (FnLn+d+l n e v e n > 

1 " 1 ^ n ^ n + d + l " ^d+3 ^ Odd, 

whichj, as one would expect, exhibit a pleasing symmetry. 
The proofs are straightforward utilizing Binetfs formulas (1) and the known 

identities (see [1] and [10]) 

(FsLr+s s e v e n > 
F*+2e-F*m\ W> 

{LsFr+e s odds 

(5F8Fr+8
 S e V e n ' 

^ + 2 s - L* " < (9) 
I L s L r + S

 s o d d * 

(LsFr+s G e v e n > 
tfP+23 + *V =< (10) 

( F s L r + s s odd, 

LsLr+s s even 

* i . + 2 a + ^ - < i ( U ) 

l 5 F s F r + s s odd. 

As an example of t h e p roo f s of ( 4 ) - ( 7 ) , we prove ( 4 ) . Since a3 = -1» 1 -
a2 = -a, and 1 - 32 - -3» we have 

A'^-u^i^n 
(continued) 
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_ a^ct2 - a2n + z) + 3d(g2 - B2n+2) _ lad + 8d\ . f ( - 1 ) i 

5 ( l - a 2 ) 5 ( l - 3 2 ) V 5 / i = 1 

= ±{ad(a2n+1 - a) + 6d(62 n + 1 - B) - Ld • £ ( -1)4 

= Ua2n+d+1 + g2n+d+i _ ( a d + i + B d+ i } - £ ; J . £ (-i)»i. 

Therefore, for n even, 

. £ FiFi + d = "s"(L2n+<i+l " ^ d + i ) = ^ n ^ n + d + l ^ = 1 J 

by ( 9 ) . For n odd, we have 

n 1 1 
. £ FiFi+d = ^ ( L 2 n + J + l " L<f+1 + ^ " 5" ( Z ; 2n+ C ?+l " L<f- 1> 
i = 1 

= ^L2n+d+l + Ld+1 ~ 5 F d ) = V n + d + l ~ *d 

by ( 1 1 ) , s i n c e Ld+l ~ Ld -¥ L^~ \ and £<?_ i + ^d+l = 5i^ f ° r a ^ ^» 
The o t h e r r e s u l t s a r e proved s i m i l a r l y . 

3. THE IDENTITY Ln
2 - 5^n

2 = 4 H T 

As a second example, we c o n s i d e r t h e i d e n t i t y 

i n
2 - 5Fn

2= 4 ( - l ) n . (12) 

Again the terms on the left are of the second degree and we are led to consider 
expressions like 

Ln " 5Fn + d> LnLn + d " 5FnFn + ds LnFn + d " FnLn + d> LnLm " 5Fn+dFm+d> 

and so on. As before, one can proceed either inductively or formally, or with 
a combination of both approaches, and it is a meta-theorem that we will not be 
disappointed. In fact, the following results can be exhibited. Let m9 n, and 
d be integers. Then 

( 5 * , - d * ,
B I + » + r f + 2 < - 1 > % . - » d e v e n > 

^L-dLm+n+d d o d d > 

(5F-dFm+n+d d even, 

(L_dLm+n + d+ 2 ( - l ) " l „ - » d ° d d , 

i^-d^m+w+d d even , 
V m - FK + dFm+<f = U ( 1 5 ) 

5 ( L - ^ m + , + rf- ^ - ^ " ^ - n ) ^ ° d d , 
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and 

(F-dLm+n+d -d even, 
LnFm - L

n + dFm+d = \ (16) 
U - d ^ + n + d - 2(-l)nFn_n d odd, 

(F-dLm+n+d* 2(~VnF«-n * even, 
V m " Lm + dFn + d " ) ( 1 7 ) 

U_d*O T + n + d d odd9 

V ^ + d ~ 5 ^ n F w + d = 2( - l )»Z; ; n -* + d» (18) 

LnFm+d " Lm + dFn = 2 ( - 1 ) " ^ - n-S- d * ( 1 9 ) 

LnLm - 5 ^ _ ^ + ^ = (~l)nL_dLm_n+ds ( 2 0 ) 

^ w - ^ - A + d = 5(-Dn+lF„dFm_n+d, ( 2 1 ) 

FnFm " Fn~dFm+d = ( - 1 ) " + ̂ - J ^ - n + d > ( 2 2 ) 

LnFm " Ln-dFm+d = ( " " ^ " ^ - d ^ r a - n + d » ( 2 3 ) 

i ^ m - ^ n - A + d = ( - D ^ ^ - d ^ - n + d - (24) 

Moreover, t h e s e i d e n t i t i e s , or the known i d e n t i t i e s , 

Fm + n+ 1 = FmFn + Fm + lFn + l9 ^ 2 5 ^ 

Lm + n + l = L w F n + Lm + lFn + l> ^ 2 6 ^ 
and 

5^m + n + l = ^m^n + Lm + lLn + ls ( 2 7 ) 

suggest that we seek identities like (13)-(24) but with a plus sign on the left 
in place of the minus sign* Identities indeed exist and, somewhat surprising-
ly, are exactly the same as before but with the even and odd cases reversed. 
Thus, for example 

)T(L-dLn + m+d- 2(-l)%7_n) d even, 
FnFm + Fn+dFm+d={ ^ 

(F-d
F

n + m+d d ° dd°  

This should be compared with (15) above. Since this is the only change required, 
we refrain from listing the remaining counterparts to (13)-(24)* 

The proofs of (13)-(24) and their counterparts with the plus sign on the 
left-hand side all depend on Binet's formulas, identities (7)-(9) and equiva-
lent identities obtained by replacing d by -ds and on the identities 

F_n = (-1)"-Vn (29) 
and 

L_n = (-l)nLn (30) 

for a l l n . As an example, we prove ( 1 4 ) . We have 

LnLm - Ln+dLm+d = (a* + g * ) ( a m + 6m) - (a"+d+ &n+d)(am+d + $m+d) 

(con t inued) 
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= am+n+ 3 m + n + (aB)"(am-n+ gm_n) 

_ am+n+2d_ $m+n+2d_ (a$)n+ d(am~ n + &"'") 

Thus, u s i n g ( 9 ) , ( 2 9 ) , and ( 3 0 ) , we have , f o r d even , 

and, fo r d odd, 

^n^m "" Ln + dLm+d = ""%km+n+J + 2 ( _ 1 ) Lm-n = ^-d^m+n+J"*" 2 ( _ 1 ) ^m-n 

as claimed. 

4. HIGHER-ORDER IDENTITIES 

Casting about for other identities to treat in the same way, 

F\* " 1 F \ , - 1 F \ , + Fn = 0 (31) 
n+3 n+2 n + 1 " 

and 
F F -IF F - IF F + F F = 0 (32} 
rn+3-Sz+*f ^rn+2rn+3 ZJ7n + l̂ n + 2 T rnrn+l u >> J A' 

were found in a paper by Hoggatt and Bicknell [6]. Note that (32) is already 
related to (31) in the manner of this paper, and one would expect such results 
as 

£* - 2L2 - 2L2 + L 2 = 0, (33) 
n+3 n + 2 n + 1 n ' 

F L - 2F L - IF L + FnLn = 0, (34) 
n+3 n+3 n+2 n+2 n + 1 n+1 n n ' 

Fn+3Lm+3 - 2Fn+2I,m+2 - 2Fn+1Lm+1 + FnLm = 0, (35) 
and so on. Checking a bit further, I found that these and a good deal more are 
already known to hold. In [2], T. Brennan shows that 

n£\-l)Hr + 1)/2\n + 1]xn + 1~r^ 0 (36) 
r = o L P J 

where 

is the auxiliary equation for qn, where qn is the product of any n sequences 
satisfying the recurrence \in + 2 - Vn+i + ̂ n* 

For n - 2, (36) becomes 

x3 - 2#2 - 2a: + 1 = 0, (38) 

which implies the truth of (33)-(35) and all other such generalizations. For 
n = 3, (36) becomes 

xk - 3x3 - 6a?2 + 3x + 1 = 0, (39) 
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which i m p l i e s such i d e n t i t i e s as 

F3
t-3F3 - 6F3 + 3F3 + F3 = 09 (40) 

n+k n+3 n+2 n+1 n 9 v J 

F F F - 3F F L - 6F F L 
n + k 777 + 1+ p + k n + 3 m + 3 p + 3 n + 2 m + 2 p + 2 

+ 3Fn + lFm + lLp + l +FnFmLP = 0 , (41) 

and so on. Those interested in these and similar matters should also see [3], 
[5], [7], [8], [9], and [11]. 

As a final example, we consider the well-known and elegant identity 

F = F3 + F3 - F3 (42) 
£3n rn+l T £n £ n-1 KH^' 

(see [12], p. 11). In the spirit of this paper, there are three immediate gen-
eralizations, and one has only to consider a few examples to guess the follow-
ing: 

5F3n = Fn+ lLn\l + V n " Fn - lLn- 1 > <"> 
and 

5i3n = L n + l +£„9-£„3.1. (45) 

For comple t enes s , we prove each of ( 4 2 ) - ( 4 5 ) . They a r e no t d i f f i c u l t , bu t 
a r e a b i t s u b t l e , and i t i s easy to t ake a wrong t u r n . We make r e p e a t e d use of 
( 2 5 ) , ( 2 6 ) , and ( 2 7 ) , above. 

To prove ( 4 2 ) , we use ( 2 5 ) , and w r i t e 

F = F 
3rc n-l+2n+l 

= F Fn + F F 0 L1 n-1 2 n n 2 n +1 

n -1 n-l+n+1 + £n£n+n+l 

= Fn-l(Fn-lFn + ^ „ + i ) + ^n ^n + ^ + l ) 

- V l W l + *'„+l> +F»3 + FnFn\l 
= Fn-AFn + l ~ Fn-l)&n+l + ^ - l ) + ^ + ^ n + 1 
= 7? z? 2 - F 3 +• F 3 + F F 2 

r n - l r n + l r n - l ^ ^ n ^ x n x n + l 
= F 2 (F + F ) + F 3 - F 3 

r n + l ^ r n - l T ^ n ' T x n x n - l 

= F * + F3 - F3 _ n+1 n n-1 

as c la imed . 
For ( 4 3 ) , we use (26) and the formulas 

F = F2 - F 2 and F = F 2 + F2 

^2n n+1 r n - l d U U r2n+l £n T r n + l 

from the proof of (42) t o w r i t e 

^3n ^n-l+2n+l 

Ln-l(Fn\l ~ Fn-^ + £ n ( ^ + ^ + l ) 

V A + i " Ln-iFn-i +[Ln*£ + LnFn\i ( con t inued) 
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" Fn+l(Ln-l + Ln) + LnFn " Ln-lFn-l 

= ^n + l^n+1 + ^n^n " Ln-lFn-l' 

For ( 4 4 ) , we use (27) and (26) t o w r i t e 

J r3n •Jr n-l+2n+l 

= Ln-lL2n + LnL2n+l 

" ^ n - l ^ n - l / n + V n + i ) + Ln(LnFn + ^n+i^n+l) 

= Ln-lFn + L r c -1 L A+1 + Z«Fn + ^ L n + lFn+l 

" Ln-l(Fn + l - Fn-0 + V l ^ * V , + l + ^ „ + ^ n - 1 + £»>*Vi + l 
= ^ n + l ^ w - l + 2Ln-lLn + Ln) + ^n^rc ~ Ln~lFn-l 

= ^ n + l ^ n - l + Ln) + LnFn " ^n- l^n- l 

Finally, to obtain (45), we use (26) and (27) to write 

^3n ~ 5 ^n - l + 2n+l 

= ^ n - l ^ n + V 2 » + l > 
= ^n-1 * -^n-l+n + l + r̂c * ̂ Fn + n + l 

= L n - l ^ n + l ~ L n - 0 + ^H-lAAi + 1 + Ln + LnLn + l 
= ^n-lLn + l ~ Ln-1 + Ln-lLnLn + l + Ln + (Ln + 1 " ^ n - l ^ n + l 

= ^n + 1 + Ln ~ ^n-1 + ^n-l^n + l ^ n - l + ^n " ŵ + 3.) 

= Ln + 1 + Ln ~ Ln-1 

as c la imed . 

REFERENCES 

1. G. E. Bergum & V. E. Hoggatt, Jr. "Sums and Products of Recurring Sequences." 
The Fibonacci Quarterly 13 (1975):115-120. 

2. T. A. Brennan. "Fibonacci Powers and Pascalfs Triangle in a Matrix." The 
Fibonacci Quarterly 2 (1964):93-103, 177-184. 

3. L. Carlitz. "The Characteristic Polynomial of a Certain Matrix of Binomial 
Coefficients." The Fibonacci Quarterly 3 (1965):81-94. 

4. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton-Mifflin, 
1969; rpt. The Fibonacci Association, 1980. 

5. V. E. Hoggatt, Jr. "Fibonacci Numbers and Generalized Binomial Coeffi-
cients." The Fibonacci Quarterly 5 (1967):383-400. 

6. V. E. Hoggatt, Jr., & M. Bicknell. "Some New Fibonacci Identities." The 
Fibonacci Quarterly 2 (1964):29-32. 

7. V. E. Hoggatt, Jr., & M. Bicknell. "Fourth Power Fibonacci Identities from 
Pascalfs Triangle." The Fibonacci Quarterly 2 (1964):261-266. 

8. V. E. Hoggatt, Jr.,&A. P. Hillman. "The Characteristic Polynomial of the 
Generalized Shift Matrix." The Fibonacci Quarterly 3 (1965):91-94. 

166 [May 



DISCOVERING FIBONACCI IDENTITIES 

9. D. Jarden. Recurving Sequences. 2nd ed. Jerusalem* Israeli Riveon Lema-
tika, 1966, pp. 30-33. 

10. C. T. Long. "On a Fibonacci Arithmetic Trick." The Fibonacci Quarterly 23 
(1985):221-231. 

11. R. F. Torretto & J. A. Fuchs. "Generalized Binomial Coefficients." The 
Fibonacci Quarterly 2 (1964)s296-302. 

12. N. N. Vorobfev. Fibonacci Numbers. New York: Blaisdell, 1961. 

The book FIBONACCI NUMBERS AND THEIR APPLICATIONS containing the papers 
presented at the First international Conference on Applications of The 
Fibonacci Numbers held in Patrass Greece, can be purchased for $44.50 
(a 25% discount). 

All orders should be prepaid by Cheque, credit card, or international 
money order. Order from: 

KLUWER ACADEMIC PUBLISHERS 
190 OLD DERBY STREET 
HINGHAM, MA 02043 
U.S.A. 

if you reside in North America or Canada. Residents of all other coun-
tries should order from: 

KLUWER ACADEMIC PUBLISHERS GROUP 
DISTRIBUTION CENTRE 
P.O. BOX 322 
3300 AH DORDRECHT 
THE NETHERLANDS 

1986] 167 



EXPLICIT FORMULAS FOR NUMBERS OF RAMANUJAN 

F. T. HOWARD 
Wake Forest University, Winston-Salem, NC 27109 

(Submitted August 1984) 

1. INTRODUCTION 

In Chapter 3 of his second notebook [1, p. 165]9 Ramanujan defined numbers 
a (ft, k) such that a(2, 0) = 1 and for n ̂  2, 

a(n + 1, k) = (ft - l)a(ft, fc - 1) + (2n - 1 - k)a(n9 k). (1.1) 

He defined a (ft, &) = 0 when fc<0or/c>ft-2. The numbers were used in the 
following way: Fix a > l/e and for real In define x > 0 by the relation 

Then i t can be shown [1, pp. 164-165] that 

where |/z| is sufficiently small, i4x = (1 + log a ) " 1 , 

^n -*]£ a(n, fc)(l + log a)1 + / c " 2 n , n > 2 . 
fc=o 

The values of a(ft, &) for 2 < ft < 7 are given in the following table. 

Table 1 

|NJ: 
ft \ 

2 
3 
4 
5 
6 
7 

0 

1 
3 
15 
105 
945 

10395 

1 

1 
10 
105 
1260 
17325 

2 

2 
40 
700 

12600 

3 

6 
196 

5068 

4 

24 
1148 

5 

120 

The purpose of this paper is to show how a(ft, k) can be expressed in terms 
of Stirling numbers of the first kind and associated Stirling numbers of the 
second kind. We prove in §2 that 

a(ft, ft - 2) = (ft - 2)! = (-l)ns(ft - 1, 1), 

a(ft, ft - 3) = (~l)n(ft - 2)s(ft - 1, 1) + (-l)n-l2e(n - 1, 2), 

and in general, for k ̂  2, 
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k- 1 
a(n, n - k) = E (-l)n~ * ~ ̂  t (n)s(n - 1, t) , 

where Pfe> t (n) is a polynomial in n of degree k - 1 - t and s(n - 1, t) is the 
Stirling number of the first kind. A recurrence formula for the coefficients 
of Pkvt(n) is derived and the values of Pktt(n) for 2 < k < 6 are computed (see 
Table 2). In §3 we show that 

a(n9 0) = M2n - 2, n - 1), a(n, 1) = &(2n - 3, n - 2), 

and5 for k > 1, 

a(n, k) = E Sfe(n9 r) U " 2 ~ _ ^ j ; (* ~ D M 2 r - 3, r - 2), 

where the Qk(n9 r) are rational numbers, 

1.3 ••• n if n is odd, 

^2.4 oB* n if n is even, 
(1-2) 

and b(n9 k) is the associated Stirling number of the second kind. A recurrence 
formula for Qk(n9 r) is worked out and the values of Qk(n9 r) for k = 2 and 
k = 3 are given. In §4 we prove an identity for the Stirling numbers of the 
first kind. This identity, interesting in its own right, is used in the proof 
of Theorem 2.1. 

2. STIRLING NUMBERS OF THE FIRST KIND 

Throughout the paper we use the notation 

(x)n = x(x - 1) ••• (x - n + 1) . 

The Stirling number of the first kind, s(n9 k), can be defined by means of 

k = o 

These numbers are well known and have been extensively studied; a table of 
values for 1 < n < 15 can be found in [2, p. 310]. In particular, 

s(n9 1) = (-ir-Hn - 1)!. 

By (1.1) and the fact that a(n9 k) = 0 for k > n - 2, we have 

a(n9 n - 2) = (n - 2)a(n - 1, n - 3) = (n - 2)!a(2, 0) = (n - 2)!, 

and therefore 

a(n9 n - 2) = (-l)ns(n - 1, 1). 

Theorem 2.1: For k > 2, 

k- l 
• E • a(n, n - k) = E Pfti t <«) (-1)"" ' " *s(n - 1, t) , 
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where Pk t(n) is a polynomial in n of degree k - 1 - t. The coefficient of 
nk-i-^is tl/(k - t - 1)!. If we write 

k - l - t k - \ - t 

j = o j' = o 

then, for k > 2, dk(l, 0) = 0, dk(t9 0) = (k - l)cfel(t - 1, 0) for t > 1, and 

k - 1 - J . / 1 \OT - t + 1 

rffc(*. J ) - E (~1) I"?) Wfc.^TTZ, J " 1) + (fc " l)efc.1(777,..j)) 

for £ > 1, j > 0. 

Proof: We showed above that the theorem is true for a{n9 n -2); assume it is 
true for a(n9 n - (k - 1)), so we can write 

k-2 
a(n9 n - <k - 1)) - £ p X m(n) (-if ̂ " ^ ( n - 1, m), (2.2) 

7 7 7 = 1 

fc-2-m k-2-m 
Pfe-i,m(n) = E ^ - i ^ * «/)(" - !)j = E dk_£m, j)(n - 2)̂ . . (2.3) 

j = 0 ,7=0 

By (1.1), we have the recurrence 

a(n9 n - k) = (n - 2)a(n - l , n - l - f e ) + ( n - 3 + k)a(n - 1, n - k). 

(2 .4 ) 
We d e f i n e t he formal power s e r i e s 

4*0*0 = E a(n> n - feh ifcW'/ ~ Zw ^ ^ - 9 " ~ *W ^ _ 2 ) ! 

xn~1 

and sum on both sides of (2.4), after multiplying by , 9. t, to obtain 

00 ^ . n - 1 

4*0*0 = xAk(x) + E (̂  " 3 + fc)a(n - 1, n - fe) , _ 9, t . n=k \n 1.) . 

Therefore, 

Ak&) = T T V E (n - 2 + k)a(n9 n - (fc - 1)), *"nt'- (2.5) 
1 X n=k-1 ^ 1;. 

Comparing coefficients of x n _ 1 in (2.5), we have 

a(n9 n - k) = £ -^ ~ 9^ 't a(r, r - (k - 1)) 
r.fc. 1 v* z'* 

+ (* - 1 ) ntl 91 z ?}! *(*•» * - <* - 1 » . (2.6) 

We now substitute into (2.6) the formula for a(r9 r - (ft - 1)) given by (2.2) 
and (2.3). Then (2.6) becomes, after some manipulation, 
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k-2 k-2-m n-2 , o\ ? / i\n~r 
<*.'*- *) = L E (-Dw-ndfc.1(m, j) E (I V n « S(P9 m) 

m= 1 j = 0 r= j+1 v Z <? i ; ' 
k- 2 k- 2-m n- 2 , o\ , / n n - r 

+ (fc - 1) E E ("ir-^.^m, j) E ( n ~ y - ^ i a(r, ra). (2.7) 
J = 0 p=j 

At this point we need the following lemma9 which we prove in §4. 

Lemma 2.1: We have 

£ nl(-l)n'r 
-7 .. , S(P, 772) 

JL / I \m- t+ 1 

"(»)jE s ( n + i» *)(-?) if J > o* 
I £ = 1 Xt/ / 

Ks(n + 1 , m + 1 ) if j = 0. 

= E Pfctt(n) (-l)n'^^(n - 1-, t) 

We now substitute the formulas of Lemma 2.1 (with n replaced by n - 2 and j 
replaced by J 4- 1) into (2.7) and change the order of the m9 t summations. We 
have 

k-2 k—1-t 
a(n9 n - k) = E E A < £ , «/)(* - 2),-(-l)"" *" *s(n - 1, *) 

t = I j = o 

'+ ̂ k(k - 1, 0)(-l)n-ks(n - l9 k - I) 

fc- i 

t = 1 

where dk(l, 0) = 09 <^(t* 0) = (k - l)^_1(t - 1, 0) for t > 1 and 

d*<*. <?) = E <-Dw (7) (dk i(w, j - 1) + (fc - D^.ito* J*)) 

for t > 1, j > 0. It follows that P^ t(n) has degree & - 1 - t and the coeffi-
cient of n&-l-* £s 

dk(t, k - 1 - t) = ̂ -. 1 _ t d k . x(t, fc - 2 - *) 

= (fc _ 1 _ t)! <*t+i<*» °>-

Since 

Pk,k-i^ = dfe(?c - 1. 0) = (k - D ^ . ^ k - 2S 0) 

= (fc - lMfc_i(k - 2S 0) = (k - 1)!, 

the coefficient of nk~l^t±n Pk t(n) is /*,_•.*_ ,yt « This completes the proof 
of Theorem 2.1. ' l 

From Theorem 2.1, we have the following special cases? 

ck(t, J) = 0 = rffc(£, J) i f j > fc - 1 - *, 
<?k(£ - 2S 1) = dfc(fc - 2, 1) = (fe - 2 ) ! 
ck(k - 2 , 0) - (fc - 1 ) ! + ( » l ) f e - 1 s ( k 9 2 ) , 
dfc(fc - 29 0) = k(k - 2 ) ! + ( - l ) * - 1 * ? ^ . 2 ) , 
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ck(t, k - 2 - t) = [t\(k - 2) + (-1)*(£ + l)s(t + 1, 2)]/(k - 2 - t)!, 

dk(t, k - 2 - t) = [£!(& - 1) + (-l)t(t + l)s(t + 1, 2)]/(k - 2 - £)!. 

It follows that 

Pk9k-2^ = V< - 2) In + (k - 2)(k - 2)! + (-l)*"1^*, 2). 

We have already pointed out that 

The evidence seems to indicate that 

(2.8) 

(2.9) 

_ , . in + k - 5\ 

but this has not been proved. 
Since (n - l)j = (n - 2)j + j(n - 2). x, we have the relationship: 

dfc(*» j) = ck(£, j) + (j + l)cfc(£, j + 1). 
Since j 

( « - 2 ) . -
we have 

L (-l)J"rJ!(n - l)r/r!, 
r= 0 

efc(*. J) = (-I)' E (-Drr!dfc(t, r)/j!. 

(2.10) 

(2.11) 

Using (2.10) and (2.11), we can obviously write the recurrence for the coeffi-
cients Pfrit(n) in several different ways. 

The following values of P^ t(n) have been worked out using Theorem 2.1. 

Table 2 

\ t 
k \ 

2 
3 

4 

5 

6 

1 

1 

n - 2 

( » ; • ) 

( 3 ) 

c:1) 

2 

2 

2n - 7 

(n - 2) (n - 4) 

2(- ; ' ) - ( • ; ' ) 

3 

6 

6n - 32 

3n2 - 29n + 61 

4 

24 

24n - 178 

5 

120 

3. ASSOCIATED STIRLING NUMBERS 

The associated Stirling number of the second kind, b(n9 k), can be defined 
by means of 

(ea x - i)k = k\ £ b(n, k)~. 
n=2k n l 

172 [May 



EXPLICIT FORMULAS FOR NUMBERS OF RAMANUJAN 

We are using the notation of Riordan [3S pp. 74-78] for these numbers. They 
are also discussed in [2S pp. 221-222], where the notation Sz(n9 k) is used. A 
recurrence formula is 

b{n + 1, k) = kb{n9 k) + nb(n - 1, k - 1) (3.1) 

with b{09 0) = 1 and b{n9 k)= 0 if n < 2k. A table of values for b{n9 k), 
1 < n < 18s is given in [29 p. 222]. It follows from (3.1) that 

b{2n9 n) = 1 -.3 • 5 • ••• • (2n - 1) = {In - 1)!!, 
with the notation of (1.2). 

Since a(n9 0) = (In - 3)a(n - 1, 0) = {In - 3)!!, we have 

a{n9 0) = &(2n - 2, n - 1), n > 2. (3.2) 
Also» 

£(2rc - 1, n - 1) = {n - l)Z?(2n - 29 n - 1) + {In - 2)£(2n - 3, n - 2) 
= (n - l)a(n, 0) + {2n - 2)b(2n - 39 n - 2)s (3.3) 

with b{39 1) = 1. Comparing (3.3) with (1.1), we have 

a{n9 1) = b{2n - 3S n - 2), n > 3. (3.4) 

Let F^{x) be the formal power series 

y. q(n + 1, k) n 
n^0{2n - k - 1)1! X " 

Then from (1.1) we have 

F (x) = 1 f (n ~ 1)a(w' fe " 1} «;n. (3.5) 

Comparing coefficients of a;""1 in (3.5), we have 

a(n, k) = "t1 ffi I \ I ?i 1 i (J - Da(j. * - D- (3.6) 

It follows from (3.4) and (3.6) that 

<"• 2> - ^ n l ~-l\'<\^ ~ ^h{-lT " 3, r - 2). (3.7) a r=3(2r - 3) 

Theorem 3.1: For k > 29 

n- k+ l /jy, _ j . _ o\ t i 

a(n, k) = E «*<«. *0 (2r _ 3 ) M " (r " 1>i,(22> " 3, r - 2), 

where the Q^in, r) are rational numbers such that Q2(n, r) = 1 and 

„ / % "v*1 (2m - k - 2)! !/ .._ , , 
m= r+k-2 v ' 

for 3 < r < w - 1 and n > 4. 
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Proof: According to (3.7), the Theorem is true for a(n9 2); assume it is true 
for a(n9 k - 1). The proof for a(n9 k) follows immediately when we substitute 

aU. k - 1) = L Qk_,<J. y> (2r - 3)!l"(r " 1)i(2r " 3> r ~ 2) 

into (3.6) and change the order of the summations. This completes the proof. 

It is not difficult to evaluate 

n i \ "v*1 (2m - 5) ! ! , 1N 

= (̂2?2 - 5)/2w - 6\ (r + 1) (2r - 3) /2r - 4\ 
3 o 4 n - 3 Vn - 3/ " 3 . 4 P - 2 \r - 2/' 

but apparently the formulas for Qk(n9 r) for k > 3 are complicated. 

4. PROOF OF LEMMA 2.1 

The second equality in Lemma 2.1 is proved in [2, p. 215]. To the writerfs 
knowledge, the first equality is new and is of interest in its own right. We 
shall make use of the generating function 

(1 + t)u = t £s(n, k)uk JJ, (4.1) 
n=0 k=l nl 

which follows from (2.1) and the MacLaurin series for (1 + t)u. We have 

(4.2) 
n-3 fc-1 W - Q). 

„-J p-j \fc- 1 ^ «" ' / "' 

From (4 .1 ) and the b inomia l theorem, 

(1 + t)"-^"1- 1 + f ± Bin, k) t(l)i-d ~ rf-*u*£, 
n= 1 k-l r = 0 w ' " -

t'Mjd + t)"-*-1 

n ]L /Is \ n I $ \-f-n + J 

Comparing coefficients of uktn/nl in (4.3) and (4.4), we have 

A (-l)*-ps(p, fe)wl , x ^ , - N V 

We now obtain the right-hand side of (4.5) in another way. We know 

(4.5) 
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(n)^ (x)n + 1 /(x - j) 

= (n)j (x)j (x - j - 1)„_J-

J w - J 

w= 0 t = 0 

- <">j I««. m)nj?8(n - j9 £)( £ (̂ (-J - 1)*-UW+* (4.6) 

The coefficient of xk on the right side of (4.6) is 

(n)d f s ( j , w) ^ (kimY-* ~ lf'k + ms(n - j, i)s 
w= 1 i = k-m 

which can be compared to the right side of (4.5). The left side of (4.6) can 
be written 

-in). 
(nh (x)n+1/(x - j) = — - . — — £s(n + 1, m)xm, 

so the coefficient of x**- is 

A /l \k-m+ 1 
-in). *£s(n + 1, m)(l

T) . (4.7) 

Comparing (4.7) and the left side of (4.5)s we have the first equality of Lem-
ma 2.1. This completes the proof. 
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SKEW CIRCULANTS AND THE THEORY OF NUMBERS: AN ADDENDUM 

!. J. GOOD 
Virginia Polytechnic Institute and State University, 

Blackshurg, VA 24061 
(February 3, 1986) 

While correcting the proofs of my article "Skew Circulants and the Theory 
of Numbers/' my interest in the topic was revived, and I have now tracked down 
some relevant work by the great Jacobi. On pages 277 and 278 of his paper 
"Uber die complexen Primzahlen, welche in der Theorie der Reste 5ten, 8ten und 
12ten Potenzen zu Betrachten sind" (1839), which is in Volume VI of his col-
lected paperss he shows that any prime of the form 8n + 1 can be factorized as 
<Ka)(j>(a3)(Ka5)(J)(a7)9 where a = exp(27r£/8) and <j>(a) is of the form z/' + z/"a2 + 
z 'a + zr,a3

 9 and this is equivalent to my first conjecture although Jacobi does 
not mention skew circulants. His proof depends on Gauss's theory of "biquadrat-
i c residues" and on work by Lagrange (presumably Lagrange's Oeuvres III, pp. 
693-795). Jacobifs proof is too succinct for me to understand, and I think he 
may have been slightly careless. For example, he says (in free translation): 
"One can prove that any number a + ib that divides a number of the form y2 - iz2 

is again of this form itself, and the proof is exactly like that of the analo-
gous fact that any whole number that divides a number of the form y2 + z2 is 
itself a sum of two squares. (Without some gloss, this last statement is 
false; for example, 7 divides 492 + 1962. No doubt y and z are supposed to be 
mutually prime.) If his paper had been written by a much less eminent mathe-
matician, I might have suspected that his claims were based in part on numeri-
cal evidence and not on complete proofs. 

The basic idea in Jacobi fs proof is to note that much of ordinary number 
theory can be generalized to the Gaussian integers a + ib. 

Jacobi states that a similar method can be used to prove that every prime 
of the form I2n + 1 can be expressed as a product of four factors each related 
to a twelfth root of unity. (Also in the forms a2 + b2

9 c2 + 3d2
9 and e2 - 3f2.) 

This result cannot lead to an expression of 12n + 1 as a skew circulant of order 
other than 2 because, for example, 13 and 37 are primes of the form 12n+ 1 but 
not of the form 8/77+1. Jacobi mentions further that a prime of the form 5n+ 1 
can always be written in the form a - 5b2. The smallest prime that is of all 
three forms 5£+l, 8/77+1, and 12n+1 is 241 and is, therefore, presumably the 
smallest number that can be expressed in all six of the ways: 

a2 + b2
9 c2 + 2d2, e2 + 3/2, g2 - 2h2, k2 - 3£2, and p2 - 5q2. 

Indeed, 

241 = 42 + 152 

= 132 + 2 x 6 2 

= 72 + 3x 8 2 

= 2 1 2 - 2x 102 

= 172 - 3 x 4 2 

= 3 1 2 - 5x 122 . 
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Any prime of the form I20n + 1 will* of course, have the six representations. 
Presumably (i) the expressions with positive signs are unique9 and (ii) those 
with negative signs have an infinity of representations. 

The main point of this addendum iss of course, that the first conjecture in 
my paper is equivalent to a result seemingly proved by Jacobi in 18399 although 
he did not express the result in terms of skew circulants. 

I expect that anyone familiar with both Gaussfs and Lagrangefs work would 
be able to prove my second conjecture which specified all the integers expres-
sible as skew circulants of order 4. Unfortunately9 during the next several 
months3 my other commitments will prevent me from achieving the requisite fam-
iliarity , fascinating though this study would undoubtedly be. 
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A Fibonacci binary sequence of degree ft is defined as a {0, l}-sequence 
such that no ft + 1 l?s are consecutive. For k = 1, we have ordinary Fibonacci 
sequences [2]. Let G(k9 n) denote the number of Fibonacci binary sequences of 
degree k and length n. As was given in [2], it can be easily verified that for 
ft = 1, we have £(1, 1) = 2 = F 2 , G(l, 2) = 3 = Fs, and G(l, n) = G(l9 n - 1) + 
£(1, n - 2)=Fn + 1 for n > 3, where Fn is the n t h Fibonacci number. In general, 
we have 

G(k9 n) = 2n for 1 < n < ft, (la) 

fe + i 
£(ft* n) = E G0<9 n - j) for n > fc + 1. (lb) 

j-i 

Thus, for any k > 1, the sequence {£*&,„ = G(k9 n - I ) 9 n > 0} Is the ftth-order 
Fibonacci sequence, where we set G(k9 -1) = G(k9 0) = 1 for convenience. 

Let W(k9 n) denote the total number of lfs in all binary sequences of de-
gree ft and length n. Then, 

W(k9 n) = nl"'1 for 0 < n < ft, (2a) 

k 
W(k9 n) = E t̂ (ft» n - j - 1) + jG(k9 n - j - 1)] for n > ft + 1. (2b) 

j-o 

The ratio q(k9 n) = W(k9 n)/nG(k9 n) gives the proportion of l's in all the 
binary sequences of degree ft and length n. It was proved in [2] that the limit 

q(k) = lim q(k9 n), 

which is the asymptotic proportion of lfs in Fibonacci binary sequences of de-
gree ft, exists for ft = 1, and actually the limit is q(l) = (5 - \o)/10. It is 
interesting to extend this result and solve the problem for all integers ft ̂  1. 

Let {A(n), n>-(ft + l)} be a sequence of numbers with A(j) - 0 for 
-(ft + 1) < j < -1. If we define a sequence 

B(n) = A(n) - A(n - 1) - ••• - A(n - ft - 1) for n > 0, 

similar to the result in the case ft = 1, we have the inverse relation 

k 
A(n) = £ G(k9 j - l)B(n - j) for n > 0, (3) 

j-o 

where the sequence {£(ft, n ) , n > -1} is defined above. From ( 2 ) , we obtain 
k k 
E >7?G(ft, n - m - 1) = J/(fc, n) - E W(k, n-j- 1) for n > ft + 1. 

m = 0 j = 0 
The inverse relation (3) then implies that 

W(k, w) = E \G(k9 d- 1) f E rcG(Zc> w - j - m - 1)1) for n > ft + 1, (4) 
j =o \ L w = o J/ 
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where we set G(k9 n) = 0 for n < -2 for convenience. 
The characteristic equation for the recursion (I) is 

h(x) = xk+1 - xk - ... - . 1 0. (5) 

Let r19 ..., rk+i ^e its solution. We have the expression 
fe + i 

£(&»• «) = E *,•*.?» for n > 0S (6) 

where Cj are constants [1]* It is known that (5) has exactly one solution9 say 
r19 whose norm is not less than 1 [3]. Using Cramerfs rule9 we obtain an ex-
plicit form for c1 from (6): 

(2 - r2)(2 - r3) ... (2 :+1)(r2 - r3) ... (rk - rfc+1) 

'* (rx - P ^ C P , - r3) ... (r1 - rfc + 1)(r2 - P 3) 

1_ 

) " (2 - rjh'lrj ' 

(rk " *fe + i> 

(2 - r 2 ) . . . (2 - P7 ) 
7 v fc + l ' 

( r i " r
2> • • • ( r i " r * + i> 

From t h e e q u a l i t y ( 4 ) 9 we ge t 
• / fe + 1 . \ / k 

Since |z»J < 1 for 2 < £ < n + 1 and £(fc9 n) = 0 ( P " ) , we have 

-Jlx £ -p^p 

•'%^VX'% P p ^PP x"£ ' K±'P "-'i [mc0cnr0 v 
l)(rv p.)"1 = o(nG(k9 n)) for r + r 

o(nG(ks ri)) for r£ = p ^ P1. 

Thus9 
/7 x ,. w(k9 

» r/.; n-+°°j = 0 \m=l il 

m = 1 

We have established the rollowing result. 

Theorem: Let r be the solution of (5) in the interval (19 2). 

?<fc) = (.^jr"^"2)/[< 
r 
(2 -

L 

/ 
- r) ((fc + l )r* 

\ 

fc 
- E 

J = ] 
^•r-7'-1) 

Finally9 three numerical examples are presented below. 

For k = 29 P = 1.839299 q(2) = 0.38158. 
For k = 39 P = 1.92756, q(3) = 0.43366. 
For k = 49 P = 1.96595, <?(4) = 0.46207. 
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Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS 
to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solu-
tion or problem should be on a separate sheet (or sheets). Preference will be 
given to those typed with double spacing in the format used below. Solutions 
should be received within four months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

F . „ = F„ ., + F„ , Fn = 09 JF\ = 1 tt + 2 Fn + 1 + Fn> F0 = 0. Fl = 
and 

PROBLEMS PROPOSED IN THIS ISSUE 

B-568 Proposed by Wray G. Brady, Slippery Rock University, Slippery Rock, PA 

Find a simple curve passing through all of the points 

(F19 Lj), (F3S £ 3 ) , ...5 (^2n+l» ^2n+l)» ••• • 

B~569 Proposed by Wray G. Brady, Slippery Rock University, Slippery Rock, PA 

Find a simple curve passing through all of the points 

( 0̂» ^ o ^ 5 ^2* ^2^* ' ' * 9 ^2n ' ^2-n)' "° " 

B-570 Proposed by Herta T. Freitag, Roanoke, VA 

Let a9 b9 and c be the positive square roots of F2n_19 ^2n + i9 anc* ^2n + 3» 
respectively. For n = 1, 2, ..., show that 

(a + b + o) (-a + b + c) (a - b + c) (a + 2? - a) = 4 . 

B-571 Proposed by Heinz-Jurgen Seiffert, Student, Berlin, Germany 

Conjecture and prove a simple expression for 

[nf2] n in - r\ 

where [n/2] is the largest integer m with 2m <* n. 
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B"572 Proposed by Ambati Jaya Krishna, Student, Johns Hopkins University, 
Baltimore, MD, and Gomathi S« Rao, Orangeburg, SC 

Evaluate the continued fractions 

2 1 + 
3 + • 

5 + 7 + ... 

B-573 Proposed by Charles R* Wall, Trident Technical College, Charleston, SC 

For all nonnegative integers n9 prove that 

so(fc)£A-*-* + 5kf:o(»)Vfl.k. 

SOLUTIONS 

Congruence Modulo 12 

B-5**^ Proposed by Herta T. Freitag, Roanoke, VA 

Show that F22n + 1 = L^n + i ^mod 12^ f o r a 1 1 i n t e S e r s re-

solution by Piero Filipponi, Fdn» U« Bordoni, Rome, Italy 

First we rewrite the statement as 

then using Hoggattfs J18 and J17» we obtain 

Since F2n+i E ±^ (mod 3), it is apparent that congruence (1) is satisfied for 
all integers n. 

Also solved by Wray G. Brady, Paul 5. Bruckman, L- A. G. Dresel, A. F. Horadam, 
L. Kuipers, Bob Prielipp, M. Robert Schumann, Heinz-Jurgen Seiffert, A. G. Shan-
non, Sahib Singh, Lawrence Somer, J* Suck, and the proposer„ 

Congruences Modulo 5 

B-545 Proposed by Herta T. Freitag, Roanoke, VA 

Show that there exist integers as bs and o such that 

Fhn = an (mod 5) and £\n + 2 E ^n + c' (mod 5) 

for all integers n. 

Solution by Hans Kappus, Rodersdorf, Switzerland 

We prove by induction that for n = 09 1, 29 * „» 
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Fhn = 3n (mod 5), (1) 

Fkn+2 E 2n + 1 (mod 5). (2) 

This is obviously true for n = 0, 1, 2. Assume (1) and (2) hold for some n > 2. 
Then for this n, 

F»n+i = Fkn+2 ~ Fkn = Un+ 1 (mod 5), 

A* + 3 =
 2F,n+2 -F*n=n + Z <m° d5>> 

therefore 
Fu, n E 3F , - F, = 3(n + 1) (mod 5), 
4(«+l) *m + 2 kn x ' ' 

hence (1) is true for all n. Furthermore, 

The proof is now finished. 

,(« + D + 2 = 2*W, + ̂ „ + 3 = 2(n + 1) + 1 (mod 5). 

Also solved by Wray G. Brady, Paul 5. Bruckman, 'L. A. G. Dresel, A. F. Horadam, 
L. Kuipers, Bob Prielipp, Heinz-Jurgen Seiffert, A. G. Shannon, Sahib Singh, 
J. Suck, and the proposer. 

Fibonacci Combinatorial Problem 

B-5^6 Proposed by Stuart Anderson, East Texas State University, Commerce, TX 
and John Corvin, Amoco Research, Tulsa, OK 

For positive integers a, let Sa be the finite sequence a1? a2, ..., an de-
fined by 

ax = a, 
ai + i = at/2 if &i is even, ai + 1 = 1 -I- a^ if a^ is odd, 

the sequence terminates with the earliest term that equals 1. 

For example, S5 is the sequence 5, 6, 3, 4, 2, 1, of six terms. Let Kn be the 
number of positive integers a for which Sa consists of n terms. Does Kn equal 
something familiar? 

Solution by Piero Filipponi, Fdn. V. Bordoni, Rome, Italy 

It is evident that the only sequence of length 1 Is S19 the only sequence 
of length 2 is 52, and the only sequence of length 3 is Sh. That is, we have 

kl = k2 = k3 = l ' t1) 

Let us read the sequences in reverse order so that a is the nth term of Sa. By 
definition,a sequence Sa (of length n) can generate exactly one(two) sequence(s) 
S^+1 of length n + 1, if a is odd(even). Denoting by eCS^) and o(S%) the num-
ber of sequences of length n ending with an even term and with an odd term, 
respectively, we can write 

e(5a"+1) = kn 

o(5a"+1) = eOS£) = *„_!, 

182 [May 



ELEMENTARY PROBLEMS AND SOLUTIONS 

from which we obtain 

*n + l = e ^ + 1 ) + o(55+1) = K + fcn-1. (2) 

From (1) and (2)s it is readily seen that 

K = Fn-1> for n > !• 

Also solved by Paul S. Bruckman, L.A. G. Dresel, Ben Freed & Sahib Singh, Hans 
Kappus, L. Kuipers, Graham Lord, J. Suck, and the proposer, 

Return Engagement 

B-5**7 Proposed by Philip L. Mana, Albuquerque, NM 

For positive integers p and n with p prime9 prove that 

Lnp E LnLp (mod P>« 

Solution by Sahib Singh, Clarion University of Pennsylvania, Clarion, PA 

This result has been proved in B-182 (The Fibonacci Quarterly, 1970). 

Also solved by Paul S« Bruckman, Odoardo Brugia & Piero Filipponi, L. A. G. 
Dresel, L. Kuipers, Bob Prielipp, Lawrence Somer, J* Suck, and the propower* 

Number of Squares Needed 

B~5^B Proposed by Valentina Bakinova, Rondout Valley, NY 

Let D(n) be defined inductively for nonnegative integers n by D(0) = 0 and 
D(n) = 1 + D(n- [y/n]2) , where [x] is the greatest integer in x* Let nk be the 
smallest n with D(n) = k. Then 

n0 = 0S nx = 1, n2 = 2* n3 = 3* and nH = 7„ 

Describe a recursive algorithm for obtaining n& for k ^ 3, 

Solution by L. A. G. Dresel, University of Reading, England 

Let [Vn] = <?9 so that q2 < n < (q-h I)2 - 19 and let R(n) = n - q2, so that 
we have 0 < i?(n) < 2^. Suppose now that n is the smallest integer for which 
R(n) = r9 and consider the case where r is odd. Then we have r = 2q - 1 and 

n = (q + I)2 - 2 = j(r + 3) 2 - 2. 

By definitions we have 

D(nk+1) - fc + 1 
and 

Z?(nfc+1) = 1 + Z?(i?(nfc+1)), 

therefore 

0(*(w*+i)) = k» 
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Since nk is the smallest n for which D(n) = k» it follows that 
n, is the smallest n for which R(n) - nk. 

Now taking the case where n = 3 (mod 4), this leads to 

"fc+i =i<"fe + 3) 2 - 2 

and we have also nk + 1 = 3 (mod 4). Hence, starting with n3 = 3, we can use the 
above recursive algorithm for k ̂  3. 

Also solved by Paul S. Bruckman, Hans Kappus, L. Kuipers, Jerry M. Metzger, 
Sahib Singh, and the proposer. 

Generalized Fibonacci Numbers 

B-5^9 Proposed by George N. Philippou, Nicosia, Cyprus 

Let #0, Hl9 ... be defined by H0 = q - p, H1 = p, and Hn+2 = #n + 1 + #n for 
n = 0, 1, . Prove that, for n > m > 0, 

Solution by L. A. G. Dresel, University of Reading, England 

Define D(n, m) = J?„+1flm - Hm+1Hn. Then 

Z>(n, m) = #n(ff„ + /?„_!> - #„(ffm + 5m_i) 

" 3 A - 1 - f lA-i --^(»- 1. « - 1). 

Repeating this reduction step a further m - 2 times, we obtain 

D(n, m) = (-l)m_1D(rc - m + 1, 1) 

= (-Dm + 1(pffn.m + 2 - ^ . m + 1). 

Also solved by Paul 5. Bruckman, Piero Filipponi, Herta T. Freitag, A. F. Hora-
dam, L. Kuipers, Bob Prielipp, A. G. Shannon, P. D. Siafarikas, Sahib Singh, 
J. Suck, and the proposer. 
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Edited by 
RAYMOND E. WHITNEY 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, 
PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information 
that will assist the editor. To facilitate their consideration, all solutions 
should be submitted on separate signed sheets within two months after publica-
tion of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-397 Proposed by Paul S. Bruckman, Fair Oaks, CA 

For any positive integer n9 define the function Fn on C as follows % 

Fn(x) = (gn - l)(x)9 (1) 

where g is the operator 

g(x) = x2 - 2. (2) 

(Thus, F3(x) = {(x2 - 2)}2- 2}2 - 2 - x = xQ - 8xe + 20a:1* - 16tf2 - x + 2). Find 
all 2n zeros of Fn. 

H-398 Proposed by Ambati Jaya Krishna, Freshman, Johns Hopkins University 

Let 

and 

d + ,=(E(^^f^9-" + 7--)) 2 

i2 + b2 + c2 + d2 + e2 =-^±n\ 

a9 b9 o9 d9 e € ]R. What are the values of a, b9 c9 d9 and e if e is to attain 
its maximum value? 

H-399 Proposed by M. Wachtel, Zurich, Switzerland 

L - I 
The twin sequences; — ± - ~ — - = 0, 14, 260, 4674, 83880, ... 

L5 6 " l 

and —^-~ - = 5, 99, 1785, 32039, ... 

are representable by infinitely many identities, partitioned into several groups 
of similar structure; 
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£ 1 + 6 n " l 

= iden t ica l t o : 
L5+Sn l 

iden t ica l t o : 

Group I 

5^-5+6* " 1 
Sl 3 £ - 3 + 6 n + 2 

Sz 6 1 £ . 9 + 6 n + 

S3 U03L.15+6n + 

S„ 1 9 8 0 1 £ . 2 1 + 6 n + 

n^m+sn -
2 

l05F-23+Sn 
2 

l**L-32+*n 

- 1 

- 1 

- 1 

5 ? - l + 6 n - 1 
3 £ l + 6 n + 2 

llL-10+6n ~ X 

6 1 ^ - 5 + 6 n + 

" O ^ - l l + en + 

1 0 5 ^ . 1 9 + 6 n - 1 

1 9 8 0 1 £ . 1 7 + 6 n + 
199£.2B+6n - 1 

Groups II and III (in addition, there are more groups); 

I I . 

I I I . 

S i 

s2 

$n 

Si 

s2 

$n 

L-1+Bn 

2^-7+en 

2L-l + 6n 

2 4 ^ - 7 + 6 n 

. . . 

L-2+&n ~ 1 

1 2 

M-U+tn ~ l 

1 2 

5 * - 2 + 6n + 1 

2 

7J-11+6* + X 

2 

^3 + 6n 

2 3 ^ - 3 + 6 n 

2 L 3 + 6 n 

2 4 L - 3 + 6 n 

. . . 

L2 + Sn " X 

1 2 

W-7 + Bn ~ l 

1 2 

5*2+6„ + 1 
2 

7 i - 7 + 6 n + 1 
2 

Find the construction rules for Sn for each group. 
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SOLUTIONS 

Sum Formula! 

H-373 Proposed by Andreas N. Philippou, University of Patras, Greece 
(Vol. 22, no. 3, August 1984) 

For any fixed integers k ^ 0 and r > 2S set 

Show that / W . £ f<« /(« , n > 0. 
Jn+l,r / ^ •'£ + 1,1 Jn + l-l,r-l s 

Solution by C. Georghiou, University of Patras, Greece 

Note that the definition of f^.o can be extended to include every posi-
tive real number r. Define also 

fn+l = 6n,0> n > ° 9 

where 6njm is the Kronecker symbol. Then we show that 

f(k) = E fik) f(k) . w > o9 (*) 

for any fixed positive integer k and any fixed nonnegative real number r. 
We use generating functions. For fixed k and r9 let Ffcr(x) be the gener-

ating function of the sequence {/„+1 r)n=oe T n e n 

^,P(a?) « (1 - a? - a;2 -... - a*)"2". 

Indeed9 for some neighborhood of x = 0, we have 

(1 - x - x2 - ••• - a:*)-' = £ (~f)(-l)"(a; + *2 + • • • + xk)n 

rc = 0 X " I 

„ . 0 \ n / ni + nz+ •••+nk-n \ " j . > w
2 » • • • > "*: / 

" » - o „1 + » ! r ' . . + n i k - n V n x + n 2 + . . . + nfc I 

x /n-t + n2 +••• + nk\n1+2n2+--- + knk 
\ nx, n2, . . . , nk I 

. f a.71 V / « ! + n2 + - - - + nfc + r - 1\ 
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Equation (*) follows from 

Fktl,(x) = FktS(x)Fk9r_s(x). 

Note also that the restriction for r ^ 0 can be relaxed to r any real number. 

Also solved by P. Bruckman. 

Bounds of Joy 

H-37^ Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 
(Vol. 22, no. 3, August 1984) 

If o*(n) is the sum of the unitary divisors of n, then 

o*(n) = II (1 •+ p e ) , 
p°\\n 

where pe is the highest power of the prime p that divides n. The ratio o*(n)/n 
increases as new primes are introduced as factors of n, but decreases as old 
prime factors appear more often. As N increases, is o*(Nl)/N\ bounded or un-
bounded? 

Solution by the proposer. 

The primes between N/2 and N divide Nl exactly once9 and those not exceed-
ing N/2 divide Nl more than once. By considering special cases for N (mod 4), 
it is easy to show by telescoping products that 

n (p + i ) / P < n (2k + 2>/(2fc + i) < J rJLt I. < 1.5 
N/2<p<N N/2<2k + l<N 1 [N/2] + 1 

i f N > 6 . Also 

n (1 + p-e) < n (i + p-2) - n (i - p -^ /d - P - 2 ) 
pe\\ n p prime P 

P<N/2 
- C(2) /C(4) = 15/TT2 < 1.52. 

T h e r e f o r e , 
o*(Nl)/Nl < ( 1 . 5 2 ) ( 1 . 5 ) = 2.28 

if N > 6. The cases 1 < N < 5 are easily checked, so o*(Nl)/Nl < 2.28 for all 
N. (Actually, the best bound is 2, achieved for N = 3.) 

Also solved by P. Bruckman who remarked that o(Nl)/Nl is unbounded. 

Conjectures No More 

H-375 Proposed by Piero Filipponi, Rome, Italy 
(Vol. 22, no. 3, August 1984) 

Conjecture 1 

If Fk E 0 (mod k) and k + 5n, then k = 0 (mod 12). 

Conjecture 2 

Let 777 > 1 be odd. Then, F12m = 0 (mod 12m) implies either 3 divides m or 
5 divides m. 
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Conjecture 3 

Let p > 5 be a prime such that p\Flh> then F12m 1 0 (mod 12m). 

Conjecture h 

If Lk = 0 (mod k), then fc = 0 (mod 6) for k > 1. 

Solution by Lawrence Somer, Washington, D.C» 

In answering the conjectures, we will make use of several definitions and 
known results. The rank of apparition of k in {Fn}, denoted by a(k), is the 
least positive integer m such that k\Fm. The prime p is a primitive divisor of 
Fn if p\Fn, but p % Fm for 1 < 777 < n. The following theorem will be the main 
result we will use and is given by D. Jarden as Theorem A in his paper "Divi-
sibility of Fibonacci and Lucas Numbers by Their Subscripts" [2, pp. 68-75]. 

Theorem 1: Let p15 p25 ..., pn be the distinct primes dividing k, where k > 1. 
Then k\Fk if and only if 

[a(p±)9 a(p2), ..., a(pn)]\k, 

where [a, b9 ...] denotes the least common multiple of a, b9 ... . 

We will also need the following propositions. 

Proposition 1: Let m > 3. Then Fm\Fn if and only if 777 |n. 

Proposition 2: Let 

m 
* » n p^ 

i = l ^ 

be the canonical factorization of k into prime powers. Let r^ be the highest 
power of p. dividing Fa(p.) f o r * ̂  ^ ̂  m* Then 

a(k) = LCM {a(p.)p?ax(0'n^riH . 

Proposition 3: If p is a prime and p / 2 or 5, then the prime factors of a(p) 
are less than p. 

Proposition 4: If n + 1, 2, 6, or 129 then Fn has a primitive prime divisor. 

Proposition 1 is well known. Propositions 2 and 3 are given by Jarden in 
[2, p. 68]. Proposition 4 is proved by Carmichael [ls p. 61]. 

Conjecture 1: FALSE. There is an infinite number of counterexamples. By Theo-
rem F in Jardenfs paper [2, p. 72]9 if k\Fk9 then ll\k or 5|fc. Thus, in any 
counterexample to Conjecture 1, 5 must divide k. Let n > 2. Let the divisors 
of 5n that are unequal to 5 be denoted by p19 p2, ..., pm . Since F5 = 5, such 
prime divisors exist by Proposition 4. Let 

m 

k = 5^p?S (1) 
i = i ^ 

( 
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where rn ^ n and at least one of the ti%s ^ 1. It follows from Theorem 1 and 
Propositions 1, 2, and 4 that k is a counterexample to Conjecture 1. Clearly9 
there is an infinite number of such counterexamples. In particular, by a table 
of the factorizations of Fibonacci numbers given by Jarden [2, pp. 36-59], the 
only primitive prime divisor of F25 is 3001 and the only primitive prime divi-
sor of F125 is 158414167964045700001. Then, by (1), 

&! = 5ri3001Sl (2) 
and 

k2 = 5r23001*2 158414167964045700001t2 (3) 

are each counterexamples to Conjecture 19 where 

ri ^ 2 , s1 ^ 1, r2 ^ 3 , s2 ^ 0, and t2 > 1. 

We now provide another infinite class of counterexamples to Conjecture 1. 
Suppose that k is a counterexample to Conjecture 1. Let q1, <72 , . .., q^ be 
distinct primes such that q^\ k and q^ is a primitive divisor of Fk. , where 
1 < £ < <i and k^\k. By Proposition 4, such q^s exist. Then, by Theorem 1, 

k> = khqni (4) 
i = i *-

is also a counterexample to Conjecture 1, where at least one of the n^'s ̂  1. 
One can show that all counterexamples to Conjecture 1 are of the forms given 
in (1) or (4). Since k\Fk„ it follows by (4) and Propositions 1 and 4 that Fk 
is also a counterexample to Conjecture 1. Let F(n) denote Fn9 F(F(n)) = F^2\n) 
denote FF and so on. Then by (2)9 (3)9 and Proposition 49 

F(r)(5ri3001Sl) (5) 
and 

F(s)(5r2 30Qls2 i58414167964045700001t2) (6) 

are each explicit counterexamples to Conjecture 19 where 

r1 > 2, r2 > 2, s > 1, s2 > 0, t2 > 1, 

and either it is the case that r ^ 2 and sx ̂  0 or it is the case that s± ^ 1 
and r ̂  1. 

Conjecture 2: TRUE. Suppose that Conjecture 2 were false. Then m > 1 and all 
the prime factors of m are greater than 5. Let p be the smallest prime factor 
of m. By Theorem 1, a(p)\l2m. By Proposition 3, each prime factor of a(p) is 
less than p. It thus follows that a(p) is relatively prime to 777 and hence, 
a(p)|l2. However, Fx - F2 = 1 and the only prime divisors of F3, Fh, F6, or 
F12 are 2 or 3. We thus have a contradiction and the result follows. 

Conjecture 3: This does not make sense as stated. 

Conjecture 4: TRUE, by Theorem F in Jarden's paper [2, p. 72]. Theorem F fur-
ther states that if Lk = 0 (mod k), then 4 \ k. 
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References 

1. R» D, Carmichael* "On the Numerical Factors of the Arithmetic Forms an ± 
3 V ! Ann. Math. Second Series 15 (1913)^30-70* 

2, D. Jarden. Recurring Sequences. 3rd ed, Jerusalem: Riveon Lematematika9 
1973 

Also solved by P. Bruckman and L. Dresel* 

New Construction 

H-376 Proposed by H» Klauser, Zurich, Switzerland 
(Vol. 22, no. 4, November 1984) 

Let (a9 bs cs d) be a quadruple of integers with the property that 

(a3 + b3 + c3 + d3) = 0* 

Clearly, at least one integer must be negative. 

Examples: (3, 49 5S 6), (9, 10, -1, -12) 

Find a construction rule so that: 

1« out of two given quadruples a new quadruple arises; 
2. out of the given quadruple a new quadruple arises. 

Solution by Paul Bruckman, Fair Oaks, CA 

We let S denote the set of all quadruples (a, b3 cs d) e 1Lh such that 

a3 + b3 + c3 + d3 = 0. (1) 

Lemma 1: Given, (a, bs c5 d) e Ss (a?, b \ c \ df) e Ss let 

p = a(af)2 + Mb')2 + o(c')2 + d(d')2, 
q = a2af + b2bf + c2cf + d2d'. (2) 

Alsos let 

a" = pa - qa\ b,! = pb - q&f
9 c " = pe - q c f

s <?" = pd - <?d?
9 (3) 

Then 
( a " , b"9 c!\ d,!) e S» W 

Proof: (a")3 + (bff)3 + (*») 3 + ( d " ) 3 

= p 3 ( a 3 + £3 + c 3 + d 3 ) - q 3 { ( a ' ) 3 + (Z>')3 + ( ^ f ) 3 + W ' ) 3 } 
- 3p2<?(a2af + b2b9 + c 2 c ' + d 2 d f ) 

+ 3 p ^ 2 { a ( a ' ) 2 + i (2> ' ) 2 + c(cf)2 + <*W) 2 } 
= p 3 ° 0 - <?3 » 0 - 3p2<7 • q + 3pq2 • p = 0. 

This shows t h a t ( a " , Z?"s <?f's d") e 5 given by (2) and (3) may be c o n s t r u c t e d 
from the given quadrup les (as b, c. d) e S and {a\ bf

s c \ df)-e 5 S s o l v i n g 
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Part 1 of the problem. 

Example: If (a, b, c, d) = (3, 4, 5, -6), (af, b'9 c'9 d') = (-1, 9, 10, -12), 
then p = -37, q = -47, (a", 2?", c", <*") = (-158, 275, 285, -342). 

Lemma 2: Given (a, 2?, c, <f) e 5, let 

r = ab2 + be2 + od2 + da2, s = a2& + £2£ + c2d + d2a. (5) 

Also, let 

A = rb - s<?, 5 = re - sd9 C = rd - sa, D = ra - sb. (6) 
Then 

04, B, (7, Z?) e 5. (7) 

Proof: A3 + B3 + C3 + £ 3 = ( r 3 - s 3 ) ( a 3 + &3 + c3 + d3) 

- 3r2s(&2<? + o2d + £?2a + a2b) 

+ 3rs2(2?c2 + e<22 + da2 + a£>2) 

= (r3 - s 3 ) • 0 - 3 r 2 s • e + 3 r s 2 • r = 0 . 

Thus, 04, B, C9 D) £ S given by (5) and (6) may be constructed from the given 
quadruple (a, b, c9 d) € S9 solving Part 2 of the problem. 

Example: If (a, b9 o9 d) = (3, 4, 5, -6), then r = 274, s = 74, 04, B, C, £>) = 
(726, 1814, -1866, 526). 

Also solved by the proposer. 
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