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ON SOME POLYGONAL NUMBERS WHICH ARE, AT THE SAME TIME,
THE SUMS, DIFFERENCES, AND PRODUCTS OF
TWO OTHER POLYGONAL NUMBERS

SHOICHI HIROSE
Mita High School, Tokyo 108 Japan
(Submitted December 1981)

We denote the nth g-gonal number by
P, ., =nl(g-2n- (g-48)}02.

For g = 3, 5, 6, and 8, we denote P, 4, by T,, the triangular numbers, P,, the
pentagonal numbers, H,, the hexagonal numbers, and O0,, the octagonal numbers,
respectively. We denote Pn’g by P, whenever there is no danger of confusion.

Sierpinski [18] has proved that "there exist an infinite number of trian-
gular numbers which are, at the same time, the sums, differences and products
of two other triangular numbers>1." Ando [1] proved that '"there exist an in-
finite number of g-gonal numbers that can be expressed as the sum and differ-
ence of two other g-gonal numbers at the same time." It was also shown in [6]
that there are an infinite number of g-gonal numbers that can be expressed as
the product of two other g-gonal numbers.

The present paper will show that there are infinitely many g-gonal numbers
(g=5,6, and 8) which are at the same time the sums, differences, and products
of two other g-gonal numbers.

T. THE EQUATION P, .+ P, ., = Pyipiy

If P, +Py=P,, by puttingu =2 -y, v =2 - X, and w = X + y - 2, we have
r=u+w, y=v+w, and 2 = u + v + w. However, a little algebra shows that
Poowt Py =P iy, implies 2(g - uv = (g - 2)w(w - 1) + 2w. Hence

Theorem 1: Any solution x, y, 2 of the equation P + Py, = P, can be expressed
asx=u+w, y=v+w, 3 =u+7v+ w, where

w=0 (mod g - 2)
and !
w = {(g - 2)w? - (g - &)w}/2(g - 2).

Using this theorem, which is a generalization of the work of Fauquembergue
[7] and of Shah [15] on triangular numbers, we can obtain the solutions of the
equation P, + Py, = P, in an efficient way. For example, we have the following
table for g = 5.
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ON SOME POLYGONAL NUMBERS

Table 1. P! + P) =P] (w <9, u <)

w (3w?2 -w/6 | u v x y =z
3 4 2 2 5 5 7

1 4 4 7 8
6 17 1 17 7 23 24
9 39 3 13 12 22 25

1 39 10 48 49

- ros = P
Ifweput v+w=w'in P, =P, + P ,and P v =P i = Puryyrs
then we obtain g-gonal numbers that can be expressed as the sum and difference
of two other g-gonal numbers at the same time.

Corollary: If w =0 (mod (g - 2)2) and v = {(g - 2w? - (g - &)w}/2(g - 2),
then we have

Pow+1= P11+ By, = Fg - By, where

a={@-2w+w2-(@-4)@W+w}2@g-2)+v+w+1
and

b

]

g-2D@+w?-(g=-86@w+w}2(g-2)+v+w

Putting w = -1 for g = 3, we obtain a result of Sierpinski [18]; putting
w=9n for g =5, w=16n for g = 6, w = 25k for g = 7, and w = 36n for g = 8,
we obtain the results of Hansen [9], 0'Donnell [13], Hindin [10], and O'Donnell
[14], respectively.

2. THE EQUATION P, _, + Py, = Poy_ 5
In this section we study somewhat more general second-degree sequences than
P,, and obtain necessary and sufficient conditions for certain infinite fami-
lies of representations to exist. We then specialize to polygonal numbers. To

this end, let F(o, B; n) = n(om - B), where o, B are integers with (o, B) =1
and o > 0.

Theorem 2: Let a, b, ¢, d, e, and f be integers with a, b, and ¢ positive and
(as b, ¢) = 1. A necessary and sufficient condition for the identity in ¢,

F(a, B; at — d) + F(a, B; bt — e) = F(a, B; et - ),
to hold is that there exist integers p, ¢, r, and s that satisfy equations (0)
and (I), or (0) and (II):
{a =@+Q® -9, b=2pq c=p*+q° ©
0

(ps q) =1, p>q>0,p+q=1 (mod 2),
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ON SOME POLYGONAL NUMBERS

{d= ® + Q)r, e =%s, F=(@-qr+ls,
> (1)
q =0 (mod a), 20pr - (p - g)s = -B,
P-4 P-4
d = r, e=ps, = r + gs,
{ * N (10
p =¢q (mod a), 2gr - a(p + q)s = B.

Proof: 1In order for the desired identity in %,
(at - d)(oat - ad - B)Y+ (bt — e)(abt — 0e - B) =(ct - H(act - af - B),

to hold, it is necessary and sufficient that the equations

a? + b? = o2, (1)
(20d + BYa + (20e + BYb = (20f + B)e, (2)
(ad + B)d + (ae + B)e = (af + B)f (3)
be wvalid.
From (2),
of =ad+ be + 222D -2 (4)

and from (1), (3), and (4), we obtain

(@ + b {(ad + BYd + (ce + B)e}
c?(of + B)F
alef)? + BelehH

oc{ad + be + w—"-z—];-—:i)}z + Bc{ad + be + é(a—’{_zz—_i)}.

Expanding and transforming the above, we have

2
a(bd - ae)? - Bla - bBY(bd - ae) - 82_32_9_ = 0.
Hence,
(a) bd - ae = Bla - b _22——_ e or
(5)
_Bla - b+ )
(b)Y bd - ae = B T

Now, for positive integers a, b, and ¢ with (a, b, ¢) = 1 and b even, the
solutions of (1) are given by

p and g are positive integral parameters with

a=({@+q@-q,>b=2pq, ¢c=p*+ g*, where
()]
(s q) =1, p>q>0, andp+¢q =1 (mod 2).

Equations (6) and (7) below are necessary for (4) and (5) to hold.

Bla+ b - c) = 2Bq(p - q) =0 (mod 20), (6)
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ON SOME POLYGONAL NUMBERS

{(a) Bla-b-¢) =-28q(p + q) = 0 (mod 20), or
(N
() Ba-b+e)=2Bp(p-¢q) =0 (mod 2a).
Since (&, B) =1 and (p, q) = 1, (6) and (7) hold only if
(a) g =0 (mod 0), or
(8)
(b) p = q (mod o).

(I) If ¢ = 0 (mod a), (5)(a) becomes
2pqd - (@ + (P - Qe = BLp + ),

so that we have

20pr - (p - q)s = -B, where d = (p + q)r and e =-§3,

[]

Substituting this into (4), we have f p - qQ)r + gs.

(I1) If p = q@ (mod o), (5)(b) becomes

.P-4q

2pqd - (p + (p - @)e = Bp "

9’
so that we have

2qr - a(p + q)s = B, where d = ELéizr and e = ps.
P-4q
a

Substituting this into (4), we have f = r + gs. Thus, we have the equiv-

alence relation
(1) (2)=(3)= (0)* (4) ¢« (5) = (0) * (I) or (0)+ (II),
which proves Theorem 2.

Corollary: Solutions of P, + P, = P, are obtained by x = at - d, y = bt - e,
z = ct - f. We use Theorem 2 by putting

P = %—F(g -2, g - 4; n) for g odd, and
P = F(Q_%_Z’ Q—%—i; n) for g (# 4) even.

In the case g = 4, we obtain a, b, and ¢ from Theorem 2 (0) by putting d = e =

f=o.

Example: If g =5, thena =3, B =1. Since g =0 (mod 3), or p = g (mod 3),
and (p, q) =1, p>q@>0, p+q=1 (mod 2), we have

q=1; p =4, 10, 16, ...,
q=2;p=25,11, 17, ...,

q=3; p==4,8, 10, 14, 16, .
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ON SOME POLYGONAL NUMBERS

When p = 4, g = 1, 2gqr - a(p+qg)s = B becomes 2r - 15s = 1, where one solution
is » = 8, s = 1. Using these values in (0) * (II), we obtain

a=15,b=8,¢c =17, d=8, e =4, f =9,
and

Plse g% Pge_y = Plys_g-

Changing ¢ into 8¢ - 3 and 17¢ - 7, we have

Plagt-60 = Plaos-s53 ¥ Pear-28 = Frgor- 128~ Dosse-u13
Table 2. P, _,+P),_, =Pl ., P/ +Pj =P (z<30)
p gq| r s a b ¢ d e f|t|x y =z
(11) 4 1 8 1 15 8 17 8 4 1 2; 13 2?

(1) 4 3 0 1 7 24 25 0 1 1 1 7 23 24

(1I1) 5 2 (16 3|21 20 29 (16 15 22 1 5 5 17
(1) 8 3 3 29 |55 48 73 | 33 29 44 | 1| 22 19 29

Table 3. Correspondence of the Solutions of P, + P, = P, in [1]

Ex. 1
g Parity | Case p q r s t
2 _ 2 -
k:even (1) ik:%gl—t+-l LE—Egl—t 0 E%TE' 1
_oy2 _on2

t:even | (I) iz-zl—tﬂ iTZ—)—t 0 k-4 | 1

k:odd ;
trodd | (I1) | (k-2)2¢+1 1 (k-2) t2+ (3k-8) | 1

3. THE EQUATIONS P, =P, + P, =P, - P, = PP

For g # 4, if (g - 2)P, - (g - 4) = 2P,, we conjecture that Pp, = P, P, can
be expressed as the sum and difference of two other g-gonal numbers. But we
cannot prove this. However, we have

Theorem 3: There exist an infinite number of hexagonal numbers that can be
expressed as the sum-difference-product of two other hexagonal numbers.

Proof: If we assume H, = H,H,, then we have (4n - 1) - 15(4m - 1)% = -14. By

putting N = 4n - 1, M = 4m - 1, we get N?> - 15M%? = -14. TIts complete solution
is given by the formulas
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ON SOME POLYGONAL NUMBERS

(i) W; + VI5M; = £(1 + VI5) (4 + V15)*
and

(i1) N, + VIsM; = (=1 + VI5) (4 + VI5)%,

where 7 = 0, *1, 2, #3, ... .

In (i), if N; + VI5M; > 0, © > 0, and © = 2 (mod 4), then N; = M; = -1 (mod
4). N; satisfies a recurrence relation

Nyyo = 8Ny = Ny

which leads to N;,, = 62N;,, - N;. Also, by repetition, N;, o, = 3842N; ., - N;.
From 4ng,g - 1 = 3842(4n; 4y - 1) - (4ny - 1), it follows that n; 4 = 3842n; , -
n; — 960. Changing 47 - 2 into %, it becomes
N, = 3842n; ., - n; - 960,

T

with initial values 7, = 38, n, = 145058. Similarly, we get

my,,, = 3842m; . - m; - 960,

1

with initial values m; = 10, m, = 37454.
For all 7, we have

3]
N
]
s}
s8]
]

15m;(2m; - 1)
(4my - 1)(8m = 3) - (m; - 1)(2m; - 3)
= H H

ym,-1 " “mg-1°

For 2 = 1 (mod 7), we have n; = -1 (mod 13). On taking ¢t = (n; + 1)/13 in

H =H., +H

13t-1 5t 12¢-1°

we get

Hy, = Hinzvsy13 T Hon,-1y/13 ¢

Thus, for ¢ = 1 (mod 7), Hy, is expressed as the sum-difference-product of two
other hexagonal numbers. If we put ¢ = 1, then we have

Hyg = H\g + Hyy = Hyy - Hy = HyH, .

In a similar way, we obtain
Theorem 4: For g = 5 and 8, there exist an infinite number of g-gonal numbers
that can be expressed as the sum-difference-product of two other g-gonal num-

bers.

Proof: If we put

ny = 4, n, = 600912, n,,, = 155234n,,, - n; - 25872)
'L=19233’ s

155234m;,, - m; - 25872

m

]
s

3
]

128115, m,,

1 2

then, for 2 = 9 (mod 14), we have n; = 7 (mod 29) and m; = 1 (mod 2), so that

7
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ON SOME POLYGONAL NUMBERS

r _ ? 7 _ [ 7
Pni _P(Zlni—Z)/29 +P(20n,;+5)/29 - P(23m,--7)/2 - P(Zlmi—7)/2
=3 F?
ZQE%{-

Also, if we put

n, =304, n, = 1345421055984,
Mieo = 4430499842n; ., - n; - 1476833280

my, = 38, m, = 166878943590,
M;yo = 4430499842m; ,, - m, — 1476833280

1=1,2,3,...,

then, for ¢ = 0, 1 (mod 7), we have n = 14 (mod 29), so that

On; = O@ing-4)729 + Oaom;+10y/29 = Oomy-4 = Ot -y = 050

Here, if we put © = 1, then we have

O304 = 020 * 0319 = 0333 = Oy = 05035
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LETTER TO THE EDITOR
19 December 1985

Dear Editor:

Before the publication of my article, '""Generators of Unitary Amicable Num-
bers," in the May 1985 issue of The Fibonacci Quarterly, Dr. H. J. J. te Riele
and | exchanged letters concerning unitary amicable numbers. He pointed out
that his report, NW 2/78, published by the Matematisch Centrum in Amsterdam
(with which he is affiliated), contains many of the results in my paper, albeit
from a slightly different point of view. Both references to these letters and
to report NW 2/78 were inadvertently omitted from my article.

The Centrum's address:
Stichting Matematisch Centrum
Kruislaan 413 1098 SJ Amsterdam
Postbus 4079 1009 AB Amsterdam
The Netherlands

Sincerely yours,

0. William McClung
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SOME RESULTS CONCERNING PYTHAGOREAN TRIPLETS

R. M. STERNHEIMER
Brookhaven National Laboratory, Upton, NY 11973
(Submitted December 1983; revised August 1984)

I. INTRODUCTION

In connection with the discussion in my earlier paper [1] entitled: "A Cor-
ollary to Iterated Exponentiation," in which I have presented a new conjecture
concerning Fermat's Last Theorem, it occurred to me that it is of interest to
make a systematic study of the sets of three integers x,y, z which satisfy the
condition

x? + y? = 22, (1)

Such a triplet of integers (x, Y, 2) is commonly referred to as a "Pythagorean
triplet," for which we shall also use the abbreviation P-triplet.

The actual motivation of the present work is to explore as thoroughly as
possible the two cases, n = 1 and n = 2, for which the Diophantine equation of
Fermat has solutions, namely,

x™ + y" = zn (n=1, 2). (2)

This interest is, in turn, derived from my earlier conjecture [1] that be-
cause n = 1 and n = 2 are the only two positive integers that are smaller than
e, (2) holds only for n = 1 and # = 2 when &, y¥, and z are restricted to being
positive integers. Most of the discussion in the present paper will be devoted
to the case in which n = 2.

Il. PYTHAGOREAN DECOMPOSITIONS

By using a computer program devised by M. Creutz, we were able to determine
all Pythagoeran triplets for which z < 300. At this point, a distinction must
must be made between P-triplets for which x, y, and z have no common divisor
[the so-called "primitive solutions" of (1)] and P-triplets which are related
to the primitive solutions by multiplication by a common integer factor k. So,
if x;,Yy;> 2; are relatively prime and obey (1), it is obvious that the derived
triplet (kx;, Ky;, kz;) will also satisfy (1).

The original computer program was therefore modified to print out only the
primitive solutions, and was extended up to z < 3000. To anticipate one of my
results, the number of primitive solutions in any interval of 100 in z is ap-
proximately constant and equal to = 16. Thus there are 80 primitive solutions
(PS) between z =1 and 500, and 477 PS in the entire interval 1 < z < 3000. We

The manuscript was authored under Contract No. DE-AC02-76CH00016 with the U.S.
Department of Energy. Accordingly, the U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form of this con-
tribution, or allow others to do so, for U.S. Government purposes.
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will make the convention to denote by x the larger of the two numbers in the
left-hand side of (1), i.e., & > y.

In Table 1, I have tabulated all primitive solutions for 1 < z < 500. The
triplets are presented in the order x;, y¥;, 2z;. When a value of z; is under-
lined, this indicates that it is not prime. The nonunderlined z; values are
primes which we will call "Pythagorean primes" or P-primes. In this work, and
also for the region 501 € z < 2000, the tables of primes and prime factors
given in the Handbook of Chemistry and Physics [2] were essential.

When the z; of the primitive solution is not a prime, I have underlined it,
and the underlined number is usually followed by a subscript 1 or 2, which has
the following significance. Already in the work for z < 300 (with all trip-
lets listed), I have noticed the following rule: If 2p,; and Zp, g belong to two
different primitive solutions, the product

Bp,k T %p,i®p, g (3

belongs to two new primitive solutions, namely,

(@), 5 Yy x> Zp,x) and  (Xy 25 Yy ps Bp,a)- %)

These two new P decompositions are relatively prime and are also prime with
respect to the expected decomposition obtained by taking the product of 2p, i
with the decomposition (xp, ;s ¥p,:s 2p,:) and that obtained by taking the prod-
uct of 3zp,; with the decomposition (xp,js Yp,js Zp,;). Thus, there are four
linearly independent P decompositions for the number z,,; of (3). To take an
example, according to Table 1, the number 65 has the decompositions (56, 33,
65) and (63, 16, 65), and, in addition, (52, 39, 65) and (60, 25, 65) obtained
from (4, 3, 5) and (12, 5, 13), respectively.

This rule is satisfied in all decompositions of products 35, :8p, ] provided
that the prime factors of %, ; and 3p,; are different. On the other hand, if
Zp,; and zp ; are merely powers of the same prime p; s then there will be just
one additional linearly independent Pythagorean decomposition for

N T 0
As an example, the number 25 = 52 has one additional P decomposition, namely,
(24, 7, 25) besides that derived from (4, 3, 5), namely, (20, 15, 25). Simi-
larly, the number 125 = 5% has one new P decomposition, namely, (117, 44, 125)
in addition to the two decompositions derived from the P decompositions for 5
and 25, namely, (100, 75, 125) and (120, 35, 125), respectively.

We may notice that the square 52 =25 has two P decompositions and the cube
53=125 has three P decompositions. Thus, in general, a power pgi will have a;
Pythagorean decompositions, where p; is a Pythagorean prime (such as 5,13, 17,
etc.). 1In Table 1, I have indicated the factors z, ; and 2p,; which give rise
to the new double primitive solution, when Bp, k is a product of two different
Zp,; and zp,; which are relatively prime to each other. When a single power
p% is involved, this has also been noted, e.g., 132 = 169 has the new P decom-
p%sition (120, 119, 169), in addition to the one expected from (12, 5, 13),
namely, (156, 65, 169).

The total number of primitive solutions in the successive intervals of 100
in Table 1 are: 16 from 1 to 100, 16 from 101 to 200, 15 from 201 to 300, 16 from
301 to 400, and 17 from 401 to 500, giving a total of

Inp = 16 + 16 + 15 + 16 + 17 = 80. (6)
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Table 1. Listing of the Pythagorean primitive decompositions for the integers
in the range 1 < N < 500. The values of z which are not prime num-
bers are underlined, and the subscripts 1 and 2 indicate the two new
primitive solutions associated with such numbers. An exception oc-
curs when the number N; is a power of a single P-prime number, pgi,
in which case only one new primitive solution arises. For the num-
bers which are underlined (non-primes), the prime decomposition is

indicated.

Vi Tis Yis 3¢ Vi Tis Yis 34 A2 Tis Yis B4 Vi Tis Yis By
114,3,5 21 | 105,88,137 41| 247,96,265, = 5x 53 61 | 352,135,377, = 13x 29
2|12,5,13 22 | 143,24,145, = 5x 29 42 | 264,23,265,=5x 53 62 | 340,189,389
3115,8,17 23 | 144,17,145,=5x 29 43| 260,69,269 63 | 325,228,397

4| 24,7,25=52 24 | 140,51,149 44 | 252,115,277 64 | 399,40,401

51 21,20,29 25 | 132,85,157 45 | 231,160,281 65 | 391,120,409

6 | 35,12,37 26 | 120,119,169 = 132 46 | 240,161,289 =172 66 | 420,29,421

71 40,9,41 27 | 165,52,173 47 | 285,68,293 67 | 304,297,425, = 5x 85
8 | 45,28,53 28 | 180,19,181 48 | 224,207,305, = 5% 61 68 | 416,87,425,=5x 85
9]60,11,61 29 | 153,104,185, =5x 37 || 49 | 273,136,305, = 5x 61 69 | 408,145,433

10 | 56,33,65, =5x13 | 30 | 176,57,185, = 5x 37 50 | 312,25,313 70 | 396,203,445, = 5x 89
11{63,16,65,=5x13 | 31 | 168,95,193 51 | 308,75,317 71 | 437,84,445, = 5% 89
12 | 55,48,73 32 | 195,28,197 52 | 253,204,325, =5x 65 || 72| 351,280,449

13| 77,36,85, =5x 17 || 33| 156,133,205, = 5x 41 53 | 323,36,325, = 5x 65 73 | 425,168,457

14 | 84,13,85,=5x 17 | 34 | 187,84,205, = 5x 41 54 | 288,175,337 74 | 380,261,461

15 | 80,39,89 35| 171,140,221, =13x 17 || 55 | 299,180,349 75| 360,319,481, = 13x 37
16 | 72,65,97 36 | 220,21,221,=13x 17 | 56 | 272,225,353 76 | 480,31,481, = 13x 37
17 | 99,20,101 37 | 221,60,229 57 | 357,76,365, = 5% 73 77 | 476,93,485, = 5x 97
18 | 91,60,109 38 | 208,105,233 58 | 364,27,365,=5x 73 78 | 483,44,485, = 5x 97
19 | 112,15,113 39 | 209,120,241 59 | 275,252,373 79 | 468,155,493, = 17 x 29
20 | 117,44,125=5° 40 | 255,32,257 60 | 345,152,377, = 13x 29 || 80 | 475,132,493, =17x 29

In Table 1 the numbers z; that are not underlined are the primes for which
a Pythagorean decomposition is possible. We will call them Pythagorean primes
or P primes. The other primes (which are not P-decomposable) will be called
non-Pythagorean primes or NP primes, e.g., 2, 3, 7, 11, 19, 23, 31, 43, and 47
are the NP primes below N = 50.

As mentioned above, all of the primitive solutions up to ¥ = 3000 have been
obtained with the computer program. (The total running time on the CDC-7600
Computer was less than 30 seconds.) However, I have limited the main analysis
to the numbers N < 2000.

In the discussion below, I will derive a general formula for the number n;
of Pythagorean decompositions for an arbitrary integer.

In connection with the results of (3) and (4), it was noted and proved by
M. Creutz [3] that when the triplets (x,, ¥;» 2;) and (X, Y,s 3,) are multi-
plied by each other, the additional primitive solutions mentioned in (4) have
the following form:

X, =%y, +y,%, Y, = |x1x2 - y1y2|§ (7)
X, = |z, - y,2,], Y, =z, + Yy, (8)
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Here we have omitted the subscript p for simplicity of notation. To prove the
validity of (7) and (8), we note that

2
X+ X = @iy +yie; 2wy y, +oaiel + iy - 2y,
= (x? + yi)(xi +yl) = 2232 = (zlzz)z = 72, (9)

thus verifying that Z = z,z, has the P decomposition (X;, Y;, Z). A similar
equation is obtained by calculating X2 + Y2 = z2z2 = 22, thus confirming the
new P triplet (X,, Y,, 2).

As an example, for Z = 65, we have x1=4, y;=3, 31=5 and x,=12, y, =5,
2z, =13, which gives X, =56, Y, =33, leading to the triplet (56, 33, 65) listed
in Table 1. Furthermore, equations (8) give X, =16, Y, =63, which is equiva-
lent to the second triplet, (63, 16, 65), also listed in Table 1.

It is also obvious from (7) and (8) that if Ty =Tys Yy =Y,s leew, 3p 1 =

z;’i in the notation of (3), then
Xy = 2x3y,, Y, = |2% - i,
which gives rise to only one new P triplet, since for the other solution, X, =
0, ¥, = xi + y? = zé,i = 2, . For the case x, =2, =4, y, =y, = 3, we have
= = - 42 2 _
X, = 2%y, = 24, Y, =45 -3°=17,

giving the one new triplet, (24, 7, 25).
In Table 2, all the Pythagorean primes from N = 1 to N = 2000 are listed.
Successive intervals of 100 are separated by semicolons.

Table 2. List of all Pythagorean primes for 1 < N < 2000, i.e., primes which
satisfy (1) where x and y are positive integers. Those primes which
are underlined belong to a set of twin primes, i.e., primes p; and p;
such that Ipi-pjl = 2. For each set of twin primes p;, p;, one and
only one is a P-prime. The primes in successive intervals of 100 are
separated by a semicolon.

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97; 101, 109, 113, 137, 149, 157, 173,

181, 193, 197; 229, 233, 241, 257, 269, 277, 281, 293; 313, 317, 337, 349,
353, 373, 389, 397; 401, 409, 421, 433, 449, 457, 461;

509, 521, 541, 557, 569, 577, 593; 601, 613, 617, 641, 653, 661, 673, 677;

701, 709, 733, 757, 761, 769, 773, 797; 809, 821, 829, 853, 857, 877, 881;
929, 937, 941, 953, 977, 997;

1009, 1013, 1021, 1033, 1049, 1061, 1069, 1093, 1097; 1109, 1117, 1129, 1153,
1181, 1193; 1201, 1213, 1217, 1229, 1237, 1249, 1277, 1289, 1297; 1301, 1321,
1361, 1373, 1381; 1409, 1429, 1433, 1453, 1481, 1489, 1493;

1549, 1553, 1597; 1601, 1609, 1613, 1621, 1637, 1657, 1669, 1693, 1697; 1709,
1721, 1733, 1741, 1753, 1777, 1789; 1801, 1861, 1873, 1877, 1889; 1901, 1913,
1933, 1949, 1973, 1993, 1997.
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I11. CONNECTIONS WITH THE TWIN PRIMES

Note that many of the Pythagorean primes in Table 2 are underlined. These
are the primes which belong to a set of twin primes, i.e., primes p; and p.,
which are separated by 2, i.e., such that Ip pj( = 2. As an example, 17 is
part of the twin prime set (17, 19); 31m11arlyg 41 is part of the twin prime
set (41, 43). By a survey of all twin primes N; < 2000, it was found that in
all cases, for each set of twin primes, one of them is a P-prime (P-decompos-
able), while the other is a non-P-prime. This result can be shown to follow
naturally from a theorem due to Fermat, accordlng to which all primes p, =1
(mod 4) are P-primes, while all primes q; = 3 (mod 4) are non-P-primes. Actu—
ally, what Fermat proved is that all prlmes p = 1 (mod 4) can be written in
the form p, = a® + b?, and this is, according to an elementary theorem due to
Dlophantos, the necessary and sufficient condition for p? = xf’ + y? to be sat-
isfied [4]. Here, z; = a® - b? and y, = 2ab, and the result follows naturally
from the following equation:

2 = (a® + b2)? = (a® ~ 2?2 + (2ab)? = a" + b - 24%P? + 4a®b%. (10)

Obviously, p, = 1 (mod 4) means that p; can be written as 4n + 1. Then, if p;
is either 2 units larger or smaller than p;s it is given by 4n’ + 3, and p; =3
(mod 4).

0f the 147 P-primes listed in Table 2, 60 are twin primes. The remaining

=147 - 60 P-primes are "isolated" primes, i.e., they do not belong to a twin
set If we consider successive intervals of 500, we find a total of 44 P-primes
between 1 and 500; 36 P-primes between 501 and 1000; 36 P-primes between 1001
and 1500; and 31 P-primes between 1501 and 2000. Incidentally, there is a total
of 302 prime numbers between 1 and 2000, so that the overall fraction of P-
primes is 147/302 = 0.487 = 49%, close to 50%, as would be expected from Fer-
mat's Theorem concerning p;, = 1 (mod 4).

The approximate equality of the number np of P-primes and 7y of non-P-
primes indicates that the Pytrhagorean primes have an intimate connection with
the entire system of positive integers and, in addition, this connection indi-
cates that we may expect that very approximately on the order of one-half of
all integers are P-decomposable in at least one way (ngy 2 1), while the other
half is not Pythagorean-decomposable. These integers will be called P-numbers
and non-P or NP-numbers, respectively. Numerical results for the fractiomns of
P-numbers in three different intervals for N < 2000 will be given below. Ob-
viously, for an integer N; to be P-decomposable in at least cne way, it is
necessary and sufficient that N; can be written as

N, =p,J, 1)
where p, is an arbitrary P-prime and J is a positive integer.

IV. THE DECOMPOSITION FORMULA FOR #ny,

The most general integer can be written as

Nk =p gs e q?lq?zqaﬁg e
=lenq = 4By (12)

=1
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where the p; and P-primes are the 0; are the corresponding powers, and simi-

larly, the q; are the non-P-primes and the B; are the corresponding powers. In

the second row of (12), n, denotes the number of different P-primes in N; and

np denotes the number of different non-P-primes in the prime decomposition of
. : . . oy B:

Ny; finally, A and By represent the two products involving p; and q; s re-

spectively.

Theorem: The total number of Pythagorean decompositions n; corresponding to N
of (12) is given by:

Na Na
Za +22u%4w 2 o000 +8 X oo ot
i= 1< 1<g<k 1<g<k<4%
Ng -1
+ 277 T0 0,05t Q. (13)

Here, the first sum extends over all a;, the second sum extends over all pos-
sible products of pairs of a;, the third sum extends over all possible products
000, where three a;'s are involved, etc. As an example, for the number 65
of Table 1, we have 65 = 5'x 13!, so that 0, =0, =1, and (13) gives

ng =141+ 2(1)(1) = 4. (14)
Similarly, for N = 325 = 52x 13, with o, = 2, a, = 1, we find
ng =2+ 1+ 2(2)(1) =7. (15)

In order to illustrate equation (13), we consider the number 1625= 5% x 13.
First, we will count the number of ways in which 1625 can be written without
mixing up the 5's and the 13 in the decomposition. We use the notation (pul)
with parentheses to indicate the decomposition of p1 Now, there are clearly
0, =3 decompos1t10ns pertaining to the powers of 5 alone; they are 5%, (5%),
and (5), where (5%) stands for (117, 44, 125) (see Table 1), (52) stands for
(24, 7, 25), and (5) = (4, 3, 5). Thus, three decompositions of 1625 can be
written as (5%) x 13, (52) x 65, and (5) x 325, where the multiplication applies
to the three integers x;, y;, and z; listed above for each case. 1In additionm,
there is the decomposition (13) x 125, where (13) = {12, 5, 13). These four de-
compositions correspond to oy + 0, = 3 + 1 = 4. Next, we consider the cases in
which a product of a power of 5 times 13 appears inside the parentheses. These
cases are (5%3x13), (52x13)x5, and (5% 13)x 25. According to the rule of
equations (3) and (4) for Zp, ¢ and z,, ; . having different prime factors, there
are two new primitive solutions for each such case, e.g.,

(325) x5 = (253, 204, 325)x5 and (323, 36, 325) x5,

where 325 = 52x 13 (see Table 1). There are a;0, = (3)(1) = 3 such cases, and
they contribute 20,0, = 6 decompositions. Thus, the total

ng =4+ 6 =10 = 0; + a, + 20,0,
as given by (13). This illustration can be generalized to give the various
terms of (13) and to provide the proof by induction. In each case, the factor

2, 4, 8 in the second, third, and fourth terms, respectively, of (13) corre-
sponds to the doubling of the primitive solutions described above, where more
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than one prime is involved. For another example of (13), consider the number
N = (5%)(13)(17) = 5525. (16)
It has 22 decompositions of the type
5525% = 2% + y2, (17)
since a; = 2, a, =0, = 1, and, from (13),
ng=@+1+1)+2(2+2+1)+4(2) =4+ 10+ 8 = 22, (18)

Using (13), we have obtained the number of decompositions #; for three sets
of 51 integers, namely those extending from N = 50 to N = 100, those extending
from N = 950 to 1000, and those extending from N = 1950 to 2000. The results
are presented in Table 3, which lists n,, the number of Pythagorean numbers
(for which ng > 1), nyp, the number of non-P-prime numbers (for which ng; = 0),
the total In;/np and, finally, the ratio of #up to the total number 51. It is
seen that while #np/all N = 0.49 for the first set (50-100), for the other two
sets, np/all N is constant at a value of = 0.61. However, the total number
of decompositions, Ing, increases from 34 (for N = 50-100) to 58 (for N = 1950-
2000), and the average In;/np also increases from 1.36 to 1.87 per Pythagorean
number. It thus appears that the fraction of all numbers that are P-decompos-
able reaches a plateau value of -0.61 for large N, at least in the range of
N = 1000-2000.

Table 3. For three ranges of N: 50-100, 950-1000, 1950-2000, I have tabulated
the total number of Pythagorean numbers 7p, the total number of non-
P-numbers 7yp, the total number of P-decompositions XIn4, and the ra-
tios an/np and np/51, where 51 is the total number of integers in
each range.

N range np nyp Ing In /np | np/51
50-100 25 26 34 1.36 0.490
950-1000 31 20 53 1.71 0.608
1950-2000 31 20 58 1.87 0.608

We note that for very large numbers Ni (say Ni ~ 102%) which have many fac—
tors pgi [see (12)], the use of (13) for n; becomes cumbersome. For this rea-
son, I have derived a simpler formula for n; which can be readily evaluated for
large V;. This formula is presented in Appendix A of this paper [see equation
(A25)].

As a final remark regarding (12), we note that we may define a Pythagorean
congruence (P-congruence) as follows: Referring to (12), it is seen that the
product Ay determines completely the type and the number »n; of P-decompositions
as given by (13). Therefore, we can write

N = Ax(P), (19)
and all numbers Nki with the same product 4; (but different values of Bp) will
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have the same P-decompositions, except for a different cofactor By, The con-
gruence (19) holds under the operation of multiplication, i.e., if we have two
integers N and Nir with different values of A; and By, then the product NNy
can be written as follows,

and the P-decompositions of N Nyr will be uniquely determined by the product
AxAr's except for the cofactor ByBjy: which multiplies all decompositions (x;,
Y;» 2;). Therefore, NyNy, is P-congruent to Adg::

N My = AkAkr(P). 2D

As examples of Pythagorean congruence, we mention three cases: 84 = 1(P),
since 84 is not P-decomposable, and 84 = 22x 3x 7 is a product of non-P-primes
only; similarly, 6630= 1105(P) = 5x 13x 17(P), where 5, 13, and 17 are P-primes.
Finally, 929=929(P), since 929 is a P-prime.

V. CONCLUDING COMMENTS

Of particular interest among the P-triplets, are those for which x = z - 1
(see Table 1 for examples). In this case, it is easily seen that y must be an
odd integer, which can therefore be written as

y=2v+1, (22)

where v is an arbitrary positive integer. We can now write:

2 +y?=(z-1)2%+ (2v+1)?

=22 - 22414492 +4v+1 =32, (23)

Upon subtracting 2 from the last two expressions in (23), and dividing by 2,
we obtain

-z 4+ 1 4+2v% 4+ 2v

0, (24)
which gives
z2=2v(v+1) +1, (25)

and, therefore, * = 2 = 1 = 2v(v + 1), and a suitable (x, y, 2) triplet exists
for any choice of v (>0), i.e., for any odd integer except y = 1. [In the
latter case, £ = 0 and equation (1) is trivially satisfied.] Thus, the ensem—
ble of numbers y includes all odd numbers > 3, and hence, obviously, all prime
numbers except ¥y = 1 and y = 2. An example of such a triplet (from Table 1) is
(40,9, 41), in which case V=4, 2 = (2)(4)(5)+1 =41, x = 3 - 1 = 40. Thus,
the set of y's for x = z ~ 1 contains all prime numbers larger than e. We see
again the privileged position of the numbers y = 1 and y = 2 (cf. [1]) that are
not included among the y;'s in the P-triplets, in complete similarity to the
exponents # = 1 and »n = 2 for which Fermat's Last Theorem is satisfied [i.e.,
equation (2)]. I should also note that I can amplify the statement made in [1]
concerning the Diophantine equation

F(x, y) = x¥ - y® = 0. (26)
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In [1], I stated that the only nontrivial solution of (26) for integer x
and y is * = 2, y = 4. However, if we do not demand that y be an integer, but
if we consider a limiting process for x and y, then another nontrivial solution
exists for x+1, i.e., the limit of y as x approaches 1 from above (x = 1 + ¢,
€ +0) is y = w. Specifically, I have calculated the values of y determined by
(26) for x = 1.1, * = 1.01, and x = 1.001, with the following results:

y(x = 1.1) = 43.56, x¥ = y® = 63.53; 27)
y(@x = 1.01) = 658.81, x¥ = y® = 703.0; (28)
y(x = 1.001) = 9133.4, x¥ = y* = 9217.05. (29)

It is clear from these results that the limit of y as x approaches 1 from above
is infinity, i.e.,

lim y = o, (30)
x+1
Thus, equation (26) is essentially satisfied for both & = 1 and x = 2, analo—
gous to Fermat's Last Theorem, which is satisfied only for » = 1 and n = 2.
Parenthetically, I may note that for & = 0, (26) cannot be satisfied for
any positive Yy, since

F(0, y) = 0¥ - y° = -1 (31)

for all y. Analogous to this result, Fermat's Last Theorem, equatlon (2), also
has no solution for # = 0, since the left-hand side x° + y = 2, whereas the
right-hand side 2° = 1.

In summary, I have shown that the Pythagorean decompositions of 2 according
to (1) provide a new classification of the number system into: (a) P-numbers
Np,; [see (11)] that are P-decomposable in at least one way (ng 2 1); (b) non-
P-numbers Nyp, ; that cannot be decomposed according to (11) and (12), i.e., for
which all of the o; exponents of (12} are zero. The system of integers is ap-
proximately evenly divided between P-numbers and non-P-numbers in the range
50 < ¥; < 100, although for large N; in the range of ~ 900-2000, the P-numbers
predominate slightly, to the extent of 60% of all integers.

The set of P-primes p, and products or powers of the p,, i.e., p; p; p i
give rise to the pr1m1t1ve solutions (x;, Y;» 3z) for which (1) is satlsfled.
As described by equations (3) and (4), and (7)-(9), for each pair of pr1m1t1ve
solutions (®p, ;s Yp, ;5 2p,¢) and (Xp, ;> ¥p, > Zp,j)» the product zp,%x = 2p,;8p,
contributes two new pr1m1t1ve solutions (provided the prime factors of zp,; and
3p,; are different).

The total number of Pythagorean decompositions for a given P-number Np, ;
increases rapidly with the number #, of p; primes [see equation (12)] and with
the powers o; associated with each p;,. I have obtained a general expression
for ny in terms of the «; and n, [see equation (13)]. Furthermore, (13) has
been proven by induction in the discussion which follows (15). An equivalent
formula for (13) will be derived in Appendix A. The results given in Appendix
A provide the means for a rapid evaluation of n; when the integer Ny [see (12)]
is large, so that there is a large number n, of P-primes p, in the prime decom-
position of W.

Concerning the primitive solutions, I have noticed empirically from the
decomposition tables that the density of primitive solutions, i.e., their fre-
quency, is almost constant in going from ¥ ~ 0-100 to N = 3000. Thus, gener—
ally, for each additional interval of 100 in N, we obtain sixteen additional

1986] 115



SOME RESULTS CONCERNING PYTHAGOREAN TRIPLETS

primitive solutions. As an example, the total number of primitive solutions
included in Table 1 for 1 < N < 500 is exactly 80 = 5x 16 [equation (6)]. For
1 < NV <1000, the total number of primitive solutions is 158, and for the en-
tire sample with 1 < N < 3000, the total number of primitive solutions is 477,
almost equal to the expected number 16 x 30 = 480. At present, I have no ex-
planation for the remarkable constancy of the density (frequency) of primitive
solutions as a function of WN.

As a final comment, it is not clear at present to what extent the results
reported in this paper for the case 7 = 2 will help in the ultimate proof of
Fermat's Last Theorem. Nevertheless, my previous suggestion about the values
of n> e [1] and its amplification as presented in this paper [equations (26)-
(30)] may offer a guideline to a complete proof. In any case, the interesting
discovery of the doubling of the primitive solutions [equations (3), (4)] and
the derivation of the resulting decomposition formula [equation (13)] will per-
haps shed new light on the nature of our integer number systme. Additional
results on the evaluation of (13) and on the case n=1 in (2) will be given in
Appendix A and Appendix B, respectively.

APPENDIX A

EVALUATION OF EQUATION (13)

In connection with (13) for the number n; of Pythagorean decompositions
of an arbitrary integer N as given by (12), it seems of interest to tabulate
typical values of 74 for integers with relatively low values of the exponents
0;. Table 4 shows a systematic listing of the numbers of decompositions nyz for
all cases for which Za; < 6. Obviously, the table can be subdivided into sub-
tables pertaining to those cases for which any given number of P-primes p; are
involved. Thus, the top part of the table pertains to a; > 0, 0, = 0y =0, =
as =ag =0 (i.e., the case ng = 1). The next panel of the table pertains to
cases for which two Pythagorean primes occur (1, = 2) in the decomposition of
Ny [equation (12)], and these will be denoted o, and a,, i.e., O35 «.«5 0¢ = 0.
In this panel I have arbitrarily assumed that a12=a2 and, of course, all cases
are subject to the limitation that o, + a, < 6. The third, fourth, fifth, and
sixth panels of the table are similarly constructed.

The next-to-the-last column of the table lists the values of 74, while the
last column lists the values of Ny, , the smallest integer Ny for which the
particular decomposition as given in the first six columms exists. In addi-
tion, the prime decomposition of Npyin is listed after the value of Npjp. Obvi-
ously, in order to obtain the lowest N; value consistent with the set {a;}, we
must assume that all of the B; in (12) are zero, i.e., By = 1. Furthermore, it
is necessary to choose for the P-prime with the largest o; the value 5, then
the value 13 for the P-prime with the next largest a;, and so forth.

Several results are apparent from a study of Table 4 and of (13):

1. Consider equation (13) and a particular a;, say O; o. Because the par-
ticular o, ¢ appears linearly in all of the terms of (13), ng depends linearly
on a; ¢, and in particular, for equally spaced values of a;, e.g.,

O; 0s Oz, * 1, and Oz 05 Oz,0 ~ 1,

B

we find

ng(az, o + 1) - nglag,0) = ngag,¢) - ngaz,o = 1), (A1)
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Table 4. Listing of special cases of (13) for the number of Pythagorean decom-
positions as a function of thea;'s and n,. I have tabulated all
cases for which 2:g=lui < 6. The seventh column of the table gives
the values of ngz{a;} as obtained from (13). The last column gives the
smallest number Ngin for which the listed exponents 0, Qjy, Oz, Oys Ogs
and ag are realized. The prime decomposition of Npip, is listed for
each Np;,. The blank spaces in the columns for o; correspond to val-
ues of a; = 0.

ay | G, | oy | a, | oy | ag | nglagl} Nuin

1 1 5

2 2 25

3 3 125

4 4 625

5 5 3125

6 6 15,625

1 1 4 65 = 5x 13

2 1 7 325 = 25%x 13

2 2 12 4225 = 25x 169

3 1 10 1625 = 125x 13

3 2 17 21,125 = 125% 169

3 3 24 274,625 = 125x 2197

4 1 13 8125 = 625x 13

4 2 22 105,625 = 625 % 169

5 1 16 40,625 = 3125%x 13

1 1 1 13 1105 = 5x13x 17

2 1 1 22 5525 = 25x 13x 17

2 2 1 37 71,825 = 25%x 169% 17

2 2 2 62 1,221,025 = 25% 169 % 289

3 1 1 31 27,625 = 125x 13%x 17

3 2 1 52 359,125 = 125%x169x% 17

4 1 1 40 138,125 = 625x 13x 17

1 1 1 1 40 32,045 = 5x13x17x%x 29

2 1 1 1 67 160,225 = 25x 13x 17x% 29

2 2 1 1 112 2,082,925 = 25x 169x 17 x 29

3 1 1 1 94 801,125 = 125% 13%x 17% 29

1 1 1 1 1 121 1,185,665 = 5x 13x 17 x 29 x 37
2 1 1 1 202 5,928,325 = 25%x 13 % 17 x 29X% 37
1 1 1 1 1 1 364 48,612,265 = 5x 13X 17x29x 37x 41

and, indeed, for any two values of a; which differ by 1, the differences

ng(o;) - ng(a; = 1)

will be the same. Of course, in applying (Al), one must keep all of the other
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o; values constant. Equation (Al) can be used to check the correctness of the
entries of Table 4. As an example,

ng(2, 2) - ng(2, 1) =12 = 7

nd(za 1) - nd(zs 0)
7-2-=05. (A2)

]
]

Similarly,
nd(3’ 1: l: 1) - nd(Z, 1, 1, l) =94 - 67

ng(2, 1, 1, 1) - n4(l, 1, 1, 1)
67 - 40 = 27. (A3)

Here I have used the notation 7n4(a,, a,, Oy au) and nd(al, az) for the corre-
sponding entries in Table 4.

2. Next, we consider the cases where all of the a; are 1, e.g.,
ng(l, 1, 1) = 13, n4(1, 1, 1, 1, 1) = 121, etc.

For simplicity, 7n4(l, 1, ..., 1) with & 1's will be simply denoted by n4y[1.].
We note that the ”d[lel satisfy the recursion relations

ngllgeq] = 3ng01g] + L. (A4)
As an example, n;[1,] = 364; ny[1;] = 121, and we have

ngllegl = 3n4[15]1 + 1 = 364 = (3x121) + 1. (A5)
Equation (A4) together with the additional condition n4[1;] = 1 can be used to
derive all of the n;[1g] values of Table 4, namely, 4 {= nd[lz]}, 13, 40, 121,

and 364.
I also note that the difference 74[1; + 1] - n.[1¢] obeys the equation

ngllg, ] - ngllg] = 35, (A6)
As an example: ng[lg]l - my[ls] = 364 - 121 = 243 = 35,
Therefore, I find:

£E-1
7%[1g]=n§%3". (A7)

3. A similar relation is obtained when we calculate differences between
values of n4(2, 1, ..., 1). For simplicity, we write n4(2, 1, ..., 1) with y
1's as n4[2, 1y]. We note that

ng(2, 1, 1) = nz(2, 1) =22 -7 =15, (48)

ng(2, 1, 1, 1) = ng(2, 1, 1) = 67 - 22 = 45, (A9)
and also

ny(2, 1) = ng(2) =7 -2 =5. (A10)

These results suggest the relation:
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nal2, 1y] = nyl2, 1,,1 = 5x 3771, (A11)

In fact, for v = 4, we find

ngl2, 1,1 - ngl2, 1,] = 5x3% = 135 = 202 - 67. (a12)
Moreover, i have found that
ngl2, 141 - ngll, 1y] = 37, (A13)

and, therefore, in view of (A7), and generalizing to nyl[k, 14],

v
nglk, 141 =n§03” + (k - 137, (A14)

where k is an arbitrary positive integer.

Finally, as a generalization of (A7), I have found that the ”d[kg] for an
arbitrary number § of integers Kk, e.g., n4[2, 2, 2] = n;[2;], are given by the
following expression:

£-1
nglkel =k 2 2k + 1)". (A15)
n=0
As an example: n4[2, 2, 2} = nz[2,] is given by
2
ny[2,]1 =23 (5" = 2(1 + 5 + 5%) = 62, (A16)
n=0

in agreement with the corresponding entry in Table 4. The generalized recur-
sion relation which pertains to (Al5) is

nglkey ]l = 2k + Dnglke] + k. (a17)
A more general formula which is based on (Al4) and (Al5) gives
-1
nglk, ki1 = k'Y (2k" + )" + kQ2k' + 1)Y. (A18)
n=0

(A18) gives ny; for Y powers o; equal to k' and a single power a; equal to k.
In an attempt to simplify the evaluation of (Al5) and (Al8), we note that
the sum in (Al8) can be written as follows:

y-1
E(zk’+1)”=(2k'+1)‘f‘1l:l+ 1, L +"'+—__1_T—_1]‘
n'=0 2k'+1 (2k'+1)2 (2k'+1)

(A19)
The expression in square brackets is the major part of the infinite series

1 =1+ 1 + 1 4 oo, (A20)
1 - 1/2k"+ D) 2kT+ 1 (2k'+1)?

The left-hand side of (A20) can be rewritten as follows:

1 2k '+ 1
I - 17k +1y = " 2k7 - (A21)
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Therefore, the sum of (Al19) is approximately given by

y-1
Zo(zk' + D" = 2k + 1)Y/2k!. (A22)
n=

The part of the expression (A20) which is not included in the sum of (Al9)
can be shown to result in a negative contribution to n4[k, k}], which is given
by

- 11 1 _ = 2k + 1 _ 1
by = k[l_l/(zk,+1) 1]- k'(——————zk, 1)- 2 (A23)

Upon inserting these results in (Al8), we obtain:

nalk, k11

]

k'(2k" + 1) /2K - % + k(2K + 1)Y

1
5

-;-(2k' + Y2k + 1) - (A24)

Equation (A24) suggests a natural generalization to an arbitrary number of dif-
ferent k;'s, since each k; gives rise to a power (2k; + 1)'¢ in the expression
for ny;. We therefore obtain:

Tmax

rgach = 3 M@k + D' - 3. (a25)

This equation permits a rapid evaluation of n4z({0;}) and is completely equiva-
lent to the much more complicated equation (13) from which it is ultimately
derived. I may note that we have the additional relation

Tmax

T Y = Mg (A26)
i=1

where »n, is the number of different P-primes, as used in (12). As an example,
I consider the following number,

= 52x13x17%x29%x37x41x53x61x73x89x%x 97x 101x 109x 113
Z 6.1605x% 1023, (A27)

vz, 1,,]

which is close to Avogadro's number

N, = 6.02204x 1023,

Av
The notation N[2, l;3] obviously means that the lowest P-prime, p, = 5, was
squared and the next 13 P-primes (power k; =1) were multiplied in the order of
increasing p; (see Table 2).

According to (A25), the number of Pythagorean decompositions of N[2, 1,,]
is
ng({og}) = 3(5) (319 -+ = 3,985,807. (A28)

In general, we may try to calculate numbers N which in a given range have
the largest number of P-decompositions 7;. This is wusually accomplished by
multiplying an appropriate number Yy, of P-primes, all taken linearly (k,y = 1),
i.e., to the first power. This conclusion was derived from the results of
Table 4 which show, for example, that N[1, 1, 1, 1, 1] = N[1¢] = 1,185,665 has
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Mg = 121 P-decompositions, whereas the slightly larger N[2, 2, 2] = N[2,] =
1,221,025 has only n; = 62 P-decompositions.

In view of this result, I have made a study of the numbers N[1y], where
N[1ly] denotes the product of the first Yy primes in Table 2. As an example,

N[1;,] =5x13x17x29%x37x41x53x61lx73x89x97x 101x109x 113
1.2321 x 1023 (A29)

I

has n4[1,,] Pythagorean decompositions, where [from (A25)]:
ngll;,] = 2(3* - 1) = 2,391,484. (A30)
For several values of Yy up to Yy = 25, Table 5 gives the values of N[1ly],
the corresponding n4z[ly] [cf. (A30)], and the exponent 0(Y), which will be de-
fined presently. I noticed that n4[ly] is, in all cases, of the order of

{N[1,1}Y2 to {N[1,]}/*,

so that an accurate inverse power, denoted by 1/0, can be defined for each v,
such that

nglly] = {W[1,]1}1/0 . (A31)
o(y) is a slowly varying function of Yy that increases from ¢ = 2.732 for y = 3
to 0 = 4.145 for Yy = 25. Below Y = 3, o(y) increases to ¢ = 3.011 for y = 2

and to « for y = 1, since the first P-prime, p, =5, has a single P-decomposi-
tion, and 5° = 1. The resulting curve of o(Yy) vs Y is shown in Figure 1.

4.2

40—
3.8

3.6

34

3.2

30

2.8

2.6 -

24 N (NN NN NS S E S I I
"0 2 4 6 8 10 12 14 16 18 20 22 24
Y

Figure 1. The inverse exponent O as a function of Y for the n; values pertain-
ing to N[1ly] [see (A31)].

1986] 121



SOME RESULTS CONCERNING PYTHAGOREAN TRIPLETS

Table 5. Values of o(Y), ¥[1ly], and n [1y] for selected values of Yy in the range
1 < vy < 25 [see (A31)].

Y o(y) N[1y] ngllyl

1 o 5 1

2 3.011 65 4

3 2.732 1105 13

4 2,813 32,045 40

5 2.916 1,185,665 121

6 3.001 48,612,265 364

8 3.184 1.572x 101! 3,280

10 3.358 1.021 x 10*5 29,524

12 3.503 1.004 x 101° 265,720

14 3.620 1.232x 1023 2,391,484
17 3.789 3.949 x 102? 64,570,081
20 3.936 2.286 x 1038 1.743x 10°
22 4.024 1.076 x 10%1 1.569x 101°
25 4.145 1.553 x 10"#8 4.236x 101

APPENDIX B

THE CASE n = 1 OF EQUATION (2) AND COMMENTS ABOUT GOLDBACH'S CONJECTURE
It is obvious that the case n = 1 of (2), namely
xt+y =2z (BL)

always has a solution with integers x, y, and z. We will assume, for definite-
ness, that & 2 y. Then (Bl) has z/2 linearly independent solutions when z is
even, and (2 - 1)/2 linearly independent solutions when 2z is odd. As an exam—
ple for z = 11, we have the following (11 -~ 1)/2 = 5 linear decompositions of
z: 10+1, 9+ 2, 8+ 3, 7 -+ 4, and 6 + 5.

There is a well-known conjecture, namely Goldbach's Conjecture, that any
even z can be written as the sum of two prime numbers x and y. To my knowl-
edge, this conjecture has not yet been proven in the general case, i.e., for an
arbitrary even z. In this Appendix I have made a systematic study of the lin-
ear decompositions [equation (B1)] of all the even numbers z < 100 in terms of
sums of two primes x and Y.

It can be shown that the total number of linearly independent decomposi-
tions of an even z into a sum of two odd numbers according to (Bl) is z/4 for
z = 4v (divisible by 4) and (z + 2)/4 for z = 4v + 2 (not divisible by 4).
According to the above-mentioned program, I am led to consider all of the lin-
ear decompositions of z as a sum & + Yy, where & and y are restricted to being
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prime numbers. It will be seen shortly that in this endeavor, the concepts of
a Pythagorean prime (P-prime) and a non-P-prime are of great importance.

In Table 6, I have listed all of the prime decompositions for even z in the
range from 2 to 100. The number 3 is also denoted by N. In the prime decom-
positions, I have underlined the value of x; or y; in those cases where x; or
Y; is a Pythagorean prime. The most striking result of this table (aside from
the large number of prime decompositions as 2 = N increases) is that there are
two types of cases, depending upon whether N is or is not divisible by 4: (a)
If NV is divisible by 4, i.e., N = 4V (V = positive integer), then each decom-
position is the sum of a P-prime and a non-P-prime. (The only apparent excep-
tion occurs for 4 = 2 + 2, and this decomposition will be discussed further
below.) (b) If NV is not divisible by 4, i.e., for N = 4v + 2, the prime de-
compositions involve either the sum of two P-primes (both x and y underlined)
or the sum of two non-P-primes (neither x nor y underlined). As an example,
N=16=13+3 =11+ 5. By contrast, ¥ =10=7 + 3 =5 + 5.

These two rules can be derived from the theorem of Fermat [see the discus-
sion preceding equation (10)] that all primes p, = 1 (mod 4) are Pythagorean
primes, while all primes q, = 3 (mod 4) are non-P-primes. Thus, we can write:

p; = 4v; + 1, (82)
qJ =4\)j— 1, (B3)

from which it follows that
p, +q; =40 +v;) =4y (B4)

for numbers N = 4v that are divisible by 4. On the other hand,

P, ¥ pyu= 4Vt AVt 2 =40 V)2 =4+ 2, (B5)
qj+qj,=4\)j+4\)j:—2=4(\)J-+\)J-,— 1) + 2 =4V 4+ 2, (B6)

for even numbers that are not divisible by 4, i.e., N = 4v + 2 or 4V + 2.

It may be noted that, in constructing Table 6, I have underlined the number
1, i.e., I have treated 1 as a Pythagorean prime (with the decomposition 12 =
12 + 0%). This is essentially a matter of definition, but it is mandated by
the result that the decompositions which involve 1 obey the rules (a) and (b)
described above, provided that 1 is regarded as a P-prime for the present pur-
poses. I will also note that to regard 1 as a P-prime in cases where a direct
addition is involved makes good sense, whereas in the arguments leading to the
decomposition formula, (13), if I had introduced an arbitrary factor 1% 4in the
expression for Ny of (12), this would have invalidated (13) for the total num-
ber of decompositions n;, unless a, = O.

The decomposition 4 = 2 + 2 is an apparent exception to rules (a) and (b)
given above. It does not seem to conform to the rule that one of the pair (x,
y) be a P-prime, whereas the other of the pair (x, y) should be a non-P-prime.
One way to obviate this contradiction is to specify that rules (a) and (b) ap-
ply only when the prime numbers x and y are odd. Another way of looking at
the situation with respect to both 1 and 2 is that, as was emphasized repeat-
edly in [1] and in this paper, both 1 and 2 are special integers to which some
of the rules governing other primes (Z3) do not apply; see especially the last
two paragraphs of [1] and the discussion following (26) above. This privileged
position of 1 and 2 has been correlated with the special properties of the
powers © = 1 and » = 2 in the original Fermat equation, (2). Finally, a third
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and more speculative way to describe the status of the integer 2 in connection
with 4 = 2 + 2 is that just as y = 1 had to be defined as a P-prime in connec-
tion with Table 6, but as a non-P-prime in connection with (13), so x = 2 or
y = 2 behaves half of the time as a P-prime (with the decomposition 22 =22+ 02)
and half of the time as a non-P-prime which has no decomposition 22 = x? + y2,
where x, y > 0. According to this interpretation, we could write 4 = 3 + 1 =
2 + 2 in Table 6.

Table 6. Linear decompositions of all even numbers 2 < N < 100. For each V= z,
all of the linear decompositions into a sum of prime numbers z=x + y
are listed. Values of x and y which correspond to Pythagorean primes
are underlined; the nonunderlined values correspond to non-P-primes.
Note that when N is divisible by 4, i.e., N = 4v (v = positive inte-
ger), one of the pair (x, y) is a P-prime whereas the other number in
the sum is a non-P-prime. When N is divisible by 2, but not by 4,
i.e., for N = 4v + 2, either both x and y are P-primes, or both x and
Yy are non-P-primes. A possible exception occurs for the decomposition
of 4 = 2 + 2 (see discussion in text). We assume that x 2 y.

N x; + Y
2 [ 1+1

4| 3+1, 242

6 | 5+1, 3+3

8 | 741, 5+3

10 | 7+3, 5+5

12 | 1141, 7+5

14 | 13+1, 1143, 7+7

16 | 13+3, 11+5

18 | 17+1, 1345, 11+7

20 | 19+1, 17+3, 13+7

22 | 19+3, 17+5, 11+11

24 | 23+1, 19+5, 17+7, 13+11
26 | 23+3, 19+7, 13+13

28 | 23+5, 17+11

30 | 29+1, 23+7, 19+11, 17+13
32 | 31+1, 29+3, 19+13

34 | 31+3, 29+5, 23+11, 17+17
36 | 31+5, 29+7, 23+13, 19+17
38 | 37+1, 31+7, 19+19

40 | 37+3, 29+11, 23+17

42 | 41+1, 37+5, 31+ 11, 29+13, 23+19
44 | 43+1, 41+3, 37+7, 31+13
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Table 6. continued

v x; + Yy,

46 | 43+3, 4145, 29+17, 23+ 23

48 | 47+1, 43+5, 41+7, 37+11, 31+17, 29+19

50 | 47+3, 43+7, 37+13, 31+19

52 | 47+5, 41+11, 29+ 23

54 | 53+1, 4747, 43+ 11, 41+13, 37+17, 31+23

56 | 53+3, 43+13, 37+19

58 | 53+5, 47+ 11, 41+17, 29+29

60 | 59+1, 53+7, 47+13, 43+17, 41+19, 37+23, 31+29
62 | 61+1, 59+3, 43+19, 31+31

64 | 61+3, 59+5, 53+ 11, 47+17, 41+23

66 | 61+5, 59+7, 53+13, 47+19, 43+23, 37+29

68 | 67+1, 61+7, 37+31

70 | 67+3, 59+ 11, 53+ 17, 47+ 23, 41+29

72 | 7141, 6745, 61+11, 59+13, 53+19, 43+29, 41+ 31
74 | 73+1, 71+3, 67+7, 61+13, 43+ 31, 37+37

76 | 73+3, 7145, 59+17, 53+ 23, 47+29

78 | 73+5, 71+7, 67+ 11, 61+17, 59+19, 47+ 31, 41+37
80 | 79+1, 73+7, 67+13, 61+19, 43+37

82 | 79+3, 71+11, 59+ 23, 53429, 41+41

84 | 83+1, 79+5, 73+11, 71+13, 67+17, 61+23, 53+ 31, 47+37, 43+41
86 | 83+3, 7947, 73+ 13, 67+ 19, 43+43

88 | 83+5, 71417, 59+29, 47+41

90 | 89+1, 83+7, 79+11, 73+17, 71+19, 67+23, 61+29, 59+ 31, 53+ 37,
47+ 43

92 | 89+3, 79+13, 73+19, 61+ 31

94 | 89+5, 83+11, 71+23, 53+41, 47+47

% | 89+7, 83+13, 79+17, 73+23, 67+29, 59+37, 53+43
98 | 97+1, 79+19, 67+31, 61+37

100 | 97+3, 89+11, 83+17, 71+29, 59+41, 53+47
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The number of prime linear decompositions ng,3, (Bl), varies somewhat spor-
adically in going from a specific N, N;, to its neighbors ¥; + 2, N; + 4, etc.
However, there is a definite trend of an increasing number of prime decomposi-
tions ngqy with increasing N, as would be expected because of the increasing
number of integers x, y which are smaller than N, as N increases. We note, in
particular, that ngy = 10 for ¥ = 90 (see Table 6). Since the total number of
all linear decompositions of N = 90 into a sum of two odd numbers is

W+ 2)/4 = 23,

we see that the percentage of the linear decompositions which consist of sums
of primes is 10/23 = 437%.

In Table 7 I have tabulated the total number of linear prime decompositions
(2d) ngq for all even numbers N in the range 2 < N < 100. For the cases where
N is not divisible by 4, I have also listed the partial ngy's for two P-primes
(x, y), denoted by ny4 ,, and for no P-prime, denoted by M4, + Obviously,
when N is not divisible by 4, we have

Mgg = Mya,2 + Mya,0- (B7)

At the bottom of the table, I have listed the total number of 2d's Ingy in
the range 2 < N < 50 and 52 < N < 100, and for the complete range 2 < N < 100.
It is seen that Ingg increases from 78 for the first half of the table (N< 50)
to Ingy = 135 for the second half of the table (52 < N < 100), showing the in-
crease of the average Ingy /25 from 3.12 to 5.40.

Similar tabulations have been made for Ingy o and Ing ,. It is seen that
the total number of fd's with 7 p_primes =0 slightly predominates over the total
number of 2d's with 7p_primes = 2. The ratio for the complete sample of 108 de-
compositions (up to N = 100) is 60/48 = 1.25.

I have also written down the prime decompositions for eight even integers
in the range 102 < N < 200. The results are:

ngg (N = 116) = 6, 7,4(130) = 7, ng, (150) = 13, n,,(164) = 6,
Mgq (180) =15, ny,(182) = 7, n,,(184) = 8, and ny,(200) = 9.

Finally, I wish to point out an important correlation which is as simple as
the one derived by Fermat concerning p, = 4V + 1 for a P-prime and q; = 4v + 3
for a non-P-prime. It is well known that any prime number p, can be written in
the form

p, =6v; +1 or 6v; - 1, (B8)

where v; is an arbitrary positive integer. (This equation does not, however,
apply to the prime numbers 2 and 3, and for p;, = 1 we must use v; = 0.) The
argument for (B8) goes as follows: Consider a specific V;. Then 6v; + 1 is
divisible by neither 2 nor 3, and therefore may be a prime; 6v; + 2 is divisi-
ble by 2;6v; + 3 is divisible by 3; 6v; + 4 is again divisible by 2; 6v; + 5 =
6(v; + 1) -1 is divisible by neither 2 nor 3, and therefore is a candidate for
being a prime number.
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Table 7. For all even integers N in the range from 2 to 100, n,, is the number
of linear decompositions of ¥ into a sum of primes N = x; + y,;, as
given in Eq. (Bl). For the integers N which are divisible by 2 but not
by 4, i.e., for values N = 4v + 2, I have also listed the number of
linear decompositions into a sum of two P-primes, denoted by 744,75
and the number of Iinear decompositions intoa sum of two non-P-primes,
denoted by 744, ¢. Obviously, for values of N = 4v + 2, we have ngq =
Mga,2 + "ga,0. The sum of all nyy and 7ng4,0 (@ = 0 or 2) is listed at
the end of the table for the intervals 2 S N < 50 and 52 < ¥V < 100,
and also for the total range 2 < N < 100.

N "4 44, 2 nad, 0 N ¥ M4, 2 94,0
2 1 1 0 52 3
4 2 54 6 3 3
6 2 1 1 56 3
8 2 58 4 3 1
10 2 1 1 60 7
12 2 62 4 1 3
14 3 1 2 64 5
16 2 66 6 3 3
18 3 2 1 68 3
20 3 70 5 2 3
22 3 1 2 72 7
24 4 74 6 3 3
26 3 1 2 76 5
28 2 78 7 3 4
30 4 2 2 80 5
32 3 82 5 2 3
3% | 4 2 2 84 9
36 4 86 5 1 4
38 3 1 2 88 4
40 3 90 10 4 6
42 5 3 2 92 4
44 4 94 5 2 3
46 4 2 2 96 7
48 6 98 4 2 2
50 4 1 3 100 6
0, (2 S B < 50) wuveennns 78 19 22
104 (52 < N < 100) «oe... | 135 29 38
g (2 < < 100) vunnnnns 213 48 60

Now the correlation which can be derived from Fermat's p; = 4v + 1 theorem
is that all Pythagorean primes are of the form

p, =6v;+1, if v; is even, (B9)
and

p, =6v; -1, if v; is odd. (B10)
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Thus, 37 = (6)(6) + 1 is an example of (B9) (even v; = 6); 89 = (6)(15) -~ 1 is
an example of (B10).

In view of (B9) and (B10), the non-P-primes (except 2 and 3) are of the
form

q; 6v; - 1, if v; is even, (B11)
and

q; = 6v; +1, if v; is odd.

It should perhaps be noted that not all v; or V;j give rise to P- or non-P-
primes. The first few v; values which do not give rise to a prime number are:
v; = 20, 24, 31, 34, 36, 41, etc. The preceding equations signify only that <f
a given number is a P-prime p; or a non-P-prime q;s then it can be expressed
by (B9) or (B10), and (Bll) or (B12), respectively.

Referring to the results of Table 7, I wish to note that the total number
n,, of prime decompositions has maxima when N is divisible by 6 (¥ = 6v), at
least starting with ¥ = 24. This trend is particularly noticeable when N lies
in the range from 72 to 96. Thus, nz,(90) = 10 is considerably larger than
nga(88) =4 and n,,(92) = 4. Similarly, ng,(84) = 9 characterizes a peak in
the n,; values as a function of NV since, for the neighboring ¥ = 82 and N = 86,
we find n,,(82) = 5 and 7n,,(86) = 5. This property may be caused by the fact
that, when N = 6v, we have two primes such that one of them is of the form
6v; + 1 and the other prime can be written as 6v, — 1, and in taking the sum,
we obtain N = 6(v; + v,) = 6v. It is also interesting that in several cases,
particularly for N = 6v, both members of each of two twin prime sets are in-
volved, e.g.,

]

78=73+5

71 +7 =61 + 17 = 59 + 19.
Note also that

84

73+ 11 = 71 + 13

41 + 43
and
90

71 + 19

73 + 17 61 + 29 = 59 + 31.
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ON THE MINIMUM OF A TERNARY CUBIC FORM
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Let

fo = Falws ys 2) =2° +y° +2° + 3amyz, ()

a an arbitrary real constant, and denote, for a lattice A in R3, by u4()) the
infimum of |f,| if (x, y, 2) runs through all lattice points of A except (0, O,
0). It is the objective of the present paper to estimate, from the above, the
supremum Mq of Ug(A), taken over all lattices A with lattice constant 1. (Since
any homogeneous ternary cubic polynomial can be transformed into the shape (1)
by a suitable linear transformation, there is no loss of generality in start-
ing from this canonical form.)

Classical work on this topic has been done by Mordell [6] (on the basis of
his method of reducing the problem to a two-dimensional one) and by Davenport
[1], [2]. Significant progress has been achieved in the special case a = 0.
For arbitrary a however, the results obtained were not very sharp, as was noted
by Golser [3], who improved upon Mordell's estimate for the general case, by a
refined variant of his method. Later on, in [4], he observed that, for a cer-
tain range of the constant a, the bound can be improved further by the simple
idea of inscribing a sphere into the star body |fs| < L.

The purpose of this short note is to establish a result that improves upon
all known estimates for certain intervals of a (at least for 0.9 S a < 2.9 and
for -6 < a < -1.2; see the tables at the end) by the elementary procedure of
inscribing an ellipsoid of the shape

E.(r) : 2% + y? + 22 + 2t(xy + xz + yz) < r?, (2)

where ¢t is a parameter with -% < ¢ < 1, into the body Kq:|fs| < 1. Our result
reads

Theorem: For arbitrary real a and a parameter ¢ with -% < ¢ < 1, t#0, we have

Mo S V21 = YW1 + 2¢ ma(t),
where

ma(t) : = max{|1 + a| (1 + 2¢)73237Y2, ¢, (), ¢,(&)},
$,(2) 1= (2 + 2t + bte; + 57T |2 + 3ac; + cf G =1, 2)),
c;i= (26)7N(b - 2t + (-1)I(B? + 4t + 4bt*)?), b = a - 1.

Proof: We first briefly recall some well-known facts from the Geometry of Num-
bers. The critical determinant A(X,;) of our body K, is defined as the infimum
of all lattice constants d(\) of lattices A in IR? which have no point in the
interior of K, except the origin. For any such lattice A, we put

Ay = d(N) Y3,
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[such that d(A,) = 1] and A" = A - {(0, 0, 0)}, A = A, - {(0, 0, 0)}. Since
f, is homogeneous of degree 3, it follows that

A(Kg) = inf{d(h) : i[?’flfa| > 1}

il

inf inf{d €R: in’f|fa, > 1/d}

dhyy=1 AJ A
= ( sup inf|f, )%,
diA) =1 A

hence M, = A(X;)~!. We further note that the ellipsoid F,(r) can be transformed
into the unit sphere by the linear transformation

x' = (x+ ty + t2)r"t, y' = (V1 - 2 y + Vt - t2 z)r Y,

YA - +28)
rvl + ¢t
which is of determinant (1 - £)V1 + 2¢ r 3. Since the critical determinant of

the unit sphere equals 12 (see Ollerenshaw [7] or [5], p. 259), we conclude
that

Z'

ME, () = r3((1 - t)V1 + 2&v2) 71, (3)

If we choose r maximal such that E,(r) C K,, then obviously A(X,) 2 A(E.(r)),
hence

Mg = MK <r 321 - &)1 + 2¢
and, by homogeneity,

.| = a = p 8,
pax [fal =1 <> max Iful = »

Therefore, it suffices to establish the following

Lemma: For arbitrary ¢t with -% < ¢ < 1, t # 0, the absolute maximum of |f,| on
E: (1) equals mg(¢t).

Proof: Since the absolute maximum of |f,| can be found among the relative ex-
trema of fg on the boundary of E,(l), we determine the latter by Lagrange's
rule. We obtain

322 + 3ayz + k(2x + 2t(y + 2)) = 0, »
3y2 + 3axz + k(2y + 2t(x + 2)) = 0, (5)
322 + 3axy + k(2z + 2t(x + y)) = 0, (6)
x2 + y2 + 2% + 2¢t(xy + xz + yz) = 1. ¢))

This system does not have any solution with x#y# 2 #&, for otherwise we could
infer from (4) and (5) (subtracting and dividing by x - y) that

3(x+y) - 3az + 2k - 2kt = 0

and similarly, from (5) and (6), that
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3(y + 2) - 3ax + 2k - 2kt = 0.

Again subtracting, we would get the contradiction x = 3 (at least for a # -1
the case a = -1 then can be settled by an obvious continuity argument).

Furthermore, it is impossible that a solution of our system satisfies x =
y = 0, because this would imply that k¢z = 0 and 2(3 + 2k) = 0, hence z = 0,
which contradicts (7). There remain two possibilities (apart from cyclic per-
mutations).

]
1]

Case 1: x =y z # 0. By (7), we have

x =y =z=+(l + 2¢)"223-1/2
and for these values of x, y, and z,
[f2] = |1 + a| (1 + 2¢)~3237%/2, (8)
Case 2: 0 # x =y # 2. Eliminating k from (4) and (6), we get
2t ~a-at)x® + (1 + at)xz + (@ - 1 - t)xz? - 2% = 0.
This can be divided by x - z and yields
tz? + (1 + 2t - a)az + (2t - a - at)z® = 0,

hence z/x = ¢; (j = 1, 2, as defined in our theorem). From (7) we deduce that

x =y =2(2+ 2t + bte; + cj)'lm, 2 = C;%,

J

and for these values of x, y, and z,
|fal =0, G =1, 2. 9

Combining (8) and (9), we complete the proof of the lemma and thereby that of
our theorem.

Concluding Remarks: Letting ¢ + 0 in our result, we just obtain Golser's theo-
rem 1 in [4]. However, this choice of ¢ turns out not to be the optimal one.
In principle, one could look for an '"advantageous" choice of the parameter ¢t
(for a given value of the comstant a) by computer calculations, but it can be
justified by straightforward monotonicity considerations that it is optimal to
choose t such that max{¢,(%), ¢,(t)} equals the right-hand side of (8).

We conclude the paper with tables indicating the new upper bounds for M,
(for certain values of a) as well as the corresponding "favorable" values of ¢
and the previously-known best results due to Golser [3], [4].

1986]

a 0.9 1 2 2.9

t 0.02799 | 0.040786 | 0.07973 | 0.07301
M, < 1.428 1.4483 1.9442 2.5758
Golser: M, < | 1.454 1.5018 2.0597 2.5775
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a -6 -5 -4 -3 -2 -1.2
t -0.064204 | -0.07892 | -0.101987 | -0.14273 | -0.23042 | -0.41324
M, < 4.9848 4.1843 3.391 2.6116 1.8634 1.33
Golser: M, <| 5.03779 4.31314 | 3.58475 2.85169 | 2.1106 1.54372
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Let F = {1, 2, 3, 5, ...} be the set of Fibonacci numbers, where F, = 1,
Fy = 2, and thereafter F,, = F, _, + F,_,. We shall examine the function p,(n),
which we define to be the number of ways to additively partition the integer n
into (not necessarily distinct) Fibonacci numbers.

We first consider the generating function for pF(n). By elementary parti-
tion theory, we have

1 1
Tpmar =M —— =1 ——. (1)
720 a€F | - ga m22 ] - gFnm
Equivalently,
( na - me)> ¥ p,(mat = 1. )
m=2 n20

We may expand the infinite product as a power series

IMaQa-zfy =3 gan, (3)

m22 m>0
where a, counts the number of partitions of m into an even number of distinct

Fibonacci numbers, minus the number of partitions of m into an odd number of
distinct Fibonacci numbers; we may write this as

Gy = p(m) - p(m). @

We shall see later that knowledge of the terms ap will lead us to a recursion
relation for pF(n). With this objective in mind, we prove the following.

Theorem: Let

k
P = 1LQ1 - xf")  when k > 2,
m=

]

and set P, = 1. Let L, =F, + F,_, be the n'™ Lucas number. Then

n+1

Po=MQQ-af)=1-2-2x2+ ¥ %P, _,.

m>2 k=23

First proof: This proof is combinatorial in nature. First consider the partial
products Pp. When expanded as a power series of the form

k
P, =3 aﬁ,]f)x”’,
m=0
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the coefficients ag” represent the same thing as the a,, except that the parti-
tions are now restricted to Fibonacci numbers not exceeding F,. It is evident
that ago = ap for all m such that 0 < m < F,,, by inspection of (4). We shall
use this fact later.

We may partition an integer »n into distinct Fibonacci numbers in one par-
ticular way by first writing down the largest Fibonacci number not greater than
n, subtracting, and iterating this process on the difference. For example,

27 =21 +5 + 1.

See the references listed at the end of this paper for a more detailed discus-
sion of these points.

For simplicity of notation, we will represent a partition of a number into
distinct Fibonacci numbers as a string of 1's and 0's, with the rightmost place
corresponding to F, = 1, and each succeeding place corresponding to the next
Fibonacci number. In the above example,

27=1+21+0-13+0+8+1-5+0-3+0-2+1-1,

which we may write more compactly as

(8)
27:1 001001,

where the (8) signifies that the 1 below it is the coefficient of Fy = 21.

The first few terms a, for m =0, 1, 2, and 3 can be obtained by direct
calculation of the first few P,; they are seen to be 1, -1, -1, and 0, respec-
tively. Now let #n 2 3; our objective will be to characterize the terms a, in
the range L, < m < L,,,. As L = 4, this will give us a, for every nonnegative
m. Since n > 3, we have a partition of L,,, obtained in the above manner (from
here on, all partitions are into distinct Fibonacci numbers, unless otherwise
stated):

(n)
L w1t 101000 -0

n
Thus, we have the following nine possibilities for partitions of m, where

L,<m< L,,.q:

(n) (n) (n)
(a) 1001 x x (dd0o0110cx - x (g)001l1lx...x
(b) 10002 x (e) 01 01x -+ x (h)y 0010x --- x
(¢)0111x - x (£) 01 00 x - (i) o0 0 xx --- x

The x's indicate "we don't care which digits go here."

In the above list, we may find a one-to-one correspondence between the par-
titions in (a) and the partitions in (c). Given a partition beginning with
1 0 0, we may replace these three digits with 0 1 1. Both strings will have
equal value because F,,, = F,,; + F,. However, out of each of these pairs of
partitions, one is a partition of even cardinality, whereas the other is odd,
since they are different only in their first three places. Hence, these par-
titions will cancel each other out when we compute an, using equation (4). Sim-
ilarly, there is a one-to-one correspondence between partitions of type (b) and
of type (d), and they cancel out for the same reason. Partitions of the forms
(f) and (g) differ only in the positions corresponding to F,, ;> F,, and F, _;;
they cancel each other out in the same way. Partitions of the forms (h) and
(i) are excluded from possibility. To see this, recall that
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Fy +F, 4+ oo +Fp =F,, - 1. (5)
Thus, the largest number expressible in the form (h) is
F, + F, - 2 < 2F,.

But L, =F ,, +F ., so

L,=F, +2F | >F, +F | +F  =2F

1 2 n*

Thus, if m is expressible in the form (h), then m < L,, contrary to assumption.
Similarly, if m is expressible in the form (i), then m < F,,; - 2, which is
less than F,,,, which in turn is less than L,, again a contradiction.

Therefore, the only class of partitions of m which will contribute to the
right-hand side of (4) are those of the form (e). But the leftmost four places
in (e) form our partition of L,; therefore, the & ... x in (e) must represent
a partition of m~ L, into distinct Fibonacci numbers of size less than or equal
to n - 2. Conversely, given any such. partition of m - L,, we can construct a
partition of m of the form (e). Since both partitions in this correspondence
are of the same parity, i.e., either both are partitions into odd numbers of
Fibonacci numbers or both are partitions into even numbers of Fibonacci num~
bers, we deduce from (4) that

- (n-2
a om = ar:t ), whenever 0 < m < L,_q1- (6)

We have thus proved the theorem.

Second proof: This proof is analytical. We require the following two results:

Let 4 = a;, a,, ... be an arbitrary set of positive integers. If lg] <1,
then

1 2q%
m—2L 143 , -
acd (1 - 2q%) 221(1 - 2g®)(1 - ZQGZ) e (1 - 2q%)
and
IT (1 +2g% =1+ 2 (1 +2g%) --- (1 + 2q%-1) g%, (8)
acd i»1

Proof of (7): We consider the partial products. Clearly,
a,
N S S AL
(1 - zg%) (1 - 2¢%)

Now suppose that

n n ai
) SR l :
t=1 (1 - zq%) =1 (1 - 2g™) (1 - 2g%2) ++- (1 - 2q%)
Th
en . a.,
i —1—-—(11 ___._1____><1 +_Z_q_._>
i=1 (1 - ani) =11 - zqai) (1 - annﬂ)
a; Aps
=1+ f 24 + d : ﬁ !
i1 (1 - zq%1) «oe (1 - 2q%) (1 - 2g%+1) 2=1(1 - 2g%)
1986]
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n+1 gqai

=1+ .
=1 (1 - zqal) cee (1 - an'“')

By induction on #, the partial products on the left-~hand side of (7) are equal
to the partial sums on the right-hand side. As [q[ <1, the sum converges.
This proves (7).

Proof of (8): The first partial product is clearly the first partial sum.
So suppose that

n 7
.Hl(l + 2g%) =1+ 3, (1 + 3g%) ~++ (1 + 3qg%-1)ag%.
i= i=1

Then
n+1

_l;ll(l + zg %)

<-I§1(1 + zqa“-')>(1 7+ 5q%n+1)

n n
14+ 3 (14 2g%) «+ (1 + 2g%-1)ag + zg+ _Hl(l + zg9)
i=1 i=
n+l
L+ 30 (1 +2g%) »+ (1 + 3g%-1)aq%.

=1

By induction on #n, this proves (8).
The following argument is due to the referee.
In (8) we set z = -1, g =, and 4 = F:

Na-zf) =1-a2-22+2 - (1 -2af) -+ (1 - iz
m22 m23

=l-x-x2+2- % (1 - zfey e (1 = By

m23
+ Y-zt e (1= gy
m23
=l-z-z?+xd - 5 -af) or (1 - gfr2)gin
m=3
+ T -af) cer (1= i)zl
mz3
+ T (1 -zt (1 - 2Fr-1 )z Fnea
m23
=l-g-x2+ L (1 ~-zxf2) eve (1 = gfr2)ygln,

m23

This proves the theorem.
Corollary: For all m 2 0, a, is either 1, -1, or O.

Proof: We have already seen that this is true for m< 3. Now the degree of
P, ,is1+2+3+4+:--4+F,_,, or Fj - 2, which is clearly less than [y, - Ly,
which equals IL;_;. What this tells us is that the polynomials on the right-
hand side of the theorem add together without overlapping. Thus, we only need
to show that each P, has coefficients afnk) =0, 1, or -1 for all m.
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We do this by induction om k. Clearly, it is true for k = 1, as P, = 1.
Suppose, then, that a%o =1, -1, or O for all m and all k < n. By the defini-
tion of P,, it is clear that the first F,,, coefficients of P, are identical
to those of P,; in other words,

4y = ay’ for all m such that 0 Sm < F,, ..
Hence, by the theorem, the first n + 1 terms ag” are the coefficients of the
partial products P, with kX such that Ly < F,,;; this includes all k less than
n - 2 because L, 5 < F,,, <L, ,. By the induction hypothesis, the first F,
coefficients are either 1, -1, or O.

Now recall that P, is a finite product of "antipalindromic" polynomials of
the form (1 - xfx). Thus, we have

n n+1l n
ai? = (1" (9)
whenever both subscripts are positive, since the degree of P, is F,,5,~2. But
Fy41 > %(F,,, - 2), so the first half of the coefficients in P, are 1, -1, or
0. By (9), so are the last half. By induction, all P;'s have coefficients 1,
-1, or 0. By the theorem, all terms a, are 1, -1, or 0. This proves the cor-
ollary.

By equating like terms on both sides of (2), where we have evaluated the
product P as the power series (3), we obtain, for all n = 0:

agpp(m) + aypp(n - 1) + ==+ +a,_,pp(1) + q,p,(0) =0,
where pF(O) = 1 in accordance with the power series (l). This yields a recur-
sion for pF(n) with all coefficients a; equal to 1, -1, or O.
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(Submitted July 1984)

Let {U,, n = 0} be the ordinary Fibonacci sequence defined by

U,=0,0,=1,0,=1U +U for n 2 2.

n n-1 n-22
For any integer k > 2, let {V (n), n = -k + 2} be the k™ -order Fibonacci se-
quence defined by

V(@) =0, for -k + 2 <5< 0, V() =1,

and Vi(n) =Vi(n-1) + Vx(n = 2) + «e0 +V, (n - k), forn > 2.
It is well known that, for any integer m 2> 2, the sequence U, [=V,(n)] mod m is
periodic, and it is easy to see that this also holds for any sequence Vi (n) mod
m with k 2 3. For any m > 2, let p(k, m) denote the length of the period of

the sequence ¥y (n) mod m. The proof of the next result is almost identical to
that in [3] for the ordinary Fibonacci sequence V,(n), thus is omitted here.

Theorem 1: The sequence Vi (n) mod m is simply periodic, i.e., it is periodic
and it repeats by returning to its starting values. If m has the prime factor-
ization m = ﬂqfi, then p(k, m) = lem [p(k, qff)], the least common multiple of
the p(k, qfi).

In order to prove Theorem 2, we first state Lemma 1, the proof of which is
quite simple and, therefore, will be omitted here.

Lemma 1: Let {W;(n), » =2 0}, ¢ = 1,2, 3, be three sequences such that for each
Ty Wy(n) =W;n - 1) + +++ + W;(n - k) for all n 2 k. If the equality W,(n) =
Wy(n) + W,(n) holds for 0 < n < k - 1, it also holds for all n > k.

The following result extends the corresponding result [3] for the sequence
V,(n) to any sequence Vi (n) with k > 2. Our proof is quite different from that
in [3], and we do not have a general formula for Vi (n).

Theorem 2: Let g be any prime number. If p(k, g?) # p(k, q), then
p(k, q°) = q¢° 'pk, @ (1)
for any integer e 2> 2.
Proof: Let r = p(k, q). For the sake of simpler notation, we shall prove (1)
only for e = 2. The same proof stands, with obvious modifications, for e > 2.
Define the k-tuple
Ty = (Vg(=k + 2), ..., V(1)) = (0, ..., 0, 1),

and
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3
]

1 (Vk(—k + 24+, ooy, V(L +2r)) = (05 ..., 0, 1) mod g

(98,5 «evs 8, _1s g5 + 1) mod g2,

where 0 < 55 < g for 1 < j <k, and s, + --- + 5, > 1. The k~tuple T, is ob-
tained by moving 7'y, r units to the right.
T, can be decomposed as follows:

Ty =qgs;(1, 1, 2, «ons 25°2) 4 g(s, = 8,000, 1, 1, ..., 2%°3)
+q(s, -5, - 80, 0, 1, ..., 2K°%) 4+ ...
+ [q(sy = 8,_, = +=+ = 8,) +11(0, 0, ..., 0, 1) mod q2.

Applying Lemma 1, one can obtain the k-tuple T, by moving T, r units to the
right.

T, = [q(sg=8p_1=++»=8.)+11(gs;s 8,5 qSgs +oes G815 G+ 1)+ =
+q(s,-8,)(gs, _15q8;+ 1,q(e+ 8, 1+, )+ 1, ..., q(...)+ 253
+ gs,(gs+ 1, q(sk+-sk_1+-sk_2)+-l,..., q(...)+—2k'2) mod q2

(2985 2q8,5s ««+5 295, s 295;+1) mod g°.
Similarly, one has

T; = (Jgsys Jqs,s -«vs Jq85_1s G, + 1) mod q2

for 2 € j € g. Since ¢ is a prime number, T; # Ty for 1 < j < g ~ 1, and since
Ty = Ty mod q%, we have p(k, q?) = qr = gp(k, q). This completes the proof.

As a final remark, we note that some simple facts about higher-order Fibo-
nacci sequences can be easily observed. For example, many moduli m have the
property that the sequence Vi(n) mod m contains a complete system of residue
modulo m, while m = 8 and m = 9 are the smallest moduli which do not have this
property in the case k = 3, and they are said to be defective [2]. For m = 2
and m = 11, the sequence V,(n) mod m is uniformly distributed. (See [1] for a
definition.) It is interesting to extend the results for ordinary Fibonacci
sequences to those of higher order.
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A NOTE ON PASCAL-T TRIANGLES, MULTINOMIAL COEFFICIENTS.
AND PASCAL PYRAMIDS

RICHARD C. BOLLINGER
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(Submitted August 1984)

1. INTRODUCTION

In what follows we give a formula for the entries in the Pascal-T triangle
Tm in terms of the multinomial coefficients; this is the counterpart for these
arrays of the result of Philippou [1] on the elements of the Fibonacci k-se-
quences in terms of the multinomial coefficients. The proof is direct, and the
method also leads to a recurrence relation which gives the elements of a given
triangle T, as a combination of certain elements of the "preceeding' triangle
Tp-.1s the coefficients in the combination being binomial coefficients. Final-
ly, because the multinomial coefficients provide the connection here, we offer
some remarks on those arrays of multinomial coefficients referred to in the
literature as "Pascal pyramids."

It will be convenient to recall the definition of the triangle T.

Definition 1.1: For any m 2 0, Ty, is the array whose rows are indexed by n =0,
1, 2, ..., and columns by k=0, 1, 2, ..., and whose entries are obtained as
follows:

a) T, is the all-zero array;

b) T, is the array all of whose rows consist of a one followed by zeros;

¢) Tp, m>2,is the array whose n=0 row is a one followed by zeros, whose
n=1 row is m ones followed by zeros, and any of whose entries in sub-
sequent rows is the sum of the m entries just above and to the left in
the preceeding row.

The entry in row 7 and column k is denoted by C,(n, k), although we note that
n
Cz(ns k) = (k)s

since T, is the Pascal Triangle. There will be n(m - 1)+ 1 nonzero entries in
row n, and the principal property we need is that these are the coefficients
(see, e.g., [2], p. 66) in the expansion

n(m=- 1)
(L+t+t24 o0 +t"H" = ¥ C.(n, k)t (1.1)
k=0

Although it is easy to use property (c¢) to build the array T, by means of the
relation

m~1
Cn(ns k) = L Cp(n = 1, k = ), (1.2)
J=0

the main result presented here evaluates C,(n, k) directly as a sum of certain
multinomial coefficients.
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2. FORMULAS FOR C,(n, k)

Theorem 2.1: If Cp(n, k) is the (n, k)-entry in T,, m > 3, then for any n > 0
and 0 S k < n(m - 1),

c,(n, k) = ¥ ,n( " n ) 2.1)

MysMys ene Nys MNys e

where the summation is over all m-part compositions #;, #,, ..., %, of # such
that (1) ny +n, + «++« + ny =n, and (2) Ony + 1n, + **+ + (m - Dn, = k.
Proof: The proof follows directly from the multinomial theorem, for if in
() + 2, + o0 +2)" = % ( " )xf‘xzz cee s (2.2)
Nys s m
where the summation is over all m-part compositions of 7, we put x; = ti1
1 < <2 < m, we have

(L £ 4 +or + ™" = 2:( n )tn2+2n3+...+(m-l)nm, (2.3)
Nis eess My

and when the coefficients of %X on the right-hand sides of (1.1) and (2.3) are
equated, (2.1) follows from conditions (1) and (2).

, ) 4 4 4 4
Example: €, (4 &) = (o 4 0 o) * (1, 2, 1, 0) * (2, o, 2, 0)* (2, 100, 1)

1+12+6+ 12 = 31

Another application of the multinomial expansion, used partly as a binomial
expansion, gives the following theorem.

Theorem 2.2:

Cn(rs 1) = 3 (2) Gy s K = ) (2.4)

j=0\d

Proof: If the left side of (2.2) is grouped as [x;+ (X, +++- + 2,)]", expanded
as a binomial, and again t*”! is substituted for x,;, the result is

n(m-1)

> ¢, (n, k)tk = ff (’?)tj(l e A (2.5)
k=0 j=0\d

But then the factors .(1 + t 4.+ + t" ?)? may be expressed in terms of Cpn_;'s,
using (l.1). When the coefficients of a given power of ¢ on the right of (2.5)
are collected and equated to the corresponding coefficient on the left, then
(2.4) follows.

Example: C, (4, 4)

“Ve,0, 4 + (H)e,a, 3 + (e, 2)
0 1 2

+(3)e6, 0+ (3) ¢t 0

1°0+4°0+6+3+4e3+1-1=31
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3. THE PASCAL PYRAMID

The device used in the previous theorem of bracketing off one term of a
multinomial in order to expand the result as a binomial can, of course, be re-
peated with the remaining multinomial parts, eventually running the unexpanded
part down to a binomial itself; this offers the possibility of obtaining the
multinomials entirely as products of binomial coefficients. In fact, this has
been done in [3] and [4] for a trinomial expansion, with the multinomial coef-
ficients appearing in the successive powers of (xr; + &, + x;) being associated
with points in triangular arrays, which form successive levels of a pyramidal
structure—the so-called Pascal pyramid. For example, Figure 1 shows the first
four levels, with each point labelled with both a multinomial coefficient and
the composition which gives rise to it (the compositions can be obtained by
designating the sides as first, second, third in some fashion, and letting 7,
n,, N3 in the composition measure units of perpendicular distances from the
first, second, third sides, respectively). The law of formation for this tri-
nomial case is clear (and also correct, as is easily verified by doing the re-
duction described earlier): just generate the ordinary Pascal triangle down to
level n, and then multiply the rows successively upward by the numbers found
in the last line. For n = 3, e.g.,

1 1.1
1 1 31 3-1
1 2 1 becomes 2.1 3.2 2_1
1 3 3 1 1 3 3 1
n=0 0,0, 0
n=1 20,0, 1)
1 1

(1,0,0) (0,1, 0)

n=2 A (0,0, 2)

Figure 1. Levels of the Pascal Pyramid for the Case (x; + x, + x3)
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This works nicely, the idea is not restricted to trinomials (the generalization
is not just a bigger triangle, but it is similarly simple), and there have been
several comments to the effect that it is surprising that the Pascal pyramids
(or hyperpyramids) are not more widely known or used.

Why should this be? An answer would seem to be that as soon as one gets
past the trinomials, the method, while still elegant, becomes computationally
unwieldy. That is, in the usual expansion of a multinomial (x, +-:- + x,)"
n+m-1

n
see what is required to deal with these in terms of products of binomials, we
look at what might be called the Pascal square, in which we tabulate for m = O,
1, 2, ... and n =20, 1, 2, ... the number of m-part compositions of n (taking
the entry for m = n = 0 to be one). The first several lines are shown below:

there are ( ) terms corresponding to the m-part compositions of n. To

Pascal Square

n
No. Parts m 0 1 2 3 4 5
0 1 0 0 0 0 0
1 1 1 1 1 1 1
2 1 2 3 4 5 6
3 1 3 6 10 15 21
4 1 4 10 20 35 56
5 1 5 15 35 70 126

Here, the law of formation is that each entry is the sum of qgll those entries
above and to the left of it in the preceeding row, and we recognize the m = 3
row as the triangular numbers, the m = 4 as the pyramidal numbers, and so on.
The point here is that the square shows that the trinomials (m = 3) are simple
sequences of products of binomials; as in the example, the ten trinomials in
(x, + x, + x3)3 reduce to 4 + 3 + 2 + 1 products of binomials. But for m > 3,
we find not sequences, but sequences of sequences. The thirty-five terms in
(x, +x, +z, + .704)Lf [the (4, 4) entry]l, e.g., have to be obtained using the
sequence

15=5+4+3+2+1,
10 = 4+3+2+1,
6 = 3+42+1,
3 = 2+ 1,
1= 1,

of sequences of products of binomials. It would seem that in spite of the ap-
peal of an array for multinomial coefficients similar to the triangle for
binomials, one is better off for most purposes using a convenient algorithm
(e.g., [5], pp. 46-51) to generate the m-part compositions of #n, from which the
exponents on the X; and the multinomial associated with a given term are imme-
diately available.
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1. INTRODUCTION

It is well known that I'(z) is an analytic function of z that gives »n! when
2z =n+ 1. It is reasonable to look for a similar function for the Fibonacci
numbers F,. Several such functions are known (see Bunder [2] where further ref-
erences are given), but the formula we will derive is more general than any of
those obtained earlier.

To be specific, we are looking for an F(z) with the following properties:

(a) F(z) is an analytic function (perhaps entire),
(b) F(z) is real valued for all real z,
(c) F(n) = F,, the ntht Fibonacci number for all integers #,

(d) For z in the domain of analyticity we have
F(z +2) =F(z+ 1) + F(z). (1)

It is clear that if F(0) = F, = 0 and F(l) = F;, = 1, then equation (1) im-
plies that F(n) = F, for every positive integer n. This follows immediately
from the defining equations Fy=0, F;=1, and F,,, = F,,, + F,. In fact, this
latter relation can be used to define the Fibonacci numbers for negative inte-
gers.

If F(z) satisfies the functional equation (1), then so does each derivative
Exmkz), m=1, 2, ... . This suggests that we try efz ag a solution, for some
number R. When ef2 is used in (1), we find that it is a solution if and only
if eR is a root of

x? = x + 1. (2)

Using the standard notation for the roots of (2), we have

1 + 1 - V5
OL=“—2—‘/;5—, B=_—2~_‘/—s (3)
and hence
R=1no or R =1n B = 1n|B| + (2g + )¢, q = 0, 1, *2,
Using the linearity of (1) (see Spickerman [4]), it is clear that if p and ¢
are integers, and C, and C, are arbitrary real numbers, then

flz) = Clezﬂna+2mﬁ) + Czezunm|+aq+1wm> (4)

satisfies the functional equation (l). Now f(z) is an entire function but it
is not real valued for every real 3. To remedy this defect, we consider
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[f(z) + f(z)1/2.

This function is not an analytic function, but if we replace z by x we obtain
the real function

F(z) = €& %os 2pma + C,e®I8leos(2g + 1)me. (5)

If we now replace & by z in (5), we have a function that satisfies the
conditions (a), (b), and (d). The initial conditions F(0) = 0 and F(l) =1
force the selection (; = 1/V5 and c, = -1/V5. Then, finally, the function

F(2) =-§:[631“acos 2pmz - eZI“W|cos(2q + 1)7mz] (6)
5

has all of the properties (a), (b), (c¢), and (d) that we wish.
Equation (6) was given earlier by Spickerman [4] and is an entire function
that gives the Fibonacci numbers for integral values of z.

2. THE MAIN THEOREM

Equation (6) gives a countable infinity of functions that satisfy the con-
ditions (a), (b), (c), and (d), and we may ask if we now have all such func-
tions. In fact, we shall soon see that (6) gives only a tiny portion of the
functions that satisfy (a), (b), (c¢)3 and (d). We first observe that if o and
B are the roots of (2) and m is an integer, then

G(z) = e?% gin 2mmz + e20Blsin(am + 1)mz 7))

satisfies the three conditions (a), (b), and (d). Further, G(n) = 0 for every
integer n.

We now take linear combinations of the functions F(z) and G(z) defined by
(6) and (7). To simplify the presentation, we impose a condition on the coef-
ficients to ensure that we obtain entire functions.

Definition: We say that the real sequences {4,}, {Bnp}, {C,}s and {D,} satisfy
condition £ if

Z Cn =1, E D, =1 (8)
4 m=0 m=0
an
2 4,em, 2 B,e™, 2 Cpem, 2 Dpe™ (9)
m=0 m=0 m=0 m=0

are all entire functions.

These are very weak restrictions. For example, (9) is trivially satisfied
if all but a finite number of terms in each sequence are zero. The linearity
of equation (1), and our earlier work, immediately give

Theorem 1: Let {4,}, {B,}, {Cn}, {D,} satisfy condition E, and let o and B be
defined by (3). Then each one of the functions

F(z) = Y C,e?ln%cos 2mmz - L > DmeZI“’Ncos(Zm + w2 + (10)
m=0

5m=0

-

> (continued)
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+ X A, e*™%in 2mrz + 3 BMQZI“mlsin(Zm + )7z
m=0 m=0

satisfies the conditions (a), (b), (c), and (d).

It is clear that (1) gives an uncountable infinity of suitable functions.
We still have an uncountable infinity if we set all coefficients equal to zero
except Cy, C; =1 - Cy, Dy, and D; =1 - Dy.

Do we have all such function? In other words, given a function with prop-
erties (a), (b), (¢), and (d), is it one of the functions described in Theorem
1? This is an open problem.

The Fibonacci numbers satisfy many interesting relations, see, for example,
Bachman [1, II:55-96], Vorob'ev [5], or Wall [6]. Many of these generalize,
and we cite only a few here.

If F(z) is any one of the uncountably many functions given in Theorem 1,
then, for all z,

N
kz%E%z + k) =F(z+N+2) -Fz+1), (11)
N
S F(z+ 2k - 1) =F(z + 2N) - F(z), (12)
k=1
and
2N )
S (-1)*F(z + k) = F(z + 2V - 1) - F(z - 2). (13)
=0
3. A GENERALIZATION
One natural generalization arises when we replace F;+2 = Fn+1 + F, by

Fuyo = rFpy1 + sFy

and impose the initial conditions F, = a and F; = b. To extend the work of §1
and §2, we look for entire functions that are real on the real axis, give the
generalized Fibonacci numbers at the positive integers, and satisfy the func-
tional equation

F(z + 2) = rF(z + 1) + sF(2) (14)

for all z. Here we restrict r, s, a, and b to be real. We preserve the basic
notation of §2 and set

r + Vr?2 + 4s r - Vr2 + 4s
i B (15)

the two roots of

x? = rx + s. (16)

[Compare this equation with equation (2).]

For simplicity, we assume that o and B are distinct real roots, and this
implies that r2 + 4s > 0. We also assume that s # 0 because, if s = 0, equa-
tion (14) reduces to F(z + 1) = rF(z) for all z, and the generalized Fibonacci
sequence is then a geometric sequence. If r and s are positive, then a>0>RB.
We consider this case first.
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Theorem 2: Suppose that a> 0> B, where o and B are given by (15), r and s are
real numbers, and the sequences {4,}, {Bn}, {Cn}, and {D,} satisfy condition E.
Set

F(z) =% -aB+b Cpe?in%cos 2mmz + 3 gx b Dne?nlBleos(2m + 1)mz
m=0 &~ B m=0 &~ B
+ ¥ 4, %sin 2mmz + Bmezlnw’sin(Zm + D7z). (17)
m=0
Then:

(a) F(z) is an entire function;
(b) F(z) is real on the real axis;
(c) F(z) satisfies the functional equation (14);

(d) for all positive integers F(n) =F,, the nth generalized Fibonacci num-

ber defined by Fj = a, F, = b, F =rF  , +sF,, n=0,1, 2, ...

n+2 1

We omit the proof because it follows the pattern set forth in §2. First,
one shows that each individual term satisfies (14), and then one applies the
linearity property. A simple computation shows that F(0) = ¢ and F(1l) = b.
Parker [3] obtained a simplified version of (17) in which only two of the coef-
ficients are different from zero.

If » > 0 and s < 0, then a>B>0. In this case, we have

Theorem 3: Suppose that >8>0 and the sequences {4,}, {B,}, {C,}, and {D,}
satisfy condition E. Set

F(z) = 2:0:%§:¥;é Cne?1™%os 2mmz + 2%-2%jféé D,e?1"f cos 2mmz
m= me

+ Y (4,67 %sin 2mmz + B,e?"® sin 2mmz). (18)
m=0

Then F(z) satisfies conditions (a), (b), (c), and (d) of Theorem 2.

The proof is similar to that of Theorem 2; thus, it is omitted here.

If » <0 and s < 0, then 0>a>pB. In this case, we replace o and B by |a
and IBI, respectively, in (18). Further, cos 2mmz is replaced by cos(2m + 1)7z

and sin 2mmz is replaced by sin(2m + 1)mz. The details are left to the reader.

In each of the three cases, there is an uncountable infinity of functioms,
each satisfying the conditions (a), (b), (¢), and (d).

L. CONCLUDING REMARKS

We return to the original Fibonacci sequence 0, 1, 1, 2, 3, 5, ... treated
in §§1 and 2. If o and B are given by (3), then, as is well known,

1
F, = =" - 8. (19)
V5
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This formula for F, is called Binet's formula. If we replace the minus sign by
a plus sign in (19), we obtain

L, = o+ B™ (20)

These numbers L,, n = 0, 1, 2, ..., are often called the Lucas numbers [5, 6].
Now Ly = 2, Ly =1, and L4y = L,,4y + L, for n =0, 1, 2, ... . Consequently,
Theorem 2 gives a set of uncountably many entire functions for the Lucas num-
bers. 1Indeed, set a = 2 and b =1 in (17) to obtain

-aB + b _ ao - b _
“a-f - 1 and “a-8 1. (21)

Then F(n) = L, for all n.

Finally, we note that Binet's formula can be extended to cover the gener-
alized Fibonacci numbers treated in §3. Let r, s, a, b, 0, and B be real num-
bers, where a and B are given by (15). If Fy =a, F, =b, F,,, = rF, , + sF,,
for n =0, 1, 2, ..., then

_—aB+b , , a0 - Db ,n _
F, = O o + o= B B", for m =0, 1, 2, oo . (22)
Here, of course, we assume that r?> + 4s > 0 so o # B and both o and B are real
numbers. For brevity, we omit the discussion of the special cases (a) a = B,
(b) @ =0 > B,and (¢) @« > B = 0. In these last two cases, equation (l6) gives

s = 0. Hence, F,,, = rF, and the sequence {F,} is a geometric sequence.
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ON THE ENUMERATOR FOR SUMS OF THREE SQUARES
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1. INTRODUCTION

For each nonnegative integer #n, r;(n) denotes the cardinal number of the

set:
3|, _ .2 2 2
{(x,, z,, z,) €Z |n = z% + x2 + =z},

We here propose to express r; in terms of simple divisor functions, defined as
follows.

Definition: For each pair of positive integers %, n, with 7 < 2, §;(n) is de-
fined by

s;(m) = L (-)Wd-1L,
dln
d= 7 (mod 3)

Theorem 1: Let n denote an arbitrary positive integer.
(i) If n = 3m?, for some positive integer m, then
ry(n) =2+ 6(-1)"[6,(n) - §,(m)]
+ 12(—1)”'}:1(—1)”[62(11 - 37%) - §,(n - 379)].
i=
(ii) If n is not of the form 3m?, then
r,(n) = 6(-1)"[8,(n) - &, ()]
+ 12(-1)" _Zl (-D)"[6,(n = 32%) - &, (n - 39)].
i=
In both statements (i) and (ii), summation for the sums indexed by 7 extends
over all values of 7 for which the arguments of §,; and §, are positive.
In §2, we prove this theorem. Our concluding remarks are concerned with

comparison of the present representation of r, with the classical representa-
tion due to Dirichlet.

2. PROOF OF THEOREM 1

Our proof is predicated on the quintuple-product identity

fil (1 -2 - az™) (1 - a 2™ 1) (1 - a2 1) (1 - q~222""1)

= f: xn(3n+1)/2(a3n _ a-sn—l)’ (1)

-0

which (as observed by Carlitz and Subbarao [1]) is derivable from the classical
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triple-product identity

1?[(1 - @) (1 + ax® ) (1 + a2l = 3 znlign, (2)

Both identities are valid for each pair of complex numbers a, x such that a # 0
and |x| < 1. We shall also require the following classical identities associ-
ated with the names of Euler, Gauss, and Jacobi.

fjl(l - 2?1+ 2 = 1, (3)

1?(1 _ xzn)(l + xZT’L-l)Z = i xnz. (4)

Identity (4) is an easy special case of (2) (simply set a = 1), but we list it
separately to observe that the cube of its right side generates r

2 3°
In (1), let a +~ a

and multiply the resulting identity by a to get:
(@-aHHa -z -a2™ 1 - a 22" - a*x? (1 - a *x?" 1)
1

= 00
=q zxn(3n+1)/2a6n _ a—l Z xn(3n+ 1)/2a-GrL

-0 - o0

a1 (1 - ) (1 + ax® 1) (1 + a8z "2)
1

-a? fi(l -2+ a1+ a2’ 2. (5)
1

Here we have used (2) to express the infinite series as infinite products. For
the sake of brevity, put

F(a) = F(a, x) = fi (1 - a22™ (1 - a 2™ (1 - a*z?" 1)1 - a "z "1y,
1
G(a) = G(a, x) = fi (1 + a®2¥ (1 + g b2%"-2),
and '
H@) = Ga™ ).

Hence, (5) becomes

[1-29@-abHr@ = I1d -2 {a6@ - a B @)}
1 1
We now differentiate the foregoing identity with respect to a to get:
- 2){ +a?)F@ + (a-aHF (@)}
1
= (-2 {6 +a?H@) + aG'(a) - a *H'(a)}. (6)
1 .

Sequentially, we use the technique of logarithmic differentiation to evaluate
G'(a) and H'(a), substitute these evaluations into (6), let a - 1 in the result-
ing identity, and finally cancel a factor of 2 to get:
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ﬁ (1—xn)3(1—x2n_l)2
1

P © n-1 © In-2
=1 (l—x3")(1+x3"‘1)(1+x3"'2){1+6 (Z L y = )}
1 L1412 1 142372

-1 (1—x3”)(1+x3"'1)(1+x3"'2){1+6i [6,(n) - él(n)]x"}-
1 1

Now,
ﬁ (l_xn)3(1_x2n—1)2
1 (1_xBn)(l_._xan-l)(l_’_xSn—Z)
- ﬁ (1-2m)3(1-x2n-1)3. A+’ A+ DA +x3772)
1 (1_xSn)(1+x3n~1)(1+x3n—2)
[by Euler's identity (3)]
= {f I:a(n)(_x)n} ‘1 .lL”?a_n
0 1 1 - x3n
Hence,
© © - 3n ©
Ery o = 1 222 hiv6 £ 15,00 - 6,00107]
0 1

11 + 2%

{1+z ?(-xa)”z}{l+6$ [8,(n) - 61(n)]m"}.

Now, letting x - -x, we have
Yr,mzr=1+2 % ¥ + 6 L (-1)"[6,(n) - 8, (m)]zn
0 m=1 n=1

+12 £ DT CDFL8,0n - 360 - 8,01 - D)1
n=1 i=

[Here we adopt the convention that §;(k) =0 whenever K < 0, 7 =1, 2.]

Equat-
ing coefficients of like powers of x, we thus prove our theorem. [Note that
r_ (0) = 1.]

3

CONCLUDING REMARKS

There is a somewhat complicated formula for r,(n) [n € Z%] due to Dirich-
let. This is:

=21 -1
_16 1 1 1 1 < p ' n 1) >
= — K(=4n) « 1 + =404 + —(1- ,
ry () = > nt2 x, (K(-4n) prl1< > Tt (=)

where the definition of T is p2¥|n, but p2("* V) n,
& [(-4n\1
K-ty = ¥ (Z2)2
mz=:1 m /m’
Here, and above, (:%E) is a Jacobi symbol. And
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il

0 if 47% = 7 (mod 8),
X, () =427%, if 4% = 3 (mod 8),
3.27179 if 4% =1, 2, 5, 6 (mod 8),

and here the definition of ¢ is 4“!7@, but 44%1 ,}' n. This formula (among others)
is given by Hua [2, pp. 215-216]. First of all, it is far from obvious that
this expression for r,(n) is an integer, whereas our expressions of Theorem 1
are clearly integral. However, Dirichlet's formula permits an easy proof of
the fact: ry(n) > 0, if and only if, n is not of the form 4%(8m + 7). At the
moment, the author has not seen a way of deducing this fact from Theorem 1.
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1. INTRODUCTION

There is a large literature concerning various properties of the Bernoulli
numbers; see, for example, [l, 12, 16, 23] and their references. According to
H. S. Vandiver [23], by 1960 over 1500 papers had been written on the subject.
The main thrust of the present paper is to consider several congruence proper-
ties of the Bernoulli numbers that extend various results of Vandiver, Nielson,
Carlitz, and Stevens; see [2, 16, 19, 22]. The Bernoulli numbers B, (n 2 0)
are defined by the expansion

X — x”
- = Z Bn"_'a
e® -1 =#n=o n:

which is equivalent to

¥ (U)Br = B, (n>1) (1.1)

r=0 r

1. It is sometimes convenient to write (1.1) in the form

together with B,

(B + )"

B" (n>1) (1.2)

where it is understood that, after expansion of the left-hand side, we replace
Bk by By. It is easy to check that for the first few values of n we have

B, = -1/2, B, =1/6, B, = -1/30,

and that in general B, ,, = 0 if k > 1.

Bernoulli numbers have numerous interesting properties. For example, if
Su(k) = 1" +...+ k", then S,(k) = (By4+1(K + 1) = B,41)/(m + 1), where B, (x) =
(B + x2)". The Bernoulli numbers are related to class numbers and to Fermat's
Last Theorem. Moreover, they satisfy numerous recurrences and congruences.
For further details regarding various properties of the Bernoulli numbers, the
reader should consult the papers [l, 12, 16, 23] and their references.

2. CONGRUENCE PROPERTIES

If p is a prime, we now consider several congruence properties of sequences
of rational numbers where we say that a/b is integral modulo p if (b, p) = 1.

*Professor Stevens passed away on December 3, 1983. Many of the results in
this paper were presented by him to the departmental number theory seminar held
on December 1, 1983. The paper, based on results obtained by Professor Stevens,
has been written by several departmental colleagues.
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Moreover, if a/b and ¢/d are integral modulo p, then
%ECEZ (mod p) if ad = be (mod p).

We assume throughout this paper that p is an odd prime even though similar re-
sults could be obtained for the case in which p = 2.
In [15] Kummer proved that

Bﬂ+l—p _Bn
Arp-1°-7n @mdp
for all n > 1, where (p - 1),rn. More generally, one can consider congruences
of the form

z s Bn+s( -1)
Sgo(-l) (g)m—(ﬁ}%ﬂ =0 (mod pr) (2.1)

for n > r, where (p ~ 1) *7L In [15] Kummer studied congruences similar to the
above but in a more general setting in which he proved the following theorem.

Theorem 1 (Kummer): Let a, be integral modulo p and suppose
0 .r o
Z ot = Ly An (e = D" (2.2)
If the 4, are integral modulc p, then
= r
sz%(_l)s(s)‘1”+S<P-1>5 0 (mod p7), for n > r > 1. (2.3)

Nielson showed in [16] that if a, = B,, the nth Bernoulli number, then the
Bernoulli numbers themselves satisfy (2.3) if (p - 1)* n, where the modulus is
replaced by p¥~!. In attempting to remove the restriction (p - 1)[ n, Vandiver
[22] showed that if n = a(p - 1) and a, = B, then (2.3) holds modulo p’“1 pro-
vided that » + a < p - 1. This latter restriction is, however, a rather severe
one. In [2] Carlitz showed that the congruence (2.3) holds if » < p - 1 and
that some much weaker congruences hold if r 2 p - 1.

Congruences similar to (2.3) were later studied in a series of papers by
Carlitz and Stevens [5-9, 18-21]. Recently, a number of authors have taken re-
newed interest in the topic of congruences for various sequences of numbers.
For example, Rota and Sagan [17], Gessel [13], J. Cowles [10], and J. Cowles,
S. Chowla, and M. J. Cowles [11] have used various general combinatorial tech-
niques, such as group actions on sets, to obtain various congruence properties
for several sequences of numbers.

If one looks at Kummer's Criterion (2.2) and (2.3), it is easy to see that
the condition is sufficient but not necessary. We will make use of the follow-
ing theorem due to Carlitz [5].

Theorem 2 (Carlitz): Let a, be integral modulo p and suppose

0 _"X_:z _ 00 (e:c — 1)7(
ng‘oan nt —kgoAk k! '

Then 4, = 0 (mod pk/Ply for all k >(O if and only if
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z r _
sgo(—l)s (s)a”+s(p' =0 (mod p?), for all n 2 r 2 1.

3. APPLICATIONS

In this section we apply Theorem 2 to the Bernoulli numbers to obtain sev-
eral congruences that extend various results of Vandiver, Nielson, Carlitz, and
Stevens, see [1, 16, 19, 22]. Finally, we use the theorem to obtain an elemen-
tary proof of the Staudt-Clausen theorem. Let us put

[ n T _ o 1 T _ n
X - EOBn _.;17/"_' - log(l + (e l)) - z (_l)n nn+. - (e = 1) s
et -1 n= ’ e -1 =0 )
so that
_(=D"n!
An =751

Now however, the 4,'s do not satisfy the condition of the theorem. If we mul-
tiply by p, each coefficient in the new series does satisfy the condition, ex-
cept for the coefficient of

(ex - 1P 7!
(®? - D!
Thus, we have

n_(DP !

T 0By oy = e - P71+ o),
n=0 :

where C(x) satisfies the condition of the theorem. Hence, if D is the deriva-
tive operator, then

» (=1P -1

. (e® - 1P’ "1 (mod p7),

oo n
(P - D)* L pBy o = (DF - D)
n=0 :

where we say that

- x” - x”
nz%an - né%bn — (mod m)
if a, = b, (mod m) for each n = 0. .

We now consider (DP - D)T(e® - 1)P -1 (mod p”*1). Since

p?-1

x _ p?-1 _ _ pi-1-j pz -1\ ir
(e® - 1) Z D ( i e,

if we apply the operator (DF - D)’, we get after some simplification that, for
each n > 0, the coefficient of z/n! is

p-1 2 _1_i/n2 _ _
T o T S G prge, (3.1)
p!
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We now break the sum (3.1) into two sums &' and %", where in &' we sum over
those j for which p [ j, while in L" we sum over those j for which pld.
To compute L', suppose that jP~ ! - 1 = pk(j), so that

P2'1 2 _ 1 _ 22 _
=pr T P AP T Drayrane
i=0 J
We know that

(pzj‘ 1) = (-1)7  (mod p).

If j' = 4 (mod p) so that ' = j + @p, then k(J') = k(j) - JP7%Q (mod p), and
hence

p2-1 2 -
re_pypi-1-d(p? - 1 NP snd
ORI A P [LEN

2 p-1fp-1

GOLIED [ Z (k@) - j"'zm’]j”” (mod p)
J=10L€&=0

_1ypi-1 p_l-n-#rp_l r

DF 70X T EeT (mod p),

Jg=1

i

since the terms in the brackets run through a complete residue system modulo p.
If (p - 1) [ r, then the inner sum is zero modulo p, while if (p - 1) f (n + ),
then the outer sum is zero modulo p. If (p —Zl)lr and (p - 1)|(n + r), then
the left-hand side of (%) is congruent to (-1)? ~! modulo p. Hence,
0 (mod p**Y) if (p - /fr
¥'2{0 (mod pr+}Y) if p - 1))+
(-1)P°-1 (mod pr*1) if (p - 1)|r and (p - )| (n + 7).

Along similar lines, we may compute the sum 2" to obtain
) 0 (mod p**1) if (p - 1)* (n + r)
(1P T (mod prl) if (p - 1)|(n + r)

Therefore, combining the congruences obtained for X' and ", we see that pB,
is integral modulo p. Thus, we may apply Theorem 2 to the sequence a, = pB, to
obtain

L (P
Theorem 3: Let N =s)_:0 -1)” S(S)Bn+s<p—1>

(A) 1f (p - 1) [/ n where n > »r > 1, then ¥ = 0 (mod p*~1).

(B) 1f (p -~ 1)|n and (p - 1) [ r where n > r > 1, then ¥ = 0 (mod p"~1).
(C) 1f (p - D|n and (p - 1)|r where n > r > 1, then N = p”~2 (mod pr-1).
(D) If n = r and (p - 1)|n, then ¥ = 0 (mod pr+l).

We note that (A) is a result of Nielson [16], while the result in (B) improves
upon results of Vandiver [22] and Carlitz [2].
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We now obtain a generalization of these congruences. Since

e-1 e-1

2P - yP = @PT - P T @ VP P 2 Ty

e-1

+ 2@ Ly - Py

by induction on e one can prove the following identity:

e-1 e-1

2P - P rpi@ - A PTG (e 2 1) (3.2)

where each f,(x, y) is a polynomial in x and y. Let F be the difference oper-
ator, and suppose b = 1. Let x = EP®-1 apnd y =1 in (3.2) and then take the
rth power of both sides. We obtain

r
sgo(—l)r_S(lg)B”**sbpe'l(p-1)E 0 (mod p#) (3.3)

where 4 is the minimum of
e-1 e-1 1-q
—1+.Eiu + 0pe‘ “ta; and  a, + ccc 40 = .
=1 1=

This minimum occurs when
=0 and o0q,.;=r.

Hence, if n 2 er, then 4 = er - 1. We may now state

r
ey
Theorem L4: Let b > 1, e > 1, and ¥ =s§0 (-1)* S(S)Bn+sbpe-1(p_ "

(A) If » > 1, n > er, and either (p - 1) [ n or (p - 1) [ r, then
M = 0 (mod per-1).

(B) 1f n > er, (p - 1)|n, and (p - 1)|», then M = 0 (mod p°"~?).
These results should be compared with Theorem 8 of Stevens [19].
We now apply Theorem 2 to obtain an elementary proof of

Theorem 5 (Staudt-Clausen): If n > 1, then

1

B2n = GZn - z 5
(p-1)|2n

where G,, is an integer.
Proof: It suffices to show that pB, = -1 (mod p) if and only if (p - 1)|n. We
have

3 = 5 Cpyk P - Dk
L 0B g7 = L DR et - D

By induction on 7 in (l.1), it is easy to show that pBy = 0 (mod p) if 0 < n <
p - 2, and hence from (1.1) we have that pBp.q = -1 (mod p). If n=a(p - 1),
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then for r = 1 we have pBa(p-1) = pBp-1 (mod p) so that Bgpp-1)= -1/p + @ where
@ is integral modulo p. Similarly, pB, = 0 (mod p) if (p - 1) [ n. Thus p di-
vides the denominator of B, if and only if (p - 1)|xn.
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1. INTRODUCTION

One of the more appealing aspects of the Fibonacci sequence, and certainly
the most appealing to the uninitiated, is the very large number of remarkable
identities that can be found. Discussing identities with Vern Hoggatt several
years ago, I pointed out that it was easy to discover new identities simply by
varying the pattern of known identities and using inductive reasoning to guess
new results. With characteristic enthusiasm, Vern immediately picked up on the
idea and suggested that an appropriate paper be written. Shortly after return-

ing home, I received a letter from Vern which began: "There are a surprising
number of good ways of expanding the list of identities. Consider ... ." And
the last sentence read: '"At least some of this is sparkling new, and we are

only using observation."

What follows is an account of some of the ideas we were sharing. They are
not deep but, like Vern, I find them interesting. Of course, the ideas can be
extended to more general recurrent sequences in obvious ways, but we restrict
our attention here to the familiar Fibonacci and Lucas sequences defined by

at - gt ; :
F; ==——=— and L; = a® + B%, (1)
V5
where a = (1 + /3)/2, B = (1 - Vg)/Z, and 7 is an integer.
2. THE GENERAL IDEA

The identities

n
PIRZER S ()
and
n
2 _
igaLi =L,L,., -2 (3)

are well known (see, for example, [4], p. 55]. Alternatively, for the Lucas
sequence, one can easily obtain

fEVLZ . {SF;F;+1 n even, (31
i=1 SF,F,,, -4 7 odd.

How might these be generalized? Well, sums of squares might be viewed as
sums of terms of the second degree in Fibonacci and Lucas numbers. Thus, one
might consider other such sums like, for example,

n n n
ZFF s DFRF . ey TFL
=1 =1

= =1
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and their Lucas counterparts or the mixed sums
n n n
Y FiLpye SEL . o LELig
i=1 i=1 =1

One can now proceed formally, or with a little guessing, to obtain, for d any
positive integer,

LC FnFn+d+1 n even,
L FFL = %)
t=1 Z'-'nFn+d+1 - Fd n odd,
n 5 Fyae1 7 even,
L LI ,= (5)
i=1 5F F,  ae1~ Lass n odd,
n FoL,yaet 7 even,
2 FiL1.+d = (6)
=1 FoFprge1- Lg n odd,
FoL,yavi n even,
iglLiFiﬂi = N
Folpsge1- Fgy g n odd,

which, as one would expect, exhibit a pleasing symmetry.
The proofs are straightforward utilizing Binet's formulas (1) and the known
identities (see [1] and [10])

FyL,,, s even,
Fryge = Fp = (8)
LgFpy s s odd,
S5F,F, +s s even,
Lypyos = Ly = 9)
L,L,,, s odd,
LgFoys S even,
Frige + Fp = (10)
FoLpys s odd,
LeL,yg s even
Lpsoe ¥ Lr = (11
5FFri s s odd.

As an example of the proofs of (4)-(7), we prove (4). Since of = -1, 1 -
02 = -a, and 1 - B2 = -B, we have

n L P Bi>(3i+d - pi+d
F.F.. .=
121 ihitd i§1< /5 /5

(continued)
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DISCOVERING FIBONACC! IDENTITIES

d(n2 _ n2nt2 d(p2 _ p2nt2 d d n X
_ad@® - o)  gd(p® - 8 )_<a+s>,z(_1y
5(1-a?) 5(1-8?) > i=1

%{ 4@+ - a) + BB - B) - Ly il(—l)"}
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