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EXPANSION OF THE FIBONACCI NUMBERS F,, ., IN THE mt'® POWERS
OF FIBONACCI OR LUCAS NUMBERS

JAMES E. DESMOND
Pensacola Junior College, Pensacola, FL 32504
(Submitted November 1982)

1. INTRODUCTION

It is known, see [l, p. 77], that

F,F, =FZ% - FZ

2a” 2n a-n

and, see [2, p. 43], that

- w3 a+1 3 +1173

FaFoqtsy = ooy ¥ (51D LFy + -n" Fn
for arbitrary integers ¢ and n. These identities suggest the possible exist-
ence of a general identity of the form

k
wF_ = ty_; b D, + (L™PIELE L1 + b, (1)
=1

where m, n, and g are integers with m > 0, and where w and b;, 1 < ¢t < k, are
integral expressions free of the variable n, and b is an integral expression.
Gladwin [3] has given existence proofs for some general identities of a similar
type. An example of the kind of identity that we shall obtain is

212 _ 6 _1ya+lp2 6
FaFZanapuanaFeann - FaFZaFaaFn+3a + (-1 FZaFGaFn+2a
a 6 a+l 6
+ (-1 FaFSaFGaFn+a + (=1 FaFSaFGaFn—a
_1yap2 6 _ 6
+ ( l) F2aF6aFn—2a FaFZaFaaFn—3a

for arbitrary integers a and n. In the sequel we shall use the following well-
known results: for all integers a and n,

(Lo + VEE)™ = 2™ YL, + V5F,,) " (2)

where m is a positive integer,

F_, = (-1D)""F, and L_, = (-1)"L,, (3)
L2 = 5F2 + (-1)"4, (4)
2F, 4 = F L, + L F,, (5)
2Lg4p = SF,F, + LglL,. (6)
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EXPANSION OF THE FIBONACC! NUMBERS

2. PRELIMINARY LEMMAS

Lemma 1: L2/FZ - L2/F2 = (-1)"*Y4E,, F _ [F2F2 for m # 0 and n # O.

m+nTm-n

The proof of Lemma 1 follows from equations (3) and (5).

In the sequel, let a be a nonzero integer.

Lemma 2: For m > O,

2 . . .
(1) 2mip = }: <27Lm— 1>57,—1F£7,—1Lr7n1+1-21’

(ii) 2" 'L, =

|
I‘MN

( m >5¢—1F£i—2Lg+z—2i,

27 = 2
+1
m m+1om [ET]
a+n + (-1) Fa-n] = q‘g

[m+2]
\, . . . .
(iv) 2" NES, 4 (DMELT = (" ) ai iz,
i=1 -

m+ 2
2

(v) 2m-1[L;z+n+(_l>ang7_n] - Z (27;777_ 2>52—;—2F§i—2LZ+2—2iF§i—2LZ+2-2i,

ES

(vi) 27 (DN, +(-1)™FI ] = % (27/771 1)52i—1F5i—1L7£+1—<ziF§i—1Lrg+1~ziB

a-n 3
=1

(ii1) 2" '[F 1 (217?7_ 1>F§i_lLTLH_ZiF;H—ZiL?—l’

S}

Proof: We shall prove formulas (i) and (iii). The remaining formulas have
similar proofs. By equation (2),

2", + VEE, ) = 2" (L, = V5Fy,) = (L, + V5B = (L, - V5F,)".

That is,

I

2V3E, = % (1) IR 1+ (D
=1

2[_»7;1]_1
)L EEE)
i=1, 7 odd
m+ 1
=2[2]( m )Lm—zi»fl(\/gF )2i-1
P 27 - 1/7n n :

]

Formula (i) can now be obtained by dividing through by 2/5.
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EXPANSION OF THE FIBONACC! NUMBERS

Now, by equations (5) and (3),

1 1
2"ES, , + (1)™MTE ] = (FyL, + LF)" + ()TN (E,L_, + LF )"

(FyL, + L;F )™ = (F,L, - L;F)"

]
" M=

(’Z)F;"'izfg‘iLjF,f[l + (-1)FF]

2m+l:|_1

2

=2 ¥ (Z?)F;L;"'LF;”“L(?
1=1,1% odd

[m+1

2
m 20 -lpm=-22+1pm-22+1727 -1
2i}=:1 (271 )Fn'” IR SR A

-1

Formula (iii) is obtained by dividing through by 2.

Let Vi = (xi'l) for 1 £ 7, t S k, denote the Vandermonde matrix. From [4,
pp. 15, 16] it follows that for Kk > 1 and ¢ =1, 2, ..., k,

x
el = (M ,I_]l (x, = x,), (7
i#t

where (Vk)kt is the cofactor of x§'1 in IVkI.

Lemma 3: For kX > 1 and any constant ¢ # X, t = 1, 2, ..., k,

3 k
t‘_[,l(vk)kt /(c - z) = |V -Ul(c - ;).

Proof: Let Cy = [ci4], where ¢4, =1 if ¢ =¢, ¢;, =-c if < =%t + 1, and
¢;+ = 0 otherwise. Then,
k k k
ARIARARCAARS AANES A @ - 2|,
i#

1
L # t
f >
(¢ - x,) ) /(c-x).
i=1 LT Kk ¢
In the sequel, let @, = L /FZ for t =1, 2, ..., k

Lemma 4: For k> 1l and t =1, 2, ..., Kk,
. k+ t k
(-1) ‘“’1227<‘2(I/,<)kti=1;1+ Fia = L F-2v,| M F

v i=k-t+1

Proof: By equation (7) and Lemma 1, for k > 1 and ¢t =1, 2, ..., k,

k k .
IVkl/(Vk)kt = n (xy —xy) = Z.I;[l[(_]‘).Lai-ll’Fta-!» ia Fta- iq /tha Ffa]

=1
i#t i#t X
k .
= (-L)¥N(EL, [4F,,, )[ilz]l[@l)”“l*Fmia /P Fla ]] LR

it
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EXPANSION OF THE FIBONACC! NUMBERS

k
t

t+k t-1
_1yta+1l,,k-153
(-1 (45 1F3, /Lta)[i=£I+IF4L1=]1 Fm_ia}[iznﬂpm_ia]

k k
i=1 " ||i=1
k

+ - k-
(-1 LGk, thF][tﬂllF:][ ,HtF-ia}

2k -2 k K
N Fta . F—ia H Fia:'
=1 =1

(_l)ta+ 1227(—‘2[ kﬁt F]/L F2k~2 ﬁ Fo.
ia ta” ta -1a

]

i=k+1 i=k-t+1

since, by equation (5), F,,, = Fy, L.

Lemma 5: For k > 1,

t=1 1

k k k
T EDETFL, (Vg = <1/22k'2>IV;<|[f=IlFia} Tr .

Proof: For ¢t =1, 2, ..., Kk,
@, = L2 /F2 = (5F2 + (-1)™4)/F2, = 5 + (-1)" 4/F2,

It follows that (—1)ta+1fﬁa =4/(5 -~ x,). Therefore, by Lemma 3,

k K k
El(_l)mupti V) = EIW(S -2 (V) = 417 _£11<5 - x;)
k .
IAYS SRRV
k k
= (l/Ak'l)IVkl[Jl E;;]_II F_, -
=1 =1

Lemma 6: Let u be a positive integer and let 2, be a real number for t=1, 2,

™
n
o
33
R
|

.k
=5 z, for each 7, 1 <4 < u,
t=1

k ,
5% z,x;"" for each ¢, 1 <7 <u.
t=1

™
n
o+
3]
The
1l

k Ck
2 z,xl =53 z, for each 7, 1 <7< < u.
t=1

t=1
Then, for < =1,
k k
222y =52 3
t=1 t=1
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EXPANSION OF THE FIBONACC! NUMBERS

and, for 2 < 7 < u,

k ,
¥ ozt

k k

i _e.ei-1 _
2 zxl =55 28, =5
t=1 t=1 t=1

Conversely, we use mathematical induction on u#. The case u = 1 is true.
g =2 1, assume that
k . k .
Y zal =5 zat"t for each ¢, 1 < 7 <gq,
t=1 t=1
implies
k . - . .
2 2,xf =53 5, for each 7, 1 < ¢ < gq.
t=1 t=1
Now let
k . k .
T zxl =5 zxy”t for each £, 1 <7< q + 1.
t=1 t=1
Then
k , k .
L zxl=5Yzxi"t for each 2, 1 <{<gq
t=1 t=
and
i q+1 k q
2axlt =53 an
t=1 t=1
Therefore, by the induction hypothesis,
Ko .k _ )
Y. z,@p =53z foreach i, 1<i<g
t=1 t=1
and
X +1 k q
Y ozai™ =5 z,xf
t=1 t=1
Hence
k , .k
Y z,xt =53 5, for each ¢, 1 << < g,
t=1 t=1
and
k q+1 7 & q41 &
Yaxltt =557, =5 3 =,
t=1 t= t=1
Thus
k , .k
Yaxl =533z, foreach¢, 1<i<qg+ 1.
t=1 t=1

The proof is complete by mathematical induction.

For

Lemma 7: Let z, be a real number for ¢ = 1, 2, ., kK, and let J be a fixed
integer.

Zk: 1 ta Jg~1 2 _ . . k J = k Jj-1

7f=1(— ) z,xl{""/F,, =0 if and only if tglztxt = Stglztxt .

k . K .
Proof: ¥ z,xf = Zl_zt(Lia JFZ Y™t

t=1 t=

It

K .
tgzlzt((sm’-a + (-1)"4) /P2 )it

Koo k .
5 letxi‘l + 42_‘,1(-1)*” z,xl YL .
t= =

198
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EXPANSION OF THE FIBONACCI NUMBERS

Corollary 1: Let z, be a real number for ¢ =1, 2, ..., k.

k .
T (-1)¥zxi"t/F] =0 for each ¢, 1 <7< u
t=1

if and only if
k X .k
Y a.xf =5y z, for each 7, 1 <7 < u.
t=1 t=1
Proof: Apply Lemma 6 and Lemma 7.

Corollary 2: Let k > 1. Then

k . . k
Z DR Ty = 5770 B CDTE, (T,

for each 7, 1 £ 7 < k.

Proof: In Corollary 1, let z, (—l)szia(Vk)kt for t =1, 2, ..., k, and let

u =%k - 1. Then

k , ko
7:)_:1(—1)“1ztac;"l/lf";a =t;1x§'l(Vk)kt =0

for each 7, 1 € 2 < k - 1, since a determinant with two identical rows has nu-
merical value zero. By Corollary 1,

is true for each 7, 1 < ¢ < k - 1, and clearly is true for 7 = 0. Therefore,
& 1 ; k t
ta @2 o i- _ ci-1 a q2
El("” F2 @t (Vi) = 5° EI(—I) Fo (V)
for each 7, 1 < 7 < k.

3. THEOREMS

Theorem 1: For any positive integer X,

J-1 2K K k 2k k 2k+2-25r25-1
(i s M FE, |ITF.,, =3 I1 F; I1 F . Tedpsd T
) 2 I P i W lsexrer1 “lizk-e4 “ta| t@ ta

i=k-t+1 i=k+1

2k K 2k
|:. I1 Fv;cJ I1 F—ia:IL%§+l+22k I 7y,

2k k 2K k okt 21
and (iii) |II Fpo| Il Fpp =52 Fl-a:' [ F, [FiT7L,
Z i=k+t+1 i=k=-t+1
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Proof: The three identities are easily verified for k =

Denote

L=k+t+1 i=k-t+1

2k k 2k k
4 = 'HlFia an-ia and At=1 n r, I rF_,

for t =1, 2, ..., k, and

2k
227(—2 n F.

i=k+1 wa

K = -|V]
By lemma 5,
k 2
KA = ¥ (-DYF (W),
t=1

and, by Lemma 4,

= (_l)ta (Vk)kt /LtaFtik-z

for t =1, 2, ..., k.
for each g, 1 < 4 <k,

. Lk
5971g4 = 591 Y (-1)* F?
t=1

EKA w1, F2k =

ta” ta

Therefore, for each j, 1 < j < k,

3 .
s Voke = 2 (D F, 2] (V)

t=1

2 2 2 2 2k
EKA (L2 -2 /F2i-2)1, FZX.

Assume that k > 1.

(8)

9

Now, by Corollary 2 and equations (8) and (9) we have,

k k "2k k . .
F F . = I1 F. II F_. FZk'23+2L23'1. 10
Ll’_l ]7,131 T t§l[[i=k+t+l m]i=k—t+1 “Z] ta ta 10

The proof of (i) is complete.

From equation (10), we obtain, for J = k,

k

13
sk-1g = ¥ 4, F2 12K = (1/5) ElAt(L
t=

(1/5) ZA L2k+1

(1/5) ZA L2k+1
by equation (9). Thus,

Sk lA“(l/s) 214 L2k+l

= (1/5)t§_‘,1AtL§§+ t-

200

+ ( l)ta+14)L2k 1
(4/5) z( 1)ta thk 1

t=1

(4/5K) 2(L2’< 2IFE 2 (Vi) gy

k
4/50 T wf ™ Vi)

(4/5K) |V, |

[Aug.



EXPANSION OF THE FIBONACCI NUMBERS

k 2k
= (1/5) L AL + 2% /5) 11 F,.
t=1 i=k+1

The proof of (ii) is complete.

From equation (10) we obtain, for J =1,

A

3 k
2k - 2k 2 12
ElAtFm L, = ElAtFta (5F, + (-1)*4)/L,,

k 3
5 L AFEL + 4 A, (-1 PR
t=1 t=1

a

K x
5 ElAtthak”L;al + (4/E) T (FL, 103, (Vi
t= t=1

I

k k.
stEIAtFijj”L;; + (4/K) tzl(l/xt) Vi) g -
Therefore, by Lemma 3,

A

Il

K k
52 ALY 4+ (4/K) (1) |7 /H (- ;)
t=1 =

=1

& 2k+2r-1 ko2k 2k LS 2 . 2
5§AF L+ (-1)"2 | R [T 7? IMrs
£ t-ta ta i=7<+11a P=1 ta i1 %@

% 2k k k
2k+27-1 k o 2K 2
StglAtFta Lta + (-2 Lgl Fiaj, I;l}]_ Fia:l I_] Lia :
The proof of (iii) is complete.
Lemma 8: Let @ and » be nonzero integers, let X and m be positive integers,

and let € = 0 or € = 1.

2k k
(i) For m <2k + 2 + 2g, 2""'F, LI}IFMLIJIF_M

k 2k k
-1 2k+1-m+ - m m+ 1pnm
= 5€om tglFm+ m ZELtaZSI: I1 F:l[ I F_ia] [Fm+n + (-1) Fta_n]

i=k+t+ 1 wa i=k-t+1
k 2k k
k m 2k m-1 —I 2
+ (=D (25 - 1)2 Fuln LglFia:'[iglpia /'Ll;llLia
J

2k
€02k m2k+ 1426 rm=-2k-1-2¢€
)5 2%k 2 L nmr,,

(5 4 1
2k + 1 + 2¢ i=k+1

2k 3
(ii) For m < 2k + 2 + 2s, 5k+E2’”’1anLl;IlFia] iglF"“a

k 2k k
- - - 1
= 2" lt=21Féa ZELiZ e l: r[ Fia:||: n F'ia] [Lgﬁn + (—1)m+ Lfa-”]

i=k+t+1 i=k-t+1

2k
m 2k -1
+ (26 _ 1)5'2 FnL;"l ) I F.n +
i=k+1 (continued)
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k 2k
_1V\k m 2k+2€ 02k p2k+1+42€ s m-2k -1-2€
+ =D (2k+1+2€)5 25y L [H F‘ia]Ln J H Lm’

Fe1

2k k
(iii) For m < 2k + 1 + 2¢, sk““ez""le[nlpm] nr_,
1= =1

2k k
= gm-1 EFz 2eL2k -m-1+2€ n -~ F_; [L L (-1 ]
i=k+t+l @ i=kl—1t+1 tarn ¥ (- ) ta i

m 2k +m
+ (Ze - 2)2 Lnl_[klﬂFi

k
_13Vk m 2k -1+2€ 52k p2k+2 -2k -2
+ D (Zk + 28)5 2R e[:l;]lFia],:'= w} /n Lias

2k k
(iv) For m < 2k + 1 + 2¢, m'le[I—IlFia:l ,HlF_ia
7= 1=

k
_ €, om-1 2k -m+2€ y1-2¢€ mn
=5 2 :‘/':_':lFta Lta [z—k+t+l :H;‘k 41 —iajl [Fta+n+( 1y Fta n]

+ (-1)7<(2€’”_ 2> 22k [HF :l[ﬁ FZ:, II Dk

+ ( m )5622kF5k+25L2—2k—25 I‘I

2k + 2¢ i=k+1 @7

2k k
Proof: (i) Let F2k+l ’"+ZEL;QZE|: kIIt 1FMJ kn F_., = b, for 1 € ¢ < k. Then,
by Theorem 1 (1), =R+ t+ t=k-t+1
2k k ) )
-1 .HlFia ,I]lp_ Zlb FIi¥l-20-26020 2128 for 1< 5 <k
1= 1= t=
Thus,
) 2k k k
5J'1'ELI_]1F—;a]iU1F--m = X b FI2IL2Ct for 1+ e< j<k+e
= = t=1
So
m ) 27 -1,m+1-25cg-
F L7 5 I r I F_,
(o™ | i m 17
ek m 2 -lym+1l-25pm+1-24+25-1
=5 tglbt<2j ~ 1>F;‘7' LRI prTmsInid Tt for 1+ e < J <k + e

Since, by hypothesis, m < 2k + 2 + 2¢, we have [(m-1)/2] < k + €. Therefore,
m-1
5]

J=1+¢

k
m 25 -1rm+1-25eg-1
<2J ~ l)F L 5 [n F, J,I}lp_ia

[m- 1]
€ zk 22 m + 1,
=5 bt <2J g l)Fzg-—le 1- 2,7Fm+1 2JL2J—
t=1 gJ=1l+¢

By Theorem 1 (ii),
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Sk[i}i Fi‘{l ﬁ F_. = %th;na~2k-1—2eLi§+1+ze + sz' i—]i F,
i=1 i=1 t=1 =k+1
and by Theorem 1 (iii),
5“1[ﬁ F] ﬁ F_.
i=1 ““|i=1 ~%@
- Zk:b Frtl- 2eLze 1y (_l)kzzk[ﬁ F:l[ﬁp]/s ﬁL%
&Pt ta ol | LS o Yiat
Therefore,
<2k . 7;7 . 2€)F2k+1+2eLm 2k -1- 2e5k+eLglF ]11_1 F
_ Seé:lb (Zk N ZE)F2k+1+ZeLm 2k -1- 2¢ - 2k-1- 25L2k+1+2e
m €92k p2k+1+2€7m=-2k-1-2¢ °y
+ (Zk + 1+ 25)5 278, Ly —;=£I+ Fia

and

k
m 2 -1,;m+1-2e ce-1
(28 _ I)F I 5 [H F, ],H F_,,

=1 =1

—SEEb

( )FZE—le+1-2€Fm+l—2€L2€—l
2¢ - 1

k 2k K
k €En2k p2€ -1lym+1-2 2
+ DR, " )se etk E[il;llFia] L[}lzﬂia] / 5 1123,

Since, by hypothesis, m < 2k + 2 + 2€, we have [(m + 1)/2] S k + 1 + €, and we

have ( = 0 if and only if [(m + 1)/2] < k + 1 + €. Therefore,

7o)
2k + 1 + 2¢

2k k
m 2[(m+1)/2]-1rm+1-2[(m+1)/2]c[(m-1)/2] )
(27< + 1+ Ze)Fn I 2 LUIFW] I Foia

=1
_ 5627(: b ( m )(F L, y2lomsn/2-1(p g ymtl-2(nt)/2)
£ t\2k + 1 + 2e/ T ta n” ta
m € o2k n2k+1+2g ym-2k -1-2¢€
+ <2k +1 4 2:—:)5 P e l_l;;IHF
Since (iﬂl) = 0, we have
[m+l
2 m 2§ -1rm+1-25cg-1 2K K
3 (Zj ~ I)FnJ rd J5d [_1 Fia iIJIF_ia
J=1 [m+l]
k 2
— &€ m 2§-lym+1l-24 pm+1-277r25-1
3 t“::lbt ng (ZJ - I)F" Ln Fta Lta +

(continued)
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k m 2k m-1 L 2 koo
+ (=D (25 - 1>2 FnLn iI;IlFia iI_:IlFia .IlllLia
2k

m €052k p2k+ 1+2€ ym=-2k - 1-2¢
+(2k+1+2z~:)52 & In

i=k+1 @

By Lemma 2 (i) and Lemma 2 (iii),
m=1 2k LS
2 Frrm il;llFia il-:—ll F—ia

~52'"1}:b[F

+1
ta+11+( 1)rrm F

ta- n]

k m 2k _—l = K 2
+ (-1) <2€_ 1)2 F,L7 iEIlFi“ iEIlFia iEIlLia

)5822anzk+ 1+2erZ—2k—1—2e n F,,

+( m
2k + 1 + 2¢ i=k+1

After substitution for b;, 1 < ¢ < k, the proof of (i) is complete. The proofs
of (ii), (dii), and (iv) are similar.

From equations (5) and (6), we obtain the following four identities:
L,+F, =2F, ., L, - F, =2F, , 5F, + L, = 2L, 5F, = L, = 2L, _,

for all integers n.

Corollary 3: Let g and 7 be nonzero integers and let k and m be positive inte-
gers and let €¢ = 0 or € = 1. For m < 2k + 1 + 2¢,

2 k
: -1
(i) 2" F”mH[ F, ] l;l F_,
% - 2 k o ”
— g€ 1 2 +2 —2€ m

572" ZF o EL _k+t+1F1aj][i=kl_:It+1F-ia] [Fta+1Fta+n+ (—1) Fta—lFta—n]

K 2k-1ym-1 k 2k k 2
+ (—l) [(26 - )L + (2€ ) ]2 Ln il;llFia il}lFia il:IlLia

2k
m m €52k -1p2k+2€ rm-2k -1-2¢€
+ [(2k + ZE)L” * <2k + 1+ Ze)Fn]5 25T i=IJ_<I+ i

and

2k k
(ii) 2’”’1Lm+1[_ﬂ F,;c] nr_,,
7=1 i=1
k 2k k
= g€om-1 2Kk -m+2€ r -2 m _1ym+1 m
= t§1Fta " €Lta€i=kl-:lt+ lFi‘;I["%I—]HIF‘ia][Lta+1Fta+”+( b Lta‘lFm‘”]
k 2k k
Y m) (m) ]Zk-lm—l ) ) 2
+ D [(Ze - 2)0n * \ge - 1)°FR])2 L iglFla il;lle igle

2k
m m €52k -112k+2€ ym-2k-1-2¢
+ [(zk + 2g)Ln+ (Zk + 1+ 2:—:)5F"]5 25T L, P

i=k+1
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and

2k k
k+€eqym=-1
(iii) s5**F%2" R l[in Fia:l 1:[=]1F_7"a

k 2k k
= om-1 1-2e72k-m-1+2¢ . m mn m
2 ¢§1F’5“ D [i=k[;lt+1Fif;,L=kl—]t+1F‘m:l [Lta+1Lta+n+ (-1 Lta—lLta—n]

+ [(Zem— Z)L” + (2gm— 1)Fn]5 - 2%t il Figt (-DF [<2k i 2€>L”

i=k+1

k 2k k
m 2k+2€ 02k -1 p2k+2€ rm=-2k -1~ 2€ 2
+ <2k + 1 + 28>F”]5 2 P Ln l:il:llFia] [il;llFia:I il;llLia’
and
k-1l+€pm-1 2K K
(lv) 5 27" Lmn+1 H Fia n F—ia
=1 =1

k 2k k
= om-1 1-2e72k-m-1+2¢ II . , m _1ym+1 m
2 tglpta Lia [L=k+ t+1Fi‘;||:;=kI-It+ 1F‘w} [Fm+lLta+n+ -1 Fta-lLta—n]

+ ( m )L +( m )5F 22611 ] g, +(—1)k( " )L
2e = 2)7n 2¢ = 1)77m noL ke @ 2k + 2¢/)77

k 2k k
m 2k -1+2€ 02k -12k+2e ym-2k -1-2¢€ 2
+ (27< T 2€)5Fn]5 g2k -1pzk+2em L=1F“a] I;an"'“:‘ L%,

Proof: (1) and (ii) follow from Lemma 8, parts (i) and (iv). (iii) and (div)
follow from Lemma 8, parts (ii) and (didii).

Theorem 2: Let g and n be nonzero integers, let k and m be positive integers,
let ¢ = 0 or € = 1, and let » be an integer. For m < 2k + 1 + 2¢,

2k k
. -1
(i) 2" an+ r[ania]il;ll F-ia

k 2k k
_ cEom-1 2k -m+2€ 7~ 2€ I . I
22 tZ:IFm Lta [i=k+ t+1F7'a]l:i=k—t+ 1F—ia}

> [F Fm +(_1)nm+1+1ﬂF Fm ]

tat+r~ ta+n ta-r-ta-n

3 2k 13
m m k- -1 2
+ (—l)k[<2€ _ z)Fan + (ZE _ 1)[’an]22 lL: [i=lFia]LI;[1Fia] .l;Il[’ia

2k
m m €n2k-1p2k+2€ ym=-2k ~1-2€ F.
* [(Zk + ZE)FTL" * (Zk + 1+ ZE)L”F”]S 2 i Iy 1-=l;<l+1 Za®
and
m-1 2K k
(ii) 2 Loy p .l_I Fia:l H F~ia
=1 =1

k 2k k
_ c€ -1 2k - 2 ~2 m _ + m
= 52" t§1Fta ™ eLMEL’:kl}H 1Fi62“:7;=7<1_]t+ IF-ia][Lta+rFta+n + (=™ P[’ta—rFta—n]

1986] 205



EXPANSION OF THE FIBONACCI NUMBERS

k 2k k
k m m 2k-1rm-1
+ (-1) [(29 ~ Z)L,Ln + (25 . 1)511,5;1]2 i [il;llFia]l:'nl Fia]/il;IlLia

2k
m m €02k -1p2k+2€ ym=-2k -1 -2€
+ [<2k + Ze)LlﬂLn + <2k + 1 + ZS)SF”F”]S 2 F” L” 1-=17:[+ IFia ’

2k

k+ -1

(iii) 5**eom F”m+r|:l_]Fqu_
=1 7

k 2k k
= om=-1 pl-2er2k-m-1+2¢ I . I .
t2=:1 ta  Tta PNl | PR UL B

x [LMH,L;”QM + O™ Ll ]

ta-r-ta-n

2k
m m . 92k -1l7m~1 _1Y)k m
+ [(28 ' 2>Fan + (23 ' l)LPFn]S 22k-1pm-1 [T o4 (-1) [<2k " 2€>Fan

i=k+1

k 2k k
m 2Kk + 2€ 52k = 1 2k+ 2 ym-2k -1-2¢ 2
+ (2k T ZE)LPFJS 22k -1p2k+2e pm l:iglFia] [{Hlpm} RIR

and
2k

k
H Fia] H F -ia

=1

(iv) 57"1”2’"'1/:,,7,1”[

=1

a

k 2k x
_ pm=1 1-2€ 72k -m-1+2¢ m m+r m
-2 tglFt Lt £=kgt+1Ff‘;,L=k!It+1F‘ia} [Fta+rLta+n+ -1 Fta—rLta_n]

+( m )LL +( m >5FF 22kt T B 4 (1) m )LL
2¢ = 2)7rn 2¢ = 1) r'n n ia 2k + 2e)7r"n

i=k+1
m FF 2k ~142€ 52k ~172Kk+2€ pM=2k -1-2€ k 2k K 2
+ 2k + 1 + 2¢ S5FE F {5 2 r L, 7:[=11F7_‘a il;llFia I:[ Ly, -

Proof: To prove (i), we use mathematical induction on r. The cases » = 0 and
r = 1 are true by Lemma 8 (i) and Corollary 3 (i). Assume that the hypothesis
is true for r = q and for r = g + 1, where ¢ is an integer. Then

2k

k
-1
2" sy [ ~H1Fia:, 7;131 F_..

1=

]

-1 2k k -1 2k K
2 an+q+1 .ania H Fia +2 an+q iI}lFia n F—ia

1= =1 =1

k 2k k
€am-1 2k -m+2€ 7 - 2€ - m
572 tglFta Lta L:kl;lpr 1Fi“J I:i=kl—]t+ IF—ia:} (Fta+lq+1 + Fta+q)Fta+n

k 2k k
+ 5€27ﬂ—1 FZk—m+2€L~'ZE n F. ﬂ F .
,?;:1 ta ta |i=k+t+1 YOf|i=k-t+1 "2

mi+ g+ 1 m
x (1) (Fpp gy + Py JFI_ .+ (-DE [(25 L)) Faur + FOL, +
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k
+ (ZE’”_ 1) (Lge1 + Lq)FnJZZk"lL’g"lLEIle][H ij]/ﬁ L2

m
+ [(27< + 28)(F‘?+1 +FL,

2k
m €92k =152k +26 pm-2k-1-2¢ []
* <2k + 1+ 23)(L4+1 + Lq)Fn]S I S 1 ;w1 Fia

by the induction hypothesis. Therefore,
2" R [ﬁ F} ﬁ F_.
mtq+2| S e S0 T - da
2Kk k
= 582" lt‘-L:IFtZ; m+2€L_2€L=kl}t+lFia:”;-=kl__lt+lF—ia:| Fta+q+2F7ZZ+n

k 2k k
Eom-1 2k -m+2€ y-2¢€ m+1+q m
+ 5%27 t}__:le m Lig ]:i=k£1t+lFia:][i=kI_]t . —uz] (-1) Fta-q—‘ZFta-n

+(—1)7<[( m )F L +( m )L F |22k-1pm-1 ﬁF ﬁF fIL2
2e - 2/ q+27n 2e = 1/7q+2"n N P il | Pl e B

2k
m m €02k -1p2k+2€ pm-2k -1-2¢€
+ [(zk " 2€>Fq+2Ln + (2k N ZE)LqHFn]S g2k -Lp2k+2e pm 1 r,.

Similarly,

1 2k k
m-
2 Frrm+q—1 n Fia H F—ia

=1 =1
2k k
- 1 2k -m+2€ —2 m
5€2m" ZF " L € 7’zkl;,lt_,_lFia:H;-=kI:I,H.lF—-iajIFtaw—q—-1F7tcz+n

% 2k k
-1 k-m+2e -2 m+q m
*+ 552 tgnga i ELtaE[=kr+It+lFia] |;,~knt+1 ’WJ( D Fra-qr1Fia-n

1

+(—1)k( m )F I +( m )L 7 o211 | £ [2'71<F Iz
2¢ = 2)7q-1"n 2¢ - 1/79-1"n n =7 @ i=1 2 e ia

m m 2k -1p2k+2€ pm=-2k~-1-2€
* [(zk + 2 )Fq 1l + (zk + 1+ 2e)sz 1 nJS 20 RS Iy z—[k]+1F

The proof of (i) is complete by mathematical induction. The proofs of (ii),
(iii), and (iv) are similar.

The three identities given as examples in the introduction can be obtained
as special cases of Theorem 2 (i) by using the ordered 6-tuple (g,k,m,n,a,r) in
the forms (0,1,2,%n,a,0), (0,1,3,n,a,0), and (0,3,6,n,a,0), respectively. A
special case of Theorem 2 (ii) with the ordered 6-tuple (0,1,3,7,a,0) can be
found in [6].

The author thanks the referee for the type of proof used in Lemma 3 and for
reference number [4] and for suggestions which led to major simplifications of
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several of the proofs, such as the proof of Lemma 2, and which brought the
statement of Theorem 1 out of the realm of unintelligibility.

208

REFERENCES

I. Dale Ruggles. '"Some Fibonacci Results Using Fibonacci-Type Sequences."
The Fibonacci Quarterly 1, no. 2 (April 1963):75-80.

John H. Halton. "On a General Fibonacci Identity." The Fibonacci Quarterly
3, no. 1 (February 1965):31-43.

A. S. Gladwin. '"Expansion of the Fibonacci Numbers F,, in nth Powers of
Fibonacci or Lucas Numbers." The Fibonacci Quarterlyl6, no. 3 (June 1978):
213-215.

Marvin Marcus & Henryk Minc. 4 Survey of Matrix Theory and Matrixz Inequali-
ties. Boston: Allyn and Bacon, Inc., 1964.

John Vinson. '"The Relation of the Period Modulo m to the Rank of Appari-
tion of m in the Fibonacci Sequence.'" The Fibonacci Quarterly 1, no. 2
(April 1963):37-45.

Gregory Wulczyn. Problem B-355. The Fibonacci Quarterly 15, no. 2 (April
1977):189. Solution by Graham Lord, Ibid., 16, no. 2 (April 1978):186.

4060¢

[Aug.



SOME COMBINATORIAL SEQUENCES

JOSEPH W. CREELY
31 Chatham Place, Vincetown, NJ 08088
(Submitted January 1983)

1. INTRODUCTION

We will enumerate the different m x m matrices B,(n), n =1, 2, 3, ..., r =1,
2, 3, ..., &,, having elements from the set [0, 1], where the allowed column
vectors B; and some conditions between elements b;; are specified. That is,

Cl: sz = 1$bi,j—1=0’
b =0
-1,
C2: by;; = l=>{ ¢ J
bi+l,j =0, m > 7> 1,
and
blj = lész 0,
bmg =1 =>bm—1,j= O.

The number of different matrices Br(n) is called x, and is the general term of
a combinatorial sequence {x,:7 =1, 2, 3, ...}. The vector B; = P; is one of
the p distinct column vectors in an m X p matrix P called the primitive matrix.
The vector P; is named in accordance with the following rules:

1. The name of the zero vector is 0; the remaining vectors may be identi-
fied by the positions of 1l's in them.

2. The numbers in these names, if more than one, are conveniently given in
increasing order with a bar placed over them.

3. The dimension m of Bj; is greater than or equal to the largest number
in its name.

EXAMPLES

Name of b P;
0 000 ... 0
1 1 00 ... 0
2 01 0 ... 0
12 110 ... 0
13 1 010 ... 0
123 1110 ... 0
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Some Primitive Matrices P

m Under C2 Unrestricted

1 (0 1) (0 1)

2 012 (01712 2)

3 (0 113 2 3) (0112 12313 2 23 3)

4 (0113714 27254 3 4) (0112 123 1234 124 13 134 14 2 23

234 24 3 34 4)

s m
Size mXx Fpyo mx 2

Any figure consisting of a succession of 1like segments each of which is
divided into m cells which can be occupied by either a 1 or a 0 under given
conditions may be represented by a matrix B,(n) in which n is the number of
segments in the figure. The cells in any segment must be numbered in a given
way (1, 2, 3, ..., m) and correspond to the row numbers in Br(n). Figures in
which only cells of like number in adjacent segments are adjacent are said to
be regular. This adjacency condition (4C) is symbolized by b; =+ b;. Figures
in which at least one cell b;; in the jth segment is adjacent to more than one
cell in the (j + 1)St segment (bs,j+1> bt,j+1s --.) are said to be <rregular.

This AC is symbolized by b; > by, b,, ... (see Fig. 1).
Segment Segment
J Jg+1 J Jg+1
1 1 11 1 1 1+1, 2
2 2 2> 2 \\\;\\\ 2 2+2,3
3 3 3+3 \\\;\\\\\\;\\\ 3~+3
(a) Regular (b) Irregular
Figure Figure
Figure 1

Consider a prism of #n segments formed of segments of unit height on bases
A or B (Figure 2). If the segments have equal bases 4 or B, P= (0 1 2 3) is
a possible primitive matrix and b; + b;. If the successive segments have bases
that alternate between 4 and B, P may be unchanged but 1 -~ 2, 3; 2 »~ 1; 3 = 1.

Condition 1 may be replaced by the more general condition C3: any two ad-
jacent cells, each from a different segment cannot both contain the number 1.

The matrix P has a companion matrix P in which the column P; has a coun-
terpart P; in P obtained by applying the given AC, b; + bgs bys ..., to each
number { in the name of P; and ordering the resulting numbers without repeti-
tion. A bar is placed over these numbers to distinguish the columns of P.

That is, if P = (1 12 13 2 3) in Figure 1(b), then P = (12 123 123 23 3).
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Base 4 Base B

Figure 2

Define the (p+ 1) X 1 set matrix M(l) with elements consisting of sets of
matrices such that m;(l) = @, the empty set, and m;(l) = [P-_l], where p + 1 2
2> 1 and L is the (p+1) x (p+1) partitioned matrix

where O is the p x 1 zero vector, U is (p+1) x 1 with u; =0, and u; = 1 if
p+12<>1. A matrix K, called the kernel, is p x p with K;; € [0, 1] and
is a function of P and the given AC as described later.

A special product is defined for [ and a conforming set matrix generating
another set matrix as a product.

LeMn-1) =Mn), n>1, (1.1)
hence

(ZH"*" ML)

]

M(n). (1.2)

The expression L;;m;(n-1)(P;_,) represents the result of augmenting each
member of the set m;(n- 1) by appending the vector Pj_l on the right if #;; =
1. If &;; =0, this expression represents §.

p+1
ml(n) = lzjﬁ,limi(n - 1)

p+1
mj(n) = laj Ligmy(n = 1)(P; 1) § > 1.

Define N(1) as the vector with n;(1) =0 and n;(1) =1 if p +1 Z 4> 1. Let
ILN(n - 1) = N(n), n > 1. (1.3)

The sets mj(n), p+ 1 >J >1 are disjoint, and their cardinality is un-
changed by appending columns to their matrix elements. It can be shown by
mathematical induction that N(n) is a vector with n,(n) = z,_; and that n; (n)
is the number of matrices B,(n) having P;_, for the nth column.

Let Ny be the p x 1 matrix with n;(n) =#n, (), p 2 < > 1, then

p+1

p
z,=n,n+1) =Y n,mn = yn . (1.4)
2 1
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Example: Let B,(n) represent a 2 X » matrix with P = [0 1]. If Cl holds,

L1 ¢ 0 0o 1 1
k = ., M(1) = [0} |, WN(1) = 1], and L = |0 1 1
10 [1] 1 1 0
IM(n -~ 1) = M(n) and IN(n - 1) = N(n),
-4 o
so ‘M(1) = | [0]1, () = [ 1],
L [1] L L]
" [0, 1] 2]
M(2) = | [00, 107 {, N2y = | 2], x =2,
[o1] L1
[00, 10, O1] 3]
M(3) = | [000, 100, 0101 |, N3) = |3, x, =3,
L [ool, 101] L2 ]
L, =F,,-
Equation (1.3) implies
KN(n) = N(n + 1) (1.5)
50
K"™N(1) = N(»n + 1). (1.6)

Let kernel X, yield a value n;(n + 1) = .y, then if X; and X, yield x;, =
Z,, they are said to be virtually equivalent and Ky = K,. Virtual equivalence
is an equivalence relation.

Let &, represent a p X p permutation matrix, i.e., a square matrix whose
elements in any row or column are all zero except for one element which is one.
There are p! such matrices and since QPQ£'= I, Qf = Q;l. From Equation (1.6),
K" IN(1) = N(n) and, if X is replaced by ,kQ.',

(Q,KQ; 1" TIN(L) = @ K" 1QIN(1) = QK" IN(1) = @,N(m).

From Equation (1.4), x, =§:fni(n) for X and for QPKQE; the n;(n) are summed in
possibly a different order. The result is the same, so

Q. kQl ~ K. (1.7)
Let K, be a P, ¥ D, kernel, » = 1, 2, 3, and define the direct sum
k, ©

K, ®K, =
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Permutation matrices ¢, and Qg can be constructed so that
Q, (K, ®K,)Q =k, ® K.

If qij S QS, then q:5 = 1 4if

7 1 2 s P, p, + 1 |p, + 21 |p, +p;

Jlilpy +1|py +2) - |p, +pP, 1 2 s p1

and 95 = 0 otherwise. Let p, = 2 and p, = 3, then

0 0 1 0 0
0 0 0 1 0
QS = 0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
From Equation (l1.7),
K, ®K, = K, ® K. (1.8)

Define the direct product X; X X, as the partitioned matrix

k111K, ki1oKy e klllezT

ky,1K, k10K, klzlez
K, X K, =

klplle klplsz klpJHKZ

in which k,,; € Ky and k,;, € K,.

Let
kl € K, XK,
klrsk2tu = " 4
kjw € K, x K,
then
i:(r-l)pz-l-t (a)
and
Jj= (- Dp, +r. ()

From Equation (a),
t-1=(i-1) mod p, (c)

7z -1
[ - ] @)

in which [x] represents the greatest integer in the number x. Substituting
Equations (c) and (d) in (b),

and

r -1

J = pl((i ~ 1) mod pz) + [il; IJ + 1. (e)
2
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If <, J, rs, and t are replaced by v, w, 8, and u, respectively, Equations (a)-
(e) still hold and Equation (e) becomes

w=p,((v-1) mod p,) + [vp; lJ + 1. (£)

Consider a matrix ¢ where Qi = 1 if Equation (e) is satisfied and g;,; = 0
otherwise. From Equation (a) if < is given, »r and t are uniquely defined, and
from Equation (b) J is uniquely defined. Conversely, if j is given, then 7 is
uniquely defined. This implies that every row and column of § has just one
element 1 and all other elements are zero. & is then a permutation matrix.

Consider the matrix §' where g; =1 if Equation (f) is satisfied and g, =
O otherwise. By a similar argument, @' is also a permutation matrix and since
J and 7 may replace w and v, respectively, in Equation (f) to produce Equation
(e), then we let @p = &' = @ so that

Q) x K,)Q] = K, X K.
From Equation (1.7),
Ky x K, ® K, % Ky (1.9)

For example, if p, = 2 and p, = 3,

1 0 0 0 0 0
0 0 1 0 0 0
Q. = 0 0 0 0 1 0
p 0o 1 o 0o o of
0 0 0 1 0 0
0 0 0 0 0 1
Let
kK, 0 N, (1)
K, =K, ®K, = and N, (1) =
0 K, N, (1)
then
n-1
- K7 0
K3 = N
0 Kg'
and, by Equation (1.6)
N, (n)
N3 (n) =
N, ()
Applying Equation (l.4),
Xy, =%y, T2, if K, =K @ K,. (1.10)

Suppose K3 = K; x K, with Ng(1) = Ny (1) x N,(1), a p;p, x 1 matrix of 1's.
Then, by Equation (l.4), 2, = x,,%,,. Assume that Na(r) =N, () x N,(r) for
any r > 0, then

Py
K Ny(r) = (K X K,) (N, () x Ny(»)) = }:lklﬂjnlji(P)KzNz(r)’ =1, 2, ..., P1>»
Ji=
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or KaNs(r) = K,N, (r) x KN, (r), and by Equation (I1.5),
Na(r + 1) = Nl(r + 1) x Nz(r* + 1).

It follows by mathematical induction that N, (n) = N, (n) x N, (n) for all n and,
from Equation (l.4),

Ty, = X9,%,, 1if Ky =K, X K,. (1.11)
From definitions
(K; @ K,) X Ky = (K, X K3) ® (K, X K,), (1.12)

32 virtual equivalences may be deduced using the commutative laws for @ and x.

2. EVALUATION OF K

Theorem 2.1: 1If C3 holds, and if ?i and P; have one or more numbers common in
their names, then kij = 0; if Pi and PJ- have no numbers common in their names,
then k’LJ = 1.

Proof: From Equation (1.1), Le*M(n - 1) = M(n), and by renumbering elements,

0 1 1 cor 1 men = 1] [me@m)]
0 ki1 ki, . klp my(n - 1) my (n)
0 k,, K,y cen kzp my,(n - 1) _ m, (1)
0 kpy  kpy .- kpp— _mp(n - 1)_ _mp(n)nJ

Through multiplication,
P P
my(m) = Umetn - D@ = Umin - 1,
P .
mij(n)y = UYkjm;(n - D(@;), J=1,2, ..., p,
1

where m;(n - 1) (P;) represents the set m;(n - 1) in which each element B.(n - 1)
has P; as the terminal column and is augmented by the vector P; to form a
matrix B/(n). The last two columns of Bj(n) are P; and P;. If P; has one or
more elements of value one adjacent to a like element in PJ-, the name of P;
must have one or more numbers in common with the name of P;, and C3 implies
Bj(n) ¢ mj(n), hence K;;=0. 1If Pg has no elements of value one adjacent to a
like element in Pj, the name of P; and the name of PJ- must have no numbers in
common and C3 implies BT',(n) € mj(n), so K= 1. m

Let R = ?iTPj = (ry,)> a 1 x 1 matrix. Then

Corollary 2.1: If €3 holds and r;; =0, k;; = 1; if r;; > 0, ky; = 0.
Corollary 2.2: 1If Cl holds, X is symmetric.

Proof: If Cl holds, P; = P;, so R = (r,,) = R” and B;P; = BfP; = PiP, = BjP,.
By Corollary 2.1, if ry; =0, k;; = k;; = 1; if »y3 > 0, k;; = Kj; = 0. Since
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ry, 20, kKjy = kj; and K is symmetric. ®

%
Corollary 2.3: 1If C3 holds and P; = 0, then kij = 1 for all j; P; # 0 implies
k;s = 0.

Corollary 2.4: 1If C3 holds, then X can have at most one row of 1's.

Let X =[ax;:7 =1,2,3, «v., ], m2r > 0, be the set of all the differ-
ent numbers appearing in the names of the columns of P and in the AC, and let
Y=1[y;, =:71=1,2,3, ..., r] be any other set of r distinct numbers, then

Corollary 2.5: X is unchanged by replacing x; by y;» 2 = 1,2,3, ..., r, in P
and in the AC under C3.

Definition: A proper X is a K in which there is at most one row of 1's.
Theorem 2.2: Every proper X may be derived from some P under (3 and AC.

Proof: Given kij € [0, 1]. If a row K; consists only of 1's, it is named O
and the remaining rows are named 1, 2, 3, ..., p - 1. If no such row exists,
name the rows 1, 2, 3, ..., p. Then P consists of columns P; which are in the
same sequence as the named rows of X and have the same names. Suppose K; has
an element k;; =0, then the AC must include % + J; if k;; = 1, then 7 # j.
Since K is proper, there is at most one row of 1's which is named 0. All col-
umns of P have names which are unique. ®

The AC under C3 may sometimes be simplified by changing the columns of P
without altering K. Let d, e, and f represent three distinct cells in a seg-
ment Bj of Bp(n) and let r, 8, and » U s represent sets of cells in Bj+1 adja-
cent to d, e, and f, respectively. The adjacency conditions are represented by
the set [d +r, e s, f > r U ¢l, and f may be replaced by de in the names of
P; and in AC forming P' and the set AC = [d + r, ¢ + s] which, by Theorem 2.1,
yields the same X.

Example: Let

>

1]
R OOOO
O OO0OO0OOO
[eNeoNoRoNoNoNe)
CO—~=OO OO
—O O ~OO
[=NeNeleNe Nl
OO~ OO K =

By Theorem 2.2, K may be derived from P = (1 2 3 4 5 6 7) under C3 with the AC

1 -1, 2, 3, 4

2+1, 2, 3, 4, 5, 6
3+1, 2, 3, 4, 5, 6, 7
4~1, 2, 3, 4, 6, 7
5+2, 3, 5, 6

6 >2, 3, 4, 5, 6, 7

7 >3, 4, 6, 7

The AC may be simplified as follows:
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Consider:
1+2, 3,1, 4
2>2,3,1, 4, 5, 6
5+2, 3, 5, 6

We can then replace 2 by 15. _Similarly we can replace 3 by 24, 4 by 17, and 6

by 57, so P becomes P’ = (1 15 157 17 5 57 7). By renumbering in accor-
dance with Corollary 2.5, P' =

(1 12 123 13 2 23 3) with
AC = [1 > 1; 2+ 2; 3 - 31.

Further examples giving P, AC, K, x,, and recurrence relations are:

#1 P =(0 1) _

1 1
AC = [1 » 1] .-
x, = {2, 3, 5, 8, 13, } Lo
Lppp = Tppp ~ Tn =0 L
#2 P=(0 1 2) R
AC = [1 > 1; 2 + 2]
’ =1 0 1
xz, = {3, 7, 17, 41, 99, 239, } K
Tpyp = 2Tpey ~ Xy =0 Ll 1 0
#3 P =(1 2) 0 o
AC = [1 >1, 23 2 > 1, 2] =
z, = {2, 0, 0, ...}
0 0
Zppp =0 -
# P=( 1 2) s
AC = [1 >1, 2; 2 > 1, 2] _
@, = {3, 5, 11, 21, 43, 85, ...} K Lo
Lypy = Tppr ~ 22, =0 R 0 0
#5 P=(1 2 3 & 5) _
AC = [1 + 3, 4, 5; 2 2, 3, 4, 5; 1 1 0 0 0
1 0 0 0 0
31, 23 4> 1, 2, 4;
K = 0 0 1 1 1
DT o 0o 1 o0 1
x, = {5, 10, 22, 49, 112, 260, ...} o o 1 1 o
xn.'_u, - 3xn+3 + 3xn+1 + xn =0 (-
fe P =(0 1 2 3) ~
AC = [1~1,3;2~2,3;3~>1,2,3 11 1 1
also P= (0 1 2 12) ¥ = 1 0 1 0
AC = [1 »1; 2 » 2] 1 1 0 0
Ly = {4, 9, 25, 64, 169, 441, ...} _1 0 0 0
Loy ~ Cpyy T M, T Xy, T X, S 0

Example #1 represents the sequence x,=7F,,,. Examples #2 and #4 represent
sequences of Winthrop and Horadam [2], x, = w,(1, 3; 2, -1) and 2, = w, (1, 3;
1, -2), respectively, where w (a, b; p, q) has wy = a, wy; = b, and W, = pw,_, -
quw,_1, n 2 2. Example #5 illustrates K; = K, ® K, with z, = F,,, + w,(1, 3;
2, ~1), and Example #6 illustrates K3 = X; x K, with %, = (F,4+,)? in which two
values for P and the corresponding AC are given.
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3. RECURRENCE RELATIONS

The characteristic function of K is f(y) = |yI - K| and its characteristic
equation is

p
fly) = Teyt =o0. (3.1)
0

Theorem 3.1:
|4
Ly, =0
0

is a recurrence relation for the sequence {x,:n =1, 2, 3, ...}.

Proof: Apply the Cayley-Hamilton theorem to Equation (3.1), giving
14 .
20: ciKl = 0.
Multiply each side of this on the right by X" IN(1), giving
4 1+
% e KN .
Then, by Equation (1.6),
p
Y ;N + 2) = 0.
0

Multiply on the left by u?, a1 x p matrix with u;; =1, giving

T

OM'U

p

C-an(n+i) =0,
0

and by Equation (l.4),

c.x = 0.

1¥n+1

oM

This is a recurrence relation for the sequence {xn: n=1,2,3, ...}. =
Corollary 3.1: 1If the characteristic equation of K is
p-1 )
(y-d eyt =0
0
and if K - dI is nonsingular, then
p-1

20: Ci%nsys = 0

is a recurrence relation for {x,:n =1, 2, 3, ...}.
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Proof: By the Cayley-Hamilton theorem,
p-1 .
(K - dI) Ye;k* = 0.
0
If K - dI is nonsingular, apply its inverse to both sides of the equation, so

p-1
2 cxt = 0.
0

p-1
Proceed as in Theorem 3.1 to show that }: ¢;%,4; = 0 is the desired recurrence
relation. ® 0
Note that if N(1), in which n;; = 1, were defined as some other vector of

size px 1, the new sequence {x,} would still possess the same recurrence rela-
tion.
Let
Pi
. = X q =
D) 20: coy? =0

represent the characteristic equation for K;: Jg=1,2, 3.

Theorem 3.2: If K, = K; ® K,, a recurrence relation for the sequence {xg, : % =
]-s 25 3, ---} iS

p,t+p,
> ¢,.c,.x = 0.
5 g+ T=14 g~ 2r*3(n+1)
P, ylI - K, 0

Proof: 3 cy;y¢ = |yI - K ||y - &,
0

0 yI - K,

P, P,
Z clqu EGZr‘yr’
0 0

then

Cgy = > C1qCor
q+r=1

and, from Theorem 3.1, the recurrence relation for the sequence {xBn: n=1, 2,
3, ...} is

P *p,
> Y c,c,.x =0. ®
0 qirei g~ 2r*3(n+17)

Corollary 3.2: If K, = 2K,, the recurrence relation for x, is

Py
zo: C1i%p4s = 0.

Consider the direct product K, K, x K,. Let K, be partitioned into four

square matrices.

Ay 4 Ay X K, A, x K,

Ky = A, A, |’ Ky x K, = 4, x K, A, XK,
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Let @ = yI - K5, then
yI - 4, X K, -A; X K,

-4y X Ky yl - 4y, X K,

Multiply the top row of & by (4; X K,)(yI -4, X KZ)_l and add this to the sec-
ond row [1], then
yI - 4, x K, -4, X K,
el - 0 yI = Ay X Ky= (A3 % Kp)(yI-A; x K,) "4, x K,)
If 4, and 4, commute, then

@] = | @I - 4, x K)(yI - A, x K,)) = (4, x K,)(4, x Kz)l =0

is the characteristic equation for K,. This reduces to

|2 - y(4, + A,) x kK, + (4,4, - 4,4,) x k2| = 0. (3.2)
The recurrence relation for the sequence {xan :mn =1, 2, 3, ...} may then be
derived if K, and K, are known.
A, 4, ] 11
Example: Let K, = 4 4 where K, = A4, =4, =4, = and 4, = 0.
3 4] 1 0
From Equation (3.2), the characteristic equation is
1 1 1 1[4 2 2 1
N 2, _ 1 0 1 0|2 2 1 1 _
bl =Kl =" T -y |y 1 o ofl2 1 2 1|[7°
L1 0O 0 O 1 1 1 1
or
y® - y7 - 13y® - 8y® + 20y + 8y - 13y +y + 1 =0.
The recurrence relation for the sequence {x, = (Fn+2)3} is

Lppg = Lpay = 13046 = 82, 5+ 20, + 8Ly 45— 130, , + 254 + 2, = 0.
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1. INTRODUCTION

The Simson formula for the Fibonacci numbers F, defined by

_ Fop=F,, g +F , F =0, F; =1, (1.1)
1s
2 _ "
F o F,_, - F= (D", (1.2)

which may be expressed in determinant form as

Fpvr  Fn "
= (-1)". (1.2)'
Fn Fn—l
For the numbers w, defined by the generalized second-order recurrence rela-
tion

Wopp = PUpyy ~ QWp» Wy = @ Wy = b, (1.3)

a Simson formula was obtained in [3]. If, in this generalized Simson formula,
we write w, = X, W,4+; = Y, then various conics—ellipses and rectangular hyper-
bolas—in the Euclidean plane arise as loci of the points (x, y). An analysis
of these conics was made in [4] for the special cases of (1.3) which give the
Fibonacci, Lucas, Pell, Fermat, and Chebyshev sequences of numbers (and also
for the degenerate case when the conic breaks up).

Further developments of this theme were made by Bergum [1].

It is a natural desire to want to extend the geometrical aspect of Simson's
formula (1.2) to higher dimensions. This was partly achieved in [4] for a
third-order recurrence relation where a suitable analogue to Simson's formula
(Waddill and Sacks [5]) was wused to produce a corresponding cubic surface in
three-dimensional Euclidean space. However, as this analogue had not been ex-
tended to higher-order recurrences, it was not possible to proceed to higher
geometrical dimensions.

What was required was a technique, an algorithm, for determining an analogue
to Simson's formula for recurrence relations of arbitrary order r.

Happily, such a method was already in existence (Hoggatt and Bicknell [2]).

After a brief, but necessary, recapitulation in the next part of this paper
of the work done in [4] on the situation in three dimensions, we will proceed
to employ the Hoggatt-Bicknell results [2] exclusively in the further develop-
ment of our theme.

Before doing this, however, we introduce some definitions and notationm.

In r-dimensional FEuclidean space (¥ > 2), a locus of points whose coordi-
nates satisfy an equation of degree m will be called a hypersurface of order m
with dimension » - 1. It may be represented by the symbol L:_l.

When the equation is linear (m = 1), L}_l is the symbol for a hyperplane

in r dimensions, i.e., a '"flat" space of maximum dimension in the containing
space.
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2. A CUBIC SURFACE IN THREE DIMENSIONS

Consider the third-order recurrence analogue of (1.1) for the number se-
quence {P,} defined by

Porg =P, t P + Py (z.1)
with initial conditions (Waddill and Sacks [5])
Py =0, P, =1, P, = 1. (2.2)
The first few numbers in this sequence are:
Py P, Py P, Py Pg P, Py Py Py Py
1 1 2 4 7 13 24 44 81 149 274 ... (2.3)

Waddill and Sacks [5] obtained a Simson formula analogue for {Pn} which,
not unexpectedly, was of the third degree.

Putting P, =x, P,,; =Y, P,,, = 2 in their formula, the author [4] derived
the cubic equation

¥+ 2y® + 2% + 22% + 2xy? - 2ya? + 2%z - x2? - 2xyz = 1. (2.4)

Interpreting x, ¥y, and z as Cartesian coordinates, we see that the points
(x,y,2) lie on the cubic surface (2.4) in Fuclidean space of three dimensions.
For example, the point (1,1,2) in (2.3) lies on this Lg (2.4), as may be easily
verified.

Sections of the cubic surface (2.4) by the coordinate planes L; are the
cubic curves Li:

x =0: 2y>+ 2z - 2yz® =1
y=0: x>+ 22+ x%z-x32 =1 (2.5)
z2=0: x*+ 2y% + 22% + 22y® = 1.

A close study of these L} (2.5) might give us some insight into the nature
and appearance of the Lg (2.4), but no detailed investigation is undertaken
here.

It must be clearly understood that the locus (2.4) and its other-dimensional
analogues contain only the infinitude of points for which they are defined,
i.e., within the context of this article these loci are not continuous. For
instance, the point with coordinates (0, Z'IH, 0) lies on the Lg since (0,
2'1”, 0) satisfies equation (2.4), yet the triplet O, 2—1B, 0 does not belong
to the infinite set of numbers of the sequence {P,}. Despite the lacunary na-
ture of our geometrical loci, it is nevertheless sometimes worthwhile consider-
ing them as continuous entities [as for the sectional loci (2.5), for example].

In addition to the sequence (2.3) and the corresponding Simson formula ana-
logue, Waddill and Sacks [5] discussed a closely related sequence for which the
author [4] obtained a cubic equation almost identical to (2.4). However, this
sequence is irrelevant to our purposes here and no further reference will be
made to it. The true Fibonacci-type pattern which generalizes (l1.1) and (1.2)'
is that given in (2.3), as we shall see.

Equation (2.4) of the cubic surface in three dimensions Lg may also be es-
tablished by a different approach using the "interesting determinant identity"
of Hoggatt and Bicknell [2]. This identity, which has the structural appear-
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ance of an extension of (1.2)', and which relates to the sequence (2.3) with
P_, = 0 is, in our notation,

P P P

n+2 n+1l n
P,.1 P, P,_,| =-1. (2.6)
P, Pooi Puss

Let us now write P, =x, P,,, =Y, P,,, = 3, and observe from (2.1) that
{Pn—l =Py By P mr-xT -y 2.7
Py =2Py Py, =2y -2

Expanding (2.6) with the aid of (2.7), we derive

3

x3 + 2y3 + 2% + 22%y + 2xy? - 2yz?

+ x%z - xz% - 20cyz = 1, (2.8)

which is identical to equation (2.4)

Thus, the same cubic surface Lg in three-dimensional Euclidean space is
produced both from the Waddill and Sacks [5] cubic equation and from the Hoggatt
and Bicknell [2] determinant identity.

3. HYPERSPACES IN FOUR DIMENSIONS

Next, introduce a fourth-order recurrence relation for numbers €, (in our
notation):

Dopy = C@pas T @ppp + 9y + 9, (3.1
with initial conditions
9, =0,89 =1,89,=1,8 =2 (@, =0,Q, =0). (3.2)
Then the sequence {@,} looks like this:

9 9 @ @, 9 & &, 9 & @
1 1 2 4 8 15 29 56 108 208 ... (3.3)

Following the method by which (2.6) was established, Hoggatt and Bicknell
[2] exhibited the neat determinantal identity

Qn+3 Qn+2 Qn+1 Qn

&,
Qn+2 Qn+1 Qn n-1 - (_1)n+1. (3.4)
Qn+1 Qn Qn-l Qn—z
Qn Qn—l Qn—z Qn—a

Write @, =, @1 = Y> @pyp = 2> @pyy = t. Observe that, from (3.1), we
may deduce that

Qno1 = Ents ~ @nio ~ @ne1 ~En =t - -y - 2
Qnop = 20psp - Qpya = 22 - ¢ (3.5)
@3 26,40~ @y, =2 - 2.
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Expand (3.4) along the first row. Then, the locus of the point (x,y,2,%t)
in four-dimensional Euclidean space is the quartic hypersurface Lg (in fact,
two such loci depending on the evenness or oddness of n):

zle{y(t-xz-y-2) -x*}-ylyQz-t) -x(t-2x-y-2)}
+ z{z(2z2-¢) - (t-z-y-2)?}]
“yl(t-x-y-2){yt-x-y-2)-2*}-y{lyQy-2)-x(2z-t)}
+ z2{x(2y-2)- 2z-t)(t-x~-y=-2)}]
{+zl(t-x-y-2){yQz-y)-x(t-xz-y-2)}-x{lyQy-2) -x(2z2-t)} (3.6)
+ 2{QQy-2)(t-xz-y-2)- (22- £)?}]
-t[(t-x-y-2){xz-t)- (t-x-y-2)?}
—x{x(2y-2)- Qz-t)(t-x-y-2)}
+ylQy-2)(t-2-y-2) - (2z- t)*}]

= (-D".

Discretion seems the better part of valor here, so we will leave the equa-
tions in this form which is useful for deducing the sectional loci in (3.7).
However, the interested reader may care to expand the expressions in (3.6) still
further. It certainly bears out the author's trepidation [4] about the cum-—
bersome algebraic manipulation involved in the fourth-order recurrence case.

Before expanding along the first row, one might secure a slightly simpler
form of the determinant by adding to the fourth row the sum of the first three
rows. But, in all probability, perhaps no great economy of effort in exhibit-
ing (3.6) is thereby effected.

Planar sections (quartic curves L%) of the hypersurface (3.6) by pairs of
three-dimenaional coordinate hyperplanes (L%) are readily obtainable, namely:

[z =0, y =0: =3y* + 22%¢ + 23%¢% - 3z + % = (-1)"

x =0, 2 =0: y' o+ 3yt - 2yt? + tt = (-

|= = 0, t =0: y* - 3y®z - 7y?z? - 5yz° - 3z% = (-1)" (3.7)
y =0, 2=0: -x*- z%t+ 322¢% - 3xct® + t* = (-1)"

y=0, t=0: -x*'-22% - zz® - 32" = (-1)"

[z =0, t =0: -z' - 3% - 4x®y® - 22y® + y* = (D"

Superficially, there does not appear to be anything memorable about these
quartic plane curves.

One must be struck, in comparing (1.2)', (2.6), and (3.4), which relate to
r =2, 3, and 4, respectively, by the fact that when r is even the value (#1)
of the determinant depends on the evenness or oddness of #n, whereas in the case
of » odd (= 3) this is not so, the value being -1 always.

These variations raise obvious questions. Is the incipient result for r =
2, 4 a true pattern for r even generally? Might we reasonably expect the de-
terminantal value for r = 5 to be +1, and will the incipient pattern for » odd
prove to be valid for » odd generally?

Answering these questions constitutes an interesting part of the overall
problem.

4. HYPERSURFACES IN HIGHER DIMENSIONS

Extending the pattern of the ideas used for lower-order recurrence rela-
tions, Hoggatt and Bicknell [2] defined the sequence {R,} of order »r by
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Bpip = Byyp 1t Byypn_gt "o + Ry (4.1)

with initial conditions

Ry =0, R, =1 (4.2)
and

R poy= B (pogy= ++- =B, =0. (4.3)
For these numbers R, generated by the r-order recurrence relation (4.1),
they established the determinantal identity

Rn+r-1 Rn+r—2 Rn+1 Rn

Rn+r—2 Rn+r—3 Rn Rn—l
..................................... = (- Drrl-Dr2l (4.4)
Rn+1 Rn Rn—r+3 Rn—r+2

R, R, eee Ry nio Bplpy

which specializes to the determinantal results (1.2)', (2.6), and (3.4) already
given for small values of », namely, » = 2, 3, and 4, respectively. In (4,4),
the notation [(r - 1)/2] refers to the greatest integer function.

[It should be noted that a small typographical aberration occurs in the
power of (-1) on the right-hand side of (4.4) as given in [2].]

Putting R, = X1, B, = Xys Bypp = X35 weus Byip_1= %y in (4.4), and sub-
stituting by means of (4.1)-(4.3) for elements below the reverse diagonal, we
could theoretically obtain the locus of points (&;,%,, £g35 ..., &p») in r-dimen-
sional Euclidean space satisfying equation (4.4).

By analogy with (2.8) and (3.6), this locus is a L;_d, a hypersurface
(dimension » - 1) of order r. Sections by sets of » - 2 coordinate hyperplanes
("flat" hyperspaces L;_I of dimension r - 1) from the total set

{z, =0, z, =0, x5 =0, ..., x, = 0}

of such hyperplanes give the planar curves L{of order r in two dimensions cor-
responding to the conics (Li), cubics (Li), and quartics (Lg) in the lower-
dimensional cases.

For example, in six-dimensional Euclidean space (¥ = 6), the section of the
sextic hypersurface Lg by the four coordinate hyperplanes x,=0, x,=0, x,=0,
xg =0 is a plane sextic curve Lg.

A representative instance of (4.4) is, for r = 5, n = 7 (say),

464 236 120 61 31
236 120 61 31 16

120 61 31 16 8| = +1 (on calculation)
61 31 16 8 4
31 16 8 4 2

= (-1)28%2 = (-1)30 in accord with (4.4).

For various values of r and n, the determinantal values in (4.4), i.e., +1
or -1, may be summarized in the following table:
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Table 1: Determinantal Values in (4.4)

» Eygn OQd
" 2,6,10,... | 4,8,12,... | 3,7,11,... | 5,9,13,...
0dd
1,3,5,7, -1 *+
-1 +1
Even
26 +1 -1

Or, expressed symbolically: If

r =4k + 2, 4k + 3, 4k + 4, 4k + 5 (k =2 0),
then

- Dn+ [(r-1)/2

-1 Io -, -1, (1", 1,

respectively.

Thus, for each odd value of »r, there is just one hypersurface irrespective
or the value of 7, while, for each even value of r, there are two ''companion"
hypersurfaces which depend on the evenness or oddness of #.

Now, in [4] it was stated that, when » = 2, a hyperbola for which n is odd
(even) may be transformed into its companion hyperbola occurring when #n is even
(odd) by a reflection in the line y = x followed by a reflection in the y-axis
(x~axis).

Remembering that in two dimensions (r = 2), a line (a Li) is a hyperplane,
one may speculate whether a similar, though more complicated, system of geo-
metrical reflections in higher even-dimensional spaces (r = 4,6,...) will pro-
duce a transformation of one hypersurface into another. Further, one wonders
whether any self-transformation of a hypersurface is possible for an odd value
of r.

With these reflections, we leave the geometry.

A concluding comment on nomenclature is appropriate. Numbers, and their
polynomial extensions, defined in (2.1)-(2.2), (3.1)-(3.2), and (4.1)-(4.3) are
sometimes referred to in the literature as Tribonacci, Quadranacci, and r-bonacci
respectively. While these adjectives are suggestive and useful, they do not
appeal to the author and consequently have not been utilized in this article.
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1. INTRODUCTION

In Hoggatt and Bicknell [1], the Fibonacci sequence {R,} of order » (>2)
was defined by

Ryyp=Rpsp 1+ Ryyp_p+ =+ +R,, R =1, R, =1, (1.1)
with

Rp_gy= B(po3y= +++ =-R, =R, =0. (1.2)

Using the method of a generating matrix for {R,}, they obtained the deter-
minantal identity

Rn+r—l Rn+r—2 Rn+l Rn

Rn+r-2 Rn+r—3 Rn Rn—l
..................................... = (_l)(l’" Dn+ [(r-1)/2]) (1.3)
Rn+1 Rn Rn—r+3 Rn—r+2

Rn Rn—l Rn—r+2 Rn-r+1

which is an extension of the Simson formula (identity) for the simplest case
r = 2 for Fibonacci numbers.

Carrying these numbers R, through to coordinate notation (writing x; = Ry,
Ly = Ryiqs 3 = Ryyos eees Tp = Rytp-1), the author [4] showed that (1.3) could
be interpreted as one or more hypersurfaces in Euclidean space of » dimensions
(the number of hypersurface loci depending on #). The cases r = 2, 3, 4 were
delineated in a little detail ([3], [4]).

It is now proposed to extend the results in [3] and [4] to the case of a
Lucas sequence {Sn} or order r, i.e., to construct a determinant analogous to
(1.3) and to interpret it geometrically as a locus in r-space.

From experience, we should expect the algebraic aspects of {S,} to resemble
those of {R,}. Nevertheless, there are sufficient variations from the Fibonacci
case to make the algebraic maneuvers, which constitute the main part of this
article, a challenging and absorbing exercise.

Because of complications associated with the fact that $, [to be defined in
(2.1)] is nonzero, whereas Ry, = 0, the method used by Hoggatt and Bicknell [1]
for {R,} is not applied here for {S,}. However, our method is applicable to
{R,}, as we shall see, provided we add to the definitions in [1] the injunction
Rogp-1= 1.

Schematically, this paper consists of two parts. Part I is organized to
secure results for the Lucas sequence which correspond to those for the Fibo-
nacci sequence. On the basis of this knowledge, in Part II we briefly gener-
alize the results for a sequence which contains the Fibonacci and Lucas (and
other) sequences as special cases.
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PART 1
2. LUCAS SEQUENCE OF ORDER »

Define {S,}, the Lucas sequence of order r (> 2) by
Spsp = Sugpp1t Spap-2t 00 + 5, S, =2,8 =1, (2.1)

with other initial conditions

S_ = S_ = e s o = S_ _ =0

1 2 (r-2) (2_2)
S_(r_1)= -1.

Simplest special cases of {Sn} occur as follows:
Lyy,=DL,,,+L,s Ly=2,L,=1,L_; =-1; (2.3)
Mpys =My o+ My 1+ M, My =2,M =1, MM, =0,M,=-1; (2.4)
Npvy =Npps+ Ny + Wy +0,, Nyg=2, 0N =1,
N_,=N_, =0, v, = -1. (2.5)

The first few numbers of these sequences are:

L, Ly L, Ly Ly L, Ly Ly Ly, +.- (2.3

4 7 11 18 29 47 76 123 .

P Ny

N
=]

— ™
-

MO Ml MZ M3 M’+ MS MG M7 MB M9 MlO (2 4) 1
2 1 3 6 10 19 35 64 118 217 399 .

NO Nl NZ NS Nlb NS NG ]V7 NB NB NlO (2 5) r
2 1 3 6 12 22 43 83 160 308 594 )

The determinant of order r (which we may here call the Lucas determinant
of order r, corresponding to that in (1.3) for the Fibonacci sequence of order
r) is

Sutr-1 Sntp-2 Spt1 Sn
Sptr-2 Sntr-3 S Sn-1
Dy = [sevrenreneeenenneencnerenieeneannenn. . (2.6)
Sn+1 Sy cee Spopt3 Suopio
s, Sul eee Suomeg Snera

Notice the cyclical nature of the elements in the columns of A,.. Conse-
quently, there is symmetry about the leading diagonal of Ay. Both of these
properties for {S,} are also features of the Fibonacci sequence {Rn}.

Special notation: We use the symbol I’i’ to mean the operation of subtract-—
ing from row Z the sum of all the other rows, in a determinant of arbitrary
order. An operation such as r/ may be called a basic operation. Clearly, r/
utilizes the defining recurrence (2.1) with (2.2).
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DETERMINANTAL HYPERSURFACES FOR LUCAS SEQUENCES OF ORDER r

It is now necessary to introduce the concept of a basic Lucas determinant.

3. BASIC LUCAS DETERMINANTS

Let us define the basic Lucas determinant of order r, §,, as

(3.1)

All elements in a given upward slanting line are the same, e.g., all the
elements in the reverse (upward) diagonal are Sy (=2). Except for the element
(= -1) in the bottom right-hand corner, all the elements below the reverse
diagonal are =zero.

Observe the cyclical nature of elements in the columns, remembering initial
conditions (2.2) applying to symbols with negative suffixes.

Of course, (3.1) is only the special case of (2.6) when n = 0.

Concerning basic Lucas determinants, we now prove the following theorem (a
determinantal recurrence relation).

Theorem: &, = (-1)IF/2127 4 (~1)" 15, .. (3.2)
Proof: Expand &, in (3.1) along the bottom row to obtain
S

8, = (-7 - 5y = 1, 8¢ = 2)

= (-7 - by »!

— (_1)[17/2]2r _ (_1)r—26
(-DF21r 4 (-1 s

»-1 after » - 2 cyclical row interchanges

r-1°
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Thus, we have, for r > 2,

1 2
[r=2] 6, = =-22 -1=-5 (3.3)
2 -1 = -(2% - 3
31 2
[r=3] 8,=|1 2 of=-2%+6,=-2"-2%-1 (3.4)
2 0 -1 =-13 = -(2% - 3)
6 3 1 2
r=4l 6, =|7 5 2 dl=2t-6,=2" 42242741 (3.5)
2 0 0 -1 29 =2°-3
12 6 3 1 2
6 3 1 2 0
[r=5] 8,=]3 1 2 0 0] =2%+¢6, =2%+2%+2%+22+1 (3.6)
5 L
1 2 0 00 =6l =2°-3
2 0 0 0-1
2412 6 3 1 2
12 6 3 1 2 0
(r=61 6 =|5 7 220 2=-2°-5s (3.7
1 2 00 0 of =726 -25-2v-2%-22-1
2000 0-1] =71 =22123)

and so on.

The emerging summation pattern by which the §, may be evaluated is clearly
discernible. Notice that the term 2! (i.e., 2) does not occur in any 6, summa-
tion.

However, before establishing the value of &,, we display the following
tabulated information, for all possible values of r:

r = 4k r=4k+ 1| r=4k+2 | r =4k + 3
[r/2] 2k 2k 2k + 1 2k + 1
p- 1 even even odd odd (3.8)
(r-1) + [ - ] 6k - 2 6k 6k + 1 6k + 3
From (3.8), we deduce
(DA = (T il D (3.9)

Invoking this result and applying (3.2) repeatedly, we may now calculate
the value of §,.

Theorem: &, = (=1)[*/21(pz+1 _ 3y, (3.10)
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Proof: &p = (-D)[2/2127 4 (-)P~1{(-I=D21pr-1 4 (_1yr=25 1 by (3.2)
= (=121 {27 + 2771} — 8,5 ool (a) by (3.9)
= (-7 4 a1} o () D2Ypr=2 4 9re3) 45 by (o)
= (-1)P21 {27 4 27-1 4 27-2 4 2773} 4 8,

= ()20 {or 4 27l 4 oor=2 4 Ll 4 93 422 41} ultimately,
by (3.3) or
by (3.4)

= (-2 ¢ 2" 22 4 e 2% 422 4 2 41 - 2}

_ 91
= (_l)hVZI{Zﬁ%_:_%_)._ 1} summing the finite geometric progression

= (_l)[r/Z] (2P+l - 3).

Checking back shows that the special cases of §,listed in (3.3)-(3.7) have
values in accord with (3.10), as expected.

4. EVALUATION OF LUCAS DETERMINANTS

Next, we show that [cf. (2.6), (3.1)]

To illustrate the ideas involved in the proof we shall give for this con-
nection between A, and §,, suppose we take r = 5, n = 3, i.e., » is odd. This
implies that we are dealing with the integer sequence

(4.1)

S, S., S, S, S, 5, S, S, 5, S5 8¢ 5, 5,
-1 0 0 0 2 1 3 6 12 24 46 91 179 ...

Perform the basic operations rj, r), rj] successively on the determinant Aj
when n = 3 to derive:

91 46 24 12 6 31 2 0 O 12 6 3 1 2
46 24 12 6 3 1 2 0 0 O 6 3 1 2 O
2412 6 31| =12 0 0 0-1|=1]3 1 2 0 0f [=61, (4.2)
12 6 3 12 12 6 3 1 2 1 2 0 0 0| see (3.6)] :
6.3 1 20 |6 3120 2. 0 0 0-1

Ag 5: CS5

In Ag, the leading term 91 (= S;) is reduced to the leading term 12 (= Sy)
in §5 by the 7-4 = 3 (= n) basic operations specified. Because of the cycli-
cal nature of As, these basic operations act to produce a determinant &% = Ag
whose rows are the permutation

[12 6 3 1 2]

3 1 2 12 6

of the rows of §;. Due to the fact that » is odd, this cyclic permutation is
even. Expressed otherwise, 6§ is transformed to §g by an even number of row

interchanges, so the sign associated with §; is +, i.e., 65 =385. Hence, Ag=§5.
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If n > 5, the cyclic process of basic operations is continued until the
basic determinant {g is reached. Obviously, the actual value of n is irrele-
vant.

The reasoning inherent in the case r = 5 applies equally well to the case
when r is arbitrarily odd. Consequently, for » odd, A, = 6§, always.

If r is even, the situation is a little more complicated.

For illustrative purposes, let us examine the case » = 4. Substituting
the numbers in (2.5)' into (2.6) when n = 3, 4, 5, 6 in turn, we readily cal-
culate that A, is reduced to the four St whose rows are respectively the per-
mutations

[6 3 1 2] [6 3 1 2 6 3 1 2 [6 3 1 2]
3 1 2 6] 6 3 1 2]’ 2 6 3 1]’ 1 2 6 3
of the rows of §, (and this is true here for n = 4k - 1, 4k, 4k + 1, 4k + 2,
respectively (k =1, 2, ...).

As these permutations are successively odd, even, odd, even, it follows that
8§t = -84, 84> -84, S, in turn. Thus, A, = *§,, depending on %, namely, A, = §,
when 7 is even, while A, = -8, when 7 is odd.

Armed with this knowledge, we can now attack the general problem, i.e.,
when r and n are arbitrary integers.

First, we establish the following result:

Theorem: A, = (-1)"68,, where m = n'(r - n'), n' = n mod r. (4.3)

Proof: In (2.6), the leading term S,4,.; in Ay is diminished to the leading
term S, in 8 by n + » = 1 - (» - 1) = n basic operations r, Pé,..., r,) which
produce the determinant &%. Simultaneously, Sp_1 drops 7 places in the first
column of &%.

To restore the cyclical order in the first column of &% to the basic cycli-
cal order of the first column in §,, beginning with S,_;, it is necessary to
effect n(r - n) interchanges of sign to account for the r - n terms below and
including Sy_-1, and the 7 terms above S,_;.

When 7 > r, we reduce 7 mod r.

Each interchange accounts for a change of sign in the value of the deter-
minant.

When r is odd, the product n(r - n) is always even, no matter what the
value of 7 is.

But when r is even, the product n(r - n) is odd if » is odd, and even when
n is even. [That is, when r is a given odd number there is only one value of
Ay, whereas for a given even r there are two values of A, depending on the
value of n.]

Thus,

Ay = (-1)7"8,, where m = n'(r — n'), n' = n mod ».

Combining (3.10) and (4.3), we have the following theorem as an immediate
deduction.

Theorem: A, = (-1)"F /2 o+l 3y here mo= n'(r - n'), n' = nomod r. (4.4)

For example,

(-1)3%2+226 _ 3y from (4.4)
= +61

when r = 5, n = 3: A,
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in conformity with (4.2) and (3.6).
On the other hand,

when r = 5, n = 4: A, = (-1)'*3%2(2° - 3)  from (4.4)
= -29

as we have seen in the discussion preceding (4.3).
Applying (4.4) to a random choice » = 6, n = 8 (but not so random that the
computations are unmanageable!), we discover on substitution that

Ay = (-1)* 41327 — 3) = -125,

as may be verified by direct calcul<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>