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EXPANSION OF THE FIBONACCI NUMBERS Fmn+r IN THE m t h POWERS 
OF FIBONACCI OR LUCAS NUMBERS 

JAMES E. DESMOND 
Pensacola Junior College, Pensacola, FL 32504 

(Submitted November 1982) 

1 . INTRODUCTION 

I t i s known, see [ 1 , p . 7 7 ] , t h a t 

F F = F 2 - F 2 
2a In a + n a- n 

and, see [ 2 , p . 4 3 ] , t h a t 

FF F =F3 + (-l)a + 1L F3 + (-l)n + 1F3 
£a£ 2a£ 3n £a + n ^ K L) ^a1n ^ \ L) £a-n 

for arbitrary integers a and n. These identities suggest the possible exist-
ence of a general identity of the form 

wFm = £btlF£+n + (-1)*+1^.„] + b, (1) 
t= 1 

where m9 n, and a are integers with 777 > 0, and where w and b-t* I ^ t ^ k9 are 
integral expressions free of the variable n9 and b is an integral expression. 
Gladwin [3] has given existence proofs for some general identities of a similar 
type. An example of the kind of identity that we shall obtain is 

F2F2 F F F F F = F F F FB + (~l)a + 1F2 F F6 

£a£2a£3a ha 5a 6a 6n £a£ 2a£ 3a n + 3a K J 2a 6a n + 2a 
+ (-l)aF F, Fc Fs + (-l)a + 1F FK Fa Fs 

v / a 5a 6a n + a ' a 5a 6a n-a 
+ (-l)aF2 F Fs - F F F F6 

2a 6a n-2a a 2a 3a n-3a 

for arbitrary integers a and n. In the sequel we shall use the following well-
known results: for all integers a and n9 

(Ln ± /5Fn)m = 2m'1(Lmn ± ^ „ ) (2) 

where m i s a p o s i t i v e i n t e g e r , 

F.n = C-l)n+1F„ and L.n = ( - 1 ) " £ „ , (3) 

L2
n = 5F\ + ( - 1 ) " 4 , (4) 

2Fa+n = FaLn + LaF„, (5) 

2La + n= 5FaF„ + LaLn. (6) 
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EXPANSION OF THE FIBONACCI NUMBERS 

2. PRELIMINARY LEMMAS 

Lemma 1: L2
m/F2 - L2

n/F2 = (~l)n + HFm+nFm_n/F2F2 for m * 0 and n * 0. 

The proof of Lemma 1 follows from equations (3) and (5). 

In the sequelj let a be a nonzero integer. 

Lemma 2: For m > 05 

2 - 2 i 
Pr1] 

en) 2 - ^ ^ = £ (u
m_ 2)5*-^-2Lr 

( i i i ) 2 m - 1 [F; + K + ( - 1 ) ™ + 1 F ^ J = £ ( 2 / _ J j f - i ^ + i - 2 l ^ + i - 2 l £ 2 , - i 5 

dv) ^ t c + H r c i ' £ (Hm_ 2)F^-2ir2""^+2_2^"-2. 
Pr1] 

(v) 2m-1[£a
ffl

+„+(-l)mLQ
m_J = £ (2/_ J s 2 ^ 2 ^ - 2 ^ 2 " 2 ^ " " 2 ^ " " 2 ' ^ £ = 1 

Pr1] 
( V i ) 2 m - 1 [ £ a

m
+ n + ( - l ) W " + X m - n ] » E ( ^ " J s ^ - ^ - ^ r 1 " 2 ^ ! * " 1 ^ 1 " " -

£ = 1 

Proof:: We s h a l l prove formulas ( i ) and ( i i i ) . The remaining formulas have 
s i m i l a r p r o o f s . By equa t ion ( 2 ) , 

2 m - 1 (L, m + /5Fm) - 2^1(Lm - SFm) = (Ln + j5Fn)m - (Ln - v/5F„)m. 

That i s , 

2m^Fm = £ ( ' ^ - V M ' J M I + (-Di + 1l 

2P^K x 
= 2 E j tr^)1 

i - 1, i odd ' 

= 2^(2/_1)i:r2i + 1 ( ^ n ) 2 i - 1 . 

Formula ( i ) can now be ob t a ined by d i v i d i n g through by 2 / 5 . 

1986] 195 



EXPANSION OF THE FIBONACCI NUMBERS 

Mow, by equations (5) and (3), 

2m[Fa
m

+n + ( - l ) " » + 1 f » . „ ] = (FaLn + LaFn)m + i-l)m+l(FaL_n + LaF_n)n 

= (FaLn +LaFn)m - (FaLn - LaFnr 

%?10f""fi»"^[1 + (~1)i+1] 

^ = 1 , i odd 

["H/ m v . . . 
- 2 . ^ ^ - ir» L * Fa La • 

Formula (iii) is obtained by dividing through by 2. 

Let 7fc = (̂ t"1) f° r 1 ̂  ^s t ^ k9 denote the Vandermonde matrix. From [4, 
pp. 15, 16] it follows that for k > 1 and t = 1, 2, ..., k9 

Wkht IT (** - *,;). (7) 
i= 1 

where ( 7 ^ ) ^ i s t h e c o f a c t o r of x^1 i n | 7 f e | . 

Lemma 3-' For k > 1 and any c o n s t a n t c $ xt9 t = 1, 2 , . . . , & , 

Proof: Let Ck = [c^t]9 where oit = 1 i f i = t» cit - -c i f i, = £ + 1, and 
<?££ == 0 o t h e r w i s e . Then, 

\ck\ • \vk\ = \ckvk\ 
k k 

Z «Wlt = z 
t= 1 t= 1 

II (o - *,) E ( ^ k , / ( c - * . ) . 

n (̂  - ^ ) 
i = 1 

L if t 

(Vk) fc'fc* 

i = l £= 1 "fc'to 

In t he s e q u e l , l e t xt = I>\alF\a fo r t = 1, 2 , . . . , & . 

Lemma 4: For & > 1 and t = 1, 2 , . . . , fc, 

( -1) ta+ l02k - 2 
& + t 

(7fc)fe4 n F. = L t Pi •2 fc-2 I 
k 

n F 
Proof: By equation (7) and Lemma 1, for k > 1 and t = 1, 2,...., &, 

196 

\Vk\/(Vk)kt = n ^ t - ^ ) = n [(-ira + 1Wta+iaFta-ia/FtZaFial 
^ = 1 ^ = 1 
i^ t i±t 
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EXPANSION OF THE FIBONACCI NUMBERS 

( - l ) * + l ( 4 * - i F 3 / £ > 
t+k 

n F. 
i-t+i *• 

n K 

• Fta 

' k 

n? OF, 
£ = 1 

= ( - l ) t a + 1 ( 4 f c - 1 / I t a ) n F-
t = t 

v # 

(-D 

^ - { n F .1 

t - i 

^ = 1 

k 
TlFt 

i = l 

ta+ In2k -2 
k+ t 

n -̂
^ = k + 1 

LtaFta 
2k-2 

ta - ia 

k- t 

n ^ 
^ = 1 

n F_ 

n F i= t+ 1 t a - ia 

i = k - t + 1 

s i n c e , by equa t ion ( 5 ) , Flta = FtaLta< 

Lemma 5: For k > 1, 

t= 1 ^ = l 

k 
II F_ 

Proof: For t = 1, 2 , . . . , k, 

** = ^ V ^ a = <5Fta + ( -Dt a4) /^a = 5 + (-l)*M/*£ . 
I t fo l lows t h a t {-l)ta+1Fla = 4 / ( 5 - xt). T h e r e f o r e , by Lemma 3 , 

A: 

I 
£= 1 

k 

E 
t= 1 

E (-i)ta+1^2
a (^),t = £(4/(5 - *t)>(V*t = 4KI / n (s - * 

k 

n 
i= 1 

4 | F J / n ( ( - D M + i 4 / ^ ) 
i= 1 

Q / 4 * " 1 ) 7, 
" k 

i = i ^ 

k 

n F . 
Lemma 6: Let w be a positive integer and let st be a real number for t 

k . . k 
£ s^x^ = 5%Y^ zt for each £, 1 < i < u, 
t= l t= l 

if and only if 
k k 

E 
t= 1 

S 2txl = 5 ̂  st^t 1 for eacn '̂ 1 < i < u. 
t= l 

Proof: Let 
k . . k 
S ztXi ~ ̂ 5Z %t ^or eacn »̂ 1 ̂  t ̂  W = 
t= 1 £=1 

Then, for i = 1, 
k k 

E w = 5 E s t 
t = i t= i 

1986] 
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and, for 2 ̂  i ^ u9 

£= 1 £= 1 t= 1 

Conversely, we use mathematical induction on u> The case u = 1 is true. For 
q ̂  1, assume that 

k . k 
53 st^t = ^ S^t^t"1 ^or e a c n »̂ 1 < i < C7, 
t= l t= i 

implies 
k . . k 
J3 ztx\ = 5Z 53 zt for each i9 1 < i < g. 
t= l t= l 

Now let 

Y*ztxt = -> E ^ ^ t " 1 f o r e a c n ^ ' 1 < i < ^ + 1. 
£= 1 t = 1 

Then 
k k 
53 ^ ^ t = 5 S^t^t"1 f o r e a c n ^5 1 < ^ < 7̂ 

t= l t= l 
and 

* +1 k 9 
L, z

t
xt ~ ^ dLz>txt* 

t= 1 t= 1 

Therefore, by the induction hypothesis, 

k . . k 
53 stx^ = 5"̂  53 s t for each i , 1 < i < <7 

t= 1 t= 1 
and 

k + k 

53 ztxt = 5 53 z t x t* 
t= 1 t= 1 

Hence 
& . . k 

53 St^t = ^ E 2 £ f ° r e a C n *̂ 1 < ^ < (̂ s 
t= 1 t=1 

and 
t=1 t= 1 t= 1 

Thus 
k . • fe 

53 s t x t = ^ Y,%t f o r e a c n ^» 1 < £ < g + 1. 
t = 1 t= 1 

The proof is complete by mathematical induction. 
Lemma 1'. Let st be a real number for t = 1, 2, ..., fc, and let J be a fixed 
integer. 

k k k 
53 i~l)ta ztx{-x lFla = 0 if and only if £ 2 ̂ / = 5 E3***"1-

t= 1 t= 1 t = 1 

Proof: E *,*/ = £ 2i 0 4 /*£, J*'"1 
t= 1 t= 1 

= iU((52& + (-D'*a4)/^)^-1 
£ = 1 

= 5 E s ^ f ' + 4 E (-1)*°  3t^-VFt
2
a . 

t= 1 *= 1 
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Corollary 1: Let zt be a real number for t = 19 2, *„., k. 

k 
E (-^•)taztxi"1/Fla = 0 for each i, 1 < i < w 
t= l 

if and only if 

7c . . k 
E st^t = ^ E st for eacn 9̂ 1 < i < u. 
£= 1 £= 1 

Proof: Apply Lemma 6 and Lemma 7. 

Corollary 2: Let /c > 1. Then 

t= 1 £= 1 

for each -£, 1 ̂  i ̂  fc. 

\ta rp2 Proof: In Corollary 1, let zt = (-1) Fta (Vk)kt for t = 19 2, 
u = k - 1. Then 

fc9 and let 

Ec-D^^r1/^ = E ^ ; - 1 ^ ) ^ =o 
£= 1 t= 1 

for each £, 1 < £ < /c - 19 since a determinant with two identical rows has nu-
merical value zero. By Corollary 19 

k . k 

t= 1 £= 1 

is true for each i s 1 < i < fc -- 1, and clearly is true for i = 0. Therefore 9 

t= 1 t= 1 

for each i9 1 ̂  -£ ̂  k. 

3 . THEOREMS 

Theorem 1: For any p o s i t i v e i n t e g e r k9 

( i ) S^'"1 
" 27c 
UFia 

i = l 

k 

n F • 1 = 1 

k 

= E t = i 

Ik 

n ^ _L= k + t + 1 

k 

n F i=k-t+ 1 

for 1 < j < k9 and 

( i i ) 5 

and ( i i i ) 

' Ik 

n *v 
^ = 1 

k k 

n F.ia = E 
-z- = 1 t = 1 

2k 

n F. 
i = l 

k k 

n ^ = SE 
^ = i t=*i 

2k 

n ** 
i = k + £ + 1 

2k 
O F • 

^ = k+ £+ 1 

n F.ia 
i = k - t + l 

k 
n F-ia 

i=k-t+ 1 

p2k+2-2jT2j-l 

•£ = k+ 1 

hta Lta 

+ ( - l ) * 2 2 k 
k 

^ = 1 

" 2k k 
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Proof: The three i d e n t i t i e s are eas i ly ver i f ied for ft = 1. Assume that ft > 1. 
Denote 

[2k 
A - [£A II F . and 4 , 

i = l 

2ft 
n pia 

*=fe+*+1 

ft 

n * 
£ = fc-t+ 1 for £ = 1, 2, . . . , ft, and 

/ 2ft 
1 ^ = ft+ l 

By lemma 5 , 

ft 

I 
t= l 

and, by Lemma 4, 

KA -.'L(-»taFL(Vk). ta v• k'kt (8) 

JMt = ( - l ) t o ( F J , + / ^ ^ 2 f c - 2 
ftyft£ ' ^ta2- ta (9) 

for t = 1, 2, . . . , ft. Now, by Corollary 2 and equations (8) and (9) we have, 
for each j , 1 <i j ^ ft, 

£= 1 t= 1 

Therefore, for each j, 1 < j < ft, 

5J-I 
2ft 

n *, i = l 

ft 

£ = 1 

ft 

t= i 

' 2ft 
n Fic 

i = k+t+ l 

ft 
n F • 

t= ft- £+ 1 

jp2k-2j+2r2j - 1 

The proof of (i) is complete. 

From equation (10), we obtain, for j = ft, 

k k 

t = i * = i 
5k-lA = ZAtF&L*-1 = (1/5) ZM*04 + ( - D ^ H ) ^ " 1 

(10) 

= (1/5) ZAtL%+x - (4/5) £ (-l)taAtLl^ 
t= 1 

ft 
£ = 1 

k 
(1/5) ZAtL%+1 ~ ^ ' ^ t(LZ

t
k
a~2/F^-2)(Vk) 

t = l £ = l 
kt 

by equation (9) . Thus, 
k 

5 ^ = (1/5) £AtLlk
a
+1 - ^/5K)Z^~1(Vk)kt 

k 

t= 1 

(1/5) EAtL%+1 - (4/5Z)|7, 
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= d/5) XAtL%+1 + (22fe/5) n Fia. 
t= 1 i=k+ I 

The proof of (ii) is complete. 

From equation (10) we obtains for j = 1, 

t= 1 

5 J U ^ Z T ^ + 4 J X ( - I ) * * ^ 1 
" t a £a 

5 XX*£*+2-C + (VK)h(Fl/Llo)(Vk)i 
t= 1 

taILjta>^k)kt 

k k 

5 E ^ f f X 1 + (4/X) E(l/a:t)(7fc) 
t= 1 t= 1 

fc£ 

Therefore, by Lemma 3S 

4 = s i v f x 1 + (4/iO(-D|Fj / n (-̂ ) 
t = 1 ' ^ = 1 

fe02/c 5Y.AtF^Ll} + i-Dk2 

t = 1 

The proof of (iii) is complete. 

2& 

n Fu 
i= k+ 1 

"2k 

n F. 

i - i ^ 

" k 

n ^ 

/ 0£2 

Lemma 8: Let a and n be nonzero integers9 let k and 777 be positive integers9 
and let E = 0 or £ = 1. 

r2k 1k 

( i ) F o r ^ 2 ^ + 2 + 2e5 2 ^ ^ I O F{a 0 / _ i a 
|_z- = 1 J ^ = 1 

2?c 
. / 777 \{-E02kTP2k+l + 2£Tm-2k-l-2£ FT P 

+ \2k + 1 + 2 E j 5 2 Fn Ln ijLl ia' 

( i i ) For m < 2k + 2 + 2e, 5k+e2m-1Fmn 

Ik 

n ^ i = l 

k 
ft ^ • 

^ = 1 

= 2m_1 I F m - l V T?l-2eT2k -m + 2e 
t= 1 £a ta 

2k 

ft F. 
t = k+t+ 1 

2fc 

n F-i 
i = k-t+ 1 

[>£•„+(-i)""1^-,,] 

(con t inued ) 
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, / i\fc/ ^ \t-2k + 2er)2kT?2k+l+2£Tm-2k-l-2£\ n s 
+ ( _ 1 ) \2k+l + 2eP 2 F" L" [/=i 

2k 
O F -
i = l ^ = 1 

( i i i ) For 77? < 2k + 1 + 2e, 5k-i+e2^-ir 
2£ 

t = 1 
n F . 

nm-l V Z72-2G r 2 k -W7-1 + 2E 
2
 t t i ** ** 

2£ 

2& 

n ^ 
k 

n »̂ 
C=fc- t + 1 

[c*»+(-i)"cj 

X I' 1">fc/ m \c2k-lJt-2£02kw2k+2zTm- 2k - 2 £ n ̂  2k 

n ^ 
^ = 1 

•& = l 

(iv) For w < 2k + 1 + 2e, 2m~1Ln 

2k 

n ^ OF 
i = l 

5e . i171'1 T* p2k-m + 2£J-1-2E 
t=l ta ta 

2k 

n ̂ c 
" fc 1 
n F-t' = 1 J 

r 2/c 
n F-1-z. = 1 J 

k 
\Fm + (-D^F171 1 

P 
by 

Thus, 

So 

r 2* i 
roof: ( i ) Let ^ + 1 - + 2 e L - t a

2 e . II ft J 
y Theorem 1 ( i ) , L * = * + t + 1 J 

r2k i k 

HA 

= 5*hbt(2.m_ J ^ - ^ r 1 " 2 ^ 1 " 2 ^ " 1 for 1 + e < j < fc + e. 

Since, by hypothesis, 777 < 2fc + 2 + 2e, we have [ (777 - 1) /2] < & + e. Therefore, 

, . i V - i)̂ -,^r,-"5'-'[ 

5^' 

5 « ? " 

ft F . = L for 1 < t < L Then, 

.ia ^ Z^btF^2^2eL^i + 2e f o r ! < ̂  < k . 

n / - t a = E ^ ^ r 1 - 2 ^ - 1 for 1 + e < j < fe + e. 

k 

n F. 

2k 

n F-
t = 1 

n ^ • 

t = 1 J = 1 + £ N Z - ^ ' 

By Theorem 1 ( i i ) , 
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'2k 
n Fi 

i = 1 

k k 

1^ = 1 "" t = i 

and by Theorem 1 ( i i i ) 9 

' 7 n - 2 & - l - 2 e £ 2 k + l + 2e , 22^ f t E7 2A: 

n 
i = k+ 1 

_ 2k 

^ = 1 

k 

n F 
i = l * 

^ ^ C 1 - 2 6 ^ - 1 + <-i>*22* n Fi 
2k 

n **• 5 n^2 
i = i ^ 

Therefores 

/ 7̂ \ 2k+l + 2e Tm-2k-l-2e rk + e 
\2k + 1 + 2 e r * ^ 

2k 

n F-
k 

n F_ 

5 ^ ^ U f c + 1 + 2 £ j F - L - *** Lto 

+ \2k + 1 + 2 J 5 2 Fn Ln i -V + i ^ 

and 
2k 

n ^ n F . / W \ ™2e - l r 7 7 7 + l - 2 E r £ - l 
\2e - l)Fn Ln 5 

+ (-i)Z:(2e
m- i)5e22^f "^r1 

2£ - 1 
to 

% = \ 

2k 

^ = 1 

S i n c e , by h y p o t h e s i s , m < 2k + 2 + 2e9 we have [ ( w + l ) / 2 ] < ^ + l + e s and we 

have ( -, + 7 + 9 ) = 0 i f a n d o n l y i f [ Ow + 1 ) / 2 ] < & + 1 + e . T h e r e f o r e , 

2£ 

n F. 
^ = 1 

n F . 

Since 

/ ^ \r72[(m + l ) / 2 ] - l r W 7 + l -2 [ (m + l ) / 2 ] c [ ( m - l ) / 
\2fc + 1 + 2e/ n hn D 

= S E V h ( m \(F T \2[(w + l ) / 2 ] - l / r r, NW + l -2 [ (m + l ) / 2 ] 

/ \ 2k 
, ( m \rZr)2k-n2k+-L+2zTm-2k-l-2z r r 7-7 

+ V2£ + 1 + 2eJ5 2 ' ^ L - i-k+i™' 

( - " . ) - • • we have 

[22+1] 

i: (2/-ik*"1*-"-2^-1 
J = l 

" 2 / c 

n ^ 
i = l 

k 

i = l ^ 

t= i * j = i \2j - 1/ * •« to to 

( con t inued) 
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+ (-1 >'U" i) 22kp Lm-1 
n n 

" k 

^ = 1 

'2k 

t = l 

/ * 

) 2£ 
qe92fe r72/c+i + 2e r m - 2 f e - i - 2 e n p 

By Lemma 2 ( i ) and Lemma 2 ( i i i ) , 

2m"xF i n F . 
k 

n F„ . i - l 

r 2* 
"xf n 2 

= 5E2-i
i|:i&t[^+„ + (-i)'-+^_„] 

+ Ufe + 1 + 2ej5 2 *» £ " i=V+i i a ' 

k 

^ - 1 

' 2k 

n î -
^ = 1 

/ = i M 

After substitution for bt, 1 < t ̂  k, the proof of (i) is complete. The proofs 
of (ii), (iii)9 and (iv) are similar. 

From equations (5) and (6), we obtain the following four identities: 

Ln + Fn = 2Fn+l> Ln ~ Fn = 2 f n - P 5i?n + Ln = 2Ln + l> 5Fn ~ Ln = 2Ln-l 

for all integers n, 

Corollary 3: Let a and n be nonzero integers and let k and m be positive inte-
gers and let e = 0 or e = 1. For m < 2/c + 1 + 2es 

( i ) 2" r̂  i k 

5 ^ - ^ a - ^ L ; ^ ^ 

~k If 2k 

n/J In i 
^ = 1 J \y = 1 

^ = 1 
+ ^ L w - 2 K + (2 E

m-iK>2 k-^-3 

[ U 12 eK + U + 7 + 2 > „ ] 5 V - F f - ^ ; — i = n / i 3 . 
r 2̂  i k 1^mn+i[.n/io] .n/.,a 

[(2£
m- 2 K + (2em- >-]22*-^--{A^][A^]/A^ 

+ 
and 

(i±) i 

k\ + (-D 
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and 

( i i i ) 5k+£2m-1F 

= 2m~1 Y,F}-2£L ta ta 
2k -m- l + 2e 

2k ~] k 

UF- UF . 

r 2k ir k ir 

+ (2* + 7 • !J4"*«!»"F?«i;-'-'-[inifl|inF11] /^rui,. 
and 

(iv) 5* •^^-^^^[.Bi 
2&I-1 V" p l - 2 e 7-2A:-m-l + 2E 

t f 1 *<* to [.J*+i^.A+i^][Ft«+iz;s,H.»+(-i)",+i^-i^--] 
+ [(2e™ 2 K + U™ lH]2^L^J+iFia + (-l)*[(2fc J 2 £ ) , n 

Proof: (1) and ( i i ) follow from Lemma 89 par t s ( i ) and ( i v ) . ( i i i ) and (iv) 
follow from Lemma 89 par t s ( i i ) and ( i i i ) . 

Theorem 2: Let a and n be nonzero integers s l e t k and 777 be pos i t ive in tege r s , 
l e t e = 0 or £ = 1, and l e t r be an in teger . For m < 2k + 1 + 2e9 

( i ) 2 - ^ + p 

5 e 2 m - l £,F 
t = 1 ta 

' 2k 

n F. 
^ = 1 
f2e r - 2 e 

n F . 
r 2k ii n F. 
i=k+t+i t a J i 

n F . 
i= k- t+ l -ia 

x \F Fm + (-l)rm+l + I1F Fm 1 

and 

( i i ) 2m-1Lrol+ 

5 e 2 m - 1 E ^ 2 J : " m 

* = 1 

|f = 1 J^ = 1 
r 2k ir ^ 1 
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~ k ~| 

n F-[i = l J 

r 2k 
n F-[y = l 

k 

n L2. 
i - x w 

+ [ U 1 2 e K £ - + (2. + T + 2 e )5^^]5e2--xf e + 2^r^-1-2 e
i J + I F 

a n d 

( i i i ) 5 f c + e 2 " - i p 
" 2k 

O F . 
i = l ^ 

k 
IlF 

i = l 

k 

£ 
t= 1 

o w - 1 V* r 7 l - 2 e T2k -m- l + 2e 
2 ^ f c z Lta 

2k 

n *. 
k 

n F. 
i = k - t + 1 

X lLta+rLta+n + C " 1 ) ^ta-rLta-nj 

+ [{ism- 2fcL»+ (2E™ O V J * - 2 - - ^ - J + ^ + (-1)' |_\2& + 2 e ) ^ L " 

U + 7 + 2>^j5^+2£2^-^-^r^-1-2{A^][A^]/AL^' 
a n d 

( i v ) 5k-1 + e2m-1Lm+1 

" 2k 

^ = 1 

k 

n F_ 
£ = 1 

_ 0m-l V 7pl-2£ r 2 k -m-l + 2e\ - 2 . L, t . Ltn 
t= 1 

+ ( - i r 

/ m \ ^ F I tz2k~l + 2Zr)2k-lrp2k+2e Tm-2k - 1 - 2e 1-1 w 
\lk + 1 + 2epFrFn]5 2 Fn Ln [ A 

Ufc + 2eH^ 
2k 

n F. 
^ = 1 

/ k 
n £?„ 

Proof: To prove (i), we use mathematical induction on v. The cases v = 0 and 
v = 1 are true by Lemma 8 (i) and Corollary 3 (i). Assume that the hypothesis 
is true for v - q and for r - q + 19 where q is an integer. Then 

2m'1Fr 

[ 2 k 

r2* 
k 

n ̂  
i = l '2k 

n F • 
^ = 1 

k 

n F. 
^ = 1 

c £ 2 m " 1 V P 2 ^ -m + 2e T-2E 

t « 1 to 

CF + F ^F™ 

O F . + 2 m " 1
J P • '•-la T A x rnn+'q 

t = l 
2k i r k 1 
n F. n F . 

cVt + 1 zaJ [^ = k-t + 1 - ^ J 
+2eLi2e n F.]l" n F .1 
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k 

n Ft 
i = 1 

" 2k 

n ^ / n L\a 
^ = 1 

-, 27c 
. / W \(j , r \ u K e ? 2 ^ -lrv27< + 2£ rtf7-2k - 1 - 2E f l rr 

by the induction hypothesis. Therefore3 

" rnn + q+2 

k 

' 2k 
O F . 

i = l ^ 

k 

n F 
-£ = 1 

r G o ^ " 1 \* p>2.k-m + 2£ j--2e 
t= 1 

2k 

n F. 
k 

n F . 
i = k-t+l ~%a 

-enm-l V 7?2k -m + 2E r-2e 
t-iF*> L t a 

2k 

n F. i=k+ t+ l n F . 
i-k-t+l ~w 

t - 1 

+ ^k[Lm- 2 ) V A + (2£
m- O w J 2 2 * - 1 ^ - 1 

7 n ^ 
£a+<? + 2 r ta+n 

ta-q-2 ta- n 

k 

n ^ 
' 2k 

n F-
^ = l 

k 

n L\a 
2k + [U I 2 E )W« + (2fe + T + 2 £ K + A]5 £ 2-X 2 k + 2e^-2fc-1-2£

i 0 + / i a 

S i m i l a r l y , 

2 m _ i F mn+ q - lj 

k 

t = l 

" 2k 

i = l 

k 

^ = 1 

t-e^m-l X^ p2k-m + 2ej--2e n F . 
^ = k - t + 1 - ^ 

77 77 m 

£ta + q- I12ta+n 

+ s ^ - 1 £ 
+ ( 

(-Dm+(?F t a - a + l i a - n 

[ 2k I 

n F-
i = k + t + i ^ j 

F2k-m + 2eL-2e\ f\ p \\ f\ 
'{*<* ta \i = k+t+l ™][i=k-t+l 

"Hie"- 2K-x£- + d™- l ) ^ - A ] 2 2 k - l £ - - { A ^ ] 

[ U 1 2 e K - i £ - + U + 7 + 2 eK-^]5 ' 2 2 k-1^+ 2 e £""2 k-1-2 '< .n/-

" 2k 

n ^ 
i = i 

/ & n L2. 
2k 

The proof of (i) is complete by mathematical induction. The proofs of (ii) 9 
(iii)s and (iv) are similar0 

The three identities given as examples in the introduction can be obtained 
as special cases of Theorem 2 (i) by using the ordered 6-tuple (e9k9m9nsa9r) in 
the forms (0,1,25n9a90)9 (0,1939n9as0), and (0s396sn9a90), respectively. A 
special case of Theorem 2 (ii) with the ordered 6-tuple (091939n9a90) can be 
found in [6]. 

The author thanks the referee for the type of proof used in Lemma 3 and for 
reference number [4] and for suggestions which led to major simplifications of 
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several of the proofs, such as the proof of Lemma 2, and which brought the 
statement of Theorem 1 out of the realm of unintelligibility. 
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JOSEPH W. CREELY 
31 Chatham Place, Vincetown, NJ 08088 

(Submitted January 1983) 

1 INTRODUCTION 

We will enumerate the different m x m matrices Br(n)9 n = 1, 2, 3, ..., r = 1, 
29 3, ...s xns having elements from the set [09 1], where the allowed column 
vectors Bj and some conditions between elements b^j are specified. That is, 

CI: 

C2: 

bij 

b<J 

1 KJ 

= 1 =» 

and 

i = 05 

0 

bi+i3j = 09m>i>i9 

**-w 

ij 

rnj 

= 1 =>bn os 
= 1 = ^ m _ w = 0. 

The number of different matrices Br{n) is called xn and is the general term of 
a combinatorial sequence {xni n = ls 29 3S .. . } . The vector Bj = Pj is one of 
the p distinct column vectors in an m x p matrix P called the primitive matrix. 
The vector Pj is named in accordance with the following rules: 

1. The name of the zero vector is 0; the remaining vectors may be identi-
fied by the positions of lfs in them. 

2. The numbers in these names, if more than one, are conveniently given in 
increasing order with a bar placed over them. 

3. The dimension m of Bj is greater than or equal to the largest number 
in its name. 

EXAMPLES 

Name of Pj 

0 

1 

2 

~n 
13 

T23 

0 

1 

0 

1 

1 

1 

0 

0 

1 

1 

0 

1 

% 

0 . . . 

0 . . . 

0 . . . 

0 . . . 

1 0. . 

1 0 . 

0 

0 

0 

0 

. . 0 

. . 0 
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m 

1 

2 

3 

4 

Size 

Some Primitive Matrices P 

Under C2 

(0 1) 

(0 1 2) 

(0 1 13 2 3) 

(0 1 "13 14 2 24 3 4) 

m x Fm+2 

Unrestricted 

(0 1) 
(0 1 12 2) 

(0 1 Tl 123 l3 2 23 3) 
(0 1 12 123 1234 124 13 134 14 

234 "24 3 "34 4) 

m x 2m 

2 23 

Any figure consisting of a succession of like segments each of which is 
divided into m cells which can be occupied by either a 1 or a 0 under given 
conditions may be represented by a matrix Br(n) in which n is the number of 
segments in the figure. The cells in any segment must be numbered in a given 
way (1, 2, 3, . .., m) and correspond to the row numbers in Br(n). Figures in 
which only cells of like number in adjacent segments are adjacent are said to 
be regular. This adjacency condition (AC) is symbolized by bi •* bi. Figures 
in which at least one cell bij in the j t h segment is adjacent to more than one 
cell in the (j + l)st segment (bs,j + \9 bt,j + i> > • •) are said to be irregular. 
This AC is symbolized by bi •> bs, bt* 

Segment 
3 J + 1 

1 

2 

3 

1 

2 

3 

(a) Regular 
Figure 

Figure 1 

Consider a prism of n segments formed of segments of unit height on bases 
A or B (Figure 2). If the segments have equal bases A or B9 P = (0 1 2 3) is 
a possible primitive matrix and bi + bi. If the successive segments have bases 
that alternate between A and B, P may be unchanged but l-*2, 3;2->l;3-*-l. 

Condition 1 may be replaced by the more general condition C3: any two ad-
jacent cells, each from a different segment: cannot both contain the number 1. 

The matrix P has a companion matrix P in which the column Pj has a coun-
terpart "Pj in P obtained by applying the given AC9 bi •* bs> bt> ...5 to each 
number i in the name of Pj and ordering the resulting numbers without repeti-
tion. A bar is placed over these numbers to distinguish the columns of P. 
That is5 if P = (1 T2 "13" 2 3) in Figure 1(b), then P = (12 123 123 23 3). 

, . (see Fig. 1). 

Segment 
3 J + 1 

1 

2 

3 

1 

2 

3 

1 -> 1, 

2 + 2, 

3 + 3 

2 

3 

(b) Irregular 
Figure 
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Base A Base B 

Figure 2 

Define the (p+1) x 1 set matrix M(l) with elements consisting of sets of 
matrices such that 7^(1) = 09 the empty set9 and ^(1) = [Pi_1]9 where p + 1 > 
i > 1 and L is the (p+1) x (p+1) partitioned matrix 

L = 

where 0 is the p x 1 zero vector, U is (p+1) x 1 with u± = 03 and u^ = 1 if 
p + 1 > £ > 1. A matrix i£s called the kernels is p x p with K^ G [0S 1] and 
is a function of P and the given AC as described later. 

A special product is defined for L and a conforming set matrix generating 
another set matrix as a product. 

L* Miri - 1) = M(n)9 n > 1, 

hence 

(L.)n_1M(l) = M(n), 

(1.1) 

(1.2) 

The expression Zjim^in- 1) (P̂ _-,_) represents the result of augmenting each 
member of the set m^(n- 1) by appending the vector P-_x on the right if 

If £ ^ 

m1(n) 

m A (n) 

05 this expression represents 0. 

P + i 

U KimM - i) 
2 

o . . -X / J ^ 

Define # (1 ) as t h e v e c t o r w i t h n1(l) = 0 and rij(l) 

LN(n - 1) = N(n)5 n > 1. 

1 if p + 1 > j > 1. Let 

(1.3) 

The sets mj(n)9 p + 1 > J > 1 are disjoints and their cardinality is un-
changed by appending columns to their matrix elements. It can be shown by 
mathematical induction that N(n) is a vector with n1 (n) = xn_1 and that rij (n) 
is the number of matrices Bv(ri) having Pj_1 for the nth column. 

Let Hn be the p x 1 matrix with n̂ (tt) = wi+1(n), p > i > 19 then 

P+1 P 
xn = n (w + 1) = Y* ni(n) = £ ni(n). 

2 1 
(1.4) 
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Example: Let Br(n) represent a 2 x n matrix with P = [0 1], If CI holds, 

k = 
1 1 

1 0 
, M(l) 

0 
[0] 

UL 
, Nil) = 

0 

1 

_!__ 
, and L = 

0 

0 

__0 

1 

1 

1 

1 
1 

0 

LM(n - 1) = M(n) and LN(n - 1) = i!7(n), 

M(l) 

M(2) = 

0 
[0] 

UL 
9 

[ 0 , 1] " 
[00 , 10] 

[01] _ 
9 

[00 , 10 , 01] 

[000, 100, 010] 

[ 0 0 1 , ] L01] 

tf(l) 

tf(2) = 

M(3) = 

Equation (1.3) implies 

ZN(n) = N(n + 1) 

Z"N(1) = N(n + 1). 

NO) = 

2, 

9 *&2 "" ' 

*„ = ^ 

(1.5) 

(1.6) 

Let kernel Kr yield a value n±(n + 1) = xrn9 then if Z]_ and Z2 yield xln = 
#2n they are said to be virtually equivalent and K\ * K2» Virtual equivalence 
is an equivalence relation. 

Let Qr represent a p x p permutation matrix, i.e., a square matrix whose 
elements in any row or column are all zero except for one element which is one. 
There are p! such matrices and since I, lT = n-1 

Zn_1N(l) = N(n) and, if K is replaced by QpKQ'19 

From Equation (1.6), 

w/s;1)""1^!) = yn-lnT\ N(l) „Kn lH{l) .N(n), 

From Equation (1.4), xn = Ẑ 1nt;(n) for K and for QrKQr; the n^(n) are summed in 
possibly a different order. The result is the same, so 

Let Kr be a pr X p kernel, 2» = 1, 2, 3, and define the direct sum 

"k1 0" 

(1.7) 

Zx © K2 
0 ^2j 
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Permutation matrices Q_ and Q~t can be constructed so that 

If (7 e Qs, then <?.. = 1 if 
• v 

£ 

J 

1 

Pi + 1 

2 

Pi + 2 

P2 

Pi + P 2 

P 2 + 1 

1 

P2 + 2 

2 

Pi + P i 

Pi 

and g . . = 0 otherwise. Let px = 2 and p2 = 3, then 
•13 

0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 
1 0 0 0 0 
0 1 0 0 0 

From Equat ion ( 1 . 7 ) , 

A]_ © A 2 * -̂-2 ® 1 °  

Define the direct product K1 x Z2 as the partitioned matrix 

^111^2 k112K2 ... ^npi^2 

£, x z9 

^12 1^2 K12 2Z2 . . . ^12p^ 2 

^lp11^2 ^•lp12^2 • ° ° klp^pK2 

in which fclrs £ Zx and &2£w E ^ 2 8 

Let 
(**, € *i X Z2 

Kirs K-ztu ~ \ 

then 

and 
£ = ( r - l ) p 2 + t 

j = (t - l ) p x + r. 

From Equat ion ( a ) , 

t - 1 = (£ - 1) mod p2 

"i - r and 

2» - 1 

(1.8) 

(a) 

(b) 

(c) 

(d) 

in which [x] represents the greatest integer in the number x. Substituting 
Equations (c) and (d) in (b)5 

0 = Pi((^ ~ x) m o d P2) + L p2 . 
+ i . 

1986] 
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If •£, j , p, and t are replaced by V, W, s, and u, respectively. Equations (a)-
(e) still hold and Equation (e) becomes 

p±((v - 1) mod p2) + m + i . (f) 

Consider a matrix Q where q^- = 1 if Equation (e) is satisfied and q^ = 0 
otherwise. From Equation (a) if i is given9 r and t are uniquely defined, and 
from Equation (b) J is uniquely defined. Conversely, if j is given, then i is 
uniquely defined. This implies that every row and column of Q has just one 
element 1 and all other elements are zero. Q is then a permutation matrix. 

Consider the matrix Q! where qf = 1 if Equation (f) is satisfied and qjw = 
0 otherwise. By a similar argument, Qr is also a permutation matrix and since 
j and -i may replace W and V, respectively, in Equation (f) to produce Equation 
(e), then we let Qp = Qf = Q so that 

From Equation (1.7), 

x K, 

K± x K2 •* i 

For example, if px 

(1.9) 

2 and p 2 = 3, 

Let 

% 

K3 

= 

1 
0 
0 
0 
0 
0 

0 
0 
0 
1 
0 
0 

= K-^ © Ap 

0 
1 
0 
0 
0 
0 

= 
K 

__0 

0 
0 
0 
0 
1 
0 

1 

0 
0 
1 
0 
0 
0 

0 " 

* 2 _ 

0 
0 
0 
0 
0 
1_ 

• 

and N 3 ( l ) = 
MD 

_N2(1)_ 
then 

vn -1 
K? 

0 

and, by Equation (1.6) 

"N^n)' 
Nq(n) = 

_N2 (n) 

Applying Equation (1.4), 

Xln + X2n if Z 0 ^ ®K2. (1.10) 

Suppose Z 3 = K± x Z 2 with N3(l) = Nx(l) x N 2(l), a p±p2 x 1 matrix of lfs. 
Then, by Equation (1.4), x31 = %11x21> Assume that N3 (r) = h^ (r) X N 2 ( P ) for 
any r > 0, then 

Pi 
X 3 N 3 ( P ) = (Zx x Z2)(N2(p) x N X ( P ) ) = £ klidnldi(r)K2U2(r)9 i = 1, 2, .. . , P l , 

J ~" -L 
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or K3H3(r) = Z 1 N 1 ( P ) X K2H2(r), and by Equation (1.5), 

N 3 ( P + 1) = Nx(r + 1) x N 2 ( P + 1). 

It follows by mathematical induct ion tbat N^ (?z) = N-̂  (?2) x Jsĵ  (YI) for all ?2 and, 
from Equation (1.4)5 

X3n = *lnX2n i f KS = #1 X K2• C 1 ' 1 1 ) 

From definitions 

(Zx © Z2) x Z3 = (£3. x Z3) © (Z2 x K3)9 (1-12) 

32 virtual equivalences may be deduced using the commutative laws for © and x, 

2. EVALUATION OF K 

Theorem 2.1: If C3 holds, and_if P̂  and Pj have one or more numbers common in 
their names, then k;n- = 0 ; if Pn- and PJ have no numbers common in their names, 
then kij = 1. 

Proof: From Equation (1.1), L • M(n - 1) = M(n), and by renumbering elements, 

[~0 1 1 

0 k11 k12 

0 fc21 fc22 

0 kpi kp2 

Through multiplication, 
P 

m0(n) = U^(w ~ 1)(0) = U^i(^ ~ 1)» 
l l 
P 
l 

where 777̂  (ft - l)(Pj) represents the set m^(n - 1) in which each element Br(n - 1) 
has P^ as the terminal column and is augmented by the vector Pj to form a 
matrix B^(ri) . The last two columns of B!

r(n) are P^ and Pj . If P̂- has one _or 
more elements of value one adjacent to a like element in Pj9 the name of P^ 
must have one or more numbers in common with the name of Pj , and C3 implies 
B'v(n) 0 m-j(n) , hence Z^-= 0. If P-i has no elements of value one adjacent to a 
like element in P j, the name of P^ and the name of Pj must have no numbers in 
common and C3 implies B^(n) e mAn) , so jf̂  • = 1. • 

Let R = ~PfPj = ( P 1 1 ) 9 a 1 x 1 matrix. Then 

Corollary 2.1: If C3 holds and rxl = 0 , /^ • = 1; if r n > 0, k^j = 0 . 

Corollary 2.2: If CI holds, K is symmetric. 

Proof: If CI holds, Pi = ~Pi3 so R = (P 1 X ) = i?̂  and P ^ = pfp j = P/P^ = P/P^ . 
By Corollary 2.1, if PX1 = 0, ktj = ?c ̂  = 1; if p n > 0, ^ ^ = kjt = 0. Since 

IP 
v2p 

w0(n - 1) 

m1(n - 1) 

m2(n - 1) 

m0(n) 

m1(n) 

m2(n) 

"-PP mAn - 1) mp(n) 

1986] 215 



SOME COMBINATORIAL SEQUENCES 

p n ^ 0» ^-ij = kji an<3 % is symmetric. » 

Corollary 2.3: If C3 holds and P- = 0, then 
ka = 0. 

^^3 1 for all j; Pv ^ 0 implies 

Corollary 2.4: If C3 holds, then K can have at most one row of l's. 

Let X = [xi : i = 1,2,3, ..., r], m > r > 0, be the set of all the differ-
ent numbers appearing in the names of the columns of P and in the AC, and let 
Y ~ iUi = : t = lj 2, 3, ..., p] be any other set of p distinct numbers, then 

Corollary 2.5: K is unchanged by replacing i^ by ^ , i - 1,2, 3, ..., P, in P 
and in the AC under C3. 

Definition: A proper K is a K in which there is at most one row of l's. 

Theorem 2.2: Every proper K may be derived from some P under C3 and AC• 

Proof: Given k^ € [0, 1]. If a row Ki consists only of l's, it is named 0 
and the remaining rows are named 1, 2, 3, . . . , p - 1. If no such row exists, 
name the rows 1, 2, 3, . .., p. Then P consists of columns Pj which are in the 
same sequence as the named rows of K and have the same names. Suppose Ki has 
an element k^j = 0, then the AC must include i •> j; if k^j - 1, then i -A j. 
Since K is proper, there is at most one row of l's which is named 0. All col-
umns of P have names which are unique. • 

The AC under C3 may sometimes be simplified by changing the columns of P 
without altering K. Let d9 es and / represent three distinct cells in a seg-
ment Bj of Br(n) and let P, s, and P U S represent sets of cells in B-+1 adja-
cent to d, e9 and /, respectively. The adjacency conditions are represented by 
the set [d -*- P, e •+ s, f ->• r u s ] , and / may be replaced by de in the names of 
Pj and in AC forming Pf and the set AC = [d -+ v9 <? -> s] which, by Theorem 2.1, 
yields the same K. 

Example: Let 

K 

0 
0 
0 
0 
1 
1 
1 

0 
0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
1 
0 
0 

1 
0 
0 
1 
0 
0 
1 

1 
0 
0 
0 
0 
0 
0 

1 
1 
0 
0 
1 
0 
0 

By Theorem 2.2, K may be derived from P = ( 1 2 3 4 5 6 7 ) under C3 with the AC 

1 -* 1, 2, 3, 4 
2 -> 1, 2, 3, 4, 5, 6 
3 + 1, 2, 3, 4, 5, 6, 7 
4 -> 1, 2, 3, 4, 6, 7 
5 -> 2, 3, 5, 6 
6 + 2 , 3 , 4, 5, 6, 7 
7 -> 3, 4, 6, 7. 

The AC may be simplified as follows: 

216 [Aug. 



SOME COMBINATORIAL SEQUENCES 

Consider: 

1 -> 2, 35 1, 4 
2 -> 2, 3, 1, 4S 59 6 
5 + 29 39 5, 6 

We can then replace 2 by 15. Similarly we can replace 3 by 24s 4 by 179 and 6 
by 57 9 so P becomes P' = (1 15 157 1_7_ 5 57 7) . By renumbering in accor-
dance with Corollary 2.5, Pr = (1 12 123 13 2 23 3) with 

AC = [1 •> 1; 2 -> 2; 3 -> 3]. 

Further examples giving Ps AC9 K5 xnS and recurrence relations are: 

1 l" #1 P = (0 1) 
AC = [1 •> 1] 
xn = {2S 39 59 89 13, 
&<*, A. r> ~~ &v> -i- n ~~ Xn — \J 

•} 
K 

1 0 

#2 

#3 

#4 

#5 

#6 

P = (0 1 2) 
AC = [1 -> 1; 2 -* 2] 
xn = {39 79 17, 41, 99, 239, 
x. n+2 2x. n + l ~ X., 0 

P = (1 2) 
AC = [1 -> 1, 2; 2 -> 1, 2] 
;rn = {29 0, 09 ...} 
xn + l = °  

P = (0 1 2) 
4C = [1 -> 1, 2; 2 + 1, 2] 
;un = {3, 59 11, 21, 43, 85, ... 
r̂c + 2 ~ Xn+1 ~ ^Xn = ^ 

P = (1 2 3 4 5) 
AC = [1 -> 3, 4, 5; 2 -> 2, 3, 4, 

3 -̂  1, 2; 4 •> 1, 2, 4; 
5 + 1 , 2 , 5] 

xn = {5, 10, 229 49, 112, 260, 
x. n + h 3x

n+3 + ^Xn+l + Xn 0 
. . } 

P = (0 1 2 3) 
AC = [1 ->• 1, 3; 2 ->_2, 3; 3 -> 1, 2, 3 
also P = (0 1 2 12) 
AC = [1 -* 1; 2 -> 2] 
^n = {4, 9, 25, 64, 169, 441, ...} 
x x 4x 

tt + 2 n + l « 0 

z = 

K = 

X 

1 
1 
1 

0 

0 

"l 
1 

_1 

"l 
1 
0 
0 
0 

1 
0 
1 

o" 
0_ 

1 

0 
0 

1 
0 
0 
0 
0 

1 
1 

0_ 

l"1 

0 
0__ 

0 
0 
1 
1 
1 

0 
0 
1 
0 
1 

o" 
0 
1 
1 
0 

1 
1 
1 
1 

1 
0 
1 
0 

1 
1 
0 
0 

1 
0 
0 
0 

Example #1 represents the sequence xn= Fn+2. Examples #2 and #4 represent 
sequences of Winthrop and Horadam [2], xn = Wn(l9 3; 2, -1) and Xn = Wn(l9 3; 
1, -2), respectively, where w (a, b; p, q) has WQ = a, w1 = b9 and wn = pwn_1 -
qwn_15 n > 2. Example #5 illustrates K3 = K1 0 i£2 with xn = Pn + 2 + Wn(l, 3; 
29 -1), and Example #6 illustrates Z3 = ̂  x Z2 with 2?n = (P n + 2) 2 in which two 
values for P and the corresponding AC are given. 
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3. RECURRENCE RELATIONS 

The characteristic function of K is f(y) - \yl - K\ and its characteristic 
equation is 

f(y) = E ^ = o. (3.1) 
o 

Theorem 3» 1 •' 
P 

0 

is a recurrence relation for the sequence {xn i n = 1, 2, 3, ...}. 

Proof: Apply the Cayley-Hamilton theorem to Equation (3.1), giving 

tc.K' = 0. 
o ^ 

Multiply each side of this on the right by Zn_1N(l), giving 

i>^n- l + iN(i) . 
o 

Then, by Equation (1.6), 

P 
£ ^N(n + i) = 0. 

Multiply on the left by U , a 1 x p matrix with u ^ = 1, giving 

P P 

0 0 

and by Equation (1.4), 

P 

o 

This is a recurrence relation for the sequence {xn in = 1, 2, 3, ...}. • 

Corollary 3-1• If the characteristic equation of K is 

P-1 

(2/ - d) E^yi = o 

o 

and if K - dl is nonsingular, then 
p-i 

E c.x x. = 0 
0 

is a recurrence relation for {xn : n = 1, 2, 3, ...}. 
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Proof: By the Cayley-Hamilton theorem5 

(X - dD^CiK* = 0. 
o 

If K - dl is nonsingular, apply its inverse to both sides of the equation, so 

p-l 
X > ^ = 0. 
o 

P-l 
Proceed as in Theorem 3.1 to show that E °ix

n+i ~ 0 i-s t n e desired recurrence 
relation. • 0 

Note that if N(l), in which n^x = 1, were defined as some other vector of 
size px 1, the new sequence {xn} would still possess the same recurrence rela-
tion. 

Let 

fd(y) = ! ^ - o 

represent the cha rac t e r i s t i c equation for Kj i J = 19 29 3. 

Theorem 3-2: If Z3 = K1 ® K29 a recurrence r e l a t ion for the sequence {x3n : n = 
1, 2, 3, . . . } i s 

Pi + P2 

E E 
0 q+ v= i 

C 1 rr C OY>% lq^2rlAj3(n+l) 0 . 

Proof: E ^3;# 
i/J - K± 

0 z/J - K2 

\yl - Z j j z / J - K2 

then 

Pi P2 

E °iqyq HQiryr> 
0 0 

'3i E *i 
q + r = ̂  

q° 2r 

and5 from Theorem 3.1, the recurrence relation for the sequence {xSn : n = 1, 2, 
3, ...} is 

Pi + P2 
Z^ 2^ .Cl^c2p^3(n + i) 0. 
0 ? + r= i 

Corollary 3.2: If K3 = 2K1, the recurrence relation for x3n is 

Pi 
E^li^n + i = 0-
0 

Consider the direct product K3 = K± x Z2. Let Zx be partitioned into four 
square matrices. 

ii ^ 

h A Kx x X2 A x K A x x 
^ 3 2 it 2 
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Let Q = yl - Z3, then 

~yl - A1 x K2 12 x Z2 

-A3 x Z2 yl - Ak x Z2J 

Multiply the top row of Q by 04 3 x K2)(yl - A1 x K2) 1 and add this to the sec-
ond row [1]5 then 

\yl - A± x z2 -42 x z2 

I 0 yl - Ak x Z 2- 043 x Z2)(z/J-^1 x K2)~1(A2 x Z2) 

If i4x and ;43 commute, then 

|g| = \(yl ~ A± x Z2)(z/J - ̂  x Z 2 ) - (A3 x Z 2)U 2 x Z 2)| = 0 

is the characteristic equation for Z . This reduces to 

\y2I - y(A± + Ah) x Z2 + 04,^ - ̂ 2 ) x Z 2| = 0. (3.2) 

The r e c u r r e n c e r e l a t i o n fo r t he sequence {x^ : n = 1, 2 , 3 , . . . } may then b 
de r ived i f Z 1 and Z2 a r e known. 

Example: Let K1 = 
Ai A2 

A3 A , 
where Zn A = A H1 H2 

From Equat ion ( 3 . 2 ) , t he c h a r a c t e r i s t i c equa t i on i s 

1 

1 

1 

0 
and Ah = 0 . 

1 ^ - K3 y * - y 

1 1 1 1 
1 0 1 0 
1 1 0 0 
1 0 0 0 

4 2 2 1 
2 2 1 1 
2 1 2 1 
1 1 1 1 

yB - y7 - 132/6 - 8y5 + 2 0 ^ + Sy3 - I3y2 + y + 1 = 0. 

The r e c u r r e n c e r e l a t i o n for the sequence {xn = (-^n + 2 ) } I s 

xn + 8 ~ xn + 7 ~ ^ ^ n + 6 ~ ^ w + 5 + ^ O ^ + i* + &Xn + 3 ~ ^Xn + 2 + xn + l + xn ~ ®' 
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1. INTRODUCTION 

The Simson formula for the Fibonacci numbers Fn defined by 

Fn + 2 = Fn + 1 + Fn' *"„ = 0 ' Fl = 1 . ( I ' D 
i s 

Fn+lFn-l ~F« = ( - 1 ) " ' d-2) 

which may be expressed in de te rminan t form as 

= ( - 1 ) * . ( 1 . 2 ) ' 

For the numbers Wn defined by the generalized second-order recurrence rela-
tion 

Wn + 2 = PWn + l ~ ?Wn> Wo = a> Wi = h * (K3) 

a Simson formula was obtained in [3]. Ifs in this generalized Simson formula, 
we write wn = x9 Wn+1 = y9 then various conies—ellipses and rectangular hyper-
bolas—in the Euclidean plane arise as loci of the points (x9 y) . An analysis 
of these conies was made in [4] for the special cases of (1.3) which give the 
Fibonacci, Lucas, Pell, Fermat, and Chebyshev sequences of numbers (and also 
for the degenerate case when the conic breaks up). 

Further developments of this theme were made by Bergum [1]* 
It is a natural desire to want to extend the geometrical aspect of Simsonfs 

formula (1.2) to higher dimensions. This was partly achieved in [4] for a 
third-order recurrence relation where a suitable analogue to Simsonfs formula 
(Waddill and Sacks [5]) was used to produce a corresponding cubic surface in 
three-dimensional Euclidean space. However, as this analogue had not been ex-
tended to higher-order recurrences, it was not possible to proceed to higher 
geometrical dimensions. 

What was required was a technique, an algorithm, for determining an analogue 
to SimsonTs formula for recurrence relations of arbitrary order r, 

Happily, such a method was already in existence (Hoggatt and Bicknell [2]). 
After a brief, but necessary, recapitulation in the next part of this paper 

of the work done in [4] on the situation in three dimensions, we will proceed 
to employ the Hoggatt-Bicknell results [2] exclusively in the further develop-
ment of our theme. 

Before doing this, however, we introduce some definitions and notation. 
In r-dimensional Euclidean space (r > 2), a locus of points whose coordi-

nates satisfy an equation of degree m will be called a hypersurface of order m 
with dimension r - 1. It may be represented by the symbol Lr_le 

When the equation is linear (jn = 1), L^_ x is the symbol for a hyperplane 
in r dimensions, i.e., a "flat" space of maximum dimension in the containing 
space. 

F F 
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2. A CUBIC SURFACE IN THREE DIMENSIONS 

Consider the third-order recurrence analogue of (1.1) for the number se-
quence {Pn} defined by 

P = P + P + P (2.1) 
n + 3 n + 2 ^ n+l T cn \^-±J 

with initial conditions (Waddill and Sacks [5]) 

P0 = 0, P1 = 1, P2 = 1. (2.2) 

The first few numbers in this sequence are: 

P P P P P P P P P P P 

1 1 2 4 7 13 24 44 81 149 274 ... (2.3) 

Waddill and Sacks [5] obtained a Simson formula analogue for {Pn} which, 
not unexpectedly, was of the third degree. 

Putting Pn = x, Pn + 1 = y9 Pn + 2
 = z i n their formula, the author [4] derived 

the cubic equation 

x3 + 2y3 + z3 + 2x2y + 2xy2 - 2yz2 + x2z - xz2 - 2xyz = 1. (2.4) 

Interpreting x9 y, and z as Cartesian coordinates, we see that the points 
(x9y,z) lie on the cubic surface (2.4) in Euclidean space of three dimensions. 
For example, the point (1,1,2) in (2.3) lies on this L3

2 (2.4), as may be easily 
verified. 

Sections of the cubic surface (2.4) by the coordinate planes L\ are the 
ic curves L\: 

(x = 0: 
\y = 0: 
\z = 0: 

2y3 + 
x3 + 
x3 + 

z3 - 2yz2 = 1 
z3 + x2z - xz2 = 1 

2z/3 + 2x2y + 2 r a 2 = 1 
(2.5) 

lx2y + 2xy2 = 1. 

A close study of these L1 (2.5) might give us some insight into the nature 
and appearance of the L3

2 (2.4), but no detailed investigation is undertaken 
here. 

It must be clearly understood that the locus (2.4) and its other-dimensional 
analogues contain only the infinitude of points for which they are defined, 
i.e., within the context of this article these loci are not continuous. For 
instance, the point with coordinates (0, 2"1 , 0) lies on the L2 since (0, 
2"1/3, 0) satisfies equation (2.4), yet the triplet 0, 2"1/3,0 does not belong 
to the infinite set of numbers of the sequence {Pn}. Despite the lacunary na-
ture of our geometrical loci, it is nevertheless sometimes worthwhile consider-
ing them as continuous entities [as for the sectional loci (2.5), for example]. 

In addition to the sequence (2.3) and the corresponding Simson formula ana-
logue, Waddill and Sacks [5] discussed a closely related sequence for which the 
author [4] obtained a cubic equation almost identical to (2.4). However, this 
sequence is irrelevant to our purposes here and no further reference will be 
made to it. The true Fibonacci-type pattern which generalizes (1.1) and (1.2) r 

is that given in (2.3), as we shall see. 
Equation (2.4) of the cubic surface in three dimensions L\ may also be es-

tablished by a different approach using the "interesting determinant identity" 
of Hoggatt and Bicknell [2]. This identity, which has the structural appear-
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ance of an extension of (1.2) ', and which relates to the sequence (2.3) with 
P-i = 0 is, in our notation, 

Pn 

Pn 
P„ = -1. (2.6) 

'n- 1 "n-2l 

Let us now write Pn = x, Pn+1 - y, Pn+2 ~ z> anc* observe from (2.1) that 

"n+2 
2P« 

~n+l Pn = z - x - y 

y-n-2 ~ ^ n + 1 ^n+2 ~ ^ ~ Z 

Expanding (2.6) with the aid of (2.7), we derive 

x3 + 2y3 + z3 + 2x2y + 2xy2 - 2yz2 + x2z - xz 2xyz = 1, 

(2.7) 

(2.8) 

which is identical to equation (2.4) 
Thus, the same cubic surface L\ in three-dimensional Euclidean space is 

produced both from the Waddill and Sacks [5] cubic equation and from the Hoggatt 
and Bicknell [2] determinant identity. 

3. HYPER-SPACES IN FOUR DIMENSIONS 

Next, introduce a fourth-order recurrence relation for numbers Qn (in our 
notation): 

with initial conditions 

n + 3
 + % + 2 + «n + l + (3.1) 

0, Qx = 1, i , e, o, 
Then the sequence {Qn} looks like this: 

M>X H,2 H,3 M,^ 

1 1 2 4 
"5 ^6 ^7 ^8 ^9 ^10 

5 15 29 56 108 208 

= 0). (3.2) 

(3.3) 

Following the method by which (2.6) was established, Hoggatt and Bicknell 
[2] exhibited the neat determinantal identity 

*n+3 

*n + 2 

? 

0 

*n + 2 

3n 

Jn 
) Jn-1 
1 
Jn-2 

Write Qn = x9 
may deduce that 

w-1 

®n+i = y 

* n 

d *n-2 
d 
* « - 3 

S 9 

(-1)" 

*n + 3 

(3.4) 

t . Observe that, from (3.1), we 

3n-2 
*w- 3 

Wn+3 " 

2^n + 2 
2«n + l 

src + 2 
^rc + 3 
^ n + 2 

Bn + i ^ 
2z - t 

x - y 
(3.5) 

22/ 
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Expand (3.4) along the first row. Then, the locus of the point (x,y,z9t) 
in four-dimensional Euclidean space is the quartic hypersurface L^ (in fact, 
two such loci depending on the evenness or oddness of n): 

x[x{y(t- x-y- z) - x2} - y{y(2z -t)-x(t-x-y-z)} 
+ z{x(2z- t) - (t- x- y-z)2}} 

-y[(t- x- y- z){y(t- x- y- z) - x2} - y{y(2y - z) - x(2z- t)} 
+ z{x(2y- z) - (2z- t)(t- x- y- z)}] 

+z[(t- x- y - z){y(2z- y) - x(t - x- y - z)} - x{y(2y - z) - x(2z- t)} 
+ z{(2y- z)(t-x-y- z) - (2z- t)2}] 

-t[(t- x-y- z){x(2z- t) - (t- x- y- z)2} 
- x{x(2y - z) - (2z - t) (t - x- y - z)} 

= ( _ ! ) ^ . + yi(2y- z)(t-x-y- z)- (2z- t)2}] 

(3.6) 

Discretion seems the better part of valor here, so we will leave the equa-
tions in this form which is useful for deducing the sectional loci in (3.7). 
However, the interested reader may care to expand the expressions in (3.6) still 
further. It certainly bears out the author's trepidation [4] about the cum-
bersome algebraic manipulation involved in the fourth-order recurrence case. 

Before expanding along the first row, one might secure a slightly simpler 
form of the determinant by adding to the fourth row the sum of the first three 
rows. But, in all probability, perhaps no great economy of effort in exhibit-
ing (3.6) is thereby effected. 

Planar sections (quartic curves L\) of the hypersurface (3.6) by pairs of 
three-dimenaional coordinate hyperplanes (L\) are readily obtainable, namely: 

0, y = 0 

0, z = 0 

0, t = 0 

y = 0, z = 0 

y = 0, t = 0 

z = 0, t = 0 

-3yk + 2z3t + 2z2t2 

yh + 3yH 
yh - 3y3z - ly2z2 

~-xh - 3x3y - kx2y2 

3zt6 + 

2yt3 + 

5yz3 3 ^ = 

3xt3 + th 

xz 
2xy3 

3zH 

y" 

- i ) n 

- i ) n 

-D* 
-Dn 

-iy 

-i) n . 

(3.7) 

Superficially, there does not appear to be anything memorable about these 
quartic plane curves. 

One must be struck, in comparing (1.2)', (2.6), and (3.4), which relate to 
p = 2, 3, and 4, respectively, by the fact that when v is even the value (±1) 
of the determinant depends on the evenness or oddness of n, whereas in the case 
of v odd (= 3) this is not so, the value being -1 always. 

These variations raise obvious questions. Is the incipient result for r = 
2 , 4 a true pattern for v even generally? Might we reasonably expect the de-
terminantal value for r = 5 to be +1, and will the incipient pattern for r odd 
prove to be valid for v odd generally? 

Answering these questions constitutes an interesting part of the overall 
problem. 

k. HYPERSURFACES IN HIGHER DIMENSIONS 

Extending the pattern of the ideas used for lower-order recurrence rela-
tions, Hoggatt and Bicknell [2] defined the sequence {Rn} of order v by 

224 [Aug. 



HYPERSURFACES ASSOCIATED WITH SIMSON FORMULA ANALOGUES 

Rn+r Rn+r-i+Rn + v-2 + Ry (4.1) 

with initial conditions 

and 
Rrs = 0, R, 

R-(r-2) R-(r-3) R_± = 0. 

(4.2) 

(4.3) 

For these numbers Rn generated by the p-order recurrence relation (4.1), 
they established the determinantal identity 

1 n + r - 1 

ln+ 1 

Rn+ r-

^n+r-2 ^n+r-3 

n- 1 

Rn+ 1 
Ry, R„ 

Rn-r+3 Rn-r+2\ 
nn-r+ 2 n-r+1 

(-1)' 
(r- l)n+ [(r- l)/2] 

(4.4) 

which specializes to the determinantal results (1.2)', (2.6), and (3.4) already 
given for small values of r, namely, v - 29 3, and 4, respectively. In (4,4), 
the notation [(r - l)/2] refers to the greatest integer function. 

[It should be noted that a small typographical aberration occurs in the 
power of (-1) on the right-hand side of (4.4) as given in [2].] 

Putting Rn = x19 Rn+1 = X2> Rn + 2 = ^ 3 ' •••» Rn+r-l= xr i n (4.4), a n d sub-
stituting by means of (4.1)-(4.3) for elements below the reverse diagonal, we 
could theoretically obtain the locus of points (x19x29 ^3> ...s xr) in r-dimen-
sional Euclidean space satisfying equation (4.4). 

By analogy with (2.8) and (3.6), this locus is a Lr_^9 a hypersurface 
(dimension v - 1) of order P. Sections by sets of r - 2 coordinate hyperplanes 
("flat" hyperspaces L^_, of dimension r - 1) from the total set 

\vG-7 \J , iX<o 0 , xq 0, 0} 

of such hyperplanes give the planar curves L1 of order v in two dimensions cor-
responding to the conies (L\) 9 cubics (L\), and quartics (L\) in the lower-
dimensional cases. 

For example, in six-dimensional Euclidean space (r - 6 ) , the section of the 
sextic hypersurface L5 by the four coordinate hyperplanes x3 = 0, xh = 0, x5 = 0s 

x$ = 0 is a plane sextic curve L1. 
A representative instance of (4.4) is, for r 5, n = 7 (say), 

464 
236 
120 
61 
31 

236 
120 
61 
31 
16 

120 
61 
31 
16 
8 

61 
31 
16 
8 
4 

31 
16 
8 
4 
2 

= +1 (on calculation) 

= (-1) 28+2 (-1)30 in accord with (4*4). 

For various values of r and n, the determinantal values in (4.4), i.e., +1 
or -1, may be summarized in the following table: 
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Table 1: Determinantal Values in (4.4) 

Odd 
1,3,5,7,... 

Even 
2,4,6,... 

Even 

2,6,10,... 

-1 

+1 

4,8,12,... 

+1 

-1 

Odd 

3,7,11,... 

-1 

5,9,13,... 

+1 

Or, expressed symbolically: If 

r = kk + 2, 4/c + 3, kk + 4, 4k + 5 (k > 0), 
then 

(_1)(r-l)n+[(r-l)/2]=(_1)^ _^ (.^+1, ^ 

respectively. 

Thus, for each odd value of r, there is just one hypersurface irrespective 
or the value of n, while, for each even value of r, there are two "companion" 
hypersurfaces which depend on the evenness or oddness of n. 

Now, in [4] it was stated that, when r = 2, a hyperbola for which n is odd 
(even) may be transformed into its companion hyperbola occurring when n is even 
(odd) by a reflection in the line y = x followed by a reflection in the 2/-axis 
(x-axis). 

Remembering that in two dimensions (r = 2), a line (a L±) is a hyperplane, 
one may speculate whether a similar, though more complicated, system of geo-
metrical reflections in hiĝ her even-dimensional spaces (r = 4,6,...) will pro-
duce a transformation of one hypersurface into another. Further, one wonders 
whether any self-transformation of a hypersurface is possible, for an odd value 
of r. 

With these reflections, we leave the geometry. 
A concluding comment on nomenclature is appropriate. Numbers, and their 

polynomial extensions, defined in (2.l)-(2.2), (3.l)-(3.2), and (4.1)-(4.3) are 
sometimes referred to in the literature as Tribonacci, Quadranacci, and p-bonacci 
respectively. While these adjectives are suggestive and useful, they do not 
appeal to the author and consequently have not been utilized in this article. 
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1 . INTRODUCTION 

In Hoggatt and Bicknell [1], the Fibonacci sequence {Rn} of order v (> 2) 
was defined by 

Rn+r = Rn+r-l+Rn+r-2~*~°e°+Rns R± = 1s R2 = 1, (1-1) 
with 

R-(r-2) = *-(i-3) = • • • = - ^ = /?„ = 0. (1.2) 

Using the method of a generating matrix for {Rn}, they obtained the deter-
minantal identity 

Rn+ r- 1 

•"n+r- 2 

Rn+l 

Rn 

Rn +r-2 ' ° 

Rn+ r-3 • * 

Rn 

Rn- 1 

Rn + ]_ 

• #n 

•" w - r + 3 

•^w- r+ 2 

Rn 

Rn- 1 

Rn- r + 

Rn- r + 

which is an extension of the Simson formula (identity) for the simplest case 
V = 2 for Fibonacci numbers. 

Carrying these numbers Rn through to coordinate notation (writing x-± = Rn* 
x2 ~ Rn+i> x3 = Rn+ 2» • • B » xr ~ Rn+r-.i)* t n e author [4] showed that (1.3) could 
be interpreted as one or more hypersurfaces in Euclidean space of r dimensions 
(the number of hypersurface loci depending on n). The cases v = 29 39 4 were 
delineated in a little detail ([3], [4]). 

It is now proposed to extend the results in [3] and [4] to the case of a 
Lucas sequence {Sn} or order rs i.e., to construct a determinant analogous to 
(1.3) and to interpret it geometrically as a locus in r-space. 

From experience3 we should expect the algebraic aspects of {Sn} to resemble 
those of {i?n}. Nevertheless, there are sufficient variations from the Fibonacci 
case to make the algebraic maneuvers, which constitute the main part of this 
article, a challenging and absorbing exercise. 

Because of complications associated with the fact that S0 [to be defined in 
(2.1)] is nonzero, whereas R0 = 0, the method used by Hoggatt and Bicknell [1] 
for {Rn} is not applied here for {Sn}, However, our method is applicable to 
{i?n},as we shall see, provided we add to the definitions in [1] the injunction 
R-(r-l) = 1. 

Schematically, this paper consists of two parts. Part I is organized to 
secure results for the Lucas sequence which correspond to those for the Fibo-
nacci sequence. On the basis of this knowledge, in Part II we briefly gener-
alize the results for a sequence which contains the Fibonacci and Lucas (and 
other) sequences as special cases. 
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PART I 

2. LUCAS SEQUENCE OF ORDER r 

Define {Sn}, the Lucas sequence of order r (^2) by 

Sn + r ~ Sn + v- i + Sn+ r- 2+ " * • + Sn, S 0 = 2, S± = 1, 

with other initial conditions 

\S_l = 5_2 = ••• = &-(p-2) = °  

^-(r- 1) = _ 1-

Simplest special cases of {Sn} occur as follows: 

Jn+ 2 ^n+1 + Ln> Lo - 2, Lx - 1, L_ -1; 

Mn+3 = Mn+2 + Mn+l + ^ n > ^ 0 = 2 ' M l = X> M-1 = ° ' M - 2 = " ^ 

2, ^ = 1, 
^ ! - 0, N_3 = -1. 

The first few numbers of these sequences are: 

K Li L2 L3 h Ls Le L7 Ls Ls Lio •• 
|2 1 3 4 7 11 18 29 47 76 123 . . 

)MQ M± M2 M3 Mh M5 Ms M? M, Mn M, 9 i J10 

10 19 35 64 118 217 399 

N0 N± N2 N3 NLi N5 NQ N? N.t 
1 

9 10 

12 22 43 83 160 308 594 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.3)' 

(2.4)' 

(2.5)' 

The determinant of order r (which we may here call the Lucas determinant 
of order r, corresponding to that in (1.3) for the Fibonacci sequence of order 
r) is 

Ay, = 

Sn + r - 1 

Sn + r - 2 

Sn + 1 

Sn 

Sn + v - 2 • • 

Sn + v - 3 • • 

Sn 

Sn- 1 

Sn+ 1 

Sn 

Sn - r + 3 

&n - r + 2 

Sn 

Sn~ l 

Sn - r + 2 

Sn-r+ 1 

(2.6) 

Notice the cyclical nature of the elements in the columns of Ar. Conse-
quently, there is symmetry about the leading diagonal of Ar. Both of these 
properties for {Sn} are also features of the Fibonacci sequence {Rn}• 

Special notation: We use the symbol r^ to mean the operation of subtract-
ing from row i the sum of all the other rows, in a determinant of arbitrary 
order. An operation such as r^ may be called a basic operation. Clearly, r^f 
utilizes the defining recurrence (2.1) with (2.2). 
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It is now necessary to introduce the concept of a basic Lucas determinant. 

3- BASSC LUCAS DETERMINANTS 

Let us define the basic Lucas determinant of order r, 6r9 as 

(3.1) 

All elements in a given upward slanting line are the same, e.g., all the 
elements in the reverse (upward) diagonal are S0 (=2). Except for the element 
(= -1) in the bottom right-hand corner, all the elements below the reverse 
diagonal are zero. 

Observe the cyclical nature of elements in the columns, remembering initial 
conditions (2.2) applying to symbols with negative suffixes. 

Of course, (3.1) is only the special case of (2.6) when n = 0. 
Concerning basic Lucas determinants, we now prove the following theorem (a 

determinantal recurrence relation). 

Theorem: (-l)[W2]2r + (-i)*-i,s2 (3.2) 

Proof: Expand 6 in (3.1) along the bottom row to obtain 

6r - (-l)[r/2]2r 

(-l)W21f 

(S1 = 1, S0 = 2) 

by r' 

= (-l)[r/2]2r - (-l)r 2<5r_ j after r - 2 cyclical row interchanges 

= (-1)^2" + (-lf-^.,. 
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Thus, we 

[r = 2] 

[r = 3] 

have, for 

62 = 

«s = 

1 

2 

3 
1 
2 

P > 2, 

2 

-1 

1 
2 
0 

= -22 - 1 = -5 
= -(23 - 3) 

2 
0 
-1 

= -23 + 62 = -23 -
= -13 = 

(3.3) 

(3.4) 
-(2* - 3) 

[r = 4] 6̂  = 

6 3 1 2 
3 1 2 0 
1 2 0 0 
2 0 0 - 1 

2* + 2d + 2Z + 1 
29 = 25 - 3 

(3.5) 

[p = 5] 

[p =6] 66 = 

12 6 
6 3 
3 1 
1 2 
2 0 

24 12 
12 6 
6 3 
3 1 
1 2 
2 0 

3 
1 
2 
0 
0 

6 
3 
1 
2 
0 
0 

1 
2 
0 
0 
0 

3 
1 
2 
0 
0 
0 

2 
0 
0 
0 
-1 

1 
2 
0 
0 
0 
0 

= 

2 
0 
0 
0 
0 
-1 

25 + = 25 + 24 + 23 + 22 + 1 
= 61 = 26 - 3 

-2b - 65 
_26 _ 25 - 21* - 23 

-125 = -(27 - 3) 

(3.6) 

(3.7) 

and so on. 
The emerging summation pattern by which the 8r may be evaluated is clearly 

discernible. Notice that the term 21 (i.e., 2) does not occur in any 6P summa-
tion. 

However, before establishing the value of SY9 we display the following 
tabulated information, for all possible values of P: 

[r/2] 

(1. - 1) + p^i] 

p = hk 

2k \ 
> even 

6k - 2) 

p = 4& + 1 

2fc) 
> even 

6k) 

v = kk + 2 

2fc + 1 ) 
>odd 

6fe + 1 j 

p = kk + 3 

2fc + 1) 
>odd 

6k + 3) 
(3.8) 

From (3.8), we deduce 

(_1)[W2] = (_l)r" l+t(r- l)/2]̂  (3.9) 

Invoking this result and applying (3.2) repeatedly, we may now calculate 
the value of $„. 

Theorem: 6P = (-l)[p/2J (2P+ l - 3). (3.10) 
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Proof: Sr = ( - l ) [ " / 2 ] 2
r + ( - l ) " - 1 { ( - l ) [ ( r - 1 ) / 2 ] 2 r - 1 + (-1)1" 2<5r_ 2} by ( 3 . 2 ) 

= (-l)IW2] {2^ + 211-1} - 6 r _ 2 (a) by (3 .9 ) 
= ( - l ) [ ' / 2 ] { 2 ' + 2 1 " 1 } - ( _ l ) f < ' - 2 ) / 2 ] { 2 » - 2 + 2 r - 3 } + ^ _ ^ fey ( a ) 

= ( - l ) t ^ 2 l {2F + 2 r " ! + 2 p - 2 + 2 r~ 3} + 6 P - 4 

= (-1)[*V2] { 2 r + 2 r " 1 + 2 r " 2 + • • • + 2 3 + 2 2 + 1} u l t i m a t e l y , 
by (3 .3 ) o r 
by (3 .4 ) 

= ( - l ) l r / 2 H 2 r + 2r-1 + 2P~2 + • • • + 2 3 + 2 2 + 2 + 1 - 2} 

= ( - l ) ^ ' 2 ^ ———— - 1> summing the f i n i t e geomet r ic p r o g r e s s i o n 

= ( -1 )^ /2 ] (2r+l - 3 ) . 

Checking back shows that the special cases of Sr listed in (3.3)-(3.7) have 
values in accord with (3.10), as expected. 

4. EVALUATION OF LUCAS DETERMINANTS 

Next, we show that [cf. (2.6), (3.1)] 

AP = ±6P. 

To illustrate the ideas involved in the proof we shall give for this con-
nection between AP and 6P, suppose we take r - 5, n - 3, i.e., r is odd, This 
implies that we are dealing with the integer sequence 

P_if £-3 ^-2 ^-1 ^0 ^1 S2 $3 ^4 ^5 ^6 S7 ^8 

0 0 0 1 12 24 46 91 179 
(4.1) 

Perform the basic operations r^, rJJ» rl successively on the determinant A5 

when n = 3 to derive: 

91 
46 
24 
12 
6 

46 
24 
12 
6 
3 

24 
12 
6 
3 
1 

12 6 
6 3 
3 1 
1 2 
2 0 

1 

3 
1 
2 
12 
6 

1 
2 
0 
6 
3 

2 
0 
0 
3 
1 

0 
0 
0 
1 
2 

0 
0 
-1 
2 
0 

12 
6 
3 
1 
2 

6 
3 
1 
2 
0 

3 
1 
2 
0 
0 

1 
2 
0 
0 
0 

2 
0 
0 
0 
-1 

[= 61, 
see (3.6)] 

(4.2) 

&i 
In A5, the leading term 91 (= S7) is reduced to the leading term 12 (= Sh) 

in 65 by the 7-4 = 3 (= n) basic operations specified. Because of the cycli-
cal nature of A5, these basic operations act to produce a determinant &5 = A5 

whose rows are the permutation 

[' 2 6 3 1 2 " 
3 1 2 12 6. 

of the rows of 65. Due to the fact that r is odd, this cyclic permutation is 
even. Expressed otherwise, 6* is transformed to 85 by an even number of row 
interchanges, so the sign associated with S5 is +, i.e., 65 = 65. Hence, A5 = 65. 
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If n > 5, the cyclic process of basic operations is continued until the 
basic determinant 65 is reached. Obviously, the actual value of n is irrele-
vant. 

The reasoning inherent in the case r = 5 applies equally well to the case 
when r is arbitrarily odd. Consequently, for r odd, AP = 6r always. 

If r is even, the situation is a little more complicated. 
For illustrative purposes, let us examine the case r = 4. Substituting 

the numbers in (2.5)' into (2.6) when n - 3, 4, 5, 6 in turn, we readily cal-
culate that A^ is reduced to the four 6* whose rows are respectively the per-
mutations 

[6 3 1 2] [6 3 1 21 [6 3 1 21 [6 3 1 2l 
|_3 1 2 6_T |_6 3 1 2J5 L2 6 3 lj' [l 2 6 3J 

of the rows of Sh (and this is true here for n = 4& - 1, 4/c, 4& + 1, 4& + 2, 
respectively (fc = 1, 2, . . . ) . 

As these permutations are successively odd, even, odd, even, it follows that 
S* = ~&k> 5^, -6^, 64 in turn. Thus, A4 = ±Sh, depending on n, namely, A4 = 64 
when n is even, while A^ = -6h when n is odd. 

Armed with this knowledge, we can now attack the general problem, i.e., 
when v and n are arbitrary integers. 

First, we establish the following result: 

Theorem: Ar = (-l)m6P, where m = nr(r - nr), nf = n mod r. (4.3) 

Proof: In (2.6), the leading term Sn+r_i in Ar is diminished to the leading 
term Sr in 6P by n + r - 1 - (p - 1) - n basic operations r[, P2r, ..., r„ which 
produce the determinant 6%. Simultaneously, 5P_ x drops n places in the first 
column of 6*. 

To restore the cyclical order in the first column of 6* to the basic cycli-
cal order of the first column in 6r, beginning with Sr_ l5 it is necessary to 
effect n(r - n) interchanges of sign to account for the v - n terms below and 
including Sr- i, and the n terms above Sr_ j. 

When n > r, we reduce n mod r. 
Each interchange accounts for a change of sign in the value of the deter-

minant . 
When r is odd, the product n(r - n) is always even, no matter what the 

value of n is. 
But when r is even, the product n(r - n) is odd if n is odd, and even when 

n is even. [That is, when r is a given odd number there is only one value of 
Ar, whereas for a given even v there are two values of hv depending on the 
value of n.] 

Thus, 

Ar = (-l)mSr9 where m = nr(r - nr), n ' E n mod v. 

Combining (3.10) and (4.3), we have the following theorem as an immediate 
deduction. 

Theorem: Ar = (-lf+ [r/2] (2r+ x - 3), where m = n'(r - nF) , nT E n mod r. (4.4) 

For example, 

when r = 5, n = 3: A4 = (-l)3x2+2(26 - 3) from (4.4) 
= +61 
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in conformity with (4.2) and (3.6). 
On the other hand, 

when v = 5, n = 4: A4 = (-l)lx3+2(25 - 3) from (4.4) 
= -29 

as we have seen in the discussion preceding (4.3). 
Applying (4.4) to a random choice r = 6, n = 8 (but not so random that the 

computations are unmanageable!), we discover on substitution that 

A6 = (-l)2x4+3(27 - 3) - -125, 

as may be verified by direct calculation. 
Our result (4.4) for a Lucas sequence of order r should be compared with 

the Hoggatt-Bicknell result (1.3) for the corresponding Fibonacci case. 

5- HYPERSURFACES FOR THE LUCAS SEQUENCES 

Geometrical interpretations can now be given to the identity (4.4) and its 
specializations for small values of r. The reader is referred to [3] and [4] 
for details of the geometry relating to Simson-type identities for Fibonacci 
sequences of order r. 

As this corresponding work for Simson-type identities for Lucas sequences 
of order v parallels the results in [3] and [4], we will content ourselves here 
with a fairly brief statement of the main ideas. 

Write Xi = Sn9 x2 = Sn+i9 . .., xv = Sn+r~i. Represent a point in r-dimen-
sional Euclidean space by Cartesian coordinates (xls x29 . .., xr). 

Then9 we interpret (4.4) as the equation of a locus of points in p-space 
which has maximum dimension r - 1 in the containing space. Such a locus is 
called a hyper surf ace. 

Each of the loci given by the simple linear equations xx - 0, x2 - 0, ..., 
xr = 0 is a "flat" (linear) space of dimension r - 1, and is called a (coordi-
nate) hyperplane. 

Hypersurfaces of the simplest kind occur for small values of r. In accord 
with our theory, there will be one hyper surf ace when r is odd, and two when r 
is even. 

Examples of hypersurfaces for {Sn} are: 

r = 2 (conic): x\ + x±x2 - x\ = 5(-l)n 

r = 3 (cubic surface): xl + 2x\ + x\ + 2x\x2 + 2xlx\ - 2x2x 

+ /y» *- rf _ /V» /y» _ O fY* rf* ry% —. ,_ 

In passing, we note that (5.1) expresses the well-known Simson-type iden-
tity for Lucas sequences of order 2, namely, 

^ + A - i " Ll = 5(-D"+1. (5.1)' 

Moreover, the matrix 

^1 2" 

.2 -1. 

whose determinant 62 is associated with identity (5.1) f, has several interesting 

2 
3 

13. 

( 5 .1 ) 

( 5 . 2 ) 
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geometrical interpretations (relating to: angle-bisection, reflection, vector 
mapping). (See Hoggatt and Ruggles [2].) 

Observe that if we replace x19 x2, x3 by x, y9 2, respectively, in (5.1) 
and (5.2), we obtain equations whose forms, except for the numbers on the right-
hand sides, are identical to those given in [3] and [4]. However, this formal 
structure camouflages the fact that the corresponding equations of the conies 
and cubic surfaces, for Fibonacci and Lucas sequences, are satisfied by differ-
ent sets of numbers. 

Carrying further our comparison with the results for Lucas and Fibonacci 
sequences, we obtain, in the case r = 4, a nasty equation (refer to [4]) for a 
quartic hypersurface in four-dimensional Euclidean space. And so on for hyper-
surfaces in higher dimensions. 

Sections of these loci by coordinate hyperplanes yield plane curves of 
various orders (cubics, quartics, quintics, sextics, and, generally, curves of 
order r). Refer here also to [4]. 

This completes our summarized outline of the geometrical consequences of 
of the determinantal identity (4.4) for Lucas sequences paralleling those for 
the Fibonacci sequences. 

With the notions of Part I in mind, we are in a position to examine closely 
a more general sequence of order r which has the Fibonacci and Lucas sequences 
of order r as special cases. 

PART II 

Only a brief outline of the ensuing generalization, which parallels the 
information in Part I, will be given. 

6. A GENERALIZED SEQUENCE OF ORDER r 

Let us now introduce the generalized sequence {Hn} defined by the recur-
rence relation 

tiyi + p - 1 ~"~ ^n + p - 2 • • • + t±n , £ZQ — (2 , ri -^ (6.1) 

with further initial conditions 

-(r-2) 

#_o O- l) a. 
(6.2) 

Interested readers might wish to write out the first few terms of these 
sequences for different values of r. For example, H takes on, in turn, the 
values 5a + 8b, 11a + 13b, 14a + 15b, 15a + 16b9 and 16a + 16b for successive 
values r = 2, 3, 4, 5, and 6. 

As in (2.6), the generalised determinant of order r is defined to be 

"•n+ r - 1 

"•n+r- 2 

Hn+ 1 

2?i+ v- 3 

H„ 

%n+ 1 

Hn 

" n - r + 3 

n- 1 

^n- r+ 2 

(6.3) 
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Evaluation of Dr is the object of Part II. 

Define, as in (3.1), the basic generalised determinant of order r, dr, to 
be obtained from (6.3) when n = 0. That is, 

dr = (Dr)n=0. (6.4) 

Then, the following simplest basic generalized determinants may be readily 
calculated by expanding along the bottom row: 

[p = 2 ] d2 = -a2 + (Z> - d)b ( 6 . 5 ) 

[r = 3 ] d3 = -a3 - (b - a)d2 = - a 3 + (b - a)a2 - (b - a)2b ( 6 .6 ) 

[r = 4] dh = ak + (b - a)<i3 
= a4 - (Z? - a )a3 + (2? - a ) 2 £ 2 - (Z> - a)3Z? (6 .7 ) 

[r = 5] d5 = a 5 - (2? - a ) ^ 
= a 5 - (2> - a ) a 4 + (Z> - a)2Z)3 - (b - a) 3 a 2 + (2> - a ) ^ (6 .8 ) 

[ r = 6] cZ6 = - a 6 + (Z> - a ) J 5 
= - a 6 + (2? - a ) a 5 - (b - a) 2a^ + (Z? - a ) 3 a 3 

- (Z? - a)ha2 + (b - a)5b ( 6 . 9 ) 
and so on. 

A developing pattern is clearly discernible. 

Calculation of dr follows the method employed in (3.2). 

Although only an outline of the theory in Part II is being offered, it is 
generally desirable for clarity of exposition to exhibit the main points of the 
calculation of dr in a little detail, even at the risk of some possibly super-
fluous documentation. 

Theorem: dr = (-1)
[r/2]{ar+ l + (-l)r~ *(a + b)(b -a)r}/b» (6.10) 

Proof: Expand dr in (6.3) and (6.4) along the last row to obtain 

dr = (~l)[p/2^ - (b - a)(-lfldr_l . . . . . . . . (i) 
= (-l)[W2]{ar „ (h _ a)a*'1} - (b - a)2dr_2 by (i), (3.9) 

= ( - l ) [ r / 2 3 { a * - (Z> - a ) ^ " 1 + (6 - a)2ar'2 - (b - a)3ar~3 + . . . 
+ (» l ) p - 2 (Z? - a ) p " 2 a 2 + {-l)r-l{b - a r - i f c 
+ [(~l)r~Hb - a ) p " x a - ( - l ^ - ^ Z ? - a)r-la}} 

= ( - l ) [ p / 2 ] { a p ( l - (b - a)a~1 + (Z> - a ) 2 a " 2 - (Z> - a ) 3 a " 3 + ••• 
+ (-l)r(b - ay~2a-^-2)+ ( - i ) ^ - i ( f c - a ) p ~ 1 a - ( p - 1 ) ) 
+ ( - l )^ - i (Z? - a)r} 

= ( -1 )^ /2 ] L r [ l - (-(& - a)a'l)rl + ( . i j r - i ^ _ a r l 
i 1 - (-(Z? - a)a~1) ) 

- ( - l ) f p / 2 J { a p + 1 + (-l)r-Ha + 6)(fc - a)p}/Z>. 

Repeated use of ( i ) has been made in the proof . A l s o , t he summation f o r -
mula for a f i n i t e geometr ic p r o g r e s s i o n has been invoked. 
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Applying next the arguments used in the evaluation of the Lucas determinant 
or order r9 AP, we easily have 

Theorem: Dr = (-l)mdr = (~l)rn+ [r/2]{ar + x + {-l)T'l{a + b) (b - a)r}/b, (6.11) 

, ( m = nr(r - nr) 
where < , _ , 

\n ' = n mod r. 

Proof: As for (4.3). 

For the Lucas sequence of order p, {Sn}, 

a = 2, b - 1 (so a + b = 3, b - a = -1). 

It is easy to verify that, in this case, 

dr - SP, Dr = AP. 

[Cf. (3.10), (4.4).] 

Coming now to the case of the Fibonacci sequence of order r>, {Rn}, we have 

0, b = 1 (so a + b = 1, b 1). 

It is important to note that, for our theory to be used for {Rn}9 the terms of 
{Rn} with negative suffixes have to be extended by one term in the definition 
(1.1), (1.2) given by Hoggatt and Bicknell [1], namely, 

R-(r- 1) ~ l ' (6.12) 

Augmenting {Rn} by this single element enables us to construct basic Fibo-
nacci determinants of order r, VP, for {Rn} derived from (1.3) analogously to 
those for {Sn} from (2.6). Computation yields 

i . v, •i. vL • i . v , i . vc 

To give some appreciation of the appearance of the Vr, choose r = 6, so 

V6 = 

8 4 2 1 1 0 
4 2 1 1 0 0 
2 1 1 0 0 0 
1 1 0 0 0 0 
1 0 0 0 0 0 
0 0 0 0 0 1 

(= 1) (6.13) 

which is rather simpler than the corresponding form (3.7) for 66. 
Putting a = 0, b = 1 in (6.10), we have, with the aid of (3.9) 

d r = (_l)[W2] + 2-l = (_1)[(r-l)/2]= V p . 

Now it may be shown that m + [(r - l)/2], the power of -1 in (6.11), and 
(p - l)n + [(r - l)/2], the corrected power of -1 in the Hoggatt-Bicknell [1] 
evaluation in (1.3), are both even or both odd. That is 

(_]_)"*+ [r/2] = (_!)(*-l)w+ [(r-D/2]., (6.14) 
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Thus, a = 0, b = 1 in (6.11) with (3.9) give 

D = (_i)W+[(r-l)/2] = (_1)(i"- Dn+ [(p- l)/2] = v 

where Vr is the symbol to represent the Hoggatt-Bicknell determinant (1.3). 
Suppose we check for {Rn} when r = 6, n - 3, i.e., we are dealing with the 

sequence 

(6.15) 
W?-5 *-* *-3 *-2 *-l ^0 *1 R2 R3 ^ ^5 ^6 R7 RB • • • 

(l 0 0 0 0 0 1 1 2 4 8 16 32 63 ... 

Then 

(n = 3 ) : D6 = (-l)3x3+2 = -1 by (6.11), (3.9) 
= (-1)5x3+2 = _x b y ( l 3 ) 

= -V6 = -1 on direct calculation. 

Geometrical considerations similar to those in [4] and in Part I of this 
article are now applicable to the general case of {Hn} when a and b are unspe-
cified, and also to the multifarious special cases of {Hn} occurring when a and 
b are given particular values. 

But we do not proceed ad infinitum* ad nauseam by discussing other classes 
of sequences. Unsatiated readers, if such there be, may indulge to surfeit in 
such an algebraic geometry orgy. 

One further generalization might be contemplated if, in (6.1), we were to 
associate with each Hn+r-j (j = 1, 2, . . . , r) a nonzero, nonunity factor p.. 
However, the algebra involved makes this a daunting prospect. 
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1. INTRODUCTION 

The graphs considered here will be finite and will have no multiple edges. 
Let G be such a graph. A matching in G is a spanning subgraph whose components 
are nodes and edges only. We define a k-matching in G to be a matching with k 
edges. When the matching consists of edges only, it will be called a perfect 
matching. The number of perfect matchings in G will be denoted by y(G). The 
total number of matchings in G will be denoted by T(£). 

The following example illustrates the above definitions. 

(a) (b) (c) (d) (e) 

Figure 1 

(f) (g) (h) 

The graph G shown in Figure 1(a) has two perfect matchings [graphs (b) and (c)]. 
Therefore y(£) = 2 . G has four 1-matchings [graphs (d), (e), (f),and (g) ] and 
one O-matching [graph (h)]. Hence G has 7 matchings; i.e., T(G) = 7. 

By a polygonal chain Pk , we will mean the graph obtained by concatenat-
ing n fc-gons in such a manner that adjacent &-gons (cells) have exactly one 
edge in common. Also, for k > 3, no three cells have a common node. 

If the first and last cells (cells which are adjacent to exactly one other 
cell) of P.£ n axe joined together, so that they have exactly one edge in com-
mon, the "circular" structure obtained will be called a long polygonal chain 
Cfc n. n is called the length of the chain. Wot ice that in 0% n, every cell 
will be adjacent to exactly two cells. 

It is clear that different polygonal chains will result, according to the 
manner in which the cells are concatenated. For example, in the following dia-
gram we show four nonisomorphic versions of P5 ^. 

/N 
\y v j 
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Notice3 howevers that when k = 4 there is only one polygonal chain., P4 n. 
We can also define P^iTl as the graph obtained by joining the corresponding 
nodes of two equal paths with n nodes. We refer to one path as the upper path 
and the other as the lower path. The edges in the upper path will be called 
upper edges and those in the lower path will be called lower edges. 

We define the linear polygonal chain Sjiin (k > 3) to be the graph obtained 
from ?4)?2 as follows. If k is even, then every upper and lower edge is replaced 
by a path of length (k - 2)/2. If k is odds then every upper edge is replaced 
by a path of length (k - l)/2.? and every lower edge is replaced by a path of 
length (k - 3)/2. For n-evens S^in is obtained from P^s{n/2) by joining diag-
onally opposite nodes in a consistent direction. For n-oda% Sz.n is obtained 
from S3sTl + i by removing a node of valency 2. The long linear polygonal chain 
Lfc^n is analogously obtained from S^~n9 as Cfcsn is obtained from Pfcsn* 

Linear polygonal chains have been the subject of numerous investigations. 
Their matching polynomials were extensively investigated (see[l, 2S 3S 45 5]). 
Polygonal chains have also been called animals, and are special cases of the 
general animal defined in Harary and Palmer [7]. During investigations of the 
matching polynomials of linear polygonal chains, it was observed that the num-
ber of perfect matchings, and in some cases the total number of matchings? were 
Fibonacci numbers. These observations form the basis for this report. We re-
fer the reader to Harary [6] for the basic definitions in Graph Theory. 

2, PRELIMINARY RESULTS 

Let G be a graph and xy an edge in G joining nodes x and y. We can parti-
tion the perfect matchings in G into two classes: (i) those containing xy and 
(ii) those not containing xy. The perfect matchings in class (i) will be per-
fect matchings in the graph Gn obtained from G by removing nodes x and z/. 
Those in class (ii) will be perfect matchings in Gf, the graph obtained from G 
by deleting the edge xy. Thus we have the following lemma. 

Lemma 1: y(G) = y(Gr) + y(G"). 

Suppose that G consists of two components H and K. Then any perfect match-
ings in H and K can be combined to yield a perfect matching in G. Conversely, 
every perfect matching in G can be broken up into a perfect matching in H and 
a perfect matching in K. Hence we have the following result which generalizes 
the argument. 

Lemma 2: Let G be a graph consisting of r components H19 H2S .,., Hr. Then 

i = l 

It is clear that if G is a connected graph with an odd number of nodes, then 
G cannot have a perfect matching. 

Lemma 3: Let G- be a graph. If G has an odd number of nodes, then 

y(G) = o. 

Lemma 1 can be very useful for detecting the polygonal chains G for which 
y(G) is a Fibonacci number. We simply investigate the relations between y(GF) 
and y(Gn) and the chains of shorter lengths. Lemma 2 is useful when applying 
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Lemma 1, since the deletion of an edge from G might yield a disconnected graph. 
Lemma 3 is useful for reducing the number of graphs to be considered in appli-
cations of Lemma 1. 

We can use an argument similar to the one preceding Lemmas 1 and 2 to es-
tablish the following analogous results. 

Lemma k: T(G) = T(G') + T(G"). 

Lemma 5- If G consists of r components H-9 H , . .., Hr, then 

i = 1 

Lemmas 1 and 4 yield algorithms for counting perfect matchings and total 
number of matchings, respectively, in graphs. The algorithms consist of re-
peated applications of the lemmas until graphs Ei are obtained for which y(#^) 
and T(H^), respectively, can be written down. These algorithms will be referred 
to as reduction processes. When applying a reduction process, the graph Gr will 
be referred to as the edge-deleted graph. G" will be referred to as the node-
deleted graph. 

3. THE TRIVIAL CHAINS Sljn AND Z1>n 

We define P\jn to be a tree with nodes of valencies 1 and 2 only. This 
graph is also called the path or chain Pn. When the end-nodes of Pn are identi-
fied, the resulting graph Cx n is called the cycle or n-gon Gn. 

Let us apply Lemma 4 to the chain Pn by deleting an edge incident to a node 
of valency 1. Then Gr will contain two components, Pn_i and an isolated node 
P1. Therefore, 

T(G') = T(Pn_1) • TCP,) = T(Pn_1). 

G" will be the graph Pn_2* Therefore, 

T(G") = T(Pn_2). 

Hence, from Lemma 4, we get 

It is clear that T(P±) = 1 and x(P2) = 2 . We define T(PQ) = 1. Hence we have 
the following theorem. 

Theorem 1: The total number of matchings in the chains Pn form a Fibonacci 
sequence with initial values T(P Q) = TCP,) = 1. 

Let us apply Lemma 4 to the long chain Cn. In this case, Gr will be the 
graph Pn and Gn will be Pn_2* Hence we have 

T(C„) = T(P„) + T(Pn_2). 

Therefore, 

TC^.,) + T(Gn_2) = T(Pn-1) + T(Pn_3) + T(Pn_2) + T(Pn_,) 
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= [T(P„_1) + T(P„_2)] + [T(Pn.g) + T(PB_lt)] 

= T(Pn) + T(Pn_2) = T(Cn). 

Hence we have the following theorem. 

Theorem 2: The total number of matchings in the cycles Cn (n > 2) form a Fibo-
nacci sequence with initial values T(C ) = 4 and x(C. ) = 7. 

4. TRIANGULAR CHAINS 

For brevity of notation, we will denote the linear triangular chain £3 j n by 
Tn. The long triangular chain L$tn (n-even) will be denoted by Ln. The graphs 
Tn and L3 12 are shown below in Figures 3(a) and 3(b), respectively. 

(a) (b) 

Figure 3 

It can be verified that Tn contains n + 2 nodes and 2n+ 1 edges. Also Ln con-
tains n nodes and In edges. Therefore5 for odd n, Tn and Ln do not have perfect 
matchings. 

Let us apply the reduction process for perfect matchings to the graph Tn 
(n-even) by deleting the edge xy [see Figure 3(a)], Gf will be Tn_1 with the 
edge WX attached to it; G!t will be Tn_2. Now, any perfect matching in Gf must 
contain the edge WX since the node x will have valency 1. It follows that the 
edge zy must also be in every perfect matching of Gf. The rest of the perfect 
matching will be a perfect matching of Tn_h. Hence we get 

Y(G') = y(Tn_k). 
Also, 

y(G") = y(Tn_2). 

Therefore, from Lemma 1, we get 

y(TJ = Y ( ? „ . 2 ) + Y f f ^ , ) . ( i) 
It can be confirmed that y(T2) = 2 and y(A-) = 3. We define T(TQ) to be 1. 

Hence we have the following theorem. 

Theorem 3: The number of perfect matchings in the triangular chains Tn (n-even) 
form a Fibonacci sequence with boundary values y(TQ) = 1 and y(T2) = 2. 

Let us apply the reduction process for perfect matchings to the graph Ln 
by deleting the edge bg [see Figure 3(b)]. Gf will be Ln with edge bg removed. 
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G" will be Ln with nodes b and g removed. Let us now apply the reduction pro-
cess to Gf by deleting edge bo. Let G2 be the edge-deleted graph. The graph 
G" obtained by deleting nodes b and c will be Tn_^> 

liG'D = y(.Tn_k). 

Apply the reduction process to G2 by deleting edge ac. The edge-deleted graph 
will be Tn_2° The node-deleted graph will be Tn _ 5 with an edge attached to a 
node of valency 2* Therefore, 

Y(G2') = l(Tn_2) + Y(Tn_6), 

Consider now the graph Gn. We can apply the reduction process by deleting 
edge ac. The edge-deleted graph Gf

z will be Tn _ 5 with an edge attached to a 
node of valency 2. Therefore, 

Y(G3') = Y(rM.6). 

The node-deleted graph will be Tn_^. Therefore, we get 

Y(G") = 2y(Tn_6). 

Hence, by adding the contributions of the final graphs, we obtain the follow-
ing lemma. 

Lemma 6: y(Ln) = j(Tn_2) + y(Tn_h) + 3y(Tn_e) (w-even and n > 4), with 

YCTQ) = 1, y(T2) = 2 , and y(T„) = 3. 

The above lemma yields: 

Y(^n_2) + JiLn_h) = Y(Tn_,) + Y(^-6) + 3Y(^„8) + Y ( ^ 6 ) 

+ y(Tn_Q) + 3Y(^„10) 

= [Y(^_,) + y(Tn.6)] + [Y(^n-6) + Y^n-e)] 

+ S C Y C ^ - S ) + Y(^n-io)] 

= Y O 7 ^ ) + Y C ^ ^ ) + 3y(Tn_6)9 using Equation (1) 

= y(Ln), from Lemma 6. 

Thus, we obtain the following result. 

Theorem k: The number of perfect matchings in the long triangular chains Ln 
(n-even) form a Fibonacci sequence with initial values y(LQ) = 4 (by conven-
tion), y(L2) = 2, and y(L^) = 6. 

5- CHAINS OF HIGHER ORDERS 

We will denote by G - S. the graph obtained from a graph G by removing a 
subset S = {vl9 v2, . .., z;̂ } of its nodes. When k is small, we will simply 
write G - Vj_ - v2 ~ 6B0 - t^ • 

Let Pr be the path with r nodes. By attaching Pr to a connected graph Gs 
we will mean that an end-node of Pr is identified with a node of G to form a 
graph Hr in which the subgraphs PP and £ are in the same component. We say Pr 
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is added to G when the two end-nodes of Pr are attached to different nodes of 
G. In this case 3 we assume that G has more than two nodes. The resulting 
graph will be denoted by Jr. The nodes of G used in the identification process 
will be called nodes of attachment. 

The following lemmas will be useful in the material of this section. 

Lemma "J: Let u be the node of attachment of Hr» Then 

'y(G - u) if r is even, 
y(Hr) 

Y(£) if v is oddo 

Proof: Apply the reduction process to Hr by deleting the edge of Pp incident 
to u» The result follows immediately. • 

Lemma 8: Let u and v be the nodes of attachment of Jr. Then 

'y(G) + y(G - u - v) if r is even, 

y(G - u) + y(G - v) if v is odd. 

Proof: The result follows easily by applying the reduction process by deleting 
an edge incident to one of the nodes of attachment and then using Lemma 7= • 

The edges of P4 which join nodes of the upper and lower paths are called 
link edges, and the corresponding nodes are called link nodes. A terminal edge 
is a link edge which is incident to link nodes of valency 2. Alsos we denote 
the nth Fibonacci number by Fn: Fn = Fn_1 + Fn_25 F0 = F1 = 1. 

Theorem 5'- For ns m3 k > 1, 

( 0 Y(^4fe+2sn) = n -h l9 

0 0 y&hKn) = Fn+15 

( i i i ) y(S2k+it2m + 0 = ° 

Proof: 
(i) Apply Lemma 8 to 5 4 H 2 s n . In this case r is even. We get 

YC^fc+z.*) = Y(^4fe+2,n-i) + Y ^ i ) , (2) 

where B± is the graph S^+ 2, n - 2 with P2fc attached to the ends of a terminal 
edge. Using Lemma 75 with r even, we get y(B±) = y(B2), where B2 is S^+2,n-3 
with P2fc attached to the ends of a terminal edge. By repeated applications of 
the lemma, we get y(B±) = 1. Therefore5 from Equation (2), 

Y(^4^-F2sn) = y(SUk+2,n-D + L» 

But Y(^4fe+2sl) = Y(^47<+2) = 2°  Therefore9 we have 

*Y(^4k+2,n) = « + 1-

(II) Apply Lemma 8 to S^ n . Again r is even, so we get 
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where A is ̂ 4A:,n-2» with ?2fe-l attached to the ends of a terminal edge. Using 
Lemma 7, with v odd, we get 

Hence, from Equation (3), we obtain 

T(^4^,n) = Y(^4/c,n-l) + YGS 4fc, n - 2/ • 

Clearly y(5 4 ^ j l ) = 2 = F 2 and j(S^k, 2 ) = 3 = F3 . Therefore, we define 

Y(^4fe,o) = 1 = ̂ i-

Hence, from Equation (3), we have 

Y(^4/c,n ) = Fn + 1-

(iii) It can be easily verified that S2k+ l,2m + l has an oa"d number of nodes 
[2(2mk+k - m + 1) + 1], Hence, the result follows from Lemma 3. 

(iv) First, we will label (in order) the link edges of S2k+l,2m with 1, 
2, 3, ..., 2m + 1, beginning with a terminal edge. Let us apply the reduction 
process to S2k+i,2m by deleting an even labelled link edge. The graph G" will 
contain two components; A, consisting of S2k+i,i with the chains Pk and Pk_1 
attached to the ends of a terminal edge, and B, consisting of S2k+l3j with Pk 
and Pfc_i attached to the ends of a terminal edge. Clearly, i + j = 2m - 2 and 
both i, and j will be even. It can be easily confirmed that A will contain 
2-ik + 2k - t - 1 nodes. Since this is odd, for all even values of i9 we get 

y U ) = y(B) = 0 =̂> y(£") = 0. 

Hence, no perfect matching contains an even (labelled) link edge. It follows 
that 

Y(S2k+l,2m) = Y(#m)» 

where Rm is the polygonal chain P^k,m obtained from P^t m by replacing each up-
per edge with 2k edges and each lower edge with 2k - 2 edges. 

Apply Lemma 8 to Rm, This gives 

y(Rm) = Ytfm-i) + Y(5), (4) 

where B i s the graph Rm_ 2 wi th P2fc a n d P2k-2 a t t a c h e d t o t h e ends of a t e r m i -
n a l edge . Hence, by an a n a l y s i s s i m i l a r to t h a t used in e s t a b l i s h i n g ( i ) , we 
ge t 

y(Rm) = m + 1 = y(S2k+l,2mh m 

We now give bounds for general polygonal chains comprising (2k 4- l)-gons. 

Theorem 6: For m5 k > 1, m + 1 < y(P2k+i32m^ ^ -̂ m + i* 

Proof: Let us construct P2k+i,2m fr° m P4,2m by replacing the first pair of 
upper and lower edges with Pk + l and P^ , respectively, the second pair by Pk and 
Pk+l> respectively, the third pair by Pk+ x and Pk, respectively, and so on. 
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As we have shown above [(iii) of Theorem 5], no even link edge can belong to a 
perfect matching. Therefore, we can remove all the even labelled edges to ob-
tain a graph which contains the same number of perfect matchings as P2k + i 2 ' 
In this case, the graph will be S ^k m. Therefore, 

Y(p2k+l,2m) = Y ( S 4 ^ ) =
 Fm + 1> by (ii) o f Theorem 5. (5) 

When P2k+l,2m i s t h e graph S2k+ls2mS we get 

Y(P2fe+l,2m) = YCS2fc+i,2m) =
 m + l s hj ( ± ) ° f T h e o r e m 5' 

It can be seen from the proof of Theorem 5(iv) that, in the general case, the 
minimum value of y(B) in (4) is 1 and the maximum value is y(P2k+ l, 2m- 2) » a n d 

the result follows. • 

The following theorem is the long-chain analogue of Theorem 5. 

Theorem 7: For k > 1, m > 2, and n > 3, 

(ii 

(iii 

(iv 

(v 

Y(£4fc+2sn) = 4> 

Y(-^4/c,2m) = Y(^4fe,2m-l) + Y^fc, 2/TZ - 3 > + 2 = F2/K 

y(L^ki2m + l) =y(shki2m) +yis^ki2m_l) 

l(L2k+ l,2m-l) = °» 

Y(L2fe+l,2W) = 4' 

F2m+ 1 + ^2m 

+ ^ 2 / 7 ? - 2 

1 ' 

+ 25 

Proof: 

(i) It can be easily confirmed that no perfect matching in L^k+2in can 
contain a link edge. Therefore, 

Y0&4*+2,n> = Y W ) = *> 

where i4 is the graph consisting of two disjoint cycles each with 2kn nodes. 

(ii) and (iii), k > 1: Apply the reduction process of L^kiT by deleting 
the second upper edge (counting from the edge adjacent to a link edge) of a 
cell. Continue to apply the reduction process in the same nammer to both G' 
and G,r, but this time using the corresponding lower edge. The four resulting 
graphs will be the following:: (1) Ar_ ls consisting of the graphs SAk,r-i with 
P2 attached to each end of a terminal edge and P2\-2 attached to the ends of 
the other terminal edge; (2) Br_ l9 consisting of the graph S^.r-i w i t h p2 a n d 

P]<-2 attached to its two upper terminal nodes and Pik-i attached to the other 
end of the terminal edge adjacent to an edge of Pk-2 (note that Br_ y will occur 
twice); and (3) Dr_ l9 the graph ShkjT_i with the odd chain P2k„3 attached to 
the ends of a terminal edge. 

It can be confirmed that: 

1. YWr-l) = Y(S4fc,r-3); 
^1 if p is even, 

2. Y(Sr-l) =\ 
(.0 if v is odd; 

3. Y(»P-I) = yis^^.x)-
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For k = 1, the reduction process can be applied by deleting any upper edge. 
The graphs corresponding to Ar-.\> BP„ i, and Dv-\ will be SiijCtr^\9 £>4ktr-3 with 
P2 attached to the two upper terminal nodes9 and S^k p_3, respectively. Hence, 
for k > 19 we get 

T(L4fe,p) = Y(^4A:SP-I) + Y(^4^,r-3) + 6 > 

2 if r is even, 

0 if r is odd. 

The results (ii) and (iii) then follow from Theorem 5(ii). 

(iv) It can easily be verified that L2k + i 2m + 1 ̂ a s a n oc^ num^er °f nodes. 
Therefore, the result follows. 

(v) This is similar to Theorem 5(iv). • 

Theorem 8: For m > 2 and k > 1, 4 < y(C2k+li2m) < 2(Fm + Fm_ 2 ) . 

Proof: The proof is similar to that of Theorem 6. It follows by applying the 
reduction process to C2k+ \i2rn > then using Equation (5) and Thoerem 7(v). • 

Note that Theorems 3 and 4 are special cases of Theorems 6 and 8, respec-
tively, when k = 1. 
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In a previous contribution to this journal [1],. the author showed how the 
Fibonacci ratio arises in the solution of a particular thermodynamical problem, 
namely, the calculation of the entropy of a chain of electrons localized onto 
lattice sites with density one, and with the constraints that half the lattice 
sites may contain at most two electrons each, while the other half may contain 
at most only one electron each., The use of the thermodynamical grand-canonical 
formulation [1], while simplifying the calculation, greatly obscured the purely 
combinatorial nature of the problem, which we think is by itself a fascinating 
one, and which we purport here to present. 

The problem in [1] might be restated as follows: Given 2/1/ different boxes, 
and 2N identical coins, with half the boxes containing at most two coins each, 
and the other half containing at most one coin each, in how many different ways 
can one arrange or put the 2N coins into the 2N boxes, as N -> °°? Although a 
single coin may be put into a box in two different ways, as head or tail, we 
shall agree that once we put two coins into a box we shall not inquire as to 
which is head or which is tail, and shall count that arrangement as only one. 

With this understanding, it is straightforward to show, in a purely combi-
natorial manner, that the total number of arrangements A(N) .of the 2N coins in 
the 2N boxes, is given by 

«» - *"&-(£)(»'- *)• 
for N = 1, 2, 3, ... . The above expression is exact and holds for any N > 1; 
a proof of (1) is given in the text. 

The Fibonacci ratio arises from (1) through the "entropy" S(N) associated 
with the number of arrangements A(N), i.e., 

S(N) = In A(N), (2) 

and the extensive property of the entropy in the thermodynamic limit (#-*«>), 
i.e. , 

lim ^P- = In k9 with k = f5, (3) 

a constant independent of N9 where here / E (l+75)/2 is the positive Fibonacci 
ratio. 

In the remainder of this paper we give the proofs of Equations (l)and (3). 
Equation (1) can be proved by the use of the well-known generating function 
method [2] of combinatorial analysis. 

Thus, A(N) will be the coefficient of an x2N in the expansion in powers of 
x of the appropriate generating or enumerating function, 

G(x) = (1 + 2x)^(l + 2x + x2)N = (1 + 2^)^(1 + x)2N . (4) 
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In the enumerating function G(x) in (4), the enumerating factor (1 + 2x)N takes 
account of the N boxes that contain at most one coin each, while the enumera-
ting factor (1 + x)2N takes account of the 71/ boxes that contain at most two 
coins each. But, 

The coefficient of x2N will thus be given by the sum of all the terms in (5) , 
such that I + m = 271/, i.e., by 

y?2N-m( N \(2N\ 
,tV \2N - m)\m /' 
2N 

L 
m = N 

which proves Equation (1). 
We now proceed to give the proof of Equation (3) . When 71/ -> °°, each term in 

the right-hand side of Equation (1), with 71/ ^ k ^ 271/, is a product of a very 
rapidly increasing function of k9 namely [(2/1/ - k)l]~2, times a very rapidly 
decreasing function of k, namely [2kkl(k - 71/) I]"1. In the thermodynamic limit, 
71/ -*- a>, the product of the two functions will have an extremely sharp maximum 
for some value of k9 with N < k < 2N. In the limit 71/ •+ °°, the entire right-
hand side summation in Equation (1) can thus be replaced by the maximum term in 
the same summation, in an asymptotically exact manner. 

We will then have 

S(N) 1 ' 2N 

N 
where 

1 / ZN \ 
2 I n 2 +~ l n ( £ P ( k ; N)\ , (6) 

and hence 

SW - o -.- o _L. i ^ i r l im - y - = 2 In 2 + l im - [ I n P(k; N)]mXm, (7) 

where we have used ln[P(fc; ^ ) ] M a x > = [In P(k; 71/)]Max>. But 

In P(k; N) = -k I n 2 + ln(271/) ! - In kl - ln(2717 - k) I 

+ In 71/! - ln(271/ - k) I - ln(k - N) ! , (8) 

and by the Stirling approximation, we have that (for 71/ -> °°) 

I n 71/! = 71/(ln 71/ - 1) + - | I n 71/ + CN, ( 9 ) 

where <?# is a number of the order of unity. 
Then, we will obviously have that 

lim j[ln P(k; 71/) ] M a x = ["lim ̂  In P(&; 71/)] 
N+°o N nax- LN-^oo N J Max. 

= il±mh-k In 2 - fc(ln fe - 1) - 2(271/ - k) (In(271/ - fc) - 1) 

- (k - N)(ln(k - N) - 1) + «(il?)]l = [0>{k; ^ ) ] M a x . , (10) 
/ Max. 

2i»8 [Aug. 



THE FIBONACCI RATIO S N A THERMODYNAMICAL PROBLEM 

where 

Q(N) = 2/1/ In 2 + 3/1/(1x1 N - 1) (11) 

is a function of /!/ only. 
It is important to notice that the terms in 

~ In N + CN 

in the Stirling approximation in (9) and the corresponding ones for (2/1/ - k) ! , 
kl, and (k - N)I contribute nothing to the limit in (10), since, typically, 

In /!/ + <?. ) - • • 
To find the maximum of the function £P(k; N) defined in (10), we find the 

value of k9 such that 

Jr^(/<; N) = 0, (12) 

where N is considered as a parameter. This value of k is then substituted back 
into 0>(k; N) to give (0>(k; ilOW-

Interchanging the derivative with the limit in (10), Equation (12) leads to 

- I n 2 - In k + 1 - | + 2(ln(2/l/ - &) - 1) 

+ 2 { i ^ t -ln(^ - w +1 (fc - /!/) 0 , 

-In 2 - In k + 2 ln(2/l/ - k) - ln(k - N) = 0 , 

(13) 

( H ) 

for k. 
F i n a l l y , Equat ion (14) l e a d s to 

k 2 
= 1, (2/1/ - k)' 

2k(k - N) 
or the quadratic equation 

(i)2 +(4)-1 = 0' (15) 

for k. Because k must be a positive number, the only appropriate solution of 
(15) is 

^=J> (N <k< 2N), 

where / is the positive Fibonacci ratio. Hence, we will have 

(0>(k; N)) Max. - ;J-iln «/ 
A7-v oo J-V 

2£ 
f 1„2-f(1»(f)-1)-2(»-f)H--f)-') 

- (f - ")Hf - »H+ 
Q(N) 

(continued) 
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= - j In 2 - j In 2 + j> In / + | - ^(f - 1) (In 2 + ln(/ - 1) - In / - 1) 

- (2 ~ -^(ln(2 - f) - In / - 1) + 2 In 2 - 3 

= -2 In 2 + 3 In / + A ln(/ - 1) - 4 ln(/ - 1) - | ln(2 - f) + ln(2 - / ) . 

(16) 

By using the relationships ln(/ - 1)= -In f and In(2 - f) = -2 In /, which hold 
true for the Fibonacci ratio f, (16) finally leads to the remarkably simple 
result 

(0>(k; W M a x . = "2 In 2 + 5 In /, 

or, finally, 

l i m ~l7 = 5 In /. 

This proves Equation (3) and coincides, of course, with the result obtained in 
[1] through the use of the grand-canonical formalism. 
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1. INTRODUCTION 

In a recent paper Deo and Quinn [1], in their search for a class of graphs 
to be used as computer networks, introduced Pascal graphs that are constructed 
using Pascalfs triangle modulo 2 [3]. They derived.. a number of useful results 
for Pascal graphs and Pascal matrices and, in the conclusion, they made certain 
interesting conjectures. The objective of the present note is to find an exact 
expression for the number of edges in Pascal graphs of different orders and to 
settle one of the conjectures made in [1], 

We have used standard graph theoretic terms [4], [5] in this paper, and the 
reader is assumed to be familiar with [1], 

2. BASIC CONCEPTS 

Definition 1: A Pascal matrix PMn of order n is defined to be an n x n sym-
metric binary matrix where the main diagonal entries are all 0fs and the lower 
triangular part of the matrix consists of the first (n - 1) rows of Pascalvs 
triangle modulo 2. PMn(i, j) denotes the (£, j)t h element of PMn. A Pascal 
graph PGn having n vertices is a graph corresponding to the adjacency matrix 
PMn-

Remark: This definition of a Pascal matrix is the same as in [1] in contrast 
to that in [2]. 

Definition 2: The generator polynomial of the 777 th row, m ^ 1, of a Pascal ma-
trix PMn of any fixed order n > m is defined to be a polynomial fm(x\ with 
binary coefficients such that PMn(m, j) is given by the coefficient of x3'1 in 
fm(x)9 1 < j < n. 

Since PMn(m, m) = 0 by definition, we can write, for a Pascal matrix PMn, 
n > ms 

fmw = 
g (x) + xmhm(x), for n > m 

g(x)9 for w = 777, 

where gm(x) and hm(x) are the generator polynomials of the lower and the upper 
triangular parts, respectively, of the 777th row in PMn. By definition, gm(x) 
applies only for m ^ 2. 

Definition 3> The 5-sequence of a positive integer n is defined as the strict-
ly decreasing sequence Bin) = (pl9 p2s • » . » pT ) of Ln nonnegative integers 
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such that 

n = £ 2^, 
J = I 

where £ n is the length of the sequence. 

Remarks: (1) The 5-sequence of any positive integer n gives the positions of 
l's in the binary representation of n in decreasing order. 

(2) The S-sequence of zero is defined to be a null sequence. 

Lemma 1: For any Pascal matrix PMn with n > m, 

(a) For m > 2, g (x) = fl (1 + x ^ ' ) . 
jeB(m-2) 

(b) For m > 1, /zm(a;) = 0 (1 + * 2 < 7 ' ) . 

dtB{m- 1) 

Proof: 

(a) From the definitions of a Pascal matrix and gm(x), it is apparent that 
gm(x) = (1 + J;)OT~2, with the coefficients computed in the modulo 2 field, from 
which the proof follows. 

(b) Since PMn is symmetric, hm(x) will contain x^ as a nonzero term iff 
gm+j<+l(x) contains x"1"1 as a nonzero term, ft > 0. This is possible if and only 
if B(m+k- 1) contains S(m - 1) as a subsequence, i.e., when there is no ele-
ment common to both B(k) and B(m - 1). Hence the claim. 

Example: In a Pascal matrix of order n = 30, 

f13(x) == (1 + ar)(l + ^2)(1 + *8) + x13(l + x)(l + x2)(l + x1B)9 

f20(x) = (1 + x2)(l + x16)+*20(l + ̂ )(1 + x8). 

Remark: For any m9 m > 2, (1 + re) is a factor of gm{x) iff (1 + re) is also a 
factor of hm(x), since B(n) s n > 0, can contain 0 only when n is odd. 

Definition 4: The wth row of PMn will be called the pth instance of all l's in 
the lower triangle if m = 2P + 1, p ^ 1. 

3. NUMBER OF EDGES IN PASCAL GRAPHS 

Let e(n) denote the number of edges in PGn. Deo and Quinn [1] showed that 

e(n) < [(n - l)log23J. 

In this section we find an exact expression for e(n). 

Lemma 2: In a Pascal graph PGn, where 

n = (2P + 1) + i , 

for some nonnegative integer p and 1 < £ < 2P, the degree d(n) of the nth ver-
tex in PGn is given by 
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din) = 2d(i + 1), 

where d(i + 1) denotes the degree of the (i + l)st vertex in PGi + 1-

Proof: In PMni the n t h row has only its lower triangular part and so does the 
(i + l)throw in PMi + 1. Hence, in PMn9 

fnW = 9nW = C1 + ^ ) n " 2 = (1 + ^ ) 2 ? * C1 + «) i " 1 -

Since the coefficients of the polynomials are computed in a modulo 2 field, we 
get 

9n(x) = (1 + x2P) • ̂  + 1(*). 

Therefore, since i K 2P
9 the number of nonzero terms in gn(x) is twice that in 

gi+1(x). Hence d(n) = 2d(i + 1). Q.E.D. 

If the nth row of PMn corresponds to the pth instance (p ̂  1) of all l's in 
its lower triangular part, i.e., if n = 2P + 1, then we also denote the number 
of edges in PGn by E{p), i.e., E(p) = e(2p + 1). 

Lemma 3: E(p) = 3P. 

Proof: #(p) = Number of edges in PG of order (2P~1 + 1) 
+ Number of edges added due to addition of extra 2P vertices 

= E(p - 1) + 2E(p - 1) [by Lemma 2] 

= 3E(p - 1) 

= 32E(p - 2) = ••• = 3P'1S,(1). 

Now Z?(l) corresponds to the number of edges in PG3, which is 3. Hence, we get 

E(p) = 3P. Q.E.D. 

Theorem 1: The number of edges in PGn (n > 1) is given by 

Ln-1 

e(n) = £ 2 J _ 1 »3Pj' , 
J' = I 

where (p x , p 2 , . . . , pL ) i s the 5-sequence B(n - 1) of length I>n_1. 

Proof: Let n - l = n 1 + n 2 + » - - + nk, where fc = Ln_ls ni = 2 S 1 < £ < k. 
Hence the (n1 + l ) t h row of PMn corresponds to the p]_th instance of a l l l ' s in 
the lower t r i ang le , and so by Lemmas 2 and 3, 

e(n) = Eipj) + extra edges due to addition of ver t ices Vn + 2 5 • • • » Vn 

to PGnl+i 

= 3 P l + 2e(n2 + n3 + • • • + nfc + 1) = 3 P l + 2e(w')» 

where n ' = (1 + n2) + n3 + • • • + nk« Repeating the process, we get 

e(n) = 3 P l + 2(3 ? 2 + 2e(nn)) [where n" = n3 + n^ + •• • + nk + 1] 

= E 2 J _ 1 ° 3^' . Q.E.D. 
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k^ DETERMINANTS OF PASCAL MATRICES 

We now settle one of the conjectures made in [1] regarding the values of n 
for which the determinant of PMn will be zero. 

Let us consider an integer A which is either 2 or can be expressed as 

A = 2 + (a± + a2 + • • • + ak), 

where a1 = 4 or 8, and ai + 1 = 4a^ 9 1 < i < k. 
We now define the index set I of A as follows: 

<p9 for A = 2 

{l, 2, ..., &}, otherwise 

Let the cardinality of I be denoted by t . It can be verified that for A > 2, 
we can write 

t 
4 = 1 + £ 4J, for ax = 4 (1) 

and 
t 

4 = 2 £ 4 J
5 for a, = 8. (2) 

Both (1) and (2) also apply for A = 2, i.e., for t = 0 as well. Let a£ = 2a^5 
for 1 < i < &. We use an arbitrary subset J'= {j15 j 2 , ..., jp} of I to denote 
different integers generated from A as follows: 

AJlJ2...Jp = 2 + E «; + . E a,. 
1 2 p {£!' i e l - l ' 

When {jl5 j 2 , . .., jp] = <p, Ajj j = A itself. 

Let P(I) be the power set of X. We define the expansion set S(A) of A as 

s(A) ={^jV2...JpKiiS J2, .... dp} eP(J)}. 
Example: For ,4 = 2, £(4) = {2}. 

For A = 22, ax = 4 , a2 = 16, a^ = 8, a2' = 32, 

A1 = 2 + a{ + a2 = 26, 

A2 = 2 + a-L + a2f = 38, 

A12 = 2 + a{ + a[ = 42, 

and S(A) = {22, 26, 38, 42}. 

The r-distant co-expansion set Tr(A) of A is defined as 

We construct a set of polynomials of the form F-1.2 ,p, where 
1"2 ' ' ' Jq 

1^2' ^2 ' "••5 'Z'p / Q-^5 L J j 5 J25 »»•, Ĵ rJ C X , 1 ^ { t p ^ 2 S »..» ^pJ 

and 
{-£ia i 2 , . . . , ip} n { j l S j 2 , . . . , j } = <?9 
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using the following recurrence relation: 

J 1 J 2 • • • 3q J±j2 ... Qq J-J 2 ' ' ' Jqip 
with 

where the /'s are the generator polynomials as given in Definition 2. 
It may be noted that if {jl5 j 2 , . .., jq] = <p3 then the polynomial is rep-

resented simply as F'Li'L2 • •• H , i.e., without a subscript. Moreover, the super-
script set {iij ̂ 2s ...s ip} can never be empty. 

Example: Let A = 22. Hence I = {1, 2}5 A1 = 26, 4 2 = 389 4 1 2 = 42, 

^ = (?A fA+2^ ~ (/i41 " ^ + 2 ^ = ^22 ~ flO "~ ^26 ~ A 8 ^ 

2 ~ ^38 ~ A ( r ~ ^ 4 2 ~ A 4 ' 

F 1 2 = F 1 - F } . ( / 2 2 - / z i t ) _ ( / 2 6 _ / 2 e ) - [ ( / 3 8 - A 0 ) - ( / , 2 - / „ , ) ] . 

In particular 5 the polynomials of the form Fz^z"° ZP will play an important 
role in proving the conjecture, as we shall see later on. The recursive compu-
tation of such polynomials can be visualized easily with the help of a binary 
tree. Consider, for example, the computation of F123, which is represented by 
the binary tree as shown in Figure 1. The leaf nodes represent the generator 
polynomials corresponding to different rows of the Pascal matrix and each of the 
non-leaf nodes represents the arithmetic subtraction operation. Some of the 
non-leaf nodes are labelled, e.g., F1, F\, F12, etc. The inorder traversal 
[6] of the subtree rooted at any labelled non-leaf node computes the polynomial 
denoted by that label. 

Let [at, £>t] be a closed interval of integers given by 

t t+ 1 
at = 2 + 2 E 4 J , Bt - 1 + E 4J, t > 0. (3) 

j = 0 j = 0 

Theorem 2: In a Pascal matrix of order n, where n lies within the closed in-
terval [at, 3t], as defined in (3), the 2t+l rows denoted by the expansion set 
S(A) and the 2-distant co-expansion set TZ(A) of the integer A as given in (1) 
are linearly dependent, i.e., the determinant of PMn for such values of n will 
be zero. 

Proof: 

Case 1. t = 0 

In this case, a0 = 4, 3o = 6, and A = 2. So S(A) = {2} and T2(A) = {4}. 
Since the order n of the Pascal matrix is limited by Bo = 6, we write 

f2 = 1 + x2(l + x2) and fh = (1 + x2) + xh . 
So 

f2 - A - °° 
Case g. t > 1 

To prove the linear dependence among the different rows of PMn9 it is suf-

ficient to show that any of the polynomials of the form F.1.2'" .p will be zero. 
J 1J 2 ' ' " 3 n 
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C-)Fi 

fA fA+2 fAl fAl + 2 fAz ?A2 + 2 fAl2
 fA12 + 2 fAi fA3 + 2 fA„ ^ i s + 2 f A „ . ^ 2 S + 2 ?A123 ^ 1 2 S + 2 

Figure 1 

Since the order n of PMn is limited by 3^, we write 

fA = (1 + xai)(l + a?a2) ... (1 + a**) 

+ 2^(1 + x2)(i + xah(i + xah "- (i + xah 
and 

/ ^ + 2 = (1 + x2)(l + xai) • . . (1 + xa*) + xA+2(l + xal) ••• 
Hence, 

^ " ^ + 2 = ~X2(1 + ^ a i ) ( 1 + ^ ' " ( 1 + * " * > 
+ ^ ( 1 + Xal) '" (1 + tfa*). 

S i m i l a r l y , 
f - fA + 2 = -x2(l + xahd +xa*) • •• (1 + a?aO 

+ xAi(l + # " 0 ( 1 + ^ 2 ' ) ••" (1 + xah • 

(1 + a;**)-

Hence, 

A l s o , 

and 

256 

F 1 = -x2xai(l - xa±)(l + xa*) • • • (1 + a;a*) 
+ #4(1 _ ^ i ) ( i + ara2) . . . (1 + x

al). 

F2 = ^ 2 fA2 + 2^ " ^ 1 2 " ^ 4 1 2 + 2 ^ 

= -^2^ai(i - ^ao(i + xaha + ^ao • •• (i + xa*) 
+ # ^ ( 1 - x a O ( l + xa*)(l + a;a3) . . . ( l + xah 

F12 = F1- F' 

= - ^ 2 x a i ^ a 2 ( l - xa*)(l - x a 2 ) ( i + ^ra3) . . . ( i + #«*) 

+ xA(l - xai)(l - xa*)(l + xah • • • (1 + ^ a * ) . 
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Continuing the process, we get 

F123...t = _x2+ai + a 2 + . . . + a t ( 1 _ x a l ) ( 1 _ ^ 2 ) _ ( 1 _ ^ a t ) 

+ xA(l - xai)(l - xa2) ... (1 - x
a*) = 0. Q.E.D. 

Let [yt9 5̂ -] be a closed interval of integers given by 

t t+i . 
yt = 4 + 4 E 4 J

9 6t = 2 £ 4 J , t > 0. (4) 
j = 0 j = 0 

Theorem 3"- In a Pascal matrix of order n5 where n lies within the closed in-
terval [yt, S^], as defined in (4)s the 2t+l rows denoted by the expansion set 
S(A) and the 6-distant co-expansion set T6(A) of the integer A as given in (2) 
are linearly dependents i.e., the determinant of PMn for such values of n will 
be zero. 

Proof: The proof is similar to that of Theorem 2 and is omitted here. 

Remarks: (1) yt = (3t + 2 and a t + 1 = St + 2. 

(2) For all t, t ^ 0, [a^, 3 t] 5 and[yt, 6fJ give two series of inter-
vals of orders of Pascal matrices having zero determinants. 

(3) In a Pascal matrix PMn, where n=$t+lor&t+l, £ > 0, the 
approach used in the proof of Theorem 2 fails to discover a set of linearly 
dependent rows. This can be seen as follows: 

If n = 3 ^ + 1» then we must consider terms up to x&t in the generator poly-
nomials of the rows of PMn. Since 3t = A + 4 t + 1 = A + at+ 15 t > 0, only the 
polynomial fA will have an added term (1 + x^*1) in its /^-part; all other 
polynomials, e.g., fA+2> fA » /^2+2' •••» etc., as given in the proof of Theo-
rem 2, will remain unaltered. Hence, F12^--^ will not be zero. The case for 
n = <5 + 1 can be similarly verified. 
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In this paper we extend some results on Fibonacci binary trees to Fibonacci 
k-ary trees, k ^ 2. The multinomial coefficients and higher-order Fibonacci 
numbers are used in our study. 

For any integer k ^ 2, let {F%, n ) 0} be a sequence of integers defined by 

F% = 0, F* = 1, for 1 < n < k9 
and 

Fn = Fn-1 + Fn-2 + • • ' + tf_ k . for n > k + 1. 

The sequence {F%, n ^ 0} is thus the ordinary Fibonacci sequence. For k ^ 3, 
the sequence {i*7 ,̂ n ̂  0} is different from the Fibonacci sequence {V*9 n > 0} 
of order ft, which is defined by 

7* = o, 7* = 1, 7* = 2n~2, for 2 < n < ft, 
and 

^ = ^-i + Kk-2 + ••• + #-*• for « > fc + 1. 

We also need the following integer sequence. For any integer k ^ 2 and 
1 < 77? < ft, let {F^,m

9 n > -ft} be a sequence defined by 

F*'m = 0, for n < 0, 

f̂e.m = 2n-i5 f o r x < n < W j 
and 

F*.* = Fk,m + Fk,m + ... + «*,* f o r n > 777 + 1. 

It is easy to see that, for any integer k ^ 1, the sequence {F^s l, n ̂  0} is 
precisely the Fibonacci sequence of order k9 i.e., F^' x = 7^. By induction, it 
can be shown that, for any k < n, 

A-* " Fn' 
7 7 7 = 1 

For any fixed k ^ 2 and n ^ 0, one can obtain multinomial coefficients 
cni> 0 ̂  j ̂  (ft - l)n + 1, by expanding the expression 

(1 + x + x2 + ••• + a;*"1)". 

and obtain the corresponding (generalized) Pascal triangle (see [4], [5], and 
[6]). For convenience, we set c%tj = 0, for j < -1 and j > (k - l)n + 2. For 
ft = 2, one has binary coefficients and the Pascal triangle. For k = 3, one has 
trinomial coefficients c^- and the corresponding generalized Pascal triangle, 
as shown in Figure 1. 

One can draw diagonals in the triangle, and see that the sums of numbers 
between parallel lines are precisely the 3rd-order Fibonacci numbers 7^, just 
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as in the case k = 2 [1, p. 245]. In general, by an argument similar to that 
in [1, p. 246], one has the following relation between Fibonacci numbers V* and 
multinomial coefficients c^ .: 

[n- n/k\ 
v: 

J=0 
"n-J, J5 

where [ J indicates the largest integer function., 

' 1 
6 

19 
hb 

3 
16 
51 

1 
10 
hS 

h 

30 
1 

15 

Figure 1. Generalized Pascal Triangle 

For any fixed integer k ^ 2, we now define the Fibonacci trees T% of order 
n, n > 1, inductively on n. For 1 < n < &, S7^ consists of only a root node. 
For n > /c + 1, T^ consists of a root node with fc ordered sons T^_l3 T%_2, ..., 
T%_ k from left to right. For k = 2, one has the ordinary Fibonacci trees [2]. 
For k = 3, one has the Fibonacci ternary trees. 

Figure 2. Fibonacci Ternary Trees 

In Figure 2, every terminal node of T\ is labelled by p, q9 or P. For each 
n > 5, the tree T^ can be obtained from T^_± by replacing all the labels r and 
q in ^ _ x by q and p, respectively, and replacing all the terminal nodes in 
T^_± with label p by ^ . This is a simple rule to grow a Fibonacci tree to a 
higher order,similar to that given in [3] for Fibonacci binary trees. One can 
also set a similar rule to grow the trees Ty\ with any fixed k ^ 3, where, in-
stead of using only three labels, k labels—p±9 p 9 ..., p — a r e needed. 
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For any k ^ 2, a k-ary tree is a tree with each internal node containing 
exactly k ordered sons. We now specify branch costs of a k-ary tree. We will 
assume that each left-most branch has unit cost 1, each second-to-the-left 
branch has cost 2, . .., and each right-most branch has cost k. The cost a^ of 
a node i, is the sum of costs of the branches from the root to this node. If 
the path from the root to a node has I branches, the node is said to be at 
level £. The average cost of a tree T is defined by 

m 

J = l 

where 77? is the number of terminal nodes in T 9 and the summation is over all the 
terminal nodes in T. As in the case k = 2 (see [2]), one can see that if a k-
ary tree has n internal nodes, then it has (k - l)ft + 1 terminal nodes. It is 
easy to verify the following lemma. 

Lemma 1: In a k-ary tree, let a^ be the cost of the terminal node %9 and let 
bj be the cost of the internal node J. Then 

(k- l)«+ 1 n 
E ai (k - 1) £ bd + nk(k + l)/2 

i = 1 3 = 1 
(fc - l)n + 1 (fc - l)n + 1 

As was stated in [7], one can construct an optimal k-ary tree in the sense 
of minimum average cost as follows: Suppose that an optimal k-ary tree with 
(k - I)(n - 1) + 1 terminal nodes is given. To obtain an optimal k-ary tree 
with (k - l)n + 1 terminal nodes, one can split a terminal node of minimum cost 
in T to produce k new terminal nodes. This can be verified by using Lemma 1, 
just as was done in the case k = 2 in [2]. 

It is obvious that each tree T% is a k-ary tree, and that it has F% termi-
nal nodes. As in the case k = 2 in [2], we have the following lemma. 

Lemma 2: Each Fibonacci tree T%9 n > k + 1, has exactly F^l^ terminal nodes of 
cost n - j, where l ^ j ^ k ^ n - 1 . 

Proof: The proof is by induction on n. The tree Tjjf+1 has k terminal nodes, and 
it has exactly 1 (= F^'3) terminal node of cost k + 1 - J, where 1 ̂  j < k. 
Now, we assume that the Lemma holds for all n9 k + 1 ̂  n ^ N9 where N > k + 1 
is a fixed integer. The tree T^+l has k subtrees T^ 9 T^_li ..., T$_ k+ l9 from 
left to right. The number of terminal nodes of cost N + 1 - j in T£is, for 
k > J > N + 1 - k9 

F t i + Fti-i+ • • • + FI'J' +1 = 2N~k-i+ 2N~k~2+... + 1 + 1 
2N~ k = Fk> J' 

N+ l - &' 

and for j < N + 1 - k9 the number i s 

Fk,j , Fk,j + . . . . vk, j _ Fk,3 
N-k N-k-1 N-2k+l rN+l~k' 

This completes the proof. 

With the branch costs specified as above, for any fixed k ^ 2, we have the 
following theorem. 
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Theorem 1: The average cost of a Fibonacci tree T^ of order n is 

= in - 1) + iu - DFti ' * • * , 

(« - 1) - L (J ~ Wn'A Fn ' n-k n' 

and i t i s op t imal among k-ary t r e e s for each n > fe + 1. 

Proof: By Lemma 2 , for n > k + 1, 

0 = 1 I 

= («- DZFtihn - i u - wtilFZ 
J = 1 / J = 1 / 

k 

I 
J = 2 

If k = 2 s one has 

82
n = (n - 1) - Fn2>_22/^ = <„ - 2) + (F2 - F^^/Fl = (« - 2) + ^ _ 2 / * £ , 

as was shown in Theorem 3 of [2]. 
For the second assertion, by the rule for constructing optimal fc-ary trees 

mentioned above, we need to show that, by splitting all the terminal nodes of 
cost (n - k) in T%% we can obtain T%+1. As in the proof in [2], we proceed by 
induction on n. The claim clearly holds for n = k + 1. We assume it holds for 
all n, fc+l<n</y-l, where N > /c + 2 is a fixed integer. Since the left-
most subtree of T^ is T^_ ,, by the induction hypothesis, after splitting all 
the terminal nodes of cost (21/ - k) in this subtree, we obtain T^ . A similar 
argument applies to all the remaining (k - 1) subtrees of T*. Therefore, the 
resulting tree has k ordered subtrees T^, T _ , ..., J^_ k + ^ and so it is TN+l. 
This completes the proof. 

Our next result generalizes a result in [3] which deals with the number of 
terminal nodes at each level of a Fibonacci tree. 

Theorem 2: At level I in a Fibonacci tree T*9 n > k + 1, there are c£ ,_ 
nodes with label p ^ and c\. u n . k ^ + c^_u n_k_^_l+ ••- + o\_u n_k_^[k_~^ 
nodes with label p. , 2 < J < k. 

Proof: The assertion holds for n = k + 1. We assume that it holds for some 
n > k + 1, and then prove it for n + 1. By hypothesis, there are 

°£- 1, n- k- £ + 1 

nodes with label p in Tn at level £ - 1, and 

C £ - 1, n-k- I u l - I, n-k- I- (k-2) 

nodes with label p2 in Tn at level £. Thus, the number of nodes with label p1 
in T^+1 at level I is 

•3 fc _L rk _i_ ... _L nk - nk 
l - l , n - k - l + l £ _ i j n _ f c _ £ I- 1, n-k-I- (k-2) $L,n+l-k-Z' 
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Similarly, one can compute the number of nodes with label p. , j > 2, in Tn+1 at 
level £. This completes the proof. 

One can see from Theorem 2 that the number of terminal nodes at level I in 
the tree T% is 

k 
3°<L- 1, n- 2k- l+j9 

«7 = 1 

and since T% has F* terminal nodes, 

n-k k 

E E 
1=13=1 

*„* = E E ii,,„_2M + i forn > k + 1. 

Finally, one can see that the trees T* and T% have average costs s% and s^, 
respectively. Since the characteristic equations of the recurrence relations 
for the sequences {Fn, n > 0} and {i^, J, n > 0} are the same, and have exactly 
one root x1 satisfying |a?i|>l, and since the coefficients of the nth power of 
X-L in the expressions of Fn and F^,J are clearly nonzero, the ratio F^i/F^ 
converges to a finite limit as n -*- °°. Using Theorem 1, one has the limit 

s^/s2 •> 1 as n -> oo. 

On the other hand, the trees T% and T% have i^ and F* terminal nodes, respec-
tively. For any k ^ 3, one has the limit 

F^/F2 -*• °o as n -> °°. 
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Our objective in this note is to introduce an interesting game of chance 
and show that, when the game is unfair, its expected value is (plus or minus) 
a Fibonacci number. We prove this in an elegant and unexpected way, with rami-
fications going beyond the Fibonacci numbers. 

1. THE GAME 

We assign five payoffs to the vertices of a pentagon. Three of these are 
$0, the remaining two are $2^ and $-2^, where N is a fixed positive integer 
(preferably large). A ball moves clockwise around the five positions, and 
where it stops determines the payoff. The ball is propelled by coin tossing. 
When a fair coin shows a head, the ball moves one position clockwise. When the 
coin shows a tail, the ball does not move. The coin is tossed N times. The 
distribution of the payoffs, the starting position of the ball, and the value 
of N are immaterial to the mathematics—the Fibonacci numbers are here no mat-
ter what. As for the gambler's fortune, that is another story. 

The expected value of the game is easily shown to have the form 

^ ( ( = / + , ) - ( * ' • , ) ) • « < ' • < « > • 
( i ) 

but these integers are not immediately recognizable as positive or negative, 
let alone Fibonacci numbers. 

2. GENERALIZED BINOMIAL COEFFICIENTS 

The following is a well-known identity (see,e.g., [1], Chap. 3, Prob. 29). 

(Sh + (Jh + GK + - + a K - ^ - (2) 
where {Fj}j^Q = {0, 1, 1, 2, . . . } is the Fibonacci sequence. There are several 
ways to prove (2), but here is a way which gets to the heart of the relation 
between the Fibonacci numbers and the binomial coefficients. Let 

W - '-< 
Observe that 

in + n* = F =F +F . = / . " Y + in-Y 
\ j j r2n+2 + j r2n+j+ I T L2n+j ' \ j + 1 j | j f 

(3) 

Except for the advanced, as opposed to retarded j-argument, (3) states the Pas-
(n)* cal recurrence for the coefficients < . > . Because of the close connection to 

w 
the binomial coefficients, there must be a precise statement relating the two. 

Leaving the particular choice of < . > values behind, but retaining recurrence 
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(5)9 below, this is 

(4) 

a formula [2] easily proved by induction on n (fixed v ^ 0 and -00 < i < +°°) . 
Setting <pl = i k \ and P = i = 0 in (4) yields (2). 

The lesson to be learned from this is two-fold. First, (4) depends only on 
the Pascal-like recurrence 

{VW3W,?.} (5) 

so (2) holds for any sequence satisfying the Fibonacci recurrence (e.g., the 
Lucas numbers). We are motivated to look for more generalized binomial coef-
ficients (gbc's) among the Fibonacci numbers, and find them easily: 

{;} could be Fa+n_., (-l)"+j2%_3n+j, 2' •n- j 
(-1)^-2* + i' 

(-Dn+JF„ m-n+j' A m+2n-j 0^7? ( — ] } ^ P 
5 m+3n+j' K J m-2n-j> 

Secondly, since the initial conditions 

are free for us to choose, rewriting (4) as 

gives us a single coefficient which computes entire binomial sums. 
Thus, the idea of a generalized binomial coefficient is itself worth gen-

eralizing. Let 

u, <-in'j} and o inf, , n e IN, j, k e z. 

To assure that the gbc's (•/ are well defined, we need only require 

(6) 

SUPl. {2} < +oo. 

3. THE GAME AND THE gbc's 

By answering some natural questions about how the coefficients < . >, . , 

and / . \ are related, we get immediate answers about the connection between the 

roulette-like game of Section 1 and the Fibonacci numbers. For example, what 
/ n \ type of recurrence do the \ • ) satisfy? Given 

ir\\ 
how do we recover < . >? The answers are in 

Theorem 1: Let ( .) denote the binomial coefficients, and < • > denote any coef-

ficients satisfying (5), n = 0, 1, ...; -°°  < j < +°°. With the convention 
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M]-<?>-
[ Yi\ / 7l\ 

. and ( . \ by (6). Then 

< " J 1 > - ^ . « - < 5 > - < j " i>-
(7) 

With Xn + 1 = supfc«£) +(kl 1 » ; 

{*} = (-Dn(]> + i:i(-l)k-12"-kXk; (8) 

s0GK-^>-(-1)Tr>+
fc?1<-1>k-l2B-V*- (9) 

Outline of Proof: A straightforward application of the definitions yields (7). 

To obtain (8), let SQ = 0 and 

I infJ - >, n even 

f sup^i y >, n odd, n > 0. 

It follows that Sn = |^}+ ("l)n+1(^) for all j, and 

Solving (10) gives 

Sn = t ^-Dk-12n-k\k 
k = l 

and (8). 

To obtain (9), substitute (8) with the appropriate indices in (4). • 

Here are the important consequences of Theorem 1: Relation (7) is an algo-

. \. Consideration of (1) shows that 

we will want to take 

...0 1 0 0 0 0 1 0 0 0 0 10... (11) 

as our initial row. Secondly, setting r = 0 in (9) and choosing i appropri-
ately, 

The implication is that to know the expected value of our game we need only 
/ 71 \ 

construct the array of gbc's ( . > with initial row (11). Here is where the 

Fibonacci numbers appear. 
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. . . 0 

. . . 0 

. . . 2 

. . . 0 

. . . 3 

. . . 5 

1 
0 
1 
2 
0 
8 

0 
1 
0 
3 
0 
5 

0 
1 
0 
2 
3 
0 

0 
1 
1 
0 
5 
0 

0 
0 
2 
0 
3 
5 

1 
0 
1 
2 
0 
8 

0 . . . 
1 . . . 
0 . . . 
3 . . . 
0 . . . 
5 . . . 

(13) 

A complete description of array (13) is the concern of 

Theorem 2: Array (13) consists of rows of repeating blocks 

which (modulo a shift) have the form 

Mn = (*",,+ !. *„. 0, 0, Fn). (H) 

Let i?^(#) denote the operator which shifts the elements of a vector k steps to 
the right with wraparound. Then, 

Bn = *2n(mod 5)Mn> * = ° > X> (15) 

Outline of Proof: The fact that the blocks have the form (bn9 an9 0, 0, an) , 
where eventually 0 < an < bn, is a simple observations as is the right-shifting 
action described by (15). 

The fact that the an and bn are the Fibonacci numbers follows from the 
basic recurrence (7). The latter implies 

^n + l ~~ ^n + an 

an+l ^n+1 an* 
(16) 

and (16) implies, in turns that bn+2 = bn + 1 + bn, ccn + 2 = &n + i + an' With the 
initial conditions, we have bn = Fn+1> an~ Fn, • 

Corollary: The expected value of the game of Section 1 is zero or (plus or 
minus) a Fibonacci number. 

Proof: Consider (12) in conjunction with (13), (14), (15). The difference of 
any two elements in (14) is zero or (plus or minus) a Fibonacci number. • 

k. EXTENSIONS 

A natural generalization of the game is to assign payoffs to the vertices 
of an n-gon and ask about the analogues of the Fibonacci numbers in this case. 
This question is addressed in [3], where we generalize results of Hoggatt and 
Alexanderson [4]. 
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1. We consider the situation of a light ray multiply reflected by a set of 
parallel glass plates in contact. The ray is assumed to be totally reflected 
or transmitted at any interface. A sequence is formed by considering the num-
ber of distinct ways a ray can be reflected n times before emerging. It is 
well known that this is the Fibonacci sequence if only two plates are present 
[1]. Several aspects of the general case for k plates have already been con-
sidered: Moser and Wyman [2] place a plane mirror behind the stack of plates, 
while Hoggatt and Junge [3] tackle the above situation. We will show how the 
enumerating matrices of [2] and [3] are related, and derive a procedure for 
evaluating the asymptotic form of the general sequence. In addition, some 
Fibonacci-like relations of the general sequence are shown. 

2. We will restrict ourselves to the cases of two and three plates in this 
section, with generalizations being obvious to k plates. A scheme for counting 
the reflections of a given order is shown in Diagrams 1 and 2. A string of 
digits is used to enumerate the labelled interfaces at which reflections occur. 

2 plates: (2, 3), (21, 31, 32), (212, 213, 312, 313, 323), ... (1) 

3 plates: (2, 3, 4), (21, 31, 32, 41, 42, 43), (212, 213, 224, ...) (2) 

1 
n *» J 
U ^ 1 

Q -*H 
6^D 

21 -*-
01 -*~ 

9 0 - * -
oA 

212^1 
9 1 Q ""*"" Z i o ^ 
3 1 2 ^ ; 
313^ 
323^1 

2 

HZZZ' 

3 

— ( * -
, — » -
—-**"• 

1 
o -H 

2 ^ 
3 ^ 
4 ^ : 

21 + 
3 1 •*-
32 — 
41 -*-
42 -*-
43 *+-

2 1 2 ^ = 
9 1 ^ ~*~ 

214 "*" 

2 

b - = = 

olZ^__ f — 

3 

= = = = = = 

1 

4 
—$*-

— • 

— • 

— • 

: — • 

— • -

— • 

s 

Diagram 1. Some of the 
labelled reflections from 
two sheets of glass. 

Diagram 2. Labelled reflections 
from three sheets of glass. 
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The reflections can now be shown without recourse to drawing them. All 
the reflections of a given order are placed in parentheses above. The number 
of reflections of a given order that end on the same final interface are now 
counted, and arranged in a sequence whose non-zero members are non-decreasing. 
The zeros arise, of-course, because the ray must finally pass out through the 
first or last face. 

The sequence that arises from (1) is: 

0,1, 1,0, 1,2,0,2,3,0,3,5,0,5,8,0,8,13,0,13,21,0,21,34,0, ..., 
(3) 

which is seen to contain the Fibonacci sequence. The sequence that arises from 
(2) is: 

0, 1,1, 1,0, 1,2, 3,0, 3, 5, 6,0, 6, 11, 14, 0, 14, 25, 31, 0, ... . (4) 

Wow, (3) is the sequence generated by the starting conditions: 

p0 = 0, vx = r2 = 1, (5) 

together with the recurrence relations: 

r 3n " 0 , r3n+1 = r3n_lt r3n+z = r 3 n _ x + r3n_2, for n > 1. (6) 

In t he same way, (4) i s produced by 

pQ = 0 , P 1 = r2 = P 3 = 1, (7) 

where 
y* = O y = y y = y 4- y 
1 kn u > kn+1 xi+n-l9 t n + 2 hn - 1 hn - 2 5 

P = P + y + r , for n ̂  1. (8) 
z4n+3 z t m - 1 ^ - 2 ^ - 3 ' 
Some simple sequence properties are now listed for the sequence (2). These 

are all readily proven from the definition (8): 

p3 + r7 + r13L + ••• + rhn+3 = r4n + 6 - 2; (10) 

^ 2 + 2 , 6 + ? 1 0 + • " + P 4 n + 2 = ^ n + 6 " r « m + 2 " ^ ( U > 

^r+n + P 4 n + 1 + J 5 4 n + 2 + Vhn+ 3 = P 2 ( L m + 3 ) + l ' ^ ' 

In e s t a b l i s h i n g ( 1 1 ) , t h e fo l lowing r e s u l t i s needed: 

rhn+B ~ Vhn+2 = P 4 n + 2 + Vhn - 3 ' ^ ' 

We can use these partial sums to give the sum of all the reflections up to or-
der n: 

kn 
E v = v + 2 • v - v - 2 . (14) 
^ = 1 

3. We consider the general case to obtain a procedure for evaluating terms 
like those on the right-hand side of (14). Note first that the non-zero terms 

1986] 269 



SEQUENCES GENERATED BY MULTIPLE REFLECTIONS 

in the sequence can be generated in the following matrix notation: 

' nk+l 

nk + 2 

r(n + l)k-l 

0 0 

0 0 

£(n-l)k+l 

r(n-l)k + 2 

rnk-l 

(15) 

Arn-i -AV0 (16) 

easily by induction, where rQ is the starting conditions column vector. As is 
pointed out in [2], this approach can only be made viable by making use of the 
eigenvalues (A) and their corresponding eigenvectors (u) as follows: 

Repeated application of A to the eigenvector u gives 

Au = Au, A2u = A2u, ..., Anu = Anu. (17) 

The solution of (16) follows on expressing r0 as a linear combination of the 
eigenvectors of A, However, [2] considers the case with the mirror, which in-
volves a different enumerating matrix. This means that all the reflections of 
odd order are unaffected by the mirror because they proceed to the left in any 
case, while a reflection of even order is added to the next odd order. The 
matrix that does this is A2, where A is defined as in (15). 

We now proceed to find the eigenvalues of A from the determinant of order 
k: 

Dk(X) = \A - Xl\ = 0. (18) 

Now, [3] provides the useful recurrence relation: 

Dk(X) = (2A2 - 1)^.2(A) - XhDk_k(X). (19) 

If we assume a solution to (18) of the form D^(X) =P , where P is a polynomial 
in A, independent of k9 then we find that 

where 
Dk(X) = cxak + a2bk + o3ak • (-1)^ + chbk • (-1)^, (20) 

t(((2A2 1) ± A)/2)1/2 = ±a, ±2>, 

where a is the root with the positive discriminant and b that with the nega-
tive discriminant, while 

(1 - 4A2)1/2. (21) 

The coefficients c (i = 1, 2, 3, 4), which are independent of k9 can be found 
using the four characteristic equations of lowest order, i.e., 

D0(X) = 1, D±(X) = -A + 1, D2(X) = A2 - A - 1, and 

D3(X) = A3 + 2A2 + A - 1, (22) 

as follows: 
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When k is even, 

Dk(X) = 0 = (c1 + c3)ak + (c2 + c^bk, (23) 

leading to 

(1 + 2X - A)/(l + 2X + A) = ((2A2 - 1 - A)/(2X2 - 1 + A)) k / 2 , (24) 

on making use of DQ(X) and D2(X). 
We can readily solve (24) on making the substitutions 

X = y sin 6 = t/(l + t2), where t = tan 6/2, (25) 

giving: 
±2ni\i 

t2k+1 = 1, with solutions t = e2k+K n = 0, 1, . .., k. (26) 

Hence, the eigenvalues are given by 

X = | sec(2ni\/2k + 1), n = 1, 2, . .. , k. (27) 

When k is odd, a similar argument leads to solving 

t2k+1 = -1, (28) 

giving the eigenvalues: 

X = | sec(2n + l)n/2k + 1. (29) 

We are now in a position to evaluate (16), which we will briefly show for 
the case k = 2: From (27), the eigenvalues are 

X = — sec 2TT/5 and X2 = y sec 4TT/5, 

with the corresponding eigenvectors 

( ! ) • ( . ' . ) • 

on w r i t i n g t = y sec 2TT/5. 

On 
find: 

expressing rQ = ( j in terms of the eigenvectors, and on using (16), we 

: • : : ) - " • ( ! ) - ^ • ' • - ' • ( i ) * ' H ^ « - " • ( - ' . ) = 3n + 2' 

fe > 2 values are best tackled numerically, as the algebra becomes excessive. 
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A RELATION FOR THE PRIME DISTRIBUTION FUNCTION 

PAUL S. BRUCKMAN 
4933 Papaya Drive, Fair Oaks, CA 95628 

(Submitted October 1984) 

In this paper, we obtain an interesting duality relationship between the 
prime distribution function (TT-function) and another, less well-known, number 
theoretic function. The domain of definition throughout is the set of natural 
numbers. 

We recall the definition of the 7T-function: 

71 (n) = 2 1' which counts the number of primes ^ n. (1) 
p< n 

Also, we recall the Mobius functions defined as follows: 

!

1, if n = 1; 
0, if n is divisible by a square (or higher power) /ON 

6 V (2) 

of a prime; 
(-1) , if n is the product of k distinct primes. 

We also indicate, without proof, a well-known relationship satisfied by the 
Mobius function: 

(1, n = 1, 
£ Mid) = 6ln = ̂  (3) 
d|n (0, TL + I, 
where the sum is taken over all divisors d of n. 

We now introduce another function X(n) which seeks to enumerate all powers 
of primes (including first powers) so that such powers are ^ n. We may count 
X(n) by letting k vary from 1,2, 3, ... and counting the acceptable klh powers 
of primes. For a given prime p, the inequality pk ^ n is equivalent to 

k<±^, log p 

and is satisfied by 

("log n\ . _ |~log n"| 
?C = 1. 2, 3, .... [ j ^ \ , i.e., for [ ^ J values. 

Summing over all p, we thus obtain: 

PV„Liog p] 

An alternative expression for X(n) can be obtained by noting that pk< n is 
equivalent to p < [n 1 ^ ]. The component of X(n) that counts all kth powers of 
primes thus counts all primes p < [n1/^], and must therefore equal Tr([n1/iZc]). 
Summing over all possible k, we therefore obtain the relationship: 

\(n) = £) T7([M1/"]). (5) 
fc = l 
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Note that the "infinite" series in (5) actually terminates since, for suf-
ficiently large k, [n1^] = 1 for all n9 and TT(1) = 0. 

The relationship in (5) may be inverted to yield an expression for Tr(n) in 
terms of A, valued at varying arguments. This expression is as follows: 

TT(n) = £ MimanM]). (6) 
k = i 

A comment similar to that following (5) applies here, too, since A(l) = 0 . 
To prove (6), we resort to a pair of seemingly unrelated lemmas. 

Lemma 1: Given positive integers m9 n, and rs let 

(I, if m\n; 
X(m\n) = ) 

(0, if m\n. 

Define r x r matrices A^ = (afn and B„ = (£>••) as follows: 

a$=x(il3); (8) 

bfj = X(i\j)uU/i), (i, j = 1, 2, 3, . . . , r). (9) 

Then 

ATBr = IT, i.e., Br = A'1. (10) 

Proof of Lemma 1: Let AFBr = Cr = (ofj). Then 

°%? =i^bf. = £ x(£\k)x(k\j)vU/k). 

Note that each term of this sum vanishes unless i\k\j9 i.e., unless i\j. Thus, 
c{r? = 0 if i \ j. Suppose now that i\j9 and let j = id. Then 

j'/i d 

c • = E x(ui\j)ViU/u£) = E xOM)yWA0 = E y(^i) = 5 u 
^ W - l M - l dx\d 

[using (3)]. Hence, 

^ (0, * * j. 

This is equivalent to L7P = Jr • Q.E.D. 

Lemma 2: Suppose n, a, and b are positive integers. Then 

[[nl/a] l/b] = [nl/ab]t (11) 

Proof of Lemma 2: Let u == [nl/a]. Since n1/a > 1, thus w > 1. Define the 
integer v ̂  2 by: 

1 < (z> - 1)*> < w < z;* - 1. 
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Since n 1 ^ < u + 1 < vb
9 thus nl/ab < v, which implies [n 1/ab ] < v - 1. How-

e v e r , v - 1 < uVb < (vb - i)i/z> < y5 w h i c h i m p i i e s [ui/b] = v _ 1 ; therefore, 

(12) [ni/«M < [ul'b]. 

On the other hand, nl/a > u => n1/ab > u1/b, which implies 

{nllab ] > [ul'b]. (13) 

It follows from (12) and (13) that 

[nl/ab] = [ u l / b ] s ( u ) 

which is equivalent to (11). Q.E.D. 

The proof of (6) follows. Let f(k) = i\([nl/k])9 g(k) = X([nl^k])9 assum-
ing n is given. Applying Lemma 2 and (5) indefinitely, with n replaced succes-
sively by [n 1 / p ] , r = 1, 2, 3, . . . , the following relationships are evident: 

9(r) = E /(**)> r = 1, 2, 3, . . . . (15) 
k = l 

Let us define the following vectors: 

f; = (/(l), f(2), ..., f(r)), g^ = (g-(l), g(2), .... ?(r)). (16) 

We may then transform (15) into matrix notation as follows: 

g r = Arfr. d 7 ) 

Multiplying both sides of (17) by 23p, as given in Lemma 1, yields the desired 
inversion formula: 

f* = BrgF. (18) 

Converting (18) back to scalar notation, we obtain: 

f(r) = £ v(k)g(rk). (19). 
k = i 

Wow, setting v - 1 in (19) yields the desired result in (6). Q.E.D. 

Lemma 1 is a very interesting result in its own right, and it provides the 
basis for the well-known technique of Mobius inversion, of which the dual rela-
tionships given in (5) and (6) are special cases. 

Note that (6) provides an explicit expression for the prime distribution 
function, which is an important step in one of the most celebrated of unsolved 
problems in number theory, namely the discovery of an explicit formula for the 
nth prime. Before giving vent to undue jubilation, however, it must be noted 
that the "explicit" expression given by (6) is in terms of another auxiliary 
number theoretic function, which is itself not readily found in terms of n. 
Therefore, the pair of relationships in (5) and (6) is apparently only of aca-
demic interest insofar as the great unsolved problem is concerned. It may come 
to pass, nevertheless, that some reader of this paper will find some use for 
these relationships toward the solution of this or other problem. 
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We conclude this paper with a brief table of the first few values of the 
two functions studied herein. 

n 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 

ir(n) 

0 
1 
2 
2 
3 

3 
4 
4 
4 
4 

5 
5 
6 
6 
6 

6 
7 
7 
8 
8 

8 
8 
9 
9 

A(n) 

0 
1 
2 
3 
4 

4 
5 
6 
7 
7 

8 
8 
9 
9 
9 

10 
11 
11 
12 
12 

12 
12 
13 
13 

•0*0* 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A* P. HILLMAN 

Assistant Editors 
GLORIA C. PADILLA and CHARLES R. WALL 

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS 
to DR. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solu-
tion or problem should be on a separate sheet (or sheets). Preference will be 
given to those typed with double spacing in the format used below. Solutions 
should be received within four months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 =Fn+l +Fn> ^ = 0 , ^ = 1 
and 

Ln + 2 = Ln+1 + Lrc' L0 = 2* Ll = la 

PROBLEMS PROPOSED IN THIS ISSUE 

B~57^ Proposed by Valentina Bakinovaf Rondout Valley, NY 

Let a1 9 a2s ... be defined by ax = 1 and ccn + 1 = [vsn], where s.n = a1 + a2 + 
••• + an and [x] is the integer with x - 1 < [x] < x. Find a l 0 Q , siQQ> aiooo9 

and s 1 0 0 Q . 

B"575 Proposed by L. A. G. Dresel, Reading, England 

Let Rn and Sn be sequences defined by given values RQ5 R19 SQ9 5X and the 
recurrence relations Rn + 1 = vRn + tRn_1 and Sn+1 = sSn + t5 n. l s where r, s, t 
are constants and n = 15 2, 3, ... . Show that 

(r + e) Z V ^ " - " = (*„+A + Rnsn+1) - fi^s, + Vi>-
fc = l 

B-576 Proposed by Herta T. Freitag, Roanoke, VA 

Let A = -^2^ + 3(4n + i) + (_1)m- Show that A is a product of three Fibonacci 
numbers for all positive integers m and n. 

B-577 Proposed by Herta T. Freitag, Roanoke, VA 

Let A be as in B-575. Show that 4,4/5 is a difference of squares of Fibo-
nacci numbers. 
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B-578 Proposed by Piero Filipponi, Fond. U. Bordoni, Roma, Italy 

It is known (Zeckendorf!s theorem) that every positive integer N can be 
represented as a finite sum of distinct nonconsecutive Fibonacci numbers and 
that this representation is unique. Let a = (1 + v5)/2 and [x] denote the 
greatest integer not exceeding x. Denote by f(N) the number of F-addends in 
the Zeckendorf representation for N. For positive integers n , prove that 
f([aFn]) = 1 if n is odd. 

B-579 Proposed by Piero Filipponi, Fond. U. Bordoni, Roma, Italy 

Using the notation of B-578, prove that f([oFn]) = n/2 when n is even. 

SOLUTIONS 

A Specific Fibonacci-Like Sequence 

B-550 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Show that the powers of -13 form a Fibonacci-like sequence modulo 181, that 
iss show that 

(-13)n+1 = (-13)n + (-U)"1'1 (mod 181) forn = l, 2, 3, ... . 

Solution by L. A. G. Dresel, University of Reading, England 

We have 

(-13)2 = 169 = -13 + 1 (mod 181), 

and multiplying by (-IS)71"1 we obtain 

(-13)n+1 = (-13)n + (-13)n_1 (mod 181) forn = 1, 2, 3, ... . 

Also solved by Paul S. Bruckman, Herta T. Freitag, C. Georghiou, Hans Kappus, 
L. Kuipers, Bob Prielipp, Helmut Prodinger, Heinz-Jurgen Seiffert, Sahib Singh, 
Lawrance Somer, J. Suck, Tad White, and the proposer. 

A Generalizat ion 

B-551 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Generalize on Problem B-550. 

Solution by Lawrence Somer, George Washington University, Washington, B.C. 

A generalization would be: Let p be an odd prime. Let a and b be integers. 
Let x be a nonzero residue modulo p. Then 

xn + 1 = axn + bx71"1 (mod p) for n = 1, 2, 3, .. . , 

if and only if x = (a ± Va2 + 4Z?)/2 (mod p), where Va2 + 4Z? is the least posi-
tive residue r such that r2 E a2 + 42? (mod p) if such a residue exists. This 
result is proved in [1], 
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Reference 

1. L. Somer. "The Fibonacci Group and a New Proof that Fp_,5/p) = 0 (mod p)." 
The Fibonaooi Quarterly 10, no, 4 (1972):345-348, 354/ 

Also solved by Paul S. Bruckman, L. A. G. Dresel, Herta T. Freitag, C. Georghiou, 
Hans Kappus, L* Kuipers, Bob Prielipp, Helmut Prodinger, Heinz-Jur gen Seiffert, 
Sahib Singh, J. Suck, Tad White, and the proposer. 

Permutations of 38765^3210 Divisible by 11 

B-552 Proposed by Philip L. Mana, Albuquerque, NM 

Let S be the set of integers n with 109 < n < 1010 and with each of the 
digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 appearing (exactly once) in n. 

(a) What is the smallest integer n is S with 11 |n? 
(b) What is the probability that 11 In for a randomly chosen n in SI 

Solution by L. A. G. Dresel, University of Reading, England 

Let us number the digit positions 1 to 10 from left to rights and let P1 
denote the set of odd-numbered positions and P2 the set of even-numbered posi-
tions. For a given n e S, let Q^ be the set of digits occupying P.̂ , and let 
q- be the sum of these digits, for £ = 1, 2. Since each of the digits 0 to 9 
appears exactly once in ns we have q1 + q2 = 456 But, for divisivility by 11, 
we require q. E ^ (mod 11), and therefore we must have q1 = 17 or q1 = 28. 

(a) Let us assume that the first three digits of the smallest integer n in 
S which is divisible by 11 are 1, 0, 2S in that order. Then Q1 contains the 
digits 1 and 2, and we find that q± = 28 is not achievable; furthermore, q± = 
17 implies that Q1 contains the digit 3 as well. Hence, the required smallest 
n is given by n = 1024375869. 

(b) Let us enumerate all the sets Vk of five distinct digits with a sum 
equal to 17. There are exactly 11 such sets, namely: 

0 1 2 5 9, 0 1 2 6 8, 0 1 3 4 9, 0 1 3 5 8, 0 1 3 6 7, 0 1 4 5 7, 

0 2 3 4 8, 0 2 3 5 7, 0 2 4 5 6, 1 2 3 4 7, 1 2 3 5 6. 

For each of these sets Vk (k = 1, 2, ..., 11), the remaining digits form a com-
plementary set Wjt with a sum equal to 28. In the case in which Vk contains the 
digit 0, there are 4 x 4 ! ways of placing the digits of Vk in P1, and 5! ways 
of placing the digits of Wk in P2, giving in all 4 x 4! x 5! different numbers 
of the form (Vk, Wk); but there are also 5! ways of placing Wk in P±, with 5! 
ways of placing Vk in P , giving a further 5! x 5! numbers of the form (Vk, Wk). 
Therefore, the total number of permutations of a particular pair Vk 9 Wk is 
9 x 4 ! x 5!, and we obtain the same result if the digit 0 is contained in Wk 
instead of Vk. Now, the total number of integers in S is given by 9 x 9!, and 
of these we have 11 x 9 x 4!x5! divisible by 11. Hence, the probability that 
11 |n is 11 x 4! x 5!/(9!) , which simplifies to 11/126, and is slightly less than 
1 in 11. 

Also solved by Paul S* Bruckman, L. Kuipers, J. Suck, Tad White, and the pro-
poser . 
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Lucas Summation 

In i 2YI\ 
Find a compact form for ]T f . j£2 . 

B-553 Proposed by D. L. Muench, St. John Fisher College, Rochester, NY 

In 

E 
i = 0 

Solution by C. Georghiou, University of Patras, Greece 
We have, for n > 0, with the help of the Binet formulas, 

2n /o^\ In 
E (2/k2

+ 1 = E (2
7")[«2i+2 + e2i+2 - 2(-n<] 

a 2 ( l + a 2 ) 2 n + 6 2 (1 + 3 2 ) ' 
a2(o 

= 5 % 

= a 2 ( a 5 1 / 2 ) 2 n + 3 2 ( 3 5 1 / 2 ) 2 n 

J2n + 2 * 

Also solved by Paul S. Bruckman, L. A. G. Dresel, Piero Filipponi, Herta T, 
Freitag, Hans Kappus, L. Kuipers, Graham Lord, Bob Prielipp, Helmut Prodinger, 
Heinz-Jurgen Seiffert, Sahib Singh, J. Suck, Tad White, and the proposer. 

Sum of Two Squares 

B-55^ Proposed by L. Cseh and I. Merenyi, Cluj, Romania 

For all n in Z+ = {l, 2, ...}, prove that there exist x and y in Z+ such 
that 

Solution by Graham Lord, Princeton, NJ 

Using the Binet formulas, we have 

(*V„-i + D(^„+i + 1) = (a*"'1 ~ i ^ ' 1 + /5)(a^+1 - b*n+1 + 75)/5 

= {a8n - 2(ab)hn + b8n + 2 - (a2 + b2)(ab)'ln'1 

- /5[(1 + a 2 ) ^ *" 1 - (1 + b2)^"-1] + 5}/5 

= (a1"1 - bl,n)2/5 

+ {2+3+ 5 + J5[a*n{a - b) + bhn(a - b)]}/5 

= F2 + L2 

hn 2n 
Also solved by Paul S. Bruckman, L. A. G. Dresel, Piero Filipponi, L. Kuipers, 
Bob Prielipp, Heinz-Jurgen Seiffert, Sahib Singh, J. Suck, Tad White, C. S. 
Yang & Ja F. Wang, and the proposers. 
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Sum of Three Squares 

B-555 Proposed by L. Cseh and J. Merenyi, Cluj, Romania 

For all n in Z+, prove that there exist x, y, and z in Z+ such that 

{F2n_x +4)(F2„+5 + 1) =*2 + y 2 + 32. 

Solution by Bob Prielipp, University of Wisconsin, Oshkosh, WI 

We shall show that: 

(1) {F2n_x + 4)(F2n+5 + 1) - F2
2n+2 + F2

+3 + (Ln+S - Fn_2)2 if n is even 

and 

(2) <*,„_, + 4)(F2rj+5 + 1) = F\n+2 + (3Fn + 2)2+ (Fn+2 + F n + 1 ) 2 if n is odd. 

[The results referred to below {I2hs i"i85 etc.) can be found on pages 56 and 59 
of Fibonacci and Lucas Numbers by VernerE. Hoggatt, Jr., Houghton-Mifflin Com-
pany, Boston, 1969.] 

We begin by establishing the following preliminary results. 

Lemma: F2n_1F2n+5 = F2
2n+2 + 4. 

Proof: F2n_1F2n+5 = F(2„ + 2)_3f(2n+2) + 3 = F2
2n+2 + F\ [by J19] = F2

2n+2 + 4. 

Corollary: {F2n_x + 4)(F2n+5 + 1) - F2
2n+Z + 4F2n+5 + F2n^ + 8. 

(1) It suffices to prove that 

^Fhk+5 + Fkk-1 + 8 = F2k+3 + (L2fc+3 ~ F2k-2^> ' 

F2fc+3 + (-L2k+3 ~ F2k-2^> = (-F2k+3 + F2k-2> ~ 2L2k+3F2k-2 + L2k+3 

= 5 P „ + 1 - 2(F,k+1 - 5) + (Lhk+e - 2) 
[by J 1 9 , I2h, and Iig, r e s p e c t i v e l y ] 

= 3F^k+1 + (3Fhk+5 +Fhk+h) + 8 

= « V k + 5
 + ( 3 F ^ + i - ^ k + s ) + 8 

= ^ f c + s - <*Vfc+3 " 3 ^ f e + i > + 8 

= ^ , k + 5 - (Fhk - Fhk+1) + 8 

4*V*+5 + *V*-i + 

(2) It suffices to prove that 

^ k + 3 + Fkk-3 + 8 " ( 3 ^ 2 k + l ) 2 + (?2fe + l + £ 2 * > 2 -
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OF2k+1)2 + (F2k+1 + Lzk)2 = 2(5F2
2k+1) + 2F2k+1L2k + h\k 

= 2 0 ^ + 2 + 2) + Z(Fkk+1 + 1) + (L,k + 2) 

[by I17, I 2 1 J and I15* r e s p e c t i v e l y ] 

= 2 £ ^ + 2 + Lhk + 2Fhk+1 + 8 

= 2(Fhk+3 + Fhk+1) + (Fhk + 2Fhk_1) 

+ 2Fhk+1 + 8 

= 2F,k+3 + ^ f c + i + ^ + 2*V*-i + 8 

= 3 ^ , + 3 + 2^k + 1 + 2 ^ _ x + 8 

= ^Fkk+3 " ( ^ f e + 2 "" *\fe + l ) + 2 i ^ & - l + 8 

= ^ + 3 + (^fc-1 - *V*-2> + 8 

= ^ f e + 3 + Fhk-3 + 8 ' 

.Also solved by Paul S. Bruckman, L. A. G. Dresel, Graham Lord, and the proposers. 
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Edited by 
RAYMOND E, WHITNEY 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, 
PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information 
that will assist the editor. To facilitate their consideration, all solutions 
should be submitted on separate signed sheets within two months after publica-
tion of the problems. 

PROBLEMS PROPOSED IN THSS ISSUE 

H-400 Proposed by Arne Fransen, Stockholm, Sweden 

For natural numbers h9 k3 with k odds and an irrational a in the Lucasian 
sequence Vkh = akh + a~kh- , define y, E Vkh . Put 

yk = ± c i 2 n + % 2 r + l \ withfe = 2n + 1. 
K r = 0 

Prove that the coefficients are given by 

1 for r = n3 

where J = minf p — ^ — L I- ^ ~ h v + 1) • 

Also, is there a simpler expression for c^"+1)? 

H-401 Proposed by Albert A. Mull in, Huntsville, AL 

It is well known that if n i 4 and the Fibonacci number Fn is prime then n 
is prime. 

(1) Prove or disprove the complementary result: If n f 8 and the Fibonacci 
number Fn is the product of two distinct primes then n is either prime or the 
product of two primes, in which case at least one prime factor of Fn is Fibo-
nacci, 

(2) Define the recursions un + 1 = FUn , u1 = Fm, m > 6. Prove or disprove 
that each sequence {un} represents only finitely many primes and finitely many 
products of two distinct primes, 

H-402 Proposed by Piero Filipponi, Rome, Italy 

A MATRIX GAME (fom the Italian TV serial Pentathlon) 

,(2n+ l) 
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Each element of a square matrix M of order 3 is entered with a symbol cho-
sen randomly (with probability 1/2) between two possible symbols (namely x and 
y). If M contains at least a row (or a column) entirely formed by x's or by 
z/fs, then one wins the game. 

Generalize to a matrix of order n and find the win probability. 

Remark: By inspection9 it is easily seen that 

P± = 1, P2 = 7/8, and P3 = 205/256. 

A computer experiment gave the following results: 

P3 = .801 

Pk = .637 

P5 = .483 

Pc = .325 
6 

P7 = .200 

P8 = .111 

P9 = .066 

P10 i .035 

The conjecture lim Pn = 0 immediately follows. 

SOLUTIONS 

Late Acknowledgment: c. Georghiou solved H-371• 

Somewhat Dependable 

H~377 Proposed by Lawrence Somer, Washington, D.C. 
(Vol. 22, no. 4, November 1984) 

Let {wn}n==Q be a k -order linear integral recurrence satisfying the recur-
sion relation 

Wn+k= aiWn+k-l+ a2Wn+k-2+ '•' + akWn • 

Let t be a fixed positive integer and d a fixed nonnegative integer. Show that 
the sequence {sn} = {^tn+ d)n = o also satisfies a ft -order linear integral re-
cursion relation 

Sn+k = a(l)sn+k-l+a(2)sn+k-2+ • " + 4*>s* " 

Show further that the coefficients a^ \ a^K ..., a ^ depend on £ but not on d» 
and that a^ can be chosen so that 

Sol 

uk 

ution by 

Let 

fix) 

= (-l)(k+1)(t + 

the proposer 

= xk - a #fc~ 

i) 

1 

a*. 

- a ,**-
-2 

" ^ - l * ( 1 ) 

be the characteristic polynomial corresponding to the recurrence {wn} with 
characteristic roots r±, r2, . . . , r^. By a classical result in the theory of 
finite differences, 
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k 
wn = £ (c-0)+ cf}n+ ••• + 4ra<-1)n(m*-1))r" (2) 

i-1 

where the ev" are complex constants. By (2), 

sn = Wnt+d = E ^i0> + 41)n + ••• + C
(m-1^m-l))rPt+d 

£ = 1 

= E (c(.0)r.d + c(.1}P^ + ... + c K - i y n K - l ) ) ^ ) \ (3) 
^ = 1 

Since the roots ri , 1 < £ < .&, satisfy a monic polynomial over the integers, 
it follows that all the algebraic conjugates of a fixed characteristic root re-
appear among the r^!s. It then follows that all the algebraic conjugates of 
vj appear among the tth powers of the characteristic roots. Thus,r*, rK . .., 
r* are the roots of a /cth-order integral monic polynomial 

g(x) = xk - a^x*-1 - • • • - a ^ ^ - a(^}, (4) 

It is evident that the root r/ of ̂ (x) appears with a multiplicity of at least 
m^ and that vP satisfies the kth-order linear integral recurrence 

hn+k- a[tX+k_1+a<£\+k_2+ ••• + afhn (5) 
for 1 < i < £:. It is known and easily verified that if l?™1 is a complex 
polynomial of degree at most m^ - 1, then the sequence {on} defined by 

^ = 1 

also satisfies the recursion relation given by (5). It thus follows.from (3) 
that {sn} = {wnt+d} also satisfies the same recursion relation. 

It follows from (4) that, for 1 < j < k, 

-aSP = E (-l)J'rt r* . . . rP , (6) 

where one sums over all indices ilS t2, . .., i • such that 

1 < i1 < i2 < • •• < i- < fc. 

Thus, the coefficients a^ , 1 < i < fc, clearly depend on t but not on d. 
Finally, it follows from (1) that 

-ak = (-Dkr1r2 . . . rk. (7) 

Thus, from (6) and (7), we see that 

a <*> = (-1)* + ̂ * eoe r* = (-l)**1^^ ... rk)* 

= H ) f e + 1 [(-l) HX] t = <-l)(fe+1)('+1)a*. 

We are now done. 

Also solved by P. Bruckman, L. Dreself and S. Papastavridis. 
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A Prime Result 

H-378 Proposed by M. Wachtel, Zurich, Switzerland 
(Vol. 22, no. 4, November 1984) 

For every positive integer x and y9 provided they are prime to each other9 
show that no integral divisor of x2 - 5y2 is congruent to 3 or 7, modulo 10. 

Solution by J. M. Metzger, Grand Forks, ND 

Let p be a prime divisor of x2 - 5y2. Now p is not a divisor of y for if 
so it divides x as well, contrary to the assumption that x and y are prime to 
each other. Since p does not divide y9 y has a multiplicative inverse, say 3, 
modulo p. So, from x2 - 5y2 = 0 (mod p), it follows that (xz)2 E 5 (mod p). 
Thus, 5 is a quadratic residue modulo p. Hence p = 2, 5 or p E ±1 (mod 10). 
Products of such primes can never be 3 or 7 modulo 10, and so x2 - 5y2 cannot 
have divisors congruent to 3 or 7 modulo 10. 

Also solved by P, Bruckman, L. Dresel, L. Kuipers, L. Somer, T. White, and the 
proposer. 

Sum Formula! 

H-379 Proposed by Andreas N. Philippou and Frosso S. Makri, 
University of Patras, Patras, Greece 
(Vol. 22, no. 4, November 1984) 

For each fixed integer k ̂  2, let {f^ } ^ = 0 be the Fibonacci sequence of 
order k [1]. Show that 

Reference 

1. A. N. Philippou & A. A. Muwafi* "Waiting for the kth Consecutive Success 
and the Fibonacci Sequence of Order K.!! The Fibonacci Quarterly 20, no. 1 
(1982):28~32. 

Solution by the proposers 

The problem is trivially true for n = 0. It suffices therefore to show it 
for n ̂  1. Denote by 5n and Ln, respectively, the number of successes and the 
length of the longest success run in n (^1) Bernoulli trials. It has been 
shown in [1] and [3] that 

'w.<*-ii*.-fl-Gr^0(-«'(":*x""ri) 
^.<*-'i».-«-(3)-,X...?..("C:::.+»:*)-

(1) 

(2) 
l = 0 « i , . . . , «fc 

where the inner sum is taken over all nonnegative Integers n19 .. ., n^ such 
that nx + 2n2 + *«* + fc^ = n - i and nx + ••• + n^ = n ~~ j. Relations (1) and 
(2) give 
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£ t s (V"Xk) - £ s <-Df(r ?xn - i+ ")• 
j = O t = 0 nla ...,nk \ nl9 . . . , nk / -£ = 0 j = 0 \ n - J /\ ^ / 

n1 + 2n2 + • • • + knk = n- i 
n1+ • • • + nk = n- j ( 3 ) 

Now l e t p = 1/2. Then, 
P t L » < f e - 1 ] = i X „ S „ ( M i + - + " k ) . by [2 ] , 

Z i = 0 nXi . . . , nk \ "is » • • * rtfr / 
n1 + 2 n 2 + • • •' + fenk = n - i 

-̂ ^ = 0 
(4) 

Moreover9 

P [L n < k - 1] = £ P[Ln <k - l,Sn= j] - Z P[Ln < fc - l | S n = J]P[SM = J ] 
j = o j = o 

2 j =0 i = 0 n2, ...,nk \ rLl9 . . . 9 nk / 
« ! + 2n2 + • • • + /cnk = w- i 

n 1 + - ' • + nk = n~ j 
The last three relations give 

e-ti«-»'("»:?)("-S + 1 ) . » > ' • ik\/n - j + l\ 
i = 0 j = 0 

which completes the proof of the problem, 

References 

1. E. J. Burr & G. Cane.. "Longest Run of Consecutive Observations Having a 
Special Attribute." Biometrika 48 (1961):461-465. 

2. A. N. Philippou & F. S. Makri. "Longest Success Runs and Fibonacci-Type 
Polynomials." The Fibonacci Quarterly 23, no. 4 (1985):338-346. 

3. A. M. Philippou & F. S. Makri. "Successes, Runs and Longest Runs." Sub-
mitted for publication, 

4. A. N. Philippou & A. A. Muwafi. "Waiting for the kth Consecutive Success 
and the Fibonacci Sequence of Order K." The Fibonacci Quarterly 20, no. 1 
(1982):28-32. 

Also solved by P. Bruckman, C« Georghiou, and S. Papastavridis. 

A Sparse Sequence 

H-380 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 
(Vol. 22, no. 4, November 1984) 

The sequence 1,4,5, 9, 13, 14, 16,25,29, 30, 36, 41, 49, 50, 54, 55, ... 
of squares and sums of consecutive squares appeared in Problem B-495. Show 
that this sequence has Schnirelmann density zero. 

Solution by Paul 5. Bruckman, Fair Oaks, CA 

Let S denote the given sequence. We may characterize S as the sequence of 
sums of the form 
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i + j - i 
q(i» J) = E ^2, i9 j > 1. 

k=i 
(1) 

Given n, let P(n) denote the number of pairs (i, j) such that q(i9j) < n. Then 
lim P(n)/n is the Schnirelmann density of 5, which we seek to prove is zero. 

Now ^(i, j) = q(l 5 £ + j - 1) - g(l, £ - 1); after some simplification, we 
find 

#(£* j) = j£(£ + J - 1) + ^(1, J - 1). (2) 

Assuming j fixed for the time being, we see from (2) that q(i9 j) ̂  n implies 
ji2 < n9 or i < (n/j)1/2; also, 

J3/3 <-| j(j + D(2j + 1) = (7(1, j) < q(i> j) < n, 

so j3/3 < n, or j < (3n)1/3. Therefore, 

P(w) < E (n/j)1/2
9 where TTZ = [(3n)1/3], 

j = i 

Now consider the sum 

(3) 

Z(f) = E k"1,2
9 where tf i s l a r g e . 

fc = i 

We see t h a t 

fc = l 
Z(« = N1/2 E (k/N)~1/2 N-1 N1/2 f x-

Jo 
1/2 d^ as N -> °°. 

Since 

thus 

x"1^2 db = 2x 1 /2 2, 
Jo 

Ztf) = 0(N1/2) a s tf •> 00. 

(4) 

(5) 

Return ing t o ( 3 ) , we see t h a t P(n) < Q(n), where 6(w) = 0 ( n 1 / 2 • w1 / 2) = 0 ( n 2 / 3 ) 
a s n -*- °°; hence 

P(n) = 0(n2/3) as n -> °°. 

Thus, P{n)/n = 0(n"1/3) = 0(n) as n -> 00. Q.E.D. 

Also solved by C. Georghiou and the proposer, 

SEND IN THOSE PROBLEM PROPOSALS NOW! 

•o#o# 
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