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MATRIX AND OTHER SUMMATION TECHNIQUES FOR PELL POLYNOMIALS 

BRO. J. M. MAHON 
Catholic College of Education, Sydney, Australia, 2154 

and 
A. F. HORADAM 

University of New England, Armidale, Australia, 2351 
(Submitted July 1984) 

1. INTRODUCTION 

Pell polynomials Pn(x) and Pell-Lucas polynomials Qn(x) are defined in [7], 
[9], and [10] by the recurrence relations 

and 
Pn+2(x) = 2xPn+1(x) + Pn(x), PQ(x) = 0, P1(x) = 1, 

Qn + 2(x) = 2xQn + 1(x) + Qn(x), Q0(x) = 2, Q1(x) = 2X, 

with integer n unrestricted. 
Equation (1.1) may be written in the form 

Pr(x) = {Pr + 1(x) -- Pr_1(x)}/2x. 

Binet forms are 

Pn(x) = (a" - 3n)/(a - 3) 
and 

» = a" + 6", 

(1.1) 

(1.2) 

(1.1)' 

(1.3) 

(1.4) 

where a and 3 are the roots of the characteristic equation of (1.1) and (1.2) 9 
namely, 

2xt 0 

so that 

a = x + Vx2 + 1 
with a + 

6 = x - /;r2 + 1 
2̂ 5 aft = -1, a 

(1.5) 

2Vx2 + 1. (1.6) 

Explicit summation representations for Pn (x) and §„(#), and relations among 
thems are established in [7]3 [9]5 and [10]. 

Emphasis in this paper will be given to matrix methods so we introduce the 
matrix P which generates Pell polynomials and many of their properties ([7], 
[9]). Historical information about the background of this matrix is provided 
in [9]. 

Let 
~2x l" 

(1.7) 
1 0 

so that, by inductions 
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pn = 
P n + 1 ^ 

In («) 
Hence 3 

~ P n + l ( * ) 

_Pn (x) _ 
= 

s o 

Pn(x) = [1 

pn 

Pn c x) 

P „ - ! < * > -

_G_ 

Q]pn-1 
1 

0 
. 

(1.8) 

(1.9) 

(1.10) 

From [7, (2.1)], we deduce 

3»<*> J 
_ pn 

2x 

2 
and 

QAx) [1 0]p* 
2x 

2 

(1.11) 

(1.12) 

Although some summation formulas for Pn(x) and Qn(x) are recorded in [7], 
it is thought desirable to investigate the summation problem more fully. Ini-
tially, some well-established techniques are utilized to produce simple summa-
tions. More complicated techniques are derived to achieve a higher degree of 
completeness. 

As an example of the usage of the matrix (and determinant) approach, we 
demonstrate the Simson formula for Pell polynomials., [7, (2.5)], namely, 

Pn+1ix)Pn_x{x) - P2
n(x) = (-1)\ 

which may, of course, be established by means of the Binet form (1.3). 
More generally in the first instance, consider 

(1 .13) 

Pn
20r) - Pn+r(x)Pn_r(x) 

Pn„r(x) Pn(x) 
(1 .14) 

Pr(x) P ^ C r ) 

o l 

pn -v 
1 

_0_ 

1 

\ 

Pv (x) P (x) 
1 r - 1 

1 Pr + 10«0 

0 Pr (x) 

pn 

. . . by ( 1 . 8 ) , [ 7 , ( 3 . 1 4 ) ] 

, by ( 1 . 9 ) , = ( -1)" Pi(x) 
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Putting r = 1 in this generalized Simson formula, we obtain the Pell-analogue 
(1.13) of the Simson formula for Fibonacci numbers. 

Because of its importance and subsequent use, we append the difference 
equation [7, (3.28)] 

Pmn+r(x' (1.15) 

and the Pell-Lucas analogue [7, (3.29)] 

A result needed in Section 8, which is not specifically given in [7], is 

which may be proved by using (1.3) and (1.4). 

2. SOME SUMMATION TECHNIQUES 

A. Consider the series of matrices [cf. (1.8)] 

(1 .17) 

Then 

whence 

A=I + P + PZ + 

PA = P + P z + Pd + 

+ P n ~ z + P ' 

+ P n - X + Pn, 

_1_ 
2x 

_1_ 
2x 

by (1 .8 ) 

Now 

(P - I)A = Pn - P 
A = ( P - P ) ™x ( P n - I) 

"l 1 1 p n + 1 ( ^ ) " 1 PnM 

_1 1 - 2^J [/«(*> P n - i W " 1J 

" P n + l ( a ? ) + P " ( X ) " X P * ( a ? ) + P » - l ( a ? ) "" l 

[Pn(x) + P ^ f r ) - 1 P n _ 2 ( * ) + ? „ . ! « + 2X - 1J 

"1 
E ^ W = [i o],4 

v =1 0 
, by ( 1 . 1 0 ) , 

Hence 
E P r W = (Pn+1(a?) +P»te) - Dl2x. 

V = 1 

B. Using t h e B ine t form ( 1 . 4 ) , we have 

t Qr(x) = t (^ + eo 
r = 1 ^ = 1 

(2 .1 ) 
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which3 with the application of the summation formula for a geometric series and 
the properties of a and 3s reduces to 

E «*.(*> = (en+i(^) + Qn(oo) - 2x - l)l2x. (2.2) 

Clearly, the matrix technique A could be used here also. 

C. Next, we use difference equations derived from the recurrence relation 
(1.1)j namely9 

2xP1(x) = P2(x) - PQ(x) 

2xP3(x) = Ph(x) - P2(x) 

2xP2n_1(x) = P2n(x) - P2n_2(x) 

whence, on addition and simplifications 

tP2r-1M = P2n(x)/2x. ( 2 . 3 ) 
r = 1 

Summation formulas fo r 

l P 2 P W 5 JlQ2r.1(oo)9 and ZQ2r(x) 
r =1 r = 1 r = 1 

are given in [9], as indeed are (2.1), (2.2), and (2.3). 

D. Fourthly, we utilize an extension of technique C. In this method, our aim 
is to find sums of series of Pell polynomials with subscripts in arithmetic 
progression. 

Let 

^1 ~ L, Pim (x) > S2 - L ^im-lW^ 
i = l i = l 

.^ Pim - 2 ̂  5 ' ' • s Sm ~ E Pim- (m - 1 ) ^ " (2.4) 
i = l 

Then, the set of equations connecting the members of {S^} in (2.4) may be 
shown to be: 

2xS1 + S2 

-S1 + 2xS2 + S3 

-S2 + 2xS3 + S^ 

= 0 

= 0 

Sm _ 2 + 2xSm _ i + S n 0 

S, -^-1+ 2^m =P
mW " W 

(2.5) 

Next, write: 
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2x 
-1 
0 

*i = $» 

1 
2x 
-1 
0 s, 

0 
1 

2x 
-1 
0 

' $m ~ 

&-• 

Prjn + 1(x) - P±(x) 
0 
0 

*»*(*> - Po^> 

where ^ and ̂ are m x 1 matrices. 
Denote by e^- the element in the ith row of <^ 
Matrices in (2,6) are then defined by: 

1 
2x 

(2.6) 

-t, f + I 
5t - l.i 

= 2a: 
= - 1 
= 1 
= 1 
= - 1 

fo r 

for 
fo r 

i = 1, 

i = 1, 
i = 2 , 

2 , . 

2 , . 
3 , . 

.., m 

. . s 777 

. . , 777 

0 otherwise. 

(2.6)' 

All the entries in Ĵ , except those in the first and last rows, are zero. 
Write 

*w(*) = ^ i : 4 : (2.7) 

,(£) Designate by ijim (x) the determinant obtained from tym(x) in (2.7) by replac-
ing the i th column by «̂" in (2.6). 

Cramer's Rule then gives the solution of the system of equations (2.5) as 

S- = . ' , . (2.8) 

Comparing this result with (2.10) below leads us to the identity [compare 
(3.15, (3.16)] 

ipm(x) = Qm(x) - 1 + (-l)m + \ (2.9) 

which may be proved by induction. 

One may use whichever of the above techniques, A-D, is most appropriate to 
the occasion. 

This brief illustration of four simple techniques is by no means exhaus-
tive. Other methods will be suggested later. 
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s 

T P 
v =1 

i m i l a r l y 5 

r = 1 

k(x) 

k(x) 

— 

= 

More generally9 let 

&=Pm+k(x) + P2m+k(x) +P3m+k(x) + ••• +Pm+k(x). 

:. -Qm(x)0>= -Qm(x}Pm+k(x) - Qm(x)P2m+k(x) - QJx)P3m+k(x) - ... 

(_1)^= (-DmPm+k+ (-DmP2m+k(x) + (-l)mP3m+k(x) + ... 
• •• + ( - l ) m p m + , ( x ) . 

Add and use equation (1*15) to obtain, with care, 

i-lflP^^ix) - Pk(x)} - iPm(n+1) + k(x)- Pm+k(x)} 

i-Qm(x) + (-ir \ 2 A 0 ) 

i - Qm(x) + c - i r ' ( 2 > 1 1 ) 

Results (2.10) and (2,11) could be obtained laboriously by other means, 
e.g., by using the Binet form or the matrix P. 

Various specializations of (2.10) and (2.11) appearing in [9] are of inter-
est, as, e.g., 

ZP3r(x) = {P3n + 3(x) + P3n(x) - P3(x)}/Q3(x). (2.12) 
V = 1 

Several interesting simplifications arise when, m = 4a and m = 4a+ 2, e.g., 
after manipulation, 

tphar+kix) =P2ain+1) + k(x)P2an(x)/PZa(x). (2.13) 
T =1 

Details are given in [9]. 

3. DETERMINANTAL GENERATION 

Following the ideas and notation in [7], let us define the determinants of 
order n below, where d • • is the entry in row £ and column j % 

A n , m W : 
d7;7; = Qm(x) i = 1, 2, . . ., n 

(3.1) di,i + i = 1 £ = 1,2, ..., n - 1 
di,i-i = (~l)m i = 2, ..., n 
dij = 0 otherwise. 

<5niTn(x) : as for l\n^m(x) except that diii + 1 = ~15 di^_1 = -(-1) . (3«2) 

A5! m(a0 : as tor l^n^m (x) except that d12 = 2. (3.3) 

6*>m(x) : as for 6n>m(x) except that d12 = -2. (3.4) 
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Using the method of induction, we can establish that 

An,„(*) = P ( n + 1 ) ^ ) / ^ ) ' (3.5) 

When m = 1, (3.5) becomes equation (5.5) in [7]. For m = k + 1, we use 
equation (1.15) to validate (3.5). 

Similarly, we demonstrate with the aid of (1.16) that 

and 

In a similar vein, we may show that 

Suitable expansion down columns or along rows yields: 

A„>m(x) = Qm(x)An_ltm(x) + (-1)" ]f! - 2, m (x) ; 

Sn>m(x) = Qm(x)Sn-ltm(x) + (-Dra+16n.2>m(x); 

A*,m(*) „(x)A*n_ (x) + (-1) m + l A * xn - 2, m (x) 

= Qm(x)kn_1>m{x) + 2(-l)m+1An-2,mW; 

,(x) = Qm(x)6*n.1,m(x) + (-l)m+16*_2>m(x) 

= Qm(x)Sn.1,n(x) + 2(-l)m+16n.2,m(x). 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Putting m = 1 in (3.5)-(3.8), and in (3.9) and (3.11), we readily obtain 
the equations (5.5)-(5.8), and (5.9) and (5.10), respectively, in [7]. More-
over, A„sl(l) = 6„;1(1) = Pn + 1 and A*n>1(l) = 6*,i(l) = Qn, where Pn + 1 and Q„ 
are Pell numbers and Pell-Lucas numbers, respectively, occurring when x = 1. 

Variations, though small, of the determinants (3.1)-(3.4) above and of their 
specializations when m = 1, as given in [7], are used in [9] to obtain (3.5)-
(3.12). Mahon, in [9], conceived these determinants with some complex entries 
as extensions of a determinant utilized in [2] and [8]. 

Next, consider the determinant w„jW(x) of order n defined by 

M n , » W 

dii = QmW 
di3 i +i = -1 
di,i-i = - ( - D * 
dnl = (-Dm 

dln = 1 
di, = 0 

i = 1, 2 , . 
i = 1, 2 , . 
i = 2 , 3 , . 

o t h e r w i s e . 

. . n 

. . , n 

. . , n (3.13) 

Careful evaluation of this determinant, with appeal to (3.8) and (3.12) 
gives us 

^nim(x) }(x) + ( - i r + (-n m(n- 1) 

In particular, when m = 1, and writing (x)n(x) - oonjl(x), we get: 

u)n(x) = «„(*) - 1 + (-l)n + 1; 

(3.14) 

(3.15) 
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(^2n_1(x) = Qln.1{x)i (3.16) 

^„G*0 = 4(x2 + l)P2
n(x), by equation (2.18) in [7]; (3.17) 

^n+2(a?) = Qln+1te); (3.18) 

where, to obtain (3.18), we may use result (3.25) in [7] in which n and r are 
both replaced by In + 1 [Q0(x) = 2]. 

Observe that -d)n(x) in (3.15) is precisely the form of the denominator in 
(2.10) and (2.11). [Cf. (2.9).] Indeed, it was in this context that the need 
to investigate the determinants b}n(x) arose. 

k. ALTERNATING AND RELATED SERIES 

To avoid tedium and to save some space, we will as a rule hereafter merely 
give the results of the more important summations which we desire to record. 
Some of the proofs are quite difficult. 

X>PrGr) = [nxPn+1(x) + {(n - l)x - l}Pn(x) - Pn_1(x) + l]/2^2. (4.1) 
r= 1 

Proving this is straightforward. From (1.1)', we have 

2xP1(x) = P2(x) - PQ(x). 

Multiply this by 2, 3, ..., n in turn, add, and use (2.1). Then (4.1) results. 
Similarly, we establish 

Y,rQp(x) = [nxQn+1(x) + {(n - l)x - l}Qn(x) - Qn_1(x) + 2]/2x2; (4.2) 
r=l 

£ (-l)rrPr(x) = [(-l)nnxPn + 1(x) + (-l)n-1Pn(x){(n - l)x + 1} 

+ (-l)nPn_1(x)-l]/2x2; (4.3) 

E(-lVrQr(x) = [(-DnnxQn + 1(x) + {-l)n'1Qn(x){ (n - l)x + 1} 

+ ( - l ) X - ] > ) " « i W + Q0(x)d + x)]/2x2. ( 4 . 4 ) 

More g e n e r a l l y , suppose we w r i t e 

F(n, x, y) = £ Pmr+k(x)yr ( 4 .5 ) 
r=l 

and 
G(n, x, y) = Y.Qmr+k{x)yr. ( 4 . 6 ) 

r= 1 

Now use (1.15) and (1.16) for Pm+k(x) 9 Plm+k(x), .B.sPrm + k(x) and Qm + k(x) , 
Qim + k ^ ' —" Qmn + k(x)9

 a d d a n d obtain explicit expressions for F(n, x, y) and 
G(n, x, y) • Details of these calculations are left to the reader. If we then 
put y = 1, we derive formulas for 

n n 
(x) and T.Qm.+ kix). 
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On the other hand, y = -1 leads to formulas for 

E C - D ^ ^ O c ) and ±(-lfQm+k(x). 
v = 1 r = 1 

Differentiating with respect to y in (4.5) and (4.6) gives 

r = 1 

E ^ + i W = G'(n, x, 1), (4.8) 
r= 1 
£(-l)p-1rPm,+ ,,(x) = F'(n, x, -1), (4.9) 
r= 1 

t(-l)r'1rQmr+k(x) = G'(n, x, -1), (4.10) 
P= 1 

in which the prime denotes the derivative with respect to y. When m = 1, /c = 
0 in (4.7)-(4.1Q), (4.1)-(4.4) occur. 

Next, consider P1(x) = {'P2(x) - P0(x)}/2x from the recurrence (1.1)'. Mul-
tiply this equation by 22, 32, . .., n2 in turn, add, and use (4.1). Then 

X>2Pp(x) = [2n2x2Pn+1(x) + 2(n - l)x{(n - l)x - 2}Pn(x) 

- 4{(n - 2)x - l}Pn_1(x) + ^Pn_2(x) - 4]/4x3. (4.11) 

Similarly, 

E ^ P ( X ) = [2n2x2Qn+1(x) + 2(n - l)x{(n - l)x - 2}Qn(x) 

- 4{(n - 2)x - l}Qn_1(x) + hQn_2(x) - kx2 - 8]/4^3, (4.12) 

Y,(~l)rr2Pr(x) = [(-l)n2x2n2Pn+1(x) + {-l)n-12x(n - l)Pn(x){x(n - 1) + 2} 

+ 4(-l)n"2Pn_1(^){l+ (n- 2)x] + 4(-l)n"1Pn_2(x) -4]/4;c3, 

(4.13) 

E(-l)Pp2^p(^) = i(-l)n2x2n2Qn + 1(x)+ (-l)n~12x(n - l)Qn(x){x(n - 1) + 2} 

+ 4(-l)n-2^_1(x){l+ (n - 2)x] + ^(-l)n~1Qn_2(x) 

+ 4x2 + S]/^x\ (4.14) 

Other methods for obtaining the above results in this section are avail-
able, for example the difference equation technique employed in [9], although 
this involves a great deal of complicated algebraic manipulation. Of the vari-
ous approaches open to us for obtaining the summations, perhaps the most power-
ful and most appealing procedure is that using difference equations. Indeed, 
by employing one such difference equation, Mahon [9] has found formulas involv-
ing the generalized summations 

irtPmp^k{x) and £>*«„„.+ *<*), 
T= 1 P= 1 

but the results are not a pretty sight!. 
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To give a flavor for these difference equationss we record one used in the 
construction of the formula (4oil) by this methods namelys 

(r + D2Pm(r + 1) + ,(*) - QJx)r%r+k(x) + (-l)m (r - 1) 2Pm(r_ x) + k(x) 
= 2rPm(x)Q^+k(x) + Qm(x)Pm, + k(x). 

Many similar complicated results are given in [9]. 
To conclude this section, we append some sums of cubes of Pn(x) and Q (x) 

obtained with the aid of the Binet formulas (1.3) and (1.4). 

l P r
3 W = [?3n+30c) +

 p
3nW - 3(4x2 + 3){(-l)n(Pn+1(x) - Pn(x)} 

+ 8(x2 + l)]/4(x2 + l)«3(x). (4.16) 

Y.Ql(x) = [Q3n+3(x) + Q3n(x) - Q3(x) - Q0(x) + 3(4x2 + 3){(-!)"Qn + 1(x) 
r =1 

2n(a0) - «x(x) + Q0(x)}]/Q3(x). (4.17) 

L(-l)rP^(x) = [(-l)*{P3n+3(x) - P3n(x)} - P3(x) - 3(4x2 + 3){Pn+1(x) 

+ Pn(x) - l}]/4(x2 + l)S3(x). (4.18) 

Y.(-DrQl(x) = [(-l)"{«3„+3(x) - Q3n(x)} - [Q3(x) - «0(x)} 

+ 3(4x2 + 3){«n+1(a0 + Qn(x) - Q1(x) - Q0(x)}]/Q3(x). 

(4.19) 

5. SERIES OF SQUARES AND PRODUCTS OF Pn(x) AND Qn{x) 

Multiply both sides of (1.1)' by Pr(x) and add. Then 

LP2(x) = Pn + 1(x)Pn(x)/2x. (5.1) 
p = 1 

Similarly, 

E G * (*) = {Qn+1(x)Qn(x) - te}/2x. (5.2) ? 2 i 

r = 1 

Again9 in this developments the method of difference equations has general 
applicability* For instance, after much algebraic maneuvering, one can obtain 
the difference equation appropriate to (5.1), namely5 

P*+1(x) - (Ux2 + 2)P2(x) +P*_1(x) = 2(-l)n. (5.1a) 

More generallys difference equations can be applied to find formulas for 

n n 
T*p^+k(x) and JlQ2

mr+k(x)a v=1 r=1 

For the former summations for instances the difference equation is 

PmV + l) + ̂  - QZm(^Prnr+k(^ +3,%-!) + *<*) = 2Pm2(x)(-l)^+fe, (5.1b) 
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which reduces to the simpler form (5.1a) when m = 1, k = 0 (and r is replaced 
by n) . 

If we multiply both sides of (1.1) by Pr_1(x) and add, then, by Simson's 
formula (1.14) , 

Y.Pr_1{x)Pr(x) = {P2(x) - h(l - (-l)n)}/2ar. (5.3) 

Similarly, 

t.QT.1{x)Qr(x) = {Q2(x) - 4 + 2(x2 + 1)(1 - (-l)n)}/2x. (5.4) 
P= 1 

Alternating series may be summed using (1.1)'. First, write 

D = £ (-l'fP^(x), E = Z (-l)r_1^ Ax)Pr(x). 
r=l r=l v x 

Then, multiplying both sides of (1.1) f by (-l)pPr (x) and adding gives 

2xD - IE = (-l)nPn(x)Pn+1(x) (i). 

Next, multiplying both sides of (1.1)' by (~l)r~1Pr_ (x) and adding gives 

2D + 2xE = (~l)nP*(x) - n (ii) . 

Solve (i) and (ii), and use (2.1) and (2.3) in [7] to obtain 

E (-ifP^x) = {(-l)nQn + 1(x)Pn(x) - 2w}/4(*2 + 1) (5.5) 

and 

£ (-Dr-1Pr.1(x)Pr(x) = {(-l)n+1P2n(x) - 2nx}/h(x2 + 1). (5.6) 
P= 1 

Similarly, 

t(-DrQ2
r(x) = (-l)nQ(x)Pn+ (x) + 2(w - 1) (5.7) 

r = 1 
and 

£,(.-lV-1QP_Ax)Q(x) = 2nx + (-1)™+1P, (x). (5.8) 
r= 1 n 

Now multiply both sides of (1.1)' by (-1) rPr(x) and sum. Write 

D, = E ( - 1 ) P ^ and E. = L ( - 1 ) P ( 2 P - 1)P, _ (^P^fe) . 
-1- r = 1 r = l 

Then 

2x2}, + tf, = n(-l)nPn(x)Pn+1(x) (iii), 

W± - 2xE1 = (-l)"(2w + l)P* (a?) - n2 (iv), 

where, in (iv), we have multiplied both sides of (1.1)' by 

(-l)r'-1(2r - DPp_Ax) 

and summed. 
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Solve (iii) and (iv) to obtain 

£(-l)rrP*0r) = [(-DnPn(x){nQn + 1(x) + Pn(x)} - n2]/Mx2 + 1) (5.9) 

and 

E ( - D P " 1 ( 2 P - l)Pr_1(x)Pr(x) = [2(-l)nPn(x)(xPn(x) - nQn(x)) 

- 2n2x]/^(xz + 1). (5.10) 
Similarly, 

t(-DrrQ2
r(x) = (-Dn[nQn(x)Pn+1(x) + P2 (x) ] + n2 (5.11) 

Y,(-l)r-l(2r - l)Qp_1(x)Qr(x) = 2(-lfPn(x)[xPn(x) - nQn(x)] + 2n2x. 
V = 1 

(5.12) 
Formulas for 

t(-irP^ + kM and ± ( - i y Q l + k(x) 
r=1 r= 1 

may be established by employing appropriate difference equations, e.g., (5.1b) 
in the first case. 

6. COMBINATORIAL SUMMATION IDENTITIES FOR Pn(x) AND Qn(x) 

Binomial coefficient factors associated with summations involving Pn (x) and 
Qn(x) may be introduced to yield some useful formulas. The techniques for de-
riving these formulas are varied. Some approaches are indicated below. 

Binet formulas (1.3) and (1.4) may be used to derive the following, for 
which proofs may be found in [9]" 

k 
In 

z 
k = 0 

In Lo(2%+ yk+j(x) = 4 - V 2 + i r - P 2 n + 2 , + 1 ( x ) . (6.4) 

A considerable number of combinatorial identities relating to Pn(x) and 
Qn(x) may be determined. Among these are the general explicit expressions 
(developments of ideas for Fibonacci numbers in [8]—see also [3]). 

P„W = j ^ V l ) ^ - 1 ^ " I ~ y^-^ixAPrix) (6.5) 

«TO<*> = T C - D ^ ^ T T ^ X C ~k
 kYi2k^> « * o- (6-6) 

Proofs of (6.5) and (6.6) are by the method of mathematical induction. 
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Putting r = 1 in (6.5) and (6.6), we deduce the explicit expressions for 
Pn(x) and Qn(x) given in [7] as equations (2.15) and (2.16), respectively. 
Other summation formulas for Pn(x) are given in [9], where, further, combina-
torial expressions are obtained for P(2i + 1)r+k(x) -> P2ir+k(x^> ®{2i+ i)r+ lSx^ ' a n d 
®2ir + k (X^ ' 

Bergum and Hoggatt, in [1], found expressions for sums of numbers of recur-
rence sequences as products of these sequences. It is possible to apply their 
methods to polynomials. 

Two examples of this type of result are herewith given, while many others 
are derived in [9]. 

toP„ + ltkiW =Pn+2(2J-m(x)J}1
Q2<k(x) (k>D- (6.7) 

ioQn+C2i.1)k(x) = Qn+2(2J-K1)k(x^TloQ2ik(x) (?C even). (6.8) 

To establish (6.7), we need equation (3.22) in [7], whereas (6.8) requires 
(3.23) in [7] together with the result for Qn(x) corresponding to (6.7) for 
Pn(x), namely, (6.7) with Pn(x) replaced by Qn(x). 

7. MATRIX SUMMATION METHODS 

In Section 1, the matrix P was used to obtain sums of series in which the 
terms contain Pell polynomials of degree one. Since the particular methods 
employed there were not especially convenient, we turn our attention to a more 
fruitful matrix approach, developing an idea expounded in [6]. Applying the 
Cayley-Hamilton theorem to the matrix P in (1.7), we have 

P2 = 2xP + I (7.1) 
whence 

P2n + j = (2xP + I)nPj. (7.2) 

Equating appropriate elements on both sides with the aid of (1.8)., we ob-
tain the combinatorial summations 

P2n + j(x) = t (") (2x)rPr + j(x) [2x = P2(x)] (7.3) 
r = 0 ̂  ' 

P2n+1 + d(x) = E(;)(2a:)rP, + 1 + i(x). (7.4) 

p = 0 
and 

r = 0 

Post-multiplying both sides of (7.2) by the column vector [2x 2] (the 
transpose of the corresponding row vector), and appealing to (1.11), we find, 
on equating appropriate elements, that 

e 2 r + <7-(*) = t (n
r)(2xfQr + j(xy (7-5) 

r = 0 ^ ' 

e2 n + 1 + /*> = t (^)(2x)^r + 1 + . ( x ) . (7 .6 ) 

p = 0 
and 

r = o 

Next , c o n s i d e r 
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In 

p = 0 

Since 

(7.7) 

E (2^)Q2k + r(x) = 22ntx* + irQ2n + r(x). (7.8) 

£ ('£)P2* + 1' = P^(p2 + J)2n 

= Pr{2(xP + I)}2n by (7.1) 

= 22nPr(x2P2 + 2xP + I)n 

- 2Zn(x2 + l)nP2n + r by (7.1) again, 

whence 

E ( ^ K w 0*0 = 22n(x2 + l)nP Or). 
k = 0 x ' 

Likewise, from (1.11), 

In 

E 
k = 0 

Similarly, 
E 2K £ > 2 k + r(*> = 22"(x2 + D ^ 2 n + r + 1(x) (7.9) 

and 
2 E + 1 ( 2 n

k
+ > 2 f c + r ^ ) = 22M + 2 ( ^ 2 + Dn+1P2n + r+1(x). (7.10) 

From (7.1) it follows, since P 2(x) = 2#, P3 Or) = kx1 + 1, that 

P3 = P30c)P + P 2 W J , (7.11) 

whence, after calculation, 

p3n+dw = E (")prp^)pr^)pn-r+^)- <7-i2> 

(7.13) p3n+J'[?] = r E o (r ) p r r ^) p
2 ^) p n " + 

Note in (7.12.) and (7.14) the emergence of extra terms in the summation, a 
fact which was hidden in (7.3) and (7.5) by P^ix) = 1. 

More generally, one can show that 

r= 0 x 7 
and 

ekn+J-(x) = r E o ( ; )pr r ( ^ p ^- i ( a ; ) «n-r + ^) - <7-16> 

Special cases of (7.15) and (7.16) occurring when k = 2 are given in (7.3) 
and (7.5), respectively, in equivalent forms. 

From (7.11) we deduce 

P3(x)P = P3 - Pz(x)I9 (7.17) 
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whence 

P^(x)Pn + d = (P3 - P2(x)I)nP3', (7.18) 

from which it follows that 

Pn
3(x)Pn + jW = t (-Dr(^)P3(n_r)+ .(x)P>). (7.19) 

Similarly, 

P^)Qn+Ax) =jtQ(-l)r(n
p)QXn_r)^(x)pr(x). (7.20) 

More generally, 

Pk
n(X)Pn + J(x) = i^-iy^PHn_r)+.(x)Pkr_i(x) (7.21) 

Pk
nWQn + j(x) = iQ(-l)"(n

r)QHn_r)+.(x)Pk^x). (7.22) 

By (1.8) and (1.15), we may prove 

pmr + k = Q (x\pm(r~ ^k _ (_nmpm^-2) + ̂ a (7.23) 
Hence 

p(mr+k)n = p{m(r- 2) + k}n(Q^ { x ) p m _ (. 1 )« J ) n i ( 7 e 2 4 ) 

Equating appropriate elements yields 

Putting k = 0 in (7.25) produces a formula for Pmvn (oo) . 
Again using (1.15), three times now, we obtain another form of (7.23): 

pmr+k = Q^(x)pm(r-2) + k_pm(r-4) + km (7.26) 

Following the reasoning outlined in (7.24) and (7.25), we derive alterna-
tive formulas for P(mr+k)n^x^ anc^ Pmnr (x^ which closely resembly (7.24) and 
(7.25). 

Equation (7.25) may be generalized further by extension of (7.26) to get 

P(mr+k)n(x) =.E(-D i ( m S + 1)(")C"^)^(,-s) + ̂ - m e i W (7.27) 

with a corresponding simplification for Pmrn (x) when k = 0. 
Since, by (7.23), 

Qm(x)Pmr + k = p^-±) + k{p2m + (_ 1 ) W j ) (7.28) 

we may demonstrate that 

Qn
m(x)P(mr + k)n(x) =.E(-Dm i(;)p{ m ( r + 1) + fc}„.2mi(x) (7.29) 

with a specialization when /c = 0. 
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Arguments similar to those used to obtain the general result (7.27) may be 
utilized to prove that 

®mS(X^P(mr+k)n = -to " ^ \ i ) P{m(r+s)+k}n- 2ms i , (X) (7.30) 

leading to the simpler form when k = 0. 

•8. THE MATRIX SEQUENCE {nv} 

Ideas introduced in [5] for Fibonacci numbers are here expanded to apply to 
Pell polynomials. 

Now, a generalization of the matrix P is the matrix 

S = 
0 0 1 
0 1 hx 
1 2x hx1 

Induction demonstrates that 

i 2 

sr 
P*(tf ) 

2Pn_1(x)Pn(x) P2
n{x) + Pn_1{x)Pn + 1(x) 2Pn+l(x)Pn(x) 

PZ&) 

(8 .1 ) 

( 8 . 2 ) 

The c h a r a c t e r i s t i c equa t i on of S i s 

X3 - (4ic2 + 1)X2 - (4a:2 + 1)X + 1 = 0 . ( 8 . 3 ) 

From the Cayley-Hamilton theorem applied to (8.3)9 we have the recursion 
formula 

Sn[S3 - (4^2 + l)S(S + I) + I] 0. (8.4) 

Corresponding elements in Sn Sn , Sn+1, and Sn must satisfy (8.4). 
Therefore, from (8.2)9 we have the identities 

(8.5) 
and 

P2
n + 3(x) - (4x2 + DP*+2(x) - (4*2 + DPn

2
+1(*) + PnM = 0 

Pn+3^Pn + ^ ~ <**' + ^ P
n + 2^Pn + 3 ^ " ^ + UPn +1 ^ P n + 2 <*> 

+ Pn^Pn + l ^ = °- ^8'6) 

[Parenthetically, we remark that the Cayley-Hamilton theorem may be employed 
with S to derive the sums given in (5.1) and (5.3).] 

Again, after a little algebraic manipulation, the Cayley-Hamilton theorem 
leads to 

(5 + j) 3 = 40c2 + l)S(S + J). 

Mathematical induction establishes 

(S + I)2n+1 = 4"(*2 + l)nSn(S + I). 

Now multiply both sides of (8.8) by S°. 
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Equate corresponding elements to obtain 

2n + 1 IT X I rj I 1 \ 

: ? 0 ( k )#+*<*> " e(x2 + 1 ) n P 2 n + 1 + 2i <*> ^ ^ < 3 - 2 0 > l - ( § - 9 ) 
•1. + 1 . rs I 1 V 

k = 0 

2n+l 

k = 0 

By [ 7 , ( 2 . 8 ) ] we have 

2n+ 1 

E 
k = 0 

whi l e by (1 .17) we have 

^(2n
k
+ y k ^ ^n+1(-2 ^ r + % n + 1 ^ , 

2n+l 

k %(2nk %^^k+i^ = 4 " + 1 ^ 2 + v n + l p
2 n + ^ 

with similar results to those in (8.9) and (8.10) when k is replaced by k + j 
in (8.11) and (8.12). 

If, now, in (8.8) we multiply both sides by (S + I)SJ, we get 

and 
fQ(2nk 2K+/*> - 4 " ^ + ^ 2 n + 2 J + 2 ^ 

£ 2 ( 2 V 2)Pk + j(*)Pk + J+1M = 4»<«* + l > X + w + 3 < * > . ' 

(8.13) 

(8.14) 

When use is made of [7, (2.8)], (1.17), and both sides of the formula for 
(8.8) multiplied by (5 + I)SJ, we derive 

2n+2 

and 
2̂ + 2 

? n ( 2 V %,<*>«*+,• !<*> - 4"+1^2 + 1>S+1*ta+2,-+3<">-
2n+2 

(8.15) 

(8.16) 
£ = o 

Extending the forms of the matrices P and £ further, we have 

0 
0 
0 
1 

0 
0 
1 

2x 

0 
1 

kx 
hx2 

1 
6x 

\2x 
8x 

for which the characteristic equation is 

A4 - (8x3 + 4rc)A3 - (16x4 + 12x2 + 2)A2 + (8J:3 + 4;r)A +1 = 0, (8.18) 

From which are obtained (see [9]) forms for Tn and formulas for three cubic 
expressions in Pell polynomials corresponding to the two quadratic ones in 
(8.5) and (8.6), and an expression for 

L Pi (x) 
which is a variation of (4.16). 
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Matrices S and T are elements in a sequence of matrices {nv}, 

"0 l" 
J = [1]. 2^ 

the order of rV being p. 

1 2x 
7 = S9 hV = T, ..., P 7 , (8.19) 

The element v • A of P7 in the i,th row and j th column is 

^a \j + % - v - 1/ 

It is conjectured that the characteristic equation of PF is 

where 

£(-i)r*<*-">]/2{r, fe}xr-" = o, 
k-o 

{r, k} = Tl {Pf (x)}/ll {Pi(x)}rn{Pi(x)}5 0 < & < r, 
1=1 / i=0 i=l 

(8.20) 

(8.21) 

(8.22) 

using the notation (extended) of [4]. That is, the symbol {p, k] represents a 
generalization of a binomial coefficient. Following the ideas in [4], we note 
the results: 

whence 

and 

{p, k} = {P, r - k] by (8.22); 

{p, P} = 1 by (8.22); 

{p, 0} = 1 by (8.23) and (8.24); 

{P, 1} = {PS P - 1} = Pr(x) by (8.22) and (8.23). 

Next, we write 

{p, k] - Pr(x)C(x)9 

{p - 1, k] = Pr_k(x)C(x) 

(8.23) 

(8.24) 

(8.25) 

(8.26) 

(8.27) 

(8.28) 

(8.29) {p - 1, k - 1} = Pk(aOC(a;). 

Further, 

{p, A:} = Pr_k + k(x)C(x) 
= Pr_k(x)Pk+1(x)C(x) + Pr_k_1(x)Pk(x)C(x) by [7, (2.14)], 

so, by (8.28) and (8.29), 

{*» k] = Pr_k+1(x){r - 1, fc - 1} + Pfc + 1Gc){2? - 1, &} , (8.30) 

a type of Pascal triangle relationship. 
Similarly, 

{p, £:} = Pp_?c_1(x){p - 1, k - 1} 4- Pk_±(x){r - 1, fc}. 

Adding (8.30 and (8.31), and invoking [7, (3.24)], we deduce 

(8.31) 
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2{P5 k] = Qr_k(x){r - 1, k - 1} + Qk(x){r - 1, k}. (8.32) 

Going back to conjecture (8.21), we note that the expression for the sym-
bol {rs k} in (8.21) and (8.22) involves divisibility properties of the Pell 
polynomials. Although these are not discussed here, they are investigated in 
some detail in [9]. A key divisibility result proved in [9], for instance, is 

Pm(x)\Pn(x) if and only if m\n. (8.33) 

The polynomial expressions occurring as powers of A in (8.3) and (8.18), e.g., 
are {3, 1} and {3, 2}, and {4, 1}, {4, 2}, and {4, 3} = {4, 1}, respectively. 

9. CONCLUDING REMARKS 

Naturally the consequences of the use of matrix methods in developing com-
binatorial number-theoretic properties of Pell and Pell-Lucas polynomials are 
by no means exhausted in our brief account above. 

Quite apart from pursuing the discovery of additional formulas by the 
matrix techniques indicated, we can introduce different matrices to obtain new 
results. 

Another interesting set of problems is to derive the sum of series whose 
terms are fractional and involve products of Pell or Pell-Lucas polynomials in 
the denominator, e.g., 

f (-Dr 

Putting x = 1 in the expression and summing to infinity, we may deduce the in-
finite alternating series summation involving Pell numbers, 

r=1 rrv+1 

but enough has been said on our general theme for the moment. 
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LETTER TO THE EDITOR 

July 1, 1986 

Over the years, several articles have appeared in The Fibonacci Quarterly 
relating the Fibonacci numbers to growth patterns in plants. Recently, Roger 
V. Jeans Professor of Mathematics and research worker in biomathematics at the 
University of Quebec has written the book Mathematical Approach to Pattern and 
Form in Plant Growth (Wiley & Sons), which should interest many readers of the 
Quarterly. 

Dr. Jean addresses the mathematical problems raised by phyllotaxis9 the 
study of relative arrangements of similar parts of plants and of technical con-
cepts related to plant growth. He includes not only recent mathematical devel-
opments but also those that have appeared in specialized periodicals since 
18305 listing well over 400 references. The book is written as a textbook for 
an advanced course in plant biology and mathematics or as a reference for wor-
kers in biomathematics. Besides that, it is just plain interesting reading. 

Sincerely, 

Marjorie Bicknel1-Johnson 
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ON THE LEAST COMMON MULTIPLE OF SOME BINOMIAL COEFFICIENTS 

HUGH M. EDGAR 
San Jose State University, San Jose, CA 95192 

(Submitted September 1984) 

Let 

-a:\H"V)- »-cr)-(*;;o- ••(*:.)•(!;:!)• 
We prove that 

L.C.M.{a, b, o} = L.C.M.{J, e, f}9 

where L.C.M. denotes the least common multiple. The proof technique is due to 
the late Ernst Straus and rests upon elementary properties of the p-adic valu-
ations of Q, the field of rational numbers. The geometry of the situation is 
indicated in the figure below. 

/ 
Multiplying each of the quantities a through f by 

kl(k + l)!(n - k)l(n - k + 1)1 
(n - 1)Inl 

produces the six corresponding quantities 

(n + l)k(k + 1), n{n + 1)(n - k), k(n - k)(n - k + 1), 

n(n + l)fc, (n + l)(n - k)(n - k + 1), and &(& + l)(w - fc). 

Since | L.C.M. {a , 3 ) | p = m i n { | a | p , | 3 | p ) fo r every p - a d i c v a l u a t i o n | | p of Qs 
t h e o r i g i n a l problem i s e q u i v a l e n t to p rov ing t h a t m1(n9 k) = m2(n9 k) fo r a l l 
( f i n i t e ) pr imes p 9 provided we d e f i n e 

rrijin, k) = min{ \ (n + l)k(k + 1) |p , | n (n + 1) (n - k) \p 9 

\k(n - k)(n - k + 1) | P } 

and 
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m2(ns k) = min{ \n(n + l)k\p , | (ft + 1) (ft - k) (ft - k + 1) | p , 

\k(k + l ) ( n - fc)|p}. 

We first establish that m1(n9 k) > mz(n3 k) . In each of the three steps 
of this argument we make repeated use of the following standard facts concern-
ing p-adic valuations of Q: 

(1) the ultrametric inequality: |a + 3|p ^ max{|a|ps |B|P}» 

(2) |a + 3 |p = max{|a|p, |"$|p} if |a|P + |3|P; 

(3) \z\v ^ ^5 ^or e v e r y integer z and for every (finite) prime p; 

(4) |s|p < 1 if and only if the integer z is divisible by the prime p 
(equivalentlys |s|p = 1 if and only if the integer z is not divi-
sible by the prime p ) . 

We provide a detailed proof of the first step of the argument and then give 
somewhat abbreviated arguments for the remaining two steps. 

Step 1. Assume that | (ft + l)k(k + 1) |p < m2(n5 k), that is, 

(i) |k + 1 \p < \n\p , 

(ii) \k(k + l)| p < |(n - k) (ft - fc + l ) | p , and 

(i i i) |n + 1 |p < |n - fc|p . 

From (1) and (3), it follows that \k + l|p < 1 so that, from (4), p\k + 1. 
Since (k, k + 1)= 1, it follows that p)( k9 which can be rewritten using (4) as 
\k\p = 1. From (iii) and (3) , it follows that \n + l|p < 1 = \k\p which, in 
conjunction with (2), allows us to conclude that 

\n - k + l\p = | (n + 1) - k\p = max{|ft + l|p, \k\p] = 1. 

Going to (ii) and making use of the fact that \k\p = 1 and \n - k + l|p = 1, we 
get 

\k(k + l)|p = \k + l|p < \(n - k){n - k + l)|p = \n - fc|p. 

Finally 

\n - k\p = | (ft + 1) - (k + l)\p < max{ |ft + 1 |p', |/c + 1 |P} < \n - &|p , 

from (1), and we have our desired contradiction. 

Step 2 . If \n(n + 1) (ft - fc) | p < rn2(ns k) , then we have 

|n - /c|p < |&|P j | n | P < |ft - k + 1 | p , and |ft(ft + 1) |p < |fc(/c + 1) |p • 

Hence | n - / c + l | = |n + l | = 1. Now, 

]/c|p = | (ft - k) - n |p<max{ | f t - fc|p, |ft |p} < |&|p> 

a c o n t r a d i c t i o n . Here we made use of the f a c t t h a t \n\p < \k(k + 1) |p < \k\p « 

Step 3° If \k(n - k)(ft - k + 1 ) | p < w2(ft, fe), then we have 

| (ft - k) (n - & + 1) |p < |ft(ft + 1) |P , \k\p < |ft + l | p , and 
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\n - k + l\p < \k + 1 \p . 

Since | n - / c + l | < l , w e have \n - k\ = 1, and so we ge t 

\n - k + l | p < \n(n + 1) \p < \n + l | p . 

However, 

\n - k + 11p = | (n + 1) - /c|p = max{|n + 1 \p , | f t |p} = |n + 1 | p , 

s i n c e \k\p < |n + 1 |p . Hence, once aga in we have a c o n t r a d i c t i o n , , 

Since m2(n, k) = m1(-k - 1, -n - 1 ) , and s i n c e m1{ni k) > m2(n, k) has a l -
ready been e s t a b l i s h e d , we can f i n i s h t he proof us ing the fo l lowing cha in of 
i n e q u a l i t i e s : 

m1(n9 k) > m2(ns k) = m1(-k - 1, -n - 1) > m2(-k - 1, -n - 1) 

= m1(-(-n - 1) - 1, -(-Zc - 1) - 1) 
= 7771(n, &) . 

Remarks: The result of this note can alternatively be deduced from the follow-
ing previously established (see, respectively, [1], [2], and [3]) results: 

<» « • " • { ( % ' ) • ( * - 1 ) - G : 1)} • "••>•{(? : i ) - U 1 0 - ( " * ' ) } 
where G.C.D. denotes the greatest common divisor. 

(3) xyz = G.C.D.{x, y 9 z] * L.C.M.{xz/, yz5 zx), valid for arbitrary posi-
tive integers x9 y, and s. A more involved result can be obtained 
using the fact (see [3]) that 

xyz = G.C.D.{x, ys 2}'L.C.M.{G.C.D.fe5 y] s G.C.D.{z/s z], 

G.C.D.{;s5 x}} * L.C.M.{;r, z/s s}. 

Finally, we ask whether such results have any combinatorial interpretation. 
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SIDNEY'S SERIES 

CLARENCE B. LARISON 
1800 Kinser Road, Ceres, CA 95307 

(Submitted October 1984) 

Sidney's series of numbers may qualify in two ways for being considered a 
part of the world of pure mathematics. This series is, as far as this author 
knows, without practical application, and is very beautiful. The series was 
discovered by the author's daughter Sidney Larison in 1968 when she was about 
age fifteen. 

Using two-digit numerals, five series can be produced (or six if you count 
zero). Using three-digit numerals, nineteen series can be produced (or twenty 
if you count zero). Using four-digit numerals, eleven series can be produced 
(or twelve if you count zero). 

To produce the series using two-digit numerals, start with any two-digit 
numeral, for example, 

23. 

Add them together and affix their sum, as, 

235. 

Add the last two digits together and affix their sum, as, 

2358. 

Add the last two digits together and affix their sum, modulo 10, always 
dropping from the sum the digit in tens place if there is one* as, 

23583, and then, 235831... . 

Continue the process until the first two digits repeat. 

The first series in the set is now complete. 

To produce the second series in the set of six, start with any two-digit 
numeral not included in the first series and repeat the process. 

To produce the third, fourth, and fifth series in the set, select any as-
yet-unused two-digit numeral and repeat the process. 

The sixth series in the set simply contains zero. 

These six series of numbers contain all of the two-digit numerals from 00 
through 99 and none will appear more than once. Each two-digit numeral can fit 
one series and no other. 

Series utilizing numerals of three, four, or any desired number of digits 
may be produced. To produce the set of twenty series using three-digit 
numerals, select any three-digit numeral, add the digits and affix their sum, 
modulo 10, as, 

123 6 1 0 7 8 5 0 3 . . . - . 

When the first three digits repeat, that series in the set is complete. 

The twenty series in the set using three-digit numerals utilize every num-
eral from 000 through 999 and none is used more than once. Each three-digit 
numeral appears in one series and no other. 
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Completing the set based on four-digit numerals proved to be too large a 
task to be accomplished by hand so the computer was used. William G. Sjostrom 
of Modesto, California, wrote in BASIC the necessary programs to write the set 
of four-digit series. There turn out to be only twelve series in the set™six 
sets of 1560 digits each, two sets of 312 digits each, three sets of 5 digits 
each, and zero. 

When the six series of numbers based on two-digit numerals are equally 
spaced in a set of six concentric circles, some interesting properties become 
apparent. Any series which contains more than one zero will contain four of 
them and they will be equally spaced around the circle. Pairs of digits which 
are directly opposite each other in the circle will add up to either zero or 
ten. 

No attempt has as yet been made to place the ten thousand digits of the 
four-digit series in a set of twelve concentric circles, but an inspection of 
the lists shows that those series containing 000 more than once will contain 
it four times and they will be equally spaced around the circle. As in the 
series based on two-digit numerals, single digits directly opposite each other 
in the circle will have as their sum either zero or ten. 

The twenty series of numbers based on three-digit numerals when equally 
spaced in a set of twenty concentric circles exhibit no interesting properties 
in relation to zero. Nor do digits directly opposite each other in the circle 
add up to ten or zero. However, a study of this series in a search for inter-
esting properties revealed a fascinating property shared by all series so far 
tested. 

To examine this property, proceed as follows: 

List, horizontally, a string of digits as they occur in any series from any 
set, as, from the set based on three digits, 

6095487940... 

Under it write another series from the same set, as, 

6095487940... 
2035869380... 

Add, modulo 10. 

Your result, in this case 8020246220..., will follow all the rules for pro-
ducing a series from that number of digits and will, indeed, be another series 
from that set! 

It works without fail! Add together, in order, the digits from two or more 
series from the same set and the result will be a series in the same set! 

Multiply, modulo 10, in order, the digits from any series by the same num-
eral, and your result will be a series in the same set. 

For example, take 

6 0 9 5 4 8 7 9 4 0 ... from the three-digit set. 

Multiply by ^^^^3_3_33^3_3^«** Your result, in this case 

8 0 7 5 2 4 1 7 2 0 . . . follows all the rules and is a member of 

the three-digit set. 

There may be other interesting properties to be discovered in these series 
of numbers. No one knows, for example, how many series will be required to 
complete the set based on five-digit numerals or what properties they will 
display. 
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The author predicts that the set based on five-digit numerals will display 
the same properties as the other sets in relation to addition and multiplica-
tions and forty series will be required to complete the set. 

^7077$ 

THE SET OF SERIES BASED ON TWO-DIGIT NUMERALS 

Please turn to page 361. 
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A SOLUTION TO A TANTALIZING PROBLEM 

GERT ALMKVIST 
Institute for Algebraic Meditation, PL 500, S-243 00 HOOR, Sweden 

(Submitted November 1984) 

INTRODUCTION 

In a recent paper, R. Backstrom [1] computed various sums of reciprocal 
Fibonacci and Lucas numbers. By a strange limit process, he also gets an esti-
mate (to the seventh decimal place) of the sum 

^ 1 1 1 , \/5 + 1 
2^ 7 T~^ ~ "5" + 7~1 » where a = ~ 
~ L2n + 2 8 4 log a 2 

(here Ln = 2 , L, = 1, and L = L , + £ „). An even better estimate is the ^ 0 ' 1 ' « n - 1 n-2/ 

formula 

^ X ' « 1 + X • 7I'2 - l 

0 L
2n

 + 2 8 4 l 0 g a (log a ) 2
 gTT2/log a _ 2 ' 

which has at least thirty correct decimal places. But both these formulas are 
just the first terms in a very rapidly converging series, that is, a quotient 
of two theta functions. 

This paper contains no new results. On the contrary, most of the results 
are approximately 150 years old, mostly due to Jacobi. The formulas for the 
sums of reciprocal Fibonacci and Lucas numbers are obtained by substituting 
q = a - 1 or q = a~ in identities valid for formal power series or for series 
converging for \q\ < 1. 

Probably all the results in Backstrom*s paper can be obtained by speciali-
zing to q = a - 1 or q = a"2 in sums of telescoping series. For example, let us 
look at Theorem I in [1]: 

j n , , , + g -*i(*+?)K+i-n = 0 x 2n + l 2r + l 

We have 

i S 
F2n+1 + F2r + 1 L2r + l \ l + a-2(n + r+l) { + a - 2 ( n - r ) 

, where q 
L 2 r + l \ l + qn + r+l 1 + qn-r 

Hence, i t i s s u f f i c i e n t t o show t h a t 

n - 0 \ l + qn + r+l j + qr, 

Now, 

1 l * = r +-j for 0 < \q\ < 1. 
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E —1— - E 
n = 0 \l + q

n+r+1 1 + qn-r/ v = N-r + i l + qv V = _P x + qx 

2r + l - f p + — j = p + y as 21/ -»- °°9 

1 for V + 0 . 
1 + g v 1 + ^ " 

Here we never used the fact that q = a~ , so the summation of the inner series 
has nothing to do with Fibonacci numbers. 

We hope to get some of the Fibonacci enthusiasts interested in theta func-
tions . An excellent text is Rademacherfs lecture notes [6]. They pair German 
thoroughness with elegance. On the other side of the spectrum is Bellmanfs 
very thin book [2], which contains almost no proofss only the most important 
results and some applications. 

1. THETA FUNCTIONS 

We have the following theta functions (the summation is over all n in 7L) : 

\{X, q) =l£(-l)y(n+(l/2)]y(2,+ l)™. 

\(.x, q) = £ q [«+ (1 /2) ] 2
 gi(2n+l)TTX 

*3(*, q) = L qn2ei2n™; 
n 

\(x, q) = E (-DVV2*™. (1) 
n 

We make the s u b s t i t u t i o n q = e^iz and ge t t he fo l lowing functional equations: 

•>(!• -i)-W? ••*-'•"-<*••» 
and 

(/I is taken in the first quadrant*) 
This was essentially proved in 1823 by Poisson in the form: 

1 1 + 2e~™ + 2e~^x + 2e~9™ + - • -

VS 1 + 2e^,x + 2e~^/x + 2e~9lj/x + . . . 

Notation: In the sequel we will only have to consider the case x = 0. We will 
write 

»?>-(&)-.(o.,>. 
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We have many formulas, as follows: 

&1 = Tf £ ( ~ l ) n ( 2 n + l)qln+(l/2)l2 . 
n 

d2 = £ ? t n + ( l / 2 ) ] = . 
n 

n 

\ - Z i-l)nqn\ »k(-q) « d3(q). 

# '" = -TT3 £ ( - l ) " ( 2 w + 1) V « + a / 2 ) ) 2 ; 
1 n 

0" = ~^2 L ( 2 n + l ) 2
?

[ " + ( 1 / 2 » 2 ; 
2 n 

$" = -^2 5>V2; 
n 

K = ~47T2 E (-Dnn2qn\ 

n 

By using the transformed formulas, we get: 
l l og <7 If log ̂  ^ v \ 2/ 

q -
2 2 

ft = J - _ 5 _ £ e i o g < 7 ; 
3 If log q £ 

/ Z Tf2[n- ( 1 / 2 ) ] 2 

ft = J--T-11— E^ log * ; 

off - 2 T T 2 /IZzZTWl I 2 7 T n'\,irV/lo«qf_nn. 

^ i0g ^ v log (7 r̂ v log ^ r l 1; 5 

#, = 2ui_ CZZT E A + 27TVX ^nVlog , 
^3 log q % l og 7̂ ~ \ log q/ 

, 2 \ 7 r 2 [n- ( 1 / 2 ) ] 2 

^ log (7 1 log ̂  ̂ \ log <7\ 2/ / 

2. COMPUTATION OF THE SUM £ T V T 
0 L2n + Z 

We will go through the computation of the above sum in detail. 
usuals 
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1 + /5 and e = 1 - /5 

Then a3 

2 M 2 

-1 and Fn = (a n - 3 n ) / V 5 , Ln = a n + If we pu t q = a" 1
5 we g e t : 

£ 
0 ^ 2 n + 2 4 ^ + 2 

i °° 

2 n \ 2 1 ( i + q / n ) 

By by formulas in Tannery and MoIk [7, II, pp. 250 and 260] we have 

- = -TT2 11 4- R V f 

Hence, 
2n\2 l (1 + qln) 

and i f we use formulas (3) and ( 4 ) , we g e t : 

E ( 2 n + l ) 2 a 
1 I n = 1 

1 1 + — 

2 - [ n + ( 1 / 2 ) ] 2 

~ ~ [ n + ( l / 2 ) ] 2 

E a 
1 

This series converges very rapidly (10 terms will give about 20 decimal places) 
but it does not contain log a as Backstromfs approximation does* By using the 
functional equation and the formulas in (5) we can improve the rate of conver-
gence. 

~ 9 9. „ v 
2/log qy 

s 1 -
log q 

^ x \ log q) 

E(-Dn^2n2/ losq 

Putting q = a , we obtain the final formula: 

r L2n + 2 i + 4 log a 

E (-l)nn2e-*2n2/1°z a 

1 - 4TT2 

l og a 
1 + 2 E ( - D n e ~ 

i 

This series converges extremely rapidly. We have e-Tr ' ° 8 a « e" » 10" , so 
taking just one term (n = 1) will give over 30 correct decimal places. Ten 
terms will give around 900 correct decimal places. 

3. A CATALOGUE OF FORMULAS 

In this section we collect some formulas connecting sums of reciprocals of 
Fibonacci and Lucas numbers and theta functions. We leave it to the reader to 
derive the final formulas as in the last section. The formulas are found in 
Tannery and Molk [7, II, pp. 250, 260, 258; IV, pp. 108, 107], Jacobi [4, pp. 
159-167], and Hancock [3, p. 407]. 
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I . Put q = a . Then: 

i) (d) t iH^-le*! 
1 In - 1 

I I . 

(b) 

Put 

(a) 

E 1:rL-
1 L2„ 

- 2 
q = a . 

E -1-
1 £2n-l 

= ~ ( t ^ 

Then: 

(b) E ^ - = 1^3-1) (9) E T = 4 ( I + 7 T ) 

1 2 n - l ^ 1 ^ 8TTZ #3 
2 t t - l 

(d) ?̂ T"**̂  (l) ? I ^ = ^ ^ 
(e) E ^ F = | ( ^ : - D U) E ^ 4 ? 

4. SOME IDENTITIES 

There are numerous identities among theta functions. Specializing to q 
a"1 or q = a"2 will give identities among sums of Fibonacci and Lucas numbers 
We will give a few examples. 

(a) Formulas II(i) and (j) give two expressions for #"/# : 

1 2« 1L2
2n.1 

(b) Formulas 1(d) and 11(a) g i v e , w i th q = a " 2 , 

\ l b2n-\l 1 Lhn 
In - \_ 

2 

(c) The identity (Tannery and Molk [7, II, p. 250]) 

°o n2n oo ^ n - l co ^ 2 ^ - 1 

3E—q- = E—q- E — M l - ? 2 " ) 2 1 (1 - t?2*"1)2 1 (l+«?
2 n- 1) 2 1 (1 + q2n)' 

jives, with q = a"2: 

E - + + E - r - = 5(z - ^ - - £ - 7 - ) 3 _ 
F 
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(d) We have $^ = #£ + $^9 which implies: 

(l + 4 f) -L-Y = M / £ 1 Y + (i + 4 £ (-Dn\2 
\ 1 Llnl 5 \ 1 F2«-l/ \ 1 L2n / 

5. A NEW TANTALIZING QUESTION 

Unfortunately, we have not been able to find an expression for the sum 

Since we know from 11(a) that 

?*,„_! - 8 1 o g a t 1 + 2 t ( 1} & > 1 x 2n-l " ^ & ^ ^ 1 

we only need to compute ^ "TT~~* For this., we need (wtih q = a"2) 
1 ^ In 

00 ~n co a 2 n - l oo 

/<«> = E — ^ = E -^ -^ -7 = E V")f5 
1 1 - q 2 n l 1 - q 2 n _ 1 1 

where T0(n) is the number of odd divisors of n. Since TQ is multiplicative9 
i.e.5 TQ(mn) = T0(m)T0(n) if (m5 n) = 1, we can compute the Dirichlet series 
(for Re s > 1 ) . 

oo TAn) I TApv) 

He) = z —— = n E 
n = l ^ P \v>0 Pvs 

where the product is taken over all prime numbers. We have 

T0(2V) = 1 and TQ(pv) = v + 1 if p > 3. 

Hence, putting t = p~s
s we have 

t 2, o ( 2 v ) tv =_4_ 
and E ro(PV>*V = E (V + l)*v = _* 2 for p > 3. 

o o 
It follows that 

H8) = — l— n 1—^ = (i _ 2 - s ) a s ) 2
s 

1 - 2~s P>3 ( 1 - p " s ) 
w h e r e 

Us) = ±± 
l ns 

is the Riemann ^-function. 
It is possibles at least theoretically, to recover / from $ by Mellin in-

version (see Ogg [5, p. 1.6]); however, we have not been able to compute the 
integral. 
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We end by giving some formulas due to Clausen (see Jacobi [4S I, p. 239]): 
Put 

Mq) = E ~3— = E q«2L±^~ 
1 1 - qn 1 1 - qn 

What we need is 

„ „2n-l m / 1 . w 1 , 2n\ 

L = h(q) - h(qz) = J f - qz 

1 1 - q271'1 l \ 1 - qn 1 - q2n/ 

which converges very rapidly when q = a"2. 
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1. INTRODUCTION 

The ratio of the radius of a circle and a side of the inscribed regular 
decagon equals the golden ratio T. In the complex plane the spines of a regu-
lar decagon inscribed in a circle of unit radius are the vector representations 
of the complex tenth roots of -1, if the decagon is appropriately turned. These 
two observations motivate an interest in expressing the tenth roots of -1 in 
terms of the golden ratio. The roots themselves may be derived using either 
the polar representation of ~ls for it is known that they are expressible as 
gT^r/io w h e n v ±s an integer3 or they may be obtained algebraically5 since when 
5 divides n, the field of the nth roots of -1 contains /5 and hence contains T. 

2. RESUME ON THE GOLDEN RATIO 

The golden ratio is the limiting ratio of two successive Fibonacci numbers. 
This limiting ratio satisfies the quadratic equation3 

T2 - T - 1 = 0 (1) 

in which the first root 

1 + ^5 
T = — — 

is the golden ratio and the second root is 

1--/5 1 

(2) 

(3) 

see [1] . 
The idea is to introduce the quantities (2) and (3) into the expressions 

calculated below for the tenth roots of -1. 

3. THE POLAR APPROACH TO THE TENTH ROOTS OF -1 

Since -1 has unit modulus and an argument of 180° s its polar representation 
is 

-1 = cos 9n + i sin 0n (4) 

9n = 180°  + 360° n5 (5) 
with 

where n = 05 ±1, ±2S ... accounts for the periodicity of circular measure3 and 
,'2 i - -1. The tenth roots of -1 are then given by 

c o s I o + t s i n To 
which in complex rectangular form are, successively 
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Z 2 , 3 , h, 5 = ± ( C O S 1 8 ° ± t S i n 1 8 ° ) ' ( 6 ) 

Z 6 , 7, 8, 9 = ± ( c O S 5 4 ° ± ^ S i l 1 5 4 ° ) ' 

each subscript denoting a different choice of algebraic sign. 
The golden ratio is introduced by expressing the trigonometric ratios in 

(6) as surds. To do this, first use the result 

sin(2 x 18°) = sin 36°  = cos(90°  - 36° ) = cos 54°  = cos(3 x 18°) (7) 

to obtain, with the respective double and triple angle formulas for the sine 
and cosine, 

2 sin 18°  cos 18°  = 4 cos318°  - 3 cos 18° . (8) 

Next, divide both sides of (8) by cos 18°  to reduce it to a quadratic equation 
in sin 18° , viz, 

4 sin218°  + 2 sin 18°  - 1 = 0 , (9) 

with positive root 

s m 18 = ; = T — . (10) 
4 2T 

Then we can write 

cos 18°  = v T ^ ^ W = ^ - ( i ) 2 - ^ ^ 

= (1 + T)/3" - T = T/3 - ~ 
2T 2 

where equation (1) has also been used. Furthermore, 

cos 54°  = sin 36°  = 2 sin 18°  cos 18°  = ~ T 

and 

(ID 

T _T 
2 sin 54°  = Vl - cos254°  = y 1 - (^-J~) = ^^~ 

According to these expressions, the tenth roots of -1 become 

(12) 

o, l 

Z 2, 3, 4, 5 = ±-|(T73~- T ± i ± ). (13) 

1 Z6, 7, 8,9 = ± 1 ^3 " T + i T), 

and they may be sketched in the Argand plane as in Figure 1. 
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• j?(Z) 

Figure 1 

Since the side of the corresponding decagon is the modulus of the differ-
ence of two successive roots, we see from the figure that the ratio alluded to 
in the Introduction is typically 

i / K i 
2 sin 18c (14) 

from (10). 

ALGEBRAIC APPROACH 

The tenth roots of -1 satisfy 

+ 1 

or, replacing Z by 5s says 

g5 + 1 0. 

(15) 

(16) 

This shows that the golden ratio is also relevant to an investigation of the 
fifth roots of -1. The golden ratio arises, for instance9 in the geometry of 
the regular five-pointed star. 

Equation (16) can be factorized to 

(5 + DC?" - e + e - 5 + l) = o, (17) 

showing that £ = -1 is a root of the quintic in (16) and confirming that 

Z = ±J^1 = ±i (18) 

are two roots of the corresponding "dectic" in (15). 
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Dividing the remaining quartic factor in (17) by £ gives 

C2 +jj~ (? +{)+ 1 = 0, (19) 

which on substituting 

n = K + j (20) 

reduces to 

n2 - n - l = o, (21) 

with roots as in (1), viz, 

1 
n1$ 2 = T, --. (22) 

From (20), we also have 

52 - n? + i = o (23) 

with roots 

t _ n ± vV - 4 n ± vVi - 3 (24) 

Inserting the appropriate values of r) given in (22), we obtain the complex 
fifth roots of -1 as 

1, K l a 2 = |(T ± iV3 - T) 
an d ' i / i x 

?3,, = i ( ~ T ± ̂ vT^- T ) , (25) 
from which required complex tenth roots follow with, for instance, 

Z = ±/£. (26) 

These square roots are found by proceeding typically as follows. Let 

a + jb = y-~(x + jV3 - T ) . (27) 

Since the right-hand side is a root of -1, we have 

a2 + Z?2 = 1. (28) 

Also, squaring both sides in (27) and equating real and imaginary parts in the 
result, we arrive at, with a little help from (1), 

a2 - b2 --I (29) 

and 

ab = V3 ~ T . (30) 

These indicate that the product of a and 2? is positive, meaning that a and b 
are together either both positive or both negative. Solving (28) and (29) 
simultaneously gives 
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I/i + 1\ = 2 + T (2 + T ) T 2 4T + 3 _ [ T 2 ( 3 - T) ] 
2V 2 J ~ 4 , , ~ , , - 4 

4T Z 4T" 
from which 

TVT 

and 

62 1 (X T\ _ 2^JU _ H ^ T l T 2 = (2-T)(l + T) = _L 
2 V 2 ; 4 4 T 2 4T 2 AT 2 

Thus, from the square root in (27)9 we obtain two of the tenth roots in (13). 
namely, 

^{(T + jV3 - T) = ±\(xVT^ + j g ) ) . (31) 

The other tenth roots in (13) can be obtained similarly from the fifth roots in 
(25). 

Of course, the same procedure outlined here is applicable to the problem of 
expressing the fifth and tenth roots of unity (i.e., +1 rather than -1), in 
terms of the golden ratio; however, this is left as an exercise for the inter-
ested reader. 
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INTRODUCTION 

A square array of consecutive integers 1, 2, ..., n2 is called magic of or-
der n if the rows, columns, and diagonals all add up to the same number. If in 
addition9 the sum of the numbers in each broken diagonal is also the same num-
ber, then the magic square is said to be pandiagonal. Let M be a magic square 
of order n and let its entries by denoted by (i9 j), (1 < i9 j < n). Then M is 
symmetrical if (i9 j) + (n - i + 1, n - j + 1) = n2 + 1. Let Dh denote the 
dihedral group of order 8. Then, two magic squares M and Mf are said to be 
equivalent if there is a a in Dk such that o(M) = Mf. 

Let 

oQ(n) = number of inequivalent magic squares of order n* 

&o(n) = number of inequivalent pandiagonal magic squares of order n. 

Po(n) = number of inequivalent symmetrical magic squares of order n. 

Y0(n) = number of inequivalent pandiagonal and symmetrical magic 
squares of order n. 

While it is not difficult to constructs for any n ^ 3* a magic square of 
order ns it seems formidable to determine Q0(n) or 60(n) for n ^ 6 (see [1] and 
[2]). In [4], it is shown that 60(4) = 48 and in [5] that <50(5) = 3600. In 
this note, we shall show that, given an odd-order pandiagonal magic square, we 
can use it to generate a finite iterative sequence of pandiagonal magic squares 
of the same order. We show that the number of terms in this sequence is always 
even. It is observed that, if we start with a non-pandiagonal magic square of 
odd order, then magic squares and non-magic squares occur alternatively in the 
sequence. It is also observed that if the initial square is symmetrical, then 
so is the next one. We then determine the number of terms in the above itera-
tive sequences, thereby showing that each of G0(n), pQ(n)9 SQ(n)s and y0(n) is 
a multiple of the number of terms in its respective sequence. Finally, we note 
that our results may be combined with others to yield stronger results. 

RESULTS 

Let M be a pand iagona l magic squa re of o rde r n . Obtain from M a square 
<P(M) whose e n t r i e s <P(i9 j) , (1 < i , j < n ) , a r e g iven by 

<P(is j ) = (m+l + i - j , m + i+j)9 

where m - (n - l)/2 and the operations are taken modulo n. Then it is routine 
to verify that <p(M) is magic and pandiagonal (see [3]). Further, if M Is sym-
metrical, then so is <P(M) . For r > 1, define, inductively, 

<PV(M) = ^(^r"1(A0). 
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Thus, we obtain a sequence M, <P(M), ..., of pandiagonal magic squares of order 
n. Note that <P is one-to-one and onto and hence its inverse exists. Lemma 1, 
below, asserts that the sequences generated by M and oM under <p are equivalent. 
Further, there exists v such that o<Pr(M) = M for some O e D^. We wish to de-
termine the smallest such i3. 

Lemma 1: Let o e D^. Then <P(o(M)) = TT<P(M) for some TT e D . 

Proof: If a is a 90°  clockwise rotation, then o(is j) = (j, n - •£ + 1)* It is 
routine to verify that (pok(i3 j) = ok<p(is j) , where /< = 0, 1, 2, 3. If a is 
the reflection along the central vertical (horizontal), then a(i, j) = (£, n -
j + 1) [respectively, (n - i + 1, j) ]. Choose 7T to be the diagonal reflection 
with TT(i, j) = (j, i) [respectively, (n - j + 1, n - i + 1)], If a is a diag-
onal reflection, then o(is j) = (j, i) or a(ts j) = (n - j + 1, n - i + 1), in 
which case let TT be the reflection along the central horizontal and central 
vertical, respectively. This completes the proof. 

Let the entries of <P'r(M) by denoted by <Pr(is j) . Then it is easy to verify 
that (pr(i, j) is given by the following: 

I f r ~ 2 s , s > 1 , t h e n 

f (TT? + 1 + 2 s " 1 - 2 s j , m 4- 1 - 2 s " 1 + 2si) 

<Pr(i, j ) 
(777 + 1 + 2S 

(777 + 1 

(77? + 1 

- 2 s i , 777 + 1 + 2 s " 1 - 2H) 

+ 2 s j , 77? + 1 + 2 s " 1 - 2si) 

+ 2 s i , m + 1 + 2 s j ) 

s E 1 (mod 4 ) , 

s = 2 (mod 4 ) , 

s. E 3 (mod 4 ) , 

s E 0 (mod 4 ) . 

^ ( i , J) 

s = 1 (mod 4 ) s 

s = 2 (mod 4 ) , 

s E 3 (mod 4 ) , 

s E 0 (mod 4 ) . 

I f r = 2 s + 1 , s > 0 , t h e n 

"(777 + 1 + 2 s - 2 s ( i + j ) , 777 + 1 + 28(i - j ) ) 

(777 + 1 - 2S(i - j ) , 777 + 1 + 2S - 2 S ( i + j ) ) 

(777 + 1 - 2S + 2 S ( ? ; + j ) , 777 + 1 - 2S (i - J*)) 

(TT? + 1 + 2 s ( i - j ) , 7?? + 1 - 2s + 2s(i + j ) ) 

The proof of the following lemma is straightforward and so is omitted. 

Lemma 2: Suppose n is odd and n - 2m + 1. 

( I ) I f 2s E 1 (mod n ) , t h e n 7?7 + 1 - 2 s " 1 = 0 (mod ri) 
a n d 7?? + 1 + 2 6 " 1 E 1 (mod ri). 

( i f ) I f 2 s E - 1 (mod n ) , t h e n TT? + 1 - 2 s " 1 E 1 (mod ri) 
and 77? + 1 + 2 s " 1 E 0 (mod ri). 

Proposition 1: Let n be odd. Then 60(w) E 0 (mod 2) and Y0(ft) = 0 (mod 2). 

Proof: If v is odd, then (1, 1) will be an entry in the central column or cen-
tral row of <Pr(M) . This means that there is no G in Dk such that o<p'r(l9 1) = 
(1, 1). The result thus follows. 
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Proposition 2: Let n be an odd number. Suppose s is the smallest integer such 
that 2s E 1 (mod n) or 2s = -1 (mod n). Then 

(i) a0(n) E 0 (mod s), 

(i i) p0(n) E 0 (mod s ) , 

(i i i) 60(n) E 0 (mod 2s), 

and (iv) y0(n) E 0 (mod 2s). 

Proof: We shall prove (iii). The proof of (iv) then follows immediately; that 
of (i) follows from Proposition 1 and the fact that if M is magic but not pan-
diagonal then <P(M) is not magic but <P2 (M) is magic; (ii) follows from the fact 
that <P(M) is symmetrical if M is, 

Let v = 2k. 

Now <Pr(ls 1) i s one o f : 

(m + 1 - 2k~1
9 m + 1 + 2k~1)5 (m + 1 - 2k~1

3 m + 1 - 2k~1), 

(T?? + 1 + 2 k _ 1
9 77? + 1 - 2 f e " 1 ) s (77? + 1 + 2k"1

9 77? + 1 + 2 / C _ 1 ) 9 

If r < 2s, then we see that 77? + 1 + 2 • 1 cannot be 0 (mod n) or 1 (mod n). 
Likewsies m + 1 - 2 cannot be 0 (mod n) or 1 (mod ri), So there is no a in 
Vh such that W p(l 9 1) = (1, 1). 

Suppose r = 2s. 

Now if 2s E 1 (mod n), then9 by Lemma 2S 

77? + 1 - 2 s * 1 E 0 (mod n ) and TT? + 1 + 2 s " 1 E 1 (mod n ) . 

I f 2s E - 1 (mod n ) s t h e n 

77? + 1 - 2 s " 1 E 1 (mod n ) a n d m + 1 + 2 s " 1 E 0 (mod n ) . 

I n e i t h e r c a s e , (PT(i9 j ) i s one of 

0 " , rc - £ + 1 ) , (i, j ) , (n - j + 1 , <£), (n - £ + 1 , n - j + 1 ) . 

Certainly9 there is a a in D^ such that 0(pir(is j) = (i* j) and the result fol-
lows . 

REMARKS 

Note that there are other operations which will also generate finite se-
quences of inequivalent magic squares of the same order. For example: 

(A) Cyclic permutation of the rows and/or columns of a pandiagonal magic 
square will produce an Inequivalent pandiagonal magic square. Hence SQ(n) E 0 
(mod n2). 

(B) Let n = 2TT? + 1. Then any permutation of the numbers 1, 29 . .., m ap-
plied to the first 77? rows and columns and to the last 7?? rows and columns (In 
reverse order) of a magic square of order n will result in an inequivalent 
magic square. Further5 if we start with a symmetrical square, then so are all 
other squares generated in this manner. Hence oQ (n) E 0 (mod 77?!) and p0(ft) E 0 
(mod ml). 
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More magic squares may be obtained by combining the operation <p with that 
of (A) or (B). 

ProposIt 
sition 2 

( 
(i 

and (i i 

on 3- Let n = 2m + 1 and suppose s satisfies the conditions of Propo-
Then 

G0 (ft) E 0 (mod s • ml) , 

p0(ft) ~ 0 (mod s • ml) 

60(n) = 0 (mod 2sn2). 

Proof: Let M be a pandiagonal magic square of order ft. For each <Pr(M) , we 
apply the operation in (A) to get ft inequivalent pandiagonal magic squares. 
It remains to show that these ft squares are not equivalent to any of those 
generated by <P* To see this, it suffices to note that (m + 1, m + 1) is always 
fixed under <P, while in the operation (A) it is being transferred to other 
positions. This proves (iii). 

To prove (i) and (ii), let M be a magic square of order ft« For each <P2 (M) 
(which is magic)5 we apply the operation in (B) to get ml inequivalent magic 
squares. We shall show that these ml squares are not equivalent to any one of 
those generated by <P« Since the operation <p transfers the central row and the 
central column of M to the main diagonals of the resulting square, it follows 
that we need only cons ider <P2k (M) . Consider the entries (£, m + 1), where i -
1, 2S ,.. 5 m« If k is odds then <P2k(is m + 1) = (77? + 1, x + 2yi) for some in-
tegers x and y. If k is even3 then <P2k(i3 m + 1) = (x - 2yis m + 1). Howevers 
under the operation in (B) , the entries (£, m + 1), where i = 1, 2S . . . , m go 
to (a(i)s m + 1) for some permutation a of the numbers 1, 2, ..,, m. This means 
that <P (M) cannot be equivalent to any one of the squares generated by the 
operation in (B). 
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Recently, the first author [1] showed that 

Fn + 5 E Fn + Fn-5 (̂ d 10), (1) 

where Fn i s t h e nth F ibonacc i number, de f ined by Fn+1 = Fn+Fn_19n^29 w i th 
F x = F2 = 1. I t was a l s o shown [1] t h a t t h i s r e s u l t g e n e r a l i z e s to a sequence 
{Sn}°l def ined by 

Sn+1 = Sn + Sn-1»
 n > 2> 

with S1 = c, S2 = <i, where c and 6? are nonnegative integers. The nonnegative 
restriction was imposed in order to guarantee that each member of the sequence 
is a positive number. However, the result is, in fact, valid for any integers 
c and d. 

The purpose of this paper is to generalize (1) further. We will see that 
the role played by the integer 5 in (1) can, in the generalization, be played 
by any prime p ^ 5. 

We begin by introducing a more general sequence {Tn}^ defined by 

Tn+1 = aTn - bTn_ls with T1 = c, T2 = ds (2) 

where a, b, c9 and d are integers with the restriction b 4- 0 (and exclusion of 
the trivial case where o = d = 0). We write {a, 3) t o denote the set of solu-
tions of the quadratic equation x2 - ax + b = 0. Two particular choices of c 
and d in (2) give rise to sequences {Tn} of special interest to us. We denote 
these by {Un}Zm and {V^Z^* where 

Un = (a" - 3n)/(a - 3) (3) 
and 

Vn = an + 3n. (4) 

For {Un}s o = 1 and d = a while, for {Vn} , o = a and a7 = a2 - 2b* These se-
quences have been studied by Horadam [4]. [If a = 3s we replace (3) and (4) by 
the limiting forms Un = nan~1 and Vn = 2an

s respectively. Note that, in this 
case, b = a2/4 and a = a/2.] For the special case of (2) where a = -b = 1, the 
sequences {Un} and {Vn} are, respectively, the Fibonacci and Lucas numbers for 
which (3) and (4) are the well-known Binet forms. We will write {Ln} to denote 
the Lucas sequence. 

Using a3 = b9 we readily deduce from (3) and (4) that 

U.„ = -b-"Un (5) 
and 

-n n 
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We will require (5) later. We also need two lemmas connecting the sequences 
{Un} and {7n}. The Fibonacci-Lucas forms of these (corresponding to a=-b=l) 
are given in Hoggatt [3]. 

Lemma 1: For all integers k9 

h+i - bUk_± = Vk. (6) 

Proof: This is proved by induction or directly by using the generalized Binet 
forms (3) and (4). 

Lemma 2: For all integers n and k9 

Un + k+bkVn_k = UnVk. (7) 

Proof: The proof may again be completed either by induction or by direct veri-
fication using (3) and (4). For the induction proof, we begin by verifying (7) 
for n = 0 and 1, with the aid of (5). 

We generalize this last result to the sequence {Tn} defined by (2). 

Lemma 3: For all integers n and k9 

Tn + k + bkTn_k = TnVk. (8) 

Proof: We show by induction that 

Tn = dUn-l ~ boUn_2, (9) 

and hence verify (8) directly from (7). 

The results which we have obtained thus far are, in fact, valid when a9 b9 
c9 and d in (2) are real. However5 for the divisibility results which follow, 
we require integer sequences; hence, we require a, b9 c, and d to be integers. 
Also, in view of (5), we need to restrict {Tn} to nonnegative n unless \b\ = 1. 

We now prove our first divisibility result. 

Lemma k: For any prime p5 

Vp = a (mod p). (10) 

Proof: We need to treat the case p = 2 separately. 

Since V2 = a2 - 2b5 

V2 - a = a{a - 1) - lb = 0 (mod 2) 

for any choice of integers a and b. 
If p is an odd prime, 

a? = (a + B)z -,?„(?K*»'-
From a3 = b9 we obtain 

ap'rBr + a r 3 p _ r = br(aP~2r + Hp'2r). 
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and thus 

In the latter summation, we note that 

(P) = 0 (mod p) 

for each r and the proof is completed by applying Fermatfs theorem 

ap E a (mod p). 

For the Fibonacci-Lucas case (where a = ~b = 1) 9 Lemma 4 yields 

£p = 1 (mod p) 

for any prime p. This special case, although not quoted explicitly, is easily 
deduced from congruence results for the Fibonacci numbers given in Hardy and 
Wright [2]. 

We now state the first of our main results. 

Theorem 1: For all n ̂  p and all primes p, 

Tn + p = aTn ' bTn_p (mod p). (11) 

Proof: The proof follows from Lemmas 3 and 4 and Fermat?s theorem* If \b\ = 
1, then (11) holds for all values of n. 

Observe how the congruence relation (11) mimics the pattern of the recur-
rence relation (2). 

To strengthen Theorem 1 for primes greater than 3, we first require: 

Lemma 5- If k ^ 0 (mod 3 ) , then for all choices of a and b9 

Vk E a (mod 2). (12) 

Proof: In verifying (12) for all possible choices of a and b5 it suffices to 
consider {a, b) = {0, 1}. If a is even and b is even or odd, Vk is even for 
all k and (12) holds. If a is odd and b is even, Vk is odd for all k and again 
(12) holds. Finally, if both a and b are odd, then Vk is even if and only if 
k E 0 (mod 3 ) , and the lemma is established. 

Theorem 2: For all n > p, where p is any prime greater than 3, 

Tn + p E aTn - bTn_p (mod 2p). (13) 

[We note that (1) is the special case of (13) obtained by taking p = 5 and 
a = -b = c = d=l»] 

Proof: From the result of Theorem 1, It remains only to show that 

Tn+p - aTn + bTn_p E 0 (mod 2). (14) 
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Using Lemma 3S the left side of (14) may be expressed as 

(Vp - a)Tn + (b - bp)Tn.p. 

Observe that b - bp = 0 (mod 2) and Lemma 5 shows that Vp - a = 0 (mod 2) for 
p any prime greater than 3S which completes the proof. 
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1. INTRODUCTION AND GENERALITIES 

It is known that every positive integer can be represented uniquely as a 
finite sum of F-addends (distinct nonconsecutive Fibonacci numbers). A series 
of papers published over the past years deal with this subject and related 
problems [1, 2, 3, 4]. Our purpose in this note is to investigate some minor 
aspects of this property of the Fibonacci sequence. More precisely, for a 
given integer k ^ 3, we consider the set J/k of all positive integers n less 
than Fk (as usual Fk and Lk are the kth Fibonacci and Lucas numbers, respec-
tively), and for these integers we determine: 

(i) the asymptotic value of the average number of F-addends; 

(ii) the most probable number of F-addends; 

(iii) the greatest number mk of .F-addends, selected from the set J/-^, and 
the integers representable as a sum of mk F-addends. 

Setting 

mk = [(k - l)/2], (k > 3) (1) 

(here and in the following the symbol [x] denotes the greatest integer not ex-
ceeding x) and denoting by f(n9 k) the number of F-addends the sum of which 
represents a generic integer n G J/k , we state the following theorems. 

Theorem 1 : 1 < f(ji9 k) < mk. 

Proof: Since F1 = F2 and since the F-addends are distinct, they can be chosen 
in the set J^ = {F2, F3, ..., Fk_±] the cardinality of which is |j^| = k - 2. 
Moreover, since the F-addends are nonconsecutive Fibonacci numbers, they can 
be in number at most either | J^ | /2 (for \#k\ even) or (| &k \ + l.)/2 (for \#k\ 
odd). Q.E.D. 

Theorem 2: The number NkiTn of integers belonging to J/k which can be repre-
sented as a sum of m F-addends is given by 

Proof: Setting M = \&k\ = k - 2, it is evident that Nk m equals the number 
BMiTn of distinct binary sequences of length M containing m nonadjacent 1's and 
M - m 0*s. The number BM can be obtained by considering the string 

{v 0 v 0 v •-• v 0 v] 
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constituted by M - m Ofs and M - m + 1 empty elements v9 and by replacing, in 
all possible ways, m empty elements by 777 lfs: 

_ (M - m + 1\ 
*M'm ~ \ m ) ' 

Replacing M by k - 2 in the above relation, the theorem is proved. Q.E.D. 

From Theorem 2, we derive immediately the following 

Remark: 
(k - 2, for 777 = 1 

(2) Nk,m 

(k-

" I . . 
29 f o r 777 = 1 

f o r 777 > mk* 

2. THE AVERAGE VALUE OF f(n, k) 

In this section, we calculate the limit of the ratio between the average 
value of f(n9 k) and k as k tends to infinity. _ 

From Theorem 2, it is immediately seen that the average value f(n9 k) of 
the number of F-addends the sum of which represents the integers belonging to 
j¥k is given by 

nk x L 2 J 
(3) 

\j/k\m = l h m=l \ / 

Moreover, i t i s known [5] t h a t t he i d e n t i t y 
mk 
Z(k-m)NKm=Uk (4) 

m= 0 

h o l d s , where 

Uk = k l l Fm + 1Fk_m; (5) 
171= 0 

from ( 4 ) , the r e l a t i o n 

Uk = k T,Nk9m ~ E ^fc./n 
777= 0 m = 0 

is obtained from which, by virtue of the well-known representation of the Fibo-
nacci numbers as sums of binomial coefficients [6], we get 

mk 

Uk -kFk - £ mNktm. 

Consequent ly , we can w r i t e 
mk mk 

Y,rnNKm = E ^ f e , m - *** " Uk. (6) 
m = 0 m=l 

The numbers /Ĵ  defined by (5) satisfy the recurrence stated in the follow-
ing theorem. 
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Theorem 3: Uk = kFk ~ Uk_2> w i th U± = 1, U2 = 2 . 

Proof: Using the well-known, i d e n t i t y Fs+t = Fs + 1Ft + Fs Ft_ 1 and s e t t i n g rn = s 9 
k - 772 = t9 we can w r i t e the i d e n t i t y 

•^fc = Fm+k-m = Fm + 1Fk_m + FmFk_m_ 1 

t hus g e t t i n g Fm + 1Fk_m = Fk ~ FmFk_m_v T h e r e f o r e , from ( 5 ) , we have 

tf* = X ^ " V*-*- i> = kFk ' E ^ - a i - i = *** ~kt2FmFk_m_r 
777= 0 7 7 7 = 0 7 7 7 = 1 

Setting r = m - 1, from the previous relation we obtain 

h=kFk ~ ^Fr + lFk-r-l = *** - ^ - 2 - Q-E-D. 
p= 0 

From Theorem 3 , the f u r t h e r e x p r e s s i o n of [A. i s immediately d e r i v e d : 

Uk = kFk _ (fc _ 2 ) F f e _ 2 + • • • + ( - l ) r a * ( * - 2 ^ . ^ 

777k 

i = 0 

where, as usual, 777 ̂ = [(k - l)/2]. 
Denoting by a and 3 the roots of the equation x2 - x - 1 = 0, the following 

theorem can be stated. 

Theorem hi f(n, k) is asymptotic to -. 
1 + or 

Proof: From (3) and (6), we can write 

f(n, k)/k = ( ^ V K ^ - Uk))/k 

and calculate the limit 

/ Uk\l Uk 
lim f(ns k) Ik = llmlk - -pr~)/k = lim 1 - 7-77-
k + ~ k+«>\ Fk)/ k + oo kFk 

which, from (7), can be rewritten as 

lim f(n3 k)/k = l±m(kFk - kFk + E (-l)*"1^ - 2i)F _2i )AkFk) . 

Finally, using the Binet form for Fk, we get 
mk 

E(-Di_1(fe - 2i)(ak-2i - 3fc-2i) 
_ i-l 

lim f(n, k)Ik = lim 
/c+co mk •̂*t» k(ak - 3fc) 

E(-l)t_:i(l - 2i/k)a.K-2i 

= lim — = ± (-iy-la-2i = * 0.2764. 
Q.E.D. ?c_>"" a* i-l 1 + a2 
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The behavior of f(n9 k) Ik versus k has been obtained using a computer cal-
culation and is shown in Figure 1 for 3 < k < 100, 

!<+-, 

- -

Ld 

' + " ' ^ 

k -— 

Figure 1. Behavior of f(n9 k)Ik versus k 

3« THE MOST PROBABLE VALUE OF f(n, k) 

In this section9 it is shown that the most probable number f(n9 k) of F~ 
addends the sum of which represents the integers belonging to yl^, can assume 
at most two (consecutive) values. The value of f(n9 k) for a given k together 
with the values of k for which two f(n9 k) ?s occur9 are worked out. 

From Theorem 2, it is immediately seen that f(n9 k) equals the value(s) of 
m which maximize the binomial coefficient %sOT; consequently let us investigate 
the behavior of the discrete function 

(":") 
(8) 

as n variesj looking for the value(s) nh of n which maximize it. It is evident 
that nh is the value(s) of n for which the inequalities 

and 

/h - n\ > (h - n + 1\ 
\ n ) " \ n - 1 I 

(h - n\ > Ih - n - 1\ 
\ n / V n + 1 . / 

(9) 

(10) 

are simultaneously verified. Using the factorial representation of the bino-
mial coefficients and omitting the intermediate steps for the sake of brevity, 
the inequality 

5nz (5h + l)n + h2 + 3h + 2 > 0 (11) 

i s ob ta ined from ( 9 ) ; t he r o o t s of the a s s o c i a t e equa t ion a r e 

1 = (5/z + 7 - A / A ) / 1 0 , 

2 = (5h + 7 + y/K)/109 

where A = 5h2 + lOh + 9. From (11), we have 

(12) 

n2 < n < n1. (13) 
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Analogously, from (10), we obtain the inequality 

5n2 - (5h - 3)n + h2 - 2h < 0S (14) 

from which the roots 

(n[ = (5h - 3 - i/ft)/10 
| n 2 ' = (5/z - 3 + vft)/10 

are derived. From (14), we have 

nx' < n < n'. (16) 

Since, for /z > 2, the inequality nx < n2' holds, the inequalities (13) and (16) 
are simultaneously verified within the interval [n'3 n ]. Therefore, we have 
n[ < fih < n1. Since nx - n^ = 1, the value 

nh = [«;] + 1 = [nj (17) 

is unique, provided that n' (and n.) is not an integer. If and only if n^ is 
an integer is the binomial coefficient (8) maximized by two consecutive values 
nh 1 and nh 2 of n; that is, 

( a * . i - * i . ( 1 7 , , 

Now we can state the following theorem. 

T, c ;, n [5k - 8 - (5k2 + 4)1 / 2 ] _,_ 1 Theorem 5: /(n, &) = ^ L J + 1. 

Proof: The proof is derived directly from (17), (17;)> and (15) after replac-
ing h by k - 1 and n by m in (8). Q.E.D. 

On the basis of (17f) and (15), we determine the values of k for which the 
quantity 

Rk = (5k - 8 - (5k2 + 4)1/2)/10 

is integral, i.e., the values of k for which two consecutive values of 777 maxi-
mize Nfc m thus yielding the following two values of f(n3 k)1 

(f^n, k) = Bk, (18) 

\f2(n, k) = Bk + 1. (18') 

Theorem 6: The most probable values of f(ns k) are both f1(n9 k) and f2(n, k), 
if and only if k = F , s = 1, 2, . . . . 

Proof: For Rk to be integral, the quantity 5k2 + 4 must necessarily be the 
square of an integer, i.e., the equation 

x2 - 5k2 = 4 (19) 

must be solved in integers. On the basis of [7, p. 100, pp. 197-198] and by 
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induction on r9 it is seen that, if {x1$ k±] is a pair of positive integers xs 
k with minimal x satisfying (19), then all pairs of positive integers {xr, kr] 
satisfying this equation are defined by 

(x± ± JskJ* 
xr ± /5kr = , v = 1, 2, . .. . (20) 

nr - 1 

Since it is found that x1 - 3 and k1 = 1, from (20), we can write 

Xyi + J5k„ = (3 + A ) P = 2a2i\ (21) 
2 p-i 

From (19) and (21), we get the re la t ion 

(5k2
r + 4 ) 1 / 2 = 2a2" - fikr 

from which, squaring both s ides , we obtain 

K = -= — — = -iz(^2r - «"2r) = F,„ • 
S5 a2r V5 

1 0(, — 1 1 , 2v - 2v \ 
~ ' 2r ' 

s=E(2Vt
1)^)»=5ii:ifvt

1)^,»-». 

Replacing k by F2r, Rk reduces to (£2r-i - 4)/5; therefore, to prove the 
theorem, it is sufficient to prove that, iff r is even, then the congruence 
L2r_1 = 4 (mod 5) holds. 

Using Binetfs form for Lr5 we obtain 

_ 1 + S 

where 
E ' 

t = i 

Therefore, we can write the following equivalent congruences, 

2"2(p-1)(l 4- S) = 4 (mod 5), 

1 + S = 22r (mod 5), 

1 E 22r (mod 5), 

which, for Fermatfs little theorem, hold iff v = 2s, s = 1, 2, . .. . QoE.D. 

4. THE INTEGERS REPRESENTABLE AS A SUM OF mk F-ADDENDS 

In this section, the set of all integers n e J/k which can be represented 
as a sum of mk F-addends [i.e., all integers such that f(n, k) = mk] is deter-
mined . 

From Theorem 2 and (1), the following corollary is immediately derived, 

Corollary 1: 
k/2s for even k5 

N, 
1, for odd t 

The following identities are used to prove Theorems 7 and 8. 
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h 

Identity 1: E FZj = F2h+i " 1-
j = 1 

Identity 2: £ ^2i+1 =
 F

2(h + 1) ~ 1-
J = l 

7 7 7 - 1 
Identity 3: E ^2j-+n = ̂ m+n-i ~ *n-i-

j =o 

The proofs of Identities 1, 2, and 3 are obtained by mathematical induction 
and are omitted here for the sake of brevity. 

Theorem ?: f(Fk - 1) = mk» 

Proof: (i) Even k. 

For even k9 we have mk = (k - 2)/2; it follows that k = 2(mk + 1 ) 
and, from Identity 2, 

mk 

K ^ = 1 

(ii) Odd k. 
For odd fc9 we have mk = (k - l)/2; it follows that & = 2(77?̂. + 1) 
and3 from Identity 1, 

mk 

* ^ = 1 

In both cases, Fk - 1 can be represented as a sum of mk F-addends• Q,E,D* 

From Theorem 7 and Corollary 1, it is evident that, for odd k9 the only 
integer n e yf^ such that /(n, k) = mk is n = F^ - 1. Moreover, it is seen 
that, for even k3 the integers n e J/-^ such that f(n9 k) = mk = (& - 2)/2 are 
fc/2 in number (î , - 1 inclusive); let us denote these integers by 

AKi> i = 1, 2, ..., &/2e 

Theorem 8: Aksi = Fk - Fk„2i - 1, <£ = 1, 2 , . . . , fe/2. 

Proof: For a given even k3 t he I n t e g e r s Ak ^ can be ob ta ined by means of the 
fo l lowing p r o c e d u r e : 

Ak.l = F2 + F» + FS + ••• + Fk-S + Fk-, + Fk-2 
Ak,2 = F2 + Fh + F6 + ••• + Fk_6 + Fk_h + (Fk_1) 

Ak,3 = F2 +F^ + Fs + ' • • + Fk-s + ( ^ - 3 + ^ - i ) 

Ak,k/2-2 = F2 + F , + (F7 + '•• + Fk-5 + Fk-3 + Fk-0 
Ak,k/2-i = Fz + (F5 + F7 + ••• + Fk_5 + Fk_3 + Fk_1) 
Ak,k/2 - CF3 + F5 + F7 + ••• + Fk_5 + Fk_3 + Fk_1) 
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The mechanism of choice of the F-addends from two disjoint subsets of #^ 
[namely, {F2t } and {F2t + 1}s t = 1, 2, . . . , (k - 2) /2] illustrated in the previ-
DUS table yields the following expression of Ak ^ 

k/2-i-l i-2 

k, i ~ J^ 2 + zr L* k~2i+ 2s+3* 

from which, by v i r t u e of I d e n t i t y 3 3 we o b t a i n 

A, = F - F + F ~ F 
^k%i ^ 2{k/2-i) + l 1 2(i-l)+k-2i+ 2 Lk-2i+2 

= Fk-2i+l - 1 + F k ~ Fk-2i+2 = Fk ~ Fk-2i ~ U Q - E ' D -

The following corollary is derived from Theorem 8, 

Corollary 2: Ak, ± = Fk_1 - 1, (22) 

(23) 

(24) 

Proof: Identities (22) and (24) are obtained directly from Theorem 8. Iden-
tity (23) requires some manipulations; that is9 

Ak,2 = Fk - Fk-, - l = Fk - (5Fk ~ 3^fe+1) - 1 
= -** + 3 ( ^ + 1 - Fk) - 1 = -Fk + 3Fk^ - 1 
= 2Fk.1 - Fk_2 - 1 = Fk_1 + Fk_3 - 1 = Lk_2 - 1. Q.E.D. 
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1. INTRODUCTION 

In the January 23, 1985, issue of a local (Armidale) newspaper, L. Wilson, 
of Brisbane, announced that;, if x = Fn , y = Fn + 1 (Fn + 2 = x + y) are successive 
numbers of the Fibonacci sequence {Fn}, then x,y (>x) satisfy the equation of 
degree 24: 

((x5y - xhy2 - x3y3 + ?>x2yh - 3xy5 + y6)2 - bx8 - 13x4 - l)2 

- 144^12 - 144^8 - 3 6^ = 0. (1) 

This is a slight simplification of the equation announced three weeks ear-
lier by him in the same newspaper. 

Wilson offered no proof of his assertion. 
It is the purpose of this paper to outline a proof of Wilson's result by 

analyzing the structure of (1). 
We exclude n = 0 from our considerations to accord with the commencing Fi-

bonacci number F1 = 1 used by Wilson [although x = 0, y = 1 do satisfy (1)]. 
First, observe that Simsonfs formula for {Fn}s namely, 

(2) F2 
n - ^n + lFn-l 

writ ten 

X2 

x2 
+ 
+ 

xy 

xy 
-y2 = 
-y2 = 

= (-

1, 
- L 

-1); 

n i 

, n 

n + 1 

odd, 

even 
(3) 

(4) 

Simson's formula will be the basic knowledge used in our proof. 

2. PROOF OF THE ASSERTION 

After a little elementary algebraic manipulation, the left-hand side of (1) 
factorizes as 

where 

(y2A2 - B2){y2A2 - B\) , (5) 

A = xs - xhy - x3y2 + "Sx2y% - 3xyh + y5, 
Bx = 2xh - 3x2 + 1, (6) 

B2 
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Numerical checking with small values of n establishes that the first fac-
tor in (5) vanishes for n odd9 while the second factor in (5) vanishes for n 
even. This arithmetical evidence suggests that we may associate this first 
factor (and therefore Bx) with equation (3) and the second factor (and there-
fore B2) with equation (4). 

Accordingly9 from (3), we have immediately (x2 - I)2 = (y2 - xy)2 which, 
after tidying up and applying (3) again, gives us 

B1 = y{2yz - ky2x + 2x2y - x + y). (7) 

Similarly, 

B2 = y(2y3 - hy2x + 2x2y + x - y). (8) 

Now y - x is a factor of A5 B1$ B2» So (6) becomes 

A = (y - x)(yk - 2xy3 + x2y2 - xh) = (y - x)a3 

B1 = y{y - x)(2y2 - 2xy +1) = y(y - x)blS (9) 

,52 = y(y - ̂ )(2i/2 - 2at/ - 1) = y(y - a:)fc2. 

Repeated multiplicative maneuvering with (3), followed by substitution in 
(9) and simplification, yields 

b1 = -a. (10) 

Appealing to B and (4) by a similar argument, we find 

b2 = a. (11) 

From (9), it follows that (5) reduces to 

y\y - x)h(a2 - b\)(a2 - b\), (12) 

whence, by (10) and (11), 

2/̂(2/- - x)k(a2 - £2)(a2 - b\) = 0, (13) 
i0e. , 

(a2 - £2)(a2 - b\) = 0. (14) 

Thus, the validity of (1) is demonstrated. 

Variations s perhaps simplifications, of the above reasoning no doubt exist; 

3. REMARKS 

Rearranging the four factors in (14) leads to. 

{{a + b±)(a - b2)}{(a - b±){a + b2)} = 0. (15) 

By (10) and (11), 

(a + b^(a - b2) = 0. (16) 
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Equation (16), which is of degree 8 in y, is thus also satisfied by succes-
sive pairs of Fibonacci numbers. 

Even more ponderous and complicated equations of higher, but appropriate, 
degrees are suggested by (14). For instance, 

(ah - 2>J)(a* - b\) = 0, 

of degree 32 in z/, is satisfied by the Fibonacci conditions. 
Only the Fibonacci numbers provide the structure for (1). While similar 

patterns in (2), (3), and (4) exist for Lucas and Pell numbers, equations dif-
ferent from (1) would be germane to them. 

Regarding the factors in (13) involving the fourth power, we remark that 
y = 0 If n = -I (excluded), while y - x = 0 1fn=l9 i.e., when F1 = F2 = 1. 

Finally, we comment that (3) and (4) form the nucleus of a geometrical ar-
ticle on conies [2] by one of the authors, which was followed by an extension 
[1] by Bergum. One is prompted to speculate on the possibility of some arcane 
geometry of curves being obscured by the symbolism of (1). 
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DIFFERENCES BETWEEN SQUARES AND POWERFUL NUMBERS 

CHARLES VANDEN EYNDEN 
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(Submitted February 1985) 

A number P is powerful if, whenever a prime p divides P, then p also 
divides P. In [2] McDaniel proves that each nonzero integer can be written in 
infinitely many ways as the difference between two relatively prime powerful 
numbers. (Golomb [1] had conjectured that infinitely many integers could not 
be represented as the difference between powerful numbers.) An examination of 
McDaniel's paper shows that he actually proves that, if n ^ 2 (mod 4), then n 
can be written in infinitely many ways as S - P, where S is a square, P is 
powerful, and (5, P) = 1. 

In this paper we take care of the case n = 2 (mod 4), to prove 

Theorem: If n is any nonzero integer, then n can be written in infinitely many 
ways as n - S - P, where S is a square, P is powerful, and (S9 P) = 1. 

Proof: For compactness, we assume the reader is familiar with [2]. In Theorem 
2 of that paper it is proved that if n is a positive integer and n f 2 (mod 4) 
then x2 - Dy2 = n has infinitely many relatively prime solutions X, Y such that 
P divides Y. Clearly, each represents n in the desired way. The method of 
proof is to show that there exist integers P, p, q9 xQ5 and yQ such that 

D > 0 and D is not a square, 

p and q satisfy p zv 
xQ and yQ satisfy x2 - By2 

(2pz/Q9 D) divides q. 

n and (p, q) 

= ±1, 

= 1. 

(1) 

(2) 

(3) 

(4) 

Although McDaniel assumes n > 0 in the proof of his Theorem 2, the argu-
ments he gives work just as well for negative values of n. Thus, only the case 
n = 2 (mod 4) remains. Let n = 8k ± 2. 

Case 1. n = 8k + 2 or 3 | 
8, and z/0 = 3 can be checked to If n = 2, then D = 7, p = 3, q = I, xQ 

satisfy (1) through (4). Likewise, if n = 10, then D = 39, p = 7, q = 1, x0 = 
25, and z/0 = ^ work. 

Otherwise, we take D = (2k - l)2 + 2, p = 27c + 1, q = 1, xQ = D ± 1, and 
2/o = 2fc - 1. Since n = 2 and n = 10 have been excluded, we see that P > 1 and 
D is odd. Conditions (2) and (3) are easily checked. Note that because p -
D = n, we have p2 - P - 4p = ±2 
3, with the latter a possibility only if we take the bottom signs. 
(p, P) = 3 implies 3|n, contrary to our assumption. Thus, (p, P) = 

odd, (p, P) = 1 or 
However, 
1. Also, 

P = ±2, so (y0, P) = 1. This proves (4). 

Case 2: n = 87c - 2 and 3|n. 

We take p = 6£c - 1, q = 1, P = p 2 - n = 36/<2 - 20k + 3, x0 = 9P - 1, and 
z/0 = 3 (18k - 5 ) . It can be checked that P > 1 and that P is strictly between 
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p2 and (p - I)2 for any value of ~k. We calculate that y\ - 8 ID = -18, and so 
x\ - T)y\ = (9D - 1)2-D(81D - 18) = 1, while (2) is immediate. Note that 3\p 
but 3|n9 so 3](D. Since D is odds we see that (yQ5 D) = 1. Finally, 

3(p2 - D) - 4p = 3n - 4p = -2, 

and so (p, D) - 1 also. 

To compute solutions to S - P = n9 we can follow McDaniel and define inte-
gers ar̂  9 z/j for j > 0 by 

x. + 2/..V® = (xQ + y0JD)cd, 
where c = 2, then take 

£ = (pxj + Dqyj)2 and P = D(pyj + qxj)2
5 

where j is any positive solution to (cpy0)j E - ^ 0 (mod D). If a:2, - Dy\ - +19 

however, such as in the present case and in McDaniel!s treatment of the case 
n = 4& + 19 sometimes a smaller solution may be found by taking c - 1 in the 
above discussion. This gives a smaller solution when the least positive solu-
tion to (py0)j = "C[XQ (mod D) is less than twice the least positive solution 
to (2pz/0)j =-qxQ (mod 2?) » and, in any case (when x\ - Dy\ = 1)9 more solutions 
are obtained this way. If n = 149 for example, we generate solutions 

S = (5a: + Hz/)2 and P = 11 (5z/ + x) 2
 9 

where a: and z/ are defined so that 

x + z/vTT = (10 + 3vTT)3 + llt or (10 + 3vTT)2(7+llt)
9 t> 09 

depending on whether we take c' = 1 or 2. 

It has been proved by McDaniel [3] and Mollin and Walsh [49 5] that every 
nonzero integer can be written in infinitely many ways as the difference of two 
relatively prime powerful numbers9 neither of which is a square. 
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1. INTRODUCTION 

According to Moessner!s Theorem [3], [6], the kth powers of the positive 
integers can be generated in the following interesting way. Delete every kth 

integer from the sequence of positive integers, form a new sequence by taking 
partial sums of the original altered sequence, delete every (k - l)st entry 
from the sequence of partial sums, and so on. After k - 1 steps, this process 
terminates with the deletion of the sequence of kth powers. For example, for 
k = 3, we have 

1 2 ^ 4 5 ^ 7 8 ^ 10 11 T^ ... 

1 ^ 7 K 19 ^ • 37 >& ... 

is U 27 T&4 ... 

Note that we can think of the process terminating when we delete the single 
element at the bottom vertex of each small triangular array. A more general 
result due to I. Paasche [4] is that, if ik^} is a sequence of nonnegative in-
tegers, if the sequence 

k19 2k± + k2, 3k1 + 2k2 + fc3, ... (D 

is deleted from the sequence of positive integers, if the sequence of partial 
sums is formed, and so on, the process terminates with the sequence 

l \ 2*1!**, 3*12**1*', ... . 

For example, if kt = 1 for all i , the numbers deleted are the triangular num-
bers, and we obtain 

1 x ^ - 3 . 4 5 ^ 7 8 9 Ira 11 ... 

^ 6 1^ 18 26 35. 46 ... 

16. 24 3U 96 ... 

~24 120 ... 

Tm . . . 
and 

1 = I1, 2 = 2 1 • I1, 6 = 31 • 2 1 • l1, 24 = 4 1 • 31 • 2 1 • l1 

and 
120 = 5 1 • 4 1 • 31 • 21 • l1. 

Of course, this is more neatly written as 

1 = 1!, 2 = 2!, 6 = 3!, 24 = 4!, 120 = 5! 

1986] 3̂ 9 



A NOTE ON MOESSNER'S PROCESS 

If we start the Moessner process by deleting the triangular numbers 

n(n + 1) In + 1\ 
2 \ 2 / 

we generate the factorials—a truly remarkable result! 
It is natural to ask what happens if we commence the process by deleting 

the terms of other well-known sequences—say the Fibonacci or Lucas numbers, 
the square numbers, the binomial coefficients 

for fixed k9 the terms of a geometric progression {ar71'1} for positive inte-
gers a and r > 1, and other sequences the reader might think of. We might also 
ask what happens if the k% s in (1) above are in some well-known sequence. Both 
of these questions are addressed in what follows. The interested reader will 
also want to consult [1], [2], [5], and [7]. 

2. AN INVERSION THEOREM 

Let f(n) be any increasing positive integer valued function whose succes-
sive values, /(I), f(2), /(3), . .., we want to delete from the sequence of 
positive integers to initiate Moessnerfs process. To determine the products 
generated, it is necessary to determine the nonnegative integers ki9 i ^ 1, 
such that 

fiX) = kl9 f(2) = 2k± + k2, f(3) = 3kx + 2k2 + k3, ..., 

i.e., such that 

f(n) = £ (n +-1 - i)kis n > 1. (2) 
i = l 

Of course, the condition that the ^'s be nonnegative has implications for the 
growth rate of f(n). Thus, 

k± < kx + k2 < k± + k2 + k3 < •••, (3) 
and so 

/(I) < f(2) - /(I) < /(3) - f(2) < ••• . (4) 

This will force some adjustments later on, but does not affect the following 
inversion theorem. 

Theorem 1: Formulas (2) hold with 

kx = /(I), k2 = f(2) - 2/(1) 
and 

kt = f(i) - 2f{i - 1) + f(i - 2), for i> 3. 

That is to say, 

fin) = nf(l) + (n - l)[/(2) - 2/(1)] 

+ E (n + 1 - i)[f(i) - 2f(£ - 1) + f(i - 2)]. (5) 
i- 3 
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Proof: Clearly, k = f(l) and k = f(2) - 2k, = f(2) - 2/(1). Moreover for 
J > 2, 

fU) - fti - i) = Z (J + i - i) - ' Z ' C J - *)fc* = E ^ , 
i=l £ = 1 i=i 

and hence, for j > 3, 

fy = £ &i - 5 fef = /(J) - /(J - 1) - IfU - 1) - /(«/ - 2)] 
= fill ~ 2fU - 1) + fU ~ 2) 

as claimed. 

We now apply Theorem 1 to some interesting sequences, making sure at the 
same time that (2) and (4) are satisfied. 

3. THE FIBONACCI SEQUENCE 

If Fn denotes the nth Fibonacci number, then 

F. - F. = F. 

so the sequence of differences is nondecreasing for i, ^ 1. Since F3 ^ 2F2» we 
may set f(n) = F and the Moessner process will apply. Also, from Theorem 1, 
we have 

k± = F2 = 1, k2 = F3 ~ 2F2 = 0, 
and 

k. = P.., - 2F. + F. = F. „ 

^ t-+ 1 ^ ^ - 1 ^ - 3 

for £ > 3. Thus, from (5), we have 
n 

Fn + 1 = n + E (w + 1 ~ i)^-3 (6) 
i = 3 

and if we delete the numbers 1, 2, 3, 55 8, 13, ... from the sequence of posi-
tive integers, the Moessner process generates products with the exponents 

I, 0, 0, 1, 1, 2, 3, 5, 8, ... . 

That is, the products generated are 

II, 21!0, 312H\ 413° 2° 11, ̂ H ^ ^ 1 ^ , G ^ ^ S ^ l 2 , ... . 

4. THE LUCAS SEQUENCE 

There is a little difficulty with the Lucas sequence {Ln} because of (4). 
Thus, 

i + l i ~ i -1 

and the sequence of differences only increases for £ ̂  2. Also, if we attempt 
to set f(i) = L^+1 as for the Fibonacci sequence, then 

f(2) = L3 = 4 £ 6 = 2L2 = 2/(1). 
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This difficulty, howevers can be overcome by a slight artifice. Consider the 
function /(ft) = n for 1 < n < 2, and /(ft) = Ln_1 for ft > 3. Here the differ-
ences are nondecreasing for £ > 1 and f(2) > 2/(1). For this sequence, we have 

^ = /(I) = 1, k2 = jf(2) - 2/(1) = 2 - 2 - 1 = 0 , 

k3 = f(3) - 2/(2) + /(I) = 3 - 2 * 2 + 1 = 0 , 

fci, = /(4) - 2/(3) + /(2) = 4 - 2 - 3 + 2 = 0 , 

and for i ^ 5, 

*i = /<*> - 2/(i - 1) + f(i - 2) = L.^ - 2L._2 + L,_3 = Lt_s. 

Thus, from (5), for ft > 4, we have 
n 

Ln~i = n^i + (n - l)k2 + (ft - 2)k3 + (ft ~ 3)kh + T, (n + 1 - i)ki 
i = 5 

= n + £ (w + 1 ~ ^ ; - 5 ' (?) 

and, if we begin the Moessner process by deleting 1, 2, 3, 4, 7, 11, 18, ..., 
the exponents in the generated products are 1, 0, 0, 0, 2, 1, 3, 4, 7, ... . 

5. THE GENERAL SECOND-ORDER RECURRENCE 

Consider the general second-order recurrence defined by g1 = cs g2 - d, and 
Qn + 2 = a9n+i + b&n ^or n ^ *9 where a, Z?, c, and £? are positive integers with 
d ^ 2o. The first few terms of ign} are 

#i = °* 9i = d> g3 = ad + be* gh = a2d + abo + M , ... . 

Now define the sequence {k^} by 

\ = g1 = <?> 

^2 = #2 - 2 ^ = d - 2(3, (8) 
ki = 9i - 29i_1 + ^.2» for ^ > 3, 

so that the fc^ satisfy Theorem 1 for all £ > 1. Then, deleting the sequence 
{g^} from the sequence of positive integers in the Moessner process generates 
products whose exponents are successive terms of the sequence {k^}. In addi-
tion to the above, note that 

k3 = ad + bo - 2d + os kh = a2d + abo + bd - 2aJ - 22?c + d, 
and that 

ftn = akn_1 + bkn„29 for n > 5. 

We may also ask what sequence {/(£)} should be deleted from the sequence 
of integers to start a Moessner process that generates products where the ex-
pontnes are the sequence {g^}. We must determine /(ft) such that 

fin) = E (ft + 1 - i)g . (9) 
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It turns out that the desired function f(n) may be defined by the following 
second-orders nonlinear recurrence. 

f(l) = c, f(2) = 2c + ds 

f(n + 1) = af(n) + bf(n - 1) - nac + (n + l)c + nd, n > 2. 

To see this9 we note that 

f(l) = c = g± and f(2) = 2c + d = 2g 1 + g^ 

Now assume that (9) holds for n = k - 1 and n = k for some fixed k > 2, Then5 

/(fc + 1) = a/(k) + £/(& - 1) - kac + (k + l)c +• kd 
k k-1 

= a E (k + 1 - ^ ) ^ + £> E (fc - i)g, ™ ^ac + (k + l )c + /ca7 

i = 1 i = 1 

= a/cg^ + a E 0< + 1 ~ ^)gi + ^ E (^ - ^)^i - &z<? + (k + l)c + kd 
t = 2 £ = 1 

= akc + a E (& + 1 ~ J )^ - + £ £ (k + 1 - J ) ^ - - ! 
J = 2 J = 2 - kac + (fc + 1)<? + kd 

k 
= E (k + 1 - j ) ( a a . + £a. -) + (k + l )c + ka7 

fc + 1 
= E (fe + 2 - i)g 

i - l 
This completes the induction. 

Incidentally, it now follows from Theorem 1 that 

9i = f(i) ~ 2f(i - 1) + /(£ - 2), £ > 3. (10) 

6, SOME OTHER INTERESTING SEQUENCES 

If we start the Moessner process by deleting terms in the arithmetic pro-
gression {a + (n - l)d}9 where d > a in view of (4), it follows from Theorem 1 
that the exponents in the generated products are 

k± = a5 

k2 = (a + d) - 2a = d - a5 

and ki = [a + (i - l)d] - 2[a + (i - 2)J] + [a + (i - 3)d] - 0S 

for % > 3c Thus, the generated products are simply 

la
5 2al^"a

5 3a2d"a
5 4a3d"a, ... . 

If 5 instead of starting Moessnerfs process by deleting the terms of an 
arithemtic progression, we desire that the k}s (i.e., the exponents In the re-
sulting products) be in arithmetic progression, we must delete the successive 
terms of the sequence {f(n)}, where 
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f(n) t in + 1 - i)[a + (i - l)d] = (w ^ ^ + (n 3 ^ (n) 

In Section 1 we saw that interesting results were obtained if we began the 
Moessner process by deleting the triangular numbers 

n(n + 1 ) in + 1\ -̂  1 
2 = ( 2 ) > n > 1 -

This naturally raises the question of deleting the binomial coefficients 

( y J for any fixed integer k > 2, 

Of courses the result follows from Theorem 1 with 

*f \ (n + k - l\ 

We have 

*>-™-(l + i-l)-(i)-(t--D-
*, - « « - wi> - (2 + 1 - ' ) - 2(l + * - » ) - * - 1 - ( * : j ) . 

ands for t > 3S 

* . - c + r , ) - » c - , i * - i ) * ( i - 2 i , i - i ) - ( i i * i 3 ) -
That i s , 

in + k - l\ A e i 0 .sii + k - 3 \ , l o x 

v * / % ? 1
( n + 2 - * K fc- 2 ;• (12) 

Thus9 if we delete the sequence s( « )( s we generate the products 

If we delete the sequence sf , Jf , we generate the products 

(?) (?) (?) (?) (?) (5) r 2 \ 2 V 2 V 2 \ 3 V 2 V 2 V 2 \ . . . , 
and so on. 

Finallys we consider the case when if(n)}, the sequence of deleted numbers9 
is the geometric progression {ar71""1} with a and p positive integers and r ^ 2; 
and also the case where ^^ = ar^ 1. 

If /(n) = arn~~ , we are starting Moessner fs process deleting the terms of 
a geometric progression and we have from Theorem 1 that the exponents in the 
generated products are 

k± = f(l) - a$ 
k2 = f(2) - 2/(1) = ap - 2a = a(r - 2), 

and9 for i > 3S 
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= ari_1 - 2api~2 + arl~* 

= api-3(p2 - IT + 1) 

= ar*~3(r - 1) 2
5 

again a geometric progression with common ratio p after the first two terms. 
In any case9 we also have that 

arn~x = na + (n - l)a(p - 2) + a(r - I)2 X > i _ 3 . (13) 
i = 3 

If 3 on the other hand., k^ = art_ for i ̂  1, we must begin Moessner's pro-
cess by deleting the successive terms of the sequence {f(n)}9 where 

= 

where # = P ~ 1 . 

fin) = 

i = l 

n ^ ( n - i ) p i p n 

^E- ~̂—-
i = 0 Tn-%-\ 
Thus3 

CUji =0 

_a (p n + 1 _ - P + n -

-i-i 

x = p - 1 

- pn) 

£ = 0 

i = 0 

.n — l CL CC — CC 
= OOP * -j : 

ax 1 - x X = P _ 1 

(U) 
- m ) 

(r - l)2 

and the Moessner process yields the products 

la
3 2a • 1^ , 3a* 2aP • lap2 , ... . 
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An unusual application of Fibonacci sequences occurs in a musical composi-
tion by Iannis Xenakis. In Nomos Alpha the composer uses Fibonacci sequences 
of group elements to produce "Fibonacci motions/' sequences of musical proper-
ties such as pitch, volume, and timbre that give the composition its framework 
(see [l]s [4]). This setting suggests some interesting mathematical questions! 

1. Given elements a and b in a finite abelian group , what is the period 
of the Fibonacci sequence a, b9 ab, ab2, a2b3, ... in G? 

2. Given an integer n > 2, is there a Fibonacci sequence of period n in a 
group (7, and can such a sequence be readily obtained? 

A helpful starting point is the paper entitled "Fibonacci Series Modulo mn 

by D. D. Wall [3]. With Wall, we let /„ denote the nth member of the sequence 
of integers fQ = a, f1 = b9 ..., where fn + 1 = fn + f n _ r The symbol h(m) will 
denote the length of the period of the sequence resulting from reducing each 
/„ modulo w. The basic Fibonacci sequence will be given by uQ = 0, ux = 1, ... 
and the Lucas sequence by v0 = 2, v1 = 1, ... . The symbol k(m) will denote 
the lenght of the period of the basic Fibonacci sequence 0, 1, 2, 3, ... when 
it is reduced modulo m« Since we will often work in a group setting, we will 
let 7L and lLm represent the group of integers and the group of integers modulo 
m3 respectively. 

We summarize some of Wall's results in the following, using a group setting 
for convenience, 

Theorem (Wall): In 1Lm the following hold: 

(1) Any Fibonacci sequence is periodic. 

(2) If m has prime factorization lip?1 and if hi denotes the period of the 
Fibonacci sequence fn (mod p?i)9 then h(m) = Icm-f^}. 

(3) The terms for which un E 0 (mod 777) have subscripts which form a simple 
arithmetic progression, 

(4) If p is prime and p = 10# ± 1, then k(p) divides p - 1. 

(5) If p is prime and p = 10# ± 3, then k(p) divides 2p + 2, 

(6) If k(p2) ± k(p), then k(p°) = p°-1k(p) for c > 1. 

The results in (4) and (5) give upper bounds for k(p) 9 but, as Wall points 
out, there are many primes for which k(p) is less than the given upper bound. 
Unfortunately, one must obtain the sequence itself in order to determine k(p). 
The following theorem provides a method for determining kirn) from the prime 
factorization of certain Ui and v^. We note first that in 7L2 the sequence 0, 
1, 1, ... has period 3 and in any group G, an element of order 2 yields a se-
quence 0, a, a, 0, ... of period 3. 
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Theorem 1: If 777 > 2, the sequence 0, 1, 1, 2, . .., un, . .. has period In in 7Ln 
for n = minimum{?2 even and m\un; n odd and m\vn}» 

Proof: Consider the sequence 0, 1, 1, 2, ..., un9 ... in Zm. By Wall's Theo-
rem, it is periodic, so we must have 

0, 1, 1, 2, 3, ..., uns ..., -3, 2, -1, 1, 0, 1, ... 

and the "middle" of the period must have one of the four forms: 

(i) ..., w n, u n , u n9 -u n, . . . ; 
n-2 n-1 3 n-1 5 n-2' ' 

( i i ) 
:m) 

un-29 un-l3 un-l* un-2> 

un_2, un_±, 0, un_1, -un_ 

(iv) ..., un_2, un_l9 1 

If (i) occurs, then un_2 E 0 and 2un_1 E 0. Thus, wn_i equals 0 or has 
order 2 in 7Lm and 0, 0, 0, ... or 0, un_l9

 u
n-\* ^5 ••• a r e t n e resulting se-

quences. These cannot occur, since 1 has order 777 in TLm. 

If (ii) occurs, it is easy to obtain a similar result. 

If (iii) occurs, n - 1 must be odd (so n is even) and un E 0 (mod 777) so 
"that 77?Iun. These two conditions are sufficient to imply repetition after In 
terms, since we must then have 1, 1, 2, 3, ..., 2un_19 ~u

n-\* un-i9 ^' wn-i5 

un-i! 2wn-i> •••» un-iun-i E lj ° s ••• b^ symmetry of the terms of odd index. 

In (iv) , n - 1 must be even (so n is odd) and un_1 + wn + 1 E 0 (mod 777) so 
that vn E 0 (mod 777) and m\vn. As in (iii), these two conditions imply repeti-
tion after 2n terms, for they require 

1, 1, 2, .... un_x, un, -un_1, un - un_1 

n-l* n - 3 9 5 2 5 n-(n-l) 

= Wi E 1, 0, ... . 

Thus, to find the period of the sequence 1, 1, 2, 3, ... modulo 777, we need 
only locate the smallest n such that m\un for even n or m\vn for odd n. The 
period of the sequence will equal In. 

Since the period is always 2n, we easily obtain a result of Wall. 

Corollary 1: For 777 > 2, the sequence 1, 1, 2, 3, ... modulo m has even period. 

Example: In Z1 3, the sequence 1, 1, 2, 3, ..., un, ... has period 28, since 
ulk = 377 is the first eligible un or vn divisible by 13. The index 14 is 
doubled to obtain the period. 

For larger 777, our search is narrowed by (2), (4), (5), and (6) of Wall's 
Theorem. Note that (4) becomes n | (p - l)/2 for p = lOx ± 1 and (5) becomes 
n\p+l for n = 10x±3, since our n represents half the period of the sequence. 

Example: In 2Lh7, (5) requires that rz|48, and Theorem 1 yields n = 16, since 
uls = 987 is the first eligible un or vn divisible by 47. The period of 1, 1, 
2, ..., u , ... in Z is therefore 32. 
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We remind the reader of three known results (see [2]) which are helpful in 
the search for a minimal ft. 

(') vn\vm if a n d only if /77 = (2k - l)ft for n > 1. 
(ii) Vn\um if and only if m - 2kn for n > 1. 

(iii) wn|um if and only if n\m« 

The following related result completes the picture. 

(iv) For n > 1, un does not divide vv for & odd. 

Proof: If n = 2, then w4 = 3 = ̂ 2» Thus, by (i)9 only those i^ with # even 
are divisible by uh. 

If n = 3, then u6 = 8, and it can be shown that no v\ is divisible by 8. 
(Use the fact that any number with at least 3 digits is divisible by 8 if and 
only if the number consisting of its last 3 digits is divisible by 8. Then 
observe that the set of odd multiples of v3 = 4 yields only a finite set of 
final 3 digits, none of which is divisible by 8.) 

For ft > 3, assume there exists an odd k such that u2n\vk. Then w2w|w2fc.by 
(ii) s so 2n \ 2k and n\k so that un\u^ by (iii) . Since u2n\v-l<9 it follows that 
wn|y^. Hence, un is a common divisor of both un and v^ and thus un must equal 
1 or 2. This is impossible for ft > 3* 

These four facts and Wall's Theorem make it quite simple to determine the 
period of Fibonacci sequences of the form 0, 1, 2, 3, ..., un9 . .. modulo m. 

In an arbitrary group Gs if we use multiplicative notation, we may apply 
Theorem 1 to the exponents to obtain 

Corollary 2: Let G be any group and a an element of order m > 2 in G.. Then 
the sequence a, a9 a2

s a3, ...9 a"n9 ... will have period 2n for 

n = minimum{ft even and m\un; n odd and m\vn}* 

Example: If a is an element of order 4 in a group, then the sequence a9 a3 a2', 
a , ..., aM", ... has period 65 since 4 divides v3 - 4 and no previous un for 
ft or t;n for ft odd. 

It is evident from Theorem 1 and Corollary 2 that the process of finding n 
may be reversed. If we are given ft > 2, we can construct a Fibonacci sequence 
of period 2ft. If ft is even, we can use any element a of order un, and if ft is 
odd, an element of order vn will suffice. We can often do better, since we 
need only a factor x of un or Vn which is not a factor of any previous un of 
even index or Vn of odd index (i.e., ft will be the index of the first qualify-
ing term divisible by x). We state this formally. 

Corollary 3: A sequence of the form a, a, a2, ..., aUn
9 ... in a group G will 

have period 2ft > 5 if a is chosen to have order un for ft even or vn for ft odd. 
Furthermore, a may be chosen to have order x where x divides this un or vn but 
is not a factor of any previous qualifying un or vn. 

Example: To find a sequence of period 16 = 2ft, use uQ =21. Any element of 
order 21 in a group G will yield a sequence of the form a, a, a2, a3, ..., a^ 5 
... which has period 16* Since 7 is a factor of 21 which divides no previous 
un of even index or vn of odd index, any element of order 7 will also suffice. 
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We may use the previous results to present a simple method for obtaining 
primes p for which k(p) is a proper divisor of p - 1 for p = lOx ± 1 or of 
2p + 2 for p = lOx ± 3. As mentioned earlier, our minimal n equals [k(p)/2]s 
so we seek primes p such that ft does not equal (p - l)/2 or p + 1. 

First of all9 if we are given a prime p > 5, set n = (p - l ) / 2 o r n = p + l 9 

depending on whether p = 10# ± 1 or p = 10x ± 3. Then, using previous results, 
see whether Un for ft even or vn for ft odd is the smallest such un or vn divi-
sible by p. For example, if p = 31, set ft = 15. Since y15 is divisible by 31 
and no smaller qualifying un or vn is divisible by 31, ft = (p - l)/2 works and 
A:(31) = 30. However, if we begin with p = 47, set ft = 48. Since 47 divides 
w16 < w48, it follows that Zc(47) = 32 ̂  96. 

Another approach begins with N rather than p. Given N5 find the prime fac-
tors p1? ..., p, of w^ for iV even or y^ for N odd. Proceed as above to set 
(p̂  - l)/2 or p^ + 1 equal to n^ for each p.. If n^ > N5 then k(p^) < the 
given upper bound p. - 1 or 2p^ + 2 . If ft ̂ = 21/, check whether p. divides a 
previous uk of even index or z^ of odd index. If so, then k(p^) < the given 
upper bound* If not, k(p.) = the correct upper bound. (If n^ < N9 disregard 
the associated p^.) 

Example: For N - 44, the prime factors of uhh are 3, 43, 307, 89, and 199. We 
disregard 3 since ft = 4 < 44. For p = 43, n = 44 and, in fact, fe(43) = 88* For 
p = 307, n = 308 > 44, so fc(307) < 88 ^ 616. For p = 89, ft = 44 and, in fact, 
fc(89) = 88. Finally, for p = 199, ft = 99 > 44, so fc(199) < 88 ^ 198. 

Two more results follow easily from Theorem 1. 

Corollary k: Any element whose order is a multiple of 5 will yield a sequence 
a9 a, a2

 3 . .., aUn, ... whose period is a multiple of 4. 

Proof: No Lucas number is divisible by 5, so ft must be even and 2ft is there-
fore divisible by 4. 

Corollary S- Any sequence of the form a, b9 ab, ab2, ..., aw"_1bw% ... in an 
Abelian group £ will have odd period > 3 only if it does not contain the iden-
tity element. 

Proof: By Corollary 2, any sequence of the form e, a, a, a2, ..., aw?s ... for 
a of order > 2 has even period. 

Corollary 3 allows us to construct Fibonacci sequences of period 2ft for 
ft > 2. Corollary 5 requires us to examine sequences not containing the iden-
tity element if we wish to obtain sequences of odd period. We first observe 
that, if the sequence a, a, a2, . .., a w % ... has period x and the sequence 
bs b* b2, ..., bUi

5 . .. has period y in an Abelian group G9 then the sequence 
a, b, ab, ab2, . .., aUi~lbUi

5 . .. will repeat after lcm{x, y} terms. Hence, 
the period of this sequence will be a divisor of lcm{x, y}. (Wall [3] gives 
some sufficient conditions for h(rn) to equal k(m) in 7Lm.) 

Example: In Z5, both a = 1 and 2? = 3 have order 5, and the sequences 

0,1,1,2,... and 0,3,3,6,... 

each have period 20 (since u1Q Is the first qualifying un or vn divisible by 5). 
However, the sequence 1, 3, 4, 2, 1, ... has period 4. 
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Our goal is to construct Fibonacci sequences of odd period and the follow-
ing theorem provides the means to accomplish this. 

Theorem 2: Given any integer n > 2, there exists a Fibonacci sequence of 
period n. 

Proof: Consider the sequence of integers 

un, 1 - un_1, 1 + un_2, ..., uk_± + (-1) un_(k_1)9 ..., 

U , U M1 + (~l)n+13 ... . 
n n + 1 K ' J 

This is a Fibonacci sequence of period n provided that 

'0 (mod m) for n odd, 

2 (mod m) for n even. 
1 - u . = u _ + (~l)n+1 or y, 

n -1 n + 1 

Thus, if n is odd, use the given sequence in Hm with m ~ vn and, if n is even, 
use the given sequence in 7Lm with m - Vn - 2. 

Although Theorem 2 establishes the existence of Fibonacci sequences of 
period n, in practice the calculations often involve large m. To simplify this, 
observe that we need only a d%visov of vn or vn - 2 which has not appeared as 
a factor of a previous v^ for k odd or Vy, - 2 for k even. 

Example: Given n = 7, the resulting sequence is 

13, -7, 6, -1, 5, 4, 9, 13, 22, ..., 

where 22 = -7 (mod m), so m = 29 = V7. Other sequences of period 7 may be ob-
tained by multiplication of this sequence by any nonzero element in Z2 g. 

Example: If n = 9, the resulting sequence is 

34, -20, 14, -6, 8, 2, 10, 12, 22, 34, 56, ..., 

and m - v9 - 76 = 22 • 19. Here, we may use the smaller m = 19 to obtain the 
sequence 15, 18, 14, 13, 8, 2, 10, 12, 3, 15, ... in Z1 9. (Note that if the 
original sequence is reduced modulo 4, we obtain 2, 0, 2, 2, 0, ... which has 
period 3 instead of period 9. The problem here is that 4 has appeared in pre-
vious Vy for k odd and v^ - 2 for k even.) As in the previous example, multi-
plication of the sequence of period 9 by any number relatively prime to m will 
yield a sequence of period 9» 

Applying Theorem 2 to exponents, we obtain 

Corollary 6: Given n > 2, an element a of order vn for n odd or Vn_2 for n even 
in an Abelian group G will yield a sequence 

of period n. 
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ON A SECOND NEW GENERALIZATION OF THE FIBONACCI SEQUENCE 

KRASSIMIR T. ATANASSOV 
CLANP-BAN, 72 Lenin Boul., 1784 Sofia, Bulgaria 

(Submitted January 1985) 

A new perspective to the generalization of the Fibonacci sequence was in-
troduced in [l]s Here, we take another step in the same direction. In [1] we 
studied the sequences {a }J=0 and (3 }̂ =n defined by 

a, g0 = 2?, a1 = e9 31 

= o 

(n > 0) (1) 

\ + 2 = an+l + a , 

where a, bs 
tion {FJ(aS 

c, and 6? are fixed real numbers. We also utilized the generaliza-
b)}l where 

FQ(as b) = a 

F^a, b) b (n > 0) 

n + 1(a9 b) + F (a, b) 

so that Fn = Fn(0, 1), where {F^}i=0 is the Fibonacci sequence. 
We shall study here the properties of the sequences for the scheme, 

= b9 a1 = o9 3i = d9 

+ 0n* (n > 0) 
a0 = a, 30 

(2) t̂t + 2 

^n + 2 

where as 2?, c9 and d7 are fixed real numbers, and will conclude with a theorem, 
similar to [1]. Since the proofs of the results in this paper are similar to 
those in [1], we shall only list the results and eliminate the proofs. 

Obviously when a - b and c = d9 the schemes from (2), as well as from (1), 
coincide with the Fibonacci sequence {F^(a9 b)}™._ 
sequences from (2) are: 

The first few terms of the 

n 

0 
1 
2 
3 

! 4 
5 
6 
7 

i 8 
! 9 

a n 

a 
c 

b + c 
b + o + d 

a + b + o + 2d 
2a + b + 2e + 
3a + 22b + 4c + 
4a + 42? + 7 c + 

6a + lb + l i e + 

3d 
hd 
6d 
10a7 

10a + lib + 17c + lid 

$n 

b 
d 

a + d 
a + c + d 

a + 2? + 2c + d 
a 

2a 
4a 

+ 2b + 3c + 2d 
+ 32? + 4 c + 4a7 

+ 42? + 6 c + 7d 
la + 6b + 10c + lid 

11a + 102? + lie + lid 

Lemma 1: For every k ̂  0: 
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(fa) «6fc+l + 2 l = t&k+l + a i 5 
( c j 

(d) 

(e ) 

( f ) 

Lemma 2 : 

a, 

a 

a, 

a, 

] 

J6k + 2 + 3 0 + a i ; 

6 k + 3 + a 0 ~ $6k+ 3 + ^ 0 5 

J 6 k + ^ f 

6k + 5 + B0 + ax = ^6fc+5 + a 0 + 

For every n ^ 0: 

i = o + a, (b) Bn+2 = £ a, + B l 
i =0 

Lemma 3 : 

(a ) 

(b) 

( c ) 

(d) 

(e ) 

( f ) 

F o r e v e r y n ? 

6k 
E ( a i 

i = o 
6/c+l 

i = 0 

6k+2 

£ =0 

6/c+3 

E (a, 
i = 0 

6fc+4 
E (o^ 

i = Q 
6k+5 

E (a, 
i = 0 

-

-

-

-

-

-

B i ) 

B; ) 

B i ) 

B i ) 

B i ) 

B i ) 

* 0 : 

= a o - B 0 ; 

= a 0 - B0 + a x -

= 2 a ! - 2 B X ; 

= - a 0 + B0 + 2 a 1 

= - a 0 + B0 + a x • 

= 0 . 

Lemma k: For every n ^ 0: 

«n + 2 + e n + 2 = pn+1 • («„ + e„) + pn+2 • <«i + & i > -

As in [1], we express the members of the sequences {a^}i=0 and { B ^ = 0 when 
n ^ 0S as follows: 

( an = yj • a + Yn s b + Y« • ̂  + Y„ • d 
\ Bn = 6* • a + 6̂  . fc + 6^ • c + 6£ • c? 

It is interesting to note that Lemmas 5-7 have results identical to those 
found in [1] for the sequences { Y J } ™ = 0 5 {y^}^=05 etc*, even though they are 
different sequences. 

Lemma 5- For every n > 0: 

(b) Y ^ + 6 S = ^ „ - i ; 

(c) Yj! + «» = *"„; 

(d) Y : + ̂  = Fn. 
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Lemma 6: 

(a) 

Lemma 7: 

(a) 

(b) 

(c) 

(d) 

For 

YJ + 

For 

5n = 

s2„ = 
«n = 

«*„ = 

every n 

Y2 = 61 

every n 

Y2; 

Yn > 

i n» 

Y3' 

> 

+ 

> 

0 

5 n ; 

0: 

(b) Yn + Yn = 6 n + 6*. 

( e ) y» = Y 2
+ 1 

(f) yl = Y „ \ 

(g) s n = 6n
2

+ 

Let if) be the integer function defined for every k ^ 0 by: 

T 

0 
1 
2 
3 
4 
5 

ip(6k + T) 

1 
0 
-1 
-1 
0 
1 

Obviouslys for every n > 09 
iKn + 3) = -ip(n)„ (3) 

Using the definition of the function \p5 the following are easily proved by 
induction. 

Lemma 8: For every n > 0: 

(a) Yn = ̂ n + *(«); 

(b) Y^ = 5n + iK« + 3); 

Lemma 9: For every n ̂  0: 

^ t+2 = ^ + 1 + Yn + * ( « + 3) ; 

(b) Yn%2 = Y 2
+ 1 + Y 2 + * ( « ) ; 

(c) Yi = Y2 + * ( « ) ; 

(c) Y „ = 53„ + * ( n + 4 ) ; 

(d) y" = $n + Un + D 

(d) Yf >n + l + ^ + * ( « + 1); 
(e) Yn\2 = Yn\x +Y^ + * ( n + 4) ; 

( f ) Y* = Y* + Hn + 4 ) . 

From Lemmas 59 79 8S and ( 3 ) s we obtain the equations: 

Y n = &2
n =j(Fn-2 +i>(n)); 

Y2 

' n 
Yn = 6* = { ( F n + ^(n + 4 ) ) ; 

Y„ = 6n = { ( ^ + Un + D ) . 

Theorem: For every n > 0: 

an = 3 U V 1 + *(«))a + ( V i + *(« + 3))2> + (Fn + ^(n + 4))a 
+ (F„ + jp(n + l ) )d} 
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-|{(a + b)Fn_l + (c + d)Fn + ip(n)a + ty(n + 3)b 

+ (Fn + i|i(n H 

+ (Fn + ty(n + 4))d} 

1 ^ - ! + ip(w + 3))a + (Fn_x + i(;(n))Z? + (Fn + iKn + l))c 

= -|{(a + 2 ? ) ^ ^ + (c + J)Fn + ip(n + 3)a + ip(n)Z? 

+ i(j(n + l)c + i|j(n + 4)d}. 

On the basis of what has been done in [1] and in this paper, one could be 
led to generalize and examine sequences of the following types 

a0 = as 30 = b9 a1 = c> 3X = ds 

an+2 = V * 3n+1 + q • 3n* (« > 0) 

*n + 2 n+1 n 

a0 = a9 30 = £* 04 = c9 31 = ̂ 3 

^ + 2 = t@ ^n + l + S^ an 5 

for the fixed real numbers p5 q5 t9 and s. 
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EUCLIDEAN COORDINATES 

NUMBER 

AS GENERALIZED FIBONACCI 

PRODUCTS 
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1. INTRODUCTION AND DEFINSTSONS 

In [2], it was shown how to obtain the coordinates of a point in (real) 
three-dimensional Euclidean space as triple products of Fibonacci numbers. 

This was achieved as a development of two-dimensional ideas involving com-
plex numbers, though the three-dimensional extension was devoid of any depend-
ence on complex numbers. 

Here, we wish to enlarge these notions to more general recurrence-generated 
number sequences and then to generalize our result to ̂ -dimensional Euclidean 
space. To accomplish this objective, we will need to introduce a symbol £(£, 
m, n), originally defined in [2] in relation to Fibonacci numbers only. This 
symbol represents a number with three components which may be regarded as the 
coordinates of a point with respect to three rectangular Cartesian axes, x9 y , 
and 2, i.e., as Cartesian or "Euclidean" coordinates. 

First, we define the recurrence sequence {Un} by 

Un + 2 = PUn + l ~ ?Un> ^0 = °  • ̂ 1 = l <M > °> > d'1) 

where p and q are generally integers. 
Next, for positive integers £, m9 n9 let 

' G(l + 2 , m9 n) = pG(l + \9 m9 n) - qG(l9 m9 n) 
G(l9 m + 2 , n) = p £ ( £ , m + 1 , n) - qG{l9 m9 n) (1 .2 ) 

{G(l9 m9 n + 2) = pG(!L9 m9 n + 1) - qG{l9 m9 n) 
wi th 

'(7(0, 0 , 0) = (a , a , a ) , £ ( 1 , 0 , 0) = (bs 0 , 0 ) , G(09 1, 0) 
= (0 , b9 0 ) , 

G(09 0 , 1) = (0 , 0 , 2>), G ( l , 1, 0) = p(b9 b9 0 ) , G(l9 0 , 1) (1 .3 ) 
= p(b9 0 , 2 0 , 

[ £ ( 0 , 1, 1) = p ( 0 s b, b)9 G(l9 1, 1) = p2(b9 b9 b) 

a and b being integers. 

2, PROPERTIES OF g(&, re, n) 

Inductive proofs, with appeal to (1.1)-(1.3), readily establish the follow-
ing (cf. [2]): 

G(H9 0, 0) = UzG(l9 0, 0) - qU^^GiO, 0, 0) (2.1) 

GU, 1. 0) = [^£(1, 1, 0) - <7Z7£-1G(0, 1, 0) (2.2) 

(?(£, 7?7, 0) = £/wGa, 1, 0) - qUm_1G(l9 0, 0) (2.3) 
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G(H, 0 9 1) = UzG(l, 0 , 1) - qUz-.tfiO, 0 , 1) ( 2 . 4 ) 

G(l5 1 , 1) = UzG(l5 1 , 1) - qUt-tflO, 1 , 1) ( 2 . 5 ) 

G(l9 m, 1) = UmG(SL, 1 , 1) - qUm-iGa, 0 , 1) ( 2 . 6 ) 

£ ( £ * m, ri) = / 7 n £ ( £ , T??S 1) = qUn-xGVl, m9 0 ) ( 2 . 7 ) 

T h e n , 

G(l, m, n) = Un{UmGa, 1 , D ~ qUm_1G{l9 0 , 1 ) } - qUn_1{UmG{l, 1 , 0 ) 

- qVn^GU, 0 , 0 ) } by ( 2 . 3 ) , ( 2 . 6 ) , and ( 2 . 7 ) 

= UmUnGU, 1 . 1) - qUm_1UnGa9 0 , 1) - qUmUn^Ga9 1 , 0 ) 

+ q^-iUn^GVL, 0 5 0) 

= UnU^U^b, b, b) - pqUz_1(0, b, b)} ( 2 . 8 ) 

- qUmUn_1{pUz(b9 b9 0 ) - ^ ^ ( O , fc, 0 ) } 

-- qUz_1(a9 a , a)} by ( 2 . 1 ) , ( 2 . 2 ) , ( 2 . 4 ) , 
^ and ( 2 . 5 ) . 
F u r t h e r , 

UzUm+1Un+1 = Uz(pUm - qUm.1)(pUn - qUn-i) by ( 1 . 1 ) 

= p2UzUmUn - pqUzUmUn-! - pqUzUm-iUn + q2UzUm.1Un-i 

w i t h s i m i l a r e x p r e s s i o n s f o r Ui+iUmUn+i and Un-iUm+iUn* 
C o m p a r i n g ( 2 . 8 ) and ( 2 . 9 ) , we s e e t h a t t h e r i g h t - h a n d s i d e of ( 2 . 9 ) c o n -

t a i n s p r e c i s e l y t h o s e c o e f f i c i e n t s i n ( 2 . 8 ) of c o o r d i n a t e s e t s w i t h b i n t h e 
f i r s t p o s i t i o n , i . e . , i n t h e ^ - d i r e c t i o n . M i s s i n g i s t h e t e r m i n Ui-\Um-lUn-i• 

S i m i l a r r e m a r k s a p p l y t o Ui+iUmUn+i f o r b i n t h e s e c o n d p o s i t i o n , and t o 
Uz+1Um+iUn f o r b i n t h e t h i r d p o s i t i o n , of a c o o r d i n a t e s e t . 

A c c o r d i n g l y , we h a v e e s t a b l i s h e d t h a t 

G{1, m, n) = (pZW,Um + 1Un + 1 - q3aUl.1Um_1Un_1, 

P2bUz + 1UmUn + 1 - q"aVl_^n.xVn^, (2.10) 

P2bUi+1Um + 1Un - q'aU.^U^^.,). 

Equation (2.10) gives the cooedinates of a point in three-dimensional Euclidean 
space in terms of numbers of the sequence {Un} * 

When p = 1, q = -1, Z? = 1, a = 0 in (1.1), we obtain the result for Fibo-
nacci numbers Fn given in [2], namely, 

Gil, m, n) = (F F F , F F F , F F F ). (2.11) 

Setting p = 2, q = -1, b = 1, a = 0 in (1.1), we have the Pell numbers Pn 

for which (2.10) becomes 

G{1, m, n) = (4P£Pm + 1Pn + 1, Wl + 1PmPn+1, 4P£ + 1Pm + 1P„). (2-12) 

Before concluding this section we observe that, say, (2.6) may be expressed 
in an alternative form as 

. £(£, m, 1) = UZG(1, /??, 1) - qUz_1(05 m, 1). (2.6) f 
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3. HIGHER-DSMENSiONAL SPACE 

Suppose we now extend the definitions in (1.1)—(1.3) to n dimensions in a 
natural way as follows. (The use of n here is not to be confused with its use 
in a different context in the symbol G in the previous section.) 

For the n variables %i (i = 1, 2, ..., ri) , we define 

u"ViA/,T"Zs Jo. j ^ 3 5 •••s & n) ~ pCr^A/^T'ls A/ps -~qs • • • 5 ^ n ) ~ Ẑ̂ 7" V.-~ i ' ^ o ' 3 9 • • • J ^7%) 

(j-\Xj-, , X / 2 ' ^ - 9 - ~ Q 9 • • • J •*> yj / = pL?"V-~-]9 A / p ' J - S A/q 5 • • • , 71' ~ ^ 7 ^ \ -~ ]_ 5 -& £ ' 3 ' " • • ' ^71' 

I Lf\ X/-| j A/OS ^ q 9 • • • J ?2 • LSLT \ Xj -j j •X-' o 9 -^ q 9 . » « , ^?Z 1 / ~ u l f y A c i j •~' o 9 « o j • • » , fij Yl) 

with (3'X) 

r£(0, 0, 0, ..., 0) = (a, a, a9 ... , a) 

£(1, 1, 1, ..., 1) = (b9 b, b9 .... 2>) (3.2) 
G( ) = pk( ~ . ) 

in which G( ) contains k + 1 lTs and n - (k + 1) 0*s, and ( — ) contains 
k + 1 b%s and n - (& + 1) 0's, in corresponding positions. 

Mutatis mutandis, similar but more complicated results to those obtained in 
the previous section now apply to (3.1) and (3.2). 

in particular, the result corresponding to (2.10) is 

G{ix, £2, £3,...,£M) = {pn-1WliUl2 + 1Uli + 1...Vln + 1 + U, 

P ^ ^ + i ^ ^ . + i . . . uln + 1 + u, ( 3 3 ) 

Pn-1buii + 1u!i2 + 1uZ3 + 1... uin + u) 
where, for visual and notational ease, we have written 

U = (-?)l,ayii.1yvl£/4j.1 ... Uln_x. (3.4) 

Clearly, (3.3) may represent the coordinates of a point in n-dimensional 
Euclidean space in terms of the numbers of the sequence {Un}. 

For Fibonacci numbers, [7=0, and (3.3) reduces to 

GJ(£1, £2, £3, .. . , ln) = (F^ Fi2+iFz3 + i - • • ^An+i» •e • > 

Likewise, for Pell numbers, U = 0 also, and (3.3) becomes 

G(i1, £2, £3,...,£n) = (2 P^ P£2 + 1P£3 + 1 . . . P^ + 1, ..., 

2n"1Pi1 + iPt2 + iP4j + i...P4 B). (3.6) 

It does not appear that any useful geometrical applications of an elemen-
tary nature can be deduced from the above results. 

Harman [2] noted that if, in his case for Fibonacci numbers, the three ex-
pressions in (1.2) are combined, then the value of G(& + 2, m + 2, n + 2) is 
given by the sum of the values of the symbol G at the eight vertices of the 
cube diagonally below that point. Similar comments apply to our more general 
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expressions (1,2) with corresponding observations for the extension to n dimen-
sions entailed in (3.1) in connection with the 2n vertices of a "hypercube." 

By this statement, we mean that when, say, n = 3, (1.2) gives 

G(i + 2, m + 2, n + 2) = p3G{l + 1, m + 1, n + 1) - p2q{G{l + 1, m + 1, n) 

+ G(H + 1, 777, n + 1) + £(£, m + 1, n + 1)} 

+ p<72{£(£ + 1, m, n) + £(£, m + l , n ) 

+ £(£, 777, n + l)}~q3G{l, m, n). (3.7) 

In the case of Fibonacci numbers, p3 = -p2q = pq2 = -q3 = 1. For Pell num-
bers, p3 = 8, -p2q = 4, pg2 = 2, -<73 = 1. 

4. CONCLUDING REMARKS 

Consider briefly now the two-dimensional aspect of the results in the pre-
ceding section, i.e., the case n = 2. (Evidently, when n = 1, we merely get 
the numbers Un strung out on the number axis.) 

Writing £1 = £, £2 = m5 we find that the truncated forms corresponding to 
(3.1)-(3.7) are, respectively, 

with 

' G(i + 2, m) = pG{l + 1, m) - <?£(£, m), 

. £(£, ?7? + 2) = p£(£, 77? + 1) - ^7(£, m) , 
(4.1) 

whence: 

£(0, 0) = (a, a), G(l, 0) = (/3, 0), 
« 0 5 1) = (0, b)9 G(l, 1) = P(b, b), (4.2) 

GU, m) = (pM/,^ + 1 + a[/£.A„l5 P^£ + A + ̂ M ^ ^ (4.3) 
Ga, m) = (̂ ^ + 1. ̂ ,+ 1 ^ ) for {Fn}9 (4.5) 

£(£, 777) = (ZPzPm + 1, 2PZ + 1PJ for {Pn}9 (4.6) 

G(i + 2, ;?? + 2) = p2G{l + 1 , m + 1) - pq£(£ + 1, TT?) 
- p^^(£, 7?? + 1) + q2G(is 777). (4.7) 

Obvious simplifications of (4.7) apply for Fibonacci and Pell numbers. 

Some of the above results, for Fibonacci numbers in the real Euclidean 
plane, should be compared with the corresponding results in the complex (Gaus-
sian) plane obtained in [2]. The present authors [5] have studied the conse-
quences in the complex plane of a natural generalization of the material in 
[2]. Harman [2], when advancing the innovatory features of his approach, ack-
nowledges the earlier work of [1] and [3], and relates his work to theirs. It 
might be noted in passing that the introductory comments on quaternions in [3] 
have been investigated by other authors, e.g., [4]. One wonders whether an 
application of quaternions to extend the above theory on complex numbers might 
be at all fruitful. 

From the structure provided by the complex Fibonacci numbers, some inter-
esting classical identities involving products are derivable ([2] and [5]). 
Hopefully, these might give a guide to identities involving triple products of 
Fibonacci numbers, as conjectured in [2], and products in more general recur-
rence-generated number systems, as herein envisaged. 
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Please send all communications concerning ELEMENTARY PROBLEMS AND SOLUTIONS 
to PROFESSOR A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each 
solution or problem should be on a separate sheet (or sheets)* Preference will 
be given to those typed with double spacing in the format used below,. Solu-
tions should be received within four months of the publication date. Proposed 
problems should be accompanied by their solutions. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn + 2 =Fn + 1 + Fn, F0 - 0, F, = 1 
and 

Ln+2 = Ln + 1 +Ln> L0 = 2 , L± = 1 . 

PROBLEMS PROPOSED IN THIS ISSUE 

B-58Q Proposed by Valentina Bakinova, Rondout Valley, NY 

What are the three smallest positive integers d such that no Lucas number 
Ln is an integral multiple of dl 

B-581 Proposed by Antal Bege, University of Cluj, Romania 

Prove that, for every positive integer n, there are at least [n/2] ordered 
6-tuples (a, b* c, x5 y, z) such that 

Fn = ax2 + by2 - cz2 

and each of a, b9 c, x5 y, z is a Fibonacci number. Here [£] is the greatest 
integer in t, 

B-582 Proposed by Piero Filipponi, Fond. U. Bordoni, Roma, Italy 

It is known that every positive integer N can be represented uniquely as a 
sum of distinct nonconsecutive positive Fibonacci numbers. Let f(N) be the 
number of Fibonacci addends in this representation, a = (1 + v5)/2, and [x] be 
the greatest integer in x. Prove that 

f([aF2]) = [(n + l)/2] for n = 1, 25 ... . 
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B-583 Proposed by Dorin Andrica, University of Cluj-Napoca, Romania 

For positive integers n and s, let 

Prove that Sn>s+1 = n(Sn}S - 5 n _ l j S ) . 

B-584 Proposed by Dorin Andrica, University of Cluj-Napoca, Romania 

Using the notation of B-583, prove that 

Srn + n,s ^ [ V J ^m ,k^n , s -k' 
k = 0 

B-585 Proposed by Constantin Gonciulea & Nicolae Gonciulea, Trian College, 
Drobeta Turnu-Severin, Romania 

For each subset A of X = {1, 2, . .., n}9 let r(A) be the number of j such 
that {j, j + 1} CA. Show that 

2 ~ F2n + 1' 
ACX 

SOLUTIONS 

Pattern for Squares 

B-556 Proposed by Valentina Bakinova, Rondout Valley, NY 

State and prove the general result illustrated by 

42 = 16, 342 = 1156, 3342 = 111556, 33342 = 11115556. 

Solution by Thomas M. Green, Contra Costa College, San Pablo, CA 

Let Dn = 1 + 10 + 102 + - -• + 10n_1. The general result 

(3Dn + l ) 2 = lGnDn + 5Dn + 1 

is proved by expanding the left member and observing that 9Dn = 10
n - 1. 

Note: The quantity Dn has several other interesting properties: 

(i) Dn = 111...Ill (n ones) 

(ii) D2
n = 123...ra...321 (n = 1, . .., 9) 

(iii) D9/9 = 123456789 

(iv) (b - l)Dn = bn - 1 (2? is your number base) 

(v) The sequence £>°  9 D^3 £>2, ..., £>̂ , is Pascal's triangle (with suitable 
restrictions on carrying) and the sequences £> °, D\9 £>2, ..., Z?̂ , are 
Pascal-like triangles where each entry is the sum of the n entries above 
it. 

Also solved by Paul S. Bruckman, Laszlo Cseh, L.A. G. Dresel, Piero Filipponi, 
J. Foster, Herta T~ Freitag, Hans Kappus, H. Klauser, L. Kuipers, Graham Lord, 
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Imre Merenyi, Bob Prielipp, Sahib Singh, Lawrence Somer, J. Suck, and the pro-
poser . 

Not True Any Year 

B-557 Proposed by Imre Merenyi, Cluj, Romania 

Prove that there is no integer n ^ 2 such that 

F F F F - F F F F = 1QRS8 4- 1 
3n-^ 3n-3L 3n + 3 3n + 6 n-2 n-1 n + 1 n+2 ^OJ ^ I s 

Solution by J. Suck, Essen, Germany 

Since F3k E 2Fk (mod 3) [see, e.g., B-182, The Fibonacci Quarterly 8 (Dec. 
1970), for the more general Fpk E FpFk (mod p), p a prime], the left-hand side 
is congruent to (2h - l)Fn _2Fn _1Fn+1Fn+2, hence to 0. But the right-hand side 
is not whatever the year may be: if z/ E 0,1,2, then T/8 + 1 E 1, 2, 2, respec-
tively, mod 3. 

Also solved by Paul 5. Bruckman, Laszlo Cseh, L. A. G. Dresel, Piero Filipponi, 
J. Foster, L. Kuipers, Sahib Singh, M. Wachtel, and the proposer. 

Impossible Equation 

B-558 Proposed by Imre Merenyi, Cluj, Romania 

Prove that there are no positive integers m and n such that 

F,2 - FQ - 4 = 0. 

Solution by LeA« G. Dresel, University of Reading, England 

Since F3 = 2 and F^ - 8, we have F3n E 2 (mod 4) when n is odd, and F3n E 0 
when n is even. Now consider the equation F^m - F + 4 . Clearly n cannot be 
odd, since F 2 E 2 (mod 4) is not possible. However, if n is even, F*m E 4 (mod 
8) and this implies F\m E ±2 (mod 8). Hence Fhm is even, so that 777 = 3/c, where 
k is an integer, and therefore Fhm = F12-j<5 which is divisible by 8. This con-
tradicts Fhm = ±2 (mod 8) . Hence there are no integers 777 and n such that F hm -
Fq - 4 = 0 . 

We note that the above argument actually proves the slightly stronger re-
sult that there are no integers 777 and n such that F2 - FQ - 4 = 0 . 

0 2 m 3n 

Also solved by Paul S. Bruckman, Laszlo Cseh, Piero Filipponi, L. Kuipers, Sahib 
Singh, Lawrence Somer, M„ Wachtel, and the proposer. 

Golden Mean Identity 

B~559 Proposed by Laszlo Cseh, Cluj, Romania 

Let a = (1 + v5)/2. For positive integers n, prove that 

[a + .5] + [a2 + .5] + -•- + [an + .5] = Ln+2 - 2, 

where [x] denotes the greatest integer in x« 
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Solution by J. Foster, Weber State College, Ogden, UT 

Since L7 a* + and, for k > 2, [.5 i k i = 0, 

L tak + .5] = E [Lh 
fc-i fc = i 

n 

= E£* 
fc = 0 * 

+ .5] = E (L, + [.5 I) 

L0 + [.5 

fc = l 

5] = ( i n + 2 - 1) - 2 + 1 Ln + 2 ~ 2-

Also solved by Paul S.Bruckman, L.A. G. Dresel, Piero Filipponi, C. Georghiou, 
Hans Kappus, L. Kuipers, Graham Lord, Imre Merenyi, Bob Prielipp, Sahib Singh, 
Lawrence Somer, J. Suck, and the proposer. 

Another Greatest Integer Identity 

B-56Q Proposed by Laszlo Cseh, Cluj, Romania 

Let a and [x] be as in B-559. Prove that 

[oF1 + .5] + [a2F2 + .5] + .-. + [anFn + .5] 

is always a Fibonacci number, 

Solution by C. Georghiou, University of Patras, Greece 

We have 

„ p _ a2n - (-1)* _ p , 32" - (-1)" 

A 7s 
and since 

(-1)' 

T/5 

+ .5 

the given sum becomes 

F2 + 1 + Fh + F6 + 

1, n = 1 

05 n > 1 

+ p = p 

Also solved by Paul S. Bruckman, L. A. G. Dresel, Piero Filipponi, J. Foster, 
Hans Kappus, L. Kuipers, Imre Merenyi, Bob Prielipp, Sahib Singh, Lawrence Somer, 
J. Suck, and the proposer. 

g-Matrfx Identity 

B-561 Proposed by Piero Filipponi, Fond. U. Bordoni, Roma, Italy 
"l l" 

(i) Let Q be the matrix 

Qn + (-l)nQ"n = 

. For all integers n, show that 
1 0_ 

L I, where I 
1 0 

_0 1_ 

(ii) Find a square root of Q9 i.e.* a matrix i4 with A2 
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Solution by Sahib Singh, Clarion University, Clariont PA 

(i) If n = 0, then Q° + (Q0)' 21 = LQI, 
For n > ls it follows by mathematical induction that: 

- n + l 
F 

("l)n 

Thus, Qn + (-1Y 
0 Lr 

= L„I for all n > 1. 

Changing n to ~n5 the above equation becomes: 

Q-n + (-l)-"Qn= L_nT or (-l)n[Qn + (-l)nQ'n] = (-l)nL„J, 

so that 

£ n + (-l)nQ~n = LnJ for n < -1. 

Thuss the result holds for all integers. 

(ii) Let a square root of Q be denoted by S where S 
yields 

a b 

c d 
Then S' 

a2 + be = I; (a + d)Z? = 1; (a + c?)c = 1; ̂  + ̂ 2 

Solving these equations, we conclude that 

1 + b' o = b; d 
b2 

" ' 2b 

5bh - 2b2 + 1 = 0. 

Thus5 a square root of Q is 

2b 

1 + bl 

2b 

b 

, where b satisfies 

b 

1 - b2 

2b 

where b is a complex number satisfying 5bh - 2b2 + 1 = 09 which can 
be solved by the quadratic formula using x = b . 

Also solved by Paul S. Bruckman, Laszlo Cseh, L. A. G. Dresel, J* Foster, C. 
Georghiou, Hans Kappus, L„ Kuipers, Bob Prielipp, Lawrence Somer, J. Suck, and 
the proposer. 

#o#o^ 
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tion of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-403 Proposed by Paul S. Bruckman, Fair Oaks, CA 

Given p, q real with p £ -1 - 2qk9 k = 0, 1, 2, ..., find a closed form ex-
pression for the continued fraction 

9 < P ' g > -=P+P+
+

q2q+P + 3q
 ( 1 ) 

p + kq + 
HINT: Consider the Confluent Hyper geometric (or Rummer) function defined as 
follows: 

M(cc, b, z) = £ 7 ^ - ' ^ , b + 0, -1, -2, ... . (2) 

2 
NOTE: 6(1, 1) = 1 + _ , . , which was Problem H-394. 

J -r j4 

5 + ... 

H-404 Proposed by Andreas N. Philippou & Frosso S. Makri, Patras, Greece 

Show that 

(a) £ £ E (nS+
n

n*)=Fn + 2,n>0; 
n1 + 2n2 =n- i 
n1+ n2 = n- r 

r = oi=o "i..-.,^3 \ n 1 9 . . . 9 n k / n + z 

n1 + 2n2 + • .. + knk = n - i 
n1+ • • • + nk>= n-r 

where n19 .. . , nk are nonnegative integers and {F^'} is the sequence of Fibo-
nacci-type polynomials of order k [1]. 

[1] A. N. Philippou, C. Georghiou, & G. N. Philippou, "Fibonacci-Type Polyno-
mials of Order K with Probability Applications," The Fibonacci Quarterly 
23, no. 2 (1985):100-105. 
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H-405 Proposed by Piero Fllipponi, Rome, Italy 

(i) Generalize Problem B-564 by finding a closed form expression for 

N 
Y, [^J 3 (N = 1, 2, ...; k = 1, 2, ...) 

n = 1 

where a = (1 + v5)/2, .F„ is the nth Fibonacci number, and [#] denotes 
the greatest integer not exceeding x. 

(ii) Generalize the above sum to negative values of k. 

(iii) Can this sum be further generalized to any rational value of the expo-
nent of a? 

Remark: As to (iii), it can be proved that 

[a1/kFn] = Fn, if 1 < n < [(In A - ln(alA - l))/ln a]. 

References 

1. V. E. Hoggatt, Jr., & M. Bicknell-Johnson, "Representstion of Integers in 
Terms of Greatest Integer Functions and the Golden Section Ratio," The 
Fibonacci Quarterly 17, no. 4 (1979):306-318. 

2. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers (Boston: Houghton Mifflin 
Company, 1969). 

SOLUTIONS 

Sum Zeta! 

H—381 Proposed by Dejan M, Petkovlc, Nls, Yugoslavia 
(Vol. 23, no. 1, February 1985) 

Let N be the set of all natural numbers and let m E N. Show that 

, xm-2m-2/ n m-1 , xi-2i-2 

(i) C(2m - 2) - <-> ̂  . %~ » + E U^JT- C(2* - 2i),.m > 2, 

(ii) g(2m - 1) - E ;2/.". , • $(2m - 2i - 1), m > 2, 
92m m-1 ,\i—2i + l 

where 

K(m) = 2 n_;77s w > 2, are Riemann zeta numbers 
n-l 

and 

Hm) = E (-̂ â - l)-m, m > 1. 
n-l 
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Solution by Paul 5. Bruckman, Fair Oaks, CA 

We use the known expressions 

?(2m) ̂ H r ' B v m = l, 2, ..., (1) 

f—/n\2m+l 
3(2m + 1) = 2 (2m) I (~1)Wg2W> m = °' lj 2' '••• 

where z7 denotes the constant TT, and the B lm and E7^ are the Bernoulli 
and Euler numbers, respectively. 

These may be defined by the following generating functions: 

x cot s % ? 0 ^ H r <§or- (3) 
and 

Setting JJ = 27s s then 

\m-l 
« cot uz - 1 + E j ^ ( 2 ^ ) - . 2(2W)lC(2m)(-ir 

(2w)-m,= x (2m)! ^-\i™ 
or 

CO 

„2m uz cot uz = I - 2 }"2^(2m)z2m. (5) 
m= 1 

Also, 
sec a - £ H r g > 2 W ! ( - 1 ) m

g ( 2 , + 1): 
*-o (2*0! (u/2)2w + 1 

4 sec ws = ^ 2 3(2m + l)(2s)277?e (6) 
u m = 0 

We also use the following well-known expressions: 

s m « - £ o ( - i ) » . i | 2 L _ ; (7) 

cos* -£<-!>« J g £ . (8) 
Multiplying (5) and (7), we obtain: 

uz cos IT. ^ E H ) " § S - ^ ( - 1 , ' l n j f C ( a " - M ) i 

on the other hand, from (8), 

uz cos uz = £ (~l)w ^ . 

Thus, 
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Comparing coefficients, 

-2m(-l)m(u)zm + 1
 ?

mr\ n i (u)H + 1 ,, ,., 
(2m + 1)! - 2 , ? 0

( _ 1 ) (2i+l)! ^2m~ 2^: 

replacing m by m -- 1 and dividing by 2z7 yields: 

(m - !)(-!) fa) y , ni fa) c(2 2i_ 2) 
(2m- 1)! ^ Z i; (2i+l)l ^Km ^ z; 

= -Ei(-i) l | ttrT)T?(2--2i) 

= C(2m - 2) - £ (-1)* g'_ 1), ?(2m-2t). 

This is equivalent to the result indicated in (i). 
Multiplying (6) and (8), we obtain: 

00 III , v ,. 

1 = klu Zz2m E (-D* TT^T 22m'2i3(2m- 2i+ 1); 

hence, for m ̂  1, 

(w) 2^ 0= E (-1)̂  -^hr 22m-2i0(2m-2i+l). 
£ =0 v.zW * 

Replacing m by m - 1 and dividing by 22m~2 yields: 

0 = E (-D* T^vT 2"^3(2m- 2i - 1) 
i=o v^;-

= 3(2m- 1) + E (-1)* T^TT 2"2lB(27w-2i- 1). 

This last result corrects (ii)9 which is incorrect in the sign of one o 
members. 

Finally, multiplying (6) and (7) yields: 

tan us = klu t ^ ' 1 E~(-D€ ( H + l ) ! Z2m-2i-2mm-2i- 1). 
m - 1 /—N 2f + 1 

LE 
rn= 1 £ = 0 

On the o t h e r hand, s i n c e t a n a? = co t x - 2 co t 2x, we have 

t an ~uz = (uz)~1(uz co t Hz - Tuz cot 2uz) 

= (uz)'1 { l - 2 ^ ( 2 ^ ) 2 2 m - 1 + 2 E a 2 / 7 7 ) ( 2 2 ) 2 w l 
I m = 1 m = 1 / 

= 2/27 E Z(2m)(22m - D a 2 7 " " 1 . 
m = 1 

Comparing coefficients, 

m - 1 . /—N 2-L + 1 

4/u E ( - D ' /o- • IN, 22m-2^23(2m-2i- 1) = 2/u^(2m)(22m- 1), 
i = o ^L% + ij. 
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ors equivalently: 

which is (iii). Q.E.D. 

Also solved by C. Georghiou, S. Papastavridis, P. Siafarikas, P. Sypsas, and 
the proposer. 

H-382 Proposed by Andreas N. Philippou, Patras, Greece 
(Vol. 23, no. lf February 1985) 

For each fixed positive integer k9 define the sequence of polynomials 

Ci(p) by 

+̂\(p) = n i + E + j : ; r . : : ; ) ( v r * (n>0>-<?<->• (i) 

where the summation is taken over all nonnegative integers nl9 . .., nk such that 
n1 + 2n2 + ••• + knk = n + 1. Show that 

4 + \ (P) < (1 - p)p"(n+1)(l - pfc)W*J (n > fc - 1, 0 < p < 1), (2) 

where [n/k] denotes the greatest integer in (n/k). 
It may be noted that (2) reduces to 

?* - i\[n/k) 
fn ** z ^ 

and 

< 2 " m ^ < 2" i—r-i (n > fc - 1) (3) 

Fn < 2* (3 /4 ) [ * / 2 ] (n > 1 ) , (4) 

where {Fn } n s z Q and {^n}^ = o denote the Fibonacci sequence of order k and the 
usual Fibonacci sequence, respectively, if p = 1/2 and p = 1/2, k = 2. 

References 

1. J. A. Fuchs. Problem B-39. The Fibonacci Quarterly 2, no. 2 (1964):154. 
2. A. N. Philippou. Problem H-322. The Fibonacci Quarterly 19, no. 1 (1981): 

93. 

Solution by the proposer 

For each fixed positive integer k9 let {F„ \x)}™=0 (x > 0) be the sequence 
of Fibonacci-type polynomials of order k [4] and denote by Ln and N^ the long-
est success run and the number of success runs of order k, respectively, in n 
Bernoulli trials. It follows from the definition of {F^\x)}^s0 that 

Ff\x) = x 
and 

F^!2{x) = (1 + x)F^+\(x) = ... = (1 + x)nFf\x) = (1 + x)nx 

(1 < n < fc - 1, x > 0), 
which gives 
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F„(+2((1 " P)/P) = (1 " P)P"(n + 1) (°  < " < & ~ 1. 0 < P < 1). (5) 
Furthermore, 

Fn(+2((1 ~ P}/P} = (1 " P)P"(n+1)p(^n < k - 1) 
(n > fc - 1, 0 < p < 1), (6) 

by Theorem 2.1(a) of [4], 

= (1 - p)p-<* + 1>P(^*> = 0), 

by the definition of Ln and N^ \ 

= ( i - p ) P - ( " + 1 ) { i - p ( ^ f c ) > i ) } 

< ( i - P ) p - ( " + 1 ) { i - { i - ( i - p * ) [ n / * ] } } , 
by P r o p o s i t i o n 6 .3 of [ 1 ] , 

= (1 - p ) p " ( n + 1 ) ( l - pk)[n/k]
B 

But 

F <M ((\ - r^ /r^ = /|W „ + 2( ( 1 " P ^ = 4+i (P) (n > °> °  < P < !)» (7) 
by Lemma 2.2(b) of [4] and (1). 

Relations (5)-(7) establish (2), which reduces to (3) and (4)5 respective-
ly s since 

and 
£+2 = F n («> 0). 

It may be noted that inequalities (3) and (4) are sharper than those given in 
[2] and [3], respectively. 

References 

1. S. M. Berman. The Elements of Probability. Reading, Mass.: Addison-Weles-
ly, 1969. 

2. J. A. Fuchs. Problem B-39. The Fibonacci Quarterly 2S no. 2 (1964):154. 
3. A. N. Philippou. Problem H-322. The Fbionacci Quarterly 19, no. 1 (1981): 

93. 
4. A. N. Philippou and F. S. Makri. "Longest Success Runs and Fibonacci-Type 

Polynomials." The Fibonacci Quarterly 23s no. 4 (1985):338-346. 
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LETTER TO THE EDITOR 

August 11, 1986 

The first written evidence of a knowledge of the relationship between the 
Fibonacci sequence and division in extreme and mean ratio (the "golden number") 
has been considered to be a letter written by Kepler in 1608. However, a re-
cently discovered marginal note to theorem 11,11 (the geometric construction of 
d.e.m.r.)» in a copy of Paccioli?s 1509 edition of the Elements, which includes 
the terms 89, 144, and 233 of the Fibonacci sequence shows that this relation-
ship was already known in the early 16th century. Further, the appearance of 
the product terms 20736 and 20737 strongly suggests—although the text presents 
certain difficulties in interpretation—-that the author of the note was aware 
of the result 

(f ) 2 - f * f = ±1. 
w n+1 J n Jn+2 

A photograph of the note together with a transcription of the Latin and a 
translation appear in [1], which also examines existing evidence, and theories 
proposed in the literature, for a knowledge of the relationship in earlier 
periods. This text is also discussed in [2, section 31, J], which is entirely 
devoted to a history of division in extreme and mean ratio including its rela-
tionship to the Fibonacci numbers. 

References 

1. L. Curchin & R. Herz-Fischler. "De quand date le premier rapprochement en-
tre la suite de Fibonacci et la division en extreme et moyenne raison?" 
Centaurus 28 (1985):129-138. 

2. R. Herz-Fischler. A Mathematical History of Division in Extreme and Mean 
Ratio/Golden Number Studies J. Waterloo, Ontario: Wilfred Laurier Univer-
sity Press, 1987. 
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