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MATRIX AND OTHER SUMMATION TECHNIQUES FOR PELL POLYNOMIALS

BRO. J. M. MAHON
Catholic College of Education, Sydney, Australia, 2154
and
A. F. HORADAM
University of New England, Armidale, Australia, 2351
(Submitted July 1984)

1. INTRODUCTION

Pell polynomials P, (x) and Pell-Lucas polynomials &, (x) are defined in [7],
[9], and [10] by the recurrence relations

P o.(x) = 2xP, ., (x) + P,(x), Pylx) =0, P(x) =1, (1.1
and
Qn+2<3~7) = ZxQn-g.l(x) + Qn('x)s Qo(x) =2, Ql(x) = 2%, (1.2)
with integer » unrestricted.
Equation (l.l) may be written in the form
Pp(.’L‘) = {Pr+1(x) - Pp..l(x)}/zx' (1.1)’
Binet forms are
P (x) = (@" - 8™ /(a - B) (1.3)
and
q,(x) = a + g", (1.4)

where o and B are the roots of the characteristic equation of (1.1) and (1.2),
namely,

t2 -2t -1 =0 (1.5)
so that
o =x+Ve? +1
with o + 8 = 2x, af = -1, o - B = 2Vx?2 + 1. (1.6)
B=uox-vx2 +1

Explicit summation representations for F, (x) and €,(x), and relations among
them, are established in [7], [9], and [10].

Emphasis in this paper will be given to matrix methods so we introduce the
matrix P which generates Pell polynomials and many of their properties ([7],
[9]). Historical dinformation about the background of this matrix is provided
in {97.

Let

P = (1.7)

so that, by induction,
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MATRIX AND OTHER SUMMATION TECHNIQUES FOR PELL POLYNOMIALS

P @ P(x)

n+1

pr = (1.8)
P,(x) B _, (x
Hence,
By @ 1
= p" (1.9)
P, (x) 0
and so
1
P,(x) = [1 o]p*? . (1.10)
0

From [7, (2.1)], we deduce

@41 (@) 22
=Pp" (1.11)
Q, (x) 2
and
2x
Q,(x) =[1 o0]p» . (1.12)
2

Although some summation formulas for P,(x) and ¢, (x) are recorded in [7],
it is thought desirable to investigate the summation problem more fully. Ini-
tially, some well-established techniques are utilized to produce simple summa-
tions. More complicated techniques are derived to achieve a higher degree of
completeness.

As an example of the usage of the matrix (and determinant) approach, we
demonstrate the Simson formula for Pell polynomials, [7, (2.5)], namely,

P, @B, _,(x) - Pi(z) = (-1", (1.13)

which may, of course, be established by means of the Binet form (1.3).
More generally in the first instance, consider

Pn (.’L‘) Pn+r(x)
P2(x) - P, ()P, _,.(x) = (1.14)
P, _.(x) P,(x)

Pr(x) Pr_l(x) . 1 3 P, (x) Pp_l(x) . 1
= P . P
0 1 (VI 0 1 0

. by (1.8), [7, (3.14)]

1 Pr+l(x)
s by (1.9), = (-1)* 7P (x).

0 P,(x)
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MATRIX AND OTHER SUMMATION TECHNIQUES FOR PELL POLYNOMIALS

Putting r» = 1 in this generalized Simson formula, we obtain the Pell-analogue
(1.13) of the Simson formula for Fibonacci numbers.

Because of its importance and subsequent use, we append the difference
equation [7, (3.28)]

Py (x)Q(n— 1)m+r(x) + (—l)mp(n -2)m+ (&)
Posn@) = (1.15)

mn m-=1
(O Fy 1y n(®) + (1) an—z)m+r(x)
and the Pell-Lucas analogue [7, (3.29)]
Dy o(2) = Q@) G,y () + (F1)"THQ (). (1.16)

A result needed in Section 8, which is not specifically given in [7], is
q,(@)q,,, (@) - 4@z* + NP, ()P, ,(x) = 4x(-1)", (1.17)

which may be proved by using (1.3) and (1.4).

2. SOME SUMMATION TECHNIQUES

A. Consider the series of matrices [cf. (1.8)]

A =T +P+4+P% 4 oo £ pt-24 pn-1

Then
PA=P+DP?>+pP 4 «r 4+ P14 pn
whence
(P-4 =P -1
A= (P -DIDrt@"-D
1 1 P (x) -1 P (x)
=_21_x_ nt1 * ] by (1.8)
L1 1 - 2x||P,(x) P, (@ -1
L [Prpi@ +P@) -1 B +B, (@) -1
2 | p@) + P _ (@) -1 P, (@) +P,_ (@ +2-1]
Now
n 1
LP.(x)=[1 o0]4 , by (1.10).
r=1 0
Hence
rgle(x) = (B,,, @) + B, (x) - 1)/2x. (2.1)

B. Using the Binet form (l.4), we have

$a,@ = ¥ (@r + 89
r=1 r=1
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which, with the application of the summation formula for a geometric series and
the properties of o and B, reduces to

};162,,(96) = (@ (@ + @, (x) - 2x - 2)/2x. (2.2)

Clearly, the matrix technique A could be used here also.

C. Next, we use difference equations derived from the recurrence relation
(1.1), namely,

1]

2P, () P,(x) - P,(x)

P,(x) - P,(x)

........... @ec e o s eec e s en0 00

2xP,, 1 (x) = P,,(x) = Py, _,(x)

g
S|

D

~
I

whence, on addition and simplification,
n

zP,. @ =P, (x)/2. (2.3)

r=1

Summation formulas for

Z_:lpzr (x), ‘éleP_l(x), and E=1er(x)

are given in [9], as indeed are (2.1), (2.2), and (2.3).

D. Fourthly, we utilize an extension of technique C. In this method, our aim
is to find sums of series of Pell polynomials with subscripts in arithmetic

progression.
Let
" 14
Sl = Epim(x)’sz = z:Pim—l(m)’
i=1 i=1
n n
SS =i§lpim—2(x)’ cevs Sp =i¥lpim— (m—l)(x)' (2.4)

Then, the set of equations connecting the members of {S;} in (2.4) may be
shown to be:

[ 205, + 5, ceeiii i S = Py vy (®) = Py (@)
S 2L, F S, eeeriaaiiiaaiiaiaaanas =0
{ =S, + 2, H Sy eeeriiiiiiiiiais =0
e e S,y + 289y 1+ Sy =0
[ S veveevenennnnnnennes ceveness =8, o+ 225, = E%m(x) - Po(x)
(2.5)

Next, write:
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2] 1] 0] (-1
-1 2% 1 0
0 -1 22
& = . 6, = 0 & = 3 P
. . 0
. . 1
L L] L OJ L OJ | 2|
(2.6)
(P, 1 (x) - P (x)
0
F = 0 ,
0
L Py (@) = Py ()
where &; and & are m x 1 matrices.
Denote by e;; the element in the 7" row of &;.
Matrices in (2.6) are then defined by:

e;; = 2x for 2 =1, 2, ..., m

€1m = -1

€m1 = 1 '

ei,i+1 = 1 for 2 =1, 2, ..., m -1 (2.6)

e;-1,; = -1 for 2 =2, 3, ..., m

e;; = 0 otherwise.

All the entries in &%, except those in the first and last rows, are zero.
Write

Un() = | 6, g &, é t g Em |- (2.7)

Designate by wi?(x) the determinant obtained from Y,(x) in (2.7) by replac-
ing the %M column by & in (2.6).
Cramer's Rule then gives the solution of the system of equations (2.5) as

()

St =9 @

(2.8)

Comparing this result with (2.10) below leads us to the identity [compare
(3.15, (3.16)]

Y@ = @,x) - 1+ (D)7, (2.9)

which may be proved by induction.

One may use whichever of the above techniques, A-D, is most appropriate to
the occasion.

This brief illustration of four simple techniques is by no means exhaus-
tive. Other methods will be suggested later.
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More generally, let

P = Pm+k(x) + P2m+k(x) + P3m+k(x) + oot Prrm-rk(x)'

-Q,@)P = =@, (x)P,, 1 (x) = @ (©)P, , ,(x) = @, (x)Py,, (@) - ---
v = Q,@P L (@)
CD'P = (-1)"P,  + (DB, (@) + (-1)"Py, (@) + -
v+ (=1)P,, (@)

Add and use equation (1.15) to obtain, with care,

" D"B @) = Po@)} = {B 1y 2(2) = Py (@)}
me+k(x) _ 7 k k ( 1)+ k k .
r=1 1 =@, (x) + (-1)"

(2.10)
Similarly,

(—l)m{erm+k(x) - Qk(x)} - {Qm(n+ 1)+k(x)_ Qm+k(x)}

z er+k(x) =
r=1

L= @@ + (-D)" 211

Results (2.10) and (2.11) could be obtained laboriously by other means,
e.g., by using the Binet form or the matrix P.

Various specializations of (2.10) and (2.11) appearing in [9] are of inter-
est, as, e.g.,

z_‘,lpsp (@) = {P,,, (@) + P, (x) - P(x)}/Q,(x). (2.12)

Several interesting simplifications arise when m = 4a and m = 4a+ 2, e.g.,
after manipulation,

7
z_:lpuayurk(x) = Pza(n+ 1) +k(x)P2an () /Pza (@) . (2.13)

Details are given in [9].

3. DETERMINANTAL GENERATION

Following the ideas and notation in [7], let us define the determinants of
order n below, where dij is the entry in row 7 and column j:

dii =Qm(x) 7:=l, 2, cees N
L ldi i =1 =1, 2, vees n ~ 1
brm@ a0 2 =2, (3.1)
dij =0 otherwise.

Sy,m(x) : as for A, ,(xr) except that d; ;,, = -1, di,i-l = -(-1)". (3.2)
A% (@) :as for A, ,(x) except that d,, = 2. (3.3)

Gi’m(x): as for &, ,(x) except that d,,

I

=-2. (3.4)
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Using the method of induction, we can establish that
Ay () = Z?n+1)m(m)/E%(x). (3.5)
When m = 1, (3.5) becomes equation (5.5) in [7]. For m = k + 1, we use

equation (1.15) to validate (3.5).
Similarly, we demonstrate with the aid of (1.16) that

S (@) = By 1y (@) /B (). (3.6)
In a similar vein, we may show that
By () = @, (x) (3.7

8% (%) = @, @) (3.8)

and

Suitable expansion down columns or along rows yields:
Do m(@®) = @ ()0, 1 (@) + (1) A,y (@) ; (3.9
Sy @) = @@ Spog, @) + (16,5 () s (3.10)

M @) = @ @a% (@) + (DAY, (@)

n-1l,m

Q@A g, () + 2(-1)"T10, 5 () (3.11)

6t’m(x)

]

Q@) 851, m@) + (-1, ()
Qm(x)sn—l,m(x) + 2(_1)m+16n—2,m(x)' (3.12)

Putting m = 1 in (3.5)-(3.8), and in (3.9) and (3.11), we readily obtain
the equations (5.5)-(5.8), and (5.9) and (5.10), respectively, in [7]. More-
over, Ap,1(1) = 8,,1(1) = B,,; and A% (1) = &% (1) = @,, where P,,, and &,
are Pell numbers and Pell-Lucas numbers, respectively, occurring when x = 1.

Variations, though small, of the determinants (3.1)-(3.4) above and of their
specializations when m = 1, as given in [7], are used in [9] to obtain (3.5)-
(3.12). Mahon, in [9], conceived these determinants with some complex entries
as extensions of a determinant utilized in [2] and [8].

Next, consider the determinant w,,,(x) of order n defined by

dig = Qu(x) i=1,2, ... n
dg,i41 = -1 m 2 =1, 2, ..., n~1
d. L= (-1 C a3
Wy, (@) 2 d;;l L (El); ‘ " (3.13)
dy, =1
dy; =0 otherwise.

Careful evaluation of this determinant, with appeal to (3.8) and (3.12)
gives us

Wy (X)) = @y (@ + (1) + (=D, (3.14)

Wy, 1{x), we get:

I

In particular, when m = 1, and writing w,(x)

W) = @, (x) -~ 1 + (-1)"*1; (3.15)
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U)Zn_]_(x) = an_l(&'); (3.16)
w,, (@) = 4(x* + 1)PZ, (x), by equation (2.18) in [7]; (3.17)
wlm+2(x) = Q§n+l(x); (3-18)

where, to obtain (3.18), we may use result (3.25) in [7] in which # and » are
both replaced by 2n + 1 [@,(x) = 2].

Observe that -wp,(x) in (3.15) is precisely the form of the denominator in
(2.10) and (2.11). [Cf. (2.9).] Indeed, it was in this context that the need
to investigate the determinants w,(x) arose.

4. ALTERNATING AND RELATED SERIES

To avoid tedium and to save some space, we will as a rule hereafter merely
give the results of the more important summations which we desire to record.
Some of the proofs are quite difficult.

551%;(x) = [nxP,, (@) + {(n - Dz - 1}P, () - P, _,(x) + 11/2x%. (4.1)
1

p=
Proving this is straightforward. From (l.1)', we have
22P, (x) = P,y(x) = Py(x).

Multiply this by 2, 3, ..., # in turn, add, and use (2.1). Then (4.1) results.
Similarly, we establish

T 10, (x) = [nw@,, (@) + {(n - Da - 130, - @, @ + 21/22%; (4.2)

r=1

1 M=

(-1)7rP, (2) = [(-1)"mxP, , () + (-)""'P, (@) {(n - Dz + 1}
' + (-D)"P,_ (x) - 11/22%; (4.3)

r

[(-1)"nxQ,,, @) + (-1)""1Q, (@) {(n - Dz + 1}
+ (-1)"Q,_ ;@) - @ (@) + @) (1 + z)1/2x7. (4.4)

2 (-D)7rq, ()
r=1

More generally, suppose we write

F(n, x, Y) Pops e @YT (4.5)

]
M=
-

and

]
M=

G(n, x5 y) Qs 1Y T (4.6)

r=1

Now use (1.15) and (1.16) for P, ;(x)s Pyypyr(x), eoes Praz () and @,y (),
Qom+x(@)s « o5 @m+x(x)s add and obtain explicit expressions for F(n, x, y) and
G(ns x> y). Details of these calculations are left to the reader. If we then
put y = 1, we derive formulas for

le,,,H x(x) and 2 Qi ()
r= r=1
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On the other hand, y = -1 leads to formulas for

rg;;—1>rz;r+k<x> and rg%(—l)erp+k(x>.

Differentiating with respect to y in (4.5) and (4.6) gives

n

T Px @ =y 2, 1), 4.7)
Pi%meH44x) =¢'n, = 1), (4.8)
rg:l(-l)”"IPP,,,M;((:'G) =F'(n, z, -1), (4.9)
\ ff(-l)”'lerr+k(x) = G'(n, x, -1), (4.10)

r=1

in which the prime denotes the derivative with respect to y. When m = 1, k =
0 in (4.7)-(4.10), (4.1)-(4.4) occur.

Next, consider P;(x) ={P,(x) - Py(x)}/2x from the recurrence (l.1)’. Mul-
tiply this equation by 22, 3%, ..., 7»? in turn, add, and use (4.1). Then

férﬂf;(x) = [2n%2%P,, ,(x) + 2(n - Da{(n - Da - 2}P, (x)
Tt - 4{(n - Dz - 1}B,_ () + 4P, _,(x) - 4]/4x>. (4.11)

Similarly,

ﬁi r2Q,.(x) = [anszn+l(x)4-2(n - Dx{(n - Dx - Z}Qn(x)
- -4l - Dz - 13, (@) + 4@, , (@) - bx? - 8]/4x?,  (4.12)

ﬁi(-l)rrzPr(x) [(-D)"22%n%P  (x) + (-)" '2c(n - )P, (@) {z(n - 1) + 2}
r=1
+4(-D"72P, (@) {1+ (n-2)x} + 4(-1)""1P,_, (%) - 4]/4x°,

(4.13)

[(-1)"227°Q, (@) + (-1)" "2z (n - 1@, (@) {z(n - 1) +2}
+4(-1)"7%g, L@ {1+ (n - 2)x} + 4(-1)"7Q,_, (@)
+ 4x® + 81/42®.  (4.14)

;l(—l)”er,,(x)

Other methods for obtaining the above results in this section are avail-
able, for example the difference equation technique employed in [9], although
this involves a great deal of complicated algebraic manipulation. Of the vari-
ous approaches open to us for obtaining the summations, perhaps the most power-
ful and most appealing procedure is that using difference equations. Indeed,
by employing one such difference equation, Mahon [9] has found formulas involv-
ing the generalized summations

n 7n
le”thr+ % (@) and Elr'tQm,+ k(x) s
r= r=

but the results are not a pretty sight!.
298 [Nov.
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To give a flavor for these difference equations, we record one used in the
construction of the formula (4.11) by this method, namely,
(r + 2B 1y 4 1&) = @)% (@) + D@ = 1)?P 1y 4 1(0)
= 2rP, (2) Q4 (X)) + @, ()P, 4 ().
Many similar complicated results are given in [9].

To conclude this section, we append some sums of cubes of P,(x) and Qn(x)
obtained with the aid of the Binet formulas (1.3) and (1.4).

1§?5?<x> =[P, @ +P, (@ - 302+ 3){ED"@, @ - P, @}
+8(x? + D1/4(x" + 1@, (). (4.16)

‘glezi(w = [Qy,4:@) + @y, (@ - Q) - @u(x) + 3(4x? + 3){(-1)"Q,,, (@)
- @, @) - @ (@) +Q (x)}]1/¢,(®). (4.17)

M=

(-1)"P3 (x)
1

[(-1)"{Py,, (@) - Py, (@)} = Py(x) - 3(4x® + 3){P,, ()
+ Py(x) = 1}1/4@x? + 1)@, (@) . (4.18)

r

T DTQ@) = (1)@, 5 @) - G5, @} = (8,(@) - ¢, (@)}
r=1

+ 3x? + 3){Q,,, (@) + @, - @, (@ - @,x®)}]/Q,(x).

(4.19)
5. SERIES OF SQUARES AND PRODUCTS OF Pn(x) AND Qn(x)
Multiply both sides of (1.1)’ by P,(x) and add. Then
n
L Pi(x) = P, (x)P, (x) /2. (5.1)
r=1
Similarly,
n
ZiQi(x) = {g,,,@®q, (@ - 4x}/2. (5.2)
r=

Again, in this development, the method of difference equations has general
applicability. For instance, after much algebraic maneuvering, one can obtain
the difference equation appropriate to (5.1), namely,

P2, (@) - (4x® + 2)Pi(x) + P;_ () = 2(-1)". (5.1a)

More generally, difference equations can be applied to find formulas for

n

r‘,:“,lp,,fy,+k(x) and Ele,m+k(x)-

For the former summation, for instance, the difference equation is

Pleny+ 1@ = @, (P (£) + B_1y,x(@) = 2P2(x) (-1)™ K, (5.1b)
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which reduces to the simpler form (5.la) whenm = 1, k = 0 (and r is replaced
by n).

If we multiply both sides of (1.1) by P,_,(x) and add, then, by Simson's
formula (1.14),

PglPI,_l(x)P,,(x) = {Pi(x) - %(1 - (-1)")}/2x. (5.3)
Similarly,
L4, @0, @ = Q2@ - 4+ 26" + DU - (-DM)}/2, (5.4)

Alternating series may be summed using (1.1)’. First, write
n n
D= ¥ (-D'P2(x), E=% (-D""P _ (2)P,(x).
r=1 r=1 r-1
Then, multiplying both sides of (1.1)' by (-1)"P,(x) and adding gives
22D - 2E = (-1)"P (2)P,, (&) «euiinnnn. (1).
Next, multiplying both sides of (1.1)' by (—l)r'lfz_l(x) and adding gives
2D + 2xE = (=1)"P2(x) =7 veiiiiniiiann (ii).

Solve (i) and (ii), and use (2.1) and (2.3) in [7] to obtain

L CDTPH@) = (-1, (@)P, @) - 2n}/4(" + 1) (5.5)
and B
2 (DT, (@P,(x) = {(-1)"'P, (x) - 2nx}/4(z® + 1). (5.6)
r=1
Similarly,
>f:1<—1>rézi(x> = -D"Q,(@P,, @ + 2(n - 1) (5.7)
and "
LD, @0, (@) = 2w + (-D"HE, (@) (5.8)
r=1

Now multiply both sides of (1.1)' by (—I)PTPP(x) and sum. Write

D, = f)(-l)”ppf, and E = i (-7 @2r - P, (@)P,(x).
r=1 r=1

Then
20D, + B, = n(-1)"P,(x)P,, (@) «eiuiinnnnn. (iii),
4D, - 22E, = (-1)"(2n + DPL(x) - n® ...... (iv),

where, in (iv), we have multiplied both sides of (1.1)' by
-1 12r - l)E;_l(x)

and summed.
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Solve (iii) and (iv) to obtain

;(—1)%13,%@) = [(-D)"P, (@) {nQ,,, (@) + P, (@)} - n?1/4(x?® + 1) (5.9)

and
n

2 (-D@r - DB, @)P, (x) = [2(-1)"P, (x) (xP, (x) - n@,(x))

r=1
- 2n%x]/4(x® + 1). (5.10)
Similarly,

L D@ = (DR, @)F, (@) + Bi@)] + (5.11)

n+1l
and
S EDTTREr - D, @)@, (@) = 2(-1)"P, (x) [xP, (x) - nQ,(x)] + 2n’x.

r=1
(5.12)
Formulas for

DR @ ad 3 D0, @

may be established by employing appropriate difference equations, e.g., (5.1b)
in the first case.

6. COMBINATORIAL SUMMATION IDENTITIES FOR P, (x) AND @, (x)

Binomial coefficient factors associated with summations involving P, (x) and
@, (x) may be introduced to yield some useful formulas. The techniques for de-
riving these formulas are varied. Some approaches are indicated below.

Binet formulas (1.3) and (1.4) may be used to derive the following, for
which proofs may be found in [9]:

kgo(in)zpkzw(x) = TN DT, @) (6.1)
:Z;@n)%w(x) =40+ DT, @) (6.2)
k%éo<2nk+ DB ;@) = 4@+ )P, @ (6.3)
ﬁo(zn; 1>Q§+j(x) = 4"t (22 + 1)”+1P2n+2j+l(x)_ (6.4)

A considerable number of combinatorial identities relating to P, (x) and
@,(x) may be determined. Among these are the general explicit expressions
(developments of ideas for Fibonacci numbers in [8]—see also [3]).

[(n-1)/2]
Py (@) ={ ORGPt A (x)} P, (x) (6.5)
k=0 r
and
0 (@) = % (DD (m = Kygnesk ), g 6.6
@ = B L e,

Proofs of (6.5) and (6.6) are by the method of mathematical induction.
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Putting » = 1 in (6.5) and (6.6), we deduce the explicit expressions for
P,(x) and @,(x) given in [7] as equations (2.15) and (2.16), respectively.
Other summation formulas for P,(x) are given in [9], where, further, combina-
torial expressions are obtained for P(2i+1)r+k(x)’ Pyinsr ()5 Q(2i+1)r+k(x)’ and
inr+k(x)'

Bergum and Hoggatt, in [1], found expressions for sums of numbers of recur-
rence sequences as products of these sequences. It is possible to apply their
methods to polynomials.

Two examples of this type of result are herewith given, while many others
are derived in [9].

27-1 J

L i @ =Py @ 110, @ (k> D), (6.7)
29 -1 i-1

EOQ“(%_l)k(x) = Q@i @ I Qs @ (K even). (6.8)

To establish (6.7), we need equation (3.22) in [7], whereas (6.8) requires
(3.23) in [7] together with the result for §,(x) corresponding to (6.7) for
P, (x), namely, (6.7) with P, (x) replaced by Qn(x).

7. MATRIX SUMMATION METHODS

In Section 1, the matrix P was used to obtain sums of series in which the
terms contain Pell polynomials of degree one. Since the particular methods
employed there were not especially convenient, we turn our attention to a more
fruitful matrix approach, developing an idea expounded in [6]. Applying the
Cayley-Hamilton theorem to the matrix P in (l1.7), we have

P?2 = 22P + T (7.1)
whence . .
p2td = (2zP + I)'PY. (7.2)

Equating appropriate elements on both sides with the aid of (1.8), we ob-
tain the combinatorial summations

P, (@) = ,,EZ:0<Z> (22)7B,, ;@) [22 = P, ()] (7.3)
and
Py @) = r};o(ﬁ) (20)B,, ,, (). (7.4)

Post-multiplying both sides of (7.2) by the column vector [2x 217 (the
transpose of the corresponding row vector), and appealing to (l1.11), we find,
on equating appropriate elements, that

Qs @ = T (1) 22) 0 @) (7.5)
and r=0
n n »
Oy 4 ) =P}=:O(I,)<2x> Oy s 2 (7.6)

Next, consider
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2n m

Ry (7)p2rre = pre® + 2

=0
= pP{2(xP + I)}*" by (7.1)
= 22"pT(x?P?2 4+ 22P + I)"
= 22" (x? + 1)tpAtT by (7.1) again,

whence
i‘% 2”)P (z) = 27" (x* + )P (x) (7.7
k=0(k 2k+p \E) T x o E) .7

Likewise, from (1.11),

2 (3 ssan® = 2@ + DG, @ (7.8)
x=0 k 2k+r 2n+2r M .
Similarly,
n+1
2n + 1
k=0(\ k >P2k+1"(x) =277 + l)nQ2n+r+1(x) (7.9)
and ,
ntli0, 4+ 1 _
k=0 ( n7< )Q2k+r(x) = 2202 (@ + )P, L g a() (7.10)

From (7.1) it follows, since P,(x) = 2z, P,(x) = 4xz? + 1, that
P = P ()P + P, ()1, (7.11)

whence, after calculation,

Py () =r§0(Z)Pz‘l"(x)P;(x)Pn_r+j(x). (7.12)
Since
m+il2z]| _ <~ (n\pn-7 » n-r+i[2¢
PrilY) - (0)E e Y, .13
then
Vo 52 =r§0(Z)P:-r(x)P;(x)Qn—r-é-j(x)' (7.14)

Note in (7.12) and (7.14) the emergence of extra terms in the summation, a
fact which was hidden in (7.3) and (7.5) by P,(x) = l.
More generally, one can show that

Py (@) = rzf:O(Z)P,j‘”(x)Pk”_l(x)Pn_Hj(x) (7.15)

and h
Vs ;@ = T (7)) BT @B 2 (008, ) - (7.16)

r=0

Special cases of (7.15) and (7.16) occurring when kX = 2 are given in (7.3)
and (7.5), respectively, in equivalent forms.
From (7.11) we deduce

P,(x)P = P? - P,(2)T, (7.17)
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whence
PI(@)P" 9 = (P? - P, (@)D" P, (7.18)

from which it follows that

Z n
PY(x)P,, ;(x) = Ti\:()(_l)r(I’)%(”‘”*j(x)P;(x)' (7.19)
Similarly,
n
P@)Q, , () =P§O(—1)1”(2)Qa(n_r)+j(x)P2”(x). (7.20)
More generally,
n
Blx)B, , ;(2) = rgo(—l)l"(z)%(n_r)+j(x)Pkr_l(x) (7.21)
and
L n
Bl @) = B D7) 8y, @B @) (7.22)
By (1.8) and (1.15), we may prove
Pmr+k - Qm(x)Pm(r—l)k_ (_l)um(r-2)+k. (7.23)
Hence
plr+in _ P{m(r—2)+k}n(Qm(x)pﬂ7_ (-1H"nr. (7.24)
Equating appropriate elements yields
14
_ INE(m+1) [T n-1
P(mr+k)n () _igo (-1 (i)P{m(r—1)+k}n—mi (x)Qm (). (7.25)

Putting kK = 0 in (7.25) produces a formula for P, ().
Again using (1.15), three times now, we obtain another form of (7.23):

Ptk = g (z)Pnr- Dtk _pmr-a)+k, (7.26)

Following the reasoning outlined in (7.24) and (7.25), we derive alterna-
tive formulas for Pup.yyy,(®) and Ppg,. (x) which closely resembly (7.24) and
(7.25).

Equation (7.25) may be generalized further by extension of (7.26) to get

n
_ [(ms+1) (7 —q
P(mlr’+ k)yn (x) = E (_1)7' e < )Q:m 7’(‘,E)P{m(r— s)+kIn-msi (%) (7.27)

=0 z

with a corresponding simplification for P, (x) when k = 0.
Since, by (7.23),

Q, (a)P™*k = prm D AE(pm 4 (~1)"T) (7.28)

we may demonstrate that
"

QZ(‘T)P(ka)n () = 2 1" (Z‘)P{m(r+1)+k}n-2mi () (7.29)

=0
with a specialization when k = 0.
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Arguments similar to those used to obtain the general result (7.27) may be
utilized to prove that

7
n - _1ymsi (M
Qms (x)P(mr+k)n B Lgo( ) (i)P{m(r+ s) + k}n- 2msi () (7.30)
leading to the simpler form when k = 0.

8. THE MATRIX SEQUENCE {nV}

Ideas introduced in [5] for Fibonacci numbers are here expanded to apply to
Pell polynomials.
Now, a generalization of the matrix P is the matrix

0 0 1
S = 0 1 4o . (8.1)
1 2x ba?

Induction demonstrates that

P2 (@) P _, (@)P, (x) P2 (x)
8% = | 2P, 1 (@)P,(x) Pi(x) + P, _,(@)P,,,® 2P ()P, (x) (8.2)
Py () B, (2)P,, , (x) P2, (x)

The characteristic equation of S is
A% - (4x? + DA% - (4x® + DA+ 1 = 0. (8.3)

From the Cayley-Hamilton theorem applied to (8.3), we have the recursion
formula

SMS% - (4x? + 1)S(S + I) + I] = 0. (8.4)

Corresponding elements in S™*3, §"*2 S"*L. and S" must satisfy (8.4).
Therefore, from (8.2), we have the identities

| P2 . (x) = (4x® + DP?,  (x) - (4x® + P, (@) + Pr(x) =0 (8.5)
an
P, @P , () - (4 + DP , (@P, (@ - (4a® + )P, (2)P,,,(x)
+ P, (x)P, , (x) = 0. (8.6)

[Parenthetically, we remark that the Cayley-Hamilton theorem may be employed
with S to derive the sums given in (5.1) and (5.3).]

Again, after a little algebraic manipulation, the Cayley-Hamilton theorem
leads to

(S + )% = 4(x® + 1)S(S + I). (8.7)
Mathematical induction establishes
(S + D)2 = 4™ (x® + 1)"5™(S + I). (8.8)

Now multiply both sides of (8.8) by S7.
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Equate corresponding elements to obtain

2n+1

kzo (2nk+ 1) k+3(x) M (x? + 1)"P A 142 (x) by [7, (3.20)]. (8.9)
2n+1 ) ]

kZ% (2”éf l)P (@)F, k+ g (@) = 4% (x? + 1)nzan+2+2j(x)‘ 7 (8.10)

By [7, (2.8)] we have

2n+1
2n + 1 _ gntl n+1
z (> Ne@ =@+ 0,

(x),

while by (1.17) we have

n+1

kgo <2” i 1)Qk@c)czk“(sc) (@ + e, L (@)

with similar results to those in (8.9) and (8.10) when k is replaced by k
in (8.11) and (8.12). _
If, now, in (8.8) we multiply both sides by (5 + I)S7, we get

2n+2

k
and

nt200n + 2 n n
Z; ( ) k+J(x) k+J+1(x) =4 + 1) Q2n+2j+3

When use is made of [7, (2.8)], (1.17), and both sides of the formula
(8.8) multiplied by (5 + I)S7, we derive

2n+2

E: <2né+ 2) k+3(x) - 4n+1(x + 1)n+1

k=0 2n+23+2

and
2n+ 2

k=0
Extending the forms of the matrices P and S further, we have

0 0 1

0 1 6x
1 b 122
2x bi? 8x°

—_ O OO

for which the characteristic equation is

Yoo (8x® 4 4x)A - (lex" + 1222 + 2)X% + (8x% + 4x)N + I = 0, (8.

E% <2néf 2) k+J(x) CHCE 1)VLQ2n+2j+2(QC) (8.

(x). (8.

() (8.

v (2né+ 2) k+3(x)Qk+j+»Kx) 41+ (2 +~1)n+1;3n+23+3( ). (8.

+J

13)

14)

for

15)

16)

18)

From which are obtained (see [9]) forms for 7" and formulas for three cubic
expressions in Pell polynomials corresponding to the two quadratic ones in

(8.5) and (8.6), and an expression for
"
2 P (x)
r=1

which is a variation of (4.16).
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Matrices S and T are elements in a sequence of matrices {nV},
Vo= 1], L,V = s V=8, WV =T, ceiy Vs een, (8.19)

the order of ,V being r.

The element Vi of LV in the 4'" row and J'' column is

- Jg -1 ) i+j-r-1
»Vi; (j I (2x) . (8.20)

It is conjectured that the characteristic equation of .V is

r
¥ (~nEEEDI2 0 TR < o, (8.21)
k=0
where

r k r-k
{P’ k} = H]_{P’L (.’L‘)} ﬂ {PL((X:)]’ H{P,L(x)}s 0<k<w, (8.22)
i= =0 i=1

using the notation (extended) of [4]. That is, the symbol {r, k} represents a
generalization of a binomial coefficient. Following the ideas in [4], we note
the results:

{r, ¥} = {r, r - k} by (8.22); (8.23)
{r, v} =1 by (8.22); (8.24)
{r, 0} =1 by (8.23) and (8.24); (8.25)
{r, 1} ={r, r - 1} = P, () by (8.22) and (8.23). (8.26)

Next, we write

{r, K} = P, (@)C(x), (8.27)
whence
{r -1, k} = E}_k(x)C(x) (8.28)
and
{r -1, kK - 1} = P (x)C(x) . (8.29)
Further,

{r, k} = Pr_k+k(x)0(ac)
P, (@)PB (x)C(x) + B, (@P (x)C(x) by [7, (2.14)],

so, by (8.28) and (8.29),

{r, k} =P, @{r -1, k -1} + P ,@{r -1, Kk}, (8.30)
a type of Pascal triangle relationship.
Similarly,
{r, k} =P,_,_ @ {r -1, k - 1} + E%_l(x){r -1, k}. (8.31)

Adding (8.30 and (8.31), and invoking [7, (3.24)], we deduce
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2{r, k} =@, @ {r - 1, k - 1} + @, (@) {r - 1, k}. (8.32)

Going back to conjecture (8.21), we note that the expression for the sym-

bol {r, k} in (8.21) and (8.22) involves divisibility properties of the Pell
polynomials. Although these are not discussed here, they are investigated in
some detail in [9]. A key divisibility result proved in [9], for instance, is

P,(x)|B,(x) if and only if m|n. (8.33)

The polynomial expressions occurring as powers of A in (8.3) and (8.18), e.g.,
are {3, 1} and {3, 2}, and {4, 1}, {4, 2}, and {4, 3} = {4, 1}, respectively.

9. CONCLUDING REMARKS

Naturally the consequences of the use of matrix methods in developing com-—
binatorial number-theoretic properties of Pell and Pell-Lucas polynomials are
by no means exhausted in our brief account above.

Quite apart from pursuing the discovery of additional formulas by the
matrix techniques indicated, we can introduce different matrices to obtain new
results.

Another interesting set of problems is to derive the sum of series whose
terms are fractional and involve products of Pell or Pell-Lucas polynomials in
the denominator, e.g.,

n (-1)*
rgi Pr (x)Pl,,.,. 1 (x) °

Putting x = 1 in the expression and summing to infinity, we may deduce the in-
finite alternating series summation involving Pell numbers,

& (DT
b -13;13;»:—1_ =1~ \/E, (9.1)

r=1

but enough has been said on our general theme for the moment.
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LETTER TO THE EDITOR

July 1, 1986

Over the years, several articles have appeared in The Fibonacci Quarterly
relating the Fibonacci numbers to growth patterns in plants. Recently, Roger
V. Jean, Professor of Mathematics and research worker in biomathematics at the
University of Quebec has written the book Mathematical Approach to Pattern and
Form in Plant Growth (Wiley & Sons), which should interest many readers of the
Quarterly.

Dr. Jean addresses the mathematical problems raised by phyllotaxis, the
study of relative arrangements of similar parts of plants and of technical con-
cepts related to plant growth. He includes not only recent mathematical devel-
opments but also those that have appeared in specialized periodicals since
1830, listing well over 400 references. The book is written as a textbook for
an advanced course in plant biology and mathematics or as a reference for wor-
kers in biomathematics. Besides that, it is just plain interesting reading.

Sincerely,

Marjorie Bicknell-Johnson
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ON THE LEAST COMMON MULTIPLE OF SOME BINOMIAL COEFFICIENTS

HUGH M. EDGAR
San Jose State University, San Jose, CA 95192
(Submitted September 1984)

Let

We prove that
L.Cc.M.{a, b, e} = L.C.M.{d, e, f},

where L.C.M. denotes the least common multiple. The proof technique is due to
the late Ernst Straus and rests upon elementary properties of the p-adic valu-
ations of §, the field of rational numbers. The geometry of the situation is
indicated in the figure below.

Multiplying each of the quantities a through f by

K!'(k + 1D)!(n - K)!'(n - k + 1)!
(n - 1)!n!

produces the six corresponding quantities

n+ Dkk+ 1), n(n+ 1D(n-%k, k(n - kK(n -k + 1),

nn + Dk, (n+ 1)(n - k)Y(n -k + 1), and k(k + 1)(n - k).
Since |L.C.M.{a, B}|, = min{|alp, |B|p} for every p-adic valuation | l[p of 4,
the original problem is equivalent to proving that m;(n, k) = m,(n, k) for all

(finite) primes p, provided we define

my(n, k) =min{|( + Dk& + Dlp, [n(n+ D - D]p,
[k(n = K)(n - k+ D |p}

and
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m,(n, k) =min{|n(n + Dklp, |+ D - K@ -k + p,
|[k(k + Y (n - K |p}.
We first establish that m;(n, k) 2 m,(n, k). 1In each of the three steps

of this argument we make repeated use of the following standard facts concern-
ing p-adic valuations of @:

(1)  the ultrametric inequality: |o + B|p < max{|alp, |B|p};
(2) Jo+ B[y = max{|afp, [Blp} 1if [afp # [Blps
(3) ]zlp < 1, for every integer z and for every (finite) prime p;

(4) ]z|p <1 if and only if the integer z is divisible by the prime p
(equivalently, ]z]p = 1 if and only if the integer z is not divi-
sible by the prime p).

We provide a detailed proof of the first step of the argument and then give
somewhat abbreviated arguments for the remaining two steps.

Step 1. Assume that |(n + Dk(k + 1)|p < m,(n, k), that is,
(1) |k +1p < |nlp,

(ii) |kk+1D|p <|n-k®m-=-k+1)|p, and
(iii) |n+1]p < |n - Kklp.

From (1) and (3), it follows that [k + l[p < 1 so that, from (&), plk + 1.
Since (k, kK + 1)=1, it follows that pJ’k, which can be rewritten using (4) as
|k|p = 1. From (iii) and (3), it follows that |n + l|p < 1 = |k|p which, in
conjunction with (2), allows us to conclude that

|n - k + llp = [(n + 1) - klp = max{|n + 1p, [klp} = 1.
Going to (ii) and making use of the fact that lklp = 1 and ]n -k + l|p==1, we

get
|k(k + D]p = [k + 1lp < |n =K -k + D]p = |n - kl|p.

Finally
[n - klp = |+ 1) = (k+ D]p <max{|n + 1|p, |k + 1|p} < |n - k|p,

from (1), and we have our desired contradiction.
Step 2. If |n(n+ 1)(n - k) |p < m,(n, k), then we have

[n - klp < |klps |n]p < |n -k +1]p, and |n(n + 1)|p < |k + D ]p.
Hence |n - k + 1| = |n + 1| = 1. Now,

[klp = [(n = &) = nlp<max{|n - klp, [nlp} < |klp,
a contradiction. Here we made use of the fact that [n]p < [k + D]p < |K|p-
Step 3. If |k(n - k)(n -k + 1)|p <m,(n, k), then we have

|(n -k -k+1Dp <|ntn+Dlp, |klp < |n+ 1|p, and
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In =&+ 1y < &+ 1]p.
Since |[n - k + 1] < 1, we have |n - k| =1, and so we get

In-k+1p <|nn+ Dlp < |n+1p.
However,

|n -k +1lp = |+ 1) - klp =max{|n + 1p, |klp} = |n+ 1|p,

since |k|p < In + llp. Hence, once again we have a contradiction.

Since m,(n, k) = my(-k = 1, -n - 1), and since my(n, k) > m,(n, k) has al-
ready been established, we can finish the proof using the following chain of
inequalities:

my(n, k) 2m,(n, k) =m(-k -1, -n-1) 2my(-k = 1, -n - 1)
=m(-(-n - 1) -1, =(-k = 1) - 1)
my(ny k).

Remarks: The result of this note can alternatively be deduced from the follow-
ing previously established (see, respectively, [1], [2], and [3]) results:

DG D -G ) 0
@ eend(7 (20 (D} -eenfZTD (5 C1)

where G.C.D. denotes the greatest common divisor.

(3) axyz = ¢.c.D.{x, y, 2} * L.C.M.{xy, yz, ax}, valid for arbitrary posi-
tive integers x, ¥, and 2. A more involved result can be obtained
using the fact (see [3]) that
xyz = G.C.D.{z, y, z}+L.c.M.{G.C.D.{x, y}, G.C.D.{y, =},

G.C.D.{z, x}}-L.C.M.{x, y, z}.

Finally, we ask whether such results have any combinatorial interpretation.
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SIDNEY'S SERIES

CLARENCE B. LARISON
1800 Kinser Road, Ceres, CA 95307
(Submitted October 1984)

Sidney's series of numbers may qualify in two ways for being considered a
part of the world of pure mathematics. This series is, as far as this author
knows, without practical application, and is very beautiful. The series was
discovered by the author's daughter Sidney Larison in 1968 when she was about
age fifteen.

Using two-digit numerals, five series can be produced (or six if you count
zero). Using three-digit numerals, nineteen series can be produced (or twenty
if you count zero). Using four-digit numerals, eleven series can be produced
(or twelve if you count zero).

To produce the series using two-digit numerals, start with any two-digit
numeral, for example,

23.

Add them together and affix their sum, as,
235.

Add the last two digits together and affix their sum, as,
2358.

Add the last two digits together and affix their sum, modulo 10, always
dropping from the sum the digit in tens place if there is one, as,

23583, and then, 235831...
Continue the process until the first two digits repeat.
The first series in the set is now complete.

To produce the second series in the set of six, start with any two-digit
numeral not included in the first series and repeat the process.

To produce the third, fourth, and fifth series in the set, select any as-
yet-unused two-digit numeral and repeat the process.

The sixth series in the set simply contains zero.

These six series of numbers contain all of the two-digit numerals from 00
through 99 and none will appear more than once. Each two-digit numeral can fit

one series and no other.

Series utilizing numerals of three, four, or any desired number of digits
may be produced. To produce the set of twenty series using three-digit
numerals, select any three-digit numeral, add the digits and affix their sum,

modulo 10, as,
123 6 1 078 50 3
When the first three digits repeat, that series in the set is complete.

The twenty series in the set using three-digit numerals utilize every num-
eral from 000 through 999 and none is used more than once. Each three-digit
numeral appears in one series and no other.
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Completing the set based on four-digit numerals proved to be too large a
task to be accomplished by hand so the computer was used. William G. Sjostrom
of Modesto, California, wrote in BASIC the necessary programs to write the set
of four-digit series. There turn out to be only twelve series in the set—six
sets of 1560 digits each, two sets of 312 digits each, three sets of 5 digits
each, and zero.

When the six series of numbers based on two-digit numerals are equally
spaced in a set of six concentric circles, some interesting properties become
apparent. Any series which contains more than one zero will contain four of
them and they will be equally spaced around the circle. Pairs of digits which
are directly opposite each other in the circle will add up to either zero or
ten.

No attempt has as yet been made to place the ten thousand digits of the
four-digit series in a set of twelve concentric circles, but an inspection of
the lists shows that those series containing 000 more than once will contain
it four times and they will be equally spaced around the circle. As in the
series based on two-digit numerals, single digits directly opposite each other
in the circle will have as their sum either zero or ten.

The twenty series of numbers based on three-digit numerals when equally
spaced in a set of twenty concentric circles exhibit no interesting properties
in relation to zero. Nor do digits directly opposite each other in the circle
add up to ten or zero. However, a study of this series in a search for inter-
esting properties revealed a fascinating property shared by all series so far
tested.

To examine this property, proceed as follows:

List, horizontally, a string of digits as they occur in any series from any
set, as, from the set based on three digits,

6095487940. ..
Under it write another series from the same set, as,

6095487940. ..
2035869380...

Add, modulo 10.

Your result, in this case 8020246220..., will follow all the rules for pro-
ducing a series from that number of digits and will, indeed, be another series
from that set!

It works without fail! Add together, in order, the digits from two or more
series from the same set and the result will be a series in the same set!

Multiply, modulo 10, in order, the digits from any series by the same num-
eral, and your result will be a series in the same set.

For example, take

6095487940 ... from the three-digit set.
Multiply by 3333333333 ... Your result, in this case

8075241720 ... follows all the rules and is a member of

the three-digit set.
There may be other interesting properties to be discovered in these series
of numbers. No one knows, for example, how many series will be required to

complete the set based on five-digit numerals or what properties they will
display.
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The author predicts that the set based on five~digit numerals will display
the same properties as the other sets in relation to addition and multiplica-
tion, and forty series will be required to complete the set.

THE SET OF SERIES BASED ON TWO-DIGIT NUMERALS

Please turn to page 361.
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A SOLUTION TO A TANTALIZING PROBLEM

GERT ALMKVIST
Institute for Algebraic Meditation, PL 500, S$-243 00 HOOR, Sweden
(Submitted November 1984)

INTRODUCT ION

In a recent paper, R. Backstrom [1] computed various sums of reciprocal
Fibonacci and Lucas numbers. By a strange limit process, he also gets an esti-
mate (to the seventh decimal place) of the sum

1
+

1 1 V5 + 1
* 3 + i Tog o’ where o = 5

oMs
N
]

L

2n

(here Ly = 2, Ly =1, and L, = L,.,*+L, ,). An even better estimate is the
formula
- 1 1 1 m? 1
—_— = + + .
% LG + 2 8 4 log o (log OL)2 eTrZ/log o _ 9 ’

which has at least thirty correct decimal places. But both these formulas are
just the first terms in a very rapidly converging series, that is, a quotient
of two theta functions.

This paper contains no new results. On the contrary, most of the results
are approximately 150 years old, mostly due to Jacobi. The formulas for the
sums of reciprocal Fibonacci and Lucas numbers are obtained by substituting
g = a”l or ¢ = 0”2 in identities valid for formal power series or for series
converging for |g| < L.

Probably all the results in Backstrom's paper can be obtained by speciali-
zing to g = a™! or g = a"? in sums of telescoping series. For example, let us
look at Theorem I in [1]:

£ ot = /3 + D

2n+1 + F2r+1

We have
1 _ 1 _ 1 )
Fope1 ¥ Fopsa L2r+1\1 + g 2tr+yl) gy u-ﬂn-r)
= V5 ( L - 1 , where g = a~?.
Lypin 1+ qn+r+1 1+ qn—r

Hence, it is sufficient to show that

o

Z< L S >=r+%for0<|q}<l.
n=0 l+qn+r+l 1+qn—1’

Now,
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© 1 1 N+r+1 1 r 1
nz-:() 1 + n+r’+1- n-r h - ; ) - ; N
q 1+ q v=N-r+1 ] + q v=-r 1 + q

> 2r + 1 - <r +

since

L + 1 =1 for v # 0.

1+¢gv 1+g7"

Here we never used the fact that g = a”%, so the summation of the inner series
has nothing to do with Fibonacci numbers.

We hope to get some of the Fibonacci enthusiasts interested in theta func-
tions. An excellent text is Rademacher's lecture notes [6]. They pair German
thoroughness with elegance. On the other side of the spectrum is Bellman's
very thin book [2], which contains almost no proofs, only the most important
results and some applications.

1. THETA FUNCTIONS

We have the following theta functions (the summation is over all » in Z):

{}l (%, q) = :Ll_ zn: (—l)nq[(”+ (1/2)]Zei(2n+ 1)z ;

4, (x, q) = }n: q[n+(1/2)]zei(2n+l)mc;

03(x, q) = 2; qnzeibmx;

9, (xs @) = 2; (_1)nq7¥eibmxo (1)

We make the substitution g = ¢"** and get the following functional equations:

1 1 22
WG -3) = E NG o

0s+v(-§, 'E) = @e(“mz/z)ﬁs_v(x, z) for v = -1, 0, 1. (2)

and

(Vi is taken in the first quadrant.)
This was essentially proved in 1823 by Poisson in the form:

1+ 2™ 4 2074 4 2079 4
1+ 227 4 271 4 2070 4L

Sl

Notation: In the sequel we will only have to consider the case x = 0. We will
write
4, = 9,0, ¢,
) 3 \*
o (&) 56 .
v BCC 0(03 C[)
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By using the

We will go through the computation of the above sum in detail.
usual,
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formulas, as follows:

™Y (-1 (2n + 1)ght @W/21*
n
T glnt @/i*y
g
n
z (—l)”qn2’ 04(_q) = 03(q)_
n
- Y (- (2n + 1) 3gInt /D17
n
-2 3 (2n + 1)%glrt /D17
n
~4n? g ontqn
n
_[”TZ E (_l)ﬂnzq n?
n

transformed formulas, we get:

[n-(1/2)1*

2772 g;( " < ) 10; ;

log g log q

T——(n?)
n log q .
log 7 (D 5

- an®
/_ log q
e
log q %
po r’ln- (1/2)]2
- e log g ;
V Toe g %

21%n m2n?/leg q n
d 1 + )e -1
log q log q n log g =D

2m

2 Z (l + ZTTZJ’lz)ewznz/log q,

log g log q log g

2 1\2\ - (1/2)]2
- - = I
log q log q (l * log q(ﬂ 2) )e e

= 1
2. COMPUTATION OF THE SUM 3 ———
~ L,, + 2

2n

(3)

(4)

(5)

We put, as
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1 +V5 1 -5
o0 == and B =—F.
2
Then af = -1 and F, = (" - 8™ V5, L, =0a"+ B" If we put q = a’l, we get:
o o =3 2n
s f e E e E
0o “on 1o 47" 42 1 (1 + ¢*)?

By by formulas in Tannery and Molk [7, II, pp. 250 and 260] we have
‘917 o on
5 = - +8y —L—).
2 1 (1 +qg?)?

S =

Hence,

|~
T
i
3 |-
N
%I%
S RS
~——

and if we use formulas (3) and (4), we get:

fi(Zn + )2t a2y’

n=1

1+

1
5=3

o 2
Z o [n+(1/2)]
1

This series converges very rapidly (10 terms will give about 20 decimal places)
but it does not contain log o as Backstrom's approximation does. By using the
functional equation and the formulas in (5) we can improve the rate of conver-
gence.

T (1 + 28 e
n

1 2 log q
S == 1 -
8 log q 22
Z (_l)nen n?/log q
n
Putting ¢ = o', we obtain the final formula:
i (_l)nnze—‘nznz/log o
el 1 1 1 4rr? 1
Y ==+ 1 - .
o LG + 2 8 4 log O log o 1?n? [log o

1+ 2 f:‘, -D"%e
1

2 - -
—w/logaze 20 10 9, so

This series converges extremely rapidly. We have e
taking just one term (n = 1) will give over 30 correct decimal places. Ten
terms will give around 900 correct decimal places.

3. A CATALOGUE OF FORMULAS

In this section we collect some formulas connecting sums of reciprocals of
Fibonacci and Lucas numbers and theta functions. We leave it to the reader to
derive the final formulas as in the last section. The formulas are found in
Tannery and Molk [7, II, pp. 250, 260, 258; IV, pp. 108, 107], Jacobi [4, pp.
159-167], and Hancock [3, p. 407].
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- (=" _ Y9042 _ & nd V5 8
(a) %: T,y ¥ 2 = 8(§304 1 (c) %; F,. ~ 256 J;
2 (-1)* 1 = -1 1
by ¥ LR L -1 (@) 3 =L ogy
1 L2n b 3Th 1 L2n~1 16 2
II. Put g = a"?. Then:
a1 V5 o2 21 5 1 9
() % SRR M = -+ 55)
~ F, , & "2 T rZ 24 2 ]
o ]_ 1 . © 1}"
® £ oty e
1 on 1 L2n ™ 2
= (D" 12n = 1) V5 2. e 1 5 9%
(@) ¥ < 2 =22 929 n - .5 %
1 Fon-n 4 T2 1 F? 82 Y,
2n-1 .
& m -1 1 N2 1 1 9
(d) > S——= =5 9%° (i Xz ==
T Loy AT R gn® 9,
e (D" 1 -
(e) ( :___0292 -1 = ——
? L%n 8( 31 N ) (J) ? FZn 8W2 0#

L. SOME IDENTITIES

There are numerous identities among theta functions. Specializing to g =
a™?t or qg = a”? will give identities among sums of Fibonacci and Lucas numbers.
We will give a few examples.

(a) Formulas II(i) and (j) give two expressions for 0:/@4:

(b) Formulas I(d) and II(a) give, with ¢ = a~?,

1 2n-1 bn -2

(c) The identity (Tannery and Molk [7, II, p. 250])

© q2n oo q2n—1 co 2n-1 oo q2n
3% -z - — -
1 (1 _ q2n)2 1 (1 - q27’l-—1)2 1 (1 + q2n~1)2 1 (1 + q2n)2

-2,
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1

(d) We have 0: 0; + 0:, which implies:

(1+4}°§L1 )2 =15—6(>§F1 >2+(1+4§%ﬁ>2

1 2n 1 2n-1 2n

5. A NEW TANTALIZING QUESTION

Unfortunately, we have not been able to find an expression for the sum

—~ 1
P
1 F

n

Since we know from II(a) that

F, . 8loga

f: 1 _ V5 {1 + 9 {Z (_l)ne—'rrznz/Z log 0}2
1 1

we only need to compute 2: For this, we need (wtih g = a”?)
1

1
FZH
an—l

oo n o oo
=Y —4—-1% = ¥ T,(mqns

T 1= g T - qzn—l 1
where To(n) is the number of odd divisors of n. Since T, is multiplicative,
i.e., To(mm) = Ty(m)Ty(n) if (m, n) = 1, we can compute the Dirichlet series
(for Re s > 1).

o To(n) T, @Y
o) =L ——=1( T ——),
v20

n=1 p pVe

where the product is taken over all prime numbers. We have
T,(2%) =1 and T (V) =V +1 if p > 3.

Hence, putting ¢ = p~ %, we have

el 1
v AV
2; T,(2)tY = 7=
and
- = 1
T VLY = v+ 1)tV =— for p 2 3.
TN = L v+ D = T p
It follows that
o(s) = —— 11 L— - (- 2792,
1-27%p23(1 -p™ %)
where
= 1
t(s) = 2:'—;
1 n

is the Riemann C-function.

It is possible, at least theoretically, to recover f from & by Mellin in-
version (see Ogg [5, p. I.6]); however, we have not been able to compute the
integral.
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We end by giving some formulas due to Clausen (see Jacobi [4, I, p. 239]):

o n © 1 + n
g = 35— - Ean_.i_
1 1-gn 1 1 -4g"

What we need is

HMB

2n-1 2n
= 1+ g 21 +
e IR ICE 2:<q”2~———q - " S )
1

1 - g2"" 1 - gn 1 - g%"
which converges very rapidly when ¢ = a2,
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TENTH ROOTS AND THE GOLDEN RATIO

J. M. H. PETERS
Liverpool Polytechnic, Liverpool L3 3AF, England
(Submitted November 1984)

1. INTRODUCTION

The ratio of the radius of a circle and a side of the inscribed regular
decagon equals the golden ratio T. In the complex plane the spines of a regu-
lar decagon inscribed in a circle of unit radius are the vector representations
of the complex tenth roots of -1, if the decagon is appropriately turned. These
two observations motivate an interest in expressing the tenth roots of -1 in
terms of the golden ratio. The roots themselves may be derived using either
the polar representation of -1, for it is known that they are expressible as
e™r/10 ywhen r is an integer, or they may be obtained algebraically, since when
5 divides #, the field of the nth roots of -1 contains V5 and hence contains T.

2. RESUME ON THE GOLDEN RATIO

The golden ratio is the limiting ratio of two successive Fibonacci numbers.
This limiting ratio satisfies the quadratic equation,

2 -71-1=0 (1)

in which the first root

T = 1+ V5 (2)
2
is the golden ratio and the second root is
1-v5 1.
2~ T ®

see [1].
The idea is to introduce the quantities (2) and (3) into the expressions
calculated below for the tenth roots of -1.

3. THE POLAR APPROACH TO THE TENTH ROOTS OF -1

Since -1 has unit modulus and an argument of 180°, its polar representation
is
-1 = cos 6, + 7 sin O, (4)
with
8, = 180° + 360°#n, 5

where n = 0, *1, *2, ... accounts for the periodicity of circular measure, and
2?2 = -1. The tenth roots of -1 are then given by

On
10 10

which in complex rectangular form are, successively,

n . .
cos 7= + 7 sin
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Zy, 4 =7,
Zz,s,u,s = +(cos 18° * 7 sin 18°), (6)
Zg 7.8, 9 = *(cos 54° + 7 sin 54°),

each subscript denoting a different choice of algebraic sign.
The golden ratio is introduced by expressing the trigonometric ratios in
(6) as surds. To do this, first use the result

sin(2 x 18°) = sin 36° = cos(90° - 36°) = cos 54° = cos(3 x 18°) (7)

to obtain, with the respective double and triple angle formulas for the sine
and cosine,

2 sin 18° cos 18° = 4 co0s®18° - 3 cos 18°. (8)

Next, divide both sides of (8) by cos 18° to reduce it to a quadratic equation
in sin 18°, viz,

4 sin®18° + 2 sin 18° - 1 = 0, €)

with positive root

) o _ =1 +V5 1
sin 18 =% =3 (10)
Then we can write
2
cos 18° = VI - sin218° = 41 - (i> _V3+ 4t
2T 2T
AQ+nV3-1_ 13 -1
- 2,[ = 2 E) (]-]-)
where equation (1) has also been used. Furthermore,
cos 54° = sin 36° = 2 sin 18° cos 18° = —éié:—l
and
sin 54° = V1 - co0s254° = «1 - (3 — T) SR S S (12)
4 2 2
According to these expressions, the tenth roots of -1 become
Zo’l = *7,
7 = +i 3 + _1_ (13)
2,3,4,5 - TH\TVs - T = 77).
1, .
Zg 7. 8.9 = i-E(JB - T4+ 17 1),

and they may be sketched in the Argand plane as in Figure 1.
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= R(2Z)

Figure 1

Since the side of the corresponding decagon is the modulus of the differ-
ence of two successive roots, we see from the figure that the ratio alluded to
in the Introduction is typically

1

Uzg - 2, = 55180

=T (14)
from (10).

L. ALGEBRAIC APPROACH

The tenth roots of -1 satisfy
z1% + 1 =0 (15)
or, replacing Z? by £, say,
ES + 1 =o0. (16)

This shows that the golden ratio is also relevant to an investigation of the
fifth roots of -1. The golden ratio arises, for instance, in the geometry of
the regular five-pointed star.

Equation (16) can be factorized to

E+DE -2 +82-¢ +1) =0, an
showing that £ = -1 is a root of the quintic in (16) and confirming that
7 =%/-1 = t¢ (18)

are two roots of the corresponding "dectic" in (15).
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Dividing the remaining quartic factor in (17) by &2 gives

gz+i—(g+i)+1=o, (19)
g &
which on substituting
1

= 4+ = 20

n=g 5 (20)
reduces to

n-n-1=0, (21)

with roots as in (1), viz,

nl’z = T, "TL_‘- (22)

From (20), we also have

E2 -nE+1=0 (23)

with roots

£=niv2n2—4=ni\/2n—3. (24)

Inserting the appropriate values of n given in (22), we obtain the complex
fifth roots of -1 as

£, =32(t £ /3~ 1)
1
2

(-% + /3 2 r), (25)

and
E3,4 =

from which required complex tenth roots follow with, for instance,
Z = +VE. (26)
These square roots are found by proceeding typically as follows. Let

a+jb=J%(T+j\/3-T). (27)

Since the right-hand side is a root of -1, we have
a? + b? = 1. (28)

Also, squaring both sides in (27) and equating real and imaginary parts in the
result, we arrive at, with a little help from (1),

aZ _ bZ =% (29)
and
ab = 2T, (30)

These indicate that the product of g and b is positive, meaning that a and b
are together either both positive or both negative. Solving (28) and (29)
simultaneously gives
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2 %<l+l>:2+T=(2+T)T2=4T+3=[T2(3—T)]

4 412 412 4
from which

and

3

2 _ 1 Ty_2-1t_2-1) »_2-1A+1) __1
b_2(1_2>_ 4 2 v = 2 T2
4t 4T 4T

Thus, from the square root in (27), we obtain two of the tenth roots in (13),
namely,

J%(r + 3o = i%(ﬂ/?) —— J(%» (31)

The other tenth roots in (13) can be obtained similarly from the fifth roots in
(25).

Of course, the same procedure outlined here is applicable to the problem of
expressing the fifth and tenth roots of unity (i.e., +1 rather than -1), in
terms of the golden ratio; however, this is left as an exercise for the inter-
ested reader.
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A NOTE CONCERNING THE NUMBER OF ODD-ORDER MAGIC SQUARES
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INTRODUCT ION

A square array of consecutive integers 1, 2, ..., n? is called magic of or-
der n if the rows, columns, and diagonals all add up to the same number. If in
addition, the sum of the numbers in each broken diagonal is also the same num-
ber, then the magic square is said to be pandiagonal. Let M be a magic square
of order n and let its entries by denoted by (Z, J), (1 £ 2, J < 7). Then ¥ is
symmetrical if (4, j) + m -4 + 1, n -G+ 1) =n?> + 1. Let D, denote the
dihedral group of order 8. Then, two magic squares M and M' are said to be
equivalent if there is a o in D, such that o) = M'.

Let

0o(n) = number of inequivalent magic squares of order #n.
§g(n) = number of inequivalent pandiagonal magic squares of order .
Po(n) = number of inequivalent symmetrical magic squares of order n.

Yo(n) = number of inequivalent pandiagonal and symmetrical magic
squares of order u.

While it is not difficult to comstruct, for any # 2 3, a magic square of
order 7, it seems formidable to determine 0, (n) or §,(n) for = 2 6 (see [1] and
[2]). 1In [4], it is shown that §,(4) = 48 and in [5] that §,(5) = 3600. 1In
this note, we shall show that, given an odd-order pandiagonal magic square, we
can use it to generate a finite iterative sequence of pandiagonal magic squares
of the same order. We show that the number of terms in this sequence is always
even. It is observed that, if we start with a non-pandiagonal magic square of
odd order, then magic squares and non-magic squares occur alternatively in the
sequence. It is also observed that if the initial square is symmetrical, then
so is the next one. We then determine the number of terms in the above itera-
tive sequences, thereby showing that each of o, (1), p,(n), 60(n), and Y,(n) is
a multiple of the number of terms in its respective sequence. Finally, we note
that our results may be combined with others to yield stronger results.

RESULTS

Let M be a pandiagonal magic square of order n. Obtain from M a square
¢(M) whose entries ¢(Z, J), (1 < Z, J < n), are given by

(i, ) =m+1+71 -G, m+7+3),
where m = (n - 1)/2 and the operations are taken modulo #n. Then it is routine
to verify that ¢(M) is magic and pandiagonal (see [3]). Further, if M is sym-
metrical, then so is ¢(M). For r > 1, define, inductively,

PIM) = e(@"" M) .
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Thus, we obtain a sequence M, ¢(M), ..., of pandiagonal magic squares of order
n. Note that ¢ is one-to-one and onto and hence its inverse exists. Lemma 1,
below, asserts that the sequences generated by M and oM under ¢ are equivalent.
Further, there exists »r such that c¢¥(¥) = M for some O € D,. We wish to de-
termine the smallest such r.

Lemma 1: TLet o € D,. Then ¢(c(¥)) = m¢(M) for some T € D,.

Proof: 1If o is a 90° clockwise rotation, then o(Z, jJ) = (j, » - 7 + 1). It is
routine to verify that ook(Z, §) = oke(¢, j), where k = 0, 1, 2, 3. If 0 is
the reflection along the central vertical (horizontal), then o(Z, J) = (Z, n -
J + 1) [respectively, (n =~ 2 + 1, j)]. Choose T to be the diagonal reflection
with m(Z, §) = (J, 2) [respectively, (n - j+ 1, n - 42 + 1)]. If 0 is a diag-
onal reflection, then o(Z, j) = (j, Z) or 0(Z, j) = n - 4+ 1, n -2+ 1), in
which case let m be the reflection along the central horizontal and central
vertical, respectively. This completes the proof.

Let the entries of ®¥(M) by denoted by ¢"(Z, j). Then it is easy to verify
that ¢*(Z, j) is given by the following:

If »r = 28, s 2 1, then

m+ 14251 - 2%, m+1-2°51 + 2% s = 1 (mod &),
m+ 1+ 251 2%, m+ 1+ 251 - 25¢9) s = 2 (mod 4),
(1, J) =
m+1-2%51 4+ 2%, m+ 1+ 2%t - 2% s = 3 (mod 4),
m+1-25%+2%, m+1-2%1 4 2% s =0 (mod 4).
If » = 2s + 1, s =2 0, then
m+1+2%5 =25 +5), m+ 1+ 2% - ) g =1 (mod 4),
m+1-2%4 - s m+ 1+ 2° 2% + 4)) s = 2 (mod 4),

(L, J) =

m+1=-25+2%CE +5), m+1-2°( - 4)) s = 3 (mod 4),
m+1+2%@ -G)sm+ 1 -2%+ 2% + 7)) s =0 (mod 4).

The proof of the following lemma is straightforward and so is omitted.

Lemma 2: Suppose n is odd and = 2m + 1.

(i) If 2° =1 (mod n), then m + 1 - 2571 = 0 (mod n)
and m + 1 + 2°"Y = 1 (mod %n).

(ii) If 25 = -1 (mod n), then m + 1 = 257 = 1 (mod n)
and m+ 1 + 25" =2 0 (mod n).

Proposition 1: Let n be odd. Then §,(#) = 0 (mod 2) and Yo(n) = 0 (mod 2).

Proof: If »r is odd, then (1, 1) will be an entry in the central column or cen-
tral row of ¢*(¥). This means that there is no 0 in D, such that o¢®(l, 1) =
(1, 1). The result thus follows.
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Proposition 2: Let n be an odd number. Suppose s is the smallest integer such
that 2° = 1 (mod #n) or 2° = -1 (mod n). Then
(1) o4(n) =2 0 (mod s),

(i1) py(n) =0 (mod s),

(iii) So(n) = 0 (mod 2s),
and (iv) 7y,(n) = 0 (mod 2s).
Proof: We shall prove (iii). The proof of (iv) then follows immediately; that
of (i) follows from Proposition 1 and the fact that if ¥ is magic but not pan-

diagonal then @(M) is not magic but ¢2(M) is magic; (ii) follows from the fact
that ¢ (M) is symmetrical if ¥ is.

Let r = 2k.

Now ¢7(1l, 1) is one of:

m+1 -2 m+1+2850), tm+1-2%1, m+1-2k"1y,
m+1+2KY, ma 1 =250, (m+ 1+ 281, m+ 14 2k,
If » < 2s, then we see that m + 1 + 2¥"! cannot be 0 (mod n) or 1 (mod n).

Likewsie, m + 1 - 2k=1 cannot be 0 (mod n) or 1 (mod m). So there is no 0 in
D, such that oe?(l, 1) = (1, 1).

L
2s.

Suppose »r

|

Now if 2° = 1 (mod n), then, by Lemma 2,

1t

m+1-2%51=20 (modn) and m+1+2°1 =1 (mod n).

If 2% = -1 (mod »n), then
m+1-2""=1 (modn) and m+1+2°"1 =0 (mod n).
In either case, ¢¥(Z, j) is one of
Ggonmn=-2+1), (2, ) m-g+1,7), n-<+1,n-g+1).

Certainly, there is a ¢ in D, such that o¢p”(Z, g) = (Z, J) and the result fol-
lows.

REMARKS

Note that there are other operations which will also generate finite se-
quences of inequivalent magic squares of the same order. TFor example:

(A) Cyclic permutation of the rows and/or columns of a pandiagonal magic
squarezwill produce an inequivalent pandiagonal magic square. Hence 60(n) =0
(mod #n°).

(B) Let m = 2m + 1. Then any permutation of the numbers 1, 2, ..., m ap-
plied to the first m rows and columns and to the last m rows and columns (in
reverse order) of a magic square of order n will result in an inequivalent
magic square. Further, if we start with a symmetrical square, then so are all
other squares generated in this manner. Hence gy(n) = 0 (mod m!) and p,(n) = 0
(mod m!).
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More magic squares may be obtained by combining the operation ¢ with that
of (A) or (B).

Proposition 3: Let » = 2m + 1 and suppose & satisfies the conditions of Propo-
sition 2. Then

0 (mod s-=m!),

11

(i) o™
(11)  p, ()
and (iii) 6,(n) = 0 (mod 28n°%).

il

(mod &+ m!)

Proof: Let M be a pandiagonal magic square of order n. For each ®7(M), we
apply the operation in (A) to get n? inequivalent pandiagonal magic squares.
It remains to show that these #n° squares are not equivalent to any of those
generated by ¢. To see this, it suffices to note that (m + 1, m + 1) is always
fixed under ¢, while in the operation (A) it is being transferred to other
positions. This proves (diii).

To prove (i) and (ii), let M be a magic square of order ». TFor each ¢2k(M)
(which is magic), we apply the operation in (B) to get m! inequivalent magic
squares. We shall show that these m! squares are not equivalent to any one of
those generated by ¢. Since the operation ¢ transfers the central row and the
central column of ¥ to the main diagonals of the resulting square, it follows
that we need only consider ka(M). Consider the entries (Z, m + 1), where 7 =
1, 2, .v., m. If k is odd, then ¢**(4, m + 1) = (m + 1, = + 2yi) for some in-
tegers « and y. If kK is even, then (i, m+ 1) = (x - 2yZ, m + 1). However,
under the operation in (B), the entries (Z, m + 1), where Z =1, 2, ..., m g0
to (0(Z), m + 1) for some permutation ¢ of the numbers 1, 2, ..., m. This means
that @?% (M) cannot be equivalent to any one of the squares generated by the
operation in (B).
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Recently, the first author [1] showed that
Fois = F, + F,_s (mod 10), (1)

where F, is the nth Fibonacci number, defined by F,,, = F, + F, _;, n 2 2, with
F, =F, =1. It was also shown [1] that this result generalizes to a sequence
{Sn}: defined by

S

nel Sn + Sn—l’ n > 2,

with §; = ¢, §, = d, where ¢ and d are nonnegative integers. The nonnegative
restriction was imposed in order to guarantee that each member of the sequence
is a positive number. However, the result is, in fact, valid for any integers
¢ and d.

The purpose of this paper is to generalize (1) further. We will see that
the role played by the integer 5 in (1) can, in the generalization, be played
by any prime p = 5.

We begin by introducing a more general sequence {Tn}fw defined by

T,,, =al, - bT,_,, with T} = ¢, T, = d, (2)
where a, b, ¢, and d are integers with the restriction » # 0 (and exclusion of
the trivial case where ¢ = d = 0). We write {a, R} to denote the set of solu-
tions of the quadratic equation xz? - ax + b = 0. Two particular choices of ¢
and d in (2) give rise to sequences {T,} of special interest to us. We denote
these by {U,}” and {V,}” , where

U, = (™ - g"/(a - B) (3)

and

V, = an + g". %)
For {U,}> ¢ =1 and d = q while, for{V,} , ¢ = a and d = g2 - 2b. These se-
quences have been studied by Horadam [4]. [If o = B, we replace (3) and (4) by
the limiting forms U, = na™ ! and V, = 2a”, respectively. Note that, in this
case, b = a?/4 and o = q/2.] For the special case of (2) where ¢ = =p = 1, the
sequences {U,} and {V,} are, respectively, the Fibonacci and Lucas numbers for
which (3) and (4) are the well-known Binet forms. We will write {L,} to denote
the Lucas sequence.
Using aB = b, we readily deduce from (3) and (4) that

v =-b"u, (5)

-n
and
14

-n
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We will require (5) later. We also need two lemmas connecting the sequences
{U,} and {V,}. The Fibonacci-Lucas forms of these (corresponding to a=-b=1)
are given in Hoggatt [3].

Lemma 1: For all integers kK,

Uypr = bU,_, = Vg. (6)

Proof: This is proved by induction or directly by using the generalized Binet
forms (3) and (4).

Lemma 2: TFor all integers »n and k,

Uppr + DU, _, = U, V. (7)
Proof: The proof may again be completed either by induction or by direct veri-
fication using (3) and (4). For the induction proof, we begin by verifying (7)
for n = 0 and 1, with the aid of (5).

We generalize this last result to the sequence {T,} defined by (2).
Lemma 3: For all integers n and X,
k =

Topr ¥ 0T, 5 = T,V (8)
Proof: We show by induction that

T, =4du,_, - bcl,_,, 9)
and hence verify (8) directly from (7).

The results which we have obtained thus far are, in fact, valid when a, b,
¢, and d in (2) are real. However, for the divisibility results which follow,
we require integer sequences; hence, we require a, b, ¢, and d to be integers.
Also, in view of (5), we need to restrict {T,} to nonnegative n unless |b| = 1.

We now prove our first divisibility result.

Lemma 4: For any prime p,
V, = a (mod p). (10)

Proof: We need to treat the case p = 2 separately.

Since V, = a’ - 2b,

Vv, -a-= ala = 1) = 2b =0 (mod 2)

for any choice of integers a and b.
If p is an odd prime,
p
ab = (o + B)P = Z (p)up-rgr.
r=0\?
From of = b, we obtain
ol TTBT + oTRPTT = BT (0P T2 4+ P,
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and .thus
(p-1)/2

P - r
af =V, + El (r>b V) 2pe

In the latter summation, we note that
Py =
<p> = 0 (mod p)
for each r and the proof is completed by applying Fermat's theorem
P =
a® = a (mod p).
For the Fibonacci-Lucas case (where g = -p = 1), Lemma 4 yields
Lp = 1 (mod r)
for any prime p. This special case, although not quoted explicitly, is easily
deduced from congruence results for the Fibonacci numbers given in Hardy and
Wright [2].
We now state the first of our main results.

Theorem 1: For all n > p and all primes p,

T

wep = ATy - br, -, (mod p). (11)

Proof: The proof follows from Lemmas 3 and 4 and Fermat's theorem. If [b| =
1, then (11) holds for all values of n.

Observe how the congruence relation (11) mimics the pattern of the recur-
rence relation (2).

To strengthen Theorem 1 for primes greater than 3, we first require:
Lemma 5: If k& Z 0 (mod 3), then for all choices of ¢ and b,

a (mod 2). (12)

]

Vi

Proof: 1In verifying (12) for all possible choices of ¢ and b, it suffices to
consider {a, b} = {0, 1}. If ¢ is even and b is even or odd, V, is even for
all k and (12) holds. If g is odd and b is even, V; is odd for all k and again
(12) holds. Finally, if both @ and b are odd, then Vi is even if and only if

k = 0 (mod 3), and the lemma is established.
Theorem 2: For all n 2 p, where p is any prime greater than 3,

Tyip = al, = bI,_, (mod 2p). (13)
[We note that (1) is the special case of (13) obtained by taking p = 5 and
a=-b=c=d=1.]

Proof: From the result of Theorem 1, it remains only to show that

Tyyp = al, + BT, , =0 (mod 2). (14)
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Using Lemma 3, the left side of (14) may be expressed as
p
(Vb ~a)yr, +(®-b )Tn,p.

Observe that b - B¥ = 0 (mod 2) and Lemma 5 shows that Vy — a =0 (mod 2) for
p any prime greater than 3, which completes the proof.
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1. INTRODUCTION AND GENERALITIES

It is known that every positive integer can be represented uniquely as a
finite sum of F-addends (distinct nonconsecutive Fibonacci numbers). A series
of papers published over the past years deal with this subject and related
problems [1, 2, 3, 4]. Our purpose in this note is to investigate some minor
aspects of this property of the Fibonacci sequence. More precisely, for a
given integer k = 3, we consider the set A% of all positive integers »n less
than F, (as usual F; and L, are the kth Fibonacci and Lucas numbers, respec—
tively), and for these integers we determine:

(i) the asymptotic value of the average number of F-addends;
(ii) the most probable number of F-addends;
(iii) the greatest number m; of F-addends, selected from the set 4%, and
the integers representable as a sum of m; F-addends.
Setting

m, = [(k - 1)/2], (k=23) (1)

(here and in the following the symbol [x] denotes the greatest integer not ex-—
ceeding ) and denoting by f(n, k) the number of F-addends the sum of which
represents a generic integer n € 4} , we state the following theorems.

Theorem 1: 1 < f(n, k) < my.

Proof: Since F, = F, and since the F-addends are distinct, they can be chosen
in the set %, = {F,, F3, ..., Fy_,} the cardinality of which is |&| = k - 2.
Moreover, since the F-addends are nonconsecutive Fibonacci numbers, they can
be in number at most either |#|/2 (for [ﬁa] even) or (|%]| + 1)/2 (for |#]
odd). Q.E.D.

Theorem 2: The number N, , of integers belonging to ,4% which can be repre-
sented as a sum of m F-addends is given by

Nk,m = (k B Z ) l)'

Proof: Setting M = lgﬁ[ =k - 2, it is evident that Ny , equals the number
By, of distinct binary sequences of length M containing m nonadjacent 1's and
M - m 0's. The number By , can be obtained by considering the string

{v0v0Ov - v 0 v}
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constituted by M - m O's and ¥ -— m + 1 empty elements v, and by replacing, in
all possible ways, m empty elements by m 1's:

M-m+1
5 = ( .
M,m m )
Replacing M by k - 2 in the above relation, the theorem is proved. Q.E.D.
From Theorem 2, we derive immediately the following
Remark:

(2)

k-2, form=1
k,m

0, for m > my.

2. THE AVERAGE VALUE OF f(n, k)

In this section, we calculate the limit of the ratio between the average
value of f(n, k) and k as k tends to infinity. _

From Theorem 2, it is immediately seen that the average value f(n, k) of
the number of F-addends the sum of which represents the integers belonging to
N, is given by

m [k—l]
- 1 x 1 Z k-m-1
f(?’l; k) =——-——sz]<,"7=*};7‘_—1 Z m( ). (3)
!'/1/k|m=1 k m=1 m
Moreover, it is known [5] that the identity
My
2 (k- W)Nk,m = U, (%)
m=0
holds, where
k-1
Uy = X2 FpirFy (5)
m=0

from (4), the relation
My

My
Up =k LWy = L My,
m=0 0

m=

is obtained from which, by virtue of the well-known representation of the Fibo-
nacci numbers as sums of binomial coefficients [6], we get

my
Uy = KF = & mlly -
m=0
Consequently, we can write
U M
Yol = oy, = KFy = Uy (6)

m=0 m=1

The numbers U; defined by (5) satisfy the recurrence stated in the follow-
ing theorem.

1986] 337



THE REPRESENTATION OF INTEGERS AS A SUM OF DISTINCT FIBONACCI NUMBERS

Theorem 3: U, = kF, - U, _,, with Uy =1, U, = 2.

Proof: Using the well-known identity F,,, = F F, +F F,_, and setting m = s,
k - m=t, we can write the identity

Fp = Fpak-m= FpoiFy v FpFy_pmon

thus getting E, ,,F_, = F, - F B _,_,. Therefore, from (5), we have

k - k-1 k-2
=X (Fk - Fka-m—l) = ka - BFyom-1= ka - B Fy g
m=0 m=0 m=1

Setting » = m - 1, from the previous relation we obtain
k-3
Uy = KF, _pgoFf’“Fk‘”‘z = kF, - Ug_,. Q.E.D.

From Theorem 3, the further expression of U, is immediately derived:

Uy = KkF, = (kK = F,_, + ==+ + (-1)™ (k - 2m)F,

k- 2my

My .
> (DY (k - 20)F_,;s (7

=0

where, as usual, m; = [(k - 1)/2].
Denoting by o and B the roots of the equation @’-x - 1 = 0, the following
theorem can be stated.

1

Theorem 4: f(n, k) is asymptotic to n
+ o

.
Proof: TFrom (3) and (6), we can write

Fou 001k = (77 o ))/x

and calculate the limit

— U
pin Foon w0k = il - )= on 1 -

which, from (7), can be rewritten as
rnk N
- g -1 .
%ig fn, K)/k = %32(ka - kF, +-i§a(—l)$ (k - 21)Fk_2i> (kFy)
Finally, using the Binet form for F,, we get

Mk . . ,
2: (_1)L~1(k - Zi)(OLk_ZL _ Bk—Zz)
lim f?n, K)/k = 11m vz
ko m » L k(ock _ Bk)
2 (=1 1(1 - 27/k)ak-21
= 1im =22 = 3 (-1)F g% = ——1—2 ~ 0.2764.
Q.E.D. ke ok i=1 1 +a
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The behavior of f(n, k)/k versus k has been obtained using a computer cal-~
culation and is shown in Figure 1 for 3 < k < 100.

.35

33

29 J— ,

27T

fn, k) k —

23— - e
o 50 w00

k —

Figure 1. Behavior of fzn, kY/k versus k

3. THE MDST PROBABLE VALUE OF f(n, k)

In this section, it is shown that the most probable number f(n, k) of F-
addends the sum of which represents the integers belonging to LA%, can assume
at most two (consecutive) values. The value of f(n, k) for a given k together
with the values of k for which two f(n, k)'s occur, are worked out.

From Theorem 2, it is immediately seen that fYns k) equals the value(s) of
m which maximize the binomial coefficient W ,; consequently let us investigate
the behavior of the discrete function

37 (®)

as n varies, looking for the value(s) ﬁh of »n which maximize it. It is evident
that ﬁh is the value(s) of »n for which the inequalities

AR U ®
and h-nys (h-n- 1
< 7 ) z ( n+ 1 ) (10)

are simultaneously verified. Using the factorilal representation of the bino-
mial coefficients and omitting the intermediate steps for the sake of brevity,
the inequality

5?2 -~ (5h + Tn + k> + 30 +220 (11)

is obtained from (9); the roots of the associate equation are

n, = (5h + 7 - Vh)/10, (12)
n, = (5h + 7 + VA)/10,
where A = 5k% + 10k + 9. From (11), we have
n, S n < ng. (13)
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Analogously, from (10), we obtain the inequality
5n2 = (5h - 3)n + h? - 21 < 0, (14)

from which the roots

1= - — 1
nl = (5h - 3 - VA)/10 (15)
n! = (5h - 3 +V4)/10
are derived. From (14), we have
n! <n<nl (16)

Since, for h > 2, the inequality n; < nj holds, the inequalities (13) and (16)
are simultaneously verified within the interval [n], n;]. Therefore, we have
n{ < ﬁh < 7ny. Since n; - n/ =1, the value

~

Ny, = [n!1+1 = [n] (17)

is unique, provided that n] (and n;) is not an integer. If and only if n] is
an integer is the binomial coefficient (8) maximized by two consecutive values
ﬁh,l and 7 , of n; that is,

{71h,1 =n
Ay, =n

Now we can state the following theorem.

_ _ 2 1/2
5k - 8 Sif + 4) ] b1

14
1° (7hn
! -

] + 1 = n, -

Theorem 5: f(n, k) = [

Proof: The proof is derived directly from (17), (17'), and (15) after replac-
ing » by Kk ~ 1 and n by m in (8). Q.E.D.

On the basis of (17’) and (15), we determine the values of k for which the
quantity

R, = (5k = 8 - (5k% + 4)¥?)/10

is integral, i.e., the values of k for which two consecutive values of m maxi-
mize Ny . thus yielding the following two values of f(n, k):

)
£y, k)

1]

Ry (18)
Ry + 1. (18")

Theorem 6: The most probable values of f(n, k) are both f;(n, k) and f;(n, k),
if and only if k = Foo»s=1,2, .

Proof: For R, to be integral, the quantity 5k? + 4 must necessarily be the
square of an integer, i.e., the equation

x® - 5k? = 4 (19)
must be solved in integers. On the basis of [7, p. 100, pp. 197-198] and by
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induction on », it is seen that, if {xl, kl} is a pair of positive integers x,
k with minimal x satisfying (19), then all pairs of positive integers {x,, k)
satisfying this equation are defined by

(z, * V5k)"

x, * ngr =—\ =1, 2, ... . (20)
or-1t
Since it is found that x; = 3 and kl =1, from (20), we can write
r
z, + ngr = ﬁé_i_%il_ = 20%7. 21)
27"

From (19) and (21), we get the relation
(5k2 + 4)Y2 = 202" - 5k,
from which, squaring both sides, we obtain

1 o* -1 -
k=L @Z =l L gy o
V5 ol V5
Replacing k by F,,, R; reduces to (L,,_., - 4)/5; therefore, to prove the
theorem, it is sufficient to prove that, iff »r is even, then the congruence

Ly._; =4 (mod 5) holds.
Using Binet's form for L,, we obtain
1+8
I -
2r-1 22(1,_1)
where

r-1 _ r-1 _
5= 1 <2P2t 1>(¢§)2t = 2:(2r2t 1>(V3)2“_1)‘
t=1 t=1
Therefore, we can write the following equivalent congruences,
272D (1 + 8) = 4 (mod 5),
1 +5 = 22" (mod 5),
1 = 22" (mod 5),

which, for Fermat's little theorem, hold iff r = 25, s =1, 2, ... . Q.E.D.

4. THE INTEGERS REPRESENTABLE AS A SUM OF m; F-ADDENDS

In this section, the set of all integers n € 4 which can be represented
as a sum of m, F-addends [i.e., all integers such that f(n, k) = mk] is deter-

mined.
From Theorem 2 and (1), the following corollary is immediately derived.

Corollary 1:

Nk,mk =

{k/Z, for even k,
1, for odd k.

The following identities are used to prove Theorems 7 and 8.
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3
Identity 1: 2, F,; = F, , — L.
j=1 %

h
Identity 2: E: F2j+1 = Fzm+JJ - L.
i=1
m=-1
ldentity 3: 'ZOF2j+n = Fomin-1 = Fuone
iz

The proofs of Identities 1,2, and 3 are obtained by mathematical induction
and are omitted here for the sake of brevity.

Theorem 7: f(F, - 1) = m,.

Proof: (i) Even k.

For even k, we have m; = (k - 2)/2; it follows that k = 2(m; + 1)
and, from Identity 2,
My
Be-1l= Fzmk+n -1 =i§iE}i+1‘
(ii) odd k.
For odd k, we have my = (k -~ 1)/2; it follows that k = 2(m; + 1)

and, from Identity 1,
My
Fo- 1 =F2mk+1 -1l= .Zin‘
=1
In both cases, Fk ~ 1 can be represented as a sum of my, F-addends. Q.E.D.
From Theorem 7 and Corcllary 1, it is evident that, for odd kX, the only
integer n € A such that f(n, k) =m, is n = F; - 1. Moreover, it is seen
that, for even k, the integers n € A% such that f(n, k) =my; = (k - 2)/2 are
k/2 in number (F, ~ 1 inclusive); let us denote these integers by
Ag, s T =1, 2, ..., K/2.

Theorem 8: Ay g =Fp = Fp_pp =1, 2 =1, 2, ..., k/2.

Proof: For a given even k, the integers 4y, ; can be obtained by means of the
following procedure:

Ay =F, +F, +F, + "+ +F_  +F_, +F_,
A o =F, +F, +Fg + " +F_ +F_, + (F_))
Ap s =F, +F, +Fg + o +F o + (Fo_, +F_)

Ak,k/Z—Z =F2 +Fq, + (F7 4 e +Fk—5 +Fk—3 +Fk-—l)
Ak,k/z—l =F2 -+ (FS +F7 h S +Fk-5 +Fk—3 +Fk—l)
A wpp = EFg +Fg+F, 4 ooe + Fy o+ Fy_y +Fr_y)
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The mechanism of choice of the F-addends from two disjoint subsets of Z
[namely, {F,,} and {F,, ,,}, ¢ =1, 2, ..., (k - 2)/2] illustrated in the previ-
ous table yields the following expression of 4, _,

k/2-1-1 -2
Ap, ¢ = PZO Fz+2r+;Fk—2i+2s+3’
= g=0

from which, by virtue of Identity 3, we obtain

Ak*i - E}(k&'i)+1— £+ F2ﬁ—1)+k—2i+2 = Fgiea
= Fk—2i+1 -1+F - Ek—2i+2 =F -F _,;, - 1. Q.E.D.

The following corollary is derived from Theorem 8.

lorollary 2: Ay 1 =Fp_, - 1, (22)
Ag,o =Lp, = 1 (23)
Ak,k/z = Fk - 1. (24)

Proof: 1Identities (22) and (24) are obtained directly from Theorem 8. Iden-
tity (23) requires some manipulations; that is,
Ak,z = Fk - Fk—u - 1= F% - (SFk - 3Fk+1) -1
~Fy + 3(Fyyy = F) = 1 = -F +3F_; - 1
=27 , ~F_,~1=F_, +F_,-1=IL_,-1. QE.D.
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A. F. HORADAM
University of New England, Armidale 2351, Australia
and
A. P. TREWEEK
100 Bent Street, Lindfield, Sydney 2070, Australia
(Submitted February 1985)

1. INTRODUCTION

In the January 23, 1985, issue of a local (Armidale) newspaper, L. Wilson,
of Brisbane, announced that, if x = F,, y = F, ., (Fn+2 = x + y) are successive
numbers of the Fibonacci sequence {7,}, then x,y (>x) satisfy the equation of
degree 24:

((x%y - z*y? - x%°% + 322" - 3xzy® + y®)% - 4x® - 13z* - 1)?
- l44xt? - 144x® - 362" = 0. (1)

This is a slight simplification of the equation announced three weeks ear-
lier by him in the same newspaper.

Wilson offered no proof of his assertion.

It is the purpose of this paper to outline a proof of Wilson's result by
analyzing the structure of (1l).

We exclude n = 0 from our considerations to accord with the commencing Fi-
bonacci number F; = 1 used by Wilson [although x = 0, y = 1 do satisfy (1)].

First, observe that Simson's formula for {F,}, namely,

Ff - FiF oy = (-1t (2)
may be written

22 +xy - y> =1, n odd, (3)

x® + xy - y2 = -1, n even. (4)

Simson's formula will be the basic knowledge used in our proof.

2. PROOF OF THE ASSERTION

After a little elementary algebraic manipulation, the left-hand side of (1)
factorizes as

(y*A* - B (y%4% - BD), (5)
where
4 =x5- x”y - x3y2 + 3x2y3 - 3.%'3/‘+ + ys,
B, = 2x* - 3x% + 1, (6)
B, = 2z* + 3z2% + 1.
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Numerical checking with small values of »n establishes that the first fac-
tor in (5) vanishes for » odd, while the second factor in (5) vanishes for =
even. This arithmetical evidence suggests that we may associate this first
factor (and therefore B;) with equation (3) and the second factor (and there-
fore B,) with equation (4).

Accordingly, from (3), we have immediately (x® - 1)? = (y? - xy)? which,
after tidying up and applying (3) again, gives us

B, = y(2y® - 4y’z + 2%y - = + y). @)
Similarly,
B, = y(2y® - 4y’x + 2c%y + x - y). (8)

Now y - x is a factor of 4, B,, B,. So (6) becomes

A= -o)@* - 2y’ +ay? - a*) = @ - 2a,
By =yly - ) (2y* - 2ey + 1) = y(y - ©)by, (9)
B, = yly - ©)(2y* - 2ay - 1) = y(y - ©)b,.

Repeated multiplicative maneuvering with (3), followed by substitution in
(9) and simplification, yields

b, = -a. (10)
Appealing to B, and (4) by a similar argument, we find

b, = a. (11)
From (9), it follows that (5) reduces to

y'(y - ©*(@® - b} (@® - b2), (12)

whence, by (10) and (11),

y*(y - ©)"%(@® - b} (a® - b2) =0, (13)

0. (14)

2 2 2 2
(@ - b)) (a” - b))
Thus, the validity of (1) is demonstrated.

Variations, perhaps simplifications, of the above reasoning no doubt exist.

3. REMARKS
Rearranging the four factors in (14) leads to
{(a + by)(a-by)H(a - by)(a+ by} =0. (15)
By (10) and (11),

(a + by)(a - b,) = 0. (16)
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Equation (16), which is of degree 8 in y, is thus also satisfied by succes-
sive pairs of Fibonacci numbers.

Even more ponderous and complicated equations of higher, but appropriate,
degrees are suggested by (l4). For instance,

(@ - b} (a* - b}) =0,

of degree 32 in y, is satisfied by the Fibonacci conditions.

Only the Fibonacci numbers provide the structure for (1). While similar
patterns in (2), (3), and (4) exist for Lucas and Pell numbers, equations dif-
ferent from (1) would be germane to them.

Regarding the factors in (13) involving the fourth power, we remark that
y =0 if n = -1 (excluded), while y -— x =0 if n = 1, i.e., when F; = F, = 1.

Finally, we comment that (3) and (4) form the nucleus of a geometrical ar-
ticle on conics [2] by one of the authors, which was followed by an extension
[1] by Bergum. One is prompted to speculate on the possibility of some arcane
geometry of curves being obscured by the symbolism of (1).
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CHARLES VANDEN EYNDEN
Illinois State University, Normal, IL 61761
(Submitted February 1985)

A number P is powerful if, whenever a prime p divides P, then p also
divides P. 1In [2] McDaniel proves that each nonzero integer can be written in
infinitely many ways as the difference between two relatively prime powerful
numbers. (Golomb [1] had conjectured that infinitely many integers could not
be represented as the difference between powerful numbers.) An examination of
McDaniel's paper shows that he actually proves that, if n Z 2 (mod 4), then n
can be written in infinitely many ways as S - P, where § is a square, P is
powerful, and (S, P) = 1.

In this paper we take care of the case n = 2 (mod 4), to prove

Theorem: If » is any nonzero integer, then n can be written in infinitely many
ways as m = S - P, where S is a square, P is powerful, and (S, P) = 1.

Proof: For compactness, we assume the reader is familiar with [2]. In Theorem
2 of that paper it is proved that if n is a positive integer and n Z 2 (mod 4)
then xz—-Dyz = n has infinitely many relatively prime solutions X, Y such that
D divides Y. Clearly, each represents n in the desired way. The method of
proof is to show that there exist integers D, p, ¢, Los and Yo such that

D> 0 and D is not a square, (D
p and g satisfy p® - Dg? = n and (p, q) = 1, (2)
x, and y, satisfy x° - Dyz = *1, (3)
(2py,, D) divides g. (4)

Although MeDaniel assumes n > 0 in the proof of his Theorem 2, the argu-
ments he gives work just as well for negative values of n. Thus, only the case
n = 2 (mod 4) remains. Let n = 8k * 2.

Case 1. n =8k + 2 or 3/n.

if n=2, then D=7,p=3,q9g=1, x5, =8, and y, = 3 can be checked to
satisfy (1) through (4). Likewise, if n = 10, then D =39, p =7, g =1, x5 =
25, and y, = 4 work.

Otherwise, we take D = (2k - 1)2 ¥2,p=2k+1,q9g=1, x, =D * 1, and
Yo = 2k — 1. Since n = 2 and n = 10 have been excluded, we see that D > 1 and
D is odd. Conditions (2) and (3) are easily checked. Note that because p2 -
D = »n, we have p2 - D -4p = 2 - 4 = -2 or -6. Since D is odd, (p, D) =1 or
3, with the latter a possibility only if we take the bottom signs. However,
(p, D) = 3 implies 3}%, contrary to our assumption. Thus, (p, D) = 1. Also,
yg - D = *2, s0 (yo,7 D) = 1. This proves (4).

Case 2: 7n = 8k - 2 and 3|n.

We take p =6k -1, g=1,D =p? - n =36k’ - 20k + 3, 2, = 90 - 1, and
Yo = 3(18% - 5). It can be checked that D > 1 and that D dis strictly between
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p2 and (p - 1)2 for any value of k. We calculate that y% - 81D = -18, and so

x3 - Dy2 = (90 - 1)2-D(81D - 18) = 1, while (2) is immediate. Note that 3fp
but 3]n, so 3* D. Since D is odd, we see that (yo, D) = 1. Finally,

3(p2 - D) - 4p = 3n - 4p = -2,
and so (p, D) =1 also.

To compute solutions to S - P = n, we can follow McDaniel and define inte-

gers x;, y; for j > 0 by

x; +~ij5 = (x, + yoVD) 7,
where ¢ = 2, then take

S = (pr;j + Dqy;)? and P = D(py; + qz;)?,

where j is any positive solution to (cpy,)J = -qx, (mod D). If x% - Dyg = +1,
however, such as in the present case and in McDaniel's treatment of the case
n =4k + 1, sometimes a smaller solution may be found by taking ¢ = 1 in the
above discussion. This gives a smaller solution when the least positive solu-
tion to (py,)d = -qx, (mod D) is less than twice the least positive solution
to (2py,)J =-qx, (mod D), and, in any case (when xj - Dyj = 1), more solutions
are obtained this way. If n = 14, for example, we generate solutions

S = (5z + 1ly)? and P = 11(5y + x)2,
where & and y are defined so that

x + y/I1 = (10 + 3VID)3*11% or (10 + 3VID)2U+18), > o,
depending on whether we take ¢ = 1 or 2.

It has been proved by McDaniel [3] and Mollin and Walsh [4, 5] that every
nonzero integer can be written in infinitely many ways as the difference of two
relatively prime powerful numbers, neither of which is a square.
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A NOTE ON MOESSNER’S PROCESS

CALVIN T. LONG
Washington State University, Pullman, WA 99163
(Submitted February 1985)

1. INTRODUCTION

According to Moessner's Theorem [3], [6], the kP powers of the positive
integers can be generated in the following interesting way. Delete every kth
integer from the sequence of positive integers, form a new sequence by taking
partial sums of the original altered sequence, delete every (k - 1)5t entry
from the sequence of partial sums, and so on. After k¥ - 1 steps, this process
terminates with the deletion of the sequence of k' powers. TFor example, for
k = 3, we have

1 2 % 4 5 % 7 8 9 10 11 ™ ...
1 3 7 N 19 27 37 48 ...
RS 8 s B4 ...

Note that we can think of the process terminating when we delete the single
element at the bottom vertex of each small triangular array. A more general
result due to I. Paasche [4] is that, if {k;} is a sequence of nonnegative in-
tegers, if the sequence

Ky 2ky + kys 3ky + 2k, + kg5 o es (D

is deleted from the sequence of positive integers, if the sequence of partial
sums is formed, and so on, the process terminates with the sequence

k k. Kk ko .k .k
1,212, 312721,

For example, if k; = 1 for all 7, the numbers deleted are the triangular num-
bers, and we obtain

o’ % 4 5 % 7 8 9 m i1

2 6 L 18 26 35 46

6. 24 5Q 96

2 120 ...
120 .
and
1 =1%, 2 =2v.1Y, 6 =3te28-1", 24 =41 .3t.2. 1!

and

120 = 5%« 41 - 302010,
0f course, this is more neatly written as

1 =11, 2 =21, 6 =31, 24 = 4!, 120 = 5!
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If we start the Moessner process by deleting the triangular numbers

n(n2+ D _ <n -;— l>

we generate the factorials——a truly remarkable result!

It is natural to ask what happens if we commence the process by deleting
the terms of other well-known sequences—say the Fibonacci or Lucas numbers,
the square numbers, the binomial coefficients

(n + k - l)

k
for fixed k, the terms of a geometric progression {ar" '} for positive inte-
gers a and r > 1, and other sequences the reader might think of. We might also
ask what happens if the k's in (1) above are in some well-known sequence. Both

of these questions are addressed in what follows. The interested reader will
also want to consult [1], [2], [5], and [7].

2. AN INVERSION THEOREM

Let f(n) be any increasing positive integer valued function whose succes-
sive wvalues, f(1), f(2), f(3), ..., we want to delete from the sequence of
positive integers to initiate Moessner's process. To determine the products
generated, it is necessary to determine the nonnegative integers k;, 7 = 1,
such that

FQ) =kys f(2) =2k, +kys F(3) =3k, + 2k, + Kys oens

i.e., such that
n
fn)y = Y (n+1-179k;, n2> 1. (2)
=1

Of course, the condition that the k's be nonnegative has implications for the
growth rate of f(n). Thus,

ky Sky+k, Sky+k, +k, <0, (3)
and so

FA) < F@2) - £FA) < F3) - f(2) < ==+ (%)

This will force some adjustments later on, but does not affect the following
inversion theorem.

Theorem 1: Formulas (2) hold with

k]_ f(]-)s kz = f(z) - Zf(l)

;. =f@) = 2f(2 - 1) + f(© - 2), for 7 = 3.

and

k

That is to say,

)y =nf(1) + (n - DIF(2) - 2f(1)]

+ ,23(71 +1-D[fE) -2f(< -1 + f& - 2)]. (5)

=
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Rrgo;: Clearly, k; = f(1) and k, = f(2) - 2k1 = f(2) - 2f(l). Moreover, for
J Z )

J J-1 J
G -G -0 ='§: G+1-9 -2 G -Dk; =% ks
=1 =1 =1
and hence, for J = 3,

1

ki =F@) - FfG -1 - [fG -1 - FfG -2)]
=f@ -2fG - 1) +FG - 2)

J

M

n

J
kjo= L ki -
=1

=1
as claimed.

We now apply Theorem 1 to some interesting sequences, making sure at the
same time that (2) and (4) are satisfied.

3. THE FIBONACC! SEQUENCE

If F, denotes the nth Fibonacci number, then

iy F. =F

i+1 ~ fg i-1°

so the sequence of differences is nondecreasing for < > 1. Since F, > 2F,, we
may set f(n) = F, and the Moessner process will apply. Also, from Theorem 1,

+1
we have

k,=F,=1,k, =F, - 2F, =0,
and

Ky = By = 28, B,y = Fp

for 7 =2 3. Thus, from (5), we have

St Y (4l - DF, (6)

=3

F

n+1

and if we delete the numbers 1, 2, 3, 5, 8, 13, ... from the sequence of posi-
tive integers, the Moessner process generates products with the exponents

1, 0, 0, 1, 1, 2, 3, 5, 8,
That is, the products generated are

11, 2110’ 312010, 41302011’ 5140302111, 615040312112,

4. THE LUCAS SEQUENCE

There is a little difficulty with the Lucas sequence {Ln} because of (4).
Thus,

and the sequence of differences only increases for 7 =2 2. Also, if we attempt

to set f(Z) = L;,, as for the Fibonacci sequence, then

F(2) =L, =426 =20, =2f(1).
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This difficulty, however, can be overcome by a slight artifice. Consider the
function f(n) =n for 1 <n <2, and f(n) =1L, , for n > 3. Here the differ-
ences are nondecreasing for 7 2 1 and f(2) 2 2f(1). For this sequence, we have

kpo=f) =1, k, = £(2) - 2f(1) =2 -2-1=0,
ky = f(3) - 2f(2) + f(1) =3 -2-2+1=0,
k, = f(4) - 27f(3) + f(2) =4 -2-3+2=0,

and for 7 2 5,

ki = £(3) = 2f(4 = 1) + f(4 - 2) =L, , =20, , +L, , =L, -

Thus, from (5), for #n =2 4, we have

L

n-1

n
nky + (n -~ Dk, + (n = kg + (n - Dk, + L (n+ 1 - k;
i=5

n + f (n+1- L, ., (7

=5

and, if we begin the Moessner process by deleting 1, 2, 3, 4, 7, 11, 18, ...,
the exponents in the generated products are 1, 0, 0, 0, 2, 1, 3, 4, 7, ..

5. THE GENERAL SECOND-ORDER RECURRENCE

Consider the general second-order recurrence defined by g, = ¢, g, = d, and
Jn+o = A9p4r + bg, for m 2 1, where a, b, ¢, and d are positive integers with
d 2> 2c. The first few terms of {gn} are

g, =c> g, =d, g, =ad + be, g, = a’d + abc + bd, ...
Now define the sequence {k;} by
k, =g, =cs
k, =g, - 29, =d~ 2c, (8)
ki=g, -2, . + g,_,» for i >3,

so that the k; satisfy Theorem 1 for all < > 1. Then, deleting the sequence
{g;} from the sequence of positive integers in the Moessner process generates
products whose exponents are successive terms of the sequence {k;}. In addi-
tion to the above, note that

ky
and that
k, =ak,_, + bk,_,, for n 2 5.

n-

ad + be - 2d + e, k, = a?d + abe + bd - 2ad - 2be + d,

We may also ask what sequence {f(<)} should be deleted from the sequence
of integers to start a Moessner process that generates products where the ex-
pontnes are the sequence {g;}. We must determine f(n) such that

F) = L n+ 1 - d)g,. (9)
=1
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It turns out that the desired function f(n) may be defined by the following
second-order, nonlinear recurrence.

() =¢, £(2) = 2¢ +d,
fn+ 1) =af(n) + bf(n - 1) - nac + n + Ve + nd, n > 2.

To see this, we note that

f(1) =c=g, and f(2) =2c+d=29 +g,.

Now assume that (9) holds for » = k -— 1 and n = kK for some fixed k = 2. Then,

]

Fk +1) = af(k) + bf(k - 1) - kae + (k + 1)e + kd

k k-1
ay(k+1-12)g, +b (k- 1)g, - kac + (k + 1)c + kd
L =1

=1

k k-1
akg, +a L (k + 1 - 1)g, +b 2 (k - i)g, - kac + (k + 1)c + kd
=2 =1

k k
ake + a_f:(k +1-9g; + b'f:(k +1 - g,y
. it =2 - kac + (k + 1)e + kd
S (k+1 - Nlag; + bg;_ ;) + (k + e + kd

Jg=2

1

k+1
T (k+2-1Dg,.

=1

This completes the induction.
Incidentally, it now follows from Theorem 1 that

g, = f(@) -2f¢Z -1 +fE-2), ¢ 23. (10)

6. SOME OTHER INTERESTING SEQUENCES

If we start the Moessner process by deleting terms in the arithmetic pro-
gression {a + (n - 1)d}, where d > a in view of (4), it follows from Theorem 1
that the exponents in the generated products are

k, =a,
,=(a+d - 2a=4d- a,
and ky = [a+ (£ - 1)d] - 2[a+ (£ -2)d] + [a+ (£ - 3)d] -0,

for © 2 3. Thus, the generated products are simply
14 2ald-a 3a2d—a 4a3d—a
3 5 3 3
If, dinstead of starting Moessner's process by deleting the terms of an
arithemtic progression, we desire that the k's (i.e., the exponents in the re-

sulting products) be in arithmetic progression, we must delete the successive
terms of the sequence {f(n)}, where
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& . , n+ 1 n+1
Fn) = ;;l(n +1 - Dia+ - 1)dl = < 9 )a + ( 3 )d. (11)

In Section ! we saw that interesting results were obtained if we began the
Moessner process by deleting the triangular numbers

n(né+ 1) - (n ; 1)9 "

vV

1.

This naturally raises the question of deleting the binomial coefficients
(n + i + 1) for any fixed integer k > 2.

Of course,; the result follows from Theorem 1 with

) = (n + 2 - 1).

We have

gomrm = (PR = (5) = (D)

= (25T 2 E ) k- (57 )

it
i

k, = £(2)
and, for 7 = 3,

7<.=<i+7<'1)_2(7:—1+k—1>+(7;—2+7<—1>=<i+k—3>.

1
That is,

() Eere-alil0) ax

Thus, if we delete the sequence {(n g 2)} 5 Ve generate the products
ns

D L5, G LB, 0

If we delete the sequence {(n

3 L3, G

>+

3)} 5 ,> We generate the products
n#

3 4
1 » 3 )2(2)1(2),
and so on.

Finally, we consider the case when {f(n)},the sequence of deleted numbers,
is the geometric progression {ar" '} with ¢ and » positive integers and r = 2;
and also the case where k; = ar® !,

If f(n) = ar"™™ ', we are starting Moessner's process deleting the terms of
g geometric progression and we have from Theorem 1 that the exponents in the

generated products are

ky = f(1) - a,
k, = f(2) - 2f(1) = ar - 2a = a(r - 2),

and, for 7 > 3,

354 [Nov.



A NOTE ON MOESSNER'S PROCESS

k; =f&) = 2f(Z - 1) + f(< - 2)
= art™t - 2qpt"2
=art 3?2 - 27 + 1)

=art 3(r - 1)2,

+ ar*”?

again a geometric progression with common ratio » after the first two terms.
In any case, we also have that

ar™t = na + (n - Da(r - 2) + a(r - 1)2_551¢_3- (13)

=3

If, on the other hand, k; = ar®~' for 7 > 1, we must begin Moessner's pro-
cess by deleting the successive terms of the sequence {f(n)}, where

F(n) af: (n+ - rt?

n-1 .
a)y (n - rt
=1 =0

n-1 . i m=1-1 n-1
n - 1)rtr - . —i-
= az ( ) ' - arn 1 Z(n _ ’L).'L‘n T 1,
=0 r,n-i—l =0
where & = »~'. Thus,
n-1 n+1l
-1 n-< n-1,d T - X
fn) =pr"* "t e== Y = qr" e =
=0 r=pr1 dax 1 - z=p1
L (14)
_a@"tt —r +n - rn)
- H)
(r - 1)

and the Moessner process yields the products

la’ Za.lar’ 3&_2ar,1a1’2’
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An unusual application of Fibonacci sequences occurs in a musical composi-
tion by Iannis Xenakis. In Nomos Alpha the composer uses Fibonacci sequences
of group elements to produce "Fibonacci motions,'" sequences of musical proper-
ties such as pitch, volume, and timbre that give the composition its framework
(see [1], [4]). This setting suggests some interesting mathematical questions:

1. Given elements a and b in a finite abelian group , what is the period
of the Fibonacci sequence a, b, ab, ab?, a’h®, ... in G?

2. Given an integer n > 2, is there a Fibonacci sequence of period »n in a
group G, and can such a sequence be readily obtained?

A helpful starting point is the paper entitled 'Fibonacci Series Modulo m"
by D. D. Wall [3]. With Wall, we let f, denote the n'M member of the sequence
of integers f, = a, f; = b, ..., where f, ., = f, + f,_,. The symbol h(m) will
denote the length of the period of the sequence resulting from reducing each
f, modulo m. The basic Fibonacci sequence will be given by uy =0, uy =1, ...
and the Lucas sequence by vy = 2, v; =1, ... . The symbol k(m) will denote
the lenght of the period of the basic Fibonacci sequence 0, 1, 2, 3, ... when
it is reduced modulo m. Since we will often work in a group setting, we will
let Z and Z, represent the group of integers and the group of integers modulo
m, respectively.

We summarize some of Wall's results in the following, using a group setting
for convenience.

Theorem (Wall): 1In Z,, the following hold:

(1) Any Fibonacci sequence is periodic.

(2) If m has prime factorization [Ip;f and if %; denotes the period of the
Fibonacci sequence f, (mod pf®), then h(m) = lem{%;}.

(3) The terms for which u, =0 (mod m) have subscripts which form a simple
arithmetic progression.

(4) If p is prime and p = 10x * 1, then k(p) divides p - 1.
(5) If p is prime and p = 10x * 3, then k(p) divides 2p + 2.
(6) If k(p®) # k(p), then k(p°) = p° 'k(p) for ¢ > 1.

The results in (4) and (5) give upper bounds for k(p), but, as Wall points
out, there are many primes for which k(p) is less than the given upper bound.
Unfortunately, one must obtain the sequence itself in order to determine k(p).
The following theorem provides a method for determining k(m) from the prime
factorization of certain u; and v;. We note first that in Z, the sequence 0,
1, 1, ... has period 3 and in any group G, an element of order 2 yields a se-
quence 0, a, a, 0, ... of period 3.
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Theorem 1: If m > 2, the sequence 0, 1, 1, 2, ..., Ups -.. has period 2n in Z,
for n = minimum{zn even and m|u,; n odd and m|v,}.

Proof: Consider the sequence 0, 1, 1, 2, ..., Uys «.. in Z,. By Wall's Theo-
rem, it is periodic, so we must have

0, 1, 1y 2, 35 wuns Ups enes =3, 2, =1, 1, 0, 1, ...
and the "middle" of the period must have one of the four forms:
(1) e Uy s Uy s Uy s U e
(P1) eees Uy Uy gs =Upy 15 Up_ps eens
(iii) ..., Upgs Upoys Os Uy gs =y oo

(iv) ..., Uy ns Uy 15 Ups Uy 15 Uy 55 eee

If (i) occurs, then u,_, =0 and 2u,_; = 0. Thus, u,_; equals O or has
order 2 in Zy, and 0, 0, 0, ... or O, u,_;, %, ;> 0, ... are the resulting se-
quences. These cannot occur, since 1 has order m in Z,.

If (ii) occurs, it is easy to obtain a similar result.

If (iii) occurs, n — 1 must be odd (so n is even) and u, = 0 (mod m) so
‘that m!un. These two conditions are sufficient to imply repetition after 2n
terms, since we must then have 1, 1, 2, 3, ..., 2w, s —U,_15 U,_15 05 i, 1>

Uy 15 2Uy s eves Uy Uy = 1, 0, ... by symmetry of the terms of odd index.

In (iv), »n - 1 must be even (so n is odd) and u,_; + u,,; = 0 (mod m) so
that v, = 0 (mod m) and mlvn. As in (iii), these two conditions imply repeti-
tion after 2n terms, for they require

Ly 1s 25 ooty g5 Uy U s Uy U
= un—z’ _un—a’ Tt —uz’ Z'{vr(n—l)
=y =1, 0, ... .

1

Thus, to find the period of the sequence 1, 1, 2, 3, ... modulo m, we need
only locate the smallest # such that m[un for even »n or mlvn for odd n. The
period of the sequence will equal 2n.

Since the period is always 27, we easily obtain a result of Wall.
Corollary 1: For m > 2, the sequence 1, 1, 2, 3, ... modulo m has even period.

Example: 1In Z,,, the sequence 1, 1, 2, 3, ..., Uy, -.. has period 28, since
u,, = 377 is the first eligible u, or v, divisible by 13. The index 14 is
doubled to obtain the period.

For larger m, our search is mnarrowed by (2), (4), (5), and (6) of Wall's
Theorem. Note that (4) becomes nl(p - 1)/2 for p = 10x £ 1 and (5) becomes
n|p+~l for m = 10x* 3, since our »n represents half the period of the sequence.

Example: 1In Z,,, (5) requires that n]48, and Theorem 1 yields n = 16, since

Upg = 987 is the first eligible u, or v, divisible by 47. The period of 1, 1,
2, iy U 5 ... in Zu7 is therefore 32.

1986] 357



FIBONACC| SEQUENCES OF PERIOD »n IN GROUPS

We remind the reader of three known results (see [2]) which are helpful in
the search for a minimal =.

(2k = 1)n for n > 1.
(ii) v,|u, if and only if m = 2kn for n > 1.

(i) v,|vy if and only if m

(iii) wu,|u, if and only if n|m.
The following related result completes the picture.

(iv) For m > 1, u, does not divide v, for k odd.

2n
Proof: If n =2, them u, =3 =wv,. Thus, by (i), only those v, with x even
are divisible by u,.

1f n = 3, then ug = 8, and it can be shown that no v; is divisible by 8.
(Use the fact that any number with at least 3 digits is divisible by 8 if and
only if the number consisting of its last 3 digits is divisible by 8. Then
observe that the set of odd multiples of v; = 4 yields only a finite set of
final 3 digits, none of which is divisible by 8.)

For n > 3, assume there exists an odd k such that u,,|vs;. Then w,,|usx by
(ii), so 2n|2k and n|k so that u,|u; by (iii). Since u,,|vy, it follows that
Uy|Vy. Hence, un is a common divisor of both u, and v; and thus u, must equal
1 or 2. This is impossible for n > 3.

These four facts and Wall's Theorem make it quite simple to determine the
period of Fibonacci sequences of the form 0, 1, 2, 3, ..., Uy, ... modulo m.

In an arbitrary group G, if we use multiplicative notation, we may apply
Theorem 1 to the exponents to obtain

Corollary 2: Let G be any group and a an element of order m > 2 in G. Then
the sequence a, a, a®, a®, ..., a*", ... will have period 2n for

n = minimum{n even and m|u,; 7 odd and m|v,}.

Example: If a is an element of order 4 in a group, then the sequence a, a, a2,
a®, ..., a%, ... has period 6, since 4 divides v, = 4 and no previous u, for
n or v, for »n odd.

It is evident from Theorem 1 and Corollary 2 that the process of finding »n
may be reversed. If we are given n > 2, we can construct a Fibonacci sequence
of period 2n. If n is even, we can use any element a of order uu, and if = is
odd, an element of order v, will suffice. We can often do better, since we
need only a factor x of u, or v, which is not a factor of any previous u, of
even index or v, of odd index (i.e., n will be the index of the first qualify-
ing term divisible by x). We state this formally.

Corollary 3: A sequence of the form a, a, a*, ..., a%*, ... in a group G will
have period 2n > 5 if a is chosen to have order u, for »n even or v, for » odd.
Furthermore, a may be chosen to have order x where x divides this u, or v, but
is not a factor of any previous qualifying u, or v,.

Example: To find a sequence of period 16 = 21, use ug = 21. Any element of
order 21 in a group G will yield a sequence of the form a, a, az, aa,..., atn,
... which has period 16. Since 7 is a factor of 21 which divides no previous
U, of even index or v, of odd index, any element of order 7 will also suffice.
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We may use the previous results to present a simple method for obtaining
primes p for which k(p) is a proper divisor of p ~ 1 for p = 10x * 1 or of
2p + 2 for p = 10z * 3. As mentioned earlier, our minimal # equals [k(p)/2],
so we seek primes p such that n does not equal (p - 1)/2 or p + 1.

First of all, if we are given a prime p > 5,setn = (p - 1)/2 or n =p + 1,
depending on whether p = 10x + 1 or p = 10x * 3. Then, using previous results,
see whether u, for »n even or v, for n odd is the smallest such u, or v, divi-
sible by p. For example, if p = 31, set m = 15. Since v,; is divisible by 31
and no smaller qualifying u, or v, is divisible by 31, n = (p - 1)/2 works and
k(31) = 30. However, if we begin with p = 47, set n = 48. Since 47 divides
Uy <u,y> it follows that k(47) = 32 # 96.

Another approach begins with N rather than p. Given N, find the prime fac-
tors pys s Py of uy for N even or vy for N odd. Proceed as above to set
(p; - 1)/2 or p; + 1 equal to n; for eachp . If nyg > N, then k(p;) < the
given upper bound p; - 1 or 2p, +2. If n;=0N, check whether p; divides a
previous u; of even index or v, of odd index. If so, then k(pi) < the given
upper bound. If not, k(pi) = the correct upper bound. (If n; < N, disregard
the associated pi.)

Example: For N = 44, the prime factors of u,, are 3, 43, 307, 89, and 199. We
disregard 3 since n = 4 < 44. TFor p = 43, n = 44 and, in fact, k(43) = 88. For
p = 307, n = 308 > 44, so k(307) < 88 # 616. For p = 89, n = 44 and, in fact,
k(89) = 88. Finally, for p = 199, n = 99 > 44, so k(199) < 88 # 198.

Two more results follow easily from Theorem 1.

Corollary 4: Any element whose order is a multiple of 5 will yield a sequence
a, a, a’, ..., a%+, ... whose period is a multiple of 4.

Proof: No Lucas number is divisible by 5, so 7 must be even and 2n is there-
fore divisible by 4.

Corollary 5: Any sequence of the form a, b, ab, ab’, ..., a*" 'b™*, in an
Abelian group G will have odd period > 3 only if it does not contain the iden-
tity element.

Proof: By Corollary 2, any sequence of the form e, a, a, a®, ..., a%, ... for
a of order > 2 has even period.

Corollary 3 allows us to construct Fibonacci sequences of period 2n for
n > 2. Corollary 5 requires us to examine sequences not containing the iden-
tity element if we wish to obtain sequences of odd period. We first observe
that, if the sequence a, a, a?, ..., a%*i, ... has period x and the sequence
b, b, b%, ..., b%, ... has period y in an Abelian group G, then the sequence
a, b, ab, ab?, ..., a®*i-'b%*i, ... will repeat after Ilcm{zx, y} terms. Hence,
the period of this sequence will be a divisor of lem{x, y}. (Wall [3] gives
some sufficient conditions for A(m) to equal k(m) in Z,.)

Example: 1In Zg, both a = 1 and b = 3 have order 5, and the sequences
0, 1, 1, 2, ... and 0, 3, 3, 6,

each have period 20 (since u,, is the first qualifying u, or v, divisible by 5).
However, the sequence 1, 3, 4, 2, 1, ... has period 4.
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Our goal is to construct Fibonacci sequences of odd period and the follow-
ing theorem provides the means to accomplish this.

Theorem 2: Given any integer n > 2, there exists a Fibonacci sequence of
period n.

Proof: Consider the sequence of integers

k -
Ups L= sy s T,y ooes gy + (1) lun_(k_l), e

n+1
Upys Uy -1 ’

This is a Fibonacci sequence of period »n provided that

0 (mod m) for »n odd,
1 -u ERY + =D or v, =
2 (mod m) for »n even.

Thus, if n is odd, use the given sequence in Z, with m = v, and, if »n is even,
use the given sequence in Z, with m = v, - 2.

Although Theorem 2 establishes the existence of Fibonacci sequences of
period #, in practice the calculations often involve large m. To simplify this,
observe that we need only a divisor of v, or v, - 2 which has not appeared as
a factor of a previous v, for k odd or v; - 2 for k even.

Example: Given n = 7, the resulting sequence is
13, -7, 6, -1, 5, 4, 9, 13, 22, ...,

where 22 = -7 (mod m), so m = 29 = v,. Other sequences of period 7 may be ob-
tained by multiplication of this sequence by any nonzero element in Z,,.

Example: If n = 9, the resulting sequence is
34, -20, 14, -6, 8, 2, 10, 12, 22, 34, 56, ...,

and m = vy = 76 = 22 .19, Here, we may use the smaller m = 19 to obtain the
sequence 15, 18, 14, 13, 8, 2, 10, 12, 3, 15, ... in Z4. (Note that if the
original sequence is reduced modulo 4, we obtain 2, 0, 2, 2, 0, ... which has
period 3 instead of period 9. The problem here is that 4 has appeared in pre-
vious vy for k odd and v; - 2 for k even.) As in the previous example, multi-
plication of the sequence of period 9 by any number relatively prime to m will
yield a sequence of period 9.

Applying Theorem 2 to exponents, we obtain

Corollary 6: Given n > 2, an element a of order v, for # odd or v,_, for n even

in an Abelian group & will yield a sequence

2

1=Uy,- u +(“1)k_1“ -
u n-1 - k-1
"y a s sees O (-1 no ),

of period n.
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A new perspective to the generalization of the Fibonacci sequence was in-
troduced in [1]. Here, we take another step in the same direction. In [1] we
studied the sequences {a }:=0 and {8 }i=0 defined by

&O = a, BO =b, a, = C, Bl =d,
0,y = Bay + Brs (n > 0) (1)

2 = Opyr T 04

where_a, b, ¢, and d are fixed real numbers. We also utilized the generaliza-
tion {#,(a, b)}:to, where

FO(a’ b) = Q
F.as b) =D (n > 0)
F _ ,(a, b) =F (a, b) +F (a, b)

so that F, = F,(0, 1), where {Fi}fzo is the Fibonacci sequence.
We shall study here the properties of the sequences for the scheme,

OLO = A Bo = bs Ay = C» 61 = d;
Optp = Opyy + Bys (n=>0) (2)
B71+2 = Bn+1 + Ops

where a, b, ¢, and d are fixed real numbers, and will conclude with a theorem,
similar to [1]. Since the proofs of the results in this paper are similar to
those in [1], we shall only list the results and eliminate the proofs.

Obviously when ¢ = b and ¢ = d, the schemes from (2), as well as from (1),
coincide with the Fibonacci sequence {F;(a, b)}:_.,. The first few terms of the
sequences from (2) are:

n Cn Bn

0 a b

1 c d

2 b+ c a+ d

3 b+ec+d a+c+d

4 a+b+ec+ 24 a+ b+ 2¢ +d

5 2a + b + 2¢ + 34 a+ 2b + 3¢ + 2d
6 3a + 2b + 4e + 4d 2a + 3b + he + 4d
7 ba + 4b + Tc + 6d ba + 4b + 6c + 7d
8 6a + 7b + lle + 104 Ja + 6b + 10c + 114
9 10g + 11h + 17¢ + 17d 1lg + 10b + 17¢ + 17d

Lemma 1: For every k = 0:
(a) agp + By = Bgx + 03
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) Qgper + By = Bersr + 053
) Oggyn * 0 + By = Bersz2 T By + 053
) Ogras + 0p = Begys t+ Bys
) Ogray F O = Beryy By

e
) Ogras * By + 0y = Bgys + oo, + By
Lemma 2: For every »n = 0:
n 7
(@) o, = };)Bi + a3 (b) B, =,z%ai + B,
i= iz

Lemma 3: TFor every »n = 0:

6k
() X (ag - B) =a; - By
i0
6+ 1
(b) ¥ (o; =By =0, =By +o, = Bj;
)
6k+ 2
(¢) ¥ (o; - B;) = 20, - 2B;;
=0
6k+3
(d) T (0 = By) = —ug + By + 20, - 28,3
P
6k + 4
(e) '2%)(ai - Bi) = -0, + By + oy - By
i<
6k+ 5

]
(@]

(f) X (a; - By)
i=0

Lemma 4: For every n = 0:

Q + B

n+2 =F (@ B +F (0 +B)).

n+2

As in [1], we express the members of the sequences {di}:=o and {Bi};=o when
n 2 0, as follows:

{an Yiea+ 2 b+l +yhed
Bp=0hca+82+b+ 8 cc+8y-d
It is interesting to note that Lemmas 5-7 have results identical to those

found in [1] for the sequences {Yi}:=o’ {Yi}:=0, etc., even though they are
different sequences.

Lemma 5: For every n = 0:

(@ v, + 65 ="F,_; (c) yi + 8 =F,;

(b) Y2+ 682 =F,_; (d) ! + 685 =F,.
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Lemma 6: For every n = 0
(@) vi+ v =65+ 82 (b) ¥2 + 1, =82+ 6.

Lemma 7: TFor every »n = 0:

(a) &% =72 (e) vy =7v2.s
(b) 8% =vr; (F) v = Ypyyes
(c) &% =vns (9) 8% =82,.5
(d) &3 =v3; (h) & = 6,4y

Let § be the integer function defined for every k 2 0 by:

T | U(6k + 1)
0 1
1 0
2 -1
3 -1
4 0
5 1

Obviously, for every n = 0,
Y(n + 3) = ). (3)

Using the definition of the function Y, the following are easily proved by
induction.

Lemma 8: For every n > 0:

(a) vn =85+ V() (c) v3=268%+y(mn+4);
(b) i =85+ V(n + 3); (d) v =% +ym + 1)

Lemma 9: TFor every »n = 0:

(@ Y, = Vi tYs v +3); (A Y2, =¥l LU+ D)
(b) Y2, =i +Y:+v(); (€) Ypyy = Ympyr * Yn UM+ 4);
(c) vy =i +vG0; (F) vy =7, + 0+ 4).

YL = 8% = 2(F,_, + V)

1
Vi = 85 = 5(F, 1 +V(n + 3));

FE, + Yn + &)

=
N w
]
o
+
]

Y4 = 8% = 2(F, + Yl + 1)),
Theorem: For every n > 0:
Oy = %{(Fn_l +ym)a + (F,_, + V(n + 3))b + (F, + V(n + 4))ec
+ (F, + v(n + 1))d}
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= H(@ + D)E,_, + (c + DF, + Y(ma + ¥(n + Hb
+yYn + 4)e + Y(n + 1)d}.

B ='%{(FZ- +y(m +3)a+ (F,_, + )b + (F, + Y(n + 1))ec

+ (F, + V(n + 4))d}

1

1
=5l@+B)F,_, + (c + DF, + Y(n + 3)a + YD
+ Y+ e + v(n + 4)d}.
On the basis of what has been done in [1] and in this paper, one could be

led to generalize and examine sequences of the following types

ay =a, By =Db, 0, =c, By =d,

Oppo =P Bupy T q° Baus (n=20)
=t-o,

+1 +t 8 Uns

oy, =a, By =b, a; =c¢c, B, =4d,

Oppy =P Opyy +q° B (n>0)
n+2 t.6n+l + 8 Oy

for the fixed real numbers p, g, ¢, and s.
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EUCLIDEAN COORDINATES AS GENERALIZED FIBONACCI
NUMBER PRODUCTS

A. F. HORADAM
University of New England, Armidale, Australia
and
S. PETHE
University of Malaya, Kuala Lumpur, Malaysia

1. INTRODUCTION AND DEFINITIONS

In [2], it was shown how to obtain the coordinates of a point in (real)
three-dimensional Euclidean space as triple products of Fibonacci numbers.

This was achieved as a development of two-dimensional ideas involving com-
plex numbers, though the three-dimensional extension was devoid of any depend-
ence on complex numbers.

Here, we wish to enlarge these notions to more general recurrence-generated
number sequences and then to generalize our result to #-dimensional Euclidean
space. To accomplish this objective, we will need to introduce a symbol G(&,
m, m), originally defined in [2] in relation to Fibonacci numbers only. This
symbol represents a number with three components which may be regarded as the
coordinates of a point with respect to three rectangular Cartesian axes, X, Y,
and z, i.e., as Cartesian or "Euclidean'" coordinates.

First, we define the recurrence sequence {U,} by

Upsyp = PUppy = QUy» Uy =0, Uy =1 (n>0), (1.1)

where p and g are generally integers.
Next, for positive integers %, m, n, let

pG(L + 1, my, n) - qG(L, m, n)
pG(L, m + 1, n) - qG(L, m, n) (1.2)
pG(L, my m + 1) - qG(L, m, n)

G, m+ 2, n)
G, my n + 2)

{G(SL + 2, m n)

with
G(0, 0, 0) = (a, a, a), G(1, 0, 0) = (b, 0, 0), G(O, 1, 0)
= (0, b, 0),
G0, 0, 1) = (0, 0, ), G(1, 1, 0) = p(b’ b, 0), G(1, 0, 1) (1.3)
= p(b: 0, b)s
¢(0, 1, 1) = p(0, b, b), G(1, 1, 1) = p*(b, b, D)

a and D being integers.

2. PROPERTIES OF G(&, m, n)

Inductive proofs, with appeal to (1l.1)-(l.3), readily establish the follow-
ing (cf. [2]):

G2, 0, 0) = U,G(1, 0, 0) - qU,_,G(0, 0, 0) (2.1)
G, 1, 0) = U,G(L, 1, 0) - qU,_,G(0, 1, 0) (2.2)
G2y my 0) = U,G(&y 1, 0) = qU,_,G(2, 0, 0) (2.3)
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G(%, 0, 1) = U,G(1, 0, 1) - qUy-1G(0, 0, 1) 0
G(L, 1, 1) = UyG(1l, 1, 1) = qUy-1G(0, 1, 1) (2.5
G, my 1) = U,G(L, 1, 1) = qUp-1G(L, 0, 1) 2.6)
Gy my n) = U,G(&s my 1) = qUp-1G(L, m, 0) 2.7
Then,
Gy my n) = U, 0,62, 1, 1) - qU,_,G(2, 0, 1)} - qU,_,{U,G(%, 1, 0)
- qU,_,G(%, 0, 0)} by (2.3), (2.6), and (2.7)
= U,0,6(s 1, 1) - qu,_,0,6(%, 0, 1) - qU,U,_,G(%, 1, 0)
+ q°U,_,U,_,G(%, 0, 0)
= U, U, {p*Uy (b, b, b) - pqU,_,(0, b, b)} (2.8)
- qU,_,U,{pU, (b, 0, b) - qU,_,(0, 0, b)}
- qU,U,_,{pU, (b, b, 0) = qU,_,(0, b, 0)}
+ q?U,_U,_{U, (b, 0, 0)
- qUy_y(a, a; @)} by (2.1), (2.2), (2.4),
Further, and (2.5).
UpUn+1Un+1r = Uy (PUy = qUm-1) (PU, = qUn-1) by (1.1) (2.9)

P2UUnUy = PqUyUnUn-1 = PQUyUn-1Up + q°UgUn-1Un-1

with similar expressions for Up+1UnUn+1 and Ug+1Um+1Uxn.

Comparing (2.8) and (2.9), we see that the right-hand side of (2.9) con-
tains precisely those coefficients in (2.8) of coordinate sets with b in the
first position, i.e., in the x-direction. Missing is the term in Ug-1Upn-1Un-1.

Similar remarks apply to Up+1U,Up+1 for b in the second position, and to
Up+1Upn+1Un for b in the third position, of a coordinate set.

Accordingly, we have established that

Gy my 1) = DUy Uy 1 Upir = @°aU; 1 Un_ 1Upqs

pszE+1UmUn+1 - qaaUk—lym—lyn-l’ (2.10)
2
p bU2+1Uﬁ+1Uﬁ - qgaUl—IUm—lUn—l)'

Equation (2.10) gives the cooedinates of a point in three-dimensional Euclidean

space in terms of numbers of the sequence {un}.
When p =1, g =-1, b=1, a=0 in (1.1), we obtain the result for Fibo-

nacci numbers F, given in [2], namely,

F FF F F F). (2.11)

Gy my n) = (B F | F R L I P

L m+1 " n+1?
Setting p = 2, g = -1, b =1, a =0 in (1.1), we have the Pell numbers P,
for which (2.10) becomes

G(Ly my 1) = (4B, By, 1Py 4Py 1PaPryys 4Py i1PrsiP) (2.12)

+1 " n+1?

Before concluding this section we observe that, say, (2.6) may be expressed
in an alternative form as

G(L, m, ]-) = UQG(l, m, ]-) - qu_;L(O; m, 1). (2.6)'
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3. HIGHER-DIMENSIONAL SPACE

Suppose we now extend the definitions in (1.1)-(1.3) to »n dimensions in a
natural way as follows. (The use of 7 here is not to be confused with its use
in a different context in the symbol G in the previous section.)

For the »n variables %; (¢ =1, 2, ..., n), we define

Gy +2s Rys Rgseevs 8) = PG+ 15 L5 Dgs vy £2) =G0(Rys Lys Dgs eevs L)
G(Rys B+ 25 Rgseees £) = DG(Rqs B+ 1y Rysevns £,) = GGRes Rps g vees Ry)

G(Rys s Rgs eees 8nt2) = DGy Ly gy eees Lnt 1) =qG(Rys Ly Lgs vevs Ln)

with (3.1)
G(O, 0’ 05 D) O) = (a, Ay Ay eesy a)
G(l, 1, 1, ..., 1) = (b, by b, ..., b) (3.2)
G( ) = pk(—=————m—————— )

in which G(----- ) contains k + 1 1's and » - (kK + 1) 0's, and (————- ) contains

k+1b's and n - (k + 1) 0's, in corresponding positions.

Mutatis mutandis, similar but more complicated results to those obtained in
the previous section now apply to (3.1) and (3.2).

In particular, the result corresponding to (2.10) is

G(/Q/la Q/zs 213’ s ey Q,n) = (pn—lbUllU,Qz+lUl3+l e Uln+l + U’
P U 41U, Up p1 v ee Ugyun + U,

(3.3)
p”‘lbU11+lUlz+lU£3+l"‘ Uln + U)
where, for visual and notational ease, we have written
n
U= (-q) aUll-luﬂz—lUﬂa-l"' Ukn-l' (3.4)

Clearly, (3.3) may represent the coordinates of a point in #»n-dimensional
Euclidean space in terms of the numbers of the sequence {U,}.
For Fibonacci numbers, U = 0, and (3.3) reduces to

G(ys ps Ly vnvs In) = (Fy Fy g1Fy w1 een By 415 eees
Fye1Fa,e1Fev1 - Fy,)e (3.5)

Likewise, for Pell numbers, U = 0 also, and (3.3) becomes

c Eg 41t
2n_lpll+lplz+lplg+l... PQ‘")- (3.6)

G(Rys Lps Rgs enes Ap) = (2”’1P£1P22+1P13+1 ... P

It does not appear that any useful geometrical applications of an elemen-
tary nature can be deduced from the above results.

Harman [2] noted that if, in his case for Fibonacci numbers, the three ex-
pressions in (l1.2) are combined, then the value of G( + 2, m + 2, n + 2) is
given by the sum of the values of the symbol G at the eight vertices of the
cube diagonally below that point. Similar comments apply to our more general
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expressions (1.2) with corresponding observations for the extension to 7 dimen-—
sions entailed in (3.1) in connection with the 2" vertices of a "hypercube."
By this statement, we mean that when, say, n = 3, (1.2) gives
G+ 2, m+2, n+2) =p*GU+ 1, m+1, n+1)-p2gl¢h +1, m+ 1, »n)
+ G+ 1, myun+1)+GA, m+1, n+ 1)}
+ g% {G(L + 1, my n) + G, m+ 1, n)

+ G, my n+ 1}-q%G(, m, n). (3.7)
In the case of Fibonacci numbers, p®=-p?g = pqz = —qa = 1. For Pell num-
bers, p® =8, -p%q = 4, pg? =2, -g° = 1.

4. CONCLUDING REMARKS

Consider briefly now the two-dimensional aspect of the results in the pre-
ceding section, i.e., the case n = 2. (Evidently, when n = 1, we merely get
the numbers U, strung out on the number axis.)

Writing &; = %, %, =m, we find that the truncated forms corresponding to
(3.1)-(3.7) are, respectively,

{t?(% + 2, m) =pGL + 1, m) - qG(, m), 4.1)
G(Rs m+ 2) = pG(R, m+ 1) = gG(L, m), )
with

G0, 0) = (a, a), G(1, 0) = (b, 0),

GO, 1) = (0, b)Y, G(1, 1) =p(b, b), (4.2)
whence:

G, m) = (poUU, ., +al, U _,, pbU, U, + alU, U _.), (4.3)

Gy m) = (FyF s Fy  F D) for {F,}, (4.5)

G(%, m) = (2P, P, 1> 2P, P,) for {P.}, (4.6)

G+ 2, m+2) =p2GL +1,m+ 1) - pgG(2 + 1, m)

- pgG(L, m+ 1) + q*G(L, m). (&.7)

Obvious simplifications of (4.7) apply for Fibonacci and Pell numbers.

Some of the above results, for Fibonacci numbers in the real Euclidean
plane, should be compared with the corresponding results in the complex (Gaus-
sian) plane obtained in [2]. The present authors [5] have studied the conse-
quences in the complex plane of a natural generalization of the material in
[2]. Harman [2], when advancing the innovatory features of his approach, ack-
nowledges the earlier work of [l] and [3], and relates his work to theirs. Tt
might be noted in passing that the introductory comments on quaternions in [3]
have been investigated by other authors, e.g., [4]. One wonders whether an
application of quaternions to extend the above theory on complex numbers might
be at all fruitful.

From the structure provided by the complex Fibonacci numbers, some inter-
esting classical identities involving products are derivable ([2] and [5]).
Hopefully, these might give a guide to identities involving triple products of
Fibonacci numbers, as conjectured in [2], and products in more general recur-
rence-generated number systems, as herein envisaged.
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ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. HILLMAN

Assistant Editors
GLORIA C. PADILLA and CHARLES R. WALL

Please send all communications concerning ELEMENTARY PROBLEMS AND SOLUTIONS
to PROFESSOR A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each
solution or problem should be on a separate sheet (or sheets). Preference will
be given to those typed with double spacing in the format used below. Solu-
tions should be received within four months of the publication date. Proposed
problems should be accompanied by their solutions.

DEFINITIONS
The Fibonacci numbers F, and the Lucas numbers [, satisfy

Fopy=F, +F,F =0, F =1

n+2 n+1 0 1
and
Lyvo =Ly t L, Ly =2,L, =1

PROBLEMS PROPOSED IN THIS ISSUE
B-580 Proposed by Valentina Bakinova, Rondout Valley, NY

What are the three smallest positive integers d such that no Lucas number
L, is an integral multiple of d?

B-581 Proposed by Antal Bege, University of Cluj, Romania

Prove that, for every positive integer n, there are at least [n/2] ordered
6-tuples (a, b, ¢, x, y, 2) such that

F, = ax® + by® - cz?
and each of a, b, ¢, , y, 2 is a Fibonacci number. Here [t] is the greatest

integer in t.
B-582 pProposed by Piero Filipponi, Fond. U. Boidoni, Roma, Italy

It is known that every positive integer NV can be represented uniquely as a
sum of distinct nonconsecutive positive Fibonacci numbers. Let f(IV) be the
number of Fibonacci addends in this representation, a = (1 + ﬁg)/Z, and [x] be
the greatest integer in x. Prove that

flaF?]) = [(n + 1)/2] forn =1, 2, ...
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B-583 Proposed by Dorin Andrica, University of Cluj-Napoca, Romania

For positive integers »n and s, let
n
n
Suo = Z (5)%"
k=1
Prove that S, 41 =n(S, 4~ Sy_1,4)-

B-58L4 Proposed by Dorin Andrica, University of Cluj-Napoca, Romania

Using the notation of B-583, prove that

s
S
Srn+n,s = kg()(k)sm,ksn,s—k'

B-585 Proposed by Constantin Gonciulea & Nicolae Gonciulea, Trian College,
Drobeta Turnu-Severin, Romania

For each subset 4 of X = {1, 2, ..., n}, let r(4) be the number of j such
that {j, J + 1} C 4. Show that

r(4) _
Agxz - F2n +1°

SOLUTIONS

Pattern for Squares

B-556 Proposed by Valentina Bakinova, Rondout Valley, NY

State and prove the general result illustrated by

4> = 16, 34% = 1156, 334% = 111556, 33342 = 11115556.
Solution by Thomas M. Green, Contra Costa College, San Pablo, CA

Let D, = 1 + 10 + 102 + --- + 10""!. The general result
(3D, + 1)% = 10"D, + 5D, + 1

is proved by expanding the left member and observing that 9D, = 10" - 1.
Note: The quantity D, has several other interesting properties:

(i) D, 111...111 (n ones)

(i1) D = 123...n...321 (n =1, ..., 9)
(iii) D9/9 = 123456789

(iv) B - 1D, = b" - 1 (b is your number base)

]

(v) The sequence Dg, D;, Dg, e D:, is Pascal's triangle (with suitable
restrictions on carrying) and the sequences Dﬁ, D;, Di, s D;, are
Pascal-like triangles where each entry is the sum of the »n entries above
it.

Also solved by Paul S. Bruckman, Ldszlo Cseh, L.A.G. Dresel, Piero Filipponi,
J. Foster, Herta T. Freitag, Hans Kappus, H. Klauser, L. Kuipers, Graham Lord,
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Imre Merényi, Bob Prielipp, Sahib Singh, Lawrence Somer, J. Suck, and the pro-
poser.

Not True Any Year

B-557 Proposed by Imre Merényi, Cluj, Romania

Prove that there is no integer »n 2 2 such that

- 8
Fanefan-slsnsafanee = Ty ofy 1B 1By, = 19857 + 1.

Solution by J. Suck, Essen, Germany

Since Fyp = 2F, (mod 3) [see, e.g., B-182, The Fibonacci @Quarterly 8 (Dec.
1970), for the more general Fpy = FpFy (mod p), p a prime], the left-hand side
is congruent to (2q - D)F, _,F, F,4+.F,.,, hence to 0. But the right-hand side
is not whatever the year may be: if y = 0,1, 2, then y8 +1=1, 2, 2, respec-—
tively, mod 3.

Also solved by Paul S. Bruckman, Laszlé Cseh, L.A. G. Dresel, Piero Filipponi,
J. Foster, L. Kuipers, Sahib Singh, M. Wachtel, and the proposer.

Impossible Equation

B-558 Proposed by Imre Merényi, Cluj, Romania

Prove that there are no positive integers m and »n such that

2 =
B, = Fa, - 4 = 0.

3n

Solution by L.A. G. Dresel, University of Reading, England

Since F; = 2 and Fg = 8, we have F3,, = 2 (mod 4) when »n is odd, and F,,, = 0
when » is even. Now consider the equation F;; = F3 + 4. Clearly »n cannot be
odd, since F2= 2 (mod 4) is not possible. However, if »n is even, F:; = 4 (mod
8) and this implies F,, = *2 (mod 8). Hence F,, 1is even, so that m = 3k, where
k is an integer, and therefore F,, = F,,;, which is divisible by 8. This con-
tradicts F,, = *2 (mod 8). Hence there are no integers m and n such that Fj; -
F. -4 =0.

o We note that the above argument actually proves the slightly stronger re-
sult that there are no integers m and »n such that F;; -F,, -4 =0.

Also solved by Paul S. Bruckman, Laszlo Cseh, Piero Filipponi, L. Kuipers, Sahib
Singh, Lawrence Somer, M. Wachtel, and the proposer.

Golden Mean ldentity

B-559 Proposed by Laszlo Cseh, Cluj, Romania

Let a = (1 + V5)/2. For positive integers n, prove that
[a+ .51 + [a® + .5] + +++ + [a" + .5] =1 ., -2,

where [x] denotes the greatest integer in zx.
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Solution by J. Foster, Weber State College, Ogden, UT

Since L, = ak + B¥ and, for k = 2, [.5 - BX] =0,

I

3 [ok + .51 2L, - 8%+ .51 = X (&, + [.5~8%D)
k=1 k=1 k=1

n
kgoLk—Lo-l-[.S—B]=(Ln+2—1)—2+1=Ln+2—2.

Also solved by Paul S. Bruckman, L.A. G. Dresel, Piero Filipponi, C. Georghiou,
Hans Kappus, L. Kuipers, Graham Lord, Imre Merényi, Bob Prielipp, Sahib Singh,
Lawrence Somer, J. Suck, and the proposer.

Another Greatest Integer ldentity

B-560 Proposed by Laszlé Cseh, Cluj, Romania

Let a and [x] be as in B-559. Prove that
[aF, + .5] + [a‘ZF2 + .5] + «++ + [a"F, + .5]

is always a Fibonacci number.
Solution by C. Georghiou, University of Patras, Greece

We have
P - St 3 § L il G DX
n

V5 o /5

and since

s -
5

the given sum becomes

I
PNy

—
S N
\V4 I
= —

0,

F,+1+F, +F, + -+« +F, =F

2n 2n+1°

Also solved by Paul S. Bruckman, L. A. G. Dresel, Piero Filipponi, J. Foster,
Hans Kappus, L. Kuipers, Imre Merényi, Bob Prielipp, Sahib Singh, Lawrence Somer,
J. Suck, and the proposer.

@-Matrix ldentity

B-561 Proposed by Piero Filipponi, Fond. U. Bordoni, Roma, Italy

1 1
(i) Let @ be the matrix . For all integers »n, show that
1 0
1 0
Q"+ (-1)'Q™" = L,I, where I =
0 1

(ii) Find a square root of @, i.e., a matrix 4 with 42 = Q.
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Solution by Sahib Singh, Clarion University, Clarion, PA

(i) If n =0, then @° + (°)™% = 2T = T.

For n 2 1, it follows by mathematical induction that:

" Fn+1 Fn
Q =
Fﬂ n-1
F ~-F
n-1 n
Q" = (-1)"
_Fn Fn+1
L, 0
Thus, Q" + (-=1)"Q™ " = =I,I for all n > 1.
0 L,

Changing n to -n, the above equation becomes:

Q"+ (-1)7"Q"=L_ I or (-D"[Q"+ (-1)"Q7"] = (-1)'L,T,
so that

Q"+ (-1)"Q@™ =L,T for n < -1.

Thus, the result holds for all integers.
a b
(ii) Let a square root of @ be denoted by S where S = . Then S%=¢@
yields c d

a2+ be=1; (a+d)b =1; (a + de =1; be + 42

]
(@)

Solving these equations, we conclude that

1+ b2 1 - p? o
a==—>p 5 ¢= b; d = 53 where b satisfies
5p% - 2b%2 4+ 1 = 0.
2
léib b
Thus, a square root of @ is 1 - p2|°
2b

where b is a complex number satisfying 5b% -~ 2b% + 1 = 0, which can
be solved by the quadratic formula using x = p2.

Also solved by Paul S. Bruckman, Laszlé Cseh, L. A. G. Dresel, J. Foster, C.
Georghiou, Hans Kappus, L. Kuipers, Bob Prielipp, Lawrence Somer, J. Suck, and

the proposer.

$060¢
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PA 17745. This department especially welcomes problems believed to be new or
extending old results. Proposers should submit solutions or other information
that will assist the editor. To facilitate their consideration, all solutions

should be submitted on separate signed sheets within two months after publica-
tion of the problems.

PROBLEMS PROPOSED IN THIS ISSUE

H-403 Proposed by Paul S. Bruckman, Fair Oaks, CA

Given p, g real with p # -1 - 2gk, k =0, 1, 2, ..., find a closed form ex-
pression for the continued fraction

p+q

P+2q+p+3q (1
p+ib4g+ ---

6ps g) = p +

HINT: Consider the Confluent Hypergeometric (or Kummer) function defined as
follows:

o (@, .
M(a, b, 2) =n§;)2532"£75 b 40, -1, -2, ... . (2)
NOTE: 6(1, 1) =1 +—%~;j7r————-, which was Problem H-394.
5+ ...

H-40L4 Proposed by Andreas N. Philippou & Frosso S. Makri, Patras, Greece

Show that

n 1
(ay ¥ X2 > (nl + nz) =F . ., n=0;
r=0 2=0

e W n+2
Nys Ny 3 TE1s TR

n+2n, =n-1t

ny+ n, =n-r

n k-1
o %
®) ¥ (”1+ +”k)=F(’2,n>o,k>2,
r=01%2=0 M1s-ees 1y 2 Pas wees Mg m
nyt2n,+ oo tkng=n-1
nyt et m=n-r

where 7y, ..., My are nonnegative integers and {Eﬁku is the sequence of Fibo-
nacci-type polynomials of order k [1].

[1] A. N. Philippou, C. Georghiou, & G. N. Philippou, "Fibonacci-Type Polyno-

mials of Order X with Probability Applications," The Fibonacei Quarterly
23, no. 2 (1985):100-105.

376 [Nov.



ADVANCED PROBLEMS AND SOLUTIONS

H-405 Proposed by Piero Filipponi, Rome, Italy

(i) Generalize Problem B-564 by finding a closed form expression for
N
Slekr,l, @W=1,2, ...; k=1, 2, ...)
n=1

where o = (1 + Vg)/Z, F, is the n'" Fibonacci number, and [x] denotes
the greatest integer not exceeding x.

(ii) Generalize the above sum to negative values of k.

(iii) Can this sum be further generalized to any rational value of the expo-
nent of o?

Remark: As to (diii), it can be proved that
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